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Introduction

This book stemmed from two classes: a 3-week class on cryptography I taught at
Stanford’s Education Program for Gifted Youth (EPGY) (now renamed “Stanford
Pre-Collegiate Studies”) in the summer of 2013, and a 10-week class on cryptog-
raphy I taught at Euler Circle in the winter of 2016. My students in these classes
were 14–17 years old, and as a result this book requires little mathematical back-
ground. My students worked so hard, and we got quite far and covered many
interesting topics. I was pleased with how much they learned in such a short period
of time. My original notes, from the EPGY class, only covered what I was able to
get through in twelve days of lectures, and then I expanded them to include the
additional material we covered in the Euler Circle class. I have expanded the notes
further to include several other topics that I find interesting and important.

While this book is officially about cryptography, it is really an excuse for me to
share some fascinating mathematics that I hope readers will enjoy. It isn’t intended
to be a comprehensive or encyclopedic treatise on the subject, and many important
topics in modern practice have been omitted. Topics are selected for being math-
ematically exciting, and that sometimes meant skipping other topics of greater
practical significance, and also covering some topics as “proof of concept” rather
than giving the most secure or up-to-date versions of things. I encourage readers
who want to see how everything is done in practice today to follow up by reading
the latest papers and developments; since this is a fast-moving and active area of
research, I expect that several things I have written will already be obsolete by the
time the book goes to press.

As in any mathematics book, the problems are very important. They are intended
to be doable but challenging, and ideally several people will work on the problems
together and share ideas.

Originally, cryptography and cryptanalysis were thought to be linguistic topics,
and the best codebreakers were people who knew a lot about language. While that
was true for breaking fairly easy ciphers, it became less and less true as cryptog-
raphy advanced. In the twentieth century, mathematicians became the leaders in
cryptanalysis. For example, Polish and British mathematicians before and during
World War II were spectacularly successful in breaking the German Enigma code

xi



using some then-recent advances in mathematics, while using essentially no lin-
guistic inputs. (Indeed, it was not even necessary to understand German in order to
decode the German messages.)

Starting in the 1970s, mathematicians also took over the codemaking industry
with the discoveries of Diffie and Hellman, and then Rivest, Shamir, and Adleman.
They used ideas from number theory to develop exciting new cryptosystems that
are still in widespread use today. We shall study them in detail, introducing all the
relevant background along the way. In addition, we shall look at methods of
attacking them.

In this book, we shall study cryptography from its earliest roots 2000 years ago
to the main cryptosystems still used today for secure online communication. Along
the way, we will encounter a lot of truly delightful mathematics. Most of it is
number theory, but topics in combinatorics, probability, abstract algebra, and others
will also make cameo appearances. I think that cryptography is a great place to learn
about these subjects, as they are developed in order to tackle specific problems that
arise naturally.

I hope you enjoy reading this book as much as I enjoyed writing it and teaching
the classes!

I would like to thank Porter Adams, Alon Amit, Sohini Kar, Yelena
Mandelshtam, Nitya Mani, Smiti Mittal, Ken Wanlass, Jonathan Webster, and the
students from my classes for reading earlier versions of this book carefully, making
suggestions and corrections that improved this book. I would also like to thank Eva
Goedhart, Ho Chung Siu, and Jonathan Sorenson for teaching classes out of earlier
versions of the book and giving me feedback.

From time to time, I have provided hints for the exercises. These hints are in
Rot13, which is a Cæsar shift of 13. If you want to see the hints, you can either
perform the Rot13 yourself, or you can go to http://www.rot13.com/ to have it done
automatically.

xii Introduction

http://www.rot13.com/


Chapter 1
A Quick Overview

1.1 The Setup of Cryptography

Cryptography is the study of methods of secure communication between two parties.
Typically, there are two parties who want to send messages to each other, but they
want to avoid the possibility of a third party understanding these messages should
they fall into the wrong hands.

It is traditional in cryptography to name our protagonists and antagonist, and
they have standard names that we will be referring to throughout the book. Our
protagonists are named Alice and Bob. They are simple people: they want nothing
more out of life than to be able to send secure messages to each other. However,
as we shall see, their task is not so easy, and it is necessary for them to learn some
fascinating mathematics in order to accomplish their task.

On the other hand, we have Eve, our antagonist. Eve desperately wants to read and
understand Alice and Bob’s correspondence. She too will have to learn some fasci-
nating mathematics in order to keep up with Alice and Bob’s ever more challenging
codes.

Cryptography is the battle between Alice and Bob on one side, and Eve on the
other. At various times in history, Alice and Bob have had the upper hand. At other
times, Eve has been on top. At present, it seems that Alice and Bob are winning, but
Eve is hard at work trying to regain her lead. Who knows what tricks the two sides
will come up with in the future?

Our standing assumption will be that any time a person sends a message, that
person has to send it over a public medium, so that anyone who wishes can pick
it up. So, Eve can receive any message that Alice and Bob send to each other. The
point, then, is to make it so that even though Eve can see the message, it just looks
like gibberish to her: she can’t access the content of the message.

So, how can Alice and Bob do that? Suppose Alice wishes to send the message
HELLO to Bob. She can’t just send HELLO, or else Eve will be able to read it. So,
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2 1 A Quick Overview

she has to send something else, so that Bob knows it means HELLO, and Eve does
not.

In order for them to do that, Alice and Bob have to agree on a protocol before-
hand: Alice will modify some or all of the letters in a prespecified manner, and Bob
will know how to recover the original text. Eve, not having attended their protocol
meeting, will not know how the text was modified and will have to figure it out by
(clever) guessing.

The first code we’ll look at, in the next chapter, will be the Cæsar cipher, Julius
Cæsar’s preferred method of cryptography.

1.2 A Note on Sage

Throughout this book,wewill see various computer programs that help us do calcula-
tions thatwould be extremely tedious or impossible to performby hand.Most of these
are written in Sage. Sage is a free computer algebra system that can be downloaded
from http://www.sagemath.org/, or used online at https://www.cocalc.com/ with a
free account.

Sage is an easy-to-use programming language that also functions as a very
advanced calculator. One can ask it to perform simple arithmetical operations: if
I type

5*6

then it outputs 30, as expected. It also has much more complicated commands built
in. For example, we can ask it to factor numbers:

factor(2ˆ32+1)

and it outputs

641 * 6700417

which is indeed the prime factorization of 232 + 1. Sage also has the standard features
of a programming language: if statements, for and while loops, and so forth.
The Sage snippets displayed throughout the book ought to be easy to follow and
modify for your own purposes, and there are various tutorials available online, such
as [Tea17]. Sage is built on the Python programming language, so it follows Python
syntax, and standard Python commands can also be used in Sage.

http://www.sagemath.org/
https://www.cocalc.com/
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1.3 Problems

(1) Generally, we use codes in order to prevent unwanted third parties from reading
our messages. Are there any other reasons why one might choose to write in
code? Come up with as many as you can.

(2) Suppose Alice wishes to send a message to Bob, in such a way that Bob can be
sure that Eve has not intercepted or tampered with the message. What are some
low-tech mechanisms she can do so that Bob can certify that only Alice could
have sent the message, and Eve hasn’t read or modified it?



Chapter 2
Cæsar Ciphers

2.1 What is a Cæsar Cipher?

Let’s say that Alice wants to send Bob the message

cryptography is fun.

What she can do is to replace every letter by a different letter. Perhaps, she thinks up
the following simple scheme that Julius Cæsar is said to have used: she replaces every
letter by the one that comes three places later in the alphabet, so every a becomes a
D, every b becomes an E, and so forth. Eventually, we reach the end of the alphabet,
so we have to wrap around, so every w becomes a Z, but then every x becomes an A,
every y becomes a B, and every z becomes a C. Under this scheme, Alice’s message
becomes

FUBSWRJUDSKB LV IXQ.

Note that we have used lowercase letters for the original message, and uppercase
letters for the encoded one. We will do this throughout the book.

Now, Alice sends the encoded message instead of the original one. If Bob doesn’t
know what Alice has done, he will be quite confused, because the message that she
sent doesn’t make any sense. And Eve will be similarly stumped. However, if Bob
knows that Alice was going to apply this scheme to produce the message, he can
figure out what it is supposed to say, for he can replace each letter by the one that
comes three places earlier in the alphabet, so every A is actually an x, every B is a
y, every C is a z, every D is an a, and so forth.

We call this code the Cæsar cipher.

2.2 Cracking the Cæsar Cipher

Now, is this a good way to send codes? It was state-of-the-art cryptography in Julius
Cæsar’s day, but by modern standards, it’s a terribly weak system. The problem is
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6 2 Cæsar Ciphers

that if Eve decides shewants to break it, and she suspects that Alice andBob are using
a Cæsar cipher, it won’t be too hard for her to do so. She might not know exactly
which Cæsar cipher they are using: she might not know that Alice shifted every letter
over by 3, but she suspects that every letter is shifted over by the same amount n, so
that Alice is replacing every letter with the letter that comes n letters further along
in the alphabet (for some number n). There aren’t that many possibilities for her to
try. We will now expand our definition of a Cæsar cipher: instead of requiring it to
be a shift by exactly three letters, we will allow a shift by any number of letters.

Exercise How many possible Cæsar ciphers are there?

Now, Eve can’t just blindly try all the possibilities; she also needs some method
of determining whether she has it right. How can Eve tell when she has got it right?
That isn’t too hard: it’s right when she recovers a message that makes sense.

Let us suppose that she received the encoded message

FUBSWRJUDSKB LV IXQ

and guessed (wrongly) that it was the Cæsar cipher obtained by shifting each letter
by six instead of by three. Then, she would end up with the message

zovmqldoxmev fp crk.

She should suspect that this is wrong, because those don’t look like English words
(or words in any other language she is familiar with). Most of the time, only one
choice of shift will result in something that looks like English words, and that will
be the correct one. So, in other words, she can just keep on trying until she gets some
words back.

Exercise See if you can find a message in English that can be encoded with a Cæsar
cipher to look like another English message.

You will probably find the previous exercise to be very difficult. It is very rare for
a Cæsar cipher to be ambiguous. (However, there are some examples, such as sleep
and bunny, which are Cæsar shifts of one another.) As a result, it is unlikely that
Eve will correctly guess that a message has been sent using a Cæsar cipher, but still
decipher it incorrectly. So, in conclusion, it’s easy for Eve to break the Cæsar cipher
(and know that she has broken them), and Alice and Bob should look for better ways
of encoding messages.

2.3 Some Terminology

Now that we have seen the basics of cryptography, it is time to introduce some
terminology. As we have seen, Alice and Bob want to send each other messages, but
they end up sending different messages from the ones they actually wanted to send.
Wewill call themessage they actuallywant to send theplaintext, and themessage they
actually send the ciphertext. A cryptosystem is a pair of algorithms, one to convert
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from a plaintext to a ciphertext, and the other to convert from a ciphertext back to a
plaintext. In order to generate the ciphertext from the plaintext, two ingredients are
needed: the protocol for encoding the message, and a specific key. In the case of the
Cæsar cipher, the Cæsar cipher is the protocol, and the key determines the size of
the shift.

It is important to distinguish between the encoding protocol and the key. A good
code should satisfyKerckhoff’s principle,which says that a goodcryptosystemshould
remain secure if the attacker (in this case Eve) knows the protocol and everything
about the method of encryption, with the exception of the key. Kerckhoff’s principle
is in contrast to security through obscurity, in which it is assumed that the attacker
is unable to determine the protocol used for generating the ciphertext. Frequently,
peculiar features of the ciphertext will allow the attacker to make a good guess about
the protocol used. We shall return to this topic later, once we have studied several
more cryptosystems.

In order to distinguish between the plaintext and the ciphertext, it is common to use
uppercase letters for the ciphertext and lowercase letters for the plaintext. Sometimes,
we will write the plaintext and ciphertext on two lines, as in the following:

Plaintext: cryptography is fun

Ciphertext ETARVQITCRJA KU HWP

When typesetting, using a monospaced font is recommended, so that the letters line
up nicely.

It is also worth distinguishing between cryptography and cryptanalysis. Cryptog-
raphy is the writing of hidden messages, and cryptanalysis is the analysis of hidden
messages. Thus, Alice and Bob engage in cryptography, while Eve engages in crypt-
analysis. However, it is important for both sides to be well-versed in both subjects.
Alice and Bob need to know the state-of-the-art attacks on their cryptosystem, so that
when a really dangerous attack comes along, they know to adopt a different protocol.
On the other hand, Eve needs to be booked up on the latest news in cryptography, so
that she can make a good guess about the protocol Alice and Bob are using.

2.4 Problems

(1) Encrypt the message

For duty, duty must be done;
the rule applies to everyone.

using a Cæsar cipher with a shift of six letters. (Don’t worry about encrypting
the punctuation.)

(2) The message
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ESTYRD LCP DPWOZX LD ESPJ DPPX.

is a ciphertext encrypted using a Cæsar cipher (the shift amount is not provided).
What is the plaintext message?

(3) Can you find two English words other than sleep and bunny, with at least
four letters, that encrypt to each other under a Cæsar cipher?What are the longest
such words you can find?

(4) Alice sends Bob a ciphertext encrypted using a Cæsar cipher. Bob knows the
shift amount, but being a beginner in cryptography at this stage, he accidentally
encrypts it rather than decrypting it. Fortunately, by doing so, he still recovers
the original plaintext. What was the shift amount?

(5) Actually, I tricked you in problem 4. Themessage was actually in Hebrew, rather
than in English. The Hebrew alphabet consists of 22 letters. What was the shift
amount actually?

(6) Suppose Alice starts with a plaintext message and encrypts it using a Cæsar
cipher with a shift of k letters. Since she is also just learning about cryptography
at the moment, she explores what happens when she encrypts the encrypted
ciphertext, using the same shift of k. She does this repeatedly, and eventually
she finds that she has decrypted the message. In terms of k, how many times did
Alice have to encrypt themessage before it became decrypted? (Youmay assume
that the message is in English this time, so that the alphabet has 26 letters.)



Chapter 3
Substitution Ciphers

3.1 What is a Substitution Cipher?

As we saw in the last chapter, the Cæsar cipher isn’t very good. (This isn’t too
surprising: we should expect that cryptography has seen some major advances since
its beginnings around 2000 years ago.) But it is easy to come upwith an improvement:
instead of shifting everything over by a fixed amount, we can have every letter stand
for a different letter, at random perhaps. So, for example, we could consider the
following set of substitutions:

abcde fghij klmno pqrst uvwxy z
XHZRW FGPTY JOCAE ULNKQ IVSMD B

The first line above denotes a plaintext character, and the second line denotes
the corresponding ciphertext character. This means that, for example, every time we
want to write an a, we actually write an X, and every time we actually want to write
a b, we write an H, and so on. Hence, our plaintext message

cryptography is fun

becomes

ZNDUQEGNXUPD TK FIA

in the ciphertext.
If Alice sends this message, then Bob can decrypt it by looking up in the table.

The first letter he sees is a Z, so he looks for a Z in the bottom row of the table and
finds it sitting under the c, so the Z should have been a c. He keeps doing this for
every letter until he has decrypted the whole message. He may find the task easier if
he sorts the table by the ciphertext character rather than the plaintext character:

ABCDE FGHIJ KLMNO PQRST UVWXY Z
nzmyo fgbuk sqxrl htdwi pveaj c

In contrast to Bob, Eve has difficulty in deciphering the message since she doesn’t
know which letter substitutions were used.
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10 3 Substitution Ciphers

This generalization of the Cæsar cipher is called the substitution cipher. It is a lot
better than the Cæsar cipher largely because there are a lot more possible substitution
ciphers than there are Cæsar ciphers. In fact, there are 26! (26 factorial) of them, as
opposed to just 26. Note that 26! = 403291461126605635584000000, or around
4× 1026. Eve won’t want to try all of them, even with a computer. At the very least,
it will require some cleverness in order to break a substitution cipher. However, as
we shall see, the number of possible keys is not the only determining factor in the
difficulty of breaking a ciphertext.

Also, note that in a substitution cipher, some letters might get encoded as them-
selves. (In the above example, this happens with the letters f, g, and v.) Is this a flaw
in the strength of the substitution cipher?

The answer is a most emphatic no. Indeed, allowing letters to code for themselves
is a strength of the substitution cipher. This may be counterintuitive, so let us pause
for a moment to think about why it is actually a good idea. The reason is that it
doesn’t give away any clues. If a letter were not allowed to code for itself, then Eve
may be able to use that as a clue. Perhaps she is debating whether I stands for i or
u (the latter being correct in the above substitution cipher). Then, she would already
know the answer, since the I wouldn’t be allowed to code for itself. But as it is, we
are allowing letters to code for themselves, so Eve doesn’t get any hints like that for
free.

3.2 A Cheap Attack Against the Substitution Cipher

When we think about cryptography, we’re definitely rooting for Alice and Bob.
After all, they’re the good guys. However, in order to ensure their success, it is very
important that we sometimes stop to think about things from Eve’s point of view.
She doesn’t have anything else to do besides trying to crack codes, so she can devote
a lot of time to thinking up clever ways to attack any codes or ciphers that Alice and
Bob come up with. So, she isn’t just about to give up because the problem initially
looks hard.

So far, we have given her a huge hint: some of the words in our message are very
short. There aren’t any 1-letter words in our previous message, but suppose for a
moment that there were some, perhaps because we wish to send the new message

i have a truly marvelous demonstration
of this proposition

After we encode it, we obtain the ciphertext

T PXVW X QNIOD CXNVWOEIK RWCEAKQNXQTEA
EF QPTK UNEUEKTQTEA

How can Eve try to make progress on cracking this code? Well, we have two
1-letter words in there: the first and third words. There are only two 1-letter words
in English: a and I. So, assuming that Alice and Bob are speaking proper English,
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T and X must be a and i, in some order. Originally, Eve had 26 choices for T and
then 25 left for X, but now she is down from 26× 25 to 2: a huge improvement!

Let’s see how easily Eve can crack this substitution cipher: suppose she guesses
correctly that Tmeans i and that Xmeans a. Once she makes all these substitutions,
she is left with the following (we’ll write the ones she has figured out in lowercase
letters and keep the ones she’s still working on in uppercase):

i PaVW a QNIOD CaNVWOEIK RWCEAKQNaQiEA
EF QPiK UNEUEKiQiEA

Well, that takes care of the 1-letter words. It helps some, but there’s a lot more
work to do. Now how about the 2-letter word? It doesn’t contain an a or an i, so
that cuts down on the possibilities. What is a good candidate for what it might be?
There are several reasonable possibilities: perhaps of or or or be would be good
choices. So maybe she checks all of them to see which ones resemble English. Since
we’re trying to do this relatively quickly by hand (without the help of a computer),
let’s say she gets it right and guesses that EF is supposed to be of. Then, making
those substitutions, we have

i PaVW a QNIOD CaNVWOoIK RWCoAKQNaQioA
of QPiK UNoUoKiQioA

What next? Now, she might notice that there are two words that end with QioA.
What’s a common ending for words of this form? The logical choices are sion and
tion. Both end with n, so let’s see what happens when we replace A with n. We
get

i PaVW a QNIOD CaNVWOoIK RWConKQNaQion
of QPiK UNoUoKiQion

That wasn’t a huge help, but let’s see what happens if we try replacing Q with s
and t. With s we get

i PaVW a sNIOD CaNVWOoIK RWConKsNasion
of sPiK UNoUoKision

Now, we can see if there are any English words with these letter combinations.
My mother’s crossword puzzle solver tells me that there are no words of the form
??o?o?ision so this was wrong. (Of course, Eve also has access to a crossword
puzzle solver, so she can do that too.) Let’s try with t instead. We get

i PaVW a tNIOD CaNVWOoIK RWConKtNation
of tPiK UNoUoKition

Checking again,wefind that there is exactly onewordof the form??o?o?ition,
namely proposition. Assuming this is right, we get to fill in lots of stuff now:
we get

i PaVW a trIOD CarVWOoIs RWConstration
of tPis proposition
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Again, we check which words can fit: there are two possible words of the form
t?is, namely, this and tris. Of course, this is much more likely, so that’s
what we should guess, but actually we already know that tris has to be wrong,
since we’ve already found the r. So P must mean h. Similarly, RWConstration
must be demonstration. Once we have substituted all that, we get

i haVe a trIOD marVeOoIs demonstration
of this proposition

Continuing on in the same manner, we find that marVeOoIs is marvelous,
giving us

i have a trulD marvelous demonstration
of this proposition

Now it’s not hard to guess that D should be y, giving us our final message of

i have a truly marvelous demonstration
of this proposition

So we see that with a bit of clever guessing, Eve can crack this substitution cipher,
at least some of the time. However, observe that Alice and Bob were being very
generous to Eve by telling her where the spaces were, and thus how long the words
are. So, they can be smarter about it, in one of twoways: they could smash everything
together and count on each other to be able to reconstruct the spaces, or they could
encode the spaces as well. Either of these methods will make life substantially harder
for Eve. The standard method is simply to remove the spaces altogether; indeed, a
bit of thought reveals that this is much more challenging for Eve to attack.

Exercise If we were to encode spaces as a “27th letter,” how could Eve modify the
method above in order to break a substitution cipher?

3.3 Frequency Analysis

Still, Eve still has some tricks up her sleeve, even if Alice and Bob delete the spaces
before encoding the message. The main tool she can employ is frequency analysis.
The idea is that the letters in English don’t occur equally often: e is themost common
letter, and z is the least common. See Table3.1 for a table of the frequency of the
letters in English, according to Wikipedia.

Eve can use her knowledge of letter frequencies to her advantage by assuming
that the most common letter is an e, the second most common letter is a t, and so
forth. Now, this might not be exactly right, since in a relatively small body of text,
the proportions might be off by a bit. But it’s still a good place to start. The longer the
message, the easier time Eve will have of decoding it, since in longer messages, the
proportions should be closer to what they are for English. Let’s try out an example.
Suppose Alice sends the message
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Table 3.1 Table of letter
frequencies in English

Letter Frequency (%) Rank

E 12.702 1

T 9.056 2

A 8.167 3

O 7.507 4

I 6.966 5

N 6.749 6

S 6.327 7

H 6.094 8

R 5.987 9

D 4.253 10

L 4.025 11

C 2.782 12

U 2.758 13

M 2.406 14

W 2.360 15

F 2.228 16

G 2.015 17

Y 1.974 18

P 1.929 19

B 1.492 20

V 0.978 21

K 0.772 22

J 0.153 23

X 0.150 24

Q 0.095 25

Z 0.074 26

PCFHN RJSDJ IXKXP YDCHI DLJDY HYNTJ IGFBD XIFVS

HRSDH DLXRH ITMJB JLXJZ FMIJO HHSDJ VXJTT DLXIX

GJIVJ ATXYX HYTXP SLPBD HIFIJ DDTXD LXGHC CDHJY

HYNTJ IDNSX DLXYT NKVHC THIMS XTBHS HSAHJ IMHCD

LXZPK DHIFO XSPNB HCAPB GJIKV MXZPB PSOJY TJSDL

XLNGH NIHCC PXTMP SORLP KLBHN SMBKH SDIJM PKDHI

FKHHT SXBBH CYJOX DJAHN DDHDI XYJSD LXBKP XSKXH

CQNTT PXSDL XXGPS XSDGN BPKHR PDHCG JKJNT JFRLH

RIHDX HCWNX XSJSS XDLXY JDLHB HCYJM MFJBI XSMXI

XMAFA HNKPK JNTDB DFTXH CDLXA PBLHY HCBHM HIJSM
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GJSDL XMJBL HCJMH IBJFM PZXBD XMHCW NJKVX IFSJI

IJDPZ XYHRX IBHCM PKVXS BJSMD LJKVX IJFZP KDHIX

GGJSN XTYXJ VLJNS DPSOY XZXIP TDLHG JBJWN PSJBJ

SMMHK DHIBJ KLXZX IXTTD NYYXI JSMDX SSFBH SMJSP

XTMXC HXJSD LHSFD IHTTH YXJSM GPBDX IONPU HDJLD

JVXHC DLXBX XTXGX SDBJT TDLJD PBCNB PATXG XTDDL

XGJTT MHRSP SJYPY VPSHI KINKP ATXBX DDLXG DHBPG

GXIJS MDJVX HCCDL XBKNG JSMJL XJZFM IJOHH SPBDL

XIXBP MNNG

We can count the number of instances of each letter in the ciphertext. We can do
this by hand, but it’s boring, so I wrote a Python program to do it for me:

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

ciphertext =

"PCFHN RJSDJ IXKXP YDCHI DLJDY HYNTJ IGFBD

XIFVS HRSDH DLXRH ITMJB JLXJZ FMIJO HHSDJ

VXJTT DLXIX GJIVJ ATXYX HYTXP SLPBD HIFIJ

DDTXD LXGHC CDHJY HYNTJ IDNSX DLXYT NKVHC

THIMS XTBHS HSAHJ IMHCD LXZPK DHIFO XSPNB

HCAPB GJIKV MXZPB PSOJY TJSDL XLNGH NIHCC

PXTMP SORLP KLBHN SMBKH SDIJM PKDHI FKHHT

SXBBH CYJOX DJAHN DDHDI XYJSD LXBKP XSKXH

CQNTT PXSDL XXGPS XSDGN BPKHR PDHCG JKJNT

JFRLH RIHDX HCWNX XSJSS XDLXY JDLHB HCYJM

MFJBI XSMXI XMAFA HNKPK JNTDB DFTXH CDLXA

PBLHY HCBHM HIJSM GJSDL XMJBL HCJMH IBJFM

PZXBD XMHCW NJKVX IFSJI IJDPZ XYHRX IBHCM

PKVXS BJSMD LJKVX IJFZP KDHIX GGJSN XTYXJ

VLJNS DPSOY XZXIP TDLHG JBJWN PSJBJ SMMHK

DHIBJ KLXZX IXTTD NYYXI JSMDX SSFBH SMJSP

XTMXC HXJSD LHSFD IHTTH YXJSM GPBDX IONPU

HDJLD JVXHC DLXBX XTXGX SDBJT TDLJD PBCNB

PATXG XTDDL XGJTT MHRSP SJYPY VPSHI KINKP

ATXBX DDLXG DHBPG GXIJS MDJVX HCCDL XBKNG

JSMJL XJZFM IJOHH SPBDL XIXBP MNNG"

counter = [0]*26

for char in ciphertext:

num = alphabet.find(char)

counter[num] += 1

print counter
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It provides me with the following frequency table:

Letter Freq Letter Freq Letter Freq
A 9 J 66 S 50
B 37 K 23 T 34
C 24 L 34 U 1
D 62 M 31 V 12
E 0 N 27 W 3
F 17 O 8 X 82
G 21 P 39 Y 22
H 67 Q 1 Z 9
I 41 R 9

Now, we could just try to make substitutions based on this table naïvely, expecting
that X should be e, H should be t, J should be a, and so forth. However, doing this
immediately is a little risky: we may make a mistake early on and then be chasing
nonsense. We can improve by looking not just at the individual letters, but also at the
two-letter and three-letter combinations. The most common two-letter combination
(bigram) is th, and the most common three-letter combination (trigram) is the.
The most common bigram in the ciphertext is DL at 22, followed by LX at 19; the
most common trigram is DLX at 16, far above JSM at 7. These observations strongly
suggest that DLX is the. This is not quite consistent with the single-letter frequency
analysis, since D is only the fourth most common letter in the ciphertext. But it is
convincing enough!

Once we make these substitutions, we obtain

PCFHN RJStJ IeKeP YtCHI thJtY HYNTJ IGFBt
eIFVS HRStH theRH ITMJB JheJZ FMIJO HHStJ
VeJTT theIe GJIVJ ATeYe HYTeP ShPBt HIFIJ
ttTet heGHC CtHJY HYNTJ ItNSe theYT NKVHC
THIMS eTBHS HSAHJ IMHCt heZPK tHIFO eSPNB
HCAPB GJIKV MeZPB PSOJY TJSth ehNGH NIHCC
PeTMP SORhP KhBHN SMBKH StIJM PKtHI FKHHT
SeBBH CYJOe tJAHN ttHtI eYJSt heBKP eSKeH
CQNTT PeSth eeGPS eStGN BPKHR PtHCG JKJNT
JFRhH RIHte HCWNe eSJSS etheY JthHB HCYJM
MFJBI eSMeI eMAFA HNKPK JNTtB tFTeH CtheA
PBhHY HCBHM HIJSM GJSth eMJBh HCJMH IBJFM
PZeBt eMHCW NJKVe IFSJI IJtPZ eYHRe IBHCM
PKVeS BJSMt hJKVe IJFZP KtHIe GGJSN eTYeJ
VhJNS tPSOY eZeIP TthHG JBJWN PSJBJ SMMHK
tHIBJ KheZe IeTTt NYYeI JSMte SSFBH SMJSP
eTMeC HeJSt hHSFt IHTTH YeJSM GPBte IONPU
HtJht JVeHC theBe eTeGe StBJT TthJt PBCNB
PATeG eTtth eGJTT MHRSP SJYPY VPSHI KINKP
ATeBe ttheG tHBPG GeIJS MtJVe HCCth eBKNG
JSMJh eJZFM IJOHH SPBth eIeBP MNNG
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At this stage, we have to start making more guesses. The most popular letter we
haven’t worked out yet is a, and the most popular remaining letters in the ciphertext
are H and J, so we might guess that one of them means a. We don’t really know if
this is correct, but we can experiment. (Eve has to be very patient if she is going to
break this cipher.)

Which of these is more convincing? Well, tha and tho are both common letter
combinations, butthat is certainlymore common thanthot. So ifwefind instances
of thHt, then H is probably a. If we instead find thJt, then J is probably a. Indeed,
we find thJt, for instance in the first line, fifth block.

The second most common trigram in English is and. Indeed, the second most
common trigram in the ciphertext is JSM, which begins with a J, which we believe to
bea. So, let’s try substituting those. Furthermore, let’s replace the nextmost common
letter H with o, the next most common English letter we have not yet dealt with. We
then obtain

PCFoN Ranta IeKeP YtCoI thatY oYNTa IGFBt
eIFVn oRnto theRo ITdaB aheaZ FdIaO oonta
VeaTT theIe GaIVa ATeYe oYTeP nhPBt oIFIa
ttTet heGoC CtoaY oYNTa ItNne theYT NKVoC
ToIdn eTBon onAoa IdoCt heZPK toIFO enPNB
oCAPB GaIKV deZPB PnOaY Tanth ehNGo NIoCC
PeTdP nORhP KhBoN ndBKo ntIad PKtoI FKooT
neBBo CYaOe taAoN ttotI eYant heBKP enKeo
CQNTT Penth eeGPn entGN BPKoR PtoCG aKaNT
aFRho RIote oCWNe enann etheY athoB oCYad
dFaBI endeI edAFA oNKPK aNTtB tFTeo CtheA
PBhoY oCBod oIand Ganth edaBh oCado IBaFd
PZeBt edoCW NaKVe IFnaI IatPZ eYoRe IBoCd
PKVen Bandt haKVe IaFZP KtoIe GGanN eTYea
VhaNn tPnOY eZeIP TthoG aBaWN PnaBa nddoK
toIBa KheZe IeTTt NYYeI andte nnFBo ndanP
eTdeC oeant honFt IoTTo Yeand GPBte IONPU
otaht aVeoC theBe eTeGe ntBaT Tthat PBCNB
PATeG eTtth eGaTT doRnP naYPY VPnoI KINKP
ATeBe ttheG toBPG GeIan dtaVe oCCth eBKNG
andah eaZFd IaOoo nPBth eIeBP dNNG

How can she confirm that she is on the right track? She can look at the result
so far and see if it looks like plausible English. We don’t find many bizarre letter
combinations (and those we do find probably have spaces between them anyway),
and we find some standard ones like “ten” that we didn’t force to be there. So, this
suggests that she is probably doing well.

At this stage, it’s probably worth abandoning frequency tables and start looking
for potential words. We find theIe and theBe in various places, which gives us a
clue that I and B represent r and s, in some order. One could look for more clues, or
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just try one at random and see if anything looks weird. Let us try to replace I with r
and B with s (for no other reason than that’s the first thing I thought of), we obtain

PCFoN Ranta reKeP YtCor thatY oYNTa rGFst
erFVn oRnto theRo rTdas aheaZ FdraO oonta
VeaTT there GarVa ATeYe oYTeP nhPst orFra
ttTet heGoC CtoaY oYNTa rtNne theYT NKVoC
Tordn eTson onAoa rdoCt heZPK torFO enPNs
oCAPs GarKV deZPs PnOaY Tanth ehNGo NroCC
PeTdP nORhP KhsoN ndsKo ntrad PKtor FKooT
nesso CYaOe taAoN ttotr eYant hesKP enKeo
CQNTT Penth eeGPn entGN sPKoR PtoCG aKaNT
aFRho Rrote oCWNe enann etheY athos oCYad
dFasr ender edAFA oNKPK aNTts tFTeo CtheA
PshoY oCsod orand Ganth edash oCado rsaFd
PZest edoCW NaKVe rFnar ratPZ eYoRe rsoCd
PKVen sandt haKVe raFZP Ktore GGanN eTYea
VhaNn tPnOY eZerP TthoG asaWN Pnasa nddoK
torsa KheZe reTTt NYYer andte nnFso ndanP
eTdeC oeant honFt roTTo Yeand GPste rONPU
otaht aVeoC these eTeGe ntsaT Tthat PsCNs
PATeG eTtth eGaTT doRnP naYPY VPnor KrNKP
ATese ttheG tosPG Geran dtaVe oCCth esKNG
andah eaZFd raOoo nPsth eresP dNNG

There are several other tipoffs we can find. Let’s mark some of them in red:

PCFoN Ranta reKeP YtCor thatY oYNTa rGFst
erFVn oRnto theRo rTdas aheaZ FdraO oonta
VeaTT there GarVa ATeYe oYTeP nhPst orFra
ttTet heGoC CtoaY oYNTa rtNne theYT NKVoC
Tordn eTson onAoa rdoCt heZPK torFO enPNs
oCAPs GarKV deZPs PnOaY Tanth ehNGo NroCC
PeTdP nORhP KhsoN ndsKo ntrad PKtor FKooT
nesso CYaOe taAoN ttotr eYant hesKP enKeo
CQNTT Penth eeGPn entGN sPKoR PtoCG aKaNT
aFRho Rrote oCWNe enann etheY athos oCYad
dFasr ender edAFA oNKPK aNTts tFTeo CtheA
PshoY oCsod orand Ganth edash oCado rsaFd
PZest edoCW NaKVe rFnar ratPZ eYoRe rsoCd
PKVen sandt haKVe raFZP Ktore GGanN eTYea
VhaNn tPnOY eZerP TthoG asaWN Pnasa nddoK
torsa KheZe reTTt NYYer andte nnFso ndanP
eTdeC oeant honFt roTTo Yeand GPste rONPU
otaht aVeoC these eTeGe ntsaT Tthat PsCNs
PATeG eTtth eGaTT doRnP naYPY VPnor KrNKP
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ATese ttheG tosPG Geran dtaVe oCCth esKNG
andah eaZFd raOoo nPsth eresP dNNG

Plausible guesses are that V is k, P is i, C is f, and N is u. Trying this, we obtain

ifFou Ranta reKei Ytfor thatY oYuTa rGFst
erFkn oRnto theRo rTdas aheaZ FdraO oonta
keaTT there Garka ATeYe oYTei nhist orFra
ttTet heGof ftoaY oYuTa rtune theYT uKkof
Tordn eTson onAoa rdoft heZiK torFO enius
ofAis GarKk deZis inOaY Tanth ehuGo uroff
ieTdi nORhi Khsou ndsKo ntrad iKtor FKooT
nesso fYaOe taAou ttotr eYant hesKi enKeo
fQuTT ienth eeGin entGu siKoR itofG aKauT
aFRho Rrote ofWue enann etheY athos ofYad
dFasr ender edAFA ouKiK auTts tFTeo ftheA
ishoY ofsod orand Ganth edash ofado rsaFd
iZest edofW uaKke rFnar ratiZ eYoRe rsofd
iKken sandt haKke raFZi Ktore GGanu eTYea
khaun tinOY eZeri TthoG asaWu inasa nddoK
torsa KheZe reTTt uYYer andte nnFso ndani
eTdef oeant honFt roTTo Yeand Giste rOuiU
otaht akeof these eTeGe ntsaT Tthat isfus
iATeG eTtth eGaTT doRni naYiY kinor KruKi
ATese ttheG tosiG Geran dtake offth esKuG
andah eaZFd raOoo nisth eresi duuG

At this point, things start to get pretty easy. We can finish it up, until we obtain
the original message, which is

ifyou wanta recei ptfor thatp opula rmyst
erykn ownto thewo rldas aheav ydrag oonta
keall there marka blepe oplei nhist oryra
ttlet hemof ftoap opula rtune thepl uckof
lordn elson onboa rdoft hevic toryg enius
ofbis marck devis ingap lanth ehumo uroff
ieldi ngwhi chsou ndsco ntrad ictor ycool
nesso fpage tabou ttotr epant hesci enceo
fjull ienth eemin entmu sicow itofm acaul
aywho wrote ofque enann ethep athos ofpad
dyasr ender edbyb oucic aults tyleo ftheb
ishop ofsod orand manth edash ofado rsayd
ivest edofq uacke rynar rativ epowe rsofd
icken sandt hacke rayvi ctore mmanu elpea
khaun tingp everi lthom asaqu inasa nddoc
torsa cheve rellt upper andte nnyso ndani
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eldef oeant honyt rollo peand miste rguiz
otaht akeof these eleme ntsal lthat isfus
iblem eltth emall downi napip kinor cruci
blese tthem tosim meran dtake offth escum
andah eavyd ragoo nisth eresi duum

The next thing to do, of course, is to add capitalization, spaces, and punctuation.
Once we have done this, we find that the original message is

If you want a receipt for that popular mystery,

Known to the world as a Heavy Dragoon,

Take all the remarkable people in history,

Rattle them off to a popular tune.

The pluck of Lord Nelson on board of the Victory -

Genius of Bismarck devising a plan -

The humour of Fielding (which sounds contradictory) -

Coolness of Paget about to trepan -

The science of Jullien, the eminent musico -

Wit of Macaulay, who wrote of Queen Anne -

The pathos of Paddy, as rendered by Boucicault -

Style of the Bishop of Sodor and Man -

The dash of a D’Orsay, divested of quackery -

Narrative powers of Dickens and Thackeray -

Victor Emmanuel - peak-haunting Peveril -

Thomas Aquinas, and Doctor Sacheverell -

Tupper and Tennyson - Daniel Defoe -

Anthony Trollope and Mister Guizot!

Take of these elements all that is fusible,

Melt them all down in a pipkin or crucible -

Set them to simmer, and take off the scum,

And a Heavy Dragoon is the residuum!

This passage is part of a song fromGilbert andSullivan’s operettaPatience [GS97].
In conclusion, substitution ciphers are much better than Cæsar ciphers as far as

being hard to break, but they can still usually be cracked by determined adversaries.
We need something better, something not so readily attacked by frequency analysis.
But before we do that, let’s take a break from the ciphers and study a bit of number
theory!

3.4 Problems

(1) One issuewith substitution ciphers is the difficulty of remembering the key.There
is a version of the substitution cipher that uses a key word that makes it easier
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to remember. To set this up, pick a key word that has no repeated letters (or else
delete the repeated letters). Then, append to the key word all the unused letters in
the alphabet, starting from the last letter in the key word. This is a permutation of
the letters in the alphabet, and it serves as the key. For example, if the key word is
LIME, then the full key would be LIMEFGHJKNOPQRSTUVWXYZABCD. That
means that we encrypt a as L, b as I, and so forth.
The message

VOQDK MABJJ DZAXC ABAEE YCEVC OGDZH RGAJR

UQDKZ KHJOV GHJRG CAJCJ UCKBV LCGHC

was encrypted in this way using the key word APRICOT. What is the plaintext
message?

(2) What are the advantages and disadvantages of using a permutation as in problem
1 over an arbitrary permutation?

(3) The message

WBJGW RBGRC BRKHW RJKCK RZZDR CDZRW BJLGV

TNTPT JKCIR LBERH JKCCE IPRMR HPCBR JCARK

VWBUK VTKBC CBRRM RHYBR NIRSC HRILK WBDCR

KHPWK JKVRR OTGKC DDCJW KR

is a ciphertext encrypted using themechanism in problem 1.What is the plaintext
message?

(4) The message

IAOQ UQ G FQOQB FWKI QKWVIM GKJ G LVFPBVU

WK CMAPM EW RFGPQ AE GKJ A NMGFF UWOQ EMQ

CWBFJ

is a ciphertext encrypted using a substitution cipher. What is the plaintext mes-
sage?

(5) The message

NBPFR KISOQ NFRDB FKJFD XNOIN OJXIX NZXSI

DJXIJ NYENO ISDSA SOFBY REJRK IKSKI PFRAR

DJZIJ RUSEE JXIZI KADFB JXIJK SODYI OGIOJ

SEJIK ADSOG UESOJ JXIAI VKPWX IKIPF RARDJ

ENIRU FOJXI GSNDN IDSOG GNDYF RKDIN OOFVI

EUXKS DIDFB PFRKY FAUEN YSJIG DJSJI FBANO

GJXIA ISONO ZGFID OJASJ JIKNB NJDFO EPNGE

IYXSJ JIKFB SJKSO DYIOG IOJSE LNOGS OGIVK

PFOIW NEEDS PSDPF RWSEL PFRKA PDJNY WSPNB

JXNDP FROZA SOIQU KIDDI DXNAD IEBNO JIKAD

JFFGI IUBFK AIWXP WXSJS VIKPD NOZRE SKEPG
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IIUPF ROZAS OJXND GIIUP FROZA SOARD JCICI

IEFMR IOJNO UKSND IFBJX IVIKP GREEF EGGSP

DWXNY XXSVI EFOZD NOYIU SDDIG SWSPS OGYFO

VNOYI IANBP FRYSO JXSJJ XIKIN ZOFBZ FFGMR

IIOSO OIWSD YREJR KIDUS EANID JGSPF BYFRK

DIPFR WNEEU FFXUF FXWXS JIVIK DBKID XSOGO

IWSOG GIYES KINJD YKRGI SOGAI SOBFK SKJDJ

FUUIG DXFKJ NOJXI YREJN VSJIG YFRKJ FBJXI

IAUKI DDHFD IUXNO ISOGI VKPFO IWNEE DSPSD

PFRWS ELPFR KAPDJ NYWSP NBJXS JDOFJ ZFFGI

OFRZX BFKXN AWXNY XNDZF FGIOF RZXBF KAIWX

PWXSJ SVIKP YREJN VSJIG LNOGF BPFRJ XJXND

LNOGF BPFRJ XARDJ CIJXI OSDIO JNAIO JSEUS

DDNFO FBSVI ZIJSC EIBSD XNFOA RDJIQ YNJIP

FRKES OZRNG DUEII OSOSJ JSYXA IOJSE SUESJ

FBFKS CSDXB REPFR OZUFJ SJFFK SOFJJ FFBKI

OYXBK IOYXC ISOJX FRZXJ XIUXN ENDJN OIDAS

PHFDJ EIPFR WNEEK SOLSD SOSUF DJEIN OJXIX

NZXSI DJXIJ NYCSO GNBPF RWSEL GFWOU NYYSG

NEEPW NJXSU FUUPF KSENE PNOPF RKAIG NIVSE

XSOGS OGIVK PFOIW NEEDS PSDPF RWSEL PFRKB

EFWKP WSPNB XIDYF OJIOJ WNJXS VIZIJ SCEIE

FVIWX NYXWF REGYI KJSNO EPOFJ DRNJA IWXPW

XSJSA FDJUS KJNYR ESKEP URKIP FROZA SOJXN

DURKI PFROZ ASOAR DJCI

is a ciphertext encrypted using a substitution cipher. What is the plaintext mes-
sage?

(6) The message

TYJNI WXWXZ NIGXN IWBMM XTDWN ZJXBF XBFBR

XBEVT NOWND WBOFI VYNZT WWNDX NHBFN IUWTO

GHNZM FWXBW BRXTM FRBOW XTOKB OFVND DTUMJ

FNTWV ZBRWT RBMMJ JNIHN IMFOW RNODW BOWMJ

ZIOBR ZNDDY NMKDW NFBJH XNRMB TEWXB WBRXT

MFFNO WKONH BOJWX TOGBR XTMFD UZBTO DWBZW

DYIOR WTNOT OGBWU TZWXB OFXBD BENOG DWTWD

EBOJT OYBOW RNOSN MIWTN ODWXN IDBOF DNYFN

ZEBOW BWNED TOWNH XTRXG NFXBD VIWBE JDWTR

VNDDT UTMTW JYNZO NWTRT OGBOB FIMWD BRWBO

FYTGI ZTOGN IWTWD VIZVN ZWIVW NBUNI WTWDV

ZTEBZ JDRXN NMFBJ DBRXT MFWXT OKDOB WIZBM

MJNOM JNYVM BJUIW EBOJB YNZEN YVMBJ RNOWB

TODFT DRTVM TOBZJ YBRWN ZDJNI RBOWF NWXTD

NZWXB WVIWD JNINI WDXNH DBRXT MFWXB WTWEI
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DWWXT OKVZB RWTRB MMJNZ YBTMO NHTYW XZNIG

XNIWR XTMFX NNFBU ZBTOX BDONN VVNDT WTNOT

WTDVM BTOWX BWTWH TMMBW WBTOB VNDTW TNONY

DWBWI DCINB DHTWX NIZNZ FTOBZ JBOTE BMDEB

OKONH DONWH XJBRN HFNGN ZMTNO HBDON WUNZO

HTWXB UZBTO NOBVB ZHTWX NIZDH XJDIR XBOTE

BMDRB OONWB FFDIU WZBRW NZNUW BTOYZ NEUNN

KDBOF DRXNN MTOGW XBWVB ZBENI OWVND TWTNO

HXTRX EBOXN MFDWN FBJ

is a ciphertext encrypted using a substitution cipher. What is the plaintext mes-
sage? (This problem is intended to be more difficult than the previous one.)

(7) Encrypt amessage using a substitution cipher and challenge your friends to break
it. How long does the message need to be in order for the code to be breakable?

(8) Come up with your own encryption scheme. How might an attacker break it?
Could youdecipher amessage encryptedwith this scheme if youwere to intercept
one?

(9) In other languages, the letter frequencies are different from those in English.
Look up the letter frequencies in French and use them to decode the following
message in French. (All accents have been removed.)

AFDDI MWPKE YOMIO CNEQF YIAFY EIXNP XYEYP

OTTEY FYMON FXYXP TPQIA WPYIP OMEJI YPQQP

PKFXM IXQIC PHEXI ICYXI QIAPN MIDFX ZEFCI

YQEQI MIXEF CPOTT EYFYA FDDIM WPKEY OMIIC

AFXIQ PNQPY IJFXD IMOJF XYTPE CYLIP CTIYP

EYAFO HIXYI MIAOX EIOVA PXAIT YYFOL FOXTO

CIZXP CMIPJ JPEXI PDPXT IEQQI BOIQP XXEHI

IMOCK PYEDI CYTOX YFOYB OPCMA IKPYE DICYA

FDDIQ INWPX PFCPI YIAFC TYXOE YZXII PXXED

ITOXQ ITAWP CYEIX TMIQP HEIEQ QINWF AIIIY

PNNPX YEICY POCPX DPYIO XMIQP HEQQI AINIC

MPCYA IKPYE DICYT PHPCA PEYEQ PHPEY WIOXI

OTIDI CYJXP CAWEQ IMIYX FEYBO IBOIQ BOITI

AFOTT IHFQA PCEBO IPAXI OTIIC YXIQE QIMIA

PQPTP XIEZC IIYQE QIMIL PXFTE QPHPE YMFOK

QINFD IZOII YEQTP HPCAP EYTFO TTITY XFETW

OCEIX TTFCZ XPCMJ FAIYT PKXEZ PCYEC IDPET

TEQIC YIDIC YIYMO CIPQQ OXITE YXETY IBOIQ

ITAOX EIOVP HIAAI YECTY ECAYB OENXI TTICY

OCDPQ WIOXT IMIDP CMPEI CYBOI QPAAE MICYN

FOHPE YIYXI PXXEH IPKFX MCIPC DFECT QITIV

NIXYT ICCPH EZPYE FCXIA FCCPE TTPEI CYBOI

TEOCP AAEMI CYIYP EYPXX EHIAI CINFO HPEYI

YXIPO KPYED ICYQO EDIDI APXEQ TPHPC APEYM
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PCTYF OYITQ ITAFC MEYEF CTMOC CPHEX INPXJ

PEYID ICYZF OHIXC ITFCP CAXII YPEYI CDFOE

QQPZI TITWP OKPCT MIKIP ONXIM IAXFA WITIY

NXITM ONEQF YIBOE TPNNX IYPEY PMEXE ZIXQI

NWPXP FCNPX QIYXF EYIIC YXIIM ONFXY MIDPX

TIEQQ IIYPE YOCLI OCIWF DDIPO ZITYI XPNEM

IIYPQ FIEQP AYEJB OETOX HIEQQ PEYAW PBOID

FOHID ICYMO CPHEX IIYXI NIYPE YAWPB OIFXM

XIMON EQFYI



Chapter 4
A First Look at Number Theory

As we progress to more advanced forms of cryptography, we will need to use more
and more mathematics. Many areas of mathematics are relevant to cryptography,
and we will look at a few of those. However, by far the most important branch
of mathematics for cryptography is number theory. In this chapter, we will see a
few very ancient theorems and techniques in number theory, going back to ancient
Greece. Some of the theorems and proofs here were already included in Euclid’s
Elements [Euc02], surely the most read math book in history. Later, we will return
to number theory and look at more recent advances, going up to the 21st century.

4.1 Prime Numbers and Factorization

The prime numbers are perhaps the main object of study in number theory, and they
will be of the utmost importance in cryptography as well. Let us recall what they are.

Definition 4.1 An integer p ≥ 2 is said to be prime if its only positive factors are 1
and p itself.

Remark 4.2 This is most likely the definition you are familiar with, and it is good
enough for our purposes. But there is another, arguably better, definition of primes,
which is equivalent. We’ll state it as a theorem, in Theorem4.7, but it could be used
just as easily as a definition. Under that definition, an integer p ≥ 2 is prime if and
only if, whenever p divides a product ab of two integers a and b, then p divides (at
least) one of a and b. There aremore general contexts (in ring theory)where these two
possible definitions are not the same, but those settings are much more exotic than
the familiar integers that are relevant to us. In that case, we call something satisfying
Definition4.1 an irreducible, whereas something satisfying the other definition is a
prime.
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People have been fascinated with prime numbers for over 2000 years, and the
ancient Greeks already discovered some of their most important properties. For
example, they worked out how many prime numbers there are:

Theorem 4.3 There are infinitely many prime numbers.

There are many proofs of this theorem, but the first one, which can be found in
Euclid’s Elements, is probably the most elegant of all, and no person can be truly
educated without understanding and knowing this wonderful argument.

Proof Suppose, on the contrary, that there are only finitely many primes. In that
case, we can write them all down; say they are p1, p2, . . . , pn , in increasing order
of size (so that p1 = 2 and pn is the largest prime). Now consider the number
M = p1 p2 · · · pn + 1. Is M prime? It can’t be prime, because it’s clearly larger than
all the primes we’ve listed, and those were supposed to be all of them. However,
if it’s not prime, then it must have a factor, and in particular, it must have a prime
factor. But which prime factor can it have? Could it be p1? No, because when we
divide M by p1, we get a remainder of 1. Could it be p2? No again, for the same
reason. In fact, it can’t be divisible by any of the pi ’s, because it will always leave a
remainder of 1. So it has no prime factors. So it should be prime itself. But we just
saw that it wasn’t. So, we have reached a contradiction. The conclusion is that our
starting assumption, that there are only finitely primes, must be wrong. So there are
infinitely many primes. �

In summary: take them all, multiply them together, and add one.

Definition 4.4 An integer n ≥ 2 which is not prime is said to be composite.

You will understand the following joke due to Hendrik Lenstra if and only if you
understand the above proof:

Theorem 4.5 There are infinitely many composite numbers.

Proof Suppose there were only finitely many. Take them all, multiply them together,
and DON’T add one! �

Another important result about prime numbers is that they are the building blocks
of all positive integers, in a precise manner. The following result is so important that
we call it the Fundamental Theorem of Arithmetic.

Theorem 4.6 (Fundamental Theorem of Arithmetic) Every positive integer n can
be written as the product of prime numbers

n = p1 p2 · · · pr .

(The pi ’s can repeat.) Furthermore, this product representation is unique up to
changing the order of the factors.
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Proof There are two things we need to show: the existence and the uniqueness of a
prime factorization. Let us start with existence: given a positive integer n, we must
show that it has at least one representation as a product of prime numbers. We do this
by induction on n, with the base case n = 1 being the empty product: the product of
no primes is equal to 1.

Let us now suppose that all positive integers less than n can be written as a product
of primes, and we will show that n can be so written as well. If n is itself prime, then
it is a product of just n alone, and there is nothing left to prove. Otherwise, if n is
composite, then it has some factor m with 1 < m < n, and we let r = n/m, so that
n = mr . Because 1 ≤ m, r < n, the induction hypothesis guarantees that both m
and r can be written as products of primes, say as

m = p1 · · · pk, r = q1 · · · q�.

Then, we have
n = p1 · · · pkq1 · · · q�,

sowehave justwritten n as a product of primes. This completes the proof of existence.
We now show that the prime factorization is unique. Let us suppose not, and that

some number n has at least two prime factorizations, and furthermore that n is the
smallest positive integer with this property. We write these two factorizations as

n = p1 · · · pr = q1 · · · qs,

where some of the primes might be repeated. Now, if some pi is equal to some q j ,
then we have n/pi = n/q j , and this number also has at least two prime factorizations
obtained by omitting pi from the first factorization and q j from the second. However,
n/pi is smaller than n, contradicting our assumption that n is the smallest positive
integer with at least two prime factorizations. Thus we may assume that the list of
pi ’s and the list of q j ’s share no common primes.

Let us assume, without loss of generality, that p1 < q1. (If not, then switch the
pi ’s and the q j ’s.) Consider the number

m = (q1 − p1)q2 · · · qs .

Since q1 − p1 < q1, it follows that m < n, so m has unique prime factorization, and
this factorization is (whatever the factorization of q1 − p1 is) times the product of
the rest of the q j ’s.

If we expand the product for m, we find that
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m = q1q2 · · · qs − p1q2 · · · qs
= n − p1(q2 · · · qs)
= p1 p2 · · · pr − p1q2 · · · q2
= p1(p2 · · · pr − q2 · · · qs).

The second term w = p2 · · · pr − q2 · · · qs is positive, because it is n/p1 − n/q1 and
p1 < q1. Thus the prime factorization of m is p1 times the prime factorization of w,
and thus p1 occurs in the (unique) prime factorization of m.

Now, let us look at the factor q1 − p1 of m. If q1 − p1 = 1, then the prime
factorization ofm would contain only q2, . . . , qs . But we just showed that it contains
p1, andwe already know that p1 is not one of the q j ’s. Thus q1− p1 cannot be 1. Since
q1 − p1 < n as well, q1 − p1 has unique prime factorization, and the factorization
must contain a p1, so let us suppose that q1 − p1 = p1u for some positive integer
u. Then q1 − p1 = p1u, so q1 = p1(u + 1), i.e., q1 is divisible by p1. But this is
impossible, since q1 is prime, and primes cannot have other prime factors. This is
our final contradiction, which completes the proof of uniqueness in the Fundamental
Theorem of Arithmetic. �

The Fundamental Theorem of Arithmetic seems obvious, perhaps based on our
prior experience with positive integers, but yet the proof is fairly long. As it turns
out, this theorem is much more subtle than it appears at first glance. Indeed, a major
area of study in algebraic number theory concerns the failure of the Fundamental
Theorem of Arithmetic in objects that look a lot like the integers, but are slightly
more complicated. Let us see what can go wrong.

Example Let us consider all the numbers of the form a + b
√−5, where a and b are

integers. We call this collection of numbers Z[√−5]. The notion of irreducibles (as
in Remark 4.2) makes sense in Z[√−5], but yet we do not have unique factorization
into irreducibles in Z[√−5]. Indeed, we have

6 = 2 × 3 = (1 + √−5)(1 − √−5).

Furthermore, 2, 3, and 1 ± √−5 do not factor further. One way of seeing this is
to introduce the norm function on Z[√−5]: define the norm of a + b

√−5 to be
N (a + b

√−5) = a2 + 5b2. The norm satisfies the following property:

N ((a + b
√−5)(c + d

√−5)) = N (a + b
√−5)N (c + d

√−5).

Now, we compute norms of 2, 3, and 1 ± √−5:

N (2) = 4, N (3) = 9, N (1 ± √−5) = 6.

Furthermore, there are no numbers in Z[√−5] with norm 2 or 3 because there are
no integer solutions to the equations a2 + 5b2 = 2 and a2 + 5b2 = 3, and the only
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numbers in Z[√−5] with norm 1 are ±1. Hence, 2, 3, and 1 ± √−5 cannot be
factored further.

As we mentioned in Remark4.2, an integer p ≥ 2 is prime if, whenever a and b
are integers such that p divides ab, then p divides at least one of a and b. Let’s now
see how that works, from the Fundamental Theorem of Arithmetic.

Theorem 4.7 (Euclid’s Lemma) An integer p ≥ 2 is prime if and only if whenever
a and b are integers such that p divides ab, then p divides at least one of a and b.

Proof We first suppose that p is prime, and we aim to show that if p divides ab, then
p divides at least one of a and b. Let us suppose that a and b are positive integers.
(Our argument also works, with minor modifications, when one or both of them
are negative, and the case when one of them is 0 is much easier, since p divides 0
already.) Since a and b are positive integers, they have unique factorization, say

a = pe11 · · · perr , b = q f1
1 · · · q fs

s .

Their product ab also has unique prime factorization, and that factorization is simply

ab = pe11 · · · perr q f1
1 · · · q fs

s ,

where we might combine some of the factors if some of the pi ’s are equal to some
of the q j ’s. Since p divides ab, that means that p is one of the prime factors that
appears in the factorization of ab, i.e., p is equal to either some pi or some q j . Let
us suppose that it’s equal to one of the pi ’s. That means that p divides a. Similarly,
if p is equal to one of the q j ’s, then that means that p divides b.

For the other direction, suppose that n is composite. Then it can be factored
(uniquely) as a product of primes. Let p be one of these primes, and let m = n/p,
so that n = mp. Note that m, p < n, so that neither one of them is a multiple of n.
But their product, being equal to n, is certainly divisible by n. This completes the
proof. �

4.2 Modular Arithmetic

Also of vital importance to us is modular arithmetic. Modular arithmetic is a lot like
what we do when we read a clock. If it’s 9:00, then in 5 hours, it’s not 14:00 (well,
it is if we’re being sensible and using a 24-hour clock), but rather 2:00. How do we
get 2 instead of 14? After 12, we don’t continue on with 13, but we start again at 1.
In other words, we keep track of the remainder upon division by 12.

There is a small difference between the way mathematicians usually like to think
about modular arithmetic and the way we read clocks: instead of going from 1 to 12,
mathematicians prefer to go from 0 to 11. We also don’t have to divide by 12; we
can divide by whatever number we want.



30 4 A First Look at Number Theory

Here is how modular arithmetic works more formally: we pick a modulus m
(this will be like the 12 in clock arithmetic). We say that two numbers a and b are
congruent modulo m if a and b leave the same remainder upon division by m, or,
equivalently, if a − b is a multiple of m. We write a ≡ b (mod m).

In modular arithmetic, if two numbers a and b are congruent, then we regard a
and b as being the same. So, in doing modular arithmetic, we lose some information
about the original numbers, but we preserve the information that matters to us.

Actually, this last point is a major theme in mathematics in general, as well as
pattern-finding. There is frequently a tremendous amount of information available
to us. But most of it doesn’t help us solve the problem at hand; it’s just extraneous
and likely to distract us. As a result, it is extremely useful to find ways of paring
it down to eliminate the superficial features presented to us, allowing us to focus
on what actually matters. We have already seen this in our study of cryptanalysis a
bit: when we saw how to break substitution ciphers, we weren’t too concerned with
the exact pattern of the letters. Instead, we focused mostly on how many of each
letter there were, as well as how often they were next to other letters. We shall see in
Chapter 19 that there is actually a fully automated way to solve substitution ciphers
based on this idea.

Anyway, back to modular arithmetic.

Example We have 7 ≡ 4 (mod 3).

Note that, modulo m, every number is congruent to exactly one of the numbers
0, 1, 2, . . . ,m − 1. These will usually be our favorite elements modulo m, although
sometimes it will be convenient to keep larger ones as well, or even negative ones.

Definition 4.8 We write Z/mZ for the set of integers modulo m.

Usually, this means we will think of

Z/mZ = {0, 1, 2, . . . ,m − 1},

since every integer is congruent to exactly one of these. However, other choices are
possible. For example, it might occasionally be convenient to think ofZ/mZ as being
the set {−1, 0, 1, . . . ,m − 2}. The latter is probably not especially useful, but we
might prefer {0,±1,±2, . . . ,±m−1

2 } ifm is odd, and {0,±1,±2, . . . ,±(m2 −1), m
2 }

if m is even, as these make the remainders as small as possible in absolute value.
None of these is preferable from a mathematical point of view, but depending on the
problem, one of themmight be slightly more natural. If a ≡ b (mod m), we say that
a and b are representatives of the same class modulo m.

Z/mZ shares many properties with the usual integers. For example, we can add
two elements of Z/mZ. To do this, we try adding them normally. Maybe their sum is
outside of {0, 1, . . . ,m − 1}; if this happens, we just take their sum to be the number
in {0, 1, . . . ,m − 1} congruent to their usual sum.

Example Let us add 9 and 5, modulo 12. Ordinarily, we have 9 + 5 = 14, but
14 /∈ {0, 1, 2, . . . , 11}. However, 14 ≡ 2 (mod 12), so we say that 9 + 5 ≡ 2
(mod 12).
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Now, it isn’t completely obvious that doing this is okay. What could go wrong?
The problem is that it might happen that when we try to add a and b modulo m, we
get different answers depending on our choices of representatives modulo m. Let us
now make sure that this should not worry us:

Proposition 4.9 If a ≡ a′ (mod m) and b ≡ b′ (mod m), then a + b ≡ a′ + b′
(mod m).

Proof In order to show that two numbers are congruent modulo m, we have to show
that their difference is a multiple of m. Now, since a ≡ a′ (mod m), we must have
a − a′ = cm for some integer c. Similarly, since b ≡ b′ (mod m), we must have
that b − b′ = dm for some integer d. Thus

(a + b) − (a′ + b′) = (a − a′) + (b − b′) = cm + dm = (c + d)m,

which is a multiple of m. Hence, a + b ≡ a′ + b′ (mod m). �

We can alsomultiply numbersmodulom and obtain consistent results. This works
just the same way as with addition. If we wish to multiply 9 and 5 modulo 12, we
first multiply them normally to obtain 45, and then we take the remainder modulo
12, which is 9. Hence, 9 × 5 ≡ 9 (mod 12). Problem 2 at the end of the chapter is
to show that multiplication modulo m makes sense.

We can write down addition and multiplication tables for Z/nZ. Let us do it for
Z/9Z:

+ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 0
2 2 3 4 5 6 7 8 0 1
3 3 4 5 6 7 8 0 1 2
4 4 5 6 7 8 0 1 2 3
5 5 6 7 8 0 1 2 3 4
6 6 7 8 0 1 2 3 4 5
7 7 8 0 1 2 3 4 5 6
8 8 0 1 2 3 4 5 6 7

× 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1
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Notice that in the addition table, every row looks similar, in that all the numbers
from 0–8 appear exactly once in each row. In the multiplication table, some of the
rows have this property, but some of them (namely, 0, 3, and 6) do not.

Definition 4.10 An element a ∈ Z/mZ is called a unit if there is some b ∈ Z/mZ

so that ab ≡ 1 (mod m).

Here, the units are 1, 2, 4, 5, 7, and 8. A number a is a unit in Z/mZ if and only if
every element ofZ/mZ appears exactly once in the row labeleda in themultiplication
table. (Exercise: Why?) But it would be nice to have a cleaner interpretation of the
units, one that does not require writing out (part of) the multiplication table. In order
to understand which numbers are units, we need to discuss the greatest common
divisor.

4.3 The GCD and the Euclidean Algorithm

Definition 4.11 Given integers a1, a2, . . . , an , not all of which are zero, the greatest
common divisor, or gcd, of a1, . . . , an is the largest positive integer that divides all
of them.

Example gcd(8, 12) = 4.

The following definition is also very important:

Definition 4.12 Wesay that twonumbersa andb are relatively prime if gcd(a, b)= 1.

In order to find the gcd of several numbers, we can compute the prime factor-
izations of all of them. From there, it is easy to see what the gcd is. For example,
suppose we wish to find the gcd of 105 and 350. We factor both of them:

105 = 3 × 5 × 7, 350 = 2 × 52 × 7.

To compute the gcd, we look at each prime factor of the numbers and choose the
lowest exponent in each case. The lowest exponent of 2 is 0 (since 0 is the hidden
exponent of 2 in 105), the lowest exponent of 3 is 0 (since the exponent of 3 in 350
is 0), the lowest exponent of 5 is 1, and the lowest exponent of 7 is 1. Hence, the gcd
is 5 × 7 = 35. Indeed, 105 = 35 × 3, and 350 = 35 × 10.

This is a perfectly correctmethod for computing the gcd of two (ormore) numbers,
but there is a drawback to using it, at least for large numbers: it requires that we find
the prime factorization of the numbers. We will study this problem in detail later in
the book, but for now, it suffices to say that it usually takes a very long time to factor
numbers. This may seem unfortunate, but the fact that it is hard to factor numbers is
one of the things that makes much of modern cryptography work!
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However, there is another method for finding the gcd of two numbers, called the
Euclidean algorithm. The key observation is that if n divides a and b, then n also
divides a ± b. It follows, then, that the gcd of a and b is the same as the gcd of b
and a + kb, for any integer k. Let us see how to use this, in the case of the example
above, computing the gcd of 105 and 350.

Example As we saw above, the gcd of 350 and 105 is the same as the gcd of 105 and
350− 3× 105 = 35. This in turn is the same as the gcd of 35 and 105− 3× 35 = 0.
Now, the gcd of any number n with 0 is just n, so gcd(350, 105) = 35.

As we see, we didn’t have to factor anything! So, this process can be done very
quickly, even for large numbers. As an illustration, let us consider the following
prime numbers p = 1026 + 67, q = 3 × 1026 + 13, and r = 4 × 1026 + 63. (These
are the first primes after 1026, 3× 1026, and 4× 1026, respectively.) Let a = pq and
b = pr . The computer program Sage takes around 6.5 seconds to factor a using the
best factorization techniques we know (which we’ll see later in the book), and around
4.3 seconds to factor b. However, it takes 0.00 seconds to check that gcd(a, b) = p
using the Euclidean algorithm. (I could have chosen larger numbers, but I didn’t feel
like waiting for hours for Sage to factor a and b on its own.)

In more detail, here is how the algorithm works: whenever we have two positive
integers a and b, we can write

a = bq + r,

where q is an integer, and 0 ≤ r < b. This representation is unique. We will use this
to compute the gcd of a and b quickly.

Theorem 4.13 (The Euclidean algorithm) Let a and b be positive integers, with
a ≥ b. Then, the following algorithm computes gcd(a, b) in a finite number of steps:

(1) Let r0 = a and r1 = b.
(2) Set i = 1.
(3) Write

ri−1 = qiri + ri+1,

where qi is an integer and 0 ≤ ri+1 < ri .
(4) If ri+1 = 0, then gcd(a, b) = ri , and the algorithm terminates.
(5) If ri+1 > 0, replace i with i + 1 and return to Step 3.

There is another interpretation of the gcd of two numbers, the less exciting of two
famous theorems named after the eighteenth-century French mathematician Étienne
Bézout.

Theorem 4.14 (Bézout’s Lemma) Let a and b be two positive integers. Then
gcd(a, b) is the smallest positive integer that can be written in the form ma + nb,
where m and n are integers.
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If g = gcd(a, b), then g certainly divides ma + nb for any integers m and n. But
it is less clear that we can find m and n so that ma+ nb = g. It turns out that a slight
modification of the Euclidean algorithm will allow us to compute m and n. The idea
is to solve for ri+1 in terms of r0 and r1 at every step. This is best illustrated by an
example.

Example Since 9 and 161 are relatively prime, we ought to be able to find m and n
so that 9m + 161n = 1. To find them, we run the Euclidean algorithm, with a bit of
extra bookkeeping: we have r0 = 161 and r1 = 9, and so Step 3 of the Euclidean
algorithm gives us

161 = 17 × 9 + 8,

or r2 = 8 = 161− 17× 9. Now we continue the Euclidean algorithm to find r3: we
have

9 = 8 + 1,

or
r3 = 1 = 9 − 8 = 9 − (161 − 17 × 9) = (−1 × 161) + (18 × 9).

Hence, we can take m = 18 and n = −1.

There are other possibilities for m and n as well.
Sage can also perform the Euclidean algorithm to compute m and n, using the

command xgcd. For instance, in the example above, we can type

xgcd(9,161)

and Sage reports an answer of (1, 18, -1). The first of the three numbers it
returns is the gcd, and the other two arem andn. Ifwe instead ask forxgcd(161,9),
then observe that it returns (1, -1, 18), i.e., the last two numbers are in the
reverse order.

4.4 The Chinese Remainder Theorem

The following theorem is a very important result about modular arithmetic:

Theorem 4.15 (Chinese Remainder Theorem) Suppose n1, n2, . . . , nk are integers
which are pairwise relatively prime, i.e., any two of them are relatively prime. Then
for any integers a1, a2, . . . , ak, there is an integer x satisfying

x ≡ ai (mod ni ) for 1 ≤ i ≤ k.

Being able to find such an x will be very important for us. We do so using our
new favorite toy, the Euclidean algorithm (and Bézout’s Lemma). The way we do
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this is to find is to find numbers ei so that ei ≡ 1 (mod ni ) and ei ≡ 0 (mod n j )

for j �= i first, and we can do this with the Euclidean algorithm. To do this, let mi

be the product of all the n j ’s except for ni . Now, we use the Euclidean algorithm to
write 1 in the form

1 = bini + cimi .

Then, cimi ≡ 1 (mod ni ) and cimi ≡ 0 (mod n j ) for i �= j . Thus, we can take
ei = cimi .

Once we have all the ei ’s, we can easily find a solution, which is

x =
k∑

i=1

aiei .

Example Let us find a number x so that

x ≡ 1 (mod 7),

x ≡ 4 (mod 12),

x ≡ 19 (mod 41).

To do this, we first seek numbers e1, e2, and e3 so that e1 ≡ 1 (mod 7), 0 (mod 12),
and 0 (mod 41), and similarly e2 ≡ 0 (mod 7), 1 (mod 12), and 0 (mod 41),
and e3 ≡ 0 (mod 7), 0 (mod 12), and 1 (mod 41). Let’s start with e1. Since e1
is supposed to be a multiple of both 12 and 41, it should also be a multiple of
12 × 41 = 492. Hence, we can condense the congruences for e1 down to only two:

e1 ≡ 1 (mod 7),

e1 ≡ 0 (mod 492).

Hence, for some m and n, we have

e1 = 7m + 1 = 492n.

Thus−7m+492n = 1, or, switching the sign onm, 7m+492n = 1. But we already
know how to solve that with the Euclidean algorithm. We get

1 = −3 × 492 + 211 × 7,

or
e1 = −211 × 7 + 1 = −1476.

(Remember that we switched the sign on m earlier!) Similarly, we can compute e2
and e3 to get e2 = −287 and e3 = −1680. Now, we put all these together: to find a
number x satisfying the three congruences, we take
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x = 1 × e1 + 4 × e2 + 19 × e3 = −34544.

Naturally, there are many other values of x that also work; the smallest positive one
is 3340.

While knowing how to use the Euclidean algorithm to find a solution to simulta-
neous congruences is important, we admit that it can also be rather tedious to perform
the calculations by hand. Fortunately, Sage can do them for us! For instance, if we
wish to solve the simultaneous congruences

x ≡ 10 (mod 39), x ≡ 19 (mod 46),

we can type

crt(10,19,39,46)

into Sage, and it outputs 985, which is the correct answer. If we wish to solve more
than two simultaneous congruences, we can ask it to do that too, by handing Sage two
lists of the same length: one of the remainders and one of the moduli. For instance,
if we wish to solve the simultaneous congruences

x ≡ 10 (mod 39), x ≡ 19 (mod 46), x ≡ 106 (mod 127),

then we type

crt([10,19,106],[39,46,127])

and the output is 144105. Note that Sage will still try to solve the simultaneous
congruences even when the moduli are not pairwise relatively prime and will return
an answer if there is one, but it will produce an error when there is no solution.

4.5 Multiplication Modulo m and the Totient Function

When we looked at the multiplication table modulo 9, we saw that some of the
elements are units, and some are not. We can give a criterion for when this happens:

Theorem 4.16 A number a ∈ Z/mZ is a unit if and only if gcd(a,m) = 1.

Proof We have to prove two things here: that if a is a unit, then gcd(a,m) = 1, and
that if gcd(a,m) = 1, then a is a unit. Let’s start by assuming that a is a unit. In that
case, there is some b so that ab ≡ 1 (mod m). This means that ab = 1 + mc for
some integer c, or that ab−mc = 1. But this is exactly what it means for gcd(a,m)

to be 1.
On the other hand, suppose that gcd(a,m) = 1. Then, we have integers b and c

so that ab + mc = 1. But this means that ab ≡ 1 (mod m), so a is a unit. �
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So, now we have a criterion for which numbers are units. How many of them are
there?

Definition 4.17 The Euler totient (or φ) function is defined as follows: φ(n) is the
number of positive integers ≤ n that are relatively prime to n.

Hence, φ(n) is the number of units in Z/nZ.

Remark 4.18 No one knows what the word “totient” means. The word was coined
by the nineteenth-century English mathematician James Joseph Sylvester, and his
motivation for choosing this particular word is unknown.

Example

• φ(1) = 1.
• φ(12) = 4, since 1, 5, 7, and 11 are relatively prime to 12.
• φ(p) = p − 1 for any prime p.

We will later work out a formula for φ(n).

4.6 Problems

(1) Find the smallest nonnegative number congruent to each of the following (these
are separate problems):

(a) 1000 (mod 7)
(b) 81 (mod 19)
(c) 9292 (mod 171)
(d) 593 (mod 101)

(2) We showed that addition is well defined inZ/mZ, i.e., if we take a, b ∈ Z/mZ,
then there is a unique element a + b ∈ Z/mZ. Do the same for multiplication.

(3) Can we divide modulo m? That is, if we take two elements a, b ∈ Z/mZ, is
there some element a/b ∈ Z/mZ? (An element c ∈ Z/mZ could be called a/b
if a = bc in Z/mZ.) If we can’t always divide, can you determine under what
conditions we can do so?

(4) By doing as little computation as possible, determine the prime factorization of
106 + 1.

(5) Prove that if a is any integer, then either a2 ≡ 0 (mod 4) or a2 ≡ 1 (mod 4).
Conclude that if n ≡ 3 (mod 4), then n cannot be written as the sum of two
squares.

(6) Show that if n ≡ 7 (mod 8), then n cannot be written as the sum of three
squares. (In fact, a positive integer n can be written as the sum of three squares
if and only if n is not of the form n = 4mr , where m is a nonnegative integer
and r ≡ 7 (mod 8).)
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(7) Prove that there are infinitely many primes congruent to 3 (mod 4). (More gen-
erally, if a andm are relatively prime, then there are infinitely many primes con-
gruent to a (mod m), but this theorem, called Dirichlet’s Theorem on primes
in arithmetic progressions, is very difficult.)

(8) (a) Compute the gcd of 162373 and 159197. Find numbers m and n so that

162373m + 159197n = gcd(162373, 159197).

(b) Compute the gcd of 144 and 233. Find numbers m and n so that

144m + 233n = gcd(144, 233).

(c) Can you figure out why part (b) was annoying? Generalize by finding other
pairs of numbers that are similarly annoying.

(9) Solve each of the following congruences by finding an integer x satisfying it.
(Each of these is a separate problem; you do not need to find an x simultaneously
satisfying all three.)

(a) 21x ≡ 5 (mod 29)
(b) 37x ≡ 44 (mod 86)
(c) 131x ≡ 204 (mod 909)

(10) Suppose that we have numbers a, b,m, n so that am+bn = 6. Is it necessarily
true that gcd(a, b) = 6? Prove or find a counterexample.

(11) Suppose that ga ≡ 1 (mod m) and gb ≡ 1 (mod m). Prove that ggcd(a,b) ≡ 1
(mod m).

(12) Show that φ(n) is always even for n ≥ 3.
(13) Solve the following system of congruences by finding an integer x satisfying

all three simultaneously:

x ≡ 3 (mod 17),

x ≡ 14 (mod 18),

x ≡ 37 (mod 53).

(14) What is
9 × 99 × 999 × · · · × 999 · · · 9 (mod 1000),

where the last number contains 999 9’s?
(15) Prove that the fraction 21n+4

14n+3 is in lowest terms, for every positive integer n.
(IMO 1959)

(16) Let an = 100 + n2. What is the largest possible value of gcd(an, an+1), where
n runs over the positive integers? (AIME 1985)

(17) A lattice point (x, y) ∈ Z
2 is said to be blocked if gcd(x, y) > 1. Show that, for

any positive integer n, there is an n × n square consisting entirely of blocked
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points. (For example, (14, 20), (14, 21), (15, 20), (15, 21) is a 2 × 2 square of
blocked points.)

(18) A positive integer n is said to be abundant if the sum of the divisors of n is
greater than 2n. Show that, for any positive integer k, it is possible to find k
consecutive abundant numbers.

(19) Prove that for each positive integer n, there are pairwise relatively prime positive
integers k0, k1, . . . , kn , all strictly greater than 1, such that k0k1 · · · kn − 1 is the
product of two consecutive integers. (USAMO 2008)

(20) Show that, for each positive integer n, there is an n-digit number x so that the
last n digits of x2 are equal to x . (That is, x2 ≡ x (mod 10n).) How many of
them are there?



Chapter 5
The Vigenère Cipher

5.1 The Vigenère Cipher

We saw earlier that the substitution cipher is not that secure, because of attacks based
on frequency analysis. In order to combat this, one can build a stronger cipher, known
as a polyalphabetic cipher, in which we change the cipher for every character. That
is, if a g gets encoded as an X at one point, it does not necessarily get encoded as an X
later on in the message. There are many possible ways of setting up a polyalphabetic
cipher, but the most famous is the Vigenère cipher. This cipher was considered so
strong that it was known as le chiffre indéchiffrable, or “the undecipherable cipher.”
However, in the 19th century, after it had been in use for roughly 300 years, attacks
against it were discovered.

The way the Vigenère cipher works is something like the Cæsar cipher, where we
shift each letter by a certain amount. The difference, though, is that the shift amount
changes every letter. Before we start, it will be helpful to present the encoding table,
which we call a tabula recta (see Figure5.1).

What we do is to encode some letter in the plaintext using a key. Since the table is
symmetric, it doesn’t matter which one is the key andwhich is the plaintext character;
we get the same result either way. If we wish to encode a t with a key of R, we look
in the t column and R row (or vice versa) and find that the entry there is a K. This
means that the encoded t is a K.

Now, here is how we set up the Vigenère cipher. It is best illustrated with an
example. Suppose Alice wishes to encrypt the phrase provethetheorem. She
chooses a word for her key, perhaps GRAPE, and she performs the encoding as
follows:

Plaintext prove theth eorem
Key GRAPE GRAPE GRAPE
Ciphertext VIOKI ZYEIL KFRTQ

As usual, she breaks up the ciphertext (and everything else) into five-letter chunks,
as is the standard in cryptography.
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Figure 5.1 Tabula recta

The way she computed the ciphertext was to use G as the key for the first letter,
R as the key for the second, A as the key for the third, and so forth. Once the word
ends, she starts from the beginning of the word again.

To decrypt the message, simply undo the encryption process. If Bob receives the
message above and he knows the key, he can decrypt it as follows: the first character
in the ciphertext is V, and the first letter of the key is G. To decrypt this, he looks
in the G column and finds that the V appears in the p row. So the first letter of the
plaintext is p. He continues doing this for every letter in the ciphertext.

5.2 Algebraic Description of the Vigenère Cipher

Now that we have studied modular arithmetic, we can reformulate the description
of the Vigenère cipher in more mathematical terms. This will serve more generally
to introduce us to some of the notation that mathematicians use when talking about
cryptography. Instead of thinking of the message as being composed of letters, we’ll
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think of it as being composed of numbers, from 0 to 25. So, A will be 0, B will be 1,
and so forth. Let us suppose that the key is called K and the plaintext is called M . Let
us let Mi be the i th number in M , and let Ki be the i th number in K . Furthermore,
we’ll extend the key so as to make it repeat: if the key length is n, then we define
Ki+an = Ki for each a. Above, our key was GRAPE, so our modified key would be
GRAPEGRAPEGRAPE· · · .

We define a function EK , the encryption function, which produces the ciphertext.
It is defined as

Ci = EK (Mi ) = (Mi + Ki ) (mod 26).

Thus Ci is the i th number of the ciphertext.
We can also define a decryption function DK which restores the plaintext from

the ciphertext. It is defined as

Mi = DK (Ci ) = (Ci − Ki ) (mod 26).

Let us check that the decryption function actually does restore the original plain-
text. That is, if we start with a plaintext message M , encrypt it using EK to produce
C , and then we decrypt it using DK , we end up with M again. We can check this one
number at a time. We have

DK (EK (Mi )) = DK (Mi + Ki (mod 26))

= (Mi + Ki ) − Ki (mod 26)

= Mi .

And that was exactly the number we started with. So it does indeed decrypt the
ciphertext correctly.

5.3 Cracking the Vigenère Cipher: The Kasiski
Examination

Defeating theVigenère cipher ismore complicated than a substitution cipher, because
themethod of encoding changes at every letter. Thus, it is not immediately susceptible
to frequency analysis attacks.

However, it also has a weakness when compared with substitution ciphers, which
is that the encoding rule is closer to a Cæsar cipher than to a substitution cipher, and
we already know that Cæsar ciphers are very easy to attack. The problem for Eve is
that she doesn’t know how long the key is, so she either has to guess or look for hints
in the message.

There are several ways of getting clues about the key length. The Kasiski exam-
ination was the first attempt at this, and here is the idea: it is quite likely that some
words or letter combinations will be repeated in the message. Moreover, not only
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Table 5.1 Repeated strings Sequence First Second

NBKI 26 392

VXYW 64 166

VKHW 72 414

BKEK 87 105

WLVYGMDX 94 268

PVGI 134 506

ETDKZSGQCI 332 458

GDPOLEIAOM 342 438

will they be repeated, but they may be repeated at some convenient interval. Let us
take a look at how this works: suppose Eve receives the following ciphertext:

OWWPE UWBMW LVYTV LYJAP UWSUS NBKID SIPHQ RLXKL

EELWI WSKZT ZVECD FCRXV OWWVX YWEZR JVKHW UXYSI

UDHVE TBKEK OPGWL VYGMD XVKIB KEKWK MUKFL RPDPB

GCPLW TGPBR RVEPV GIJWG DHWKZ TKUIU AIWQI DSCLH

WVJKM VXYWQ TDQVS CLQMT GAILM MSCWY MTZAW EETZT

DVOPA HPLWE SBMKM EARWO EZAKI QSMAR POSSS RPLED

FTDHV WGGOH XKZTL DCZXX ZVXDW TBWLV YGMDX CGQIF

LVNHS BMEGC MZSIV WMWSC VBMVI TJTBR JJMRK HWJAC

UDXYW BIWMT KETDK ZSGQC IGDPO LEIAO MOIKF DWQIV

DHMVA FJZMY EUWNW XVVQT AUIDW BJHVN ZNBKI XGDLO

SIVBI GIPGJ ZHCVK HWGSE LHPDH VQDCU IPWHJ XXGDP

OLEIA OMSPR YXIUM QWETD KZSGQ CIFFA GEIJM GMDPN

SNAWS TSATL XGDTI VIIWH MDVTZ PVGIM WGALR TWXUH

IKLWQ VQRFB GOMWW XAQSK LWMVE DWPVG RZUDT DMZNP

VRZZU WTRFR UWMYW BQXAK MJFPU HLZFX KRPRA XDDRF

NXKKP FTPKK

What we do is to look for repeated sequences (of length at least 4, say) in the
ciphertext and look at where they occur in the ciphertext, based on the position of
the first letter in the sequence. (We’ll see why this is a good idea shortly.) We find
the data shown in Table5.1.

Now, let us try to figure out why these sequences are repeated. They could
have been repeated randomly, coming from different letters. But it’s unlikely that
that would happen randomly on many occasions, and for the long strings like
ETDKZSGQCI, this is especially unlikely. Much more likely is that they come from
the same string in the plaintext.

How can it happen that they come from the same string in the plaintext?Wasn’t the
whole point of the Vigenère cipher to avoid this problem? Sort of, but the problem is
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Table 5.2 Repeated strings and prime factorizations

Sequence First Second Diff Factorization

NBKI 26 392 366 2 × 3 × 61

VXYW 64 166 102 2 × 3 × 17

VKHW 72 414 342 2 × 32 × 19

BKEK 87 105 18 2 × 32

WLVYGMDX 94 268 174 2 × 3 × 29

PVGI 134 506 372 22 × 3 × 31

ETDKZSGQCI 332 458 126 2 × 32 × 7

GDPOLEIAOM 342 438 96 25 × 3

that it isn’t that good at hiding this information: if they come from the same sequence
in the plaintextwith the same encoding, then wewill get a repetition in the ciphertext.

So, the next thing tofigure out iswhen itwill happen thatweget the same encoding.
This will happen if the positions of the two sequences differ by a multiple of the key
length. In other words, this happens when P1 ≡ P2 (mod K ), where P1 and P2 are
the positions of (the first characters of) the sequence, and K is the key length.

Since we have quite a few repetitions, we can try to guess the key length, since it
should be a factor of all the differences in the positions. Well, maybe not all of them:
some of them might have collided by accident. So, we deal with this problem by
taking the longer repeated sequences more seriously than the shorter ones. Anyway,
let us extend the table above to look for possible factors; see Table5.2.

Looking at the last column of the table, we see lots of 2’s and 3’s, so perhaps the
key length is divisible by 2 and 3 (so, 6). In fact, they are all divisible by 6. Sometimes
we get a few that agree just by accident, but that does not appear to be the case this
time.

Okay, so we believe that the key length is 6. How do we proceed from here? We
use frequency analysis again! But now we have to use a separate frequency analysis
for every remainder modulo 6. Also, as we shall soon see, the frequency analysis is
easier. We obtain a table from our ciphertext, as shown in Table5.3.

Okay, so now we have a frequency table. Recall that each of these is just a shifted
alphabet. So what is the shift? Let’s look at the first column. There are various
approaches to determining the shift, especially looking at the most and least common
letters. For the most common letters: a, e, and i are spaced four apart, so if there
are three common letters with this spacing, they are probably A, E, and I. Another
approach is to look for rare letters; for instance, v, w, x, y, and z are five consecutive
rare letters.

In this case, it seems pretty easy to detect the common letters: in the first column,
S, W, and A look like a, e, and i, making the first letter of the key S. It’s good to run
a few more sanity checks to make sure that we didn’t get tricked; for example, if this
assignment also makes q and j common, that would be a red flag, but here we are
okay.
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Table 5.3 Letter frequencies by position modulo 6

Letter 1 2 3 4 5 6

A 10 4 5 0 1 0

B 0 7 7 1 0 2

C 0 6 2 2 2 3

D 5 4 4 14 0 6

E 2 3 0 2 12 5

F 6 1 0 1 1 5

G 8 8 3 5 0 3

H 0 8 0 10 2 0

I 0 4 8 0 17 5

J 3 1 2 0 2 6

K 4 3 6 8 3 8

L 6 0 4 10 5 0

M 2 0 17 0 10 3

N 3 4 0 0 0 2

O 3 2 3 5 1 0

P 0 11 7 1 5 3

Q 3 2 3 5 3 1

R 0 5 0 7 4 5

S 12 0 1 1 10 1

T 1 11 6 0 0 9

U 3 0 5 6 0 4

V 3 0 5 10 4 15

W 16 8 10 8 6 2

X 1 9 0 2 11 1

Y 4 0 0 3 1 4

Z 7 1 4 1 1 8

In the second column, we have three nicely spaced common letters in P, T, and
X, so the second letter of the key is probably P. So, we believe the key begins with
SP.

The third column is a little trickier, so maybe we’ll come back to that later. The
fourth column seems clear: the fourth letter of the key is D. Similarly, for the fifth
column, it seems clear that the fifth letter isE. The sixth column is also not completely
obvious. But it now looks like the key is SP?DE?. Generally, the key is an English
word, which is yet another hint.Which words have this form? SPIDER and SPADES
come to mind. Which one is better? The third letter doesn’t seem likely to be A, as
that would make e not show up in any of these positions, while w and m would be
very common. So, I is more likely. Similarly in the last column, R looks better than
S.
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So, we have found the key: SPIDER. Now we decrypt and get:

whoma demet hegen iusia mtoda ythem athem atici

antha tothe rsall quote whost hepro fesso rthat

madem ethat wayth egrea testt hatev ergot chalk

onhis coato neman deser vesth ecred itone mande

serve stheb lamea ndnic olaii vanov ichlo bache

vskyi shisn amehi nicol aiiva novic hloba chiam

never forge tthed ayifi rstme etthe great lobac

hevsk yinon eword hetol dmese creto fsucc essin

mathe matic splag iariz eplag iariz eletn oonee

lsesw orkev adeyo ureye sreme mberw hythe goodl

ordma deyou reyes sodon tshad eyour eyesb utpla

giari zepla giari zepla giari zeonl ybesu realw

aysto calli tplea seres earch andev ersin ceime

etthi smanm ylife isnot thesa meand nicol aiiva

novic hloba chevs kyish isnam ehini colai ivano

vichl obach

This doesn’t look quite right, but that’s because the spaces are in all the wrong
places. However, the letter combinations are consistent with those of English. Once
we fix the spacing, capitalization, and punctuation, we get

Who made me the genius I am today,

The mathematician that others all quote?

Who’s the professor that made me that way,

The greatest that ever got chalk on his coat?

One man deserves the credit,

One man deserves the blame,

and Nicolai Ivanovich Lobachevsky is his name. Oy!

Nicolai Ivanovich Lobache...

I am never forget the day I first meet

the great Lobachevsky.

In one word he told me secret of success in

mathematics: Plagiarize!

Plagiarize,

Let no one else’s work evade your eyes,

Remember why the good Lord made your eyes,

So don’t shade your eyes,

But plagiarize, plagiarize, plagiarize...

Only be sure always to call it please, "research."

And ever since I meet this man my life is not

the same,

And Nicolai Ivanovich Lobachevsky is his name. Oy!

Nicolai Ivanovich Lobache...
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This is part of Tom Lehrer’s song “Lobachevsky” [Leh59], a humorous and
libelous tribute to an entirely honorable mathematician who did great work on non-
Euclidean geometry in the mid-nineteenth century.

So, as we have now seen, even the once-mighty Vigenère cipher can be cracked,
and without too much trouble.

5.4 Distinguishing Substitution and Vigenère Ciphers

Suppose we have intercepted a cipher, and we want to break it. The first thing to do
is to figure out what type of cipher it is: is it a Cæsar cipher? A Vigenère cipher?
Something else? It would be nice if we could do that before we embark on the actual
deciphering process.

There aremany types of ciphers, someofwhichwehave already seen, andothers of
whichwewill investigate in the next two chapters. (And there are probably thousands
of others; see [Wri98] for several hundreds of other types that have been used over
the centuries.) It is hard to distinguish among so many possibilities at once, but if
we have only two candidate ciphers, we might be able to find certain distinguishing
features in the ciphertext that give us the answer.

It turns out to be very easy to distinguish between substitution and Vigenère
ciphers, evenwithout solving them.The reason is the letter frequency. In a substitution
cipher, each letter is encoded in the sameway, every time. As a result, the letters in the
ciphertext have the same frequencies as in the plaintext, but shuffled around. Thus,
if there are 19 instances of the letter t in the plaintext, then there are 19 instances of
some letter (whatever t gets encoded as) in the ciphertext.

As we noted when solving substitution ciphers earlier, the letter frequencies vary
wildly in typical English sentence: lots of instances of the letter e, and not many
instances of the letter j. Since letter frequencies do not change but only get shuf-
fled under a substitution cipher, we expect letter frequencies to vary wildly in a
substitution cipher.

What about a Vigenère cipher? Now, the same letter gets encoded differently at
different points in themessage:maybe sometimesegets encoded asK, and sometimes
as R. That means that we would expect both K and R to be quite common in the
ciphertext based only on that information. But what if at some other point in the
ciphertext j gets encoded as R? Then that would make R rarer. The effects of the
e and j both sometimes being encoded as R might roughly cancel each other out,
making R appear with something like average frequency. In short, we expect the
ciphertext letters in a Vigenère cipher to be fairly balanced.
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5.5 Friedman’s Coincidence Index

The discussion in the previous section can be turned into something much more
quantitative that actually allows us another approach at determining the key length
of a Vigenère cipher. The idea is to pick two letters at random from the ciphertext
and ask what the probability is that they are the same. We call this number the index
of coincidence.

There are several different approaches to the index of coincidence. Let us start
with the simplest. Let us suppose that we have a Vigenère cipher with n letters, and
a key of length k. (We do not actually know the value of k in practice, but for now
we pretend; we will use our analysis to try to guess k.) For simplicity, let us suppose
that n is a multiple of k, but it won’t make much of a difference. We can divide the
n letters of the ciphertext up into k buckets based on how they were encoded: letters
that were encoded using the first letter of the key go into bucket 1, letters encoded
using the second letter go into bucket 2, and so forth. Since we do not know k, we
cannot actually divide up the letters into buckets; this is simply a thought experiment
at the moment.

Now, what is the probability that, when we pick two letters at random, they are
the same? (That is, maybe they are both G.) There are two ways this can happen: they
can be the same letter and chosen from the same bucket, or they can be the same and
chosen from different buckets. If they are from the same bucket, they should agree
as often as letters agree in English (or whatever language the plaintext is in). If they
are from different buckets, they should agree with probability 1

26 or so.
The index of coincidence of English, or the probability that two letters in English

match, has to be worked out from experimental data: take a long book and count.
Fortunately, other people have already done the counting for us: the index of coin-
cidence of English is IE ≈ 0.0656. The index of coincidence of random letters is
IR = 1

26 ≈ 0.0385.
Now, what is the probability that two letters match? We break this setting up into

two cases: they can match and be from the same bucket, or they can match and be
from different buckets. The first case happens with probability roughly 1

k × IE , and
the second happens with probability roughly k−1

k × IR . (These are not quite exact for
many reasons, one being that in the same bucket setting, we wish to avoid drawing
exactly the same character twice, since then we get a match, but for a stupid reason.)
So, the probability of a match is roughly

1

k
IE + k − 1

k
IR .

Butwe can also count (or write a computer program to count) the number of instances
of each letter in the ciphertext and see how often we get a match; call the actual
probability IC . Thus, we have

IC ≈ 1

k
IE + k − 1

k
IR . (5.1)
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So far, there hasn’t been any actual doing: this is all pretend, since we don’t know
what k is. But the point is: we can now work it out anyway! From (5.1), we can
(approximately) solve for k, to obtain

k ≈ IE − IR
IC − IR

.

Recall that IE and IR are known in advance (they are around 0.0656 and 0.0385,
respectively), whereas we can obtain IC from counting. In this way, we can guess
the key length. If k is close to 1, then probably it’s a substitution cipher. If it’s not
close to 1, probably it’s a Vigenère cipher.

It is important not to place too much weight in the Friedman index to determine
k: if it gives a large value for k, we can safely conclude that we are faced with a
Vigenère or other polyalphabetic cipher, but it is very possible for it to be off by 1
or 2. (The value you get for k is not an integer, but even after rounding, it can still be
wrong.)

Actually, there is another very important caveat that we completely skipped in
the preceding analysis. (Did you notice?) We said that the probability of a match for
two letters in different buckets is basically that of two completely random letters:
1
26 . This is usually fairly accurate, but it goes horribly wrong when the key has some
repeated letters. For instance, suppose that the key is SECRET. Then, letters from
buckets 2 and 5 (both encrypted using the letter E) match with probability IE , rather
than IR . This is hard to detect, because we do not know how long the key is in the
first place! The more repeated letters the key has, the more severely our analysis is
likely to fail.

Fortunately, there is another approach to the Friedman coincidence index: instead
of comparing all pairs of letters for a match, just compare letters that are distance
k apart. So, if we guess that the key might have length 6, work out the probability
that two letters that are six spaces apart match. If this looks like IE , then there is a
good chance that the key has length 6. But if it’s closer to IR , then the key length is
probably not 6.

In fact, we can improve our confidence by looking at multiples of the proposed
key length. If we guess that the key might have length 6, then we can also look at
letters that are twelve spaces apart, since those are also encoded in the same way. If
the index of coincidence for those pairs is also close to IE , then this should increase
our confidence that the key length is 6. We can increase it further by looking at letters
that are eighteen apart, and so forth.

This version of the Friedman index is much more robust than the previous version
that only involved computing IC . But the downside is that it is necessary to check
it for many values of k. Fortunately, it is not hard to write a program to do it for us
(and many other people have already done so).

Example Here is a ciphertext encrypted with a substitution cipher:
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YJEEW CEHLN HQPBF HXUWU DHYWV WYJXJ NRWXQ BIQFW

CHVKW VTVBQ FWVND HYWBI YJEEW TBOVX WNPJQ FLBOQ

FWVOE WNHVW UWNRV JTWUT WEBPQ FWCBJ XQBIQ FJNDH

YWJNQ BDWQH QBQHE BIIJA WQFBO NHXUC BJXQN JXNWA

WVHEF HXUNW HRFFH XUJNH VHRWQ BCOQU BPXWZ HRQEL

NWAWX FOXUV WUYJE WNTWI BVWLB OVBCC BXWXQ UBWNT

WLBXU QFWCB JXQND HJXWU TLCOQ QJXDU BPXYJ EWNQB

XWNQF WVWHV WNWAW VHEBQ FWVPH LNBIY HKJXD CBJXQ

NQFWD HYWJN CEHLW UPJQF HUWRK BIBXW FOXUV WUBXW

RHVUN UJNQH XRWRH VUNVW CVWNW XQHXO YTWVB IYJEW

NQVHA WEWUP FWXBX WJNCE HLWUJ QHUUN QFHQY HXLYJ

EWNQB QFWCE HLWVN QVJCN BIHVQ FJNFH XUFHS HVURH

VUNHV WONWU QBCVW AWXQL BOVBC CBXWX QIVBY COQQJ

XDUBP XUJNQ HXRWR HVUNQ FWLRH XBXEL TWCEH LWUJI

LBOVB CCBXW XQFHN HDBRH VUBXQ BCBIQ FWTHQ QEWCJ

EWQFW RHVUN HVWBO QBIDH NHRRJ UWXQI EHQQJ VWNCW

WUEJY JQHXU NQBCV WYWUL RHVUN IJZCV BTEWY NRHON

WUTLF HSHVU RHVUN CEHLW UBXLB OTLLB OVBCC BXWXQ

QFWRH VUNHV WDHNB EJXWV WCHJV NNCHV WQJVW WXUBI

EJYJQ HXUDB NHIWQ LRHVU NCVWA WXQLB OVBCC BXWXQ

IVBYC OQQJX DNCWR JIJRF HSHVU RHVUN BXLBO JXQFW

IJVNQ CEHRW QFWLH VWWZQ VHQHX KUVJA JXDHR WCOXR

QOVWC VBBIH XUVJD FQBIP HLHXU QFWVW HVWBX ELBXW

BIWHR FJXQF WUWRK

Here is a histogram of the letter frequencies:

Here is the same plaintext, encrypted with a Vigenère cipher with a key of
length 7:

ZWXLH XNNME AWEQU OZDHL INAQR HUKAW ECHVV BTFHH

XCEYQ REZQG VQRVO CZSAF PQNYS NOXZP RGIIW PABIF

HHZWY SEAUM FRGOR LJGQP QLREV USBOL VVBTF HLAIN

AQIVB QTSFA WWVNZ AFIQX RHTOX ACARB OLVVF WZSHD

GEOXH DVFFS MCKPC ARUSD ZCPSF OSCVQ CINHF CPHXY

VMXRB TUQLT RRYIO MUOSR OUMAB IDOSX QASZT GWGFP

QYRVF GVQPR QPGGS ALVGQ PKPXB VVBSD REPZW XEVBQ

ASETK MTROD EVMXR FMLRB JRFIA BAQSA MKLVI CCUNW

AVUSS APMKF DXABM FJWFH DLGPY AFRVG UIZDU MFBBQ

CDZFF RUSWI PPSOA ULUES BRHAG AHMNX UDRFA FPQNR
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GFRDD GYSPW KMPBB QIVXN NMQDL BCQRE TKIVZ OZYPQ

NRGFO WPGCZ MYHZU GFUPV WHNFF HLAJN BPHDH CEROA

ULUNF QUVMF GCBRH DGAHK OXZQC DANHV VSFAM SCVGW

ZGGWY ARUSW IPPSO AULUG VQYFI PBBXY EMRYO KEGQH

LCGRR XRBBQ NWPCF OSOFI TQCZT RXQSH TEEIV GZQPL

TGGVQ CDZFF ODERC VBTSA VIEPW PEQBH YOFTL ZGFDQ

EGTKZ WFAQL UGCBR HUGQM OAULU SWJPU WDYSY SFIWF

SPBBP CMODD FITQG BLDGG QCZYR CDLMA UUWRC CZEQB

VUSOA ULUNF QGDAQ YWZEU MRNWD SVXCE SFIUM GARAF

OQOVH MNGOQ FOREW GENFP SSZGI SZTBW WECBP RVGAH

RRRUR HHFIQ OUCSO IIQEU OLAUL ENFPS RVABI UNWPG

SWDSW XNNQQ TKMAN FQEAB TNHMN NLTVJ UNJIE RDGNF

BWESB RRWHN BPRLO JGCRW DGCAR FHHZG NFQOQ TABBQ

OIMCP VUNWP GQSOK

And here is the histogram:

Clearly, the letters are much more evenly distributed in the case of the Vigenère
cipher than in the case of the substitution cipher. It is typically easy to tell from
looking at a histogram which type of cipher it is, if you have to choose between
substitution and Vigenère.

We can calculate the index of coincidence for the Vigenère cipher: we find that
IC ≈ 0.0419. The k value, according to our formula, is then k ≈ 7.89. Since the key
length is 7, that wasn’t too bad (although, of course, if we start with the assumption
that the key length is 8, we will make no progress).

Instead, looking at letters differing by 7 places only,we get an index of coincidence
of around 0.0639; for 14, we get 0.0657; for 21, we get 0.063. These are all close to
the value for English, which should convince us that a key length of 7 is likely.

5.6 Problems

(1) Encrypt the plaintext message

many cheerful facts about the

square of the hypotenuse

using a Vigenère cipher with key MATH.
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(2) The message

JKVSE OZGCF RHOPS LVWKI HZJFV VMLNH FMHSE

MNUOO IUTBV PABOA ULMGN BMZYK JEBNS NIBFJ

JHGSH SIRHI MEEEF WTZYK WCZWW UPBWE QNNBP

PGHIN SDXMC IHZJT GTHSI UPTZX EDZZG USAIJ

IWPBN BVPFX NBWXN NNBQZ QXAZC XPHIL CYXAZ

QFNEI DBOWX HRVOQ MGZXZ LGXDB WDJTD BVTQL

JZFJX HJEBQ SKOPS CIRJC QLRMN PSHCH PZGHI

XONON IBIBV PWMMM SEFNO IPFPE DAHSI OZZMQ

MKNBA LRMCI HJSNH MSERH RQKPR MOWGL MGOXO

FPLOE ODNNN BOQXX MUMWE GYQBR EZMMO ELHPA

SELXT DSMYB GBHSE MCIGD GTMKS CSHHB CDXTI

LWYEG YBVPV XBZOX EVCZS PAHIB MZYMC QBVMM

VRCVI MCMZZ AXMQK SMLKM FOXAZ TCFHX MQGAS

DZBVP RBRMB EXHOP SESPZ ZHZWX ZBVPA BGLPP

ELOAH SMGFQ BRSNO WTXCP DBGES UZNFT KAOMB

OEMGM ODXUP BHSIL ZEWWH UZIGE WBAWI YHLOI

BOMGB BOXIH IIGSI EAVCE SGZWT ELXFQ HSEEA

ACHME YIGXC LZTTY IQOQA LHXAW FELXW IBVWB

MNCCX AZZST ATNBC WHPZZ SZGXV VGZJL DTJPV

TILAZ YGOIW YWHAO CWHUP BWDSH INCFR WOPWD

XTGSK LWFZZ SMPNN BSCEG YDOAS NMNCC XAZOC

WHTIL HSILD TJPVP ZZSLP EHIRP SYKID PVTAZ

WPRWO WCVQX DVHZX AZXOC PBVUS YXAJC GPEGY

BVPVX NIHEL XNXSL OXMIG XYFVA OXSNN MTZVB

IADTX XJNVT WGVUS HSGOG CFXAD VYELB NIXZO

XOPCE LXNXS LOXMP SHLHH BVPCT GTCQX AZUGA

SDZBC ZJTGT HSILO ZOYKX KTONI LDMJP VPVAW

YATNV HELTO VCHXA ZXZLG XAWFL LNWJI MEGYL

WYAAD TSDSF ZUOOI TWWHS IKOWY PIIJB VPVLL

CWPXT ILHSI KZAHN EEGLT ZVHML SCQXV VWYKC

PAHXE DZIFT SMOPS YWAJC ZOCHP PSCIT ABSCF

XOWZO SYNWA PNHFM PJXAZ MBRPB NPAPR FVLSR

EBIAH JSNMW KYGHP VHCCY JTYEI EGBVT WMVTS

XCWZI FSSGZ GOYHL OWIEP RKZCE ILOBV LXHAI

ZWXAZ JIWPF VSSCW CJPBM YEGQG ELXWM GE

is a ciphertext encrypted using a Vigenère cipher.What is the plaintext message?
What is the key?

(3) The message

OBVSE GVAMG TKGWS LTFSV MUDFP ETIHF VYEYM

LBDFL KGWMG NTGJM FKMEU IHYFU LGQAF UUONM
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LYCDS OMDYU FNFZG NVIMG HWFZL HVJMF ETWYL

WHRBI ILLMZ YSWTS FCSII LLCCQ NCXML VIJQO

WMUJV KWAHX FNFED FYNSY MDYJF RGQWN NNTJW

ECCJS KXKBR WDVLW LVXNQ HAMXZ IUMFA FMDQR

LNYJD CCKMV JMNEF ERSDN SFANM EPEDF XTEUV

AAYYA PHFIK MIPKY IVXWT SFARS DKWFN PTUTP

AZVJX VVWGV QYHPS NNNTJ RGNYN NIAZU KJVGV

LIXWU OFDYR YWJIF AVWMC RTUEI SHVGG DZSKG

KNRSD UTDUP JDYEY HVWIO TWLWJ CVJDS ZGAFI

LBVRG QXZYP IIFRL MRDNQ FMNFK FVLWS NJNVH

ALVHT NCLBV TRIEF VFDSV LWSJY ORTWX KMEKV

FIZXE YMLBI JAFMF YJXSW VHLZX IPKSH ULRKR

FCELH GVVMF KHWVV SXZRF WJYKN RGHSJ FQOIM

RCELI QJXYI JDISD XZSSW QKOEY ONHLI RQLYL

GXTTN VVSXZ HTOIA MRNDK HHUPF PQYFX RIAAX

GUEDO PIOBF PIEOW XDJID VAVVI WKXZN FDSIV

WUKAU NKSLS TYUXG OKYET WGGVY HKRYM GNTGJ

MFSZT DPWMJ DOWRG NYJYY SMFUG EUSUI EKOWR

VYUQY RSDCK JFWPA HJMOT XLBVX ECKYL RAAVM

FACFD UXZYP YIEOD YDDTC WLYJY HGCXY VIMAJ

SXJYH GCYCM JMGXZ CJFNF XZYPL IXIEY KMAVE

FXZAE PSLBZ SGYLS NVAET XGAIZ MDPWU K

is a ciphertext encrypted using either a substitution cipher or a Vigenère cipher.
Which one was used? (You can decrypt it if you would like.)

(4) (a) How many substitution ciphers are there?
(b) How many substitution ciphers are there with at least one letter fixed (for

example, v gets encrypted as V)?
(c) Exactly one letter fixed?
(d) Exactly two letters fixed?
(e) Same questions, but for Vigenère ciphers with key length d. (Part of the

challenge here is to figure out exactly what the question is.)
(5) Compare the number of substitution ciphers with the number of Vigenère ciphers

with key length 8. Why are Vigenère ciphers with key length 8 harder to break
than substitution ciphers?

(6) You now know how to break substitution and Vigenère ciphers. If you had to
send a message using one of these ciphers, how would you design your message
so as to make decryption as difficult as possible for an attacker? (Note that you
can present the same content with multiple different messages, by changing the
wording.)



Chapter 6
The Hill Cipher

6.1 Matrices

The next cipher we will look at, known as the Hill cipher, is based on matrices. It
is a form of a substitution cipher, except that it doesn’t just substitute one letter for
another but rather one block of letters for another. For example, it might swap some
three-letter block with another three-letter block.

Let us start with an overview of matrices. We will just state the facts that we need,
without proof, since it would take too long to give all the proofs.

Definition 6.1 Letm and n be positive integers. Anm × n matrix is anm by n array
of numbers, put into a box. Here, m denotes the number of rows, and n denotes the
number of columns.

Example ⎛
⎝

1 4
0 −7
19 8π3

⎞
⎠

is an example of a 3 × 2 matrix.

Typically, we use either round brackets, as above, or square brackets to delimit a
matrix. Generally, we fill our matrices with numbers, for example, integers or real
numbers. But we may also fill them with other things, as long as we are able to add
and multiply those things. In particular, we might want to fill them with elements
of Z/mZ, for some m. And that is what we will need to do for the Hill cipher: our
key will be a matrix whose elements lie in Z/26Z. We will write them as numbers
from 0 to 25, but we must recall that their addition and multiplication must be taken
modulo 26.

Given two matrices, there is sometimes a way of multiplying them to get a new
matrix. In particular, we can multiply an m × n matrix by an n × p matrix, and the
result will be an m × p matrix. However, it is not possible to multiply an m × n
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matrix by an n′ × p matrix if n �= n′. The matrix multiplication operation is a bit
strange-looking, but it turns out to be a good idea for reasons that we will see in
Chapter 19.

Notation Given a matrix A, we often write ai j for the entry in the i th row and j th
column.

Definition 6.2 Let A be an m × n matrix and B an n × p matrix. Then, we define
AB to be anm × pmatrix whose entry in the i th row and j th column is

∑n
k=1 aikbk j .

Example

(
1 2
3 4

) (
5 6
7 8

)
=

(
1 × 5 + 2 × 7 1 × 6 + 2 × 8
3 × 5 + 4 × 7 3 × 6 + 4 × 8

)
=

(
19 22
43 50

)
.

If we assume that these matrices have entries inZ/26Z, then we would get

(
19 22
17 24

)
.

Note that sometimes we can form the product AB, but not the product BA the
other way around. And even when we can, these two products might not be equal.

Example Let

A =
(
1 0
1 1

)
, B =

(
1 1
0 1

)
.

Then

AB =
(
1 1
1 2

)
, BA =

(
2 1
1 1

)
.

One particularly important special case of matrix multiplication is matrix-vector
multiplication. If we have amatrixwith only one column, we call thatmatrix a vector,
or perhaps a column vector. (By contrast, there are also row vectors, which have only
one row. But we will not need those at the moment.) If we have an m × n matrix,
then we can multiply it by a (column) vector of length n, and then result will be a
vector of length m.

Example ⎛
⎝
1 2
3 4
5 6

⎞
⎠

(
2
5

)
=

⎛
⎝
12
26
40

⎞
⎠ .

There is a special matrix that does nothing when wemultiply it by another matrix.
This is the identity matrix. In fact, there is an identity matrix for each n: an n × n
square matrix whose diagonal entries aii are 1, and everything else is 0. Here is the
4 × 4 identity matrix: ⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .
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If we let In denote the n × n identity matrix, and A is any m × n matrix, then
AIn = A, and if B is any n × m matrix, then In B = B.

Given an n × n square matrix A, wemight wonder if there is another n × nmatrix
B so that AB = In and BA = In; this is the matrix version of a unit, as discussed in
Definition 4.10. When such a matrix B exists, we say that A is invertible. We usually
write A−1 for the matrix B, and it turns out that this inverse matrix, when it exists,
is unique.

It turns out that there is a way to check if a matrix is invertible without actually
finding the inverse matrix B, just as we saw that a ∈ Z/mZ is a unit if and only if
gcd(a,m) = 1, without having to find the inverse b. This relies on the determinant.
The determinant is slightly complicated to define in general, but we can write it down
in the case of a 2 × 2 or 3 × 3 matrix. It is only defined for square matrices.

Definition 6.3 If A =
(
a b
c d

)
is an 2 × 2 matrix, then its determinant is defined to

be det(A) = ad − bc. If B =
⎛
⎝
a b c
d e f
g h i

⎞
⎠ is a 3 × 3 matrix, then its determinant is

defined to be det(B) = aei + b f g + cdh − ceg − a f h − bdi .

The 4 × 4 determinant already contains 24 terms, so the formula is cumbersome,
and there are often better ways of computing it. There is a picture that helps in
remembering the formula for a 3 × 3 determinant:

⎛
⎜⎜⎜⎜⎜⎜⎝

a b c

d e f

g h i

a b

d e

g h

⎞
⎟⎟⎟⎟⎟⎟⎠

Just add up the products that go from northwest to southeast, and subtract the
products that go from northeast to southwest.

It turns out (see, for instance, [Bre12, Theorem 6.2.4] for the case of matrices with
entries in R, or [DF04, Theorem 30, §11.4] for the general version) that a matrix A
is invertible if and only if its determinant is a unit. Thus, if the entries are in R, it
is invertible if and only if its determinant is nonzero. If the entries are integers and
we want an inverse that also has integer entries, then this happens if and only if its
determinant is ±1. If the entries are in Z/mZ, then it has an inverse if and only if
gcd(det(A),m) = 1.

Although the above statement is nonconstructive in that it doesn’t tell us how to
find the inverse matrix A−1, there is a way of writing down A−1 explicitly. We will
only do so in the 2 × 2 and 3 × 3 cases.
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Proposition 6.4 • If A =
(
a b
c d

)
is an invertible 2 × 2 matrix, then its inverse is

A−1 = 1

det(A)

(
d −b

−c a

)
.

• If A =
⎛
⎝
a b c
d e f
g h i

⎞
⎠ is an invertible 3 × 3 matrix, then its inverse is

A−1 = 1

det(A)

⎛
⎝
ei − f h ch − bi b f − ce
f g − di ai − cg cd − a f
dh − eg bg − ah ae − bd

⎞
⎠ .

Here 1
det(A) means the reciprocal if our matrix entries are in Z or R or something

similar, and it’s the inverse in Z/mZ if our matrix entries are in Z/mZ.

This can be proved, in a rather unenlightening manner, simply by multiplying
A by its claimed inverse and checking that the result is in fact the desired identity
matrix. Based on Proposition 6.4, we can see why we need the determinant to be a
unit: the formula for the inverse involves dividing by the determinant. Note that the
formula for matrix inversion is a bit unwieldy to use by hand, but Sage is happy to
help us out: if we type

A = matrix(Integers(26),[[0,1,2],[3,4,6],[8,1,17]])

Aˆ-1

then we get the result

[22 19 6]

[ 9 22 8]

[ 9 2 9]

And we can check that, modulo 26, it is indeed true that

⎛
⎝
0 1 2
3 4 6
8 1 17

⎞
⎠

−1

=
⎛
⎝
22 19 6
9 22 8
9 2 9

⎞
⎠ .

6.2 Encrypting with Matrices

The idea of the Hill cipher is to encrypt blocks of characters usingmatrices, replacing
a block of some small number of letters with a different block of the same size. For
instance, suppose we choose to encrypt blocks of length 3 by blocks of length 3. (The
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plaintext and ciphertext blocks must be the same size for the Hill cipher to work.) To
do this, we choose some invertible 3 × 3 matrix A with coefficients in Z/26Z as our
key. A common way of doing this is to start with a 9-letter word and then convert it
into numbers. We will use the key TANGERINE. (I had to try a bunch of different
9-letter fruits before I was able to find one that was usable as a key.) To turn this into
a key, write the letters of TANGERINE in a 3 × 3 matrix, as

⎛
⎝
T A N
G E R
I N E

⎞
⎠ .

Next, convert each letter to a number, by replacing A with 0, B with 1, C with 2, and
so forth, up to Z with 25. We get

⎛
⎝
19 0 13
6 4 17
8 13 4

⎞
⎠ .

Its determinant is 5, which is a unit modulo 26, so we’re safe. (The reason I had to
try a bunch of possible words for keys is that when I tried several other fruit names,
such as PERSIMMON and RASPBERRY, I ended up with a determinant that is not a
unit, and hence isn’t usable.)

To encrypt a message, we must first convert the plaintext into numbers, using the
same scheme: replacing Awith 0, Bwith 1, and so forth. Let us suppose that we wish
to encrypt the plaintext message rhinoceros. In order for our encryption scheme
to work, we need the message length to be a multiple of the block size, which is 3.
Since our message length is 10, we need to append a few random characters at the
end so that the message length becomes the next multiple of 3, namely, 12. Once the
message is decrypted on the other side, it will be obvious that the extra characters
are simply junk and should be discarded. So, let us append jc at the end, making
our plaintext message rhinocerosjc.

We now replace each letter with a number, giving us

17 7 8 13 14 2 4 17 14 18 9 2.

To form the ciphertext, we turn each block into a column vector of length 3 and
multiply it by our key matrix. For instance, with the first block, we get

⎛
⎝
19 0 13
6 4 17
8 13 4

⎞
⎠

⎛
⎝
17
7
8

⎞
⎠ =

⎛
⎝
11
6
25

⎞
⎠ .

Converting that back to letters, we get LGZ. Similarly, the other blocks encrypt to
NMI, YSX, and EWJ. Putting all these blocks together and rearranging them into our
standard length-5 blocks, we get our complete ciphertext:

LGZNM IYSXE WJ.
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Knowing the key and the block length, decryption is very similar to encryption,
but instead ofmultiplying each length-3 block by the keymatrix, wemultiply it by the

inverse of the key matrix. In this case, the inverse of the key matrix is

⎛
⎝
11 13 0
12 10 3
4 13 10

⎞
⎠.

Multiplying this by the vector

⎛
⎝
11
6
25

⎞
⎠ corresponding to the first block LGZ gives us

back the first block of the plaintext, which is

⎛
⎝
17
7
8

⎞
⎠, or rhi, just as expected.

6.3 Attacking the Hill Cipher

Unfortunately, the Hill cipher is quite weak. Intuitively, this makes sense: it is defined
in a very structured way, based on the operation of matrix multiplication. A common
theme in cryptography is that the more mathematical structure our cryptosystem has,
the weaker it tends to be, as an eavesdropper can use that structure to attack the
system.

Let us first suppose that our eavesdropper has managed to acquire a ciphertext
encrypted by a Hill cipher, together with a couple extra pieces of information. In
particular, she knows that the block size is 2, and she knows that the block th
encrypts to BP, and at encrypts to YL. It turns out that this alone is enough to
calculate the entire key, and thus decrypt the ciphertext.

How can that be? Let us suppose that the 2 × 2 key matrix is

(
a b
c d

)
. Based on

the two plaintext–ciphertext pairs, Eve knows that

(
a b
c d

) (
19
7

)
=

(
1
15

)
,

(
a b
c d

) (
0
19

)
=

(
24
11

)
. (6.1)

Writing that out in terms of equations, we get the following system of four linear
equations in four variables:

19a + 7b = 1

19c + 7d = 15

0a + 19b = 24

0c + 19d = 11.

(And remember, all these equations are modulo 26.) So, to find a, b, c, d, we simply
solve the system of equations. In fact, this system is easier than a usual system of
four equations in four variables, because it splits up into two separate systems of
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equations, each of which consists of two equations in two variables. When we solve
it, we find that

a = 15, b = 4, c = 0, d = 17.

Converting this back to letters, we see that the key is PEAR.
We can rephrase this process in matrix form. The pair of equation (6.1) is equiv-

alent to the single matrix identity

(
a b
c d

) (
19 0
7 19

)
=

(
1 24
15 11

)
.

Wewish to solve for a, b, c, d, whichmeans inverting thematrix

(
19 0
7 19

)
. Its inverse

is

(
11 0
11 11

)
, which Sage is happy to tell us with the following commands:

plaintext = matrix(Integers(26),[[19,0],[7,19]])

plaintextˆ-1

Now that we have the inverse, we can solve for

(
a b
c d

)
:

(
a b
c d

)
=

(
1 24
15 11

) (
11 0
11 11

)
=

(
15 4
0 17

)
.

This is the same answer as before.
More generally, if Eve knows that the block size is n, and she can somehow acquire

n different plaintext–ciphertext blocks, then she can determine the key and use it to
decrypt any ciphertext message. But how is Eve to get these plaintext–ciphertext
blocks? Ordinarily, Alice and Bob will not be eager to provide them to Eve. So, one
possibility for Eve is to get them from the ciphertext itself, if it is long enough. She
may be able to do this using frequency analysis. If she decrypts a very long message
and knows that the block size is 2, then it is very likely that the most common block is
th in the plaintext, giving her one block. She can try various other common bigrams
like he, in, and er for other common bigrams in the ciphertext. With a bit of time
and patience, she should be able to find her necessary two bigrams to decrypt the
ciphertext.

There is a bit of a pitfall here though: it’s not enough just to have any n different
plaintext–ciphertext blocks. Rather, they have to be sufficiently special in order for
this attack to be completely successful. In the above example, the plaintext matrix(
19 0
7 19

)
is invertible: it has an inverse, considered as amatrix with entries inZ/26Z,

because its determinant is relatively prime to 26. This won’t always happen: the
determinant could be divisible by 2 or 13. When that happens, these plaintext–
ciphertext blocks won’t be sufficient to work out the key directly, but it can lead to
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partial information about the key. We encourage you to try problem 3 to see how to
get this partial information, and to determine how it might be used.

6.4 Problems

(1) Encrypt the plaintext message

Why, sometimes I’ve believed as many as

six impossible things before breakfast!

with a Hill cipher using the key PORCUPINE.
(2) The message

VCKUP EDOPS JICJP NBZCV DDMKI IRQKP WAKQI

QMJEX HSQAH XHSZX LCTC

is a ciphertext encrypted by a Hill cipher with block size 3. Through a breach
in security, you determine that the plaintext nectarine is encrypted as
RCSXLBCFC. Determine the key and the plaintext of the longer ciphertext.

(3) The message

ZWZII MBBSQ KMKNN QKYKM ZZWZU ALXPN QKYKM

ZZWZI IMBBS QKMAA A

is a ciphertext encrypted by a Hill cipher with block size 3. Through a breach
in security, you determine that the plaintext andbutfor is encrypted as
AHWZTFLRZ. Determine the key and the plaintext of the longer ciphertext.
(Hint: Gur xrl vf n sbezre anzr bs n pbhagel.)
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Other Types of Ciphers

7.1 The Autokey Cipher

The autokey cipher, suggested by Vigenère himself as an improvement on the cipher
that now carries his name, is similar to the Vigenère cipher in that it is polyalphabetic:
it uses different shift amounts for different letters. However, it is stronger, in that it
cannot be attacked in the same way as the Vigenère cipher can. Let us see how it
works.

The setup is as before: we have a key and a plaintext. We start by using the key to
encrypt the plaintext, just as with the Vigenère cipher, but once we have used up the
entire key, instead of repeating it, we use the beginning of the plaintext to encrypt
the rest of the message.

Example Suppose our plaintext is thecatinthehatisback and our key is
CODE. Then we encrypt as follows, breaking everything into groups of five as usual:

Plaintext theca tinth ehati sback
Key CODET HECAT INTHE HATIS
Ciphertext VVHGT AMPTA MUTAM ZBTKC

Hence, our ciphertext is VVHGT AMPTA MUTAM ZBTKC.

An attack like the Kasiski examination won’t work on the autokey cipher, since
there is no reason to believe that a string of letters ever gets encoded in the same way
twice. However, there is another attack available to Eve. The idea is to guess a word
that appears in the plaintext and use that to string along the rest of the message. Let
us see this attack in action.

As we mentioned earlier, the most common trigram in English is the, so Eve
might think it likely that combination will appear somewhere in the message. Well,
if the appears somewhere in the message, then unless it’s very close to the end,
it will show up in the key somewhere. Now, Eve doesn’t know the position it will
appear in the key, so she has to try all possibilities. However, she can try them all
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fairly quickly, because she can begin by supposing that the first letter will appear
in some spot congruent to 1 (mod 3), then 2 (mod 3), then 0 (mod 3). In the case
of 1 (mod 3), she makes her supposed key THETHETHE... and uses this key to
decrypt the ciphertext. When she does this, she obtains the following:

Ciphertext VVH GTA MPT AMU TAM ZBT KC
Key THE THE THE THE THE THE ..
Plaintext cod nmw tip hfq ati gup ..

She will then similarly look at the 2 (mod 3) and 0 (mod 3) cases. Here is the 2
(mod 3) case:

Ciphertext V VHG TAM PTA MUT AMZ BTK C
Key . THE THE THE THE THE THE .
Plaintext . cac ati wmw tnp hfv img .

And here is the 0 (mod 3) case:

Ciphertext VV HGT AMP TAM UTA MZB TKC
Key .. THE THE THE THE THE THE
Plaintext .. ozp hfl ati bmw tsx ady

Now, what Eve does is to look at all the trigrams that are possible in the plaintext.
Some of these seem like plausible sequences in the plaintext, and some of them don’t.
The most likely ones are probably cod and ati (the latter repeated three times in
fact, in different places). So, she will guess that one of these is actually right. She
doesn’t know which one, so she has to try all of them, or at least enough of them so
that she gets one to work.

Eve doesn’t know the length of the key, so she has to guess a few possibilities.
They key probably won’t be under three characters, so she might start with a key of
length 3. Suppose she tries the ati starting at position 13, with a key of length 5.
What she will do is to use this bit of the key to generate more of the key and plaintext.
Here is what will happen: she originally has

Ciphertext VVHGT AMPTA MUTAM ZBTKC
Key ..... ..... ..THE .....
Plaintext ..... ..... ..ati .....

Now, if the key has length 5, then the appears in the plaintext five places before
it appears in the key, as does ati. Thus, she obtains

Ciphertext VVHGT AMPTA MUTAM ZBTKC
Key ..... ..WMW ..THE ..ATI
Plaintext ..... ..the ..ati ..tru
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We can keep stringing the plaintext and key along in this way. However, this one is
probably wrong, since WMW is not a likely piece of the key (and hence the plaintext).
Now, Eve has lots of free time to experiment with all the likely possibilities, so she
will mess around with various key lengths with ati before moving on. But we get
bored more easily, so let’s jump to the right answer, which is ati with a key length
of 4. We then obtain the following after one step:

Ciphertext VVHGT AMPTA MUTAM ZBTKC
Key ..... ...AT I.THE .ATI.
Plaintext ..... ...th e.ati .bac.

See how much better this looks: all the trigrams look like plausible combinations
of English letters. Continuing on, we obtain:

Ciphertext VVHGT AMPTA MUTAM ZBTKC
Key COD.T HE.AT I.THE .ATI.
Plaintext the.a ti.th e.ati .bac.

We now know the entire message except for every fourth character. But any guess
for the fourth letter (or the eighth, or the twelfth, etc.) will feed through and give
us all the rest of the characters, so Eve can try all 26 possibilities and see which
one gives her something that makes sense. If she chooses C for the fourth letter of
the message, she will recover the original message the cat in the hat is
back.

In practice, it is very difficult to break such a short autokey cipher. As we have
seen, this is a general trend: longer messages are easier to break than shorter ones,
because they have more structure to them.

7.2 Transposition Ciphers

The ciphers we have seen so far replace letters “in place,” but they never swap letters
around. However, there are common ciphers that involving moving ciphers around.
Wewill nowdiscuss twoof them: the rail fence cipher and the columnar transposition
cipher. They are both easy to describe.

In the rail fence cipher, we begin by writing our message as though moving
down and up diagonally on the rails of a fence. The key consists of a positive inte-
ger, for the number of rows on the fence. For instance, suppose our plaintext is
thekeyisunderthemat, and the key is 4. Then, we write the message like this:
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T.....I.....R.....T

.H...Y.S...E.T...A.

..E.E...U.D...H.M..

...K.....N.....E...

To form the ciphertext, we simply read along the rows. After breaking themessage
into blocks of length 5 as usual, we get a ciphertext of TIRTH YSETA EEUDH
MKNE.

Given the key, it is not too difficult to recover the plaintext from the ciphertext.
Let’s have a look, using the ciphertext we just got.

Our message has length 19, so we need to start with a 4 × 19 grid of dots:

...................

...................

...................

...................

Based on the construction of the rail fence cipher, we know which dots get filled,
so let’s mark those spots with a different symbol, say x:

x.....x.....x.....x

.x...x.x...x.x...x.

..x.x...x.x...x.x..

...x.....x.....x...

So we just fill those spots in order from top to bottom from the ciphertext:

T.....I.....R.....T

.H...Y.S...E.T...A.

..E.E...U.D...H.M..

...K.....N.....E...

Finally, to recover the plaintext, just read diagonally.
The rail fence cipher isn’t very good for security, because there aren’t very many

different plausible keys; for instance, it doesn’t make much sense if the key length
is longer than the plaintext length, so even for 1000-character messages, there are
only 1000 possible keys. That number can easily be checked by computer, or even
somewhat tediously by hand.

The other transposition cipherwewill look at is the columnar transposition cipher.
For this one, we write our message in some number of columns. Let us use the same
plaintext as before and use five columns. Our message then looks like this:
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THEKE

YISUN

DERTH

EMAT.

Next, we choose some permutation of the columns. A common way of doing this
is to choose a word whose length is equal to the number of columns, preferably with
no repeated letters. Let us use the key MANGO. Of the letters in the word MANGO,
the alphabetically first letter is the A, then the G, and so forth. Its pattern is 31425:
the first letter of the word is alphabetically third (hence, the 3 at the beginning), the
second letter of the word is alphabetically second (hence, the 1 in the second digit),
and so on. Let us write the pattern as the top row of the message:

31425

THEKE

YISUN

DERTH

EMAT.

To get the ciphertext, just read down the columns, starting from the one labeled
1, then the one labeled 2, and so on. Putting them into blocks of length 5 as usual,
we get the ciphertext HIEMK UTTTY DEESR AENH.

Given the key, this process is easily reversible to allow recovery of the plaintext
from the ciphertext and key.

Like the rail fence cipher, the columnar transposition cipher is quite weak. How-
ever, there is a possibility that we have not considered yet: using a double-layer
cipher. That is, we can first apply a transposition cipher, and then apply a second
cipher, like a substitution cipher or Vigenère cipher.

Is a double-layer cipher good security? That depends on the ease of peeling off
one of the layers of the cipher. The combination of a transposition cipher and a
substitution cipher is somewhat better than a substitution cipher alone, but is not
wholly satisfactory. Recall that we attack a substitution cipher through frequency
analysis. Single-letter frequencies do not change after we have scrambled around
the letters via a transposition cipher, so that bit of the attack still works. But the rest
of the attack, through multi-letter frequencies, fails and cannot be used against this
combination. So, for a long message, it might be possible to make progress against
the substitution portion alone. The combination of transposition and Vigenère, on
the other hand, seems stronger: the Kasiski examination falls apart completely, and
while we can still gain insight into the key length from the Friedman coincidence
index, getting at the actual key seems difficult.
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7.3 One-Time Pads

So far, all of the ciphers we have seen (Cæsar, substitution, Vigenère, Hill, autokey,
and transposition) can be attacked based on peculiarities in their construction. There
are other ciphers that are much, much harder or impossible to attack. A good example
is the one-time pad. The idea of a one-time pad is the same as that of aVigenère cipher
or an autokey cipher, except instead of repeating the key or using the message as the
key, we just choose a very long key; in other words, a one-time pad is a Vigenère
cipher in which the key is the same length as the message. A good way of obtaining a
long key is simply to have a book of random letters and use them as the key. Provided
that Alice and Bob both have the same book of random letters, and an agreement
about where to start in the book, they can easily send messages that the other one can
decipher, and Eve has no hope of breaking the code unless she can somehow obtain
the book.

It is important thatAlice andBobonly use each line (orwhatever) of the bookonce,
as Eve’s chances to break it will increase if they use it repeatedly. Reusing a one-time
pad is a serious breach of security and can result in the code being compromised.

The problem for Eve in trying to decipher a code made using a one-time pad is
that, if she intercepts a message, she gets no information about its content except its
length. For example, she might intercept the message JMABE, and she might guess
that it means today. And indeed, there is some key that would encrypt today as
JMABE. But there is also some key that would encrypt later asJMABE, and she has
no way of distinguishing these two possibilities. In fact, one-time pads are provably
unbreakable: given a ciphertext encrypted with a one-time pad, it is equally likely
to be an encryption of any plaintext message whose length is the same as that of the
ciphertext. Amazingly, the one-time pad is the only cryptosystem which is proven to
be completely secure; there are others, such as the ones we will look at later in the
book, that we believe to be secure, but we have no proof yet, and there are currently
major obstacles in the way before we can hope to prove any such thing.

One-time pads (actually printed on silk) were used by British spies in World War
II. The Germans could only break codes by capturing the spies and stealing their one-
time pads. Spies were frequently captured, so the British needed a way of detecting
that this had happened. They arranged to vary fromwhat was printed on the one-time
pad slightly, in a way that was different for each spy. The Germans knew this, but
they didn’t know how to guess what the modification was. A description of some of
the British cryptographic efforts, especially the spies’ use of one-time pads and the
previously used poem codes, in World War II can be found in [Mar01].

The problem with one-time pads is that they are very cumbersome: you have to
use a different one-time pad for every message you send, so before any messages are
sent, both sides have to make sure that they both have all the pads, and that they are
kept in order. If they plan to send messages repeatedly, that makes for a lot of pads!
In short, one-time pads are good in theory, but are annoying to use in practice.
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7.4 Introduction to Modern Cryptosystems

Wehave now seen a number of alphabetical ciphers and analyzed their vulnerabilities.
All of them have their problems that we have already discussed. However, they also
have one more very serious problem that we have not discussed at all yet. The issue
is that Alice and Bob must agree on a key and an encryption scheme before they
send any messages. Now, if Alice and Bob are friends and see each other in person
and Eve doesn’t get to attend those meetings, then this is fine. But what if Alice and
Bob have never met each other? How do they agree on a key?

This is the setup that is of great importance in the modern world: suppose Bob
owns an internet store, and Alice wants to buy something from his store. Naturally,
she has to tell Bob her credit card number. But she does not want Eve to know what
it is. How can Alice and Bob agree on a key that allows her to send her credit card
number without Eve being able to figure out what the key is?

This sounds like an impossible task: anything that they send to each other can be
intercepted, but somehow the messages have to be intelligible to each other but not
to Eve. It is truly remarkable that this can actually be done. Before we look at the
details of such a system, let us explain the philosophy behind it: Alice and Bob don’t
have to give Eve a problem that’s impossible to solve; it’s good enough if they give
her a problem that takes 100 000 years to solve. Eve has a lot of time, but even she
doesn’t have that much time.

How can they do that? The point is that there are problems in mathematics that are
easy to solve but hard to unsolve. Or, at least, they appear to be hard to unsolve; we
don’t have proofs that they are hard to unsolve. However, they have resisted attempts
by many great mathematicians, so we are quite confident that, at least in practice,
they are hard to unsolve.

We mentioned earlier the problem of factoring numbers when we discussed the
gcd: in the naïve algorithm for computing the gcd, we had to factor the numbers,
and that takes a while, even on a computer. But of course we have a better algorithm
for computing the gcd. At any rate, factoring numbers appears to be a problem that
is hard to solve. However, factoring numbers is the opposite of a different problem:
multiplying numbers. So, this is the first example of a problem that is easy to solve
and hard to unsolve: if I give you two large numbers, you can multiply them together
easily. However, if I give you one large number and tell you it’s the product of two
primes, it is very hard to find those primes! We will look for similar problems in
order to create secure modern cryptosystems.

In order to motivate the construction of modern cryptosystems, we’ll begin with
a little puzzle whose solution contains some rudiment of the ideas of modern cryp-
tography:

Puzzle 7.1 Pretend that you cannot trust the government (or maybe you don’t have
to pretend). You need to send a box, with something valuable inside, to a friend
in a distant city. You expect the people at the post office to open the box and steal
the contents, unless you lock the box, which can accept one or more locks. Luckily,
padlocks with keys are common. If you lock the box with your padlock, the people
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at the post office will not bother to try to pick the lock; there are easier crimes to
commit elsewhere. But if you use a padlock, you will have to send the key to your
friend, and the key will be stolen en route. Even a letter with a photograph of the
key will be stolen. Even if you can fax a picture of the key, the people at the phone
company will also receive your fax and send it on to the post office. In other words,
you cannot send a copy of the key to your friend. How can you send the box, so that
only your friend can open it?

This seems hard: there is no way to send a lock that your friend can open. Fortu-
nately, however, you don’t have to do so! Here is how you can do it:

First, send your box with a padlock on it. Your friend can’t open it, but ey1 can
put a second padlock on the box and then return it to you. You then remove your
lock and send it back, with only your friend’s lock remaining. Your friend can then
remove eir padlock and open the box.

This puzzle is an introduction to the idea of shared information: if Alice and Bob
can somehow develop a mechanism to share some information (a key) that Eve can’t
understand, then they can send each other unbreakable messages. If we abstract this
puzzle a bit to its core, we see that the moral is that, even though Eve theoretically
has everything she needs to read the message, in practice she cannot do it. This is a
big theme in cryptography.

With this in mind, we can now abstractly describe the notion of an encryption
scheme. An encryption scheme has several pieces:

• A set K of possible keys.
• A set P of possible plaintext message.
• A set C of possible ciphertext messages.
• A function e : K × P → C that takes in as its inputs a key and a plaintext and
uses them to produce a ciphertext.

In this formalism, we only require the encryption scheme to encrypt messages, not
to decrypt them as well. However, being able to encrypt messages without also being
able to decrypt them isn’t especially valuable, so we also need the corresponding
notion of a decryption scheme. This consists of the following pieces:

• A set K ′ of possible keys.
• A set C of possible ciphertext messages.
• A set P of possible plaintext messages.
• A function d : K ′ × C → P that takes a key and a ciphertext and produces out of
it a plaintext message.

In general, encryption and decryption schemes ought to be paired with each other:
given a plaintext message, if we first encrypt it and then decrypt it, we ought to get
the original message back. So, we might want the following to be true:

1This is an example of a Spivak pronoun, a third-person singular gender-neutral pronoun. To form
them, remove the “th” from the third-person plural pronouns, with the exception that “themselves”
becomes “emself.” I’m on a mission to get these pronouns into common English parlance. Please
do your part to support the cause.
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d(k, e(k, p)) = p

for all plaintext messages p ∈ P and for all keys k ∈ K .
However, there is a small subtlety here, that we have hinted at in the notation:

we potentially allow ourselves to have two sets of keys: K and K ′. Here, K is the
set of encryption keys, and K ′ is the set of decryption keys. In all the encryption
and decryption schemes we have seen so far, we use the same keys for encryption
and decryption, but that doesn’t have to be the case, and indeed it won’t be true in
the modern cryptosystems we study later in the book. That doesn’t mean that we
can encrypt with any key whatsoever and decrypt with any key and hope to recover
the original message; instead the decryption key has to be related to the encryption
key somehow. Thus, we require that if k and k ′ are “corresponding” encryption and
decryption keys, respectively, then

d(k ′, e(k, p)) = p.

As we will see, it is generally easy to start with a decryption key k ′ and produce
the corresponding encryption key k, but the reverse is difficult. Once again, think
about multiplication versus factoring: k ′ might consist of two prime numbers p and
q, whereas k might be their product pq. Certainly k contains the information of k ′
in theory, but how are we supposed to access it in a reasonable amount of time and
effort?

A cryptosystem is a corresponding pair of an encryption scheme and a decryp-
tion scheme. It is useful to distinguish two types of cryptosystems: symmetric and
asymmetric cryptosystems. In a symmetric cryptosystem, the encryption key and the
decryption key are the same. This is the case in all the classical ciphers we have
studied so far: if you have the information needed to encrypt a plaintext message,
you can also decrypt a ciphertext easily using the same key. On the other hand, in an
asymmetric cryptosystem, the encryption key and the decryption key are different
(but related). Modern cryptography, as it is implemented today, relies on both sym-
metric and asymmetric cryptosystems. The cryptosystemswewill look at in this book
will all be asymmetric ones. This isn’t because they are more important in practice;
serious cryptosystems in place today use a combination of symmetric and asymmet-
ric cryptosystems. However, we choose to focus on the asymmetric cryptosystems,
because there is no question that they are far more interesting from a mathematical
point of view. As this is first and foremost a book about mathematics, we favor topics
that are mathematically exciting over others of equal real-world significance.

We’ll need a fair amount of mathematics before we can define these modern
asymmetric cryptosystems, so we’ll spend some time doing some number theory
and abstract algebra now, as well as analysis of algorithms.

7.5 Problems

(1) Encrypt the plaintext message
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To ask you what you mean to do

we punctually appear

using an autokey cipher with key EULER.
(2) Encrypt the plaintext message

Brevity is the soul of wit

using a rail fence cipher with five rails.
(3) Encrypt the plaintext message

Better three hours too soon than a

minute too late

using a transposition cipher with key LOQUAT.
(4) The message

BTATE TYNFI TIFAO WTWOH OHEAO TLSRL I

is a ciphertext been encrypted using a rail fence cipher. What is the plaintext
message? What is the key?

(5) The message

XVZKA LATSF HHKQR BBWOE ZBIVI YFASP ARALQ

MTBJM MNMPC BOGAL RLOES ULGTP HXIGM LAWFG

YLWHF FYLSL ARWLM XFHDX IERAH XCRCT AIYKX

HTXWO XYGHX XLRRY HPOID MCNAW FGAAG RRWQR

IHWLL VXVWW PXQEI PIGRR WQRIH WLLVW PSFLE

OONUG OYDVQ XOYOD QXHYC WIEOP JTKAP WCACL

IELPA AIOSS IVQXO YODQX HYCWI EOTON NGCMR

RBVBI KYVVJ ERBMM USRUJ MKLAQ KVXTA PUSEC

APJTK APRJF OUWER UIPCC GTILS NUQXG JULGV

SXKCP OELZM ZMTBJ WBLTO KSGTZ KXLRO HEGTZ

KTEKV NSYIX YGSFA SCCIN WRVIS PRHCC GLVQC

QTVVI LKULV CVMWS SXRAD OSPRG RHCCG MFHMR

LKVDR RRGBR HCCGV LXNPS HCTGT ZKXLR OHEGT

ZKXLR OHEGT ZKWNC GAIGH CCBPO UPWTZ YAJDB

HRLPL AXGPW ESVTL SRDVX LRFLR XIZEM RVXPU

WQTGT GDUFR UQYWY XPWFO FXHRV NUGOY DVQXO

YODQX HYCWI EOPJT KAPWC ACLIE LPAAI OSSIV

QXOYO DQXHY CWIEO TONNG CMRRB VBIKY VVJER

BHQJI TMNRO ZNXBW QXAGO CXGXR REDWG MKXWP

NILSV TJADM GIPAY BTTIE OUATI XPGOT QZMDT

WCIYZ QJSWC WTBIU PAIUE MRIEI ILEMM FVNFB

VTVBN BRQGQ QYJPP HVYNE SPRKQ ENLRE QEZMN
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AQFBX DOWEV PPPWS OMEWS GVEXZ YZBKY YWZTK

AHBVS CVIGO FURWO AMWWV JHDWY NZRKH QUSEC

APJTK AHRYY ORIQH GEAIK

is a ciphertext that has been encrypted using an autokey cipher. What is the
plaintext message? What is the key?

(6) Suppose that we wish to do a double-layer encryption of a plaintext, encrypting
it with a substitution cipher and a transposition cipher. Show that it does not
matter which order we do the encryption. Show that it does matter if we use a
Vigenère cipher and a transposition cipher.

(7) There are 45 coins on a table, ten showing heads and the rest tails. They are
covered with a cloth. You must reach under the cloth and separate them into two
groups, not necessarily equal in number, turning over any and as many coins as
you like. You cannot tell in any way (by feeling or some other method) whether
a coin is showing heads or tails. When you are finished and the cloth is removed,
both groups should show an equal number of heads. How do you do it?



Chapter 8
Big O Notation and Algorithm Efficiency

8.1 Big O Notation

When we do a computation, we would like to do it as fast as possible, or at least
pretty fast. In order to talk about (roughly) what that means, we need to introduce
big O notation.

Definition 8.1 Let f (x) and g(x) be two functions, we say that f (x) = O(g(x)) if
there is some constant C > 0, which does not depend on x , so that

| f (x)| ≤ Cg(x)

for all x .

Remark 8.2 There is a slight subtlety here: what does for all x mean? It could mean
for all x ∈ R, but we will use it slightly more weakly to mean for all sufficiently
large x , i.e., there is some A so that | f (x)| ≤ Cg(x) for all x ≥ A.

The point of big O notation is that it allows us to focus on the most important
features of the function and not the less important ones.

Example If f (x) = x3 + 5x2 − 2x + 131, then f (x) = O(x3). More generally, if
f (x) is a polynomial of the form axn+ lower order terms, then f (x) = O(xn). We
also have that f (x) = O(xn+1) or O(xn+2), but typically we will be interested in
finding a big O that’s close to the best we can do.

There are various functions that we like to use for g(x)when using big O notation.
We are fond of functions that combine polynomials, logarithms, and exponentials,
especially. So, O(x2), O(x3), O(log(x)), O(2x ) are commonly used.

Another notation we will use is O(x2+ε), or something like that. In mathematics,
wegenerally use ε to refer to a very small positive number. So f (x) = O(x2+ε)means
that for any r > 2, f (x) = O(xr ), but it might not be the case that f (x) = O(x2).
Generally, this means that f (x) is roughly x2 times something with logarithms in it.
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Let us remind ourselves (or see for the first time) of what logarithms are and what
they’re plotting.

8.2 Logarithms

Definition 8.3 Let b > 0, b �= 1. If c > 0, we define logb(c) to be the unique real
number a so that ba = c.

Example • log3(81) = 4 since 81 = 34.
• log2

(
1
2

) = −1, since 1
2 = 2−1.

• log4(2) = 1
2 since 41/2 = 2.

It is important to know not just the definition of logarithm, but also its properties.
Here are some of the most important ones:

• logb(1) = 0.
• logb(xy) = logb(x) + logb(y).
• logb(x

a) = a logb(x).
• logb(a) = log(a)

log(b) , where log denotes a logarithm to any base of your choosing.

• logb
(
1
a

) = − logb(a).

All these properties follow easily from the definition.
We generally assume that the base b of the logarithm satisfies b > 1, to make it

behave as we expect it to. Your favorite value of b will determine the sort of person
you are:

• If you are a mathematician, your favorite value of b will be e ≈ 2.718281828 . . .
The base-e logarithm is sometimes called the “natural logarithm” since, well, it’s
the most natural for doing mathematics. Beginners sometimes write ln for the
natural logarithm because we still pretend that we’re speaking Latin or something.
But in fact, it’s so natural that mathematicians usually just call it the logarithm
without any modifiers.

• If you are a computer scientist, your favorite value ofbwill be 2, because everything
on a computer is done in binary. The base-2 logarithm tells you (more or less) the
number of binary digits (bits) required to represent a number.

• If you are not yet a mathematician or computer scientist, then your favorite value
of b will be 10, because you think of numbers as being written in base 10. When
you finish reading this book, I hope you will be a mathematician, so that you
can choose a sensible base of logarithm, rather than determining it based on the
historical accident of the number of fingers that most humans have. (Also for many
other reasons!)

We will usually just write log to denote a logarithm to an arbitrary base b > 1, but
since I’m a mathematician, I will implicitly think of the base as being e.
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For many purposes, the base of the logarithm is not too important. This is, espe-
cially, true where algorithms and big O notation are concerned: for any b, c > 1,
logb(x) = O(logc(x)), and vice versa. To see this, note that logb(x) = logc(x)

logc(b)
, so

logb(x) and logc(x) differ only by a multiplicative constant, which is exactly the sort
of thing that big O notation measures.

Another important thing to know about the logarithm function is its growth rate
in terms of big O notation.

Exercise Show that, for any ε > 0, log(x) = O(xε).

Thus, while log(x) → ∞ as x → ∞, it gets there very slowly. More slowly than
any positive power of x , for thatmatter. But there are functions that go to∞ evenmore
slowly. For example, log(log(x)), and further iterates of log(x). And in fact, there
are even more slow-growing functions: iterates of logarithm go to ∞ very rapidly
when compared to the inverse Ackermann function, which is beautifully described by
Raimund Seidel in [Sei]. Anyway, we won’t need the inverse Ackermann function
at any point in this book.

A typical function that is O(x2+ε) would be

x2(log(x))3
√
log(log(x)).

8.3 Running Times of Algorithms

We will frequently use big O notation when referring to the running time of algo-
rithms: how long does it take to run a program to do something? Now, there is a
slightly subtle point to address before we proceed: when we think of performing
some task, we might think of giving the program some number n and having it out-
put another number N , and we might be tempted to ask how long it takes to compute
N in terms of n. This is almost right, but it doesn’t generalize that well.

Suppose that instead of having a program that takes in a number and outputs
another number, we have a program that takes in some string of characters and
outputs another string of characters. How do we measure the size of the input now?
The natural answer is that we measure the length of the input string. (Another option
would be to convert the input string into a number, but this is a bit silly, and there
isn’t necessarily a preferred way of doing this.)

So, if we measure the running time of an algorithm involving an input string in
terms of the length of the string, perhaps we should do that for an algorithm involving
an input number: we measure it in terms of the number of digits in the number. This
is (up to a constant) log(n). Furthermore, the running time in big O terms that we
report will generally measure theworst-case running time: the longest it can possibly
take for an input of a given length. (There are other possibilities, such as the average
case running time, that are also important.)

So, now let’s look at some simple algorithms and work out their running times.
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Example (Addition) Given two numbers with at most n digits, how long does it take
to add them? In order to add them,we have to add the 1’s digits, which takes a constant
number of steps (i.e., it doesn’t depend on the lengths of the numbers). Then, we
must add the 10’s digits, plus a possible carry, which also takes a constant number
of steps. And so forth. Hence, it takes a constant number of steps for each digit, and
there are n digits, so it takes about n steps. The running time of this algorithm is
O(n).

Example (Multiplication) To multiply two numbers with at most n digits, we basi-
cally need to multiply every pair of digits. Every digital multiplication takes a con-
stant number of steps, and there are n2 multiplications we need to do, so this takes
n2 steps. Then, we have to add up all our results, which takes another n2 or so steps.
So, multiplication runs in O(n2) + O(n2) = O(n2) steps.

In fact, this method is not optimal, at least for multiplying very large numbers.
Faster algorithms includeKaratsuba’s algorithm [Kar95],which runs inO(nlog2(3)) ≈
O(n1.585) steps, the Toom–Cook or Toom-3 algorithm [Coo66], which runs in
O(nlog3(5)) ≈ O(n1.465) steps, and the Schönhage-Strassen algorithm [SS71], which
runs in O(n log(n) log log(n)) steps. While these have faster asymptotic running
times, they are slower for multiplying relatively small numbers.

We now describe Karatsuba’s algorithm. (We develop the Toom–Cook algorithm,
which is similar, in problem3.) The idea is as follows: Suppose we wish to compute
38×67. Ordinarily, we would multiply each digit of 38 by each digit of 67, and then
do a bunch of additions. In short, we have to do four single-digit multiplications and
a bunch of additions. We let

z2 = 3 × 6,

z1 = 3 × 7 + 8 × 6,

z0 = 8 × 7,

so that 38 × 67 = z2 × 100 + z1 × 10 + z0. (Note that multiplication by 10 or
100 doesn’t really require a multiplication, since it’s just shifting over by one or two
digits.)

Can we do it with only three multiplications? Yes: z1 = (3+8)×(6+7)−z2−z0,
and we have already computed z2 and z0, so we don’t have to recompute them. Okay,
we aren’t quite multiplying together single digits, but we’re close enough.

Let us now investigate how to multiply large numbers in general. Suppose we
wish to multiply two n-digit numbers x and y. The idea is to divide x and y into two
n/2-digit numbers. (If n is odd, do something with the rounding; it doesn’t really
matter. We’ll just assume n is even, to avoid messy floors and ceilings.) So, we write
x = xH × 10n/2 + xL and y = yH × 10n/2 + yL . Then

xy = (xH × 10n/2 + xL)(yH × 10n/2 + yL)

= xH yH × 10n + (xH yL + xL yH ) × 10n/2 + xL yL .
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It seems that we need to perform multiplications to compute xH yH , xH yL , xL yH ,
and xL yL . But in fact, we can do it faster: we compute

a = xH yH
d = xL yL
e = (xH + xL)(yH + yL) − a − d.

Then, we have
xy = a × 10n + e × 10n/2 + d.

What is the running time? Suppose T (n) is the number of steps needed to compute
the product of two n-digit numbers. We converted this problem into three n/2-digit
multiplication problems, each of which takes T (n/2) steps (when done using Karat-
suba’s algorithm, if n/2 is bigger than 1, say, and otherwise just done the usual way),
plus a few extra “maintenance” steps. How many maintenance steps? In comput-
ing e, we had to add the two n/2-digit numbers xH and xL , and similarly yH and
yL . By our previous analysis of addition, these each take O(n/2) = O(n) steps.
Similarly, subtracting a and d each takes O(n) steps. Thus, it required a total of
O(n) + O(n) = O(n) maintenance steps. Thus, we have found that, using Karat-
suba’s algorithm, the number of steps for multiplication is given by the recurrence

T (n) = 3T (n/2) + O(n).

So, we iterate:

T (n) = 3T
(n
2

)
+ O

(
3

2
n

)

= 9T
(n
4

)
+ O

(
9

4
n

)

= · · ·

= 3kT
( n

2k

)
+ O

((
3

2

)k

n

)

.

Choosing k = log2(n), we have

T (n) = O
(
3log2(n)

) + O

((
3

2

)log2(n)

n

)

= O
(
nlog2(3)

)
.

An important takeaway message from Karatsuba’s algorithm and the other fast
multiplication methods is that sometimes the most obvious algorithm for solving a
problem is not the fastest. Sometimes, it pays to look for something cleverer.



80 8 Big O Notation and Algorithm Efficiency

Example (Sorting) Suppose we have a list of numbers or strings in some random
order, and we want to put them in alphabetical or numerical order. Let us suppose
that we have n items in our list. How long does it take to sort? This is actually quite
a hard question, and there are better and worse algorithms for sorting. The stupidest
sorting algorithm, but also the easiest, is called bubble sort. The way it works is
as follows: we start by comparing the first two items in the list. If they’re in the right
order, keep them the way they are. If they’re in the wrong order, swap them. Once
that is done, move on to the second and third items in the list. If they’re right, keep
them, and if they’re wrong, swap them. Continue on with the third and fourth, and
so on.

Once we have finished that pass, start again, redoing the whole process. Keep
going until there are no pairs in the wrong order. One can show that it takes at most
n − 1 passes for the list to be sorted.

So, what is the running time?We have to do O(n) passes, and we have to do O(n)
steps in each pass, so it takes O(n2) steps to sort the list.

There are better algorithms, which sort a list in O(n log(n)) steps. This is a
substantial improvement, so bubble sort is never used in practice for large lists.
One of these fast sorting algorithms is called merge sort. We aim to sort a list of n
elements. For convenience, we will assume that n = 2m is a power of 2; some small
adjustments are needed when this is not the case. To do this, divide the list into two
smaller lists, each with n/2 = 2m−1 elements, sort each one, and merge the results.

This seems a little circular at first: we have to sort the smaller lists, but how do we
do that? Exactly the same way as before: we break each of the lists of length 2m−1

into two smaller lists, each of length 2m−2, and keep breaking them down in this way.
We stop when we get to a list of length 1, since any list of length 1 is automatically
sorted.

How do we merge two lists? It is easy to imagine doing this with two piles of
index cards, each of which contains a number. Take the first (smallest) card from
each pile and see which one is smaller. The smaller of the two becomes the smallest
in the merged pile. Now, take the smallest remaining card in each of the two piles
and compare those. Keep going in this manner until all the cards are used. If each
pile is of size k, then it takes (at most) 2k comparisons to merge the two piles.

Now, how long does it take? Let us suppose that it takes f (n) steps to sort a list
of length n, assuming that n = 2m is a power of 2. We break up the pile into two
smaller piles, each of size n/2, and then we have to do three things: sort the first pile,
sort the second pile, and merge the two piles. Each of the two sorts requires f (n/2)
steps, and the merge requires (at most) n steps. Hence, we have

f (n) ≤ 2 f
(n
2

)
+ n

steps. It is not clear what this function looks like yet, so insteadwe build it up, starting
from f (1) = 0. Using the recurrence, we find that
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f (1) = 0 = 1 × 0,

f (2) ≤ 2 × 0 + 2 = 2 = 2 × 1,

f (4) ≤ 2 × 2 + 4 = 8 = 4 × 2,

f (8) ≤ 2 × 8 + 8 = 24 = 8 × 3,

f (16) ≤ 2 × 24 + 16 = 64 = 16 × 4,

and so on. In general,

f (n) = f (2m) ≤ m2m = n log2(n),

so f (n) = O(n log(n)).
There are many other clever sorting algorithms, which you can see with anima-

tions [Sor].

Example (Searching) Suppose we have a list of n items that is already sorted, and
we want to find an entry in it. (You might not be old enough to remember doing this
with telephone books, but you can imagine trying to find someone’s phone number
by looking it up in an alphabetized directory.) How long does this take?

Again, it depends how you do it. You could do it by starting on the first page
and going through every single entry in the book until you’ve found it. If there are
n entries in the phone book, it takes O(n) steps to do this. But this is really stupid.
You should instead start by trying to get close and then refine the search.

Well, it’s hard to program a computer to try to get close, or to say what that means
precisely, but we can at least improve upon the naïve algorithm by starting in the
middle and seeing if we’re too high or too low. If we’re too high, we eliminate the
second half of the list and go halfway in the first half. We then keep on narrowing
it down in this manner, at each step eliminating half the list from the previous step.
This takes O(log(n)) steps.

Example (Primality testing) Given a number N , how can we tell whether it is prime?
One way of doing this is to divide it by all the numbers less than N and see if it is
exactly divisible by any of them. Or, we can be a little bit smarter: if N factors as
N = ab, then either a or b must be at most

√
N , so we really only have to divide by

numbers up to
√
N . This involves O(

√
N ) steps. However, recall that N only has

n = O(log(N )) digits, so N = O(10n). Hence, this algorithm for primality testing
runs in O(

√
10n) steps. Except not quite, because each “step” is a division, which

itself requires something like O(n2) steps. Thus, overall, this algorithm for primality
testing runs in O(

√
10n × n2) steps.

However, there are much faster algorithms for primality testing. The best prov-
able algorithm is due to Agrawal, Kayal, and Saxena (AKS algorithm), which in its
original form runs in O(n12+ε) steps, and more recent modifications have brought it
down to O(n6+ε) steps. There are other algorithms that seem to do better, but that
are hard to prove. For example, the Miller–Rabin algorithm, which is a probabilistic
algorithm (i.e., one that relies on choosing random numbers and thus doesn’t work
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every single time but that usually does) that can be turned into a deterministic algo-
rithm if we assume that the Generalized Riemann Hypothesis is true, runs in time
O(n4+ε) steps. The elliptic curve primality test seems to run in O(n4+ε) steps, but
we are not able to prove this. We will return to the topic of primality testing later in
Chapter 13, but for now, we simply refer the interested reader to [Pom10].

Once again, we see that sometimes the number of steps it takes to do something
depends on the algorithm we use to do it.

The point of all of this is that we need to know how long it will take to run some
sort of algorithm. Let’s return to the topic of cryptography. Alice and Bob have to
work out a key between them. And it can’t take too long for them to do so. If it takes
1 000 000 steps, that’s probably okay to do on a computer because computers are
fast, but if it takes 1030 steps, that isn’t okay, because computers aren’t that fast.

In general, we think of algorithms that run in polynomial time in the length of
the input O(nk) for some k (or better) as being fast, and algorithms that run in
exponential time O(an) for some a as being slow. This is not necessarily completely
true: an algorithm that runs in time O(n100) is probably too slow to be practical.
However, such algorithms don’t arise very frequently; usually an algorithm that runs
in polynomial time runs in time O(n5) or better.

In the setting of cryptography, since Alice and Bob have to create a key from
information that they pass back and forth between them, Eve certainly has all the
information available to her to break it. So, what Alice and Bob have to do is to
arrange for it to take many steps for her to break it. If it suddenly takes her 1030 steps
to break it, then she can’t do it in practice, even if she could “theoretically” in the
sense of having all the information she needs to specify it uniquely. What we’ll be
looking for is problems that take a very long time to solve. In order to make such
problems, we need some more number theory.

8.4 Problems

(1) (a) Let f (x) = x3 + 5x + 7. Is f (x) = O(x2)? Why or why not?
(b) Let f (x) = x4 + 6. Is f (x) = O(x5)?
(c) Let f (x) = x6 + 992x3 − 541. Is f (x) = O(ex )?

(2) Find algorithms and running times for solving the following problems:

(a) Check if a string says “Hello.”
(b) Check if a number contains the digit 4.
(c) Check if a string is a palindrome.
(d) Find the longest palindrome formed by taking consecutive letters in a string.

(For example, if your string is“ACDEFGGFEDH,” then the longest palin-
drome is “DEFGGFED.”)

(e) Check if a list of numbers contains any number more than once.
(f) Check if a list of numbers is sorted.
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(3) When we multiply two n-digit numbers x and y using Karatsuba’s algorithm,
we split them each into two n/2-digit parts. Could we do better by splitting
them into some different number of parts? In terms of big O notation, how
many steps does multiplication take if we divide them into k parts? Feel free to
assume that n is a power of k in your analysis. (Hint: Show that when k = 3,
you can multiply x and y by performing 5 multiplications of n/3-digit numbers.
Generalize.) This is the Toom–Cook Algorithm. Ordinary long multiplication is
Toom-1. Karatsuba’s algorithm is Toom-2. Toom-3 is asymptotically faster.



Chapter 9
Abstract Algebra

9.1 Some Group Theory

Much of what we will do later on in cryptography will be phrased in the language
of group theory, so it will be a good idea to get used to it now. Group theory is a bit
abstract, but we’ll try to keep it as hands-on as possible. We begin by defining the
very general notion of a group:

Definition 9.1 A group is a set G together with an operation · (which we think of
as being multiplication) taking two elements g and h of G and giving back a third
element g · h of G, with the following properties:

(1) The operation is associative: a · (b · c) = (a · b) · c.
(2) There is an identity element, which we call e. This element has the property that,

for any g ∈ G,
e · g = g · e = g.

(3) Every element has an inverse. That is, for every element g ∈ G, there is some
element g−1 ∈ G so that

g · g−1 = g−1 · g = e.

Remark 9.2 A group need not be commutative (also called abelian): that is, a · b
need not be equal to b · a. Noncommutative (also known as non-abelian) groups are
extremely important in mathematics, but we will not need them to do cryptography.
So, all the groups we see in this book will be abelian.

Remark 9.3 When the group operation ismultiplication, wewill frequently suppress
the · and write ab in place of a · b.
Remark 9.4 Abelian groups are named after the nineteenth-century Norwegian
mathematician Niels Henrik Abel. True fame in mathematics is having your name
turned into an improper adjective.

We are already familiar with many examples of groups.
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Example The integers Z under addition form a group. The identity element is 0, and
the inverse of n ∈ Z is −n.

Remark 9.5 When dealing with abelian groups, we frequently (but not always!)
write + for the group operation (rather than ·) and call the identity element 0.

Example The integers Z/mZ modulo m under addition also form a group. Some
people write this group as Zm , but this is wrong, and you should never do that.

Example Z/mZ under multiplication does not form a group, but the units (Z/mZ)×
do form a group. Observe that if a and b are both units, then ab is also a unit. To
see this, suppose that a−1 and b−1 are the inverses of a and b, respectively. Then,
a−1b−1 is the inverse of ab.

It will be useful for us to find the inverse of some number a ∈ (Z/mZ)×. We
have already seen how to do this, but let us recall how to do it: we need to find some
b ∈ (Z/mZ)× so that ab ≡ 1 (mod m). This amounts to finding b, c so that

ab + mc = 1.

We do this using the Euclidean algorithm.
There is a special type of group that will be especially important for us. This is a

group in which every element is some power of one fixed element.

Definition 9.6 A group G is said to be cyclic if there is some g ∈ G such that, for
every h ∈ G, h = gn for some integer n.

Example For any m, Z/mZ is a cyclic group. The group of integers Z is also cyclic.

Any cyclic group is abelian, because powers of a single element commute. How-
ever, there are abelian groupswhich are not cyclic. Problem 6 at the end of the chapter
is to find one.

9.2 Fields

We will be especially interested in Z/mZ when m is a prime number p. In this case,
Z/pZ has more structure than that of a group. Under addition, Z/pZ is a group, but
we also have multiplication. We know that the elements of Z/pZ that are relatively
prime to p form a group under multiplication, but that’s just all the elements except
for 0. When a set has two such group structures, a group under addition and a group
under multiplication, we call the set a field. More precisely:

Definition 9.7 A field is a set F , together with two operations + and · so that F
forms an abelian group under addition, and the nonzero (that is, nonidentity) elements
of F also form an abelian group under multiplication, and the distributive property
is satisfied:
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a(b + c) = ab + ac.

In short, a field is a place where we can add, subtract, multiply, and divide (by
things that aren’t zero).

When we think of Z/pZ as a field, rather than just a group under addition, we
write Fp, which stands for the field with p elements.

Exercise If m is composite, why is Z/mZ not a field?

We are used to other examples of fields: the rational numbers Q and the real
numbers R are also fields. However, the integers Z do not form a field, since there
are nonzero integers which do not have multiplicative inverses. (For example, the
inverse of 6 would be 1/6, but this is not an integer!)

9.3 Problems

(1) Which of the following are groups? For the ones that are groups, determine the
identity, and describe a method for finding inverses.

(a) {±1} under multiplication.
(b) The integers under the operation m ∗ n = −m − n.
(c) {1, 2, 4} under multiplication modulo 7.
(d) {1, 4, 5} under multiplication modulo 9.
(e) {0, 4, 8} under addition modulo 12.

(2) Show that, when m is composite, Z/mZ under addition and multiplication does
not form a field.

(3) If G is a group, and g ∈ G is an element, then the order of g is the least positive
integer n such that gn = e. (If no such n exists, then we say that g has infinite
order.) Show that if G is a cyclic group with n elements and m | n, then G has
an element of order m. (This is also true for noncyclic groups, but the proof is a
bit more difficult. Can you do it? What if we assume that G is abelian?)

(4) We know that, for every prime p, there is a field with p elements, namely Fp.

(a) Is there a field with four elements?
(b) Is there a field with six elements?
(c) Given a number n, how can you tell whether there is a field with n elements?

(5) (a) Show that if p is prime, then the elements of Fp are exactly the roots of
x p − x = 0.

(b) Show more generally that if Fq is a field with q elements, then the elements
of Fq are exactly the roots of xq − x = 0.

(6) Find an abelian group with finitely many elements that is not cyclic. (Hint: Ybbx
ng gur vairegvoyr vagrtref zbqhyb z sbe inevbhf inyhrf bs z.)



Chapter 10
A Second Look at Number Theory

10.1 Fermat’s Little Theorem

The following result will be really important for us:

Theorem 10.1 (Fermat’sLittleTheorem) If p is a primenumber, any a is any integer,
then a p ≡ a (mod p).

This is sometimes also written as follows:

Corollary 10.2 If p is a prime number and a is relatively prime to p, then a p−1 ≡ 1
(mod p).

Note that this is not Fermat’s Last Theorem, which is extremely difficult and took
over 350 years to solve. This one we can do on our own.

Proof We’ll prove the Corollary instead of the Theorem. Let us start by listing the
first p − 1 multiples of a. They are:

a, 2a, 3a, . . . , (p − 1)a. (10.1)

We claim that all of these numbers are different modulo p. Suppose not, and that
two of the above numbers, say ra and sa, are congruent modulo p, i.e., ra ≡ sa
(mod p). Then

(r − s)a ≡ 0 (mod p). (10.2)

Since a is not a multiple of p, it has an inverse a−1 modulo p; multiply both sides
of (10.2) by a−1 to obtain r − s ≡ 0 (mod p), i.e., r ≡ s (mod p). But all the
numbers from 1 to p − 1 are different modulo p. Thus the only way that we can
have ra ≡ sa (mod p) is if r = s. As a result, all the numbers in (10.1) are
different modulo p. Since none of them can be 0 (mod p), they are the numbers
1, 2, 3, . . . , p − 1 (mod p), in some order.
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Now, multiply them all together: we have

(a)(2a)(3a) · · · ((p − 1)a) ≡ (p − 1)! ap−1

≡ 1 × 2 × 3 × · · · × (p − 1)

≡ (p − 1)! (mod p).

Now, divide the equation

(p − 1)! a p−1 ≡ (p − 1)! (mod p)

by (p − 1)! to obtain
a p−1 ≡ 1 (mod p),

as desired. �

10.2 Euler’s Theorem

There is a generalization of Fermat’s Little Theorem to composite numbers, called
Euler’s Theorem. (This name, unfortunately, is not terribly descriptive, as there are
many theorems named after the great 18th-century Swiss mathematician Leonhard
Euler.)

Theorem 10.3 (Euler’s Theorem) If n is any positive integer and a is relatively
prime to n, then aφ(n) ≡ 1 (mod n).

Proof The proof is very similar to that of Fermat’s Little Theorem. Look at the
numbers of the form ka, where 1 ≤ k ≤ n and gcd(k, n) = 1. Just as before, all
these numbers will be different modulo n, so they are exactly the numbers modulo
n that are relatively prime to n. Hence, multiplying them all together, we have

n∏

k=1
gcd(k,n)=1

(ka) ≡ aφ(n)

n∏

k=1
gcd(k,n)=1

k ≡
n∏

k=1
gcd(k,n)=1

k (mod n).

Dividing both sides by the product, we obtain

aφ(n) ≡ 1 (mod n). �

10.3 Primitive Roots and the Structure of F×
p

When we see that a p−1 ≡ 1 (mod p), we might wonder why that happens to be the
case. Clearly, the powers of a eventually start cycling around; the theorem says that
they do that in at most p − 1 steps; in fact, the length of a cycle divides p − 1.
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But could it actually be p−1? That is, there are p−1 possibilities for the powers
of a. Might they all be attained?

Clearly, this isn’t always the case: for example, if a ≡ 1 (mod p), then all the
powers of a are also 1 (mod p), so we’ll never hit the rest of them. But, it turns out
that sometimes we will hit all of them. More precisely:

Theorem 10.4 (Primitive Root Theorem) Let p be a prime. Then there is some
g ∈ F

×
p , the multiplicative group of nonzero elements of Fp, so that all elements of

F
×
p are powers of g. For such an element g, g p−1 ≡ 1 (mod p), but gr �≡ 1 (mod p)

for 1 ≤ r ≤ p − 2.

Typically, one proves this with some group theory and possibly field theory as
well. The proof won’t be very useful to us though, so we instead refer the reader
to [NZM91, §2.8] for a proof.

What this means is that F×
p is a cyclic group. Remember that a group is said to

be cyclic, if it consists only of the powers of one element. The groups Z/mZ under
addition are all cyclic groups, as is Z. (In fact, these are, in some sense, the only
cyclic groups, with F×

p being equivalent to Z/(p − 1)Z.)
In fact, we can specify exactly the number of such primitive roots modulo p.

Since F×
p is equivalent (or isomorphic) to Z/(p − 1)Z, we can count the number of

generators of Z/(p− 1)Z, or more generally of Z/mZ. (A generator of Z/mZ is an
element g so that all elements are of the form ng for some integer n.) Which elements
of Z/mZ are generators? These are exactly the ones that are relatively prime to m.
Hence, there are φ(m) of them.

Corollary 10.5 There are φ(p − 1) primitive roots in F×
p .

Unfortunately, while we know how many of them there are, it isn’t so easy to tell
which elements actually are primitive roots. There is no known formula for primitive
roots, and indeed we do not even have a simple criterion for determining whether
2 is a primitive root modulo p. This is related to Artin’s primitive root conjecture,
which says that the proportion of primes p such that 2 is a primitive root modulo p is

∏

p prime

(
1 − 1

p(p − 1)

)
.

Similar expressions exist for numbers other than 2. See [Mor12] for a recent survey
on the topic.

It will be useful for us not just to know that primitive roots exist, but also to find
them. One way of doing so is to guess some number a and check whether ar ≡ 1
(mod p) for some 0 ≤ r < p − 1. Since there are a lot of primitive roots, if we ever
need to find one, we will probably be able to do so in just a few guesses.

Remark 10.6 It might seem strange that, while F×
p and Z/(p − 1)Z are isomorphic

(i.e., have the same structure), it is easy to find a generator for Z/(p − 1)Z (for
example, 1 is a generator) but hard to find one forF×

p . This is because the isomorphism
between the two groups is abstract: we can prove that one (or in fact many of them)
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exists, but the proof doesn’t tell us what it is. This is quite common in mathematics,
and it is usually considered to be something of a disappointment. Here, however, we
can be grateful for the difficulty, as it is what makes the Diffie–Hellman cryptosystem
(which we shall see in the next chapter) safe. This is a common phenomenon in
cryptography: we can turn things that are hard to find in mathematics into strong
cryptosystems.

Remark 10.7 Wehave seen that if a is relatively prime to p, then a p−1 ≡ 1 (mod p).
But if n is composite, might an−1 still be congruent to 1 (mod n)? This doesn’t
usually happen, but it can. When this happens, we say that n is a pseudoprime (if it
happens for some specific choice of a) or a Carmichael number (if it happens for all
such a).

10.4 Numbers in Other Bases

Typically, when we write numbers, we write them in base 10. For example, 265
means

265 = 2 × 102 + 6 × 101 + 5 × 100. (10.3)

However, we can write numbers in other bases just as well. Typically, to write a
number in base b, we write 2657, which means that the number “265” is to be read
in base 7. To convert it to base 10, we use (10.3) but replace all the 10’s with 7’s:

2657 = 2 × 72 + 6 × 71 + 5 × 70 = 14510,

so the number we write as 265 in base 7 is the same as the number we write as 145 in
base 10. In general, in a number in baseb, wewrite it using the digits 0, 1, 2, . . . , b−1.
If b > 10, then we typically use some other symbols (such as letters) to denote the
digits after 9; for example, in hexadecimal, or base 16, we traditionally use the digits
0–9, together with the letters A–F.

In the last paragraph, we saw how to take a number written in base 7 (or any base,
for that matter) and convert it into base 10. We can also go the other way. Let us
write 343 in base 5. There are many ways of doing this, but we will just look at one
of them. Start by finding the largest power of 5 less than 343; it is 125 = 53. This
means that 34310 = (abcd)5, where 0 ≤ a, b, c, d ≤ 4, so that

343 = a × 53 + b × 52 + c × 51 + d × 50.

We begin by computing a. We divide 343 by 125, which is 2 with a remainder of
93. So, a = 2, and we have to deal with the 93 bit next. To compute b, we divide 93
by 52 = 25, which is 3 with a remainder of 18, so b = 3. To find c, we divide 18
by 51 = 5, which is 3 with a remainder of 3. Thus c = 3 and d = 3. Thus we have
34310 = 23335.
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Aside from base 10, themost important base for us is base 2, also known as binary.
In binary, all the digits are either 0’s or 1’s. Let us do an example with binary.

Example Let us compute 53 in binary. The largest power of 2 less than 53 is 32 =
25, so

5310 = (abcde f )2 = a × 25 + b × 24 + c × 23 + d × 22 + e × 21 + f × 20.

Since 53 > 32, a = 1. Now, we have 53 − 32 = 21 left to deal with. Next, we
compute b. Since 21 > 16, b = 1, and we have 21−16 = 5 left. Since 5 < 8, c = 0.
But 5 > 4, so d = 1, and we have to deal with the remaining 5−4 = 1. Now, 1 < 2,
so e = 0, and f = 1. Thus, 5310 = 1101012.

10.5 Fast Computation of Powers in Z/mZ

Another thing we will need to do is to compute a lot of powers in Z/mZ. That is,
we might like to compute 566723489232 (mod 23425145234). How can we do this
quickly?

There are two points.

(1) We can decrease the number of steps by repeated squaring. So, if we wanted
to compute 5100, instead of multiplying 5 by itself 100 (or 99) times, we could
compute the sequence

51, 52 = 5 × 5, 54 = 52 × 52, 58, 516, 532, 564.

Now, squaring again is too big, but we can finish up by noting that 5100 =
564 × 532 × 54. Thus, instead of taking n − 1 multiplications to compute an , it
takes O(log(n)), which is much better.

(2) When we perform each computation, we don’t have to remember the entire
answer, but only the remainder modulo m.

Example Let us compute 5100 (mod 33). Here is a table of our computations:

51 ≡ 5

52 ≡ 5 × 5 ≡ 25

54 ≡ 25 × 25 ≡ 31

58 ≡ 31 × 31 ≡ 4

516 ≡ 4 × 4 ≡ 16

532 ≡ 16 × 16 ≡ 25

564 ≡ 25 × 25 ≡ 31

596 ≡ 31 × 25 ≡ 16

5100 ≡ 16 × 31 ≡ 1.
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In terms of binary, what we did was to write 100 in binary, as 1100100. We
computed all the powers of 5 up to 564 by repeated squaring; we stopped at 64
because it is the largest power of 2 less than 100. After that, we multiplied together
all the numbers of the form 52

a
, where the ath digit (starting from the right, and

counting up from 0) of 100 in binary is a 1. These correspond to a = 2, 5, 6, so that
5100 = 52

2 × 52
5 × 52

6
. But since we are working modulo 33, we reduced everything

modulo 33 whenever we could.

Remark 10.8 It is possible to improve on this repeated squaring algorithm, so that
you don’t have to store the list of power-of-two exponents, but so that you only have
to perform the same number of multiplications as above. Can you see how?

10.6 Multiplicative Functions

Before we move back into cryptography, let us continue our detour into number
theory by looking at multiplicative functions. The theory of multiplicative functions
will help us to compute φ(n), among other things. But before we do that, let us work
on a slightly easier problem, namely that of computing the number of divisors of
n. We will write d(n) for the number of divisors of n. We include 1 and n as being
divisors of n here and everywhere else in number theory.

Let us work out the case of n = 60, carefully. We could write down all the
divisors of 60, but it makes more sense to collect them in a well-organized manner.
For example, we can first look at all the ones that aren’t divisible by 2. Now, there
are few enough of them that it is easy to write them all down: they are 1, 3, 5, and
15. Now, we should look at the ones that are divisible by 2, but there is a natural
division among those numbers: those that are divisible only by 2, and those that are
also divisible by 4. Among those that are only divisible by 2 (that is, not divisible by
4), we have 2, 6, 10, and 30. Note that, each one of these is exactly twice of one of
the numbers not divisible by 2. Finally, for those divisible by 4, we have 4, 12, 20,
and 60. Thus, there are 12, which are conveniently split up into three groups of four
each.

We can apply this sort of organization more generally: if p is some prime dividing
n, and pe is the largest power of p dividing n, then there are the same number of
factors of n not divisible by p, divisible by p but not by p2, and so forth, up to those
divisible by pe. Hence, there are e + 1 groups, each of the same size.

In each one of these groups, we could break down still further. Now, since all the
groups have the same size, it suffices to focus on one of them, and the natural choice
is the set of divisors not divisible by p. Now, we can pick some other prime p′ that
divides n/pe and run through the same process.

When we keep breaking it down in this way, we find that, in order to count the
divisors of n, it suffices to count the divisors of pe for each prime p. This last problem
is really easy: the divisors of pe are just smaller powers of p, namely 1, p, p2, . . .,
pe, so d(pe) = e + 1.
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To get our final answer for d(n), we simply multiply together all the d(pe)’s for
the primes p dividing n. Hence:

Theorem 10.9 Suppose that the prime factorization of n is

n =
r∏

i=1

peii ,

where all the pi ’s are distinct primes. Then

d(n) =
r∏

i=1

(ei + 1).

Example Since 60 = 22 × 3 × 5, we have

d(60) = (2 + 1)(1 + 1)(1 + 1) = 12,

which is what we got above as well.

So, this is the easiest way of counting divisors of n. This was easy, because d(n)

is an example of a multiplicative function.

Definition 10.10 A function f : N → R (or C, or any other reasonable collection
of numbers) is calledmultiplicative if, whenever gcd(a, b) = 1, f (ab) = f (a) f (b).

Note that we do not require that f (ab) = f (a) f (b)when gcd(a, b) > 1. Indeed,
this fails in the case of d(n) above.

Whenever we have a multiplicative function f , we can work out f (n) as soon as
we know f (pe), for all prime powers pe. That is, the values of f at prime powers
determine f at all positive integers. Thus, to specify f , we might just say what it is
at the prime powers.

There are other important multiplicative functions. For example, the sum-of-
divisors function σ(n) is multiplicative. For σ(n), we add up all the divisors of
n, instead of just counting them. We can write down a formula for σ(n), which is
only a little bit more complicated than the formula for d(n).

Theorem 10.11 If p is a prime, then

σ(pe) = 1 + p + p2 + · · · + pe = pe+1 − 1

p − 1
.

And, of course, the totient function φ is also multiplicative. Let us see why.
Suppose that gcd(m, n) = 1. We wish to figure out how many numbers there are
relatively prime to mn. Write the numbers from 1 to mn in a table, like this:
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1 2 3 · · · m
m + 1 m + 2 m + 3 · · · 2m
2m + 1 2m + 2 2m + 3 · · · 3m

...
...

...
. . .

...

(n − 1)m + 1 (n − 1)m + 2 (n − 1)m + 3 · · · nm

There are some columns in which there can’t be any numbers relatively prime
to mn. A typical column contains numbers of the form km + �, where � is fixed
and k can change. By the Euclidean algorithm, gcd(km + �,m) = gcd(m, �), and
gcd(km + �,m) ≤ gcd(km + �,mn). Hence, if gcd(m, �) > 1, then there is no way
that km + � can be relatively prime to mn.

Hence, there are φ(m) columns that could conceivably contain numbers relatively
prime to mn. In fact, they’re all relatively prime to m, so we just have to check how
many of them are relatively prime to n. Let us do this by focusing on one such column,
say the one consisting of numbers of the form km + �. I want to show that no two
numbers in this column are congruent modulo n. Suppose that rm + � ≡ sm + �

(mod n). Then, we can subtract � from both sides to get rm ≡ sm (mod n), or
(r − s)m ≡ 0 (mod n). But since gcd(m, n) = 1, m has an inverse modulo n, so
we can multiply by the inverse to get r ≡ s (mod n). But 0 ≤ r, s ≤ n − 1, so if
r ≡ s (mod n), they are actually equal. Hence, no two numbers in this column are
congruent modulo n, and since there are n numbers in the column, they fill up all the
classes modulo n. We know that, of the classes modulo n, exactly φ(n) are relatively
prime to n. Hence, in this column, φ(n) are relatively prime to n. Since there are
φ(m) relevant columns, we have

φ(mn) = φ(m)φ(n),

so φ is multiplicative.
We have:

Theorem 10.12 If p is a prime, then

φ(pe) = pe − pe−1.

This is because the numbers up to pe which aren’t relatively prime to pe are
exactly the multiples of p, and there are pe−1 of these.

Example Let us compute φ(105). We have 105 = 3 × 5 × 7, so

φ(105) = φ(3)φ(5)φ(7)

= (3 − 1)(5 − 1)(7 − 1)

= 2 × 4 × 6

= 48.
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One way of writing φ(n) is as follows: suppose n factors as n = ∏r
i=1 p

ei
i , where

the pi ’s are distinct primes, and each ei ≥ 1. Then, we have

φ(n) = n
r∏

i=1

(
1 − 1

pi

)
.

10.7 Problems

(1) Compute the following:

(a) 13541 (mod 41)
(b) 62108 (mod 53)

(2) Compute the following:

(a) 726 (mod 72)
(b) 348 (mod 112)

(3) There is some integer n for which

1335 + 1105 + 845 + 275 = n5.

Without using a calculator or doing toomuch computation, determine n. (AIME
1989)

(4) (a) Without doing too much computation, show that 2340 ≡ 1 (mod 341).
(This would follow from Fermat’s Little Theorem if 341 were prime, but
341 = 11 × 31.)

(b) Show that for any integer a with gcd(a, 561) = 1, a560 ≡ 1 (mod 561).
(Numbers with this property are called Carmichael numbers, and 561 is
the smallest Carmichael number.)

(5) Find primitive roots modulo 17, 23, and 29.
(6) Let p be a prime, and let a ∈ F

×
p . Show that a is a primitive root if and only if

p − 1 divides x whenever ax ≡ 1 (mod p).
(7) Show that, for every positive integer n,

n−1∏

i=0

(22
i + 1) + 2 = 22

n + 1.

Use this to give a new proof that there are infinitely many primes.
(8) Compute the binary representation of 500. Compute the base-7 representation

of the number whose base-5 representation is 3414.
(9) For how many integers n ≤ 2017 does the binary representation of n contain

more 1’s than 0’s? (Adapted from AIME 2003.)
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(10) Prove thedivisibility rule for 11:Anumbern = abcde f · · · (whereabcde f · · ·
is its decimal representation) is divisible by 11 if and only if a − b + c −
d + · · · ≡ 0 (mod 11). Can you find a divisibility rule for 7? (Possible hint:
7 × 143 = 1001.)

(11) We mentioned in the chapter that the divisor function d is multiplicative, i.e.,
that if gcd(a, b) = 1, then d(ab) = d(a)d(b). Show that this relation does not
necessarily hold if a and b are not relatively prime.

(12) Suppose f is a multiplicative function, and let

g(n) =
∑

d|n
f (d).

(The notation d | n means “d divides n.”) Show that g is a multiplicative
function.

(13) The Möbius function μ is an important function in number theory, defined as
follows: if

n =
r∏

i=1

peii

is the prime factorization of n, where each pi is a different prime and each
e1 ≥ 1, we set

μ(n) =
{
0 if some ei ≥ 2,

(−1)r otherwise.

That is, μ(n) = 0 if n is divisible by the square of any prime, and otherwise
μ(n) = 1 if n has an even number of prime factors and −1 if n has an odd
number of prime factors. Show that μ is a multiplicative function.

(14) Let f : N → R be any function, and define

g(n) =
∑

d|n
f (d).

Show that
f (n) =

∑

d|n
μ(d)g(n/d).

This is known as theMöbius inversion formula.
(15) Let ζ(s) = ∑∞

n=1
1
ns . Show that

1

ζ(s)
=

∞∑

n=1

μ(n)

ns
.



Chapter 11
The Diffie–Hellman Key Exchange
and the Discrete Logarithm Problem

11.1 The Diffie–Hellman Key Exchange

The goal of the Diffie–Hellman key exchange, described in [DH76], is to create a
key for Alice and Bob by sending shared information back and forth a few times.
The key is created from several pieces, some of which are public information, and
some of which only Alice knows or only Bob knows. The point is that knowing all
the public pieces and at least one of the private pieces makes it easy to construct the
key, but without knowing any of the private pieces, working out the key is extremely
difficult (but possible in some sense). Here is how it works:

First, Alice and Bob between them pick some prime number p. Now, as we
mentioned a bit earlier, F×

p has a primitive root g. (There are a lot of them, but they
just agree to choose one of them.) The two numbers p and g are public information.

Next, Alice chooses some number a, and Bob chooses some number b. They keep
these numbers secret. Alice computes ga (mod p) and sends it to Bob (and the rest
of the world). Similarly, Bob computes gb (mod p) and sends it to Alice (and the
rest of the world). Now, Alice is in possession of the number gb (mod p), so she
can compute (gb)a = gab (mod p). Similarly, Bob is in possession of the number
ga (mod p), so he can compute (ga)b = gab (mod p). Hence, they can each work
out the number gab (mod p).

The number gab (mod p) is the key. Alice and Bob can then use it to encrypt
messages.

Let’s see an example of the key exchange in action.

Example Let us take p = 47. The smallest primitive root modulo 47 is 5, so let’s
take g = 5. Let us suppose that Alice chooses a = 19, and I won’t tell you what
Bob chooses b to be. Alice computes 519 (mod 47), which is 10. Bob computes
5b (mod 47) and gets 21. Now, Alice computes 5ab (mod 47), which is 2119 ≡ 28
(mod 47). So, 28 is the key.

Why does this work from a cryptographic point of view? That is, why can’t Eve
compute the key from the public messages that Alice and Bob send? The point is that
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it is not easy to see how to compute gab (mod p) from knowing ga (mod p) and
gb (mod p); we have to know what either a or b is in order to do that. But it isn’t
easy to reconstruct a or b from knowing ga (mod p) and gb (mod p). Of course,
Eve knows that g p−1 ≡ 1 (mod p), so she can assume that 0 ≤ a, b ≤ p − 2. But
that still means she has p − 1 numbers to check, and it’s not clear if she can do
substantially better than just computing gi (mod p) for every 0 ≤ i ≤ p − 2 and
checking if it’s either ga or gb. With p = 47, it won’t take her too long to find a or
b. But what if p is a much larger prime, say a prime with 30 digits? Now, it will take
her a very long time to reconstruct a or b by trying all the possibilities!

In fact, we will soon see some ways that Eve can attack Diffie–Hellman more
efficiently than just checking all the possibilities. But it still isn’t fast enough.

11.2 The Discrete Logarithm Problem

Let’s step out of the modulo p world for a moment and return to the more familiar
world of (ordinary) integers. Suppose we have integers a and n, and we know a and
an . Then it is easy to figure out what n is. We have a function that computes it for us:
n = loga(a

n), the base-a logarithm of an . But even if we didn’t know how to use this
function, it still wouldn’t take too long to work out what n is. For example, we could
start by making a guess m for what we think n should be. We then compute am . If
it’s smaller than the known value of an , we try a bigger value of m. If it’s larger than
an , we try a smaller value of m. In this way we can narrow down the possibilities for
n until we get it right, and we’ll figure it out pretty fast.

But when we work in Fp, the situation is totally different. Since we no longer
have a notion of how large elements of Fp are (or at least no useful notion), we can’t
use the size of candidate answers as a clue to whether we’re too high or too low.

By analogy with the integer (or real number) case, if g and gn are elements of F×
p ,

we call n the discrete logarithm to base g of n.
More generally, if we have any cyclic group G with generator g, we call n the

discrete logarithm of gn .
It is widely believed, although not proven, that there is no polynomial time algo-

rithm for computing discrete logarithms in general. This means that, if the size of the
group (or the prime p in the case of F×

p ) is very large, then it will take a very, very
long time to compute discrete logarithms, barring a very unlikely miracle. (Why the
possibility of a miracle? Well, one possible attempt to solve the discrete logarithm
problem would just be to guess values of n randomly; it could happen that the first
or second random guess just happens to be right!)

Problem 11.1 (Discrete Logarithm Problem (DLP)) Given a cyclic group G, a gen-
erator g for G, and some element x of G, find a number n so that x = gn .

Whether the discrete logarithm problem for a cyclic group G is hard depends
tremendously on the form of the group. We mentioned earlier that F×

p is equivalent
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toZ/(p − 1)Z under addition.Yet, solving the discrete logarithmproblem inZ/(p −
1)Z is very easy: if we know g and ng, then n = (ng)g−1, where g−1 is the inverse of
g in the multiplicative group (Z/(p − 1)Z)×. We have already seen how to compute
these inverses easily using the Euclidean algorithm.

Of course, smart people have been working on the discrete logarithm problem for
quite a long time, and they have come up with algorithms that are faster than just
checking all the possibilities, even quite a lot faster. One such algorithm is, rather
memorably, called the baby-step giant-step algorithm, and we’ll look at it soon. But
all known algorithms are still impractical for large p.

Furthermore, there are some groups in which the discrete logarithm problem is
even harder to solve than it is inF×

p , as there are some tricks such as the index calculus
that work to attack the discrete logarithm problem in F

×
p but not in a general cyclic

group. Later on, we will look at elliptic curves, which allow for another version of
the Diffie–Hellman key exchange (and many other things), but the discrete logarithm
problem is even harder to crack for elliptic curves than it is for F×

p .
The problem that arises in the Diffie–Hellman key exchange isn’t quite the same

as the DLP, but it is similar.

Problem 11.2 (Diffie–HellmanProblem (DHP))Given a cyclic groupG, a generator
g for G, and two elements ga and gb of G, compute gab.

If we can solve DLP, then it is easy to solve DHP. It might be that it is easier to
solve DHP than DLP, but we do not know. So far, no one has proposed an algorithm
for solving DHP that does not rely on first solving DLP, and it is widely believed
that none exists.

11.3 ElGamal Encryption

The Diffie–Hellman key exchange is not, strictly speaking, a cryptosystem, as it
doesn’t provide any mechanism for encrypting messages. Rather, it just provides a
mechanism for establishing one particular piece of shared secret information. There
are various ways of constructing actual cryptosystems based on the Diffie–Hellman
key exchange, perhaps the most famous being ElGamal encryption, as introduced
in [Elg85]. Here is how it works. In this setup, it will be Bob sending a message to
Alice.

First, Alice generates a key. To do this, she picks a prime p and a generator g of
F

×
p . Then she chooses a random a between 0 and p − 2. Alice then computes h = ga

(mod p). Alice publishes h, g, and p. This is her public key. She keeps a secret.
Now, it’s Bob’s turn to do something. He chooses a random b between 0 and

p − 2, and he computes s = hb (mod p). Now, Bob has a plaintext message m he
wishes to send. We will assume that m is an element of F×

p ; if it is not a number but
a sequence of words, then he must first convert it to an element of F×

p . Now, Bob
calculates the ciphertext, which consists of both gb (mod p) and c = ms (mod p).
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He then sends both gb (mod p) and c to Alice. Note that the ciphertext consists of
two numbers: gb (mod p) and c.

So, that’s the encryption part of ElGamal. Now, when Alice receives gb and c,
she needs to be able to recover the plaintext. In order to do so, she first calculates
s, which she can do easily since it is (gb)a (mod p), and she knows both gb and a.
Now that she knows s, she can use the Euclidean algorithm to compute s−1 quickly,
and then she can compute m = s−1c (mod p) and recover the plaintext message.

Of course, just as in the Diffie–Hellman case, Eve has a lot of trouble computing
s just from knowing ga (mod p) and gb (mod p).

Let us go through an example of an encryption using ElGamal.

Example Let us this time take p = 83 and g = 2, which is a primitive root. Alice
chooses a to be 51 and computes h = ga (mod p), which is 55. So, she sends p, g,
and h to Bob and the rest of the world.

Now, Bob has to choose some number b, and let’s say he chooses 38. So, he has
to compute gb and hb. He finds that gb ≡ 31 (mod 83) and s = hb ≡ 27 (mod 83).
Suppose that the message he wants to encrypt is m = 44. Then he computes the
ciphertext to be c = sm = 26. So, Bob sends c = 26 and gb = 31 back to Alice and
the rest of the world.

Now, Alice has to compute m from c. To do this, she first computes s, which
is (gb)a = 3151 ≡ 27 (mod 83). Now, she has to find the inverse of 27 modulo 83.
Just because this is such an important step, we’ll recall how to do it. We need to find
numbers k and n so that 27k + 83n = 1. (Actually we only need to find k, but let’s
do both anyway.)We do this by going through the Euclidean algorithm. The first step
of the Euclidean algorithm will replace 83 with 83 (mod 27), which is 2. We have

2 = 83 − 3 × 27.

The next step replaces 27 with 27 (mod 2), which is 1. We have

1 = 27 − 13 × 2.

But we know how to write 2 in terms of 83 and 27, so we have

1 = 27 − 13 × 2

= 27 − 13(83 − 3 × 27)

= −13 × 83 + 40 × 27.

Hence k = 40.
Thus, the original plaintext message is m = s−1c = kc = 40 × 26 ≡

44 (mod 83). And indeed, this was the original plaintext message that Bob wanted
to send.

So, how hard is it to crack ElGamal? The answer is that it’s as hard as cracking
Diffie–Hellman. That is, if we can crack ElGamal, then we can also crack the DHP,
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and vice versa. The following theorem is very typical of the sort of results people
work on in cryptography. It involves assuming that Eve has access to an oracle that
can, through some magical process, tell her answers to questions of certain very
specific types, very quickly. In this case, we assume that she has access to an oracle
that can provide her with quick decryptions of ElGamal ciphers, but that cannot do
anything else.

Theorem 11.3 Fix p and g. Suppose that Eve has an oracle that decrypts ElGamal
with arbitrary ciphertexts and public keys. Then she can use the oracle to solve DHP.

Proof Given A = ga (mod p) and B = gb (mod p), she needs to compute gab

(mod p). She hands the oracle B for gb and 1 for c, and the oracle tells her that
the plaintext message is (Ba)−1 = g−ab (mod p). She can then take the inverse of
this number to obtain gab (mod p). �

11.4 Symmetric Versus Asymmetric Key Cryptography

There is something fundamentally different about the sort of ciphers like theVigenère
we saw earlier and the modern cryptosystems like ElGamal and the others we’ll be
seeing soon, in the way that they are encrypted and decrypted. When we use the
Vigenère cipher or one of the other ciphers, the same key is used to encrypt and
decrypt messages. With ElGamal encryption, it takes a different key to encrypt and
decrypt messages.

Here is one amusing consequence of this fact: suppose Alice sends Bob amessage
using a Vigenère cipher, but then she forgets what the message is and wants to
reconstruct it. As long as she still has the key, she can decrypt it.

However, if Bob sends Alice a message using ElGamal and forgets the message,
he is out of luck. Alice and Bob didn’t really share a key in ElGamal, or not exactly.
If Bob remembers what b is, he can reconstruct the message easily, but otherwise he
can’t, since he has no more information than Eve does.

Or, suppose that Bob does remember what b is and wants to reconstruct the mes-
sage. His computation to reconstruct the message is different from what Alice must
do to read the message: Alice computes m as gabm/(gb)a , whereas Bob computes it
as gabm/(ga)b. This is the mark of an asymmetric key cryptosystem: Alice and Bob
have to do different things in order to read the message: they have different keys to
decrypt it for them!

11.5 Shanks’s Baby-Step Giant-Step Algorithm

The reason that we believe that Diffie–Hellman and ElGamal are hard for Eve to
break is that it should take a long time to solve the discrete logarithm problem. But
how long? In order to answer that, we need to find an algorithm that solves it and
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analyze how long it takes, in terms of big O notation. One obvious thing that Eve can
try is to make guesses for a until she gets it right. There are p − 1 possible values of
a, so on average she has to guess about half of all the possibilities before she gets it
right. (She might get lucky and guess it the first time, or she might get unlucky and
have to go through all the possibilities before getting it, but p−1

2 is the average.)
But mathematicians are always hard at work coming up with more devious algo-

rithms that solve the discrete logarithm problem and other similar problems more
quickly. It may be surprising that it is possible to find substantial improvements, but
this does turn out to be the case. One of the best-known general algorithms is called
the baby-step giant-step algorithm [Sha71]. Here is the setup:

Theorem 11.4 Let G be a cyclic group of size n with generator g. Given h ∈ G, the
following algorithm computes an m so that h = gm in O(n1/2+ε) time:

• Compute and store the values 1, g, g2, . . . , g�√n�−1. (These are the baby steps.)
• Compute hg−i�√n� for i = 1, 2, . . ., and check, for each i , whether the result is on
the baby step list. (These are the giant steps.) If a match is found, stop; otherwise
continue to the next value of i .

Once you have found a match, you have found i and j so that hg−i�√n� = g j , so
h = gi�

√
n�+ j .

The idea is to show that there must be some match with 0 ≤ i ≤ �√n� + 1. To
see this, let us suppose that h = gm .Writem = i�√n� + j , with 0 ≤ j ≤ �√n� − 1.
Then

i = m − j

�√n� ≤ m

�√n� ≤ n − 1

�√n� ≤ n − 1√
n − 1

= √
n + 1,

so i ≤ √
n + 1, or, since i is an integer, i ≤ �√n� + 1.

One might question the running time because one has to compare every giant
step to every baby step, so there should be around

√
n × √

n = n comparisons. But
actually we can do the lookup faster. One way of improving the lookup is to sort the
numbers in the baby step list. Once we have done this, it is very quick to check if a
number is an element of a sorted list. (This can be done more quickly using a hash
table, but this does not substantially improve the overall efficiency of the algorithm
in this case, since the other steps take a comparable amount of time.)

Let us see how long this takes in terms of big O notation. In order to compute
the baby steps, we have to perform O(

√
n) multiplications, each one of which takes

O(nε) steps. (It’s some power of log(n).) Thus, computing the baby steps takes
O(n1/2+ε) steps.

Next, we have to compute the giant steps. Each one of them requires only one
multiplication from the previous one, since hg−(i+1)�√n� = hg−i�√n� × g−�√n�. Thus,
computing the giant steps takes another O(n1/2+ε) steps.

Next, we have to sort the baby steps, which takes

O(n1/2 log(n1/2)) = O(n1/2+ε)
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steps. Finally, for each giant step, we have to check if it is in the baby step list. Each
search from a sorted list takes O(log(

√
n)) steps, and there are O(

√
n) steps. So

again, O(n1/2+ε) steps.
This is an improvement on the naïve algorithmof just checking all the possibilities,

which takes O(n1+ε) time.
Also, note that although this takes O(n1/2+ε) steps, which looks like a polynomial

time algorithm, it actually isn’t, because we’re measuring in terms of the length of
the input. Thus, it’s still an exponential time algorithm, just a better one than the
naïve one.

Let us run through an example of the baby-step giant-step algorithm.

Example Let’s take G = F
×
p , with p = 317. Let’s use g = 41, which is a primitive

root modulo p. Let’s take h = 93. Now, we need to compute �√317�, which is 17.
We must compute the baby steps: 1, g, g2, . . . , g16. When we do this, we obtain

the following numbers:

1, 41, 96, 132, 23, 309, 306, 183, 212,
133, 64, 88, 121, 206, 204, 122, 247.

So, those are the baby steps. Now, let’s work out the giant steps. These are of the
form hg−17i . With i = 0, we have h = 93, which is not one of the baby steps. With
i = 1, we have hg−17 = 181, which is also not one of the baby steps. With i = 2,
we have hg−34 = 8, which is also not a baby step. We continue on for a while, until
we get to i = 11, when we obtain hg−11×17 = 64, which is one of the baby steps.

Now,where is it in the list of baby steps? It’s g10. Hence, we have found a collision:

hg−11×17 = g10,

or h = g11×17+10 = g197. Indeed, g197 = h.

11.6 Pohlig–Hellman

Sometimes, solving the discrete logarithmproblem is actually quite easy, as explained
in [PH78]. This happens for F×

p when p − 1 has only small prime factors. Suppose,
for example, we take p = 271 and g = 6 (which is a generator), and we wish to find
an m so that

gm ≡ 145 (mod p).

We can do this as follows:
Observe that p − 1 factors as 270 = 2 × 33 × 5.Wewill try to determinem2 = m

(mod 2) and m3 = m (mod 33) and m5 = m (mod 5).
Once we find m2,m3,m5, we can use the Chinese Remainder Theorem to recon-

struct m.
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Here is how we computem2: note that, for any r ∈ F
×
p , either r

p−1
2 ≡ 1 (mod p),

or r
p−1
2 ≡ −1 (mod p). Those values of r for which r

p−1
2 ≡ 1 (mod p) are the even

powers of g, and those for which it’s −1 are the odd powers. So, we raise 145 to the
power of p−1

2 and get 145
p−1
2 ≡ −1 (mod p). That means that

145
p−1
2 ≡ (gm)

p−1
2 ≡ gm· p−1

2 (mod p),

so m × p−1
2 is odd and hence m is odd. Thus m2 = 1.

Now, we do something similar for m3, but it’s a little harder because we have
to work modulo 27 rather than just 3. To deal with this, we write m3 as m3 =
c0 + 3c1 + 9c2, where c0, c1, c2 are 0, 1, or 2. To compute the ci ’s, we’ll need to
know that g

p−1
3 ≡ 242 (mod p), and g2·

p−1
3 ≡ 28 (mod p). To find c0, we look at

145(p−1)/3 (mod p), and we get 28. This means that

145
p−1
3 ≡ gm· p−1

3 ≡ g2·
p−1
3 (mod p).

Thus, m × p−1
3 ≡ 2 × p−1

3 (mod p − 1), som ≡ 2 (mod 3). This means that c0 =
2.

To work out c1, we take 145 and divide by gc0 to get 132. To work out c1, we
raise 132 to the power of p−1

9 to get 28. This means that c1 = 2. Now, we divide 132
by g3c1 to get 3. Now, we raise 3 to the power of p−1

27 to get 242, so c2 = 1. Hence,
m3 = c0 + 3c1 + 9c2 = 17, so m ≡ 17 (mod 27).

And now for m5. It will be helpful to know that

g
p−1
5 ≡ 10, g2·

p−1
5 ≡ 100,

g3·
p−1
5 ≡ 187, g4·

p−1
5 ≡ 244.

Now, just as before, we work out m5 by raising 145 to the power of p−1
5 , to get 1.

Hence, m5 = 0, and m ≡ 0 (mod 5).
From all this, we have learned thatm ≡ 1 (mod 2),m ≡ 17 (mod 27), andm ≡

0 (mod 5). This will allow us to reconstruct m (mod 270). We can use the Chinese
Remainder Theorem to put these together, to see that m ≡ 125 (mod 270). Indeed,
it is true that 6125 ≡ 145 (mod 271).

When p − 1 factors into small primes, Pohlig–Hellman is the way to go in attack-
ing the discrete logarithm problem. However, Alice and Bob ought to know that as
well, so if they do not want their message to be easily attackable, they ought not to
choose a prime p for which p − 1 has only small prime factors. This is relatively rare
though: we roughly expect the largest prime factor of a number n to be something
like n

log(n)
.

Now, if p is any prime larger than 2, then 2 will be a factor of p − 1. However,
it can happen that p−1

2 is prime, so that p − 1 has a prime factor that’s as large as
possible. These primes are generally considered to be good for cryptography. These
are called safe primes, or Sophie Germain primes. (More precisely, if p and 2p + 1
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are both primes, then p is called a Sophie Germain prime, and 2p + 1 is called a
safe prime.) The largest known safe prime is

18543637900515 × 2666668 − 1.

It is believed that there are infinitely many such primes, but this has not been proven.

11.7 The Index Calculus

As we will see later, in Chapter 14, it is possible to create analogs of the Diffie–
Hellman/ElGamal protocol, in other finite abelian groups. In particular, we will see
how to create an elliptic curve version of it. Of the attacks we have looked at so far
against the discrete logarithm problem, the baby-step giant-step attack works just
as well in any abelian group. The Pohlig–Hellman attack also works in an arbitrary
abelian group if we know the number of elements in the group, and that number has
only small prime factors. In the elliptic curve version, an attacker will likely be able
to compute the number of elements in the group, but that number probablywon’t only
have small prime factors; in fact, the number of elements might be a large prime. We
see, therefore, that the baby-step giant-step attack is a general attack against a large
family of cryptosystems, whereas Pohlig–Hellman is more specialized: sometimes
it is effective, and sometimes it isn’t.

Many cryptographic attacks are rather specialized, but they can specialize in var-
ious different directions. One way that an attack on the discrete logarithm problem
can specialize is to work against the standard version of the discrete logarithm prob-
lem, but not against the elliptic curve version or other related types. One powerful
attack of this form, that we will now discuss, is the index calculus attack. A similar
idea will show up again when we discuss the quadratic sieve in Section 13.5.

The idea is to pick a factor base, which is typically chosen to be the first r primes
(for some value of r ): F = {2, 3, 5, 7, . . . , pr }. Then, if we wish to find x such
that gx ≡ h (mod p), we let k = 1, 2, . . . and see if we can factor gk (mod p) as
2e23e35e5 · · · peprr , i.e., using only the primes in F . For most values of k, this doesn’t
work, because gk (mod p) will have prime factors larger than pr . But occasionally
(and often enough) it does work. We make a list of k and the factorization of gk

(mod p) on those occasions when it does work.
Once we have enough of these relations, we can solve a system of equations

modulo p − 1 to determine, for each f ∈ F , the discrete logarithm �( f ) of f , i.e.,
a number �( f ) so that g�( f ) ≡ f (mod p).

Once that is done, we start again, but trying to factor gmh (mod p) over the factor
base, for m = 1, 2, . . . If we find a factorization of such an element, then it is easy
to compute the discrete logarithm of h.

Let’s do an example, where we see how this is actually done in practice.
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Example Let’s take p = 232487. This isn’t completely random: I carefully selected
a safe prime, for two reasons. For one thing, safe primes are not susceptible to the
last attack we looked at, the Pohlig–Hellman attack, so they need a new trick to break
them. But more importantly, they make computations easier for the index calculus
attack. This attack still works when p is not a safe prime, but it would mean a bit
more computation for us for no extra insight. Let us choose g = 229401, which is a
primitive root modulo p, and take h = 171020. Our goal is to use the index calculus
to find an x so that gx ≡ h (mod p).

The first step is to choose a factor base, which I will take to be F = {2, 3, 5, 7}.
The immediate goal is to compute the discrete logarithms of all the primes in F . We
do this by looking for numbers i such that we can factor gi mod p using only the
primes in F . There are quite a lot of these; we will return to this point in Chapter 13.
Such numbers are called smooth numbers, and we define them in Section 13.4 and
estimate howmany there are up to x in problem 20 of Chapter 13. In our case, a quick
Sage script finds that gi mod p can be factored over F for i = 482, 600, 876, 948.
In particular:

g482 ≡ 25 × 32 × 73

g600 ≡ 22 × 39

g876 ≡ 29 × 34

g948 ≡ 26 × 52,

where all congruences are modulo p.
Let us write x2, x3, x5, x7 for the discrete logarithms of 2, 3, 5, 7, i.e., x2 is the

number (modulo p − 1) such that gx2 ≡ 2 (mod p), and similarly for the others.
The first equation, for g482, tells us that

g482 ≡ (gx2)5 × (gx3)2 × (gx7)3,

which we can rewrite as

g482 ≡ g5x2+2x3+3x7 (mod p),

or, since g is a primitive root modulo p,

482 ≡ 5x2 + 2x3 + 3x7 (mod p − 1).

In the same way, we get the following system of four equations (or congruences) in
four variables:

5x2 + 2x3 + 0x5 + 3x7 ≡ 482

2x2 + 9x3 + 0x5 + 0x7 ≡ 600

9x2 + 4x3 + 0x5 + 0x7 ≡ 876

6x2 + 0x3 + 2x5 + 0x7 ≡ 948,
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where all congruences are taken modulo p − 1. This is a system of four equations
in four variables, so we expect to be able to find a solution, at least most of the time.
(On rare occasions, some of the equations may be redundant, in which case we have
to get another one.)

There is a standard linear algebra technique to solve systems of equations like this
quickly, known as Gaussian elimination, or row reduction. However, it works much
better over Z/pZ when p is prime than over Z/nZ when n is composite. Indeed,
Sage throws an error when I try to do this computation modulo p − 1 directly. This
is where we use the fact that p is a safe prime: we solve for x2, x3, x5, x7 modulo
the prime factors of p − 1, and then we use the Chinese Remainder Theorem to
piece them back together. To solve for x2, x3, x5, x7 modulo p−1

2 = 116243, I type
the following Sage code:

A = matrix(Zmod(116243),[[5,2,0,3,482],

[2,9,0,0,600],[9,4,0,0,876],[6,0,2,0,948]])

A.rref()

Sage then returns

[ 1 0 0 0 38292]

[ 0 1 0 0 30305]

[ 0 0 1 0 1841]

[ 0 0 0 1 71128]

This is to be interpreted as saying that

x2 ≡ 38292, x3 ≡ 30305, x5 ≡ 1841, x7 ≡ 71128,

where all congruences are modulo 116243.
Next, we have to do the same thing modulo 2. When we do that, then Sage returns

[1 0 0 0 0]

[0 1 0 0 0]

[0 0 0 1 0]

[0 0 0 0 0]

This tells us that x2, x3, x7 ≡ 0 (mod 2), but it doesn’t tell us about x5. What that
means is that we cannot tell what x5 is modulo 2, but there are only two choices, so
we aren’t too concerned.

Now, we piece them together with the Chinese Remainder Theorem: for instance,
we have

x2 ≡ 38292 (mod 116243), x2 ≡ 0 (mod 2),

which means that x2 ≡ 38292 (mod p − 1). With x5, we have two choices, so we
just test both of them by raising g to those powers and checking which one is actually
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5 (mod p). Once we have done this, we find that

x2 ≡ 38292

x3 ≡ 146548

x5 ≡ 1841

x7 ≡ 71128.

Note that we could do something similar modulo an arbitrary prime p, as long as we
are able to factor p − 1. If p − 1 contains any repeated prime factors, say qe then,
we also have to work a little harder to solve the equations modulo qe, but in principle,
this is only a minor additional difficulty.

So far, none of this has anything to do with h, so now it’s time to bring that into
the game. What we do now is to look for some j so that g j h is factorable over F :
any such j will do. By testing all the possibilities until we find one, we observe that
j = 166 fits the bill: we have

g166h ≡ 27 × 32 × 52 × 7 (mod p).

Let us suppose now that h ≡ gx (mod p). Then, writing everything in terms of
powers of g, we have

g166+x ≡ g7x2+2x3+2x5+1x7 (mod p),

so that
166 + x ≡ 7x2 + 2x3 + 2x5 + x7 (mod p − 1).

It follows that

x ≡ 7x2 + 2x3 + 2x5 + x7 − 166 (mod p − 1),

and since we have already worked out the values of x2, x3, x5, x7, we can plug them
in to get x = 170812. And we can verify that this does indeed work: g170812 ≡ h
(mod p), as desired!

The index calculus attack needs a factor base in order to get going, and this in turn
relies on our ability to find a bunch of elements in the group that can serve as primes.
In other groups, such as those coming from elliptic curves, there is no obvious way
of doing this, and so the index calculus attack fails.

The running time of the index calculus attack, in terms of big O notation, is
substantially faster than the baby-step giant-step algorithm: it is O(elog(n)1/2+ε

). If
you find such an expression hard to parse, recall that the obvious “check all the
possibilities” approach takes O(n) = O(elog(n)) steps (in fact even a little bit more
than that, because eachmultiplication also takes somenumber of steps that growswith
n, so let us say O(e(1+ε) log(n)) steps). By contrast, the baby-step giant-step algorithm
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takes O(n1/2+ε) = O(e(1/2+ε) log(n)) steps. These aremuch larger than O(elog(n)1/2+ε

),
so the index calculus attack is better than these other ones, in the situations where it
applies. This attack is part of the motivation for using elliptic curves in cryptography:
they don’t seem to suffer from as many specialized attacks.

11.8 Problems

(1) Alice and Bob decide to use the Diffie–Hellman key exchange with p = 41 and
g = 7. Alice chooses a = 14, and Bob chooses b = 23. What is the key?

(2) Supposeyou’reEve, andyouknow thatAlice andBobare using aDiffie–Hellman
key exchange with p = 19 and g = 10. If ga = 8 and gb = 7, what is the key?

(3) Bob sends Alice another message encrypted with ElGamal encryption. They use
p = 79 and g = 3. Alice chooses a = 44, and Bob returns the ciphertext (gb

(mod p),m × gab (mod p)) = (74, 50). Decrypt the message.
(4) Suppose that Eve has an oracle to solve the discrete logarithm problem, i.e., if

she tells it g and m, then the oracle tells her an x so that gx ≡ m (mod p). How
can she use this oracle to break ElGamal encryption quickly?

(5) Using the baby-step giant-step algorithm, find an x so that 5x ≡ 193 (mod 503).
(5 is a generator for F×

503.) Feel free to use a calculator.
(6) Using the Pohlig–Hellman algorithm, find an x so that 17x ≡ 2108 (mod 8641).

(17 is a generator forF×
8641.) Feel free to use a calculator, but make sure you know

how to do the Chinese Remainder Theorem step with the Euclidean algorithm,
or some method other than educated guessing.

(7) Bob wishes to send Alice a message encrypted with ElGamal encryption. They
decide to use p = 73 and g = 5. Alice picks a and computes ga ≡ 49 (mod p).
Bob chooses b = 33 and wishes to send the message m = 62. What is the ci-
phertext he sends?

(8) Let p = 1283, g = 264, and h = 910. Use the index calculus to find an x so that
gx ≡ h (mod p). (g is a primitive root modulo p.)

(9) Let p be a prime, and let a ∈ (Z/pZ)×. If ax ≡ b (mod p), and x is the smallest
nonnegative integer with this property, then we write x = dloga b. (The dlog
stands for “discrete logarithm.”)

(a) Show that if a is a primitive root modulo p, then dloga(bc) ≡ dloga(b) +
dloga(c) (mod p − 1).

(b) If a is not a primitive root, give a counterexample to part (9a).
(c) 5 is a primitive root modulo 23. Find dlog5(13).

(10) Suppose that a is a primitive root modulo p ≥ 3. Show that x ∈ (Z/pZ)× is a
perfect square in (Z/pZ)× if and only if dloga(x) is even. (Observe that this
is true for any a, and hence does not depend on the choice of primitive root.)
How many elements of (Z/pZ)× are perfect squares?

(11) (a) Suppose that p ≡ 1 (mod 3) is prime, and let a be a primitive rootmodulo
p. Show that x is a perfect cube if and only if dloga(x) ≡ 0 (mod 3).
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(b) What happens if p ≡ 2 (mod 3)?
(c) Generalize to perfect nth powers.

(12) Write down the Pohlig–Hellman algorithm formally, and give a proof showing
that it actually works.



Chapter 12
The RSA Cryptosystem

12.1 RSA

So, we now understand one pretty secure modern cryptosystem, namely ElGamal.
Is this the end of the story?

Actually, it’s not. One disadvantage of ElGamal is that it makes the message twice
as long, since Bob has to send two numbers when he only wants to encrypt one. So
this is a bit inefficient.

As a result, it is more common to use other cryptosystems that don’t have this
problem.

Probably themost famous of all topics in cryptography is theRSA (Rivest, Shamir,
Adleman) cryptosystem [RSA78]. We now describe how it works.

We begin with a key generation. RSA includes a private key and a public key,
much like Diffie–Hellman and ElGamal. However, there is an important difference:
in Diffie–Hellman, both Alice and Bob needed to create keys. Here, only one party
needs a key. (In practice, both parties have RSA keys, and then RSA is used like
Diffie–Hellman as a key exchange. However, this is not strictly necessary.)

To construct the key, Alice chooses two prime numbers p and q. These should
be chosen to have roughly the same number of digits, in order to increase security.
Alice then computes n = pq. Alice then computes φ(n), which is (p − 1)(q − 1).
Alice then chooses an integer e with 1 < e < φ(n) and gcd(e, φ(n)) = 1. (In
practice, people often choose e = 216 + 1 = 65537.) Alice then computes d = e−1

(mod φ(n)).
The public key consists of n and e. The private key is d.
Now, using the key, Bob can send messages to Alice, and Alice can decrypt them.

Suppose Bob wishes to send the plaintext message m, which is a number modulo n.
We need m to be relatively prime to n, but in practice, this isn’t a serious problem,
as m would have to be a multiple of either p or q in order for this to fail, and both
p and q are very large. (Actually, the mathematics still works when gcd(m, n) > 1,
although the proof is a little different. However, it is very bad cryptographically if
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gcd(m, n) > 1, since Eve will have a very easy way of decrypting the message in
this case!) He computes the ciphertext c = me (mod n) and sends it to Alice.

Now, Alice can decrypt c into m by computing m = cd (mod n).
Let us verify that this works. That is, if Bob encryptsm into c and Alice decrypts c

into m, then she recovers the original message. The message Alice recovers is (me)d

(mod n) = med (mod n). Now, we recall that mφ(n) ≡ 1 (mod n), so mr (mod n)

depends only on r (mod φ(n)). Since ed ≡ 1 (mod φ(n)), we have ed = 1+kφ(n)

for some integer k, so

med ≡ m1+kφ(n) ≡ m × (mφ(n))k ≡ m (mod n).

Hence, Alice can decrypt the message.
There’s more to say about what Alice has to do. Recall that she has to find d, the

inverse of emodulo φ(n). She can do this because she knows φ(n). However, no one
else knows what φ(n) is. The security of RSA relies on it being hard to find φ(n)

from knowing n.
If you know how to factor n, then it is easy for you to find φ(n), since if n = pq,

φ(n) = (p − 1)(q − 1), so if we know how to factor numbers, then we can break
RSA. However, n is a special number: it has exactly two prime factors, and not all
numbers are like that. So, might it be easier to compute φ(n) for such n?

We don’t think so, but no one knows.
Let us do an example of RSA.

Example Let p = 71 and q = 89. Then, n = 71×89 = 6319. Thus,φ(n) = 70×88.
Alice chooses e to be relatively prime to φ(n); let us say that she chooses e = 53. She
then computes d = e−1 (mod φ(n)). Using the Euclidean algorithm, she finds that
d = 2557. (Actually, I did it using Sage, but one could use the Euclidean algorithm.)
Alice sends off her public key, consisting of n = 6319 and e = 53.

Now, Bobwishes to send her amessage, and let’s say hewishes to sendm = 2161.
He computes c = me (mod n), and he gets c = 3248. He sends c to Alice. Alice then
computes m = cd (mod n), which is 2161. Thus, she has recovered the message.

12.2 Attacking Naïve RSA

RSA as we have seen it so far, commonly known as Textbook RSA, is actually
pretty bad, and it can be easily attacked under certain circumstances. Suppose that
Eve doesn’t know what the message is, but she knows that there are only a few
possibilities. For example, maybe Bob’s message can only be 45 or 92. Using this
information, can she work out which one it is?

Yes, very easily. Since she knows n and e, she can encrypt both 45 and 92 on her
own. One of those will be the ciphertext, and one of them won’t!
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This is an example of a chosen plaintext attack: Eve can work out how to encrypt
certain plaintexts, and that helps her to read certain messages. Chosen plaintext
attacks are colloquially known as cribs.

Another problem is that this version of RSA is malleable; that is, if we change m
in certain predictable ways, then c also changes in predictable ways. If we replace
m with 2m, then c gets replaced by 2ec. Let us see why this matters. The Eve we
have been considering so far is passive, in that she can only read messages and try to
decrypt them. But let’s suppose she becomes more sophisticated and can somehow
trickAlice into decoding some of her own ciphertexts (but not the one that Bob sends,
or else this is silly). Let us suppose that she intercepts a ciphertext c from Bob. She
can compute 2ec and ask Alice to decrypt it for her, into a plaintext u.

What is u? It is (2ec)d = 2edcd = 2cd . But cd is the plaintext for c, also known
as m. So u is just 2m. So, Eve divides by 2 and recovers the original message.

So, maybe Alice also knows not to decrypt 2ec. However, there is nothing special
about 2 here: Eve can pick a random number r to replace 2 and ask Alice to decrypt
rec. The decrypted message is rm, and again Eve can just divide by r to recover m.

This may feel like an unrealistic attack: how can Eve compel Alice to decrypt
her message? Well, one other thing that the cryptosystem allows us to do is to verify
identity: perhaps Alice needs to convince Bob that she is actually Alice; see also Sec-
tion 12.6. For example, perhaps Alice is a bank, and she needs to convince Bob that
she is actually a bank before Bob is willing to give her his financial information. One
way that she can do this is by offering to decrypt a bunch of messages that he sends
her. People other than Alice won’t be able to do that. However, Alice might not to
be able to distinguish between Bob’s messages and Eve’s messages, so she has to
comply with any request, except that she is smart enough not to decrypt an actual
ciphertext that Bob sends.

This attack is called a chosen ciphertext attack.
While malleability makes it easier for an attacker capable of performing a chosen

ciphertext attack to break a cipher, it is sometimes also a beneficial property and un-
derlies the important topic of homomorphic encryption. The setup for homomorphic
encryption is that we may want to perform manipulations on encrypted data without
first decrypting it. For example, if I have a lot of sensitive data, I may wish to store it
on a cloud server (such as the ones available by Amazon) rather than buying a super-
computer of my own. Since it is sensitive data, I will want to store it in its encrypted
state. But when I want to perform manipulations, I don’t want to have to download
all the data first, decrypt it, perform the manipulations on my own computer (since
I can’t allow the decrypted version to make its way to the cloud), encrypt it again,
and then upload the changed version, since that would defeat the purpose of using
the cloud cluster. Instead, I want to be able to perform the manipulations directly on
the encrypted version. Malleability allows us to do so. Recently, Craig Gentry has
produced a fully homomorphic encryption (FHE) scheme, in which any arithmetical
operation can be performed on the encrypted data. See his charming paper [Gen10]
for a not-too-technical overview, with a running allegory about Alice’s jewelry store.
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12.3 Padding

Based on the attacks we just saw, we now know that, in order for RSA to be seriously
usable, it must first be improved dramatically. In order to make the encoding more
secure against these two attacks and other similar ones, we first modify the message.
Typically,we do this in some non-deterministicway, that is, in someway that involves
randomness. The reason that we do that is to avoid the first attack above, in which
Eve can decipher the message if she knows what all the possible messages are,
and there aren’t too many of them. So, if a message can get encrypted into many
possible ciphertexts, that will be a lot more secure. One simple way of doing this
is to require Bob to append 30 random digits to the end of his plaintext message
before encrypting it. There are 1030 ways of appending random digits, so Eve won’t
be likely to guess the one sequence of 30 digits that he actually chose. The encodings
for these different modifications will all look totally different. The idea of “filling
in” a plaintext message is known as padding.

In fact, this is not the padding mechanism that is actually used in practice. One
common padding method is known as Optimal Asymmetric Encryption Padding, or
OAEP. It works by making the message a bit longer and messing around with some
of the digits, in a random but yet recoverable way. Let’s now describe how OAEP
works.

Since we usually do cryptography with computers, it makes sense to consider
a message to be a string of 0’s and 1’s. We have a plaintext, and we’ll pad it into
a longer message; the longer message will have n bits, and the original plaintext
m has n − k0 − k1 bits, where k0 and k1 are (fairly small) numbers built into the
implementation of the protocol. First, we append k1 0’s to the end of m, to obtain
a string with n − k0 digits. Then, we take a random k0-bit string r . We then take
some function G that expands r into an (n − k0)-bit string. So, now we have two
(n − k0)-digit numbers, and we apply an operation called xor: for each position, if
the two bits are the same, we put a 0, and if they’re different, we put a 1. Call this
number X . We then apply some function H that reduces X to a k0-bit number. We
then xor that number with r to obtain Y , a k0-bit number. We then concatenate X
with Y . We know which part is X and which part is Y .

From here, how do we recover m? We first recover r , since we know X , Y , and
H , and r is the xor of Y and H(X). Then, we can recoverm, sincem (appended with
the k1 0’s) is the xor of X and G(r), and we know r already.

So, it’s pretty easy to get the message back. The reason we use this or some other
sort of padding is that it helps to defeat chosen plaintext attacks.

12.4 Blocking

So far, all of our discussion of public-key cryptography has been based on encrypting
numbers: Alice wishes to send Bob a number, and so she performs ElGamal of RSA
encryption and sends him a different number. But perhaps Alice would like to send
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Bob a message that’s written in English. The first step is to convert the English letters
into numbers.

A popular method for doing this is using ASCII, which turns all the letters as well
as numbers, punctuation marks, and other symbols into numbers from 32 to 127 (or
255 if you include certain other special symbols such as accented letters). One pos-
sible approach is to convert each character of Alice’s message into its corresponding
ASCII symbol, encrypt each one, and then send the resulting message.

This is a terrible idea!
The problem is that then all we have accomplished is to create a glorified substitu-

tion cipher. (However, this is less serious if we include some randomized padding.)
An attacker can forget about all the RSA machinery and crack it just like another
other substitution cipher. So why bother going through all the work of RSA if we’re
just going to end up with a weak code?

But RSA and ElGamal are capable of encoding long messages in one go. As a
result, instead of encoding each character separately, it is better to combine a bunch
of characters (or their numerical equivalents) into one big number and then encrypt
that. Themessage might be too long to fit in a single chunk, so break it up into several
chunks that are each as large as possible.

There are many ways of setting this up, so I will suggest a somewhat crude one,
but one that is effective enough. Suppose we wish to encrypt the message

Cryptography is fun.

We first convert each character to ASCII and get

067 114 121 112 116 111 103 114 097 112

104 121 032 105 115 032 102 117 110 046

It is important that we have kept leading zeros; we need them so that each ASCII
character takes up exactly three digits.

Now, what we do is to delete the spaces and glue all the numbers together, to get

067114121112116111103114097112

104121032105115032102117110046

Now, if the message recipient’s public key is large enough to encrypt that number in
one chunk, then we do so and send it. If not, we break it up into smaller chunks. We
can discuss with the recipient in advance how long the chunks will be. (That can be
done publicly, as it does not help an attacker break it, at least not enough.)

The resulting cipher is still a substitution cipher, but rather than having 26 letters,
it has far, far more than that. So, while it is theoretically susceptible to frequency
attacks just like the standard substitution cipher, an attacker has little chance of being
able to acquire enough data to perform the attack. As we saw earlier, it’s hard to break
a standard substitution cipher if the message is shorter than a few hundred characters;
imagine howmanymorewould be needed to break one inwhich the alphabet contains
1050 symbols!



118 12 The RSA Cryptosystem

12.5 Why Isn’t Cryptography Solved?

So far, we have seen two cryptosystems (ElGamal and RSA) that are hard to break.
And we’ll see an even better one, elliptic curve cryptography, soon. So, why aren’t
we able to send messages securely and reliably?

Consider the following thought experiment. I’m a good person, and I believe that
people ought to have the right to privacy and information security. So, as a service
to society, I write a program for sending messages securely, using a very strong
cryptosystem. Since I have the best of intentions, I make it available for download,
free of charge, and people start using it. All is going well, until one day I get a knock
on my door. It’s a bunch of big and scary people from the FBI. They have guns and
look really mean. They tell me to introduce a security loophole in my program, and
that I am not allowed to tell anyone about their visit or the changes I’m making to
my program. Since the people with guns scare me, I do what they say, and now the
NSA can read all the messages sent by people who are using my program, and none
of my users know anything about it.

As far as I know, from a mathematical standpoint, cryptography is a solved prob-
lem.1 Perhaps the NSA has broken RSA and ElGamal and isn’t telling, but I doubt
it. In math we trust, right? The remaining problems in cryptography at the moment,
at least interpreted to mean sending messages which are too difficult to break, are
primarily political.

12.6 Digital Signatures

Another nifty thing we can do with public-key cryptography is to sign our messages
digitally. The idea is that if Bob receives a message from Alice, he wants to make
sure that it’s actually from Alice, and not from Eve. If Eve can impersonate Alice
and send messages to Bob pretending to be Alice, then that seems like a Bad Thing.

Fortunately, RSA admits a simple digital signature scheme. It isn’t necessarily the
best approach to digital signatures, but it will do for now as a sort of proof of concept;
at the end of the section, we’ll talk about its weaknesses. In order to use RSA digital
signatures, both Alice and Bob must have RSA keys. We need to define encryption
and decryption functions for both of them. Suppose that Alice’s encryption function
is eA, and her decryption function is dA. (That is, to encrypt a plaintext message m
to send to Alice, Bob computes c = eA(m). To decrypt c, Alice computes dA(c), so

1At least, for now! There are algorithms for breaking RSA and ElGamal on a quantum com-
puter [Sho99], so if those ever get built, we will be in trouble again; see Section 18.4 for a look at
how these work. Some current research on cryptography involves coming upwith quantum-resistant
cryptosystems. So far, the lattice-based cryptosystems starting with [Ajt96] do not have any known
quantum attacks, but our state of knowledge about what is and is not possible using a quantum
computer is still in its infancy.
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that dA(c) = dA(eA(m)) = m.) Similarly, let Bob’s encryption function be eB , and
let his decryption function be dB .

Now, let us suppose that Alice wishes to send a message m to Bob, and she
wishes to sign it so that Bob can not only decrypt it but also verify that it was Alice,
and not Eve, who sent it. Alice first computes c = eB(m), the ciphertext. She then
computes s = dA(c), the signed ciphertext, and sends s to Bob. This is known as the
encrypt-then-sign protocol.

To decrypt it, Bob first computes c = eA(s) and then computes m = dB(c). After
he does these two decryptions, he ends up with

dB(eA(dA(eB(m)))) = dB(eB(m)) = m,

the original message. Furthermore, he then knows that the message is from Alice,
because Alice is the only one who knows dA: that’s her private key! If Eve tries to
forge a message from Alice, she won’t be able to use dA; instead, she will have to
try her own version, say d ′

A. But this will fail: instead of getting the original message
back, Bob will get garbled nonsense.

Remark 12.1 Note that Alice and Bob could agree to a different digital signature
protocol instead, namely the sign-then-encrypt protocol: Alice could first compute
t = dA(m) and then compute u = eB(t), and thenBob could recoverm by computing
t = dB(u) and then m = eA(t). As far as recovering the message goes, this is fine.
However, it is worse from a cryptographic perspective. See problem 8 for a drawback
of sign-then-encrypt.

Remark 12.2 There is a small subtlety here. The sort of messages that Alice can
send to Bob are numbers modulo nB , where nB is the modulus part of Bob’s public
key. Hence, m and c should be numbers modulo nB . On the other hand, in order to
apply dA to c, c should be a number modulo nA, the modulus part of Alice’s public
key. In order to get around this problem, we let Alice’s message consist of a sequence
m1, . . . ,mk of numbers modulo nB , and we consider them, taken together, to form
a k-digit number in base nB . Similarly, the ciphertext is a sequence c1, . . . , ck of
numbers modulo nB , which we consider as a k-digit number in base nB . In order to
apply dA to the ciphertext, Alice must first convert this number to base nA before
applying dA. Note that this may change the number of digits/strings in the message
she sends, but this causes no problems.

Abstracting a bit, we find that there is nothing special about the RSA public and
private keys here. If we have any two pairs of encryption and decryption functions e
and d with e ◦ d and d ◦ e both equal to the identity, one for Alice and one for Bob,
then the same protocol works.

Is the RSA digital signature scheme good? Let’s analyze what we want out of
a signature scheme. First, if Bob receives a message with Alice’s digital signature,
then he needs to be able to trust that Alice actually sent the message, rather than Eve.
That is, we don’t want Eve to be able to forge Alice’s digital signature. There are
several levels of things we could mean by that:
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Completely forgable: Eve can forge Alice’s signature on any message.
Selectively forgable: Eve can forge Alice’s signature on a reasonable proportion of

messages that she might be interested in signing.
Existentially forgable: There is some message on which Eve can create a valid

version of Alice’s signature.

It is very easy for Eve to create an existential forgery using this scheme. Let us
writem for a message that Eve wants to sign, so that the signed version is dA(m). For
existential forgery, Eve only needs to be able to construct some pair (m, dA(m)). Note
that she doesn’t know the function dA, because that involves Alice’s private key. On
the other hand, Eve can reverse engineer this process: start with some already signed
messagem ′ and encrypt it with Alice’s public key to get eA(m ′). Since dA(eA(m ′)) =
m ′, Eve is able to construct the pair (eA(m ′),m ′), which is a valid signature. In other
words, Eve can construct some message on which she can forge Alice’s signature.

Is this a problem? That depends on context. Most likely, the message that Eve
is able to sign is gibberish, so it won’t be very valuable for her to sign this sort of
message: even if Bob suspected that the message came from Alice, there wouldn’t
be any way for him to act on it. But what if the message isn’t in English, and
more generally isn’t intended to be human-readable? What if the message is just
randomly constructed binary strings, to be used in some other context? Or randomly
generated encryption keys? Then the fact that Eve is able to sign certain messages,
even nonsense ones, may become a serious issue.

Another attack on RSA digital signatures comes from malleability. If Eve finds
two signed message pairs (m1, dA(m1)) and (m2, dA(m2)), then she can construct a
new one by multiplying them: (m1m2, dA(m1m2)). Is this a problem? Again, only if
the product of twomeaningful messages is againmeaningful, and that depends on the
context. Most likely, the product of two meaningful messages is gibberish: suppose
the messages are phrases in English, converted to numbers. When you multiply these
two numbers, the resulting number is not a numerical form of a meaningful English
phrase; it will just be nonsense characters. Still, the product of two meaningful
messages is more likely to be a meaningful message than a random message is, so
this attack is at least slightly worrying.

On the other hand, as we already saw in Section 12.2, if Eve can request that
selected messages be signed, then she can produce forged signatures on meaningful
messages: if she wants to sign a message m, then she can pick m1 and m2 with
m1m2 = m and get Alice to sign m1 and m2. This gives her enough information to
sign m.

In order to get around some of these problems, a common solution is not to sign
the message m directly, but rather a hashed version of m. We’ll see hash functions
again in Chapter 17, especially Section 17.8, but in the meantime, here’s the idea of
a cryptographic hash function. Given a message m, we want to produce a new string
h(m), with the following properties:

• It is easy to compute h(m).
• Given h(m), it is computationally infeasible to reconstruct m.
• More generally, given some string h, it is computationally infeasible to find any
message m ′ such that h(m ′) = h, or even to determine if one exists.
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• It is hard to find two messages m and m ′ such that h(m) = h(m ′).

We call such a function h a cryptographic hash function. Almost any sufficiently
complicated (but still easily computable) function taking values in a large enough
set of strings is a cryptographic hash function.

Instead of signing m directly by computing dA(m), we first hash it and then sign
the hashed version: dA(h(m)). This solves some of the issues that we discussed above
with the RSA digital signature scheme. For example, what happens if Eve tries to use
Alice’s public key to produce a signed message by starting with the signature and
then reconstructing the message? She would need to construct a pair (m, dA(h(m))).
If she starts with the signed version m ′ = dA(h(m)), then she can apply eA to get
eA(m ′) = h(m), but based on the definition of a cryptographic hash function, it is
difficult to reconstruct m, or indeed any m1 with h(m) = h(m1). Thus she is stuck.
The other attacks based on malleability also fail, since a cryptographic hash function
is not malleable in this way.

12.7 Attacks on RSA

The most obvious way of attacking RSA is to factor the modulus n. If Eve can learn
the primes p and q with pq = n, then she can compute the decryption exponent d.
To do this, let us suppose that she knows n, p, q, and e. Recall that d is chosen such
that ed ≡ 1 (mod φ(n)), and that φ(n) = (p − 1)(q − 1). Since she knows p and
q, she can easily compute φ(n). She then uses the Euclidean algorithm to find d and
a such that ed + aφ(n) = 1; only d matters here, and she may disregard a.

Next chapter, we will take up the topic of factoring and the techniques from
computational number theory surrounding that problem. But factoring n from scratch
is the hard way of doing things, and in practice in might be much easier to break
RSA, thanks to its poor use in the real world.

In their 2012 paper [LHA+12], Arjen Lenstra, et al. showed that it is possible to
break RSA quite often in practice by computing lots of gcds. In order to do this, they
collected 4.7 million RSA moduli and computed the gcds of each pair of moduli.
Whenever the gcd of that pair was 1, they had learned nothing from that calculation.
But when the gcd is greater than 1, it must be a factor of both moduli. Assuming
that the moduli are not identical, the gcd must then be a prime factor of both moduli;
computing the other factor is then straightforward.

Using this technique, they were able to break around 0.2% of RSA keys. In
Chapter 13, we will look at the birthday problem, which will teach us that this
cannot be a coincidence: that is just far too many common primes.

But if that’s not happening by random chance, what is going on? In practice, RSA
keys are chosen with the help of random number generators. Start with a function
f that converts a natural number n into a prime f (n). (For example, f (n) could be
the smallest prime greater than 10100n. The actual functions used are of course much
less stupid, but this one will do for illustration. But it is an interesting exercise to
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break RSA if you know that f (n) is the function just described, and n < 1040, say.)
So, the primes p and q are chosen by starting with two random numbers m and n
and letting p = f (m) and q = f (n).

The problem is that the random number generators are simply not good enough!
The possible values for n are far from appearing equally often, and if n is a common
value for the random number generator, then f (n) is a common prime, likely to
be detected by the gcd attack. While human eyes may not be able to notice the
nonuniformity of the random number generators, a large-scale attack like the one of
Lenstra, et al., which the NSA is surely also doing, will certainly notice.

There are many other crafty attacks on RSA that people have come up with over
the years. We refer the interested reader to [Bon99] for a survey of some of them.

12.8 Security

Now that we have looked at two of the most popular modern cryptosystems, namely
ElGamal and RSA, it’s time to turn to the definition of security and analyze why
these cryptosystems, at least when used correctly with padding and all that, seem to
be secure under this definition.

Before we state the formal definition, let’s just state a couple things we expect
out of a secure cryptosystem. The setup here is that we have a message m, which
gets encrypted using some key (such as an RSA key, with its usual breakdown into
a public key and private key) to produce a ciphertext message c. Let’s say this is a
message that Alice sent to Bob. An attacker Eve would most of all like to decrypt
the ciphertext c into the plaintext m given only public information. But in practice,
it’s likely that she can get a bit of help. For example, she might be able to make a
guess as to what the plaintext messagem might be, perhaps based on context or some
outside knowledge of Alice and Bob. Not exactly what it is (or else her work would
already be done), but perhaps she can narrow it down to one of a few possibilities.
We don’t want her to be able to decrypt the message, even if she knows that there
are only two possibilities for what the plaintext could be.

Furthermore, perhaps Eve can somehow convince someone (perhaps Bob, or
some all-knowing oracle) to decrypt a few other unrelated ciphertexts for her, as
we discussed in Section 12.2. If a cryptosystem is secure, then knowing a bunch of
plaintext–ciphertext pairs, even specifically chosen ones, shouldn’t help Eve decrypt
a different message.

Let’s suppose that somehow Eve has narrowed down the list of possible plaintexts
m to just two, and she thinks that each one is equally likely. Let’s call these two
potential plaintextsm1 andm2. If Eve could play some trick to determine whetherm
is equal tom1 orm2, she would, of course, be completely happy. But she may also be
partially happy if she can improve her odds of guessing it correctly. Perhaps, through
some sequence of queries to Bob getting him to decrypt other ciphertexts, she can
update her beliefs on which one m is, so that she now thinks that the plaintext is m1

with probability 0.7 and m2 with probability 0.3. Now, it might be the case that she
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has updated her beliefs, but this update has nothing to do with reality: if she guesses
m1 (and repeats the experiment many times, with many other ciphertexts to break)
she still only gets it right half the time, rather than 70% as she expects. If so, that’s
no breach in security. But if she can actually get it right 70% of the time after doing
these queries, that’s a problem with the security of the cryptosystem. She shouldn’t
be able to do better than 50%.

Well okay, she can do a little bit better than 50%, in a really obvious and stupid
way: she can spend awhile simply trying to guess the private key, in a way that allows
her to check. For example, in RSA, she can try to guess the prime factorization of the
modulus. She probably won’t get it right, but in the very rare cases when she does,
she will certainly be able to decrypt the ciphertext correctly.

But Eve doesn’t have all the time in the world to decrypt the ciphertext: she has
to do so in a reasonable amount of time. For the purposes of security, and most other
things in cryptography, a “reasonable amount of time” means polynomial time in
the length of the key and the message. So we won’t let her try to factor the RSA
modulus unless she can somehow do quickly. Very rarely, she will get lucky and
factor it quickly, but the rest of the time, she will make no further progress.

Okay, with those points in mind, let’s state the security game. It is played by Eve
and Bob. Bob has the private key and can thus decrypt messages easily. Eve wants
to decrypt the message c, and let’s say that she knows that the plaintext can only be
one of two messages, m1 and m2, with each one being a priori equally likely to her.
What Eve gets to do is to submit a sequence of ciphertexts to Bob, none of which is c,
and he decrypts them for her. Eve is allowed to submit her ciphertexts sequentially,
so she is allowed to wait until getting back the decryption of each ciphertext before
submitting the next one; this allows her to adapt her strategy to the decryptions she
has already received if she wants. She is allowed to play polynomially many rounds
of this game, where “polynomially many” means polynomially many in the length
of the key.

After polynomially many rounds of this game, and a polynomial amount of time
doing computations on her own, Eve must guess whether the plaintext message m is
m1 orm2. We say that the cryptosystem is secure if there is some function ε that goes
to 0 as the key length goes to ∞ such that the probability that Eve guesses correctly
is less than 1

2 + ε. Otherwise, it is insecure.
Are RSA and ElGamal secure? We don’t know, of course. Maybe there is a

polynomial time algorithm for factoring numbers or for solving the discrete logarithm
problem; we don’t believe this is so, but on the other hand, there are some remarkably
clever approaches to both of these problems, some of whichwe have already seen and
some of which we shall look at in Chapter 13. We don’t know any way of breaking
RSA other than by factoring the modulus, but once again, no one knows whether
there are other methods that could break RSA that are not equivalent to factoring,
and similarly for ElGamal.

There is a caveat to bemade here. Recall that when using RSA, we are supposed to
pad the message first, to prevent the attack based on malleability. That attack would
still work if, whenever Eve presented a ciphertext to Bob, he responded with the
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padded version of the plaintext. So he must be sure never to do that: he must only
report the original unpadded version.

But perhaps the real takeaway message is this: don’t make up your own cryp-
tosystem if you are concerned about its security. Youmight think you have made a
secure cryptosystem, only to find that it is vulnerable to an attack like themalleability
attack on unpadded RSA. How confident are you that you would have thought of
that attack on your own and defended against it with a good padding mechanism?
And how confident are you that you would have had the foresight to predict other
sorts of clever attacks, many of which are far more subtle than that one? Always
remember that there may be many very smart people who desperately want to read
your encrypted messages, and they are happy to use whatever tricks they can in order
to do so. While you can learn a lot by coming up with your own cryptosystems and
trying to defend them against attacks, if you actually want to send messages and not
have them be read, it’s best to trust the professionals and use a cryptosystem that has
been tried and tested. Cryptography at a practical level is not a game for amateurs.

12.9 Problems

(1) Suppose p = 3701, q = 7537, and n = pq. Alice chooses her encryption key
to be e = 443.

(a) What is her decryption key d?
(b) Bob wishes to send the message m = 11034007. What is his ciphertext?
(c) Bob sends another message, and his ciphertext is c = 3003890. What was

his plaintext message?
(d) Bob is bored of sending numbers that don’t mean anything and decides to

send a word instead. To encrypt a word, he numbers the letters from 1 (for
a) to 26 (for z) and uses 0 for a space, and he converts a word of at most four
letters into a number modulo n, by making the first two digits denote the first
letter, the next two digits denote the second letter, and so forth (so code
would be coded as 03150405, for example). He sends Alice the ciphertext
c = 27870438. What was his message?

(2) Alice decides to use RSA to allow others to send her messages, and she makes
her key n = pq = 3259499. Through a breach in security, Eve discovers that
φ(n) = (p − 1)(q − 1) = 3255840.

(a) Determine p and q.
(b) Suppose e = 1101743, and Bob sends Alice the ciphertext 2653781. What

was his message? (Calculators are strongly encouraged!)

(3) Suppose Alice’s public key consists of (nA, eA) = (240181, 120833), and
her decryption exponent is dA = 97. Bob’s public key consists of the pair
(nB, eB) = (289981, 11). Alice wishes to sign and encrypt the message i am
alice to Bob. Explain how she does so, including the conversion of text into
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numbers. (You may use any reasonable convention of your choosing, as long
as it can be decrypted unambiguously.)

(4) Suppose Alice leaks her decryption key d to Eve. Instead of choosing a new n,
she decides to choose a new encryption key e and a new encryption key d, but
with the same value of n.

(a) Is this safe? (That is, can Eve decrypt messages now?)
(b) By knowing an encryption–decryption pair (e, d) for n, is it possible to

factor n quickly?
(c) Can Eve decrypt messages without first factoring n?

(5) Alice and Bob are such good friends that they choose to use RSA with the
same n, but their encryption exponents e and f are different, and indeed, they
are relatively prime. Charles wants to send the same message m to Alice and
Bob. If Eve intercepts both of his messages, how can she recover the plaintext
message m?

(6) Let f (n) be the smallest prime greater than 10100n. Suppose we select an RSA
modulus by picking two random integers m, n with 0 < m, n < 1040, and
letting our primes be p = f (m) and q = f (n). Explain how to recover p and
q from knowing N = pq.

(7) Suppose that several RSA users B1, . . . , Bk all use the same very small en-
cryption exponent e with e ≤ k for their RSA encryption (but with different
moduli), and Alice sends them all the same message m, resulting in ciphertexts
c1, . . . , ck . If Eve intercepts all the ciphertexts, show that she can recover the
originalmessage. This highlights at least twomorals: don’t use small encryption
exponents, and use random padding.

(8) Our digital signature was encrypt-then-sign. The reason for this is that the
reverse procedure, sign-then-encrypt, admits a weakness. Suppose that Alice
sends a signed message to Bob using the sign-then-encrypt procedure. Show
that Bob can forward the message to a third party, Charlie, so that it appears
to Charlie that Alice sent the message directly to him. Think of a scenario in
which this leads to undesirable consequences.

(9) In fact, naïve encrypt-then-sign isn’t very good either. Suppose Alice wishes to
send a message to Bob using encrypt-then-sign, but Eve intercepts the message
before Bob gets it. Show that Eve can easily replace Alice’s signature with her
own one, so that Bob thinks the message comes from Eve.2

(10) Suppose that n = pq is a product of two primes. Suppose that gcd(a, pq) = 1.

(a) Show that if x2 ≡ a (mod n) has any solutions in Z/nZ, then it has exactly
four.

(b) If, for some a ∈ Z/nZ, you know all four solutions, show that you can
quickly factor n.

2The attacks in this and the previous problem come from Don Davis’s paper [Dav01].
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(11) If p ≡ 3 (mod 4) is prime and a is a square modulo p (i.e., there is some x
so that x2 ≡ a (mod p)), then how can you quickly find an x with x2 ≡ a
(mod p)?

(12) Consider the following cryptosystem, known as the Rabin cryptosystem. Pick
two primes p and q and compute n = pq. Pick a random b ∈ {0, 1, . . . , n −
1}. The public key is (n, b). To encrypt a message m ∈ Z/nZ, compute the
ciphertext c = m(m + b) (mod n). Explain how to recover m from c, given p
and q. Why does it appear to be difficult for an attacker to decrypt messages
without knowing p and q? (What hard problem must the attacker solve?)

(13) Can you design other secure (or secure-seeming) cryptosystems? What hard
problems are they based on? Challenge your friends to find attacks.



Chapter 13
Clever Factorization Algorithms
and Primality Testing

13.1 Introduction to Clever Factorization Algorithms
and Primality Tests

Themain theoreticalwayof attackingRSA, at leastwhen it is usedwith best practices,
is by factoring the modulus. The most obvious way of factoring a number n is to try
dividing by 2, 3, 5, 7, and so on, through all the primes less than

√
n, until we find

a factor. This seems like the only general approach to factoring numbers, and for
centuries, that was what people thought. However, in the past several decades, we
have come up with fiendishly clever approaches for factoring numbers, and we will
study some of them.

A closely related problem is that of primality testing: given a number n, determine
whether it is prime or not. At a first glance, this seems like the same problem: in
order to check if n is prime, we factor it and see if there is more than one factor or
not.

However, it turns out that it is easier to determine whether a number is prime or
not than it is to complete the full factorization. (Of course, if n is prime, then we
have already factored it, but if n is composite, we might be able to determine that it
is composite without producing an actual factor.)

Primality testing is also important for cryptography, since in both RSA andDiffie–
Hellman, we need primes as part of our public keys. Furthermore, everyone needs
to have different primes in order for the cryptosystems to be secure, so we need a
way of generating a lot of primes, and quickly. Well, there are a lot of primes out
there. (The famous Prime Number Theorem tells us that the number of primes up to
x is roughly x

log(x) , so that on average we have to pick log(n) numbers around n to
hit upon a prime.) But just knowing that there are lots of primes isn’t enough: we
have to find them. If we can quickly check whether a number is prime, then we are
in business. And, surprisingly, we can!

We begin with factorization algorithms. But in order to do that, wemust first think
about birthdays.
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13.2 The Birthday Problem

Question 13.1 How many people must be in a room for it to be more likely than not
that two people share a birthday? (Assume that all birthdays are equally likely, and
ignore February 29th.)

Answer 23.

The way to see this is to imagine people walking into the room one at a time, until
two share a birthday. The room starts out being empty. Then the first person enters
the room. What is the probability that no two people share a birthday?

There’s only one person, so there aren’t even two people who might share a
birthday. Thus the probability at this stage is 1, or as I prefer to write, 365

365 .
What happens when the second person enters? There is only one day (out of 365)

taken so far: the first person’s birthday. So 364 of them are safe. Thus the probability
that no two people share a birthday at this stage is

365

365
× 364

365
.

Now, what about the third person? Two birthdays are taken, so there are 363 left.
Thus, the probability that no two people share a birthday among these three is

365

365
× 364

365
× 363

365
.

We continue on in this way: when there are k people in the room, the probability
that no two share a birthday is

365

365
× 364

365
× 363

365
× · · · × 366 − k

365
.

The smallest value of k for which this product is less than 1
2 is k = 23.

In general, if there were n possible birthdays, each equally likely, it would require
roughly

√
2n log(2) people before we expect to get a collision. (See problem15.) As

we are civilized mathematicians, we are of course using log to denote the natural
logarithm.

Now, what does this have to do with RSA or factoring? A lot, actually: it’s the key
idea behind a very popular factoring algorithm, known as the Pollard ρ algorithm.

13.3 Pollard ρ Algorithm

In order to crack RSA, it seems necessary to compute φ(n), which is basically the
same as factoring n. So, if our goal is to crack RSA, we need to know how long it
takes to factor a number.
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The basic algorithm is to divide by all numbers up to
√
n, but this is really slow,

and there are much faster and cleverer algorithms for factoring. We’ll look at a few
of them, the first of which is the Pollard ρ algorithm, so called because there is a
picture we can draw of it, and it looks like the Greek letter ρ. It works on the same
principle as does the birthday problem: if there are n possible birthdays, it would
require O(

√
n) people before we expect two to share a birthday.

How do we use this to our advantage? The idea is that if we have some numberm,
it should require about

√
m (in fact

√
2m log(2)) random numbers before we find two

that are congruent modulo m. Then, their difference is divisible by m. Hence, if m is
a factor of n, we can take a bunch of random numbers and look at their differences.
But we want to collect them in an organized manner, and the following algorithm
helps us to do that.

The algorithm, due to Pollard [Pol75], is actually quite simple.

Theorem 13.2 The following algorithm tends to find a factor of n in a significantly
faster amount of time than the guess-and-check method:

(1) First, choose a random polynomial function f (x) that takes values in Z/nZ and
returns values in Z/nZ.

(2) Let x = 2 and y = 2.
(3) Replace x with f (x) and y with f ( f (y)).
(4) Compute d = gcd(|x − y|, n).
(5) If d = 1, go back to step 3. If d = n, then the algorithm fails, so we have to go

back to step 1 and choose another random function. If d �= 1 and d �= n, then
success! We have found a factor of n.

Remark 13.3 There is nothing special about the choice of x = y = 2. That’s the
standard convention, but anything else will work just as well.

Let’s do an example:

Example Let n = 3255097, and let f (x) = x2 + 109x + 614 (mod n). (I chose f
at random.) Then we compute the following:

x y gcd(|x − y|, n)
836 790634 1

790634 2363712 1
1351468 1693983 1
2363712 2632573 1
1788181 1109487 1
1693983 1153950 1
1176813 539912 1
2632573 2208952 1
1059776 225484 1
1109487 760293 1
1397369 671302 1
1153950 2019444 1
1099024 1519615 1
539912 1729914 1
1525379 2587553 211
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So, 211 is a factor of n. Now,we canwork out n/211 to find another: the remaining
factor is 15427. These two numbers are both prime. So, the prime factorization of n
is 211 × 15427.

So, that went by pretty quickly! This algorithm works especially well if one of
the factors p is relatively small (somewhat liberally interpreted), since we expect to
find it in something like

√
p steps of the algorithm. And this is exactly because of

the birthday problem.
There are other algorithms which are even a bit better, and we will look at the

quadratic sieve below, which for many years was the best algorithm known. (Nowa-
days, there are modified versions that outperform the quadratic sieve, but they are
based on the same basic ideas.) However, the Pollard ρ algorithm remains a popular
choice, since it is very easy to program.

13.4 Smooth Numbers

The other algorithms rely on another curious fact: there are lots of numbers all of
whose prime factors are small.

Definition 13.4 We say that a number n is k-smooth if all the prime factors of n are
at most k.

To illustrate this fact, I chose the number

n = 23948278947252

by typing random digits on my keyboard, and I ran a simple Sage program to check
which of the numbers from n to n + 999 are 1000-smooth:

def is_smooth(n,k):

f = factor(n)

if f[-1][0] <= k:

return True

return False

for i in range(1000):

if is_smooth(n+i,1000):

print i

The program told me that n + 173, n + 588, and n + 660 are all 1000-smooth.
For example, we have

n + 173 = 52 × 7 × 17 × 19 × 29 × 131 × 229 × 487.
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It also doesn’t take very long to check if a number is k-smooth. To do so, we keep
dividing by primes less than k until we either reach 1 or aren’t divisible by anymore.

The shocking fact about smooth numbers is that knowing that there are many
smooth numbers lying around helps us to factor numbers that are not smooth!

Also, I suppose, I ought to be honest about the is_smooth function I wrote
above: this is a terrible way of checking if a number is smooth! (However, it was
really easy to code.) This function first factors n, and then checks to see if the largest
prime factor is less than k or not. This works fine for the small numbers we’ll be
using, but not so well for the large numbers that are used in practice. A much better
way, which is just slightly more annoying to program, is to start with n, divide by
2 as many times as possible until 2 is no longer a factor, then divide by 3 as many
times as possible, then divide by 5, then divide by 7, and so forth, going through all
the primes less than k. (It is possible that k will be sufficiently small that we can
acquire a list of primes less than k. If not, then go through all the numbers from 2 to
k − 1, rather than just the primes.)

13.5 The Quadratic Sieve

The quadratic sieve is one of the very best algorithms for factoring, although there is
a variant called the number field sieve which does a little bit better. I am particularly
partial to it, since it was discovered by Carl Pomerance [Pom82], who was my
postdoctoral mentor at Dartmouth in the 2012–2013 academic year; it is probably
his most important theorem.

Before we give the algorithm (in fact, a somewhat less optimized but simpler
version, due to Dixon [Dix81]), let us show the idea. Suppose we had to factor 899.
(Carl Pomerance himself prefers to use 8051 as an example, with the same idea.) We
might notice that

899 = 900 − 1 = 302 − 12,

so it is a difference of two squares. Now, we know that differences of squares factor:
x2 − y2 = (x − y)(x + y). Hence

899 = (30 − 1)(30 + 1) = 29 × 31,

and voilà!we have factored 899. So, the conclusion is that if we can find two squares
whose difference is n, we can factor n (unless the squares are of numbers that differ
by 1).

We can be a little more sophisticated and observe that if we find two squares that
differ by a multiple of n, we’re still doing okay: if x2 − y2 = kn, then we can look at
gcd(x − y, n), and this will be a nontrivial factor of n, unless we’ve beenstupid and
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chosen x − y to be 1, or we are unlucky and both of them happen to be multiples
of n. In the latter case, just try again; this situation is sufficiently rare that we’ll get
lucky and find a factor with high probability.

The question of how we find two squares whose difference is divisible by n
remains, and the method uses smooth numbers. What we do, first of all, is to pick a
smoothness bound B, so we’re interested in B-smooth numbers. Suppose that there
are π(B) prime numbers up to B. Now, we want to find many numbers ai so that
bi = a2i (mod n) are B-smooth; in fact, we want to find π(B) + 1 of them.

What is the point of this? Well, the a2i ’s are all squares, and so if we multiply any
of them together, we still get a square. If some product of bi ’s is also a square, then
we’ve just found two squares that are congruent modulo n. While in general, it is
not easy to take a bunch of numbers given to us by some process and multiply some
subset of them to get a square, the situation here is not so bleak. To see why, note
that a positive integer z is a square if and only if every prime factor p that divides
z divides it an even number of times, so that there is some e for which p2e | z but
p2e+1

� z. Since there are not many prime factors available among the bi ’s, it should
not be too difficult to multiply some of them together in order to get a square.

So, how do we find which bi ’s to take? What we do is to factor each bi (which
is easy, because they’re all smooth). What does the factorization of bi look like? It
looks like

bi =
π(B)∏

j=1

p
ei j
j .

Now, we put all the ei j ’s, modulo 2, into a matrix. By linear algebra, we can find
some subset of the rows to add to get all 0’s, modulo 2. Multiply those bi ’s, to get
a square. Then, the product of the corresponding a2i ’s is congruent modulo n, so we
have found two squares that are congruent modulo n.

So, all we’re left with is the linear algebra step. First, we’ll present the algorithm,
and then we’ll discuss what it is doing, leaving amore thorough discussion for a book
on linear algebra. What we do is to put the exponents ei j , modulo 2, in a matrix, flip
it around, and do an operation called row reduction. We can then read off the answer.

What is row reduction? The goal is to do various operations to the rows to reduce
it to one of the following form (this is over F2, which is slightly simpler than the case
for other fields, but not much):

(1) Any row that isn’t all 0’s comes above any row of all 0’s,
(2) The first 1 in row i comes to the right of the first 1 in row i − 1,
(3) If the first 1 in row i is in column j , then every other entry in column j must be 0.

How do we get a matrix into that form? We’re allowed to do the following two
operations:

(1) Replace row i with the sum of row i and row j ,
(2) Switch two rows.
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By going through these steps many times, we can eventually convert the matrix to
one of the above form, and we get the same row-reduced matrix regardless of which
steps we choose and the order we perform them.

Now, how can we use this to figure out which bi ’s multiply to a square? Look for
a column that doesn’t contain the first 1 in any row. If it doesn’t have any 1’s in it,
then we’re in a lot of luck: if it’s in column j , then just take b j , and it’s already a
square, and we’re done!

If there is at least one 1 in that column, say column j , then look for all the columns
that have the first 1 in one of the rows in which column j has a 1. Multiply together
all those b’s, together with b j , and that’s the one to take. We also multiply together
the corresponding a’s, and there we have two squares which are congruent modulo n.

Now, take the gcd of the difference of their square roots and n, and this will
probably be a factor of n.

Let’s do an example.

Example Let’s factor n = 2968327 using the quadratic sieve. Let’s pick the
smoothness bound B = 20, so that computations won’t be too bad. Let’s go past
�√n� = 1722, so we’ll start at 1723. We look for numbers m ≥ 1723 so that m2

(mod n) is a square. Since there are 8 primes up to 20, we need to find 9 numbers m
such that m2 (mod n) is 20-smooth, and the first 9 are

2467, 2512, 4567, 4585, 4607, 4633, 4711, 4857, 4921.

These were found by running the following Sage code:

n = 2968327

for i in range(5000):

if is_smooth((1723+i)ˆ2 % n,20):

print 1723+i

We have
24672 (mod n) = 5 × 112 × 13 × 19.

Since we’re only interested in the exponents modulo 2, we keep 5 × 13 × 19. But
actually what we want to do is to make a matrix with the exponents modulo 2, and
we obtain (

0 0 1 0 0 1 0 1
)
,

with the first entry denoting the exponent of 2, the second denoting the exponent of
3, the third denoting the exponent of 5, and so forth. Continuing in this way down
the list, we obtain the full matrix
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M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 1 0 1
1 0 1 0 0 1 1 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Now, we have to find some subset of the rows that sum to 0 modulo 2. We flip to
obtain

MT =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 1
0 0 0 1 0 0 1 0 0
0 0 1 0 1 1 0 0 0
1 1 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Next, perform row reduction. There are many ways of doing this, but one possibility
is to start by swapping the first and third rows to obtain

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0 1 0 0 1 1
0 0 0 0 1 1 1 0 0
0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 1 0 1 1 0 0 0
1 1 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

After finishing the row-reduction process, we get

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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There are various columns that do not contain the first 1 in some row. Let us take
the seventh. It has 1’s in positions 3, 4, and 6. Thus, we use columns 3, 4, 6, and
7. These correspond to the third, fourth, sixth, and seventh of our nine 20-smooth
numbers. We multiply those together. This means that

(45672 mod n) × (45852 mod n) × (46332 mod n) × (47112 mod n)

should be a square, and indeed it is. Thus, if we let

r = 4567 × 4585 × 4633 × 4711

and

s2 = (45672 mod n) × (45852 mod n) × (46332 mod n) × (47112 mod n),

then r − s will not be relatively prime to n. Indeed, gcd(r − s, n) = 1949, so 1949
is a factor of n. The other factor is n/1949 = 1523. And voilà! We have factored n.

So, what was all that about? Originally, each row designated a prime: the top row
was about the exponent of 2 in each bi , the second row was about the exponent of 3,
and so forth. We want to find a collection c1, . . . , cr of columns so that the sum of the
ci ’s has only even entries, or, equivalently, is 0 (mod 2). It’s hard to find them at the
beginning, so we perform a bunch of operations. However, these operations do not
change whether the sum of a bunch of columns will be 0 (mod 2) or not. (Exercise:
check this!) So, we do a bunch of operations that makes it easy to find the desired
columns. As we do these row operations, the meanings of the rows change: they are
no longer referring to individual exponents but rather sums of exponents in the prime
factorization. But that doesn’t matter; we didn’t really care about these primes in the
first place anyway. All that we wanted was to find a square, in any way possible.

13.6 The Miller–Rabin Primality Test

We now switch topics to primality testing: given a number n, determine whether
it is prime. One good approach is based on Fermat’s Little Theorem. Recall that
Fermat’s Little Theorem says that if p is prime and a is not a multiple of p, then
a p−1 ≡ 1 (mod p). A consequence of Fermat’s Little Theorem is, well, the opposite
of a primality test, namely, a compositeness test: if an−1 �≡ 1 (mod n), then n is
composite.

However, it sometimes happens thatan−1 ≡ 1 (mod n) evenwhen n is composite.
For example, 2340 ≡ 1 (mod 341). Worse yet, if gcd(a, 561) = 1, then a560 ≡
1 (mod 561). Numbers like 561 are called Carmichael numbers. Another of Carl
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Pomerance’s major theorems (together with Red Alford and Andrew Granville) is
that there are infinitely many Carmichael numbers [AGP94].

Still, there is a primality test lurkingnearby, knownas theMiller–Rabin test [Mil76,
Rab80]. Suppose we pick some number a and find that an−1 ≡ 1 (mod n). That
doesn’t mean that n is prime, but it means we should look more closely. What is
a

n−1
2 ? (Assume that n is odd of course, as it is a very easy exercise to tell whether

an even number is prime.) If n is prime, then it had better be either 1 (mod n) or
−1 (mod n): the only square roots of 1 modulo a prime are ±1. (See problem13.)
If a

n−1
2 �≡ ±1 (mod n), then n must be composite. Next, if a

n−1
2 ≡ 1 (mod n) and

n ≡ 1 (mod 4), then what about a
n−1
4 ? If a

n−1
4 is not ±1 (mod n), then we have

found a number (namely a
n−1
4 ) whose square is 1 (mod n), but that is not itself ±1

(mod n), implying that n is composite.
More generally, suppose that n − 1 = 2em, where m is odd. If n is prime, then

there are two possibilities: either am ≡ 1 (mod n) (in which case a2
dm ≡ 1 (mod n)

for any d as well), or else there is some d with 0 ≤ d < e such that a2
dm ≡ −1

(mod n). (That is, we keep taking square roots of 1; either we get 1 forever, or at
some point we get −1.)

However, if n is odd and composite, and again n−1 = 2em, then there is an extra
possibility: that for some d with 0 ≤ d < e, we have

a2
dm �≡ ±1 (mod n), but a2

d+1m ≡ 1 (mod n).

Alternatively, we can rephrase this:

am �≡ 1 (mod n), but a2
dm �≡ −1 for any d with 0 ≤ d < e.

That is, we look at the numbers

am (mod n), a2m (mod n), . . . , a2
dm (mod n).

If am ≡ 1 (mod n), then we haven’t proven anything. If the sequence jumps from
−1 to 1, then we also haven’t proven anything. (But more on that later.) But when
the sequence jumps from something other than −1 to 1 in one step, then we can be
certain than n is composite.

When the number a allows us to prove compositeness of n, either because we
jump from something not congruent to ±1 to 1, or because an−1 �≡ 1 (mod n), we
say that a is a (Miller–Rabin) witness for the compositeness of n.

Example Let us show that 57 is composite.1 With most values of a, we will find that
a56 �≡ 1 (mod 57), so then we will already know that 57 is composite.

But maybe we get unlucky and choose a = 20; indeed, 2056 ≡ 1 (mod 57). Now,
we start dividing the exponent by 2: we find that

1There is a famous story about Alexander Grothendieck and the primality of 57. See [Jac04] for
one telling of the story, and some speculation about it.
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2028 ≡ 1 (mod 57),

2014 ≡ 1 (mod 57),

207 ≡ 20 (mod 57).

And we win! 20 is a witness to the compositeness of 57.

Note that this test did not help us at all with actually factoring 57; it only told us,
nonconstructively, that is must be composite.

Example There are also nonwitnesses. 703 is a composite number. However,

3702 ≡ 1 (mod 703), 3351 ≡ −1 (mod 703).

If a is a nonwitness for n, then we say that n is a strong pseudoprime for base a.

It turns out that there are many Miller–Rabin witnesses for odd composite num-
bers n:

Theorem 13.5 If n > 1 is odd and composite, then at least 75% of the numbers
from 1 to n − 1 are Miller–Rabin witnesses for the compositeness of n.

This result is nontrivial. See, for instance, [Con] for a proof.
As a result, if we want to test for the primality of n, we can pick a random a

with 1 ≤ a ≤ n − 1 and perform the Miller–Rabin test. If a is a witness, then we
know n is composite, and if a is a nonwitness, then we don’t know. But if we keep
picking more and more a’s, and every time we get nonwitnesses, then we increase
our confidence that n is actually prime. If n is actually composite, then the chance
of getting a nonwitness is at most 1

4 , so once we have picked k numbers, the chance
of getting a nonwitness is at most 1

4k , which quickly becomes very small.
However, there are occasional numbers for which all small primes are nonwit-

nesses. See [SW17] for the smallest examples.
While the Miller–Rabin test is probabilistic, it can be turned into a deterministic

test—if we assume the Generalized Riemann Hypothesis (GRH)! Eric Bach has
shown that, assuming the GRH, if n is an odd composite number, then there is a
witness a such that a ≤ �2(log(n))2�. As a result, instead of picking values of a
at random, we just start from a = 2 and go until we either find a witness or reach
�2(log(n))2�; if no witness is found in that range, then n is prime. The GRH is widely
believed to be true.

13.7 The Agrawal–Kayal–Saxena Primality Test

The first unconditional (i.e., not relying on the GRH or any other unproven re-
sult) polynomial-time primality test was due to Agrawal, Kayal, and Saxena in
2002 [AKS04]. The key idea is the following Lemma:



138 13 Clever Factorization Algorithms and Primality Testing

Lemma 13.6 Let a be such that gcd(a, n) = 1. Then, n is prime if and only if
(x + a)n ≡ xn + a (mod n).

Remark 13.7 In Lemma13.6, the two sides are polynomials in x . We say that two
polynomials f (x) and g(x) with integer coefficients are congruent modulo n if, for
every nonnegative integer k, the coefficients of xk in f (x) and g(x) are congruent
modulo n.

The proof is left for problem14.
Lemma13.6 looks like a primality test, but it isn’t a very good one: in order to

check whether or not n is prime, we have to compare roughly n coefficients and see
if they all match. This is way too slow!

However, we can be cleverer. We want to show that all the coefficients of (x +
a)n − (xn +a) are divisible by n. If so, this will remain true when we group together
some of the terms. Let us write fa(x) = (x + a)n − (xn + a), and suppose we have

fa(x) =
n−1∑

k=0

bkx
k .

What we will do is group together every r th term, for some well-chosen r , and see
if the sum of all those coefficients is divisible by n. That is, for 0 ≤ c < r , we let

ha(c) =
∑

0≤k≤n−1
k≡c (mod r)

bk .

If, for some choice of c and r , ha(c) �≡ 0 (mod n), then n must be composite: if n is
prime, then by Lemma13.6 ha(c) is a sum of a bunch of numbers, all of which are
multiples of n, so ha(c) must also be a multiple of n.

The Agrawal–Kayal–Saxena (AKS) algorithm works by making a careful choice
of values for r . Here it is, in all its glory:

Theorem 13.8 (Agrawal–Kayal–Saxena) The following algorithm checks whether
or not a number n is prime in polynomial time (in the number of digits of n):

• Check if n is a power, i.e., whether there exist integer a, b > 1 such that n = ab.
If so, n is composite. Otherwise, continue to the next step.

• Find the minimal r such that the order of r modulo n is greater than log(n)2. (The
order of r modulo n is the least positive integer k such that rk ≡ 1 (mod n).)

• For each a from 1 to r , check whether 1 < gcd(a, n) < n. If this ever happens,
then n is composite. (We’ve just found a factor, after all!) Otherwise, move on the
next step.

• If r ≥ n, then n is prime. Otherwise, move on to the next step.
• For each a from 1 to �√φ(r) log(n)� and each c from 0 to r , check if ha(c) ≡ 0
(mod n). If this is ever false, then n is composite. Otherwise, go on to the next
step.
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• If we have made it here, then n is prime.

See [AKS04] for a proof.

13.8 Problems

(1) Which of the following numbers are 20-smooth?

(a) 105 (c) 309 (e) 324 (g) 529
(b) 224 (d) 323 (f) 401

(2) Find a nonempty subset S of {70, 96, 120, 135, 189} such that the product of
the elements of S is a perfect square.

(3) (a) Suppose that a composite number n satisfies the Fermat test to base a, i.e.,
an−1 ≡ 1 (mod n). Show that n satisfies the Fermat test to base ab if and
only if it satisfies the Fermat test to base b.

(b) Show that if n is composite but not Carmichael, then n fails the Fermat test
to base a for at least 50% of those a with gcd(a, n) = 1 and 1 ≤ a ≤ n.

(4) Factor n = 140299 using the Pollard ρ algorithm.
(5) Use the quadratic sieve to factor 498319.
(6) Factor the following numbers using a clever technique (meaning, not trial divi-

sion) of your choosing:

(a) 8051 (c) 108781 (e) 1792939
(b) 10349 (d) 1337242

(7) Use the Miller–Rabin test to show that 1729 is composite.
(8) If 2p − 1 is prime, then p must also be prime. However, the converse is false.

Use the Miller–Rabin test to show that 229 − 1 is composite. (The smallest
counterexample is 211 − 1. Do that one instead if you prefer to work with
smaller numbers.)

(9) Use the AKS algorithm to show that 161 is composite.
(10) (a) The number N is the product of two n-digit primes p and q, where the first

more than n/2 digits of p and q are the same. Explain how to factor N (and
thus find p and q) given this knowledge.

(b) Factor 2130468073.
(11) We have seen various algorithms for attacking the discrete logarithm problem

and integer factorization. Using big O notation, howmany steps does it take for
these algorithms to work, for a “typical” case? (For example, it might be that for
certain special integers, it takes much longer to factor them than it does for most
integers. If so, you can ignore them. Similarly, some of these algorithms involve
some randomness, so you can assume that the random number generator isn’t
conspiring against you unreasonably.)
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(12) What happens if we use a linear polynomial instead of a quadratic polynomial
when applying the Pollard ρ algorithm? What is the running time, in terms of
big O notation?

(13) Show that if p is prime and a2 ≡ 1 (mod p), then either a ≡ 1 (mod p) or
a ≡ −1 (mod p). Find a counterexample if p is composite.

(14) Prove Lemma13.6.
(15) Show that if there are n possible birthdays, all equally likely, then the number of

people needed before the probability that two share a birthday is more than 50%
is roughly

√
2n log(2). (Hint: Sbe fznyy k, r gb gur k vf nccebkvzngryl rdhny

gb bar cyhf k.) Can you find an error term, i.e., can you write down a function
f (n) whose growth rate is smaller than that of

√
n such that the number of

people needed before the probability is 50% is
√
2n log 2 + O( f (n))?

(16) Show that if 6k + 1, 12k + 1, and 18k + 1 are all prime, then (6k + 1)(12k +
1)(18k+1) is a Carmichael number. (This doesn’t prove that there are infinitely
many Carmichael numbers, because we do not yet know if it happens infinitely
often that 6k + 1, 12k + 1, and 18k + 1 are all prime. We strongly believe this
to be the case, however.)

(17) It is often important to be able to choose a random integer from 1 to N ; this is
easily done. However, sometimes it is desirable to choose a random factored
integer from 1 to N . One can do this by first choosing a random integer and then
factoring it, but factoring is hard. Show that the following algorithm produces
a random integer from 1 to N , together with its prime factorization, quickly:

• Pick a random sequence N ≥ s1 ≥ s2 ≥ · · · ≥ st = 1 by choosing s1
uniformly in {1, . . . , N } and then choosing si+1 uniformly in {1, . . . , si }.

• Let r be the product of the prime si ’s.
• If r ≤ N , output r with probability r

N . Otherwise, start over from the begin-
ning.

In other words, show that the output of this algorithm is uniform on {1, . . . , N }.
(This algorithm comes from [Kal03].)

(18) Find an attack on the discrete logarithm problem based on the Pollard ρ algo-
rithm.

(19) Let ψ(x, y) denote the number of y-smooth numbers ≤ x . Find the best upper
and lower bounds you can on ψ(x,y)

x , the proportion of y-smooth numbers up to
x . (You may find it convenient to write y = x1/u for some u.)

(20) Show that if 1 ≤ u < 2, then ψ(x,x1/u)
x ≈ 1 − log(u). (You may use the Prime

Number Theorem, which says that the number of primes ≤ x is roughly x
log(x) .)



Chapter 14
Elliptic Curves

14.1 Rational Points on a Circle

The next cryptographic topic we will discuss will be elliptic curves. But before we
get to the cryptography, we must define elliptic curves. And even before that, we will
start with circles to get warmed up.

What are the rational points on the circle x2 + y2 = 1? That is, for which points
(x, y), where both x and y are rational, is x2 + y2 = 1?Canwe describe themnicely?

Here are some key observations (see Figure 14.1):

(1) Suppose we have two rational points (x0, y0) and (x1, y1) on the circle. Then,
the slope of the line connecting them is y1−y0

x1−x0
. The relevant feature for us is that

this line has a rational slope.
(2) If (x0, y0) is a rational point, and t is a rational number, we can form a line

through (x0, y0)with slope t . This line will intersect the curve at one more point,
and that point will be rational as well. Why is that?Well, its x-coordinate will be
rational because it is the solution of a quadratic equationwith rational coefficients
that already has a rational root. So the other root will be rational too. Now, the
y-coordinate is rational because it is on the line y = y0 + t (x − x0), so it’s a
sum and product of rational numbers. (If this sort of reasoning bothers you, you
can work out the other root directly and see that it is indeed rational, as we do
below.)

Hence, we can describe all the rational points on the circle by first finding one
rational point, and then looking at all the lines with rational slopes through that point
and finding the other intersection with the circle.

One convenient way of doing this is to start with the point (−1, 0) on the circle.
Suppose we look at the line with slope t through (−1, 0). Where does it intersect the
circle again? When we do the calculation out, we see that it intersects again at

(
1 − t2

1 + t2
,

2t

1 + t2

)
.

© Springer International Publishing AG, part of Springer Nature 2018
S. Rubinstein-Salzedo, Cryptography, Springer Undergraduate
Mathematics Series, https://doi.org/10.1007/978-3-319-94818-8_14

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94818-8_14&domain=pdf


142 14 Elliptic Curves

Figure 14.1 Two rational
points on the circle and the
line connecting them
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Or, letting t = m
n , the point becomes
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)
.

Corollary 14.1 Let (a, b, c) be a primitive Pythagorean triple, so that a2 + b2 = c2

and gcd(a, b) = 1. Then, for some integers (m, n) we have either (a, b, c) = (m2 −
n2, 2mn, m2 + n2) or (a, b, c) = (2mn, m2 − n2, m2 + n2).

This is because if (a, b, c) is any Pythagorean triple, then (a/c, b/c) is a rational
point on the circle. Conversely, if (a/c, b/c) is any rational point on the circle, then
a2 + b2 = c2, so (a, b, c) is a Pythagorean triple. It will be in lowest terms if a/c
and b/c are.

There are some restrictions we should put on m and n in order to get primitive
Pythagorean triples: gcd(m, n) should be 1, and m and n should not both be odd.
(What happens when they are both odd? Then m2 − n2, 2mn, and m2 + n2 are all
even, so this triple isn’t primitive.)

What values of m and n give us interesting triples?

m n (a, b, c)
2 1 (3,4,5)
3 2 (5,12,13)
4 1 (8,15,17)
4 3 (7,24,25)
5 2 (20,21,29)
5 4 (9,40,41)

So, we easily recover many of our favorite primitive Pythagorean triples in this way.
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14.2 Elliptic Curves

What are elliptic curves? First of all, what aren’t they? They aren’t ellipses. They’re
called that for historical reasons: they were first studied due to their appearance in
the study of elliptic integrals, which arose out of trying to find the arc length of an
ellipse.

Definition 14.2 An elliptic curve is a curve of the form

y2 = x3 + ax + b,

where a and b are such that 4a3 + 27b2 �= 0.

The 4a3 + 27b2 �= 0 bit says that the cubic polynomial x3 + ax + b has no
repeated roots.

An elliptic curve looks like one of the following two curves, depending onwhether
the cubic equation has 1 or 3 real roots (see Figure 14.2).

Elliptic curves are wonderful things, and they are important in many areas of
mathematics, including number theory, algebraic geometry, and topology. And they
are also important in cryptography. Themain reason that they are important is because
there is an abelian group on an elliptic curve: the points of the elliptic curve will
be the elements of the group. Thus, it will be possible to add points on an elliptic
curve. We might first hope that we just add the x-coordinates and the y-coordinates,
but this doesn’t work: when we do that, we won’t usually get another point on the
elliptic curve.

x

y y2 = x3 − 2x+ 2
y2 = x3 − 2x

x

y

Figure 14.2 Elliptic curves of the form y2 = f (x). Top: f has one real root. Bottom: f has three
real roots
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Figure 14.3 Elliptic curve
addition

y2 = x3 − 2x

x

y

P

Q

P +Q

To define the group structure, we first have to add a point to the elliptic curve,
a point at infinity. We will think of this point as lying on every vertical line and no
non-vertical line. We will make the point at infinity into the identity of the group.
The group operation is called addition. Take two points P and Q on an elliptic curve
E . Draw the line connecting P and Q; this line intersects the elliptic curve at a third
point. Then, we reflect this point across the x-axis; this point is P + Q. See Figure
14.3 for a picture.

We can write down a formula for addition as well: if we wish to add the points
P = (x1, y1) and Q = (x2, y2) on the elliptic curve y2 = x3 + ax + b, then wemust
first construct the line connecting them, which has slope

m = y2 − y1
x2 − x1

and intercept c = y1 − mx1, so that the equation of the line through P and Q is
y = mx + c. The points of intersection of this line with the elliptic curve satisfy the
equations

y2 = x3 + ax + b, y = mx + c.

Substituting y = mx + c into the equation of the elliptic curve gives
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(mx + c)2 = x3 + ax + b. (14.1)

Now, we know two solutions for x , namely, x1 and x2. Let us say that the third point
is (x3, y3). Moving everything in (14.1) to one side, we get

x3 − m2x2 + �x + � = 0,

where I don’t care what the �’s are. This is because we know that the interpretation
of the opposite of the quadratic term as the sum of the roots: m2 = x1 + x2 + x3.
Thus, we have x3 = m2 − x1 − x2. Furthermore, y3 = mx3 + c. Finally, P + Q =
(x3,−y3).

Example Consider the elliptic curve E : y2 = x3 + x + 6, and let P = (2, 4) and
Q = (3,−6). These are both points on E . Let us compute P + Q. The line through
P and Q is y = −10x + 24. Hence, with the above notation, we have m = −10
and c = 24. Their sum is P + Q = (x3,−y3), where x3 = m2 − x1 − x2 = 95 and
y3 = mx3 + c = −10 × 95 + 24 = −926. Thus P + Q = (95, 926).

There are some slight subtleties here: if we wish to double a point (i.e., add it to
itself), then we make a line tangent to the curve at that point. Also, if two points are
on the same vertical line, then that line won’t contain a third point on the curve —
except the point at infinity! So the sum of two points on the same vertical line (i.e.,
(x, y) and (x,−y)) is the point at infinity.

It is also important for us to write down the formula for doubling on the elliptic
curve. If P = (x1, y1) and we wish to compute 2P , then we must compute the slope
of the tangent line to E at P . It is a standard exercise in calculus to show that this
slope is

m = 3x2
1 + a

2y1
.

The computation for 2P = (x3, y3) is now similar: we find the other point of
intersection of the line y = mx + c with c = y1 − mx1 and the elliptic curve
y2 = x3 + ax + b. The formula is essentially the same, except instead of having
x3 = m2 − x1 − x2, we have x3 = m2 − 2x1.

Example On the same elliptic curve y2 = x3 + x + 6, let us compute 2P , where
P = (2, 4) again. We have m = 13

8 and c = 13
4 . Hence, we have

2P =
(

−87

64
,
747

512

)
.

Note that we doubled a point with integer coordinates, but we only ended up with a
point with rational coordinates. This is typical.

In fact, without going through all this stuff about writing down the line, we can
give an explicit x-coordinate for 2P: if P = (x, y), then the x-coordinate of 2P is
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x4 − 2ax2 − 8bx + a2

4(x3 + ax + b)
. (14.2)

The y-coordinate is then one of the two square roots of this number; it is not too
difficult (by drawing a picture, say) to tell which square root we want.

Remark 14.3 If P is a point on an elliptic curve, then the x-coordinate of n P depends
only on the x-coordinate of P . These functions of the x-coordinate, like the one
in (14.2), are known as Lattès maps. These maps are very important in dynamical
systems. See problem10 in Chapter 15.

Most of the group properties are easy to check, but one of them is hard, and that
is associativity. One, rather uncivilized, way of checking this is to use the formula
for what P + Q is in terms of the coordinates of P and Q, and then go through the
rather horrific computations needed to show that it is indeed associative. Generally,
people prefer to check associativity in fancier ways, and theywill throw around terms
like “the Riemann–Roch theorem” and possibly “complex tori” and “the Weierstraß
℘-function.” Those are wonderful topics that I encourage you to learn about, not
necessarily immediately, but eventually.However,we’ll just accept that this operation
is indeed associative and move on.

Remark 14.4 If we add two rational points on an elliptic curve, their sum is also a
rational point, at least if we consider the point at infinity to be a rational point (which
it fully deserves to be!). This is completely analogous to the case of the circle, where
if we intersect a line with rational slope passing through a rational point of the circle,
with the circle, then the other point of intersection is rational. (The rational points on
a circle also form an abelian group, but in a different way.) The proof is completely
analogous. The conclusion is that the rational points on an elliptic curve form a group.

There is much that is known about the rational points on elliptic curves, as well
as many open problems. We will return to this topic in Section 15.4.

14.3 Elliptic Curves Over Finite Fields

However, it is not elliptic curves over the rational numbers that will be of primary
interest to us in studying cryptography (although they are very interesting when
studying number theory). Instead, we’ll be interested in elliptic curves over finite
fields! What does an elliptic curve over Fp mean? Well, it’s the same sort of thing
as an elliptic curve over R, but now x and y are in Fp. So, if E is the curve y2 =
x3 + ax + b, then we will write E(Fp) to mean all the pairs of numbers (x, y) with
x, y ∈ Fp so that y2 ≡ x3 + ax + b (mod p), together with the point at∞. We will
similarly refer to E(Q), E(R), E(Z), and other such things, to refer to the solutions
of y2 = x3 + ax + b such that x and y are in Q, R, or Z, together with the point at
∞.
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There is one important thing towatch out for here: if E is an elliptic curve such that
a and b are inZ, thenwe don’t necessarily get an elliptic curve overFp by considering
the solutions modulo p. Recall that in order for y2 = x3 + ax + b to be an elliptic
curve, we required that 4a3 + 27b2 �= 0. That’s still true over Fp, but now equality
in Q is replaced by equality in Fp, also known as congruence: 4a3 + 27b2 �≡ 0
(mod p). If 4a3 + 27b2 ≡ 0 (mod p), then we do not get an elliptic curve over Fp,
but rather a different sort of beast. Fortunately, it turns out that if E is an elliptic
curve with coefficients in Z, then there are only finitely many of these “bad” primes1

where 4a3 + 27b2 ≡ 0 (mod p), since these primes are simply the primes dividing
4a3 + 27b2.

It probably isn’t clear in what sense a bunch of points over Fp (and a point at ∞)
deserves to be called a curve, since there isn’t really any geometry going on there,
but we’ll call it one by analogy with the situation over the real numbers. (There is a
much more general definition of a curve that makes an elliptic curve over Fp into an
honest curve, but that’s beyond the scope of this book.)

When we looked at elliptic curves over R or over Q, we saw that we could add
points using a geometric construction. This geometric construction involving lines
no longer makes sense. However, we also wrote down a formula for adding them, and
that formula still makes perfect sense over Fp. Now, we don’t have any geometric
interpretation of adding points on the elliptic curve, but the formulae we worked out
before still work, so we can still add points on an elliptic curve over Fp. The points
still form a group.

Example Let E be the elliptic curve y2 = x3 + x + 1. We will find all the points of
E(F5). They are the following:

∞, (0, 1), (0, 4), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2), (4, 3).

For example, 32 ≡ 43 + 4 + 1 (mod 5), so (4, 3) ∈ E(F5).

For large finite fields, it might be a pain to enumerate the points, so we can do
this using Sage:

E = EllipticCurve(GF(5),[1,1])

E.points()

The GF(5) means F5. (GF stands for “Galois field,” which is another name for
a finite field, although somewhat dated.) To get Sage to work with the elliptic curve
y2 = x3 + ax + b, replace the [1,1] with [a, b]. The command E.points() gives
us all the points. It puts an extra :1 at the end, for reasons that we won’t get into now.
The lone exception is the point (0:1:0), which is the point at infinity.

Sage is also happy to add points for us, and we really don’t want to have to do
that by hand! Suppose we want to add the points (0, 1) and (2, 1). To do this we give
them names and then tell Sage to add:

1Officially known as “primes of bad reduction.”
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P = E(0,1)

Q = E(2,1)

P+Q

and Sage tells us that the answer is (3:4:1), or (3, 4). We can also type 2*P to get it
to add P to itself.

14.4 Point Counting on Elliptic Curves

Can we estimate by pure thought how many points E(Fp) should contain? Here
is the idea: an elliptic curve is the set of points of the form y2 ≡ f (x) (mod p),
together with one more point at infinity. Now, we have two points on E with a given
x-coordinate if f (x) is a nonzero square modulo p, one if f (x) = 0, and none if
f (x) is not a square modulo p. So, how often is f (x) a square modulo p?
Well, f (x) (mod p) is basically random, so we can ask how often a random

element of Fp is a square modulo p. Disregarding 0 for now, an element of F×
p either

has two square roots, or it has none. Since there are p − 1 elements of F×
p to square,

and their squares come in pairs since a and −a have the same square modulo p, half
of the elements of F×

p are squares, and half of them aren’t.
Thus, since we think that f (x) (mod p) is basically random, we think it should

be a square something like half the time, so with probability 1/2 there will be two
points on E with a given x-coordinate, and with probability 1/2 there will be none.
So, the average number of points with a given x-coordinate is 1. (We ignored the
ones with f (x) ≡ 0, but they contribute 1 as well, so we’re still safe!)

Thus, we expect around p points in E(Fp), together with the point at infinity, for
a total of p + 1. (See problem14 for more details of this calculation.) This analysis
is indeed correct. There is a more precise version, called the Hasse–Weil bound:

Theorem 14.5 (Hasse–Weil bound, [Has36a, Has36b, Has36c]). Let E be an ellip-
tic curve over Fp. Let #E(Fp) be the number of points in E(Fp). Then

|#E(Fp) − (p + 1)| ≤ 2
√

p.

In other words, p + 1 isn’t too far off.

14.5 A Smattering of Group Theory

Since we have only been introducing group theory on a “need-to-know” basis, I have
to give you a collection of facts about group theory that are needed for the study of
elliptic curves.
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Definition 14.6 Let G be a finite group (i.e., one with finitely many elements) with
identity element e, and let g ∈ G be an element. Then, the order of g is the smallest
n > 0 so that gn = e.

The following theorem about orders of elements, due to Lagrange, is probably
the first interesting theorem in group theory:

Theorem 14.7 (Lagrange). The order n of an element g divides the number of ele-
ments in the group G.

Proof The idea is to partition the group G up into several sets, each of size n, so that
every element of G is in exactly one of them. To do this, start with some a ∈ G, and
consider the set Ha = {a, ag, ag2, . . . , agn−1}. We claim that all these elements are
different, so that Ha consists of n elements of G. To see this, suppose that two of
them were equal, say agi = ag j , where i < j . Rearranging a bit, this is equivalent
to g j−i = e. But n is the order of g, i.e., the least positive integer n such that gn = e,
and 0 < j − i < n. Thus, this cannot be, and indeed all the elements agi in Ha are
distinct.

Now, every element b ∈ G is contained in some such set Ha , since b ∈ Hb. Now,
suppose that two of these sets, say Ha and Hb, have an element c = agi = bg j in
common. Then, we claim that Ha = Hb. The reason is that if we have an arbitrary
element agk ∈ Ha , then we can write this same element as

cgk−i = bg jgk−i = bg j+k−i ,

where we take the exponent j + k − i modulo n if necessary. Thus, the number of
such distinct sets Ha is the size of G divided by n, which must be an integer. Hence,
n divides the number of elements in G. �

As a consequence, if a group has a prime number p of elements, then it is a cyclic
group, and every element other than the identity has order p.

Definition 14.8 If in an abelian group G, n · g = g + g + · · · + g︸ ︷︷ ︸
n

= e, then we say

that g is an n-torsion element (or n-torsion point if G consists of points on an elliptic
curve). We write G[n] for the set of n-torsion elements in G.

Remark 14.9 In an abelian group, G[n] is actually a group: if we add two n-torsion
elements, we get another n-torsion element, and similarly with inverses.

Another thing that will be useful is the notion of a direct product. Let G and H
be two groups. Then, we can form a new group G × H out of them, as follows: the
elements of G × H are ordered pairs (g, h), where g ∈ G and h ∈ H . We multiply
two elements of G × H using the rule

(g1, h1)(g2, h2) = (g1g2, h1h2).
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This multiplication turns G × H into a group. (See problem11.)
We can iterate this direct product construction with three or more groups: if

G1, . . . , Gn are groups, then we can form the direct product G1 × · · · × Gn . (This
also works for infinite products, although in this case there are two different sorts
of “infinite products” we can form. The more obvious of the two is called the direct
product, and the slightly more subtle one is called the direct sum.)

14.6 The Group Structure on E(F p)

It turns out that E(Fp) can always be generated by at most two points; this is specific
to the case of a finite field and is not always true over other fields like Q. Suppose
that P ∈ E(Fp), and let 〈P〉 denote the cyclic group consisting of all multiples of P
in E(Fp), i.e., the group generated by P . Then, the fact that E(Fp) can be generated
by (at most) two elements can be translated as saying that E(Fp) = 〈P〉 × 〈Q〉 for
some P, Q ∈ E(Fp). (This direct product decomposition is something special about
abelian groups, and it is very far from being true for nonabelian groups.)

Sometimes E(Fp) is a cyclic group, meaning that it can be generated by a single
element, but this does not always happen.However,when it does happen that E(Fp) is
cyclic, then E might be a good elliptic curve for certain aspects of cryptography, such
as the elliptic curve versions of Diffie–Hellman and ElGamal. (However, not always:
if #E(Fp) = p, then E(Fp) is definitely cyclic, but E is terrible for cryptography, as
shown in [Sma99]. Curves E with #E(Fp) = p are called anomalous curves.)

14.7 Elliptic Curve Diffie–Hellman

Naturally, we’re interested in elliptic curves for their applications to cryptography.
Cryptosystems involving discrete logarithms over Fp and factoring are pretty good,
but there are some that are even more secure, coming from elliptic curves.

For example, there is an elliptic curve version of Diffie–Hellman, first introduced
independently by Neal Koblitz and Victor Miller in the two papers [Kob87, Mil86].
More generally, whenever we have a finite cyclic group G, we can create a version
of Diffie–Hellman. Its efficacy as a cryptosystem depends on several factors, most
notably whether it is easy to solve the discrete logarithm problem in G. Another
important factor is the computational complexity of performing the group operation
in G.

The elliptic curve version of Diffie–Hellman works pretty much the same way as
the standard Diffie–Hellman, but instead of picking a generator g ofF×

p , we start with
a point on an elliptic curve. More precisely: Alice and Bob pick a prime p, an elliptic
curve E over Fp, and a point P on E . These three things are public knowledge.
Then, Alice picks some number a and computes a P , and Bob picks some number
b and computes bP . They send these points to each other. Then, Alice computes
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a(bP), and Bob computes b(a P). These are the same point: abP . It is hard for Eve
to reconstruct abP from knowing P , a P , and bP .

This is analogous to the version of Diffie–Hellman we saw before: just think of
P as being like g.

Similarly, there is an elliptic curve version of ElGamal. It starts the same way as
elliptic curve Diffie–Hellman: Alice picks a prime p, an elliptic curve E over Fp,
and a point P on E . She also picks a number a and computes a P . The prime p, the
elliptic curve E , and the points P and a P are all public knowledge. Now, to send
a message m, which is a point on E , Bob picks a random b and computes bP and
m + abP , and those two together are his ciphertext. To decrypt the message, Eve
computes (m + abP) − a(bP) = m and recovers the message.

Let’s try it out!

Example Let E be the elliptic curve y2 = x3 + 5x + 6 over F191. This curve has 196
points, and the group is a cyclic group generated by a single point: P = (178, 185).
You can find this out using Sage by typing

E = EllipticCurve(GF(191),[5,6])

E.gens()

We will choose P as our point on E . Suppose we’re Bob, and we don’t know what
Alice has chosen, but she tells us that a P = (125, 141). Now, we would like to
give Alice the message (4, 89). We randomly choose a b, and let us say that we
randomly choose b = 132, so that bP = (161, 178). We compute 132(a P) + m and
get (4, 102). So, our ciphertext consists of the points (161, 178) and (4, 102).

In order for Alice to decrypt it, she must remember what a is, and a = 67. She
can recover abP , since it is 67(bP) = (64, 6). Now, she can recover the message,
since it is (4, 102) − (64, 6) = (4, 89), which is correct.

There is at least one serious point here: how does Bob encode something as a
point on E? First, he encodes it as a number modulo p, and then he wants to encode
it as a point with that x-coordinate. But there’s a problem! What if that number isn’t
the x-coordinate of any point on E? Then, he’s stuck! So, instead, what he does is to
associate it to a range of many numbers, perhaps 100 of them, and then he finds one
of them that’s the x-coordinate of a point on E . Since each point has a 50% chance
of being an x-coordinate of a point on E , he’s almost certain to find at least one that
works!

Example Let’s see an example of how to perform encryption with elliptic curve
ElGamal using a message consisting of text rather than numbers or points on an
elliptic curve. The first thing that Alice and Bob must agree on, over a public channel
if desired, is the protocol for converting text to numbers. Let us suppose that they
elect to use the very simple method of encoding A as 1, B as 2, and so forth. The next
thing that Alice must do is to choose a prime p and an elliptic curve over Fp. She
takes p = 270001 and the elliptic curve
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E : y2 = x3 + 154302x + 251808.

The group of points over Fp is cyclic of order 269893, generated by the point P =
(205152, 143044). Alice also chooses a number a as her private key. I won’t tell you
what it is, but Q = a P = (73373, 78463). Her public key then consists of the data
of the prime p, the elliptic curve E , the generator P , and the point Q. These become
public information.

Now, Bob wishes to send Alice a message. Let us suppose his message is hello.
In numbers, this is 8, 5, 12, 12, 15. First, hemust convert each of these letters/numbers
to points on E . He has enough space that he can afford to assign to each letter a range
of size 10000: the letter h (number 8) corresponds to the range 80000–89999, for
instance. He must find a point on E with x-coordinate in the range 80000–89999, so
there are tons of choices available to him. Indeed, 80000 works. He does the same
thing for the other letters, and he finds that his message corresponds to the following
sequence of points on E :

(80000, 80609), (50001, 30531), (120004, 83763),

(120004, 83763), (150002, 18516).

For each one, Bob must choose a random b. It is important to use a different value
of b each time, so that the two l’s get encoded differently, so that Eve cannot tell
that they are encryptions of the same letter, and thus get a hint of the message. He
chooses the following five values of b:

14415, 61572, 9190, 151600, 78033.

His encryption for the first letter consists of the two points bP and bQ + M . He
computes these and gets

bP = (232531, 6816), bQ + M = (173346, 268989).

He encrypts the other four letters in the same way, so that his entire message consists
of the following ten points:

(232531, 6816) (173346, 268989)

(15538, 87103) (191306, 84979)

(202639, 185807) (99364, 236398)

(165778, 179250) (144259, 248915)

(103945, 109461) (238572, 200292).

Each line corresponds to a single character in the message. This seems rather inef-
ficient, but of course the protocol for turning messages into points can be done in
a more concise manner, and it’s probably a good idea to do some blocking as we
discussed for RSA, even though ElGamal doesn’t suffer from the same flaw with
respect to unblocked messages that RSA does.
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14.8 Why Elliptic Curves?

Why would we use elliptic curve Diffie–Hellman over normal Diffie–Hellman? One
reason is the existence of specialized attacks on the discrete logarithm problem over
F

×
p that do not work over other abelian groups like elliptic curves. The most famous

of these attacks is the index calculus that we discussed in Section 11.7. The existence
of such attacks means that in order for normal Diffie–Hellman to be secure, we need
to use a very large prime p. But since these methods don’t work for elliptic curve
Diffie–Hellman, we can get away with using a smaller prime p in the elliptic curve
case, which is more efficient.

For cryptographic purposes, itwould be great to have an abelian group that “admits
no tricks.” That is, there is nothing special about it that makes it easier to deal with
than some other abelian groups. To take an extreme example, the cyclic group Z/nZ
under addition is bad cryptographically because if we know g and ag, then it is easy
to compute a: we can do this by division modulo n. This operation is outside the realm
of the group Z/nZ, but nonetheless an attacker can take advantage of its existence:
as the adage goes, all is fair in love, war, and cryptanalysis!

The multiplicative groups (Z/pZ)× are much more secure than Z/nZ, but they
too suffer from specialized attacks that make solving the discrete logarithm problem,
while not really easy, at least doable for a larger range of primes p than one might
expect. Elliptic curves, at least well-chosen ones, appear to be rather immune to
specialized attacks, but are still not too hard to compute with.

In fact, there are methods of “converting” attacks on the discrete logarithm prob-
lem for F×

q for a prime power q = pr into attacks on the discrete logarithm problem
for elliptic curves overFp; see, for instance, [Die11]. However, for well-chosen ellip-
tic curves, these attacks drastically increase the size of the cyclic group by forcing
r to be very large, making them impractical and certainly much slower than attacks
against F×

p of similar key size.
There are other advantages to elliptic curve Diffie–Hellman as well, due to the

fact that elliptic curves carry such a rich structure. For example, there is a three-way
key exchange with elliptic curve Diffie–Hellman [Jou04]. That is, Alice, Bob, and
Charlie want to come up with a common key. They can do this using the classical
Diffie–Hellman key exchange, if they have several rounds of exchanging information.
However,with elliptic curves, they can comeupwith a commonkeywith only a single
roundof information exchange. This three-waykey exchange relies on a gadget called
the Weil pairing on elliptic curves, that is beyond the scope of this book. We do not
know of a four-way one-round key exchange using elliptic curves. However, Sanjam
Garg, Craig Gentry, and Shai Halevi have recently proposed a one-round n-way key
exchange using entirely different methods [GGH13].
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14.9 Problems

(1) Find a rational point on the elliptic curve y2 = x3 + x + 3. Howmany can you
find? How many of them have integer coordinates?

(2) Show that the cubic polynomial x3 + ax + b has a double zero (i.e., it factors
as (x − c)2(x − d) or (x − c)3) if and only if 4a3 + 27b2 = 0.

(3) We parametrized the rational points on the circle x2 + y2 = 1 as
(
1−t2

1+t2 ,
2t

1+t2

)
,

togetherwith the point (−1, 0). Parametrize the rational points on the hyperbola
x2 − 2y2 = 1 in a similar way, involving some parameter t .

(4) Use your answer to the previous problem to find interesting integer solutions
to x2 − 2y2 = z2.

(5) Consider a conic section C : ax2 + bxy + cy2 + dx + ey + f = 0, over the
field Fp. What is the maximum number of points it can have in Fp? What if C
is nondegenerate (i.e., b2 − 4ac �= 0)?

(6) Let E be an elliptic curve over a field F . Let P and Q be a point on E . What
are the possible values for the number of points Q on E such that 2Q = P?

(7) The curves y2 = x3 and y2 = (x + 2)(x − 1)2 are not elliptic curves, because
they satisfy 4a3 + 27b2 = 0.

(a) Show thatwe can parametrize all their rational points in a convenientmanner.
(b) What happens if we try to perform the group law on these curves? Are these

operations related to other more familiar groups?

(8) Let E be the elliptic curve y2 = x3 + 2x + 4. Write down all the points of
E(F5). Do the same for E(F7) and E(F11).

(9) Alice and Bob decide to use elliptic curve Diffie–Hellman with the elliptic
curve y2 = x3 + 5x + 17 over F89 with P = (68, 68). Alice chooses a = 56,
and Bob chooses b = 32. What is their shared key?

(10) Show that if G is an abelian group and n is a positive integer, then G[n] is a
group.

(11) Check that our definition of multiplication on G × H actually turns G × H
into a group.

(12) Suppose that P is a 2-torsion point on an elliptic curve E , and that P is not the
point at infinity. Show that the y-coordinate of P is 0.

(13) Show that P is a 3-torsion point on an elliptic curve E if and only if either
P = ∞ or P is an inflection point of E . (An inflection point of a curve is one
at which the second derivative is 0. Equivalently, a point is an inflection point
if and only if the multiplicity of intersection between the curve and the tangent
line is > 2.)

(14) (a) For howmany a ∈ Fp is a a square? (That is, for howmany a ∈ Fp is there
some b for which a ≡ b2 (mod p)?)

(b) Suppose f (x) is a “random” function from Fp to itself. How many solu-
tions do you expect to have to the equation y2 ≡ f (x) (mod p)? (Your
answer should be an estimate, which depends on p but not on f . The exact
number should depend on f , so your answer won’t be exactly right.)
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(15) Let E be the elliptic curve y2 = x3 + ax + b defined over a field F in which
6 �= 0, and define its j-invariant to be

j (E) = 1728 × 4a3

4a3 + 27b2
.

Show that two elliptic curves E : y2 = x3 + ax + b and E ′ : y2 = x3 + a′x +
b′ have the same j-invariant if and only if there is some number c such that
a′ = c2a and b′ = c3b. (In other words, the elliptic curves are the same up to
isomorphism, or, roughly speaking, scaling.) Note that c need not lie in F ; we
may first have to extract square roots or cube roots.

(16) Show that, for every j ∈ F , where F is a field with 6 �= 0, there is an elliptic
curve defined over F with j-invariant j . Hence, the j-invariant parametrizes
elliptic curves up to isomorphism, in the sense that the j-invariant gives a
bijection between F and the set of elliptic curves over F up to isomorphism.



Chapter 15
The Versatility of Elliptic Curves

Elliptic curves come up everywhere in mathematics. We will now look at some of
their uses in unexpected places. In this chapter, we will discuss some of these uses for
elliptic curves. In particular,wewill discuss a factorization algorithmbasedon elliptic
curves, as well as some applications of elliptic curves over Q and Z to Diophantine
equations. Before we can get to the elliptic curve factorization algorithm, we start
with a non-elliptic curve factorization algorithm, that carries some of the same ideas
as the elliptic curve method. This is the Pollard p − 1 algorithm.

15.1 Pollard’s p− 1 Factorization

Let’s supposewewish to factor a number n, and that p is a prime factor of n (unknown
to us). We know from Fermat’s Little Theorem that if we pick any a not a multiple of
p, then a p−1 ≡ 1 (mod p), and more generally that for any integer k, ak(p−1) ≡ 1
(mod p).

So, here’s a possible method for finding a factor of n: take some random number
a and compute s = am − 1 for some multiple m of p − 1. Since s is a multiple of p,
p | gcd(s, n), so unless we are unlucky and s is already a multiple of n, gcd(s, n) is
a proper divisor of n, and we have found a factorization. In the case that n = pq is
the product of two primes, we have the full factorization.

But so far, we do not know how to find anm such thatm is a multiple of p − 1. In
general, this is quite hard. However, if p − 1 is B-smooth for some relatively small
B, then it is not so hard.

Suppose we know that p − 1 is B-smooth, for some B. Then, we can write

p − 1 = 2e23e3 · · · qeq ,
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where q is the largest prime ≤ B, and for each prime � ≤ B, we have e� ≤ b� :=
�log�(p − 1)�. So, if we let

m = 2b23b3 · · · qbq ,

then m is definitely a multiple of p − 1, so we can let s = am − 1 above, and this
works.

Except that we still don’t know p, so it is hard to compute the b�’s. But that’s
okay; we just increase them. Instead, let c� := �log� n�. Clearly, c� ≥ b�, so we can
safely choose

m = 2c23c3 · · · qcq .

This is a factorization algorithm known as the Pollard p − 1 algorithm [Pol74].
In order to implement it effectively, we need to be slightly careful about how we
perform the computations. Note that we do not need to know s exactly, and its exact
computation is very slow as s is extremely large. Instead, we only need to know s
(mod n). Thus, when we compute powers of a, we may do so modulo n.

The above algorithm only works when p − 1 is B-smooth, and in practice, we do
not know a smoothness bound for p − 1 in advance. Thus, it might make sense not
to choose a smoothness bound in advance, but rather to create some iterative version
that allows for an increase in smoothness as we go on.

Note also that, since we are computing numbers like a2
c2 3c3 ···qcq

(mod n), we can
compute a2 = a2

c2
(mod n), then a3 = a3

c3

2 (mod n), then a5 = a5
c5

3 (mod n), and
so forth.

Based on the above, here is a possible implementation of the Pollard p − 1 algo-
rithm:

(1) Pick some integer a, and don’t do anything stupid like taking a = 1.
(2) For each prime q, let cq = �logq n�.
(3) Let qi denote the i th prime. Let a2 = a2

c2
(mod n).

(4) Compute g = gcd(a2 − 1, n). If 1 < g < n, then g is a factor of n, and we have
factored n. Otherwise, continue.

(5) Suppose we have computed aqi−1 , and we have not yet found a factor of n. Then,
let

aqi = a
q
cqi
i

qi−1 (mod n),

and compute g = gcd(aqi − 1, n).
(6) If g = 1, return to step (5). If g = n, then go back to step (1) and choose a

different value of a. If 1 < g < n, then we have found a factor of n, and we’re
done.

Here is a Sage implementation of the above:

def pollardfactor(n,a):

q = 2

while True:
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g = gcd(a-1,n)

if g>1:

return g

cq = floor(log(n,q))

a = power_mod(a,qˆcq,n)

print q, a

q = next_prime(q)

Example Let n = 57811239209. This number has a prime factor p such that
p − 1 only has tiny prime factors. Thus, it is extremely quick to factor using
the pollardfactor function above. Indeed, here is the output of running
pollardfactor(n,3):

2 24013905498

3 55425308742

5 38612217553

8101

Thus, 8101 = 22 × 34 × 52 + 1 is a factor of n. The other factor is q = 7139309,
but that didn’t matter. Indeed, q − 1 is not especially smooth: its largest prime factor
is 6089.

This algorithm works very well when n has a prime factor p for which p − 1
is B-smooth for some small B because if there are π(B) primes up to B, then the
algorithm only requires π(B) passes through the loop. Again, we see the value of
safe primes in cryptography: if for every prime factor p of n, p−1

2 is prime, then the
Pollard p − 1 algorithm is very slow. More generally, if p − 1 has some large prime
factor, then this algorithm is still slow.

What can we do about this? Why is p − 1 special when factoring?
In fact, it isn’t really. There is a modification of the Pollard p − 1 algorithm,

known as the Williams p + 1 algorithm, which is fast if p + 1 is smooth [Wil82].
More generally, Bach and Shallit [BS89] produced an algorithm that factors n quickly
if �k(p) is smooth for some cyclotomic polynomial �k ; the first several cyclotomic
polynomials are

�1(n) = n − 1

�2(n) = n + 1

�3(n) = n2 + n + 1

�4(n) = n2 + 1

�5(n) = n4 + n3 + n2 + n + 1

�6(n) = n2 − n + 1.
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Ideally,wewould like to be able to replace p − 1 by other numbers close to p thatmay
be smooth. We can do so using elliptic curves, but before we can describe Lenstra’s
elliptic curve factorization, we need to talk about elliptic curves over Z/nZ, where
n is composite.

15.2 Elliptic Curves Over Z/nZ

Given an elliptic curve y2 = x3 + ax + b in short Weierstraß form, we can consider
its solutions modulo n for any n. (For technical reasons, we usually want n not to be
divisible by 2 or 3, since elliptic curves “should” look a bit different in those cases.
In these cases, we can only write an elliptic curve in the form y2 + a1xy + a3y =
x3 + a2x2 + a4x + a6. See if you can understand why I named the coefficients in
this peculiar manner.) This is “usually” an elliptic curve over Z/nZ, but remember
that we need to be a bit careful: in order for y2 = x3 + ax + b to be an elliptic curve
over a field like Fp, we need 4a3 + 27b2 �= 0 in Fp (i.e., 4a3 + 27b2 �≡ 0 (mod p)),
since if 4a3 + 27b2 = 0, then the cubic x3 + ax + b has a double or triple root.

Over Z/nZ, several things are more subtle, and we will discuss the correct gen-
eralizations shortly; as we will soon see, we need something a bit stronger than just
that 4a3 + 27b2 �= 0 in Z/nZ. Before we describe the precise criterion needed for
y2 = x3 + ax + b to be an elliptic curve, let us take a look at an example. If E is an
elliptic curve with coefficients in Z/nZ, we can consider its points in Z/nZ, which
we denote E(Z/nZ).

Example Consider the elliptic curve E : y2 = x3 + 8x + 13 overZ/35Z. One point
on this elliptic curve is (8, 22), since 222 ≡ 83 + 8 × 8 + 13 (mod 35). (Both sides
are 29 (mod 35)). A few others are (23, 3) and (24, 13).

We also need to be careful about what happens at ∞. The points at ∞ are a
convention needed to make the group law (and everything else) on the elliptic curve
work out properly. So, it is not so easy to “logic” our way to the correct notion
of point(s) at ∞ on E(Z/nZ) from first principles. (One can do so given more
sophisticated understanding of the nature of elliptic curves, using algebraic geometry,
but that is beyond the scope of this book.)

Instead, let us understand what happens with the non-infinite points. Let us con-
sider the point P = (8, 22) on the elliptic curve E : y2 = x3 + 8x + 13 overZ/35Z.
Instead of considering E as an elliptic curve modulo 35, we can consider it as an
elliptic curve over Fp, for any prime factor p of 35. In this case, that’s 5 and 7. Over
F5, P reduces to P5 = (3, 2), and over F7, P reduces to P7 = (1, 1). Furthermore, if
we start with P5 over F5 and P7 over F7, then using the Chinese Remainder Theorem
on the x- and y-coordinates, we uniquely reconstruct the point P over Z/35Z.

What this means is that, among the finite points, there is a bijection between points
on E(Z/35Z) and pairs of points (P5, P7), where P5 ∈ E(F5) and P7 ∈ E(F7) are
finite points.
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Now, it’s clear what the most reasonable thing to do with the infinite points
should be: we extend the bijection to include the infinite points. Thus, the points P
on E(Z/35Z) should be in bijection with pairs of points (P5, P7), which may or may
not be infinite points.

What this means is that we have many infinite points: one for each finite point
P5 of E(F5) (corresponding to (P5,∞)), one for each finite point P7 of E(F7)

(corresponding to (∞, P7)), and one extra point which corresponds to (∞,∞). We
thus have #E(Z/35Z) = #E(F5) × #E(F7).

Now, what’s the deal with the discriminant 4a3 + 27b2? What is the analog
of “being nonzero” over Z/nZ? It might be that we require that 4a3 + 27b2 �≡ 0
(mod n). But “having a double root” is not so clear in the composite n case. For
example, a degree-d polynomial can have more than d roots in Z/nZ. So, this sug-
gests that the most obvious extension isn’t exactly right.

Above, we had E(Z/35Z) = E(F5) × E(F7) (at least as far as the number of
points goes, but in fact also for group laws, and everything else). So, in order to
consider E to be an elliptic curve overZ/35Z, its reductions to E(F5) and E(F7) had
better also be elliptic curves. This means that we need 4a3 + 27b2 �≡ 0 (mod 5) and
4a3 + 27b2 �≡ 0 (mod 7). Equivalently, we require that gcd(4a3 + 27b2, 35) = 1.
More generally, in order for y2 = x3 + ax + b to be an elliptic curve over Z/nZ,
we require that gcd(4a3 + 27b2, n) = 1.

That’s all we need to know about elliptic curves over Z/nZ at the moment, so
let us return to the matter of factorization and see how elliptic curves can be used to
factor numbers.

15.3 Lenstra’s Elliptic Curve Factorization

Recall that the Pollard p − 1 algorithm works when p − 1 is smooth for some prime
factor p of n. Its modifications, the Williams algorithm and the Bach–Shallit algo-
rithm, work when certain very specific other related numbers are smooth. But what
do we do if, say, p − 3 is smooth? Is there a way to factor n in that case?

The real key to the Pollard p − 1 algorithm was that we have a group F×
p whose

order is smooth. But there are other groups out there, where computations will have
something to do with looking at something modulo p. A rich source of such groups
is elliptic curves, and especially elliptic curves over Fp. A very important theorem
that we mentioned last chapter, and whose proof involves some algebraic geometry
and is thus beyond the scope of this book, is the Hasse–Weil bound:

Theorem 15.1 (Hasse–WeilBound, [Has36a, Has36b, Has36c])Let E be an elliptic
curve over a finite field Fq , and let #E(Fq) denote the number of points on E. Then
we have

|q + 1 − #E(Fq)| ≤ 2
√
q.
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Thus, there are several choices for the number of points on an elliptic curve over
Fp. If we can find an elliptic curve E over Z/nZ such that #E(Fp) is smooth, then
we will be able to factor n quickly. Since we don’t know what p is, it will be hard
to do this directly, so instead we’ll try a bunch of elliptic curves until we get lucky.
So, we do the following. Pick an elliptic curve E over Z/nZ, and find some point
P on E . Choose some smoothness bound B, and compute m as in the Pollard p − 1
factorization algorithm:

m = 2c23c35c5 · · · qcq ,

where q is the largest prime ≤ B.
Now, we attempt to compute mP , i.e., P + P + · · · + P m times. However, we

might fail in our computation of mP . What can go wrong? Let us remember how to
double a point on an elliptic curve. To compute 2P , we find the slope of the elliptic
curve at P and draw the tangent line to E at P . So, let’s figure out what the slope is.
If our elliptic curve E is given by y2 = x3 + ax + b, then by implicit differentiation,

the slope of the tangent line to E at some point (x0, y0) is
3x20+a
2y0

. This is not so good
if y0 ≡ 0 (mod n), since we have to divide by y0. And more generally, this is not so
good when y0 fails to be a unit modulo n, i.e., when gcd(y0, n) > 1. (In fact, it’s not
so bad when the denominator is 0, since then we end up with the identity, the point
at ∞. But it’s very bad if the denominator is nonzero but shares a factor with n.)

But “not so good” depends on your perspective: this is bad for computing 2P ,
but we don’t really want to compute 2P: we really want to factor n. And as soon
as we’ve found some number y0 < n with gcd(y0, n) > 1, then we’ve just found a
factor of n. So in fact, we want to fail to compute mP . (This is probably a good
metaphor for life.)

Here is Lenstra’s elliptic curve factorization algorithm [Len87], in general:

(1) Pick an elliptic curve E over Z/nZ and a point P = P1 on E .
(2) Choose a smoothness bound B.
(3) For each prime q, let cq = �logq(n)�.
(4) Let m = 2c23c3 · · · qcq , where q is the largest prime ≤ B.
(5) For each prime qi ≤ B, let Pi+1 = q

cqi
i Pi , if this multiplication is possible. If at

some stage the multiplication is impossible, because the denominator of some
slope shares a factor with n, then we have found a factor of n and we’re done!
Otherwise, continue on with the next prime.

Example Let us factor n = 45857027, which is the product of two primes. Consider
the elliptic curve E : y2 = x3 + x + 6. Consider the point P = (4870940, 8616998)
on E . Instead of taking a smoothness bound to be known in advance, let us just try
to perform step (5) in the elliptic curve factorization algorithm until we fail.

We first find c2 = �log2(n)� = 25. So we try to multiply P by 225. This is fine,
and Sage happily tells us that P2 = 225P = (30411685, 10089499). So, no prob-
lems yet. Now, we compute c3 = �log3(n)� = 16. So we compute P3 = 316P2 =
(34140465, 11984090). Again, no problems.

Next, we compute c5 = �log5(n)� = 10. So we now compute P4 = 510P3 = · · · .
Uh oh: something didn’t work, and Sage raises a scary error. Let us analyze what
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happened. We find that 5P3 is fine, and it is equal to Q = (31863757, 4846021).
But then we want to compute 5Q. We do this by the successive doubling method:
computing 2Q = Q + Q, then 4Q = 2Q + 2Q, then finally 5Q = 4Q + Q. 2Q is
fine: it is (6004492, 6574745). Also, fine is 4Q = (5817393, 35259580). But as part
of the process to compute 5Q, we have to compute the slope of the line through 4Q

and Q, which is − 30413559
26046364 . What element is this in Z/nZ? It’s nothing because the

denominator 26046364 is not an element of (Z/nZ)×: it fails to be relatively prime
to n. Indeed, gcd(26046364, n) = 587. And we have learned that 587 is a factor of
n. The other factor is 78121, which is also prime. So we have factored n.

Let us now suppose that n = pq. Then, this factorization method succeeds if the
order of P modulo p in E(Fp) divides m, or if the order of P modulo q in E(Fq)

dividesm, but not both. Since the order of P modulo p in E(Fp) divides #E(Fp), we
really want #E(Fp) to be B-smooth, but not #E(Fq) (or vice versa). In the example
above, #E(F587) = 600 = 23 × 3 × 52, which is a 5-smooth number. Thus, it was
guaranteed that the process would work if we choose any smoothness bound B ≥ 5.

Of course, we don’t know whether #E(Fp) is going to be B-smooth. However,
since smooth numbers are fairly common, we can hope to find a suitable elliptic
curve just by trying a bunch at random.

Remark 15.2 In fact, we ought to know something about the distribution of #E(Fp)

as E varies over elliptic curves over Fp. We know from the Hasse–Weil bound
that |#E(Fp) − p − 1| ≤ 2

√
p. But if this bound is not actually realistic, and (say)

#E(Fp) usually only took on very few values, then this would make the elliptic
curve factorization algorithm not particularly useful: we probably wouldn’t be able
to find an E so that #E(Fp) were smooth. Fortunately, this is not the case, and we
understand the distribution of #E(Fp) quite well: it follows a “semicircular” law, as
follows: consider the quotient

c(E) = #E(Fp) − p − 1

2
√
p

.

Then −1 ≤ c(E) ≤ 1, so let us write c(E) = cos(θE ) for some 0 ≤ θE ≤ π. Then,
for any −1 ≤ α < β ≤ 1 and p sufficiently large, we have

#{E : α ≤ θE ≤ β}
#E/Fp

≈ 2

π

∫ β

α

sin2 φ dφ.

See [Bir68]. The denominator on the left is the total number of elliptic curves over
Fp, which is slightly less than p2 (since a few of the curves y2 = x3 + ax + b aren’t
elliptic curves because 4a3 + 27b2 = 0).

In practice, Lenstra’s factoring algorithm is very good for numbers of moderate
size, say around 40 digits.
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15.4 Elliptic Curves Over Q

Elliptic curves are important for far more than just cryptography. Elliptic curves over
the rational numbers Q and the integers Z are ubiquitous in number theory today.
(See problem 6 for an example of their use.)

The first interesting theorem about the structure of the rational points on an elliptic
curve E is the Mordell–Weil Theorem.

Theorem 15.3 (Mordell–Weil) Let E be an elliptic curve over Q. Then, there are
integers r and s with r ≥ 0 and 0 ≤ s ≤ 2, and points P1, . . . , Pr , Q1, . . . , Qs ∈
E(Q) and integers d1, . . . , ds such that, if R is any point in E(Q), then R can be
expressed uniquely as

m1P1 + · · · + mr Pr + n1Q1 + · · · + nsQs,

where the mi ’s are integers, and 0 ≤ n j < d j .

The statement of this theorem is slightly unwieldy because we have not discussed
all the group theory necessary to make it have a prettier formulation. If you have
seen group theory, then we can express it as follows:

Theorem 15.4 (Mordell–Weil [Mor22]) Let E be an elliptic curve overQ. There is
a nonnegative integer r and a finite abelian group T such that

E(Q) ∼= Zr × T .

We call r the rank and T the torsion subgroup.
Mazur extended theMordell–Weil Theorem by providing the possible choices for

the d j ’s:

Theorem 15.5 (Mazur, [Maz77]) If E is an elliptic curve over Q, then there are
15 possibilities for the torsion subgroup of E. They are Z/nZ for 1 ≤ n ≤ 12 and
n �= 11, and Z/2Z × Z/2nZ for n = 1, 2, 3, 4.

These are quite challenging theorems (especially Mazur’s), and the proofs are
beyond the scope of this book.

Mazur’s theorem takes care of the torsion subgroup quite nicely: there are 15
possibilities, and all of them are torsion subgroups for infinitely many elliptic curves.
Furthermore, there are algorithms available for computing the torsion subgroups.We
will soon see the Nagell–Lutz Theorem, which gives us a finite set of possibilities
for the torsion points, and then we can simply check all of them.

The rank, on the other hand, is much more mysterious. Noam Elkies has found
elliptic curves of rank (at least) 28, but it is an open problem whether the rank can
be arbitrarily high.

However, these high-rank elliptic curves are rare. Indeed, there is a conjecture
that for 50% of elliptic curves over Q, the rank is 0, and for 50% of them, the rank
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is 1. (There are, of course, curves with rank ≥2, and even infinitely many of them,
but they occur 0% of the time. This is similar to the case of primes and composites:
100% of numbers are composite, but there are still plenty of primes in the remaining
0%.)

Themathematical community is split on the issue of whether ranks are expected to
be bounded or not. Recently, Jennifer Park, Bjorn Poonen, John Voight, and Melanie
Matchett Wood [PPVM16] came up with a heuristic that suggests that there should
be an absolute bound on the rank of an elliptic curve, and that there should only be
finitely many elliptic curves of rank greater than 21.

While we cannot prove all that much about the rank of an elliptic curve, there
is a very famous and important open problem concerning this topic. It is one of the
ClayMathMillennium problems, and it is known as the Birch and Swinnerton–Dyer
Conjecture. This gives us a conjectural way of computing the rank. However, it would
take a long time even to state the Birch and Swinnerton–Dyer Conjecture, so we will
move on.

It sometimes happens that even the “smallest” rational points on elliptic curves
(measured in terms of the size of the denominator of the x-coordinate, say) are very
large.

Example Let E be the elliptic curve y2 = x3 + 877x . Then the rational point other
than (0, 0) with the smallest denominator on E has x-coordinate

(
612776083187947368101

7884153586063900210

)2

.

In the case of elliptic curves of rank 1, there is a formula due to Gross and
Zagier [GZ86] for finding the nontrivial rational point of smallest denominator. See,
for instance, [Wat12] for an algorithm.

15.5 Elliptic Curves and Diophantine Equations

A Diophantine equation is an equation that is intended to be solved in integers
(or perhaps rational numbers). One of the most famous Diophantine equations is the
Fermat equation. Let n ≥ 3 be an integer. Then the nth Fermat equation is xn + yn =
zn . Fermat’s Last Theorem says that there are no solutions to the Fermat equation
in positive integers. This was finally proven by Wiles in 1995, more than 350 years
after it was first stated. Elliptic curves played an essential role in Wiles’s proof.

Let us see a simpler (but still very nontrivial) example of elliptic curves showing
up in a Diophantine equation. We will study the following problem, known as the
congruent number problem: given an integer n, determine whether there is a right
triangle with rational sides and area n. Such a number is called a congruent number.

For example, if n = 6, then the answer is “yes”: the right triangle with sides 3, 4,
and 5 has area 6. Thus 6 is a congruent number.
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If n = 5, then it is harder to come up with an example. However, some thought(!)
produces the triangle with legs 20

3 and 3
2 , which has area 5 and hypotenuse

√(
20

3

)2

+
(
3

2

)2

= 41

6
.

Of course, you undoubtedly noticed that n = 157 is a congruent number, since
the triangle with legs

6803298487826435051217540

411340519227716149383203
and

411340519227716149383203

21666555693714761309610

has hypotenuse

224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830

and area 157.
Oh, youdidn’t just notice that on your own?Howcanonefind such crazy numbers?

Using elliptic curves! We won’t go through all the details of that computation here,
but only some of the general points.

Let us attempt to solve the congruent number problem.We are looking for rational
numbers a and b such that 1

2ab = n and a2 + b2 = h2 for some rational number h.
Replacing b with 2n

a , we have the equation

a2 + 4n2

a2
= h2,

or
4n2

a2
= h2 − a2 = (h − a)(h + a).

Next, let g = h + a. Then we have

h − a = 4n2

a2g
.

Thus we have

2a = g − (h − a) = g − 4n2

a2g
.

Multiplying by 1
8a

3g2, we get

a4g2

4
= 1

8
a3g3 − n2ag

2
.
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Letting x = 1
2ag and y = 1

2a
2g, we get

y2 = x3 − n2x,

which is an elliptic curve! Note that a = y
x .

Remark 15.6 This is the sort of way that elliptic curves frequently show up when
working with Diophantine equations. Any equation of the form y2 = q(x), where
q(x) is a degree-4 polynomial with no repeated roots, can be massaged into the
Weierstraß form of an elliptic curve, using similar substitutions. Similarly, if f (x, y)
is a cubic polynomial in x and y (meaning that for everymonomial of f , the sumof the
x-degree and the y-degree is atmost 3), then f can bemassaged intoWeierstraß form.
(However, it might not be an elliptic curve, for it might be the case that 4a3 + 27b2 =
0.) At the beginning of the congruent number computation, we saw the expression

a2 + 4n2

a2
= h2

with variables a and h (n is fixed), so we could have known that there was an elliptic
curve lurking, since we can easily rewrite it as

a2h2 = (ah)2 = a4 + 4n2,

which is of the y2 = q(x) form. If we have an equation of the form y2 = f (x), where
the degree of f is at least 5 and f has no repeated roots, then we definitely cannot
turn it into an elliptic curve using reversible substitutions. Occasionally, we can do
so using higher degree substitutions, and the question of when we can do so and how
was a large part of my research for my PhD, although it was stated rather differently.

Now, that we have written down an elliptic curve, it’s time to start understanding
its solutions and translating them back into triangles. First, since x3 − n2x = x(x −
n)(x + n), we have some obvious solutions: (0, 0), (n, 0), and (−n, 0). However,
these solutions are not very helpful, since a = y/x = 0; they do not correspond to
triangles. One can also check that there are no other torsion points on this elliptic
curve. Thus, if n is to be a congruent number, then the elliptic curve y2 = x3 − n2x
must have rank at least 1. Conversely, if the rank of the congruent number elliptic
curve is at least 1, then n is a congruent number. But how can we tell? Well, there’s
an interesting theorem of Tunnell that makes checking relatively straightforward.

Theorem 15.7 (Tunnell, [Tun83]) Suppose n is a squarefree positive integer, i.e., n
is not divisible by the square of any prime. Define functions f, g, h, k as follows:

f (n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 8z2 = n},
g(n) = #{(x, y, z) ∈ Z3 : x2 + 2y2 + 32z2 = n},
h(n) = #{(x, y, z) ∈ Z3 : x2 + 4y2 + 8z2 = n/2},
k(n) = #{(x, y, z) ∈ Z3 : x2 + 4y2 + 32z2 = n/2}.
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If n is odd and n is congruent, then f (n) = 2g(n). If n is even and n is congruent,
then h(n) = 2k(n). If the Birch and Swinnerton–Dyer Conjecture is true, then both
of the converses hold.

Another related result is as follows:

Theorem 15.8 (Stephens, [Ste75]) If the Birch and Swinnerton–Dyer Conjecture
is true, then for any n ≡ 5, 6, 7 (mod 8), the elliptic curve y2 = x3 − n2x has odd
rank. This implies that the rank is positive, so that n is a congruent number.

15.6 Elliptic Curves Over Z

The integer points on an elliptic curve behave rather differently from the rational
points. For one thing, E(Z) is typically not a group. (See problem 1.)

Still, we can say something about the structure of E(Z). The main theorem on
the topic is due to Siegel:

Theorem 15.9 (Siegel, [Sie14]) If E is an elliptic curve overZ, then E(Z) is a finite
set.

Siegel’s original proof did not (and could not be adapted to) say anything about
how many integral points an elliptic curve could have. Indeed, elliptic curves can
have arbitrarily many integral points. (See problem 2.) But more recent results in
transcendental number theory(!), in particular, Baker’s Theorem on linear forms in
logarithms, have made it possible to get a bound on the number of integral points an
elliptic curve y2 = x3 + ax + b has, in terms of a and b.

In fact, Siegel proved an even stronger theorem than Theorem 15.9. What he
showed is that if P is a point on E , then the numerator and denominator of the
x-coordinate of P have roughly the same number of digits. More precisely:

Theorem 15.10 (Siegel) For a point P ∈ E(Q), let us write its x-coordinate as
a(P)

b(P)
, in lowest terms. Then,

lim
P∈E(Q)

max(|a(P)|,|b(P)|)→∞

log |a(P)|
log |b(P)| = 1.

Theorem 15.10 implies Theorem 15.9 because if E were to have infinitely many
integral points, then they would go off to ∞, so a(P) (and hence log |a(P)|) would
go off to infinity, but b(P) (and hence log |b(P)|) would not.

Another very important theorem about elliptic curves tells us what the torsion
points can look like.

Theorem 15.11 (Nagell–Lutz, [Lut37]) Let E be the elliptic curve y2 = x3 + ax +
b, with a, b ∈ Z. Let � = 4a3 + 27b2. If P = (x, y) is a torsion point on E (i.e.,
nP = ∞ for some positive integer n), then x and y are both integers, and one of the
following two things happens:
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(1) 2P = ∞, in which case either P = ∞ or y = 0, or
(2) 2P �= ∞, in which case y divides �.

In fact, in the second case, y2 divides �. The Nagell–Lutz Theorem thus gives
us an algorithm for computing the torsion points on an elliptic curve over E . We
relegate the proof of the Nagell–Lutz theorem to problems 17 and 18.

15.7 Problems

(1) Show that if E is an elliptic curve over a field K , then E(K ) is a group. Show
that E(Z) need not be a group by giving an example of an elliptic curve with
two integral points whose sum is not integral.

(2) Show that for any integer n, there is an elliptic curve E over Z such that
#E(Z) ≥ n.

(3) Factor 377681131 using the Pollard p − 1 method.
(4) Factor 448866199 using the Lenstra elliptic curve method. (Hint: Hfr gur

ryyvcgvp pheir l fdhnerq rdhnyf k phorq cyhf k cyhf bar.)
(5) Show that if n ≡ 5, 6, 7 (mod 8) is squarefree, then n satisfies Tunnell’s cri-

terion of Theorem 15.7.
(6) A set {a1, a2, . . . , am} of integers is said to be a Diophantine m-tuple if for any

distinct i, j , aia j + 1 is a perfect square. Show that if {a, b, c} is a Diophantine
triple, then there are only finitely many integers d such that {a, b, c, d} is a
Diophantine quadruple. (There are infinitely many Diophantine quadruples,
such as {1, 3, 8, 120}. It was recently shown in [HTZ16] that there are no
Diophantine quintuples).

(7) Let n > 1, and suppose E is an elliptic curve overZ/nZ. Suppose that there are
distinct primes �1, . . . �k and points Pi ∈ E(Z/nZ), not equal to the identity,
such that

(a) �i Pi = ∞ for all i , and
(b)

∏k
i=1 �i > ( 4

√
n + 1)2.

Show that n is prime. (Hint: Fubj gung sbe rirel cevzr c qvivqvat a, rnpu y
qvivqrf gur ahzore bs cbvagf ba R bire c.) This is a primality test based on
elliptic curves, an elliptic curve version of the Pocklington–Lehmer test.

(8) Suppose that E is the elliptic curve y2 = x3 + ax , and suppose that p is a
prime congruent to 3 (mod 4). Show that #E(Fp) = p + 1.

(9) Let E be the elliptic curve y2 = x3 + ax + b over Fp, with p ≥ 5. Suppose
that d ∈ F×

p is not a perfect square, i.e., there is no r ∈ Fp such that d ≡ r2

(mod p).

(a) Convert dy2 = x3 + ax + b to short Weierstraß form. Call this curve E ′.
(b) Express #E ′(Fp) in terms of #E(Fp).

(Hint: Rknpgyl unys gur abamreb ryrzragf bs gur svryq jvgu c ryrzragf ner
cresrpg fdhnerf).
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(10) Let E be the elliptic curve y2 = x3 + ax + b over some field F . Recall that if
P = (x, y) is a point on E , then the x-coordinate of 2P is

f (x) = x4 − 2ax2 − 8bx + a2

4(x3 + ax + b)
.

Show that (x, y) is a torsion point of E(F) if and only if the sequence

x, f (x), f ( f (x)), f ( f ( f (x))), . . .

eventually repeats. This observation is one of themotivations behind the subject
of arithmetic dynamics. The standard algorithm in arithmetic dynamics is to
turn theorems about elliptic curves into impossibly difficult general conjectures
about such dynamical systems.

(11) The right triangle with sides 3, 4, and 5 has area 6. Using elliptic curves, find
three more right triangles with rational sides and area 6.

(12) Find a change of variables like the one used in Section 15.5 to transform the
curve x3 + y3 = d into an elliptic curve in short Weierstraß form.

(13) Let E be an elliptic curve with rational coefficients, and let P be a rational
point of infinite order on E .

(a) Show that we can write P = (
a
c2 ,

b
c3

)
, where gcd(a, c) = gcd(b, c) = 1.

(b) Let c2n be the denominator of the x-coordinate of nP . Show that (cn) is a
strong divisibility sequence, i.e., that gcd(cm, cn) = cgcd(m,n).

(c) Show that the Fibonacci numbers F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for
n ≥ 2 also form a strong divisibility sequence.

(14) (a) Show that there are infinitelymany solutions to the equation x2 − 3y2 = 1,
where x and y are integers. (This is an example of a Pell equation. More
generally, a Pell equation is one of the form x2 − dy2 = k. If k = 1, then
there are infinitely many solutions if d > 0 is not a perfect square.)

(b) Show that there are only finitely many solutions to the simultaneous Pell
equations x2 − 3y2 = 1 and x2 − 7z2 = 1.

(15) (a) Let E be an elliptic curve over a field F . Show that f : E → E given
by f (x, y) = (x,−y) is an automorphism of E . (If G is a group, then a
function f : G → G is said to be an automorphism if f is a bijection, and
f (gh) = f (g) f (h) for all g, h ∈ G.)

(b) Suppose E is an elliptic curve of the form y2 = x3 + a, over afield F . If ζ ∈
F is such that ζ3 = 1, show that f (x, y) = (ζx,−y) is an automorphism
of E .

(c) Suppose E is an elliptic curve of the form y2 = x3 + ax , over a field F . If
i ∈ F is such that i2 = −1, show that f (x, y) = (−x, iy) is an automor-
phism of E .

(16) If F is a finite field containing Fp, where p is prime, and E is an elliptic
curve over Fp, show that σ : E(F) → E(F) given by σ(x, y) = (x p, y p) is an
automorphism of E(F). (If F = Fp, then σ is the identity, by Fermat’s Little
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Theorem.) σ is called the Frobenius automorphism and is extremely important
in arithmetic geometry.

(17) Let E be an elliptic curve over Z. Show with bare hands (i.e., not using the
Nagell–Lutz Theorem) that if P is a rational point but not an integral point,
then P has infinite order.

(18) Finish the proof of the Nagell–Lutz Theorem.
(19) Modify the Pollard p − 1 factorization algorithm to work when p + 1 is

smooth. (This is hard.)



Chapter 16
Zero-Knowledge Proofs

16.1 Introduction to Zero-Knowledge Proofs

Generally in mathematics, the goal of a proof is for the writer to convey knowledge
and understanding to the reader. (However, you may doubt this claim based on some
books or papers you have read or talks you have attended, although surely not any
of mine.) But from time to time, the prover wants to obfuscate some key pieces of
information. As we shall see, being able to obfuscate some key pieces of information
in the proof has important cryptographic implications.

Let us start with a toy example, which is taken from the charming paper [NNR99].
Many of us, when we were very young, did “Where’s Waldo” puzzles. The goal is
to find Waldo in a picture, which may contain similarly dressed decoys. Suppose
you have found Waldo, and you want to convince me that you know where he is.
You could just point at him, but where’s the fun in that? Now, you have just ruined
a perfectly good puzzle for me.

Instead, what you want to do, somehow, is to convince me, beyond a reasonable
doubt, that you know where he is, while still not giving me any information about
where to find him. How can you do this?

One possibility is that you could just declare that you have found him. But this
is not a convincing evidence: you could just as easily claim that you know where
Waldo is when you are, in fact, just as clueless as I.

In fact, there is a way that you can convince me that you have found Waldo,
without giving away any information about where he is.

One possibility is as follows: you take theWhere’s Waldo book, make a photocopy
of the page, cut out the Waldo in the photocopy (as civilized people, we do not cut
up actual books), and show me the Waldo cut-out.

But I fundamentally don’t trust you. I suspect that you have photocopied a different
page of the Where’s Waldo book, one which is much easier, and cut out the Waldo
from that page. You could do that with a bit of sleight of hand, and I would be none
the wiser.
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So, I don’t accept that solution. But there is another solution that would satisfy
even me, at my most stubborn. What you can do is to take a giant piece of paper,
much larger than the Where’s Waldo book, cut out a small Waldo-sized hole in it, and
put the hole over the Waldo. Then I can verify that you have actually found Waldo,
since I can easily verify that the character in question is actually Waldo.

Finally, one more step you should take: pull the book out from under the paper
(while covering the hole), so that I can be satisfied that you haven’t flipped the page
while navigating Waldo to the hole.

An interesting consequence of all this is that, although I amnowentirely convinced
that you know where Waldo is, and indeed that the page does, in fact, contain a
Waldo, I will struggle to convince anyone else of this fact. I could videotape the
entire process of you putting the paper over the Waldo book and showing me the
Waldo, point the camera at the Waldo once it has been covered by the hole, and so
forth. But a skeptical third party would not be satisfied: I could have paused the video
at several points in the middle and flipped to a different page in the Where’s Waldo
book, and someone replaying the video would have no method of detecting the trick.
Video editing software is powerful!

16.2 What is a Zero-Knowledge Proof?

Let us now abstract this idea a bit and talk about what a zero-knowledge proof is
supposed to do, in general. As in standard cryptography, we have some characters,
but they aren’t the same characters we met earlier. In zero-knowledge proofs, we
typically have two characters, named Peggy (the prover) and Victor (the verifier).
Peggy knows some piece of information, and she wants to convince Victor that she
knows that particular piece of information,while giving away absolutely nothing else.
Typically, this piece of information is hard to come up with in the first place. (There
isn’t much point in having Peggy convince Victor that she knows the answer to a
problem,when he can solve the problem easily himself.We’re all mature people here;
we don’t have to tease and examine each other.) As we have already discussed quite a
lot, factoring appears to be a difficult problem. If Peggy knows the prime factorization
of some large number n, can she somehow convince Victor that she knows it, without
giving away any details of the factorization? (For example, she should not be willing
to give away any information about the number of prime factors, or how many digits
the smallest prime factor is, or any other related information.)

Generally, a zero-knowledge proof will consist of several rounds of information
exchange. For example, Peggymaydo some secret precomputation and give the result
of the precomputation to Victor. Victor can then use the result of this precomputation
to issue a challenge to Peggy, a challenge that Victor knows how to solve. (Or, if he
can’t solve it on his own, he has some way of verifying after the fact that Peggy did
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it correctly.) Using her secret information, Peggy solves Victor’s challenge problem
and reports the answer. This exchange can go on for several rounds, until Victor is
convinced that Peggy does indeed possess the secret information.

Now, Victor may be skeptical, but he is also a reasonable and decent human being.
(On the other hand, we do not assume that Peggy is a reasonable and decent human
being. It is not a good idea to trust people who can do magic calculations and come
up with answers to computationally difficult problems.) Victor does not demand
absolute certainty that Peggy has the secret information; for example, she might just
be able to guess the answers to all of Victor’s challenges completely by accident,
without needing to know the secret information. Or, she might attempt to cheat by
guessing Victor’s challenges and solving easier problems that will allow her to give
seemingly correct answers to the challenges. (We’ll see an example of this later.)
But, assuming that Victor chooses suitable challenges, Peggy’s chances of guessing
correctly every time are very small, small enough that Victor realizes that it is much
more likely that she is being honest, than that she is lying and getting lucky every
time. If Peggy claims that she can flip a coin 1000 times in a row and get heads every
time, and then she does so, it’s more likely that she has a two-headed coin than it is
that that happened just by chance, isn’t it?

We expect a zero-knowledge proof to satisfy three important properties:

Completeness: If Peggy is telling the truth, then Victor will be convinced of this.
Soundness: If Peggy is lying, then she cannot convince Victor that she is telling the

truth, except with some very small probability.
Zero-knowledge: If Peggy is telling the truth, then Victor learns nothing other than

the fact that she is telling the truth.

Remark 16.1 Formally, the zero-knowledge property is quite subtle. We have the
notion of an honest verifier, who follows the proof protocol with the prover, as
well as a cheating verifier, who creates a transcript that could potentially be that of
the communication between an honest verifier and the prover. The zero-knowledge
property says that a real transcript, created by an honest verifier and the prover, is
indistinguishable from a transcript that is entirely fabricated by a cheating verifier.
The reason this is a desirable property is that we do not wish to allow the verifier to
pretend to be the prover at some later point.

Remark 16.2 In fact, even Remark 16.1 is still not fully rigorous, because we have
not statedwhatwemean by two transcripts being “indistinguishable.”One possibility
is that the fake transcript could actually be a real transcript. But a weaker notion that
is sometimes useful is a computational version of indistinguishability: it might not
be possible for the fake transcript to occur as a result of a conversation between an
honest verifier and an honest prover, but it takes a third party a very long time to
detect the forgery. This is usually also acceptable to us.

Let us see more examples of zero-knowledge proofs.
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Figure 16.1 Ali Baba’s
Cave

Magic
door

16.3 Ali Baba’s Cave

In addition to playing Where’s Waldo as kids, we also learn about Ali Baba. He
followed a band of thieves to learn of a treasure-filled cave with an entrance that
would open upon hearing the magic words “Open Sesame!”

In the zero-knowledge story of Ali Baba’s Cave, as told byQuisquater andGuillou
in their also-charming paper [QGAB89], there is a cave with two entrances. (See
Figure 16.1.) There is a door connecting the two entrances, and this door will open
to a person who says the words “Open Sesame!” and otherwise it remains shut.

Ali Baba brings a friend, Vera, to the cave and shows her the two entrances. He
tells her that there are certain magic words he can say to open a door between the
entrances.Naturally,Vera is skeptical. (Wouldn’t you be, especially if youwere living
in the Middle Ages and there was no such thing as voice recognition software?) So,
she asks Ali Baba to indulge her in a verification. Ali Baba is to enter the cave through
one of the two entrances, of his choosing. Then Vera flips a coin, and depending on
the result of the coin flip, she either calls out “Come out through the left entrance”
or “Come out through the right entrance.” Since Ali Baba can get through the door,
he can come out through the desired entrance, regardless of which side he entered.

Now, one attempt doesn’t prove much. So, they repeat this experiment 40 times.
Every time, Ali Baba comes out through the correct entrance. If he didn’t have access
to the door, then the chances of his being able to do this would be 1

240 , which is very
small. Vera believes that Ali Baba does indeed know the magic words.

Maybe you object to this procedure: wouldn’t it be easier if Vera were to watch
Ali Baba enter the cave through the left side and then come out through the right
side? That would eliminate the need for repeating the test over and over again: if Ali
Baba can enter through the left side and exit through the right side even once, then he
must know the magic words. (We’re ignoring the possibility of quantum tunneling
here.)

Yes, this would be easier, but the other version is better. Why? If they adopted this
second procedure, and Vera were to videotape the process, then she could show her
videotape to a third party. (Suppose they haven’t invented video editing software or
anything similar yet.) Vera could then convince this third party that Ali Baba knows
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the magic words. But we don’t want to allow her to do that. In terms of honest and
cheating verifiers, this procedure would allow her to create a “transcript” of the event
that she could not make on her own, without Ali Baba’s help.

In the first version, a videotape of the experiment is not a convincing evidence
that Ali Baba knows anything. The entire process could have been staged, so that Ali
Baba and Vera agreed in advance which side Ali Baba should exit (and hence enter).

But what about the coin flips? Aren’t those enough to make it random and hence
convincing? First of all, with a bit of practice, one can flip a coin in such a way that
one knows what the outcome will be in advance. (One way to do this is to “flip”
the coin so that it only wobbles and never actually flips over. It is not so easy for a
spectator to tell the difference. See [DHM07].)

But more seriously, in cryptography, “random” numbers are not really so random:
they are the result of a deterministic process that starts with a given “seed” value. So,
it is possible that Ali Baba and Vera have set their seed value in advance, so that they
know what all the “coin flips” are going to be. There are sources of true randomness
such as radioactive decay, but your computermost likely isn’t using them. Sometimes
this can be a serious problem; for example, you can read about how some people
managed to cheat an online poker server through bad random number generation,
among other serious errors [AHM+99].

16.4 Three-Colorability

Let us now look at some less frivolous and more potentially relevant zero-knowledge
proofs. In mathematics, the term “graph” has several different meanings, and they
are unrelated to each other. For us, a graph will consist of a set V of vertices, and a
set E of edges. An edge consists of an unordered pair of distinct vertices. Frequently,
we represent a graph as a picture, with vertices pictured as dots and edges pictured
as lines or curves connecting their two vertices. (See Figure 16.2.)

Graph theory is a large subject, and there are many things that are known about
graphs. One of the most famous results about graphs is the infamous four-color

Figure 16.2 A graph



178 16 Zero-Knowledge Proofs

Figure 16.3 Left: A valid coloring with three colors. Right: An invalid coloring, since there are
two adjacent blue vertices

Figure 16.4 This graph,
known as K3,3, is not a
planar graph

theorem. We are interested in coloring each vertex of the graph with one of several
colors, in such a way that if two vertices are connected by an edge, then they must be
colored using different colors. See Figure 16.3 for a valid coloring with three colors,
as well as an invalid coloring. A graph is said to be k-colorable if it can be colored
in this way using (at most) k colors. A graph is said to be planar if it is possible to
draw it on the plane without any edge crossings. A famous example of a nonplanar
graph is the graph known as K3,3, pictured in Figure 16.4.

Theorem 16.3 (Four-Color Theorem, [AH77, AHK77]) Every planar graph is 4-
colorable.

The four-color theorem is notoriously difficult, and it was only proven in 1976
by Kenneth Appel andWolfgang Haken after an extensive computer search, perhaps
the first major theorem whose proof relied on computers in an essential way.

Now, some planar graphs can be colored using only three colors, but not all of
them. Furthermore, given a graph G, it does not appear to be easy to determine
whether G is 3-colorable. (In fact, this problem is NP-complete.)

In general, hard problems like this are good candidates for zero-knowledge proofs.
In fact, any NP problem has a zero-knowledge proof. (Once we exhibit a zero-
knowledge protocol for 3-colorability, the proof that 3-colorability is NP-complete
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will imply that anyNP problemhas a zero-knowledge proof. However, it also appears
that problems that are not in NP can have zero-knowledge proofs; see problem 9 for
an example of a zero-knowledge proof for a problem that does not appear to be in
NP.) Let us see how it works in this case.

We assume that a graph G is three-colorable, and that Peggy knows a three-
coloring. She would like to convince Victor that she knows a three-coloring, without
giving away any information about how the coloring works. In particular, she does
not want to tell him how to do the three-coloring.

Why might she not want to tell? Well, perhaps she eventually wants to sell him
the three-coloring. She doesn’t want to tell him how it works before he pays, because
once he knows the three-coloring, he has no incentive to pay for it. On the other hand,
if Victor pays up front, then he will be unhappy if Peggy is lying and doesn’t actually
know how to three-color the graph, or if the graph turns out not to be three-colorable
at all. From a legal perspective, it is possible to set up an escrow system to deal with
such practical issues, but isn’t it just more fun to solve all our problems using math?

So, now for our procedure. For each edge in the graph, Victor needs to know that
the two vertices it connects are colored differently. So, he can pick an edge and ask
Peggy for the colors of its two vertices. If the two colors are ever the same, then he
knows that Peggy is lying.

However, there are several reasons why this is not yet a satisfactory solution. From
Victor’s perspective, it is not satisfactory, because Peggy can just say whatever she
wants, regardless of the truth. From Peggy’s perspective, it is also not satisfactory,
because Victor is getting information about the coloring.

We can improve the situation from Victor’s perspective by having Peggy first
color the graph and then cover all the vertices. Then Victor gets to point to an edge,
and Peggy uncovers the two vertices that it connects, so that Victor can see that the
two vertices are colored differently.

But this is still not satisfactory from Peggy’s point of view, since she is giving
away information about the coloring. However, note that if she has a coloring of the
graph, say with red, green, and blue vertices, then she can easily generate several
more colorings. For example, she gets a new coloring by swapping all the red and
blue vertices, and keeping all the green ones fixed.

In fact, starting from one 3-coloring, Peggy can very easily produce five more,
for a total of six. We can use this to modify the earlier attempt: instead of always
using the same coloring each time Victor asks for an edge, she picks a random one
of the six colorings before each request.

More precisely: Peggy takes her six 3-colorings of the graph. They then repeat the
following procedure several times: Peggy picks one of her six 3-colorings at random
and covers all the vertices. Then Victor points to an edge. Peggy removes the covers
from the two vertices of that edge. Victor checks that the two vertices are colored
differently. After enough queries, Victor is confident that Peggy does in fact have a
3-coloring. He has learned nothing about the coloring, because if he sees that two
vertices are colored (say) red and blue, then all that means is that there is a 3-coloring
in which they could be colored red and blue. But this is obvious, because the specific
colors have no special meaning.



180 16 Zero-Knowledge Proofs

If Peggy is cheating, meaning that she doesn’t actually have a 3-coloring, then
Victor will eventually figure this out, because he will point to an edge and see two
adjacent vertices with the same color. Or perhaps Peggy has cheated by not coloring
all the vertices. Victor will also eventually notice this.

Suppose that the graph has m edges. Then, if Peggy is lying, then there must be
one “faulty” edge, with two vertices of the same color. So, if Peggy is lying and
Victor picks a random edge, then his chance of exposing the lie is at least 1

m . If
they repeat the experiment m times, then his chance of ever exposing the lie is at
least 1 − (

1 − 1
m

)m ≈ 1 − 1
e . If they instead repeat it mk times, for some k, then his

chance of finding out is at least 1 − (
1 − 1

m

)mk ≈ 1 − 1
ek , which becomes very close

to 1 for large k. It is reasonable for them to be willing to do mk trials, since this is a
polynomial function of m, the number of edges in the graph.

16.5 Sudoku

This time, Victor is trying to do a Sudoku and is having trouble. As usual, Peggy
knows how to do it. Instead of giving a hint, she wants to rub it in and convince
Victor that she already knows the solution.

In case you have not seen it before, here are the rules of Sudoku. There is a 9 × 9
grid of squares, divided into a 3 × 3 grid of 3 × 3 squares. Initially, some of the
squares are filled in with numbers from 1 to 9. The goal is to fill in the remaining
squares, in such a way that each row, column, and 3 × 3 square contains each of the
digits from 1 to 9, exactly once. See Figure 16.5 for a challenging example [Col12].

How does Peggy demonstrate to Victor that she knows how to solve the Sudoku?
Since Sudoku (at least, in its n2 × n2 generalization) is an NP problem (in fact,
like 3-colorability, it is NP-complete), we can convert the Sudoku problem to a
3-colorability problem and use the zero-knowledge proof we just looked at for 3-
colorability. But such a proof would be difficult to understand.

Instead, we want a zero-knowledge proof that has more of a Sudoku “flavor” to
it. Here is one. (Find another one in problem 15.) First, Peggy fills out her solution
on a separate sheet, that she does not show to Victor. Now that she has this one
filled-out grid, it is easy for her to generate others. Let σ be any permutation of
the numbers {1, . . . , 9}, i.e., a bijective function σ : {1, . . . , 9} → {1, . . . , 9}. Recall
that this means that for each y ∈ {1, . . . , 9}, there is a unique x ∈ {1, . . . , 9} such
that σ(x) = y. To generate a new completed Sudoku grid, she simply replaces every
x on the grid with σ(x). Since there are 9! = 362880 permutations of {1, . . . , 9}, this
gives her 9! filled out Sudoku grids.

This suggests an attempted zero-knowledge proof. Peggy picks one of the 9!
permutations at random and generates the corresponding filled-out grid. Victor needs



16.5 Sudoku 181

8

3 6

7 9 2

5 7

4 5 7

1 3

1 6 8

8 5 1

9 4

Figure 16.5 A difficult Sudoku problem

to verify that this is a correct solution, so he needs to check that, in every row, every
number from 1 to 9 is used exactly once. Similarly for every column and 3 × 3
square.

So, we allow Victor to name a row, column, or 3 × 3 square. Peggy then reveals
all the entries in that row, column, or 3 × 3 square, and Victor can check that all the
numbers are indeed different.

While this is enough to convince Victor that Peggy has a complete Sudoku grid, it
is not completely satisfactory. The reason is that Peggy could have chosen an entirely
different (and much easier) Sudoku puzzle to start with. Victor also needs to know
that Peggy started with the same numbers filled in as he did.

So, we need to allow Victor one more option. In addition to being allowed to see
all the entries in a row, column, or 3 × 3 square, he also gets to ask to see what’s in all
the squares that were originally filled in. He doesn’t expect to see exactly the same
numbers as in the original, but he expects to see the same pattern as in the original: if
he knows of two squares that (say) both contain 4’s, then he expects to see the same
number in both squares, even though they might not be 4’s. Similarly, if he knows
of two squares that contain different numbers, then in the version Peggy shows, they
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1

4 8

9 2 6

5 9

7 5 9

3 4

3 8 1

1 5 3

2 7

Figure 16.6 A permutation of the original Sudoku problem

should also show different numbers. A permutation of the original Sudoku is shown
in Figure 16.6.

After running this test several times, Victor is convinced that Peggy is telling the
truth.

16.6 Quadratic Residuosity

Aswe have already seen, the problem of computing square roots modulo a composite
number n is of cryptographic importance; for example, this was the idea behind
the Miller–Rabin primality test. Furthermore, the problem of finding a square root
modulo n is as hard as factoring n. (See problem 8.) Furthermore, if n is composite,
then it is not even easy to tell if some number a is a square modulo n; that is, it is
not easy to determine whether there exists some r so that r2 ≡ a (mod n). Note that
this problem does not require actually finding r .

On the other hand, if p is prime, then it turns out that it is easy to determine
whether a is a square modulo p, thanks to Euler’s criterion:
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Theorem 16.4 (Euler’s criterion) Let p be an odd prime and a not a multiple of p.
Then

a
p−1
2 ≡

{
+1 (mod p) if a is a square modulo p,

−1 (mod p) if a is a nonsquare modulo p.

We leave the proof for problem 3.
Observe that if n = pq is a product of two primes, then a is a perfect square

modulo n if and only if it is a perfect square modulo both p and q. (See problem 2.)
The way that Peggy and Victor can arrange a zero-knowledge proof for determin-

ing whether a is a square modulo n is as follows: Peggy will give Victor a choice of
two closely related numbers, and Victor will ask Peggy to take the square root of one
of them. If Victor could get information about the square roots of both numbers, then
he could determine a square root of a, but he will never be given the opportunity.

Here is the protocol: Peggy knows a square root t of a modulo n. She picks a
random number b ∈ (Z/nZ)× and computes y = b2 (mod n). She announces the
value of y to Victor. Then Victor chooses whether to ask her to compute a square
root of y, or of ay, modulo n. She responds to the query with some number c, which
is either b or bt depending on the query, and he checks whether c2 ≡ y or c2 ≡ ay,
depending on his query. They repeat this procedure for several rounds, until Victor
is convinced that Peggy is honest.

Now, after each value of y that Peggy announces, she must be prepared to
provide square roots of both y and ay modulo n. But if she knows u and v

such that u2 ≡ y (mod n) and v2 ≡ ay (mod n), then u−1v (mod n) is such that
(u−1v)2 ≡ a (mod n), i.e., Peggy also knows a square root of a.

Note that Peggy ought to be careful never to provide the same value of b (or y)
twice, or else she gives Victor enough information to find t : upon hearing the same
value of y twice, he once asks for a square root of y, and once for a square root of ay.
He then performs the same computation as Peggy could have done in the preceding
paragraph. If n is large and she picks b randomly, then it is unlikely that this problem
will ever arise.

Since the problem of finding a square root modulo n is equivalent to factoring
(see problem 8), we can treat this as a zero-knowledge protocol for factoring as well.

16.7 Discrete Logarithms and the Schnorr Protocol

Since 3-colorability is anNP-complete problem andwe have a zero-knowledge proof
for it, we know that there must be a zero-knowledge proof for every NP problem,
including the discrete logarithm problem. However, the zero-knowledge proof we get
after chasing around that rabbit hole probably won’t be very enlightening. Instead,
let’s try something different.
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We assume that we have a prime p and a primitive root g modulo p, and given A
(mod p), we wish to find a such that ga ≡ A (mod p). This is the standard discrete
logarithm problem in F×

p .
We suppose that Peggy knows the answer to this discrete logarithm problem, and

she wishes to convince Victor of this fact. They employ the following procedure,
known as the Schnorr protocol.

First, Peggy picks some number r and computes t = gr (mod p). Victor then
challenges her by sending her a number c. Peggy responds with the number s =
r + ac. Victor then checks that gs ≡ t Ac (mod p). If Peggy is honest, then this will
be the case, for

gs ≡ gr+ac ≡ t × (ga)c ≡ t × Ac (mod p).

Furthermore, it is easy for Victor to detect cheating, since any wrong value of s (at
least, modulo p − 1) will lead to the wrong answer. So, if Peggy instead chooses
a different number b in place of a, she will only trick Victor if r + ac ≡ r + bc
(mod p − 1), i.e., if (a − b)c ≡ 0 (mod p − 1). And remember that Victor chooses
c; he can make sure that gcd(c, p − 1) = 1 if he chooses to do so.

Note that if they repeat the procedure, then Peggy needs to pick a new r each
time. If she uses the same r twice, and Victor chooses c = 1 the first time and c = 2
the second time (say), then he knows the values of r + a and r + 2a, and so he can
compute a.

But there are tricks! Peggy may have access to magical information, so it is
not too unreasonable to give her even more powers. Suppose that she can guess
Victor’s choice of c. Then she can cheat. She starts the same way, by choosing r . But
now, instead of computing t = gr (mod p), she cheats and computes t ′ = gr/Ac

(mod p). Victor, not suspecting anything, sends c, as predicted. Then she returns r ,
instead of s.

Now, what does Victor do? Still oblivious to the ruse, he computes gr and checks
that this is equal to t ′ × Ac. This is true, since

t ′ × Ac ≡ gr/Ac × Ac ≡ gr (mod p).

As a result, this procedure is only convincing for Victor if he is already convinced
that Peggy isn’t too powerful. From his point of view, it is good not to make his
random choices until the last possible moment: if Peggy can predict his (potentially
random) c, then she can cheat.

Can Victor gain information from this procedure? We don’t know. We can prove
that, assuming that the discrete logarithm problem is hard, he is unlikely to gain any
knowledge by choosing his values of c at random. But what if he doesn’t choose
his values at random but instead adopts a strategy? Then we don’t know: no one has
suggested either a strategy whereby he can compute a, or even anything nontrivial
about a such as a (mod 2). But no one has provided a proof that he can’t, either.
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16.8 Time Machines and Prover Tricks

One day, you receive an unsolicited letter in the mail, predicting the winners of five
sports games to take place over the next month. Instead of putting it in the recycling
bin, where it belongs, you keep the letter and are surprised to find out that all five
predictions are correct. The following month, you get another letter from the same
person, again predicting the results of five sports games to take place over the next
month. Now you are curious, so again you keep the letter. Again, you find that all five
are correct. The following month, you get yet another letter from the same person,
asking if you would like to pay for more predictions. Since the predictor has a perfect
10/10 record, maybe this is a good idea?

Not so fast! What you should try to determine is whether other people have
received very similar letters. Here is a possible scenario: for the first mailer, the
sender prepared 32 copies of each of 32 different letters, containing all possible
results of the five games. Then the sender selected 1024 people and mailed a letter to
each of those 1024 people. So, 32 people, including you, got the letter with all correct
predictions. For the second letter, the sender wrote just 32 letters, each one containing
a prediction for all five games the following month. The sender then mailed one of
these letters to each of the people who had received the perfect mailer the previous
month. The third letter, offering to sell predictions, was only sent to you, since you
were the only one who got the perfect predictions the first two times. (Maybe the
people who got letters with 9/10 right also got this third letter. After all, 9/10 is pretty
good too!)

In otherwords, the sender has no abilitywhatsoever to predict. But you don’t know
that, because you only got to see one letter, out of all 1024. Therefore, you should
be extremely suspicious of such advertising if you do not know the mechanism by
which it was produced.

Or, take the following similar scenario. Let us suppose, for some rather unfath-
omable reason, I feel the need to make a lot of money in a short amount of time. My
training as a mathematician has not taught me much about how to do this, so I do the
logical thing under the circumstances: I plan to ask the experts. I assemble a list of
many people who have made a lot of money in a short amount of time, and I arrange
to interview all of them about their behavior and lifestyle choices. Then, I interview
them all and look for patterns. And I find a very noticeable pattern in their behaviors
shortly before they made their fortunes. Naturally, I choose to mimic their behavior:
I buy a lottery ticket.

Oops. That wasn’t what we wanted. My mistake was that I failed to interview all
the people who did exactly the same thing but didn’t win. I was the victim of survival
bias.

In the context of zero-knowledge proofs, a dishonest Peggy may be able to pull
a similar stunt. She doesn’t know the secret she’s supposed to know, but she wants
to convince someone that she does anyway. So, she plays one of these probabilistic
games, in which she can only trick Victor with small probability when she doesn’t
know the secret. Since she doesn’t know it, she probably fails. But she is undeterred:
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she just tries again, this time with a different verifier. She probably fails again, so
then she moves on to a third verifier. Eventually, just by chance, she manages to trick
someone. Success!

Similarly, a Peggy with a time machine can pull off the stunt with against a
single verifier. Whenever Victor rejects her claim of knowing the secret, she uses her
time machine to “undo” the last interaction. We conclude that Victor’s confidence
in a zero-knowledge proof should depend on what he believes Peggy’s power to be.
If he thinks she has a time machine, then he won’t accept the protocols we have
already discussed, and they have to come up with a more convincing protocol. We
leave it as an exercise to the reader to try to come up with time-machine-resistant
zero-knowledge proof. (See problem 18.)

16.9 Commitment Schemes

Alice and Bob are having a dispute and would like to settle it by the canonical fair
and random process: flipping a coin.1 If they were in the same room, they could just
flip a coin, with (say) Alice winning the dispute in case of heads, and Bob winning
in case of tails. However, they are thousands of miles apart, and they are only talking
on the telephone. Furthermore, they do not have fancy modern phones with video
cameras.

What can they do? One option is for Alice (say) to flip a coin, and she wins if the
coin lands on heads and loses if the coin lands on tails. But this is not satisfactory
from Bob’s perspective: there is nothing to stop Alice from claiming that the coin
landed on heads, regardless of the actual result. In fact, she could easily make such
a claim without even flipping a coin at all.

Another thing they can try is for Bob to decide (secretly) whether he picks heads
or tails, and after Alice announces the result of the coin flip, he reveals to her which
he has chosen. But now we have the opposite problem: Bob can lie. If the coin lands
on heads, then he can claim to have chosen heads, and if the coin lands on tails, then
he can claim to have chosen tails. So, this scheme is also not satisfactory.

Instead, we need a way for both Alice and Bob to lock down their choices before a
certain key piece of information is revealed. We do this by relying on a computation-
ally difficult problem. Many such computationally difficult problems admit similar
commitment schemes, but we will discuss one based on factoring.

Rather than flipping coins, Alice picks two large prime numbers, p and q, such
that one of them is 1 (mod 4) and the other is 3 (mod 4). Alice computes n = pq
and reveals this number to Bob. However, she does not reveal p or q. Since n ≡ 3
(mod 4), Bob can already verify that one of p and q is 1 (mod 4) and the other is 3
(mod 4). (Well, sort of: he cannot verify that n has only two prime factors. But more
on that later.)

1They haven’t learned about the hacks we discussed on page 177.
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Figure 16.7 A combination
padlock

The number n is Alice’s part of the commitment scheme. Now, it’s Bob’s turn
to do something. He knows that one of the prime factors of n is 1 (mod 4) and the
other is 3 (mod 4), but he doesn’t know whether it is the smaller or larger one that
is 3 (mod 4). So, he makes a guess. That guess is Bob’s part of the commitment
scheme.

Now, Alice reveals the two numbers p and q , and both Alice and Bob can easily
check whether Bob’s guess was right or not. Furthermore, they can check whether
Alice cheated or not. For example, Bob can verify that pq = n. He can also verify that
p and q are both primes. (Remember that primality testing can be done in polynomial
time, i.e., quickly!)

16.10 Problems

(1) For each congruence class a (mod p), determine whether or not a is a square
modulo p. For those that are squares, see if you can compute all the square
roots. How many are there?

(a) 26 (mod 83)
(b) 14 (mod 47)
(c) 9 (mod 101)
(d) 45 (mod 53)

(2) Suppose that p and q are distinct primes, and that n = pq. Show that a is a
perfect square modulo n if and only if a is a square modulo p and a square
modulo q.

(3) Prove Theorem 16.4.
(4) Victor is colorblind. Peggy has two billiard balls, which are identical except

for color: one is green and one is red. Peggy would like to convince Victor that
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they are different, without telling him which one is which. Design a protocol
for them to use.

(5) Victor has two combination padlocks like the one in Figure 16.7. Peggy claims
that she knows the combination to one of them. Design a procedure that allows
her to convince Victor that she knows the combination to one, without him
learning what the combination is, or which one she knows the combination for.

(6) Peggy has two identical padlocks, and she claims that they both have the same
combination. Design a procedure whereby she can convince Victor of this,
without him learning the combination.

(7) Peggy claims to know the number of coins in a large jar. Come up with a
protocol whereby she can convince Victor of this. (You may suppose that she
can instantly determine the number of coins in the jar at all times.)

(8) (a) Given a deterministic oracle that, for every a and n, either returns some t
so that t2 ≡ a (mod n) or promises that no such t exists. (“Deterministic”
means that the oracle always returns the same answer given the same input.)
Explain how to use this oracle to factor numbers quickly. (Hint: Vs n vf n
fdhner zbqhyb a, ubj znal fdhner ebbgf qbrf n unir?)

(b) Given an oracle that returns the prime factorization of a number n, explain
how to determine, given a and n, whether there is some t such that t2 ≡ a
(mod n), and if such a t exists, to find an example. (You may assume that
you know how to take square roots modulo p when they exist, even if this is
actually false. At any rate, there are polynomial-time algorithms for doing
that.)

(9) Let G = (V1, E1) and H = (V2, E2) be two graphs, so that Ei is a set of
pairs of vertices in Vi , for i = 1, 2. We say that G and H are isomorphic if
there is a bijective function σ : V1 → V2 such that {v,w} ∈ E1 if and only
if {σ(v), σ (w)} ∈ E2. (That is, G and H are “the same” up to relabeling the
vertices.) Find a zero-knowledge proof for determining that G and H are not
isomorphic. (You may assume that Peggy knows an actual isomorphism of the
graph, and furthermore than she can solve the graph isomorphism problem for
every pair of graphs.) This is interesting, because there does not seem to be a
general way of producing a short proof that two graphs are not isomorphic, i.e.,
graph non-isomorphism is not believed to be an NP problem. By contrast, one
can produce a short proof that two graphs are isomorphic by simply writing
down an isomorphism.

(10) Find a zero-knowledge proof for showing that two graphs are isomorphic.
(11) Consider the following attempt at a commitment scheme. Alice chooses a prime

p, a primitive root g modulo p, a number x , and computes h ≡ gx (mod p).
She then tells Bob p, g, and h, and asks Bob whether x is even or odd. Why is
this a bad idea?

(12) In the previous problem, suppose that Bob is only supposed to have a one-third
chance of winning the commitment, and Alice asks him to guess x (mod 3).
Is this a good commitment scheme?

(13) Find a commitment scheme for a coin flip based on the discrete logarithm
problem.
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(14) Modify the factorization-based commitment scheme to the case where Bob is
supposed to have an r/s chance of winning, where r/s is a rational number in
lowest terms.

(15) Find a different zero-knowledge proof for Sudoku.
(16) Find a zero-knowledge proof for solving Rubik’s cubes.
(17) A graph G is said to have a Hamiltonian circuit if there is a sequence

v1, v2, . . . , vn, v1 of vertices, starting and ending with the same vertex, such
that

(a) each vertex of G is on the list v1, . . . , vn exactly once,
(b) for each i , there is an edge between vi and vi+1, and also an edge between

vn and v1.

Determining whether G has a Hamiltonian circuit as an NP-complete prob-
lem. Find a zero-knowledge proof for determining whether G has a Hamilto-
nian circuit. (You may assume that Victor cannot solve the graph isomorphism
problem.)

(18) Come up with a zero-knowledge proof for graph 3-colorability that Peggy and
Victor can enact if Victor believes that Peggy has a time machine.



Chapter 17
Secret Sharing, Visual Cryptography,
and Voting

17.1 Secret Sharing

Suppose you have n people, with whom you wish to share a secret. However, you do
not wish to entrust any of them individually with the secret. Rather, you only want
to allow them to learn what the secret is when a significant coalition of the people, at
least k, say, work together to learn it. Furthermore, you don’t want to allow smaller
coalitions to learn bits of the secret; you want any coalition of at most k − 1 people
not to be able to learn anything at all. How do you do it?

First, the trivial case: if k = 1, then you just tell each of the n people the secret.
The case of k = n is also relatively straightforward. For example, suppose that

the secret s is an integer, or an element of Z/mZ. (They both work the same way.)
Choose numbers a1, . . . , an so that a1 + a2 + · · · + an = s. Then, when they all
work together, they can reconstruct s. However, if a single person refuses to help,
then the remaining n − 1 people can learn nothing. (The remaining number could be
any integer, positive or negative, or any element of Z/mZ.)

If k = 2, the problem is already interesting: how do you arrange that no individual
person can work out the secret, while any pair of people can?

Based on the solution for k = n, there is a stupid solution: for any two-element
subset {i, j} of {1, 2, . . . , n}, create a pair of numbers ai, j,1 and ai, j,2 such that
ai, j,1 + ai, j,2 = s. Give person i the number ai, j,1 and person j the number ai, j,2.
Repeat for all pairs i, j . This requires choosing

(n
2

) = n(n−1)
2 pairs of numbers that

sum to s, and each of the n people has to keep track of n − 1 numbers, to take care
of all possible coalitions.

In fact, this scheme extends much more generally: you can control exactly which
coalitions can work out the secret. Suppose you have a collection of coalitions you
wish to allow: T is a collection of subsets of {1, . . . , n}, the coalitions that are allowed
to work out the secret. T should satisfy the property that if U ∈ T and U ⊂ V , then
V ∈ T as well. (Coalition V can just ignore the information of the people not in
coalition U .) To each U ∈ T , construct a set of |U | numbers that sums to s. Then
distribute those |U | numbers to the members of U . In fact, we only need to do this
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for the minimal allowable coalitions: those that do not contain any smaller allowable
coalitions.

If the number of allowable coalitions is small, this strategy may be viable. But it
quickly gets out of hand: if there are 1000 people, and you want a coalition of 500
of them to be able to access the secret, then you need

(1000
500

) ≈ 2.7 × 10299 sets of
numbers summing to s. That is far too many.

17.2 Shamir’s Secret-Sharing Scheme

The idea behind Shamir’s secret-sharing scheme is to encode bits of the secret as the
values of a polynomial. The key observation is that it takes k points to determine a
polynomial of degree k − 1: two points determine a line, three points determine a
parabola, and so forth.

So, again, we assume that s is an element ofFp (for some large p). Choose random
c1, . . . , ck−1 ∈ Fp, and define

f (x) = s + c1x + c2x2 + · · · + ck−1xk−1.

Observe that the secret is f (0) = s. Also observe that ck−1 might be 0, which would
make the polynomial have degree strictly less than k − 1; this does not cause any
problems.

Now,wemust distribute the numbers a1, . . . , an to the n people.We set ai = f (i),
and give person i the number ai . Any k people can reconstruct f , since k points suffice
to determine a polynomial of degree at most k − 1. But k − 1 people cannot. (In fact,
they can say nothing at all about the secret; see problem 6.)

It is worth discussing exactly how to reconstruct a polynomial of degree at most
k − 1 from knowing k values. It’s easy: there’s a formula.

Theorem 17.1 (Lagrange Interpolation Formula) Suppose we have points (x1, y1),
. . . , (xk, yk), with all the xi ’s distinct. Then, there is a unique polynomial f (x) of
degree ≤ k − 1 interpolating these points, i.e., f (xi ) = yi for all i . This polynomial is

f (x) =
k∑

j=1

y j

∏

1≤m≤k
m �= j

x − xm

x j − xm
.

So, we just find f by using the Lagrange Interpolation Formula.
Just kidding! Okay, the formula is fine if you’re writing a computer program to

do this. But there’s a method of doing the interpolation that is very easy and doesn’t
require memorizing anything. If you are a human, I recommend you use that method
instead.

We start by doing an easier interpolation problem, interpolating the points (x1, y1)
and (x2, 0), (x3, 0), . . . , (xk, 0). This is easy to do: any polynomial passing through
the points (x2, 0), . . . , (xk, 0) is of the form c(x − x2)(x − x3) · · · (x − xk). So,
choose c to make it interpolate the point (x1, y1). Call this polynomial f1(x).
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Similarly, we can find a polynomial interpolating the points (x2, y2) and (x1, 0),
(x3, 0), (x4, 0), . . . , (xk, 0), using exactly the same method. Call this polynomial
f2(x). Similarly, construct f3(x), . . . , fk(x).
Finally, we put them together: f (x) = ∑k

j=1 f j (x). Since f1(x1) = y1 and
f2(x1) = · · · = fk(x1) = 0, we have f (x1) = y1. Similarly, f (x j ) = y j for all
1 ≤ j ≤ k.

The Lagrange Interpolation Formula is doing the same thing as we just did, but
put into the form of a concise and non-illuminating formula.

Example Let us find a polynomial of degree at most 4 passing through the points
(0, 2), (1, 4), (2, 7), (4, 6), and (8, 19) overF23.We start by finding f1(x), a degree-4
polynomial passing through (0, 2), (1, 0), (2, 0), (4, 0), and (8, 0). To make it pass
through the last four points, we take f1(x) = c(x − 1)(x − 2)(x − 4)(x − 8), and
then we have to find c. We have 2 = f1(0) = c(−1)(−2)(−4)(−8), so c = 32−1 =
18. Thus f1(x) = 18(x − 1)(x − 2)(x − 4)(x − 8).

Next, we compute f2(x), which passes through (0, 0), (1, 4), (2, 0), (4, 0), and
(8, 0). This one has the form f2(x) = cx(x − 2)(x − 4)(x − 8), and plugging in
x = 1,we get 4 = f2(1) = c(1)(−1)(−3)(−7), so c = −4 × 21−1 = −4 × 11 = 2,
so that f2(x) = 2x(x − 2)(x − 4)(x − 8). Continuing on in this way, we find
that f3(x) = 7x(x − 1)(x − 4)(x − 8), f4(x) = 10x(x − 1)(x − 2)(x − 8), and
f5(x) = 18x(x − 1)(x − 2)(x − 4). Putting this all together, we have

f (x) =
5∑

i=1

fi (x) = 9x4 + 19x3 + 7x2 + 13x + 2.

We can easily check that this polynomial does indeed interpolate the five points we
specified at the beginning.

17.3 Blakley’s Secret-Sharing Scheme

Around the same time that Shamir developed his secret-sharing scheme based on
polynomials, Blakley came up with a different method, based on hyperplanes, or
linear algebra if you prefer. Suppose we have n people, and we wish to allow any
coalition of k people to work out the secret s ∈ Fp. To do this, we construct n linear
equations in k variables over Fp.

To do this, we fix not-necessarily-distinct elements c1, . . . , ck ∈ Fp, with c1 = s.
Then we find n linear equations in k variables x1, . . . , xk with coefficients in Fp, so
that setting x j = c j for 1 ≤ j ≤ k satisfies each equation. More precisely: we pick
a11, a12, . . . , ank, b1, . . . , bn ∈ Fp randomly, subject to the constraint that, for each i ,

ai1c1 + ai2c2 + · · · + aikck = bi .

We then give the i th equation to person i .
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Well, we can’t do this completely randomly, but most choices are okay, at least
if p is large. We need to make sure of a few things. First, it is no good if, say, one
of the equations is ai1x1 = bi , because then person i can determine what a solution
for x1 singlehandedly. Similarly, we need to make sure that no coalition of k − 1
people can determine the unique solution c1 for x1. We also need to make sure that
any coalition of k people can determine c1.

17.4 Visual Cryptography

Let’s go low-tech. Most of the time in cryptography, we wish to encrypt words or
numbers (or perhaps some more exotic thing, such as points on elliptic curves). But
what if we want to encrypt a picture? This question was first investigated by Moni
Naor and Adi Shamir in [NS95].

One way of doing this is to save the picture in some digital format such as a jpg
file, which then converts the picture to a string, which can convert to a number and
encrypt as usual.

But isn’t it more fun to encrypt the picture itself ? Let’s not worry just yet about
the usual cryptographic problem of establishing a secure key over a public channel
and instead just think about what it could possibly mean to encrypt a picture.

For us, a picture is something that we can recognize with our bare eyes, without
technological enhancements. Now, our eyes aren’t perfect; we don’t see things that
are really small, and we can’t detect very subtle differences between two pictures.
For our purposes, this will turn out to be a feature, not a bug!

Let us suppose that the picture we wish to share is in black and white only. (It
is possible to modify our protocol to be able to handle color images as well, but it
adds unnecessary extra complications.) When we see a region that is mostly white,
with a few black dots in it, then it is easy for our eyes to interpret the region as being
completely white. Similarly, when we see a region that is mostly black with a few
white dots in it, we interpret it as being completely black.

So, this gives us an idea. Suppose we wish to encrypt a picture, say of the letter A,
as in Figure 17.1, left. We first pixelate it; ideally this would be done in more detail,
but let us keep it severely pixelated for ease of understanding. Let us also invert it,
so that the letter is in white and the background is in black; see Figure 17.1, right.

Next, what we do is to subdivide each pixel into a 2 × 2 grid of subpixels. We
replace every black pixel with a 2 × 2 grid of black subpixels, while we replace every
white pixel with one of the two arrangements of subpixels in Figure 17.2, chosen at
random.

Figure 17.1 Left: An A;
Right: A pixelated A
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Figure 17.2 The two
possible 2 × 2 arrangements
of sub-pixels that code for
white pixels

Figure 17.3 The letter A,
pixelated and subdivided

Our letter A might then look like Figure 17.3. As we can see, it is still quite easy
to read, although it helps to enlarge it a bit, as we have done.

Now, to turn this letter into something cryptographic, we imagine superimposing
two transparencies, one on top of the other, in order to generate the image in
Figure 17.3. Because of how physical reality works, when we overlay two trans-
parencies, then we see a black pixel unless both of the pixels overlaid are white. We
want to choose our two layers so that each pixel on each layer looks like one of the
two possibilities in Figure 17.2. For any given pixel, if both layers are the same, then
we end up with one of the possibilities in Figure 17.2; if the two are different, then
we end up with a fully black pixel.

Now, this suggests a way of encoding the picture. We first select a key, which is a
random collection of 2 × 2 subpixels as in Figure 17.2. The “plaintext” is the original
picture, pixelated but not further subpixelated. Now, we create the ciphertext. It has
the same form as the key, except that it’s not random. In every position where the
original image had a black pixel, we put a 2 × 2 arrangement of sub-pixels that differs
from that of the key, whereas for every white pixel, we use the same arrangement.
This way, when we overlay the two images, every black pixel is fully black, and
every white pixel is half-white, half-black as in Figure 17.2.

Observe that an eavesdropper who only has access to one transparency learns
exactly nothing: any pixel could still be either black or white. The key functions as
a one-time pad for this cryptosystem.

As for secure key generation, this is not so difficult, at least, given access to a
computer. (And, realistically, how are you supposed to create these transparencies
without a computer anyway?) The two parties agree on a key, say viaDiffie–Hellman,
and then convert the key into a string of 0’s and 1’s; every 0 is transformed into the
sub-pixel arrangement on the left of Figure 17.2, whereas every 1 is transformed into
the arrangement on the right.
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In their original paper on visual cryptography, Naor and Shamir also discuss how
to do a secret-sharing version, where n people get shares of the key, and any coalition
of k people (but no coalitions of k − 1 people) can view the picture.

Remark 17.2 The idea of combining two (or more) uninteresting patterns into one
meaningful pattern is of interest to people other than cryptographers as well. In art,
this is the concept of the Moiré pattern. It turns out that it is possible to make all sorts
of interesting patterns by taking two copies of the same pattern, such as a bunch of
parallel lines, and misaligning them slightly. Much of the theory has been carefully
worked out; see, for instance [Gab07].

17.5 Cryptographic Voting

Let us now put a bunch of the things we have studied together, so that we can create
a cryptographic voting scheme. As Stalin pointed out,

The people who cast the votes decide nothing. The people who count the votes decide every-
thing.

The problem is that it is difficult to establish a transparent system: for example, what
stops a dishonest vote counter from forging the results? Similarly, there are other
serious problems that we must overcome in order to create a satisfactory voting
system.

This is just the sort of setup where cryptographic protocols tend to thrive. The
goal is to set up a protocol whereby voters can verify that their votes were counted,
and furthermore that they were not tampered with.

Moreprecisely, here are someof the thingsweexpect out of a goodvotingprotocol:

Democratic: Only eligible voters can vote, and each eligible voter can only cast
≤ 1 ballot.

Private: No one can tell how an individual voter voted. Being able to publish a list
of voters who voted is allowable, but it must not be possible to determine from
this list what any individual voter’s vote was.

Receipt-free: Voters must not be able to get certificates verifying how they voted.
More generally, they must not be able to prove to anyone else that they voted
as claimed. The reason we want this is to ensure that there is no reliable way of
buying or selling votes.

Accurate: The system must correctly tally the number of votes cast for each candi-
date.

No partial results: No one can learn any partial results before the voting period
closes.

Individual verifiability: Voters must be able to verify that their votes were counted
correctly.

Universal verifiability: Anyone can verify that the total is correct.



17.5 Cryptographic Voting 197

Cryptographic voting is quite a tough problem, because of the large number of
possible adversaries. Most obviously, the vote counters are potential adversaries: we
need a way of certifying that they count and report the votes correctly, and we must
also ensure they cannot deanonymize the individual votes. On top of that, individual
voters are potential adversaries: they can try to sell votes, for example. They might
also try to do other similar shady things:maybeBob is uninterested in the election and
just wants to copyAlice’s ballot.We don’t want to allow him to do that. Alternatively,
maybe he wants to cancel Alice’s ballot. We don’t want to allow him to do that either.
(All of these are potential forms of coercion, which are bad for democracy.)

In addition, someof the demands appear to be at oddswith each other. In particular,
there is an apparent conflict between the requirement that ballots be receipt-free, and
the requirement of individual verifiability: how can I determine if my vote was
counted if I don’t get to keep any documentation of it? Maybe I can memorize my
ballot and a serial number, but it is bad policy to require voters to memorize things in
order to verify that their votes are counted: most people would struggle to memorize
a 9- or 10-digit number on command.

In general, it is safe to assume that most people are good. But any involved party
might be compromised. Thus, we need to make the entire system secure against
one corrupt party, or a small committee of corrupt parties. If everyone involved is
corrupt, then the system may be compromised, but this is unlikely: by assigning
parties with divergent interests different roles in the process, we can minimize the
chances that everyone is compromised.Aswehave learned in theUS, theRepublicans
and Democrats are incapable of working together, so if we assign them both roles in
the process, then they will be unable to collude to corrupt the election results.

17.6 An Outline of a Cryptographic Voting Protocol

So, how does it work? As we mentioned before, it’s complicated, and it uses much of
the stuff we have already learned.We begin by giving an outline of the entire process.
We will then fill in many of the details. So, here is, roughly, the idea of a system.
This voting protocol is a modified version of the schemes proposed by Chaum and
Neff. There are probably some loopholes here that make the complicated details in
their schemes necessary, but we leave that discussion for a more thorough study of
cryptographic implementations than is presented here.

(1) First, an encryption key is created. We do not want any party to have full access
to the key, so this process is done in a distributed manner: each of several parties
has a partial key.

(2) Next, each eligible voter is assigned a unique voter ID token. The voter ID token
is required in order to log onto the system to vote. The token may not be reused.

(3) Next, the voters must submit their votes, which then get encrypted. Typically,
we use ElGamal encryption for this, because it is easy to encrypt or decrypt a
message in small stages using ElGamal, as we shall soon see.
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(4) Each voter confirms that eir vote was cast as intended.
(5) Votes are decrypted. This is done in stages, with each partial key holder doing

a small part of the decryption, and then verifying to an external auditor that the
votes were actually decrypted correctly. Special care must be taken for the final
decryption.

(6) After every stage of the decryption, the increasingly decrypted ballots are posted
publicly, so that auditors can verify their accuracy.

17.7 Key Generation

In order to generate the key, we use ElGamal key generation, either in its standard
formulation in F

×
p for a large prime p, or in its elliptic curve formulation. In what

follows, we assume that we are working with the F×
p -version of ElGamal, but it is

easy to modify it to work for elliptic curve ElGamal.
We do not want to entrust the entire private key to a single party, so we allow

several parties to create their own partial keys, combining them to create a full key.
First, we fix, once and for all, a large prime p and a primitive root g modulo p. These
are public information, available to the key generators and everyone else.

Let us suppose that we have t partial key generators. For each i with 1 ≤ i ≤ t ,
the i th key generator picks a random ai and computes hi = gai (mod p), which then
becomes public. The full public key is then

h ≡
t∏

i=1

hi (mod p) ≡ g
∑

ai (mod p).

Note that everyone can compute the full public key, even though no individual knows
the private key, but only a small share of it.

Each voter will encrypt eir vote “in one go,” using the full h as the encryption key,
but decryption will have to be done in stages: first, key generator 1 will do a partial
decryption, then key generator 2 will do a partial decryption, and so forth, and then
key generator t will do the final decryption.

However, we have to be a little bit careful with person t , since ey could simply
choose to withhold the results of the election if the results are not to eir liking. There
are several solutions to this problem.

One solution is to use secret sharing for this final piece:we share the t th piece of the
private key at among many people, so that any committee of size k can determine the
value of at , for some suitable k.Wemight evenwant to do this without having a dealer
to give out the shares, since that entrusts too much power to a single person, who
could give out fake shares and hold up the election results if desired. See problem 13
for more on how to do secret sharing without a dealer. In fact, we could do this with
all the pieces.
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17.8 Assigning Tokens

Each eligible voter probably has some unique piece of identifying information, such
as a passport. (This isn’t quite right, because some citizens do not have passports.
But we can imagine the voting authority providing some similar documentation to
all registered voters.)

When a voter goes to vote, ey must scan eir passport or other document in a
machine. Now, we don’t want a vote to be traceable, so the machine should not just
store the passport number directly; instead, it should hash the passport number. To do
this, we apply some very complicated function f : {relatively small numbers} → S,
where S is a very large set. We want this function f , called a cryptographic hash
function, to have the following two properties:

Collision resistance: There should not be two different passport numbers m and n
such that f (m) = f (n).

One-way: Given s ∈ S, it should be very difficult to find an n such that f (n) = s,
or even to determine whether one exists.

Almost any “sufficiently complicated” f is a cryptographic hash function, if S is
extremely large. Recall that we briefly mentioned cryptographic hash functions in
Section 12.6, when we discussed digital signatures.

Ideally, we want the token to go through several rounds of hashing on different
machines. The reason is that any hashing machine could be corrupted.What it means
for a hashing machine to be corrupted is that it stores the results of all the hashes
as it performs them, and then possibly sells the results to a third party, who then
knows something about the votes. But if we have several rounds of hashing, then
it is unlikely that every hashing machine is corrupted, and it only takes one honest
hashing machine for the votes to be anonymous.

Now, if a voter tries to vote a second time, then the hash machines will notice that:
the hash functions are completely deterministic, so the same voter ID gets hashed
the same way both times. The machines notice that the hashed voter ID has already
been used, and the voter is denied the chance to vote a second time.

17.9 Encrypting and Verifying the Votes

Now thatwe have authenticated the voters,we allow them to vote. Each voter prepares
a ballot with eir vote. There are then two things that need to be done:

(1) The voter must check that the vote was cast correctly.
(2) The vote must be encrypted for future use.

In fact, we combine these two things into one: the encryption essentially is a
verification for the voter. One possibility, of course, is just to have the voter do some
ElGamal-style computation to encrypt the vote, then remember the number. But this
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is unsatisfactory: we can’t expect humans to do lengthy computations to verify that
their votes were cast as intended. (This is especially problematical for professional
mathematicians, since part of our training involves forgetting how to do arithmetic.)

Instead, we want a method of encryption that can be verified at a glance. This is
the realm of visual cryptography! After the voter submits eir ballot on a machine,
the machine produces two transparencies with lots of dots on them, so that when
they are superimposed, the ballot appears as cast. Now, this doesn’t really sound like
encryption.However, themachine uses theElGamal public key h in order to construct
the two transparencies. We won’t discuss further how that process works, but instead
refer the reader to David Chaum’s excellent paper [Cha04] on the topic. The voter
then chooses one of the transparencies to serve as eir ballot; after decryption, either
one is sufficient to serve as a ballot. The voter takes that transparency home, and the
other one is shredded.

Remark 17.3 Several questions immediately arise. First, why can’t the voter keep
both transparencies? Second, why does the voter have to be able to choose which
transparency to take, rather than (say) always getting the top one? Finally, doesn’t
the transparency count as a receipt of a vote?

Let’s answer these questions one by one. First, we don’t want to allow the voter
to keep both pieces, because that would genuinely be a receipt: combine both trans-
parencies to see a vote. So, this would lead to a coercible voting system: someone
can pay me to vote in a certain way, and I receive the payment upon giving this other
person my transparencies. That is bad, and this is the reason that polling places today
do not provide any receipts after voting. However, refusing to provide receipts comes
with drawbacks of its own: voters have to trust that their votes were counted (and
were counted correctly). See the Stalin quote above.

Now for the second question: why do we have to allow the voter to choose? Well,
suppose you have any black and white pixelated picture whatsoever (of a given size),
and youwish to split it into two layers of transparencies, as described in Section 17.4.
Then you canmake the top layer (or the bottom layer, if you prefer) be anything at all,
and then choose the second layer so that the combined picture comes out right. So,
we have to worry about the possibility of the transparency machine cheating: it can
cheat on one of the layers, but then the other layer is forced. So, themachine could get
away with cheating (and creating one layer of transparency that specifies a different
vote), but only half the time, namely if the voter picks the cheating transparency
layer. So, the voting machine can only get away with this 50% of the time. When
this happens, the other layer is probably gibberish when decrypted. As a result, if the
voting machine is cheating on a large scale, then it is extremely likely that someone
will notice once the votes are decrypted, and the election will be declared a fraud.

Finally, isn’t the transparency a receipt? In theory, it is possible to decrypt the
transparency into a vote, which is what the decryption process will eventually do.
But without the help of all the key generators, it will not to be possible to convert it
back into the plaintext vote. So, this receipt cannot be reliably used for coercion, in
the sense of guaranteeing that the voter voted in a specific way. On the other hand, it
can be used as a receipt for the voter’s sake of verification: the voter can match the
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receipt to a bulletin board containing all the (encrypted) votes and see that it shows
up there.

After all this is done, all the encrypted ballots (the dot patterns that each voter
chose) are put on a public bulletin board (presumably on the Internet), for all to
investigate. They’re encrypted, so no one can tell what they say. But anyone who
wishes can use this information to verify that all future steps are performed correctly.
For example, when a voter returns home from the polling place, ey can verify that
eir ballot is on the bulletin board. We assume that there is sufficient randomization in
the encryption process that, even if two people cast identical ballots, their encrypted
ballots end up looking different.

17.10 The Decryption Mix-Net

Now that all the encrypted ballots have been placed on the bulletin board, it’s time
to decrypt them. Okay, the ballots are in some weird visual form, but from now on,
we won’t worry about that; instead, we’ll just treat them as elements of F×

p , as usual
for ElGamal encryption.

Recall that no one has the full key, but the t key generators each have a portion
of the key. So, each one in turn has to peel off a layer of the encryption, until they’re
all gone. However, it’s not so good if they simply decrypt the messages “in place,”
since then a third party can match up the encrypted ballot with the decrypted one,
and if that person knows where a voter V ’s ballot was originally, then that person
can determine how V voted. We don’t want that.

So, after each layer of decryption, the decrypter must also scramble the ballots.
Let us suppose that there are n voters, and that their fully encrypted ciphertexts are
C1,0, C2,0, . . . , Cn,0. Then, decrypter number 1 must decrypt each of the Ci,0’s and
scramble them, to obtain C1,1, C2,1, . . . , Cn,1. Note that Ci,1 is not necessarily the
decryption of Ci,0; rather, it is the decryption of some C j,0, and no one else should
know which.

In order to preserve anonymity, we expect the decrypters not to disclose any
information about the permutation used. This immediately presents a few problems:

(1) How do we know that the decrypters are not selling their permutations to a third
party?

(2) How do we verify that the votes were correctly decrypted and scrambled?

Thefirst question is outside the realmof cryptography:wehavenowayof checking
that the decrypters did not sell the permutations. But this is why we have many
decrypters: if a third party is trying to deanonymize the votes, then this is only
possible if ey can collect all the permutations used by all the decrypters. As long as
at least one of the decrypters is honest, the whole scheme is safe.

The second question, on the other hand, is very much within the realm of cryp-
tography: how do we verify that the votes were decrypted and scrambled correctly?
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At each stage r , we must show that the ballots C1,r−1, . . . , Cn,r−1 are an encryption
of C1,r , . . . , Cn,r . We want to do so, without the decrypter having to give away any
information about the permutation, or at least as little as possible. This is the perfect
place to invoke a zero-knowledge proof. We’ll get there in several steps.

Let us first forget about the permutation part and just pretend there is only one bal-
lot to be encrypted. So, wewant to show thatC1,r−1 is an ElGamal encryption ofC1,r .
The public key is (p, g, h), where hr ≡ gar (mod p), and ar is secret; for simplic-
ity we’ll write a instead of ar . If done correctly, we have C1,r = (gx , mhx

r+1 · · · hx
t )

and C1,r−1 = (gx , mhx
r hx

r+1 · · · hx
t ), for some x . Let us write C1,r = (α1,β1) and

C1,r−1 = (α2,β2). Then consider the quadruple (π, ρ,σ, τ ) = (g, hr ,α1,β
−1
1 β2).

If done correctly, then σ = gx and τ = (mhx
r+1 · · · hx

t )
−1(mhx

r hx
r+1 · · · hx

t ) = hx
r , so

we should have (π, ρ,σ, τ ) = (g, hr , g
x , hx

r ). Note that, since hr = ga , we can also
write this quadruple as (π, ρ,σ, τ ) = (g, ga, gx , gax ). We need to verify that this is
correct.

This problem is known as the Decision Diffie–Hellman (DDH) problem, since
this amounts to determining whether a solution to the Diffie–Hellman problem (that
is already handed to you, so you don’t have to figure it out from scratch) is correct.
It appears to be computationally unfeasible to solve the DDH problem. So instead,
the encrypter must give a zero-knowledge proof that it was done correctly.

One of the ways to give a zero-knowledge proof for the DDH problem is the
Chaum–Pederson Protocol. It works as follows: The prover wants to convince the
verifier that (π, ρ,σ, τ ) = (g, ga, gx , gax ) is a valid Diffie–Hellman solution. First,
the prover picks some s (and keeps it secret), and then computes and sends πs and
ρs to the verifier. The verifier then picks and sends a challenge c. The prover then
sends t = s + xc. The verifier accepts if and only if πt ≡ gs × σc (mod p) and also
ρt ≡ ρs × τ c (mod p). Note that, while s is unknown, gs and σs are known to the
verifier.

So, using the Chaum–Pederson Protocol, the mixer can demonstrate to any inter-
ested third party that one ballot was encrypted correctly. But we really need the
mixer to prove that many ballots were encrypted correctly. Now, there are ways of
doing this, but they are quite complicated; see, for instance, [Nef03]. Instead, after
round i of decryption (i.e., decrypting the Ci,r−1’s into C j,r ’s), an independent ver-
ifier or a team of independent verifiers points to one of the Ci,r−1’s or C j,r ’s, and
the decrypter must point to the corresponding ballot in the other layer. Then, they
perform a Chaum–Pederson test to convince the verifier that the decrypter is telling
the truth. They do this several times, until the verifier is satisfied.

Now, if the decrypter is cheating and tossed in some new ballots and deleted some
others, then this might not be detected, but it’s also very risky: it might happen that
the verifier asks for the decryption of a ballot that was deleted, or for the encryption
of an added ballot. In that case, the deception will immediately be noticed.

However, we do want to be a little bit careful in this process, in order to protect
voter anonymity. It’s no good if we allow the verifier to query all the votes, because
that gives away the shuffle. Furthermore, the verifier can’t keep tracing the same
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Figure 17.4 Two shares of a visual secret

ballots each round, or else that voter’s anonymity has been destroyed. Thus, we
require that the verifier make random queries.

As we mentioned before, the final decrypter has a lot of power to hold up the
election, by refusing to release the results if they are not desirable. (In fact, given
that there is likely to be a lot of pre-election polling, any of the decrypters could do
this.)

To deal with this, we can make each decrypter have just a piece of a shared
secret (ideally with no dealer), as mentioned earlier. But also, one nice feature of
ElGamal encryption is the decryptions can be done in any order, and we still recover
the same plaintext message. Originally, we planned to have decrypter 1 go first, then
decrypter 2, then decrypter 3, and so forth. But we could have several parallel rounds.
In the first round, all the decrypters decrypt the votes with their only private keys and
scramble the ballots, doing their Chaum–Pederson verifications. Next, they pass their
partially decrypted ballots on, with decrypter 1 passing the messages to decrypter 2,
decrypter 2 passing the messages to decrypter 3, and so forth. After all t rounds of
this, all the decrypters should have the fully decrypted ballots. This also allows for
double-checking: if they don’t all have the same results, then something went wrong
somewhere.

17.11 Problems

(1) n people would like to determine their average annual income. However, no
one wants to disclose eir income to anyone else, or anything about it (other than
that it’s ≤ the sum of all the incomes). How can they do it? You may assume
that the value of n is known.

(2) Find a polynomial f (x) of degree at most 4 over F13 such that f (2) = 9,
f (3) = 12, f (4) = 6, f (8) = 10, and f (11) = 6.

(3) Suppose a0, a1, . . . , ap−1 are arbitrary (not necessarily distinct) elements of
Fp. Is there a polynomial f (x) with coefficients in Fp such that f (n) = an for
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0 ≤ n ≤ p − 1? If so, how many such polynomials are there? How small can
you make its degree, in the worst case?

(4) A polynomial f (x) with coefficients in Fp is said to be a permutation poly-
nomial if, for every b ∈ Fp, there is some a ∈ Fp so that f (a) ≡ b (mod p).
(That is, f permutes the values of Fp.) How many permutation polynomials
are there, with coefficients in Fp and degree d?

(5) Let F be a field, and let f : F → F be a function. Define � f (x) = f (x +
1) − f (x), and �n(x) = �(�n−1(x)) for n ≥ 2.

(a) Show that if f is a polynomial, then for each n, �n(x) is a polynomial in x .
(b) Show that if f is a polynomial of degree ≤ n − 1, then �n f (x) = 0 for all

x ∈ F .
(c) If F is an infinite field, show that if �n f (x) = 0 for all x ∈ F , then f is a

polynomial of degree ≤ n − 1.
(d) Find a counterexample if F is a finite field.

(6) (a) Suppose that we are using Shamir’s secret-sharing scheme. Show that if
k − 1 people try to form a coalition to determine the secret, then they learn
nothing. That is, for each t ∈ Fp, the probability that s = t given their
pieces of information is 1

p .
(b) Show that a coalition of k − 1 people might be able to learn something

about the secret if we tried to use Shamir’s secret-sharing scheme with
s, ci , ai ∈ Z/nZ if n is composite. What if s, ci , ai ∈ Z?

(7) The images in Figure 17.4 are two shares of an 8 × 8 visual secret. Find the
secret.

(8) Verify that the Chaum–Pederson Protocol is a zero-knowledge proof.
(9) Describe, in detail, a secret-sharing scheme based on the Chinese Remainder

Theorem. How is the secret encoded? Verify that no ineligible coalition can
gain any partial knowledge of the secret using your scheme. Note that the
Shamir and Blakley schemes require that any (minimal) coalition capable of
recovering the secret has the same size. Explain how a Chinese Remainder
Theorem-based scheme need not require this.

(10) Think of other secret-sharing schemes.
(11) In terms of n, k, and p, how many ways are there of choosing a11, . . . , ank so

as to satisfy the requirements of the Blakley secret-sharing scheme?
(12) Three cryptographers are having dinner at a restaurant. When the time comes

to pay the bill, the waiter informs them that someone has already paid their bill.
They would like to determine whether the donor is one of them, or someone
else. However, if one of the cryptographers paid, then the others would like to
respect that person’s anonymity. Devise a scheme whereby they can determine
whether someone from outside paid their bill or not.1

(13) Typically, a secret-sharing scheme requires a trusted party to distribute the
secret. Find a modification of the Shamir secret-sharing scheme that allows the

1This problem is called the Dining Cryptographer Problem. It was proposed by David Chaum
in [Cha88].
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n parties to come up with a secret on their own, so that any coalition of k can
unlock the secret, without having a trusted party to distribute the secret.2

(14) Understand why every step in our cryptographic voting protocol is necessary.
Can you find loopholes in our scheme that may undermine its security, verifi-
ability, anonymity, or other desirable properties?

(15) What other desirable properties might we want in a cryptographic voting pro-
tocol?

2See [Ped91] for one solution.



Chapter 18
Quantum Computing and Quantum
Cryptography

In this chapter, wewill look at how cryptography canwork using quantum computers.
Both cryptography and cryptanalysis behave completely differently in the quantum
world from in the classical world. Classical cryptosystems such as RSA and ElGamal
can be broken easily using a quantum computer, so in this respect quantum computers
help eavesdroppers and attackers. On the other hand, there are new cryptosystems in
a quantum world that are provably unbreakable, because quantum mechanics allows
us to create a one-time pad, even in the presence of an eavesdropper.

Taking a thorough look at quantum computation would require an entire book
in itself, and there are several such books available, such as [KLM07] and [NC00].
Doing things in the most thorough manner would require considerable background
in linear algebra, which we have not assumed in this book, and also at least a bit
of background in quantum mechanics, although this part can be de-emphasized for
someone willing to treat the subject more as a formal game than as a representation
of reality. We shall only give a cursory overview, so that you get some idea of how it
works. It is also important to remember that, at the moment, quantum computers do
not exist, and we do not know when, if ever, they will be built. So, this entire chapter
is purely theoretical for the time being.

18.1 Quantum Versus Classical Computers

A classical computer is based on the notion of a bit (short for binary digit). This is the
smallest possible amount of information: it is a single number, which is either 0 or
1. Classical computers express everything in terms of bits. For example, an arbitrary
number can be represented as a sequence of bits, by writing it in binary; we need
roughly 1 + �log2(n)� bits to represent a positive integer n in this way. A bit can also
represent an answer to a yes-or-no question, by letting 1 mean “yes” and 0 mean“no”
(or the other way around).

Quantum computers, however, have a different minimal quantity of information,
based on the peculiarities of quantum mechanics. In quantum mechanics, a minimal
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piece of information, known as a qubit (short for quantum bit) can be a 0 or 1, but
also any superposition of the two. We usually write our basic states 0 and 1 as kets,1

which are written as |0〉 and |1〉. A superposition of our two basic states is an object of
the form a |0〉 + b|1〉, where a and b are complex numbers such that |a|2 + |b|2 = 1.
We interpret this as meaning that, with probability |a|2, the qubit is a |0〉, and with
probability |b|2, the qubit is a |1〉. The actual values of a and b, rather than just
|a|2 and |b|2, provide some extra information, and the existence of these underlying
numbers a and b is a fundamental part of the nature of quantum mechanics.

These probabilities are endemic to the nature of quantummechanics and quantum
computers, and not merely a lack of complete knowledge on our part: a qubit of the
form 1√

2
|0〉 + 1√

2
|1〉 is not either in state |0〉 or in state |1〉, but is honestly somewhere

in between.However, at any time,we can choose tomeasure the qubit and seewhether
it is a |0〉 or |1〉.Whenwemeasure a qubit of the form a |0〉 + b|1〉, it will come up |0〉
with probability |a|2 and |1〉with probability |b|2. However, once we have measured
it, the superposition is lost forever: if the measurement of the qubit comes up as |0〉,
say, then that means that the qubit has now changed form: it is now 1|0〉 + 0|1〉. And
if wemeasure it more times, wewill always get the same result: given a superposition
v of |0〉 and |1〉, if we measure it once and get a |0〉, say, then if we measure it again
we will still get |0〉. It will not be analogous to an independent coin flip. Imagine
instead that the coin has glue on it, so that as soon as it hits the table, it’s stuck there
for good. (But, as we shall see soon, this is not quite right, because we can perform
further operations on a qubit after measuring it that can alter it.)

However, we can also measure a qubit differently: let us write

|+〉 = 1√
2

|0〉 + 1√
2

|1〉, |−〉 = 1√
2

|0〉 − 1√
2

|1〉.

We can express |0〉 and |1〉 in terms of |+〉 and |−〉: we have

|0〉 = 1√
2

|+〉 + 1√
2

|−〉, |1〉 = 1√
2

|+〉 − 1√
2

|−〉.

Notice that these are also valid probabilities, in that the sumsof squares of the absolute
values of the coefficients for |0〉 and |1〉 in terms of |+〉 and |−〉 are 1.

In fact, given any superposition v of |0〉 and |1〉, we can uniquely express v in
terms of |+〉 and |−〉, again ending up with sensible probabilities. We can then
measure v in terms of |+〉 and |−〉, which gives a result of either |+〉 or |−〉. When
we perform this measurement, then the qubit collapses to one of the two states |+〉
and |−〉, and it no longer retains any other information about the superposition, in

1The word ket is the last part of the word bracket. In quantum mechanics, it is customary to use
complete brackets, written 〈a|b〉, as well as both half-brackets. We call 〈a| a bra and |b〉 a ket. But
we only need the kets for our purposes.
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terms of the probabilities of |+〉 and |−〉. However, the measured qubit retains some
superposition of |0〉 and |1〉, because it is either |+〉 or |−〉: if we measure it again
in terms of |0〉 and |1〉, then we will get |0〉 half the time and |1〉 half the time. Note
that this is true regardless of what superposition v was originally.

So, let us start with some superposition v of |0〉 and |1〉 (or |+〉 and |−〉). Suppose
we measure v in terms of |0〉 and |1〉 and get |1〉. Then, we measure the resulting
qubit (which is now |1〉) in terms of |+〉 and |−〉 and get |−〉. Then, we measure the
resulting qubit. We might now get |0〉. So, if we measure it twice in a row in one
basis, we will always get the same result, but if we separate those two measurements
by ameasurement in the other basis, we could get a different result. The reason is that
measurement is fundamentally a disturbance to qubits: it is not possible to measure
a qubit without potentially modifying it.

All this superposition stuff may seem like an annoyance, and indeed things are
generally much more complicated when working with qubits than with classical bits.
But, if we are very clever, we can do new tricks with qubits that are not possible with
classical bits.

18.2 Modifying Quantum States

There are some basic operations that we can perform with a classical computer. For
instance, we may take a bit and turn it into a 0, regardless of what we started with. Or
we may negate it: if it’s a 0 then turn it into a 1 and vice versa. Or, starting with two
bits, we may initialize a new bit to be their sum or product, taken modulo 2. These
are the sorts of basic operations we are allowed to do with classical computers. We
call these operations logic gates. Any more complicated arithmetic operation can be
broken down into a sequence of these elementary logic gate operations.

There are also quantum versions of logic gates, which we call quantum gates.
These are more complicated, because we can start with a qubit in some pure state
and modify it so that it becomes in a superposition. The only rule when we do that
is that it has to convert to a “good” basis. In linear algebra, we say that all quantum
operations must be unitary transformations, which are generalizations of rotations,
but I do not wish to get into precisely what that means here. Instead, it informally
means that it behaves well with respect to superpositions. Let us see the sorts of bad
things that happen with non-unitary operators:

Example Let us suppose that wewere to have a quantum gate that sends |0〉 to |⊕〉 =
3
5 |0〉 + 4

5 |1〉 and |1〉 to |�〉 = 24
25 |0〉 + 7

25 |1〉. This looks fine at first: both of these are
suitable as probabilities since

(
3
5

)2 + (
4
5

)2 = 1, and similarly
(
24
25

)2 + (
7
25

)2 = 1. But
the problem is that this transformation behaves badly with respect to superpositions.
What does it do to 1√

2
|0〉 + 1√

2
|1〉? It has to send it to 1√

2
|⊕〉 + 1√

2
|�〉, which is
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1√
2

(
3

5
|0〉 + 4

5
|1〉

)
+ 1√

2

(
24

25
|0〉 + 7

25
|1〉

)
= 1√

2

(
39

25
|0〉 + 27

25
|1〉

)
.

But this is invalid, because

(
1√
2

39

25

)2

+
(

1√
2

27

25

)2

= 9

5
	= 1.

One of the things we can do with a qubit is to change the basis, as long as the
change-of-basis is one of these allowable unitary transformations. For instance, we
can apply the transformation that sends |0〉 to |+〉 and |1〉 to |−〉. This is one of the
most important quantum operations, and it is called the Hadamard transform. Any
implementation of it is called a Hadamard gate. By direct calculation, we can see
that if we apply a Hadamard gate twice to |0〉, then we end up with |1〉, whereas if
we apply a Hadamard gate twice to |1〉, then we end up with−|0〉, which is the same
as |0〉 after measurement. In other words, two Hadamard gates will swap |0〉 and |1〉.

When we talked earlier about measuring a qubit in the |+〉/|−〉 basis, we really
mean that we apply a Hadamard gate first, and then measure it. If we apply a
Hadamard gate to a qubit that is known to be either |+〉 or |−〉 and then mea-
sure and end up with |1〉, that means that before applying the Hadamard gate we had
a |+〉. Similarly, if we get a |0〉 in this way, then we previously had a |−〉.

18.3 A Quantum Cryptographic Protocol

There are several ways we can get a secure quantum cryptosystem out of qubits. The
first one proposed is the BB84 protocol, named after the proposers Charles Bennett
and Gilles Brassard, and the year their paper [BB84] was written.

The idea is to construct a one-time pad with the help of the bases |0〉 and |1〉,
and |+〉 and |−〉. In order to create a key, Alice creates two long random strings
of (classical) bits, each of the same length N . We call these strings a1, . . . , aN and
b1, . . . , bN ; each ai and bi is either 0 or 1.

Based on these two strings, Alice sets up N qubits. If ai = 0, then the i th qubit
qi will either be |0〉 or |1〉, whereas if ai = 1, then qi will either be |+〉 or |−〉. If
bi = 0, then qi will either be |0〉 or |+〉, whereas if bi = 1, then qi will either be |1〉
or |−〉. Thus ai and bi together determine whether the i th qubit will be |0〉, |1〉, |+〉,
or |−〉.

After setting up all these qubits, she sends them all to Bob. Bob does not know
which qubits are in the |0〉/|1〉 basis, and which ones are in the |+〉/|−〉 basis. For
each qubit qi he receives, Bob decides at randomwhether to measure it in the |0〉/|1〉
basis or in the |+〉/|−〉 basis. After making these measurements, the qubits are all
in the bases he selected. But he does not yet know which bases they were originally
in when Alice set them up.
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At this point, Alice reveals the string a1, . . . , aN to Bob, so that he knows which
qubits were set up in the |0〉/|1〉 basis, and which ones were set up in the |+〉/|−〉
basis. Revealing the ai string can be done over a public channel. Roughly half the
time, Alice and Bob will have chosen the same basis, and the other half or so of the
time, they will have chosen opposite bases. So, they throw away the ones where they
chose different bases. The ones where they chose the same bases then become the
key: they make a binary string for their key by letting |0〉 and |+〉 be 0, and |1〉 and
|−〉 be 1.
Example Let us suppose that Alice sends the following string of qubits:

|0〉 |+〉 |−〉 |0〉 |1〉 |1〉 |−〉 |+〉 |+〉 |+〉.

Bob chooses to measure the even ones in the |0〉/|1〉 basis and the odd ones in the
|+〉/|−〉 basis. So he gets

|−〉 |1〉 |−〉 |0〉 |−〉 |1〉 |−〉 |0〉 |+〉 |0〉.

Note that when Alice and Bob chose the same basis, they got the same thing, and
when Bob chose the opposite basis from Alice, he got a random result in that basis.
They chose the same basis for qubits 3, 4, 6, 7, and 9, so those are used to form the
key, which is then 10110.

Well, almost. One thing they would like to verify is that Eve has not intercepted
the qubits. In order to do that, they perform some spot checks on the qubits for which
they both chose the same basis. For example, they could spot check qubit 6, and they
both report that they got |1〉, which is good!

What good does this do? Let us suppose that Eve had previously intercepted the
qubits and measured them, each in one of the two bases. If she had measured qubit
6 in the |0〉/|1〉 basis, then she would get |1〉, just like Alice and Bob did, and there
would be no way of detecting her measurement. But if she had measured it in the
|+〉/|−〉 basis, then that qubit would be either |+〉 or |−〉 by the time it got to Bob,
so when he measures it in the |0〉/|1〉 basis, there is only a 50% chance that it will
be a |1〉; the other half of the time it will be a |0〉. Thus, if Eve has measured the
qubits, then for each qubit in which Alice and Bob chose to measure it in the same
basis, there is only a 75% chance that they agree. By spot-checking enough of the
qubits at random, they will be able to detect the intrusion, except with very small
probability. If there is a problem with the spot check, then they know that there has
been a breach in security, and they start again with the key generation. If the spot
check passes, then they remove the spot-checked bits from the key, still retaining a
long enough key to use as a one-time pad in encrypting their messages.

The spot checkwas able to detect an eavesdropper whomeasures the qubits before
Bob has a chance to do so. But what if Eve measures them after Bob does, once the
correct basis has been revealed to her? She can’t use the original qubits, because by
the time Bob gets his hands on them, he isn’t likely to give them up so that Eve can
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see what they are. But what if she first intercepts the qubits, makes a copy of them,
and then measures the copies after she knows the correct bases?

No good! A celebrated theorem in quantum mechanics is the no-cloning theorem
of Wootters and Zurek [WZ82] and Dieks [Die82], which says that it is impossible
to create an identical copy of a qubit in an unknown state. Surprisingly, though, it is
possible to perform an approximate cloning that gets the right result 5

6 of the time;
see [BH96]. This is a concern for quantum cryptography, and it forces Alice and Bob
to do quite a large spot check in order to be reasonably certain that their key has not
been compromised.

18.4 Quantum Computers Defeat Classical Cryptography

Now thatwehave seen howquantummechanics can be useful for creating shared keys
and thus for encrypting messages, let us see how it can be used for the opposite task:
decrypting secret messages. In particular, we shall see how quantum computers can
be used to defeat RSA, and it can also be used to decrypt ElGamal in a similar way.
There are other classical cryptosystems, such as lattice-based cryptosystems, that
might be quantum-resistant in the sense that we do not currently know of quantum
attacks against them. However, our state of knowledge about what is and is not
possible with quantum computers, even at a conjectural level, seems to be quite bad:
I wouldn’t bet on the lattice-based cryptosystems being immune to quantum attacks!

So, let’s see how to break RSA with a quantum computer! The approach here is
to attack the hard problem, namely factoring, directly: given a number n, we will
produce a factor of n in polynomial time, on a quantum computer. The algorithm is
called Shor’s algorithm [Sho99].

As we have mentioned before, in Section 16.6, if we wish to find a factor of n
other than 1 and n, it suffices to find some number x 	≡ ±1 (mod n) such that x2 ≡ 1
(mod n): if we have such an x , then gcd(x − 1, n) and gcd(x + 1, n) are factors of
n. So, that is what we shall do: we shall use a quantum computer to produce an x such
that x2 ≡ 1 (mod n) but x 	≡ ±1 (mod n), with some reasonably high probability.
And if we fail, we’ll just try again. Within a few tries, we will find such an x .

So, our goal is now to find an x such that x2 ≡ 1 (mod n) but x 	≡ ±1 (mod n).
Let us suppose that n is a product of two primes, say n = pq, where p and q are
distinct odd primes. Let us pick some random number a, between 1 and n − 1.
If gcd(a, n) > 1, then that’s a factor of n, and we’re done. So let’s assume that
gcd(a, n) = 1.

We will be interested in the order of a in (Z/nZ)×, i.e., the least r such that
ar ≡ 1 (mod n). By Euler’s Theorem on the totient function, such an r always
divides φ(n) = (p − 1)(q − 1). The first thing we shall do in the direction of Shor’s
algorithm is to explain why being able to compute orders of arbitrary elements of
(Z/nZ)× allows us to factor n.
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The first thing to note is that the order of a modulo our unknown prime factors
p and q determines the order of a modulo n: the order of a modulo n is the least
common multiple of the orders of a modulo p and q. If r is the order of a modulo n
and r is even, then x = ar/2 satisfies x2 ≡ 1 (mod n). Certainly x 	≡ 1 (mod n), or
else the order would be smaller than r . But is x ≡ −1 (mod n)? In order for this to
happen, we must have x ≡ −1 (mod p) and x ≡ −1 (mod q). We can determine
when that happens in terms of the order of a modulo p and q. In particular, we will
show that, quite often, it is not the case that x ≡ −1 (mod p) and x ≡ −1 (mod q).
Whenever x 	≡ −1 (mod p) or x 	≡ −1 (mod q), we know that x 	≡ ±1 (mod n)

but x2 ≡ 1 (mod n), and then we know how to factor n.
So, our next goal is to understand when x ≡ −1 (mod p) and x ≡ −1 (mod q)

and show that at least one of those things fails quite often. Recall that F×
p and F

×
q

are cyclic groups. Let g be a generator of F×
p , and let h be a generator of F×

q . Then,
there exist integers s and t with 1 ≤ s ≤ p − 2 and 1 ≤ t ≤ q − 2 such that a ≡ gs

(mod p) and a ≡ ht (mod q). The order of a in F
×
p is the smallest positive integer

k such that sk is a multiple of p − 1, and the order of a in F×
q is the smallest positive

integer � such that t� is a multiple of q − 1. We can write these numbers down more
explicitly:

k = p − 1

gcd(p − 1, s)
, � = q − 1

gcd(q − 1, t)
. (18.1)

The order of a in (Z/nZ)× is r = lcm(k, �). Let us suppose that r is even. Is ar/2 ≡
−1 (mod n)? This happens if and only if both ar/2 ≡ −1 (mod p) and ar/2 ≡ −1
(mod q). These happen simultaneously if and only if the largest powers of 2 dividing
k and � are equal, i.e., if k = 2i k ′ and � = 2i�′, where k ′ and �′ are both odd.

Now, by (18.1), with probability 1
2 , k is odd, and with probability

1
2 , � is odd, and

these events are independent of one another except that at least one of them must be
even, so with probability 2

3 , one of them is odd and one is even. Let us suppose that
k is odd and � is even. When this happens, we have

ar/2 ≡ 1 (mod p), ar/2 ≡ −1 (mod q),

and vice versa if k is even and � is odd. Either way, x = ar/2 is a solution to x2 ≡ 1
(mod n) but x 	≡ ±1 (mod n). (The exact probability, which may be greater than
2
3 , depends on the number of powers of 2 dividing p − 1 and q − 1, but we do not
need to know the exact probability, only that it is fairly large.)

What this shows is that, if we can compute the order of an element of (Z/nZ)×
of our choice, then we can factor n with probability at least 2

3 . If we choose a good
value of a on the first trial, then we immediately factor n. If not, pick a new one, and
keep doing so until one of them is successful. With at least a 2

3 chance of success at
each stage, it won’t take long before one of them works.

So far, we have seen that if we can compute the order an arbitrary element a ∈
(Z/nZ)×, then we can factor n. Our next step is to explain how to find the order
of an element using a quantum computer. In fact, Shor’s algorithm computes order
in a more general context. Let Q be a number, typically chosen to be a power of 2
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for convenience, and let f : Z → Z/QZ be a function which is periodic, i.e., there
is some positive integer k such that f (x) = f (x + k) for all x , and assume k is
minimal with this property. This means that f is entirely determined by the values
f (0), f (1), . . . , f (k − 1). We will assume that we know how to compute f , but that
we do not know what k is, and our goal is to find it using a quantum algorithm. We
also assume that f (0), f (1), . . . , f (k − 1) are all distinct. This is actually a crucial
point, and the algorithm does not work if this condition is violated.

In the case of factoring (and finding the order of an element a in (Z/nZ)×), our
function f is f (x) = ax (mod n). This lies in Z/nZ, rather than Z/QZ, but this
easily fixed:we treat f (x) as a number from0 ton − 1,whichwe then takemodulo Q,
where Q is the smallest power of 2 greater than n. The values f (0), f (1), . . . , f (k −
1) are all distinct, because if we have f (i) = f ( j) for some 0 ≤ i < j ≤ k − 1, this
means that ai ≡ a j (mod n), so a j−i ≡ 1 (mod n), which means that the order is
a factor of j − i . But this is smaller than k by construction.

In order to proceed with Shor’s algorithm, we need to take an interlude to dis-
cuss two ingredients: the quantum Fourier transform and continued fractions. The
quantum Fourier transform is something we can only do with a quantum computer;
while it is related to the classical discrete Fourier transform, the quantum version
cannot be simulated on a classical computer; it is for this that quantum computers
are essential. Continued fractions, on the other hand, are entirely classical.

18.5 The Quantum Fourier Transform

The computation of the order of f relies on the quantum Fourier transform. The
classical discrete Fourier transform is already a very powerful tool for computa-
tion. In Section 8.3, we discussed Karatsuba’s algorithm for integer multiplication,
a clever trick that multiplies two n-digit numbers in O(nlog2(3)) operations. We also
mentioned, but did not describe, some faster algorithms. The best of these rely on the
classical Fourier transform. For instance, the Schönhage-Strassen algorithm multi-
plies two n-digit numbers inO(n log(n) log log(n)) operations, and it does so through
a clever use of the Fourier transform and its curious properties.

It stands to reason that a quantum version of the Fourier transformmight be useful
for quantum algorithms, and indeed it is. Here is how it works. Let us take a modulus
Q, whichwewill assume to be a power of 2, say Q = 2e. (This isn’t strictly necessary,
but powers of 2 work well with qubits, just as they work well with bits on classical
computers.) Let us also take some integer j with 0 ≤ j < Q, and write j in binary,
using e digits by filling it up with 0’s at the left if necessary. For instance, if Q = 32
and j = 5, then we write it in binary as 00101, using five digits. We create a quantum
state out of j by using five qubits, which are initially in states |0〉, |0〉, |1〉, |0〉, |1〉,
or more conveniently written as |00101〉. We abbreviate this as | j〉.
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The quantum Fourier transform is the quantum operation F defined by

F | j〉 = 1√
Q

Q−1∑

k=0

e2πi jk/Q |k〉.

If we have a collection of qubits that are already in a superposition, say as

|x〉 =
Q−1∑

�=0

a� |�〉,

then

F |x〉 =
Q−1∑

�=0

a�√
Q

Q−1∑

k=0

e2πi jk/Q |k〉.

The quantum Fourier transform can be implemented using O(e2) primitive quantum
gates.

Intuitively, the quantum Fourier transform spreads out a pure quantum state over
all possible quantum states, so as to allow cancellation of unwanted terms if we are
sufficiently clever. And this is what we shall see in Shor’s algorithm: we use the
quantum Fourier transform to keep the terms we want and delete all the terms that
do not matter.

18.6 Continued Fractions

One other ingredient we will need for Shor’s algorithm is a way of finding good
rational approximations to real numbers. There is a classical (i.e., non-quantum)
algorithm for this, based on continued fractions. A continued fraction is a number
of the form

a0 + 1

a1 + 1

a2 + 1

a3 + 1

a4 + . . .

,

where the ai ’s are integers, ai ≥ 1 for i ≥ 1, and the expression can be either finite or
infinite. Rational numbers have finite continued fraction expansions, and irrational
numbers have infinite continued fraction expansions. We abbreviate this continued
fraction as [a0; a1, a2, a3, a4, . . .]. Every real number has a continued fraction expres-
sion, and they are almost unique; the only failure of uniqueness is that a rational
number [a0; a1, . . . , an] with an > 1 can also be written as [a0; a1, . . . , an − 1, 1].
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Table 18.1 Computing the continued fraction expansion of 702
107

i 0 1 2 3 4 5 6 7 8

αi
702
107

107
60

60
47

47
13

13
8

8
5

5
3

3
2 2

ai 6 1 1 3 1 1 1 1 2

The continued fraction expansionof a real number is also very easy to compute.Let
α0 = α. Then, for each nonnegative integer i , we have ai = �αi� and αi+1 = 1

αi−ai
.

If we truncate the continued fraction expansion after some ai , without moving on
to the next + 1

ai+1+··· , then we get a good rational approximation to α. In fact, if s
t is

one of these convergents, then it is the best rational approximation of α out of all
approximations with denominator ≤ t .

Example Let us compute the continued fraction expansion of 702
107 . We create a table

of α’s and a’s, as shown in Table18.1. We can read the ai ’s off the bottom row of the
table, so that 702

107 = [6; 1, 1, 3, 1, 1, 1, 1, 2]. The rational approximations obtained
by truncating the continued fraction expansion are

6, 7,
13

2
,
46

7
,
59

9
,
105

16
,
164

25
,
269

41
,
702

107
.

We can see that these approximations are quite good; for instance,

702

107
− 13

2
≈ 0.0607,

which is very good for an approximation by a rational number with denominator 2.
Similarly, ∣∣∣∣

702

107
− 269

41

∣∣∣∣ = 1

4387
≈ 0.00023.

Note how small this error is compared with the denominator 41 of the approximat-
ing rational number. The most impressive approximants, relative to the size of the
denominator, are the ones obtained by truncating before large ai ’s.

Example The continued fraction expansion of π is notable for having several unusu-
ally large ai ’s at the beginning of its expansion:

π = [3; 7, 15, 1, 292, . . .].

The associated convergents are the familiar good approximations for π:

3,
22

7
,
333

106
,
355

113
,
103993

33102
.
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Notice that the presence of the 292 in the continued fraction expansion of π makes
355
113 such a great approximation that we need to move on to well in the five digits for
the denominator in order to find another comparably good approximation.

There is a lot of fascinating mathematics related to continued fractions (some of
which is relevant to cryptography), but it will take us too far off track to investigate
it here. Instead, we refer the interested reader to [vdP86] or [Khi97] for general
properties of continued fractions and to [LP31] for an application to factoring with
a classical computer.

18.7 Back to Shor’s Algorithm

With the quantum Fourier transform and continued fraction method in place, we can
now go through Shor’s algorithm! Recall that our new goal is to find the period of
a function f . In the case of factoring n, recall that we pick some number a with
1 ≤ a ≤ n − 1, which we may assume to be relatively prime to n (or else we can
factor it directly by computing gcd(a, n)), and we consider the function f (x) = ax

(mod n), which we pad to bemodulo Q, where Q is a suitable power of 2. But Shor’s
order-finding algorithm works more generally.

First, we initialize a qubit

|y〉 = 1√
Q

Q−1∑

k=0

|k〉.

This takes up e = log2(Q) qubits. We then use a further e qubits to express f (k),
so that we now have 2e qubits, where the first e are in a superposition of |k〉 and the
last e are in a superposition of | f (k)〉. We write this as

|y, f (y)〉 = 1√
Q

Q−1∑

k=0

|k, f (k)〉.

Next, we apply the quantum Fourier transform to the first e qubits, the ones
containing |k〉. By the definition of the quantum Fourier transform, this leads to the
state

|F y, f (y)〉 = 1√
Q

Q−1∑

k=0

1√
Q

Q−1∑

�=0

e2πi k�/Q |�, f (k)〉

= 1

Q

Q−1∑

m=0

Q−1∑

�=0

|�,m〉
∑

k: f (k)=m

e2πi k�/Q
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Figure 18.1 The sum of the
displayed numbers e2πi b/7

for 0 ≤ b ≤ 6 is 0

We now perform a measurement of these 2e qubits. When we do this, we end up
with 2e qubits of the form |�,m〉. The probability of getting this pair is

∣∣∣
∣∣∣

1

Q

∑

k: f (k)=m

e2πi k�/Q

∣∣∣
∣∣∣

2

= 1

Q2

∣∣
∣∣∣

(Q−k0−1)/r∑

b=0

e2πi �rb/Q

∣∣
∣∣∣

2

, (18.2)

where k0 is the smallest value with f (k0) = m and r is the period.
This probability is large only when e2πi �r/Q is close to 1, i.e., when �r

Q is close
to an integer, which we can call c. The reason for this is that, for any integer N , we
have

N−1∑

k=0

e2πik/N = 0.

(See Figure 18.1.) The right side of (18.2) contains a bunch of terms that cancel in
this way as long as the terms go around the entire circle. The only way we can get a
large sum, without much cancelation, is if we don’t go all the way around the circle,
which can only happen if the b = 1 term is very close to the positive real axis, i.e.,
when e2πi �r/Q is close to 1.

It follows that, after performing the measurement, we usually end up with some-
thing where �r

Q is close to being an integer c. Since � and Q are known, and r and

c are unknown, it makes sense to rearrange a bit: �
Q is close to c

r . Recall also that
r < Q.

Now let’s finish up Shor’s algorithm. Given a real number α and a bound Q, the
continued fraction algorithm finds all rational numbers s

t such that t < Q and

∣∣∣α − s

t

∣∣∣ <
1

t Q
.
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The list is pretty small, so we can test out all the rational numbers s
t on our list and

see whether any of the values of t are the period r . We can do this classically, by
picking some x and just checking if f (x + t) = f (x). If so, we’re done, and we’ve
just factored n. Otherwise, just try the whole process over with a different value of
a. The “otherwise” part only happens rarely, so most of the time we will actually
succeed in factoring n. And that’s Shor’s algorithm in a nutshell!

18.8 Problems

(1) Consider the qubit v = 3
5 |0〉 − 4

5 |1〉. Express v in terms of the |+〉/|−〉 basis.
(2) Start with the qubit v = 3

5 |0〉 − 4
5 |1〉. First measure it in the |0〉/|1〉 basis, and

then measure the resulting state in the |+〉/|−〉 basis. What is the probability of
getting |+〉, and what is the probability of getting |−〉?

(3) Suppose Alice sends Bob the following sequence of qubits using the BB84
protocol:

|+〉 |0〉 |+〉 |−〉 |−〉 |1〉 |+〉 |0〉 |+〉 |1〉 |1〉 |1〉.

Bob measures the ones in prime position in the |+〉/|−〉 basis and the others in
the |0〉/|1〉 basis. What is their shared secret key? (The numbering starts from
1, so that the first qubit is |+〉, then the second one is |0〉, and so forth.)

(4) Compute the first several terms of the continued fraction expansion for
√
2 and

e. What is the pattern? Can you prove it? Give good rational approximations for√
2 and e.

(5) Suppose we have a function f : Z × Z → Z/QZwhich is periodic, in that there
exist positive integers r and s so that f (x + r, y + s) = f (x, y) for all x, y ∈ Z.
Explain how to modify Shor’s Algorithm to find r and s. Feel free to make any
non-stupid assumptions on f that you want.

(6) Explain how to interpret the discrete logarithmproblem in terms of order-finding.
(Hint: Va beqre gb svaq n fb gung k vf pbatehrag gb t gb gur n zbqhyb c, pbafvqre
gur shapgvba gung fraqf v naqwgb t gb gur v gvzrf k gb gurw zbqhyb c.) Explain
how to solve the discrete logarithm problem on a quantum computer.



Chapter 19
Markov Chains

19.1 Introduction to Probability

We will now move away from public-key cryptography in the remaining chapters.
Most of the mathematics used so far has been number theory and abstract algebra.
But now we will see that probability is also useful in cryptanalysis. In particular, we
will see a method for breaking substitution ciphers that is fully automated. It won’t
necessarily solve the cipher fully, but it will tend to get sufficiently close that fixing
it at the end by hand will be very easy.

The first things we study in probability are usually independent events. Sup-
pose we flip a coin five times. What is the probability the coin lands heads every
time? We assume that the coin is fair, so that it lands on heads and tails each with
probability 1

2 .
In order to solve this problem,we need a bit of theory,which you are likely familiar

with but with less formalism. Suppose that A and B are events, i.e., things that can
happen. (The term “event” has a technical meaning which requires a substantial
amount of background to describe, but we will not need the precise version here.)
We say that A and B are independent if learning that A has occurred does not tell
you anything extra about whether B has occurred or not, and vice versa. In this case,
two coin flips are independent: if the coin lands heads on the first flip, that makes it
neither more nor less likely that it will land heads on the second flip.

We write P(A) for the probability that A occurs. We also use notations like A ∩ B
and A ∪ B for the events that both A and B occur, and the probability that at least
one of A and B occurs, respectively. A famous relation between these probabilities
is

P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

the simplest nontrivial case of the inclusion–exclusion principle. We also use the
notation A for the complement of A: A occurs if and only if A does not. In the case
that A is the event of the coin landing heads on the first flip, A would be the event of
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the coin not landing heads on the first flip. (This is close to the same as landing tails,
but occasionally coins land on the edge.)

Proposition 19.1 If A and B are independent, then

P(A ∩ B) = P(A) × P(B).

Using this Proposition, we can now solve the five-flip problem: since the flips are
independent, the probability that it lands on heads five times is the product of the
probabilities that it lands heads on each occasion; that is,

(
1
2

)5 = 1
32 .

However, not all events are independent.

Example Suppose we take a shuffled deck of cards. Let A be the event that the top
card is a diamond and B the event that the second card is a diamond. Let us work
out the probabilities of A, B, and A ∩ B. There are 13 diamonds among 52 cards, so
the probability that the top card is a diamond is

P(A) = 13

52
= 1

4
.

By exactly the same argument, P(B) = 1
4 . But what about P(A ∩ B)? In order for

both A and B to occur, we need to get a diamond on top, which happens with
probability 1

4 . But then for the second card, there are only 12 diamonds left, out of
51 cards, so given that the top card is a diamond, the probability that the second card
is also a diamond is 12

51 . To compute the total probability, we multiply these numbers
together to get

P(A ∩ B) = 1

4
× 12

51
= 1

17
.

This is not the same as P(A) × P(B) = 1
16 , so A and B are not independent.

The example hints at a general method for computing joint probabilities. Given
events A and B, let P(A | B) be the probability that A occurs given that we know that
B has occurred. If A and B are independent, then P(A | B) = P(A), since knowing
about B gives us no further insight into whether A is likely to happen. The analysis
in the example holds more generally, and we have

P(A ∩ B) = P(B) × P(A | B) = P(A) × P(B | A).

(The last equality holds because A and B are symmetric.)
It is important to note that P(A | B) and P(B | A) are not necessarily the same,

and can, in fact, be very different. Solving for one in terms of the other gives us
Bayes’s Theorem, quite possibly the only theorem to have a cult following. (I won’t
mention any names, but if you have to join a cult, then a cult that’s mostly built
around improving rationality is probably a reasonable option. On the other hand,
you aren’t required to join a cult.)
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Theorem 19.2 (Bayes)

P(B | A) = P(A | B) × P(B)

P(A)
.

The fact that P(A | B) and P(B | A) are different, and potentially very different,
can lead to results which at first seem counterintuitive. But remember, in math we
trust.

Question 19.3 Suppose there is a disease that 1 person in 1000 has, and there is a
test for it that is correct 99% of the time. (That is, if you have the disease, then you
will test positive 99% of the time; if you don’t have the disease, you will test negative
99% of the time.) Given that you test positive, what is the probability that you have
the disease?

Answer Let D be the event that you have the disease, and T be the event that
you test positive. Then we want to know P(D | T ). We do this by working out all
the other quantities in Bayes’s Theorem: P(T | D), P(D), and P(T ). We know that
P(T | D) = .99 and P(D) = 0.001. But what about P(T )? There are two ways that
you can test positive: you can test positive and have the disease, or you can test
positive and not have the disease. We work out these two cases separately:

P(T ∩ D) = P(D) × P(T | D) = 0.001 × 0.99 = 0.00099,

P(T ∩ D) = P(D) × P(T | D) = 0.999 × 0.01 = 0.00999.

To compute P(T ), we add those two numbers up:

P(T ) = 0.00099 + 0.00999 = 0.01098.

Plugging everything into Bayes’s Theorem, we get

P(D | T ) = 0.99 × 0.001

0.01098
≈ 0.09016.

So, if you test positive, the probability that you have the disease is still less than 10%.

19.2 Markov Chains

Let us suppose we wish to flip a coin n times and record the results. Let X1, . . . , Xn

denote the results of the coin flip; in each case, it will be either “heads” or “tails.”
The values of the Xi ’s are independent of each other: on the (i + 1)st flip, the coin
does not remember the results of any previous flip. The Xi ’s are variables that take
on random results. We call them random variables.
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But what happened if it had a small amount of memory? This is hard to imagine
in the case of coin flips, but it is not so hard to imagine in the case of the weather.
The daily weather has a certain amount of randomness to it, but if you know today’s
weather, you can make a reasonable guess about tomorrow’s weather. For example,
consider the following simplified model of how weather changes from one day to
the next:

Tomorrow
T
od

ay

Sunny Rainy Cloudy
Sunny .6 .1 .3
Rainy .3 .4 .3

Cloudy .5 .2 .3

(Snow? What’s that? I live in California. Also, it doesn’t rain in California, sadly.)
This chart tells us the probabilities of what the weather will be tomorrow given that
we know what it is today. For example, if it is sunny today, then the probability that
it will be rainy tomorrow is .1, and the probability that it will be sunny again is .6.
Observe that the sum of the entries in each row is 1, whereas this is not the case for
the columns.

Another common way to picture the chart is as a diagram:

Sunny Rainy

Cloudy

.6

.1

.3

.3 .4

.3.5

.2

.3

Let us write Xi for the weather on day i . The weather on day i + 1 depends only
on the weather on day i . However, it does not really depend on what happened on
previous days, except insofar as the previous days influenced the weather on day i .
That is, if you know the weather on day i , then you will not be able to make better
predictions about the weather on day i + 1 by knowing about what happened on any
of the days before day i . This is the defining property of a Markov chain.

This Markov chain had three states, namely “sunny,” “rainy,” and “cloudy.” In
general, aMarkov chain has states that live in some set S. Frequently, this set is finite;
for our purposes, it will be sufficient to assume that S is finite, but this is not strictly
necessary.
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Definition 19.4 Let X1, X2, . . . be random variables taking values in a set S. If, for
s1, . . . , sn+1 ∈ S, we have

P(Xn+1 = sn+1 | X1 = s1, X2 = s2, . . . , Xn = sn) = P(Xn+1 = sn+1 | Xn = sn),

then X1, X2, . . . is said to be a Markov chain.

Informally, we can say that in a Markov chain, the future depends on the present,
but not on the past.

In order to study a Markov chain, we use a matrix of transition probabilities like
the one above. Writing it in matrix notation, we have

⎛

⎝
0.6 0.1 0.3
0.3 0.4 0.3
0.5 0.2 0.3

⎞

⎠ .

This matrix tells us how the weather changes from one day to the next.
But how does it change over several days? Given that I know the weather today,

can I make predictions about what it will be not tomorrow, but the day after? Or next
week?

Yes! How do we compute the probability that it will be sunny in two days given
that it is cloudy today? We have to look at the different cases for what the weather
will be tomorrow:

sunny tomorrow: 0.5 × 0.6 = 0.3,

rainy tomorrow: 0.2 × 0.3 = 0.06,

cloudy tomorrow: 0.3 × 0.5 = 0.15.

The first case computes the probability that it will be sunny tomorrow and sunny in
two days; the second case computes the probability that it will be rainy tomorrow and
sunny in two days; and the third case computes the probability that it will be cloudy
tomorrow and sunny in two days. Adding these all up, we find that the probability
that it will be sunny in two days is 0.3 + 0.06 + 0.15 = 0.51. We can compute all
the other two-step transition probabilities in the same way.

We typically write pi j for the probability P(Xn+1 = j | Xn = i), the probability
that we move from state i to state j . More generally, we write p(k)

i j for the probability
that we will be in state j k steps from now, given that we’re currently in state i . The
previous example teaches us how to compute p(2)

i j : we have

p(2)
i j =

∑

k

pik pk j ,
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where the sum is taken over all possible states. This formula makes a lot of sense: to
move from i to j in two steps, we have some intermediate state k, and we sum over
all k.

There is a nice way of expressing the two-step transition probabilities in terms of
matrix multiplication. Recall from Chapter 6 that given an m × n matrix A whose
i j entry is called ai j , and an n × p matrix B whose i j entry is called bi j , we define
their product AB to be the m × p matrix whose i j entry is

ci j =
n∑

k=1

aikbk j .

Note that we cannot multiply an m × n matrix by an � × p matrix unless n = �.
Applying this to the case of two-step transition probabilities, if A is the matrix of

one-step transition probabilities, then A2 = A × A is thematrix of two-step transition
probabilities. Note that A is an n × n matrix, so we can multiply it by itself.

Since it is annoying to multiply matrices by hand, especially if we have to do so
repeatedly, we ask Sage to do it for us:

A = matrix([[0.6,0.1,0.3],[0.3,0.4,0.3],[0.5,0.2,0.3]])

Aˆ2

Sage happily tells us that

A2 =
⎛

⎝
0.54 0.16 0.3
0.45 0.25 0.3
0.51 0.19 0.3

⎞

⎠ .

Observe that again all the rows sum to 1.

19.3 Stationarity

Wemight wonder what happens if we look at k-step transition probabilities for large
values of k. We can compute them just as before: the matrix of k-step transition
probabilities is Ak . For example, we have

A10 =
⎛

⎝
0.5142874014 0.1857125986 0.3
0.5142814965 0.1857185035 0.3
0.5142854331 0.1857145669 0.3

⎞

⎠ .

What’s going on here? It looks like all the entries in the first column are becoming
very close, as are all the elements in the second column. (The third column was
already all the same, and nothing will ever change that.)



19.3 Stationarity 227

This doesn’t always happen, but it does in many interesting cases. It makes some
sense that this should occur: after many steps, theMarkov chainmostly forgets where
it started.

Definition 19.5 We say that a Markov chain is regular if there is some k so that
p(k)
i j > 0 for all i , j .

That is, in a regular Markov chain, we can get from any state to any other state
in exactly k steps, for some value of k ≥ 1. In our weather example, we can choose
k = 1, but this is not always the case.

Theorem 19.6 If A is the matrix of a regular Markov chain, then

B = lim
k→∞ Ak

exists. Furthermore, the rows of B are all equal.

The vector v = (v1, . . . , vn) whose entries are a row of B (any one will suffice,
since they are all equal) is called the stationary distribution of the Markov chain. It
has a very elegant interpretation.

Theorem 19.7 (Ergodic theorem) Let X1, X2, . . . be a regular Markov chain with
stationary distribution v. Then

#{k ≤ N : Xk = i}
N

→ vi

as N → ∞.

That is, vi measures the proportion of time that the chain spends on state i .

19.4 Letters and Markov Chains

So far, our discussion of Markov chains has had nothing to do with letters or ciphers.
As promised, though, we will now see how to attack a substitution cipher in a com-
pletely automated manner using Markov chains.

A first point is that letters can be regarded as being a Markov chain, at least
approximately. The idea is that if you know one letter in a body of text, then you
can make a good guess about the next letter. I computed letter frequencies using a
translation of War and Peace that I found on Project Gutenberg; I found that the
letter h appears around 6.6% of the time among the characters that are letters (so, I
removed spaces and other similar characters before doing the count).

However, suppose we know that the previous letter was t. Then the probability
changes dramatically: given that t just appeared, the probability that h appears next
is around 35.1%.What a huge difference a piece of information makes! You can play
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a game at [Gar] to see how much a bit of knowledge makes, where you have to guess
the next letter (or space) of a phrase. You will find that it is usually hard to guess the
first letter of a word, but much easier to guess subsequent letters.

Letters do not actually form aMarkov chain, since they do not satisfy the Markov
property: if I know the last two letters, then I can make a better guess about the next
letter than I can if I only know the last letter. Still, as a simplified model, treating
letters as a Markov chain works well enough.

Modeling letter patterns was actually one of Markov’s original motivations in
studying Markov chains: he wanted to create a probabilistic system that had a little
bit of “free will,” but not too much: the letters are partially constrained by those that
came before, but not entirely.

We can create a matrix of digram probabilities: the matrix whose αβ-entry is the
probability that the next letter is a β given that the current letter is an α. (I am using
α and β to denote variables whose values are English letters; ordinarily, I would use
i and j , but those are likely to be confused for the English letters i and j.) Let us
call this matrix A and write aαβ for the αβ entry.

Thematrix A feels like thematrix for aMarkov chain, but actually it will not be the
main Markov chain we use in order to study substitution ciphers. Let us suppose that
we have a substitution cipher whose characters are s1, s2, . . . , sN . Here, si denotes
the i th ciphertext character. Thus, if the ciphertext begins GBHQEEA, then s4 = Q
and s6 = E.

Now, a substitution cipher is a permutation of the letters of the English alphabet,
i.e., a function

f : {A,B, . . . ,Z} → {A,B, . . . ,Z}.

It is the set of permutations f on which we will run a Markov chain.
Given a function f , we want a measure of how good or plausible it is as a solution

to the substitution cipher. To do this, we use thematrix A. For each pair of consecutive
letters si , si+1 in the ciphertext, we apply our permutation f to them and look at how
likely that digram is; that is, we look at a f (si ), f (si+1). Then we multiply together these
numbers over all pairs of consecutive letters in the ciphertext and get a number. The
larger the number, the more plausible f is. More precisely, we set

Pl( f ) =
N−1∏

i=1

a f (si ), f (si+1).

Next, we try to find a good f . We do this by starting with some f , perhaps the
identity permutation f (si ) = si , and trying to improve it a bit at a time. How do we
improve it? One method is to make random small changes: pick two distinct letters
α and β at random, and swap what f does to α and β but keeping everything else the
same; that is, we define a new permutation f̃ of the letters of the alphabet by setting
f̃ (α) = f (β) and f̃ (β) = f (α), and f̃ (γ) = f (γ) for any γ 
= α,β.
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Now, maybe f̃ is better than f , and maybe it isn’t. We can check by computing
their plausibility functions Pl( f ) and Pl( f̃ ). If f̃ is better than f , then we should
make f̃ into our new f and continue on with trying to improve it.

But what if f̃ is worse than f ? It would be tempting to keep the old f and forget
about f̃ , but this is not quite the right thing to do. The problem is that we might
get trapped: we might find some permutation f for which every local change makes
it worse, but that is still not right. So we want to be able to escape from f if this
happens.

The solution is that if f̃ is worse than f , then we will sometimes switch to f̃
and sometimes stick with f . We will switch with a certain probability, and there is a
general method called the Metropolis–Hastings algorithm that tells us exactly what
that probability should be: it is the ratios of the plausibility functions: Pl( f̃ )

Pl( f ) . With this

probability, we switch from f to f̃ , and otherwise we keep f .
Intuitively, thismakes sense: if f̃ is only slightly better than f , thenwewill always

switch, so if f̃ is only slightly worse than f , we should at least usually switch. But
if f is much better, we should switch rarely.

It takes many random swaps in order to hit upon the correct function (several
thousand, in fact), so it is not practical to perform this algorithm by hand. But it isn’t
very hard to program.

This Markov chain approach to substitution ciphers is described in Persi Dia-
conis’s paper [Dia09], where he tells the story of how two Stanford students, Marc
Coram and Phil Beineke, broke a code written by a prisoner. The result is impressive,
since the text is partially in English and partially in Spanish and contains a lot of
slang. It would have been tough to break the code by traditional means. As part of
their study of this algorithm, Coram and Beineke also tested it on a section from
Hamlet; after 2000 iterations, the original text had been recovered, whereas after
1000 it was still a big mess.

There is much more that one can say about Markov chains; they are fascinating
objects, and one can devote one’s entire life to studying them. (Indeed, many people
do.) But as the rest of the subject is not so applicable to cryptography, we will refrain
from further discussion of Markov chains in this book.

19.5 Problems

(1) (a) Suppose you meet a person who tells you “I have two children, at least one
of whom is a boy.” What is the probability that both children are boys?

(b) Now suppose that the person had said “I have two children, at least one of
whom is a boy born on a Tuesday.” Now what is the probability that both
children are boys?

(c) Why are the answers to these two questions different?
(2) A gambler walks into a casino with $1. Every minute, the gambler places a $1

bet that a fair coin, when flipped, will land heads. Thus the gambler gains $1 if
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the coin comes up heads and loses $1 if the coin comes up tails. The gambler
continues this way until either ey is out of money or has won $5. In either of
those cases, the gambler leaves the casino (with either $5 or nothing) and goes
home.

(a) Show that the amount of money the gambler has after n minutes is a Markov
chain. Write down the transition matrix.

(b) For each n with 0 ≤ n ≤ 5, what is the probability that the gambler has $n
after 3minutes?

(c) What do you think happens in the long run? Can you prove it?

(3) An ant starts on vertex A of a triangle ABC . Every second, the ant walks along
one of the edges adjacent to the current vertex to arrive at a new vertex, each
with equal probability. (So, for example, after 1 second, the ant is either at vertex
B or vertex C , each with probability 1

2 .)

(a) After 5 seconds, what is the probability that the ant is at vertex A?
(b) What about after n seconds?
(c) What is the stationary distribution?Can you see this just by thinking,without

doing any computation?

(4) You have an urn with n balls, k of which are red and n − k of which are blue.
Outside the urn, you have a large collection of extra red and blue balls. Every
second, you pick a ball from the urn, discard it, and replace it with a ball of the
opposite color from the outside.

(a) What is the transition matrix for the Markov chain that keeps track of the
number of red balls in the urn?

(b) What is its stationary distribution? Can you see this without doing any com-
putations?

(5) What is the expected number of times you have to flip a coin before you get 3
heads in a row, for the first time? Is the answer the same for HTT? HTH?



Chapter 20
Some Coding Theory

20.1 Introduction to Coding Theory

Coding theory sounds as though it ought to be related to cryptography, since it has
a name with many of the same connotations, and superficially it seems to address a
similar problem. However, this time Alice and Bob face a different kind of enemy.
The problem is the following:

Problem 20.1 Alice wishes to send Bob a message, which we can think of as being
a string of 0’s and 1’s. However, the network connection between them is not com-
pletely reliable, and sometimes a 0 will turn into a 1, or vice versa. Assuming that
they know that this doesn’t happen too often, how can Alice send a message in such
a way that Bob can still figure out what she wanted to say?

So, now we’ve lost Eve: Alice and Bob are no longer worried about someone
listening in on their conversation. Instead, the problem they face comes from possible
mistakes in the transmission.

Remark 20.2 The standard term in the literature for anunreliable network connection
is a noisy channel.

Let us start with the simplest case: Alice wishes to send Bob a message, and she
knows that, however long a message she sends, at most one bit will get flipped. How
can she send her message to Bob so that he can still read it?

One possibility is to send her message three times: only one digit can be flipped,
so if in any digit all three agree, it’s right, and if two out of three agree, then they’re
right, and the remaining one was the error.

Example If Alice wants to send the messagem = 011, she sends 011011011. If Bob
receives the message 011001011, then he can break it down into three-digit chunks:

011 001 011.
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The second of these chunks is different from the other two, and in particular, it differs
from the others in the second digit, marked in red. So Bob knows that this fifth digit
got flipped, because it doesn’t agree with the other instances of the second digit of
the message. He then reads off either the first or third chunk, which is the intended
message.

But this is really inefficient: she has to send a message that’s three times as long
as the one she wanted to send. Is there a better way?

Here is one better way: send the message twice, and then add one more digit
(called a check bit) which is the number of 1’s in the actual message, modulo 2. Bob
can still recover the message: if the two instances of the message agree, then they’re
right. If not, then one digit in one of them was flipped, and the last bit arbitrates
which one is right.

Example Again, suppose Alice wants to send the message m = 011. The message
contains an even number of 1’s, so her extra check bit is a 0. So she sends 0110110.
If Bob receives the message 0110100, then he breaks it up into two 3-digit chunks
plus an extra check bit:

011 010 0.

The first and second block are different, so how does Bob determine which one
is right? He turns to the check bit, which tells him how many 1’s the message is
supposed to contain: an even number. The first block has an even number of 1’s, and
the second block has an odd number, so the first block must be the uncorrupted one.

So, that’s an improvement, since it reduces the number of digits needed from 3n
to 2n + 1. Is that the best we can do?

Let us try to analyze this more theoretically. Suppose Alice wants to send k-bit
messages. What is the maximum number of k-bit messages she can send such that
Bob can recover them after a possible corruption?

In order to solve this, let us figure out howmany messages a single message could
turn into after possible corruption: any of the k bits could have been corrupted, or
perhaps no bit is corrupted, for a total of k + 1. So, in order to be able to correct
errors accurately, we need there to be at most 2k/(k + 1) possible messages sent
originally. The situation is most interesting when 2k/(k + 1) is an integer. Since the
only factors of 2k are smaller powers of 2, this happens when k + 1 is a power of 2
only. So, k = 1, 3, 7, 15, . . . are the interesting cases. See Figure 20.1 for a picture
in the case of k = 3.

We are now tempted to ask the question of whether it is actually possible to pack
2k/(k + 1)messages so that anymessage is recoverable fromanypossible corruption,
when k + 1 is a power of 2. The answer is yes: we can do so. Such encodings are
called Hamming codes. They are usually explained in terms of check digits or linear
algebra. These are both possible ways of doing it, but by far the most fun and, to me,
enlightening, way of constructing Hamming codes is by playing games!

But we’ll save that for later. For now, we’ll talk about a certain type of code that
is particularly nice.
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Figure 20.1 The message
000 can be corrupted into
any of the four blue points,
whereas the message 111 can
be corrupted into any of the
four red points

000 100

001

101

010 110

011 111

20.2 Linear Codes

Definition 20.3 Let F be a field, usually but not always F2. A code is a nonempty
subset C of Fn , i.e., it consists of certain strings of length n, where the characters in
the string are elements of F . If C is a code, then an element of C is called a code
word.

So, if F = F2 and n = 5, then one code word might be 00000, and another might
be 01001.

Definition 20.4 A code C is said to be linear if, whenever we have r ∈ F and
a, b ∈ C , then a + b ∈ C and ra ∈ C .

The sum a + bmeans to add every digit in the strings, and the product rameans to
multiply every digit individually by a. So, if F = F2 and a = 01001 and b = 11001,
then a + b = 10000. If F = Fp for some prime p, then the multiplication condition
comes for free from the addition condition, so we can ignore it.

There are certain important words we use to describe nice codes:

Definition 20.5 (1) Let C be a code over a field F , and let a ∈ C be a code word.
We define the Hamming weight (or weight) of a to be the number of nonzero
digits in a. We write w(a) for the Hamming weight of a.

(2) We say that a code over F2 is even if w(a) is even for all a ∈ C .
(3) We say that a code over F2 is doubly even if w(a) is divisible by 4 for all a ∈ C .

One reason that we like linear codes more than other types of codes is that we can
build them up from only a few code words, called generators: we start with those
words, then we add them to each other, and then we add those to each other, and so
forth, and all code words can be described in this way. This should remind you of
what we did with elliptic curves, where we start with a few points, add them to each
other to get more points, and so forth.
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Remark 20.6 Every linear code contains the 0 word (the string of all 0’s). To see
this, suppose that a is any code word. Then 0a is another code word, and this word
consists of all 0’s.

20.3 Lexicographic Codes

One interesting type of code is called a lexicographic code. We can construct a lot
of codes with interesting properties as examples of lexicographic codes, but mostly
I just want to talk about them because they have such a spectacular story, and I can’t
bear to have people read my book without learning about them! I first learned part of
the story from a video of a lecture that John Conway gave at a conference at Banff,
following two papers he wrote: [CS86, Con90]. Since I enjoyed his presentation, I
shall present it here in a similar spirit.

We are going to study codes in which the “digits” or “letters” are nonnegative
integers. So, one of the digits might be 145; that won’t count as 3 digits. However,
this is just a theoretical possibility; we won’t actually need to write any digits that
big. Also, our strings will be infinitely long, infinite to the left, but they are finite to
the right. So, an example of a string we will be considering is

. . . , 0, 5, 6, 1010
982 + 5, 3, 441, 0, 2.

However, we want all the strings we consider to start with infinitely many zeros:
there are only finitely many nonzero terms at the end.

We also want to be able to put the strings in order. The ordering is lexicographic:
if we have two strings, they both start with infinitely many zeros, and then at some
point, they might stop being zero. So, there is a leftmost position where strings a and
b differ. If, in this position, string a is less than string b, we say that a < b.

Example Let

a : . . . , 0, 0, 1, 9, 4, 0, 1, 3
b : . . . , 0, 0, 2, 1, 0, 0, 1, 5

Then a < b, because in the leftmost position where a and b differ, string a has a 1,
and string b has a 2, and 1 < 2.

We are now ready to define the lexicographic code, or lexicode for short.

Definition 20.7 The lexicode consists of all strings which are lexicographically first
with respect to differing from all previous strings in the lexicode in at least three
positions.

Remark 20.8 There isn’t anything special about 3; we could replace it with any other
number larger than 1, and everything would work just the same.
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From here on, we will suppress the commas because they are annoying to write,
and we won’t ever need any digits above 9 anyway. So, we will write something like
· · · 01542 to mean . . . , 0, 1, 5, 4, 2.

Let’s see if we can figure out some of the first few codewords in the lexicode.What
is the first one? It is the lexicographically first word that differs from all previous
words in at least three positions. Well, there are no previous words, so anything will
vacuously satisfy the differing in at least three positions condition. So, the first word
in the lexicode will be the first word of all: · · · 00000.

What’s next? The next one has to differ from the all 0 word in at least three
positions. So, we might as well take the last three positions. They can’t contain any
zeros, so the best we can do is to make them ones: · · · 00111. Continuing on this
way, we find that the first few code words are

· · · 00000
· · · 00111
· · · 00222

· · · 00333
· · · 00444
· · · 00555

· · · 00666
· · · 00777

...

Clearly, we can continue on with · · · 00nnn, and that gives us infinitely many words,
so perhaps that’s the end of the story. But if it were, I probably would have skipped
this story. Indeed, why do we have to stop once we have infinitely many?We can still
look for the next string that differs from all of the ones we have already constructed
in at least three positions. At this stage, we have to move to the fourth position from
the end and put a 1 there.

Now, we can’t have any two of the last three digits being the same, for if there
were two n’s in the last three positions, then we would be too close to · · · 00nnn. So,
they must all be different. The first thing to try then is · · · 01012, and this is right.
Continuing on looking for more words, we find that the list continues

· · · 01012
· · · 01103
· · · 01230

· · · 01321
· · · 01456
· · · 01547

· · · 01674
· · · 01765

...

After all of those, we can play the same game, but now we have to start with a 2.
The next one is

· · · 02023

and that will be all we need, although one could go further of course.
There is an important theorem about the lexicode:

Theorem 20.9 The lexicode is closed under natural componentwise addition and
scalar multiplication.

This means that when we add two codewords, we get another codeword, and if we
multiply every digit of a codeword by the same constant, we get another codeword.
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Example Let us add the codewords · · · 01023 and · · · 00444.

· · · 01012
+ · · · 00444

· · · 01456

The resultingword, · · · 01456, is another codeword. Similarly, let’smultiply · · · 00111
by 3.

· · · 00111
× 3

· · · 00333

Once again, the resulting word, · · · 00333, is another codeword.
So, try to prove this theorem, or think about what some ideas might be.
This theorem has a slight problem, unfortunately, which is that it happens to be

false. For example,
· · · 01012

+ · · · 00111
· · · 01123

which cannot be a codeword, because it’s too close to · · · 01103. Similarly,

· · · 01012
× 2

· · · 02024

which cannot be a codeword, because it’s too close to · · · 02023.
In other words, Theorem 20.9 is totally wrong.
So, the big theorem of this section turned out to be wrong. I guess I could abandon

the rest of the book or section in disgrace, but I have a better idea: I’m going to fix
it. There are several ways I could fix it. One is the following:

Theorem 20.10 (Correction of Theorem 20.9) The lexicode is not closed under
natural componentwise addition and scalar multiplication.

But that isn’t very interesting. Besides, the original theorem was really nice, and
I’ve decided that I want it to be true. (Ordinarily when civilized mathematicians
find counterexamples to their statements, they give them up. And, as a civilized
mathematician myself, I would usually do that too, but I’ll sacrifice my principles
here and make an exception for you, my dear reader.) So, the original theorem is
going to be true.

The catch is that I tricked you in the statement: when I wrote “natural compo-
nentwise addition and scalar multiplication,” you probably assumed I was going to
be adding and multiplying numbers in the usual way. But that was an unwarranted
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assumption. Instead, I’m going to look for another way of doing addition and multi-
plication, and I’m going to use the theorem to tell me how it’s done. In other words,
we’ll treat the theorem as an axiom and use it to build the addition and multiplication
tables.

Also, let us say that we want addition and multiplication to have most of the
usual properties: they should be associative and commutative, they should satisfy the
distributive law, and we should have inverses with respect to addition. In short, we
want to construct a ring. (That is a little weird, since the nonnegative integers aren’t
usually a ring, but they will be this time!)

So, let’s start with the addition table. The first thing to note is that 0 must be the
additive identity. To see this, note that any codeword begins with infinitely many
zeros, and so the sum of any two must also. Hence 0 + 0 = 0, so 0 is the additive
identity. This allows us to start building the addition table:

+ 0 1 2 3
0 0 1 2 3
1 1
2 2
3 3

We can build up more of it from what we already know. For example:

· · · 01012
+ · · · 00111

· · · 011xy

Staring at the list of code words, we find that x = 0 and y = 3. Continuing on in this
way, we can find that the addition table up to 3 is:

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

We could continue it further if we wanted, but let’s stop here and move onto
multiplication. Since 0 is the additive identity, 0 × x = 0 for every x , so that helps
us get started with the multiplication table:

× 0 1 2 3
0 0 0 0 0
1 0
2 0
3 0
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Now, it isn’t possible to determine the multiplicative identity from the axiom/
theorem, so we have to make a choice. Fortunately, any sensible person will choose
1 to be the multiplicative identity, so we can extend our table as follows:

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2
3 0 3

In order to make more progress, we look at

· · · 01012
×2

· · · 0202x

Hence 2 × 2 = 3. To get the rest of them, remember the distributive property. So,
2 × 3 = 2 × (2 + 1) = 2 × 2 + 2 × 1 = 3 + 2 = 1, and soon.Completing the table
gives us

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

And we can continue on if we like, but that’s all I want to say about the integral
lexicographic code. Instead, I want to tell you the tale of prisoners and their hats.

20.4 Prisoners and Their Hats

People tell many stories about the games that prison wardens force their prisoners
to play involving guessing their hats, and it is possible that there are many prison
wardens out there who have actually subjected their prisoners to many of these
different games. But the only one I can vouch for is the following one, played in a
prison far, far away.

The warden has a collection of hats, each of which is either red or blue. The
warden gives each prisoner a hat at random, determined by a flip of a fair coin.
Each prisoner can see everyone else’s hat, but not eir own. They aren’t allowed to
communicate with each other. Then, each prisoner is allowed to guess eir hat color,
or else pass, and all guesses must be made simultaneously and independently. If at
least one prisoner guesses correctly, and no one guesses incorrectly, they are all free.
Otherwise, they remain imprisoned.
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The prisoners were told in advance that they were going to play this game, so they
had time to work out a strategy. How can they do it?

We might expect that the best that they can do is to assign one person to guess
randomly, and have all the others pass. That way, they win half the time, and they
lose half the time. This feels like the optimal strategy, because each prisoner who
answers has a 50% chance of being right, so we’d like as few people as possible to
guess.

Remarkably, they can actually do better. Let’s look at the simplest interesting
case, that of three prisoners. Then, either all the prisoners have the same hat color, or
else it’s 2 to 1. This suggests a possible strategy: if a prisoner sees two of the same
colored hats on the other prisoners, ey guesses the other color. Otherwise ey passes.

Here’s what happens in all possible cases. The first three letters are the actual hat
colors; the last three are the guesses. We color the wrong guesses in red and the right
guesses in blue.

BBB RRR
BBR PPR
BRB PRP
BRR BPP
RBB RPP
RBR PBP
RRB PPB
RRR BBB

So they win 75% of the time, which is an improvement!
But why did our basic intuition fail us? Actually, it didn’t; it just answered the

wrong question. Let’s look carefully: in the list above, there are six correct guesses
and six incorrect guesses. The trick is that they managed to clump the wrong guesses
together while spreading out the right ones. The point here is that there isn’t any addi-
tional penalty for having many people guessing wrong, so there’s a bit of asymmetry
in the problem that they can take advantage of.

Let’s figure out if we can do something like this more generally.
Suppose we can, and that there are n prisoners. Then there are 2n possible hat

configurations, and say they lose ind of these configurations in a strategy similar to the
one employed above: the wrong guesses concentrated into as few losing positions as
possible where everyone guesses wrong, and the right guesses spread out maximally
so that in each winning position only one person guesses correctly and everyone
else passes. Then they make a total of dn wrong guesses (each of n people guesses
wrong in each of d sequences), and 2n − d right guesses. But we need for there to
be the same total number of right and wrong guesses, so we must have dn = 2n − d.
Solving for d, we find that d = 2n

n+1 . In order for this to be an integer, n + 1 must be
a power of 2.

Hence, the next interesting case is n = 7, with d = 16.
We can dig out a bit more from the case of n = 3, in fact. In each hat sequence

they win, there’s exactly one hat that could have been flipped that would have caused
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them to lose, and in all such cases, that’s the person who guesses. Thus, everyone
looks around and determines if it is possible that they are in a losing position. Anyone
who knows that they could not will pass; anyone who is unsure will guess that they
are not in a losing position.

Since each winning position is exactly one away from a losing position, every
losing position must differ from every other losing position in at least three places.
(Sound familiar?)

This suggests a possible idea for constructing the losing positions. For simplicity,
we’ll write 0 for a red hat and 1 for a blue hat, so that hat sequences are strings of zeros
and ones. So, we want to write a sequence of binary strings, each of which differs
from each other one in at least three spots. So, let’s just try to find the “smallest”
string at each stage. There’s no guarantee that it will work, but it’s the most obvious
thing to try. Let’s do this for n = 7. The first possible string is S1 = 0000000. The
first string that differs from S1 in at least three positions is S2 = 0000111. The first
string that differs from S1 and S2 in at least three positions is S3 = 0011001, and so
on. Continuing on, we get the following list:

0000000
0000111
0011001
0011110

0101010
0101101
0110011
0110100

1001011
1001100
1010010
1010101

1100001
1100110
1111000
1111111

As we move on, it becomes increasingly annoying to find more strings that work
by checking that each differs from each other one in at least three positions, but it
can be done. In fact, I was able to write this list down quickly, in spite of not having
memorized them, for reasons we will soon see.

We’ll call a setC of 22
n−1/2n = 22

n−n−1 strings of length 2n − 1with this property,
that any string of length 2n − 1 not inC differs in one position by exactly one string in
C , aHamming code. These are very important in coding theory, as they are almost the
only nontrivial perfect codes; the others are the Golay codes which we will discuss
in Sections 20.9–20.11.

So, that does it for n = 7. Let’s look at some examples.

Example Suppose the hat sequence is 0100110. Then the first person can observe
that, among all listed strings, they might be in 1100110, and everyone else knows
that they’re not in any of them. So the first person will guess 0, and everyone else
will pass, so they win.

Example If instead the hat string is 0110100, then everyone can see that they might
be in the string 0110100, of all the strings above. Hence, everyone will guess that
they aren’t, so the guesses will be 1001011. So, everyone guesses wrong.

Now, what we would like to do is to prove that this lexicographic construction
works in general, and that it produces Hamming codes. In order to do that, we must
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venture to the land of games, and learn about one of the two games that is worthy of
serious study.

20.5 Nim

We now turn to the game of nim. Nim is played as follows: there are two players,
and there are several piles of stones on a table. Players take turns making moves, and
a move consists of removing as many stones as desired (at least one), but only from
one of the piles. The winner is the one who takes the last stone on the entire table.

This last sentence is interesting: sometimes people play a variant, knownasmisère
nim, in which the players who take the last stone loses the game. In the case of
nim, the strategies for these two games are extremely similar (it only requires a
tiny modification to turn a winning strategy for normal nim into a winning strategy
for misère nim), but if you change the rules a bit more (for example, you can only
remove 1, 2, 3, 8, or 19 stones from a pile), then themisère version suddenly becomes
very complicated to analyze, whereas the normal version is quite easy.

When we talk about nim or some other similar game, it is useful to classify the
positions as winning or losing. Except that we don’t typically call them that: we
classify them as winning for the next player (N ) or winning for the previous player
(P). The P positions are the “losing” ones.

There is a good criterion for what the N positions and P positions are:

Theorem 20.11 An N position is one in which there is a move to a P position. A
P position is one in which all moves are to N positions.

In fact, this theorem completely characterizes the N and P positions.
Now, when you start playing nim, you will quickly notice some tidbit of strategy:

when there are two piles of the same size, they can be ignored. The reason is that the
presence of these two piles allows one player to copy the other. If I have a winning
strategy without those two piles, I’ll just play my winning strategy for as long as
you stay away from those two piles. If you remove some stones from one of those
two piles, I’ll just copy you in the other one, and eventually those two piles will
disappear.

In short, the outcome of the game doesn’t change when we add two piles of the
same size, or remove two piles of the same size. Therefore, we can always assume
that the number of piles with a given size is either 0 or 1.

Thus, we may represent a nim position as a binary string: · · · a5a4a3a2a1, where
an is the number of piles of size n, which we assume to be either 0 or 1. For example,
a game with piles of size 1, 2, 3, 7 would be 1000111.

It will be helpful now for us to analyze how to play nim in this new framework,
as binary strings. There are two sorts of moves we can make in nim: we each either
remove a pile completely, or we can replace a pile with a smaller pile. The first type
of move changes some 1 to a 0; the second type changes a 1 to a 0, and also changes
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some other number. Hence, here are the legal moves of nim in terms of strings: we
can change the string in either one or two positions. If we’re ignoring repeated piles,
we can also add the following restriction: the leftmost digit we change has to switch
from a 1 to a 0.

Now, we have everything we need to prove the following remarkable theorem:

Theorem 20.12 The P positions of nim are exactly the same as the lexicographic
code we constructed earlier.

Proof There are a few things we have to check. We first check that any two P
positions differ in at least three positions. This is pretty clear: if two P positions
differ in at most two positions, then there’s a move from one to the other, so they
can’t both be P positions.

Now, we also need to check that each P position is lexicographically first with
respect to differing from each other P position in at most three places. To do this,
we use induction: suppose we have a partial list with this property, and consider the
first string which differs from all of these in at least three positions. Well, these ones
are all the earlier P positions, and we can’t get to any of them. So every move is to
an N position, so this string must be a P position. �

So, the lexicographic code, or the Hamming code, is simply the list ofP positions
in nim!

20.6 Hamming Codes

But we’re not quite done yet. We don’t know that every string differs in at most one
position from a P position. So, we must show this. Note that we haven’t made any
mention of the length being 2n − 1 yet, so that has to show up somewhere. Let us
see why this is really important, by looking at the P positions of length 6:

000000
000111

011001
011110

101010
101101

110011
110100

There are indeed strings of length 6 which do not differ from any of these in one
position, such as 001100. But, looking back to the strings of length 7, we can see that
if we pad this string with an extra initial 0, then it differs from one of the length-7
strings in one position, namely 1001100.

In order to understand this phenomenon, it is helpful to know the winning strategy
for nim. In fact, we really only need a specific feature of the winning strategy, and it
is possible to prove this property without giving the full winning strategy. However,
doing it that way is unappealing, since it appears to be rather unmotivated.

Anyway, here is the winning strategy for nim. Suppose that we have piles of size
a1, a2, . . . , ar . We write each of the numbers a1, a2, . . . , ar in binary, and then we
add without carrying. This gives us the nim sum s of the numbers.
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Example Suppose we have piles of size 2, 3, 5, 7, 8. These numbers in binary
(padded with zeroes to make them all have four digits) are 0010, 0011, 0101, 0111,
1000. When we add without carrying, we get

0010
0011
0101
0111
1000
1011

This is the binary representation of 11 (when written in base 10 = 9 + 1).

The way this works is that, if s = 0, then the position is a P position; otherwise
it’s anN position. How do we make a winning move from anN position? We have
to make it have nim sum zero after we move. The way we find such a move is to look
at the leftmost 1 in the binary form of s. Then one of the original piles has a 1 in that
column as well, or else that digit would be a 0. Then nim sum one of the piles with a
1 in that column with the full nim sum, and replace the full pile with one of that size.

Example In the example above, the nim sum has a 1 in the leftmost column, and the
only original pile to have one there is the 8. Nim sum 8 and 11 together to get 3. So,
we replace the pile of size 8 with a pile of size 3, leaving piles of size 2, 3, 3, 5, 7.
This is the only winning move in that position.

Remark 20.13 More generally, if there is some n so that there is exactly one pile of
size at least 2n , then the position is guaranteed to be an N position. This is actually
exactly what we need to prove that the lexicographic code is a Hamming code. This
can be proven by induction on powers of 2 without knowing the winning strategy,
but there is little to be gained from doing it that way.

What does all this have to do with Hamming codes? The point is that if we have
any nim position at all, we can add a pile of some size (possibly 0) to obtain a P
position (the new pile we add will have size equal to the nim sum of the original
piles); the only worry is how big the pile might have to be. But, by what we saw
above, the new pile can’t have more binary digits than the largest of the other piles.

So, that explains why the codes “close up” when their size is one less than a power
of 2, but not otherwise.

20.7 Back to the Hats

We’re nearly done, but let’s return to the hats now. How do the prisoners figure out
what they’re supposed to do? Do they have to memorize the list, or is there an easy
method of working out what they should guess?
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What we do is to give each prisoner a number, from 1 to n, where n is the number
of prisoners. Each person should write down the numbers of all the people who have
blue hats and nim sum them together. There are three possibilities. Case one: we get
a nim sum of 0. This will happen if the string (with that person having a red hat) is on
the list, so that person should guess blue. Case two: the nim sum is eir own number.
(For example, if we are prisoner number 5, and we get a nim sum of 5.) In this case,
the string (with that person having a blue hat) is on the list, so that person should
guess red. Case three: we get a nim sum that isn’t 0 or our own number. In that case,
pass.

In the example below, we write our hat sequences in reverse order, so as to corre-
spond with our construction of the Hamming code. That is, we write · · · a5a4a3a2a1,
where ai = 1 is person i has a blue hat and ai = 0 if person i has a red hat. For
instance, when n = 7, the leftmost digit denotes person 7’s hat color, whereas the
rightmost digit denotes person 1’s hat color. We also use a � to denote an unknown
hat color: person i cannot see eir own hat, so we’ll put a square in position i when
we refer to the sequence that person i observes.

Example Let us suppose that the actual hat sequence is 1110010, meaning that
people 2, 5, 6, and 7 have blue hats. Person 1 sees 111001� and computes the nim
sum 2 ⊕ 5 ⊕ 6 ⊕ 7 = 6. Since 6 is not equal to 0 or 1, person 1 passes. Person 2
sees 11100�0 and computes the nim sum 5 ⊕ 6 ⊕ 7 = 4 and passes, because 4 is
not equal to 0 or 2. Let us now move on to person 6. Person 6 sees 1�10010 and
computes 2 ⊕ 5 ⊕ 7 = 0. Now, person 6 follows the rule: when the nim sum is 0,
guess blue. (If the nim sum had been 6 instead, then the rule would have said to guess
red.)

20.8 Linearity

The Hamming code we have constructed from nim is a linear code. The reason for
this also boils down to playing games. In order to see why, we have to define the sum
of two games.

Definition 20.14 Let G and H be two (nim) games. (They don’t have to be nim,
but that’s good enough for our purposes.) To play in the sum of G and H , you get to
move in either G or H on your turn, but not both.

This is a reasonable definition, as nim is already a sum of a bunch of games: it’s
the sum of all the individual piles. It’s not always possible to determine the outcome
class (N or P) of the sum of games based on the outcome classes of G and H . In
particular, the sum of two N positions might be an N position, and it might be a P
position; this depends on finer structure in the game. However:
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Theorem 20.15 The sum of two P positions is another P position.

Proof Imagine playing the sum of two P positions, G and H , where it’s my turn to
move. If I move in G, then you have a move to beat me in G, so play it. If I move
in H , then you can beat me there as well, so do it. In general, just play the winning
move in whichever component I play in. Eventually either G or H will disappear,
and we’ll be left playing the other one only. �

This is enough to show that the Hamming code is linear. But what about the
lexicode from a while ago?

The reason that the lexicode is linear is essentially the same, but it involves playing
a slightly different game, which I will call lexnim. How do we play lexnim? It is
a lot like nim played with strings, except instead of having binary strings, we have
strings of nonnegative integers. Again, a move is to change the string in either one
or two places, in such a way that the string decreases lexicographically. That is, the
leftmost digit we change must decrease. If we change the string in two places, then
the rightmost digit can change to anything, even a very large number.

Now, the same argument that we used for nim shows that the P positions of
lexnim are exactly the lexicode strings.

But linearity is now just a little bit more complicated than it was for the Hamming
code, and that’s because sums of lexnim games are slightlymore complicated.We’ll
need a modification of a result we had earlier:

Theorem 20.16 Let G be a game, and let H be another game which is aP position.
Then the outcome of G + H is the same as the outcome of G, i.e., if G is aP position,
then so is G + H; if G is an N position, then so is G + H.

Also, impartial games (which is the type we’re considering) are their own nega-
tives: when we add G to itself, we always get a P position. What we want to show
now is that lexnim plays well with nim sums:

Theorem 20.17 Let a and b be two positions in lexnim, and let c be the compo-
nentwise nim sum of a and b. Then the sum of the games a, b, and c is a P position.

Proof We do this by showing how, after any first move, we can reduce it to another
position of the same form. This proves the theorem, because by repeatedly doing
this, we’ll eventually get down to the position where all three strings are 0’s, which
is a loss.

So, how does the reduction go? If I move in a (without loss of generality, since all
the strings play symmetric roles), then you play in either b or c, in the same positions
that I played, in such a way to reduce the nim sum of each position to 0. In at least one
of b and c, you can do so while reducing the string lexicographically. This completes
the proof. �

So, the nim sum of two codewords is again a codeword in the lexicode. The nim
sum is exactly the sum we constructed when we created this exotic addition table
earlier!



246 20 Some Coding Theory

As for multiplication, there’s also a nim multiplication, and it has an (admittedly
rather contrived-seeming) interpretation in terms of playing games, but let’s leave it
at that!

20.9 The Golay Codes

The Hamming code is an example of a perfect code: every string can be corrected
(with at most one correction) to exactly one word in the Hamming code. One might
wonder if there are others.

Let’s see how to check this. Recall that, when we were looking for binary codes
of length n that corrected one error, we needed that 2n/(n + 1) be an integer, because
there are n + 1 strings that could result from each word sent.

To generalize this, suppose we wish to be able to correct 2 errors, over the field
Fp. Then there is one way that a message can be sent correctly, there are n positions
in which one error can be made, and there are p − 1 possible errors, or n(p − 1)
possible single errors, andn(n − 1)/2positions inwhich twoerrors canbemade,with
(p − 1)2 possible errors. Hence there are n(n − 1)/2 × (p − 1)2 ways of making
two errors. Hence, there are 1 + n(p − 1) + n(n − 1)(p − 1)2/2 ways of making at
most two errors.

It’s not easy to see when this is a factor of pn , i.e., a power of p, but it is when
p = 3 and n = 11. Similarly, if we allow three errors and work out the formula for
the number of strings with that many errors, we find that we get a power of p when
p = 2 and n = 23.

20.10 The Ternary Golay Code

As is the case with the Hamming codes, many people construct the Golay codes in
sillyways, by listing generators of the codes and building them up from linearity. But,
just like Hamming codes, the Golay codes have beautiful interpretations in terms of
playing games. We just need different games.

The ternary Golay code, which corrects two errors and has length 11 over F3, can
be interpreted in terms of a game calledMathieu’s blackjack. To playMathieu’s
blackjack, we need 12 cards, which are A through J, and a joker. The A through J
are valued at 1, 2, 3, . . . , 11, and the joker has value 0. To play this game, shuffle the
cards, and divide them into two piles, which we’ll call the main pile and the other
pile. Turn them both face up.

Now, we have two players making moves. A move consists of switching one card
in the main pile with one card in the other pile, but the requirement is that the card
in the other pile must be lower than the card in the main pile. So, it’s okay to switch
an 8 in the main pile with a 2 in the other pile, but not the other way around.
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The game ends when someone makes the sum of the values of the cards in the
main pile drop below 21. The person who does that loses.

Our intermediate goal will be to understand the winning strategy for Mathieu’s
blackjack. To do this, we need to introduce the tetracode.

The tetracode is a code over F3, consisting of the following strings:

0000
0111
0222

1012
1120
1201

2021
2102
2210

The rule is as follows: the first two digits determine the rest of the string: the third
digit is the sum of the first two, and the fourth is the sum of the first and third, where
all sums are modulo 3. In other words, the last three form an arithmetic progression,
with common difference equal to the first digit.

The tetracode is an error-correcting code, in that it can correct one error. This is
because the distance between any two code words is at least 3. It’s also a linear code.

But the tetracode also has another error-correcting property: if we have two digits
correctly placed in it, and we don’t know what the other two are, then we can fill in
the other two in a unique way to make it a codeword for the tetracode.

Now, to record a position inMathieu’s blackjack, we use an object called the
MiniMOG. It looks like this:

6 3 0 9
5 2 7 10
4 1 8 11

To record a position inMathieu’s blackjack, put a∗ in the position of each card
in the main pile. So, if we have 3, 4, 7, 8, 9, 11, then we write down the following:

∗ ∗
∗

∗ ∗ ∗

Now, we add each column: if there is exactly one ∗ in a column, record whether it’s
in the first, second, or third row. If there are exactly two ∗’s in a column, record the
row that doesn’t have a ∗. If there are 0 or 3 in a column, put a question mark. In this
case, we obtain 2001.

We can now describe the P positions in Mathieu’s blackjack: they are the
ones that sum to tetracode words, or ones that can be extended to tetracode words
by replacing ?’s with suitable digits, and so that the number of ∗’s per column is not
(3, 2, 1, 0) (in any order). Hence, a winning move is to convert a position into one
that sums to a suitable tetracode.

Now,wemove on to construct the ternaryGolay code.Well, actually, we’ll start by
constructing something else first: the extended ternary Golay code, which is obtained
from the ternary Golay code by appending a check digit as the final digit, so that the
sumof all the digits in any codeword is 0.Wewill start by constructing 264words that
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are in the code. They will be based on the P positions of Mathieu’s blackjack,
and we would like to put 1’s in the positions of the cards in the main pile, but that
doesn’t quite work: because we’re working over F3, some of them should have 1’s
and some should have 2’s. But we’re on the right track with that approach: those will
be the positions of the 1’s and 2’s, but we have to figure out which ones should be 1’s
and which ones should be 2’s. The rule for determining which one should be 1’s and
which should be 2’s is pretty messy though, so I’ll skip it and refer you to [LeB12,
§1.10] for more information.

So, let’s assume we’ve got that down now. Then the full extended Golay code is
the linear code generated by these strings of weight 6, i.e., all sums of strings of this
form. And, from the extended Golay code, it’s easy to get to the normal Golay code:
just throw away the last digit.

So, that’s the ternary Golay code.

20.11 The Binary Golay Code

The other Golay code is the binary Golay code, which can correct 3 errors perfectly
in a string of length 23 over F2. Its construction is a bit simpler than the ternary Golay
code, because it is a lexicographic code. Like in the case of the ternary Golay code,
there is also an extended version, called the extended binary Golay code.

The Golay code also has an interpretation in terms of a game called mogul. This
game is played with a string of length 23, and a move consists of changing the string
in up to 6 positions, in such a way that the leftmost digit of the string that is changed
turns from a 1 to a 0. As is the case of nim and the Hamming code, or with lexnim
and the integral lexicode, the P positions form the binary Golay code. The extended
Golay code also consists of the P positions of a modified version of mogul, played
on a string of length 24 in which a move consists of changing the string in at most 7
positions.

It follows that the binary Golay code consists of all binary strings of length 23
that are lexicographically first with respect to differing from all previous strings in
at least 7 positions. Similarly, the extended binary Golay code consists of all binary
strings of length 24 that are lexicographically first with respect to differing from all
previous strings in at least 8 positions. It is easy to convert between the two: to recover
the binary Golay code from the extended binary Golay code, just throw away the
last (rightmost) digit, giving us strings of length 23. To recover the extended binary
Golay code from the binary Golay code, add a rightmost digit to make the Hamming
weight even; that is, so that the number of 1’s is even.

If all this looks to you like a lot of really cool math and you suspect that it’s just a
small part of an even grander story, I think you’re right. Will you be the one to work
out what the story is and explain it to the world?
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20.12 Finite Simple Groups

One of the biggest triumphs of twentieth-century mathematics was the classification
of finite simple groups. A simple group is, in a certain precise sense, a building block
for all finite groups: we can take a bunch of them, glue them together, and end up
with any finite group. So, in an effort to study finite groups, mathematicians initially
wanted to understand what the building blocks were.

After some 15000 pages of hard mathematics spread out over hundreds of papers,
mathematicians finally had their answer: the finite simple groups fall into 18 infinite
families, plus 26 more so-called sporadic groups that don’t fit into any family.

If you’re anything like me, when you hear something like that, your reaction
is going to be something like “what on earth is going on? How can we have these
randomobjects that don’t fit into any pattern? That isn’t theway I expectmathematics
to work!” Then you want to know the stories behind these 26 sporadic groups. And,
most likely, you’ll be very disappointed when you look in the literature and try to
find out what the stories are, for most of them are told very badly: the explanations
are things like “J1 can be characterized abstractly as the unique simple group with
abelian 2-Sylow subgroups and with an involution whose centralizer is isomorphic
to the direct product of the group of order two and the alternating group A5 of order
60.” Then people will write down a bunch of matrices. However, this is not a fully
satisfactory explanation for what is going on. So far, no one truly understands what
these objects are trying to tell us about the world.

As a result, I haven’t learned to make friends with all these 26 sporadic groups,
as I would very much like to. But some of them are fairly down-to-earth objects that
we can appreciate. The first five, in particular, are the Mathieu group, and they are
denoted M11, M12, M22, M23, M24. If the subscripts 11, 12, 23, and 24 look familiar
from the Golay codes, be assured that this is no accident! The groups M23 and M24

are the automorphism groups of the binary Golay code and extended binary Golay
code, respectively; that is, the subgroup of permutations that sends an element of the
Golay code to another element of the Golay code. Similarly, M11 and M12 are related
to the ternary Golay code.

There is a lot more beautiful combinatorics related to Mathieu groups and Golay
codes, involving something called Steiner systems. But I shall refrain from telling it
here. Instead, I will refer you to the beautiful book [CS99] for more of that story.

20.13 Problems

(1) Assuming that there is guaranteed to be at most one error in transmission, how
many different messages can be sent in 5 bits? How about 6?

(2) Find a way of packing 16 messages in 7 bits, assuming there is at most one error
in transmission, other than the way we did it using lexicographic codes? Can you
generalize your method? That is, does it help you pack 211 = 2048 messages in
15 bits, for example?



250 20 Some Coding Theory

(3) (a) Suppose that C is a linear code over F2, and it can be generated by code
words c1, c2, . . . , cn . Suppose that w(ci ) is even for 1 ≤ i ≤ n. Show that
C is an even code.

(b) Ifw(ci ) is divisible by 4 for 1 ≤ i ≤ n, is it necessarily true thatC is doubly
even?

(4) Suppose that C is a linear code over a field F (you can take F = F2 if you wish,
but it shouldn’t make any difference), and the minimum Hamming weight for a
nonzero code word is a. Show that C allows you to correct

⌊
a−1
2

⌋
errors.

(5) (a) Alice and Bob play the following game: Alice picks an integer from 1 to
100, and Bob gets to ask ten yes-or-no questions to Alice to determine the
number. Alice must respond to Bob’s questions, but she can tell at most one
lie. Can Bob devise a strategy that guarantees that he can work out Alice’s
number? (His questions are allowed to be of the form “Is your number in the
set {1, 3, 5, 19, 46, 73, 76}?” or similar things. In solving this question, you
may assume that Alice responds in a maximally adversarial manner that is
consistent with only getting to lie at most once.)

(b) What happens if Alice can pick a number from 1 to n, Bob gets to ask q
questions, and Alice can tell at most � lies? (This is likely too difficult in
general, so find some interesting cases.)
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