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Preface

A question implicit in many conversations with undergraduates at

first-year orientation is, “If I were to take only one mathematics class,

what should it be?” Of course, there is no one correct answer. A

more interesting question (not that it gets asked) might be, “Is there a

class which introduces me to the subject of mathematics?” In answer,

some might proffer various discrete/finite math/introduction to proof

courses, but I think these are not really an answer to that question.

A number of years ago, our department was interested in providing

a wide variety of courses which attempted to answer that question,

and this book details one such offering.

Therefore, one goal of this book is to present some of the vista of

modern mathematics to undergraduates who have just started their

mathematical careers, with the intent of enticing (and guiding) them

into taking mathematics courses beyond the typical calculus regime.

As mathematicians, we have acquired the perspective that mathe-

matics represents not only a broad collection of tools which can be

brought to bear to solve a myriad of problems, but more interestingly,

that the various subdisciplines in mathematics are interconnected of-

ten in surprising ways, adding immensely to the richness and allure of

the discipline itself. Undergraduates beginning their careers certainly

do not have that perspective, and if they are lucky, they begin to

acquire it only near the end of their undergraduate majors. The hope



in writing this book is to provide some of that perspective to students

at an early stage in their careers so as both to (re)excite them about

mathematical exploration, and to help inform their choices as they

go forward in their undergraduate experience.

The focal point for this text is to lead students to understand the

arithmetic of elliptic curves over a finite field and some applications

of elliptic curves to modern cryptography. Assuming only calculus as

prerequisite, there is a great deal of ground to cover, but a wonder-

ful opportunity to demonstrate how many areas of mathematics are

intertwined.

That said, this book is not (nor is it intended to be) a typical

textbook in many respects. While the topics introduced include ma-

terial on elementary number theory, abstract algebra, cryptography,

affine and projective geometry, the intent is not to present a thorough

introduction to any of those subjects; it is meant to generate interest

in exploring those subjects in more detail. Excellent books devoted

individually to those topics are plentiful, but typically they are aimed

at a more mathematically sophisticated audience.

This book aims at a mathematically young audience, one that

more likely than not has never seen a substantive mathematical proof.

Indeed, the only real prerequisite for this book is some one-variable

calculus; the rest of the mathematical topics are introduced on-the-

fly. This is also not a standard textbook in another important sense.

Instead of presenting succinct proofs of results (as is done in a typical

textbook), many proofs are presented more as explorations, includ-

ing (on occasion) some intentional peeks down blind alleys. That is

to say, this book makes a significant effort to teach students about

how to produce or discover a proof, by presenting mathematics as an

exploration. Indeed, while somewhat of a cliché, the book is a great

deal more about the journey than the destination, and it is intended

to point to the many branches off the main path to be explored in

the future.

In the end, the book seems to serve several purposes. It serves, as

initially conceived, as a means of introducing many topics in modern

mathematics with interconnections among them to motivate students

to take more mathematics. It also seems well suited to serve as an



alternate course introducing proofs and abstract mathematics, which

occupies a prominent place in many mathematics programs. And

finally, given that one cannot really understand modern cryptography

without some of its mathematical underpinnings, this book is well

suited to computer science programs which desire to offer a course

investigating the practical and implementation sides of cryptography,

but which need their students to have some semblance of its necessary

mathematical background.

Introduction

This book is written to introduce a student with only single-variable

calculus as background to enough mathematics to understand the

basics of elliptic curves over finite fields and their applications to

modern cryptography. Topics include basic notions in elementary

number theory and abstract algebra, aspects of affine and projective

geometry, as well cryptography and cryptanalysis. The goal of this

book is not so much to provide complete answers to the questions we

raise as it is to show the many connections between those questions

and areas of mathematics whose further study will provide deeper

answers.

In Chapter 1 we give a cursory exposition of three problems in

number theory which are connected to elliptic curves: Fermat’s Last

Theorem, the congruent number problem, and applications of number

theory to cryptography.

Chapter 2 is quite broad, recasting problems in number theory as

problems amenable to geometric or algebraic interpretation. We look

at connections of congruent numbers to Pythagorean triples, and at

connections between Pythagorean triples and rational points on the

unit circle. We explore in detail how to parametrize the rational

points on the unit circle and use the parametrization to produce a

simple algorithm to enumerate square-free congruent numbers. Then

we begin to look for structure inherent in certain sets. For example,

we know the set of points in R3 that satisfy x + y + z = 0 has the

geometric structure of a plane through the origin. The set of rational

points that satisfy the same equation does not seem to have geometric

structure, but it does still have algebraic structure once we define the



notion of vector space. We give a few examples that characterize the

notion of dimension of a space along with the notion of basis, which,

while clearly important in their own right, also foreshadow the rank

of a finitely generated abelian group, the group of rational points on

an elliptic curve.

We talk about rational points on more general curves and give

Bachet’s duplication formula for the elliptic curves y2 = x3+k, k �= 0;

this is one of the few places we use some calculus. Beyond that, we

work to gain insight into Bézout’s theorem concerning the number of

points of intersection of two plane curves. We see how the issues of

the field of definition and multiplicity affect the answer and hint that

this is still not enough to give a complete answer, suggesting a future

need to expand our view from affine to projective space.

Chapter 3 is rather traditional, introducing basic concepts in el-

ementary number theory including divisibility, gcd, and division and

Euclidean algorithms. We take a first pass at modular arithmetic,

noting that congruence is an equivalence relation. We give some

simple applications of modular arithmetic, and we use the Caesar

cipher both as another application and as a vehicle to introduce some

standard terminology in cryptography. We extend Caesar ciphers to

affine ones and explore conditions under which affine transformations

can function as encryption algorithms. This leads to determining the

conditions under which linear congruences can be solved and to deter-

mining the number of incongruent solutions. All this is preparatory

to the next chapter where we talk about the set of residues modulo n

having an algebraic structure.

Chapter 4 is another in which we slowly unravel many important

ideas that lead to the characterization of Zn (the set of residues mod-

ulo n) as a ring and Un (the set of reduced residues modulo n) as

its unit group. We begin by understanding the standard arithmetic

operations on the integers as binary operations on the set Z and how

their properties endow Z with the structure of a commutative ring,

passing through the notion of a group on the way. Then we use arith-

metic with fractions (Q) to motivate binary operations on a set of

equivalence classes. Armed with that intuition, we define congruence



classes modulo n, and show that there are well-defined binary oper-

ations which can be defined on them which make the set of residues

Zn into a commutative ring with identity. We then show that we can

make the set of reduced residues (the units of Zn) into an abelian

group. We define the Euler totient function φ and prove Euler’s the-

orem and Fermat’s little theorem, which we will need to justify that

RSA (the Rivest–Shamir–Adelman algorithm) functions as intended.

We discuss modular exponentiation, and end with an application to

factoring, Pollard’s p − 1 method which serves as the model against

which we compare Lenstra’s elliptic curve method of factorization.

Chapter 5 begins with a simple description of how public-key

cryptography facilitates the creation of a secure connection when

making an online purchase. Then we discuss more of the fundamentals

of a public-key cryptosystem, followed by a discussion of signatures

and authentication. We then begin to make things somewhat more

realistic by talking about hash functions and signatures applied to a

hash. We discuss the use of hash functions in daily use and specific

requirements for hash functions in current use. We discuss preimage

resistance problems in relation to the Birthday paradox in probability.

The chapter ends with some security considerations for RSA.

Chapter 6 introduces a bit more algebra, including the notion of

a cyclic group and the fundamental theorem of finite abelian groups.

We use the fundamental theorem to give a proof that for p a prime, the

set of reduced residues Up is cyclic, leading to a discussion of primitive

roots. This in turn leads to the notion of discrete logarithms, the

Diffie–Hellman key exchange, and ElGamal encryption.

Chapter 7 covers a great deal of ground beginning with a gradual

introduction to projective space. We discuss how and why to homog-

enize a polynomial defining an affine plane curve so as to reveal extra

points on the corresponding projective curve. Then we take a signif-

icant amount of time to define the group law for the set of points on

an elliptic curve, and we abstract from it the algebraic formulas that

define the addition law in projective space. We give several examples

where we determine the isomorphism class of the abelian group of

points of an elliptic curve over a finite field, and we end with Hasse’s

theorem bounding the number of points on an elliptic curve over the



finite field Fp. As an application, we show that the probability that a

randomly chosen x ∈ Fp is the x-coordinate of a point on the elliptic

curve is approximately one-half, which we use in the last chapter in

discussing an elliptic curve version of Diffie–Hellman and the ElGamal

cryptosystem.

In the final chapter we look at applications of all our work thus far.

We introduce Lenstra’s elliptic curve method (ECM) of factorization

and discuss its analogy with Pollard’s p − 1 method. We then talk

about how to embed a plaintext message as a point on an elliptic curve

and, given that embedding, what would be the appropriate analogs of

Diffie–Hellman and ElGamal. We end with some interesting remarks

about the NSA’s vision and recommendations regarding cryptography

in a post-quantum computer world.

Appendix A completes the discussion of some themes that mo-

tivated much of the exposition, but the level of exposition is now

far above where it has been in the body of the text. Giving closure

to the topic of congruent numbers is Tunnell’s theorem whose solu-

tion involves a discussion of Mordell’s theorem on the structure of

E(Q), the set of rational points on an elliptic curve, as well as the

Birch and Swinnerton-Dyer conjecture. The appendix ends with a

brief discussion of elliptic curves over C, elliptic functions, and the

characterization of E(C) as a complex torus.

Appendix B has solutions to the majority of exercises posed in

the text.

All code and figures in the text were produced with Sage [S+15].



Chapter 1

Three Motivating
Problems

The goal of this book is to explain how the set of points on an elliptic

curve can be given the structure of an abelian group, and how the

arithmetic of elliptic curves over finite fields can be used as a powerful

tool in cryptography and cryptanalysis. Perhaps to put it another

way, the goal of this book is to help the reader understand the first

sentence.

To motivate our study of elliptic curves, we consider three prob-

lems in number theory and geometry whose solutions use elliptic

curves in an essential, if sometimes subtle, manner. Two of these

problems, Fermat’s Last Theorem and the congruent number prob-

lem, are problems whose statements are completely elementary. They

are classical in feel, perhaps almost playful in tone. In contrast the

third problem, applications of the theory of elliptic curves to cryp-

tography, is a quite modern subject whose practical importance has

grown enormously of late. In 2011 Koblitz et al. [KKM11] wrote that

“over a period of sixteen years, elliptic curve cryptography went from

being an approach that many people mistrusted or misunderstood to

being a public key technology that enjoys almost unquestioned accep-

tance.” A key question for us to address is, What are these elliptic
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curves which have had such an impact, and how have they proven to

be so important?

At first blush, elliptic curves appear to be nothing special. For us

they will just be certain curves given by polynomials of degree 3, but

before we even talk about cubics, let’s back up a bit. In secondary

school it is common to study the properties of lines and conics in

the plane as well as the principles of Euclidean geometry. For ex-

ample, if you were to consider the quadratic equation y = x2 + 2,

you might think of the set of all the points (x, y) in the plane which

satisfy that equation as a geometric object, the parabola with line

of symmetry the y-axis, vertex (0, 2), and opening upward. It might

also be interesting to consider what happens when we consider the

points (x, y) which satisfy that equation when we restrict or allow the

coordinates to come from different domains. For example, we could

ask for the rational points, that is those points (x, y) in which both

x, y ∈ Q (are rational numbers) such as (0, 2) or (1/3, 19/9), though

you might question why that would be a useful thing to do. We

shall answer that question later in the book, but for now let’s sim-

ply observe that some but not all points on the curve have rational

coordinates, e.g., (±
√
2, 4), or ( 3

√
2, 2 + 3

√
4) are real, but not ratio-

nal points. Analogously, we might ask about complex points (points

with complex coordinates). Again, why would we do that? Well, at

least here, your previous experience in mathematics affords you some

insight. If we asked what are the roots of x2 + 2, you would either

have said there are none or they are complex (imaginary). Said an-

other way, (±i
√
2, 0) are two complex points on the curve y = x2 + 2

which are not on the real locus, the curve we draw. While we cannot

fully appreciate this comment so early in the book, it is perhaps not

too surprising that an interest in rational points should somehow be

connected to number theory, since rational numbers are the quotients

of integers, the domain of number theory. It is also the case that the

complex points are often more interesting than the real points since

there are more of them and since the set of complex solutions may

have an even more interesting structure than we might first think.

Indeed, to use the word “structure” in the context of the set of points

on a curve is quite intentional, and in some sense it represents the

origins of most of the applications we shall discuss.
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For us an elliptic curve will be a the set of points (x, y) which

satisfy an equation of the form

y2 = x3 + ax2 + bx+ c,

where the cubic, x3+ax2+ bx+ c, is nonsingular (has distinct roots).

Our interests will include a consideration of the set of solutions (x, y)

where x, y are restricted to different domains, and indeed we will not

only be interested in points whose coordinates are rational, real, or

complex numbers, but also those whose coordinates lie in so-called

finite fields, which we have yet to define. But even we have to admit

that despite the build up we have given to elliptic curves so far, the

definition seems quite lackluster; in particular, the definition seems to

shed no light at all on why elliptic curves should play such a pivotal

role in number theory. Yet be assured that they do, and as well pro-

vide some of the best schemes for public-key cryptography. Certainly

we shall take a closer look at all these things.

Among the three motivating problems, we shall look only briefly

at the Fermat problem, slightly more deeply at the congruent number

problem, and most deeply at developing an understanding of how

elliptic curves are of critical use in cryptography. This emphasis is

deliberate, in part because the role elliptic curves play in the solutions

of the Fermat and the congruent number problems is more subtle

and much more sophisticated, and in part because such an omission

provides the opportunity for the reader to do some investigation on

her own.

1.1. Fermat’s Last Theorem

This theorem, conjectured by Fermat in 1635, states simply that for

n > 2 the equation xn + yn = zn has no solutions in the integers

except when one of the variables is zero. We note that this contrasts

sharply with the case of n = 2 for which solutions (Pythagorean

triples) abound. In fact, Pythagorean triples will play an integral

role in the congruent number problem, but before leaping to make

that connection, we need to say a few more words about the Fermat

theorem.
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In 1640, Fermat himself proved that the conjecture was true for

n = 4 and noted that if n = km, the existence of a nontrivial solution

to xn+yn = zn implied the existence of nontrivial solutions to (xk)m+

(yk)m = (zk)m, that is to a Fermat problem whose exponent is a

divisor of the original. Fermat’s n = 4 result and this observation

reduces the proof of the Fermat conjecture to showing there are no

nontrivial solutions to xp + yp = zp, where p is an odd prime.

Until 1839, only the cases p = 3, 5, 7 had been resolved; this

included Sophie Germain’s important work which eventually allowed

the conjecture to be proved for all odd primes less than 100. In

the 1850s, Ernst Kummer developed techniques to prove the Fermat

conjecture for all “regular” primes, which is believed to be an infinite

family. Modern computing methods verified the conjecture for primes

less than four million.

The first real breakthrough came in 1985 when Gerhard Frey

suggested that if there were a counterexample to Fermat’s conjec-

ture, it could be used to create an elliptic curve having properties

which would provide a counterexample to yet another unproved con-

jecture due to Taniyama and Shimura. While the Fermat conjecture

enjoyed a reputation as a long-standing open problem in mathematics,

the Taniyama–Shimura conjecture had deep implications for how the

theory of modular forms and elliptic curves fit together. If this later

conjecture had been false, it would have been quite disappointing.

In the period 1985–1986, Jean-Pierre Serre showed how the Tani-

yama–Shimura conjecture together with another smaller conjecture

— termed the “epsilon conjecture” — would imply Fermat’s theo-

rem. Ken Ribet proved the epsilon conjecture in 1986 reducing the

Fermat theorem to a proof of the Taniyama–Shimura conjecture for

a special class of elliptic curves. In 1994, Andrew Wiles (after seven

or more years of intense work, together with a last minute assist

by Richard Taylor) succeeded in proving the required case of the

Taniyama–Shimura conjecture, and hence proving Fermat’s Last The-

orem. And in case you were wondering, the full Taniyama–Shimura

conjecture has now been proven as well.
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1.2. The Congruent Number Problem

A positive integer is called a congruent number if it is the area of a

right triangle whose sides all have rational length. For example, 6 is

a congruent number since 6 is the area of a 3-4-5 right triangle.

It is also true that 5 is a congruent number, though this is some-

thing you might not guess right off. But indeed, 5 is the area of the

right triangle with sides: 3/2, 20/3, 41/6. Any reasonable person

would agree that one can check the result, but it is certainly mys-

terious how one would come up with a triangle having those sides.

However, with an unexpected solution in hand, it now becomes a

much more interesting question to ask which integers are congruent

numbers. For example, later in the book we shall see that 157 is a

congruent number. Surely it can’t be that hard to check that such a

small number is or is not a congruent number. But we shall see that

the answer to this question is more elusive than it may first appear.

A key observation in characterizing congruent numbers is that if

N is a congruent number, then Nt2 is also for any positive integer

t; indeed if N is the area of a triangle having rational sides a, b, c,

then Nt2 is the area of a triangle with sides at, bt, ct. Let’s consider

the triangle showing that 5 is a congruent number. It is easily seen

that 6 is the common denominator of the rational numbers 3/2, 20/3,

41/6, and from our observation above, since 5 is a congruent number,

5 · 62 is also, being the area of a right triangle with sides 9 = 6 · 3
2 ,

40 = 6 · 20
3 , and 41 = 6 · 41

6 . But of course this means that 9, 40,

41 is a Pythagorean triple! Conversely, suppose that A,B,C are

a Pythagorean triple, and N is the area of the corresponding right

triangle. Write N = N0t
2 where N0 is square free (1 or the product

of distinct primes), t > 0. Then N0 is a congruent number, being the

area of a right triangle with rational sides A/t,B/t, C/t.

So there is a clear relationship between congruent numbers and

Pythagorean triples, which means if we had a way to list all Pythago-

rean triples, we would know which numbers were congruent numbers.

In fact, we will show how to list all the Pythagorean triples! Unfortu-

nately, the congruent numbers that come out of the list do not appear
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in any particular order and are often repeated, so this procedure can-

not definitely answer whether a given integer is a congruent number.

Still it will provide a good deal of insight into the connections between

algebra and geometry, so we will spend significant time with it.

As of this writing, the congruent number problem remains open,

though many partial results are known. Jerrold Tunnell [Tun83] de-

veloped a condition based on the arithmetic of elliptic curves (and

yet another open conjecture—the Birch and Swinnerton-Dyer conjec-

ture) which provides a beautiful answer to this question. We discuss

Tunnell’s approach at the end of the book.

1.3. Cryptography

Cryptography is a subject that has a long and fascinating history

and is a matter of critical importance to all of us in an age when

so many transactions happen electronically. It is the subject around

which essentially all the background material on number theory and

algebra that we develop in this book will be focused.

There are many interesting questions of a practical nature which

cryptography solves and which we shall examine, but as a teaser, we

mention only a few in this introductory chapter. It is not terribly

difficult to send private messages to a friend even over an insecure

channel. What becomes trickier is when you want to do the same

with someone you don’t know. Why would you want to do that?

Well, every time you order something online, you want to communi-

cate securely with the vendor so that confidential information (e.g.,

a credit card number) is not revealed over the insecure web. But

how can you (that is, your computer) and your vendor do this? On

a different note, how can someone who has received an email from

you prove to a third party that the message is indeed from you and

not someone forging your address? Or, how can someone be sure a

message has not been tampered with (e.g., when a bank receives a

message to transfer funds from one account to another)?

All of these are vital questions that modern cryptography an-

swers effectively, and elliptic curves figure prominently in the mix.

Of course given any cryptographic system, there are many individu-

als who do their best to break it, so we will look at standard kinds of



1.3. Cryptography 7

cryptographic attacks on various systems, and how vulnerable each

system is to different types of attacks. In the end, elliptic curve cryp-

tography turns out to be among the best public-key cryptosystems

currently in use.



Chapter 2

Back to the Beginning

In the first chapter we briefly introduced what will be our main ob-

ject of study in this book, an elliptic curve. We suggested that in

general, curves could be interesting geometrically but they sometimes

also contain arithmetic or algebraic information—presuming we could

discover how to tease it out of them. One point we made is that it is

often revealing to think about those points on a curve each of whose

coordinates are rational, or real, or complex. We refer to such points

simply as the rational, real, or complex points on a curve. In a rather

different vein, we also discussed the connection between congruent

numbers and Pythagorean triples. We even suggested that we could

list all the Pythagorean triples.

In this chapter, we set as one of our goals to do just that: to

determine a way in which to list all the Pythagorean triples—well, at

least all the so-called primitive Pythagorean triples, but we will talk

about that subtlety in a bit. It turns out that the key to listing all

the triples is to characterize all the rational points on the unit circle,

x2 + y2 = 1. This represents an important first example of how the

algebra and geometry of a curve can combine to answer questions that

are seemingly quite unrelated. We shall of course see more examples

as the book unfolds.
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2.1. The Unit Circle: Real vs. Rational Points

When we look at the equation x2 + y2 = 1, our minds can be pulled

in two different directions. In one direction, we see the geometric

object, the unit circle, which displays simultaneously all the (real)

solutions (x, y) to the equation. Said another way, the circle is a

graphical representation of the real points on the curve x2 + y2 = 1.

In the other direction, we see the underlying algebraic operations: for

example, if x = 1/2, then y2 = 1− (1/2)2 = 3/4, so that y = ±
√
3/2

which gives us the two real points (1/2,±
√
3/2) on the unit circle.

While the graphical representation of the unit circle allows us to

“see” all the points on the unit circle, we need various means of char-

acterizing their coordinates. As a first approach, our experience with

calculus provides an outstanding answer to the question of character-

izing the real points on the circle: they are parametrized by cosine

and sine. That is, each point (x, y) on the unit circle has the form

(cos θ, sin θ) for a uniquely determined θ ∈ [0, 2π).

This is certainly one reasonable answer if we are interested in the

real points. But what about the rational points? Except for the four

obvious points, (0,±1) and (±1, 0), we seem to know very little about

the values of θ which give rise to rational values of sine and cosine.

So to characterize the rational points, we shall take a different

approach. Suppose that
(a
b
,
c

d

)
is a rational point on the unit circle.

Then the coordinates (x, y) satisfy the equation x2 + y2 = 1, so(a
b

)2

+
( c

d

)2

= 1.

Clearing denominators, we obtain

(ad)2 + (bc)2 = (bd)2,

that is, the rational point (a/b, c/d) on the unit circle corresponds

to an integer solution of x2 + y2 = z2 with z �= 0, and in fact to a

Pythagorean triple (taking absolute values) |ad|, |bc|, |bd|, if the ra-

tional point
(
a
b ,

c
d

)
�= (0,±1), (±1, 0). This is certainly an interest-

ing observation. Conversely, any triple, A,B,C ∈ Z, C �= 0 with

A2 + B2 = C2 corresponds to the rational point (A/C,B/C) on the

unit circle. And note that the constraint C �= 0 is not much of a
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constraint, since if C = 0, the only possible triple of (real) numbers

is (0, 0, 0), which isn’t all that arithmetically interesting.

Summary so far.

• Congruent numbers are naturally connected to Pythagorean

triples. A Pythagorean triple determines a right triangle

whose area is by definition a congruent number, and con-

versely given a congruent number, we have by definition a

right triangle whose sides have rational length. Clearing the

denominators for the side lengths produces a Pythagorean

triple.

• Pythagorean triples are connected to rational points on the

unit circle x2 + y2 = 1, as we have just seen.

• In the first chapter we said that if we could list all the

Pythagorean triples, then all the congruent numbers would

eventually be revealed.

• So if we can figure out how to characterize all the rational

points on the unit circle, we can get the Pythagorean triples,

which will give us the congruent numbers. At least it’s a

plan. We’ll give an algorithm for this later in this chapter.

But before addressing that question, let’s digress a bit more. First

a general ramble. It may seem a bit circuitous that to list congruent

numbers, we have reduced the problem to listing all the Pythagorean

triples, and then in turn we have reduced the problem of generating

all the Pythagorean triples to characterizing the rational points on

the unit circle. This process of reducing the solution of one problem

to the solution of another is actually quite common in mathematics.

If you want a more dynamic example, consider the progress on the

Fermat problem, outlined in the first chapter. But more to the point,

it is often this process of transforming one problem into a seemingly

quite distinct one that is among the reasons mathematics is perceived

as so rich and deep a subject. Occasionally, one might lament the lack

of a direct proof as in the Fermat problem, but that is perhaps better

left as a question of aesthetics.
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A more constrained digression from the task of characterizing the

rational points on the unit circle is to consider what might happen

if we generalized the problem by asking not simply for the solutions

to x2 + y2 = 1 but for solutions to x2 + y2 = r, where r is any real

number. We might be led to consider solutions to x2 + y2 = 0 or

x2 + y2 = −1. If we were biased by our perspective above where we

sought only solutions in the rational or real numbers, we might be

inclined to say the only solution to the first equation is the origin,

and that there is no solution for the second. But that is only because

our perspective may be a bit narrow. For example if we were looking

for solutions in the complex numbers or over a finite field (whatever

that is), there would be lots of solutions. Having a flexible perspective

will be very useful to us.

2.2. Parametrizing the Rational Points on the
Unit Circle

While we have certainly made a good case for why we should be

interested in the rational points on the unit circle, we haven’t yet

come up with a good scheme for enumerating them. We considered

using sine and cosine, but not only does characterizing the values of

θ for which cos θ and sin θ are both rational seem difficult, it is not

really what we want. We simply want a way to list all the points on

the unit circle with rational coordinates.

Perhaps that suggests we go back to the beginning and find a

different way to list all the real points on the unit circle. One way

that comes to mind is historically quite old and has been used in

many contexts—it is the notion of a stereographic projection. Imagine

wanting to create a map of the world, and for now let’s consider what

was classically considered a map, that is, a rendering on a flat surface.

The idea was quite simple. Take the globe, and pass a plane through

the equator. Draw a line from the north pole to any other point on

the globe. That line will pierce the plane in exactly one point. Note

that the equator is a circle in our plane, and the northern hemisphere

is mapped outside the circle; the southern hemisphere mapped inside

the circle.
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Today, you might argue that such a representation is rather old

fashioned, and indeed, while a stereographic projection has certain

interesting properties (it preserves angles), it certainly distorts areas

and distances, but that is because we are trying to do too much with

one map. Somehow localized projections would suffer less distortion.

After all, the Earth is basically a sphere, and every map we look at

is a planar rendering of some portion of it. In topology, you make

rigorous the notion that the sphere (the Earth) is locally flat, that

is if you look at a small enough patch it is essentially the same as a

piece of the Euclidean plane. This concept is the germ of the idea

behind the notion of a manifold, which begins a foray into differential

topology.

But let’s return to the issue of characterizing the points on the

unit circle in such a way that the rational points are easily recognized.

To do so, we use the idea of stereographic projection. Consider Figure

2.1.

Figure 2.1
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In analogy with the stereographic projection of the sphere onto

a plane through its equator, we consider the projection of the unit

circle from the point (−1, 0) onto the line passing through the north

and south poles ((0, 1) and (0,−1)). More specifically, for each point

(a, b) �= (−1, 0) on the unit circle, there is a unique line passing

through both points, and that line intersects the y-axis in a unique

point we have labeled (0, t). Note that the points of the unit cir-

cle in the first and fourth quadrants are mapped to points (0, t) with

t ∈ [−1, 1], while points in the second and third quadrants are mapped

to points (0, t) with |t| ≥ 1.

The analysis we give now is quite standard; we follow the progres-

sion of observations in [ST92], though we fill in a bit of background

material to make the arguments accessible to the intended audience

of this text. We have seen that for each point (a, b) �= (−1, 0), the line

between (−1, 0) and (a, b) crosses the y-axis at a point (0, t). Con-

versely, by this correspondence, every point (0, t) determines a unique

point (a, b) on the unit circle (except for (−1, 0)).

So there is a one-to-one correspondence between points (0, t) on

the y-axis and points on the unit circle (except for (−1, 0)). We will

show that the point (−1, 0) corresponds to t = ±∞.

Let Lt denote the line through (−1, 0) and (0, t); its equation is

y = t(x + 1). If (a, b) is the (other) point of intersection of the line

and the unit circle, then the coordinates satisfy

b = t(a+ 1), and a2 + b2 = 1.

Solving simultaneously yields

1− a2 = b2 = t2(a+ 1)2.

Now, for a fixed value of t, the equation 1 − a2 = t2(a + 1)2 can

be viewed as a quadratic equation in the variable a whose roots are

the x-coordinates of the points of intersection of the line Lt with the

circle. Clearly one of them is a = −1, so we assume a �= −1; that is,

we assume that 1 + a �= 0. Now consider the equation

1− a2 = (1− a)(1 + a) = t2(1 + a)2.
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Since 1 + a �= 0, this implies that

1− a = t2(1 + a), or (expanding and regrouping)

a(t2 + 1) = 1− t2, which yields

a =
1− t2

1 + t2
.

This is an expression for the x-coordinate of the point of intersection

(x �= −1) of the line Lt with the unit circle. Substituting into the

equation of the line yields the y coordinate b = t(1 + a) = 2t
1+t2 .

So every point on the unit circle (except (−1, 0)) has the form

(2.1) (a, b) =

(
1− t2

1 + t2
,

2t

1 + t2

)
for some value of t ∈ R. We note that

lim
t→±∞

(
1− t2

1 + t2
,

2t

1 + t2

)
= lim

t→±∞

( 1
t2 − 1
1
t2 + 1

,
2

1
t + t

)
= (−1, 0),

suggesting that to characterize all the points on the unit circle, we

need all the real numbers (t ∈ R), plus a little something involving

infinity.

Now that we have successfully given a characterization of all the

real points on the unit circle, we ask if it is easy to detect the rational

points? Let’s examine the line Lt a bit more carefully. Now Lt, the

line between (−1, 0) and (a, b), has slope

t =
b− 0

a+ 1
=

b

a+ 1
,

so it is immediate that if (a, b) is a rational point on the unit circle,

the slope t is a rational number. What about the converse?

Consider the line Lt given by the equation y = t(x + 1), and

assume that t is a rational number. What can be said about the

coordinates of the point of intersection (a, b)? In the work above,

we derived an explicit characterization of (a, b) in terms of t, given

in equation (2.1), which clearly demonstrates that if t is a rational

number, then so are the coordinates a, b. So there is a one-to-one

correspondence between the rational points on the circle (except for

(−1, 0)) and rational values of t.
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Exercise. Analogously to what we did above, find a parametriza-

tion for the points on the circle x2 + y2 = 2 and extract a charac-

terization of the rational points.

To start, project from the rational point (1, 1). Note: projecting

onto the x or y-axis does not work as expected, as not all lines from

(1, 1) to points on the circle intersect those axes. Instead, try to

project onto the line y = −x.

Exercise. Now consider the issue of rational points on x2+y2 = 3.

In contrast to the examples above, prove that there are no rational

points on this curve, and describe the crucial difference between

this example and the one before.

2.3. Finding all Pythagorean Triples

We now use the above formulas to find all Pythagorean triples: posi-

tive integers A,B,C with A2 +B2 = C2. This is a task that requires

a good deal of effort. None of it is terribly deep, but there are many

steps, and we work steadily to reduce the problem (that technique

again) to a manageable state. We make our first simplification. In

enumerating the triples, there is no reason to consider triples with a

common divisor. For example, if A,B,C have a common divisor t,

then A = A0t, B = B0t, and C = C0t with A0, B0, C0 ∈ Z. Moreover,

A0, B0, C0 is also a Pythagorean triple since

A2 +B2 = C2 =⇒ A2
0t

2 +B2
0t

2 = C2
0 t

2 =⇒ A2
0 + B2

0 = C2
0 ,

and given the triple A0, B0, C0, we could recover the original by mul-

tiplying all the numbers by t. We call a Pythagorean triple A,B,C

primitive if there is no common integer divisor of A,B,C other than

±1; we refer to this condition as saying that the integers A,B,C are

relatively prime. In the next chapter, we shall introduce the notion of

a greatest common divisor, so that the triple A,B,C being primitive

is equivalent to saying the greatest common divisor of A,B,C is 1,

which will be denoted gcd(A,B,C) = 1.
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2.3.1. Developing an Algorithm.

Remark 2.1. It is worth noting that if we are given a primitive

Pythagorean triple A,B,C, then all pairs of integers {A,B}, {A,C},
and {B,C} are also relatively prime. Indeed, we show a bit more.

We claim that if t is an integer which divides two of the three integers

A,B,C forming any Pythagorean triple, then it must divide the third.

For example, if t | B and t | C, then t2 | (C2−B2) = A2 which means

t | A. The other two cases are analogous. So if A,B,C is a primitive

Pythagorean triple, then the pairs {A,B}, {A,C}, and {B,C} are all

relatively prime. Conversely, if any of the pairs {A,B}, {A,C}, or
{B,C} are relatively prime, then A,B,C is a primitive triple, since

a common divisor of all three of A,B,C must obviously divide any

two. �

Thus given a primitive Pythagorean triple A,B,C, we produce

the rational point (A/C,B/C) on the unit circle in which the ratio-

nal numbers A/C, B/C are already in lowest terms. Moreover, the

rational point lies in the first quadrant and is not equal to (0, 1) or

(1, 0).

In the other direction, using equation (2.1), we can produce the

coordinates of a rational point (a, b) on the unit circle (the second

point of intersection of the line Lt through (−1, 0) and (0, t)) whenever

t is a rational number. Let us write t = m/n with m,n relatively

prime integers. Since we are interested in only those rational points

that will correspond to Pythagorean triples, we can restrict ourselves

to rational points in the first quadrant excluding (0, 1) and (1, 0).

This means that the corresponding parameter t (slope of the line Lt)

satisfies 0 < t < 1 and, since t = m/n, we may also assume that

n > m > 0; recall we were already assuming that m, n are relatively

prime.

Substituting t = m/n into equation (2.1) yields that

a =
n2 −m2

n2 +m2
and b =

2mn

n2 +m2
.

We claim that there are integers A,B,C so that

(2.2) a =
A

C
=

n2 −m2

n2 +m2
and b =

B

C
=

2mn

n2 +m2
,
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and that the fractions A/C and B/C are in lowest terms. Well, it is

clear that if we put A0 = n2 − m2, B0 = 2mn, and C0 = n2 + m2,

then we can write

a =
A0

C0
=

n2 −m2

n2 +m2
and b =

B0

C0
=

2mn

n2 +m2
,

but generally these fractions are not in lowest terms. For example, if

m,n have the same parity (i.e., both are even or odd), then A0, B0, C0

are all even (i.e., have 2 for a common divisor), so the potential snag

comes in when we independently reduce the fractions—we need to

know that the new denominators are the same.

This is why Remark 2.1 is really important. Since we are assum-

ing that n > m > 0, we know that A0, B0, C0 is a Pythagorean triple.

Now let t be the greatest common divisor of A0, C0. This means two

things: first, if we define A = A0/t and C = C0/t, then A and C are

integers which are relatively prime, so that A/C = A0/C0 is in lowest

terms. Second, by Remark 2.1, since t is a common divisor of A0 and

C0, then it is also a divisor of B0, so if we put B = B0/t, then we

know that B is an integer and B/C = B0/C0. What’s left? We need

to know that B/C is in lowest terms. Well, if it were not, there would

be a divisor s > 1 of both B and C. Recall that since A2
0 +B2

0 = C2
0

we have A2 +B2 = C2, so the remark would imply that s also was a

divisor of A, meaning A/C was not in lowest terms as claimed, which

would be a contradiction. So both fractions are reduced and have the

same denominator.

Summarizing, we have now written our rational point (a, b) on

the unit circle as in equation (2.2):

a =
A

C
=

n2 −m2

n2 +m2
and b =

B

C
=

2mn

n2 +m2
,

where the fractions A/C and B/C are in lowest terms, and this in

turn means that A,B,C is a primitive Pythagorean triple.

Now we claim a bit more: given a primitive Pythagorean triple

A,B,C, one of A or B must be even, and the other odd. Certainly,

they cannot both be even, since if they are, then by Remark 2.1, C is

also, violating that the triple is primitive. If A and B are both odd,

we have to work a bit harder since we have not yet introduced the
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notion of modular arithmetic (next chapter), but still the argument

is quite elementary.

Integers are even or odd. Those that are even are divisible by

2, but what else is implied? From grade school, we know that if we

divide any integer by 2, the only nonnegative remainders are 0 and

1. So the even numbers have remainder 0, and the odd numbers

have remainder 1. We prove the desired result that one of A or B

must be even, by contradiction; that is we assume that A and B are

both odd, and see that we arrive at a conclusion which is impossible.

Consequently, our assumption leading to this contradiction is false,

and that in turn establishes our original claim.

So we assume that both A and B are odd integers; thus we can

write A = 2r + 1 and B = 2s+ 1 for integers r, s. But then

C2 = A2 +B2 = (2r + 1)2 + (2s+ 1)2 = 4r2 + 4r + 1 + 4s2 + 4s+ 1

= 2[2r2 + 2r + 2s2 + 2s+ 1] = 2[2(r2 + r + s2 + s) + 1] = 2L,

where L is an odd integer. This says C2 is an even integer, but the

only way for that to happen is for C to be even. But if C is even, then

C2 is a multiple of 4. But our expression above says that C2 = 2L

where L is an odd integer, so this provides a contradiction, and thus

we have established that one of A or B is even and one is odd.

Now our goal is to enumerate Pythagorean triples. One obvious

duplication which would occur in a list is that if we look at the triple

(A,B,C), we know that (B,A,C) will also be a Pythagorean triple,

so again to simplify our efforts, we shall assume that A is odd and B

is even.

We are nearing the end of our argument and need to make only a

few more observations. Recall that in equation (2.2), we have assumed

that m and n are relatively prime integers with n > m > 0.

Now since A/C and B/C are already in lowest terms, we must

have positive integers λ, μ (here we use that n > m > 0) so that

n2 −m2 = λA, 2mn = μB,

n2 +m2 = λC, n2 +m2 = μC.
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Since C �= 0, n2 + m2 = μC = λC implies μ = λ, thus there is a

positive integer λ with

λA = n2 −m2, λB = 2mn, λC = n2 +m2.

Our final claim is that λ = 1, which will provide nice formulas for our

primitive Pythagorean triples.

For this last claim, we note that λ(C+A) = 2n2 while λ(C−A) =

2m2. This means that λ divides both 2m2 and 2n2, but m and n are

relatively prime which means λ divides 2, so either λ = 1 or 2. We

need only exclude λ = 2 as a possibility.

Recall that we are assuming the following: A is odd and B is

even, and m and n are relatively prime, so they are not both even.

When we established that A and B had different parities, we noted

the following about squares of integers. The square of an even integer

has the form (2r)2 = 4r2, a multiple of 4, while the square of an odd

integer has the form (2r + 1)2 = 4(r2 + r) + 1, an integer leaving a

remainder of 1 when divided by 4.

So let us assume that λ = 2 and look for a contradiction which

will finish our argument. Since A is an odd integer, we can write it

as A = 2r + 1, so if λ = 2, we see that λA = 4r + 2.

Now we must have that λA = n2 −m2 and we know that m and

n cannot both be even since they are relatively prime. So n2 − m2

has one of the following three forms:

n2 −m2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2k + 1)2 − (2�+ 1)2 = 4(k2 + k − �2 − �)

if m, n are both odd,

(2k + 1)2 − (2�)2 = 4(k2 + k − �2) + 1

if m is even and n is odd,

(2k)2 − (2�+ 1)2 = 4(k2 − �2 − 1) + 3

if n is even and m is odd.

But this says that if λ = 2, λA leaves a remainder of 2 when divided

by 4, while n2 − m2 = λA can only leave remainders 0, 1, 3, so the

case λ = 2 is precluded, and we have finally that λ = 1.

Summarizing our persistent efforts, we have the following theo-

rem:
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Theorem 2.2. Every primitive Pythagorean triple A,B,C with B

even has the form

A = n2 −m2, B = 2mn, C = n2 +m2

for relatively prime, positive integers n > m.

Remark 2.3. There is a small subtlety in the statement of this theo-

rem. It tells us the form of every primitive Pythagorean triple A,B,C

with B even. What it does not say (because it is not true) is that ev-

ery triple given by those formulas is a primitive Pythagorean triple—

something we shall see in the examples below. But in terms of listing

all the primitive Pythagorean triples, this theorem tells us we will

not miss any (with B even). And if we automatically pair the triple

(A,B,C) with the one (B,A,C), we have captured all the primitive

triples, as well as a few imprimitive ones. We will then offer a second

algorithm which has been tweaked slightly to exclude those triples

where A,B,C have a common factor. We will take a few moments to

discuss the tweak in the context of all we have developed so far.

2.3.2. Implementing the Algorithm. We provide some code be-

low to generate a list of Pythagorean triples characterized by The-

orem 2.2. The theorem determines the triple A,B,C as a function

of integers m,n with 1 ≤ m < n and assuming m, n have no com-

mon factors. Then given a triple, the algorithm computes the area

(Area = 1
2AB) of the corresponding right triangle. Finally, it implic-

itly writes Area = N0t
2 where N0 is square free (that is, N0 = 1 or

N0 is the product of distinct primes) and prints the value of N0 as

the congruent number. As we discussed in Chapter 1, knowing that

N0 is a congruent number tells us that N0t
2 is also for any positive

integer t, so in terms of looking for congruent numbers, it makes the

most sense to start with their square-free “core”.

The first bit of code does the computations above that are as-

sociated to the values of m, n with 1 ≤ m < n < 6. We shall talk

about the function gcd in a moment, but for now we assume that it

provides the test for whether m and n have no common factors. The

code below is written in Sage [S+15].
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for n in range(2,6):

for m in range(1,n):

if gcd(m,n) == 1:

A = n^2 - m^2

B = 2*m*n

C = n^2 + m^2

Area = A*B/2

Congruent_number = squarefree_part(Area)

print "(m,n) = (",m,",",n,"),", \

"(A,B,C) = (",A,",",B,",",C,"),"

print "Congruent number =", \

Congruent_number, "\n"

The output follows.

(m,n) = ( 1 , 2 ), (A,B,C) = ( 3 , 4 , 5 ),

Congruent number = 6

(m,n) = ( 1 , 3 ), (A,B,C) = ( 8 , 6 , 10 ),

Congruent number = 6

(m,n) = ( 2 , 3 ), (A,B,C) = ( 5 , 12 , 13 ),

Congruent number = 30

(m,n) = ( 1 , 4 ), (A,B,C) = ( 15 , 8 , 17 ),

Congruent number = 15

(m,n) = ( 3 , 4 ), (A,B,C) = ( 7 , 24 , 25 ),

Congruent number = 21

(m,n) = ( 1 , 5 ), (A,B,C) = ( 24 , 10 , 26 ),

Congruent number = 30

(m,n) = ( 2 , 5 ), (A,B,C) = ( 21 , 20 , 29 ),

Congruent number = 210

(m,n) = ( 3 , 5 ), (A,B,C) = ( 16 , 30 , 34 ),

Congruent number = 15
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(m,n) = ( 4 , 5 ), (A,B,C) = ( 9 , 40 , 41 ),

Congruent number = 5

Some simple observations include the following.

(1) The second triple that is produced is certainly not primitive;

neither are any of the triples with A even (that is, with m

and n both odd).

(2) We see that the last entry has already given us a proof that

5 is a congruent number.

Now we want to modify the code so that only primitive Pythago-

rean triples appear; the intent is simply to tweak the code, not to be

particularly efficient.

Remark 2.4. The change to the code (that is, where the new code

deviates from the statement of the theorem) is to test to see if A and

C are relatively prime. By Remark 2.1, if any two of A,B,C are

relatively prime, the triple is primitive.

In the code we have jumped ahead of ourselves just a bit by us-

ing the function “gcd” which will be introduced formally in the next

chapter. But taking a sneak peek now will afford us some perspec-

tive and foreshadowing of things to come. The abbreviation “gcd” is

shorthand for greatest common divisor, which is something for which

we have an intuitive feel: it is the largest common factor, so for exam-

ple we somehow “know” that the gcd(24, 30) = 6 probably because

we thought of 24 = 23 · 3 and 30 = 2 · 3 · 5, and we see that we can

pull exactly one 2 and one 3 from each of the numbers. This intuition

comes from the Fundamental Theorem of Arithmetic (Theorem 3.15)

that every integer 2 or greater can be factored uniquely into a prod-

uct of primes. Comparing the factorizations allows us to extract the

greatest common divisor, and when two integers a, b have no common

divisors other than ±1, we say they are relatively prime, and write

gcd(a, b) = 1.

What is truly remarkable is that in the next chapter we shall

learn how to compute a gcd very quickly without factoring, and this

in turn is quite fortuitous because factoring is hard to do, and it is

precisely the difficulty of factoring large numbers which makes one of
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the most famous public-key encryption schemes (RSA) secure. We

shall meet the RSA encryption scheme in Chapter 5.

The new Sage code is as follows.

for n in range(2,8):

for m in range(1,n):

if gcd(m,n) == 1:

A = n^2 - m^2

B = 2*m*n

C = n^2 + m^2

if gcd(A,C) == 1:

Area = A*B/2

Congruent_number = squarefree_part(Area)

print "(m,n) = (",m,",",n,"),", \

"(A,B,C) = (",A,",",B,",",C,"),"

print "Congruent number =", \

Congruent_number, "\n"

The new output is shown below.

(m,n) = ( 1 , 2 ), (A,B,C) = ( 3 , 4 , 5 ),

Congruent number = 6

(m,n) = ( 2 , 3 ), (A,B,C) = ( 5 , 12 , 13 ),

Congruent number = 30

(m,n) = ( 1 , 4 ), (A,B,C) = ( 15 , 8 , 17 ),

Congruent number = 15

(m,n) = ( 3 , 4 ), (A,B,C) = ( 7 , 24 , 25 ),

Congruent number = 21

(m,n) = ( 2 , 5 ), (A,B,C) = ( 21 , 20 , 29 ),

Congruent number = 210

(m,n) = ( 4 , 5 ), (A,B,C) = ( 9 , 40 , 41 ),

Congruent number = 5



2.3. Finding all Pythagorean Triples 25

(m,n) = ( 1 , 6 ), (A,B,C) = ( 35 , 12 , 37 ),

Congruent number = 210

(m,n) = ( 5 , 6 ), (A,B,C) = ( 11 , 60 , 61 ),

Congruent number = 330

(m,n) = ( 2 , 7 ), (A,B,C) = ( 45 , 28 , 53 ),

Congruent number = 70

(m,n) = ( 4 , 7 ), (A,B,C) = ( 33 , 56 , 65 ),

Congruent number = 231

(m,n) = ( 6 , 7 ), (A,B,C) = ( 13 , 84 , 85 ),

Congruent number = 546

We make two more observations.

(1) We see the congruent numbers that are listed do not appear

in any particular order. So while even in this short list we see

congruent numbers as large as 546, we have no idea whether

a number that has not appeared, say 157, is a congruent

number. It is true that 157 is a congruent number, but it

would take a very long time before it would appear in this

list.

(2) We note that congruent numbers can be repeated in the list.

Here we provide some alternate Sage code (perhaps of more use

for larger tables).

def CN(nn):

List=[]

for n in range(2,nn):

for m in range(1,n):

if gcd(m,n) == 1:

A = n^2 - m^2

B = 2*m*n

C = n^2 + m^2
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if gcd(A,C) == 1:

Area = A*B/2

Congruent_number = squarefree_part(Area)

List.append([m,n,A,B,C,Congruent_number])

return(List)

CNList=CN(8)

table(CNList,align=’right’, \

header_row=["$m$","$n$","$A$","$B$","$C$","$CN$"])

The code above generates the following table.

m n A B C CN

1 2 3 4 5 6

2 3 5 12 13 30

1 4 15 8 17 15

3 4 7 24 25 21

2 5 21 20 29 210

4 5 9 40 41 5

1 6 35 12 37 210

5 6 11 60 61 330

2 7 45 28 53 70

4 7 33 56 65 231

6 7 13 84 85 546

Summary. We have given a parametrization of primitive Pytha-

gorean triples which is easily implemented as an algorithm, and which

will eventually list all primitive Pythagorean triples, along with every

square-free congruent number. The problem is we seem to have to

wait an unknown period of time before a given congruent number

might appear. Perhaps we need a few more tools that might provide

insight into which numbers might or might not be congruent numbers.

Exercise. Find a square-free congruent number not in the list

above, and show all the work to obtain it.
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2.4. Looking for Underlying Structure:
Geometry vs. Algebra

A major theme in this book will be to understand the intrinsic struc-

ture of the set of points on an elliptic curve. That probably sounds

quite mysterious right now, but let’s take a broader view with a closely

related question with which you have had some experience. How can

we detect structure exhibited by a set of solutions to a given equation

or set of equations?

As this is such a broad question, we should expect an equally

broad spectrum of answers. For example, when we ask for the solu-

tions to the equation x2 + y2 = 1, it matters a great deal whether we

are looking for solutions in the integers (Z), in the rationals (Q), or in

the real or complex numbers (R or C). Over the real numbers the set

of solutions certainly has a geometric structure; over the rationals we

may see no apparent structure, but we have completely characterized

all the rational points and hence the primitive Pythagorean triples.

Over the integers, the equation x2 + y2 = 1 has only four solutions,

and while there is no apparent structure, simply knowing the set of

solutions is finite (and, even better, the exact number) is often a huge

victory. Let’s see how some of these ideas play out with the Fermat

curve, xn + yn = zn, n > 2, for which, in the context of Fermat’s

Last Theorem, we are seeking integer solutions to this equation. We

mentioned a few things that were known about the solutions before

Wiles’s proof, but there is a good deal more we can say now that we

have a better perspective.

Just as Pythagorean triples correspond to rational points on the

unit circle x2 + y2 = 1, so too is there a correspondence between

nontrivial integer solutions to xn + yn = zn (i.e., where x, y, z �= 0)

and rational points on un + vn = 1. An integer solution (x, y, z) to

xn + yn = zn maps to the rational solution (u, v) = (x/z, y/z) on

un + vn = 1. And conversely, a rational point
(
a
b ,

c
d

)
on un + vn = 1,

gives a solution to the Fermat equation since(a
b

)n

+
( c

d

)n

= 1 implies (ad)n + (bc)n = (bd)n.

What more can be said? While we will not talk about solutions to

curves over complex numbers (except at the end of the text), it is
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Genus 0 and 1 Genus 2 and 3

Figure 2.2

the set of complex points on a curve which actually have a geometric

structure. The set of complex points on an elliptic curve is naturally

associated to a torus (doughnut); other curves, a sphere. Still others

associated to curves have a geometric structure which looks like sev-

eral tori glued together, sort of like fat links in a chain. There is a

geometric invariant associated to such surfaces called the genus of the

surface, and the genus refers to the number of holes in the surface,

the sphere having genus 0, an elliptic curve having genus 1, and so

on (see Figure 2.2).

In 1922 Mordell made a conjecture that, for any curve of genus

at least 2, the set of rational points on the curve is finite, and in 1983

Gerd Faltings proved Mordell’s conjecture. So given our knowledge

that there are infinitely many rational points on x2 + y2 = 1, we

know for sure it has genus 0 or 1. But the real import of Falting’s

theorem is that for n > 4, the curve un + vn = 1 has genus ≥ 2.

As a result, there are only finitely many rational points and, by our

observation above, only a finite number of primitive integer solutions

to xn + yn = zn. So if there were counterexamples to the Fermat

conjecture, as of 1983 there could only be finitely many for a given

value of n.

Exercise. Find all of the rational points on the curve xn + yn = 1

where n is an integer, n > 2.
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Now let’s broaden our scope even further, and move from geo-

metric considerations to algebraic ones. Let’s first look at a set of

solutions with both a geometric and algebraic structure. Let

S = {(x, y, z) ∈ R3 | x+ y + z = 0}.

Depending upon your background, you may recognize this solution set

as a plane in R3 passing through the origin with normal vector (par-

allel to) (1, 1, 1), but the set also has an algebraic structure which in

turn gives another interpretation of S as a geometric object. First to

the geometry. There are many ways to determine a line: two distinct

points, a point and a direction, the intersection of two nonparallel

planes in R3, and so on. Analogously, while we have just said a plane

in R3 can be characterized by a point and a normal vector, it might

be even more natural to characterize it by a point in the plane and

two independent vectors (directions) which lie the plane. Indeed you

can easily convince yourself that if you took a large piece of paper,

placed a dot on it, and drew two vectors v1, v2, emanating from that

point (so that the two vectors do not lie on a common line), you could

navigate to any point on the plane by moving a uniquely determined

distance along v1 followed by a uniquely determined distance in the

direction of v2 (we are also allowed to back up along v1 or v2). So

with this somewhat imprecise definition of a plane, let’s see that our

solution set S satisfies it.

First we note that our set S contains a point, namely (0, 0, 0).

Also note that since every element (x, y, z) of S satisfies x + y +

z = 0, the point (x, y, z) has the form (x, y,−x − y). Assuming we

know how to add vectors in R3 and multiply by scalars (see a formal

definition just below), this means that every element of S can be

written uniquely as the linear combination of the vectors (1, 0,−1)

and (0, 1,−1):

(x, y,−x− y) = (x, 0,−x) + (0, y,−y) = x(1, 0,−1) + y(0, 1,−1).

The vectors (1, 0,−1) and (0, 1,−1) are elements of S and are not

scalar multiples of each other, so they represent a choice of two inde-

pendent directions, discussed above, and every vector in S is uniquely

representable in terms of them.



30 2. Back to the Beginning

Actually, Rn is the prototype for a broad class of algebraic struc-

tures called vector spaces , and it is worthwhile to digress briefly in this

direction. The following is an informal definition of a vector space.

Note that of course in order to prove theorems about vector spaces,

we need a precise definition, but that would take us too far afield,

and for now we should be focused on the larger view, not the smaller

one.

A vector space is a nonempty set V whose elements are called

vectors with an associated field F consisting of scalars. Already we

have an undefined term, a field. For the discussion in this chapter

we may assume F = Q or R, or C. Loosely speaking a field is a set

in which you can add, subtract, multiply, and divide (by anything

nonzero) and still stay in the set. So while the integers Z comprise a

wonderful set in which you can do three of the four things, you cannot

always take an integer and divide by a nonzero integer and have the

result be integral; for example, 2/3 /∈ Z, so Z is not a field, but the

others we mentioned are.

We start again. A vector space V over a field F is a nonempty

set V (of vectors) with some notion of addition which is compatible

with multiplication by scalars from F in which some basic properties

hold. Let’s make this a bit more precise for V = Rn. Given v1 =

(a1, . . . , an), v2 = (b1, . . . , bn) ∈ V = Rn, and c ∈ F = R, we define

the operations of vector addition and scalar multiplication by acting

component-wise:

v1 + v2 = (a1 + b1, . . . , an + bn) (vector addition),

c · v1 = (ca1, . . . , can) (scalar multiplication).

As to the basic properties, we want there to be an identity for the

operation of addition—in our case the vector 0 = (0, . . . , 0) ∈ V ,

which has the property v + 0 = v = 0 + v for every v ∈ V (clear

from the definition). Also for each v ∈ V , we want a notion of its

additive inverse, −v, which has the property that v + (−v) = 0 for

every v ∈ V . So it seems pretty clear from the definitions above that

if v = (a1, . . . , an), then −v = (−a1, . . . ,−an). There are a few more

properties, but they all feel completely natural, so we choose not to

pull them into this discussion.
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What we do want to bring into this discussion is that an amazing

variety of sets have the structure of a vector space. For our exam-

ples we shall just consider vector spaces over R, that is, with scalar

multiplication coming from R. Here are just a few examples.

(1) V = Rn (of course).

(2) V is the set of all polynomials with real coefficients. Vector

addition is just the addition of polynomials, and multiplying

a polynomial by a scalar just multiplies all the coefficients

by the same scalar. The zero polynomial is the identity, and

for any polynomial p(x) = anx
n + · · · + a1x + a0, we have

the inverse −p(x) = −anx
n − · · · − a1x− a0.

(3) V = {f : R → R | f is continuous } is a vector space over

R. What does that mean? Maybe an example is easier

to swallow than a definition. Suppose f = sinx and g =

3x2 + 2. Both f and g are continuous functions from R →
R, so they are vectors in V . Does f + g have a meaning?

Sure it does. Somewhat innocently, we would just write

f + g = sin x + 3x2 + 2 and not give it a second thought.

But what we are really saying is that there is a new function

h = f + g, and we compute its values by the rule h(x) =

f(x) + g(x). Also something like
√
2 · f makes perfect sense

to us:
√
2 · f =

√
2 sin x.

Now there is something deeper going on: How do we

know that if f, g ∈ V , then f +g is also? What the question

is really asking is how do we know that the sum of two

continuous functions is continuous? The answer is provided

by an early theorem from calculus. The same is true for

scalar multiplication of a continuous function.

(4) V = {f : R → R | f is differentiable } is also a vector space,

with the definitions as in the previous example, and again

the only serious question is whether V is closed under the

operations of addition and scalar multiplication, meaning if

f, g ∈ V and c ∈ F = R, are f + g, cf ∈ V ? But again it is

a theorem from calculus which tells us this is true.
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Now in some vector spaces, we have a notion that a certain finite

number of vectors will allow us to determine all others as a linear

combination of them. For example, every vector in Rn can be written

uniquely as a linear combination of n vectors:

(a1, . . . , an) = a1(1, 0, . . . , 0)+ a2(0, 1, 0, . . . , 0)+ · · ·+ an(0, . . . , 0, 1).

Any such set B (such as {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
for Rn) with which one can express every element of the vector space

uniquely as a linear combination of the elements of B is called a basis

for the vector space, and the number of elements in B is called the

dimension of the vector space.

So Rn is a vector space (over R) having dimension n, and we have

showed the set

S = {(x, y, z) ∈ R3 | x+ y + z = 0}

is a vector space of dimension 2. The notion of dimension and of a

basis are of enormous importance in mathematics.

Now let’s come full circle and look at a few more sets with an

algebraic structure, namely that of a vector space, which arise as

solution sets to equations. We begin with a differential equation that

every first-term calculus student can solve: Find the general solution

to the differential equation y′ − 2y = 0. The answer is y = Ce2x for

an arbitrary constant C.

Let’s approach this in another way. Let V be the set of all possible

solutions to the differential equation y′ − 2y = 0. We observe that V

is not the empty set, since it is obvious that y = 0 is a solution to

the equation. Now if f and g are two solutions to y′ − 2y = 0, then

so are f + g and cf for any scalar c ∈ R. To see this is easy. To say

that f, g ∈ V is to say that f ′ − 2f = 0 = g′ − 2g, so

(f + g)′ − 2(f + g) = f ′ + g′ − 2f − 2g

= (f ′ − 2f) + (g′ − 2g) = 0+ 0 = 0 and

(cf)′ − 2(cf) = cf ′ − 2cf = c(f ′ − 2f) = c · 0 = 0,
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where we have used that old chestnut from first-term calculus, that

“the derivative of a sum is the sum of the derivatives”, and “the deriv-

ative of a constant times a function is the constant times the derivative

of the function”. You see—those theorems do have a purpose.

As we have seen in the examples above, this makes the set V of

solutions into a vector space. And since we know that every element

of V (that is every solution to y′−2y = 0) has the form y = Ce2x, we

have simply inferred that V is a one-dimensional vector space over R

with a basis consisting of one element {e2x}.
Now let V be the set of solutions to the homogeneous differential

equation y′′ + 9y = 0. Depending upon your calculus (or physics)

background, you may know that this differential equation describes

a simple harmonic oscillator, and while you may not know the gen-

eral solution, everyone can easily check that both y = cos 3x and

y = sin 3x are solutions. So again, let’s examine the structure of V .

By exhibiting solutions, we have shown that the set V is nonempty.

Now suppose that f, g ∈ V . Is f + g ∈ V ? Well to check, you would

need to know that (f+g)′′+9(f+g) = 0, but f, g ∈ V so f ′′+9f = 0

and g′′ +9g = 0, and since “the derivative of a sum is the sum of the

derivatives”(twice), we see that

(f+g)′′+9(f+g) = (f ′′+g′′)+9(f+g) = f ′′+9f+g′′+9g = 0+0 = 0,

so f + g is a solution, hence in V . Similarly, any constant times a

solution is a solution. So immediately we see that the set

S = {a sin 3x+ b cos 3x | a, b ∈ R}

are all solutions, so

S = {a sin 3x+ b cos 3x | a, b ∈ R} ⊆ V.

It is clear that sin 3x and cos 3x are not scalar multiples of each other,

so we really need both of them in S, and indeed S is a vector space of

dimension 2. Now when you take a course in differential equations,

you will learn that V is a two-dimensional vector space, so it follows

that S = V , and you have found a basis for V . In the language of a

differential equations course, you would say instead that the general

solution to y′′ + 9y = 0 has the form y = a sin 3x+ b cos 3x.
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Let’s consider a final example, the set V of solutions to y′′′ −
2y′′ + y′ − 2y = 0. Yes, V is again a vector space, and it follows from

the general theory that its dimension is 3. We note that cosx, sinx

are e2x are each solutions, hence ae2x + b cosx + c sinx is also, and

this is the general solution meaning that {e2x, cosx, sin x} is a basis

for this vector space.

Exercise. Let V be the set of functions f : R → R which satisfy

the differential equation f ′′ − f = 0. Show that V is a vector space

over R and, assuming its dimension is 2, find a basis for V .

2.5. More about Points on Curves

We want to begin to extend our discussion of the structure of solutions

to the set of points on curves, which is a good deal more delicate, so

we shall ease into things.

We have only looked at a few curves so far. We had a great

deal of success characterizing the rational points on x2 + y2 = 1, and

with the help of Wiles and Taylor, we know the story for the curves

xn + yn = 1 for n ≥ 3. But that’s a pretty small sample, and for

all but a few of those curves, it took more than 350 years to get the

answer.

Perhaps something more middle-of-the-road would be nice. Our

interest is in understanding elliptic curves, so let’s take a simple case.

We will look at the family of curves of the form

y2 = x3 + k, k �= 0.

The value k = 0 is excluded because for a curve to be an elliptic

curve the cubic x3+k must have distinct roots (in C). We consider a

typical example y2 = x3 + 17. Figure 2.3 is a plot depicting the real

points on the curve.

Notice a few obvious things. The curve is symmetric about the

x-axis as it has the form y2 = f(x), so if (x, y) is a solution, so is

(x,−y). Second, the real points are restricted to values of x for which

x3 + 17 ≥ 0 (since that value must be a square of a real number),

so x ≥ − 3
√
17 ≈ −2.57128 · · · . We can calculate points somewhat

randomly: (− 3
√
17, 0), (0,±

√
17), or more generally (for r ≥ − 3

√
17)
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Figure 2.3

the point (r,±
√
r3 + 17), but if we asked for which values of r would

the resulting point be a rational point, this would prove more chal-

lenging. Now for this particular curve we easily see that (2,±5) are

rational points (even integer points) on the curve. But did you know

that (
−64

25
,− 59

125

)
,

(
38194304

87025
,−236046706033

25672375

)
or

(
532027047589930897040873195264

4848863077511293855911670225
,

388064005784387552318916270407513322740532287

337644656448214941842939018840311120390375

)
are rational points as well? The first is easy enough to check. For the

others we might be happier with an explanation.

While we may not have a clue where these other points came from,

Claude Gaspar Bachet did. He proved quite a remarkable formula in

1621 now known as Bachet’s duplication formula. It said if you know
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the coordinates (x, y) of some point on the elliptic curve y2 = x3 + k

(k �= 0), then assuming that y �= 0,

(2.3)

(
x4 − 8kx

4y2
,
−x6 − 20kx3 + 8k2

8y3

)
is another point on the curve. And yes; the points listed above were

obtained via his formula, starting with the point (2, 5) and iterating

the process.

While it is tedious, it is completely straightforward to check that

Bachet’s formula works, but where in the world did it come from? Be-

low we outline a method that uses both our familiar Cartesian coordi-

nate system (invented by Descartes a bit later in the century) and the

calculus invented by Newton and Leibniz which followed Descartes’s

work.

If we had started with the point (2,−5) instead of (2, 5), the first

two points out would be(
−64

25
,
59

125

)
,

(
38194304

87025
,
236046706033

25672375

)
.

We can see this respects the symmetry, so there are some interest-

ing properties to this formula. Now let’s give another clue, such as

Figure 2.4
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plotting the points in this progression and the line segments between

them (see Figure 2.4). Hopefully, it seems clear (or at least reason-

able) that if we start with a point (a, b) on the curve, then the formula

gives, as the next point, the point of intersection of the curve with

the tangent line to the curve y2 = x3 + 17 at (a, b). Of course that

presumes there is another point of intersection, and indeed only one

other. We shall pursue some of these ideas below.

Remark 2.5. It is certainly worth noting that if the curve y2 = x3+k

is chosen with k a rational number, then if we start with a rational

point, the formula in equation (2.3) will yield another rational point

on the curve. So while we have not discovered a way to list all the

rational points, we seem to have found an algorithm by which to

produce a sequence of them.

There are a number of interesting questions to ponder:

(1) Do you think that this sequence of points ever cycles back to

the start? Do you think this might be a common occurrence

or a rare one?

(2) Are we always guaranteed that the tangent line to the curve

always intersects the curve in a second point? Could it in-

tersect in more than one point?

(3) Certainly this method “fails” if we start at the point where

y = 0, but at least from the point of view of the formula,

that case was precluded. But is there something deeper

going on?

Derive Bachet’s formula using the sequence of steps in the exercise

below.
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Exercise. Using the ideas above, prove the Bachet duplication

formula for y2 = x3 + k, k �= 0.

(x, y) 
→
(
x4 − 8kx

4y2
,
−x6 − 20kx3 + 8k2

8y3

)
.

We outline some useful steps.

(1) Use implicit differentiation to derive a formula for the

slope of the tangent line to the curve y2 = x3 + k which is

valid at any point (x, y) where y �= 0.

(2) Now write down the equation of the tangent line to the

curve at the point (a, b) where we assume b �= 0. It will be

convenient if you use m for the slope for the time being

until you need to use its actual value.

(3) Now we want to find the point(s) of intersection of the

tangent line with the cubic, and this requires a little work.

Substitute the expression for y given by the line into the

equation that defines the cubic results in an equation of

the form f(x) = 0 where f is a polynomial of degree 3.

Your job is to factor the polynomial since its roots are the

x-coordinates corresponding to the points of intersection.

Here we catch a bit of a break. Certainly one of the roots

is a, which means (x− a) is a factor. But it should not be

too much of a surprise that a is (at least) a double root

since the line is tangent to the curve at x = a (much like

y = (x−a)r is tangent to the x-axis at x = a and the root

a has multiplicity r). After factoring out the first of the

(x− a) factors, it would be a good time to put in the real

value of m to see what simplifies.

2.6. Gathering Some Insight about Plane Curves

In this last section we want to gain some intuition about a famous

theorem in algebraic geometry that concerns the number of points of

intersection of two plane curves. In our investigation of the Bachet

formula, we seemed to be suggesting that a line and a cubic could

intersect in at most three points (counting the point of tangency as

two of them). Bézout’s theorem is a precise statement of what can
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happen, but it depends upon the field (Q,R,C, etc.) in which we

look for points of intersection, counting the intersection points with

multiplicities (as necessary), as well as another notion new to us: that

of curves in affine or projective space. We will explore some of these

ideas now, leaving the notion of projective space for a later chapter.

We need to define what is meant by a curve in the plane. Simply

put, we take any polynomial f(x, y) in two variables (this gives the

“in the plane” part), and the curve is the set of points (x, y) where

f(x, y) = 0. Often we refer to this set of points as the zero set of

the polynomial f , denoted Z(f). If you have had some multivariable

calculus, this notion is nothing other than a particular level set of the

function f(x, y).

Coming from a background focused on functions of a single vari-

able, it is easy to mistakenly conflate things that are quite different.

For example, in calculus or high-school algebra, one might casually

refer to x2 as a parabola, but it is not. More appropriately, one would

have said the graph of the function f(x) = x2 is a parabola, and that

notion is consistent with our characterization that a parabola is the

zero set of f(x, y) = y − x2. For the record, the zero set of x2 is the

y-axis, since that is the set of points (x, y) where f(x, y) = x2 = 0.

And of course the notion of the zero set changes as we change the

field. If the field is Q, the zero set is the set of rational points; if the

field is R, the zero set is the set of real points; and so on.

To start thinking correctly about curves, we need to move away

from only thinking about the graphs of functions. Of course, graphs

of functions are special cases of curves, but certainly not all curves.

For example, if g(x) is a polynomial in one variable, then its graph is

the zero set of f(x, y) = y− g(x), a special kind of curve. But curves

like the zero set of x2 + y2 − 1, the unit circle, are not the graphs of

functions.

And to stretch our terminology a bit further, depending on the

field in question, the notion of a curve as a zero set can be a bit

unintuitive: the zero set of f(x, y) = x2 + y2 − 1 in the plane R2 is

the unit circle, but the zero set of f(x, y) = x2 + y2 in the plane R2

is just the point {(0, 0)}, while the zero set of f(x, y) = x2+ y2+1 in

R2 is the empty set, since there are no real solutions to x2+y2 = −1.
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We need just a bit more terminology, the degree of a polynomial

in two variables. A polynomial, f(x, y), in two variables is a sum

of terms (monomials), each of the form cxmyn where c is a nonzero

constant and m,n are nonnegative integers. We say that the degree

of the monomial cxmyn is m + n, and we say that the (total) degree

of f(x, y) is the maximum of the degrees of monomials whose sum

gives f . So we would say that

f(x, y) = x4 − 3x3y2 + y4 − 3x2y + 2

has degree 5. We say that a line is a plane curve Z(f), where f =

f(x, y) has degree 1; that is, a line is the zero set of f(x, y) = ax+by+c

or, said most simply, a line is the set of points in the plane which

satisfies ax+by+c = 0. Similarly we call the zero set of a polynomial

f(x, y) having degree 2 a conic; so a conic is the set of points where

f(x, y) = ax2 + bxy+ cy2 + dx+ ey+ f = 0. Cubics are the zero sets

of polynomials of degree 3, and quartics are of degree 4. We don’t

fuss about terminology of curves of higher degree, referring only to

a plane curve of degree n as the zero set of a polynomial f(x, y) of

total degree n. Finally, we refer to a plane curve as a rational curve

if the polynomial used to define it has all rational coefficients, so

Z(y2 − x3 + x) is a rational cubic.

Now we are equipped with a bit of vocabulary which will allow

us to gain insight into Bézout’s theorem. We begin with some simple

examples and questions to tease out where the subtleties lie.

Exercise. Properties of rational lines in the plane.

(1) Is every point on a rational line a rational point?

(2) If a line passes through at least two rational points, is it

a rational line? What about lines if we only know one

rational point through which they pass?

(3) Consider two distinct rational lines which intersect. Do

they intersect in a rational point?

Exercise. Characterizing the intersection of lines and conics.

(1) In how many points can two arbitrary lines (in the plane)

intersect?

(2) In how many points can a line and a conic intersect?
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In considering the exercises above, you may have noted that the

line Z(y − x) and the conic Z(y2 − x2) did not behave in an ex-

pected manner, intersecting in an infinite number of points. There

are a couple of ways in which to avoid or at least anticipate this

kind of degeneracy, but both involve the notion of factoring a poly-

nomial in two variables. As a topic of study, this will appear in an

abstract algebra course when you study polynomial rings and unique

factorization. What is remarkable is that in many ways the set of

polynomials with coefficients in a field have factorization properties

similar to those of the integers. Over Z, the Fundamental Theorem

of Arithmetic says that every integer 2 or greater can be factored

uniquely into a product of primes. Just as with primes in the in-

tegers, there is the notion of polynomials that have no nontrivial

factorization; we call such polynomials irreducible. More formally,

we say that a polynomial f(x, y), with coefficients in a field and of

degree ≥ 1 (we exclude the constant polynomials), is irreducible if

whenever we factor f(x, y) = g(x, y)h(x, y), one of g or h is just a

constant. When a polynomial is not irreducible, we refer to it as

reducible, such as f(x, y) = y2 − x2. And once again the field of

coefficients becomes relevant. For example f(x, y) = x2 + y2 is irre-

ducible if the coefficients are Q or R, but f is reducible over C, since

f(x, y) = x2 + y2 = (x+ iy)(x− iy).

The problem we encountered above with a line and a conic in-

tersecting in an infinite number of points is precisely the issue that

the two polynomials f(x, y) = y − x and g(x, y) = y2 − x2 are not

relatively prime (i.e., they share the common factor y − x), so gen-

erally we shall preclude that case. Even more of a constraint is that

we consider curves Z(f) where f(x, y) is irreducible. Then if we have

curves Z(f) and Z(g), where f and g are irreducible but not relatively

prime, it will be the case that f(x, y) is a constant multiple of g(x, y)

which will mean the curves Z(f) and Z(g) are identical.
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Exercises. In the questions below, we assume all the plane curves

are irreducible, meaning they are the zero sets of polynomials f(x, y)

where f(x, y) is irreducible. It follows (from abstract algebra) that

two distinct irreducible plane curves can only intersect in a finite

number of points. The questions below try to get at discovering

what that number might be.

For all the problems below, consider your curves in R2. Can you

come up with examples that suggest answers to these questions?

Can you prove any of your assertions?

(1) In how many points can two (distinct) conics intersect?

(2) In how many points can a conic and a cubic intersect?

(3) In how many points can two (distinct) cubics intersect?

(4) What would be your guess for a generalization?

(5) Consider the intersection of a rational line with a rational

conic.

(a) Are the point(s) of intersection necessarily rational?

Give a proof or provide a counterexample.

(b) Now let’s suppose that the line intersects the conic

in two points, one of which is rational. Is the second

point necessarily rational? Give a proof or a coun-

terexample.

To assist with your intuition, Figure 2.5 illustrates a few curves

to consider. The first set fixes a parabola and slides the circle up the

y-axis. The second set is a cubic and quartic, and a cubic and conic.
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Figure 2.5

2.7. Additional Exercises

In Bachet’s duplication formula, we made the assumption that the

tangent line intersects the cubic with multiplicity 2 at the point of

tangency; actually, you probably proved that it did in working out

the duplication formula as an exercise. Let’s investigate this concept

more carefully.

Suppose we have a plane curve given as the zero set of a poly-

nomial f(x, y) with coefficients in a field. For example, for elliptic

curves we are looking at f(x, y) = y2 − g(x) = 0 where g is a nonsin-

gular cubic polynomial. Suppose that a (nonvertical) line y = mx+ b

intersects the curve. Then the roots of f(x,mx+ b) are precisely the

x-coordinates of the points of intersection of the line and the curve.
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We want to define what is meant by the line y = mx+ b intersecting

the curve f(x, y) at x = a with multiplicity k.

Let h(x) be a polynomial with coefficients in a field and having

degree n, and let a be any element of the field. In our example

above, we would have h(x) = f(x,mx + b). We say that h has a

zero of order k at x = a (or the order of vanishing of h at x = a is

k) if h(x) can be written as the product h(x) = (x − a)kq(x) with

q a polynomial satisfying q(a) �= 0. So we shall say that the line

y = mx + b intersects the curve f(x, y) = 0 with multiplicity k at

x = a if h(x) = f(x,mx+ b) has a zero of order k at x = a.

Exercise. As a simple example show that the curve y =

(x − a)k intersects the x-axis with multiplicity k at x = a and

with multiplicity 0 at all other points x = b.

Exercise. Next, let’s gain a little more insight by examining the

case of zeroes of order 1 and 2. Let h(x) be a polynomial of degree

n ≥ 2 with coefficients in a field F , and let a ∈ F . Then prove the

following.

(1) h(x) = (x − a)q(x) + h(a) for some polynomial q having

coefficients in F .

(2) h(a) = 0 if and only if h(x) = (x− a)q(x).

(3) h has a double root at a if and only if h(a) = h′(a) = 0,

where h′(x) is the first derivative of h(x).

Exercise. Establish the following generalization of the work we

have started above. Show that h has a zero of order k at x = a if

and only if h(a) = h′(a) = · · · = h(k−1)(a) = 0 and h(k)(a) �= 0,

where h(i) is the ith derivative of h. Hint : Taylor polynomials are

your friend.

Exercise. Now consider y2 = g(x) where g is a cubic, that is the

zero set of f(x, y) = y2 − g(x). We want to see that a nonvertical

tangent has multiplicity at least 2 at the point of tangency.



Chapter 3

Some Elementary
Number Theory

In the last chapter, we talked at length about curves, points on

curves, and even rational points on curves. We considered the im-

pressive Bachet duplication formula, which, given one rational point,

produced another. By the end of this book we want to be doing some

very sophisticated arithmetic using rational points on elliptic curves.

We shall consider the set of all rational points on an elliptic curve

and show that the set has an algebraic structure: given two ratio-

nal points, we can produce a third. We may even have gained some

insight into how this might happen given our excursions in the last

chapter, but the actual procedure will turn out to be somewhat more

complicated than our initial impressions might lead us to believe. We

could attempt to describe the complications, but it is a bit more nat-

ural to bump into them and use them as motivation for making new

definitions and developing new tools and perspectives.

Still, we should give a few hints. The algebraic structure we

referred to is called a group structure. Before trying to come to grips

with it, we should understand that it is a very natural structure that

many sets have; indeed sets with a group structure are even more

ubiquitous than sets with a vector space structure. So we will start

with a set with which you are familiar, the integers, and progress to
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the notion of modular arithmetic. Then in the next chapter, we shall

give a high-level description of modular arithmetic by thinking of it

not as an operation on the integers but by defining a group structure

on a set of equivalence classes of integers. Hmm; it seems we need

to know about equivalence classes, so we’ll have to develop that too.

We seem to have a full agenda, so let’s start with developing some

basic properties of the integers, and later give a much more revealing

description of what you were doing in third grade with arithmetic.

3.1. The Integers

Let Z denote the set of all integers, and let N = {0, 1, 2, . . . } be the

subset of nonnegative integers, typically called the natural numbers .

One might think that there is little which you do not already know

about the integers, but actually that is far from the truth. The sys-

tematic study of the integers is called number theory (more precisely

elementary number theory), and many a mathematician has spent his

or her career teasing out some of its interesting properties. Yet to the

uninitiated, it probably seems “inconceivable”1 that one could spend

a lifetime studying things that at first blush seem to hold no intrinsic

interest. I mean how exciting is the number 31, or 231 − 1? Actually,

they are interesting in that both of them are prime numbers (as are

13 and 213−1, 17 and 217−1, and 19 and 219−1), but we are getting

a bit ahead of ourselves.

For some people, collections of integers with a specific property

are fascinating: numbers called primes, perfect numbers, polygonal

numbers, and so on; for others, it is the algebraic structure possessed

by the set of all integers that is the real draw, mainly since that

structure serves as probably the single most important prototype of

the objects of study in abstract algebra and of all of algebraic number

theory, called groups and rings. But what do we mean by structure?

This is a question we first broached in Chapter 2, and one which will

command a great deal of our attention, so let’s start with some basic

properties of the integers, some of which you have probably seen, but

perhaps not at this level of detail.

1As said by the character Vizzini from The Princess Bride (http://www.imdb.
com/title/tt0093779/?ref_=fn_al_tt_1)

http://www.imdb.com/title/tt0093779/?ref_=fn_al_tt_1
http://www.imdb.com/title/tt0093779/?ref_=fn_al_tt_1
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3.2. Some Basic Properties of the Integers

Most of this section is very standard; see e.g., [JJ98] or [Ros05] for

expanded discussions.

We know that if we take any two integers, we can add, subtract, or

multiply them together and produce a third integer. This is not true

for division unless the one integer “divides” another. Yet from early

arithmetic lessons, it still is often the case that you want to divide

integers; the result was just slightly more complicated to describe.

There was something about quotients and remainders that we need

to think about more carefully.

We characterize the pairs of integers (a, b), whose quotient a/b is

an integer c, by saying b divides a, denoted b | a. That is, b | a if and

only if there is an integer c so that a = bc. Note this says a/b = c ∈ Z.

But of course, not all quotients of integers are integral. What do we

do?

In elementary school, we learn to do long division of integers,

and we can show for example, that 257 divided by 12 has quotient

21 and remainder 5. Put another way, 257 = 12(21) + 5. There

are many things we assumed about this process. One was that the

remainder was nonnegative and smaller than the number by which

we were dividing, and the second is that these numbers are unique.

After all,

257 = 12(21) + 5 = 12(22)− 7 = 12(20) + 17.

So let’s try to get back to where we were in elementary school.

Given two integers a, b with b �= 0, we want to divide b into a and

obtain a quotient and remainder where the remainder is “smaller”

than the integer by which we were dividing. We see the need to be

a bit more precise here since, in the example above, both remainders

of 5 and −7 are smaller than 12, even smaller in absolute value.

We summarize this procedure in the following theorem, called the

division algorithm.

Theorem 3.1 (Division algorithm). Let a, b ∈ Z, b �= 0. Then there

exist unique integers q and r with a = bq + r and 0 ≤ r < |b|, where
|b| is the absolute value of b.
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Remark 3.2. Often, some intuition is useful in order to construct a

formal proof. For convenience in this motivation, assume that a, b >

0, so a lies in the interval [0,∞). We want to partition that large

interval into smaller ones of length b:

[0,∞) = [0, b) ∪ [b, 2b) ∪ [2b, 3b) ∪ · · · ,

or more succinctly, [qb, (q + 1)b) = [qb, qb + b) for q = 0, 1, 2, . . . .

Now since those intervals are disjoint, a lies in exactly one of those

subintervals [qb, qb+ b), so a = qb+ r where 0 ≤ r < b. �
In part, one of the goals of this text is to introduce proof-writing

to the reader, and number theory is a wonderful subject through

which to achieve this goal. Writing a proof demands great atten-

tion to detail; each assertion must be justified. As one’s exposure to

mathematics increases, certain statements can be taken more easily

on faith (meaning you’re confident you could produce a proof of the

assertion), but in the beginning we strive to be pedantic so as to re-

veal all the assertions which need justification, though admittedly at

the expense that the proof below is somewhat long winded. As we

move forward through the text, more sophistication will gradually be

assumed, and proofs will become more streamlined.

Another important point is that there is not necessarily one cor-

rect proof of a result. Different proofs often contain different, but

equally interesting, ideas.

Exercise. In contrast to the proof we give below, which has cer-

tain pedagogical motivations, construct a proof using the idea in

the remark above. For example, consider the intervals of the form

[ q|b|, (q + 1)|b| ) where |b| is the absolute value of b and q ranges

over all the integers.

To move from our intuition to a rigorous proof, we rely on a fact

of enormous importance, that by construction, the natural numbers

are well-ordered , meaning that every nonempty subset of N contains a

least element. This is a fundamental fact in number theory, equivalent

to the notion of mathematical induction, and it is essential to the

proof below.
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Proof. In proving a statement like “there exist unique integers . . . ”,

there are actually two statements to prove: integers exist with the

stated properties and only those integers have the stated property.

First we show existence, that is, there exist a quotient q and a

remainder r with a = bq+r and 0 ≤ r < |b|. Note that if we solve the

desired equation a = bq + r for r, we have an expression of the form

r = a − bq. Since we are looking for a value of r with a particular

property, this suggests we consider the set of all possible values of r:

S = {a − nb | n ∈ Z} = {a, a ± b, a ± 2b, . . . }. Now our goal is to

find the smallest nonnegative element of S and show that it has the

requisite properties. To force the issue of nonnegativity, we consider

the subset T = S ∩ N. Certainly T is a subset of natural numbers,

so if it is a nonempty set, well-ordering demands it have a smallest

element. That will be our remainder.

We check that a − nb ≥ 0 if and only if n ≤ a/b (if b > 0) or

n ≥ a/b (if b < 0), and since there are infinitely many integers that

can satisfy either inequality, we have that T is nonempty. By well-

ordering, T has a least element r = a− qb for some integer q. All we

need to verify is that r < |b|.
We prove this by contradiction. If r is not less than |b|, then r ≥

|b|, so consider r′ = r − |b| ≥ 0. Since |b| > 0, we see r′ = r − |b| < r,

so putting the conclusions together, we have 0 ≤ r′ < r. But

r′ = r − |b| = a− bq − |b| =
{
a− b(q + 1) if b > 0

a− b(q − 1) if b < 0
∈ S ∩ N = T.

Since this shows r′ is strictly smaller than r and is an element of

T , it contradicts that r was chosen to be the smallest element of T .

Thus our assumption (r ≥ |b|) was false, so we have a = bq + r with

0 ≤ r < |b|.
As to uniqueness, suppose that a = bq + r = bq′ + r′ with 0 ≤

r, r′ < |b|, that is, we have potentially two different quotients and/or

two different remainders. Subtracting and rearranging the expressions

for a, we derive that b(q−q′) = r′−r. Now without loss of generality

we may assume r ≤ r′ (otherwise, write the equation as b(q′ − q) =

r − r′), so 0 ≤ r ≤ r′ < |b|, which means their difference r′ − r

satisfies 0 ≤ r′ − r < |b|, but it is also an integer multiple of b. The
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only possibility is the multiple is zero. Thus r = r′, and then since

b(q − q′) = 0 (and b �= 0), we have q = q′ as well. �

Remark 3.3. We now comment about an alternate way in which

to think about divisibility. Above we said that b | a if and only if

a/b = q ∈ Z. The division algorithm gives that a = bq + r with

0 ≤ r < |b|, so a/b = q + r/b ∈ Z if and only if r = 0.

Exercise.

• Show that 3 | 0, but 0 � 3.

• Show that if a | b and b | c, then a | c.
• Show that if a | b and c | d, then ac | bd.
• Show that if m �= 0, then a | b if and only if am | bm.

Next we state a couple of extremely useful properties of divisibil-

ity.

Proposition 3.4. Let a, b ∈ Z, b �= 0.

(1) If a1, . . . , ar are integers each of which is divisible by b (i.e.,

b | ai for all i), then b | (m1a1+ · · ·+mrar) for any integers

mi.

(2) Assume also that a �= 0. If a | b and b | a, then a = ±b.

Proof. For the first statement, if b | ai for all i = 1, . . . , r, then there

exist ci ∈ Z with ai = bci, i = 1, . . . , r. Thus,

m1a1 + · · ·+mrar = m1bc1 + · · ·+mrbcr = b(m1c1 + · · ·+mrcr),

which shows b | (m1a1 + · · ·+mrar).

For the second statement, if a | b, then b = ac for some integer c.

If b | a, then a = bd for an integer d. Thus,

b = ac = bdc, or b− bdc = 0 = b(1− dc).

Now in the integers, the product of two integers mn = 0 if and only

if (at least) one of m or n = 0. We have b(1 − dc) = 0 and b �= 0,

so we must have 1 − dc = 0, that is dc = 1, the only solution with

c, d ∈ Z is c = d = ±1. Returning to our expressions for a (or b), we

see a = ±b. �
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Definition 3.5. If d | a and d | b, we say d is a common divisor of

a and b. If d = ±1 are the only common divisors of a and b, we say

that a, b are relatively prime or coprime.

Remark 3.6. Often in elementary number theory we focus more on

the positive integers, so we would say 1, 2, 3, 6, and 12 are the common

divisors of 24, 36, when indeed the more correct statement would be

that ±1,±2,±3,±4,±6, and ±12 are the common divisors of 24 and

36; the integers 24, 25 are relatively prime.

Definition 3.7. Let a, b ∈ Z, not both zero. The greatest common

divisor of a, b is the unique positive integer d so that

(1) d | a and d | b (i.e., d is a common divisor), and

(2) if c | a and c | b, then c | d (so d is greatest among positive

divisors).

We denote this as d = gcd(a, b) or simply d = (a, b) if the context is

clear.

Remark 3.8. Two comments are in order. First, in many textbooks

on elementary number theory, the second condition is replaced with

(2′) if c | a and c | b, then c ≤ d.

It is easy to show that in Z, these two conditions are equivalent, but

the one we have chosen to use as part of our definition generalizes

more naturally to other settings such as when polynomials have a

common divisor.

The second comment is that we should perhaps justify the def-

inition. After all, it asserts that there exists such a unique positive

integer. Of course a and b have common positive divisors, namely

d = 1, and if d is positive and d | a, then d ≤ |a|, where |a| is the

absolute value of a. Since there are only a finite number of integers

between 1 and |a|, there clearly must be a greatest common divisor,

which is necessarily uniquely determined by being the largest integer

in a finite list.

Below we make a few easy observations about gcds, the proofs of

which we leave as an exercise.
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Proposition 3.9. Suppose that a, b ∈ Z, not both zero. Then

• gcd(±a,±b) = gcd(|a|, |b|).
• If a �= 0, the gcd(a, 0) = |a|.
• If a �= 0, then gcd(a, a) = |a|.
• If b | a, then gcd(a, b) = |b|.

Example. gcd(24,−36) = 12; gcd(24, 25) = 1; gcd(0,−15) = 15.

3.3. Euclid’s Algorithm

For small integers, we tend to rely on our ability to factor integers

in order to compute a greatest common divisor. For large numbers,

factoring is impractical (indeed we shall see that the security of RSA

encryption depends upon that assumption), so we need to rely on

a more computationally feasible means of extracting the gcd. The

method is called Euclid’s algorithm, and it is based on the division

algorithm we have already established. We begin with an easy but

pivotal lemma.

Lemma 3.10. If a, b are integers with b �= 0, and we write a = bq+r,

then gcd(a, b) = gcd(b, r).

Proof. We claim that the set of common divisors of a and b are the

same as the set of common divisors of b and r. Given this claim, the

greatest among these is necessarily the same. To establish the claim

we need only show that every common divisor of a, b is a common

divisor of b, r, and conversely.

If d | a and d | b, then by Proposition 3.4, d divides any linear

combination of a and b, namely d | r = a(1)− bq. Conversely, if d | b
and r, then by the same reasoning d | a = bq + r. �

Our goal is to compute the gcd of two integers a, b, where at

least one of them is nonzero. Proposition 3.9 handles the degenerate

case where one of the integers is zero and gives also gcd(±a,±b) =

gcd(|a|, |b|), so we may assume without loss of generality that
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a ≥ b > 0. To find their gcd, we iterate the division algorithm as

follows:

a = bq1 + r1, with 0 ≤ r1 < b,

b = r1q2 + r2, with 0 ≤ r2 < r1,

r1 = r2q3 + r3, with 0 ≤ r3 < r2,

...
...

rn−3 = rn−2qn−1 + rn−1, with 0 ≤ rn−1 < rn−2,

rn−2 = rn−1qn + rn, with rn = 0.

Note that 0 ≤ rn < rn−1 < · · · < r1 < b is a strictly decreasing

sequence of nonnegative integers, so the algorithm must terminate in

fewer than b steps. Actually, by an 1844 result of Gabriel Lamé, the

algorithm will terminate in no more than 5 log10(b) steps, which in

the language of computational complexity is linear in the length of

the smaller input.

The point of Euclid’s algorithm is that

Theorem 3.11. With the notation as above, gcd(a, b) = rn−1, that

is the last nonzero remainder in Euclid’s algorithm.

Proof. By the lemma, gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · =
gcd(rn−2, rn−1) = gcd(rn−1, rn) = gcd(rn−1, 0) = rn−1. �

Example 3.12. Let’s compute the gcd of 252 and 198:

252 = 198(1) + 54,

198 = 54(3) + 36,

54 = 36(1) + 18,

36 = 18(2) + 0.

So the gcd(252, 198) = 18, the last nonzero remainder.

Now we come to a major application of Euclid’s algorithm, called

Bézout’s identity (not to be confused with Bézout’s theorem discussed

in the previous chapter).
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Theorem 3.13 (Bézout’s identity). Let a, b be integers, not both zero.

Then there exist u, v ∈ Z so that gcd(a, b) = au+ bv.

Proof. Note that there is no loss of generality assuming both a and

b are nonnegative, for say a < 0 and b ≥ 0. We have gcd(a, b) =

gcd(|a|, b) = gcd(−a, b) = −a(u)+bv = a(−u)+bv, as desired. Other

cases are similar.

The proof is simply to realize that we can run Euclid’s algorithm

backwards starting with the gcd which equals rn−1 and back substi-

tute until we have a combination of a and b. �

We illustrate this with the example computed above:

gcd(252, 198) = 18:

18 = 54− 36(1)

= 54− (1)(198− 54(3)) = 198(−1) + 54(4)

= 198(−1) + 4(252− 198(1)) = 198(−5) + 252(4).

Via Bézout’s identity, we obtain two hugely useful corollaries.

Corollary 3.14. Let a, b be nonzero integers. Then

(1) If a | c, b | c, and gcd(a, b) = 1, then ab | c.
(2) If a | bc and gcd(a, b) = 1, then a | c.

Proof. It is always a good idea to see whether hypotheses are nec-

essary. For each statement, we see that the condition gcd(a, b) = 1

is essential. For example, in the first statement if a = 4, b = 6, and

c = 12, we see a | c and b | c, but ab � c. Similarly, for the second,

if a = 6, b = 3, and c = 4, we have that a | bc, but clearly a � b and

a � c.

So we begin with the necessary assumption that gcd(a, b) = 1.

Bézout’s identity says there are integers u, v so that au + bv = 1.

For the first assertion, we can write c = am = bn for some integers

m,n. Then

c = c · 1 = c(au+ bv) = cau+ cbv = (bn)au+ (am)bv = ab(nu+mv),

showing that ab | c.
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Similarly, for the second assertion, we write

c = c · 1 = c(au+ bv) = cau+ cbv.

We note that a | a and, by hypothesis, a | bc, so, by Proposition 3.4,

a divides the linear combination cau+ cbv = c. �

With these results in hand, we are in a position to give a proof

of the Fundamental Theorem of Arithmetic. While we have used the

word prime before, it is time to be precise in its definition. An integer

n > 1 is either prime or composite: It is prime if its only positive

divisors are 1 and n. It is composite if it is not prime, and therefore

we infer that an integer n > 1 is composite means that it can be

factored, n = ab where 1 < a, b < n. First a useful exercise.

Exercise. Let p > 1 be a prime. Show that

• For any integer n, gcd(p, n) = 1 or p.

• For integers m,n if p | mn, then either p | m or p | n.

Theorem 3.15 (Fundamental Theorem of Arithmetic). Every inte-

ger n > 1 can be factored uniquely as a product of primes.

Proof. First we prove the existence part of the statement, that every

integer n > 1 can be written as the product of primes. The intent of

this statement is that a prime is to be thought of as the product of

one prime. We prove this by induction on n. For the base case, we

observe that n = 2 is prime. So now we assume n > 2 and, for all

integers m with 1 < m < n, that m can be written as the product of

primes. Consider n. If n is prime, we are done. If not, it is composite,

and so it can be written as n = ab with 1 < a, b < n. By induction,

each of a, b can be written as a product of primes, so concatenating

the two products gives us a representation of n as the product of

primes. So induction gives us existence.

Now for uniqueness, and this takes some explanation. After all,

6 = 2 · 3 = 3 · 2, but we don’t want to call these two different fac-

torizations since multiplication in the integers is commutative. So

the statement we shall prove is that whenever an integer n > 1 is

written in the product of primes (in two possibly different ways) as

n = p1p2 · · · pr = q1q2 · · · qs, with pi and qj all primes (not necessarily
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distinct), that r = s (the number of primes is the same) and, that

after some reordering, pi = qi for i = 1, . . . , r.

In any such factorizations, we may assume without loss of gener-

ality that r ≤ s, and the proof of uniqueness will be by induction on

r. The base case is r = 1, that is n = p1 = q1 · · · qs. This says n = p1
is prime, so by definition the only way to factor it is p1 · 1, so we

may conclude s = 1 and q1 = p1. Now for the induction hypothesis:

Assume that r > 1 and, for any integer m which admits a factoriza-

tion into t primes with t < r, that such a factorization is unique in

the sense specified above. So we consider n = p1 · · · pr = q1 · · · qs.
Using the exercise above, we see that since p1 | n = q1 · · · qs, we must

have that p1 | qi for some prime qi. But that says that qi = p1 · a
for some integer a. But as qi is a prime, we may conclude that

a = 1, so p1 = qi. Now reorder the primes qj making q1 = p1, so

n = p1 · · · pr = p1q2 · · · qs. Canceling the p1’s from both factoriza-

tions leaves us with n′ = n/p1 = p2 · · · pr = q2 · · · qs. Visibly, n′ can

be written as the product of r − 1 primes, so by induction, we know

that factorization is unique, meaning r − 1 = s − 1 (so r = s), and

after reordering qj = pj for j = 2, . . . , r. �

3.4. A First Pass at Modular Arithmetic

As another application of divisibility, we define the notion of modular

arithmetic as an operation on the integers. Later we shall reinterpret

modular arithmetic as algebraic operations on a finite set, denoted

Zn, which we shall see gives the set the structure of what is called a

ring.

Let n be a positive integer, and let a, b be arbitrary integers. We

want to define what it means to say that a and b are congruent modulo

n. First we shall give a definition that is fairly intuitive, and then we

shall show this intuitive notion is equivalent to a divisibility condition

which is easier to check in practice.

Loosely speaking, we will say that a and b are congruent modulo

n, if they have the same remainder when divided by n. More precisely,

dividing a and b by n via the division algorithm gives expressions

a = nq + r and b = nq′ + r′ with unique remainders 0 ≤ r, r′ < n.
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Definition 3.16. We say that a is congruent to b modulo n, written

a ≡ b (mod n) or a ≡ b(n) if and only if r = r′.

Let’s make a couple of simple observations about our definition.

Fix the positive integer n. Let a ∈ Z, and write a = nq + r with

0 ≤ r < n.

First observe that a ≡ r (mod n). To see this, we note that

r = n ·0+r with 0 ≤ r < n so, by the proof of the division algorithm,

r is the unique remainder, so a and r have the same remainder. What

does this mean?

Proposition 3.17. Every integer is congruent modulo n to exactly

one of the integers 0, 1, 2, . . . , n− 1.

Proof. The argument above shows that an integer is congruent mod-

ulo n to its unique remainder given via the division algorithm. This

says that an integer is congruent to one and to only one of 0, 1, . . . ,

n− 1. �

To state the last sentences of the proof in another way, this also

says that given two remainders 0 ≤ r, r′ < n, we have r ≡ r′ (mod n)

if and only if r = r′.

Example 3.18. Every integer is congruent modulo 2 to either 0 or

1, that is dividing by 2 leaves a remainder of 0 or 1. Those with

remainder 0 are called even, and those with remainder 1 are called

odd. So when we say a ≡ b (mod 2), we know that a and b are either

both even or odd, and are said to have the same parity.

The next proposition gives a number of equivalent ways of think-

ing about congruence.

Proposition 3.19. Let a, b, n ∈ Z with n > 0. The following condi-

tions are equivalent:

(1) a ≡ b (mod n).

(2) n | (a− b).

(3) a = b+ kn for some integer k.
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Proof. To show these statements are equivalent, one must show each

implies the other, and the converse. Technically, that is six statements

to prove, but one can do it efficiently with three by proving that

(1) =⇒ (2) =⇒ (3) =⇒ (1), which is what we shall do.

(1) =⇒ (2): If a ≡ b (mod n), then via the division algorithm,

a = nq + r and b = nq′ + r with the same remainder r. But then

a− b = n(q − q′), which implies n | (a− b).

(2) =⇒ (3): If n | (a − b), then a − b = kn for some integer k,

which in turn means a = b+ kn.

(3) =⇒ (1): Let a = b + kn. Via the division algorithm write

b = nq + r with 0 ≤ r < n. Then a = b + kn = n(q + k) + r. Since

0 ≤ r < n, this is the unique representation of a via the division

algorithm. We see both expressions have the same remainder r, so

a ≡ b (mod n). �

Below, we give a few examples of the uses of congruences, but our

lives will be a great deal easier if we first understand a few elementary

properties concerning congruence. In the next chapter, these proper-

ties will be interpreted in a much broader context. For congruences,

not only are these properties elementary, they are so elementary, it

probably would not occur to you that you are using them, so we

will try to point out why these properties are crucial to supporting

computations with congruences.

The first of these properties is that congruence modulo n satisfies

three properties which will characterize it as an equivalence relation

on Z, a notion we will explore more in the next chapter.

Proposition 3.20. Let n be a positive integer, and let a, b, c ∈ Z.

Then

(1) Reflexive. a ≡ a (mod n).

(2) Symmetric. a ≡ b (mod n) if and only if b ≡ a (mod n).

(3) Transitive. If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c

(mod n).

The reflexive property seems almost silly, but it is not. If instead

of congruence we were talking about the relation “less than” (<),
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then it would not be true that a < a. The symmetric property allows

us not to worry about whether we write a ≡ b (mod n) or b ≡ a

(mod n). It too is not silly, for if the relation were the subset relation

(⊆) and we had two subsets for which A ⊆ B, it would not necessarily

be the case that B ⊆ A: the integers are a subset of the real numbers,

but not conversely. The transitive law is simply handy. What it says

is that you can do work in stages, first reducing a to b, then perhaps

by a different observation from b to c, and in the end you know that

it was possible to go directly from a to c. We shall see this in play in

the examples below.

There are many proofs one can give of the above using the equiv-

alences in Proposition 3.19.

Proof. We will use c ≡ d (mod n) if and only if c = d+ kn for some

integer k.

(1) a ≡ a (mod n) since a = a+ 0 · n.
(2) If a ≡ b (mod n), then a = b+kn. But then b = a+(−k)n,

so b ≡ a (mod n), and the converse by symmetry.

(3) Given a ≡ b (mod n) and b ≡ c (mod n), we can write

a = b+ kn and b = c+ �n, so that

a = b+ kn = c+ �n+ kn = c+ (k + �)n,

hence a ≡ c (mod n). �

We also need the following properties. These too may appear at

first to be “symbol pushing”, but they are actually key to being able

to do computations efficiently and underlie important applications

later on.

Proposition 3.21. Let a, b, a′, b′ ∈ Z, let n be a positive integer with

a ≡ a′ (mod n), and let b ≡ b′ (mod n). Then

(1) a± b ≡ a′ ± b′ (mod n),

(2) ab ≡ a′b′ (mod n).



60 3. Some Elementary Number Theory

Proof. a ≡ a′ (mod n) and b ≡ b′ (mod n) means that a = a′ + kn

and b = b′ + �n for some integers k and �. Thus,

a± b = a′ ± b′ + n(k ± �),

ab = a′b′ + n(kb′ + �a′ + k�n).

Rewriting these equalities as congruences yields the result. �

Let’s put these properties to work.

Example 3.22. Find the last decimal digit of 1!+2!+ · · ·+100!. Oh

my! This seems like a daunting amount of work. What if you knew

that the last decimal digit of 1!+2!+ · · ·+100! is the same as the last

decimal digit of 1! + 2! + · · ·+ 100! + · · ·+ n! for any n > 100? That

would actually be a big clue. Why? Well, it would say that adding

those larger numbers is not changing the last digit of our number.

So how do we recognize the last digit of a number? It seems like

a silly question—we just look at the number. But that’s not terribly

helpful. So let’s ask again: how do we know the last decimal digit of

12345 is a 5, and what does that mean? The meaning is hidden in

the word “decimal”, meaning that 12345 is the base 10 expansion of

a number. Said another way, it tells us that

12345 = 1 · 104 + 2 · 103 + 3 · 102 + 4 · 101 + 5 · 100

= 1234 · 10 + 5,

but the later expression tells us that 12345 ≡ 5 (mod 10). To be

even more precise, given the base 10 expansion of an integer, the last

decimal digit is the remainder given by the division algorithm upon

dividing by 10.

Now let’s return to the problem of finding the last decimal digit

of

1! + 2! + · · ·+ 100!.

We note that for n ≥ 5, n! is a multiple of 10 (since both 2 and

5 divide n! and they are coprime), that is n! ≡ 0 (mod 10) for each

n ≥ 5. Thus

1! + 2! + · · ·+ 100! ≡ 1! + 2! + 3! + 4! + 0 + · · ·+ 0 (mod 10),
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where we have just used Proposition 3.21(1). Thus,

1! + 2! + · · ·+ 100! ≡ 1! + 2! + 3! + 4! ≡ 33 (mod 10)

and 33 ≡ 3 (mod 10), so

1! + 2! + · · ·+ 100! ≡ 3 (mod 10),

where we have used the transitive property of congruence. It follows

that the last digit is 3. �

In the next example, we use congruences in a different way. Some-

times we are not sure whether a statement is true or false. Of course

if you can prove it, we know it is true. On the other hand, if you can

find no proof, there is little you can conclude. But in order to show

that some statement is false, it is often enough to show that if it were

true, an impossible situation would ensue.

Example 3.23. Is 12345678 a square in Z? We could settle this ques-

tion quickly with a calculator, but where’s the fun in that? Besides,

we could as easily have asked if

825949768513252587956123427457683521546788956431258612345678

is a square, but that’s too long to type. The technique we have in

mind works as easily with one of those integers as the other, and

indeed we would have the answer before you even typed that number

into your favorite device.

So let’s work with 12345678. If it is a square in Z, then 12345678=

m2 for an integer m. We would like to see that this is impossible

without trying to find m. What comes next may seem unintuitive,

but new tools require learning how to use them, so let’s take a small

excursion.

We know that integers are either odd or even, that is of the form

m = 2n or m = 2n + 1, so their squares m2 = 4n2 or 4n2 + 4n + 1

satisfy m2 ≡ 0 (mod 4) or m2 ≡ 1 (mod 4). Did you notice that we

used Proposition 3.21 once again?

Now by the division algorithm, we know an arbitrary integer is

congruent to exactly one of 0, 1, 2, or 3 (mod 4), so if n is an integer

which is congruent to 2 or 3 (mod 4), then it is impossible for it to

be a square in Z. So all we need to do is compute 12345678 (mod 4).



62 3. Some Elementary Number Theory

Can we do this easily? Sure, and we won’t even use the division

algorithm.

The base 10 expansion of our number tells us that

12345678 = 123456(100) + 78 = 123456(25)(4) + 78 ≡ 78 (mod 4).

And direct computation tells us that 78 = 4(19) + 2, so 78 ≡ 2

(mod 4), and by transitivity, 12345678 ≡ 2 (mod 4), so it cannot be

a square in Z. Note that the larger number above is also (trivially)

congruent to 2 (mod 4) (why?), so it cannot be a square either.

Finally, note that this observation only works in one direction.

For example, 5 ≡ 1 (mod 4) but 5 is not a square in Z. �

For a final example, we return to a matter from Chapter 2.

Example 3.24. When we talked about Pythagorean triples (positive

integers A,B,C with A2 + B2 = C2), we asserted and rather awk-

wardly justified that A and B could not both be odd. Now we easily

see why. A square integer is congruent to 0 or 1 modulo 4, so C2 ≡ 0, 1

(mod 4). If A and B are both odd, then A2 + B2 ≡ 2 (mod 4), so

there can be no equality A2+B2 = C2 since A2+B2 �≡ C2 (mod 4).

Exercise. Can you find integers x, y, z so that 987654319 = x2 +

y2+z2? Hint : Determine the possible values of x2+y2+z2 (mod 8).

Exercise (A precursor to the Chinese Remainder Theorem). Find

the smallest number of marbles in a jar so that one remains if taken

out 2, 3, 5 at a time, but none remain if taken out 11 at a time.

Exercise. To get more of a feel for congruences and how to move

between congruences and equalities, consider the following exer-

cises:

• Show (by example) that the congruence ax ≡ ay (mod n)

does not necessarily imply that x ≡ y (mod n).

• On the other hand, show that if x ≡ y (mod n), then

ax ≡ ay (mod n) for any integer a.

• Show that there exist integers u, v so that au + nv = b if

and only if ax ≡ b (mod n) is solvable.
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3.5. Elementary Cryptography: Caesar Cipher

An example of congruences having historical significance is a mathe-

matical characterization of what is called the Caesar cipher. We also

discuss this example as a way of introducing some basic terminology

in cryptography, which we shall take up in more depth in a later

chapter.

In brief, to send messages to his commanders on the battlefield,

Caesar needed a means to write a message and have a courier carry

it to his commanders so that only the commander could understand

the message. In particular, if the courier was intercepted and the

message read by a third party, they would be unable to understand

the message. To accomplish this, Caesar encrypted them. He would

generate his intended message; this is called a plaintext message. He

would then encrypt it (as described below), producing what is called a

ciphertext message. The ciphertext message was then sent by courier

to his commanders and then decrypted. The intent, of course, was

that even if the courier was intercepted and the message read, the

real (plaintext) message could not be recovered.

The process of encryption was to write out the message, and then

shift each letter in the message forward by three, that is A 
→ D,

B 
→ E, and so on. The complete lexicon is given by:

Plaintext: A B C D E F G H I J K L M

� � � � � � � � � � � � �
Ciphertext: D E F G H I J K L M N O P

Plaintext: N O P Q R S T U V W X Y Z

� � � � � � � � � � � � �
Ciphertext: Q R S T U V W X Y Z A B C

Thus the word CAT in plaintext would translate to FDW in ci-

phertext. Upon receipt of the ciphertext, the commanders would

decrypt it by shifting each letter back by three.
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Mathematically, we achieve this by converting each letter of the

alphabet into a numerical equivalent:

A B C D E F G H I J K L M

� � � � � � � � � � � � �
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

� � � � � � � � � � � � �
13 14 15 16 17 18 19 20 21 22 23 24 25

So C-A-T would be encoded 2-0-19; the ciphertext F-D-W would

be 5-3-22. So if P is the numeric equivalent of a plaintext letter, the

corresponding ciphertext letter would be determined by the congru-

ence

C ≡ P + 3 (mod 26).

The plaintext would be recovered from the ciphertext by

P ≡ C − 3 ≡ C + 23 (mod 26)

where in all cases one would take the values for P and C from among

0− 25.

The Caesar cipher is an example of a shift cipher , that is any

cipher where each character of plaintext is converted to ciphertext by

a procedure of the form C ≡ P + k (mod n). The set of values of

k which produce distinct (nontrivial) ciphers is called the keyspace

associated to the encryption scheme; clearly, it has size n− 1 (k = 0

is a trivial encryption). The Caesar cipher is a shift cipher where

n = 26, but n could be as large as needed to accommodate a larger

alphabet, upper and lower case letters, as well as special symbols.

While this primitive cryptographic scheme may have worked ad-

equately for Caesar, any person trying to break this cryptosystem

would have little challenge, especially if they suspected the nature of

the encryption scheme. And this, perhaps surprisingly, is actually a

very important issue.

In designing a strong cryptographic system, how important do

you think it is to keep the nature of the method of encryption and

decryption a secret? After all, if you knew someone was using a

shift cipher, you could try all n − 1 nontrivial keys in a matter of
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seconds on a computer, so it might seem if you did not know the

nature of the cipher, it might be more secure. Indeed that was the

prevailing wisdom—even for the government and military—for a long

time. Here’s the rub: as long as an adversary does not know the

nature of the method, there actually may be some additional security,

but if the adversary learns the nature of the encryption and this

knowledge is unknown to those sending encrypted messages, security

can be dramatically reduced. A prominent example was the cracking

of the Enigma machine in World War II, something to which entire

books have been devoted. While a fascinating story, it would take us

too far afield, so we shall leave it to the interested party to explore

on his or her own.

The danger of hiding the method of encryption and decryption

is a lesson now well learned, and for new cryptographic schemes it is

absolutely necessary that there be complete transparency in terms of

how the encryption and decryption algorithms work. For government

and commercial use, this is not only necessary for the reason suggested

above, but also to ensure the algorithms do not contain a “back door”,

which would allow the designers an easy way to break the cipher.

This particular issue is one which confronted the Apple corporation

in February 2016 with regard to encryption on its iPhones. We shall

learn more about these issues in later chapters.

To advance a broader discussion of cryptography, we introduce

a little notation and terminology. A basic cryptographic setup has

two functions, E and D, representing an encryption and decryption

scheme. If P denotes a plaintext message and C the corresponding

ciphertext (encrypted message), then the requirements for a cryp-

tosystem are pretty basic.

We take plaintext P and use E to encrypt the message, producing

ciphertext C = E(P ). Ideally, it is very difficult to discover P from

C. The other essential feature is that the decryption scheme must

work, that is P = D(C) = D(E(P )), that is D is a left-hand inverse

to E.
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For the Caesar cipher we had E and D defined as

C = E(P ) ≡ P + 3 (mod 26),

P = D(C) ≡ C − 3 (mod 26) ≡ C + 23 (mod 26).

Exercise. Explore an encryption scheme known as ROT13; it is a

shift cipher. What can you say about the encryption and decryption

functions E and D?

3.6. Affine Ciphers and Linear Congruences

Having dismissed the shift cipher as too simple, perhaps we can tweak

it and produce a slightly more complicated scheme, called an affine

cipher. Here we take C ≡ aP + b (mod 26) for integers a and b.

Clearly, a = 1 recovers our shift cipher, but when a �= 1, we must

ask when is the congruence C ≡ aP + b (mod 26) uniquely solvable

for P (mod 26), that is, when can we find a decryption algorithm to

accompany this encryption scheme?

Exercise. Before reading the propositions that follow, can you

determine the values of a for which a decryption algorithm to C ≡
aP + b (mod 26) be produced?

We summarize what we have learned from the exercise. We begin

with a simple case.

Proposition 3.25. The congruence ax ≡ 1 (mod n) is solvable if

and only if gcd(a, n) = 1 and, when solvable, there is a unique solution

modulo n.

Proof. If ax ≡ 1 (mod n) is solvable, then there exists a y ∈ Z with

ax + ny = 1. Let d be the gcd of a and n. Then, by definition of a

gcd, d | a and d | n, so we know that d divides any combination of a

and n; in particular d | (ax+ ny) = 1, so d is clearly 1.

Conversely, if d = gcd(a, n) = 1, then Bézout’s identity tells us

that there exists u, v ∈ Z with au + nv = d = 1, but this means

au ≡ 1 (mod n), so the congruence ax ≡ 1 (mod n) is solvable with

solution x ≡ u (mod n).
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To see that there is a unique solution modulo n, suppose there

were two, x, y. Then ax ≡ ay ≡ 1 (mod n). Knowing au + nv = 1,

we multiply both sides of the congruence by u (see the exercise before

§3.5), and we see uax ≡ uay (mod n). But au ≡ 1 (mod n), so we

deduce x ≡ y (mod n), as required. �

Implicit in the proof above is the following result, allowing us to

recognize when two integers are relatively prime.

Corollary 3.26. Let a, b ∈ Z. Then gcd(a, b) = 1 if and only if there

exist u, v ∈ Z with au+ bv = 1.

Now we proceed to handle general linear congruences.

Proposition 3.27. If the congruence ax ≡ b (mod n) is solvable,

then d = gcd(a, n) | b.

Note that the contrapositive is more instructive: If d � b, then the

congruence is not solvable.

Proof. The proof is similar to the one above. If ax ≡ b (mod n) is

solvable, then there exist integers x, y so that ax + ny = b. Since

d = gcd(a, n), we know d | a and d | n, so d divides any combination

of a and n, in particular, d | b. �

The converse is where the substance lies.

Theorem 3.28. Let d = gcd(a, n). If d | b, then the congruence

ax ≡ b (mod n) is solvable, and there are precisely d incongruent

solutions modulo n. Indeed they are all of the form x0 +
n
d t (mod n)

for t = 0, 1, . . . , d− 1 where x0 is any particular solution.

Before proving the theorem, we sum up the results so far:

Corollary 3.29. The congruence ax ≡ b (mod n) is solvable if and

only if d = gcd(a, n) | b. When solvable, there are precisely d incon-

gruent solutions modulo n.
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Proof of the theorem. Let d = gcd(a, n) and assume that d | b.
By Bézout’s identity, we know there exist integers u, v so that

au+ nv = d, so

a

d
u+

n

d
v = 1 (divide by d). Thus

a

d
ub+

n

d
vb = b (multiply by b), and finally,

a(u
b

d
) + n(v

b

d
) = b (redistribute since d | b).

This says that x0 = u b
d is a solution to ax ≡ b (mod n), so solutions

exist.

Now, how many are there? Suppose that y0 is another solution

to the congruence. Then

ay0 ≡ ax0 ≡ b (mod n) =⇒ a(y0 − x0) ≡ 0 (mod n)

⇐⇒ a(y0 − x0)=nk for some integer k

⇐⇒ a

d
(y0 − x0) =

n

d
k

⇐⇒ a

d
(y0 − x0) ≡ 0 (mod

n

d
)

⇒ u
a

d
(y0 − x0) ≡ 0 (mod

n

d
),

and since from above, a
du+ n

d v = 1, we have a
du ≡ 1 (mod n

d ), so

u
a

d
(y0 − x0) ≡ 0 (mod

n

d
) ⇒ (y0 − x0) ≡ 0 (mod

n

d
)

⇒ y0 ≡ x0 (mod
n

d
)

⇒ y0 = x0 +
n

d
t for t = 0, 1, . . . , d− 1,

all of which are distinct modulo n. �

Remark 3.30. Note that ax ≡ b (mod n) is solvable if and only if
a
dx ≡ b

d (mod n
d ) is, and modulo n

d there is a unique solution which

propagates back to d solutions modulo n.

We consider some examples.

Example 3.31. Consider the congruence 6x ≡ 9 (mod 15). We see

that d = gcd(6, 15) = 3 divides 9, so there will be three incongruent
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solutions modulo 15. As above we see that 6x ≡ 9 (mod 15) ⇐⇒
2x ≡ 3 (mod 5), to which there is a unique solution x ≡ 4 (mod 5).

Thus modulo 15, the solutions are x ≡ 4 + 5t (mod 15), t = 0, 1, 2,

that is x ≡ 4, 9, 14 (mod 15).

Next we present a more complicated example that mimics the

proof and uses Bézout’s identity.

Example 3.32. We consider 198x ≡ 90 (mod 252). We begin by

computing the gcd of 252 and 198 (which we did previously in Exam-

ple 3.12).

252 = 198(1) + 54

198 = 54(3) + 36

54 = 36(1) + 18

36 = 18(2) + 0

So d = gcd(252, 198) = 18, and we see that 18 | 90, so the congruence

is solvable and has 18 incongruent solutions modulo 252.

To gain a particular solution, we work Euclid’s algorithm back-

ward, solving for 18 as follows:

18 = 54− 36(1)

= 54− (1)(198− 54(3)) = 198(−1) + 54(4)

= 198(−1) + 4(252− 198(1)) = 198(−5) + 252(4).

Now

198(−5) + 252(4) = 18 means

198(−25) + 252(20) = 90 (multiply by 5),

so x0 = −25 is one solution to the original congruence 198x ≡ 90

(mod 252). All solutions are of the form x ≡ x0 +
n
d t = −25 + 14t

(mod 252), t = 0, 1, . . . , 17.

Note that alternatively, we might have simplified the congruence

198x ≡ 90 (mod 252) to the equivalent 11x ≡ 5 (mod 14), a quick

inspection of which suggests x ≡ 3 (mod 14) as a solution. Thus

the solutions to the original congruence are of the form x ≡ 3 + 14t

(mod 252), t = 0, 1, . . . , 17.
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While these may look rather different, they are not. The first set

of solutions produces the congruences

x ≡ −25,−11, 3, 17, . . . , 213 (mod 252),

while the second set produces

3, 17, . . . , 213, 227, 241 (mod 252).

The classes 3, 17, . . . , 213 are obviously the same, and we see −25 ≡
227 (mod 252) and −11 ≡ 241 (mod 252).

As a final example, we consider a simple congruence with solu-

tions obtained in three different ways.

Example 3.33. The congruence 10x ≡ 15 (mod 35) is solvable since

d = gcd(10, 35) = 5 | 15, and there will be five solutions modulo 35.

We can always reduce to the congruence 2x ≡ 3 (mod 7).

The first method of solution is by inspection: x ≡ 5 (mod 7)

works and is the unique solution mod 7, so we get x ≡ 5+7t (mod 35),

t = 0, 1, 2, 3, 4 for the five solutions modulo 35.

The second method is to note 2x ≡ 3 (mod 7) is solvable since

gcd(2, 7) = 1. Use Bézout’s identity to write 1 = 2(−3) + 7(1).

Multiplying by 3 gives 2(−9)+7(3) = 3, that is x ≡ −9 (mod 35) is a

solution to the original congruence, so solutions are −9+7t (mod 35),

t = 0, 1, 2, 3, 4.

The third methods suggests that perhaps you can guess a solution

to 2x + 7y = 3, say 2(−2) + 7(1) = 3. This would give x ≡ −2 + 7t

(mod 35), t = 0, 1, 2, 3, 4, for a complete set of solutions.

3.7. Systems of Congruences

Just as a course in linear algebra often begins with a discussion of how

to solve systems of linear equations, we frequently find ourselves in a

situation where we wish to solve multiple congruences simultaneously.

An extremely useful theorem that tells us how to do this in certain

cases is called the Chinese Remainder Theorem (CRT). We state a

general version, but leave the proof to a series of well-hinted exercises.
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Theorem 3.34 (CRT). Let m1,m2, . . . ,mr be integers with mi ≥ 2,

and assume that for each i �= j, gcd(mi,mj) = 1. (We say the moduli

mi are coprime in pairs.) Let a1, . . . , ar ∈ Z be arbitrary. Then the

system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ar (mod mr)

is solvable, and any two solutions x, x′ satisfy x ≡ x′ (mod m) where

m = m1m2 · · ·mr.

We note that this theorem can be proven by induction on r, and

the case of r = 1 is trivial, so we start with the case of r = 2.

Exercise. Let m,n > 1 be coprime integers, and let a, b be arbi-

trary integers. Then the system of congruences

x ≡ a (mod m),

x ≡ b (mod n)

has a unique solution modulo mn. A generous hint : Note that since

gcd(m,n) = 1, Bézout’s identity says there exists u, v ∈ Z so that

mu+nv = 1. Show that the number bmu+anv is a solution to the

system, and then prove it is unique modulo mn.

Exercise. Explain how to use the above version of the CRT to

solve a system

x ≡ a (mod �),

x ≡ b (mod m),

x ≡ c (mod n),

where �,m, n > 1 are integers which are coprime in pairs.



Chapter 4

A Second View
of Modular Arithmetic:
Zn and Un

4.1. Groups and Rings

Given two integers, we can add, subtract, or multiply them and always

get another integer. We have seen that division is more problematic

but led to many interesting ideas like the division algorithm. For

now we focus just on addition, subtraction, and multiplication on the

integers. Each of these operations is what is called a binary operation

on the integers, meaning a rule that takes two inputs from the set and

produces a third, in our case the sum, difference, or product of two

integers. It may seem that these operations should all have similar

properties, but that is not true, and understanding the distinctions

leads us to a formal definition of a group (and a ring) which we need

and want to leverage.

Let’s slow down and take a closer look. As a concrete example,

let’s examine the operation of addition on the integers. Addition is

the binary operation that takes an ordered pair of integers (m,n)

and produces their sum, m + n. You might wonder what there can

possibly be to understanding addition. But an operation all by itself
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is just a function, and unless that function has interesting properties,

it may not have much utility.

For example, while our binary operation gives the rule for adding

two things together, how do we add three, a+ b+ c? In the past, you

would never have hesitated in finding the sum of those three integers.

You would grab two, add them, and then add the result to the third,

using the binary operation twice. But how do we choose the first

two? Is there a difference if we first add a and b together and add

that result to c, or if we first add b and c, and add that result to a.

Symbolically, how can we be sure that

(a+ b) + c = a+ (b+ c)?

Probably somewhere is some distant corner of your brain, this

relation seems familiar, and indeed you pull from the depths its name:

the associative law. It seems so obvious that an operation should

be associative. Isn’t every operation associative? Actually, no. An

easy counterexample is that subtraction on the integers is not an

associative operation. For example,

−7 = (2− 3)− 6 �= 2− (3− 6) = 5.

So already we see that the operations of addition and subtraction on

the integers are not on the same footing. Fortunately, this won’t give

us trouble, and even better, we have a way of tying subtraction to

addition in a useful manner. For the record, multiplication on the

integers is also associative, so we will say that Z comes equipped with

two associative binary operations, addition and multiplication.

In exploring the properties of addition and multiplication, we

recall other facts from elementary school. The integers 0 and 1 are

very special. For every integer m,

m = m+ 0 = 0 +m and m = 1 ·m = m · 1.

These elements are called the identities associated to the operations of

addition and multiplication. These operations have one more common

property: they are both commutative operations, that is

m+ n = n+m and mn = nm,

for all integers m and n.
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There is one more property enjoyed by addition that is not en-

joyed by multiplication on Z, and that is the notion of an inverse.

Formally, the property says that for every integer m there exists an

integer n, so that m + n = 0. We are very comfortable with this

notion, and typically we denote the (unique) element n by n = −m,

and it is here that subtraction comes in.

If we accept subtraction as an operation, then

−m := 0−m,

while if we accept the existence of inverses for all elements, then we

can define subtraction as

m− n := m+ (−n),

where the last expression is adding the inverse of n to m.

Perhaps you think all this formality is too much fussing for some-

thing you already understand very well, but we are counting on that

implicit understanding since we want to extend these notions to sets

with unfamiliar binary operations. Indeed, one very large goal of this

text is to consider the set of points (x, y) on an elliptic curve, both

of whose coordinates are rational numbers. We shall show how to

define a binary operation on this set of points, which in many ways

acts like the integers under addition, so we are relying heavily on

your deep understanding of operations on the integers to allow us to

extend these notions to new and important settings.

The subject of abstract algebra is the study of sets with binary

operations which carry algebraic structure. Most algebra courses (and

most textbooks) introduce these algebraic objects in increasing order

of complexity. At the simple end of the spectrum is a set having a

single binary operation, called a group.

Definition 4.1. A nonempty set G is called a group if it has a binary

operation ∗ (that is, a map G × G → G written (g, h) 
→ g ∗ h)

satisfying the following:

• Identity. There is an element e ∈ G so that g ∗ e = e ∗ g = g

for all elements g ∈ G.

• Inverses. For every g ∈ G there is an h ∈ G so that g ∗ h =

h ∗ g = e.
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• Associative. For all g, h, k ∈ G, g ∗ (h ∗ k) = (g ∗ h) ∗ k.

The set Z of integers has two associative binary operations, ad-

dition and multiplication, so we can ask whether Z is a group under

each of those operations, and we quickly see the answer is no. The

set Z is a group under addition (with ∗ = +): it has identity 0, it has

inverses −m for each m, and it is associative. Moreover, we know that

addition is commutative as well on Z, so Z is a commutative group

under addition. For historical reasons (in honor of Abel’s work in

group theory), commutative groups are instead referred to as abelian

groups.

We now verify that Z is not a group under multiplication. While

it has an identity (1), and the operation is associative, inverses in

general do not exist. For example, given the integer 2, there is no

integer n so that 2n = 1.

Nonetheless, the operations of addition and multiplication on Z

are quite compatible. The properties which characterize this compat-

ibility are those that define an algebraic object called a ring.

Definition 4.2. A nonempty set R is called a ring (with identity) if

it has two binary operations, one called addition, +, and one called

multiplication, ·, so that R is an abelian group under addition, and

it has the following additional properties:

• Multiplicative identity. There is an element 1 ∈ R so that

r · 1 = 1 · r = r for all elements r ∈ R.

• Associative. For all r, s, t ∈ R, (r · s) · t = r · (s · t).
• Distributive. For r, s, t ∈ R, we have both

(r + s) · t = r · t+ s · t and r · (s+ t) = r · s+ r · t.

The distributive property simply says that addition and multi-

plication play together well (i.e., interact compatibly). If in addition,

the operation of multiplication is commutative, then R is called a

commutative ring (with identity). Recall that the operation of ad-

dition is assumed to be commutative as part of the definition of a

ring.

Finally, it does make sense to talk about rings that do not have

an identity, but all the rings we shall meet in this text will have one.
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Exercise. Show that 2Z (the even integers) is a ring (without a

multiplicative identity) under the usual operations of addition and

multiplication.

4.2. Fractions and the Notion of an Equivalence
Relation

The goal of the next two sections is to revisit the notion of modular

arithmetic, but from a sophisticated point of view, using the notion

of an equivalence relation to define a new set that we endow with

the algebraic structure of a ring. Don’t be concerned if that sounds

rather daunting; we shall take it one step at a time.

Before making abstract definitions, let’s examine an example with

which you are very comfortable. The object we want to look at is the

set of rational numbers, Q. We can write down a definition of Q

without much fuss:

Q = {a/b | a, b ∈ Z, b �= 0}.

We have known this characterization for so long that we have probably

forgotten what the symbols actually mean. For example, surely we

could have written the symbol a/b as a
b , or perhaps even a÷b. Perhaps

you are inclined to ask, what significance is in the symbol? The

symbol seems only intended to distinguish the numerator from the

denominator. So to float an idea, why don’t we just write a/b =

(a, b), that is, as an ordered pair where the first coordinate is the

numerator, and the second is the denominator? This example will

show why mathematicians are so careful with notation. Perhaps we

are suggesting that we could write Q = {(a, b) | a, b ∈ Z, b �= 0}?
No, not really—the notation (a, b) has its own separate meaning.

If we think about ordered pairs, we are quite sure that (1, 2) �= (2, 4),

say, for example, as points in the plane. So if a/b = (a, b), we would

have 1/2 �= 2/4, but those rational numbers are equal. What is the

idea we are trying to get at? After all, we seem perfectly happy with

the notation a/b. Why mess with it?

We are pretty sure now that the forward slash symbol in a/b

has more significance than just being a separator for the numerator
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and denominator. Consider a problem from elementary school:
1
2 + 1

3 = �? How do we find the answer?

1

2
+

1

3
=

3

6
+

2

6
=

5

6
.

Using some long-forgotten rules, we write 1
2 = 3

6 and 1
3 = 2

6 and

then follow a procedure for addition of fractions having the same

denominator. How in the world did we know to do that, and more to

the point, what does it mean to write 1/2 = 3/6?

The point here is that the symbol a/b means many things to us.

For sure, it at least represents any fraction of the form at/bt where t is

any nonzero integer. So how do we define the rational numbers? We

start with a set S of ordered pairs representing all possible numerators

and denominators, so we write

S = {(a, b) | a, b ∈ Z, b �= 0}.

Now to make the rational numbers, we want to identify many of these

pairs. You learned that a/b = c/d if and only if ad − bc = 0, so let

us say that two ordered pairs (a, b), (c, d) ∈ S are related, written

(a, b) ∼ (c, d), if and only if ad−bc = 0. This relation is quite special.

It satisfies the reflexive, symmetric, and transitive properties that we

first met when we defined the notion of congruence. In the context

of our new relation, those terms mean the following:

• Reflexive. (a, b) ∼ (a, b) for all (a, b) ∈ S. This is clear since

the rule says they are related if ab − ba = 0, which is true

in the integers.

• Symmetric. If (a, b), (c, d) ∈ S, then (a, b) ∼ (c, d) im-

plies that (c, d) ∼ (a, b). By our rule, (a, b) ∼ (c, d) im-

plies ad − bc = 0. For (c, d) ∼ (a, b), we would need that

cb−da = 0, but this is immediate from the given expression

and properties of the integers.

• Transitive. If (a, b), (c, d), (e, f) ∈ S, and (ab) ∼ (c, d), and

(c, d) ∼ (e, f), then (a, b) ∼ (e, f). To see this, we observe

that (a, b) ∼ (c, d) implies ad − bc = 0, and (c, d) ∼ (e, f)

implies that cf − ed = 0. Multiplying the first equality by f

and the second by b, we have adf−bcf = 0 = bcf−bed, and

hence by adding, adf − bed = d(af − be) = 0. Since d �= 0,
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we conclude that af − be = 0, which means (a, b) ∼ (e, f),

as required.

We recall that a relation that is reflexive, symmetric, and tran-

sitive is called an equivalence relation, and by the equivalence class

of an element (a, b), we mean the subset of S consisting of all ele-

ments that are related (equivalent) to (a, b). So the equivalence class

of (1, 2) (which we usually denote 1/2) is the set of all pairs (c, d)

which give the same fraction. It is this notion we are using when we

write 1/2 = 3/6 in order to solve our addition problem above. Indeed

the statement 1/2 = 3/6 is the statement that the subset of elements

of S equivalent to (1, 2) is the same as the subset of elements of S

equivalent to (3, 6).

So the bottom line is while we seem to have learned many new

definitions, they are just clarifying the concept of a fraction which

we have understood implicitly for a very long time. Before leaving

fractions for a new look at modular arithmetic, let’s give an alternate

characteristic of our equivalance relation which defines fractions.

It is clear that for any (a, b) ∈ S and t ∈ Z, t �= 0, that (a, b) ∼
(at, bt) since abt − bat = 0. So given an element (a, b) ∈ S, we

can let t = gcd(a, b) and write (a, b) = (a0t, b0t) where a0, b0 ∈ Z

and gcd(a0, b0) = 1, so (a, b) ∼ (a0, b0). In more familiar terms,

a/b = a0/b0 where a0/b0 has been reduced to lowest terms. Now it is

an easy exercise to show that given (a, b) ∈ S,

{(c, d) ∈ S | (c, d) ∼ (a, b)} = {(a0t, b0t) | t ∈ Z, t �= 0}.

We shall see that this alternate characterization is natural when we

define projective space in Chapter 6.

4.3. Modular Arithmetic

In the previous section we talked about an equivalence relation on the

set S = {(a, b) | a, b ∈ Z, b �= 0}, and using that equivalence relation,

we considered the set of equivalence classes, the rational numbers,

and algebraic operations on that set.

In this section we do something analogous. We define an equiva-

lence relation on the integers and then consider the set of equivalence
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classes and work to understand the algebraic structure they inherit.

Actually, for each positive integer n, we shall define an equivalence

relation called congruence modulo n, and we will see that the equiva-

lence relation partitions the integers into exactly n equivalence classes,

terms we shall make precise below.

We recall the definition of congruence from the previous chapter.

Let n be a positive integer, and let a, b be arbitrary integers. We

divide a and b by n via the division algorithm, so we write a = nq+ r

and b = nq′ + r′ with 0 ≤ r, r′ < n.

Definition 4.3. We say that a is congruent to b modulo n, written

a ≡ b (mod n) or a ≡ b(n) if and only if r = r′. Equivalently, a ≡ b

(mod n) if and only if n | (b − a), which is also equivalent to saying

that a = b+ kn for some integer k.

As interim notation, to distinguish clearly between equivalence

classes of integers and the integers which compose the equivalence

class, we shall write

[a]n = {k ∈ Z | k ≡ a (mod n)};
in words, [a]n is the set of integers congruent modulo n to the integer

a.

So for example,

[0]2 = {0,±2,±4,±6, . . . } (the even integers),

[1]2 = {±1,±3,±5, . . . } (the odd integers).

We note a couple of simple, but very useful properties concerning

the sets [a]n.

Proposition 4.4. Let a, n ∈ Z, and let n ≥ 1.

(1) [a]n = {k ∈ Z | k ≡ a (mod n)} = {a+ n� | � ∈ Z}.
(2) b ∈ [a]n if and only if [a]n = [b]n.

Remark 4.5. We see that the first statement justifies the example

above:

[0]2 = {0 + 2� | � ∈ Z} = {0,±2,±4,±6, . . . },
[1]2 = {1 + 2� | � ∈ Z} = {±1,±3,±5, . . . }.
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The second statement says that an equivalence class can be named

by any element in the class, so that

[0]2 = [−4]2 = [123456]2 and [1]2 = [−5]2 = [12345]2.

Proof. Both statements require us to show that two sets are equal.

To show that sets A = B, we typically show A ⊆ B and B ⊆ A. To

show A ⊆ B, it is enough to take an arbitrary element a ∈ A and

show that a ∈ B. Now that we have a plan, we begin.

For the first statement, we want to show that {k ∈ Z | k ≡ a

(mod n)} = {a+n� | � ∈ Z}. So first take an element k ≡ a (mod n).

By definition, n | (k−a) which means k−a = n� or k = a+n�, which

tells us that {k ∈ Z | k ≡ a (mod n)} ⊆ {a + n� | � ∈ Z}. Now let

b = a+n�. We see immediately that b ≡ a (mod n) since b− a = n�,

i.e., n | (b − a), so {a + n� | � ∈ Z} ⊆ {k ∈ Z | k ≡ a (mod n)}.
Having established both containments, we have equality of the two

sets.

For the second statement, first suppose that [a]n = [b]n. Note

that b ∈ [b]n since b ≡ b (mod n) (congruence is a reflexive relation),

so b ∈ [a]n = [b]n. To show the converse, suppose that b ∈ [a]n, so

b ≡ a (mod n). We need to show that [a]n = [b]n, so we begin by

showing [a]n ⊆ [b]n. To that end, let c ∈ [a]n; we show that c ∈ [b]n.

Since c ∈ [a]n, c ≡ a (mod n), but b ≡ a (mod n), so by transitivity,

c ≡ b (mod n), so c ∈ [b]n, thus [a]n ⊆ [b]n. Since the argument is

symmetric (that is, we could exchange a and b in all our statements),

we can conclude [b]n ⊆ [a]n, so we have [a]n = [b]n, as desired. �

For the rational numbers, the analog of the second statement is

precisely what allows us to say that 1/2 = 3/6, which we have found

useful in computations. Nonetheless, even though we know that

1/2 = 3/6 = (−2)/(−4) · · · ,

we typically settle on 1/2 as the preferred representative of the equiv-

alence class. We can do the same with congruence classes.

As we shall prove below, Proposition 4.4 also tells us that the set

of congruence classes modulo n form what is called a partition of Z.

The notion of a partition of a set is a very simple one. It is simply a

set of subsets so that every element of the original set is in precisely
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one subset. Said another way, it is a set of subsets whose union is the

whole set and any two subsets that are not equal are actually disjoint.

Perhaps this is still too abstract. Take a bowl and pour a bag of plain

and a bag of peanut M&M’s into the bowl, mix thoroughly, and pour

the contents onto a table. The set we shall partition is the set of

M&M’s on the table. What are some partitions of the set?

We could divide the set of M&M’s into piles by color. These

piles would be a partition. We could divide the M&M’s into piles

depending upon whether they were plain or peanut. These piles would

be a different partition. We could even have kids gather around the

table and grab as many M&M’s as they can until the pool was gone.

This too is a partition, though one in which it is more difficult to

describe to which subset a given M&M belongs.

Now let’s prove our claim: the set of congruence classes modulo

n forms a partition of Z—every integer belongs to one and only one

congruence class. This is easy to see.

Fix a positive integer n, and let a ∈ Z be arbitrary. By Propo-

sition 4.4, we trivially have that a ∈ [a]n, so every integer is in at

least one congruence class. Can the classes overlap? If c ∈ [a]n ∩ [b]n,

then by Proposition 4.4 [a]n = [c]n = [b]n, so they lie in exactly one

congruence class. Are there nice representatives for the classes? Ac-

tually, there is more than one set of nice representatives, but for now,

we settle on one very natural set.

Write a = nq+ r with 0 ≤ r < n by the division algorithm. Then

since a ≡ r (mod n), we have that [a]n = [r]n. So every element of

Z lies in [0]n ∪ [1]n ∪ · · · ∪ [n − 1]n. Moreover, given 0 ≤ r, r′ < n,

[r]n = [r′]n if and only if r ≡ r′ (mod n), but since 0 ≤ |r − r′| < n,

the only way to have n | (r − r′) is for r = r′, so those n congruence

classes are disjoint.

Definition 4.6. For a positive integer n, we let Zn = {[a]n | a ∈ Z};
that is, Zn is the set of congruence classes modulo n. So for each n,

we have a different partition Zn of Z.
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For example,

Z2 = {[0]2, [1]2},
Z5 = {[0]5, [1]5, [2]5, [3]5, [4]5}, and in general,

Zn = {[0]n, [1]n, . . . , [n− 1]n}.

Exercise. It is actually not difficult to show that there is a one-

to-one correspondence between partitions of a set and equivalence

relations on the set. While we have seen the example that the equiv-

alence relation of congruence modulo n gives rise to the partition

of the integers into congruence classes, consider the equivalence re-

lation associated to the partitions of M&M’s we gave above. Then

see if you can prove the general statement.

Now we want to translate arithmetic with congruences into alge-

braic operations on the congruence classes in Zn. In particular, we

are going to give the set Zn the structure of a ring. The ring oper-

ations on Zn will be analogous to arithmetic with fractions. Recall

that finding the sum 1/2+1/3 involves understanding the equivalence

classes represented by these fractions.

We define two binary operations on Zn in what should seem a

very natural manner:

[a]n + [b]n = [a+ b]n,

[a]n · [b]n = [ab]n.

Before declaring them to be binary operations on the set, we

have to check that the definition actually makes sense. After all, we

are defining the addition and multiplication of two sets, and while

symbolically the definition seems natural, there really is something

to check, and that is that our definition is well-defined . To see the

essence of the problem, we first do an example.

Example 4.7. Let n = 10, so Z10 = {[0]10, [1]10, . . . , [9]10}. Our

rules say things like [2]10 + [3]10 = [2+ 3]10 = [5]10, and [2]10 · [4]10 =

[2(4)]10 = [8]10, which seem fine. So too does [6]10 + [7]10 = [13]10 =

[3]10. But here’s the rub. These classes are sets, so the definition

we give can depend only on the set and not the representative of
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the set we choose. Concretely, we know that [4]10 = [1234]10 and

[7]10 = [−243]10, so to be well-defined it must be the case that [4]10+

[7]10 = [1234]10 + [−243]10. Our rules say [4]10 + [7]10 = [11]10 and

[1234]10+[−243]10 = [991]10, so it better be true that [11]10 = [991]10.

Well it is, but being well-defined means that this will always be the

case no matter how we choose our representatives.

To settle this issue, we take two classes each with different ele-

ments naming the class. Suppose [a]n = [a′]n and [b]n = [b′]n. We

need to show that

[a]n + [b]n = [a+ b]n = [a′ + b′]n = [a′]n + [b′]n

and, similarly,

[a]n · [b]n = [ab]n = [a′b′]n = [a′]n · [b′]n.

But we have already checked this via congruences in Proposition 3.21.

The assumption [a]n = [a′]n and [b]n = [b′]n says a ≡ a′ (mod n) and

b ≡ b′ (mod n), so by Proposition 3.21 we know that a+ b ≡ a′ + b′

(mod n) and ab ≡ a′b′ (mod n), which in turn tells us that [a+ b]n =

[a′ + b′]n and [ab]n = [a′b′]n.

Now that we have well-defined operations on the set Zn, we es-

tablish the following.

Proposition 4.8. The operations defined above make Zn into a com-

mutative ring with identity.

Proof. First we show that Zn is an abelian group under addition.

The identity is [0]n and the inverse of [a]n is [−a]n. The operation is

associative because it inherits this property from Z, that is,

([a]n + [b]n) + [c]n = [(a+ b)]n + [c]n = [(a+ b) + c]n

= [a+ (b+ c)]n = [a]n + [b+ c]n

= [a]n + ([b]n + [c]n),

where the key step [(a+ b) + c]n = [a+ (b+ c)]n uses associativity of

addition in Z, which is why we say the property is inherited from Z.

The properties of multiplication are easily checked: [1]n is the

multiplicative identity, and associativity and the distributive laws are
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inherited from the corresponding ones in Z, just as we have shown

above with associativity under addition. �

We want to investigate the multiplicative structure of Zn in a bit

more detail.

Definition 4.9. For a positive integer n, let

Un = {[a]n | gcd(a, n) = 1}.

Once again, we need to be a little careful to make sure our def-

inition makes sense. Let’s suppose that a ∈ Z and gcd(a, n) = 1. Is

it true if [a]n = [a′]n that gcd(a′, n) = 1 as well? Fortunately, the

answer is yes, and it is easy to see. If [a]n = [a′]n, then a = a′ + kn

for some integer k. We want to see that gcd(a, n) = 1 implies that

gcd(a′, n) = 1, so let d be any common divisor of a′ and n. Then

we know that d divides any combination of a′ and n. In particular

d | a′ + kn = a, so d is a common divisor of a and n, so must divide

the gcd(a, n) = 1, so d = ±1 which means gcd(a′, n) = 1, so there is

no ambiguity.

Proposition 4.10. For a positive integer n, Un is an abelian group

under multiplication.

Proof. You might think this should be trivial, but there are im-

portant properties to verify. First, while we know that Zn is closed

under multiplication, we need to verify that Un is as well; that is

if [a]n, [b]n ∈ Un, then so is [a]n[b]n = [ab]n. This boils down to

saying that if gcd(a, n) = 1 = gcd(b, n), then gcd(ab, n) = 1. If

gcd(a, n) = 1 = gcd(b, n), then by Bézout’s identity, there exist in-

tegers u, v, u′, v′ so that au + nv = 1 = bu′ + nv′. Multiplying them

together shows that ab(uu′)+n(bu′v+auv′+nvv′) = 1 which implies

ab and n are coprime, so multiplication is actually a binary operation

on Un. Now things get easier.

Given closure, the operation is associative since multiplication is

associative on Zn, and as a set Un ⊂ Zn. The identity is [1]n, so

we need only show that every element has an inverse; that is, given

an element [a]n ∈ Un, we need to show there is a [b]n ∈ Un with

[a]n[b]n = [1]n = [b]n[a]n.



86 4. A Second View of Modular Arithmetic: Zn and Un

We have already done the work via linear congruences. If [a]n ∈
Un, then gcd(a, n) = 1, so by Corollary 3.29, the congruence ax ≡ 1

(mod n) has a unique solution modulo n, say b. This means that

ab ≡ 1 (mod n). Translating this back to congruence classes, we

have

[1]n = [ab]n = [a]n[b]n = [b]n[a]n,

using that multiplication is commutative in Zn. �

As a prelude to RSA cryptography, we need to define a rather

well-known arithmetic function called the Euler totient function (φ)

and prove a simple result of Euler’s (which actually generalizes one

of Fermat’s—no, not that one).

Perhaps we should begin with the usual definition of the Euler’s

function. Let Z+ denote the positive integers. We define the function

φ : Z+ → Z+ by

φ(n) = #{k ∈ Z | 1 ≤ k ≤ n and gcd(k, n) = 1},
that is φ(n) is the number of integers between 1 and n which are

relatively prime to n.

One easily checks a few values: φ(1) = 1, φ(2) = 1, φ(3) = 2,

φ(4) = 2, φ(5) = 4, but it is somewhat nicer (and more useful) to

realize that the Euler function counts the size a of group.

Proposition 4.11. The Euler totient function is given by φ(n) =

#Un.

Proof. We have seen that Zn = {[a]n | a ∈ Z} = {[0]n, . . . ,
[n − 1]n}. For this proof it is more convenient to choose a slightly

different set of representatives for the classes in Zn, so we write

Zn = {[1]n, [2]n, . . . , [n]n} where we have written [n]n instead of [0]n.

Since Un = {[a]n ∈ Zn | gcd(a, n) = 1}, we see that

Un = {[k]n | 1 ≤ k ≤ n and gcd(k, n) = 1},
which gives φ(n) = #Un. �
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We are going to begin to lighten our notation just a bit. When

n is understood, we shall write Zn = {[0]n, . . . , [n − 1]n} as Zn =

{0, 1, . . . , n− 1}.
Example 4.12. A few examples of Zn and Un.

Z2 = {0, 1}, U2 = {1}, φ(2) = 1,

Z3 = {0, 1 2}, U3 = {1, 2}, φ(3) = 2,

Z4 = {0, 1, 2, 3}, U4 = {1, 3}, φ(4) = 2,

Z5 = {0, 1, 2, 3, 4}, U5 = {1, 2, 3, 4}, φ(5) = 4,

Z6 = {0, 1, 2, 3, 4, 5}, U6 = {1, 5}, φ(6) = 2,

Zp = {0, 1, . . . , (p− 1)}, Up = {1, . . . , (p− 1)}, φ(p) = p− 1 (p prime).

The case for p a prime is immediate from the observation that for

1 ≤ k < p, gcd(k, p) = 1 since p a prime means its only positive

divisors are 1 and p. �

Below we shall prove Fermat’s little theorem and Euler’s theo-

rem, and while they both have proofs whose tools lie wholly within

elementary number theory, we give a proof using some basic proper-

ties from groups, since it is this argument we shall generalize later

when talking about the group of points on an elliptic curve.

We begin with a leisurely stroll. Let G be a group, and let g ∈ G.

The axioms for a group guarantee the existence of an inverse, that is

an element h so that g ∗ h = h ∗ g = e. While the axioms don’t say

it, the inverse is unique, for if k is another (possibly different) inverse

(i.e., g ∗ k = k ∗ g = e), then

h = h ∗ e = h ∗ (g ∗ k) = (h ∗ g) ∗ k = e ∗ k = k,

showing they must be equal.

Denote the unique inverse of g by g−1; we now extend this nota-

tion. For k > 0, denote by gk the element g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
k times

, by g0 = e,

the identity, and for k < 0, let gk be the inverse of g|k|. With

this shorthand convention, gk satisfies the usual rules for exponents:

gkg� = gk+� and (gk)� = gk� for all integers k, �.

Now suppose that G is a finite group, and consider the elements

g, g2, g3, . . . , gr+1,
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where r = #G = |G| is the order (cardinality) of the group G. Since

there are r + 1 elements in the list, all of which are in G, and there

are only r distinct elements in G, two elements in the list must be

the same, that is

gi = gj for some 1 ≤ i < j ≤ r + 1.

Multiplying both sides by g−i, we see that gj−i = gig−i = g0 = e,

and note that 1 ≤ j−i ≤ r. We summarize this as a little proposition.

Proposition 4.13. Let G be a finite group. Then for any element

g ∈ G, there is a positive integer n ≤ |G| with gn = e.

Definition 4.14. We define the order of an element g, denoted |g|,
as the smallest positive integer m so that gm = e, if one exists. If no

such positive integer exists, we say g has infinite order. We have just

shown that in a finite group, every element has a finite order.

For example consider the group G = U9 which has order φ(9) = 6:

U9 = {1, 2, 4, 5, 7, 8}, with e = 1.

1
1
= 1, so |1| = 1,

2
1
= 2, 2

2
= 4, 2

3
= 8, 2

4
= 7, 2

5
= 5, 2

6
= 1, so |2| = 6,

4
1
= 4, 4

2
= 7, 4

3
= 1, so |4| = 3,

5
1
= 5, 5

2
= 7, 5

3
= 8, 5

4
= 4, 5

5
= 2, 5

6
= 1, so |5| = 6,

7
1
= 7, 7

2
= 4, 7

3
= 1, so |7| = 3,

8
1
= 8, 8

2
= 1, so |8| = 2.

An important theorem in group theory that we want to leverage

here but whose proof would take us a bit too far afield, is due to

Lagrange, a special case of which we state here.

Theorem 4.15 (Lagrange). Let G be a finite group, and let g ∈ G.

Then g|G| = e.

Above we had shown that there was an integer n ≤ |G| for which
gn = e, but this result says that n = |G| is a universal exponent for

every element in the group. So any element when raised to a power

equal to the order of the group is the identity of the group. We saw



4.3. Modular Arithmetic 89

this in our example above since the orders of all the elements divide

6, the order of U9. In fact, this later observation is a fact we can

prove.

Proposition 4.16. Let G be a group, g ∈ G, and suppose that for

some positive integer m, gm = e. Then |g| | m. In particular, in

a finite group, we have that |g| divides |G|; the order of an element

divides the order of the group.

Proof. Since there is a positive integer m with gm = e, we know

g has finite order, so let d = |g|. Then gd = gm = e and d is by

definition the smallest positive integer with that property. Use the

division algorithm and write m = dq + r with 0 ≤ r < d. Observe

that e = gm = (gd)qgr = gr, so if 0 < r < d, it would violate that d

is the order of g, thus r = 0 and we have d | m.

The second statement now follows since, by Lagrange’s theorem,

g|G| = e. �

Indeed the theorem above gives one statement of Euler’s theorem:

Theorem 4.17 (Euler’s theorem). Let a ∈ Z with gcd(a, n) = 1.

Then aφ(n) ≡ 1 (mod n).

Note that Euler’s theorem is simply the statement that if a ∈
Un, then a|Un| = 1, that is a special case of the general result for

finite groups. Since we have not proven the general result, we give a

separate proof of Euler’s theorem but make the point that this is a

good example of the power of abstraction.

Indeed Euler’s theorem is itself a generalization of Fermat’s little

theorem, since for a prime p, we know |Up| = p− 1.

Theorem 4.18 (Fermat’s little theorem). Let p be a prime and a

an integer with p � a; then ap−1 ≡ 1 (mod p). Equivalently, for any

integer a, we have ap ≡ a (mod p).

To prove Euler’s theorem, we need to produce two different but

related sets of representatives for Un. We start with
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Proposition 4.19. Suppose that Un = {b1, . . . , bφ(n)} and that a is

an integer with gcd(a, n) = 1. Then Un = {ab1, . . . , abφ(n)}. Equiv-

alently, for each i with 1 ≤ i ≤ φ(n), there is a unique j with

1 ≤ j ≤ φ(n) so that abi ≡ bj (mod n).

Before proving this, we give an example:

Example 4.20. U10 = {1, 3, 7, 9}. Let a = 13 which is clearly co-

prime to 10. The proposition says that U10 = {13, 39, 91, 117} =

{3, 9, 1, 7}. So we get the same classes, just in a different order.

Proof. First observe that each class abi ∈ Un. We could reprove this

with congruences, but we have already established that Un is a group

under multiplication, and so is closed under multiplication. Since

gcd(a, n) = 1, we have a ∈ Un, so abi = abi ∈ Un by closure.

Next we observe that all the elements are distinct. Again, we do

this using group theory.

Suppose that abi = abj , then abi = abj . Multiplying both sides

by the inverse of a (Un is a group!), we see that bi = bj , so all the

representatives are distinct (i.e., different congruence classes), and

since there are the correct number, they fill out all of Un. �

Theorem 4.21 (Euler’s theorem). Let a, n ∈ Z with n ≥ 1 and

gcd(a, n) = 1. Then aφ(n) ≡ 1 (mod n).

Proof. Write Un = {b1, . . . , bφ(n)}. Then as in the proposition, Un =

{ab1, . . . , abφ(n)}. Since these are the same elements (possibly in a

different order) and Un is abelian, their products are equal, that is

b1b2 · · · bφ(n) = ab1ab2 · · · abφ(n) = aφ(n)b1b2 · · · bφ(n).

Since Un is a group, the element b1b2 · · · bφ(n) has an inverse in Un.

Multiplying both sides by the inverse produces aφ(n) = 1 or, equiva-

lently, aφ(n) ≡ 1 (mod n). �

As an amusing corollary, we know that the congruence ax ≡ b

(mod n) has a unique solution mod n if and only if gcd(a, n) = 1.

Well, if it’s unique, what is it? Since gcd(a, n) = 1, we know aφ(n) ≡
1 (mod n), so multiplying both sides of the congruence by aφ(n)−1

yields x ≡ aφ(n)−1b (mod n). Of course computing this solution may
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take time if φ(n) is large, which leads us to consider fast modular

exponentiation.

Example 4.22. Let’s compute 5123 (mod 13). We consider Euler’s

(or Fermat’s little) theorem and realize that 512 ≡ 1 (mod 13), so

5123 = (512)10 · 53 ≡ 53 ≡ 8 (mod 13).

Example 4.23. Next observe that 341 = 11 · 31. We want to show

that 2341 ≡ 2 (mod 341). Comparing this to Fermat’s little theorem,

we might wonder whether 341 is prime since it seems to behave like

one when exponentiating with respect to the base 2. Indeed we know

that 341 is not prime, but this behavior earns it the name pseudoprime

to the base 2, an important notion in the realm of primality testing.

Since we fortuitously know the factorization of 341, we claim

that 2341 ≡ 2 (mod 341) if and only if 2341 ≡ 2 (mod 11) and 2341 ≡
2 (mod 31). One direction is obvious and always true: If a ≡ b

(mod n), then a ≡ b (mod d) for any d | n. But the converse depends
on the moduli 11 and 31 being coprime. Suppose that a ≡ b (mod 11)

and a ≡ b (mod 13). We see that 11 | (a − b) says that a − b = 11k

for some integer k. Since 31 | (a − b), we see 31 | 11k, and since

gcd(11, 31) = 1, we have that 31 | k, so that k = 31k′. Thus a− b =

11k = 11 · 31k′ = 341k′ or a ≡ b (mod 341).

Now we establish the simpler congruences. By Euler’s

(or Fermat’s little) theorem, we know that 210 ≡ 1 (mod 11) and

230 ≡ 1 (mod 31). Thus

2341 ≡ (210)34 · 21 ≡ 2 (mod 11)

and

2341 ≡ (230)11 · 211 ≡ 211 (mod 31).

To finish, we notice serendipitously that 25 = 32 ≡ 1 (mod 31) so

that 211 ≡ (25)2 · 21 ≡ 2 (mod 31).

Example 4.24. We do the last example again, but this time assum-

ing we know nothing about the factorization. Being able quickly to

perform modular exponentiation is critical to the implementation of

the RSA cryptosystem.
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Let’s discuss this in general. We want to find a341 (mod n) for

some a and n. Their values are not really too important to the general

plan. The key is to write the exponent in its base 2 expansion: 341 =

28 + 26 + 24 + 22 + 20, so that

a341 ≡ a2
8+26+24+22+20 ≡ a2

8

a2
6

a2
4

a2
2

a2
0

(mod n).

Now we observe that the terms a2
k

can be obtained by successive

squaring, that is

a2
k+1

= a2
k·2 = (a2

k

)2.

So we compute:

22
0 ≡ 2 (mod 341),

22
1 ≡ (21)2 ≡ 4 (mod 341),

22
2 ≡ (22

1

)2 ≡ 16 (mod 341),

22
3 ≡ (22

2

)2 ≡ 256 (mod 341),

22
4 ≡ (22

3

)2 ≡ 2562 ≡ 64 (mod 341),

22
5 ≡ (22

4

)2 ≡ 642 ≡ 4 (mod 341),

22
6 ≡ (22

5

)2 ≡ 42 ≡ 16 (mod 341),

22
7 ≡ (22

6

)2 ≡ 162 ≡ 256 (mod 341),

22
8 ≡ (22

7

)2 ≡ 2562 ≡ 64 (mod 341).

Thus

2341 ≡ 22
8

22
6

22
4

22
2

22
0 ≡ 64 · 16 · 64 · 16 · 2 ≡ 2 (mod 341).
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4.4. A Few More Comments on the Euler
Totient Function

By the Fundamental Theorem of Arithmetic (Theorem 3.15), we know

that every integer n > 1 factors uniquely as a product of primes, so

in number theory we are often interested in functions that respect

factorizations. That means that the ideal situation is one in which

we have a function f so that f(mn) = f(m)f(n) for any integers m,n;

for example, f(n) = nk for any integer k is such a function. It is easy

to show that the Euler totient function is not quite this nice, but it

still has many important properties (see the exercises below). One

of them is that for relatively prime inputs m,n, φ(mn) = φ(m)φ(n).

This becomes very important as we discuss RSA. At the heart of

RSA is a modulus n which is the product of two primes, n = pq. As

part of the encryption scheme, we must compute φ(n). If we know

the factorization, this becomes trivial, φ(n) = φ(pq) = φ(p)φ(q) =

(p− 1)(q − 1), but it will turn out that calculating the value of φ(n)

without knowing the factorization n = pq is as hard as factoring the

integer n.

To develop a few more properties of the Euler totient function, we

may take its definition as φ(n) = #Un, so we have seen φ(p) = p− 1

when p is a prime. Consider the exercises below.

Exercise. Let p be a prime. Determine the value of φ(pr) for any

positive integer r. Hint : It may be easier to count the number

of elements of a ∈ Zpr which are not relatively prime to pr and

use that to determine the value of the function. Of course be sure

to check your answer against a few examples you can compute by

hand.
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Exercise. It is easy to show that in general φ(mn) �= φ(m)φ(n) for

general m,n, but what is remarkable is that when gcd(m,n) = 1,

φ(mn) = φ(m)φ(n). The function φ is an example of a multiplica-

tive function in number theory. Perhaps more surprising is that this

is a direct consequence of the Chinese Remainder Theorem. Give

a proof that φ is multiplicative using the following idea. Suppose

that m,n ≥ 2 and gcd(m,n) = 1. Show that there is a bijection be-

tween the sets Umn and Um ×Un (ordered pairs (a, b) with a ∈ Um,

b ∈ Un). Note that Umn has cardinality φ(mn) and Um × Un has

cardinality φ(m) · φ(n). To establish the bijection, define a map

F : Umn → Um × Un by F ([a]mn) = ([a]m, [a]n). You need to show

this map is well-defined, one-to-one, and onto. Then deduce the

result.

Some of these words may be new to you, so here are some definitions.

• We have encountered the term “well-defined” before. In

this context it means that if [a]mn = [b]mn, then F ([a]) =

F ([b]).

• The map F is one-to-one (injective) if F ([a]) = F ([b])

implies [a]mn = [b]mn.

• The map F is onto (surjective) if given ([b]m, [c]n) ∈ Um×
Un, there exists [a]mn ∈ Umn so that F ([a]) = ([b], [c]).

• A map is bijective if it is one-to-one and onto.

• If f : S → T is a bijection, then S and T are said to have

the same cardinality (size), and the result you are to prove

is simply that when gcd(m,n) = 1, the size of Umn and

Um × Un is the same.

Putting together the two exercises we see that we can write down

an explicit formula for φ(n) for any n ≥ 2. Factor n = pe11 · · · perr into

powers of distinct primes. Because φ is multiplicative,

φ(n) = φ(pe11 ) · · ·φ(perr ), and by the first exercise we have φ(n) =

pe1−1
1 (p1 − 1) · · · per−1

r (pr − 1) = pe11 (1 − 1/p1) · · · perr (1 − 1/pr). A

fancy way to write this is

φ(n) = n
∏
p|n

(1− 1

p
),

where the product is over all primes p | n.
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4.5. An Application to Factoring

In Theorem 3.15, we gave a proof that every integer n > 1 can be

factored as a product of primes in an essentially unique way. On

the other hand, there is often a difference between what can be done

theoretically and how efficient it is to do practically. An excellent

example of this is the process of factoring an integer. As we have

alluded, the difficulty of factoring an integer—even an integer which

is the product of only two primes—is the basis for the security of

the public key cryptosystem known as RSA which we investigate in

the next chapter. So this seems a good time to take a first look at

factoring, first with a rather brute force mentality, and second with a

good deal more sophistication using some of the elementary number

theoretic results we have established so far.

Factoring is inherently a recursive process, so we will always be

content to start with a given n > 1 and write n = ab with 1 < a, b < n.

If this is not possible, then of course n is a prime. If n can be written

as n = ab with 1 < a, b < n, then one of the factors a or b must be

≤
√
n. So as the first method of factoring, we consider trial division.

4.5.1. Trial Division. A composite number n > 1 must have a

divisor whose value is ≤
√
n, so given an integer n > 1, we can try

dividing by 2, 3, 4, 5, 6, . . . , �
√
n�. If none of these divides n, we know

that n is prime. This is certainly perfectly reasonable in theory, but

in practice, it is a terrible method except for very small integers n.

For example, if n is an integer with approximately 100 decimal

digits and our computer can check 1 million trial divisions per second,

it could take as long as 3.2×1037 years to check all the divisors. If we

used a computer a million times faster (i.e., 1 trillion trial divisions per

second), it could take up to 3.2×1031 years. Given that the estimated

age of the universe is approximately 13.5 billion years (1.35 × 1010)

we are talking about a process whose length would be the cube of the

age of the universe. Most would consider this less than optimal.

But how else can we prove that a number is composite, without

exhibiting a nontrivial divisor? It turns out that factoring is quite an

art in which certain types of integers are easier to factor than others.

Below we look at one method that is effective on a certain class of
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integers, a method which will be greatly generalized once we have

some knowledge of elliptic curves under our belts.

Perhaps the first thing one should know before attempting to

factor an integer n is that n is composite, i.e., it is not a prime. For-

tunately the task of determining whether a number is prime is much

simpler, meaning there is a deterministic polynomial time algorithm

that can answer whether an integer is prime. The subject of primality

testing is one worth its own set of chapters, but time constrains us to

assume that our given integer is composite (such as an RSA modulus

which is the product of two distinct primes) and go from there.

4.5.2. Pollard’s p − 1 Method. Since the ability to choose an in-

teger that is hard to factor is the basis for the security of RSA,

we should think of factoring as an adversarial game, one side try-

ing to pick composite integers difficult to factor and the other side

trying to classify those integers that are easy to factor. What can

that possibly mean? One simple observation is that while the size

of an integer can influence the degree of difficulty in factoring it,

there are exceptions. Nobody would have much difficulty in factor-

ing 100000000000000000000. And while a complete factorization of

n = 1234567890123456 might be challenging, it takes little effort to

infer that it factors as n = 26 · 19290123283179, that is, even num-

bers make a poor choice if you are challenging someone to factor your

integer. Similarly, an integer divisible by mostly small primes would

also be easy to factor.

The method of Pollard, his p−1 method, is generally effective on

those integers n which possess a prime divisor p, so that p−1 is itself

the product of small primes. You probably would never have thought

to consider a class of integers defined by that property, but it gives

you a sense of how complicated this adversarial game of factoring

really is.

Of course if your integer does not have that property, the algo-

rithm we describe will run a very long time and reveal nothing. This

is part of why factoring is still as much an art as science. So we shall

assume our n has such a prime divisor p, though it will take a few

moments for us see where this assumption can be used.
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Even if we make this assumption, how does it help? After all, we

don’t know p. Let’s keep our eye on the fact that what we are after

is a nontrivial divisor of n, that is, we want to write n = ab with

1 < a, b < n. One observation is that if you have such a factorization,

then in particular, you have found an integer a for which 1 < a =

gcd(a, n) < n, so finding such an integer a with 1 < gcd(a, n) < n

is equivalent to finding nontrivial divisor of n. Randomly guessing

values for a seems pretty much the same as trial division, so we need

to leverage things in our favor, and here we must (eventually) use our

assumption about the structure of the integer n. Still, we can take a

few more steps without the assumption.

So to begin, we choose an integer 1 < a < n at random. If 1 <

gcd(a, n) < n, we were very lucky and have a nontrivial factorization.

If not, then gcd(a, n) = 1. Now what?

If p is a prime with p | n (remember we are assuming n is compos-

ite), then since gcd(a, n) = 1 we know p � a, so by Fermat’s little the-

orem or Euler’s theorem (Theorems 4.18 and 4.21, respectively), we

have that ap−1 ≡ 1 (mod p). Said another way, p | (ap−1−1), so since

p | n, we have p | gcd(ap−1 − 1, n); in particular gcd(ap−1 − 1, n) > 1.

Great, but we still don’t know p. True, but if M is any integer so that

(p − 1) | M , we would also have aM = (ap−1)M/(p−1) ≡ 1 (mod p),

so that p | gcd(aM − 1, n). So what is the punch line?

We hope there is a prime p | n so that p − 1 is the product of

small primes to small powers. Choose a bound B and compute (a

table of) prime powers less than or equal to B:

2e2 ≤ B, 3e3 ≤ B, 5e5 ≤ B, . . . , perr ≤ B.

For example with B = 11, we would have computed 23, 32, 51, 71, 111.

Put M = 2e23e3 · · · perr , and compute gcd(aM − 1, n). If p − 1 is

the product of small primes to small powers, then p − 1 will divide

such an M for B large enough, forcing gcd(aM − 1, n) to be divisible

by p. So the key to this method is to generate M and to compute

gcd(aM − 1, n).

At first blush, this looks like it might be computationally intense,

but it is not. We know that if a ≡ b (mod n), then gcd(a, n) =

gcd(b, n), so we need not compute aM −1 exactly; we simply compute
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it modulo n, for which we already know of fast methods (modular

exponentiation) by expanding the exponent M in binary and then

performing successive squarings.

The General Pollard Algorithm. Given an odd, composite num-

ber n and an initial bound B, proceed with the following.

(1) Find primes and prime powers pai
i ≤ B, i = 1, 2, . . . , r. This

can be done via known tables of primes, sieving, and other

fast methods.

(2) Choose an integer 1 < a < n at random. If the gcd(a, n) >

1, we have found a nontrivial factor; otherwise, gcd(a, n) = 1

and Euler’s theorem applies.

(3) For M = pa1
1 pa2

2 · · · par
r , compute aM − 1 (mod n).

(4) Test d = gcd(aM − 1, n). If 1 < d < n, we have succeeded;

otherwise, this iteration has failed.

After a couple of examples, we give options for how to proceed in the

event of a failure.

Example 4.25. Let n = 246082373. Choose a = 2. Since n is

odd, we know that gcd(a, n) = 1. Choose an initial bound B = 8.

Then M = 23 · 3 · 5 · 7. We compute gcd(aM − 1, n) = 1 (using

Euclid’s algorithm). We have failed to find a nontrivial divisor, so

we increase B to 10. Now M = 2332 · 5 · 7 = 2520. We find that

gcd(aM − 1, n) = 2521, a prime! That is, aM = ap−1 ≡ 1 (mod p)

(by Fermat) and so p = 2521 divides both n and aM − 1. Using this

divisor, we factor n = 2521 · 97613, both of which are primes.

Example 4.26. Let’s take our earlier example from above, n =

1234567890123456. We first peel off any powers of 2, leaving us with

n = 26 · 19290123283179. Again we can choose a = 2 and set a

modest bound of B = 8, so M = 2232 · 5 · 7 = 2520 as above. We

compute gcd(aM − 1, 19290123283179) = 147 = 3 · 72, so we are left

to factor 19290123283179/147 = 131225328457. We know without

trying that gcd(aM − 1, 131225328457) = 1, so we need to increase

B, but by how much? That is the game: when to keep going and

when to give up? Indeed for B ≤ 112, the gcd will equal 1. Fi-
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nally, for B = 113 and M = 26 · 34 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 ·
31 ·37 ·41 ·43 ·47 ·53 ·59 ·61 ·67 ·71 ·73 ·79 ·83 ·89 ·97 ·101 ·103 ·107 ·109·
113 = 955888052326228459513511038256280353796626534577600,

we find gcd(2M − 1, 131225328457) = 435503 a prime, and

131225328457/435503 = 301319, a prime as well, which finally gives

n = 1234567890123456 = 26 · 3 · 72 · 301319 · 435503.

The key here (which we cannot know beforehand) is that the

prime p = 435503 has the property that p − 1 = 2 · 41 · 47 · 113 (the

product of relatively small primes and prime powers), but which still

pushed the bound B to 113. Of course that is better than the other

prime p = 301319 for which p − 1 = 2 · 150659 which would have

pushed B to 150659(!).

Finally, we give an example where we cannot fix things by in-

creasing the bound.

Example 4.27. n = 2047 = 211−1. We choose a = 2 and B = 10, so

M = 2332 ·5 ·7 = 2520, and we find gcd(aM −1, n) = 1, so we increase

B to 11. Now M = 2332 ·5·7·11, and we find gcd(aM−1, n) = 2047 =

n, and increasing B can’t help. As we increase B, it will always be

the case that M is divisible by 11, so write M = 11k. Now we observe

that gcd(211k−1, 211−1) = gcd(2M −1, n) = n for any k by using the

polynomial identity xk − 1 = (x− 1)(xk−1 + xk−2 + · · ·+ x+ 1), and

substituting x = 211. We see 211k−1 = (211−1)(211(k−1)+· · ·+1) ≡ 0

(mod 211 − 1), so our alternative is now to change the choice of a to,

say, a = 3. This type of failure occurs infrequently. Indeed, if n is

divisible by at least two odd primes, the probability that a randomly

chosen value for a will fail is less than one-half; see [CP05].

In summary, Pollard’s p−1 test works if there is a prime p dividing

our composite number n so that p− 1 is the product of small primes

to small powers, and it depends on the Fermat’s little theorem, a

special case of Lagrange’s theorem, which in this case said that for

any element a ∈ Up, a
|Up| = 1 in Up. Our eventual goal is to replace

Up with the group of points of an elliptic curve which will afford us

much greater flexibility in attacking the problem of factorization.



Chapter 5

Public-Key
Cryptography
and RSA

“We stand today on the brink of a revolution in cryptography” is

the opening line to a seminal paper in cryptography [DH76] written

by Whitfield Diffie and Martin Hellman. The genesis of public-key

cryptography is generally attributed to Diffie, Hellman, and Ralph

Merkle [Mer82], and the first practical method of implementation of

a public-key cryptosystem is credited to Ronald Rivest, Adi Shamir,

and Leonard Adleman [RSA78].1 And while that line was written

40 years ago, it remains timely today. It seems each day brings us

to a new brink in terms of the need for ever higher levels of digital

security and secure communication. One interesting reality is that

perfect security is possible with the use of so-called one-time pads ;

unfortunately, their use is simply impractical in the context and scale

with which we must now communicate. While cryptography has a

long and rich history well worth exploring, we shall restrict ourselves

to this more recent era ushered in by Diffie, Hellman, et al.

1The exact history is more complicated with some of these notions originating in
earlier research by British cryptographers that was only declassified in 1997.
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5.1. A Brief Overview of Cryptographic Systems

For better or worse, everywhere we go today, we are often in search

of WiFi hotspots. A large segment of the population needs to check

everything, seemingly all the time. Perhaps that’s a bit hyperbolic,

but do you recall how easy it was to get a seat in a coffee shop before

WiFi was ubiquitous?

Perhaps we seem a bit off track. But as we sit in the coffee shop

with our phone, tablet, or laptop, many or most of us simply connect

to the local wireless network and go about our business. We are pre-

occupied with the data that moves back and forth across that network,

but not so much about how that actually takes place. Perhaps you

are in the midst of a delicate online chat or are writing a sensitive

letter to someone. How would you feel if every word you typed was

said aloud over a public address system? It might give you pause.

But of course the reality is that is exactly what’s happening, just

in a way that is not easily perceived by those in the room—at least

those listening just with their ears. But your electronic device is

very happily broadcasting everything you type across the airways to

any willing receiver, in particular to that wireless router in the coffee

shop, but to everyone else as well. You are effectively the radio tower,

and anyone with a properly tuned radio can listen to what you are

broadcasting.

Now maybe what you are doing on your device is checking your

credit card account or making an online purchase, and you are hap-

pily entering your credit card number, passwords, PINs, and so on.

Remember, you are the radio tower and any interested party can lis-

ten in with very little trouble. Now it is not our intention here to

proselytize the concept of internet security, but issues concerning the

lack of it certainly do pop up in the news with alarming frequency.

So what’s the point? We tend to think of cryptography as the stuff

of spies and military communication, and of course in part it is, but

its use has become as ubiquitous as the WiFi hotspot. It affects our

daily lives and will continue to be an essential part of a modern world,

so it seems a topic well worth understanding.
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As a start, let’s consider a simplified version of how cryptography

is applied to internet transactions. There you are sipping that latte,

and staring at a page on Amazon. No, not what you were looking

for; search again. Still not right. Finally you have found what you

want. Has your web browsing been secure? No, but then it did not

really need to be unless you were concerned about others knowing

your browsing habits. But now it is time to order the item, and your

vendor asks if you would like to sign on to their secure server. You

click the appropriate button without thinking, almost as easily as the

“agree” button on all those end user licensing agreements (EULAs)

you see when installing a new app on your phone or laptop. What

happens when you click the option to do a secure sign on? Well, it’s

secure, right? And that means what exactly? Well, it’s encrypted so

you can enter your credit card information safely. Let’s face it—what

happens is magic.2 Just how does Amazon know who you are? More

to the point, how do you know you are really talking to Amazon—

and how does it set up this encrypted tunnel through which you are

going to conduct your secure transaction? There are more details

than we really want or need at this point, so let’s take a light pass

at understanding some of the pieces of what is known as Transport

Layer Security (TLS).

How is this encrypted tunnel going to be established between

the server (Amazon) and the client (your web browser) when nei-

ther of you knows each other? And what is an encrypted tunnel?

The first fact to acknowledge is while public-key cryptography is an

indispensable piece of this complicated process of secure internet com-

munication, its role is actually quite small in the sense that the bulk

of information which is encrypted and transferred over the internet

is encrypted using a secret-key cryptographic procedure, and not a

public-key cryptographic system. In current use in the United States

(as well as to a large extent internationally) is the algorithm Rijn-

dael, chosen in 2002 as the algorithm to be used to implement the

Advanced Encryption Standard (AES) by the National Institute of

Standards and Technology and approved by the U.S. government for

2Arthur C. Clarke: “Any sufficiently advanced technology is indistinguishable
from magic.”
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official use in commerce. Algorithms such as Rijndael are symmetric-

key algorithms, meaning that the same key is used by sender and

recipient to encrypt and decrypt data.

The first major obstacle which presents itself in using any secret-

key cryptosystem is key distribution. In the past, when the number

of people who needed to communicate securely was small and, in par-

ticular, when they were known to each other, conveying/exchanging

keys was a manageable task. But now Amazon must exchange keys

with every single patron who wants to place an order, and whether

you have done business before with Amazon, each session gets a new

key for you and Amazon to share for this transaction.

So when your web browser (the client) knocks on Amazon’s door

(the server), and asks to transact business, the first question the client

asks is are you really who you claim to be (and server’s credentials are

presented to and verified by the client). Then the question is what

kind of secret-key system would your client like to use? The server

offers a number of options. Your web browser replies, and at this

point a secret key is created jointly by both client and server. The

details of how this key exchange (key creation) is accomplished will be

covered in the next chapter when we have a bit more background, but

this is one large part of the use of public-key cryptography as outlined

by Diffie and Hellman. Once both the server and client have agreed

on a key and a secret-key encryption method, secure communication

between the client and server begins.

To give a brief introduction to public-key cryptography, we re-

turn to the problems that Diffie, Hellman, and Merkle sought to

solve: how do we establish private communication between parties

previously unknown to each other (which we have discussed in broad

strokes above), and how do we establish the authenticity and origin

of a digital document. In this chapter, we shall focus on RSA as an

implementation of public-key cryptography since the algorithm relies

only on the small bit of modular arithmetic we have already estab-

lished. We shall leave the details of the Diffie–Hellman key exchange

to the next chapter when we have discussed the notion of primitive

roots and discrete logarithms.
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Let’s set a bit of notation. We let P denote a plaintext (i.e., an

unencrypted) message, let C denote the encrypted ciphertext, let E

be an encryption procedure, and let D be the decryption procedure

paired with E.

Any standard cryptographic system embodies the following prop-

erties:

• For any plaintext message P , P = D(E(P )), that is, if you

encrypt the message P and then decrypt it, you return to

the original message.

• Ideally, both C = E(P ) and P = D(C) are very fast to

compute, and of course P should be hard to derive from C.

For a public-key cryptosystem, we have some additional require-

ments:

• A significant portion of the “public” part is that revealing

E does not reveal an easy way to deduce D, meaning both

that only the owner of D can decrypt messages encrypted

by her procedure E, and that only the owner has an efficient

way of producing D, given E. So this is very different than

the symmetric-key system we discussed in establishing an

encrypted tunnel for web transactions; here the encryption

key is made public, and it is presumed that the (different)

decryption key is very hard to deduce.

• The other feature, which is essential for authentication of

both the message and sender, is that for every message M ,

E(D(M)) = M ; that is, if you first apply the decryption

procedure to a message and then the encryption procedure,

you return to the original message. Combined with the prop-

erties of E and D under a general cryptosystem, we see that

E and D are (mathematically) two-sided inverse functions.

In what follows we present successively more honest represen-

tations of how any public-key cryptosystem (PKCS)—in particular

RSA—is used. We start with overly simplified models to illustrate

the essential features of a PKCS.
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As is standard in the literature concerning secure communication,

our two players are always Alice and Bob. Each individual generates

a pair of encryption and decryption algorithms, EA, DA, EB, DB .

Each “publishes” their encryption algorithms in a publicly accessible

repository. Alice wants to send an encrypted message to Bob. She

generates her plaintext message PA, encrypts it with Bob’s public

encryption algorithm EB, and sends EB(PA) to Bob over whatever

insecure channel she likes. Bob receives the message and extracts

PA = DB(EB(PA)) using his decryption procedure DB. So this is

just like a secret-key cryptosystem, except for the new ability to send

the message to anyone with a published encryption key. No prior

contact is required.

The issue of authentication is another critical issue in an age when

banking and legal transactions must take place over the internet. It is

here that we see how easily a PKCS facilitates the signing of electronic

documents. Once again, we first take a simplistic approach. Alice

wishes to send a message to Bob, which Bob can then prove to a

third party that the message is indeed from Alice and also that the

message has not been altered.

Alice generates her message PA and (effectively) signs it electron-

ically by creating SA = DA(PA), that is, she uses her private decryp-

tion procedure and applies it to her plaintext message. She then sends

this signed packet to Bob, as EB(SA), using Bob’s publicly available

encryption algorithm. Bob receives the message from someone whom

he believes is Alice and recovers SA = DB(EB(SA)) by applying his

private decryption algorithm to it. Now Bob uses Alice’s public en-

cryption algorithm EA to recover PA = EA(SA) = EA(DA(PA)). So

at this point, Bob has the message in plaintext that Alice intended

for him to have. Bob can now hand PA and SA to a judge who verifies

the message is from Alice since only Alice’s public EA can undo the

signed document SA = DA(PA). The judge is also confident that the

message PA has not been tampered with, since to substitute a new

message P ′
A for PA, the forger would have to produce DA(P

′
A), which

he cannot. Of course this points out how crucial it is to keep the

decryption procedure DA private since having DA allows anyone to

forge documents appearing to come from Alice.
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In theory, the procedure above works perfectly fine for authenti-

cation purposes. In reality, the process of signing an entire document

by using public-key decryption procedure has certain practical draw-

backs. While there are issues concerning the amount of computation

time and memory a PKCS requires, perhaps a simpler constraint

comes from the fact that, in general, public-key cryptosystems are

block ciphers, meaning that in order to encrypt a large document, the

document must be broken into blocks and each block encrypted suc-

cessively. So a signature of a long document could consist of perhaps

thousands of signed pieces each of which would have to be verified.

Instead, what is typically done is for Alice to take her message and

pass it through a so-called hash function (which we shall discuss more

in depth below), but for now suffice it to say that two of the properties

of a hash function are that they take documents of arbitrary size and

reduce them to a string of characters of a short, fixed length, and

that changing even a single character of the original long document

produces a radically different hash value. So to attach a signature of

her document (which will be verified), Alice first computes its hash:

HA = hash(PA), to serve as a digital fingerprint. She then signs the

hash as she did before with the message SA = DA(HA), sending both

the plaintext message PA and signature SA to Bob. Bob then verifies

the authenticity of PA by taking the publicly available hash function,

forming a hash of his received copy of PA, and then comparing it to

EA(SA) = EA(DA(HA)) = HA.

To maintain the thread of our discussion, we leave hash func-

tions temporarily and return to public-key cryptosystems and their

implementation by RSA.

5.2. RSA

One of the most important questions about any cryptographic system

regards its inherent security. How hard is it to break? The security

of every public-key cryptosystem depends upon a task that is easy to

do if one has privileged information (a trap door) but is difficult to

do otherwise. For RSA, the easy task is finding two large primes and

multiplying them together; the hard task is factoring their product.

Slightly more to the point, RSA has as its basis the following idea.
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Take two large primes p �= q and form n = pq. What is φ(n), where φ

is the Euler totient function from the previous chapter? If we know

p and q, the answer is trivial: φ(n) = φ(p)φ(q) = (p− 1)(q − 1). On

the other hand, if we do not know how to factor n, this is very hard.

Indeed, we shall show that being able to compute φ(n) is equivalent

to knowing how to factor n.

Before continuing, it should come as no surprise that the appear-

ance of the RSA algorithm was the impetus for a huge amount of

research into the problems of how to compute very large primes (pri-

mality testing) and how to factor integers efficiently. So, in particular,

if one had a fast way to factor integers, one could easily defeat RSA.

While we have chosen in this book to talk more about cryptography,

which, by definition, is the study of mathematical solutions to privacy

and authentication problems, it is only one half of the subject known

as cryptology; the other half of cryptology is cryptanalysis, the art of

breaking cryptographic systems. This is an equally fascinating area

to explore, but we shall discuss only general themes that characterize

it.

5.2.1. Implementation of RSA. Let us now describe precisely

how to implement RSA. To be somewhat more accurate, we shall

explain how to implement what some would call textbook RSA, mean-

ing that RSA is not really deployed as indicated below for security

reasons. We shall say a bit more about this in the section on security

of RSA, but for now the textbook implementation fits nicely with the

mathematical concepts we have developed so far.

As above, choose two large distinct primes p and q, form their

product n = pq, and compute φ(n) = (p− 1)(q− 1). The integer n is

referred to as the RSA modulus. Assume that your plaintext message

P has been converted to an integer between 0 and n − 1. This can

be done in many ways, starting perhaps first with some translation of

your natural character set into integers, as we primitively did to use

the Caesar cipher. Of course, the complication of accurately rendering

messages with many special characters and in different languages is

now handled by Unicode character encodings (such as the one most

prevalent on the web, utf-8), but we sweep these complications under

the rug, since they are not our main focus. We assume the message
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we wish to encrypt has been converted to an integer P between 0 and

n− 1.

Next, choose (more or less at random) a positive integer e with

gcd(e, φ(n)) = 1. This turns out to be quite fast since one can use

Euclid’s algorithm to test whether a randomly chosen integer is rel-

atively prime to φ(n). If not, choose another and test again. For

example, any prime number not dividing φ(n) = (p − 1)(q − 1) will

do. There are some practical considerations that slightly constrain

the choice of e, but we shall say more about them in the section on

the security of RSA. Once the number e is chosen, we know from

Proposition 3.25 that there is a unique d (mod φ(n)) so that ed ≡ 1

(mod φ(n)); moreover, it is Euclid’s algorithm (§3.3) which finds this

value quickly.

So let’s summarize what parameters we have so far.

• We have chosen primes p �= q, and we set n = pq.

• We have computed φ(n) = φ(p)φ(q) = (p− 1)(q − 1).

• We have chosen an integer e so that gcd(e, φ(n)) = 1.

• We have used Euclid’s algorithm to find an integer d with

ed ≡ 1 (mod φ(n)).

The RSA algorithm is given quite simply by the following.

• Encryption: C = E(P ) ≡ P e (mod n) (plaintext to cipher-

text)

• Decryption: P = D(C) ≡ Cd (mod n) (ciphertext to plain-

text)

That is, given a plaintext message P (represented as an integer

0 ≤ P < n), we compute the ciphertext message C by raising P to

the eth power and reducing modulo n. The process of exponentiation

is made efficient via the process of fast modular exponentiation intro-

duced in Example 4.24. The process for decryption is to exponentiate

C and reduce modulo n.

Example 5.1. Let’s use a 27-letter alphabet with A ←→ 0, B ←→ 1,

. . . , Z ←→ 25, space ←→ 26. We shall convert between alphabet and

numeric plaintext messages using a common scheme: encode as a
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base 27 number with a certain block size, in our case 5. We do this as

follows: Suppose we want to convert the message “Groups are fun”.

First we break up our plaintext message into blocks of length 5,

padding the last block if necessary: “Group” “s�are” “�funX”. Note

we will not distinguish between upper and lower case, but this would

easily be done by expanding the size of our alphabet.

“Group”
→06, 17, 14, 20, 15; “s�are”
→18, 26, 00, 17, 04; “�funX”

→ 26, 05, 20, 13, 23, where the numbers represent the base 27 digits.

We now encode these as base 27 numbers:

Group 
→ 06, 17, 14, 20, 15


→ 274(06) + 273(17) + 272(14) + 271(20) + 270(15)

= 3534018,

s�are 
→ 18, 26, 00, 17, 04


→ 274(18) + 273(26) + 272(00) + 271(17) + 270(15)

= 10078170,

�funX 
→ 26, 05, 20, 13, 23


→ 274(26) + 273(05) + 272(20) + 271(13) + 270(23)

= 13930835.

To proceed, we note that all the plaintext messages P will satisfy

0 ≤ P < 275 = 14, 348, 907, so when choosing primes p, q for our RSA

modulus n = pq, we must make sure n ≥ 275.
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Exercise. Suppose we choose primes p and q, so that n =

pq = 59753237. With the knowledge of those primes, we com-

pute φ(n) = (p − 1)(q − 1) = 59737740 and choose the common

encryption exponent e = 216 + 1 = 65537 (the last known Fermat

prime).

(1) Find the primes p and q. (This is not necessary to break

the code, but it reinforces that knowing φ(n) is equivalent

to factoring n. See the section on security of RSA for a

hint.)

(2) Find the decryption exponent.

(3) Using the base 27 encoding scheme as above, decrypt the

message consisting of two blocks of numerical ciphertext,

i.e., given as C = P e (mod n): 10881312 41465338.

5.2.2. Verifying the Algorithm. We need only verify that for

0 ≤ M < n, we have Med ≡ M (mod n).

This will tell both that D(E(P )) = P and C = E(D(C)) for all plain-

text messages P and ciphertext messages C. With some easy excep-

tional cases to handle, the key to understanding why RSA works is Eu-

ler’s theorem (Theorem 4.21). The condition that ed ≡ 1 (mod φ(n))

is equivalent to saying that ed = 1 + kφ(n) for some integer k. Note

that since n is the product of two primes, the only possibility for

gcd(M,n) is 1, p, q, or n = pq, where the last is precluded since we

have assumed M < n. The cases where the gcd is p or q are com-

pletely analogous, so we have two cases to consider.

Case 1: gcd(M,n) = 1. By Euler’s theorem, Mφ(n) ≡ 1 (mod n),

so

Med ≡ M1+kφ(n) = MMφ(n)k ≡ M (mod n).

Case 2: gcd(M,n) > 1. Then from our comments above we may

assume that gcd(M,n) = p. Since p and q are relatively

prime, it is easy to see that Med ≡ M (mod n) if and only if

Med ≡ M (mod p) and Med ≡ M (mod q), so in particular

we need only check these later conditions.
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Since p | M , we have Med ≡ 0 ≡ M (mod p). Now

gcd(M,n) = p and q a prime, q �= p means that gcd(M, q) =

1, so M (q−1) ≡ 1 (mod q) from Fermat’s little theorem

(Theorem 4.18), or alternatively Euler’s theorem (Theo-

rem 4.21). Thus we have

Med ≡ M1M (q−1)(p−1)k ≡ M(M (q−1))k(p−1) ≡ M (mod q).

So we have established that Med ≡ M (mod p) and Med ≡
M (mod q), which implies Med ≡ M (mod n) as required.

Exercise. Compute the probability that a plaintext message M is

not prime to n = pq. If we wanted to ensure that our messages were

always relatively prime to n, what could be done?

5.2.3. Security of RSA. Now that we have verified that RSA will

function as a public-key cryptosystem, we consider the security of

RSA. As we said earlier, public-key cryptosystems depend upon prob-

lems which are easy to do if given privileged information but are be-

lieved to be hard otherwise. For RSA, the task believed to be hard is

factoring large integers (hundreds of digits), and so far it has proven

to be a hard problem, but it is not provably a hard problem. So re-

search will always continue on new methods for how to factor integers

or more generally break RSA. As we first mentioned in the section

where we talked about the implementation of RSA, in this section, we

first talk about the security of textbook RSA, leaving a more technical

discussion to the end of this chapter.

In an RSA public-key setup, both integers n and e are a matter

of public record; in the general description of a PKCS, this is making

the encryption procedure E public. Recall that doing so is precisely

what is needed for someone to send you an encrypted message without

actually having met you.

How can one defeat RSA? That is, given that you know e and

n, if you intercept a piece of ciphertext C, how can you recover the

plaintext P which which was used to create the ciphertext C ≡ P e

(mod n)? One way would be to recover the decryption exponent d

(satisfying ed ≡ 1 (mod φ(n))), and the other way is to extract eth

roots modulo n.
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It is generally believed that extracting eth roots modulo n is

approximately as difficult as (and often dependent upon) factoring n,

so we shall make only a few comments about this approach. First, the

belief that extracting eth roots is as hard as factoring does not mean

that it is, and efforts continue on precisely this problem independent

of efforts to factor large integers. See [JNT07] for some recent work.

On the other hand, one cannot be too cavalier about the choice

of e. When we set up RSA, we said you could chose e (more or less at

random) to be any integer relatively prime to φ(n) = (p− 1)(q − 1).

Certainly, e = 1 would be a poor choice, since then C = P . The

value e = 2 is precluded since φ(n) is even. But what about e = 3,

presuming it is relatively prime to φ(n)? Seems reasonable. We note

that if your exponent e (which is public) is very small and n is large

compared to your plaintext P , one could simply trying taking eth

roots in the real numbers to attempt to recover the plaintext. More

precisely, if P e < n, then taking “real” eth roots will recover P .

A final remark is that an oft-chosen exponent is e = 65537 =

22
4

+ 1, the last known Fermat prime, if it doesn’t divide p − 1 or

q − 1. And if it does, you could choose new p and q; as it turns

out, finding large primes is an “easy” problem, meaning there is a

polynomial time deterministic algorithm to verify if a given integer

is a prime, but more on that later. Let’s see why that value of e is

popular; remember it is public, so popular is alright.

We first examine the objection above. Let’s say n is large, n =

10400, which is a four hundred digit number, the product of two large

primes. When is P 65537 < 10400? Well, when P < 10400/65537 ≈ 1.01,

and since plaintext is encoded as integers, most of our messages will

escape discovery by taking real eth roots. So what else is nice? The

fact that e = 65537 = 22
4

+1 = 216 +1 means that computing P e by

fast modular exponentiation is really fast: compute

P, P 2 = (P 20)2, P 22 = (P 21)2, P 23 = (P 22)2,

P 24 = (P 23)2, . . . , P 215 = (P 214)2, P 216 = (P 215)2,

and P e = P · P 216 , requiring only 17 multiplications!

The other attack on RSA is to deduce d, satisfying ed ≡ 1

(mod φ(n)). For that you need to know the value of φ(n), and we
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now show that knowledge of φ(n) yields knowledge of p and q, so the

difficulty of deducing φ(n) is equivalent to the difficulty of factoring n.

We begin with the simple observation that

φ(n) = (p− 1)(q − 1) = pq − (p+ q) + 1 = n− (p+ q) + 1,

so knowing n and φ(n) tells us the value of n−φ(n)+1 = p+ q. Also

(assuming without loss that p is greater than q),

p− q =
√

(p− q)2 =
√
(p+ q)2 − 4pq =

√
(p+ q)2 − 4n

is known. Given both p+ q and p− q, we immediately deduce p and

q, so knowledge of φ(n) is equivalent to factoring n = pq.

Exercise/Project. Explore real implementations of RSA, e.g.,

PKCS#1 v2.2: RSA Cryptography Standard [Lab12].

Emphasis should be that, in reality, one is not encrypting a generic

plaintext message, but an AES key to transmit securely. On the

plus side, this is already a number, so encoding is not the issue. The

problem is that an AES key is short relative to required modulus

size. This means the AES keys are not randomly distributed in the

RSA key space, producing a vulnerability and necessitating certain

padding schemes.

5.3. Hash Functions

While hash functions are of critical importance in cryptographic ap-

plications, their use is actually quite broad. Let’s quickly survey some

places where they are used.

You have probably encountered hashes implicitly or explicitly in

your daily online experiences. Often you download some piece of

software to install on your phone or computer: a software upgrade,

music-streaming software, cloud storage applications, photo-editing

software, and so on. The download begins, and when you start to

install the software, you will often see a message of the type “Verifying

the integrity of the download”. Now we sort of understand what that

is supposed to mean, but really, how do you verify the integrity of the

download? Frankly, it is another miracle of science that all those bits

travel through all those routers from their source to your laptop and
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arrive intact. As miraculous as the process is, it occasionally does

cough, sputter, or stall, and the file on your laptop may not be an

exact copy of the one on the server from which the download began.

How do you know? Does it really matter? The answer to the first

question is hash functions, and the answer to the second might be

best given as another question: An on/off switch is often labeled 0/1,

that is, with one single bit (binary digit) of data. Does the choice of

that bit really make a difference?

While in many cases, such as those above, hashes have been rel-

egated to the background, it is certainly easy to find them, often ap-

pearing quite prominently. Indeed you will often see many different

types of them. They go by the names MD5sums (MD for message

digest), SHA1 (SHA for secure hash algorithm—catchy right?), or

SHA256 (no, that’s not version 256 of SHA, but an indicator that

the output string is 256 bits long). In the section on digital signa-

tures, we mentioned two features such functions are designed to have:

First, they take files of arbitrary length and generate a short string

that serves as a digital fingerprint of that file. Second, minor changes

in the source file generate large changes in the resulting fingerprint, so

the presence of a changed bit somewhere in the midst of an enormous

file would be easily detected by its changed hash.

Consider Figure 5.1. It is a bit involved but aims to demonstrate

several points. The displayed browser image (http://releases.

ubuntu.com/16.04.1/) shows the content of a download site for

Ubuntu� (a popular Linux distribution),3 and there for interested

parties to download are “iso” images of their operating system. An

iso image is a set of files in a format meant to be burned to a CD or

DVD for installation on another computer. The file ubuntu-16.04-

desktop-amd64.iso is 1.4G in size, so it is larger than a standard

CD, and it contains a complex collection of files with many of them

used to install software, drivers to operate the hardware on your com-

puter, and so on. Before you install it, you might like to make sure

the image is correct. So Ubuntu� has carefully provided hashes for all

the large files you might download from this page, so you can compare

the hash of your downloaded file with the original.

3Ubuntu is a registered trademark of Canonical Ltd.

http://releases.ubuntu.com/16.04.1/
http://releases.ubuntu.com/16.04.1/
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Figure 5.1

Figure 5.2 is a listing of the file MD5SUMS, which lists the MD5

hashes for various of the iso files.

Figure 5.2

The first line lists the following hash.

c94d54942a2954cf852884d656224186 *ubuntu-16.04-desktop-amd64.iso
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This 32-character string c94d54942a2954cf852884d656224186 is ac-

tually the hexadecimal (base 16) representation of the 128-bit (base 2)

output of the MD5 hash algorithm. This is what you actually com-

pare against when verifying the integrity of a download. Admittedly,

that is quite a bit to absorb, but before we finish with this exam-

ple, let’s note the files listed on the first image with a gpg suffix,

like MD5SUMS.gpg. The gpg suffix stands for Gnu Privacy Guard

(https://www.gnupg.org/), means that the file MD5SUMS has been

digitally signed by the creators of that file. Now why would they do

that?

You need to adopt a properly nefarious perspective to appreciate

the reason. Would this not be the perfect opportunity to infect mil-

lions of computers by replacing the installation software with another

which also installs software intended to compromise these systems?

The perpetrator would download the original iso, modify select files,

and recreate a new iso which they hope to get onto the download

site. Now the problem is that the new hashes (MD5, SHA1, SHA256)

won’t match, so to thwart those who are careful about the software

they install on their computers (we all are, right?), they would have

to replace the file MD5SUMS with a new file by that name contain-

ing the hashes of the new files. But there is that gpg file, which is

a signed version of the original, and by using the developer’s public

encryption key (gpg), the original MD5sums can be revealed. So now

what shall our nefarious intruder do? Well, they would have to cre-

ate a new file system with their modifications which would have the

original MD5, SHA1, and SHA256 hashes. This leads to our need

to understand other important requirements of a hash function. Oh,

but to answer the obvious question, beating a single hash is highly

improbable; beating three would be a truly impressive feat.

The idea of a hash function is that it should take as input a

file (string) of arbitrary length and produce an output string of fixed

(short) length. Common hash algorithms (e.g., MD5, SHA-1, SHA-2)

have output lengths ranging from 128–512 bits. Their computation

should be very fast. Let’s understand what is happening mathemat-

ically. We have a function h whose domain is a set of strings of ar-

bitrary length and whose codomain is a set of bit strings of bounded

https://www.gnupg.org/
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length. This function is definitely not injective, which means there

exist many inputs m �= m′ for which h(m) = h(m′). Two such values

m �= m′ for which h(m) = h(m′) is called a collision. Imagine a

hash function whose job it was to take the names of mathematicians

attending a Joint Mathematics Meeting and assign them to rooms

in a block of hotels. A collision would be two people showing up to

occupy the same room.

Now we make more precise the requirements for a cryptographic

hash function. The definitive source for secure hash standards are the

NIST documents [NIS12a], [NIS12c]. We offer a short synopsis; see

especially §4.1 of [NIS12a].

Properties that a cryptographic hash function should

have.

(1) It should exhibit collision resistance. That is, it should be

computationally infeasible to find messages m �= m′ with

h(m) = h(m′). Note that mathematically, this will def-

initely happen. We are simply asking for the function h

to be sufficiently complicated that it takes an unreasonable

amount of computation to have high probability of finding

such m, m′.

(2) It should have preimage resistance. Given a randomly cho-

sen hash value h0, it should be computationally infeasible

to find a message m for which h(m) = h0. Mathematically,

one is asking for it to be computationally infeasible to find

any element of the inverse image h−1(h0). This is sometimes

referred to as the one-way nature of the hash function.

(3) It should have second preimage resistance. Given an input

m with hash h(m), it should be computationally infeasible

to find a different value m′ with h(m) = h(m′).

Now let’s try to understand the significance of and differences

among these requirements. Once again, the best perspective to adopt

is one in which you are trying to accomplish something criminal.

Let’s start in the middle with preimage resistance, since it stands

somewhat alone. It is simply a part of life that we all have many
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online accounts, each with its own peculiarity regarding login names,

password construction, and frequency with which passwords must be

changed. The most unsafe situation would be if passwords were stored

as plaintext on the server that we wanted to access. It is better if (at

least) the passwords are hashed. That way the stored passwords all

have the same length, look quite random, and do not appear to reveal

anything. Now when you log in, your entered password is hashed and

compared to the stored hash of your password. If they match, you are

in; otherwise, you’re not. Now let’s suppose that the hash function

being used by the site had the property that it ignored the differ-

ence between uppercase and lowercase letters, and your password is

MdRimBF4e! (My dog Riley is my Best Friend for(4) ever—and yes,

BF4e! is a much better choice cryptographically than BFF). If your

hash function ignored the case of passwords, then there would be 28

passwords which would hash to the same value as MdRimBF4e! since

each alphabetic character in the password can either be upper or

lower case. Said another way, that reduces the size of the keyspace

of alphabetic passwords of length n by a factor of 2n. So if you could

easily find a (pass)word whose hash matched an existing one, you

could gain access to an account without knowing the real password.

Turning to the first and third conditions, it appears at first blush

(maybe even second), that collision resistance implies second preim-

age resistance—consider the contrapositive. Given an m and its

hash h(m), if it is computationally feasible to produce and m′ with

h(m′) = h(m), then it is computationally feasible to produce a colli-

sion. The reason both of these requirements are here is that in giving

our synopsis of the standards, we have not mentioned that the term

“computationally feasible” has different meanings in each of these

requirements: if one task is computationally feasible to do with a

certain amount of effort, it does not necessarily mean the other is fea-

sible with the same amount of effort. But this technical point is only

a small difference between collision resistance and second preimage.

The actual distinction is more interesting and is the subject of the

so-called birthday paradox in probability.
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The birthday paradox asks us to distinguish between two ques-

tions:

(1) What is the probability that in a room with n people, at

least one other person has my birthday (same month and

day)?

(2) What is the probability that in a room with n people, at

least two will have the same birthday (same month and

day)?

Second preimage resistance addresses the first of these questions,

and collision resistance is the subject of the second. So first, what

are the answers?

(1) The probability that at least one other person in the room

has my birthday, Pmy(n), is 1 minus the probability that no-

body in the room has my birthday. The probability that my

birthday is different than another individual is 364
365 (assum-

ing 365 days in a year) and, since we will assume that the

birthdays among the n people in the room are random (so

represent independent events), the probability that n peo-

ples’ birthdays differ from mine is
(
364
365

)n
. So the probability

that at least one among the n has my birthday is

Pmy(n) = 1−
(
364

365

)n

.

(2) Let Psh(n) denote the probability that in a room with n peo-

ple at least two share the same birthday. For sure (even ac-

counting for leap years), we know that if n > 366, Psh(n) =

1 by the pigeon-hole principle. The quantity 1 − Psh(n) is

the probability that no two of the n people in the room share

the same birthday, so

1− Psh(n) =
365

365
· 364
365

· 363
365

· · · 366− n

365
,

so

Psh(n) = 1− 365

365
· 364
365

· 363
365

· · · 366− n

365
= 1−

n!
(
365
n

)
365n

.

In Figure 5.3 we graph these two probability functions (as a func-

tion of the number of people in the room).
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Figure 5.3

We see that the probability of two people having a shared birth-

day rises above 1/2 as soon as there are at least 23 people in the

room, but it takes 253 people in the room before the probability that

someone else has my birthday rises above 1/2. So now let’s reconnect

these ideas with cryptography.

Let’s suppose that Alice and Bob are in business and they create

a contract between them, call it M . In the contract Bob agrees to do

certain jobs for Alice, and Alice in turn agrees to pay Bob, and they

jointly agree upon an amount for the service. Alice lives on the west

coast and Bob on the east, so they want to handle the transaction

electronically. Bob is happy with the contract M , so he creates a hash

of it h(M) (using one of the standard hash algorithms), and he then

signs the hash with his private decryption key and sends M , together

with DB(h(M)), to Alice. Alice uses Bob’s public-encryption key to

recover h(M). She has her own copy of the contract; let’s call it

MA (even though it is supposed to be the case that MA = M). She
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computes h(MA) and sees that her hash matches Bob’s, meaning he

has signed a copy of the contract that she holds.

Now let’s suppose that Bob is not totally happy with the contract:

the compensation is inadquate, the deadlines are too tight, or any

number of other things that he might want to change. So Bob wants

to replace M with M ′ and send it to Alice and still have her think he

has signed the original contract. What would he need to do? Well, he

would have to create a new contract M ′, so that h(M ′) = h(M). This

is exactly the context of second preimage resistance, or in the context

of the birthday paradox, finding someone else with my birthday, which

is generally a hard problem. Of course should Bob succeed, he can

later present M ′ as the valid contract, since the hashes match.

Now creating an M ′ with the same hash as M is quite hard, so

how could one use the birthday paradox? We are still a society in

transition from paper transactions and contracts to electronic ones,

and even when we don’t actually print a document, we use software

that “renders” the document in a manner convenient for us to ex-

amine. What am I getting at? There are many characters that can

appear as part of a file which do not show up when you view or print

the document unless you take extra steps. For example, when you tab

for an indented line, you simply see the line has been indented, and

it is not obvious whether that indentation occurred because of a tab

or someone hitting the space bar five times. Of course as characters

in the file, these are very different characters (and files). There are

many other things that would be difficult to detect visually, like an

extra space after a period at the end of a line or an extra comma.

Additionally, anywhere there is white space, spaces and tabs and any

unprintable characters could be added and make no visible difference

in the document. So in this game, as Bob and Alice are negotiating

the terms of the contract, Bob prepares two contracts M and M ′.

The contract M ′ is what Bob wants, and M is what Alice is offer-

ing. Bob now manipulates both contracts M and M ′ looking for a

pair whose hashes h(M) and h(M ′) are equal. This is the situation of

finding two people in the room with the same birthday, a significantly

easier problem to solve as we have seen.
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The use of the birthday paradox in this manner is one of the

reasons that the length of hashes have increased over time. At lengths

of 256, 384, 512 bits, probability is still on the side of guarding against

collisions and preimage computations.

5.4. Breaking Cryptosystems and Practical RSA
Security Considerations

In the modern use of cryptography, it is almost always the case that

someone trying to break a system knows precisely what algorithms

are being used: RSA, AES, ECC (elliptic curve cryptography), etc.

The reason is twofold. In the past, people would often try to hide

the exact mechanism used for encryption (e.g., rotor machines such

as the Enigma from World War II) in the hopes that the lack of

that knowledge would add to the security of the system. But, as

we have said before, the problem is that if that information becomes

known to the cryptanalyst and those using the encryption scheme

are unaware of the breach, a great deal of information can often be

gleaned leading to the potential collapse of the entire system. This is

precisely what happened in the case of the Enigma machine; there are

numerous books, articles, and even movies about the enormous efforts

brought to bear to break this cryptographic system. There is a second

reason algorithms are now almost always known, and that is one of

verification. AES (Rijndael) is used for domestic and international

commerce. All parties want to know that there is nothing buried in

the depth of the algorithm that could be used against them.

There are standards by which the security of a cryptosystem is

assessed; most of these terms go back at least to the article of Diffie

and Hellman [DH76].

Methods of attacking a cryptosystem:

(1) Brute-force search of keyspace.

All encryption/decryption algorithms have keys. In the

case of Caesar-type ciphers, the key is simply the offset, so

the keys are just the integers 0 to 25, and these 26 numbers

form the keyspace. So if one knew it was a Caesar cipher
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being used, a brute-force search of the keyspace would reveal

a correct key almost instantaneously.

AES (Rijndael) allows keys of various lengths 128, 192,

or 256 bits. At 256 bits, the keyspace has size 1078, roughly

on the order of the number of atoms in the observable uni-

verse. The point here is that a brute-force search of this

keyspace—that is, trying key after key until the correct one

is found—simply takes too much time, and the security of

the system resides in that fact, mainly because keys can be

changed with each new transaction.

(2) Ciphertext-only attack.

This means the cryptanalyst is given only encrypted

messages. Depending upon the system, this may provide

little or no information. For example, if your cipher were a

simple substitution cipher (meaning using a fixed permuta-

tion of the alphabet but always encoding a letter in the same

way), ciphertext messages are susceptible to frequency anal-

ysis and are often context sensitive making the decryption

of a message a bit like the daily jumble.

(3) Known-plaintext attack.

This is more interesting in the sense that the cryptan-

alyst has copies of both the plaintext message and the cor-

responding ciphertext message from which to gain insight.

Previously intercepted classified documents which are now

declassified fall into this category.

(4) Chosen-plaintext attack.

This offers the cryptanalyst the most power. For exam-

ple, if the encryption is a simple substitution cipher, then

all that is needed to reveal the permutation is a single en-

coding of each letter of the alphabet. Of course this is just

the simplest of substitution ciphers; one-time pads, which

offer perfect security, are also substitution ciphers; it is just

that the key has the same length as the message.

Modern cryptosystems need to be resistant to all of these types

of attacks, so let’s come back to the security of RSA. First, a simple
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question. What are the keys? What is the keyspace? How would one

attempt to mount a brute-force attack on RSA?

The information that a person or organization makes public in

RSA is the value of modulus n and the encryption exponent e (so that

a ciphertext is produced via C ≡ P e (mod n)). We have said that to

find the decryption key d is a matter of solving ed ≡ 1 (mod φ(n)),

and knowing φ(n) provides as much information as factoring n =

pq, so the security rests in how hard it is to factor n. Well, just

how hard is it to factor a number? The answer to this question is

not simply a matter of how large the integer n is, but also of its

composition. After all, even though it is very large, few would have

trouble factoring n = 1012345, since the only prime factors are 2 and

5. So when we publish our pair (e, n), we want to make sure n is

hard to factor. Since our modulus n has the special form of the

product of two distinct primes, we want neither prime to be small,

so we look for primes whose size are approximately
√
n. Since it is

such a vital matter, many organizations keep track of the state of

the art in factoring and issue recommended guidelines for how large

the modulus n should be. Recommendations made by the National

Institute of Standards and Technology are in sections 5.6.1 and 5.6.2

of [NIS12b] (see also [Gir15]). Up until about 2010, it was felt that

a 1024-bit modulus (n having size 21024 ≈ 10309) was safe from the

factoring methods currently known, but those standards have been

raised now to a modulus of size 2048 bits.

We shall talk more about factoring later in this book, but as we

start to broaden our perspective as cryptanalysts, perhaps we should

ask different questions. So factoring is hard. And that means its

difficulty is measured in exponential time relative to the length of the

number to be factored, so think of an n-bit number as requiring 2n

units of time. In contrast, determining whether a randomly generated

integer is prime can be done in polynomial time relative to the length

of the input, which is to say, this is very fast. So maybe, we can get

lucky in searching the keyspace. We know that n = pq where p and q

are both primes about the size of
√
n, so supposing n was a 1024-bit

modulus, we would be looking for two primes of size 512 bits, that is,

between 2512 and 2513. The exercises below help decide whether the
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keyspace is large or small and how easy or hard it is to choose two

primes from which to construct your RSA modulus.

Project. Suppose you want a 1024-bit RSA modulus, so you want

two primes 512 bits long. About how many primes are there of that

approximate size? What are the chances that randomly chosen odd

integers of that length will be prime?

Exercise. The observations above also provide an answer to an-

other important security question. We know that people often use

e = 65537 as an encryption exponent. What if they also chose the

same value of n? What would be the security implications?

A technical issue with RSA. If it were the case that the set

of plaintext messages to be encrypted by RSA were well distributed

throughout the plaintext space, RSA would be as secure as indicated,

protected by the difficulty of factoring a 1024-bit (or now a 2048-bit)

modulus. But the reality is that RSA is used to encrypt symmetric

keys, sometimes as small as a 128-bit AES key or to sign the hash

of a document, but in the end it used to encrypt something on the

order of 128, 256, 385, 512 bits. This means the plaintexts are not

well distributed, which makes RSA more vulnerable.

As it seems in all things, there is the theoretical side and then the

practical implementation side. So the practical side of RSA, described

in [Lab12], first pads the small plaintext to help the messages fill out

the plaintext space and then uses RSA. On the decryption side the

padding is removed, leaving the desired message.



Chapter 6

A Little More Algebra

Our exposure to groups and rings has been somewhat narrow so far.

We were long ago acquainted with the algebraic properties of the

integers Z but now know those properties give Z the structure of

a commutative ring. In Chapter 4 we introduced the sets Zn and

Un, the former a commutative ring (hence an abelian group under

addition), and Un an abelian group under multiplication. In fact Un

is precisely the set of elements in Zn that have multiplicative inverses,

and to recognize that relation, Un is often called the unit group in Zn.

In the special case that n = p is prime, we saw that Up = Zp \ {0}.
This property makes Zp an especially important and distinguished

ring called a field. So the ring Zp (while finite) stands equivalent as an

algebraic structure to Q and R and C, all commutative rings in which

every nonzero element is a unit (has a multiplicative inverse). We will

henceforth recognize this special status by writing Fp when we want

to think of Zp as finite field. Finite fields are especially important

in number theory and in the area of cryptography in particular. We

shall see the pivotal role they play beginning with the next chapter.

On the other hand, sometimes we want to consider Zn (even Zp)

not even as a ring, but just as an abelian group under addition. It

can be a bit confusing about how we regard the set Zn, but usually

the manner in which we choose to view it will be clear from context,

and we shall see plenty of examples below.
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6.1. Towards a Classification of Groups

An overarching endeavor in mathematics and in the sciences in general

is to classify objects according to various criteria. Classification asks

us to answer a subtle question: When are two objects the same? If we

put two apples on a table and ask if they are the same, the responses

could vary: One might say, “Sure; they’re both apples.” Another

might say, “Certainly not; one is a Granny Smith and the other a

golden delicious.” A third might quip, “How could they be the same?

There are two objects on the table.” Ok, so we need some rules for

how to classify things. In our case, we want to say when two groups

are the same, meaning they act as groups in exactly the same way,

they have exactly the same properties, and so on. The precise term is

whether the groups are isomorphic, meaning not necessarily the same

but algebraically indistinguishable (as groups).

Perhaps this is still unclear; maybe it is easier first to decide when

two groups are not isomorphic. Let’s gather some thoughts. Certainly

if two groups are the same in any sense of the word, they should have

the same number of elements, so Z7 (as an additive abelian group)

and U5 (as a multiplicative abelian group) are not isomorphic, the

first having seven elements, the second having four. Some groups are

abelian (like Zn and Un) while others are not. One can check that

the set of permutations of three objects, denoted S3,
1 is a non-abelian

group with six elements, so even though S3 and Z6 both have order

6 (six elements), they are not isomorphic since multiplication in one

doesn’t act like multiplication in the other.

Maybe we are on to something here. After all, what is a group but

a nonempty set with a binary operation satisfying a few properties.

The orders of elements, whether two elements commute and other

properties are all available by looking at a table with all possible

products displayed, are called a Cayley table.

6.2. Cayley Tables

Consider a Cayley table for a group G = {e, a, b, c} with order 4,

identity e, and operation ∗. The elements of the group are listed in

1See the exercise in section 6.3.
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the first row and column, and the inner part of the table records their

products as shown.

G e a b c

e e ∗ e e ∗ a e ∗ b e ∗ c
a a ∗ e a ∗ a a ∗ b a ∗ c
b b ∗ e b ∗ a b ∗ b b ∗ c
c c ∗ e c ∗ a c ∗ b c ∗ c

Below are the Cayley tables for two groups U5 and U10.

U5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

U10 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

Are the groups the same? Well, no. One has elements 1, 2, 3, and

4, while the other has elements 1, 3, 7, and 9. But if you took a pen

and relabeled the Cayley table for U10 leaving 1 alone but changed

each occurrence of 3 to 2, of 7 to 3, and of 9 to 4, the two tables

would be identical. This is what we mean by isomorphic.

More formally, we define a map ϕ : U10 → U5, by ϕ(1) = 1,

ϕ(3) = 2, ϕ(7) = 3, and ϕ(9) = 4, which maps one Cayley table to

the other. Because the tables (once relabeled) match, the function

ϕ : U10 → U5 defined above necessarily satisfies ϕ(ab) = ϕ(a)ϕ(b) for

all a, b ∈ U10, and this property characterizes the notion of what is
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called a homomorphism between groups; it is a structure-preserving

map. A bijective homomorphism (one that is also one-to-one and

onto) is the formal definition of an isomorphism. We write U10
∼= U5

(read U10 is isomorphic to U5) to designate this relationship. It not

hard to check (but is very important) that the isomorphism of groups

is an equivalence relation.

For another example, we compute the Cayley tables of two other

groups of order 4 and find the following.

U8 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

U12 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

One observes that if we define a map from ϕ : U8 → U12, by

taking 1 
→ 1, 3 
→ 5, 5 
→ 7, and 7 
→ 11, that the Cayley tables

match exactly. The function ϕ : U8 → U12 defined above is another

example of an isomorphism, and once again, because the (relabeled)

tables match, ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ U8.

Next consider the Cayley table for (the additive abelian group)

Z4.

Z4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2
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It doesn’t obviously match either of the previous examples, but

if we interchange the third and fourth rows and columns, we see it

matches with the first two examples. Consider one of them, U5.

U5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

That is if ϕ : U5 → Z4 is defined by ϕ(1) = 0, ϕ(2) = 1, ϕ(3) = 3,

and ϕ(4) = 2, the tables will match, though this time the relation is

that ϕ(ab) = ϕ(a) + ϕ(b) for all a, b ∈ U5. This is because Cayley

tables correspond to the group operations, which in the case of U5 is

multiplication, and in the case of Z4 is addition.

6.3. A Couple of Non-abelian Groups

We investigate two general classes of non-abelian groups. The sym-

metric group (on n letters) is defined as the set of permutations of

the set {1, 2, . . . , n}, that is, as a set, it is the set of functions

Sn = {f : {1, 2, . . . , n} → {1, 2, . . . , n} | f is a bijection}.

The group operation is function composition so that the group prod-

uct f ∗ g is just the composite function f ◦ g. The identity is the

function e so that e(k) = k for all k, 1 ≤ k ≤ n, and every function

in Sn has an inverse precisely because it is one-to-one and onto. We

easily check that the order of Sn, |Sn|, is n!. It should be easy to

check that S1 is just the trivial group consisting of one element, and

S2
∼= Z2, so is abelian. Starting with n = 3, we can verify that Sn is

non-abelian. For concreteness, let us consider the case of n = 3.

While a bit cumbersome, we will denote an element in S3 by

f =
[
1 2 3
a b c

]
, the function f defined by f(1) = a, f(2) = b, f(3) = c.
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The group operation is function composition, so f ∗ g (which we will

write as the product fg) is the function whose action on k is f(g(k)).

In permutation notation, this translates as follows:

f =

[
1 2 3

3 1 2

]
, g =

[
1 2 3

2 1 3

]

→ fg =

[
1 2 3

1 3 2

]
,

that is

f(g(1)) = f(2) = 1; f(g(2)) = f(1) = 3; f(g(3)) = f(3) = 2.

Exercise. Let

σ =

[
1 2 3

2 3 1

]
and τ =

[
1 2 3

1 3 2

]
.

Compute σ, σ2, σ3, τ, τ2, τ3, στ, σ2τ .

Exercise. Fill in the Cayley table for S3 using the elements listed

in the first row or column, and show that S3 is non-abelian.

◦ e σ σ2 τ στ σ2τ

e

σ

σ2

τ

στ

σ2τ

Another class of groups is the symmetries of a regular n-gon,

denoted Dn, or in some texts D2n since the order of the group is 2n.

The group Dn is called the dihedral group of order 2n. Again, we

consider only the special case n = 3.

The symmetries of an equilateral triangle form a finite group

called D3. Consider two basic symmetries of such a triangle, the

first a counter-clockwise rotation by 120 degrees (denoted R) and the

second a flip (denoted F ) about a vertical axis through the vertex
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labeled 1.
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The group operation is again function composition, so that RF

means first act by F then R.
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RF ��

2 3 1 3

Exercise. Compute R,R2, R3, F, F 2, F 3, RF,R2F .

Exercise. Fill in the Cayley table for D3 using the elements listed

along the first row or column.

◦ e R R2 F RF R2F

e

R

R2

F

RF

R2F
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Exercise. Notice that each symmetry can be thought of as a per-

mutation of the three vertices. If we regard the numbers marking

the vertices of the left-hand triangle as positions, then R can be de-

scribed as the permutation R =
[
1 2 3
2 3 1

]
, and F =

[
1 2 3
1 3 2

]
. Describe

R2, F , RF , R2F in terms of the elements σ and τ used to define

S3. Can you determine if D3
∼= S3?

6.4. Cyclic Groups and Direct Products

To go a bit further, we need to think about another aspect of the

question of classification. Above we said that U5
∼= U10

∼= Z4 and

U8
∼= U12. Suppose G was another group of order 4. We want to say

G ∼= X, where X is only one particular group, but which one should

we list? So part of the classification is that we start with the simplest

objects, give them names, and then think about simple constructions

which allow one to build more complex groups from simpler ones.

The simplest objects are the cyclic groups, which we discuss now.

We need a small bit of terminology. Let G be a group, and let

g ∈ G. We denote by 〈g〉 the set

〈g〉 = {gm | m ∈ Z} = {. . . , g−3, g−2, g−1, g0 = e, g, g2, g3, . . . }.

We easily check that 〈g〉 is a group called the cyclic subgroup generated

by g. A group G is called cyclic if there exists a g ∈ G with G = 〈g〉.
For example, the following are all cyclic:

U10 = 〈3〉 = 〈7〉 = {3, 32, 33, 34} = {7, 72, 73, 74},
U5 = 〈2〉 = 〈3〉,
Z4 = 〈1〉 = {1, 1 + 1 = 2, 1 + 1 + 1 = 3, 1 + 1 + 1 + 1 = 4 = 0},

where we note the operation in Z4 is additive, so gm means g + g +

· · ·+ g (m times). The other groups we considered (U8 and U12) are

not cyclic, since all their elements have order 1 or 2, which means

there is no element whose powers can fill out all of G.

We note that viewing Zn as an additive abelian group, it is always

cyclic having (at least) the generator 1. So for each integer n ≥ 1 there

is a cyclic group of order n. In fact, as we show below, any two cyclic
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groups of the same order are isomorphic, so we shall keep Zn as our

distinguished cyclic group of order n.

To establish the result about there being (up to isomorphism)

only one cyclic group of a given order, we state without proof an

important result in group theory, a theorem of Lagrange, a special

case of which we stated in Theorem 4.15.

Theorem 6.1 (Lagrange). Let G be a finite group, and let H ⊆ G

be a subgroup (a subset that is also a group). Then |H| divides |G|.
That is, the order of a subgroup divides the order of the group.

Using this we show the following.

Corollary 6.2. Let G be a finite group, let g ∈ G, and put H = 〈g〉.
Then H = {e = g0, g, g2, . . . , gd−1}, where d = |g|. In particular, the

order of an element divides the order of the group.

Remark 6.3. Perhaps we should comment a bit about what this

corollary says. We have already said that if you take any element g

in a group G, you can construct the cyclic subgroup H = 〈g〉 which

consists of all the powers of g. First it should be clear that since

H ⊆ G and G is finite, then so is H, implying that the element g

has finite order (see Proposition 4.13; otherwise each of the powers

g, g2, . . . would be distinct making H an infinite group). So g has

finite order d (the smallest positive integer so that gd = e).

The first part of the corollary says that you get all the distinct

elements of H by taking H = {e = g0, g, g2, . . . , gd−1}, and since H

is a subgroup of G having order d, Lagrange’s theorem says that d

(the order of H and of g) divides the order of G.

Proof. Let d = |g|, and let m be any integer. Using the division

algorithm, write m = dq + r where 0 ≤ r < d. Thus gm = gdq+r =

(gd)qgr = gr, so every element of 〈g〉 is in {e = g0, g, g2, . . . , gd−1}. It
only remains to show that no two elements in the list g0, g, g2, . . . , gd−1

are equal. If that were not true, then gi = gj for 0 ≤ i < j ≤ d− 1,

which would imply that gj−i = e so d would not be the smallest posi-

tive exponent so that gd = e. This would be a contradiction. The rest

of the corollary follows from Lagrange’s theorem and Remark 6.3. �
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Corollary 6.4. Let G be a finite group with prime order p. Then G

is cyclic.

Proof. Let g ∈ G with g �= e, and put H = 〈g〉. Then |H| > 1, and

by Lagrange, |H| divides |G| = p. This implies |H| = p, and since

H ⊆ G, this means H is all of G, so G = H = 〈g〉. �

Proposition 6.5. Let G1 = 〈g1〉 and G2 = 〈g2〉 both be cyclic groups

of order n. Then G1
∼= G2, that is they are isomorphic.

Proof. G1 = {e, g1, g21 , . . . , gn−1
1 } and G2 = {e, g2, g22 , . . . , gn−1

2 }.
Sending gk1 
→ gk2 shows that the Cayley tables match, establishing

the isomorphism. �

Corollary 6.6. Let G be a cyclic group of order n. Then G ∼= Zn.

Now that we have some basic examples of groups, we can ask for

simple constructions to build new groups out of old ones. One simple

construction is the notion of a direct product of groups. Suppose we

have groups H and K with the group operations in H,K denoted (for

clarity) by h1 ◦ h2 and k1 ∗ k2, respectively. Using these two groups,

we want to build a new group G = H ×K as follows. As a set, G is

the Cartesian product of H and K, that is the set of ordered pairs

G = {(h, k) | h ∈ H, k ∈ K}. We make G into a group by giving it

the binary operation

(h1, k1)(h2, k2) = (h1 ◦ h2, k1 ∗ k2).

The inverse of (h, k) is (h−1, k−1) and the identity is (eH , eK). The

axioms are easily verified.

Returning to our classification problem, consider the Cayley table

for Z2 × Z2 (without the bars over the numbers for notational ease)

Z2 × Z2 (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)

(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)

(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)
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We see this table matches those for U8 and U12. In terms of

isomorphisms, we have

U10
∼= U5

∼= Z4, and U8
∼= U12

∼= Z2 × Z2.

Indeed “up to isomorphism” there are only two groups of order 4,

Z4 and Z2×Z2, meaning any group of order 4 is isomorphic to exactly

one of these.

A very large project (to which thousands of journal pages have

been devoted) is to create a list of all the isomorphism classes of finite

groups. We shall give an algorithm in the next section for how to do

this for abelian groups, but the question of classifying all non-abelian

groups is still open.

Example 6.7. Groups of small order. Let G be a group of order n.

• n = 1: G = {e}; this is called the trivial group.

• n = 2, 3: Both numbers are prime, so the groups are cyclic

and isomorphic to Z2 and Z3, respectively.

• n = 4: We have seen Z4 and Z2 × Z2 are not isomorphic.

It turns out that every group of order four is isomorphic to

one of these.

• n = 5: Prime order, so cyclic, G ∼= Z5.

• n = 6: The first non-abelian case. Clearly, Z6 is possible,

and it turns out Z2 × Z3
∼= Z6. On the other hand S3 (the

group of permutations of three objects) and D3 (the set of

symmetries of an equilateral triangle) are groups of order 6,

but are not abelian, so they are certainly not isomorphic to

Z6. However, it turns out that S3
∼= D3, and every group of

order 6 is isomorphic to exactly one of Z6 or S3.

• n = 7: Prime order, so G ∼= Z7.

• n = 8: There are five isomorphism classes of groups of or-

der 8: Z8,Z2 × Z4,Z2 × Z2 × Z2 are the abelian ones. The

symmetries of the square D4 is another. The last is called

the quaternion group, usually denoted Q8.
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6.5. Fundamental Theorem of Finite Abelian
Groups

Though the proof is well beyond the scope of this text, the structure

of finite abelian groups is particularly easy to describe. We take a

somewhat iterative approach to the final result. As a preliminary

step, we talk about what appears to be a digression: the partitions

of a positive integer n.

We say that a set of positive integers {n1, . . . , nk} is a partition of

the positive integer n if n = n1+ · · ·+nk and n1 ≥ n2 ≥ · · · ≥ nk ≥ 1.

We denote by π(n) the number of partitions of n. Thus, π(5) = 7,

since there are seven partitions of the number 5:

5 = 5; 4 + 1; 3 + 2; 3 + 1 + 1; 2 + 2 + 1;

2 + 1 + 1 + 1; 1 + 1 + 1 + 1 + 1.

Our first theorem is for abelian groups of prime-power order.

Theorem 6.8. Let p be a prime, and let n ≥ 1. Then up to isomor-

phism, there are π(n) abelian groups of order pn.

Said another way, there are only π(n) distinct Cayley tables you

can write down for an abelian group of order pn. This means that any

group of order pn is isomorphic to exactly one of the π(n) candidates

and shares the appropriate Cayley table. What is striking about

this result is that it depends only on the exponent n and not on

the prime p. Moreover, the proof (not given here) shows not only

that the partition function π(n) counts the number of abelian groups,

but that the partitions of n identify the isomorphism classes. In

particular, different partitions correspond to nonisomorphic groups.

We demonstrate this in the example below.
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Example 6.9. We characterize all the abelian groups of order p5 in

terms of partitions as follows.

5 ←→ Zp5

4 + 1 ←→ Zp4 × Zp

3 + 2 ←→ Zp3 × Zp2

3 + 1 + 1 ←→ Zp3 × Zp × Zp

2 + 2 + 1 ←→ Zp2 × Zp2 × Zp

2 + 1 + 1 + 1 ←→ Zp2 × Zp × Zp × Zp

1 + 1 + 1 + 1 + 1 ←→ Zp × Zp × Zp × Zp × Zp

Below is one version of the Fundamental Theorem of Finite

Abelian Groups.

Theorem 6.10 (Fundamental Theorem). Let N ≥ 2 be an integer

with prime factorization N = pe11 · · · perr . Then every abelian group G

of order N is isomorphic to a direct product G ∼= G(p1)× · · · ×G(pr)

where G(pi) is an abelian group of order peii , described in the previ-

ous theorem. Thus, up to isomorphism, there are π(e1)π(e2) · · ·π(er)
abelian groups of order N .

It is useful in analyzing abelian groups to note that as a conse-

quence of the Chinese Remainder Theorem, we have the following.

Theorem 6.11. Zm × Zn
∼= Zmn if and only if gcd(m,n) = 1.

Example 6.12. Classify all abelian groups of order p2q3, where p

and q are distinct primes.

Up to isomorphism, there are π(2) = 2 abelian groups of order

p2: Zp2 and Zp × Zp. Up to isomorphism, there are π(3) = 3 abelian

groups of order q3: Zq3 , Zq2 × Zq, and Zq × Zq × Zq. Thus there are

π(2)π(3) = 6 distinct isomorphism classes of abelian groups of order
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p2q3, and they are

Zp2 × Zq3
∼= Zp2q3

Zp2 × Zq2 × Zq
∼= Zq × Zp2q2

Zp2 × Zq × Zq × Zq
∼= Zq × Zq × Zp2q

Zp × Zp × Zq3
∼= Zp × Zpq3

Zp × Zp × Zq2 × Zq
∼= Zpq × Zpq2

Zp × Zp × Zq × Zq × Zq
∼= Zp × Zpq × Zpq

(the left-hand column being the one from Theorem 6.10 and the right-

hand column leveraging Theorem 6.11).

There is an alternate statement of the Fundamental Theorem for

Finite Abelian Groups which is useful for showing that all the groups

of the form Up (p a prime) are cyclic. Recall that above we showed

that every group of prime order is cyclic, but Up has order p − 1

which is not prime except when p = 3. This alternate version of the

Fundamental Theorem follows.

Theorem 6.13 (Fundamental Theorem). Let G be a finite abelian

group of order N ≥ 2. Then there are uniquely determined inte-

gers: t ≥ 1 and n1, . . . , nt ≥ 2, so that G ∼= Zn1
× · · · × Znt

and

n1 | n2 | · · · | nt. Necessarily, N = n1n2 · · ·nt.

In Example 6.12, the right-hand column gives the isomorphism

class of the group using the characterization in Theorem 6.13.

Exercise. We know that Un is a finite abelian group. For 5 ≤ n ≤
15, use your knowledge of these groups to characterize them as in

the Fundamental Theorem. For example, U3 is a group of order 2, a

prime, so U3 is a cyclic group of order 2, that is U3
∼= Z2. The group

U8 is an abelian group of order 4, so by the Fundamental Theorem

it is isomorphic to either Z2 × Z2 or to Z4. We easily check for all

a ∈ U8 that a2 = 1, so U8 is not cyclic, and so U8
∼= Z2 × Z2.

In the next chapter, we will encounter abelian groups coming

from elliptic curves.
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6.6. Primitive Roots

In this section we want to talk about the discrete logarithm problem

as a precursor to the Diffie–Helman key exchange and to a method of

encryption called the ElGamal method.

We begin with an important result in algebra.

Theorem 6.14. Let p be a prime, and let Up be the set of reduced

residues modulo p. Then Up is a cyclic group.

Proof. We know that U2 = {1} is the trivial group and is cyclic as

it is generated by the identity, so we assume that p ≥ 3. Then Up

is a finite abelian group of order p − 1 ≥ 2, so by the Fundamental

Theorem for Finite Abelian Groups, we know that there are uniquely

determined integers: t ≥ 1 and n1, . . . , nt ≥ 2 with n1 | n2 | · · · | nt,

so that Up
∼= Zn1

× · · · × Znt
. Now the condition n1 | · · · | nt means

that every element in Up has order dividing nt. If t > 1, then since

p− 1 = n1 · n2 · · ·nt, we know nt < p− 1, so there can be no element

of order p− 1. On the other hand if t = 1, then Up
∼= Zn1

is a cyclic

group, which is our goal.

While, strictly speaking, we have not proven the result we are

about to invoke, it is something you learned a long time ago: that a

polynomial of degree n with coefficients in a field can have at most n

roots in that field. In our case, the field in question is Fp, and we see

that since all elements in Up have order dividing nt, every element of

Up is a root of the polynomial xnt −1. But if t > 1, we have said that

nt < p−1, so that means the polynomial xnt −1 has more roots than

its degree, a contradiction. So we conclude that t = 1, which means

that Up is cyclic. �

So for a prime p, the group Up is cyclic, and so is generated by an

element g, say Up = 〈g〉, in our previous notation for cyclic groups.

Any such generator for Up is called a primitive root modulo p. So if

g is a primitive root mod p, then

Up = {g, g2, . . . , gp−1 = 1}.
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Said another way, for each integer a with gcd(a, p) = 1, there is a

unique k with 1 ≤ k ≤ p− 1 so that

a ≡ gk (mod p).

The integer k is called the index or discrete logarithm of a to

the base g modulo p, written k = indg a, analogous to a logarithm.

Technically, indg a is only determined modulo (p− 1), but this poses

no difficulty since gp−1 = 1.

As a small example, let’s examine U11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
note we have chosen to write the elements of U11 as integers k rather

than k to make the notation a bit lighter. It has primitive roots 2, 6,

7, 8, but let us fix g = 2 to generate U11. Actually, there are always

φ(p− 1) primitive roots, and when we have found one of them, say g,

the others are all of the form gk where gcd(k, p− 1) = 1. This follows

Table 6.1

21 ≡ 2 (mod 11) ind2 2 = 1 |2| = 10

22 ≡ 4 (mod 11) ind2 4 = 2 |4| = |22| = 10
gcd(2,10) = 5

23 ≡ 8 (mod 11) ind2 8 = 3 |8| = |23| = 10
gcd(3,10) = 10

24 ≡ 5 (mod 11) ind2 5 = 4 |5| = |24| = 10
gcd(4,10) = 5

25 ≡ 10 (mod 11) ind2 10 = 5 |10| = |25| = 10
gcd(5,10) = 2

26 ≡ 9 (mod 11) ind2 9 = 6 |9| = |26| = 10
gcd(6,10) = 5

27 ≡ 7 (mod 11) ind2 7 = 7 |7| = |27| = 10
gcd(2,10) = 10

28 ≡ 3 (mod 11) ind2 3 = 8 |3| = |28| = 10
gcd(8,10) = 5

29 ≡ 6 (mod 11) ind2 6 = 9 |6| = |29| = 10
gcd(9,10) = 10

210 ≡ 1 (mod 11) ind2 1 = 10 |1| = |210| = 10
gcd(10,10) = 1
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from a bit more algebra than we have at our disposal, but which also

gives the following useful fact.

We know all the elements in Up have order dividing p − 1, and

we know that g has order p − 1. In general, algebra shows that the

order of gk, denoted |gk|, is p−1
gcd(k,p−1) . Our entries in Table 6.1 list

the elements of U11 as {21, 22, . . . , 210} (modulo 11), from which we

extract the index, ind2, and the order of the element.

6.7. Diffie–Hellman Key Exchange

Recall that in an online transaction between you and a vendor, al-

most all encryption is done via a symmetric-key cryptosystem. We

have already discussed the problem of how your computer and that

of an online vendor’s establish the protocol, but once done the shared

key (which should be known only to your computer and the vendor’s)

must be generated. How do you proceed? Not surprisingly, there

are a number of protocols, but we choose to give one of the simpler

ones, known as static Diffie–Hellman, though we note that generally

this static version has been replaced by ephemeral Diffie–Hellman to

advance what is known as forward secrecy . In static Diffie–Hellman

one finds embedded in the vendor’s security certificate a large prime

p and a primitive root g. So the game begins. The vendor has al-

ready picked a random integer b with 1 < b < p − 1, and has gb

(mod p) embedded as part of their certificate. Your computer gener-

ates a random integer a with 1 < a < p− 1, and sends ga (mod p) to

the vendor. With your integer a you compute (gb)a ≡ gab (mod p).

With its integer b, the vendor computes (ga)b = gab (mod p). So you

each share the common key K ≡ gab (mod p). Someone who wants

to compromise your secure exchange must have access to the key K,

but has only been able to see (if at all) ga and gb modulo p. Deter-

mining K ≡ gab (mod p) from the given data is the Diffie–Hellman

problem, which of course could be solved by solving the discrete log-

arithm problem, that of determining a, b from ga, gb (mod p), which

is thought to be very hard.

Remark 6.15. In practice of course, one wants to pick a very large

prime p, but how large? The National Institute of Standards (NIST)
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makes recommendations for key sizes to protect data by various algo-

rithms. For example, AES is one of the most common symmetric-key

encryption methods in use today. It accepts key sizes of (at least)

80, 112, 128, 192, or 256 bits; longer keys correspond to greater secu-

rity. In a table published in [NC09], the recommended bit sizes for

primes to be used in either RSA or Diffie–Hellman are much longer;

their recommended bit sizes range among 1024, 2048, 3072, 7680, and

15360 bits. Now a prime p approximately 15360 bits long has roughly

4624 digits! A prime with 3072 bits has roughly 925 digits. These are

large primes, and while primality testing can be done in polynomial

time, these times are significant.

Now a practical consideration. You have a prime. Just how are

you going to go about finding a primitive root, that is a generator

for Up? Start at 2 and keep testing until you have an element of the

correct order? Probably not. To make Diffie–Hellman secure, you

don’t really need a generator for the whole group, you just need an

element which generates a large subgroup, say half of it. How can

you arrange that?

The following is a practical method of picking a prime and an

element g whose order is either p− 1 (a primitive root) or (p− 1)/2,

half the order of the group. Pick a prime q of approximately the right

size. Actually pick lots of them, and consider p = 2q + 1. When you

find a prime q so that p = 2q+1 is also prime, stop; such a p is called

a safe prime. Now, the order of Up is p− 1 = 2q, and every element

in the group has order dividing 2q, so it is one of 1, 2, q, or 2q. There

is only one element of order 1 in a group (the identity), and it turns

out that there is only one element of order 2 in Up, namely −1 ≡ p−1

(mod p). Every other element g with 2 ≤ g ≤ p− 2 has order q or 2q,

so choose g = 2, and even if it is not a primitive root, it is an element

that will generate a (sub)group of size q = |Up|/2.

6.8. ElGamal Encryption

Having introduced primitive roots and the Diffie–Hellman key ex-

change, we introduce a related public-key cryptosystem called ElGa-

mal. As in the section on RSA, we will have two players, Alice and
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Bob, and we shall describe in brief how Bob can send an encrypted

message to Alice.

Suppose p is a large prime, and consider the group of units Up,

which we know is cyclic of order p− 1. For simplicity, assume that g

is a generator for Up, i.e., a primitive root modulo p. One can modify

the process below if we simply take an element of very large order

instead.

Alice chooses an integer a (her private key) satisfying 1 < a <

p−1 and generates ga (mod p). Her public key consists of the data Up,

g, and ga (mod p). As with RSA, we assume that a plaintext message

that Bob wishes to send to Alice has been converted to a numerical

equivalent integer M with 1 ≤ M ≤ |Up| = p − 1. Bob chooses a

random integer k and computes gk (mod p), from Alice’s public g.

Then (as elements of Up) he computes the product M · (ga)k using

his plaintext M , random k, and Alice’s public ga. He now sends the

ordered pair (gk,M · gak) to Alice. Using her private key a, Alice can

compute (gk)a = gak, and since the inverse of gak in Up is gp−1−ak,

she can multiply M · gak by the inverse of gak to retrieve M . As in

the Diffie–Hellman exchange, someone who could solve the discrete

logarithm problem could deduce Alice’s secret key (a) from the public

information g and ga.



Chapter 7

Curves in Affine
and Projective Space

7.1. Affine and Projective Space

In Chapter 2 we made some conjectures about the number of points

of intersection of two plane curves, and we seemed to have settled on

a conjecture that said that if there were only finitely many points of

intersection, the product of the degrees of the curves was an upper

bound for their number. But even with the simple example of a circle

and a parabola, it seemed possible to have anywhere from zero to

four points of intersection. By broadening our setting a bit, we can

do much better.

The curves we considered in Chapter 2 were curves in R2, and

as such it is easy to see that the real numbers themselves create

difficulties in obtaining a consistent answer to the number of points

of intersection. For example, if we intersect a line (say the x-axis)

with a quadratic (say y = x2 − a), we expect at most two points of

intersection, the roots. Indeed over R, there can be two real points

of intersection (e.g., if a = 4), one (e.g., if a = 0), or none (e.g., if

a = −4). On the other hand, if instead of considering these curves in

R2, we considered them in C2, then there would always be two points

of intersection (at least if counted with multiplicity). The proof is

simply that the points of intersection have x-coordinates which are the
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roots of the quadratic, and the quadratic formula will always give two

roots over C (although it may be a root occurring with multiplicity

2, e.g., a = 0). So the field over which we view the curve plays a

role. On the other hand, sometimes we are motivated by concerns

other than maximizing the number of points of intersection, in which

case we may focus on rational points or even points in a finite field,

like Fp.

But changing the field alone does not solve all of our problems.

For example, when we consider two lines in the plane, do they always

intersect in a single point? Well, no, but we have to be a little careful

in what we are asking. The two lines could be equal, so let’s dismiss

that case. If they are distinct lines, they either intersect in a unique

point or are parallel and do not intersect in the plane. And here

changing the field from R to C does not help. On the other hand,

anyone who has stood on railroad tracks has had the impression that

parallel lines do intersect, just “at infinity”. Expanding our notion

of the plane by adding points at infinity is another of the ways we

wish to broaden our view of plane curves. This expanded plane will

be called the projective plane, but adding these extra points takes a

bit of care.

Let’s begin by establishing notation to help us distinguish some of

our known settings from ones we wish to introduce. For concreteness

we will define objects using the real numbers, but the notions easily

generalize to other fields such as C, Q, or Fp. We have always called

R the real line, R2 the plane, and R3 (real) 3-space. Typical elements

of R are denoted a, b, c . . . . Elements of R2 are ordered pairs (a, b) of

real numbers, and elements of R3 are ordered triples (a, b, c). So in

formalizing our definitions, we shall refer to R as the affine line, R2

the affine plane, and R3 affine 3-space. Of course, we can talk about

a generic affine n-space as well. We give affine n-space (over R) the

formal definition and notation

An(R) = Rn = {(a1, . . . , an) | ai ∈ R },

the set of ordered n-tuples of real numbers. So the real line is A1(R),

the plane is A2(R), and so on. This notation is convenient for when

we write something like A2(Q) as we are simply looking at the set of

rational points in the affine plane. So this definition makes sense if



7.1. Affine and Projective Space 149

we replace R by any field F , e.g., Q, R, C, or a finite field like Fp.

For example, A2(Fp) is the set of ordered pairs (a, b) where a, b ∈ Fp.

In order to explain how to add points to affine space to make it

bigger (in a useful manner), we shall first give a construction that

will embed an affine space of a given dimension into a correspond-

ing projective space and then return to suggest why this particular

construction is very natural in the context of studying curves.

The notion of a point in projective space relies on the concept of

an equivalence relation we introduced in Chapter 3, when we reviewed

how we think of the rational numbers and how we work with congru-

ence classes in the context of modular arithmetic. For now, simply

recall that an equivalence class is a set of things that appear differ-

ent but really represent the same object, just as the fractions 2/4,

(−3)/(−6), m/2m (m �= 0) all represent the same object we usually

denote by 1/2. Why choose 1/2 as our favorite representative of the

equivalence class? Well, that representative is special in some sense

that is meaningful to us. So as we define how to view affine space as a

subset of projective space, we will have to find a representative of the

equivalence class of a point in projective space that is also meaningful

to us.

We start with a careful definition of the projective line. Consider

the set of all nonzero vectors in the affine plane A2(R). Geometrically,

we can think of these vectors as having tails at the origin (0, 0) and

tips at arbitrary points (a, b) �= (0, 0) in the plane. So we have a set

S = {(a, b) ∈ A2(R) | (a, b) �= (0, 0)}.

We introduce an equivalence relation on S saying that (a, b) ∼ (c, d)

if the line determined by the vector (a, b) (i.e., the line through (0, 0)

and (a, b), which is why we needed (a, b) �= (0, 0)) is the same as the

line determined by the vector (c, d). For example, the line determined

by the vector (2, 4) is the same as the one determined by (1, 2) or

by (−3,−6). Those with some background in vector geometry will

immediately recognize this as saying that (a, b) ∼ (c, d) if and only

if there is a nonzero real number t so that (c, d) = (at, bt) = t(a, b),

that is, the vectors (a, b) and (c, d) are parallel. This means that

the set of points in S which lie in the equivalence class of (a, b) is
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Figure 7.1

precisely the set of points (excluding the origin) on the line through

the origin and the point (a, b). So the set of equivalence classes of

the elements of S are these “lines” through the origin. Now, just

as with rational numbers or congruence classes, we want to find a

nice representative of each equivalence class. Consider the line y = 1

in the plane (Figure 7.1). Every line through the origin (except the

x-axis) intersects the line y = 1 in a unique point. First note that

the line determined by (a, b) is the x-axis if and only if b = 0, so if

(a, b) determines a line through the origin other than the x-axis, we

know b �= 0, so (a, b) ∼ (a/b, 1). Said almost equivalently, every line

of the form y = mx with m �= 0 (which excludes the x-axis as well as

the y-axis which has undefined slope) intersects the line y = 1 at the

point (1/m, 1).

So every line through the origin (except the x-axis) determines a

point (r, 1) on the line y = 1, and every point (r, 1) determines a line

through the origin except for the x-axis. In fact this is a one-to-one

correspondence between the points r ∈ A1(R) and the lines through

the origin (except for the x-axis). So let [a, b] denote the equivalence
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class of the point (vector) (a, b) ∈ S. Then the set of equivalence

classes of S consists of the set

{[a, b] | a, b ∈ R, (a, b) �= (0, 0)} = {[r, 1] | r ∈ R} ∪ {[1, 0]},

where the last statement comes from the fact that the only line ex-

cluded in our discussion was the x-axis, which is determined by any

vector of the form (a, 0) with a �= 0, and it is clear that (a, 0) ∼ (1, 0),

so [a, 0] = [1, 0].

We define the projective line P1(R) to be this set of equivalence

classes, that is

P1(R) = {[a, b] | a, b ∈ R, (a, b) �= (0, 0)}
= {[r, 1] | r ∈ A1(R)} ∪ {[1, 0]}.

Now of course, it is trivial to identify the affine line A1(R) with

{[r, 1] ∈ P1(R)} via r 
→ [r, 1], so we think of

P1(R) = {[r, 1] | r ∈ A1(R)} ∪ {[1, 0]} = “A1(R)” ∪ {[1, 0]},

that is, the projective line is a copy of the affine line together with a

single point (at infinity). The “at infinity” part seems natural since

the x-axis can be thought of as the limiting line through (0, 0) and

(r, 1) as r → ∞.

Now that we have taken our time to describe the projective line,

we will be a bit briefer in the description of higher-dimensional pro-

jective spaces. Still, the projective plane is crucial to our efforts, so we

will still be quite careful, but the analogy should seem clear. To define

the projective plane P2(R), we start with the set of nonzero vectors in

R3 = A3(R), which again we think of as vectors based at (0, 0, 0) with

tip at (a, b, c) �= (0, 0, 0). We define an equivalence relation by saying

that triples (a, b, c) ∼ (a′, b′, c′) if there is a nonzero real number t

so that (a′, b′, c′) = t(a, b, c) = (at, bt, ct). In analogy with the case

of the projective line, the equivalence class [a, b, c] will be the set of

points on the line through the origin and the point (a, b, c) (excluding

the origin). Similarly to the previous case, we divide the lines into

two subsets, those that pass through the plane z = 1 and those that

do not. The lines that do not pass through z = 1 are determined by

vectors whose z-coordinate equals zero. If we denote by [a, b, c] the
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equivalence class of (a, b, c), then

P2(R) = {[a, b, c] | a, b, c ∈ R, (a, b, c) �= (0, 0, 0)}
= {[a, b, 1] | (a, b) ∈ A2(R)} ∪ {[a, b, 0] ∈ P2(R)}.

As in the case of the projective line, it is clear that we can identify

A2(R) with {[a, b, 1] ∈ P2(R)} via (a, b) 
→ [a, b, 1], so we see that the

affine plane is identified with a natural subset of our projective plane.

But what about the piece that is left over? Is this another copy of

the plane? Actually, no because

{[a, b, 0] ∈ P2(R)} = {[a, b, 0] | (a, b, 0) �= (0, 0, 0)}.

So what is left over is actually a copy of the projective line P1(R),

which can be easily seen as

{[a, b, 0] | (a, b, 0) �= (0, 0, 0)} = {[r, 1, 0] | r ∈ A1(R)} ∪ {[1, 0, 0]},

an affine line (at infinity) plus a point at infinity. So the projective

plane P2(R) is a copy of the affine plane, together with a projective

line at infinity.

We now give the general definition of projective space for arbi-

trary dimension n and over any field F , where we used F = R in the

examples above. For n ≥ 1, we define projective n-space over a field

F , Pn(F ), as follows: Let

S = {(a1, a2, . . . , an+1) ∈ An+1(F ) | (a1, a2, . . . , an+1) �= (0, . . . , 0)}.

Define a relation on S by (a1, . . . , an+1) ∼ (b1, . . . , bn+1) if and only if

there is a nonzero scalar t ∈ F so that (b1, . . . , bn+1) = t(a1, . . . , an+1).

We easily check that ∼ is an equivalence relation, and we denote by

[a1, . . . , an+1] the equivalence class of (a1, . . . , an+1) in S. Projective

n-space is the set of equivalence classes

Pn(F ) = {[a1, . . . , an+1] | (a1, . . . , an+1) ∈ S}.

As in the special cases above, we see that

Pn(F ) = {[a1, . . . , an+1] | (a1, . . . , an+1) ∈ S}
= {[a1, . . . , an, 1] | (a1, . . . , an) ∈ An(F )}

∪ {[a1, . . . , an, 0] ∈ Pn(F )}.
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The first set can be identified with affine n-space An(F ), and the sec-

ond set can be identified with a copy of (n−1)-dimensional projective

space Pn−1(F ), a so-called hyperplane at infinity.

7.2. Curves in the Affine and Projective Plane

Starting with a given affine space, we have seen how to create a

projective space that contains a copy of the affine space naturally

as a subset. For example, we view A2(R) ↪→ P2(R) by associating

(a, b) ∈ A2(R) with [a, b, 1] ∈ P2(R). One advantage of projective

space is that there is some extra room in the space to find per-

haps missing points of intersections of curves. One somewhat awk-

ward aspect is that the points in projective space are represented as

equivalence classes of points in affine space, that is, our association

(a, b) 
→ [a, b, 1] is a map that takes a single point in A2(R) to an

entire equivalence class of points in A3(R) represented by (a, b, 1). So

what’s the problem?

Naively, we start with a curve we understand in affine space, say

the set of points in A2(R) which satisfy y − x2 = 0, a parabola.

We want all the points of the parabola that we already know about

in affine space to still be part of the set of points in P2(R) which

characterize the parabola. So if (2, 4) is a point on the parabola in

A2(R), we need [2, 4, 1] to be a point on the projective version of the

parabola. But what can this mean? There is an extra coordinate in

[2, 4, 1], which means that to accommodate curves in the projective

plane, we need to introduce an extra variable, so we should have an

equation in x, y, and z which describes our parabola. And it would

also be natural if, when z = 1, our new equation looked like the old

one, y − x2 = 0. This doesn’t seem so hard. One solution would be

yz− x2 = 0, but so would yz2 − x2 = 0 or even yz2 − x2z = 0. There

seem to be many possibilities; let’s see if we can narrow the field.

We will start by saying that the first choice, yz − x2 = 0, is the

equation we really want, and while it is appealing in that it is the

simplest of the three, we want to be sure it is really the correct one.

Let’s dismiss the choice yz2 − x2 = 0. One problem is that for a

point to be on a projective curve means all the representatives of the

point satisfy the equation. So for [2, 4, 1] to be a point on the curve
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means not simply that (2, 4, 1) is a solution, but so is (2t, 4t, t) for any

nonzero real number t. Substituting (2t, 4t, t) into yz2 − x2 = 0 gives

4t3 − 4t2 = 0 = 4t2(t − 1). Certainly this fails to be true for most

values of t. But what was wrong? The powers of t did not match.

Do they in the other candidates?

yz − x2 = 0 
→ 4t2 − 4t2 = 0,

yz2 − x2z = 0 
→ 4t3 − 4t3 = 0.

Well these both pass that test, but is there something else to distin-

guish yz − x2 = 0 from yz2 − x2z = 0? Well, the second equation

factors as z(yz − x2) = 0 which has our first candidate as part of it.

Sure, we could go for simplicity, but there is actually more going on

here. To understand it, let’s go back to affine space where we have

more insight.

The question boils down to whether there is a difference between

the set of solutions to y − x2 = 0 and x(y − x2) = 0. The first one

we agree is the parabola, but what about the second? Well, since the

product must equal zero, either x = 0 or y−x2 = 0, so we get all the

points on the parabola, but we also get all the points where x = 0,

namely the y-axis, so the set of solutions to x(y − x2) = 0 is the

union of the y-axis and the parabola. The same thing is happening in

projective space. We get extra solutions coming from z = 0, that is

the set of points [a, b, 0] in the projective plane, which is the projective

line at infinity. So yz − x2 = 0 was indeed the correct choice.

Now the general paradigm is quite simple, and it is called ho-

mogenization, and what is being made homogeneous (uniform) is the

degree of each summand. So for example if we have a complicated

equation like

f(x, y) = 3x5y2 − 2xy3 + 2x2 + 7y3 = 0,

which describes a curve in the affine plane, we homogenize the poly-

nomial f(x, y) by multiplying each summand by the smallest power

of z so all terms have the same degree. Simply look at the original,

and determine the highest degree term (in our case, that degree is 7)

and multiply by powers of z to make all terms have degree 7, so

F (x, y, z) = 3x5y2 − 2xy3z3 + 2x2z5 + 7y3z4
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is our appropriately homogenized polynomial. Every affine point

(a, b) on the original curve corresponds to the point [a, b, 1] on the

associated projective curve

F (x, y, z) = 3x5y2 − 2xy3z3 + 2x2z5 + 7y3z4 = 0.

So now we have a larger space in which to work, and we know how

to take a curve in the affine plane and write down the equation which

describes the corresponding curve in the projective plane. Finally, it

is time to see that we have actually gained something in this process.

Let us show that any two distinct lines in the plane intersect in a

unique point; in particular, let’s show that two parallel lines intersect

in the projective plane.

We shall prove some of the general results here, leaving the re-

maining arguments as an exercise. First we show by example that two

lines in the plane which are not parallel intersect in a unique point

in the projective plane, and it corresponds to the point of intersec-

tion they had in affine plane. Then we show that two lines in affine

plane which are parallel, have a unique point of intersection in the

projective plane, this time in the line at infinity.

First we start with two lines y − 2x+ 5 = 0 and y − 5x− 7 = 0,

the first having slope 2, the second slope 5, so we know that they

will intersect. A little algebra shows they intersect at (−4,−13). The

homogenized equations are y − 2x + 5z = 0 and y − 5x − 7z = 0.

To find all the points of intersection, we divide the search into those

points in the copy of the affine plane (i.e., where z = 1) and those

in the line at infinity (i.e., where z = 0). When z = 1, the algebra

implied above shows that the only point is [−4,−13, 1], so now we

look for extra points in the line at infinity, so we set z = 0, and then

must solve simultaneously y − 5x = 0 and y − 2x = 0. Perhaps you

are going to point out that these are two nonparallel lines and so will

intersect! But where? Clearly, the point is (x, y) = (0, 0), but because

this is in the line at infinity, the corresponding projective point would

have to be [0, 0, 0]. If you go back to our original definition of P2(R),

we started with the set A3(R) \ (0, 0, 0), that is every point [a, b, c] in

the projective plane must have at least one nonzero coordinate. So
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we gain no more points in the line at infinity, thus these two lines

have only the affine point of intersection.

Now we turn to the more interesting case, that of two parallel

lines. The general equation of a line in the affine plane, say A2(R),

is ax + by + c = 0 and a line parallel but not equal to it will have

the equation ax+ by + d = 0 with c �= d. We also have that at least

one of a, b is nonzero so that the equations actually define lines. The

homogenized equations are ax + by + cz = 0 and ax + by + dz = 0.

We know there is no solution in the copy of the affine plane (i.e.,

when z = 1), so we look in the line at infinity, by setting z = 0; thus

any point of intersection will have the form [x, y, 0]. We see both

equations reduce to ax+ by = 0. Because this is a general equation,

we have to handle two separate cases. If a �= 0, then x = −by/a,

so [x, y, 0] = [−b/ay, y, 0] = [−b/a, 1, 0]. If b �= 0, then y = −ax/b,

so [x, y, 0] = [x,−ax/b, 0] = [1,−a/b, 0]. So in either case, there is

a single point of intersection (in the line at infinity), and we note

that when a and b are both nonzero, that [−b/a, 1, 0] = [1,−a/b, 0],

so there is no ambiguity in representing that point in the projective

plane.

It is important to note for our use in defining a group law on an

elliptic curve that, in the notation above, every vertical line has the

form ax+ by + c = 0 where b = 0, which means it intersects the line

at infinity at the point [0, 1, 0]. We shall also see that this point is the

unique point at infinity on an elliptic curve y2 = x3 + ax2 + bx + c,

so in particular, every vertical line in the plane intersects the elliptic

curve at the point [0, 1, 0] (in the line at infinity).

7.3. Rational Points on Curves

Now let’s consider another motivation for projective space and the

notion of homogenization. In section 2.4, we exploited a correspon-

dence between rational points on the unit circle x2 + y2 = 1 and

Pythagorean triples. We extended that correspondence to the Fer-

mat curves xn + yn = zn for n > 2. In view of Wiles’s proof of the

Fermat conjecture, we know that there are only a few rational points

on xn+yn = 1 (when n > 2). But the correspondence between ratio-

nal points on xn+yn = 1 and integral points on xn+yn = zn remains
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valid and instructive, so let’s push the correspondence a bit harder

so as to provide a natural connection to projective space. While the

discussion here is quite straightforward, it would be hard to improve

on the outline in Appendix A of [ST92] which we amplify, but largely

follow.

Let (a/b, c/d) be a rational point on the curve xn + yn = 1

(n ≥ 2) with a, b, c, d ∈ Z, gcd(a, b) = gcd(c, d) = 1, and without

loss of generality b, d > 0. Then

(a/b)n + (c/d)n = 1 implies that (ad)n + (bc)n = (bd)n.

In the second equality, we see that bn divides two of the summands, so

it must divide the third (ad)n. Also dn divides two of the summands,

so it must divide the third (bc)n. Thus

bn | (ad)n and gcd(a, b) = 1 implies bn | dn which implies b | d, and

dn | (bc)n and gcd(c, d) = 1 implies dn | bn which implies d | b.

Since b | d and d | b, we must have b = ±d, but since both are

positive, we have b = d. So all rational points on xn + yn = 1

have the special form (a/c, b/c) with gcd(a, c) = gcd(b, c) = 1 and

c > 0 (yes; we changed the notation). Thus we have one-half of a

correspondence between rational points on xn + yn = 1 and integral

points on xn + yn = zn:(
a

c
,
b

c

)
on xn + yn = 1 
→ (a, b, c) with an + bn = cn.

Conversely, an integer solution an + bn = cn with c �= 0 corresponds

to a rational point (a/c, b/c) on xn + yn = 1.

But this correspondence between rational points and integral

points is far from one-to-one. In particular, if (a, b, c) (with c �= 0) sat-

isfies an+bn = cn, then so too does every point of the form (at, bt, ct),

t �= 0. But all of these points correspond to exactly the same rational

point (a/c, b/c), so if we want to get a one-to-one correspondence, we

would be forced to identify all the points (at, bt, ct), with t �= 0. In

section 2.4, and in the case of n = 2, we resolved this ambiguity with

the notion of a primitive Pythagorean triple. But it should be clear

from all the work done in the previous section that this identification
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corresponds more generally to viewing the triple (a, b, c) as a point

[a, b, c] in the projective plane.

This is also an excellent time to motivate the extra points in

projective space. Recall that the projective plane contained a copy

of the affine plane as well as a projective line at infinity. An issue

not previously addressed is to consider the solutions to an + bn = cn

where c = 0. We can easily dismiss the case when a = b = c = 0

as uninteresting or irrelevant. However, when n is odd, there are

nontrivial solutions, e.g., an + (−a)n = 0 for any nonzero a. Under

the conjectured correspondence these would seem to correspond to

“rational” points (loosely) (a/0,−a/0) = (∞,∞), certainly not what

we would consider a typical point on the curve. But indeed, we shall

see that all these solutions reduce to one extra point in the projective

line at infinity.

To reiterate what we said above, if (a, b, c) ∈ A3(Z) (or A3(Q))

is a nonzero solution to xn + yn = zn, then so is (at, bt, ct) for every

nonzero scalar t. That means that every point which lies in the equiv-

alence class [a, b, c] ∈ P2(Q) is also a solution, so it makes sense to

talk about the projective point [a, b, c] as a solution to xn + yn = zn.

Now let’s try to put all this together. We began by looking at ratio-

nal points on xn + yn = 1. These had the form (a/c, b/c) for c > 0.

The homogenization of xn + yn = 1 is xn + yn = zn, and those

original solutions to the affine equation correspond to the projective

points [a/c, b/c, 1] = [a, b, c], that is, those points of xn + yn = zn

which lie in the affine part of the projective plane. The solutions

to xn + yn = zn with c = 0 (n odd) correspond to the single point

[a,−a, 0] = [1,−1, 0] which lies in the projective line at infinity in the

projective plane. So projective space gives us a single container for

all the solutions in which we really don’t have to distinguish the cases

if we don’t want to.

Now let’s take a look at the type of curves that form the heart

of this book, elliptic curves. We said that an elliptic curve for us

will be the set of points (x, y) which satisfy an equation of the form

y2 = x3 + ax2 + bx+ c, where the cubic is nonsingular, that is, it has

distinct roots. By now, we know enough to homogenize the equation

and look for solutions in projective space.
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The homogenized equation is

y2z = x3 + ax2z + bxz2 + cz3,

and the original (affine) points on the curve all have the form [a, b, 1].

What do we gain by viewing things in projective space? Are there

additional solutions?

Any new solutions to this equation would have the form [x, y, 0]

which reduces the homogeneous equation to x3 = 0. That means that

there is only one extra point on the elliptic curve living in the line at

infinity, namely [0, y, 0] = [0, 1, 0].

Exercise. Consider the points of intersection of the affine curves

x = y2 and y = −3. As this is the intersection of a line and a conic,

we expect at most two points, and indeed there is only one affine

point (9,−3). Find the points of intersection of the corresponding

projective curves.

Exercise. Find the points of intersection of the parallel lines y = 3x

and y = 3x+ 1 in P2(R).

Exercise. Consider the intersection of the cubic y = x3 and the

line y = x + 6. We would like to see three points of intersection,

but where are they?

One thing we learn from these exercises is that, given two curves

defined over Q or R, or C having degreem and n, respectively, to have

any hope of finding an environment in which these curves consistently

intersect in mn points, we must look in P2(C), that is, the projective

plane over the algebraically closed field C.

7.4. The Group Law for Points on an Elliptic
Curve

We have seen various sets endowed with an operation which gave the

set the structure of a group: given two elements in the set, there

is a rule by which to produce a third element of the set; and this

operation has an identity and inverses, and it satisfies an associative



160 7. Curves in Affine and Projective Space

law. In this section we shall take the set of points on an elliptic curve

and define an operation on them that will endow the set with the

structure of a group. This is actually a remarkable achievement with

broad ramifications, which are not at all obvious. Before digging in,

we make a few general observations.

Suppose we start with an elliptic curve E given by the equation

y2 = x3 + ax2 + bx + c where the coefficients are taken from some

fixed field F . The choice of field may not be obvious from the defin-

ing equation. For example, suppose we start with an elliptic curve

given by the equation y2 = x3 − x. This could be defined over Q,

R, C, or even Fp. And so it makes sense to talk about the set of

points on this elliptic curve whose coordinates both lie in a specific

field F ; we shall denote this set of points by E(F ). So of course

E(Q) ⊂ E(R) ⊂ E(C), and E(Fp) ⊂ E(F ) for any field F contain-

ing Fp. It is interesting that considering elliptic curves over these

different fields leads to distinctly different mathematical endeavors.

We shall see that cryptographic applications are primarily interested

in elliptic curves over finite fields. Elliptic curves over C were per-

haps the first to be studied and connected to the study of elliptic

functions, like the Weierstrass ℘-function, which not only gives an

interpretation of the group law on E(C), but describes E(C) as a

complex torus. We talk a bit more about this in Appendix A, and we

also consider the set of rational points E(Q), which has no geometric

structure, but an algebraic one. A theorem of Mordell tells us this

set of points forms a finitely generated abelian group. This type of

group is more general than the groups we have looked at so far; it

simply means E(Q) ∼= Zr × E0 where E0 is a finite abelian group.

The group E(Q) is intimately related to the Birch and Swinnerton-

Dyer conjecture, which is one of the Millennium Problems (http://

www.claymath.org/millennium-problems) whose correct solution

will earn the solver one million dollars!

An important point we want to make is that the group law we

will define respects the underlying field. That is, if you have an

elliptic curve defined over a field F and start with two points P,Q ∈
E(F ), the group law will produce a third point P ⊕Q both of whose

coordinates are also in F . This may not seem so special now, but

http://www.claymath.org/millennium-problems
http://www.claymath.org/millennium-problems
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perhaps it will, given that our insight for how to add points in E(F )

(for any field F ) will come from geometric insight gleaned by looking

at E(R). However, once we have extracted the algebraic rules which

define the group law based upon that geometric insight, we will see

that the group law makes sense over any field, including a finite field

where most cryptographic applications lie.

To gain this geometric insight, we first consider the set of real

points on an elliptic curve. This set of points will either have one

or two components, as shown in Figures 7.2 and 7.3 of y2 = x3 + 2

and y2 = x3 − x. This fact follows from the assumption that the

cubic is nonsingular (has distinct roots in C), and a cubic with real

coefficients has at least one real root, so either all three roots are real

or the other two roots are complex conjugates of each other. Figures

7.2 and 7.3 display these two possibilities.

Figure 7.2
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Figure 7.3

Let’s start with some basic observations. Suppose we are given

two points P , Q on our elliptic curve. Euclidean geometry says that

there is a unique line that passes through those two points. Our

observations about Bézout’s theorem suggest that a line and a cubic

should intersect in three points (at least in P2(C) and accounting for

multiplicity). But a group law for the curve must take two points

and produce a third on the curve. Could it be this simple? Actually,

no, but it is not hard to see that the obvious guess is wrong, and

investigating this first guess will give us a bit more insight.

Let E(R) denote the set of real points on an elliptic curve. We

have observed that under the right circumstances, a line and a cubic

should intersect in at most three points, so given points P and Q in

E(R), consider the line through P and Q. If P = Q, we consider the

tangent line to the curve at P . Let P ∗ Q denote the third point of

intersection (which may, on occasion, turn out to be either P or Q).

At least (P,Q) 
→ P ∗ Q is a binary operation on E(R). Figure 7.4

illustrates a typical situation.
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Figure 7.4

First let’s see that the operation ∗ is commutative, that is, P ∗Q =

Q ∗ P . Well, this is quite easy since the line through P and Q is the

same as the line through Q and P , so where it intersects the cubic

again is obviously the same. So far, so good.

The first wrinkle appears because there can be no element which

acts as the identity for this operation. To see this, suppose there is

a point which we will denote by 0 in E(R) so that 0 ∗ P = P for all

points P on the curve. To say that 0 ∗ P = P is to say that the line

through 0 and P intersects the elliptic curve in a third point which

happens to be P . This means the line is tangent to the curve at P .

Since this happens for every P , it says that every tangent line to the

curve at a point P intersects the elliptic curve at the same point 0,

which is visibly not the case.

It is also easy to see that ∗ is not an associative operation. Con-

sider points P and Q on the curve as in the figure above where P , Q

and P ∗ Q are distinct points. What is P ∗ (P ∗ Q)? Well, it is the

third point of intersection of the line through P and P ∗Q with the
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elliptic curve which is visibly Q, so P ∗ (P ∗Q) = Q. If the operation

∗ were associative, then Q = P ∗(P ∗Q) = (P ∗P )∗Q. That says take

the tangent line to the curve at P , and find its point of intersection,

P ∗ P , with the curve. For the equality Q = (P ∗ P ) ∗ Q to hold, a

line through P ∗ P and the point Q (as in Figure 7.4) would have to

be tangent at Q, and while it certainly fails for this choice of Q, it

would have to be true for all Q, which is clearly impossible.

So our first guess was not correct. But the good news is that it is

not that far off, and actually there are many related ways in which to

define a group operation. Fortunately, they all give rise to isomorphic

groups, which allows us a degree of flexibility.

One deficiency we noted in our first attempt at defining a group

law was that there was no identity element for the operation, and this

is obviously an important matter. Perhaps there is a matter of even

more concern. The applications we have in mind will have us look

at E(Q) and E(Fp), and we have no idea whether there are even any

elements in this set, to say nothing of its elements forming a group!

For example, some curves have no rational points:

Exercise. Show that the curve x2+y2 = 3 (a conic) has no rational

points, even when we extend the search to P2(Q).

You see, we have been relying on our geometric intuition by look-

ing at E(R) where there are visibly lots of points, but we have not

considered whether it is possible that E(Q) or E(Fp) might be empty.

For the moment, let’s defer that issue. It will turn out that view-

ing our curve in projective space will allow us to show that E(F ) is

nonempty no matter what field F we choose, and it will also provide

a natural candidate for the element 0 that we wish to designate as the

identity element of our group. So for now, we need only assume we

have fixed an element 0 in our set E(F ). To move forward, we return

to the case where F = R, give our revised binary operation, and out-

line the ideas which show that the operation gives E(R) the structure

of a group. Details on the group law can be found in [ST92], but

pictorially it is given in Figure 7.5 (which is a rendition of the cover

of their text).
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Figure 7.5

Now in words, the variation we need is to take two points P , Q

and to find the third point of intersection with the elliptic curve, and

to label it P ∗Q. Then using our distinguished point 0, we define

P ⊕Q := 0 ∗ (P ∗Q),

that is, P ⊕Q is the third point of intersection of the line through 0

and P ∗Q with the elliptic curve. As P ∗Q = Q ∗ P , it follows that

P ⊕Q = Q⊕ P , so we have a commutative operation.

Let’s first see that our choice of 0 makes sense as the additive

identity of the group. We want to show that P ⊕0 = P for all points

P , so we consider the line through P and 0 as pictured in Figure 7.6.

The point P ∗ 0 is the third point of intersection, and we now

take the line through 0 and P ∗ 0. Its intersection with the curve is

clearly P , which establishes the result.

To understand how additive inverses work, first construct the

tangent line to the elliptic curve at the point 0 as in Figure 7.7; the
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Figure 7.6

Figure 7.7
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condition that our elliptic curve is nonsingular guarantees its exis-

tence. Let Q denote the third point of intersection of the tangent line

and the elliptic curve.

Next choose any point P and draw line through P and Q. The

claim is that P ∗ Q is the additive inverse −P of P . To check we

need to compute P ⊕ (P ∗ Q). As above we first compute the point

of intersection P ∗ (P ∗ Q) of the line through P and P ∗ Q with

the elliptic curve. With the help of the diagram, we see this is the

point Q. Then by our above definition, P ⊕ (P ∗ Q) is the point of

intersection of the line through 0 and the point Q = P ∗ (P ∗Q). But

this point of intersection is 0 (the point of tangency counts as two

points of intersection in the context of Bézout’s theorem), so indeed,

P ∗Q is the additive inverse of P .

The only thing remaining in order to confirm that E(R) is an

abelian group with 0 as the identity is to verify that this addition law

is associative, and this is not at all a trivial matter. While we will not

give a detailed proof, we will indicate several ways it can be verified

and hopefully give some appreciation of why this is a complicated,

yet very interesting result. Perhaps Figure 7.8 would help as a start.

Admittedly it is a somewhat daunting image, but let’s see what

is involved. We want to show that (P ⊕Q)⊕R = P ⊕ (Q⊕R) for any

points P,Q,R on the elliptic curve. Backing up one step, we need to

show that the line through 0 and (P ⊕ Q) ∗ R intersects the elliptic

curve at the same place as the line through 0 and P ∗ (Q⊕R). This

would be trivial if we show that (P ⊕Q) ∗R = P ∗ (Q⊕R), which is

evident at the bottom right of the figure.

To ease your way into the figure, start with the points P,Q,R

and compute P ⊕ Q and Q ⊕ R, each of which requires two lines.

Computing (P ⊕Q) ∗R and P ∗ (Q⊕R) each requires one line, and

now we are in the lower right corner. The line between these common

points and 0 intersects the curve at (P ⊕Q)⊕R = P ⊕ (Q⊕R).

Now a picture does not a proof make, and while we can turn

the pictures characterizing the other properties of a group into actual

proofs, the associative law is much more complicated. One way to

deal with this complication will come in a few pages when we write
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Figure 7.8

down formulas for the coordinates of P ⊕ Q in terms of the coordi-

nates of P and Q. Then tedious algebraic computations can verify

that the associative law holds. Also in Appendix A (where we discuss

elliptic curves over C and their connection to elliptic functions), an-

other proof is outlined. For now, we take time to give enough context

to understand how the proof of associativity comes about and to give

connections of this result to other results from classical geometry of

curves.

It probably comes as no surprise, but to motivate this, we make

a slight digression. We know that two points in the plane determine

a unique line which contains them. What are some generalizations?

In calculus, if you study Simpson’s rule, you learn that three points

in the plane (no two on a vertical line) lie on the graph of a uniquely

determined quadratic, y = ax2 + bx+ c; we note that a can be zero if

the points are colinear. Can we ask for more? Yes! And the answer

is called Lagrange interpolation. The statement is that given n + 1

points in the plane A2(R), no two on a vertical line, there is a unique

polynomial p(x) = cnx
n + · · ·+ c1x+ c0 of degree at most n, so that
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all the points lie on the graph of y = p(x). There are two aspects to

proving such a statement: the existence of a polynomial, and that it is

unique. Let’s make existence an exercise and talk about uniqueness,

since that bears at least suggestively on the problem of the associative

law.

Exercise. We want to define a polynomial p of degree (at most) n

which passes through (a1, b1), . . . , (an+1, bn+1) where we assume all

the ai’s are distinct. Suppose we could define polynomials qi having

degree at most n so that qi(ai) = 1 and qi(aj) = 0 for i = 1, . . . , n+1

and j �= i. Show that we may take p = b1q1 + · · · + bn+1qn+1. To

construct the qi, let’s provide some guidance. You may or may

not recall that if a polynomial q(x) with real coefficients has a root

a, then (x − a) is a factor, that is q(x) = (x − a)q0(x). Even if

you don’t recall that fact, it should be clear that the polynomial

q(x) = (x−a2)(x−a3) · · · (x−an+1) has the property that q(ai) = 0

for i = 2, . . . , n + 1, and that q(a1) = (a1 − a2)(a1 − a3) · · · (a1 −
an+1) �= 0 precisely because the ai’s are all distinct. So we may

take q1(x) = q(x)/q(a1) as the first element of our set. The others

are similarly constructed.

Now as we said, it is the uniqueness that we want to discuss. The

fact upon which we shall rely is that a nonzero polynomial p(x) with

coefficients in a field having degree n has at most n roots in the field.

One proof is a consequence of establishing a division algorithm for

such polynomials, but of course it is also a special case of Bézout’s

theorem since the roots correspond to the points of intersection of

the curve of degree n, y − p(x) = 0 and the line that is the x-axis.

Suppose we have two solutions to the Lagrange interpolation problem,

that is, we have two polynomials p1 and p2 of degree at most n,

satisfying p1(ai) = p2(ai) for i = 1, . . . , n+1. Consider the polynomial

p(x) = p1(x) − p2(x). It has the property that its degree is at most

n, yet p(ai) = 0 for all i, that is, it has n + 1 roots, more than its

degree. The only way out is that p(x) is the zero polynomial, meaning

p1(x) = p2(x), so the solution is unique.
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Exercise. Show that in contrast to the uniqueness result which

Lagrange interpolation provides, there are an infinite number of

polynomials of degree n + 1 which pass through the n + 1 given

points.

Now that we have made this digression, we come back to the

associative law. Replacing Lagrange interpolation, we have Bézout’s

theorem which talks about the number of points of intersection of two

plane curves. We have agreed that the upper bound for the number of

points of intersection for nice curves is the product of the degrees of

the curves, and we suggested the Bézout bound is achieved in P2(C).

First we comment about what “nice” means. In a nutshell, if the

curves are given as zero sets Z(f) and Z(g), then the polynomials f

and g cannot have any common factors. Consider an example where

this condition fails. The curves given as the zero sets of f(x, y) =

y2 − x2 and g(x, y) = y3 − x3 have degrees 2 and 3, respectively, so

the Bézout bound would be 6. But the polynomials that define these

two curves share a common factor, y2 − x2 = (y − x)(y + x) and

y3−x3 = (y−x)(y2+xy+y2), so we see that every point on the line

y = x lies on both curves, giving them an infinite number of points

of intersection. When we preclude this from happening (and we view

things in P2(C)), the curves will intersect in precisely deg(f) deg(g)

points, counted with appropriate multiplicities. One way to ensure

there are no common factors is to require one of the curves, say Z(f),

to be given by an irreducible polynomial f which is not a divisor of g.

The theorem is invoked to establish the validity of the associative

law for the addition of points on elliptic curves is the following (see

Chapter 5, §6 of [Ful69]).

Theorem. Let C,C1, C2 be cubic curves in P2(C), and assume

that C is irreducible. Suppose that C and C1 intersect in the nine

points P1, . . . , P9 (and that C has tangent lines at each Pi). If C and

C2 intersect in nine points, eight of which are among the Pi, then the

ninth point of intersection is also among the Pi.

So in loose analogy with Lagrange interpolation where a polyno-

mial of degree n is completely determined by any n+1 points through
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which it passes, the intersections of these pairs of cubic curves are

completely constrained once there are eight common points of inter-

section.

In its application to the associative law for the group of points on

an elliptic curve, the curve C is the elliptic curve which is irreducible

and nonsingular, meeting the criteria of the theorem. The other cu-

bics (remember a cubic is just a homogeneous polynomial of degree

3) arise as the product of three lines (degree 1 curves) coming from

our diagram trying to compute P ⊕Q⊕R in two different ways.

Before leaving this thread, we comment that results closely re-

lated to the theorem above (and proven in [Ful69]) give two classical

results in projective geometry: Pascal’s and Pappus’s theorems which

involve the intersection of a cubic and a conic. We state them for in-

terest and reference.

Theorem (Pascal). Let C be a conic (e.g., an ellipse, hyperbola,

parabola). Choose any six distinct points on C, and join them with

line segments in any order to form a hexagon. Then each pair of

opposite sides of the hexagon (extended if necessary) intersect in a

point, and those three points all lie on a straight line, called the Pascal

line of the hexagon.

An example is shown in Figure 7.9.

Now the reader may wonder what happens if, for example, we

inscribe a hexagon in an ellipse in such a way that the opposite sides

are parallel. Where do the lines extending opposite sides intersect?

And then we remember this is a theorem about projective geometry,

so that answer should now be clear.

Pappus’s theorem is, in a sense, a degenerate version of Pascal’s

theorem in which the conic is reducible (the product of two lines).

Theorem (Pappus). Consider two lines in the plane and choose

points A,E,C on one and D,B, F on the other. The opposite sides

of the hexagon ABCDEF intersect in three colinear points.

An example is shown in Figure 7.10.
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Figure 7.9

Now that we have given reasonable justification that our addition

law makes the set of real points on an elliptic curve into an abelian

group, we return to the question of what choice to make for our dis-

tinguished point 0, given that we have essentially no intuition about

E(F ) for arbitrary fields F . In what follows, we point out a number

of nice coincidences which suggest a very natural choice for 0. One

thing that works in our favor is that is we have taken a definition of

an elliptic curve as the set of solutions to y2 = x3 + ax2 + bx + c,

where the cubic is nonsingular. This is not the most general setting

we could adopt, but for us there is no real loss.

We showed by homogenizing that equation, that the point [0, 1, 0]

is on every such elliptic curve; it is the only point on each curve that

lies in the line at infinity, and it is clearly a point that is in E(F )

for any field F . So we have at least one distinguished point on every

single one of our elliptic curves over any field, so it should not come

as a surprise then that we will choose [0, 1, 0] for our identity 0.
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Figure 7.10

There are other interesting consequences of choosing the point

[0, 1, 0] as the identity. Consider Figure 7.11.

When we intersect our elliptic curve with vertical lines such as

the ones through P1, P2 and Q1, Q2, what is the third point of inter-

section? It does not appear to be anything in the affine plane, but

when we talked about lines in the projective plane, we noted that

they intersect the line at infinity in a unique point. We showed that

the line ax + by + c = 0 intersects the line at infinity at [0, 1, 0] if

b = 0 (a vertical line), at [1, 0, 0] if a = 0 (a horizontal line), or at
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Figure 7.11

[−b/a, 1, 0] = [1,−a/b, 0] if a, b �= 0. In particular, every vertical line

intersects the elliptic curve at the point 0 = [0, 1, 0] at infinity.

So if we take 0 = [0, 1, 0] as our identity, then the general addition

rule we gave above says that for points P1 and P2 on the curve which

also lie on a vertical line, P1 ∗P2 = 0, and so P1⊕P2 = 0∗(P1 ∗P2) =

0∗0. Well, what is 0∗0? This a bit subtle without formal definitions

of intersection multiplicity, but we wish to claim that 0 ∗ 0 = 0, that

is, the third point of intersection of the line through 0 and 0 (the

tangent line) with the elliptic curve is also 0, so 0 is a triple point.

A plausible explanation is the following. All of the lines we explored

previously have the property that they intersect the elliptic curve

either in three points in the affine plane (A2(C)), or in a unique point

in the line at infinity and at two points in the affine plane (counting

points of tangency with multiplicity two). But 0 ∗ 0 is the point of

intersection of the line through 0 and 0 with the elliptic curve. But

since two of the points of intersection are already in the line at infinity,

the line in question cannot be one of the lines we considered before.
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So that line is not an affine line, but instead the line at infinity, which

intersects the elliptic curve only in one point, 0. All of this is to say

that P1 ⊕ P2 = 0. So in general, points P = (x, y) and Q = (x,−y)

(on the elliptic curve), which are symmetric across the x-axis, sum

to 0.

Now we recast the general addition law we gave before in this new

context, with the distinguished point 0 (the identity) located at the

point at infinity on the curve. Pictorially, the addition law is shown

in Figure 7.12.

As before, we take points P and Q and find their point of inter-

section with the curve, denoted P ∗Q. Then we take the line through

0 and P ∗ Q and designate the third point of intersection as P ⊕ Q.

In this special case, the line through 0 and P ∗ Q is a vertical line,

so we know where it intersects the elliptic curve: if P ∗ Q = (x, y),

then P ⊕ Q = (x,−y). Shortly, we will write down formulas for the

coordinates for P ⊕Q given the coordinates of P and Q, but first we

Figure 7.12



176 7. Curves in Affine and Projective Space

firm up our geometric intuition about special cases of the addition

law and shift our view fully to projective space.

As usual, we will draw pictures in A2(R), but the discussion will

reflect what happens in P2(C). We have set 0 = [0, 1, 0], and for a

point P = [x, y, 1] on the elliptic curve (and in the affine plane), its

reflection across the x-axis Q = [x,−y, 1] is also a point on the elliptic

curve. Since these two points lie on a vertical line, they sum to 0,

that is Q = −P = [x,−y, 1] is the additive inverse of P = [x, y, 1].

Sometimes it is convenient to think of the group law on the elliptic

curve in terms of the three points of intersection of a line with the

elliptic curve. For example, in the generic case, we have something

like Figure 7.13.

What is P ⊕Q⊕ (P ∗Q)? Our definition of P ⊕Q is 0 ∗ (P ∗Q),

that is the third point of intersection of the (vertical) line through 0

and P ∗Q with the elliptic curve. We have just seen that this is the

Figure 7.13
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Figure 7.14

point −(P ∗Q), so

P ⊕Q⊕ (P ∗Q) = (P ⊕Q)⊕ (P ∗Q) = −(P ∗Q)⊕ (P ∗Q) = 0,

and under our group law, the sum of any three colinear points which

lie on the elliptic curve is 0.

This remains true in all special cases we have seen. For example,

in the case of a vertical line as in Figure 7.14, we have seen that

P1 ⊕ P2 = 0 = Q1 ⊕Q2, but if we reinterpret this as the sum of the

three points of intersection of a vertical line with the elliptic curve,

the equations would be

P1 ⊕ P2 ⊕ 0 = P1 ⊕ P2 = 0 = Q1 ⊕Q2 ⊕ 0 = Q1 ⊕Q2.
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Figure 7.15

The remaining special cases regard tangent lines which have an

intersection point of multiplicity 2 with the elliptic curve. So in Figure

7.15 we have that Q⊕Q⊕R = 0 and P ⊕P ⊕0 = 0, with the second

equation generally written as 2P = 0.

Remark 7.1. This is a good point at which to reflect upon the Ba-

chet duplication formula introduced in Chapter 2. Using our current

notation, Bachet took a point P on the curve y2 = x3 + k and found

a formula for P ∗ P . In looking at our example from that chapter,

the intent was to iterate to process, generating a sequence of points,

P , P2 := P ∗ P , P4 := P2 ∗ P2 = (P ∗ P ) ∗ (P ∗ P ), and so on.

Our interest with elliptic curves is analogous. We want to start

with a single point P and compute 2P = P ⊕P , then 3P = P ⊕2P =

P ⊕ P ⊕ P , and in general kP = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
k summands

. Sometimes for

some k > 1, we find that kP = 0 as in our case of the vertical tangent

above, where 2P = 0. If this occurs, we say that P is a torsion point

on the curve, and its order is the order of the point as an element of
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the group, namely the smallest positive k for which kP = 0. If kP

is never equal to zero for k = 1, 2, . . . , we say that P is a point of

infinite order.

7.5. A Formula for the Group Law on an
Elliptic Curve

While our investigation of elliptic curves has been mostly theoretical

so far, our applications require that we do arithmetic with the points

on an elliptic curve and, even more importantly, we need to be able

to have a computer do the computations. So that means we need to

write down the addition law for points on an elliptic curve in terms

of formulas that can be coded.

For the most part, we have thus far considered rational, real, and

complex points on an elliptic curve, but for applications we will need

to consider elliptic curves defined over a finite field, such as Fp, with

p a prime. The outline we give here is for primes p �= 2, 3. For finite

fields that contain F2 of F3, the equation describing an elliptic curve

needs to be generalized slightly from what appears below, as does

the notion of the discriminant (see below). A careful exposition is

Chapter VI of [Kob87a].

So for a field F containing either Q, or Fp with p �= 2, 3, we have

said that an elliptic curve can be given by an equation of the form

y2 = x3+Ax2 +Bx+C, and indeed we claim we can further assume

the curve has the form y2 = x3 + ax + b with a, b,∈ F . The latter

observation follows from the easy exercise below.

Exercise. Consider the polynomial z3 + Az2 + Bz + C, and let

z = x−A/3. Show that under this substitution z3 +Az2 +Bz+C

becomes x3 + ax+ b with

a =
1

3
(3B −A2), b =

1

27
(2A3 − 9AB + 27C).

Associated to any polynomial p(x) = anx
n + · · ·+ a1x+ a0 with

coefficients in a field F is a quantity called its discriminant, denoted

Δ or Δ(p) which is described in terms of the roots of p. Let’s start

with a polynomial with coefficients in a field F ⊆ C, so we know that
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p has n roots r1, . . . , rn in C (which do not necessarily have to be

distinct). The discriminant of p(x) = anx
n+ · · ·+ a1x+ a0 is defined

to be

Δ = a2n−2
n

∏
1≤i<j≤n

(ri − rj)
2.

We remark that an analogous statement for an arbitrary field F can

be made if we understand the notion of an algebraically closed field

containing F . The complex numbers C play this role for fields like Q

and R.

Exercise. Using the quadratic formula to find expressions for the

roots, show that the discriminant of the quadratic ax2 + bx + c is

Δ = b2 − 4ac.

Hopefully, the discriminant tells us something interesting about

the polynomial in question. For example if our quadratic ax2+ bx+ c

has real coefficients, what does the discriminant Δ = b2 − 4ac tell

us? By examining the quadratic formula, we see that if Δ > 0, the

polynomial has two distinct real roots. If it is negative, the quadratic

has two complex conjugate roots, and if it is zero, it has a double real

root.

One thing that is evident from the formula above is that if the

polynomial has a multiple root, then we will have ri = rj for some

i �= j which means the discriminant Δ will equal zero. It is also a

fact that the discriminant, while defined in terms of roots which may

not lie in the original field F , can actually be expressed in terms of

the coefficients of the original polynomial just as Δ = b2 − 4ac is

expressed in terms of the coefficients of ax2 + bx+ c.

Exercise. In the exercise above, we have shown how to transform

a polynomial of the form z3 + Az2 + Bz + C into one of the form

x3 + ax + b. Show that these two related cubics have exactly the

same discriminant. Hint : The roots of the two polynomials are

related by a simple formula.

Given this preamble, we state without proof that the discriminant

of the cubic x3 + ax + b is Δ = 4a3 + 27b2, and the curve y2 =

x3 + ax + b defines an elliptic curve when the cubic is nonsingular
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(has distinct roots). We see now that this condition is determined by

the discriminant Δ being nonzero.

We have seen that the projective (homogenized) curve y2z =

x3+axz2+bz3 has one point 0 = [0, 1, 0] at infinity (where all vertical

lines intersect the curve), and all other points on the curve are affine.

Since 0 is the identity of the group (so we know P ⊕ 0 = P for any

point P ), we need only consider how to find the sum of two points

P1 and P2 in the affine plane, say Pi = [xi, yi, 1], i = 1, 2. From the

geometric description of the group law, we let L be the line between

the two points (the tangent line if P1 = P2). We have already seen

that if P1 and P2 lie on vertical line (and are points on the curve),

then P1 ⊕ P2 = 0, so we assume the line L is not vertical. The slope

of the line is

m =

⎧⎪⎪⎨
⎪⎪⎩

y2−y1

x2−x1
if x1 �= x2,

3x2
1+a
2y1

if x1 = x2,

where the slope of the tangent line is obtained by implicit differenti-

ation of the equation y2 = x3 + ax+ b and evaluation at (x1, y1). So

the equation of the line L through P1 and P2 is

y − y1 = m(x− x1).

Solving for y and substituting into y2 = x3 + ax+ b, we obtain

(m(x− x1) + y1)
2 = x3 + ax+ b.

Expanding and collecting terms, we find

x3 −m2x2 + Cx+D = 0,

where expressions for C and D are not needed for what we do below.

Now the roots of this cubic are precisely the x-coordinates of

the three points of intersection, x1, x2 (possibly equal), and x3 the x-

coordinate of the third point of intersection of the line and the elliptic

curve. Thus,

x3 −m2x2 + Cx+D = (x− x1)(x− x2)(x− x3)

= x3 − (x1 + x2 + x3)x
2 + Cx+D,

from which we conclude (comparing coefficients of x2) that x3 =

m2 − x1 − x2. Since y3 = m(x3 − x1) + y1, the point of intersection
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of the line L with the curve is (x3, y3), so P1 ⊕ P2 = [x3,−y3, 1] by

our geometric rule.

We summarize all of our observations.

Summary of the Group Law for E : y2 = x3 + ax+ b.

We have 0 = [0, 1, 0] is the identity for the group, so 0 ⊕ P =

P = P ⊕ 0 for any point P on the curve.

(1) If P = [x, y, 1] is an affine point on the elliptic curve, then

its inverse is −P = [x,−y, 1].

(2) If P1 = [x1, y1, 1] and P2 = [x2, y2, 1] are any two affine

points on the elliptic curve, then P2 = −P1 if and only if

P1 ⊕ P2 = 0, which is true if and only if P1 and P2 are the

two affine points of intersection of some vertical line with

the elliptic curve, so x1 = x2, y1 = −y2.

(3) If P2 �= −P1, then P1 ⊕ P2 = P3 = [x3, y3, 1], where

x3 = m2 − x1 − x2,

y3 = −m(x3 − x1)− y1, and

m =

⎧⎪⎪⎨
⎪⎪⎩

y2−y1

x2−x1
if x1 �= x2,

3x2
1+a
2y1

if x1 = x2.

These rules make the set of points on the curve into an abelian group

under ⊕. Note that if the coordinates of P1 and P2 all lie in a fixed

field F (e.g., Q or Fp), then the coordinates of P1 ⊕ P2 also lie in

that same field since the computations for x3 and y3 only involve

arithmetic in F . So we write E(F ) for the group of F -rational points

on the curve, and what we have said above is that this set of points is

an abelian group under the operation of ⊕, with the point at infinity,

0 = [0, 1, 0], as the identity element of the group.

We note that the formulas for the slope given above still make

sense even when we are in a finite field containing Fp. Both formulas

require us to divide, so we should check that we are in situations where

the denominator is nonzero. If it is, this means the denominator is a

unit in F , so has a multiplicative inverse. So in the first expression
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for m, we see the denominator x2 − x1 is not zero precisely because

we are in the case that x1 �= x2, but what about the expression 2y1
in the case x1 = x2? If F ⊇ F2, we would have 2y1 = 0, which would

cause a problem and is one of the reasons these formulas apply only

to fields containing Q, or Fp with p �= 2, 3. So since p �= 2, 3, we

have that 2 is a unit in F , so it creates no problem, but couldn’t

y1 = 0? Not in the case where this formula is valid: Consider our

curve y2 = x3 + ax+ b. For a given value of x, there are at most two

solutions to the equation which differ by a sign. But if y1 = 0 and

x1 = x2, then y2 is also zero, so P1 = [x1, 0, 1] = P2 = −P2, and this

case is explicitly excluded in item (3) above.

Since our interest in applications is to consider elliptic curves

over finite fields, let’s work through some examples. Consider curves

y2 = x3 + ax + b where a, b run over F7 with Δ = 4a3 + 27b2 �= 0.

Since there are seven potential values for each of a, b, there are at

most 49 possible elliptic curves of this form over F7, although there

are definitely fewer since Δ = 4a3 + 27b2 can be zero. For each fixed

curve, y2 = x3 + ax + b, there are seven values for x, and for each

x, 0, 1, or 2 values of y which satisfy the equation, plus the point at

infinity, so E(F7) has size no larger than 15 and generally less. We

will discuss the expected size of this group in just a bit.

Example 7.2. Consider the example of the cubic curve E : y2 =

x3 + 5x+ 2 over the field F7. The discriminant Δ of the curve is

Δ = 4a3 + 27b2 = 4 · 53 + 27 · 22

≡ 4 · (−2)3 + 6 · 22 ≡ −8 ≡ 6 �≡ 0 (mod 7),

so this is an elliptic curve over F7. We check directly that

E(F7)

= {0, [0,±3, 1], [1,±1, 1], [3,±3, 1], [4,±3, 1]}
= {0, [0, 3, 1], [0, 4, 1][1, 1, 1], [1, 6, 1], [3, 3, 1], [3, 4, 1][4, 3, 1], [4, 4, 1]}.

Thus E(F7) is an abelian group of order 9 which, by the Fundamental

Theorem on Finite Abelian Groups, is isomorphic either to Z3 × Z3

or to Z9.

Consider the point P = [4, 4, 1] on the curve. To find the order

of P , we need to find the smallest positive integer k so that kP =
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P ⊕P ⊕ · · · ⊕P (k times) = 0. We begin by computing 2P using our

formulas, though we know that by Lagrange’s theorem, the order of

P must be 3 or 9.

To double the point P , we use the slope of the tangent line in our

formulas above:

m =
3x2

1 + a

2y1
=

3 · 42 + 5

2 · 4 =
4

1
= 4 in F7.

Thus, 2P = [x3, y3, 1] = [1, 1, 1] (by our formulas). Similarly, we use

the formulas to compute:

P = [4, 4, 1],

2P = [1, 1, 1],

3P = P ⊕ 2P = [3, 4, 1] �= 0,

4P = 2(2P ) = [0, 3, 1],

5P = P ⊕ 4P = [0, 4, 1] = [0,−3, 1] = −4P,

6P = 2P ⊕ 4P = [3, 3, 1] = [0,−4, 1] = −3P,

7P = P ⊕ 6P = [1, 6, 1] = [1− 1, 1] = −2P,

8P = 2(4P ) = [4, 3, 1] = [4,−4, 1] = −P,

9P = P ⊕ 8P = P ⊕ −P = [0, 1, 0] = 0.

Since we know that the order of the point P is either 3 or 9, and

3P �= 0, we know that P has order 9, so the group, E(F7), is cyclic of

order 9, with P = [4, 4, 1] one of the possible generators. There are

five other generators.

Example 7.3. Consider another example over F7, this time the curve

given by E : y2 = x3 + 3x. The discriminant of the curve is

Δ = 4a3 + 27b2 = 4 · 33 + 0 ≡ 3 (mod 7),

so this equation defines an elliptic curve over F7. We check directly

that

E(F7) = {0, [0, 0, 1], [1,±2, 1], [2, 0, 1], [3,±1, 1], [5, 0, 1]}
= {0, [0, 0, 1], [1, 2, 1], [1, 5, 1], [2, 0, 1], [3, 1, 1], [3, 6, 1], [5, 0, 1]}.

This time E(F7) is an abelian group of order 8, so isomorphic to

one of Z8, Z4 × Z2, or Z2 × Z2 × Z2.
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We check that there is no point having order 8, so the group is

not cyclic. With P = [1, 2, 1], we compute

P = [1, 2, 1],

2P = [2, 0, 1],

3P = P ⊕ 2P = [1, 5, 1] = [1,−2, 1] = −P,

4P = 0,

so we know that E(F7) ∼= Z4 × Z2. If we put Q = [5, 0, 1] (or any or

any of the remaining points), we can generate the rest of the group.

Note that since Q has y-coordinate equal to 0, when we double the

point 2Q, we are taking a vertical tangent, and we have seen above

that 2Q = 0. We finish the group with

Q = [5, 0, 1],

P ⊕Q = [3, 6, 1],

2P ⊕Q = [0, 0, 1],

3P ⊕Q = [3, 1, 1].

Exercises. Consider the following elliptic curves over F7, and de-

termine the set of points on the curve and its structure as an abelian

group. Write out how to determine all the elements of the group in

terms of the generators you choose.

(1) E : y2 = x3 + 3x+ 6.

(2) E : y2 = x3 + 2.

(3) E : y2 = x3 + 4.

7.6. The Number of Points on an Elliptic Curve

A question which is important as we look towards how to use elliptic

curves in a cryptographic setting is how large E(Fp) can be. For

simplicity, let’s restrict our discussion to primes p > 3. Let x0 ∈ Fp.

When we substitute x0 into y2 = f(x), there are several possibilities.

If f(x0) is not a square in Fp, then we have no points of the form

[x0, y, 1] on the curve. If f(x0) = 0, we get one, namely [x0, 0, 1], and

if f(x0) = y20 is a nonzero square, we get two, [x0,±y0, 1].
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Consider the multiplicative group Up, which has order p− 1. We

claim that exactly half of the elements in Up are squares (modulo p),

and the other half are nonsquares. Let’s make the proof of this fact

more of a leisurely stroll than a succinct proof.

If you want to know which elements in Up are squares, the sim-

plest way is to square all the elements and see which residues remain.

While earlier we expressed the elements of Up as the set of positive

residues Up = {1, 2, . . . , p− 1}, it is often convenient to list them

as Up = {1, 2, . . . , p−1
2 ,−p−1

2 , . . . ,−2,−1}. Of course, we see that

k2 ≡ (−k)2 (mod p) for k = 1, 2, . . . , (p − 1)/2. These represent all

possible squares in Up. So there are at most (p− 1)/2 squares in Up.

To see that there are exactly (p − 1)/2 squares, we show that

there is no redundancy in the list. For suppose that a, b ∈ Z and

a2 ≡ b2 (mod p). This means that a2 − b2 ≡ 0 (mod p), or that

p | (a2 − b2) = (a− b)(a+ b). But p is a prime, and whenever a prime

divides a product of two integers, it must divide one of them (see the

exercise just before Theorem 3.15). So this means p divides (a − b)

or (a + b). In terms of congruences, that says that a ≡ ±b (mod p).

So for a fixed k ∈ {1, 2, . . . , p−1
2 }, the only way for a2 ≡ k2 (mod p)

is if a ≡ ±k (mod p). This says that {k2 | k = 1, 2, . . . , p−1
2 } are all

the distinct squares in Up. So among the elements of Up, half of them

are squares and the complementary half are nonsquares.

Of course another way to see this is to recall the Up is cyclic, say

Up = 〈g〉. So g is a primitive root modulo p and Up={g, g2, . . . , gp−1}.
Clearly, those elements gk with k even are squares. Can we check that

those with k odd are not? If gk = g2� with k odd, then g2�−k = 1 in

Up, which means (by Lagrange) that |g| = p−1 | (2�−k) or 2�−k ≡ 0

(mod p − 1). But since p is odd, p − 1 is even, so that 2� − k ≡ 0

(mod p− 1) implies 2�− k ≡ 0 (mod 2), which is clearly false.

Indeed, the squares and nonsquares of Up or of Fp are so im-

portant in number theory, they have been given special names. If

a ∈ Up, we say a is a quadratic residue if a is a square in Up, and it

is a quadratic nonresidue otherwise.

Returning to our question of the size of E(Fp), we first offer a

heuristic: Suppose that as x runs over all the values of Fp, the values
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of f(x) are uniformly distributed modulo p. So we expect some x0 for

which f(x0) = 0 (which will yield one point on the curve), (p− 1)/2

of the points x in Up yielding f(x) a quadratic residue, contributing

another (p − 1) points on the curve, plus the point at infinity for a

total estimate of p+ 1 points.

With that as a guess, based on a uniform distribution, we write

#E(Fp) = p+1+(error term). That’s all well and good, but is there

any truth in this heuristic? That is answered by a theorem of Hasse

which says the error is bounded in absolute value by 2
√
p.

Theorem 7.4 (Hasse).

−2
√
p < #E(Fp)− (p+ 1) < 2

√
p.

Culling from some historical facts in [CP05], we note that there

is a theorem of Deuring (1941) [Deu41] which says that if we let Ea,b

denote the elliptic curve y2 = x3 + ax + b, then for any integer m

with p + 1 − 2
√
p < m < p + 1 + 2

√
p, there exists a, b ∈ Fp so that

#E(Fp) = m. A 1987 theorem of Hendrik Lenstra [Len87] says there

are actually many of them.

Hasse’s theorem gives teeth to the above heuristic which we want

to exploit in giving a description of elliptic curve cryptography. We

set the stage here and continue the discussion in the next chapter.

The idea is, given an elliptic curve E over a finite field Fp, we want

the probability that a randomly chosen x in Fp is the x-coordinate

of a point on E. If N = #E(Fp), then with at most four exceptions,

every point (x, y) is paired with a distinct point (x,−y) on the curve,

so N/2 is roughly the number of x-coordinates of points on the curve,

meaning N/2p is roughly the probability that a randomly chosen x

will be the x-coordinate of a point on the curve. Now by Hasse’s

theorem we see that

p+ 1− 2
√
p < N < p+ 1 + 2

√
p,

so

1

2
+

1

2p
− 1

√
p
<

N

2p
<

1

2
+

1

2p
+

1
√
p
,

which (for large p) gives a probability of approximately 1/2.



Chapter 8

Applications
of Elliptic Curves

We have seen an implementation of a public-key cryptosystem given

by RSA, whose security is based on the difficulty of factoring an

integer n that is the product of two large primes. We have also

discussed the Diffie–Hellman key-exchange protocol and the ElGamal

public-key cryptosystem whose security rests, at least indirectly, on

the difficulty of solving the discrete logarithm problem.

Diffie–Hellman and ElGamal rely on the cyclic group structure

of Up, where a generator (primitive root) plays a pivotal role. In

Chapter 4, we discussed Pollard’s p−1 method for factoring integers,

which relies only on Fermat’s little theorem, or more generally the

theorem of Lagrange, which says the order of an element divides the

order of the group. In both cases the group we leveraged was Up.

Elliptic curves over finite fields offer us a broad new collection of

abelian groups whose structure we can hope to exploit in a fashion

analogous to what we have done with Up.

On January 15, 2009, the NSA posted to their website a three-

page document titled “The Case for Elliptic Curve Cryptography—

NSA/CSS” [NC09]. It is no longer accessible on their site, but was

captured by the Internet Archive (WayBack Machine); see [NC09]

for a working URL.
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To quote the conclusion of that document,

Elliptic Curve Cryptography provides greater se-

curity and more efficient performance than the first

generation public-key techniques (RSA and Diffie–

Hellman) now in use. As vendors look to upgrade

their systems, they should seriously consider the el-

liptic curve alternative for the computational and

bandwidth advantages they offer at comparable se-

curity.

In the sections that follow, we shall sample a few aspects of elliptic

curve cryptography. In the final section we comment on developments

that are perhaps even more interesting: notably that the document

[NC09] was removed from the NSA/CSS website sometime after June

15, 2015. In its place are recommendations that supersede those con-

cerning the use of elliptic curves. They have to do with NSA recom-

mendations for a post-quantum computing world [Sch15a], [KM15].

We shall comment more on these latest recommendations at the end

of this chapter. But for now we keep the thread moving along.

8.1. Elliptic Curves and Factoring

We begin with a brief discussion of the impact of the arithmetic of

elliptic curves on cryptography, not only as a means to introduce new

methods of encryption, but also on its use to break older methods of

encryption, notably as a means to factor integers. We begin with the

later.

Factorization is very much an art with integers having a certain

composition being amenable to factorization by highly tailored meth-

ods. For example, we saw this was the case with Pollard’s p − 1

method which worked very well on integers that were divisible by a

prime p for which the factors of p−1 were all small. The elliptic curve

method of factorization (ECM) was developed by Hendrik Lenstra,

and is currently one of the tools at the cutting edge in factorization

techniques. Crandall and Pomerance [CP05] put it very nicely:

A subexponential factorization method of great

elegance and practical importance is the elliptic
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curve method (ECM) of H. Lenstra. The elegance

will be self-evident. The practical importance lies

in the fact that unlike the quadratic sieve (QS) or

the number field sieve (NFS), ECM complexity to

factor a number n depends strongly on the size of

the least prime factor to divide n, and only weakly

on the size of n itself. For this reason, many fac-

tors of truly gigantic numbers have been uncovered

in recent years; many of these numbers lying well

beyond the range of QS or NFS.

In a real sense, ECM is a natural and broad generalization of Pol-

lard’s p− 1 method, so we begin our introduction with a comparison

of the basic mechanics of Pollard’s p− 1 and the ECM as algorithms

to factor a composite integer n; details of the ECM will follow. Re-

call that since factoring is a recursive process, our goal is, given a

composite integer n, to find a divisor a of n with 1 < a < n.

Pollard’s p − 1 method uses Fermat’s little theorem (Theorem

4.18) to attempt to factor a composite integer n as follows: Choose

an integer a with 1 < a < n, so gcd(a, n) < n. If a and n are

not relatively prime, then gcd(a, n) represents a nontrivial factor of

n, and we have succeeded in our effort. We therefore assume that

gcd(a, n) = 1 and hence for any prime p | n, we know a ∈ Up, so that

ap−1 = 1 in Up. This means that p | gcd(ap−1 − 1, n), so in particular

gcd(ap−1 − 1, n) > 1. We look for evidence of such a p as follows. We

know that ap−1 = 1 in Up implies ak = 1 in Up for any k divisible by

p−1, so gcd(ap−1−1, n) > 1 implies gcd(ak−1, n) > 1 as well. So we

hope that n is divisible by a prime p for which p− 1 is the product of

small primes to small powers. If so, then simply by looking at small

values of k, we compute gcd(ak − 1, n) hoping for a nontrivial gcd. If

n is indeed divisible by a prime p for which p − 1 is the product of

small primes to small factors, then we should be able to find such a

k.

In describing the ECM, we replace Up and the condition ap−1 =

1 with another finite abelian group and related condition. For the

analogue of Up we want to consider an elliptic curve E and look at

its set of points E(Fp) over the finite field Fp with p elements. But
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as with the Pollard method, where we actually start with an element

a ∈ Un (and hence in Up for any prime p | n), for ECM we start

with a curve E which would be an elliptic curve over any finite field

Fp with p | n. In particular, we consider the elliptic “pseudo-curve”

E and its set of points E(Zn). Analogous to choosing a ∈ Un, we

choose a point P ∈ E(Zn). We also have to remember that Up is a

multiplicative group, while E(Fp) (for p | n) is an additive one, so the

condition ak = 1 in Up translates to k · P = P ⊕ P ⊕ · · · ⊕ P︸ ︷︷ ︸
k times

= 0 in

E(Fp), where 0 is the identity of the group, our distinguished point

at infinity. As with Pollard’s method, we try values of k which are

the product of small primes to small powers, and we win if there is a

prime p | n with #E(Fp) the product of small primes to small powers.

A more succinct comparison is given by:

Pollard’s p− 1 versus Lenstra’s ECM

a ∈ Up ←→ P ∈ E(Fp)

ak = 1 in Up ←→ kP = 0 in E(Fp)

(if #Up = p− 1 | k) (if #E(Fp) | k)

We win if there is a We win if there is a

prime p | n with #Up prime p | n with #E(Fp)

being the product ←→ being the product

of small primes of small primes

to small powers. to small powers.

One big difference between these methods is that in the case of Pol-

lard’s p−1, for each prime p, there is only one group to exploit associ-

ated to p, namely Up. In the case of the ECM, for each p, we have an

enormous supply of elliptic curves E whose group of points E(Fp) are

finite abelian groups with potentially vastly different structures. In

particular, for each a, b ∈ Fp with Δ = 4a3+27b2 �= 0, y2 = x3+ax+b

defines an elliptic curve Ea,b over Fp.

Next, we discuss some practical aspects of computing with the

group law on E(Fp), in particular, how to compute kP , that is, the

point P on the elliptic curve added to itself k times. Just as with
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modular exponentiation, this can be done efficiently by using the

binary expansion of k: k = k0 + k12
1 + k22

2 + · · · + kr2
r, with each

ki equal to 0 or 1. We know how to add points on an elliptic curve;

doubling a point P 
→ 2P is done via the tangent line, while if P �= Q,

the sum P ⊕ Q is determined using the line through P and Q (see

formulas below). So we precompute:

P0 = P,

P1 = 2P0 = 2P,

P2 = 2P1 = 22P,

P3 = 2P2 = 23P,

...

Pr = 2Pr−1 = 2rP.

Then kP = k0P0 ⊕ k1P1 ⊕ · · · ⊕ krPr. Note that the ki are either 0

or 1, so we are just adding the points Pi where ki is nonzero.

To implement the procedure above, we review the group law for

points on the curve Ea,b : y
2 = x3 + ax+ b.

Summary of Group Law. Let 0 = [0, 1, 0] (the point at infin-

ity), and let Pi = [xi, yi, 1] be any affine point on the curve.

(1) P ⊕ 0 = 0⊕ P = P for all points P on the elliptic curve.

(2) −Pi = [xi,−yi, 1]; −0 = 0.

(3) P1⊕P2 = 0 if and only if P2 = −P1 (meaning P1 and P2 lie

on a vertical line).

(4) If P2 �= −P1, then P1 ⊕ P2 = P3 = [x3, y3, 1], where

x3 = m2 − x1 − x2,

y3 = −[m(x3 − x1) + y1], and where

m =

⎧⎪⎪⎨
⎪⎪⎩

y2−y1

x2−x1
if x1 �= x2,

3x2
1+a
2y1

if x1 = x2.

Let’s take a second look at Example 7.2.
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Example 8.1. Consider the cubic curve E : y2 = x3 + 5x + 2 over

the field F7. The discriminant of the curve is

Δ = 4a3 + 27b2 = 4 · 53 + 27 · 22

≡ 4 · (−2)3 + 6 · 22 ≡ −8 ≡ 6 �≡ 0 (mod 7),

so this is an elliptic curve over F7. We checked that

E(F7)

= {0, [0,±3, 1], [1,±1, 1], [3,±3, 1], [4,±3, 1]}
= {0, [0, 3, 1], [0, 4, 1][1, 1, 1], [1, 6, 1], [3, 3, 1], [3, 4, 1][4, 3, 1], [4, 4, 1]},

and that E(F7) ∼= Z9. We took the point P = [4, 4, 1] as a generator

of the group. To do our precomputation P0, P1, . . . , Pr, we begin by

doubling our point P .

To do so, we use the slope of the tangent line in our formulas

above:

m =
3x2

1 + a

2y1
=

3 · 42 + 5

2 · 4 =
4

1
= 4 in F7.

Thus, 2P = [x3, y3, 1] = [1, 1, 1] (by our formulas). Similarly, we use

the formulas to compute

4P = 2(2P ) = [0, 3, 1] and

8P = 2(4P ) = [4, 3, 1] = [4,−4, 1] = −P.

Filling things out, we have

P = [4, 4, 1],

2P = [1, 1, 1],

4P = 2(2P ) = [0, 3, 1],

8P = 2(4P ) = [4, 3, 1] = [4,−4, 1] = −P,

16P = 2(8P ) = 2(−P ) = −2P = 7P = [1,−1, 1] = [1, 6, 1]

32P = 2(16P ) = −4P = 5P = [0,−3, 1] = [0, 4, 1]

64P = 2(32P ) = 10P = P ⊕ 9P = P ⊕ 0 = P = [4, 4, 1],

and now of course the list of points will cycle through the same se-

quence as we consider 2kP for k ≥ 6.
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Remark 8.2. It is obvious that the set of points {P, 2P, 4P, . . .} is

a finite set since E(Fp) is a finite group, say {P, 2P, . . . , 2hP} is the

set of distinct points. It is also clear that the list will cycle through

{2jP, 2j+1P, . . . , 2hP}, where j is the integer satisfying 2h+1P = 2jP ,

0 ≤ j ≤ h. In the example above, we see that j = 0. It is also possible

to have j = h when 2hP = 0.

In analogy with Pollard’s method, we choose P ∈ E(Zn) (so P

would be a point on the elliptic curve E(Fp) for any prime p | n).
If #E(Zp) | k, then kP = 0, so we hope that finding an integer

k with kP = 0 suggests the existence of such a prime p. But the

goal is not really determining whether for a small value of k that

kP = 0 or not; Lenstra’s method is much more clever. One computes

kP = k0P0⊕k1P1⊕· · ·⊕krPr as before with the binary expansion of

k, but for each sum (or doubling for that matter), one must compute a

slope, m = (y2−y1)/(x2−x1) orm = (3x2
1+a)/2y1. Now in reality, we

are working with an elliptic pseudocurve, Ea,b(Zn) : y
2 = x3+ax+ b,

which we are treating as an elliptic curve over Zn. When n is not

prime, not all nonzero elements of Zn have multiplicative inverses

(indeed only those relatively prime to n), and so in computing the

inverses associated to the slopes m, we can detect a factor of n by

noting the failure of a denominator in m have an inverse modulo n, so

at each multiplication we check gcd(x2 − x1, n) or gcd(2y1, n). Pro-

ducing a nontrivial gcd gives us a factor of n; otherwise, we continue

the computation.

Lenstra’s ECM algorithm. Given a composite integer n to factor,

we perform the following steps.

(1) Check gcd(n, 6) = 1 (2’s and 3’s make life with elliptic curves

more difficult, but then it is not so difficult to pull out the

factors of 2 and/or 3 from n as an initial step).

(2) Check that n is not a perfect power, i.e., n �= mk for some

m and k. This is easy and quick to do. Just check (using

real-valued functions) that none of
√
n, 3

√
n, . . . , �

√
n are

integers for � = �lnn/ ln 2 (this guarantees that �
√
n < 2).

(3) Choose a bound B (say B ≈ 10000).

(4) Choose a curve Ea,b(Zn) : y2 = x3 + ax + b and a point

P = [x, y, 1] on the curve as follows:
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(a) Choose random integers x, y, a ∈ [0, n− 1].

(b) Compute b ≡ (y2 − x3 − ax) (mod n).

(c) Compute d = gcd(4a3 + 27b2, n). If d = n, start over

choosing a new x, y, a. If 1 < d < n, then d is a proper

factor of n, and we have succeeded. Otherwise d = 1

which means we have an elliptic pseudocurve over Zn

(in particular an honest elliptic curve over Fp for any

prime p | n), and a point P = [x, y, 1] on that curve.

(5) Compute highest prime powers less than or equal to the

bound B:

2a2 , 3a3 , . . . , par
r ≤ B.

(6) Technically, we are hoping that if k = 2a23a3 · · · par
r , then

kP = 0, but we will actually compute kP in stages hoping

for a failure anywhere along the way. For example:

P 
→ 2P 
→ 4P 
→ · · · 
→ 2a2P 
→ 3 · 2a2P 
→ 32 · 2a2P 
→ · · ·
· · · 
→ 3a3 · 2a2P 
→ · · · · · · 
→ pr · (par−1

r−1 · · · 3a3 · 2a2P ) 
→ · · ·
· · · 
→ par

r · (par−1

r−1 · · · 3a3 · 2a2P ) = kP.

At each addition or doubling, we are looking to find a slope

that cannot be computed by failure of the gcd of the denom-

inator and n to equal one. If the gcd is one, we continue the

arithmetic; if the gcd is a proper divisor of n, we return the

factor; if the gcd is n, we can increase the bound B or try

another curve.

It turns out that the computational complexity of the ECM is

related to the size of the smallest prime factor which divides n and

not very much to n itself. This means the ECM can be effective in

finding a divisor of enormous composites (those with at least one not-

so-large factor), but it is worse at factoring RSA composites which

are the product of two primes of roughly the same size.

8.2. Elliptic Curves and Cryptography

While the mathematical prerequisites begin to rise a bit more steeply

to describe fully how we can generalize Diffie–Hellman and ElGamal
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to the setting of elliptic curves, we can give the highlights. More

details can be found in [Kob84] and [Kob87b].

8.2.1. Embedding Plaintext into an Elliptic Curve. As in all

previous cryptosystems we have considered, we assume our plaintext

has been converted to an integer equivalent m with 0 ≤ m < M .

Choose κ to be an integer so that the probability that one fails to

embed the plaintext m into a chosen elliptic curve is less than 2−κ.

Choose a prime p so that p > Mκ. Then it is possible to write

every integer � with 1 ≤ � ≤ Mκ uniquely as � = mκ + j with

0 ≤ m < M and 1 ≤ j ≤ κ. And since Mκ < p, we can think of all

the integers mκ+ j (or more properly the residues mκ+ j modulo p)

with 0 ≤ m < M and 1 ≤ j ≤ κ as distinct elements of the finite field

Fp.

We can embed our plaintext message m as a point Pm on an

elliptic curve Ea,b : y2 = f(x) = x3 + ax + b over Fp as follows. For

each j with 1 ≤ j ≤ κ, we are going to test x = x(j) = mκ+ j to see

if x is the x-coordinate of a point on the elliptic curve Ea,b(Fp). We

have observed that all such x are distinct elements of Fp. We compute

f(x) and ask if it is a square in Fp; we showed in the previous chapter

that there is roughly a 50% chance that this is so. If it is a square, we

find a y ∈ Fp so that y2 = f(x) (see Chapter II.2 of [Kob84]), and we

have our point Pm = (x, y). If f(x) is not a square, we increment the

value of j by one and test again. Since we have κ integers x = mκ+j,

the probability that we will fail to produce a point Pm on the curve

is approximately 2−κ.

Now given a point Pm = (x, y), we consider the integer x = mκ+j

as above with x = mκ+ j. Notice that x− 1 satisfies

mκ ≤ x− 1 ≤ mκ+ (κ− 1),

so

m ≤ x− 1

κ
≤ m+

κ− 1

κ
< m+ 1,

which means m, the plaintext message, is recoverable from Pm as

m =
⌊
x−1
κ

⌋
.

So now we have a means of taking a plaintext message and em-

bedding it into an elliptic curve and, conversely, given a point on
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the curve, we can extract the plaintext message. Next we talk about

encryption.

8.2.2. Analogues of Diffie–Hellman and ElGamal. With both

the original versions of Diffie–Hellman and ElGamal, we chose a prime

p, and used the group Up and an element g which was either a prim-

itive root or simply generated a very large subgroup of Up.

In the elliptic curve setting, we have far more freedom. Given

a prime p, we choose a, b ∈ Fp so that E : y2 = x3 + ax + b is an

elliptic curve. So now E(Fp) has replaced Up. What do we do about

an analogue of g? Fortunately, with these encryption schemes based

upon elliptic curves, a great deal of information about the elliptic

curve and the finite field is intended to be public. So documents

like [Bro10], give lists of recommended primes (having a prescribed

(bit)size), and parameters a, b ∈ Fp which will provide an elliptic

curve E = Ea,b(Fp) and a point G (a basepoint) on E together with

the order of G and the cofactor h, (h = #E(Fp)/|G|), so 1/h is the

proportion of E(Fp) which G generates. So we proceed supplied with

all these data.

As in the classical case, Alice and Bob choose two integers a, b

with 1 < a, b < |G|. Alice sends aG to Bob; Bob sends bG to Alice.

Each computes baG = abG as their shared key for any secret-key

cryptosystem based on elliptic curves.

Alice publishes the finite field Fp, the chosen elliptic curve E

defined over Fp, the basepoint G on E(Fp), and her multiple aG as her

public key which can be used in an ElGamal scheme as follows: Bob

wishes to send a messagem to Alice that he has embedded as the point

Pm in E(Fp). As in the classical case, he chooses a random integer k

and sends the ordered pair (kG, Pm ⊕ k(aG)) to Alice. Upon receipt,

Alice computes a(kG) and computes [Pm ⊕ k(aG)] ⊕ −akG = Pm.

Given the point Pm, she recovers the plaintext message m.

8.3. Remarks on a Post-Quantum
Cryptographic World

As we said in the opening of this chapter, up until June 2015, the NSA

was actively promoting ECC over first-generation methods such as
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RSA and Diffie–Hellman; see [NC09]. In August 2015 that changed

when the NSA released a policy statement which came as a surprise

to many [IN15], including the statement:

IAD (Information Assurance Directorate at the

NSA) will initiate a transition to quantum resis-

tant algorithms in the not too distant future. Based

on experience in deploying Suite B, we have deter-

mined to start planning and communicating early

about the upcoming transition to quantum resis-

tant algorithms. Our ultimate goal is to provide

cost effective security against a potential quantum

computer. We are working with partners across

the USG, vendors, and standards bodies to ensure

there is a clear plan for getting a new suite of al-

gorithms that are developed in an open and trans-

parent manner that will form the foundation of our

next suite of cryptographic algorithms.

Until this new suite is developed and products

are available implementing the quantum resistant

suite, we will rely on current algorithms. For those

partners and vendors that have not yet made the

transition to Suite B elliptic curve algorithms, we

recommend not making a significant expenditure

to do so at this point but instead to prepare for the

upcoming quantum resistant algorithm transition.

What explains this rather abrupt change in policy by the NSA?

What exactly is a quantum-resistant algorithm? And just how con-

cerned should everyone be? To offer possible explanations for the

change in NSA policy, Koblitz and Menezes in [KM15] gave a brief

history of the development of ECC, and they evaluate many of the

possible reasons for this shift in policy. Independent of the reasons,

we want to understand what it is that the NSA is suggesting, so we

should say a few words about quantum computers and the meaning of

a quantum-resistant algorithm. A good starting place is the quantum

computing Wikipedia page [Wik16] from which we borrow.
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Computers, as we know them today, store data in bit strings,

strings of zeros and ones. We have referred to key lengths for various

cryptographic systems in terms of the number of bits in their key.

Imagine that you have an incredibly primitive computer with a mem-

ory capacity of 3 bits. What possible states could the memory be in?

With a triple (b0, b1, b2) and bi = 0 or 1, there are 23 = 8 possible

strings or states for the memory to be in, and at any given time the

memory is in exactly one of these eight states. Quantum computing is

based on the physics of quantum mechanics, and the analogue of our

3-bit computer is a three quantum bit (qubit) computer whose mem-

ory can be in a superposition of those eight states. In fact, the state

of our 3-qubit computer is described as a point on the 8-dimensional

complex unit sphere, that is a state has the form (b0, . . . , b7) where

each bi ∈ C and
∑7

i=0 |bi|2 = 1. Now each bi corresponds to one of the

classical 8-bit states 000 to 111, and the magnitude |bi|2 corresponds

to the probability of being in the ith state.

From even this brief characterization, one can sense the enormous

difference in capacity between a 3-bit machine and a 3-qubit one. If

the quantum computer could be scaled to the size of modern com-

puters, its computing power would be enormous. In a vague sense,

you can think of quantum computing as a vast parallelization of stan-

dard computing. So we have some sense of its capabilities, but what

explains the NSA’s new perspective?

We recall that the security of RSA is based upon the supposition

that factoring integers is a computationally hard problem and, anal-

ogously, that solving the discrete log problem for elliptic curves, on

which the security of ECC is based, is also a computationally hard

problem. In 1994 Peter Shor [Sho94] showed that both of these com-

putational problems could be solved in polynomial time (that is to say

very quickly) if one had access to a quantum computer of appropriate

size. So the takeaway is that large quantum computers compromise

RSA and ECC.

On the other hand, if one surveys the web for the current state

of quantum computers, it would be hard to find a site that did not

refer to it as still being in its infancy. Security expert Bruce Schneier

[Sch15a], [Sch15b] quips that “the largest number to date that has
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been factored by a quantum computer is 143.” He continues, “So

while a practical quantum computer is still science fiction, it’s not

stupid science fiction.” Thus RSA and ECC are not in immediate

danger, so why the abrupt change in policy? One consideration is that

the NSA tries to be very forward looking. Their needs for encryption

are not short-term as in an electronic banking transaction; they often

have the need to be able to encrypt documents which will remain

secure for decades to come, so they need to anticipate what computing

power could exist in 10, 20, even 30 or more years.

We have known for decades that a practical quantum computer

can compromise many traditional cryptographic schemes. What else

can a quantum computer do? Perhaps there are undiscovered algo-

rithms for breaking other encryption schemes with a quantum com-

puter. For simplicity, let’s consider the analysis of a brute-force attack

on a keyspace which would apply to any encryption scheme. If we

have a key for a symmetric-key encryption scheme consisting of k

bits, the keyspace has size 2k. As computing power has increased,

the value of k has increased gradually so that an exhaustive search of

2k keys remains infeasible. Algorithms for quantum computers exist

which can reduce the search to the square-root of that number of keys,

effectively reducing the keyspace to size 2k/2. For the time being, the

NSA has addressed this concern by publishing an updated table of key

lengths that should be used with first- and second-generation crypto-

graphic systems, taking into account known attacks. Even though no

practical quantum computer currently exists, to counteract the po-

tential exhaustive search approach above, recommended key lengths

have been doubled.

It remains somewhat of a puzzle why the NSA has changed its

tune about the (economic) value of changing to elliptic curve–based

cryptographic methods over first-generation methods, especially given

that even the most optimistic estimates for the development of a prac-

tical quantum computer are more than 15 years away, and given that

most users of encryption need short-term security, not security that

will endure for decades. Whatever the reason, the NSA is clearly

concerned, and it is leading a march to develop quantum-resistant al-

gorithms. The appendix to [KM15] includes a number of candidates.



Deeper Results and
Concluding Thoughts

A major goal of this text was to develop sufficient mathematics to un-

derstand the basics surrounding the arithmetic of elliptic curves and

their applications to cryptography. As a byproduct, we have revealed

some of the vista that represents modern mathematics, and at the

same time hopefully left ample hooks for tangential explorations.

Still, the story of elliptic curves has barely been touched, and

so as a means to bring closure to an early motivating topic in the

text (congruent numbers) and to point to many other related topics

on the horizon, we explore a bit more about elliptic curves, but now

defined over the rational and complex numbers. The intent here is to

be significantly more telegraphic in our exposition, leaving only a few

bread crumbs to follow if inclined.

A.1. The Congruent Number Problem and
Tunnell’s Solution

In the first two chapters we defined congruent numbers and estab-

lished a relationship between Pythagorean triples and congruent num-

bers. Moreover, by parametrizing the rational points on the unit cir-

cle, we were able to list all Pythagorean triples, and if we let the

process continue forever, eventually all congruent numbers would be

listed. But this is rather unsatisfactory since even if one knew a
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given number was a congruent number, there is no way of telling how

long one would wait before it was listed as corresponding to some

Pythagorean triple.

All that changed in 1983 with Tunnell’s elegant answer to the

congruent number problem. What is most elegant about it is that the

answer is just as easy to understand as the statement of the problem

itself. The mathematics that underlies his answer, however, is quite

deep, yet we shall at least broach these topics.

Tunnell’s answer is given by the following theorem (see [Kob84])

which determines whether n is a congruent number by comparing the

representation numbers of two ternary quadratic forms.

Theorem A.1 (Tunnell). Let n be a square-free positive integer.

(1) Suppose that n is a congruent number.

If n is odd, then

#{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 32z2}

=
1

2
#{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 8z2}.

If n is even, then

#{(x, y, z) ∈ Z3 :
n

2
= 2x2 + y2 + 32z2}

=
1

2
#{(x, y, z) ∈ Z3 :

n

2
= 2x2 + y2 + 8z2}.

(2) Conversely, if the weak Birch–Swinnerton-Dyer conjecture

is true for elliptic curves of the form En : y2 = x3−n2x, then

these equalities of cardinalities imply that n is a congruent

number.

For example, on page 5 of [Kob84] the author gives an example

by Zagier which shows that 157 is a congruent number. The right

triangle which demonstrates that 157 is congruent has a hypotenuse

whose length is a rational number which in reduced form has a denom-

inator with 45 digits. Clearly, this would not be so easy to find using

our enumeration method. On the other hand, we consider Tunnell’s

theorem.

The number 157 is odd and square-free, so we need only verify the

the number of integer solutions to 2x2 + y2 + 32z2 = 157 is one-half
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the number of integer solutions to 2x2+y2+8z2 = 157. We claim that

there are no solutions to either equation. Note that if 2x2+y2+8z2 =

157 has no solutions, then neither does 2x2 + y2 + 32z2 = 157, since

32z2 = 8(2z)2. Consider the equality 2x2 + y2 + 8z2 = 157 as a

congruence modulo 8. We obtain 2x2+y2 ≡ 5 (mod 8) which implies

that y is odd, hence y2 ≡ 1 (mod 8). It is also true that 2x2 ≡ 0, 2

(mod 8), so that 2x2 + y2 + 8z2 ≡ 1, 3 (mod 8), so there can be no

solution. Thus both sets have the same (zero) cardinality, so by the

theorem, 157 is a congruent number.

Oh yes—what about this Birch–Swinnerton-Dyer conjecture, and

where did elliptic curves come in? That will take us a bit longer to

explain. We follow Koblitz [Kob84] here. He begins with a series

of propositions to connect congruent numbers to points on elliptic

curves.

Proposition A.2. Let n ≥ 1 be a square-free integer. Let X,Y, Z ∈
Q with X < Y < Z. There is a one-to-one correspondence between

right triangles with sides X, Y and hypotenuse Z having area n, and

rational numbers x so that x, x + n, x − n are all squares in Q. The

correspondence is given by

X,Y, Z 
→x = (Z/2)2

x 
→X=
√
x+ n−

√
x− n, Y =

√
x+ n+

√
x− n, Z=2

√
x.

Proof. Let’s first see that the numbers do what is claimed. Given

X,Y, Z with X2 + Y 2 = Z2 and XY/2 = n, we see that

X2 + Y 2 ± 4
1

2
XY = Z2 ± 4n, or

(X ± Y )2 = Z2 ± 4n, or(
X ± Y

2

)2

=

(
Z

2

)2

± n.

So x = (Z/2)2 is obviously a square, and hence so is x±n = (Z/2)2±
n = ((X ± Y )/2)2.

Conversely, given x ∈ Q with x, x ± n all squares, we put X =√
x+ n−

√
x− n, Y =

√
x+ n+

√
x− n, and Z = 2

√
x, all of which
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are now rational numbers by the assumption. We see that

1

2
XY =

1

2
(x+ n− (x− n) = n and

X2 + Y 2 = 2(x+ n+ x− n) = 4x = Z2.

So X,Y, Z are the sides of a rational right triangle with area n. It is

trivial to check that X < Y < Z.

Now we see that there is a one-to-one correspondence. Let x ←→
X,Y, Z and x′ ←→ X ′, Y ′, Z ′.

Suppose that (X,Y, Z) = (X ′, Y ′, Z ′). The fact that Z = 2
√
x =

Z ′ = 2
√
x′ implies x = x′ (since both are positive). Conversely,

suppose that x = x′. Then Z = 2
√
x = Z ′ = 2

√
x′ and hence

Z ′2 = X ′2 + Y ′2 = X2 + Y 2 = Z2 and

1

2
XY = n =

1

2
X ′Y ′.

Geometrically, we are looking at the intersection of the circle

X2 + Y 2 = Z2 (with Z = Z ′ fixed), and the hyperbola 1
2XY = n.

The typical situation is pictured in Figure A.1.

So there are only four possible points (X,Y ) that work, and the

constraints 0 < X < Y mean there is only one point. The proof is

complete. �

We saw above that
(
X±Y

2

)2
=

(
Z
2

)2 ± n. Multiplying the two

expressions together yields
(
X2−Y 2

4

)2
=

(
Z
2

)4 − n2, which says the

curve u4−n2 = v2 has a rational solution u = (X2−Y 2)/4, v = (Z/2).

Multiplying the equation u4−n2 = v2 by u2 yields u6−n2u2 = (uv)2.

So putting

x = (Z/2)2 = u2, y = (uv) = (X2 − Y 2)Z/8,

we have a rational point on the elliptic curve y2 = x3 − n2x. Con-

versely, we have the following.

Proposition A.3. Let (x, y) be a rational point on the elliptic curve

y2 = x3 − n2x. Suppose that x is a square and has an even denomi-

nator. Then putting

X =
√
x+ n−

√
x− n, Y =

√
x+ n+

√
x− n, Z = 2

√
x

produces a rational right triangle with area n.
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Figure A.1

Denote by En the elliptic curve y2 = x3−n2x. Critical to moving

forward is Mordell’s important theorem describing the structure of the

group of rational points on En, denoted En(Q).

Theorem A.4 (Mordell). En(Q) ∼= Zr ⊕ En(Q)tor.

Here En(Q)tor is the torsion subgroup, that is the set of points

in En(Q) having finite order. The integer r ≥ 0 is called the rank

of the elliptic curve and r > 0 if and only if there are infinitely

many rational points on En. The rank for this finitely generated

abelian group is the analogue of dimension for a vector space. More

precisely, the theorem says there are r points P1, . . . , Pr ∈ En(Q)

so that for any point P ∈ En(Q), P can be written uniquely as
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P = k1P1⊕k2P2⊕· · ·⊕krPr ⊕Q for (unique) integers k1, . . . , kr and

a unique torsion point Q.

It is clear from the graph of the elliptic curve that the points

[−n, 0, 1], [0, 0, 1], and [n, 0, 1] all have order 2 (they’re on the x-axis

with a vertical tangent). This means that these three points (together

with the identity 0) are all elements of En(Q)tor. On the other hand,

we have the following theorem.

Theorem A.5. #En(Q)tor = 4 for all square-free positive n.

Knowing the Fundamental Theorem of Finite Abelian Groups,

we then deduce the following.

Corollary A.6. En(Q)tor = {0, [−n, 0, 1], [0, 0, 1], [n, 0, 1]} ∼= Z2 ×
Z2.

Finally, we come to the theorem which ties these ideas together.

Theorem A.7. A positive, square-free integer n is a congruent num-

ber if and only if En(Q) has positive rank, which is to say if and only

if it has infinitely many rational points.

Proof. We sketch the proof. If n is a congruent number, then we have

seen there exists a point (x, y) ∈ En(Q) with x a positive square. By

inspection, such a point is not in the torsion subgroup, so is a point

of infinite order. Conversely, if P is a point of infinite order in En(Q),

then using our doubling formula, we easily check that 2P has as its

x-coordinate a square with even denominator which by previous work

shows n is a congruent number. �

This ends the so-called easy part of Tunnell’s proof and occupies

only the first chapter of Koblitz’s book [Kob84]. We go a bit further

to describe the Birch–Swinnerton-Dyer conjecture, but we do so more

to advertise the role and independent interest of complex analysis

than to just define the analytic objects involved with the Birch and

Swinnerton-Dyer conjecture.
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A.2. A Digression on Functions of a Complex
Variable

At first blush, one might presume there to be little difference in study-

ing differentiable functions f : R2 → R2 and f : C → C, but there

is, and the differences are dramatic. We point out three important

distinctions.

First, if a function f : C → C has a continuous first derivative, it

is infinitely differentiable, and indeed it can be expressed as a power

series and is said to be analytic. The same is certainly not true

even for functions f : R → R, as f(x) = x5/3 shows. Indeed, this

remarkable property is related to another that says that if one knows

the values of the analytic function f : C → C on the boundary of

a nice region, then the values of f on the interior of the region are

determined. Geometrically, this implies a certain rigidity. We can’t

see the graph of a function f : C → C (it lives in C2 ∼= R4), but if

we could and if the same were true of functions f : R2 → R (whose

graph is a surface), we would see the following. Imagine the graph

of a function defined on the closed unit disk and which is zero on

the boundary. Surely you could draw lots of surfaces like that. If the

function was an analytic function, there would only be one graph since

the values on the boundary determine the values inside. Strange? Yes.

Second, it is often the case that we have two definitions of an

analytic function or, more precisely, two analytic functions whose

definitions agree on a nice set. Then they agree everywhere they are

both defined; this is known as the identity theorem. First we give

an example of how this does not happen for differentiable real-valued

functions. Consider two functions f, g : R → R defined by

f(x) =

{
(x− 1)4 if x ≥ 1,

0 otherwise,
g(x) =

{
(x+ 1)4 if x ≤ −1,

0 otherwise.

These are both continuously differentiable functions, defined on

all of R whose values agree for all x ∈ [−1, 1], but which are clearly

not the same wherever both are defined.
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This can’t happen in the complex case, and this turns out to be

very handy. Consider the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
,

probably one of the most famous functions in all of mathematics.

You studied this function in calculus when you worked with infinite

series. You studied so-called p-series which have the form
∑∞

n=1
1
np ,

and showed that these series converge when p > 1. Recall that p = 1

corresponds to the harmonic series which diverges, and for p < 1 the

series diverges by comparison.

What the calculus result really says is that ζ(s) is a function

whose domain in R is (1,∞). It doesn’t take much more effort to look

at series in C, and we find that the actual domain of ζ(s) is the right

half-plane !(s) > 1 and defines an analytic function there. Now here

comes the rub. There is a famous conjecture (better than Fermat’s)

which says that (except for some trivial cases) the function ζ(s) is

zero only when !(s) = 1/2. This is the famous Riemann hypothesis.

There is just one problem. The function ζ(s) =
∑∞

n=1
1
ns isn’t defined

where the hypothesis is telling us to look. That’s where the identity

theorem comes in. Suppose with a bit more math, you could define

an analytic function Z(s) whose domain was all of C except for the

point s = 1, and for which Z(x) = ζ(x) for all real x > 1. Then

Z(s) = ζ(s) for all complex points !(s) > 1 and Z(s) defines what

is called an analytic continuation of the zeta function ζ(s). The new

function Z(s) is the one to which the Riemann hypothesis refers.

The third distinction between real and complex analytic functions

is Liouville’s theorem, which says that any function f : C → C which

is analytic in all of C (called an entire function) and bounded must be

a constant. This certainly doesn’t happen for real-valued functions,

e.g., sin x, or even more complicated ones, such as f : R2 → R defined

by

f(x, y) =

{
sin(x2+y2)

x2+y2 (x, y) �= (0.0),

1 (x, y) = (0, 0).
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Figure A.2

The function is infinitely differentiable and bounded between −1 and

1, but it’s obviously not constant. Its graph is pictured in Figure A.2.

A.3. Return to the Birch and Swinnerton-Dyer
Conjecture

We start with the elliptic curve En : y2 = x3 − n2x. Notice that

while we have been interested in the set of rational points En(Q),

it also makes sense to think about En(Fp) at least for primes p � n.

Since, over the finite field, the number of points is finite, we can

count them and record the information as follows. For p � 2n, let

#En(Fp) = p+1−ap, the shape here influenced by Hasse’s theorem.

One forms an “L-function” associated to the curve En,

L(En, s) =
∏
p�2n

(
1

1− app−s + p1−2s

)
.
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As mysterious as this looks, it is just a complex-valued func-

tion, very much like the Riemann zeta function, which is defined

on the half-plane !(s) > 3/2. As with the Riemann zeta function,

L(En, s) has an analytic continuation (which we also call L(En, s)) to

the whole complex plane, and in particular is defined at s = 1. Since

the function is analytic at s = 1, it makes sense to talk about its

order of vanishing. For example, for real-valued functions, f(x) = x2

is nonzero at x = 1 so has zero order of vanishing. The function

f(x) = (x − 1)k(x2 + 3) has kth order vanishing at x = 1. So to

proceed, we write L(En, s) = (s− 1)kg(s) where g(1) �= 0. Then k is

the order of vanishing.

One version of the Birch and Swinnerton-Dyer conjecture is that

if L(En, s) = (s−1)kg(s) with g(1) �= 0, and En(Q) = Zr⊕En(Q)tor,

then r = k, that is the (algebraic) rank of the elliptic curve is the

order of vanishing of its L-function at s = 1, its so-called analytic

rank.

We bring this all the way back to the congruent number prob-

lem. We knew that n being a congruent number depended upon

En(Q) having infinitely many rational points. This is the same as

saying the rank r is positive, which (given the Birch and Swinnerton-

Dyer conjecture) is simply to say L(En, 1) = 0. Actually half of this

connection is known. The Coates–Wiles theorem says that if r ≥ 1,

then L(En, 1) = 0. The converse is the weak version of the Birch and

Swinnerton-Dyer conjecture.

Finally connecting the vanishing of L(En, s) at s = 1 to the for-

mulas in Tunnell’s theorem is where things really get exciting, but to

talk about that we need modular forms and the Shimura lift, some-

thing well beyond the scope of this book.

A.4. Elliptic Curves over C

Here we give a sketch that an elliptic curve over C is a torus. In

a sense this topic will also revisit many of the ideas we have devel-

oped in the text: equivalence relations, groups, projective curves,

complex variables, and more. Again, this presentation will be highly

telegraphic.



A.4. Elliptic Curves over C 213

Figure A.3

Consider a piece of the complex plane shown in Figure A.3 with

distinguished vectors ω1 and ω2. These two vectors form two sides

of what we will call the fundamental parallelogram Π. The vertex

diagonally opposite the origin is ω1 + ω2.

There are several things to observe about this image. First is that

Π tiles the plane by translation; you can see the translated parallelo-

grams outlined by dashed lines. Second the vertices of all the paral-

lelograms are precisely the set of points Λ = {aω1 + bω2 | a, b ∈ Z}.
More importantly, Λ is an abelian group under addition.

Now consider the set of points in the fundamental parallelogram

{aω1 + bω2 | 0 ≤ a, b ≤ 1}, but let’s also call this Π, blurring the

distinction between the parallelogram and the region it bounds.
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Let’s define a relation on the points in C. We shall say z1 ∼ z2
if and only if z2 − z1 ∈ Λ. It is trivial to check that this is reflexive,

symmetric, and transitive, hence it is an equivalence relation. One

checks that every point in C is equivalent (can be translated by inte-

ger multiples of ω1 and ω2) to a point in Π. For example, if ω1 = 1

and ω2 = i, then −4.5 + 26.3i ∼ .5 + .3i ∈ Π. Moreover, two points

in Π are equivalent if and only if they are on the boundary of Π:

related by z ∼ z + ωi. This has an important geometric (or really

topological) interpretation. What we have said is that opposite sides

of the parallelogram bounding Π should be identified. If you think of

the parallelogram as a sheet of paper, when we identify two opposite

edges, we roll the paper up into a cylinder gluing the two edges to-

gether. Now imagine the cylinder long and flexible. We could then

fold the two ends up and glue them together forming a donut, math-

ematically known as a torus. It turns out that the torus is a group,

and as a group it is isomorphic to the group of points on a complex

elliptic curve.

First, let’s identify the group. We shall define C/Λ (read “C mod

Λ”) to be the set of equivalence classes under our equivalence relation

defined above:

C/Λ = {[z] | z ∈ C}.

This is just like defining Zn from the equivalence relation on Z

with a ∼ b if and only if a ≡ b (mod n). In particular, we can define

a group law on C/Λ by defining [z] + [w] = [z + w]. The identity

is [0] and the inverse of [z] is [−z]. Moreover, there is a one-to-one

correspondence between the elements of this group and the points on

the torus. Most people identify the two.

Now we need an elliptic curve and a map from the torus to the

elliptic curve. We start in what appears a roundabout manner. We

all know that periodic functions on the real line have interesting prop-

erties, starting with sine and cosine and progressing to the theory of

Fourier series, which is a good deal more versatile than the Taylor

series you studied in calculus. But for now, we shall settle for the

statement that periodic functions are important.

What about periodic functions in the complex plane? What kinds

of functions exist that satisfy f(z+ω1) = f(z) and f(z+ω2) = f(z)?
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These are called doubly periodic functions. Naively, we might look

for analytic, doubly periodic functions, but this turns out to be unin-

teresting for the following reason. The first important observation is

that if f is doubly periodic, then all the values f(z) are determined by

z ∈ Π. Now even a continuous function on a closed bounded region

like Π (the fancy word is compact) achieves an absolute maximum

and a minimum, so the function is bounded on all of C. So if in

addition f is analytic, then it is a bounded, entire function, which by

Liouville, must be constant. This is what we meant by uninteresting.

If f were analytic, it would have a power series
∑∞

n=0 anz
n, but

if it is not, it can still have a series expansion. It’s just that there

may be some negative exponents:
∑∞

n=μ anz
n for μ < 0. Functions

like this are called meromorphic.

Now we define yet another object without foreshadowing, but not

unexpectedly.

Let EΛ = {f : C → C | f is meromorphic and f(z + λ) =

f(z) for all λ ∈ Λ}. It is clear that constant functions are in EΛ,
so the set is nonempty. If f, g ∈ EΛ, then so is f ± g, f · g and f/g

as long as g �= 0. But this makes EΛ a field, called the field of elliptic

functions with period lattice Λ. Something else is true:

Proposition A.8. If f ∈ EΛ, then so is its derivative f ′.

Proof. We really need only show that f ′ is also periodic. From

calculus, we observe that

f ′(z + λ) = lim
h→0

f(z + λ+ h)− f(z + λ)

h

= lim
h→0

f(z + h)− f(z)

h
= f ′(z),

where at the second equality we used that f was periodic (i.e., in

EΛ). �

There is a great deal more one could say, but we’re almost at

the end, so we’ll push on. An extremely important example of an

elliptic function is the Weierstrass function ℘(z). We skip its formal
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definition and simply say that is has a series expansion of the form

℘(z) =
1

z2
+ a2z

2 + a4z
4 + a6z

6 + · · · .

Equally important is its derivative

℘′(z) =
−2

z3
+ 2a2z + 4a4z

3 + 6a6z
5 + · · · .

We consider ℘′(z)2 and ℘(z)3 and compare

℘′(z)2 =
4

z6
− 8a2

z2
− 16a4 + z2(· · · ) ∈ EΛ,

℘(z)3 =
1

z6
+

3a2
z2

+ 3a4 + z2(· · · ) ∈ EΛ.

We compute

℘′(z)2 − 4℘(z)3 =
−20a2
z2

− 28a4 + z2(· · · ), so

℘′(z)2 − 4℘(z)3 + 20a2℘(z) = −28a4 + z2(· · · ) ∈ EΛ.

What is the point of this? Well both sides of the last equation

are elliptic functions in EΛ, but from the right-hand side we see that

the function is actually analytic, and by Liouville, analytic elliptic

functions are constant, so the right-hand side is just −28a4. Putting

this all together, we see that

℘′(z)2 = 4℘(z)3 − 20a2℘(z)− 28a4.

If we let x = ℘(z) and y = ℘′(z), then y2 = 4x3 − 20a2x− 28a4.

The point (x, y) is a point on an elliptic curve!

We define a function Φ : C/Λ → P2(C) whose image is the elliptic

curve E : y2 = 4x3 − 20a2x− 28a4 by

Φ(z) =

{
[℘(z), ℘′[z], 1] z �= 0,

[0, 1, 0] z = 0.

Then Φ : C/Λ → E(C) is an isomorphism of groups. If z1 
→ P1 =

[℘(z1), ℘
′(z1), 1] and z2 
→ P2 = [℘(z2), ℘

′(z2), 1], then z1 + z2 
→
P1 ⊕ P2 (as we would define the sum of points on the elliptic curve),

which equals [℘(z1 + z2), ℘
′(z1 + z2), 1]. Using that C/Λ is a group

and Φ is a group homomorphism provides an independent proof that
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addition of points on the elliptic curve is an associative operation: if

Pi = Φ(zi) for i = 1, 2, 3, then

P1 ⊕ (P2 ⊕ P3) = Φ(z1)⊕ (Φ(z2)⊕ Φ(z3)) = Φ(z1)⊕ Φ(z2 + z3)

= Φ(z1 + (z2 + z3)) = Φ((z1 + z2) + z3)

= Φ(z1 + z2)⊕ Φ(z3)

= (Φ(z1)⊕ Φ(z2))⊕ Φ(z3) = (P1 ⊕ P2)⊕ P3.



Answers to
Selected Exercises

B.1. Chapter 2

Exercise (page 16). Analogous to what we did above, find a

parametrization for the points on the circle x2 + y2 = 2, and ex-

tract a characterization of the rational points. To start, project from

the rational point (1, 1). Note: Projecting onto the x- or y-axis does

not work as expected, as not all lines from (1, 1) to points on the circle

intersect those axes. Instead, try to project onto the line y = −x.

Solution. We project from (1, 1) onto line y = −x. Consider the line

between (1, 1) and the point (t,−t). If t �= 1, the line has slope m =

(1+ t)/(1− t), and the equation of the line is y− 1 = m(x− 1). We’ll

worry about t = 1 later. Let (a, b) be the other point of intersection

of the line and the circle, so that b = m(a− 1) + 1 and

b2 = 2− a2 = (m(a− 1) + 1)2 = m2(a− 1)2 + 2m(a− 1) + 1.

Subtracting 1 from both sides yields

1− a2 = m2(a− 1)2 + 2m(a− 1) = m2(1− a)2 − 2m(1− a).
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Since we are assuming a �= 1, we can divide by 1 − a on both

sides, yielding

1 + a = m2(1− a)− 2m.

We solve for a and b:

a =
m2 − 2m− 1

1 +m2
=

−1 + 2t+ t2

1 + t2
,

b = m(a− 1) + 1 =
t2 − 2t− 1

1 + t2
,

so

(a, b) = (
−1 + 2t+ t2

1 + t2
,
t2 − 2t− 1

1 + t2
).

Having produced the formula, we see that it is actually valid when

t = 1, yielding the point (1,−1).

We note that rational values of t give rise to rational points on the

circle via the formula above. Given a rational point (a, b) on the circle,

we note that the slope m of the line through (1, 1) and (a, b) will be

rational. Butm = (1+t)/(1−t) which means that t = (m−1)/(1+m),

so m rational implies t is rational. So as in the case of the unit

circle there is a one-to-one correspondence (except for (1,1)) between

rational points (a, b) on the circle and rational values of t. �

Exercise (page 16). Now consider the issue of rational points on

x2 + y2 = 3. In contrast to the examples above, prove that there are

no rational points on this curve, and describe the crucial difference

between this example and the one before.

Solution. If there were a rational point (a/b, c/d) on the curve, sub-

stituting and clearing denominators would produce an integer equa-

tion of the form A2 + B2 = 3C2. There is no loss to assume A,B,C

have no common factor. Any integer n has the form n = 3k+ r with

r = 0, 1, 2 by the division algorithm, so n2 = 9k2 + 6kr + r2 ≡ 0, 1

(mod 3). Since the right-hand side of the equation is congruent to

zero modulo 3, our only possibility is that A ≡ B ≡ 0 (mod 3). But

this means 9 | 3C2 or that 3 | C2. This forces 3 | C, a contradiction

since we were assuming A,B,C have no common factor. �



B.1. Chapter 2 221

Exercise (page 26). Find a square-free congruent number not in

the list above, showing all work to obtain it.

Solution. Running the code for n = 9 yields the following table,

which reveals 14 and 390 as new congruent numbers.

m n A B C CN

1 2 3 4 5 6

2 3 5 12 13 30

1 4 15 8 17 15

3 4 7 24 25 21

2 5 21 20 29 210

4 5 9 40 41 5

1 6 35 12 37 210

5 6 11 60 61 330

2 7 45 28 53 70

4 7 33 56 65 231

6 7 13 84 85 546

1 8 63 16 65 14

3 8 55 48 73 330

5 8 39 80 89 390

7 8 15 112 113 210

�

Exercise (page 28). Find all the rational points on the curve

xn + yn = 1 where n is an integer, n > 2.

Solution. Let (ab ,
c
d ) be a rational point on xn+yn = 1, i.e., a, b, c, d ∈

Z and b, d �= 0. Then (ab )
n+( cd )

n = 1 implies (clearing denominators)

that (ad)n + (bc)n = (bd)n. But that means that (ad, bc, bd) is an

integral solution to Fermat’s equation xn + yn = zn. By Fermat’s

Last Theorem, we know there can only be a solution to xn + yn = zn

(n > 2) if one of x, y, or z is zero.

The answer depends on the parity of n. For n even, the only

rational points are (±1, 0) and (0,±1). For n odd, the only rational

points are (1, 0) and (0, 1). �
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Exercise (page 34). Let V be the set of functions f : R → R which

satisfy the differential equation f ′′ − f = 0. Show that V is a vector

space over R and, assuming its dimension is 2, find a basis for V .

Solution. The proof is exactly as in the previous examples, and a

basis is {ex, e−x}. �

Exercise (page 38). Using the ideas above, prove the Bachet du-

plication formula for y2 = x3 + k, k �= 0.

(x, y) 
→
(
x4 − 8kx

4y2
,
−x6 − 20kx3 + 8k2

8y3

)
.

We outline some useful steps.

(1) Use implicit differentiation to derive a formula for the slope

of the tangent line to the curve y2 = x3 + k, which is valid

at any point (x, y) where y �= 0.

Solution to (1). If we differentiate y2 = x3+k with respect

to x, we obtain

2yy′ = 3x2, so y′ =
3x2

2y
. �

(2) Now write down the equation of the tangent line to the

curve at the point (a, b) where we assume b �= 0. It will be

convenient if you use m for the slope for the time being until

you have need to use its actual value.

Solution to (2). Of course this is just

y = m(x− a) + b, where m =
3a2

2b
. �

(3) Now we want to find the point(s) of intersection of the tan-

gent line with the cubic, and this requires a little work.

Substituting the expression for y given by the line into the

equation defining the cubic results in an equation of the form

f(x) = 0 where f is a polynomial of degree three. Your job

is to factor the polynomial since its roots are the x coordi-

nates corresponding to the points of intersection. Here you

catch a bit of a break. For sure one of the roots is a, which

means (x − a) is a factor. But it should not be too much
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of a surprise that a is (at least) a double root since the line

is tangent to the curve at x = a (much like y = (x − a)r

is tangent to the x-axis at x = a and the root a has multi-

plicity r). After you factor out the first of the (x − a)’s, it

would be a good time to put in the real value of m to see

what simplifies.

Solution to (3). We begin with

[m(x− a) + b]2 = y2 = x3 + k, which becomes

m2(x− a)2 + 2mb(x− a) + b2 = x3 + k, or

x3 −m2(x− a)2 − 2mb(x− a)− b2 + k = 0.

Noting that (a, b) is a point on the cubic means that b2 =

a3+k, meaning the term−b2+k = −a3. Thus the expression

above becomes

0 = x3 − a3 −m2(x− a)2 − 2mb(x− a)

= (x− a)
[
x2 + ax+ a2 −m2(x− a)− 2mb

]
= (x− a)

[
x2 + ax+ a2 −

(
3a2

2b

)2

(x− a)− 2b
3a2

2b

]

= (x− a)

[
x2+ax−2a2−(x− a)

(
3a2

2b

)2
]

= (x− a)

[
(x− a)(x+ 2a)− (x− a)

(
3a2

2b

)2
]

= (x− a)2
[
x+ 2a− 9a4

4b2

]

= (x− a)2
(
x− a(9a3 − 8b2)

4b2

)

= (x− a)2
(
x− a(9a3 − 8(a3 + k))

4b2

)

= (x− a)2
(
x− a4 − 8ak

4b2

)
.
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So the other point of intersection occurs when x = a4−8ak
4b2 ,

and substituting into the equation of the line produces y =
−a6−20ka3+8k2

8b3 , which provides the Bachet formula. �
Exercise (page 40). Properties of rational lines in the plane.

(1) Is every point on a rational line a rational point?

Solution to (1). The answer is no. For example, y = x

(i.e., Z(y− x)) is certainly a rational line, and yet (
√
2,

√
2)

is a point on the line.

(2) If a line passes through at least two rational points, is it a

rational line? What about lines if we only know one rational

point through which they pass?

Solution to (2). If a nonvertical line passes through two

rational points, then the point-slope formula will prove the

line is a rational line. But of course the line y =
√
2x is

not a rational line, but passes through the rational point

(0, 0). Similarly, if a vertical line passes through two rational

points, its says only that the line has the form x = r where

r is a rational number, so is rational.

(3) Consider two distinct rational lines that intersect. Do they

intersect in a rational point?

Solution to (3). Given two distinct lines that intersect,

think about how you solve for the point of intersection. Per-

haps you know something fancy like Gaussian elimination.

If not, you will learn it in a linear algebra class, but with

just two variables. In essence you take one equation, say

ax+ by + c = 0, and solve for either x or y. For example, if

b �= 0, one could write y = −ax/b− c/b. Note that the coef-

ficients −a/b and −c/b are still rational numbers. Then you

would substitute this expression into the second equation

and solve for the remaining variable—in this case x, always

doing arithmetic which only involved the rational numbers.

That would produce a rational x-coordinate which, when

put into one of the rational lines, would produce a ratio-

nal y-coordinate, hence a rational point of intersection. The

case where a �= 0 is analogous. �
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Exercise (page 40). Characterizing the intersection of lines and

conics.

(1) In how many points can two arbitrary lines (in the plane)

intersect?

Solution to (1). If we draw upon our experience in R2,

then the answer should be 0, 1, or an infinite number. Two

distinct lines could be parallel or intersect, or the two given

lines may actually be the same line. �
(2) In how many points can a line and a conic intersect?

Solution to (2). If we think simply of a line and a parabola,

we have no trouble drawing pictures (or generating equa-

tions) where the answer is 0, 1, or 2. How about an infinite

number? Well, how did we define a conic? In just the same

way as the set of points in the plane which satisfy an equa-

tion of the form ax2+ bxy+ cy2 + dx+ ey+ f = 0. So what

about the line y = x and the conic x2 − y2 = 0? Hmm,

something seems not quite fair. The problem is that the

conic x2 − y2 = 0 factors as (x− y)(x+ y) = 0. We can take

care of this potential degeneracy. �
Exercise (page 42). In the questions below, we assume all the plane

curves are irreducible, meaning they are the zero sets of polynomials

f(x, y) where f(x, y) is irreducible. It follows (from abstract algebra)

that two distinct irreducible curves can only intersect in a finite num-

ber of points. The questions below try to get at discovering what that

number might be.

For all the problems below, consider your curves in R2. Can

you come up with examples which suggest answers to the following

questions? Can you prove any of your assertions?

(1) In how many points can two (distinct) conics intersect?

(2) In how many points can a conic and a cubic intersect?

(3) In how many points can two (distinct) cubics intersect?

(4) What would be your guess for a generalization?

(5) Consider the intersection of a rational line with a rational

conic.
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(a) Are the point(s) of intersection necessarily rational?

Give a proof or provide a counterexample.

(b) Now let’s suppose that the line intersects the conic in

two points, one of which is rational. Is the second nec-

essarily rational? Give a proof or a counterexample.

To assist with your intuition, a few curves to consider are illus-

trated in Figure B.1. The first set fixes a parabola and slides the

circle up the y-axis. The second set is a cubic and quartic, and a

cubic and conic.

Figure B.1

Solution. For (5), it is clear the answer to the first question is no,

since the line y = x intersects the unit circle x2+y2 = 1 at the points

±(
√
2/2,

√
2/2) which are not rational points.

The answer to the second question is yes, but it takes some

thought. First consider the more general situation of an arbitrary
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conic given by h(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0 and a

line which intersects the conic at a point (x0, y0). Based upon the

exercises above, we would conjecture that the line can intersect the

conic in at most two points, but perhaps we should prove that. The

line that intersects the conic at (x0, y0) either has the form x = x0 or

y = px + q. Substituting y = px + q into the equation for the conic

will produce a quadratic equation in the variable x, namely

Q(x) = h(x, px+ q) = αx2 + βx+ γ.

If the line was x = x0, then substitution will produce a quadratic

in the variable y. We discuss the first case; the second is completely

analogous. Now the key observation is that the roots of this quadratic

are the only possible x-coordinates for points of intersection of the line

with the conic. We see this as follows. If (x1, y1) is any point that lies

in the intersection of the line and the conic, then y1 = px1 + q and

h(x1, y1) = 0. Putting them together, we see that 0 = h(x1, y1) =

h(x1, px1 + q) = Q(x1) = αx2
1 + βx1 + γ, so there are at most two

x-coordinates for points of intersection, and each x-coordinate gives

only one y-coordinate using y = px + q, so there are at most two

points of intersection.

It is interesting to think about the case in which there might be

only one point of intersection. A tangent line might come to mind,

but that should mean that x0 is a double root of the quadratic. But is

it possible that there is only one point of intersection? (For example

if the coefficient α = 0.) Consider

x2 − 4y2 + 3y − x− 1 = 0,

which has a rational point (2, 1). The line y = x/2 intersects the

conic at the point (2, 1), and it is clearly not tangent to the conic.

Where else does the line intersect the conic? This is another example

of where the introduction of projective space becomes relevant.

Returning to our example, we are assuming that the conic and line

are rational, there are two points of intersection (x0, y0) and (x1, y1),

and that (x0, y0) is rational. We may as well assume that x0 �= x1,

precluding the easy case of a tangent line to the conic.

Now in the analysis above, the line y = px + q is rational, so

substitution into h(x, y) (which has rational coefficients) produces
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the quadratic Q(x) = αx2 + βx + γ, with rational coefficients, and

because there are two distinct roots of this quadratic, we know that

α �= 0.

There are a number of ways in which to see that this second root

x1 is also rational, one involving the so-called division algorithm for

polynomials with rational coefficients (which is part of an abstract

algebra class), but we pursue the end result directly. The quadratic

does factor—if you are nervous, it certainly factors over the complex

numbers—so let’s write

Q(x) = αx2 + βx+ γ = α(x− x0)(x− x1)

= α(x2 − (x0 + x1)x+ x0x1).

So comparing the coefficients of x in the expressions, we see that

−β = α(x0 + x1).

Since α �= 0, we have that x1 = −β/α−x0 is rational, and substituting

that value into the equation for the rational line shows that y1 is also

rational. �

Exercise (page 44). As a simple example, show that the curve

y = (x− a)k intersects the x-axis with multiplicity k at x = a and

with multiplicity 0 at all other points x = b.

Solution. If we follow the paradigm, we put f(x, y) = y − (x− a)k.

The line in question is y = 0, so h(x) = f(x, 0) = −(x−a)k. We have

h(x) = (x − a)k · (−1) = (x − a)kq(x) with q(x) = −1, so q(a) �= 0,

which establishes the result at x = a. At x = b (with b �= a), we have

h(x) = −(x− a)k = (x− b)0q(x) with q(x) = −(x− a)k, and we note

q(b) = −(b− a)k �= 0 which establishes the second result. �

Exercise (page 44). Next, let’s gain a little more insight by exam-

ining the case of zeroes of orders 1 and 2. Let h(x) be a polynomial

of degree n ≥ 2 with coefficients in a field F , and let a ∈ F . Then

the following hold:

(1) h(x) = (x − a)q(x) + h(a) for some polynomial q having

coefficients in F .

(2) h(a) = 0 if and only if h(x) = (x− a)q(x).
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(3) h has a double root at a if and only if h(a) = h′(a) = 0.

Solution. The first statement is completely general and is a con-

sequence of the division algorithm in polynomial rings, a fact you

learn in an abstract algebra course, but which is probably known

to you from high school. Loosely speaking, when you divide one

polynomial by another, you get a quotient and remainder with the

remainder having degree less than the degree of the polynomial by

which you divided. Thus if we divide h(x) by x − a, we get h(x) =

(x − a)q(x) + r(x) for some polynomials q, r. Since the degree of

r is less than 1, r is a constant which we evaluate by plugging in

x = a: h(a) = (a− a)q(a) + r = r.

The second statement is now immediate from the first, but in our

earlier terminology it says that h has a zero of order at least one if

and only if h(a) = 0.

The third item is where more interest lies. The polynomial h

has a double root at x = a, which means h(x) = (x − a)2q(x) for

some polynomial q (and q(a) �= 0). Obviously h(a) = 0 and the

product rule for derivatives shows that h′(a) = 0 as well: [h′(x) =

(x− a)2q′(x) + 2(x− a)q(x)].

Conversely, suppose that h(a) = h′(a) = 0. Since h(a) = 0, we

know that h(x) = (x− a)q1(x). Now h′(x) = (x− a)q′1(x) + q1(x), so

h′(a) = 0 means that q1(a) = 0, which means that q1(x) = (x−a)q(x)

for some polynomial q. Putting things together, we see that h(x) =

(x − a)q1(x) = (x − a)2q(x), which means h has a double root at

x = a. �

Exercise (page 44). Establish the following generalization of the

work we have started above. Show that h has a zero of order k at x = a

if and only if h(a) = h′(a) = · · · = h(k−1)(a) = 0 and h(k)(a) �= 0,

where h(i) is the ith derivative of h. Hint : Taylor polynomials are

your friend.
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Solution. Since h is a polynomial of degree n, its Taylor series about

x = a is a polynomial of degree n of the form

h(x) = h(a) + h′(a)(x− a) +
h′′(a)

2!
(x− a)2 + . . .

· · ·+ h(n)(a)

n!
(x− a)n.

Certainly, if h(a) = h′(a) = · · · = h(k−1)(a) = 0, we have

h(x) =
h(k)(a)

k!
(x− a)k + · · ·+ h(n)(a)

n!
(x− a)n

= (x− a)k
[
h(k)(a)

k!
+ · · ·+ h(n)(a)

n!
(x− a)n−k

]
= (x− a)kq(x),

where

q(x) =
h(k)(a)

k!
+ · · ·+ h(n)(a)

n!
(x− a)n−k

and

q(a) =
h(k)(a)

k!
�= 0

by assumption.

Conversely, consider h(x) = (x − a)kq(x) for some polynomial

q satisfying q(a) �= 0. There are many ways to proceed, but all

boil down to the fact that if we write any polynomial h(x) = b0+

b1(x − a) + · · · + bn(x − a)n, then by induction we prove that bk =
h(k)(a)

k! , that is any polynomial expansion is the Taylor expansion.

Write q(x) = q(a) + · · ·+ q(n−k)(a)
(n−k)! (x− a)n−k as a Taylor polynomial.

Then

h(x) = q(a)(x− a)k + · · ·+ q(n−k)(a)

(n− k)!
(x− a)n

= h(a) + h′(a)(x− a) +
h′′(a)

2!
(x− a)2 + · · ·

+
h(n)(a)

n!
(x− a)n.

From the uniqueness, it is clear that h(a) = h′(a) = · · · = h(k−1)(a) =

0 and h(k)(a) �= 0. �
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Exercise (page 44). Now consider y2 = g(x) where g is a cubic,

that is the zero set of f(x, y) = y2 − g(x). We want to see that

a nonvertical tangent has multiplicity at least two at the point of

tangency.

Solution. Let (a, b) be a point on the curve y2 = g(x), that is,

if f(x, y) = y2 − g(x), then f(a, b) = 0. To compute the slope of

the tangent line, we differentiate y2 = g(x) implicitly. We obtain

2yy′ = g′(x), so dy/dx = g′(x)/2y, and m = g′(a)/2b is the slope of

the tangent line as long as we stay away from the points on the x-axis

where the tangent line is vertical. The equation of the tangent line is

y = m(x− a)+ b. To find the multiplicity of the point of intersection

of y2 = g(x) and the tangent line consider h(x) = f(x,m(x−a)+b) =

[m(x − a) + b]2 − g(x) and claim h(x) = (x − a)2q(x), that is h had

at least a double root at x = a.

To verify this we need only check that h(a) = h′(a) = 0. We see

that h(a) = b2 − g(a) = 0 since (a, b) is a point on the curve. We

compute f ′(x) = g′(x) − 2m[m(x − a) + b], so that h′(a) = 2mb −
g′(a) = 0 from our computation of m. �

B.2. Chapter 3

Exercise (page 55). Let p > 1 be a prime. Show the following.

– For any integer n, gcd(p, n) = 1 or p.

– For integers m,n, if p | mn, then either p | m or p | n.

Solution. The gcd is a positive integer which is a common divisor, so

the gcd of a prime p and an integer n must be a divisor of p. But since

p is prime, its only positive divisors are 1 and p which already gives

the statement. We can amplify it by saying that gcd(p, n) = p if and

only if p | n. For the second assertion, assuming that p | mn, either

p | m in which case we are done, or p � m which from above implies

that gcd(p,m) = 1. The assertion now follows from Corollary 3.14

that p | n. �

Exercise (page 62). Can you find integers x, y, z so that 987654319=

x2 + y2 + z2? Hint : Determine the possible values of x2 + y2 + z2

(mod 8).
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Solution. One easily checks that for an integer m, m2 ≡ 0, 1, 4

(mod 8) are the only possibilities, so that x2 + y2 + z2 can never

be congruent to 987654319 ≡ 7 (mod 8). �

Exercise (page 62) (A precursor to the Chinese Remainder The-

orem). Find the smallest number of marbles in a jar so that one

remains if the marbles are taken out 2, 3, 5 at a time, but none

remain if taken out 11 at a time.

Solution. Really, you have been asked to solve the following system

of congruences:

x ≡ 1 (mod 2),

x ≡ 1 (mod 3),

x ≡ 1 (mod 5),

x ≡ 0 (mod 11).

Now the first three say that (x − 1) is divisible by 2, 3, and 5, and

since these numbers are coprime in pairs, it follows that (x − 1) is

divisible by 30, so we are reduced to solving x ≡ 1 (mod 30) and

x ≡ 0 (mod 11). You can consider the sequence satisfying the first

congruence and look for the first instance where a number is divisible

by 11: 1, 31, 61, 91, 121, . . . , and we have a winner at 121. �

Exercise (page 66). Explore an encryption scheme known as

ROT13; it is a shift cipher. What can you say about the encryp-

tion and decryption functions E and D?

Solution. In ROT13, the shift is by 13, that is C ≡ P+13 (mod 26),

but since −13 ≡ +13 (mod 26), the encryption and decryption algo-

rithms are identical. �

Exercise (page 71). Let m,n > 1 be coprime integers, and let a, b

be arbitrary integers. Then the system of congruences

x ≡ a (mod m),

x ≡ b (mod n)

has a unique solution modulo mn.

As a generous hint, note that since gcd(m,n) = 1, Bézout’s iden-

tity says there exists u, v ∈ Z so that mu + nv = 1. Show that the
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number bmu + anv is a solution to the system, and then prove it is

unique modulo mn.

Solution. As the hint suggests, since gcd(m,n) = 1, Bézout says

there exists u, v ∈ Z so that mu + nv = 1. This means that mu ≡
1 (mod n) and nv ≡ 1 (mod m). We consider x0 = bmu + anv

as a candidate solution for the system of congruences. Using the

congruences we deduced from Bézout, we see

x0 ≡ bmu+ anv ≡ 0 + a · 1 ≡ a (mod m),

x0 ≡ bmu+ anv ≡ b · 1 + 0 ≡ b (mod n).

So x0 is a solution to the system. If x0 and x1 are two solutions,

then x0 ≡ a ≡ x1 (mod m) and x0 ≡ b ≡ x1 (mod n) means that m

and n both divide x0 − x1. Since gcd(m,n) = 1, we have that the

product mn | (x0 − x1) which is to say x0 ≡ x1 (mod mn), so there

is a unique solution modulo mn. �

Exercise (page 71). Explain how to use the above version of the

CRT to solve a system

x ≡ a (mod �),

x ≡ b (mod m),

x ≡ c (mod n),

where �,m, n > 1 are integers that are coprime in pairs.

Solution. Use the CRT on the first two congruences as above to

produce the single congruence x ≡ x0 (mod �m). Now the system has

been reduced to two congruences, and since gcd(�m, n) = 1, we may

apply the CRT once again. Thus any system of congruences where

the moduli are coprime in pairs can be solved simultaneously. �

B.3. Chapter 4

Exercise (page 83). It is actually not difficult to show that there

is a one-to-one correspondence between partitions of a set and equiv-

alence relations on the set. While we have seen the example that the

equivalence relation of congruence modulo n gives rise to the parti-

tion of the integers into congruence classes, consider the equivalence
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relation associated to the partitions of M&M’s we gave above. Then

see if you can prove the general statement.

Solution. Let S be a nonempty set. Suppose we have a partition of

S given by nonempty, pairwise-disjoint subsets {Ai}i∈I . For x, y ∈ S,

we define a relation by saying that x ∼ y if and only if x, y ∈ Ai for

some i. Since the {Ai} form a partition of S, every element of S is in

one and only one subset Ai. So the reflexive part is easy since x (and

x) is in some Ai. If x ∼ y then x, y are in some Ai, hence so are y

and x, which gives the symmetric part. And the transitive part says

suppose that x, y ∈ Ai and y, z ∈ Aj . Since y ∈ Ai ∩ Aj and we are

dealing with a partition, we must have Ai = Aj , so x, y, z ∈ Ai; in

particular x ∼ z. So a partition gives rise to an equivalence relation.

Conversely, suppose that we have an equivalence relation on the

set S. The partition will consist of all of the equivalence classes.

Since x ∈ [x], every element of S is in some class, and we know that

[x] ∩ [y] �= ∅ if and only if [x] = [y], so the equivalence classes are

pairwise disjoint making the set of them a partition. �

Exercise (page 93). Let p be a prime. Determine the value of φ(pr)

for any positive integer r. Hint : It may be easier to count the number

of elements of a ∈ Zpr which are not relatively prime to pr and use

that to determine the value of the function. Of course be sure to

check your answer against a few examples you can compute by hand.

Solution. For a prime p, φ(pr) is the number of integers k, with

1 ≤ k ≤ pr and gcd(k, pr) = 1. Now gcd(k, pr) = 1 if and only if

gcd(k, p) = 1. Perhaps it is easy to count the complementary set,

those k with gcd(k, pr) > 1, but this is the same as those k with

gcd(k, p) > 1, and since p is a prime, this is just the number of k with

p | k. In the collection of integers 1 ≤ k ≤ pr, every pth integer is

divisible by p, so there are pr/p = pr−1 integers divisible by p. That

means that φ(pr) = pr − pr−1 = pr−1(p− 1). �

Exercise (page 94). It is easy to show that in general φ(mn) �=
φ(m)φ(n) for general m,n, but what is remarkable is the when

gcd(m,n) = 1, φ(mn) = φ(m)φ(n). The function φ is an example

of a multiplicative function in number theory. Perhaps more surpris-

ing is that this is a direct consequence of the Chinese Remainder
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Theorem. Give a proof that φ is multiplicative using the following

idea: Suppose that m,n ≥ 2, and gcd(m,n) = 1. Show that there is

a bijection between the sets Umn and Um × Un (ordered pairs (a, b)

with a ∈ Um, b ∈ Un). Note that Umn has cardinality φ(mn) and

Um×Un has cardinality φ(m) ·φ(n). To establish the bijection, define

a map F : Umn → Um × Un by F ([a]mn) = ([a]m, [a]n). You need

to show this map is well-defined, one-to-one, and onto. Then deduce

the result.

Some of these words may be new to you, so here are some defini-

tions.

– We have encountered the term well-defined before. In this

context it means that if [a]mn = [b]mn, then F ([a]) = F ([b]).

– The map F is one-to-one (injective) if F ([a]) = F ([b]) im-

plies [a]mn = [b]mn.

– The map F is onto (surjective) if given ([b]m, [c]n) ∈ Um ×
Un, there exists [a]mn ∈ Umn so that F ([a]) = ([b], [c]).

– A map is bijective if it is one-to-one and onto.

– If f : S → T is a bijection, then S and T are said to have

the same cardinality (size), and the result you are to prove

is simply that when gcd(m,n) = 1, the size of Umn and

Um × Un is the same.

Solution. To show the map is well-defined, we show that if [a]mn =

[b]mn, then F ([a]) = F ([b]). This means that if [a]mn = [b]mn, then

[a]m = [b]m and [a]n = [b]n. But this is obvious, since the initial

condition means that mn | (a− b) so of course m,n | (a− b).

To show the map is one-to-one is the reverse, that if F ([a]) =

F ([b]) implies [a]mn = [b]mn. The condition F ([a]) = F ([b]) translates

to m | (a − b) and n | (a − b). Since gcd(m,n) = 1, we deduce

mn | (a− b), hence [a]mn = [b]mn, so F is one-to-one.

To see that F is onto, we take ([b]m, [c]n) ∈ Um × Un. We need

to show there is an a so that a ≡ b (mod m) and a ≡ c (mod n), but

this is exactly the Chinese Remainder Theorem. So such an a exists,

and the map F is onto.
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Thus F is one-to-one and onto, or a bijection, which means the

sets Umn and Um × Un have the same cardinality. The cardinality of

Umn is by definition φ(mn). The sets Um and Un have cardinalities

φ(m) and φ(n), respectively, so the set of ordered pairs Um × Un has

cardinality φ(m)φ(n). �

B.4. Chapter 5

Exercise (page 111). Suppose we choose primes p and q, so that

n = pq = 59753237. With the knowledge of those primes, we compute

φ(n) = (p− 1)(q− 1) = 59737740 and choose the common encryption

exponent e = 216 + 1 = 65537 (the last known Fermat prime).

(1) Find the primes p and q; this is not necessary to break the

code, but it reinforces that knowing φ(n) is equivalent to

factoring n.

Solution to (1). We know that n=pq, φ(n)=(p−1)(q−1)

= pq− (p+q)+1 = n− (p+q)+1, so n−φ(n)+1 = p+q =

15498. On the other hand (assuming p > q), (p − q) =√
(p− q)2 =

√
(p+ q)2 − 4n =

√
154982 − 4 · 59753237 =√

1175056 = 1084, which yields p = 8291 and q = 7207. �

(2) Find the decryption exponent.

Solution to (2). Euclid’s algorithm for showing

gcd(65537, φ(n)) = 1

yields 65537(−9103267) + 59737740(9987) = 1, so

d ≡ −9103267 ≡ 50634473 (mod φ(n)). �

(3) Using the base 27 encoding scheme as above, decrypt the

message consisting of two blocks of numerical ciphertext,

i.e., given as C = P e (mod n)

10881312 41465338.

Solution to (3). 10881312d ≡ 6391358 (mod n) and

41465338d ≡ 9436302 (mod n). Expanding in base 27, we
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have

6391358 = 12(274) + 0(273) + 19(272)

+ 7(271) + 26(270) 
→ ‘MATH�’,
9436302 = 17(274) + 20(273) + 11(272)

+ 4(271) + 18(270) 
→ ‘RULES’. �

Exercise (page 112). Compute the probability that a plaintext

message M is not prime to n = pq. If we wanted to ensure that our

messages were always relatively prime to n, what could be done?

Solution. The probability that a plaintext message M not prime to

n = pq is 1/p+ 1/q− 1/pq, less than 1% of the time for p and q with

at least 200 digits.

One could add filler to the message to make it relatively prime,

and indeed padding is necessary for security reasons in real imple-

mentations of RSA. �

Project (page 126). Suppose you want a 1024-bit RSA modulus,

so you want two primes 512-bits long. About how many primes are

there of that approximate size? What are the chances that randomly

chosen odd integers of that length will be prime?

Solution. There are 2512 integers with 512 bits, 2511 of them odd, so

those are the only candidates for primes, but how many primes are

there really in that range? If their number were very small, we might

be able to exhaustively try all the primes in trying to factor a 1024-

bit modulus. There is an answer to this question given by a famous

theorem in number theory called the prime number theorem which

says there are approximately 2503 primes in that range. So I guess we

are not going to brute-force our way to finding a factorization of n.

What are the odds that a randomly chosen 512-bit odd integer is

prime? About 2503/2511 = 1/256, so picking primes in this range is

quite easy. �

Exercise (page 126). The observations above also provide an an-

swer to another important security question. We know that people

often use e = 65537 as an encryption exponent. What if they also

chose the same value of n? What would be the security implications?
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Solution. Now that we have a bit of data, what is the probability of

that happening? Of course to understand that, we have to know how

people find large primes, the subject of primality testing. In general

candidates for large primes are simply randomly chosen integers which

are quickly tested for primality. The prime number theorem tells us

that approximately .39% of all the odd 512-bit integers are primes, so

on average, how many odd numbers in this range do we need to test

to find one prime? Two primes? Since there are so many primes in

this range, the chance that ones chosen randomly by one user would

be the same as those chosen randomly would be astronomically small,

except for one matter. How does one choose a random integer?

The problem is if random number generators fail to be random!!

Past problems noted in [Sch12] are an interesting starting point. �

B.5. Chapter 6

Exercise (page 132). Let

σ =

[
1 2 3

2 3 1

]
and τ =

[
1 2 3

1 3 2

]
.

Compute σ, σ2, σ3, τ, τ2, τ3, στ, σ2τ .

Solution.

σ =

[
1 2 3

2 3 1

]
, σ2 =

[
1 2 3

3 1 2

]
, σ3 =

[
1 2 3

1 2 3

]
,

τ =

[
1 2 3

1 3 2

]
, τ2 =

[
1 2 3

1 2 3

]
, τ3 = τ =

[
1 2 3

1 3 2

]
,

στ =

[
1 2 3

2 1 3

]
, σ2τ =

[
1 2 3

3 2 1

]
. �

Exercise (page 132). Fill in the Cayley table for S3 using the

elements listed in the first row or column, and show that S3 is non-

abelian.
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Solution.

◦ e σ σ2 τ στ σ2τ

e e σ σ2 τ στ σ2τ

σ σ σ2 e στ σ2τ τ

σ2 σ2 e σ σ2τ τ στ

τ τ σ2τ στ e σ2 σ

στ στ τ σ2τ σ e σ2

σ2τ σ2τ στ τ σ2 σ e

We check that στ �= τσ. �

Exercise (page 133). Compute R,R2, R3, F, F 2, F 3, RF,R2F .

Solution.

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

3

��
��
��
��
��
��
�

��
��
��
��
��
��
�

R ��

2 3 1 2

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

2

��
��
��
��
��
��
�

��
��
��
��
��
��
�

R2 ��

2 3 3 1

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

R3=e ��

2 3 2 3

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

F=F3 ��

2 3 3 2
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1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

F2=e ��

2 3 2 3

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

2

��
��
��
��
��
��
�

��
��
��
��
��
��
�

RF ��

2 3 1 3

1

��
��
��
��
��
��
�

��
��
��
��
��
��
�

3

��
��
��
��
��
��
�

��
��
��
��
��
��
�

R2F ��

2 3 2 1

�

Exercise (page 133). Fill in the Cayley table for D3 using the

elements listed along the first row or column.

Solution.

◦ e R R2 F RF R2F

e e R R2 F RF R2F

R R R2 e RF R2F F

R2 R2 e R R2F F RF

F F R2F RF e R2 R

RF RF F R2F R e R2

R2F R2F RF F R2 R e

�

Exercise (page 134). Notice that each symmetry can be thought

of as a permutation of the three vertices. If we regard the numbers

marking the vertices of the left-hand triangle as positions, then R

can be described as the permutation R =
[
1 2 3
2 3 1

]
, and F =

[
1 2 3
1 3 2

]
.
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Describe R2, F , RF , R2F in terms of the elements σ and τ used to

define S3. Can you determine if D3
∼= S3?

Solution. Yes, they are isomorphic via RaF b 
→ σaτ b. �

Exercise (page 140). We know that Un is a finite abelian group.

For 5 ≤ n ≤ 15, use your knowledge of these groups to characterize

them as in the fundamental theorem. For example, U3 is a group of

order 2, a prime, so U3 is a cyclic group of order 2, that is U3
∼= Z2.

The group U8 is an abelian group of order 4, so by the fundamental

theorem, it is isomorphic to either Z2 ×Z2 or to Z4. We easily check

for all a ∈ U8 that a2 = 1, so U8 is not cyclic, and so U8
∼= Z2 × Z2.

Solution.

U5 = 〈2〉 = 〈3〉 ∼= Z4,

U6 = 〈5〉 ∼= Z2,

U7 = 〈3〉 = 〈5〉 ∼= Z6
∼= Z2 × Z3,

U8 = 〈3〉 × 〈5〉 ∼= Z2 × Z2,

U9 = 〈2〉 = 〈5〉 ∼= Z6,

U10 = 〈3〉 = 〈7〉 ∼= Z4,

U11 = 〈2〉 = 〈5〉 = 〈6〉 = 〈7〉 ∼= Z10,

U12 = 〈5〉 × 〈7〉 ∼= Z2 × Z2,

U13 = 〈2〉 ∼= Z12
∼= Z4 × Z3,

U14 = 〈3〉 ∼= Z6,

U15 = 〈2〉 × 〈11〉 ∼= Z4 × Z2. �

B.6. Chapter 7

Exercise (page 159). Consider the points of intersection of the

affine curves x = y2 and y = −3. As this is the intersection of a

line and a conic, we expect at most two points, and indeed there is

only one affine point (9,−3). Find the points of intersection of the

corresponding projective curves.

Solution. The projective curves are xz = y2 and y = −3z. Equating

the two gives xz = 9z2 or z(9z − x) = 0. So either z = 0 or x = 9z
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or both. First we conclude no solutions result from both conditions

being true. z = 0 implies x = 9z = 0 and y = −3z = 0, and [0, 0, 0]

is not a point in projective space. So we have two cases z �= 0 and

x = 9z, or z = 0. So x = 9z, y = −3z and z �= 0 gives us the

single projective point [9z,−3z, z] = [9,−3, 1], which corresponds to

our affine solution (9,−3). That leaves the case where z = 0. In that

case we have y2 = xz = 0 = −3z, so we have y = z = 0 and x is

arbitrary (but not zero). So we gain one more point [x, 0, 0] = [1, 0, 0]

of intersection which lies on the line at infinity. �

Exercise (page 159), Find the points of intersection of the parallel

lines y = 3x and y = 3x+ 1 in P2(R).

Solution. Of course there are no points of intersection in the affine

plane, so we look projectively. The corresponding projective lines are

y = 3x and y = 3x + z. Equating, we see 3x = 3x + z, so z = 0

(which is good since it says the only possible solutions are on the line

at infinity since we know there are no affine solutions). So we have

z = 0 and y = 3x, which gives the single point [x, 3x, 0] = [1, 3, 0] as

the point of intersection of these projective lines. �

Exercise (page 159). Consider the intersection of the cubic y =

x3 and the line y = x + 6. We would like to see three points of

intersection, but where are they?

Solution. We see immediately that x3 = x + 6 is equivalent to the

equation x3−x− 6 = (x− 2)(x2+2x+3) = 0, and the quadratic has

no real roots, though it has the complex roots −1± i
√
2. At any rate

the point (2, 8) is a point on the affine curve, so [2, 8, 1] should be a

point on the projective curves yz2 = x3 and y = x+ 6z. Looking at

the line at infinity z = 0, we see x = 0 and hence y = 0, so there are

no projective points on two curves which were not affine. Indeed we

see that the solutions are (2, 8) if we look in A2(R), though we get

three points (2, 8), (1± i
√
2, 7± i

√
2) if we look in A2(C). �

Exercise (page 185). Consider the following elliptic curves over F7,

and determine the set of points on the curve and its structure as an

abelian group. Write out how to determine all the elements of the

group in terms of the generators you choose.



B.6. Chapter 7 243

(1) E : y2 = x3 + 3x+ 6.

Solution to (1). Δ ≡ 2 (mod 7); E(F7) ∼= Z4, cyclic of

order 4;

E(F7) = 〈[6, 3, 1]〉 = 〈P 〉 = {P, 2P, 3P, 4P = 0}
= {[6, 3, 1], [3, 0, 1], [6, 4, 1], [0, 1, 0]}. �

(2) E : y2 = x3 + 2.

Solution to (2). Δ ≡ 3 (mod 7); E(F7) ∼= Z3 × Z3;

E(F7)

= 〈[6, 1, 1]〉 × 〈[0, 4, 1]〉 = 〈P 〉 × 〈Q〉 = {P, 2P, 3P} × {Q, 2Q, 3Q}
= {[6, 1, 1], [6, 6, 1], [0, 1, 0]} × {[0, 4, 1], [0, 3, 1], [0, 1, 0]}
= {0, P, 2P,Q, 2Q,P ⊕Q,P ⊕ 2Q,Q⊕ 2P, 2P ⊕ 2Q}
= {[0, 1, 0], [6, 1, 1], [6, 6, 1][0, 4, 1],

[0, 3, 1], [3, 1, 1], [5, 1, 1], [5, 6, 1], [3, 6, 1]} �

(3) E : y2 = x3 + 4.

Solution to (3). Δ ≡ 5 (mod 7); E(F7) ∼= Z3;

E(F7) = 〈[0, 2, 1]〉 = 〈P 〉 = {P, 2P,0}
= {[0, 2, 1], [0, 5, 1], [0, 1, 0]}. �
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quadratic nonresidue, 186
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