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Preface

A course in system dynamics that deals with mathematical modeling and response
analyses of dynamic systems is required in most mechanical and other engineering
curricula. This book is written as a textbook for such a course. It is written at the
junior level and presents a comprehensive treatment of modeling and analyses of
dynamic systems and an introduction to control systems.

Prerequisites for studying this book are first courses in linear algebra, intro-
ductory differential equations, introductory vector-matrix analysis, mechanics, cir-
cuit analysis, and thermodynamics. Thermodynamics may be studied simultaneously.

Main revisions made in this edition are to shift the state space approach to
modeling dynamic systems to Chapter 5, right next to the transfer function approach
to modeling dynamic systems, and to add numerous examples for modeling and
response analyses of dynamic systems. All plottings of response curves are done with
MATLAB. Detailed MATLAB programs are provided for MATLAB works pre-
sented in this book.

This text is organized into 11 chapters and four appendixes. Chapter 1 presents
an introduction to system dynamics. Chapter 2 deals with Laplace transforms of
commonly encountered time functions and some theorems on Laplace transform
that are useful in analyzing dynamic systems. Chapter 3 discusses details of mechan-
ical elements and simple mechanical systems. This chapter includes introductory dis-
cussions of work, energy, and power.

Chapter 4 discusses the transfer function approach to modeling dynamic sys-
tems. Transient responses of various mechanical systems are studied and MATLAB
is used to obtain response curves. Chapter 5 presents state space modeling of dynam-
ic systems. Numerous examples are considered. Responses of systems in the state
space form are discussed in detail and response curves are obtained with MATLAB.

Chapter 6 treats electrical systems and electromechanical systems. Here we
included mechanical-electrical analogies and operational amplifier systems. Chapter 7

vii



viii Preface

deals with mathematical modeling of fluid systems (such as liquid-level systems,
pneumatic systems, and hydraulic systems) and thermal systems. A linearization
technique for nonlinear systems is presented in this chapter.

Chapter 8 deals with the time-domain analysis of dynamic systems. Transient-
response analysis of first-order systems, second-order systems, and higher order sys-
tems is discussed in detail. This chapter includes analytical solutions of state-space
equations. Chapter 9 treats the frequency-domain analysis of dynamic systems. We
first present the sinusoidal transfer function, followed by vibration analysis of
mechanical systems and discussions on dynamic vibration absorbers. Then we dis-
cuss modes of vibration in two or more degrees-of-freedom systems.

Chapter 10 presents the analysis and design of control systems in the time
domain. After giving introductory materials on control systems, this chapter discusses
transient-response analysis of control systems, followed by stability analysis, root-locus
analysis, and design of control systems. Finally, we conclude this chapter by giving tun-
ing rules for PID controllers. Chapter 11 treats the analysis and design of control sys-
tems in the frequency domain. Bode diagrams, Nyquist plots, and the Nyquist stability
criterion are discussed in detail. Several design problems using Bode diagrams are
treated in detail. MATLAB is used to obtain Bode diagrams and Nyquist plots.

Appendix A summarizes systems of units used in engineering analyses. Appendix
B provides useful conversion tables. Appendix C reviews briefly a basic vector-matrix
algebra. Appendix D gives introductory materials on MATLAB. If the reader has no
prior experience with MATLARB, it is recommended that he/she study Appendix D
before attempting to write MATLAB programs.

Throughout the book, examples are presented at strategic points so that the
reader will have a better understanding of the subject matter discussed. In addition,
a number of solved problems (A problems) are provided at the end of each chapter,
except Chapter 1. These problems constitute an integral part of the text. It is sug-
gested that the reader study all these problems carefully to obtain a deeper under-
standing of the topics discussed. Many unsolved problems (B problems) are also
provided for use as homework or quiz problems. An instructor using this text for
his/her system dynamics course may obtain a complete solutions manual for B prob-
lems from the publisher.

Most of the materials presented in this book have been class tested in courses
in the field of system dynamics and control systems in the Department of Mechani-
cal Engineering, University of Minnesota over many years.

If this book is used as a text for a quarter-length course (with approximately 30
lecture hours and 18 recitation hours), Chapters 1 through 7 may be covered. After
studying these chapters, the student should be able to derive mathematical models
for many dynamic systems with reasonable simplicity in the forms of transfer func-
tion or state-space equation. Also, he/she will be able to obtain computer solutions
of system responses with MATLAB. If the book is used as a text for a semester-
length course (with approximately 40 lecture hours and 26 recitation hours), then
the first nine chapters may be covered or, alternatively, the first seven chapters plus
Chapters 10 and 11 may be covered. If the course devotes 50 to 60 hours to lectures,
then the entire book may be covered in a semester.
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Introduction to System
Dynamics

1-1 INTRODUCTION

System dynamics deals with the mathematical modeling of dynamic systems and
response analyses of such systems with a view toward understanding the dynamic
nature of each system and improving the system’s performance. Response analyses
are frequently made through computer simulations of dynamic systems.

Because many physical systems involve various types of components, a wide
variety of different types of dynamic systems will be examined in this book. The
analysis and design methods presented can be applied to mechanical, electrical,
preumatic, and hydraulic systems, as well as nonengineering systems, such as eco-
nomic systems and biological systems. It is important that the mechanical engineer-
ing student be able to determine dynamic responses of such systems.

We shall begin this chapter by defining several terms that must be understood
in discussing system dynamics.

Systems. A system is a combination of components acting together to per-
form a specific objective. A component is a single functioning unit of a system. By no
means limited to the realm of the physical phenomena, the concept of a system can
be extended to abstract dynamic phenomena, such as those encountered in eco-
nomics, transportation, population growth, and biology.
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A system is called dynamic if its present output depends on past input; if its
current output depends only on current input, the system is known as static. The out-
put of a static system remains constant if the input does not change. The output
changes only when the input changes. In a dynamic system, the output changes with
time if the system is not in a state of equilibrium. In this book, we are concerned
mostly with dynamic systems.

Mathematical models. Any attempt to design a system must begin with a
prediction of its performance before the system itself can be designed in detail or ac-
tually built. Such prediction is based on a mathematical description of the system’s
dynamic characteristics. This mathematical description is called a mathematical
model. For many physical systems, useful mathematical models are described in
terms of differential equations.

Linear and nonlinear differential equations. Linear differential equations
may be classified as linear, time-invariant differential equations and linear, time-
varying differential equations.

A linear, time-invariant differential equation is an equation in which a depen-
dent variable and its derivatives appear as linear combinations. An example of such
an equation is

d*x _dx

F+5d—t+10x=0

Since the coefficients of all terms are constant, a linear, time-invariant differential
equation is also called a linear, constant-coefficient differential equation.

In the case of a linear, time-varying differential equation, the dependent vari-
able and its derivatives appear as linear combinations, but a coefficient or coeffi-
cients of terms may involve the independent variable. An example of this type of
differential equation is

2
% +(1—-cos2t)x=0

It is important to remember that, in order to be linear, the equation must con-

tain no powers or other functions or products of the dependent variables or its

derivatives.
A differential equation is called nonlinear if it is not linear. Two examples of
nonlinear differential equations are

d*x 2 dx
padiiad - -+ =
17 + (x*—-1) R 0

and

— +—+x+x=sinot
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Linear systems and nonlinear systems. For linear systems, the equations
that constitute the model are linear. In this book, we shall deal mostly with linear sys-
tems that can be represented by linear, time-invariant ordinary differential equations.

The most important property of linear systems is that the principle of superpo-
sition is applicable. This principle states that the response produced by simultaneous
applications of two different forcing functions or inputs is the sum of two individual
responses. Consequently, for linear systems, the response to several inputs can be
calculated by dealing with one input at a time and then adding the results. As a
result of superposition, complicated solutions to linear differential equations can be
derived as a sum of simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are
proportional, thereby implying that the principle of superposition holds, the system
can be considered linear.

Although physical relationships are often represented by linear equations, in
many instances the actual relationships may not be quite linear. In fact, a careful
study of physical systems reveals that so-called linear systems are actually linear
only within limited operating ranges. For instance, many hydraulic systems and
pneumatic systems involve nonlinear relationships among their variables, but they
are frequently represented by linear equations within limited operating ranges.

For nonlinear systems, the most important characteristic is that the principle of
superposition is not applicable. In general, procedures for finding the solutions of
problems involving such systems are extremely complicated. Because of the mathe-
matical difficulty involved, it is frequently necessary to linearize a nonlinear system
near the operating condition. Once a nonlinear system is approximated by a linear
mathematical model, a number of linear techniques may be used for analysis and
design purposes.

Continuous-time systems and discrete-time systems. Continuous-time
systems are systems in which the signals involved are continuous in time. These sys-
tems may be described by differential equations.

Discrete-time systems are systems in which one or more variables can change
only at discrete instants of time. (These instants may specify the times at which some
physical measurement is performed or the times at which the memory of a digital
computer is read out.) Discrete-time systems that involve digital signals and, possi-
bly, continuous-time signals as well may be described by difference equations after
the appropriate discretization of the continuous-time signals.

The materials presented in this text apply to continuous-time systems; discrete-
time systems are not discussed.

1-2 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS

Mathematical modeling. Mathematical modeling involves descriptions of
important system characteristics by sets of equations. By applying physical laws to a
specific system, it may be possible to develop a mathematical model that describes
the dynamics of the system. Such a model may include unknown parameters, which
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must then be evaluated through actual tests. Sometimes, however, the physical laws
governing the behavior of a system are not completely defined, and formulating a
mathematical model may be impossible. If so, an experimental modeling process can
be used. In this process, the system is subjected to a set of known inputs, and its out-
puts are measured. Then a mathematical model is derived from the input—output re-
lationships obtained.

Simplicity of mathematical model versus accuracy of results of analysis.
In attempting to build a mathematical model, a compromise must be made between
the simplicity of the model and the accuracy of the results of the analysis. It is im-
portant to note that the results obtained from the analysis are valid only to the ex-
tent that the model approximates a given physical system.

In determining a reasonably simplified model, we must decide which physical
variables and relationships are negligible and which are crucial to the accuracy of
the model. To obtain a model in the form of linear differential equations, any dis-
tributed parameters and nonlinearities that may be present in the physical system
must be ignored. If the effects that these ignored properties have on the response
are small, then the results of the analysis of a mathematical model and the resuits of
the experimental study of the physical system will be in good agreement. Whether
any particular features are important may be obvious in some cases, but may, in
other instances, require physical insight and intuition. Experience is an important
factor in this connection.

Usually, in solving a new problem, it is desirable first to build a simplified
model to obtain a general idea about the solution. Afterward, a more detailed math-
ematical model can be built and used for a more complete analysis.

Remarks on mathematical models. The engineer must always keep in
mind that the model he or she is analyzing is an approximate mathematical descrip-
tion of the physical system:; it is not the physical system itself. In reality, no mathe-
matical model can represent any physical component or system precisely.
Approximations and assumptions are always involved. Such approximations and as-
sumptions restrict the range of validity of the mathematical model. (The degree of
approximation can be determined only by experiments.) So, in making a prediction
about a system’s performance, any approximations and assumptions involved in the
model must be kept in mind.

Mathematical modeling procedure. The procedure for obtaining a math-
ematical model for a system can be summarized as follows:

1. Draw a schematic diagram of the system, and define variables.

2. Using physical laws, write equations for each component, combine them
according to the system diagram, and obtain a mathematical model.

3. To verify the validity of the model, its predicted performance, obtained by
solving the equations of the model, is compared with experimental results.
(The question of the validity of any mathematical model can be answered
only by experiment.) If the experimental results deviate from the prediction
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to a great extent, the model must be modified. A new model is then derived
and a new prediction compared with experimental results. The process is re-
peated until satisfactory agreement is obtained between the predictions and
the experimental results.

1-3 ANALYSIS AND DESIGN OF DYNAMIC SYSTEMS

This section briefly explains what is involved in the analysis and design of dynamic
systems.

Analysis. System analysis means the investigation, under specified condi-
tions, of the performance of a system whose mathematical model is known.

The first step in analyzing a dynamic system is to derive its mathematical
model. Since any system is made up of components, analysis must start by developing
a mathematical model for each component and combining all the models in order to
build a model of the complete system. Once the latter model is obtained, the analysis
may be formulated in such a way that system parameters in the model are varied to
produce a number of solutions. The engineer then compares these solutions and
interprets and applies the results of his or her analysis to the basic task.

It should always be remembered that deriving a reasonable model for the
complete system is the most important part of the entire analysis. Once such a
model is available, various analytical and computer techniques can be used to ana-
lyze it. The manner in which analysis is carried out is independent of the type of
physical system involved—mechanical, electrical, hydraulic, and so on.

Design. System design refers to the process of finding a system that accom-
plishes a given task. In general, the design procedure is not straightforward and will
require trial and error.

Synthesis. By synthesis, we mean the use of an explicit procedure to find a
system that will perform in a specified way. Here the desired system characteristics
are postulated at the outset, and then various mathematical techniques are used to
synthesize a system having those characteristics. Generally, such a procedure is com-
pletely mathematical from the start to the end of the design process.

Basic approach to system design. The basic approach to the design of
any dynamic system necessarily involves trial-and-error procedures. Theoretically, a
synthesis of linear systems is possible, and the engineer can systematically deter-
mine the components necessary to realize the system’s objective. In practice, howev-
er, the system may be subject to many constraints or may be nonlinear; in such cases,
no synthesis methods are currently applicable. Moreover, the features of the com-
ponents may not be precisely known. Thus, trial-and-error techniques are almost al-
ways needed.

Design procedures. Frequently, the design of a system proceeds as follows:
The engineer begins the design procedure knowing the specifications to be met and
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the dynamics of the components, the latter of which involve design parameters. The
specification may be given in terms of both precise numerical values and vague
qualitative descriptions. (Engineering specifications normally include statements on
such factors as cost, reliability, space, weight, and ease of maintenance.) It is impor-
tant to note that the specifications may be changed as the design progresses, for de-
tailed analysis may reveal that certain requirements are impossible to meet. Next,
the engineer will apply any applicable synthesis techniques, as well as other meth-
ods, to build a mathematical model of the system.

Once the design problem is formulated in terms of a model, the engineer car-
ries out a mathematical design that yields a solution to the mathematical version of
the design problem. With the mathematical design completed, the engineer simu-
lates the model on a computer to test the effects of various inputs and disturbances
on the behavior of the resulting system. If the initial system configuration is not sat-
isfactory, the system must be redesigned and the corresponding analysis completed.
This process of design and analysis is repeated until a satisfactory system is found.
Then a prototype physical system can be constructed.

Note that the process of constructing a prototype is the reverse of mathemati-
cal modeling. The prototype is a physical system that represents the mathematical
model with reasonable accuracy. Once the prototype has been built, the engineer
tests it to see whether it is satisfactory. If it is, the design of the prototype is com-
plete. If not, the prototype must be modified and retested. The process continues
until a satisfactory prototype is obtained.

1-4 SUMMARY

From the point of view of analysis, a successful engineer must be able to obtain a
mathematical model of a given system and predict its performance. (The validity
of a prediction depends to a great extent on the validity of the mathematical
model used in making the prediction.) From the design standpoint, the engineer
must be able to carry out a thorough performance analysis of the system before a
prototype is constructed.

The objective of this book is to enable the reader (1) to build mathematical
models that closely represent behaviors of physical systems and (2) to develop sys-
tem responses to various inputs so that he or she can effectively analyze and design
dynamic systems.

Outline of the text. Chapter 1 has presented an introduction to system dy-
namics. Chapter 2 treats Laplace transforms. We begin with Laplace transformation
of simple time functions and then discuss inverse Laplace transformation. Several
useful theorems are derived. Chapter 3 deals with basic accounts of mechanical sys-
tems. Chapter 4 presents the transfer-function approach to modeling dynamic sys-
tems. The chapter discusses various types of mechanical systems. Chapter 5 examines
the state-space approach to modeling dynamic systems. Various types of mechanical
systems are considered. Chapter 6 treats electrical systems and electromechanical
systems, including operational-amplifier systems. Chapter 7 deals with fluid systems,
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such as liquid-level systems, pneumatic systems, and hydraulic systems, as well as
thermal systems. A linearization technique for nonlinear systems is explored.

Chapter 8 presents time-domain analyses of dynamic systems—specifically,
transient-response analyses of dynamic systems. The chapter also presents the ana-
lytical solution of the state equation. Chapter 9 treats frequency-domain analyses of
dynamic systems. Among the topics discussed are vibrations of rotating mechanical
systems and vibration isolation problems. Also discussed are vibrations in multi-
degrees-of-freedom systems and modes of vibrations.

Chapter 10 presents the basic theory of control systems, including transient-
response analysis, stability analysis, and root-locus analysis and design. Also dis-
cussed are tuning rules for PID controllers. Chapter 11 deals with the analysis and
design of control systems in the frequency domain. The chapter begins with Bode
diagrams and then presents the Nyquist stability criterion, followed by detailed
design procedures for lead, lag, and lag-lead compensators.

Appendix A treats systems of units, Appendix B summarizes conversion
tables, and Appendix C gives a brief summary of vector-matrix algebra. Appendix
D presents introductory materials for MATLAB.

Throughout the book, MATLAB is used for the solution of most computa-
tional problems. Readers who have no previous knowledge of MATLAB may read
Appendix D before solving any MATLAB problems presented in this text.



The Laplace Transform

2-1 INTRODUCTION

The Laplace transform is one of the most important mathematical tools available
for modeling and analyzing linear systems. Since the Laplace transform method
must be studied in any system dynamics course, we present the subject at the begin-
ning of this text so that the student can use the method throughout his or her study
of system dynamics.

The remaining sections of this chapter are outlined as follows: Section 2-2
reviews complex numbers, complex variables, and complex functions. Section 2-3
defines the Laplace transformation and gives Laplace transforms of several com-
mon functions of time. Also examined are some of the most important Laplace
transform theorems that apply to linear systems analysis. Section 24 deals with the
inverse Laplace transformation. Finally, Section 2-5 presents the Laplace transform
approach to the solution of the linear, time-invariant differential equation.

2-2 COMPLEX NUMBERS, COMPLEX VARIABLES,
AND COMPLEX FUNCTIONS

This section reviews complex numbers, complex algebra, complex variables, and
complex functions. Since most of the material covered is generally included in the
basic mathematics courses required of engineering students, the section can be
omitted entirely or used simply for personal reference.

8
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Figure 2-1 Complex plane representa-
tion of a complex number z.

Complex numbers. Using the notation j = V/—1, we can express all num-
bers in engineering calculations as

z=x+jy

where z is called a complex number and x and jy are its real and imaginary parts,
respectively. Note that both x and y are real and that j is the only imaginary quanti-
ty in the expression. The complex plane representation of z is shown in Figure 2-1.
(Note also that the real axis and the imaginary axis define the complex plane and
that the combination of a real number and an imaginary number defines a point in
that plane.) A complex number z can be considered a point in the complex plane or
a directed line segment to the point; both interpretations are useful.

The magnitude, or absolute value, of z is defined as the length of the directed
line segment shown in Figure 2-1. The angle of z is the angle that the directed line
segment makes with the positive real axis. A counterclockwise rotation is defined as
the positive direction for the measurement of angles. Mathematically,

magnitudeof z = |z| = \/x*+ y>, angleofz=0= tan’lf

A complex number can be written in rectangular form or in polar form as
follows:

= + 1
ZRx vy .. }rectangular forms
z = |z|(cos 8 + jsin §)
2=zl /8 }
- olar forms
z=|z| P

In converting complex numbers to polar form from rectangular, we use

|z] = \/ X2+ yz, 6= tan'I%
To convert complex numbers to rectangular form from polar, we employ
x = |z| cos 6, y = |z|sin@

Complex conjugate. The complex conjugate of z = x + jy is defined as

Z=x-jy
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Im
2,
y
A
0[S*— 1 Re
-y
™N
Figure 2-2 Complex number z and its

complex conjugate Z.

The complex conjugate of z thus has the same real part as z and an imaginary part that
is the negative of the imaginary part of z. Figure 2-2 shows both z and Z. Note that
z=x+jy=|z| /8 = |z| (cos 8 + jsin §)
Z=x—jy=lzl /=0 = |z] (cos — jsin8)

Euler’s theorem. The power series expansions of cos§ and siné are,
respectively,

6 o 6

coso=1—5+ﬁ—a+
and
. 0 6 ¢
sm6—0—3—!+§—ﬁ+
Thus,
. . (jo): = (o) . (jo)*
cosf + jsing =1+ (jo) + T + 3 + 20 + .
Since
x2 X
e‘=1+x+5!-+§+--
it follows that

cosd + jsing = e

This is known as Euler’s theorem.
Using Euler’s theorem, we can express the sine and cosine in complex form.
Noting that e/ is the complex conjugate of ¢/® and that

e® = cos@ + jsin 6

€ =cosf — jsing
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we find that
P e’ + ¢
cosf = ——
2
. el — ¢ ®
sinf = ————
2j

Complex algebra. If the complex numbers are written in a suitable form, op-
erations like addition, subtraction, multiplication, and division can be performed easily.

Equality of complex numbers. Two complex numbers z and w are said to be
equal if and only if their real parts are equal and their imaginary parts are equal. So
if two complex numbers are written

z=x+jy, w=u+jv
thenz = wifandonlyif x = uand y = v.

Addition. Two complex numbers in rectangular form can be added by
adding the real parts and the imaginary parts separately:

ztw=(x+jy)+ (u+jv)=(x+u)+j(y+»)

Subtraction. Subtracting one complex number from another can be consid-
ered as adding the negative of the former:

z—w=(x+jy)=-(u+tjv)=(x-u)+jy-v)
Note that addition and subtraction can be done easily on the rectangular plane.

Multiplication. If a complex number is multiplied by a real number, the re-
sult is a complex number whose real and imaginary parts are multiplied by that real
number:

az = a(x + jy) = ax + jay (a = real number)

If two complex numbers appear in rectangular form and we want the product in rec-
tangular form, multiplication is accomplished by using the fact that j2 = —1. Thus, if
two complex numbers are written

z=x+jy, w=u+jv
then
w = (x + jy)(u + jv) = xu + jyu + jxv + jyv
= (xu — yv) + j(xv + yu)

In polar form, multiplication of two complex numbers can be done easily. The mag-
nitude of the product is the product of the two magnitudes, and the angle of the
product is the sum of the two angles. So if two complex numbers are written

z = |z| /6, w=|wl /¢

then

w = |zllwl /6 + ¢
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Multiplication by j. It is important to note that multiplication by j is equiva-
lent to counterclockwise rotation by 90°. For example, if

z=x+jy

then
jz=jx+jy)=jx+jPy=-y+jx

or, noting that j = 1 /90°, if

z=|z| /8
then

jz=1/901z| /6 = |zl /8 + 90°

Figure 2-3 illustrates the multiplication of a complex number z by j.

Division. If a complex number z = |z| /8 is divided by another complex
number w = |w| /¢, then

w ™ Tulze " Tl 222

That is, the result consists of the quotient of the magnitudes and the difference of
the angles.

Division in rectangular form is inconvenient, but can be done by multiplying
the denominator and numerator by the complex conjugate of the denominator. This
procedure converts the denominator to a real number and thus simplifies division.
For instance,

z_xtjy (x4 jy)u—jv) _ (xu+tyv) + j(yu = xv)
w u+jv (u+jo)(u—jv) u? + 2
_xutyv  yu-—xv
2+t i+

Imj Im j
Z z
JZNE90°

> 90° >
0 Re 0 / Re

<

J
Figure 2-3 Multiplication of a Figure 2-4 Division of a complex

complex number z by j. number z by j.
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Division by j. Note that division by j is equivalent to clockwise rotation by
90°. For example, if z = x + jy, then

x+jy=(x+iy)i=ix-y=y_ "
j ji -1 g

LA
j

or

z {e]
i :90°—|z|49—90

Figure 24 illustrates the division of a complex number z by j.
Powers and roots. Multiplying z by itself n times, we obtain
2" = (lzl /6)" = |z|" /n6

Extracting the nth root of a complex number is equivalent to raising the number to
the 1/nth power:

0
zl/n = (IZ' Le-)l/n = |Z|l/n[Z

For instance,
(8.66 — j5)° = (104—;32‘:)3 = 1000 /—90° = 0 — j1000 = —; 1000
(212 - j2.12)12 = (9 /—45°)12 = 3 /—22.5°
Comments. It is important to note that
lzwl = |zllwl
and
lz + wl # |z| + |wl

Complex variable. A complex number has a real part and an imaginary

part, both of which are constant. If the real part or the imaginary part (or both) are

variables, the complex number is called a complex variable. In the Laplace transfor-
mation, we use the notation s to denote a complex variable; that is,

s=o0 + jo

where ¢ is the real part and jw is the imaginary part. (Note that both o and w are real.)

Complex function. A complex function F(s), a function of s, has a real part
and an imaginary part, or

F(s) = F, + jF,

where F, and F, are real quantities. The magnitude of F(s) is \/F3 + F3, and the
angle 6 of F(s) is tan‘l(Fy/Fx). The angle is measured counterclockwise from the
positive real axis. The complex conjugate of F(s) is F(s) = F, — jF,.

Complex functions commonly encountered in linear systems analysis are single-
valued functions of s and are uniquely determined for a given value of s. Typically,
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such functions have the form
F(s) K(s+ z2)(s+ 2z2) (s + zpn)
s) =
(s + p1)(s + p2)-- (s + pn)
Points at which F(s) equals zero are called zeros. That is, s = —21,5§ = =23, ...,
s = —z,, are zeros of F(s). [Note that F(s) may have additional zeros at infinity; see
the illustrative example that follows.] Points at which F(s) equals infinity are called
poles. Thatis,s = —p;,s = —p,, ..., s = —p, are poles of F(s). If the denominator
of F(s) involves k-multiple factors (s + p)*, thens = —p is called a multiple pole of
order k or repeated pole of order k. If k = 1, the pole is called a simple pole.
As an illustrative example, consider the complex function

_ K(s +2)(s +10)
Gl) = i D) + 5)s + 15)

G(s) has zeros at s = —2 and s = —10, simple polesats = 0,5s = —1,and s = -5,
and a double pole (multiple pole of order 2) at s = —15. Note that G(s) becomes
zero at s = 09, Since, for large values of s,

K
G(s) = =
() * 3
it follows that G(s) possesses a triple zero (multiple zero of order 3) at s = o0, If
points at infinity are included, G(s) has the same number of poles as zeros. To sum-
marize, G(s) has five zeros (s = —2,s = —10,5 = 00,5 = 00,5 = o0) and five
poles(s = 0,s = —1,s = =5,5 = —15,5s = —15).

2-3 LAPLACE TRANSFORMATION

The Laplace transform method is an operational method that can be used advanta-
geously in solving linear, time-invariant differential equations. Its main advantage is
that differentiation of the time function corresponds to multiplication of the trans-
form by a complex variable s, and thus the differential equations in time become
algebraic equations in 5. The solution of the differential equation can then be found
by using a Laplace transform table or the partial-fraction expansion technique.
Another advantage of the Laplace transform method is that, in solving the differen-
tial equation, the initial conditions are automatically taken care of, and both the par-
ticular solution and the complementary solution can be obtained simultaneously.

Laplace transformation. Let us define

f(t) = atime function such that f(¢) = Ofor¢t < 0
s = a complex variable
£ = an operational symbol indicating that the
quantity upon which it operates is to be transformed

by the Laplace integral / e dt
0
F(s) = Laplace transform of f(r)
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Then the Laplace transform of f{¢) is given by

Llf (0] = F(s) = /o e~ di[f(1)] = /0 f(t)e™ dt

The reverse process of finding the time function f{f) from the Laplace transform
F(s) is called inverse Laplace transformation. The notation for inverse Laplace trans-
formation is £1. Thus,

EF(s)] = £(2)

Existence of Laplace transform. The Laplace transform of a function f{(t)
exists if the Laplace integral converges. The integral will converge if f{¢) is piecewise
continuous in every finite interval in the range ¢ > 0 and if f{f) is of exponential
order as ¢ approaches infinity. A function f{#) is said to be of exponential order if a
real, positive constant o exists such that the function

e |f (1)l

approaches zero as ¢ approaches infinity. If the limit of the function e '|f(t)|
approaches zero for o greater than o, and the limit approaches infinity for o less
than o, the value o is called the abscissa of convergence.

It can be seen that, for such functions as ¢, sin wt, and ¢ sin ot, the abscissa of
convergence is equal to zero. For functions like e™, te™, and e sin wt, the abscis-
sa of convergence is equal to —c. In the case of functions that increase faster than
the exponential function, it is impossible to find suitable values of the abscissa of
convergence. Consequently, such functions as ¢” and te” do not possess Laplace
transforms.

Nevertheless, it should be noted that, although ¢ for 0 = t = oo does not
possess a Laplace transform, the time function defined by

fe)=¢" for0<t=T< ™
=0 fort <0, T <t

does, since f(t) = e’ for only a limited time interval 0 < ¢ =< T and not for
0 = t = o0. Such asignal can be physically generated. Note that the signals that can
be physically generated always have corresponding Laplace transforms.

If functions fi(¢) and f,(¢) are both Laplace transformable, then the Laplace
transform of f,(z) + f»(t) is given by

A1) + A(0] = ZIA(0] + Z1f(0)]

Exponential function. Consider the exponential function
fiy=0 fort <0
= Ae™ fort =0

where A and « are constants. The Laplace transform of this exponential function
can be obtained as follows:
o0

* A
P[Ae™] = / Ae™e™dt = A / e~l@tsh gr =
[} 0 s+ a
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In performing this integration, we assume that the real part of s is greater than —a
(the abscissa of convergence), so that the integral converges. The Laplace trans-
form F(s) of any Laplace transformable function f{f) obtained in this way is valid
throughout the entire s plane, except at the poles of F(s). (Although we do not pre-
sent a proof of this statement, it can be proved by use of the theory of complex
variables.)

Step function. Consider the step function

fie)=0 fort <0
= A fort >0

where A is a constant. Note that this is a special case of the exponential function
Ae™, where a = 0. The step function is undefined at z = 0. Its Laplace transform is
given by

A
s

<[A] = / Ae™' dt =
0

The step function whose height is unity is called a unit-step function. The unit-
step function that occurs att = ¢ is frequently written 1(¢ — ¢;), a notation that will
be used in this book. The preceding step function whose height is A can thus be writ-
ten A1(z).

The Laplace transform of the unit-step function that is defined by

1(r) =0 fort <0
=1 fort >0

is 1/s, or

#1(0) = 1

Physically, a step function occurring at ¢ = £y corresponds to a constant signal
suddenly applied to the system at time ¢ equals ¢,

Ramp function. Consider the ramp function

f)y=0 fort <0
= At fort =0

where A is a constant. The Laplace transform of this ramp function is
00
L[At] = A / te™ dt
0

To evaluate the integral, we use the formula for integration by parts:

b b b
/udv=uv —/vdu
a a a
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In this case,u = t and dv = ™ dt. [Note that v = ¢™"/(—s).] Hence,

-] 00 —st
e
- 5)
0 o ~F

—St

J[AL] = A/ te ' dt = A(te—
0

)
[o o}
=£/ e"‘dt=é2
S Jo s

Sinusoidal function. The Laplace transform of the sinusoidal function

fey=0 fort <0
= A sin wt fort =0

where A and o are constants, is obtained as follows: Noting that

e/ = cos wt + jsin wt

and
e7f = cos wt — jsin wt
we can write
: 1 jwt —jet
sin wt = — (/' — e7)
2j
Hence,

A 00
P[Asin ot] = % / (el — e7f“h)e™s dt
0
A 1 A 1 Aw

=:”.—]:s—jw-2_js+jw_s2+w2

Similarly, the Laplace transform of A cos wt can be derived as follows:

As

g[A t] = ———
[A cos wt] 12

17

Comments. The Laplace transform of any Laplace transformable function
f(t) can be found by multiplying f{r) by e~ and then integrating the product from
t = 0tot = oco. Once we know the method of obtaining the Laplace transform, how-
ever, it is not necessary to derive the Laplace transform of f{r) each time. Laplace
transform tables can conveniently be used to find the transform of a given function
f(?). Table 2-1 shows Laplace transforms of time functions that will frequently appear
in linear systems analysis. In Table 2-2, the properties of Laplace transforms are given.

Translated function. Let us obtain the Laplace transform of the translated
function f(¢ — @)1(¢t — a), where @ = 0. This function is zero for t < a. The func-

tions f{r)1(t) and f(t — a)1(t — a) are shown in Figure 2-5.
By definition, the Laplace transform of f(¢ — a)1(t — a) is

2f(t — a)l(t — a)] = /; f(t —a)l(t — a)e™ dt



18

The Laplace Transform
TABLE 2-1 Laplace Transform Pairs
O F(s)
1 Unit impulse 5(¢) 1
2 Unit step 1(¢) %
: , 1
4 (nt"_'ll)! (n=1,23,...) %
5 " (n=1,23,...) Sff,
7 te (s -: a)2
A PR
9 t'e™ (n=1,2,3,...) *‘n"“‘ﬂ‘
(s +a)"
10 sin wt 2 _‘: o2
11 cos wt ;.2—:7
12 sinh wt o) _‘_') o
13 cosh wt 2 j w?
14 La-em r : )
15 > _1_ a(e"" — et m
16 +a(be"" - ae™) msfs—-l-T)
17 ;13[1 + (b - ae"")] G ra)s+b) a;(s T b)

Chap. 2



TABLE 2-1 (continued)
) F(s)
1 1
—(1 — & — gre™ A
18 a2( e~ ae™) s(s + a)?
1 1
19 —(at—1+¢e™ YRR
a2 (a ) s}(s + a)
w
20 e sin wt (s + a)? + w?
s+a
21 —al P EEE-—
e cos wt (s + a)? + o
" et i1 B I R
\V1i-¢ §2 + 2lw,s + w3
1 .
- e sin(w,\/1 — %t — ¢)
1-¢2 5
23 — 5+ 2w,s + 03
¢ tan—]ng
4
1-— L toisin(wn/1 - 2t + &)
V1~ w2
24
\/I——_? s(s? + 2lw,s + @3)
¢ = tan™' Y——
e
@
25 1 — cos wt s(s2 + )
3 ————-—-“’3
26 w! ~= sin wt sz( 2+ wz)
) 20’
27 sin wt — wt cos wt m
1 . _5
28 Zt sin wt (s + wz)z
2 — o?
29 t cos wt -(3_272)2
30 J (cos wt — cos wst) (o} # &3) y 2
| @ ! (s + @f)(s* + o)
1, _ s
31 Z(sm wt + wt cos wt) (s + )

19



TABLE 2-2 Properties of Laplace Transforms

1 L[Af(2)] = AF(s)
2 L[fi(2) £ fo(1)) = Fi(s) £ F(s)
: 2./ 210)] = sF(5) - 04)
4 ] [—dif(t)] = §$2F(s) — sf(0%) — f(0O%)
*Lde?
n n (k—1)
2 5550 = F(6) = Fer 5(08)
3 (k-1) k-1
where f(t) = dt""‘f(t)
6 el [10a] £, ULO dmn
. $t[ﬂf(t) &t dt] _ Fs(:) . [ff(t)szdt]FOi + L7 t:t dt);=0x
S _F(s) & 1
o | e[ [rowr] <2 5 ] [ frowr]
d F(s)
9 fg[/of(t) dt] = T
10 ‘é f()de = sli_rgF(s) if/ooof(t) dt exists
11 Llef(1)] = F(s + a)
12 LUt - )t~ a)] = €=F(s) a=z0
13 _ _dF(s)
L) = -,
14 2 a’
LEF(0)] = S5 F()
15 ()] = (—1)"2‘-’},,1?@) n=1,23 ...
16 .‘E[%f(t)] = / F(s)ds if lli_:}(a)%f(t) exists
17 .sg[ f(%)] = aF(as)

20
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A 1) fi-0)1(t - o)
}

o l

t 0 o t

Figure 2-5 Function f{)1(¢) and translated function f(¢ — a)1(¢ — a).

By changing the independent variable from ¢ to 7, where 7 = t — @, we obtain

/ f(t = a)1(t — a)e™ dt = / mf(T)l(f)e—s(wa) dr
0 -a

Noting that f(7)1() = 0 for 7 < 0, we can change the lower limit of integration
from —a to 0. Thus,

/f(r)l(f)e"(”“)df‘—“/f(T)l('r)e"’(”“)d'r
—-a 0
=/ f(r)e™ e dr
0

= e"‘"/ f(r)e™ " dr = e™F(s)
0
where

Fls) = 2701 = [ e
Hence,
L[f(t — a)l(t — a)] = e*F(s) az0

This last equation states that the translation of the time function f{¢)1(¢) by & (where
a = 0) corresponds to the multiplication of the transform F(s) by e™.

Pulse function. Consider the pulse function shown in Figure 2-6, namely,

f(t)=?— for0<t <y
0
=0 fort <0,fp <t

where A and ¢, are constants.
The pulse function here may be considered a step function of height A/t that
begins at ¢ = 0 and that is superimposed by a negative step function of height A/z,
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§OY

S

DI

(=]

Figure 2-6 Pulse function. Figure 2-7 Impulse function.
beginning at ¢ = t;; that is,
A A
£ = 210 = 21(t = 1)
0 0
Then the Laplace transform of f{f) is obtained as

LLf(1)] = se[fl(r)] - 3[%1(2 - ro)]

= i‘l_ — i —Slp
tos s

= i — ¢S -
tos(l e~) (2-1)

Impulse function. The impulse function is a special limiting case of the
pulse function. Consider the impulse function

f(t) =1k 4 for0 <t <y
0 fp

to—
=0 fort <0, <t

Figure 2-7 depicts the impulse function defined here. It is a limiting case of the pulse
function shown in Figure 2-6 as ¢, approaches zero. Since the height of the impulse
function is A/t and the duration is #;, the area under the impulse is equal to A. As
the duration #y approaches zero, the height A/ty approaches infinity, but the area
under the impulse remains equal to A. Note that the magnitude of the impulse is
measured by its area.

From Equation (2-1), the Laplace transform of this impulse function is shown
to be

2l = fm [ 21 - )|
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Thus, the Laplace transform of the impulse function is equal to the area under the
impulse.

The impulse function whose area is equal to unity is called the unit-impulse
function or the Dirac delta function. The unit-impulse function occurring at ¢ = t; is
usually denoted by 8(¢ — t,), which satisfies the following conditions:

8(t—1)=0 fort # 1
8(t — tp) = o© fort =1

/ 8(t —tp)dt =1

An impulse that has an infinite magnitude and zero duration is mathematical
fiction and does not occur in physical systems. If, however, the magnitude of a pulse
input to a system is very large and its duration very short compared with the system
time constants, then we can approximate the pulse input by an impulse function. For
instance, if a force or torque input f{(¢) is applied to a system for a very short time
duration 0 <t < tj, where the magnitude of f{¢) is sufficiently large so that
f(;" f(¢) dt is not negligible, then this input can be considered an impulse input.
(Note that, when we describe the impulse input, the area or magnitude of the
impulse is most important, but the exact shape of the impulse is usually immaterial.)
The impulse input supplies energy to the system in an infinitesimal time.

The concept of the impulse function is highly useful in differentiating discon-
tinuous-time functions. The unit-impulse function (¢ — #;) can be considered the
derivative of the unit-step function 1(¢ — f5) at the point of discontinuity ¢ = #, or

(¢ - ) = 210t - )

Conversely, if the unit-impulse function 8(¢ — 1) is integrated, the result is the unit-
step function 1(¢ — t5). With the concept of the impulse function, we can differenti-
ate a function containing discontinuities, giving impulses, the magnitudes of which
are equal to the magnitude of each corresponding discontinuity.

Multiplication of f(t) by e®'. If f{¢) is Laplace transformable and its
Laplace transform is F(s), then the Laplace transform of e™ f{r) is obtained as

Lle™f(1)] = A e f(t)e dt = F(s + a) (2-2)

We see that the multiplication of f(f) by e™ has the effect of replacing s by
(s + «) in the Laplace transform. Conversely, changing s to (s + a) is equivalent to
multiplying f(r) by e™. (Note that « may be real or complex.)

The relationship given by Equation (2-2) is useful in finding the Laplace
transforms of such functions as e™ sin wt and e~ cos wt. For instance, since

Fsinwr] = 5 =F(s) and  Lleoswr] = j_ — = G(s)
w
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it follows from Equation (2-2) that the Laplace transforms of ¢ * sin w¢ and
e cos wt are given, respectively, by

®
—at = + = —
Lle™sinwt] = F(s + a) (s + @) + &2
and
s+ a
-at = +a)=—m——
Lle™ coswt] = G(s + a) (s + a) + o

Comments on the lower limit of the Laplace integral. In some cases, f{f)
possesses an impulse function at ¢ = 0. Then the lower limit of the Laplace integral
must be clearly specified as to whether it is 0— or 0+, since the Laplace transforms
of f(¢) differ for these two lower limits. If such a distinction of the lower limit of the
Laplace integral is necessary, we use the notations

LIF0)] = /M F(r)e ™ dr

and

00 0+
2] = [ S0 =2lr@]+ [ fwenan
0- 0-
If f(r) involves an impulse function at ¢ = 0, then

L. ()] = L-[f(1)]
since
0+
/ f()e™'dt #0
0—

for such a case. Obviously, if f{¢) does not possess an impulse function at ¢ = 0 (i.e.,
if the function to be transformed is finite between t = 0— and ¢t = 0+), then

Lf(1)] = L-[f(1)]

Differentiation theorem. The Laplace transform of the derivative of a
function f(r) is given by

2 10] = sr9) - 1) -3

where f{0) is the initial value of f{r), evaluated at ¢t = 0. Equation (2-3) is called the
differentiation theorem.

For a given function f{), the values of f(0+) and f(0—) may be the same or
different, as illustrated in Figure 2-8. The distinction between f(0+) and f(0-) is
important when f{¢) has a discontinuity at ¢t = 0, because, in such a case, df{t)/dt will
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)l 104 fn}

AO-) RO=) | fRO+)

Figure 2-8 Step function and sine function indicating initial values at t = 0— and
t =0+,

involve an impulse function at ¢t = 0. If f(0+) # f(0~), Equation (2-3) must be
modified to

d
2] 41| = sFs) - rio0)
d
]2 50| = k) - 10-)
To prove the differentiation theorem, we proceed as follows: Integrating the

Laplace integral by parts gives
0 P hed < d et
st g, el _ a €
| rwerac= 10| - [Er0] S a
1.1d
+ ;EB[ it f(t)]

Hence,

F(s) =&

s

It follows that
450 = sk - 70
Similarly, for the second derivative of f{z), we obtain the relationship
fe[;j’;z;f(t)] = s’F(s) = sf(0) = f(0)
where f (0) is the value of df(r)/dt evaluated at t = 0. To derive this equation, define

2 () = 8()
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Then
A L10| = o0 | = s21s(00 - £
- s 450 - j0

= s2F(s) = sf(0) = f(0)
Similarly, for the nth derivative of f(z), we obtain

$[§%f(t)] = $"F(s) — s 1F(0) — s 2(0) — -+ ~£(0)

where £(0), £(0), ...f"f(?)) represent the values of f(t),df(¢t)/dt, ...,d" " f(t)/
dr" respectively, evaluated at ¢t = 0. If the distinction between £, and £_ is
necessary, we substitute t = 0+ or ¢ = 0— into f(t), df (¢t)/dt, ..., d""*f(¢)ldt"",
depending on whether we take &£, or £_.

Note that, for Laplace transforms of derivatives of f{r) to exist, d"f(¢)/dt"
(n=1,2,3, ...) must be Laplace transformable.

Note also that, if all the initial values of f{t) and its derivatives are equal to
zero, then the Laplace transform of the nth derivative of f{r) is given by s"F(s).

Final-value theorem. The final-value theorem relates the steady-state behav-
ior of f(¢) to the behavior of sF(s) in the neighborhood of s = 0. The theorem, howev-
er, applies if and only if lim,_. f(¢) exists [which means that f{r) settles down to a
definite value as ¢ — o0]. If all poles of sF(s) lie in the left half s plane, then lim, . f(¢)
exists, but if sF(s) has poles on the imaginary axis or in the right half s plane, f{(f) will
contain oscillating or exponentially increasing time functions, respectively, and
lim,_, f(¢) will not exist. The final-value theorem does not apply to such cases. For in-
stance, if f{(r) is a sinusoidal function sin wt, then sF(s) has poles at s = +jw, and
lim, .o f(¢) does not exist. Therefore, the theorem is not applicable to such a function.

The final-value theorem may be stated as follows: If f(t) and df(t)/dt are
Laplace transformable, if F(s) is the Laplace transform of f{¢), and if lim, . f(¢)
exists, then

lim (1) = lim sF(s)

To prove the theorem, we let s approach zero in the equation for the Laplace trans-
form of the derivative of f{r), or

im | |2 0] e = tim s (s) - £(O)

s—0
Since lim;_,ge™ = 1, if lim,_. f(¢) exists, then we obtain

00 d _ m— _
[ [&ro]a = 50| = 19 - 70
= lim sF(s) - £(0)
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from which it follows that
f(0) = Jim £(2) = lim sF(s)

Initial-value theorem. The initial-value theorem is the counterpart of the
final-value theorem. Using the initial-value theorem, we are able to find the value of
f(z) att = 0+ directly from the Laplace transform of (). The theorem does not give
the value of f{¢) at exactly ¢ = 0, but rather gives it at a time slightly greater than zero.

The initial-value theorem may be stated as follows: If f(f) and df(¢)/dt are both
Laplace transformable and if lim,—..c SF(s) exists, then

F(0+) = lim sF(s)

To prove this theorem, we use the equation for the £, transform of df{r)/dt:

2270 = sF(s) - s04)

For the time interval 0+ =< ¢ =< 00, as s approaches infinity, e approaches zero.
(Note that we must use &£, rather than £_ for this condition.) Hence,

im [ m[d%f(t)]e"' dt = lim [sF(s) = f(0+)] = 0

or
£(0+) = lim sF(s)

In applying the initial-value theorem, we are not limited as to the locations of
the poles of sF(s). Thus, the theorem is valid for the sinusoidal function.

Note that the initial-value theorem and the final-value theorem provide a con-
venient check on the solution, since they enable us to predict the system behavior in
the time domain without actually transforming functions in s back to time functions.

Iintegration theorem. If f{7) is of exponential order, then the Laplace trans-
form of f f(t) dt exists and is given by

EE[/f(t) dt] = F—(ss—)- + _f’_‘s(Q (24)

where F(s) = £L[f(t)]and f71(0) = [f(t) dt, evaluated att = 0. Equation (2-4) is
called the integration theorem.
The integration theorem can be proven as follows: Integration by parts yields

Sf[ff(t) dt] = [’o[/f(t) dt]e"" dt
= [/f(t) d:]%' ) /wa(t)e.-: dt

0
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- % / ) dtllzo + % A ) de

_O , Fe)

S £}

and the theorem is proven. .
Note that, if f{f) involves an impulse function at ¢ = 0, then f~(0+)#
f£71(0-). So if f(¢) involves an impulse function at ¢t = 0, we must modify Equation

(24) as follows:
-1
&Uf(:) dt] = F(ss) L0

s

ff-[ f ) dt] - F(ss) L)

s

We see that integration in the time domain is converted into division in the s
domain. If the initial value of the integral is zero, the Laplace transform of the inte-
gral of f{¢) is given by F(s)/s.

The integration theorem can be modified slightly to deal with the definite inte-
gral of f(t). If f{t) is of exponential order, the Laplace transform of the definite inte-

gral f,f(¢) dt can be given by
[/f(t) dtjl = —) (2-5)

To prove Equation (2-5), first note that

' — _ 1
/0 £ty dt /f(r)dt £1(0)

where f71(0) is equal to [f(¢) dt, evaluated at t = 0, and is a constant. Hence,

¢ [roa] =4 [r0a-ro)]
-4 [10a) - arion
Referring to Equation (2—4) and noting that f~(0) is a constant, so that

grrio) =2

we obtain

' _F(s) N0 FY0) _ F(s)
.‘Z[/(;f(t)dt]— P + =

N s N
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Note that, if f{f) involves an impulse function at ¢+ = 0, then f(;+ f(t) dt # fo'_ f(t) at,
and the following distinction must be observed:

E£+[/0:f(f) dt] - %@
g‘[ﬁf(t) dz] - w

2-4 INVERSE LAPLACE TRANSFORMATION

The inverse Laplace transformation refers to the process of finding the time func-
tion f(¢) from the corresponding Laplace transform F(s). Several methods are avail-
able for finding inverse Laplace transforms. The simplest of these methods are (1) to
use tables of Laplace transforms to find the time function f{f) corresponding to a
given Laplace transform F(s) and (2) to use the partial-fraction expansion method.
In this section, we present the latter technique. [Note that MATLAB is quite useful
in obtaining the partial-fraction expansion of the ratio of two polynomials,
B(s)/A(s). We shall discuss the MATLAB approach to the partial-fraction expan-
sion in Chapter 4.]

Partial-fraction expansion method for finding inverse Laplace transforms.
If F(s), the Laplace transform of f{t),is broken up into components, or

F(s) = Fy(s) + Fy(s) + - + F(s)

and if the inverse Laplace transforms of Fi(s), F5(s), ..., F,(s) are readily avail-
able, then

EUF(s)] = LR + LR + - + LF(9)]
= f(1) + folt) + -+ + fult)

where fi(2), f2(t), ..., fa(t) are the inverse Laplace transforms of F(s), F(s), -,
F,(s), respectively. The inverse Laplace transform of F(s) thus obtained is unique,
except possibly at points where the time function is discontinuous. Whenever the
time function is continuous, the time function f(f) and its Laplace transform F(s)
have a one-to-one correspondence.

For problems in systems analysis, F(s) frequently occurs in the form

B(s)
F(s) = ) )
where A(s) and B(s) are polynomials in s and the degree of B(s) is not higher than

that of A(s).

The advantage of the partial-fraction expansion approach is that the individ-
ual terms of F(s) resulting from the expansion into partial-fraction form are very
simple functions of s; consequently, it is not necessary to refer to a Laplace trans-
form table if we memorize several simple Laplace transform pairs. Note, however,
that in applying the partial-fraction expansion technique in the search for the
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inverse Laplace transform of F(s) = B(s)/A(s), the roots of the denominator poly-
nomial A(s) must be known in advance. That is, this method does not apply until the
denominator polynomial has been factored.

Consider F(s) written in the factored form

Fls) = B(s) K(s+z)(s+2)(s+2m)
()= 26s) = s+ p)(s + p2) (5 + Pu)

where py, 3, ..., pnand 2y, 23, - .., 2, are either real or complex quantities, but for
each complex p; or z;, there will occur the complex conjugate of p; or z;, respective-
ly. Here, the highest power of s in A(s) is assumed to be higher than that in B(s).

In the expansion of B(s)/A(s) into partial-fraction form, it is important that the
highest power of s in A(s) be greater than the highest power of s in B(s) because if that
is not the case, then the numerator B(s) must be divided by the denominator A(s) in
order to produce a polynomial in s plus a remainder (a ratio of polynomials in s whose
numerator is of lower degree than the denominator). (For details, sce Example 2-2.)

Partial-fraction expansion when F(s} involves distinct poles only. In
this case, F(s) can always be expanded into a sum of simple partial fractions; that is,

B(S) ay a a,
F(s) = = + + e+ 2
(s) A(s) s+p s+ p s+ p, (2-6)
where a,(k = 1,2, ..., n) are constants. The coefficient ay is called the residue at

the pole at s = —p,. The value of a, can be found by multiplying both sides of
Equation (2-6) by (s + p;) and letting s = —p, giving

B(S)J [ (3] a
+ = + p) + +pp) + e
[(3 Pk)A(s) A s+ p (s + pi) s+ pz(s Px)
a; a, J
S+ p)+ o+ s+
T pk( Pr) s p"( Pr) -

We see that all the expanded terms drop out, with the exception of a;. Thus, the
residue ay, is found from

a=Grmgg] @)

Note that since f{7) is a real function of time, if p, and p, are complex conjugates,
then the residues a, and a, are also complex conjugates. Only one of the conjugates,
a, or ay, need be evaluated, because the other is known automatically.

Since
a
.S£"1[ k ] = que P
s+ Dk
f(?) is obtained as

f(t) = LUF(s)] = a1e™" + ae P’ + -+ + g,eP t=0
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Example 2-1
Find the inverse Laplace transform of

F(s)

_ s+3
_(s+1)(s+2)

The partial-fraction expansion of F(s) is

F(s)

_ s+3 4 + a,
(s+1(s+2) s+1 s+2

where a; and a; are found by using Equation (2-7):

a = [(S + 1)G—+§1;-(—s3+_2_)]s=—1 B [

[~
+
w
e )
)
i
i
.
I
N

o (Rt e Wl o= IR
Thus,
f(t) = 7F(s)]
- '(rl[s i 1] * ‘Sg-l[s:-lz]
=2 — ¢ t=0
Example 2-2

Obtain the inverse Laplace transform of

S +52+95+7
(s+1)(s+2)

G(s) =

31

Here, since the degree of the numerator polynomial is higher than that of the

denominator polynomial, we must divide the numerator by the denominator:

s+3

G(s)=s+2+—-——(s+1)(s+2)

Note that the Laplace transform of the unit-impulse function 8(t) is unity and that the
Laplace transform of dé(¢)/dt is s. The third term on the right-hand side of this last
equation is F(s) in Example 2-1. So the inverse Laplace transform of G(s) is given as

g(t) = %6(:) +25(t) +2e — e t=0-

Comment. Consider a function F(s) that involves a quadratic factor
5% + as + b in the denominator. If this quadratic expression has a pair of complex-
conjugate roots, then it is better not to factor the quadratic, in order to avoid com-

plex numbers. For example, if F(s) is given as

p(s)

&)= i@+ as+b)
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where 2 = 0 and b > 0, and if s* + as + b = 0 has a pair of complex-conjugate
roots, then expand F(s) into the following partial-fraction expansion form:
c ds +e
= - 4+ —
Fis) =5 ss+as+b

(See Example 2-3 and Problems A-2-15, A~2-16, and A-2-19.)

Example 2-3
Find the inverse Laplace transform of
2s + 12
F(s) = 54—
(<) s2+25+5
Notice that the denominator polynomial can be factored as
S+2+5=(s+1+2)(s+1-j2)

The two roots of the denominator are complex conjugates. Hence, we expand F(s) into
the sum of a damped sine and a damped cosine function.

Noting that s? + 25 + S = (s + 1)> + 22 and referring to the Laplace trans-
forms of e™ sin wt and e™ cos wt, rewritten as
w

Lle™ sin wt] = (s—+—a—)2'+—w2

and

sta

Lle ™ cos wi] = m

we can write the given F(s) as a sum of a damped sine and a damped cosine function:
2s + 12 10 +2(s + 1)
F(s) =7 = PRpY)
s+2s+5 (s+1)+2
=5 2 + s+1
(s+1)2+22 “(s+1)2+2?

It follows that
f(t) = £F(s)]

2 s+1
ot
(s+1)2+22 (s+1)2+22
= 5¢7'sin 2t + 2e”* cos 2t t=0

Partial-fraction expansion when F(s) involves multiple poles. Instead
of discussing the general case, we shall use an example to show how to obtain the
partial-fraction expansion of F(s). (See also Problems A-2-17 and A-2-19.)

Consider

2+ 25+ 3

FGsY=—% ik
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The partial-fraction expansion of this F(s) involves three terms:

_B(s) b b by
F(s)_A(s)—(s+1)3+(s+1)2+s+1

where b3, by, and b are determined as follows: Multiplying both sides of this last
equation by (s + 1)3, we have

(s
(s + 1)313 = by + by(s + 1) + by(s + 1)? (2-8)
Then, letting s = —1, we find that Equation (2-8) gives

[(s + 13—+ jﬁs; ]s--1 = by

Also, differentiating both sides of Equation (2-8) with respect to s yields

d B(s)] _
3—[( 1)3A( )] = by + 2by(s + 1) (2-9)
If we let s = —1 in Equation (2-9), then

d B(s) _
a[(s * 1)32(;)—}s=-1 = b

Differentiating both sides of Equation (2-9) with respect to s, we obtain

::[( )BAg;] =2

From the preceding analysis, it can be seen that the values of b3, b;, and b, are found
systematically as follows:
B(s)
by = [ s+1 3—]
3 ( ) A(S ) s=-1
= (s? + 25 + 3)50y

n={alor 23l

= [-—(s + 25 + 3)]

= = (25 + 2)5=m1 o
= 2

[d 2(s + 25 + 3)] o
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We thus obtain
f(1) = LF(s)]

B &H[(s 31)3] * ‘(rl[(s 31)2] * 33-1[3 i 1]

=t +0+e"
=@ +1)e’ 120

2-5 SOLVING LINEAR, TIME-INVARIANT DIFFERENTIAL EQUATIONS

In this section, we are concerned with the use of the Laplace transform method in
solving linear, time-invariant differential equations.

The Laplace transform method yields the complete solution (complementary
solution and particular solution) of linear, time-invariant differential equations.
Classical methods for finding the complete solution of a differential equation
require the evaluation of the integration constants from the initial conditions. In the
case of the Laplace transform method, however, this requirement is unnecessary
because the initial conditions are automatically included in the Laplace transform
of the differential equation.

If all initial conditions are zero, then the Laplace transform of the differential
equation is obtained simply by replacing d/dt with 5, d*/dt* with s?, and so on.

In solving linear, time-invariant differential equations by the Laplace trans-
form method, two steps are followed:

1. By taking the Laplace transform of each term in the given differential equa-
tion, convert the differential equation into an algebraic equation in s and ob-
tain the expression for the Laplace transform of the dependent variable by
rearranging the algebraic equation.

2. The time solution of the differential equation is obtained by finding the in-
verse Laplace transform of the dependent variable.

In the discussion that follows, two examples are used to demonstrate the solu-
tion of linear, time-invariant differential equations by the Laplace transform
method.

Example 2-4
Find the solution x(z) of the differential equation
X +3x+2x =0, x(0) = a, x(0)=0b
where a and b are constants.
Writing the Laplace transform of x(r) as X(s), or
Z[x(1)] = X(s)
we obtain
$[x] = sX(s) - x(0)
L[¥] = s2X(s) — sx(0) — x(0)
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The Laplace transform of the given differential equation becomes
[s°X (s) = sx(0) — x(0)] + 3[sX(s) — x(0)] + 2X(s) = O
Substituting the given initial conditions into the preceding equation yields
[2X(s) — as — b] + 3[sX(s) — a] + 2X(s) =0
or
(s +3s+2)X(s)=as+ b+ 3a
Solving this last equation for X(s), we have

X(S)=as+b+3a_ astb+3a _2a+b _a+b
S+35+2 (s+1)(s+2) s+1 s+2

The inverse Laplace transform of X(s) produces

2a+ b a+b
= -l = o1 _ -1
0 = 2 pxo = w22 E] e t]
= (2a + b)e™ — (a + b)e™¥ =0
which is the solution of the given differential equation. Notice that the initial condi-
tions a and b appear in the solution. Thus, x(f) has no undetermined constants.

Example 2-5
Find the solution x(¢) of the differential equation
X+2x+5x=3 x(0) =0, x(0)=0

Noting that £[3] = 3/s, x(0) = 0, and x(0) = 0, we see that the Laplace trans-
form of the differential equation becomes

3
s2X(s) + 25X (s) + 5X(s) = S
Solving this equation for X(s), we obtain
3
X(s) = ———
)= T+ 2 +5)
31 _3_s+2
55 55°+25+5
_31 3 2 3 s+
55 10(s+1)2+22 S(s+1)2+22

Hence, the inverse Laplace transform becomes
x(t) = £7'[X(s)]
3_11] 3_,[ 2 ] 3_1[ s+ 1 ]
= — | -=¢Y—— |-z —
5 [s 107 L(s+1)2+22) 57 [(s+1)*+2?
=233 g 3 >
=3 lOe sin 2t 5e cos 2t t=0

which is the solution of the given differential equation.
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EXAMPLE PROBLEMS AND SOLUTIONS

Problem A-2-1
Obtain the real and imaginary parts of

2+ 1
3+j4
Also, obtain the magnitude and angle of this complex quantity.
Solution
2+j1  (2+,1)(3 - j4) 6+13—]8+4 10 - j5
3+j4 (3+4)(3-j4) 9+ 16 25
_2 1
5775
Hence,
real part = %, imaginary part = —j %

The magnitude and angle of this complex quantity are obtained as follows:
= 2

magnitude = — ? 25 7 = 0.447

1 o
ang]e-—tan—zF tan~ 7_ 26.565

Problem A-2-2
Find the Laplace transform of

f(t)y=20 1 <0
=te™™ t=0
Solution Since
[ = G(s) =
referring to Equation (2-2), we obtain
1
F(s) = 4[te™ =G(s + 3) = ——
(5) = £l1e™] = G(s +3) = =3
Problem A-2-3
What is the Laplace transform of
f(t)y =0 1<0
= sin(wt + ) t=0

where 0 is a constant?
Solution Noting that

sin(w!t + ) = sin wf cos @ + cos wt sin §
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we have
Z[sin(wt + 6)] = cos 8 £L[sin wi] + sin § L[cos wt]
= c0S 0——— + sin f——
2+ o 2+ ot
_ wcosf + ssind
2+ o?
Problem A-2-4

Find the Laplace transform F{(s) of the function f{t) shown in Figure 2-9. Also, find the
limiting value of F(s) as a approaches zero.

Solution The function f{f) can be written
1 2 1
f@) = —21(1) - —21(1 ~a)+ —51(1 - 2a)
a a a
Then

F(s) = 2[f(1)]
1 2 1
= S0] - S - a) +— L1t - 20)]

_ - == -as+_,
as ats a*s
1 _ _

= (1 - 267 + )
a’s

As a approaches zero, we have

d _a _
gy ot gl T
limF(s) = lim = lim
T e s = Ly
da
_ 2se” — 2se—2as = lim e — e—Zas
a—0 2as a—0 a
0
1
el
2a
0 a t
-1
&2
Figure 2-9 Function f{(t).
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i —as _ ,—2as
. da (e ) L —se™® 4+ 2567
T a0 d a—0 1
22
=—-s+2=5s

Problem A-2-5
Obtain the Laplace transform of the function f{t) shown in Figure 2-10.

Solution The given function f{¢) can be defined as follows:

f(r)=0 =0
=2t O0<tsa
a
=0 a<t

Chap. 2

Notice that f{t) can be considered a sum of the three functions fi(¢), f2(¢), and f3(¢)

shown in Figure 2-11. Hence, f{f) can be written as
f@) = filt) + fo(t) + f3(1)
- %r-m) - g(: — &) 1(t - a) - b-1(t — a)

f) !
bl-mem o
Figure 2-10 Function f(r). 0 a 1
o) r

br- ( A= a0
|
!
1

0 . .

t

=b -

Figure 2-11 Functions f(1), f(¢), and \ f0=
f(e).

£0=-2 (-0)-16-0)

=b-1(t-a)
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Then the Laplace transform of f{t) becomes

The same F(s) can, of course, be obtained by performing the following Laplace inte-

gration:
ab 00
2f(1)] = / ;te"’ dr + / Oe™dt
(1} a
—st |a a —st
= _b-t.e__ -_— / 2 e_._ dl
a =Sig 0o a4 =S
A2 ik
-s as =Sl
—as
=~ w1
=S as
= %(1 —e %) ——e™®
as
Problem A-2-6

Prove that if the Laplace transform of f{f) is F(s), then, except at poles of F(s),
d
Llf(0)] = = F(s)
2 dz F
Erf ) = 53 F(s)
and in general,
2[mf (0] = (- 1)" F(S) n=123,..

Solution

Llef(1)] A (1) dt = A £ 2 (e

d [C. . _ _d
ds[; f(t)e™ dt = dsF(s)
Similarly, by defining tf(t) = g(t), the result is

LIef(n)] = -‘£[tg(t)] = —ic(s) = _di[___F( )]

= (= 1)2 F(S) F(S)

Repeating the same process, we obtain

HOFO) = (PR F) =123,
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Problem A-2-7
Find the Laplace transform of

f@) =0 <0
= 2 sin wt t=0
Solution Since
$[sin wt] = ER

referring to Problem A-2-6, we have

LIF ()] = Ll sinwt] = dz[ ) ] _ 263 + 6ws>

ds?ls? + o? (5* + w?)?
Problem A-2-8
Prove that if the Laplace transform of f{¢) is F(s), then

se[ f(é)] =aF(as) a>0

Solution If we define t/a = 7 and as = s, then

33[ f(%)] = A mf(i)e"‘ di = A T fr)e adr
= a~[wf('r)e"lT dr = aF(s)) = aF(as)

Problem A-2-9

Chap. 2

Prove that if f{r) is of exponential order and if fomf (¢) dt exists [which means that

f0°°f (¢) dr assumes a definite value], then

/mf(t) dt = lim F(s)
0 s—0

where F(s) = Z[f(1))
Solution Note that

Amf(r) dt = ,E.'&Arf(') dt

Referring to Equation (2-5), we have

2[/0}(:)(1:] = f@

Since focO f(t) dt exists, by applying the final-value theorem to this case, we obtain

F(s)
s

!
’lixgolf(t)dt =}1_13‘1)s
or

/oof(t) dt = lim F(s)
0 s—0
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Problem A-2-10
The convolution of two time functions is defined by
_llfl(f)fz(’ - T)dr
A commonly used notation for the convolution is f,(¢)*f5(t), which is defined as
FOwta0 = [te = mar = [ 1= piter
Show that if f(¢) and f5(¢) are both Laplace transformable, then
58[ /0 'fl('r)fz(t =) df] = F(s)F(s)
where Fi(s) = Z[fi(r)] and Fy(s) = Z[f»(1)].
Solution Noting that 1(r — 7) = Ofor ¢ < 7, we have
o] [1n - mas| = o [“heme - 01 - nas]
= Ame—“[/owfl(f)fz(t -1t —-17) d‘r} dt

- / " f(r) dr / Tht - (- e d
0 0

Changing the order of integration is valid here, since fi(¢) and f(¢) are both Laplace
transformable, giving convergent integrals. If we substitute A = t — 7 into this last
equation, the result is

$[Af1(7)f2(t -7) d’r] = /0 fi(r)e™" dT,/0~ fz(/\)e_M dA
= F(s)F(s)
or
Lf1(2)xf2(2)] = Fi(s)Fa(s)

Thus, the Laplace transform of the convolution of two time functions is the product of
their Laplace transforms.

Problem A-2-11
Determine the Laplace transform of f;(¢)*f(t), where

) =f(1) =0 fort <0

filt) =1t fort=0
ft)=1—-¢" fort =0
Solution Note that
1
1] = R(s) = 2
1 1

21 - = F(s) =< - — 7



42 The Laplace Transform  Chap. 2

The Laplace transform of the convolution integral is given by

GSE[fl(t)*fZ(t)] = F](E)Fz(s) = %(.1. - 1 )

s s+1

To verify that the expression after the rightmost equal sign is indeed the Laplace trans-
form of the convolution integral, let us first integrate the convolution integral and then
take the Laplace transform of the result. We have

Fut)afalt) = A Al = ) dr
= /r(: - 1)1 - ") dr
0

1
=/(l—'r—te_"+fe_')d'r
0

Noting that
/ ‘(t dr = £
A T)dr = >
!

/ teTdr = —te!' +1¢

0

] It !

/'re—'d'r =—7¢7| + /e"’ dr=~te?!' — e+ 1

0 0 ()

we have
o)
Fi(t)*fa(t) = Z7tt1- e’
Thus,
r? 1 1 1 1
f-—-t+l-e|==-=+--
[2 € ] s s? + s s+1
Problem A-2-12
Prove that if f{t) is a periodic function with period T, then
T
/ f()e ™ dr
=J0 @
f£I'f(t)] - 1-— e_'r,

Solution

o pln+)T

LLf(0)] = fo foerac= S [ s a

By changing the independent variable from t to 7 = ¢t — nT, we obtain

o0 T
L[f(n)] = ';’e‘”“/o f(r + nT)e™ dr
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Since f{t) is a periodic function with period T, f(r + nT) = f(r). Hence,

oo T
L) = T l F(r)e dr

Noting that
]
ze—nTs =1+ e—T: + e—ZT: + .-
n=0
=1+ e—Ts(l +eTs 4 7 2Ts 4 )
o0
=1+ e-TS( z)e—nTs)
e
we obtain
o0
E e-nTs = 1
n=0 1-¢Ts
It follows that

/ f(t)e™ dt

0] =

Problem A-2-13
What is the Laplace transform of the periodic function shown in Figure 2-12?
Solution Note that

T TR T
/ f()e™ dt = / e~ 'dt + / (—1)e™ dr
0 0 ™

_ e TR e T
—Slo —Sirn
e WATs 1 oTs _ o~(12)Ts
= +
=5 s
= l[ ~Ts _ 2e-(l/2)Ts + 1]
s
1 —-(12)Ts2
=5-e ]
D4
1
ol T T 2T 't
2
-1 | L -
Figure 2-12 Periodic function (square
wave).
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Consequently,

T
—si
/(;f(ﬂe dt (Us)[L — e (Ts]2
N 1-¢Ts N 1-¢Ts
1 = ~(12)Ts

iz _lomI
s[1 + T s 4

Problem A-2-14
Find the initial value of df{t)/dt, where the Laplace transform of f{¢) is given by

2s +1
2+s+1

F(s) = Z[f(n)] =

Solution Using the initial-value theorem, we obtain

AR S0 = I = It

Since the &£, transform of df (¢)/dt = g(t) is given by
£.[g(1)] = sF(s) — f(0+)

s(2s + 1) -s—2
= Fa.a1 2T 7a.r1
s+s+1 sf+s+1
the initial value of df{¢)/dt is obtained as
. df(n) .
Jim == = g(0+) = lims[sF(s) = £(0+)]

T i LI
soos? 4+ 5+ 1
To verify this result, notice that

2s + 0.5)

F&) = 057 + (0seey - ££[2e7%%" cos 0.8661]

Hence,

f(t) = 2e7% cos 0.866¢
and

f(t) = —e™0% cos 0.8661 + 2¢700.866 sin 0.866¢

Thus,

flOy=-1+0=-1

Problem A-2-15

Obtain the inverse Laplace transform of

F(s)

_ cs+d
(s* + 2as + a®) + b?

where a, b, ¢, and d are real and a is positive.
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Solution Since F(s) can be written as

c(s+a)+d-ca

F =
L PR
_ e(s + a) d-ca b
(s + a)® + b? b (s+a)P+d?

we obtain

ca _, .
e ¥ sin bt
b

f(t) = ce™ cos bt + d

Problem A-2-16
Find the inverse Laplace transform of

1
F(s)= ———
() s(s? + 25 +2)
Solution Since
sT+25+2=(s+1+jl)(s+1-j1)

it follows that F(s) involves a pair of complex-conjugate poles, so we expand F(s) into
the form

1 ay as + aj

Flo)= ——1 =94
() s(s2+2542) 5 s£+25+2

where a,, a,, and a5 are determined from
1 =ay(s* + 25 + 2) + (as + a3)s

By comparing corresponding coefficients of the 52, 5, and s° terms on both sides of this
last equation respectively, we obtain

a, + a, =0, 2a, + a; =0, 2a; =1

from which it follows that

Therefore,

11 1 1 1 s+1

The inverse Laplace transform of F(s) is

f(t)=%-%e"sinl—%e”cost t=0
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Problem A-2-17
Derive the inverse Laplace transform of
S(s + 2)
F(s)=5—————
s(s + 1)(s + 3)
Solution
5(s +2) b, b a a
Fs) S(s+1)(s+3) 2 s s+1 s+3
where
2 5
al - Sz(s + 3) s=-1 2
_ (s +2) _ S5
a2 = sH(s+ 1)]=3 18
_ 5(s+2) 10
T+ )(s+3)o 3
_ i[ 5(s +2) ]
V7 dsl(s + 1)(s + 3) J=o
_ 5(s + 1)(s +3) = 5(s +2)(2s + 4) _ 25
h (s + 1)%(s + 3)? 5=0 9
Thus,

101 251 S5 1 5 1

F(s)=?s_2——§—;+_2—s+l+185+3

The inverse Laplace transform of F(s) is
25 5 5 _a

10
=———+—" —
f() 3t 9 2e +18e

t=0
Problem A-2-18
Find the inverse Laplace transform of
4 3 2
F(s)=s +25°+3s°+4s+5
s(s +1)

Solution Since the numerator polynomial is of higher degree than the denominator
polynomial, by dividing the numerator by the denominator until the remainder is a
fraction, we obtain

2s + 5 aq a;
=s2+s5+2+ =s2+s+2+—+
Fsy=s"+s+2 s(s + 1) sSHst2 s s+1
where
2s + 5
al—S+1s=o_5
2s+5
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It follows that
3
s+1

F(s)=s2+s+2+§—
The inverse Laplace transform of F(s) is
2
f(r) = LYF(s)] = %8(:) + %5(:) +28(t) +5 -3¢ t=0-

Problem A-2-19
Obtain the inverse Laplace transform of
2+ 4s +
Fls) = 25+ 45+ 6

= 2-10
s%(s? + 25 + 10) (@2-10)

Solution Since the quadratic term in the denominator involves a pair of complex-
conjugate roots, we expand F(s) into the following partial-fraction form:
a

a bs + ¢
F(s)==+—=+—5—"7"——
() £ s $£24+25+10
The coefficient a, can be obtained as

2% +45+6 06

a—-———~ =
V7 82 + 25 + 10150

Hence, we obtain
F(s) =9§+—a—2+———2 bs + ¢
s s sc+25+10
_ (a2 + b)s® + (0.6 + 2a, + ¢)s* + (1.2 + 10ay)s + 6
s¥(s? + 25 + 10)

(2-11)

By equating corresponding coefficients in the numerators of Equations (2-10) and
(2-11), respectively, we obtain

02+b=0
0.6+2a2+c=2
1.2 + 10a, = 4

from which we get
a;, = 0.28, b = —0.28, c =084
Hence,

F(s) = _076 + Ois + —?.28.9 + 0.84
s s s+ 25+ 10

0.6 + 0.28 + —0.28(s + 1) + (1.12/3) X 3

52 s (s +1)% + 32

The inverse Laplace transform of F(s) gives

f(t) = 0.6t + 0.28 — 0.28¢ " cos 3t + %e—' sin 3¢
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Problem A-2-20
Derive the inverse Laplace transform of

1

Fls) = s(s? + o?)

Solution

1 1/1 s
Fls) = ———— = (2- S
(s) s(s? + 0?) wz(s sz+w2)
11 1 s

w? s w? st + o

Thus, the inverse Laplace transform of F(s) is obtained as
f() = LF(s)] = (1 - coswt) 120
w

Problem A-2-21
Obtain the solution of the differential equation

X + ax = Asin wt, x(0) =b

Solution Laplace transforming both sides of this differential equation, we have

[sX(s) = x(0)] + aX(s) = A :’wz
or
A
(s + a)X(s) = +wa +b

Solving this last equation for X{(s), we obtain

Aw b
= +
(s+a)s’+w?) s+a

Aw ( 1 s—a) b

= - +

d+o’\s+ta s+e?) sta

(b+ Aw ) 1 . _Aa o _ Ae )
ad+o’/sta P+ + 0’ @+ o s+ o

X(s)

The inverse Laplace transform of X(s) then gives

x(1) = £7'X(s)]

Aw _ Aa Aw
=(b+ > 2)e“‘+2—2-smwt——2—-—zcoswt t=0
a+ w a + w a° + w



Problems

PROBLEMS

Problem B-2-1
Derive the Laplace transform of the function
f()y=0 t<0
=te’® t=0
Problem B-2-2
Find the Laplace transforms of the following functions:
(a) H() =0 t<0
= 3sin(5t + 45°) t=0
(b) f(t) =0 t<0
= 0.03(1 — cos 2¢) t=0
Problem B-2-3
Obtain the Laplace transform of the function defined by
f(t)=20 1 <0
= 27 t=0
Problem B-24
Obtain the Laplace transform of the function
f@) =0 1 <0
= cos 2wt « cos 3wt t=0
Problem B-2-5

What is the Laplace transform of the function f{¢) shown in Figure 2-13?

Problem B-2-6
Obtain the Laplace transform of the pulse function f{r) shown in Figure 2-14.

)l

0 a a+b t 0 a b

Figure 2-13 Function f(r). Figure 2-14 Pulse function.
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50
12 12
) 12}
o
a
0 a t
2
T
0 a a t
R
- _12l
a @

Figure 2-15 Function f{r). Figure 2-16 Function f{r).

Problem B-2-7
What is the Laplace transform of the function f{¢) shown in Figure 2-15? Also, what is

the limiting value of £[f(t)] as a approaches zero?

Problem B-2-8
Find the Laplace transform of the function f{r) shown in Figure 2-16. Also, find the lim-

iting value of £[f(r)] as a approaches zero.

Problem B-2-9

Given
_5(s+2)
F&Y =36+

obtain f(00). Use the final-value theorem.

Problem B-2-10

Given
25 +2)
FY = {5+ D6 +3)

obtain f(0+). Use the initial-value theorem.

Problem B-2-11

Consider a function x(¢). Show that
x(0+) = lingo[s2X(s) - sx(0+)]
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Problem B-2-12
Derive the Laplace transform of the third derivative of f{r).

Problem B-2-13
What are the inverse Laplace transforms of the following functions?
s+5
® A =66 +9)
3(s + 4)
®) Fys) = s(s + 1)(s + 2)
Problem B-2-14
Find the inverse Laplace transforms of the following functions:
6s + 3
@ Rs) = >
Ss+2
b E(s) = ——m——————
® 1) = T e+ 2
Problem B-2-15
Find the inverse Laplace transform of
252+ 4s+5
F(s) = ————
) ==+ D
Problem B-2-16
Obtain the inverse Laplace transform of
2
s°+25+4
F(s) = )
s
Problem B-2-17

Obtain the inverse Laplace transform of

s

F(s) = ————
(s) s2 425+ 10
Problem B-2-18
Obtain the inverse Laplace transform of
2+ 2545
F(s) = —5———
(s) si s+ 1)

Problem B-2-19
Obtain the inverse Laplace transform of
F(s) = 2s -;- 10
(s+1)(s +4)
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Problem B-2-20
Derive the inverse Laplace transform of

1

)

Problem B-2-21
Obtain the inverse Laplace transform of
- i — ~asy __ 2 —as
F(s) = s2(1 e") P
where a > 0.

Problem B-2-22
Find the solution x(¢) of the differential equation
X+4x =0, x(0) = 5, x(0)=0

Problem B-2-23
Obtain the solution x(f) of the differential equation

¥+ wix =1t x(0) =0, x(0)=0
Problem B-2-24
Determine the solution x(r) of the differential equation
2 +2x +x=1, x(0) = 0, x(0) =2
Problem B-2-25

QObtain the solution x(¢) of the differential equation
X+ x =sin3t, x(0) =0, x(0) =20

Chap. 2



Mechanical Systems

3-1 INTRODUCTION

This chapter is an introductory account of mechanical systems. Details of mathematical
modeling and response analyses of various mechanical systems are given in Chapters 4,
5,7,8,and 9.

We begin with a review of systems of units; a clear understanding of which is
necessary for the quantitative study of system dynamics.

Systems of units. Most engineering calculations in the United States are
based on the International System (abbreviated SI)! of units and the British engi-
neering system (BES) of measurement. The International System is a modified met-
ric system, and, as such, it differs from conventional metric absolute or metric
gravitational systems of units. Table 3-1 lists some units of measure from each of the
International System, conventional metric systems, and British systems of units.
(The table presents only those units necessary to describe the behavior of mechani-
cal systems. Units used in describing the behaviors of electrical systems are given in
Chapter 6. For additional details on systems of units, refer to Appendix A.)

The chief difference between “absolute” systems of units and “gravitational”
systems of units lies in the choice of mass or force as a primary dimension. In the

!This “backward" abbreviation is for the French Systéme International.
53
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TABLE 3-1 Systems of Units

Sygft il;lists Absolute systems Gravitational systems
Metric ... Metric British
R British . . . .
Quantity SI mks cgs engineering | engineering
Length m m cm ft m ft
ki 2 2
Mass kg kg g Ib g; s slug = lbff: s
Time s s s s s s
N N dyn poundal
Force _kg-m _kgm _gem _Ib-ft kgs Ibs
s? s? s? s?
ft-Ib
Ener; J = N- J=N- erg . !
2y m m = dyncm ft-poundal kgrm or Btu
ft-lb,
Power | W = N-m W= N-m dyn-cm ft-poundal kgs-m .
s s s s S or hp

absolute systems (SI and the metric and British absolute systems), mass is chosen as
a primary dimension and force is a derived quantity. Conversely, in gravitational sys-
tems (metric engineering and British engineering systems) of units, force is a prima-
ry dimension and mass is a derived quantity. In gravitational systems, the mass of a
body is defined as the ratio of the magnitude of the force to that of acceleration.
(Thus, the dimension of mass is force/acceleration.)

Mass. The mass of a body is the quantity of matter in it, which is assumed to
be constant. Physically, mass is the property of a body that gives it inertia, that is, re-
sistance to starting and stopping. A body is attracted by the earth, and the magni-
tude of the force that the earth exerts on the body is called its weight.

In practical situations, we know the weight w of a body, but not the mass m. We
calculate mass m from

w
m=—
g

where g is the gravitational acceleration constant. The value of g varies slightly from
point to point on the earth’s surface. As a result, the weight of a body varies slightly
at different points on the earth’s surface, but its mass remains constant. For engi-
neering purposes,

g = 9.807 m/s?> = 980.7 cm/s® = 32.174 ft/s* = 386.1 in./s?

Far out in space, a body becomes weightless. Yet its mass remains constant, so the
body possesses inertia.
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The units of mass are kg, g, b, kg f-szlm, and slug, as shown in Table 3-1. If mass
is expressed in units of kilograms (or pounds), we call it kilogram mass (or pound
mass) to distinguish it from the unit of force, which is termed kilogram force (or
pound force). In this book, kg is used to denote a kilogram mass and kg; a kilogram
force. Similarly, Ib denotes a pound mass and 1bs a pound force.

A slug is a unit of mass such that, when acted on by a 1-pound force, a 1-slug
mass accelerates at 1 ft/s? (slug = lbf-szlft). In other words, if a mass of 1 slug is
acted on by a 32.174-pound force, it accelerates at 32.174 ft/s? (= g). Hence, the
mass of a body weighing 32.174 1b; at the earth’s surface is 1 slug, or

w _ 32.1741b;
g  32.174 /s

Force. Force can be defined as the cause which tends to produce a change in
motion of a body on which it acts. To move a body, force must be applied to it. Two types
of forces are capable of acting on a body: contact forces and field forces. Contact forces
are those which come into direct contact with a body, whereas field forces, such as grav-
itational force and magnetic force, act on a body, but do not come into contact with it.

The units of force are the newton (N), dyne (dyn), poundal, kg;, and Ib;. In SI
units and the mks system (a metric absolute system) of units, the force unit is the
newton. One newton is the force that will give a 1-kg mass an acceleration of 1 m/s?, or

1N = 1 kg-m/s?

This implies that 9.807 N will give a 1-kg mass an acceleration of 9.807 m/s%. Since
the gravitational acceleration constant is g = 9.807 m/s?, a mass of 1 kg will produce
a force of 9.807 N on its support.

The force unit in the cgs system (a metric absolute system) is the dyne, which
will give a 1-g mass an acceleration of 1 cm/s?, or

1dyn = 1 g-cm/s?

The force unit in the metric engineering (gravitational) system is kg, which is
a primary dimension in the system. Similarly, in the British engineering system, the
force unit is Iby, a primary dimension in this system of units.

Comments. The SI units of force, mass, and length are the newton (N), kilo-
gram mass (kg), and meter (m). The mks units of force, mass, and length are the
same as the SI units. The cgs units for force, mass, and length are the dyne (dyn),
gram (g), and centimeter (cm), and those for the BES units are the pound force
(Iby), slug, and foot (ft). Each system of units is consistent in that the unit of force
accelerates the unit of mass 1 unit of length per second per second.

A special effort has been made in this book to familiarize the reader with the
various systems of measurement. In examples and problems, for instance, calcula-
tions are often made in SI units, conventional metric units, and BES units, in order to
illustrate how to convert from one system to another. Table 3-2 shows some conve-
nient conversion factors among different systems of units. (Other detailed conver-
sion tables are given in Appendix B.)
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TABLE 3-2 Conversion Table

1 1m = 100cm
Length 2 1ft = 12in. lin. = 2.54 cm
3 | 1m=32811t 1ft = 03048 m
4 | 1kg=220461b 11b = 0.4536 kg
5 1kg = 0.10197 kg;-s/m 1kg;-s¥m = 9.807 kg
Mass 6 1slug = 14.594 kg 1 kg = 0.06852 slug
7 1slug = 32.1741b 11b = 0.03108 slug
8 | 1slug = 1.488kgs-sm 1kg,s¥m = 0.6720 slug
9 1 slug-ft> = 1.356 kg-m* 1kg-m? = 0.7376 slug-ft?
Moment
of inertia | 10 1 slug-ft* = 0.1383 kg;-s>m 1kgs-s>m = 7.233 slug-ft?
11 1 slug-ft® = 32.174 Ib-ft? 1 Ib-ft> = 0.03108 slug-ft?
12 1N = 10°dyn
13 | 1N =0.10197 kg, 1kg, = 9.807N
14 1N = 7.233 poundals 1 poundal = 0.1383 N
Foree s | 1N = 022481, 11b, = 44482 N
16 | 1kgs =2.20461b, 11b; = 0.4536 kg,
17 11Ib; = 32.174 poundals 1 poundal = 0.03108 Ib,
18 | INm=1J=1W-s 1J = 010197 kg;-m
19 1dyn-cm = lerg = 1077J 1kg,-m = 9.807 N-m
Energy | 20 1 N-m = 0.7376 ft-lb, 1 ft-Ib; = 1.3557 N-m
21 | 1) =12389 X 10™*kcal 1 kecal = 4186
22 | 1Btu = 778ft-lb, 1ft-lb; = 1.285 X 107 Btu
23 | 1W=1Js
Power | 24 1 hp = 550 ft-lbs/s 1ft-lbg/s = 1.818 X 103 hp
25 lhp = 7457 W 1W =1341 X 103 hp

Outline of the chapter. Section 3~-1 has presented a review of systems of
units necessary in the discussions of dynamics of mechanical systems. Section 3-2
treats mechanical elements. Section 3-3 discusses mathematical modeling of me-
chanical systems and analyzes simple mechanical systems. Section 3—4 reviews the
concept of work, energy, and power and then presents energy methods for deriving
mathematical models of conservative systems (systems that do not dissipate energy).
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3-2 MIECHANICAL ELEMENTS

Any mechanical system consists of mechanical elements. There are three types of
basic elements in mechanical systems: inertia elements, spring elements, and damper
elements.

Inertia elements. By inertia elements, we mean masses and moments of inertia.
Inertia may be defined as the change in force (torque) required to make a unit
change in acceleration (angular acceleration). That is,

inertia ( ) change in force N K
inertia (mass) = - - or
change in acceleration m/s? &
change in torque N-m 2

inertia (moment of inertia) = or kg-m

change in angular acceleration rad/s’

Spring Elements. A linear spring is a mechanical element that can be de-
formed by an external force or torque such that the deformation is directly propor-
tional to the force or torque applied to the element.

Consider the spring shown in Figure 3-1(a). Here, we consider translational
motion only. Suppose that the natural length of the spring is X, the spring is fixed at
one end, and the other end is free. Then, when a force fis applied at the free end, the
spring is stretched. The elongation of the spring is x. The force that arises in the
spring is proportional to x and is given by

F = kx (3-1)

where k is a proportionality constant called the spring constant. The dimension of
the spring constant k is force/displacement. At point P, this spring force F acts oppo-
site to the direction of the force f applied at point P.

Figure 3-1(b) shows the case where both ends (denoted by points P and Q) of
the spring are deflected due to the forces f applied at each end. (The forces at each

/, 7,

2 %

7

2 X—————' X +x

Y.

4 5

V

4 ’ 0 P
2——’\/\/\/\/\/—-0—>-f f— E— NN —
7 X+x X+x—-x

4 |

4

Z

(a) (®

Figure 3-1 (a) One end of the spring is deflected; (b) both ends of the spring are deflected. (X is the
natural length of the spring.)
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end of the spring are on the same line and are equal in magnitude but opposite in
direction.) The natural length of the spring is X. The net elongation of the spring is
x; — x,. The force acting in the spring is then

F=k(x - x;) (3-2)

At point P, the spring force F acts to the left. At point Q, F acts to the right. (Note
that the displacements X + x; and x;, of the ends of the spring are measured rela-
tive to the same frame of reference.)

Next, consider the torsional spring shown in Figure 3-2(a), where one end is
fixed and a torque T is applied to the other end. The angular displacement of the
free end is 6. Then the torque T that arises in the torsional spring is

T = k6 (3-3)

At the free end, this torque acts in the torsional spring in the direction opposite that
of the applied torque .

For the torsional spring shown in Figure 3-2(b), torques equal in magnitude,
but opposite in direction, are applied to the ends of the spring. In this case, the
torque T acting in the torsional spring is

T = k(6, — 6) (3-4)

At each end, the spring torque acts in the direction opposite that of the applied
torque at that end. The dimension of the torsional spring constant k is torque/angu-
lar displacement, where angular displacement is measured in radians.

When a linear spring is stretched, a point is reached in which the force per unit
displacement begins to change and the spring becomes a nonlinear spring. If the
spring is stretched farther, a point is reached at which the material will either break
or yield. For practical springs, therefore, the assumption of linearity may be good
only for relatively small net displacements. Figure 3-3 shows the force-displace-
ment characteristic curves for linear and nonlinear springs.

For linear springs, the spring constant k may be defined as follows:

spring constant k (for translational spring)

_ change in force N
h change in displacement of spring m

9 92 01
7/ z 7 z
76 10 Cr r((( i C’
Vo2 . AN \Y

(a) (b)

Figure 3-2 (a) A torque 7 is applied at one end of torsional spring, and the other end is
fixed; (b) a torque 7 is applied at one end, and a torque 7, in the opposite direction, is
applied at the other end.
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Nonlinear
spring

Linear
spring

X
Nonlinear spring
Figure 3-3 Force-displacement charac-

teristic curves for linear and nonlinear
springs.

0 X

spring constant k (for torsional spring)

_ change in torque N-m
~ change in angular displacement of spring rad

Spring constants indicate stiffness; a large value of k corresponds to a hard
spring, a small value of k to a soft spring. The reciprocal of the spring constant k is
called compliance or mechanical capacitance C. Thus, C = 1/k. Compliance or
mechanical capacitance indicates the softness of a spring.

Practical spring versus ideal spring. All practical springs have inertia and
damping. In our analysis in this book, however, we assume that the effect of the
mass of a spring is negligibly small; that is, the inertia force due to acceleration of the
spring is negligibly small compared with the spring force. Also, we assume that the
damping effect of the spring is negligibly small.

An ideal linear spring, in comparison to a practical spring, will have neither
mass nor damping and will obey the linear force—displacement law as given by
Equations (3-1) and (3-2) or the linear torque-angular displacement law as given
by Equations (3-3) and (3-4).

Damper elements. A damper is a mechanical element that dissipates ener-
gy in the form of heat instead of storing it. Figure 3—4(a) shows a schematic diagram

of a translational damper, or dashpot. It consists of a piston and an oil-filled cylin-
der. Any relative motion between the piston rod and the cylinder is resisted by oil

4 x |
xz——| A ’ i 0, 6,
~bmI- CET6C

(a) (b)

Figure 3-4 (a) Translational damper; (b) torsional (or rotational) damper.
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because oil must flow around the piston (or through orifices provided in the piston)
from one side to the other. Essentially, the damper absorbs energy, and the absorbed
energy is dissipated as heat that flows away to the surroundings.

In Figure 3—4(a), the forces f applied at the ends of the translational damper
are on the same line and are of equal magnitude, but opposite in direction. The
velocities of the ends of the damper are x, and x,. Velocities x; and ¥, are taken rel-
ative to the same frame of reference.

In the damper, the damping force F that arises in it is proportional to the
velocity difference x; — x; of the ends, or

F = b(x, — &) = bx (3-5)

where x = ¥; — X; and the proportionality constant b relating the damping force F
to the velocity difference x is called the viscous friction coefficient or viscous friction
constant. The dimension of b is force/velocity. Note that the initial positions of both
ends of the damper do not appear in the equation.

For the torsional damper shown in Figure 3—-4(b), the torques = applied to the
ends of the damper are of equal magnitude, but opposite in direction. The angular
velocities of the ends are 8, and 6, and they are taken relative to the same frame of
reference. The damping torque T that arises in the damper is proportional to the
angular velocity difference 6, — 6, of the ends, or

T = b(6, — 6,) = b (3-6)

where, analogous to the translational case, 8 = 6, — 6, and the proportionality con-
stant b relating the damping torque T to the angular velocity difference 6 is called
the viscous friction coefficient or viscous friction constant. The dimension of b is
torque/angular velocity. Note that the initial angular positions of both ends of the
damper do not appear in the equation.

A damper is an element that provides resistance in mechanical motion, and, as
such, its effect on the dynamic behavior of a mechanical system is similar to that of
an electrical resistor on the dynamic behavior of an electrical system. Consequently,
a damper is often referred to as a mechanical resistance element and the viscous fric-
tion coefficient as the mechanical resistance.

Practical damper versus ideal damper. All practical dampers produce iner-
tia and spring effects. In this book, however, we assume that these effects are negligible.

An ideal damper is massless and springless, dissipates all energy, and obeys the
linear force-velocity law or linear torque—angular velocity law as given by Equation
(3-5) or Equation (3-6), respectively.

Nonlinear friction. Friction that obeys a linear law is called linear friction,
whereas friction that does not is described as nonlinear. Examples of nonlinear fric-
tion include static friction, sliding friction, and square-law friction. Square-law fric-
tion occurs when a solid body moves in a fluid medium. Figure 3-5 shows a
characteristic curve for square-law friction. In this book, we shall not discuss nonlin-
ear friction any further.
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Force ﬂ

Velocity

Figare 3-5 Characteristic curve for
square-law friction.

3-3 MATHEMATICAL MODELING OF SIMPLE
MECHANICAL SYSTEMS

A mathematical model of any mechanical system can be developed by applying
Newton’s laws to the system. In this section, we shall deal with the problem of deriv-
ing mathematical models of simple mechanical systems. More on deriving mathe-
matical models of various mechanical systems and response analyses is presented in
Chapters 4,5,7,8,and 9.

Rigid body. When any real body is accelerated, internal elastic deflections
are always present. If these internal deflections are negligibly small relative to the
gross motion of the entire body, the body is called a rigid body. Thus, a rigid body
does not deform.

Newton's laws. There are three well-known laws called Newton’s laws.
Newton’s first law, which concerns the conservation of momentum, states that the
total momentum of a mechanical system is constant in the absence of external
forces. Momentum is the product of mass m and velocity v, or mv, for translational
or linear motion. For rotational motion, momentum is the product of moment of in-
ertia J and angular velocity w, or Jw, and is called angular momentum.

Newton’s second law gives the force—acceleration relationship of a rigid trans-
lating body or the torque-angular acceleration relationship of a rigid rotating body.
The third law concerns action and reaction and, in effect, states that every action is
always opposed by an equal reaction.

Newton’s second law (for translational motion). For translational mo-
tion, Newton’s second law says that if a force is acting on a rigid body through the
center of mass in a given direction, the acceleration of the rigid body in the same
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c!irection is directly proportional to the force acting on it and is inversely propor-
tional to the mass of the body. That is,

force
mass

acceleration =

or
(mass)(acceleration) = force

Suppose that forces are acting on a body of mass m. If 2F is the sum of all
forces acting on mass m through the center of mass in a given direction, then

ma= >F (3-7)

where a is the resulting absolute acceleration in that direction. The line of action of
the force acting on a body must pass through the center of mass of the body. Other-
wise, rotational motion will also be involved. Rotational motion is not defined by
Equation (3-7).

Newton’s second law (for rotational motion). For a rigid body in pure
rotation about a fixed axis, Newton’s second law states that

(moment of inertia)(angular acceleration) = torque

or
Ja = ET (3-8)

where ZT is the sum of all torques acting about a given axis, J is the moment of iner-
tia of a body about that axis, and a is the angular acceleration of the body.

Torque or moment of force. Torque, or moment of force, is defined as any
cause that tends to produce a change in the rotational motion of a body on which it
acts. Torque is the product of a force and the perpendicular distance from a point of
rotation to the line of action of the force. The units of torque are force times length,
such as N-m, dyn-cm, kg¢-m, and 1b-ft.

Moments of inertia. The moment of inertia J of a rigid body about an axis

is defined by
J= / rtdm

where dm is an element of mass, r is distance from the axis to dm, and integration is
performed over the body. In considering moments of inertia, we assume that the
rotating body is perfectly rigid. Physically, the moment of inertia of a body is a mea-
sure of the resistance of the body to angular acceleration.

Table 3-3 gives the moments of inertia of rigid bodies with common shapes.
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TABLE 3-3 Moments of Inertia

t<R

R m = mass of disk

J.=5mR?

N

m = mass of solid cylinder

I =1mR?

RW m = mass of hollow cylinder

x x'
r 1
I Jo=5m(R*+r?)

Example 3-1

Figure 3-6 shows a homogeneous cylinder of radius R and length L. The moment of
inertia J of this cylinder about axis AA’ can be obtained as follows: Consider a ring-
shaped mass element of infinitesimal width dr at radius r. The mass of this ring-shaped
element is 27rLp dr, where p is the density of the cylinder. Thus,

dm = 2mrLpdr

I L_’l Figure 3-6 Homogeneous cylinder.
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Consequently,

R R 4
LpR
J = / rR2arLpdr = 211'Lp/ rdr = T=p
0 0 2
Since the entire mass m of the cylinder body is m = wR*Lp, we obtain

= -;-mR2

Moment of inertia about an axis other than the geometrical axis.
Sometimes it is necessary to calculate the moment of inertia of a homogeneous rigid
body about an axis other than its geometrical axis. If the axes are parallel, the calcula-
tion can be done easily. The moment of inertia about an axis that is a distance x from
the geometrical axis passing through the center of gravity of the body is the sum of the
moment of inertia about the geometrical axis and the moment of inertia about the new
axis when the mass of the body is considered concentrated at the center of gravity.

Example 3-2

Consider the system shown in Figure 3-7, where a homogeneous cylinder of mass m
and radius R rolls on a flat surface. Find the moment of inertia, J,, of the cylinder about
its line of contact (axis xx') with the surface.

Figure 3-7 Homogeneous cylinder
rolling on a flat surface.

The moment of inertia of the cylinder about axis CC' is
1
Jo = =mR?
€2
The moment of inertia of the cylinder about axis xx’ when mass m is considered con-
centrated at the center of gravity is mR% Thus, the moment of inertia J, of the cylinder

about axis xx' is

J.=Jc+ mR*= %mRz + mR? = %mRz

Forced response and natural response. The behavior determined by a
forcing function is called a forced response, and that due to initial conditions (initial
energy storages) is called a natural response. The period between the initiation of a
response and the ending is referred to as the transient period. After the response has
become negligibly small, conditions are said to have reached a steady state.
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Figure 3-8 Rotor mounted in bearings.

Rotational system. A schematic diagram of a rotor mounted in bearings is
shown in Figure 3-8. The moment of inertia of the rotor about the axis of rotation is
J. Let us assume that at ¢ = 0 the rotor is rotating at the angular velocity w(0) = wy.
We also assume that the friction in the bearings is viscous friction and that no exter-
nal torque is applied to the rotor. Then the only torque acting on the rotor is the fric-
tion torque bw in the bearings.

Applying Newton’s second law, Equation (3-8), we obtain the equation of
motion,

Jo = —bw, w(0) = wg
or
Jo +bw =0 (3-9)

Equation (3-9) is a mathematical model of the system. (Here, the output of
the system is considered to be the angular velocity w, not the angular displacement.)
To find w(t), we take the Laplace transform of Equation (3-9); that is,

J[s(s) — (0)] + b(s) =0
where Q(s) = £[w(1)]. Simplifying, we obtain
(Js + b)Q(s) = Jw(0) = Jayp

Hence,
Q(s) = —2 ; (3-10)
+ —
$TT
The denominator, s + (b/J), is called the characteristic polynomial, and
b
+—=0
STy

is called the characteristic equation.



66 Mechanical Systems  Chap. 3

Figure 3-9 Curve of angular velocity w versus
time ¢ for the rotor system shown in Figure 3-8.

The inverse Laplace transform of £(s), the solution of the differential equa-
tion given by Equation (3-9), is

w(t) = woe~ V)

The angular velocity decreases exponentially, as shown in Figure 3-9.

Since the exponential factor e ®’)* approaches zero as ¢ increases without
limit, mathematically the response lasts forever. In dealing with such an exponen-
tially decaying response, it is convenient to depict the response in terms of a time
constant: that value of time which makes the exponent equal to —1. For this system,
the time constant T is equal to J/b,or T = J/b. When ¢t = T, the value of the expo-
nential factor is

e 7T = ¢! =0.368
In other words, when the time ¢ in seconds is equal to the time constant, the expo-

nential factor is reduced to approximately 36.8% of its initial value, as shown in
Figure 3-9.

Spring-mass system. Figure 3-10 depicts a system consisting of a mass
and a spring. Here, the mass is suspended by the spring. For the vertical motion, two

k
4 = Static deflection
i m

y=x+6 } *
x

Before mass m After mass m

is attached to is attached to

the spring the spring

Figure 3-10 Spring-mass system.
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forces are acting on the mass: the spring force ky and the gravitational force mg. (In
the diagram, the positive direction of displacement y is defined downward.) If the
mass is pulled downward by an external force and then released, the spring force
acts upward and tends to pull the mass upward. The gravitational force pulls the
mass downward. So, by applying Newton’s second law to this system, we obtain the
equation of motion

my = 2 forces = —ky + mg

or
my + ky = mg (3-11)

The gravitational force is opposed statically by the equilibrium spring deflection 8.
If we measure the displacement from this equilibrium position, then the term mg
can be dropped from the equation of motion. By substituting y = x + & into Equa-
tion (3-11) and noting that § = constant, we have

mx + k(x + 8) = mg (3-12)

Since the spring force k6 and the gravitational force mg balance, or k&6 = mg, Equa-
tion (3-12) simplifies to

mX¥ + kx=0 (3-13)

which is a mathematical model of the system.

In this book, unless otherwise stated, when writing equations of motion for
systems involving the gravitational force, we measure the displacement of the mass
from the equilibrium position in order to eliminate the term mg and simplify the
mathematical model.

Free vibration. For the spring-mass system of Figure 3-10, suppose that the
mass is pulled downward and then released with arbitrary initial conditions x(0) and
x(0). In this case, the mass will oscillate and the motion will be periodic. (We assume
that the magnitude of the displacement is such that the spring remains a linear
spring.) The periodic motion that is observed as the system is displaced from its sta-
tic equilibrium position is called free vibration. It is a natural response due to the ini-
tial condition.

To find the mathematical form of the periodic motion, let us solve Equation
(3-13). By taking the Laplace transforms of both sides of that equation, we obtain

m[s*X (s) — sx(0) — %(0)] + kX(s) =0
or
(ms* + k)X (s) = mx(0) + msx(0)

Hence,
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This last equation may be rewritten so that the inverse Laplace transform of each
term can be easily identified:

Vim s
X(s) = [ O)F—F7— 2+ (\/,T)z x(O)r Vkim)?

Noting that

<[sin Vkim1t] = ——L

(Vk/ )?
Q[COS Vkim t] = W

we obtain the inverse Laplace transform of X(s) as

x(t) = \/%xm) sin \/%t + x(0) cos \/gt (3-14)

Periodic motion such as that described by Equation (3-14) is called simple harmonic
motion.

If the initial conditions were given as x(0) = xg and ¥(0) = 0, then, by substi-
tuting these initial conditions into Equation (3-14), the displacement of the mass

would be given by
/k
x(t) = xpcos pol

The period and frequency of simple harmonic motion can now be defined as
follows: The period T is the time required for a periodic motion to repeat itself. In
the present case,

2
pericd T = —zk- seconds
\Vm
The frequency f of periodic motion is the number of cycles per second (cps), and the
standard unit of frequency is the hertz (Hz); that is, 1 Hz is 1 cps. In the present case

of harmonic motion,
‘ /ﬁ
1

f = = —
requency f T e

The natural frequency, or undamped natural frequency, is the frequency in the
free vibration of a system having no damping. If the natural frequency is measured
in Hz or cps, it is denoted by f,.. If it is measured in radians per second (rad/s), it is
denoted by w,,. In the present system,

w, =27nf, = \/—é rad/s
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It is important to remember that, when Equation (3-13) is written in the form
., k
i+—x=0
m

where the coefficient of the X term is unity, the square root of the coefficient of the
x term is the natural frequency w,. This means that a mathematical model for the
system shown in Figure 3-10 can be put in the form

X+ wix=0
where 0w, = Vkim.

Experimental determination of moment of inertia. It is possible to cal-
culate moments of inertia for homogeneous bodies having geometrically simple
shapes. However, for rigid bodies with complicated shapes or those consisting of
materials of various densities, such calculation may be difficult or even impossible;
moreover, calculated values may not be accurate. In these instances, experimental
determination of moments of inertia is preferable. The process is as follows: We
mount a rigid body in frictionless bearings so that it can rotate freely about the axis
of rotation around which the moment of inertia is to be determined. Next, we attach
a torsional spring with known spring constant & to the rigid body. (See Figure 3-11.)
The spring is then twisted slightly and released, and the period of the resulting sim-
ple harmonic motion is measured. Since the equation of motion for this system is

J6 + k6 =0
or
. k
0+ 70 =0
the natural frequency is
Lo [E
" J
and the period of vibration is
27 2w
T = E,-,. = *-—E
J
The moment of inertia is then determined as
_ k12
472

Figure 3-11 Setup for the experimental
determination of moment of inertia.

/4
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Similarly, in the spring-mass system of Figure 3-10, if the spring constant k is
known and the period T of the free vibration is measured, then the mass m can be
calculated from

kT2

m=—
47

Spring-mass-damper system. Most physical systems involve some type
of damping—viscous damping, magnetic damping, and so on. Such damping not
only slows the motion of (a part of) the system, but also causes the motion to stop
eventually. In the discussion that follows, we shall consider a simple mechanical sys-
tem involving viscous damping. Note that a typical viscous damping element is a
damper or dashpot.

Figure 3-12 is a schematic diagram of a spring-mass—damper system. Suppose
that the mass is pulled downward and then released. If the damping is light, vibrato-
ry motion will occur. (The system is then said to be underdamped.) If the damping is
heavy, vibratory motion will not occur. (The system is then said to be overdamped.)
A critically damped system is a system in which the degree of damping is such that
the resultant motion is on the borderline between the underdamped and over-
damped cases. Regardless of whether a system is underdamped, overdamped, or
critically damped, the free vibration or free motion will diminish with time because
of the presence of damper. This free vibration is called transient motion.

In the system shown in Figure 3-12, for the vertical motion, three forces are
acting on the mass: the spring force, the damping force, and the gravitational force.
As noted earlier, if we measure the displacement of the mass from a static equilibri-
um position (so that the gravitational force is balanced by the equilibrium spring
deflection), the gravitational force will not enter into the equation of motion. So, by
measuring the displacement x from the static equilibrium position, we obtain the
equation of motion,

mx = >, forces = —kx — bx

or
mi + bi + kx =0 (3-15)

Equation (3-15), which describes the motion of the system, is a mathematical model
of the system.

Figure 3-12 l
Spring-mass-damper system.
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Only the underdamped case is considered in our present analysis. (A more
complete analysis of this system for the underdamped, overdamped, and critically
damped cases is given in Chapter 8.)

Let us solve Equation (3-15) for a particular case. Suppose that m = 0.1 slug,
b = 0.41bs-s/ft, and k = 4 Iby/ft. Then Equation (3-15) becomes

0.1% + 04% + 4x =0
or
¥+ 4x +40x = 0 (3-16)

Let us obtain the motion x(¢f) when the mass is pulled downward at ¢ = 0, so
that x(0) = x,, and is released with zero velocity, or x(0) = 0. (We assume that the
magnitude of the downward displacement is such that the system remains a linear
system.) Taking the Laplace transform of Equation (3-16), we obtain

[s2X(s) — sx(0) — x(0)] + 4[sX(s) — x(0)] + 40X(s) =0
Simplifying this last equation and noting that x(0) = xy and x(0) = 0, we get
(s> + 45 + 40)X(s) = sxp + 4xg
or
(s + 4)x,
s + 45 + 40
The characteristic equation for the system
s+45+40=0

has a pair of complex-conjugate roots. This implies that the inverse Laplace trans-
form of X(s) is a damped sinusoidal function. Hence, we may rewrite X(s) in Equa-
tion (3-17) as a sum of the Laplace transforms of a damped sine function and a
damped cosine function:

X(s) = (3-17)

2x0 (S + Z)XO
X(s) = +
(s) s +4s+40 2+ 45+ 40
- lx 6 X s+2
30 +2)2+62 U(s+2)2+6
Noting that
6 s+ 2
—_— =9 =2t o3 6t], 2 e = —2t
G127+ 6 [e™ sin 6¢] G+ 1@ Lle™ cos 61]

we can obtain the inverse Laplace transform of X(s) as

1 . _
x(t) = 3%0€ 2 sin 6t + xge% cos 6t

= e'z‘(% sin 6t + cos 6t)xo (3-18)
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x lr
Xo
Figure 3-13 Free vibration of the 0 i /\ ' , ' o
. 0.5 1 1. .
spring-mass—damper system described by 3 2 25 1(aec)
X + 4x + 40x = 0 with initial conditions

x(0) = xpand ¥(0) = 0.

Equation (3-18) depicts the free vibration of the spring-mass—-damper system with
the given numerical values. The free vibration here is a damped sinusoidal vibration,
as shown in Figure 3-13.

Comments. The numerical values in the preceding problem were stated in
BES units. Let us convert these values into units of other systems.

1. 81 units (refer to Tables 3-1 and 3-2):

m = 0.1 slug = 1.459 kg
b = 0.4 lbg-s/ft = 0.4 X 4.448/0.3048 N-s/m = 5.837 N-s/m

k = 41bg/ft = 4 X 4.448/0.3048 N/m = 58.37 N/m
Hence, Equation (3-15) becomes
1.459% + 5.837x + 5837x =0
or .
X+4x+40x=0
which is the same as Equation (3-16).
2. Metric engineering (gravitational) units (refer to Tables 3-1 and 3-2):

m = 0.1 slug = 0.1488 kg;-s*/m

b = 0.41bg-s/ft = 0.4 X 0.4536/0.3048 kgs-s/m = 0.5953 kgs-s/m

k = 41bglft = 4 X 0.4536/0.3048 kgs/m = 5.953 kg,/m

Therefore, Equation (3-15) becomes
0.1488% + 0.5953x + 5.953x =0
or
¥+4x +40x =0
which, again, is the same as Equation (3-16).
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Note that as long as we use consistent units, the differential equation (mathe-
matical model) of the system remains the same.

3-4 WORK, ENERGY, AND POWER

In this section, we discuss work, energy, and power. We also discuss energy methods
for deriving equations of motion or undamped natural frequencies of certain con-
servative systems.

If force is considered a measure of effort, then work is a measure of accom-
plishment and energy is the ability to do work. The concept of work makes no
allowance for a time factor. When a time factor is considered, the concept of power
must be introduced. Power is work per unit time.

Work. The work done in a mechanical system is the product of a force and
the distance (or a torque and the angular displacement) through which the force is
exerted, with both force and distance measured in the same direction. For instance,
if a body is pushed with a horizontal force of F newtons along a horizontal floor for
a distance of x meters, the work done in pushing the body is

W = Fx N-m

Units of work. Different systems have different units of work.

SI units and mks (metric absolute) system of units. Force is measured in
newtons and distance in meters. Thus, the unit of work is the N-m. Note that

1N-m = 1joule =11J

British engineering system of unmits. In this system, force is measured in

pounds and distance in feet. Hence, the unit of work is the ft-lby, and
1 ft-Ib; = 1.3557J = 1.285 X 107 Btu
1 Btu = 778 ft-lby

cgs (metric absolute) system of units. Here, the unit of work is the dyn-cm,

or erg. Note that
10’ erg = 10’ dyn-cm = 1J

Metric engineering (gravitational) system of units. The unit of work in the

metric engineering system is the kg,-m. Note that
1kgs-m = 9.807 X 107 dyn-cm = 9.807J
1J = 010197 kg;-m

Energy. In a general way,energy can be defined as the capacity or ability to do
work. Energy is found in many different forms and can be converted from one form
into another. For instance, an electric motor converts electrical energy into mechani-
cal energy, a battery converts chemical energy into electrical energy, and so forth.

A system is said to possess energy when it can do work. When a system does
mechanical work, the system’s energy decreases by the amount equal to the energy
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required for the work done. Units of energy are the same as units for work, that is,
newton-meter, joule, kcal, Btu, and so on.

According to the law of conservation of energy, energy can be neither created
nor destroyed. This means that the increase in the total energy within a system is
equal to the net energy input to the system. So if there is no energy input, there is no
change in total energy of the system.

The energy that a body possesses because of its position is called potential
energy, whereas the energy that a body has as a result of its velocity is called kinetic
energy.

Potential energy. In a mechanical system, only mass and spring elements
can store potential energy. The change in the potential energy stored in a system
equals the work required to change the system’s configuration. Potential energy is
always measured with reference to some chosen level and is relative to that level.

Potential energy is the work done by an external force. For a body of mass m
in the gravitational field of the earth, the potential energy U measured from some
reference level is mg times the altitude £ measured from the same reference level, or

h
U=/mgdx=mgh
0

Notice that the body, if dropped, has the capacity to do work, since the weight mg of
the body causes it to travel a distance s when released. (The weight is a force.) Once
the body is released, the potential energy decreases. The lost potential energy is con-
verted into kinetic energy.

For a translational spring, the potential energy U is equal to the net work done
on the spring by the forces acting on its ends as it is compressed or stretched. Since
the spring force F is equal to kx, where x is the net displacement of the ends of the
spring, the total energy stored is

X X 1
U=/Fdx=/kxdx=—kx2
0 0 2

If the initial and final values of x are x; and x,, respectively, then

X2 X2 1 1
change in potential energy AU = / Fdx = / kxdx = -Z-kx% - Ekx%
x x

Note that the potential energy stored in a spring does not depend on whether it is
compressed or stretched.
Similarly, for a torsional spring,

% % 1 1
change in potential energy AU = / T do = / ko do = Eko% - Ekﬂf
0, o,

Kinetic energy. Only inertial elements can store kinetic energy in mechani-
cal systems A mass m in pure translation with velocity » has kinetic energy
-mv whereas a moment of inertia J in pure rotation with angular velocity 6
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has kinetic energy T = %J 6. The change in kinetic energy of the mass is equal to
the work done on it by an applied force as the mass accelerates or decelerates. Thus,
the change in kinetic energy T of a mass m moving in a straight line is

X3 1]
change in kinetic energy = AT = AW = / Fdx = / F%th dt
Xy n

19} 2 L]
=/det=/mimdt=/ mv dv
15 h 7

Ll . 1 5
= 5mvz — Smu

where x(;) = x;, x(t;) = x5, v(#;) = v, and v(t;) = v,. Notice that the kinetic
energy stored in the mass does not depend on the sign of the velocity ».

The change in kinetic energy of a moment of inertia in pure rotation at angu-
lar velocity 6 is

change in kinetic energy AT = %JO% - %JO%

where J is the moment of inertia about the axis of rotation, 6, = 6(t,), and
6, = 6(t,).

Dissipated energy. Consider the damper shown in Figure 3-14, in which
one end is fixed and the other end is moved from x; to x,. The dissipated energy
AW of the damper is equal to the net work done on it:

X3 X3 t dx 17
AW=/ Fdx=/ bjcdx=b/ Jt—dt=b/ x2dt
Xy X1 h dz 4

The energy of the damper element is always dissipated, regardless of the sign of x.

Power. Power is the time rate of doing work. That is,

ower = P = aw

P dt
7,
/.
v |

X2
7
7
5 ]

7 1
Z
7
7
; b
4 T ®m 1
4 = 1 l - —— X
7
“ Figure 3-14 Damper.
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where dW denotes work done during time interval dt. The average power during a
duration of ¢, — t; seconds can be determined by measuring the work done in
t, — t; seconds, or
work done in (#, — #;) seconds

(t, = t) seconds

average power =

In SI units or the mks (metric absolute) system of units, the work done is mea-
sured in newton-meters and the time in seconds. The unit of power is the newton-
meter per second, or watt:

I1N-m/s = 1W

In the British engineering system of units, the work done is measured in ft-lbs
and the time in seconds. The unit of power is the ft-lbs/s. The power 550 ft-lb/s is
called 1 horsepower (hp). Thus,

1hp = 550 ft-Iby/s = 33 000 ft-lby/min = 745.7 W

In the metric engineering system of units, the work done is measured in kg,-m
and the time in seconds. The unit of power is the kg,-m/s, where
1kgrm/s = 9.807 W
1W =11J/s = 0.10197 kgs-m/s

Example 3-3

Find the power required to raise a body of mass 500 kg at a rate of 20 m/min.
Let us define displacement per second as x. Then

. 20 kg-m?
work done in 1 second = mgx = 500 X 9.807 X e 1635 N-m
S
and
power = work done in 1 second - 1635 N-m = 1635 W
1 second 1s

Thus, the power required is 1635 W.

An energy method for deriving equations of motion. Earlier in this
chapter, we presented Newton’s method for deriving equations of motion of me-
chanical systems. Several other approaches for obtaining equations of motion are
available, one of which is based on the law of conservation of energy. Here we de-
rive such equations from the fact that the total energy of a system remains the same
if no energy enters or leaves the system.

In mechanical systems, friction dissipates energy as heat. Systems that do not
involve friction are called conservative systems. Consider a conservative system in
which the energy is in the form of kinetic or potential energy (or both). Since energy
enters and leaves the conservative system in the form of mechanical work, we obtain

AT + U) = AW
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k

__IV\/\/__a m

m& Figure 3-15 Mechanical system.

T

where A(T + U) is the change in the total energy and AW is the net work done on
the system by an external force. If no external energy enters the system, then

AT+U)=0
which results in
T + U = constant
If we assume no friction, then the mechanical system shown in Figure 3-15 can
be considered conservative. The kinetic energy T and potential energy U are given by

1 ., _1
—2mx, U—2

Consequently, in the absence of any external energy input,

kx?

T+U-= %mkz + %kx2 = constant

The equation of motion for the system can be obtained by differentiating the total
energy with respect to #:

g;(r +U) = mik + kxi = (m¥ + kx)k = 0

Since X is not always zero, we have
mX +kx=0

which is the equation of motion for the system.

Let us look next at the mechanical system of Figure 3-16. Here, no damping is
involved; therefore, the system is conservative. In this case, since the mass is suspend-
ed by a spring, the potential energy includes that due to the position of the mass ele-
ment. At the equilibrium position, the potential energy of the system is

1
U, = mgxg + Eks2
where x, is the equilibrium position of the mass element above an arbitrary datum

line and & is the static deflection of the spring when the system is in the equilibrium
position, or k& = mg. (For the definition of 8, see Figure 3-10.)
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Figure 3-16 Mechanical system. line

The instantaneous potential energy U is the instantaneous potential energy of
the weight of the mass element, plus the instantaneous elastic energy stored in the
spring. Thus,

U=mg(xg—x)+ %k(a + x)?

I

mgxy — mgx + %k&z + kéx + %kx2

1
= mgxy + %kSz — (mg — ké)x + Ekx2
Since mg = k¥, it follows that
U=, + %kx2

Note that the increase in the total potential energy of the system is due to the
increase in the elastic energy of the spring that results from its deformation from the
equilibrium position. Note also that, since x, is the displacement measured from an
arbitrary datum line, it is possible to choose the datum line such that Uy = 0. Final-
ly, note that an increase (decrease) in the potential energy is offset by a decrease
(increase) in the kinetic energy.

The kinetic energy of the system is T = %miz. Since the total energy is con-
stant, we obtain

T+U-= %mkz + U, + %kx2 = constant

By differentiating the total energy with respect to ¢ and noting that U is a constant,
we have

%(T+U)=mi§f+kxi=0

or
(m¥ + kx)i = 0
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Since x is not always zero, it follows that
mx +kx=0

This is the equation of motion for the system.

Example 34

Figure 3-17 shows a homogeneous cylinder of radius R and mass m that is free to rotate
about its axis of rotation and that is connected to the wall through a spring. Assuming
that the cylinder rolls on a rough surface without sliding, obtain the kinetic energy and
potential energy of the system. Then derive the equations of motion from the fact that
the total energy is constant. Assume that x and ¢ are measured from respective equilib-
rium positions.

The kinetic energy of the cylinder is the sum of the translational kinetic energy of
the center of mass and the rotational kinetic energy about the axis of rotation:

kinetic energy = T = %mkz + %J(}Z
The potential energy of the system is due to the deflection of the spring:
potential energy = U = -;—kx2

Since the total energy T + U is constant in this conservation system (which means that
the loss in potential energy equals the gain in kinetic energy), it follows that

T+U-= %m;gz + %Jbz + -;—k,\:2 = constant (3-19)

The cylinder rolls without sliding, which means that x = R@. Rewriting Equation
(3-19) and noting that the moment of inertia J is equal to %mRz. we have

3 ., 1,
—mx“ + —kx“ = constant
4 2

Differentiating both sides of this last equation with respect to ¢ yields
%mxx + kxx =0

or

(mlt' + —i—kx)k =0

Figure 3-17 Homogeneous cylinder
connected to a wall through a spring.
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Note that x is not always zero,so m¥ + %kx must be identically zero. Therefore,

m3t'+§kx=0
or
s+ koo
3m

This equation describes the horizontal motion of the cylinder. For the rotational
motion, we substitute x = R@ to get
§+2Xg-0
3m
In either of the equations of motion, the natural frequency of vibration is the same,
w, = V2k/(3m) radss.

An energy method for determining natural frequencies. The natural
frequency of a conservative system can be obtained from a consideration of the ki-
netic energy and the potential energy of the system.

Let us assume that we choose the datum line so that the potential energy at
the equilibrium state is zero. Then, in such a conservative system, the maximum
kinetic energy equals the maximum potential energy, or

Thax = Unax

Using this relationship, we are able to determine the natural frequency of a conser-
vative system, as presented in Example 3-5.

Example 3-§

Consider the system shown in Figure 3-18. The displacement x is measured from the
equilibrium position. The kinetic energy of this system is
= %mi’z

If we choose the datum line so that the potential energy Uy at the equilibrium state is
zero, then the potential energy of the system is given by

U= %kx2

N

Figure 3-18 Conservative mechanical
system.
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Let us assume that the system is vibrating about the equilibrium position. Then
the displacement is given by
x = Asinwt
where A is the amplitude of vibration. Consequently,
1

T=3

mi? = %mAzwz(cos wt)?
U = 2kx? = Lia(sin wry?
2 2
Hence, the maximum values of 7 and U are given by
mA*e?, Unax = %kA2
Since Tipax = Umax, We have

lmAza)2 = -;-kA2

2
from which we get
k
w=,./—
m
EXAMPLE PROBLEMS AND SOLUTIONS
Problem A-3-1
Calculate the moment of inertia about axis xx’ of the hollow cylinder shown in
Figure 3-19.
Solution The moment of inertia about axis xx' of the solid cylinder of radius R is
1
Jr = 'z-mle
where

m, = wR*Lp (p = density)
The moment of inertia about axis xx' of the solid cylinder of radius 7 is

J, = ‘I—M2r2

2

L Figure 3-19 Hollow cylinder.



82

Mechanical Systems  Chap.3

where
my = wrilp
Then the moment of inertia about axis xx’ of the hollow cylinder shown in the figure is
1 1
J=Jg— J = Emle - Ef"zrz

= 2(=RLO)R® - (wr*Lp)r)

= %wl,p (R* -1

= ';'ﬂLp (R®+ r¥)(R* - r?)

The mass of the hollow cylinder is
m=m(R* - r*)Lp

Hence,
J = %(RZ + r)m(R?* — r’)Lp
= %m(R2 +r?)

(See the third item of Table 3-3.)

Problem A-3-2

A rotating body whose mass is m is suspended by two vertical wires, each of length 4, a
distance 2a apart. The center of gravity is on the vertical line that passes through the
midpoint between the points of attachment of the wires. (See Figure 3-20.)

Assume that the body is turned through a small angle about the vertical axis
through the center of gravity and is then released. Define the period of oscillation as T.
Show that moment of inertia J of the body about the vertical axis that passes through

the center of gravity is
2,2
NS
27 h

Solution Let us assume that, when the body rotates a small angle 8 from the equilib-
rium position, the force in each wire is F. Then, from Figure 3-20, the angle ¢ that each
wire makes with the vertical is small. Angles 6 and ¢ are related by

ad = ho

Thus,
ab
=%

Notice that the vertical component of force F in each wire is equal to mg/2. The horizon-
tal component of F is mg¢/2. The horizontal components of F of both wires produce a
torque mgda to rotate the body. Thus, the equation of motion for the oscillation is

a’e

J6 = —mgda = —mg= -
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2a |
YL

h
F 1
mg
F 2
mg,
e
(0 - - U A
\ | mg
5 P
9
mg
! Figure 3-20 Experimental setup for
| measuring the moment of inertia of a
rotating body.
or
2
. mg
0+ 0=0
Jh
from which the period of the oscillation is found to be
2
T=—2
a’mg
Jh
Solving this last equation for J gives
- (3
T \2w h

Problem A-3-3

A brake is applied to a car traveling at a constant speed of 90 km/h. If the deceleration
a« caused by the braking action is 5 m/s?, find the time and distance before the car stops.

Solution Note that
90 km/h = 25 m/s
The equation of motion for the car is

mx = ~ma
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where m is the mass of the car and x is the displacement of the car, measured from the
point where the brake is first applied. Integrating this last equation, we have

x(t) = —at + v(0)
and
x(t) = — %at2 + v(0)t + x(0)
where x(0) = 0and v(0) = 25 m/s.

Assume that the car stops at¢ = ¢;. Then x(#,) = 0. The value of ¢, is determined
from

;T(fl) = —at; + ’U(O) =0

or

The distance traveled before the car stops is

1

x(1y) —%a{%+v(0)tl=—%x5x52+25x5

=625m

Problem A-3-4

Consider a homogeneous cylinder with radius 1 m. The mass of the cylinder is 100 kg.
What will be the angular acceleration of the cylinder if it is acted on by an external
torque of 10 N-m about its axis? Assume no friction in the system.

Solution The moment of inertia is

J= %mRz = —;- X 100 X 12 = 50 kg-m®

The equation of motion for this system is
J6=T
where 6 is the angular acceleration. Therefore,

(Note that, in examining the units of this last equation, we see that the unit of 8 is not
s~2, but rad/s®. This usage occurs because writing rad/s* indicates that the angle 8 is
measured in radians. The radian is the ratio of a length of arc to the radius of a circle.
That is, in radian measure, the angle is a pure number. In the algebraic handling of
units, the radian is added as necessary.)

Problem A-3-5

Suppose that a disk is rotated at a constant speed of 100 rad/s and we wish to stop it in
2 min. Assuming that the moment of inertia J of the disk is 6 kg-m?, determine the
torque T necessary to stop the rotation. Assume no friction in the system.
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Solution The necessary torque 7 must act so as to reduce the speed of the disk. Thus,
the equation of motion is

Jo=-T,  (0)=100

Noting that the torque T is a constant and taking the Laplace transform of this last
equation, we obtain

J[s(s) — w(0)] = —g

Substituting / = 6 and w(0) = 100 into this equation and solving for £(s), we get

100 T
As) =~ 62

The inverse Laplace transform of £)(s) gives
T
w(t) = 100 — gt
Att = 2min = 120 s, we want to stop, so w(120) must equal zero. Therefore,
T
»(120) = 0 = 100 — 3 X 120

Solving for T, we get

Problem A-3-6
Obtain the equivalent spring constant for the system shown in Figure 3-21.

Solution For the springs in parallel, the equivalent spring constant k., is obtained

from
kix + kyx = F = kegx
or
keq = kl + k2
et X
/ K

Figure 3-21 System consisting of two
springs in parallel.

Problem A-3-7

Find the equivalent spring constant for the system shown in Figure 3-22(a), and show
that it can also be obtained graphically as in Figure 3-22(b).

Solution For the springs in series, the force in each spring is the same. Thus,
kiy = F, kyx = y)=F
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Figure 3-22 (a) System consisting of A P B
two springs in series; (b) diagram show-
ing the equivalent spring constant. (b)

Eliminating y from these two equations yields
F
kz(x - ',;l‘) = F

k, k, + k,
= + — = —_———
kox = F + 32F = = —2F

or

The equivalent spring constant for this case is then found to be

from which it follows that

pp-ABPQ 5 _AB-PO
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or
PO PO _
BD AC
Solving for PQ, we obtain
— 1
=77
ac @D

So if lengths AC and BD represent the spring constants k and k;, respectively, then
length PQ represents the equivalent spring constant kq. That is,

_— 1
PQ—l+l—k,q
ky

Problem A-3-8

In Figure 3-23, the simple pendulum shown consists of a sphere of mass m suspended
by a string of negligible mass. Neglecting the elongation of the string, find a mathemat-
ical model of the pendulum. In addition, find the natural frequency of the system when
@ is small, Assume no friction.

Solution The gravitational force mg has the tangential component mg sin 6 and the
normal component mg cos 6. The torque due to the tangential component is —mg! sin 6,
so the equation of motion is

Jo = —mgl sin 6
where J = m/l? Therefore,
mi% + mglsin 6 = 0

For small 6, sin § = 0, and the equation of motion simplifies to

6+%9=0

‘Q
|

mg Figure 3-23 Simple pendulum.
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This is a mathematical model of the system. The natural frequency is then obtained as
on =8
" l
Problem A-3-9

Consider the spring-loaded pendulum system shown in Figure 3-24. Assume that the
spring force acting on the pendulum is zero when the pendulum is vertical (8 = 0).
Assume also that the friction involved is negligible and the angle of oscillation, 6, is
small. Obtain a mathematical model of the system.

Solution Two torques are acting on this system, one due to the gravitational force and
the other due to the spring force. Applying Newton’s second law, we find that the equa-
tion of motion for the system becomes

J8 = —mgl sin 6 — 2(kasin 6) (a cos 6)
where J = mi®. Rewriting this last equation, we obtain
ml%0 + mglsin @ + 2 ka®sinfcos6 = 0

For small 8, we have sin 8 = 6 and cos § = 1. So the equation of motion can be simpli-
fied to

mi*0 + (mgl + 2 ka®)0 = 0

or

. 2
6+ (§ + zki)o =0
! mi?

This is a mathematical model of the system. The natural frequency of the system is

g ka*
w, = 7 + ZW

Figure 3-24 Spring-loaded pendulum
system.
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Problem A-3-10

Consider the rolling motion of the ship shown in Figure 3-25. The force due to buoyan-
cy is —w and that due to gravity is w. These two forces produce a couple that causes
rolling motion of the ship. The point where the vertical line through the center of buoy-
ancy, C, intersects the symmetrical line through the center of gravity, which is in the
ship’s centerline plane, is called the metacenter (point M). Define

R = distance of the metacenter to the center of gravity of the ship = MG
J = moment of inertia of the ship about its longitudinal centroidal axis

Derive the equation of rolling motion of the ship when the rolling angle 6 is small.
Solution From Figure 3-25, we obtain
J6 = —wRsin 6
or
J6 + wRsing = 0
For small 6, we have sin = 8. Hence, the equation of rolling motion of the ship is
J6 + wR =0

The natural frequency of the rolling motion is VwR/J. Note that the distance
R(= MG) is considered positive when the couple of weight and buoyancy tends to
rotate the ship toward the upright position. That is, R is positive if point M is above
point G, and R is negative if point M is below point G.

Figure 3-25 Rolling motion of a ship.

Problem A-3-11

In Figure 3-26, a homogeneous disk of radius R and mass m that can rotate about the cen-
ter of mass of the disk is hung from the ceiling and is spring preloaded. (Two springs are
connected by a wire that passes over a pulley as shown.) Each spring is prestretched by an
amount x. Assuming that the disk is initially rotated by a small angle 6 and then released,
obtain both a mathematical model of the system and the natural frequency of the system.

Solution If the disk is rotated by an angle 6 as shown in Figure 3-26, then the right
spring is stretched by x + R@ and the left spring is stretched by x — R6. So, applying
Newton’s second law to the rotational motion of the disk gives

JO = —k(x + RO)R + k(x — RO)R



30 Mechanical Systems  Chap. 3
/

4

R

x  (Prestretched)

Figure 3-26 Spring-pulley system. 74

where the moment of inertia J is %mRZ. Simplifying the equation of motion, we have
- 4
0+ —lfe =0
m

This is a mathematical model of the system. The natural frequency of the system is
/4k
w’l = —
m
Problem A-3-12

For the spring-mass-pulley system of Figure 3-27, the moment of inertia of the pulley
about the axis of rotation is J and the radius is R. Assume that the system is initially at
equilibrium. The gravitational force of mass m causes a static deflection of the spring
such that k8 = mg. Assuming that the displacement x of mass /m is measured from the
equilibrium position, obtain a mathematical model of the system. In addition, find the
natural frequency of the system.

Solution Applying Newton’s second law, we obtain, for mass m,
mx = -T (3-20)

where T is the tension in the wire. (Note that since x is measured from the static equi-
librium position the term mg does not enter into the equation.) For the rotational

motion of the pulley,
J6 = TR — kxR (3-21)
If we eliminate the tension 7 from Equations (3-20) and (3-21), the result is
J§ = —m¥R — kxR (3-22)

Noting that x = R, we can simplify Equation (3-22) to
(J + mR¥)6 + kR =0

or

kR?

i+ —E 50
J + mR
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/A
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TR ‘—'L

T é

7

X  mg

Figure 3-27
7 Spring-mass—pulley system.

This is a mathematical model of the system. The natural frequency is
kR?

“n=NT + mR?

Problem A-3-13

In the mechanical system of Figure 3-28, one end of the lever is connected to a spring
and a damper, and a force F is applied to the other end of the lever. Derive a mathe-
matical model of the system. Assume that the displacement x is small and the lever is
rigid and massless.

Solution From Newton’s second law, for small displacement x, the rotational motion
about pivot P is given by

Fl, = (bx + kx), =0

or

. h
bx + kx = —F
L

which is a mathematical model of the system.

Figure 3-28 Lever system.



92 Mechanical Systems  Chap. 3

Problem A-3-14

Consider the mechanical system shown in Figure 3-29(a). The massless bar AA' is dis-
placed 0.05 m by a constant force of 100 N. Suppose that the system is at rest before the
force is abruptly released. The time-response curve when the force is abruptly released at
t = 0is shown in Figure 3-29(b). Determine the numerical values of b and k.

Solution Since the system is at rest before the force is abruptly released, the equation
of motion is

kx=F t=0
Note that the effect of the force Fis to give the initial condition

F
x(0) =+
Since x(0) = 0.05 m, we have
F 100
k = X(O) = BE = 2000 N/m

At = 0, Fis abruptly released, so, for ¢ > 0, the equation of motion becomes
bx +kx=0 t>0
Taking the Laplace transform of this last equation, we have
bisX(s) ~ x(0)] + kX(s) =0
Substituting x(0) = 0.05 and solving the resulting equation for X(s), we get

X(s) = 0.05
s+ E
X
(m)
0.05

0.03

0.02

0.01

0 20
(seconds)
(a) (b)
Figure 3-29 (a) Mechanical system; (b) response curve.
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The inverse Laplace transform of X(s), using the value of k¥ = 2000 just obtained, is
x(t) = 0.05¢(20006)

Since the solution is an exponential function, at ¢ = time constant = 5/2000 the
response becomes

b
x(m) = 0.05 X 0.368 = 0.0184 m

From Figure 3-29(b), x = 0.0184 m occurs at ¢ = 6 s. Hence,
b
2000 ~
from which it follows that
b = 12,000 N-s/m
Problem A-3-15

In the rotating system shown in Figure 3-30, assume that the torque T applied to the
rotor is of short duration, but large amplitude, so that it can be considered an impulse
input. Assume also that initially the angular velocity is zero, or w(0—) = 0. Given the
numerical values

J = 10 kg-m?
and
b = 2N-s/m

find the response w(¢) of the system. Assume that the amplitude of torque T is 300 N-
m/s and that the duration of T is 0.1s; that is, the magnitude of the impulse input is
300 X 0.1 = 30 N-m. Show that the effect of an impulse input on a first-order system
that is at rest is to generate a nonzero initial condition at ¢t = 0+.

Solution The equation of motion for the system is
Jo + bw =T, o(0-) =0

Let us define the impulsive torque of magnitude 1 N-m as §(¢). Then, by substituting
the given numerical values into this last equation, we obtain

10@ + 2w = 308(¢)
Taking the £_ transform of this last equation, we have
10[s82(s) — w(0-)] + 20(s) = 30

S\

VNN

3—%— Rotor

I l;| Figure 3-30 Mechanical rotating
system.
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or

30 3

0(s)=10s+2=s+0.2

The inverse Laplace transform of (s) is
o(t) = 3e70¥ (3-23)

Note that w(0+) = 3 rad/s. The angular velocity of the rotor is thus changed instanta-
neously from 0(0-) = 0 to w(0+) = 3 rad/s.

If the system is subjected only to the initial condition @(0) = 3 rad/s and there is
no external torque (T = 0), then the equation of motion becomes

106 + 2w = 0, w(0) =3
Taking the Laplace transform of this last equation, we obtain

10[s02(s) — w(0)] + 202(s) = 0
or

000 30 3
10s+2 10s+2 s+02

As) =

The inverse Laplace transform of (2(s) gives
w(t) = 3e70%

which is identical to Equation (3-23).

From the preceding analysis, we see that the response of a first-order system that
is initially at rest to an impulse input is identical to the motion from the initial condition
atts = 0+. That is, the effect of the impulse input on a first-order system that is initially
at rest is to generate a nonzero initial condition at t = 0+.

Problem A-3-16

Figure 3-31 Mechanical system.

A mass M = 8kg is supported by a spring with spring constant k¥ = 400 N/m and a
damper with b = 40 N-s/m, as shown in Figure 3-31. When a mass m = 2 kg is gently
placed on the top of mass M, the system exhibits vibrations. Assuming that the dis-
placement x of the masses is measured from the equilibrium position before mass m is
placed on mass M, determine the response x(t) of the system. Determine also the static
deflection 6—the deflection of the spring when the transient response died out.
Assume that x(0) = 0 and ¥(0) = 0.




Example Problems and Solutions 95

Notice that the numerical values of M, m, b, and k are given in the SI system of
units. If the units are changed to BES units, how does the mathematical model change?
How will the solution be changed?

Solution We shall first solve this problem using SI units. The input to the system is a
constant force mg that acts as a step input to the system. The system is at rest before
t = 0,and at t = 0+ the masses start to move up and down. A mathematical model, or
equation of motion, is

(M + m)¥ + bx + kx = mg

where M + m = 10kg, b = 40 N-s/m, k = 400 N/m, and g = 9.807 m/s>.
Substituting the numerical values into the equation of motion, we find that

10x + 40x + 400x = 2 X 9.807
or
X + 4x + 40x = 1.9614 (3-29)

Equation (3-24) is a mathematical model for the system when the units used are SI
units. To obtain the response x(f), we take the Laplace transform of Equation (3-24) and
substitute the initial conditions x(0) = 0 and x(0) = 0 into the Laplace-transformed
equation as follows:

s2X(s) + 4sX(s) + 40X(s) = 1‘—9?4-
Solving for X{(s) yields
X(s) = — 1.9614
(s* + 4s + 40)s
_1.9614(1_ s+4 )
40 \s £2+4s5+40
1 2 6 s+2 ]
= 0.04904| - — -
[s 6(s+2P+6° (s+2)72+6°

The inverse Laplace transform of this last equation gives
x(t) = 0.04904(1 - é—e‘z' sin 6t — ™% cos 61) m

This solution gives the up-and-down motion of the total mass (M + m). The static
deflection & is 0.04904 m.

Next, we shall solve the same problem using BES units. If we change the numer-
ical values of M, m, b, and k given in the SI system of units to BES units, we obtain

M = 8kg = 0.54816 slug
m = 2kg = 0.13704 slug
b = 40 N-s/m = 2.74063 lb,-s/ft
k = 400 N/m = 27.4063 1b,/ft
mg = 0.13704 slug x 32.174 ft/s’> = 4.4091 slug-ft/s2
= 4.4091 Ib,
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Then the equation of motion for the system becomes
0.6852% + 2.74063x + 27.4063x = 4.4091
which can be simplified to
X + 4x + 40x = 6.4348 (3-25)

Equation (3-25) is a mathematical model for the system. Comparing Equations (3-24)
and (3-25), we notice that the left-hand sides of the equations are the same, which means
that the characteristic equation remains the same. The solution of Equation (3-25) is

x(t) = 0.1609 (1 - %e’z‘ sin 61 — e cos 6t) ft

The static deflection & is 0.1609 ft. (Note that 0.1609 ft = 0.04904 m.) Notice that,
whenever consistent systems of units are used, the results carry the same information.

Problem A-3-17

Figure 3-32 Spring-loaded inverted
pendulum.

Consider the spring-loaded inverted pendulum shown in Figure 3-32. Assume that the
spring force acting on the pendulum is zero when the pendulum is vertical (6 = 0).
Assume also that the friction involved is negligible. Obtain a mathematical model of
the system when the angle 0 is small, that is, when sin8 == 8 and cos§ = 1. Also,
obtain the natural frequency w), of the system.

Solution Suppose that the inverted pendulum is given an initial angular displacement
0(0) and released with zero initial angular velocity. Then, from Figure 3-32, for small 8
such that sin® = 6 and cos § = 1, the left-hand side spring is stretched by A8 and the
right-hand side spring is compressed by 46. Hence, the torque acting on the pendulum
in the counterclockwise direction is 2kA%. The torque due to the gravitational force is
mgl#@, which acts in the clockwise direction. The moment of inertia of the pendulum is
mi?. Thus, the equation of motion of the system for small 8 is

mi*0 = mgl — 2kh%0
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or

b’+(M-§)o=o

mi*

This is a mathematical model of the system for small 6. If 2kh? > mgl, the torques act-
ing in the system cause it to vibrate. The undamped natural frequency of the system is

o = KK _8
" m? 1
If, however, 2kh* < mgl, then, starting with a small disturbance, the angle 6 increases

and the pendulum will fall down or hit the vertical wall and stop. The vibration will not
occur.

Problem A-3-18

Consider the spring-mass—pulley system of Figure 3-33(a). If the mass m is pulled
downward a short distance and released, it will vibrate. Obtain the natural frequency of
the system by applying the law of conservation of energy.

Solution Define x, y, and @ as the displacement of mass m, the displacement of the
pulley, and the angle of rotation of the pulley, measured respectively from their corre-
sponding equilibrium positions. Note that x = 2y,R§ = x — y = y, and J = s MR%

Z 77
k
Yo
X0
\ B O
l M 0
y
m I=y
1 I—XO
x
WW/ 4 o Y
(a) (b)

Figure 3-33 (a) Spring-mass—pulley system; (b) diagram for figuring out potential
energy of the system.
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The kinetic energy of the system is

1 22 1 2 1 o
=-mi®+ = +=J6?
T 2mx 2'My 2
1 ,. 1 ., 1 2(y)2
= = — + - =
2mx +8Mx 4MR R
_l 32 i +2
—2mx + 16Mx

The potential energy U of the system can be obtained from Figure 3-33(b). At
the equilibrium state, the potential energy is

1
U = Skyi + Mg(l = y) + mg(l = x0)

where y; is the static deflection of the spring due to the hanging masses M and m. When
masses m and M are displaced by x and y, respectively, the instantaneous potential
energy can be obtained as

1
U =Sk(ys +y)* + Mg(l = yo = y) + mg(l = xo = x)

1 1
= —ky} + kysy + 2ky® + Mg(l — yo) — Mgy + mg(l — xo) — mgx

2
1
Up + Eky2 + kysy — Mgy — mgx

Again from Figure 3-33(b), the spring force ky; must balance with Mg + 2mg, or

kys = Mg + 2mg

Therefore,
kysy = Mgy + 2Zmgy = Mgy + mgx
and
U=U, + lky2 =Uy+ EPRe
2 8

where U is the potential energy at the equilibrium state.
Applying the law of conservation of energy to this conservative system gives

1 a3, 12
T+U-= 5 mx + 16Mx + Uy + 8kx = constant

and differentiating this last equation with respect to ¢ yields

- I
mxx + 8Mxx+ 4ker— 0
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or

3.\, .1 .
+ = + = =
[(m 8M)x 4kx]x 0
Since x is not always zero, we must have
3 )., 1
+ = + - =
(m 3 M )x 2 kx=0
or
. 2k
Yt emeamt
The natural frequency of the system, therefore, is

oo 2
" 8m + 3M
Problem A-3-19

If, for the spring—mass system of Figure 3-34, the mass m; of the spring is small, but not
negligibly small, compared with the suspended mass m, show that the inertia of the
spring can be allowed for by adding one-third of its mass m;, to the suspended mass m
and then treating the spring as a massless spring.

0

Solution Consider the free vibration of the system. The displacement x of the mass is
measured from the static equilibrium position. In free vibration, the displacement can
be written as

x = A cos wt

Since the mass of the spring is comparatively small, we can assume that the spring is
stretched uniformly. Then the displacement of a point in the spring at a distance ¢ from
the top is given by (£/I) A cos wt.

In the mean position, where x = 0 and the velocity of mass m is maximum, the
velocity of the suspended mass is Aw and that of the spring at the distance £ from the

dg

~

i

*  Figure 3-34 Spring-mass system.
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top is (¢/!) Aw. The maximum kinetic energy is
T = 2m(Aw)? + A ’% (Tl—i)(f—Aw)z d¢
mat+ (1))
(m + %)Azm2

Note that the mass of the spring does not affect the change in the potential energy of
the system and that, if the spring were massless, the maximum kinetic energy would
have been %mAzwz. Therefore, we conclude that the inertia of the spring can be allowed
for simply by adding one-third of mass m;, to the suspended mass m and then treating
the spring as a massless spring, provided that m, is small compared with m.

1l
|

3

I}

N= D= O

1
3

I

PROBLEMS

Problem B-3-1

A homogeneous disk has a diameter of 1 m and mass of 100 kg. Obtain the moment of
inertia of the disk about the axis perpendicular to the disk and passing through its center.

Problem B-3-2

Figure 3-35

rotating body.

Experimental setup for
measuring the moment of inertia of a

Figure 3-35 shows an experimental setup for measuring the moment of inertia of a
rotating body. Suppose that the moment of inertia of a rotating body about axis AA’ is
known. Describe a method to determine the moment of inertia of any rotating body,
using this experimental setup.

Uil

Unknown moment
of inertia
Known moment
of inertia
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Problem B-3-3

A ball is dropped from a point 100 m above the ground with zero initial velocity. How
long will it take until the ball hits the ground? What is the velocity when the ball hits
the ground?

Problem B-3—4
A flywheel of J = 50 kg-m? initially standing still is subjected to a constant torque. If
the angular velocity reaches 20 Hz in 5 s, find the torque given to the flywheel.

Problem B-3-5

A brake is applied to a flywheel rotating at an angular velocity of 100 rad/s. If the angu-
lar velocity reduces to 20 rad/s in 15 s, find (a) the deceleration produced by the brake
and (b) the total angle the flywheel rotates in the 15-s period.

Problem B-3-6

Consider the series-connected springs shown in Figure 3-36(a). Referring to Figure
3-36(b), show that the equivalent spring constant k.q can be graphically obtained as the
length OC if lengths O A and OB represent k; and k», respectively.

(@) (®)

Figure 3-36 (a) System consisting of two springs in series; (b) diagram showing the equivalent
spring constant.

Problem B-3-7
Obtain the equivalent spring constant k., for the system shown in Figure 3-37.

Figure 3-37 System consisting of three
springs.
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Problem B-3-8
Obtain the equivalent viscous-friction coefficient b, for each of the systems shown in
Figure 3-38 (a) and (b).
bl
- b, b,
w L LT L
TN |
x y x y
(@ (b)
Figure 3-38 (a) Two dampers connected in parallel; (b) two dampers connected in
series.
Problem B-3-9

Obtain the equivalent viscous-friction coefficient b, of the system shown in Figure 3-39.

b,

]

g L

'ILI
Figure 3-39 Damper system. x y

Problem B-3-10
Find the natural frequency of the system shown in Figure 3-40.

Figure 3-40 Mechanical system. 222072207077

Problem B-3-11

Consider the U-shaped manometer shown in Figure 3—41. The liquid partially fills the
U-shaped glass tube. Assuming that the total mass of the liquid in the tube is m, the
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Figure 341 U-shaped manome-
ter system.

total length of liquid in the tube is L, and the viscosity of the liquid is negligible, what is
the equation of motion of the liquid? Find the frequency of oscillation.

Problem B-3-12

In the mechanical system shown in Figure 342, assume that the rod is massless, per-
fectly rigid, and pivoted at point P. The displacement x is measured from the equilibri-
um position. Assuming that x is small, that the weight mg at the end of the rod is 5 N,
and that the spring constant k is 400 N/m, find the natural frequency of the system.

bl

mg

Figure 3-42 Mechanical system.

Problem B-3-13

Obtain a mathematical model of the system shown in Figure 3—43. The input to the sys-
tem is the angle 6; and the output is the angle 8,,.

Y N Y

A * B 90}111 Z

d b Figure 3-43 Mechanical system.
Problem B-3-14
Obtain a mathematical model for the system shown in Figure 3-44.
Problem B-3-15

Consider the system shown in Figure 3-45, where m = 2kg, b = 4 N-s/m, and
k = 20 N/m. Assume that x(0) = 0.1 m and x(0) = 0. [The displacement x(t) is mea-
sured from the equilibrium position.]
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Figure 3-45 Mechanical system. 77777777772

Derive a mathematical model of the system. Then find x(f) as a function of time 1.
Problem B-3-16

By applying Newton’s second law to the spring-mass—pulley system of Figure 3-33(a),
obtain the motion of mass m when it is pulled down a short distance and then released.
The displacement x of a hanging mass m is measured from the equilibrium position.
(The mass, the radius, and the moment of inertia of the pulley are M,R,and J = %M R%,
respectively.)

Problem B-3-17

Consider the mechanical system shown in Figure 3-46. Two pulleys, small and large, are
bolted together and act as one piece. The total moment of inertia of the pulleys is /. The
mass m is connected to the spring k; by a wire wrapped around the large pulley. The
gravitational force mg causes static deflection of the spring such that k8 = mg.
Assume that the displacement x of mass m is measured from the equilibrium position.
Two springs (denoted by k,) are connected by a wire that passes over the small pulley
as shown in the figure. Each of the two springs is prestretched by an amount y.

Obtain a mathematical model of the system. Also, obtain the natural frequency
of the system.

Problem B-3-18

A disk of radius 0.5 m is subjected to a tangential force of SO N at its periphery and is rotat-
ing at an angular velocity of 100 rad/s. Calculate the torque and power of the disk shaft.
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7/, Figure 3-46 Mechanical system.

Problem B-3-19
Referring to the spring-loaded inverted pendulum system shown in Figure 3-32, obtain
the natural frequency w, of the system, using the energy method that equates the max-
imum kinetic energy T,,, and the maximum potential energy Uy,.x. (Choose the poten-
tial energy at the equilibrium state to be zero.)

Problem B-3-20

Assuming that mass m of the rod of the pendulum shown in Figure 3—47 is small, but
not negligible, compared with mass M, find the natural frequency of the pendulum
when the angle 8 is small. (Include the effect of m in the expression of the natural
frequency.)

/777

Figure 347 Pendulum system.



Transfer-Function
Approach to Modeling
Dynamic Systems

4-1 INTRODUCTION

In this chapter, we present the transfer-function approach to modeling and analyzing
dynamic systems. We first define the transfer function and then introduce block dia-
grams. Since MATLAB plays an important role in obtaining computational solu-
tions of transient response problems, we present a detailed introduction to writing
MATLAB programs to obtain response curves for time-domain inputs such as the
step, impulse, ramp, and others.

In the field of system dynamics, transfer functions are frequently used to char-
acterize the input—output relationships of components or systems that can be
described by linear, time-invariant differential equations. We begin this section by
defining the transfer function and deriving the transfer function of a mechanical sys-
tem. Then we discuss the impulse response function, or the weighting function, of
the system.

Transfer Function. The transfer function of a linear, time-invariant differen-
tial-equation system is defined as the ratio of the Laplace transform of the output
(response function) to the Laplace transform of the input (driving function) under
the assumption that all initial conditions are zero.

106
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Consider the linear time-invariant system defined by the differential equation

(n}) (n-1) R
ay tay + - +a,qy+ay

(m)  (m-1) _
=byx +byx + - +by1x+ b,x (n=zm)

where y is the output of the system and x is the input. The transfer function of this
system is the ratio of the Laplace-transformed output to the Laplace-transformed
input when all initial conditions are zero, or

<[output]

£ [inPUt] zero initial conditions

_Y(s)  bys™ +byis™ !+ - 4 b,_ys + by,
T X(s)  aps" +ais" o+ o +a,ys + a,

Transfer function = G(s) =

(4-1)

By using the concept of a transfer function, it is possible to represent system
dynamics by algebraic equations in s. If the highest power of s in the denominator of
the transfer function is equal to #, the system is called an nth-order system.

Comments on the Transfer Function. The applicability of the concept of
the transfer function is limited to linear, time-invariant differential-equation sys-
tems. Still, the transfer-function approach is used extensively in the analysis and de-
sign of such systems. The following list gives some important comments concerning
the transfer function of a system described by a linear, time-invariant differential
equation:

1. The transfer function of a system is a mathematical model of that system, in
that it is an operational method of expressing the differential equation that re-
lates the output variable to the input variable.

2. The transfer function is a property of a system itself, unrelated to the magni-
tude and nature of the input or driving function.

3. The transfer function includes the units necessary to relate the input to the
output; however, it does not provide any information concerning the physical
structure of the system. (The transfer functions of many physically different
systems can be identical.)

4. If the transfer function of a system is known, the output or response can be
studied for various forms of inputs with a view toward understanding the
nature of the system.

5. If the transfer function of a system is unknown, it may be established experi-
mentally by introducing known inputs and studying the output of the system.
Once established, a transfer function gives a full description of the dynamic
characteristics of the system, as distinct from its physical description.

Example 4-1

Consider the mechanical system shown in Figure 4-1. The displacement x of the mass m
is measured from the equilibrium position. In this system, the external force f{¥) is the
input and x is the output.
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Figure 41 Mechanical system. x

The equation of motion for the system is

mX + bx + kx = f(1)
Taking the Laplace transform of both sides of this equation and assuming that all initial
conditions are zero yields

(ms* + bs + k)X (s) = F(s)

where X(s) = £[x(¢)] and F(s) = £[f(t)]. From Equation (4-1), the transfer func-
tion for the system is

X(s) 1

F(s) ms®+bs+k

Impulse-Response Function. The transfer function of a linear, time-invariant
system is
Y(s)
X(s)

where X(s) is the Laplace transform of the input and Y(s) is the Laplace transform
of the output and where we assume that all initial conditions involved are zero. It
follows that the output Y(s) can be written as the product of G(s) and X(s), or

Y(s) = G(s)X(s) (4-2)

Now, consider the output (response) of the system to a unit-impulse input
when the initial conditions are zero. Since the Laplace transform of the unit-impulse
function is unity, or X(s) = 1, the Laplace transform of the output of the system is

Y(s) = G(s) (4-3)
The inverse Laplace transform of the output given by Equation (4-3) yields the
impulse response of the system. The inverse Laplace transform of G(s), or
£ 7G(s)] = g(2)
is called the impulse-response function, or the weighting function, of the system.
The impulse-response function g(z) is thus the response of a linear system to a

unit-impulse input when the initial conditions are zero. The Laplace transform of g(¢)
gives the transfer function. Therefore, the transfer function and impulse-response

G(s) =



Sec. 4-2 Block Diagrams 109

function of a linear, time-invariant system contain the same information about the
system dynamics. It is hence possible to obtain complete information about the
dynamic characteristics of a system by exciting it with an impulse input and measur-
ing the response. (In practice, a large pulse input with a very short duration compared
with the significant time constants of the system may be considered an impulse.)

Outline of the Chapter. Section 4-1 has presented the concept of the trans-
fer function and impulse-response function. Section 4-2 discusses the block diagram.
Section 4-3 sets forth the MATLAB approach to the partial-fraction expansion of a
ratio of two polynomials, B(s)/A(s). Section 44 details the MATLAB approach to
the transient response analysis of transfer-function systems.

4-2 BLOCK DIAGRAMS

Block diagrams of dynamic systems. A block diagram of a dynamic sys-
tem is a pictorial representation of the functions performed by each component of
the system and of the flow of signals within the system. Such a diagram depicts the
interrelationships that exist among the various components. Differing from a purely
abstract mathematical representation, a block diagram has the advantage of indicat-
ing the signal flows of the actual system more realistically.

In a block diagram, all system variables are linked to each other through func-
tional blocks. The functional block, or simply block, is a symbol for the mathematical
operation on the input signal to the block that produces the output. The transfer
functions of the components are usually entered in the corresponding blocks, which
are connected by arrows to indicate the direction of the flow of signals. Note that a
signal can pass only in the direction of the arrows. Thus, a block diagram of a dynam-
ic system explicitly shows a unilateral property.

Figure 4-2 shows an element of a block diagram. The arrowhead pointing toward
the block indicates the input to the block, and the arrowhead leading away from the
block represents the output of the block. As mentioned, such arrows represent signals.

Note that the dimension of the output signal from a block is the dimension of
the input signal multiplied by the dimension of the transfer function in the block.

The advantages of the block diagram representation of a system lie in the fact
that it is easy to form the overall block diagram for the entire system merely by con-
necting the blocks of the components according to the signal flow and that it is pos-
sible to evaluate the contribution of each component to the overall performance of
the system.

In general, the functional operation of a system can be visualized more readily
by examining a block diagram of the system than by examining the physical system
itself. A block diagram contains information concerning dynamic behavior, but it

Transfer
———1 function e
G(s)

Figure 4-2 Element of a block diagram.
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does not include any information about the physical construction of the system.
Consequently, many dissimilar and unrelated systems can be represented by the
same block diagram.

Note that in a block diagram the main source of energy is not explicitly shown
and that the block diagram of a given system is not unique. A number of different
block diagrams can be drawn for a system, depending on the point of view of the
analysis. (See Example 4-2.)

Summing point. Figure 4-3 shows a circle with a cross, the symbol that
stands for a summing operation. The plus or minus sign at each arrowhead indicates
whether the associated signal is to be added or subtracted. It is important that the
quantities being added or subtracted have the same dimensions and the same units.

Branch point. A branch point is a point from which the signal from a block
goes concurrently to other blocks or summing points.

Block diagram of a closed-loop system. Figure 44 is a block diagram of
a closed-loop system. The output C(s) is fed back to the summing point, where it is
compared with the input R(s). The closed-loop nature of the system is indicated
clearly by the figure. The output C(s) of the block is obtained by multiplying the
transfer function G(s) by the input to the block, E(s).

Any linear system can be represented by a block diagram consisting of blocks,
summing points, and branch points. When the output is fed back to the summing
point for comparison with the input, it is necessary to convert the form of the output
signal to that of the input signal. This conversion is accomplished by the feedback
element whose transfer function is H(s), as shown in Figure 4-5. Another important
role of the feedback element is to modify the output before it is compared with the
input. In the figure, the feedback signal that is fed back to the summing point for
comparison with the input is B(s) = H(s)C(s).

Figure 4-3 Summing point.

Summing Branch
point point
R(s) EG) ' ¢
S Y
[ G (s)
Figure 44 Block diagram of a closed- I

loop system.
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R(s) E@) | o) C(s)

B(s)

H(s) [ Figure 45 Block diagram of a closed-loop
system with feedback element.

Simplifying complex block diagrams and obtaining overall transfer functions
from such block diagrams are discussed in Chapter 5.

Example 4-2

Consider again the mechanical system shown in Figure 4-1. The transfer function of
this system (see Example 4-1) is

X(s) _ 1

= 44
F(s) ms*+bs+k 4
A block diagram representation of the system is shown in Figure 4-6(a).
Notice that Equation (44) can be written as
(ms? + bs + k)X (s) = F(s) (4-5)
Fis) 1 X(s)
ms® + bs + k
(@)
F(s) (ms? + bs) X(s) 1 sX(s) B X(s)
—- \ pe——
ms+b
(|
(b)

Figure 4-6 Block diagrams of the system shown in Figure 4-1. (a) Block dia-
gram based on Equation (4-4); (b) block diagram based on Equation (4-6);
(c) block diagram based on Equation (4-7).
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Rewriting the latter equation as
(ms* + bs)X(s) = F(s) — kX(s) (4-6)

we can obtain a different block diagram for the same system, as shown in Figure 4-6(b).
Equation (4-5) can also be rewritten as

F(s) = [kX(s) + bsX(s)] = ms*X(s)
or

1 k b o,
- F(s) p X(s) o sX(s) = s°X(s) 4-7)
A block diagram for the system based on Equation (4-7) is shown in Figure 4-6(c).

Figures 4-6(a), (b), and (c) are thus block diagrams for the same system—that
shown in Figure 4-1. (Many different block diagrams are possible for any given system.)

4~3 PARTIAL-FRACTION EXPANSION WITH MATLAB

We begin this section, with an examination of the partial-fraction expansion of the
transfer function B(s)/A(s) with MATLAB. Then we discuss how to obtain the sys-
tem response analytically. Computational solutions (response curves) for the system
responses to time-domain inputs are given in Section 4-4.

MATLAB representation of transfer functions. The transfer function of a
system is represented by two arrays of numbers. For example, consider a system de-
fined by

Y(s) 25
U(s) s*+4s+25

This system is represented as two arrays, each containing the coefficients of the
polynomials in decreasing powers of s as follows:

num = [25]
den=[1 4 25]

Partial-fraction expansion with MATLAB. MATLAB allows us to obtain
the partial-fraction expansion of the ratio of two polynomials,

B(s) num _ b(1)s" + b(2)s"! + --- + b(h)
A(s)  den - a(l)s” + a(2)s" ! + --- + a(n)

where a(1) # 0, some of a(i) and b(j) may be zero, and num and den are row vec-
tors that specify the coefficients of the numerator and denominator of B(s)/A(s).
That is,

num=[b(1) b2) --- bh)]
den=[a(1) a2) -.- a(n)]
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The command
[r,p,k] = residue(num,den)

finds the residues, poles, and direct terms of a partial-fraction expansion of the ratio
of the two polynomials B(s) and A(s). The partial-fraction expansion of B(s)/A(s) is
given by

B(s) ) @ L )
NORRAEY R T )

As an example, consider the function

B(s) s*+8%+1652+95+6
A(s) s$+6s2+11s+6

For this function,

num=[1 8 16 9 6]
den=[1 6 11 6]

Entering the command
[r,p,k] = residue(num,den)

as shown in MATLAB Program 4-1, we obtain the residues (r), poles (p), and direct
terms (k).

MATLAB Program 4-1

>num=[1 8 16 9 6|
>>den={1 6 11 6];
>> [r,p.k] = residue(num,den)

r=

—6.0000
—4.0000
3.0000

—3.0000
—2.0000
—1.0000
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MATLAB Program 4-1 is the MATLAB representation of the partial-fraction
expansion of B(s)/A(s):
B(s) s*+ 85+ 1652+ 95 + 6
A(s) s +65+11s+ 6
-6 -4 3
=s5s+2+ +
s s+3 s+2 * s+1
Note that MATLAB first divides the numerator by the denominator and produces a
polynomial in s (denoted as row vector k) plus a remainder (a ratio of polynomials
in 5, where the numerator is of lower degree than the denominator). Then MAT-
LAB expands this remainder into partial fractions and returns the residues as col-
umn vector r and the pole locations as column vector p.
The command

[num,den] = residue(r,p,k)

where 1, p, and k are outputs in MATLAB Program 4-1, converts the partial-fraction
expansion back to the polynomial ratio B(s)/A(s), as shown in MATLAB Program 4-2.

MATLAB Program 4-2
>>r=[-6 —4 3];
>p=[-3 -2 -1];
>>k=1{[1 2];

>> [num, den] = residue(r,p,k)

num =
1 8 16 9 6
den =
1 6 1" 6

Example 4-3

Consider the spring-mass—dashpot system mounted on a massless cart as shown in
Figure 4-7. A dashpot is a device that provides viscous friction, or damping. It consists
of a piston and oil-filled cylinder. Any relative motion between the piston rod and the
cylinder is resisted by the oil because the oil must flow around the piston (or through
orifices provided in the piston) from one side of the piston to the other. The dashpot
essentially absorbs energy, which is dissipated as heat. The dashpot, also called a
damper, does not store any kinetic or potential energy.

Let us obtain a mathematical model of this system by assuming that both the cart
and the spring-mass-dashpot system on it are standing still for ¢ < 0. In this system,
u(?) is the displacement of the cart and the input to the system. The displacement y(¢) of
the mass relative to the ground is the output. Also, m denotes the mass, b denotes the
viscous friction coefficient, and k denotes the spring constant. We assume that the fric-
tion force of the dashpot is proportional to y — & and that the spring is linear; that is,
the spring force is proportional to y — u.

After a mathematical model of the system is obtained, we determine the output
y(?) analytically when m = 10 kg, b = 20 N-s/m, and ¥ = 100 N/m. The input is assumed
to be a unit-step input.
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Figure 4-7 Spring-mass-dash-
7 pot system mounted on a cart.

For translational systems, Newton’s second law states that
ma= 3 F

where m is a mass, a is the acceleration of the mass,and 2 F is the sum of the forces act-
ing on the mass in the direction of the acceleration. Applying Newton’s second law to
the present system and noting that the cart is massless, we obtain

d?y dy du
{28 i

ma
or
d*y dy d
— +b—=+ky=b—+
FE bdt ky bd ku

The latter equation represents a mathematical model of the system under consideration.
Taking the Laplace transform of the equation, assuming zero initial conditions, gives

(ms® + bs + k)Y(s) = (bs + k)U(s)
Taking the ratio of Y(s) to U(s), we find the transfer function of the system to be
Y(s) __ bs+k
U(s) ms*+ bs + k

Transfer function = (4-8)

Next, we shall obtain an analytical solution of the response to the unit-step input.
Substituting the given numerical values into Equation (4-8) gives
Y(s) _ _ 20s+100 _ 2s+10
U(s) 10s®>+20s + 100 s°>+ 25 + 10

Since the input « is a unit-step function,

1
U@s) =+
Then the output Y(s) becomes
2s+10 1 2s + 10
Y(s) = 2 o 3 2
sc+25+10s s+ 25° + 10s
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To obtain the inverse Laplace transform of Y(s), we need to expand Y(s) into partial
fractions.

Applying MATLAB and noting that num and den of the system are
num=[2 10]
den=[1 2 10 0]

we may use the residue command
[r.p,k] = residue(num,den)

to find the residues (r), poles (p), and direct term (k) as shown in MATLAB Program 4-3.
MATLAB Program 4-3 is the MATLAB representation of the partial-fraction expan-
sion of Y(s):

_ =05 —j0.1667 -—0.5 + j0.1667 1

YO =—77-p3 Y s+1+3 '

MATLAB Program 4-3

>>num=[2 10];
>>den=[1 2 10 O0];
>> [r,p,k] = residue(num,den)

r=

-0.5000 — 0.1667i
—0.5000 + 0.1667i

1.0000
p =
—1.0000 + 3.0000i
—1.0000 — 3.0000i
0
k=

Since Y(s) involves complex-conjugate poles, it is convenient to combine two complex-
conjugate terms into one as follows:

-0.5 — j0.1667 —0.5 + j0.1667 -5
5t 3 EY]
s+1-j3 s+1+j3 (s+1)+3

Then Y(s) can be expanded as

1 s
YO = - Grip+ 3
1 s+1-1
s (s+12+3
_1 s+1 +l 3
s (s+1)2+3 0 3 (s+ 1)+ 3
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The inverse Laplace transform of Y(s) is obtained as
1 .
y(t) =1-—e"cos3t + ge" sin 3¢

where y(f) is measured in meters and ¢ in seconds. This equation is an analytical solu-
tion to the problem.

Note that a plot of y(r) versus ¢ can be obtained easily with MATLAB from the
information on num, den, and u(r) without using the partial-fraction expansion. (See
Example 4-5.)

Example 44

Consider the mechanical system shown in Figure 4-8. The system is at rest initially. The
displacements x and y are measured from their respective equilibrium positions.
Assuming that p(¢) is a step force input and the displacement x(¢) is the output, obtain
the transfer function of the system. Then, assuming that m = 0.1 kg, b, = 0.4 N-s/m,
ky = 6 N/m, k; = 4 N/m, and p(¢) is a step force of magnitude 10 N, obtain an analyti-
cal solution x(¢).

The equations of motion for the system are

mi’+k1x+k2(x-—y)=p

ko(x = y) = byy
Laplace transforming these two equations, assuming zero initial conditions, we obtain
(ms? + ky + k)X (s) = kY (5) + P(s) 4-9)
k2 X (s) = (ky + bys)Y(s) (4-10)

Solving Equation (4-10) for Y(s) and substituting the result into Equation (4-9), we get
2

k
(ms® + ky + k)X (5) = - - 5 X () + P(s)

or
[(ms® + ki + ko) (kz + bys) — k)X (s) = (ky + bys)P(s)
from which we obtain the transfer function
X(s) _ bys + ky
P(s)  mbys® + mhys® + (ky + k)bos + ki,

(4-11)

X  Figure 4-8 Mechanical system.
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Substituting the given numerical values for m, k;, k,, and b, into Equation (4-11),
we have

X(s) _ 04s + 4
P(s)  0.04s® + 0.4s% + 4s + 24
10s + 100

TP+ 105 + 1005 + 600 (4-12)

Since P(s) is a step force of magnitude 10 N,

P(s) = ls_O

Then, from Equation (4-12), X(s) can be written as
10s + 100 10
X(s) = —
(s) s* + 10s% + 100s + 600 s

To find an analytical solution, we need to expand X{(s) into partial fractions. For this
purpose, we may use MATLAB Program 44, which produces the residues, poles, and
direct term.

MATLAB Program 44

>>num = [100 1000];
>>den=[1 10 100 600 0);
>> [r,p,k] = residue(num, den)

r=

—0.6845 + 0.2233i
—0.6845 — 0.2233i
-0.2977

1.6667

p =
—1.2898 + 8.8991i

—1.2898 — 8.8991i
—7.4204

On the basis of the MATLAB output, X(s) can be written as

-0.6845 + j0.2233 N -0.6845 — j0.2233
s + 1.2898 — j8.8991 = s + 1.2898 + j8.8991
~02977 16667
s + 7.4204 s
-1.3690(s + 1.2898) — 3.9743 0.2977 1.6667
= - +
(s + 1.2898)% + 8.8991 s + 7.4204 s

X(s) =
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The inverse Laplace transform of X(s) gives

x(1) = —1.3690e~"-%% co5(8.8991¢)
~ 0446661259 5in(8.8991r) — 0.2977¢ 74204 + 1.6667

where x(¢) is measured in meters and time 7 in seconds. This is the analytical solution to
the problem. [For the response curve x(f) versus t, see Example 4-6.]

From the preceding examples, we have seen that once the transfer function
X (s)/U(s) = G(s) of a system is obtained, the response of the system to any input
can be determined by taking the inverse Laplace transform of X(s), or

EX(9)] = LG ()]

Finding the inverse Laplace transform of G(s)U(s) may be time consuming if the
transfer function G(s) of the system is complicated, even though the input U(s) may
be a simple function of time. Unless, for some reason, an analytical solution is needed,
we should use a computer to get a numerical solution. Throughout this book, we use
MATLAB to obtain numerical solutions to many problems. Obtaining numerical
solutions and presenting them in the form of response curves is the subject discussed
in the next section.

4-4 TRANSIENT-RESPONSE ANALYSIS WITH MATLAB

This section presents the MATLAB approach to obtaining system responses when
the inputs are time-domain inputs such as the step, impulse, and ramp functions. The
system response to the frequency-domain input (e.g., a sinusoidal input) is present-
ed in Chapters 9 and 11.

MATLARB representation of transfer-function systems. Figure 4-9 shows
a block with a transfer function. Such a block represents a system or an element of a
system. To simplify our presentation, we shall call the block with a transfer function
a system. MATLAB uses sys to represent such a system. The statement

sys = tf(num, den) (4-13)
represents the system. For example, consider the system

Y(s) __25+325
X(s) s2+45+25

—l G(s) = —‘:i‘:: et
Figure 4-9 Block diagram of transfer-

function system.
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This system can be represented as two arrays, each containing the coefficients of the
polynomials in decreasing powers of s as follows:

num=[2 25]
den=1[1 4 25]

Entering MATLAB Program 4-5 into a computer produces the transfer function of
the system.

MATLAB Program 4-5

>>num= {2 25];
>>den=[1 4 25];
>> sys = tf(num,den)

Transfer function:
2s+25

SN2 +4s+ 25

In this book, we shall use Equation (4-13) to represent the transfer function system.

Step response. If num and den (the numerator and denominator of a trans-
fer function) are known, we may define the system by

sys = tf(num,den)
Then, a command such as
step(sys) or step(num,den)

will generate a plot of a unit-step response and will display a response curve on the
screen. The computation interval Az and the time span of the response are deter-
mined by MATLAB.

If we wish MATLAB to compute the response every At seconds and plot the
response curve for 0 = ¢t < T (where T is an integer multiple of At), we enter the
statement

t=0:At:T,;
in the program and use the command
step(sys,t) or step(num,den,t)

where t is the user-specified time.
If step commands have left-hand arguments, such as

y = step(sys,t) or y = step(num,den,t)
and
[y,t] = step(sys,t) or [y,t] = step(num,den,t)

MATLAB produces the unit-step response of the system, but displays no plot on
the screen. It is necessary to use a plot command to see response curves.
The next two examples demonstrate the use of step commands.
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Example 4-5
Consider again the spring-mass—dashpot system mounted on a cart as shown in
Figure 4-7. (See Example 4-3.) The transfer function of the system is

Y(s)  bs+k
U(s) ms*+bs+k

Assuming that m = 10kg, b = 20 N-s/m, k = 100 N/m, and the input u(f) is a unit-
step input (a step input of 1 m), obtain the response curve y(t).
Substituting the given numerical values into the transfer function, we have
Y(s)  20s+100 _  2s+10
U(s) 10s® +20s + 100 s* + 2s + 10

MATLAB Program 4-6 will produce the unit-step response y(f). The resulting unit-
step response curve is shown in Figure 4-10.

MATLAB Program 4-6

>>num=[2 10];
>>den=[1 2 10];
>> sys = tf(num,den);
>> step(sys)

>> grid

In this plot, the duration of the response is automatically determined by MATLAB.
The title and axis labels are also automatically determined by MATLAB.

If we wish to compute and plot the curve every 0.01 sec over the interval
0 =t = 8, we need to enter the following statement in the MATLAB program:

t=0:0.01:8;

Step Response

15

Time (sec) Figure 4-10 Unit-step response curve.
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Also, if we wish to change the title and axis labels, we enter the desired title and desired
labels as shown in MATLAB Program 4-7.

MATLAB Program 4-7

>>t=0:0.01:8;

>>num=[2 10];

>>den=[1 2 10];

>> sys = tf(num,den);

>> step(sys,t)

>> grid

>> title('Unit-Step Response’,'Fontsize',20")
>> xlabel('t','Fontsize',20")

>> ylabel ('Output y','Fontsize',20")

Note that if we did not enter the desired title and desired axis labels in the pro-
gram, the title, x-axis label, and y-axis label on the plot would have been “Step
Response”, “Time (sec)”, and “Amplitude”, respectively. (This statement applies to
MATLAB version 6 and not to versions 3, 4, and 5.) When we enter the desired title and
axis labels as shown in MATLAB Program 4-7, MATLAB erases the predetermined title
and axis labels, except “(sec)” in the x-axis label, and replaces them with the ones we have
specified. If the font sizes are too small, they can be made larger. For example, entering

'Fontsize', 20

in the title, xlabel, and ylabel variables as shown in MATLAB Program 4-7 results in
that size text appearing in those places. Figure 4-11 is a plot of the response curve
obtained with MATLAB Program 4-7.

Figure 4-11 Unit-step response
curve. Font sizes for title, xlabel,
and ylabel are enlarged.

Unit-Step Response

Output y
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Example 4-6

Consider again the mechanical system shown in Figure 4-8. (See Example 4-4.) The
transfer function X(s)/P(s) was found to be

X(S) _ bys + k,

= (4-14)
P(s)  mbys® + mkys? + (ki + ky)bos + kiky
The transfer function Y(s)/X(s) is obtained from Equation (4-10):
Y(s) kK
X(s)  bs+ ky
Hence,
Y
Y(s) _ Y(s) X(s) _ k @15)

P(s) ~ X(s) P(s)  mbys® + mkys® + (k; + ko)bys + kyks

Assuming that m = 0.1 kg, b, = 0.4 N-s/m, k, = 6 N/m, k; = 4 N/m, and p(¢) is a step
force of magnitude 10 N, obtain the responses x(¢) and y(¢).

Substituting the numerical values for m, b, ky, and k; into the transfer functions
given by Equations (4-14) and (4-15), we obtain

X(s) - 04s + 4
P(s) 0045 + 045 + 4s + 24

- 1(:.:+100 (&-16)

s + 10s° + 100s + 600
and
Y(s) _ 4
P(s) 0.04s® + 0.4s® + 4s + 24
100 4-17)

T 5+ 105 + 1005 + 600

Since p(1) is a step force of magnitude 10 N, we may define p(t) = 10u(¢), where u(r) is
a unit-step input of magnitude 1 N. Then Equations (4-16) and (4-17) can be written as
X(s) - 100s + 1000
U(s) s+ 105 + 100s + 600

(4-18)

and

Y(s) _ 1000

U(s) s+ 10s% + 100s + 600
Since u(f) is a unit-step input, x(¢) and y(¢) can be obtained from Equations (4-18) and
(4-19) with the use of a step command. (Step commands assume that the input is the

unit-step input.)
In this example, we shall demonstrate the use of the commands

(4-19)

y = step(sys,t)
and

plott,y)
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Unit-Step Responses

25 by

1.5 k-4 Affi X /8 ........ 4

x(t) and y(#)

05

Figure 4-12 Step-response curves
x(2) and y(t).
MATLAB Program 4-8 produces the responses x(f) and y(f) of the system on one
diagram.

MATLAB Program 4-8

>>t=0:0.01:5;

>>numl = [100 1000];

>> num2 = [1000];
>>den=[1 10 100 600];
>> sys1 = tf(num1,den);

>> sys2 = tf(num2,den);

>>y1 = step(sys1,t);

>> y2 = step(sys2,t);

>> plot(t,y1,t,y2)

>> grid

>> title ('Unit-Step Responses')
>> xlabel ('t (sec))

>> ylabel ('x(t) and y(t)')

>> text(0.07,2.8,'x(t)")

>> text(0.7,2.35,'y(t)")

The response curves x(f) and y(f) are shown in Figure 4-12.

Writing text on the graph. When we plot two or more curves on one diagram, we
may need to write text on the graph to distinguish the curves. For example, to write the text
‘x(t)’ horizontally, beginning at the point (0.07,2.8) on the graph, we use the command

text(0.07,2.8,'x(1)")

Impulse response. The unit-impulse response of a dynamic system defined
in the form of the transfer function may be obtained by use of one of the following
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MATLAB commands:
impulse(sys) or impulse(num,den)
impulse(sys,t) or impulse(num,den,t)
y = impulse(sys) or y = impulse(num,den)
ly,fl = impulse (sys,t) or ly,t] = impulse(num,den,t)

The command impulse(sys) will generate a plot of the unit-impulse response and
will display the impulse-response curve on the screen. If the command has a left-
hand argument, such as y = impulse(sys), no plot is shown on the screen. It is then
necessary to use a plot command to see the response curve on the screen.

Before discussing computational solutions of problems involving impulse
inputs, we present some necessary background material.

Impuiseinput. The impulse response of a mechanical system can be observed
when the system is subjected to a very large force for a very short time, for instance,
when the mass of a spring-mass—dashpot system is hit by a hammer or a bullet. Math-
ematically, such an impulse input can be expressed by an impulse function.

The impulse function is a mathematical function without any actual physical
counterpart. However, as shown in Figure 4-13(a), if the actual input lasts for a
short time (At s) but has a large amplitude (h), so that the area (hAt) in a time plot
is not negligible, it can be approximated by an impulse function. The impulse input
is usually denoted by a vertical arrow, as shown in Figure 4-13(b), to indicate that it
has a very short duration and a very large height.

In handling impulse functions, only the magnitude (or area) of the function is
important; its actual shape is immaterial. In other words, an impulse of amplitude 2/
and duration At/2 can be considered the same as an impulse of amplitude 4 and
duration At, as long as At approaches zero and hA¢ is finite.

We next briefly discuss a review of the law of conservation of momentum,
which is useful in determining the impulse responses of mechanical systems.

Area not negligible
x

7
? ‘
Z
Z
7]
%
/ (

2

(a) (b) Figure 4-13 Impulse inputs.
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Law of conservation of momentum. The momentum of a mass m moving
at a velocity v is mv. According to Newton’s second law,

dv d
F = = —_— = —
ma=m ar - dr (mv)
Hence,

F dt = d(mv) (4-20)

Integrating both sides of Equation (4-20), we have

2 r]
/ Fdt = / d(mv) = my, — my, (4-21)
4] "

where v, = v(f;) and v, = v(1,). Equation (4-21) states that a change in momen-
tum equals the time integral of force betweent = t;and t = ¢,.

Momentum is a vector quantity, with magnitude, direction, and sense. The
direction of the change in momentum is the direction of the force.

In the absence of any external force, Equation (4-20) becomes

d(mv) =0
or
muv = constant

Thus, the total momentum of a system remains unchanged by any action that may
take place within the system, provided that no external force is acting on the system.
This principle is called the law of conservation of momentum.

The angular momentum of a rotating system is Jw, where J is the moment of
inertia of a body and w is the angular velocity of the body. In the absence of an
external torque, the angular momentum of a body remains unchanged. This princi-
ple is the law of conservation of angular momentum.

Example 4-7

A bullet is fired horizontally into a wood block resting on a horizontal, frictionless sur-
face. If the mass m, of the bullet is 0.02 kg and the velocity is 600 m/s, what is the veloc-
ity of the wood block after the bullet is embedded in it? Assume that the wood block
has a mass m, of 50 kg.

If we consider the bullet and wood block as constituting a system, no external
force is acting on the system. Consequently, its total momentum remains unchanged.
Thus, we have

momentum before impact = mv; + my»,

where v, the velocity of the bullet before the impact, is equal to 600 m/s and »,, the
velocity of the wood block before the impact, is equal to zero. Also,

momentum after impact = (m; + my)v

where v is the velocity of the wood block after the bullet is embedded. (Velocities v,
and v are in the same direction.)
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The law of conservation of momentum states that
mvy + myvy = (my + my)v
Substituting the given numerical values into this last equation, we obtain
0.02 X 600 + 50 X 0 = (0.02 + 50)v

or
v =024 m/s

Hence, the wood block after the bullet is embedded will move at the velocity of 0.24 m/s
in the same direction as the original velocity v, of the bullet.

Example 4-8

Consider the mechanical system shown in Figure 4-14. A bullet of mass m is shot into a
block of mass M (where M » m). Assume that when the bullet hits the block, it
becomes embedded there. Determine the response (displacement x) of the block after
it is hit by the bullet. The displacement x of the block is measured from the equilibrium
position before the bullet hits it. Suppose that the bullet is shot at # = 0— and that the
initial velocity of the bullet is ¥(0~). Assuming the following numerical values for M,
m, b, k,and v(0—), draw a curve x(¢f) versus f:

M = 50kg, m = 0.01 kg, b = 100 N-s/m,
k = 2500 N/m, v(0-) = 800 m/s

The input to the system in this case can be considered an impulse, the magnitude
of which is equal to the rate of change of momentum of the bullet. At the instant the
bullet hits the black, the velocity of the bullet becomes the same as that of the block,
since the bullet is assumed to be embedded in it. As a result, there is a sudden change in
the velocity of the bullet. [See Figure 4-15(a).] Since the change in the velocity of the
bullet occurs instantaneously, ¥ has the form of an impulse. (Note that ¥ is negative.)

For ¢t > 0, the block and the bullet move as a combined mass M + m. The equa-
tion of motion for the system is

(M + m)% + bx + kx = F(t) (4-22)

where F(f), an impulse force, is equal to —m. [Note that —m is positive; the impulse
force F(r) is in the positive direction of x.] From Figure 4-15(b), the impulse force can

be written as
F(t) = —mv = A At §(1)
— X
2
2
|
m
—_—— — M

) B
7

IR, PR A Mechaiclsysen
Z subjected to an impulse input.
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—— (1)

v(0+)

(a)

Figure 4-15 (a) Change in velocity of the
bullet when it hits the block; (b) change in
acceleration of the bullet when it hits the

block. (b)

where A At is the magnitude of the impulse input. Thus,

0+ 0+
/ AAté(t)dr = —m/ bdt
- 0-
or
A At = mv(0—) — mv(0+) (4-23)

The momentum of the bullet is changed from mwv(0—) to mv(0+). Since
v(0+) = x(0+) = initial velocity of combined mass M + m
we can write Equation (4-23) as
A At = mv(0—) — mx(0+)
Then Equation (4-22) becomes
(M + m)X + bx + kx = F() = [mv(0—) — mx(0+)]8(¢)
Taking the £ _ transform of both sides of this last equation, we see that

(M + m)[s*X(s) — sx(0=) = x(0-)] + b[sX(s) — x(0-)] + kX(s)
= mv(0—) — mx(0+)
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Also, noting that x(0—) = 0 and x(0—) = 0, we have
mv(0—) — mx(0+)
X(s) =
() (M +m)s®+bs+k

(4-24)

To determine the value of x(0+), we apply the initial-value theorem:
x(0+) = 11_1’11(:)1+ x(t) = Sl_ingo s[sX (s)]
B [mv(0-) — mx(0+)]
=T (M + m)s® + bs + k
_ mv(0—-) — mx(0+)
B M+m

from which we get
mv(0—) — mx(0+) = (M + m)x(0+)
or

m

#(0+) = 22—

(0-)

So Equation (4-24) becomes
(M + m)x(0+)
(M +m)s*+bs+ k
_ 1 (M + m)mv(0-)
T MAmst+bs+k  M+2m

The inverse Laplace transform of Equation (4-25) gives the impulse response x(z).
Substituting the given numerical values into Equation (4-25), we obtain

X(s) =

(4-25)

X(s) = 1 50.01 x 0.01 X 800
50.01s% + 100s + 2500 50.02
N 7.9984
" 50.015% + 100s + 2500
6.9993

= 0.02285

(s + 0.9998)% + (6.9993)2
Taking the inverse Laplace transform of this last equation yields
x(t) = 0.02285¢7%%%% sin 6.9993:
Thus, the response x(t) is a damped sinusoidal motion.

Example 4-9

Referring to Example 4-8, obtain the impulse response of the system shown in
Figure 4-14 with MATLAB. Use the same numerical values for M, m, b, k, and
v(0-) as in Example 4-8.

The response X(s) was obtained in Example 4-8, as given by Equation (4-25).
This is the response to the impulse input [mv(0—) — mx(0+)]8(¢). Note that the mag-
nitude of the impulse input is

m(M + m)

mv(0=) = mi(0+) = (M + m)i(0+) = ————=v(0-)
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0.02 Impulse Response of System Shown in Figure 4-14
0.01 H
%
g 005
&
3 or
-4
-0.005
Figure 4-16 Impulse-response -0.01
curve of the system shown in Figure : g
4-14 with M = 50 kg, m = 0.01 kg, -0.015 - - . . .
b = 100 N-s/m, k = 2500 N/m, and 0 1 2 3 4 5 6
v(0-) = 800 mvs. t (sec)

Hence, the impulse input can be written as
m(M + m)

FO="u+am

v(0—)58(¢) = 7.9984 8(t)

The system equation is
(M + m)X + bx + kx = F(t) = 7.9984 5(t)
so that
X(s) 1

F(s) N (M + m)s* + bs + k (4-26)

To find the response of the system to F(¢) (which is an impulse input whose magnitude
is not unity), we modify Equation (4-26) to the following form:

X(s) _ 1 m(M + m) v(0-)
L[8(1)] (M + m)s* +bs + k M +2m
7.9984

_ 427
50.01s2 + 100s + 2500 (“4-27)

If we define

num = (7.9984];
den = [50.01 100 2500];
sys = tfinum,den)
then the command

impulse(sys)

will produce the unit-impulse response of the system defined by Equation (4-27), which
is the same as the response of the system of Equation (4-26) to the impulse input
F(t) = 7.9984 6(t). MATLAB Program 4-9 produces the response of the system sub-
jected to the impulse input F(f). The impulse response obtained is shown in Figure 4-16.
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MATLAB Program 4-9

>> num = [7.9984];

>>den = [50.01 100 2500];

>> sys = tf(num,den);

>> impulse (sys)

>> grid

>> title (‘Impulse Response of System Shown in Figure 4-14')
>> xlabel('t')

>> ylabel('Response x(t)')

Obtaining response to arbitrary input. The command Isim produces the
response of linear, time-invariant systems to arbitrary inputs. If the initial conditions
of the system are zero, then

Isim(sys,u,t) or Isim(num,den,u,t)

produces the response of the system to the input u. Here, u is the input and t repre-
sents the times at which responses to u are to be computed. (The response time span
and the time increment are stated in t; an example of how t is specified is
t = 0:0.01:10). If the initial conditions are nonzero, use the state-space approach
presented in Section 5-2.

If the initial conditions of the system are zero, then any of the commands

y = Isim(sys,u,t) or y = Isim(num,den, u,t)
and
[y.t] = Isim(sys,u,t) or [yt = Isim(num,den,u,t)

returns the output response y. No plot is drawn. To plot the response curve, it is nec-
essary to use the command plot(t,y).
Note that the command

Isim(sys1,sys2, ...,u,t)

plots the responses of systems sysl1, sys2, ... on a single diagram. Note also that, by
using Isim commands, we are able to obtain the response of the system to ramp
inputs, acceleration inputs, and any other time functions that we can generate with
MATLAB.

Ramp response. The next example plots the unit-ramp response curve with
the use of the Isim command

Isim(sys, u,t)

whereu = t.
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=4 - N w
(9.1 — wn (V] Lh w W N

o

Figure 4-17 Plots of unit-ramp
response curve y(f) and input ramp
function u(r).

Example 4-10
Consider once again the system shown in Figure 4-7. (See Example 4-3.) Assume that
m = 10kg, b = 20 N-s/m, k = 100 N/m, and u(¢) is a unit-ramp input—that is, the dis-
placement u increases linearly, or u = at, where a = 1. We shall obtain the unit-ramp
response using the command
Isim(sys,u,t)

The transfer function of the system, derived in Example 4~3, is

Y(s)  2s+10

U(is) s*+25+10

MATLAB Program 4-10 produces the unit-ramp response. The resulting response
curve y(f) versus 7 and the input ramp function «(¢) versus ¢ are shown in Figure 4-17.

MATLAB Program 4-10

>>num={[2 10];
>>den=1{1 2 10];

>> sys = tf(num, den);
>>t=0:0.01:4;

>>u=t;

>> Isim(sys,u,t)

>> grid

>> title('Unit-Ramp Response')
>> xlabel('t")

>> ylabel('Output y(t) and Input u(t) = t')
>> text(0.8,0.25,'y")

>> text(0.15,0.8,'u')
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[Note that the command lsim(sys,u,t) produces plots of both y(f) versus t and u(r) versus £.]
In some cases it is desired to plot multiple curves on one graph. This can be done
by using a plot command with multiple arguments, for example,

plott,y1, ty2, ..., tyn)

MATLAB Program 4-11 uses the command

plot(t,y.t,u)

to plot a curve y(f) versus ¢ and a line u(r) versus ¢. The resulting plots are shown in

Figure 4-18.

t

Output y(r) and Input u(f)

Figure 4-18 Plots of unit-ramp response curve y(f) and input
ramp function u(t). (Plots are obtained with the use of the com-

MATLAB Program 4-11

>>num=[2 10];
>>den=[1 2 10];

>> sys = tf(num,den);
>>t=0:0.01:4;

>>u=t

>> y = Isim(sys,u,t);

>> plot(t,y,t,u)

>> grid

>> title('Unit-Ramp Response"')
>> xlabel('t (sec)')

>> ylabel('Output y(t) and Input u(t) = t)
>> text(0.85,0.25,'y")

>> text(0.15,0.8,'u")

w
n

= N
h N

05 |-

Unit-Ramp Response

T

N : n 1 2 " 1

t (sec)

mand plot(t,y.t,u).)
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Response to initial condition (transfer-function approach). The next
example obtains the response of a transfer-function system subjected to an initial
condition.

Example 4-11

Consider the mechanical system shown in Figure 4-19, where m = 1kg, b = 3 N-s/m,
and k = 2 N/m. Assume that the displacement x of mass m is measured from the equi-
librium position and that at + = 0 the mass m is pulled downward such that
x(0) = 0.1 m and x(0) = 0.05 m/s. Obtain the motion of the mass subjected to the ini-
tial condition. (Assume no external forcing function.)

The system equation is

mx + bx +kx =10

with the initial conditions x(0) = 0.1 m and x(0) = 0.05 m/s. The Laplace transform of
the system equation gives
m[s*X (s) = sx(0) — x(0)] + b[sX(s) — x(0)] + kX(s) =0
or
(ms? + bs + k)X(s) = mx(0)s + mx(0) + bx(0)

Solving this last equation for X(s) and substituting the given numerical values into x(0)
and x(0), we obtain
_ mx(0)s + mx(0) + bx(0)
- ms? + bs + k
_01s+035

S+ 3s+2

X(s)

This equation can be written as

_ 012+ 035 1

X(s) =57+
() s2+35+2 s
Hence, the motion of the mass m is the unit-step response of the following system:

0.15% + 0.35s
G =23 +2

MATLAB Program 4-12 produces a plot of the motion of the mass when the system
is subjected to the initial condition. The plot is shown in Figure 4-20.

Z

Figure 419 Mechanical system. x
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012 Response of System Subjected to Initial Condition
.1 T T T T H

0.1
0.08

0.06

Output x(f)

0.02

Figure 4-20 Response of system
1 (sec) subjected to initial condition.

MATLAB Program 4-12

>> Y% ---mmmeemeee Response to initial condition -------------

>>

>> % System response to initial condition is converted to a
>> % unit-step response by modifying the numerator polynomial.
>>

>>num=[0.1 035 O];

>>den=[1 3 2];

>> sys = tf(num,den);

>> step(sys)

>> grid

>> title('Response of System Subjected to Initial Condition')
>> xlabel('t")

>> ylabel('Output x(t)')

EXAMPLE PROBLEMS AND SOLUTIONS

Problem A—4-1

Consider the satellite attitude control system depicted in Figure 4-21. The diagram
shows the control of only the yaw angle 6. (In the actual system, there are controls
about three axes.) Small jets apply reaction forces to rotate the satellite body into the
desired attitude. The two skew symmetrically placed jets denoted by A and B operate
in pairs. Assume that each jet thrust is F/2 and a torque T = F! is applied to the system.
The jets are turned on for a certain length of time, so the torque can be written as 7(t).
The moment of inertia about the axis of rotation at the center of mass is J.
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Figure 4-21 Schematic diagram of a
satellite attitude control system.

Reference

Obtain the transfer function of this system by assuming that the torque 7(¢) is the
input, and the angular displacement 6(t) of the satellite is the output. (We consider the
motion only in the plane of the page.)

Solution Applying Newton’s second law to this system and noting that there is no
friction in the environment of the satellite, we have

J F =T
Taking the Laplace transform of both sides of this last equation and assuming that all
initial conditions are zero yields
Js?0(s) = T(s)
where O(s) = £[0(1)] and T(s) = £[T(¢)]. The transfer function of the system is thus
o(s) 1

Transfer function = —— = —
T(s) Js?

Problem A—4-2

Consider the mechanical system shown in Figure 4-22. Displacements x; and x, are
measured from their respective equilibrium positions. Derive the transfer function of
the system wherein x; is the input and x, is the output. Then obtain the response x, ()
when input x; (¢) is a step displacement of magnitude X; occurring at ¢ = 0. Assume
that x,(0—) = 0.

Solution The equation of motion for the system is
bl('.xi - xo) + kl(xi - xo) = ij‘a

Taking the £ _ transform of this equation and noting that x;(0—) = 0 and x,(0—) = 0,
we have

(bis + k1) Xi(s) = (bis + ki + bys) X,(s)
The transfer function X,(s)/X;(s) is

Xo(s) _ bIS + kl
X(s) (b + by)s + k

(4-28)
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1’_‘_1.
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ky b,
xﬂ
7
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The response x,(¢) when the input x;(t) is a step displacement of magnitude X;
occurring at ¢ = 0 can be obtained from Equation (4-28). First we have

btk X _(1_ b L :
Xo(s)—(b1+b2)5+kl s -{S bl+b2 s+[k1/(b1+b2)]}X

Figure 4-22 Mechanical system.

Then the inverse Laplace transform of X,(s) gives
by
x,(t) = [1 - m e~ kut/(by+b2) X,

Notice that x,(0+) = [b)/(b, + b))]X;

Problem A—4-3

The mechanical system shown in Figure 4-23 is initially at rest. At r = 0, a unit-step dis-
placement input is applied to point A. Assume that the system remains linear through-
out the response period. The displacement x is measured from the equilibrium position.
Ifm = 1kg, b = 10 N-s/m, and k = 50 N/m, find the response x(¢) as well as the values
of x(0+), x(0+), and x(oc).

Solution The equation of motion for the system is
mi+b(x—y)+kx=0
or
mx + bx + kx = by

(Viapar?)

[t X y

7
é 7, Figure 4-23 Mechanical
system.
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Noting that x(0—) = 0, x(0—) = 0, and y(0-) = 0, we take the £_ transform of this
last equation and obtain

(ms* + bs + k)X(s) = bs¥Y(s)
Thus,

X(S) _ bs
Y(s) ms®+bs+k

Since the input y is a unit step, Y (s) = 1/s. Consequently,

bs 1 b
X = —-—=
(s) ms2+bs+ks ms®+bs+k

Substituting the given numerical values for m, b, and k& into this last equation, we get

_ 10 _ 10
s2+10s+50 (s+5)P2+5

X(s)

The inverse Laplace transform of X(s) is
x(t) = 2¢™'sin 5t
The values of x(0+), x(0+), and x(o0) are found from the preceding equation and are
x(0+) =0, x(0+) = 10, x(00) =0

Thus, the mass m returns to the original position as time elapses.

Problem A—4-4

Find the transfer function X,(s)/X;(s) of the mechanical system shown in Figure 4-24.
Obtain the response x,(t) when the input x;(¢) is a step displacement of magnitude X;
occurring at ¢ = 0. Assume that the system is initially at rest [x,(0—) =0 and
y(0—) = 0]. Assume also that x; and x, are measured from their respective equilibrium
positions. The numerical values of by, b,, ky, and k; are as follows:

b, =5Ns/m, b =20N-s/m, Kk =5Nm,  k;=10N/m

Figure 4-24 Mechanical system.
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Solution The equations of motion for the mechanical system are
by(X; — X,) + ky(x; = x,) = by(%, — ¥)
by(k, = y) = kay

Taking the & _ transform of these two equations, with the initial conditions x;(0—) = 0,
x,(0—) = 0 and y(0—) = 0, we get

bilsXi(s) — sX,(s)] + ki[Xi(s) — Xo(5)] = bolsX,(s) — sY(s)]
bofsX,(s) — sY(s)] = kY (s)

If we eliminate Y(s) from the last two equations, the transfer function X,(s)/X;(s)

becomes
ko( ) ( 1 ) k

Xi(s) (bl )(bz ) b
kls+l k2s+1 +k‘s

Substitution of the given numerical values into the transfer function yields

Xo(s)  (s+1)2s+1) s +15+05
Xi(s) (s+1)(2s+1)+4s s2+35+05

For an input x/(t) = X;-1(¢), the response x,(r) can be obtained as follows: Since

X,(s) = s+ 155 + 05 X;
s +355+05 s
_ ( 06247 _ 06247 1 ) :
s+33508 s+01492  s/)7

we find that
x,(2) = (0.6247¢733581 — 0,6247¢701492¢ ¢ 1)X;

Notice that x,(0+) = X;.

Problem A—4-5

Obtain the transfer function X(s)/U(s) of the system shown in Figure 4-25, where u is the
force input. The displacement x is measured from the equilibrium position.

L

<
ky 3

vy

AAAAA
YyYvyy

ky

w Figure 425 Mechanical
system,
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Solution The equations of motion for the system are
mx = —kyx — b(x — y) +u
bi(x - y) = kiy

Laplace transforming these two equations and assuming initial conditions equal to
zero, we obtain

ms*X (s) = —kp X (s) — bisX(s) + bisY(s) + U(s)
bisX(s) — bysY(s) = kY (s)
Eliminating Y(s) from the last two equations yields

b]S
b]S + kl

(ms? + bis + k)X (s) = bys X(s) + U(s)

Simplifying, we obtain
[(ms* + bys + ky)(bis + ky) — b>?) X (s) = (bys + ky)U(s)
from which we get the transfer function X(s)/U(s) as
X(s) _ bis + Ky
U(s)  mbys® + mkys® + by(ky + ky)s + kiky

Problem A—4-6

Figure 4-26(a) shows a schematic diagram of an automobile suspension system. As the
car moves along the road, the vertical displacements at the tires excite the automobile
suspension system, whose motion consists of a translational motion of the center of
mass and a rotational motion about the center of mass. Mathematical modeling of the
complete system is quite complicated.

>
k3
Center of mass
AN

\0 Auto body “

(@ (b)

AAAA
AAAA
vy

Figure 4-26 (a) Automobile suspension system; (b) simplified suspension system.
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A highly simplified version of the suspension system is shown in Figure 4-26(b).
Assuming that the motion u at point P is the input to the system and the vertical
motion y of the body is the output, obtain the transfer function Y(s)/U(s). (Consider
the motion of the body only in the vertical direction.) The displacement y is measured
from the equilibrium position in the absence of the input u.

Solution The equation of motion for the system shown in Figure 4-26(b) is
my +b(y—i)+k(y—u)=0
or
my + by + ky = bt + ku

Taking the Laplace transform of this last equation, assuming zero initial conditions, we
obtain

(ms? + bs + k)Y (s) = (bs + k)U(s)
Hence, the transfer function Y (s)/U(s) is
Y(s) __ bs+k
U(is) ms®+bs+k

Problem A—4-7

Obtain the transfer function Y(s)/U(s) of the system shown in Figure 4-27. The vertical
motion « at point P is the input. (Similar to the system of Problem A-4-6, this system is
also a simplified version of an automobile or motorcycle suspension system. In
Figure 4-27, m; and k; represent the wheel mass and tire stiffness, respectively.)
Assume that the displacements x and y are measured from their respective equilib-
rium positions in the absence of the input u.

Solution Applying Newton’s second law to the system, we get
mix = ky(y — x) + b(y — x) + ki(u — x)
myy = —ky(y — x) — b(y - )

ny Ty
CE I
1
L x
m
‘b
ky <E

<
<

u
Figure 4-27 Suspension system.
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Hence, we have
mllt' + bx + (kl + k2)x = by + kzy + klu
mZ.}; + b).’ + ka = bx + kzx

Taking the Laplace transforms of these two equations, assuming zero initial conditions,
we obtain

[mys? + bs + (k; + k2)1X(s) = (bs + kp)Y(s) + kU(s)
[mys? + bs + ky]Y (s) = (bs + ki) X(s)
Eliminating X(s) from the last two equations, we have

stz + bs + kz

(mys* + bs + ky + k) Y(s) = (bs + kp)Y(s) + kU(s)

bs + k;
which yields
Y(s) ky(bs + kz)
UG) ~ mymys® + (my + my)bs® + [kymiy + (my + m)kals® + kebs + kiks
Problem A—4-8
Expand the function

B(s) 35+ 55+ 10s + 40
A(s)  s*+ 165 + 69s% + 94s + 40
into partial fractions with MATLAB.

Solution A MATLAB program for obtaining the partial-fraction expansion is given
in MATLAB Program 4-13.

MATLAB Program 4-13

>>num=1[3 5 10 40];
>>den=[1 16 69 94 40];
>> [r, p, k] = residue(num,den)

r=

5.2675
~2.0741
—0.1934

1.1852

p =
—10.0000
—4.0000
—1.0000

—1.0000
k=

(l

From the results of the program, we get the following expression:

B(s) _ 52675 —20741  -01934 1185
A(s) s+10 s+4 s+1 0 (s+1)?
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Note that the row vector k is zero, because the degree of the numerator is lower than
that of the denominator.

Problem A-4-9
Expand the function
B(s) 28 +55+7
A(s) S +32+7Ts+5
into partial fractions with MATLAB.

Solution A MATLAB program for obtaining the partial-fraction expansion is shown
in MATLAB Program 4-14.

MATLAB Program 4-14

>>num=[2 5 7)];
>>den=[1 3 7 5];
>> [r, p, k] = residue(num,den)

r=

0.5000 — 0.2500i
0.5000 + 0.2500i

1.0000
p =
—1.0000 + 2.0000i
—1.0000 — 2.0000i
~1.0000
k=

[

From the MATLAB output, we get the following expression:
B(s) 05-j025 05+ j0.25 1
A(s) s+1-j2 s+1+2 s+1
_ (0.5 — j0.25)(s + 1 + j2) + (0.5 + jO.25)(s + 1 — j2) + 1
(s+1-72)(s+1+j2) s+1
s+2 1
=s2+2s+5+s'*‘1

Note that, because the row vector k is zero, there is no constant term in this partial-frac-
tion expansion.

Problem A—4-10

Consider the mechanical system shown in Figure 4-28. The system is initially at rest,
and the displacement x is measured from the equilibrium position. Assume that
m = 1kg, b = 12 N-s/m, and k = 100 N/m.

Obtain the response of the system when 10 N of force (a step input) is applied to
the mass m. Also, plot a response curve with the use of MATLAB.
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’— P (10 N of force)

>

Figure 4-28 Mechanical system.

Solution The equation of motion for the system is
mX + bx + kx =P
Substituting the numerical values into this last equation, we get
¥+ 12x + 100x = 10

Taking the Laplace transform of this last equation and substituting the initial condi-
tions [x(0) = 0 and x(0) = 0] yields

(2 + 125 + 100)X(s) = 18_0

Solving for X(s), we obtain
_ 10
"~ s(s® + 125 + 100)
01 0l1s+12
T s s+ 125 + 100
_ 0l 0.1(s + 6) _ (gﬁ) 8
s (s+62+8 \8/)(s+62+8
The inverse Laplace transform of this last equation gives

x(t) = 0.1 — 0.1e™% cos 8t — 0.075¢7%' sin 8¢

The response exhibits damped vibration.
A MATLAB program to plot the response curve is given in MATLAB Program
4-15. The resulting response curve is shown in Figure 4-29,

X(s)

MATLAB Program 4-15

>>t=0:0.01:2;

>> num = [10};
>>den=[1 12 100];
>> sys = tf(num,den);

>> step(sys,t)

>> grid

>> title ('Step Response')
>> xlabel('t")

>> ylabel('Output x(t)")




Output x(f)

0.12
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Step Response
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Problem A—4-11

145

Figure 4-29 Step response of mechani-
cal system.

Consider the mechanical system shown in Figure 4-30, where b; = 0.5 N-s/m,
b, = 1 N-s/m, k; = 1 N/m, and k, = 2 N/m. Assume that the system is initially at rest.
The displacements x; and x,, are measured from their respective equilibrium positions.
Obtain the response x,(¢) when x;(t) is a step input of magnitude 0.1 m.

Solution From Problem A~4—4, the transfer function X,(s)/X;(s) is

by

—s+1

Xo(s) _ (kl

)
7"2'5'+1)

SR

H

s 1) kls

b,

Figure 4-30 Mechanical system.
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Figure 4-31 Step response of system
shown in Figure 4-30.
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Substitution of the given numerical values yields
Xo(s) (055 +1)(05s + 1)
Xi(s) (055 + 1)(0.5s + 1) + s
0252+ s +1
T 0252 425+ 1
_ s +4s+4
TP +8s+4
Since x;(t) = (0.1)1(¢), we have

xis) = 2

Hence,

_ S +45+401

2 +8+4 s

_01s* + 045 + 04 1

T 2 +8+4 s

MATLAB Program 4-16 is used to obtain the step response, which is shown in Figure 4-31.

X,(s)

MATLAB Program 4-16

>>t=0:0.02:12;

>>num=[0.1 0.4 04];

>>den=[1 8 4];

>> sys = tf(num,den);

>> [x_o,t] = step(sys,t);

>> plot(t,x_o)

>> grid

>> title('Step Response of (0.1sA2 + 0.4s + 0.4) / (s"2 + 8s + 4)')
>> xlabel('t (sec)")

>> ylabel('x_o(t)")

Step Response of (0.1s% + 0.4s + 0.4)/(s? + 85 + 4)

0.095 |
009 |
0.085
0.08
0.075
0.07
0.065
0.06 |
0.055 | : ; : : ;
0.05 : i i i i

xo(1)




x(?)

0.12

0.04

0.02

-0.02
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Figure 4-31 shows the response curve from ¢ = 0+ to ¢ = 12. Note that
x,(0+) = 0.1. If we wish to plot the curve from x,(0-) = 0 to x,(12) = 0.1, we may
add the axis command

v=[-2 12 -0.02 0.12]; axis(v)

to the program, as shown in MATLAB Program 4-17. Then the xy domain of the plot
becomes —-2 = x =< 12, -0.02 = y = (.12. The plot of the response curve produced

by

Step Response of (0.15% + 0.4s + 0.4)/(s? + 8 + 4)

MATLAB Program 4-17 is shown in Figure 4-32.

MATLAB Program 4-17

>>t=0:0.02:12;

>>num=[0.1 0.4 04];

>>den=[1 8 4];

>> sys = tf(num,den);

>> [x_o, t] = step(sys,t);

>> plot(t,x_o)

>>v=[-2 12 -0.02 0.12]; axis(v)

>> grid

>> title('Step Response of (0.1sA2 + 0.4s + 0.4) / (s"2 + 8s + 4)')
>> xlabel('t (sec)")

>> ylabel('x_o(t)")

>> text (1.5, 0.007, 'These two lines are manually drawn.")

J Tﬁ_ese two %lines aré manuafly drawx-i.
: P : : : : Figure 4-32 Step response of system,
2 0 2 4 6 8 10 12 hownin the region -2 = x < 12,
f(sec) -002 = y <012
Problem A-4-12

Plot the unit-step response curves of the two systems defined by the transfer functions

X(s) _ 25
U(s) s*+55+25

and

Y(s)  S5s+25
U(s) s2+5s+25

in one diagram. Then plot each curve in a separate diagram, using the subplot command.
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Solution MATLAB Program 4-18 produces the unit-step response curves of the two
systems. The curves are shown in Figure 4-33.

Multiple curves on one diagram can be split into multiple windows with the use of
the subplot command. MATLAB Program 4-19 uses the subplot command to plot two
curves in two subwindows, one curve per subwindow. Figure 4-34 shows the resulting plot.

MATLAB Program 4-18

>>t=0:0.05:3;

>>syst =tf([25], [1 5 25]);
>>sys2 =tf([5 25],[1 5 25]);
>> [x, t] = step(sys1,t);

>> [y, t] = step(sys2,t);

>> plot(t,x,t,y,ty,'0")

>> grid

>> title('Unit-Step Responses')
>> xlabel('t (sec)")

>> ylabel(*Outputs x(t) and y(t)')
>> text(1.25,1.15,'x")

>> text(1.25,1.3,'y")

Unit-Step Responses

14 T ! ; :
s Y :
12 b LR [N S Fereres R -
é 2R i i
= :
2 : :
=1 0.8 ,,,,,,,,,,,,,, .,. ................ _ .............. p
g 0.6 Lo . ................................................. -
a :
2 é
O 04 Ff i .............................................. 4
0.2 [ ., ............................................... -
0 0 0‘5 1 liS é 215 3
Figure 4-33 Two unit-step response . (S'ec)

curves shown in one diagram.

Problem A-4-13

Consider the system shown in Figure 4-35. The system is initially at rest. Suppose that
the cart is set into motion by an impulsive force whose strength is unity. Can it be
stopped by another such impulsive force?

Solution When the mass m is set into motion by a unit-impulse force, the system
equation becomes

mX + kx = 8(1)
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MATLAB Program 4-19

>>t =0:0.05:3;

>> sys1 = tf([25], [1
>>sys2 =tf([5 25], [
>> [x, t] = step(sys1,t);

>> [y, t] = step(sys2,t);

>> subplot(121), plot(t,x), grid
>> title('Unit-Step Response')

>> xlabel('t (sec)')

>> ylabel('Output x(t)")

>> subplot(122), plot(t,y), grid
>> title('Unit-Step Response')

>> xlabel('t (sec)")

>> ylabel('Output y(t)")

5 25
5 25])

12

Output x(¢)

4 Unit-Step Response

Output y(r)

4 Unit-Step Response

|

................................... 02 | ]
: ) 3 0 0 ] 2 Figure 4-34 Plots of two unit-step
¢ (sec) £ response curves in two subwindows, one
sec sec) in each subwindow.
[ x

N

Impulsive §

force k \

o() — m MWy §

N

\

Figure 4-35 Mechanical system.

We define another impulse force to stop the motion as A8(t — T), where A is the
undetermined magnitude of the impulse force and ¢ = T is the undetermined instant
that this impulse is to be given to the system to stop the motion. Then, the equation for
the system when the two impulse forces are given is

mx + kx = 8(t) + A8(t — T),

x(0-)=0,  ¥(0-)=0
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The £ _ transform of this last equation with x(0—) = 0 and %(0—) = 0 gives
(ms® + k)X(s) =1+ Ae™T
Solving for X(s), we obtain
1 —+ Ae™T
ms® + k

e

\/km 5 +_’i Vkm 2 4 .Iﬁ.

s
m

X(s) = et +

5

The inverse Laplace transform of X(s) is

x(1) = \/}(;sin\/%t + \/A_m [sin\/;l::-(t - T)] 1(t - T)

If the motion of the mass m is to be stopped at ¢t = T, then x(r) must be identically zero
fort = T, a condition we can achieve if we choose

T=7T, 377' 57r’
m m m

Thus, the motion of the mass m can be stopped by another impulse force, such as

A=1,

T 81-37 sl + Sm

- _\/'f ’ \/-E s - \/_z-_ ’
m m m
Problem A—4-14

Consider the mechanical system shown in Figure 4-36. Suppose that a person drops a
steel ball of mass m onto the center of mass M from a height d and catches the ball on
the first bounce. Assume that the system is initially at rest. The ball hits mass M at
t = 0. Obtain the motion of mass M for 0 < . Assume that the impact is perfectly elas-
tic. The displacement x of mass M is measured from the equilibrium position before the
ball hits it. The initial conditions are x(0—) = 0 and x(0—) = 0.

Assuming that M = 1kg, m = 0.015kg, b = 2N-s/m, k = 50 N/m, and d =
1.45 m, plot the response curve with MATLAB.

Solution The input to the system can be taken to be an impulse, the magnitude of
which is equal to the change in momentum of the steel ball. At ¢ = 0, the ball hits mass
M. Assume that the initial velocity of the ball is v(0—). Atz = 0, the ball bounces back
with velocity v(0+). Since the impact is assumed to be perfectly elastic,
v(0+) = —v(0-). Figure 4-37(a) shows a sudden change in the velocity of the ball.
Define the downward velocity to be positive. Since the change in velocity of the ball oc-
curs instantaneously, ¥ has the form of an impulse, as shown in Figure 4-37(b). Note
that 9(0+) is negative.
The equation of motion for the system is

M3 + bx + kx = F(t) (4-29)
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o
!

M

Figure 4-36 Mechanical system subjected to an
impulse input.

Y4
e ———— 1)(0—)
At
@ of \] i
|
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13“
At -
(®) oY/ t

Figure 4-37 (a) Sudden change in the velocity v
of steel ball; (b) plot of ¥ versus 1.

where F(r), an impulse force, is equal to —m®. [Note that —m® is positive; the impulse

force F(2) is in the positive direction of x.] From Figure 4-37(b), the impulse force can
be written as

: F(t) = A At 8(1)
where A At is the magnitude of the impulse input. Thus,
F(t) = AAt8(t) = —md
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from which we can get
0+ o+
/ A At 8(t)dt = —m/ vdt
0~ o-

or
AAt = mv(0—) — mv(0+) (4-30)

The momentum of the steel ball is changed from mv(0—) (downward at ¢+ = 0-) to
mv(0+) (upward at t = 0+). Since v(0+) = —v(0-), Equation (4-30) can be written as

A At =2mv(0-)
Then Equation (4-29) becomes
MX + bx + kx = F(t) = 2mv(0-) 6(t)
Taking the £ _ transforms of both sides of this last equation, we get
M[s’X (s) — sx(0-) — %(0-)] + b[sX(s) — x(0=)] + kX(s) = 2mv(0—)
Noting that x(0—) = 0 and x(0—) = 0, we have
(Ms? + bs + k)X (s) = 2mv(0-)
Solving for X(s), we obtain

2mw(0—)
X(s)=—F——
Ms® + bs + k

Since the velocity of the steel ball after falling a distance d is V 2gd, we have
v(0-) = V2gd
It follows that

2mV2gd

Mst+ bs + k

Substituting the given numerical values into Equation (4-31), we obtain

2 X 0.015V2 X 9.807 X 1.45
§2 4 25 + 50
0.15999
2+ 25+ 50
~0.15999 7
T (s+12+ 7

X(s) = (4-31)

X(s)

I

The inverse Laplace transform of X(s) gives
x(t) = 0.02286e™" sin 7t m

Thus, the response of the mass M is a damped sinusoidal motion.
A MATLAB program to produce the response curve is given in MATLAB Pro-
gram 4-20. The resulting curve is shown in Figure 4-38.
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MATLAB Program 4-20

>> num = [0.15999];
>>den=[1 2 50];
>> sys = tf(num,den);
>> impulse(sys)

>> grid
>> title('Impulse Response of Mechanical System')
>> xlabel('t")
>> ylabel('Output x(t)")
002 Impulse Response of Mechanical System
0.015
0.005
0 .
0015 - 1 - i - i
2 3 4 5 6 Figure 4-38 Response of mass M
t (sec) . . .
subjected to impulse input.
Problem A—4-15

Figure 4-39 shows a mechanism used for a safety seat belt system. Under normal oper-
ating conditions, the reel rotates freely and it is possible to let out more slack in the
belt, allowing the passenger to move forward even with the belt fastened. However, if
the car decelerates rapidly in a collision or sudden stop, the pendulum is subjected to
an impulsive torque that causes it to swing forward and also causes the bar to engage
the ratchet, locking the reel and safety belt. Thus, the passenger is restrained in place.

Referring to Figure 4-40, assume that the car is moving at a speed of 10 m/s
before a sudden stop. The stopping time At is 0.3 s. The pendulum length is 0.05 m. Find
the time needed for the pendulum to swing forward by 20°.

Solution From Figure 441, the moment of inertia of the pendulum about the pivot is
J = mi* The angle of rotation of the pendulum is 8 rad. Define the force that acts on the
pendulum at the instant the car stops suddenly as F(r). Then the torque that acts on the
pendulum due to the force F(¢) is F()! cos 6. The equation for the pendulum system is

mi*6 = F(t)l cos 6 — mgl sin 6 (4-32)

We linearize this nonlinear equation by assuming that the angle ¢ is small.
(Although 6 = 20° is not quite small, the resulting linearized equation will give an
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Seat belt
L w —
Pendulum
(a) Ratchet

Figure 4-39 Mechanism used for a safety
seat belt system. (a) Normal operating (b)
condition; (b) emergency condition.

v(0-)
—+——— Auto body

0.05

Figure 440 Pendulum attached K

to auto body.

F(r) ——

Figure 441 Pendulum system. mg
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approximate solution.) Approximating cos 6 = 1 andsin 8 == 6, we can write Equa-
tion (4-32) as
mi%§ = F(t)l — mgl @
or
mi6 + mgé = F(r) (4-33)
Since the velocity of the car at ¢ = 0— is 10 m/s and the car stops in 0.3 s, the average
deceleration is 33.3 m/s?.

Under the assumption that a constant acceleration of magnitude 33.3 m/s? acts
on the pendulum mass for 0.3 sec, F(f) may be given by

F(t) = m¥ = 333m[1(t) — 1(¢t — 0.3)]
Then, Equation (4-33) may be written as

mi + mg6 = 33.3m[1(1) — 1(t — 0.3)]
or

b+ %o = 3—31’—3[1(:) — 1( - 03)]

Since / = 0.05 m, this last equation becomes
0 + 196.146 = 666[1(r) — 1(t ~ 0.3)]
Taking £ _ transforms of both sides of the preceding equation, we obtain

(5% + 196.14)0(s) = 666(% - %e'“’) (4-34)
where we used the initial conditions that 8(0~) = 0 and (0—) = 0. Solving Equation
(4-34) for O(s) yields

o(s) = 666 (1 - e 9%)

s(s* + 196.14)

_(1_ s 666 _ -03s
(s s2+196.14) 196.14(1 e

The inverse Laplace transform of 6(s) gives

6(t) = 3.3955(1 — cos 14¢)
—3.3955{1(¢ — 0.3) — [cos 14(r — 0.3)]1(z — 0.3)} (4-35)
Note that1( — 0.3) = 0for0 < ¢ < 0.3.

Now assume that at ¢t = #;,6 = 20° = 0.3491 rad. Then, tentatively assuming
that ¢; occurs before t = 0.3, we seek to solve the following equation for t,:

03491 = 3.3955(1 — cos 141;)

Simplifying yields
cos 14¢; = 0.8972
and the solution is
n =0.0326s
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Since t; = 0.0326 < 0.3, our assumption was correct. The terms involving 1(¢t — 0.3) in
Equation (4-35) do not affect the value of ¢;. It thus takes approximately 33 millisec-
onds for the pendulum to swing 20°.

Problem A-4-16

Consider the mechanical system shown in Figure 442(a). The cart has the mass of m kg.
Assume that the wheels have negligible masses and there is no friction involved in the
system. The force u(t) applied to the cart is increased linearly from 0 to 5 N for the period
0 = t = 10, as shown in Figure 4-42(b). At ¢ = 10+, the force u(¢) is disengaged, or

u(t) =0 forl0 <t

Assuming that m = 100 kg, obtain the displacement x(r) of the cart for 0 < ¢ =< 30
with MATLAB. The cart is at rest for ¢ < 0, and the displacement x is measured from
the rest position.

Solation The equation of motion for the system is
mx = u
Hence, the transfer function of the system is
X(s) 1 1

U(s) ms® 100s2

The input u(f) is a ramp function for 0 < ¢ < 10 and is zero for 10 < ¢, as shown in
Figure 4-42(b). (At? = 10, u = 5N.) Thus,in MATLAB, we define

ul = 0.5%[0:0.02:10) for0=:=10
u2 = 0*[10.02:0.02:30] for10 <t =30

where u is either ul or u2, depending on which interval « is in. Then the input force u(r)
for 0 < ¢t = 30 can be given by the MATLAB array

u=[ul u2l

MATLAB Program 4-21

>>t = 0:0.02:30;

>> ul = 0.5*[0:0.02:10);

>> u2 = 0*[10.02:0.02:30];
>>us=[ul u2];
>>num=[1];den=[100 0 O0J;
>> sys = tf(num,den);

>> x = Isim(sys,u,t);

>> subplot(211),plot(t,x)

>> grid

>> ylabel('Output x(t)")

>> subplot (212), plot(t,u)
>>v=[0 30 -1 6];axis (v)
>> grid

>> xlabel('t (sec)")

>> ylabel('Input Force u(t) newton')




Example Problems and Solutions 157

MATLAB Program 4-21 produces the response curve. The curves of x(t) versus ¢ and
the input force u(z) versus ¢ are shown in Figure 4-43.

u(r)

u({) =] m

s ; g % ] ] -
4 0 10 20 30 t

(@ (b

Figure 442 (a) Mechanical system; (b) force u(¢) applied to the cart.

Output x(7)

Input Force u(f) newton

0 5 10 15 20 25 30
t (sec)

Figure 443 Response curve x(f) versus 7 and input curve u(r) versus t.

Problem A—4-17
Using MATLAB, generate a triangular wave as shown in Figure 4—44.

Solution There are many ways to generate the given triangular wave. In MATLAB
Program 4-22, we present one simple way to do so. The resulting wave is shown in
Figure 4-45.
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MATLAB Program 4-22

>>t=0:1:8;

>>ul = [0:0.5:1];

>>u2 = [0.5:—-0.5:-1];

>> u3 = [~0.5:0.5:0];
>>u=[ul u2 u3];

>> plot(t,u)

>>v=[-2 10 -1.5 1.5]; axis(v)
>> grid

>> title('Triangular Wave')

>> xlabel('t (sec)")

>> ylabel('Displacement u(t)')

Figure 444 Triangular wave.

Triangular Wave
1.5 T T T H

Displacement u(t)

t (sec)

Figure 445 Triangular wave generated with MATLAB.
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Problem A-4-18

Consider the spring-mass—dashpot system shown in Figure 4-46(a). Assume that the
displacement u of point P is the input to the system. Assume also that the input u(f) is a
small bump, as shown in Figure 4-46(b). Obtain the response y(r) of the mass m. The
displacement y is measured from the equilibrium position in the absence of the input
u(?). To obtain the response curve, assume that m = 100 kg, b = 400 N-s/m, and
k = 800 N/m.

Solution From Problem A—4-6, the transfer function of the system is

Y(S)= bs + k
U(s) ms®+bs+k

Substituting the given numerical values for m, b, and k into this transfer function, we

obtain
Y(s) _ 400s + 800
U(s) 100s + 400s + 800
__4s+8
sf+4s+8

The input u(¢) is a triangular wave for 0 < ¢ < 4 and is zero for 4 < ¢ < 8, (For the
generation of a triangular wave, see Problem A—4-17.)
As in Problem A—4-17, the input u(r) can be generated by first defining, in MAT-

LAB,
ul =[0:0.02:1];
u2 ={0.98:-0.02:-1];
u3 = [-0.98:0.02:0];
u4 = 0*[4.02:0.02:8];
and then defining

u=[ul u2 u3 u4]

MATLAB Program 4-23 produces the response y(¢) of the system. The response curve
y(#) versus ¢ and the input curve u(t) versus ¢ are shown in Figure 4-47.

(a) (b

Figure 446 (a) Spring-mass-dashpot system; (b) input u(r) versus «.
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MATLAB Program 4-23

>>t=0:0.02:8;

>>num=[4 8];

>>den=[1 4 8];

>> sys = tf(num,den);

>>ul = [0:0.02:1];

>>u2 = [0.98:-0.02:-1];

>> u3 = [-0.98:0.02:0];

>> u4 = 0*[4.02:0.02:8];

>>u=[ul u2 u3 u4];

>>y = Isim(sys,u,t);

>> plot(t,y,t,u)

>> grid

>> title('Response of Spring-Mass-Dashpot System and Input u(t)')
>> xlabel('t (sec)")

>> ylabel('Output y(t) and input u(t)')
>> text(2.2,0.72,'y")

>> text(1.05,0.1,'u")

s Response of Spring-Mass-Dashpot System and Input u(z)

Output y(t) and Input u(t)

Figure 447 Response of
spring-mass—dashpot system subjected to
the input shown in Figure 4-46(b).

Problem A-4-19

Consider the spring-mass system shown in Figure 4-48. The displacement x is mea-
sured from the equilibrium position. The system is initially at rest. Assume thatatz = 0
the mass is pulled downward by 0.1 m [i.e., x(0) = 0.1] and released with the initial
velocity of 0.5 m/s [i.e., x(0) = 0.5]. Obtain the response curve x(f) versus ¢ with MAT-
LAB. Assume that m = 1kgand k = 9 N/m.
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Y/,

X Figure 448 Spring-mass system.

Solution The equation of motion for the system is
m¥ = —kx
Taking the Laplace transform of the preceding equation, we obtain
m[s2X (s) — sx(0) — x(0)] = —kX(s)

Substituting the given numerical values for m, k, x(0), and x(0) into this last equation,
we have

s*X(s) ~0.1s — 0.5 + 9X(s) = 0
Solving for X(s), we get

0.1s+ 05 0152+ 05s1
X(s)=— == =~
s“+9 s+9 5

Hence, the response x(¢) can be obtained as the unit-step response of

0.1s2 + 0.5s
G(s) = ——
(s) s2+9

MATLAB Program 4-24 produces the response curve x(¢) versus 2. The curve is shown
in Figure 4-49.

MATLAB Program 4-24

>>t=0:0.001:4;

>>num=[0.1 0.5 O]
>>den=[1 0 9];

>> sys = tf(num,den);

>> x = step(sys,t);

>> plot(t,x)

>>v=[-1 4 -0.4 0.4]; axis(v)
>> grid

>> title ('Response of System Subjected to Initial Condition')
>> xlabel('t (sec)")

>> ylabel('x(t) meter')
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Response of System Subjected to Initial Condition

0.4
03
0.2

0.1

Xx(t) meter
o

Figure 449 Response of spring-mass
system subjected to the initial condition
x(0) = 0.1 m and x(0) = 0.5 m’s.

PROBLEMS

Problem B-4-1

Find the transfer function X,(s)/X;(s) of the mechanical system shown in Figure 4-50.
The displacements x; and x, are measured from their respective equilibrium positions.
Obtain the displacement x,(t) when the input x;(¢) is a step displacement of magnitude

X; occurring at ¢t = 0. Assume that x,(0—) = 0.

<
ky g X;

\AA A

y

Figure 4-50 Mechanical system.

Problem B-4-2

Derive the transfer function X,(s)/X;(s) of the mechanical system shown in Figure 4-51.
The displacements x; and x,, are measured from their respective equilibrium positions.
Obtain the response x,(¢) when the input x;(¢) is the pulse
x,-(t)=X,- 0<‘<t1
=0 elsewhere

Assume that x,(0~) = 0.
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%/%A Figure 4-51 Mechanical system.

Problem B—4-3

Consider the mechanical system shown in Figure 4-52. Assume that u(¢) is the force
applied to the cart and is the input to the system. The displacement x is measured from
the equilibrium position and is the output of the system. Obtain the transfer function

X(s)/U(s) of the system.
— x (Output)
7
Al e (o)
7. m +(Input force)
ZWWW%
77 4

Figure 4-52 Mechanical system.

Problem B-44

In the mechanical system shown in Figure 4-53, the force u is the input to the system
and the displacement x, measured from the equilibrium position, is the output of the
system, which is initially at rest. Obtain the transfer function X(s)/U(s).

—>»X
Z
2
7 b
7 k
2__11]_ m | —AMMW—o0 =—p—u
Z
7
7 4 Figure 4-53 Mechanical system.
Problem B—4-5

The system shown in Figure 4-54 is initially at rest, and the displacement x is measured
from the equilibrium position. At t = 0, a force u is applied to the system. If « is the
input to the system and x is the output, obtain the transfer function X(s)/U(s).
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v, — X

7 b
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4/7/77/777777777/7%777777777/777/77”7/7/,

Figure 4-54 Mechanical system.

Problem B—4-6

Consider the mechanical system shown in Figure 4~55. The system is at rest for ¢ < 0.
The input force u is given at ¢ = 0. The displacement x is the output of the system and
is measured from the equilibrium position. Obtain the transfer function X(s)/U(s).

% b

2 ol =

7

7 ks u
% — X - AWN——0 —p
41 k ky

/

% WW m MWW

%

L L

Figure 4-55 Mechanical system.

Problem B—4-7

In the system of Figure 4-56, x(¢) is the input displacement and 6(¢) is the output angular
displacement. Assume that the masses involved are negligibly small and that all motions
are restricted to be small; therefore, the system can be considered linear. The initial con-
ditions for x and @ are zeros, or x(0—) = 0and 8(0—) = 0. Show that this system is a dif-
ferentiating element. Then obtain the response 6(¢) when x() is a unit-step input.

— L
yd
=S ————- —
—
—1 6 No friction /7

Figure 4-56 Mechanical system. W/W/
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Problem B-4-8

Consider the mechanical system shown in Figure 4-57. The system is initially at rest.
Assume that u is the displacement of point P and x is the displacement of mass m. The
displacement x is measured from the equilibrium position when u = 0. Draw four dif-
ferent block diagrams for the system.

m I

;B
b__—Tu

Figure 4-57 Mechanical system.

Problem B—4-9
Using MATLAB, obtain the partial-fraction expansion of
B(s) _ 1
A(s)  s*+ 57+ 81s% + 81s
Problem B—4-10
Using MATLAB, obtain the partial-fraction expansion of
B(s) 5(s +2)
A(s) 5 +55° + 1958 + 1282
Problem B—4-11

Consider the mechanical system shown in Figure 4-58. Plot the response curve x(r) ver-
sus ¢ with MATLAB when the mass m is pulled slightly downward, generating the ini-
tial conditions x(0) = 0.05m and x(0) = 1 m/s, and released at ¢ = 0. The
displacement x is measured from the equilibrium position before m is pulled down-
ward. Assume that m = 1kg, by = 4N-s/m, k; = 6 N/m, and k, = 10 N/m.

Figure 4-58 Mechanical system.
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Problem B—4-12

Consider the mechanical system shown in Figure 4-59. The system is initially at rest.
The displacements x; and x, are measured from their respective equilibrium positions
before the input u is applied. Assume that b; = 1 N-s/m, b, = 10 N-s/m, k; = 4 N/m,
and k, = 20 N/m. Obtain the displacement x,(¢) when u is a step force input of 2 N.
Plot the response curve x,(t) versus ¢t with MATLAB.

&
b, kl s X
Z }
b2 k2 <
Figure 4-59 Mechanical system. //ZA

Problem B—4-13

Figure 4-60 shows a mechanical system that consists of a mass and a damper. The sys-
tem is initially at rest. Find the response x(¢) when the system is set into motion by an
impulsive force whose strength is unity. Determine the initial velocity of mass m. Plot
the response curve x(t) versus t when m = 100 kg and b = 200 N-s/m.

= X

b

60—| m |—E—

INNANNNNNNNNNNNNANS

3@

Figure 4-60 Mechanical system.

Problem B-4-14

Consider the mechanical system shown in Figure 4-61. Suppose that the system is ini-
tially at rest [x(0—) = 0, x(0—) = 0] and at¢ = 0 it is set into motion by a unit-impulse
force. Obtain the transfer function of the system. Then obtain an analytical solution
x(£). What is the initial velocity x(0+) after the unit-impulse force is given to the cart?

m—— x
N
Impulsive \
force k §
8@) — ™ m W N
N\
T
Figure 4-61 Mechanical system. AN N
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Problem B—4-15

The mechanical system shown in Figure 4-62 is initially at rest. The displacement x of
mass m is measured from the rest position. At ¢ = 0, mass m is set into motion by an
impulsive force whose strength is unity. Using MATLAB, plot the response curve x(f)
versus ¢ when m = 10 kg, b = 20 N-s/m, and k = 50 N/m.

x “f‘ V/

6(,) m Yyvy b é
7

7

I

Problem B—4-16

A mass m of 1 kg is vibrating initially in the mechanical system shown in Figure 4-63.
Att = 0, we hit the mass with an impulsive force p(t) whose strength is 10 N. Assuming
that the spring constant & is 100 N/m, that x(0—) = 0.1 m, and that x(0—) = 1 mJs,
find the displacement x(#) as a function of time ¢. The displacement x(t) is measured
from the equilibrium position in the absence of the excitation force.

Figure 4-62 Mechanical system.

4

0]

x Figure 4-63 Mechanical system.

Problem B-4-17

Consider the system shown in Figure 4-64. The system is at rest for t < 0. Assume that
the displacement x is the output of the system and is measured from the equilibrium
position. At ¢ = 0, the cart is given initial conditions x(0) = x, and x(0) = v,. Obtain
the output motion x(r). Assume that m = 10kg, b, = 50 N-s/m, b, = 70N-s/m, k, =
400 N/m, and &, = 600 N/m.

——— X
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Problem B-4-18

Referring to Problem B—4-17, assume that m = 100 kg, b; = 120 N-s/m, b, =80 N-s/m,
ky = 200 N/m, and k, = 300 N/m. The initial conditions are x(0) = O m and %(0) =
0.5 m/s. Obtain the response curve x(f) versus ¢ with MATLAB.



State-Space Approach
to Modeling Dynamic
Systems

5-1 INTRODUCTION

The modern trend in dynamic systems is toward greater complexity, due mainly to
the twin requirements of complex tasks and high accuracy. Complex systems may
have multiple inputs and muitiple outputs. Such systems may be linear or nonlinear
and may be time invariant or time varying. A very powerful approach to treating
such systems is the state-space approach, based on the concept of state. This con-
cept, by itself, is not new; it has been in existence for a long time in the field of clas-
sical dynamics and in other fields. What is new is the combination of the concept of
state and the capability of high-speed solution of differential equations with the use
of the digital computer.

This chapter presents an introductory account of modeling dynamic systems in
state space and analyzing simple dynamic systems with MATLAB. (More on the
state-space analysis of dynamic systems is given in Chapter 8.) If the dynamic sys-
tem is formulated in the state space, it is very easy to simulate it on the computer
and find the computer solution of the system’s differential equations, because the
state-space formulation is developed precisely with such computer solution in mind.
Although we treat only linear, time-invariant systems in this chapter, the state-space
approach can be applied to both linear and nonlinear systems and to both time-
invariant and time-varying systems.

169
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In what follows, we shall first give definitions of state, state variables, state vec-
tor, and state space. Then we shall present the outline of the chapter.

State. The state of a dynamic system is the smallest set of variables (called
state variables) such that knowledge of these variables at t = ¢, together with
knowledge of the input for ¢ = #,, completely determines the behavior of the system
for any time t = {,.

Thus, the state of a dynamic system at time 7 is uniquely determined by the
state at time #; and the input ¢ = ¢y and is independent of the state and input before
fy. In dealing with linear time-invariant systems, we usually choose the reference
time f; to be zero.

State variables. The state variables of a dynamic system are the variables
making up the smallest set of variables that determines the state of the dynamic sys-
tem. If at least n variables x,, x,, ..., x, are needed to completely describe the be-
havior of a dynamic system (so that, once the input is given for ¢ = t; and the initial
state at ¢ = ¢, is specified, the future state of the system is completely determined),
then those n variables are a set of state variables. It is important to note that vari-
ables that do not represent physical quantities can be chosen as state variables.

~ State vector. If n state variables are needed to completely describe the be-
havior of a given system, then those state variables can be considered the n compo-
nents of a vector x called a state vector. A state vector is thus a vector that uniquely
determines the system state x(¢) for any time ¢ = #;, once the state at ¢ = #; is given
and the input u(¢) for t = ¢ is specified.

State space. The n-dimensional space whose coordinate axes consist of the
Xy-axis, x,-axis, ..., x,-axis is called a state space. Any state can be represented by a
point in the state space.

State-space equations. In state-space analysis, we are concerned with three
types of variables that are involved in the modeling of dynamic systems: input vari-
ables, output variables, and state variables. As we shall see later, the state-space rep-
resentation for a given system is not unique, except that the number of state variables
is the same for any of the different state-space representations of the same system.

If a system is linear and time invariant and if it is described by # state variables,
r input variables, and m output variables, then the state equation will have the form

xl = anxy + apXx) + - + A1p Xy + bllu‘ + b12u2 + - + bl,u,

¥y = ayxy + apx; + -0+ ayX, + by + bypuy + - + by,
Xp=aux; + apx, + o0+ appxy, + byuy + buy + -0 + bpu,

and the output equation will have the form
Vi =cXy + cpXxy + oo+ oXy +odpuy +dpup + 000+ dyu,
= 1 X + CXy + - + CoanXp + d21u1 + dzzuz + -0+ dz,-u,

Y2

Ym = CmaXy + CupXp + o0+ CupXp + dptyy + dppiiy + -+ + dpu,
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where the coefficients a;;, by, c;;, and d; are constants, some of which may be zero. If
we use vector-matrix expressions, these equations can be written as

X = Ax + Bu (5-1)
y = Cx + Du (5-2)
where
EN (ay ap o a, by b -+ by u
| Xp | [ 8m @2 "t Gmn by bm -t bn U,
B [(cn e - e dy dp - dy
e R Gl S )
| V| [ Cm1 Cm2 "t Cmm dm dmy - dm

Matrices A, B, C, and D are called the state matrix, input matrix, output matrix, and
direct transmission matrix, respectively. Vectors x, u, and y are the state vector, input
vector, and output vector, respectively. (In control systems analysis and design, the
input matrix B and input vector u are called the control matrix and control vector,
respectively.) The elements of the state vector are the state variables. The elements
of the input vector u are the input variables. (If the system involves only one input
variable, then u is a scalar.) The elements of the output vector y are the output vari-
ables. (The system may involve one or more output variables.) Equation (5-1) is
called the state equation, and Equation (5-2) is called the output equation. [In this
book, whenever we discuss state-space equations, they are described by Equations
(5-1) and (5-2).]

A block diagram representation of Equations (5-1) and (5-2) is shown in
Figure 5-1. (In the figure, double-line arrows are used to indicate that the signals are
vector quantities.)

A4
-

u(s) x() x(1) ¥
B I dt C

AR

Figure 5-1 Block diagram of the linear, continuous-time system represented in
state space.
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Example 5-1

Consider the mechanical system shown in Figure 5-2. The displacement y of the mass is
the output of the system, and the external force u is the input to the system. The dis-
placement y is measured from the equilibrium position in the absence of the external
force. Obtain a state-space representation of the system.

From the diagram, the system equation is

my+ by +ky=u (5-3)

This system is of second order. (This means that the system involves two integrators.)
Thus, we need two state variables to describe the system dynamics. Since y(0), y(0), and
u(t) = 0 completely determine the system behavior for ¢ = 0, we choose y(r) and y(r)
as state variables, or define

Then we obtain

X =X

.1 !
By =¥ ="-(—ky = b)) + —u

or
X =X (5-4)
b=—£n—%n+%u (5-5)
The output equation is

y=x (5-6)

In vector-matrix form, Equations (54) and (5-5) can be written as
[x‘] = (1)( Z [xl] + (1) u (5-7)

X - —Z|lx -

The output equation, Equation (5-6), can be written as

y=u of®] 5-9)

Figure 5-2 Mechanical system. ’
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_u_> % °z X2 Id: X2 - J»d’ Xy :iy
b
O~ 7 [+
L2

Figure 5-3 Block diagram of the mechanical system shown in Figure 5-2.

Equation (5-7) is a state equation, and Equation (5-8) is an output equation for the
system. Equations (5-7) and (5-8) are in the standard form

x = Ax + Bu
y=Cx+ Du
where
0 1 0
A= k b | B=|1]| Cc=[1 0], D=0
m m m

Note that Equation (5-3) can be modified to

u_k b, .

m my m)’ y
or

lu—i —zx—i

m mxl 2 2

On the basis of this last equation, we can draw the block diagram shown in Figure 5-3.
Notice that the outputs of the integrators are state variables.

In a state-space representation, a system is represented by a state equation
and an output equation. In this representation, the internal structure of the system is
described by a first-order vector-matrix differential equation. This fact indicates
that the state-space representation is fundamentally different from the transfer-
function representation, in which the dynamics of the system are described by the
input and the output, but the internal structure is put in a black box.

Outline of the chapter. Section 5~1 has defined some terms that are necessary
for the modeling of dynamic systems in state space and has derived a state-space model
of a simple dynamic system. Section 5-2 gives a transient-response analysis of systems
in state-space form with MATLAB. Section 5-3 discusses the state-space modeling of
systems wherein derivative terms of the input function do not appear in the system dif-
ferential equations. Numerical response analysis is done with MATLAB. Section 54
presents two methods for obtaining state-space models of systems in which derivative
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terms of the input function appear explicitly in the system differential equations.
Section 5-5 treats the transformation of system models from transfer-function repre-
sentation to state-space representation and vice versa. The section also examines the
transformation of one state-space representation to another.

5-2 TRANSIENT-RESPONSE ANALYSIS OF SYSTEMS
IN STATE-SPACE FORM WITH MATLAB

This section presents the MATLAB approach to obtaining transient-response
curves of systems that are written in state-space form.

Step response. We first define the system with
sys = ss(A,B,C,D)
For a unit-step input, the MATLAB command
step(sys) or step(A,B,C,D)

will generate plots of unit-step responses. The time vector is automatically deter-
mined when ¢ is not explicitly included in the step commands.
Note that when step commands have left-hand arguments, such as

y = step(sys,t), [y,t,x] = step(sys,t),
ly,x,t] = step(A,B,C,D,iu), ly,x,t] =step(A,B,C,D,iu,t)

no plot is shown on the screen. Hence, it is necessary to use a plot command to see
the response curves. The matrices y and x contain the output and state response of
the system, respectively, evaluated at the computation time points t. (Matrix y has as
many columns as outputs and one row for each element in t. Matrix x has as many
columns as states and one row for each element in t.)

Note also that the scalar iu is an index into the inputs of the system and speci-
fies which input is to be used for the response; t is the user-specified time. If the sys-
tem involves multiple inputs and multiple outputs, the step commands produces a
series of step response plots, one for each input and output combination of

X = Ax + Bu
y=Cx + Du
(For details, see Example 5-2.)

Transfer matrix. Next, consider a multiple-input-multiple-output system.
Assume that there are r inputs u,, u,, ..., i,, and m outputs y;, y,..., Y Define
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The transfer matrix G(s) relates the output Y(s) to the input U(s), or
Y(s) = G(s)U(s)
where
G(s)=C(sI-A)"'B+D (5-9)

[The derivation of Equation (5-9) is given in Example 5-2, to follow.] Since the
input vector u is r dimensional and the output vector y is m dimensional, the trans-
fer matrix G(s) is an m X r matrix.

Example 5-2
Consider the following system:

l-les lalelool)
X 65 0Jlx, 1 0Jlu;
=l le)+lo ol
» 0 1flx, 0 Oilu,
Obtain the unit-step response curves.
Although it is not necessary to obtain the transfer-function expression for the

system in order to obtain the unit-step response curves with MATLAB, we shall derive
such an expression for reference purposes. For the system defined by

X = Ax + Bu
y=Cx + Du
the transfer matrix G(s) is a matrix that relates Y(s) and U(s) through the formula
Y(s) = G(s)U(s) (5-10)
Taking Laplace transforms of the state-space equations, we obtain
sX(s) — x(0) = AX(s) + BU(s) (5-11)
Y(s) = CX(s) + DU(s) (5-12)
In deriving the transfer matrix, we assume that x(0) = 0. Then, from Equation (5-11),

we get
X(s) = (sI — A)'BU(s)
Substituting this equation into Equation (5-12) yields
Y(s) = [C(sI — A)"'B + DJU(s)
Upon comparing this last equation with Equation (5-10), we see that
G(s)=C(sI-A)'B+D
The transfer matrix G(s) for the given system becomes
G(s) =C(sI - A)"'B

-lo s o
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1 [s —1][1 1]
sP+s+65065 s+1l1 ©

_ 1 [s—l S]
s2+s5+65ls+75 65

Hence,
s—1 s
[Yl(s)] | +5+65 S2+5+65 [Ul(s)]
Ya(s)] | s+75 6.5 Us(s)

s?+5+65 s2+s+65

Since this system involves two inputs and two outputs, four transfer functions can
be defined, depending on which signals are considered as input and output. Note that,
when considering the signal «; as the input, we assume that signal u, is zero, and vice
versa. The four transfer functions are

nis) __ s-1 n(s) _ s
U(s) s*+s+65 U(s) s*+s+65
Yy(s)  s+715 Y(s) 65
U(s) s2+s+65 Uf(s) s*+s+65

The four individual step-response curves can be plotted with the use of the command
step(A,B,C,D)
or
sys = ss(A,B,C,D); step(sys)

MATLAB Program 5-1 produces four individual unit-step response curves, shown in
Figure 5-4.

MATLAB Program 5-1

>>A=[-1 -1;6.5 0];
>>B=[1 T1;1 0];
>>C=[1 0,0 1};
>D=[0 0,0 0];

>> sys = ss(A,B,C,D);

>> step(sys)

>> grid

>> title('Unit-Step Responses')
>> xlabel('t")

>> ylabel(‘Outputs')

To plot two step-response curves for the input u; in one diagram and two step-
response curves for the input u; in another diagram, we may use the commands

step(A,B,C,D,1)
and

step(A,B,C,D,2)
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Unit-Step Responses
From: In(1) From: In(2)
04 T T T T T T T T T

To: Out(1)

Outputs

To: Out(2)

Figure 5-4 Unit-step response curves.

MATLAB Program 5-2

>> % ----- In this program, we first plot step-response curves
>> % when the input is u1. Then we plot response curves when
>> % the input is u2. -----

>>

>A=[-1 -1;6.5 0];

>B=[1 1;1 0];

>C=[1 00 1];

>D=[0 00 0]

>>

>> step(A,B,C,D,1)

>> grid

>> title('Step-Response Plots (u_1 = Unit-Step Input, u_2 = 0)")
>> xlabel('t'); ylabel('Outputs')

>>

>> step(A,B,C,D,2)

>> grid

>> title('Step-Response Plots (u_1 = 0, u_2 = Unit-Step Input)")
>> xlabel('t'); ylabel('Outputs")

respectively. MATLAB Program 5-2 does just that. Figures 5-5 and 5-6 show the two
diagrams produced, each consisting of two unit-step response curves.
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Step-Response Plots (¢, = Unit-Step Input, u, = 0)

0.4

T T

To: Out(1)

Outputs

>

To: Out(2)

o
s

T
_ i

Figure $-5§ Unit-step response curves when u; is the input and u, = 0.

Step-Response Plots (u; = 0, u, = Unit-Step Input)

0.3

To: Out(1)

-01 _
02 ; i ; i

Outputs

-
W

To: Out(2)

e
n

t (sec)

Figure 5-6 Unit-step response curves when u, is the input and &, = 0.

Impulse response. The unit-impulse response of a dynamic system defined
in a state space may be obtained with the use of one of the following MATLAB

commands:
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sys = ss(A,B,C,D); impulse(sys), y = impulse(sys, t),
[y,t,x] = impulse(sys), ly,t,x] = impulse(sys,t),
impulse(A,B,C,D), [y,x,t] = impulse(A,B,C,D),

ly,x,t] = impulse(A,B,C,D,iu), ly,xt] = impulse(A,B,C,D,iu,t)

The command impulse(sys) or impulse(A,B,C,D) produces a series of unit-impulse
response plots, one for each input-output combination of the system

x = Ax + Bu
y = Cx + Du

with the time vector automatically determined. If the right-hand side of a command
includes the scalar iu (an index into the inputs of the system), then that scalar speci-
fies which input to use for the impulse response.

Note that if a command includes t, it is the user-supplied time vector, which
specifies the times at which the impulse response is to be computed.

If MATLAB is invoked with the left-hand argument [y,t,x], as in the case of
[y,t.x] = impulse(sys,t), the command returns the output and state responses of the
system and the time vector t. No plot is drawn on the screen. The matrices y and x
contain the output and state responses of the system, evaluated at the time points t.
(Matrix y has as many columns as outputs and one row for each element in t. Matrix
x has as many columns as state variables and one row for each element in t.)

Response to arbitrary input. The command Isim produces the response of
linear time-invariant systems to arbitrary inputs. If the initial conditions of the sys-
tem in state-space form are zero, then

Isim(sys,u,t)

produces the response of the system to an arbitrary input u with user-specified time t.
If the initial conditions are nonzero in a state-space model, the command

Isim(sys,u,t,xq)

where X is the initial state, produces the response of the system, subject to the input
u and the initial condition x.
The command

[yt = Isim(sys,u,t,xo)

returns the output response y. No plot is drawn. To plot the response curves, it is
necessary to use the command plot(t,y).

Response to initial condition. To find the response to the initial condition
Xg given to a system in a state-space form, the following command may be used:

[y,t] = Isim(sys,u,t,xo)

Here, u is a vector consisting of zeros having length size(t). Alternatively, if we
choose B = 0 and D = 0, then u can be any input having length size(t).
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Another way to obtain the response to the initial condition given to a system
in a state-space form is to use the command

initial(A,B,C,D,xo,t)
Example 5-3 is illustrative.

Example 5-3

Consider the system shown in Figure 5-7. The system is at rest for ¢ < 0. Att = 0, the
mass is pulled downward by 0.1 m and is released with an initial velocity of 0.05 m/s.
That is, x(0) = 0.1 m and x(0) = 0.05 m/s. The displacement x is measured from the
equilibrium position. There is no external input to this system.

Assuming that m = 1kg, b = 3N-s/m, and & = 2 N/m, obtain the response
curves x(t) versus t and x(¢) versus ¢ with MATLAB. Use the command initial.

The system equation is

mxX + bx + kx =0
Substituting the given numerical values for m, b, and k yields
I+3x+2x=0

If we define the state variables as

X =x

X =1k
and the output variables as

Nn=x

Y2 =X

then the state equation becomes

B)-[2 slal Lok
=06 ST+ ok
e e

initial(A,B,C,D,xq,t)

The output equation is

Thus,

0 1
A‘[—z —3]’ B

Using the command

Figure 5-7 Mechanical system.
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we can obtain the responses x(t) = y(¢) versus t and x(r) = y(t) versus t. MATLAB
Program 5-3 produces the response curves, which are shown in Figure 5-8.

Response to Initial Condition
0.12 T : T

0.1
0.08 |
0.06 | :
004 b N

yyandy;

-0.02 +
-0.04 |

0 1 2 3 4 5 6
t (sec)

Figure 5-8 Response curves to initial condition.

MATLAB Program 5-3

>>t=0:0.01:6;
>A=[0 1;,-2 -=3];

>> B = [0,0];
>C=[1 0,0 1];
>> D =[0;0];

>> [y, x, t] =initial(A,B,C,D,[0.1; 0.05],1);
>>yl=1 0] *y*;

>>y2=[0 1] *y";

>> plot(t,y1,t,y2)

>> grid

>> title('Response to Initial Condition')
>> xlabel('t (sec)')

>> ylabel('y_1 and y_2")

>> text(1.6, 0.05,'y_1")

>> text(1.6, —0.026,'y_2")

5-3 STATE-SPACE MODELING OF SYSTEMS WITH NO INPUT
DERIVATIVES

In this section, we present two examples of the modeling of dynamic systems in state-
space form. The systems used are limited to the case where derivatives of the input
functions do not appear explicitly in the equations of motion. In each example, we
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first derive state-space models and then find the response curves with MATLAB,
given the numerical values of all of the variables and the details of the input functions.

Example 54

Consider the mechanical system shown in Figure 5-9.The system is at rest for t < 0. At
t = 0, a unit-impulse force, which is the input to the system, is applied to the mass. The
displacement x is measured from the equilibrium position before the mass m is hit by
the unit-impulse force.

Assuming that m = 5kg, b = 20 N-s/m, and & = 100 N/m, obtain the response
curves x(t) versus t and x(¢) versus ¢t with MATLAB.

The system equation is

mX+bx+kx=u

The response of such a system depends on the initial conditions and the forcing func-
tion u. The variables that provide the initial conditions qualify as state variables. Hence,
we choose the variables that specify the initial conditions as state variables x; and x,.
Thus,

Xy =
X2

The state equation then becomes

.'xl = X3
. 1 . k b 1
= — —_ _ = —— —_— + —
Xy m(u kx — bx) X1 T Xt
For the output variables, we choose
h=x
n=1x

Rewriting the state equation and output equation, we obtain

. 0 1 0
S BN (el CA
2 m m |-*2 | m

and

R M

— > X
b 2
a1
u —— m Z
"""" %
Wf%]/gmk %
7/

Figure 5-9 Mechanical system.
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Substituting the given numerical values for m, b, and k into the state space equations

yields
0 1 0 10 0
A‘[—20 —4]’ B‘[o.z]’ C“[o 1]’ D"[o]

MATLAB Program 54 produces the impulse-response curves x(t) versus ¢ and x(t)
versus ¢, shown in Figure 5-10.

Impulse Response

¥ ¥

003 , g

Figure 5-10 Impulse-response curves.

MATLAB Program 54

>>t=0:0.01:3;

>>A=[0 1;,-20 -4];

>> B =[0;0.2];

>C=1[1 0,0 1];

>> D = [0;0];

>> sys = ss(A,B,C,D);

>> [y, t] = impulse(sys,t);
>>yl=[1 0%,

>>y2=[0 1]*,

>> subplot(211); plot(t,y1); grid
>> title('Impulse Response')

>> ylabel('x")

>> subplot(212); plot(t,y2); grid
>> xlabel('t (sec)"); ylabel('x dot')
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Example 5-5

Consider the mechanical system shown in Figure 5-11. The system is at rest for t < 0. At
t = 0, a step force f of & newtons is applied to mass m;,. [The force f = au, where uis a
step force of 1 newton.] The displacements z, and z, are measured from the respective
equilibrium positions of the carts before fis applied. Derive a state-space representation
of the system. Assuming that m; = 10kg, m, = 20kg, b = 20 N-s/m, k; = 30 N/m,
k; = 60 N/m, and a = 10, obtain the response curves z,() versus t, z,(t) versus ¢, and
z1(t) — z5(¢) versus r with MATLAB. Also, obtain z;(c0) and z,(0).
The equations of motion for this system are

miy = ki = k(2 — 23) = bz — 22) (5-13)
myZy = —ky(22 = 21) = b2 — 2)) + au (5-14)
In the absence of a forcing function, the initial conditions of any system determine the

response of the system. The initial conditions for this system are z;(0), z,(0), z,(0), and
2,(0). Hence, we choose z;, 1, 2, and 2, as state variables for the system and thus

define
X1 =7
X =2
X3 = 22
X3 =2

Then Equation (5-13) can be rewritten as

itk b ks b
Xp=———=xX1—— X+ —Xx3+—x4
my my m my

and Equation (5-14) can be rewritten as

. k; b ky b 1
Xg=—x1+—Xp——X3——Xx3t —au
m, m n my

The state equation now becomes

j'l = X3
ki + k, b k,
X9 = ——X1 — — X2 + — X3 + — X4
m my 1 1
;t3 = X4
N kZ b k2 b 1
Xp=—x1+t—x——x3—-—x3+ —au
my mp m; myp my

Nn=2z
Y2=22
> —> 23 —> 2
? b
A ——
? \AAAZ m, my — f
% ""‘V‘V
Ve v

Figure 5-11 Mechanical system.
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In terms of vector-matrix equations, we have

) 0 1 0 0 .
Xy btk b kb X 0
X*; m m m my | x2
= +| 0 5-15
i3 0 0 0 1 || x . “ (5-15)
% ] kb kb |ul |
L m my m; ms | ?
X1
w] [1 0 0 0] X3 [0]
= + 5-16
» 0 0 1 0J]xs o ( )
X4

Equations (5-15) and (5-16) represent the system in state-space form.
Next, we substitute the given numerical values for m,, m,, b, k;, and k;, into
Equation (5-15). The result is

X 0 1 0 0]x 0
X -9 -2 6 2|x 0
= + _17
i 0 0 0 1|x o | (5-17)
X4 3 01 =3 -1 x 0.5
From Equations (5-17) and (5-16), we have
0 1 0 0 0
-9 -2 6 2 0 1 0 0 O 0
A=l o 0o o 1} B=1o | C'[o 0 1 o]’ D“[o]
3 1 -3 -1 0.5

MATLAB Program 5-5 produces the response curves z;(¢) versus t, z,(t) versus #, and
z1(t) = z5(t) versus t. The curves are shown in Figure 5-12.

MATLAB Program 5-5

>>t=0:0.1:200;
>A=0 1 0 -9 -2 6 20 0 0 1;3 1 -3 -1,

>> B = [0;0;0;0.5];
>C=[1 0 0 0,0 0 1 0]
>> D = [0;0];

>> sys = ss(A,B,C,D);

>> [y,t] = step(sys,t);

>>yl =[10]*Y';

>>y2 = [0 1%y

>> z1 =y1; subplot(311); plot(t,z1); grid
>> title('Responses z_1 Versus t, z_2 Versus t, and z_1 — z_2 Versus t')
>> ylabel('Output z_1')

>> z2 = y2; subplot(312); plot(t,z2); grid
>> ylabel('Output z_2")

>> subplot(313); plot(t,z1—z2); grid

>> xlabel('t (sec)"); ylabel('z_1 — z_2")
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Responses z, Versus 1, z, Versus t, and z, — 2, Versus ¢
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Figure 5-12 Step-response curves.

To obtain z;(o0) and z,(00), we set all derivatives of z; and z, in Equations
(5-13) and (5-14) equal to zero, because all derivative terms must approach zero at

steady state in the system. Then, from Equation (5-14), we get
kylzy(00) = 2)(0)] = au

from which it follows that
au

2(00) = () =

2

~10_1
60 6

From Equation (5-13), we have
ki21(0) = kjlz5(00) — 2,(0)]

Hence,

W=

w,ox
Qlo
A=

21(00) = ’,j—j[a(oo) — (o)) =

and
1 1
z() = r z(®) = 2
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1 1
a(®@)=3m, () =3m

The final values of z;(¢) and z,(¢) obtained with MATLAB (see the response curves in
Figure 5-12) agree, of course, with the result obtained here.

5-4 STATE-SPACE MODELING OF SYSTEMS WITH INPUT
DERIVATIVES

In this section, we take up the case where the equations of motion of a system
involve one or more derivatives of the input function. In such a case, the variables
that specify the initial conditions do not qualify as state variables. The main problem
in defining the state variables is that they must be chosen such that they will elimi-
nate the derivatives of the input function « in the state equation.

For example, consider the mechanical system shown in Figure 5-13. The dis-
placements y and u are measured from their respective equilibrium positions. The
equation of motion for this system is

my = —ky — b(y — &)

or
.__k b, L
Y m? " m?  m
If we choose the state variables
X1 =)y
X2=Y
then we get
il = X2
. k b b,
Xy = —;Xl - ;xz + ;u (5—18)

The right-hand side of Equation (5-18) involves the derivative term . Note that, in
formulating state-space representations of dynamic systems, we constrain the input
function to be any function of time of order up to the impulse function, but not any
higher order impulse functions, such as d&(¢)/dt, d%5(t)/dt?, etc.

_.y U
1

,3333553333333333;;355253’3335';;;;3;;;53;;;34 Figure 5-13 Mechanical system.

MM

NIK
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To explain why the right-hand side of the state equation should not involve the
derivative of the input function u, suppose that u is the unit-impulse function &(¢).
Then the integral of Equation (5-18) becomes

k b k
Xy = —-r;/ydt —Fn-y+;8(t)

Notice that x, includes the term (k/m) 8(t). This means that x,(0) = 00, which is
not acceptable as a state variable. We should choose the state variables such that the
state equation will not include the derivative of u.

Suppose that we try to eliminate the term involving & from Equation (5-18).
One possible way to accomplish this is to define

X1 =Yy
_,- b
X2 y mu
Then
. .. b,
x2=y—;n—u
ok _b. b _ b,
my my mu mu
_ky b by
- mxl m 2 mu
__k _zx_(z)z
mxl m2 m u

Thus, we have eliminated the term that involves u. The acceptable state equation
can now be given by

0 1 b
'tl X1 m
.| = k b [ } + u
[xz] o T %2 _(3)2
m

If equations of motion involve u, &, i, etc., the choice of state variables
becomes more complicated. Fortunately, there are systematic methods for choosing
state variables for a general case of equations of motion that involve derivatives of
the input function u. In what follows we shall present two systematic methods for
eliminating derivatives of the input function from the state equations. Note that
MATLAB can also be used to obtain state-space representations of systems involv-
ing derivatives of the input function u. (See Section 5-5.)

State-space representation of dynamic systems in which derivatives of
the input function appear in the system differential equations. We consider
the case where the input function u is a scalar. (That is, only one input function u is
involved in the system.)
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The differential equation of a system that involves derivatives of the input
function has the general form

(n) (n-1) . (n) (n-1) .
ytay + - +a,ytay=bu+bu + - +b_u+bu (5-19)

To apply the methods presented in this section, it is necessary that the system be
written as a differential equation in the form of Equation (5-19) or its equivalent
transfer function

Y(s) bps" +bys"+ - + b, 15+ b,

U(S) s" + als"'l + - +a,-15 +a,

We examine two methods when n = 2; for an arbitrary n = 1,2, 3,..., see
Problems A-5-12 and A-5-13.

Method 1. Consider the second-order system

y + a1y + ay = byii + by + bu (5-20)

As a set of state variables, suppose that we choose

X3 =y — Bou (5-21)

X2 = .'xl - Blu (5_22)
where

Bo = bo (5-23)

B1=b — a1y (5-24)
Then, from Equation (5-21), we have

y = x; + Bou (5-25)

Substituting this last equation into Equation (5-20), we obtain
Xy + Boii + ay(x; + Boit) + ax(x1 + Bou) = by + byt + bou

Noting that By = by and B; = b; — a,B,, we can simplify the preceding equation to

X1+ ayky + ayx) = Bt + (by — ayBo)u (5-26)
From Equation (5-22), we have

X1 =x+ Pu (5-27)
Substituting Equation (5-27) into Equation (5-26), we obtain
X2 + Put + ay(xy + Bau) + axxy = Bt + (b — axBo)u

which can be simplified to

Xy = —axx] — A1Xy + Bzu (5—28)
where

B2 =by — a1f) — @B (5-29)
From Equations (5-27) and (5-28), we obtain the state equation:

[2] - [—ag —all][iﬂ * [2]“ (5-30)
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From Equation (5-25), we get the output equation:
y=1 01["1] + Bou (5-31)
X

Equations (5-30) and (5-31) represent the system in a state space.

Note that if By = by = 0, then the state variable x; is the output signal y,
which can be measured, and, in this case, the state variable x, is the output velocity
y minus byu.

Note that, for the case of the nth-order differential-equation system

(r) ~ (n-1) . (n) ~ (n-1) .
y tay + - +a,y+tayy=bu+bu + - +b,_qu+byu

the state equation and output equation can be given by

Xy 0 1 0 0 xq B
X.fz 0 0 1 cee 0 X2 BZ
: =| : : : : : + i u
Xp-1 0 0 0 e 1 Xn-1 Bn-1
jcn —a, —ap-1 —A4p-2 " —a Xn Bn
and
X1
y=[1 0 - 0] 2 + Bou
xn
where B¢, B1, B2, - - -, B, are determined from
Bo = by
B1=b — aiBo
Ba = by — a1 — axP
B3 = by = aiBy — a3 — a3Bo
Bn=by— a1Ba-1 — -+ — 8,181 — axBo
Method 2. Consider the second-order system
}3+a1y+a2y=boii+b1i4+b2u
or its equivalent transfer function
Y(S) _ b0s2 + bls + b2 (5_32)

U(s) s+ a;s + a,
Equation (5-32) can be split into two equations as follows:
Z(s) 1 Y(s)
U(s) s*+as+a Z(s)

= boSz + bls + b2
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We then have
Itaztaz=u (5-33)
bz +biz+bz=y (5-34)
If we define
X1 =2
X, =2z (5-35)

then Equation (5-33) can be written as
Xy = —ax; —apx; +u (5-36)
and Equation (5-34) can be written as
boxy + byxa + boxy =y
Substituting Equation (5-36) into this last equation, we obtain
bo(—axxy — ayxy + u) + byxy + byx; =y
which can be rewritten as
y = (by — azbo)x1 + (b1 — arbo)x, + bou (5-37)
From Equations (5-35) and (5-36), we get
X1 =x
Xy = —ax; —apx, +u

These two equations can be combined into the vector-matrix differential equation

[ X 21 ] [ 2 ] [ 2] [ :l ( )
X a —ay JLx 1
Equation (5—37) can be rewritten as

. X
y=Ib—ahy : bl—albol[x;] + bou (5-39)

Equations (5-38) and (5-39) are the state equation and output equation, respective-
ly. Note that the state variables x; and x, in this case may not correspond to any
physical signals that can be measured.

If the system equation is given by

()  (n-1) , (m) (a1 )
y +tay + - +ayt+ta,y=bu +bu+ - + b+ bu

or its equivalent transfer function

Y(s) bos" + bys" 1+ oo + b,_is + b,
UGs) s"+as" '+ - +a,_;5+a,
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then the state equation and the output equation obtained with the use of Method 2
are given by

%] [ o 1 0 o 0 xg ] [o0]
iz 0 0 1 0 X2 0
. = . . . . . + o |u (5—40)
Xp-1 0 0 0 1 Xp-1 0
L -'xn . | —aq, 0z —aGp-2 —a1 L X» | _1_
and
_x1_
X2
y=I[ba—aby i byy—apiby i - 1 b —ab)l |+ bu (541)
_xn_

Examples 5-6 and 5-7 illustrate the use of the preceding two analytical meth-
ods for obtaining state-space representations of a differential-equation system
involving derivatives of the input signal.

Example 5-6

Consider the spring-mass—dashpot system mounted on a cart as shown in Figure 5-14.
Assume that the cart is standing still for ¢+ < 0. In this system, u(f) is the displacement
of the cart and is the input to the system. At t = 0, the cart is moved at a constant
speed, or & = constant. The displacement y of the mass is the output. (y is measured

!

——b-y

NNNNNNNNNRNNNNNNNNRNNNY |

N\
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/4

Figure 5-14 Spring-mass—dashpot system mounted on a cart.
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from the rest position and is relative to the ground.) In this system, m denotes the mass
of the small cart on the large cart (assume that the large cart is massless), b denotes the
viscous-friction coefficient, and k is the spring constant. We assume that the entire sys-
tem is a linear system.

Obtain a state-space representations of the system based on methods 1 and 2 just
presented. Assuming that m = 10 kg, b = 20 N-s/m, k = 100 N/m, and the input is a
ramp function such that & = 1 m/s, obtain the response curve y(¢) versus ¢ with MATLAB.

First, we shall obtain the system equation. Applying Newton’s second law, we obtain

22 o (P ) iy

dr dt dt
or
dz,v dy
dt2 +b———+ky bd—-l-ku (542)

Equation (5-42) is the differential equation (mathematical model) of the system. The
transfer function is

Y(s)  bs+k

U(s) ms*+bs+k

Method 1. We shall obtain a state-space model of this system based on Method 1.

We first compare the differential equation of the system,
"+£' +£ —2' +£
Y m Y m y m “ m “

with the standard form

Y+ a1y + ayy = byii + bt + bu
and identify

S
il
o
S
[
3|
Na
f
3>

b k&
a1=;7 aZ—Zy

From Equations (5-23), (5-24), and (5-29), we have

Bo=bp=0
b
Bl_bl_alﬁo_;
k b\?
Br=by—api — o= = (;)
From Equations (5-21) and (5-22), we define
n=y-—Bu=y
Xy = il - Blu = i] - Eu (5—43)
m
From Equations (5-43) and (5-28), we obtain
. b
=X+ piu=x+ e (5-44)

. k b k b\?
X3 = —aAX) — ayXp + Bzu = -'—n-xl - ";XZ + [';" - (;) ]u (5—45)
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and the output equation is
y=x (5-46)

Combining Equations (5-44) and (5-45) yields the state equation, and from Equation
(5-46), we get the output equation:

x 0 1 x %
1 1
[xz] LA [xz] + k (b)2 u
m m — ==
m m

These two equations give a state-space representation of the system.
Next, we shall obtain the response curve y(t) versus ¢ for the unit-ramp input
# = 1 m/s. Substituting the given numerical values for m, b, and k into the state equa-

tion, we obtain
o)=L - [e)
= +
[xz] [—10 -2)lx,] " L6

and the output equation is

7= o)

MATLAB Program 5-6 produces the response y(f) of the system to the ramp input
# = 1 m/s. The response curve y(t) versus ¢ and the unit-ramp input are shown in
Figure 5-15.

MATLAB Program 5-6

>> % ----- The response y(t) is obtained by use of the
>> % state-space equation obtained by Method 1. ---—-
>>

>>t=0:0.01:4;

>A=[0 1,-10 -=2];

>> B = [2;6];

>C=[1 0]

>>D=0;

>> sys = ss(A,B,C,D);

>>u=t

>> Isim(sys,u,t)

>> grid

>> title('Unit-Ramp Response (Method 1)")

>> xlabel('t")

>> ylabel('Output y and Unit-Ramp Input u')

>> text(0.85, 0.25,'y")

>> text(0.15,0.8,'u")
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a5 Unit-Ramp Response (Method 1)

= N w
h B L W o s
T T T

Output y and Unit-Ramp Input u
—

05

t (sec)

Figure 5-15 Unit-ramp response obtained with the use of
Method 1.

Method 2. Since

b0=0
k &k k
bz—azbo=z—;>(0=;
b b b
bl—alb():;—;)(():"‘n‘

from Equations (5-38) and (5-39), we obtain

- o fz]+ [
=[x 2]zl

The last two equations give another state-space representation of the same system.
Substituting the given numerical values for m, b, and k into the state equation, we

IR R

and the output equation is

get

y = [10 21[2]
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MATLAB Program 5-7 produces the response y(f) to the unit-ramp input # = 1 m/s. The
resulting response curve y(¢) versus ¢ and the unit-ramp input are shown in Figure 5-16.
Notice that the response curve here is identical to that shown in Figure 5-15.

Unit-Ramp Response (Method 2)

4.5

= N w
h D W s
T T

Output y and Unit-Ramp Input u
—

o
[

Figure 5-16 Unit-ramp response obtained with the use of
Method 2.

MATLAB Program 5-7

>> % ----- The response y(t) is obtained by use of the
>> % state-space equation obtained by Method 2. -----
>>

>>t=0:0.01:4;

>A=[0 1,-10 -2];

>> B =[0;1];

>>C=[10 2];

>>D=0;

>> sys = ss(A,B,C,D);

>>u=t;

>> Isim(sys,u,t)

>> grid

>> title('Unit-Ramp Response (Method 2)')

>> xlabel('t')

>> ylabel('Output y and Unit-Ramp Input u')

>> text(0.85,0.25,'y")

>> text(0.15,0.8,'u')

Example 5-7

Consider the front suspension system of a motorcycle. A simplified version is shown in
Figure 5-17(a). Point P is the contact point with the ground. The vertical displacement «
of point P is the input to the system. The displacements x and y are measured from their
respective equilibrium positions before the input u is given to the system. Assume that
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(a) ®)
Figure 5-17 (a) Mechanical system; (b) triangular bump input u.

my, by, and k, represent the front tire and shock absorber assembly and m;,, b,, and k,
represent half of the body of the vehicle. Assume also that the system is at rest for ¢ < 0.
Att = 0, Pis given a triangular bump input as shown in Figure 5-17(b). Point P moves
only in the vertical direction. Assume that m;, = 10 kg, m; = 100 kg, b; = 50 N-s/m,
b, = 100 N-s/m, k; = 50 N/m, and k, = 200 N/m. (These numerical values are chosen
to simplify the computations involved.) Obtain a state-space representation of the sys-
tem. Plot the response curve y(¢) versus ¢ with MATLAB.
Method 1. Applying Newton’s second law to the system, we obtain
m¥ = —ky(x —u) — by(x — i)
my¥ = ~koly = x) = ba(y = %)
which can be rewritten as
ml'JE + b]X + klx = blu + klu
myy + by + kyy = byx + kyx
If we substitute the given numerical values for m;, m,, by, b,, ky, and k,, the equations

of motion become
10X + 50x + 50x = 50 + 50u
100y + 100y + 200y = 100x + 200x
which can be simplified to
X+ 5% +5x =51+ 5u (547
y+y+2y=x+2x (5-48)

Laplace transforming Equations (5-47) and (5-48), assuming the zero initial condi-
tions, we obtain

(s + Ss + 5)X(s) = (55 + 5)U(s)
(s + s+ 2)Y(s) = (s + 2)X(s)
Eliminating X(s) from these two equations, we get
(2 + 55 + 5)(s® + s + 2)Y(s) = 5(s + 1)(s + 2)U(s)
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or
(s* + 65° + 125 + 155 + 10)Y(s) = (55% + 155 + 10)U(s) (5-49)
Equation (5-49) corresponds to the differential equation
"y 4+ 6y + 12¥ + 15y + 10y = Sii + 154 + 10u
Comparing this last equation with the standard fourth-order differential equation
Y4 ary + ay +azytay=byui’ + b+ byii + bsir + bu

we find that

a =6, a, =12, a; =15, a; =10

by =0, b =0, b, =5, by =15, by =10
Next, we define the state variables as follows:

x; =y — Bou
X=X — P
X3 =X — Pou
X4 = X3 = Byu

where
Bo=by=0
Bi=b—afp=0
B2=by—aify = aBp =5
Bi=bs—aifr— @B —a3fp=15-6X5=-15
Hence,
X=X
X, = x5+ Su
X3 = x4 — 15u
X4 = —auX) — a3% — ayX3 — a1 X4 + Pau
= —=10x; — 15x; — 12x3 — 6x4 + Bau
where
Ba = by — a13 — @22 — a3p1 — asfy
=10+6X15-12X5-15X0—-10X0=40
Thus,

,'X4 = —10x1 - lst - 12X3 - 6x4 + 40u
and the state equation and output equation become

k] 0 1 0 0 X1 0
X 0 0 1 0l x; 5
= +
%3 0 0 0 1 x|7|-15[
i’4 -10 -15 -12 -6 X4 40
X1

‘<
I

Lo o of™f+ou
X3

X4
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MATLAB Program 5-8 produces the response y(¢) to the triangular bump input shown
in Figure 5-17(b). The resulting response curve y(f) versus ¢, as well as the input u(r)
versus ¢, is shown in Figure 5-18.

MATLAB Program 5-8

>>t=0:0.01:16;

>A=[0 1 0 000 0 1 000 0 0 1;,-10 —-15 —-12 -6];
>> B = [0;5;—15;40];

>C=[1 0 0 0];

>D=0;

>> sys = ss(A,B,C,D);

>>ul =[0:0.01:1}];

>>u2 =[0.99:-0.01:—-1];

>>u3 =[-0.99:0.01:0];

>> u4 = 0*[4.01:0.01:16];

>>u=[ul u2 u3 u4];

>>y = Isim(sys,u,t);

>> plotit,y,t,u)

>>v=[0 16 -=1.5 1.5]; axis(v)

>> grid

>> title('Response to Triangular Bump (Method 1))
>> xlabel('t (sec)")

>> ylabel(‘Triangular Bump and Response’)

15

Response to Triangular Bump (Method 1)

Triangular Bump and Response

t (sec)

Figure 5-18 Response curve y(¢) and triangular bump input u(z).
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Method 2. From Equation (5-49), the transfer function of the system is given by

Y(s) _ 55 + 155 + 10
U(s) s*+65°+12s2+ 155+ 10

Figure 5-19 shows a block diagram in which the transfer function is split into two parts.
If we define the output of the first block as Z(s), then

Z(s) _ 1
U(s) s*+65°+ 1282+ 155+ 10
1

s+ a8+ a5+ oass +oay

and

E ;—5s2+15s+10=bos"+bls3+bzsz+b3s+b4
from which we get

a = 6, a = 12, a = 15, a = 10,

b0=0, b1=0, b2=5, b3=15, b4=10

Next, we define the state variables as follows:

X1 =2
X2=;¥1
X3=i'2
X4=.'X3

From Equation (5-40), noting that a; = 6, a; = 12,a; = 15, and a, = 10, we obtain

i 0o 1 o0 ofx 0
R|_| 0 0o 1 ofn| |o]
X3 0 0 0 1| x 0
i -10 -15 -12 —6 || x, 1

Similarly, from the output equation given by Equation (5-41), we have

X1
. . . X
y = [bs — ashy : b3 — ashy : by — @by : by — ayby) xi + bou
X4
) N ze) Y(s)

| 552+ 155 + 10 p=——d—

s+ 655 + 125% + 155 + 10

Figure 5-19 Block diagram of Y(s)/U(s).
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or
X1
X2
y=[10 15 5 0] + Ou
X3
X4

MATLAB Program 5-9 produces the response y(¢) to the triangular bump input. The
response curve is shown in Figure 5-20. (This response curve is identical to that shown
in Figure 5-19.)

MATLAB Program 5-9

>>t=0:0.01:16;

>A=[0 1 0 000 01 00 0 0 1,-10 —-15 -12 -6);
>> B = [0;0;0;1];

>C=[10 15 5 0]

>>D=0;

>> sys = ss(A,B,C,D);

>>ul = [0:0.01:1];

>>u2 =[0.99:-0.01:—-1];

>>u3 =[—0.99:0.01:0];

>> u4 = 0*[4.01:0.01:16);

>>u=[ul u2 u3l3 u4];

>> y = Isim(sys,u,t);

>> plot(t,y,t,u)

>>v=[0 16 —=1.5 1.5]; axis(v)

>> grid

>> title('Response to Triangular Bump (Method 2)')
>> xlabel('t (sec)")

>> ylabel('Triangular Bump and Response')

Response to Triangular Bump (Method 2)

12 14 16  Figure 5-20 Response y(¢) to the
triangular bump input u(t).
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5-5 TRANSFORMATION OF MATHEMATICAL MODELS
WITH MATLAB

Chap.5

MATLAB is quite useful in transforming a system model from transfer function to
state space and vice versa. We shall begin our discussion with the transformation
from transfer function to state space.

Let us write the transfer function Y(s)/U(s) as

Y(s)  numerator polynomialins  num
U(s) denominator polynomialins ~ den

Once we have this transfer-function expression, the MATLAB command
[A, B, C, D] = tf2ss(num,den)

will give a state-space representation. Note that the command can be used when the
system equation involves one or more derivatives of the input function. (In such a
case, the transfer function of the system involves a numerator polynomial in s.)

It is important to note that the state-space representation of any system is not
unique. There are many (indeed, infinitely many) state-space representations of the
same system. The MATLAB command gives one possible such representation.

Transformation from transfer function to state space. Consider the
transfer function system
Y(.S') — S
U(s) s*+ 14s®> + 565 + 160

(5-50)

Of the infinitely many possible state-space representations of this system, one

is
X 0 1 0l x 0
X | = 0 0 1) x|+ 1 |u
jf3 -160 -56 -14 X3 -14
X1
y=[1 0 0] x|+ [0]u
X3
Another is
il -14 -56 -160 X1 1
Xy | = 1 0 Ol x[+]0 |u (5-51)
X3 0 1 0|l x3 0
X1
y=[0 1 0] x|+ [0]u (5-52)

X3
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MATLAB transforms the transfer function given by Equation (5-50) into the state-
space representation given by Equations (5-51) and (5-52). For the system consid-
ered here, MATLAB Program 5-10 will produce matrices A, B, C,and D.

MATLAB Program 5-10
>> % ----- Transforming transfer-function model to
>>%  state-space model -----
>>
>num=[0 0 1 0]
>>den=[1 14 56 160];
>>
>> % - Enter the following transformation command -----
>>
>> [A, B, C, D] = tf2ss(num,den)
A=
-14 —56 160

1 0 0

0 1 0
B=

1

0

0
C=

0 1 0
D=

0

Transformation from state space to transfer function. To obtain the
transfer function from state-space equations, use the command
[num,den] = ss2tf(A,B,C,D,iu)

Note that iu must be specified for systems with more than one input. For example, if
the system has three inputs (11, u2, u3), then iu must be either 1, 2, or 3, where 1
implies u1, 2 implies 2, and 3 implies u3.

If the system has only one input, then either

{num,den] = ss2tf(A,B,C,D)
or
[num,den] = ss2tf(A,B,C,D,1)

may be used. (For the case where the system has muitiple inputs and multiple out-
puts, see Example 5-9.)
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Example 5-8
Obtain the transfer function of the system defined by the following state-space equations:
X 0 1 0 0fx 0
:Yz 0 0 1 0 X2 S
= +
i3 0 0 0 1fx|T|-15]"
X4 -10 -15 -—-12 -6 [ x4 40
X1

Y=0 00 0 %|+o0u
X3
X4
MATLAB Program 5-11 produces the transfer function of the system, namely,

Y(s) 552 + 155 + 10
U(s) s*+65° + 125 + 155 + 10

MATLAB Program 5-11

>> % ----- Transforming state-space mode! to

>>%  transfer function model! -----

>>

>A=[0 1 0 00 0 1 00 O 0 1;,-10 —-15 -12 -6];
>> B = [0;5;—15;40];

>>C=[1 0 0 0];

>>D=0;

>>

>> % ----- Enter the following transformation command —
>>

>> [num,den] = ss2tf(A,B,C,D)

num =

0 0 5.0000 15.0000 10.0000

den =
1.0000 6.0000 12.0000 15.0000 10.0000

Example 5-9

Consider a system with multiple inputs and multiple outputs. When the system has
more than one output, the command

[NUM, den] = ss2tf(A,B,C,D,iu)

produces transfer functions for all outputs to each input. (The numerator coefficients
are returned to matrix NUM with as many rows as there are outputs.)
Let the system be defined by

R Y e K PR
[ Rt
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This system involves two inputs and two outputs. Four transfer functions are involved:
Yi(s)Ui(s), Ya(s)IUy(s), Yi(s)/Us(s), and Y5(s5)/Us(s). (When considering input u;, we
assume that input u; is zero, and vice versa.)

MATLAB Program 5-12 produces representations of the following four trans-

fer functions:
Yils) __ s+4 is)  s+5
Uf(s) s*+4s+25° Us(s) 5%+ 4s+25
Y(s) -5 Ys) __ s-25
Ul(s) s*+4s+125° Us) s*+4s+25

MATLAB Program 5-12

>A=[0 1,-25 -—4];
>>B=[1 1,0 1]

>C=[1 0,0 1];

>D=[0 0,0 0]

>> [NUM,den] = ss2tf(A,B,C,D,1)

NUM =

0 1.0000 4.0000
0 0 -25.0000

den =

1.0000 4.0000 25,0000
>> [NUM,den] = ss2tf(A,B,C,D,2)

NUM =

0 1.0000 5.0000
0 1.0000 -25.0000

den =

1.0000 4.0000 25.0000

Nonuniqueness of a set of state variables. A set of state variables is not
unique for a given system. Suppose that x;, x,,..., X, are a set of state variables.
Then we may take as another set of state variables any set of functions

%l = Xl(xls X250y xn)
%2 = Xz(xl, P % TN x,,)
:en = Xn(xla X2y eens xn)

provided that, for every set of values X;, X5,..., X,,, there corresponds a unique set
of values x;, x,,..., x,, and vice versa. Thus, if x is a state vector, then

x=Px
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is also a state vector, provided that the matrix P is nonsingular. (Note that a square
matrix P is nonsingular if the determinant |P| is nonzero.) Different state vectors
convey the same information about the system behavior.

Transformation of a state-space model into another state-space model.
A state-space model

X = Ax + Bu (5-53)
y=Cx + Du (5-54)

can be transformed into another state-space model by transforming the state vector
x into state vector X by means of the transformation

x = Px

where P is nonsingular. Then Equations (5-53) and (5-54) can be written as

Px = APk + Bu
y = CPx + Du
or
X =PlAPX + P~ 1Bu (5-55)
y = CPX + Du (5-56)

Equations (5-55) and (5-56) represent another state-space model of the same sys-
tem. Since infinitely many » X n nonsingular matrices can be used as a transforma-
tion matrix P, there are infinitely many state-space models for a given system.

Eigenvalues of an n X n matrix A. The eigenvalues of an n X n matrix A
are the roots of the characteristic equation
AT-Al=0 (5-57)

The eigenvalues are also called the characteristic roots.
Consider, for example, the matrix

0 1 0
A= 0 0 1
-6 -11 -6
The characteristic equation is
A -1 0
IAI-Al=10 A -1
6 11 A+6

N+ +11r+6
=(A+1DA+2)(A+3)=0

The eigenvalues of A are the roots of the characteristic equation, or —1, —2, and —3.
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It is sometimes desirable to transform the state matrix into a diagonal matrix.
This may be done by choosing an appropriate transformation matrix P. In what fol-
lows, we shall discuss the diagonalization of a state matrix.

Diagonalization of state matrix A. Consider an n X n state matrix

0 1 0 .. 0
0 0 1 o 0
A=]| : : : : (5-58)
0 0 0 e 1
—Qp —Qp-y —aGy Tt TA

We first consider the case where matrix A has distinct eigenvalues only. If the state
vector x is transformed into another state vector z with the use of a transformation
matrix P, or

x=Pz
where
1 1 e 1
Al AZ “en An
P= /\% A% e Af, (5-59)
,\il.—l Ag.-l . An-—l
n

in which Ay, Ay, ..., and A, are n distinct eigenvalues of A, then P~!AP becomes a
diagonal matrix, or

M 0
Az

P-IAP = ' (5-60)

L0 An

Note that each column of the transformation matrix P in Equation (5-59) is an
eigenvector of the matrix A given by Equation (5-58). (See Problem A-5-18 for
details.)

Next, consider the case where matrix A involves multiple eigenvalues. In this
case, diagonalization is not possible, but matrix A can be transformed into a Jordan
canonical form. For example, consider the 3 X 3 matrix
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Assume that A has eigenvalues A, A}, and A3, where A; # A;. In this case, the trans-
formation x = Sz, where

1 0 1
S=|rx 1 X (5-61)
A 20 A
will yield
N 100
SIAS=[0 A O (5-62)
0 0 A3

This matrix is in Jordan canonical form.

Example 5-10
Consider a system with the state-space representation
‘.tl 0 1 0 X1 0
;Yz = 0 0 1 X2 + |0 |u
:Y:; -6 -11 -6 X3 6
Xy
y=[1 0 0] x
X3
or
X = Ax + Bu (5-63)
y=Cx+ Du
where
0 1 0 0
A= 0 0 1], B=(0] C=[1 0 0], D=0
-6 -11 -6 6

The eigenvalues of the state matrix A are —1, =2, and ~3, or
A] = _1, Az = —2, A3 = =3

We shall show that Equation (5-63) is not the only possible state equation for the sys-
tem. Suppose we define a set of new state variables z), z,, and z; by the transformation

ol [1 1 1z
(=M o Az
x3 |2 3 Mz
1 1 1z
=|-1 2 -3z
1 4 9 Lz

or
x =Pz (5-64)
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where
1 1 1
P=]|-1 -2 -3 (5-65)
1 4 9

Then, substituting Equation (5-64) into Equation (5-63), we obtain

Pz = APz + Bu
Premultiplying both sides of this last equation by P~1, we get
z=P APz + P 'Bu (5-66)
or
] [ 3 25 o5 o 1 o1 1 1z
ZL=|-3 -4 -1 0 0 1(l-1 -2 -=-3{ 2
23 . 1 15 05])_-6 -11 -6 1 4 9][z
[ 3 25 o570
+]/-3 -4 -1 0 |u
L 1 15 0516
Simplifying gives
21 -1 0 0 2) 3
=l 0 -2 0)fz|+]| -6 (5-67)
Z 0 0 -3][z 3

Equation (5-67) is a state equation that describes the system defined by Equation
(5-63).
The output equation is modified to

1 1 11z
y=[1 0 0j-1 -2 -=3| z,
| 1 4 9 z3
—Zl
=1 1 1) 2 (5-68)
4]

Notice that the transformation matrix P defined by Equation (5-65) changes the
coefficient matrix of z into the diagonal matrix. As is clearly seen from Equation (5-67),
the three separate state equations are uncoupled. Notice also that the diagonal elements
of the matrix P AP in Equation (5-66) are identical to the three eigenvalues of A. (For
a proof, see Problem A-5-20.)

EXAMPLE PROBLEMS AND SOLUTIONS

Problem A-5-1

Consider the pendulum system shown in Figure 5-21. Assuming angle @ to be the out-
put of the system, obtain a state-space representation of the system.
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Figure 5-21 Pendulum system.

Solution The equation for the pendulum system is
ml*9 = —mgl sin 6

or

'é+§sino=o

This is a second-order system; accordingly, we need two state variables, x; and x;, to
completely describe the system dynamics. If we define

X, =
X = 6
then we get
X1 =X
. _ _8..
Xy = = sinx
(There is no input u to this system.) The output y is angle 8. Thus,
y=60=x

A state-space representation of the system is

)| smmn 2]
SRR

) X3

y=n o]

Note that the state equation just obtained is a nonlinear differential equation.
If the angle 4 is limited to be small, then the system can be linearized. For small
angle 8, we have sin @ = sin x; = x; and (sin x;)/x; = 1. A state-space representation
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of the linearized model is then given by

Problem A-5-2

Obtain a state-space representation of the mechanical system shown in Figure 5-22.
The external force u(t) applied to mass m; is the input to the system. The displacements
y and z are measured from their respective equilibrium positions and are the outputs of
the system.

Solution Applying Newton’s second law to this system, we obtain

my +b(y—2)+k(y—z)+ky=u (5-69)
mz +b(z—y)+k(z-y)=0 (5-70)
If we define the state variables
X =Yy
X,=y
X3 Z
X4 Z

then, from Equation (5-69), we get
mZ..Xz = —(kl + kz)xl - b;x: + kIX3 + b]X4 +u
Also, from Equation (5-70), we obtain

mixq = kyx; + byx; — kjx3 — bixg

m

ky u(f) b,

my

Figure 5-22 Mechanical system.
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Hence, the state equation is
[0 1 0 0 0
*y itk b ok b |x 1
X2 mp m; mp m; X3 —
= + | my |u 5-71
i 0 0 0 1 | xs 02 5-71)
4 eooob _ko bl |
L m m m m |

The outputs of the system are y and z. Consequently, if we define the output variables
as

h=y
»=2

then we have
nh=x

Y2 = X3
The output equation can now be put in the form

Xy
1 0 0 Offx
B;]=[o 0 1 0] . (-72)

Equations (5-71) and (5-72) give a state-space representation of the mechanical sys-
tem shown in Figure 5-22.

Problem A-5-3

Obtain a state-space representation of the system defined by

(n) (n-1) .
y tay + - tay+ apy = u

(5-73)
where u is the input and y is the output of the system.

(n-1)
Solution Since the initial conditions y(0), y(0),..., "y (0), together with the input
u(r) for t = 0, determines completely the future behavior of the system, we may take

. (n-1) . . .

y(®, ¥(1),..., y (¢) as a set of n state variables. (Mathematically, such a choice of
state variables is quite convenient. Practically, however, because higher order deriva-
tive terms are inaccurate due to the noise effects that are inherent in any practical sys-

tem, this choice of state variables may not be desirable.)
Let us define

X =y

' (n—1)
Xn =Y
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Then Equation (5-73) can be written as

=X
kz = X3
‘:‘n—l = Xp
kn=—@uxy — - —ax,tu
or
x = Ax + Bu (5-74)
where
x 0 1 0 0 0
xl 0 0 1 0 0
x=|"2| A= : , B=
0 0 0 1 0
Xn
—4p —G, —ay-2 ' T4 1
The output can be given by
X1
y=[ 0 - 0] ‘fz
Xn
or
y=0Cx (5-75)
where
C=[1 0 --- 0]

Equation (5-74) is the state equation and Equation (5-75) is the output equation.
Note that the state-space representation of the transfer function of the system,

Y(s) _ 1
UGs) s"+as™ '+ - +a,1s +a,

is also given by Equations (5-74) and (5-75).

Problem A-5-4
Consider a system described by the state equation
X = Ax + Bu
and output equation
y=Cx + Du
where
A= [—0?125 —1.1375]’ B = [0,32'32755} c=[1 0 D=1

Obtain the transfer function of this system.
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Solution From Equation (5-9), the transfer function G(s) can be given in terms of
matrices A, B, C,and D as

G(s) = C(sI - AY'B + D

Since
s -1
sI-A= [0.125 s+ 1.375]
we have
1 s+1375 1
fApia | |
(1= A = G 1am5s + 0125 —0.125 s

Therefore, the transfer function of the system is
1 s+ 1375 1] -025
GE) =0 0 5 3755+ 0125 [ ~0.125 s][0.34375] 1
_ =025(s + 1.375) + 0.34375
T 2413755 + 0125
_ s+ 11255 + 0.125
"~ s% 413755 + 0125
82 +9s+1
852 + 11s + 1

Problem A-5-5

Consider the following state equation and output equation:
2)-[2 d-L
:Yz 6.5 0 X2 1 0 1)
=l 2o all)
» 0 1 X2 0 0 Uz
The system involves two inputs and two outputs, so there are four input-output combi-
nations. Obtain the impulse-response curves of the four combinations. (When y, is a
unit-impulse input, we assume that 2, = 0, and vice versa.)

Next, find the outputs y; and y, when both inputs, #; and u,, are given at the same
time (i.e., #; = u, = unit-impulse function occurring at the same time ¢ = 0).

Solution The command
sys = ss(A,B,C,D1), impulse(sys,t)

produces the impulse-response curves for the four input—output combinations. (See
MATLAB Program 5-13; when u; is a unit-impulse function, we assume that #, = 0,
and vice versa.) The resulting curves are shown in Figure 5-23.

When both unit-impulse inputs u;(¢) and u,(t) are given at the same time ¢t = 0,
the responses are

»(t) = yu(e) + yu(t)
() = ya(t) + yalt)
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MATLAB Program 5-13

>>t=0:0.01:10;

>>A=[-1 =165 0];
>>B=[1 1,1 0]

>C=[1 00 1]

>D=[0 0,0 0]

>> sys = ss(A,B,C,D);

>> impulse(sys,t)

>> grid

>> title('Impulse-Response Curves')
>> xlabel('t'); ylabel('Outputs')

Impulse-Response Curves
From: U(1) From: U(2)

T

To: Y(1)

.....................

E
=3
5
o]
3 — —

g

>.‘.

(=

-2 i
0 2 4 6 10 4 6 8§ 10

t (sec)

Figure 5-23 Unit-impulse response curves. (The left column corresponds to
u; = unit-impulse input and u, = 0. The right column corresponds to ¥; = 0 and
u; = unit-impulse input.)

where
m=n whenu; = 8(1), u; = 0
Y2 =y whenu; = §(t), uy = 0
B =N whenu; = 0, u, = 8(t)
Y =» whenu; = 0, uy = 8(t)
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MATLAB Program 5-14 produces the responses y;(t) = y;i(t) + yn(t) and |
(1) = ya(t) + yu(r). The resulting response curves are shown in Figure 5-24. |

MATLAB Program 5-14

>> t=0:0.01:10;

> A=[-1 -1,65 0]
>>B=[1 T1;1 O}

>C=[1 0,0 1];

>D=[0 00 0]

>> sys = ss(A,B,C,D);

>> [y,t,x] = impulse(sys,t);

>>yl1 =01 0*y(:1)5;
>>y12=[0 1%y, 15
>>y21=[1  O0]*Y(,:2);

>>y22 =[0 1]*(,:2);

>> subplot(211); plot(t,y11+y21); grid
>> title('lmpulse Response when Both u_1 and u_2 are given at t=0")
>> ylabel('y_1")

>> subplot(212); plot(t,y12+y22); grid
>> xlabel('t (sec)"); ylabel('y_2")

Impulse Response when Both u; and u;, are given at t=0

¥ T ? ! ¥ ) L]

Figure 5-24 Response curves y;(t) versus r and y(t) versus ¢ when u,(¢) and u,(f)
are given at the same time. [Both u,(f) and u,(¢) are unit-impulse inputs occurring
att = 0.]
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Problem A-5-6
Obtain the unit-step response and unit-impulse response of the following system with
MATLAB:
X, 0 1 0 0 x 0
X2 - 0 0 1 0 x|, 0.04 u
X3 0 0 0 1 X3 -0.012
X4 =001 -01 -05 -15] x4 0.008
X1
X*2
=[1 0 0
y=1 0 0] %
X4

The initial conditions are zeros.
Solution To obtain the unit-step response of this system, the following command
may be used:
ly. x, t] = step(A, B, C, D)
Since the unit-impulse response is the derivative of the unit-step response, the deriva-
tive of the output (y = x1) will give the unit-impulse response. From the state equa-
tion, we see that the derivative of y is
x2=[0 1 0 O0]*'

Hence, x2 versus t will give the unit-impulse response.

MATLAB Program 5-15 produces both the unit-step and unit-impulse responses.
The resulting unit-step response curve and unit-impulse curve are shown in Figure 5-25.

Unit-Step Response

14 :

1] 4 1]

Output y

0.15 : : , f , r

o
fast

0 10 20 30 40 50 60 70
t (sec)

Output to Unit-Impulse Input, x,

Figure 5-25 Unit-step response curve and unit-impulse response curve.
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MATLAB Program 5-15

>A=[0 1 0 00 0 1 00 0 0 1,-0.01 -0.1 -05 -1.5];
>> B = [0;0.04;—0.012;0.008};

>C=[1 0 0 0}

>>D=0;

>>

>> % To get the step response, enter, for example, the following
>> % command:

>>

>> [y,x,t] = step(A,B,C,D);

>> subplot(211); plot(t,y); grid

>> title('Unit-Step Response')

>> ylabel('Output y')

>>

>> % The unit-impulse response of the system is the same as the
>> % derivative of the unit-step response. (Note that x_1dot

>> % = x_2 in this system.) Hence, the unit-impulse response
>> % of this system is given by ydot = x_2. To plot the unit-

>> % impulse response curve, enter the following command:
>>

>>x2=[0 1 0 O0]*x'; subplot(212); plott,x2); grid

>> title('Unit-Impulse Response')

>> xlabel('t (sec)"); ylabel('Output to Unit-Impulse Input, x_2")

Problem A-5-7

Two masses m, and m, are connected by a spring with spring constant k, as shown in
Figure 5-26. Assuming no friction, derive a state-space representation of the system,
which is atrest for # < 0. The displacements y, and y, are the outputs of the system and
are measured from their rest positions relative to the ground.

Assuming that m; = 40 kg, m, = 100 kg, k = 40 N/m, and f'is a step force input
of magnitude of 10 N, obtain the response curves y,(¢) versus t and y,(¢) versus ¢ with
MATLAB. Also, obtain the relative motion between m,; and m;,. Define y — y; = x
and plot the curve x(f) versus t. Assume that we are interested in the period 0 < ¢ < 20.

Solution Let us define a step force input of magnitude 1 N as u. Then the equations of
motion for the system are

my + k(y — ;) =0

my, + k(y, = y) = f
We choose the state variables for the system as follows:

X1=5Nn
X =N
—> ¥ — ¥>
m WW my —— f
k

Figure 5-26 Mechanical system. 35555!E%:5355’5355333!3!33&%333;!;3333333333/



Example Problems and Solutions 219

X3 = ).‘2
X4 =Y
Then we obtain
il = X2
. k k
Xy = “;14\31 + ;l-x;;
k3 = Xa
. k k 1
= — — — + —
X4 ™ my x3 mzf
Noting that f = 10u and substituting the given numerical values for m;, m,, and k, we
obtain the state equation
.icl 01 00 X1 0
X3 -1 0 1 0 x; 0
= +
% 00 0 1x o[
X4 04 0 —-04 O] x4 0.1
The output equation is
X1
n 100 0] X
= +
[yz] [0010;:3 Ou
X4

MATLAB Program 5-16 produces the outputs y; and y and the relative motion
x(= y» — y1 = x3 — x;). The resulting response curves y,(t) versus ¢, y,(¢) versus ¢,and
x(t) versus ¢ are shown in Figure 5-27. Notice that the vibration between m; and m,
continues forever.

MATLAB Program 5-16

>>t=0:0.02:20;

>A=[0 1 0 0;-1 01 00 0 0 1,04 0 —-04 0}
>> B =[0;0;0;0.1];

>C=([(1 0 0 0,0 0 1 O},
>>D=0;

>> sys = ss(A,B,C,D);

>> [yt,x] = step(sys,t);

>>yl=[1 Ol*

>>y2=[0 1],

>> subplot(311); plot(t,y1), grid

>> title('Step Response')

>> ylabel('Output y_1")

>> subplot(312); plot(t,y2), grid

>> ylabel('Output y_2")

>> subplot(313); plot(t,y2 — y1), grid

>> xlabel('t (sec)'); ylabel('x =y_2 —y_1")
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220
Step Response
; N H
El
&
=3
e}
=
B
&
=
e]
02 ; ; ; — . ;
015 b i OO OO SOV U OOUE SOUOOS O SOOIV NOROOE SOUOSOSOOE NP
I
& 01
0005 b foi N i foe N\ e f
0 h i ; H ;
10 12 14 16 18 20
t (sec)
Figure 5-27 Response curves y,(t) versus ¢, y5(¢) versus t,and x(¢) versus z.
Problem A-5-8

Obtain the unit-ramp response of the following system:
A R
.iz -1 -04 X2 1
y=1 o]+ o
X2

The system is initially at rest.
Solution Noting that the unit-ramp input is defined by

u=t 0=y

we may use the command

Isim(sys, u, )
as shown in MATLAB Program 5-17. The unit-ramp response curve and the unit-ramp
input are shown in Figure 5-28.
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Problem A-5-9

MATLAB Program 5-17

>>t=0:0.01:18;
>>A=[0 1,-1 -04];

>> B =[0;1];
>C=[1 0}
>>D=0;

>> sys = ss(A,B,C,D);
>>u=t

>> Isim(sys,u,t)

>> grid

>> title('Unit-Ramp Response')
>> xlabel('t')

>> ylabel('Output y')

>> text(3.5,0.6,'y")

>> text(0.5,3.2,'u')

Unit-Ramp Response

Output y

Figure 5-28 Plot of unit-ramp response curve, together with unit-

ramp input.

221

A mass M (where M = 8kg) is supported by a spring (where k¥ = 400 N/m) and a
damper (where b = 40 N-s/m), as shown in Figure 5-29. At ¢ = 0, a mass m = 2 kg is
gently placed on the top of mass M, causing the system to exhibit vibrations. Assuming
that the displacement x of the combined mass is measured from the equilibrium posi-
tion before m is placed on M, obtain a state-space representation of the system. Then
plot the response curve x(¢) versus ¢ (For an analytical solution, see Problem A-3-16.)

Solution The equation of motion for the system is

(M + m)X + bx + kx = mg 0<1r)
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Figure 5-29 Mechanical system.

Substituting the given numerical values for M, m, b, k,and g = 9.807 m/s? into this last
equation, we obtain

10x + 40x + 400x = 2 X 9.807
or
X + 4k + 40x = 1.9614

The input here is a step force of magnitude 1.9614 N.
Let us define a step force input of magnitude 1 N as u. Then we have

X + 4x + 40x = 1.9614u
If we now choose state variables
X=X
X, =X
then we obtain
X =X
X = —40x; — 4x, + 1.9614u

[2] - [—48 —ﬂ[:] ¥ [1.9214]"

and the output equation is

The state equation is

y=[1 0][2] + Ou

MATLAB Program 5-18 produces the response curve y(¢) [= x(t)] versus ¢, shown in
Figure 5-30. Notice that the static deflection x(o0) = y(00) = y(600) is 0.049035 m.

Problem A-5-10

Consider the system shown in Figure 5-31. The system is at rest for ¢ < 0. The displace-
ments 2, and 2, are measured from their respective equilibrium positions relative to the
ground. Choosing z,, 2;, 2;, and 2, as state variables, derive a state-space representation
of the system. Assuming that m; = 10 kg, m, = 20kg, b = 20 N-s/m, k = 60 N/m, and
fis a step force input of magnitude 10 N, plot the response curves z;(t) versus ¢, z,(¢) ver-
sus ¢, z(t) — z;(t) versus ¢, and z,(¢) — Z,(t) versus f. Also, obtain the steady-state val-
ues of 7, 75, and z; — z;.
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MATLAB Program 5-18

>>
>>

o
=33
R =
: o
K=
_\‘I'\a_'\
=25
1]
|
>

\
v
OnNwm>~

(=]

>> sys = ss(A,B,C,D);

>> [yt] = step(sys,t);

>> plot(t,y)

>> grid

>> title('Step Response')

>> xlabel('t (sec)"); ylabel('Output y')
>>

>> format long;

>> y(600)

ans =
0.04903515818520

Step Response
0.07 : ; ? fpo ; T

0.06 b )\ ............. R .......... . .............. |

005 Fof\ NG e, .............. ............... ............... 4

0.04 bfn T T — — - ]

Output y

003 bfo S S T S— — |
002 Moo SRS S A — ]

0.01 oo ,,,,,, SOOI SR FO .............. -

Figure 5-30 Step-response curve.

—>2 —> 2

m my - f

“  Figure5-31 Mechanical system.
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Solution The equations of motion for the system are

mzZ, = k(Zz - Zl) + b(Zz - Zl) (5—76)
myi, = —k(zz— z1) ~ bl —z) + f (5-77)
Since we chose state variables as
X =24
X =2
X3 =2
X3 =2

Equations (5-76) and (5-77) can be written as

myxy = k(x3 = x;) + b(x4 — x3)
maxy = —k(x3 — x;) = b(xg = %) + f

‘We thus have
:Yl = X2
. k b k b
Xo = ——X —— X2 + —Xx3 + —x4
m m my m;
.i'3 = X4
. k b k b 1
kg=—X+—xy3 -~ —x3——x3+ —f
my my my m; my

Let us define z; and z, as the system outputs. Then

n=a=x

N=22=Xx3
After substitution of the given numerical values and f = 10u (where u is a step force
input of magnitude 1 N occurring at ¢ = 0), the state equation becomes

i 0 1 0 0fx 0

i -6 -2 6 2| x 0
= +

i 0 0 0 1{x o [*

X 3 1 -3 —-1{{x| |05

The output equation is

MATLAB Program 5-19 produces the response curves z; Versus f, Z, Versus t, z; — 2,
versus ¢, and Z, — Z; versus t. The resulting curves are shown in Figure 5-32.
Note that at steady state Z;(¢) and Z,(¢) approach a constant value, or

Z)(0) =Zy(0) = a
Also, at steady state the value of z;(¢) — z;(t) approaches a constant value, or

zy(0) — zj(©) = B
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MATLAB Program 5-19

>> t = 0:0.01:15;
>A=[0 1 0 0;-6 -2 6 20 0 0 1,3 1 -3 -1];
>> B = [0;0;0;0.5];

>C=[1 0 0 00 0 1 o0
>> D= [0;0];

>> sys = ss(A,B,C,D);

>> [y,t,x] = step(sys, t);

>>x1={1 0 0 0]*x}

>>x2=[0 1 0 0]*x}

>>x3={0 0 1 0]*x}

>>x4=[0 0 0 1]*%

>> subplot(221); plotit,x1); grid

>> xlabel('t (sec)'); ylabel('Output z_1")

>> subplot(222); plot(t,x3); grid

>> xlabel('t (sec)'); ylabel('Output z_2")

>> subplot(223); plot(t,x3 — x1); grid

>> xlabel('t (sec)'); ylabel('Output z_2 - z_1")
>> subplot(224); plot(t,x4 — x2); grid

>> xlabel('t (sec)'); ylabel(‘z_2dot - z_1dot")

N ]
H H
5 3
0.07 : , 0.1 , —
0.06 }- :' 5 0.08 ?
¥ 005 3 o061
S 004} &
2 003} g 0
g o % 002
0.01 o
-0.02

t (sec)

Figure 5-32 Response curves z; versus f, z, versus t,z, — z; versus z,and 2, — 2, versust.
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The steady-state value of z;(1) — z;(¢) is zero, or
2p(®0) — () =0

For ¢ = 00, Equation (5-76) becomes

my7)(0) = k[z(00) — 2)(00)] + B[25(%0) — 21(0)]

or
10a = kB +b X0

Also, Equation (5-77) becomes

myZy(0) = —k[za(00) — 21(00)] = b[zz(0) — 21(0)] + f

or
0a=—-kB-bX0+f
Hence,
10a = 608
20a = —60B8 + f
from which we get
el 101
30 30 3
and
0 1 1
A R
Thus,
(00) = 5(00) = & =z
2(00) = 2(00) = B = m
Problem A-5-11

Chap.5

Obtain two state-space representations of the mechanical system shown in Figure 5-33
where u is the input displacement and y is the output displacement. The system is ini-
tially at rest. The displacement y is measured from the rest position before the input u

is given.

Solution The equation of motion for the mechanical system shown in Figure 5-33 is

Hlw = y) + ky(u — y) = foy
Rewriting, we obtain

i + Ry + kyy = fit + ku
or

i k  hH . kq
y+f1+f2y_f1+f2u+f1+f2u

(5-78)
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Figure 5-33 Mechanical system.

Comparing this last equation with
y + a1y = byt + bu (5-79)
we get

k, __f ky

1
= ) b s b=
h+h TR+ h YAt A

We shall obtain two state-space representations of the system, based on Methods 1 and

a,

2 presented in Section 5-4.
Method 1. First calculate 8y and B;:
hH
=}, =
Bo=to h+f
kif

B = b, —a Bo=—"7T"T>

T (g

Define the state variable x by

_ _.__k
R

Then the state equation can be obtained from Equation (5-78) as follows:
ky kifa

X = — + 5-80
FTTRAR T et =50
The output equation is
fi
= 5-81
yexd fi+th" >-81)

Equations (5~-80) and (5-81) give a state-space representation of the system.
Method 2. From Equation (5-79), we have
Y(s) _bes + b
U(s) s+a
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If we define
Z(s Y(s
Uzs; =5 -:al’ ZE.S‘; = bos + by

then we get

ztaz=u

boz + byz =y
Next, we define the state variable x by
x=z

Then Equation (5-82) can be written as

x=-ax+u
or

ki
TTREAR T

and Equation (5-83) becomes

box + bix =y
or

y= ki x + f X
h+fh  hHh+h
Substituting Equation (5-84) into Equation (5-85), we get
y = kif .+ h "
(i+h? h+h
Equations (5-84) and (5-86) give a state-space representation of the system.
Problem A-5-12

Show that, for the differential-equation system
.j" + al.}; + azj) + asy = bo.l.l‘ + blil. + bzl.l + b3u

state and output equations can be given, respectively, by

kl 0 1 0_ X1 B]
.'x'z = 0 0 1 X7 + ﬁz t74
X3 —ay —a, —aj ] x3 B3
and
X1
y=[1 0 O} x|+ Bou
X3 |

where the state variables are defined by
x =y - Bou
X =y = Bott = B =X — Pu
X3 =y — Boil — Pyt — Bou = Xx; — Bou

Chap.5

(5-82)
(5-83)

(5-84)

(5-85)

(5-86)

(5-87)

(5-88)

(5-89)
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The constants, By, B;, B2, and B; are defined by
Bo = bo
B1=b — a1y
B2 = by —a1B — aBo
B3 = b3 — a1B2 — a2 — a3fo
Solution From the definition of the state variables x; and x3, we have
X1 =X+ Bu (5-90)
Xy = x3 + Bou (5-91)
To derive the equation for k3, we note that
V= —a1y = ay — a3y + byit’ + bjii + by + byu
Since
x3 =y — Boii — Pt — Pou
we have
k3 ="y - Boit — Byii — Bt
= (~ay — @y — asy) + bott’ + byii + byit + byu — Boi’ — Byii — Pt
= —ay(y — Boti — Byt — Pau) — a\Boii — a1t — aBou
— ay(y = Bott — Biu) — axfoit — axfu — a3(y — Pou) — azBou
+ bout’ + byii + byt + byu — Boir’ — Byii — ot
= —ayx3 — apxy — asxy + (b — Bo)i’ + (b — B1 — aBo)ié
+ (by — By~ a1B1 — aBo)it + (b3 — a1y — @B — a3Po)u
= —ayx3 — axx; = asx; + (by — a1fy — @By — a3Bo)u
= —ayx3 — axx; — azx) + Biu
Hence, we get
X3 = —a3x; — ayx; — ayx3 + Pau (5-92)
Combining Equations (5-90), (5-91), and (5-92) into a vector-matrix differential equa-
tion, we obtain Equation (5-88). Also, from the definition of state variable x,, we get
the output equation given by Equation (5-89).
Note that the derivation presented here can be easily extended to the general
case of an nth-order system.
Problem A-5-13
Show that, for the system
V' + a1y + ayy + azy = by’ + byii + byt + bsu
or
Y(s) _ bos® + bys® + bys + by
Us) S+as?+ays+ay

state and output equations may be given, respectively, by
5: 1 0 1 0 Xy 0
;Yz = 0 0 1 x| + 0 |u
i’; —as - —a X3 1
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and

X1

y = [bs — asby i by — axby : by — arbo]| x, | + bou
X3

Solution Let us define

Z(s) _ 1 Y(s)
U(s) s*+ais’+ays+ay Z(s)

= bys® + bys® + bys + by

Then we obtain
Traitaztaz=u
by + i+ bzt bz=y
Now we define
X =2z
Xy = 4%1
X3 = jz
Then, noting that ¥; = X, = "X’} = "Z’, we obtain
X3=—a3z— a2 —amzZ+u
or
X3 = —a3X) — ayxy —a1x3 + u
Also,
y=byZ + b7+ bz + bz
= bo:V:; + b1X3 + bzXz + b3x1
= bo[(—a3x, — axz = a1x3) + u] + byx3 + byx; + b3xy
= (b3 — asbg)xy + (b — axbo)xs + (b, — ayby)x3 + bou
From Equations (5-93), (5-94), and (5-95), we obtain
.ifl 0 1 0 Xy
iz = 0 0 1 X2 +
X3 —a; —ay —a ]l x

-0 O
«

which is the state equation. From Equation (5-96), we get

X1
y = [bs — asby i by — azby : by — aybyl| x; | + bou
X3

which is the output equation.

(5-93)
(5-94)

(5-95)

(5-96)

Note that the derivation presented here can be easily extended to the general

case of an nth-order system.

Problem A-5-14
Consider the mechanical system shown in Figure 5-34. The system is initially at rest.

The displacements u, y, and z are measured from their respective rest positions.
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Figure 5-34 Mechanical system.

Assuming that  is the input and y is the output, obtain the transfer function
Y(s)/U(s) of the system. Then obtain a state-space representation of the system.

Solution The equations of motion for the system are
byt = y) + ky(u — y) = b(y — 2)
by(y — 2) = kaz
Laplace transforming these two equations, assuming zero initial conditions, we obtain
by[sU(s) = sY(s)] + ky[U(s) = Y(5)] = balsY (s) — sZ(s)]
by[sY (s) — sZ(s)] = kaZ(s)

Eliminating Z(s) from the last two equations yields
2.2

(Bys + ky)U(s) = (b,s + ky + bys — b:f k2)Y(s)

Multiplying both sides of this last equation by (b,s + k;), we get
(bis + ky)(bys + kp)U(s) = [(bas + k1) (bas + ky) + bakys]Y (s)
The transfer function of the system then becomes
Y(S) _ (bls + k])(sz + kz)
U(s)  (bis + ky)(bas + kp) + bkys
s+ (g + %)s + %%22—
= ! L (5-97)

ki ks k) kik
z+(_1+_2.+_2)s+_u
y by b b bib,

Next, we shall obtain a state-space representation of the system. The differential equa-
tion corresponding to Equation (5-97) is

. ki  k kz). kik, .. (kl kz). kiky
(24242 + 22y cu+ [+ 2)a+ 2
y (bl b 5 bk T T\ T B T ity
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Comparing this equation with the standard second-order differential equation given by
Equation (5-20), namely,

Y+ ay + apy = bpii + byt + bou

we find that
I Y
by b, b byb,
k k kik
=1 m=gitph by
From Equations (5-23), (5-24), and (5-29), we have
Bo=bp=1

ky
Bi=b—afp= e
1

kiky  k? K

B2 b2 alﬂl a230 b12 b1b2 blz

From Equations (5-21) and (5-22), we define the state variables x; and x; as
N=y—Bu=y-—u
. . ke
X=X — Pu=x+-—u
by
The state equation is given by Equation (5-30) as

IR A R

or
k
X 0 1 x _5‘12
["‘2] ) —% —(% v, %) [xz] | kik, N k. . k? u  (5-98)
1 vk h b?  bb  b?
The output equation is given by Equation (5-31) as
x
y=0 0][ '}+Bou
X2
or
X1
y=[1 0][ ] +u (5-99)
X2

Equations (5-98) and (5-99) constitute a state-space representation of the system.

Problem A-5-15

Consider the mechanical system shown in Figure 5-35, in which m = 0.1kg, b=
0.4 N-s/m, k; = 6 N/m, and k, = 4 N/m. The displacements y and z are measured from
their respective equilibrium positions. Assume that force u is the input to the system.
Considering that displacement y is the output, obtain the transfer function Y(s)/U(s).
Also, obtain a state-space representation of the system.
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Y Figare 5-35 Mechanical system.

Solution The equations of motion for the system are
my + kiy + ky(y —2z) = u (5-100)
kyy — z) = bz (5-101)

Taking the Laplace transforms of Equations (5-100) and (5-101), assuming zero initial
conditions, we obtain

[ms? + (ky + k2)]Y (5) = ko Z(s) + U(s)
kY (s) = (ky + bs)Z(s)
Eliminating Z(s) from these two equations yields

Y(s) ky + bs
U(S) mbs3 + mkzsz + (kl + kz)bs + klkz
1k
_ m  mb
s3 + ﬁsz + MS + ﬂ

mb

Substituting numerical values for m, b, k;, and k into this last equation results in
Y(s) _ 10s + 100

U(s) s°+ 10s% + 100s + 600

This is the transfer function of the system.
Next, we shall obtain a state-space representation of the system using Method 1
presented in Section 5—4. From Equation (5-102), we obtain

'y" + 10y + 100y + 600y = 10i + 100u
Comparing this equation with the standard third-order differential equation, namely,

(5-102)

'j’. + al'}; + az}.’ + asy = bo‘l’l. + blii + bzl.l + b3u
we find that

a = 10, a = 100, a = 600

b0=0, b1=0, b2=10, b3=100
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Referring to Problem A-5-12, define
x =y = Bou
X3 =X — P
X3 =Jy — Pou
where
Bo=by=0
Bi=b —afp=0
B2 = by — a\By — axfo = 10
Also, note that
Bs = by — aBy — B, — azBp = 100 — 10 X 10 = 0

Then the state equation for the system becomes

jf] 0 1 0 X1 0
x| = 0 0 1)fx|+]10 |u (5-103)
..X3 -600 -100 -10 X3 0
and the output equation becomes
X1
y=[1 0 0] x, (5-104)
X3

Equations (5-103) and (5-104) give a state-space representation of the system.

Problem A-5-16

Consider the system defined by
¥+ 6y + 11y + 6y = 6u (5-105)

Obtain a state-space representation of the system by the partial-fraction expansion
technique.

Solution First, rewrite Equation (5-105) in the form of a transfer function:
Y(s) _ 6 _ 6
U(s) s*+6s2+11s+6 (s+1)(s+2)(s+3)
Next, expanding this transfer function into partial fractions, we get

Y(s) _ 3 -6, _3
U(s) s+1 s+2 s+3

from which we obtain

Y(s) = i TUG) + 31620@) + %U(s) (5-106)
Let us define
X,(s) = 5 U(s)
Xos) = —=U(s)

Xy(5) = 25U (s)
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Then, rewriting these three equations, we have
sXi(s) = =X (s) + 3U(s)
5sX5(s) = —2X5(s) — 6U(s)
sX3(s) = =3X3(s) + 3U(s)

The inverse Laplace transforms of the last three equations give

il = —x; + 3u (5—107)
iz = "2X2 — 6u (5—108)
,%3 = _3X3 + 3u (5"109)

Since Equation (5-106) can be written as
Y(s) = Xi(s) + Xo(s) + X(s)
we obtain
y=x1+x+x (5-110)

Combining Equations (5-107), (5-108), and (5-109) into a vector-matrix differential
equation yields the following state equation:

X -1 0 0|l 3
(=] 0 =2 0ffx|+]| —6|u (5-111)
k3 0 0 —3J X3 3
From Equation (5-110), we get the following output equation:
M
y=[1 1 1] x, (5-112)
L X3

Equations (5-111) and (5-112) constitute a state-space representation of the system
given by Equation (5-105). (Note that this representation is the same as that obtained
in Example 5-10.)
Problem A-5-17
Show that the 2 X 2 matrix
11
A=, 2]
has two distinct eigenvalues and that the eigenvectors are linearly independent of each
other.
Solution The eigenvalues, obtained from
’)l -1 -1

WE-Al=1"g" o2

|=(A—1)(,\—2)=o

A =1 and A=2

Thus, matrix A has two distinct eigenvalues.
There are two eigenvectors x, and x, associated with A; and A;, respectively. If

we define
X X12
X2 X2
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then the eigenvector x; can be found from

Ax, = Axg
or
(MI-A)x; =0

Noting that A; = 1, we have

e s

0 1-2)lxy 0
which gives
X1 = arbitrary constant and X =0

Hence, eigenvector x; may be written as

x c

= [l=[3]

where ¢, # 0 is an arbitrary constant.
Similarly, for the eigenvector x,, we have
Ax; = A%,
or
(RI—-A)X, =0

Noting that A, = 2, we obtain

ot el Gl

x12—x22=0

from which we get

Thus, the eigenvector associated with A, = 2 may be selected as

x c
= [2a]- (2]
X22 €2
where ¢, # 0 is an arbitrary constant.
The two eigenvectors are therefore given by

X = [‘g] and X, = [Z]

Chap. 5

That eigenvectors x; and x, are linearly independent can be seen from the fact that the

determinant of the matrix [x, x,] is nonzero:

g ¢
0‘ cz #0
Problem A-5-18
Obtain the eigenvectors of the matrix
0 1 0
A= 0 0 1



Example Problems and Solutions 237

Assume that the eigenvalues are A;, A5, and A3; that is,
A -1 0
0 A -1
a3 a Ata
A+ aa + a) + ay
= (A= 2)(A = A)(A = A,)

[AI — A

Assume also that A,, A,, and A; are distinct.

Solution The eigenvector x; associated with an eigenvalue A; is a vector that satisfies

the equation
Ax; = Ax; (5-113)
which can be written as
0 1 0 X Xi1
0 0 1 Xp | = A xp
—a; —a; —a |lXx3 Xi3

Simplifying this last equation, we obtain
Xp = Aixi
X3 = AiXp
—azx; — @Xp — X3 = AXxg

Thus,
Xi1 Xi 1
Xp | = Aixa | =| A fxa
2 2
| X3 Aixiy A;
Hence, the eigenvectors are
X11 X21 X31
Ay | Aaxy |, A3x3 (5-114)
2 2 2
Ajxyy | Ajx Ajx3;

Note that if x; is an eigenvector, then ax; (Where a = scalar # 0) is also an eigenvector,
because Equation (5-113) can be written as

a(Ax;) = a(Ax;)
or

A(ax;) = A(ax;)
Thus, by dividing the eigenvectors given by (5-114) by x4, x5, and x3,, respectively, we
obtain

1 1 1

A s A |, A3
A} A A

These are also a set of eigenvectors.
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Problem A-5-19
Consider a matrix

Assume that A,, A, and A; are distinct eigenvalues of matrix A.
Show that if a transformation matrix P is defined by

1 1 1
P=|A A& A
YD VI Y
then
A 0 0
PIAP=|0 A, O
0 0 A

Solution First note that

[ o 1 o1 1 1
AP = 0 0 1 Al Az )g
a3 —a -a j[A} B A
A A A3
= K b b
| —a3 — @l — )} —a3 — mhy — @A —a3 — ad; — @A}

Since Ay, Ay, and A; are eigenvalues, they satisfy the characteristic equation, or
AB+ap+an+a;=0
Thus,
A? = —a3 — aA; — al)‘,?
Hence,
—asz — 02A1 - al)t% = A%
—asz — 02)12 - a1A§ = A%
—a3 — ahs — @A} = A3

Consequently, Equation (5-115) can be written as

A A A
AP = A} A A
A8 A
Next, define
M O O

D={0 /\2 0
0 0 A

Chap. 5

(5-115)

(5-116)
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l’ Then
‘ 1 1 19 0 o A A A
PD=|)n A A0 A, 0]=[22 A A (5-117)
2 oA Ao o0 A A A8 A

Comparing Equations (5-116) and (5-117), we have

AP=PD
Thus, we have shown that
AA 0O
PIAP=D=(0 A, O
0 0 A

Problem A-5-20

Prove that the eigenvalues of a square matrix A are invariant under a linear transfor-
mation.

Solution To prove the invariance of the eigenvalues under a linear transformation,
we must show that the characteristic polynomials |AI — A| and |AI — P~'AP| are
identical.

Since the determinant of a product is the product of the determinants, we obtain

[AI = PTIAP| = |APTIP — PTIAP|

= |P~}(AI - A)P|
= |P~Y|AI — A[[P|
= |PY|P||AT - A|

Noting that the product of the determinants |P~!| and |P| is the determinant of the
product |P~!P|, we obtain
|AI — P~AP| = [P7'P||AI - A|
= [AL = Al

Thus, we have proven that the eigenvalues of A are invariant under a linear transfor-
mation.

PROBLEMS

Problem B-5-1

Obtain state-space representations of the mechanical systems shown in Figures 5-36(a)
and (b).

Problem B-5-2

For the spring-mass—pulley system of Figure 5-37, the moment of inertia of the pulley
about the axis of rotation is J and the radius is R. Assume that the system is initially in
equilibrium. The gravitational force of mass m causes a static deflection of the spring
such that k8 = mg. Assuming that the displacement y of mass m is measured from the
equilibrium position, obtain a state-space representation of the system. The external
force u applied to mass m is the input and the displacement y is the output of the system.
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——> x (Output)

k u(®)
m (Input force)
N W9779777/
@
—» x (Output)
k ky )
m (Input force)
. ®)
Figure 5-36 (a) and (b) Mechanical systems.
Z A
X%
R l
u (]
m
.
y mg
Figure 5-37 Spring-mass—pulley system. 7

Problem B-5-3

Obtain a state-space representation of the mechanical system shown in Figure 5-38.
The force u(t) applied to mass m, is the input to the system. The displacements y and z
are the outputs of the system. Assume that y and z are measured from their respective
equilibrium positions.

Problem B-5-4

Obtain a state-space representation of the mechanical system shown in Figure 5-39,
where u; and u; are the inputs and y, and y, are the outputs. The displacements y; and
», are measured from their respective equilibrium positions.
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u(r)
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z
ky b,
m,
k, y
7% Figure 5-38 Mechanical system.
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Figure 5-39 Mechanical system.

Problem B-5-5

Given the state equation

k] 0 1 0 Xy 1
kz =|0 01 Xy | + 1 {u
k3 1 -3 3 X3 1
and output equation
Xy
y=0_ 0 0] x,
X3

obtain the corresponding scalar differential equation in terms of y and u.
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Problem B-5-6
Consider the system defined by
Y+ 6y + 115 + 6y = 6u

where y is the output and u is the input of the system. Obtain a state-space representa-

tion for the system.

Problem B-5-7
Consider the system described by

-0 2]+ Gk
=t o]

Obtain the transfer function of the system.

Problem B-5-8
Consider a system described by the state equation
x = Ax + Bu
and the output equation
y=Cx + Du

where

A=[_0 1], B=H, C=[ 0, D=

1 -2 1

Obtain the transfer function of the system.

Problem B-5-9
Consider the system
Xx=Ax + Bu
y=Cx+ Du
where
0 1 0 0
A= 0 0 1|, B =10 |, C=[1 0 0],
—-600 -100 -10 0

Obtain the transfer function of the system.

Problem B-5-10
Consider the following system:

MR N
b=l 2lal+ o ol

Obtain the unit-step response curves with MATLAB.

1

Chap.5

D

0
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Problem B-5-11
Obtain the unit-step response curve and unit-impulse response curve of the following
system with MATLAB:
X 1 -5 =25 -5 X 1
Hnl=| 1 0 O0flx|+]|0]u
X3 0 1 0]lx 0
X1
y=10 25 5]} x, { + [OJu
X3
Problem B-5-12

Consider the system defined by

x = Ax + Bu, x(0) = x
y=Cx+ Du

where

-10 -5 0
Obtain the response to the initial condition

o[}

Use MATLAB command initial(A,B,C,D,[initial condition],t).

A=[0 1], B=[0], C=01 0, D=0

Problem B-5-13
Consider the system
'y +8y+ 17y + 10y =0
subjected to the initial condition
¥(0) =2, y(0) =1, ¥(0) =05

(No external forcing function is present.) Obtain the response curve y(t) to the given
initial condition with MATLAB. Use command Isim.

Problem B-5-14
Consider the mechanical system shown in Figure 5-40(a). The system is at rest for
t < 0. The displacement y is measured from the equilibrium position for ¢ < 0. At
t = 0, an input force
u(t) = 1N for0=r=<S5
=0 for5 <t
is given to the system. [See Figure 5-40(b).] Derive a state-space representation of the

system. Plot the response curve y(f) versus ¢ (where 0 <t < 10) with MATLAB.
Assume that m = Skg,b = 8 N-s/m, and k = 20 N/m.
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Figure 540 (a) Mechanical system; (b) input force u.
Problem B-5-15
Consider the mechanical system shown in Figure 5-41(a). Assume that at t = 0 mass m
is placed on the massless bar AA'. [See Figure 5-41(b).] Neglecting the mass of the
spring-damper device, what is the subsequent motion y(z) of the bar AA’? The dis-
placement y(¢) is measured from the equilibrium position before the mass is placed on
the bar AA'. Assume that m = 1 kg, the viscous-friction coefficient » = 4 N-s/m, and
the spring constant k¥ = 40 N/m. Derive a state-space representation of the system, and
plot the response curve y() versus ¢ with MATLAB.
A Al m ,
1 A A
- i
k -—l b y k b
W, Z
t<0 t>0
(a) (b)
Figure 5-41 (a) Mechanical device; (b) vibration caused by placement
of mass m on bar AA'.
Problem B-5-16

Consider the system shown in Figure 5-42. The system is at rest for # < 0. Assume that
the input and output are the displacements u and y, respectively, measured from the
rest positions. Assume that m = 10kg, b = 20 N-s/m, and k = 40 N/m. The input uis a
step displacement input of 0.2 m. Assume also that the system remains linear through-
out the transient period. Obtain a state-space representation of the system. Plot the
response curve y(t) versus ¢ with MATLAB.,
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/ 7 Figure 5-42 Mechanical system.

Problem B-5-17
Referring to Problem A-5-10, consider the system shown in Figure 5-31. The system is
at rest for ¢t < 0. The displacements z; and z, are measured from their respective equi-
librium positions relative to the ground. Define z; — z; = z. Derive a state-space
equation when z, 2, z;, and 2 are chosen as state variables. Assuming that m; = 10 kg,
my = 20 kg, b = 20 N-s/m, k = 60 N/m, and f'is a step force input of magnitude 10 N,
plot the response curves z;(t) versus ¢, z5(r) versus ¢, and z(t) versus ¢.

Problem B-5-18

Consider the system shown in Figure 5-43(a). The system is at rest for ¢t < 0. The dis-
placements z; and z; are measured from their respective equilibrium positions before
the input force

f=tN (0<t=10)

=0 (10 <1)
2 —> 2 —>2
% b
A T
é ‘v‘v‘v‘v my ms —p f
% ‘V‘V‘V‘V
7 k
7 2
7 7,
(@)
i
IONfF-~-=-~-=-~-
0 10 71

Figure 543 (a) Mechanical system;
(b) (b) input force f.
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[see Figure 5-43(b)] is given to the system. Assume that m; = 10kg, m, = 20 kg,
b = 20 N-s/m. k, = 30 N/m, and k, = 60 N/m, and derive a state-space representation
of the system. Then plot the response curves z;(t) versus f, z(t) versus ¢, and
25(t) — z;(¢) versus ¢.

Problem B~-5-19
Consider the system equation given by

(my ~ (n—1) . (m  (a=1) .
ytay + - ta,yta,y=bu+bu + - +b,_qu+bu

By choosing appropriate state variables, derive the state equation

X 00 -+ 0 =-a (|x b, — apby
Y2l 1 ? ? '“;"1 ":2 +| B " @n-1bo |, (5-118)
kn 0 0 b 1 -a; Xp b] - albo
and output equation
Xy
X2
y=[0 0 -+ 0 1) : |+ bou (5-119)
Xp-1
xll
Problem B-5-20
Consider the system defined by the following transfer function:
Y(s) 160(s + 4)

U(s) s°+ 185% + 1925 + 640

Using Methods 1 and 2 presented in Section 5-4, obtain two state-space representa-
tions of the system.

Problem B-5-21

Using the partial-fraction expansion approach, obtain a state-space representation for
the following system:

Y(s) _ 5
UGs) (s+1)¥s+2)

Problem B-5-22

Consider the mechanical system shown in Figure 5-44. The system is at rest for r < 0.
The force u is the input to the system and the displacement y, measured from the equi-
librium position before u is given at ¢ = 0, is the output of the system. Obtain a state-
space representation of the system.

Problem B-5-23

Consider the system shown in Figure 5-45. The system is at rest for ¢ < 0. The dis-
placements y; and y, are measured from their respective equilibrium positions before
the input force u is given at + = 0. Obtain a state-space representation of the system.
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Figure 544 Mechanical system.
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Figure 545 Mechanical system.

Assuming that m; = 10kg, m, = 5kg,b = 10N-s/m, k; = 40 N/m, and k, =
20 N/m and that input force u is a constant force of 5 N, obtain the response of the sys-
tem. Plot the response curves y;(¢) versus f and y,(¢) versus ¢ with MATLAB.

Problem B-5-24

Consider the mechanical system shown in Figure 5-46. The system is initially at rest.
The displacement « is the input to the system, and the displacements y and z, measured

Figure 546 Mechanical system.
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from their respective rest positions before the input displacement u is given to the sys-
tem, are the outputs of the system. Obtain a state-space representation of the system.

Problem B-5-25

Consider the mechanical system shown in Figure 5-47. The system is at rest for 1 < 0.
The force u is the input to the system and the displacements z; and z,, measured from
their respective equilibrium positions before u is applied at ¢ = 0, are the outputs of
the system. Obtain a state-space representation of the system.

Figure 5-47 Mechanical system.

Problem B-5-26

7/ >3 > 22

7, b

I 2} ks

Z g}

- m —WW—0 = u
% 4‘v‘v‘v‘v

7

7

g!é! ky
7/

Consider the system shown in Figure 5-48. The system is at rest for ¢ < 0. The force u
is the input to the system and the displacements z; and z,, measured from their respec-
tive equilibrium positions before u is applied at ¢ = 0, are the outputs of the system.

Obtain a state-space representation of the system,

Assume that m, = 100 kg, m, = 200 kg, b = 25 N-s/m, k; = 50 N/m, and k,=
100 N/m. The input force u is a step force of magnitude 10 N. Plot the response curves
2y(t) versus ¢, z,(¢) versus 1, and 2(t) — z;(t) versus ¢.

AAAA

vy

my ——-

/,
% — >
2 s
4
a1
% AA m'
// V¢¢
b

Figure 5-48 Mechanical system.

Problem B-5-27
Consider the system

Y(s) _ 255+ 5

UGS) s2+552+255+5
Obtain a state-space representation of the system with MATLAB.

Problem B-5-28
Consider the system

Y(s) s*+2s%2+155+10

U(s) s*+4s+8s+10
Obtain a state-space representation of the system with MATLAB.
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Problem B-5-29
Consider the system defined by

s R e R P ]
}.Vz -25 -4 X2 01 115)
l=lo 2]+l )
» 0 1ilx, 0 1J{w,
This system involves two inputs and two outputs. Four transfer functions are involved:

Yi(s)/U\(s5), Ya(s)IU (), Y1(5)/Us(s), and Y(s)/Uy(s). (When considering input u,, we
assume that input u, is zero, and vice versa.)

Obtain the transfer matrix (consisting of the preceding four transfer functions)
of the system.

Problem B-5-30
Obtain the transfer matrix of the system defined by

i 0 1 0 1x 0 o]
i'2=001x2+01[u1J
il -2 -4 —6)x] |1 o™
[)’1._'1 0 0] il

= 2
»] 0 1 0 s

Problem B-5-31

Consider a3 X 3 matrix having a triple eigenvalue of A,. Then any one of the following
Jordan canonical forms is possible:

A 1 0 A 10 A 0 O
0 A 1] 0 A O] 0 A O
0 0 A 0 0 A 0 0 A

Each of the three matrices has the same characteristic equation (A — A;)* = 0. The
first corresponds to the case where there exists only one linearly independent eigen-
vector. This fact can be seen by denoting the first matrix by A and solving the following

equation for x:
Ax = Alx
That is,
A] 1 0 X1 X1
0 /\1 1 X2 | = A[ X2
0 0 Al X3 X3

which can be rewritten as
/\lxl + Xy = /\]X]
/\]XZ + X3 = A]Xg
Ajx3 = Apx;
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which, in turn, gives

x; = arbitrary constant, x; = 0, x3=0
Hence,
a
x=|0
0

where a is a nonzero constant. Thus, there is only one linearly independent eigenvector.
Show that the second and third of the three matrices have, respectively, two and
three linearly independent eigenvectors.




Electrical Systems
and Electromechanical
Systems

6-1 INTRODUCTION

This chapter is concerned with mathematical modeling and the response analysis of
electrical systems and electromechanical systems. Electrical systems and mechanical
systems (as well as other systems, such as fluid systems) are very often described by
analogous mathematical models. Therefore, we present brief discussions on analo-
gous systems in the chapter.

In this section, we first review three types of basic elements of electrical systems:
resistance, capacitance, and inductance elements. (These elements are passive ele-
ments, because, although they can store or dissipate energy that is already present in
the circuit, they cannot introduce additional energy into the circuit.) Then we briefly
discuss voltage and current sources. (These are active elements, because they can
introduce energy into the circuit.) Finally, we provide an outline of the chapter.

Resistance elements. The resistance R of a linear resistor is given by

e
R=-F
where ey, is the voltage across the resistor and i is the current through the resistor.

The unit of resistance is the ohm (Q ), where

volt
ampere

ohm =

251
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Resistors do not store electric energy in any form, but instead dissipate it as
heat. Note that real resistors may not be linear and may also exhibit some capaci-
tance and inductance effects.

Capacitance elements. Two conductors separated by a nonconducting
medium form a capacitor, so two metallic plates separated by a very thin dielectric
material form a capacitor. The capacitance C is a measure of the quantity of charge
that can be stored for a given voltage across the plates. The capacitance C of a ca-
pacitor can thus be given by

q

€c

where q is the quantity of charge stored and ec is the voltage across the capacitor.
The unit of capacitance is the farad (F), where

ampere-second _ coulomb
volt volt

farad =

Note that,since i = dg/dt and ec = q/C, we have

dec
i = c%c
l dt
or
1
dec = Eldt
Therefore,

ec(t) = %/0 idt + ec(0)

Although a pure capacitor stores energy and can release all of it, real capaci-
tors exhibit various losses. These energy losses are indicated by a power factor,
which is the ratio of the energy lost per cycle of ac voltage to the energy stored per
cycle. Thus, a small-valued power factor is desirable.

Inductance elements. If a circuit lies in a time-varying magnetic field, an
electromotive force is induced in the circuit. The inductive effects can be classified
as self-inductance and mutual inductance.

Self-inductance is that property of a single coil that appears when the magnet-
ic field set up by the current in the coil links to the coil itself. The magnitude of the
induced voltage is proportional to the rate of change of flux linking the circuit. If the
circuit does not contain ferromagnetic elements (such as an iron core), the rate of
change of flux is proportional to di/dt. Self-inductance, or simply inductance, L, is
the proportionality constant between the induced voltage e; volts and the rate of
change of current (or change in current per second) di/dt amperes per second; that is,

_ e
"~ dildt
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The unit of inductance is the henry (H). An electrical circuit has an inductance
of 1 henry when a rate of change of 1 ampere per second will induce an emf of 1 volt:

volt _ weber
ampere/second  ampere

henry =

The voltage e; across the inductor L is given by

where i is the current through the inductor. The current i; () can thus be given by

¢
i[_(t) = %l eLdt + iL(O)

Because most inductors are coils of wire, they have considerable resistance.
The energy loss due to the presence of resistance is indicated by the quality factor Q,
which denotes the ratio of stored to dissipated energy. A high value of Q generally
means that the inductor contains small resistance.

Mutual inductance refers to the influence between inductors that results
from the interaction of their fields. If two inductors are involved in an electrical
circuit, each may come under the influence of the magnetic field of the other
inductor. Then the voltage drop in the first inductor is related to the current flow-
ing through the first inductor, as well as to the current flowing through the second
inductor, whose magnetic field influences the first. The second inductor is also
influenced by the first in exactly the same manner. When a change in current of 1
ampere per second in either of the two inductors induces an electromotive force
of 1 volt in the other inductor, their mutual inductance M is 1 henry. (Note that it
is customary to use the symbol M to denote mutual inductance, to distinguish it
from self-inductance L.)

Voltage and current sources. A voltage source is a device that causes a
specified voltage to exist between two points in a circuit. The voltage may be time
varying or time invariant (for a sufficiently long time). Figure 6-1(a) is a schematic
diagram of a voltage source. Figure 6-1(b) shows a voltage source that has a con-
stant value for an indefinite time. Often the voltage is denoted by E. A battery is an
example of this type of voltage source.

A current source causes a specified current to flow through a wire containing
this source. Figure 6-1(c) is a schematic diagram of a current source.

Outline of the chapter. Section 6-1 has presented introductory material.
Section 6-2 reviews the fundamentals of electrical circuits that are presented in col-
lege physics courses. Section 6-3 deals with mathematical modeling and the re-
sponse analysis of electrical systems. The complex-impedance approach is included.
Section 6-4 discusses analogous systems. Section 6-5 offers brief discussions of
electromechanical systems. Finally, Section 6-6 treats operational-amplifier systems.



254 Electrical Systems and Electromechanical Systems  Chap. 6

° °
+
e(t) ) Circuit E L Circuit
i 0
(@ (®)
o
i(r) Circuit
Lo
©

Figure 6-1 (a) Voltage source; (b) constant voltage source; () current
source.

6-2 FUNDAMENTALS OF ELECTRICAL CIRCUITS

In this section, we review Ohm’s law, series and parallel circuits, and Kirchhoff’s cur-
rent and voltage laws.

Ohm's law. Ohm’s law states that the current in a circuit is proportional to
the total electromotive force (emf) acting in the circuit and inversely proportional
to the total resistance of the circuit. Ohm’s law can be expressed as

e

i=—=

R
where i is the current (amperes), e is the emf (volts), and R is the resistance (ohms).
Series circuits. The combined resistance of series-connected resistors is the

sum of the separate resistances. Figure 6-2 shows a simple series circuit. The voltage
between points A and B is

e=¢ te +e

le— &1 ey e3

Figure 6-2 Series circuit.
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fy i3

o— Figure 6-3 Parallel circuit.

where

e, = iRy, € = iRz, e3 = lR3

§=R1+R2+R3

The combined resistance is then given by
R = Rl + R2 + R3

Parallel circuits. For the parallel circuit shown in Figure 6-3,

. e . e ., _ €
"Ww==, 12=Ea l3——lg

Since i = i) + i + i3, it follows that

or
R = 1 _ R1R2R3
1 1 1 RR+RR+RR
Ri R, Rs

Resistance of combined series and parallel resistors. Consider the cir-
cuit shown in Figure 6-4(a). The combined resistance between points B and C is



Figure 6-4 Combined series and parallel resistors.

256 Electrical Systems and Electromechanical Systems  Chap. 6
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The combined resistance R between points A and C is
RR
L+ 273
R, + Ry
The circuit shown in Figure 6-4(b) can be considered a parallel circuit consist-

ing of resistances (R; + R;) and (R; + R,). So the combined resistance R between
points A and B is

R=R1+RBC=R

1__ 1,1
R R +R, R3;+ R

or
R= (R, + R))(R; + Ry)
Ri+R,+ R+ R,

Next, consider the circuit shown in Figure 6-4(c). Here, R; and R; are parallel
and R; and R, are parallel, and the two parallel pairs of resistances are connected in
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series. Redrawing this circuit as shown in Figure 6-4(c), therefore, we obtain

R = RiRs_ _ _RoRs_
7 R+ Ry P2~ Ry + Ry
As a result, the combined resistance R becomes
R{R RyR
R =R AP + RPB = 173 + 274

Ry + Ry R, + R,

Kirchhoff’s laws. In solving circuit problems that involve many electromo-
tive forces, resistances, capacitances, inductances, and so on, it is often necessary to
use Kirchhoff's laws, of which there are two: the current law (node law) and the
voltage law (loop law).

Kirchhoff’s current law (node law). A node in an electrical circuit is a point
where three or more wires are joined together. Kirchhoff’s current law (node law)
states that the algebraic sum of all currents entering and leaving a node is zero. (This
law can also be stated as follows: The sum of all the currents entering a node is equal
to the sum of all the currents leaving the same node.) In applying the law to circuit
problems, the following rules should be observed: Currents going toward a node
should be preceded by a plus sign; currents going away from a node should be pre-
ceded by a minus sign. As applied to Figure 6-5, Kirchhoff’s current law states that

il+i2+i3—i4-i5=0

Kirchhoff’s voltage law (loop law). Kirchhoff’s voltage law states that at
any given instant of time the algebraic sum of the voltages around any loop in an
electrical circuit is zero. This law can also be stated as follows: The sum of the volt-
age drops is equal to the sum of the voltage rises around a loop. In applying the law
to circuit problems, the following rules should be observed: A rise in voltage [which
occurs in going through a source of electromotive force from the negative to the
positive terminal, as shown in Figure 6-6(a), or in going through a resistance in op-
position to the current flow, as shown in Figure 6-6(b)] should be preceded by a plus
sign. A drop in voltage [which occurs in going through a source of electromotive
force from the positive to the negative terminal, as shown in Figure 6-6(c), or in
going through a resistance in the direction of the current flow, as shown in Figure
6-6(d)] should be preceded by a minus sign.

Figure 6-7 shows a circuit that consists of a battery and an external resistance.
Here, E is the electromotive force, r is the internal resistance of the battery, R is the
external resistance, and i is the current. If we follow the loop in the clockwise direction

Figure 6-5 Node.
il+i2+i3-i4-i5=0.
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Figure 6-6 Diagrams showing voltage rises and voltage drops in circuits. (Note: Each cir-
cular arrow shows the direction one follows in analyzing the respective circuit.)

Figure 6-7 Electrical circuit.

(A— B— C — A) as shown, then we have

extexgt+teg=0

or
E-iR-ir=0
from which it follows that
;= E
R+r

A circuit consisting of two batteries and an external resistance appears in
Figure 6-8(a), where E, and r, (E; and r,) are the electromotive force and internal
resistance of battery 1 (battery 2), respectively, and R is the external resistance. By
assuming the direction of the current i as shown and following the loop clockwise as
shown, we obtain

El—iR_Ez—ifz—ir1=0
or
E| - E

A n TR D



Sec. 6-2 Fundamentals of Electrical Circuits 259

(a) (b)

Figure 6-8 Electrical circuits.

If we assume that the direction of the current i is reversed [Figure 6-8(b)], then, by
following the loop clockwise, we obtain

E1+iR—Ez+ir2+ir1=0
or

_ EB-E

l_r1+r2+R (6_2)

Note that, in solving circuit problems, if we assume that the current flows to the right
and if the value of i is calculated and found to be positive, then the current i actual-
ly flows to the right. If the value of i is found to be negative, the current i actually
flows to the left. For the circuits shown in Figure 6-8, suppose that E; > E,. Then
Equation (6-1) gives i > 0, which means that the current i flows in the direction
assumed. Equation (6-2), however, yields i < 0, which means that the current i
flows opposite to the assumed direction.

Note that the direction used to follow the loop is arbitrary, just as the direction of
current flow can be assumed to be arbitrary. That is, the direction used in following the
loop can be clockwise or counterclockwise; the final result is the same in either case.

Circuits with two or more loops. For circuits with two or more loops, both
Kirchhoff’s current law and voltage law may be applied. The first step in writing the
circuit equations is to define the directions of the currents in each wire. The second
is to determine the directions that we follow in each loop.

Consider the circuit shown in Figure 6-9, which has two loops. Let us find the
current in each wire. Here, we can assume the directions of currents as shown in the
diagram. (Note that these directions are arbitrary and could differ from those shown

w +—WW—Ff >
£
AvAvAvAvAr
)
K

Figure 6-9 Electrical circuit.
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in the diagram.) Suppose that we follow the loops clockwise, as is shown in the figure.
(Again, the directions could be either clockwise or counterclockwise.) Then we
obtain the following equations:
Atpoint A: i) +i3— i, =0
For the left IOOPZ El - E2 + i3R2 - ilRl =0
For therightloop: E; — bRy — i3Ry =0

Eliminating i, from the preceding three equations and then solving for i, and i3, we
find that

i = Ey(Ry + R3) — ExRy

'" RiR, + RyR; + R3R,

i = Ex(Ry + R3) — E\Ry

>7 RiR, + RyR; + R3R,

Hence,
RiR; + RyR;3 + R3R,

i2=i1+i3=

Writing equations for loops by using cyclic currents. In this approach, we
assume that a cyclic current exists in each loop. For instance, in Figure 6-10, we assume
that clockwise cyclic currents i; and i, exist in the left and right loops, respectively, of
the circuit.

Applying Kirchhoff’s voltage law to the circuit results in the following equations:

Forleftloop: E; — E; — Ry(iy — i) — Ryi; =0
Forright loop: E, — R3iy — Ry(i — i) =0

Note that the net current through resistance R, is the difference between i; and i,.
Solving for i, and i, gives

i = E\(R; + R3) — B3Ry

'" R\R, + RyR; + R3Ry

. E\R; + E3R,

2% RiR, + R;R; + R3R,
(By comparing the circuits shown in Figures 6-9 and 6-10, verify that i3 in Figure 6-9
is equal to i, — i, in Figure 6-10.)

Figure 6-10 Electrical circuit.
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6-3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

The first step in analyzing circuit problems is to obtain mathematical models for the
circuits. (Although the terms circuit and network are sometimes used interchange-
ably, network implies a more complicated interconnection than circuit.) A mathe-
matical model may consist of algebraic equations, differential equations,
integrodifferential equations, and similar ones. Such a model may be obtained by
applying one or both of Kirchhoff’s laws to a given circuit. The variables of interest
in the circuit analysis are voltages and currents at various points along the circuit.

In this section, we first present the mathematical modeling of electrical circuits
and obtain solutions of simple circuit problems. Then we review the concept of com-
plex impedances, followed by derivations of mathematical models of electrical circuits.

Example 6-1

Consider the circuit shown in Figure 6-11. Assume that the switch S is open fort < 0
and closed at ¢ = 0. Obtain a mathematical model for the circuit and obtain an equa-
tion for the current i(¢).

By arbitrarily choosing the direction of the current around the loop as shown in
the figure, we obtain

di ..
E—LE—RI—O
or
di
— 4+ j =
Lo +Ri=E (6-3)

This is a mathematical model for the given circuit. Note that at the instant switch S is
closed the current i(0) is zero, because the current in the inductor cannot change from
zero to a finite value instantaneously. Thus, i(0) = 0.

Let us solve Equation (6-3) for the current i(r). Taking the Laplace transforms of
both sides, we obtain
] E
LisI(s) —i(0)] + RI(s) = "
Noting that i(0) = 0, we have

(Ls + R)I(s) =—f—

<
E § R
I l‘
Figure 6-11 Electrical circuit.
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Figure 6-12 Plot of i(r) versus ¢ for the
circuit shown in Figure 6-11 when switch S 0
isclosedats = 0.
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The inverse Laplace transform of this last equation gives
i(0) = E11 - @ (64
A typical plot of i(r) versus t appears in Figure 6-12.

Example 6-2

Consider again the circuit shown in Figure 6-11. Assume that switch § is open for
t <0, it is closed at ¢ = 0, and is open again at ¢ = ¢; > 0. Obtain a mathematical
model for the system, and find the current i(s) for ¢ = 0.

The equation for the circuit is

L-“;—i+Ri=E i(0)y=0 n>t=z0 (6-5)
From Equation (6-4), the solution of Equation (6-5) is
i(t) = %[1 —e®L) sy (6-6)
Att = 1;, the switch is opened. The equation for the circuit for ¢t = ¢ is
to4Rri=0 1=y (6-7)

where the initial condition at ¢ = 1, is given by

i(y) = %[1 ~ ¢ (Rbn) (6-8)

(Note that the instantaneous value of the current at the switching instant ¢ = ¢, serves
as the initial condition for the transient response for ¢ = 1,.) Equations (6-5), (6-7),
and (6-8) constitute a mathematical model for the system.

Now we shall obtain the solution of Equation (6-7) with the initial condition
given by Equation (6-8). The Laplace transform of Equation (6-7), with ¢ = ¢, the ini-
tial time, gives

L[sI(s) - i(t))] + RI(s) =0
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| Figure 6-13 Plot of i(r) versus ¢ for the
. circuit shown in Figure 6-12 when switch §
0 f t isclosedatt = 0andopenedats =1,
or
(Ls + R)I(s) = Li(ty)
Hence,
Li(t) E 1
I =—————-—=—1—- ~(RIL)yy = 9
@O =rr - ®rE TR €9
The inverse Laplace transform of Equation (6-9) gives
i(t) = %[1 - e—(R/L)r,]e—(RIL)(l-ll) = (6-10)
Consequently, from Equations (6-6) and (6-10), the current i(¢) for ¢+ = 0 can be
written
; E ~(RIL)r
t(t)=E[1—e | n>t=0
E - _ _
= E[I — e (R/L)‘l]e (RIL)(1—1;) t=y

A typical plot of i(f) versus ¢ for this case is given in Figure 6~13.

Example 6-3

Consider the electrical circuit shown in Figure 6-14. The circuit consists of a resistance
R(in ohms) and a capacitance C (in farads). Obtain the transfer function E,(s)/E;(s).
Also, obtain a state-space representation of the system.

Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

Ri +é—/idt =¢ (6-11)

—é- / idt=e, (6-12)

The transfer-function model of the circuit can be obtained as follows: Taking the Laplace
transforms of Equations (6-11) and (6-12), assuming zero initial conditions, we get

RI(s) + é—}l(s) = E(s)

Z31(s) = Ef(s)



264 Electrical Systems and Electromechanical Systems  Chap. 6

Figure 6~14 RC circuit. O-
Assuming that the input is ¢; and the output is e,, the transfer function of the system is

11
Es)___Cs'® 1
E{s) (R + % %) 1) RCs +1

This system is a first-order system.
A state-space model of the system may be obtained as follows: First, note that,
from Equation (6-13), the differential equation for the circuit is

RCe, + ¢, = ¢;

(6-13)

If we define the state variable

x=e,
and the input and output variables
u=e, y=e=x
then we obtain
x = —Lx + —=u
RC RC
y=x

These two equations give a state-space representation of the system.

Example 64

Consider the electrical circuit shown in Figure 6-15. The circuit consists of an inductance

L (in henrys), a resistance R (in ohms), and a capacitance C (in farads). Obtain the trans-

fer function E,(s)/E;(s). Also, obtain a state-space representation of the system.
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

L— + Ri + C/l dr = (6-14)
E/i dt = e, (6-15)
L R
O— TN ————— AMN————0
€ cC=x €

i
o— —0

Figure 6-15 Electrical circuit.
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The transfer-function model of the circuit can be obtained as follows: Taking the
Laplace transforms of Equations (6-14) and (6-15), assuming zero initial conditions,
we get

LsI(s) + RI(s) + %%l(s) = E(s)

11
319 = Es)
Then the transfer function E,(s)/E;(s) becomes
Eo(s) _ 1
E(s) LCs*+ RCs +1

A state-space model of the system may be obtained as follows: First, note that,
from Equation (6-16), the differential equation for the system is
. 1 1
1% ¥ Ic% = I

(6-16)

€ +

Then, by defining state variables

X1 = €
X = éo
and the input and output variables
u =g
y=e€ =x
we obtain
; 0 1] . 0
[ Sl [1])
2 LC L] LC
and
- [x1
y=1 of7]

These two equations give a mathematical model of the system in state space.

Transfer Functions of Nonloading Cascaded Elements. The transfer
function of a system consisting of two nonloading cascaded elements can be obtained
by eliminating the intermediate input and output. For example, consider the system
shown in Figure 6-16(a). The transfer functions of the elements are

X, X
Gi(s) = fg; and Gy(s) = ng;

If the input impedance of the second element is infinite, the output of the first ele-
ment is not affected by connecting it to the second element. Then the transfer func-
tion of the whole system becomes
_ Xa(s) _ Xo(s)Xs(s)
G(s) = =
Xi(s)  Xi(s)Xy(s)

= Gy(s)Ga(s)
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Xl(s)‘

X(s)
-t G(5) >

Xi(s) Xy(s) Xi(s)
Gz(s) o Gy (S) Gz(s) ——————

A J

(@) ()

Figure 6-16 (a) System consisting of two nonloading cascaded elements; (b) an equivalent system.

The transfer function of the whole system is thus the product of the transfer functions
of the individual elements. This is shown in Figure 6-16(b).

As an example, consider the system shown in Figure 6-17. The insertion of an
isolating amplifier between the circuits to obtain nonloading characteristics is fre-
quently used in combining circuits. Since amplifiers have very high input imped-
ances, an isolation amplifier inserted between the two circuits justifies the
nonloading assumption.

The two simple RC circuits, isolated by an amplifier as shown in Figure 6-17,
have negligible loading effects, and the transfer function of the entire circuit equals
the product of the individual transfer functions. Thus, in this case,

E(s) _ 1 1
E(s) (R1C1s + 1)(K)(R2C2s + 1)
K
T (RiCis + 1)(R,Cys + 1)

Transfer functions of cascaded elements. Many feedback systems have
components that load each other. Consider the system shown in Figure 6-18.
Assume that ¢; is the input and e, is the output. The capacitances C; and C, are not
charged initially. Let us show that the second stage of the circuit (the R,C, por-
tion) produces a loading effect on the first stage (the R,C,; portion). The equations
for the system are

1
F‘/(ll - 12) dt + Rlil = €; (6-17)
1
1 /. . ., 1 [
—/(12 —iy)dt + Ryiy + —/lzdt =0 (6-18)
G G
1 [,
Z’; bdt = e, (6-19)
Ry R,
o—WW MWWy —0
Isolating
e C= amplifier CG=— e
(gain K)
o— —o

Figure 6-17 Electrical system.
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R, Ry

O—WW—“NWT—G

ei v Cl T vc e
i i

- 2
i -|-
) —o  Figure 6-18 Electrical system.

[

Taking the Laplace transforms of Equations (6-17) through (6-19), respectively,
assuming zero initial conditions, we obtain

2=Th(s) = ()] + Ril(s) = Efs) (6-20)

15

Cilsuzm — I(s)] + Ryly(s) + ‘C%Iz(s) =0 (6-21)
Cizslz(s) = Es) (6-22)

Eliminating I;(s) from Equations (6-20) and (6-21) and writing E;(s) in terms of
I)(s), we find the transfer function between E,(s) and E;(s) to be
Efs) _ 1
E,'(S) (R1C1s + 1)(R2C2S + 1) + R1CZS
1
" RiCiR,Co8? + (RCy + Ry, + RiGy)s + 1

The term R;C,s in the denominator of the transfer function represents the interac-
tion of two simple RC circuits. Since (R1C1 + R2C2 + R1C2)2 > 4R1C1R2C2, the
two roots of the denominator of Equation (6-23) are real.

The analysis just presented shows that, if two RC circuits are connected in
cascade so that the output from the first circuit is the input to the second, the over-
all transfer function is not the product of 1/(R,C;s + 1) and 1/(R,Cps + 1). The
reason for this is that, when we derive the transfer function for an isolated circuit,
we implicitly assume that the output is unloaded. In other words, the load imped-
ance is assumed to be infinite, which means that no power is being withdrawn at the
output. When the second circuit is connected to the output of the first, however, a
certain amount of power is withdrawn, and thus the assumption of no loading is
violated. Therefore, if the transfer function of this system is obtained under the
assumption of no loading, then it is not valid. The degree of the loading effect
determines the amount of modification of the transfer function.

(6-23)

Complex impedances. In deriving transfer functions for electrical circuits,
we frequently find it convenient to write the Laplace-transformed equations directly,
without writing the differential equations. Consider the system shown in Figure 6-19.
In this system, Z; and Z, represent complex impedances. The complex impedance
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T Z Z, 0

Figure 6-19 Electrical circuit.

Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace transform of the volt-
age across the terminals, to /(s), the Laplace transform of the current through the el-
ement, under the assumption that the initial conditions are zero, so that
Z(s) = E(s)/I(s). If the two-terminal element is a resistance R, a capacitance C, or
an inductance L, then the complex impedance is given by R, 1/Cs, or Ls, respectively.
If complex impedances are connected in series, the total impedance is the sum of the
individual complex impedances.
The general relationship

E(s) = Z(s)I(s)

corresponds to Ohm’s law for purely resistive circuits. (Note that, like resistances,
impedances can be combined in series and in parallel.)

Remember that the impedance approach is valid only if the initial conditions
involved are all zero. Since the transfer function requires zero initial conditions, the
impedance approach can be applied to obtain the transfer function of the electrical
circuit. This approach greatly simplifies the derivation of transfer functions of elec-
trical circuits.

Deriving transfer functions of electrical circuits with the use of complex
impedances. The transfer function of an electrical circuit can be obtained as a
ratio of complex impedances. For the circuit shown in Figure 6-20, assume that the
voltages e; and e, are the input and output of the circuit, respectively. Then the trans-
fer function of this circuit can be obtained as

E(s) __ Zs)M(s)  _ Zls)
E(s) ~ Zis)(s) + Zas)(s)  Za(s) + Z(s)

where I(s) is the Laplace transform of the current i(¢) in the circuit.

o— z, o
€; Z| e
O ]

Figure 6-20 Electrical circuit.
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Z,
Tt/ T
oI —W——} -0
L. L___ R _,
T
e zlc | o
(I I |
o- —O  Figure 6-21 Electrical circuit.

For the circuit shown in Figure 6-21,

Z, = Ls + R, Z, = é
Hence, the transfer function E,(s)/E;(s) is
1
Eo(s) _ Cs - 1
E(s) Is+ R+ 1 LCs*+ RCs +1

Cs

Example 6-5

Consider the system shown in Figure 6-22. Obtain the transfer function E,(s)/E;(s) by
the complex-impedance approach. (Capacitances C; and C; are not charged initially.)
The circuit shown in Figure 6-22 can be redrawn as that shown in Figure 6-23(a),
which can be further modified to Figure 6-23(b).
In the system shown in Figure 6-23(b), the current / is divided into two currents
) and I,. Noting that

Ll = (23 + Zy) 1, Lh+hL=1

we obtain
Z; + Z, Zy
L=0—"—F——I, L=—0—"—7F—-—F1
Zy+ 2Z; + Z, 2+ 72+ Z,
R R,

o—MM———wm—l—o
€; (o] é: C €
iy iz T

© —O0  Figure 6-22 Electrical circuit.
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1
O—>—1 Z] i
L
Z
(e, Zl Z3 —0 “Il 3
———0
Es) Z;
Es) Z Z, | Eo® z, Ey(s)
0
[0, 2% o— -0
(@ (b)

Figure 6-23 (a) The circuit of Figure 6-22 shown in terms of impedances; (b) equivalent circuit diagram.

Observing that
Z(Z3 + Z,) ]
i = + = —
E(s) = 2,0 + Z;1, [z1 o
_ ZzZ4
Eo(s) = Zak, = Za+ Zy+ Z,
we get
Ey(s) _ Z,Z,

E(s)  Z(Z + Z3 + Zy) + Zy(Z3 + Z,)
Substituting Z, = R, Z, = 1/(C;s), Z; = R,, and Z; = 1/(C;s) into this last equation

yields
11
E,(s) Cis Cys
E(s) (1 1) 1( 1)
— +—)+=— —
Ry Cys + R Cys Cis R, + Cys
1

T RICRCyS + (RiC, + RoCy + RiCy)s + 1

which is the transfer function of the system. [Notice that it is the same as that given by
Equation (6-23).]

6-4 ANALOGOUS SYSTEMS

Systems that can be represented by the same mathematical model, but that are phys-
ically different, are called analogous systems. Thus, analogous systems are described
by the same differential or integrodifferential equations or transfer functions.

The concept of analogous systems is useful in practice, for the following reasons:

1. The solution of the equation describing one physical system can be directly
applied to analogous systems in any other field.
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2. Since one type of system may be easier to handle experimentally than anoth-
er, instead of building and studying a mechanical system (or a hydraulic sys-
tem, pneumatic system, or the like), we can build and study its electrical
analog, for electrical or electronic systems are, in general, much easier to deal
with experimentally.

This section presents analogies between mechanical and electrical systems.

Mechanical-electrical analogies. Mechanical systems can be studied
through their electrical analogs, which may be more easily constructed than models
of the corresponding mechanical systems. There are two electrical analogies for
mechanical systems: the force-voltage analogy and the force—current analogy.

Force-voltage analogy. Consider the mechanical system of Figure 6-24(a)
and the electrical system of Figure 6-24(b). In the mechanical system p is the exter-
nal force, and in the electrical system e is the voltage source. The equation for the
mechanical system is

d’x  dx

? + b—‘;- + kx = (6-24)
where x is the displacement of mass m, measured from the equilibrium posmon The
equation for the electrical system is

L—-+Rz+—f:dt—e

In terms of the electric charge g, this last equation becomes

d*q dq 1
9 — 4+ =g =
L a2 R ci=e (6-25)
Comparing Equations (6-24) and (6-25), we see that the differential equations for
the two systems are of identical form. Thus, these two systems are analogous systems.

Z
m
| 1 € C) c=
b x ,~
7
(a) (b

Figure 6-24 Analogous mechanical and electrical systems.
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TABLE 6-1 Force-Voltage Analogy

Mechanical Systems Electrical Systems
Force p (torque T) Voltage e
Mass m (moment of inertia J) Inductance L
Viscous-friction coefficient b Resistance R
Spring constant k Reciprocal of capacitance, 1/C
Displacement x (angular displacement 6) | Charge q
Velocity x (angular velocity 8) Current i

The terms that occupy corresponding positions in the differential equations are
called analogous quantities, a list of which appears in Table 6-1. The analogy here is
called the force-voltage analogy (or mass—inductance analogy).

Force—current analogy. Another analogy between mechanical and electri-
cal systems is based on the force-current analogy. Consider the mechanical system
shown in Figure 6-25(a), where p is the external force. The system equation is

m— +b—+kx=p (6-26)

where x is the displacement of mass m, measured from the equilibrium position.
Consider next the electrical system shown in Figure 6-25(b), where i; is the
current source. Applying Kirchhoff’s current law gives

iL + iR + iC = i: (6—27)
where

1 d
i,_=z/edt, l'R=%, iC:CEE.

k
’ ,
il i icl ]
m
1 i L RiE c e
i I
%
(a) (b)

Figure 6-25 Analogous mechanical and electrical systems.
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Thus, Equation (6-27) can be written as

1 e de
- + = =1
L/edt R +Cdt i (6-28)

Since the magnetic flux linkage y is related to the voltage e by the equation

ay

i 4

dt
Equation (6-28) can be written in terms of ¢ as

dy 1dp 1
—_— = — =i 6-29
Cdt2 Rat TI?V7h (6-29)
Comparing Equations (6-26) and (6-29), we find that the two systems are analo-
gous. The analogous quantities are listed in Table 6-2. The analogy here is called the
force—current analogy (or mass—capacitance analogy).

Comments. Analogies between two systems break down if the regions of
operation are extended too far. In other words, since the mathematical models on
which the analogies are based are only approximations to the dynamic characteris-
tics of physical systems, the analogy may break down if the operating region of one
system is very wide. Nevertheless, even if the operating region of a given mechanical
system is wide, it can be divided into two or more subregions, and analogous electri-
cal systems can be built for each subregion.

Analogy, of course, is not limited to mechanical-electrical analogy, but includes
any physical or nonphysical system. Systems having an identical transfer function (or
identical mathematical model) are analogous systems. (The transfer function is one
of the simplest and most concise forms of mathematical models available today.)

Analogous systems exhibit the same output in response to the same input.
For any given physical system, the mathematical response can be given a physical
interpretation.

The concept of analogy is useful in applying well-known results in one field to
another. It proves particularly useful when a given physical system (mechanical,
hydraulic, pneumatic, and so on) is complicated, so that analyzing an analogous elec-
trical circuit first is advantageous. Such an analogous electrical circuit can be built
physically or can be simulated on the digital computer.

TABLE 6-2 Force-Current Analogy

Mechanical Systems Electrical Systems
Force p (torque 7T) Current i
Mass m (moment of inertia J) Capacitance C
Viscous-friction coefficient b Reciprocal of resistance, 1/R
Spring constant k Reciprocal of inductance, 1/L
Displacement x (angular displacement 6) | Magnetic flux linkage ¢
Velocity x (angular velocity 6) Voltage e
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Example 6-6

Obtain the transfer functions of the systems shown in Figures 6-26(a) and (b), and
show that these systems are analogous.
For the mechanical system shown in Figure 6-26(a), the equation of motion is

b(i; — x,) = kx,
or
bi; = kx, + bi,

Taking the Laplace transform of this last equation, assuming zero initial conditions, we
obtain

bsX(s) = (k + bs)X,(s)
Hence, the transfer function between X,(s) and X;(s) is
b,
Xo(s ) _ bs _ k
Xd(s) bs+k b
k
For the electrical system shown in Figure 6-26(b), we have

Eo(s) _ _ RCs
E(s) RCs+1

s+1

Comparing the transfer functions obtained, we see that the two systems are analogous.
(Note that both b/k and RC have the dimension of time and are time constants of the
respective systems.)

(o}
31 °
o— i )
€; R €
i
O —)
Figure 6-26 (a) Mechanical system;
(b) analogous electrical system. (a) (b)

6-5 MATHEMATICAL MODELING OF ELECTROMECHANICAL

SYSTEMS

In this section, we obtain mathematical models of dc servomotors. To control the
motion or speed of dc servomotors, we control the field current or armature current
or we use a servodriver as a motor-driver combination. There are many different

e —
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types of servodrivers. Most are designed to control the speed of dc servomotors,
which improves the efficiency of operating servomotors. Here, however, we shall
discuss only armature control of a dc servomotor and obtain its mathematical model
in the form of a transfer function.

Armature control of dc servomotors. Consider the armature-controlled
dc servomotor shown in Figure 6-27, where the field current is held constant. In this
system,

R, = armature resistance, {}
L, = armature inductance, H

i, = armature current, A

iy = field current, A

e, = applied armature voltage, V
= back emf,V
0 = angular displacement of the motor shaft, rad

T = torque developed by the motor, N-m

J = moment of inertia of the motor and load referred to the motor shaft,
kg-m?

b = viscous-friction coefficient of the motor and load referred to the motor
shaft, N-m/rad/s

R
|

The torque T developed by the motor is proportional to the product of the
armature current {, and the air gap flux ¢, which in turn is proportional to the field
current, or

¥ = Kyis
where K is a constant. The torque T can therefore be written as
T=K fi leia

where K is a constant.
For a constant field current, the flux becomes constant and the torque
becomes directly proportional to the armature current, so

T = Ki,
where K is a motor-torque constant. Notice that if the sign of the current i, is

reversed, the sign of the torque 7 will be reversed, which will result in a reversal of
the direction of rotor rotation.

Figure 6-27 Armature-controlled
dc servomotor.

lf= constant
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When the armature is rotating, a voltage proportional to the product of the
flux and angular velocity is induced in the armature. For a constant flux, the induced
voltage e), is directly proportional to the angular velocity df/dt, or

db
e, = K,,z (6-30)

where ¢, is the back emf and K}, is a back-emf constant.
The speed of an armature-controlled dc servomotor is controlled by the arma-
ture voltage e,. The differential equation for the armature circuit is

di
L,,—Jt‘i + R, +ey=e¢, (6-31)
The armature current produces the torque that is applied to the inertia and friction;
hence,
d*e . de

+bor =T =Ki, (6-32)

T T oy

Assuming that all initial conditions are zero and taking the Laplace transforms of
Equations (6-30), (6-31), and (6-32), we obtain the following equations:

Kys0(s) = Ey(s) (6-33)
(Las + R)Lu(s) + Ey(s) = Eus) (6-34)
(Js% + bs)O(s) = T(s) = KI,(s) (6-35)

Considering E,(s) as the input and @(s) as the output and eliminating I,(s) and
Ey(s) from Equations (6-33), (6-34), and (6-35), we obtain the transfer function for
the dc servomotor:

o(s) _ K

Eu(s)  s[L,Js* + (Lsb + RJ)s + R,b + KK}

(6-36)

The inductance L, in the armature circuit is usually small and may be neglect-
ed. If L, is neglected, then the transfer function given by Equation (6-36) reduces to

K
O(s R,J
(s) = K = (6-37)
E,(s) s(R,Js + R,b + KKj) (S + R,b + KK,,)
R,J

Notice that the term (R,b + KK,)/(R,J) in Equation (6-37) corresponds to the
damping term. Thus, the back emf increases the effective damping of the system.
Equation (6-37) may be rewritten as

O(s) K,
EJs)  s(Tps +1)

(6-38)
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Gear 1
Input
I, w Gear 2
w, T.
ANNAY:
b ) v, Output
Figure 6-28 Gear train system.
where

K,, = KI(R,b + KK,) = motor gain constant
T. = R,JI/(Rb + KK,) = motor time constant

Equation (6-38) is the transfer function of the dc servomotor when the armature
voltage e,(t) is the input and the angular displacement 6(¢) is the output. Since the
transfer function involves the term 1/s, this system possesses an integrating proper-
ty. (Notice that the time constant 7,, of the motor becomes smaller as the resistance
R, is reduced and the moment of inertia J is made smaller.)

Gear train. Gear trains are frequently used in mechanical systems to reduce
speed, to magnify torque, or to obtain the most efficient power transfer by matching
the driving member to the given load. Figure 6-28 illustrates a simple gear train sys-
tem in which the gear train transmits motion and torque from the input member to
the output member. If the radii of gear 1 and gear 2 are r; and r,, respectively, and
the numbers of teeth on gear 1 and gear 2 are n,; and n,, respectively, then
n_m

n m

Because the surface speeds at the point of contact of the two gears must be identi-
cal, we have

nwy = rw;
where w, and w, are the angular velocities of gear 1 and gear 2, respectively. Therefore,
WL_n_mn
w nn M

If we neglect friction loss, the gear train transmits the power unchanged. In other
words, if the torque applied to the input shaft is 7; and the torque transmitted to the
output shaft is 7;, then

T, = Thw

Example 6-7

Consider the system shown in Figure 6-29. Here, a load is driven by a motor through the
gear train. Assuming that the stiffness of the shafts of the gear train is infinite, that there
is neither backlash nor elastic deformation, and that the number of teeth on each gear is
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Motor shaft (shaft 1) n Gear 1
s
Inputtorque Ty, 7 w | Z
from motor T
w,
2. n A [
— I 4
% J 2 \_r Loadtorque T,
Gear 2 /_«%: Load shaft (shaft 2)

Figure 6-29 Gear train system.

proportional to the radius of the gear, find the equivalent inertia and equivalent friction
referred to the motor shaft (shaft 1) and those referred to the load shaft (shaft 2). The
numbers of teeth on gear 1 and gear 2 are n; and n,, respectively, and the angular veloc-
ities of shaft 1 and shaft 2 are w; and w,, respectively. The inertia and viscous friction
coefficient of each gear train component are denoted by Jy, b; and J,, b,, respectively.

By applying Newton’s second law to this system, the following two equations can
be derived: For the motor shaft (shaft 1),

J]ﬁ)l + blwl + T1 = T,,, (6—39)

where 7, is the torque developed by the motor and 7 is the load torque on gear 1 due
to the rest of the gear train. For the load shaft (shaft 2),

.’2(2)2 + bzwz + TL B T2 (6—40)

where T; is the torque transmitted to gear 2 and 7 is the load torque. Since the gear
train transmits the power unchanged, we have

Ty = Tow,
or
=2 _rh
=T, . I nz
If ny/n, < 1, the gear ratio reduces the speed in addition to magnifying the torque.
Eliminating 7; and 7, from Equations (6-39) and (6-40) yields
n
Sy + by + ;f(.lzd;z + by, +T) =T, (6-41)
2

Since wy = (ny/ny)w, eliminating w, from Equation (6—41) gives

(e (o (o o
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Thus, the equivalent inertia and equivalent viscous friction coefficient of the gear train
referred to shaft 1 are given by

ny 2 n 2
Neg=h + ('I—z) I bieq = b1 + (n—z) b,

The effect of J, on the equivalent inertia J o is determined by the gear ratio n;/n,. For
speed-reducing gear trains, the ratio n,/n, is much smaller than unity. If n,/n, < 1, then
the effect of J; on the equivalent inertia Jj o  is negligible. Similar comments apply to
the equivalent friction of the gear train.

In terms of the equivalent inertia J; ¢q and equivalent viscous friction coefficient
b, eq, Equation (6-42) can be simplified to give

"1 eqé’l + b] eqwl + nTL = Tm

where n = ny/n,.

The equivalent inertia and equivalent viscous friction coefficient of the gear train
referred to shaft 2 are

ny\2 ny\?
hea=ht+ (n—z) h bg=b+ (—2) by

1 n

So the relationship between Jj oq and J ¢4 is

2
m
") eq = (;’;) J, eq
and that between b; oq and b; 4 is

2
!
by eq = (;;) b2eq
and Equation (6-42) can be modified to give

. 1
JZeq"’Z + bZeq“’Z + T, = ;Tm

Example 6-8

Consider the dc servomotor system shown in Figure 6-30. The armature inductance is
negligible and is not shown in the circuit. Obtain the transfer function between the out-
put 6, and the input e,. In the diagram,

R, = armature resistance, {}
i, = armature current, A

AAAR ) Gear 1

i = Constant Gear 2
ear Figure 6-30 DC servomotor system.
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if = field current, A

e, = applied armature voltage, V

e, = back emf, V

8, = angular displacement of the motor shaft, rad

0, = angular displacement of the load element, rad

T = torque developed by the motor, N-m

J; = moment of inertia of the rotor of the motor, kg-m?
J, = moment of inertia of the load, kg-m?

n; = number of teeth on gear 1

n, = number of teeth on gear 2
The torque T developed by the dc servomotor is
T = Ki,

where K is the motor torque constant. The induced voltage e, is proportional to the
angular velocity 8, or

de,
€p = Kb dt (6—43)

where K|, is the back-emf constant.
The equation for the armature circuit is

Ry, + e, = ¢, (6-44)

The equivalent moment of inertia of the motor rotor plus the load inertia referred to

the motor shaft is
2
n
Nea=H +|— ) £
leq 1 (”2) 2

The armature current produces the torque that is applied to the equivalent moment of
inertia Jj oq. Thus,
d’,

Jieq el =T = Ki, (6-45)

Assuming that all initial conditions are zero and taking the Laplace transforms of
Equations (6-43), (6-44), and (6-45), we obtain

Ey(s) = KpsOy(s) (6-46)
R, 1,(s) + Ep(s) = E,(s) (6-47)
A eqs2@1(s) KI,(s) (6-48)

Eliminating E,(s) and /,(s) from Equations (6-46), (6-47), and (6-48), we obtain

(

Noting that @,(5)/0y(s) = nzln,, we can write this last equation as

(hea? + B3 2 005) = Sl

5 )6is) = i)
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Hence, the transfer function @,(s)/E,(s) is given by

@2(5) _ ny

Efs) { Ra[ 5+ (.:_;)zjz]s + KK,,}s

6-6 MATHEMATICAL MODELING OF OPERATIONAL-AMPLIFIER
SYSTEMS

In this section, we briefly discuss operational amplifiers. We present several exam-
ples of operational-amplifier systems and obtain their mathematical models.

Operational amplifiers, often called op-amps, are important building blocks in
modern electronic systems. They are used in filters in control systems and to amplify
signals in sensor circuits.

Consider the operational amplifier shown in Figure 6-31. There are two termi-
nals on the input side, one with a minus sign and the other with a plus sign, called the
inverting and noninverting terminals, respectively. We choose the ground as 0 volts
and measure the input voltages e, and e, relative to the ground. (The input e, to the
minus terminal of the amplifier is inverted; the input e, to the plus terminal is not
inverted.) The total input to the amplifier is e, — e;. The ideal operational amplifier
has the characteristic

€ = K(e; — e;) = —K(ey — &)

where the inputs e, and e, may be dc or ac signals and K is the differential gain or
voltage gain. The magnitude of K is approximately 10° to 10° for dc signals and ac
signals with frequencies less than approximately 10 Hz. (The differential gain K
decreases with the frequency of the signal and becomes about unity for frequencies
of 1 MHz to about 50 MHz.) Note that the operational amplifier amplifies the dif-
ference in voltages e; and e;. Such an amplifier is commonly called a differential
amplifier. Since the gain of the operational amplifier is very high, the device is inher-
ently unstable. To stabilize it, it is necessary to have negative feedback from the out-
put to the input (feedback from the output to the inverted input).

In the ideal operational amplifier, no current flows into the input terminals
and the output voltage is not affected by the load connected to the output terminal.
In other words, the input impedance is infinity and the output impedance is zero. In

& o——————1+
e o——————

€

—o

. L

Figure 6-31 Operational amplifier.



282 Electrical Systems and Electromechanical Systems  Chap. 6

©
Figure 6-32 Operational-amplifier A
system. =

an actual operational amplifier, a very small (almost negligible) current flows into
an input terminal and the output cannot be loaded too much. In our analysis here,
however, we make the assumption that the operational amplifiers are ideal.

Inverting amplifier. Consider the operational-amplifier system shown in
Figure 6-32. Assume that the magnitudes of the resistances R; and R, are of compa-
rable order.

Let us obtain the voltage ratio e,/e;. In the derivation, we assume the voltage
gain to be K >> 1. Let us define the voltage at the minus terminal as e’. Ignoring
the current flowing into the amplifier, we have

e—e e —¢€

+
R, R,

=0

from which we get

e e, 1 1 )
A A Y
Ry R, (Rl R, ¢

Thus,
& €o
e = R R ! Ry (649)
R R
Also,
e, = —Ke' (6-50)
Eliminating e’ from Equations (6-49) and (6-50), we obtain
& €
o ®R
K11
R R
or
. ( _L 1 1 ) _ &
°\ KRy, KR, R, R,
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Hence,
_R
& Ry
& 1+ gl
1
1+ X
Since K >> 1 + (Ry/R;), we have
€ _ _ &
e~ R (6-51)

Equation (6-51) gives the relationship between the output voltage e, and the input
voltage ¢;. From Equations (6-49) and (6-51) we have
€i €o
, _ R i R, _ 0

i1

R R

In an operational-amplifier circuit, when the output signal is fed back to the
minus terminal, the voltage at the minus terminal becomes equal to the voltage at
the plus terminal. This is called an imaginary short. If we use the concept of an imag-
inary short, the ratio e,/e; can be obtained much more quickly than the way we just
found it, as the following analysis shows:

Consider again the amplifier system shown in Figure 6-32, and define

. e—c¢ . e —e
i = , h=—"
1 R 2 R,
Since only a negligible current flows into the amplifier, the current i/; must be equal
to the current i,. Thus,

e—¢e e —e¢
Ry Ry
Because the output signal is fed back to the minus terminal, the voltage at the minus

terminal and the voltage at the plus terminal become equal, or ¢’ = (. Hence, we
have

€; —€,
R Ry
or
0= -2,
o~ i
Ry

This is a mathematical model relating voltages e, and e;, We obtained the same
result as we got in the previous analysis [see Equation (6-51)], but much more
quickly.
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circuit.
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Note that the sign of the output voltage e, is the negative of that of the input
voltage e, Hence, this operational amplifier is called an inverted amplifier. If
R; = R,, then the circuit is a sign inverter.

Obtaining mathematical models of physical operational-amplifier sys-
tems by means of equations for idealized operational-amplifier systems. In
the remaining part of this section, we derive mathematical models of operational-am-
plifier systems, using the following three conditions that apply to idealized operational-
amplifier systems:

1. From Figure 6-31, the output voltage ¢, is the differential input voltage
(e; — e;) multiplied by the differential gain K. That is,

e = K(e; — )

where X is infinite. In designing active filters, we construct the circuit such
that the negative feedback appears in the operational amplifier like the sys-
tem shown in Figure 6-32. As a result, the differential input voltage becomes
zero, and we have

Voltage at negative terminal = Voltage at positive terminal

2. The input impedance is infinite.
3. The output impedance is zero.

The use of these three conditions simplifies the derivation of transfer func-
tions of operational-amplifier systems. The derived transfer functions are, of course,
not exact, but are approximations that are sufficiently accurate.

In what follows, we shall derive the characteristics of circuits consisting of
operational amplifiers, resistors, and capacitors.

Example 6-9

Consider the operational-amplifier circuit shown in Figure 6-33. Obtain the relation-
ship between ¢, and ¢;.
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If the operational amplifier is an ideal one, then the output voltage e, is limited

and the differential input voltage becomes zero, or voltage e'(= ¢;) and voltage e”,
which is equal to [Ry/(R; + R;)]e, are equal. Thus,
¢ = Rl + Rz €o

Ry
[ 1+'El’ €;

This operational-amplifier circuit is a noninverting circuit. If we choose R, = 00, then
e, = &, and the circuit is called a voltage follower.

from which it follows that

Example 6-10

Consider the operational-amplifier circuit shown in Figure 6-34. Obtain the relation-
ship between the output e, and the inputs ey, e,, and e,

We define
e —¢€ . e —eé . e3—é¢ . e —e,

h= Ry’ 2= R, ’ BTTR “TTR
Noting that the current flowing into the amplifier is negligible, we have

eg—¢e e—¢e e—¢e e-—¢€
1 + 2 + 3 + 0
R, R, R; Ry

Since the amplifier involves negative feedback, the voltage at the minus terminal and
that at the plus terminal become equal. Thus, e’ = 0, and Equation (6-52) becomes

=0 (6-52)

€ /) €3 €,

or

AVWV
€, O——AVWA. - ™~ .
vl

Figure 6-34 Operational-amplifier circuit.
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If we choose R, = R, = Ry = Ry, then
e, = —(e, + e+ e3)

The circuit is an inverting adder.

Example 6-11
Consider the operational-amplifier system shown in Figure 6-35. Letting e,(¢) be the
input and e,(¢) be the output of the system, obtain the transfer function for the system.
Then obtain the response of the system to a step input of a small magnitude.
Let us define

; e —e' ; Cd(e' - ) ; e —e,
1= 2= 3= T
Rl ’ dt ’ R2

Noting that the current flowing into the amplifier is negligible, we have

iy =i+ i3
Hence,

e — € - Cd(e, = &) + e —e,

R; dt R,
Since the operational amplifier involves negative feedback, the voltage at the minus
terminal and that at the plus terminal become equal. Hence, e’ = 0. Substitutinge’ = 0
into Equation (6-53), we obtain

(6-53)

& de, e,
R, dt R,
Taking the Laplace transform of this last equation, assuming a zero initial condition, we

have
Ey(s) _ _R2Cs +1
Ry R,

Ey(s)

which can be written as

Eo) _ B 1
E;(S) RI RzCS +1

Equation (6-54) is the transfer function for the system, which is a first-order lag system.

(6-54)

i C

&
P \WW\———
R,
i R

o—r—A— 71—
€ l———o

+
€ e,
Figure 6-35 First-order lag circuit using an N °

operational amplifier. =
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' Next, we shall find the response of the system to a step input. Suppose that the
input e,(t) is a step function of E volts; that is,
e(t) =0 fort <0
=FE fort >0

where we assume 0 < (Ry/R;)E < 10 V. The output e,(t) can be determined from

R, 1
E(s) = R, WE:(S)

RiRCs+1 s

__RE [1 _ 1 ]
Ry ls s+ U(RC)

The inverse Laplace transform of E,(s) gives
RE
e(f) = ——2=[1 - ¢7RO)
Ry
The output voltage reaches —(R,/R,)E volts as ¢ increases to infinity.

Example 6-12
Consider the operational-amplifier circuit shown in Figure 6-36. Obtain the transfer
function E,(s)/E(s) of the circuit.
The voltage at point A is
1
ea =56 + &)

The Laplace-transformed version of this last equation is

Eas) = S1Es) + Eos)]

The voltage at point B is
1
Egls) = ——E(s) = =—=——E{s)
BLS Tl ST RCs+17
27 Cs
R]
——MW——
R
A~ A >
L
o ANAY +
R, B
e, c=— R

Figure 6-36 Operational-amplifier circuit.
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Since the operational amplifier involves negative feedback, the voltage at the minus
terminal and that at the plus terminal become equal. Thus,

E4(s) = Eg(s)

and it follows that
1 1
‘2‘[51(5) + Eys)] = RCs + lEi(S)
or
1
ED(S) _ _chs -1 o RzC
E(s)  RCs+1 1
s+ RoC

EXAMPLE PROBLEMS AND SOLUTIONS

Problem A-6-1
Obtain the resistance between points A and B of the circuit shown in Figure 6-37.

Solution This circuit is equivalent to the one shown in Figure 6-38(a). Since
Ry = Ry =10 Q and R; = R3 = 20 {}, the voltages at points C and D are equal, and
there is no current flowing through Rs. Because resistance R; does not affect the value
of the total resistance between points A and B, it may be removed from the circuit, as
shown in Figure 6~-38(b). Then

11 1
Raig Ri+Ry, Ry +R;

L
40

1 3
_564. o

and

R =R,=100Q, Ry=R;=20Q
Ry=100Q

Figure 6-37 Electrical circuit.
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Example Problems and Solutions

Problem A-6-2

Given the circuit of Figure 6-39, calculate currents i), i, and i3.

289

Figure 6-38 Equivalent circuits to
the one shown in Figure 6-37.

Solution The circuit can be redrawn as shown in Figure 6-40. The combined resis-

tance R of the path in which current i; flows is

R=100+T-1—1+50=1580
— + —
10 40
The combined resistance R, as seen from the battery is
1 1 1
Ry, 40 * 158
or
Ry=31920Q
Consequently,
12V

50 Q

Figure 6-39 Electrical circuit.
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J 100

3 i b= i
- 400 § 400 100

50Q

Figare 6-40 Equivalent circuit to the
one shown in Figure 6-39.

Noting that 40i; = 158i,, we obtain
ip = 0300 A, i =0.076 A
To determine iz, note that
4013 = 10([2 - 13)

Then

, 10, _

i3 = 5012 = 0.0152 A

Problem A-6-3

Obtain the combined resistance between points A and B of the circuit shown in Figure
641, which consists of an infinite number of resistors connected in the form of a ladder.

Solution We define the combined resistance between points A and B as Ry. Now, let us
separate the first three resistors from the rest. [See Figure 6-42(a).] Since the circuit con-
sists of an infinite number of resistors, the removal of the first three resistors does not af-
fect the combined resistance value. Therefore, the combined resistance between points C
and D is the same as Ry. Then the circuit shown in Figure 641 may be redrawn as shown
in Figure 6-42(b), and Ry, the resistance between points A and B, can be obtained as

RR
Ry=2R+ 0

=2R +

1
1 1 R, + R
R R

e e

Figure 641 Electrical circuit consisting of an infinite number of resistors con-
nected in the form of a ladder.
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R
Ao~ MWV
Bo- B A'A'As
R
R
Ao0—— W\
R $x,
B c AMAV
R
(b)

Figure 6-42 Equivalent circuits to the one shown in Figure 6-41.

Rewriting, we get
R3—2RRy-2R*=0
Solving for Ry, we find that
Ry=R £ V3R
Finally, neglecting the negative value for resistance, we obtain
Ry =R+ V3R = 27%2R

Problem A-64
Find currents i), i», and i; for the circuit shown in Figure 6-43.
Solution Applying Kirchhoff’s voltage law and current law to the circuit, we have
12 - 10, — 5i3 =0
8—15i2—5i3=0
i] + iz - i3 = 0

10 Q 15 Q)

Figure 6-43 Electrical circuit.
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Solving for iy, i,, and i3 gives
8 Y 52
h=qh  hRegphA BEEA

Since all i values are found to be positive, the currents actually flow in the directions
shown in the diagram.

Problem A-6-5

Given the circuit shown in Figure 6-44, obtain a mathematical model. Here, currents i;
and i, are cyclic currents.

Solution Applying Kirchhoff’s voltage law gives

L 1 /7
R111+E/(11 _lz)dl=E

These two equations constitute a mathematical model for the circuit.

R, L
_—Wv J; W
Problem A-6-6

In the circuit of Figure 6-45, assume that, for ¢ < 0, switch S is connected to voltage
source E, and the current in coil L is in a steady state. At t = 0, § disconnects the volt-
age source and simultaneously short-circuits the coil. What is the current i(f) for t > 0?

Solution For > 0, the equation for the circuit is

Figure 6-44 Electrical circuit.

di E
— + Ri = 1 ==
Ldt Ri =0, i(0) R

o]
|
|

Figure 6-45 Electrical circuit.
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[Note that there is a nonzero initial current i(0~) = E/R. Since inductance L stores
energy, the current in the coil cannot be changed instantaneously. Hence, i(0+) =
i(0—) = i(0) = E/R]

Taking the Laplace transform of the system equation, we obtain

LfsI(s) — i(0)] + RI(s) =0

or
(Ls + R)I(s) = Li(0) = ERE
Thus,
E L
1) = R+ R

The inverse Laplace transform of this last equation gives

i(t) = %e—(RIL)r

Problem A-6-7

Consider the circuit shown in Figure 646, and assume that capacitor C is initially
charged to go. At ¢ = 0, switch S is disconnected from the battery and simultaneously
connected to inductor L. The capacitance has a value of 50 uF. Calculate the value of
the inductance L that will make the oscillation occur at a frequency of 200 Hz.

Solution The equation for the circuit for ¢t > 0O is

di 1
_—_ 4 — 1 =
L w2 C / idt=0
or, by substituting i = dg/dt into this last equation,
dq 1
—+—=9=0
Lae* ¢t

where g(0) = go and g(0) = 0. The frequency of oscillation is
- [L
“n=NLC

200 Hz = 200 cps = 200 X 6.28 rad/s = 1256 rad/s

Since

]

il
[

Figure 6-46 Electrical circuit.
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we obtain
1256 = |1 = [ 1
On = “VLC VL x50x 107

! = 0.0127H

Thus,
= 12562 X 50 X 10°°

Problem A-6-8
In Figure 6—47(a), suppose that switch S is open for ¢ < 0 and that the system is in a
steady state. Switch S is closed at ¢ = 0. Find the current i(¢) for ¢t = 0.

Solution Notice that, for t < 0, the circuit resistance is R; + R,. There is a nonzero

E

initial current
i(0-) =
For t = 0, the circuit resistance becomes R,. Because of the presence of inductance L,
there is no instantaneous change in the current in the circuit when switch S is closed.

=i(0)

Hence,
H(0+) = i(0~) =
i(0+) = i(0-) = g ¢
Therefore, the equation for the circuit for t = 0 is
di ,
Ldt + Rji=E (6-55)
where
E
i(0) =
i0) R+ R,

Taking the Laplace transforms of both sides of Equation (6-55), we obtain
Lisi(s) = i(0)] + Rul(s) = =

‘R

()

(a)
Figure 6-47 (a) Electrical circuit; (b) plot of i(f) versus ¢ of the circuit when switch S is closed at t = 0
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Substituting the initial condition i(0) into this last equation and simplifying, we get

E LE
Ls + ==+
(Ls + Ry)I(s) s TR+ R
Hence,
E E L

I(s)

= +
S(LS + Rl) Rl + R, Ls + Rl

=£(l_ L )+ E L
Ri\s Ls+R R+ R, Ls + R,
,EG_.ﬁL"_A_)
Rl S R1+R2LS+R1
Taking the inverse Laplace transform of this equation, we obtain

; _ = - R, —(R,IL):]
‘m'mb R+ Ry°

A typical plot of i(f) versus ¢ is shown in Figure 6-47(b).

Problem A-6-9

In the electrical circuit shown in Figure 648, there is an initial charge g, on the capaci-
tor just before switch S is closed at t = 0. Find the current i(t).

Solution The equation for the circuit when switch S is closed is

Ri+%/idt=E

Taking the Laplace transform of this last equation yields

I(s) + /i(t) dt E
1=0 _ £
RI(s) + a " =
Since
fwwd - 4(0) = 4o
=0
we obtain
11(s)+q _E
RI(S) + E B = R
Y. N
Ewm

N

Figure 6-48 Electrical circuit.
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or
RCsI(s) + I(s) + gqo = CE
Solving for I(s), we have

,()=M=(£__qg) 1
¥=Rcs+1 \R RC) _ 1

RC

The inverse Laplace transform of this last equation gives

i(e) = (% _ 7;_IOE)e—uRC

Problem A-6-10
Obtain the impedances of the circuits shown in Figures 6-49(a) and (b).

Solution Consider the circuit shown in Figure 649(a). From

E(s) = E;(s) + Eg(s) + Ec(s) = (Ls + R+ z,%)[(s)

Chap. 6

where I(s) is the Laplace transform of the current i(¢) in the circuit, the complex imped-

ance is

mg=%§=m+k+é

For the circuit shown in Figure 6-49(b),

_E(s) | E(s) E(s) 1 1
I(s) = s + R 1(Cs) —E(S)(E‘I-E'I-Cs)
Consequently,
E(s) 1
Z(s) = =

“ Is) 1,1, ¢
Ls R

i

L R C
e L R
e eg ec { J
(@) (b)

Figure 6-49 Electrical circuits.
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Problem A-6-11

Find the transfer function E,(s)/E,(s) of the electrical circuit shown in Figure 6-50.
Obtain the voltage e,(¢) when the input voltage e;(t) is a step change of voltage E;
occurring at ¢ = 0. Assume that ¢;(0—) = 0. Assume also that the initial charges in the
capacitors are zero. [Thus, ¢,(0—) = 0.]

Solution With the complex-impedance method, the transfer function E,(s)/E;(s) can
be obtained as

1
E(s) - (1/Ry) + Cys _ R,Cis
E;(S) 1 1 RZ(C| + Cz)s +1

+
C]S (I/Rz) + CzS

Next, we determine e,(t). For the input e;(t) = E;-1(), we have

_ RzCIS E;
El) = gic +Cys+1s
RyGLE;

T RyCy + Cp)s + 1
Inverse Laplace transforming E,(s), we get

__GE _yricrcn
() = ¢ 1 G°

from which it follows that e,(0+) = C,E/(C, + C3).

G
o___l | °
I
<
e R, ég CF" e,
° —°  Figure 6-50 Electrical circuit.
Problem A-6-12

Derive the transfer function E,(s)/E;(s) of the electrical circuit shown in Figure 6-51.
The input voltage is a pulse signal given by

e(t) =10V 0=:=5

=0 elsewhere

Obtain the output e,(f). Assume that the initial charges in the capacitors C, and G,
are zero. Assume also that C; = 1.5C; and R|C, = 1s.
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R,

o————-r—w—‘
—— |

Cl ] .,-

Solution By the use of the complex-impedance method, the transfer function
E,(s)/E(s) can be obtained as
1
E(s) Cys _ RCs+1 s+l
E(s) R L L RG+Cs+1 T25s+1
RlCls +1 CzS

—)

€

Figure 6-51 Electrical circuit.

For the given input ¢r), we have
E(s) = 2(1- )

Thus, the response E,(s) can be given by

s+1 lQ
25s+1 s

— E__]'S___ — 55
_(s 2.5.s‘+1>(1 )

The inverse Laplace transform of E,(s) gives

&(t) = (10 — 67%)
- [10 ~ 6049 1(r - 5)

E)(s) = 1-e)

Figure 6-52 shows a possible response curve e,(t) versus ¢.

Problem A-6-13

Obtain the transfer functions E,(s)/Es) of the bridged T networks shown in
Figures 6-53(a) and (b).

Solution The bridged T networks shown can both be represented by the network of
Figure 6-54(a), which uses complex impedances. This network may be modified to that
shown in Figure 6-54(b), in which
11 = 12 + 13, IZZ| = (Z3 + Z4)I3
Hence,
Zy+ Z, Z,

L=z vz vz b=z 5z +z"
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(94
Nk=-——_——— o e T -t e . e S, . i W tone
4
0 ; = -
Is ]
{
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\~~.
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Figure 6-52 Response curve e,(t) versus t.

R,
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yyyy
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:
0
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i

€; C| €;

o
E M=
o &
Q
A'A'A
»
s o

Figure 6-53 Bridged T networks.

Then the voltages E;(s) and E,(s) can be obtained as
E(s) = Z\, + Z,],
Z(Z; + Z,)
Zi+Zy+ Z, !
_hZ+ 23+ Z) + Z(Z + Zy)
Zi+ Z, + Z,
Ey(s) = Z355 + 214
Z5Z;
=L+ZLLA+A5
Z3Zy + Zy(Z, + Zs + Z)
= Z\+ 23+ Z, !

={Zz+

L

299
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I
> Z,
I I
o 1 2 Z Z o
€ Z, €o
I
o y 4 -
._%.
@
5L L
O .
|
1L Z
Zs
E(s)
15
Eo(s)
Z,
1 8 J
Figure 6-54 (a) Bridged T network A
in terms of complex impedances; (b) b
equivalent network. ®)
Thus, the transfer function of the network shown in Figure 6-54(a) is
E (s 237, + Zy(Z, + 23 + Z,
o(s) 32y + Zy(2Z) + Z3 + Z,) (6-56)

E;(S) B ZZ(Z, + Z3 + Z4) + ZRZ3 + ZIZ4
For the bridged T network shown in Figure 6-53(a), we substitute

1 1
Zl-Rv ZZ_Clsy Z3_R9 Z4_C—2;
into Equation (6-56). Then we obtain the transfer function
1 1
2+ —(R+R+ -->
Ey(s) _ R Cis (R R Cys
E,'(S) 1 (

1 1
+R+—=—)+R*+R—
Cis R+ R C) R°+ R

28 Cys
_ RC]RCzsz + ZRCZS +1
RC,RCys* + (2RC, + RCy)s + 1

Similarly, for the bridged 7 network shown in Figure 6-53(b), we substitute

22=R1, Zg= L

1
Zl = —C_;’

ol Zy=R;
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into Equation (6-56). Then we obtain the transfer function

11 1 1
E,(s) _ CsCs * Rl(a * Cs + Rz)
E(s) ( 11 ) 11 1
Ry Cs + Cs TR CsCs + RzCs

_ RICchsz + 2R1CS +1
R,CR,Cs* + (2R,C + R,C)s + 1

Problem A-6-14

Consider the electrical circuit shown in Figure 6-55. Assume that voltage ¢; is the input
and voltage e, is the output of the circuit. Derive a state equation and an output equation.

Solution The transfer function for the system is

1
E,(s) _ Cys

0 log) (20
RCys + 1 R, Cys

(R,C;s + 1)(R,Cas + 1)
= RiGCys + (RiCis + 1)(RoCs + 1)
_ RIGRGs + (RiC + RiGy)s +11
" RCR,Cys* + (RiCy + RCy + RiCy)s + 1

R, +

(6-57)

Hence, we have
[R1C1R2C232 + (RiC; + R,C, + R G)s + 1]E0(S)
= [R1C1R2C282 + (R1C1 + RzCz)S + 1]E,(S)
The inverse Laplace transform of this last equation gives

R|C1R2C2.éo + (RICI + R2C2 + R]Cg)éo + €,
= R1C1R2C2'é,- + (R1C1 + R2C2)é,’ + €;

o Figure 6-55 Electrical circuit.
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By dividing each term of the preceding equation by R,C; R,C; and defining e, = y and
e; = u, we obtain

.. 1 1 1 ) . 1
+ + + +
Y ( R1C1 R2C2 R,Cy y Rlcl R2C2 Y

1 1 1
— Y+ 6-58
“r (chl * R2C2>u R1C1R2C2u (6-58)

To derive a state equation and an output equation based on Method 1 given in
Section 54, we first compare Equation (6-58) with the following standard second-
order equation:

}3+al}'+a2y=boii+bli4+b2u
We then identify ay, a;, by, by, and b, as follows:

A S .
V7RG RGC, RC
2 = 1
27 RGIR,C,
bo =
1, 1
' RG T RG
1
“‘mq&q
From Equations (5-23), (5-24), and (5-29), we have
Bo=1b =1
1

=ph, — = - [ R ——
Bi=b —afo=0b —a RC,

1 1 1 1
=b, — @80 — a:B: = + +
B2 = b, — axfo — @By ( RC, = RC, R2C1) RyG,

If we define state variables x; and x, as
X =y = Bou
Xy =X — B

then, from Equations (5-30) and (5-31), the state-space representation for the system
can be given by

0 1

AR
X3 X2

"RCRC, RC  RGC, R

1
R,C,

(1 1 1\ 1

+ +
RiICi  RC,  RyCi/RiC

+

y=[1 Ol[:j +u
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Problem A-6-15

Show that the mechanical and electrical systems illustrated in Figure 6-56 are analo-
gous. Assume that the displacement x in the mechanical system is measured from the
equilibrium position and that mass m is released from the initial displacement
x(0) = xo with zero initial velocity, or ¥(0) = 0. Assume also that in the electrical sys-
tem the capacitor has the initial charge g(0) = g, and that the switch is closed at ¢ = 0.
Note that ¢(0) = i(0) = 0. Obtain x(¢) and ¢(7).

Solution The equation of motion for the mechanical system is
mx +kx =0 (6-59)

For the electrical system,
di 1
—+=[idt=0
L atc / idt
or, by substituting i = dg/dt = q into this last equation,
Lg + %q =0 (6-60)

Since Equations (6-59) and (6-60) are of the same form, the two systems are analogous
(i.e., they satisfy the force-voltage analogy).

The solution of Equation (6-59) with the initial condition x(0) = xo, x(0) = Ois
a simple harmonic motion given by

/k
x(t) = xqpcos mt

Similarly, the solution of Equation (6-60) with the initial condition g(0) = go, ¢(0) = Ois

1) = s -l—t
q(r) = qocos /7=

—

1

L

| c
x

Figure 6-56 Analogous mechanical and electrical systems.
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Problem A-6-16

Obtain mathematical models for the systems shown in Figures 6-57(a) and (b), and
show that they are analogous systems. In the mechanical system, displacements x; and
x; are measured from their respective equilibrium positions.

Solution For the mechanical system shown in Figure 6-57(a), the equations of motion
are

mlk'l + blil + klxl + kz(xl - xz) =0
byks + ka(xa — %) = 0

These two equations constitute a mathematical model for the mechanical system.
For the electrical system shown in Figure 6-57(b), the loop-voltage equations are

di 1 ., . 1/
L]Ftl"l'—c—z/(ll—lz)dt"‘Rlll+a/lldt=0

Ruiy +—1~/(i2— i) de =0
(&

Let us write i; = ¢, and i = ¢,. Then, in terms of g, and ¢,, the preceding two equa-
tions can be written

.. . 1 1
Lygy + Rygqy + o + ‘é;(‘h -@)=0
. 1
Rotr + = (a2-q) =0
2
These two equations constitute a mathematical model for the electrical system.

Comparing the two mathematical models, we see that the two systems are analo-
gous. (i.e., they satisfy the force—voltage analogy).

Ly
/OO0 —
aG— =y} V2SR,
Y1 12

‘VAVAVAV‘T

R,

/4
(a) (b)

Figure 6-57 Analogous mechanical and electrical systems.
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Problem A-6-17

Using the force-voltage analogy, obtain an electrical analog of the mechanical system
shown in Figure 6-58. Assume that the displacements x; and x, are measured from
their respective equilibrium positions.

Solution The equations of motion for the mechanical system are

mi¥) + by + kyxy + by(ky — X;) + ka(x — x3) =0
myXy + by(xX; — k1) + ka(x2 — x1) = 0

With the use of the force-voltage analogy, the equations for an analogous electrical sys-
tem may be written

. . 1 . . 1
Lii+ R+ =@+ R(qr — @) + (g1 —q2) =0
G G
.. . . 1
Lygy + Ry(qy = qu) + 6(42 —q)=0
Substituting ¢, = i; and ¢, = i, into the last two equations gives
Lﬂuzi+i/id:+R(i-i)+i/(i—i)dr=o (6-61)
2 it fh i =)+ fh =k
di ., 1 (. .
Ligi+ Rl —i) + g [(a=i)dr=0  (6-62)

These two equations are loop-voltage equations. From Equation (6-61), we obtain the
diagram shown in Figure 6-59(a). Similarly, from Equation (6-62), we obtain the one
given in Figure 6-59(b). Combining these two diagrams produces the desired analo-
gous electrical system (Figure 6-60).

7
ky b
m
:
ky by
mj

Figure 6-58 Mechanical system.
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m?c ke

(@) (b)

Figure 6-59 (a) Electrical circuit corresponding to Equation (6-61); (b) elec-
trical circuit corresponding to Equation (6-62).

]|
1057

-

0999
Ry

—.0000,
£

Figure 6-60 Electrical system analogous to
the mechanical system shown in Figure 6-58
(force-voltage analogy).

Problem A-6-18

Figure 6-61 shows an inertia load driven by a dc servomotor by means of pulleys and a
belt. Obtain the equivalent moment of intertia, J.q, of the system with respect to the
motor shaft axis. Assume that there is no slippage between the belt and the pulleys.

Pulley 2 Pulley 1

DC servomotor

|
!
! N
|
l

|
[}
Load !
|

Figure 661 Inertia load driven by a dc servomotor by means of pulleys and belt.
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Assume also that the diameters of pulleys 1 and 2 are &, and d,, respectively. The
moment of inertia of the rotor of the motor is J, and that of the load element is J,. The

moments of inertia of pulleys 1 and 2 are J; and J,, respectively. Neglect the moment of
inertia of the belt.

Solution The given system uses a belt and two pulleys as a drive device. The system
acts similarly to a gear train system. Since we assume no slippage between the belt and
pulleys, the work done by the beit and pulley 1(736,) is equal to that done by the belt
and pulley 2 (756,), or

Ti6, = Tx6, (6-63)

where T is the load torque on the motor shaft, 8, is the angular displacement of pulley
1, 7, is the torque transmitted to the load shaft, and 6; is the angular displacement of
pulley 2. Note that

— = 6-64
8 d, (6-64)
For the servomotor system,
(h+ )6+ T =T, (6-65)
where T,, is the torque developed by the motor. For the load shaft,
(Jo+ =T (6-66)
From Equations (6-63) and (6-64), we have
o, d;
Tz_T‘ez—Tldl
Then Equation (6-66) becomes
.. d
(Jo + R)6, = Tld—z (6-67)
1

From Equations (6-65) and (6-67), we obtain
. d .
(h + J)6, + ;{:’(-’L +5)6 =T,
Since 6, = (dy/d,)8,, this last equation can be written as
.. di\? .
0+ 38+ (2 0 + )b = T,
2
or
d;\?1.:
(.’| + J,) + (JL + '12) ;2 69, = Tm

The equivalent moment of inertia of the system with respect to the motor shaft axis is
thus given by

d 2
Jq=d + 4+ (I + Jz)(d—;)
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Problem A-6-19

Obtain the transfer function E,(s)/Ej(s) of the operational-amplifier circuit shown in
Figure 6-62.
Solution Define the voltage at point A as e4. Then

Eis) R RCs

(s) - +1
E,(S) _1__ + R] R1CS
Cs

Define the voltage at point B as eg. Then

R
Exls) = 33 7, Eo)

In this operational-amplifier system, negative feedback appears in the operational
amplifier. As a result, the differential input voltage becomes zero, and we have
E 4(s) = Eg(s). Hence,

EAS) = e B(5) = Eals) = 7 Eo®)
from which we obtain

EJs) Ry;+ Ry RCs

E(s) Ry RCs+1

o JICLﬁ 4 5
B -
R,
& R, e,
Ry
o— —o

Figure 6-62 Operational-amplifier circuit. =

Problem A-6-20

Consider the operational-amplifier circuit shown in Figure 6-63. Obtain the transfer
function of this circuit by the complex-impedance approach.

Solution For the circuit shown, we have
Efs) — E'(s) _ E'(s) ~ Ei(s)
Z, Z,

Since the operational amplifier involves negative feedback, the differential input volt-
age becomes zero. Hence, E'(s) = 0. Thus,

Eofs) _ _Z(s)
E(s) Zy(s)
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I(s)
1 Zy(s)
I
o Ss) Zy(s) =
E'(s) ———)
+
Es) )
ofs
© —0
= Figure 6-63 Operational-amplifier circuit.
Problem A-6-21

Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in
Figure 6-64 by the complex-impedance approach.

Solution The complex impedances for this circuit are

1 R

1 RCs+1
+__
Cs R

From Problem A-6-20, the transfer function of the system is

Efs) _ Z(s) _ R 1
E,'(S) B Zl(S) B R] RzCS +1

Z\(s) = R, and Zy(s) =

Notice that the circuit considered here is the same as that discussed in Example 6-11.

Accordingly, the transfer function E,(s)/E;(s) obtained here is, of course, the same as
the one obtained in that example.

Z,
e ki
! I |
uls .
| |
o AW\ -
== R2 |
i Rl ll_.- — e e— — - —
© 'WVT 7
| e N —0
ei eo
o— —0

Figure 6-64 Operational-amplifier circuit.
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Problem A-6-22

Chap. 6

Obtain the transfer function E,(s)/E(s) of the operational-amplifier circuit shown in

Figure 6-65.

Solution We shall first obtain currents i, i, i3, is, and is. Then we shall use the node

equation at nodes A and B.The currents are

€ ey . _€aT 6

R, ’ 27 TR,s

ea—0 . d(0 - ¢)

iy = R is=0C

Atnode A,we have i; = i; + i3 + iy, or

dt

iy=C—~

dEA
dt

(6-68)

(6-69)

—eq €5~ ¢, dey
= + C,—= + —
R, Rs Ut
At node B, we have eg = 0, and no current flows into the amplifier. Thus, we get
i4 = is, or
eA —de,,
R2 2 dt

Rewriting Equation (6-68), we have

dey (1 1 1)
C,—— —+ =+ — = —
! dt R, R, R; €a R,

From Equation (6-69), we get

de,
s = _RZCZ_EI—

€

eo
R;

Substituting Equation (6-71) into Equation (6-70), we obtain

(6-70)

(6-71)

d’e, 1 1 e e
C(—RC—£>+( + = ) =+ =
1 2%-2 dt2 R2 ( RZCZ) R R3
R,
———AAMAN—————
' s 116G
) 1
i R,
Al " B - L——9o
4 R, .
e c, T .
i
Figure 6-65 Operational- .

amplifier circuit.
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Laplace transforming this last equation, assuming zero initial conditions, yields

1,1 1 1 E(s)
- 2 + (_ + — _) - - =
CiCoRys°E(s) RTR + R (=RoC2)sE(s) R3E°(s) R,
from which we get the transfer function £,(s)/E;(s):
E,(s) _ 1

E(s)  RCiR,Cys? + [ReC, + RiCy + (RUR)RCyls + (Ri/Rs)

Problem A-6-23

Obtain the transfer function E,(s)/E;(s) of the op-amp circuit shown in Figure 6-66 in
terms of the complex impedances Z,, Z,, Z;, and Z,. Using the equation derived,
obtain the transfer function E,(s)/E,(s) of the op-amp circuit shown in Figure 6-36.

Solution From Figure 6-66, we find that
Ei(s) = Ea(s) _ Ea(s) — Eo(s)

Z Z
or
V4 V4
mn—@+—ﬂmm=—i&m (6-72)
Z4 24
Since the system involves negative feedback, we have E(s) = Ep(s), or
Z
= = : 6-73
Ea(s) = Es(s) = 53 7 Eis) (6-73)

By substituting Equation (6-73) into Equation (6-72), we obtain

Z4Z| + Z4Zz - Z4Zl - 2321:' Z3
E(s) = -22E
[ o (5) = ~ 22l

from which we get the transfer function
Efs) _ _ZiZs = Z:Z,
E(s) Z3(Z, + Z,)

(6-74)

Z,
A
Z, 2
Lo
B |+
o- z,
&; Z] [
o— —0
= Figure 6-66 Operational-amplifier circuit.
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To find the transfer function E,(s)/E;(s) of the circuit shown in Figure 6-36, we substitute
1
Cs’
into Equation (6-74). The result is

Z, = Z, = Ry, Z; = Ry, Z,= Ry

1

Eis) Rk Res  Res-i
E(s) ( 1 ) RCs + 1
R\ + R

which is, as a matter of course, the same as that obtained in Example 6-12.

PROBLEMS

Problem B-6-1

Three resistors R;, R,, and R; are connected in a triangular shape (Figure 6-67).
Obtain the resistance between points A and B.

Ao
Figure 6-67 Three resistors connected in Bo
a triangular shape.
Problem B-6-2

Calculate the resistance between points A and B for the circuit shown in Figure 6-68.

10Q

9]

é
AAAAA
VVVVY

O

Bo AW
Figure 6-68 Electrical circuit. 100

Problem B-6-3

In the circuit of Figure 6-69, assume that a voltage E is applied between points A and B
and that the current i is iy when switch S is open. When switch S is closed, i becomes
equal to 2i,. Find the value of the resistance R.
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1000

mmaAAAA
AAAAs

A O ANAN—1 B

R 2 A

Figure 6-69 Electrical circuit.

Problem B-6-4

Obtain a mathematical model of the circuit shown in Figure 6-70.

L R R,
’ —AWA

(t) R, /—> :J:c
. y

Figure 6-70 Electrical circuit.

Problem B-6-5

Consider the circuit shown in Figure 6-71. Assume that switch S is open for r < 0 and
that capacitor C is initially charged so that the initial voltage g(0)/C = ¢, appears on
the capacitor. Calculate cyclic currents i; and i, when switch S is closed at ¢ = 0.

R S
_"\N\ll‘v O/C

Figure 6-71 Electrical circuit.

Problem B-6-6

The circuit shown in Figure 6-72 is in a steady state with switch S closed. Switch S is
then opened at ¢t = 0. Obtain i(z).
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Figure 6-72 Electrical circuit.

Problem B-6-7
Obtain the transfer function E,(s)/E;(s) of the circuit shown in Figure 6-73.

__H_C_

) RZ‘T; ‘%R“ e,
o— ! o
Problem B-6-8

Obtain the transfer function E,(s)/E;(s) of the system shown in Figure 6-74.

Figure 6-73 Electrical circuit.

L R,
o 000 MW —o
. .
ei(t) [ fp— Rz eo(t)
Figure 6-74 Electrical circuit. o - o

Problem B-6-9
Obtain the transfer function E,(s)/E(s) of the circuit shown in Figure 6-75.

R
° AWV T 0

e(n) L = C e,(N

Figure 6-75 Electrical circuit. o . —0
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Problem B-6-10
Obtain the transfer function E,(s)/E;j(s) of the electrical circuit shown in Figure 6-76.

R R,
o ‘V‘Y‘V‘V J'A'A'A' o
7 g L ) ﬁ‘: C 6
i i
[ o Figure 6-~76 Electrical circuit.

Problem B-6-11

Determine the transfer function E,(s)/Ei(s) of the circuit shown in Figure 6-77. Use
the complex-impedance method.

Zl
| 2
o—La—] :
\ I ©
s
' | L.
() e ¢ . e
i |3:,| o
z,—-—
o o  Figare 6-77 Electrical circuit.

Problem B-6-12

Obtain the transfer function E,(s)/E(s) of the circuit shown in Figure 6-78. Use the
complex-impedance method.

[ !
2 Zzl- RiE +C i e,
O

Figure 6-78 Electrical circuit.
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Problem B-6-13
Obtain a state-space representation for the electrical circuit shown in Figure 6-79.
Assume that voltage ¢; is the input and voltage ¢, is the output of the system.

G
° 11 °
"
g 1
€; Rz :5 Cz__ €,
<

Figure 6-79 Electrical circuit.

Problem B-6-14
In the circuit shown in Figure 6-80, define iy = ¢, and i, = §,, where ¢; and g, are
charges in capacitors C; and C,, respectively. Write equations for the circuit. Then obtain
a state equation for the system by choosing state variables x;, x,, and x; as follows:

X1 =q
X2 = q
X3 = q
L
4111
o :L =G R,

Figure 6-80 Electrical circuit.

Problem B-6-15
Show that the mechanical system illustrated in Figure 6-81(a) is analogous to the elec-
trical system depicted in Figure 6-81(b).

Problem B-6-16
Derive the transfer function of the electrical circuit shown in Figure 6-82. Draw a
schematic diagram of an analogous mechanical system.

Problem B-6-17
Obtain a mechanical system analogous to the electrical system shown in Figure 6-83.
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C
° I
ml °
>
€; RS %
,. w
o- ~—0
(@ (b) Figure 6-81 (a) Mechanical system;
(b) analogous electrical system.

Ry (o]

o——AWW—
R;
(4] €
T
o O  Figure 6-82 Electrical circuit.
L, L,
il il
(o8 G, C—
-lr R‘%
Figure 6-83 Electrical system.
Problem B-6-18

Determine an electrical system analogous to the mechanical system shown in Figure 6-84,
where p(?) is the force input to the system. The displacements x; and x, are measured from
their respective equilibrium positions.

Problem B-6-19

Consider the dc servomotor shown in Figure 6-85. Assume that the input of the system
is the applied armature voltage e, and the output is the load shaft position 6,. Assume
also the following numerical values for the constants:

R, = armature winding resistance = 0.2 (
L, = armature winding inductance = negligible
K, = back-emf constant = 5.5 X 1072 V-s/rad
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K = motor-torque constant = 6 X 107° Ib;-ft/A
J. = moment of inertia of the rotor of the motor = 1 X 1075 1b f-ft-s2
, = viscous-friction coefficient of the rotor of the motor = negligible
J, = moment of inertia of the load = 4.4 X 1073 Ibs-ft-s*
b, = viscous-friction coefficient of the load = 4 X 1072 Ib,-ft/rad/s
n = gearratio = Ny/N, = 0.1

Obtain the transfer function @,(s)/E,(s).

my,

Figure 6-84 Mechanical system.

if = constant

Figure 6-85 DC servomotor.

Problem B-6-20

Obtain the transfer function E,(s)/E(s) of the operational-amplifier circuit shown in
Figure 6-86.

Problem B-6-21

Obtain the transfer function E,(s)/Ei(s) of the operational-amplifier circuit shown in
Figure 6-87.
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[ L
1
R
v
—0
e e,
O -—0
= Figure 6-86 Operational-amplifier circuit.
R
C
l__:D‘
€; eo
o— o
= Figure 6-87 Operational-amplifier circuit.
Problem B-6-22
Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in
Figure 6-88.
R,
C __W_

B

° A Figure 6-88 Operational-amplifier
= circuit.
Problem B-6-23
Obtain a state-space representation of the operational-amplifier circuit shown in
Figure 6-89.
Problem B-6-24
Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in
Figure 6-90.
Problem B-6-25

Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in
Figure 6-91.
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Figure 6-89 Operational-amplifier circuit.

Figure 6-90 Operational-amplifier circuit.

Figure 6-91 Operational-amplifier circuit.

Problem B-6-26

C
___| I__
L AMAW—
R, R,
MWWV -
o
+
eo
T °
R - ——o
AV +
c— €
O
G
_____.I I._.
C L AAN——]
—~E
R, e,
0

Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in

Figure 6-92.

Problem B-6-27

Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in

Figure 6-93.

Problem B-6-28

Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in

Figure 6-94.
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R,
o— AWV +
N 2R
2 C= e,
R
o 1 o
= Figure 6-92 Operational-amplifier circuit.
Ry
""‘V"
b 14
Yyvy -
——0
AAAA 2
o— Wh— lB +
e c f
o -I_ o
J; Figure 6-93 Operational-amplifier circuit.
R,
AAAA
yyvy
cC R 4
o— —WW——
'—0
€; e
o— -0
= Figure 6-94 Operational-amplifier circuit.
Problem B-6-29
Obtain the transfer function E,(s)/E;(s) of the operational-amplifier circuit shown in
Figure 6-95.
Problem B-6-30

Using the impedance approach, obtain the transfer function E,(s)/Ei(s) of the
operational-amplifier circuit shown in Figure 6-96.
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{2
B [
RZ
4: <
€; R’ i: €o
R; EE
o o
Figure 6-95 Operational-amplifier
circuit. =
1
AAAA,
yvy
AAA‘A A -
yvy
L———0
1
o 1 51
- e
g IR ’
-
o o
Figure 6-96 Operational-amplifier circuit. =

Problem B-6-31

Obtain the output voltage e, of the operational-amplifier circuit shown in Figure 6-97
in terms of the input voltages e; and e,.

Ry
—MWWW—
R
e, o AN~ h
SR
€y +
Ry
eo
Ry
—o0

Figure 6-97 Operational-amplifier circuit.



Fluid Systems and
Thermal Systems

7-1 INTRODUCTION

As the most versatile medium for transmitting signals and power, fluids—liquids or
gases—have wide usage in industry. Liquids and gases can be distinguished from
each other by their relative incompressibilities and from the fact that a liquid may
have a free surface whereas a gas expands to fill its vessel. In the engineering field,
the term hydraulic describes fluid systems that use liquids and pneumatic applies to
those using air or gases.

Mathematical models of fluid systems are generally nonlinear. However, if we
assume that the operation of a nonlinear system is near a normal operating point,
then the system can be linearized near the operating point, and the mathematical
model can be made linear.

Mathematical models of fluid systems obtained in this chapter are linearized
models near normal operating points.

Thermal systems generally have distributed parameters. Mathematical models
of thermal systems normally involve partial differential equations. In this chapter,
however, we assume that thermal systems have lumped parameters, so that approxi-
mate mathematical models may be obtained in terms of ordinary differential equa-
tions or transfer functions. Such simplified models provide fairly good approximations
to actual systems near their normal operating points.

323
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Since fluid systems inevitably involve pressure signals, we shall briefly review
units of pressure, gage pressure, and absolute pressure.

Units of pressure. Pressure is defined as force per unit area. The units of
pressure include N/m? kg;/cm?, Ibg/in%, and so on. In the SI system, the unit of pres-
sure is N/m?. The name pascal (abbreviated Pa) has been given to this unit, so

1Pa = 1 N/m?

Kilopascals (10° Pa = kPa) and megapascals (10°Pa = MPa) may be used in
expressing hydraulic pressure. Note that

11b/in? = 6895 Pa
1kgslcm? = 1422 by/in2 = 0.9807 X 10° N/m? = 0.09807 MPa

Gage pressure and absolute pressure. The standard barometer reading
at sea level is 760 mm of mercury at 0°C (29.92 in. of mercury at 32°F). Gage pres-
sure refers to the pressure that is measured with respect to atmospheric pressure. It
is the pressure indicated by a gage above atmospheric pressure. Absolute pressure is
the sum of the gage and barometer pressures. Note that, in engineering measure-
ment, pressure is expressed in gage pressure. In theoretical calculations, however,
absolute pressure must be used. Note also that

760 mm Hg = 1.0332 kgs/em? = 1.0133 X 10° N/m? = 14.7 Ib;/in.?
0 N/m? gage = 1.0133 X 10° N/m? abs

0 kg/cm?® gage = 1.0332 kgs/cm? abs

0 Iby/in.2 gage = 0 psig = 14.7 Ibs/in.? abs = 14.7 psia

Outline of the chapter. Section 7-1 has presented introductory material for
the chapter. Section 7-2 discusses liquid-level systems and obtains their mathemati-
cal models. Section 7-3 treats pneumatic systems and derives-a mathematical model
for a pressure system. Section 7-4 presents a useful linearization method: Lin-
earized models are obtained for nonlinear systems near their respective operating
points. Section 7-5 deals with hydraulic systems and derives mathematical models of
such systems. Finally, Section 7-6 discusses the mathematical modeling of thermal
systems.

7-2 MATHEMATICAL MODELING OF LIQUID-LEVEL SYSTEMS

Industrial processes often involve systems consisting of liquid-filled tanks connected
by pipes having orifices, valves, or other flow-restricting devices. Often, it is important
to know the dynamic behavior of such systems. The dynamic behavior can be pre-
dicted once mathematical models of the systems are known.

In this section, we first review the Reynolds number, laminar flow, and turbu-
lent flow. We then derive mathematical models of liquid-level systems. We shall see
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that, by introducing the concept of resistance and capacitance, it is possible to
describe the dynamic characteristics of such systems in simple forms.

Reynolds number. The forces that affect fluid flow are due to gravity, bouyan-
cy, fluid inertia, viscosity, surface tension, and similar factors. In many flow situations,
the forces resulting from fluid inertia and viscosity are most significant. In fact, fluid
flows in many important situations are dominated by either inertia or viscosity of the
fluid. The dimensionless ratio of inertia force to viscous force is called the Reynolds
number. Thus, a large Reynolds number indicates the dominance of inertia force and a
small number the dominance of viscosity. The Reynolds number R is given by

g0
7
where p is the mass density of the fluid,  is the dynamic viscosity of the fluid, v is
the average velocity of flow, and D is a characteristic length. For flow in pipes, the
characteristic length is the inside pipe diameter. Since the average velocity v for
flow in a pipe is

_2_ 4
A  gD?
where Q is the volumetric flow rate, A is the area of the pipe and D is the inside
diameter of the pipe, the Reynolds number for flow in pipes can be given by

g = PPD _ 400
T ow auD

Laminar flow and turbulent flow. Flow dominated by viscosity forces is
called laminar flow and is characterized by a smooth, parallel-line motion of the
fluid. When inertia forces dominate, the flow is called turbulent flow and is charac-
terized by an irregular and eddylike motion of the fluid. For a Reynolds number
below 2000 (R < 2000), the flow is always laminar. For a Reynolds number above
4000 (R > 4000), the flow is usually turbulent, except in special cases.

In capillary tubes, flow is laminar. If velocities are kept very low or viscosities
are very high, flow in pipes of relatively large diameter may also result in laminar
flow. In general, flow in a pipe is laminar if the cross section of the passage is com-
paratively small or the pipe length is relatively long. Otherwise, turbulent flow
results. (Note that laminar flow is temperature sensitive, for it depends on viscosity.)

For laminar flow, the velocity profile in a pipe becomes parabolic, as shown in
Figure 7-1(a). Figure 7-1(b) shows a velocity profile in a pipe for turbulent flow.

Industrial processes often involve the flow of liquids through connecting pipes
and tanks. In hydraulic control systems, there are many cases of flow through smalil
passages, such as flow between spool and bore and between piston and cylinder. The
properties of such flow through small passages depend on the Reynolds number of
flow involved in each situation.

Resistance and capacitance of liquid-level systems. Consider the flow
through a short pipe with a valve connecting two tanks, as shown in Figure 7-2. The
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_— .
Laminar flow in pipe
(2)
O w© o © o
e I 2 o Y
Figure 7-1 (a) Velocity profile for laminar flow; Turbulent flow in pipe
(b) velocity profile for turbulent flow. (®
N !
I
Figure 7-2 Two tanks connected by a short ™ :
pipe with a valve. Q

resistance R for liquid flow in such a pipe or restriction is defined as the change in
the level difference (the difference of the liquid levels of the two tanks) necessary to
cause a unit change in flow rate; that is,

_ change in level difference m
" changeinflowrate m%s

Since the relationship between the flow rate and the level difference differs for lam-
inar flow and turbulent flow, we shall consider both cases in what follows.

Consider the liquid-level system shown in Figure 7-3(a). In this system, the lig-
uid spouts through the load valve in the side of the tank. If the flow through the
valve is laminar, the relationship between the steady-state flow rate and the steady-
state head at the level of the restriction is given by

Q= KH
where

Q = steady-state liquid flow rate, m*/s
K, = constant, m*/s
H = steady-state head, m
For laminar flow, the resistance R, is

godH _ 1 _H

'"d0 K 0

The laminar-flow resistance is constant and is analogous to the electrical resistance.
(The laminar-flow resistance of the flow in a capillary tube is given by the
Hagen-Poiseuille formula; see Problem A-7-1.)
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Figure 7-3 (a) Liquid-level system; (b) curve of head versus flow rate.
If the flow through the restriction is turbulent, the steady-state flow rate is
given by
Q=KVH (7-1)
where
Q = steady-state liquid flow rate, m%/s

K, = constant, m®3/s
H = steady-state head, m

The resistance R, for turbulent flow is obtained from

dH

k=20

From Equation (7-1), we obtain

K,
dQ = ——dH
2VH

Consequently, we have

dH _2VH _2VHVH _2H
ao K o o
Thus,
2H
==— 7-2
R, 0 (7-2)

The value of the turbulent-flow resistance R, depends on the flow rate and the head.

The value of R,, however, may be considered constant if the changes in head and
flow rate are small.
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If the changes in the head and flow rate from their respective steady-state val-
ues are small, then, from Equation (7-2), the relationship between Q and H is given
by

2H
Q= R,

In many practical cases, the value of the constant K, in Equation (7-1) is not
known. Then the resistance may be determined by plotting the curve of head versus
flow rate based on experimental data and measuring the slope of the curve at the
operating condition. An example of such a plot is shown in Figure 7-3(b). In the
figure, point P is the steady-state operating point. The tangent line to the curve at
point P intersects the ordinate at the point (Head = —H). Thus, the slope of this
tangent line is 2H/Q. Since the resistance R, at the operating point P is given by
2H/Q, the resistance R, is the slope of the curve at the operating point.

Now define a small deviation of the head from the steady-state value as & and
the corresponding small change in the flow rate as g. Then the slope of the curve at
point P is given by

. h
slope of curve at point P = E =— =R,

The capacitance C of a tank is defined to be the change in quantity of stored
liquid necessary to cause a unit change in the potential, or head. (The potential is the
quantity that indicates the energy level of the system.) Thus,

_ change in liquid stored m® )

change in head m e

Note that the capacity (m?) and the capacitance (m?) are different. The capacitance
of the tank is equal to its cross-sectional area. If this is constant, the capacitance is
constant for any head.

Inertance. The terms inertance, inertia, and inductance refer to the change in
potential required to make a unit rate of change in flow rate, velocity, or current
[change in flow rate per second, change in velocity per second (acceleration), or
change in current per second], or

Inertance (inertia or inductance)
_ change in potential
change in flow rate (velocity or current) per second

For the inertia effect of liquid flow in pipes, tubes, and similar devices, the
potential may be either pressure (N/m?) or head (m), and the change in flow rate
per second may be the volumetric liquid-flow acceleration (m3/s?). Applying the
preceding general definition of inertance, inertia, or inductance to liquid flow gives

change in pressure N/m? N-s?
change in flow rate per second m?/s? R

Inertance I =
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or

change in head m s?
- or—;
change in flow rate per second m¥s?  m?

Inertance I =

(For the computation of inertance, see Problem A-7-2.)

Inertia elements in mechanical systems and inductance elements in electrical
systems are important in describing system dynamics. However, in deriving math-
ematical models of liquid-filled tanks connected by pipes with orifices, valves, and
so on, only resistance and capacitance are important, and the effects of liquid-flow
inertance may be negligible. Such liquid-flow inertance becomes important only in
special cases. For instance, it plays a dominant role in vibration transmitted
through water, such as water hammer, which results from both the inertia effects
and the elastic or capacitance effects of water flow in pipes. Note that this vibra-
tion or wave propagation results from inertance—capacitance effects of hydraulic
circuits—comparable to free vibration in a mechanical spring-mass system or free
oscillation in an electrical LC circuit.

Mathematical modeling of liquid-level systems. In the mathematical
modeling of liquid-level systems, we do not take inertance into consideration, be-
cause it is negligible. Instead, we characterize liquid-level systems in terms of resis-
tance and capacitance. Let us now obtain a mathematical model of the liquid-level
system shown in Figure 7-3(a). If the operating condition as to the head and flow
rate varies little for the period considered, a mathematical model can easily be
found in terms of resistance and capacitance. In the present analysis, we assume that
the liquid outflow from the valve is turbulent.

Let us define

H = steady-state head (before any change has occurred), m

h = small deviation of head from its steady-state value, m

0 = steady-state flow rate (before any change has occurred), m%s
g; = small deviation of inflow rate from its steady-state value, m*/s
g, = small deviation of outflow rate from its steady-state value, m%/s

The change in the liquid stored in the tank during dt seconds is equal to the net
inflow to the tank during the same dt seconds, so

Cdh = (q; — q,) dt (7-3)

where C is the capacitance of the tank.

Note that if the operating condition varies little (i.e., if the changes in head and
flow rate are small during the period of operation considered), then the resistance R
may be considered constant during the entire period of operation.

In the present system, we defined 4 and g, as small deviations from steady-
state head and steady-state outflow rate, respectively. Thus,

dH =h, dQ=gq,
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and the resistance R may be written as

_dH _h
aQ g
Substituting g, = A/R into Equation (7-3), we obtain
dh h
Cax~4"R
or
RC % + h = Rg; (74)

Note that RC has the dimension of time and is the time constant of the system.
Equation (7-4) is a linearized mathematical model for the system when 4 is consid-
ered the system output. Such a linearized mathematical model is valid, provided that
changes in the head and flow rate from their respective steady-state values are small.

If g, (the change in the outflow rate), rather than h (the change in head), is
considered the system output, then another mathematical model may be obtained.
Substituting A = Rq, into Equation (7-4) gives

d
RC—"+ 4o = qi (7-5)
which is also a linearized mathematical model for the system.

Analogous systems. The liquid-level system considered here is analogous
to the electrical system shown in Figure 7-4(a). It is also analogous to the mechanical
system shown in Figure 7-4(b). For the electrical system, a mathematical model is

d
RCZ2 4 e, = ¢ (7-6)
For the mechanical system, a mathematical model is
b dx,
‘E dt + Xo = X (7—7)

Equations (7-5), (7-6), and (7-7) are of the same form; thus, they are analogous.
Hence, the liquid-level system shown in Figure 7-3(a), the electrical system shown

R
O——AWA———————
€ CTT ¢
i
Figure 7-4  Systems analogous to the liquid-  © —0

level system shown in Figure 7-3(a). (a) Elec-
trical system; (b) mechanical system. @
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Figure 7-§ Liquid-level system with interaction.

in Figure 7-4(a), and the mechanical system shown in Figure 7-4(b) are analogous
systems. [Note that there are many other electrical and mechanical systems that are
analogous to the liquid-level system shown in Figure 7-3(a).]

Liquid-level system with interaction. Consider the liquid-level system
shown in Figure 7-5. In this system, the two tanks interact. (Note that the transfer func-
tion for such a case is not the product of two individual first-order transfer functions.)

If the variations of the variables from their respective steady-state values are
small, the resistance R, stays constant. Hence, at steady state,

—- H—-H
Q= TR
After small changes have occurred, we have
O+q = H +h —RI(HZ'I'hz)

H - H, sl

Ry R
Substituting Equation (7-8) into this last equation, we obtain
h—=h

Ry
In the analysis that follows, we assume that variations of the variables from their

respective steady-state values are small. Then, using the symbols as defined in
Figure 7-5, we can obtain the following four equations for the system:

(7-8)

9=

Moty (7-9)
1
dhy
e A 7-10
G dt 9= q ( )
hy
2 7-11
R, /7] ( )
dh,

Czjt‘ =q - q (7-12)



332 Fluid Systems and Thermal Systems  Chap. 7

If ¢ is considered the input and g, the output, the transfer function of the system can
be obtained by eliminating gy, 4;, and h, from Equations (7-9) through (7-12). The
result is
Qa(s) _ 1 (71-13)
Q(S) R1C1R2C282 + (R1C1 + R2C2 + R2C1)S +1

(See Problem A-7-5 for the derivation of this transfer function.)

7-3 MATHEMATICAL MODELING OF PNEUMATIC SYSTEMS

Pneumatic systems are fluid systems that use air as the medium for transmitting sig-
nals and power. (Although the most common fluid in these systems is air, other
gases can be used as well.)

Pneumatic systems are used extensively in the automation of production
machinery and in the field of automatic controllers. For instance, pneumatic circuits
that convert the energy of compressed air into mechanical energy enjoy wide usage,
and various types of pneumatic controllers are found in industry.

In our discussions of pneumatic systems here, we assume that the flow condi-
tion is subsonic. If the speed of air in the pneumatic system is below the velocity of
sound, then, like liquid-level systems, such pneumatic systems can be described in
terms of resistance and capacitance. (For numerical values of the velocity of sound,
see Problem A-7-13.)

Before we derive a mathematical model of a pneumatic system, we examine
some physical properties of air and other gases. Then we define the resistance and
capacitance of pneumatic systems. Finally, we derive a mathematical model of a
pneumatic system in terms of resistance and capacitance.

Physical properties of air and other gases. Some physical properties of
air and other gases at standard pressure and temperature are shown in Table 7-1.
Standard pressure p and temperature ¢ are defined as

p = 1.0133 X 10° N/m? abs = 1.0332 kg/cm? abs
= 14.7 Ibgfin.2 abs = 14.7 psia
t = 0°C = 273 K = 32°F = 492°R

TABLE 7-1 Properties of Gases

Gas constant ip:lmnf(ic I}?at’ Specific

Gas Molecular Rgas CB tu/l% °I§ r heat

weight ratio,

N-m/kgK | ft-lo/Ib°R | ¢p Cy clcy

Air 29.0 287 533 0240 0.171 1.40
Hydrogen (H;) 2.02 4121 766 340 242 141
Nitrogen (N;) 280 297 552 0248 0177 1.40
Oxygen (Oy) 32.0 260 483 0218 0.156 | 1.40
Water vapor(H,0) 18.0 462 85.8 0.444 0334 1.33
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The density p, specific volume v, and specific weight vy of air at standard pres-
sure and temperature are

p = 1293 kg/m®
v = 0.7733 m¥kg
y = 12.68 N/m®

Resistance and capacitance of pneumatic systems. Many industrial
processes and pneumatic controllers involve the flow of air (or some other gas)
through connected pipelines and pressure vessels.

Consider the pneumatic system shown in Figure 7-6(a). Assume that at steady
state the pressure in the system is P. If the pressure upstream changes to P + p;,
where p; is a small quantity compared with P, then the pressure downstream (the
pressure in the vessel) changes to P + p,, where p, is also a small quantity com-
pared with P. Under the condition that the flow is subsonic, |P| > |p,|, and
[P| >> |p,, the airflow rate through the restriction becomes proportional to
Vp; — P, Such a pneumatic system may be characterized in terms of a resistance
and a capacitance.

Airflow resistance in pipes, orifices, valves, and any other flow-restricting
devices can be defined as the change in differential pressure (existing between
upstream and downstream of a flow-restricting device) (N/m?) required to make a
unit change in the mass flow rate (kg/s), or

change in differential pressure N/m? or N-s
change in mass flow rate ~ kg/s ~ kg-m?

resistance R =

Therefore, resistance R can be expressed as
d(Ap)
dq
where d(Ap) is a change in the differential pressure and dq is a change in the mass

flow rate. A theoretical determination of the value of the airflow resistance R is very
time consuming. Experimentally, however, it can be easily determined from a plot of

R =

AP A
Remﬁance R Slope = R
L = P+p, | _d(AP) !
_/ q / T |' ] dq
P+p; 7 - ’L/—
[
Capacitance L >
c 0 q

(a) (b)

Figure 7-6 (a) Pneumatic system; (b) curve of pressure difference versus flow rate.
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the pressure difference A p versus flow rate g by calculating' the slope of Fhe curve .at
a given operating condition, as shown in Figure 7-6(b). Notice that the ax}'flow resis-
tance R is not constant, but varies with the change in the operating condition. .

For a pneumatic pressure vessel, capacitance can be defined as the c'hange in
the mass of air (kg) [or other gas (kg)] in the vessel required to make a unit change
in pressure (N/m?), or

change in mass of air (or gas) kg  kg-m?

capacitance C =

change in pressure N/m? N
which may be expressed as
c=dm_yde ke (7-14)
dp dp N/m

where

m = mass of air (or other gas) in vessel, kg

p = absolute pressure of air (or other gas), N/m?
V = volume of vessel, m?

p = mass density of air (or other gas), kg/m>

Such a capacitance C may be calculated with the use of the perfect-gas law. For air,
we have

Nk

pv =

© |

T = R;T (7-15)
where

p = absolute pressure of air, N/m?
v = specific volume of air, m*kg
M = molecular weight of air per mole, kg/kg-mole
R = universal gas constant, N-m/kg-mole K
R,ir = gas constant of air, N-m/kg K
T = absolute temperature of air, K

If the change of state of air is between isothermal and adiabatic, then the expansion
process can be expressed as polytropic and can be given by

-5; = constant (7-16)

where
n = polytropic exponent
Since dp/dp can be obtained from Equation (7-16) as
dp _p

dp ~ np
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by substituting Equation (7-15) into this last equation, we have

dp_ 1
dp nR;T (7-17)
Then, from Equations (7-14) and (7-17), the capacitance C of a vessel is
__V kg -
nRyT N/m? (7-18)

Note that if a gas other than air is used in a pressure vessel, the capacitance C is
given by

nRyT N/m?

where Ry, is the gas constant for the particular gas involved.

From the preceding analysis, it is clear that the capacitance of a pressure vessel
is not constant, but depends on the expansion process involved, the nature of the gas
(air, Ny, H,, and so on) and the temperature of the gas in the vessel. The value of the
polytropic exponent n is approximately constant (#» = 1.0 to 1.2) for gases in unin-
sulated metal vessels.

(7-19)

Example 7-1
Find the capacitance C of a 2-m> pressure vessel that contains air at 50°C. Assume that
the expansion and compression of air occur slowly and that there is sufficient time for
heat to transfer to and from the vessel so that the expansion process may be considered
isothermal,orn = 1.
The capacitance C is found by substituting V = 2m’, R, = 287 N-m/kg K,
T =273 + 50 = 323K, and n = 1 into Equation (7-18) as follows:

|4 2

C = RiT ~ 1X 287 x 33

= 2.16 X 1075 kg-m*N

Example 7-2
In Example 7-1, if hydrogen (Hj), rather than air, is used to fill the same pressure ves-
sel, what is the capacitance? Assume that the temperature of the gas is 50°C and that
the expansion process is isothermal,or n = 1.
The gas constant for hydrogen is

Ry, = 4121 N-m/kg K
Substituting V = 2m?, Ry, = 4121 N-mkgK, T = 273 + 50 = 323K, and n = 1 into
Equation (7-19), we have

Vv 2

= =1. X =6 1- g1 2
nReT - 1x 4121 x 323~ 120 X 107 kgm'N

C=

Mathematical modeling of a pneumatic system. The pneumatic pressure
system shown in Figure 7-7(a) consists of a pressure vessel and connecting pipe with
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Figure 7-7 (a) Pneumatic pressure system; (b) curve of pressure difference versus mass flow rate.

a valve. If we assume only small deviations in the variables from their respective
steady-state values, then this system may be considered linear. We define

P = steady-state pressure of the system, N/m?
p: = small change in inflow pressure, N/m?
p, = small change in air pressure in vessel, N/m?
V = volume of vessel, m>

m = mass of air in vessel, kg

q = mass flow rate, kg/s

Let us obtain a mathematical model of this pneumatic pressure system. Assume that
the system operates in such a way that the average flow through the valve is zero
(i.e., the normal operating condition corresponds to p; — p, = 0, g = 0). Assume
also that the flow is subsonic for the entire range of operation of the system.

As noted earlier, the resistance R is not constant. Hence, for the present system,
we shall use an average resistance in the region of its operation. From Figure 7-7(b),

the average resistance of the valve may be written as
R = Pi — Do
q
From Equation (7-14), the capacitance of the pressure vessel can be written
dm

C=dpo

or

Cdp, =dm
This last equation states that the capacitance C times the pressure change dp, (dur-

ing dt seconds) is equal to dm, the change in the mass of air in the vessel (during dt

seconds). Now, the change in mass, dm, is equal to the mass flow during dt seconds,
or g dt; hence,

Cdp, = qdt
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Substituting ¢ = (p; — p,)/R into this last equation, we have

Cdp, = ﬂ%—”—"dt

Rewriting yields

d
RCLe 4 p = p, (7-20)
where RC has the dimension of time and is the time constant of the system.
Equation (7-20) is a mathematical model for the system shown in Figure 7-7(a).

Note that the pneumatic pressure system considered here is analogous to the
electrical system shown in Figure 7-4(a) and the mechanical system shown in
Figure 7-4(b). It is also analogous to the liquid-level system shown in Figure 7-3(a).

7-4 LINEARIZATION OF NONLINEAR SYSTEMS

In this section, we present a linearization technique that is applicable to many nonlin-
ear systems. The process of linearizing nonlinear systems is important, for by linearizing
nonlinear equations, it is possible to apply numerous linear analysis methods that will
produce information on the behavior of those systems. The linearization procedure
presented here is based on the expansion of the nonlinear function into a Taylor series
about the operating point and the retention of only the linear term. Because we neglect
higher order terms of the Taylor series expansion, these neglected terms must be small
enough; that is, the variables must deviate only slightly from the operating condition.

Linearization of z = f(x) about a point (¥,Z). Consider a nonlinear system
whose input is x and output is z. The relationship between z and x may be written

z = f(x) (7-21)
If the normal operating condition corresponds to a point (X, Z), then Equation
(7-21) can be expanded into a Taylor series about this point as follows:
df 1 d%f 5
= = X)) + — -7 —_— p—d + ... —
4 f(x) f(x) dx (x x) + 2! dx2 (x x) (7 22)

Here, the derivatives dfidx, d*f/dx?, ... are evaluated at the operating point,
x = X, z = 7. If the variation x — X is small, we can neglect the higher order terms
in x — X. Noting that Z = f(X), we can write Equation (7-22) as

z—Z=a(x—X) (7-23)
where

_ 4
“ dx|e=x

Equation (7-23) indicates that z — Z is proportional to x — X. The equation is a lin-

ear mathematical model for the nonlinear system given by Equation (7-21) near the
operating point x = X%,z = Z.
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Linearization of z = f(x,y) about a point (¥,¥,Z). Next, consider a non-
linear system whose output z is a function of two inputs x and y, or

z= f(x, y) (7—24)
To obtain a linear mathematical model for this nonlinear system about an operat'ing
point (%, ¥, z), we expand Equation (7-24) into a Taylor series about that point.
Then Equation (7-24) becomes
of .o, = ]
= X.V —_ — + — —
=1EN [ La-n+ Ly -3

N _1_|:32f aZf
2! x ay

i

)2 5 Y (v - )2 cen
—(x—-x)+2 x—-X(y-y) + (y=-y°+

1 axz( ) ( Yy =) ayz

where the partial derivatives are evaluated at the operating point, x =X, y = Y,
z = Z. Near this point, the higher order terms may be neglected. Noting that
Z = f(%,Y), we find that a linear mathematical model of this nonlinear system near
the operating point x = X,y = y,z = Zis

z—Z=a(x—%)+ by — )

where
af
a=—
9
b=
0y lx=%, y=5

It is important to remember that in the present linearization procedure, the
deviations of the variables from the operating condition must be sufficiently small.
Otherwise, the procedure does not apply.

Example 7-3

Linearize the nonlinear equation
z=2xy

intheregion5 < x < 7,10 = y = 12. Find the error if the linearized equation is used
to calculate the value of z when x = Sand y = 10.

Since the region considered is given by 5 < x = 7,10 = y = 12, choose
X =6,y = 11. Then 7 = Xy = 66. Let us obtain a linearized equation for the nonlin-
ear equation near a point X = 6,5 = 11,7 = 66.

Expanding the nonlinear equation into a Taylor series about the point
x =X,y =9, z = Z and neglecting the higher order terms, we have

z2—Z=a(x~-X)+b(y—-y)
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where
a= ____a(xy) =y=11
X |y=% y=3 srE
a(xy)
b=—"— =X=6
ay X=X, y=y

Hence, the linearized equation is
7 —66=11(x ~ 6) + 6(y — 11)
or
z=11x + 6y — 66
When x = 5and y = 10, the value of z given by the linearized equation is
z=11x + 6y — 66 = 55 + 60 — 66 = 49
The exact value of z is z = xy = 50. The error is thus 50 — 49 = 1. In terms of per-

centage, the error is 2%.

Example 74

Consider the liquid-level system shown in Figure 7-8. At steady state, the inflow rate is
Q; = 0, the outflow rate is Q, = O, and the head is H = H. Assume that the flow is
turbulent. Then

= KVH

For this system, we have
C——Q. Q,=0,~-KVH

where C is the capacitance of the tank. Let us define

dH 1 K\/—
= =0 — ————— = 7-25
Assume that the system operates near the steady-state condition (H, Q). That is,
H=H+ hand Q; = 0 + g;, where A and g; are small quantities (either positive or
negative). At steady-state operation, dH/dt = 0. Hence, f(H,Q) = 0.

Qi=0+q

=

Qon-+qo

—'.%:—_ Figure 7-8 Liquid-level system.

e 11—
0
T
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Let us linearize Equation (7-25) near the operating point (H, Q). Using the lin-
earization technique just presented, we obtain the linearized equation

i _ mgy=Lu-m+Lio-0 7-26
g;'—f(H,Q)—aH(H H)+aQ,-(Q‘ Q) (7-26)
where
f(HQ)=0 ~
of ___k __ 9 1 __©Q __1
oHly-H.o~¢ 2cVHE VH2cVAE 2€H RC

in which we used the resistance R defined by

R=

ST

Also,

o =1
0Qil u=H. o=0 C
Then Equation (7-26) can be written as

dH 1 — 1 —
o= T reWH-H)+ Q-0 (7-27)

Since H ~ H = hand Q; — Q = g;, Equation (7-27) can be written as

dh 1 1
@~ Rc"TCY

or

dh
RC—-+h =Ry,

which is the linearized equation for the liquid-level system and is the same as Equa-
tion (7—4). (See Section 7-2.)

7-5 MATHEMATICAL MODELING OF HYDRAULIC SYSTEMS

The widespread use of hydraulic circuitry in machine tool applications, aircraft con-
trol systems, and similar operations occurs because of such factors as dependability;
accuracy; flexibility; a high horsepower-to-weight ratio; fast starting, stopping, and
reversal with smoothness and precision; and simplicity of operation.

In many machine tool applications, for instance, the traverse and feed cycles
required are best handled by hydraulic circuits. These cycles—in which the piston
advances rapidly on the work stroke until the work is contacted, advances slowly
under pressure while the work is done, and then retracts rapidly at the end of the
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slow tool feed stroke—are easily handled by the use of two pumps (one large-capacity,
low'-pressure pump and one small-capacity, high-pressure pump) and flow control
devices. The large-capacity, low-pressure pump is used only during the rapid advance
and return of the cylinder. The small-capacity, high-pressure pump supplies hydraulic
fluid for the compression stroke. An unloading valve maintains high pressure while the
low-pressure pump is unloaded to the reservoir. (The unloading valve unloads whatev-
er is delivered by the large-capacity, low-pressure pump during the small-capacity,
high-pressure phase of a cycle.) Such an unloading valve is designed for the rapid dis-
charge of hydraulic fluid at near atmospheric pressure after permitting the buildup of
pressure to a preset value.

Generally, the operating pressure in hydraulic systems is somewhere between
10° N/m? (1 MPa) and 35 X 10° N/m? (35 MPa) (approximately between 10 kgglem?
and 350 kg,lcmz, or approximately between 145 lbf/in.2 and 5000 lbf/in.z). In some
special applications, the operating pressure may go up to 70 X 10 N/m? (70 MPa,
which is approximately 700 kg/cm? or 10,000 Ib/in.2). For the same power require-
ment, the weight and size of the hydraulic unit can be made smaller by increasing
the supply pressure.

In this section, we first present some properties of hydraulic fluids and then
introduce general concepts of hydraulic systems. We then model a hydraulic servo.
Since this is a nonlinear device, we linearize the nonlinear equation describing the
dynamics of the hydraulic servo by using the linearization technique presented in
Section 7-4. Afterward, we obtain the transfer function of the hydraulic servo. Finally,
we derive a mathematical model of a hydraulic damper.

Properties of hydraulic fluids. The properties of hydraulic fluids have an im-
portant effect on the performance of hydraulic systems. Besides serving as a power-
transmitting medium, a hydraulic fluid must minimize the wear of moving parts by
providing satisfactory lubrication. In practice, petroleum-based oils with proper addi-
tives are the most commonly used hydraulic fluids, because they give good lubrication
for the moving parts of a system and are almost imcompressible. The use of a clean,
high-quality oil is required for satisfactory operation of the hydraulic system.

Viscosity, the most important property of a hydraulic fluid, is a measure of the
internal friction or the resistance of the fluid to flow. Low viscosity means an
increase in leakage losses, and high viscosity implies sluggish operation. In hydraulic
systems, allowable viscosities are limited by the operating characteristics of the
pump, motor, and valves, as well as by ambient and operating temperatures. The vis-
cosity of a liquid decreases with temperature.

The resistance of a fluid to the relative motion of its parts is called dynamic, or
absolute, viscosity. It is the ratio of the shearing stress to the rate of shear deforma-
tion of the fluid. The SI units of dynamic viscosity are N-s/m? and kg/m-s. The cgs
unit of dynamic viscosity is the poise (P) (dyn-s/cm? or g/cm-s). The SI unit is 10
times larger than the poise. The centipoise (cP) is one-hundredth of a poise. The
BES units of dynamic viscosity are lb,‘—s/ft2 and slug/ft-s. Note that

1slug/ft-s = 1 Ibp-s/ft> = 47.9 kg/m-s = 47.9 N-s/m’
1P = 100 cP = 0.1 N-s/m?
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The kinematic viscosity v is the dynamic viscosity u divided by the mass density
p, or

v=—
P

For petroleum-based oils, the mass density is approximately
p = 820 kg/m® = 51.2 1b/ft* = 1.59 slug/ft’

The SI unit of kinematic viscosity is m%s; the cgs unit of kinematic viscosity is the
stoke(St) (cm?/s), and one-hundredth of a stoke is called a centistoke (cSt). The
BES unit of kinematic viscosity is ft?/s. In changing from the stoke to the poise, mul-
tiply by the mass density in g/cm’. Note that

1 m%s (SI unit of kinematic viscosity)
= 10.764 ft*/s (BES unit of kinematic viscosity)
1St = 100 ¢St = 0.0001 m?/s

For hydraulic oils at normal operating conditions, the kinematic viscosity is about 5
to 100 centistokes (5 X 107 to 100 X 1075 m?%s).

Petroleum oils tend to become thin as the temperature increases and thick as the
temperature decreases. If the system operates over a wide temperature range, fluid
having a viscosity that is relatively less sensitive to temperature changes must be used.

Some additional remarks on hydraulic fluids are as follows:

1. The operating life of a hydraulic fluid depends on its oxidation resistance. Ox-
idation of hydraulic fluid is caused by air, heat, and contamination. Note that
any hydraulic fluid combines with air to a certain extent, especially at high op-
erating temperatures. Note also that the operating temperature of the hy-
draulic system should be kept between 30 and 60°C. For operating
temperatures above 70°C, oxidation is accelerated. Premium-grade fluids usu-
ally contain inhibitors to slow down oxidation.

2. For hydraulic systems located near high-temperature sources, fire-resistant
fluids should be used. These fluids are available in several general types, such
as water—glycol, synthetic oil, and water—oil emulsions.

Hydraulic circuits. Hydraulic circuits are capable of producing many differ-
ent combinations of motion and force. All, however, are fundamentally the same, re-
gardless of the application. Such circuits involve four basic components: a reservoir to
hold the hydraulic fluid, a pump or pumps to force the fluid through the circuit, valves
to control fluid pressure and flow, and an actuator or actuators to convert hydraulic
energy into mechanical energy to do the work. Figure 7-9 shows a simple circuit that
involves a reservoir, a pump, valves, a hydraulic cylinder, and so on.

High-pressure hydraulic systems enable very large forces to be derived. More-
over, these systems permit a rapid and accurate positioning of loads.

Hydraulic servomotor. Figure 7-10 shows a hydraulic servomotor consist-
ing of a spool valve and a power cylinder and piston. The valve admits hydraulic
fluid under high pressure into a power cylinder that contains a large piston, so a
large hydraulic force is established to move a load. Assume that the spool valve is
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Load
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Figure 7-9 Hydraulic circuit.
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Figure 7-10 Hydraulic servomotor.

symmetrical and has zero overlapping, that the valve orifice areas are proportional
to the valve displacement x, and that the orifice coefficient and the pressure drop
across the orifice are constant and independent of the valve position. Assume also
the following: The supply pressure is p;, the return pressure p in the return line is
small and can be neglected, the hydraulic fluid is incompressible, the inertia force of
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the power piston and the load reactive forces are negligible compared with the hy-
draulic force developed by the power piston, and the leakage flow around the spool
valve from the supply pressure side to the return pressure side is negligible.

Let us derive a linearized mathematical model of the spool valve near the ori-
gin. The flow rates through the valve orifices are given by

@1 =CVps—p1x
@ =CVp,— pyx = CVp, x

where we assumed that p, = 0 and C is a proportionality constant. Noting that
q1 = @3, we have

bs— D =p
Let us define the pressure difference across the power piston as
Ap=p - p
Then p; and p, can be written
_bpstAp _DPbs—Ap

The flow rate g, to the right side of the power piston is

@ =CVps—px= C\/E’:;—gx = f(x, Ap)

Using the linearization technique discussed in Section 74, we obtain the linearized
equation near the operating point x = ¥, Ap = Ap, q; = G, to be

91— q1 = a(x —X) + b(Ap — Ap) (7-28)
where
a — =
a= —f =C /u
0x x=X, Ap=Ap 2
_ C -
- aA _ _ = - _x = 0
Plx=% ap=Ap 2\/5\/135 - Ap

Near the origin (¥ = 0, Ap = 0, g; = 0), Equation (7-28) becomes
q = Kix — KrAp

where
Ki=C ps — Ap — [Ps
2 l3=0,ap=0 2
K, = ¢ X 0
2 = Ry ———— =
2V2V Ds — Ap 13=0,a5=0
Hence,
a1 = Kix (7-29)

This is a linearized model of the spool valve near the origin.
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Mathematical model of hydraulic servomotor. In obtaining a mathemat-
ical model of the hydraulic servomotor shown in Figure 7-10, we assume that the
hydraulic fluid is incompressible and that the inertia force of the power piston and
load is negligible compared with the hydraulic force at the power piston. We also as-
sume that the pilot valve is a zero-lapped valve. As given by Equation (7-29), the oil
flow rate is proportional to the pilot valve displacement.

The operation of this hydraulic servomotor is as follows: If input x moves the
pilot valve to the right, port 1 is uncovered, and high-pressure oil enters the right-
hand side of the power piston. Since port 2 is connected to the drain port, the oil on
the left-hand side of the power piston is returned to the drain. The oil flowing into
the power cylinder is at high pressure; the oil flowing out from the power cylinder
into the drain is at low pressure. The resulting difference in pressure on both sides of
the power piston will cause it to move to the left.

Note that the rate of flow of oil, ¢; (kg/s), times dt (s) is equal to the power pis-
ton displacement dy (m) times the piston area A (m?) times the density of the oil,
p (kg/m®). That is,

Apdy = q, dt (7-30)

As given by Equation (7-29), the oil flow rate g, is proportional to the pilot valve
displacement x, or

q = Kix (7-31)
where K, is a proportionality constant. From Equations (7-30) and (7-31), we
obtain

dy
.__=K
Ap . 1X

The Laplace transform of this last equation, assuming a zero initial condition, gives
ApsY(s) = K1 X(s)

or

=—1-= (7-32)

where K = K;/(Ap). Thus, the hydraulic servomotor shown in Figure 7-10 acts as
an integral controller.

Dashpots. The dashpot (also called a damper) shown in Figure 7-11(a) acts
as a differentiating element. Suppose that we introduce a step displacement into the
piston position x. Then the displacement y becomes momentarily equal to x. Because
of the spring force, however, the oil will flow through the resistance R, and the cylin-
der will come back to the original position. The curves of x versus t and y versus ¢ are
shown in Figure 7-11(b).

Let us derive the transfer function between the displacement y and the dis-
placement x. We define the pressures existing on the right-hand side and left-hand
side of the piston as P, (Ib/in%) and P, (Ibs/in.2), respectively. Suppose that the
inertia force involved is negligible. Then the force acting on the piston must balance



346 Fluid Systems and Thermal Systems  Chap. 7

(b)

Figure 7-11 (a) Dashpot; (b) step change in x and the corresponding change in y
plotted against ¢.

the spring force. Thus,
AP, — B) = ky
where

A = piston area, in.?

k = spring constant, Iby/in.

The flow rate g through the restriction, in 1b/s, is given by
A-P

R

where R is the resistance to flow at the restriction, lb,-s/in.z-lb.
Since the flow through the restriction during dt seconds must equal the change
in the mass of oil to the left of the piston during the same df seconds, we obtain

qgdt = Ap(dx — dy) (7-33)
where p = density, Ib/in.3. (We assume that the fluid is incompressible, or
p = constant.) Equation (7-33) can be rewritten as

dx _dy _q _PA-F _ ky

dt dt Ap RAp RA»

or

e _d Kk
dt dr  RAYp

Taking the Laplace transforms of both sides of this last equation, assuming zero ini-
tial conditions, we obtain

sX(s) = sY(s) + Y(s)

RA»
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The transfer function of the system thus becomes

Y(s) = s
X(s) s+ k
RA%
Let us define RA%p/k = T.Then
Y(s) Ts
X(s) Ts+1 (7-34)

‘ In earlier chapters, we frequently treated the spring-dashpot system as shown
in Figure 7-12, which is equivalent to the system of Figure 7-11(a). A mathematical
model of the system shown in Figure 7-12 is

b(x — y) = ky
or
5
Y(s b k T
() _ _bs__ = (7-35)
X(s) bs+k b Ts+1
-k—s+1

where b/k is the time constant T.
Notice that, since T = RA%p/k in Equation (7-34) and T = b/k in Equation
(7-35), we find the viscous-friction coefficient b to be equal to RA%p or
b = RA*
Note that the resistance R depends on the viscosity of oil.

Comments. Since hydraulic systems are used frequently in industry, in what
follows we shall list the advantages and disadvantages of using hydraulic systems
over comparable electrical systems.

Advantages and disadvantages of hydraulic systems. Some of the ad-
vantages to using hydraulic systems rather than electrical systems are as follows:

1. Hydraulic fluid acts as a lubricant, in addition to carrying away heat generat-
ed in the system to a convenient heat exchanger.

2. Comparatively small hydraulic actuators can develop large forces or torques.

3. Hydraulic actuators have a higher speed of response, with fast starts, stops,
and reversals of speed.

Figure 7-12 Spring-dashpot system.
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4. Hydraulic actuators can be operated under continuous, intermittent, revers-
ing, and stalled conditions without damage.

5. The availability of both linear and rotary actuators lends flexibility to design.

6. Because of low leakages in hydraulic actuators, drops in speed when loads are
applied are small.

Several disadvantages, however, tend to limit the use of hydraulic systems:

1. Hydraulic power is not readily available, compared with electric power.

2. The cost of a hydraulic system may be higher than that of a comparable elec-
trical system performing a similar function.

3. Fire and explosion hazards exist, unless fire-resistant fluids are used.

4. Because it is difficult to maintain a hydraulic system that is free from leaks,
the system tends to be messy.

5. Contaminated oil may cause failure in the proper functioning of a hydraulic
system.

6. As a result of the nonlinear and other complex characteristics involved, the
design of sophisticated hydraulic systems is quite involved.

7. Hydraulic circuits have generally poor damping characteristics. If a hydraulic
circuit is not designed properly, some unstable phenomena may appear or dis-
appear, depending on the operating condition of the circuit.

7-6 MATHEMATICAL MODELING OF THERMAL SYSTEMS

Thermal systems involve the transfer of heat from one substance to another. Ther-
mal systems may be analyzed in terms of resistance and capacitance, although the
thermal capacitance and thermal resistance may not be represented accurately as
lumped parameters, since they are usually distributed throughout the substance.
(For precise analysis, distributed-parameter models must be used.) Here, however,
to simplify the analysis, we shall assume that a thermal system can be represented by
a lumped-parameter model, that substances characterized by resistance to heat flow
have negligible heat capacitance, and that substances characterized by heat capaci-
tance have negligible resistance to heat flow.

Before we derive mathematical models of thermal systems, let us review units
of heat.

Units of heat. Heat is energy transferred from one body to another because
of a temperature difference. The SI unit of heat is the joule (J). Other units of heat
commonly used in engineering calculations are the kilocalorie (kcal) and Btu
(British thermal unit). The following conversions are applicable:

1J = 1N-m = 2.389 X 10™* kcal = 9.480 X 10™* Btu

1
1kcal = 4186J = mWh = 1163 Wh

1Btu = 10557 = 778 ft-Ibs
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From an engineering point of view, the kilocalorie can be considered to be that
amount of energy needed to raise the temperature of 1 kilogram of water from 14.5
to 15.5°C. The Btu can be considered as the energy required to raise 1 pound of
water 1 degree Fahrenheit at some arbitrarily chosen temperature. (These units give
roughly the same values as those previously defined.)

Heat transfer by conduction, convection, and radiation. Heat can flow
from one substance to another in three different ways: conduction, convection and
radiation. In this section, we shall be concerned with systems that involve just con-
duction and convection; radiation heat transfer is appreciable only if the tempera-
ture of the emitter is very high compared with that of the receiver. Most thermal
processes in process control systems do not involve radiation heat transfer and may
be described in terms of thermal resistance and thermal capacitance.

For conduction or convection heat transfer,

g = KA6

where
g = heat flow rate, kcal/s

A6 = temperature difference, °C
K = coefficient, kcal/s °C

The coefficient K is given by

K= -:—;- for conduction

= HA for convection

where

k = thermal conductivity, kcal/m s°C
A = area normal to heat flow, m?
AX = thickness of conductor, m

H = convection coefficient, kcal/m? s°C

Thermal resistance and thermal capacitance. The thermal resistance R
for heat transfer between two substances may be defined as follows:

change in temperature difference  °C
B change in heat flow rate kcal/s

Thus, the thermal resistance for conduction or convection heat transfer is given by
d(ag) 1

dq K

Since the thermal conductivity and convection coefficients are almost constant, the
thermal resistance for either conduction or convection is constant. The thermal
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capacitance C is defined by

_ change in heat stored kcal
" change in temperature °C

Accordingly, the thermal capacitance is the product of the specific heat and the mass
of the material. Therefore, thermal capacitance can also be written as

C =mc

where

m = mass of substance considered, kg
¢ = specific heat of substance, kcal’kg °C

Mathematical modeling of a thermal system: thermometer system.
Consider the thin, glass-walled mercury thermometer system shown in Figure 7-13.
Assume that the thermometer is at a uniform temperature ®°C (ambient tempera-
ture) and that at ¢t = 0 it is immersed in a bath of temperature ® + 6,°C, where 6, is
the bath temperature (which may be constant or changing), measured from the am-
bient temperature O. Let us denote the instantaneous thermometer temperature by
® + 6°C, so that @ is the change in the temperature of the thermometer, satisfying
the condition that §(0) = 0. The dynamics of this thermometer system can be char-
acterized in terms of a thermal resistance R (°C/kcal/s) that resists the heat flow and
a thermal capacitance C (kcal/°C) that stores heat.

A mathematical model for this thermal system can be derived by considering
heat balance as follows: The heat entering the thermometer during dt seconds is q dt,
where g (kcal/s) is the heat flow rate to the thermometer. This heat is stored in the
thermal capacitance C of the thermometer, thereby raising its temperature by dé.
Thus, the heat balance equation is

Cde = qdt (7-36)
Since the thermal resistance may be written
U]
dq q

Thermometer

o+0

6+0, -«t— Bath
Figure 7-13 Thin, glass-walled mercury
thermometer system.

\
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the heat flow rate g may be given, in terms of R, as
=(@+0,,)—(@+e) G- 8
R " R

where © + 6, is the bath temperature and @ + 0 is the thermometer temperature.
Consequently, we can rewrite Equation (7-36) as

a9 _6,- 8
dt R
or
do
RC— +0 =
i 6 =29,

where RC is the time constant. This is a mathematical model of the thermometer sys-
tem, which is analogous to the electrical system shown in Figure 7-4(a), the mechan-
ical system of Figure 7-4(b), the liquid-level system depicted in Figure 7-3(a), and
the pneumatic pressure system shown in Figure 7-7(a).

Example 7-5
Consider the air-heating system shown in Figure 7-14. Assuming small deviations from
steady-state operation, let us derive a mathematical model for the system. We shall also
assume that the heat loss to the surroundings and the heat capacitance of the metal
parts of the heater are negligible.
To derive a mathematical model for the system, let us define
0, = steady-state temperature of inlet air, °C
8, = steady-state temperature of outlet air, °C
G = mass flow rate of air through the heating chamber, kg/s
M = mass of air contained in the heating chamber, kg
¢ = specific heat of air, kcal’kg °C
R = thermal resistance, °C s/kcal
C = thermal capacitance of air contained in the heating chamber = Mc, kcal/°C

H = steady-state heat input, kcal/s
Let us assume that the heat input is suddenly changed from H to "Iz + h, and at
the same time, the inlet air temperature is suddenly changed from @; to ®; + 6;. Then
the outlet air temperature will be changed from 6, to ©, + 6,.

—_—

H+h O+ 6o

t

0;+6; Heater
B ‘

I | Figure 7-14  Air-heating system.
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The equation describing the system behavior is

Cde, = [h + Gc(6; — 6,)] dt

or
de,
C dt =h+ GC(O,' - 00)
Noting that
1
Gc = R
we obtain
deé, 1
— =h +—(6; —
Cop=h+ 50— 0)
or
db
Rcd—t" +6,=Rh+6 (7-37)

Taking the Laplace transforms of both sides of this last equation and substituting the
initial condition 6,(0) = 0 yields

H(s) + 0y(s) (7-38)

R 1
O(5) = RCs + 1 RCs + 1
Equation (7-37) is a mathematical model of the system. Equation (7-38) is also a math-
ematical model of the system, but one in which the Laplace transform of the output
@,(s) is given as a sum of the responses to the inputs H(s) and @;(s).

EXAMPLE PROBLEMS AND SOLUTIONS

Problem A-7-1

Liquid flow resistance depends on the flow condition, either laminar or turbulent.
Here, we consider the laminar-flow resistance.

For laminar flow, the flow rate Q m*/s and differential head (H, — H,) m are
proportional, or

Q = K(H, - Hy)

where K is a proportionality constant. Since

. change in differential head m
resistance R = p s
change in flow rate m/s

_ d(H, ~ H) 2
= a0 s/m
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the Jaminar-flow resistance can be given by

- d(Hl HZ) - "1‘5/1112
dQ K
Note that the laminar flow resistance is constant.
In considering laminar flow through a cylindrical pipe, the relationship between
the differential head 4 (= H) — H,) m and the flow rate @ m%s is given by the
Hagen-Poiseuille formula

R

_ 128vL

h=
gnD*

where

v = kinematic viscosity, m¥s
L = length of pipe,m
D = diameter of pipe, m

So the laminar-flow resistance R for liquid flow through cylindrical pipes is given by

_dh _128vL  ,
R= a0 o s/m (7-39)

{
h
I

D=3%x10"m

— i/
y — 0

Figure 7-15 Flow of water through a
capillary tube.

—— L = 1m —|

Now consider the flow of water through a capillary tube as shown in Figure 7-15.
Assuming that the temperature of the water is 20°C and that the flow is laminar, find
the resistance R of the capillary tube. The kinetic viscosity » of water at 20°C is
1.004 X 1078 m%s.

Solution Substituting numerical values into Equation (7-39), we obtain

_ 128X 1004 x10°°x1
9.807 X 3.14 X (3 X 1073)*

= 515 X 10*s/m?

Problem A-7-2

Consider a liquid flow in a pipe. The liquid-flow inertance is the potential difference
(either pressure difference or head difference) between two sections in the pipe
required to cause a unit rate of change in flow rate (a unit volumetric flow acceleration).

Suppose that the cross-sectional area of a pipe is constant and equal to A m? and
that the pressure difference between two sections in the pipe is Ap N/m> Then the



354

Fluid Systems and Thermal Systems  Chap.7

force A Ap will accelerate the liquid between the two sections, or

dv
—=AA
MG =Abp
where M kg is the mass of liquid in the pipe between the two sections and v m/s is the
velocity of liquid flow. Note that the mass M is equal to p AL, where p kg/m’ is the den-
sity and L m is the distance between the two sections considered. Therefore, the last
equation can be written

dv
pAL'a—t‘ = AAp

Noting that Av m%s is the volumetric flow rate and defining Q = Av m%s, we can
rewrite the preceding equation as

oL dQ _
A dr

If pressure (N/m?) is chosen as a measure of potential, then the liquid-flow inertance /
is obtained as

Ap (7-40)

If head (m) is chosen as a measure of potential, then, noting that Ap = Ahpg, where
Ah is the differential head, we see that Equation (7-40) becomes

pL dQ
A dar - Ahes
or
L4 _
Ag dt
Consequently, the liquid-flow inertance I is obtained as
A _ L ¢
dQldr  Ag m?

Now consider water flow through a pipe whose cross-sectional area is
1 X 10 m? and in which two sections are 15 m apart. Compute the inertance 1.
Assuming that the differential head between two sections is 1 m, compute the volumet-
ric water flow acceleration dQ/dt.

Solution The liquid-flow inertance is
L 1000 x 15 k
[ =Pz 1000 X 15 ke = = 15 X 10" N-s¥m’

or

I=——=—"—"" -2 —15295s%m?
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For a differential head of 1 m between two sections that are 15 m apart, the volumetric
water flow acceleration is
daQ Ak Ah 1

=— = = 352
LiAg ~ 15295 0.000654 m°/s

dt 1
Problem A-7-3

Consider the liquid-level system shown in Figure 7-16. Assume that the outflow rate
Q m¥/s through the outflow valve is related to the head H m by

Q= KVH =001VH

Assume also that, when the inflow rate Q; is 0.015 m®s, the head stays constant. At
t = 0 the inflow valve is closed, so there is no inflow for ¢+ = 0. Find the time necessary
to empty the tank to half the original head. The capacitance of the tank is 2 m?.

Solution When the head is stationary, the inflow rate equals the outflow rate. Thus,
the head Hy at ¢t = 0 is obtained from

0.015 = 0.01\VH,

or
Hy=225m
The equation for the system for ¢ > 0 is
—CdH = Qdt
or
dH __Q _-001VH
dt C 2
Consequently,
—'—i—\/l-i_;l— = —0.005 dt

Assume that H = 1.125m at ¢ = 1,. Integrating both sides of this last equation, we

have

1.125 7y

/ a1 / (~0.005) dt = —0.005¢,
25 VH o

Qi———%

Capacitance C

e

Figure 7-16 Liquid-level system.
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It follows that
1125

2VH|  =2V1125 - 2V2.25 = —0.005¢,

225
or

= 1757
Thus, the time necessary to empty the tank to half the original head is 175.7 s.

Problem A-7-4

Consider the liquid-level system of Figure 7-17(a). The curve of head versus flow rate
is shown in Figure 7-17(b). Assume that at steady state the liquid flow rate is
4 x 10~ m%s and the steady-state head is 1 m. At = 0, the inflow valve is opened fur-
ther and the inflow rate is changed to 4.5 X 10~ m%s. Determine the average resis-
tance R of the outflow valve. Also, determine the change in head as a function of time.
The capacitance C of the tank is 0.02 m>.

Solution The flow rate through the outflow valve can be assumed to be

Q=KVH
Next, from the curve given in Figure 7-17(b), we see that
4 %10 =KV1
or
K =4x10"

So if the steady-state flow rate is changed to 4.5 X 107 m?s, then the new steady-state
head can be obtained from

45 %10 =4 x 100*VH

or
H = 1266 m
Head
m
o0+ q;
1266 F——=—-==-~——- |
i
1pomcm———— [ !
: \
H+h -
- ¥
ya — b
C =002 m? R 0+q i
e
0 4x16-4 I Flow3rate
m/s
45x 107
(a) (b)

Figure 7-17 (a) Liquid-level system; (b) curve of head versus flow rate.
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This means that the change in head is 1.266 — 1 = 0.266 m. The average resistance R
of the outflow valve is then

R=—f"=—>2" " _ =0532 X 10*s/m?

Noting that the change in the liquid stored in the tank during dt seconds is equal
to the net flow into the tank during the same df seconds, we have
Cdh = (g; — q,) dt

where g; and g, are the changes in the inflow rate and outflow rate of the tank, respec-
tively, and 4 is the change in the head. Thus,

dh
C-(_i-l_ =4~ 49
Since
R="2
9
it follows that
dh h
CaH=%" R
or
dh
RC ar h = Rgq;

Substituting R = 0.532 X 10*s/m?, C = 0.02m?, and ¢; = 0.5 X 10 m%s into this
last equation yields

0.532 X 10* x o.oz‘fi—'t’ + h=0532 X 10* X 0.5 x 107
or

106.45i£ + h = 0.266
dt

Taking Laplace transforms of both sides of this last equation, with the initial condition
h(0) = 0, we obtain

0.266
(10645 + 1)H(s) = =
or
0266 1 1 ]
Hs) = {qogas + 1) = 0'266[s s + (1/106.4)

The inverse Laplace transform of H(s) gives
h(1) = 0.266(1 — e'%4ym

This equation gives the change in head as a function of time.
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Problem A-7-§

For the liquid-level system shown in Figure 7-18, the steady-state flow rate through the
tanks is O and the steady-state heads of tank 1 and tank 2 are H, and H,, respectively. At
t = 0, the inflow rate is changed from Q to Q + g, where q is small. The corresponding
changes in the heads (h, and A,) and changes in flow rates (q; and g,) are assumed to be
small as well. The capacitances of tank 1 and tank 2 are C, and C,, respectively. The resis-
tance of the valve between the tanks is R, and that of the outflow valve is R,. Assuming
that ¢ is the input and g5 the output, derive the transfer function for the system.

Solution For tank 1, we have

hy — hy
q = T
dh,
G il Ak
Hence,
dhy, h h,
Ci— +—= —=
va TR T + R, (7-41)
For tank 2, we get
-
9@ = R,
dh,

Therefore,

dy ke h_h

& TR TR R (7-42)
Taking Laplace transforms of both sides of Equations (7-41) and (7-42), under the ini-
tial conditions /,(0) = 0 and h,(0) = 0, we obtain

G

1
(Cls + —R:')Hl(s) = Q(s) + ’1.‘1,—1‘1'12(8) (7-43)
1 1
(Czs + E + 'R—Z)Hz(s) = 'R}*lHl(S) (7—44)

~ Tank 1 Tank 2
Q+q —*:&q

Figure 7-18 Liquid-level system.
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From Equation (7-43), we have
(RiCis + 1)Hy(s) = RiQ(s) + Hy(s)
or
RiQ(s5) + Hy(s)
Rlcls +1
Substituting this last equation into Equation (7-44) yields

1 RiQ(s) + Ha(s)
Rl RCs+1

Hy(s) =

1 1
(Czs + R, + E)HZ(S) =

Since Hy(s) = RyQs(s), we get

R

R]C;S +1 Rl R1C13 +1

which can be simplified to
[(CoRys + 1)(RCys + 1) + RyCys]Qa(s) = Q(s)
Thus, the transfer function Q,(s)/Q(s) can be given by
Qs(s) - 1
Q(s)  RICIR,Cys® + (RiCy + RyCy + RyCy)s + 1
which is Equation (7-13).

Problem A-7-6

Consider the liquid-level system of Figure 7-19. At steady state, the inflow rate and out-
flow rate are both Q, the flow rate between the tanks is zero, and the heads of tank 1 and
tank 2 are both H. Att = 0, the inflow rate is changed from Oto O + g, where g is small.
The resulting changes in the heads (%, and 4,) and flow rates (¢, and g,) are assumed to be
small as well. The capacitances of tanks 1 and 2 are C; and C,, respectively. The resistance
of the valve between the tanks is R; and that of the outflow valve is R,.

Derive the transfer function for the system when ¢ is the input and 4, is the output.

Solution For tank 1, we have
C] dh; = [} dr

Tank 2

Tank 1

Figure 7-19 Liquid-level system.



360 Fluid Systems and Thermal Systems ~ Chap. 7

where
-k
G = R,

Consequently,
dh
Rlc,d—t‘ +hy=h (7-45)

For tank 2, we get
Cdhy = (¢ — q1 — @) dt

where
ok _hk
Q= R, 9= R,
It follows that
dh R R,
RiCr—t + thz +hy = Rg + 2oy (7-46)

Eliminating 4, from Equations (7-45) and (7-46), we have
d’h dh d
RIC,RZQTZZ + (RCy + RC, + ch,)—dt—2 +hy = Rlclsz + Rg  (7-47)

The transfer function H,(s)/Q(s) is then obtained from Equation (7-47) and is
HZ(S) _ R1C1R23 + Rz
0(s)  RCIR,Gs* + (RICy + RCy + RyCy)s + 1

Problem A-7-7

Consider the liquid-level system shown in Figure 7-20. In the system, 0, and 0, are
steady-state inflow rates and H; and H, are steady-state heads. The quantities
g1, 92, My, R, gy, and gq,, are considered small. Obtain a state-space representation of
the system when h, and h, are the outputs and g;; and g, are the inputs.

Solution The equations for the system are
Cidhy = (gn — qu) dt (7-48)

é|+t‘1n—>:&‘a (F—(%:«— 0r+aqn

“_’él"‘éz"'qo

Figure 7-20 Liquid-level system.
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hy = hy
RN (749)
Cdhy = (g + g2 ~ q,) dt (7-50)
L 7-51
R2 - qo ( - )
Using Equation (7-49) to eliminate g, from Equation (7—48) results in
dhy 1 hy — hz)
dr G (q“ R, (7-52)
Using Equations (7-49) and (7-51) to eliminate ¢, and g, from Equation (7-50) gives
dh;, 1 <h1 ~hy hz)
&t G\ R TR (7-53)
If we define state variables
X = h]
X = hz
input variables
U =aqa
U = qn
and output variables
n=h=x
p=h=x
then Equations (7-52) and (7-53) can be written as
. 1 1
Xy = = + —

—_——y A ——
RGTTRGTT "

iy = =1 -(1 +1)x+iu
2T RG T\RG T RG/T M

In standard vector-matrix representation, we have

NI 1,
[ix} = BG RiC, [xl} +] € [ul]
;Vz 1 _( 1 + 1 ) X3 0 l_ 175)

R\G R1C2 R,C, G

which is the state equation, and
=06 2l
» 0 1jtx
which is the output equation.

Problem A-7-8

Obtain a mechanical analog of the liquid-level system shown in Figure 7-21 when q is
the input and g, the output.
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i

Tank 1 Tank 2
H +hy t
Hy+h, R, 5+q
i ——fstgr- bt 2
I R, l
(o} - G
Q+aq

Figure 7-21 Liquid-level system.

Solution The equations for the liquid-level system are

dhy

Cl'Et‘=CI'41

hx"hz

Q= R

szg?—‘h‘fh
%7 R,

Chap.7

(7-54)
(7-55)
(7-56)

(7-57)

Analogous quantities in a mechanical-liquid-level analogy are shown in Table 7-2.
(Note that other mechanical-liquid-level analogies are possible as well.) Using the
analogous quantities shown in the table, Equations (7-54) through (7-57) can be mod-

ified to
blkl = F - F]
A = ki(x; — %)
by, =F - K
B = kx,

TABLE 7-2 Mechanical-Liquid-Level Analogy

Mechanical Systems Liquid-Level Systems
F (force) q (flow rate)
x (displacement) h (head)
X (velocity) h (time change of head)
b (viscous-friction coefficient) C (capacitance)
k (spring constant) 712- (reciprocal of resistance)

(7-58)
(7-59)
(7-60)
(7-61)
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Rewriting Equations (7-58) through (7-61), we obtain
byxy + ky(x; — x) = F
byxs + kyxy = ky(x) = x3)

On the basis of the last two equations, we can obtain an analogous mechanical system
as shown in Figure 7-22.

Problem A-7-9

In dealing with gas systems, we find it convenient to work in molar quantities, because
1 mole of any gas contains the same number of molecules. Thus, 1 mole occupies the
same volume if measured under the same conditions of pressure and temperature.

At standard pressure and temperature (1.0133 X 10° N/m? abs and 273 K, or
14.7 psia and 492°R), 1 kg mole of any gas is found to occupy 22.4 m* (or 1 Ib mole of
any gas is found to occupy 359 ft*). For instance, at standard pressure and temperature,
the volume occupied by 2 kg of hydrogen, 32 kg of oxygen, or 28 kg of nitrogen is the
same, 22.4 m>. This volume is called the molal volume and is denoted by 7.

For 1 mole of gas,

pv = RT (7-62)
The value of R is the same for all gases under all conditions. The constant R is the uni-

versal gas constant.
Find the value of the universal gas constant in SI and BES units.

Solution Substituting p = 1.0133 X 10° N/m? abs, 7 = 22.4 m*kg-mole, and T =
273 K into Equation (7-62), we obtain
PP _ 10133 X 10° X 224
T 273

This is the universal gas constant in SI units.
To obtain the universal gas constant in BES units, we substitute p = 14.7 psia
=14.7 X 144 Ib/ft? abs, T = 359 ft>/lb-mole, and T = 492°R into Equation (7-62).

R=22_ 18T X M4 X399 _ 1545 fy1b,b-mole °R

= 1.985 Btuw/lb-mole °R

R= = 8314 N-m/kg-mole K

bl kl SE x
7 L
< X3
b, k, ﬁ:
Figure 7-22 Mechanical analog of the liquid-level

70 system shown in Figure 7-21.
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Problem A-7-10

Referring to the pneumatic pressure system shown in Figure 7-23, assume that the sys-
tem is at steady state for ¢ < O and that the steady-state pressure of the system is
P =5 X 10° N/m? abs. At t = 0, the inlet pressure is suddenly changed from P to
P + p;, where p; is a step change with a magnitude equal to 2 X 10* N/m? This change
causes the air to flow into the vessel until the pressure equalizes. Assume that the initial
flow rate is g(0) = 1 X 10™* kg/s. As air flows into the vessel, the pressure of the air in
the vessel rises from P to P + p,. Determine p, as a function of time. Assume that the
expansion process is isothermal (n = 1), that the temperature of the entire system is
constant at 7 = 293 K, and that the vessel has a capacity of 0.1 m>,

Solution The average resistance of the valve is
R=—==""— =2 X 10® N-s/kg-m?

The capacitance of the vessel is
C= v__ 0.1
nR,,T 1 X287 X293

A mathematical model for this system is obtained from

= 1.19 X 10 kg-m¥N

Cdp, = qdt
where
_Ap_p—p
7= 7R R
Thus,
dp
Rcd_ta +p, = Di

Substituting the values of R, C,and p; into this last equation, we have

d
2x108><1.19x10'6—£2+p,,=2x10“

Ap(N/m?)

2X104 -~

Capacitance C
Resistance R /
\ 1x104 q(kgs)
F%: P+p,
——
q

F-f—pi

Figure 7-23 Pneumatic pressure system.
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or

dp,

28—+ p, =2 % 10° (7-63)

Taking Laplace transforms of both sides of Equation (7-63), with the initial condition
Po(0) = 0, we get

(238s + 1)P,(s) = 2 X 1o4§

or
2 x 10*
P(s) = ———e
o(5) = {2385 + 1)
1 1
= X 4 — — ——
2x10 (s s+ 0.0042)

The inverse Laplace transform of this last equation is
Po(t) = 2 X 10%(1 — ¢700042r)
which gives p,(¢) as a function of time.

Problem A~7-11

Air is compressed into a tank of volume 2m> The compressed air pressure is
5 X 10° N/m? gage and the temperature is 20°C. Find the mass of air in the tank. Also,
find the specific volume and specific weight of the compressed air.

Solution The pressure and temperature are
p = (5 + 1.0133) X 10° N/m? abs
T =273 +20=293K

From Table 7-1, the gas constant of air is R,;; = 287 N-m/kg K. Therefore, the mass of
the compressed air is

PV 6.0133 X 10° X 2

mE R TS wmixam  43ke
The specific volume v is
LA 3
v w143 0.140 m°/kg
The specific weight vy is
_mg 143 X 9.807 _ 3
Y=y =—>5 70.1 N/m
Problem A-7-12

The molecular weight of a pure substance is the weight of one molecule of the sub-
stance, compared with the weight of one oxygen atom, which is taken to be 16. That is,
the molecular weight of carbon dioxide (CO,) is 12 + (16 X 2) = 44. The molecular
weights of (molecular) oxygen and water vapor are 32 and 18, respectively.

Determine the specific volume v of a mixture that consists of 100 m? of oxygen,
5 m? of carbon dioxide, and 20 m® of water vapor when the pressure and temperature
are 1.0133 X 10° N/m? abs and 294 K, respectively.
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Solution The mean molecular weight of the mixture is

100 5 20)
- — —_ X — | = 30.24
M (32 X 125) + (44 X 125) + (18 1%

RT _ 8314 X294

v = = = 0.798 m’kg
Mp  30.24 X 1.0133 X 10

Problem A-7-13

Sound is a longitudinal wave phenomenon representing the propagation of compres-
sional waves in an elastic medium. The speed c of propagation of a sound wave is given

by
c=, /—a”
dp

Show that the speed ¢ of sound can also be given by
¢ = VkRT
where
k = ratio of specific heats, ¢,/c,
R = gasconstant
T = absolute temperature
Find the speed of sound in air when the temperature is 293 K.

Solution Since the pressure and temperature changes due to the passage of a sound
wave are negligible, the process can be considered isentropic. Then

f,; = constant
Therefore,
dp _kp
dp b

Since p = pRT, we obtain

c=\/%=\/g=m

For a given gas, the values of &k and R are constant. So the speed of sound in a gas is a
function only of the absolute temperature of the gas.
Noting that, for air,
k =1.40
Ry = 287 N-m/kg K
we find the speed of scund to be

¢ = VkRy;T = V1.40 X 287 X 293 = 343.1 m/s
= 1235 km/h = 1126 ft/s = 768 mi/h
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Problem A-7-14
Find a linearized equation for
z = 04x* = f(x)
aboutapoint¥ = 2,7 = 3.2

Solution The Taylor series expansion of f(x) about the point (2, 3.2), neglecting the
higher order terms, is

z—Z=a(x — X)

where
d
oYl 122 - 4.8
dx x=2 x=2
So the linear approximation of the given nonlinear equation is
2—-32=48(x-2) (7-64)

Figure 7-24 depicts a nonlinear curve z = 0.4x> and the linear equation given by
Equation (7-64). Note that the straight-line approximation of the cubic curve is valid
near the point (2,3.2).

z=04x3

2—-32=48(x—-2)

b - -

Figure 7-24 Nonlinear curve z = 0.4x°
and its linear approximation at point X = 2
and Z = 3.2,

[
T
[O) T

Problem A-7-15
Linearize the nonlinear equation
z=xy
inthe region 5 = x = 7,10 = y = 12. Find the error if the linearized equation is used
to calculate the value of z when x = 5, y = 10.

Solution Since the region considered is given by 5 < x = 7,10 = y =< 12, choose
% = 6,7 = 11. Then 7 = Xy* = 726. Let us obtain a linearized equation for the non-
linear equation near a point X = 6,y = 11,7 = 726.
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Expanding the nonlinear equation into a Taylor series about the point
x = %,y =, z = 7 and neglecting the higher order terms, we have

z—Z=a(x - %) +b(y—7)

where
a(xy?
a= (xy°) = 72 =121
X {x=% y=y
3(xy*)
b= =2Xy = 132
3y ix=x, y=y xy

Hence, the linearized equation is
z— 726 = 121(x ~ 6) + 132(y — 11)
or
z = 121x + 132y — 1452

When x = 5, y = 10, the value of z given by the linearized equation is

z = 121x + 132y — 1452 = 605 + 1320 — 1452 = 473
The exact value of z is z = xy? = 500. The error is thus 500 — 473 = 27. In terms of
percentage, the error is 5.4%.

Problem A-7-16

Linearize the nonlinear equation

z=

< =

in the region defined by 90 = x < 110,45 = y = 55.

Solution Let us choose X = 100, y = 50. The given function z = x/y can be expanded
into a Taylor series as follows:

z =§=f(x,y)

=N+ La-n+ Lo -3 4

Thus, a linearized equation for the system is

-5 =alx = %) + by - 3)
where ¥ = 100,y = 50, and
a= g = —1- = l
9x|y=100,y=50 ¥lx=100.y=s0 50
b= of =% =1
3Y | x=100, y=50 ¥? | x=100, y=30 25
Hence,
100 1 1
-5 =55~ 100) = =y = 50)
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or

x—2y—-50z+100=0
This is a linearized equation for the nonlinear system in the given region.

Problem A-7-17

A six-pulley hoist is shown in Figure 7-25. If the piston area A is 30 X 10™* m? and the
pressure difference p, — p,is 5 X 10° N/m?, find the mass m of the maximum load that
can be pulled up. Neglect the friction force in the system.

Solution The hydraulic force on the piston is
A(p; — p;) =30 X 107 x 5 x 10° = 15,000N

Note that in this system the piston pulls six cables. Since the tension is the same on the
entire length of the cable, we obtain

6F = 15,000 N
SIS PSS PSP T P
AN
W
)
\ m
i i
1
OV
L/ ]
1
°\ d 6h
% :
1 re=ben
} 1
' \
L A
a—
— 4
P71 —

i
L

Figure 7-25 Six-pulley hoist.
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where F is the tension in the cable and also is the lifting force. This force should be

equal to mg; that is,
F =mg
or
15,000
m = 9807 X6 - 254.9kg

Problem A-7-18

Consider the hydraulic system shown in Figure 7-26. The left-hand side of the pilot valve
is joined to the left-hand side of the power piston by a link ABC. This link is a floating
link rather than one moving about a fixed pivot. The system is a hydraulic controller.

The system operates in the following way: If input e moves the pilot valve to the
right, port I will be uncovered and high-pressure oil will flow through that port into the
right-hand side of the power piston, forcing it to the left. The power piston, in moving to
the left, will carry the feedback link A BC with it, thereby moving the pilot valve to the
left. This action continues until the pilot valve again covers ports I and II.

Derive the transfer function Y(s)/E(s).

Solution At the moment point A is moved to the right, point C acts as a fixed point.
Therefore, the displacement of point B is eb/(a + b). As the power piston moves to the
left, point A acts as a fixed point, and the displacement of point B due to the motion of
the power piston is ya/(a + b). Hence, the net displacement x of point B is

eb ya

“a4+b a+b (7-65)
From Equation (7-32), the transfer function between displacement y and displacement
x is given by
Y(s) K
XG) - 5 (7-66)
Equation (7-65) can be rewritten as )
b a
X(s) = Py bE(s) - TE bY(s) (7-67)
Oil
under

pressure

Figure 7-26 Hydraulic system.
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3n
Eliminating X(s) from Equations (7-66) and (7-67), we obtain
s b a
kY0) = 3B — Y )
or
s a b
(K e b)y(s) =2+ pE0)
Hence,
bK
Y(s)  (a+b)s
E(s) 1+ aK (7-68)
(a + b)s

Under normal operations of the system, |Ka/[s(a + b)]| > 1. Thus, Equation (7-68)
can be simplified to

Y(s)
E(s)
Thus the transfer function between y and e becomes a constant. The hydraulic system
shown in Figure 7-26 acts as a proportional controller, the gain of which is K ,. This gain

can be adjusted by effectively changing the lever ratio b/a. (The adjusting mechanism is
not shown in the diagram.)

b
.= K

Problem A-7-19

Consider the thermal system shown in Figure 7-27. Assume that the tank is insulated to
eliminate heat loss to the surrounding air. Assume also that there is no heat storage in
the insulation and that the liquid in the tank is perfectly mixed so that it is at a uniform
temperature. Thus, a single temperature is used to describe both the temperature of the
liquid in the tank and that of the outflowing liquid.

Let us define

®; = steady-state temperature of inflowing liquid, °C
©, = steady-state temperature of outflowing liquid, °C
G = steady-state liquid flow rate, kg/s
M = mass of liquid in tank, kg
¢ = specific heat of liquid, kcal/kg °C

AL, | vo
W liquid
AAA /
Heater ;
Z
% Mixer 4
Cold ___.é/ f

lquid ™ ——7 7
Figure 7-27 Thermal system.
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R = thermal resistance, °C s/kcal
C = thermal capacitance, kcal/°C
H = steady-state heat input rate, kcal/s

Suppose that the system is subjected to changes in both the heat input rate and the
temperature of the inflow liquid, while the liquid flow rate is kept constant. Define 6 as
the change in the temperature of the outflowing liquid when both the heat input rate
and inflow liquid temperature are changed. Obtain a differential equation in 6.

Solution The system is subjected to two inputs. In Example 7-5, we considered two in-
puts at the same time in deriving the system equation there. In the current example prob-
lem, we consider the two inputs independently. (This approach is valid for any linear
system.) We shall first consider the change in the temperature of the outflowing liquid
when the heat input rate is changed.

Assume that the temperature of the inflowing liquid is kept constant and that the
heat input rate to the system (the heat supplied by the heater) is suddenly changed from
H to H + h;, where h; is small. The heat outflow rate will then change gradually from
H to H + h,. The temperature of the outflowing liquid will also change, from 8, to
©, + 6,. For this case,

h.,——GcOl

C = Mc
&1
h, Gc

de,
C? =h; — h,
which may be rewritten as
de,
RC’E‘ + 01 = Rh,

Next, consider the change in the temperature of the outflowing liquid when the
temperature of the inflowing liquid is changed. If the temperature of the inflowing
liquid is suddenly changed from & to @; + 6; while the heat input rate H and the lig-
uid flow rate G are kept constant, then the heat outflow rate will be changed from H
to H + h,, and the temperature of the outflowing liquid will be changed from @, to
0, + 0,. The differential equation for this case is

ds,
-5 = GCO; - ho

Cdt

which may be rewritten

de,
RC“:i‘t— + 02 = 0,'

where we used the relationship 4, = Gcf,.
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Since the present thermal system is subjected to changes in both the temperature
of the inflow liquid and the heat input rate, the total change  in the temperature of the
outflowing liquid is the sum of the two individual changes, or 8 = ; + 6,. Thus, we
obtain

RC%?+6=6,'+R,1;

Problem A-7-20

In the thermal system shown in Figure 7-28(a), it is assumed that the tank is insulated
to eliminate heat loss to the surrounding air, that there is no heat storage in the insula-
tion, and that the liquid in the tank is perfectly mixed so that it is at a uniform temper-
ature. (Thus, a single temperature can be used to denote both the temperature of the
liquid in the tank and that of the outflowing liquid.) It is further assumed that the flow
rate of liquid into and out of the tank is constant and that the inflow temperature is
constant at 8°C. Fort < 0, the system is at steady state and the heater supplies heat at
the rate H J/s. At ¢ = 0, the heat input rate is changed from H to H + hJ/s. This
change causes the outflow liquid temperature to change from 8, to @, + 6°C. Sup-
pose that the change in temperature, 6°C, is the output and that the change in the heat
input, 4 J/s, is the input to the system. Determine the transfer function @(s)/H (s),where
O(s) = £[6(1)] and H(s) = £[h(z)]. Show that the thermal system is analogous to
the electrical system of Figure 7-28(b), where voltage e, is the output and current i is
the input.

Solution Define
G = liquid flow rate, kg/s
¢ = specific heat of liquid, J/kg-K
M = mass of liquid in the tank, kg
R = thermal resistance, K-s/J
C = thermal capacitance, JJK
h, = change in heat added to outflowing liquid, J/s

Then
C = Mc
\; Hot
liquid
7 7 ‘ ‘
é Heater é s
2 Z i RZ Ci: &
Y, 2
i U
Cold /W Mixer 2
liquid ST
(a) (b)

Figure 7-28 (a) Thermal system; (b) analogous electrical system.
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Note that
ﬁ = GC(@_O - 6,)
H+h,=Gec(O, + 60— 6)
So we have
h, = Gcé
Note also that
] 1
R= h_o e

The heat balance equation is
Cde = (h~ h,)dt

or
de 7}
Ca = k=%
Thus,
Rng + 0 = Rh
dt
and the transfer function is
o) R
H(s) RCs+1

For the electrical circuit shown in Figure 7-28(b), define the currents through
resistance R and capacitance C as i) and i,, respectively. Then the equation for the cir-
cuit becomes

A O I
Rll =E/lzdf = €
The Laplace transform of this last equation, assuming a zero initial condition, is
1
Rh(s) = ==h(s) = E(s)
Substituting L,(s) = I(s) — I;(s) into the preceding equation, we have
1
RI(s) = a[l(-f) = k()]
or

RIs) = 7o 1(5) = Es)

The transfer function E,(s)/I(s) is

Efs) R
I(s) RCs+1
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Comparing the transfer function of the thermal system with that of the electrical sys-
tem, we find the analogy apparent.

PROBLEMS

Problem B-7-1

For laminar flow through a cylindrical pipe, the relationship between the differential
head 4 m and flow rate Q m%s is given by the Hagen-Poiseuille formula

- 128vL

gmwD*

Q

where

v = kinematic viscosity, m%s
L = length of pipe, m
D = diameter of pipe, m
Thus, the laminar-flow resistance R, for the liquid flow through cylindrical pipes is
given by
dh _ 128vL oJm?
dQ gnD!
Now consider the flow of water through a capillary tube. Assuming that the temperature
of the water is 20°C and that the flow is laminar, obtain the resistance R, of the capillary

tube. The kinematic viscosity v of water at a temperature of 20°C is 1.004 X 107% m%s.
Assume that the length L of the capillary tube is 2 m and the diameter is 4 mm.

Problem B-7-2

In the liquid-level system shown in Figure 7-29, the head is kept at 1 m for ¢ < 0. The
inflow valve opening is changed at ¢t = 0, and the inflow rate is 0.05 m%s for ¢ = 0.
Determine the time needed to fill the tank to a 2.5-m level. Assume that the outflow
rate Q m*/s and head H m are related by

0 = 002VH
The capacitance of the tank is 2 m?,
0.05m3/s I
2.5m
f t=0
H=1m
P B A

C =2m? Figure 7-29 Liquid-level system.
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Problem B-7-3

At steady state, the flow rate throughout the liquid-level system shown in Figure 7-30
is 0, and the heads of tanks 1 and 2 are H,; and H,, respectively. At ¢ = 0, the inflow
rate is changed from Q to O + g, where g is small. The resulting changes in the heads
(hy and h,) and flow rates (g, and g,) are assumed to be small as well. The capacitances
of tanks 1 and 2 are C, and C,, respectively. The resistance of the outflow valve of tank
lis R, and that of tank 2 is R,. Obtain the transfer function for the system when q is the
input and g, the output.

Tank 2

H,+h,

""Q"‘qZ

Figure 7-30 Liquid-level system.

Problem B-7-4

Consider the liquid-level system shown in Figure 7-31. At steady state, the inflow
rate and outflow rate are both Q and the heads of tanks 1,2, and 3 are H,, Hz, and
H3, respectively, where H; = H,. At ¢ = 0, the inflow rate is changed from Q to
O + g;. Assuming that Ay, h,, and h3 are small changes, obtain the transfer function

Qo(s)/Qi(s).

O+gq, -—,:&ﬂ Tank 2 ;kfi

Tankl\ —f ‘ _ },
H, +h, Hy+hy A+ hy
J - '—&:—*é*"lo
R, Ry \ Ry
G -— C, — Cs

9 Q+gq,

Figare 7-31 Liquid-level system.
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Problem B-7-§

Consider the conical water tank system shown in Figure 7-32. The flow through the
valve is turbulent and is related to the head H by

0 = 0.005VH

where Q is the flow rate measured in m%/s and H is in meters. Suppose that the head is
2mat¢ = 0. What will be the head at 1 = 60 s?

N

Figure 7-32 Conical water tank system.

Problem B-7-6
Obtain an electrical analog of the liquid-level system shown in Figure 7-30.

Problem B-7-7

Obtain an electrical analog of the liquid-level system shown in Figure 7-21 when ¢ is
the input and g, the output.

Problem B-7-8

Air is compressed into a tank of volume 10 m>. The pressure is 7 X 10° N/m? gage and
the temperature is 20°C. Find the mass of air in the tank. If the temperature of the com-
pressed air is raised to 40°C, what is the gage pressure of air in the tank in N/m? in
kgs/cm?, and in Ib/in.2?

Problem B-7-9

For the pneumatic system shown in Figure 7-33, assume that the steady-state values of
the air pressure and the displacement of the bellows are P and X, respectively. Assume
also that the input pressure is changed from P to P + p;, where p; is small. This change
will cause the displacement of the bellows to change a small amount x. Assuming that
the capacitance of the bellows is C and the resistance of the valve is R, obtain the trans-
fer function relating x and p;.
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Figure 7-33 Pneumatic system.

Problem B-7-10

Chap.7

Consider the pneumatic pressure system shown in Figure 7-34. For ¢ < 0, the inlet
valve is closed, the outlet valve is fully opened to the atmosphere, and the pressure p,
in the vessel is atmospheric pressure. At ¢ = 0, the inlet valve is fully opened. The inlet
pipe is connected to a pressure source that supplies air at a constant pressure p,, where
p1 = 0.5 X 10° N/m? gage. Assume that the expansion process is isothermal (n = 1)
and that the temperature of the entire system stays constant.

Determine the steady-state pressure p, in the vessel after the inlet valve is fully
opened, assuming that the inlet and outlet valves are identical (i.e., both valves have

identical flow characteristics).

Inlet
valve 23

Outlet
valve

TN P - AlA

13

Figure 7-34 Pneumatic pressure system.

Problem B-7-11
Figure 7-35 shows a toggle joint. Show that

P3

Atmospheric
pressure
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Figure 7-35 Toggle joint.

Problem B-7-12

Consider the pneumatic system shown in Figure 7-36. The load consists of a mass m
and friction. The frictional force is assumed to be uN = pmg. If m = 1000 kg, u = 0.3,
and p; — p, = 5 X 10° N/m?, find the minimum area of the piston needed if the load is
to be moved. Note that the frictional force u mg acts in the direction opposite to the
intended direction of motion.

L

///I/fl//l 77777,

N

Figure 7-36 Pneumatic system.

Problem B-7-13

In the system of Figure 7-37, a mass m is to be pushed upward along the inclined plane
by the pneumatic cylinder. The friction force uN is acting opposite to the direction of
motion or intended motion. If the load is to be moved, show that the area A of the pis-
ton must not be smaller than

mgsin(f + a)
(p1 — p2)cost

where = tan™! u and a is the angle of inclination of the plane.
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Figure 7-37 Pneumatic system.

Mg N = mg cosox

Problem B-7-14

The system shown in Figure 7-38 consists of a power cylinder and a rack-and-pinion
mechanism to drive the load. Power piston D moves rack C, which, in turn, causes pin-
ion B to rotate on rack A. Find the displacement y of the output when the displacement

of the power piston is x.

_>y

Load

t |

Figure 7-38 Pneumatic system.
Problem B-7-15
Obtain a linear approximation of
Q = 01VH = f(H)
about the operating point H = 4,0 = 0.2.
Problem B-7-16
Find a linearized equation of
z=15x
about the point x = 2, z = 20,
Problem B-7-17
Linearize the nonlinear equation
z=x%*+2xy + 5y
in the region defined by 10 = x < 12,4 < y < 6.
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Problem B-7-18

Pascal’s law states that the pressure at any point in a static liquid is the same in every
direction and exerts equal force on equal areas. Examine Figure 7-39. If a force of P, is
applied to the left-hand-side piston, find the force P, acting on the right-hand-side pis-
ton. Also, find the distance x, m traveled by the piston on the right-hand side when the
one on the left-hand side is moved by x; m.

Figure 7-39 Hydraulic system.

Problem B-7-19

Figure 7-40 is a schematic diagram of an aircraft elevator control system. The input to the
system is the deflection angle 6 of the control lever, and the output is the elevator angle
¢. Assume that angles 6 and ¢ are relatively small. Show that, for each angle 6 of the con-
trol lever, there is a corresponding (steady-state) elevator angle ¢.

Figure 7-40  Aircraft elevator control system.
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Problem B-7-20

Consider the thermal system shown in Figure 7-41. The temperature of the inflow lig-
uid is kept constant, and the liquid inflow rate G kg/s is also kept constant. For ¢ < 0,
the system is at steady state, wherein the heat input from the heater is U kcal/s and the
temperature of the liquid in tank 2 is &,°C. At ¢ = 0, the heat input is changed from U
toU + u, where u is small. This change will cause the temperature of the liquid in tank
2 to change from @, to ®, + 6,. Taking the change in the heat input from the heater to
be the input to the system and the change in the temperature of the liquid in tank 2 to
be the output, obtain the transfer function @ (s)/U(s). Assume that the thermal
capacitances of tanks 1 and 2 are C; kcal/°C and C; kcal/°C, respectively, and that the
specific heat of the liquid is ¢ kcal/kg°C. The steady-state heat flow rates from tanks 1
and 2 are the same, Q kcal/s. The changes in heat flow rates from tanks 1 and 2 are g;,
and g,, respectively.

U+u

—

IS
T

|

n
7— | L]

6,+9,

6,+86, N O+aq

Figure 7-41 Thermal system. Tank 2



Time-Domain Analysis
of Dynamic Systems

8-1 INTRODUCTION

This chapter Qeals prim'arily witp the transient-response analysis of dynamic sys-
tems and.obtalns :imalytlcal solutions giving the responses. The chapter also derives
an analytical solution of the state equation when the input is a step, impulse, or ramp

f}mction. (The method can be extended to obtain an analytical solution for any
time-domain input.)

Natural and forced responses. Consider a system defined by a differential
equation, for instance,

-1
(;) + a(:x ) + oo+ agoyk + agx = p(t) &1

where the coefficients a1, @2, - -+ Gn are c_onstams, xgt) is the dependent variable, ¢ is
the independent variable, and p(f) is the input function.
i i jon (8-1) has a complete solution x(f) composed of two
The differential equation plete . ed of two
. mplementary solution x(t) and the particular solution x p(2). T :
parts: the comp'e 0) is found by equating the right-hand side 'of Equation .(8—- )
1no {the iated homogeneous differential equfmon.'l'he particular
to ze10 and solving the functional form of the input function p(®)-

383
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If the complementary solution x.(t) approaches zero or a constant value as
time ¢ approaches infinity and if lim,.c0x () is a bounded function of time, the sys-
tem is said to be in a steady state.

Customarily, engineers call the complementary solution x.(¢) and the particu-
lar solution x,(t) the natural and forced responses, respectively. Although the natur-
al behavior of a system is not itself a response to any external or input function, a
study of this type of behavior will reveal characteristics that will be useful in pre-
dicting the forced response as well.

Transient response and steady-state response. Both the natural and
forced responses of a dynamic system consist of two parts: the transient response and
the steady-state response. Transient response refers to the process generated in going
from the initial state to the final state. By steady-state response, we mean the way in
which the system output behaves as ¢ approaches infinity. The transient response of a
dynamic system often exhibits damped vibrations before reaching a steady state.

Outline of the chapter. Section 8-1 has presented introductory material.
Section 8-2 deals with the transient-response analysis of first-order systems subjected to
step and ramp inputs. Section 8-3 begins with the transient-response analysis of second-
order systems subjected to initial conditions only. A discussion of the transient response
of such systems to step inputs then follows. Section 8-4 treats higher order systems. Fi-
nally, Section 8-5 presents an analytical solution of the state-space equation.

8-2 TRANSIENT-RESPONSE ANALYSIS OF FIRST-ORDER SYSTEMS

From time to time in Chapters 2 through 7, we analyzed the transient response of
several first-order systems. Essentially, this section is a systematic review of the tran-
sient response analysis of first-order systems. In the current section, we consider a
thermal system (a thin, glass-walled mercury thermometer system) as an example of
a first-order system. We shall find the system’s response to step and ramp inputs.
Then we point out that the mathematical results obtained can be applied to any
physical or nonphysical system having the same mathematical model.

Step response of first-order system. For the thin, glass-walled mercury
therx_nometer system shown in Figure 8-1, assume that the thermometer is at the
ambient t_gmpergture @°_C and that at ¢ = 0 it is immersed in a water bath of tem-
f;;a:;x;)e_ 5) t~|~t 6,°C. (6y is the difference between the temperature of the bath and

1ent temperature. i i
p e.) Let us define the Instantaneous thermometer tempera-

ture as® + g° i i

hy ;e f;e@c-gn% i?i;) x{}Ng;(e})ﬂ?t :}m $: dll:a!lllg;i mdthe thermometer temperature satisfy-
: = (. shall fin¢

temperature is constant, or 0 is constant. the response () when the bath

We presented a mathematical i
A model of t, ; :
equation for the heat balance for this system is 4l system in Section 7-6. The basic

where C (kcal/ Cdo=qa
cal/°C) is the thermal capacit: (8-2
th . apacitafive of )
¢ heat input to the thermometer. The heatz@ut?e(;fgﬂ)mmeter and g (kealfs) ;s
s .
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Let us derive the ramp response 6(t).
First, note that

Oy(s) = L[0,(1)] = L[re] = é

Substituting this equation into Equation (8-5), we find that

1 r [1 T T
@(s)'Ts+1?“’[?'?+s+(1/T)]

The inverse Laplace transform of this last equation gives
6(t) = r(t = T + Te™™) t=0 (87
The error e(f) between the actual bath temperature and the indicated thermometer
temperature is
e(t)=rt —0(t) = rT(1 — &7
As t approaches infinity, e T approaches zero. Thus, the error e(t) approaches rT, or
e(o0) =T

The ramp input r¢ and response 6(¢) versus ¢ are shown in Figure 8-3. The error in
following the ramp input is equal to rT for sufficiently large . The smaller the time
constant T, the smaller is the steady-state error in following the ramp input.

Comments. Since the mathematical analysis does not depend on the physi-
cal structure of the system, the preceding results for step and ramp responses can be
applied to any systems having the mathematical model

dx,

Tdt

+ x, = X; (8-8)

9(1) A

rt

o@)

*  Figure 8-3 Ramp response curve for the
first-order system.
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where

T = time constant of the system
x; = input or forcing function
X, = output or response function

From Equation (8-6), for a step input x;(¢t) = r-1(t), any system described by
Equation (8-8) will exhibit the following response:

x(t) = (1 — e™)r

Similarly, for a ramp input x;(t) = rt-1(¢), any system described by Equation (8-8)
will exhibit the following response [see Equation (8-7)]:

Xo(t) =r(t = T + Te™*T)

Many physical systems have the mathematical model given by Equation (8-8);
Table 8-1 shows several such systems, which are analogous. All analogous systems
exhibit the same response to the same input function.

8-3 TRANSIENT-RESPONSE ANALYSIS OF SECOND-ORDER
SYSTEMS

Let us next consider the transient-response analysis of second-order systems such as
a spring-mass system and a spring-mass—dashpot system. The results obtained can
be applied to the response of any analogous systems.

We first discuss the free vibration of a spring-mass system and then treat the
free vibration of a spring-mass—dashpot system. Since the step response of the sec-
ond-order system is discussed fully in Chapter 10, we shall not present the details of
such a response here. Instead, we shall treat only illustrative examples of the step
responses of second-order systems with and without damping.

Free vibration without damping. Consider the spring-mass system shown
in Figure 84. We shall obtain the response of the system when the mass is displaced
downward by a distance x(0) and released with an initial velocity x(0). The dis-
placement x is measured from the equilibrium position.

The mathematical model of the system is

mx +kx=0

The solution of the preceding equation gives the response x(t). To solve this differ-
ential equation, let us take Laplace transforms of both sides:

m[s2X (s) — sx(0) — x(0)] + kX(s) =0
which can be rewritten as

(ms® + k)X (s) = m[sx(0) + x(0)]

e
 re——n
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TABLE 8-1 Examples of Physical Systems Having a Mathematical
Model of the Form T(dxy/dt) + xp = Xx;

77
dp,
- C + = p;
T pu, RCZ+ p,=p
P+ Di
e+8
de
RCE +é= Bb
6+86,
R
L — E—
de,
¢ Co= o, Rcd—: +e, = e
o -0
- .
o+ 4; d
4
— RC d;’ +g=q
" - _+
¢l T2
R
bdx, | _
kdr e
Solving for X(s) yields
sx(0) + x(0)
X(s) = =yt
s + (kim)
x(0) Vkim x(0)s

" Vidm s + (Vkim)? ¥ s2 + (Vkim)?

389
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v/,

-

Figure 84 Spring-mass system. u

The inverse Laplace transform of this last equation gives

x(t) = J?(O)\/% sin \/%t + x(0) cos\/gt

The response x(¢) consists of a sine and a cosine function and depends on the values
of the initial conditions x(0) and x(0). A typical free-vibration curve is shown in
Figure 8-5. If, for example, the mass is released with zero velocity, so that x(0) = 0,
then the motion x(¢) is a simple cosine function:

x(z) = x(0) cos\/%t

Free vibration with viscous damping. Damping is always present in actu-
al mechanical systems, although in some cases it may be negligibly small.

The mechanical system shown in Figure 8-6 consists of a mass, a spring, and a
dashpot. If the mass is pulled downward and released, it will vibrate freely. The
amplitude of the resulting motion will decrease with each cycle at a rate that
depends on the amount of viscous damping. (Since the damping force opposes
motion, there is a continual loss of energy in the system.)

Slope = x{0)

x(0)

Figure 8-5 Free-vibration curve.
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Case 1. Underdamped (0 < ¢ < 1). The Laplace transform of Equation
(8-10) gives
[s°X (s5) — sx(0) = %(0)] + 2w, [sX(s) — x(0)] + WX (s) =0
Solving for X(s). we have
(s + 2{w,)x(0) + x(0)

X(s) = $*+ 2w,s + w? (8-11)

or
X(.S‘) - §w,,x(0) i ‘(0) w, V L =k*
wn\'/l i ‘52 (s + gw“)l + (w0, V1 — g2)2
L (s w)x0)

(S + gwn)2 + ((')n | S 52)2

The inverse Laplace transform of this last equation gives

x(0 x(0) _.
x(t) = —fgw(::( % t ;.5, )e'“’"’ sin w, V1 — (%

+ x(0)e™¢ cos w, VA — t

Next, we define
wy = 0, V1 — {* = damped natural frequency. rad/s

Then the response x(z) is given by

x(t) = e‘-[‘“"'{[ = { - x(0) + —l-i'(O)} sin wyt + x(0)cos w,,t} (8-12)
V1- (& Wy

If the initial velocity is zero, or x(0) = 0, Equation (8-12) simplifies to

x(d) = _\-(O)e_gm,j<ﬁ sin wyt + cos wl,t) (8-13)
or
I { () N ( oo 5] —“P)
x(1) \/1__£2e sin | wyt + tan .

x(0)

; 4
oy e cos(wd.’ — tan™! —= __q) (8-14)
Vi- 2 Vi-o

Notice that, in the present case, the damping introduces the term e > as a
multiplicative factor. This factor is a decreasing exponential and becomes smaller
and smaller as time increases, thus causing the amplitude of the harmonic motion to
decrease with time.
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m

l

¥ Figure 86 Spring-mass-dashpot system.
The mathematical model of this system is
my¥ + by + kx =0 (8-9)

where the displacement x is measured from the equilibrium position.
The characteristic of the natural response of a second-order system like this
one is determined by the roots of the characteristic equation

ms?+bs+ k=0

The two roots of this equation are

_ i Vb* - dmk

2m

S

If the damping coefficient b is small. so that b* < 4mk, the roots of the char-
acteristic equation are complex conjugates. The natural response is then an expo-
nentially decaying sinusoid. and the system is said to be wnderdamped.

If the damping coefficient b is increased. a point will be reached at which
b> = 4mk. When the damping has reached this value (b = 2\/n§). the two roots of
the characteristic equation become real and equal. The system is then said to be
critically damped.

If the damping coefficient b is increased further. so that b*> > 4mk, the two
roots arc real and distinct. The response is the sum of two decaying exponentials.
and the system is said to be overdamped.

In solving Equation (8-9) for the response (7). it is convenient to define

k
w, = \/% = undamped natural frequency, rad/s

- d , i actual damping value b
& ampmEmEl = critical damping value  2\/fun

and rewrite Equation (8-9) as follows:
¥+ 2{w,X + wix =0 (8-10)

In what follows. we shall use Equation (8-10) as the system equation and
derive the response x(r) for three cases: the underdamped case (0 < < 1). the
overdamped case (¢ > 1). and the critically damped case (¢ = 1).
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Thermometer

—— Bath

Figure 8-1 Thin, glass-walled mercury

thermometer system.
the thermal resistance R (°C/kcal/s) as
6, — 0
=— 8-3
9==% (8-3)
Substituting Equation (8-3) into Equation (8-2), we obtain
6, — 0
0 =
Cd R dt
or
de
T—+6=26
@ b (8-4)

where T = RC = time constant. Equation (8—4) is a mathematical model of the
thermometer system.

To obtain the step response of this system, we first take the Laplace transform
of Equation (84):

T[s0(s) — 6(0)] + O(s) = By(s)
Since 8(0) = 0, this last equation simplifies to
1

Ts +1

6(s) = CAQ) (8-5)
Note that, for 6, = constant, we have
6
Oy(s) =

Hence, Equation (8-5) becomes

1 6, 1 1
) =T5715 - [s s+ (1/T)]0"
The inverse Laplace transform of this last equation gives
o(r) = (1 — M8, (8-6)
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6,
0() Slope = & ¥
8n=(1-¢T)8,
6,
5 >
0.6320, 3

& & » & 87

b k3 & 4 &
Figure 8-2 Step response curve for 1 1 1 l -
the first-order system. 0 T 2T 3T 4T ST t

The response curve 6(t) versus ¢ is shown in Figure 8-2. Equation (8-6) states that,
initially, the response 6(¢) is zero and that it finally becomes 6,. (There is no steady-
state error.) One important characteristic of such an exponential response curve is
that at ¢ = T the value of 6(¢) is 0.6326;, or the response 6(¢) has reached 63.2% of
its total change. This fact can readily be seen by substituting e~ = 0.368 into the
equation.

Another important property of the exponential response curve is that the
slope of the tangent line at ¢t = 0 is 6,/T, since

do _%
dt ‘=0 T

The response would reach the final value at ¢t = T if it maintained its initial speed.
The slope of the response curve 6(¢) decreases monotonically from 6,/T at t = 0 to
zeroatt = o0,

Figure 8-2 shows that in one time constant the exponential response curve has
gone from zero to 63.2% of the total change. In two time constants, the response
reaches 86.5% of the total change. At ¢ = 3T, 4T, and 5T, the response 6(¢) reaches
95, 98.2, and 99.3% of the total change, respectively. So, for ¢ = 4T, the response
remains within 2% of the final value. As can be seen from Equation (8-6), the
steady state is reached mathematically only after an infinite time. In practice, how-
ever, a reasonable estimate of the response time is the length of time that the
response curve needs to reach the 2% line of the final value, or four time constants.

_ O

t=0 T

Ramp response of first-order system. Consider again the thermometer
system shown in Figure 8-1. Assume that, for ¢t < 0, both the bath temperature and
the thermometer temperature are in a steady state at the ambient temperature ®°C
and that, for ¢t = 0, heat is added to the bath and the bath temperature changes lin-
early at the rate of r°C/s; that is,

B,(2) = rt
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Case 2. Overdamped ({ > 1). Here,the tworoots of the characteristic equa-
tion are real, so Equation (8-11) can be written

(s + 2{w,)x(0) + (0)

(s + {w, + 0,V 5"2 = 1)(s + {w, — 0,V §2 =1}
B i . b
s+ {w, + w, V fz -1 5+ {w, — w:rV£2 =1

X(s) =

where

G = i
2VEE -1 20,V - 1
(¢ + VZ-1)x(0) , _ X0)
2V -1 20,V - 1

The inverse Laplace transform of X(s) gives the following response:
x(’) = ae_(gm"+”"\/4’:£_[)' + l;e_(!fw,;—w,;\,"’{l—_l):

- e :
_ l:(_s it De©)  x(0) Je—(;w,m,,v'g:_—nr
2VEE -1 20,V -1

[(g + V{2 - 1)x(0) x(0) J Y o
+ + e (W,—w, VL 1
AV 20,V -1

Notice that both terms on the right-hand side of this last equation decreasc cxpo-
nentially. The motion of the mass in this case is a gradual crecping back to the cqui-
librium position.

Case 3. Critically damped ({ = 1). In reality. all systems have a damping
ratio greater or less than unity,and { = 1 rarely occurs in practice. Nevertheless, the
case{ = 1 is useful as a mathematical reference. (The response doces not exhibit any
vibration, but it is the fastest among such nonvibratory motions.)

In the critically damped case, the damping ratio ¢ is equal to unity. So the two
roots of the characteristic equation are the same and arc cqual to the negative of the
natural frequency w,. Equation (8-11) can. therefore. be written

(s + 2w,)x(0) + x(0)
$2 + 2w,5 + W
(s + @,)x(0) + w,x(0) + £(0)

X(s) =

(S + w“)z
x(0) w,x(0) + x(0)
s +
s+ w, (5 + w,,)2

The inverse Laplace transform of this last equation gives
x(1) = x(0)e™" + [w,x(0) + ¥(0)]re™
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x() 4

x(0)

Figure 8-7 Typical response curves of the
spring-mass-dashpot system.

The response x(¢) is similar to that found for the overdamped case. The mass,
when displaced and released. will return to the equilibrium position without vibration.
Figure 8-7 shows the response x(¢) versus ¢ for the three cases (underdamped.
critically damped, and overdamped) with initial conditions x(0) # 0 and x(0) = 0.

Experimental determination of damping ratio. It is sometimes necessary
to determine the damping ratios and damped natural frequencies of recorders and
other instruments. To determine the damping ratio and damped natural frequency
of a system experimentally. a record of decaying or damped oscillations, such as that
shown in Figure 8-8, is needed. (Such an oscillation may be recorded by giving the
system any convenient initial conditions.)

The period of oscillation, T, can be measured directly from crossing points on
the zero axis, as shown in Figure 8-8.

To determine the damping ratio ¢ from the rate of decay of the oscillation, we
measure amplitudes; that is, at time 7 = 7; we measure the amplitude x;, and at time
t =1t + (n — 1)T we measure the amplitude x,. Note thatitis necessary to choose
n large enough so that x,/x; is not near unity. Since the decay in amplitude from one
cycle to the next may be represented as the ratio of the exponential multiplying fac-
tors at times ¢ and ¢, + T, we obtain, from Equation (8-12),

. —{wyty
‘\_I = & = 1 e f_"':w"T
Xa efgw"(”*"r) ()_-":“"IT
Similarly.
L e B SRR
%, e Cwaln=1)T

Figure 88 Decaying oscillation.
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The logarithm of the ratio of succeeding amplitudes is called the logarithmic decre-
ment. Thus,

I

B
|
i

g . X1 1 46
logarithmic decrement ; In— ) = e, T

Once the amplitudes x, and x,, are measured and the logarithmic decrement is
calculated, the damping ratio ¢ is found from

1 (l x_1>_ 2wl
n—1 nx,, _\/1_§2

or

(8-15)

Note that this equation is valid only for the system described by Equation (8-10).

Example 8-1

In the system shown in Figure 8-6, assume that m = 1kg, b =2N-s/m, and
k = 100 N/m. The mass is displaced 0.05 m and released without initial velocity. (The
displacement x is measured from the equilibrium position.) Find the frequency
observed in the vibration. In addition,.find the amplitude four cycles later.

The equation of motion for the system is

mx+bx +kx=0
Substituting the numerical values for m, b, and k into this equation gives
X +2x +100x =0

where the initial conditions are x(0) = 0.05 and x(0) = 0. From the system equation,
the undamped natural frequency w,, and the damping ratio ¢ are respectively found to be

w, = 10, =01
The frequency actually observed in the vibration is the damped natural frequency w:

wy =w, V1 =7*=10V1 — 081 = 995 rad/s

In the present analysis, £(0) is given as zero. So, from Equation (8-13), the solu-
tion can be written as

S Sinwyt + cos w(,[>

x(1) = x(O)e"“’"’(
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It follows that at r = nT, where T = 2m/wy,
x(nT) = x(0)e !
Consequently. the amplitude four cycles later becomes

X(4T)

)

x(0)e7fwndT = p(0)e(0-(10)(4)(063)
0.05¢ %2 = 0.05 % 0.0804 = 0.00402 m

Estimate of response time. The mass of the mechanical system shown in
Figure 8-6 is displaced x(0) and released without initial velocity. The response is
given by Equation (8-14), rewritten thus:

& TG

A typical response curve is shown in Figure 8-9. Note that such a response curve is
tangent to the envelope exponentials £[x(0)/V1 — ¢?]e *“. The time constant T
of these exponential curves is 1/({w,).

The fact that the response curve x(¢) is tangent to the exponential curves
enables us to estimate the response time of a second-order system such as that
shown in Figure 8-6 in terms of the settling time ¢, defined by

4

gwn

ty = 4T

x(r)

x(0)

&=
=

Figure 8-9 Typical response curve of the system shown in Figure 8-6 and
its envelope exponentials.
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The settling time 7, can be considered an approximate responsc time of the system.
since, for r > 1y, the response curve remains within 2% of the final value or 2% of
the total change.

Comments. The preceding analysis. as well as the results derived. can be

applied to any analogous systems having mathematical models of the form of
Equation (8-10).

Step-response of second-order system. Consider the mechanical system
shown in Figure 8-10. Assume that the system is at rest for + < 0. At r = 0, force
u = a-1(t) [where ais a constant and 1(:) is a step force of magnitude 1 newton] is
applied to the mass /. The displacement x is measured from the equilibrium posi-
tion before the input force u is applied. Assume that the system is underdamped.

The equation of motion for the system is

mi + by + kx=u=a-1(r)
The transfer function for the system is
X(s) 1

U(s) s>+ bs + k

Hence
L1
X(s) B a B m
= .2 ;- . -
LW m+bs+k o b ok

m m

Let us define

\

[k . b
w, = Jo— g — —
" \m 2Vkm
Then
46 _a o 8-16
- T\ 2 . 2 (8-16)
L] mo;\s* + 2{w,s + o
. = X
7
b
A o g
7 em i)
7 m —_—
A
//
< 7 Figurc 810 Mechanical system.
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Hence,

X(s) a ( wd 1 )
il = hl
mw,z, 24 2Aw,s + WS

5
a (1 Sar 2§wn )

moi\s 2+ 2w, + wl

a [1 - §w,, St {wn ]
2

Frio

S (st iw) + e (s {w) + ol

where w; = w, V1 — % The inverse Laplace transform of this last equation gives

a 4 Ly -z
x(r) = ——(1 — ————¢ " sin wyt — e cos wdr)
me V1-22 ‘

a 4 ¢ .
= 1—e “"”’(~—-—— sin wyt + cos wfr)]
% { [/
mw,‘,[ V1-2

a e bont V1 — 5“2)}
=—|1- "in( 4t + tan”' ——— 8-17
mw;{ V1 -2 B ¢ ( )

The response starts from x(0) = 0 and reaches x(o0) = a/(mw?). The general
shape of the response curve is shown in Figure 8-11.

Note that Equation (8-17) is an analytical solution for the step response of the
system. If the numerical values of m, b, k, and a are given, an exact response curve
can be plotted easily with MATLAB.

x{r) — -
L -
mu;
Figure 8-11 Step response of second- i
order system. (The response curve shown 0 0 S 10 15
corresponds to the case where { = 0.4 and ’

w, = 1 rad/s.) 1 (sec)
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8~4 TRANSIENT-RESPONSE ANALYSIS OF HIGHER ORDER
SYSTEMS

Consider an nth-order (r = 3) dynamic system defined by

X(s) o™ + bys™ TV + o+ b, s + b,

Ul(s) "+ as"V + o+ s +oay,

(8-18)

where /1 = n. The transient response of this system to any given time-domain input
can be obtained easily by a computer simulation. If an analytical expression for the
transient response is desired, then it is necessary to expand X(s)/U(s) into partial
fractions. (Use MATLAB command residue for the partial-fraction expansion.)

Unit-step response of higher order systems. Let us examine the re-
sponse of the system to a unit-step input. If all poles of the denominator polynomi-
als are real and distinct, then, for a unit-step input U(s) = 1/s, Equation (8-18) can
be written as

n a.

XGis) =2+ (8-19)

o

=15+t pi

where q; is the residue of the pole at s = —p,. [If the system involves multiple poles,
then X(s) will have multiple-pole terms.]

Next, consider the case where the poles of X(s) consist of real poles and pairs
of complex-conjugate poles. A pair of complex-conjugate poles yields a second-
order term in s. Since the factored form of the higher order characteristic cquation

consists of first-order and second-order terms. Equation (8-19) can be rewritten as

9 a; r obi(s + Qo) + V1 = &
X(S)=§+E e S M+ Gue) + Gy d. (@ +2r =n)

=15+ p k=1 52 + 20 wps + wf.

(8-20)

where we assume that all poles of X(s) are distinct. [If some of the poles of X(s) are
multiple poles, then X (s) must have multiple-pole terms.] From this last equation. we
see that the response of a higher order system is composed of a number of terms
involving the simple functions found in the responses of first-order and second-order
systems. From Equation (8-19). the unit-step response x(¢), the inverse Laplace
transform of X(s). is

"n
x(t) =a+ Dae? fort =0
=1
or, from Equation (8-20),

q r .
_ - 2
x(t) =a+ E aje P + E bre “*““coswp V1 — (it
=1 =1

r
T . )
+ Do sinw, V1 - (§ 1, forr =0
=1
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Thus, the response curve of a higher order system is the sum of a number of expo-
nential curves and damped sinusoidal curves. [If the poles of X(s) involve multiple
poles, then x(f) must have the corresponding multiple-pole terms]

If all poles of X(s) lie in the left-half s-plane. then the exponential terms
[including those terms multiplied by 1. 12, etc., that occur when X(s) involves multi-
ple poles] and the damped exponential terms in x(r) will approach zero as the time ¢
increases. The steady-state output is then x(00) = q,

8-5 SOLUTION OF THE STATE EQUATION

In this section, we shall obtain the general solution of the linear time-invariant state
equation. We first consider the homogeneous case and then the nonhomogeneous
case. After we obtain the general solution, we shall derive the analytical expression
for the step response. (For details of analytical expressions for the step response,
impulse response, and ramp response, see Problems A-8-13, A-8-14. and A-8-15.)

Solution of homogeneous state equations. Before we solve vector-matrix
differential equations, let us review the solution of the scalar differential equation

X = ax (8-21)
In solving this equation, we may assume a solution of the form
x(t) = by + byt + by? + oo+ bptt + (8-22)
Substituting this assumed solution into Equation (8-21). we obtain
by + 2byt + 3byt + o+ kbtFTh+ oo
= a(by + byt + byt* + -+ + bk + --)  (8-23)

If the assumed solution is the true solution. Equation (8-23) must hold for any .
Hence, equating the coefficients of equal powers of ¢, we find that

by = aby
by = %(lbz = 3 >l< 2(l3b0
b, = La"'b(,

The value of by is determined by substituting 1 = 0 into Equation (8-22),or

x(0) = by
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Hence, the solution can be written as

x(f) = (1 +ar + %a%z + oo+ %n"'r" + »--)x(O)
= ¢"x(0)
We shall now solve the vector-matrix differential equation
X = Ax (8-24)
where
X = n-vector

A = n X nconstant matrix

By analogy with the scalar case, we assume that the solution is in the form of a vec-
tor power series in ¢, or
x(1) =bg + byt + byr? + -+ + bt + - (8-25)

Substituting this assumed solution into Equation (8-24), we obtain

by +2byr + 3byr® + - + kbt 4
= A(bg + byt + byt> + -+ +btf + ) (8-26)
If the assumed solution is the true solution, Equation (8-26) must hold for all r.

Thus, equating the coefficients of like powers of r on both sides of Equation (8-26),
we find that

1 e
> = 5 A%y
1 1

T T

=
(]

I
|
>
b2

I

A'b,

=2
W
|
|
>
=2
3
|

|
mszwm
Substituting + = 0 into Equation (8-25) yields
X(O) = bo

Thus, the solution x(r) can be written as
= 1 202 1ok
x(t) = (I + Ar + ~2—!Ar + - +ﬁAr + - x(0)

The multiterm expression in parentheses on the right-hand side of this last equation
is an 7 X n matrix. Because of its similarity to the infinite power series for a scalar
exponential, we call it the matrix exponential and write

1 2o L ok = Al
I+Ar+iAr + .- +EA: fosaae =g
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In terms of the matrix exponential, the solution of Equation (8§-24) can be written as
x(t) = e*'x(0) (8-27)

Since the matrix exponential is very important in the state-space analysis of
linear systems. we examine its properties next.

Matrix exponential. It canbe proved that the matrix exponential

[ore] k k
At
e.—\l =

=h k!
of an n X n matrix A converges absolutely for all finite . (Hence, computer calcula-
tions for evaluating the elements of e*' by using the series expansion can easily be

carried out.)

Because of the convergence of the infinite series 2:.20 A¥t*1k!, the series can
be differentiated term by term to give

d , 5 5 Afgr-l
—eM= A+ At +—+ - +
¢ ! k - 1)!
2,2 k—1,k—1
t
- LT Al o e +a_rl)1+~-}=Ae'\'
2,2 A/\'—]rl\-l
=|1+Ar+——+ + A =M
[ ’ (k = 1)! ] A

The matrix exponential has the property that
eA(r+:) - eAleAs
This can be proved as follows:
00 A/\,/\)( (o] Ahsh) o0 0o fk.ﬁ"l
A1 As = k+h
eve = Tl — = AT ——
<A§) k! ’,ZO n! ;‘Z) JEJ k!h!

Let kX + it = m.Then

0 X k. .m—k 00 20 k m—k
s m'it’s
Al ,As 2 2 m — m
ete™ = Ao = —A S
S0k Kli(m — k) E=m! ,\Z:E,k!(m — k)!
|
— E —Am(t S S)'" — ee\(!+5}
m=0 !
In particular.if s = —, then
A=Al = o= AIAL oAl =

Thus. the inverse of e*'is e™*'. Since the inverse of e*’ always exists, e*' is nonsingular.
It is very important to remember that

e(.—\+B)l — eAreBI‘ if AB = BA
eATBI 2 oABif AB # BA
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To prove this,note that

(A +B)?, (A+B),
2 3

(A+B)l = “ e

e I+ (A + B+, =l
A A B2 B}
Ar Br —
ete —(I+Ar+2!+—3!+ )<I+Br+ 2!+3!.|. )
=1+ (A+B)+ Az,[ +AB12+BZ'[ +—A3:
AZB(3 AB2’3 .B3{3 ' o
+ + i
2! 2! k]
Hence,
AFBN _ ool = BAZ;.AB,Z
1 BA? + ABA + B’A + BAB — 2A’B — 25_112_[3 L
3!

The difference between e *B) and ¢*e® vanishes if A and B commute.

Laplace transform approach to the solution of homogeneous state
equations. Let us first consider the scalar case:

X =ax (8-28)
Taking the Laplace transform of Equation (8-28), we obtain
sX(s) - x(0) = aX(s) (8-29)
where X (s) = £[x]. Solving Equation (8-29) for X(s) gives
x(0) o
X(s) = R (s — a)™'x(0)

The inverse Laplace transform of this last equation produces the solution:
x(1) = ¢"x(0)

The foregoing approach to the solution of the homogeneous scalar differential
equation can be extended to the homogeneous state equation

x(r) = Ax(r) (8-30)
Taking the Laplace transform of both sides of Equation (8-30). we obtain
sX(s) — x(0) = AX(s)
where X(s) = £[x]. Hence,
(s1 — A)X(s) = x(0)
Premultiplying both sides of this last equation by (sI ~ A)~'. we obtain
X(s) = (s = A)'x(0)
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The inverse Laplace transform of X(s) gives the solution
x(r) = 7Y(s1 — A)7'Jx(0) (8-31)

Note that
I A A
(sl—A)“=;+—,+——+~~-

28

Hence, the inverse Laplace transform of (s1 — A)™ gives

AZIZ A3r3

i -32
TR TR (8=32)
(The inverse Laplace transform of a matrix is the matrix consisting of the inverse
Laplace transforms of all of the elements of the matrix.) From Equations (8-31) and
(8-32). the solution of Equation (8-30) is

x(1) = eMx(0)

The importance of Equation (8-32) lies in the fact that it provides a conve-
nient means for finding the closed solution of the matrix exponential.

ENGSI~- A =0+ Ar +

State-transition matrix. We can write the solution of the homogeneous
state equation

X = Ax (8-33)

as

x(1) = ®(1)x(0) (8-34)
where @ (r) is an n X n matrix and is the unique solution of

d(r) = AD(1). ®(0) =1
To verify this. note that
x(0) = ®(0)x(0) = x(0)
and
X(1) = ®(1)x(0) = AD(1)x(0) = Ax(s)

We thus confirm that Equation (8-34) is the solution of Equation (8-33).
From Equations (8-27), (8-32), and (8-34), we obtain

d(1) =er=27(s1 - A
Note that
P(1) =M= d(—1)

From Equation (8-34), we see that the solution of Equation (8-33) is simply a trans-
formation of the initial condition. Hence, the unique matrix ®(r) is called the srate-
transition matrix. This matrix contains all the information about the free motions of
the system detined by Equation (8-33).
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Example 8-2

Obtain the state-transition matrix ®(r) of the following system:
512 2]
\_.\": L'“z -3 Xa

Obtain also the inverse of the state-transition matrix, @ '(z).

For this system,
0 1
il {—2 —3]

The state-transition matrix is given by

@) = eM = L7[(sT - A)

il B[O 9 2

the inverse of (s1 — A) is given by

Since

1

+3 1
1-A) s ————° ]
(s ) (s+ D +2) -2 s
N (s +1)(s+2) (s+ 1)(s+2)
-2 5
L(s+D(s+2) (s+1)(s+2)
a1 oo ledl
st s+2 sEd kR
=" . B
2 42 1 N 2
s+1 s+2 s+1 s+2

Hence.

®(r) =e™ =27 (sT - A)7)
2et — ¢ 2t e — t,-.‘:
T | 2t 4+ 2e¥  —et 4 207

Noting that ®}(r) = ®(—r). we obtain the inverse of the statc-transition matrix as
follows:

2¢' — ‘,2: e

— {l:r
3 3
=2¢' + 2¢” —¢' + 2e”

O7(t) = A = {
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Solution of nonhomogeneous state equations. We shall begin by con-
sidering the scalar case
X =ax + bu
Let us rewrite this equation as

X —ax = bu

Multiplying both sides of the latter equation by ™, we obtain
: {
e (1) — ax(1)] = é[e"".\'(t)] = ebu(r)

Integrating this equation between 0 and 7 gives

ol

e™x(t) = x(0) + / e bu(t) dt

JO

or
x(t) = ¢"x(0) + e* / e bu(r) dr
Jo
The first term on the right-hand side is the response to the initial condition, and the

second term is the response to the input u(z).
Let us now consider the nonhomogeneous state equation defined by

x = Ax + Bu (8-35)
where
X = pn-vector
u = r-vector
A = n X nconstant matrix
B = 1 X rconstant matrix

Writing Equation (8-35) as
x(1) — Ax(1) = Bu(z)
and premultiplying both sides of this equation by e/, we obtain

d

eN() — AX(D)] = 5[N] = ¢ MBu()

Integrating the preceding equation between 0 and r gives
¥4

e Mx(r) = x(0) + / e A Bu(r) dt

JO

or

x(1) = eMx(0) + / eAU"IBu(7) dr (8-36)
JU
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Equation (8-36) can also be written as
{
x(1) = ®(1)x(0) + /d)(x - 7)Bu(7) dr (8-37)
(]

where ®(r) = e™. Equation (8-36) or Equation (8-37) is the solution of Equation
(8-35). The solution x(r) is clearly the sum of a term consisting of the transition of
the initial state and a term arising from the input vector.

Laplace transform approach to the solution of nonhomogeneous state
equations. The solution of the nonhomogeneous state equation
X = Ax + Bu

can also be obtained by the Laplace transform approach. The Laplace transform of
this last equation yields

sX(s) — x(0) = AX(s) + BU(s)
or
(s — A)X(s) = x(0) + BU(s)
Premultiplying both sides of the foregoing equation by (sI — A)~', we obtain
X(s) = (s — A)'x(0) + (s1 — A)'BU(s)
Using the relationship given by Equation (8-32) yields
X(s) = L[eMx(0) + L[e*]BU(s)

The inverse Laplace transform of this last equation can be obtained with the use of
the convolution integral as follows:

x(1) = eMx(0) + /eA(")Bu(,-) dr
0

Solution in terms of x{ty). Thus far. we have assumed the initial time to be
zero. If, however, the initial time is given by 7 instead of 0, then Equation (8-36), the
solution of Equation (8-35), must be modified to

t
x(1) = eMhx(r) + /e'\("")Bu(7) dr (8-38)

Jlg

Example 8-3

Obtain the time response of the system

MR e

where u(r) is the unit-step function occurring at 1 = (. or
u(r) = 1(r)

For this system.
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The state-transition matrix was obtained in Example 8-2 as
2e! — ¢ 2 e — e—.‘t: :|

d(1) =eM = b = =
(1) —2e¢F + 27" —e" + 2e7H

The response to the unit-step input is then obtained as

N T 2e7t=7) — p=201=7) e~lt=7) _ g=20-7) Tl
. — Al
3([) — \(0) + [}‘ [_Ze—(l—f) I 2e—2(:—r) _e‘(l"T) L 2e—2(r~7)} l]“l dr

or

[A\-,(:)} " { 2 - e el - ][.\'[(U)} & [0.5 —e' 4+ 0‘51»'"3’}

(1) —2¢™ + 27 —e™ + 2¢7% |[ x,5(0) ey ™

LA B
In the special case where the initial state is zero, or x(0) = 0, the solution x(r) can be
simplified to

{.\',(I)} _ {0.5 -l + 0.5.;»*3*]

xs(1) el — e

Analytical solution for step response of system in state-space form.
Consider the system described by

x = Ax + Bu

where matrix A is nonsingular. Let us show that the response x(r) when the input u«
is a unit-step function 1(¢) can be given by

x(1) = eMx(0) + A7 (e™M - I)B

From Equation (8-37). the response x(z) is

N
x(1) = eMx(0) + /e"('_")Bu(T)(/T
0

eMx(0) + e"'[ / e™A1(7) {[T]B

b
= eMx(0) + e"'[/ (1 ~ AT + %Azrz - .-'>(17}B
0 .

1 1
— LA A — A2+ A3
e™'x(0) + e ’(lr Z!Ar + 3!Ar )B

Since

1 1
:\J’_ 22 }‘; e
e —I+Ar+—-2!Ar+—3!Az+

we have

LAZI2*LA3[3+

ALy
et | Ar + 2 3
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Thus,
1 2 1 2.3
I — o A+ S A -
=afar-Laeslap- ..
2! 3!
= A (A S A% - LA
2! 3!
= —A“(I S AL AR - A e - 1)
2 3!
= -Al(eM - 1)
= A1 - )
Therefore, we get
x(1) = eMx(0) + eMATI(1 — e™A)B

= e*x(0) + A7!(eA — I)B (8-39)

More on analytical solutions for responses of systems in state-space form is
given in Problems A-8-13, A-8-14. and A-8-15.

EXAMPLE PROBLEMS AND SOLUTIONS

Preblem A-8-1

Consider the electrical circuit shown in Figure 8-12. Assume that there is an initial
charge gg on the capacitor just before switch S is closed at + = 0. Find the current i(r).

Solution The equation for the circuit when switch S is closed is

Ri+%'/i([!=E

Taking the Laplace transform of this last equation yields

0 I(s) + /i(!)dr =0

RI(s) + — : =
(s) C s s

E_’_ \S

o

Figure 8-12 Electrical circuit.
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Since
/f(-‘) dt) =4q(0)=q
. =0
we obtain
1 1(s)+q E
L(S)F—=— =—
) C s s
or

RCsl(s) + I(s) + gy = CE
Solving for I(s), we have
I( )=u=(£_ﬁﬂ_>__l__
S 7RCs+1 \R™RC 1

+_
e

The inverse Laplace transform of this equation gives the current i(z):

i(r) = (% - %)L,-,:Rc

Problem A-8-2

Suppose that a disk is rotated at a constant speed of 100 rad/s and we wish to stop it in
2 min. Assuming that the moment of inertia J of the disk is 6 kg-m?, find the constant
torque T necessary to stop the rotation.

Solution The necessary torque T must act so as to reduce the speed of the disk. Thus,
the equation of motion is

Jo=-T  w(0)=100

Taking the Laplace transform of this last equation, under the condition that the torque
T is a constant, we obtain

J[s82(s) — w(0)] = —%

Substituting / = 6 and w(0) = 100 into this equation and solving for £2(s). we get
100 T
Q) =—-—
(s) s 6s°
The inverse Laplace transform of the latter equation gives
fa
1) =100 — —¢
() :
Atr = 2min = 120s, we want to stop, or w(120) must equal zero. Therefore,

w(120) = 0 = 100 — —E x 120

Solving for T, we get
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Problem A-8-3

Find the transfer function E,(s)/E(s) of the electrical circuit shown in Figure 8-13.
Obtain the voltage e,(r) when the input voltage ¢(f) is a step change of voltage E;
occurring at t = 0 [¢,(0~) = 0]. Assume that the initial charges in the capacitors are
zero. [Thus, e,(0—) = 0]

Solution Using the complex-impedance method, we obtain the transfer function
E(s)/E;(s) as
.. 2N
Eu(s) (1/R2) + C'_'-S R:CIS

Ei(S) L LY 1 Rl(Cl 5 C:)S' + 1
Cl.“ (1/R2) + CzS

Next, we determine e, (¢). For the input ;(t) = E;-1(t), we have

E( ) _ R'_JCIS 5
A T R(C + C)s + 1 s
RZCIEI

RQ(C) + Cz)S +1
Then, inverse Laplace transforming £,(s). we get

CE . _gwieae
e (1) = me tR{C,+C2)

from which we see that e,(0+) = C,E/(C; + C,). Since e5(0—) = 0, there is a sudden
changein¢y(¢)atr = 0.

Figure 8-13 Electrical circuit.

Problem A-84
Derive the transfer function E,(s)/E;(s) of the clectrical circuit shown in Figure 8-14.
The input voltage is a pulse signal given by
ei(t) = E; 0=r=y
=0 elsewhere

Obtain the output e, (r). Assume that the initial charges in the capacitors C; and C;, are
Zero.
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R,
e | -0
€ G C= &
Figure 8-14  Electrical circuit. o- °

Solution By using the complex-impedance method, the transfer function E (s)/E (s)
can be obtained as

Er-(s) = C:-'f . R[C;-\' + 1

E(s) R, s 4 T R(C + G)s + 1
R1C|S + 1 C:S

For the given input ¢(t), we have

= ; —_ pTh
E(s) == (1 = &™)
Thus, the response E,(s) can be given by
Ricl.!' + 1 E; 3
E e e e TR 1 - o3l

_ _RIC: l e
= {RI(C, +C)+1 JE'“ =0

The inverse Laplace transform of E,(s) gives

2

C !
— _ =& mH[R(Ci+C)]
e,(1) {1 o+ Cze ! }E.

G ‘
_— 1 - ——— “(’”’l)llkl((ﬁ‘cz)l}E‘ 1(r — ¢
{ C] + Czc i ( l)

Figure 8-15 shows a possible response curve ¢,(r) versus 7.

Problem A-8-5

A mass m is attached to a string that is under tension 7T in the mechanical system of
Figure 8-16(a). We assume that tension T'is to remain constant for small displacement .
(The displacement x is that of mass m perpendicular to the string.) Neglecting gravity,
find the natural frequency of the vertical motion of mass m. What is the displacement
x(¢) when the mass is given initial conditions x(0) = x,and x(0) = 0?

Solution From Figure 8-16(b), the vertical component of the force due to tension is

=T sin 6, — T sin 62
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e (1) 4
B e e e e e e
@
G +6G E
0 1 —
ir] t
\\
~
~
Saee
_E‘ ____________ — TR D et e e wmb GaD GED =D =

Figure 8-15 Response curve e,(z) versus ¢ (solid curve).

7 a | b V/
7 2
Z Z
f ;
2 m 7
(a)
6, m
g,
Z 2
s \‘ T X Z
1
7 .
4 a b A
Figure 8-16 (a) Mechanical vibratory system,
(b) (b) diagram showing tension forces.

For small x.angles ¢, and 6 are small.and

sinf; = tanf, =

sinf, = tan 6, =

= D=

The equation of motion for the system when x is small is
. . . X X
mx =—-Tsinf; — Tsin#, = -T— - T~
a b
or

.. 1 1
iy —+ = |xr=
m\+T<(7 b)l 0



414 Time-Domain Analysis of Dynamic Systems Chap. 8

Hence, the natural frequency of the vertical motion of the mass is

Ny

When the initial conditions are x(0) = x, and £(0) = 0. the solution x(¢) is given by
x(1) = xgcos w,f
Problem A-8-6

Two masses #, and n1, are connected by a spring with spring constant k. as shown in
Figure 8-17. Assuming no friction, derive the equation of motion. In addition, find x;(¢)
and x,(7) when the external force fis constant. Assume that x;(0) = 0.%,(0) = 0.
x,(0) = 0, and t,(0) = 0.

Solution The equations of motion are
mx, = —k(x, — x3)
Moty = —k(x, — x3) + f
Rewriting vields
m¥y + k(x; — x2) =0 (8-40)
ma¥; + k(x, — x1) = f (8-41)
From Equations (8—40) and (8-41), we obtain
nuniy(Xy — X1 + (kmy + knn)(x, — x)) = myf
[f we define x, — xy = x, then this last equation simplifies to
myma% + k(my + ni)x = nf
It follows that
k(m; + ms) i

X+ ——x = (8-42)
myms ma

Let us define

5

k(my + o)
wy = ———

mynmy
Then Equation (8—42) becomes
¥+ wliv ==
-
= X} — 0>

my ...._/\/VL.. ny — 'f

Figure 8-17 Mechanical system.
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Taking, the Laplace transform of this last equation, substituting the initial conditions
x(0) = O0and x(0) = 0.and noting that fis a constant, we have

(s* + w)X(s) =

nHs

or

f 1 f (1 s

X(s) = 2 2l N 2 2

n,s s° + w;, nywy,; \ S $° + wy

Th: inverse Laplace transform of X(s) gives
x(r) = f >(1 — cosw,t) (8-43)
MWy,

Now we shall determine x (7). From Equations (8-40) and (8-43), we find that

o kf
myx, = kx = (1 — cosw,t)
niHwy

Since fis a constant, we can easily integrate the right-hand side of this last equation.
Noting that x,(0) = 0and x,(0) = 0, we get

; k |
mixy = ——5\| — —sinwyl
Moy, wy

and
nmxy = 24 (f-%icoswf) = <
T met\2 o G mawy,
Thus.
= mm, | k(my + my)
x(n) = { —~ ]\(”’;—lm)—ll — cos Wr] (8-44)

and the solution x;(¢) is obtained from
x5(r) = x(¢) + x(1)
Substituting Equations (8-43) and (8-44) into this last equation and simplifying vields

z 3 k(m, + ms)
t m ) 5
x(r) = - A [1 - cos ——r]
my o+ oy 2 k(my + my)? "y

Problem A-8-7
The step response of a second-order system may be described by
Y(s) w;

U(sy s+ 2w,s + wi

To see this, refer to Equation (8-16). rewritten thus:
X(s) _ a = w;, : (8-45)
ZI()]  mw; s° + 2w,s + o

If we dcfine

mw?
— X(s) = Y(s). L1(1)] = U(s)
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then Equation (8-45) can be written as
Y(s) _ wp
U(s) 2+ 2w,s + o}

(8-46)

The maximum overshoot in the step response depends on ¢, and the time taken for the
response to reach 2% of the final value depends on { and w,,.

Obtain unit-step response curves of the system defined by Equation (8-46) for
the following three cases:

1. Casel:{ =03, w,=1
2. Case2:¢ =05 w,=2
3. Case3:{ =07, w,=4
Solution In writing a MATLAB program, we use a “for loop.” Define w? = a and
2{w, = b. Then,a and b each have three elements as follows:
a=[1 4 16|
b=106 2 5.6]

Using vectors a and b. MATLAB Program 8-1 will produce the unit-step response
curves as shown in Figure 8-18.

MATLAB Program 8-1

>>a=|1 4 16);
>>b=[06 2 5.6];
>>t =0:0.1:10;
>> y = zeros(101,3);
>> fori=1:3;
num=[0 0 a();
den =[1 b(@) al)];
y (i) = step(num,den,t);
end
>> plot(t,y(:,1),'0',t,y(:,2),'x", t,y(:,3),'-')
>> grid
>> title('Unit-Step Response Curves for Three Cases')
>> xlabel('t (sec)')
>> ylabe|('Outputs')
>> text(4.5, 1.28, '1")
>> text(2.8, 1.1, '2")
> text(0.35, 0.93, '3")

Problem A-8-8

As mentioned in Problem A—-8-7. the step response of a second-order system may be
described by

LC) wi 8-47
U(s)  s2+2w,s + v (8-47)
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14

12 +

Outputs

<
=N

S
o

Unit-Step Response Curves for Three Cases

0 1 2 3 4 S 6 7 8 9 10 . )
¢ (sec) Figure 8-18 Unil-step

response curves for three cases.

This equation involves two parameters: { and w,. If we normalize the system equation
by defining + = (1/w,,)7 and writing the system equation in terms of 7, then Equation
(8—47) may be modified to

Y(s) 1

UGs) 52+ 275 + 1 (&)

This normalized equation involves only one parameter: {. It is easy to see the effect of {
on the unit-step response of the second-order system if it is defined by Equation (8-48).

Obtain the unit-step response curves of the system defined by Equation (8-48),
where ¢ = 0,0.2.0.4,0.6,0.8, and 1.0. Write a MATLAB program that uses a “for loop”
to obtain the two-dimensional and three-dimensional plots of the system output.

Solution MATLAB Program 8-2 obtains two-dimensional and three-dimensional plots.
Figure 8-19 is a two-dimensional plot of the unit-step response curves for the specified
values of {. Figure 8-201is a three-dimensional plot obtained with the use of the com-
mand “mesh(y')”. [Note that if we use the command “mesh(y)”, we get a similar three-
dimensional plot, but the x-axis and y-axis are interchanged.]

Problem A-8-9

Obtain e®', where

Solution Since
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MATLAB Program 8-2

>>t=0:0.2:12;
>> for n=1:6;

num=[0 0 1[;

den =1 2%n-1)*0.2 1];

[y(1:61,n),x,t] = step(num,den,t);

end

>> plot(t,y)
>> grid
>> title('Two-Dimensional Plot of Unit-Step Response Curves')
>> xlabel('t (sec)')
>> ylabel('Outputs')
>> text(3.5, 1.7, '\zeta = 0)
>> text(3, 1.52,'0.2")
>> text(3,1.23,'0.4")
>> text(3,1.05, '0.6")
>> text(3,0.93, '0.8")
>> text(3,0.8, '1.0")
>>
>> % To draw a three-dimensional plot, enter the command mesh(y').
>>
>> mesh(y')
>> title('Three-Dimensional Plot of Unit-Step Response Curves')
>> xlabel('Computation Time Points')
>> ylabel('n [\zeta =0.2 (n—1)]")
>> zlabel('Outputs')

Figurc8-19 Two-dimensional plot of unit-
slep response curves.

Chap. 8

Two-Dimensional Plot of Unit-Step Response Curves

1.8 \
(=0
16 t
0.2

14t
o 12F 0.4
g1 o
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Three-Dimensional Plot of Unit-Step Response Curves

Qutputs

~ 70
0 ; : .
n [(=02(n-1)] Computation Time Points
Figure 8-20 Three-dimensional plot of unit-step response curves. [In the plot.
¢ = 0.2(n — 1) and the incremental computation time is 0.2 s.]
it follows that
l 1
+2 1 s(s +2
i el £3 9] |7 ST
s(s +2) s 1
0
s+ 2
Hence,
= g 1 1 -e?)
et = 27N (sI-A)") = [0 T
Problem A-8-10
Obtain e*. where
21 0]
A=|0 2 1
0 0 2]

Solution  Sincc

s 0 0 21 0] [s-2 -1 0

sI-A=|¢ s 0|—=]0 2 1]|=] O s-—-2 -1
0 0 s 0 0 2 0 0 s—2
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we have
1 (s-27 (-2 1
(sI - A)!= ; (s-2)? (s-2)
(=2 0 (s -2y
B! 1 % |
5=2 (s—-2)2 (s-2)
1 1
=] o0 3 T-F
0 0 e

(See Appendix C to obtain the inverse of a 3 X 3 matrix.) Hence,

o] 2 1.2.2
e I gt

M= NA-A)=|0 & *
0 0 e

Problem A-8-11
Obtain the response of the system

FE S R

when the input « is a unit-step function. Assume that x(0) = 0.

Solution From Problem A-8-9, we have

A = [1 31 = e*')}
0 e—.‘_l

From Equation (8-36).

ot
x(r) = e*'x(0) + / e\ TBu(T) dr
J)
Since x(0) = 0and «(r) = 1(r), we get
ot
x(1) = /c’“'_’)Bl(r)dT
JO

N
=i g"\[/ e—:\r Bdr
1
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Thus.

Problem A-8-12
Obtain the response y(r) of the system

.i-l] [—1 —0.5][.r1] [0.5] [xl(O)] [0]
= + u, =
X 1 0 Jlx; 0 x5(0) 0
_ Xy
A OILJ
where (1) is the unit-step input occurring at t = 0, or

w(r)y = 1(1)

Solution For this system,
-1 =05 0.5
= B =
-0 7 [0]

The state transition matrix ®(r) = e’ can be obtained as follows:

O(1) =M = L7 (s1 - A)7]

Since
-1 _
(1— Ay = [*+] 0.5] I I's 0.5]
| s s“+s+ 0501 s+1
Sty 0 08 .
_| 6 +05)2+05 (5s+05)?+05
] s+ 05+05
(s + 052 + 0.5 (s +0.5)? +0.5°
we have
D(1) = e =27(s1 - A)7')
B [e‘ﬂff(cos 0.5 — sin 0.37) —e™ %% sin 0.5 ]
B 2¢7%% 5in 0.5¢ e %5(cos 0.5 + sin 0.5¢)

Since x(0) = 0 and u(r) = 1(r). referring to Equation (8-39), we get
x(1) = eMx(0) + A7\ (e™ - DB
=Al(e* - 1)B

B [ 0 1 ][0.50’”'5’(&)5 0.5/ — sin0.5¢) — 0.5]
-2 -2 ¢ % sin 0.5¢

_ { e ¥ sin 0.5/ ]
~ L—e%¥(cos 0.5t + sin 0.50) + 1

Hence. the output y(r) is given by

y(t) =[1 O]['rl] = x; = ¢"%¥sin 0.5¢
X
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Problem A-8-13
Consider the system defined by
X = Ax + Bu (8-49)

where

state vector (n1-vector)
input vector (r-vector)
= 11 X n constant matrix

WP e x

= n X r constant matrix

Obtain the response of the system to the input u whose r components are step func-
tions of various magnitudes, or

1y k]'l(f)
= ll:: _ kz-:l(f) =k'l([)
i, k,'l(l)

Solution The response to the step input u = k- 1(7) given at7 = O is

!
x(r) = e*x(0) + / eA"TBk dr
0
= eMx(0) + c’“{ [ (I - At + A;;r‘ ) )d?}Bk
S0 s
A AY
= eMx(0) + e'*’(lt N + T ---)Bk

If A is nonsingular, then this last equation can be simplified to give
x(1) = e*x(0) + eM[—(A H(e=" — I)]Bk
= e*x(0) + A!(eV ~ I)Bk
This is the analytical expression of the step response of the system defined by
Equation (8-49).

Problem A-8-14
Consider the system defined by

x = Ax + Bu

where

X = state vector (n-vector)
u = input vector (r-vector)
A = n X nconstant matrix
B = n X r constant matrix

Obtain the response of the system to the input u whose r components arc impulse func-
tions of various magnitudes occuring at ¢ = 0, or

u = wé(1)
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where w is a vector whose components are the magnitudes of r impulse functions
applied at ¢ = 0.

Solution From Equation (8-38), the solution of the given state equation is

4
x(1) = eM=tlx(10) + /e“("’)Bu(T) dr

fu

Substituting ¢, = 0— into this solution, we obtain
t
x(t) = eMx(0-) + /e'\“_")BU(T)dT
0-

The solution of the state equation when the impulse input w §(7) is given at r = O is

f
x(1) = eMx(0-) + /e*('“"ma(r)wdr
0-

eAlx( 0 _) + eAlB“.

This last equation gives the response to the impulse input w §(¢).

Problem A-8-15

Consider the system defined by

x = Ax + Bu
where
X = state vector (n-vector)
u = input vector (r-vector)
A = n X nconstant matrix

B = n X r constant matrix

Obtain the response of the system to the input u whose r components are ramp func-
tions of various magnitudes, or

u=vl

where v is a vector whose components are magnitudes of ramp functions applied at
=0

Solution Theresponse to the ramp input vz given atr = 0 is

{
x(1) = eNix(0) + / ACBory dr
Jo

13
eMx(0) + e*’/ e V7 drBv
0

= eVx(0) + e“"(%rz - 23—?13 + 34;A!2(4 - ‘%3{5 + ---)Bv

If A is nonsingular, then this last equation can be simplified to
x(r) = eMx(0) + (A7) (e - I — Ar)Bv

eMx(0) + [A¥eM — 1) — A7|Bv

The latter equation gives the response to the ramp input vt.
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PROBLEMS

Problem B-8-1

In the electrical system of Figure 8-21, switch § is closed at ¢ = 0. Find the voltage
e,(7). Assume that the capacitor is initially uncharged.

a/e 'I,

Figure 8-21 Electrical system.

Problem B-8-2

Consider the electrical system shown in Figure 8-22. The voltage source E is suddenly
connected by means of switch S at r = 0. Assume that capacitor Cis initially uncharged
and that inductance L carries no initial current. What is the current {(¢) forr > 0?

s L R
o o—— T ——AMA

Figure 8-22 Electrical system.

Problem B-8-3

Derive the transfer function E,(s)/E;(s) of the electrical circuit shown in Figure 8-23.
Then obtain the response e,(r) when the input ¢;(r) is a step function of magnitude £;, or

ei(t) = E;i-1(1)

Assume that the initial charge in the capacitor is zero.

c Il

Figure 8-23 Electrical circuit.
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Problem B-84

Find the transfer function X ,(s)/X;(s) of the mechanical system shown in Figure 8-24.
Obtain the displacement x,(¢) when the input x() is a step displacement of magnitude
X, occurring at + = 0. Assume that x,(0—) = 0. The displacement x,(r) is measured
from the equilibrium position before the input x;() is given.

Figure 8-24 Mechanical system.

Problem B-8-5

Derive the transfer function X ,(s)/X;(s) of the mechanical system shown in Figure 8-25.
Then obtain the response .x,(f) when the input x,(¢) is a pulse signal given by
.\.'i(f) =X,’ 0<I<[l
=0 elsewhere

Assume that x,(0—) = 0. The displacement () is measured from the rest position
before the input x;(1) is given.

Figure 8-25 Mechanical system.

Problem B-8-6

Find the transfer function E(s)/E(s) of the electrical circuit shown in Figure 8-26.
Suppose that the input ¢,(¢) is a pulse signal given by
e(t) = E; O<r<y
=0 elsewhere
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R,

o-=

Figure 8-26 Electrical circuit.

Obtain the output ¢,(r). Assume that R, = 1.5R,,C> = Cy, and R,C; = | s. Assume
also that the initial charges in the capacitors are zero.

Problem B-8-7

A free vibration of the mechanical system shown in Figure 8-27(a) indicates that the
amplitude of vibration decreases to 25% of the value at 1 = ¢, after four consecutive
cycles of motion, as Figure 8-27(b) shows. Determine the viscous-friction coefficient b
of the system if m = | kg and & = 500 N/m.

x,=025x,

F\U/\V/\V/\V/f{ .

m

(a) (b)

Figure 8-27 (a) Mechanical system: (b) portion of a frec-vibration curve.

Problem B-8-8

A mass of20 kg is supported by a spring and damper as shown in Figure 8-28(a). The sys-
tem is at rest for ¢ < 0. At r = 0, a mass of 2 kg is added to the 20-kg mass. The system
vibrates as shown in Figure 8-28(b). Determine the spring constant & and the viscous-
friction coefficient b. [Note that (0.02/0.08) X 100 = 25% maximum overshoot corre-
sponds to ¢ = 0.4.]

Problem B-8-9

Consider the mechanical system shown in Figure 8-29. 1t is at rest for + < 0. The pen-
dulum 1, is supported by mass #1,. which vibrates because of an elastic connection.
Derive the equations of motion for the system. The displacement v is measured from
the equilibrium position for r < 0. The angular displacement 6 is measured from the
vertical axis passing through the pivot of the pendulum.
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0 { ,
; 0.08 m
T 4
' 0.02m
X
(a) (b)

Figure 8-28 (a) Mechanical system: (b) step-response curve.

A k m, k Z
Z AAANS / AAANS ;
Z <0 Z
A

m,

-

Figure 8-29 Mechanical system.

_ Assuming the initial conditions to be x(0) = 0.1 m, x(0) = 0m/s, 6(0) = Orad,
and 6(0) = Orad/s, obtain the motion of the pendulum. Assume also that n:; = 10 kg,
my = 1kg,k = 250N/m,and/ = 1 m.

Problem B-8-10

Mass 2 = 1 kg is vibrating initially in the mechanical system shown in Figure 8-30. At
t = 0, we hit the mass with an impulsive force p(r) whose strength is 10 N. Assuming
that the spring constant k is 100 N/m and that x(0—) = 0.1 m and x{0—) = 1 m/s, find
the displacement x(r) as a function of time . The displacement x(¢) is measured from
the equilibrium position in the absence of an cxcitation force.

pl1)

X Figure 8-30 Mechanical system.
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Problem B-8-11

Figure 8-31 shows a mechanical system that consists of a mass and a damper. The sys-
tem, initially at rest, is set into motion by an impulsive force whose strength is unity.
Find the response x(¢) and the initial velocity of mass .

e
-
Z
Z
L
T
(1) — m — | Z
z
[~
@) Z
Tz B A A A A A A A

Figure 8-31 Mechanical system.

Problem B-8-12

Consider the mechanical system shown in Figure 8-32. The system is at rest for s < 0.
Assume that k; = 4 N/m, ks = 20 N/m, b; = 1 N-s/m, and b, = 10 N-s/m. Obtain the
displacement v,(r) when u is a step force input of 2 N. Plot the responsc curve x,(r)
versus ¢ with MATLAB. The displacements x, and x, are measured from their respec-
tive equilibrium positions before the input « is given.

o>
3
=
3
A
W

Figure 8-32 Mechanical system. /54

Problem B-8-13

Consider the electrical circuit shown in Figure 8-33. Obtain the responsc e,(r) when a
step input e,(r) = 5 V is applied to the system. Plot the response curve e,(r) versus r with
MATLAB. Assume that R) = 1 MQ, R, = 05MQ,C, = 0.5 uF, and C, = 0.1 uF.
Assume also that the capacitors are not charged initially.

Problem B-8--14
Consider a second-order system defined by

Yis) _ 1
U(s) s*+s+1




Problems 429

AAAA
YYYy

o O
-
C, R,
i €o
G
(o T o  Figure 8-33 Electrical circuit.

Obtain the response y(f) when the input w(r) is a unit acceleration input {t/(r) = ‘5]
Obtain the response curve with MATLAB.

Problem B-8-15
Consider a second-order system defined by
Y(s) 1
U(s) s2+ 2s+1

Obtain the unit-impulse response curves of the system for { = 0,0.2,0.4,0.6, 0.8, and
1.0. Plot the six response curves in a two-dimensional diagram and a three-dimensional
diagram.

Problem B-8-16

Obtain e*', where

Problem B-8-17

Obtain eV, where

0 1 0
A=]0 0 1
L -3 3
Problem B-8-18
Consider the system defined by
X = Ax + By, x(0) =0
where

a-le o} =[]

Obtain the response x(t) analytically when w« is a unit-step function.
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Problem B-8-19
Consider the system defined by
x = AX + Bu, x(0) =0

where

and

£ [ 21 ] { . l(l) ]
Oblain ‘he l‘eSpOnSC x(f) analy[ically.

Problem B-8-20

Chap. 8

For the system of Problem B-8-19. obtain the response curves x,(t) versus r and x;(r)

versus { with MATLAB.



Frequency-Domain
Analysis of Dynamic
Systems

9-1 INTRODUCTION

Responses of linear, time-invariant systems to sinusoidal inputs are the major sub-
ject of this chapter. First we define the sinusoidal transfer function and explain its
use in the steady-state sinusoidal response. Then we treat vibrations in rotating
mechanical systems, present some vibration isolation problems, and examine
dynamic vibration absorbers. Finally, we deal with vibrations in multi-degrees-of-
freedom systems.

Outline of the chapter. Section 9-1 gives introductory material. Section 9-2
begins with forced vibrations of mechanical systems and then derives the sinusoidal
transfer function for the linear, time-invariant dynamic system. Section 9-3 treats vi-
brations in rotating mechanical systems. Section 9-4 examines vibration isolation
problems that arise in rotating mechanical systems. In this regard, transmissibility for
force excitation and that for motion excitation are discussed. Section 9-5 presents a
way to reduce vibrations caused by rotating unbalance and treats a dynamic vibra-
tion absorber commonly used in industries. Section 9-6 analyzes free vibrations in
multi-degrees-of-freedom systems and discusses modes of vibration.

431
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9-2 SINUSOIDAL TRANSFER FUNCTION

When a sinusoidal input is applied to a linear, time-invariant system, the system will
tend to vibrate at its own natural frequency, as well as follow the frequency of the
input. In the presence of damping, that portion of motion not sustained by the sinu-
soidal input will gradually die out. As a result, the response at steady state is sinusoidal
at the same frequency as the input. The steady-state output differs from the input only
in the amplitude and phase angle. Thus, the output—input amplitude ratio and the
phase angle between the output and input sinusoids are the only two parameters
needed to predict the steady-state output of a linear, time-invariant system when the
input is a sinusoid. In general. the amplitude ratio and the phase angle depend on the
input frequency.

Frequency response. The term frequency response refers to the steady-
state response of a system to a sinusoidal input. For all frequencies from zero to in-
finity, the frequency-response characteristics of a system can be completely
described by the output—input amplitude ratio and the phase angle between the out-
put and input sinusoids. In this method of systems analysis, we vary the frequency of
the input signal over a wide range and study the resulting response. (We shall pre-
sent detailed discussions of frequency response in Chapter 11.)

Forced vibration without damping. Figure 9-1 illustrates a spring—mass
system in which the mass is subjected to a sinusoidal input force P sin wt. Let us find
the response of the system when it is initially at rest.

If we measure the displacement x from the equilibrium position, the equation
of motion for the system becomes

mx + kx = Psin wt

or

k /2
X+ —x=—sinwt (9-1)
m m

Note that the solution of this equation consists of the vibration at its own natural
frequency (the complementary solution) and that at the forcing frequency (the par-
ticular solution). Thus, the solution x(¢) can be written as

x(t) = complementary solution + particular solution

P sin wt

Figure 9-1 Spring-mass system. &
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Now we shall obtain the solution of Equation (9-1) under the condition that the sys-
tem is initially at rest. Taking the Laplace transform of Equation (9-1) and using the
initial conditions x(0) = 0and x(0) = 0, we obtain

(‘\.2 + })X{.‘»} <L £ %
m m s© + w*
Solving for X(s) yields
ﬁ w 1
m s> + o s* + (kim)
—PwN mik \V kim 5 P ®

k— me® s*+ (kIm)  k ~ me? s+ o

X(s) =

The inverse Laplace transform of this last equation gives

Pw \/ mik k P
x(1) = —————=sin,/—t + —— sin w! 9-2
¥(0) k — maw? Sln\ m k — maw? T ©-2)

This is the complete solution. The first term is the complementary solution (the nat-
ural frequency vibration does not decay in this system). and the second term is the
particular solution. [Note that if we need only a steady-state solution (particular
solution) of a stable system, the use of the sinusoidal transfer function simplifies the
solution. The sinusoidal transfer function is discussed in detail later in this scction.]

Letus examine Equation (9-2). As the forcing frequency w approaches zero, the
amplitude of the vibration at the natural frequency Vk/m approaches zero and the
amplitude of the vibration at the forcing frequency w approaches P/k.This value P/k
is the deflection of the mass that would result if the force P werce applicd steadily (at
zero frequency). That is, P/k is the static deflection. As the frequency w increases
from zero, the denominator A — mw?* of the solution becomes smaller and the
amplitudes become larger. As the frequency w is further increased and becomes
equal to the natural frequency of the system (i.e., w = w, = V k/m). resonance
occurs. At resonance, the denominator A — mw?. becomes zero, and the amplitude
of vibration will increase without bound. (When the sinusoidal input is applied at
the natural frequency and in phase with the motion—that is, in the same direction as
the velocity—the input force is actually doing work on the system and is adding
energy to it that will appear as an increase in amplitudes.) As @ continues to
increase past resonance, the denominator & - mw? becomes negative and assumes
increasingly larger values, approaching negative infinity. Thercfore. the amplitudes
of vibration (at the natural frequency and at the forcing frequency) approach zero
from the negative side. starting at negative infinity when w = w,+. In other words, if
w is below resonance, that part of the vibration at the forcing frequency (particular
solution) is in phase with the forcing sinusoid. If w is above resonance. this vibration
becomes 180° out of phase.

Sinusoidal transfer function. The sinusoidal transfer function is defined as
the transfer function G(s) in which s is replaced by jw. When only the steady-state
solution (the particular solution) is wanted, the sinusoidal transfer function G(jw)
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can simplify the solution. In the discussion that follows, we shall consider the behav-
ior of stable linear, time-invariant systems under steady-state conditions—that is,
after the initial transients have died out. We shall see that sinusoidal inputs produce
sinusoidal outputs in the steady state, with the amplitude and phase angle at each
frequency w determined by the magnitude and angle of G(jw), respectively.

Deriving steady-state output caused by sinusoidal input. We shall show
how the frequency-response characteristics of a stable system can be derived directly
from the sinusoidal transfer function. For the linear, time-invariant system G(s)
shown in Figure 9-2, the input and output are denoted by p(t) and x(¢), respectively.
The input p(z) is sinusoidal and is given by

p(t) = Psinwr
We shall show that the output x(r) at steady state is given by
x(r) = |G(jw)| Psin(wt + &)

where |G(jw)| and & are the magnitude and angle of G(jw), respectively.
Suppose that the transfer function G(s) can be written as a ratio of two poly-
nomials in s: that is,

K(S i3 ZI)(S + ZZJ"'(S i Zm)

Gls) = (s +s)(s + 57) (s + 5,)

The Laplace-transformed output X(s) is
X(s) = G(s)P(s) (9-3)

where P(s) is the Laplace transform of the input p(r).

Let us limit our discussion to stable systems. For such systems, the real parts of
the —s; are negative. The steady-state response of a stable linear system to a sinu-
soidal input does not depend on the initial conditions,so they can be ignored.

If G(s) has only distinct poles, then the partial-fraction expansion of Equa-
tion (9-3) yields

X(s) = Gls) 5=
s)=G(s
5% + ot
a b b bn
= a.+ a,+ L2 (9-4)
S+ Jjw S —jw 5§+ 8 S+ 8 SHrS
where a and bi{i = 1,2,...,n) are constants and a is the complex conjugate of a.
Theinverse Laplace transform of Equation (9-4) gives
x(1) = ae i + @M + by e + be ™ + oo 4 b e
p(t) = Psin w! x(r)
—_— Gls) p————
P(s) X(s)

Figure9-2 Linear, time-invariant system.
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For a stable system, as r approaches infinity. the terms ¢™%, e™ .., e %" approach
zero, since —s, =S, ..., —$, have negative real parts. Thus, all terms on the right-
hand side of this last equation, except the first two, drop out at steady state.

If G(s) involves k multiple poles s;. then x(¢) will involve such terms as the=st
(where h = 0.1... ., k — 1). Since the real part of the —s; is negative for a stable
system, the terms ¢"¢™*/ approach zero as r approaches infinity.

Regardless of whether the system involves multiple poles. the steady-state
response thus becomes

x(1) = ae” + Gel (9-3)

where the constants @ and @ can be evaluated from Equation (9-4):

Pw ) P .
a = G(s) 2 3(5 + jw) = _?G(_Iw)
S5+ w s=—jw 2]
B Pw . P .
a= G(S)m(s — jw) e = 2—].G(lw)

(Note that @ is the complex conjugate of a.) Referring to Figure 9-3, we can write
G(jw) = G, + jG,
= |G(jw)lcos d + jIG(jw)lsin ¢
= |G(jw)l(cos & + jsin &)
= |G (jw)le?
(Note that /G(jo) = /e'? = ¢.) Similarly,
G(—jw) = |G(—jw)le”® = |G(jw)le*

It follows that

- _PiGiw) e
a= 2}.¥G(jw)3 ;

P .
a= Z—le(jw)le’“’

Figure 9-3 Complex function and its
complex conjugate.
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Then Equation (9-5) can be written as

ej(w(+(b) _ e—j(wlﬂb)

x(t) = |G(jw)|P T

= |G(jw)|Psin(wt + ¢)
= Xsin(wt + ¢) (9-6)

where X = |G(jw)|P and ¢ = /G(jw). We see that a stable linear system subjected
to a sinusoidal input will, at steady state. have a sinusoidal output of the same fre-
quency as the input. But the amplitude and phase angle of the output will, in general,
differ from the input's. In fact, the output’s amplitude is given by the product of the
amplitude of the input and |G(jw)|, whereas the phase angle diffcrs from that of the
input by the amount @ = /G(jo).

On the basis of the preceding analysis, we are able to derive the following
important result: For sinusoidal inputs,

. X (jw)| _ amplitude ratio of the output
|G (je)l = ‘75(7;,')_ ~ sinusoid to the input sinusoid (5-7)
) X(jw) _l{in‘:aginar},r part of G(jw)
= =
£ P(jw) an real part of G(jw)
_ phase shift of the output sinusoid (9-8)

with respect to the input sinusoid

Thus, the steady-state response characteristics of a linear system to a sinusoidal
input can be found directly from G(jw). the ratio of X (jw) to P{jw).

Nate that the sinusoidal transfer function G(jw) is a complex quantity that can
berepresented by the magnitude and phase angle with the frequency w as a parameter.
To characterize a linear system completely by its frequency-response curves, we must
specify both the amplitude ratio and the phase angle as a function of the frequency w.

Comments. Equation (9-6) is valid only if G(s) = X(s)/P(s) is a stable
system, that is. if all poles of G(s) lie in the lcft half s-plane. If a pole is at the origin
and/or poles of G(s) lie on the jw-axis (any poles on the jw-axis, except that at the
origin, must occur as a pair of complex conjugates), the output x(r) may be obtained
by taking the inverse Laplace transform of the equation

Pw

) 2)
=+ w*

X(s) = G(s5)P(s) = G(s)
or

x(1) = 27X (s)) = se"[c(-~>~f“’—z]

2
§” + w

Note that if one or more poles of G(s) lie in the right half s-plane. then the system is
unstable and the response grows indefinitely. There is no steadv state for such an
unstable system.
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Example 9-1
Consider the transfer-function system
X(s) 1
P -9 =T

For the sinusoidal input p(r) = P sin wt, what is the stcady-state output x(r)?
Substituting jw for s in G(s) yiclds

1
G(jw) = ——
U) = Fra+1
The output-input amplitude ratio is
VT + 1

whereas the phasc angle @ is
¢ =/C(jw) = —tan™! Tw
So,for the input p(¢) = P sin wt, the steady-state output x(z) can be found as
P : -1
X(f) = ——————sin(wt — tan”' Tw) (9-9)
T o +1

From this cquation, we sce that, for small w, the amplitude of the output x(z) is almost
cqual to the amplitude of the input. For large w, the amplitude of the output is small
and almost inversely proportional to w. The phase angle is 0° at w = 0 and approaches
—90° as w increases indcfinitely.

Example 9-2

Suppose that a sinusoidal force p(tr) = P sin wf is applicd to the mechanical system
shown in Figurc 9—4. Assuming that the displacement v is measured from the equilibrium
position, find the steady-state output.

The cquation of motion for the system is

mx + by + kx = p(1)
The Laplace transform of this equation, assuming zero initial conditions, is

(ms? + bs + k)X(s) = P(s)

k b
{————- p(t) = Psinwr

m

x Figure 94 Mechanical system.
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where X (s) = £[x(1)] and P(s) = L[p(r)]. (Note that the initial conditions do not
affect the steady-state output and so can be taken to be zero.) The transfer function
between the displacement X(s) and the input force P(s) is, therefore, obtained as

X(s) I
P(s) =G = nis? + bs + k

Since the input is a sinusoidal function p(¢) = P sin wr. we can use the sinusoidal trans-
fer function to obtain the steady-state solution. The sinusoidal transfer function is

X(jw) . 1 1
=G =
P(jw)

(jw) =
Frem Equation (9-6). the steady-state output x(r) can be written

—1hw? + bjw-_i.-_'k— (k — mw®) + jbw

x(r) = |G(jw)[P sin(wr + ¢)

where
. 1
IGljw)| = s
V(k = me?) + b’
and
¢ = /G(jw) = = —tan’! e
iy = = 8
k — Mmw” l + ,'bw k — mw”
Thus.
P . 4 b
x(f) = —F————sin | &f —tan” ———
Vi(k — mw?)* + b'w* k ~ mow

Since k/m = w? and bk = 2{/w,. the equation for x(r) can be written
, 2wlw, }
1 = (w¥w}l)

e ’xs.’ - sin[wr - tan”
VL = (@)l + (2Lwlwn)

(9-10)

where x, = P/k is the static deflection.
Writing the amplitude of x(¢) as X. we {ind that the amplitude ratio X/x is

X _ 1

o V- @Dl + Rala)

and the phase shift & is

9-3 VIBRATIONS IN ROTATING MECHANICAL SYSTEMS

Vibration is, in general, undesirable because it may cause parts to break down, gen-
erate noise, transmit forces to foundations, and so on. To reduce the amount of force
transmitted to the foundation as a result of a machine’s vibration (a technique —
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known as force isolation) as much as possible. machines are usually mounted on
vibration isolators that consist of springs and dampers. Similarly, to reduce the
amount of motion transmitted to a delicate instrument by the motion of its founda-
tion (a technique called motion isolation). instruments are mounted on isolators. In
this section, centripetal force, centrifugal force. and force due to a rotating unbal-
ance are described first. Afterward. vibrations caused by the excitatory force result-
ing from unbalance are discussed. Vibration isolation is examined in Section 9—4.

Centripetal force and centrifugal force. Suppose that a point mass 1 is
moving in a circular path with a constant speed, as shown in Figure 9-5(a). The mag-
nitudes of the velocities of the mass m at point A and point B are the same, but the
directions are different. Referring to Figure 9-5(b). the direction PQ becomes per-
pendicular to the direction AP (the direction of the velocity vector at point A) if
points A and B are close to each other. This means that the point mass must be sub-
jected to a force that acts roward the center of rotation, point O. Such a force is
called a centriperal force. For example. if a mass is attached to the end of a cord and
is rotated at an angular speed w in a horizontal plane like a conical pendulum. then
the horizontal component of the tension in the cord is the centripetal force acting to
keep the rotating configuration.

The force /11a acting toward the center of rotation is derived as follows: Noting
that triangles OAB and APQ are similar, we have

|Aw] _rae
|U,.1.] r

where [Av| and |v,| represent the magnitudes of velocity Av and velocity v,
respectively. Observing that [v,| = wr and w = limy,_.q (A#/A1), we obtain

A lealrae
a=hm —= lim ———— = wr
Ar—0 A a—0 At
Av
)\ P
Uy,
— U\
e
0 A

(a) (b)

Figure 9-5 (a) Point mass moving in a circular path: (b) velocity vector diagram.
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Figure 9-6 Unbalanced machine
resting on shock mounts.

This acceleration acts toward the center of rotation, and the centripetal force is
ma = mw’r. The centrifugal force is the opposing inertia force that acts outward. Its
magnitude is also mw’r.

Vibration due to rotating unbalance. Force inputs that excite vibratory
motion often arise from rotating unbalance, a condition that arises when the mass
center of a rotating rigid body and the center of rotation do not coincide. Figure 9-6
shows an unbalanced machine resting on shock mounts. Assume that the rotor is ro-
tating at a constant speed w rad/s and that the unbalanced mass » is located a dis-
tance r from the center of rotation. Then the unbalanced mass will produce a
centrifugal force of magnitude mw?r.

In the present analysis, we limit the motion to the vertical direction only, even
though the rotating unbalance produces a horizontal component of force. The verti-
cal component of this force, mmw?r sin wt, acts on the bearings and is thus transmitted
to the foundation. thereby possibly causing the machine to vibrate excessively.
[Note that. for convenience. we arbitrarily choose the time origin 7 = 0, so that the
unbalance force applied to the system is mw?r sin wt.]

Let us assume that the total mass of the system is M, which includes the unbal-
anced mass /. Here, we consider only vertical motion and measure the vertical dis-
placement x from the equilibrium position in the absence of the forcing function.
Then the equation of motion for the system becomes

MXx + bx + kx = p(1) (9-11)
where
p(1) = mw’r sin wt

is the force applied to the system. Taking the Laplace transform of both sides of
Equation (9-11), assuming zero initial conditions. we have

(Ms? + bs + k)X (s) = P(s)
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or
X(s) 1

P(s)  Ms® + bs + k

The sinusoidal transfer function is
X(jw) . 1

P(I-“’)z ( )=—Mw2+bjw+k

For the sinusoidal forcing function p(r). the stcady-state output is obtaincd from
Equation (9-6) as

X(1) = Xsin(wt + ¢)

b

= ma'r sin(wt - l'm"ibw )
\/(k = sz)g + b’ Tk - Mo?

In this last equation, if we divide the numerator and denominator of the amplitude

and those of the phase angle by & and substitute k/M = w2 and biM = 2{w, into

the result, the steady-state output becomes
mw?rlk

= !
V[l = (0¥d)]? + (2wlw,)?

x(¢) sin{wt — tan”

2y,
I = (ww})
Thus, the steady-state output is a sinusoidal motion whosec amplitude becomes large

when the damping ratio ¢ is small and the forcing frequency w is close to the natural
frequency w,,.

9-4 VIBRATION ISOLATION

Vibration isolation is a process by which vibratory effects are minimized or elimi-
nated. The function of a vibration isolator is to reduce the magnitudc of force trans-
mitted from a machine to its foundation or to reducc the magnitude of motion
transmitted from a vibratory foundation to a machine.

The concept is illustrated in Figures 9~7(a) and (b). The system consists of a
rigid body rcpresenting a machine connected to a foundation by an isolator that
consists of a spring and a damper. Figurc 9-7(a) illustrates the casc in which the
sourcc of vibration is a vibrating force originating within the machine (force cxcita-
tion).The isolator reduces the force transmitted to the foundation. In Figure 9~7(b).
the sourcce of vibration is a vibrating motion of the foundation (motion cxcitation).
The isolator reduces the vibration amplitude of the machine.

The isolator csscntially consists of a resilicnt load-supporting means (such as a
spring) and an energy-dissipating means (such as a damper). A typical vibration iso-
lator appears in Figure 9-8. (In a simple vibration isolator, a singlc clement like syn-
thetic rubber can perform the functions of both the load-supporting means and the
cnergy-dissipating means.) In the analysis given here. the machine and the founda-
tion arc assumed rigid and the isolator is assumed massless.
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Force

I |

Machine Machine 'W‘

Isolator Isolator

Motion

T A A o A A A P A tj k’

Force

(a) (b)

Figure 9-7 Vibration isolation. (a) Force excitation: (b) motion excitation.

Machine

Vibration
isolitor

Figure 9-8 Vibration isolator.

Transmissibility. Transmissibility is a measure of the reduction of a trans-
mitted force or of motion afforded by an isolator. If the source of vibration is a vi-
brating force due to the unbalance of the machine (force excitation), transmissibility
is the ratio of the amplitude of the force transmitted to the foundation to the ampli-
tude of the excitatory force. If the source of vibration is a vibratory motion of the
foundation (motion excitation), transmissibility is the ratio of the vibration ampli-
tude of the machine to the vibration amplitude of the foundation.

Transmissibility for force excitation. For the system shown in Figure 9-6,
the source of vibration is a vibrating force resulting from the unbalance of the ma-
chine. The transmissibility in this case is the force amplitude ratio and is given by

F,  amplitude of the transmitted force

transmissibility = TR = — = : z
- Fy amplitude of the excitatory force

Let us find the transmissibility of this system in terms of the damping ratio { and the
frequency ratio 8 = w/w,.
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The excitatory force (in the vertical direction) is caused by the unbalanced
mass of the machine and is
p(t) = mw’r sin wr = Fysin wt

The equation of motion for the system is Equation (9-11), rewritten here for
convenience:

MX + bx + kx = p(i) (9-12)

where M is the total mass of the machine including the unbalance mass /. The force
f(r) transmitted to the foundation is the sum of the damper and spring forces, or

f(1) = bx + kx = F sin(wt + ¢) (9-13)

Taking the Laplace transforms of Equations (9-12) and (9-13), assuming zero initial
conditions, gives

(Ms?® + bs + k)X (s) = P(s)
(bs + k)X (s) = F(s)
where X (s) = £[x(1)], P(s) = £[p(1)],and F(s) = £[f(1)]. Hence,

X(s) _ 1

P(s) Ms*+bs+k
B i
XGs)

Eliminating X(s) from the last two equations yields

F(s)  F(s) X(s)_ bs + k
P(s) X(s) P(s) Ms*+bs+k

The sinusoidal transfer function is thus
F(jw) N bjw + k B (b/IM)jw + (kIM)
P(jo) —Mo*+ bjw+ k —w®+ (b/M)jo + (kIM)

Substituting k/M = w? and b/M = 2{w, into this last cquation and simplifying. we
have

Fjw) _ 1 + j(2wlw,)

P(jw) 1~ (w¥wp) + j(2{wlw,)

from which it follows that

'F(jw) _ V1 + (2wlw,)? V1 + (
P(jw)l  V[1 = (0Yd)] + Lwlw,)? Vi 22 + ( {B)’

where B8 = w/w,,.
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Noting that the amplitude of the excitatory force is fy = |P(jw)| and that the
amplitude of the transmitted force is F, = |F(jw)|. we obtain the transmissibility:

o F IFGo)l _ V1+ (2¢B)
o IPGo)l V(1 - B2 + (2B

(9-14)

From Equation (9-14), we see that the transmissibility depends on both 8 and ¢.
When B = V2, however, the transmissibility is equal to unity, regardless of the
value of the damping ratio ¢.

Figure 9-9 shows some curves of transmissibility versus B(= w/w,). We see
that all of the curves pass through a critical point where TR = 1 and 8 = V2. For
B < V2, as the damping ratio { increases, the transmissibility at resonance decreas-
es. For B > V2, as { increases, the transmissibility increases. Therefore, for
B < V2. or w < V2w, (the forcing frequency w is smaller than V2 times the
undamped natural frequency w,), increasing damping improves the vibration isola-
tion.For 8 > V2, or w > V2 w,, increasing damping adversely affects the vibra-
tion isolation.

Note that, since | P(jw)| = Fy = mw?r, the amplitude of the force transmitted
to the foundation is

2.8/ - )2
F = |F(j)l = —m X~ QB (9-15)
VL= B + @B

;
6
= (=0
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Figure 9-9 Curves of transmissibility TR versus B( = w/w,).
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Example 9-3
In the system shown in Figure 9-6. if M = {5kg. b = 450 N-s/m. k = 6000 N/m.
m = 0.005kg.r = 0.2 m. and w = 16 rad/s. what is the force transmitted to the foun-
dation?
The equation of motion lor the system is

154 + 4504 + 6000x = (0.005)(16)*(0.2) sin 161
Consequently.
w, = 20 rad/s, ¢ =075
and we find that 8 = w/w, = 16/20 = 0.8. From Equation (9-15). we have
B frlw:L-"l + (2[?:_
C V- 8+ (B)
(0.005)(16):(().2)\/1 + (2 X075 X 0.8)?
V= 08)T + (2 X 0.75 X 08)°

The force transmitted to the foundation is sinusoidal with an amplitude 0f0.319 N.

= 0319N

Automobile suspension system. Figure 9-10(a) shows an automobile sys-
tem. Figure 9-10(b) is a schematic diagram of an automobile suspension system. As
the car moves along the road, the vertical displacements at the tires act as motion
excitation to the automobile suspension system. The motion of this system consists
of a translational motion of the center of mass and a rotational motion about the
center of mass. A complete analysis of the suspension system would be very in-
volved. A highly simplified version appears in Figure Y-11. Let us analyze this sim-
ple model when the motion input is sinusoidal. We shall derive the transmissibility
for the motion excitation system. (As a related problem. see Problem B-9-13.)

Center of mass "

\ Auto body

Figurc 9-10  (a) Automobile system:
(b (b) schematic diagram of an automobile
) suspension system.
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m

Figure 9-11 Simplified version of the automo-
bile suspension system of Figure 9-10.

Transmissibility for motion excitation. In the mechanical system shown
in Figure 9-12, the motion of the body is in the vertical direction only. The motion
p(t) at point A is the input to the system: the vertical motion .x(¢) of the body is the
output. The displacement .x(¢) is measured from the equilibrium position in the ab-
sence of input p(r). We assume that p(¢) is sinusoidal, or p(1) = P sin wt.

The equation of motion for the system is

m¥ + b(x — p) +k(x—p)=0
or
my + bx + kx = bp + kp
The Laplace transform of this last equation, assuming zero initial conditions, gives
(ms® + bs + k)X (s) = (bs + k)P(s)
Hence,
X(s) bs + k

P(s)  ms®+ bs+ k

The sinusoidal transfer function is
X(jow) a bjw + k

P(jo)  —mw® + bjo + k

m

- -—

A ,—_]
Figure 9-12  Mecchanical system. )
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The steady-state output x(r) has the amplitude |.X(jw)|. The input amplitude is
|P(jw)|. The transmissibility TR in this case is the displacement amplitude ratio and
is given by

_ amplitude of the output displacement

amplitude of the input displacement
Thus,

X (jo) Vb2e? + K

TR = : =
|P(jw)] \/(l\ - mo®)? + b’

Noting that k/m = w’ and b/m = 2{w,. we sce that the transmissibility is given. in
terms of the damping ratio ¢ and the undamped natural frequency w,. by
V1 + (2¢B)°

TR = (9-16)
V(1 - B*)? + (24B)?

where 8 = w/w,. This equation is idcntical to Equation (9-14).

Example 94

A rigid body is mounted on an isolator to reduce vibratory effects. Assume that the
mass of the rigid body is 500 kg. the damping coefficient of the isolator is very smali
(¢ = 0.01). and the effective spring constant of theisolator is 12.500 N/m. Find the per-
centage of motion transmitted to the body if the frequency of the motion excitation of
the base of the isolator is 20 rad/s.

The undamped natural frequency w,, of the system is

w, = \fﬁ:;g:))[] = Srad/s
o)
- wﬂ” = ? =4
Substituting ¢ = 0.01 and 8 = 4 into Equation (9-16), we have
Vi+(@B?  V1i+(2x001x4)

TR —— = 0.0669

TNV -+ (2B) V-7 + (2x001 x4

The isolator thus reduces the vibratory motion of the rigid body to 6.69% of the vibra-
tory motion of the base of the isolator.

9-5 DYNAMIC VIBRATION ABSORBERS

If amechanical system operates near a critical frequency, the amplitude of vibration
increases to a degree that cannot be tolerated, because the machine might break
down or might transmit too much vibration to the surrounding machines. This sec-
tion discusses a way to reduce vibrations near a specificd operating frequency that is
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close to the natural frequency (i.e., the critical frequency) of the system by the use of
a dynamic vibration absorber.

Basically, the dynamic vibration absorber adds one degree of freedom to the
system. [f the original system is a one-degree-of-freedom system (meaning that the
system has only one critical frequency w,), the addition of the dynamic vibration
absorber increases the number of degrees of freedom to two and thereby increases
the number of critical frequencies to two. This means that it is possible to shift the
critical frequencies from the operating frequency. One of the two new critical fre-
quencies will be well below the original critical frequency w.. and the other will be
well above w,. Therefore, operation at the given frequency (near w,) is possible.

Before we present vibration absorbers, we shall discuss systems with two or
more degrees of freedom.

Mechanical systems with two or more degrees of freedom. Inreal-life
situations, the motion of a mechanical system may be simultaneously translational
and rotational in three-dimensional space, and parts of the system may have con-
straints on where they can move. The geometrical description of such motions can
become complicated, but the fundamental physical laws still apply.

For some simple systems. only one coordinate may be necessary to specify the
motion of the system. However. more than one coordinate is necessary to describe
the motion of complicated systems. The term used to describe the minimum number
of independent coordinates required to specify this motion is degrees of freedon.

Degrees of freedom. The number of degrees of freedom that a mechanical
system possesses is the minimum number of independent coordinates required to
specify the positions of all of the elements of the system.Forinstance, if only one in-
dependent coordinate is needed to completely specify the geometric location of the
mass of a system in space, the system has a one degree of freedom. Thus, arigid body
rotating on an axis has one degree of freedom, whereas a rigid body in space has six
degrees of freedom—three translational and three rotational.

It is important to note that. in general. neither the number of masses nor any
other obvious quantity will always lead to a correct assessment of the number of
degrees of freedom.

In terms of the number of equations of motion and the number of constraints,
we have

number of degrees of freedom = (numbcr of equations of motion)
— (number of equations of constraint)

Example 9-5

Let us find the degrees of frecdom of each of the systems shown in Figure 9-13.

(a) We begin with the system shown in Figurc 9-13(a). If thc mass 11 is constrained
to move vertically.only one coordinate .v is required to define the location of the mass at
any time. Thus. the system shown in Figure 9-13(a) has one degree of freedom.
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m

m

(a) (b) (c)

Figure 9-13 Mechanical systcms.

We can verify this statement by counting the number of equations of motion and
the number of equations of constraint. This system has one equation of motion, namely,

mx + bx + kx =0
and no equation of constraint. Consequently,

degree of freedom =1 — 0 =1

(b) Next, consider the system shown in Figure 9-13(b). The equations of motion
here are

mxy + kxp + ky(x; —x) =0
kz(.\’] - .\’2) = bzkg
so the number of equations of motion is two.There is no equation of constraint. Therefore.

degrees of freedom =2 — 0 = 2

(c) Finally, consider the pendulum system shown in Figure 9-13(c). If we define
the coordinates of the pendulum mass as (x, y), then the equations of motion are

mx = —Tsin@

my = mg — T cos @

where T'is the tension in the wire. Thus. the number of equations of motion is two. The
constraint equation for this system is

2+y=P
The number of equations of constraint is one, so

degree of freedom =2 -1 =1

Note that when physical constraints are present, the most convenient coordinate
system may not be a rectangular one. In the pendulum system of Figure 9-13(c). the
pendulum is constrained to move in a circular path. The most convenient coordinate
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system here would be a polar coordinate system. Then the only coordinate that is
needed is the angle § through which the pendulum has swung. The rectangular coordi-
nates x, y and polar coordinates 6, { (where / is a constant) are related by

x =1siné, v =1lcos#b
In terms of the polar coordinate system. the equation of motion becomes
mi’g = —mgl sin 6

or

é+§sino=0

Note that, since / is constant, the configuration of the system can be specified by
one coordinate, 6. Consequently, this is a one-degree-of-freedom systen.

Dynamic vibration absorber. In many situations, rotating machines (such
as turbines and compressors) cause vibrations and transmit large vibratory forces to
the machines’ foundations. Vibratory forces may be caused by an unbalanced mass
of the rotor. If the excitatory frequency w is equal to or nearly equal to the un-
damped natural frequency of the rotating machine on its mounts, then resonance
occurs and large forces are transmitted to the foundation.

If the machine operates at nearly constant speed, a device called a dynamic
vibration absorber can be attached to it to eliminate the large transmitted force. This
device is usually in the form of a spring-mass system tuned to have a natural fre-
quency equal to the operating frequency w. When a vibration absorber is added to a
one-degree-of-freedom vibratory system, the entire system becomes a two-degrees-
of-freedom system with two natural frequencies. To reduce or nearly eliminate the
transmitted force, one of the natural frequencies is set above the operating frequency.
the other below it.

Our discussion here focuses on a simple dynamic vibration absorber that will
reduce the vertical force transmitted to the foundation. Note that only vertical
motions are discussed.

Reducing vibrations by means of a dynamic vibration absorber. If the
mass of the rotor of a rotating machine is unbalanced, the machine transmits a large
vibratory force to its foundation. Let us assume that the machine is supported by a
spring and a damper as shown in Figure 9-14(a). The unbalanced rotor is represented
by mass M, which includes the unbalanced mass. and is rotating at frequency w. The
excitatory force is p(t) = P sin wt. where P = mw?r. (Here, m is the unbalanced
mass and r is the distance of the unbalanced mass from the center of rotation.) Be-
cause of this force excitation, a sinusoidal force of amplitude

mo*rVik: + bw?
Vi(k — M’wz)2 + bPe?
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m

p(t) = Psin wi I Y

J ‘—pm = P sin et

M M

-t

(a) (b)

Figure 9-14  (a) Machine supported by a spring and damper: (b) machine
with a dynamic vibration absorber.

is transmitted to the foundation. [To obtain this amplitude. substitute 8 = w/w,
= w/VkIM and { = b/(2VkM) into Equation (9-15).]

If the viscous damping coefficient b is small and the natural frequency V k/M of
the system is equal to the excitation frequency. then resonance occurs. the machine is
subjected to excessive vibration, and the transmitted force becomes extremely large.

In the analysis which follows, we assume that b is very small and that the nat-
ural frequency V k/M is very close to the excitation frequency w. In such a case.to
reduce the transmitted force, a dynamic vibration absorber consisting of a mass
(1m,) and a spring (k,,) may be added to the machine as shown in Figure 9-14(b).

The equations of motion for the system of Figure 9-14(b) are

Mx + bx + kx + k(v ~ y) = p(t) = Psin wt
ma:‘} + ka()’ - _l‘) =0

where x and y, the displacements of mass M and mass 1, respectively. ar¢ measured
from the respective equilibrium positions of these masses in the absence of excita-
tion force p(r). Taking the Laplace transforms of the last two equations. assuming
zero initial conditions. we obtain

(Mst + bs + k + k)X (s) — k,Y(s) = P(s)
(mus? + k)Y (5) = kuX(s) = 0
Eliminating Y(s) from these equations yields
g ka
(Ms“ +bs+k+k, —— —)r\'(-\‘J = P(s)
m,s* + k,
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It follows that
X(s) _ mys® + k,
P(s)  (Ms? + bs + k + kp)(mas® + k,) — k2

The sinusoidal transfer function is
X(}w) o _'Jnumz + klf
P(jo) (=Mo? + bjw + k + k)(—mw® + k,) ~ k2

If the viscous damping coefficient b is negligibly small. we may substitute
b = 0 into this last equation. Then

X(jo) . —mgw® + k,
P(jo) ~ (=M + k + k)(—mw? + k,) — k2

[Note that, in the actual system, free vibrations eventually die out due to damping
(even though it may be negligibly small), and the forced vibration at steady state can be
represented by the preceding equation.] The force f{r) transmitted to the foundation is

f(1) = kx + bx = kx
The amplitude of this transmitted force is k| X (jw)|. where

5
ky, — muw

p ) P ]
(k + k, — Ma?*)(k, — m,w?) - K i)

X (jo)l =

B ‘ mw’r(k, — nuw?)
(k + ky = Mw?)(k, = m,0°) — K]

(9-17)

[Note that |P(jw)| = P = mw?r]
In examining Equation (9-17), observe that if m, and &, are chosen such that

k, — mw? =0

or kJm, = w’. then | X(jw)l = 0 and the force transmitted to the foundation is
zcro. So if the natural frequency \f’rka/m,, of the dynamic vibration absorber is made
equal to the excitation frequency w, it is possible to eliminate the force transmitted
to the foundation. In general, such a dynamic vibration absorber is used only when
the natural frequency V A/M of the original system is very close to the excitation
frequency w. (Without this device, the system would be in near resonance.)

Physically. the effect of the dynamic vibration absorber is to produce a spring
force k,y that cancels the excitation force p(t). To see this point. note that if the vis-
cous damping coefficient b is negligibly small. then

Y(jo) _ X(jo) Y(jo)
P(jw) P(jw) X(jw)
Ka
(—Mo* + k + k) (~m® + k,) — k2

(9-18)
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If m, and k, are chosen so that k, = m,w? we find that

V(o) ke _ 1

P(]w) —/\'3 - ka

Consequently.

v(t) = = sin| wr x
P
= —sin(wt — 180°)
Ky
P
= ——sinwt
.l‘l
This means that the spring k, transmits a forcc A,v = —P sin wr to mass M. The

magnitude of this force is equal to that of the excitation force, and the phasc angle
lags 180° from that of the excitation force (mass /7, is vibrating in phase opposition
to the excitation force). with the result that the spring force &,y and the excitation
force p(r) cancel each other and mass M stays stationary.

We have shown that the addition of a dynamic vibration absorber will reduce
the vibration of a machine and the force transmitted to the foundation to zero when
the machine is excited by an unbalanced mass at a frequency w. It can also be shown
that there will now be two frequencies at which mass M will be in resonance. These
two frequencies are the natural frequencies of the two-degrees-of-freedom system
and can be found from the characteristic equation for the sinusoidal transfer function
Y(jw)/P{jw) given by Equation (9-18):

(k + ko — Mw?)(k, — mw?) — k2= 0 i=1.2

The two values of frequency. w; and w,, that satisfy this last equation are the natural
frequencies of the system with a dynamic vibration absorber. Figures 9-15(a) and
(b) show the curves of amplitude | X (jw)| versus frequency w for the systems
depicted in Figures 9-14(a) and (b), respectively, when b is negligiblv small.

Note that the addition of viscous damping in parallel with the absorber spring
k, relieves excessive vibrations at the two natural frequencies. That is. very large
amplitudes at the two resonance frequencies may be reduccd to smaller values.

9-6 FREE VIBRATIONS IN MULTI-DEGREES-OF-FREEDOM
SYSTEMS

In this section, we shall discuss vibrations that may occur in multi-degrees-of-frecdom
systems. In particular. we treat free vibrations of a two-degrees-of-frecdom system in
detail. (Discussions of free vibrations of a three-degrees-of-Ireedom system are given
in Problem A-9-15.)

Two-degrees-of-freedom system. A nvo-degrees-of-freedom svstem re-
quires two independent coordinates to specify the system's configuration. Consider the
mechanical system shown in Figure 9-16. which illustrates the two-degrees-of-freedom
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Figure 9-15 (a) Curve of amplitude versus frequency for the system of

Figure 9-14(a1): (b) curve of amplitude versus frequency forthe system of
Figure 9-14(b).
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Figure 9-16 Mechanical system with
two degrees of f[reedom.
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Figure 9-17 Mechanical system with two
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7 degrees of freedom.

case. Let us derive a mathematical model of this system. We assume that the masses
move without friction. Applying Newton's second law to mass /7; and mass #1;, we
have

Y, = —kixy = ko(xy — x7)
My¥y = —k3Xs — kalx; — Xy)
Rearranging terms yields
Xy + kv + ky(x) —x) =0 (9-19)
maXs + kX + ko(vs — x;) =0 (9-20)

These two equations represent a mathematical model of the system. [Free vibra-
tions of the mechanical system described by Equations (9-19) and (9-20) are dis-
cussed in Problem A-9-14.]

Free vibrations in two-degrees-of-freedom system. Consider the me-
chanical system shown in Figure 9-17, which is a special case of the system given in
Figure 9-16.The equations of motion for the system of Figure 9-17 can be obtained
by substituting m, = my; = m and k = k, = k3 = k into Equations (9-19) and
(9-20), yielding

mx, + 2kx; — kx, =0 (9-21)
my, + 2kx; — kxy =0 (9-22)

Let us examine the free vibration of this system. To find the natural frequen-
cies of the free vibration, we assume that the motion is harmonic. That is, we assume
that

B sin wr

X] = Asinwt, X,
Then

.o . e 2 .
¥, = — Ao’ sin w1, X, = —Bw sin wt

If the preceding expressions are substituted into Equations (9-21) and (9-22), the
resulting equations are
(-mAw? + 2kA — kB) sin wt
(—mBw® + 2kB — k A) sin wr

0
0

Since these equations must be satisfied at all times and since sin wr cannot be zero at
all times, the quantities in parentheses must be equal to zero. Thus,

—mAw® + 2kA — kB =0

-mBw® + 2kB — kA =0
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Rearranging terms. we have
2k — mw?)A — kB =0 (9-23)
~kA + (2k — mw?)B =0 (9-24)
For constants A and B to be nonzero. the determinant of the coefficients of Equa-
tions (9-23) and (9-24) must be equal to zero. or
2k — mw® -k
—k 2k — mw?

This determinantal equation determines the natural frequencies of the system and
can be rewritten as

Rk — mwd)? - K2 =0

or
ko5 LK .
w' - 4—w +3—=0 (9-25)
m n

Equation (9-25) can be factored as
k , 3k
((uz__)(ww - A) =O
m m

5,k , 3k
w° = —, w° =
m m

or

Consequently, w? has two values, the first representing the first natural frequency o,
(first mode) and the second representing the second natural frequency w, (second
mode):

[k 3k
=l W) = |—
= | n 2 m

It should be remembered that in the one-degree-of-freedom system only one
natural frequency exists, whereas the two-degrees-of-freedom system has two natural
frequencies.

Note that, from Equation (9-23), we obtain
A k

= .- 9-26

B 2k — me’ ( )
Also. from Equation (9-24), we have

A 2k — mo?

i e R-2)

If we substitute w? = k/m (first mode) into either Equation (9-26) or (9-27), we
obtain, in both cases,

A
— =1
B
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Figurc 9-18 (a) First mode of vibra-
(b) tion; (b) second mode of vibration.

If we substitute w® = 3k/m (second mode) into either Equation (9-26) or (9-27). we
have

If the system vibrates at either of its two natural frequencies, the two masses must
vibrate at the same frequency. From the first equation for the amplitude ratio A/B, at
the lowest natural frequency w, the amplitude ratio becomes unity, or A = B (the
first mode of vibration), which means that both masses move the same amount in the
same direction: that is, the motions are in phase. [See Figure 9-18(a).] At the sccond
natural frequency w,, the amplitude ratio becomes —1. or A = —B (the second mode
of vibration), so the motions are opposite in phase. [See Figure 9-18(b).] In the pre-
sent system, the amplitude ratio becomes equal to 1 or —1 when the masses vibrate at
a natural frequency. The reason for this is that we assumed that m; = m; and
k, = ky = kj; Without such assumptions, the ratio A/B may not be equal to | or —1.
(See Problem A-9-14.)

Note that it is possible to excite only one of the two modes by properly setting the
initial conditions. (See Problem A-9-16.) For arbitrary initial conditions. two modes of
vibration may occur simultaneously. That is. the vibration of 77z; may consist of the sum
of two components: a harmonic motion with amplitude A, at the frequency w, and a
harmonic motion with amplitude A, at the frequency w,. In this case. the vibration of
11, consists of the sum of two harmonic components: one with amplitude B, at the fre-
quency w; and one with amplitude B, at the frequency w,.

Comments. To find the natural frequencies of the system, we need only the
characteristic equation. For example, in the present problem, taking the Laplace
transforms of Equations (9-21) and (9-22). we have

m[s?X(s) = sx4(0) = ¥1(0)] + 2kX,(s) — kXas)
ms®Xa(s) — sx2(0) — 12(0)] + 2kXa(s) — kX(s)
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Eliminating X5(s) from the last two equations, we obtain
: , | 2k k i
[sx1(0) + x;(0)]{ s° + il ;[sxz(O) + ¥,(0)]
Xi(s) = 2

k
st d—s? +3—
m m

The characteristic equation for the system is
k k*
st+4—s2+3—=0
m m

If we substitute s = jw, the characteristic equation can be rewritten as

3 .2
w4—4iw2+3l\—2=0
m m

which is exactly the same as Equation (9-25). The advantage of the method using
the assumed harmonic solution is that one can easily visualize the mode of vibration
by the sign of the amplitude ratio A/B.

Many-degrees-of-freedom system. Generally, an n-degrees-of-freedom
system (such as that consisting of n masses and n + 1 springs) has »# natural fre-
quencies. If free vibration takes place at any one of the system’s natural frequencies,
all the n masses will vibrate at that frequency, and the amplitude of any mass will
bear afixed value relative to the amplitude of any other mass. The system, however,
may vibrate with more than one natural frequency. Then the resultant vibration may
appear quite complicated and may seem to be a random vibration, although it is not.

EXAMPLE PROBLEMS AND SOLUTIONS

Problem A-9-1

Assuming that the mechanical system shown in Figure 9-19 is at rest before the excita-
tion force p(r) = P sinwt is applied. derive the complete solution x(r) and the steady-
state solution x(r). The displacement x is measured from the equilibrium position
before the excitation force is applied.

“%

p(r) =P sin wt

m

L i

Figure 9-19 Mechanical system.
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Solution The equation of motion for the system is
mxX + bx + kx = Psinowt

Noting that x(0) = 0Oand x(0) = 0, we find that the Laplace transform of this equation is

(ms® + bs + k) X(s) = P = 5
ST+ w
or
P 1
‘X.(S) =3 z E 7
s+ w ms*+ bs + k
Pw 1 1

m st + ot st + 2 w,s + w,z,

where w, = Vk/mand { = b/(Z\/n_tE). We can expand X (s) as

Pw [ as + ¢ —as +d
X(S) e 2 2 2 2
m \s*+w 5 + 2w,s + w,
By simple calculations, we find that
e _Zgwu
((M;_il —= wZ)Z + 44«2(1),2[“)2
W —
c= 2 242 .
(wp — @) + 4w
A - (@i = o)
a (m,l, - w3)3 + 4{%’.@3,1:«.;2
Hence,
P 1
X(s) = —

m {wi = wzjz + 4§3w,:,w3

A w,s + (wp — o) L Louls + Loy 2005 — (wy — o)

s+ W s+ 2wys + W

The inverse Laplace transform of X (s) gives

2 2
Pw (wp — @) . ,
sin wt — 2w, cos wf

m[(w; — @°)* + 4 wiw’]

20w — (wﬁ -w?) . =
+ e sinw, V1 — &1
Wy V Jl = gl

+ 2l wpe " cos w, V1 — g%}
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Al steady slate (1 — ©0), the terms involving ¢ *“' approach zero. Thus, at steady
state,

2)

Pw (w,z, - w . )
3 sin wt — 2{w,, cos wt
m{(w;, = o) + 4Cwp’] | w p

B Pw (k - 1hew?
(k — me®)? + b’

£ 'n( ( — (i )
= sin| wr — —_—
Vi(k = mo?)? + b’ k — mo?

(1) =

sin wt — b cos wr)

Problem A-9-2

Consider the mechanical system shown in Figure 9-20. If 2