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PREFACE

For introductory purposes, an elliptic curve over the rationals is an
equation y? = P(z), where P is a monic polynomial of degree three with
rational coefficients and with distinct complex roots.

The points on such a curve, together with a point at infinity, form an
abelian group under a geometric definition of addition. Namely if we
take two points on the curve and connect them by a line, the line will
intersect the curve in a third point. The reflection of that third point in
the z-axis is taken as the sum of the given points. The identity is the
point at infinity. According to Mordell’s Theorem, the abelian group of
points on the curve with rational coordinates is finitely generated. A
theorem of Lutz and Nagell describes the torsion subgroup completely,
but the rank of the free abelian part is as yet not fully understood.

This 1s the essence of the basic theory of rational elliptic curves. The
first five of the twelve chapters of this book give an account of this theory,
together with many examples and number-theoretic applications. This
is beautiful mathematics, of interest to people in many fields. Except for
one small part of the proof of Mordell’s Theorem, it is elementary, re-

' quiring only »una‘ergraduate mat:};‘qgj‘_’;a:t:i’_‘cg‘.i;&céordingly the presentation

avoids most of the machinery of algebraic geometry.

A related theory concerns elliptic curves over the complex numbers, or
Riemann surfaces of genus one. This subject requires complex variable
theory and is discussed in Chapter VI. It leads naturally to the topic of
modular forms, which is the subject of Chapters VIII and IX.

But the book is really about something deeper, the twentieth-century
discovery of a remarkable connection between automorphy and arith-
metic algebraic geometry. This connection first shows up in the coinci-
dence of L functions that arise from some very special modular forms
(“automorphic” L functions) with L functions that arise from number
theory (“arithmetic” or “geometric” L functions, also called “motivic”).
Chapter VII introduces this theme. The automorphic L functions have
manageable analytic properties, while the arithmetic L functions en-
code subtle number-theoretic information. The fact that the arithmetic
L functions are automorphic enables one to bring a great deal of mathe-
matics to bear on extracting the number-theoretic information from the
L function.

The prototype for this phenomenon is the Riemann zeta function ¢(s),
which should be considered as an arithmetic L function defined initially

xi
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for Re s > 1. An example of subtle number-theoretic information that
((s) encodes is the Prime Number Theorem, which follows from the
nanvanishing of ((s) for Re s = 1. In particular, this property of {(s)
is a property of points s outside the initial domain of ((s). To get
a handle on analytic properties of {(s), one proves that {(s) has an
analytic continuation and a functional equation. These properties are
completely formal once one establishes a relationship between ¢(s) and
a theta function with known transformation properties. Establishing
this relationship is the same as proving that ¢(s) is an automorphic L
function.

The main examples of Chapter VII are the Dirichlet L functions
L(s,x). 'These too are arithmetic L functions defined initially for
Re s > 1. They encode Dirichlet’s Theorem on primes in arithmetic pro-
gressions, which follows from the nonvanishing of all L(s,x) at s = 1.
As with ((s), the relevant properties of L(s,x) are outside the initial
domain. Also as with ((s), one gets at the analytic continuation and
functional equation of L(s, x) by identifying L(s, x) with an automorphic
L function.

The examples at the level of Chapter VII are fairly easy. Further
examples, generalizing the Dirichlet L functions in a natural way, arise
in abelian class field theory, are well understood even if not easy, and
will not be discussed in this book. The simplest L functions that are
not well understood come from elliptic curves. An elliptic curve has a
geometric L function L(s, E) initially defined for Re s > % An example
conjecturally of the subtle information that L(s, E') encodes is the rank
of the free abelian group of rational points on the curve. This rank is
believed to be the order of vanishing of L(s, F) at s = 1. Once again,
the relevant property of L(s, E) is outside the initial domain. To address
the necessary analytic continuation, one would like to know that L(s, E)
is an automorphic L function. Work of Eichler and Shimura provides a
clue where to look for such a relationship. Eichler and Shimura gave a
construction for passing from certain cusp forms of weight two for Hecke
subgroups of the modular group to rational elliptic curves. Under this
construction, the L function of the cusp form (which is an automorphic
L function) equals the L function of the elliptic curve. The Taniyama-
Weil Conjecture expects conversely that every elliptic curve arises from
this construction, followed by a relatively simple map between elliptic
curves. This conjecture appears to be very deep; a theorem of Frey,
Serre, and Ribet says that it implies Fermat’s Last Theorem. The final
three chapters discuss these matters; the last two take for granted more
mathematics than do the earlier chapters.

If the theme were continued beyond the twelve chapters that are here,

PREFACE X111

eventually it would lead to the Langlands program, which brings in
representation theory on the automorphic side of this correspond.ence.
As a representation theorist, I come to elliptic curves from the point of
view of the Langlands program. Although the book neither uses nor
develops any representation theory, elliptic curves do give the sirpplest
case of the program where the correspondence of L functions is not
completely understood. Furthermore representation-theoretic m§thods
occasionally yield results about elliptic curves that seem inaccessible by
classical methods. From my point of view, they are an appropriate place
to begin to study and appreciate the Langlands program. A beginning
guide to the literature in this area appears in the section of Notes at the
end of the book.

This book grew out of a brilliant series of a half dozen l.ectures by
Don Zagier at the Tata Institute of Fundamental Research in Bombay
in January 1988. The book incorporates notes from pa}'ts of courses
that I gave at SUNY Stony Brook in Spring 1989 and Spring 1990. The
organization owes a great deal to Zagier’s lectures, and I have reprqduced
a number of illuminating examples of his. I am indebted to Zagier for
offering his series of lectures.

Much of the mathematics here can already be found in other book.s,
even if it has not been assembled in quite this way. Some sections of this
book follow sections of other books rather closely. Notable among these
other books are Fulton [1989]* Hartshorne [1977], Husemoller [1987],
Lang [1976] and [1987], Ogg [1969a], Serre [1973a], Shimura' [1971a],
Silverman [1986], and Walker [1950]. The expository paper Swinnerton-
Dyer and Birch [1975] was also especially helpful. Detailed acknowledg-
ments of these dependences may be found in the section of Notes at the
en(Iin addition, I would like to thank the following people for help in vari-
ous ways, some large and some small: H. Farkas, N. Katz, S. Kudla, R. P.
Langlands, S. Lichtenbaum, H. Matumoto, C.-H. Sah, V. Schech.tman,
and R. Stingley. The type-setting was by AMS-TEX, and the Figures
were drawn with Mathematicag. Financial support in part was from
the National Science Foundation in the form of grants DMS 87-23046
and DMS 91-00367.

A. W. Knapp
January, 1992

*A name followed by a bracketed year is an allusion to the list of References at the
end of the book. The date is followed by a letter in case of ambiguity.
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CHAPTER 1

OVERVIEW

Diophantus lived in Alexandria around 250 A.D. He published a series
of books, Arithmetica, in 13 volumes, which were lost for more than a
thousand years. They were found again about 1570, and in the next
century Fermat studied a translation. Despite the passage of so much
time, much of Diophantus’s work had still not been rediscovered. The
books are in the style of problems and solutions. The early volumes in-
troduced, apparently for the first time, algebraic notation and equations,
as well as negative numbers. Later volumes dealt with number theory.
The work of Diophantus is so stunning that equations to be solved in
number theory are often called Diophantine equations in his honor.

Basic Problem (affine). We consider the locus f(z,y) = 0 with
f a nonzero polynomial. To fix the ideas, think of Q coefficients and
of solutions with z and y in @. Clearing denominators, we can always
adjust f so that we have Z coeflicients and are seeking @ solutions, i.e.,
solutions with z and y in Q.

Basic Problem (projective). We study the locus F(z,y,w) = 0
with F' a nonzero homogeneous polynomial of some degree d, and we
seek “projective” @ solutions. This means we identify solutions (z,y, w)
and (Az, Ay, Aw) for A # 0 and we discard (0,0,0). Rational solutions
automatically give us integer solutions, by clearing denominators.

The two problems are related, in that we can pass from each to the
other. Two examples will illustrate.

EXAMPLE 1. Fermat equation z% 4 y¢ = z%. This equation is projec-
tive. We can reduce to the affine case by dividing by z4: u¢ +v?¢ = 1.
Relatively prime integer solutions of 2% + y¢ = 2% (with 2z # 0) corre-
spond to rational solutions of u? 4+ v? = 1 provided that we identify a
solution (z,y, z) with its negative (—z, —y, —z). This process of reduc-
ing to the affine case loses “affine solutions at 0o,” those with z = 0, but
they are trivial here. Fermat’s Last Theorem is the conjecture that
the equation has no nontrivial solutions for d > 2.
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EXaMPLE 2. The affine equation y> = z3 + 1. This becomes a

projective equation if we put y = £ and z = L. We get wo? = v +wd.

(Or we simply insert powers of w to make all terms cubic: wy? = z3 +
3

w®.)

Diophantus considered the affine problem in degrees 1, 2, and 3.

Case of degree 1.
An affine line is of the form

az +by+cz=0 with @ and b not both 0.

Two such lines are the same if and only if the coefficients of one are a
multiple of the coeflicients of the other.
A projective line is of the form

az+by+cw=0 with a, b, ¢ not all 0.

Again, two such lines are the same if and only if the coefficients of one
are a multiple of the coefficients of the other. The line with a = 6 = 0
and ¢ = 1 is w = 0, which is the “line at co.”

Two facts are clear:
1) Q solutions exist (projectively).
2) We can parametrize all @ solutions.

Case of degree 2.
First we consider this case projectively. Then it turns out to be pos-
sible to make a linear change of variables so that the equation is

az? + by? + cw? = 0. (1.1)
The questions we shall address are:
(I) Do (nonzero) solutions exist?
(IT) If solutions exist, how are they parametrized?
Of these, only the second question was considered by Diophantus.

We shall return to the second question shortly. We begin with a
discussion of Question I, first giving two examples.

EXAMPLE 1. 22 + y% 4 2% = 0 has no Q solutions since it has no R
solutions.

EXAMPLE 2. z2+y? = 322 has no @ solutions since it has no solutions
modulo 9 in which some variable is not divisible by 3. This condition
is necessary since existence of a Q solution implies existence of a rel-
atively prime Z solution. To see that the condition fails, we argue as
follows: Modulo 3, the equation is z* + y* = 0, which forces 2 = y = 0
mod 3. Then 3% divides 2% + y? and so 3 divides z. Thus 3 divides all
of z, y, and z, a contradiction.

I: OVERVIEW 3

More generally, suppose that a,b, ¢ are relatively prime integers and
no square divides a coefficient. Then two necessary conditions for the
existence of solutions of (1.1) can be seen to be that

(1) (1.1) must have a nonzero solution in R
(2) (1.1) must have a relatively prime solution modulo p™ for each
prime p and each integer m > 0.

It turns out that (2) is automatic for all m if p is odd and does not divide
abe. If p = 2 or p divides abc, then the weaker necessary condition (3a)
or (3b) below implies (2) for the corresponding p:

(3a) when an odd prime p divides abe, (1.1) must have a relatively
prime solution modulo p
(3b) when p = 2, (1.1) must have a relatively prime solution modulo

Theorem 1.1 (Legendre). If (1) holds and if (3) holds for p = 2 and
for all odd primes p dividing abec, then (1.1) has a Q solution.

REMARKS: i) (1) and (3) are decidable. So we can decide the existence
question, Question I. (And, parenthetically, the hypothesis on p = 2 in
the theorem is not needed.)

ii) To fix the ideas, think of (1) and (2) as the conditions. The Hasse-
Minkowski theorem generalizes the Legendre theorem to more variables:
A homogeneous quadratic polynomial in n variables with integer coeff-
cients has a nonzero solution in Q if and only if it has a nonzero solution
in R and a relatively prime solution modulo p™ for each prime and each
integer m > 0.

iii) The field of p-adic numbers, described below in §V.3, can be used
to combine congruence information modulo p™ for all m. With this
device, the Hasse-Minkowski theorem says: A homogeneous quadratic
polynomial in n variables with integer coefficients has a nonzero solution
in Q if and only if it has a nonzero solution in R and in the p-adic numbers
for every prime p.

The idea that solutions over R and the p-adics ought to control so-
lutions over @ is called the Hasse Principle. Unfortunately it is not
universally true. As we shall see shortly, it fails even for homogeneous
cubics in three variables. Nevertheless, the Hasse Principle is a useful
place to begin the study of a class of projective equations over Q. We
shall see better how the principle operates in Chapters V and VII.

In the language of algebraic number theory, the p-adics and R are
indexed by “places.” A narrow (but still false) form of the Hasse Principle
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then says: If a projective equation is locally solvable at every place,
then it is globally solvable. This terminology is supposed to suggest an
analogy with what happens in the theory of several complex variables.
In that theory, we consider holomorphic functions and make a ring out
of those near a point (technically by passing to germs). The ring that we
make is a “local ring” in the sense that it has a unique maximal ideal.
The global ring is the ring of all globally holomorphic functions on a
given open set.

In number theory, we attempt the same thing. Our global number field
is Q. To this we attach “places,” analogous to points, by an abstract
definition that we shall not pursue. The places work out to be the primes
p and also co. For each place, there is a “local field” - the p-adics and the
reals. The sense in which the p-adics are a “local field” is that the p-adic
integers form a “local ring,” a ring with a unique maximal ideal. Local
solvability is to be solvability in the local field for each place. The hope
expressed in the Hasse Principle is that we can obtain global solutions
from local ones, because finding local ones is easier.

We turn to a discussion of Question II, the parametrization of solu-
tions. Let us begin with Diophantus’s method to solve z? 4 y? = 1.
Take a particular solution (—1,0). Choose a linear relation it satisfies,
say x = —1+ 2y.

ket
S

x==1+2y

(3/5,4/5)

(-1, 0}

FIGURE 1.1. Method for obtaining @ solutions of 22 + y*> = 1

Substitution into z? + y? = 1 gives (=1 + 2y)? + y* = 1, and we are

led to 1 —4y+4y* + 32 = 1,5y —4 = 0,y = $,z = 2. We obtain

TR T s e
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(z,y) = (3,2) as a nontrivial solution. Effectively z = —1 + ty works
for any rational t. We are led to

t2-1 2
0= ()
Conversely any (z,y) must make a line with (—1,0) with 2—: = some t,
and (z,y) is forced to be of this form.

The actual Diophantus method did not make reference to any ge-
ometry such as is Figure 1.1. The correspondence between algebra and
geometry was unknown before Fermat and Descartes in the 17*P cer.ltury.

Diophantus used this analysis to parametrize Pythagoreazn tx‘;ples:
The problem is to find all relatively prime solutions of a? 4+ b% = ¢* over
Z. For such a solution (a,b,c) with a # 0,

b bfc  2/(*+1) 2w 2m/n_ _ '
e afe (E_D/@+1) -1 (m/n)?-1 m?-n?

So (a, b, x¢) = K(m? — n?,2mn, m? + n?) with K € Q. Below we shall
tidy matters up and come to the following conclusion.

(1.2)

2mn

Theorem 1.2 (Diophantus). In any Pythagorean triple (a,b,¢), ex-
actly one of @ and b is odd. If a is odd and c is positive, then there exist
integers m and n such that

(1.3)

The integers m and n are relatively prime and not both odd. Cox}verse¥y
any pair (m,n) with these properties yields a Pythagorean triple via
(1.3).

PRroOF. The given equation taken modulo 4 shows that a and b cannot
both be odd. Thus suppose a is odd and b is even, and write as above

(a,b,c) = (m” — n?, 2mn, m? 4+ n?).

(a,b,xc) = 1L—(mz —n?,2mn,m? + n?)
v

with u/v in lowest terms. Clearing fractions, we see that u divides
a,b, and c. Hence u = £1 and we may take ¥ = +1. We now have

v(a,b,£c) = (m? — n?, 2mn, m? + n?).

We can eliminate the ambiguous sign by redefining (m,n, v), lfeavipg it
alone if the sign is + or replacing it by (—n,m,—v) if the sign 1s —.
Then we obtain

(14)

v(a,b,¢) = (m? - n?, 2mn, m? 4 n?).
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Since ¢ > 0, v > 0. If m and n have any common factor, the square of
the factor will appear in v, and we can cancel. Thus we may assume
that m and n are relatively prime.

If p is an odd prime dividing v, then p divides both m? — n? and
m? + n?, hence both 2m? and 2n?, hence both m and n. Thus no odd
prime divides v.

If 2 divides v, then the evenness of vb implies that 4 divides 2mn.
Thus one of m or n must be even, and then the other must be odd.
Hence m? — n? is odd, and va is odd, contradiction. Thus v = 1, and
(1.4) reduces to (1.3).

In (1.3) it is clear that m and n are not both odd. Conversely, such a
relatively prime pair (m,n) trivially yields a Pythagorean triple.

The method of Diophantus readily generalizes. Take f(z,y) = 0 to be
any quadratic in (z,y). Suppose (p,¢) is a solution. Then y = ¢+t(z—p)
and z = p give all lines through {p, q). Substitute for y. Get a quadratic
equation for z with a rational solution (for each t), namely z = p. Then
the other solution must be rational, etc. Without even carrying out the
computations, we can draw an important qualitative conclusion:

Proposition 1.3, If a quadratic equation f(z,y) = 0 over @ has one
Q solution, it has infinitely many Q solutions.

EXERCISE: Parametrize the relatively prime integer solutions (@, b,c)
of 2a% + % = 2.

Case of degree 3.

First we consider this case projectively. There is no normal form in
this generality. We shall address the same questions as in the case of
degree 2:

(1) Do @ solutions exist?

(IT) If Q solutions exist, how are they parametrized?

The second of these questions was considered briefly by Diophantus.

The following example shows for Question 1 that the Hasse Principle
fails.

EXAMPLE (Selmer): The projective equation 32%+4y®+523 = O has a
solution over R and over the p-adics for each p, but it has no @ solution.

Now let us discuss Question II. We begin by normalizing our cubic
suitably. Taking Question [ as settled, suppose that the homogeneous
cubic F{z,y,w) = 0 has a Q solution. Suppose in particular that it

I: OVERVIEW 9

has an inflection point over @ in a sense that will be made precise in
§11.3. If this inflection point is mapped to (z,y, w) =(0,1,0) by a linear
transformation in such a way that the tangent line becomes the line at
o0, and if the variables are scaled suitably, then the equation (in affine

form) becomes
v + ayzy + azy = 2° + apz? + asz + as.

(Notice that (z,y,w) = (0,1,0) does solve this equation projectivefly.)
Since Q does not have characteristic 2, we can complete the square 1n y
and reduce matters to

y? = P(z), where deg P = 3.
—9 . .
ExaMmpLE: u® + 3y = vw?. Put & = %”—‘ L= Ey— The inverse is
3u Qw
z= , Y=
w—v w—v

Then the equation becomes y? — 9y = 2 — 27.

Anyway we have a solution (the one at o), and we want to know all
solutions. Diophantus knew how to generate some solutions from others.

EXAMPLE: Given a number (e.g., 6), divide it into two pieces whose
product is a cube diminished by its root.

SoLUTION: Let the pieces be y and 6 —y. We want
y(6—y):z3—x.

The point (z,y) = (—1,0) is a trivial solution. It lies on a line z = 2y—1.
Substitution gives

6y —y® = (29— 1)° — 2y — 1) = 8y° — 12" + 4.

Division by y gives a quadratic equation with irrational roots. We wc?uld
surely have had rational roots if we could have made 4y on the right
match 6y on the left. The 4 comes from twice the coefficient 2 of y. To
get 6y, we should use coefficient 3 for y. So z = 3y — 1. Then

6y — y? = 2Ty — 27y% + 6y,
2Ty = 26.
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Soy:%g— and:c=3y—1=%.

Newton’s explanation of the method is as follows: Start with any line
through (~1,0). Rotate it to be tangent. Then it intersects the given
cubic twice at rational points; so the third intersection point must be
rational. The picture in Figure 1.2 in the context of solutions over R
makes matters much clearer.

(17/9,26/27)

FIGURE 1.2. Newton’s explanation of the Diophantus method

In summary, for this (and other) cubic equations, we have a systematic
method to generate new solutions from old. The method does not give
parametric families. As with 4 +v3 = w® we may not even get infinitely
many solutions this way.

Let us analyze the method of Diophantus further, postponing detailed
verifications to Chapters Il and III. The above construction takes a
rational solution P and produces another one, denoted PP or P P, by
means of a tangent line. More generally, if P and () are distinct rational
solutions as in Figure 1.3, so is R. We write R = PQ = P - Q. We have

I: OVERVIEW 11

a systematic way of getting a third point from two. This operation is
called the chord-tangent composition rule.

14

FIGURE 1.3. Chord-tangent composition rule

(a) Picture for O = (0,1,0) (b)  Picture for a different O

:O at infinity

FIGURE 1.4. Group laws relative to different base points o

The chord-tangent composition rule is not applicable to certain. pairs
of points for a general cubic. But with an additional assumptl.on of
nonsingularity that we consider below, the rule is everywhere a'pphcab.le
and can be modified so as to give us an abelian group operation, as n
Figure 1.4. For this purpose fix a point O on the curve. If (z,y,w) =
(0,1,0) is on the curve (i.e., if there are no y3 terms), one frequently

takes O = (0,1,0). With O fixed, we define
P+Q=0-PQ.
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Le.t us address the group axioms. Associativity of + is complicated
and is postponed to Chapter III. But commutativity is clear. Also O is
an identity since

P+0O0=0-PO=P

To define negatives, form OO as the third point on the line tangent at
O. Then —P = OO - P. In fact,

P+(—P):O-P(—P):O~OO:O.

The geometry of negatives is especially nice if (0,1,0) is on the curve
(i.e., again, if there are no y3 terms). Then it turns out that the choice
O = (0,1,0) leads to OO = O if there are no zy? and z%y terms.
Comparative pictures of negatives are in Figure 1.5.

(a) Picture for O = (0,1,0) (b)  Picture for a different O

FIGURE 1.5. Negatives relative to the group law

As we indicated above, there are difficulties if the curve is “singular.”
Figure 1.6 illustrates two types of singular behavior. In each case, P =
(0,0), and we consider P + P. In (1), we have to take PP = P, and
then P + P = OP is undefined since the line through O and P neither
meets the curve at a third point nor is tangent to the curve at O or
P. In (2), we do not have a unique definition of PP, since there is
not a unique tangent line at P. The problem is that both curves look
bad at P = (0,0). We cannot solve for y or z in terms of the other.
The condition of the Implicit Function Theorem fails at (0,0) in that
% =0= ’z%' We say that (0,0) is a singular point and that the curve
is singular. A precise definition of singularities will be given in §I1.2.
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(a) y*=2° (b) y*=2%(z+1)

FIGURE 1.6. Singular behavior

Theorem 1.4 (Poincaré). For a nonsingular cubic curve with a spec-
ified rational point O, the operation + is well defined and makes the
set of rational solutions into an abelian group with identity element O.
If a different identity element O’ is chosen, then the two operations are
related by P+'Q = P+Q—0’, and the group structures are isomorphic.

The geometry is especially simple when O is the same as OO, 1i.e.,
when O is an “inflection point.” In this case we shall see that we can
map O out to (z,y,w) = (0,1,0) by a linear mapping with coefficients
in @ and we can arrange for the tangent line to be w = 0. After scaling,
we get

y? +arzy + asy = 2° + a2z’ + a4z + as,

which is called a Weierstrass form of the curve.

An elliptic curve over @ is a nonsingular cubic curve in Weierstrass
form, with rational coefficients. Wider classes of curves can be reduced to
elliptic curves in various ways, and elliptic curves are sometimes defined
as one of these more general curves.

To visualize an elliptic curve over @ we can complete the square in the
Weierstrass form and change variables in y to obtain y? = P(z), where
P(z) is a monic cubic with distinct roots. We can graph v = P(z) and
obtain a picture as in Figure 1.7a or 1.7b. (Alternatively the graph might
have its dip completely below the z-axis, or it might have no maximum
or minimum.) Then we can scale by y = ++/u and obtain the pictures
in Figures 1.7¢ and 1.7d.
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(@) w=2(z?-1) () w=2z(®-1)+1

~
/

(c) ¥ ==z(z>-1) (d)

A
\/

Y =z(z?-1)+1

—~
N

FIGURE 1.7. Graphs of R points of the elliptic curve y? = P(z)

These Pictures are of the R points in the affine plane. Projectively
we must include the point at infinity, (0,1,0). Then topologically (and
smoothly) we get one or two circles. This turns out to mean that the
groulp of R points is S* or S'®Z,. So the group of @ points is a subgroup
of § or S @ Z,. The first main structure theorem about the group of
Q points is as follows.

Theo'rern. 1.5 (Mordell). The group of @ points of an elliptic curve
over Q is finitely generated. Hence it is 7" @ F with F finite abelian.

This th.eorem Yvill be proved in Chapter IV. Since the finite abelian
group F'is contained in S! or S! @ Z;, we must have F = Z,, or F =
Zgn‘ealz. For any particular curve, F can be determined. We can change
variables to make the curve be v = 2% + Az + B, with A,BeZ 1t
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simplifies calculations to take O = (0,1,0). Then the elements of order
2 are those with y = 0, at most three in number. For the rest we can
use

Theorem 1.6 (Lutz-Nagell). For an elliptic curve y? = z3 + Az 4+ B
over Q@ with O = (0, 1,0), the finite abelian group F can be computed
as follows. If P = (z(P),y(P)) is in F but does not have order 1 or 2,
then

(a) z(P) and y(P) arein Z

(b) y(P)? divides 443 + 27B2.

This theorem will be proved in Chapter V. To compute F', we simply
can try all integers y whose square divides 443 + 27B2. For each such,
we seek an integer solution z of y? = 22 + Az + B. We can tabulate all
integer pairs (z,y) obtained in this way, and we have a bound for the
order |F|. Then we can check which elements (x,y) are of finite order
since their orders (if finite) cannot exceed |F|.

As the elliptic curve varies, we can ask what finite abelian groups F
arise in Mordell’s Theorem. The following deep theorem addresses this
question.

Theorem 1.7 (Mazur). The torsion subgroup of the @ points of an
elliptic curve over Q is one of the 15 groups

Z, withn=1,2,3,...,9,10,12
Zsn ® Iy with n = 1,2,3, 4.

We turn to a discussion of the rank r of the group of @ points on an
elliptic curve over Q. Elliptic curves are known for which r is any of the
numbers 0,1,2,...,12. The proof of Mordell’s Theorem gives an upper
bound for r for any particular curve.

Still, no effective way is known for deciding whether » = 0 for a
particular curve, and it is not known whether r can be arbitrarily large.

The motivation for what affects rank is based on computer calculations
and on the hope expressed in the Hasse Principle. Let us consider an

elliptic curve E given by
y? = F(z), (1.5)

where F'(x) is a cubic polynomial with integer coefficients and with dis-
tinct roots ry,rz,73 in C. The discriminant of F is [],;(r; — ) and
is a nonzero integer. The group of Q points is denoted F(Q).
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Guided by the Hasse principle, we consider (1.5) modulo a prime p.
The curve (1.5) over Z, will be nonsingular (hence will be an elliptic |

curve) except .when P = 2 or when p divides the discriminant of F.
For nonexceptional p, we let N(p) be the number of Z,, solutions (z, y),

including the point at infinity. For example, y? = 23 + 3z over 7 has
solutions 5

(0,0) (1,£2), (2,£2), (3,%1), (4,£1), oo,

and thus N(5) = 10.
In (1.5), we always have

1< N() <2 +1. (1.6)

In fact, the lower bound is a consequence of counting the point at infinity.
For the upper bound, we note that each z from 0 to p—1 gives at most 2

E'flu)es of y, and we also must count the point at infinity. We can rewrite
6) as

lp+1~ N(p)| < p. (1.7)
So N(p) is centered about p+1. A theorem of Hasse says that it is more
closely centered about p + 1 than (1.7) indicates.

Theorem 1.8 (Hasse). [p+ 1 — N(p)| < 2\/p.

' The philosophy of the Hasse Principle is that local solutions should
mﬂue;nce globa] Sf)lutions, So a curve is more likely to have many global
solutions if N (p) is relatively large for many p. In Table 1.1, we consider

the equation y2 = 23 + az for several choices of the integer a. For each
a, we form the product

II ' ~e)w

PSR

as a functiop of R. The symbol / means that the exceptional primes (2
and those dividing the discriminant) are not to be included. The table

lists the values of this product for some R’s in approximately a geometric
progression.
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a r R=17 31 53 97 173 313 557 997
-3 0 469 624 576 698 1.030 870 .824 .550
-4 0 1.926 1.506 1.533 1.139 1.820 1.433 1.466 1.411
+4 0 1.540 2.409 1.603 1.649 2.081 2.732 1.833 2.240
+6 O .451 706 477 .384 331 .459 712 .846
-8 0 .602 612 1.034 1.584 1.004 .838 .819 .852
+3 1 5.867 5.964 5.271 8.855 10.131 8.937 10.500 14.159
-6 1 1.625 1.270 2.807 3.342 5.229 4.891 4.963 5.194
+8 1 5.416 7.199 7.338 7.600 12.176 9.610 9.569 14.060
-14 1 1.095 1.456 1.230 1.532 2.221 3.077 3.689 4.204
+14 2 5.476 5.566 10.491 18.097 24.192 22.829 27.771 29.577
~82 3 7.823 12.234 22.167 41.142 53.847 106.282 124.512 134.117

TABLE 1.1 Values of H:,(R N(p)/p for various R for the curve
y? =22+ ax

What we can see from Table 1.1 is that H;»SR N(p)/p is roughly con-
stant in z for the cases that E(Q) has rank 0 and that it increases for
the cases that E(Q) has rank > 0. Moreover, the rate of increase is
distinctly larger when E(Q) has larger rank. More extensive calculation
with many elliptic curves leads to the following first form of a conjecture.

Conjecture 1.9 (Rough form of Birch and Swinnerton-Dyer
Conjecture). For any elliptic curve E over Q, the rank r of E(Q) is
given by the formula

H V) (const)(log R)".
p<k P
Again N(p) is the number of Z,, solutions (z,y), including the point
at infinity, and the finite set of primes for which the reduction modulo
p is singular are excluded from the product.
To get a formulation of the conjecture that fits better into an estab-
lished framework, one works with the L-series of the elliptic curve, which
for current purposes is given by

! 1
Lis)=]] TERE L (1.8)
L4 P’ p**
the finite set of exceptional primes being excluded from the product.
It follows easily from Theorem 1.8 that the infinite product (1.8) is
convergent for Re s > 3/2. Note that if we put s = 1 in (1.8), then
the product formally becomes the reciprocal of []' N(p)/p. The second

form of the conjecture is stated in terms of the L-series.
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Conjecture 1.10 (Birch and Swinnerton-Dyer). For any elliptic
curve over @, the L-series L(s) extends to be entire for s € C, and
the order of vanishing of L{s) at s = 1 equals the rank r.

A third, more detailed, form of the Birch and Swinnerton-Dyer
Conjecture includes factors in L(s) for the exceptional primes and
addresses the value of the coefficient of the first nonzero term in the
power series for L(s) about s = 1. We shall not give a formal statement
of this third version of the conjecture.

Conjectures about L(1) do not even make sense without the analytic
continuation in Conjecture 1.10. This analytic continuation is far from
trivial and is itself the subject of the following two conjectures. The
precise statements of these conjectures require some terms that will be
defined later in the book.

Conjecture 1.11 (Hasse-Weil). L(s), modified by elementary factors
to a function A(s), extends to be entire, and the extension satisfies the
functional equation A(2 — s) = *A(s). If N is the conductor of the
elliptic curve and m is any integer prime to N, then the same kind of
conclusion is true of L(s) when L(s) is twisted by a Dirichlet character
modulo m.

Conjecture 1.12 (Taniyama-Weil). Every elliptic curve over § is
modular in the sense of being parametrized by modular functions in a
specific way.

It turns out that Conjecture 1.12 is decidable for any particular curve.
Moreover, Conjecture 1.12 implies Conjecture 1.11, and the converse
implication is valid under a minor technical assumption on the curve.
The depth of these conjectures is illustrated by the following theorem.

Theorem 1.13 (Frey-Serre-Ribet). The Taniyama-Weil Conjecture
tmplies Fermat’s Last Theorem.

CHAPTER II

CURVES IN PROJECTIVE SPACE

1. Projective Space

Let k be a field. The projective plane fg(k) overl kis deﬁne(}i} as

i w) € k% — {(0,0,0)}} by a relation ~, where

E};?, ;’l,lzt’l)erif ((;:f, gf,(;‘)yi,f (?c’,y’, ') :{()\(:n,y?zv) for some A € k. When

there is a need to be careful, we shall write [(z,y,w)] for the' member

of Py(k) corresponding to (z, y, w) in k. But usually there will not be

such a need, and we shall simply refer to (z,y,w) as a member of Pz(k.).

A line defined over k is a nonzero polynomial L = az + by + cw In

k[z,y, w]. We regard L and a line L' = @’z + 'y + c’w to be the same
line if (¢, b, ¢") is a multiple of (a,b,c). The locus

L{k) = {(z,y,w) |az + by + cw = 0}

is well defined in Po(k) and is called the set of k poin.ts or k rational
points of L. It will be handy to refer to L(k) as a.h‘ne in Pz(L) If
I is defined over k and K is an extension field of k, it is meaningful to
speak of L(K) as a subset of P2(K). . o

The affine plane k% = {(z,y)} has a standard one-one 1mbedd'mg into
Py(k). Namely we map (z,y) into [(z,y,1)]. The set that is mlssed. by
the image is the set where w = 0, which is the set of k rational points
of a line called the line at infinity. . .

The points with w = 0 are called the points at mﬁmt.y. 'Except for
the line at infinity, lines in Pa(k) correspond under restriction exactly
to lines in k2. o

In certain ways the geometry of Py(k) is simpler than the geometry
of k% |

(1) Two distinct lines in P,(k) intersect in a unique point. In fact,

we set up the system of equations

z
a b c> _<0>
y = .
/
(a’ ¥ oc - 0

19
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Since the lines are distinct, the coefficient matrix has rank 2.
Thus the kernel has dimension 1, and there is just one point in
the intersection.

(2) Two distinct points in P3(k) lie on a unique line. In fact, we set
up the system of equations

(2 o) (f)-0)

and argue in similar fashion.

Let @ be in GL(3,k). Then ® maps the set k3 of all column vectors
in one-one fashion onto k3 and passes to a one-one map of Ps(k) onto
Py(k) called the projective transformation corresponding to ¢. Two
®’s give the same map of Py(k) if and only if they are multiples of one
another. The group action of GL(3,k) on Py(k) is transitive because
GL(3,k) acts transitively on k3 — {(0,0,0)}.

If L is the line whose coeflicients are given by the row vector (a & «¢)
and if ® 1s a projective transformation, then the row vector
(a b ¢)®~! defines a new line L?, and the k rational points of L%

are given by
L®(k) = ®(L(k)).

x z’ z
In fact, let | y | bein L(k). Then | ¥/ | = & | y | is in ®(L(k))
w w’ w
= 0;

(
and satisfies
(a b c)‘b—l(

z' T
hence it is in L®(k). Conversely if | o' | is in L®(k), then y) =
!
w

w
xl
@1 | y | satisfies
wl
z 2’
(¢ & ¢)[y|=(a b C)<I)"1 ¥ | =0,
w w’

!

T
and thus ( y ) is ® of something in L(k).

/
!
/

8 @ 8

wl
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About any point in
local coordinates.

Namely fix [(=0, yo, wo)] in Py(k). Choose (by transitivity) some ¢

in GL(3,k) with ®(zo, yo, wo) = (0,0
A9, » Yo, = (0,0,1). Then ¢
coordinates on ®~!(k x k x {1}) to k2 by the one—ovr:’: ri;r;) fefine loca

Py(k) we can introduce various systems of affine

(D~ Yz, y, 1)) = (2, y).

This definition generalizes the standard i i
‘ . t ard imbedding of th :2
in Py(k) earlier; that imbedding was the case & :g; © #fine plane &

ExaMmpLE 1. Suppose (2, yq,

Cae wo) = (20, yo, 1). We can choose ® =
0 1 —y5 |. Then

0 0 1

z 1 0 —zg z T —z

Plul=(0 1 —y = X
yl=(y- :

1) (0 0 1 1 ly0

In this case, the local coordinates are defined on
S Mkxkx)=kxkx1
and are given by
#(2,3,1) = p(2~Y(¥(z, y, 1))
= @(®7 Nz — 20,9~ y0, 1)) = (2 — 20,y — yo).

This @ is handy for reducin

behavi i
havior about (.03 1 & behavior about (zg,ye, 1) in Pa(k) to be-

[I)E)X;(x)MPlLE 2. Suppose (zo,y0, wg) = (0,1,0). We can choose ¢ —
10 O). Then

010

and

#@,1w) = p(®7H(3(2,1, 1)) = p(@ (w,2,1)) = (w, ),

This @ will be handy for studying behavior near the

3 . . . uni -
at infinity on a cubic in Weierstrass form. (unique) point
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Affine local coordinates are useful in studying homogeneous polyno-
mials in three variables. We say that a nonzero F € k[z, y, w] is homo-
geneous of degree d if every monomial in F has total degree d, and we
write k[z, y, w]q for the set of such polynomials. Each such F satisfies

F(z, Ay, dw) = M F(z,y,w) for z,y,w, A € k. (2.1)
Conversely, homogeneous polynomials over an infinite field can be de-
tected by this property, according to Proposition 2.2 below.

Lemma 2.1. If k is an infinite field, then a nonzero polynomial

f € klzy,...,z,] is nonzero at some point.
Proor. We induct on n, the result for n = 1 being well known.
Assume the result for n — 1, and suppose f(c1,...,cn) = 0 for all

(c1,--.,¢n). By induction,

f(zq,...,2n_1,¢) is the 0 polynomial in n — 1 variables, (2.2)

An—1t

for each choice of ¢. Fix a monomial z7'--.2,”7" in n — 1 variables.
The monomials in n variables containing this (n — 1)-variable monomial

contribute '
D objagtanytad
i>0
to f, and (2.2) says that 3., bjc? = 0 for all c. Therefore all the b;

are 0. Repeating this argument for all monomials in n — 1 variables, we
see that f is the 0 polynomial.

Proposition 2.2. If k is an infinite field, then a nonzero polynomial
F € k[z,y, w] satisfying (2.1) is homogeneous of degree d.

Proor. Write F' as the sum of homogeneous terms of different de-
grees: F = Z?:l F; with Fj of degree d; and with dy = d. Then (2.1)
gives

A F(z0,y0, wo) =AY F1 (20,30, wo) + A% Fa(20, yo, wo)
44 )\d"Fn(ivo,yOaUJO)

for all X, Since k is infinite, this equality for all A implies F(zq, yo, wo) =
Fi(zo,y0,wo) and also Fj{zo,yo,wo) = 0 for all j > 2. Letting
(%o, Yo, wo) vary and applying Lemma 2.1 to F'— Fy and to Fj for § > 2,
we obtain the conclusion of the proposition.
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'A homogeneous polynomial F # 0 of degree > 0 is nol a func-
tion on Py(k). Nevertheless we can examine the behavior of F near
a point (zo,yo,wo) in k% ~ {(0,0,0)} by choosing ® in GL(3,k) with
®(zo, yo,wo) = (0,0,1) and defining

fzy) = F(87 (z,9,1)).

EXAMPLE 1. Suppose (2o, yo,wn) = (20, %0, 1) and

1 0 —Z0
¢ = 0 1 —Yo
0 0 1
Then
z T+ 2z
¢! vyl =|v+tuw
1 1
f(z,y) = F(z 4+ xo,y + yo, 1).
For

F(z,y,w) = 2%y + zyw + v°,
the corresponding f(z,y) splits into homogeneous terms as
F(z,y) =(23y0 + zoyo + 1) + (23 + 2zoyoz + zoy + yor)
+ (yor® + 2z0zy + 2y) + (7).

We shall use this splitting in §2 in examining singularities and tangent
lines.

0 0 1
EXAMPLE 2. Suppose (z0,y0,wg) = (0,1,0)and ® = |1 0 0
0 1 0
Then
z y
Q—i Y = 1
1 z

f(xvy) = F(ys 131“)
For the same F' as in Example 1, namely
F(z,y,w) = 'y + zyw + w°,

we obtain
f(z,y) = (¥* + zy) + (2°)

with no terms of total order 0 or 1.
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Conversely if d and @ are given and if f in k[z,y] has degree d, we
can reconstruct F'. In Example 2 above with d = 3 and with f as above,
define G(z,y, w) by inserting powers of w to make all terms of degree 3:

G(z,y,w) = y*w + zyw + z°.

Then put F = G o ® and recover F(z,y, w) = 22y + zyw + w>.

In the special cases that k is R or C, P(R) and P,(C) are smooth
manifolds. It is helpful as motivation to recall the argument for Py(R).
To do so, we need to give compatible charts (U, ), where ¢ : U — R? is
a homeomorphism onto an open set and where the sets U cover Po(R).

At points (z,y, w) on the set Uz = {w # 0}, we can use

z y
SOS(xay)w) = (Ev E) .

This is just our affine local coordinate system about (zg,yo,ws) =
(0,0,1) with ® = 1. On the set Uz = {y # 0}, we can use

p2(z,y,w) = (£ w)

v’y

1 00
This corresponds to using (zg,yo,ws) = (0,1,0)and ®={ 0 0 1
010

Similarly we can define a chart (Uy, ¢1). To have a manifold, we are to
check that functions like @2 0 @3 ' are smooth. In fact, these functions
are rational with nonvanishing denominators. For example,

1 _ [z 1)
pzops (2,y) = p2(z,9,1) (y 7))
with domain {(z,y)|y # 0}. More generally, all our systems of affine
local coordinates (defined via (2o, yo, wo) and ®) yield compatible charts.
Once P2(R) and P2(C) are smooth manifolds, partial derivatives are
available. We shall see that partial derivatives provide a useful tool even
when the field £ is not R or C.

2. Curves and Tangents

A plane curve or projective plane curve defined over k i1s simply a
nonzero homogeneous polynomial F' € k[z,y, w]y for some d > 0, except
that we regard two such F'’s as the same curve if they are multiples
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of each other. As we remarked in §1, F' is not well defined on Py(k).
Nevertheless, the zero locus of F' yields a set in projective space. Namely,
if K is an extension field of k, then the locus

F(K) ={(z,y,w) | F(z,y,w) = 0}

is well defined in P2(K) since F is homogeneous. This locus is called
the set of K points or K rational points of the curve. In the special
cases that d = 1, 2, or 3, the curve is called a line, conic, or cubic,
respectively.

If F' is a plane curve and if we have an affine coordinate system given
by ® with ®(zg,yo, wp) = (0,0,1), then the corresponding affine curve
is

J(o,9) = F(&™1(2,5,1))  in klz, )

Among the k rational points of a curve, we shall distinguish be-
tween singular points and nonsingular points. Thus let F' # 0 be in
klz,y, wl4, fix (zo,yo, wo) € F(k), and choose affine local coordinates
about (zo, yo,wo) given by some & with ®(zp, yo,ws) = (0,0, 1). Let

f(z,y) = F(® (z,4,1)) € klz,y).
For example, the situation in Example 1 of §1 had wg = 1 and
F(z,y,w) = 2%y + zyw + v?,
and we were led to
F(=,y) = (zdyo + Tovo + 1) + (23y + 22040z + zoy + Yo)
+ (yoz® + 2zozy + 2y) + (2°y)
= fo(z,y) + fi(z,y) + folz,y) + f3(2,9).

The constant term fo is 0 since (zg,¥y0,1) is in F(k). In this example
and in general, f is the sum of homogeneous terms of degree 1 through
d,say f = fi+ .-+ fq with fi,..., f¢ depending on (zo, Yo, wp) and .
We say (zo, Yo, Wo) is a nonsingular point if f; is not the 0 polynomial
in kfz,y]. Otherwise (zg,yo,ws) is & singular point. In our example
with wy = 1, we are to consider

fi(z,y) = (2zoys + yo)x + (x5 + zo)y.

The singular points in F(k) are those where the coefficients of z and y
are both 0. The coeflicients are 0 when (z,y0) = (0,0) and (o, 0) =
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(—1,0). (Back in Py(k), these are (0,0,1) and (—1,0,1).) But neither
of these is in F(k). Hence F is nonsingular at every point of F(k) for
which wg = 1.

We need to check that nonsingularity does not depend on the choice of

®.  Thus suppose also that ¥(zo,yo,we) = (0,0,1).  Then
a b 0 a b

Vod™! = | ¢ d 0| with (c d) invertible. Write f(z,y) =
r s 1

F(®~!(z,y,1)) and g(z,y) = F(¥~}(z,y,1)). We write heuristically

f(z,y) = (Fo¥™)(¥o & 1)(z,y,1)
= (Fo¥ ') az + by,cz + dy,rz + sy + 1)

~ . az + by cr + dy 1
=(FoVW )((m+sy+1)(m+sy+l’rz+sy+1’ ))
ax + by cx + dy
= 1)¢
(rz + sy + )g(r;c+sy+1’rr+sy+1)
— d az + by e + dy
=(rz+sy+1)%(g1 + +gd)(rr+sy+l’rz+sy+l)

= (rz + sy + 1) 1g1(az + by, cz + dy)
+ -+ galaz + by, cz + dy). (2.3)
This computation is valid in the quotient field k(z,y). By expanding
‘the various powers of (rz + sy + 1) and regrouping by homogeneity in
(z,y), we can read off
fl(ray):gl(ax'*_byvcx"l'dy)' (24)

Similarly

-1
. « a b
g1(z,y) = fr(az + By, vz + by) with (7 g) = (c d) .
So f1 and g; are both zero or both nonzero.

Proposition 2.3. Suppose F € k[z,y,w], and G € k[z,y,w], are
plane curves. If (zg,yo,wo) is in F(k) N G(k), then (zo,y0,wp) is a
singular point of FG.

PrOOF. Choose affine local coordinates with ®(zp, yo, we) = (0,0,1),
and define f(z,y) = F(® !(z,y,1)) and g(z,y) = G(@ (z,y,1)).
Then we can write f = fi + -+ fm and ¢ = g1+ -+ - + gn. Since

f(z,9)9(2,y) = (FG)(@™'(z,y,1)),
and since fg¢ has no first-degree terms, it follows that F'G has a singular
point at (zo, yo, wa)-

s
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We say that the plane curve F over k is nonsingular (or smooth) if
F is nonsingular at every point of F(k), where k is the algebraic closure
of k. Otherwise we say F is singular. Nonsingularity at all points of
F(k) does not imply F is nonsingular. For example, the curve

F(z,y,w) = 2% — 6zw? + 6yw? — 33

is defined over k = @Q, is nonsingular at every point of F(Q), and has a
singular point at (z,y, w) = (v/2,v2,1). So the curve is singular.

Nonsingularity of the curve F' implies irreducibility over the algebraic
closure k, according to Corollary 2.5 below. The corollary depends on
Bezout’s Theorem, whose proof is deferred to §5.

Theorem 2.4 (Bezout’s Theorem). Suppose F € k{z,y,w], and
G € k[z,y,w), are plane curves. Then F(k) N G(k) is nonempty. If it
has more than mn points, then F and G have as a common factor some
homogeneous polynomial of degree > 0.

Corollary 2.5. Suppose F is a plane curve and is reducible over k.
Then the factors are homogeneous polynomials, and F is singular.

ProoF. Write F' = F) F nontrivially. Let d) and e; be the highest
and lowest degrees of terms in F}, and let da and ey be the highest and
lowest degrees of terms in F3. The product of the terms of degree d; in
Fy and the terms of degree d2 in F3 is nonzero and is the dyds degree
part of F'. The product of the terms of degree e; in F| and the terms of
degree e; in Fy i1s nonzero and is the eje; degree part of F'. Since F' is
homogeneous, didy = ejeq. It follows that d; = e; and dy = eg; thus Fy
and F, are homogeneous. Bezout’s Theorem says that Fy(k) N Fy(k) is
nonempty, and Proposition 2.3 says that any point in this intersection
1s a singular point for F'. Hence F is singular.

Suppose that (zg,y0,wo) is a nonsingular point of F(k) and that
®(zg, Yo, wo) = (0,0,1). We have written f(z,y) = F(®~!(z,y, 1)) with
f=Ffi+- -+ fa. Then fi(z,y) = pr+qy with p and ¢ in k, not both 0.
Consider f; as a polynomial in three variables fl(a:,y,w) independent
of w. We lift back to a nonzero member L = f; o @ of k[z,y, w];, and
the result is called the tangent line to 7" at (zo, yo, wo).

Let us see that the tangent line is independent of the choice of afline
local coordinates. Thus suppose also that ¥(zo, yo, wo) = (0,0,1). Form

a b 0
g(z,y) = F(¥Yz,y,1)) and ¥ o &1 = | ¢ d 0], and let the
r s 1
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respective tangent lines be Lg and Lyg. Then we have
La(z,y,w) = fi(2(z,y,w)), (2.5)

fi(z,y,w) = fi(z,y) = g1(az + by, cz + dy)
= gi(az + by, cx +dy,re+sy+w) =5 (Vo <I>'1(:c,y, w)),

Lq;(l:, Y, w) = gl(\I’(:L', Y, w))

= §1(¥ 0 &7 (B(z, y,w))) = fi(¥(z,y, w)).
(2.6)

Comparing (2.5) and (2.6), we see that Ly(z,y,w) = Ly(z,y, w).

If F is a plane curve and @ is a projective transformation, then F® =
Fo®~1 is another plane curve, and the k rational points of F® are given
by

F(k) = ®(F(k)),

by the same kind of reasoning as in §1 for the case that F is a line.
This reasoning shows also that if (xg, y5, wo) is a nonsingular point for
F, then ®(z,yo, wo) is a nonsingular point for F'®.

From calculus we expect that nonsingularity can be decided in terms
of partial derivatives when k is R or C. In fact, the argument that
works for R or C works also for general k. All that is needed is a
definition of partial derivatives, along with a few elementary properties.
The definition of a partial derivative of a polynomial is clear, and 1t 1s
routine to check that the product rule and the several-variable Chain
Rule are valid in the context of polynomials. We find, at a nonsingular
point, that the tangent line is given by a familiar formula from calculus,
as in the following proposition.

Proposition 2.6. Let F be a plane curve over k. If (zg, yo,we) is on
the curve, then (zo,yo, wo) 1s a nonsingular point if and only if at least
3F 8F

aF . .
one of Z-, By ow s nonzero at (20, y0, wo). In this case the tangent

line L to F' at (zo, Yo, ws) is given by
ar OF oF
L= |— __] heinll
[ T [ay (fo,yo,wc))y—‘_ [aw](foyyoyum)w

Oz J (xo0,y0,w0)

ProoF. Choose affine local coordinates with ®(zg, yo, wo) = (0,0, 1).
Since (zq, yo, wp) is on the curve, F o ®~1(z, y,w) vanishes upon substi-
tution of (0,0,1). Hence every monomial in £ o ®~! contains a factor
of z or y, and it follows that

aﬂ

Swn?

(Fo®™1)(0,0,1) =0 for every n. (2.7)

et
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We write f(z,y) = F(®71(z,y,1)) with f = f; +--- + fa. The coefhi-
cients of the linear term f) are %ﬁ((), 0) and %yL(O,O). Since

f= Fod o ((z)y) - (z,y, 1))’

the Chain Rule gives

(3 o0y (2 o o) A
oz Oy (0,0) Oz 0y Ow (z0,y0,w0) 0 0 -9

7
Let (¢’,y’,w’) be given. Multiplying on the right by ( ,), we obtain

IO B A 8f 6f z!
fl(:c,y,w)—<5; 6—y_>(0’0) (y/>

(ap oF 6F> ot [
= —_ ~ o y ’
Oz Oy 0w/ (5, 40 .w0) 0 (2.9)

By (2.7) for n = 1, the third entry of

z
Yy

?_E 8_F E?_F: @1
Jde Jy Ow (Foryorwo)

is 0. Thus the right side of (2.9) is

- (% oE o o
T\ 9z Oy Ow (20,50 ,0) y/ '

Putting (z',y’, w’) = ®(z,y,w), we obtain

L(z,y,w) = f1 0 ®(z,y,w)

((?F OF 8F) y
=< &9 y |-
Ox dy Ow (za,y0,wo0) \ w (210)

By (2.8), we have a singular point if all first partials of F are 0. Oth-
erwise (2.10) shows that f; is not 0; hence f; is not 0 and the point is
nonsingular. In this case, (2.10) gives the tangent line.
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The quadratic term fo od(z,y,w) can be identified similarly, provided
the characteristic of k is not 2. But the expression is more complicated
and depends on the choice of ®. It involves also the Hessian matrix

of F, defined as

8*F  9?F  O*F

Oz? dzdy Oxdw

9*F  9*F  O*F

dzdy oy? Oyow

O%F 8%*F 0*F
dzbw Oydw  Ow? (z0,y0,w0)

H= H(l‘o,yo,WQ) = (211)

Proposition 2.7. Suppose the characteristic of k is not 2. Let F be
a plane curve over k of degree d, let (2o, yo, wo) be a nonsingular point
on the curve, and choose affine local coordinates with ®(zg,yy, wo) =
(0,0,1). Put f(z,y) = Fo® z,y,1), let fo(z,y) be the quadratic
term in the expansion of f(z,y) about 0, and let fg(x,y, w) = fofz,y).
Then Qg(z,y,w) = fao O(z,y,w) is given by

z
QQQ(.’E,y,U)):(.’E Y w)fj Y _Q(d_1)L:b(‘z.)y3w)[/(may1w)y
w
(2.12)
where H is the Hessian matrix of F' at (zg,yo, wo ), L{z, y, w) is the tan-
gent line at (zq, Yo, wo), and L (z,y, w) is aline with L (xo, yo, wo) = 1.

ProoF. Let H® be the Hessian matrix of F® = Fo®~! at (0,0,1).

We first show that )
H® =o' Ho L. (2.13)

In fact, the Chain Rule gives

(aF“’ oF® 0F¢>
Oz Jy Ow /(2 yw)

E oF 2’? P!
dz (9:(/ Ow P-1(z,y,w) ’

Transposing gives

oF® oF

oz Dz
Q_If = ¢~ a—F

dy dy
6F<I> 6F

Fw / (wyw) w’ -1z yw)
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Now we can apply the Chain Rule to each row of this equation and
evaluate at (z,y,w) = (0,0, 1). When the results are assembled, we
obtain (2.13).
The matrix of second partials of f(z,y) = Fo @~ !(z,y,1) at (0,0) is
%l;ltained by taking the upper left 2-by-2 block of H® and putting w =1,
us

2 2
2f (l" y/) - (.’L‘/ /) 27{;— Bigy 2!
2 ) - Y 52 [ 2.2.[. y/
d9zdy  dy? /J (0,0)

z/
- (:L‘/ yl 0)}{‘15 y/)
0

z’
- (x/ y/ ,w/)H—fb y/
w'

X

’

€ 2 0d
20 (0 0 1)H®| _wfz[»a—F;J .
w Jw? (0,0,1)

x/
The last term on the right is 0, by (2.7) for n = 2. Putting (y’) =

/

x
| y |, we obtain
w

T T
2Qa(zyw)=(z y w)H|[y|-20(0 0 1H*[ v
w w'

x

=(z y w)H|y

w

(] 2]
. Judw y )
dz0w | g4 1) dydw | o041y (2.14)

With d as the degree of F', the only monomial of F'® that makes a

. . 2L
contribution to (a L d-1

is zw
dzrdw J (0,0,1)

, and the contribution is d — 1

aF?®
dx

37F’“’J
290w [ (6,0,1)

times what [ gives. A similar remark applies to {

}(0,0,1)
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Thus the second term on the right of (2.14) is

3 3
= —-Q(d — l)w' ([8F ] 1;’ + [?F_] yl
Oz {0,0,1) By (0,0,1)

= —2(d - D' fi(z',¢') = —2(d - Yw'fi(a', ¥/, v')
= —2(d — D' fL(®(=, yw)) = =2(d — 1)w'L(z,y,w).

z
The value of w' is the third entry of ® | y

w
linear expression in z,y,w. We define it to be L (z, y, w).

, and this is a nonzero

3. Flexes

In this section we shall define the intersection multiplicity of a line
and a plane curve at a point. The curve may be nonsingular or singular
at the point. The notation for intersection multiplicity will be :(P, L, F'),
where P = (zg,yo,wo) is in F(k)N L(k), F is in k[z,y, w]q, and L is in
k‘[l‘, Y w]l .

We introduce affine local coordinates. Choose & with $(zg,yo, wo) =
(0,0,1) and put

f(z,y) = F((I)—l(:c,y, 1)) = fl(-'L',y) + - +fd(x,y)
I(z,y) = L(®™ ! (2,3, 1)).

Since 1(0,0) = 0, I(z,y) = bz — ay for some constants a and b not both

0. Then () = (Zf

is a polynomial in ¢t with f(¢(0)) = 0. In fact,

parametrizes {(z,y) = 0. The expression f(y(t))

= tfi(a,b) + 12 fo(a,b) + - + % fa(a,b).

There are two possibilities. If f o is not the 0 polynomial, then f(¢(t))
has a zero of some finite order at ¢ = Q, and this order is defined to be
the intersection multiplicity i(P, L, F'). If f o ¢ is the 0 polynomial, we
say that i(P,L, F') = +oc. It will be convenient to define i(P,L,F) =0
if P is not in L(k) O F(k).

4
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We need to check that i(P, L, F) does not depend on the choice of ®.
Thus suppose that ¥(ze,yo, wo) = (0,0,1). Write

a B 0
Yod =]~y 6§ 0
r s 1

fllzy) = FOE (z,u, 1) = fi{z,0) + -+ falz,v)
U(z,y) = L(¥"'(z,y,1)) = Vo —a'y

s0=51).

(2.15)

From (2.4), we have

I(z,y) = I'(az + By, vz + 6Y).
Since I(z,y) = bz — ay, (2.15) gives
—a=bp-dé

b=ba—ady and
Putting A = aé — f7, we thus have
§ -8 a’ A ﬁ>(a>.
(Z) - (—7 a ) (b) and <b> =8 <7 6) \b
Now (2.3) gives
f(z,y) = (rz+sy+1)*7 filaz+By, ye+8y)+- + fiaz+By, vz +6Y).

So

F(p(0)) = (art + bst + 1)* 7 Af1(a't,67)
+ (art + bst + 1) A2 fo(at, 4 ) + - + Adfi(a't,b't).

From this equation we see that ¢(P, L, F) is the same when computed
‘from f as when computed {rom I

Proposition 2.8. If aline L and a plane curve F meet at a point P,
then i(P, L, F) = +o0 if and only if L divides F.
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Proor. If L divides F, then {(z,y) divides f(z,y). Since I(p(t)) is
the 0 polynomial, so is f(p(t)).

Conversely suppose f(p(?)) is the 0 polynomial, so that f.(a,8) =0
for all r with 1 < r < d. Without less of generality, suppose b # 0. The
equality

0= fr(a,b) = coa” +cra” b+ -+ b
a\’ a\T-1 )
— U —_ —_ o C
=b (Co(b) +Cl(b) +te
says that X — % is a factor of 4" (co X" + ¢/ X"~ + -+, ). If we write

b (X 4 +e) = (X = 2) u(X),

b
Cren =0 (a(2) +ore)
a
3

2o ()

Hence I(x,y) divides fr(z,y). It follows that [(z,y) divides f(x,y) and
then that L divides F'.

then

As was the case with the tangent line, there is an expression for in-
tersection multiplicity that avoids affine local coor<.iiT1ates. F9r current
purposes this expression, which we give as.Prolposmon 2.9, 18 nqt too
helpful, because it actually represents a disguised use of a part1c1.11ar
system of affine local coordinates that may not bf: 'the mgst convenient
one for applications. We shall not use this proposition until Chapter V.

Proposition 2.9. Suppose F € k[m,y,w],,., is a plane c1llrvle, {, €
k{z,y,w)y is a line, and P = (zg, yo, wo) i a point on L: If (', ¢/, 0') is
any point on L with [(2/,y', w")] # [(z0, ¥o,wo)], then (P, L, F) equals
the order of vanishing at ¢ = 0 of

w(t) = F(l?o -+ tl’l,yo + f.yl, Wy + tw')

Proor. Let (z”,y",w') be a point with L(a”,y",w") = 1, and
choose affine local coordinates ¢ so that
0 zg 0 2’ 1 z
(I)-—l 0 — Yo , @—1 1 — y/ ’ q)—l 0 — yll
1 Wy 0 ul/ 0 w”

Ty
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This is possible since the above three image vectors for $~1 are linearly
independent. The corresponding local expression for L is then simply

z
zu,y):z:o@—l(y) .
1

The usual parametrization of {(z,y) = 0 comes from o(t) = (3) Thus

we can compute the local expression for F as

0
fle(®)) =Foo™! | ¢
1

= Fzo+ ta', yo + ty', wo + tw').

Thus 9(t) = f(p(1)), and the proposition follows.

Suppose that P is in L(k)n F(k), that Pis a nonsingular point of F,
and that L is the tangent line to F at P. In the above notation, the
local expression for Ly is

Ir(z,y) = fi(z,y).
Thus

WP L,F)=1<= fi(a,b) #0
= (a,b) ¢ Lr(k)
< image ¢ ¢ Lp(k)
= L(k) & Lp(k)

<= L is not the same as L. (2.16)

Normally we should expect the tangent line at P to have intersection
multiplicity 2 with F. We say that a nonsingular point P of F is a
flex or inflection point of F(k) if the intersection multiplicity of the
tangent line to F at P is > 3.

Let us see how we would identify a flex from the definition. Suppose

F is given and we want to check (0,%0,1). As usual, we can take

. 1 0 —Xp

=10 1 —y |, andthen fz,y) = F(® Yz, y, 1)} is simply given
0 ¢ 1

by f(z,y) = Flx+zg,y+1yo, 1). We rewrite f as a sum of homogeneous

terms in z and y. Then (0,0, 1) is on the curve exactly if the constant
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term is 0, the point is nonsingular if also the first order term fi(z,y)
is not 0, and the point is a flex if also the second order term fy(z,y)
satisfies fa(a,b) = 0, where a and b are defined by fi(z,y) = bz —
ay. Proposition 2.8 may suggest that the condition on fs is equivalent
with the condition that fi(z,y) divide fz(z,y). In fact, we can see this
equivalence algebraically. [If fo(z,y) = cz® + dzy + ey?, suppose

cx? 4+ dzy + ey® = (bx — ay)(rz + sy).

Then ¢ = br, d = —ar + bs, e = —as; hence ca® + dab + eb? = 0.
Conversely if ca? + dab + eb?=0, we define r = ¢/b and s = —e/a,
checking separately the cases that b = 0 or a = 0.]

EXAMPLE. Let F(z,y,w) = 2%y + zyw + w®. About (2q,yo,1) we
have seen that

f(z,y) = (23y0 + zoyo + 1) + ((220y0 + ¥o)z + (25 + 20)y)
+ (yoz® + (220 + )zy) + 2%y.
Assume that the point is on the curve, i.e., that
.Z'%yo +xoyo+1= 0. (217)

Then

filz,y) = (2zoyo + vo)z + (23 + z0)y
fa(z,y) = (yo)a? + (220 + Dzy.
If we put b = 2xyo + yo and a = —(z3 + z¢), the condition for a flex is
0 = fa(a,b) = yoa® + (2z¢ + 1)ab,
1.e.
yo(zs 4+ 20)? = (220 + 1)(z3 + z0)(2z0y0) = 0. (2.18)

We can check that (2.18) is equivalent with the condition that fi(x,y)
divide fa(z,y).

In the above example, one way to find all flexes (zo,y0,1) would be
to solve (2.17) and (2.18) simultaneously, discarding any singular points
at the end. However, there is a more elegant way that does not involve
passing to affine local coordinates; the only additional condition is that
the field is not to have characteristic 2. We require two lemmas.
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Lemma 2.10 (Principal Axis Theorem). If char k #2 and if Ais a
symmetric square matrix over k, then there exists a nonsingular square
matrix ¥ over k such that ¥** A¥ is diagonal.

ProOOF. We induct on the size, the case of size 1-by-1 being trivial.
Suppose the result is known for size (r — 1)-by-(n — 1). If A has size

n-by-n, write A = (b(:r 3) with a symmetric of size (n — 1)-by-(n—1)
and with d of size 1-by-1. If d # 0, let £ = —d~'b. Then

(6 ) ) 0)-6a)

and the result is reduced to the (n — 1)-by-(n — 1) case and follows by
induction. If d = 0, we may assume inductively that b # 0, say b; # 0.
Let y be an (n — 1)-dimensional row vector with i*? entry 6 and with
other entries 0. Then

I 0 a b I y™\ _ (* *
y 1 0 0 1 /)7 \x yay*™ + by +yb

(= *
T\ * 8%a; +26b; )

Since 2b; # 0, there is some value of § for which 8%az; + 26b; # 0. Thus
we are reduced to the case d # 0, which we have already handled.

Lemma 2.11. Let A = (4;;) be a nonzero 3-by-3 symmetric matrix
over a field k with char k # 2. Then the conic

C(z,y,w)=(z y w)A (y)

w

associated to A is reducible over the algebraic closure k if and only if
det A =0.

Proor. If C(z,y,w) is reducible, Corollary 2.5 shows that the curve
has a singular point (2o, yo,wo). By Proposition 2.6

0C _9C _9C ' at (2,0, wo)
Bx_ay_aw—. 0, Yo, Wo -
o 0
Since A is symmetric, these conditions say that A o | = | 0
Wo 0

Hence det A = 0.
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y _ . y n nSlngula
onver Sel let det A 0 B Lemma 2 . ].0 y Choose a O T (}
Succh t;ha-t A —_ Q A@ 1S dlagonal. vV lthout; 1OSS Of genel‘allty we

!

T z
= . Then

may assume that Az = 0. Pl v | =2\ vy

w' w
!
z

/ ! — Al I'Z+AI y12.
C(z,y,w) = (' o w') A i}u' = Ap? 22

The right side is reducible over k. Substituting back in terms of (z,¥, W),
we see that C(z,y,w) 1s reducible over k.

i teristic of k is not 2. Let F be
sition 2.12. Suppose the charac :
l;rr(x):):urve over k of degree d > 2, and let (2o, Yo, wo) be a nons}llng;u}:;r1
;(E)ir?t on the curve. Then (zo, Yo, wo) 1s a flex if and only if the Hessl
matrix of F satisfies det H(zo,yo,wo) = 0.

ProoF. Without loss of generality, we may suppose k is alg%l;r:fsllayl
closed. Let L be the tangent line at (:cg,yo,wo). CEOFO?;ELI(E Rt
condinaes vith 0(zo o) =060 P TP o o s

and fo(z,y) be the first- 1-c
aLTnh(if 1ce<§n£1i$,;2r?)that (a:o,yg,wo) be a flex 1s t'hfxt f1(z,y) divide fo(z,¥),
hence that L divide the conic Qq,ﬂof Pr%];osm;nd?\.,’iiaes O, and 2.12)
that (2o, Yo, wo) is a flex. Lhen | , 2
shgvliglz(})li L div(ides the conic defined by the matrix H(zo, Yo, wo)- BY
=0. .
Lemma 2.11, det H(zo, Yo, wo) N

erCl;onversely suppose det H(zo, yo, wo) = 0. B)_' L.er(x;m?bl?e.llLe:leucS o
C(z,y,w) defined by the matrix H (20,0, Wo) is reducibie. o U s
that’%: = L1 Lo, where L1 and Lo are lines. We now divide ma

cases.
Suppose d > 2. 1 :
homogeneous quadratic n (z,y), an

o affine local coordinates defined by ®, Qe becomes
d the term

becomes _o(d - Dfil.v) + higher order.

= L
Therefore C has 2(d — 1)L as tangent at (xo),yo,ut;o). Butt(aﬁ'nt f;LCtO:
0 a cons .
i i has tangent L, or L2 at (:ro,yo,.w'o , up ac
lHr?:iSLC;s a multigple of Ly or Lo, and L divides C. By (2.12), L divides

Qe. Thus (z0, Yo, wo) 15 @ flex.
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Now suppose d = 2. We still have C = L;L,. The second partials
of C are twice the entries of H(zp,yo,wp). Since C and F are both
conics, C = 2F. Then F = %Ll L4, and easy computation shows that

the nonsingular points are the points of F(k) not in Li(k) N Ly(k) and
that each such is a flex.

EXAMPLE. Let F(z,y,w) = 2%y + zyw + w®. The Hessian matrix at
(an Yo, 1) is

H(zo,y0,1) = | 226 +1 0 zg

2yo 2z0+ 1 yo)
Yo Zo 6

" The condition in Proposition 2.11 that the determinant vanish says that

2yo(z2 4 20) — 6(2z9 + 1)? = 0. (2.19)

This is ostensibly different from (2.18). But use of (2.17) reduces both
equations consistently to

3(2z0 + 1)* = —1.

Corollary 2.13. Over an algebraically closed field of characteristic
not equal to 2, a nonsingular conic has no flex, while a nonsingular plane
curve of degree > 2 has at least one flex.

PrROOF. Let the curve be F'. Since F' is nonsingular, Proposition 2.12
says that the flexes are all the common solutions of

F(z,y,w)=0

and
det H(z,y,w) = 0.

If deg F' > 2, Bezout’s Theorem says there is a solution. If deg F = 2,
then H(z,y,w) is a constant matrix H, and we have to show that det H
is not 0. Let C(z,y,w) be the conic defined by H. At the end of the
proof of Proposition 2.12, we saw that C = 2F. If det H = 0, Lemma

2.11 says that C is reducible, and thus F' is reducible, in contradiction
to Corollary 2.5.

If F has degree d > 2, then det H has degree 3(d — 2). The converse
half of Bezout’s Theorem says that an irreducible ' of degree d (over a
field of characteristic not 2) has < 3d(d — 2) flexes unless F' and det H
have a common factor. One can show that a plane curve F and its det H
have no common factor unless F' is a product of lines; in particular, F’
and det H have no common factor if F is irreducible.
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4. Application to Cubics

The most general cubic is

F(l’, Y, w) =nyyy3 + C:l:yy:":?/2 + Cz'z‘yxzy + nywyzw + Coyw LYW

+ Cywwyw2 + sz-z’za + c:c:cwxzw + c:x:wwl‘w2 + cwwwwa-
(2.20)

We examine the algebraic effect of some geometric conditions that we
might impose on such a curve. We shall make calculations in local
coordinates, despite the availability of Proposition 2.6, because we do
not want to exclude k of characteristic 2 when we deal with flexes.

ConDITION 1. The curve is to pass through (z,y,w) = (0,1,0).
Equivalently
Cyyy = 0.

ConpITION 2. In addition, the curve is to have (z,y,w) = (0,1,0)
as a nonsingular point. To examine this condition, we choose & =

0 0 1

1 0 0] asthe map that carries (zo, yo,wo) = (0,1,0) to (0,0,1).

0 10

Then
f(z,y) = F(@ !(z,y,1)) = Fy,1,2)
= CayyyY -+ eryy2 + CyywT + CoyuwTY + Cywwa’f2
+ erzys + Crrw y2 + Cruw y1'2 + Cuww z°. (221)
Hence

f1(2,y) = cyyu® + cayyy.
The condition is that

Cyyw F 0 O Coyy # 0.
ConbITION 3. In addition, the curve is to have L(z,y,w) = w as

tangent line at (0,1,0). (Recall that this line is the line at infinity.)
Referring to (2.21), we have

fi(z,y,w) = cyyu T + coyyy-
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Hence

L(x,y, w) = fl(q)(x: va)) = fl(waxay) = CyyuwW + Cryy Z.

The condition is that
Cryy = 0.

In view of Condition 2, we automatically have
cyyw £ 0,

and then the tangent line is the same line as w.

ConbITION 4. In addition, the curve is to have a flex at (0, 1,0).
Referring to (2.21), we have

fZ(x: y) = cywwzg + CoywTY + cx::yyz

and
fi(z,y) = cyywe.

The condition that f; divide fy is that
Crey = 0.

The condition that i((0,1,0),w, F) be defined is that w not divide F,
hence that

Crzr 7 0.
When all four conditions are satisfied, the cubic becomes

F(:C, Y, w) = cyywyzw + Cayw TYW + Cyz.uwyw2

3 2 2 3
+ Crpz®” + Crzw W+ CrpuwTW” + CywupW

(2.22)
with ¢yyw # 0 and czoz # 0.

Proposition 2.14. If F is a cubic over k such that F(k) has a flex
(%0, Yo, wp), then there exists a projective transformation ¢ such that
F?® is the same curve as

2w+ ajzyw + asyw — 23 — agz’w — aszw? — aguw®. (2.23)

Proor. Choose ®; so that ®,(zq,yo,ws) = (0,1,0). Then F® has
a flex at (0,1,0). Let L(z,y,w) = az + By be the tangent to F® at
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b) with aa + fc = 0, and

(0,1,0), choose a nonsingular matrix ((cl d

define

@;1:

o o R

0 b
10
0 d

Then @2 has the property that L®? is the same line as w. Hence
(F#1)®2 = F®:®1 has a flex at (0,1,0) and has w as tangent. The
discussion above shows that F 2?1 has the form (2.22). Put

@;1:

SO o~
O~ O
_— O

with ¢ to be specified. Then (F¥2%1)%s = p&s®2%1 hpg

FP®2®r (g gy w) = FPP1(te, ty, w)

= nyw(t2y2w) + -+ cxa:x(tsz'a) + ...

Taking t = ¢yyw/Crez, We see that the coeflicients of y?w and 2% in
F®:2221 gre the same. Thus ® = ®3P,P, is the required transforma-
tion.

A cubic of the form (2.23) is said to be in Weierstrass form. The
corresponding affine Weierstrass form, achieved by putting w = 1, is
written as an equation

v P+ ajzy + asy = 2% + a2 + a4z + as. (2.24)

The notation in (2.24) is standard; the subscripts will be seen in Chapter
IIT to indicate the degree of homogeneity of the corresponding term
under a certain change of variables.

By Corollary 2.13, a nonsingular cubic over an algebraically closed
field of characteristic not equal to 2 necessarily has a flex. Hence it can
be put in Weierstrass form by a projective transformation.

An elliptic curve over k£ is a nonsingular cubic over k that is in
Weierstrass form. In testing a curve (2.23) for nonsingularity, note that
(0,1,0) is the only point at infinity on the curve, and it is nonsingular
by Condition 2. Hence only points (zg,yo, 1) need to be checked.
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Proposition 2.15. Let F' be a nonsingular cubic over k, and let L
be a line. Then Y pi(P,L,F)is 0, 1, or 3.

REMARKS. (1) If P # @ are in F(k), let L be the line containing P
and Q). Then the proposition says there is a third point on L(k) N F(k)
if we count multiplicities. (This third point may coincide with P or Q.)
We define PQ to be the third point,

(2) To define PP, let L be the tangent to F at P. Then i(P, L, F) > 2.
The proposition says that there is a third point on L(k) N F(k) if we
count multiplicities. This third point will be P if P is a flex of F, and it
will be some different point if P is not a flex. In either case, we define PP
to be this third point. The rule for determining PQ in this paragraph
or the previous one is called the chord-tangent composition law.

PrOOF. Let F be as in (2.20). Without loss of generality the sum is
not 0. Thus take P = (zo, yo, wo) to be in L(k)N F (k). Since everything
is Invariant under projective transformations, the same argument as in
the proof of Proposition 2.14 shows we may assume that (zg, yo,wp) =
(0,1,0) and that the tangent line there is w. Conditions 1 and 3 show
that ¢yyy = Cpyy = 0. We consider some possibilities for L.

(1) L = w. Putting w =0 in F gives

F(2,y,0) = Cozy 22y + Crzz®. (2.25)

(1a) Suppose ¢zoy = Czer = 0. Then w divides I, and Corollary 2.5
shows that F is singular, contradiction.

(1b) Suppose czpr # 0 and czzy = 0. Then Condition 4 shows that
(0,1,0) is a flex with i(P, L, F') defined and > 3. Since i(P, L, F') cannot
be > 3 for a cubic, (P, L, F) = 3. The expression (2.25) cannot be 0
without = 0, and so there are no other points in L(k) N F(k). So
L(k) N F(k) contains P with multiplicity 3, and it contains no other
point.

(1c) Suppose czzy # 0. Then Condition 4 shows that (0,1,0) is not
a flex, hence that (P, L, F) = 2. Meanwhile (2.25) produces a unique
additional point @ on L for which (2.25) is 0; we can write Q = (1,3, 0).
To complete the study of this case, we need to show that {(Q, L, F) # 0.

0 01
Define ® = | —y1 1 0}, so that ®(1,y;,0) = (0,0,1). Then
i 00

flz,y) = F(@™'(2,y,1)) = F(Ly +y1,2)
I(I’y) = L(Q‘l(;z;’y’ 1)) = L(l,y-i- yl,l') =
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Calculating f(z,y), we find that

fl(za y) = (nywy% + Cexyw -+ ca::cw)x + (C:l::cy)y-
Since ¢zzy # 0, fi(z,y) is not a multiple of I(x,y). Hence L is not
tangent to F and Q, and #(Q, L, F’}) = 1 as required.
(2) L is not the same as w. Since L goes through P = (0,1,0) and
is not the tangent, we have i(P, L, F) = 1. Assume that {(Q, L, F) > 1
for some @ # P. We may write @ = (zg,y,1). Transforming by

1 0 —&p

d = (0 1 —y()), which has ®(P) = P and &(Q) = (0,0,1), we
00 1

may assume from the outset that @ is (0,0,1). Then L, which passes

through both P and @, is the line L = z. Using ® = I, we form

f(:c,y) = F(z,y, 1) = ca:z:yl'zy + cyywy2 + CoywZY + Cyuwn Y
+ Cx:v:zzs + Cz:vw:c2 + Cruww®

and
(z,y) = L(z,y,1) = «.

Then {(z,y) = bz — ay with a = 0 and b = 1. Putting ¢() = (Z: ), we

have

F(p(®)) = t{crwwa + Cywwb) + 12 (Corwa® + coywab + cyywb?)
+ t3(cppaa® + Cozy a’b)
= tegww + i Cyyw- (2.26)

Condition 3 shows that cyyw # 0. If cyww = 0, then (2.26) shows
that i(Q, L, F) = 2 and that f(z,y) vanishes on the locus I(z,y) = 0
only at (z,y) = (0,0); hence P and @ are the only points contributing
to the sum in question, and the sum is 3. If cyyw # 0, then (2.26)
shows that i(Q,L,F) = 1 and that there is just one more point R
where i(R, L, F}) > 0; interchanging the roles of @ and R shows that
i(R,L,F) =1 and hence that the sum is 3.

5. Bezout’s Theorem and Resultants

Before returning to Bezout’s Theorem, we introduce the resultant
R(f,g) of two polynomials. Let A be a unique factorization domain,
e.g., k[zy,...,z.]. For f and g in A[X] with

f(X):a0+alX+"'+ame

2.27
g(X)=bo+ b X + -+ b, X", (2:27)
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let [R(f,g)] be the (m + n)-by-(m + n) matrix

A a; -+ QAQu_1 Gy 0 0 e 0
0 a0 -+ Gm-2 am-1 m 0 e 0
— 0 ag Am
Tl b & b by 0 0o (°
0 bo bn—2 bn—l bn 0
0o ... bo by e by,

in which there are n rows above the by in the first column and there are
m remaining rows. Let R(f, g) be the determinant

R(f,g) = det[R(f,9)].

Proposition 2.16. With f and ¢ in A[X] of the form (2.27), the
following are equivalent:

(1) f and g have a common factor of degree > 0.

(2) af +bg = 0 for some nonzero a and b in A[X] with dega < n and

degb < m.

() R(f,9)=0.
When R(f,g) # 0, there exist nonzero a and & in A[X] with dega < n,
degb < m, and a(X)f(X)+&X)g(X) = R(f,g). (Here R(f,qg) is to be
regarded as a polynomial of degree 0.)

Proor. (1) = (2). fu | f and u | g, write f = bu and g = —au.
Then (2) holds.

(2) = (1). Factor f and bg. If (1) fails, then the prime factors of f of
degree > 0 must occur in the factorization of b, with multiplicities. So
deg f < degb, contradiction.

(2) © (3). For any a and b of the form

ll(X) —apg+o1 X + --'+C¥n_1Xn—1

2.28
W(X)=Bo+B/X+ -+ Pma X! (228)

with coefficients in the quotient field A of A, we have

Bm-1) [R(f,9)]
=(co €1 Cmtn-1), (2.29a)

(ag a1 -+ an_1 Po
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where

a(X)fF(X)+b(X)g(X)=c(X)=cota X+t Cman_1 X™FTL

(2.29b)

If nontrivial a(X) and b(X) exist with coefficients in A such that ¢(X) =
0, then ker[R(f,9)]* # 0 and R(f,g) = 0. Conversely if R(f.g) =0,
then ker[R(f,9)]"" # 0 and there exist nontrivial a(X) and b(X) w1t'h
coefficients in A such that ¢(X) = 0. Clearing denominators, we obtain
a(X) and b(X) with coefficients in A such that e(X) =0.

Last statement: If R(f,g) # 0, then the cofactor formula for the

inverse of [R(f,g)] with entries in A says that
[R(f, )] ™" = R(£,9)[S(f,9)],

where [S(f, ¢)] has entries in A. Thus we can define elements

aO)"')an—laﬁOP")ﬁrn-—l
in A by
(0’0 [¢5] Apn—1 ,80 ﬂm—l)
=(R(f.g) O 0)[R(f, )"

If we define a(X) and b(X) in A[X] by (2.28), then (2.29) shows that
a(X)f(X) +b(X)g(X) = R(f, 9)-

Proposition 2.17. If A = k[z1,...,z,) and if f and g are as in
(2.27) with a; homogeneous of degree m — j and b; homogeneous of
degree n — j, then R(f,g) is homogeneous of degree mn.

ProoF. For an exponent u obtained by factoring powers
(@ )

of ¢ from the rows of the matrix displayed below and for v obtained by

factoring powers (t™*",t™+7~1 ) from the columns, we have
t"tmay t"t™lay - ttan
0 "= ag

t“R(f,g)(tz1, ... tz,) = det .
( trntnbo tnltn—lbl .. tmbn
0 1 1m by
=t'R(f,9)(z1,.. -, Tr)-
So R(f,g)(tz) = t*"“R(f,g). Computing u and v, we find that u =

tm(m+ 1)+in(n+1)and v :_%(7n+n)(m+n+1), so that v—u = mn.
By Proposition 2.2 applied to k, R(f, g) is homogeneous of degree mn.
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Let us restate Bezout’s Theorem, originally given as Theorem 2.4.

Theorem 2.18 (Bezout’s Theorem). Suppose F' € k[z,y,w], and
G € k[z,y,w], are plane curves. Then F(k)N G(k) is nonempty. If it
has more than mn points, then F and G have as a common factor some
homogeneous polynomial of degree > 0.

PROOF OF FIRST CONCLUSION. Write ¥ and G in the form

Flz,y,wy=ag+a1w+- -+ apwy, with a; EE[x,y]m_j

- 2.30
Gz, y,w)=bo+bw+ -+ byw, with b; € k[z,yln-;. ( )

Regarding F' and G as polynomials in w, with coefficients in 4 = k[z, ],
we form R(F,G), which Proposition 2.17 identifies as a member of
kz, Ylmn- )

Since R(F,G)(z,y) is homogeneous and k is algebraically closed, we
can choose a point (xo,y0) # (0,0) where R(F,G)(z0,y0) = 0. Then
the resultant of F(zo, yo,w) and G(zg, yo, w) is 0, and Proposition 2.16
says that these two polynomials in w have a common factor. Since k is
algebraically closed, this common factor vanishes at some w = wp, and
then we must have F(zg, yo, wo) = G(2q, Yo, wo) = 0.

PROOF OF SECOND CONCLUSION. Suppose F'(k) N G(k) contains
mn + 1 points. Join these points by lines, and pick a point defined
over k that is not on any of the lines. Applying a projective transfor-
mation, we may assume the point is (0,0,1). Write # and G in the
form (2.30). Regarding F' and G as polynomials in w, with coefficients
in A = k[z,y], we again form R(F,G), which Proposition 2.17 identifies
as a member of k[z,y]nn. For fixed (2q,y0), Proposition 2.16 says that
R(F,G)(zo,y0) = 0 if and only if F(zq,yo, w) and G(zg, yo,w) have a
common factor (hence necessarily some w — wo factor since k is alge-
braically closed), if and only if F(zq,yo,ws) = G(zo,y0,ws) = 0 for
some wp. So at each of our mn + 1 points, say {x;,y;,w;), we have
R(F,G)(cz;,cy;) = 0 for all ¢. Since (z;,y) # (0,0), R(F, G) vanishes
on the line y;z — z;y = 0. Consequently y;2 — z;y divides R(F, G).

Suppose (zi,¥) = (zj,y;). Then (z;,y;,w;) and (zj,y;,w;) both
satisfy y;z — z;y = 0. Since (0, 0, 1} satisfies this also and since (0,0, 1)
is not to be on any of the connecting lines, we obtain a contradiction.

Thus the mn+1 factors y;z —z;y are distinct primes in k[z, y] dividing
R({F,G). By unique factorization, their product divides R(F,G). Since
deg R(F,G) = mn, we conclude R(F,G) = 0. Then Proposition 2.16
shows that F' and G have a common factor in k[z,y][w] = k[z,y, w].
The common factor is homogeneous by the first conclusion of Corollary
2.5 (which does not depend on Bezout’s Theorem).
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Corollary 2.19. Suppose F € k[z,y,w]q is a plane curve and L is a
line. If F(k) N L(k) has more than d elements, then L divides F. This
condition is satisfied if F' vanishes on L(k) and k has > d elements.

ProoF. The number of points on L(k) is one more than the number
of elements of k, hence is > d+ 1. Then F(k)N L(k) has > d+ 1 points,
and Bezout’s Theorem says L and F' have a common factor. Since L is
prime and k[z,y, w] has unique factorization, L divides F'.

The full-strength version of Bezout’s Theorem says that two plane
curves F' and G of degrees m and n meet in < mn points even when
multiplicities are counted, and that the number is = mn if k is alge-
braically closed and multiplicities are counted. We do not need the
full-strength version of Bezout’s Theorem and have consequently not
defined intersection multiplicity in full generality. The result that we
shall prove instead is the corresponding sharpening of the special case
of Corollary 2.19 in which one of the curves is a line.

Corollary 2.20. If F' € k[z,y,w]q is a plane curve and L is a line
such that ) i(p, L, F') > d, then L divides F'.

Proor. Without loss of generality, we may assume k is algebraically
closed and is in particular infinite. Suppose L does not divide F'. Then
Corollary 2.19 shows that F(k)NL(k) is finite, and it follows from Propo-
sition 2.8 that Zp i(p, L, F) is finite.

Possibly by applying a projective transformation, we may assume that
the line L is w = 0. Then the points P; with (P;, L, F) > 0 are of the
form [(x;,y;,0)]. Possibly by applying a second projective transforma-
tion, one that translates the y variable, we may assume that no y; is
0. Then we can write P; = [(r;,1,0)] with ; in k. Now F(z,1,0) is a
polynomial in z of degree < d. We shall prove that

i((r,1,0), w, F) = multiplicity of r as a root of F(z,1,0).  (2.31)
Since k is infinite, there is some 7 not in F(k) N L(k), and this r in
(2.31) shows that F(z,1,0) is not the 0 polynomial. Hence F(z,1,0)
has < d roots, counting multiplicities, and it follows from (2.31) that
2 ip, L, F) < d, as required.
To prove (2.31), we introduce affine local coordinates about (r,1,0),

1 0 r
using @' = {0 0 1) , so that ®(r,1,0) = (0,0,1). The local ver-
010

sions f of F and l of L = w are
flz,y) = F(@ }(z,y,1)) = F(z + 1, 1,9)
i(z,y) = L(®7 (2,5, 1)) = v.
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Thus I(z,y) is of the form bz — ay with a = —1 and b = 0. We can
parametrize [ by o(t) = (Z:) = <—0t), and then

f(p@)) = f(~1,0) = F(~t+r,1,0).

The order of vanishing of f((t)) at t = 0, which is i((r,1,0),L, F),
thus equals the order of the 0 of F(—t + 7,1,0) at t = 0, which equals
the multiplicity of 7 as a root of F(z,1,0). This proves (2.31), and the
corollary follows.



CHAPTER III

CUBIC CURVES IN WEIERSTRASS FORM

1. Examples

We begin with some examples of plane curves, showing how to bring
them into Weierstrass form and discussing some of their solutions.

A. Diophantus cubic example.
The equation from Chapter 1 in affine form is

y(6—y)=2°—=z. (3.1)

Following the procedure in the proof of Proposition 2.13, we replace y
by —y and z by —=z to obtain

y 46y =2 -z
If we complete the square and replace y + 3 by y, we are led to
y2 =3z + 9. (3.2)

The trivial solutions of (3.1) were & = 0 or £1 with y = 0 or 6. These
correspond in (3.2) to £ = 0 or +1 with y = £3. Diophantus’s nontrivial
solution of (3.1) began with P = (—1,0) and amounted to using PP =

%7, %%5); here PP is the result of applying the chord-tangent composition
law (§11.4) to P and P. In terms of (3.2) we would take the corresponding
trivial solution P = (1,3) and use PP = (—%, 3.

B. Cubic case of Fermat’s Last Theorem.
The equation in projective form is

2 +y® = b (3.3)

Since we can always clear denominators, integer solutions and rational
solutions amount to the same thing. With F(z,y,w) = 23 + y3 — w?,
we have

oF
bz

oF

3.’B2, a—y—3y2, — = 3w”.
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The only place where all first partials are 0 is (0,0,0), which does not
correspond to a point in projective space. By Proposition 2.6, F is
nonsingular. To look for flexes, we compute the Hessian determinant

6z O 0
det H(z,y,w)=det | 0 6y 0 = —6zyw.
0 0 —6w

We seek simultaneous solutions of (3.3) and
zyw = 0. (3.4)

For example, we can use (zo, yo, wo) = (0,1,1). To map this to (0,1,0),
which is the point at infinity of a curve in Weierstrass form, we ap-

1 0 0
ply successively | 0 1. -1 | to carry (0,1,1) to (0,0,1) and then
00 1

1 0 0
0 0 1] tocarry (0,0,1) to (0,1,0). The tangent y — w maps first
010

to y and then to w. Hence

1 00 1 0 0 1 0 0
=10 0 1 01 -1]=[0 0 1
0 1 0 0 0 1 01 -1

maps F' into Weierstrass form except for scaling. To carry out the com-
putations, we put (a b ¢)=®(z y w). Then

T a
y | =27
w
1 0 0 a a
=10 1 1 bl =1[b+c
01 0 c b

Substituting in (3.3), we obtain
a® 4+ (b+¢)® = 0.
Passing to affine form by replacing (a,b,¢) by (z,y, 1), we obtain

32 + 3y = —23 — 1.
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We scale by changing y to —3y and z to —3z, and the result is

2 _ 1, _.3_ 1
Y —3y=2 —37.

We make a further adjustment to clear denominators: We change y to
y/u® and z to z/u® with u = 3. Then the equation becomes
y> — 9y =23 - 21. (3.5)
Fermat showed that the only Q-rational (projective) solutions of (3.3)
are the trivial ones: (z,y,w) must be one of (1,0,1),(0,1,1), and
(1,—1,0). The corresponding solutions of (3.5) are (3,9), oo, and (3,0).
For future reference let us record the composite transformations from
(3.3) to (3.5) and back. If (X,Y) satisfies X34+Y3 = 1 and (z, y) satisfies
y? — 9y = z3 — 27, the relationships are

Y and - (3.6)
Y_y—9 9
== y=1-vy-

These are the transformations that we used in discussing u? + v = w®

in Chapter 1.
Equation (3.5) can be transformed some more. Completing the square
eliminates the y term and leads to

y? =23~ 20 (3.7
Scaling by (z,y) — (z/u?,y/u®) with u = 2 leads to
vy =13-21.3% (3.8)

C. Congruent numbers.

A positive integer n is congruent if n is the area of a rational right
triangle. For example, the Pythagorean triple (3,4,5) has area 6. So
n = 6 is congruent.

Congruent numbers were studied as early as 984 A.D., were taken up
by Fibonacci in 1225, and were later studied by Fermat. The problem
is: Given n, decide whether n is congruent. Results for small square-free
n are as follows:

1 not congruent Fermat
2 not congruent Fermat
3 not congruent Fermat
5 congruent for (%, D4 Fibonacci

6 congruent for (3,4,5).
Part of the connection between the congruent-number problem and ellip-
tic curves is given in the following proposition. We shall study the rela-
tionship further in Chapter IV, and we shall prove there that n = 1,2,3
are not congruent.
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Proposition 3.1. If n is a square-free positive integer, then the
following are equivalent:

(1) nis congruent: n = %ab, where (a,b,c) is a rational Pythagorean
triple.

(2) There exist three rational squares in arithmetic progression with
common difference n.

Moreover, these conditions imply

(3) There exists a Q rational point (z,y) on

y?=12%—n?z (3.9)

other than (—n,0), (0,0), (n,0), and co.

EXAMPLES. Arithmetic progressions meeting the second condition for
the congruent numbers 5 and 6 are

1 25 49
n==6 VERVERRE
444
20\? /41\? /49\?
n=>5 =) (=) -
12 12 12

PrOOF. (1) = (2). Given (a,b,c), put ¢ = c*/4. Then (a — b)2/4 =
z—n and (a +b)?/4 = z + n, so that £ — n and 2 and z + n are all
squares of rational numbers.

(2) = (1). Given z such that z — n and z and z + n are all squares,
put

a:(z+n)1/2+(.’c—n)l/2

b= (z+n)? — (z —n)'/?

c=2z1/2,

Then a, b, c are rational, and a? + 2 = 2.

(2) = (8). If z is the middle number in the progression, then the
product of the three is 2® —n?z and is a square. Hence (3.9) holds with
z as the middle number of the progression. The progression cannot be

—n, 0, n since n is square-free. Thus the @ rational point in question

satisfies (3).

REMARK. In Corollary 4.3 we shall prove conversely that (3) = (2).
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D. Quartic case of Fermat’s Last Theorem.
Fermat showed that z? 4 y* = z* has no nontrivial integer solutions
by showing that
ut +vf = w? (3.10)

has no nontrivial integer solutions. We give his proof as Proposition
4.1. Equation (3.10) is not homogeneous, but we can still study it as

U

4 2
(—) +1= (%) . Thus the equation to study for Q-rational points is
v v

2=t 41 (3.11)

If we make the nonprojective change of variables z — z and y — y+ 22,
we are led to the cubic equation

v+ 2ty =1 affine (3.12)
yviw+ 2%y = w? projective. )

We can verify that (3.12) is nonsingular and can look for @-rational flexes
in the same way as for (3.3). The only Q-rational flex is at (z,y,w) =

(1,0, 0), where the tangent line is y = 0. We apply &, = (1) (1) 8 in
order to send (1,0, 0) to (0,1,0) with the tangent becomin(; xO: 3, and
then we apply &2 = 8 (1) (1) in order to fix (0,1,0) and to make
the tangent become w :10. OTh(t)e resulting equation is

? =22 — 2.

Scaling by sending y to 2y and z to 2z changes the equation to

We can make the coefficients be integers by sending y to éy and z to
%:c; the result is the elliptic curve

y? =23 ~ 4z, (3.13)

Since (3.10) has only trivial solutions, the only Q-rational solutions of
(3.13) are o0, (0,0), and (+2,0). We shall prove this result directly in
§IV.7.
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For future reference let us record the composite transformations from
(3.11) to (3.13) and back. If (X,Y) satisfies Y2 = X + 1 and (z,v)
satisfies y2 = 2% — 4z, the relationships are

- Y 2
2z =y _x2
9 and (3.14)
Y = y_'@_ __4X
422 Y=y _xz

The quartic Fermat equation % + y* = 2% can be treated also as

u? 4+ v? = w*. This equation becomes y> = 2% — 1, and an analysis like
the one above reduces it to the elliptic curve

y2 =23 + 4. (3.15)
The Q-rational solutions of (3.15) are oo, (0,0), and (2, £4).

E. Fermat’s problem for Mersenne.

In 1643 Fermat posed to Mersenne the problem of finding a rela-
tively prime integer-valued Pythagorean triple (X, Y, Z) such that the
hypotenuse Z is a square and the sum of the legs is a square. The answer
that Fermat had in mind is

X = 1061652293520
Y = 4565486027761 (3.16)
Z = 4687298610289,
and this is the smallest nontrivial solution.
In algebraic terms, we are given X2+ Y2 =22 Z =42, X +Y = d>.
If we write e = X — Y, then X and Y are %(a2 +* e). Thus

64222:X2+Y2::-;—(a4+62)

and

e? = 2b* — a*. (3.17)
Dividing by a*, we are led to the affine curve

v? = 2ut — 1. (3.18)

If (u, v) satisfies (3.18) and if (z,y) is defined by
_ 2v+2ut-1)
SN CES o
42w — 1o+ 2u® — 1]
- (u—1)3 ’

(3.19)
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then (z, y) satisfies
y* = 23 + 8. (3.20)

Conversely if (z,y) satisfies (3.20), then (u,v) may be recovered from

_y—2z-8
v= y—4z+8
(3.21)
y = y? — 242% + 48y — 16z — 64
- (y — 4z + 8)2

so as to satisfy (3.18). For example, (z,y) = (0,0), (1,3), and (1,-3)
correspond to (u,v) = (—1,-1), (~1,1), and (—13,-239). But there
are some singularities: (u,v) = (13,239) maps to (z,y) = (8,24), but
(z,y) = (8,24) maps to a removable singularity. Also (z,y) = (8,—24)
maps to (u,v) = (1,—1), but (u,v) = (1,—1) maps to a removable
singularity. Large points (z,y) correspond to points near (u,v) = (1,1),
and large points (u,v) correspond to points near £ = 4+ /8.

We shall not be concerned at this time with how to obtain the trans-
formations (3.19) and (3.21). What we shall see, apart from the singu-
larities, is that a @ rational point on the elliptic curve (3.20) leads to a
Q-rational solution (u,v) of (3.18), hence to an integral solution (a,b,€)
of (3.17) with a and b relatively prime. Then a and b must both be odd,
and so must e. We can thus define an integer tuple (X, Y, Z) by

X = —12—(a2 +e), Y= %(a2 —e), Z=W, (3.22)
and the only question will be whether X and Y are positive. Unfortu-
nately small solutions like (a,b,€) = (1,13,239) lead to Y negative.

We shall return to Fermat’s solution to the problem—and to the in-
terpretation in terms of elliptic curves—in Chapter IV.

2. Weierstrass Form, Discriminant, j-invariant

A cubic over k in Weierstrass form is given projectively by
v w+ ajzyw + asyw?® = z° + agz’w + agzw® + agw®, (3.23a)

with coefficients in k. We know that the only k rational point on the
line at infinity w = 0 is (z,y, w) = (0, 1,0). Moreover, we saw in §11.4
that (0,1,0) is a nonsingular point and is an inflection point, the tangent
line being the line at infinity. Since the behavior at (0,1,0) is so well
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understood, we can study much of the behavior of the curve b i
with the affine form rve by working

v+ ajzy + azy = 2% + axz? + a4z + as, (3.23b)

This form has the advantage that the notation is simpler. The signifi-
cance of the subscripts will be explained later in this section.

.In the examples in §1, specific plane curves of the form (3.23b) sim-
plified .under changes of variables. Actually these changes of variables
are valid more generally, under only an assumption on the characteristic
of k. The expressions for how the coeflicients of (3.23b) are affected by
these changes of variables do not depend on the characteristic and are
as follows. The notation is absolutely standard:

by = a? + 4a,
by = 2a4 + aja3
b a4 da, (3.24)
b = afas + 4aga¢ — ajazaq + a2a§ - ai
and
cq = b3 — 24b, (3.25)

cg = —bi + 36byby — 216bs.

The first simplification of (3.23b) assumes that char(k) # 2. We
complete the square in (3.23b), replacing y+ %(alz—kas) by %y, and the
result is

y? = 4z% + byzx? + 2bsz + bg (3.26)

wi‘th by, by, bg as in (3.24). (The coefficient bg will play a role later in
this section and also in §4.)

The second simplification assumes in addition that char(k) # 3. We

. —3b
replace (z,y) in (3.26) by (I 2 L), and the result is

36 108

y® =23 — 2Tcqz — 5des (3.27)

with ¢4 and cg as in (3.25).
Altht?ugh our chief interest is in elliptic curves over Q, it is not enough
to consider only equations (3.27). The reason lies in what happens when

we reduce curves over @ modulo a prime p. The following example
illustrates.



58 III: CUBIC CURVES IN WEIERSTRASS FORM

ExXAMPLE. Cubic case of Fermat’s Last Theorem. The Fermat equa-
tion (3.3) led to the Weierstrass form in (3.5):

y? — 9y =23 —21. (3.28)
Further changes of variables then led to the equation
y? =23 - 233, (3.29)

which is of the form (3.27). Following Theorem 3.2, we shall see that
(3.28) is nonsingular modulo all primes but 3, while (3.29) is nonsingular
modulo all primes but 2 and 3. Thus the passage from (3.28) to (3.29)
loses information that might be obtained by reduction modulo 2.

For any field k, we introduce the discriminant A of the curve (3.23b)
or (3.26) by the formula

A = —b3bg — 8b3 — 27b% + 9bybabs (3.30)

with by, ba, be, bg as in (3.24). When char(k) is not 2 or 3, we can solve
for A from the relation

1728A = c§ — 2. (3.31)

WARNING. If (3.27) is used as our original equation, its A is
263%(¢3 — ¢2), and this is off by a factor of 2!23'% from A in (3.31).
The factor is introduced by the scaling in passing from (3.23) to (3.26)
and then (3.27).

Theorem 3.2. The cubic (3.23) is singular if and only if A = 0.

This theorem will be proved later in this section. By way of examples,
note that A = —3° for (3.28), and A = —2123° for (3.29), so that (3.29)
is singular modulo 2 but (3.28) is not. To get at the proof of the theorem,

we introduce the discriminant of a cubic polynomial in one variable.
Let

f(z) =22 —az? 4+ Br—7= (2 —ri)(z — ro)(z —73) (3.32)

be a monic cubic polynomial over k with roots in k. Here «, G, and v
are given by the elementary symmetric polynomials

a=r;+ra+ry, B=riro+rirg+rers, v =rirera.
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We can check that

1 1 1

det | r1 7 ra) = (rg—7r2)(rs — r1)(ra — 1) (3.33a)
P2 p2 g2
1 Tz T3

and that

1 1 1 1 r r? 3 o1 o2
MooTy Ty 1 7o 2| =10y o2 03], (3.33b)
r{ 3 13 1 r3 r3 oy 03 04

where o; = r} +rh + i for 1 <i < 4. The discriminant d of f(z) is
given by

d = (ry = 72)*(ry — 73)(r2 — 73)? (3.34)
Proposition 3.3. The discriminant d of the polynomial f(z) in (3.32)
is given by
3 oy 09
d=det| oy o9 03],
02 03 04
where

oy =@
oy =a?—283

o3 = o’ — 3af + 3y

o4 = o — 4028 + 268% + 4y

Proor. The determinant formula follows from (3.33) and (3.34).
Then 01,02, 03, 04 are symmetric polynomials in 71,7y, 73 and hence are
polynomials in the elementary symmetric polynomials «, 3,v. There is
an algorithm for finding the polynomials in «, 3,v, and application of it
yields the above expressions for ¢y, 03, 03, 04. These expressions can be
verified by direct computation.

Corollary 3.4. For the cubic polynomial f(z) = 23 + pz + ¢, the
discriminant is d = —4p® — 2742

Proor. This is the special case of Proposition 3.3 in which @ =
0,8=p,and vy = —q.



60 1II: CUBIC CURVES IN WEIERSTRASS FORM

ExaMpPLE. Cubic polynomial f(z) defined over R. The discriminant
d is 0 if and only if f has a repeated root. If the three roots are real,
then d > 0. If f has one real root r; and one pair of complex conjugate
roots 79 and r3 = 72, then (r;y — r2)(r1 — 72) is real and (r; — 7) is
imaginary; since d is the square of the product, d is < 0.

In the general case, d = 0 for the cubic polynomial in (3.32) if and
only if at least two of the roots are equal. For a cubic polynomial that is
not monic, we define d to be the same as for the multiple that is monic.
If we then replace by & in a cubic, the discriminant gets multiplied
by C® (since each root gets multiplied by C).

The relevance of the discriminant d to detecting singularities of cubics
in Weierstrass form is as follows.

Proposition 3.5. If C is a nonzero element of k and if char(k) # 2,
then the plane curve

y? = C(z® — az? + Bz — 7) (3.35)

is nonsingular if and only if f(z) = C(z® — az? + fz — ) has distinct
roots in k.

ProOF. Since §I1.4 showed that there can be no singularity on the
line at infinity, Proposition 2.6 says that the curve is singular if and
only if there exists a & rational point (0,Y0, 1) on the curve where the
following three equations are all satisfied:

9. 0= 3z2 — 2az0 + B (3.36a)
Oz
0
ay 2y0 0 ( 36 )
8% : yz = C(—azi + 20z0 — 37) (3.36¢)

Equations (3.35), (3.36a), and (3.36b) are equivalent with
0 =yo = f(zo) = f'(z0), (3.37)

and (3.36¢) is redundant, giving the extra condition 3f(zo) —zof'(z0) =
0. Thus the only candidates for singular points over k are (2,0, 1),
where zg is a root of f, and such a candidate (zg,0,1) is singular if and
only if zg is a multiple root of f.
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Proposition 3.6. If char(k) # 2, let d, and d, be the discriminants of
the cubic polynomials on the right sides of (3.26) and (3.27), respectively.
Then

d, = 2?3124, (3.38a)
and
A =24, (3.38b)

ProoF 1F char(k) # 3. Apart from translations, (3.27) is obtained
from (3.26) by replacing z by £/C with C = 62, and we have seen that
the effect on discriminants is to multiply them by C®. Thus (3.38a)
follows. By Corollary 3.34 and (3.31), we have

de = —4(—27cq)® — 27(=54¢6)? = 2% - 3° . 123A.
Then (3.38b) follows from (3.38a).

Proor IF char(k) = 3. It is immediate from Corollary 3.34 that
d. = 0, and hence (3.38a) is valid. The discriminant d, of (3.26) is the
same as that of (3.35) with

b b b
s
Since 3 = 0, Proposition 3.3 says that
dy = 2010903 — o’? — 0'%0'4 = —010303 — a;f — Ufm;,
where
o) =«
oy =a’+p
o3 =a’
oy =a* -’ - B +ay
with

CY:—bz, ﬁ:—b‘lv 7:—b6
Substituting gives

dp = —f° + a?4? — a®y = b3 + b2b2 — b3be. (3.39)
Meanwhile, in any characteristic we can check that
4bg = bybg — b2, (3.40)

an equality that was already used to show that (3.30) implies {3.31).
Therefore in characteristic 3,

A = —b3bg + b3 = —b3bg + b3b2 + b3.

Comparing this equation with (3.39), we see that A = d, and (3.38b)
follows.
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PrROOF OF THEOREM 3.2.

Case 1. Suppose char(k)} # 2. Then (3.23) is singular if and only if
(3.26) is singular, if and only if the right side of (3.26) has a repeated
root (by Proposition 3.5), if and only if dy = 0, if and only if A = 0 (by
(3.39)).

Case 2. Suppose char(k) = 2. Then A reduces to

A= b%bs + bg =+ b2b4b6
= a?ae + a?asaq + a'l*agag + a‘fa:‘; + ag + a"fag.
(3.41)
Meanwhile, just as in the first paragraph of the proof of Proposition 3.5,
(3.23) can have singularities only at k rational points (zo,yo,1) on the
curve, and it has a singularity at such a point if and only if

0

— 0 =ajyo+ z2 + aq (3.42a)
Oz

2 : 0=aizg+as (3.42Db)
Jy

0. _ 2 >

9w 0= Yo + @a1Zoyo + azxy + as. (3420)

Equation (3.42c) is redundant, being the sum of the curve, ¢ times
(3.42a), and yo times (3.42b).

Suppose a; = 0. Then A = 0 if and only if a3 = 0, if and only
if (3.42b) holds. To complete this case, it is enough to show that the
system

yg = :c‘g + (12(5(2) + agxy + as
0= zg + ay
has a solution in k. But we have only to choose x4 € k so that the second
equation holds, substitute into the first equation, and choose ygq € £ so

that the first equation holds.
Suppose a; # 0. Then (3.42b) and (3.42a) successively give

Ty = al_las and Yo = al‘sag + al'la4.
Substitution of these values for z and y in the difference of the two sides
of (3.23b) gives
(a7°%a3 + a7 %af) + (a7 a§ + ay 'azas) + (a7 a3 + a 'asas)
+ a1_3ag + a;2a2a§ + a;la3a4 + ag,
and (3.41) says this is just a7 ®A. Thus (zo, yo) satisfies (3.23b), yielding

(zo,¥0,1) as a singular point, if and only if A = 0. This completes the
proof of the theorem.
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An admissible change of variables in a Weierstrass equation
(3.23b) is one of the form

g=u'z'+r and y=uly +su’z’ +1¢ (3.43a)

with u,7,s,t in k and u # 0. In matrix form it is given by

z z! uw? 0
y| =01y with @ '=| su? u® ¢ (3.43b)
w w’ 0 0 1

It fixes [(0,1,0)] and carries the tangent w = 0 to the same line. The
cubic F' in Weierstrass form gets carried to the same curve as a cubic
F?® still in Weierstrass form. Up to a constant, admissible changes of
variables are the most general linear transformations with these proper-
ties. We have already used such changes of variables on several occasions
to normalize Weierstrass equations in various ways. Two elliptic curves
that are related by an admissible change of variables are said to be
isomorphic.

Under the change of variables (3.43) and the normalization that makes
the coefficients of wy? and 23 be 1, let F get carried to F¥. In the
special case that r = s = t = 0, this passage F — F® muitiplies the
coefficients ay, a3, as,...,bs,...,cq,c6 by powers of u. The significance
of a subscript 7 is that that coefficient has been multiplied by u=¢. We
say that the coefficient has weight 1.

More generally when r,s,t are not all 0, the above passage F —

F® maps the coefficients a;,as,as,...,bs, ..., ca,cs into new coefficients
aj,as,ah, ..., b5, ... ¢4, c6. Then a primed coeflicient is 4™ times an
expression in 7,s,t,ay,...,cs that does not involve u. In the case of ¢4

4 6

and cg, we have ¢, = u~%c4 and ¢t = u~°cg with =, s,¢ not involved.
6y 4 4 6 6 19y

When coefficients are multiplied, their weights add. Linear combina-
tions of terms with the same weight again have that weight. In this
sense the discriminant A has weight 12. Since A can be expressed in
terms of ¢4 and ¢g (at least when k has characteristic not equal to 2 or
3), A is unaffected by 7, s, and ¢.
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Elliptic Curve A c4 ce
V4+y=23—12° —11 16 —152
Vrry=23-222 4= -15 1 —161
V4+y=2+zl+z -19 -32 8
V+zy+y=12°2 ~26 -23 —181

Y2 +y=1z3 -27 0 —216
V+zy—y=23 —-28 25 —~253
Y¥+y=z34+22-12 —35 64 -9568
V4zy=23+22+z -39 —23 235
v+ y=23+2? ~43 16 ~280
Vv=z-z+z —48 -32 —224
Y=z 4+ +z —48 -32 224
Vi+azy+y=2z2>—2? -53  —15 -297
V¥ +3ry—y =23 —54 153 —-1917
V4+zy=z2-22+=2 —5b -39 —189
VHey=23-2c+1 —61 97 —1009
V+ry=x34z —63 —47 71
=234z 64 —48 0

vV +y==x2—-522 -4z -1 —67 592 14408
y2 4+ 3zy+y=23—z° —83 —47 199
Y 4+ zy —y=2%+ 22 -89 49 -521
V+y=z3+z —91 —48 —216
Y+ dzy —y =23 —91 352 —6616

TABLE 3.1. Some elliptic curves with small negative discriminant

To get some feeling for elliptic curves (i.e., nonsingular cubics (3.23))
without relying on classical examples or random selection, one can look
for elliptic curves of small discriminant. These, it turns out, are an
infrequent occurrence. They remain nonsingular, when reduced modulo
p, for all but a small number of primes p, and thus they supply a good
source of examples for many purposes. Tables 3.1 and 3.2 list, up to
admissible changes of variables over @, all elliptic curves with |A| < 100
whose coefficients are all integers < 9 in absolute value. The triple
(A, ca,¢6) can be used to detect equivalence under admissible changes
of variables over Q: It is always true that two elliptic curves over @
with the same (A, c4,c6) are related by a transformation (3.43), since
the changes of variables that pass from (3.23) to (3.27) can both be
inverted. Conversely if two elliptic curves are related by a transformation
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(3.43), their discriminants stand in the ratio of u!2, and this is possible
with integer coefficients and with |A| < 100 only when u = +1. Hence
(A,cq,¢6) is a complete invariant of the equivalence class for curves
limited as in the tables.

Ellptic Curve A C4 Cs

V4 Try+2y=23+422+¢ 15 3841 —238049
¥ +3zy=23+2 17 33 —81
Vv+y=z3—2 37 48 —216

¥ +2zy -3y =231 37 160 —2008
yV:+aoy=23-3224+2 57 73 539
v+ 92y — 9y = 2% + 92° — bz — 3 62 15873 —1999809
yv:=z3-z 64 48 0
V4rzy=23—=z 65 49 -73
V4ey=23-—22—2 73 57 243
Y2+ 3y —y=a%— 22 79 97 —881
v=r3-2x+1 80 96 —864
yvr=22—-2z-1 80 96 864
Y¥=z3+22-2z 80 64 —352
y=23~-2? ¢ 80 64 352
Y4ey=23+2z2-2 89 73 —485

Yy 4+ by +y =23 98 505  —11341

TABLE 3.2. Some elliptic curves with small positive discriminant
For an elliptic curve the j-invariant is defined by
i=c3/A. (3.44)

This is well defined by Theorem 3.2, and it has weight 0. It is unaf-
fected by r, 5, and ¢ and thus is invariant under all admissible changes
of variables.

ExampLEs. Consider y? = z3 4 pz 4 ¢ over a field with characteristic
not equal to 2 or 3. We have ¢4 = —48p and ¢ = —864q. (See the
Warning before Theorem 3.2.) By (3.31),

A = (=18p)° — (—864g)°

— 9443 2
798 = —-2%(4p° + 27¢%).
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Thus (3.44) gives ,

j ip (3.45)
j=1728 pr T PEh
ipti 2 _ 23 4 azx has j = 1728; this
mple, every elliptic curve y z 1z thi
Th;lzéi:rtﬁzsae iII)1 Subsections C, D, and E of §1. S‘lmllarly every gl(l;;)gllc
1crilcrve y?> = z3+ahas j = 0; this includes the one mn Subsection .

i ] 2 = g3—2+9.
Finally the Diophantus example in Subsection Aof§l ;gas éls
This has p=—1and ¢ = 9. Thus (3.45) gives ] = ~ jes™

Proposition 3.7 Suppose that k has characteristic not equal to 2
ro 7.

. issl € vari-
” 3a) If two elliptic curves are related by an admissible change of va

ables, then they have the same j-invariant.

(b) W jo € k is given, then there exists an elliptic curve over k with
0

g N - e

] l?cv)arllfak ig Oalgebraically closed and two elh'pt'xc curves hav;vtat;?aiz;;r;

j-invariant then they are related by an admissible change o .

1 observed above. .
}()bf;O;}Flf; E:)se:‘}?: Za*; and jo = 1728 were handled in the examples

. T ¢
above. For other values we can specialize the above example to

27 Jo 27 Jo
3 —_— e — T b
y'=2" = T8 4 jo— 1728

271 Jo
in which p=¢ =~ =728
Jo o, 4
(c) We can normalize the two curves to k.)e ¥ =z I;hAx jv—ef?hz:n&
2 231 Az 4+ B, by (a). Here A has weight 4 and B has weig \
yTl N a'vf +e plft Y= ;;’/u3 and z = ' /u? in the first equation, we ge
hus if w =

, and then we can apply (3.48).

Yl = 2+ Au'z + Bu®.
What we want to arrange is that
A = Au? and B = Bu®. (3.46)

Equality of j-invariants means that

4A3 4AR
e
AA3 + 271B2 ~ 4AP+ 27B"

3. GROUP LAW 67

from which we see that

APB? = AP B2, (3.47)

Now we distinguish cases.

(i) A =0. Then B # 0 by nonsingularity, and 4’ = 0 by (3.47). If we
take u = (B’/B)/%, then (3.46) holds.

(ii) B = 0. Then A # 0 by nonsingularity, and B’ = 0 by (3.47). If
we take u = (A’/A)'/4, then (3.46) holds.

(iii) AB # 0. First we take u = (A’/A)'/* to get A’ = Au®. Then
(3.47) says B'? = (A’/A)®B? = u'?2B?. Hence B’ = BuS or B’ = —BuS.
In the first case, (3.46) has been verified. In the second case we replace
u by /=1 u and recompute to find that (3.46) holds.

3. Group Law

For a nonsingular cubic curve with a specified k rational point O,
we noted in Chapter I that the operation P + ¢ = O - P@Q, given in
terms of the chord-tangent composition law of §11.4, makes the points
on the curve into an abelian group with O as identity. In particular,
the conclusion applies to elliptic curves, which are nonsingular cubics in

Weierstrass form. In this section, we shall state this result as a theorem
and give a geometric proof.

Theorem 3.8 (Poincaré). Let F be a nonsingular cubic, and let O
be in F(k). Then the operation P + @ = O(PQ), given in terms of
the chord-tangent composition law, makes F(k) into an abelian group
with O as identity and with negatives given by —P = (OO)P. If K
is a fleld extension of k, then the inclusion F(k) C F(K) is a group
homomorphism. If a different base point O’ is chosen, then the two

operations are related by P+/Q = P+ @Q — O’, and the group structures
are isomorphic.

The heart of the matter is to prove associativity, whose essence is cap-

tured by the following lemma. We shall prove the lemma after showing
how the lemma implies the theorem.

Lemma 3.9. For any points P, @, P', Q' in F(k),

(PPHQQ) = (POYP'Q). (3.48)
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Proor THAT LEMMA 3.9 IMPLIES THEOREM 3.8. We saw in Chapter
I that + is commutative, that O is an identity, and that — P is an additive
inverse. For associativity the lemma gives the second equality of

P(O(QR)) = (PQ-Q)(O-QR)=(PQ-0)(Q-QR) = (O(PQ))R.
Thus
P(Q+R)=(P+Q)R.
If we apply O to both sides, we get
P+(Q+R)=(P+Q)+R,

as required. Thus F(k) is an abelian group under +. Clearly the inclu-
sion F(k) C F(K) is a group homomorphism.
Let O’ be given. Then the lemma gives the second equality of
(P+@Q)- 0" =0[(0-PQ)00 -0
=0[(0-00)(PQ - O')]
=0[0-(P+ Q)]=P+'Q. (3.49)

Define a map ¢ : (F(k),+) — (F(k),+') by ¢(P) = P —O'. Then
p(P+Q)=(P+Q)-0'=P+Q
by (3.49). Thus ¢ is a homomorphism. It is clearly one-one and onto.

OVERVIEW OF PROOF OF LEMMA 3.9. To prove (3.48) and thus
Lemma 3.9, we shall divide matters into a nondegenerate case and a
degenerate case, and we shall use quite different methods for the two
cases, The distinction between “nondegenerate” and “degenerate” will
depend on which, if any, of the 8 points

P, P, Q Q, PQ, PQ, PP, QQ

are equal to one another. Specifically we arrange these points as 8 of
the entries of a 3-by-3 matrix

P P PP
Q Q Q (3.50)
PQ PIQI

We say that we are in the nondegenerate case if none of these points
is equal to a point in a different row and column (e.g., P should not
equal @', QQ', or P'Q’). Otherwise we are in the degenerate case.
The proof in the nondegenerate case simplifies a little if the 8 points are
actually distinct, but it does not simplify much.
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PROOF OF (3.48) IN THE NONDEGENERATE CASE. Let L1, L5, L} be
the lines that meet F(k) at the points of the respective rows ofz,(3350)
with the usual convention that if 3 point appears more than onc.e in’
a row, then the line is supposed to be tangent to the curve at the
pomt. Let LY, LY L% be the similar lines determined by the columns

of (3.50). Figure 3.1 illustrates matters, showing 1! L. [/ d i
and LY, LY, L% as dashed lines. ’ & 50 b2 by as solid lines

F1cure 3.1. Configuration for (PPYQQ") = (PQ)(P'Q)

If we are thinking of L{, LY, L}, it is natural to include (PQ)P'Q’) as
f;he lower right entry of (3.50), while if we are thinking of LY, LY, L4, it
is natural Fo include (PP')(QQ’) as the lower right entry. Our objective,
of course, is to prove that these two candidates for the lower right entry

are equal. Thus, in referring to (3.50), we shall regard the lower right
entry as blank.
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We claim as a consequence of our nondegeneracy assumption that
each Lj is different from each L7. (3.51)

Thus Lj(k) and LY(k) meet only in the (i5)'" entry of (3.50) unless
i = j = 3. To see (3.51), first suppose ¢ and j are not both 3, say
i # 3. If L; = L7, then the other point(s) of the 7P column must occur
as other point(s) of the ™" row, since the i*" row gives all points of
F(k)N L} with their multiplicities, and this occurrence of a point in two
such entries of the matrix would contradict nondegeneracy. If 1 = j = 3
and Ly = LY, then PQ in L% must occur as one of the three points
of F(k) N LY(k), counting multiplicities. It might be the missing lower
right entry of (3.50), but then P’'Q’ would have to coincide with PP’ or
QQ’, and we would again have a contradiction to nondegeneracy.

Let 7" be the point where L% and L§ meet; this is unique by (3.51).
We shall prove (3.48) by showing that both sides of (3.48) are equal to
T. In the proof we may assume that k is algebraically closed. (Actually
we shall use only that k is infinite.)

Let L’ and L” be the cubics given by

L= LiLy LY and L' =LYy LY. (3.52)
The main step of the proof will be to show that
aF +al'+a'L" =0 (3.53)

for suitable a,a’,a” in k with a # 0. To define these constants, let R’ be
a point of L] (k) other than P, P’, and PP’ (possible since k is infinite),
and let R” be a point not in L'(k) (existence by Lemma 2.1). Choose
a,a’,a’” in k not all 0 such that

(5 5 ) () - () e

Fo=aF +dL +a'L". (3.55)

We shall prove that Fy = 0.

In doing so, we shall make repeated use of two facts about intersection
multiplicities of lines and plane curves. If L is a line, p is a point, and
G and G, are plane curves, then

and put

i(p,L,Gi1G2) = i(p, L,G1) +i(p, L, G2). (3.56)
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If, in addition, G; and G2 have the same degree and if G| + G5 is not
0, then
i(p,L,G1 + G2) > min{i(p, L,G1),i(p, L, G2)}. (3.57)

These are obvious from the definitions.
Thus suppose Fy # 0, so that Fy is a cubic. Let L be one of the lines
4, L5, Ly, LY, LY, LY and suppose the point p is repeated N times in
the corresponding row or column of (3.50), with the lower right entry
not included. We shall show that

i(p, L, Fo) > N. (3.58)

In fact, without loss of generality, suppose L is a factor of the cubic L'.
We have
i(p, L, F) > N (3.59)

by construction and by definition of the chord-tangent composition law.
In addition, Proposition 2.8 gives

i(p, L, L") = +o00. (3.60)

The point p appears in N columns of (3.50) and thus lies on > N of the
lines LY, LY, L§. By (3.56)

i(p, L, L") > N. (3.61)

Putting (3.59), (3.60), and (3.61) together with the aid of (3.57), we
obtain (3.58).

Equation (3.54) implies that Fo(&') = 0, hence that i(R’, L}, Fy) > 1.
Adding this inequality to (3.58) for L = L} and for p equal to the distinct
points in the first row of (3.50), we obtain 3_ i(p, L1, Fo) > 4. From
Corollary 2.20 we conclude that L] divides F. Let us write Fy = L{C
for a conic C.

Suppose p appears N > 1 times in the second row of (3.50) but not
at all in the first row. Then i(p, L5, L}) = 0 since the first row lists all
points of F(k) N Li(k). And i(p, L%, Fo) > N by (3.58). Hence (3.56)
gives

i(p, 4,C) > N. (3.62)

We shall show that (3.62) remains valid even if p does appear in the
first row. In this case, N = 1 by the nondegeneracy assumption. Sup-
pose that p appears > 2 times in the j*® column, possibly including
once in the second row. By (3.58), we have i(p, L}, Fo) > 2. Since
i(p, L, Ly) = 1 by (3.51), (3.56) gives i(p, L7,C) > 1. That is, p is in
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C(k). Hence i(p, L}, C) > 1, and (3.62) is proved even when p appears
in the first row.

Summing (3.62) over the distinct points p of the second row of (3.50),
we obtain 3 i(p, L3,C) > 3. From Corollary 2.20 we conclude that L)
divides €. Thus we can write Fp = L{ L, M for a line M.

Now consider the two points of the third row of (3.50). First sup-
pose they coincide; call their common value p. By nondegeneracy, p
cannot occur in the first or second row, so that i(p, L%, L}) = 0 and
i(p, Ly, L) = 0. Since {3.58) gives i(p, L, Fy) > 2, we conclude from
(3.56) that i(p, Ly, M) > 2. By Corollary 2.20, L divides M.

Next suppose that the two points of the third row of (3.50) are distinct.
Let p be one of them, say the one in the j* column. If p appears N
times in the j*" column, (3.58) gives

1(pr L;'/)FU) 2 N.

On the other hand,

i(p, L, Ly Ih) = N ~ 1
by (3.56). Another application of (3.56) then shows that i(p, L}, M) > 1.
Thus p is in M (k). Since the same argument applies equally to the other
point on the third row of {3.50), we see that L4 and M have two distinct

points in common. Therefore L% divides M.
Thus L§ divides M in either case, and we conclude that

Fo = cLiLyLy = cL’

for a nonzero constant ¢. But Fo(R”) = 0 by (3.54), and L'(R") # 0 by
definition of R”. We have arrived at a contradiction, and we conclude
that Fy = 0. This proves (3.53).

We still have to show that a # 0 in (3.53). If a = 0, then we may
assume by symmetry that a’ # 0, hence that L’ divides L”. Thus L}
divides LY LY LY, and unique factorization shows that L} is the same line
as some L, in contradiction to (3.51). We conclude that a # 0. )

Therefore /,/

F=JL'+"L" (3.63)
for suitable ¢/ and ¢’ in k. Recall that T is the common intersection
of Ly and LY. Tt follows from (3.63) that F(7) = 0. Since T is in
F(k) N L (k),

T isoneof PQ, P'Q, (PQYP'Q). (3.64a)

Since T is in F(k) N LY (k),
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T is one of PP, QQ, (PP QQ").
(3.64b)

Since, l')y nondegeneracy, neither of the first two points of (3.64a) can
equal either of the first two points of (3.64b), we conclude either that

(PQIP'Q) =T = (PP)QQ') (3.65)
and we are done, or that one of the following four possibilities occurs:
PQ=T=(PPYQRQ) (3.66)

P'Q' =T = (PP)(QQ)
PP =T = (PQ)(P'Q")
QQ'=T=(PQ)(P'Q).
tI‘h.ese four formulas are symmetric under permutation of notation, and
1t 18 enough to handle the first one.

Thus suppose (3.66) holds. Consider (PQ)(P'Q’). This is on L},
hence on L’. Also it is on F. Since ¢’ # 0 in (3.63) (F being nonsingu-
lar), (PQ)(P’Q’) must be on L”. Hence (PQ)(P'Q’) is on at least one
of LY, LY, and LY.

Suppose (PQ)(P'Q’) is on LY. Since it is on L3, we must have

(PRYP'Q) = PQ.
Substituting into (3.66), we obtain (3.65), and we are done.
Suppose (PQ)(P'Q’) is on LY. Since it is on L5, we must have
(PIP'Q) = P'Q". (3.67)
If P'Q' = PQ, we can substitute into (3.66) and obtain (3.65), and then
we are done. Thus suppose P'Q’ # PQ. From (3.67) it follows that
i(P'Q, Ly, F)=2. (3.68)
Now PQ is on L3 by (3.66), and it is on LY automatically. Thus
UPQ, L5 L") > 2
by (3.56). Since
i(PQ, Ly, L") = 400,
(3.63) and (3.57) give
i(PQ, L, F) > 2. (3.69)
Combining (3.68) and (3.69), we obtain 2, i(p, L3, F) > 4. By Corollary

2.20, we find that L} divides F, in contradiction to the nonsingularity
of F.

”We conclude th:at '(PQ)(P’Q’) is on Lz. Since it is on both L% and
L3, (3.51) shows it is 7. In combination with (3.66), this conclusion

yields (3.65). This completes the proof of (3.48) in the nondegenerate
case.
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S
PROOF OF (3.48) IN THE DEGENERATE CASE. The assumption is
that two of the 8 points in (3.50) in different rows and columns are
equal. Up to symmetry the cases we need to consider are at the most

P=q
P=QQ (and hence PQ = Q')
PP = PQ (and hence P’ = Q).

The identity (3.48) reduces in these cases to

(PP')(@QP) = (PRY(P'P)
(PPYP = Q'(P'Q)
(PP)(P'Q) = (PP)(P'Q).
The first and third of these are trivially valid, and the second is valid

since both sides reduce to P’. This completes the proof of (3.48) in the
degenerate case.

4. Computations with the Group Law

Fix an elliptic curve E over k, i.e., a nonsingular cubic in Weierstrass
form (3.23). It is customary to choose O = (0, 1, 0), the point at infinity,
and then Theorem 3.8 says that E(&) becomes an abelian group with
O as identity element. This particular choice of O has some immediate
implications:

(1) OO0 = O since O is an inflection point.

(2) The additive inverse, usually given by —P = QO - P, is now given
by

~-P=0P

as a consequence of (1). Then
P =(29,%) implies — P = (29, ~yo — a129 — az), ,(3.70)
/

because the line from O to P is # = z¢ in affine form (or z — 71?"011) =0
in projective form). /

(3) If a; = a3 = 0, so that £ is given in affine form by y? = f(z) with
f a monic cubic polynomial, then (3.70) specializes to the statement
that

P = (z¢,%0) implies — P =(zg,—¥yo)- (3.71)

In this case the elements of order 2, which have P = — P, are the points
on the z-axis. There are at most three such points.
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' Let us derive a formula for the group law for E(k). Let P and P, be
given with P, # —P;. We shall calculate Py = P; + P,. The notation
will be

Py = (z1,1), Py = (z9,y2), Ps = (23,y3)

line through P, and P, if P, # P, (chord case)

y=mr+b= { . .
tangent line at P; if P = P, (tangent case).

We begin by calculating m and b. The result is

¢ Yo —
279 in chord case
Ty — X1
™7 32242
.’El+ agz'1+a4—~a1y1 .
, 3.72a
20 + a121 + a3 n tangent case ( )
122 — Yo .
yiz2 7 Yot in chord case
b= Iz — I
- 3
—zy + aqz1 + 206 — a .
L tad & 31 m tangent case. (3'72}))

2y1 + a121 + a3

The formulas for m and & in the chord case are simply formulas for
the line through P; and P, and do not involve cubics. To prove the
formulas in the tangent case, we begin by computing m = % by implicit
differentiation of (3.23b):

2yy' + arzy’ + a1y + azy’ = 322 + 2a,7 + ay.

Putting ¥’ = m and (z,y) = (2,,41), we obtain (3.72a) in the tangent
case. Along the line y = mz + b, we have y — y; = m(x — z1). Thus
y=mz + (y1 — mz1), and we obtain b = Y1 — mzj. In other words

b— 2y% + arz1y + agyy — 323 — 2a32% — a4z + a1z y;
2y1 + a1, + as ’

Substitution for y§ from (3.23b) then gives (3.72b) in the tangent case.

Now we can calculate Ps = (z3,13) = P; + Py. Let F(z,y) be the
difference of the right side and the left side of the Weierstrass equation
(3.23b). Along the line y = mxz+b, this expression becomes F(z,mz+1b),
and it is clearly a monic cubic polynomial in z. Since Py, Py, and P Py
are on this line and are in E(k) and since (3.70) shows that z3 equals
the z coordinate of P, Py, all of 21, 24, 23 are roots of

F(zx,mz +b) =0,
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with multiplicities counted. Thus
F(z,mz +b)=(z — z1)(z — z2)(z — z3).

Substitution of the expression for F' gives

22 + apz? + ayx + ag — (mz + b))% — ayx(mz +b) — az(mz + b)

= 2% — (21 4+ z2 + 73)z? + lower order.
We can equate the coefficients of 2 on the left and right, obtaining
ay—m? —aym= —(z1 + x2 + x3),
and the result is
— 2 e

Ta=MobGm - a i 12} in chord and tangent cases. (3.73)

ys=—(m+ai)zs —b—as

A special case of (3.73) is that P, = P,, so that we are in the tangent
case. If P = (z,y), then substitution of (3.72a) into (3.73) yields a
formula for the 2 coordinate «(2P) of 2P:
1,‘4 - b41’2 - 21)613 — bg
423 4 box? 4 2b4z + bg !
where by, bs, b, bg are as in (3.24).

z(2P) =

(3.74)

ExAMPLE 1. Cubic case of Fermat’s Last Theorem. This was dis-
cussed in Subsection B of §1. Since Fermat’s Last Theorem is valid in
degree 3, (3.3) has only trivial solutions. Transforming to (3.7), we see

that
3 27

y' =z’ - a
has only (3, %), (3, —%), and oo as its Q solutions. Thus the group of
solutions must be isomorphic to Z3. Let us verify that P = (3, %) has
order 3. We have

a1:a3:a2:a4:0 and a5:—277.

Thus
by = b4 =bg =0 and bg = —27. s

Hence (3.74) gives

2 454z 814162 _

473 — 27|, _, 108 -—27

So 2P = P or 2P — —P. The conclusion 2P = P is false because it

forces P = O = co. Thus 2P = —P and 3P = O. In other words, P
indeed does have order 3.

z(2P) =
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EXAMPLE 2. y?+4y = 23—z over Q. This is one of the elliptic curves
in Table 3.2, and it has A=37. The point P = (0,0) is an obvious
solution, and we can calculate from (3.73) that

P =(0,0) 5P = (3,-3)
2P = (1,0) 6P = (6,14)
3Pp=(-1,-1) P=(-%% (3.75)
4P = (2,-3) 8P = (2, -5

It will follow from Theorem 5.1a that P generates an infinite cyclic
subgroup. (In fact, P generates all solutions.)

5. Singular Points

Singular Weierstrass curves arise for certain primes p when a Weier-
strass curve with integral coefficients is considered modulo p. Such
curves are easy to analyze, and we shall note some of their features
in this section.

Let E be a singular Weierstrass curve over a field k. The point co
on the curve is nonsingular, and we have only to analyze points (z,y)
in the affine plane. Proposition 3.10 will show that there is only one
singularity and that, under a mild restriction on k, it occurs at a &
rational point (zg,yg). Translating (zo,yo) to the origin (an admissible
change of variables), we are led to the projective curve (3.23a) with

ag = 0. The condition that 53:; give 0 at (0,0,1) means that ay = 0,

and the condition that 3y give 0 at (0,0,1) means that a3 = 0. Thus

E is given in affine form by the equation

v: 4 ajzy = 22 + arz?. (3.76)

We can factor
v + ajzy — aza’ (3.77)

over k, obtaining
(y — az)(y — fz) = =3 with o, 8 € k. (3.78)

We say that the singular point (0,0) is a cusp if @ = £, or a node if
a # B. Pictures of the two kinds of behavior (with ¢; = 0) appear in
Figure 1.6.
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Proposition 3.10. For a singular Weierstrass curve E over k, there
is only one singular point (z9,ys). It is k rational if either
(1) char(k) # 2 or
(i1) char(k) =2 and # is closed under the operation of taking square
roots (as is the case when k is a finite field of characteristic 2).

The point (2o, yo) is a cusp if ¢4 = 0, or a node if ¢4 # 0.

Proor. If char(k) # 2, we can apply, without loss of generality, a
projective transformation to eliminate the a; and az terms. By Propo-
sition 3.5 the curve will be singular if and only if the cubic polynomial f
in z has a repeated root. In this case f and f’ have a greatest common
divisor g over k with degree > 1, and the singular points are (zo,0),
where z¢ ranges over the roots of g.

If g has degree 1, its unique root zg is in k, and (zq,0) is the unique
singular point. If ¢ has degree 2, its two roots xy and z{, must be equal,
since otherwise zo and z{, would both be roots of multiplicity > 2 for
the cubic polynomial f. Since we can conclude zg = z§, zo is in k, and
(z0,0) is the unique singular point.

If char(k) = 2, the singular points are the points (zo, y0) on the affine
curve over k satisfying (3.42a) and (3.42b). If a; # 0, (3.42b) uniquely
determines zg, and (3.42a) then uniquely determines yg; the resulting
(zo, o) is k rational. If a; = 0, (3.42a) forces z3+4 = 0. In characteristic
2, square roots are unique, and the assumption (ii) says that z¢ is in k.
Since (3.42b) shows a3z = 0, yo is given by

2 3 2
Yo = T+ azzy 4+ agxp + as

and again exists in k and is unique in k under our assumption (ii).

Return to general k. Under the translation over k that moves (g, yg)
to the origin, c4 is unaffected. Thus it is enough to decide cusp vs. node
in (3.76). From (3.24) and (3.25), the value of ¢4 is

ca = b — 24by = (a? 4 4a;3)? — 24(2a4 + a1a3) = (@i + 4az)®.  (3.79)

If char(k) # 2, the discriminant of (3.77) is a? + 4ay, which is 0 if and
only if ¢4 = 0; hence o = § (and there is a cusp) if and only if ¢4 = 0.
If char(k) = 2, then

(y — az)? = y® + ayzy — azz?

says a; — 0 and a? = ay; hence @ = 3 (and there is a cusp) if and only
if a; = 0, which happens if and only if ¢4 = 0.
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We can parametrize our singular Weierstrass curve (3.76) by the
glethod that Diophantus used for conics (see Chapter I): We parametrize
lines through the singular point (0,0) by their slopes, and we find that
most lines intersect the curve at one and only one other point. To handle
exceptional lines, it is necessary to distinguish two subcases of nodes.
Ijet us say that a node is a split case if the members o and B of (3.78)
lie in k. In the contrary case, & and f lie in a nontrivial quadratic
extension of k, and we say that the node is a nonsplit case.

Proposition 3.11. For the singular Weierstrass equation & in (3.76)
the map ’

t— (£ + art — a, t(t* + a;t — ay))

carries.lc — {a, 8} one-one onto E(k) — {oo} — {(0,0)}. If k is a finite
field with |k| elements, the nonsingular set E(k) — {(0,0)} therefore has

Jk] -1 elements if (0, 0) is a split-case node
k| + 1 elements if (0,0) is a nonsplit-case node
k| elements if (0,0) is a cusp.

PROOIT. In (3.76?, z =0 gives only y = 0, and (0,0) is singular. Thus
any nonsmgu]a‘r point of E(k) — {oo} has y = tz for a unique member ¢
of k. Substituting ¢tz for y in (3.76) and using z # 0, we are led to

t2+alt—a2:x.

\.\ . . - .
\Then also y is ¢ times this expression for z, and k maps onto the affine

solutions of (3.76). To exclude z = 0 from the image, we must exclude
'the roots of {2 + a;t — a,; these are a and B. Once z = 0 is not in the
Image, the map is one-one since t is recovered as y/z. The numerology
if k is a finite field is then clear.



CHAPTER IV

MORDELL’S THEOREM

1. Descent

Mordell’s Theorem (Theorem 4.11 below) is the statement that the
group E(Q) is finitely generated if E is an elliptic curve ove Q. The
proof is motivated by a close examination of Fermat’s method of de-
scent. To prove that z* + y* = 2* has no nontrivial integer solutions,
Fermat showed that a nontrivial integer solution of u? + v* = w? leads
to a strictly smaller nontrivial integer solution of the same equation, and
he thereby arrived at a contradiction. . »

In this section we shall look at Fermat’s proof in detail, and then we
shall translate it into an argument about the elliptic curve y? = 23 ~ 4z
via the transformations of Subsection D of §II1.1. It will turn out that
the descent procedure passes from the point P to a point %P (or possibly
—3P) on the elliptic curve.

With Mordell’s Theorem in hand, we know that the passage P —
%P cannot go on forever. But, in fact, the argument can be turned
around to give a proof of Mordell’s Theorem. The passage P — —%P has
certain obstructions, which are measured by E(Q)/2E(Q). (In Fermat’s
proof these obstructions correspond to an occasional need to adjust the
parameters in apparently trivial ways.) The hard step in the proof of
Mordell’s Theorem will be to prove that E(Q)/2E(Q) is finite, so that
the descent passage P — %P can proceed for all but a finite number
of situations. The other step in the proof is to codify the notion of

a “smaller” solution of u* + v* = w?, or of a ”simpler” solution of

y? = z® — 4z. This is done by introducing a suitable notion of height
such that only finitely many points on the elliptic curve have height
less than any given constant C. For the notion of height h(P) that we
introduce, we shall have h(2P) = 1h(P), so that the descent process
P — 1P eventually carries us to height less than C. If C is taken larger
than the maximum of h(P) for P in a set of coset representatives for
the finite group F(Q)/2E(Q), then the finite set of points of height less
than C will turn out to be a finite.set of generators for £(Q).

Let us begin with Fermat’s argument. We use the symbol [ ] to
denote a square.

80
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Proposition 4.1 (Fermat). u* + v* = w? has no nontrivial integer
solutions.

ProoF. Arguing by contradiction, suppose we have a nontrivial inte-

ger solution. Without loss of generality, we may assume GCD(u,v) = 1
u 1s odd, and v is even. Writing y ’

(u2)2 + (vZ)Z — D
and applying Theorem 1.2, we obtain integers m and n with

u? = m? — n?, v? = Imn, GCD(m,n) = 1.

Applying Theorem 1.2 to m? = u? 4 n?, in which u is odd, we obtain
mtegers p and ¢ with ’

_ .2 2
m=p? + ¢?, u=p®—¢* n = 2pq, GCD(p,q) = 1.

Since v is even, we can write

vy2 1 9 2
) =0 =gmn=pe* + ).
Here p, ¢, and p? + ¢? are relatively prime since GCD(p, q) = 1. Thus
r=[] ¢=[] PP+=[]
and we can write

p=r? q=s? r4+s4:D.

Th.us we have been led from the old solution u? + vt = [:] to a new
solution 7% + s* = [7]. These are related by

vy 2 2
(3)" = ra 449 = 227 1 ),

hence by
v=2rs\/rt 4 54, (4.1

If thfz new solution were trivial, then rs would be 0, so that v would be
0; this would mean that the old solution was trivial. We conclude that
rs # 0, and then it is clear from (4.1) that » < v and s < v. Hence

max([r|, [s]) < max(|ul, [o}]).

The passage from an old solution to a new solution therefore cannot go
on forever, and we arrive at a contradiction.
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ANALYSIS OF PROOF. Let us go backwards. We have
(7.7 S) — (p)q) = (7‘2,82)
— (m,n) = (p2 + q2,2pq) = (r4 + 5%, 27‘232)

— (0,9) = (1 — ¢, 0) = (" — 5%, 2r50/r8 £ 57,
(4.2)

Now lgt us match parameters with what is happening for the correspond-
ing elliptic curve. Schematically we have

(z,y) on cubic — (u,v) on quartic

1 (4.3)

(¢,d) on cubic «—— (r,5) on quartic
The equations that are satisfied by these variables are
yi =234z ut 4+ vt = w?
d? =% —4c r4+s4:D.
We seek an expression for z in terms of ¢. Let X = uf/vand Y = w/v?

so that Y? = X* + 1. Then (3.14) says that the top line of (4.3) is
implemented by

x=-Y __ 2
2z z_Y—XZ
5 and
Y:y + 8z o 4X
4z? YTy x?

R? — i 2_03—40‘_cz~4
T \2/) T 42 T 4e (4.4)
Then
Y _ x? w—uzz(mz-f—nz)-—(m?—nz)
v2 2mn
n 2ris? 2R?
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and hence
c?—4 2
r= 2 _R4+1_< 4c ) NNGE (45)
T Y-XzT R T <c2—4>  de(c? —4) i
4c

INTERPRETATION OF ANALYSIS. In the notation of (3.23) and (3.24),
our elliptic curve has

ag=az=ay=ag=0 and ag = —4.

Thus
bg:bG:O, b4:—8, b8:—16

The point (¢, d) is on the elliptic curve, and thus ¢ = z(P) for a point
P. Then (3.74) says that

ct 4+ 8%+ 16
4¢3 —~ 16¢ '

and this expression coincides with the expression (4.5) for z. Compu-
tation shows also that y(2P) agrees with y except for a factor of sgn c.
Thus Fermat’s method of descent amounts to a construction that starts
with P’ in E(Q) and constructs +1 P’ in E(Q).

Closer inspection shows that we made certain adjustments to our vari-
ables as we went along, in order to be able to carry out the descent. The
first one was to assume that u is odd and v is even, rather than the
other way around. This is the first adjustment. The next assumption

z(2P) =

. was that u and v are positive; if u and v are not positive, we adjusted
~ them to make them positive. We chose r and s to be the positive square

roots of p and ¢, but we could not force r to be odd and s to be even.
Normalization of r and s to be of the same form as u and v was a second
instance of the first adjustment. In the context of the elliptic curve, it
turns out that both adjustments amount to changing the point we are
studying by a coset representative of E(Q)/2E(Q). The fact that at
most two adjustments are needed reflects the fact that £(Q)/2E(Q) is
a sum of only two copies of Z5 in this example.

Finally we can ask why the descent has to stop. For the quartic
equation this was clear, since the integer entries of the solution were
going down. Let us translate this condition into the context of the
elliptic curve. For a rational number Jl in lowest terms, we define
1

= log max([i, |5]).

[eo]
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Since r and s in (4.2) are relatively prime, we have
r
|| = togmax(rl, Is)).
Sioco

The construction of r and s had the property that

u

r
lRloo = ‘“I <
Sioo v

= Xl

With the quartic equation, the descent has to stop because only finitely
many rationals have |- |o, less thau a given constant. To work directly
with the elliptic curve, we first re-examine (4.1) and see that in fact

u

v

r 1 1
Bl = ] < 3]5| = 51Xlee: (4.6)

00

Now R is given in terms of ¢ by (4.4), and a little checking shows that
|| Rloo — leloo] < M (4.7a)
for some computable constant M. Similarly
HX Joo — I2loo| < M. (4.7b)

Putting together (4.6) and (4.7), we obtain

1 3
eleo < glekeo + SM. (48)
Thus
leoo < {2)0o as long as IM < |2|e. (4.9)

The values of |¢|o, and |¢]s are a naive version of the notion of height
mentioned at the beginning of the chapter. Condition (4.9) does not
say that the descent must stop, but it does say that it has to lead to
a (nontrivial) solution of the elliptic curve with small numerator and
denominator. Although this conclusion does not rule out all nontrivial
solutions for this example immediately, we shall see that it does give
enough information for the conclusion that E(Q) is finitely generated.

To get a cleaner argument, we ultimately will use a more refined defi-
nition of height, and inequality (4.8) will not have the additive constant
on the right side.
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2. Condition for Divisibility by 2

The proof of Mordell’s Theorem will involve showing that
E(Q)/2E(®) is finite and will involve using a suitable notion of height
to prove that the descent must stop. In this section we prove a theorem
that allows us to recognize elements of 2E(Q). We continue to use the
symbol [ ] to denote a square.

Theorem 4.2. Let £ be an elliptic curve over a field of characteristic
not equal to 2 or 3. Suppose F is given by

Y¥=(@-ao)z-P)z—-7)=2>+rz*+sz+t

with o, 8,7 in k. For (x2,y2) in E(k), there exists (z1,y1) in E(k) with
2(z1,y1) = (x9,y2) if and only if 23 — &, z3 — B, and z3 — v are squares
in k.

PROOF OF NECESSITY. If (1, y) exists, let y = mz+b be the tangent
line at z;. Since (z1,y;) and {zz, —y,) both satisfy
(z = @)z - B)(z —7) = y* = (ms + b)?

and since y = mz + b is actually tangent at z;, the three roots of

N (2 — )z = )z = 7) = (ma +b)*

A,
\

are i:g, zy, and z;. Thus
(2 = a)(z = B)(z —7) = (mz + b)? = (z - 22)(2 — 21)%.

Putting 2 = a, we have —[ | = (o — z3)[_]. Since z; cannot be «, the
square on the right is not 0. We conclude z5 — o is a square. Similarly
29 — B and z, — v are squares.

PREPARATION FOR SUFFICIENCY. Reduction of quartics to cubics.
If we have a monic quartic polynomial equation in one variable to
solve, we can translate z to eliminate the 2 term. Then we have

2t +az? + bz +c=0,
(z?)? = —ax? — bz —c. (4.10)
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With u as an unknown to be specified, (4.10) is equivalent with

(2 +u)? = (2u—a)x2—bx+(u2—c). (4.11)
We choose u so that the right side of (4.11) has a double root in #. Then

— 2
0=1RB -4Aczb2*4(2'ﬂ—a)(u2~—c)
= b2 — 8u3 + 4aqu? + 8cu — 4ac,

and hence
8u® — 4au’ — 8cu + (4ac — §?) = .

If we solve for u and substit i
ute into (4.11), the result is =
take square roots and are led to a quadratic equation for,:L':l L] we

PROOF OF SUFF]C]E CY. ]la]lgi]lg Va]la[)] we “lay assurne
N C 1 i
€s 1n Z',
:2 C Ea‘lsgl en

y2:(x—a)(a:—ﬁ)(:c—'y):z3+r:c2+.sz+t

with
vs = —afy =1 (4.12a)

and with —q = o2 =
Withxzxtzll o _f o, —,B._ B2, —y — 7%, and we are to produce (z1,y;).
ut loss of generality, we may adjust the signs of a1, 1,7 so that

1By =y (4.12b)

Take y = mz + y, as the line th
' rough (0, t t
point (zy,y;). Then the three roots of (Orye) tangent at the miown

(2 —a)(z ~ B)(z — 7) - (mz + y,)? (4.13)
are 0, z;, and z,. So
l(:1:3—{-7':02+s:lc—mzat:2—2m i
. Yo) 18 to be (z —z1)%
Thus the discriminant of |

m2+(r~m2)x+ (s — 2mys,) (4.14)

1S to be 0:
(T' - m2)2 = 4(8 — mez)‘ (415)
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This is a quartic equation in m. If it has a root mg in k, then z; =
1(md — r) is a double root of (4.14) and hence also of (4.13). Conse-
quently 2(z1, moz1 + y2) = (0,—y2), and 2(z1, —moz1 — y2) = (0,y2).
In other words (z1,y1) exists with 2{(z1,y1) = (22, ¥2).

Thus it is enough to show that (4.15) has a root in k. As in the prepa-
ration for this part of the proof, let v be an unknown to be specified.

From (4.15) we have
(m? — r 4+ u)? = 2um? — 8yam + (u? — 2ru + 4s). (4.16)
We try to find u such that the right side is a square as a function of m.
Thus
0= B2 —4AC = 64y3 — 8u(u® — 2ru + 4s)
u® — 2ru? + 4su — 8y2 = 0.

The roots of this equation are u = —2«, —28, —27. [In fact, just change
variables with u = —2v, use the identity (4.12a), and reduce the poly-
nomial to —8(v3 + rv? + sv +¢).] Let us take u = —2a. Then (4.16)

gives

(m? — r — 2a)? = —dam? — 8y,m + (4a” 4 4ra + 4s).

Substituting for r and s in terms of «, 3,7 and using (4.12b), we obtain

(m® — a+f+7)* = 4(crm = fiy1)?,
m® —a+ f4+7=22(ym— fin),
m® F2um - a=——7F20m,
(mF o)’ =B F26m +7i = (B Fn)?.
Taking square roots and denoting an independent sign by +', we find
m = ta; ' (f1 F ).

We can reverse the steps, and we see that we have found four roots m
in k to the equation (4.15). This proves the theorem.

Let us digress for a moment and return to the subject of congruent
numbers, first discussed in Subsection C of §111.1. Recall that n is con-
gruent if n is the area of a rational right triangle. Using the easy half of
Theorem 4.2, we obtain the following corollary, which says that (3) =

(2) in Proposition 3.1.
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Corollary 4.3. Let n be a square-free positive integer, and suppose
there exists a Q rational point (z,y) on
! = 2% —n’z
other than (—n,0), (0,0), (n,0), and co. Then there exist three rational

squares in arithmetic progression with common difference n. Hence n is
congruent.

Proor. Let P = (z1,y1) be a Q solution other than the trivial ones.
Then y; # 0 and P does not have order 1 or 2. Hence 2P is not oo, say
2P = (z3,y2). Then the theorem says that z, +n, 25, and z3 —n are all
squares, as required. By (2) = (1) in Proposition 3.1, n is congruent.

Corollary 4.4 (Fermat). n = 2 is not a congruent number.

Proor. If 2 were congruent, (1) = (3) in Proposition 3.1 would say
that y? = z3 — 4z has a nontrivial solution. Transforming via (3.14), we
would obtain a nontrivial solution of the equation u* + v* = w?. But

this conclusion contradicts Proposition 4.1.

3. E(Q)/2E(Q), Special Case

The main step in Mordell’s Theorem is the proof of the following
result.

Theorem 4.5. If F is an elliptic curve over Q, then the abelian group

E(Q)/2E(Q) is finite.

Using an admissible change of variables, we may assume that F is of
the form

y'=(z—a)(z - B)(z~7) (4.17)

with integer coefficients. In this section we make the additional
assumption that a, 3, v are in Q, hence in Z.
Since a, 8,7 are in Q, the subgroup of F(Q) of elements of order < 2

is of the form Z; @ Z,. The picture of E(R) is qualitatively the same as.

in Figure 1.7c. We consider the group @* /Q*?, writing it as -

QX/QXZZ {i2a36567d.,.|a’b’c7d’...€{0,l}}: E ®22
+,2,3,5,7,...
(4.18)

We continue to use the symbol [ | to denote a square.
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Proposition 4.6. Let E be the elliptic curve (4.17) over @ with
integer roots, and define ¢ : E(Q) — @%/Q%2 by

(z — a)@*? if P=(z,y) with P#£ocoand z # «
p(P) = q (0= B)(a=7)Q** if P =(a,0)
Qx? if P =o0.
(4.19)

Then ¢ is a group homomorphism.

REMARK. Then ¢(2P) = ¢(P)? € 1-QX2, so that ¢ descends to a

homomorphism
po s B(Q)/25(Q) — Q< /Q~*. (4.20)

PrROOF. Let P, + P, = P;. We are to show o(P1)e(P)p(P3)7 ! is
in @%2. Since p(P3) = p(—P3) and p(P3) = ¢(Ps)~1, it is enough to
show that Py + P, + P = 0 implies ¢(P1)p(P2)e(Ps) is in @%2. If one
of the P; is 0o, this conclusion is trivial. Thus we may assume P; is of
the form (z;,y;) for i = 1,2, 3.

Case 1: No (z;,y;) is («,0). Let y = mz + & be the line on which
Py, Py, P3 lie. Each P; = (z;,y;) satisfies

(z - )& - B)(z —7) = v = (ma + ).
Hence (z — a)(z — B)(x — v) — (mz + b)? is 0 for ¢ = z1,29, 23 with
multiplicities. Thus
(z = a)(z = B)(z —7) — (mz +b)® = (¢ — 21)(z — 22) (2 — 23).
Putting z = «a gives (z; — a)(zz — a)(z3 — a) = (ma + b)?, and thus
o(P)p(Pa)p(Ps) is a square in QX.

Case 2: (x1,y1) = (o,0). Then neither (z2,y2) nor (z3,ys) is (e, 0),
since otherwise the other point would be co. Let y = mz + b be the line
on which Py, Ps, P3 lie. As before,

(2 - @)(z = A)(z — 7) — (ma + b)’
is 0 for £ = «, x4, £3 with multiplicities, and thus

(z—a)(z ~ B)(z —7) — (mz +b)% = (¢ — a)(z — z3)(z — z3). (4.21)
Now z — « has to divide (mz + b)%, and hence mz + b = m(z — ). So
(4.21) becomes

(z—a)(z = B)(x —7) —m*(z~ )’ = (& - a)(z — 22)(z — 23)
or
(z = B)(z —7) — m*(z — ) = (2 ~ z2)(z — 23).
Putting ¢ = o gives

(@ = B)(@ = 7) = (o — 3)(er — 23),
so that ¢(Py) = ¢(P2)e(Ps). Thus o(P)p(P2)p(Ps) is in @%2.
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Corollary 4.7. Let E be the elliptic curve (4.17) over Q with integer
roots, and define

Yo E(Q)/2E(Q) — Q% /QX*
as in (4.19). Define ¢p similarly. Then the homomorphism

P X 95 B(Q)/2B(Q) — Q% /QX? x Q~ /@< (4.22)
is one-one.

PRrOOF. Suppose (z,y) € E(Q) maps to @2 under ¢, and ©g.

Case 1: Suppose (z,y) is not co or (a,0) or (0,0). Then the condition
is that £ —a and £ — 3 are [ ]. Since (z—a)(z=p)z—7)=[] z—7is
[ J- By Theorem 4.2, (z,y) = 2(z',y') for some (z',¥') in E(Q). Thus
(z,y) is in 2E(Q).

Case 2: Suppose (z,y) = («,0). Then

[]=¢a(@,0) = (a ~ f)(a - 1)@’

[] = ppfe,0) = (a — B)@*2.
Then a — 8 and o — are |_|. Also 0 is a square. By Theorem 4.2,
(@,0) = 2(z',y’) for some (#%y'), and thus (a,0) is in 2E(Q).

Case 3: Suppose (z,y) = (5,0). This case follows from Case 2 by
symmetry. .

o

Let us write

VIV x QY= Y oI, 91y). (4.23)

+,2.3,...

It will turn out that the image of po X pp in Q% /Q*2 x Q% /Q*2 is 0 in
almost all coordinates of (4.23). Let d be the discriminant of the cubic
polynomial (z — &)(z — f)(z — 7), namely

d= (o= B)*(a-v)B-7)% ; (4.24)
(See Proposition 3.3 and the neighboring discussion.) If p is a prime and

r is rational, we write p®||r if » = p®¢ and ¢ € Q has no factor of p In its
numerator or denominator.

3. E(Q)/2E(Q), SPECIAL CASE 91

Proposition 4.8. Let E be the elliptic curve (4.17) over Q@ with
integer roots, let ¢, X pg be the homomorphism (4.22), and let d be the
discriminant (4.24). Then the image of ¢, X @g in (4.23) is confined to
the coordinates + and primes p dividing d. Thus the homomorphism

EQ)/2EQ) — >_ oI, ®1,) (4.25)
+,pld

REMARK. The group on the right of (4.25) is finite, and thus Proposi-
tion 4.28 completes the proof of Theorem 4.5 under the special assump-
tion that the roots a, 8, in (4.17) are in Q.

Proor. Let (x,y) be a point other than oo in F(Q). Assume for
the moment that z ¢ {e,,v}. Fix a prime p = 2,3,5,..., and define
integers a, b, c by

Pllz—a),  Plliz=0), pllz—)-
Since (4.17) says that (¢ — a)(z — 8)(z — ¥) is a square, we have
a+b+c=0 mod2 (4.26)
Suppose at least one of a,b,c is < 0. Say a < 0. Since « is an integer,
pl*l || (denominator of ). Therefore
Plile-a), pll(z-8), p*ll(z-7).
In other words, a = b = ¢. From (4.26), it then follows that
a=b=c=0 mod 2.

Consequently the image of (z,y) in the pth coordinate of (4.23) is 0.
Suppose at least one of a,b,cis > 0. Say a > 0. If p + d, then
pt (« — ) and hence p cannot occur in the numerator of

z—fB=(x—-a)+ (a—pF).
In other words, b = 0. Similarly, if p 1 d, then p ¥ (e — ¥), and we
conclude ¢ = 0. By (4.26), a is even. Thus again we have
a=b=c=0 mod 2,

and again the image of (z,y) in the p*® coordinate of (4.23) is 0.

We have been assuming that ¢ ¢ {«,3,7}. When z is in this set,
then ¢,(z) and pg(z) are products of @ — 3, @ — v, and 8~ v, up to
sign, and these are all prime to p if p + d. Hence the p*M coordinate of
pal2) X 3(z) is (0,0)

Combining these conclusions with the one-oneness from Corollary 4.7,
we obtain the proposition.
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4. £(Q)/2E(Q), General Case

So far, we have proved Theorem 4.5 in the special case that the roots
a,B,v in (4.17) are in Q. In the general case, let k be the splitting field
of the cubic polynomial (z — o)(x — B)(z — 7) over Q. The rough idea
is to imitate the proof in §3, replacing Q everywhere by this extension
field k. But we encounter three complications:

(1) The modified approach will lead to information about
E(k)/2E(k), and we need to deduce information about
E(Q)/2E(Q).

(2) The decomposition (4.18) of @*/Q*? uses unique factorization
in Z, and unique factorization may fail in the ring of algebraic
integers in k.

(3) The % coordinate of @%/Q*? in (4.18) represents units in Z, and
the units need to be controlled in whatever ring replaces Z in the
general case.

We can dispose of (1) rather quickly.

Proposition 4.9. Let E be the elliptic curve (4.17) over Q, and let &
be the splitting field of (z —a)(x — B)(z — v) over Q. Then the canonical
homomorphism '

E(Q)/2E(Q) — E@{/QE(’C) (4.27)

has < 22*:@] elements in its kernel. Consequently if E(k)/2E(k) is finite, ‘

then so is E(Q)/2E(Q).

REMARK. We shall use the Galois group Gal(k/Q). Note that if
Q = (z,y) is in E(k) and o is in Gal(k/Q), then Q7 = (o(z),0(y)) is in
E(k) since E is defined over Q.

PROOF. Let

B2 = {Q' € E(k)|2Q' = 0}.

The points P in E(Q) that map to 0 under the canonical homomorphism
are those in E(Q) N 2E(k). For each such P, select Qp in E(k) such
that 2Qp = P. Then we obtain a function

Ap : Gal(k/Q) — E[2] (4.28a)

by the definition
Ap(0) = Q% — Qp. (4.28b)
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[In fact, to see that Ap takes its values in E[2], we observe that 2(Q% —
Qp) =(2Qp)° —2Qp = P° — P =0
Now let us show that Ap = Ap: implies P’ is in P+ 2E(Q). In fact, if

Qp —Qp=Ap=2p = Q% — Qp

for all o, then

(@p —Qp)’ =Qp —Qp.

Since k is a normal extension of @, kG2(¥/@) = Q. Thys Qp —Qp isin
E(Q). Hence

P'— P =2Qp - Qp) € 2E(Q),

as required.

Thus for each member of the kernel of (4.27), we select P in E(Q)
mapping into 2E£(k), and then we can associate Ap as in (4.28). What
we showed above is that if we start with a different member of the
kernel, then the resulting Ap is a different function from Gal(k/Q) to
E[2]. Hence the order of the kernel is < the number of functions from
Cal(k, Q) to E[2], which is 4/G2I(*. @)1 — 92(k:Q]

Complications (2) and (3) are more subtle. Let us list some examples.

EXAMPLE 1. y® = 23 + 2. The splitting field is & = Q(v/—1). The
ring of integers Z[\/—1] is a unique factorization domain, and its group

of units is {(vV~1)*}3_, = Z,.

ExampLE 2. y® = 2® — 2. The splitting field is k = Q(v/2). The
ring of integers Z[v/2] is a unique factorization domain, and its group of
units is the infinite group {£(1+v2)¥}2__ ~7 ¢ Z,.

ExaMPLE 3. y? = 2% + 5z. The splitting field is k = Q(v/-5). The

. ring of integers Z[v/=5] is not a unique factorization domain. In fact,

the numbers 2, 3, 14+/—5 are all prime, and 2-3 = (1+v=5)(1-/=5).
The group of units is {+1} = Z,.

In the first two examples, Z[/~1] and Z[v/2] are unique factorization
domains. So it is meaningful to write
k*/k** = {units/(squares of units)} @ {pSph - la,b,--- € {0,1}}
= {units/(squares of units)} @ Z Zy; (4.29)

P prime
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in the sum we list only one representative from each class
{pe|e¢ = unit} of associate primes. As in (4.19), we get a homomor-
phism ¢ : E(k) — k> /k*? generically given by ¢ — (z — a)k*2. And
as in Corollary 4.7, we obtain a one-one homomorphism

va X g : E(k)/2E(k) — {units/(squares of units)} & Z (Z2 0 1Z5).

p prime
(4.30)
As in Proposition 4.8, we can discard all primes p except those dividing
the integer discriminant d given in (4.24). There are only finitely many
such primes because of unique factorization. Then £(k)/2F(k) has been
mapped one-one into the finite group

{units/(squares of units)} & > (Z> ® Z»), (4.31)
pld

and E(k)/2E(k) is therefore finite.

For the third example, unique factorization fails for Z[+/—5], and
(4.29) is no longer valid. However, if we let S = {1, 2,22, 23 ...} and
define R = S~1Z[/=5], then R is a ring with Z[v/=5] C R C k, and it
turns out that R has the following two properties:

(1) Ris aprincipal idea domain, hence a unique factorization domain.

(2) The group of units in R is finitely generated (with —1 and 1 as

generators).
Since R contains Z[v/=5], the quotient fieldyof R is still k. By unique
factorization, (4.29) is valid if we interpret units and primes as units and
primes in R. The argument yielding a one-one homomorphism (4.30)
is then valid, and again we can collapse the image to {4.31). Since.the

group of units in R is finitely generated, it is a direct sum of cyclie-

groups, and thus
{units/(squares of units)}

is a finite group. Therefore (4.31) is a finite group, and E(k)/2E(k) has
to be finite.

The same argument as above reduces the finiteness of E(k)/2E(k) in
the general case to the following result.

Theorem 4.10. Let k be a finite extension of @, and let Oy be
the ring of algebraic integers in k. Then there exists a ring R with
O C R C k such that

(1) R is a principal ideal domain, hence a unique factorization do-

main.

(2) The group of units in R is finitely generated.
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The proof of Theorem 4.10 relies on three famous results in algebraic
number theory. In §9 we shall sketch the relevant background from
algebraic number theory and then give a proof of this theorem.

As we mentioned, the finiteness of E(k)/2E(k) follows from Theorem

4.10. Then Proposition 4.9 implies that E(Q)/2E(Q) is finite. This
completes the proof of Theorem 4.5.

5. Height and Mordell’s Theorem

With the hard step finished, we can now address Mordell’s Theorem.
In this section we state the theorem, introduce the notions of “naive
height” and “canonical height,” and show how Mordell’s Theorem fol-
lows from Theorem 4.5.

Theorem 4.11 (Mordell). If E is an elliptic curve over @, then the
abelian group E(Q) is finitely generated.

Using an admissible change of variables, we may assumne that F is of
the form

v’ =23+ Az + B (4.32)

with A and B in Z. For P = (z,y) in E(Q), write z = P with
. q
GCD(p, ¢) = 1, and define the naive height of P by

ho(P) = log max(|p], l¢) > 0. (4.33)

By convention we define

For any given C,
{P € EWQ)|ho(P)<C) is a finite set. (4.34)
Proposition 4.12. The naive height satisfies
ho(2P) = 4ho(P) + O(1), (4.35)

where O(1) is bounded independently of P € E(Q).
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ProOF. If P* = 2P = (z*,y") # oo, we know from (3.74) that

_ z? - bax? — 2bex — bg
T 4g3 + b2132 + 2byz + bs ’

*
T

where by = 0, by = 24, bg = 4B, bz = —A2. Thus

¢t — 9Az% — 8Bz + A?
4(z3 + Az + B)

¥ =

If z = 2 with GCD(p,q) =1, then z* = Z——* with
q

p* :p4__2Ap2q2 _8qu3+A2q4
7" = 4¢(p° + Apg® + B¢®).

* * * p ]
Let § = GCD(p*,q¢*), p** = p*/8, and ¢** = ¢ /8, so that z* = pex in

lowest terms. Then

max(|p""],1¢""1)
< max(lp”},1¢7])
< max(|pl, lg])* max(1 + 2|A] + 8| B| + A%, 4(1 LAl + [B]))

= C4,p max(|p, lg])*,
and
ho(2P) < 4ho(P) +10g Ca,5- (4.36)

To get an inequality in the reverse direction, we shall bound
max(|p|,|g]) in terms of max(|p*], lg*]), and we shall bzound
max(|p*|, |g*]) in terms of max(|p**[, |¢**{). Let d = —4A3 —27TB* #£ 0
be the discriminant of the cubic polynomial z3 + AX + B. Then one
can check the following identities:

4dq” = (3p° — 5Apg® — 21Ba®)¢" — 4(3p*q + 4A¢°)p"
adp” = —(A?Bp® + (5A* + 32AB?)p?q
+(26A%B +192B%)pg® — 3(A° + 84°B*)¢°)¢"
—4((44% + 21B*)p® — A’Bp’q

4 (3A% + 22AB%)pg® + 3(A°B + 8B%)¢°)p". o
37
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[To derive these formulas, one can use two applications of Proposition
2.16 and its proof, with f = p* and g = ¢*. In one application, X = p
and the domain is k[q]; in the other application, X = ¢ and the domain
is k[p]. A symbolic manipulation program is a helpful tool ]

From (4.37), we obtain

max(|p|, |¢])” < C g max(Ipl, |q])® max(|p*|, l¢"|)

and thus
max(|p), |g])* < Cl4 p max(|p*|, lg*])- (4.38)

This inequality is one of the desired bounds. For the other one, we see
from (4.37) that §[4dq” and 6|4dp”. Since GCD(p,q) = 1, 6/4d. Hence é

 1s bounded, and

max(|p*|, l¢"[) < C" max(|p™*}, lg"*]).
Combining this inequality with (4.38), we have
max(|pl, l¢)* < C} 5C" max(|p**,lg**). (4.39)
Inequalities (4.36) and (4.39) together prove the proposition.

Proposition 4.13. There exists a unique function b : E(Q) — R
satisfying
(1) h(P) —~ ho(P) is bounded
(ii) h(2P) = 4h(P).
The function is given by

A(P) = lim ho(2"P) (4.40)

n—co 4n

It has h(P) > 0 with equality if and only if P has finite order. Also
{P|h(P) < C} is a finite set for each C.

REMARK. The function A is called the canonical height.

PRrROOF. We begin with uniqueness. Let h satisfy (i) and (it), with a
bound C’ in (i). Then

[47A(P) — ha(2" P)| = |R(2" P) — ho(2" P)| < "
by (ii) and (i). Thus

ho(2"P C’
ey~ R0 < &
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and h must be given by (4.40).
ho(27 P)

o } is Cauchy. By Propo-

For existence, we first prove that {

sition 4.12, we can write
1ho(2Q) — 4ho(Q)| < C”
with C" independent of . Then N > M > 0 implies

[4=N ho(2V P) — 4= M ho(2M P)|

N-1
= | (4 tho(2F' P) — 47 ho(2" P))
n=M
N-1
441
< 47" Hho (2 P) — 4ho (27 P)| (441
n=M
N-1 -
< 410" < e
eay?” A

and the right side tends to 0 as M and N tend to co. Thus h(P) is
defined. Letting N — oo in (4.41) and taking M = 0 gives

WP -hP< S

which proves (i). Result (ii) is clear from (4.40). Also A{P) > 0.
If P is a torsion point, then 2” P lies in a finite set. So h(P) = 0. In
addition, (i) implies {P |h(P) < C} is finite.

Now suppose P has infinite order. Since {P|h(P) < 1} is finite, we

must have h(2" P) > 1 for some n. By (ii), A{P) > 47" > 0.
Proposition 4.14. The canonical height on E(Q) satisfies
h(P + Q) + h(P — Q) = 2h(P) + 2h(Q). (4.42)
ProOF.We shall prove that
h(P+ Q)+ k(P — Q) <2r(P) + 2h(Q). ‘ (4.43)
Once we have done so, we can apply (4.43) to P’ = P+@Q and @’ = P-Q

to get
h(2P) + h(2Q) < 2h(P + Q) + 2h(P — Q).
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Dividing by 2 and using property (ii) of h, we obtain
2h(P) + 2h(Q) < h(P + Q) + h(P - Q).

In combination with (4.43), this inequality proves (4.42).
To prove (4.43), it is enough, by (4.40), to prove that

ho(P+ Q)+ ho(P-Q) < 2ho(P) 4 2ho(Q) + O(1).

'If P or @ is co, this inequality is trivial; if P+ Q or P — Q is oo, the
inequality reduces to Proposition 4.12. Thus let us write

P=(z,y) withz= ;—9 in lowest terms,

/
Q=(z,y) withz= % in lowest terms,

2l = max(lpl,lgl),  |2'leo = max(lp/], 1)), 24 = 2(P % Q).

Since P # +0), (3.72) and (3.73) in the chord case give

p 2
zy =2(P+ Q)= (y Ti) —r—z.

.'L'l

Thus
- ylz + yz _ (:L’/ + :c)(:c’ _ z)?
zy 4z =2

CE

— 9 (4 23) + A(e' + ) + 2B — (z' + z)(z'? — 222’ + 2?)

@2

_ zz'(z' + z) + A(z' + 2) + 2B

(z/ - z)?

_ o PP(P'a+ ') + Agd'(P'a + pg') + 2B¢%¢?
(P'q —pq')?

(4.44)
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and
2 4 o2
W? -9 nY ty
T T = g @ = o) -—2(:c+:c)(xl_l_)2
B ( _z)Z(xﬂ +:L'1:'+I2 +A)2
- @ - o)
2(z +2)[(z' +2)(2? — 2z’ + z? + A) + 2B]
(' — 2)?
(2 + z2' + 22 + A)? — 2(z” + 202’ + 2?)(z? —zz' + 2 + A)
- (@ —2)?
_AB(z + 2') + (2% — %)*
@ o)
1
= (zz' — fz)z - 4)5;(-”3 +2') after simplification
'~z
_ (pp —qd'A)® — 49q' Blpd' +P'a). (4.45)
(ra—rpg)?

+(z+2)’

+ (1' + 21)2

Examining (4.44) and (4.45), we see that

”" _S
I and TT- =7

with '
max(|r, fs1, 1t]) < ClalZole'l%- o (446)

r s
Then z, and z_ are the two roots of X? — (;) X+ (?) = 0, namely

X = %(r + +/r% — 4st), and we see that
i
Z z 4
Ty € 5% and z_ € % (447)
Letz, =2t andz_ = q— in lowest terms. By (4.47),2t = 6494+ = 6-q-
+

for suitable integers 64 and 6. Then

(646_)(g4q-) = 4. (4.48)
From 4+ p_
VRPN Ty S I R S %
- =T = — —_— = )
i T g+ - 0+~
we obtain Art?

(P49~ + P-q4)t = 7944~ = 5 5~
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and hence
646-(p4q- +p-gqy) = 4drt. (4.49)
From
e -2
we obtain
(P+p-)t = sq49- = ;:;i
and hence
(64p4)(8-p-) = 4st. (4.50)

We shall show that ¢|6,6_, and then

|p+9- +p-gq4) <4|r|  from (4.49)
|pep-| < 4]s| from (4.50) (4.51)
lgra_ <4 from (4.48)

To see that £}64.6_, first fix a prime p. We construct by (4.50) integers
a and b > 0 such that p®|6,p,, p®|6_p_, and p**® is the exact power of
p dividing t. Since 2t = 6,q4 = 6_q_, p*|64+94+ and p*|6_q_. Then p°
divides GCD(64p4,64q+) = 64, and p® divides GCD(6_p_,6_q_) = 6_.
So p®tt|6,6_. Since p is arbitrary, ¢t|6,6_. This proves (4.51).

We readily check the numerical inequality

max(|p4 |, l¢4 ) max(|p—|, lg-|) < 2max(lpyq- + p_ayl, lp+pr-|, la+9-1)-

Substituting in the right side from (4.51) and then using (4.46), we
obtain

max(|p+ |, lg4[) max({p-|, lg-|) < 8 max(|r|, |s|, [t]) < 8C|z[5,)'|%-

Consequently

ho(P + Q) + ho(P — Q) < 2ho(P) + 2ho(Q) + log 8C,

and the proposition follows.
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Proor oF THEOREM 4.11. Since Theorem 4.5 has shown
E(Q)/2E(Q) to be finite, there exists some sufficiently large C' such
that the set

S={P e E(Q)h(P)<C}
contains a representative for each coset of E(Q)/2E(Q). The set S is
finite. We claim it generates E(Q).

Assume the contrary, and let P € E(Q) be outside the group gener-
ated by S. Since {P’ € E(Q)|h(P") < C'} is finite, we may assume P
is chosen with h(P) as small as possible among all points outside the
group generated by S. Choose @ € S with

P=Q mod 2E(Q),

say P = Q + 2R. By Proposition 4.14, we have either

h(P + Q) < h(P) + A(Q)
or

h(P — Q) < h(P)+ h(Q);
fix the sign of h(P £ Q) so that this happens. From P+ Q =2(Q + R)
and P~ @ = 2R, we have P+ @ = 2P’ for some P’ € E(Q). Then

4h(P') = h(2P") = h(P £ Q) < h(P) + h(Q)
< W(P)+ C < 2h(P) < 4h(P).

So h(P') < h(P). By minimality, P’ is in the group generated by S.
Since @ has this property and P &+ @ = 2P’, P has this property, con-
tradiction.

6. Geometric Formula for Rank

We have now proved that the @ rational points of an elliptic curve E
over @ form a finitely generated abelian group. Thus

E(Q) =7 &F, (4.52)

where F is a finite abelian group. The group F is uniquely defined
as the torsion subgroup, and Chapter V will show how to determine it
completely for_any particular E. The integer r is the rank of E(Q).

In this section we shall give a geometric limit formula for the rank,
under the special assumption that E is of the form

y2:x3+Ax+B, A,BEZ. (453)

The tool will be the canonical height  defined in §5. We give a complete
proof modulo one result from Euclidean Fourier analysis.
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?rpposition 4.15. With £ as in (4.53), there exists a unique
Z bilinear form (P, Q) on E(Q) such that (P, P) = h(P). This form
descends to E(Q)/F = Z" and is positive definite there.

REMARKS. Let {P;} be a Z basis of Z"  and let cij = (P, Pj), so that
the form is given by

<Zm,‘P,', anpj> = Zmicijnj. (4.54)
i j i,j

Thep the. proof will show that the symmetric matrix (cij) is positive
semidefinite and that 3o, mi P, 2_: miP) = 0 only when all m; are 0.
Subsequently we shall see that (i) is actually a positive definite matrix.

PRrooF. If the bilinear form exists, it has to be given by
(P,Q) = 3(h(P+ Q) = h(P) — h(Q)). (4.55)
This proves uniqueness. For existence, define (P,Q) by (4.55). Then

(P, Q) i‘s.certainly symmetric. For additivity in the first variable, we use
Proposition 4.14 several times. First we have

(Pv _Q)

Il

3(h(P — Q) - h(P) - h(Q))
~3(A(P+ Q) ~ h(P) - h(Q)) = —(P, Q).

(4.56)

Then we can write

(P+P’7Q> +<P_P/1Q)
= 2(MP+ P+ Q)+ h(P - P' + Q)
= h(P+P') = h(P - P') - h(Q) - h(Q))
= 3(2h(P + Q) + 2n(P") - 2h(P) — 2h(P') - 2h(Q))
= 2P, Q). (4.57)

Interchanging P and P’ and using (4.56) gives
(P+P,Q)—(P-P Q) = 2(P', Q).
Adding this to (4.57), we obtain

(P+P,Q)=(P.Q)+(P.Q).
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Thus the form is bilinear.
Next let us observe that

(P, Q) < h(PYR(Q). (4.58)
In fact, the bilinearity proves that

0 < h(nQ — mP) = n*h(Q) — 2mn(P, Q) + m*h(P).

Hence

h(@)A? — 2(P,Q)A + h(P) 2 0

for all A € Q, and the inequality extends to all A € R by a passage to
the limit, The discriminant must then be < 0, and the result is (4.58).

If Q 1s a torsion point, then A(Q) = 0, and (4.58) shows that (P, Q) =
0. Hence

0=(P,Q) = 3(h(P+Q) - h(P)-h(Q)) = 1(h(P+ Q) - h(P)),

and h{(P 4 Q) = h(P). It follows that the form descends to E(Q)/F.
On Z7 the form is given by (4.54). Since h > 0, we see that

J
N 20
ij
for all systems of rationals &, ..., r. Passing to the limit, we see

that Zi’j AicijA; > 0 for all reals Ay,...,A,. Thus (¢;) is positive
semidefinite.

Let us now sharpen the conclusion of Proposition 4.15 by showing that
the matrix (c;;) is positive definite. We shall use the following celebrated

result of Minkowski.

Lemma 4.16 (Minkowski). If £ is a compact convex set in R” con-
taining 0 and closed under negatives and having volume > 47, then E
contains a nonzero member of Z".

REMARK. Fine tuning of the proof would show that the same conclu-
sion holds when the volume is merely > 27.

ProOOF. Let N be an integer large enough so that the standard cube
C with center 0 and side 4N contains £. Suppose E contains no nonzero
member of 7. We claim that the sets {{+ 2E} for I € Z" are disjoint.
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Iﬁ.fa.ct,. if I + %el =l + %82 with Iy # 1y, then I ~1ly = l(4‘32 ~—e1), and
this is in E since e, and ~eyp are in E and F is convex. ’ ’

If every coordinat i i .
- Yy coordinate of I is < N in absolute value, then [+iEisinC.

(4N)" = vol(C) > D vl(+1iE)

|coords tj< N
2 (2N) vol(3 E) = 27T(2N) vol(E).
Since vol(E) > 47 by assumption, this is a contradiction.
Proposition 4.17. With £ as i
. . 3.17. 3 n (4.53), the symmetric positive
semidefinite matrix (ci;) in (4.54) is actually positive definite.

ROOF. Since (c;;) is symmetric and positive semidefinite, we can

choose column vectors. oD ,v'") that form an orthonormal basis of
eigenvectors of (¢;;) with respective eigenvalues

A > s a0 >,

(\)/Ve are to prove that (") > g Arguing by contradiction, suppose (") =

Pet E:(")} be ﬂ(l: standard orthonormal basis of column vectors and
write v(F) — }:i. v; )e() We shall identify P = >_: mi P; with the coiumn
vector 3°. m;e(® 5o that the 77 quotient of E(Q) gets identified with

the standard lattice of colum
n vectors. The form (- -} th
column vectors with the definition (1) then transfers to

<Z aie(i), Za;-e(j)> = ZWQ]‘“}
J

13 .
%)

Then

<Z by ()] szv(1)> = (D o), > b{e
% ] ki 1; ’
= Z brby Z v,(k)cij v]w
Py i;

=3 b Y AD,0,0
k1l i

— k
= Z;A( 5 (4.59)
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since the v(¥) are orthonormal. —
Let ¢ be the minimum value of h(P) = (P,'P) for P gébF.ﬂ:Fhlirimzct
and is > 0 since {P|h(P) < C} s always finite. Let E be the comp

convex set of columu vectors

T € 1/2
— and |b,| < M} ,
. {Z”“"” |z, i = (i)
k=1

with M chosen so large that vol(E) > 47. By Lemma 4..16, E contains
a nonzero lattice point Zbkv(k) «» P. But then (4.59) gives

r

= b, b v(')> = Z A2
= (33 20

k=1

r—1 ] ")
= AFIp2 since A/ =0

k=1

= € . b (k) 3q 3 E

V| — e pv/ 18 1n

< Z/\( ) (21'/\(1)) since Z

k=1
€
=5

and we have a contradiction. Thus Al > 0, and (ci]-) is definite.

the choice of the basis {Pi}

1 i) = i, Pj ds on
The ot e (P By e lliptic regulator of F over

of 77, but its determinant does not. The e

is the number
le RE/Q :det((P,',Pj>).
0. This number enters into the

iti t R > .
Proposition 4.17 shows that Hg/g e o Dyer Conjec-

statement of the third form of the Birch

ture discussed in Chapter I. o
We can now give the geometric 1r’1t

symbol ~ to denote “asymptotic to,

erpretation of rank. We use the
in the sense that the ratio tends

to 1.
Proposition 4.18. With E as in (4.53), the following formula is
valid as T' — oo: o
= #(F) ifr=0
#{(I,y) € E(Q) ‘ tx‘oo < T} ~ #(i)zgf (logT)'/z ifr>0.
Riiq

Here #(-) refers to the pumber of elements in a set, and € is the volume

of the unit ball in R".

1
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Proo¥. We may assume r > 0. Let (¢;;) be the positive definite
matrix in (4.54). With ¢ as the standard basis of R”, we borrow the
following fact from Euclidean Fourier analysis: The number of lattice
points 3 n;e(® with ¥ nieijm; <t is

Qrtr/Q

as t — oo. Consequently the number of points > " n;F; + f in E(Q) =
7"® F with h(3_n; P+ f) <tis

Rt

172

Reiq
as i — 0o. Since h — hg is bounded and r > 0, the same asymptotic
estimate is valid for hg. Taking ¢t = log7" and using the definition of hg,
we obtain the proposition.

7. Upper Bound on the Rank

Although Proposition 4.18 does give a limit formula for the rank of
E(Q), the formula is not very practical as a computational tool, even
for getting an idea of what the rank is. In this section we shall take
a different approach to estimating the rank, namely by sharpening the
bound on the order of E(Q)/2E(Q).

For simplicity we return to the situation of §3, where the elliptic curve
E is given by (4.17) and the roots «, 3,4 of the cubic polynomial are
integers. We shall obtain an upper bound for the rank that is sharp in a
number of cases. The same principle applies in the more general setting
of §4 (where o, 3,4 are not necessarily integers), but the upper bound
is inclined to be too big.

In the situation of §3, let us notice an easy upper bound for the rank r.

Proposition 4.8 shows that the order of F(Q)/2E(Q) is bounded above
by 2 to the power

s = 2+ 24f{primes p ] p|d},

d being the discriminant. On the other hand, the torsion subgroup F
of E(Q) contains Z, @ Z, as a subgroup and, because of the structure
of E(R), contains no more than two cyclic summands of even order. It
is thus the direct sum of a group of odd order and two cyclic groups of
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even order. Consequently F' contributes 2° to the order of E(Q)/2E(Q).
Meanwhile the free abelian part Z” of E(Q) contributes 2" to the order
of E(Q)/2E(Q). Thus

r4+2<s=2+2¢#{primes p | p|d},
and our easy upper bound is
r < 24t{primes p l p|d}. (4.60)
Our objective is to sharpen (4.60). Let us call

p good ifptd
p fairly bad if p divides exactlyoneof a — 3, S~ v, a= v
p very bad if p divides all three of « — 3, 8 — 7, a — 7.

These notions are related to the discussion in §II1.5, but we omit the
details. Let

n; = number of fairly bad primes

ny = number of very bad primes
Our first improvement of (4.60) is contained in the following proposition.

Proposition 4.19. Let E be the elliptic curve (4.17) over @ with
integer roots a, 3,7, and let r be the rank of E(Q). Then

r<mn;+2n,~ 1. (4.61)

Proor. We go over the proof of Proposition 4.8 in order to reduce
the image of

E(Q)/2E(Q) — ) &(Z.®1,) (4.62)

+,pld

while keeping the mapping one-one. We shall show that the image in
the + coordinate lies in a subgroup Z» of Z, @ Z, and the same is true
of the p** coordinate if p is fairly bad. Then the same analysis that gave
(4.60) will now give (4.61).

First consider the + coordinate. The roots o, 3,y are integers and
can be ordered. Let us say a < # < 7, so that

r—a>z—fF>zr—7. (4.63)
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If ¢ ¢ {«,8,7}, the possible signs in (4.63) are apparently + + +,

4+ 4+ —, 4 —-—,and — ——. For a point (z,y) in E(Q), the product
(z — a)(z — B)(z — 7) equals a square (namely y?), and thus only + + +
and + — — can occur. Therefore the &+ coordinate of the image of ¢, in

(4.20) and (4.25) is 0, and the first factor of Z3 can be dropped. [Note
that if (4.25) used o X 9y OF g X @y, then the image in the + coor-
dinate would still be in a Z, subgroup of Z, ® Z,, namely 0 & Z, and
diag(Z2) in the respective cases.]

Actually the above argument applies only when z ¢ {«, 3,7}. When
z = a, (4.19) shows that the + component of p,(z) is obtained from
sgn[(a — B){e — 7)] = +1 and hence is trivial. When x is g or v, then
the 4 component of ¢,(z) is obtained from sgn(z — ) = +1 and hence
is trivial.

Now consider the p coordinate when p is fairly bad. First let us assume
that p | («—/). Let (z,y) be a point other than oo on E(Q), and suppose
temporarily that z ¢ {«, 3,v}. Define integers a, b,c by

Pllz=-e),  Pli-6), -7

In (4.26) we saw that a + b4+ ¢ =0 mod 2. Also we saw that if any of
a,b,cis <0, thena=b=c=0 mod 2, so that the image of ¢, x pg
in the p*" coordinate is (¢ mod 2, b mod 2) = (0,0).

Suppose a > 0, so that p | (z — «) in the sense that the numerator of
z—a has p as a factor. Since p{ (a—+), wehavept (z—%). Thusc =0
and a+b =0 mod 2, and the image of o X ¢p in the p™" coordinate is
contained in diag(Z;). Suppose instead that b > 0, so that p | (z — ).
Since pt (B —7), we havep{ (z — 7). Thus c=0,a+ 5 =0 mod 2,
and the image is in diag(Z2). Finally suppose instead that ¢ > 0, so that
pl(z—7). Since p4 (y— ) and pt (y — B), we have p ¥ (z — «) and
pt(z—f). Thus a = b =0, and the image 0 is in diag(Z3).

Exceptional cases occur when z € {o, 8,7}. If = «, then p,(2) =
(a — B)(a — ¥) and pg(z) = B — «. Since pq(x)/ps(x) is not divisible
by p, the image of ¢.(z) X @s(z) in the p'" coordinate is again con-
tained in diag(Zs). If z = § instead, then pq(2) = # — @ and pa(z) =
(8 = a)(B — 7). Since pg(x)/pa(z) is not divisible by p, the image of
va(z) x pp(z) in the p™™ coordinate is contained in diag(Z,). If z = ¥
instead, then ¢o(z) = (v — a) and pg(z) = (¥ — B) are not divisible by
p. Soa=5b=0, and the image 0 is in diag(Z).

We have been assuming that p | (a — 3). If p | (8 — v) instead, the
p™ coordinate of the image of po X ¢g is in 0 @ Z2, while if p | (o — 7),
the pth coordinate of the image of g X wg i1s in £3 @ 0. In each case
the image is confined to a Z, subgroup of Z, @ Z,. This completes the
proof.
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Once again let us return to congruent numbers. The integer n is

congruent if n is the area of a rational right triangle. Let us borrow
the following lemma from Theorem 5.2.

Lemma 4.20. If n is a square-free integer and F is the elliptic curve

y2 =2® — nz,

then the torsion subgroup of E(Q) is Z; $ Z,.

Proposition 4.21. A square-free integer n fails to be congruent if
and only if the elliptic curve

E yz———z's——n%,

has the property that E(Q) has rank 0.

Proor. If E(Q) has rank 0, it is a torsion group, and Lemma 4.20
shows it to be Zs & Z;. By (1) = (3) in Proposition 3.1, n is not
congruent. Conversely if n is not congruent, Corollary 4.3 shows that £
has no Q rational point other than (—n,0), (0,0), (n,0) and co. Hence
E(Q) has rank 0.

Corollary 4.22 (Fermat). n = 1 is not a congruent number.

ProoF. The elliptic curve E with y? = 23—z is of the form considered

in Proposition 4.19, with {a, 8,7} = {—1,0,1}. All primes are good
except p = 2, which is fairly bad. Thus n; = 1 and ny = 0. By
Proposition 4.19, E(Q) has rank 0. By Proposition 4.21, n = 1 is not
congruent.

We already saw in Corollary 4.4 that n = 2 is not a congruent number.
If we attempt to reprove this result from Propositions 4.19 and 4.21, we
run into a problem. The relevant elliptic curve is y?> = 23 — 4z, with
{a, 8,7} = {-2,0,2}. All primes are good except p = 2, which is very
bad. Thus n; = 0 and n; = 1, and Proposition 4.19 gives us the estimate
r < 1 for the rank. We do not immediately get r = 0.

However, an even more careful analysis of the proof of Proposition
4.8 will give the sharper estimate. We need to study the relationship
between the + coordinate of ¢, X @y and the p = 2 coordinate. In Table
4.1 below, we list the effect of ¢ = @a,pp,py on an z(P) other than
a,B,7. Each column for + gives a conceivable configuration of signs,
and each column for p = 2 gives a conceivable set of residues modulo 2
for the power of 2 in p(z). We keep in mind that (z + 2)z(z — 2) has to
be a square.

Map  Image mod Q*? + 2 Total

// Po z+2 + + I:] D

' ¢p z + - 1 -0
R N S s &

7. UPPER BOUND ON THE RANK 111

Map  Image mod Q"‘Z + 2

Pu z+2 + + 0 011
©s z + - 01 0 1
o z—2 + - 0110

TaBLE 4.1. Image of ¢ for y? = 23 — 4z with = ¢ {~2,0,2}

At all other primes the image of each ¢ is a square. Conceivably all
8 combinations of a column for + and a column for p = 2 could occur;
actually we shall see that there is a restriction.

The idea is to adjust P by an element of order 2 to make the p = 2 col-
umn trivial. For P = (a,0), (8,0), (v,0) the corresponding information
is assembled in Table 4.2.

Image of Image of Image of
Map 2
Po 8 + 1 2 + 1 4 + 0
vp -2 -1 -4 - 0 2 + 1
Py -4 -0 -2 -1 8 + 1

TABLE 4.2. Image of ¢ for y? = z3 — 4z with z € {-2,0,2}

Since all nontrivial columns appear for p = 2 and since each ¢ is a
homomorphism, we can adjust any point P under study by adding an
element of Z, @ Z, so that ¢,, ¢s, and ¢, all map the adjusted point
into (0,0) in the p = 2 coordinate. For the adjusted point, which we
still call P = (z(P), y(P)), the image of ¢ is as in Table 4.3.

TABLE 4.3. Adjusted image of ¢ for y? = % — 4z
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There are only two possibilities, one of two columns from % and the

column for p = 2.
We shall show that the second possibility, namely

z+2=[], z=-[1. t—2=-[], (4.64)

does not occur. Then it will follow that r = 0. Arguing by contradiction,
suppose (4.64) occurs. Subtracting the first two equations gives

2=D+D.

If these squares have even denominators, then the power of two is the
same for each and is even; also the numerators must be odd. Clearing
denominators, we obtain

OED—I-D mod 8

with both squares odd integers, and this is a contradiction. Thus the
first two squares in (4.64) have odd denominators. Subtracting the last
two equations in (4.64) gives

2=-[]+[1,

and the first of these squares has an odd denominator. Therefore so does
the second. Clearing denominators, we obtain

om? = —[]+[] mod38 (4.65)

with m an odd integer and both squares equal to integers. Then m? =1
mod 8, and (4.65) is impossible. Thus (4.64) cannot occur, and y* =
£3 — 4z has rank 0. This argument has given a different proof that n =2
is not congruent.

A similar technique gives refined information about the rank of E(Q)
for y? = 23 — p?z, where p is an odd prime. The result is as follows.

Proposition 4.23. Let p be an odd prime, and let E be the elliptic
curve
y? =2 — piz.

Then the rank r of E(Q) satisfies

r<?2 ifp=1 mod38
r=0 ifp=3 mod8
r<1 ifp=5or7 mod8.

Consequently any p = 3 mod 8 is not a congruent number.
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REMARK. The proof will use some facts about quadratic residues
from elementary number theory.

ProoF. We argue as above, taking {a, 8,4} = {-p,0,p}. All primes
are good except 2 and p; 2 is fairly bad, and p is very bad. The infor-
mation analogous to what is in Table 4.1 is assembled as Table 4.4.

Map Image mod Q*? + 9 P

Pa z+p + + 01 00 11
¥s z + - 0 0 01 0 1
Yy T—p + - 01 01 10

TABLE 4.4. Image of ¢ for y? = 23 — p%z with = ¢ {~p,0,p}

?f we make a table like Table 4.2 that lists what happens for the torsion
points (—p,0), (0,0), and (p,0), we find that the torsion points account
for all nontrivial columns for the prime p in Table 4.4. Since each ¢ is a
homomorphism, we can adjust any point P under study so that ., ¢p
and ¢, all map the adjusted point into (0,0) in the p coordinate. For,
the adjusted point, which we still call P = (x{P),y(P)), Table 4.5 shows
the four possibilities for the combined contribution from a column for
+ and a column for 2. The point is that certain columns listed under
“Total,” depending on p, cannot occur. If only two columns can occur
then » < 1. If only one column can occur, then r = 0. ,

Map Image mod Q2 Total

Pa z+p 0 O 200 20
s z 0 - o -0
P z-p O -0 200 -2[]

TABLE 4.5. Adjusted image of ¢ for y? = 2% — p%z
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H

~D occurs. Subtracting the exXpressions for z + p and

z — p, We obt;i[x;‘Qp = D + [:] If p occurs in the numeratordof 2O|I21;

’ hen p? occurs in the numerators of both squares and p »
Sfluar: ctontradiction. Thus the numerators of the squares aie prime
f)‘.ve(sjlearing fractions and reducing modulo p, we'obtalnugr;—_mgd:io[%]’
mod p, with both squares prime to p. Then —1 is a sq

and it follows that p =1 mod 4. Thus

UJ

-] occurring => p=1lord mod 8.
-
2[]

[ | occurs. The first two entries give p = 2[ ] - e

Suppose

(4.66)

Suppose

2D = —_—
Arguing as in the previous paragraph, we are led to 0 = 2D D

mod p with bOth squares prime to P hen 2 1s a square modulo p,an
)

it follows that p = %1 mod 8. Thus

2[]

) occurring =» p=lorT mod 8.

2[]
2(]

—[] | occurs. The second and third entries give p =

~92 . _
2 — D, and ge previous paragraph again shows that 11; _uilnorazg
mod 8. The first and second entries give p = 2]+ D . ﬁ'g %hat
above, we conclude that —_9 is a square modulo p, and it follows

p=1lor3 mod 3. Thus

2[]

~[] | occurring = P= 1 mod 8. (4.68)
_QD

In view of how the number of occurring columns aﬂeata the rank, the
implications (4.66), (4.67), and (4.68) prove the proposition.

(4.67)

Suppose
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8. Construction of Points in F(Q)

The refinements to the method of descent in §7 are not good enough
to produce members of E(Q) with certainty, but they are excellent at
cutting down the possibilities enough to make a computer search man-
ageable. We shall consider two examples in this section. The first ex-
ample will go in the converse direction to Proposition 4.23 by showing
that all small primes p = 5 mod 8 are congruent numbers (i.e., 7 =1 in
Proposition 4.23). The second example will solve Fermat’s problem for
Mersenne that was introduced in Subsection E of §ITI.1.

A. Congruent numbers

For the first example, fix a prime p =5 mod 8, According to (4.66),
if p is congruent, then we can write

z+p D
= =] -0
z—-p ,_D

for suitable squares in @ and for some z = z(P). To quantify matters
write

T+ p a?
z =1 =62 ]. (4.69)
z-—p —c?
Then we must have a? — ¢ = —2b%, which we write as
a® = c? — 2b?. (4.70)

We parametrize the solutions by the method of Diophantus in Chapter

I: We change the equation from projective to affine form by writing it
as

1=u? - 207, (4.71)
Then (u,v) = (1,0) gives one solution. A line through (1,0)isu = tv+1
for any choice of ¢ in Q. Substituting, we obtain
1= (tv+1)% = 2%,

2t .
5T Thus our parametrization of

which is solved by v = 0 and v =

solutions of (4.71) is

2+ o
(u,v) = (2—t2’ __2—t2>’ teq.
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Write ¢ = r/s in lowest terms. Then

1
i—(a,b,c) =(1l,v,u) = -2——52—_—7.2-(252 —r2,2rs,25% + r?),

and

a= (2% —rH)A
b= (2rs)A (4.72)
c=(2s7 4+ rH)A

for some A € Q.
We shall show that A is of the form l In fact, say A = ™ in lowest

n n
terms. Then (4.72) shows that m divides the integers na and nb. Hence
m divides a and b. Referring to (4.69), we see that m? divides a?+5% = p.
Thus m = £1 and we may take m = 1.

. 1 .
Since A = —, the equation
n
p=a’+b% = (r* + 4s*))?

shows that

rt 4 45" = pn?. (4.73)

At this stage we have thinned out the possibilities considerably. We
look for a solution (r, s, n) of (4.73), and it determines (a,b,c) in (4.72),

since A = —. Then (a,b,¢) determines an z of the correct form so that

(4.69) holc?s, and z is of the form z(P) for a point P in E(Q). By
letting » and s range from 1 to 50 and seeing whether the square root
of p7'(r* + 4s*) is very close to an integer, we are led to all the entries
in Table 4.6 except the one for p = 53. Since r and s (and ultimately
z(P)) exist for each p in the table, all these numbers p are congruent.
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p r s n x(P)
5 1 1 1 _4
B 1 3 5 _36
25
29 T 5 13 4900
169
37 121 145 _ 1764
21025
53 286 119 11890 - 1Loo513156
35343025
61 41 390 aa5 10227204
198025
109 6 7 10 1764
2
149 14 17 50 _ 56644
625

TABLE 4.6. Some primes p = 5 mod 8 that are congruent numbers

To discover (r,5,n) for p = 53 in the table, we refine the argument
still further. We are trying to solve

(r*)? + 4(s?)? = 53n2.
Consider the affine curve
72+ 4k> =53
over Q. One solution is (j,k) = (7,1), and the method of Diophantus
in Che?.pter I will allow us to parametrize all solutions. A line through
(7,1) is (k — 1) = ¢(j — 7) for any choice of ¢. Substituting for k£, we

obtain a formula for j in terms of . Then we can recover k. The result
is

. 28t — 8t —7 —4t% —
(J,k) = ( 14t+1>,

4241 ' 4241
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which we can reparametrize as

) — T2 —4t—7 —t2-Tt+1
GO =\"31T "+l
Putting ¢t = d/e in lowest terms gives
(r?, 52 n) = p(7d* — Ade — Te?, —d* — Tde + e, d* +e?). (474)

From the third entry, we see that g > 0. The numerator of p can be
taken to be 1 since GCD(r,s) = 1. If the denominator is h, then h

divides
7d% — 4de — Te? +7(—d? —Tde + ¢?) = ~53de  and  d’+e’.

Any prime factor of h must divide 53de. If it divides d or e, then it
divides d? + €2 and hence both d and e, contradiction. Thus p = —513 or

pu=1
Handling p = glg does not look very easy. So let us look for a solution

with g = 1. Our equality is then
(r%,5%, n) = (1d* — 4de - 7%, —d? —Tde + €2, d? + €?). (4.75)

We analyze
—d—Tde+ =[] (= s%)

by the method of Diophantus. The affine equation is
—d?—1de +e?r=1,
and (d',¢') = (0,1) is a solution. The line e’ = d't + 1 leads to

(&, ¢) = 2t =7 t*+1 _
’ — 24T+ 1 12471+ 1

If t = £/n in lowest terms, then
(d)e)s) = V@f’)—77l2, €2+7]27 —f2+7f77+"2)- (476)

In the same way as for g in (4.74), we find v = morv=1

We look for a solution with ¥ = 1. Using a short computer search
with small values of ¢ and 7 and with d and e determined by (4.76), we
check whether the first entry 7d? — 4de — 7e? of (4.75) is a square, so
that we can take it as 72. For £ = 10 and 5 = 3, we do get a square, and
the result is what is listed in Table 4.6.

The reader may wish to try such an analysis for p = 101, which is the
only p=5 mod 8 that is < 150 and is missing from Table 4.6.
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B. Fermat’s problem to Mersenne

We seek an integer-valued relatively prime Pythagorean triple
(X,Y,Z) such that the hypotenuse Z is a square and the sum of the
legs is a square. In other words we want

X14v?%=22, Z = b2, X +Y =d%

With e = X — Y, we obtain X and Y as £(a® + ¢), and (3.17) showed
the problem comes down to solving

2b* — at = 2. (4.77)
A solution in the style of Fermat proceeds as follows. We can work a

little sloppily, apparently discarding possibilities, because all we need is
one solution. From X2 +Y? = Z2 we write

X =m® - n?, Y = 2mn, Z =m? +n? (4.78)

by Theorem 1.2. (Actually this form of a solution assumes that X is
odd; but if it works, it works.) From 42 = m? + n? we have

m=r?—s?, n = 2rs, b=r?+s% (4.79)
Meanwhile, the Diophantus method of Chapter I leads from
a?=X4+Y =(m+n)?—2n?

to
m+n =124 2u?, n = 2tu, a=1t?—2u?

hence to
m = 1% — 2tu + 2u?, n = 2tu, a=t?—2u% (4.80)

Equating the two expressions for n in (4.79) and (4.80), we obtain rs =

r o u . .
tu. Thus Fi and we can write this as — in lowest terms. Then
c

r = kd, t = ke, u=Id, s = lec. (4.81)
Equating the two expressions for m in (4.79) and (4.80), we obtain

r?— 2 =m=1% — AUu+ 1>,
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Substitution from (4.81) gives
k2d? — 1?¢? = k*c® — 2kled + 21°d?
and hence
0 = (c? +2d%) (%)2 — 2¢d (é) + (¢ = d%). (4.82)
For I/k to be in @, the discriminant must be a square in Q. Thus
Ad? — (¢ +2dH)(* - d*) =[],
which we rewrite as
2d* — ¢t = f2. (4.83)

This equation is of the same form as (4.77), but the integers are usually
much smaller here. At first it looks as if the method of descent is leading
us to a proof that there is no solution. But there is a bottom nontrivial

1
solution with (c,d) = (1,1). Substituting into (4.82), we obtain i

0 or % The solution % = 0 leads back to (a,b) = (1,1), which is not

interesting. From = %, we have | = 2, k = 3. Going backwards, we
calculate

r=3 m=25 X =-119

t=3 n=12 Y =120

u=2 a=1 Z =169

s=2 b=13 e=—239.

We must discard the result of this trial since X is negative.
But we can continue. The (a,b) from this trial becomes the (¢, d) of
our next trial. Putting (¢, d, f) = (1, 13, —239), we have

I  edxf _ 13F239 ——gandﬁ
kT~ c?2+2d2 1+42-169 3 113
From = ——%, we have | = —2, k = 3. Going backwards, we calculate
r=239 m = 1517 X = 2276953
t=3 n = —156 Y = —473304
u=-—26 a=—1343 Z = 2325625
s =2 b= 1525 e = 2750257.
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This time we have a minus sign in Y and discard the result.
We try instead 3% using | = 84, k = 113. Then

113>

r = 1469 m = 2150905 X = 4565486027761
t =113 n = 246792 Y = 1061652293520
u = 1092 a = —2372159 Z = 4687298610289
s=84 b = 2165017 e = 3503833734241.

This is the solution given in (3.16).

To analyze the solution technique, we work backwards, obtaining a
formula for (a,b) in terms of (¢,d). Actually we had a choice of a sign
for 7’;, and we may regard (a,b,¢e) as depending on (c,d, f). The corre-
spondence will be nicer if we choose the ambiguous sign in % so that

l cd— f

k24242

With this choice made, (a,b,e) becomes a function of (¢,d, f). Mean-
while the tuples (a,b,e) and (¢, d, f), which give Z solutions of (3.17),
then give Q solutions of (3.18) and, by virtue of (3.19) and its inverse
(3.21), Q rational points on the elliptic curve y? = 23 + 8z.

Table 4.7 shows what the effect of (¢, d, f) — (a,b,e) is, in terms of
the group law for the elliptic curve. The table uses the abbreviations
Py = (8,—24) and T = (0,0). The point P, generates an infinite cyclic
subgroup of E(Q), and T has order two.

., '@ : . ] B@)
Point Point

1 1 1 ] 1 1 1 O

1 1 -1 Po 1 13 —-239 2P

1 -1 1 P +T 1 13 —239 2P,

1 -1 -1 T 1 1 1 (0]

1 13 239 - Py —1343 1525 2750257 —2PF,

1 13 -239 2F —2372159 2165017 3503833734241 4F,

1 -13 239 2P+ T —2372159 2165017 3503833734241 4F;

1 -13 -239 -P+T ~1343 1525 2750257 -2P

TaBLE 4.7. Effect on E : y?> = 23 + 82 of Fermat’s descent for
24— gt = ¢?
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The table shows that Fermat’s descent genuinely corresponds to the

passage P — %P for the points in question. The reader may wish to
carry out the symbolic manipulations appropriate for general P.

9. Appendix on Algebraic Number Theory

The object of this section is to prove Theorem 4.10, which provides
a tool that was used in the proof of Mordell’s Theorem. Theorem 4.10
requires a certain amount of algebraic number theory as preparation,
including three basic theorems. We shall state the necessary preliminary
results with most of the proofs omitted. References are given in the
chapter of “Notes.”

We regard Q as a subfield of C, the subfield of elements that are roots
of polynomials P(X) with Z coeflicients. The members of Q are called
algebraic numbers. A number field K is a subfield of @ that is
finite-dimensional over Q.

An algebraic integer is an algebraic number that is the root of a
monic polynomial P(X) over Z. The set of such is denoted O. If § € Q
is a root of

anX™ 4+ -+ a1 X + ag,

then a,8 is a root of
X dan 1 X" ' tap_na, X" 4+ + alaZ"zX + aan'l.

Hence

fecqQ = k8 € O for some k € Z. (4.84)

One step in the proof of unique factorization for Z[X] shows that if a
monic polynomial in Z[X] has a monic factor in Q[X], then that factor
is actually in Z[X]; consequently the minimal polynomial over Q of any
@ € O has integer coefficients.

The set O of algebraic integers is actually a ring. The standard proof
of this fact uses the theory of symmetric polynomials. A simpler proof
uses the following lemma, which is handy also for proving (4.88) below.

Lemma 4.24. Let V be the additive group generated by complex
numbers z1,...,z; that_are not all 0. If « is a complex number such
that ax € V whenever z € V, then « is an algebraic integer.

Let us write “left-by-o” for the operation of left multiplication by
a. For an example of a group V as in the lemma, let « € O satisfy
a®™ + a,_ 10"V 4+ ... + a9 = 0. Then left-by-a maps the Z span of
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a™"1 ... a,1 into itself. When there are two such elements in @ and

we use the products of their powers to generate V, the result is the
following proposition.

Proposition 4.25. O is a ring,.

Fix a number field K. It follows from the proposition that Ox = ONK
Is a ring, the ring of algebraic integers in K. From (4.84) it follows
that K is the field of fractions of Q. The fact that the only rational
roots of a monic polynomial in Z[X] are in Z translates into the equality

onQ=17. (4.85)

Let n=[K : Q]. If {o1,...,a,} is a basis of K over @ and if o is in
K, we can write aq; = Zj a;;a; with a;; € Q. We define

Ng/q(a) = det(a;;) (norm of «)
Trg,q(a) = Tr(a;;) (trace of «)

These are functions from K to Q. It is easy to check that

(1) Ng/q and Trg/q are independent of basis.

(2) Nkyq is a multiplicative homomorphism from K* to @%, and
Trk/q is an additive homomorphism from K to Q.

(3) Trx/q(l) =n #0.

There are exactly n distinct isomorphisms of K into @ fixing @, and

they are given as follows. The Theorem of the Primitive Flement says
that K = Q(a) for some o € K. Let

PX)=X"4ca1 X" 14

be the minimal polynomial of « over Q, and let a; = «, ag,...a, be
the (necessarily distinct) roots of P in @. Then

-1 -1
Uj(cn—lan +...+cla+co):cn_la? +"'+C101j+00~

If B is in K, the elements ¢;(8) (with ¢y(8) = B) are called the conju-
gates of 3 in Q. They need not lie in K. However, each ¢;(8) has the
same minimal polynomial as B over Q. Consequently

o; carries Ok into O. (4.86)

To bring the conjugates of § into the theory, one uses the following
proposition.
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Proposition 4.26. For g € K let ¢ be the minimal polynomial of 3
over Q. Then (deg g) [ n. Also Jeft-by-3 as a Q linear map from K to
K satisfies

det(zI — left-by-g) = g(z)" = [ (= — 5;(B)),
j=1

where r = n/(deg g).

Using Proposition 4.26, one can show that

Nise(8) = [[ o:(8)
j=1 (4.87)

Trxsa(8) = Y o5(B).

By (4.85) and (4.86), Nk q and Trk;q carry O into Z. o

A unit in Ok is an invertible element. The set of units is denoted
O%. The first of the three basic theorems in beginning algebraic numb;ar
theory is the Dirichlet Unit Theorem, which gives the structure of Og.
We shall give a weak form of the theorem as Theorem 4.29.

Lemma 4.27. The units in Og are the members £ of Og with
NK/Q(E) =41.

PrOOF. If £ is a unit, then Ng/q(¢™!) = Ng/q(e) ™! € Z shows that
Nk/g(€) is an invertible integer, hence is £1. Conversely we use (4.86),
remembering that ¢ = 1. Then

Nk, q(€) = €02(€) - -~ onl€)

shows that
e~} = a9(e) - - oa(€)Ng/qe) .

If Ng/g(e) = £1, then the right side is in O.

Lemma 4.28. The torsion subgroup of Oy consists of all NP roots
of unity €2™/N for some N that is bounded in terms of n = [K : Q].
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One proof of Lemma 4.28 uses properties of cyclotomic polynomials
and the formula for the Euler ¢ function.
The isomorphisms o; : K — Q@ C C, 1< j<n are of two types:
(a) those carrying K into R. Say there are ry of these.
(b) those carrying K into C but not R. These come in pairs ¢ and &,
where the bar refers to complex conjugation. Say there are 2r;
of these.

Then ry + 2ry = n. Let o1,..., 0, be of the first kind and

Ory41y Oridls v o3 Orydra; Orydr,
be of the second kind. We use each ¢; to form an absolute value on K:
llzlli = loj(x)]  for 1< j<r+r
Then the mapping

Log: ¢ — (logllzlls, - 108 12llrs++,)
is a group homomorphism of K* into R™+72,

Theorem 4.29 (Dirichlet Unit Theorem). On OF, the kernel of Log
is the (finite) torsion subgroup, and the image is a discrete subgroup of
the subspace of R™*™2 where

14+, F 2241+ F+ 22, 4., = 0.
Consequently O% is a finitely generated group of rank < ry + 7 — 1.

The finiteness of the torsion subgroup is by Lemma 4.28. The version
of the theorem stated here is not very hard to prove. The full version of
the Dirichlet Unit Theorem says that the rank of O% equals ry +7,—1,
and its proof takes considerably more effort. But we do not need this
stronger version.

We turn our attention now to the structure of ideals. If «y,...,a,
are in K, their discriminant is the element of Q@ given by

AK/Q(CYI, R an) = det (TrK/Q(oziozj)).

If a1,...,an, are in Og then it is clear that their discriminant is in Z. It
is not too hard to establish the following additional properties of Ag/g:

(1) Agqlay,...,an) # 0if and only if {a1,...,an} is a basis of K

over Q.

(2) If {a1,...,an} and {B1,...,Bn} are bases of K over Q and if
o; = EJ. a;; B; with all a;; € Z, then

AK/Q(ala ceoyp) = [det(a,-j)]zAK/Q(,Bl, cey Bn).
(3) AK/Q(aly ey a,,) = [det(aj(a;))]z.
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osition 4.30. ' . . B
fagolgvery nonzero ideal I in Ok (including Ok itself) is additively a

free abelian group of rank n whose Q span is K.

(b) If I is a nonzero ideal in Ok, then Axjglas--
for every L basis ay,...,Qn o(fDI.

ideal iIn Ok co

(¢) Every nonzero idea :

(d) Every nonzero ideal in Ok has [Ok/[I} < oo. ]

() Ok s a Noetherian ring, i.e., every ascending sequence
terminates.

(f) Every nonzero proper

., ap) is the same

ntalns a nonzero member of Z.

{ ideals

prime ideal in Ok is maximal.

We define a product operation on nonzero ideals I and J in Ok by

1J = {all sums of products from I and J}.

tative, and Ok 1s an identity.

we say that [ and J are equiv-
principal ideals (o) and (ﬁ) in
“gquivalent” has the following

This product is associative and commu

If I and J are nonzero ideals in Ok,
alent if (@) = (B)J for some nonzero
Ok. ltis easy to check that this notion of
properties:

(1) it is an equivalenci.rele?ti(;ndass roperty

ation is .

g; :11112 gi?:c‘;ggloilzizrals form a single equivalence class, which acts as

an identity.

The number hg of classes of nonzero ideals in.(’)K is ca{leqft}(lge cliz;s:
pumber of K. The class number.equ‘als one 1f a,crlxd fozlhz ;hre eKbasic
principal ideal domain. The f'ollowmg is the second o
theorems in beginning algebraic number theory.

Theorem 4.31. The class number of a number field is finite.

ma in diophantine approximation and an
the notions above. For the case that.[K :
s correspond to certain classes of 'bmary
ell as its value) is more

The proof requires a lem
clementary argument using
Q] = 2, the classes of idea.l
quadratic forms, and the finiteness of hx (as W

apparent.

Corollary 4.32. Multiplication of classes of nonzero ideals in Ok 18

a group operation in which the identity is the class of principql ideals.
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The group in the statement of the corollary is called the ideal class
group; its order is the class number of K. For the proof of the corollary,
one first shows for nonzero ideals I and J in O and for o # 0 in O
that

(Y =JI = (a)=J. (4.88)

Lemma 4.24 is a tool in the argument. Then the finiteness of the class
number forces two powers I* and I’ of an .ideal I to be equivalent, and
finally (4.88) allows one to show that Il'=#=1 is an inverse of the class
of I.

Next we give the third of the three basic theorems in beginning alge-
braic number theory.

Theorem 4.33 (Unique factorization of ideals). Every proper ideal
I in Ok is uniquely a product I = Hf\;l Pik", where the P; are proper
nonzero prime ideals and the k; are integers > 0. The integers k; are
characterized by the property: Pik‘ D I but P,-k"+1 ;é 1.

The proof of Theorem 4.33 begins with two preliminary facts. The
first says for three nonzero ideals A, B, C of Ok that

AB=AC = B=C. (4.89)

The other preliminary fact says about ideals: To contain is to divide.
Specifically if A and B are nonzero ideals of Ok, then

BD> A = there exists an ideal C with A = BC. (4.90)

The existence of factorization of ideals uses (4.90) and parts (d) and (e)
of Proposition 4.30. Uniqueness uses also (4.89), Proposition 4.30f, the
finite class group (Theorem 4.31 and Corollary 4.32), and the inequality
INg/g(a)| > 2 for € Ok that is not a unit (Lemma 4.27).

ProoF oF THEOREM 4.10. Write h = hx. Let I, ..., I; be repre-
sentatives of the finitely many classes of ideals (Theorem 4.31), and let
us say I; = (1). Let u; be a nonzero element of I;, and put v = uq - - - u.
Then v is in I; for 1 < j < h. Define S = {1,u,u?,...}. Notice that

(1) 1eSand0¢ S

(2) S is closed under multiplication.

From these properties it follows that S™'Og = {s™'a |s € S, a € Ok}

is a ring. We shall prove that S™!Og is a principal ideal domain and
that its group of units is finitely generated as an abelian group.
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If I is an ideal in Ok, then [=8"10k is clearly an ideal in S0k
Every ideal Is of S~1@k arises in this way. In fact, [ = I¢ N O is
an ideal in Ok and [ = S~1(Is N Ok) coincides with Is. [To verify
this equality, let i € I. Then i = s~ 'a with & € Is N Ok. Since
S~1 C S~ '@k and since Ig is an ideal in S7!O0k, i = s7la is in
Is. Conversely if ¢ is in Ig, write i = s~ !'a with @« € Og. Then
o = si is also in g, hence is in Is N Ok, and i = s~ o exhibits i as in
S~1(IsnOk)=1]

If Is is an ideal in S~1Of, we are to show that I is principal. Put
I =IsNOg. Then I is equivalent with some I;, 1 < j < h; let us write

() =(B)];.
Since u is in I; NS, we have S~'I; = S~!0k, and thus
(@)sls = S Ha)S™ =S (B)I; = ST'0k(B) = (B)s,  (4.91)

where (a)s and (8)s denote principal ideals in S™10k.
From (4.91) let us see that

B/aisin ST10k and Is = (B/a)s. (4.92)

In fact, (4.91) allows us to write § = aiq for some i3 € Ig. Hence
Bla =iy € Is C S710k, and (B/a)s C Is. In the reverse direction,
let ¢ € Is be given, and use (4.91) to write ai = fz with z € S~ 0.
Then i = ;z shows i is in (8/a)s, and we obtain Is C (B/a)s. This
proves (4.92).

Since Is was an arbitrary ideal in S™'Ok, (4.92) shows that S~10k
is a principal ideal domain. This completes the first half of the proof.

The second half of the proof will show that (S™1Og)* is finitely
generated. The argument is a little subtle, as more generators than u
and Oy are needed.

Let u=*a be in (S™'0k)*, and write (u™*a)™! = u=*F. Then aff =
u'tt. So « is a divisor of a power > 0 of u. We seek a finite set of
generators for the divisors of all powers > 0 of u.

Thus let a8 = u" with o, € Og. Let

(u) = PP ... Pk (4.93)
be the factorization of (u) given by Theorem 4.33. Then we have

(@) = () = (a) = Bl Pl
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By the uniquenesss in Theorem 4.33,
() =Pl PR with0<l; < kjrfor 1 < j < N.

Bi’ Corollary 4.32 (and Theorem 4.31), Pj" Is principal for each j. Write
P = (;). For each j, write l; = gjh + r; with 0 < r; < h, so that

(a) = («71)41 .. .(7N)<]NP17'1 . P]’\’IN. (494)
Then
a=qft .y forsomeiePfl...pX,N.

Dividin 2 ) is i
g, we see that W (= i) is in Ok. Hence we can rewrite
N

(4.94) as
L RUN J V¢ o _ q . ”
e (731—‘...7#) =Of' )PPy

By (4.89) we conclude that

Plrl"‘PrN:<\_a )
N .
7{]171‘{/N

In other words, f ; r .
cipl, ay ords, for (4.94) to hold, the ideal P* .. PI¥ has to be prin-

Pl PR = (6
and then (4.94) is the statement that

1‘1,,..,7'"),

— o0 1
a=9yP .y e with ¢ in OF . (4.95)

From (4.95), we see that (S7'Ok)* is generated by v, ..., yn, the finite
number of elements bry,...ra (since the r;’s are < k), and O%. Theorem

4.29 shows that ©% i i - ) )
goneratod k 1s finitely generated. Hence (S™10k) is finitely

EXAMPLE. Let K = Q(v—5). Then O = Z[\/-5]. The theory of

binary quadratic forms shows that hg = 2. In the above proof we can

take 11 = (1) and 7, = (2,1+ /_“5) For
) - . U we ¢ — _
u = 2. The factorization (4.93) is anuse u; = 1, up = 2,

(2)=P  with P =(2,1+ V=5).
Thus N =1, and we can take 71 = 2. The only ideals Pl -+ PN that

need to be considered are P = (1) and P!, which is not principal. Thus

the only 6, rn 18 1. The units of S~1@
Thy.oy . are th f
M= b= Land Op)% = {x1). o eerated by



CHAPTER V

TORSION SUBGROUP OF E(Q)

1. Overview

Let E be an elliptic curve over Q@ with notz?ti(.)n as in the Weiergtrass
form (3.23). As usual, we can make an admissible change o‘f Vfirlablesf
so that all the coefficients are in Z. Let A € 7 be the dlscrl.mlnant o
E. By Mordell’s Theorem, E(Q) is a finitely ge'nerated abelian group.
Our objective in this chapter is to study the torsion subgm\'xp E(Q)tors-
For any particular curve, we shall see that we can determine E(Q)tors
ex}')l‘llllc;tzain tool in the analysis will be reduction modulo a prime p.
For the curve E itself, with its Z coefficients, reduction mogulo p will
amount to considering the curve Ep over Z, with the Z coefficients taken
modulo p. It is less apparent how to get reductu?n moFlulo P to be' ﬁ
well defined mapping rp defined from all of E(Q), 1nc.1ud1ng points wit
factors of p in the denominators of the coordinates, into Ep (Z'p). Once
we have done this in §2, we will find that r, : E(Q) — E; (Z},) is a group
homomorphism if p+ A (i.e., if Ep is nonsing}ﬂar). The main theorem 1;
the following result discovered in the 1930’s independently by Lutz an

Nagell.

Theorem 5.1 (Lutz-Nagell). Let E be an elliptic curve (3.23) with
coefficients in Z. . ;
(a) fa; =0andif P= (z(P),y(P),1) is in E(Q)rors, then z(P) an

y(P) are integers. -
((b)) For any ay, if P = (z(P),y(P),1) is in E(Q)1ors, then 4z(P) and
8y(P) are integers. o
%c)) If p is an odd prime such that p + A, then the restrlct_lon to
E(Q)tors of the reduction homomorphism 7, : E(Q) — Ep(Zp) is one-
one. The same conclusion is valid for p =2 if 2+ A and a; = 0.
() Ifa; =az=az= 0, so that E is given by

y? =2° + Az + B, (5.1)

and if P = (z(P),y(P),1) isin E(Q)rors Fh.en either y(Pg =0 (a2nd P
has order 2) or else y(P) # 0 and y(P)? d1v1d.es d = —4A® — 27B?, the
discriminant of the cubic polynomial on the right side of (5.1).

130

1. OVERVIEW 131

This theorem will be proved in §4. As was mentioned in Chapter
I, a consequence is that we can determine E(Q)iors completely for any
particular curve. The algorithm is to put the curve in the form (5.1), to
consider each square divisor y? of d to give a candidate for y(P) and to
write down any corresponding integers z such that (z,y) is an integer
solution of (5.1). There can be only finitely many such, and we obtain a
bound on |E(®)tors|- For each such integer solution (z,y), we can raise
it to powers up to our bound on the order, effectively checking whether
it is a torsion point.

As a practical matter, this algorithm is often a little tedious. It is
usually more efficient to use (¢} to cut down the possibilities. Some
examples will illlustrate.

ExaMPLE 1. y2 4y = 23 — 22, There are some obvious solutions with
integer coordinates, namely

(z,y) = (0,0), (0,-1), (1,0), (1,-1). (5.2)

Under the doubling formula (3.74), ¢ = 0 doubles to 2 = 1 and vice
versa. So all four points are torsion points. For this curve, A = —11
from Table 3.1. Rather than clear out the y and 22 terms to be able to
use Theorem 5.1d, we reduce modulo 2, since a; = 0 and 2 + A. Then
E3(Z3) contains the four points (5.2) and also 0o; hence Eq(Zq) = Z5.
By Theorem 5.1¢c, r2 @ E(Q)iors — E2(Z2) = Z5 is one-one. Since (5.2)
has shown E(Q)tors to be nontrivial, we conclude that F(Q)tors = Z5.
The members of E(Q)iors are co and the points in (5.2).

EXAMPLE 2. y? 4y = 23 —z. Again there are some apparent solutions
with integer coordinates, namely

(z,y) = (£1,0), (£1,-1), (2,2), (2,-3), (6,—15). (5.3)

From Table 3.2, we have A = 37. Since a; = 0 and 2 + A and 3 + A,
Theorem 5.1¢ applies to p = 2 and p = 3. Over Z5 we find 5 solutions
(counting oo), while over Z3 we find 7 solutions. So F(Q)¢ors maps one-
one into Zs and also one-one into Z7. Thus F(Q)tors = 0. None of the
points (5.3) is a torsion point.

EXAMPLE 3. y? — zy + 2y = 22 + 222, For this curve we calculate
that A = —2713. We can try to identify E(Q)iors by using parts (a) and
(d) of Theorem 5.1. To find a full list of candidates for torsion points,
we can rewrite E as

y+(1-ia)) =23+ 32—z + 1.
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Making admissible changes of variables three times leads first to
yZ:x3+%zz~m+1,

then to
y? = 2® + 92% — 162 + 64,

and finally to
y? = 23 — 43z + 166.

The discriminant of the cubic polynomial on the right side is —2'313.
Thus Theorem 5.1d says that y(P)? | 2!1313. So y(P)? = 1 or 4 or 16 or
256 or 1024 or 4096. Checking each case, we are led to the candidates

(3,48), (=5,%16), (11,+32), co.

Using the doubling formula, we can check that each of these is a torsion
point. We can transform back to obtain the following solutions of the

original equation:
(Oy 0)7 (01_2)’ ('_2;0)) (’—2) "4): (274)3 (21——4)$ 0. (54)

The torsion subgroup of the original equation therefore consists of the
points (5.4) and is isomorphic to Z7.

It is more efficient, however, to use Theorem 5.1c. Since 3 + A, we
list the solutions of the original equation modulo 3 as

(0,0), (0,1), (1,0), (1,-1), (—1,1), (—1,-1), co.

By Theorem 5.1¢, E(Q)tors 1s 0 or Z7. In @ we quickly see that (0,0),
(0,~2), and (~2,0) are solutions. Using the doubling formula, we check
that the doubled z coordinate of any of these makes a cycle after 3 steps.
Therefore these points are torsion points, and E(Q)tors = Z7. We can
use the results of the doubling to generate the list (5.4).

EXAMPLE 4. y? 4 zy = 23 + 422 4 . For this curve, A = 3252, The
point (—%, %) lies on the curve, and the tangent line is vertical there
(since the coefficient 2y + z of dy is 0). Therefore (—3,%) has order 2
and is a torsion point with nonintegral coordinates.

To limit the size of E(Q)¢ors, we reduce modulo 7 and find that the
numbers of y’s giving solutions for z = 0,1,...,6 are 1,2,0,1,0,1,2,
respectively. Counting the point oo, we see that Fr(Z7) has order 8.

To identify E(Q)iors, we replace y + 1z by y and then scale. The
transformed equation is y? = 234 1722 + 16z, In §5 we shall see that an
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zglixt::tlton of the type yz': 2(z +r?)(z + s?) has 7, @ Z, as a subgroup
o or;lon group. So n our case, the torsion group is exactly 2, @ 7
Ing the 8 solutions given in §5 and transforming back, we obt4ain v

0,0, (=5, %), (=1,-1), (-1,2), (1,2), (1,-3), (-4,2),

as t.he torsion elements for our original equation
Since 2 + A, reduction ‘

modulo 2 j ;
E5(Z3) consists of 15 @ homomorphism. The group

(0,0), (1,0), (1,1), oo,
and r; maps E(Q)iors onto Fy(Z,) with kernel Z, = {(-1,1), o0}

4’8

Sio'i'aslzlli 5.1 givesl\:lexa;lmples of elliptic curves over Q with 15 different tor

: groups. Methods for generating such e ] i indi )

in §5. According to Theorem 1.7 (d i), these 15 geic2ted
ling . ue to Mazur), th

,tIl‘lhe only Possxbllltles for a torsion group over Q. )Thee;ioff gfr' ?\Ifllz:um:e

eorem 18 well beyond the scope of this book and will not be givirf

here.
’—_ E E(Q)tors A
y2 = 1.3 + 2 0 _2633
V=234 ¢ Z, o5
v =z 44 7 803
2 _ .3 3 ‘2 3
Y'+y=2z3- 32 Zs 1
, V=24l z. i35
Yo -2y + 2y = 2% + 222 Z; _9713
Y, + 72y — 6y = 2% — 622 Zs 983417
y 32y 4 by = 2% 4 627 Z, 9935
Y —Tzy — 36y = 23 — 182 Y4 _ 95910712
y2+43$y~210y:z3_210 y 10 2°3'911
2_ 3 z Z,, 21236537413
2 Y3 S0 Lo, 26
2y =z 45z 4+ 4z 24692 2832
Y +5zy — 6y = 23 _ 352 2
2 3 z i1, 223652
Yy =2+ 33722 49
+ 20736 28@22 220385472
—

TABLE 5.1. Examples of torsion subgroups of E(Q)
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There are two situations where we can decide E(Q)t?rs for infinitely
many given curves at once (other than the situations in §5 where we

construct some families just for this decidability). The two theort?ms that
follow use Dirichlet’s Theorem on primes in arithmetic progressions and
will be proved in §6. Part of the first theorem was borrowed in Chapter
IV and stated without proof as Lemma 4.20.

Theorem 5.2. Let E be the elliptic curve y* = z3 4+ Az with Ain Z
and with A assumed fourth-power free. Then

-1, if — Ais asquarein Z

E(Q)tors = Z, ifA=14
1, otherwise.

Theorem 5.3. Let E be the elliptic curve y? = 23 + B with B in 4
and with B assumed sixth-power free. Then

Zs ifB=1

Z3 if B=—432 = —2%3%, orifB:DandB;él
E(Q)rors = Z; if B =cube and B #1

0 otherwise.

2. Reduction Modulo p

We recall the definition of the p-adic norm on , p being a prirpe.
If » # 0is in @, we write r = p"u/v with v and v in Z and w1th
GCD(u,p) = GCD(v,p) = 1. The definition of the.p—ad{c norm 1is
|rl, = p~™. By convention, we define |0, = 0. This notion has the
following properties:

() |r + slp < max{|rlp, |slp}, with equality if |r|, # |slp,

(i) |rslp = Irlplsle- ’

Property (ii) is clear. For (i) we write r = p"ufv and s = p™ u'/v’, with
n < n' without loss of generality. Writing

' ! n'—n,/
u LU uv' +p uv
r+s=7p" <; + " "——U,> =p" __._—_-—-—-vv’

with GCD(vv’,p) = 1, we obtain (i) directly. . o
Property (i) is called the ultrametric inequality. It implies

[r + 5|, < |rlp + |slp- If we define d(z,y) = lx — yle, then the latter

inequality implies the triangle inequality for d, and d is a metric on Q.
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We say that r € Q is p-integral if |r|, < 1. By (i) and (ii), the p-
integral elements form a subring of @ containing Z. Those with |r|, < 1
form an ideal in this subring; they of course have |r|, < p~!. The
p-integral elements of @ can be reduced modulo p: If r = p"u/v is
p-integral, i.e., if n > 0, then we define r,(r) € Z,, by

_ fu/v modp ifn=0
r”(”)—{o if n > 0.
Then r, : {p-integral elements} — Z, is a ring homomorphism.
In preparation for considering plane curves, we can try to use r, to

get a map of the affine plane over @ to the affine plane over Z,, but the
best we get is a map defined on

{(r,s) | r and s are p-integral}

as rp(r,s) = (rp(r),rp(s)). To correct this deficiency we work with
curves projectively, as follows.
To define 1, : Po(Q) — Pa(Z,), we let

rp(2, Y, w) = (rp(2), 7p(y), 7p(w)), (5.5)

where (z,y, w) are coordinates of the point in question chosen so that
z,y, and w all have |-|, < 1 and at least one of them has ||, = 1. Such
a representative of a point in Py(Q) is said to be p-reduced. Note that
if a general (z, y, w) is given, we can multiply by a suitable p” to obtain
a p-reduced representative. A p-reduced representative is unique up to
a factor with | - [, = 1. Therefore r, is well defined as a map of all of
P>(Q) into Po(Z,).

Using (5.5), we can reduce projective plane curves modulo p. Let F €
Q[z,y, w],, be a plane curve of degree m. Multiplying the coefficients of
F by a constant, we may assume that all the coefficients have |- |, < 1
and at least one has |- |, = 1. Then we can reduce the coefficients
modulo p, obtaining a nonzero polynomial F, € Z,[z,y, w],. Although
F; is not defined uniquely, it is defined uniquely up to a nonzero scalar.
Therefore its zero locus F,(Z,) is well defined.

Proposition 5.4. Let F' € Q[z,y, w],, be a plane curve. Under the
reduction homomorphism r, : P5(Q) — P»(Z,) given in (5.5), the image
of F(Q) is contained in F,(Z,).
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PROOF. Normalize the coefficients of F' as above, and let (z,y,w) be
a p-reduced representative of a point in P5(Q). Then

(z,y,w) € F(Q) <= F(z,y,w) =0
=> rp(F(z,y,w)) =0
== Fp((rp(2),mp(y), rp(w)) = 0
&= Fp(rp(z,y,w)) =0
= rp(z,y,w) € Fp(Z,).

Proposition 5.5. Suppose F' € Q[z,y,w], is a plane curve, L €
Q[z,y,w]; is a line, and P = (zo, Yo, wp) is a point on L. If F, and L,
are reductions of F and L modulo p, then the intersection multiplicities
satisfy

i(P, L, F) < i(ry(P), Ly, Fy). (5:6)

Proor. Without loss of generality, we may assume that (zg, yo, wo)
is a p-reduced representative and that the coefficients of F' and L are
normalized as they are supposed to be. Choose a p-reduced representa-
tive (2/,y',w’) of a point P’ of L with [(2',y,w')] # [(z0,¥0, wo)], and
form

Y(t) = F(P+tP') = F(zo + tz', yo + ty', wo + tw')
=t"F/ + .. +t"F,,

with F! # 0. By Proposition 2.9 the left side of (5.6) equals . Recom-
puting %(t) modulo p (i.e., in Z,[t]) and applying Proposition 2.9 again,
we see that the right side of (5.6) is > r.

Let us apply Propositions 5.4 and 5.5 to elliptic curves F over Q.
For studying E(Q), we may make an admissible change of variables
y — y/ud, z — z/u? to make all coefficients of E be in Z. Then we
can assume F is in Weierstrass form (3.23) with all coefficients in Z. To
apply the above theory, we consider the projective form (3.23a) of E.
The coefficients of E are all in Z and hence are p-integral. Also wy?
and z3 have coefficient 1. Thus passage to E, is given simply by writing
(3.23a) with coefficients considered in Z,; no preliminary normalization
is needed. The discriminant of E), is clearly given by

A, =A modp.

Thus E, is nonsingular if and only if p t+ A. Our reduction map on E(Q)
is a mapping

o+ E(Q) — Ep(Zp) (5.7)
by Proposition 5.4.
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Proposition 5.6. If £ is nonsingular, then the map r, in (5.7) is a
group homomorphism.

PRoOF. Since ry(0,1,0) = (0,1,0), 7, carries O to O,. We apply
Proposition 5.5. Since the sum of intersection multiplicities over a line
is < 3 (by nonsingularity of E and E,), the proposition gives r,(PQ) =
ro(P) - r5(Q). Thus

(P + Q) =1,(0 - PQ) = r,(0) - r,(PQ) = 5(0) - (rp(P) - 1p(Q))
=0y - (rp(P) - rp(@)) = rp(P) + (@),

and rp is a group homomorphism.
3. p-adic Filtration

Fix an elliptic curve E with Z coefficients. In order to get at the inte-
grality or almost integrality of torsion points, it is natural to work with
coordinates (z,y,1), clear denominators, and see what happens. The
difficulty with this approach is that it is not so easy to take advantage
of the hypothesis that (z,y, 1) is a torsion point.

The clever idea that works is to use coordinates (X, 1, W). Proposition
5.6 shows that r, : E(Q) — E,(Z,) is a group homomorphism if p ¢
A. In the coordinates (X,1, W), subgroups and the homomorphism
property of r, play a more visible role, and the finite order of a torsion
point becomes a usable property.

When p t A, the kernel of r, is

{(z,y,w) € E(Q) | rp(z,y,w) = (0,1,0)}.
For such a point (z,y, w), we must have y # 0. Normalizing, we may
assume y = 1. The elements (z,1,w) € E(Q) that are in ker(r,) are

those with |z], < 1 and |w|, < 1. In this section we shall study the
same set

END(Q) = {(z,1,w) € E(Q) | |z, < 1 and |wl, < 1},
but without the assumption that p + A.

Lemma 5.7. Let (z,1,w) be in E(Q). If |w|, < 1, then |z|, < 1 and
wlp = |z[3.
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PrOOF. Putting y = 1 in (3.23a), we have
w = —ajzw — azw’ + 2% + axz’w + agzw? + agw®. (5.8)
First suppose |z|, > 1. On the right side of (5.8) the #® term is strictly
the largest relative to | - |p, since
| — arzwlp < |zwlp < lz]p < |~'L'|2 = |f’33|p
| — asw?l, < Jwlf < 1< Jel3 = 2%,
|02x2w|p < |x2w'p < Iz‘f, < |x|2 = |333|p
laszw?ly < lew?ly < lolp < lefy =127l
lagw?)y < |wf} < 1< Jzl} = 127},

By the ultrametric inequality, (5.8) gives [w|p = |23[p. This is a contra-
diction, since |w|, < 1 and |23|, = |z} > 1. We conclude that lz|, < 1.

Now we rewrite (5.8) as
W+ ayzw + azw? — axz’w — aqzw? — agw® = 7. (5.9)
Ifw =0, then z = 0 and |w|, = |z|}. If w # 0, then the w term s
strictly the largest on the left side of (5.9), since
| — arzwl, < lzwly = lelplwly < lwlp
| — 03w2|p < |w2‘p = |w]12, < |wlp
\azzzw\p < |172w]p = |1'|;27|w|p < |w|,,
laszw’, < |lzw?, = |~’L'|p|“’|;2; < |wlp
|a6w3|p < |w3|p = IU)I,? < wlp.

By the ultrametric inequality, (5.9) gives |wl, = |z3], = |z|3, and the
lemma follows.

For n > 1, define
E™(Q) = {(z,1,w) € E(Q) | |wl, <1 and |z, <p7"}.

The p-adic filtration of EM)(Q) is

EN(Q) 2 EP(Q)) 2 ED(@)2... with [ E(Q) ={(0,1,0)}

n=1
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The important control on a point of E(1(Q) other than the group iden-
tity is that it lies in E(™(Q) — E("+1)(Q) for some n. Lemma 5.7 says
that

E™(Q) = {(z,1,w) € E(Q) | Jwl, <p~"}.

Let R be the ring of p-integral elements of Q, i.e., members of @ with
no factor of p in the denominator.

Proposition 5.8. The subsets E")(Q) of E(Q) are subgroups. The
function P = (z,1,w) — «(P) = z gives a map E")(Q) — p"R.
The composition of this map, followed by the quotient map p"R —
p"R/p™R, is a group homomorphism

E(n)(Q) N an/pZnR
whose kernel is contained in E(Q")(Q). Consequently the homomorphism
EM(Q)/EC")(Q) — p"R/p™"R

1s one-one.

Before coming to the proof, we mention that
P R/p™R=p L [pL = L. (5.10)

For the second of these isomorphisms, we observe that each group is
cyclic and they both have p™ elements. For the first of the isomorphisms,
we map p"Z into p" R/p?” R and obtain a map on the quotient

P"1/p""1 — p"R/p*"R.

This map is one-one since p"Z Np?* R C p*"Z. To see that it is onto, let
/p"u/v be in p"* R. Choose a and b in Z with av -+ bp™ = u. Then

u
PP ng g ®
v v

an

shows that p™a maps onto the coset of p™u/v.
The proof of Proposition 5.8 will be preceded by the statement of a
lemma. The lemma will be proved after the proposition.
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Lemma 5.9. Let L be a line that meets E(Q) in three points when
multiplicities are counted, say in Py = (z1,1,w1), P2 = (1'2, 1,ws), and
P3 = (z3,1,ws3). If P; and P are in E(™)(Q), then Ps is in E*)(Q) and

—3n if a) = 0

P
ley + 22+ x3lp < {p—Zn in any case.

(5.11)

PROOF OF PROPOSITION 5.8. If P; and P, are in E(™)(Q), then the
lemma says that P3 = PPy is In EM)(Q). Since O is in E™)(Q), so is
O PP, =P, +P;. AlsoO-Py=—Pyisin EM™(Q). Hence E™(Q) is
a subgroup of E(Q).

If P is in E™)(Q) and z = z(P), then ||, <p™" yields

Ip_":L‘Ip = Ip—nlplxlp = pn|$|p <Ll

Hence p~"z is in R and ¢ is in p"R. Thus P — z(P) gives a map of
E(™)(Q) into p" R.
Let PP, = Ps. Then the lemma gives

z(P)) + 2(P2) + z(Ps) € p"R. (5.12)

If P3 = (23,1, ws), then a little computation with (3.70) shows that

T3 1 - w3 )
OPs =P = T 14 ajzz+azwz’ 14 ayz3+azws

Hence T3
2P+ Po) = 2(O88) = 10 o T agu
and
r3
1+ a1x3+ azws
a3 + azws
3 1+ ajz3+ aszws

+ 3

z(Py + P2) + z(Ps) =

since |ay2a + azwslp < 1 and |1 +arz3 + azws|p = 1. Combining (5.12)
and (5.13), we see that

z(P, + P;) = z(Py) + (P;) mod PR,

and the composition P — z(P) — z(P) + p** R is a homomorphism.

If P = (z,1,w) is in the kernel of the resulting homomorphism on
EM)(Q)/E(®")(Q), then z(P) = z is in p>"R and |w|, < 1. Then
|z], < p~2", and P is in E(n)(Q). This completes the proof.
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Proor oF LEMMA 5.9. The first part of the proof will show that the
line L is of the form

w=mz+b (5.14)
and will give a bound for the slope m. We begin with the equation

2

w+ aywz + azw? = 2% + axz’w + aszw? + agw® (5.15)

satisfied by the three points.
Case 1. P; # P,. Here we substitute (z;,1,w;) and {(z3,1, w;) into

(5.15) and subtract the results. Each term of the difference is an integral
multiple of

ziw} — z3wh = (2] — 23wl + h(w — w})
= (21— z2)(@3 4+ 25wk 4 (wn — wp)(wi™t - wh e

(5.16)

Consider all the terms of (5.15) but w and z3, all of which have s+3t > 4.
Noting that P; and P, are in E‘(")(Q), we use

(21~ z2)(2i™" + -+ 25wl

< |2y — 2ofpp T VpTI < pTIzy — gy,

when s > 0, and we use

(w1 — wo)(wi™! + -+ wi™ a5l

< wp = wolpp~ " Vp ™™ < p7M wy — wy |p

when ¢ > 0. Moving the z; — 5 terms obtained from (5.16) to the right

side and the w; — w4 terms to the left side, we can rewrite our difference
of equations as

(w1 — wa)(1 4+ u) = (21 — z3)(2? + 2120 + 22 + v), (5.17)

where fuf, < p™™ and |v|, < p~®". Since [ul, < 1, [l +uf, = L. In
particular, £; = z implies w; = wy. Since we have assumed P; # Ps,
we conclude z; # z3. Thus the line through P; and P, is of the form
(5.14). In view of (5.17), the slope m is given by

wy —wy _ zi4ziza+zitv

m = =
Ty — Z2 14+ u
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Hence

x%—i—xl:l:g—i—z%—}—v
1+u »

< max{p™®", p=2, p7 P, p ") = p7 7" (5.18)

= |x§ +ziz0 + :c% + vlp

|ml|p =

Case 2. P, = P,. The line in question is the tangent, which we
know exists. Since @ C R, we can compute the tangent by 1rr.1p11c1t
differentiation of (5.15). Differentiation of (5.15) and substitution of

(z,1,w) = (21,1, w1) gives

(1 + a1z + 2azwy — ang — 2aqz1Wwy — 3a6wf)dw
= (—arw; + 322 + 2asz 1w + aqw?)dz.

dw

The coefficient of dw is of the form 1+ u’ with |u/|, < 1. Therefore T

is finite. The tangent line is thus of the form (5.14), and the slope m is

—ajwy + 3x% + 2aqz1wy + a4wf
14+

given by m = . Hence

|mlp = | —a1w1 + 3% + 2asz1w1 + a4wf|p
< max{p™™, p=*", p7*", p7"}
<p . (5.19)
Both cases. Thus in both cases, (5.18) and (5.19) say
|m|, < p~2". (5.20)
Since w; = mz; + b, we have b = w; — mzy, and (5.20) gives
bl < 5" (5.21)

The three points Py, Py, P3 satisfy (5.14) and (5.15) yvith multiplicities.
Substitution of (5.14) into (5.15) gives a cubic equation

(mz + b) + a1z(mz + b) + az(mz + b)?
= 2% + ayz?(mz + b) + agz(mz + b)? + ag(mz + b)?

whose roots, with multiplicities, are ¢, 3, z3. Then z; + 2, + z3 mu:sst
be minus the quotient of the coefficient of z? by the coefficient of z°,

and we obtain
—aym — azm?® + azb + 2a4mb + 3agm?b
1+ agm + agm? + agm? ’

1+ o+ r3=—
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By (5.20) the denominator has norm 1. Thus (5.20) and (5.21) show
that
p3 ifa; =0

—2n —3n
< .
|21 + 22 + z3|p < max{|a1|pp~ ", p } < {p_zn in any case,

as required. Since |z1]| < p~" and |z9|, < p~", we deduce that |z3], <
p~". From w3 = mz3 + b, we obtain |ws|, < p~3" by using (5.20) and
(5.21). Thus Ps is in E(®)(Q). This proves the lemma.

REMARK. The proof of Proposition 5.8 did not make use of the full
strength of the lemma since it did not isolate the case a; = 0. When
a; = 0, one can go over the proof of the proposition to see that p?® can
be replaced by p** and E(™ can be replaced by E(3™). In particular,
a; = 0 implies that there is a well defined map

E®)N(Q)/EC™(Q) — p"R/p™"R, (5.22)

and it is a one-one homomorphism. We shall use this observation criti-
cally in the next proposition.

Proposition 5.10. For each odd prime p, F(Q)tors N E(l)(Q) = 0.
This conclusion extends to p =2 if a; = 0.

Proor. Fix p. First assume a; = 0. If E(Q)iors N EM)(Q) # 0, the
intersection contains a nonzero element P of some prime order ¢. Since
N2, E™(Q) = {0}, we can find n such that P is in E()(Q) but not
E™+1)(Q). From ¢P = 0 and the homomorphism property of the map
in Proposition 5.8 (as amended by (5.22)), we see that

qz(P) isin p°R. (5.23)

If ¢ # p, then z(P) must be in p®" R C p?* R, while if ¢ = p, then z(P)
must be in p>"~! R C p?" R. In either case the one-oneness in Proposition
5.8 implies

P e BOM(Q) ¢ E(Q),

contradiction.

Now we allow a; # 0 but assume p is odd. Suppose by way of con-
tradiction that P = (z,1,w) is a nonzero element of E(Q)ors N E()(Q)
for the equation (5.15). Then P is a torsion point with |z|, < 1 and
|lw|, < 1. Also w # 0. Write

(2,1, w)] = [(#,5,1)]
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1 . . . )
by putting z = z and 4 = —. Then (Z,¥, 1) is a torsion point with
w w

72+ a1Zy + a3y = T° + a28% + a4Z + as. (5.24)
We make an admissible change of variables, putting

1
z= i—:i' and g= g(g' —a17').

Substituting into (5.24), we see that (&’,%/,1) is a torsion point of
2 4 (16aq + 8a1a3)z’ + 64as.

/

z
The point (z/,1,’w') with [(z',1,w")] = [(&',¥',1)] has ' = o and

72 + 8asy = & + (4az + a?)z

¥y = 5, and it is a torsion point of

w + 8azw? = 2% + (4az + a?)z"?w' + (16a4 + 8ajaz)z'w'? + 64asw.
(5.25)

This equation has integer coefficients, and its z'w’ term has coefficient

0. From the previous paragraph it has E(Q)tors N E(l)(Q) = (. We shall

obtain a contradiction by showing that (z/,1,’ w’) is in this intersection.

In fact, we know (z’,1,w") is a torsion point. Also

’ w

w= 8+ 4a;z

and p odd and |z|, < 1 imply |8 + 4a1z|, = 1, so that |w'l, = |w|, <
p~3. By Lemma 5.7, |z’[, < p~!. Thus (z/,1,%') is in EM(Q). This
contradiction completes the proof.

4. Lutz-Nagell Theorem

In this section we shall prove Theorem 5.1. The notation is as in §1.

PrROOF oF THEOREM 5.la. Under the assumption that a; = 0 let
(z,y,1) be in E(Q)tors. We are to prove that z and y are in Z. First
we handle y. Without loss of generality, we may suppose y # 0. Then
[(z,y,1)] = [(X,1,W)], where X = z/y and W = 1/y. Fix any prime
p. By Proposition 5.10, the torsion point (X,1, W) is not in EM(Q).

1 . . -
By Lemma 5.7, [W|, > 1. Thus |y|, = '-——’ < 1. Since this condition

WP

holds for all p, y is an integer.

Regarding y as an integer constant in (3.23b), we see that z satisfies
a monic cubic polynomial equation with integer coefficients. For such
an equation, the rational roots are integers. Thus z is an integer.
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ProOOF oF THEOREM 5.1b. Without the assumption that a; = 0, let
(z,9,1) be in E(Q)tors- Then (¢',y/,1) = (4z, 8y, 1) satisfies

¥v? + 2a12"y + 22aszy’ = 2 + 2%a,2"% + 2Yasz’ + 2%as,
and (z”,y",1) = (', ¢y + a12’, 1) satisfies
¥ + 8azy” = =" + (4az + a?)z"? + (16a4 + 8ajaz)z” + 64as.

By Theorem 5.1a, £” and y”’ are integers. Tracing back, we see that z’
and y' are integers. Hence 4z and 8y are integers.

PROOF OF THEOREM 5.1c. When p 1 A, we have ker(r,) = E)(Q).
Under our hypotheses, Proposition 5.10 says that E(Q):orsNEM(Q) = 0.
Thus the restriction of r, to E(Q)tors 1s One-one.

ProoFr oF THEOREM 5.1d. Let E be of the form (5.1). The doubling
formula (3.74) gives

zt — 2Az% — 8Bz + A?

2(2P) = 4(z8 + Az+ B)
and we write this as z(2P) = v(z) Since §(z) = y?, we have
45(z)’ ’
v(z) = 4y*z(2P). (5.26)

Now z, z(2P), and y? are integers by Theorem 5.1a, and we see from
(5.26) that v(z) is an integer and that y? | v(z). Thus y? divides both
v(z) and é(z). Direct calculation gives

(32% + 4A)v(z) — (322 — 5Az — 271B)6(z) = 443 + 27TB? = —d.

Since y? divides both v(z) and é(z), y* divides d.
5. Construction of Curves with Prescribed Torsion

In this section we study how to construct elliptic curves E over Q with
prescribed features in E(Q)tors. The first part of the section shows how
to produce elements of a given order. Then we shall discuss how to make
2, ® Z, be a subgroup of E(Q)iors- Finally we summarize matters by
saying how Table 5.1 in §1 was constructed.



146 V: TORSION SUBGROUP OF E(Q)

In studying behavior at a single point, we may translate the curve to
make the special point be P = (0,0) in the affine plane.
After this translation, we have ag = 0, and the curve is

y2 + a1zy + asy = 23 + azz? + aqz. (5.27)

From §II1.5 the curve is singular if and only if a3 = a4 = 0.

Assume that (5.27) is nonsingular. Then P = (0,0) is of order 2 if
and only if the tangent is vertical there. Vertical tangency occurs when,
in the implicitly differentiated form of the curve, the coefficient of dy is
0. In (5.27), dy has coefficient 2y + a1z + az. Thus P has order 2 if and
only if ag = 0 (and therefore a4 # 0).

Assume next that (5.27) is nonsingular and that as # 0. If we make
the admissible change of variables

(2,9) = (&', + a3 as2)
in (5.27), then P remains at (0,0) and we are led to
¥+ (ay + 203 ag)z'y + asy’ = 2 + (ag — a1aztaq — a;zag)xm.
Changing notation, we can rewrite this as
y? + arzy + azy = 22 + asz? (5.28)
with no z term. With P = (0,0), the numbered formulas of §I11.4 give

—P =(0,—a3) (5.29a)

b
2P = (—-——8 alb—s — (13) = (_02, ajaz — Cl3). (529b)
6 6

Since 3P = O if and only if —P = 2P, we see that P = (0,0) in (5.28)
has order 3 if and only if ay = 0.

Now assume that we have arrived at a nonsingular (5.28), i.e., ag # 0,
and suppose as # 0. Then we can eliminate one of the parameters.
Namely if we make the admissible change of variables

(z,y) = ('/u?, ' [u®)
with u = aglag, then P remains at (0,0) and we are led to

2 ~1 -2 3 -2
Y° +az aijarxy + az a2y:x3+a3 a'g:lr:2

5. CURVES WITH PRESCRIBED TORSION 147

with equal coefficients for the y and z? terms. Changing notation, we
can rewrite this as

E(,¢) : y*+(1—c)ey — by = 2° — bz

This is called the Tate normal form. It is nonsingular if and only if
b= 0. Direct calculation shows that the discriminant is

A(b,e) = (1—¢)*b® — (1 —¢)36® — 8(1 — ¢)2b* + 36(1 — c)b* — 27b% + 1645,
From (5.29) and (3.70), we obtain

P =(0,0) —P =(0,b)
2P = (b, bc) —2P = (b,0). (5.30a)

Using (3.72) and (3.73), and then (3.70), we find

3P =(c,b—c) =3P = (c,c?). (5.30b)

From (5.30) we can easily choose b and ¢ to make P = (0,0) have
4P = O or 5P = O or 6P = O. To achieve these three conditions, we
Just make 2P = —2P or 3P = —2P or 3P = —3P. From (5.30) we
obtain immediately

4P =0 <= c=0
5P =0 <= b=c (5.31)
6P =0 <> b=2c2+e.

Let us turn to the question how to make Z,, @ Z» be a subgroup of
E(®)tors- The tool will be Theorem 4.2. Since Z, @® 75 will have to be
a subgroup, we can assume from the outset that F is of the form

y' = (z — a)(z ~ f)(z - 7)

with a, 8,7 in Z. Translating (7, 0) to (0,0) and changing notation, we
can write the curve as

y? = z(z — a)(z — ). (5.32)

For Z4 & Z, to be contained in £(Q)tors, one of the points (zo, 0) with
zo € {0,c,f} must be the double of something. Suppose (0,0) is the

‘ point that is to be a double. Theorem 4.2 says that the necessary and
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sufficient condition is that 0 — 0, 0 — o, and 0 — 3 are squares. Thus any

curve
y* = z(z + %)z +5%)

has 24 ® Z3 C E(Q)iors- The subgroup Z4 @ Z consists of the elements
(0,0), (—=72,0), (—=5%,0), (rs, £rs(r +5)), (=rs, £rs(r — s)), oo.

This construction was used in connection with Example 4 in §1.

The application of Theorem 4.2 can be repeated, this time to be used
on (rs,rs(r + s)), and the result is a condition for Z3 ® Z> to be a
subgroup of E(Q)tors-

To summarize matters, let us say how Table 5.1 in §1 was constructed.
For as many cases as possible, the examples are from Theorems 5.2 and
5.3. For Z5 we used (5.31), and for Z7,Zs,Zy we used extensions of (5.31)
that deal with 7P = O, 8P = O, 9P = O. For 1,4, we started with the
standard form with P = (0,0) of order 5 and found a case where P
was the output from the doubling formula (3.74). For Z;,, the same
technique in principle should work with P = (0,0) of order 6, but we
simply quoted a known example. The examples with Z,®Z, and Z3s®Z,
were obtained by the method in the previous two paragraphs, and the
example for Zg @ Z, was obtained by starting with the form (5.31) for
6P = 0 and looking for a case that had three elements of order 2.

6. Torsion Groups for Special Curves

Our objective in this section is to prove Theorems 5.2 and 5.3 in §1.
Each theorem requires a lemma about Ej,(Z,) for certain primes p. Also
we shall use the form of the doubling formula (3.74) when specialized to
a curve y2 = 2% + Az + B:

zt — 2A2% — 8Bz + A?
4(z3 + Az + B)

z(2P) = (5.33)

And we shall use Dirichlet’s Theorem that there are infinitely many
(positive) primes an + b if GCD(a, b) = 1; this theorem will be proved
in Chapter VIL

Lemma 5.11. Let E, be the curve y* = 23+ Az over Z,, and assume
that pt A, p > 7, and p = 3 mod 4. Then E,(Z,) has exactly p+ 1
points.
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ProOF. We start from the known result that p = 3 mod 4, implies
that —1 is not a square modulo p. For z # 0, consider the pair {z, —z}.
When these elements are substituted into E, we obtain z3 + Az and
—(z3 + Az). If the answers are 0, each one has a square root, and we
get one solution from each. If they are nonzero, exactly one is a square
(since —1 is not a square), and it has two square roots y. So in either
case, the pair {z, —z} gives us two solutions. Thus the nonzero z’s give
us p— 1 solutions in all. For £ = 0, we get one more solution (0, 0), and
oo gives us one additional solution. Thus E,(Z,) has p + 1 points.

ProoF oF THEOREM 5.2. The main step is to show that |E(Q)ors|
divides 4. By Theorem 5.1¢, for all sufficiently large primes p, |E(Q)tors|
divides |E,(Z,)]. By Lemma 5.11, |E(Q)tors| divides p + 1 for all suffi-
ciently large primes p with p =3 mod 4.

Let us see that 8 does not divide |E(Q)ors|- By Dirichlet’s Theorem,
we can choose a prime p as in the previous sentence with p =3 mod 8.
If 8 divides |E(Q)iors|, then 8 | (p+ 1). But p =3 mod 8 means that
p+1=4 mod 8; so 8t (p+ 1), contradiction.

Now let us see that 3 does not divide |E(Q)¢ors|- By Dirichlet’s The-
orem, we can choose p large with p = 7 mod 12. Then p = 3 mod 4.
Thus 3 | |E(Q)tors| implies 3 | (p+ 1). But p+1 =8 mod 12 implies
p+1=8 mod 3;s0 31 (p+ 1), contradiction.

Finally let us see that no odd prime ¢ > 3 divides |E(®)tors|- By
Dirichlet’s Theorem, we can choose p large with p = 3 mod 4¢. Then
p=3 mod 4. Thus ¢ | |E(Q)iors| implies ¢ | (p+1). But p+1 =4
mod 4¢ implies p+ 1 =4 mod ¢; so ¢ 1 (p+ 1), contradiction.

This completes the proof that |E(Q)iors| divides 4. The torsion group
will then contain Z, = {(0,0), oo} as a subgroup, and it will be Z, $ Z,
if and only if 3 4+ Az splits over @, i.e., if and only if —A is a square.
Thus the only question is when (0, 0) is the double of something (so that
the torsion group is Z4 rather than Z5). We can check directly for A = 4
that (2,4) doubles to (0,0).

Consider the equation 2(z,y) = (0, 0) for other A. By (5.33), we have

0=z 242" + A? = (2% - A).
Thus z? = A. Since A is fourth-power free, z is square free. But
y? = z(2? + A) = z(2? + 22) = 223 then shows that no odd prime can
divide £. So # = %1 or £2. Checking the possibilities, we see that
z==2and A =4.

Lemma 5.12. Let E, be the curve y? = 23+ B over Z,,, and assume
that p+ A, p > 5, and p = 2 mod 3. Then E,(Z,) has exactly p+1
points.
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PrOOF. Let p = 3n+2. The multiplicative group Z; has order p—1.
Since 3 § (p — 1), no element has order 3. Therefore the homomorphism
a — a® on Z;,‘ is one-one, hence onto. Thus each element of Z, has a
unique cube root. For each y in Z,, the element y?> — B has a unique
cube root, which we can take as x. In this way we obtain p solutions.
Adjoining oo, we see that E,(Z,) has p+ 1 points.

ProoF oF THEOREM 5.3. The main step is to show that |E{Q)tors|
divides 6. By Theorem 5.1c, for all sufficiently large primes p, |E(Q)¢ors]
divides |Ep(Zp)|. By Lemma 5.12, |E(Q)tors] divides p + 1 for all suffi-
ciently large primes p with p =2 mod 3.

Let us see that 4 does not divide |E(Q)tors|- By Dirichlet’s Theorem,
we can choose a prime p as in the previous sentence with p =5 mod 12.
If 4 divides |E(Q)tors|, then 4 | (p + 1). But p =1 mod 4 means that
p-+1=2 mod 4;so 41 (p+ 1), contradiction.

Now let us see that 9 does not divide |E(Q)tors|- By Dirichlet’s The-
orem, we can choose p large with p = 2 mod 9. Then p = 2 mod 3.
Thus 9 | |E(Q)tors| implies 9 | (p+ 1). But p+1 =3 mod 9 implies
9¢ (p+ 1), contradiction.

Finally let us see that no odd prime ¢ > 3 divides |E(Q)tors|- By
Dirichlet’s Theorem, we can choose p large with p = 2 mod 3¢q. Then

=2 mod 3. Thus q | |E(Q)tors| implies ¢ [ (p+1). But p+1 =3
mod 3¢ implies p+ 1 =3 mod ¢; so ¢t (p+ 1), contradiction.

This completes the proof that |E(Q)iers| divides 6. The torsion group
has an element of order 2 if and only if z2 + B has a first-degree factor
over @, 1.e, if and only if B is a cube. Thus the only question is when
the torsion group has elements of order 3. Such a point P = (z,y)
is characterized by 2P = —P. Moreover, the z coordinate determines
everything, since 2P = +P is impossible for P # O. By (5.33) the
question is whether

z* - 8Bz
=z

4(z3+ B)

has any rational solutions z. Clearing fractions, we have

42* + 4Bz = z* — 8Bz
z* = —4Bz.

One solution is z = 0, which gives y?> = B; so Z3 occurs if B is a square.
The only other possibility is ° = —~4B. Then y* = —3B. Consequently
B < 0. Since B is sixth-power free, the only possible prime divisors of
B are 2 and 3. We readily find B = —2*33. So Z3 occurs if and only if

either B is a square or B = —2%33.

CHAPTER VI

COMPLEX POINTS

1. Overview

We shall consider meromorphic functions on C periodic with two pe-
riods that are linearly independent over R. Such functions are called
elliptic functions. We fix the periods. Among these functions, there
is a basic one p(2), and p(z} satisfies the differential equation

P2 =4p° — g2p — g3

for certain constants g2 and g3 depending on the periods. The lincar
independence of the two generating periods forces the cubic 423 —g,z— g4
to have nonzero discriminant.

For ¢ € C in a parallelogram II generated by the periods, we form the
parametrically defined curve

z=p(), y=p').

Then we have

v’ = 42° - goz — g5,

and the discriminant is nonzero. In other words, p provides us with a
parametrization of part of a curve £ over C, and F is for all intents and
purposes an elliptic curve. Taking into account poles of p(¢) and using
the projective plane over C rather than the affine plane, we shall see that
the parametrization is onto E(C). In fact, the map is biholomorphic.

There is a natural addition on our fundamental parallelogram obtained
from addition in C, and we shall see that this operation corresponds to
the group law for E(C).

Finally we shall see that every elliptic curve over C can be realized by
this construction. This is the inversion problem, and detailed motivation
for its solution appears in §5.

151
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2. Elliptic Functions

A function f : C — CU {co} is doubly periodic with periods w;
and wy if w; and wo are linearly independent over R and if f(z 4+ w;) =
f(2) = f(z +wy) for all z € C. An elliptic function is a meromorphic
doubly periodic function.

Fix wy and wy. The corresponding elliptic functions form a field. The
parallelogram with vertices 0, wy, ws, w) +ws is called the fundamental
parallelogram II. To be more precise, we shall insist that II contain the
two sides adjacent to the origin, as well as the origin, but not the other
two sides and three vertices. Any C-translate o + II of II is a period
parallelogram. With our precise definition of period parallelogram,
we can conclude the following: For any period parallelogram a + II, any
point 1n C 1s congruent modulo Zw; + Zw, to one and only one point of
o+ 1I1.

Proposition 6.1 (First Liouville Theorem). There exists no noncon-
stant elliptic function without poles.

PrROOF. Such a function would have to be bounded on the closure IT,
hence entire and bounded on C.

Corollary 6.2. If two elliptic functions have the same poles with the
same respective principal parts, then the functions differ by a constant.

Proposition 6.3 (Second Liouville Theorem). If f(z) is an elliptic
function with no poles on the boundary C of a period parallelogram
a + I, then the sum of the residues of f(z) in a + II is zero.

Proor. By the Residue Theorem, the sum in question equals

27”% F(2)dz.

The integrals over opposite sides of @+ II cancel (since f is the same at
congruent points and dz introduces a minus sign on one of two matching
sides), and thus the integral is 0.

REMARK. If f is elliptic, 1t has only finitely many poles on a bounded

set, and thus there is always an « for which the proposition applies.

Corollary 6.4. If f(z) is a nonconstant elliptic function, then either
f has more than one pole in @ + II or else f has one pole and that pole
has order > 1.

Proor. There has to be a pole, and the sum of the residues is 0.
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Corollary 6.5 (‘Third Liouville Theorem). Suppose f(z) is an elliptic
function with no pole or zero on the boundary C of a period parallelo-
gram « + II. Let {m;} be the orders of the various zeros in a + II, and
let {n;} be the orders of the various poles. Then 3, m; = 3, n;.

f'(z)
f(2)

n if n > 0 is the order of a zero of f at zg
0 if f has no zero or pole at z,
—n if n > 0 is the order of a pole of f at z;.

ProoF. Since f is meromorphic, the residue of at zg is

Summing over the points of the period parallelogram and applying
f'(z)
f(z)’

The order of an elliptic function 1s the number of poles in « + II,
counting multiplicities. In Corollary 6.5, the order is E]. nj. Conse-
quently the number of zeros of f(z), counting multiplicities, equals the
order of f(z).

Proposition 6.3 to we obtain the corollary.

Corollary 6.6. Suppose f(z) is an elliptic function of order m and
a + II is a period parallelogram. For each ¢ € C, f takes on the value ¢
exactly m times, counting multiplicities.

Proor. Apply Corollary 6.5 to f(z) —

3. Weierstrass p Function

Fix wy and wy in C linearly independent over R, and let IT be the
fundamental parallelogram. We shall define a particular nonconstant
elliptic function with periods w; and wse, thereby proving existence of
nonconstant elliptic functions. Then we shall develop some properties
of this function.

Write A = {mw; + nwy | m,n € Z}; A is called the period lattice.
The Welerstrass p function relative to A is defined by

p(z) ==+ ( e ;17) . (6.1)

wEA
w#0
We shall make repeated use of the following fact from complex variable
theory: If a sequence of functions analytic in an open set converges
uniformly, then the limit is analytic, and limit and derivative may be
interchanged.
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Lemma 6.7. If s is a real number > 2, then

2.

wEA
w#0

1
!

converges.

PROOF. Let II be the union of the four A translates of II that surround
the origin:

I=TU(—w; + U (—ws + M) U (~w; —wy +10).

The boundary of Il is compact and does not contain 0, and we can choose
¢ > 0 so that |z| > ¢ for all z in the boundary of II. If |m| > [n| > 0, we
then have

Imws + nws| > |m| |w1 + %wzl > ¢lml, (6.2)

since z = wy + ~wy lies in the boundary of .

Now consider zw#) |w|™%. If we write w = mw; + nw»,, the terms
with n = 0 contribute 2w;|™* 3" 7°_ m™* < oo, and the terms with
m = 0 contribute 2Jwa|™* Y oo n™* < oco. By (6.2), the terms with
|m| > |n] > 0 contribute

[ee]
E |mwy + nwe|™ <c¢™? E [m|™° = 4c7? E m™* ! < oo,
[m|>|n|>0 Im|>|n|>0 m=1

and the terms with |n| > |m| > 0 similarly make a finite contribution.
The lemma follows.

Proposition 6.8. If F is any finite subset of A and if the terms cor-
responding to F' are omitted in (6.1), then the resulting series converges
absolutely uniformly on any compact subset of C — (A — F). Conse-
quently p(z) is meromorphic in C, its only poles are double poles at the
points of A, and p’(z) may be computed term by term.

Proor. We may assume F' contains w = 0. The sum for A — F'1s

wEA—F
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and we have
2
Z
2z — —
e | &
w(z —w)?|~ |w?

on our compact set. By Lemma 6.7, 3~ cA_p ]UC[? < 00. Therefore the
absolute uniform convergence follows by the Weierstrass M-test. The
fact from complex variable theory at the beginning of the section shows
that the limit is meromorphic. The poles are as indicated because of the
convergence, and the same fact from the beginning of the section shows
we can compute p'(2) term by term.

Proposition 6.9. The function p(z) is an elliptic function with w,
and ws as periods, and p(—2z) = p(z). The order of p(z) is 2.

Proor. We have p(—~z) = p(z) since the right side of (6.1) is un-
changed if z is replaced by —z and w is replaced by —w. Differentiation
of (6.1) gives

Sol(z) =-2 2 (z —1w)3’

wE€A

and this is certainly doubly periodic. Hence p’(z) is elliptic.

For w € A, we differentiate p(z + w) — p(2) and obtain p'(z +w) —
9'(z) = 0. Therefore p(z +w) — p(z) = C. Evaluating at z = —3w;
(where there is no pole, according to Proposition 6.8), we obtain

C = p(3w1) — p(—3w1) = p(3w1) — p(iwr) = 0.

Hence p(z + w1) = p(2). Similarly p(z + wz) = p(z). Since p is mero-
morphic, g is elliptic. Since z = 0 is the only pole of p(z) in I, the
order of p(z) is 2.

Theorem 6.10 Any even elliptic function (relative to periods w; and
wy) is a rational function of p(z). Any elliptic function f is of the form

f(z) = g(p(z)) + p'(2)h{p(z)) with g and h rational.

PRELIMINARY REMARKS. The second statement follows from the first
since f = fo + fo with fe(z) = 1(f(2) + f(~z)) even and with f,(z) =

1(f(z) ~ f(~2)) odd, and since f, = p’ - I% with g even. The proof of

the first statement will be preceded by a lemma.
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Lemma 6.11.

(a) For any u € C, the elliptic function p(z) — « has within II either
two simple zeros or one double zero.

(b) The zeros of ©'(2) within II are lwi, lws, and (w1 + ws), all
simple.

(c) The values u; = p(—é—wl), ug = p(%wg), and uz = p(%(wl +wy)) are
the exact u’s within TI where gp(z) — u has a double zero, and ui, uz, uz
are distinct.

Proor.

(a) Since p(z) has order 2, we can apply Corollary 6.6.

(b) The function p’(z) has order 3. Hence it has at most 3 zeros.
Since p’(z) is odd and periodic, we have

P'(%wl) = —50'('—%001) = —p'(wy - %wl) = —Pl(%wl)-

Thus %wl is a zero. Similarly %wg and %(wl + wgq) are zeros.

(c) If p(z) —u has a zero at zo, the zero is double if and only if p'(20) =
0. By (b), p(z) —u can have a double zero only at 3wi, tws, T(wi+wy),
and in these cases u clearly must be uy, us, ug, respectively. Conversely if
u = u, then p(z)—u; is 0 at z = w, and also p’(5w1) = 0. So we have
a double 0. Similar remarks apply to 1w, and to 3(w; +w2). Finally
if at least two of uy, uq, uz were equal, say to ug, then p(z) — uo would
have at least two double zeros, in contradiction to (a); we conclude that

uy, ug, uz are distinct.

PROOF oF THEOREM 6.10. We are to prove that any even elliptic
function is a rational function of p(z). Let f(z) be even elliptic. Tak-
ing into account the evenness, we shall list “half” the zeros and poles,
temporarily ignoring what happens at z = 0.

Let f(a) = 0. First suppose a € I and a ¢ {0, $w;, Fwa, 3(w1 +w2)}.
Let a* be the symmetric point, the point in II congruent to —a:

wy +we —a if a is interior (and not %(wl + w2))
a* = w;—a if a is on the side to wy (and not fw;)  (6.3)
Wy —a if a is on the side to wy (and not %wg).

If a has order m, so does a*: In fact,
f(a* —2) = f(period —a—z) = f(—a—2) = f(a +z).
If f(a+ z) = anz™+higher, then

fla* +2) = f(a— 2) = am(—2)™ + higher.
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Next suppose a is one of %wl, %wz, %(wl +wsy). Say a = %w. Then we
show a has even order. In fact,

[(ho—2) = f(—}w - 2) = f(bw+2)

shows f is even about a = %w. Hence the order is even.

A similar argument applies to poles. If f has a pole at a € II with
a ¢ {0, 3wy, 3w, $(w; +w2)}, then f has a pole at a* of the same order.
Also the order of a pole at any of %wl, %wg, %(wl + wq) is even.

Now we list “half’ the zeros and poles of f(z). Let {a;} be a list of
the zeros of f(z) in II other than 0, %wl, %wz,%(wl + wy), each taken
with its multiplicity, but with only one taken from each pair a,a*. For
any zero among %wl,%wg, %(wl + wy), we list the point half as often as
its multiplicity. Similarly let {b;} be a list of “half” the poles in II other
than 0.

Since all the a; and b; are nonzero, p(a;) and p(b;) are finite for all ¢
and j. Thus it makes sense to define

1 [Lte() ~ p(a)
1) = 1. 6o() — o6))

We claim that g has the same zeros and poles as f, counting multiplic-
ities. Since the only poles of the numerator and the denominator are
at z = 0, the only other zeros and poles of g(z) come from zeros of the
numerator and the denominator.

Consider a zero 2o of the numerator, a point where p(20) = p(a;). If
a; 1s any of %wl, %wg, or %(wl + ws), then Lemma 6.11 says g takes on
the value gp(a;) twice at that point and nowhere else. So zp = a; and
p(z) — p(a;) has a zero of order two at z;. Taking into account repeated
factors for this a;, we see that f and g have a zero of the same order at
z0-

Next suppose a; is not %wl, %wz, or %(wl + wy). We have p(a;*) =
p(ai), so that p(z) ~ p(a;) has distinct zeros at a; and a;*. The lemma
says these zeros are simple. Taking into account repeated factors for
this a;, we see that f and g have a zero of the same order at zg.

Thus f and g have the same zeros (including their orders), apart from
z = 0. Similarly they have the same poles (including their orders), apart
from z = 0. By Corollary 6.5, they have the same order of zero or pole at
z = 0. Consequently f/g is entire and therefore constant, by Proposition
6.1. This completes the proof.
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Theorem 6.12. The function w = p(z) satisfies the differential

equation
dw\? 3
=) = 4w” — gow — g3,

where g5 and g3 are constants depending on A in the following way:

Gm =Gm(A) =) wim form>3 (=0 formodd) (6.4)

wEA
w#0

g2 = g2(A) = 60G4
g3z = gg(A) = 140G5

REMARKS. The series for G, is absolutely convergent by Lemma 6.7.
The theorem will be proved after Lemma 6.13.

(6.5)

Lemma 6.13 (Weierstrass Double Series Theorem). Suppose f,(z) =
Ziozoai")(z — 20)F is analytic for |z — zp] < r and n > 0, and suppose
that the series

= Z fn(2)
n=0

= [ago) + a(lo)(z - 20) + ago)(z — z0)2 +...]
+ [a(()l) + agl)(z —z0) + agl)(z - zo)2 +...]
+ ...
+ [agn) + a(ln)(z ~zo) + ag")(z —z0)2 +...]

1s uniformly convergent for |z — zg| < p for each p < 7. Then the
coefficients in any column form a convergent series. Moreover, if

oo
A = Z agc")
n=0
is the sum of the k*" column coefficients, then 3 o, Ax(z — 20)* is the

Taylor series for F'(z) about z = 2, and it converges for |z| < r.

ProoF. By the given convergence, F(z) is analytic for |z — zo| < r
and hence is given by a convergent Taylor series about zg. Its k*" Taylor
coefficient is

__F(k)(zO Z k'f(k) 20) = Za(") = A,

by the complex variables fact after (6.1), and the lemma follows.
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PrROOF OF THEOREM 6.12. We are going to apply Lemma 6.13 to

0= 2 eor )

in a small disc about z = 0. Here

;—.l_ 22+322
(z—w)z_w2+ w3 w4+“"

so that

[e o]
W 5= 3 (SRR
wE€A \k=1
w#0
Thus if we define Gy, by (6.4) for m > 3, the lemma says that the series
for Gy is convergent (which we know already) and

p(2) — = Z k+ 1)Gryaz®.
k=

We see directly from the definition (6.4) that G, = 0 for m odd. There-
fore

1
p(z) = —+ 3G42% + 5Ge2* +7G2% + . ...
By direct calculation we find
'(2) = —=5 + 6G1z + 20Gs2° + 42G32° 4 O(2")
4
p'(2)t = == 24(;42—2 — 80Gs + (36G5 — 168)2% + O(2*)
1
go(z)z = P +6Ga4 + 10Ge22 + 0(24)
1 1
p(2)% = —5 +9Ga—5 +15Gs + (21Gs + 271G 2% + 0(2)
p'(2)? — 4p(2)% + 60G4p(2) + 140G = O(z%).
The left side of the last equation is therefore without poles or constant

term. By Proposition 6.1, it is 0. Defining g, and g3 by (6.5), we obtain
the theorem.
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Theorem 6.14. The map of C/A into P,(C) given by
{(P(Z)»P’(Z), 1) forz ¢ A 6.6)
(0,1,0) forz€ A

is holomorphic and carries C/A one-one onto the projective plane curve
E(C), where E is given in affine form by

Zz —

y? = 42> — g2z — g3.

REMARK. Recall from §I1.1 that our various systems of affine local
coordinates make P5(C) into a complex manifold.

ProoF. For z # 0, the image is (p(2),p'(2),1), which becomes
(p(2),9'(2)) in the affine local coordinate system given by & = I.
Since each coordinate is analytic in z, our map (6.6) is holomorphic
for z # 0. Near z = 0, we use the affine local coordinate system given

1 00
by®={0 0 1) , and the map is given by
0 1 0

(80 5) — (55 70)
0 — (0,1,0) — (0,0).

Each coordinate is analytic in a punctured disc about 0 and is continuous
at 0, hence is analytic in a disc about 0. Thus (6.6) is holomorphic.

It is clear from Theorem 6.12 that the image is contained in E(C).
Suppose z; and zz in Il map to the same point. Then p(z1) = p(z2) and
p'(z1) = p'(22) and 21 # 0, 22 # 0. Since g has order 2, p(z1) = p(22)
with z; # z2 implies z2 = z1*, in the notation of (6.3). But then

o' (z2) = ¢ (217) = g (period — z1) = ' (—21) = —p'(21).

Since also ¢'(z2) = ¢'(21), we see that p'(21) = ¢'(z2) = 0. By Lemma
6.11, z; and 2z, are members of {%wl, %wg, %(wl + wsy)}. Consequently
2% = z1, 22" = z2. Since z3 = z17, we obtain z1 = 22, contradiction.
We conclude that the map (6.6) is one-one.

Finally we show that the map (6.6) is onto. Let (z,y,1) € E(C) be
given. Since p has order 2, we can find z (clearly # 0) with p(z) = =.
Then also p(z*) = «. The equation

y? = 4z — gox — g3 = 4p(2)° — g2(2) — 93 = ' (z)?

says either that y = p'(z), in which case z maps to our point (z,y,1), or
else y = —p'(2), in which case z maps to (z,—y,1). In the latter case,
p'(2*) = —p'(z) implies z* maps to (z,9,1).
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Theorem 6.15. The cubic polynomial 4w® — gyw — g3 factors as
4w® — gyw — g3 = 4(w ~ u;)(w — uz)(w — u3), (6.7)
_ (1
where u; = p(zw1), vz = w(%(wg), uz = w(%(wl + w2)). Consequently
the plane curve
E : y>=42% — gox — g3 (6.8)
is nonsingular.
PRrOOF. For the first statement we go over the proof of Theorem 6.10

for the even elliptic function p’(z)2. Since the only pole in IT is at z = 0

and since the only zeros of p’(z) are simple zeros at uj, us, uz, the proof
shows that

W'(2)? = CT] (9(2) — w).
i=1

Subtracting the expression in Theorem 6.12, we find that every value
p(z) of the g function satisfies

3
4p° — gap — g3 = C [ (9 — ).

i=1

This identity is impossible unless C' = 4 (since nontrivial cubics have
F)nly 3 roots). Thus the cubics match. This proves the first statement
in the theorem. The second statement follows from Lemma 6.11c and
Proposition 3.5.

Tbe nonsingularity of E in Theorem 6.15 allows us to define a complex
manifold structure on E(C) in a natural way. About (z,y, 1) we define

E(z,y) = y* — (42° — g2z — g3).

We have
OF SE

- 2
81,' = (121’ gz)’ a—y- -

}/‘Eh;n' y T .0,1 the Implicit Function Theorem allows us to define y =
z) implicitly so that the curve is (z, f(z),1). A chart is gi
o) ety (z, f(z),1) chart is given by

When 92 # 0, the Implicit Function Theorem allows us to define

x
z = g(y) implicitly so that the curve is (g(y), y,1). A chart is given by
(9(¥),v,1) — .

2y.
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Finally we have to consider behavior about (0,1,0). About (z,1,w)
we define
e(z,w) = w — (423 — gaw’x — gauw?).

Then ge_ # 0, so that w = A(z) implicitly and the curve is
dw (0,1,0)

(z,1,h(z)). A chart is given by (z,1,w) — 2.

We readily check that these charts make E(C) into a complex man-
ifold such that inclusion into Po(C) is holomorphic and such that any
holomorphic mapping into P(C) with image in E(C) is holomorphic
into E(C). Relative to this complex structure on E(C), we have the
following corollary.

Corollary 6.16. The inverse of the one-one map C/A — E(C) given
in (6.6) is holomorphic.

ProoF. About points (z,y,1) where y # 0, the coordinate function is
(z,y,1) — z. Thus the coordinate version of the map (6.6) is z — p(2)
about points zo where g'(zp) # 0. The invertibility condition for this
function (by the one-dimensional Inverse Function Theorem over C) is
that ¢'(z0) # 0. So we have invertibility.

About points (z,y, 1) where y = 0 (i.e., p'(z0) = 0), we are considering
z = %wl, %wg, %(wl + wsy). The coordinate function is (z,y,1) — y.
Thus the coordinate version of the map (6.6) is z — p'(z) about z =
%wl, %wg, %(wl + wa). The invertibility condition is that p'(2) # 0.
But p"(z5) = 0 would mean p’ has a double 0 at zp, in contradiction to
Lemma 6.11b.

About (0,1,0), we are considering z = 0. The coordinate function
is (z,1,w) — z. Thus the coordinate version of the map (6.6) is z —
©(2)/¢'(z). This has a simple zero at z = 0, and thus its derivative is
nonzero at z = 0. This completes the proof.

4. Effect on Addition

We continue to assume that wy and w, in C are linearly independent
over R, and we continue with the notation A, I, and F as in §3.

We write ¢ for the biholomorphic map ¢ : C/A — E(C) given by
(6.6).

Theorem 6.17. The biholomorphic map ¢ : C/A — E(C) is a group

isomorphism.
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REMARKS. The proof will be preceded by Lemma 6.18. Had we not
already proved that the operation (P,P) — P, + P, in E(C) is asso-
ciative, then Theorem 6.17 would give us a proof. This was Poincaré’s
approach, and as a consequence he obtained associativity for the k ra-

tional points of elliptic curves defined over k, provided the field k is a
subfield of C.

Lemma 6..18. If f:C/AXxC/A — C/A is analytic in each vari-
able and continuous jointly, then there exist a, b, and ¢ in C such that
f(z1,22) = az; +bzy + ¢ mod A for all z1,29 € C.

ProOF. Welift fto F:Cx C — C/A with F jointly continuous and
§eparately analytic. Then we lift 7 to a function F : C x C — C that is
Jointly continuous and separately analytic. The equality

F(z1 + mw; + nws, 22) = F(z1,22) mod A
says that
Fz1 4 mw; + nws, 2) = F(zy, 22) + miwy + njw,

with my,n; in Z depending on 21,23, m,n. For fixed m and n, m; and
ny are continuous in (zy, 22), hence constant. Differentiation gives

OF OF

a(h + mwy + nwy, z) = 5(21,22)
OF aF

%(21 + mw; + nwy, z3) = 52—2(21,22)-
OF

Hence . and 55, are elliptic in the first variable and thus constant

in 2. Simlarly they are constant in z3 and thus globally constant. Say

F
6—%1— = a and -52—2 = b. Then we have F(21,22) = az; + bzy + ¢ for a
suitable ¢, and the lemma follows.

PROOF OF THEOREM 6.17. First we note that ©(0) is the identity
element of E(C), translation is analytic on E(C), and addition is con-
tinuous on E(C). (For the last of these, it is enough to prove continuity
at (0,0), where it is clear.)

Form f:C/A x C/A — C/A given by

f(z1,22) = 07 (p(21) + p(22)) mod A.
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This is analytic in each variable and is jointly continuous. By Lemma
6.18, f(z1,22) = az; + bz + ¢ mod A. Since £(0,0) = 0, ¢ = 0. Since
f(2,0) = z, az = z mod A for all 2 and thus @ = 1. Similarly b=1

Thus f(z1,22) = 21 + 22, 1.,
21+ 20 = @ 1 (p(21) + p(22)) mod A.
Applying ¢, we obtain
p(21 + 22) = p(21) + 9(22),
as required.

An analytic map k : E(C) — E(C) fixing 0 is called an isogeny.
(More generally an analytic map h : E1(C) — E5(C) carrying identity
to identity is an isogeny.) We can reinterpret an isogeny h by means of
¢ :C/A — E(C), i.e., we can study ¢ lohoep. In Lemma 6.18, we put
f(z1,22) = ¢~ o hop(z1). The lemma gives p~! o hop(z) = az +c.
Since h(0) = 0, ¢ = 0. Thus our reinterpretation is

h(p(2)) = p(az).

The trivial maps of this sort have a € Z. If a is in R but not Z, take
7 = w; to see that the map is not well defined. Thus the only nontrivial
isogenies from E to itself have a € C with a not real. In this case we
say that E has complex multiplication.

Proposition 6.19. E over C as above has complex multiplication if
and only if wo/w; lies in a quadratic extension of Q.

ProoF. With a as above, h cannot be well defined unless aA C A.
Conversely if aA C A, let z; = z2 mod A, say z1 = 22 +w. Then
az, = azs + aw € azy + A shows that z — az is well defined on C/A,
i.e., we can define an isogeny h.

Now suppose aA C A. Then aw; = mw; + nwy with m,n € Z. If
T = wy/wy, this says a = m+ nr. Now

awy = (m+n7)wy equals mw; +n'ws.
Dividing by w1 gives
(m+nr)r=m'+n'r.

Thus 7 satisfies a quadratic equation with integer coefficients. Con-
versely if 772 + s7 +t = 0, then (r7)7 = —t — s7. Definea = rr ¢ R.
Then aw; = rwy and aws = —tw; — swa, so that aA C A.
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5. Overview of Inversion Problem

In §§1-4 we have seen how to associate to a lattice A = Zw; + Zws in
C a nonsingular curve

E y2:413-g2:c—g3

with go and g3 in C. This association is implemented by the biholomor-
phic mapping ¢ : C/A — E(C) given by

(p(2),0'(2),1) forzg¢ A
(z) = { (6.9)
(0,1,0) for z € A.
In this section we address a converse problem. We know that every
elliptic curve over C, after the linear change of variables that changes
(3.23) into (3.26), is of the form

y? =4(z —a)(z —b)(z —¢) (6.10)

with a,b,c distinet in C. With another linear change of variables, we
can even make a+b+c = 0, and in this case the £? term drops out from
the right side of (6.10). Our question is: For such a curve E, does there
exist a lattice A such that the above association carries A to E7

The answer is “yes.” The positive answer to this inversion problem is
a fairly easy consequence of the Uniformization Theorem in the theory
of one complex variable. However, we prefer to take a more pedestrian
approach, since it gives more information. Essentially we shall produce
concrete formulas for the inverse of ¢ in (6.9).

In terms of parameters, we need to use E to construct a pair of generat-
ing periods w; and wy. Then we can form the corresponding g function,
and we shall recover a, b, ¢ as the parameters u;, us, uz attached to this
g function.

The construction of the parameters will be a byproduct of the con-
struction of ¢~!. To see the nature of ¢!, let us assume that £ does
indeed arise from w = p(z). Then the results of §3 give

(%) = 4(w — a)(w — b){w —¢)
dw
=dz
2y/(w — a)(w — b)(w — ¢)

_ v dw
#(w) /2\/(w—a)(w—b)(w——c). (6.11)




166 VI: COMPLEX POINTS

This integral is called an elliptic integral.of the ﬁ.rSt km;i. o

In order to assert that w = p(z) is genuinely the inverse un; 16 I
an elliptic integral of the first kind, we need to make sen(sle‘o;xt o I(ld.' wé
The first step is to make sense out of the double-‘value in etgra ir; 6
carry out this step in §7 after an essay on z.a.nalytlc coptmu(? 10: make:
Then in §8 we clarify what path of integration to use md(.)f;‘ er tova1ues
sense of (6.11). Different choices of path V.Vlll lea'd ?o 1 erenl Jalues
of the integrand, but the different values will all lie in a transla

. . A
ttice, namely the lattice we take as .

. Olrclie we ha\}/’e made sense of (6.11), we can show 1.t has a locally deﬁnid

inverse, and we can show that the locally defined inverse extends to be

i ill be easy.
lobally meromorphic. The rest will ‘ ' ]
’ C}na§9ywe shall illustrate how to make rapidly convergent numerl'cal1 call
culations for passing back and forth between A and (g2, g3), particularly

when g7 and g3 are in R.

6. Analytic Continuation

A function element Is an analytic funFtion on a disc. vat;les(}ililcl
is centered at z = a, we speak of a fgncthn ilement at a. 1ement'
define a notion of “direct analytic continuation of a functlor.l ele . this,
this will be another function element of a c.ertam'kmd: It’?raftlo? o e
notion will lead to the definition of “analytic continuation” ol a func

lement along a path. . ‘ ]
’ eTo define %i'u'ect analytic continuation, let the first function ele

ment be
f(z) = ao+ar(z — a)+ ax(z — a)* +... for |z — a| < r(a). (6.12)
Suppose s satisfies |s — a| < r(a), so that the disc
|z —s| < r(a) —Is— al (6.13)

lies completely within the disc |z — a| < r(a). Then we can compute the
derivatives of f(z) at s to obtain

f(z) = bo(s) + bi(s)(z —s) + ba(s)(z ~ 2+ (6.14)

For fixed s satisfying |s — a} < r(a), Taylor’.s Theorem shows that (6.14)
is convergent for z as in (6.13). But more1s true. If we write

(z—a)y =[(z =)+ (s = )", - (615)
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then we can compute the coefficients by(s),b1(s),... from (6.15); The
result is that bo(s),b1(s),... are convergent power series in s — a. Ef
fectively the b;(s) are obtained by expanding (6.15), substituting into
(6.12), and rearranging. We say that (6.14) arises from (6.12) as a re-
sult of rearranging the series at s. A second function element is
a direct analytic continuation of the given function element if its
center s satisfies |s — a| < r(a) and if the series for the second function
element arises from the given function element as a result of rearranging
the series at s. It may be that r(s) for the second function element is in
fact larger than the obvious possibility 7(a) — [s — a| given in (6.13); in
fact, this will be the case of interest for us.
Fix a and b, and let C be a path from a to b given by

7({#), a<t< B withy(e) =a, y(8) =b.

Let f be a function element at a. A function element g at b is said to
be an analytic continuation of f along C if there exist

(1) a partition
a=tg<t1 < - <t, =0, (6.16)

(2) discs D; centered at ¥(t;), 0 < j <n, and
(3) function elements f; at y(¢;), 0 < j < n, defined on Dj
c

such that fo = f, fn, = g, Y[tj—1,t;] C Dj—1 for 1 < j < m, and fjis a
direct analytic continuation of f;_; for 1 < j < n.

ExaMmPLE. Let C be the unit circle vy = e, 0 < t < 27. Let
f(z) = V/z in |z — 1] < 1, with the square root taken to be positive on
the positive reals, and let g(z) = v/ in |z — 1] < 1, with the square root
taken to be negative on the positive reals. It is easy to check that g is

an analytic continuation of f along C. The discs D; can be taken to be
centered at the points e/™/4 0 < j < 8.

Proposition 6.20. Let C be a path from a to b, and let f be a
function element at a. If g, and g, are function elements at b that are
analytic continuations of f along C, then ¢g; and g2 have the same Taylor

series expansions about z = b. (Only the radii of their discs of definition
can be different.)

Proor IF Dy D y[e,B]. In terms of the partition (6.16) used to
determine one of g; and ¢,, we claim that the Taylor series for f, is
the result of rearranging the series for fo at y(¢,). If so, then certainly
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g1 and g, will have the same Taylor series expansions. We proceed
by induction on n, the case n = 1 being true by definition of direct
analytic continuation. Assuming the result for n — 1, we then know that
fa_1 is the result of rearranging the series for fo at ¥(tn-1), so that
fo(2) = fa-1(z) for 2 € Do N Dy_1. By definition of direct analytic
continuation, fn_1(z) = fa(2) for z € D1 N Dy. Thus fo(2) = fa(2)
for 2 € Dy N D,,_1 N D,. This intersection is nonempty since y(t,) is In
it. Thus fo(z) = fa(2) on Do N Dy, and the assertion follows.

PROOF IN GENERAL CASE. The main step is to see that the partition
(6.16) can be suitably refined without adjusting the series of the initial
or final function element. Recall that y[t;_1,%;] € Dj_1. Then

6 = min distance(y[t;—1,%:], D{_y)
1<j<n

is > 0. Fix any positive number p with p < é. By uniform continuity of
4 (with € = p), we can refine (6.16) to a partition

a:30<"'<5m:ﬁ (617)
so that
Yisic1, 8] C{lz = v(sim)l < p} n{lz = y(si)l < p} forl<i<m.

Define
A;={lz—v(si)| < p} for0<i<m.

Let
ti—1, t (6.18)

be two consecutive points of (6.16) and let
Sk—-1 :tj—l) Sky -y SIth (619)

be the corresponding points of (6.17). Now the series for f;_1 converges
in Dj_, and all the discs Ap_1,Ak, ..., lie in D;j_1, by definition
of 6. Hence the special case shows that f; results whether we use the
partition (6.18) and discs Dj_1, D or the partition (6.19) and discs
Agp_1,Ag,...,A;. Putting these results together for 1 < j < n, we see
that f, is the result of analytic continuation from f, using the partition
(6.17) and the discs Ao, ..., Amp.

Now we can compare g; and g». Let us say that the above argument
would work with § = 6, for g1 and with § = §; for g2. By choosing
p < min{é,,62}, we can choose a common refinement of both partitions
and see that g; and gy are obtained from a common sequence of points
and discs.
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Proposition 6.21. Suppose C is a path from a to b given by y(t),
a <t < . Suppose f is a function element at a and g is a function
element at b obtained by analytic continuation of f along C. Then there
exists ¢ > 0 with the following property: If C’ is any path from a to b
given by 9(t), @ <t < 3, that is uniformly within € of v(¢), then g is an
analytic continuation of f along C”.

This proposition has the following use: We can always approximate
C uniformly by polygonal paths, and thus polygonal paths give us the
most general analytic continuation. We omit the proof of Proposition
6.21, as it is in much the same spirit as the previous proof.

Proposition 6.22. If ¢ is an analytic continuation of f along a path
C, then f is an analytic continuation of g along the reverse path C!.

PrRoOOF. Without loss of generality, let ¢ be a direct analytic con-
tinuation of f, so that the given partition is @ = #g < t; = §. We
apply the construction in the second half of Proposition 6.20, obtaining
a refinement ¢ = s < -+ < 8y, = B, discs A; for 0 < ¢ < m, and
function elements (f;, A;) such that y[s;—1,s;] € Ai—1 N A;, fo has the
same series as f, f,, has the same series as g, and f; is a direct analytic
continuation of f;_;. For the path C~1, we use the partition

—B=rg< - <rpy = —ax

with »;, = —s,,_;, the discs D; = A,,_;, and the function elements
gi = fm-i. Then

Y M ric1, 7] = Y = Smeit1, —Sm—i] = V[Sm—i, Sm—it1]
CAn_iNAy_iy1=D;ND;_1 C D;i_y.

Also the fact that A,,_; and A,,_;41 have the same radius shows that
fm—i and fp_;41 are direct analytic continuations of each other, hence
that g; is a direct analytic continuation of ¢;_ ;.

7. Riemann Surface of the Integrand

Let a,b, ¢ be distinct points in C. In this section we treat the problem
of defining \/(z — a)(z —b)(z —¢). Fix zo € C — {a,b,c}, and fix qo
as one of the two possible values of /(2o — a)(zo — b)(z0 — ¢). Then

V/(z — a)(z — b)(z — ¢) at least extends to be analytic in any disc about
zo within C — {a, b, c}.
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We shall define a double covering R of C — {a,b,c} so that
J(z — a)(z — b)(z — ¢) extends to be well defined on all of R. Then we
shall complete R to a space R* over C U {oo} that ﬁlls in one preimage
above each of a, b, ¢, 00. The space R* will be a one-dimensional complgx
manifold (Riemann surface), and it will be compact. (Actually it will
be a torus.) o .

Consider loops in C—{a, b, ¢} based at zo. If such a loop C 1s piecewise
smooth, we define its total winding number about a, &, and ¢ to be

n(C) = n(C,a) +n(C,b) + n(C, ¢)
:_l_fdz_*_fdz’*_f’dz).
i \Jo z—a cz—b cz—¢C

If the loop C is not piecewise smooth, all piecewise smooth loops that
are uniformly sufficiently close to C' can be seen to have the same total
winding number, and we take this to be n(C). .

Homotopic loops based at zo have the same n(C). Then n(C) gives a
group homomorphism from the fundamental group my (C —{a,b,c}, 20)
into Z. This homomorphism is onto Z since there exists a loop that

winds once around a and 0 times around b and around c. Therefore the
subgroup of even total winding number

H = {C em(C~{a,b,c}, z0) | n(C) € 21}

has index 2. Let R be the covering space of C — {a,b,c} corresponding
to H,lete: R — C—{a,b, ¢} be the covering map, and fix {p as a base

point in R with e({o) = 2o. . . .

For use in §8, we record how H 1s generatgd in terms o
m1(C - {a,b,c}, z0). Let I',,Ts, T be simple piecewise smooth loops
in C—{a,b,c} based at zo that intersect one another only at zo and that
have winding numbers

n(Tq,a) =1, n(lq,b) = n(lq,c) =0
n(Fb,b) = 1, n(I‘b,a) = n([‘b,c) =0 (620)
n(Te,0) =1, n(T,,a) = n(T.,b) = 0.

Define
Ty =TT and Iy =T,T,. (6.21)

Proposition 6.23. The subgroup of 71 (C—{a,b, c},zzo)zof e2ven total
winding number 1s generated by the classes of Ty, T:, T}, T%.
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ProofF. The loops I'g,T's,I'c generate x1(C — {a,bd,c}, z0), and each
of the purported generators is in the subgroup of even winding number.
Thus let a word in 'y, T'y, ', and their inverses be given, and suppose
it has even total winding number. Since n(-) gives +1 or —1 for each
factor, there must be an even number of factors. Grouping them in
pairs, let us show that each pair is generated in the required fashion. If
the left hand member of a pair is I'~}, we replace it by (I'?)7!T; If the
right hand member of a pair is I'"!, we replace it by ['(T'?)~1. In this
way we may assume that the factors of the pair come from Iy, [y, [,
not their inverses. We may assume the members of the pair are not the
same, since the squares are in our list of generators. For the remaining

six pairs, I';,I'y and T’y T, are generators, and the other pairs are given
by

[T, = T2(D,Ty) 7112

[Ty = [%(T,T.)~I2

T'.U, = (T,.[)(TH) YT, T,)

[T, = T3,T,)" 3 (T,Ty) T2

This proves the proposition.

The covering space becomes a Riemann surface in a natural way.
Namely let D be a disc about p in C — {a,b,¢}. Since D is simply
connected, it is evenly covered. Thus e~}(D) = A; U A,, a disjoint
union of open sets Aj; and A, each homeomorphic with D via e. We
can take e : ¢ — z € C as a local coordinate in A;, and then (e, A;)
becomes a chart.

We shall use the convention begun above that Greek letters refer to
points and sets in R and the corresponding Latin letters refer to their
counterparts in C — {a,b,c}. We have already fixed (o with e((q) = 2.
Let Dg be a disc in C—{a, b, c} about 2q, and let Ay be the component of
e~!(Dy) to which (p belongs. Recall that \/(z — a)(z — b)(z — c) makes
sense on Dy as an analytic function with \/(z0 — a)(z0 — b)(20 — ¢) = ¢o.

Proposition 6.24. There exists a unique analytic function ¥ : R —
C satisfying F((p) = ¢o and having the following property: If C is any
path from (o to {1 in R, if D is a disc about z1 = e({y) in C — {a, b, ¢},
and if e™! : D — A is regarded as a map from D to the component A of

e~1(D) to which (; belongs, then (Foe™!, D) is an analytic continuation
of

(V(z = a)(z = )(z — ¢), Do) (6.22)

_ along €(C).
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REMARK. Temporarily we shall write

F(O) = V(C—a)(¢ - b)(¢ —¢)

for the function produced by the proposition. We shall introduce better
notation in (6.23).

ProoF. Uniqueness is an immediate consequence of Proposition 6.20
and the path-connectedness of R. For existence, let fy(z) be the function
element (6.22). It is clear that this fy continues analytically along any
curve C" in C — {a,b,¢c} and that the result is one of the two values of
the square root, because fy(z)? extends to a global function and analytic
continuation respects squaring.

Given (; in R, let C be a path from {; to {; and let f; be a function
element at z;, with domain D, that is an analytic continuation of fg
along ¢(C). Let A; be the component of e"!(D;) to which {; belongs,
and define e~! as a function from D; to A;. Then we can define an
analytic function F on A; by F' = fioe L.

For F to give a globally defined analytic function on R, we need only
see that F' is well defined. Thus let C# be another path from (; to
(1, and let fl# be the corresponding function element at z; obtained by
continuation along e(C#). We are to show that f; and f¥ have the
same Taylor series about z = z;.

Analytic continuation of fy around the loop T'; leads to —fp, and
similarly for 'y and T'.. Thus analytic continuation of f around a loop
v in C—{a,b, ¢} based at zy leads to (—1)*") f;. Since CC#~1 is a loop
in R based at {y, e(CC#~1) leads to f;.

Since analytic continuation of fy along e(C) leads to f;, analytic con-
tinuation of f; along e(C#~1!) = e(C#)~! leads to fo. By Proposition
6.22, analytic continuation of fy along e(C#) leads to f;. By Proposi-
tion 6.20, f; and ff# have the same Taylor series expansion. Thus F is
well defined, and the proposition follows.

Now we shall complete R to a space R*. The set R* is to consist of
the points of R together with four more points «a, 3,v,00. We define
e:R* — CU{oo} = P(C) by e(a) = a, e(8) = b, e(y) = ¢, e(c0) = 00.
To topologize R*, we declare that R is to be open in R* and that
basic open neighborhoods of o, 3,7, 00 are to be defined as follows: A
basic open neighborhood of « is given by {a} Ue~'(D*), where D is
any punctured disc centered at ¢ and lying in C — {a,b,c}, and basic
open neighborhoods of 3,7,00 are defined similarly. The resulting R*
is easily seen to be a Hausdorfl regular space with a countable base,
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therefore a separable metric space. It is sequentially compact, therefore

compact. With this notation the funct; Ia iti i
bottor itttk ction F'(¢) of Proposition 6.24 is

(O =V~ a)C=B)( - ). (6.23)

This is the notation we shall normally use for F'.

bLet us make R* into a Riemann surface. We need to define charts
a lOl'It a, B,7,00. In the case of @, let DX be a punctured disc about
a -YItnng;)E -~ {a,b,.c}. Then e~1(D*) has two preimages above each
point o . Thfa lift of a loop in DX with winding number 1 about
a_lls no)f a loop (since v/z—a is not well defined on D*) and therefore
ZX(D ) is conn?cted. It follows that e Y (D*) is a covering space of

_1.;;g1{1ng as In Proposition 6.24, we can define \/( — uniquely on
e”!( ) n such a way that \/{ — & takes a prescribed value at some
base point. We put Vi—a=0if¢=a.

Then (\/C - a, e~} (D*) U {a}) is a continuous map into C. Since it
maps small discs to open sets, it is open. If /(] —a = V(2 — a, then
il —-Ifa :jQ —aand z; = z5. Hence ¢; and (2 lie over the same’point
b. fz = a then {; = ¢, = a. Otherwise the square root changes

Y a factor of —1 bt?twee.:n the two points of the same fiber. Thus
s\e/Cl —3 = /(3 — ajinplles {1 = {5, and the map is one-one. Con-
sequen y.(\/C — o, e"(DX)U{a}) is a chart. It is clear that this chart
1s compatible with the charts on .
thWe t'reat B and v in the same way, and we are left with handling

e pomtboo of R*. For this we let DX — {z l lz| > R} for R >
max - i e

! {lal, |8, |e[}, and we check that e~1(D*) is connected. We define

DX fii .
7 on , fixing the value at some base point and defining the function

tob -1 L -
o be 0 at e=1(c0). Then <7<, e"1(D*y {oo})) provides a compatible
chart about oo.

The function F(¢)~! = !

T m———————_ with F(¢,)"] =
L Vi )T =1
nalytic on R and is continuous from R* into CU{co}. By Riemann’s
r mov::?ble singularity theorem, it is a meromorphic function on R. Let
us see its behavior near o, By, . -

1Ne{ar @, the local coordinate is s — V(—a. To calculate with this
relation, we cannot use the manifold variable ¢ but have to use the
complex variable z. Thus we have s2 = 7 — g, 7 = 42 + a, and

(z—b)(z—c):(32+a—6)(32+a—c).
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Hence
F(C)—1 =gt 1
Vst +a—=b)(s2+a—c)

for one of the two determinations of the square root. Since Fhe square
root is analytic and nonvanishing near s = 0, F(¢)~! has a simple pole

(6.24)

at ( = .
Similarly F(¢)~! has a simple pole at { = § and at { = 7. Near oo
the local coordinate is s = —=. Then z = s~ * and

Ve

(r—a)z-b)z-c) =2 (1-7) (1—2) (1-3)

=231 —as?)(1 - bs?)(1 — cs?).
Hence
PO =& -
V(1 —as?)(1 = bs?)(1 - cs?)
for one of the two determinations of the square root. Since the square

root is analytic and nonvanishing near s = 0, f(¢)~*! has a triple zero at
¢ = oo.

(6.25)

8. An Elliptic Integral

We continue with the notation of §7. Thus F : R* — CU {00} is as
in (6.23) and later, and (g is the base point of R* with e({o) = z0. Our
first objective is to make sense of the expression

w(C) = /C LR(O) (6.26)

where C is any piecewise smooth path in R*.

Roughly the idea is that (6.26) is to be [, ¢ 1F(z)"'dz, but the
difficulty is that F(z)~! is not necessarily single-valued on e(C). The
point of the reference to R* is to allow us to make a choice between
F(z)~! or —F(z)~! for each point of the curve. To be precise, let C be
given by C(t) for t € I, so that e(C) is the path in CU {co} given by
e(C(t)). Then (6.26) is to be made precise by the definition

w(C) = /tel LF(C(t) e(C) (1) dt. ﬂ (6.27)
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We need to check that the integral (6.27) is convergent. The only
difficulty is in neighborhoods of «, 3,7, 00. Thus suppose C' is confined
to a basic neighborhood. Near a, the local parameter is s = /( — «,
and the path C(t) determines a path s(t) in the coordinate patch by
s(t) = \/C(t) — a. Then s(t)? = e(C(t)) — a, e(C(t)) = s(t)? + a, and
e(CY(t)dt = 2s(t)s’(t)dt. Using (6.24), we substitute into (6.27) and
obtain

s'(t) dt
e /(s(t)2+a—b)(s(t)2+a—rc)

for a suitably small interval I. The denominator is bounded away from
0 for ¢t € I, and the integral is convergent. Similar remarks apply to g
and 7.

w(C) =

(6.28)

and we have s(t) = L

1
NG )

Near oo, the local parameter is s =

Then

s(t)? =1/e(C(1),  e(C(t)) = s(t)™%,
e(CY () dt = —2s(t)3s'(t) dt.

Using (6.25), we substitute into (6.27) and obtain

—s'(t) dt

O fes VT= a0 B0 = )

(6.29)

for a suitably small interval I. Again the denominator is bounded away
from 0 for ¢ € I, and the integral is convergent. Thus (6.27) is always
convergent, and we can use it as a definition of (6.26).

Lemma 6.25. If C is a piecewise smooth path in R* lying com-
pletely in a basic disc with local parameter s and extending between
local parameter values s; and sg, then

32 d
w(C) = / LR(Q(s)) ™ 5 ds (6.30)
In particular, the integral depends only on the endpoints, not on the
path itself.

PRrooF. For a disc in R with local parameter z, the lemma follows by
applying the Cauchy Integral Theorem to a branch of



176 VI: COMPLEX POINTS

1/y/(z — a)(z — b)(z — c). For a disc centered at «a, the integral is given
by (6.28), which is the value of the complex line integral
ds
V(sZ+a-b)(s>+a—c)

(6.31)

over the local version s(t) of the path C(t). Since the integrand of
(6.31) is analytic in a disc containing the image of the path s(¢), the
line integral depends only on the endpoints and is given as in (6.30), by
the Cauchy Integral Theorem. Similar remarks apply to # and . Near
0o, the integral is given by (6.29), which is the value of the complex line
integral
—ds
VI = as?)(1 = bs?)(1 — cs2)’

and the same considerations apply.

(6.32)

Lemma 6.26. If C and C’ are piecewise smooth paths from (; to (s,
in R* that are homotopic in R*, then w(C) = w(C").

PrROOF. Let the homotopy be C;, 0 < t < 1, where each C; has
domain interval I and each C; extends from {; to (3. Without loss of
generality we may assume that each C; is piecewise smooth. It is enough
to prove, for each ty, that w(C}) is constant for £ in a neighborhood of ¢,.
Changing notation, we see that it is enough to prove that any piecewise
smooth path C, that is sufficiently close to €} uniformly for ¢t € I has
w(Cy) = w(Ch).

About each point of Cy, choose a basic disc A and a proper subdisc
A" centered at that point. The discs A” cover the image of Cy, and
we extract a finite subcover AY,... , AZ. Form the corresponding larger
dises Aj,...,A, and intermediate discs Af,..., Al with

AYCAY C AL CAIC A for1<i<n.

By uniform continuity of Cy, there is some § > 0 so that C;(t) € A}
implies Cy (t') € Al for [¢'—t| < 6. Let tqg < --- < t,, be a partition of the
domain interval I of C; of mesh < §. For each j with 0 < 7 < m, we can
choose i': i(j) so that Cy(¢;) is in A:.’(j). Then Cy([tj—1,t;]) C A;(j—l)
for 1 <j<m.

Choose € > 0 so that dist(A!, Af) > ¢ for 1 < i < n. Suppose Cy is
any path from ¢; to {y that is uniformly within € of C;. Then we have
Ca([tj-1,15]) € Ajj-1) for 1 < j < m. In particular, C;(;) and C(t;)
are in A;;_1)MN Ay, which is connected. Let S; be a piecewise smooth
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path from C1(tj) to Cg(tj) n Ai(j—l) ﬂA,'(j), 1<j7<m-—1. Let Sy be
the constant path at Cj(¢p) and let Sy, be the constant path at Cy,(to).
By considering cancelling integrals, we have

m

w(C2) =Y w(Si—1Cali;_, 1,15)- (6.33)

i=1

But S;_1C2|
Cilp

i-1.1;15; 18 a path in A;;_yy with the same endpoints as
;1- Thus Lemma 6.25 says that (6.33) is

-1t
=Y w(Cilr_, 1)) = w(Ch).
j=1

This proves the lemma.

Recall from Proposition 6.23 that the classes of the loops I'y, 'y, T'2,
I'Z, T2 generate the subgroup of m;(C~{a, b, c}, zo) of even total winding
number. Lift these loops to loops I'1, '3, Ta, I, 'y in R based at (.

Lemma 6.27. [ LF(¢)~!d¢ = 0, and similarly for 8 and 7.

ProoF. In view of Lemma 6.26 applied just within R, the compu-
tation reduces to an integral over a loop in a basic disc of R* about a.
Then Lemma 6.25 applies and shows we get 0.

Define
wy = / 1PN and  wy = / LR, (634)
Fl F?
and let A be the subset of C given by

A=2w; +Zws. (6.35)

We give C/A the quotient topology, which is not yet known to be Haus-
dorft.

Proposition 6.28. There is a well defined map w: R* — C/A with
the following property. Whenever ( is in R* and C is a piecewise smooth
path from (o to (, then

w(¢) = w(C) mod A.

The map w is continuous and open.
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Proor. Fix ¢ in R*, let C be a piecewise smooth path from (o to ¢,

and define
w(¢) =w(C)+ A as a member of C/A.

To see that w(¢) is well defined, let C’ be another such path. We
are to show that w(C’') — w(C) is in A. Without loss of generality we
may assume the following: If { ¢ {a, B,7,00}, neither C' nor C' meets
{a, B,7,0}; if ¢ € {a,B,7,00}, C and C’ meet {a,,7,00} only at
their final points. We have

w(C") — w(C) = w(C'C™),

and C'C-! is a loop based at (o. By Lemma 6.26, we can perturb
C'C-! near ¢, if necessary, so that C'C~' does not meet {a, B, 7,0}
Afterward, w(C'C~!) depends only on the homotopy class of C'C~!
in R, according to Lemma 6.26. Since Proposition 6.23 identifies the
homotopy classes in R, we see that w(C'C~') is a Z combination of
w(l'1), w(T2), w(Ts), w(Tp), w(ly). But w(la) = w(Tp) = w(ly) =0
by Lemma 6.27. Thus w(C") — w(C) is a Z combination of w; = w(I';)
and wy = w(I'3), hence is in A.

Thus w is well defined. If we fix ¢; and a path C leading to it, we can
look at how w behaves in a basic disc about {; by using paths that begin
with C; and continue completely within the basic disc. Let ¢ correspond
to C,C in this way, and let {; < s; and { < s in the local coordinate.
Then Lemma 6.25 gives

w(¢) = w(Cy) + w(C) = w(Cy) + / 3 %F(C(s))“j—z s (6.36)

This formula shows that w is continuous. Since the integral on the right
is nonconstant analytic in s, w 1s open.

Corollary 6.29. The complex numbers w; and wy in (6.34) are
linearly independent over R. Therefore A in (6.35) is a lattice, and C/A
is a Riemann surface.

ProOF. If w, and w, are dependent, then A C Rw for a suitable
complex number w. The natural map p : C/A — C/(Rw) is continuous
and open, with a Hausdorff image. Hence the composition pow : R* —
C/(Rw), with w as in Proposition 6.28, is continuous and open. Since
R* is compact and C/(Rw) is Hausdorff, the image of p o w is open,
compact, and closed. Since C/(Rw) is connected, y1 o w is onto. But
C/(Rw) is noncompact, and we have a contradiction.
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Theorem 6.30. The map w : R* — C/A of Proposition 6.28 is
one-one onto and is biholomorphic.

REMARKS. The map is well defined by Proposition 6.28, and C/A
has a complex manifold structure as a result of Corollary 6.29. Thus it
is meaningful to ask about holomorphicity of w (and also w™!
exists).

, once it

ProoF. The map w is holomorphic as a result of (6.36). In local
coordinates, (6.36) shows that w has derivative

_,dz
O e (6.37)
At a point ¢ of R, where s = z is a local parameter, (6.37) is just

1
2VG-a6- OG-0

which is nonvanishing. At { = «, (6.37) is the integrand of (6.31) and
again is nonzero. Similar remarks apply to { = # and ¢ = v. Finally
at ¢ = oo, (6.37) is the integrand of (6.32) and again is nonzero. Since
the local derivative is nowhere 0, w is an immersion. An immersion
between compact connected smooth manifolds of the same dimension
is necessarily a covering map, and thus w : R* — C/A is a covering
map. If we can show w is one-one, then w=! will exist, and w~! will be
holomorphic as a consequence of the one-dimensional complex Inverse
Function Theorem.

Thus we are to show that w is one-one. Suppose w(({;) = w(({z) in
C/A. Let Cy and C5 be piecewise smooth paths from (o to {; and (2,
respectively. By definition of w((),

w(C'l) = ’w(Cg) + w,

for some w = mw, + nws in A. Since T’ = I'"T'} has w(I') = w, the path
C3 =T'C; goes from (o to (2 and has w(C3) = w(C3) + w. Therefore

w(Cy) = w(C3). (6.38)
Let us say that C; and C3 have domain [0,1]. For 0 <¢ < 1, we define
Cl#(t) = w(Cllpp,) and C’3#(t) = w(Csljo,g)
as plecewise smooth paths in C. Define

Ci** =woC; and Cs*# =wo(Cs (6.39)
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as piecewise smooth paths in C/A. Then

C1#(t) mod A = w(Cijo,y) mod A
= w(C1(t)) mod A
= Cl##(t)

and a similar computation for C3 show that Cy# and C3# are the unique
lifts based at 0 of C;## and C3#¥# from C/A to C. By (6.38), C:1#(1) =
C3#(1). Therefore C;#C3s#~! is a loop in C, necessarily contractible.
Hence C1##(C3##-1 is a contractible loop in C/A. Since w has been
proved to be a covering map, (6.39) shows that Cy Cs_l is a contractible
loop in R*. Therefore C; and C3 have the same endpoint in R*, and
(1 = (3. We conclude that w is one-one, as required.

Theorem 6.30 completes the construction of the lattice A and a func-
tion w(¢) that should have something to do with inverting a Weierstrass
g function. To make the correspondence complete, we modify w(({) by

translation in C/A by the element ffo" £F(¢)~'d¢ of C/A. (Recall from
(6.27) and Proposition 6.28 that this element is well defined.) Thus our
new definition of w({) will be

¢
w(¢) = / 1F(¢)7'd{ + A as a member of C/A. (6.40)

[ee]

The new w : R* — C/A is still biholomorphic, and we let
wl:C/A—-R"
be its inverse function. Let
p:C—C/A

be the (holomorphic) quotient mapping, and recall that the extended
version of e, no longer a covering map, is a function

e:R* — CU{oo}

and is meromorphic. Define P : C — C U {co} as the meromorphic
function
P(z) = eow™ o p(2). (6.41)
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Theorem 6.31. The function P(z) in (6.41) is given by
P(z) =p(z)+ $(a+b+¢), (6.42)

where g is the Weierstrass p function for the lattice A in (6.35).

ProoF. The function P is meromorphic, and it is doubly periodic
since it factors through C/A. Hence it is elliptic. Its only poles are in A
because

P~ {{oo}) = uH(w(e™ ({o0}))) = u~ (w({oo}))
=p~ 0+ A) by (6.40)
= A.

Now we examine the order of the pole of P(z) at z = 0. The maps p
and w™?! are locally invertible. Thus the order of the pole of P is the
same as the order of the pole of e at oo in R*. The local parameter is

s = % near oo in R*. So e({) = z = s~2. Thus the pole has order 2.

Next let us see that P is an even function. For z in C, put ¢ =
wlp(2). Let C be a piecewise smooth path from co to ¢ in R*. The
Riemann surface R* has a holomorphic involution (namely interchange
of the two sheets), and we let C’ be the image curve extending from co
to a point ¢’. Then

!

N = 1p(e)-1
w(()_/;o(alongCI) 5F(¢)""d{ mod A

¢ . .
__ 1 -1 since the integrands
~/00 (along C) 2F(C) dc in (627) match
= —w(¢{) mod A.
Hence
¢'=wTl(-w(() +4)
and

P(2) = ew™ u(z) = e(¢) = e(¢')
= e(w™ (=w(¢) + A)) = e(w™ (~w(w u(2)) + A))
= e(w™ (= pu(2) + A)) = e(w™ (u(~2) + A)) = P(~2),

.as asserted.
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Our classification of poles of P shows that P has order 2. Thus it 'has
only two zeros, counting multiplicities. The proof of Theorem 6.10 gives
the structure of even elliptic functions and shows that

P(z) = k1(p(2) — k2)- (6.43)

Let us see that P satisfies the expected differential equation. Put
¥ = w-lp(z) € R* and restrict attention to points ¥ € R. Then
p = e(%) is a local parameter in C, and we have

P(2) = ew™ u(z) = e($) = p.

Since w(y) = p(z), (6.40) gives
¥
z € f 1F()~1dC + A

By (6.30), we have as local expression for a derivative

dz 1 -1 1
e N/ o T3 g

for a certain branch of the square root. Consequently

d
2 = Vi - a) - DF -9
Replacing p = P(z), we see that P satisfies
P? = 4(P — a)(P - b)(P —c¢). (6.44)

Now we evaluate k; and ko in (6.43). Since P is even and has a double
zero at z = 0, we can write

P(z)= 2+ e+ 0(z%)  (asz—0)

z

P(s) = — 252

+ O(2)

23
4 2
PI(Z)Z — 2—(;2 +0(z-—2)

P(z)—a= “7‘23+0(1)

3

(P(z) = a)(P(2) = B)(P(:) = 9)) = =2 + 0.
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2 3
4c2,  4c2,

Thus (6.44) implies —= = zg ,te.,c_2 =1. Thus k; = 1 in (6.43),

and P(z) = p(z) + k. Substituting this formula into (6.44) gives
PP =dp+k—a)(p+k—b(p+k—c)
= 403 + 4(3k — a — b — ¢)p? + lower order.

Since also
p'? = 4p° — g2pp — g3,
we can subtract and conclude from the fact that p(z) assumes more than

two values that
3’6 -—a — b —CcC= 0

This proves the theorem.

Corollary 6.32. Every nonsingular curve
y* =42% — gz — g3

over C is of the form C/A for some lattice A and is parametrized bi-
holomorphically by z — (g(z), 9'(2)), where p(2) is the Weierstrass ¢
function relative to A.

9. Computability of the Correspondence

The theory of §§1-8 produced a correspondence A — (g2, g3) of lattices
A in C with pairs (g2, ¢3) of complex numbers such that the right side
of

E : y*=42>—goz — g3

has nonzero discriminant. The correspondence was implemented for
each A by a biholomorphic mapping of C/A onto E(C), given in terms
of the Weierstrass p function for A, with inverse given in terms of elliptic
integrals. In this section we study the correspondence A — (g2,93) a
bit further. In particular, we shall see (at least in cases of interest) that
there are rapidly convergent expressions for the correspondence that are
suitable for (approximate) numerical computations.

Let us recall the exact correspondence of parameters. If A is given,
then we obtain E by using

n=603

wEA
w#0

g3:1402£

w€EA
w#0

(6.45)
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If g, and g3 are given, then we let a, b, ¢ be the roots of the right side of
E, and we obtain A as the lattice generated by

or= [ 4RO and w= [ LFOTG @46)
where

«, 3,7 are points in R* covering a, b, c,

F(Q)= V(- ) - —7),

[’y = lift to R* of loop I'; around a and b,

T's = lift to R* of loop I'; around b and c.

To understand A, we are not concerned about minus signs on w; and
w2, and we can thus replace (6.46) by integrals in C:

dz
= e (647

s ___/ dz
T, 2\/(2 —a)(z—b)(z — c)’

where the square root in each case is a single-valued branch in the z
plane slit between the two points in question and slit also between the
third point and co. From (6.45) and (6.47), we can read off one feature
of the correspondence.

Proposition 6.33. Under the correspondence A « (gs,93), A is
closed under complex conjugation if and only if g and g3 are both in R.

Proor. If A is closed under conjugation, then (6.45) shows immedi-
ately that g2 and g3 are real. Conversely let g5 and g3 be real. Then
either a,b,c are real, or one of them (b, say) is real and the other two
are complex conjugates of each other.

Suppose a, b, ¢ are real. Let us say that a < b < ¢. For I'; we can use
a curve that extends on the real axis on one side of a cut from a to b
and comes back to a on the real axis on the other side of the cut with
the square root having changed by a minus sign. Then

dz
V(z —a)(z - b)(z - ¢)

(6.48)
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for one of the two determinations of the square root. The expression
under the square root is positive for a < =z < b, and therefore w; is real.
Similarly we can take

dz
N CEDICEDICED)
for one of the two determinations of the square root. The expression
under the square root is negative for b < ¢ < ¢, and therefore wy is
imaginary. Hence @; = w; and wy = —wy. Consequently A is closed
under conjugation.

Now suppose b is real and a = ¢. Whatever path we use for I';, we can
use the complex conjugate path for I'y, apart from orientation. With
suitable choices of the branch of the square root in each case, we can
arrange that the integrands in (6.47) are pointwise complex conjugates
of each other. Then it follows that w; and w» are complex conjugates
of each other, except possibly for a sign. If indeed w; = w2, then A is
closed under conjugation. If w; = —@q, then &) = —w; and &2 = —w;
show that A is closed under conjugation.

(6.49)

Our chief interest is in elliptic curves defined over @. Thus it is not un-
reasonable for us to restrict attention now to lattices and curves meeting
the conditions of Proposition 6.33. There are rapid methods for calcu-
lating the sums in {6.45) and integrals in (6.47), and we shall use them
in examining the correspondence further.

To calculate g9 and g3 rapidly, let us assume that w; /wy is in the lower
half plane. (If it is not, then we have only to interchange w; and ws.)
Then we shall see in from (8.10) that

oo
240n3
( + Z e27rlnw1/w2 _ 1)
8t > 504n5
g3 = 270-’3 (1 - El e2minwy fwy _ 1) :

The two series in (6.50) are rapidly convergent: The numerator is a
polynomial in n, but the denominator grows exponentially with n.

A general theory for handling (6.47) is available, but we shall concen-
trate on the case that a, b, c are real. Thus we want to investigate (6.48)
and (6.49). The tool is the arithmetic-geometric mean of Gauss de-

fined as follows: If @ and b are positive reals with a > b, we recursively
let

(6.50)

i+bi
(a0, bo) = (a,b), (@ig1,0i41) = (a 5 aibi)'
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Then we can see that

ag>a;>az>-->by 25 >b (6.51)

and lima, = limb,, the convergence being quite rapid. The common
value of lima, and limb, is the arithmetic-geometric mean of a and &
and is denoted M (a,b).

[To see the existence of M (a,b), we note first that (6.51) is clear. Then

(a; - b,') bt 2(a,~+1 — b"+1) = (ai bt b') - (a; + b’ - 2\/ a,-b,-)
=—2b; +2 i >0

shows that |a;41 — b;41] < %|a,— — b;|. The required convergence follows.]
Proposition 6.34.  The integrals in (6.48) and (6.49) with

a < b < ¢ are given in terms of the Gauss arithmetic-geometric mean by
the following expressions, up to minus signs:

dz
. «@—aa:—mw—w> (v?:zv”‘v 652

\/(:z:—a)(:t—b)(:c—c) M(/¢c— \/b—-a)

PROOF. For w; we make the change of variables /z —a = v/b — asind
and obtain

w 2/ df
1= .
0 \/(c—b)sin20+(c—-a)cos20

For wy we make the change of variables /2 — b = v/¢ — b cos @ and obtain

w 2i/ b
2 = .
0 \/(b—a)sin20+(c—a)cos20

Thus the proposition will follow if we prove that 0 < r < s implies that
I(r,s), when defined by

x/2 do
I(r,s) :/ , 6.53
0 Vr2sin®0 + s2cos? 0 . (6:53)
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evaluates as x

1(7‘, S) = W

(6.54)

We shall prove that

I(rs) =1 (\/Fs~ r ;’ S) . (6.55)

Iterating (6.55) and using the existence of M(s,r) and an easy passage
to the limit, we see that

I(r,s) = I(M(s,7), M(s,7)). (6.56a)

But we can evaluate I(M, M) trivially, and the result is
MM 56b
( )= 2M (6.56b)

The equality (6.56) implies (6.54). Thus it is enough to prove (6.55).
To prove (6.55), regard 0 < r < s as fixed. For 0 <t < 1, the function
2st

increases from 0 to 1. Therefore

(s+r)y+(s—r)?

2ssIn
(s+7)+ (s—r)sin®’
is a legitimate change of variables, and # extends from 0 to 5. We make
this change of variables in (6.53) after rewriting (6.53) as

/2 6do
I(r,s) = / % . (6.57)
0 cos28vVr2tanZd 1+ s?

sinf = 0<ep<

Nl N

We readily compute
2scosp[(s+ 1) — (s — r)sin? ] dp

e e R R
cos?f — cos? (s + 1) — (s — r)?sin? ]
[(s +7) + (s — r) sin® ]2
tan?f = 4s? sin?

cos? g [(s +7)2 — (s — r)2sin® ]
Substituting these expressions into {6.57) and simplifying, we obtain
I(r,s) = / 2dp ,
0 \/4rssm @+ (s+71)%cos?p

and (6.55) follows. This proves the proposition.
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EXAMPLE. y(y+ 1) = (z + 1)z(z — 1). This elliptic curve is listed in
Table 3.2 with A = 37. Using the transformation rule that passes from
(3.23) to (3.26), we are led to
E : y2:4:r3—4x+1.

This curve has

g2=4 gs=-L (6.58)
Its roots are
a=-110716---
b= .269594---
c = .837565--- .

The relevant Gauss arithmetic-geometric means are

M(Ve—a,/c—b) = M(1.39453 -~ ,.753639 - --) = 1.04949 - --
M(Ve—a,vVb—a)= M(1.39453--- ,1.17335---) = 1.28156 - - - .

Thus (6.52) gives

™
- = 2.99346 - - -
“ M(\/e—a,Vc—b)
Wy = il = 245139 - - -i.

M(y/c—a,/b—a)
With the aid of (6.50), we can use w; and wy to estimate gz and g3 as

g2 = 4.00000 - - -
g3 = —.999999 - - -

in agreement with (6.58).

CHAPTER VII

DIRICHLET’S THEOREM

1. Motivation

Dirichlet’s Theorem on primes in arithmetic progressions has the fol-
lowing statement.

Theorem 7.1. If m and b are relatively prime integers with m > 0,
then there exist infinitely many primes of the form km + & with k a
positive integer.

This theorem was used in the proof of Theorems 5.2 and 5.3. Its
proof contains the first use of L functions historically and will help as
an introduction to the L functions that are the theme of the rest of this
book.

It is illuminating to begin with some special cases of Theorem 7.1 as
motivation. We first suppose that m = 1. In this case the assertion of
the theorem is just that there are infinitely many primes, and there are,
of course, many proofs of this result. For our purposes the interesting
proof is a relatively complicated argument given by Euler in 1737. We
introduce the function

o~ 1
&= = (7.1)
n=1
for real s > 1. (This function subsequently was named the Riemann
zeta function and is defined and analytic for complex s with Re s > 1.
We postpone a more serious discussion of {(s) to §2.) By monotone
convergence, for example, we have

lim((s) = +oo. (7.2)

We can write

(= 1 —= (7.3)

p prime 1 — s
p

189
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for s > 1. (In fact, the product for p < N is

1 1 1 1
H 1= p = H (I+F+F+...>:Z';

p<N ps<N

with 57 taken over all n with all prime factors < N. Letting N — oo,
we obtain (7.3).)
If there were only finitely many primes, then (7.3) would yield

limsup ¢(s) < oo,
sil
in contradiction to (7.2). This contradiction completes Euler’s proof

that there are infinitely many primes.
To consider further special cases, 1t is more convenient to work with

1 1 1 1
log((s) = Z log = Z (;s—+——~2p23+—-3p3’+...),

p prime — p prime
(7.4a)
which we shall see in the course of proving (7.30) is
1
= > - a(s) (7.4b)

p prime

with g(s) bounded as s | 1. Euler’s proof amounts to combining (7.2}
and (7.4) to see that Z% diverges, and the corollary is that there are
infinitely many primes.

To handle m = 4 in Theorem 7.1, we want to treat primes 4k + 1
separately from primes 4k + 3. Dirichlet’s idea for this special case
amounts to working with the sum and difference of

1 1
E - and E ) (75)
p=1lmod4 p p=3mod4 p

rather than the two terms separately. Tracing backwards in (7.4), we
are led to consider the following expressions, which differ from the sum
and difference of (7.5) by bounded terms as s | 1:

1 1
Z == H = (7.6a)

n odd p prime,
p odd

(-1)30»-1 1 1
Z ns - H I—p-° H 1+p® :
n odd p prime, p prime, (76b)
r=4k+1 p=4k+3
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Let us write
Xo(n) = {(1) }fnf() mod 2
fn=1 mod 2
0 ifn=0 mod2 (7.7)
x1(M)=<¢ 1 ifn=1 mod4
=1 ifn=3 mod 4.
With x equal to X0 Or X, we have
x(mn) = x(m)x(n)  for all m and n,
Consequently the expressions (7.6) are both of the form
s~ X(n)
L = = !
(s,x) ; =11 (7.8)

p prime | — M’
p?

with y taken as Xo for (7.6a) and as x1 for

analog of (7.4) uniformly as (7.6b). We can write the

log L(s, x) = % +9(s,x)

P prime

with g(s, ¥) bounded as s | 1. Therefore

8Ll x0)Ls i) =2 30 Lt (406, x0) 4 905, 11)

p prime
p=4k+1
log(L(s,x0)Z(s,x1)"") = 2 : "
3 ’ - —+ -
) g;ne o T x0) ~g(s,x1)).
p=4k+3
For x = xq, comparison of (7.3) and (7.8) shows that
(o) = (s, xo) —
1— 2+
Therefore
lsilnlq L(s, x0) = +oo.
M

eanwhile th ies i i i
! e series in (7.6b) is alternating and converges for s > 0 by

; I .
e Leibniz test. The convergence is uniform on compact sets, and the
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sum L(s,x1) is continuous for s > 0. Grouping the terms of this series
in pairs, we see that L(1,x;) > 0. (Actually we can even recognize the
value as w/4 from the Taylor series of arctan z.) Putting these facts
about L(s, xo) and L(s, x1) together, we see that both left sides of (7.9)
tend to 400 as s | 1. It follows from (7.9) that

1 1

g - and E —

p prime p p prime p
p=4k+1 p=4k+3

are both infinite. Hence there are infinitely many primes 4k + 1, and
there are infinitely many primes 4k + 3.

The proof of Dirichlet’s Theorem for km + b will proceed in similar
fashion. We return to it in §4 after a brief but systematic investigation of
the kinds of series and products that we have encountered in the present
section.

2. Dirichlet Series and Euler Products

. a . . .. .
A series Y0 | % with a, and s complex is called a Dirichlet series.

The first result shows that the region of convergence and the region of
absolute convergence are each right half planes in C (unless equal to the

(="

empty set or all of C). These half planes may not be the same: 3 ~——

s
is convergent for Re s > 0 and absolutely convergent for Re s > 1.

s a .. .
Proposition 7.2. Let Y o ——"s- be a Dirichlet series.
=l n

(a) If the series is convergent for s = sg, then it is convergent uniformly
on compact sets for Re s > Re sg, and the sum of the series is analytic
in this region.

(b) If the series is absolutely convergent for s = sg, then it is uniformly
absolutely convergent for Re s > Re sg.

(c) If the series is convergent for s = sq, then it is absolutely conver-
gent for Re s > Re sg + 1.

(d) If the series is convergent at some sq and sums to 0 in a right half
plane, then all the coefficients are 0.

REMARK. The proof of (a) will use the summation by parts for-
mula. If {u,} and {v,} are sequences and if Up = 5_7_, ux for n > 0,
then 1 < M < N implies

N N-1
> Untn = Y Un(vn ~ vn41) + Unow ~ Up—1m. (7.10)
n=M n=M
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. a
PROOF. For (a), we write — = In !
n

nto passs = UnUn and then ap-
ply (7.10). The given convergence means that {Un} is convergent, and
certainly v, — 0 uniformly on any proper half plane of Re s > Re s,.
Thus the second and third terms on the right side of (7.10) tend to 0
with the required uniformity as M and NV tend to co. For the first term,
the sequence {U,} is bounded, and we shall show that

00 o]
Z |Un - vn+ll = Z
n=1 n=1

Is convergent uniformly on compact sets where Re s > Re sg. Use of

(7.10) and the Cauchy criterion will complete the proof of convergence.
Forn <t < n+1, we have

1 1
n3—so (Tl+ 1)3-—30

_(3—30) - —(3—3 ) d e (e
|Tt t 0 'S sup d_t(n (s so)_t (s ,0))

n<t<n+1
§— 8 §— s
= sup 0 ' ol ,
n<t<n41 t3—so+l | — pl14+Re(s—so)

(7.11)
Thus

Is — 50|

" — — = (s—s0) __ —(3-s0)
I’U vn+1’ f" (n' + 1) ° I < nl+Re(s—s0)’

and the sum is uniformly convergent on compact sets with Re s >
Re sg, by the Weierstrass M-test,.

Hence the given Dirichlet series is uniformly convergent on compact
sets vyhere Re s > Re s9. Since each term is analytic in this region, the
sum is analytic.

For (b), we have

1

=%

Ap

nS

an a,

nso nso

Since the sum of the right side is convergent, the desired uniform con-
vergence follows from the Weierstrass M-test.
For (c), let € > 0 be given. Then

an _lan 1
nsotlte| T | pso | plte

with the first factor on the right bounded and the second factor con-

tributing to a finite sum. Therefore we have absolute convergence at
s0+ 1+ ¢, and (c) follows from (b).
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For (d), we may assume by (c) that there is absolute convergence
a
at so. Suppose a; = --- = any-1 = 0. By (b), Z?:N;} = 0 for
Re s > Re sg. The series

o0

> (7/%7 (7.12)

n=N
is by assumption absolutely convergent at so, and Re s > Re sp implies

an

S |@me|

an
(n/N)*
By dominated convergence we can take the limit of (7.12) term by term

as s — +o0o. The only term that survives is ay. Since (7.12) has sum 0
for all s, we conclude ay = 0. This completes the proof.

Proposition 7.3. The Riemann zeta function C(s) = S, 25, ini-
tially defined and analytic for Re s > 1, extends to be meromorphic for
Re s > 0. Its only pole is at s = 1, and the pole is simple.

Proor. For Re s > 1, we have

1 (o) 0 n+l
= t~*dt = 17° dt.
=y

8§ —

Thus Re s > 1 implies
1 (1 ntl
= — — - t~* dt
=52 (e )

1 o0 n+1
= - 7Y dt.
s—1+"221/; (n )

It is enough to show that the series on the right side converges uniformly
on compact sets for Re s > 0. Thus suppose Res>o>0and |s| <C.
By (7.11) with so = 0, we have

n+l n+4l
/ (n-’—t*’)dtS/ In=* —17°|dt < sl C

n1+Res nliteo :
Since 3. n~(1+9) < 00, the desired uniform convergence follows from the
Welerstrass M-test.

REMARK. Actually (s) extends to be meromorphic in C with no
additional poles. We return to this point in §5.
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We shall now examine special features of Dirichlet series that allow
the series to have product expansions like the one (7.3) for ((s). We
begin with some general facts about infinite products.

An infinite product [],> ; a, with a, € C and with no factor 0 is said
to converge if the sequence of partial products converges and the limit
is not 0. A necessary condition for convergence is that a, — 1.

Proposition 7.4. If |a,| < 1 for all n, then the following conditions
are equivalent:

(a) TIo~ (1 + |aa|) converges
(b) >°07, lan| converges
(¢) TTnz1(1 = lay|) converges.

In this case, [];_; (1 + a,) converges.
Proor. Condition (c) is equivalent with
(¢) Tln=1(1—Jan[)~" converges.

For each of (a), (b), and (¢’), convergence is equivalent with boundedness
above. Since

N N N 1
L+ laal < [T +1ea) < IT 5 ,
n=1 n=1 n=1 _|a"|

we see that (¢’) implies (a) and that (a) implies (b). For (b) = ('), we
may assume, without loss of generality, that |a,| < %— for all n. Since
0<z< % implies

d 1 1
log < |z| sup |5 lo —\ = = ) =
we have
N N
1 1 N
log —_——— = ] RO

(nl___:lll*lan|> n§_’1 og (1""171') S2 g |an|

= n=1

Thus (b) implies (<’).
Now suppose (a) holds. To prove that []>> (1 + a) converges, it is

enough to show that H:’:M(l +ap) tends to 1 as M and N tend to oo.
In the expression
N

[T+a)-1

n=M

H
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we expand out the product, move the absolute values in for each term,
and reassemble the product. The result is the inequality

N N
[I+e)-1< [T +laaD -1
n=M n=M

By (a) the right side tends to 0 as M and N tend to co. Therefore so
does the left side. This proves the proposition.

Consider a formal product

H (1+app—’ +...+apmp_m" + ) (713)

p prime

If this product is expanded without regard to convergence, the result is

a B
the Dirichlet series Y oo, n—':, where a; = 1 and a,, is given by
n = @pra - - ATk ifn=pl- P~ (7.14)

Suppose that the Dirichlet series is in fact absolutely convergent in some
right half plane. Then every rearrangement is absolutely copvergent t‘o
the same sum, and the same conclusion is valid for subseries. If E 1s
a finite set of primes and N(E) is the set of positive integers requiring
only members of E for their factorization, we have

an
[Tt apre oty )= 3 &
pEE neN(E)

Consequently the infinite product has a limit in the half plane of absolute
convergence of the Dirichlet series, and the limiting product (7.13) equals
the sum of the series. The sum of the series is 0 only if one of the factors
on the left side is 0. In particular the sum of the series cannot be
identically 0, by Proposition 7.2d. Thus (7.13) can equal only this one
Dirichlet series. ' o an

Conversely if an absolutely convergent Dirichlet series > . _; pory has
the property that its coefficients are multiplicative, l.e.,

a;=1 and amun = ama, Wwhenever GCD(m,n) =1, (7.15)
then we can form the product (7.13) and recover the given series by

expanding (7.13) and using (7.14). In this case we say that the Dirichlet
series has (7.13) as an Euler product. Many functions in elementary
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number theory give rise to multiplicative sequences; an example is a,, =
¢(n), where ¢ is the Euler ¢ function.
If the coefficients are strictly multiplicative, i.e.,

ay =1 and apmu =ama, for all m and n, (7.16)
then the p*® factor of (7.13) simplifies to

1

T+app™ +---+{app™" )" +--- = @ (7.17)

p.!

In this case our Dirichlet series has a first degree Euler product:

On 11 L (7.18)
n* i 4p
n=1 p prime p_,

This is what happens with {(s), where all the coefficients are 1, and with
an = xo(n) and a, = x1(n) as in (7.7). Conversely an Euler product
expansion of the form (7.18) forces the coefficients of the Dirichlet series

to be strictly multiplicative.

. s . a . .
A Dirichlet series § oo, —': with |a,| < n° for some real c is absolutely

convergent for Re s > ¢+ 1. This fact leads us to a convergence criterion
for first degree Euler products.

Proposition 7.5. A first degree Euler product [][1 —a,p~*]~! with
lap| < p° for some real ¢ and all primes ¢ defines an absolutely convergent
Dirichlet series (and hence a valid identity (7.18)) for Re s > ¢+ 1.

PRrOOF. The coeflicients a,, are strictly multiplicative, and thus |a,| <
n® for all n. The absolute convergence follows.

First degree Euler products are sufficient for Dirichlet’s Theorem, but
other Euler products are needed in other applications, such as with
elliptic curves. To isolate the notion of degree of an Euler product, let
us write (7.17) as a formal identity

m 1
1+apX+~--+ap X"+ = m

Here the denominator on the right is a polynomial of degree < 1 with
constant term 1, and it is in this sense that the Euler product (7.18) has
degree 1. The expansion (7.13) is called a k** degree Euler product
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if, for each prime p, there is a polynomial P,(X) € C[X] having degree
< k and zero constant term such that

1
L+ apX 4o ap X e = g py

as a formal identity. Let us factor 1 — P,(X) over C as
1— Ppy(X)=(1=rPX) - (1 =r{DX).
We call the complex numbers r,(,j) the reciprocal roots of 1 — Pp(X).

Proposition 7.6. A k*® degree Euler product mn - P,(p~)]7!

whose reciprocal roots satisfy |r§,j )| < p° for some real ¢ and all primes
p defines an absolutely convergent Dirichlet series for Re s > ¢+ 1. For
such s the sum of the Dirichlet series equals the Euler product.

ProoF. We apply Proposition 7.5 to [T [1 — r,(;’)p"] for each j. The
product of absolutely convergent Dirichlet series can be rearrangefi 'w1th—
out affecting the sum, and the result is an absolutely convergent Dirichlet

series.

The final thing we need to know about Euler products is how to
recognize when they are of degree k. We shall be interested only in Fhe
quadratic case, but it merely obscures the idea to make such a restriction

right away.
Proposition 7.7. Let
140X +b X2+ b X+ (7.19)
be given. Then there is a unique polynomial
QX)=co+ X+ + e X! (7.20)

of degree < k — 1 such that

1

X0 - 14+ XQ(X)+ X2Q(X)* + - (7.21)

is congruent to (7.19) modulo X*+1  For this polynomial Q(X), the
expressions (7.19) and (7.21) are equal if and only if

by = cobm_1 + cibpoo+ -+ Ch—1bm—k for all m > k. (7.22)
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Proor. The condition that (7.19) and (7.21) be equal is the condition
that 1 — X@Q(X) be an inverse to (7.19) in the ring of formal power series
over C. Consider the equation

(1—C0X—‘CIX2 - "'—Ck_IXk)(1+b1X+b2X2+ )
=(l+di X +doX?+--).
The conditions dy = .-+ = di = 0 uniquely determine c¢g,...,c;_1 re-
cursively. Once cg,...,cx—1 are fixed in this fashion, d,, for m > k is

given as the difference of the left side minus the right side in (7.22). The
result follows.

Corollary 7.8. An Euler product (7.13) with a; = 1 is of degree 2 if
and only if there exists for each prime p a complex number d, such that

Apm = QpApm-1 + dpapm-z (723)

for all m > 2. In this case the p*P Euler factor is

1
1—app™ —dyp

—. (7.24)

PrROOF. Let b,, = apm in Proposition 7.7. The polynomial Q(X)
works out to be co + ¢1. X with b = ¢g and b2 = ¢ + ¢;. From (7.23)
with m = 2, d, has to be ap2 — af,. So we define it this way to make
(7.23) valid for m = 2. Now

dp:apa—aﬁzbz—bf:bz—cg:cl.

Hence (7.23) for m > 2 is the same equation as (7.22) for m > 2. Thus
the corollary follows from Proposition 7.7.

3. Fourier Analysis on Finite Abelian Groups

In considering primes of the forms 4k + 1 and 4k + 3 in §1, we worked
with the sum and difference of the expressions (7.5) and then recon-
structed the individual expressions from the sum and difference. These
steps correspond to doing Fourier analysis on the group Z = Z,. In this
section we shall work out the Fourier analysis of Z, that is appropriate
for handling primes of the form km + b.
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Let G be a finite abelian group (such as Z)). A character of G i§ a
homomorphism of G into Sl ¢ CX. The characters of G form a finite
abelian group G under pointwise multiplication:

(xx')(9) = x(9)x'(9)-

Proposition 7.9. Let G be a finite abelian grmE)._V_Vith respect to
the Hermitian inner product (F,F') = 3 eq F(g)F'(g) on theAvector
space of all complex-valued furlgtions on G, the members of G form
an orthogonal basis, each x € G satisfying lIx||? = |Gl Consequent.ly
|G| = |G|, and any function F' : G — C is given by the “sum of its
Fourier series”:

F(g) = |1?| 3 (Z F(h)‘ﬁh‘)) (). (7.25)
X

heG

TERMINOLOGY. Equation (7.25) is called the Fourier inversion
formula.

ProoF. First we prove that distinct characters X_ind x' are orthog-
onal. If x and x' are given with x # x', let X" = xx'- Choose go € G
with x”(go) # 1. From

X'(90) [ S x"(@) | = 3 x"(909) = D_ x"(9),

9€G g€eEG g€G

we see that

[1 - x"(g0)] E x"(9) =0  and hence E x"(g9) = 0.

geG 9€G

Consequently

Xy = Sox@x@ = x"@) =0,

geG geG

and the orthogonality is proved. .
It follows that the members of G are linearly independent and hence

that |§| < |G|. Tt is clear that

I =3 Ix@))F = > 1=1Gl.

geaG geG
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To see that the members of G are a basis, we write G as a direct sum
of cyclic groups. A summand Z of G has at least N distinct characters,
given by jmod N — ™97/~ for 0 < r < N — 1, and these characters
extend to GG as 1 on the other summands of G. Taking products of such
characters from different summands of G, we see that |@| > |G}

Therefore G is an orthogonal basis of the space of all complex-valued

functions on G. Formula (7.25) is the usual inner-product-space formula
for expressing an element in terms of an orthogonal basis.

4. Proof of Dirichlet’s Theorem

The proof of Dirichlet’s Theorem is a direct generalization of the ar-
gument given for m = 4 in §1. Fix an integer m > 1. A Dirichlet
character modulo m is a function x : Z — S' U {0} such that

(i) x(3) = 0if and only if GCD(j,m) > 1
(i1) x(j) depends only on the residue class j mod m
(iii) when regarded as a function on the residue classes modulo m, x
is a character of ZX%.

In particular, a Dirichlet character modulo m determines a character of
Z% . Conversely each character of Z), defines a unique Dirichlet character
modulo m by lifting the character to {j € Z | GCD(j,m) = 1} and by
defining a Dirichlet character to be 0 on the rest of Z. It will often be
notationally helpful to use the same symbol for the Dirichlet character
and the character of Z . Because of this correspondence, the number of
Dirichlet characters modulo m is ¢(m), where ¢ is the Euler ¢ function.
The principal Dirichlet character modulo m, denoted xg, is the one
built from the trivial character of Z):

. 1 if GCD(j,m) =1
xo(j) = . .
0 if GCD(4,m) > 1.

Each Dirichlet character modulo m is strictly multiplicative, in the
sense of (7.16). We assemble each as the coefficients of a Dirichlet series,
the Dirichlet L function, by

ns

Lisx) =3 X0, (7.26)
n=1
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Proposition 7.10.

(a) The Dirichlet series L(s,x) is absolutely convergent for Re s > 1
and is given in that region by a first degree Euler product

Lis,x)= [] 1 (7.27)

p prime 1 — X—(pz

p5

(b) If x is not principal, then the series for L(s, ) is convergent for

Re s > 0, and the sum is analytic in that region.
(c) For the principal Dirichlet character xo modulo m, L(s,xqg) ex-
tends to be meromorphic for Re s > 0. Its only pole is at s = 1, and the

pole is simple. It is given in terms of the Riemann zeta function by

Lo =< T (1- %) (7.28)
plm P
Proor. For (a), the boundedness of y implies that the series is abso-
lutely convergent for Re s > 1. Since x Is strictly multiplicative, L(s, x)
has a first degree Euler product, by (7.18), and the product is convergent
in the same region.
For (b), let us notice that x # xo implies

m
Z x(n+b)=0 for any b, (7.29)
n=1

since the member of Z that corresponds to y is orthogonal to the trivial
character, by Proposition 7.9. For s real and positive, let us write

x(n) _
T x(n)
in the notation of (7.10), putting U, = 3_;_, ux. Equation (7.29) implies
that {U,} is bounded, say |U,| < C. By summation by parts (7.10),

N N-1
x(n) 1 1 C C 2C
e < —_———_— —_— 3 —— = —.
2 s _ng;lc(n’ CE AN R TR T

This expression tends to 0 as M and N tend to oo. Therefore the series
(7.26) is convergent for s real and positive. By Proposition (7.2a), the
series is convergent for Re s > 0, and the sum is analytic in this region.

For (c), let Re s > 1. From (7.27) with x = xo, we have

L(s,xo) = || 1 T

pim 1 — —

'-—s—unvn

Using (7.3), we obtain (7.28). The remaining statements in (c) follow
from Proposition 7.3, since the product over p with p | m is a finite
product.
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By Proposition 7.10b, L(s,x) is well defined at s = 1 ;f X Is not

principal. The main step in the proof of Dirichlet’s Theorem is the
following lemma. We defer the proof of the lemma until we have shown
how the lemma implies the theorem.

Lemma 7.11. L(1,x) # 0 if x is not principal.

PROOF OF THEOREM 7.1. First we show for each Dirichlet character
x modulo m that

3

g Lo = 35 KBy 405y (7.30)

p prime

for real s > 1, where .g(s,x) remains bounded as s | 1. In this statement
we have not ye.t specified a branch of the logarithm, and we shall choose
it hpresently. Fix p and define, for s > 1, a value of the logarithm of the
P factor of (7.27) by

1 () , 1x(»®) 1x(®
log ——— = X\P)  1x(P7) 1x(r") _ x(p)
gl_zgp_) ps 2 p2" 3 p38 +“ ps +g(57P>X) (731)
pS

Since

X 1.
lgf’)’ < 5 this logarithm satisfies

d 1
log —z| < |z| sup —(lo —_—
1—=2 - ,|w|5|2| dw gl—w v
1
= |z sup [—— — 1‘ < 2z)?
lw]<]z| 11 — W

for 2] < 3. With z = X—Igg)—, we therefore have

l9(s,p,x)| < 2’%@’2 < 1%'

. g _ .
Since ZP prime P < Dope 1 n72 < oo, the series 25 9(5,p,x) is uni-
formly convergent f(?r s 2 1. Let g(s,x) be the continuous function
Ep 9(s,p,x). Summing (7.31) over primes p, we obtain

1
;log “1 B @ = Z XIE‘,D) +9(s,x)-

p
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By (7.27) the left side represents a branch of log L(s,x). This proves
(7.30).

Define a function é; on the positive integers by

8o(n) = 1 fn=b modm
BT 10 otherwise.

Proposition 7.9 gives

1 -
bp(n) = Wn—) ;X(”X(")

Multiplying (7.30) by x(5) and summing on x, we obtain

pm) 3 = XMlogL(s )~ L X@a(s ). (732
p prime, X X
p=km+bd

The term )° x(b)g(s,x) is bounded as s | 1, by (7.30). The term

Xo{b)log L(s, xo) is unbounded as s ] 1, by Proposition 7.10¢c. For x
nonprincipal, the term 3(—(_bjlog L(s,x) is bounded as s | 1, by Propo-
sition 7.10b and Lemma 7.11. Therefore the left side of (7.32) is un-
bounded as s | 1. Hence the number of primes contributing to the sum
is infinite.

Proor oF LEMMA 7.11. Let Z(s) =[] L(s,x). Exactly one factor
of Z(s) has a pole at s = 1, according to Proposition 7.10. If any factor
has a zero at s = 1, then Z(s) is analytic for Re s > 0. Assuming that
Z(s) is indeed analytic, we shall derive a contradiction.

Being the finite product of absolutely convergent Dirichlet series for
Re s > 1, Z(s) is given by an absolutely convergent Dirichlet series. We
shall prove that the coefficients of this series are > 0. More precisely we
shall prove for Re s > 1 that

2= L

1 9(p)’
ptm ] — ——
pf(p)s

where f(p) is the order of p in Z) and where g(p) = p(m)/f(p). The
factor (1 — p~f(P)*)~1 is given by a Dirichlet series with all coefficients
> 0. Hence so is the g(p)*" power, and so is the product over p of the
result. Thus (7.33) will prove that all coefficients of Z(s) are > 0.

(7.33)
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To prove (7.33), we write, for Re 5 > 1,

2(s) =120 =TT | T] —

P ><1~X—-(‘:)2

B 1
=11 |11 x(p)

ptm { x 1 — 2/
ps

Fix p not dividing m. We shall show that

I1 (1 - %) = (1 - %)g, (7.34)

X

where f is the order of p in Z% and wh = . .
follow. ere g = ¢(m)/f; then (7.33) will

Now x — x(p) is a homomorphism of ZX into S', hence into {e27ik/ 1}
and onto some cyclic subgroup {e?™*/1'} with f/ dividing f. We show
f'=f. Infactif f’ < f,thenp/ # 1 mod m, while x(p'') = x(p)!' =
1 for all X since x(p'") = x(1) for all X, the x’s cannot span all functions
on 2%, in contradiction to Proposition 7.9.

t}’lI‘hus X — X(p) is onto {e2™¥/7}  In other words, x(p) takes on all
J* roots of unity as values, and the homomorphism property ensures

t_hat each is.taken on the same number of times, namely g = o(m)/f
times. If X is an indeterminate, we then have

f~1 g
H(I—X(p)X): (H (l_eZWik/fX)) :(1_X_f)g’
k=0

X

T!le:'n (7.34) follows and so does (7.33). Hence all the coefficients of the
Dirichlet series of Z(s) are > 0.

Let us write Z(s) = Yooy 22 and put

ns

o0
so = inf{s >0 j Z Z—: converges}.

n=1

Then so < 1. Suppose so > 0. Since 2. apn”* converges uniformly on
compact sets for Re s > sq (by Proposition 7.2a), we can compute its
derivative term by term. Thus

o0

205 +1) =y GelZlogm) T (7.35)

ntot+l
n=1
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The Taylor series of Z(s) about so + 1 1s

(e o]

1
2(s)= ) s =0~ V2N (so + 1)
N=0
and is convergent at s = %—so since Z(s) is analytic in the open disc
centered at sg + 1 and having radius so + 1. Thus
o~ 1 N (N
Z(}s0) = i+ L)V (=N Z2M(s0 + 1),
N=0

with the series convergent. Substituting from (7.35), we have

O & an(logn)N(l+%so)N
Z(%So) = Z Z N!n"o""l .

N=0n=1

This is a series with positive terms, and Fubini’s Theorem allows us to
interchange sums and obtain

© &, an(logn)N(1 + %SO)N
“COEDIDD Nipsoti

n=1N=0

oo
S Ln llogm(its0)
n=1

I

n80+1

Ay

NgE

3

30

p=

n=1
In other words, the assumption so > 0 led to a point between 0 and
so (namely %so) where there is convergence. This contradiction proves
that so = 0. Therefore Y a,n™* converges for Re s > 0.

Since the coefficients are positive, the convergence is absolute for s
real and positive. By Proposition 7.2b the convergence is absolute for
Re s > 0. Therefore the Euler product expansion (7.33) is valid for
Re s > 0.

For p + m and for real s > 0, we have

ARt Akt
(i-5)
Z 1+p—f93 +p"2f9-’+...
=14 p_‘f’(m)" +p“’2‘P(m)" + .-
1
= ————1——
1- ptp(m)s
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Therefore

(o) | I

i 1= o
=~ 1
—p(m)s ~2o(m)s 4 .y = -
e H (1+p +p + )—‘an(m)s‘
p prime n=1
1
The sum on the right is +oo for s = ey while the left side is finite.

This contradiction completes the proof of the lemma.

5. Analytic Properties of Dirichlet L Functions

The Riemann zeta function {(s) and the Dirichlet L functions L(s, x)
encode arithmetic information, and Dirichlet’s Theorem comes out as a
consequence of properties of these functions. The properties in question
are the analytic continuation and the behavior at s = 1 for {(s) and
each L(s, x). Other theorems about primes can be deduced from other
properties of these functions; for example, the Prime Number Theorem
about the asymptotic number of primes < N is a consequence of the
nonvanishing of {(s) for Re s = 1.

In the case of elliptic curves over Q, we shall introduce in a later chap-
ter a zeta function and an L function that are defined by Euler products
and encode geometric information, and deep properties of the elliptic
curve come out (partly conjecturally) as a consequence of properties of
these functions. This is part of a general pattern in algebraic number
theory and algebraic geometry, that L functions are used to encode in-
formation prime by prime and that properties of these L functions are
expected to yield deep insights into the original problem being studied.

Let us refer generally to such arithmetic or geometric L functions as
motivic, for reasons explained in the preface. The question is how to get
an analytic handle on these functions in order to exploit their properties.

For {(s) and L(s, x), we obtained enough information by direct argu-
ments to prove Theorem 7.1. But for more subtle analytic properties,
one uses an indirect approach. The key idea is to relate such a function
to a suitable analytic function in the upper half plane with certain trans-
formation properties, a so-called “modular form.” Each modular form
has an L function, defined explicitly by a Mellin transform and given
as a Dirichlet series. We shall refer generally to this kind of L function as
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automorphic. Automorphic L functions have more manageable
analytic properties, but they initially have little to do with algebraic
number theory or algebraic geometry. The fundamental objective is to
prove that motivic L functions are automorphic.

In the case of {(s) and L(s,x), we shall achieve this objective in
this section, using suitable theta functions as the modular forms. The
analytic properties that we shall derive as a consequence are their mero-
morphic continuations to all of C, the functional equations that they
satisfy, and the identifications of their poles.

In the case of the L function of an elliptic curve over Q, the as-
sertion that this L function is always automorphic is substantially the
Taniyama-Weil Conjecture. This theme will occupy us for the remaining
chapters of the book. If the L function is automorphic in the expected
way, it extends to an entire function and satisfies a functional equation.
In particular, this L(s) must extend to be defined in a neighborhood
of s = 1. As mentioned in Chapter I, the Birch and Swinnerton-Dyer
Conjecture relates the behavior of L(s) near s = 1 to the rank of the
group of Q points of the elliptic curve, among other things.

We begin by treating {(s), returning to L(s, x) afterward. The theta
function that we shall use is

0(7_) — Z eingwr =14 2Zein21r'r’ (736)

analytic for Im 7 > 0. Its role in helping us to understand {(s) comes
from the identity

o0 o0
2 e . —(is- 1, -
/ PR LS T ld(T:/ e z(nQ,’r) (38 1)1,23 1(n27r) 14z
o 0

1

=n"*T(Ls)r™ 2% (7.37)
Summing on n for n > 1 and interchanging sum and integral by Fubini’s
Theorem, we obtain

((s)F(%s)ﬂ_%’ = /000 $[0(ic) - 1)o7V do (7.38)

for Re s > 1. In the terminology that we shall use in later chapters,
¢(s) is, except for harmless factors, the “Mellin transform” of 6(is) — 1,
and 6(r) is a modular form of “level” 2 and “weight” 3. Except for a
growth condition, these modular form properties are the content of the
following proposition.
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Theorem 7.12. The analytic function 6(7), defined for Im = > 0,
satisfies

(a) (7 +2)=0(r) (level 2)

(b) 6(=1/7) = (/i) "/26(7), (weight 1)
where the square root is the principal value cut on the negative real axis.

Before proving this proposition, let us derive some analytic conse-
quences for {(s).

Corollary 7.13. The Riemann zeta function ((s), initially defined
by (7.1) for Re s > 1, extends to be meromorphic in C. Its only pole is
at s = 1, and that pole is simple. Moreover

A(s) = {(s)T(3s)n™ 3 (7.39)
satisfies the functional equation
Al ~ s) = A(s). (7.40)

REMARK. Notice that if {(s) is defined only for Re s > 1, then
A(1 — s) and A(s) have disjoint domains and (7.40) has no content. It
is necessary first to extend ((s) to Re s > 0. Then (7.40) is meaningful
for 0 < Re s < 1 and extends to an identity on C. The extension of ((s)
to Re s > 0 has already been carried out in Proposition 7.3, but a little
care 1s required to interpret (7.38) as an identity in this whole region,
not just in Re s > 1.

Proor. For o > 1,

1 - — —-n2xo - —kxo e”"? -y y—1_—
5[0(10’)—1]:26 SZe :1—_M§(1-—e )" reT e,
n=1 k=1 —¢€
and thus
o 0]
/1 1{6(ic) = 1]03* "V do (7.41)

converges for all s € C and defines an entire function. For real s > 1,
we rewrite (7.38) as

1
A(s) :/ 1f(io)o 31 do—%/
0 0

1 1 oo 1
U'ﬂ""’ldo'+/1 %[B(ia)-l]o'i’"ldo-.
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On the right side the second term equals —1/s. The first term, by
Theorem 7.12b, is

The change of variables ¢ — 1/0 shows that this is

=/1 1[8(ic) — 1)o31~)"1 do — 115'
Therefore
A(s) = / 16(io) — 1o2* " do
b L (7.42)
+/1 1[8(io) — 1]o3(1=9)"1 do — 5

The first two terms extend to be entire, by (7.41), and the other two
terms extend to be meromorphic in C with poles at s = 0 and s = 1,
both simple. Therefore A(s) extends to be meromorphic in C with poles
only at s = 0 and s = 1. Since (7.42) is unchanged under s — 1 — s,
(7.40) follows. From (7.39) and the meromorphic nature of A(s), we see
that ((s) is meromorphic in C. Since I'($s) is nowhere vanishing, {(s)
can have poles only at s = 0 and s = 1. Since I'(15) and A(s) both have
simple poles at s = 0, {(s) is in fact analytic at s = 0.

We turn to the proof of Theorem 7.12. The tool is the Poisson Sum-
mation Formula on R!, which is a result about the Fourier transform.
The Fourier transform on R! is the operator on Lebesgue integrable
functions given by

f= [ s a

-0

If also f is continuous and f is integrable, then the Fourier inversion
formula says

£t = / " ermite fly) du,

-0
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For our purposes a useful class of integrable functions is the space of
Schwartz functions

P(t)dt_"(t) integer ¥ > 0 and

k is bounded for each}
each polynomial P

Sm5={fecwmw

The Fourier transform carries S(R!) one-one onto S(R!).

Theorem 7.14 (Poisson Summation Formula). If f is in S(R!), then

Z f(z+n)= Z f(n)e?n'nz.

n=-—oo n=-—oo

PrROOF. Define F(z) = 5o _ f(z + n). From the definition of
S(RY), it is easy to check that this series is uniformly convergent and so
is the series of k*P derivatives, for each k. Consequently the function F
is well defined and ¢, and it is periodic of period one. Such a function
is the sum of its Fourier series:

o

F)= S ( /0 ' F(t)e-rrin dt> e2mine, (7.43)

n=—-—oo

The Fourier coefficient in parenthesis above is

1 1 [}
/ F(t)e‘z”""‘dt:/ 3 4 k)t
0 0

k=-—o0
00 1
— e—27rint
= k;w/o ft+k) dt
0 E+1
— e-—21rint d
k;;ﬂ 0 !
- / " fye
= f(n). (7.44)

The theorem follows by substituting (7.44) into (7.43).

For Theorem 7.12 the Poisson Summation Formula is to be applied to
f(@) = e=™ and its dilates. In treating Dirichlet L functions, we shall

—xt?

apply the formula also to f(t) = te . The relevant Fourier transforms

are given in the next proposition.
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Proposition 7.15.

O

(b) (te=™" ) = —iue™ "™ .

ProoF. For (a) we form the line integral over a rectangle in C of
the entire function e~™*”. The rectangle extends from —N to N in the
z direction and from 0 to u in the y direction. The Cauchy Integral
Theorem says that

N N )
/ e~ dx — / e~"(=+1%)* dp 4 (contribution from each end) = 0.
-N -N

As N — oo, the contribution from each end tends to 0, and we obtain

[o o] (o)
/ e dz = / e~ (=W gy

2
Tu” | we see that

(™) (u) = ™™ / e dz.

The integral on the right side is 1, as we see by evaluating its square
0%, e~"(=*+9%) dz dy in polar coordinates. Th.is proves (a). Part
(b) follows by differentiating both sides of the identity

o0 2 ) 2
/ e—-wt e—21rttu dt = e—-‘rru
—00

Multiplying by e~

with respect to u.

PrRoOOF OF THEOREM 7.12. Conclusion (a) is immediate from (7.36).
For (b), let f(t) = e~ and define f,(t) = f(r~'t) for r > 0. Changing
variables in the definition of Fourier transform, we immediately obtain

ﬁ(u) = rf(ru). (7.45)
For our particular f, Proposition 7.15a therefore gives
@)= e~ and  fr(u) = re” Y
Applying Theorem 7.14 to f, with £ = 0, we find that
o0 o0
Z e——7rr'2n.2 =7 Z e—‘rrrzn’.
n=-—0o0 n=-00

With r = ¢1/2 and ¢ > 0, this identity says

6 (-%) = ¢'/%4(io).

This is conclusion (b) for 7 = ic, and (b) follows by analytic continua-
tion.
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The remainder of this section will give a parallel development for
Dirichlet L functions. There is one complication, namely in isolating
what Dirichlet characters to consider. For example, the L function for
the principal Dirichlet character xo modulo m has an Euler product that
is the same as the one for {(s) except that the factors where p | m are
dropped. So we should be content with having the functional equation
for ¢(s) yield a functional equation for L(s,xq). Here are two subtler
examples.

ExaMPLE 1. Let m = 8 and define x(1) = x(5) = 1 and x(3) =
x(7) = —1. The resulting L function coincides with L(s,x’), where x’
is given with m =4 by x/(1) =1 and x'(3) = —1.

EXAMPLE 2. Let m = 6 and define x(1) =1 and x(5) = —1. Also let
m = 3 and define x'(1) = 1 and x'(2) = —1. Then

1
26,20 = U5 (1- ).
Again one should be content with having the functional equation for one
of these L functions yield the functional equation for the other.

We say that two nonprincipal Dirichlet characters y modulo m and '
modulo m’ are associate if x(p) = x’(p) for all but finitely many primes.
This is an equivalence relation. The conductor of an equivalence
class is the least integer m” such that the class contains a nonprincipal
Dirichlet character modulo m”. In Example 1, x and x' are associate
with conductor 4; in Example 2, x and x’ are associate with conductor
3. A Dirichlet character modulo m is primitive if its conductor is m.

If x is a Dirichlet character modulo m, we can convert x into a
Dirichlet character x# modulo am by defining

4/~ _ [ x(G) ifGCD(a,j)=1
X (])_{ 0 if GCD(a,f)> 1

Let us call x# an extension of y. If x# is an extension of y, then y
and x# are associate.

Suppose x and x' are Dirichlet characters modulo the same m that are
associate. Let us prove that y = x’. In fact, suppose GCD(m,b) = 1.
By Theorem 7.1 there are infinitely many primes p with p = b mod m.
For all but finitely many of them, hence for at least one of them, we
have x(p) = x'(p). Therefore x(b) = x'(b). If GCD(m,b) > 1, then
x(b) = x’(b) = 0. Hence x = x’.

Consequently an equivalence class of associate Dirichlet characters
contains a unique primitive Dirichlet character.
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Proposition 7.16. If x,, is a Dirichlet character modulo m and
Xm¢ 18 an associate Dirichlet character modulo m’, then there exists a
Dirichlet character xgcp modulo GCD{m, m') such that xm, and xm:
are extensions of xgcp.

ProoF. Write m = Hp; and m' = HpJ Put n; = min(a;,a}) and
N; = max(aj,a}). By the Chinese Remainder Theorem, Z,, = @Zp_
7

as rings, and thus 7% 2 @Z:aj. The proof of Proposition 7.9 then
i
shows that (Z)%)™ = @(Z:..j )" Let us write xm = (..., X,%,...). The
I 1
extension of x,, to ZECM(m,m’) is accomplished by extending each xp;j

to Z2%,. Thus we have
p;

xﬁ:(...,x:ﬁj,...).
7

We argue similarly with xm’, obtaining a similar formula. Since xm
#—F
and xm are associate, so are x# and x . Then x¥ = x7, since both
Dirichlet characters occur modulo LCM(m m’). This equality implies
x#aj = x#a( for all j. In other words, x ~; = x#,.j. Putting xgcp =
P; ij p; pP;
(.. S Xpna ), we see that x,, and xms are both extensions of xgcp.
7

Corollary 7.17. Any Dirichlet character modulo m is an extension
of the unique primitive Dirichlet character x’ with which it is associate.
Consequently the conductor of x is a divisor of m.

ProOF. We apply Proposition 7.16 to x and x’. Then x and x' are
both extensions of xgcp. Since x’ is primitive, ¥’ = xgcp- Thus x is
an extension of xgcp.

It follows that any L{s, x) can be obtained by deleting finitely many
factors from the Euler product of some L(s,x’) with y’ primitive. For
purposes of deriving functional equations, it is therefore enough to treat
the primitive case. The way that “primitive” will enter the argument is
through the following lemma.

Lemma 7.18. If x is a primitive Dirichlet character modulo m and
if ¢(m, x) denotes the Gauss sum

e(m,x) = Z e kM (k), (7.46)

k=0
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then
m-—-1 ) o
62’”"’“/’")((/(:) = x(n)e(m, x) (7.47)
k=0
for every integer n.
REMARK. It is easy to check that the nonprimitive x in Example 2
above does not satisfy (7.47) for n = 2.

ProoF. If GCD(n,m) = 1, then

m-—1 m-—1
eZmnk/mX(k X(" — Z eZmnk/mX(kn)
k=0 k=0
m-—1
erzk/mX(k _ c(m X)
k=0

Letting n~! denote an inverse of n in Z, we multiply through by
x(n=1) = x(n) and obtain (7.47).
Ifd= GCD(n m) > 1, we are to prove that the left side of (7.47) is
0. Let m’ = m/d. The natura.l map 2% — Z, has kernel

K={a€Z|a=1modm'}.

If x|k were to equal 1, then x would descend to Z), and define a
Dirichlet character ¥’ modulo m’ such that x = X'#. Smce ¥ 1Is primitive,
this descent cannot happen, and we conclude that x|k is a nontrivial

character of K.
The left side of (7.47) is

3

mi—1
— eZmlc/m X(k) Z Z e21rik/m’x(k)

0 r=0 0<k<m-—1
k=rmodm’

£
1l

m'=1

— Z e?m‘r/m' E X(k)

=0 kerK

.,
t

m'—1

— 821rir/m’x(r) Z x(a).

a€K

il
=}

r

Since x|k is nontrivial, the inner sum is 0. Thus (7.47) is 0.
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Theorem 7.19. Let x be a primitive Dirichlet character modulo m,
and define 8(r,x) for Im 7 > 0 as

{ Y x(n)e""z”/’" =2y, x(n)e"‘z’"/"1 if x(-1)=1
Z:":_oo x(n)nei"z”/"‘ = 22:;1 X(n)ne""z"/”‘ if x(=1)=-1
Then

(a) 6(r +2m,x) = 6(r,Xx)

) 0-1/70) = L2 0r ) a1 =1

0) 0-1/70 = S e piprror )it x(=1) = -1

The Dirichlet L functions L{s,x) and L(s, ) extend to be entire in s
and have the following corresponding properties:

(c) If x(—1) =1, then A(s, x) = L(s,x)m%’r(%s)r_%’ satisfies

A(s,x) = 9(m—m") A(L -5, %) (7.48a)

N

(¢/) If x(—1) = —1, then A(s,x) = L(s,x)m*C+DT(L(s + 1))7r~3G+D
satisfies
ic(m, x)

vm

REMARKS. Applying (c) or (¢') first to x and then to x’, we see that

A, x) = — Al —5,%). (7.48b)

c(m,x)ec(m,x) = mx(-1).
We readily check from the definition that

e(m,x) = x(—=1)e(m, x).

Consequently the coefficient ¢(m, x)/v/m in the functional equation
(7.48) has absolute value one.

Proor. Result (a) is clear. For (b), define

_ e ify(=1)=1
Jt) = {te_”z (1) = -1 (7.49)
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The Poisson Summation Formula (Theorem 7.14) applied to f with z =

k/m gives -
> f(£+n> = S Flnyerminkim,

n=-0oc n=—o00

Multiplying by x(k), summing on k from 0 to m — 1, and using (7.47)
yields

S Sxwr (Ean)= 3 R Y emma
k=0

n=—00

I

(7.50)

l

e(m,x) D F)x(m).

n—-—o0

The left side of (7.50) is

—

o0 m-—

S 3 x(k 4+ mn)f ('“ +m'"">

n=—o00 k=0

i x(k)f (-:—1) -

k=—00

Applying (7.45) to the resulting form of (7.50), we have

o)

S xhs () =ctmr 3 Fowp@. @8y

k=—o0 n=-00

If x(—1) = 1, we choose f as in (7.49) and put r = y/o/m; application
of Proposition 7.15a yields

= 2xo=? c(m,x) 1/2 o~ — ~n’ro/m
x(lc)e"c o m = D2 Z x(n)e .
k:z—:oo \/_Tﬁ n=-00
This is (b) for 7 = ic, and (b) for general 7 follows by analytic continu-
ation.
If x(=1) = —1, we choose f as in (7.49) and again put r = \/o/m;
application of Proposition 7.15b yields

- ko-_l/z —k%ro" Y m
Z x(k) \/ﬁ e * /

k=—o0
_ —ie(m,X) 172 * — —nol/? —nrofm
T Ym 7 Z x(n) vm ¢ ’
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This is (b’) for 7 = io, and (b’) for general 7 follows by analytic contin-

uation.

For (c), suppose x(—1) = 1. In analogy with (7.37), we have

Z X(k) %sr(%s)ﬂ,—%s

:/ S (e F ook d
0 k=1
:/0 16(io,x)o%* 1 do (7.52)

for Re s > 1. The formal argument, disregarding convergence, is to
replace o by ¢~! and then apply (b). The above expression becomes

_—./ %ﬁ(i/o)o‘%"lda

0

(o x) [ a1y e
T /(; 02 50(io, x)o do

= c(%)Au - 5%)

by (7.52). To make this argument precise, we observe by the same
argument as for (7.41) that

i

o0
/ 16(ic,x)o 31 do (7.53)
1

converges for all s € C and defines an entire function. For Re s > 1, we
rewrite (7.52) as

oQ

1
A(s,x):/ %9(2’0,){)0%’“10{0’4—/ L0(io,x)o3* 1 do
0 1

and transform just the first term, replacing o by ™! and applying (b).
The result is

_ c(m,x) ]oo 19775 cNya(l-s)-1 /oo 1904 1s-1
A(s,x) = T ) 50(io, x)o do + 1 50(io, x)o do.
(7.54)
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In view of (7.53), both terms extend to entire functions of s, and there-
fore A(s, x) extends to be entire in s. Using (7.54) with ¥, we have

c(%)l\(l ))2) c(m X)C(m X)/ 19(10, X 2.s---l do

C(m)X) / 1 - — l(1-——3)—1
+ 50(io, x)o? do.
vm o Jy (7.55)

To prove (c), we need to show that the right sides of (7.54) and (7.55)
are equal, and this comes down to proving that

e(m, x)e(m, x) = mx(-1) (7.56)

(as was asserted in the remarks before the proof). To prove (7.56), we
write

3

c(m, x)e(m, x) = Y ¥ M x(k)e(m, X)
k=0
m-1
— N\ p2mik/m Z 2eikl/my (1) by Lemma 7.18
k=0
m-—1 m-—1
_ 27rilc/m Z C_QTikI/m_X(—"‘Ij
k=0 =0
m—1 m—
_ X Z E 27rz'k/me—-27rik1/m
1=0 k=0

m—~1
=x(-1) Z _(—1—)61,1m by Proposition 7.9
=0

= my(-1).

This proves (7.56). The analyticity of L(s, x) is obtained from that of
A(s, x) by the same argument used with {(s) and A(s) in Corollary 7.13,
and (b) follows.

For (¢’), suppose x(—1) = —1. In analogy with (7.37) and (7.52), we
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have

—1(s41)

A(s,x) =

- x(k)
ks

k=1

:/ Zx(k)ke—kzro/ma,é(s+l)—l do
0 k=2

:/ %G(io,x)a%(’“)—lda (7.57)
0

for Re s > 1. The formal argument, disregarding convergence, is to
replace o by =1 and then apply (b’). The above expression becomes

/ 10(1’/0’ x)(r'%(’“)“ldv
_ —tic(m, X)/ 10(10 X o311 g0

:%A(l—s,i)

by (7.57). This argument is made precise in the same way as for (c),
by means of (7.56). The analyticity of L(s,x) is obtained by the same
argument used for ((s) in Corollary 7.13, and (c’) follows.

CHAPTER VIII

MODULAR FORMS FOR SL(2,7)

1. Overview

In Chapter VI we established a correspondence A « E of lattices
in C with elliptic curves defined over C. By way of introduction to
the subject of modular forms, we shall now let the lattice vary. Then
G4, G, and A lead to analytic functions on the upper half plane with
special transformation properties (under the group SL(2,7)) and certain
growth conditions that we list in §2. Analytic functions of this kind will
be defined in §2 to be modular forms. Cusp forms will be modular forms
with an additional vanishing property, and A will be an example.

To each cusp form, we shall associate in §3 an L function by means of
a Mellin transform. This L function will be given by a Dirichlet series
and will extend to be entire on € and to satisfy a functional equation.
The proof will be much like that for the Dirichlet L functions in Theorem
7.19, and the functional equation will be of the type in (7.48).

The remainder of the chapter will introduce and use Hecke operators
as a tool for expanding the L functions of selected cusp forms as Euler
products. In Chapter IX we shall extend the theory of Chapter VIII
to modular forms and cusp forms whose transformation properties are
relative to certain special subgroups of SL(2,7).

After that point, we return to elliptic curves. For an elliptic curve with
integer coefficients, we count the number of solutions for each finite field
and assemble this information into an L function for the elliptic curve,
which is given as an Euler product and is hard to use. The result is
that we have two kinds of L functions, the kind from cusp forms that
we understand very well and the kind from elliptic curves that contains
a great deal of information.

Eichler-Shimura theory observes that cusp forms with special prop-
erties can be used to parametrize the points of elliptic curves over Q.
Moreover, the L function of the cusp form coincides with the L function
of the elliptic curve. Elliptic curves that can be parametrized in this
way are called modular.

The Taniyama-Weil Conjecture is the assertion that every elliptic
curve is modular. There are many equivalent formulations, and there is
an algorithm for deciding the conjecture for any particular curve.

221
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If the conjecture is true, then restrictions on the nature of modular
forms can be brought to bear on the theory of elliptic curves. A dramatic
example of this process is the theorem that the Taniyama-Weil Conjec-
ture implies Fermat’s Last Theorem. A counterexample to Fermat’s
Last Theorem would yield an elliptic curve with remarkable properties,
and one proves with some effort that such an elliptic curve cannot be
modular.

2. Definitions and Examples

Let us recall the correspondence A « E of lattices in C with elliptic
curves defined over C. In (6.4) and (6.5) we defined

1
Gar(A) = Z;ﬂ- for k > 2

WEA
w#0
g2(A) = 60G4(A)

According to (3.30), the curve
y? = 423 4 box? 4 2b4z + bg

has
A = —bZbg — 8b3 — 272 + 9bybabs.

Therefore the curve

y* = 42° — g2(A)z — g3(A)
of Chapter VI has

A(A) = g2(A)? — 27g3(A)%. (8.2)
Similarly the j invariant is given by

J(A) = 1728g2(A)*/A(A). (83)

The dependence on A can be simplified a little. If « is in C*, we can
compute
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and similarly
A(aA) = a12A(A)
j(aA) = j(A).

Let A be generated by w; and ws, so that A = Zw, & Zw,. Possibly by
interchanging w; and wy, we may assume that Im(wg/wi) > 0. Intro-
ducing 7 = wy/w; and A, = Z ® Z7, we have

A=uw (ZGBZ (ﬂ>> = wiA,.
wi

Thus G, A, and j are determined by their effects on A = A,. We
define

GZk(T) = G2k(Ar)v A(T) = A(Ar)a J(T) = ](Ar) (84)

We can make the same computation with a different basis {w}, w}}

for A. We have
whY _[a b\ fwy
wl /)T \e d) \w

with a, b, c,d in Z. Invertibility of this relation over Z implies ad — bc =
+1. Let us see the effect on the associated A,. We may as well start
with {w1, w2} = {1, 7}. Then {w}, w4y} is given by

wh _f[a b ™ _ far+b

wi /) \c d 1) \er+d)’
and the associated 7' is
ar + b
er+d’
Since Im r > 0 and Im 7’ > 0, we must have ad — bc = +1, not —1. We
are thus led to consider the action of SL(2,R) on the upper half plane
and the special role of the subgroup SL(2, Z).

The group SL(2,R) of 2-by-2 real matrices of determinant one acts
on the upper half plane H = {Im 7 > 0} in the usual way by linear
ar +b
er+d’
Let SL(2,Z) be the subgroup with integer entries. What we saw above
¢ 3 of SL(2,Z) was that A, D (c7 + d)A,
hence that A; = (¢7 + d)A;+. Therefore

/

fractional transformations, with g = ((cl Z) acting by g7 =

for an element vy =

Ayr = (cm + d) 7T A,
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The resulting transformation laws for the functions we have been con-
sidering are as follows:

Ga(r) = E (—r—n;—i—n—)ﬁ Gaor(yr) = (er + d)szzk('r)
(m,n)#(0,0)
92(7) = 60G4(7) 92(77) = (e + d)*g2(7)
93(7) = 140Ge(7) 93(y7) = (et + d)°gs(r)
A(7) = g3(7)° — 27g3(7)? A(yT) = (e + d)2A(7)
j(r) = 172892(7)*/ A(7) i(yr) = 5(7).

Fix an integer k. An analytic function on H that satisfies

F(y7) = (er + D f(7) for all v = ((cl 3) € SL(2,2) (8.5)

is called an unrestricted modular form of weight k (for the full
modular group SL(2,Z)). To have f # 0, k must be even. We shall
drop the word “unrestricted” if an additional condition below is satisfied.

Each unrestricted modular form f has a “q expansion” as follows.

Taking v = (é }) in (8.5), we see that f(7) = f(7 + 1). Putting

T = p + i0, we expand in Fourier series in the p variable. Since f is
smooth,

(o] oo
f(T) — Z an(a)e%ripn — Z an(o,)emmoe%rinf’
n=-—00 n=—0oo
where .
2 .
an(o) = l Fflp+io)e 2P dp,
)

Then

an(0)e?™™ = / % f(p +ic)e 2minletio) gp (8.6)

Imagine a rectangle in the 7 plane extending in the horizontal direction
from p = —5 to —{-2 and in the vertical direction from o; = ¢ to some
o2. The integral (8.6) then represents the bottom portion of the line
integral

f f(r)e 2™ dr
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over this rectangle. The total line integral is 0, by the Cauchy Integral
Theorem, and the sides cancel because f(7) = f(r+1). Thus the bottom
portion equals the top portion when they are oriented the same way. In
other words, (8.6) is a constant as a function of o, say constantly equal
to ¢,. We conclude that

o
F(r)= Y cag®  with g =€, (8.7a)
n=—oo
Here .
Ch = ’ f(T)e_2“"T dp for any ¢ > 0. (8.7b)

wl=

Expression (8.7) is called the ¢ expansion of f, or, for reasons discussed
in §3, the expansion of f at co.

We say that an unrestricted modular form f is holomorphic at oo
and is a modular form if its ¢ expansion has ¢, = 0 for n < 0. If also
co = 0, we call f a cusp form.

In §3 we shall give a geometric interpretation for these conditions.
But first we consider our standard examples Gox, A, and j.

Proposition 8.1. For k > 2, the q expansion of G4x(7) is given by

2(2mi)%*

Gor (1) = 2¢(2k) + —— (2k 1)' Za'gk 1(n)¢",

where o1(n) = ) gn d'. Consequently Gox(7) is a modular form of

. d>0
weight 2k.
PrRoOF. We take as known the identity
1 1 1
7rcot7r‘r—;+m2=1<r+m+T_m>, (8.8)

in which the convergence is uniform on compact sets. With ¢ = €27

and Im = > 0 (so that |¢| < 1), we have

1 2 . o0
7rcot7rr:7rc?sm'_ a+t iw—l:iw—Qwiqu'
sinmr g—1 1—g¢

Thus (8.8) gives
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Differentiating 2k — 1 times gives

oo

1 2k 2%—1 d
= (27rz)2 E d q°. (8.9)
m_X:oo (r + m)? (2k — 1)t ot
Hence
1

Go(T) = E —r
o (o M7
=2 D

7 sviy T )2k

m¢0( ) amee ("T+m)

= 2((2k) + 22 Z v m)%

n=lm=-o00
Applying (8.9) with 7 replaced by n7, we see that this expression is

= 2((2k) + 2 Ty ),(2m)2’=zzd2k 14da

d=1a=1

2(27rz
= 2((2k)+ (2k Zo% l(n)q s
as required.

REMARK. The next-to-last line of the proof shows that also

2(27”-)% o d2k—1qd

Ok -1 2 T i (8.10)

Gar(7) = 2¢(2k) +

The series here is rapidly convergent and allows for approximate nu-
merical calculations. If we replace 7 with ws/wy and sort matters out,
we are led to the formulas (6.50) for g» and g3 that were used for the
calculations in §VI1.9.

Corollary 8.2. A(7) is a cusp form of weight 12 and is nonvanishing
on H. Also j(r) is an unrestricted modular form of weight 0 with ¢
expansion

j(ry== + 744 + Z nq”

n=1
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ProoF. The nonvanishing of A(7) follows from Theorem 6.15. From
(8.2) and (8.1), we have

A(T) = go(7)® — 27g3(7)? = 603G4(7)> — 27 - 1402 G¢(7)>.

Taking as known the identities

6

T
3¥.5.7

(=1 amd ()=

we obtain from Proposition 8.1

4 2 4
Ga(r) = %+ (—g)—(q+9q2+28q3+73q4+ 22
2n6 2 6
Ge(r) = 33 '7;.7 ( ) (q+33q + 244¢% + 1057¢* + .. .).
Therefore
A(7) = (2m)'2(q — 24¢° + 252¢° ~ 1472¢" + . ), (8.11)

and A(7) is a cusp form. For the ¢ expansion of j(7), we have

. 1728 - 603G4(7)3
_ 1+720q + 179280¢2% + 1695456043 + . ..
- q —24q¢2% + 252¢3 — 1472¢% + . ..

1
" + 744 + 196884¢ + 21493760¢° + ... (8.12)
as required.

3. Geometry of the ¢ Expansion

Armed with examples, let us discuss the geometry connected with the
¢ expansion. Let R be the closed subset of H described in Figure 8.1.
Proposition 8.5 below addresses the fact that R is a fundamental do-
main for the action of SL(2,Z) in M. This fact needs a little care in

its formulation, since (—01 _01) acts as the identity on H. The group
SL(2,R)/ {:i: ((1) g)} acts effectively, and R is really a fundamental do-

main for the group

I‘:SL(?,Z)/{i(é(l’)}.
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. 11 0 1
Let T and S be the images in I' of the members 0 1 and 1 0
of SL(2,7). These elements are given by
T(ry=1+41 and S(r) = -1/, (8.13)

and S has order 2 (not 4). Before proving that R is a fundamental
domain, we examine these elements more closely.

5

b

'
—
i
=
N
L\
—
N

Ficure 8.1. Fundamental domain for SL(2,2)

iti 3. The el ts L1 and 0 1 generate
Proposition 8.3. e elemen 0 1 _1 0
SL(2,2).
PROOF. Assume the contrary. Let T' be the subgroup of SL(2,7)

0 1 a b
generated by ((1) i) and (_1 0). Among all members (C d)

of SL(2,Z) not in T', choose one with max{|al, [c|} as small as possible.
Then with max{|al, |¢|} fixed, we may assume min{|al, |c|} is as small

1
as possible. Multiplying if necessary by (_01 0) on the left, we may

assume that |a| < |c|. Now

(S6 DG -G
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1

shows that (_1

(1)) is in I'. Thus

1 0 a b\ _ a b
+1 1 ¢c d/  \cta dxb
is not in . Unless a = 0, one of ¢ + a has lc + a| < [c| and contradicts
our construction of ((CI 3 - Thus we may assume a = 0. Multiplying

on the left by (_01 (1)) or its inverse ((1) Bl), we see that SL(2,2)

contains an element (é :) not in I'. This element is a power of

((1) i), and we have a contradiction.

Since ((1) }) and (_01 é) are in S7(2,Z), an unrestricted mod-

ular form f of weight k satisfies
fr+1) = f(r)
F(=1/7) = (=n)* f(7).

On the other hand, Proposition 8.3 implies the following converse to the
validity of (8.14).

(8.14)

Corollary 8.4. An analytic function f on M that satisfies (8.14) is
an unrestricted modular form.

PROOF. For g = (j 3) in SL(2,R), let
8(g,7) =cr +d. (8.15)
Direct computation gives
(9192, 7) = 8(91,927)6(g2, 7) (8.16a)
and
67", 1) =6(g,97 ') L. (8.16b)

If g1 and g, are in SL(2, Z) and are elements 4 such that

Form) =6(y, ) (1), (8.17)
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then (8.16a) says that (8.17) holds also for ¥ = g1g2. If g is an element
~ such that (8.17) holds, then (8.16b) says that (8.17) holds also for
4 = g~!. Thus the subset of SL(2,Z) for which (8.17) holds is a sub-

. . 1 1
group. Equations (8.14) say that this subgroup contains <0 1) and

( 01 (1)) By Proposition 8.3 the subgroup is all of SL(2,Z).

Theorem 8.5.
(a) Each point of H can be mapped into R by some element of I' =

sun)/{(}9)}

(b) The only points of R that are equivalent with one another under
[ are the points 7 and 7 + 1 of the vertical sides, and the points 7 and
—1/7 of the circular arc.

(c) The only points of R that are fixed by a member v # 1 of T are
7 = i (fixed exactly by the subgroup {1,5}), 7 = p = e2™/3 (fixed
exactly by the subgroup {1,ST,(ST)?}), and 7 = —p = e™/3 (fixed
exactly by the subgroup {1,TS,(TS)?}).

PRrooOF. (a) If 7 = p+ i is given, then we can compute that

ar+b o
= . 8.18
fm <c1'+d) ler + d|? (8.18)

. b
Since ¢ and d are integers, some choice of ((Z d) makes |cT + d|? a

minimum. Applying this element, we obtain 7/ such that Im 7' > Im
~7' for all ¥ € T. For a suitable choice of n, the translate 7 = ™7
will have [Re 7| < 1, and it will still be true that Im 77 > Im yr'' for
all ¥ € I'. If 7"/ were strictly below the unit circle (at the bottom edge
of R), we would have Im 7"/ < Im S7”, contradiction. We conclude that
7 is in R.

(b,c) Suppose 7 is in R and g = (‘; 3) is an element of SL(2,7)

with g7 in R. Let v be the image of g in I'. Since y7 and v~ 1(yr) are
in R, there is no loss of generality in assuming that Im(y7) > Im 7. By
(8.18), |er + d| < 1. Since Im 7 > 1, we cannot have |c| > 2. Thus
¢=0,1,or —1. If ¢ = 0, then y must be a power of 7', and the points
in question are 7 and 7 £+ 1 as in (b).

Since (Z 3) and <_Z _g) have the same image in ', it remains

to consider ¢ = 1. Then |r +d] < 1. Since |Re 7| < §, we must have
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|d| < 1. Thus d = 0, 1, or —1. Suppose d = 0. Then |r| = 1. Since

ad —bc=1,b= —1. Hence g = (a -1

1 0 ,and'yr:a—;.Thisis

an integer translate of the point - which is on the bottom edge of R

since |7| = 1. The possibilities are that a = —1 and 7 = p as in (c), or

a=1and 1= —pasin (c),or a =0 as in (b) and the case 7 = i of (¢).

Suppose d = 1. Then 7 € R and |t + 1| < 1 imply 7 = p. In this case
a b . ap+a-—1 1

= tha—-b=11S = =g —— = .

g <1 1)w1 a o ¥p ot 1 a o1 a+p

Hence a =0 or 1. If a = 0, we have g = ((1) _11) asin (c). Ifa=1,
then the points are p and p+ 1 as in (b).
Suppose d = —1. Then similarly 7 = —p and y(—p) = a + (—p) with

a=0or —1. If a = 0, we obtain g = 0 _1> asin (¢). If a =1, then

1 -1
the points are —p and (—p) + 1 as in (b).

The fundamental domain allows us to interpret the g expansion of a
modular form as an expansion at co. In fact, we see from Figure 8.1 that
the only way to tend to co in R is vertically. Thus the point 7 = p + ic
has ¢ — oo while p remains bounded. The effect on ¢ = €2™*" is for ¢ to
tend to 0. So a power series in ¢ may be regarded as an expansion about
T = 0o. If the ¢ expansion does not have infinitely many negative powers
of g, the condition that an unrestricted modular form be modular is a
growth condition: There is to be no pole, and the form is thus to be
bounded as & — oco. The additional condition for a cusp form is that
the form vanish as ¢ — co. This condition can be checked by evaluating
the integral defining ¢y in (8.7b).

4. Dimensions of Spaces of Modular Forms

Let f # 0 be a modular form of weight k. For 7 in H, let v,(f) be
the order of vanishing of f at r. If v is in SL(2,Z), then v, (f) = v, (f)
since f(77) = (cr 4+ d)* f(7). Let v (f) be the order of vanishing of the
q expansion of f (the expansion at c0).

Theorem 8.6. If f £ 0 is a modular form of weight k, then
k
veo(f) + 50i(f) + §0a(£) + 3 0r(f) = 35,
T

where 5’ refers to a sum over inequivalent points in the fundamental
domain R other than 7 and p.
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REMARK. The left side is indeed finite. There can be no zeros of f
in a deleted neighborhood of oo, i.e., beyond some height in R. The
remainder of R is compact, and f can have only finitely many zeros
there.

Proor. Essentially we shall apply the Argument Principle, comput-
1 [ f(r)
ing —

2xi J f(7)
Actually we have to adjust our contour, introducing detours to avoid
zeros. First assume that there are no zeros on the boundary of R except
possibly at ¢ and p. We introduce the modified contour in Figure 8.2. It
is assumed that all the zeros of f within R, other than those at z and p,
are within the contour in the figure. The arcs BB', CC’, and DD’ are
circular.

dr over the boundary of R with positive orientation.

B c c’ b’

FiGuRE 8.2. Contour for calculating number of zeros

We shall make repeated use of the following change of variables for-
mula. If 7 = ¢(7') is an analytic change of variables, then

(fog)(r)dr _ f'(r)dr
= . 8.19
Fodlr) 1) (819
For a first application of this formula, we take v = q and write f(q) =

f(r). As 7 traverses EA, q goes once around a circle with negative
orientation. Hence

A [ fMdr_ 1 [ f@de _
271 Jga  F(7) 27 f(q)

~Voo (f) (8.20)
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Next the points of AB are paired with those of ED' by 7 — 7 + 1
and f(r+1) = f(r). Hence

1 fi(r)dr 1 fi(r)ydr —0. (8.21)

H

2mi Jap  f(r) | 2mi Jpip F(T)

The arc B'C is paired with the arc DC’ by 7 — 7/ = —1/7. We take
¢ = S in (8.19) and obtain

fl(r)dr __ f(r)dr _ _/ (foS)(r)dr
cp [f(7) pc f(7) pc (foS)(7)
L[ et
pc (=) f(1)
_ [ f@dr [ kdr
B pc f(7) /1;'0 T
Hence
1 fi(r)dr 1 fi(r)dr &k dr _k
i Joe F() T omi Jep FOO) 2mi e 7 12 1O
(8.22)

where o(1) is a term that tends to 0 as the radii of the arcs BB’, CC”,
DD’ tend to 0.

To handle the integrals over the small arcs BB', CC’, and DD’, we
note the following fact from complex variable theory. Let h be a mero-
morphic function with a simple pole at 2y and with residue h_; there.
Over a small positively oriented circular arc centered at z; and consum-
ing a fraction @ of the circumference of the circle, we have

— / h(z)dz = 0h_y + o{1). (8.23)

[In fact, we have only to expand h(z) in Laurent series and compute the
integral term by term.]

Applying (8.23) to the small arcs in Figure 8.2 and taking into account
orientations, we have

"(r)dr
a7 [ Tt = —gw) +o)
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We add these three formulas to the sum of (8.20), (8.21), and (8.22),
and we apply the Argument Principle. The result is

Y 0rl(f) = ~veol£) + 04 o= = 20,(1) = 5uf) = 5o + o).

T

Letting the radii of the small arcs tend to 0, we obtain the desired result.

We still have to treat the case that f has some zeros on the boundary
of R other than at p and i. In this case we introduce a circular bubble
at each such point, with S or T of that bubble at the congruent point
on the boundary of R. The bubbles on the vertical sides of R do not
affect the above argument, and the bubbles on the circular bottom side
of R introduce error terms that are o(1). This completes the proof.

Let M} be the vector space of modular forms of weight &, and let S
be the subspace of cusp forms. These spaces are 0 for k¥ odd, since

@ =1((35)7) = DH).

For even k > 4, Proposition 8.1 shows that Gj is in M} but not S;. On
the other hand, S; has codimension at most 1 in My, being given by a
single condition ¢g = 0. Thus

M =S @ CGy for k even > 4. (8.24)

Corollary 8.7. Let k be even.

(a) My =0for k< 0and k=2
(b) Mo =Cl, and My = CGy, for 4 < k < 10.
(¢) Multiplication by A(7) defines an isomorphism of M_12 onto Si.

Proor. (a) In Theorem 8.6, all terms on the left side are > 0. Thus
the right side is > 0, and k > 0. For k = 2, the right side is %. No
nonnegative integer sum n; + %ng + -:1;713 can equal %, and sono f £ 0
can exist.

(b) When k& < 12, the right side is < 1. Thus veo(f) = 0. Hence
Sy = 0. If 4 < k < 10 and k is even, Proposition 8.1 shows that
M, =CGi. f k=0, 1isin M. Since Sy has codimension at most 1 in
Mo, M() = Cl

(c) Since A(r) is a cusp form of weight 12, multiplication by A carries
Mi_12 into Sk. On the other hand, A(r) is nonvanishing on H by
Corollary 8.2 (or Theorem 6.15) and has a simple zero at oo, by (8.11).
Thus multiplication by A(7)~! is a well defined linear map of Sy into
M 1s.
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Corollary 8.8. If k£ > 0 is even, then

k
[EJ +1  ifk# 2 mod12
dlka‘:

k
[ﬁ] if £ =2 mod 12.
Also Sy = 0 for k < 12; if k£ > 12 is even, then

k
[—] if k% 2 mod 12
. 12
dim Sy = &
[-1-—2-:,~—1 if k=2 mod 12.

Corollary 8.9. The ¢ expansion of the cusp form A(T) of weight 12
can be regrouped as

A(r) = (@01 [ (1 - 7)™

n=1

More specifically let

n(_’_) — ewi‘r/lz H(l _ qn)’

n=1

so that A(7) = (27) 2n(r)?4. Then
n(r+1)=e"/Py(r) and  n(=1/7) = (=ir)!/?p(7).

REMARK. This formula for A(7) lends itself much better to calcula-
tion than the one in (8.2).

PrROOF. Once we have proved the two transformation laws for 7(r), it
follows that 7(7)?* satisfies the transformation laws (8.14) with k = 12.
Corollary 8.4 then shows that 5(7)?* is an unrestricted modular form of
weight 12, and hence n(7)** is a cusp form of weight 12. By Corollary
8.8, A(r) = cn(r)?* for some constant c. The coefficient of ¢ for n(r)%4
is 1 and for A(7) is (2r)'2, by (8.11). Thus ¢ = (27)2.

T}‘le identity n(r + 1) = €™/ 25(r) being obvious, we are left with
proving

n(=1/7) = (—ir)/2n(7). (8.25)
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Let log denote the principal branch of the logarithm cut on the negative
reals. Since |¢]| < 1,

1
—log(1—g¢")=D_ 74"
k=1
Then

n(r)e~™7/1% = HeXP log(1 — ¢')
=1

= eXPZlog(l -q)

Replacing 7 by —1/7 gives

mif(127) = 1 1
n(=1/7)e =exp) TE \e2mib/r — 1/
k=1

So
n(r)/n(=1/7)
A (rgr !
=B+ Dexp E ( _2,,;” 1 eZmik[T — 1)'

In order to prove (8.25), it is therefore enough to prove that

o0 1 1 1 . |
Z * (e—Zﬂ'kT — 1 e2rik/T _ 1) 12(r+1- D4 §log(—u—). (8.26)
k=1

Fix 7. Put f(z) = (cot z)(cot £) and v = (n+3)7 withn=0,1,2,....
The two factors comprising f are together singular only at z = 0. Thus
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271 f(vz) has simple poles at z = :l:—lc and ifg for & # 0, and the

1 k
respective residues are oy cot (7:_ ) and —l—cot(rkr) for k =1,2,.

Also there is a triple pole at z = 0, and the residue of 2! f(vz) at 2 =0
can be seen to be —3(7+771). Let C be the curve in the z plane in the
shape of a parallelogram, passing from 1 to 7 to —1 to —7 to 1. Those
poles mentioned above that lie within the parallelogram are actually on
the diagonals of the parallelogram. Thus the Residue Theorem yields

fc F(v2) % = _@( T+r )+ 2 -:m ;;% (cot (WTk) + cot(ﬂc‘r)) )

(8.27)

Let us consider the limiting behavior of f(vz) on each edge of C as

n — +oo. If we parametrize the edge from 1 to 7 by z = ir + (1 — 1)
with 0 < ¢ < 1, then we can write

; (62i(n+%)1r(tr+(1—t)) + 1)

— 1 —
cot vz = cot(n + )7z = DY) ] (8.28)
Let 7 = p+ io. The exponential here has magnitude
¢~ 2(nt3)mto (8.29)

and tends to 0 pointwise (except at t = 0) as n — 400, since ¢ > 0.
Thus cot vz — —1 on this edge. Let us show that the convergence occurs
boundedly. Let € > 0 be a number to be specified. When ¢ > —,

2
(8.29) is < e~2"¢?, which can be assumed to be < 1; then (8.28) is

bounded. When t < :_ the ¢! part of the exponential is
n

2

e2i(n+-,1—,)1r(tp+(1—t)) — eiw[(2n+1)+t(2n+1)(p—1)] = _eimt(2n+1)(p-1)

The exponent on the right is controlled. For a suitably small ¢, we can
make it < 7/2 in absolute value, and we see that the denominator of
(8.28) is bounded away from 0. Therefore (8.28) is bounded and the
convergence occurs boundedly. Similarly we find that cot %% is bounded
on this edge and tends pointwise to i. By dominated convergence

lim f(uz)giz/ ciz log .
1

-+ 00 1
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Similar computations give

-1 -1 d
lim f(uz)i:-:—/ —zi:—m'+logr

-7 d T dz .
lim fre) Z = / — = log(—7) + mi
n—+oo f_4 z -1 z

! d ! dz
"ler;o f(vz) _;z_ =— /_T — = log(—7).

Since log 7 + log(—7) = 2log (1), passage to the limit in (8.27) gives

27i ~—1 nk
4log (;) = ——?(r +7 Y+ 412 % (cot(rkr) + cot (T))

k=1
: e —2mikT 2nikfT
2wt _ 1 /e +1 e +1
= -—3‘(T+ 1) +4;E <e—21rik'r —1 T emiklT 1

omi . 21 1 1
= _T(T +rT) 48 % \e—omikr 1  g2zmib/r — 1)
k=1

This proves (8.26), and we have seen that (8.25) follows.
5. L Function of a Cusp Form

In this section we shall associate to each cusp form an L function
given by a Dirichlet series. We shall see that the L function extends
to be entire and satisfies a functional equation. The prototype for this
study is Theorem 7.19, where we passed from certain # functions to L
functions and proved similar results about the L functions.

Let f € Sk be a cusp form, and let f(7) = S 1 cng™ be its g expan-
sion. The L function of f is the Dirichlet series

L(s, f) = an (8.30)

n=1

The L function can be obtained from f by applying a Mellin transf01:m.
If F:(0,00) — C is given, the Mellin transform of F' is the function
g(s) defined by

s = [ e
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for all values of s for which the integral converges. (For s imaginary, the
Mellin transform is the version of the Fourier transform appropriate for
the multiplicative group R*, but we shall not use this fact.)

For our cusp form f, let us write 7 = p+ i0 and compute the Mellin
transform of f(ie¢), with p fixed at 0. We proceed formally for now,
disregarding convergence. We have

° do © & 2 do

gis :/ fiaa"—:/ cpe ™Iy

= [ sme =[5 :
oo 0o .
S Y
n=1 0 t

= (2m)~T(s) Y =

= (2m)7'T(s)L(s, f). (8.31)

We shall show below that the coefficients ¢, of a cusp form satisfy
lca| € Cn¥/2. Then the Dirichlet series (8.30) converges absolutely for
Re s > %+ 1, and L(s, f) is analytic in this region. Going over the steps
of (8.31), we see that our computation was rigorous in this same region.

Lemma 8.10. Let f € S; have ¢ expansion f(1) = Y oo, caq™.
Then
(a) the function ¢(7) = |f(7)|c*/? is bounded on H and invariant
under SL(2,7)
(b) leal < Cn*/>.

PROOF. (a) From f(1) = 3 o7, caq™ for |g| < 1, we have | f(7)| < C|q|
for lg| < &,ie, -~

If(T)| < Ce™™  for o > 5-log?2. (8.32)

Consequently ¢(7) = | f(7)|o*/? tends to 0 as T tends to co through the
fundamental domain R for SL(2,Z). Since ¢ is continuous and the part
of R with ¢ < 2% log 2 is compact, ¢ is bounded on R. On M, ¢ satisfies
p(r +1) = p(r) and

()

E/2
- —rk ) (o|T|™ k/2
(%) =11l i)

= f()lo*/? = (7).
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By Proposition 8.3, ¢ is invariant under SL(2,Z). Being bounded on R,
¢ must be bounded on 7;(
(b) We have ¢, = [2, f(r)e~2™"" dp, and we have just seen that
2

|f(T)| < Co=*/2. Hence
len] < Co—Hl2e2mne for all o > 0.

Taking o = 1, we get |cn| < Ce?"n*/? as required.

REMARK. For fixed o, the function f(p+ ic) is smooth and periodic
in p. Thus its Fourier coefficients decrease faster than any negative
power of n. The numbers c,, are not the Fourier coefficients of f(p+1i0),
however, but are ¢2™*° times those Fourier coefficients.

Theorem 8.11 (Hecke). If f € Sy is a cusp form for SL(2,Z), then

the L function L(s, f), initially defined for Re s > —’;— + 1, extends to be
entire in s. Moreover, the function

A(s, f) = 2m)7°T(s)L(s, f) (8.33)
satisfies the functional equation

A(s, ) = (DF2Ak — s, f). (8.34)

Proor. The transformation law for ((1) _01) is f(=1/7) = ¥ f(7),
and we specialize this to 7 = p + i with p = 0 to obtain
f@i/o) = ok f(io). (8.35)

From (8.31) we have
A(s, f) = /00 fGo)oe*~tda (8.36)
0

for Re s > % + 1. The argument now proceeds in the same way as for
Theorem 7.19c. The formal argument, disregarding convergence, is to
make the change of variables 6 — ¢~ in (8.36) and apply (8.35).

To make this argument precise, we use the estimate (8.32) to see that

/oo fGo)o*~ldo
1
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converges for all s € C and defines an entire function. For Re s > £,
we rewrite (8.36) as

1 oo
A(syf)‘—‘/o f(io)o*! dU+/ flo)o*~tdo
1

and transform just the first term, replacing o by o=! and applying (8.35).
The result is

[o0) 0]
A(s, ) = ik/ flio)o**—1do +/ fGio)o* 1 do. (8.37)
1 1
The first term is of the same form as the second and thus extends to an
entire function of s. Hence A(s, f) extends to an entire function of s.

Since I'(s) is nowhere 0, L(s, f) is entire.
Replacing s by k — s in (8.37) gives, upon multiplication by i*,

Ak —s,f) = (—1)"/1 flio)o*~t do—+,-k/1°° i)t do.

The right side here matches the right side of (8.37) since Sy # 0 only
when k is even, and (8.34) follows.

6. Petersson Inner Product

In this section we shall introduce a Hermitian inner product on the
vector space Sy of cusp forms for SL(2,2).

dpd
Lemma 8.12. The measure /;20 on H is invariant under SL(2,R).

PROOF. In terms of T and 7, we have dp A do = %(d‘r A dT). So it is

dr AdT . .
enough to prove that ZrAcT Is an wmvariant 2-form. For g = e b
(Tm )2 c dJ’

(g, g7)
a(r, 7
matrix with diagonal entries (cr + d)~2 and (¢7 + d)~2. Thus

the Jacobian determinant is the determinant of a diagonal

o(gr, g7
d(gr) Ad(g7) = 9(er, 97) dr AdF = |er + d|~dr A dF.

o(r, 7)
From (8.18) we have
Im r
Im(g7) = for +dfE’

and the lemma follows.
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For f and h in S, we define

m= [ fohmet L, (838)

where R is the usual fundamental domain in H for SL(2,Z). By Lemma
8.10, f(r)h(r)o* is bounded, and therefore the integral is convergent.

The result is a well defined Hermitian inner product called the Peters-

son inner product on Si.
By Lemma 8.10a, |f(7)|?¢* is invariant under SL(2,Z). In view

of Lemma 8.12, the measure [f(7)|?c* % on M is invariant under
SL(2,2). 1t follows that if we cut R into countably many pieces,* map
each piece by a member of SL(2,Z), and reassemble the result as a new
fundamental domain R’, then

dpdo dpdo
[Pt 5 = [ rnpet L2

Any measurable fundamental domain for SL(2,Z) can be obtained in
this way, and thus {f, f) is independent of the choice of fundamental
domain. By polarization, the same conclusion holds for (f,h). We
summarize as follows.

Proposition 8.13. On Sy, the Hermitian inner product

= [ semet g

is independent of the fundamental domain for SL(2,Z).
7. Hecke Operators

Hecke operators are a certain kind of linear operator from My, to M,
with S; mapping to S;. We shall see that these operators commute and
are self adjoint relative to the Petersson inner product. Consequently
Si has an orthogonal basis of simultaneous eigenvectors for the Hecke
operators. The end result in §8 will be that the L function of each such
eigenvector (normalized to have ¢; = 1) has a quadratic Euler product
expansion.

*Technically we should first remove the part of the boundary of R where the imagi-
nary part is positive, so that R is an exact fundamental domain.
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A lattice in C is all integer combinations of a pair of complex num-
bers linearly independent over R. Recall from §2 that our first exam-
ples of modular forms came from homogeneous functions of lattices:
Ga(A), g2(A), gs(A), A(A). Effectively what was shown at the begin-
ning of §2 is the following: Let f be a complex-valued function whose
domain is the set of all lattices and which is homogeneous of degree
—k in the sense that

flahy=a"%f(A)  foraecCX. (8.39)
Define f on the upper half plane H by
f(r) = f(A,). (8.40)

As in the special cases of §2, f satisfies

f ((‘c‘ 3) ’r) = (cr+dff(r) for <Z b) € SL(2,7). (841)

Conversely to any f : H — C satisfying (8.41), we can associate a
function f of the lattice variable A, homogeneous of degree —k, by the
definition

f@wr ® 2wy) = wit f(wafwr)  if Im(ws/wy) > 0. (8.42)
Let us check that this function depends only on A, not on the basis. If
we have
wyY _ [a b wsy
wi) " \e d/\w )’
then

f(Zw) ® 2wh) = W7* f(wh/wh)
= (cws + dw1) ™ (c(wa/wr) + d) f(wyfwy)
= wi* f(wa/wi)
= f(Zwl ® Zw,y),

and the independence follows. As a consequence of (8. 42) and this in-
dependence, f(A) has the homogeneity property

flar)=a7*f(A)  foraecCX,
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Our initial definition of Hecke operators will be in terms of homoge-
neous functions of lattices. Then we shall translate the definition into
the language of modular forms. Let £ be the free abelian group freely
generated by the lattices in C. To avoid confusion, we shall write n-A or
n(A) for n times the generator in £, and nA or (rA) for the dilate of A by
the factor n. The Hecke operator T'(n) on lattices, forn = 1,2,3,...,
is defined to be the map T'(n) : £ — L given by

T(mA= > A, (8.43)
[A:A')=n

where [A : A’] is the index of A’ in A. This is a finite sum, since any
such A’ satisfies nA C A’ C A and so corresponds to a subgroup of

A/nA =T, 01,
To define Tx(n) on an element f of the space M of modular forms of
weight k, we let f(A) be the function of lattices given by (8.42), so that
f(A) satisfies (8.39). Then T (n)f, as a function of lattices, is given by

(Te(r))(A) =n*"1 D7 f(A). (8.44)

[A:A]=n

It is clear that Ti(n)f is another function of lattices homogeneous of
degree —k. Shortly we shall exhibit the corresponding function of the
complex variable 7, denoting it by Ti(n)f, and we shall verify that it is
a modular form. The resulting operator Tx(n) on modular forms is also
called a Hecke operator.

To compute Ty (n) explicitly on functions on lattices, let A = Zw; ®Zw,
with Im wy/w; > 0, and let A’ = Zw)| & Zw) with Im wh/w) > 0 be a
sublattice of index n. If we write

D-CHE- e

then (: :) will be an integral matrix of determinant n. The most

general properly ordered basis of A’ is obtained by left multiplying the
left side of (8.45) by a member of SL(2,Z), and thus the right coset
SL(2,Z) (: 3) describes all the matrices leading from {w;,ws} to A’.
Let M(n) be the set of all integral matrices of determinant n. We
have seen that there are only finitely many lattices A’ of index n in A.
Consequently there are only finitely many right cosets SL(2,Z)a in M(n)
with det o = n. Thus we have a (disjoint) right coset decomposition
v(n)
M(n)= | ) SL(2, 1) (8.46)

i=1
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with v(n) < co.
To write Ti.(n)f as a function of 7, we make the definition

(folale)(r) = flar)(cT + d)7*(det 0:)’“/2 (8.47)

a b . - .
for a = . d) a matrix of positive determinant (so that 7 € # implies

a € H). For an analytic function f on H, the condition that f be an
unrestricted modular form of weight & is that f o [y]z = f for all 7 in

SL(2,Z). The formula for Ty (n)f involves this definition for matrices of
determinant n.

Proposition 8.14. Let {21247 be a complete set of representatives
for the right cosets SL(2,Z)a of SL(2,Z) on M(n). If f is in Mg, then
Ti(n)f is given as a function of T by

v(n)
k

Te(n)f =n3"t Z fofaile. (8.48)
i=1

Hence Ti(n)f is an unrestricted modular form of weight &.
PROOF. The left side of (8.44) at A, is just Ti(n)f(7). Let [A, : A=
b
n and let o; = (i d) be the coset representative corresponding to A’.

()= 9 0)

is a basis of A’. Then
FA) = f(wi(Z @ (wh/w})Z))
= wy " f(wh/wh)

= (er + d)~F f( 2zl

= (det o) ™*/%(f o [aie)(7)
= n.-k/?‘(f (o) [a,-]k)(r).
Substituting into (8.44), we obtain (8.48). This proves the analytic-

ity of (T (n)f)(7) in M, and the transformation law follows from the
homogeneity of Tx(n)f as a function of lattices.

This means that

In order to examine the q expansion of Ti(n)f, we shall use an explicit
set of coset representatives.
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Lemma 8.15. The matrices b) with ad = n, d > 0, and

a
0 d
0 < b < d are a complete set of coset representatives for the right cosets
of SL(2,Z) on M(n).
! /
ProoOF. Let (‘cz, 3,
and y with za’ + y¢/ = 0, and then choose relatively prime integers u

Z) is in SL(2,Z), and

) be given. Choose relatively prime integers z

and v with uy + v(—z) = 1. Then (Z

u v a Vv
E0E )
N A a/l bII
has lower left entry 0. Let us call the resulting matrix ( 0 d”)'
-1
0 -1
and d” > 0. Choose integers q and r with 8" =d"’q+rand 0 < r < d".

Then
1 —q a' b B a' r
() «)=(7 &)

is a coset representative of the kind described in the lemma.
Now suppose that two of the elements in the lemma are in the same

right coset. Say
u v a b\ [d ¥V
Tz y 0 d/ " \0 d

with uy — vz = 1. The lower left entry forces £ = 0. The determinant
forces uy = 1. Consideration of signs forces u = y = 1. Finally the
inequalities on b and ¥’ force v = 0. Thus we have a complete set of
representatives.

Possibly left multiplying by ( , We may assume that a” > 0

Proposition 8.16. Let f in M} have q expansion f(7) = Y 77, ¢cnq™.
Then Tx(m)f has q expansion

[e ]
Tk(m)f(r) = Z bag™,
n=0
where
COU'};..](m) fn=0
bp =3 tm ifn=1
Za|GCD(n,m) ak_lcn,m/a2 if n > 1,

with o _; as in Proposition 8.1. Consequently T} (m) carries M to M;
and carries Si to Si.
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REMARK. We shall make serious use of the formula for b, only in the
case n = 1.

ProoF. We apply (8.48), using the representatives in Lemma 8.15.

Ifa= (((; 3 is such a representative with ad = m, then

folaJe(r) = F(aT)d*mt/?

00
— Z cne27rin(a'r+b)/dd-kmk/2'

n=0
Hence -
Ti(m)f(r) = mF=1 Y " Y~ d ke e?min(en+)/d, (8.49)
n=0a,b,d

with the inner sum over a,b,d as in the lemma. The sum

d-1

eZm’nb/d
b=0

equals d if d | n and equals 0 otherwise. So we can drop all n’s except
those of the form n = Id, and then (8.49) is

o oo

k-1 —k+1 la _ k-1 _la

T D ORI e ) S
1=0 ad=m 1=0 a|m

d>0 a>0

The coefficient of ¢° comes from | = 0 and is

=c¢p Zak‘l = cgo_1(m).

alm
a>0

The coeflicient of ¢ comes from a =1 = 1; it is just ¢,,. For n > 2, the
coefficient of ¢* comes from triples (I,a,d) with la = n and a | m. The
factor cim/q 18 Cam/a2 With a | n and a | m. Thus the coefficient of ¢” is

} : k-1
Cnm/az a

a|GCD(n,m)

as asserted. From the formula for b,, we see that Tx(m)f is a modular
form; hence Tp(m) carries My to M. If ¢o = 0, then by = 0; hence
Ti(m) carries S to Si.
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Corollary 8.17. Let f in My have ¢ expansion f(r) = 3 " cnq".
For p prime, Ty(p)f has q expansion Ti(p)f() = 3 or , bag™ with

b = { Cpn ifptn
" cpn + P Lensp ifp|n.

Now we examine how the T;(n) interact with one another. We begin
with the operators T(n) on L. Let R(n) : £ — £ be given by

R(n)(A) = (nA).
It is clear that R(n)T(m) = T(m)R(n) for all n and m.

Lemma 8.18.
(a) For a prime power p" with r > 1,

T(p")T(p) = T(™") +p- RP)T(P" ™). (8.50)

(b) T(m)T(n) = T(mn) if m and n are relatively prime.

ProoF. (a) Both sides associate to A some sublattices A’ of index
p™*1, and we have to check that the multiplicity of a sublattice A’ is the
same for both sides. Fix such a A’.

First suppose A’ C pA. Then R(p)T(p"~!) = T(p"~!)(pA) contains
A’ with multiplicity one. Therefore A’ occurs on the right side of (8.50)
with multiplicity p + 1. On the left side, T(p)A is the sum of the p + 1
lattices strictly between pA and A, and so A’ occurs on the left side with
multiplicity p + 1.

Now suppose A’ is not contained in pA. Then it occurs on the right
side with multiplicity one, coming only from T'(p"*!). On the left side
it occurs with multiplicity at least one. If it occurs with multiplicity
greater than one, then there are two distinct sublattices A; and Aj of
A of index p with A’ € A; and A’ C A;. Then A’ C A; NAs = pA,
contradiction. This proves (a).

(b) If A’ is a sublattice of index mn in A, then A/A’ is finite abelian
of order mn. If m and n are relatively prime, we can write

A/A’ =G0 Gy

uniquely with |G1] = n and |G3| = m. If A” denotes the pullback to A
of the members of Gy, then A” is the unique lattice with A’ C A” C A
and [A : A”] = m. Hence A’ occurs on both sides of T(m)T(n)(A) and
T(mn)(A) with multiplicity one.
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We shall translate Lemma 8.18 into a statement about the Hecke
operators on modular forms. The lattices that occur in the definition of
T(n)(A) in (8.43) have index n in A, and we shall say that T(n) : L — £
is an operator of degree n. More generally a linear operator N : L—>L
of the form

N(A) = > ma(A) (8.51)
[A:A)=n
will be said to be of degree n. In this sense, R(n) has degree n®.
If N : £ — £ has degree n and is given as in (8.51), we define Ni on

functions f on lattices of homogeneity —k by

(Mef)(A) =n*t Y maf(A) (8.52)

[A:A]=n
This definition is consistent with (8.44), and it satisfies the properties
(S+ N)r =Sk + Ni (8.53)
if S and N both have degree n, and
(MN) = Npe Mg (8.54)
if M has degree m and N has degree n (so that MN has degree m + ny.
Property (8.54) argues for putting Ny on the right side of f in (8.52),

but the operators of interest to us will commute, and (8.54) will not be
a problem. Notice that our definition (8.52) makes

(R(n)e F(A) = (n®)F~1 f(nA) = n¥=2f(A). (8.55)

Theorem 8.19 (Hecke). On the space My, the Hecke operators
satisfy

(a) For a prime power p” with r > 1,

T )Te(p) = Te(P") + P Te(P"Y).

Hence Ty (p") is a polynomial in Tj(p) with integer coefficients.

(b) T (m)Ti(n) = Ti(mn) if m and n are relatively prime.

(c) The algebra generated by the Ty (n) for n = 1,2,3, ... is generated
by the T%(p) with p prime and is commutative.
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ProoF. (a) Let f be in M. By (8.53), (8.54), and (8.55), Lemma
8.18a gives

Te(p)Te(p") f = Te(p™ ) f + pp* 2T (" 1)f.

Hence
Tu(p)Tx(p")f = TP )f +p* 1T (0" 1) f.

Since T%(1) is the identity, this equation shows recursively that Tj(p")
is a polynomial in T;(p) and hence commutes with Ti(p). Then (a)
follows.

(b) This follows from Lemma 8.18b and (8.54).

(c¢) By (b), the algebra generated by the Ti(n) is the same as that
generated by the Ti(p"). By (a) it is the same as that generated by the
Ti(p). In turn, these commute by (b).

8. Interaction with Petersson Inner Product

We have proved that the Hecke operators on S; commute with one
another, and we shall next prove that they are self adjoint operators
relative to the Petersson inner product. The proof is a little subtle, and
we begin with two lemmas.

For any integer N > 1, we define the principal congruence sub-
group I'(N) of SL(2,Z) by

P(N):{<‘c' 3)65’1)(2,1)‘(2 3);(3 (1)) modN}.

The group T'(N) is the kernel of the reduction-modulo-N homomorphism
carrying SL(2,Z) to SL(2,Zy). Since SL(2,Zy) is finite, ['(N) has finite
index in SL(2,Z). Observe that I'(1) = SL(2,Z).
For a = (a b) in M(n), we let o/ = na™! = ( d _b). The
c d —c a
matrix o' is again in M(n).

Lemma 8.20. If « is in M (n), then
al(nm)e™! C T(m).

Consequently
I'(n?) C al(n)a™! C SL(2,2). (8.56)
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a

PROOF. Let a = (c b) and let v be in I'(nm). Then

(¢ D (%)
(¢ 0) (& 2 modnm
(

0 ) mod nm,
n

nar‘yo:‘1 =

n
0

and
10

a7a"15(0 1) mod m.

Taking m = 1 gives the right hand inclusion of (8.56). Taking m = n
and replacing a by o’ gives the left hand inclusion.

Lemma 8.21. If « is in M(n), then the group
T'(n) Nal(n)a™?

has the same finite index in T'(n) as it does in al'(n)a™!.

REMARK. The index is finite since both groups lie between I'(n?) and
SL(2,1), by Lemma 8.20, and since T'(n?) has finite index in SL(2,Z).

PROOF. Let R be a fundamental domain in A for the action of I'(n)
(obtained, for example, as the union of the [SL(2,Z) : I'(n)] translates
of R by left coset representatives of SL(2,Z)/T'(n)). Let R’ be a funda-
mental domain in H for the action of I'(n) N aT'(n)a~!, obtained as the
union of

[I(n) : T(n) Nal(n)a™!]

- dpdo .
translates of R by elements of I'(n). If px is the measure /;20 in H,

then

p(R') = [[(n) : T(n) N al(n)a]u(R). (8.57)

Now R is a fundamental domain in H for the action of al'(r)a~1.
[In fact, if 7 is given, choose v € ['(n) with y(a~'7) € R; then (aya=!)r
is in aR. Uniqueness follows similarly.] Moreover,

u(aR) = p(R) (8.58)
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by Lemma 8.12 applied to the element n~Y2q of SL(2,R). Next let
(a«R) be a fundamental domain in H for the action of I'(n)Nal'(n)a™?,
obtained as the union of

[aT(n)a~! : T(n) Nal(n)a™1
translates of aR by elements of al'((n)a~!. Then
p((@R)) = [al(n)a™! : I(n) N al(n)a Y| u(aR). (8.59)

Since R’ and (aR)’ are fundamental domains for the intersection, the
same argument as at the end of §6 shows that u(R') = p((eR)’). Com-
paring (8.57) and (8.59) and using (8.58), we obtain the result of the

lemma.

Theorem 8.22 (Petersson). The Hecke operators Ti(n) on the space
of cusp forms Sy are self adjoint relative to the Petersson inner product.

ProoF. By Theorem 8.19, it is enough to prove the result for n equal
to a prime p. We shall use Lemmas 8.20 and 8.21 and the notation in
the proof of Lemma 8.21. Also, as in the proof of Corollary 8.4, we let

(g, 7y=cr+difg= ( ) has determinant one. If f and h are in S,

we are to prove that

kdpd E pda'

[ nreohmet L = [ jo e (5.60)

By Proposition 8.13 it is enough to prove that

kdpa

/ Te (p)F(T)R(T)o / F(Te(p)R(7)o* dp ", (8.61)

since each side of (8.61) is the same multiple of the corresponding side
of (8.60). Let {c;} be right coset representatives of M(p) relative to
SL(2,1), as in (8.46). For each choice of a; as in Lemma 8.15, the

element o} = pa;' has o} = 7ie47) for some y; and 7! in SL(2,Z).

Namely
o = 1 b has aof — -6 -1\ [ b 1
PT\0 p i\ 1 o0 /%=1 0

_(p O r (0 -1 {0 1
a,-—(o 1) has a,-_(l 0)(1,(_1 0).
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Since fo[y/™']s = f and ho [yi]x = h, Lemma 8.12 shows that

[ He R et 5 / FRs e (not 225
R
/ F(F o eyt ”""
E dp d(T

/ f(rho o]k (T)o

In view of Proposition 8.14, proving (8.61) therefore reduces to proving

/ f o el (r)h(r)o* 237 d”d" /R f(r)ho[af]k(r)ak% (8.62)

for each a = «;.
We shall change variables on the left side of (8.62), replacing ar by a
new variable 7/. Note that a* = n=1/2q has determinant 1 and satisfies

folalk = fola#]:.
Thus (8.16) and (8.18) give

o [a](T)h(r)o* = f o [oa*](T)h(r)(Im T)*
= f(a#r)h(a#‘l(a#r))é(a#,T)_k(lm )k

o~ Im r k
= f(a#r)h(a#-1(a#T)) 6(a#, T)* (W)
= f(a*r)h(a#-1(a#7)) 6(a® -1 a#1) *(Im a#r)*

= f(rYho [&]x(7')(Im 7')*.

Taking Lemma 8.12 into account, we obtain

/ £ o [ale(rYR(T)o* & / FRSTT e 28 (8.63)

Now f satisfies

f(yr)=6(y,7)Ff(r)  for y € al'(p)a™?

since al'(p)a~! C SL(2,Z) by Lemma 8.20. Also we readily check that
h o [o']), satisfies

o [&]k(y7) = (v, r)"h o [&']x(7) for v € al'(p)a~!,
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since o/ (al(p)a~')a’~! = I'(p) C SL(2,Z). By (8. 18) the integrand

on the right side of (8.63) is invariant under al'(p)a~!. Since aR is a
fundamental domain for aI'(p)a~?!, the right side of (8.63) is unaffected

by replacing aR by any other such fundamental domain. Thus we have

[ £ el mhI 7 =

! T (s dpdo
[aF(p)a~1: T(p) N aT(p)a~] Jiarry f(r)holali(r)o*

(8.64)

Meanwhile, on the right side of (8.62), f satisfies

f(yr) =6(v, )k f(r)  for vy € T(p),

and we readily check that h o [a']; satisfies

ho[/le(yr) = 6(y,m)*ho[/le(r)  fory € I(p)

since a'T'(p)a’~! C SL(2,Z) by Lemma 8.20. Thus the integrand on the
right side of (8.62) is invariant under I'(p). Since R is a fundamental
domain for T'(p), the right side of (8.62) is unaffected by replacing R by
any other such fundamental domain. Thus we have

& dpda

/ (o Tl (r)ot 22 -

= 7 pda’
[T(p) : T(p) N al(p)a—1] / f(ho[ol(r)e* =——. (8.65)

The numerical coefficients on the right sides of (8.64) and (8.65) are
equal, by Lemma 8.21. Also the common integrand is invariant under
I(p) N al(p)a~!, and R’ and (aR) are two fundamental domains for
this group. Therefore the two integrals are equal. Tracing back, we see
that (8.62) is a valid equality, and the theorem follows.

We have now shown that the Hecke operators T;(n) are a commuting
family of self adjoint operators on the space Sy of cusp forms for SL(2, Z)
of weight k. Consequently S, has an orthogonal basis of simultaneous
eigenvectors.
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Proposition 8.23. Let f € Si be a simultaneous eigenvector of
T (n) with Ti(n)f = A(n)f. If f has q expansion f(7) = Yo cad™,
then

en = A(n)cy. (8.66)
Consequently

(a) f# 0implies c; #0
(b) the system of eigenvalues {A(n)} determines f up to a scalar.

ProOF. In the g expansion of Ti(n)f, the coefficient of ¢ has to be
A(n)c1. But Proposition 8.16 gives it as c,. Thus (8.66) follows. Then
(a) and (b) are immediate consequences.

Suppose now that f € Sk is a simultaneous eigenvector of Ti(n).
Propos1tlon 8.93 allows us to normalize f so that the ¢ expansion f(7) =
Zn_ ¢ng” has ¢; = 1. Then (8.66) says that c, is the eigenvalue of
Ti(n). From Theorem 8.19 we see that

CprCp = Cpr1 +p ey for p prime (8.67a)
CmCn = Cmn if GCD(m,n) = 1. (8.67b)
Let us return to the L function of f, defined in §5 by
[e o]
L .
(s f) n=1 n-’

According to §VIL.2, the condition (8.67b) means that L(s, f) has an
Euler product. By Corollary 7.8, (8.67a) means that the Euler product
is quadractic, the pt" factor being

1

1 —cpp~®+p

k-1-2s"
(Here we are taking d, = —p*~! in (7.23).) We summarize as follows.

Theorem 8.24 (Hecke-Petersson). The space Sy of cusp forms has
an orthogonal basis of simultaneous eigenvectors under the Hecke oper-
ators Tk(n) Each such eigenvector f can be normalized so that its ¢
expansion f(r) = Y00 | caq™ has ¢; = 1. With such a normalization
the coefficients ¢, satisfy (8.67). Moreover, the L function L(s, f) has
an Euler product expansion

s, f)= ] [ L ] (8.68)

N k—1—2s
p prime 1 PP +p

convergent for Re s > -’25 + 1.



CHAPTER IX

MODULAR FORMS FOR HECKE SUBGROUPS

1. Hecke Subgroups

In §VIIL.8 we already defined the principal congruence subgroup
T(N) of SL(2,Z), for any integer N > 1, by

I‘(N):{(Z Z)GSL@,Z)‘(‘C‘ Z);(é ?) modN}.
9.1)

This is the kernel of the reduction-modulo-N homomorphism carrying
SL(2,7) to SL(2,2y) and therefore is a normal subgroup of finite index
in SL(2,Z). The Hecke subgroups are

To(N) = {(‘; Z) € SL(2,Z) | c=0 mod N}. (9.2)

These satisfy
I(N) C To(N) € SL(2,Z) (9.3)

and hence have finite index in SL(2,Z).
We can compute the index of I'o(N) by relating this subgroup to
the set M(N) of integer matrices of determinant N. Let M*(N) be the

subset of primitive such matrices ( : Z) , those with GCD(a, b,c,d) = 1.

Lemma 9.1. With T = SL(2,Z),
X n 0
M(n):F(O 1>F=Ura (9.4)

disjointly, where « runs over all integer matrices (g z) with ad = n,
d>0,0<b<d and GCD(a,b,d)=1. The number of such right cosets

Ta is
[M*(n) :T]=n 1‘[ 1+3). (9.5)
Eh
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ProoF. If we multiply a nonprimitive member of M(n) on either side
by a member of T', the result is still nonprimitive. Taking complements,
we see that M*(n) is preserved under these operations.

The conclusion that M*(n) =T (g (1)) T is elementary divisor theory:

In the proof that a doubly generated subgroup of a free abelian group
of rank 2 is free abelian, one does integer row and column operations

on a 2-by-2 integer matrix and arrives at a diagonal matrix. Starting
1 !

from o & ) Wecean do those operations here and arrive at (g 2)

with GCD(a,d) = 1. This answer corresponds to having Z, ® Z, as the
quotient of the free abelian groups. Since GCD(a,d) = 1,2, & 24 = Z,,
n 0
0 1
For the conclusion M*(n) = |J,T'a, we can apply Lemma 8.15 to

! / / /
(z, b ) € M*(n) and see that (a

and the theory shows we could have arrived at

is in a unique I'a such that

d d
a= 8 3 ,ad=n,d>0,and 0 < b < d. Since a must be primitive,

we have also GCD(a,b,d) = 1. Hence M*(n) = |J, I'x in the asserted
fashion.

For the index formula (9.5), we first show that the index is multi-
plicative. In fact, let GCD(n,m) = 1. Write M*(n) = |J;Ta; and
M*(m) = |J; TB; as in (9.4). It is clear that M*(nm) D |; ; T B;. We
shall show that equality holds and that the I'a; 3; are disjoint. In fact,
if 8 is in M*(nm), then

0
s=n ("0 1) by (9.4
_ n 0 m 0
=7 \o 1/\0 1)7

n 0
=N (0 1)‘73ﬂj

= 7a0;53; for some v4 € T and some 1.

for some y3 € I' and some j

Thus M*(nm) = Ui,j Fa,ﬂj. If Fa,-ﬁj = I‘ai:ﬁj/, then Ot,-ﬂj = 'yai:ﬂj/
and ﬂj'ﬂj—l € ai_II‘a,-/. From this relation we see that ﬂj:ﬂJT'l has entries
in m~!Z and also in n~!Z. Since GCD(m,n) = 1, ﬂj/ﬂj_l is in '. Thus
B; = B;+. Then o = yay and o = ayr.

To complete the proof of the index formula, we may take n = p” with
p prime. We can simply count the number of a’s in (9.4). The number
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1s
1

pr+(pr—-1_pr—2)+(pr—2__pr—3)+.”+(p_ 1)+1 :pr +pr— ,
as required.

Lemma 9.2. For I' = SL(2,7),

-1
N 0 N 0\ _
I‘ﬂ(o 1) I‘(O 1>_I‘0(N).
ProoF. The left side consists of all members of T' of the form
N-1 0 a b N 0\ _{(a BN -1
0 1 ¢ d 0 1/ \eN d
with (: 3) € T. Hence the left side is contained in the right side. If

(: 3) is in Tp(XN), then (: 3) is in T and

a b\ _(N O\7'[/ a WN\(N 0
c d/ \0 1 eN-t d 0 1
-1

S NGO NoO

1sm(01) F(01)‘

Proposition 9.3. T = SL(2,7) acts transitively by right multiplica-
tion on I'\M*(N) with isotropy subgroup Lo(N) at the coset I (IZ (1))
Therefore

C:To(MI=N J[ (1+3) (9.6)
p prime
pIN

ProoF. The action is transitive by (9.4). By Lemma 9.2,1 we are to

show that the isotropy subgroup at T’ (1: (1)) isT'N (1;1 2) r (1(\)! ?)

If ¥ € T is in the intersection, then v = (](\), (1)) ¥ (1(\)( (1)) and

N o\ (N O0\__(N 0
r(5 D)r=rr (5 1) =10 1)

Hence the intersection is contained in the isotropy subgroup. In the
reverse direction, if 7 is in the isotropy subgroup, then v is a member of

I’ with N o N o
r(5 )7=r(s 1)
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-1
N 0 N 0\ _
o3 95 1) =r

-1
This says (1;/ (IJ) 0% (1(\)/ (1)) isin I'. So % is in the intersection.

It follows that

le.,

IT\M*(N})| = [Co(N\T],

and the index formula (9.6) is then a consequence of (9.5).

ExAMPLE 1. Let N = p be prime. Then Proposition 9.3 gives
IT/To(p)] = p+ 1, and coset representatives for the left coset decom-
position I' = [ Jf_, B;To(p) may be taken as

ﬁp:((l) (1)) and ﬂj:(_jl (1)> for0<ji<p. (9.7

To see that these elements represent distinct cosets, we have only to
observe that 8;8; = B; is not in I'g(p) and that

1, (0 =1N[j 1Y_( 1 o0
wa=(17) (4 0)=(1 )

is not in I'g(p) unless i = j.

EXAMPLE 2. Let N = p” with p prime. One easily checks that coset
representatives for the left coset decomposition I' = (JATs(p) may be
taken as

<p11 (1)) with 0 < [ < p"~? (9.82)
and
Jj 1 . . or
-1 0 with 0 < j < p". (9.8b)

Let R be the usual fundamental domain in H for SL(2,Z). (If there
is a need to be quite precise, we exclude the part of the boundary where
Re 7 > 0, so that no two distinct points of R are congruent.) Write the
left coset decomposition of SL(2,2)/To(N) as

SL(2,2Z) = | JBTo(N),
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and put
Ry =B 'R
j

Then Ry is a fundamental domain for To(N). [In fact, ifr e ’H‘ is
given, we choose § € SL(2,Z) with Bt € R. If we write ﬂ.z Bjv with
v € Tg(N), then y7is in ﬂj'lR C Rn. So every point of H is congruent
to a point of Ry. Uniqueness is proved similarly ] .

A picture of this fundamental domain for I'o(2) appears in Figure 9.1.
We use the §;’s of Example 1 above, namely

we(0) we (8 D) A

In terms of S = (_01 (1)) and T = ((1) i), R is comprised of

R, B71R = S(R), By 'R = ST(R).

The image under each nontrivial B~ of the part of R where. Im 7 is
large contributes to a set in the form of a cusp above the rc‘aal l.me. Alsp
we regard R itself as contributing a cusp. A feature of this diagram is
that S(R) and ST(R) contribute to the same cusp. Thus there are only
two cusps, at 0o and 0, even though [SL(2,Z) : To(2)] = 3.

7 N
, AN
7 N
/ AN
/ ST(R) \

/ \

J // \
{ / \
L I i
-1 =2/3 1

FIGURE 9.1. Fundamental domain for T's(2)
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2. Modular and Cusp Forms

It will help now to make systematic use of the notation

b(gr)=cr+d  forg=(2}) in SL(2,R). (9.9)

This notation was introduced in the proof of Corollary 8.4. We recall
that 8(g, 7) satisfies

6(g192,7) = 6(g1,927)8(g2,7)
(g, 7)™t =8(g7",97).

As in (8.47), we shall write

(9.10)

folBl(r) =6(8,7)"*f(Br)  for B € SL(2,R).

For a matrix « of positive determinant, we let o# = (det a)~/2a. Then
a# has determinant one, and we define

folal = fola*]i. (9.11)

This construction is a group operation, in that

folaras]k = (f o [en]k) o [az]s. (9.12)

An unrestricted modular form of weight £ € Z and level N > 1
is an analytic function f on H with

F(y7) = 8(y,)* f(7) for all ¥ € To(NV). (9.13)

1
Such a function f is a modular form if it is “holomorphic at the cusps,”
and it is a cusp form if it “vanishes at the cusps.” We need to explain
these conditions on f at the “cusps.”
If R is the standard fundamental domain for SL(2,Z), then we can
regard oo as a boundary point of H that is also a limit point of R. Each
set B! R, with 8 € SL(2,2), is also a fundamental domain for SL(2,7).

If g~ = (ZZ), then #~!(o0) = £ is a boundary point of X and a
limit point of 3~1R. Because of the geometry of S~!R (as in Figure

Since (—01 _0 ) is in To(N), we may as well assume k is an even integer.
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9.1), we say that £ is a cusp of B~!. To eliminate the dependence on 8
in this definition of “cusp,” it is customary to define “cusps” by taking
QU {oo} and identifying those equivalent under the group in question.
With SL(2, 1), there is only one equivalence class, hence only one cusp.

Now let us pass to T'q(N). With the above conventions, a cusp is an
equivalence class of QU {oo} under the action of I'o(N). If we write the
coset space SL(2,Z)/To(N) as

SL(2,2) = JAiTo(N), (9.14)

then each ﬂj‘l(oo) represents a cusp. [In fact, let £ be in Q with

GCD(a,c) = 1. Choose b and d with ad — bc = 1, so that 87! = ('c' Z)

is in SL(2,Z) and has f~!(00) = £. Choose ¥ € To(N) and B; as
above with 8 = 8;v. Then 7'1(ﬂ17'1(oo)) = f~!(o0) = £, so that 2 and
ﬂl_l(oo) represent the same cusp.]

There can be duplication among the cusps ,817‘1(00). This is what
happens in Figure 9.1. The condition that 8;!(c0) and ,B]_l(oo) repre-
sent the same cusp is that 87 (oc0) = 'yﬂjf'l(oo) for some ¥ € To(N).
This means that ﬂ;'yﬂj_l fixes oo, hence is of the form + ((1) i) for some

sign and some I. A sufficient condition is that ,B,ﬂj"l is of the form

01
(9.7). But the condition is not necessary. In T'y(8), which is discussed in

Example 2, §; = <; (1)> and B; = (é ?) yield the same cusp (take

+ (1 1). In To(p) this condition is satisfied by all pairs B1,...,5p in

= (jg _}1)), but ﬂ.ﬂj_l is not upper triangular.

Suppose f is an unrestricted modular form of weight k& and level N.
Let us examine the behavior of f near a cusp 87 !(c0). We consider the
function fo[#~1];(7), whose behavior near 7 = co (i.e., for Im 7 large)
reflects the behavior of f near $~!(00). Since

N ((1) 7) BEBT'T(N)BNT(N)CTo(N),  (9.15)

we have
rols e+ M = (roie (o V)]

(ol (5 ) AWoln) by (912

= fo [ (r) bhy (9.13).
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Arguing as for (8.7), we see that

o0

folp (r)= 30 ePaf  withqy ="/, (9.16)

no=~oc

We say that f is holomorphic at the cusp #71(00) if P occurs only

for n > 0 and f vanishes at the cusp #7*(o0) if cs,ﬂ) occurs only for
n>1.
If 3 is replaced by a different coset representative Sy with vy € To(N),

then
folBn) e=(foly ) o8 e = Fo Bk,

so that the expansion (9.16) is completely unchanged. Therefore our
definitions do not depend on the choice of coset representatives.
But more is true. Suppose 8; !(co0) and ﬂj_l(oo) represent the same

cusp, i.e., ﬁ,-'yﬂj_l =4 (; ;) for some ¥ € To(N) and I € Z. Then we
have

Folt((51) ) =(Folg o (L1)le(r) since k is even
= folaa (1))
= fo[v8; ' 1k(7)
= (f o [7l) o [B7 ']x(7)
= fo 187 k(7).
Thus ghanging from 8 = f; to B = j; makes P in (9.16) get multiplied
by e2%n/N  The validity of “holomorphic at the cusp” and “vanishes at
the cusp” are unaffected.
The expansion (9.16) involves gn = e?™"/N  which is periodic in 7

of period N. It can happen that a smaller period will work for all f.
Namely if 8~1(o0) is a cusp, then

{lez|p™ (},f)ﬂel‘o(N)} (9.17)

is a subgroup of Z that contains N, according to (9.15). Let h be its
positive generator. Going over the above argument shows that

FolB7 (r+h) = Fo[B k(7).

Thus we are led to an expansion in powers of g5 = €2*i"/2 We call h
the width of the cusp.
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EXAMPLES.
(1) The width of the cusp at oo is 1.

(2) For To(p) with p prime, the width of the cusp at 0 is p. (See Figure
9.1)

3) For To(4), there are three cusps—the one at co of width 1 corre-
sponding to one left coset in (9.14), one at 0 of width 4 corresponding
to four left cosets, and one at —% of width 1 corresponding to one left
coset.

Proposition 9.4. Let 87!(c0) be a cusp of I'((N), where g is in
: 3) in M*(N) with
ad=N,d>0,0<b<d, and GCD(a, b,d) = 1 such that

(5 9)stem »

for some v in SL(2,Z). Moreover, the width of the cusp equals
d/GCD(a,d).

PrOOF. The first conclusion follows from Lemma 9.1. For the second
conclusion, we conjugate (ll) i by (9.18), obtaining

N o\ ., /1 1 N 0\™!
(5 (G 1)e (3 Y)
1 fa b\[1 I\ [(d —b\ _ 1 al/d\ _
‘N“’(o d)(o 1) (0 a)71:7(0 al/)"l'
Thus

(o o= DB G )3 D),

The left side is in T, and this equality shows it is in

(3 ) s (3 1)

?f and oply if.al/d is an integer. By Lemma 9.2, it is in [o(N) if and only
if al/d is an integer. Hence ! is in the subgroup (9.17) defining width if
and only if al/d is an integer, and it follows that | = d/GCD(a, d).

SL(2,Z). Then there exists a unique a; =
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The spaces of modular and cusp forms of weight £ and level N will
be denoted My (T'o(N)) and Si(I'o(N)), respectively. These spaces are
0 for £ odd.

3. Examples of Modular Forms

There are several constructions of modular forms in one situation from
modular forms in another. Typically the new transformation law (9.13)
is a consequence of some computation with matrices. Behavior at the
cusps is handled by the following result.

Proposition 9.5. Suppose that f is analytic in the upper half plane
and, for each 8 in SL(2,Z), fo[B3!]x(r) has a holomorphic ¢n expansion
at co, where gy = e2™7/N_ If a is in M(m), then (f o [a]x) o [ 1]k(7)
has a holomorphic ¢, N expansion at oo for each 8 in SL(2,2Z). If all of
these expansions for f have 0 constant term, then all of these expansions
for f o [a]; have 0 constant term.

PrROOF. Scaling o so that its entries are relatively prime, we can

apply Lemma 9.1 we and rescale to write af~! = v~} g 3 with ¥
a b

in SL(2,Z) and (0 d

) in M(m). Then

el ol =ote (5 1)) @ @)

By assumption we can write f o [y"'[x(7) = Soor ; ¢, e?™*"/N. Hence
the right side of (9.19) is

= (m™%d)7F f o [y 1] (2TE)

00
— (m-—l/?d)—k Z cne27rinb/(Nd)621rinagr/(mN), (920)

n=0

and the proposition follows.

The first two examples give methods for obtaining modular forms of
one level from those at a lower level, with the weight remaining the same.

ExaMPLE 1. If f is in M(To(N)), then fisin My(To(rN)) forr > 1,
and similarly for Si(TFo(N)) and Si(To(rN)). The new transformation
law (9.13) is valid because a subset of v’s is involved, and the cusp
conditions are already built into the properties relative to T'o(N).
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ExAMPLE 2. If f(r) is in My(T'o(N)), then f(r7) is in My(To(rN))
for r > 1. The transformation law (9.13) follows from Lemma 8.20:

Fol(3) e bhm = o l(50) v (52) e l(; )
= fol(59)h(r)

for v in To(rN). The conditions at the cusps are satisfied because of

Proposition 9.4 with a = (; (1))

There is one more simple construction to obtain new modular forms
from old ones. This one changes the weight.

ExaMPLE 3. The product of two modular forms for 'o(N), one of
weight & and one of weight I, is a modular form of weight k + {. If one
is a cusp form, so is the product.

Now we give two completely different constructions, largely without
proof.

EXAMPLE 4. Define
1
—_ !
Ga(1) = Eﬂ Em i) for T e H, (9.21)

where the inner sum is taken over m such that (m,n) # (0,0). One
can prove that this series converges nicely when summed in the order
indicated. Moreover, we have Ga(t + 1) = G2(7), and one can prove
that

Ga(=1/7) = 12Gy(r) — 2mir.

Then it follows that
G2(25)) = (e + d)*Ga(7) — 2mic(cr + d) (9.22)

for (‘: Z) in SL(2,Z). The argument of Proposition 8.1 shows that

Ga(1) = 2((2) - 877 Y o1(n)q". (9.23)
Put

G (1) = Ga(r) — 2G2(27). (9.24)
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Combining (9.22) and the identity

2 0\ [a b\ (2 0\ ' a 2
@9)E DG (R %)
we see that ng) ofyls = G(22) for all ¥ € T'o(2). Also it is not hard to
see from (9.23) that ng) is holomorphic at the cusps. Therefore ng) is
in Mz(F0(2))

ExAMPLE 5 (Hecke). If p > 3 is prime and n(7) is as in Corollary 8.9,
then (n?(7)/n(pr))? is in M,_1(To(p)). The difficult thing to prove is the
transformation law. To handle the behavior at the cusps, we consider
the 12*% power, which is AP(1)/A(pr).

Since p is prime, the only cusps are at 0 and co. For A(7), the ¢
expansion at 0o begins with a multiple of ¢; the same thing is true for the
¢ expansion at 0 since Ao [((1’ ';)l )]12 = A. For A(pr), the ¢ expansion
at oo clearly begins with a multiple of ¢”. For the ¢ expansion at 0,

we follow the steps of the proof of Proposition 9.5, using o = (’5 ?),

=91 = ((1) _01), and (gg) = (ég). Then (9.20) shows that
(Ao [al) o [87]k(7) begins with ¢!/P. We conclude that AP(7)/A(pr)
has ¢ expnasion at oo holomorphic nonvanishing, while at 0 the first

term involves ¢°~ 7.

Hence (7 (7)/n(pr))? is holomorphic at the cusps. Modifications to it
will yield cusp forms. For example, let p = 12n—1. Then (n(p7)/n?(7))?
has weight —(p — 1), and its ¢ expansions begin with ¢° at oo and
q_%(”_ﬁ) at 0. Multiplying by

A" = Anz(PtD) — p2p+1)
we see that 7(pr)%?n(r)? has weight 2 and has ¢ expansions beginning
with ¢" at co and with ¢"~®=3) = ¢(+1)/(12p) a¢ (. Hence
n(p)*n(r)?

is a cusp form of weight 2 when p = —1 mod 12.

4. L Function of a Cusp Form

Let f € Sk([Co(N)) be a cusp form, and let f(1) =Y v, cng™ be its
¢ expansion at the cusp co. The L function of f is the Dirichlet series

L(s, f) = ;—" (9.25)

n=1
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just as in (8.30), and we have

[ fio)e* Z = @0 T@)L(s, 1) (9.26)
0
for all values of s for which the integral converges.

Lemma 9.6. Let f € Sp(Lo(NV)) have g expansion f(r) =Y o cnq”
at the cusp oo. Then

(a) the function ¢(7) = |f(7)|c*/? is bounded on H and invariant
under T'o(N)

(b) len] < Cnt/2.

Proor. Write SL(2,Z)/To(N) as in (9.14). First we prove that ¢
is bounded on Ry. The cusps of Ry are the points ﬂj_l(oo), and it is
enough to prove boundedness near each, i.e., boundedness of (p(ﬁj_lr)
for Im 7 > 2 and all j. Since f vanishes at the cusp ﬂ;l(oo), we have

o]
fo B u(r) = D efetrin /N
n=1

and hence
If o 87 k()| < Cje~ImDIN  for Im 7> 2. (9.27)
Thus
If o [B7 1x(D)|(Im 7)*/2 < G} for Im 7 > 2. (9.28)
Since I
mrT
Im = — for # € SL(2,R), 9.29
) =G np  FrAeSLER (9:29)
we have

(8517 = (87 )l(m B )/
= |f o [B; Ne(r)6(B; Y, 7)*| (Im 7)*72 18(55, )|~
= |f o 87 1e(7)|(Im 7)*/2. (9-30)
In combination with (9.28), (9.30) shows that ¢ is bounded on Ry.
Replacing ,3]_1 in the calculation (9.30) by a member 7 of I'4(N), we see
that ¢ is invariant under I'o(N). Hence ¢ is bounded on H, and (a) is

proved. To see that (a) implies (b), we argue just as in Lemma 8.10,
starting from (9.28) with 8; = 1.
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For Sy = Si(To(1)), we obtained a functional equation for L(s, f)

as Theorem 8.11, using the transformation law for f under (‘1) _01).

For T'o(N) with N > 1, the element (g —01) is not in To(N), and the

functional equation needs an extra hypothesis. This hypothesis will be
-1
N 0

_ (0 -1 # _ 1 [0 -1 _
LetaN_<N 0),s0thataN_\/N(N 0). If v =
("cl b), then ayyay' = ( d _CG/N). Therefore

given in terms of the effect of the matrix

d —Nb
anTo(N)ay' C Lo(N). (9.31)

For f € My(T(N)), we consider the map wyf = f o [an]x. For v €
TFo(N), we have

(f o lanlk) o [¥]x = (f o [anyay'ls) o [an] = f o [an]k,

so that f o [an]r is an unrestricted modular form of the same weight
and level as f.

Let us record the fact that wy maps Mi(I'¢(N)) to itself and
Sk (To(N)) to itself. This result is a special case of Proposition 9.5.

Proposition 9.7. The map wn carries M(Lo(N)) to itself and
S (To(N)) to itself.

Proor. If f is in Mi(I'o(N)), we apply Proposition 9.5 with m = N
and a = ap. The proposition says that

(wnf) o [B71k(r) = Y epe?mnm/V, (9.32)

n=0

But wyf is an unrestricted modular form for T'o(N), and hence
(wnf) o [~ 1]k(r) is periodic with period N. Thus the coefficients c,
in (9.32) are 0 unless N | n, and f is holomorphic at the cusp f~*(c0).
Similarly if f is in S(To(N)), then wy f is in Sp(To(N)).

Taking into account Proposition 9.7 and the identity (aj‘f,)2 = -1, we
see that wy is an involution on M (T'o(NV)) and on Si(T'o(N)). These
spaces therefore each split as the sum of the eigenspaces for eigenvalues
+1 and —1. In the case of Si(I'o(NV)), we denote these eigenspaces by
Sg(To(N)).
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Theorem 9.8 (Hecke). Let f € Si(T'o(N)) be a cusp form in one of
the eigenspaces S(L'q(N)) of wy, where ¢ = +. Then L(s, f) is initially
defined for Re s > % + 1 and extends to be entire in s. Moreover, the
function

A(s, f) = N*/?(2x)~°T(s) L(s, f) (9.33a)
satisfies the functional equation
A(s, f) = e(—1)¥2A(k ~ s, f). (9.33b)

REMARKS. The proof is similar to that of Theorem 8.11, except that

((1) ';)l) gets replaced by a*. The integration from 0 to oo is broken

at 1/v/N instead of 1 because i/V/N is the fixed point of wy on the
imaginary axis.

PROOF. The initial region of convergence for L(s,f)isRes > % +1,

by Lemma 9.6b. Since wxf = ¢f, the inversion law for f under the
action of wy is

f (J—V’;) = eN¥/2% ok f(ic). (9.34)
By (9.26) we have
As, ) =N [ flio)o* do.
(s, f) /0 F(i0)o* 1 do (9.35)
From (9.27) we see that
/;/ﬁf(ia)a’_l do (9.36)

converges for all s € C and defines an entire function. We rewrite (9.35)
for Re s> £ +1as

oo

1/VN
Als, f) = N*/2 / f(ie)o* =  do + N*I? / f(io)o* ! do.
0 1/vN

In the first term, we replace ¢ by (No)~! and then use (9.34). The
result is

[ o]

A(s, f) = eN3(k=);k /

ic)o* "1 4 1v”'~’/oo
1va( ) o+

f(io)o* "1 do.
1/VN

(9.37)
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In view of (9.36) the first term extends to be entire in s, and hence so
does A(s, f) itself. Since I'(s) is nowhere 0, L(s, f) is entire. Replacing
s by k — s in (9.37) and multiplying by €i¥ = e(~1)*/2, we obtain

6(—1)"’/2A(k -s,f)

:N%’/ f(ia)o’-lda+eN%<’°-’)i’°/
1/\/ﬁ 1/\/ﬁ

o0

f(io)o**"1do.

Comparison with (9.37) yields (9.33b).

5. Dimensions of Spaces of Cusp Forms

The kind of explicit argument used to prove Theorem 8.6 is not avail-
able for T'o(N). But we can get at the finite-dimensionality of S¢(T'o(N))
rather painlessly, and this finite-dimensionality will be relevant in ob-
taining simultaneous eigenvectors for the Hecke operators.

Theorem 9.9. The vector space My(I'o(N)) is finite-dimensional.

SKETCH OF PROOF. (Some of the steps will be treated in more detail
in Chapter XI.) The first step is to make R = Iq(N )\ into a Riemann
surface by introducing appropriate local parameters at the fixed points
of elements of T'o(NV) of finite order. Then we form a compactification
R” by adjoining one point for each cusp and using local parameters built
from ¢ in the case of the cusp at oo, or a transformed ¢, (h being the
width) in the case of the other cusps. The result is a compact Riemann
surface.

Let f be in My(To(N)). Then f12 is in Mi2x(To(N)), and so is A*.
Hence F = f12/AF is an analytic function on H invariant under ().
The function F descends to a holomorphic function on R that extends
to be meromorphic on R*. The only possible poles are at worst of order
k, coming from the zeros of A*¥. These poles occur at worst at each
cusp, and the number of cusps is < p = [SL(2,Z) : To(N)]. Hence the
number of poles of F, counting multiplicities, is < kpu.

It follows that the number of zeros of F', counting multiplicities, is
F'(r)dr
F(r)
well defined on R*, as a consequence of (8.19). Let us triangulate R* so
that each singularity of w is in the interior of one triangle. Let Aq,..., A;

be the 2-simplices in the triangulation. By the Argument Principle,

< kp. In fact, the meromorphic differential formw = is globally

:
1
#{zeros of F} — ##{poles of I'} = 2_7;;:’.__21/3Aj -
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where 0A; is the boundary of A; with positive orientation. In the sum
on the right, each 1-simplex appears twice, with opposite orientations,
and the right side is therefore 0. We conclude that F has < kp zeros,
counting multiplicities.

Now let f and therefore F' vary. Select kp + 1 distinct points py, ...,
Pku+1 In R and consider the linear map My (Fo(N)) — Ck#+1 given by
f— (F(p1),.-., F(pru+1)). By the above, this map has 0 kernel. Hence
dim My(T'o(N)) < kp + 1.

Our interest ultimately will be in S2(T'o(N)). With more machinery,
one can calculate the dimension of So(T'o(N)) exactly. We shall say what
is involved without giving the details.

The first step is to compute the genus of the compact Riemann surface
R* in the proof of Theorem 9.9. This is possible because we have a
natural map

R* — (SL(2,Z)\H)* (9.38)
as a consequence of the canonical quotient map

To(N\SL(2,R) — SL(2, I)\SL(Z,R).

Applying the Riemann-Hurwitz formula to this map gives a formula for
the genus of R*. The space S3(T'o(N)) is easily seen to be isomorphic
to the space of holomorphic differentials on R*, and the latter space can

be shown to have dimension equal to the genus of R*. We summarize
as follows.

Theorem 9.10. The dimension of Sy(Ty(N)) is

BN _ pa(N) _ pa(N) _ peo(N)

g=1+ 13 7 5 :

where

p(N) = [SL(2,2)/To(N)] = N [T(1+ 1)

pIN
(N) { 0 if4|N
pa(N) = : ,
’ Hp(N(l + (Tl)) otherwise
0 if2|Nor9|N

u3(N) = { HpIN(I + (—73)) otherwise

poo(N) = ) p(GCD(d, N/d)).
d|N

Here (:’%) and (_73) are Legendre symbols (referring to quadratic
residues), and ¢ is the Euler ¢ function.
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Corollary 9.11. If p> 3 is prime, then
n—1 fp=12n+1
n ifp=12n+5
dim S2(To(P)) = § ifp= 12047

nt1l ifp=12n+ 11
6. Hecke Operators

As with Tg(1) = SL(2,Z), Hecke operators for To(N) ar(;e bfuﬂt flr(??
lattices. However, additional structure plays a role. Instea: o lv\tmt)'r ilgl
with lattices A, we shall work with pairs (A,C), where A 1s a la 1f:ewe
C and C is a cyclic subgroup of C/A of exact order N. Such a pair

hall call 2 modular pair. ‘ .
’ ?f Ac is a lattice, we write Py for the quotient map of CintoC/A. Toa

modular pair (A, C) and a nonzero complex number @, we can assoc;ate
another modular pair (aA,aC) as follows: The lattice oA is as earher,

and the cyclic subgroup aC'is given by
aC = Paa(aPH(C)) (9.39)

A complex-valued function f on modular pairs is said to be
homogeneous of degree —k if

flah,aC) = a7*f(A,C) fora€ cx. (9.40)

To such a function f, we can associate a function f on ‘H by the definition

F(r) = f(Ar, Pa (% D))-
Let us check that this function f satisfies
f(yr) = 6(r, ) f(r)  for v € To(N). (9.41)
In fact, we recall from §VIIL.2 that Ayr = 8(y,7)"*A,. Thus we have
F(yr) = f(Ayr, Pa, (D))

= f(6(v, 7)™ Ar, Poy.ma (D))

= §(y,7)* F(Ar,8(7, 1) Psuny-an (D)) by (9:40)

= 6(7»T)kf(A'ryPAf(6(77T)Pg_(;-,-)—lArpé(‘y,?)-‘Af(%Z)))

by (9.39), and this is
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= 87, 7)* F(Ar, Pp, (81, T)(FZ + 6(v,7)71A,)))
= 6(7,7)* F(Ar, Pa,(8(7,T) 5T + A,)).

In turn this is

=807, 7V f(Ar, Pa, (F2)) = 8(v, 1) £(7),
since easy computation shows that

(cr+d)jyZL+Z+72=X2+2+ 12

if (g f;) is in To(N). This proves (9.41).

Conversely suppose that f is a complex-valued function on H, We
shall define a function f on modular pairs such that (9.40) holds. Let
(A,C) be given. Then A is a sublattice of index N in P7Y(C) with
PLHC)/A cyclic. Tt follows that we can find a Z basis {wy,wa} of A

such that {+wi,ws} is a Z basis of Py '(C). We may assume moreover
that Im(wz/w;) > 0. In terms of this basis, we define

F(A, C) = wi* f(wa/wr). (9.42)

To see thait (A, C) is well defined, let {w],w}} be another basis of A
such that {{w],wh} is a basis of P{!(C) and Im(w} /w?) is positive. If

we write
wyY _ fa b wa
(wi)“(c ‘) (2): (0:452)

bY . . .
then (: d) is in SL(2,Z) since {w;,wy} and {w},w}} are both properly
ordered bases for A. Since {#w1,ws} and {#w},ws} are both bases for
P71(C), the equality

(w'z _{ a Nb wa
Lot )= \ge d Lo (9.43b)

forces the coefficient matrix to be integral. Thus N | ¢, and v = (“ b)
is in To(N). By (9.41) we have o

Wit fWh/wl) = wiF F(y(ws fuwr))
wi™F(e(wafwy) + d)* fwafuwy) = wi* fwafwy),

A
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and thus (9.42) is well defined.

Finally we check the homogeneity of f. If {w;,w,} is a properly or-
dered basis for A as above, then {aw;, awy} is a properly ordered basis
for aA. Hence

flah, aC) = (awr)™* f((awz)/(awr)) = a~* (A, C),

and f satisfies (9.40).

The two constructions f — f and f — f are inverse to one another,
and thus we have a one-one correspondence between functions f on
modular pairs homogeneous of degree —k and functions f on M satisfying
(9.41).

Let £ be the free abelian group freely generated by the modular pairs
(A,C). In analogy with (8.43), the Hecke operator T(n) on modular
pairs, for n = 1,2,3,..., is defined to be the map T(n) : £L — L given
by

T(n)(A,C)= Y. (N,C). (9.44)
[A:A]=n
nC—C’
The notation nC — C' means the following: We have an inclusion
nA C A’ and an induced map C/(nA) — C/A’. Under the induced map
the cyclic group nC is to map onto the cyclic group C’.

The sum (9.44) is a finite sum since nA € A’ C A and since (A,C)
and A’ uniquely determine C’. It is easy to check that the condition
nC —» C’ is automatically satisfied if GCD(n, N) = 1. One might expect
that nC - C' could be replaced by C’ - C and that an equivalent or
perhaps better theory would result. But this expectation is misplaced.
For one thing, (A, C) and A’ would no longer determine C”; for another,
the analog of Proposition 8.14 would break down in a serious way.

We define Tx(n) on the space of functions on modular pairs, homoge-
neous of degree —k, just as in (8.44):

(Te(n)f)(A,C)=nF=1 3" F(A',C). (9.45)
[A:A']=n
nC—»C’

It is clear that Ti(n) f is another function on modular pairs, homoge-
neous of degree —k. Shortly we shall exhibit the corresponding operator
on functions of the variable 7 € H, and we shall see that it carries modu-
lar forms for I'g(N) to modular forms for I'g(NN), and cusp forms to cusp
forms. This operator too will be denoted 7% (n) and is called a Hecke
operator.
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‘ Let us compute the relationship between (A, C) and (A’,C’) in (9.45)
in terms of matrices. Choose a basis {wy,w,} of A such that {-}Twl, wa}
is a basis of P{1(C) and Im(wz/w1) > 0, and let {w},w}} be a similar
sort of basis for A’. Then we can write

(:f) = (‘; 3) (:f) (9.46)

with (‘: Z) in M(n). The inverse images of nC and C’ are given by

P,;'Al(nC) - %Zwl + nng (9478.)
_ 1
PENC') = 51w} + T (9.47b)
Since
n 1 ¢ L °
1 = (@0 + don) = () (awn +bon) = gr(aled — (7) b
and

nwy = (=bn)(cws + dw) + (nd)(aw, + bw;) = 71}—(-bnN)w’1 + (nd)wh,

(9.47a) is contained in (9.47b) if and only if 7;- is an integer. Thus nC
maps into C’ if and only if % is an integer. Suppose this happens. For

n
nC to map onto C’, —w; must have exact order N relative to A’. The
order is the least m > 1 such that

nm ' !
W = W) + swy

N
for some integers r and s. Inversion of (9.46) allows us to substitute
wy = ;(—cwé + aw]) and rewrite this condition as
m
N(—cw; + aw) = rwi + swh.

Since N | ¢, the condition is just that ma/N = r. The order is therefore
N/GCD(a, N), and order N occurs if and only if GCD(a,N) = 1. We
conclude that {w{,ws} and {w1,ws} are related by a matrix in the set

M(n,N) = {(::) € M(n) | c=0mod N and GCD(a,N) =1}.

The most general similar sort of basis for A’ is related to {wi,wh} by a
member of To(N), according to (9.43). Thus the modular pairs (A, ChH
in the sum (9.44) are parametrized by the right cosets To(N)\M(n, N).
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Proposition 9.12. Let {«;} be a complete set of representatives for
the right cosets T'o(N)a of I's(N) on M(n,N). If fis in M (To(N)),
then Ti(n)f is given as a function of 7 by

Ti(n)f = ni~! Z folaile. (9.48)

Hence T (n)f is an unrestricted modular form of weight k and level N.

Proor. The argument is the same as for Proposition 8.14.

Corollary 9.13. The Hecke operator Ti(n) carries My(To(N)) to
itself and Sg(To(N)) to itself.

Proor. If f is in M;(T'o(N)), we apply Proposition 9.5 with m = n,
a = a;, and § € SL(2,Z) to see that (f o [a]x) o [~ !]x(r) has a
holomorphic g,n expansion at co. By (9.48) the same thing is true
of (Tx(n)f) o [871]x(r). But Ti(n)f is an unrestricted modular form
for I'o(N), and hence (Ti(n)f) o [87!]x(7) is periodic with period N.
Hence the terms in the ¢,5 expansion whose index is not a multiple of
n vanish, and Tk(n)f is holomorphic at the cusp 87 !(c0). A similar
argument works if f is in Sp(To(N)).

To see concretely the effect of T%(n) on ¢ expansions, we use explicit
coset representatives oy in (9.48). Arguing as in the proof of Lemma
8.15 and noting that N will have to divide z at the start of the proof,
we arrive at the following.

Lemma 9.14. The matrices (8 3) with ad = n, d > 0,

GCD(e,N) = 1, and 0 < b < d are a complete set of coset repre-
sentatives for the right cosets of [o(N) on M(n,N).

REMARK. The set of representatives here is a subset of the set in
Lemma 8.15. The subset is proper if and only if GCD(n, N) = 1.

Proposition 9.15. Let f in M;([o(N)) have ¢ expansion f(r) =
Yoo o¢ng™. Then Tx(m)f has ¢ expansion

Tk(m)f(r) = Z bﬂqny
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where
€Y. ajm,av0 a*7! ifn=0
GCD(a,N)=1
bn = Cm fn=1
2 alGCD(nm) @ Yepmyar  ifn > 1.
GCD(a,N)=1

PROOF. The argument is substantially the same as for Proposition
8.16. The condition GCD(a, N) = 1 needs to be carried along through-

out.

Next we examine how the T;(n) interact with one another. First we
formalize the definition of dilation on modular pairs made in (9.39). We
let

R(n)(A,C) = (nA,nC).

This definition is consistent with the one in §VIIL7, and R(n)T(m) =
T(m)R(n) for all m and n. The following lemma generalizes Lemma
8.18.

Lemma 9.16.
(a) For a prime power p” with r > 1 such that pt N,

TET(p) =T(E™") +p- RP)T(P™™). (9-49)
(b) For a prime power p” with r > 1 such that p| N,
T(5") = T(pY. (9.50)
(¢) T(m)T(n) = T(mn) if m and n are relatively prime.
PROOF. Parts (a) and (c) are proved in the same way as for Lemma

8.18, the cyclic group being of no significance in the argument. For (b},
we shall show that

T(p") =T ") T(p), (9.51)
and then the result follows by induction. If T(p)(A, C) contains a term
(A", C") and T(p"~1)(A”,C") contains a term (A’,C"), then

[A :A”] =p, pC' . C//, [AII,AI] - pr—l’ pr—lcll —» Cl. (952)

Hence [A : A'] = p" and p"C — p"~1C” —» C’. Thus T(p")(A,C)
contains the term (A’, C"). ’
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In the reverse direction, if T'(p")(A, C) contains (A’, C’), it contains it
only once. So we want to see that there is only one A’ such that (9.52)
holds. Fix such a A”. Choose a basis {w1,w2} of A so that {%wl,wz} is
a basis of Py!(C) and Im(wa/w;) > 0. Fix a similar basis {w},w4} of
A”. Changing basis for A” by a member of I'y(N), we may assume that

(-G ) ()

with the matrix as in Lemma 9.14. Since ad = p and GCD(a,N) =1
and p| N, we must have a = 1. Thus

w{,’ _ 1 b wo
()=( ) () oseer

Similarly we can find a basis {w},w5} of A’ such that

wyy _ (1 ¥ wy , re1
(w;) - (0 pr—l wlll ) OSb <p .
whY (1 b+bp wo
wy ) T \0 [ wy )

The uniqueness in Lemma 9.14 shows that b + ¥'p here is determined
by A and A’. But b+ b'p determines b and &. Hence A” is completely
determined by A and A’. This proves (9.51) and the lemma.

Then

To get from operators on modular pairs to operators on functions f
on modular pairs, we use the definitions of (8.51) and (8.52). Lemma
9.16 then yields the following analog of Theorem 8.19.

Theorem 9.17 (Hecke). On the space M;(To(N)), the Hecke
operators satisfy
(a) For a prime power p” with r > 1 such that p N,

Te(p")Te(p) = Te(P™t) + p* 1T ("),

Hence Tx(p") is a polynomial in Tj(p) with integer coefficients.
(b) For a prime power p” with r > 1 such that p | N,

Ti(p") = Tk(p)".

(¢) Tx (m)Tk(n) = Tp(mn) if m and n are relatively prime.
(d) The algebra generated by the Ty (n) for n = 1,2,3,... is generated
by the Ty (p) with p prime and is commutative.
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As a consequence of Lemma 9.6, we can define a Petersson inner
product on Si(To(N)). The definition is

(rh = [ onme e,

where Ry is a fundamental domain for I'o(N). The inner product does
not depend on the choice of fundamental domain. In an effort to prove
an analog of Theorem 8.22 (that the Te(n) are self adjoint), we again
take n to be a prime p, by Theorem 9.17d. Let Rx be a fundamental
domain for T'(pN) obtained as the union of translates of Rpy. Then the
argument in the proof of Theorem 8.22 still shows that

——dpdo ————— . dpd
h - k @p ao
/RN [ o[ax(T)h(r) 7 /EN F(Mho[ai(r)e — (9.53)
for o € M(p), just as in (8.62).
We now assume that p + N. For the element o = (é b), choose
p

integers z and y so that

pz:c—Ny: 14+ pbN.
Then

(p —b):<p:c—bN y 1 b ¢ zb+y+pb\7!
0 1 N p 0 p N  Nb4p?
shows that o} = y;a4v for some 7; and 7i in To(N). Inverting this

equation for b = 0, we see that we have a similar relation o = iy

p O

for o; = 0 1). Thus the same argument as the one in Theorem

8.22 that obtained that theorem from (8.62) is applicable here, but only
under the assumption p + N. We summarize as follows.

Theorem 9.18 (Petersson). The Hecke operators Ti(n) with
GC]?(n, N) =1, on the space of cusp forms Sk(Lo(N)), are self adjoint
relative to the Petersson inner product.

It is not always true that the operators Tx(n) with GCD(n, N) > 1
are self adjoint. Thus Theorem 9.18 does not give us quite as, good a
result as we had with SL(2,2). Since the Hecke operators commute, we
can concl}lde that S (To(NV)) splits into the orthogonal sum of sir’nul-
tfmeous eigenspaces for the operators Tk (n) with GCD(n, N)=1. An
eigenvector cusp form under the 7;(n) with GCD(n,N) = 1 is called

an e.lgenform; eigenforms in the same such eigenspace are said to be
equivalent.
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Proposition 9.19. The involution wy of Sg(I'o(N)) given in §4 is
self adjoint and commutes with all T;(n) such that GCD(n, N} = 1.

PrROOF. We have wn(f) = fo[an]i. The argument of Theorem 8.22
establishes (9.53) for a = ay if we regard Ry as a fundamental domain
for I'(N?%). But [ay] = [an], and it follows that wy is self adjoint.

To prove that wyTi(n) = Ti(n)wn, we may assume that n is a prime
p with p + N, by Theorem 9.17. The matrices «; to use in the formula

(9.48) for Ti(p) are

p O 1 0 1 % _

What is to be checked is that
Y folanali = folman]k. (9.55)

The sum of the contributions from the first two matrices in (9.54) to
each side of (9.55) is the same since

p 0 _(10 1 0y _(p O
S R R R (R R

We shall show that the sum of the contributions from the other matrices
in (9.54) to each side of (9.55) is also the same. Specifically we shall show
that the matrix with b contributes to the left side what the matrix with
e contributes to the right side, where 1 < e < p—1and e = (~Nb)~}
mod p. In fact, we can calculate that

(v 9) G o) = (e ) o 2) (3 3

The first matrix ¥ on the right side is in T'o(N), and fo [y} = f. Thus
1 b 1 e
Te [aN (0 P)L =fe [(0 p) a”]k

Consequently the decomposition of Si(I'o(N)) into spaces of equiva-
lent eigenforms is compatible with the decomposition of S¢(I'o(N)) into
S (To(N)) and Si; (To(N)).

The Hecke operators Tk(n) with GCD(n, N) # 1 commute with the
other Tix(n) and hence map the spaces of equivalent eigenforms into
themselves. In each such space there will be at least one eigenvector of
all the Ti(n), and its eigenvalues will be as in Proposition 9.20 below.
We cannot assert anything at this stage about a relationship between
wy and the operators Ti(n) for GCD(n,N) # 1.

as asserted.
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P.roposition 9.20. Suppose f € Sk(To(N)) is an eigenform that is
an eigenvector of all Ty (n), say with Ty (n)f = A(n)f. If the ¢ expansion
of fat cois f(r) =372 | c,q", then

¢ = A(n)ey. (9.56)

Consequently

(a) f# Oimplies ¢; # 0
(b) the system of eigenvalues {A(n)} determines f up to a scalar.

PRrRooF. This follows from Proposition 9.15 in the same way that
Proposition 8.23 follows from Proposition 8.16.

Under the assumptions of Proposition 9.20, we can normalize f so
that the‘ ¢ expansion f(r) = 377 | c,q™ has ¢; = 1. Then (9.56) says
that ¢, is the eigenvalue of Ti(n). From Theorem 9.17 we see that

CprCp = Cprta +p"‘1cpr-: for p prime, pt N (9.57a)
cpr = (cp)" for p prime, p | N (9.57b)
CmCn = Cn if GCD(m,n) =1.  (9.57c)

As in C§VIII.8 it follows from (9.57) that the L function L(s, f) =
o0

Yoned nh': has an Euler product expansion. In this case the Euler factor

when p + N is quadratic, as before. But when p | N, it is first order of

the form
1

1 —cppms’

We summarize part of this discussion as follows.

Theorem 9.21 (Hecke-Petersson). The whole space Si(I'o(N)) of
cusp forms is the orthogonal sum of the spaces of equivalent eigenforms.
Each space of equivalent eigenforms has a member that is an eigenvector
for all Ty (n). Any eigenform f in Se(To(N)) that is an eigenvector for
all Ti.(n) can be normalized so that its ¢ expansion f(r) = Y2 c.q"
has ¢; = 1. With such a normalization the coefficients satisf;=(19.g7).
Moreover, the L function L(s, f) has an Euler product expansion

1 ]
L(s, f) = [__J [
P g’"e I=ep P ;gme 1 —cpp* + ph-1-2s (9:58)

pIN piN

convergent for Re s > % + 1.
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7. Oldforms and Newforms

Theorem 9.21 is not the same kind of definitive result that we obtained
in Chapter VIII. Since we were unable in Theorem 9.21 to relate wy to
the Ti(p) for which p | N, we ended up with no correlation betweeen
L functions having Euler products and L functions having functional
equations.

It turns out that the difficulty is the presence of cusp forms that
come trivially from lower levels. These are the cusp forms considered
in Examples 1 and 2 in §3. A specific example is the pair of members
A(7) and A{27) of S12(T9(2)). We shall see after (9.61) that both are
eigenforms with the same eigenvalues under all T12(n) with n odd, yet
they are linearly independent.

More generally the first kind of example was f(7) in Sp(I'¢(N)) when
f(r) was given in Si(T'o(N/r)} and r | N. When GCD(n,N) = 1, the
formula for Ty (n)f is the same relative to Lo(N) as relative to To(N /7).
Hence an eigenform for I'o(N/r) becomes an eigenform for T'o(N) with
the same eigenvalues.

The second kind of example was f(r7) in Sp(To(N)) when f(7) was
given in Sy (Fo(N/r)) and r | N. Let Ax(r) be the operator

Ak(r)f:fo[(g ?)]k (9.59)
Since f(7) = Y o0 | cnq™ has
Ar(P)f(r) = r¥2 f(r ), (9.60)

we know from §3 that Ax(r) carries Sp(To(N/7)) to Sp(To(N)). We
shall see in Lemma 9.23 below that

Ar(F)Ti(n) = Ti(n)Ax(r)  if GCD(n, N) = 1. (9.61)

Consequently if f(7) is an eigenform for I'y(N/r), then f(r7) is an eigen-
form for T'o(N) with the same eigenvalues.

We can combine the two examples in sequence as follows: If ryry | N
and if f(7) is an eigenform for ['o(N/(r;r2)), then f(r,7) is an eigenform
for I'g(N) with the same eigenvalues. Such an eigenform we call an
oldform. The linear span of the oldforms is denoted S¢'d(I'o(N)), and
its orthogonal complement is denoted Sp¥(I'g(N)). The eigenforms in
Spe¥(To(N)) are called newforms for I'g(N). Since Ti(n) is self adjoint
when GCD(n,N) = 1, Sp*¥(I'o(N)) is spanned by newforms. The key
result, whose proof we omit, is the following Multiplicity One Theorem.
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Theorem 9.22 (Atkin-Lehner). If f € Si(To(N)) is a newform, then
its equivalence class is one-dimensional, i.e., consists of the multiples of

f

Before deriving some of the consequences for newforms of Theorem
9.22, we supply a proof of (9.61).

Lemma 9.23. If GCD(n,N) =1 and r | N, then

Ak (r)Tk (n) = Tk(n)Ak (r)
on Sk(To(N/7)).

ProOF. Let 8 g ) range over the usual matrices with ad = n,

d > 0, GCD(a,N) = 1, and b in a coraplete residue system modulo d.
(Since GCD(n, N) = 1, the condition GCD(a,N) = 1 is vacuous.) By
Lemma 9.14 and (9.48)

Tk(n)Ak(r)f=n§'IZf°[(g ?) (g Z)L

=5 re (5 ) (5 3]

Since br goes through a complete residue system modulo d, the right
side is

= Ae(r)Ti(n)f,

and the lemma follows.

We return to the consequences of Theorem 9.22. The operators wy
and Ti(p) with p | N commute with the Ti(p) having p + N, and thus
they map each equivalence class into itself. If f is a newform, then
the theorem says that Cf is an equivalence class. Consequently f is
an eigenvector for wy and the Ti(n) with p | N. The first of these
conclusions means that L(s, f) has a functional equation, according to
Theorem 9.8. The second of these conclusions means that L(s, f) has an
Euler product expansion (after f is normalized), according to Theorem
9.21.

But there are further operators of this kind if N is composite, and
they give some insight into the eigenvalue +1 of wy. Fix a prime p
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ividi =p he exact power of p dividing N. Then we
dividing N, and let @ =p bet. v
calm chogose integers ag and Yo with Qag — (N/Q)Y0 = 1, and the matrix

Qao 1 )
Nyo @
will have determinant Q. More generally we consider any matrix
) Qo S 9.62
w@= (5 oo (052
of determinant Q. For f in Si(To(N)), let wof = f o [w(@)k-

Lemma 9.24. The operator wq carries Sk(To(N)) intozit?fli; iz
is independent of the choice of defining matrix wI(fQ)l, ’and ::;}Qie:pr'i o
i i Ny=1. Ifp’isan

mutes with all Tx(n) with GCD(@, ' '
fioi:/lilding N and if Q' is the corresponding @, then wQ and wg (}omrrlxl\)lt?s
As p varies over all primes dividing N, the product of the various wg
is wN. |
i 1 ltiplications, we
ProoF. Let (: 3) be in [o(N). Carrying out the multipli t N
“lis i he same argument as wi
see that w(Q) (‘: Z) w(Q)~! is in To(N). The sa g

1 i N)) into itself.
4 then shows that wg carries Si(To(
wlif‘r\;g have two representatives w(Q) and wt(Q), we c::mlculatet ht:rai
w(@)w'(Q)~! is an element 7' of To(N). For fin Sk(To(N)), we
fore have

folw(@le = (f o Yle) o /(@) = fo [w' (@)

Thus wq is independent of the representative. Szimilarly we calculate
that Q~1w(Q)? is in To(N), and it follc.)w§ that wg = L. —

For the commutativity with Ti(n), it is eno?gh to p[r]m./e cct)he e
tivity with Tk(p'), where p’ is a prime with p’ + N. ts1tr}§e e in
that p’ ¥ N and p # p, we shall choose the representatl

(9.62) to be congruent to (g (1)) modulo p'. Namely choose an integer

Q: with QQ:1 =1 mod p'. Let Qo = Q1+ myp, wherﬁ mis t}(;e ?roj(-l
uct of all primes dividing N but not Ql; then QQo = lhmo zl ;amd
GCD(Qo, N) = 1. Since GCD(Q?Qo, Np'?) = Q, we can choose

! with
T Q*Qoa’ — Np?v' = Q.

Then ’ /
Qo P
w@= (5 don)
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has the required properties.
If m(b) denotes (1 b

m(b)w(Q)m(Qob)~! = w'(Q)
with w'(Q) of the form (9.62). Hence
> (Folm®k)o[w@lk = ) (wof)om(Qub)

bmodp’ bmodp’

wq f) o [m(b)]k-
bmzoc;p’( efemClk (9.63a)

), then we can calculate that

With the same w'(Q) we have

(3 Duwa(} °) =wi,

and with another w”(Q) we have

(b De@(} ‘f)_l = w'(Q)

(el D)) s =cane[(a 3], o,
(el D)) otam=cwane |G 3],

Adding the equations (9.63), we obtain
wQTi(p)f = Ti(p)wa f

Thus

O =

oN

as required.
If p’ is another prime, we calculate that

(w(@)uw(@))(w(@)w(@)™

is in T'o(N). Then it follows that wowg = wg wg on S(To(N)).

For the product formula for wy, we extend the definition of w(Q)
in (9.62) to any divisor @ of N with GCD(Q,N/Q) = 1. If Q and Q'
are relatively prime such divisors, we find that w(Q)w(Q') is a version
of w(QQ'). Hence the product of all w(Q) with @ a prime power is

a version of w(N). But (1% ’01) is another version of w(N). Then it

follows that wy is the product of all wg with Q a prime power dividing
N such that GCD(Q, N/Q) = 1. This completes the proof of the lemma.
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If p is prime, let I'o(r, p) be the subgroup of T'g(r) given by

I‘o(r,p):{(a Z) GI‘O(r)|bEO modp}.

[

Lemma 9.25. If p is prime, then a complete set of right coset repre-
sentatives for I'o(r,p) in I'g(r) is

((1) {) with0<j<p—1 ifp|r (9.64a)

1 3 . . poe 1Y .
(0 1) with0<j<p-1, and (r7 1>1fp‘|’r, (9.64b)

where « and 4 are integers such that pa — ry = 1.

Proor. Let (:r Z) be given in [o(r,p). If p  a, we can choose j
so that p | (b — aj), and then

a b .. 1 j
(cr d) is in Fo(r,p)(o 1).

If p | r, then p | a is impossible, and the elements (9.64a) represent all
cosets. If p+ r and p | a, then

a b - pa 1
(cr d) is in Fo(",p)<r7 1).

Hence the elements (9.64b) represent all cosets in this case. We readily
check that the elements in question represent distinct cosets, and the
proof i1s complete.

Lemma 9.26. Let f be in Si(I'g(N)), and let p be a prime dividing
N. If p? | N, then Ti(p)f is in Sp(To(N/p)). If p| N and p? + N, then
k I
Te(p)f +p%~'wpf is in Sp(To(N/p)).

PrOOF. Let v = (c]\(/l/p IZJ) be in I'o(N/p,p). Then

GO (2 )=(s 0
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is in To(N). Hence
el ) e (s O]
-~ (fo[(g’ ‘1’)] )omk,

-1
and fo [(g (1)) ] transforms according to Lo(N/p,p).
k

Let {R;} be a system of right coset representatives for I'o(N/p,p) in
To(N/p). If v isin To(N/p), then {R;v} is another system of right coset
representatives. Hence

()6 3] )erme-x (oo (5 8)] ) e

' ’ (9.65)
and the left side of (9.65) transforms according to I'o(N/p).

If we use the representatives in Lemma 9.25, the desired result now
follows. In fact,

ED G606 D-36 1)

shows that the contribution to the left side of (9.65) from all ((1) '{)

is just p~5+1T,(p)f. If p| N and p* 1 N, then p + (N/p), and there is

one more coset representative, namely . It satisfies

pa 1
Ny/p 1

G0 G D=0 DG 1)
L5 0) =t

and the contribution to the left side of (9.65) is w, f.
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Theorem 9.27 (Atkin-Lehner). The space S;"(To(N)) of newforms
is the orthogonal sum of one-dimensional equivalence classes of eigen-
forms. If f is such an eigenform, then f can be normalized so that its
g expansion f(7) = 3.7 | caq™ has ¢; = 1. In this case the eigenform f
is an eigenvector of all Ty (n) for all n, of all wg for primes dividing N,
and of wy, and the eigenvalues are as follows:

(a) Te(n)f = cpnf foralln

(b) wof = MQ)f with A(Q) = £1,if p| N and @Q corresponds to p

(c) wnf =Tl M@

Moreover, ¢, = 0 if p? | N, while ¢, = —p5~I\(p)if p| N and p% { N.
Consequently the L function L(s, f) has an Euler product expansion

wspn= I [——1——1—] I [

p prime 1+ ’\(p)p2 p prime
p|N,p*tN piN

(9.66)
and L(s, f) satisfies a functional equation (9.33) with € = [,y A(@)-

PrOOF. The first sentence is by Theorem 9.22 and the self adjointness
of the Ti:(n) with GCD(n, N) = 1. Since the Ti(n) commute, any such
eigenform must then be an eigenvector of all Tx(n). By Theorem 9.21,
c1 # 0; also if f is normalized to make ¢; = 1, then (a) holds.

Lemma 9.24 shows that f is an eigenvector of all wg. Since wé =1,
(b) holds. Lemma 9.24 also proves (c).

Let p2 | N. By Lemma 9.26, Ti(p)f is an oldform equivalent to f.
Since f is orthogonal to S3'4(To(N)), Tx(p)f = 0. By (a), ¢, = 0.

Let p| N but p? + N. Lemma 9.26 and the same argument show that

Ti(p)f + p*~'w,f = 0. By (a) and (b),
e f =Te(p)f = —P%—lwpf = —p3 ' Ap)f.

Hence ¢, = —p3~1A(p).

The Euler product expansion follows from Theorem 9.21 and these
evaluations of ¢, when p | N. The functional equation is by Theorem
9.8.



CHAPTER X

L FUNCTION OF AN ELLIPTIC CURVE

1. Global Minimal Weierstrass Equations

Let E be an elliptic curve over @. The L function of E is a certain
Euler product that takes into account information about the reduction
of E modulo each prime p. This section will deal with some preliminaries
that make the definition invariant under admissible changes of variables
aver Q.

From the start we may assume that the equation is as in (3.23) with
integer coefficients. The discriminant A will then be an integer, and the
p-adic norm will satisfy |A|, < 1 with equality if and only if p t A.
An equation (3.23) is called minimal for the prime p if the power of p
dividing A cannot be decreased by making an admissible change of vari-
ables over @ with the property that the new coefficients are p-integral.
It is the same to say that |A|, cannot be increased by such a change
of variables. The equation (3.23) is called a global minimal Weier-
strass equation if it is minimal for all primes and if its coeflicients are
integers.

Before considering existence and uniqueness questions for these no-
tions, it will be helpful to have close at hand detailed formulas for an
admissible change of variables. Such a change of variables is given as in
(3.43a) by

r=u’z'+r and y=u3Y +su2' +1. (10.1)

The effect on the coefficients a; of the Weierstrass equation (3.23) and
of the related coefficients b;, ¢;, and A is given in Table 10.1. The new
coefficients are denoted by primes.
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uaj=a; + 2s
uldy=as — sa; +3r—s
uday=az + ra; + 2t
uta=ay — saz + 2raz — (t + rs)a; + 3r? — 2st

ubag=ag + raq + rlay + r® — taz — t? — rta,

2

u2b’2=b2 + 12r

utby=by + rby + 612

uSbs=be + 2rby + r2by + 4r3

uY, =bg + 3rbe + 37‘2b4 + 73by + 3r?

40—
udy=c4
uSch=cs

ulZA’=A

TasLE 10.1 Effect of an admissible change of variables

Lemma 10.1. Suppose p is a prime and all the coefficients a; in
(3.23) are p-integral. If |Al, > p~ 12 or |ealp > p~* or cs], > P76,
then the equation is minimal for the prime p. Conversely if p > 3 and
[Alp < p71? and |eql, < p~*, then the equation is not minimal for the

prime p.
REMARK. The proof will show how constructively to achieve mini-

mality simultaneously for all primes p > 3.

ProOOF. Suppose a change of variables (10.1) leads to a system of
p-integral coefficients {a} with 1 > |A’|, > |Al,. Since ul?A’ = A, we
have [u[p2|A’], = |Al, so that [ul, < 1. Then |u}, < p~!, and

Al = ulp?|A", <p*2 - 1=p7"%
The arguments for ¢4 and ¢g are similar.
Conversely let p > 3 and |A|, < p~!? and |es|, < p~*. Then (3.31)
gives 1728A = c§ — ¢Z. Since [1728|, = 1, we see that [cs|, < p~5. From
§I1I1.2, there is an admissible change of variables leading from (3.23) to

y2 = 2% — 2Tcqz — Hdeg
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with discriminant A’ = 2'23!2A. If we make a change of variables (10.1)
withu=pand r =5 =1 =0, we are led to

y? = 2% — 27(cap™ ")z — 54(csp™°).

This has p-integral coefficients, since |c4p™*|, < 1 and |egp~|, < 1, and
the discriminant A” = p~'2A’ has |A”|, = p'?|A’|, = p'?|A|,. Hence
the given equation was not minimal for the prime p.

Proposition 10.2. Fix a prime p and an elliptic curve E over Q.

(a) There exists an admissible change of variables for £ over @ such
that the resulting equation is minimal for the prime p.

(b) If E has p-integral coeflicients, then the change of variables in (a)
has u,r,s,? all p-integral.

(c) Two equations that are minimal for the prime p and that come
from E are related by an admissible change of variables in which |u|, =1
and r,s,t are p-integral.

Proor. (a) Without loss of generality we may assume F has p-
integral coefficients (or actually integral coefficients). Then |Al, < 1.
Since the range of | - |, is discrete away from 0, |Al, can be increased
only finitely many times if we are to maintain |A], < 1. Hence in finitely
many steps, we can pass to an equation minimal for the prime p.

(b) Let E have coeflicients {a;}, and let the minimal equation have
coefficients {a;}. Since |A’|, > |Al,, we must have |ul, < 1. From
(3.24), we see that all {§;} and {b!} are p-integral. Suppose p # 3. If
[rl[, > 1, then the equation for u®b} in Table 10.1 has 3r* as strictly
the largest term in p-norm on the right side, contradiction; we conclude
|rlp < 1. If p = 3, we can argue similarly with u®b and the term 4r3 to
see that |r|, < 1. Similar arguments with u%a’, and —s?, and then with
u8af and —12 give |s], < 1and |¢|, < 1.

(c) We apply (b) to the change of variables relating two minimal equa-
tions, finding that |u|, < 1 and that r s, are p-integral. Applying
(b) to the inverse change of variables, which involves u~!, we see that
|u=1|, < 1. Thus Jul, = 1.

Theorem 10.3 (Néron). If E is an elliptic curve over @, then there
exists an admissible change of variables over Q such that the resulting
equation is a global minimal Weierstrass equation. Two such result-
ing global minimal Weierstrass equations are related by an admissible
change of variables with u = +1 and with r,s,¢ in Z.

1. GLOBAL MINIMAL WEIERSTRASS EQUATIONS 293

PROOF. The uniqueness is immediate from Proposition 10.2¢, and we
are to prove existence. For existence we may assume that £ has integer
coefficients a;. For each p dividing A, choose an admissible change
of variables {up,rp,5p,tp} over Q such that the resulting equation has
coefficients a; , and is minimal for the prime p. By Proposition 10.2b,

the rationals up, 7y, Sp,t, are p-integral. (10.2)
If the new discriminant is denoted A,, then Table 10.1 gives
lup 32| Aplp = |Alp. (10.3)
Let us write
up = p**up with |vp]p, = 1. (10.4a)

Define
u=[]p*. (10.4b)

rla

We shall make an admissible change of variables {u,r,s,t} in the orig-
inal equation that leads to an equation with integer coefficients a; and
discriminant A’. Since u!2A’ = A, we have

(A, = |u|;12|A|p = Iupl;mlAlp = |Aplp (10.5)

by (10.3). Thus the new equation is minimal for all p, hence is globally
minimal.

For each p with p | A, let us write r, = p??my,/n, with m, and n, in
Z and with |m,|p, = |np|, = 1. Let n; ! be an inverse to n, modulo pbdr.
We set up the congruence

-1

,  mod pdr. (10.6)

r =p’rmpyn

By the Chinese Remainder Theorem, we can find an integer r such that
(10.6) is satisfied for all p with p | A. Then |n,r — pPmy|, < p~5¢ and

|r— rplp < p~°%
for all p. Similarly we can find integers s and ¢ such that
|s — splp < p %% and |t —t,), < p O% for all p.

Our admissible change of variables {u,r,s,t} is now defined, and we
are left with showing that the new coefficients {a}} are integers. We
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check for all primes p that |aj|, < 1,...,|agl, < 1, using the formulas
of Table 10.1. For p + A, there is no problem: Since |ul, = 1 and r,s,t
are integers, we have |a}|, < 1. For p | A, we estimate each |aj|,. The
estimates are similar, and we illustrate with a4 only. We have

u“ay = as — say +3r —s°
= (ag — spaj + 3rp — s,z,) —(s—sp)ay 4+ 3(r —rp) — (s* - sf,)

= u;‘:a'z,p —(s—sp)ay +3(r—rp) — (5 — 8p)(s + sp)

Jul3laylp
< ma.x{luf, |P]a'2,p lps I(s — sp)'a1|p, 13(r = rp)lp, [(s — sp)(s + sp)lp}
< max{|uf, lps [ = splp, |7 —7plp} by (10.2)
< max{[ulp, p*%} < ufl, by (104a).

By (10.4), |u|2 = |[uZ|,. Thus |a5|, <1, and the proof is complete.

The argument in Theorem 10.3 is constructive, provided we know
how to produce, for each individual p, an equation that is minimal for
the prime p. The proof of Lemma 10.1 shows how to produce such an
equation for primes > 3, and an algorithm of Tate, which we do not
discuss here, handles the cases p =2 and p = 3.

2. Zeta Functions and L Functions

To define the L function of an elliptic curve E over @ we assume that
E is given by a globally minimal Weierstrass equation. This condition
is no loss of generality in view of Theorem 10.3.

For each prime p, we consider the reduction E, of ¥ modulo p. This
curve was introduced in §V.2 and is defined over Z,,. It is singular if and
only if p | A. The singular cases were discussed in §II1.5. In both the
nonsingular and the singular cases we define

ap = p+1— #E,(Z,), (10.7)

where E,(Z,) is as usual the set of projective solutions. The local L
factor for the prime p is the formal power series given by

1
—_— ifptA
1 —apu + pu? ifp 1
Ly(u) = ) o (10.8)
1—apu tpia.
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The L function of E is the product of the local L factors, with u
replaced in the pth factor by p~*:

1 1
L(s,E)=]] [1 - app_,] p]l [1 e (10.9)

rla

An elementary convergence result for this Euler product is given in the
next proposition. This result will be improved in the next section.

Proposition 10.4. (a) For every prime p, |a,| < p.

(b) For p 1 A, the reciprocal roots of 1 —apu+ pu?® are < p in absolute
value.

(c) The Euler product defining L(s, E') converges for Re 5 > 2 and is
given there by an absolutely convergent Dirichlet series.

ProoF. The members of Ep(Z,) include co and cannot consist of more
than two other points for each z in Z,. Thus 1 < #FE,(Z,) < 2p+1 and

lap| < p. This proves (a). The reciprocal roots are $(a, % \/ @2 — 4p),

which is < |e,| in absolute value; thus (a) implies (b). By Proposition
7.6, (b) implies (c).

When p | A, we can calculate a, exactly. According to §II1.5, when
there is a singularity, there is only one, and it is classified as a cusp,
a split case of a node, or a nonsplit case of a node. Proposition 3.11
counted the nonsingular points in #E,(Z,) in each case. Adding one for
the singularity, we arrive at the following formula for a, when p | A:

0 for the case of a cusp
ap =< +1 for a split case of a node (10.10)
~1 for a nonsplit case of a node.

Although it is not necessary for the logical development, we shall give
some indication of how the local L factors L,(u) arise. An arithmetically
defined L function typically is part of a more naturally defined zeta
function, or a variant of such a function. In the case at hand, the zeta
function Z(u, E,) is a generating function that encodes how many points
are on the curve in each finite extension of Z,. If F,» denotes the field
of p” elements, the definition is

Z(u, Ep) = exp (Z w) .

n
n=1
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The definition is arranged so that additive formulas for # £, (F,=) make
multiplicative contributions to Z(u, E,): Operationally one calculates
with the formula

d > n
ua;logZ(u, Ep) = Z #E,(Fpr)u”.

n=1

For our elliptic curve, calculation of Z(u, Ep) leads to a combination
of three polynomials, two appearing in the denominator and one in the
numerator:

_ 2
1—a,u+pu A
(1= u)(1 - pu)
Z(u, Ep) = 1 e
P if p| A.

(1 —u)(1—pu)

These three polynomials have separate significance, and the product over
p of the (reciprocal of) any of them (after substitution of u = p~*) is

. 1
in principle a meaningful object. However, [] T—p and [] T—:—I-;l-:

are just {(s) and ¢{(s — 1) and give no useful information about E. The
remaining polynomial leads to L(s, E), which encodes a great deal of
information.

3. Hasse’s Theorem

The goal of this section is to establish the following improvement of
Proposition 10.4a.

Theorem 10.5 (Hasse). Let E be an elliptic curve over @ with integer
coefficients. For each prime p ¥ A, let E, be the reduction modulo p.
Then

lp+ 1 — #Ep(Z,)| < 2/p. (10.11)

Corollary 10.6. The Euler product defining L(s, E) converges for
Re s > % and is given there by an absolutely convergent Dirichlet series.
PROOF OF COROLLARY. Let pt+ A. If ap, = p+1— #E,(Z,), the
reciprocal roots r of 1 — ayu + pu® are r = %(ap + (/a2 —4p). By

Theorem 10.5, the square root in this expression is imaginary. Hence
Ir|* = 4(a2 + (4p — a2)) = p and |r| = \/p. The corollary therefore
follows from Proposition 7.6.
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The proof of the theorem that we give is due to Manin. In order to
be able to normalize E, we first dispose of the cases p = 2 and p = 3.
For these values of p, we have p < 2,/p. In these cases (10.11) therefore
follows from Proposition 10.4a.

For p > 3, we can make an admissible change of variables that does
not affect the condition p t A, does not change #E,(Z,), and brings the
equation of E into the form

vy’ =23+ az +b. (10.12)

We may therefore assume from the outset that E is given by (10.12).
We shall work with the nonsingular cubic

Yz_X3+ﬂX+b

S (10.13)

defined over the field Z,(x) of rational functions with coefficients in Z,.
Two solutions of (10.13) are

(X,Y)=(z,1) and (X,Y) = (xp,(1:3+a:c+b)%(""1)),

If we specify oo as identity, the projective solutions of (10.13) over Z,(x)
form a group, by Theorem 3.8, and we form the group element

Zy = (2P, (2 + az + b)FP~VY)) 4 n(z,1) (10.14)

for each integer n, —co < n < co. We define a corresponding sequence
of integers d, > 0 as follows: If Z,, = oo, then d,, = 0. Otherwise Z,
is of the form (X,,Y,); in this case we reduce X, to lowest terms in
Z,(z), and we let d,, be the larger of the degree of the numerator and
the degree of the denominator of X,,. Let us isolate the statements of
the two main steps.

Lemma 10.7. d_; —dy— 1 = #E,(Z,) —p— 1.

ProoF. By (10.14) with n = 0, dyp = p. Let N, = #E,(Z,) — 1 be
the number of affine solutions. We are to prove that

d.y=N,+1. (10.15)

When the addition formulas of (3.73) are recomputed to take into ac-
count the form (10.13), we obtain

[1 4 (23 + az + b)3P-D2[23 4 az + b]

X_lz—.z'—a:p—i- (x-x?)z

(10.16)
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Clearing fractions, we see that

z?Pt1 4 R(zx)

Xa= =0

with deg(R) < 2p. Therefore the degree of the numerator is 1 greater
than the degree of the denominator, and the degree of the denominator is
d_; —1. We shall compute the degree of the denominator after reducing
X_1 as much as possible.

The denominator splits over Z, as Hjap(:c — j)2. The linear factors
z — k of the numerator of the fraction in (10.16) are those such that the
numerator vanishes at k. In terms of the Legendre symbol (referring to
quadratic residues), we have

-3 .
(7% +aj + 030D = (—__J rajt b) .
P

.3 .
. . . aj+b

The factor [14(;3+aj+b)2®=1] vanishes if and only if <]—+—]—)
—1, and in this case z — j occurs as a factor of the numerator exactly
twice. The other factor [j® + aj + b] vanishes if and only if z — j is a
factor of 3 4+ ax + b, and in this case  — j occurs as a factor of the
numerator exactly once. The factors that remain in the denominator are
.3 . b ~3 a . b
et ) ande—j when %) ~0.
They correspond exactly to the affine Z, solutions of E,, the first ones
giving two values of y and the second ones giving just y = 0.

Hence the number of surviving factors in the denominator, which we
saw earlier is d_; — 1, is exactly N,. This equality is (10.15), and the
lemma is proved.

(z —j)? when

Lemma 10.8. For —co < n < oo,
dp1+dny1 =2d, + 2. (10.17)

Proovr. First suppose one of Z,_1,Z,,Z,41 is co. Then neither of
the other two is oo, in view of (10.14). Say Z,, = co. Then d, = 0 and

Znt1 = (z,1), Zn—1 = —(2,1) = (z,-1).

Hence dnpy1 = dn—1 = 1, and (10.17) is verified.
Say Z,_1 = oo. Then d,,_; = 0 and

_ _ (:z:2 — a)2 — 8bzx
Zn =(z,1), Zpg1 = (m, Yoi1
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by a recomputation of (3.74). Hence d, = 1 and d,,;; = 4, and (10.17)
is verified. The remaining case, with Z,,,; = oo, is similar.

Now suppose that none of Z,_1,2,, 2,4 is co. Write X,_1, X,,
Xn+1 in lowest terms as

A P c

Xno1= B Xn= Qo Xng1 = D

The addition formulas allow us to express X,_; and Xp,4; in terms of
X,, as follows:

_ —(Qz + P)(Qz — P)*+ (14 Y,)%(2® 4 az + b)Q3

Xn-l

QAQe - P)? (10.18)
X = —(Qz 4+ P)(Qz — P)? + (1 — V)% (23 + az + 6)@?
T Q(Qz ~ P)? ‘

Addition of the two formulas (10.18) and use of (10.13) give

HXno1+ Xng1)
(Qz + P)(Qz — P)* + (2 + az + b)Q® + ((§)* + a(§) + 5)Q?
Q(Qz — P)?
_ PQz?+ P’z 4 azQ? + 26Q? + aPQ
(Qz — P)? '

Multiplication of the two formulas (10.18) and some manipulations give

(10.19)

(Pz — aQ)? — 46Q(Qz + P)

Xn-1Xn41 = (Qz = Py (10.20)
Now AC
Xn-1Xn+1 = ﬁ
also, and the claim is that
BD = (Qz — P)?, (10.21)

up to a Z, factor. If S is the greatest common divisor of AC and BD,
(10.20) gives

AC = S[(Pz — aQ)? — 46Q(Qzx + P)) (10.22a)
BD = S(Qz — P)?, (10.22b)
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while the numerator of (10.19) gives

AD + BC = 2S[PQz? + P?z + azQ® + 26Q* + aPQ].  (10.22¢)

Let F be a prime factor of S. Then (10.22b) shows that F | BD. With-
out loss of generality, suppose F | B. Then F ¢ A since GCD(4, B) = 1.
Since (10.22a) shows that F' | AC, F | C. Thus F | BC. By (10.22c),
F | (AD + BC). So F | AD. Since F t A, F | D. Then F | C'fmd
F | D, in contradiction to GCD(C, D) = 1. We conclude that S is a
scalar, and (10.21) is proved.

The integers in (10.15) are

dn_; = max{deg A, deg B}
dn41 = max{deg C,deg D}
d,, = max{deg P,degQ}.

We divide the proof of (10.17) into the following cases:
(a) dn-1 = deg A and dyy1 = degC
(b) da—1 = deg B and dnyy =deg D
(c) dn-1 = deg A and dy 1 = deg D, but not Case (a) or (b)
(d) dp—1 = deg B and dn 41 = deg C, but not Case (a) or (b).
Case (a). By (10.21) and (10.22), we have

dn_1 + dng1 = deg(AC) = deg[( Pz — a@)? - 46Q(Qz + P)].

If deg P > deg Q, then the unique term on the right of highest degree is
P2x?%; so the right side is dn + 2, and (10.17) follows. If deg P < deg Q,
then (10.21) gives deg BD = 2degQ + 2. Then

deg(AC) < max{2deg P +2, 2degQ, 2deg @ + 1, deg P + deg Q} i
< 2degQ + 1 < deg(BD). 1

But this inequality contradicts the hypothesis of Case (a). Hence deg P
< deg @ is impossible.

Case (b). By (10.21), we have i

do-1 +dns1 = deg(BD) = deg[(Qz — P)’].

If deg Q > deg P, then the unique term on the right of highest degree is
Q%z?; so the right side is d, + 2, and (10.17) follows. If deg @ < deg P,
then (10.22a) gives

deg(AC) = deg(P%z?) > deg(P?) > deg(BD).
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But this inequality contradicts the hypothesis of Case (b). Hence deg @
< deg P is impossible.
Case {c). Since we are not in Case (a) or (b), deg A > deg B and
deg D > degC. Thus
deg AD > deg AC,

deg AD > deg BD, deg AD > deg BC.

(10.23)
From the third of these and from (10.22¢), we have
deg(AD) = deg(AD + BC)
= deg[PQz? + P’z + azQ? + 20Q* + aPQ).
(10.24)

If deg P > deg @, (10.24) is
< deg(P?%z?) = deg(AC),

in contradiction to the first inequality of (10.23). If deg P < deg @, then
(10.24) is
< deg(Q?a?) = deg(BD),

in contradiction to the second inequality of (10.23). Thus Case (c) is
impossible.

Case (d). This case is symmetric with Case (c) and similarly is im-
possible.

This completes the proof of the lemma.

It is an easy matter to combine the two lemmas to prove the theorem.
Induction forwards and backwards by means of Lemma 10.8 gives the
formula

dn = Tl.2 - (d..1 - do - l)n -+ do. (1025)

(The base cases for the induction are n = 0 and n = —1, for which
(10.25) is trivial.) Substitution from Lemma 10.7 and use of dy = p
gives

d, :n2+a,,n+p,

where a, = p+ 1 — #E,(Z,) as in (10.7). The d,’s are degrees of
polynomials and are therefore > 0. Moreover, two consecutive dy’s
cannot both be 0. Since a, is an integer, it follows that r* + a,r+p > 0
for all real r. The discriminant of this polynomial must be < 0, and
thus |a,| < 2,/p. This completes the proof of Theorem 10.5.



CHAPTER XI

EICHLER-SHIMURA THEORY

1. Overview

We return to the theme announced in the preface and discussed a
little in §§VIL.5 and VIII.1. We saw in Chapter VII that the Riemann
zeta function ((s) and the Dirichlet L functions L(s, x), which encode
subtle arithmetic information about primes, can be obtained as Mellin
transforms of certain # functions that have transformation laws akin
to those of modular forms. In other words, {(s) and L(s,x) arise as
automorphic L functions. Consequently they have analytic continua-
tions and functional equations, and their analytic properties are more
manageable.

Our objective in this chapter and the next is to address the corre-
sponding problem for the L function L(s, E) of an elliptic curve over
Q. We would like L(s, E) to have an analytic continuation and satisfy a
functional equation, and the likely way to obtain these conclusions is to
identify L(s, F) as an automorphic L function. A special case of a theory
of Eichler and Shimura gives a clue to the nature of the automorphic
objects to use. Their theory takes certain cusp forms f in S2(T'o(N))
and gives a geometric construction of elliptic curves over @ such that
L(s,E) = L(s, f).

We shall discuss this theory in the present chapter. The Taniyama-
Weil Conjecture anticipates that every elliptic curve over @ is obtained
in this way from S3(T'o(N)) if the Eichler-Shimura map is followed by a
relatively simple kind of map called an “isogeny.” This conjecture will
be the subject of Chapter XII.

By way of introduction we begin with a construction that passes from
members f of S3(I'y(N)) to homomorphisms from [o(N) into the addi-
tive complex numbers. For f in Sa(To(N)), f(¢) d(¢ is invariant under
Fo(N). Fix 7 in ‘H and define

F(r) =/T f(Q)d¢. (11.1)
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Since f is analytic, F(r) is independent of the path of the integral. For
v € Ty(N), the invariance of f({)d( gives

(1) 7(7) (7o)
Fam= [ 1O« = /1 ERCES [ 0w

To To

(7o)

T ¥(7e)
= [s@ac+ [ r0dc =P+ / 0%

Put "/(To)
o= [ rQd.

0

We claim that ®; () is independent of 7o. In fact, if we define F1(7) by
(11.1) with 1 in place of 7o, then (11.2) gives

¥(T1)

BaE) =A@+ [ O (113)

T1

Since F} = F + f:’ £(¢) d¢, comparison of (11.2) and (11.3) gives

/ :(m sorac= | jm GYs

as asserted.

Proposition 11.1. For f in S3(To(N)), ®; is a homomorphism of
['o(N) into the additive complex numbers. If v € To(N) is elliptic
(ie., |Tr y0| < 2) or parabolic (i.e., [Tr 70| = 2), then ®;(y0) = 0.

ProoF. The invariance of f({)d¢ under I'o(N) gives

Y17Y270 Y170 Y1Y2To
‘I’f(7172)=/ =/ +/
To To Y1To
Y170 Y270
:/ +/ = ®s(71) + 21 (72),
To To

and ®; is a homomorphism. If 4 € To(NV) is elliptic, it has finite order
and hence so does its image in C. Thus ®;(v) = 0.

Suppose v = (:Z) is parabolic in To(N). Since |Tt 70| = 2 and

z+ b

detyp = 1, we readily find that the equation zz 4 = z has a double
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root, namely z = =1 Thys 70(%=2) = 2=1  Choose BinS i
root, naur - =1) = a=1, L(2,) with
¢ = §7*(c0). Then 71 = fyof~" has

71(00) = By0B~ (00} = Byo(=L) = B(£H) = co.

_ 11 .
Thus v; = + (0 1) for some ! in Z. By (9.17), the integer I is a multiple
of the width % of the cusp B~ (o0) = 2=1 . The Fourier expansion

(folB ) (r) = icne%,‘m/h

n=1

has zero constant term since fisacus
, p form, and the analog f
IX of (8.7b) therefore gives o for Chapter

T1+h
[ o= o

for any 7;. Hence also

7141
/n (felB ) d¢ =0. (11.4)

Now the change of variables ¢’ = B~1(¢) gives

By, 876 v1870
®(70) = / F(¢)d' = /ﬂ BTN g

Bro+l
= [ e
and this is 0 by (11.4). This completes the proof.

Let us consider the relatively si i
y simple case that N = 11. According to
Theorem 9.10, $2(T'o(11)) is one-dimensional. A nonzero element isg

o]

f(r)=n(r)’n(11)2 = 3" cuqn (11.5)

n=1
:q—?qQ—q3+2q4+q5+2q6_2q7
_2q9_2q10+q11 _2q12+4q13+4q14
_q15_4q16_2q17+4q18+2q20+”.’
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according to Example 5 in §IX.3. The group I'¢(11) turns out to be
generated by

11 8 1 (9 1
T“(o 1)’ ‘/‘“(—33 —4)’ V6‘<—55 —6)‘

Since T is parabolic, Proposition 11.1 shows that the image of &; is
generated by ®;(V4) and ®;(Vs). We have

‘Y(To)
B;(7) = / £O)d¢

1 e2’ri‘y(ro) 0o

1 . .
= o n=ldg=—(H 2miv{T0)y _ H(e27imo
276 Jamive ; enq” " ldq 27”.( (e ) — H(e*™™)),

where

oo e qn
n
H(g) =) -
n=1
Judicious choice of 1y cuts down considerably on the number of terms

needed. For 79 = i, computation with 10000 terms gives 11 digits
accuracy. For 7o = .125 + .025¢ with 600 terms, we obtain

H (™) = 2628106125215867 + .52304553667173681
H(e*™Va(0)) = 897415264661364 — .9357710802667581%
H (e2™V(70)) = 1.1532019916801141 + .523045536671738i

with 14 digits accuracy. (With 300 terms, ws would have had 10 digits
accuracy.) Thus

wy = ®;(Vy) = —.232177875650357 — .101000467297158:

. . (11.6)
wy = B (Ve) = ~.202000934594317;.

The complex numbers w; and ws are independent over R and there-
fore define a lattice A in C. For any 7 in [o(N), (11.2) shows that
F(y(7)) — F(r) is in A, hence projects to the 0 element of C/A. Thus
the map F of (11.1), which initially carries X into C (and hence also
C/A), descends to a holomorphic map of R = T'o(11)\H into C/A. In
turn, Theorem 6.14 exhibits a biholomorphic map of C/A onto E(C)
for an elliptic curve E. If Xo(11) denotes the compactification of R
discussed briefly in the proof of Theorem 9.9 and called R* there, then
F actually yields a holomorphic map of the compact Riemann surface
Xo(11) onto C/A and then onto E(C).
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Two miracles occur in this construction. The first miracle is that
Xo(11), E, and the mapping can be defined compatibly over Q. We
have not yet defined rational maps and rational projective curves {other
than plane curves), and we shall need to make such definitions in order
to make our assertion precise. We return to a discussion of rationality
shortly.

The second miracle is that the L function of E matches the L function
of the cusp form f in (11.5). This assertion relies on introducing new
interpretations of Hecke operators and their eigenvalues.

Let us give a numerical indication of why £ can be defined over Q.
Substituting from (11.6) into (6.50), we find that

g2(A) = 64419.8788704867 — .00000000037
g3(A) = —5699399.99557174 + .00000002:.

Then (8.2) and (8.3) give

J(A) = —757.672637860052 + .000000000008:. (11.7a)
The actual value is

24.31)3
j(A) = —(—ﬁi—)« = —757.672637860057. (11.7b)

The significance of j{A) for the present context is explained in Propo-
sition 3.7. With the value of j(A) as in (11.7b), the proposition shows
that E can be defined over Q.

Let us classify the inequivalent Q structures on ¥ and see that there
are infinitely many of them. It will turn out that any two of them are
equivalent over a quadratic extension of Q. If E ultimately is given
in global minimal Weierstrass form, then the integer tuple (cq,cq,A)
determines the @ structure of £, and the equation of E is unique up to
the kind of admissible change of variables described in Theorem 10.3.
Since 5 )

. Cy I
j= A= 1728 + A

we readily find that the only possibilities are
cq = 2%.31m?

ce = —2° - 2501m> (11.8)
A =—-11°m®
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for an integer m # 0. We shall see that there are some restrictions on
m. The curve

y? = 23 — 4mz?® — 160m*z — 1264m3 (11.9)

has
g = 2428 - 31m?), ¢ =25(-2° 2501m3), A =2'%(-11°m®)

and thus must arise from E by an admissible change of variables with
u = 2. We claim that m has no odd prime square factor p?. In fact,
otherwise we could use u = 1/p in (11.9) and change variable§ to find
that E was not minimal at the prime p. Similarly 16 does not dlede m,
since otherwise we could use u = 1/4 to find that £ was not minimal at

the prime 2. .
If m = 1 mod 4, then {11.9) is equivalent with the curve

S +y = 2° — ma? — 10m?z — {(79m® + 1), (11.10a)

which has (ca,cs,A) given by (11.8) and is therefore globz%l minima.l, by
Lemma 10.1. If m = 2 mod 4, then similarly (11.9) is equivalent with

y? = 23 — maz? — 10m’c — 158(3m)?, (11.10b)

which has (c4,cs,) given by (11.8) and hence is global minimal. 'If
m = 3 mod 4, then we can attempt a reduction at the prime 2 by rewrit-

ing (11.9) as
(y+az+b)?F=(c+ ¢)® — 4m(z + c)? - 160m?(z + c) — 1264m®

or

y? + 2azy + 2by = 2° + (3¢ —4m — a®)z?

+ (3¢% — 8me — 2ab — 160m?)z
+ (% — 4me? — b* 160m?c — 1264m3).

To have a reduction, we need 2/ to divide the usual coefficient a; of this
equation. From ag we obtain 4 | b. From as we obtain 22 | c. Th;n
ay gives 2 | a, and a4 gives 4 | c. Hence as gives _64' |(b + %2647'71 ).
Writing b = 4b’, we see that 4 | (b° +79m?). But this is impossible since
79m3 = 1 mod 4. Thus (11.9) is already global minimal if m = 3 mod 4.
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If 4 | m, write m = 4m’ with 4 { m’. Then we can reduce (11.9) to
y? = 23 — 4m’z? — 160m*z — 1264m", (11.11)
and we must have arrived at a global minimal form. Since we have

established that 4  m’, the preceding paragraph shows that m’ = 3 mod
4.

Putting everything together, we see that we get a @ structure whose
global minimal equation satisfies (11.8) exactly when m has no odd
square factor and m is congruent modulo 16 to one of

1,2, 5, 6,9, 10, 12, 13, 14. (11.12)

The simplest @ structure comes from m = 1, and the global minimal
equation can be taken as

E: v’ +y=2%— 2% - 10z - 20. (11.13)

This is the equation of interest. The @ structures corresponding to other
values of m are called twists of E.

We have obtained a mapping of Xo(11) onto E(C). There are other
elliptic curves that X¢(11) maps onto. Define

(::f) - ((1) g) (ZT) (11.14)

and let A’ = Zw] @ Zwj. Calculating as with A, we find that

J(A") = —372.363636363639 — .000000000004:.
The actual value is

3
(A = "1111 = ~372.363636363636.

The result is an elliptic curve E’ that can be defined over Q. The
simplest @ structure corresponds to the equation

E: vV +y=2>—z? (11.15)
with (cs,¢6,A) = (16,—152,—11). The same analysis as with E yields

twists for the same m’s as in (11.12), but only (11.15) will be of interest
to us.
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The inclusion A’ C A yields a holomorphic homomorphism
E'(C) = C/A’ — C/A = B(C). (11.16a)

Such a map is called an isogeny. (Cf. §V1.4.) This particu'lar isogen})//
can be defined over Q. Namely if (z,y) satisfies (11.15) and if X and
are defined by

1,2
X:I+_:c_2+x—1 (z—1)2

1 1 1
”=y—<2y+”(ﬁ+m+m)’

then (X,Y) satisfies (11.13).

To any isogeny corresponds
Namely (11.14) yields

(=05 ()
EDEDE-EDE

Since C/(5A) = C/A, we obtain a holomorphic homomorphism

a dual isogeny in the reverse direction.

B(C) = C/(5A) — C/A' = E'(C). (11.16b)

Since (11.16a) is defined over @, so is (11.16b): 'But we shall not write
down explicit formulas. In any event, composition of Xo(11) — E(C)

with (11.16b) yields a rational map of Xo(11) onto E'.
Similarly if we define

H-GHE). o

and let A” = Zw” ® ZwY, then the actual value of j is

. (375376)°
" e ————

and we are led to the equation

E": y? +y = 2% — 2 — 7820z ~ 263580, (11.18)
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as well as various twists. The inclusion A” C A yields an isogeny
E"(C) — E(C), and this isogeny is defined over Q. The dual isogeny
yields by composition a rational map of Xo(N) onto E”.

Thus Xo(11) maps rationally onto the three curves E, E’, and E”,
all as a result of the one cusp form f in (11.5). Elliptic curves that are
isogenous over @ have the same L function (Theorem 11.67). By the
Eichler-Shimura theory the common L function for these three curves is
the same as the L function as f. The maps of Xo(N) to E, E’, and E”
are called modular parametrizations of these curves. These maps
are determined by giving their z and y coordinates, which are meromor-
phic functions on Xo(N) with some additional property to reflect the
rationality. The rationality is important: f gives us holomorphic maps
of X¢(11) onto the twists of E, E', and E”, but we do not get a match
of L functions in these cases.

So far, we have discussed in detail X(11) only. The special fea-
ture of this case is that X(11) has genus one and that correspond-
ingly S2{T0(11)) has dimension one. For general I'q(N), Proposition
11.1 says that any cusp form f in Sy(Fo(N)) yields a homomorphism
®; : To(N) — C that annihilates the elliptic and parabolic elements,
but the situation is of interest only when the image of ®; is a lattice.
It turns out that we do get a lattice when f is a newform and all the
eigenvalues of the Hecke operators are integers. Then the resulting el-
liptic curve E is defined over §, and so are Xo(N) and the map from
Xo(N) to E. Moreover the L functions of f and £ match.

The approach to these results is a little indirect. The “Jacobian vari-
ety” J(Xo(N)) of Xo(N) is a certain complex torus with the universal
mapping property that any map of Xo(N) to an elliptic curve must
factor through J(Xo(N)). Because of the universal property, the con-
struction of the map from Xo(N) to E amounts to obtaining £ as a
quotient of J(Xo(N)). The construction does not yield an equation for
E directly. Instead, such an equation has to be worked out from side
information; we shall take up this matter in §X11.3.

A certain amount of this chapter is about background material. Sec-
tions 2-4 deal with compact Riemann surfaces in general and with Xo(N)
in particular. Some of the results that we quote about compact Riemann
surfaces will not be used in the form as stated but are helpful as moti-
vation for properties of projective curves later in the chapter. Section
5 applies somne of the more elementary properties of compact Riemann

surfaces to derive properties of Hecke operators on Sa(To{N)). We shall
see that Sy(I'o(NV)) has a basis in which the Hecke operators are given by
integer matrices. Consequently the eigenvalues of the Hecke operators
are algebraic integers. Sections 6-8 deal with general projective curves
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and show how Xo(N) can be given a canonical @ structure. .Sef:tions 9
and 10 discuss abstract elliptic curves, isogenies, abfehan varfetles, and
the algebraic Jacobian variety. The main results of Eichler-Shimura the-

ory are in §§11-12.

2. Riemann Surface Xo(N)

In this section we shall give a more careful construction of the com-
pactification Xo(N) of To(N)\H than we gave i1_1 $IX.5. In §§3-4 we
shall go on to discuss some generalities about. Riemann surfaces. We
omit many proofs, giving references in the section of Notes at the end.

Let C = QU {oo}, the set whose equivalence classes form t}}e cusps of
§1X.2, Put H* = HU C, and topologize H* as fo}lows: A basic open set
about a point of H is an open disc wholly within 7, and a basic open
set, about the member oo of C is {Im 7 > r} for each r > 0. If r€Qis
in C, a basic open set about z is of the form DU{z}, whejre D is an open
disc in H of radius y > 0 and center  + iy. The resulting tqpology on
H* is Hausdorff, H is an open subset, and SL(2,Z) acts con.tmuously.

Let Xo(N) = To(N)\H*. It is easy to see that Xo(N) is compact.
Moreover, with some effort one can show that Xo(N) is Ha.*usdorff. A
key step in the argument is Lemma 11.2 below. For z in H*,let I', =

{y € To(N) | 7(2) = z}-

Lemma 11.2. If 7 is in H, then there exists an open.neighborhood
V. of 7 in H with V. ny(V;) = 0 for all v in To(N) not in T';. The set
V, may be taken to be stable under T';.

We shall introduce a system of charts
{(Us,2) | 2z €H"} on Xo(N) (11.19)

that makes the compact Hausdorfl space Xo(N) intg a Riemfmn s*urface.
Let 7 : H* — Xo(IN) be the quotient map. If V is open in H ,ﬁt}}en
7~ w(V)) = Uyerov) v(V) is open; thus 7 is an open map. In defining
the charts, there are cases and subcases.

Cuse 1. zo = 7 is in ‘H. We choose V, as in Lemma 11.2 and let
U, = n(V,); U, is open since T is open. -
TCase(I;.) I‘,T: {£I}. Then 7 :V; = Us is a homeomorphism. We let
¢, be its inverse, and then (Ur,pr) is the requlreq chart.
Case 1b. zg = 7 is in H, and Ty # {*I}. Since I'; 2 .{:tI} and
To(N) € SL(2,Z), the order of T’y is 4 or 6; we write 2n for this number.
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Let A be a linear fractional transformation from # onto the unit disc
carrying 7 to 0, e.g., A(z) = j:; Then ¢, : U, — C is well defined
by the formula ¢, (7(2)) = A(2)", and (U, ¢,) is the required chart.

Case 2. zg = z is in C. Choose 8 in SL(2,Z) with B(x) = co. Then
pre.p~! = {£ ((’) ";h) | m € Z}, where h is the width of the cusp. Let
Ve =871 ({Im 7 > 2}). If y € To(N) has v(Vz) NV, # 0, then

BB ' {Im 7> 2)) N {Im 7 > 2} # 0.
Writing 8y8~1 = (: b) and taking 7 in the nonempty intersection, we

d

have I 1 1
mrT

< -1 - < < .
2<Im Byg87'(r) e+ d[2 = e[?Im 7 = 2Jcf?

Thus ¢ = 0, ByB~! fixes oo, and « fixes z. In other words, ¥ is in Ty.
Put U; = n(V;). Then ¢, : U, — C is well defined by the formula
ez (m(2)) = e2™P ()b and (Usz, pz) is the required chart.

Proposition 11.3. The charts in (11.19) are compatible, and Xo(N)
becomes a compact Riemann surface.

3. Meromorphic Differentials

This section treats meromorphic and holomorphic differentials of com-
pact (connected) Riemann surfaces, with particular attention to Xo(N)
and elliptic curves. We omit proofs of results that do not specifically
address these applications.

Thus let X be a compact Riemann surface, and let {(Us, ¢i)}ier be an
atlas. The meromorphic functions on X form a field, which we denote by
K(X). A system w = {w;}ie of scalar-valued meromorphic functions
w; on U; is called a meromorphic differential if

wiopr ! = (wjopiN(pjop7tY onpi(UinU;) CC  (11.20a)
whenever U; NU; # 0. The classical notation that is used for w; © soi'l
in order to capture the transformation law is wi(p71(2))dz, where z

1s a local parameter. In this notation if w = @j o ¢ !(z), then dw =
(p;j o7 Y(2) dz, and (11.20a) says that

wipy(2))dz = wj (cpJ'-"l(w)) dw. (11.20b)

The space of meromorphic differentials is denoted UX). If Fisin

K(X), then dF = {(Fop; 1) o p;}icris a meromorphic differential. In

the development of the theory of compact Riemann surfaces, one of the
early steps is to prove the following.
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Proposition 11.4. If X is a compact Riemann surface, then the
space 2(X) of meromorphic differentials is nonzero.

If w = {w; }ier is a meromorphic differential, then w has a meaning in
every compatible chart. Namely if (Uy, pq) is a compatible chart, then
we can adjoin wg : Up — C to {w;}ier if wg is defined by

wo = (wi){(pio gy ') opo)  on UgNUi.

A meromorphic differential is a holomorphic differential if all the
w; are holomorphic functions. The space of holomorphic differentials is
denoted Qpoi(X). If w = {w;}ier is a holomorphic differential, then w
is locally of the form df. Namely let (Up, o) be a simply connec.ted
compatible chart. Then woo g is analytic on ¢o(Us) and is the deriva-
tive of an analytic function g. If we define f = g o ¢ on ’Uo, th.en
(fopg!) owo = wo, as asserted. We say that w locally has an indefinite
integral.

Let

y2 +ayxy+ a3y = z3 + (12232 + agx + ag

be the equation of an elliptic curve E over C. In Corollary 6.32 we saw
that F(C) is a compact Riemann surface of genus 1. Formally we have

2ydy + a1z dy + ayydz + az dy = (3z? 4+ 20,z + a4) dz

and therefore

dz _ dy
2+ ajz+az  3x2+2a3z+ag— a1y

(11.21a)

At points of E(C) where 33 # 0, z is a local coordinate of E(C), and
Y

the left side defines (locally) a holomorphic differential. At points where

56—- # 0, y is a local coordinate, and the right side defines (locally)
z

a holomorphic differential. Together these sets of points cover E(C)
except for the point at co. In terms of affine local coordinates (X, 1, W)
for projective space, we obtain a similar relation from (3.23a):

—dw
3X2 4 20, XW + agW? — ay W

dx
T 3asW? 1 204 XW + a3 X% — 2azW — a1 X — 1

(11.21b)
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The relationship between the two coordinate systems is [(X,1,W)] =
[(z,y,1)]. Thus X = % and W = -1— In particular, dW = —y~2dy.

Y
Calculating, we find that the left side of (11.21b) matches the right side
of (11.21a) on the overlap. The common value of (11.21a) and (11.21b)
is therefore a (globally defined) holomorphic differential on E(C). It is
called the invariant differential for E, for reasons given below.
In the theory of compact Riemann surfaces, one of the preliminary
results used for the Riemann-Roch Theorem is the following.

Proposition 11.5. If X is a compact Riemann surface of genus g,
then the vector space Qnho1(X) of holomorphic differentials has dimension

g.

In the case of E(C), the genus is one, and the invariant differential is
the unique holomorphic differential, up to a scalar. We know from Corol-
lary 6.32 that E(C) is biholomorphic with C/A for a lattice A. Then
dz on C has a meaning on C/A and defines a holomorphic differential
on C/A. By Proposition 11.5, it agrees with the invariant differential in
(11.21), up to a scalar. The invariance of dz under translations of C/A,
which we know correspond to group translations in E(C), is the reason
for the name “invariant differential” for (11.21).

Now consider Xo(N). Let m : H* — Xo(N) be the quotient map. If
w = {w;}ier is a holomorphic differential on X¢(N), then we define a
function f, : H — C by

Ju(7) = wi(n(7))(ps 0 m)'(7) (11.22)
if (Ui, ¢:) is a chart about (7).

Proposition 11.6. The map w — f, is well defined and is an
isomorphism of Qpo1(Xo(N)) onto Sa(To(N)).

ProOF. To see that f, is well defined, let (U;. ;) and (Uj, ;) be
two charts with «(7) in U; NUj. Let t; = ¢i(n(7)) and t; = p;(7(7)).
Then p; o7 = (p; 0 p; *) o (p; o 7) implies

(g5 0m)'(7) = (5 0 97 ) (t:)(spi 0 1)/ (7).
Hence
wi(m(r)) (i o) (1) = (wj 0 o7 )t (s 0 ;1) (t:)(spi 0 ) (7)

= (w; 0 o7 )(t:) (i 0 mY'(7) by (11.20a)
= wi(m(7))(pi o 7)'(7),
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and f, is well defined. It is clear that f, is analytic.
If 4 is in T'y(N), then x(r) = w(y7), so that

fuly) = wim(ym)) (i o ) (77)
= wi(m(7))(pi o moy) (7)/'(7)
= 8(y, 7)%wi(m(7))(pi 0 7)'(7)
=8(7,7)*fu(7).
Hence f,, is an unrestricted modular form of weight 2 and level N.

For the behavior at the cusps, let z = 871(00) be a cusp, and let
(Uz, ¢z) be the chart about z given by (11.19). Here

Uy = n(8~{Im 7 > 2})

and .
<P;p(7|'(,3_17')) — e?mr/h’

where h is the width of the cusp. Then we have

fuolB™ () = fu(B7IT)8(B7",7) 72
= ws(m(B717))(pz 0 7Y (B~ 7)6(A71, )72
= w, 0@ 1(e2riT/h ((pxowoﬂ_l)'(r) -1 py-2
=Wz 0@, ( ) ﬁ_ll(‘r) (S(ﬁ ) )

. 21 .
= w0 60;1(621“1'/}1) % ean/h. (11_23)

Since the differential is holomorphic, the first factor is an analytic func-
tion of g, = e2™7/* The remaining factor is a multiple of ¢5. Therefore
f. is holomorphic at the cusp 7 !(co) and vanishes there.

Clearly the map w — f,, is one-one. To see that it is onto, let f be
in S3(T'o(N)) and let = be in H*. Form the chart (U, ;). For z in Uy,
choose 7 in H* with z = ¢ !(n(7)). Define

wi(2) = f(r)((¢z 0 7Y/ (7))

if 7 is in H. Modular invariance makes w, well defined. Also w; is
holomorphic everywhere if z is not in 7(C), and it is holomorphic except
at z if z is in #(C). In the latter case, to define w, at = (the only point
where 7 would be forced to be a cusp), we unravel the argument (11.23)
to see that w, is bounded in a neighborhood of z. By the Riemann
removable singularity theorem, w, extends to be holomorphic at . Then
it is easy to see that w = {w;},ex+ is a holomorphic differential that
maps to f.
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4. Properties of Compact Riemann Surfaces

This section will summarize, without any proofs, some deeper proper-
ties of compact Riemann surfaces. The initial three main theorems about
compact Riemann surfaces are the Riemann-Roch Theorem, Abel’s The-
orem, and the Jacobi Inversion Theorem. All are expressed in the lan-
guage of divisors.

Let X be a compact Riemann surface. We denote by Div(X) the free
abelian group on the points of X. An element D of Div(X) is called a
divisor. Such an element is written as

D=3 ord,(D)z  with ord,(D) € Z. (11.24)
zeX
We write Dy > Dy if ord;(D;) > ord,(D) for all z in X.
If fisin K(X)* and z is in X, choose a chart (Us, i) with z; € U;,
and put
ordg (f) = ordy,(c)(f o o). (11.25)
The right side is > 0 at a zero and < 0 at a pole. The expression (11.25)
does not depend on the choice of (U;, ¢;).
The divisor [f] of f € K(X)* is given by

[f1= Z ord,(f)z.

zeX
Such a divisor is called a principal divisor, and the set of principal
divisors is denoted Divo(X). The quotient group
Pic(X) = Div(X)/Divo(X)
is called the divisor class group.

By Proposition 11.4, X possesses nonzero meromorphic differentials
w. Let [w] be the divisor of w, defined in the same way as [f]. The
divisor class of [w] is independent of the choice of w. In fact, if w and
w' are two such, then reference to (11.20a) shows that w = fw' with f
in K (X)X, and thus the assertion follows. The divisor class of [w] in
Pic(X) is called the canonical class.

For a divisor D, the linear system L(D) is the vector space

LD)={f e K(X)* | [f]+ D> 0}u{0}
={f € K(X)* | ordz(f) 4+ ord,(D) >0 for all z € X}u{o}.

Then L(0) = C since the only holomorphic functions on X are the
constants. Also it is clear that

D> D’ implies L(D)2 L(D'). (11.26)
The next result limits how much L(D') can fail to be all of L(D).
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Proposition 11.7. Let X be a compact Riemann surface, let D’ be
a divisor, and let £ be in X. Then

dimL(D' + z) < dim L(D') + 1.
Consequently L(D) is finite-dimensional for each D in Div(X).

The degree deg(D) of the divisor D in (11.24) is ) x ordz(D). A
proof of the following result was sketched in §1X.5.

Proposition 11.8. Each principal divisor on a compact Riemann
surface has degree 0.

Theorem 11.9 (Riemann-Roch Theorem). Let X be a compact Rie-
mann surface of genus g, let D be a divisor, and let W be in the canonical
class of Pic(X). Then

dim L(D) = deg(D) + dim L(W — D) - ¢ + 1.
Corollary 11.10. Let X be a compact Riemann surface of genus g,

and let W be in the canonical class of Pic(X). Then degW = 2g — 2
and dim L(W) = g.

Corollary 11.11. Let X be a compact Riemann surface of genus g,
and let D be a divisor with deg(D) > 2¢g — 2. Then

dim L(D) = deg(D) — g + 1.

Corollary 11.12. Let X be a compact Riemann surface of genus
g > 1. Then there is no point of X where all holomorphic differentials
vanish.

Until further notice in this section, we assume that our compact Rie-
mann surface X has genus g > 1. Since X is a closed orientable surface
of genus g, the ordinary homology group H1(X,Z) is free abelian on 2¢
generators. One usually writes a standard homology basis over Z in the
form ay,...,a4,b1,...,b, with special intersection properties. But we
shall be content to fix any Z basis cy,...,czy of Hy(X,Z).

Proposition 11.13. Let X be a compact Riemann surface of genus
g > 1, and let wy,...,wy be a basis of Qu0(X) over C. Then the 2¢
vectors

Ck UJ]

fck Wy

in €4 are linearly independent over R.
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Consequently the vectors in the proposition are a Z basis for a lattice
A(X) in C9. The lattice A(X) is unchanged if {cx} is replaced by a
different 7 basis of H,(X,Z). If {w;} is replaced by a different Z basis
of Qe (X), the effect is to transform A(X) by a member of GL(g,C).

The Jacobian variety of X is the g-dimensional complex torus
J(X)=C9/A(X). We define a map & : X — J(X) by fixing a point z

in X and setting
z g
®(z) = {/ wj} . (11.27)

j=1
According to the previous paragraph, if the base point is fixed, the pair

(IJ(X),(I)) is well defined up to the action of a member of GL(y,C)
simultaneously on the w;’s, C9, and A(X).

Proposition }1.14. For a compact Riemann surface X of genus >1,
the map @ of X into J(X) is well defined and holomorphic, and its rank
(over C) is everywhere 1.

The first statement of the proposition has already been addressed,
and the second statement follows from Corollary 11.12. In the case of
X = Xo(N), Proposition 11.6 shows that the map ® is essentially the
same as the tuple of maps ®;; of §1if {f;} is a basis of S3(To(N)). This
tuple {®;} will be used in §§10-11 and will be called & there.

Since J(X) is a group, we can extend & : X — J(X) to a map
® : Div(X) — J(X) in the obvious way: If D = > zex ordz(D)z, then

(D) = ) _ ord,(D)®(z).

zeX

For general D, this definition depends on the base point z¢ in (11.27),
but it is independent of zq if D has degree 0.
Recall from Proposition 11.8 that all principal divisors have degree 0.

Theorem 11.15 (Abel’s Theorem). Let X be a compact Riemann
surfa?e of genus > 1, and let D be a divisor. Then D is principal if and
only if deg(D) = 0 and &(D) is the 0 element of J(X).

Corollary 11.186.

(a) If X has genus 1, then & : X — J(X) is one-one onto and biholo-
morphic.

(b) 'If X has genus > 1 then ¢ : X — J(X) is a one-one holomorphic
mapping anto a proper complex submanifold of J(X).
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With g equal to the genus of X, let
Divi?(X) = {D € Div(X) | D > 0 and deg(D) = g}.

Then we can restrict ® from Div(X) to Div{#)(X) and obtain a map
® : Divi9(X) — J(X). The special case g = 1 is what was considered
in Corollary 11.16a.

Theorem 11.17 (Jacobi Inversion Theorem). For a compact Rie-
mann surface of genus g > 1, the map @ carries Div(9)(X) onto J(X).

Corollary 11.18. As a group, J(X) is isomorphic to the group of
divisors of degree 0 modulo the subgroup of principal divisors.

Theorem 11.19. If F : X — T is a holomorphic mapping of a com-
pact Riemann surface of genus > 1 into a complex torus, then F factors
through the Jacobian variety: F = f o ® for some holomorphic map-
ping f : J(X) — T that is the sum of a translation and a holomorphic
homomorphism.

This completes our discussion of the three initial main theorems about
comi)act Riemann surfaces. The final part of this section addresses the
nature of the function field K (X), indicating part of the connection
between Riemann surface theory and the algebraic geometry of curves.

Theorem 11.20. Let X be a compact Riemann surface of genus
¢ > 0, and let z be a nonconstant meromorphic function on X (existence
by Corollary 11.11). Then there exist a nonconstant y € K(X) and an
irreducible polynomial P in two variables such that P(z,y) = 0 and

K(X) = C(2)[y)/(P(=,))-

We should think of Theorem 11.20 as giving us a mapping of X into
Py(C) by z — (z(2), y(z)), with the image contained in the plane curve
defined by P. In §7, we shall briefly discuss this approach to defining
Xo(N) over Q.

Theorem 11.21. Let X and Y be compact Riemann surfaces, and
suppose F' : K(Y) — K(X) is a nonzero C algebra homomorphism.
Then F is one-one and is implemented by a holomorphic map of X onto
Y.
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5. Hecke Operators on Integral Homology

We now return to the subject of modular forms. We shall examine
Hecke operators in detail in this section. Hecke operators act on many
things, and they do so consistently. Understanding these consistent
actions is a key to unlocking the power of the Hecke operators.

One such consistent action is on Hy(Xo(N),Z). Using this action, we
shall see that S3(Tg(NV)) has a basis such that all Hecke operators T3(n)
act by integer matrices. One consequence is that their eigenvalues are
algebraic integers. This same realization will allow us also to characterize
the algebra generated by the Hecke operators T3(n).

Before considering H;(Xo(N), Z), we consider points and divisors. Re-
call from §IX.6 that Hecke operators were introduced as acting on the
free abelian group generated by modular pairs (A, C), where A is a lat-
tice in C and C is a cyclic subgroup of C/A of exact order N. The set
of equivalence classes of such pairs, with equivalence defined essentially
by CX, is really Xo{/N) without the cusps, and thus we should expect
an action of Hecke operators on the free abelian group generated by the
points of Xo(N). This is the divisor group. Rather than try to unwind
our original definition, however, we shall start afresh.

In §IX.6 we defined M(n, N) as the set of 2-by-2 integer matrices of
determinant n whose upper left entry is prime to N and whose lower
left entry is divisible by N. As in Proposition 9.12, we write M(n, N)
as a finite disjoint union

K
M(n,N) = | To(N)oy. (11.28)

=1

If 7 is in H*, let [r] be the corresponding member of Xo(N). For such

7 we define
K

T(n)(r) =Y [oy7] (11.29)
i=1
as a member of Div(Xo(N)). If the a;’s are replaced by different coset

representatives in (11.28), then it is clear that the right side of (11.29)
is unchanged.

Let us see that T'(n)(7) depends only on [r]. In fact, if v is in To(N),
then M(n,N)y C M(n,N). Hence we can write

QY = Vo) (11.30)
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with 7; € To(N), and we readily check that
i — j(i) is a permutation of {L,...,K}. (11.31)

Thus
T(n)(y7) — T(n)(7) = E [eviyr) = E [ai7]
= Z [’Y:’aj(i)T] - Z [oi7]
=" (i = len)
i

=0

(11.32)

by (11.31). Equation (11.32) says that (11.29) is a consistent definition
of T(n)[7]. .
Thus T(n) has been defined as a Z linear map of Div(Xg(N)) to itself.
This suggests a natural definition of T'(n) on 1-cycles on Xo(N). I.f we
think of a 1-cycle as a sum of loops on Xo(N), we just need a deﬁnltlon
of T(n) on a loop. We lift the loop to a path from 7y to some y7o in H*,
writing the path as [r5,770], and we try to define :

K
T(n)[ro,770) = Y, [70,7i0] (11.33)
i=1

with 7; as in (11.30). Then we hope that this definition descends to
homology. But there is much to check—that the definition depends or}ly
on the homotopy class of the loop, then that is independent of the lift,
and finally that it depends only on the homology class. The motivation
for an efficient approach comes from Proposition 11.1.

Proposition 11.22. Let T, be the (normal) subgroup of To(N)
generated by all elliptic and parabolic elements, and let (‘)ab ref<?r to a
group modulo its commutator. In terms of a specified point 7o in H*,
there is a canonical isomorphism

Hi(Xo(N),Z) = To(N)™®/T2. (11.34)

REMARK. To simplify matters, we shall always assume that 7o is
neither an elliptic fixed point nor a cusp.
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Proor. We remove from Xo(N) the finite set of images of elliptic
fixed points and cusps (parabolic fixed points) under T'o(N); the re-
maining set will be called X(V)', and its preimage in H* will be called
H'. Then ¢ : H' — Xo(N)' is a covering map. We shall use 7y and
e(7o0) as base points for fundamental groups, but we drop them from the
notation.

Let To(N) = To(N)/{x1}. Then To(N)\H' = Xo(N) shows that
To(N) is the group of deck transformations of H’ over Xo(N)' and that
To(N) acts transitively on the fibers. Hence e.(m (H’)) is normal in
71(Xo(N)') with quotient To(N). Let

p: m(Xo(N)') — mi(Xo(NY)/eu(m1(H')) 2 To(N)

be the quotient homomorphism.

Let Yo(N) = To(N)\H, i.e., Yo(N) is Xo(N)' with the images of the
elliptic fixed points restored. We shall use the Van Kampen Theorem to
show that

m1(Yo(N)) = To(N)/T.,

where T, is the (normal) subgroup generated by the elliptic elements.
Visualize restoring one point to Yp(N) at a time. We apply the Van
Kampen Theorem to a small disc about this point and the partially
restored Yo( V). Let ! be a simple loop about the point within the small
disc. The theorem says that the effect on the fundamental group of
restoring the point is to convert [ into a relation, i.e., to factor by the
normal subgroup generated by I. If l;,... [, are the loops used as all
the points are restored, the result is that

7I'1(Y()(N)) e 7('1(X0(N)')/(11, SN ,I,-)

in obvious notation.
Using p, we have a natural homomorphism onto:

WI(Y()(N)) x>~ W}(Xo(N)')/(Il, ey lr) — Fo(N)/p(Il, . ,I,-). (1135)

Suppose an element o of 71(Xo(N)') maps to the identity coset. Then
p(o) is a product of elliptic elements. Under p, however, the elements
li,...,1 map to elliptic elements that generate T',. Hence p(o) = p(oo)
for some o in (11, ...,{.). Adjusting ¢ by o5 ! and changing notation, we
may assume that p(¢) = 1. Then o is in e(m;(H’)). But the punctures
of H' get filled in during the passage from Xo(N) to Yo(N). Thus o is
contractible in Yo(NV) and must bein (I1,...,{.). Thus (11.35) is one-one
and is an isomorphism.
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Now we pass from Yg(N) to Xo(N) in the same way, restoring the
images of the cusps one at a time. At the start we have

71 (Yo(NV)) = To(N)/Te.

Fach restoration of a point has the effect of adjoining a new relation
(by the Van Kampen Theorem), and the relations are easily seen to be
parabolic generators corresponding to each cusp. The end result is that

71(Xo(N)) = To(N)/Tep = To(N)/Tep.
Finally we have
Hy(Xo(N),Z) = m1(Xo(N))™ = (To(N)/Tep)™-
We can readily check that
(D /L) = T3/ T3
whenever I'y is normal in T';, and then (11.34) follows.

Now we can make T'(n) act on H1(Xo(N),Z). Guided by (11.34), we
regard Hi(Xo(N),Z) as the free abelian group on symbols [7],
v € To(N), subject to the rules

[1172) = Il + b2
[v]=0 if v is elliptic or parabolic.

(11.36)

This correspondence of symbols [y] and cycles ¢ respects.igtegration.
Namely suppose f € S3(To(N)) corresponds under Proposition 11.6 to
w € Qho(X) and [7] corresponds to c. Then

];ﬂrd f(r)dr = /cw. (11.37)

(Recall from (11.13) that the left side is independent of g ) To see this,
let I be a loop in Xo(N) that maps to ¢ in homology, and lift { t? a path
{in H*. Then igoes from 7o to some point y(7o) in H*. For this 7 and~
¢, the two sides of (11.37) are equal, and vy does correspond to ¢ since [
projects to the loop | mapping onto ¢ in homology.

Let the compact Riemann surface Xo(/N) have genus g. We 'know
that Hi(Xo(N),Z) is free abelian on 2g generators, and hence so is the
isomorphic group of []’s; in particular, it 1s torsion free.'

We can make (11.33) into a rigorous definition by setting

K
T(n)l =3 [, (11.38)

=1

with ; as in (11.30).
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Proposition 11.23. The equation (11.38) makes T'(n) into a well
defined Z linear operator on Hy(Xq(N),Z), independent of the coset rep-
resentatives a; in (11.28). Moreover, if ¢ is a 1-cycle on Xo(N) and w is
a holomorphic differential (corresponding to a member f of So(I'g(N))),

then
/ w= /T(n)w, (11.39a)
T(n)c ¢

where T'(n)w is the holomorphic differential corresponding to Ta(n)f.

PROOF. To see that T(n) is well defined on the group of [y]’s, we
have to check that T(n)[y] = 0 if 7 is elliptic or parabolic and that

T(m)rv2] = T(n)[ya] + T(n)[72);

these conclusions are enough, according to (11.36). First we check this
identity.
Let v; and 7, be in Ty(N), and write
a7 =Yieja)  and  @gye = o).
Then
— /
ai(7172) = Vi)Y = (7i7j(¢'))ak(j(i)))
so that (11.38) gives

K K
T(r)myal = ) vl = Z [v] + Z [

[l + Y [l = T(m)n) + T(n) el

i=1

K
K K
Thus T'(n) is compatible with the first relation of (11.36).

Suppose 7 is parabolic with a;y = Yiajy. Let i®)() be the ktb
iterate of the permutation j. Then

™ =m0y 7" = vy g yE
= = YYE) - Vi (K =1) ()05 (%) (4)
= YiYig) - - Vi E-) (.

Since ¥ is parabolic, so is

et = YiVi(i) - - Vi k=1)(i),
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and the right side shows that this element is in T'o(N). Since
aiy® = (7% o Do,

(11.38) gives

K
K -T(m)y]) = T(my*] = ) leer®a; '] =0.

i=1

Since the group of [y]’s is torsion free, T(n)[y] = 0.
Suppose 7 is elliptic with 4 = 1. It is clear from (11.38) that

K
=1
Then
PT(n)ly] = T(n)r"] = T(w)[1] = 0,
and T(n)[y] = 0 since the group of [y]’s is torsion free. Thus T'(n) is
well defined on the group of [7]’s.

The thrust of Proposition 11.22 is that no further relations need
to be checked in order to transfer T(n) to a well defined operator on
H,(Xo(N), Z).

Suppose «; is changed to o} = e;¢; with ¢ in [o(N). From
QY = 7iwj(;), we obtain

afY = €T = €%y = 1Y)

Then (11.36) gives

K
D leswezhl = Do le + 30 [l = 3 [eseo)]
= Z (] + Z [n] - Z [e;] = Z [i]-

By (11.38), T(n) gives the same result from the o}’s as from the a;’s.

Now let ¢ be a 1-cycle on Xo(N). With 9 as base point in H, we can
choose a path [rg,v79] whose projection to Xo(N) is homologous to c.
By (11.38), we can write

K

T(n)[y] =Y _ [l

i=1
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with 7; as in (11.30). By (11.38), equation (11.39a) is the assertion that

K vi(To) (7o)
Z:/ f(7) dT:/ Ta(n)f(r)dr. (11.39b)

To

To prove (11.39b), we calculate the right side as

(7o)
= Z/ folai]2(r)dr by Proposition 9.12

'Y(To)
> / Flei(7)b(as, )2 dr

aiy(ro)
= Z/ f(7)d+ under 7' = a;(7)
I a,'('ro)
Yiaj(:)(To)
=3 / f(rydr
i Y ai(Te)
a;(iy(7o) vio(iy(Te)
:Z/ f('r)dr+2/ f(r)dr.
7 Jai(ro) i (o) (11.40)

Since j(-) is a permutation, the sum of paths

> (7o), @iy (70)]

i

is a l-cycle on H. Hence the first term on the right side of (11.40) is 0
by the Cauchy Integral Theorem. The second term is equal to the left
side of (11.39b) since ®;(v;) in §1 is independent of base point. Thus
(11.39b) is proved, and the proposition follows.

In the setting of Proposition 11.23, let us write

(e,w) = /w (11.41)
for ¢ in H1(Z) = Hy(Xo(N),Z), so that the proposition says
(T'(n)e,w) = (¢, T(n)w).
We can extend (11.41) by linearity to be defined for ¢ in H,(R) =
Hi(Xo(N),R) or even for ¢ in H (C), with w in Qhot(Xo(N)). Let us

observe that

({c,w) = 0 for some ¢ in H,(R) and all w) = (c=0). (1142)
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In fact, let ¢y,...,¢24 be a Z basis of H;(R), and write

29
c= Z TECk with r € R.
k=1

If wy,...,wy is a basis of Qho1(Xo(N)) over C, then we have

29

Zrk(ck,wj) =0

k=1

for all j. By Proposition 11.13, all the r; are 0. Thus ¢ = 0. This proves
(11.42).

We would like to say that the ¢’s and w’s are in dual vector spaces,
with the ¢’s in H,(Z) constrained to the integer points. But the complex
vector space of ¢’s, namely Hy(C), is 2g-dimensional, while the vector
space of w’s, namely Q,01(Xo(N)), is g-dimensional. So we shall first
split H,(C) into two pieces of dimension g.

The mapping (-)* : 7 — —7 of H into itself induces an involution of

Xo(N). Namely if 7 = ym with v = (‘: 3) in To(N), then the element

T = (_ac _db) of To(N) has 7* = y*m*. This involution induces an
involution on H;(Z), which we extend by linearity to H;(R) and H,(C).
The vector spaces have eigenspace decompositions under * that we write
as

Hi(R) = Hf (R) @ HT (R)

(11.43)
H\(C) = H{ (C) ® H{ (C).

Proposition 11.24,

(a) The spaces Hit and H each have dimension g, and the pair-
ing (c,w) exhibits the spaces H{ (C) and Qnoi(Xo(N)) as dual to one
another.

(b) The linear extension of T(n) to H1(C) maps H; (C) into itself,
and the restriction of T(n) to H;(C) is the transpose of Ty(n) on
Qhot(Xo(N)).

(c) The intersection H,(Z) N Hi (R) is a lattice in H (R), and a Z
basis for this intersection is a basis for H (C).

ProoF. We write the involution on 1-cycles as ¢ — ¢*. If we lift the
l-cycles to paths in H* without changing their names and if ¢ is given

by [r0, 1], then ¢* is given by [rp*, 71*]. Also if we realize members w of
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Qhol(Xo(N)) as functions in S5(To(N)), then (11.37) allows us to write

the pairing as
1) = [ r)ar.
The space S3(T'o(N)) has a conjugate-linear involution f — f* given
by
fr(r) = —f(r*).
We readily check that f* is again in S3(To(#V)) and that

(c*, f) = {c, f*) for ¢ in H;(C).

If f has f = f*, then if has (if)* = —if. Hence the real subspace S2,+
of f’s in S3(To(N)) with f* = f has real dimension g, and so does the
real subspace Sp _ with f* = —f. If c is in H](R), then

(e, fy = (" f) = (e, f*)

shows that {c, f) is real for f in S, ;. If dimg Hf(R) > g, we can
therefore find some co # 0 such that {co, f) = 0 for all f € S3 4. Since
() is complex bilinear, {co,if) = 0 also. But if is the most general
member of Sz . So (co,S2(To(N))) = 0. From (11.42) we see that
¢p = 0, contradiction. Thus dimg Hi" (R) < g. A similar argument with
c¢in H(R) and f in S, _ shows that dimg H; (R) < g. By (11.43),
equality must hold in both cases.

(b) In Proposition 11.23 we choose 7, imaginary, so that if
¢ < [70,770), then ¢* — [r9, 7" 19]. The formula for T'(n) is

K
T(m)y] =D ]

i=1
with @;7 = ¥@j;). On matrices the operation (-)* is multiplicative.
Thus
ai*‘y* — 7,*01(’)*-
If we use the standard a’s as in Lemma 9.14, then o;* and a;;)" are
different members of the same set. Therefore

K
Ty = ) "1 = (T(m)h)*.
i=1
By linea.rity, T(n)c* = (T(n)e)* on Hy(C), and it follows that T(n) maps
H(C) into itself. By (a) and (11.39a), the action of T(n) on H}(C) is
the transpose of the action of Ty(n) on Qpoi(Xo(N)).
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(c) If ¢ is in Hy(Z), then
c=3(c+c")+3(c—c") in H} (R) ® H{ (R).

Hence Ay = {1(c+¢*) | c € H\(Z)} spans H{ (R). On the other hand,
Ay = {c+¢* | ¢ € Hi(Z)} is contained in H;(Z) and hence is discrete.
Since A, has finite index in A and since Hy(Z) N Hi (R) lies between
Az and Ay, Hi(Z) N H{ (R) is a lattice in A} (R). This completes the
proof.

Theorem 11.25. Fix a Z basis cy,...,¢, of H1(Z) N H{ (R), so that
€1,...,¢4 is a basis over C of H}(C). Let fi,..., f, be the dual basis
of S2(I'g(N)). Then each Hecke operator Th(n) is given in the basis
fi,..., fq by a matrix with integer entries.

REMARK. The existence of the bases ¢1,...,¢, and fi,..., f, in the
theorem is assured by Proposition 11.24. ’

ProoF. T(n) acts on Hy(Z), with linear extensions to H;(R) and
H;(C). By Proposition 11.24b, it maps H (C) to itself, hence Hj (R)
to itself. Thus T(n) maps H1(Z) N H; (R) to itself. Hence it is given in
the basis ¢1,..., ¢y by a matrix with integer entries. Proposition 11.24
shows that T3(n) is the transpose of T'(n), and the theorem follows.

Corollary 11.26. The eigenvalues of T5(n) on S»(T¢(N)) are alge-
braic integers.

ProoF. By Theorem 11.24, T,(n) is given in a suitable basis by an in-
teger matrix. The characteristic polynomial is then a monic polynomial
with integer coefficients, and the roots must be algebraic integers.

Theorem 11.27. Let ¢; € S2(To(N))' be the linear functional that
extracts the first Fourier coeflicient, and let 7 be the commutative sub-
algebra of End¢(S2(T'o(N))) generated by the identity and the Hecke
operators. Then the map L : T — S3(Fo(N)) given by

L(T)=ci0T (11.44)

is one-one onto and exhibits the left regular representation of 7 on itself
as equivalent with the representation of 7 on S3(T'o(N))’ = H(C). In
particular, dim¢ 7 = g¢.

REMARKS. We continue to write g for the genus of Xo(N). It will
be convenient in this proof to drop the subscript 2 on Hecke operators

T2(’n).
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PrROOF. We can write L(T) = (cy o T, ), where (-, -) is the pairing of
S3(To(N)) with So(To(N)). For Ty and T in T, we have

To(L(D)(f) = (Tofer o T, ), f)
{{er o T,-), Tof)
={e;oT,To f)
ci(TTof)

il

il

and
L(ToT)(f) = (c1 o ToT)(f) = cy(To T f).

These two are equal since 7 is commutative. Hence L is equivariant.
Before proving that L is one-one onto, we make a construction. Let
f1,..., fq be a basis of S3(I'g(N)), and write

fl(T) oo '
f(r) — — Z cn821rmr
fo(7) n=t

with ¢, € C9. Our first observation is that
{cn}2, spans CY. (11.45)

In fact, let £ be any linear functional on C9 with £(c,) = 0 for all n.
Since £ is continuous,

Ef(r))=0 for all 7. {11.46)
fi(7)
Let 7y,...,7 be such that the set of r vectors with
o . . fo(r3)
1 < j < ris a maximal linearly independent set among the infinite
fi(7)
set of all : . For each T we can then find scalars a,(7), ..., a.(7)
fo(7)
such that
fi(7) fi(m) fi(r)
= | o | +eram|
fo(7) fo(m1) fo(7)
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It follows that the functions fy, ..., fy lie in the span ofay,...,ar. Hence
fi(7s)

g < r, and the vectors span C¢. By (11.46), £(C?) = 0. Thus

Fo(Ti)
¢ =0, and (11.45) follows. ‘
For each T in T, we define a g-by-g matrix A(T) by

Tfl fl
cl=am| |- (11.47)
Tf, fq
If we write
T(m)fl oo
— anZwinr
T(m)fg n=1
with b,, € C9, we have
00 T(m)fr
bneZﬂnr —
n=1 T(m)fg
fl =) .
= A(T@m) | | = AT(m) 3 eac®™
fg n=1

Equating coefficients, we obtain
b, = A(T(m))cn.
Referring to Proposition 9.15, we see that b; = ¢,,. Hence
cm = A(T(m))c1. (11.48)

We can now prove that L is one-one onto. Suppose that L(T) = 0.
Since L is equivariant and 7 is commutative, we have

0 = T(m)L(T) = L(T(m)T) = L(TT(m)) = ¢y oTT(m)  (11.49)
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for all m. Let e; be the j* standard basis vector of C9 and
(11.49) to f;. Then , and apply

TT(m)f
0=c1(TT(m)f;) = c1( : - €)
TT(m)f,
fi
=c(A(T)A(T(m)) | : |- e;) by (11.47)
fs
e1(fr)
= A(T)A(T(m)) : “ej by linearity of ¢;(-)
c1(fy)
= ADYAT(m))er - ¢;
= A(T)cm - €j by (11.48).
Since J is arbitrary, A(T)cp = 0. By (11.45), A(T) = 0. Substituting
into (11.47), we have Tf, = -.. = Tfy =0. Thus T = 0, and L is
one-one.
Suppose L(T) does not span Sy(T'y(N))'. Choose f # 0 with
LT)f)=0 foral TeT. (11.50)
Write f = Ef=1 z; fj. We have
T(m) f1
L(T(m))f; = er(T(m) f;) = ex( : “€5)
T(m)f,
fi
=c(A(m) ]| 1 | -¢) by (11.47)
fq
ei(f1)
= A(m) - € by linearity of ¢;(-)
c1(fy)
= A(m)c; - ¢;
=Cm € by(11.48).

Multiplying by 2; and summing on j, we have

2
L(T(m))f = cm - ( : ) (11.51)

Zg
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Z1
for all m. The left side of (11.51) is 0 by (11.50). By (11.45), ( ) is
Zyg
the 0 vector. Thus f = 0, contradiction. We conclude that L is onto.

6. Modular Function j(r)

Our objective in this section is to address the special properties of
the compact Riemann surface X,(V) that allow us to realize it in a
particular way as the set of C points of a projective curve defined over
Q. The function j(r) introduced in §VIII.2 will play a critical role in
our construction.

A meromorphic function f on H is said to be automorphic of weight
k and level N if fo[y], = f for all4 € ['o(N) and such that the following
condition holds: For every cusp #~1(o0) relative to To(N), there is some
Cjp such that f o [37!]x(7) is analytic for Im 7 > Cp with an expansion

oo

FolB k(= Y Py

n=-—-0o0

that has only finitely many P # 0 for n < 0. The space of such

functions is denoted Ax(I'o(N)). It is an enlargement of the space
M (To(N)) of modular forms so as to allow poles in H and at the cusps.

Our interest will be in the space Ag(I'o(N)), which is a field. This
space corresponds to the field K(Xo(N)) of meromorphic functions on
Xo{N) in the same way that S,(T'o(N)) corresponds to the space of
holomorphic differentials. In more detail, let {(U;,¢;)}ier be an atlas
for Xo(N). A system {f;}ier of scalar-valued meromorphic functions f;
on U; yields a meromorphic function on Xo(N) if fio ¢;! = fio ot
on (U; NU;) for all ¢ and j. Let # : H* — Xo(N) be the quotient
map. If {f;}icr is a meromorphic function on Xg(N), then we define a
corresponding scalar-valued function f on H by

f(r) = fi(w(r)) (11.52)

if (U;, i) is a chart about n(r). The same kind of argument as for
Proposition 11.6 yields the following result: The map {f;} — f of (11.52)
is well defined and is a field isomorphism of K(Xo(N)) onto Ao(To(N)).
Typically we shall use the same name for a member of Aq(T'o(N)) and
its counterpart in K (Xo(N)).
Let us take N = 1 for the moment. The function j(7) in Ao(To(N))
comes from a member of Ko(X(1)), according to the proposition, and
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we are going to denote this member of K(Xo(N)) by j also. For the
case of I'g(1) = SL(2,Z), there is just one cusp, and j(7) has a simple
pole there, according to Proposition 8.2. Moreover, j is analytic on H

by (8.3).

Proposition 11.28. j: SL(2,Z)\'H — C is one-one onto.

Proor. Fix zp in C. As a meromorphic function on X(1), j— zp has
divisor of degree 0, by Proposition 11.8. Since the only pole is at x(o0)
and is simple, the divisor must be

[i — 2z0] = p — (o)

for some p # w(o0) in SL(2,Z)\H*. Then j takes the value z; at p €
SL(2,Z)\'H and only there.

Lemma 11.29. Let f in Ag(I'¢(1)) be analytic on H and have ¢
expansion f(7) = Y oo _pr¢nq™ at 0co. Then f is a polynomial in j with
coefficients in the module over Z generated by the coefficients c,,.

Proor. We induct on M for M > 0. For M = 0, f corresponds to
an analytic function on Xo(1) and must therefore be constant. Hence f
1s the polynomial ¢g in j of degree 0. Assuming the result for M — 1,
we observe from Proposition 8.2 that f — c_pj™ has a ¢ expansion
ZZ‘;_M_H d,q™. Since the coefficients of j are in Z, each d,, 1s in ¢,; +
c-pmZ. Hence the lemma follows by induction.

Theorem 11.30. K(Xo(1)) = C(j).

ProoF. If fisin K(Xg(1)), then f has only a finite number of poles.
If f has a pole at a point p # 7(o0), then Proposition 11.28 shows that
(j = j(p))~?! has a simple pole at p and no other pole. Arguing as in the
proof of Lemma 11.29, we can subtract from f a linear combination of
powers of (j — j(p))~! and obtain a function with no pole at p and with
no new pole. Continuing in this way, we can reduce to the case that f
has its only pole at 7(o0). Then Lemma 11.29 completes the proof.

Now we consider general N. We have denoted by M*(N) the set
of 2-by-2 primitive integer matrices of determinant N. Let us write
I'=Ty(1) = SL(2,Z). Lemma 9.1 says that

$(N)
M*(N):r(g’ (;)r: U e (11.53)

i=1
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and gives an explicit set of coset representatives. The number y(N) is
given by (9.5). The modular polynomial of order N is the polynomial
On(X) = ®n(j, X) of degree (N ) defined by

W(N)
on(X)= [ (X =jow) (11.54)

i=1

For v € T', we have j o (ya;) = j o [y]o 0 & = j o &;; hence ®n(X) does
not depend on the choice of coset representatives.

The first thing to notice about ®x is that one of its roots is jy =
o N
7°\o0 1
shows that both j and jy are in the field K(Xo(N)). In fact, Theorem
11.32 below will show that jy is algebraic over C(j) and that ®x is
its minimal polynomial. The theorem says even more, restricting the
nature of the coefficients.

. The same argument as with Examples 1 and 2 of §1X.3

Lemma 11.31. With oy,..., ay(n) as in Lemma 9.1, the functions
joai,...,joayu) are distinct on H.

PRrROOF. Let us write

i(r) = =+ P(q), (11.55)

Cy . a b\ .
where P is a power series with integer coefficients. If a; = (0 d> 1s

as in Lemma 9.1 and if ¢4 = €2*""/% and (4 = e2™/4 then

joa,-(r):j(arj-b) - E;T‘,;+P(q:;<,§;). (11.56)

’ ’
Suppose a; = (% Z,) has j o a; = j o a;r. Taking the quotient and

letting ¢ tend to 0 (i.e., letting Im(7) tend to +00), we obtain

03¢ = a8 ¢l (11.57)
a d . . -
It follows first that i Since ad = a’d’ = N and all are positive,

we obtain a = a’ and d = d’. Substituting into (11.57), we obtain b = &'.
Thus a; = Oy,
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Theorem 11.32. The polynomial ®x{X) has coefficients in Z[;] and
is irreducible over C(3).

ProoF. Any 7 in ' acts on j o «;, sending it to jo a; 0oy. By
(11.53) the result is some j o arg, and hence the effect of v is to permute
these functions. Since all of the functions contribute once to ®p, the
coefficients of ®x are invariant under I'. The coefficients are elementary
symmetric polynomials in the functions j o «; and thus are analytic on
‘H. The same argument as in Proposition 9.5 shows that each joo; has a
meromorphic ¢y expansion at co, and hence the same thing is true of the
coefficients of 5. It follows from the I' invariance that the ¢ expansions
of the coefficients of & are meromorphic at co. By Theorem 11.30, the
coefficients of &y are in C(j).

The polynomial @ splits in the field C(j o e,...,j 0 ay)), and T
acts as automorphisms of this field, fixing C(j) and permuting the roots
of . Since o; is in Ty T, we have a; = vy’ or v 'y = a19’. Thus
' acts transitively on the roots. By Lemma 11.31 the roots are distinct.
Consequently @y is irreducible over C(j).

We are left with showing that the coeflicients are actually in Z[j]. Let
us write j(7) and jo a;(7) as in (11.55) and (11.56). When we form the
elementary symmetric polynomials in the functions (11.56), we know
that the result involves only integral powers of ¢, and we can see that
the coefficients of this resulting series are in Z[{n] since d | N.

Regard the coefficients of the series as in Q((n), and consider the
automorphism of this field given by {y — (&, where GCD(r, N) = 1.
The expression (11.56) is mapped to

1 :
— 7 + P(a3¢2),
qgcg ( dsd
where b’ is the least residue > 0 of rb modulo d. This expression is

/

8 Z) The map (a,b,d) — (a,¥,d)
represents a permutation of the representatives «;. Thus the effect of
{n — (} on the coeflicients of the ¢ series expansion of a coefficient of
@ is the same as the effect of a certain permutation of the roots, i.e.,
to leave things fixed. Since Q({n) is Galois over @, the coefficients of
the q series expansion of a coefficient of & are in QNZ[(n] = Z. By
Lemma 11.29 the coefficients of ®n are in Z[j].

just j o ap(7), where ay = <

Theorem 11.33. K(Xo(N)) = C(4,jn).

The proof will use the following two lemmas.
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Lemma 11.34. If g € T has j(N(g97)) = j(N7) for all T € H, then g
is in To(N).
N

0 (1)) Since N7 = o(7), we have

PRrROOF. Let a = (

j(aga_lNT) =j(NT)

for all 7 in H. Hence

jlaga™'r) = j(1)
for all 7 in H. By Proposition 11.28, there exists 3, in I' with

aga(1) = B:(7)
for all 7in H. Fix 7o in the interior of the standard fundamental domain
R of T. The point aga~1(7) is in the interior of B,,(R) and hence so
is aga~1(7) for T near 7o. Consequently 8, = £f-, for T near 79. By
analyticity aga~! = £8,,. Consequently g is in

SL(2,Z)N a"'SL(2,2)e,

and this is T'g(N) by Lemma 9.2.

Lemma 11.35. Let F be a field of characteristic 0, and let G be a
finite subgroup of Autg(F). Then F is a finite Galois extension of

FC€ ={z e F|p(z)=z foral ¢ € G},
and Autps(F) =G.
PRrROOF. For z € F, let f;(X) be the member of F[X] given by

£(X) = [T (X = o(2))- (11.58)
pEG
Then f; is in FE[X]. Since fy(z) = 0, ¢ is algebraic over F¢ and
[FG(z) : F®] < |G|. Choose y in F such that [FG(y) : FC) is maximal.
For any z in F, the Theorem of the Primitive Element yields some w in
F such that FG(z,y) = F¢(w). By maximality
[FC(z,y) : FC] = [FO(w) : FO] < [FO(y) : FC],

and thus z is in FO(y). Therefore F = FC(y) and [F : F€] < |G|. In
particular, F is a finite algebraic extension of FC. B

Fix an algebraic closure F of F. If ¢ is in Homps(F, F), then
fy(¥(y)) = 0 since f, has coefficients in FY. Referring to (11.58), we
see that 9(y) = ¢(y) for some ¢ in G. Since y generates F' over Fe,
we have ¢ = ¢ on F'. We conclude that every member of Hompa (F, F)
carries F' into itself and coincides with a member of G. The first of these
conclusions implies that F' is a Galois extension of FG and the second
implies that GG is the Galois group.
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PROOF OF THEOREM 11.33. Let I'(V) be the principal congruence
subgroup of level N. Let K = Ao(T'(NV)) be the field of meromorphic
functions f on H such that fo[y]p = f for all ¥ € I'(N) and such that
the following condition holds: For each # in v = SL(2,Z), there is some
Cjs such that f o [371]o(r) is analytic for Im 7 > Cpg with an expansion

folBe(m) = Y Pdk

n=—0o0

that has only finitely many P # 0 for n < 0.

Then Ao(To(N)) = K(Xo(N)) is contained in K. The group I' acts
on K by automorphisms under f — foa = fo[a]p, and T'(N) fixes K.
Hence G = I'/T(N) acts on K. By Lemma 11.35, K is a finite Galois
extension of K¢ = KT, and the Galois group is G/Gy, where Gy is the
subgroup of G that fixes K. A member f of K! has f = f o [a], for all
a € T, hence is in K(Xo(1)), which Theorem 11.30 identifies as C(j).
Thus K is a Galois extension of C(j) with Galois group G/Go.

Let us determine the Galois group G’ of K over the intermediate
field C(j,jn). If g is in G’, we can regard g as a member of T satisfying
joNog = joN. By Lemma 11.34, g is in I'o(NV). Conversely Ty(N)/T(N)
does fix C(j,jn). Hence G’ = (To(N)/T(N))/Go.

By the Fundamental Theorem of Galois Theory,

C(j,jn) = K& = Ko™,

Since K(Xo(N)) € K, we have K(Xo(N)) € KTo(M) On the other
hand, comparison of the definitions of K(Xo(N)) and K shows that
K(Xo(N)) 2 KTe(N) Thus C(j,jn) = KTo(N) = K(X4(N)).

The @ structure on Xo(N) will result from a relationship between
K(Xo(N))=C(4,7~) and Q(j,jn) that is given by the equivalent con-
ditions in the next theorem, in which we eventually will take z = j,

y = jn, and kg = Q. The conditions are satisfied as a consequence of
Theorem 11.32.

Theorem 11.36. If C(z,y) is a field with = transcendental over C
and y algebraic over C(z), then the following conditions on a subfield kg
of C are equivalent:

(a) y is algebraic over ko(z), and the minimal polynomial of y over

ko(z) remains irreducible over C(z),

(b) [ko(z,y) : ko(2)] = [C(=,y) : C(z)),

() CNko(z,y) = ko,

(d) ko Nko(z,y) = ko.

6. MODULAR FUNCTION j(7) 339

REMARK. Condition (d) may be restated as: ko is algebraically closed
in ko(z,y).
ProoF. (a) < (b). This is clear. ‘
(b) = (c). Let w be in C and in ko(z,y). From the inclusions
ko(z,y) 2 ko(z,w) 2 ko(2)
C(z,y) D C(z,w) 2 C(z),

we have
ko(, ¥) : ko(2)] = [ko(2, ) : ko(z,w)][ko(x,w) : ko(z)]

(11.59)
[C(z,y) : C(2)] = [C(=,y) : C(z,w)][C(z,w) : C(2)],

with the left sides equal, by (b). Since y is algebraic over ko(z,w) and
ko(z), we have

[ko(z,y) : ko(z,w)] 2 [C(z,y) : C(z,w)]

(11.60)
[ko(z,w) : ko(2)] > [C(z,w) : C(2)].

Comparing (11.59) and (11.60), we see that actually the inequalities
(11.60) are equalities. Since w is in C, we have

[ko(z,w) : ko(z)] = [C(z,w) : C(z)] = 1,

and we conclude that w is in ko(z). Let w = Py(z)/P2(z) with Py an‘d
P, in k[z] and P, # 0. Put P(X) = P1 — wP(X) in C[X]. If Pis
not the 0 polynomial, then P(z) = 0 shows that z is algebraic over C,
contradiction. So P = 0 and every coefficient of Py —wP; is 0. Since Py
and P, have coefficients in ko and P, is not 0, 1t follows that w 1s in ko.
(c) = (d). This is clear.
(d) = (b). First let us show that (d) implies

[ko(z,w) : ko(z)] = [ko(z,w) : ko(z))- (11.61)
In fact, otherwise we can find a finite Galois extension k; of kg for which
[ko(z,w) : ko(z)] > [k1(z,w) : ki(=)]-

Hence

[k1(2) : ko(z)] > [k1(z,y) : ko(x, )] (11.62)
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The left side here equals [k; : ko] because any element of k;(z) can have
its denominator “rationalized” by Auty, (k1) so as to be written in the
form Pi(z)/Py(z) with P; in ki[z] and P in kg[z]. Thus ky(z) is Galois
over ko(z), and ky(z,y) is Galois over ko(z,y). Since k; is Galois over
ko, any ko isomorphism of k; into a field containing k; sends k; into
ki. Hence every member of Auti,(xy)(ki(z,y)) sends k; into k; and
fixes z, thus sends ki (z) into itself while fixing ko(z). Thus we have a
homomorphism

Autkn(x’y)(kl(:c, y)) — Autko(,,)(kl (z))

that is clearly one-one. Let H be the image in Auty,()(k1(z)). The
assumed inequality (11.62) means that H is not all of Aut,;)(k1(z))-
Let k{ be the field with k; D k% D ko and k{(z) = k1(z)¥; here k{(z) 2
ko(z). Form ki(z,y). Every element of Auty,(; ,y(k1(z,y)) fixes this,
by construction. Hence ki{(z,y) = ko(z,y). Thus kj C ko(z,y). By (d),
ki = ko. Since kj(z) 2 ko(z), (11.62) has led to a contradiction. Thus
(11.61) holds.
To complete the proof of (b), we shall show that

[ko(z,) : ko(2)] = [C(z,3) : C(=)], (11.63)

even without assuming (d). Let P(Y) € ko(z)[Y] be an irreducible poly-
nomial with P(y) = 0. Multiplying the coefficients by a suitable member
of ko(z), we may assume that P(Y) is in ko[z][Y] and is primitive over
ko[z]. We are to prove that P(Y) remains irreducible over C(z). Sup-
pose on the contrary that P factors nontrivially over C(z). By Gauss’s
Lemma it factors over C[z]. We can thus write

P(Y) = Q(Y)R(Y) (11.64)

with @ and R primitive over Clz]. Let us make z explicit by writing
(11.64) as
P(z,Y)=Q(z,Y)R(z,Y) (11.65)

with P(z,Y) in ko[z,Y] and with Q(z,Y) and R(z,Y) in C[z,Y). Ap-
plying the evaluation homomorphism z — ¢ € kg, we obtain a factoriza-
tion of the polynomial P(c,Y’) of one variable, and we see that Q(c,Y)
and R(c,Y) are in ko[Y].

Write Q(X,Y) = . Q:(X)Y?. We have seen that Q;(c) is in ko for
every cin ko. If deg Q; = n, we can construct Q#(X) in ko[X] of degree
n with Q¥ (1) = Q:(!) for 1 <1 < n. Then it follows that

RfF(X) -Qx)=c[l(x -1
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with ¢ # 0 in C. Evaluating at n + 1, we see that c is in ko. Hence Q; is
in ko[X], and Q(X,Y) is in ko[X,Y]. Similarly R(X,Y) is in ko[X,Y].
Thus (11.65) contradicts the irreducibility of P over kg(z). This proves
(11.63), and (b) follows by combining (11.61) and (11.63).

7. Varieties and Curves

In this section and the next we shall complete the task of realizing
Xo(N) in a particular way as the set of C points of a projective curve
defined over Q. So far our discussion of curves has been limited to plane
curves. In order to treat Xo(N) adequately, we shall need to carry out
two additional steps. First, in this section, we extend our discussion from
plane curves to varieties and curves in higher dimensional projective
spaces, and we define types of mappings between such varieties and
curves. Second, in §8, we characterize curves in terms of their function
fields.

In the case of Xo(N), we can regard the irreducible polynomial ®n(X)
of Theorem 11.32 as a polynomial ®5(X, X2) over Q in two variables
such that ®x(7,jn) = 0. Theorem 11.33 shows that 7 — (§(7),in (7))
gives a one-one parametric mapping of Xg(N) into the C points of &.
We could then apply a desingularizing process to obtain a nonsingular
curve over Q in a higher dimensional projective space whose C points
are biholomorphic with Xo(N).

But as we shall see, the theory of algebraic curves provides a faster
procedure. By working directly with the function field K{Xy(N}) and
using Theorems 11.32, 11.33, and 11.36, we can arrive at an appro-
priate nonsingular curve over @ without working further with explicit
equations. The speed of our procedure is achieved at the price of not
easily being able to make explicit computations. This disadvantage was
already noted in §1, where we mentioned that the equations for the ellip-
tic curves that arise in Eichler-Shimura theory had to be deduced from
side information.

We begin by assembling background information about varieties and
curves in general. We omit many of the proofs. We shall not return to
Xo(N) until §8.

Let ko be a field, and let k be an algebraically closed field with ko C k.
We shall assume that kg has characteristic 0 or is a finite field and that
the fixed field of Auty,(k) is ko. In many situations that will be clear
from the context, a definition or result valid for kg is also valid for k.

To any ideal I in k[X1,..., X,], we associate its zero set in k™:

Vi={x=(z1,...,2,) €k" | f(x) = 0 for all f € I}.
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Any su<;h set V1 is called an affine algebraic set. If V C k™ is an affine
algebraic set, its ideal (of polynomials vanishing on it) is

I(V) = {f € k[X1,..., X,] [f(z)=0forall z € V}.

Then I(V;) D I

An' ide'al in a polynomial ring over a field is finitely generated (i.e.,
the ring is N oet‘herian), by the Hilbert Basis Theorem. We say that
an affine algebraic set V is defined over ko if I(V') can be generated
by members of ko[X1,...,X,]. In this case we often abbreviate “V
def;ned zv;:ir ko” by V/ko, we define I(V/ko) = I(V) N ko[X1,..., X, ]
and we define the set of ky points or ko rational point IIV )t be
V(ko)zynkg. points o o be

The group action by Auty, (k) on k extends to IE[XI,...,X,,] with
a.ll X; fixed by all of Auty (k). Then ko[X1,...,Xa] is the full fixed
ring under Autg, (k). In the case of V/kq, I(V) is mapped into itself
by Aut:ko(k), and I(V/ko) is the subset of I(V') fixed by Aut, (k). Also
V(ko) is the subset of V fixed by Auty, (k). ’

_ Theorem 11.37 . (Hilbert Nullstellensatz). If 7 is an ideal in
E[X1,...,X,) and fis in I(Vy) then f7 is in I for some integer r > 0.

If I is a prime ideal, then it follows from Theorem 11.37 that I = I(V;)
and the situation is more manageable. Accordingly we shall systemati-’
cally work with this situation (even though we did not do so in Chapter
II). An affine algebraic set V is irreducible if it is not the union of
.two proper affine algebraic sets, or equivalently if I(V) is prime. An
}rreducxble affine algebraic set is called an affine variety. For exa;nple
l_le?(X, Y') is an irreducible polynomial in k[X, Y], then its zero locus in’
k* is an affine variety, being V; for I equal to the prime ideal (P).

‘ Th(? affine coordinate ring k[V] of an affine variety V is the Noethe-
rian ring defined by

E[V]=k[X,,..., Xa)/I(V).

'Since I(V) s primf, k[V]is an integral domain. Its quotient field k(V)
is called th.e function field of V; it is finitely generated over % since
k.[V] has this same property. In the case of V/ko, the affine coordinate
ring is

ko[V] = ko[Xl, ey Xn]/I(V/k'o)

(Sii)r;rcle'I(VIZ is prime, ?io :is I(V/ko), and therefore ko[V] is an integral
ain. Its quotient field ko(V) is the function f i
finitely generated over k. W) petton field of V/ko and is
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Also in the case of V/kg, Autko(E) acts on lE‘[Xl, ..., X,] and carries
I(V) into itself; therefore it acts on k[V]. One can prove that the fixed
ring is naturally identified with ko[V]. Similar remarks apply to k(V)
and ko(V).

The dimension of an affine variety V is the transcendence degree
of k(V). An affine curve is an affine variety of dimension one. In
other words, there is to exist some f in &(V) not in k, so that k(f) is
transcendental over k, and any g in l—c(V) is to have the property that
k(f,g) is algebraic over k(f). In the case of characteristic 0, it follows
from the Theorem of the Primitive Element that k(V') = k(f, k) for some
suitable h. (Cf. Theorem 11.20.)

Let V C k™ be an affine variety, and let fi,..., f; be a set of gener-
ators for I(V). A point z of V is a nonsingular point if the matrix

(?(z)) has rank n — d, where d is the dimension of V. The variety
.

] . . . .

V is nonsingular if every point of it is 2 nonsingular point. These def-
initions do not depend on the set of generators. There are two different
constructs with which we can see this independence. The first one is the
easier to use in computations. For it, let  be in V| and let m, be the

ideal in k[V] given by
me = {f € k[V] | f(z) = 0}.

This is a maximal ideal in k[V], since evaluation at z is an isomorphism of
k[V]/m, with k, and the quotient m,/m2 is a finite-dimensional vector
space over k. The following proposition shows that the definition of
nonsingularity does not depend on the system of generators.

Proposition 11.38. A point z of an affine variety V is nonsingular if
and only if the vector space dimension of m;/m? equals the dimension

of V.

The second construct for seeing that nonsingularity is intrinsic uses
quotients of elements of k[V]. Let k[V], be the subring of k(V) given
by

F=g/h,
k(V]e = { F € k(V) |g and h are in k[V],
h(z) #0
This is a local ring in the sense that it has a unique maximal ideal M,
namely the members vanishing at z. It is called the local ring of V at
z. Tt is Noetherian since k[V] is Noetherian, and it is an integral domain
since it is contained in a field. The members of k[V], are the elements of
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(V) with a definite value at z, i.e., F = g/h has F(z) = g(z)/h(z) well
defined and finite. Such elements are said to be regular or defined at
x. Nonsingularity can be decided by M, /M2, according to Proposition
11.38 and the following result.

Proposition 11.39. The inclusion m, C M, yields an isomorphism
mg/m? 2 M, /M2.

PROOF. We get a ring homomorphism m, /m2 — M, /M2. If g/h is
given in M., then

h) g =2+ (£) (M)

exhibits (z)~!g in M, as mapping to g4 M2. Hence the map is onto.

; !
If g in m; maps to 3 (%) (%) in M2, we can clear fractions and
i i

write hg = 37 g:gh! for an element h of k[V] with h(z) # 0. Here
2_gigih{ is in m2. The set {f € k[V] | fg € mZ2} is an ideal in k[V]
containing m, and also h, which is not in mg. Since m, is maximal, 1
is in the set and g is in m2. Thus the mapping my/m2 — M, /M2 is
one-one.

Projective n-space P, (k) is defined in the same way as with Py(k),
namely as the quotient of {(zo,...,2,) € kn+! — {(0,...,0)}} by an
equivalence relation, two points being equivalent if one is a kX multiple
of the other. Our notation for writing a point of P, (k) with care is
[(zo,...,2n)]. We let P, (ko) be the subset of P, (k) for which zq, ..., z,
can be taken in k.

. To any homogeneous ideal I in k[Xo,..., X,], we associate its zero set
in P,(k):

Wr = {[(z0,...,z,)] ePn(]z')lf(l‘o,...,:L'n) =0forall feI}.

Any such set Wy is called a projective algebraic set. If W C P, (k)
is a pr.o‘]ective algebraic set, its homogeneous ideal (of poly;omials
vanishing on it) is the ideal I(W) generated by all homogeneous f in
.Ic[Xg,...,X,,] such that f(zo,...,z,) = 0 for all [(zo,...,zn)] € W. It
is always true that I(W;) D I.

We say that a projective algebraic set is defined over ko if I(W) can
be generated by homogeneous members of ko[Xo,...,X,]. In this case
we ab.breviate “W defined over ky” by W/ko, and we define the set of
ko points or ko rational points of W to be W(ko) = W N P, (ko).
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A projective algebraic set W is irreducible if it is not the union of
two proper projective algebraic sets, or equivalently if I(W) is prime.
An irreducible projective algebraic set is called a projective variety.

Projective transformations of P,(k) onto P,(k) are defined in
analogy with the case of n = 2 that was discussed in §II.1. About
any point [(2o,...,z,)] of P,(k) we can introduce various systems of
affine local coordinates. Namely choose ® in GL(n + 1,k) with
®(xo,...,25) = (1,0,...,0). (For many purposes we ignore
(zo,...,2n), and it suffices to take ® to be the identity or a permu-
tation matrix that interchanges 0 and i.) Then we can define affine local
coordinates on [®~!(k* x k™)] to k™ by the one-one map

([ (yo, - - -, tn)]) = (%%’5) (11.66)

If W is a projective algebraic set with homogeneous ideal (W) and
if @ is given as above, we shall write W Nk™ for p([®~1(k* x k®)]NW).
This is an affine algebraic set with ideal I(W N k") C k[X1,...,X,]

given by

; }f(Xl,...,X,,) = F(®~1(1,X1,..., X))

with F € I(W) } - (1167)

I(WnE") = {

Conversely if f is given in k[X, ..., X,] of degree d and if @ is given as
above, then we can define fy as a homogeneous element of k[Xo, ..., Xp]
in two steps by

X1 X
Xo,. ., X)) =X3F(=+,..., 22
gH( 0, ] ) Of(X) )X())

0 (11.68)

JH=ggod.
If V is an affine algebraic set with ideal I(V'), then the projective
closure of V relative to ® is the projective algebraic set W =V whose
homogeneous ideal is generated by {fg € k[Xo,...,Xn]| f € I(V)}.

If we combine these two constructions, passing from F to f as in
(11.67) and then from f to fg as in (11.68), we find that

F=(Xo0®) fu (11.69)

for an integer r > 0. As a consequence we can prove the following.
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Proposition 11.40. Fix @ in GL(n + 1,k) to determine affine local
coordinates.

(a) If V is an affine variety, then W = V is a projective variety and
V=wnk"

(b) If W is a projective variety, then V = W N k™ is an affine variety,
and V C W. The inclusion is strict only if Xg o ® is in I(W), and in
this case V =V = 0.

(c) If ®isin GL(n+1,ko) and W is a projective variety with W N k"
nonempty, then W is defined over kg if and only if W N k" is defined
over kg.

PROOF. Let us check that I(W) prime implies I(W N k™) prime. If
homogeneous F and G lead to f and g with fg in I(W Nk"), then FG
vanishes on WNk™ and (X 0 ®)FG vanishes on W. Hence (Xoo®)FG
is in I(W). Then (Xg 0 ®)F or G is in I(W), and it follows that f or g
isin I{(W N k™).

Next let us check that I(V) prime implies I(V) prime. If f and g lead
to fy and gy with fggy = hy in I(V), choose h in I(V) leading to
hg. Then fg=h, f or gisin I(V), and fg or gy is in I(V).

Then (a) is clear, and (11.69) implies that I(W) C I(V) in (b). Hence
V C W. If the inclusion is strict, let fy be in I(V) but not in I(W).
Then fy comes from some f in I(V), which comes from some F in
I(W). By (11.69), F = (Xq0®)" fu. Since I(W) is prime and fy is not
in I(W), Xgo ®is in I(W). Then 1isin I(V), and V = @. This proves
(b), and (c) follows from the definitions.

If W is a projective variety, we define the function field k(W) of W
to be the field of quotients F(X) = g(X)/h(X) in k(Xo, ..., Xy) such
that g and h are polynomials homogeneous of the same degree, h(X) is

i

% are identified if g~ g'h is in I(W).
In this way, IE(W) has a canonical definition independent of &. We can
describe k(W) alternatively using affine local coordinates. Namely (b)
shows that we can choose ® in GL(n + 1,k) so that W Nk» = W. Fix
such a choice of ®. Using @, we can identify the function field IE(W)
with k(W N k™). Consequently k(W) is finitely generated over k. If W
1s defined over kg, we can treat ko(W) similarly, as a consequence of
Proposition 11.40c; here we must take ¢ in GL(n+1, ko).

The dimension of W is again the transcendence degree of k(W). If =
isin W, we can choose ® so that z is mapped by ¢ in (11.66) to a point
of WNk™. Then it is meaningful to speak of the local ring k[W], of W
at z. We regard k[W], as a subring of k(W); it is the subring of elements
that are regular or defined at z. The ring E[W). is Noetherian.

not in I(W), and quotients % and
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Finally we can consistently define z to be nonsingular if dim M, /M2
= dim W, by virtue of Propositions 11.38 and 11.39. The projective
variety W is nonsingular if it is nonsingular at every point.

The group Auty,(k) plays the same role for projective varieties that
it does for affine varieties. We shall not list the details.

We shall encounter products of projective varieties and shall want to
regard them as projective varieties. First we consider the product of
two projective spaces. If P,,(k) has points [(2q,...,z,)] and P, (k) has
points [(yo, ..., Yn)], then the Segre embedding, which maps

[(zo, .- 2m)] X [(Wos -y un)] — [ miysy - )] = 1C oo zigy )]

in lexicographic order, exhibits P (k) x P,(k) as contained in Pps(k)
with M = mn + m + n. The image of the Segre embedding is the va-
riety of the ideal generated by all 2;;2i1; — z;/2i5. It is a projective
variety in Pp (k). f W C P, (k) and W' C P,(k) are projective vari-
eties defined by homogeneous polynomials { f(X)} and {g(Y)}, then the
product W x W’ C Py(k) is the variety of the ideal generated by all
i Riljr T 2502405, all f(X))/jdegf, and all g(Y)X?eS‘q, in obvious notation.
It too is a projective variety in Pps(k). If W and W' are nonsingular, so
is Wx W' If Wand W’ are defined over kg, sois W x W',

Let Vi C Pn(k) and Vi C P,(k) be projective varieties. A rational
map F from V; to Va is a tuple F = (fo,..., fn) of members of k(V})
such that for every point z € V; where fo, ..., fi, are all defined,

F(z) = [(fo(2), -, fa(2))]

is in Vo. If Vi and V; are defined over ko and if fo,...,fs can be
multiplied by a common member of k% so as to be in ko(V7), then F is
said to be defined over kj.

EXAMPLE 1. Let Vi be Pi(C) = {[(xo, z1)]} with (Vi) = 0, and let
V2 be the curve in Po(C) = {[(y0,¥1,¥2)]} given by yoy2 = u3, i.e., having
homogeneous ideal (yoy2 — y?) in Clyo,y1,y2]). Then F = (22,207, 23)
is a rational map. It is defined over Q.

Let G : Vo — Vi be given by G = (1, Ll

). This too is a rational
Yo

map defined over Q.

EXAMPLE 2. Let Vi be the elliptic curve (11.15) with I(V) generated
within Clzg,z;, 2] (in the current notation) by

z():c% + :L'gxg - :c:f + zorf.
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Let V2 be the elliptic curve (11.13) with I(V;) generated by
zoz3 + z3xy — z3 + zox? + 10z2z; + 20z3.

The map (11.16a) is F = (fo, f1, fo), where fy = 1 and

z x2 2z 2
f1(30,$1,$2)=—1+—g 4 ol

g Ty 1 — 2o (.’61 - 130)2

z 229 + xo [ 23 3 2
fz(ro,ﬁ,zz):—z—# (_% xy " z5 )

zo z 7 (x1—z0)® (21— )2

Then F is a rational map, and it is defined over Q.

EXAMPLE 3. The affine curves v? = 2u* — 1 and y2 = 23 + 8z are
related by the transformations (3.19) and (3.21). If the curves and the
transformations are recast in projective form, then the transformations
are rational maps.

A rational map F = (fy,..., f,) between projective varieties V; and
V2 is regular or defined at z in V; if there is some ¢ in k(V1) such that
¢f: is regular at z and

((gf())(w)) ERRE (gfn)(x))

is not the 0 tuple. A rational map that is regular at every point of V] is
a morphism.

ExAMPLES. In Example 1 above, both F and G are morphisms. This

is clear for F. In the case of G, G is given also by G = (go_’ 1).

L n
Hence the only question is about points of V5 where yo = y; = 0. But

ylz/yo = y; on V5, and hence

2
o= (5) = () == ()
% v %o (ylayQ) yzy

is regular at [(0,0,1)].

Example 2 is a morphism, as a consequence of Theorem 11.42 below.
It fixes oo and hence is a homomorphism of the group structures, by
Proposition 11.61 below. Its kernel is the 5-element torsion subgroup of
1/Q.

In Example 3, the two rational maps (3.19) and (3.21) are inverse to
each ot'her, and thus we say that they are birational. The first curve
has' a singularity at ¥ = w = 0 if the curve is written projectively in
variables (u, v, w), while the second curve is nonsingular. It will follow
that the two transformations cannot both be morphisms.
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Two projective varieties V; and V; are isomorphic if there are mor-
phisms F : V; — V5 and G : V5 — V¥ such that F oG and G o F are
the respective identity maps. The two varieties of Example 1 are iso-
morphic. In the case of elliptic curves as in (3.23), Proposition 11.58
will note that an isomorphism must be given by an admissible change
of variables over k. Thus the current definition of “isomorphism” for
elliptic curves agrees with the earlier one.

Two projective varieties V) /kg and V;/kqy are isomorphic over kg if
the above F and G can be defined over k.

Let us address how maps between varieties affect function fields. If
F : Vi — V5 is arational map between projective varieties, we can try to
define a k algebra map F* : k(V,) — k(V,) between their function fields
by composition: F*(f) = foF. Some condition is needed, however, for
this formula to be meaningful. For example, the image of F' should not
completely be contained in the set where f is not defined. It turns out
that it is enough that F' have dense image in a suitable topology.

We shall not pursue this point in full generality, however. Suppose
instead that F' is a morphism and carries V; onto V,. Then F is called
a dominant morphism. In this case F™* is well defined and is one-one.
Moreover, it carries local rings to local rings:

F*(k[Va]p(z)) € k[Vie.

Consequently if F' is an isomorphism, then F* is an isomorphism of func-
tion fields and an isomorphism of local rings at each point. In particular,
F carries nonsingular points to nonsingular points.

8. Canonical Model of Xy(N)

In this section we shall relate curves to their function fields and then
show how to introduce a canonical @ structure on Xo(N). We continue
with fields kg C k and assumptions on them as in §7. By a function
field of dimension 1, we shall mean any finitely generated extension
of k of transcendence degree one.

Let C be a projective curve, and let z be a nonsingular point. The key
to analyzing C about z lies in the fact that every rational function on C
has a well defined order at z. To define the order, we use the following
lemma.

Lemma 11.41. Let R be a Noetherian local ring that is an integral
domain and a k algebra, and let M be the maximal ideal. Suppose that

(a) dimg(M/M?) =1, and

(b) every element of R not in M is a unit.
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Then M is principal, being given by M = (¢) for any element ¢ of M
not in M2, Also (2, M' = {0}.

ProOF. Let t be in M but not M2. Since R is Noetherian, M has a
finite set of generators ¢, sy,...,s,. Without loss of generality, suppose
r is as small as possible. By (a), s; — ¢;t is in M? for some ¢; € k.
Changing notation, we may assume that our generators ¢,s1,...,s, of
M have the property that each s; is in M2. Since the products of pairs
of generators of M generate M2, we can write

s = at® + Z bjts; + chlsjsl-
J it

Thus

sp(l — bt — Zersj) = at?® + ijtsj + Z ;15551 (11.70)
J

j<r i<i<r

The right side of (11.70) is in (¢, 51,...,5r—1), and the coefficient of s,
on the left side is a unit, by (b). Hence s, is in (¢,s1,...,8,-1), In
contradiction to the minimal choice of » (unless » = 0). We conclude
that M = (2).

Let f be in ﬂf_‘;l M = ﬂ?_‘i_l(t’), and write f = #'f;. Since fi = tfi4q,
we have (f1) C (f2) € (fs) C .... Since R is Noetherian, (f;m) = (fm+1)
for some m. Then fr41 = afm = atfmy1, and at = 1if f,41 # 0. Since
tisin M, at =1 is impossible. Thus f41 =0 and f = 0.

Let us return to the projective curve C and the nonsingular point z.
The local ring k[C],; of C at z satisfies the hypotheses of the lemma. If
f is in k[C],, we define ord,(f) to be the least I > 0 such that f is in
M. but not M!*!. This is an integer > 0 if f # 0 and is +o0 if f = 0.
Let ¢ be any member of M, but not M2, so that M, = (1); ¢ is called
a uniformizer of C at z. If f # 0 and if | = ord,(f), then f = at' for
some unit a in k[C],.

The function field I}(C:) is the quotient field of k[C]., and we can
extend ordg(-) to all of k(C). Namely any F in k(C) is of the form
F = f/g with f and g in k[C], and g # 0. We define

ordz(F) = ord;(f) — ord.(g).
To see that this is well defined, we let I = ord,(f) and m = ord,(g).

Then f = at' and ¢ = b#™ with a and b units in k[C],. Hence F =
ab~ith-m Sol—m = ord,(F’) is characterized as the unique power of
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¢ such that F/t™ is a unit in k[C];. Then ords(-) has the following
properties:

(a) ord;(FG) = ord(F) + ord;{G),

(b) ord-(F +G) > min{ord,(F), ord;(G)},

(c) k[Cl: = {F € k(C) | ord,(F) > 03,

(d) M, = {F € k(C) | ord(F) > 0},

(e) ord,(F) = +co if and only if F=0.
The function ord,(-) allows us to prove a theorem mentioned in connec~
tion with Example 2 in the preceding section.

Theorem 11.42. Let C be a projective curve, let z be a nonsingular
point of C, let V be a projective variety, and let F': C —+'V be a rational
map. Then F is regular at z. Consequently if C is nonsingular, then F'

is a morphism.

ProOF. Let F = (fo,...,fn) with f; € k(C). Let t be a uniformizer
at z, and let

m= Orsr}ign{ordr(fj)}.

Then ord;(t~™ f;) > 0 for all j with equality for some j = jo. By (_cr)n,
t~™f; is regular at x, and (t~™f;,)(z) # 0 by (d). Hence g =1
exhibits F as regular at z.

To each nonsingular point z of a projective curve C, we have associ-
ated the local subring k[C], C k(C) and the function ord,(:) :.k(C} —
ZU {oo} satisfying (a) through (e) above. Let us abst.ract this s1tuat1.on.
A proper subring R C k(C) containing k is called a discrete valuation
ring of k(C) over k if there exists a function v : E(C) — ZU{oo} (called
the valuation) such that

(a) v(FG) = v(F) + v(G),
(b) v(F+G) 2> min{v(F),v(G)},
(c) R={F € k(C)|v(F) 20}

Then R is a local ring with maximal ideal
Mg = {F € k(C) | v(F) > 0}.
For a nonsingular curve C, the next proposition says that this abstrac-

tion captures the functions ord,(-) completely and gives nothing addi-

tional.
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Proposition 11.43. Let C be a nonsingular projective curve, and
let R be a discrete valuation ring of £(C) over k, with valuation v. Then
there exists a point z of C such that v is a positive multiple of ord:(-).
For this z, R = k[C], and Mg = M,.

PROOF. Let (zo,...,2,) be coordinates for the projective space in
which C lies. The z;’s with z; € I (so that z; = 0 everywhere on C)
will not play a role, and we discard them. For the remaining indices we
can regard each z;/zo as in £(C). If v(z;/x5) > 0 for all j, we use the
standard system of affine local coordinates (with & = 1) and pass to
the affine curve C' N k™, which is not empty since zo # 0 somewhere on
C. The members of the affine coordinate ring k[C N k"] are polynomials
in the z;/zo, and thus v is > 0 on the whole ring. Hence k[CNk™) C
R. On the other hand, if v(z;/zo) < 0 for some j, let J = jao be an
index for which it is smallest. Using affine local coordinates in which &
interchanges 0 and jo, we readily see similarly that C' N k" is nonempty
and that k[CN&”] C R.

_ Consequently I = Mg Nk[C N k"] is a proper ideal in KCnkr] =
k[k™)/Ic. Let I be the inverse image of I in k[k"]. By Theorem 11.37,
all members of I vanish at some z in k. Since I C I, zisin C. Thus
every member f of I has the property that ord(f) > 0.

_ Since C'N k™ is nonempty, we can identify k(C) with k(C N k") and
k[C]; with k[C' N k™],. Suppose F is in Mg N k[C NE*],. We can
write F' = f/g with f and g in ¥[C N k"] and ord;(g) = 0. Since g is
in K[CNk"] C R, f = Fgis in I; thus the previous paragraph gives
ord;(f) > 0. Since ord.(g) = 0, we have ord,(F) > 0. This proves that

(v(F) > 0 and ord;(F) > 0) => ord,(F) > 0 (11.71)
for general F in k(C). The contrapositive of (11.71) is
ordz(F) =0 = v(F)<0.
Applying this to 1/F, we obtain
ord;(F) =0 = v(F)=0. (11.72)

By Proposition 11.39 we can choose t in k[CNk"] that is a uniformizing
parameter at z. Since kK[C' N k"] C R, we have v(t) > 0. A general
member F' of k(C) is of the form F = #'F, with ord;(Fp) = 0. By
(11.72) this F has

o(F) = 1u(t) + v(Fo) = lu(t) = v(t) ord,(F).

Now v is not identically 0 since R is a proper subring of k(C). Since
v(t) > 0, we conclude that v(¢) > 0 and that v is a positive multiple of
ordz(-). This completes the proof.
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Proposition 11.43 gives a clue how to reconstruct a nonsingular pro-
jective curve from its function field. The point is that the same idea can
be used to associate a nonsingular projective curve to any function field
of dimension 1.

Theorem 11.44. Let K be a function field of dimension 1 over &,
and let Ck be the set of discrete valuation rings of K over k. Then there
exists a nonsingular projective curve C such that k(C) = K and such
that Ck gets canonically identified with the set of points of C.

REMARK. The curve C is unique up to isomorphism, by Theorem
11.48 below.

We shall give a brief indication of some of the steps. First, if B is
any integral domain that is finitely generated as a k algebra, then B
is isomorphic with the coordinate ring of an affine variety. In fact, let
zi,...,z, be generators of B over k. The map X; — z; gives a k
homomorphism of k[ X, ..., X,] onto B. Since B is an integral domain,
the kernel is a prime ideal . Then Vj is the required affine variety.

Now let us consider the function field K of Theorem 11.44. Let z be a
member of K not in k. We form the polynomial ring k[z]. Then K is a
finite extension of the quotient field k(z). Let B be the integral closure
of k[z] in K. When the construction of the previous paragraph is applied
to this B, the resulting affine variety turns out to be a nonsingular affine
curve.

At this stage we bring in C. Let R be a discrete valuation ring of K
over k, and choose z to be in R (but not in k). Then k[z] C R. One can
show that R is integrally closed in K, and it follows that B C R. The
intersection N = Mg N B is a maximal ideal of B and thus corresponds
to a unique point of the nonsingular affine curve built from B. In other
words, R has been attached to a unique point of the curve corresponding
to B.

To prove Theorem 11.44, one has to take the product of the projective
closures of finitely many such affine curves, map Cyx into this product
diagonally, and take the image of Ck as the desired curve C. We omit
the details.

For our application to Xo(N) it will be important to know conditions
under which the curve C in Theorem 11.44 is defined over the subfield
ko. We assume now that k¥ = C. Taking a cue from Theorem 11.36,
suppose K = C(f,g) and K¢ = ko(f,9). Given R in the argument
above, we can always choose z to be either f or 1/f, so that z is in Kj.
So we need to deal only with two B’s. We are allowed to use more B’s,
but we insist that they come from z’s in K. The heart of the matter
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is to get the affine variety determined by B to be defined over ko. This
step we address in the following lemma.

Lemma 11.45. Let K = C(f,g) be a function field of dimension
1 over C, let ko be a subfield of C, put K¢ = ko(f,g), and suppose
that CN Ko = ko. Let = be in Ky but not kg, let B be the integral
closure of C[«] in K, and let V be a nonsingular affine curve determined
by B. Then V is canonically defined over ky. Under this definition,

Proor. Without loss of generality, f is transcendental over C, and ¢
is algebraic over C(f). Taking into account (¢) = (a) in Theorem 11.36,
we see that f is transcendental over ko and g is algebraic over ko(f).
Therefore Ky has transcendence degree 1 over kq.

Since C N Ky = kg, the given element ¢ of Ky is not in C, hence
is transcendental over kg. Consequently {z} is a transcendence basis
of Ky over kg. It follows that f and g are algebraic over ko(z) and
that Ky is a finite algebraic extension of k¢(z). By the Theorem of the
Primitive Element, there exists y in Kj such that Ko = ko(z,y). Then
K = C(2,y).

Condition (c¢) in Theorem 11.36 is independent of the two generators
and hence still holds when we replace (f, g) by (z,y). By (¢) = (a) in
the theorem, we see that

(Ko : ko(2)] = [K : C(2)]. (11.73)
Let n be the common value of the two sides of (11.73).

Since Cl[z] is a principal ideal domain, there exists a basis {z;,...,z,}
of K over C(z) consisting of members of B such that

B:zn:(:[z]zj. (11.74)
j=1

We take z;,...,z,,z as generators of B over C. Then the map
¥YB 2C[X1,...,Xn+1] —-— B

given by X; — z; for j < n and X, 41 — z exhibits B as the affine
coordinate ring of the curve V defined by the ideal Ig = ker ¢p. We
are to prove that Ig is finitely generated as an ideal by elements of
ko[Xi,..., Xn+1), and we are to identify the function fields.
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Let By be the integral closure of ko[z] in Ko. As above, there exists

a basis {y1,...,yn} of Ko over ko(z) consisting of members of Bo such
that n
Bo= Y ko[z]y;- (11.75)
i=1

We form the map
©B, : ko[X1,..., Xng1] — Bo

given by X; — y; for j < n and Xny1 — 2. Let Ig, = ker ¢B,. By
the Hilbert Basis Theorem, Ip, is finitely generated, say by members
Pi,..., Py of kg[X1,..., Xn41]. We complexify the exact sequence

0'—_—"130 —‘—'kO[Xl)"')Xn+1]_—>B0 —0

to a sequence
0 — Ip, ®k, C— ClXy,...,Xnp1] — Bo®x, € — 0.

The result is exact since the operation (-) ®k, C is an exact functor on
ko vector spaces. Here Ip, Qk, C is generated by Pp, ..., Py, and

BQ ®k0 C= ZC[J;] Yj-

ji=1

Let <ng denote the complexified version of ppg,.

The elements y; are linearly independent over C(z) by (a) of Theorem
11.36. Hence both {z;} and {y;} are bases of K over C(z). Let‘ ¥ be
the C(z) linear map of K into itself given by z; — yj for 1 <j < n.
Then it is clear that

b ops = ¢,

as C linear maps. Therefore their kernels are equal. But ¢ is one-one.

Hence
Ig = I, ®, C. (11.76)

The right side is generated by Pi, ..., Py, which are in ko[ X1, ... , Xn1]-
Thus Ip is finitely generated as an ideal by elements of ko[X1,. ., Xnt1]-

The affine coordinate ring of V is B, and the function field is the
field of quotients of B, which is K by (11.74). In the case of V/ko, we
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determine the affine coordinate ring by first determining I(V/kq), which
is given by

I(V[ko) = I(V) N ko[X1, ..., Xn41]
=1Ip nk()[Xl,. .. ,Xn+1]
= (IBO ko C) n ko[Xl, .. -,Xn-H] by (11.76)
= Ip,.

By definition ko[V] = ko[X1,...,Xn+1]/IB,, and this is Byg. The func-
tion field is the field of quotients of By, which is Ky by (11.75).

Theorem 11.46. Let ky be a subfield of C. If C/kg is a nonsingular
projective curve, then there exist elements f and g in ko(C) such that
ko(C) = ko(f,g) and C(C) = C(f,g). Moreover,

C Nko(C) = ko.

Conversely let K = C(f,g)) be a function field of dimension 1 over C,
let ko be a subfield of C, put K¢ = ko(f, g), and suppose that CN Ky =

ko. Then there exists a nonsingular projective curve C/kg such that

The question of uniqueness of C in Theorem 11.46 is conveniently
addressed in the context of a correspondence between certain maps of
function fields and certain morphisms between curves.

Recall from the end of §7 that a dominant morphism F : C} — Cy be-
tween nonsingular projective curves (over k) induces a one-one k algebra
homomorphism F* : k{(Cs) — k(C}) by composition: F*(f) = fo F.

Lemma 11.47. A morphism F : C; — (3 between nonsingular
projective curves over k either is onto or is a constant map.

Theorem 11.48. Let Ci/ko and Cy/ko be nonsingular projective
curves, and let F : C; — C2 be a dominant morphism defined over kq.
Then F* carries ko(C?) into ko(C1), and ko(C1) is a finite extension of
F*(ko(Cs)). Conversely if F : ko(Cs) — ko(C}) is a one-one kg algebra
homomorphism (carrying 1 to 1), then there exists a unique dominant
morphism F : C; — C, defined over kg such that F* = F.

In particular the nonsingular projective curve given by Theorem 11.46
is unique up to isomorphism. Finally we can put into place the canonical
Q structure on the compact Riemann surface Xo(N).
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Corollary 11.49. There exist a nonsingular projective curve Cc/Q
and a biholomorphic mapping ¢ : Xo(N) — C(C) such that

¢*(C(C)) = K(Xo(N)) = C(j, jn)

and o
©*(Q(C)) = QU in)-
The curve C/Q is unique up to isomorphism deﬁne‘d over.Q., and ¢ is
uniquely determined by the isomorphism of @(C) with Q(,in)
REMARK. One says that (¢, C) is a model for Xo(N) over Q. Our
practice is to identify C(C) with Xo(N) and refer to Xo(N)/Q as a Q
structure on Xo(N).

ProoF. Theorem 11.33 gives K(Xo(N)) = C{j, jn~). Theorem 11.32
shows that C(j, j~) and Q(4, jn ) satisfy (a) of Theorem 11.36 and he.nce
the other equivalent conditions. Theorem 11.46 produces the desired
curve C/Q, and Theorem 11.21 produces . Finally Theorem 11.48
proves the uniqueness of C and ¢.

Our occasional observations in §7 about Autko(lg) apply 'With kh=Q
and k = C since the subfield of C fixed by Autg(C) is Q. This fact allows
us to give a reasonable way of deciding what members of K(Xo(N)) are

in Q(J,Jn)-

Corollary 11.50. A member of C(j,jn) 1sin Q(j, jn) if and only if
its g expansion at oo has all coefficients in Q.

PROOF. Any element ¢ of Autg(C) acts on .C(‘j,jN) and fixes
Q(j,jn) because these fields are associated with varieties. Let

f(T): Z cnq”

n=~M

be in C(j, jn). If f is written as a rational function in j and jN3 then
f# is the same rational function but with each complex coefficient a
replaced by (a). The claim is that

oo

=Y elea)d” (11.77)

n=-M

and then the corollary will follow because Corollary 11.49 ensures that
the subfield of C(j, jn) fixed by Autg(C) is just QJ, In)-
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By Theorem 11.32,

$(N)-1
CGin)y= D, C(Hik
1=0

Since the coefficients of the ¢ expansion of JN are integers, it is enough
to prove (11.77) for f in C(j) = C(j~!). Since the coefficients of the q
expansion of j are integers, it is enough to handle
1
f= T=PG-1)’

where P is a polynomial without constant term. We have

f=1+PE )+ PG +...,
and the coefficients of 1, ¢, ¢2,..., ¢™ are the same for f as for

LHPGT) + 4 PGTHM.

Similarly they are the same for f¢ as for

L+ PO + -+ PE(GTHM.
Then (11.77) follows.

.EXAMPLE. If M divides N, then jpr is in K(Xo(N)) = C{,in)-
Since the ¢ expansion of jjs has rational coefficients, jar is in Q(j, jn).
The inclusion To(N) C T'4(N/M) induces a holomorphic mapping F
of Xo(N) onto Xo(N/M) whose pullback on K(Xo(N/M)) is given by
F*(f)(r) = f(M7). Thus F*{(j) = jp and F*(jn/m) = in, and

F*(Q(7, in/m)) € Q(, jn)- (11.78)

Compz?rison of‘Theorem 11.21 and Corollary 11.49 shows that the holo-
morphic mapping F can be regarded as a morphism between complex

varieties. Bringing in (11.78) and looking at Corollary 11.49 again, we
see that F' is defined over Q. )

We mgption one further corollary of our results. The proof is in the
same spirit as the above results and will be omitted.

Coroll:ary 11.51. Let kg be a subfield of C, and let C/kq be a nonsin-
gular projective curve. If Ky is a subfield of ko(C) of finite index contain-
ing ko, then there exist a nonsingular projective curve C’/ko and a domi-
hant morphism F': C — C’ defined over kg such that F*(ko(C")) = K
Th.e curve C’ is unique up to isomorphism defined over kg, and F is‘
uniquely determined by the isomorphism of ko(C") with K. ,
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9. Abstract Elliptic Curves and Isogenies

The Eichler-Shimura theory does not work directly with nonsingular
Weierstrass equations. Instead it works with a certain kind of projective
curve that turns out to be isomorphic to a curve defined by a nonsingular
Weierstrass equation. In this section we shall expand our definition of
elliptic curve to include this wider kind of projective curve. We omit
proofs of general results about curves but usually give sketches of proofs
about elliptic curves. Let ko C k be fields with the same assumptions as
in §7.

Let Cy/ko and C2/ko be nonsingular projective curves, and let
F : C; — C3 be a morphism. If F = 0, we define the degree of F
by deg F = 0. Otherwise F is onto, by Lemma 11.47, and F*(ko(C3))
has finite index in ko(C}), by Theorem 11.48. In this case we define

deg F" = [ko(C1) : F*(ko(C2))]. (11.79)

This degree is the same if computed over k.

For the case of characteristic # 0, one must pay attention to separa-
bility of field extensions in the present context. Any algebraic extension
can be obtained in two steps, a separable one followed by a purely insep-
arable one. For the field extension indicated in (11.79), we let deg, F be
the degree of the separable part and deg; F' be the degree of the purely
inseparable part. Then deg F' is the product of deg, F' and deg; F'. We
say that F' is separable or purely inseparable if deg F' = deg, F or
deg F' = deg; F, respectively.

Recall that the quotient map H — T'o(NV)\H of Riemann surfaces fails
to be a covering map at elliptic fixed points of To(N) in H. We shall
define the counterpart of this kind of ramification for varieties. For F'
as above but nonconstant, let z be in C; and let t () be a uniformizing
parameter at F'(z). We define ep(2) = ord.(F*(tp(z))). The morphism
F is unramified at z if ep(z) = 1, ramified if ep(z) > 1. It is
unramified if it is unramified at every point. One can prove for every
y in Cy that

> er(z) =deg F; (11.80)
s€EF=1(y)

also for all but finitely many y in Cy,
#F‘l(y):degs F. (11.81)

It follows immediately from (11.80) that F is unramified if and only if
#F~1(y) = deg F for all y in Cs.
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Suppose C' is defined over Z, with T (C) generated by some homoge-

neous polynomials f in Z,[X,,..., X,]. The Frobenius morphism ¢
of C is given by

#[(zo,. .., zp)] = [(25,...,28))]. (11.82)

Since f(zh,...,z8) = (f(zo,...,:cn))p, ¢ really does map C to C and
is defined over Z,,.

More generally let char(ko) = pand ¢ = p". If C is defined over ko with
I(C) generated by some homogeneous polynomials f in ko[Xo, ..., X,],
we define C(9) by the ideal generated by all f(9), where F9 is f with
all coefficients raised to the ¢*" power. The ¢"" power Frobenius
morphxsm.cﬁ carries C to C?) and is given by (11.82) with p replaced
by ¢. The situation in the previous paragraph is a special case because
C®) = C when C is defined over Z,. One can prove that

() ¢"(ko(CW)) = {f| f € C}

(b) ¢ is purely inseparable

(c) dego =gq.

In characteristic p, our original nonconstant morphism F : C; — C,
admits a factorization F = F, o ¢, where ¢ : C; — C'l(q) is the g¢th
power Frobenius morphism with ¢ = deg; F' and where F, : C’%“ — Cy
is separable.

We can define the abelian group Div(C) of divisors of a nonsingular
projective curve C' just as we did for a compact Riemann surface in §4.
In the case of f # 0 in k(C), we say f has a zero at z if ordz(f) > 0 or

a polc? if ord;(f) < 0. The divisor [f] of f makes sense because of the
following theorem.

_ Theorem 11.52. If C is a nonsingular projective curve and f is in
k(C), then f has only finitely many zeros and finitely many poles.

The‘ c?ivisor of a function is called a principal divisor. The degree
of a divisor )~ ord,(D)z is the integer 3~ ord, (D).

Theorem 11.53. Every principal divi ) o
«9d. pal divisor
curve has degree 0. on a nonsingular projective

' IfF:Cy— Cyis 2 dominant morphism between nonsingular projec-
tive curves, then F induces maps on divisors in both directions by
F* : Div(Cz) — Div(Cy)

Y — E ep(z)z. (11.83)

z€F~1(y)

F,k : DlV(C]) — DlV(Cg)
r — F(z)

g 'mﬁ«,i"*
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The idea of the map F, was already implicit in our discussion centered
about (11.29).

The theory of divisors on C proceeds as in the case of compact Rie-
mann surfaces (§4). The set of principal divisors is denoted Divo(C),
and the quotient Pic(C) = Div(C)/Divg(C) is called the divisor class
group. Let Pic®(C) be the quotient of the divisors of degree 0 by the
principal divisors. Qur curve C' has an analog of meromorphic differen-
tials on Riemann surfaces. These always exist, and the divisor class of
such differentials is called the canonical class. Linear systems L(D)
for divisors are defined just as in §4. If D < 0, then L(D) = 0 as a
consequence of Theorem 11.53. By an analog of Proposition 11.7, L(0)
is 1-dimensional.

If k = C, then the C points of C form a compact Riemann surface, and
genus has the customary topological meaning. One can give an abstract
definition of genus even in characteristic # 0, but for our purposes we
may as well define the genus ¢ by its value from the Riemann-Roch
Theorem with D = 0: ¢ = dim L(W) for any W # 0 in the canonical

class.

Theorem 11.54 (Riemann-Roch Theorem). Let C be a nonsingular
projective curve of genus g, let D be a divisor, and let W be in the
canonical class. Then

dim L(D) = deg D+ dim L(W — D) — g + 1.

Corollary 11.55. Let C be a nonsingular projective curve of genus
g. If D is a divisor with deg D > 2g — 2, then

dim L(D) = degD — g + 1.

The Jacobian variety Pic®(C) will be identified as a variety for the
genus 1 case in Corollary 11.60, and for the higher genus case in §10.

If C is defined over ko, the group Aut,(k) acts on points of C, fix-
ing exactly those in C(ko). The action on points induces an action on
divisors. We say that a divisor D is defined over kg if it is fixed by
Autg, (k). (It is not necessary for each of the points with nonzero coeffi-
cient in D to be fixed by Aut,(k).) The following result is fundamental.

Proposition 11.56. Let C/kq be a nonsingular projective curve and
let D be a divisor defined over ky. Then the k vector space L(D) has a
basis defined over kg (i.e., consisting of members of ky(C)).
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We come to our expanded definition of elliptic curve. An elliptic
curve is a pair (F,Q), where E is a nonsingular projective curve of
genus 1 and O is a point in E. The elliptic curve is defined over ky if
E is defined over kg and O is in E(ko).

If a curve E is given by a nonsingular Weierstrass equation (3.23)
over ko and if O is taken as the usual point at oo, then (E,0) is an
elliptic curve in the new sense, and it is defined over ko. To see this, we
need only compute the genus. The expression (11.21) is a member of
the canonical class with neither zeros nor poles, hence with divisor W
of degree 0. Then Theorem 11.54 with D = W gives

g:dimL(W):degW+dimL(0)—g+1:0+1—g+l.
Hence g = 1. The converse is as follows.

Theorem 11.57. If (E,0) is an elliptic curve defined over ko, then
there exist functions  and y in ko(E) such that the map F : E — Py(k)
with

F={(z,y,1)]

has F(0O) = [(0,1,0)] and is an isomorphism defined over kg onto a non-
singular curve given by a Weierstrass equation (3.23) whose coefficients
are in ky.

Some comments about the proof may be helpful. For n > 1, L(n(0))
has dimension n, by Corollary 11.55, and we may choose a basis for it
from ko(E) by Proposition 11.56. We take any z so that {1, z} is a basis
over ko of L(2(0)) and then any y so that {1, z, y} is a basis over kg of
L(3(0)). The seven functions 1, z,y, 22, zy, y2, z2 are in L(6(0)), which
has dimension 6, and must be linearly dependent. A nontrivial linear
relation among the seven functions can be adjusted to give the desired
Welerstrass equation. (This argument can be implemented for specific
equations. For example, the change of variables that leads from (3.18)
to (3.19) and (3.20) can be deduced from it after (3.18) is desingularized
at 00.)

To show that the Weierstrass equation obtained in the proof of The-
orem 11.57 is nonsingular, one proves first that z and Y generate IE(E)
over k. Then it follows that F has degree 1. If the image is singular,
Proposition 3.11 allows us to compose F' with a certain map to Py (l_c)
such that the composition has degree 1. Since E and Py (k) are both
nonsingular, Theorem 11.48 shows they are isomorphic. But they have
different genus, contradiction.

The same kind of argument classifies isomorphisms between elliptic
curves that are given by Weierstrass equations.
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Proposition 11.58. If two elliptic curves (F, Q) and (E’,O’) defined
over kg are given by Weierstrass equations over ko (with O and O’ corre-
sponding to co), and if there exists an isomorphism F : E — E’ defined
over ko with F(00) = oo, then E and E’ are related by an admissible
change of variables (3.43) with coefficients in kg.

The idea of the proof is as follows: If £ « (z,y) and E' « (z',y'),
then {1,z} and {1, 2’} are bases of L(2(0)) and L(2(0’)), while {1, z,y}
and {1,z',y'} are bases of L(3(0)) and L(3(0")).

As a consequence of the above results, we can transfer the group op-
eration to a general elliptic curve from any of its associated Weierstrass
equations. We need to know that this group operation fits in with the
kinds of mappings we have been discussing, and we need to know how
to recognize the group operation without passing back and forth to a
Weierstrass equation,

Proposition 11.59.

(a) For an elliptic curve over ko given by a Weierstrass equation over
kg, addition and negative are morphisms defined over kq.

(b) For an elliptic curve (E,O), a definition of addition that is con-
sistent with the definition in Weierstrass form is as follows: If D is
any divisor of degree 0, there exists a unique point z on F such that
D — (z — (0)) is a principal divisor. The sum of ¢ and y is the point
corresponding to the divisor z + y — 2(0), the identity is (O), and the
negative of z is the point corresponding to the divisor (O) — «.

Part (a) is tedious to check. Part (b) follows by repeated use of
Theorem 11.54 and little else.

Corollary 11.60. For an elliptic curve (£, 0), the mapping z —
z—z(0) of E into Div(E) yields a group isomorphism of E onto Pic?(E).

The corollary is just a reworded version of Proposition 11.59b. The
Riemann surface analog is Corollary 11.16a. From now on, we shall typ-
ically say, “Let E be an elliptic curve,” dropping reference to the group
identity. The identity will be denoted O and for Weierstrass equations
will be the point at oo.

If £y and E; are elliptic curves over k, an isogeny between them is a
morphism F : Fy — E3 with F(O) = O. All nonzero isogenies are onto,
by Lemma 11.47. When k = C, we saw in Chapter VI that isogenies are
automatically homomorphisms. The same thing is true in general.
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Proposition 11.61. An isogeny is a group homomorphism.

SKETCH OF PROOF. We may assume that the isogeny F : E;, — E,
is not zero. Referring to (11.83) and Corollary 11.60, we write F as the
composition of three homomorphisms E; = Pic®(E;), F. : Pic®(E;) —
Pic®(E>), and Pic®(E;) = E,.

EXAMPLES.

1) If E is any elliptic curve, then multiplication by the integer m,
denoted [m], is an isogeny from E to E.

2) In §1 we wrote down an explicit isogeny F : E' — E between two
elliptic curves defined over Q such that j(E') = —163/11 and j(E) =
-212313/115.

3) If E is an elliptic curve over Z,, then the Frobenius map ¢ : £ — E
given in (11.82) is an isogeny.

If E; and E; are elliptic curves defined over k, we let Hom(FEy, E»)
be the set of all isogenies from E; to E,. The pointwise sutu F + G
of two members of Hom(E;, E5) is again in Hom(E;, E,), peing the
composition of

diagonal : 1 — E; x Ey,
FxG:FEy xE — FEyx E,, and
+ 1 Ey X Ey — E,.

Then Hom(E}, Es) becomes an abelian group. The subset of isogenies
defined over kg is a subgroup.

We write End(E) in place of Hom(E, E) when the two curves are the
same. The abelian group End(Z) has a multiplication given by compo-
sition. The distributive law F(G+ H) = FG + FH follows immediately
by applying Proposition 11.61 to F.

Let E be an elliptic curve. For z in E, we define a translation map
Ty : E — E by Tz(y) = z + y. Then T,* is an automorphism of k(E);
if E is defined over ko and z is in E(kg), then T" is an automorphism

of k()(E)

Proposition 11.62. If F : F, — E3 is a nonconstant isogeny be-
tween elliptic curves defined over k, then ker F is finite, and the map
z — T," induces an isomorphism

ker F = AutF.(E(E,‘,))\]E(El)). (1184)
If F' is separable, then F is unramified and
deg F = # ker(F); (11.85)

moreover, k(E}) is a Galois extension of F* (k(E3)).
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The proof uses (11.80) and (11.81), as well as a little Galois theory.
We omit the details.

For an elliptic curve over Z, with k= 2p, Proposition 11.62 gives a
way of calculating #FE(Z,). In fact, the Frobenius morphism ¢ of (11.82)
fixes exactly those points of E that are in F(Z,). Thus

t€F(Z,) <= ¢(z)=z <= ([1]-¢)(z) =0 <= z €ker([1] - ¢)

and
#E(Z,) = # ker([1] — ). (11.86)

A fundamental fact, which we shall not prove, is that
1-¢ is a separable isogeny. (11.87)
Corbining this fact with (11.85) and (£1.86), we obtain
#E(Z,) = deg((L] - ¢). (11.88)

Lemma 11.63. Let F : E{ — F5 and G : E; — E3 be nonconstant
isogenies of elliptic curves over k. If F is separable and ker F' C ker G,
then there exists a unique isogeny H : Ey — E3 such that G = Ho F.
If F and G are defined over kg, so is H.

ProoF. The inclusion of kernels and (11.84) give natural isomor-
phisms

AutF.(E(E2))(I—L'(E1)) = ker F’ (_: ker G = AUtG-(E(E3))(E(E1))«

Hence every automorphism fixing F* (k(E;)) fixes G*(k(E3)). By Propo-
sition 11.62, k(E,) is Galois over F*(k(E;)). Hence G*(k(Ej)) C
F*(k(E,)). Then Theorem 11.48 gives us a corresponding morphism
H : Fy — E3 with F* o H* = G*. By uniqueness in Theorem 11.48,
G = Ho F. Then O = G(O) = H(F(0O)) = H(O) shows that H is an
isogeny. If F and G are defined over kg, we can apply Theorem 11.48 to
G*(ko(E3)) C F*(ko(E2)) to construct H as defined over ko.

Theorem 11.64. Let F : £} — F, be a nonconstant isogeny of
degree m between elliptic curves defined over k. Then there exists a
unique isogeny 7' : Ey — Ej such that F o F = [m]. If F is defined over
kg, so is F.

REMARKS. F is called the dual 1sogeny to F. We say that F;
is isogenous to F, if there is a nonconstant isogeny from E; to Ej.
As a consequence of this theorem, “is isogenous to” is an equivalence
relation. If we restrict attention to elliptic curves defined over ko, it is
still an equivalence relation.
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SKETCH OF PROOF. As a morphism, F factors into F' = F, 0¢, where
F, is separable and ¢ is a ¢*P power Frobenius. Thus it is enough to treat
F; and ¢ individually. We treat only F, changing notation and writing
F for it. By (11.85), #ker(F) = m. Thus the map [m] : E; — E;
annihilates ker F', and ker F C ker[m]. Application of Lemma 11.63
completes the proof.

Dual isogenies have the following properties, whose proofs we omit.

Proposition 11.65. Let F': Ey — FE3 be an isogeny of degree m.
(a) FoF= [m] on E;, and FoF = [m] on Ej.
(b) deg F = deg F and (F) = F.

(¢) [m]"= [m] and deg [m] = m?.

(d) If G : E; — E5 is an isogeny, then (G o F)"=

FoG.
(e) If H : E; — E, is an isogeny, then (F + H) = F+

H.
The next result is a converse to Proposition 11.62.

Theorem 11.66. Let E be an elliptic curve over k, and let S be
a finite subgroup of E. Then there exist an elliptic curve £’ and a
separable isogeny F : E — FE’ such that ker ¥ = S. The curve E’ is
unique up to isomorphism. If E is defined over ky and if S is stable under
Autg (k), then E’ is defined over ky and may be taken to be defined over
ko.

IDEA OF PROOF OVER k IF char(k) = 0. The set {T;* | z € S} is
a finite group of automorphisms of E(E) We apply Lemma 11.35 to
determine a subfield, Theorem 11.44 to define a nonsingular projective
curve C, and Theorem 11.48 to define a dominant morphism F' : E — C.
One has to prove that F is unramified and then that the genus of C is
one.

Let us return to elliptic curves over Q. The L function of such a curve
was defined in (10.9).

Theorem 11.67. Let E and E’ be elliptic curves over @ that are
isogenous over Q. Then L(s, F) = L(s, E').

SKETCH OF PROOF. The two L functions will be equal factor by
factor. We treat the p*" factor only for primes p not dividing A or A’,
omitting the others. If ' : E — E’ is a nonconstant isogeny defined over
Q, one has to check that F' induces a nonconstant isogeny F, : E, — E,
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defined over Z,. Taking this for granted, let ¢; and ¢ be the Frobenius
morphisms of E, and E, defined in (11.82). We can write F, = F¢]
with F, : Ep — E, separable and defined over Z,. So we may as well
assume from the outset that F, : E, — E, is a separable isogeny defined
over Z.

If we write out the morphism F, as [(Fy, Fy, F3)], we have

Fp(¢1(2)) = [(Fo(P), Fi(2F), F2(2"))]
= [(Fo(=), Fi(2)P, Fa(2)P)] = 62(Fp(2))-

Thus
Foo¢1=¢o0F,. (11.89)

If y is in Ej, then y = F,(z) for deg F}, values of z, by (11.85) since ¢,

is onto. For such an z,

Y€ Ey(Z,) <= ¢2(y) =y
= ¢2Fp(x) = Fp(z) <= z € ker(([1] — ¢2)F}).
Thus

51, = Bty

_ #ker(Fp([1] — 41))
= o by (11.89)

_ deg(Fp([1] — 1))
= geg A ! by (11.87) and (11.85)

_ deg(F) deg([1] — 41)
deg F}

= deg([1] - ¢1)
= #E(Zp).

Hence the p*" factors of L(s, E) and L(s, E') match.
10. Abelian Varieties and Jacobian Variety

In this section our algebraically closed field k£ will be C, and the sub-
field kg will be Q. An abelian variety A is a nonsingular projective
variety over C with a distinguished point O and with an abelian group
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structure such that O is the identity and the operations of addition and
negative are morphisms. The abelian variety is said to be defined over
Q if A is defined over @, O is in A(Q), and addition and negative are
defined over Q. Any elliptic curve (over C or Q) is an example, by
Proposition 11.59a. Conversely an abelian variety of dimension 1 is an
elliptic curve. (We have only to see that the genus is 1. We can work
with A(C), which is a compact Riemann surface. Translations are fixed-
point free automorphisms homotopic to the identity, and the Lefschetz
Fixed-Point Theorem allows these only in genus 1.)

The goal of this section is to introduce the Jacobian variety J(C) of a
nonsingular projective curve C defined over Q. J(C) is to be an abelian
variety defined over @ and is to play the same role in geometry over Q
that the Jacobian variety of §4 plays in the theory of compact Riemann
surfaces.

Let A and B be abelian varieties. A homomorphism F : A — B
is a morphism of varieties that is also a homomorphism of groups. We
say that F'is an isomorphism if it is an isomorphism of varieties and
an isomorphism of groups. If A and B are defined over Q, we say F is
defined over Q if it is defined over @ as a morphism.

The set Hom(A, B) of homomorphisms from A to B is an abelian
group under pointwise addition. For the special case that A = B, we
write End A4 in place of Hom(A, A). This is a ring with composition as
multiplication.

If Ais an abelian variety and C is a subvariety (obtained by enlarging
the defining homogeneous ideal of polynomials), then the inclusion map
is automatically a morphism. If C has a group structure compatible with
that of A, then inclusion and addition give morphisms CxC — Ax 4 —
A with image in C that show that addition on C'is a morphism. Similarly
negative on C is a morphism. We say that C is an abelian subvariety
of A. The kernel of a homomorphism between abelian varieties is an
example if it is connected in the complex manifold topology. We shall
make use of the following two propositions.

Proposition 11.68. If F : B — A is a homomorphism between
abelian varieties, then C = image F is an abelian subvariety of A. If A,
B, and F are defined over @, then C may be taken to be defined over
Q.

Proposition 11.69. Let A be an abelian variety, and let C be an
abelian subvariety. Then A/C may be given the structure of an abelian
variety in the following sense: There exists a pair (A’, F') such that A’
is an abelian variety, F' : A — A’ is a homomorphism onto, ker F =
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C, and any homomorphism F” : A — A" of abelian varieties with
ker " 3 C factors through F, i.e., F/ = F’ o F for a homomorphism
F' 1 A” — A” of abelian varieties. The pair (A, F) is unique up to
canonical isomorphism. If A and C are defined over @, then A’ and F
will be defined over @; in this case, when A” and F” in the universal
property are defined over @, F’ may be taken to be defined over Q.

The next proposition gives some properties of abelian varieties and
homomorphisms in order to shed some light on the definitions. Although
the proposition helps to motivate parts of §11 and Chapter XII, it will
not be used explicitly.

Proposition 11.70. Let A and B be abelian varieties.

(2) A homomorphism F : A — B is onto if and only if its kernel is
finite. (In this case, A and B are said to be isogenous.)

(b) Isogeny is symmetric and hence is an equivalence relation.

(c) If V is a nonsingular projective variety and F : V — A is a rational
map, then F is a morphism.

(d) Any morphism F : A — B is the composition of a homomorphism
and a translation.

(e) If B is an abelian subvariety of A, then there exists an abelian
subvariety C' of A such that BN C is a finite group and A = B + C
as groups. If A and B are defined over @, then C may be taken to be
defined over Q.

(f) A is isogenous to a product of abelian varieties that are simple (in
the sense of not having any proper nonzero abelian subvarieties), and
the factors of the decomposition are unique up to isogeny.

For X a compact Riemann surface of genus g, we defined the Jacobian
variety J(X) = C9/A(X) in §4. With a base point z, fixed in X, there
is a canonical holomorphic mapping ¢ : X — J(X )} with the following
universal property. Whenever F : X — T is a holomorphic mapping
into a complex torus, then F factors through the Jacobian variety:

F=fod+ F(z)

for some holomorphic homomorphism f : J(X) — T.

When the base point in X is changed, ® gets composed with a transla-
tion. The universal property makes J(X) unique up to a biholomorphic
group isomorphism. If J(X) is fixed, @ is unique up to composition with
a translation and a biholomorphic automorphism of J (X).
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If C' is a nonsingular projective curve over C, then C(C) has an under-
lying complex manifold structure, hence is a compact Riemann surface.
Thus C has a Jacobian variety in the above sense. The following theo-
rem solves the problem of putting on the Jacobian variety the structure
of a nonsingular projective variety.

Theorem 11.71. Let C be a nonsingular projective curve over C,
let J(C) be the Jacobian variety of the underlying compact Riemann
surface, and let & : C — J(C) be the canonical holomorphic mapping
with base point zg. Then J(C) admits the structure of a nonsingular
projective variety in such a way that

(a) its group structure makes it into an abelian variety,

(b) @ is a morphism, and

(c) whenever F : C — A is a morphism into an abelian variety,

then F' factors through J(C) as F = f o ® + F(zo) for some
homomorphism f : J(C) — A of abelian varieties.

Moreover, if C is defined over @, then J{C) can be defined over Q in
such a way that (a), (b), and (c) are valid with structures defined over

There is a uniqueness statement for Theorem 11.71, just as in the
setting of compact Riemann surfaces, and it is again easy. Existence,
however, is a deep question. Theorem 11.71 is due to Lefschetz for C and
to Weil and Chow for Q. The following result will be handy in detecting
morphisms that involve J(C).

Theorem 11.72 (Chow). If V; and V, are nonsingular projective
varieties over C and if F : V; — V5, is a holomorphic mapping between
their underlying compiex manifolds, then F' is rational over C.

We shall apply Theorem 11.71 to C = Xo(N}, which is defined over
Q. The ring of holomorphic homomorphisms of J(Xo(N)) into itself is
the same as the ring End(J(Xo(N))) of abelian variety homomorphisms
defined over C, as a consequence of Theorem 11.72. Two key steps in the
Eichler-Shimura theory are to transform the Hecke operators into mem-
bers of End(J(X¢(/N))) and to show that the resulting homomorphisms
are defined over @. We carry out the first of these steps now.

For this purpose we fix notation as follows: Let Xo(N) have genus
g, and let wy,...,w, be the basis of Qhi(Xo(N)) used to define J =
J(Xo(N)) concretely as C9/A(Xo(N)). (Recall that C9 and A(Xe(N))
are not affected by changing the Z basis of cycles.) Let = : H* —
To(N)\H* be the quotient map and ® : H* — J be the composition
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®=3%onr If we put fi(r)dr = 7*(w;), then fi,..., f, is a basis for
S2(To(N)) and & is given by

&(r) = {/ fj(C)dC}g (11.90)

ji=1

for any base point T € 7! (zo).

Since J = C9/A(Xo(N)), we may identify the tangent space j to J
at the group identity O as the same CY. Its standard basis will be
denoted ey,...,e,. The group J is a Lie group, and its Lie algebra is
j = €4, column-vector space. Any real analytic homomorphism fofJ
mnto itself induces (by passage to the differential df at O) an R linear
map of CY into itself, and distinct homomorphisms yield distinct linear
maps. The members of End(J) are holomorphic, and their differentials
are consequently C linear maps of j = C¢ into itself. In this way we get
a one-one ring homomorphism of End(J) into the algebra of all g-by-g
complex matrices:

End(J) — M(g,C). (11.91)
We can use z,...,z, as coordinates on J, and the space Qpa1(J) of
holomorphic 1-forms is the C linear span of dzy,... ,dzg. The spaces

Qhoi(J) and j are in natural duality, the pairing being given by
(dz,-,ej) = 6,",'.

If we identify j with the space of invariant vector fields on J, we can
regard this formula also as a valid pairing at any point of J. For fin
End(J), we define an endomorphism 6 f of Qp01(J) by

((6F)u, v) = (u,(df)v) for u € Qnoi(J) and v €. (11.92)

Let us check that _
®*(dz;) = fi(r)dr. (11.93)

In fact, at any point 7y, differentiation of (11.90) at 7, gives

f1(T1)
)) =z, [ |)=sim).
fg(Tl

- di - (d
@), 51| ) = (@ b (o

71

. d -
Since (dr, E‘r ) = 1, we obtain (11.93). Since ®* maps basis to basis,
- 1

®* is a vector space isomorphism. Therefore it makes sense to define

M Sz(FO(N)) — Qhol(J) by
*(u(f)) = f(r)dr  for f € Sy(To(N)). (11.94)
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Let M(n,N) = UX, To(N)a; asin (11.28). In (11.29) and (11.32) we
defined consistently a Hecke operator T'(n) : Xo(N) — Div(Xo(N)) by

K

T(n)(x(r)) = Z (m(asT)). (11.95)

i=1
The mapping ® : Xo(N) — J extends by additivity to a map
o# : Div(Xo(N)) — J,
and then we can form the composition T#(n) = &# o T'(n) given by

K Z;‘ ffaoi‘r fl (C) dC
T#(n)(x(r)) = Y ®(n(cuiT)) = : . (11.96)
= i [T ) &
Equation (11.96) exhibits T#(n) as holomorphic; by Theorem 11.72 it is
a morphism of varieties over C. In §11 one of the steps will be to prove
that T#(n) is defined over Q.

Applying the universal mapping property to T#(n) : Xo(N) — J
(with A = J), we obtain a member ¢(n) of End J such that

T#(n)(n(r)) = t(n)(2(7)) + T#(n)(n(70))
for all 7. What this equation says is
[ 1) il h(Q)d¢

t(n) = : . (11.97)
ST F(Q)d¢ PN M A (QT:'s

Since t(n) is additive, we can evaluate (11.97) at 7; and subtract the
result from (11.97) to obtain

f:, f1(¢) d¢ > f::” f1(¢) d¢
t(n) : = : . (11.98)
S5 f(©) ¢ i ST () dC

To compute the differential dt(n), we can differentiate the formula for
{(n) along any curve extending from the O vector. Differentiating (11.98)
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at 7 = 7, and then writing 7 for 7 (since 7 is arbitrary), we find

A [ i files(r)) L

dt(n) : = :
1) \E fyle(r) 452
Sifrolede()  ( Tam)fa(r)
\Ei fq 0.[015]2(T) Tz(n)‘fg(r) (11.99)
for all .

Consequently the matrix of dt(n) is A(T2(n)), in the notation of
(11.47). We shall use the reformulation below of this result.

Proposition 11.73 (Shimura-Taniyama). For f in S3(To(N)),

(8t(n)) () = w(T2(n)f). (11.100)

ProoF. Write f = 3 ¢z fi, and let ¢; be a standard basis vector of j.
Then we have

((6t(n))(u(£)), e1) = (u(f), dt(n)er) by (11.92)
= ch(dzk, dt(n)(e;))
k

= cx(dt(n)er
= Z CkA(Tg(n))k(
k

and

(W(To(n)f), 1) = Zk:c:c (1(T2(n)fi), e1)
= % ce (B(A(T2(n))km fm), 1)
- kz’:ckA(Tg(n))km(dzmr er)
= ;mckA(Tz(n))k,.

The above equations show that the two sides of (11.100) are paired
equally with any member of j and therefore must be equal.
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11. Elliptic Curves Constructed from Sy(T'o(N))

We come to the main theorem of the Eichler-Shimura theory. We
continue with the notation Xo(N), g, A(Xo(N)), J, ®, {fi,.-., fs}, 0,
i, End J, Qnoi(J), d and 6, p, T(n), T#(n), ¢(n), dt(n), and 6t(n) as in
the latter part of §10.

In order to handle one step in the proof of the main theorem, we
shall assume that the basis {fi,..., f;} of So(I'o(NV)) over C has been
constructed as in Theorem 11.25, so that the matrices of the Hecke
operators T5(n) have integer entries. By (11.99) these integer matrices
are the matrices of dt(n).

We define Endg(J) = End(J) ®z Q. By (11.91), Endg(J) can be
regarded as an algebra over Q of g-by-g complex matrices.

Theorem 11.74 (Eichler-Shimura). Let f(r) = 3 oo cne?™" be a
newform in S3(T'o(N)) normalized to have ¢; = 1, and suppose that all
¢, are in Z. Then there exists a pair (E,v) such that

(a) E is an elliptic curve defined over Q, and (£, v) is a quotient of
J by an abelian subvariety of J defined over Q,

(b) the members t(n) of End(J) leave A stable and act on the quotient
E as multiplication by the integers c,,

(c) p(f) is a nonzero multiple of v*(w), where w is the invariant
differential (11.21) of E,

(d) if
Ay = {‘I’f(“/) =/

To

¥(7o

' 10| v e T},

then A; is a lattice in C, and F is isomorphic to C/A; over C,
(e) the L functions of £ and f coincide as Euler products except
possibly at finitely many primes.

Moreover, properties (a) and (b) characterize A uniquely and therefore
determine (E,v) up to isomorphism defined over Q.

REMARKS. Composing v in (a) with & : Xo(N) — J, we obtain a
morphism v o ® : Xo(N) — E defined over Q. The proof of the theorem
does not use that f is a newform, only that f is an eigenfunction of
all the Hecke operators T3(n). Work of Igusa shows that the Eichler-
Shimura argument for (e) is applicable to all primes not dividing N. If
J is a newform, then Theorem 12.8 will note that L(E,s) and L(f,s)
match exactly.
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The proof has a characteristic 0 part and a characteristic p part, the
latter to handle (e). We shall give the full characteristic 0 part in this
section and shall discuss the characteristic p part in §12. We need the
following extension of the standard Wedderburn theorem on semisimple
associative algebras.

Lemma 11.75 (Wedderburn). Let 7 be a finite-dimensional asso-
ciative algebra with identity defined over a field k, and let R be its
nilradical (largest two-sided ideal). Then there exists a semisimple
subalgebra S of T such that 7 = § ® R as vector spaces. Moreover, S
is a direct sum of ideals, each of which is a simple algebra isomorphic to
a full matrix algebra over a division algebra over k.

REMARK. We need the lemma only in the case that 7 is commutative,
and then the simple algebras in § are isomorphic to fields that are finite
algebraic extensions of &.

In order to get to the body of the proof quickly, we postpone to the
end of this section the proof of the next lemma.

Lemma 11.76. The members t(n) of End(J) are defined over Q.

Proor oF THEOREM 11.74 EXCEPT PART (e). Let 7 be the
commutative @ subalgebra of Endg(J) generated by all the t(n) in
End(J). Since each ¢(n) may be identified with the g-by-g matrix of
its differential dé(n), which has integer entries, 7 is isomorphic to a
subalgebra of M(g, Q). Therefore T is finite-dimensional over Q.

We apply Lemma 11.75 to the algebra 7 and the field Q, obtaining

where R is the nilradical and each k; is an ideal of S isomorphic to a
finite algebraic extension of @. By Proposition 11.73, we have

(6t(n))(u(f)) = enp(f)-

Hence there exists a well defined @ algebra homomorphism p of T into
Q given by the formula

p(i(n)) = cu.
It is clear that p(R) = 0. Changing the order of the factors ky, ..., k. if

necessary, we may assume that p(k;) = Q. Since &y is a field, by = Q.
Let p’' : @ — ky be the inverse of p to k;, and define an ideal i of T by

U= (k@ Dk)DR.
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The abelian subvariety A will be the sum of all a(T) for « in
U N End(J). Let us see that A is indeed a subvariety and is defined
over @. The members of End(J) may be viewed via (11.91) as members
of M(g,C) that carry A(X¢(N)) into itself. With this identification the
members of Endg(J) are @ linear combinations of these matrices. Let
a € U NEnd(J) be given. Being in 7, « is a polynomial in the t(n)’s
with rational coefficients. Hence there is a nonzero integer m such that
ma is an integer polynomial combination of the ¢(n)’s. According to
Lemma 11.76, each t(n) is defined over Q. Therefore ma is defined over
Q. Since a and ma have the same image in J, Proposition 11.68 shows
that image(e) is an abelian subvariety of J defined over @. Now suppose
we have two abelian subvarieties A; and A, of J defined over Q. Their
sum A; + Aj is the image of A; x A2 C J x J — J under addition.
Since A; x A2 and addition are defined over Q, another application of
Proposition 11.68 shows that A, + A is defined over Q. We now iterate
this construction. With each iteration, either the dimension goes up (of
the abelian subvariety as a connected complex Lie group) or nothing
new happens. We conclude that A, as we have defined it, is an abelian
subvariety of J defined over Q.

By Proposition 11.69 we can form the quotient (E,v) of J by A, and
it can be taken to be defined over @. We shall prove shortly that F
has dimension 1, and then (a) will be proved. In the meantime, each
B € TNEnd(J) maps J into A. In fact, if a is in A, write a = ) ovi(2x)
with ax € & NEnd(J) and z; € J. Since Y is an ideal, each Bay is in
U NEnd(J), and we have

B(a) = Eﬂak(zk) € Zﬂak(J) C A.

Consequently each # € TNEnd(J) maps J into A. Applying this con-
clusion to t(n), we obtain the first conclusion of (b).  Since
t(n)(A) C A, we have (kerv o T'(n)) C kerv. By the universal map-
ping property of (E, v) in Proposition 11.69, there exists {(n) € End(E)
with

t(n)ov =vot(n). (11.101)

In other words t(n) acts on E as #(n). To calculate what this action is,
we observe that t(n) — p’(cn) is in U by construction and p'(¢,) — [cy]
is in U also, where [c,] denotes multiplication by the integer c,. Hence
t(n) — [cn] is in U N End(J). In other words, t(n) ~ [c,] passes to the
quotient and acts as 0. Thus #(n) = [c,]. This proves (b).

To prove that dim £ > 0, we are to prove that A # J. Let m > 0
be the integer for which k&;R™ # 0 and &#;R™+! = 0, and let 3 be a
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nonzero member of k;R™. Possibly multiplying 8 by a nonzero integer
(as in an argument earlier in the proof), we may assume £ is in End(J),
not just Endg(J). If @ is in U, then fo = 0 (because kik; = 0 for
j>1and R™R = 0). If ais in A, we can write a = ) ax(2) with
ar € UNEnd(J) and zx € J. Since fag = 0, we have B(a) = 0.
Therefore 3 is a nonzero member of End(J) that annihilates A. Hence
A#J.

\fVe shall now prove (c) and prove that dim E < 1, thereby completing
the proof of (a). Let w’ be a nonzero member of Qna(E) (existence by
previous paragraph), and let »* be the pullback mapping v* : Qha(E) —
Qhot(J) induced by v. Since v on the complex manifold level is just
a homomorphism of one complex torus onto another, »* is one-one.
Applying (-)* to (11.101), we have

v* o 6t(n) = t(n) o v".
Now #(r) = [c,] implies that §t(n) = ¢, - 1. Hence
§t(n)(v* (W) = eav” (W').

If we define f' = p~'(v*(w’)), then p(f’) = v*(v’), and Proposition
11.73 gives
p(Ta(n)f') = cap(f)

and hence

To(n)f = cnf’. (11.102)

If diim E > 1, then there exist linearly independent w’ and w" in Qpei(E),
and v*(w') and v*(w”) will be independent. If we put f* = p~*(v* (")),
then the above argument shows that

To(n)f” = cu f". (11.103)

Since f' and f" are independent, (11.102) and (11.103) together con-
tradict Proposition 9.20b. Thus dimE = 1, and the proof of (a) is
complete. We can take w’ to be the invariant differential (11.21) of E in
the above argument, and (11.102) and Proposition 9.20b force f' and f
to be linearly dependent. This proves (c).

Let us prove uniqueness. Suppose A’ and (E’,v’) satisfy conclusions
(a) and (b). Let w’ and w be the invariant differentials (11.21) of £’ and
E, respectively. Then the argument in the previous paragraph shows
that »’*(w') is a multiple of p(f). Since we already know that v*(w) is
a multiple of u(f), »’*(w') and v*(w) are multiples of each other. Hence
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v'*(w') and v*(w) annihilate the same members of j. The respective
annihilators are the tangent spaces in j of kerv/ = A’ and kerv = A.
Since A” and A are connected Lie subgroups of J with the same Lie
subalgebras, we conclude that A’ = 4. Then (F,v) is isomorphic to
(E',vV') over Q as a consequence of Proposition 11.69.

Let us prove (d). The natural pairing of Qno1(J) with j = C9 makes
p#(f) acts as a linear functional on j. We calculate the effect of u(f) on
A(Xo(N)) = ker(j — J). The lattice A(Xy(N)) has generators

L RO
Uy = : s

AGLS

wherecy, ..., ¢, represent a Z basis of Hy (Xo(N),Z). Write f = 3" r; f;.
Then

p(F) () = (u(f),ue) = O rin(f), we)

J
= ri{dz;,ug) = r; fi(Q)d¢ = f(Q)d¢.
]Z j\G<j, Uk ZJ: J_/Ck /ck

By (11.37) and Proposition 11.22, we conclude that
B HA(Xo(N))) = ZZ/ f(Q)d¢ = Ay (11.104)
k “x

Let a C j be the Lie algebra of A (the tangent space at the identity).
We shall verify that
ker u(f) = a. (11.105)

In fact, pu(f) is a nonzero multiple of v*(w), and thus

keru(f) ={u€j| (v"(w),u) =0}
={u€ej| (w,(dv)(u)) = 0}
={u€j|dv(u) =0} since w spans Quo(E)
= ker(dv) = (Lie algebra of A) = «a.

This proves (11.105).

The homomorphism j — J with kernel A(Xo(N)) is really the expo-
nential map of Lie theory and thus must implement a — A. Hence the
kernel of @ — A is aNA(X¢(N)). Since A4 is compact, aNA(Xo(N)) is a
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lattice in a, evidently of rank 29 — 2. Let z1,..., 2242 be a Z basis for
it, and adjoin z9,_; and 2, in A(Xo(N)) so that A’ = 212.?__1 Zz; has
rank 2g. Then A’ has finite index in A(Xo(N)), say m, and it follows
that A(Xo(NV)) is contained in LA’ Now

C = p(£)G) = w(£H(Q_R=;) = p(f)(Rezg_1 + Ray,)
shows that
p(f)(z29—1) and p(f)(z2,) are linearly independent over R. (11.106)
On the other hand,

p()(Zzag-1 + Lagy) = u(f)(z Zz;) = pu(f)(A")

C u(FH(A(Xo(N))) € p(f)(m™ A"
= p(f)(Q_m™'Iz))
j

= u(f)(m_ll:zzzg_l + m‘ll:czg).
(11.107)

Combining (11.104) with (11.106) and (11.107), we see that
Ay = p(f)(A(Xo(N))) is a free abelian subgroup of C of rank 2 that
spans C over R. Consequently A; is a lattice.

By Theorem 6.14, E' = C/A; is an elliptic curve over C. Let
n : € — C/A; be the quotient homomorphism. The composition
nou(f):j— E'is given by

j—j/a2C—C/A; = E'

and has kernel u(f)~*(A;), which equals @ + A(Xo(N)) by (11.104)
and (11.105). Since j — J is a covering homomorphism with kernel
A(Xo(N)), no u(f) factors through j — J. Let us say

nou(f)=¢eo(j—J)

with € : J — E’' a holomorphic homomorphism with kernel the image
of a + A(Xo(N)) under j — J, namely A. By Theorem 11.72) ¢ is
a morphism defined over C. Since kere = A, the universal mapping
property of (E,v) in Proposition 11.69 implies that ¢ = ¢/ o v for a
morphism ¢ : E — E’ defined over C. The kernel of ¢’ is trivial.
Combining (11.85) with our results on dual isogenies, we see that €’ is
an isomorphism over €. This completes the proof of (d) and all of the
characteristic 0 part of Theorem 11.74 except for Lemma 11.76.



380 XI: EICHLER-SHIMURA THEORY

Proor oF LEMMA 11.76. Because of the universal mapping property
of J, it is enough to prove that T#(n) is defined over Q. Here T#(n) is
given by

K ;T
T#(n)(7) = Z/ f(()d¢, T € Xo(N), (11.108)
i=1 Y7o
h
where f = ! |- (To make sense of the ;7’s in this formula, we must
fq

choose a representative of 7 in H*, compute each ¢;7, and project back
to Xo(N). We always assume this has been done.)

Let G = Autg(C). This group operates on various things in our
setting. When a member ¢ of G acts on a polynomial P to give P¥, P¥ is
obtained by having ¢ act on just the coefficients. When the polynomial
gets regarded as a member of a local coordinate ring of a variety, for
example, ¢ acts on the points of the variety and the relationship is

P?(z) = p(P(¢™'z)). (11.109)

We shall use this notion in order to localize the proof of rationality.
If (Fy,...,Fp) gives the imbedding of J as a nonsingular variety in a
projective space, we may take Fy,..., F,, to be defined over @.* Then
T#(n) is certainly defined over @ if we show that

r— H(r) = (Z/,:in(C)dC) for F=Fy,...,Fy  (11.110)

is in Q(Xo(N)), ie., that H¥ = H for all ¢ € G. In view of (11.109) it
is enough to show for all 7 € Xo(N), ¢ € G, and F € Q(J) that

F(Z/W f(()d( Z/ f(()d( (11.111)

whenever F is defined at all points of the relevant finite set.

*As in Theorem 6.14, one version of Fy,...,Fn may not handle all points of J
simultaneously. We may have to normalize (Fp,..., F;n) by one or more members of

Q(J ) to handle all points. This is not a serious matter for the present proof, and we
shall ignore it.
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Since F is defined over @ and addition within J is defined over @, we
can move  past F' and the summation sign on the left side of (11.111),
and it is enough to prove that

se([”

Tf((;)d() - Z/j”f(c)dc (11.112)

To

for all 7 and ¢. Since ® : Xo(N) — J is defined over Q,

o[ " (0 dc) = / " e¢yac (11.113)

for all 7. Thus (11.112) comes down to proving that

= [ w3 [Mrox

or equivalently (under the change of variables 7 — (7))

aip(T)

w(oi
Z/n, f(C)dC Z/ £(¢)d¢. (11.114)

Fix 7 € Xo(N) and ¢ € G (together with representatives of 7 and
o(r) in H*, called by the same names). We shall prove for a suitable
permutation ¢ — {(7) that

p(ait) = augyp(T) for all 4, (11.115)

and this will prove (11.114) and the lemma.

Let h be an arbitrary member of Q(j,jn) that is defined at every
point of a finite set of points of interest in Xo(N) (including all points
in (11.115)). We form the polynomial

K
[I(x —hoa) = X¥+hg XK'+ + ho. (11.116)

i=1

If v is in Tg(N), write a;y = yicj(;) for a permutation 7 — j(). Then

K K K

H(X—hoa,-o'y):H(X—hoaj(,-))::H(X—hoai),

=1 1=1 i=1
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from which it follows that hg_1,...,ho in (11.116) are invariant under
FO(].V)' By the same argument as in Proposition 9.5, all of hg_1,..., kg
are in AO(FO(N)). From §6 we know we can view these functions as in
K(Xo(N)), which Theorem 11.33 identifies as C(j, j~). We shall prove
they are in Q(j,jn).

Let h(t) = Y o> _,s cnq" be the g expansion of h at oo, with ¢ = e2mit,
Since h is in Q(J,jn), the c,’s are in Q. Let o = (" b), and put

. _ 0d
ga = e>™7/4 and ¢4 = €2™/4. Then

ar +b >
hoa;(‘r):h( 7 ): Z enChal-

n=—M

Expanding out the left side of (11.116), we see that the coefficients in the
¢ expansions of hg_1,...,ho are in Q({n). Now we can argue as in the
last paragraph of the proof of Theorem 11.32 to see that the coefficients
for hg_1,..., hg are in fact in Q. Applying Corollary 11.50, we conclude
that hg_1,..., ho are in Q(j, jn).

Let us evaluate (11.116) at 7:

K
JI(X = h(air)) = XK + b1 (1) XK1 4+ + ho().

i=1

1

Sir:ice his in Q(j, jn), we have h¥~ = h. Thus h(7') = ¢~ (h(p(7))),
an

K
TI(X = o7 (hp(@ir)))) = X + hios (D)X K=" 4 -4 ho(7).

i=1

At this stage we are dealing with a polynomial over C, and it makes

sinse to apply ¢ to both sides (by applying it to the coefficients). We
obtain

K
TI(X = hlp(@im)) = XX + p(hg 1 (T XK1+ 4 p(ho(7))

i=1

= XK 4 hge 1 (o) XK1 4o 4 ho(p(7)),

since h’_(_lf"' ,ho are in Q(j, jn) and hence are fixed by . The above
expression is
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K
= TICx - hasp(r)

by (11.116). Consequently
h(p(aiT)) = h{aygiyp(r)) (11.117)

for a permutation i — (i) depending on h (as well as T and ¢). We
need to obtain (11.117) with a permutation that is independent of h.
For the algebra of h’s in Q(j, j~) under study, let

Sy = {permutations i — (i) | (11.117) holds for h}.

If {hy,..., hm} is a finite set of such h’s, then for each ¢ € Q there is a
permutation that works for

hi + chy + c?ha + -+ ¢ h,.

Since Q is infinite, there are m values of ¢, say ¢i,-..,cm, that work
with some common permutation {(z). Then we have
1 ¢ ... ! by (p(i(T)) — hi(au@ye(T)) 0
1 ¢ ... &7t ha(p(ai(T)) — ha(auyp(T)) 10
1em oo @) \hm(p(ei(r)) = hm(eae(7)) 0

Since the Vandermonde matrix on the left is nonsingular, we see that
{(7) is in Sp, N NSy,

Thus for every finite set {h1,...,hm}, Sp, NN Sy, 1s nonempty.
Choose a finite set {h1,..., har} for which Sy, 0 -N1Sh,, has the smallest

possible cardinality. Then we have

() Sk =Sh NN Shy #0.

all h

For any member of the left side, (11.115) is valid for all h. This completes
the proof of the lemma.

12. Match of L Functions

The proof of Theorem 11.74 is now complete except for part (e), which
says that the L functions of E and f coincide as Euler products except
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possibly at finitely many primes. This is the characteristic p part of the
proof. Carrying out the details would involve too much further prepa-
ration in algebraic geometry, and we shall settle for some discussion.

If p is one of the primes for which (e) is asserted, the idea is to prove
an identity of the type

T,=¢+¢ (11.118)

in Xo(N), where T, is a reduction modulo p of the operator T(p) of
(11.95) and where ¢ is the Frobenius map.

Before trying to make sense of (11.118) in general, let us consider
the special case where Xo(N) has genus 1. (The first such example is
when N = 11.) Then we can identify Xo(/N) with the elliptic curve E
produced by Theorem 11.74. From §V.2 it is meaningful to speak of E,,
the reduction of £ modulo p. In E,, (11.118) becomes an identity within
End(E;), with Tp acting as [c,] in accordance with (b) of the theorem.
Also within End(E,) we have

[#E(Zp)] = [deg([1] — ¢)] by (11.88)
=([1] - $) o([1]—¢) by Proposition 11.65
={1]-(¢+4)+4o0¢
=[1] - (¢ + ) + [p],

the last equality holding by item (c) after (11.82) and by Proposition
11.65 again. Thus

¢+$: [P+ 1—#E(Zp)] = [ap],

in the notation of (10.7).

In other words, (11.118) as an identity within End(E,) says that [c,] =
[ap]. It can be shown that End(E,) has no zero divisors, and hence
¢p = ap. This equality says that the p'" factor of L(s, f) coincides with
the pth factor of L(s, E).

It is not hard to imagine a similar interpretation of (11.118) within
a reduction modulo p of J in the case of general Xy(N). The identity
passes to Ej, and we get the same conclusion.

In fact, reduction modulo p of J was too technically difficult to be the
method that was used. Instead (11.118) was proved in Xo(N), and then
some consequences were transferred to J and E; the identity itself was
not transferred. We shall not pursue this transfer of consequences.

The meaning that is customarily attached to (11.118) is as an iden-
tity of “correspondences” on Xo(N),, the reduction modulo p of Xo(N)
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(which we have not defined in genus > 1). Intuitively a correspondence
is like the graph of a function, except that the function need not be
single-valued, and one must be careful in counting multiplicities. More
precisely but still not exactly, the building blocks of correspondences in
Xo(N), are irreducible subvarieties of dimension 1 in Xo(N), x Xo(N)p
(curves, in other words), and a correspondence is a divisor-like Z com-
bination of such irreducible curves. Both T, and ¢ are to be regarded
as correspondences, and $ refers to the correspondence ¢ with the two
coordinates interchanged. The sum on the right side of (11.118) is the
sum in the sense of divisors. We shall not go into the proof of (11.118)
but shall end our discussion of the characteristic p part of the proof at
this point.



CHAPTER XII

TANIYAMA-WEIL CONJECTURE

1. Relationships among Conjectures

Throughout this chapter, E will denote an ellliptic curve defined over
Q. By Corollary 10.6 the L function L(s,E) converges for Re s > 2
and is given there by an absolutely convergent Dirichlet series. It is
expected that deep arithmetic information is encoded in the behavior of
L(s, E) beyond the region of convergence. For example, the Birch and
Swinnerton-Dyer Conjecture (Conjecture 1.10) predicts that the rank of
E(Q) is the order of vanishing of L(s, £) at s = 1.

To make sense of such conjectures, we must expect that L(s, E) has an
analytic continuation. In view of the behavior of Dirichlet series that are
better understood, it is natural to expect also that L(s, F') will satisfy a
functional equation. Here is a reasonably precise formulation.

Conjecture 12.1. The function L(s, E) extends to be entire, and
for a suitable sign £ and a suitable positive integer N, L(s, E) satisfies
a functional equation given in terms of

A(s, E) = N*/?(2m)~*T(s)L(s, E) (12.1)

by
A(s,E) = —eA(2— 5, E). (12.2)

Hasse had the further idea that L(s, E) should have as good trans-
formation properties as any other reasonable Dirichlet series. In the
case of L(s, f) for a cusp form f € Sg(T'o(N)) in one of the eigenspaces
Si(To(N)) of wy, there is more that can be said beyond Theorem 9.8.
For one thing, by examining (9.27), (9.36), and (9.37), we see that the
entire function

A(s, f) = N*/2(2x)~*T(s)L(s, f) (12.3)

is actually bounded in vertical strips. For another thing, let us consider
some modifications of L(s, f). Write

Lis, )= =, (12.4a)
n=1
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let m be an integer relatively prime to N, let x be a primitive Dirichlet
character modulo m, and let

s enx(n)
L(s, f,x) = RZ_:I = (12.4b)
Define
A(s, f,x) = (m2N)*2(2m)~*T(s)L(s, f, X)- (12.4c)
Recall from (7.46) the Gauss sum
m-—1 )
c(m,x) = e2m i/ my(1). (12.5)

I=

The following theorem is proved by combining the techniques for
Theorem 7.19 and Theorem 9.8.

Theorem 12.2. Let f be in S{(To(N)), let GCD(m,N) = 1, let
x be a primitive Dirichlet character modulo m, and let L(s, f,x) and
A(s, f,x) be defined by (12.4). Then L(s, f,x) is initially deﬁned for
Re s> %+1 and extends to be entire in s. Moreover, A(s, f, x) 1s egtlre
and bounded in vertical strips, and it satisfies the functional equation

L mONEN)
A(S,f,x)—€( 1) ? c(m,)Z) A(k vfaX)y

where ¢(m, x) is the Gauss sum (12.5).

The Hasse-Weil Conjecture expects L(s, E') to share all these proper-

ties. It is given in terms of L(s, E) = Y .7, ;:—:— and its modifications

enx(n)
L(S’E’X) = Z:ozl _TL'E_

Conjecture 12.3 (Hasse-Weil). The function L(s, E) extends to be
entire and, for a certain positive integer N, so does L(s, E, x) for every
Dirichlet character whose conductor m is prime to N. Moreover, the

modified functions

A(s, E) = N*/2(2m)™°T(s)L(s, E)
A(s, E,x) = (m*N)*?(2m)=°T(s)L(s, E, X)
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extend to be entire and, for a suitable sign ¢, satisfy the functional
equations

A(s,E) = —cA(2-5,E)

ec(m -N

A(s,E,x) = — % A(2-s,E,%). (12.6)
Weil addressed the question how close L(s,E) is to coming from a
modular form if it satisfies functional equations as in Conjecture 12.1
or 12.3. Suppose that L(s, ), adjusted by factors as in (12.1), is really
the Mellin transform of f(ic), where f is an analytic function on the
upper half plane H transforming under a group I' of linear fractional
transformations. The fact that we are obtaining L(s, E) from a Mellin
transform incorporates a transformation law under the translation cor-
responding to 7" = ( (1) i) The functional equation (12.2) incorporates a
transformation law under some inversion element, such as the one from
ay = (]3 '61). Conjecture 12.1 does not give any reason for thinking
that T is any larger than the group I generated by the transforma-
tions corresponding to T and ay. Unfortunately I\* is noncompact
and not close to compact. So I does not give us much control over an

analytic function on .
Weil found, however, that the additional functional equations (12.6)
are enough to force matters to be controlled by Co(N). The statement
of the Weil Converse Theorem is as follows. We shall not give the proof.

Theorem 12.4 (Weil). Let L(s) = S0, Z—: be a Dirichlet series
with on = O(n®) for some ¢ > 0. Fix a positive integer N, an even
positive Integer k, and a sign €. Suppose that

(a) the function
A(s) = N’/2(27r)”’I‘(s)L(s)
1s entire, is bounded in every vertical strip, and satisfies
A(s) = e(=1)*2A(k - 5),

(b) fo.r every integer m with GCD(m,N) = 1 and every primitive
Dirichlet character x modulo m, the modified function

[e 0]

L,(s)= Z c’":fs(n)
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is such that the function
Ay(s) = (m*N)*/?(2m)*T(s) Ly ()

is entire, is bounded in every vertical strip, and satisfies
2 &(m, x)x(=N)

———= = Ag(k —s),

o(my) ko)
{c) the series defining L(s) converges absolutely at s = k—§é for some
§>0.

Ax(s) = e(=1)*

Then
ot .
f(T) - E cn621rzn‘r
n=1

is a cusp form in Si(Te(N)).

In fact, it is not necessary to assume (b) for quite so many m’s, but
this improvement will not concern us. Theorems 12.2 and 12.4 show that
the Hasse-Weil Conjecture is completely equivalent with the following
fundamental conjecture.

Conjecture 12.5. If F is given, then there exist a positive integer
N and a sign ¢ such that the function L(s, E) equals L(s, f) for some
eigenform f in S(To(NV)).

The notion of newform was not known at the time of Weil’s work,
but we can freely substitute the word “newform” for “eigenform” in
Conjecture 12.5. In fact, if f is an eigenform for S§(I'o(NV)), it comes
from a newform for some S5(To(N/M)) with M dividing N. If M # 1,
then Theorem 9.8 gives two contradictory functional equations that f
must satisfy. Thus M = 1, and f is a newform.

Conjecture 12.5 is consistent with an important theme that has been
discussed on more than one occasion earlier in this book: the iden-
tification of geometric L functions as automorphic L functions. The
conjecture raises two immediate questions: What are N and €7 Is there
a deeper relationship between E and f?

Eichler-Shimura theory gives part of the answer to the second ques-
tion. Starting from any normalized newform f in Sp(To(N)) whose
Fourier coefficients are integers, the theory provides us with a mapping
from Xo(NV) to a canonical elliptic curve over Q. Even before this the-
ory, Taniyama had suggested looking for such a mapping in connection
with an arbitrary elliptic curve over Q, but Taniyama’s suggestion was
apparently initially overlooked. Weil made a similar suggestion as the
Eichler-Shimura theory unfolded.
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Conjecture 12.6 (Taniyama-Weil). If F is given, then there exists an
integer N for which there is a nonconstant morphism F : Xo(N) — E.

We say that such an F has a modular parametrization of level N,
and, following, custom, we call E a Weil curve. If E is given by the
usual equation (3.23), then it is equivalent to say that there are functions
&(7) and n(7) in Ao(To(N)) whose ¢ expansions at oo have rational
coefficients and are such that (z,y) = (6(7), n(7)) satisfies (3.23b) for all
T where neither £ nor 1 has a singularity. The passage from F' to (£,7)
is just a matter of unwinding the definitions; the passage from (£, 7) to
F requires Corollary 11.50.

The modular parametrization in the Eichler-Shimura theory has addi-
tional properties. From a newform f of level N, Theorem 11.74 produces
a morphism from Xo(N) to an elliptic curve E over @ such that the pull-
back of the invariant differential is a multiple of f(7) d7 and the period
lattice of f f(7)dr is equivalent with the period lattice of E. If E’ is
isogenous to £ over Q, one can compose the Eichler-Shimura map with
the isogeny to get a modular parametrization of E’, but the match of
the period lattices may be lost.

We saw in an example following Corollary 11.50 that there is a mor-
phism from Xp(MN) to Xo(N). The Eichler-Shimura mapping to a
curve E can be composed with such maps to produce modular
parametrizations of E of nonminimal level.

Theorem 12.7. If E has a modular parametrization of level N but
of no level M for M < N, then E comes via the Eichler-Shimura theory
from the map defined by a normalized newform in Sy(I'o(N)), followed
by an isogeny defined over Q.

In constructing an elliptic curve F from a normalized newform f €
S2(To(N)), the Eichler-Shimura theory shows that the p** L factor of E
agrees with the p™ L factor of f for all but finitely many p, and Igusa’s
work shows that any exceptional p must divide N. There are two loose
ends—to identify N and to handle the exceptional p’s.

There was an early suspicion of what N was. The conductor N of
FE is an isogeny invariant of £ with a cohomological definition, but it
can be described almost completely in a simple way as follows. First let
us adjust F so that it is given by a global minimal Weierstrass equation
(§X.1). Then let A be the discriminant of E. The conductor N divides
A and has the same prime factors as A. The power of a prime dividing
N is 1if and only if E, has a node. If p > 3, then the power of p dividing
N is 2 if and only if E, has a cusp. For the case of a cusp with p = 2 or
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3, the conductor can be computed by an algorithm due to Tate. Those
curves in Tables 3.1 and 3.2 whose conductor is not obviously |A| are
listed in Table 12.1.

Elliptic Curve A N
Y¥+y=23 -27 27

vV +ry—y=23 -28 14
yv=z3-z2+= —48 24
Yv=z3+22+2 —48 48
y?+3zy—y=2° —54 54
v+zy=23+z -63 21
v=z3+z —64 64
Y=23-1z 64 32
yr=23-2z+41 80 40
y¥?=z3-2x-1 80 80
yY=z34+22-2 80 20
yv=z3-z2-2 80 80
v+ 5zy+y=12° 98 14

TaBLE 12.1. Conductors of some elliptic curves

The following theorem ties up both loose ends in the Eichler-Shimura
theory.

Theorem 12.8 (Carayol). Let f € Sy(I'o(N)) be a normalized
newform whose Fourier coefficients are integers, and let E be the el-
liptic curve over @ associated to f by Eichler-Shimura theory. Then
L(s,E) = L(s, f), and N is the conductor of E.

1t follows that the Taniyama-Weil Conjecture implies the Hasse-Weil
Conjecture. In fact, if E is given, we choose N to be the smallest positive
integer such that E has a modular parametrization of level N. Theorem
12.7 says that E comes from the map defined by a normalized newform
f in S3(To(N)), possibly followed by an isogeny over @. Since isogeny
over Q does not affect the L function (Theorem 11.67), Theorem 12.8
says that L(s, E) = L(s, f). This is the conclusion of Corollary 12.5,
which we have seen is equivalent with the Hasse-Weil Conjecture.

We can come close to proving that the Hasse-Weil Conjecture implies
the Taniyama-Weil Conjecture. Namely let E be given with conductor
N. By the Hasse-Weil Conjecture in the form of Conjecture 12.5, there
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is a normalized newform f in S3(To(N’)) such that L(s,E) = L(s, f).
By the Eichler-Shimura construction and Theorem 12.8, f leads to
an elliptic curve E' of conductor N’ with L(s,E') = L(s, f). Since
L(s, E') = L(s, E), a theorem of Serre allows us to conclude that £ and
E' are isogenous over Q provided J(E) is not an integer. In this case the
modular parametrization for E yields one for E’ by composition.

2. Strong Weil Curves and Twists

Let E and E’ be Weil curves, and let F - Xo(N) - FE and
F': Xo(N) — E’ be modular parametrizations, with N minimal in both
cases. Without loss of generality, we suppose that oo of X, o(N) maps to
the group identity of E and E'. We say that (E,F)
dominates (E',F’) if F' factors through F, ie., if F/ = po F for
an isogeny ¢. A Weil curve E is a strong Weil curve if (E,F) is
maximal in this ordering for some F. (The F yielding maximality will
not be unique, as it can always be composed with —1 in £.)

Proposition 12.9. In every isogeny class of Weil curves, there is
a strong Weil curve and it is unique up to isomorphism. The strong
Weil curve and map (E, F) are characterized within the isogeny class by
either of the following conditions:
(a) the induced map F, on homology H1(Xo(N),Z) — Hi(E, 1) is
onto.
(b) when F is factored through the Jacobian variety as Fj o ®, the
kernel of F) is a (connected) variety.

ExaMPLE. In §XI.1, Xo(11) led to three Weil curves, of which the
first two were
E: y+y=2—22-10z -2 (12.7)
and
E': y2+y:z3—a:, (12.8)

defined by respective lattices A and A’ in C. The lattice A was defined
as the image of the cycles of Xo(N). Hence Hy(Xo(N),Z) maps onto
Hy(E, ), and (12.7) is a strong Weil curve. We identified E’ by using
the sublattice A’, which does not include the image of the cycles of
Xp(N), and then used a dual isogeny to map E to E’. It would have
amounted to the same thing if we had used %A’ , which properly contains
A, to define E’. In this case the cycles of Xo(N) do have image in N

but the homology map is not onto. Thus E' in (12.8) is not a strong
Weil curve.
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The Eichler-Shimura construction uses the full image of cycles of
Xo(N) as the set of periods to define an elliptic curve, by Theorem
11.74d. Thus it always leads directly to a strong Weil curve. ‘

What we see computationally from the Eichler-Shimura constructlop
is a lattice in C, from which we can compute the j-inva‘,rianF approxi-
mately, as in §XI.1. Even if we assume that our‘apprommatlon to the
j-invariant is an approximation to a particular rational number, we have
not completely solved the problem of identifying the strong ngl curve
as a particular curve over Q. There remains the problem of distinguish-
ing a curve over Q from its twists, as we saw by example in §XI.1. We
now take up the question of twists more generally. )

Two elliptic curves £ and E’ over @ are called twists of each other
if j(E) = j(E’). We shall skip over the cases that the common value of
j is 0 or 1728, which require special treatment.. We may assume t,h'at E
and E’ are in global minimal form (3.23b) with respective coefficients
ai,...,a¢ and af,...,a§ as usual. Since j is pot 0 or 172.8, fxone of
¢4,¢4,C6,C6 is equal to 0. Put v = A/A' € Q. Since j(E) = j(£’') and

2

3
(E) =S = %
i(E) =2 =178+ 2,

we see that
A 4

V= —— = = —
AT B

It follows that v = u® for some u = g in Q with GCD(r,s) = 1. Choosing
s as > 0 and the sign of r to match the sign of cg/cf, we have
(s%cq, s%ce, s° A) = (r2cy, ek, 0 A). (12.9)

By Lemma 10.1 and Theorem 10.3, neither r nor s has any prirpe square
factor p? with p > 3. Conversely if E and E’ are related as in (12.9),

then j(E) = j(E').

Proposition 12.10. Let E and E’ be twists of each other, related
as in (12.9), and let their L functions have respective coefficients a, and
a,. If pis a prime not dividing 6AA’, then

; rs
ap = P Qap,

where (rs) is the Legendre symbol.
p
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PROOF. Let N, and N be the respective numbers of affine solutions

modulo p. In view of (10.7), we are to show that Np = N", if (7‘5) =1
p

and that Np + N, = 2p if T:) = —1. Since p is prime to 6, we may

take the two equations to be

y? = 23 — 27cqz — Sdce (12.10a)
v? = 2%~ 27c}x - B4ch. (12.10b)

r

Suppose (: = 1. Choose a € Z with ra? = s mod p. If (2o, o)

solves (12.10a) modulo p, then

ve =25 — 27 (—2)2 cyxo — 54 (I)acfi

s

shows that
(sar™'yo)? = (sr7lzo)® — 27¢, (577 2o) — Hdch,

Le., that (sr=l2g, sar~lyp) solves (12.10b) modulo p. Thus N, < N/,
and similarly Ny < N,,.

Now suppose that (r) = —1. In the same way, we check, for each

fixed zo, that the sum of the number of solutions (z,, y) of (12.10a) and

the number of solutions (sr~'zp,y) of (12.10b) is 2. Summing on zp, we
obtain N, + N, = 2p.

By quadratic reciprocity, Proposition 12.10 says that L(s,E') in al-
most all factors equals L(s, E,x) for a quadratic Dirichlet character
modulo 4rs. Taking Theorems 12.2 and 12.4 into account, we see that
Proposition 12.10 almost proves that the question whether E is a Weil
curve depends only on j(E).

3. Computation of Equations of Weil Curves

How can we check definitively whether a particular elliptic curve is a
Weil curve? And how can we write down equations for the Weil curves

that arise from Xo(N)? Let us first address these questions for strong
Weil curves.
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The classical method of proof is to exhibit £(7) and n(r) in Ao(To(N))
such that (£(r),n(7)) parametrizes the curve. This method requires
constructing some cusp forms, especially of weight 2, and manipulating
identities to get the right results. Constructing cusp forms of weight 2
is a problem in its own right that we address below. In any event, the
classical method has been carried out in genus 1 and for some higher
cases, particularly in genus 2. It becomes really tedious as the genus
increases.

g N

0 1<N<10;12, 13,16, 18,25
11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49
22, 23, 26, 28, 29, 31, 37, 50

BN =

TaBLE 12.2. Curves Xy(N) of low genus

In the case that the conductor is of the form N = 293% one knows
all possible elliptic curves by classifying all relevant integer solutions of
1728A = ¢ — c2. All such elliptic curves are Weil curves. To prove
this, we start with an elliptic curve of conductor N, we compute many
coefficients a, from (10.7), and we check that they correspond to the first
part of the ¢ expansion of a newform in S2(T'o(N)) (see below). Then
using the method of §XI.1, we can compute to several decimal places
the lattice in C generated by images of cycles of Xo(N). Next we can
compute the period lattice of the given elliptic curve as in Chapter VI,
using the Gauss arithmetic-geometric mean, and we can use some C*
multiple of it to organize the information about the lattice in C.

Once we know a basis for the images of cycles of Xo(N), we can
compute g7, g3, and j as in §X1.1. If the computed j does not match
j for the elliptic curve we have in mind, then the elliptic curve that we
have in mind is not a strong Weil curve. But it may still be an ordinary
Weil curve, and a method for approaching that question will be discussed
later.

The difficulty now from the point of view of proof is in identifying
the computed j as an exact rational number. We have it only to several
decimal places. But when N = 223%  the classification of curves of
conductor N has bounded the denominator of j, which is A. Thus it
tells us the value of j as a rational number, provided we have computed
enough decimal places.
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In the case of conductor N = 2°3% we can therefore tell exactly
whether our computed j matches j for the given elliptic curve. If so, the
curves are twists of one another. Since the discriminant can have only 2
and 3 as prime factors, the set of possible twists is quite limited. Using
Proposition 12.10, we can check for the correct Fourier coefficients.

Recent progress allows use of a similar technique in the case of prime
conductor, and it should be expected that further progress will expand
the method. The following theorem bounds the denominator of j in the
case of prime conductor and allows us to proceed as above.

Theorem 12.11 (Mestre-Oesterlé). If a Weil curve E is in global
minimal form and its conductor N is a prime, then the discriminant A
of E divides N5.

The problem of writing down all ordinary Weil curves coming from
Xo(N), with no side information, is a hard one. The problem is that it
is easy to miss a member of an isogeny class. Instead let us address the
question of proving that a particular curve E of conductor N is a Weil
curve. We start as above by computing many coefficients a, from (10.7)
and checking that they come from an initial segment of a newform in
S2(Co(N)). We form the lattice of E and the lattice from X(N). Even
if they do not match (after some multiplication by C*), it may happen
that the lattice from FE corresponds to a sublattice of the images of
cycles of Xo(N). Let n be the index of the lattice from E in the lattice
from Xo(N), and let E’ be the strong Weil curve. The goal is to find an
isogeny of degree n from E to E' or from E’ to E. We shall not discuss
the details of how to proceed, but there are formulas that help in the
effort.

Success in proving that particular elliptic curves are Weil curves de-
pends on being able to produce initial segments of ¢ expansions of new-
forms. Although the methods of §1X.3 can be a little helpful, ultimately
one has to come to grips with an actual construction of newforms. For
low conductor the standard technique is to compute the action of the
Hecke operators on H1(Xo(N),Z) and then on Hi(Xo(N),C). (See
§X1.5.) Proposition 11.24b yields matrices representing T>(n) in some
basis. Computation of a basis of H;(Xo(N),Z) takes some time but is
manageable.

A second technique is to produce initial segments of q expansions of
eigenforms by using trace formulas for the Hecke operators. Once the
trace is known for T5(n), one can compute the characteristic polynomial
and then the eigenvalues; from the eigenvalues, one can piece together
the ¢ expansions of the eigenforms.
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To obtain the characteristic polynomial of T3(n), we use an obs:.erva—
tion from linear algebra. If L is a linear transformation on an r dimen-
sional complex vector space with characteristic polynomial

det(XI—L) = H(X —_ AJ) =X —c,_lX"l +- "+(—1)TCQ, (1211)
ji=1

then ¢; is the i*" elementary symmetric polynomial in Ay,...,Ar and is
a linear combination of the symmetric polynomials

M+ +M=T(), 1<ji<r

For L = Ty(n), Theorem 9.17 allows us to express Ty(n) as a linear
combination of the operators T3(m) for which m | n. Hence (12.11) can
be computed from the traces of the Hecke operators.

Once we have the eigenvalues, we have to correlate the effects of the
operators T3(n) as n varies. For example, if the space is 2—d.imensional
and T5(3) has a and b as eigenvalues and T»(5) has cand d as eigenvalues,
then we can look at T5(10) to see what the simultaneous elgenYalues are.
If T5(10) has eigenvalues ac and bd, then the simultaneous eigenvalues
are {a,c} and {b, d}; otherwise they are {a,d} and {b,c}.

Everything is easier if we have a candidate for an initial §egment of
an eigenform, such as the corresponding coefficients of an elliptic curve.
Then we just have to check that the coefficients solve (12.11) and satisfy
recursions consistent with Theorem 9.17.

4. Connection with Fermat’s Last Theorem

Suppose o' + ' = 7' is a relatively prime counterexample to Ferm'at’s
Last Theorem, with [ prime and > 5. The elliptic curve £ over Q given
by

E: y=z(z—o)z-7") (12.12)

has 2 p20, 2
A =167y (12.13)

c4 = 16((121 _ al'yl + 721).

Let us put E in global minimal from and compute its conduc?or N. Any
odd prime p dividing A divides af7. Since a, 8,7 are relatlYely prime
in pairs, we see that p does not divide c4. By Lemma 10.1, E' is minimal
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at p. If p | a7, we readily check that E, has a node at (0,0), and if p | 8,
we readily check that E, has a node at (of,0). Thus
N =2 [T p. (12.14)

plaf,
p odd

We still have to check p = 2. Since 2*|| c4, at most one reduction is
possible. We may assume that « is even, so that

v =0 mod 32. (12.15a)
Since #' = —a' mod 4 and [ is odd, we may assume, possibly by inter-
changing « and 3, that
o'=1 mod 4. (12.15b)
Putting x = 4X and y = 8Y + 4.X, we are led to
Y24+ XY =X+1i(1-o' —9y)X?+ Loy'X. (12.16)

The congruences (12.15) show that the coefficients here are integers (so
that (12.16) is a global minimal form) and that the equation modulo 2

18
3

X3+ X2
The singularity is at (X,Y) = (0,0); since neither Y2 + XY nor

Y? 4+ XY + X? is a square, the singularity is a node.
Taking (12.14) into account, we see that the conductor is given by

N= ]I » (12.17)

plapy

N or
Y*+ XY =

We shall use the following theorem.

Theorem 12.12 (Ribet). Suppose F is an elliptic curve over @ given
in global minimal form and having discriminant A =[], 5 p’» and con-

ductor N = HP|A p/?. Suppose further that F is a Weil curve with

a modular parametrization of level N given via a normalized newform
f(T) =g+ Y s 5 aq™ in S2(To(N)). Fix a prime I, and let

N=— . (12.18)

Then there exists f; in S3(T'o(Ny)) such that fi(r) = 350 | d.g¢™ with
integral coefficients and with ¢, = d, mod ! for 1 < n < co.
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Corollary 12.13 (Frey-Serre-Ribet). The Taniyama-Weil Conjecture
implies Fermat’s Last Theorem.

PrROOF. Assuming that Fermat’s Last Theorem is false, we apply
Theorem 12.12 to the curve E in (12.12). Comparison of (12.17) and
(12.18) shows that Ny = 2. The theorem produces fi in S5(T¢(2)), which
is the 0 space. Thus d, = 0 for all n. But ¢; = 1. So ¢, = d, mod !
fails for n = 1, and we have a contradiction.



NOTES

Chapter 1

The organization of Chapter I is based on Zagier [1988] and is influ-
enced also by the Introduction of Husemdller [1987]. References to pa-
pers before 1940, among others, may be found in Shimura [1971a] and
Serre [1973a]. For Theorem 1.1, see Borevich and Shafarevich [1966].
Cubic counterexamples to the Hasse Principle were studied by Selmer
(1951]. Theorem 1.4 is discussed in Chapter III.

What we have called the “Weierstrass form” of a cubic is really Tate’s
modification of the Weierstrass form. The first ten chapters of the book
work in the context of plane projective geometry, and our definition of
“elliptic curve” (as a nonsingular plane cubic curve in Weierstrass form)
is appropriate for that context. In Chapters XI and XII, and usually
in algebraic geometry, an elliptic curve is a nonsingular projective curve
of genus one, and one proves that all such curves can be realized in
Weierstrass form. See §XL.9.

Theorem 1.5 is the subject of Chapter IV, and Theorem 1.6 is the
main result of Chapter V. Theorem 1.7 appears in Mazur [1977] and
[1978]. For Theorem 1.8, see Chapter X. Conjectures 1.11 and 1.12, as
well as Theorem 1.13, are discussed in Chapter XII.

Conjecture 1.10 appeared originally in Birch and Swinnerton-Dyer
[1963-65]. For more recent numerical evidence, see Brumer and McGuin-
ness [1990]. There are several expositions of Conjecture 1.10 in the liter-
ature. See Swinnerton-Dyer and Birch [1975], Zagier [1984], Appendix
C of Silverman [1986], Chapter 17 of Husemoller [1987], and Chapter 20
of Ireland and Rosen [1990].

Chapters II-V

The standard book on elliptic curves from an arithmetic standpoint
is Silverman [1986]. Three other books on this subject are Koblitz
[1984], Husemoller {1987], and Charlap and Robbins [1988]. Koblitz
concentrates on elliptic curves with complex multiplication, especially
the curves y? = 23 — n?z that arise in connection with congruent num-
bers. Some books on curves are Brieskorn and Kndrrer [1986), Fulton
[1989], and Walker [1950]. Chapter II is based chiefly on Husemoller
[1987] and Walker [1950].

The examples at the beginning of Chapter 1II are from Zagier [1988].
The standard notation is as in Tate [1974] and Silverman [1986]. Tables
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3.1 and 3.2 are the result of a simple home-computer calculation. The
idea of the proof of Theorem 3.8, as we give it, is a standard one and may
be found, for example, in Huseméller [1987]. Usually the proof in this
form is not carried through to completion. The discussion of singular
points is based on Silverman [1986).

Most of Chapter IV is from Zagier [1988]. The examples were in
Zagier’s lectures. Proofs of most of the results in §9 may be found
in Ireland and Rosen [1990]. Theorem 4.11 goes also under the name
Mordell-Weil Theorem. Mordell [1922] proved the theorem as given
here, and Weil [1930] extended the result to elliptic curves defined over
number fields.

In Chapter V, Theorem 5.1 is due in a different form to Nagell [1935]
and in essentially the form here to Elisabeth Lutz {1937]. Our treat-
ment is similar to that of Lutz, as modified in Chapter 5 of Husemdller
(1987]. The examples are based on Silverman [1986] and Husemoller
[1987]. Theorems 5.2 and 5.3 are due to Nagell [1935] and Fueter [1930],
respectively. Our attention was brought to these results by Lichtenbaum
[1960}, and we give Lichtenbaum’s proofs. The material of §5 is based on
Husemoller [1987]; Husemdller credits H. P. Kraft, F. Knopp, G. Menzel,
and E. Senn. See also Exercise 8.12 of Silverman [1986].

Chapter VI

The material in §§1-3 is fairly standard and can be found in many
places. For example, there are individual chapters in Lang [1987], Sil-
verman [1986], and Husemoller [1987] on this topic. Sections 5-8 are
based on Siegel [1969]. The material in §9 is from Zagier {1988]. Gauss’s
use of the arithmetic-geometric mean extended to complex numbers
and 1s applicable in evaluating period integrals when the roots of the
cubic are not all real. See Cox [1984] for an exposition.

Chapter VII

The definitive book about the Riemann zeta function is Titchmarsh
[1951]. Dirichlet series are discussed in many analysis books. For Euler
products, see pp. 217-220 of Husemdller {1987]. The material on Dirich-
let’s Theorem is taken from Serre [1973a]. Further motivation in terms
of the zeta function of a number field may be found in Hecke [1981].

For the definition and properties of the gamma function I'(s), see
Ahlfors [1966]. For the elementary properties of the Fourier transform
on the line, see Stein and Weiss [1971]. The results of §5 have several
points of contact with §3.6 of Shimura [1971a]. The passage from the
transformation laws of a function like 6(7) to the functional equation of
an associated Dirichlet series is one of the main themes of Ogg [1969a].
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Chapters VIII-IX

Modular forms appear in many books. The definitive book is Shimura
[1971a]. Other full-length books on the subject in the spirit presented
here are Gunning [1962], Ogg [1969a], Lang [1976], and Miyake [1989].
In addition, there are chapters on the subject in Apostol [1976], Koblitz
[1984], and Serre [1973a), and there are summaries in Gelbart [1975],
Silverman [1986], and Husemdller [1987].

Our presentation of much of the material in Chapter VIII is based on
Serre [1973a]. For §5 and §8, see also Ogg [1969a]. Our proof of Corollary
8.9 follows Siegel [1954]; for a different proof that gives different extra
information, see Serre [1973a].

Some authors define weight differently. Also Hecke operators have
more than one standard definition. Hecke operators, when defined as
operators given by one double coset, as in Shimura [1971a], are slightly
different from Hecke operators as we have defined them.

The subgroup T'e(N) is treated in only a few places. The term “Hecke
subgroup” follows Weil [1971b] and Gelbart [1975]. Our presentation is
a reinterpretation of Ogg [1969a], Lang [1976], and Atkin and Lehner
[1970]. The expositions by Ogg [1973] and Zagier [1990] are helpful also.

For more detail about Example 4 in §1X.3, see Serre [1973] and Ogg
[1973]. Example 5 is discussed in Ogg [1973], and a generalization is in
Newman [1959]. In connection with §VIIL.5 and §1X.4, see Ogg [1969a].

The details of the proof of Theorem 9.9 were omitted. For the Rie-
mann surface structure, see Chapter 1 of Shimura [1971a] or Chapter 1
of Miyake [1989]. For the comparison of zeros and poles of meromorphic
functions, see Proposition 11.5.4 of Farkas and Kra [1980]. The discus-
sion of Theorem 9.10 mentions the Riemann-Hurwitz formula, which is
given as Theorem [.2.7 of Farkas and Kra [1980], and the fact that the
space of holomorphic differentials has dimension g, which is given as
Proposition 111.2.7. For Theorem 9.10, see §2.6 of Shimura [1971a].

The material of §IX.7 is taken from Atkin and Lehner {1970]. The
proof of Theorem 9.22 may be found in that paper.

Chapter X

The material in §1 is due to Néron [1964]; see §VII.1 and §VIII.8 of
Silverman [1986). Our discussion in §2 of zeta functions and L functions
is abbreviated. Silverman [1986] includes more detail in his Chapter
V. The L function of an elliptic curve often has the name Hasse-Weil
attached to it, and its shape is a motivating example for the Weil con-
jectures about varieties over finite fields. The final Weil conjecture
generalizes Theorem 10.5, which is due to Hasse [1936]. We have given
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a nonstandard elementary proof of this theorem, following Manin [1956];
Birch discovered an error in Manin’s proof, and the error is corrected in
Cassels [1957] and here. The standard proof, given in §§V.1 and V.2 of
Silverman {1986], is longer but has the advantage that its methods are
applicable to other situations. For an exposition and history of Hasse’s
Theorem and the Weil conjectures and their proofs, see Katz [1976].

Chapter XI

Eichler-Shimura theory refers both to the kinds of results in §§11-
12 and to a theory that seeks to generalize the material in §1 from
S2(To(N)) to Sk(To(N)). The main references for the theme that leads
to §§11-12 are Eichler {1954] and Shimura [1958], [1971a], and [1973b].
The article Swinnerton-Dyer and Birch [1975] includes a very helpful
overview. For the generalization of §1, the references are Eichler [1957]
and Shimura [1959]; Chapters V and VI of Lang [1976] give an exposition
for SL(2,2).

In connection with §1, economical generators of Xo(N) are known if
N is prime. This result is due to Rademacher [1930] and is quoted by
Apostol [1990], p. 78. For the equations of E, E’, and E” in §1, as well
as the isogeny, see Vélu [1971a). See also Langlands [1990].

For proofs of the results in §2, see §1.5 of Shimura [1971a]. The ma-
terial in §§3-4 about general Riemann surfaces is taken from Farkas and
Kra [1980], and detailed proofs may be found there: For our Propositi-
ion 11.4, see Theorem I1.5.1 of that book. For our Proposition 11.5, see
Theorem I11.2.7. Proposition 11.7 through Corollary 11.12 are in §111.4
of that book, Proposition 11.13 through Theorem 11.19 are in §IIL.6,
and Theorems 11.20 and 11.21 are in §IV.11.

The invariant differential of an elliptic curve is treated in detail in
Silverman [1986], pp. 52-53 and §I11.5.

The idea of the construction in the first part of §5 is in Swinnerton-
Dyer and Birch [1975], and the proof has been assembled from arguments
scattered throughout Shimura [1971a). For example, our Proposition
11.22 is implicit in the proof of Shimura’s Theorem 2.20, and many of
the steps in the proof of Proposition 11.23 appear in §8.3 of Shimura’s
book. Shimura gives two proofs that the Hecke operators are given by
integer matrices and thus have algebraic integers as eigenvalues. One
proof uses the generalization of our §1 to weight k and appears on p. 84
and in Chapter 8 of Shimura [1971a]; the other uses what we have called
Proposition 11.73 and is on pp. 171-172 of that book. Theorem 11.27 is
a modification of Shimura’s Theorem 3.51.

The material in §6 through Theorem 11.33 and its lemmas is classical.
Our treatment is based on §§3.3 and 5.2 of Lang [1987] and lectures of
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H. Matumoto. Theorem 11.36 is implicit in §§6.7 and 6.8 of Shimura
[1971a].

Our treatment of general varieties and curves in §§7-8 is a merger
of Chapter I of Hartshorne [1977] and Chapters I and II of Silverman
[1986], and the reader is referred to those sources for proofs or references
to proofs of results in algebraic geometry. In places where neither a proof
nor a reference appears for such a result in either book, we have tried
to give some indication of proof.

For quoted results in commutative algebra, the reference is Zariski
and Samuel [1958] and [1960]. The Hilbert Basis Theorem is on p. 201
of volume 1, and the Hilbert Nullstellensatz is on p. 164 of voluine 2.
Integral closure is discussed in pp. 254-265 of volume 1, and the result
quoted to obtain (11.74) is on p. 265.

Corollary 11.50 is implicit in Chapters 6 and 7 of Shimura [1971a]. The
material in §9 is abstracted from Silverman [1986], largely Chapters II
and III. For more information about isogenies, see Vélu [1971b].

Lang [1983] treats abelian varieties in his §§1.1 and 1I.1, and he intro-
duces the Jacobian variety in §11.2. Proofs of Propositions 11.68 to 11.70
and of some of the assertions about Jacobian varieties may be found
there. Historically Weil [1946] and [1948, reprinted in 1971a] reworked
the foundations of algebraic geometry in part to deal rigorously with the
Jacobian variety. Page 88 of Weil [1971a] remarks on the understanding
of the Italian school of the relationship between correspondences and the
Jacobian variety; using correspondences involves counting intersections
properly, and this subject had never been pinned down. Lefschetz [1921]
had constructed the Jacobian variety as a projective variety over C, and
Weil’s work constructed Jacobian varieties of curves defined over @ as
“abstract varieties.” Chow [1954] realized the Jacobian variety of a curve
defined over Q as a projective variety over @, and his paper contains the
results we quote as Theorem 11.71. For Theorem 11.72, see Theorem
VII of Chow [1949]. For Proposition 11.73, see §2.9, Proposition 9, of
Shimura and Taniyama [1961].

For the theorem of Wedderburn given as Lemma 11.75, see pp. 63, 66,
and 116 of Jacobson [1943].

Concerning Theorem 11.74, Eichler [1954] discovered (11.118) and
used it to relate the L function of Xo(N) to the action of the Hecke
operators. Shimura [1971a] adapted this algebraic argument and added
the idea of looking at a subvariety of J to get a version of Theorem 11.74;
see his Theorems 7.14 and 7.15. The theorem as we have given it is a
sharpened version that appeared in Shimura [1973b]. Much of Shimura’s
proof, including the rationality of the Hecke operators, is couched in the
language of adeles in order to gain generality; insight into what Shimura
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is doing may be obtained from Chapter 7 of Lang [1987). Shimura’s
proof of the equality of L functions uses his own general theory (Shimura
[1955]) of reduction of varieties modulo p and is valid for all but finitely
many primes. Igusa [1959] proves results about the reduction modulo p
of Xo(N) implying that Shimura’s argument is valid for all primes not
dividing N.

Chapter XII

The presentation in this chapter, especially in §1, owes a great deal to
Zagier [1988] and Swinnerton-Dyer and Birch {1975]. For Theorem 12.2,
see §3.6 of Shimura [1971a]. Theorem 12.4 originally appeared in Weil
[1967]; Chapter V of Ogg [1969a] gives an exposition. For the Taniyama-
Weil Conjecture, see Taniyama [1957] and Weil [1967]. Theorem 12.7 is
Theorem 4 of Swinnerton-Dyer and Birch [1975].

The notion of conductor dates to Artin and became manageable as a
result of Ogg [1967]. An actual algorithm for computing it is the subject
of Tate [1975).

Swinnerton-Dyer, Stephens, et al. [1975] assembled extensive tables
of information about elliptic curves over @ with low conductor. Vélu
[1976] reported a small number of errors that had been discovered in
the tables, including the omission of a page listing curves of conductors
121 to 124. Our Table 12.1 relies partly on those tables and partly on
computation using Tate’s algorithm. Miyake [1989] includes long tables
of information about a few particular curves.

Theorem 12.8 is due to Carayol [1986], p. 411. The arguments relating
the Hasse-Weil Conjecture and the Taniyama-Weil Conjecture are in
Swinnerton-Dyer and Birch [1975). The end of our §1 alludes to Serre’s
Isogeny Theorem, which is on p. IV-14 of Serre [1968].

In §2, Proposition 12.9 is noted by Mazur (1973]. Twists appear in
Atkin and Lehner [1970], Shimura [1973b], and Atkin and Li [1978]. See
also §X.5 of Silverman [1986].

Ligozat [1975] works extensively with Xo(N) of genus 1, and the clas-
sical method of proving that curves are Weil curves can be seen there.
Mazur and Swinnerton-Dyer [1974] show how N = 37 (of genus 2) can
be handled, and Birch [1973] shows how N = 50 (of genus 2) can be han-
dled. We have taken Table 12.2 from Mazur (1973], but it can readily
be computed directly.

Conductor 2°3* was treated in the unpublished Manchester thesis of F.
B. Coghlan, and the numerical results are in Table 4 of Swinnerton-Dyer,
Stephens, et al. [1975]. Theorem 12.11 is due to Mestre and Qesterlé
[1989]. In this connection, see also Theorem 1 of Coates [1970] and its
interpretation in Theorem 8 of Tate [1974].
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A subject that this book has not treated is elliptic curves over @ with
complex multiplication. All such curves are Weil curves, by a theorem
of Deuring [1953-57]. The j-invariants of curves over @ with complex
multiplication lie in a finite set.

Trace formulas for Hecke operators are the subject of Chapter 6 of
Miyake {1989]. For original papers, see Eichler [1957], Selberg [1957],
Eichler [1973], and Hijikata [1974]. The argument centered about (12.11)
is taken from Miyake’s book.

Frey [1986] studied an equation more general than (12.12) and noted
its relevance to Fermat’s Last Theorem. Serre [1987b] studied this ques-
tion at length and gave a conjecture whose truth would yield Corollary
12.13. Ribet [1990] proved enough of Serre’s conjecture to obtain Corol-
lary 12.13. We have followed Serre’s paper in computing the conductor
of (12.12).

Connection with Representation Theory

Langlands [1990] pulls together L functions, class field theory, elliptic
curves, modular forms, infinite-dimensional representations of the gen-
eral linear group, adeles, and automorphic representations, all in the
space of 30 pages. His paper is a good one to start with, and a good one
to return to.

The idea that modular forms are connected with the representations
of GL(2) seems to have originated with Gelfand and Fomin in the 1950’s.
Some expositions of the connection are in parts of Gelfand, Graev, and
Pyatetskii-Shapiro [1969], Weil [1971b], Deligne [1973], Gelbart [1975],
and Piatetski-Shapiro {1979]. In part, the connection is that one can
identify cusp forms for Io(N) in two stages with functions on groups.
In the first stage the identification is with certain functions on SL(2,R)
transforming on one side by I'q(/V)} and on the other side by the rotation
subgroup. In the second stage it is with certain functions on GL(2,A),
where A is the group of adeles of Q. The cusp forms are then intimately
connected with the decomposition of the representation of GL(2,A) on
L? of the quotient space GL(2,Q)Za\GL(2,A), where Zp is the center
of GL(2,A). Under this correspondence the Hecke operators end up
with a surprisingly simple interpretation.

Once this construction is complete, the objects of interest are pairs
consisting of a certain kind of infinite-dimensional irreducible unitary
representation of GL(2,A) and a finite-dimensional holomorphic rep-
resentation of GL(2,C) (initially taken to be the standard representa-
tion). To such a pair the theory attaches an L function. To construct
the L function, one recognizes the infinite-dimensional representation
as a kind of infinite tensor product of representations of GL(2,R) and
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GL(2, p-adics) for all p (see Flath [1979]), and one constructs a factor
of the L function for each factor of the representation. The intention
is to be guided by Hecke’s classical theory, to obtain an analytic con-
tinuation and functional equation for the resulting L function, and to
see connections with L functions in number theory. This program for
GL(2) is carried out in detail in Jacquet and Langlands [1970]. For an
exposition, see Robert [1973]. In retrospect, Tate’s 1950 thesis (Tate
[1967]) did the same thing for GL(1).

This construction has become in part a way of generating automorphic
L functions, and it lends itself to generalization. For generalization to
GL(n), see Godement and Jacquet [1972]. For generalization to other
kinds of groups, several things have to be brought to bear simultaneously.
One can see them all at once in a preliminary form in Langlands [1970],
and all at once in a later form in Langlands [1979]. For more detail
one can consult Borel [1979], Borel and Jacquet [1979], and Tate [1979].
General sources for representation theory of reductive groups are Knapp
[1986] for real groups and Silberger [1979] for p-adic groups. For a status
report on construction of L functions, see Shahidi [1990].

The theory does more, however, than just produce L functions. It
provides tools for working with them and bringing together the fields of
mathematics in which L functions play a role. Three papers that explain
such relationships are Gelbart [1984], Gelbart and Shahidi [1988], and
Clozel [1990]. And, once again, one should look at Langlands [1990].
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INDEX OF NOTATION

See also the list of Standard Notation on page xv. In the list below,
Latin, German, and script letters appear together and are followed by

Greek symbols and non-letters.

a,, az, ag, a4, ae, 42, 56, 57
ap, 294, 295
A(T), 331

Ar(r), 283
Ap(To(N)), 333
ba, b4, bg, bs, 57
C1, 329

c4, Cg, DT

Cn, 225

c(m,x), 214, 387
C, 273
C(z,y,w), 37
Ck, 353

d, 59

deg, 317, 359
deg,, deg;, 359
df, 371

dt(n), 372
Div(X), 316, 360
Divg(X), 316, 361
e, 170

er(z), 359

E(k), 25

E(Q), 15, 80
E(Q)tors; 130
EM(Q), 137, 138
End(E), 364, 368
Endg(J), 374
E,, 130, 135

f, 210

f, 243

fl(:c) y)’ 26

fu, 345

fr, 212

fo, 314

£(r), 330

F, 365

F*, 349, 360

F., 360, 392

F(k), 25

F(r), 302

F,, 135

F®, 28

g, 272, 317, 361

92, 92(A), 158, 222
g3, 93(A), 158, 222
g2(7), g3(7), Gax(7), 223
GQ(T), 266

G$(r), 266

Gak, Gar(A), 158, 222
h, 97, 263

hq, 95

H, 30

H\(R), H(C), 326
HE(R), HE(C), 327
Hy(Xo(N),2), 323
Hom(E1, E2), 364, 368
H, 223

H*, 311

WP, L,F), 32

I, 341

I(V), 342

I(V/ky), 342

I(W), 344

I(W Nk, 345

7, 65, 333
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i(A), 222

j(r), 223, 333
in, 335

j, 371

J, 371

J(X), 318, 369
J(Xo(N)), 310
klz,y,wl4, 24
ko[V), k[V], 342
ko(V), k(V), 342
ko(W), (W), 346
E[V]., 343

k[W], 346
k[W],, 346
K(X), 312

L,19

L(k), 19

L(s), 17

L(s, f), 238, 267, 386
L(s, f,x), 387
L(s, E), 295
L(s, x), 201
L(D), 316,361
L(T), 329

L%, 20

mg, 343

[m], 365
M(a,b), 186
M(n), 244
M(n,N), 276, 320
M*(n), 256

My, 234
M(To(N)), 265
M., 344

MR, 351

n(C), 170

ny, na, 108

N, 390

N(p), 16
ord.(f), 316,350

INDEX OF NOTATION

ord (D), 316, 360

0O, 11, 67, 74, 362, 368
p, 151, 153

—-P, 12,74

Py(k), 19

Po(k), 344

Py, 273

Pic(X), 316, 360
Pic?(C), 361

P+Q, 11,67

P.Q, 10,43

PQ, 10, 43

q, 225

qn, 263

an, 263

Q, 285

r, 102

rp, 130, 135

R, 227

R, 251

R(f,g), 45

[R(F9)), 45

R(n), 248, 278

Rg/q, 106

Ry, 260

R, 170, 271, 305, 375
R*, 172, 271, 305 .
S, 228 !
Sk, 234

Sk(To(N)), 265

SE(To(N)), 270
S24(To(N)), 283
Spe¥(To(N)), 283

S, 375

S(RY), 211

t(n), 372

T, 228, 305

T(n), 244, 275, 320, 321, 323
T#(n), 372

Ty (n), 244, 245, 275, 277

T,, 384

T, 375

u, 63, 290, 293
U, 37

v, 351

Voo, Vi, Up, Ur, 231
V, 342

V/ko, 342
Viko), 342

Va, Vs, 305

Vi, 341

w(C), 174
w(Q), 285

wy, 269

wq, 285

W, 344

W(ko), 344
Wy, 344
Xo(11), 305
Xo(N), 310,311
a# 253,261
a;, 244, 277, 320, 372
ayn, 269

[e]k, 245, 261
[], 323

T(N), 250, 256
To(N), 256
To(r,p), 287
Iy, Ta, 170

Iy, Ty, 177

Lq, Iy, Te, 170
r=> 321

e, Tg, Iy, 177
6(g,7), 229, 261
6f, 371

§t(n), 373

A, 58

A(A), 222
A(r), 223

¢(s), 189
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n(7), 235

6(r), 208

6(r,x), 216

A, 153, 223, 371
A(s), 18, 209

A(s, f), 240, 270, 386
A(s, f,x), 387

A(s, E), 386, 387
A(s, E,x), 387

A(s, x), 216

Ay, 374

A, 223

(A, C), 273

i, 272, 371

Mooy M2, B3, 272

v, 374

m, 370

II, 153

p, 208, 375

o, 208

oi(n), 225

T = p+io, 208, 224
To0, 302

¢, 360, 384

¢, 384

p, 272, 357, 380
(1), 239, 268

Pa, 90

@, 20, 318, 345, 369
®, 370

o# 372

B, (), 303

PN (X), 335

x, 201

x#, 213

X0, 201

w, 314, 370, 374
wi, we, 103, 223, 274
Q(X), 312

Qnol(X), 313, 370
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0o, 79, 231, 261

], 80

II, 90

(-) 210, 365

(), 328

(-,-), 242, 280, 326, 371

INDEX OF NOTATION

[1, 323, 365
[1e, 245, 261
| |p, 134

(3> . 272, 298, 393
D

i
J

, 83

Abel’s Theorem, 318
abelian
subvariety, 368
variety, 367
addition, 162, 363
elliptic curve, 11
formula, 76
adeles, 407
admissible change of variables,
63, 363
affine
algebraic set, 342
coordinate ring, 342
curve, 25, 343
local coordinates, 21, 345
problem, 3
variety, 342
algebraic integer, 122, 123
algebraic numbers, 122
algebraic set
affine, 342
projective, 344
analytic continuation, 166, 167
arithmetic-geometric mean, 185,
402
associate Dirichlet characters,
213
associativity, 12, 67
Atkin-Lehner Theorem, 283, 289
automorphic function, 333
automorphic L function, xi, 208

bad prime, 108

Bezout’s Theorem, 27, 47

birational map 348

Birch and Swinnerton-Dyer
Conjecture, 17, 208, 386

Noe

canonical class, 316, 361

canonical height, 95, 97

canonical Q structure, 333,
341, 349, 357

Carayol, 391

change of variables, admissible,
63, 362

INDEX

character, 200
chord case, 75
chord-tangent composition rule,
11, 43

class group

divisor, 316, 361

ideal, 127
class number, 126
complex multiplication, 164, 407
complex torus, 160, 183, 370
conductor, 213, 390
congruence subgroup, 250, 256
congruent numbers, 52, 110, 112,

115

conic, 25
continuation, analytic, 166, 167
convergent product, 195
coordinate ring, 342
coordinates, affine local, 345
correspondence, 385
cubic, 25, 40, 56

nonsingular, 58

singular, 58
curve

affine, 25, 343

elliptic, 42

nonsingular, 27

projective, 345

projective plane, 24

same, 24

singular, 27

smooth, 27
cusp, 77, 262
cusp form, 225, 261

defined at, 344, 346, 348
defined over, 342, 344, 347, 361,
362, 368
degenerate, 68
degree, 243, 249, 273, 317, 359, 360
descent, 80
differential
holomorphic, 312
invariant, 314
meromorphic, 312
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dimension, 343, 346
dimension formula, 235, 272
Diophantus, 3, 6, 7, 10, 50
Diophantus method, 6, 10, 115,
119
Dirichlet character, 201
associate, 213
conductor of, 213
extension, 213
primitive, 213
principal, 201
Dirichlet L function, xii, 201
Dirichlet series, 192
Dirichlet Unit Theorem, 125
Dirichlet’s Theorem, xii, 148, 189
discrete valuation ring, 351
discriminant, 15, 58, 59, 125,
226
divisor, 316, 360
divisor class group, 316, 361
divisor, principal, 316, 360
dominant morphism, 349
dominate, 392
Double Series Theorem, 158
doubling formula, 76
doubly periodic, 152
dual isogeny, 309, 365

Eichler-Shimura theory, xii, 302,
374, 389, 390, 404
eigenform, 280
elliptic curve, 13, 42, 160, 183,
362
modular, 221
elliptic element, 303
elliptic function, 152
elliptic integral, 174
elliptic regulator, 106
equivalent eigenform, 280
equivalent ideals, 126
Euler product, 196, 202, 255, 282,
289, 295
first degree, 197
second degree, 199
even total winding number, 170
extension of Dirichlet character,
213

fairly bad prime, 108

INDEX

Fermat, 52, 110, 112

Fermat’s Last Theorem, xii, 3, 18,
50, 54, 58, 81, 397, 399

Fermat’s method of descent, 80

Fermat's problem for Mersenne,
55, 119

Fibonacci, 52

first degree Euler product, 197

flex, 35

Fourier inversion formula, 200,
210

Fourier transform, 200, 210

Frey-Serre-Ribet, xii, 18, 399

Frobenius morphism, 360, 384

¢'" power, 360

function element, 166

function field, 312, 319, 342,
346

of dimension 1, 349

functional equation, 209, 2186,
240, 270, 289, 386, 387, 388

fundamental domain, 228, 260

fundamental parallelogram, 152

Gauss, 185, 402

Gauss sum, 214, 387
genus, 272, 317, 361, 395
global minimal, 290
good prime, 108

Hasse Principle, 5, 15, 16

Hasse’s Theorem, 16, 296

Hasse-Minkowski Theorem, 5

Hasse-Weil Conjecture, 18, 387

Hasse-Weil L function, 403

Hecke operator, 244, 275, 320,
321, 323, 372

Hecke subgroup, 256

Hecke's Theorem, 249, 279

Hecke-Petersson Theorem, 255, 282

height, 95, 97

Hessian matrix, 30

Hilbert Basis Theorem, 342
Hilbert Nullstellensatz, 342
holomorphic at oo, 225
holomorphic at the cusp, 261, 263
holomorphic differential, 312
homogeneous, 243, 273
homogeneous ideal, 344

homogeneous polynomial, 22
homology, 317, 321, 392
homomorphism, 368

ideal class group, 127
ideal of variety, 342, 344
identity, elliptic curve, 11
Igusa, 374, 390
inflection point, 35
integral, elliptic, 174
intersection multiplicity, 32
invariant differential, 314
inversion, 269, 285
inversion problem, 165
irreducible, 342, 345
isogenous, 365, 369
jsogeny, 164, 309, 363, 369
dual, 309, 369
isomorphic elliptic curves, 63
isomorphic over, 349
isomorphic varieties, 349
isomorphism, 368

j-invariant, 65, 226

Jacobi Inversion Theorem, 319

Jacobian variety, 310, 318, 361,
369, 370

L function, xi, 17, 201, 238,
267, 295
automorphic, xi, 208
Dirichlet, xii, 201
motivic, xi, 207
Langlands program, xiii
lattice, 243, 318
Legendre symbol, 272, 298, 393
Legendre’s Theorem, 5
level, 261, 333, 390
Lie group, 376
line, 19, 25
at infinity, 19
same, 19
tangent, 27
linear system, 316, 361
Liouville Theorems, 152, 153
local coordinates, affine, 21,
345
local L factor, 294
local ring, 343, 346

INDEX 425

Lutz-Nagell Theorem, xi, 15, 130,
144

Mazur’s Theorem, 15
Mellin transform, 238
meromorphic differential, 312
Mestre-Oesterlé, 396
method of descent, 80
method of Diophantus, 6, 10, 115, 119
minimal Weierstrass equation, 290
at prime p, 290
global, 290
Minkowski, 5, 104
model, 333, 341, 349, 357
modular elliptic curve, 221
modular form, 224, 225, 261
unrestricted, 224, 261
modular pair, 273
modular parametrization, 310, 390
modular polynomial, 335
Mordell’s Theorem, xi, 14, 80,
95, 402
Mordell-Weil Theorem, xi, 80, 95,
402
morphism, 348, 356
dominant, 349
Frobenius, 360, 384
motivic L function, xi, 207
multiplicative, 196
strictly, 197
Multiplicity One Theorem, 283
multiplicity, intersection, 32

Nagell, xi, 15, 130, 144

naive height, 95

negative, 12

newform, 283

Newton, 10

node, 77

Noetherian, 342

nondegenerate, 68

nonsingular, 25, 27, 58, 161,
343, 347

nonsplit case, 79

norm, 123

Nullstellensatz, 342

number field, 122

oldform, 283
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order, 153

p-adic filtration, 138
p-adic norm, 134
p-integral, 135
p-reduced, 135
parabolic element, 303
parallelogram
fundamental, 152
period, 152
period, 151, 184
period lattice, 153
period parallelogram, 152
Petersson inner product, 242,
252, 280
plane curve, 24
Poincaré, 13, 67
point
nonsingular, 25, 343, 347
of inflection, 35
singular, 25, 77
points, 19, 25, 342, 344
at infinity, 19
Poisson Summation Formula, 211
pole, 360
prescribed torsion, 145
primitive, 213
Principal Axis Theorem, 37
principal Dirichlet character,
201
principal congruence subgroup,
250, 256
principal divisor, 316, 360
product
convergent, 195
of ideals, 126
of varieties, 347
projective
algebraic set, 344
closure, 345
curve, 345
n-space, 344
plane, 19
plane curve, 24
problem, 3
transformation, 20, 345
variety, 345
purely inseparable, 359
Pythagorean triple, 7

INDEX

g-expansion, 225, 263, 265
quadratic residue symbol, 272,
298, 393

ramified, 359

rank, 15, 102, 107

rational map, 347

rational points, 19, 25, 342,
344

reciprocal roots, 198

reduction modulo p, 130, 134,
384

regular, 344, 346, 348

regulator, 106

representation theory, xiii, 407

result of rearranging, 167

resultant, 44

Ribet, xii, 18, 398, 399

Riemann-Roch Theorem, 317, 361

Riemann surface, 170, 311, 312,
316

Riemann zeta function 189, 194

same curve, 24

same line, 19

Schwartz function, 211

second degree Euler product, 199

Segre embedding, 347

Selmer’s example, 8

separable, 359

Serre, xii, 18, 392, 399

Shimura, xii, 302, 374, 389, 390,
390, 404

Shimura-Taniyama, 373

singular, 12, 25, 27, 58, 77

smooth curve, 27

split case, 79

square root, 169

strictly multiplicative, 197

strong Weil curve, 392

subvariety, 368

summation by parts, 192

Swinnerton-Dyer, 17, 208, 386

tangent case, 75

tangent line, 27

Taniyama, 373

Taniyama- Weil Conjecture, xii,
18, 208, 221, 390, 399

Tate normal form, 147

theta function, 209, 216

torsion subgroup, 15, 130
prescribed, 145

torus, complex, 160, 183, 370

total winding number, 170

trace, 123, 396

translation, 364

twist, 308, 393

ultrametric inequality, 134
uniformizer, 350

unique factorization, 92, 127

unit, 92, 124

unramified, 359

unrestricted modular form, 224, 261

valuation, 351
vanishes at the cusp, 263
variety

abelian, 367

affine, 342

projective, 345
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very bad prime, 108

Wedderburn’s Theorem, 375
Weierstrass
Double Series Theorem, 158
equation, 362
minimal, 290
form, 13, 42, 56, 57, 401
g function, 153
weight, 63, 224, 261, 333
Weil, xii, 18, 208, 221, 387,
390, 399
Weil conjectures, 403
Weil Converse Theorem, 388
Weil curve, 390
strong, 392
width, 263
winding number, total, 170

zero, 360
zeta function, xi, 189, 194, 295
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