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Preface 

A course in system dynamics that deals with mathematical modeling and response 
analyses of dynamic systems is required in most mechanical and other engineering 
curricula. This book is written as a textbook for such a course. It is written at the 
junior level and presents a comprehensive treatment of modeling and analyses of 
dynamic systems and an introduction to control systems. 

Prerequisites for studying this book are first courses in linear algebra, intro­
ductory differential equations, introductory vector-matrix analysis, mechanics, cir­
cuit analysis, and thermodynamics. Thermodynamics may be studied simultaneously. 

Main revisions made in this edition are to shift the state space approach to 
modeling dynamic systems to Chapter 5, right next to the transfer function approach 
to modeling dynamic systems, and to add numerous examples for modeling and 
response analyses of dynamic systems. All plottings of response curves are done with 
MATLAB. Detailed MATLAB programs are provided for MATLAB works pre­
sented in this book. 

This text is organized into 11 chapters and four appendixes. Chapter 1 presents 
an introduction to system dynamics. Chapter 2 deals with Laplace transforms of 
commonly encountered time functions and some theorems on Laplace transform 
that are useful in analyzing dynamic systems. Chapter 3 discusses details of mechan­
ical elements and simple mechanical systems. This chapter includes introductory dis­
cussions of work, energy, and power. 

Chapter 4 discusses the transfer function approach to modeling dynamic sys­
tems. 'lransient responses of various mechanical systems are studied and MATLAB 
is used to obtain response curves. Chapter 5 presents state space modeling of dynam­
ic systems. Numerous examples are considered. Responses of systems in the state 
space form are discussed in detail and response curves are obtained with MATLAB. 

Chapter 6 treats electrical systems and electromechanical systems. Here we 
included mechanical-electrical analogies and operational amplifier systems. Chapter 7 

vii 



viii Preface 

deals with mathematical modeling of fluid systems (such as liquid-level systems, 
pneumatic systems, and hydraulic systems) and thermal systems. A linearization 
technique for nonlinear systems is presented in this chapter. 

Chapter 8 deals with the time-domain analysis of dynamic systems. Transient­
response analysis of first-order systems, second-order systems, and higher order sys­
tems is discussed in detail. This chapter includes analytical solutions of state-space 
equations. Chapter 9 treats the frequency-domain analysis of dynamic systems. We 
first present the sinusoidal transfer function, followed by vibration analysis of 
mechanical systems and discussions on dynamic vibration absorbers. Then we dis­
cuss modes of vibration in two or more degrees-of-freedom systems. 

Chapter 10 presents the analysis and design of control systems in the time 
domain. After giving introductory materials on control systems, this chapter discusses 
transient-response analysis of control systems, followed by stability analysis, root-locus 
analysis, and design of control systems. Fmally, we conclude this chapter by giving tun­
ing rules for PID controllers. Chapter 11 treats the analysis and design of control sys­
tems in the frequency domain. Bode diagrams, Nyquist plots, and the Nyquist stability 
criterion are discussed in detail. Several design problems using Bode diagrams are 
treated in detail. MATLAB is used to obtain Bode diagrams and Nyquist plots. 

Appendix A summarizes systems of units used in engineering analyses. Appendix 
B provides useful conversion tables. Appendix C reviews briefly a basic vector-matrix 
algebra. Appendix D gives introductory materials on MATLAB. If the reader has no 
prior experience with MATLAB, it is recommended that he/she study Appendix D 
before attempting to write MATLAB programs. 

Throughout the book, examples are presented at strategic points so that the 
reader will have a better understanding of the subject matter discussed. In addition, 
a number of solved problems (A problems) are provided at the end of each chapter, 
except Chapter 1. These problems constitute an integral part of the text. It is sug­
gested that the reader study all these problems carefully to obtain a deeper under­
standing of the topics discussed. Many unsolved problems (B problems) are also 
provided for use as homework or quiz problems. An instructor using this text for 
hislher system dynamics course may obtain a complete solutions manual for B prob­
lems from the publisher. 

Most of the materials presented in this book have been class tested in courses 
in the field of system dynamics and control systems in the Department of Mechani­
cal Engineering, University of Minnesota over many years. 

If this book is used as a text for a quarter-length course (with approximately 30 
lecture hours and 18 recitation hours), Chapters 1 through 7 may be covered. After 
studying these chapters, the student should be able to derive mathematical models 
for many dynamic systems with reasonable simplicity in the forms of transfer func­
tion or state-space equation. Also, he/she will be able to obtain computer solutions 
of system responses with MATLAB. If the book is used as a text for a semester­
length course (with approximately 40 lecture hours and 26 recitation hours), then 
the first nine chapters may be covered or, alternatively, the first seven chapters plus 
Chapters 10 and 11 may be covered. If the course devotes 50 to 60 hours to lectures, 
then the entire book may be covered in a semester. 
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Introduction to System 
Dynamics 

1-1 INTRODUCTION 

System dynamics deals with the mathematical modeling of dynamic systems and 
response analyses of such systems with a view toward understanding the dynamic 
nature of each system and improving the system's performance. Response analyses 
are frequently made through computer simulations of dynamic systems. 

Because many physical systems involve various types of components, a wide 
variety of different types of dynamic systems will be examined in this book. The 
analysis and design methods presented can be applied to mechanical, electrical, 
pneumatic, and hydraulic systems, as well as nonengineering systems, such as eco­
nomic systems and biological systems. It is important that the mechanical engineer­
ing student be able to determine dynamic responses of such systems. 

We shall begin this chapter by defining several terms that must be understood 
in discussing system dynamics. 

Systems. A system is a combination of components acting together to per­
form a specific objective. A component is a single functioning unit of a system. By no 
means limited to the realm of the physical phenomena, the concept of a system can 
be extended to abstract dynamic phenomena, such as those encountered in eco­
nomics, transportation, population growth, and biology. 

1 



2 Introduction to System Dynamics Chap. 1 

A system is called dynamic if its present output depends on past input; if its 
current output depends only on current input, the system is known as static. The out­
put of a static system remains constant if the input does not change. The output 
changes only when the input changes. In a dynamic system, the output changes with 
time if the system is not in a state of equilibrium. In this book, we are concerned 
mostly with dynamic systems. 

Mathematical models. Any attempt to design a system must begin with a 
prediction of its performance before the system itself can be designed in detail or ac­
tually built. Such prediction is based on a mathematical description of the system's 
dynamic characteristics. This mathematical description is called a mathematical 
model. For many physical systems, useful mathematical models are described in 
terms of differential equations. 

Linear and nonlinear differential equations. Linear differential equations 
may be classified as linear, time-invariant differential equations and linear, time­
varying differential equations. 

A linear, time-invariant differential equation is an equation in which a depen­
dent variable and its derivatives appear as linear combinations. An example of such 
an equation is 

d2x dx 
- + 5- + lOx = 0 
dt2 dt 

Since the coefficients of all terms are constant, a linear, time-invariant differential 
equation is also called a linear, constant-coefficient differential equation. 

In the case of a linear, time-varying differential equation, the dependent vari­
able and its derivatives appear as linear combinations, but a coefficient or coeffi­
cients of terms may involve the independent variable. An example of this type of 
differential equation is 

d2x - + (1 - cos 2t)x = 0 
dt2 

It is important to remember that, in order to be linear, the equation must con­
tain no powers or other functions or products of the dependent variables or its 
derivatives. 

A differential equation is called nonlinear if it is not linear. Two examples of 
nonlinear differential equations are 

and 
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Linear systems and nonlinear systems. For linear systems, the equations 
that constitute the model are linear. In this book, we shall deal mostly with linear sys­
tems that can be represented by linear, time-invariant ordinary differential equations. 

The most important property of linear systems is that the principle of superpo­
sition is applicable. This principle states that the response produced by simultaneous 
applications of two different forcing functions or inputs is the sum of two individual 
responses. Consequently, for linear systems, the response to several inputs can be 
calculated by dealing with one input at a time and then adding the results. As a 
result of superposition, complicated solutions to linear differential equations can be 
derived as a sum of simple solutions. 

In an experimental investigation of a dynamic system, if cause and effect are 
proportional, thereby implying that the principle of superposition holds, the system 
can be considered linear. 

Although physical relationships are often represented by linear equations, in 
many instances the actual relationships may not be quite linear. In fact, a careful 
study of physical systems reveals that so-called linear systems are actually linear 
only within limited operating ranges. For instance, many hydraulic systems and 
pneumatic systems involve nonlinear relationships among their variables, but they 
are frequently represented by linear equations within limited operating ranges. 

For nonlinear systems, the most important characteristic is that the principle of 
superposition is not applicable. In general, procedures for finding the solutions of 
problems involving such systems are extremely complicated. Because of the mathe­
matical difficulty involved, it is frequently necessary to linearize a nonlinear system 
near the operating condition. Once a nonlinear system is approximated by a linear 
mathematical model, a number of linear techniques may be used for analysis and 
design purposes. 

Continuous-time systems and discrete-time systems. Continuous-time 
systems are systems in which the signals involved are continuous in time. These sys­
tems may be described by differential equations. 

Discrete-time systems are systems in which one or more variables can change 
only at discrete instants of time. (These instants may specify the times at which some 
physical measurement is performed or the times at which the memory of a digital 
computer is read out.) Discrete-time systems that involve digital signals and, possi­
bly, continuous-time signals as well may be described by difference equations after 
the appropriate discretization of the continuous-time signals. 

The materials presented in this text apply to continuous-time systems; discrete­
time systems are not discussed. 

1-2 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 

Mathematical modeling. Mathematical modeling involves descriptions of 
important system characteristics by sets of equations. By applying physical laws to a 
specific system, it may be possible to develop a mathematical model that describes 
the dynamics of the system. Such a model may include unknown parameters, which 
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must then be evaluated through actual tests. Sometimes, however, the physical laws 
governing the behavior of a system are not completely defined, and formulating a 
mathematical model may be impossible. If so, an experimental modeling process can 
be used. In this process, the system is subjected to a set of known inputs, and its out­
puts are measured. Then a mathematical model is derived from the input-output re­
lationships obtained. 

Simplicity of mathematical model versus accuracy of results of analysis. 
In attempting to build a mathematical model, a compromise must be made between 
the simplicity of the model and the accuracy of the results of the analysis. It is im­
portant to note that the results obtained from the analysis are valid only to the ex­
tent that the model approximates a given physical system. 

In determining a reasonably simplified model, we must decide which physical 
variables and relationships are negligible and which are crucial to the accuracy of 
the model. To obtain a model in the form of linear differential equations, any dis­
tributed parameters and nonlinearities that may be present in the physical system 
must be ignored. If the effects that these ignored properties have on the response 
are small, then the results of the analysis of a mathematical model and the results of 
the experimental study of the physical system will be in good agreement. Whether 
any particular features are important may be obvious in some cases, but may, in 
other instances, require physical insight and intuition. Experience is an important 
factor in this connection. 

Usually, in solving a new problem, it is desirable first to build a simplified 
model to obtain a general idea about the solution. Afterward, a more detailed math­
ematical model can be built and used for a more complete analysis. 

Remarks on mathematical models. The engineer must always keep in 
mind that the model he or she is analyzing is an approximate mathematical descrip­
tion of the physical system; it is not the physical system itself In reality, no mathe­
matical model can represent any physical component or system precisely. 
Approximations and assumptions are always involved. Such approximations and as­
sumptions restrict the range of validity of the mathematical model. (The degree of 
approximation can be determined only by experiments.) So, in making a prediction 
about a system's performance, any approximations and assumptions involved in the 
model must be kept in mind. 

Mathematical modeling procedure. The procedure for obtaining a math­
ematical model for a system can be summarized as follows: 

L Draw a schematic diagram of the system, and define variables. 
2. Using physical laws, write equations for each component, combine them 

according to the system diagram, and obtain a mathematical model. 
3. To verify the validity of the model, its predicted performance, obtained by 

solving the equations of the model, is compared with experimental results. 
(The question of the validity of any mathematical model can be answered 
only by experiment.) If the experimental results deviate from the prediction 
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to a great extent, the model must be modified. A new model is then derived 
and a new prediction compared with experimental results. The process is re­
peated until satisfactory agreement is obtained between the predictions and 
the experimental results. 

1-3 ANALYSIS AND DESIGN OF DYNAMIC SYSTEMS 

This section briefly explains what is involved in the analysis and design of dynamic 
systems. 

Analysis. System analysis means the investigation, under specified condi­
tions, of the performance of a system whose mathematical model is known. 

The first step in analyzing a dynamic system is to derive its mathematical 
model. Since any system is made up of components, analysis must start by developing 
a mathematical model for each component and combining all the models in order to 
build a model of the complete system. Once the latter model is obtained, the analysis 
may be formulated in such a way that system parameters in the model are varied to 
produce a number of solutions. The engineer then compares these solutions and 
interprets and applies the results of his or her analysis to the basic task. 

H should always be remembered that deriving a reasonable model for the 
complete system is the most important part of the entire analysis. Once such a 
model is available, various analytical and computer techniques can be used to ana­
lyze it. The manner in which analysis is carried out is independent of the type of 
physical system involved-mechanical, electrical, hydraulic, and so on. 

Design. System design refers to the process of finding a system that accom­
plishes a given task. In general, the design procedure is not straightforward and will 
require trial and error. 

Synthesis. By synthesis, we mean the use of an explicit procedure to find a 
system that will perform in a specified way. Here the desired system characteristics 
are postulated at the outset, and then various mathematical techniques are used to 
synthesize a system having those characteristics. Generally, such a procedure is com­
pletely mathematical from the start to the end of the design process. 

Basic approach to system design. The basic approach to the design of 
any dynamic system necessarily involves trial-and-error procedures. Theoretically, a 
synthesis of linear systems is possible, and the engineer can systematically deter­
mine the components necessary to realize the system's objective. In practice, howev­
er, the system may be subject to many constraints or may be nonlinear; in such cases, 
no synthesis methods are currently applicable. Moreover, the features of the com­
ponents may not be precisely known. Thus, trial-and-error techniques are almost al­
ways needed. 

Design procedures. Frequently, the design of a system proceeds as follows: 
The engineer begins the design procedure knowing the specifications to be met and 
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the dynamics of the components, the latter of which involve design parameters. The 
specification may be given in terms of both precise numerical values and vague 
qualitative descriptions. (Engineering specifications normally include statements on 
such factors as cost, reliability, space, weight, and ease of maintenance.) It is impor­
tant to note that the specifications may be changed as the design progresses, for de­
tailed analysis may reveal that certain requirements are impossible to meet. Next, 
the engineer will apply any applicable synthesis techniques, as well as other meth­
ods, to build a mathematical model of the system. 

Once the design problem is formulated in terms of a model, the engineer car­
ries out a mathematical design that yields a solution to the mathematical version of 
the design problem. With the mathematical design completed, the engineer simu­
lates the model on a computer to test the effects of various inputs and disturbances 
on the behavior of the resulting system. If the initial system configuration is not sat­
isfactory, the system must be redesigned and the corresponding analysis completed. 
This process of design and analysis is repeated until a satisfactory system is found. 
Then a prototype physical system can be constructed. 

Note that the process of constructing a prototype is the reverse of mathemati­
cal modeling. The prototype is a physical system that represents the mathematical 
model with reasonable accuracy. Once the prototype has been built, the engineer 
tests it to see whether it is satisfactory. If it is, the design of the prototype is com­
plete. If not, the prototype must be modified and retested. The process continues 
until a satisfactory prototype is obtained. 

1-4 SUMMARY 

From the point of view of analysis, a successful engineer must be able to obtain a 
mathematical model of a given system and predict its performance. (The validity 
of a prediction depends to a great extent on the validity of the mathematical 
model used in making the prediction.) From the design standpoint, the engineer 
must be able to carry out a thorough performance analysis of the system before a 
prototype is constructed. 

The objective of this book is to enable the reader (1) to build mathematical 
models that closely represent behaviors of physical systems and (2) to develop sys­
tem responses to various inputs so that he or she can effectively analyze and design 
dynamic systems. 

Outline of the text. Chapter 1 has presented an introduction to system dy­
namics. Chapter 2 treats Laplace transforms. We begin with Laplace transformation 
of simple time functions and then discuss inverse Laplace transformation. Several 
useful theorems are derived. Chapter 3 deals with basic accounts of mechanical sys­
tems. Chapter 4 presents the transfer-function approach to modeling dynamic sys­
tems. The chapter discusses various types of mechanical systems. Chapter 5 examines 
the state-space approach to modeling dynamic systems. Various types of mechanical 
systems are considered. Chapter 6 treats electrical systems and electromechanical 
systems, including operational-amplifier systems. Chapter 7 deals with fluid systems, 
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such as liquid-level systems, pneumatic systems, and hydraulic systems, as well as 
thermal systems. A linearization technique for nonlinear systems is explored. 

Chapter 8 presents time-domain analyses of dynamic systems-specifically, 
transient-response analyses of dynamic systems. The chapter also presents the ana­
lytical solution of the state equation. Chapter 9 treats frequency-domain analyses of 
dynamic systems. Among the topics discussed are vibrations of rotating mechanical 
systems and vibration isolation problems. Also discussed are vibrations in multi­
degrees-of-freedom systems and modes of vibrations. 

Chapter 10 presents the basic theory of control systems, including transient­
response analysis, stability analysis, and root-locus analysis and design. Also dis­
cussed are tuning rules for PID controllers. Chapter 11 deals with the analysis and 
design of control systems in the frequency domain. The chapter begins with Bode 
diagrams and then presents the Nyquist stability criterion, followed by detailed 
design procedures for lead, lag, and lag-lead compensators. 

Appendix A treats systems of units, Appendix B summarizes conversion 
tables, and Appendix C gives a brief summary of vector-matrix algebra. Appendix 
D presents introductory materials for MATLAB. 

Throughout the book, MATLAB is used for the solution of most computa­
tional problems. Readers who have no previous knowledge of MATLAB may read 
Appendix D before solving any MATLAB problems presented in this text. 



The Laplace Transform 

2-1 INTRODUCTION 

The Laplace transform is one of the most important mathematical tools available 
for modeling and analyzing linear systems. Since the Laplace transform method 
must be studied in any system dynamics course, we present the subject at the begin­
ning of this text so that the student can use the method throughout his or her study 
of system dynamics. 

The remaining sections of this chapter are outlined as follows: Section 2-2 
reviews complex numbers, complex variables, and complex functions. Section 2-3 
defines the Laplace transformation and gives Laplace transforms of several com­
mon functions of time. Also examined are some of the most important Laplace 
transform theorems that apply to linear systems analysis. Section 2-4 deals with the 
inverse Laplace transformation. Finally, Section 2-5 presents the Laplace transform 
approach to the solution of the linear, time-invariant differential equation. 

2-2 COMPLEX NUMBERS, COMPLEX VARIABLES, 
AND COMPLEX FUNCTIONS 

This section reviews complex numbers, complex algebra, complex variables, and 
complex functions. Since most of the material covered is generally included in the 
basic mathematics courses required of engineering students, the section can be 
omitted entirely or used simply for personal reference. 

S 
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Figure 2-1 Complex plane representa­
tion of a complex number z. 

9 

Complex numbers. Using the notation j = v=I, we can express all num­
bers in engineering calculations as 

z = x + jy 

where z is called a complex number and x and jy are its real and imaginary parts, 
respectively. Note that both x and y are real and that j is the only imaginary quanti­
ty in the expression. The complex plane representation of z is shown in Figure 2-1. 
(Note also that the real axis and the imaginary axis define the complex plane and 
that the combination of a real number and an imaginary number defines a point in 
that plane.) A complex number z can be considered a point in the complex plane or 
a directed line segment to the point; both interpretations are useful. 

The magnitude, or absolute value, of z is defined as the length of the directed 
line segment shown in Figure 2-1. The angle of z is the angle that the directed line 
segment makes with the positive real axis. A counterclockwise rotation is defined as 
the positive direction for the measurement of angles. Mathematically, 

magnitude of z = Izl = V x2 + j, angle of z = 9 = tan-1l:'. 
x 

A complex number can be written in rectangular form or in polar form as 
follows: 

z = x + jy 
z = Izl(cos 9 + j sin 9) 

z= Izl~ 
z = Izl eifJ 

}rectangular fonns 

}polar forms 

In converting complex numbers to polar form from rectangular, we use 

Izl = V x2 + y2, 8 = tan-II 
x 

To convert complex numbers to rectangular form from polar, we employ 

x = I z I cos 8, y = I zl sin 8 

Complex conjugate. The complex conjugate of z = x + j y is defined as 

Z = x - jy 
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Figure 2-2 Complex number z and its 
complex conjugate Z, 

1m 

o Re 

The complex conjugate of z thus has the same real part as Z and an imaginary part that 
is the negative of the imaginary part of z. Figure 2-2 shows both z and Z. Note that 

z = x + jy = Izl il = Izi (cos 8 + j sin 8) 

z = x - jy = Izi /-8 = Izi (cas 8 - jsin8) 

Euler's theorem. The power series expansions of cos 8 and sin 8 are, 
respectively, 

and 

Thus, 

Since 

fi2 £t 86 

cos 8 = 1 - - + - - - + 
2! 4! 6! 

. 83 85 87 

sm8 = 8 - - + - - - + 
3! 5! 7! 

( '8)2 ('8)3 ('8)4 
8 + ' , 8 = 1 + ('8) + -'- + -'- + -'- + cos ,sm , , 3' 4' 2. . . 

it follows that 

cos 8 + j sin 8 = ejB 

This is known as Euler's theorem. 
Using Euler's theorem, we can express the sine and cosine in complex form. 

Noting that e-jB is the complex conjugate of ei6 and that 

eiB = cos 8 + j sin 8 

e -jB = cos 8 - j sin 8 

I 
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we find that 

ej8 + e-j8 

cos 8 = 2 

. ej8 - e-j8 

sm8 = 2j 

Complex algebra. If the complex numbers are written in a suitable form, op­
erations like addition, subtraction, multiplication, and division can be performed easily. 

Equality of complex numbers. 1\vo complex numbers z and ware said to be 
equal if and only if their real parts are equal and their imaginary parts are equal. So 
if two complex numbers are written 

z = x + jy, w = u + jv 

then z = w if and only if x = u and y = v. 
Addition. 1\vo complex numbers in rectangular form can be added by 

adding the real parts and the imaginary parts separately: 

z + w = (x + jy) + (u + jv) = (x + u) + j(y + v) 

Subtraction. Subtracting one complex number from another can be consid­
ered as adding the negative of the former: 

z - w = (x + jy) - (u + jv) = (x - u) + j(y - v) 

Note that addition and subtraction can be done easily on the rectangular plane. 

Multiplication. If a complex number is multiplied by a real number, the re­
sult is a complex number whose real and imaginary parts are multiplied by that real 
number: 

az = a(x + jy) = ax + jay (a = real number) 

If two complex numbers appear in rectangular form and we want the product in rec­
tangular form, multiplication is accomplished by using the fact that P = -1. Thus, if 
two complex numbers are written 

z = x + jy, w = u + jv 

then 

zw = (x + j y)( u + jv) = xu + j yu + jxv + lyv 

= (xu - yv) + j(xv + yu) 

In polar form, multiplication of two complex numbers can be done easily. The mag­
nitude of the product is the product of the two magnitudes, and the angle of the 
product is the sum of the two angles. So if two complex numbers are written 

z = Izl~, w = Iwl~ 

then 

zw = Izllwl/8 + cP 
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Multiplication by J. It is important to note that multiplication by j is equiva­
lent to counterclockwise rotation by 90°. For example, if 

z = x + jy 

then 

jz = j(x + jy) = jx + py = -y + jx 

or, noting that j = 1/90°, if 

z = Izl il 
then 

jz = 1/90° Izl il = Izl/8 + 90° 

Figure 2-3 illustrates the multiplication of a complex number z by j. 

Division. H a complex number z = I z I il is divided by another complex 
number w = I w I il., then 

z Izi il Izi 
w = Iwl L.!2. = M 18 - ~ 

That is, the result consists of the quotient of the magnitudes and the difference of 
the angles. 

Division in rectangular form is inconvenient, but can be done by mUltiplying 
the denominator and numerator by the complex conjugate of the denominator. This 
procedure converts the denominator to a real number and thus simplifies division. 
For instance, 

z x + jy (x + jy)(u - jv) (xu + yv) + j(yu - xv) - = -- = = ~--~--.;...~--..;... 
w u + jv (u + jv) (u - jv) u2 + v2 

xu + yv + . yu - xv 
= u 2 + v 2 J u2 + v 2 

o 

Figure 2-3 Multiplication of a 
complex number z by j. 

Re 

1m 

o Re 

Figure 2-4 Division of a complex 
number z by j. 
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Division by j. Note that division by j is equivalent to clockwise rotation by 
90°. For example, if z = x + jy, then 

z x + jy (x + jy)j jx - y . 
-=--= =--=y-]X 
j j jj -1 

or 

z Izl L.P. 
j = 1 /90° = I zl /8 - 90° 

Figure 2-4 illustrates the division of a complex number z by j. 

Powers and roots. Multiplying z by itself n times, we obtain 

zn = (Izl L.P.)n = Izln / n8 

Extracting the nth root of a complex number is equivalent to raising the number to 
the 1/nth power: 

For instance, 

and 

(8.66 - j5)3 = (10 /-30°)3 = 1000 /-90° = 0 - j 1000 = -j 1000 

(2.12 - j2.12)112 = (9 / -45°)112 = 3 / -22.5° 

Comments. It is important to note that 

Izwl = Izllwl 

Iz + wi #: Izi + Iwl 

Complex variable. A complex number has a real part and an imaginary 
part, both of which are constant. If the real part or the imaginary part (or both) are 
variables, the complex number is called a complex variable. In the Laplace transfor­
mation, we use the notation s to denote a complex variable; that is, 

s = u + jw 

where u is the real part and jw is the imaginary part. (Note that both u and ware real.) 

Complex function. A complex function F(s), a function of s, has a real part 
and an imaginary part, or 

F(s) = Fx + jFy 

where Fx and Fy are real quantities. The magnitude of F(s) is V Fi + F~, and the 
angle 8 of F(s) is tan-1(FylFx )' The angle is measured counterclockwise from the 
positive real axis. The complex conjugate of F(s) is pes) = Fx - jFy-

Complex functions commonly encountered in linear systems analysis are single­
valued functions of s and are uniquely determined for a given value of s.1}rpically, 
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such functions have the form 

K(s + ZI)(S + Z2) ... (s + Zm) 
F(s) - ---:...-..---.;...~-----

- (s + PI)(S + P2) ... (s + Pn) 

Points at which F(s) equals zero are called zeros. That is, s = -Zh S = -Z2, ... , 

s = -Zm are zeros of F(s). [Note that F(s) may have additional zeros at infinity; see 
the illustrative example that follows.] Points at which F(s) equals infinity are called 
poles. That is, s = -PI, S = - P2, ... , s = - Pn are poles of F(s). If the denominator 
of F(s) involves k-multiple factors (s + P l, then s = -pis called a multiple pole of 
order k or repeated pole of order k.1f k = 1, the pole is called a simple pole. 

As an illustrative example, consider the complex function 

JC(s + 2)(s + 10) 
G(s) - -------~ 

- s(s + l)(s + 5)(s + 15)2 

G(s) has zeros at s = -2 and s = -10, simple poles at s = 0, s = -1, and s = -5, 
and a double pole (multiple pole of order 2) at s = -15. Note that G(s) becomes 
zero at s = 00. Since, for large values of s, 

K 
G(s) * 3 s 

it follows that G(s) possesses a triple zero (multiple zero of order 3) at s = 00. If 
points at infinity are included, G(s) has the same number of poles as zeros. To sum­
marize, G(s) has five zeros (s = -2, s = -10, s = 00, s = 00, s = 00) and five 
poles (s = 0, s = -1, s = -5, s = -15, s = -15). 

2-3 LAPLACE TRANSFORMATION 

The Laplace transform method is an operational method that can be used advanta­
geously in solving linear, time-invariant differential equations. Its main advantage is 
that differentiation of the time function corresponds to multiplication of the trans­
form by a complex variable s, and thus the differential equations in time become 
algebraic equations in s. The solution of the differential equation can then be found 
by using a Laplace transform table or the partial-fraction expansion technique. 
Another advantage of the Laplace transform method is that, in solving the differen­
tial equation, the initial conditions are automatically taken care of, and both the par­
ticular solution and the complementary solution can be obtained simultaneously. 

Laplace transformation. Let us define 

/(t) = a time function such that /(t) = ° for t < 0 
s = a complex variable 

9!, = an operational symbol indicating that the 
quantity upon which it operates is to be transformed 

by the Laplace integral 100 

e -st dt 

F(s) = Laplace transform off(t) 



Sec. 2-3 Laplace Transformation 15 

Then the Laplace transform off(t) is given by 

~[f(t)] = F(s) = l"'e-n dt[f(t)] = l"'f(t)e-n dt 

The reverse process of finding the time function f(t) from the Laplace transform 
F(s) is called inverse Laplace trans/ormation. The notation for inverse Laplace trans­
formation is ;r1. Thus, 

;rl[F(s)] = /(t) 

Existence of Laplace transform. The Laplace transform of a function f(t) 
exists if the Laplace integral converges. The integral will converge iff( t) is piecewise 
continuous in every finite interval in the range t > 0 and if I(t) is of exponential 
order as t approaches infinity. A function f(t) is said to be of exponential order if a 
real, positive constant u exists such that the function 

e-atl/(t) I 
approaches zero as t approaches infinity. If the limit of the function e-utl/(t) I 
approaches zero for u greater than u c and the limit approaches infinity for u less 
than u C' the value u c is called the abscissa 0/ convergence. 

It can be seen that, for such functions as t, sin wt, and t sin wt, the abscissa of 
convergence is equal to zero. For functions like e-ct, te-ct, and e-ct sin wt, the abscis­
sa of convergence is equal to -c. In the case of functions that increase faster than 
the exponential function, it is impossible to find suitable values of the abscissa of 
convergence. Consequently, such functions as il and ter do not possess Laplace 
transforms. 

Nevertheless, it should be noted that, although er for 0 s t S 00 does not 
possess a Laplace transform, the time function defined by 

/(t) = er 
=0 

for 0 :s; t :s; T < 00 

for t < 0, T < t 

does, since / (t) = er for only a limited time interval 0 S t !5 T and not for 
o S t S 00. Such a signal can be physically generated. Note that the signals that can 
be physically generated always have corresponding Laplace transforms. 

If functions 11(t) and h(t) are both Laplace transformable, then the Laplace 
transform of 11 (t) + h( t) is given by 

;e[fl(t) + h(t)] = ;e[f1(t)] + ;e[f2(t)] 

Exponential function. Consider the exponential function 

/ (t) = 0 for t < 0 

= Ae-at for t ~ 0 

where A and a are constants. The Laplace transform of this exponential function 
can be obtained as follows: 

1
00 100 A ;e[Ae-at] = Ae-ate-st dt = A e-(a+s)t dt = --

o 0 s + a 
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In performing this integration, we assume that the real part of s is greater than -a 
(the abscissa of convergence), so that the integral converges. The Laplace trans­
form F(s} of any Laplace transformable functionf(t) obtained in this way is valid 
throughout the entire s plane, except at the poles of F(s). (Although we do not pre­
sent a proof of this statement, it can be proved by use of the theory of complex 
variables. ) 

Step function. Consider the step function 

f (t) = 0 for t < 0 
= A fort> 0 

where A is a constant. Note that this is a special case of the exponential function 
Ae -at, where a = O. The step function is undefined at t = O. Its Laplace transform is 
given by 

100 A 
;£[A] = Ae-st dt = -

o s 

The step function whose height is unity is called a unit-step function. The unit­
step function that occurs at t = to is frequently written l(t - to), a notation that will 
be used in this book. The preceding step function whose height is A can thus be writ­
tenA1(t}. 

The Laplace transform of the unit-step function that is defined by 

is lis, or 

l(t) = 0 
=1 

for t < 0 
for t > 0 

~[l(t)] = ! 
s 

Physically, a step function occurring at t = to corresponds to a constant signal 
suddenly applied to the system at time t equals to. 

Ramp function. Consider the ramp function 

f(t) = 0 
= At 

for t < 0 
for t ~ 0 

where A is a constant. The Laplace transform of this ramp function is 

!'eIAt] = A ["'te-Sf dt 

To evaluate the integral, we use the formula for integration by parts: 

[budv = Uvl: - [bVdU 
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In this case, U = t and dv = e-st dt. [Note that v = e-SII( -s).] Hence, 

100 ( -sl I 00 100 
-Sf ) ;e[At] = A te-sr dt = A t ~ - ~dt 

o -s 0 o-s 

= A fooe-sr dt = A 
s 10 s2 

Sinusoidal function. The Laplace transform of the sinusoidal function 

J (t) = 0 for t < 0 
= A sin wt for t ~ 0 

where A and ware constants, is obtained as follows: Noting that 

ejw1 = cos wt + j sin wt 

and 

e-jwt = cos wt - j sin wt 

we can write 

Hence, 

AlOO

• • ~[A sin wt] = --: (eJwt - e-Jwt)e-st dt 
2J 0 

Al A1 Aw 
=-------= 

2j s - jw 2j s + jw s2 + w2 

Similarly, the Laplace transform of A cos wt can be derived as follows: 

As 
;erA cos wt] = 2 2 

S + w 

17 

Comments. The Laplace transform of any Laplace transformable function 
f(t) can be found by multiplying f(t) by e-st and then integrating the product from 
t = 0 to t = 00. Once we know the method of obtaining the Laplace transform, how­
ever, it is not necessary to derive the Laplace transform of I(t) each time. Laplace 
transform tables can conveniently be used to find the transform of a given function 
f(t). Table 2-1 shows Laplace transforms of time functions that will frequently appear 
in linear systems analysis. In Table 2-2, the properties of Laplace transforms are given. 

Translated function. Let us obtain the Laplace transform of the translated 
function f(t - a)l(t - a), where a ~ O. This function is zero for t < a. The func­
tionsf(t)l(t) and f(t - a)1(t - a) are shown in Figure 2-5. 

By definition, the Laplace transform of J(t - a)l(t - a) is 

~1f(1 - a)t(t - a)] = [,oJ(1 - a)t(1 - aV" dl 
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TABLE 2-1 Laplace Transform Pairs 

f(t) F(s) 

1 Unit impulse cS{t) 1 

2 Unit step 1(t) 
1 -
s 

1 
3 t s2 

4 
tn- 1 

(n=1,2,3, ... ) 
1 -

(n - 1)! sn 

5 tn (n=1,2,3, ... ) 
n! -sn+l 

6 e-at 1 --
s+a 

1 
7 te-at 

(s + a)2 

1 n-l -at (n = 1, 2, 3, ... ) 
1 

8 (n - 1)! t e (s + a)n 

9 tne-at (n=1,2,3, ... ) 
n! 

(s + a)n+l 

w 
10 sin wt 

$2 + w2 

S 
11 coswt 

s2 + w2 

w 
12 sinh wt S2 - (J)2 

$ 
13 cosh wt ; - w2 

14 !(1 - e-at ) 
1 

a s(s + a) 

15 _1_ (e-at _ e-bt ) 1 
b-a (s + a)(s + b) 

_1_(be-bt - ae-at ) 
s 

16 (s + a)(s + b) b-a 

~[1 + _1_(be-at - ae-bt ) ] 
1 

17 s(s + a)(s + b) ab a - b 



TABLE 2-1 (continued) 

r I 

1--

f(t) 
I l pes) 

-
18 

1 
2 (1 e 01 

a 
ate 01) 

1 
s(s + a)2 

-
19 

1 

'---

2 (at 1 + e-al ) 
1 

a s2(s + a) 
-

w 
20 e 01 sin wt -

(s + a)2 + ;;;. 
~ 

21 
l.-

e 01 cos wt 
s+a 

-
(s + a)2 + -;;; 

-
22 

Wn _ e(wnt· ~ ~ smwn 1-,2 t w2 
n 

2 s + 2,wns + w2 
n 

-
1 - =e (Wnl' ( ~ 

23 

~ smwn 1-,2 / -cJ» 

cJ> = tan-1YI - ,2 
_s 

2 S + 2,wns + w2 

, -

n 

-
1 

1 _ _e(wnt· ( ~ 

24 

~ smwn 1-,2 / +cJ» 

cJ> = tan-l!l - ,2 

w2 
n 

S(S2 + 2,wns + w1) 

' --
w2 

25 1 cos wt -
S(S2 + w2) 

'- -
w3 

26 wt - sin wt -
s2(s2 + ( 2) 

-
2w3 

27 sin wt - wt cos wt -
(s2 + w2)2 

-
28 

1 
2w I sin wI 

s 
-
(s2 + w2)2 

-
s2 - w2 

29 t cos wt -
(s2 + ( 2)2 

- -

I _ 1 
30 ~ _ :I (cos WIt cos i»2t) (WI ¢~) 

S 

(s2 + wI)(s2 + ~) 
-

31 
1 

2w (sin wt + wt cos wt) -
S2 

(s2 + (2)2 
L.. 

19 



TABLE 2-2 Properties of Laplace Transforms 

1 ~[Af(t)] :::: AF(s) 

2 ~[fl(t) ± 12(t)] :::: P1(s) ± F2(S) 

3 ~±[:tf(t) ] = sF(s) - f(O±) 

4 !:e±[:~f(t)] = s2p(s) - sf(O±) - i(O±) 

[ dn] n (k-l) 
~± dtnf(t) = snp(s) - ~sn-k f(O±) 

5 
(k-l) dk- 1 

where f(t) :::: dtk-1f(t) 

6 [J ] F(s) If [(I) dll/eD< 
~± f(t)dt = - + 

s s 

[f! ] F(s) If [(I) dll/eD< Iff [(I) dl dll/eD< 
7 ~± f(t) dt dt = -2 + 2 + 

S S s 

8 ~±[/··· 1 f(t)(dt)n] = F(:) + ± n_
1
k+l [/···1 f(t)(dt)k ] 

s k=l S I=O± 

9 f£[!o'[(I) dl] = F~S) 

10 ["'[(I) dl = lim F(s) if 1."" [( I) dl exists o s-O 

11 ~[e-a'f(t)] = F(s + a) 

12 !:e[f(t - a)l(t - a)] = e-asF(s) a~O 

13 dP(s) 
!:e[tf(t)] = ---

ds 

14 d2 
~[t2f(t)] = -2 F(s) 

ds 

dn 
15 ~[tnf(t)] = (-l)n-F(s) n = 1,2,3, ... 

dsn 

16 f£[7[(I)] = 1""F(S) ds if lim.!. f(t) exists 
I-ot 

17 ~[f(~)] = aF(as) 

20 
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f(t) l(t) f(1 - DC) l(t - DC) 

o o DC 

Figure 2-S Functionf(t)l(t) and translated function f(t - a)I(1 - a). 

By changing the independent variable from t to 7, where 7 = t - a, we obtain 

foof(t - £1')l(t - £1')e-st dt = l°Of (7) 1 (T)e-S(T+a) dT 
10 -a 

21 

Noting that f(T)1(7) = 0 for T < 0, we can change the lower limit of integration 
from -a to O. Thus, 

l °Of (T)l(T)e-S(T+a> dT = f
OO

f (7) 1 (T)e-S(T+a) dT 
-a 10 

= ["'j(T)e-STe-as dT 

= e-as 100 

j( T)e-ST dT = e-asp(s) 

where 

P(s) = ~(f(t)] = 1°Oj (tv" dl 

Hence, 

;Eff(t - a)l(t - a)] = e-aSF(s) a~O 

This last equation states that the translation of the time functionf(t)l(t) by a (where 
a ~ 0) corresponds to the multiplication of the transform F(s) bye-as. 

Pulse function. Consider the pulse function shown in Figure 2-6, namely, 

A 
f(t) =-

to 
=0 

where A and to are constants. 

for 0 < t < to 

for t < 0, to < t 

The pulse function here may be considered a step function of height Alto that 
begins at t = 0 and that is superimposed by a negative step function of height Alto 
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1(1) 

A 
to 

o 

4_ 00 
to 

Figure 2-6 Pulse function. Figure 2-7 Impulse function. 

beginning at t = to; that is, 

A A 
f(t) = -1(t) - -1(t - to) 

to to 

Then the Laplace transform off(t) is obtained as 

~[J(t)l = ~[~ 1(t) ] - ~[~ 1(t - to) ] 

A A -SI = - - -e 0 

tos tos 
A _ 

= -(1 - e stO) 

tos 
(2-1) 

Impulse function. The impulse function is a special limiting case of the 
pulse function. Consider the impulse function 

f (t) = lim A for 0 < t < to 
to-O to 

= 0 for t < 0, to < t 

Figure 2-7 depicts the impulse function defined here. It is a limiting case of the pulse 
function shown in Figure 2-6 as to approaches zero. Since the height of the impulse 
function is Alto and the duration is to, the area under the impulse is equal to A. As 
the duration to approaches zero, the height Alto approaches infinity, but the area 
under the impulse remains equal to A. Note that the magnitude of the impulse is 
measured by its area. 

From Equation (2-1), the Laplace transform of this impulse function is shown 
to be 

:Eff(t)] = lim [~(1 - e-sto )] 
10-0 tos 

~[A(l - e-S1o )] 

. dto As 
=hm =-=A 

10-0 d () s - tos 
dto 
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Thus, the Laplace transform of the impulse function is equal to the area under the 
impulse. 

The impulse function whose area is equal to unity is called the unit-impulse 
function or the Dirac delta function. The unit-impulse function occurring at t = to is 
usually denoted by eS(t - to), which satisfies the following conditions: 

eS(t - to) = 0 
eS(t - to) = 00 

J~ 6(1 - '0) dl = 1 

for t * to 
for t = to 

An impulse that has an infinite magnitude and zero duration is mathematical 
fiction and does not occur in physical systems. If, however, the magnitude of a pulse 
input to a system is very large and its duration very short compared with the system 
time constants, then we can approximate the pulse input by an impulse function. For 
instance, if a force or torque input f(t) is applied to a system for a very short time 
duration 0 < t < to, where the magnitude of f(t) is sufficiently large so that 
J;o f(t) dt is not negligible, then this input can be considered an impulse input. 
(Note that, when we describe the impulse input, the area or magnitude of the 
impulse is most important, but the exact shape of the impulse is usually immaterial.) 
The impulse input supplies energy to the system in an infInitesimal time. 

The concept of the impulse function is highly useful in differentiating discon­
tinuous-time functions. The unit-impulse function eS(t - to) can be considered the 
derivative of the unit-step function l(t - to) at the point of discontinuity t = to, or 

d 
eS(t - to) = dt l(t - to) 

Conversely, if the unit-impulse function eS(t - to) is integrated, the result is the unit­
step function l(t - to). With the concept of the impulse function, we can differenti­
ate a function containing discontinuities, giving impulses, the magnitudes of which 
are equal to the magnitude of each corresponding discontinuity. 

Multiplication of fIt) bye-at. If f(t) is Laplace transformable and its 
Laplace transform is F(s), then the Laplace transform of e-at f(t) is obtained as 

~[e"""f(l)l = [X> e-alf(t)e-st dl = F(s + a) (2-2) 

We see that the multiplication of f(t) bye-at has the effect of replacing s by 
(s + a) in the Laplace transform. Conversely, changing s to (s + a) is equivalent to 
mUltiplyingf(t) bye-at. (Note that a may be real or complex.) 

The relationship given by Equation (2-2) is useful in finding the Laplace 
transforms of such functions as e -at sin wt and e -at cos wt. For instance, since 

~[sin wt] = 2 W 2 = F(s) 
s + w 

and 
s 

~[cos wt] = 2 2 = G(s) 
s + w 
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it follows from Equation (2-2) that the Laplace transforms of e-at sin wt and 
e -at cos wt are given, respectively, by 

and 

w 
!e[e-al sin wt] = F(s + a) = ----­

(s + a)2 + w2 

s+a 
!e[e-al cos wt] = G(s + a) = -----::­

(s + a)2 + w2 

Comments on the lower limit of the Laplace integral. In some cases,Jtt) 
possesses an impulse function at t = O. Then the lower limit of the Laplace integral 
must be clearly specified as to whether it is 0- or 0+, since the Laplace transforms 
ofJtt) differ for these two lower limits. If such a distinction of the lower limit of the 
Laplace integral is necessary, we use the notations 

and 

.:£_[f(t)] = ["'[(t)e-n dt = .:£+[f(t)] + [0+ [(t)e-st dt 

IfJtt) involves an impulse function at t = 0, then 

since 

[[(t)e-st dt .. 0 

for such a case. Obviously, ifJtt) does not possess an impulse function at t = 0 (i.e., 
if the function to be transformed is finite between t = 0- and t = 0+), then 

!e+[f(t)] = !e_[f(t)] 

Differentiation theorem. The Laplace transform of the derivative of a 
function/(t) is given by 

.:£[:/(t)] = sF(s) - [(0) (2-3) 

where .f(0) is the initial value of .f(t), evaluated at t = O. Equation (2-3) is called the 
differentiation theorem. 

For a given function .f(t), the values of /(0+) and 1(0-) may be the same or 
different, as illustrated in Figure 2-8. The distinction between 1(0+) and 1(0-) is 
important when.f(t) has a discontinuity at t = 0, because, in such a case, dJtt)/dt will 
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/(/) 
/(0 +) 

/(/) 

Flgure 2-8 Step function and sine function indicating initial values at 1 = 0- and 
1 = 0+. 

25 

involve an impulse function at t = O. If 1(0+) ::F 1(0-), Equation (2-3) must be 
modified to 

~+[:,t(t)] = sF(s) - [(0+) 

~-[:,t(t) ] = sF(s) - /(0-) 

To prove the differentiation theorem, we proceed as follows: Integrating the 
Laplace integral by parts gives 

roo -st I 00 (:JO[ d ] -sf 

10 I(t)e-
st 

dt = I(t) ~s 0 - 10 dtl(t) ~s dt 

Hence, 

1(0) 1 [d ] F(s) = - + -;£ -/(t) 
s s dt 

It follows that 

~[:t[(t) ] = sF(s) - [(0) 

Similarly, for the second derivative of I(t), we obtain the relationship 

~[;:[(t) ] = h(s) - s/(O) - j(O) 

where 1(0) is the value of dl(t)ldt evaluated at t = O. To derive this equation, define 

d 
dtl(t) = g(t) 
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!'£[:I:/(/)] = !'£[:lg(/) ] = s!'£[g(t)] - g(O) 

= S!'£[:,t(/) ] - j(O) 

= l-P(s) - sl(O) - i(O) 

Similarly, for the nth derivative of f(t), we obtain 

!'£[:/:t</)] = s"F(s) - r'/(O) - s"-2j(0) - ... ~fW) 
• (n-l) 1 

where f(O), f(O), ... , f(O) represent the values of f(t), dl(t)ldt, ... , dn- f(t)1 
dtn- 1, respectively, evaluated at t = O. If the distinction between :£+ and ;£_ is 
necessary, we substitute t = 0+ or t = 0- into I(t), df(t)ldt, ... , dn-1f(t)ldtn-1, 
depending on whether we take ;£+ or ;E_. 

Note that, for Laplace transforms of derivatives of f(t) to exist, dnf(t)ldrn 
(n = 1, 2, 3, ... ) must be Laplace transformable. 

Note also that, if all the initial values of f(t) and its derivatives are equal to 
zero, then the Laplace transform of the nth derivative off(t) is given by snF(s). 

Final-value theorem. The final-value theorem relates the steady-state behav­
ior off(t) to the behavior of sF(s) in the neighborhood of s = O. The theorem, howev­
er, applies if and only if lim/-+oof(t) exists [which means thatf(t) settles down to a 
definite value as t --+ 00]. If all poles of sF(s) lie in the left half s plane, then lim,_oo f( t) 
exists, but if sF(s) has poles on the imaginary axis or in the right half s plane,f(t) will 
contain oscillating or exponentially increasing time functions, respectively, and 
lim,-+oo I (t) will not exist. The final-value theorem does not apply to such cases. For in­
stance, if f(t) is a sinusoidal function sin wt, then sF(s) has poles at s = ±jw, and 
lim/-+oo f(t) does not exist. Therefore, the theorem is not applicable to such a function. 

The final-value theorem may be stated as follows: If f(t) and df(t)ldt are 
Laplace transformable, if P(s) is the Laplace transform of f(t), and if lim,_oof(t) 
exists, then 

lim f(t) = lim sF(s) ,_00 s-o 

To prove the theorem, we let s approach zero in the equation for the Laplace trans­
form of the derivative off(t), or 

lim (oo[dd f(t)]e-s, dt = lim [sP(s) - 1(0)] 
s-o}o t s-o 

Since lims_oe-s, = 1, if lim,_oo f(t) exists, then we obtain 

['[:,1(/) ] dl = 1(/) r = I( 00) - 1(0) 

= lim sP(s) - 1(0) 
s-o 
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from which it follows that 

/(00) = lim /(t) = lim sF(s) 
1_00 s-o 

Initial-value theorem. The initial-value theorem is the counterpart of the 
final-value theorem. Using the initial-value theorem, we are able to find the value of 
f(t) at t = 0+ directly from the Laplace transform of /(t). The theorem does not give 
the value of I(t) at exactly t = 0, but rather gives it at a time slightly greater than zero. 

The initial-value theorem may be stated as follows: Iff(t) and df(t)/dt are both 
Laplace transformable and if lims_ oo sF(s) exists, then 

/(0+) = lim sF(s) 
s-OO 

To prove this theorem, we use the equation for the ~+ transform of df(t)ldt: 

~+[:,t(t) ] = sF(s) - /(0+) 

For the time interval 0+ ~ t ~ 00, as s approaches infinity, e-SI approaches zero. 
(Note that we must use ~+ rather than ~_ for this condition.) Hence, 

lim [OO[dd /(t)]e-sl dt = lim [sF(s) - /(0+)] = 0 
s_oo Jo+ t. s-OO 

or 

/(0+) = lim sF(s) 
s_oo 

In applying the initial-value theorem, we are not limited as to the locations of 
the poles of sF(s). Thus, the theorem is valid for the sinusoidal function. 

Note that the initial-value theorem and the final-value theorem provide a con­
venient check on the solution, since they enable us to predict the system behavior in 
the time domain without actually transforming functions in s back to time functions. 

Integration theorem. Iff(t) is of exponential order, then the Laplace trans­
form of J /(t) dt exists and is given by 

~[f Jet) dt] = F~S) + r~(o) (2-4) 

where F(s) = ~[f(t)] and /-1(0) = J /(t) dt, evaluated at t = o. Equation (2-4) is 
called the integration theorem. 

The integration theorem can be proven as follows: Integration by parts yields 

~[J Jet) dt ] = f' [f Jet) dt ]e-" dt 

= [J Jet) dt] e~; I~ -100 

f(t) ~; dt 



28 The Laplace Transform Chap. 2 

= !jl(t) dti + ! roo I(t)e-st dt s 1;:0 S Jo 
1-1(0) F(s) 

=--+--
s s 

and the theorem is proven. 
Note that, if f(t) involves an impulse function at t = 0, then rl(O+)~ 

/-1(0-). So if f(t) involves an impulse function at t = 0, we must modify Equation 
(2-4) as follows: 

~+[J f(t) dt] = F~S) + rl~o+) 

~-[J f(t) dt] = F~S) + rl~O-) 

We see that integration in the time domain is converted into division in the s 
domain. If the initial value of the integral is zero, the Laplace transform of the inte­
gral off(t) is given by F(s)ls. 

The integration theorem can be modified slightly to deal with the definite inte­
gral off!..t). Iff(t) is of exponential order, the Laplace transform of the definite inte­
gral Jof(t) dt can be given by 

~[[f(t) dt] = F~S) (2-5) 

To prove Equation (2-5), first note that 

[f(t) dt = j f(t) dt - rl(O) 

where rl(O) is equal to J f(t) dt, evaluated at t = 0, and is a constant. Hence, 

~[[f(t) dt] = ~[J f(t) dt - rl(O) ] 

= ~[J f(t) dt] - ~[rl(O)l 
Referring to Equation (2-4) and noting that [-1(0) is a constant, so that 

;£ff-l(O)] = 1-1(0) 
S 

we obtain 
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Note that, ifJtt) involves an impulse function at t = 0, then J/ f(t) dt ¢ J/ f(t) dt, 
and the following distinction must be observed: 0+ 0-

~{£ f(t) dt] = ~+~(t)] 

~-[.Lf(t) dt] = ~-~(t)l 

2-4 INVERSE LAPLACE TRANSFORMATION 

The inverse Laplace transformation refers to the process of finding the time func­
tionJtt) from the corresponding Laplace transform F(s). Several methods are avail­
able for finding inverse Laplace transforms. The simplest of these methods are (1) to 
use tables of Laplace transforms to find the time function Jtt) corresponding to a 
given Laplace transform F(s) and (2) to use the partial-fraction expansion method. 
In this section, we present the latter technique. [Note that MATLAB is quite useful 
in obtaining the partial-fraction expansion of the ratio of two polynomials, 
B(s)IA(s). We shall discuss the MATLAB approach to the partial-fraction expan­
sion in Chapter 4.] 

Partial-fraction expansion method for finding inverse Laplace transforms. 
H F(s), the Laplace transform ofJtt), is broken up into components, or 

F(s) = Ft(s) + F2(S) + ... + Fn(s) 

and if the inverse Laplace transforms of Ft(s), F2(S), ... , Fn(s) are readily avail­
able, then 

,rl[F(s)] = ,rt[Fl(S)] + ,rt[F2(S)] + ... + ;e--l[Fn(s)] 
= ft(t) + h(t) + ... + fn(t) 

where ft(t),h(t), ... ,fn(t) are the inverse Laplace transforms of F1(s), F2(s),"', 
Fn(s), respectively. The inverse Laplace transform of F(s) thus obtained is unique, 
except possibly at points where the time function is discontinuous. Whenever the 
time function is continuous, the time function f(t) and its Laplace transform F(s) 
have a one-to-one correspondence. 

For problems in systems analysis, F(s) frequently occurs in the form 

B(s) 
F(s) = A(s) 

where A(s) and B(s) are polynomials in s and the degree of B(s) is not higher than 
that of A (s). 

The advantage of the partial-fraction expansion approach is that the individ­
ual terms of F(s) resulting from the expansion into partial-fraction form are very 
simple functions of s; consequently, it is not necessary to refer to a Laplace trans­
form table if we memorize several simple Laplace transform pairs. Note, however, 
that in applying the partial-fraction expansion technique in the search for the 
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inverse Laplace transform of F(s) = B(s)/A(s), the roots of the denominator poly­
nomial A(s) must be known in advance. That is, this method does not apply until the 
denominator polynomial has been factored. 

Consider F(s) written in the factored form 

B(s) K(s + Zt)(s + zz)'" (s + Zm) 
F(s) = A(s) = (s + Pt)(s + P2)'" (s + Pn) 

where Pt, P2, ... , Pn and ZI, Z2, ... , Zm are either real or complex quantities, but for 
each complex Pi or Zi, there will occur the complex conjugate of Pi or Zi, respective­
ly. Here, the highest power of sin A(s) is assumed to be higher than that in B(s). 

In the expansion of B(s)/A(s) into partial-fraction form, it is important that the 
highest power of s in A (s) be greater than the highest power of s in B(s) because if that 
is not the case, then the numerator B(s) must be divided by the denominator A(s) in 
order to produce a polynomial in s plus a remainder (a ratio of polynomials in s whose 
numerator is of lower degree than the denominator). (For details, see Example 2-2.) 

Partial-fraction expansion when F(s) involves distinct poles only. In 
this case, F(s) can always be expanded into a sum of simple partial fractions; that is, 

B(s) at a2 an 
F(s) =-=--+--+ ... +-- (2-6) 

A(s) s + PI S + P2 s + Pn 

where ak( k = 1, 2, ... , n) are constants. The coefficient ak is called the residue at 
the pole at s = - Pk' The value of ak can be found by multiplying both sides of 
Equation (2-6) by (s + Pk) and letting s = - Pk, giving 

[(S + Pk) B(S)] = [_a_t_(S + Pk) + ~(s + Pk) + ... 
A(s) s=-p" s + PI S + P2 

ak an] + --(s + Pk) + ... + --(s + Pk) 
s + Pk S + Pn S=-Pk 

= ak 

We see that all the expanded terms drop out, with the exception of ak' Thus, the 
residue ak is found from 

[ 
B(s) 1 

ak = (s + Pk) A() _ 
S S--Pk 

(2-7) 

Note that since f(t) is a real function of time, if PI and P2 are complex conjugates, 
then the residues al and a2 are also complex conjugates. Only one of the conjugates, 
al or a2, need be evaluated, because the other is known automatically. 

Since 

f(t) is obtained as 

f(t) = ~-I[F(s)] = ale-PIt + a2e-P2t + ... + ane-Pllt t ::: 0 
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Example 2-1 

Fmd the inverse Laplace transform of 

F(s) _ s + 3 
- (s + l)(s + 2) 

The partial-fraction expansion of F(s) is 

F( ) s + 3 al a2 
s = (s + l)(s + 2) = s + 1 + s + 2 

where al and a2 are found by using Equation (2-7): 

a1 =[(s+1) s+3 ] =[S+3] =2 
(s + l)(s + 2) s=-1 s + 2 s=-1 

a2 = [(S + 2) s + 3 ] = [~] = -1 
(s + l)(s + 2) s=-2 s + 1 s=-2 

Thus, 

f(t) = ~1[F(s)] 

= ~1[s ! 1] + Tl[S ~12] 
= 2e-t - e-2t t ;;:: 0 

Example 2-2 

Obtain the inverse Laplace transform of 

G S3 + 5s2 + 9s + 7 
(s) = (s + l)(s + 2) 

Here, since the degree of the numerator polynomial is higher than that of the 
denominator polynomial, we must divide the numerator by the denominator: 

s+3 
G(s) = s + 2 + (s + l)(s + 2) 

Note that the Laplace transform of the unit-impulse function ~(t) is unity and that the 
Laplace transform of dS(t)ldt is s. The third term on the right-hand side of this last 
equation is F(s) in Example 2-1. So the inverse Laplace transform of G(s) is given as 

get) = ..!!.-S(t) + 2~(t) + 2e-t - e-2t 

dt 
t ;;:: 0-

Comment. Consider a function F(s) that involves a quadratic factor 
s2 + as + b in the denominator. If this quadratic expression has a pair of complex­
conjugate roots, then it is better not to factor the quadratic, in order to avoid com­
plex numbers. For example, if F(s) is given as 

F(s) = pes) 
s(s2 + as + b) 
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where a ~ 0 and b > 0, and if s2 + as + b = 0 has a pair of complex-conjugate 
roots, then expand F(s) into the following partial-fraction expansion form: 

c ds + e 
F( s) = -; + -s2-+-a-s-+-b 

(See Example 2-3 and Problems A-2-15, A-2-16, and A-2-19.) 

ExampJe2-3 

Find the inverse Laplace transform of 

F(s) = 2s + 12 
s2 + 2s + 5 

Notice that the denominator polynomial can be factored as 

s2 + 2s + S = (s + 1 + j2)(s + 1 - j2) 

The two roots of the denominator are complex conjugates. Hence, we expand F(s) into 
the sum of a damped sine and a damped cosine function. 

Noting that; + 2s + S = (s + 1)2 + 22 and referring to the Laplace trans­
forms of e-al sin wt and e-al cos Cdt, rewritten as 

and 

_ s+a 
.'i[e at cos Cdt] = 2 2 

(s + a) + w 

we can write the given F(s) as a sum of a damped sine and a damped cosine function: 

2s + 12 10 + 2(s + 1) 
F(s) -----

- s2 + 2s + S (s + 1)2 + 22 

=S 2 +2 s+1 
(s + 1)2 + 22 (s + 1)2 + 22 

It follows that 

f(t) = .'i-I[F(s)] 

= SX-
1
[(S + 1~2 + 22] + 2!C

1
[(S +S 1;21+ 22 ] 

= Se-1 sin 2t + 2e-1 cos 2t t ~ 0 

Partial-fraction expansion when F(s) involves multiple poles. Instead 
of discussing the general case, we shall use an example to show how to obtain the 
partial-fraction expansion of F(s). (See also Problems A-2-17 and A-2-19.) 

Consider 

F (s) = s2 + 2s + 3 
(s + 1)3 
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The partial-fraction expansion of this F(s) involves three terms: 

F( B(s) ~ ~ b1 
s) = A(s) = (s + 1? + (s + 1)2 + S + 1 

where b3, b2, and b1 are determined as follows: Multiplying both sides of this last 
equation by (s + 1?, we have 

B(s) 
(s + 1)3 A(s) = ~ + b,,(s + 1) + b1(s + 1)2 (2-8) 

Then, letting s = -1, we find that Equation (2-8) gives 

[ (s + 1)3
B

(S)] = ~ 
A(s) s=-1 

Also, differentiating both sides of Equation (2-8) with respect to s yields 

:s [(s + 1)3 !~:~] = ~ + 2bt(s + 1) (2-9) 

H we let s = -1 in Equation (2-9), then 

!£[(S + 1?B(S)] = ~ 
ds A(s) s=-1 

Differentiating both sides of Equation (2-9) with respect to s, we obtain 

~[(S + 1)3
B(S)] = 2b1 ds2 A(s) 

From the preceding analysis, it can be seen that the values of ~, ~, and b1 are found 
systematically as follows: 

~ = [(s + 1)3!~:~ L-I 
= (s2 + 2s + 3)S=-1 

=2 

~ = {:s [(s + 1)3 !~:~ ]L-I 
= [~(S2 + 2s + 3)] 

ds s=-1 

= (2s + 2)s=-1 
=0 

b1 = ~ {if. [(S + 1)3 B(S)]} 
2! ds2 A(s) s=-1 

= J, [ d2

2 (s2 + 2s + 3)] 
2. ds s=-1 

=1.(2) = 1 
2 
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We thus obtain 

f(t) = ~-l[F(s)] 
_ ;e-l[ 2 ] + :e-1[ 0 ] + ;e-l[_1_] 
- (s + 1)3 (s + 1)2 S + 1 
= t2e-t + 0 + e-t 

= (t2 + 1 )e-t t ~ 0 

2-5 SOLVING LINEAR, TIME-INVARIANT DIFFERENTIAL EQUATIONS 

In this section, we are concerned with the use of the Laplace transform method in 
solving linear, time-invariant differential equations. 

The Laplace transform method yields the complete solution (complementary 
solution and particular solution) of linear, time-invariant differential equations. 
Classical methods for finding the complete solution of a differential equation 
require the evaluation of the integration constants from the initial conditions. In the 
case of the Laplace transform method, however, this requirement is unnecessary 
because the initial conditions are automatically included in the Laplace transform 
of the differential equation. 

If all initial conditions are zero, then the Laplace transform of the differential 
equation is obtained simply by replacing dldt with s, d21dt2 with s2, and so on. 

In solving linear, time-invariant differential equations by the Laplace trans­
form method, two steps are followed: 

1. By taking the Laplace transform of each term in the given differential equa­
tion, convert the differential equation into an algebraic equation in s and ob­
tain the expression for the Laplace transform of the dependent variable by 
rearranging the algebraic equation. 

2. The time solution of the differential equation is obtained by rmding the in­
verse Laplace transform of the dependent variable. 

In the discussion that follows, two examples are used to demonstrate the solu­
tion of linear, time-invariant differential equations by the Laplace transform 
method. 

Example 2-4 

Find the solution x(t) of the differential equation 

:i + 3x + 2x = 0, x(O) = a, x(O) = b 

where a and b are constants. 
Writing the Laplace transform of x(t) as Xes), or 

;e[x(t)] = Xes) 

we obtain 

!e[x] = sX(s) - x(O) 
!e[:i] = s2 Xes) - sx(O) - x(O) 
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The Laplace transform of the given differential equation becomes 

[s2 X(s) - sx(O) - x(O)] + 3[sX(s) - x(O)] + 2X(s) = 0 

Substituting the given initial conditions into the preceding equation yields 

[s2 X(s) - as - b] + 3[sX(s) - a] + 2X(s) = 0 

or 

(S2 + 3s + 2)X(s) = as + b + 3a 

Solving this last equation for X(s), we have 

X (s) = as + b + 3a = as + b + 3a = _2o_+_b _ _ a _+_b 
s2 + 3s + 2 (s + 1) (s + 2) s + 1 s + 2 

The inverse Laplace transform of X(s) produces 

x(t) = ~-l[X(S)] = ~-1[2a + b]_ ;£-I[a + b] 
s+1 s+2 

= (20 + b)e-I 
- (a + b)e-2t t ~ 0 

35 

which is the solution of the given differential equation. Notice that the initial condi­
tions a and b appear in the solution. Thus,x(t) has no undetermined constants. 

Example 2-5 

Find the solution x(t) of the differential equation 

x + 2X + 5x = 3, x(O) = 0, x(O) = 0 

Noting that ;£[3] = 3/s, x(O) = 0, and X(O) = 0, we see that the Laplace trans­
form of the differential equation becomes 

3 
S2 X(s) + 2sX(s) + 5X(s) = -

s 

Solving this equation for X(s), we obtain 

3 
X(s) = s(S2 + 2s + 5) 

31 3 s+2 
=-- -

5 s 5 s2 + 2s + 5 
31 3 2 
5s 

Hence, the inverse Laplace transform becomes 

x(t) = ;£-l[X(s)) 

3 s + 1 
5(s+I)2+22 

- ~;£-1[!]_ ~~-1[ 2 ]_ ~;£-1[ S + 1 ] 
- 5 s 10 (s + 1)2 + 22 5 (s + 1)2 + 22 

3 3 -I • 2 3 -I 2 = - - - e SID t - - e cos t 
5 10 5 

t~O 

which is the solution of the given differential equation. 
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EXAMPLE PROBLEMS AND SOLUTIONS 

Problem A-2-1 

Obtain the real and imaginary parts of 

2 + j1 

3 + j4 

Also, obtain the magnitude and angle of this complex quantity. 

Solution 

2 + j1 (2 + j1)(3 - j4) 
--= 
3 + j4 (3 + j4)(3 - j4) 

2 .1 
= 5" - '5" 

Hence, 

6+j3-j8+4 

9 + 16 

10 - j5 

25 

2 
real part = -5' 

.. .1 
nnagmary part = -,-

5 

The magnitude and angle of this complex quantity are obtained as follows: 

magnitude = ~n)' + (~1)' = & = ~ = 0.447 

-115 -1 
angle = tan-1-- = tan-1- = -26.565° 

215 2 

Problem A-2-2 

Find the Laplace transform of 

Solution Since 

f(l) = 0 1<0 

= te-3r t ~ 0 

1 
~[t] = G(s) =: -

s2 

referring to Equation (2-2), we obtain 

F(s) = ;e[te-3r] = G(s + 3) = 1 
(s + 3)2 

Problem A-2-3 

What is the Laplace transform of 

where 8 is a constant? 

Solution Noting that 

f(t) = 0 1<0 

= sin(wl + 8) I == 0 

sin(wt + 8) = sin wI cos 8 + cos wI sin 8 
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we have 

!£[sin(wt + 8)] = cos 8 ~[sin wt] + sin 8 !e[cos wt] 
w . s = cos 8-2--2 + sm 8-

2
--

2 s+w s+w 
w cos 8 + s sin 8 

s2 + w2 

Problem A-2-4 

Find the Laplace transform F(s) of the functionj(t) shown in Figure 2-9. Also, find the 
limiting value of F(s) as a approaches zero. 

Solution The functionj(t) can be written 

Then 

1 2 1 
[(t) = -1(t) - -1(t - a) + -1(t - 2a) 

a2 a2 a2 

F(s) = !eff(t)) 
1 2 1 

= - !e[1(t)) - - !e[l(t - a)] + - !e[l(t - 2a)] 
a2 a2 a2 

1 1 2 1 -as 1 1 -2as =-----e +--e 
a2 s a2 s a2 s 

= ...!....(1 - 2e-as + e-2aS ) 
a2s 

As a approaches zero, we have 

~ (1 - 2e-as + e-2as ) 
1 - 2e-as + -2as d 

limF(s) = lim e = Iim-a-------
a-O a--O Qls a--O d Ql 

da ( s) 

2se-as _ 2se-2a.f -as -2as 
= lim = lime -e 

a-O 2as a-O a 

f(/} 

1 
-;; t---""'I 

2a 

o a 

1 I 
-;;Z 

Figure 2-9 Functionf(/}. 
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d ( -as -2os) -e -e 20 = lim _d_a ____ = lim -se-os + 2se- S 

-0 d 0-0 1 
o -(a) 

da 
= -s + 2s = s 

Problem A-2-S 

Obtain the Laplace transform of the functionj(t) shown in Figure 2-10. 

Solution The given functionj(t) can be defined as follows: 

1(1) = 0 
b 

= -t 
a 

=0 

O<tSa 

a<t 

Notice that j(t) can be considered a sum of the three functions 'I(t), /2(t), and /3(t) 
shown in Figure 2-11. Hence,j(I) can be written as 

1(1) = fl(t) + /2(1) + /3(t) 
b b = -t ·1(t) - -(I - a) '1(1 - a) - b 'l(t - a) 
a a 

Figure 2-10 Function f(t). 

Figure 2-11 Functions II(t), 12(t), and 
!J(t). 

f(t) 

b 

I(t) 
b 

o a 

b 
II(t) = Ii t· l(t) 

o~ __ ~~ ____________ _ 

12(t) = - E.. (t-a) • l(t - a) 
a 

-b 

" 13(t) = -b· l(t - a) 



Example Problems and Solutions 39 

Then the Laplace transform of f(1) becomes 

F(s) = ~.!. - ~ .!.e-as - b!e-as 
ai as2 s 

= ~(1 - e-as ) - £e-as 
as2 s 

The same F(s) can, of course, be obtained by performing the following Laplace inte­
gration: 

Problem A-2-6 

J.
ab 100 

~[f(I)] = -Ie-st dl + Oe-st dl 
o a a 

b e-st la J.a b e-sl 
=-1- - --dl 

a -s 0 0 a -s 
e-as b e-sll a 

=b-+-­
-s as -s 0 

-as b 
= b_e - - _(e-as - 1) 

-s as2 

= ~(1 - e-as ) - £e-as 

as2 s 

Prove that if the Laplace transform off(l) is F(s), then, except at poles of F(s), 

d 
~[lf(I)] = - ds F(s) 

d2 

~[12f(I)] = ds2 F(s) 

and in general, 

n = 1,2,3, ... 

Solution 

{OO (OO d 
~[lf(l)] = Jo If(l)e-SI dl = - Jo f(l) ds (e-Sl

) dl 

d J.OO d = - - f(t)e-Sl dl = - - F(s) 
ds 0 ds 

Similarly, by defining If(l) = g(I), the result is 

~[12f(I)] = ~[lg(I)] = - :s G(s) = - :s[ - :sF(s) 1 
d2 d 2 

= (-1)2 ds2F(S) = ds2F(S) 

Repeating the same process, we obtain 

n = 1,2,3, ... 
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Problem A-~ 7 

Find the Laplace transform of 

Solution Since 

f(t) = 0 t < 0 

= t2 sin wt t20 

~[sin wt] = 2 W 2 
S + Cd 

referring to Problem A-2-6, we have 

d
2 

[ w 1 -2w
3 + 6ws

2 

:£[f(t)] = :£[t2 sin wt] = -2 -2--2 = (2 2)3 
ds S + w s + w 

Problem A-2-8 

Prove that if the Laplace transform off(t) is F(s), then 

~[f(;) 1 = aF(as) a > 0 

Solution If we define tla = 'T and as = SJ, then 

~[/(;) 1 = [I(;)e-" dt = [1(T)e-na dT 

= a 1.00/
(T)e-'" dT = aF(s,) = aF(as) 

Problem A-~9 

Prove that if f(t) is of exponential order and if fooof(/) dl exists [which means that 
1000f(t) dl assumes a definite value], then 

where F(s) = !e[f(/)]. 

Solution Note that 

roo f(t) dl = lim F(s) Jo s-O 

roo f(t) dt = lim tf(/) dl Jo ,-ooJo 
Referring to Equation (2-5), we have 

~[[I(t) dt 1 = F~S) 

Since ftf(t) dt exists, by applying the final-value theorem to this case, we obtain 

l ' F(s) 
lim f(t) dt = lim s-,_00 0 s-O S 

or 

roo f(t) dt = lim F(s) Jo s-O 
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Problem A-2-10 

The convolution of two time functions is defmed by 

[fI(T)[,(1 - T) dT 

A commonly used notation for the convolution is 11(1)*/2(1), which is defined as 

f,(I).h(l) = [fl(T)h(1 - T) dT = [11(1 - T)h(T) dT 

Show that if 11(t) and 12(1) are both Laplace transformable, then 

:£[/"/l(T)h(1 - T) dT] = Fl(S)F2(S) 

where FI(S) = :e[ft(t)] and F2(S) = :£[f2(1)]. 

Solution Noting that 1(t - T) = 0 for t < T, we have 

!e[[fl(T)"(1 - T) dT] = !e[/.oofl(T)"(1 - T)l(1 - T) dT] 

= /.ooe-'r[/.oofl(T),,(1 - T)l(1 - T) dT] dl 
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= /.oof,(T) dT /.00['(1 - T)l(1 - T)e-" dl 

Changing the order of integration is valid here, since II (t) and h( I) are both Laplace 
transformable, giving convergent integrals. If we substitute A = 1 - T into this last 
equation, the result is 

or 

!e[[fl(T)"(1 - T) dT] = /.00 f,(TV" dT /.00 "p.V'A d)' 

= FI(S)F2(S) 

:£[f.(I)*!2(t)] = Fl(S)F2(S) 

Thus, the Laplace transform of the convolution of two time functions is the product of 
their Laplace transforms. 

Problem A-2-11 

Determine the Laplace transform of 11(1)*12(1), where 

Solution Note that 

II(t) = h(t) = 0 

1.(1) = t 
h(t) = 1 - e-' 

for t < 0 

for 1 ~ 0 

for 1 ~ 0 
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The Laplace transform of the convolution integral is given by 

!£[fl(t)*!2(t)] = Fl(S)F2(S) = :2 (.; - s! 1) 
1 1 1 1 1 1 =-- =---+----
s3 s2(s + 1) s3 s2 S S + 1 

Chap. 2 

To verify that the expression after the rightmost equal sign is indeed the Laplace trans­
form of the convolution integral, let us frrst integrate the convolution integral and then 
take the Laplace transform of the result. We have 

fl(t)*!2(t) = 1'''[1 - e-('-T)] d" 

= [(I - T)(l - e~) dT 

= 1'(1 - T - le~ + Te~)dT 
Noting that 

we have 

Thus, 

Problem A-2-12 

Prove that if /(t) is a periodic function with period T, then 

Solution 

1T

f(t)e-" dl 

;£[f(I)] = 0 1 _ e-Ts 

10
00 00 l<n+ l )T 

;e[J(t)] = f(t)e-sr dt = ~ f(t)e-sr dt 
o n=O nT 

By changing the independent variable from t to" = t - nT, we obtain 

00 1T ;£[f(t)] = ~e-nTs f(" + nT)e-ST d" 
n=O 0 
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Since f(t) is a periodic function with period T, f( l' + nT) = f( 1'). Hence, 

Noting that 

we obtain 

It follows that 

Problem A-2-13 

CXl J.T ~[f(t)] = ~e-nTs 0 f( 1')e-SI d1' 

CXl 

Le-nTs = 1 + e-Ts + e-2Ts + 
n=O 

= 1 + e-TS(1 + e-Ts + e-2Ts + ... ) 

= 1 + e-TS( ~e-nTs) 
n=O 

CXl 1 
Le-nTs = ---=­
n=O 1 - e-Ts 

J.Tf(t)e-" dt 

~[f(t)] = 0 1 -Ts 
-e 

What is the Laplace transform of the periodic function shown in Figure 2-12? 

Solution Note that 

J.
T f(t)e-SI dt = J.Tf2 e-sl dt + [T (-1 )e-SI dt 

o 0 JTf2 

f(t) 

1 

o u -1 

= e-U I
Tf2 

_ e-SII
T 

-s 0 -s Tf2 

e-(lf2)Ts _ 1 e-Ts _ e-(lf2)Ts 
----+-----

-s s 

= ! [e-Ts - 2e-(1f2)Ts + 1] 
s 

= ! [1 - e-(1I2)Tsj2 
s 

Figure 2-12 Periodic function (square 
wave). 

43 
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Consequently, 

J.T f{t )e-" dt (lis )[1 _ e-(ll2)T'l' 

F(s) = 1 -Ts 1 -Ts -e -e 
1 - e-(II2)Ts 1 Ts 
----- = - tanh-
s[1 + e-(ll2)T'1 s 4 

Problem A-2-14 

Find the initial value of df(I)/dl, where the Laplace transform off(l) is given by 

2s + 1 
F(s) = ~[f(I)] = s2 + s + 1 

Solution Using the initial-value theorem, we obtain 

s(2s + 1) 
lim /(1) = lim sF(s) = lim 2 = 2 ,-0+ $-00 s-oo S + s + 1 

Since the ~+ transform of d/(I)ldl = g(l) is given by 

~+[g(I)] = sF(s) - /(0+) 

= s(2s + 1) _ 2 = -s - 2 
s2 + s + 1 S2 + s + 1 

the initial value of df(t)/dt is obtained as 

d/(I) 
lim -d- = g(O+) = lims[sF(s) - /(0+)] 

1-0+ t s-OO 

To verify this result, notice that 

2(s + 0.5) 
F(s) = = ~[2e-o.s1 cos 0.866t] 

(s + 0.5)2 + (0.866)2 

Hence, 

/(1) = 2e-o.51 cos 0.866t 

and 

i(t) = _e-o·51 cos 0.8661 + 2e-o·5IO.866 sin 0.8661 

Thus, 

i(o) = -1 + 0 = -1 

Problem A-2-lS 

Obtain the inverse Laplace transform of 

F(s) = cs + d 
(s2 + 2as + a2) + b2 

where a, b, c, and d are real and a is positive. 
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Solution Since F(s) can be written as 

we obtain 

Problem A-2-16 

F(s) _ c(s + a) + d - ca 
- (s + a)2 + b2 

c(s + a) d - ca b 
--~-"'7 + ----~-"'7 
(s + a)2 + b2 b (s + a)2 + b2 

I(t) = ce-at cos bl + d - ca e-al sin bt 
b 

Fmd the inverse Laplace transform of 

1 
F(s) = -s(-s2=--+-2-s-+-2-) 

Solution Since 

S2 + 2s + 2 = (s + 1 + jl) (s + 1 - jl) 

45 

it follows that F(s) involves a pair of complex-conjugate poles, so we expand F(s) into 
the form 

where ah a2, and a3 are determined from 

1 = at(s2 + 2s + 2) + (a2s + a3)s 

By comparing corresponding coefficients of the S2, s, and sO terms on both sides of this 
last equation respectively, we obtain 

from which it follows that 

Therefore, 

11 1 s+2 
F(s) ::: 2: -; - 2: s2 + 2s + 2 

11 1 1 1 s+1 
::: 2: -; - 2 (s + 1)2 + 12 - 2 (s + 1)2 + 12 

The inverse Laplace transform of F(s) is 

I() 
1 1 -I • 1 -I 

I ::: 2 - 2e sm I - 2e cos I t~O 
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Problem A-2-17 

Derive the inverse Laplace transform of 

5(s + 2) 
F( s) = -S2-( s--=-+-I-)(-s ":""'+-3-) 

Solution 

5(s + 2) ~ bl at a2 
F(s) = s2(s + l)(s + 3) = s2 + -;- + s + 1 + s + 3 

where 

5(s + 2) I 5 
at = s2(s + 3) s=-t = 2: 

5(s + 2) I 5 
a2 = S2(S + 1) s=-3 = 18 

5(s + 2) I 10 
~ = (s + 1) (s + 3) s=O = 3 

d [ 5(s + 2) 1 
bl = ds (s + l)(s + 3) s=O 

= 5(s + l)(s + 3) - 5(s + 2)(2s + 4) I = _ 25 

(s + 1)2(s + 3)2 s=O 9 

Thus, 

10 1 25 1 5 1 5 1 
F(s) = 3 s2 - 9" -; + 2: s + 1 + 18 s + 3 

The inverse Laplace transform of F(s) is 

f(t) = 10 t - 25 + ~e-t + 2- e - 3t t ~ 0 
3 9 2 18 

Problem A-2-18 

Fmd the inverse Laplace transform of 

F (s) = S4 + 2s
3 + 3s

2 + 4s + 5 
s(s + 1) 

Solution Since the numerator polynomial is of higher degree than the denominator 
polynomial, by dividing the numerator by the denominator until the remainder is a 
fraction, we obtain 

2 2s + 5 at a2 
F( s) = s + s + 2 + = S2 + s + 2 + - + --

s(s + 1) s s + 1 

where 

2s + 51 at =-- = 5 
s + 1 s=o 

a2 = 2s + 51 = -3 
S s .. -I 
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It follows that 

5 3 
F(s) = s2 + s + 2 + - --­

s s + 1 

The inverse Laplace transform of F(s) is 

d2 d 
f(t) = ~-t[F(s)] = -2eS(t) + -d eS(t) + 2eS(t) + 5 - 3e-1 

dt t 

Problem A-2-19 

Obtain the inverse Laplace transform of 

F (s) = 2s2 + 4s + 6 
s2(s2 + 2s + 10) 
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t ~ 0-

(2-10) 

Solution Since the quadratic term in the denominator involves a pair of complex­
conjugate roots, we expand F(s) into the following partial-fraction form: 

F() 
at a2 bs + c 

s :=::-+-+---­
s2 S S2 + 2s + 10 

The coefficient al can be obtained as 

_ 2s2 + 4s + 61 - 0 6 
al - -

s2 + 2s + 10 s=O • 

Hence, we obtain 

F() 
0.6 a2 bs + c 

s =-+-+---­
s2 s s2 + 2s + 10 
(a2 + b )s3 + (0.6 + 202 + c)s2 + (1.2 + 10a2)s + 6 

s2(s2 + 2s + 10) 
(2-11) 

By equating corresponding coefficients in the numerators of Equations (2-10) and 
(2-11), respectively, we obtain 

a2 + b = 0 

0.6 + 2a2 + c = 2 

1.2 + 10a2 :=:: 4 

from which we get 

a2 = 0.28, b = -0.28, c = 0.84 

Hence, 

F() 
0.6 0.28 -O.28s + 0.84 

s = - + - + ---:-----
S2 S s2 + 2s + 10 
0.6 0.28 -0.28(s + 1) + (1.12/3) x 3 

= - + - + ----------
s2 S (s + 1)2 + 32 

The inverse Laplace transform of F(s) gives 

f(t) = 0.6t + 0.28 - 0.28e-1 cos 3t + 1~2 e-1 sin 3t 
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Problem A-2-20 

Derive the inverse Laplace transform of 

1 
F(s) = -s(-s2-+-(J)2-) 

Solution 

1 1 (1 s) F(s) = = - - - --
S(s2 + c.i) (J)2 s s2 + (J)2 

1 lIs 
= (J)2 ~ - w2 s2 + (J)2 

Thus, the inverse Laplace transform of F(s) is obtained as 

f(t) = ~-l[F(s)] = ~(1 - cos wt) t ~ 0 
(J) 

Problem A-2-21 

Obtain the solution of the differential equation 

x + ax = A sin (J)t, x(O) = b 

Solution Laplace transforming both sides of this differential equation, we have 

or 

(J) 
[sX(s) - x(O)] + aX(s) = A-2--2 s + (J) 

A(J) 
(s + a)X(s) = -2--2 + b 

s + (J) 

Solving this last equation for X(s), we obtain 

A(J) b 
X(s) = +--

(s + a) (s2 + ( 2) S + a 

Aw (1 s - a ) b 
= a2 + (J)2 s + a - s2 + w2 + S + a 

(
b AW) 1 Aa w Aw s 

= + a2 + w2 s + a + a2 + w2 s2 + w2 - a2 + w2 s2 + (Ii 

The inverse Laplace transform of X(s) then gives 

x(t) = ~-l[X(S)] 

(b AW) -aJ Aa. Aw = + 2 2 e + 2 2 sm (J)t - 2 2 cos wt 
a +(J) a +w a +w 

t~O 
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PROBLEMS 

Problem 8-2-1 

Derive the Laplace transform of the function 

f(t) = 0 t < 0 

= te-21 t 2 0 

Problem 8-2-2 

Fmd the Laplace transforms of the following functions: 

(8) ft(t) = 0 t < 0 

= 3sin(51 + 45°) t 2 0 

(b) h(t) = 0 t < 0 

= 0.03(1 - cos 2t) 1 2 0 

Problem 8-2-3 

Obtain the Laplace transform of the function defined by 

f(t) = 0 1 < 0 

= t 2e-or 1 ~ 0 

Problem B-2-4 

Obtain the Laplace transform of the function 

f(t) = 0 1 < 0 

= cos 2w1 • cos 3(1)1 t 2 0 

Problem 8-2-5 

What is the Laplace transform of the function f(1) shown in Figure 2-131 

Problem 8-2-6 

Obtain the Laplace transform of the pulse functionf(t) shown in Figure 2-14. 

f(t) 
f(1) 

c -----

bl------~ 

o a a+b o a b 

Figure 2-13 Function f(1). Figure 2-14 Pulse function. 
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f(t) 
f(t) 

10 
;; 12 

;; 

o 

0 a a 

2.5 5 I I 12 --:; -;; a" 

Figure 2-15 Function f(1). Figure 2-16 Function f(t). 

Problem 8-2-7 

What is the Laplace transform of the functionf(t) shown in Figure 2-15? Also, what is 
the limiting value of ;e(f(t)] as a approaches zero? 

Problem 8-2-8 

Find the Laplace transform of the functionf(t) shown in Figure 2-16. Also, find the lim­
iting value of ;e[f(t)] as a approaches zero. 

Problem 8-2-9 

Given 

5($ + 2) 
F(s) = s(s + 1) 

obtain f( 00). Use the final-value theorem. 

Problem 8-2-10 

Given 

2(s + 2) 
F(s)-----­

- s(s + 1)(s + 3) 

obtain f(O+). Use the initial-value theorem. 

Problem 8-2-11 

Consider a function x(t). Show that 

x(O+) = lim [s2X(s) - sx(O+)] 
s ..... oo 
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Problem B-2-12 

Derive the Laplace transform of the third derivative of f(t). 

Problem B-2-13 

What are the inverse Laplace transforms of the following functions? 

(a) F (s) _ s + 5 
1 - (s + l)(s + 3) 

(b) 
3(s + 4) 

F2( s) = -s(-s -+":-I-)(-s-=-+-2-) 

Problem B-2-14 

Fmd the inverse Laplace transforms of the following functions: 

(0) 

(b) 

Problem B-2-15 

r'()_6s+3 qS ---
s2 

F s _ 5s + 2 
2( ) - (s + l)(s + 2)2 

Find the inverse Laplace transform of 

Problem B-2-16 

F (s) = 2s2 + 4s + 5 
s(s + 1) 

Obtain the inverse Laplace transform of 

Problem B-2-17 

F(s) = s2 + 2s + 4 
s2 

Obtain the inverse Laplace transform of 

F(s) _ s 
- s2 + 2s + 10 

Problem B-2-18 

Obtain the inverse Laplace transform of 

Problem B-2-19 

F(s) = s2 + 2s + 5 
S2(S + 1) 

Obtain the inverse Laplace transform of 

F(s) _ 2s + 10 
- (s + 1)2(s + 4) 

51 
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Problem 8-2-20 

Derive the inverse Laplace transform of 

Problem 8-2-21 

Obtain the inverse Laplace transform of 

c _ b _ 
F(s) = -(1 - e as) - -e as 

s2 S 

where a> O. 

Problem 8-2-22 

Find the solution x(t) of the differential equation 

x + 4x = 0, x(O) = 5, x(O) = 0 

Problem 8-2-23 

Obtain the solution x(t) of the differential equation 

x + w~x = t, x(O) = 0, x(O) = 0 

Problem 8-2-24 

Determine the solution x(t) of the differential equation 

2x + 2x + x = 1, x(O) = 0, x(O) = 2 

Problem 8-2-25 

Obtain the solution x(t) of the differential equation 

x + x = sin 3t, x( 0) = 0, x(O) = 0 



Mechanical Systems 

3-1 INTRODUCTION 

This chapter is an introductory account of mechanical systems. Details of mathematical 
modeling and response analyses of various mechanical systems are given in Chapters 4, 
5, 7, 8, and 9. 

We begin with a review of systems of units; a clear understanding of which is 
necessary for the quantitative study of system dynamics. 

Systems of units. Most engineering calculations in the United States are 
based on the International System (abbreviated SI)1 of units and the British engi­
neering system (BES) of measurement. The International System is a modified met­
ric system, and, as such, it differs from conventional metric absolute or metric 
gravitational systems of units. Table 3-1 lists some units of measure from each of the 
International System, conventional metric systems, and British systems of units. 
(The table presents only those units necessary to describe the behavior of mechani­
cal systems. Units used in describing the behaviors of electrical systems are given in 
Chapter 6. For additional details on systems of units, refer to Appendix A.) 

The chief difference between "absolute" systems of units and "gravitational" 
systems of units lies in the choice of mass or force as a primary dimension. In the 

IThis "backward" abbreviation is for the French Systeme International. 

53 
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TABLE 3-1 Systems of Units 

~ 
Absolute systems Gravitational systems of units 

Metric Metric British 
Quantity SI mks 

British engineering engineering cgs 

Length m m em ft m it 

Mass kg kg g lb 
kgr s2 Ibr s2 
-- slug =--

m ft 

TIme s s s s s s 

N N dyn poundal 
Force kg-m kg-m g-cm lb-ft kg[ lb[ 

=-- =-- =-- =--
s2 s2 s2 S2 

Energy J = N-m J = N-m 
erg 

ft-poundal kgrm 
ft-Ib[ 

= dyn-cm or Btu 

N-m N-m dyn-cm ft-poundal kgrm 
ft-lb[ 

Power w=- w=- --
s s s s s s orhp 

absolute systems (SI and the metric and British absolute systems), mass is chosen as 
a primary dimension and force is a derived quantity. Conversely, in gravitational sys­
tems (metric engineering and British engineering systems) of units, force is a prima­
ry dimension and mass is a derived quantity. In gravitational systems, the mass of a 
body is defined as the ratio of the magnitude of the force to that of acceleration. 
(Thus, the dimension of mass is force/acceleration.) 

Mass. The mass of a body is the quantity of matter in it, which is assumed to 
be constant. Physically, mass is the property of a body that gives it inertia, that is, re­
sistance to starting and stopping. A body is attracted by the earth, and the magni­
tude of the force that the earth exerts on the body is called its weight. 

In practical situations, we know the weight w of a body, but not the mass m. We 
calculate mass m from 

w 
m=-

g 

where g is the gravitational acceleration constant. The value of g varies slightly from 
point to point on the earth's surface. As a result, the weight of a body varies slightly 
at different points on the earth's surface, but its mass remains constant. For engi­
neering purposes, 

g = 9.807 m1s2 = 980.7 cm/s2 = 32.174 ft/S2 = 386.1 in.ls2 

Far out in space, a body becomes weightless. Yet its mass remains constant, so the 
body possesses inertia. 
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The units of mass are kg, g, lb, kgr s2/m, and slug, as shown in Table 3-1. If mass 
is expressed in units of kilograms (or pounds), we call it kilogram mass (or pound 
mass) to distinguish it from the unit of force, which is termed kilogram force (or 
pound force). In this book, kg is used to denote a kilogram mass and kg, a kilogram 
force. Similarly, lb denotes a pound mass and lb, a pound force. 

A slug is a unit of mass such that, when acted on by a I-pound force, a I-slug 
mass accelerates at 1 ftls2 (slug = Ibr s2/ft). In other words, if a mass of 1 slug is 

acted on by a 32.174-pound force, it accelerates at 32.174 ftls2 (= g). Hence, the 
mass of a body weighing 32.174Ib, at the earth's surface is 1 slug, or 

m = w = 32.174 lbr = 1 slu 
g 32.174 ftls2 g 

Force. Force can be defined as the cause which tends to produce a change in 
motion of a body on which it acts. To move a body, force must be applied to it.1\vo types 
of forces are capable of acting on a body: contact forces and field forces. Contact forces 
are those which come into direct contact with a body, whereas field forces, such as grav­
itational force and magnetic force, act on a body, but do not come into contact with it. 

The units of force are the newton (N), dyne (dyn), poundal, kg" and lb,. In SI 
units and the mks system (a metric absolute system) of units, the force unit is the 
newton. One newton is the force that will give a 1-kg mass an acceleration of 1 m/s2, or 

I N = 1 kg-m/s2 

This implies that 9.807 N will give a 1-kg mass an acceleration of 9.807 m/s2• Since 
the gravitational acceleration constant is g = 9.807 m/s2, a mass of 1 kg will produce 
a force of 9.807 N on its support. 

The force unit in the cgs system (a metric absolute system) is the dyne, which 
will give a 1-g mass an acceleration of 1 cm/s2, or 

1 dyn = I g-Cm/S2 

The force unit in the metric engineering (gravitational) system is kg" which is 
a primary dimension in the system. Similarly, in the British engineering system, the 
force unit is lb" a primary dimension in this system of units. 

Comments. The SI units of force, mass, and length are the newton (N), kilo­
gram mass (kg), and meter (m). The mks units of force, mass, and length are the 
same as the SI units. The cgs units for force, mass, and length are the dyne (dyn), 
gram (g), and centimeter (em), and those for the BES units are the pound force 
(lb,), slug, and foot (ft). Each system of units is consistent in that the unit of force 
accelerates the unit of mass 1 unit of length per second per second. 

A special effort has been made in this book to familiarize the reader with the 
various systems of measurement. In examples and problems, for instance, calcula­
tions are often made in SI units, conventional metric units, and BES units, in order to 
illustrate how to convert from one system to another. Table 3-2 shows some conve­
nient conversion factors among different systems of units. (Other detailed conver­
sion tables are given in Appendix B.) 
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TABLE 3-2 Conversion Table 

1 1 m = 100cm 

Length 2 1 ft = 12 in. 1 in. = 2.54 em 

3 1 m = 3.281 ft 1 ft = 0.3048 m 

4 1 kg = 2.2046 lb 1 lb = 0.4536 kg 

5 1 kg = 0.10197 kgr s2/m 1 kgr s2/m = 9.807 kg 

Mass 6 1 slug = 14.594 kg 1 kg = 0.06852 slug 

7 1 slug = 32.1741b 1 lb = 0.03108 slug 

8 1 slug = 1.488 kgr s2/m 1 kgr s2/m = 0.6720 slug 

9 1 slug-ft2 = 1.356 kg-m2 1 kg-m2 = 0.7376 slug-ft2 

Moment 
of inertia 10 1 slug-ft2 = 0.1383 kgr s2-m 1 kgr s2-m = 7.233 s}ug-ft2 

11 1 slug-ft2 = 32.174Ib-tt2 11b-ft2 = 0.03108 slug-tt2 

12 1 N = 105 dyn 

13 1 N = 0.10197 kg, 1 kg, = 9.807 N 

14 1 N = 7.233 poundals 1 poundal = 0.1383 N 
Force 

15 1 N = 0.2248 lb, lib, = 4.4482 N 

16 1 kg, = 2.2046Ib, lib, = 0.4536 kg, 

17 1lbf = 32.174 poundals 1 poundal = 0.031081bf 

18 1 N-m = 1 J = 1 W-s 1 J = 0.10197 kgrm 

19 1 dyn-em = 1 erg = 10-7 J 1 kgrm = 9.807 N-m 

Energy 20 1 N-m = 0.7376 ft-Ibf 1 ft-lbf = 1.3557 N-m 

21 1 J = 2.389 X 10-4 keal 1 keal = 4186 J 

22 1 Btu = 778 ft-Ibf 1 ft-lbf = 1.285 X 10-3 Btu 

23 1 W = 1 J/s 

Power 24 1 hp = 550 ft-lbfls 1 ft-Ibtls = 1.818 X 10-3 hp 

25 1 hp = 745.7W 1 W = 1.341 X 10-3 hp 

Outline of the chapter. Section 3-1 has presented a review of systems of 
units necessary in the discussions of dynamics of mechanical systems. Section 3-2 
treats mechanical elements. Section 3-3 discusses mathematical modeling of me­
chanical systems and analyzes simple mechanical systems. Section 3-4 reviews the 
concept of work, energy, and power and then presents energy methods for deriving 
mathematical models of conservative systems (systems that do not dissipate energy). 
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3-2 MECHANICAL ELEMENTS 

Any mechanical system consists of mechanical elements. There are three types of 
basic elements in mechanical systems: inertia elements, spring elements, and damper 
elements. 

Inertia elements. By inertia elements, we mean masses and moments of inertia. 
Inertia may be defined as the change in force (torque) required to make a unit 

change in acceleration (angular acceleration). That is, 

. . change in force N 
mertla (mass) = h . I' --2 or kg 

c ange m acce eratIOn mls 

change in torque N-m 
inertia (moment of inertia) =. . --or kg-m2 

change m angular acceleratlon rad/s2 

Spring Elements. A linear spring is a mechanical element that can be de­
formed by an external force or torque such that the deformation is directly propor­
tional to the force or torque applied to the element. 

Consider the spring shown in Figure 3-1(a). Here, we consider translational 
motion only. Suppose that the natural length of the spring is X, the spring is fixed at 
one end, and the other end is free. Then, when a force fis applied at the free end, the 
spring is stretched. The elongation of the spring is x. The force that arises in the 
spring is proportional to x and is given by 

F = kx (3-1) 

where k is a proportionality constant called the spring constant. The dimension of 
the spring constant k is force/displacement. At point P, this spring force F acts oppo­
site to the direction of the force f applied at point P. 

Figure 3-1(b) shows the case where both ends (denoted by points P and Q) of 
the spring are deflected due to the forces f applied at each end. (The forces at each 

/J---x-j 

p 
\..r---__ 1 

/A-----x+x~ 

(a) 

X+X1J 
X2~ Q P 

1- -I 

/---x + X, - X'-! 
(b) 

Figure 3-1 (a) One end of the spring is deflected; (b) both ends of the spring are deflected. (X is the 
natural length of the spring.) 



58 Mechanical Systems Chap. 3 

end of the spring are on the same line and are equal in magnitude but opposite in 
direction.) The natural length of the spring is X. The net elongation of the spring is 
x I - X2. The force acting in the spring is then 

(3-2) 

At point P, the spring force F acts to the left. At point Q, F acts to the right. (Note 
that the displacements X + Xl and X2 of the ends of the spring are measured rela­
tive to the same frame of reference.) 

Next, consider the torsional spring shown in Figure 3-2(a), where one end is 
fixed and a torque T is applied to the other end. The angular displacement of the 
free end is 8. Then the torque Tthat arises in the torsional spring is 

T = k8 (3-3) 

At the free end, this torque acts in the torsional spring in the direction opposite that 
of the applied torque T. 

For the torsional spring shown in Figure 3-2(b), torques equal in magnitude, 
but opposite in direction, are applied to the ends of the spring. In this case, the 
torque T acting in the torsional spring is 

(3-4) 

At each end, the spring torque acts in the direction opposite that of the applied 
torque at that end. The dimension of the torsional spring constant k is torque/angu­
lar displacement, where angular displacement is measured in radians. 

When a linear spring is stretched, a point is reached in which the force per unit 
displacement begins to change and the spring becomes a nonlinear spring. If the 
spring is stretched farther, a point is reached at which the material will either break 
or yield. For practical springs, therefore, the assumption of linearity may be good 
only for relatively small net displacements. Figure 3-3 shows the force-displace­
ment characteristic curves for linear and nonlinear springs. 

For linear springs, the spring constant k may be defined as follows: 

spring constant k (for translational spring) 

change in force N 
= change in displacement of spring m 

e 
~~--+-r-r;. C 
~// C9 T 

(a) (b) 

Flgure 3-2 (a) A torque T is applied at one end of torsional spring. and the other end is 
ftxed; (b) a torque T is applied at one end, and a torque T, in the opposite direction, is 
applied at the other end. 
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Spring constants indicate stiffness; a large value of k corresponds to a hard 
spring, a small value of k to a soft spring. The reciprocal of the spring constant k is 
called compliance or mechanical capacitance C. Thus, C = 11k. Compliance or 
mechanical capacitance indicates the softness of a spring. 

Practical spring versus ideal spring. All practical springs have inertia and 
damping. In our analysis in this book, however, we assume that the effect of the 
mass of a spring is negligibly small; that is, the inertia force due to acceleration of the 
spring is negligibly small compared with the spring force. Also, we assume that the 
damping effect of the spring is negligibly small. 

An ideal linear spring, in comparison to a practical spring, will have neither 
mass nor damping and will obey the linear force-displacement law as given by 
Equations (3-1) and (3-2) or the linear torque-angular displacement law as given 
by Equations (3-3) and (3-4). 

Damper elements. A damper is a mechanical element that dissipates ener­
gy in the form of heat instead of storing it. Figure 3-4(a) shows a schematic diagram 
of a translational damper, or dashpot. It consists of a piston and an oil-filled cylin­
der. Any relative motion between the piston rod and the cylinder is resisted by oil 

(a) (b) 

Figure 3-4 (a) Translational damper; (b) torsional (or rotational) damper. 
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because oil must flow around the piston (or through orifices provided in the piston) 
from one side to the other. Essentially, the damper absorbs energy, and the absorbed 
energy is dissipated as heat that flows away to the surroundings. 

In Figure 3-4(a), the forces f applied at the ends of the translational damper 
are on the same line and are of equal magnitude, but opposite in direction. The 
velocities of the ends of the damper are Xl and X2' Velocities Xl and X2 are taken rel­
ative to the same frame of reference. 

In the damper, the damping force F that arises in it is proportional to the 
velocity difference Xl - X2 of the ends, or 

(3-5) 

where X = Xl - X2 and the proportionality constant b relating the damping force F 
to the velocity difference X is called the viscous friction coefficient or viscous friction 
constant. The dimension of b is force/velocity. Note that the initial positions of both 
ends of the damper do not appear in the equation. 

For the torsional damper shown in Figure 3-4(b), the torques 'T applied to the 
ends of the damper are of equal. magnitude, but opposite in direction. The angular 
velocities of the ends are 81 and 82 and they are taken relative to the same frame of 
reference. The damping tor~ue r that arises in the damper is proportional to the 
angular velocity difference 81 - 82 of the ends, or 

(3-6) 

where, analogous to the translational case, 8 = 81 - 82 and the proportio~ality con­
stant b relating the damping torque T to the angular velocity difference 8 is called 
the viscous friction coefficient or viscous friction constant. The dimension of b is 
torque/angular velocity. Note that the initial angular positions of both ends of the 
damper do not appear in the equation. 

A damper is an element that provides resistance in mechanical motion, and, as 
such, its effect on the dynamic behavior of a mechanical system is similar to that of 
an electrical resistor on the dynamic behavior of an electrical system. Consequently, 
a damper is often referred to as a mechanical resistance element and the viscous fric­
tion coefficient as the mechanical resistance. 

Practical damper versus ideal damper. All practical dampers produce iner­
tia and spring effects. In this book, however, we assume that these effects are negligible. 

An ideal damper is massless and springless, dissipates all energy, and obeys the 
linear force-velocity law or linear torque-angular velocity law as given by Equation 
(3-5) or Equation (3-6), respectively. 

Nonlinear friction. Friction that obeys a linear law is called linear friction, 
whereas friction that does not is described as nonlinear. Examples of nonlinear fric­
tion include static friction, sliding friction, and square-law friction. Square-law fric­
tion occurs when a solid body moves in a fluid medium. Figure 3-5 shows a 
characteristic curve for square-law friction. In this book, we shall not discuss nonlin­
ear friction any further. 
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A mathematical model of any mechanical system can be developed by applying 
Newton's laws to the system. In this section, we shall deal with the problem of deriv­
ing mathematical models of simple mechanical systems. More on deriving mathe­
matical models of various mechanical systems and response analyses is presented in 
Chapters 4,5,7,8, and 9. 

Rigid body. When any real body is accelerated, internal elastic deflections 
are always present. If these internal deflections are negligibly small relative to the 
gross motion of the entire body, the body is called a rigid body. Thus, a rigid body 
does not deform. 

Newton's laws. There are three well-known laws called Newton's laws. 
Newton's first law, which concerns the conservation of momentum, states that the 
total momentum of a mechanical system is constant in the absence of external 
forces. Momentum is the product of mass m and velocity v, or mv, for translational 
or linear motion. For rotational motion, momentum is the product of moment of in­
ertia J and angular velocity lJJ, or J lJJ, and is called angular momentum. 

Newton's second law gives the force-acceleration relationship of a rigid trans­
lating body or the torque-angular acceleration relationship of a rigid rotating body. 
The third law concerns action and reaction and, in effect, states that every action is 
always opposed by an equal reaction. 

Newton's second law (for translational motion). For translational mo­
tion, Newton's second law says that if a force is acting on a rigid body through the 
center of mass in a given direction, the acceleration of the rigid body in the same 
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direction is directly proportional to the force acting on it and is inversely propor­
tional to the mass of the body. That is, 

or 

. force 
acceleration = -­

mass 

(mass) ( acceleration) = force 

Suppose that forces are acting on a body of mass m. If I.F is the sum of all 
forces acting on mass m through the center of mass in a given direction, then 

ma= ~F (3-7) 

where a is the resulting absolute acceleration in that direction. The line of action of 
the force acting on a body must pass through the center of mass of the body. Other­
wise, rotational motion will also be involved. Rotational motion is not defined by 
Equation (3-7). 

Newton's second law (for rotational motion). For a rigid body in pure 
rotation about a fixed axis, Newton's second law states that 

(moment of inertia) (angular acceleration) = torque 

or 

Ja = ~T (3-8) 

where I.T is the sum of all torques acting about a given axis,J is the moment of iner­
tia of a body about that axis, and a is the angular acceleration of the body. 

Torque or moment of force. Torque, or moment of force, is defined as any 
cause that tends to produce a change in the rotational motion of a body on which it 
acts. Torque is the product of a force and the perpendicular distance from a point of 
rotation to the line of action of the force. The units of torque are force times length, 
such as N-m, dyn-cm, kgrm, and lbrft. 

Moments of inertia. The moment of inertia J of a rigid body about an axis 
is defined by 

J = J r 2dm 

where dm is an element of mass, r is distance from the axis to dm, and integration is 
performed over the body. In considering moments of inertia, we assume that the 
rotating body is perfectly rigid. Physically, the moment of inertia of a body is a mea­
sure of the resistance of the body to angular acceleration. 

Table 3-3 gives the moments of inertia of rigid bodies with common shapes. 



Sec. 3-3 Mathematical Modeling of Simple Mechanical Systems 63 

TABLE 3-3 Moments of Inertia 

t~R 

~ m = mass of disk 
x x' 

J = .!.mR2 
t x 2 

m = mass of solid cylinder 

(~ }x-x 
J = .!.mR2 

x 2 L-j 

m = mass of hollow cylinder 

x~1 }x-
Jx = tm(R2 + ,2) L-j 

ExampJe3-1 

Figure 3-6 shows a homogeneous cylinder of radius R and length L. The moment of 
inertia J of this cylinder about axis AA' can be obtained as follows: Consider a ring­
shaped mass element of infinitesimal width dr at radius r. The mass of this ring-shaped 
element is 2'TrrLp dr, where p is the density of the cylinder. Thus, 

dm = 2'Trr Lp dr 

A-+-H .... A' 

Figure 3-6 Homogeneous cylinder. 
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Consequently, 

J.
R J.R 'lTLpR4 

1 = r22'1f'rLp dr = 2'ITLp r3 dr = --
002 

Since the entire mass m of the cylinder body is m = 'If' R2 Lp, we obtain 

1 = !mR2 
2 

Moment of inertia about an axis other than the geometrical axis. 
Sometimes it is necessary to calculate the moment of inertia of a homogeneous rigid 
body about an axis other than its geometrical axis. If the axes are parallel, the calcula­
tion can be done easily. The moment of inertia about an axis that is a distance x from 
the geometrical axis passing through the center of gravity of the body is the sum of the 
moment of inertia about the geometrical axis and the moment of inertia about the new 
axis when the mass of the body is considered concentrated at the center of gravity. 

Example 3-2 

Consider the system shown in Figure 3-7, where a homogeneous cylinder of mass m 
and radius R rolls on a flat surface. Find the moment of inertia, lx, of the cylinder about 
its line of contact (axis xx') with the surface. 

Figure ~7 Homogeneous cylinder 
rolling on a flat surface. 

The moment of inertia of the cylinder about axis CC' is 

1 2 
lc = ZmR 

The moment of inertia of the cylinder about axis xx' when mass m is considered con­
centrated at the center of gravity is mR2. Thus, the moment of inertia lx of the cylinder 
about axis xx' is 

1 3 
1 = 1.c + mR2 = -mR2 + mR2 = -mR2 

x 2 2 

Forced response and natural response. The behavior determined by a 
forcing function is called a forced response, and that due to initial conditions (initial 
energy storages) is called a natural response. The period between the initiation of a 
response and the ending is referred to as the transient period. After the response has 
become negligibly small, conditions are said to have reached a steady state. 
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F1gure 3-8 Rotor mounted in bearings. 

Rotational system. A schematic diagram of a rotor mounted in bearings is 
shown in Figure 3--8. The moment of inertia of the rotor about the axis of rotation is 
J. Let us assume that at t = 0 the rotor is rotating at the angular velocity w(O) = woo 
We also assume that the friction in the bearings is viscous friction and that no exter­
nal torque is applied to the rotor. Then the only torque acting on the rotor is the fric­
tion torque bw in the bearings. 

Applying Newton's second law, Equation (3--8), we obtain the equation of 
motion, 

Ji» = -bw, w(O) = wo 

or 

Jw + bw = 0 (3-9) 

Equation (3-9) is a mathematical model of the system. (Here, the output of 
the system is considered to be the angular velocity w, not the angular displacement.) 

To find w( t), we take the Laplace transform of Equation (3-9); that is, 

J[sn(s) - w(O)] + bn(s) = 0 

where n(s) = ;e[w(t)]. Simplifying, we obtain 

Hence, 

(Js + b)n(s) = Jw(O) = Jwo 

.a(s) = ~ 
b 

s +­
J 

The denominator, s + (blJ), is called the characteristic polynomial, and 

b 
s + - = 0 

J 

is called the characteristic equation. 

(3-10) 
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Figure 3-9 Curve of angular velocity w versus 
time t for the rotor system shown in Figure 3-8. 

Mechanical Systems Chap. 3 

00 

0.368000 

o T 

The inverse Laplace transform of .a(s), the solution of the differential equa­
tion given by Equation (3-9), is 

w(t) = woe-(blJ)1 

The angular velocity decreases exponentially, as shown in Figure 3-9. 
Since the exponential factor e -(bIJ)r approaches zero as t increases without 

limit, mathematically the response lasts forever. In dealing with such an exponen­
tially decaying response, it is convenient to depict the response in terms of a time 
constant: that value of time which makes the exponent equal to -1. For this system, 
the time constant Tis equal to Jib, or T = JIb. When t = T, the value of the expo­
nential factor is 

e-TIT = e-1 = 0.368 

In other words, when the time t in seconds is equal to the time constant, the expo­
nential factor is reduced to approximately 36.8% of its initial value, as shown in 
Figure 3-9. 

Spring-mass system. Figure 3-10 depicts a system consisting of a mass 
and a spring. Here, the mass is suspended by the spring. For the vertical motion, two 

T 
" 

1 1 I 
1 m , 
~ - - _I _o~_--,-_--,_----. 

y=x+o t 

Before mass m 
is attached to 

the spring 

Aftermassm 
is attached to 

the spring 

Figure 3-10 Spring-mass system. 

x 

o = Static deflection 
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forces are acting on the mass: the spring force ky and the gravitational force mg. (In 
the diagram, the positive direction of displacement y is defined downward.) If the 
mass is pulled downward by an external force and then released, the spring force 
acts upward and tends to pull the mass upward. The gravitational force pulls the 
mass downward. So, by applying Newton's second law to this system, we obtain the 
equation of motion 

my = L forces = -ky + mg 

or 

my + ky = mg (3-11) 

The gravitational force is opposed statically by the equilibrium spring deflection S. 
If we measure the displacement from this equilibrium position, then the term mg 
can be dropped from the equation of motion. By substituting y = x + S into Equa­
tion (3-11) and noting that S = constant, we have 

mx + k(x + S) = mg (3-12) 

Since the spring force kS and the gravitational force mg balance, or kS = mg, Equa­
tion (3-12) simplifies to 

mx + kx = 0 (3-13) 

which is a mathematical model of the system. 
In this book, unless otherwise stated, when writing equations of motion for 

systems involving the gravitational force, we measure the displacement of the mass 
from the eqUilibrium position in order to eliminate the term mg and simplify the 
mathematical model. 

Free vibration. For the spring-mass system of Figure 3-10, suppose that the 
mass is pulled downward and then released with arbitrary initial conditions x(O) and 
X(O). In this case, the mass will oscillate and the motion will be periodic. (We assume 
that the magnitude of the displacement is such that the spring remains a linear 
spring.) The periodic motion that is observed as the system is displaced from its sta­
tic eqUilibrium position is called free vibration. It is a natural response due to the ini­
tial condition. 

To find the mathematical form of the periodic motion, let us solve Equation 
(3-13). By taking the Laplace transforms of both sides of that equation, we obtain 

m[s2X(s) - sx(O) - x(O)] + kX(s) = 0 

or 

(ms2 + k)X(s) = mx(O) + msx(O) 

Hence, 

x(O) sx(O) 
X(s) = k + k 

s2 + - s2 +-
m m 
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This last equation may be rewritten so that the inverse Laplace transform of each 
term can be easily identified: 

X( ) fm . (0) Vkj; (0) s 
s = "Vk x 

s2 + (Vkj;)2 + X s2 + (Vkj;)2 

Noting that 

... ~ Vkj; 
:£[S1O vklmt] = .. ~ 

s2 + (v klm)2 

:£[cos Vkj; t] = ~ 
s2 + ( klm)2 

we obtain the inverse Laplace transform of X(s) as 

x(t) = ~X(O) sin .J!;t + x(O) cos .J!;t (3-14) 

Periodic motion such as that described by Equation (3-14) is called simple harmonic 
motion. 

If the initial conditions were given as x(O) = Xo and X(O) = 0, then, by substi­
tuting these initial conditions into Equation (3-14), the displacement of the mass 
would be given by 

x(t) = Xo cos .J!;t 

The period and frequency of simple harmonic motion can now be defined as 
follows: The period T is the time required for a periodic motion to repeat itself. In 
the present case, 

period T = ~ seconds 

The frequency I of periodic motion is the number of cycles per second (cps), and the 
standard unit of frequency is the hertz (Hz); that is, 1 Hz is 1 cps. In the present case 
of harmonic motion, 

1.J!; 
frequency I = T = 21T Hz 

The natural frequency, or undamped natural frequency, is the frequency in the 
free vibration of a system having no damping. If the natural frequency is measured 
in Hz or cps, it is denoted by In. If it is measured in radians per second (rad/s), it is 
denoted by W n• In the present system, 

W = 21T~ = {k rad/s 
n In "V;; 
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It is important to remember that, when Equation (3-13) is written in the form 

.. k 0 x+-x= 
m 

where the coefficient of the x term is unity, the square root of the coefficient of the 
x term is the natural frequency W n• This means that a mathematical model for the 
system shown in Figure 3-10 can be put in the form 

x + w~x = 0 

wherewn = ~. 

Experimental determination of moment of inertia. It is possible to cal­
culate moments of inertia for homogeneous bodies having geometrically simple 
shapes. However, for rigid bodies with complicated shapes or those consisting of 
materials of various densities, such calculation may be difficult or even impossible; 
moreover, calculated values may not be accurate. In these instances, experimental 
determination of moments of inertia is preferable. The process is as follows: We 
mount a rigid body in frictionless bearings so that it can rotate freely about the axis 
of rotation around which the moment of inertia is to be determined. Next, we attach 
a torsional spring with known spring constant k to the rigid body. (See Figure 3-11.) 
The spring is then twisted slightly and released, and the period of the resulting sim­
ple harmonic motion is measured. Since the equation of motion for this system is 

or 

the natural frequency is 

and the period of vibration is 

iiJ + k8 = 0 

.. k 
() + -() = 0 

J 

W = f! 
n 'Ii 

T = 21T = 2", 

w. l 
The moment of inertia is then determined as 

kT2 
J=-

4",2 

Figure 3-11 Setup for the experimental 
determination of moment of inertia. 
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Similarly, in the spring-mass system of Figure 3-10, if the spring constant k is 
known and the period T of the free vibration is measured, then the mass m can be 
calculated from 

Spring-mass-damper system. Most physical systems involve some type 
of damping-viscous damping, magnetic damping, and so on. Such damping not 
only slows the motion of (a part of) the system, but also causes the motion to stop 
eventually. In the discussion that follows, we shall consider a simple mechanical sys­
tem involving viscous damping. Note that a typical viscous damping element is a 
damper or dashpot. 

Figure 3-12 is a schematic diagram of a spring-mass-damper system. Suppose 
that the mass is pulled downward and then released. If the damping is light, vibrato­
ry motion will occur. (The system is then said to be underdamped.) If the damping is 
heavy, vibratory motion will not occur. (The system is then said to be overdamped.) 
A critically damped system is a system in which the degree of damping is such that 
the resultant motion is on the borderline between the underdamped and over­
damped cases. Regardless of whether a system is underdamped, overdamped, or 
critically damped, the free vibration or free motion will diminish with time because 
of the presence of damper. This free vibration is called transient motion. 

In the system shown in Figure 3-12, for the vertical motion, three forces are 
acting on the mass: the spring force, the damping force, and the gravitational force. 
As noted earlier, if we measure the displacement of the mass from a static equilibri­
um position (so that the gravitational force is balanced by the eqUilibrium spring 
deflection), the gravitational force will not enter into the equation of motion. So, by 
measuring the displacement x from the static eqUilibrium position, we obtain the 
equation of motion, 

mx = ~ forces = -kx - hi 

or 

mx + hi + kx = 0 (3-15) 

Equation (3-15), which describes the motion of the system, is a mathematical model 
of the system. 

Figure 3-12 
Spring-mass-<iamper system. x 
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Only the underdamped case is considered in our present analysis. (A more 
complete analysis of this system for the underdamped, overdamped, and critically 
damped cases is given in Chapter 8.) 

Let us solve Equation (3-15) for a particular case. Suppose that m = 0.1 slug, 
b = 0.4 lbrs/ft, and k = 4 lbtlft. Then Equation (3-15) becomes 

O.lx + O.4x + 4x = 0 

or 

x + 4x + 40x = 0 (3-16) 

Let us obtain the motion x(t) when the mass is pulled downward at t = 0, so 
that x(O) = Xo, and is released with zero velocity, or x(O) = O. (We assume that the 
magnitude of the downward displacement is such that the system remains a linear 
system.) Taking the Laplace transform of Equation (3-16), we obtain 

[s2 Xes) - sx(O) - x(O)] + 4[sX(s) - x(O)] + 40X(s) = 0 

Simplifying this last equation and noting that x(O) = Xo and x(O) = 0, we get 

(s2 + 4s + 4O)X(s) = sxo + 4xo 

or 

(s + 4)xo 
X (s) = s2 + 4s + 40 

The characteristic equation for the system 

s2 + 4s + 40 = 0 

(3-17) 

has a pair of complex-conjugate roots. This implies that the inverse Laplace trans­
form of Xes) is a damped sinusoidal function. Hence, we may rewrite Xes) in Equa­
tion (3-17) as a sum of the Laplace transforms of a damped sine function and a 
damped cosine function: 

( ) 
2xo (s + 2)xo 

X s = + --:-----
s2 + 4s + 40 s2 + 4s + 40 

1 6 s + 2 
= 3" x

o(s + 2)2 + 62 + xO(s + 2)2 + 62 

Noting that 

6 _ CD[ -21 • 6] 
( )

2 2 - cL e sm t, 
s + 2 + 6 

s + 2 _ -2t 

( )
2 2 - :i[e cos 6t] 

s+2 +6 

we can obtain the inverse Laplace transform of X(s) as 

x(t) = kxoe-2I sin 6t + xoe-2t cos 6t 

= e-2t(~ sin 61 + cos 61 )xo (3-18) 
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Figure 3-13 Free vibration of the 
spring-mass-damper system described by 
x + 4x + 40x = 0 with initial conditions 
x(O) = Xo and x(O) = O. 

x 

Xo 

2 2.5 t (sec) 

Equation (3-18) depicts the free vibration of the spring-mass-damper system with 
the given numerical values. The free vibration here is a damped sinusoidal vibration, 
as shown in Figure 3-13. 

Comments. The numerical values in the preceding problem were stated in 
BES units. Let us convert these values into units of other systems. 

1. SI units (refer to Tables 3-1 and 3-2): 

m = 0.1 slug = 1.459 kg 
b = O.4lb,-s/ft = 0.4 X 4.448/0.3048 N-s/m = 5.837 N-s/m 

k = 4lbtlft = 4 X 4.448/0.3048 N/m = 58.37 N/m 

Hence, Equation (3-15) becomes 

1.459x + 5.837 i + 58.37 x = 0 

or 

x + 4i + 40x = 0 

which is the same as Equation (3-16). 

2. Metric engineering (gravitational) units (refer to Tables 3-1 and 3-2): 

m = 0.1 slug = 0.1488 kg,-s2/m 

b = O.4lb,-s/ft = 0.4 X 0.453610.3048 kg,-s/m = 0.5953 kg,-s/m 
k = 4lbtlft = 4 X 0.4536/0.3048 kgtlm = 5.953 kglm 

Therefore, Equation (3-15) becomes 

O.1488x + 0.5953i + 5.953x = 0 

or 

x + 4i + 40x = 0 

which, again, is the same as Equation (3-16). 
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Note that as long as we use consistent units, the differential equation (mathe­
matical model) of the system remains the same. 

3-4 WORK, ENERGY, AND POWER 

In this section, we discuss work, energy, and power. We also discuss energy methods 
for deriving equations of motion or undamped natural frequencies of certain con­
servative systems. 

If force is considered a measure of effort, then work is a measure of accom­
plishment and energy is the ability to do work. The concept of work makes no 
allowance for a time factor. When a time factor is considered, the concept of power 
must be introduced. Power is work per unit time. 

Work. The work done in a mechanical system is the product of a force and 
the distance (or a torque and the angular displacement) through which the force is 
exerted, with both force and distance measured in the same direction. For instance, 
if a body is pushed with a horizontal force of F newtons along a horizontal floor for 
a distance of x meters, the work done in pushing the body is 

W = FxN-m 

Units of work. Different systems have different units of work. 

SI units and mks (metric absolute) system of units. Force is measured in 
newtons and distance in meters. Thus, the unit of work is the N-m. Note that 

1 N-m = 1 joule = 1 J 

British engineering system of units. In this system, force is measured in 
pounds and distance in feet. Hence, the unit of work is the ft-Ib" and 

1 ft-Ib, = 1.3557 J = 1.285 X 10-3 Btu 

1 Btu = 778 ft-Ib, 

cgs (metric absolute) system of units. Here, the unit of work is the dyn-cm, 
or erg. Note that 

107 erg = 107 dyn-cm = 1 J 

Metric engineering (gravitational) system of units. The unit of work in the 
metric engineering system is the kgrm. Note that 

1 kgrm = 9.807 X 107 dyn-cm = 9.807 J 

1 J = 0.10197 kgrm 

Energy. In a general way, energy can be defined as the capacity or ability to do 
work. Energy is found in many different forms and can be converted from one form 
into another. For instance, an electric motor converts electrical energy into mechani­
cal energy, a battery converts chemical energy into electrical energy, and so forth. 

A system is said to possess energy when it can do work. When a system does 
mechanical work, the system's energy decreases by the amount equal to the energy 
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required for the work done. Units of energy are the same as units for work, that is, 
newton-meter, joule, kcal, Btu, and so on. 

According to the law of conservation of energy, energy can be neither created 
nor destroyed. This means that the increase in the total energy within a system is 
equal to the net energy input to the system. So if there is no energy input, there is no 
change in total energy of the system. 

The energy that a body possesses because of its position is called potential 
energy, whereas the energy that a body has as a result of its velocity is called kinetic 
energy. 

Potential energy. In a mechanical system, only mass and spring elements 
can store potential energy. The change in the potential energy stored in a system 
equals the work required to change the system's configuration. Potential energy is 
always measured with reference to some chosen level and is relative to that level. 

Potential energy is the work done by an external force. For a body of mass m 
in the gravitational field of the earth, the potential energy U measured from some 
reference level is mg times the altitude h measured from the same reference level, or 

U = lhmgdX = mgh 

Notice that the body, if dropped, has the capacity to do work, since the weight mg of 
the body causes it to travel a distance h when released. (The weight is a force.) Once 
the body is released, the potential energy decreases. The lost potential energy is con­
verted into kinetic energy. 

For a translational spring, the potential energy U is equal to the net work done 
on the spring by the forces acting on its ends as it is compressed or stretched. Since 
the spring force F is equal to kx, where x is the net displacement of the ends of the 
spring, the total energy stored is 

U = F dx = kx dx = - kx2 l
x lx 1 
00 2 

H the initial and final values of x are Xl and X2, respectively, then 

1~ 1~ 1 1 
change in potential energy AU = F dx = kx dx = 2" kx~ - 2" kxt 

Xl XI 

Note that the potential energy stored in a spring does not depend on whether it is 
compressed or stretched. 

Similarly, for a torsional spring, 

1
82 182 1 1 

change in potential energy AU = T d8 = k8 d8 = 2" k8~ - 2" ket 
6, 6, 

Kinetic energy. Only inertial elements can store kinetic energy in mechani­
cal srstems. A mass m in pure translation with velocity v has kinetic energY, 
T = "2mv2, whereas a moment of inertia J in pure rotation with angular velocity 8 
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has kinetic energy T = iJiP. The change in kinetic energy of the mass is equal to 
the work done on it by an applied force as the mass accelerates or decelerates. Thus, 
the change in kinetic energy T of a mass m moving in a straight line is 

l
X2 112 d change in kinetic energy = AT = A W = F dx = F : dt 

x\ 1\ t 

1
12 112 1~ 

= Fvdt = mirvdt = mvdv 
11 1\ VI 

121 2 
= -mv2 - - mv l 

2 2 

where X(tl) = Xh X(t2) = X2, V(tl) = Vh and V(t2) = 'V2. Notice that the kinetic 
energy stored in the mass does not depend on the sign of the velocity v. 

The change in kinetic energy of a moment of inertia in pure rotation at angu­
lar velocity 8 is 

change in kinetic energy AT = ~ J iPz - ~ J iff 

~her~ J is the moment of inertia about the axis of rotation, 81 = 8(tl), and 
82 = 8(12)' 

Dissipated energy. Consider the damper shown in Figure 3-14, in which 
one end is fixed and the other end is moved from Xl to X2' The dissipated energy 
A W of the damper is equal to the net work done on it: 

The energy of the damper element is always dissipated, regardless of the sign of x. 

Power. Power is the time rate of doing work. That is, 

dW 
power=P=­

dt 

/.t-----X2----I 

~--
F1gure ~14 Damper. 
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where dW denotes work done during time interval dt. The average power during a 
duration of t2 - tl seconds can be determined by measuring the work done in 
t2 - tl seconds, or 

work done in (t2 - (1) seconds 
average power = ( ) d 

t2 - tl secon s 

In SI units or the mks (metric absolute) system of units, the work done is mea­
sured in newton-meters and the time in seconds. The unit of power is the newton­
meter per second, or watt: 

1 N-mls = 1 W 

In the British engineering system of units, the work done is measured in ft-Ibt 
and the time in seconds. The unit of power is the ft-Ibls. The power 550 ft-Ibls is 
called 1 horsepower (hp). Thus, 

1 hp = 550 ft-Ibls = 33000 ft-Ihlmin = 745.7 W 

In the metric engineering system of units, the work done is measured in kgrm 
and the time in seconds. The unit of power is the kgrm/s, where 

1 kgrm/s = 9.807 W 

1 W = 1 Jls = 0.10197 kgrm/s 

Example 3-3 

Find the power required to raise a body of mass 500 kg at a rate of 20 mlmin. 
Let us define displacement per second as x. Then 

20 kg-m2 

work done in 1 second = mgx = 500 x 9.807 x 60 ~ = 1635 N-m 

and 

ower = work done in 1 second = 1635 N-m = 1635 W 
P 1 second 1 s 

Thus, the power required is 1635 W. 

An energy method for deriving equations of motion. Earlier in this 
chapter, we presented Newton's method for deriving equations of motion of me­
chanical systems. Several other approaches for obtaining equations of motion are 
available, one of which is based on the law of conservation of energy. Here we de­
rive such equations from the fact that the total energy of a system remains the same 
if no energy enters or leaves the system. 

In mechanical systems, friction dissipates energy as heat. Systems that do not 
involve friction are called conservative systems. Consider a conservative system in 
which the energy is in the form of kinetic or potential energy (or both). Since energy 
enters and leaves the conservative system in the form of mechanical work, we obtain 

iJJ.(T + U) = iJJ.W 
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Figure 3-15 Mechanical system. 

where A(T + U) is the change in the total energy and A W is the net work done on 
the system by an external force. If no external energy enters the system, then 

A(T + U) = 0 

which results in 

T + U = constant 

If we assume no friction, then the mechanical system shown in Figure 3-15 can 
be considered conservative. The kinetic energy T and potential energy U are given by 

T = !.mx2 U = !.kx2 
2' 2 

Consequently, in the absence of any external energy input, 

T + U = kmx2 + kkx2 = constant 

The equation of motion for the system can be obtained by differentiating the total 
energy with respect to t: 

:1 (T + U) = mix + kxx = (mx + kx)i = 0 

Since i is not always zero, we have 

mx + kx = 0 

which is the equation of motion for the system. 
Let us look next at the mechanical system of Figure 3-16. Here, no damping is 

involved; therefore, the system is conservative. In this case, since the mass is suspend­
ed by a spring, the potential energy includes that due to the position of the mass ele­
ment. At the eqUilibrium position, the potential energy of the system is 

1 2 
Uo = mgxo + "2 kS 

where Xo is the equilibrium position of the mass element above an arbitrary datum 
line and S is the static deflection of the spring when the system is in the equilibrium 
position, or kS = mg. (For the definition of S, see Figure 3-10.) 
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Figure 3-16 Mechanical system. 
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Equilibrium__ ---, 
position ~ 

Datum 
line 

Xo 

1 
x 

The instantaneous potential energy U is the instantaneous potential energy of 
the weight of the mass element, plus the instantaneous elastic energy stored in the 
spring. Thus, 

1 
U = mg(xo - x) + 2k(~ + x)2 

1 1 
= mgxo - mgx + 2k~2 + k~x + 2kx2 

1 1 = mgxo + 2k~2 - (mg - k~)x + 2kx2 

Since mg = k~, it follows that 

1 2 
U = Uo + 2kx 

Note that the increase in the total potential energy of the system is due to the 
increase in the elastic energy of the spring that results from its deformation from the 
equilibrium position. Note also that, since Xo is the displacement measured from an 
arbitrary datum line, it is possible to choose the datum line such that Uo = O. Final­
ly, note that an increase (decrease) in the potential energy is offset by a decrease 
(increase) in the kinetic energy. 

The kinetic energy of the system is T = ~ mx2• Since the total energy is con­
stant, we obtain 

T + U = kmx2 + Uo + kkx2 = constant 

By differentiating the total energy with respect to t and noting that Uo is a constant, 
we have 

:t (T + U) = mix + kxi = 0 

or 

(mx + kx)x = 0 
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Since x is not always zero, it follows that 

mx + kx = 0 

This is the equation of motion for the system. 

Example 3-4 

79 

Figure 3-17 shows a homogeneous cylinder of radius R and mass m that is free to rotate 
about its axis of rotation and that is connected to the wall through a spring. Assuming 
that the cylinder rolls on a rough surface without sliding, obtain the kinetic energy and 
potential energy of the system. Then derive the equations of motion from the fact that 
the total energy is constant. Assume that x and 0 are measured from respective equilib­
rium positions. 

The kinetic energy of the cylinder is the sum of the translational kinetic energy of 
the center of mass and the rotational kinetic energy about the axis of rotation: 

k·· T 1 . 2 1 J'2 metlc energy = = 2: mx + 2: 0 

The potential energy of the system is due to the deflection of the spring: 

potential energy = U = ~ kx2 

Since the total energy T + U is constant in this conservation system (which means that 
the loss in potential energy equals the gain in kinetic energy), it follows that 

T + U = !. mx2 + !: J iJ2 + !: kx2 = constant (3-19) 
2 2 2 

The cylinder rolls without sliding, which means that x = RO. Rewriting Equation 
(3-19) and noting that the moment of inertia J is equal to ~mR2, we have 

~ mx2 + ~ kx2 = constant 

Differentiating both sides of this last equation with respect to t yields 

or 

3 ... k' 0 2:mxx + xx = 

Flgure 3-17 Homogeneous cylinder 
connected to a wall through a spring. 
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Note that x is not always zero, so rrii + ~ kx must be identically zero. Therefore, 

.. 2k mx+- x=O 
3 

or 

.. 2k 0 x+-x= 
3m 

This equation describes the horizontal motion of the cylinder. For the rotational 
motion, we substitute x = RO to get 

8+ 2k o =O 
3m 

In either of the equations of motion, the natural frequency of vibration is the same, 
ClJn ;: Y2kl(3m) rad/s. 

An energy method for determining natural frequencies. The natural 
frequency of a conservative system can be obtained from a consideration of the ki­
netic energy and the potential energy of the system. 

Let us assume that we choose the datum line so that the potential energy at 
the equilibrium state is zero. Then, in such a conservative system, the maximum 
kinetic energy equals the maximum potential energy, or 

Tmax = Umax 

Using this relationship, we are able to determine the natural frequency of a conser­
vative system, as presented in Example 3-5. 

ExampJe3-S 

Consider the system shown in Figure 3-18. The displacement x is measured from the 
eqUilibrium position. The kinetic energy of this system is 

T = .!mx2 
2 

If we choose the datum line so that the potential energy Vo at the eqUilibrium state is 
zero, then the potential energy of the system is given by 

V = .!kX2 
2 

Flgure 3-18 Conservative mechanical 
system. x 
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Let us assume that the system is vibrating about the equilibrium position. Then 
the displacement is given by 

x = Asinwt 

where A is the amplitude of vibration. Consequently, 

T = .!.m,i2 = .!.mA2~l(cos wt)2 
2 2 

U = .!.kx2 = .!.kA2(sin iJJt)2 
2 2 

Hence, the maximum values of T and U are given by 

112 
T. = -mA2w2 Umax = -2 kA max 2 ' 

Since T max ::::: Umax, we have 

from which we get 

EXAMPLE PROBLEMS AND SOLUTIONS 

Problem A-3-1 

Calculate the moment of inertia about axis xx' of the hollow cylinder shown in 
Figure 3-19. 

Solution The moment of inertia about axis xx' of the solid cylinder of radius R is 

1 2 
JR = Zm}R 

where 

(p = density) 

The moment of inertia about axis xx' of the solid cylinder of radius r is 

J. =.!.m ,2 
r 2 2 

x X' 

I---L---I Flgure 3-19 Hollow cylinder. 
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where 

m2 = 'TT',2Lp 

Then the moment of inertia about axis xx' of the hollow cylinder shown in the figure is 

1 2 1 2 
J = J R - Jr = 2. m)R - 2. m2' 

= k[('TT'R2LP)R2 - ('TT',2Lp),2] 

= k'TT'Lp (R4 - ,4) 

1 = 2'TT'Lp (R2 + ,2) (R2 - ,2) 

The mass of the hollow cylinder is 

m = 'TT'(R2 - ,2)Lp 

Hence, 

1 
J = 2(R2 + ,2)'TT'(R2 - ,2)Lp 

1 
= 2.m(R2 + ,2) 

(See the third item of Table 3-3.) 

Problem A-3-2 

A rotating body whose mass is m is suspended by two vertical wires, each of length h, a 
distance 2a apart. The center of gravity is on the vertical line that passes through the 
midpoint between the points of attachment of the wires. (See Figure 3-20.) 

Assume that the body is turned through a small angle about the vertical axis 
through the center of gravity and is then released. Define the period of oscillation as T. 
Show that moment of inertia J of the body about the vertical axis that passes through 
the center of gravity is 

J = (~)2a2mg 
2'TT' h 

Solution Let us assume that, when the body rotates a small angle 8 from the equilib­
rium position, the force in each wire is F. Then, from Figure 3-20, the angle f/J that each 
wire makes with the vertical is small. Angles 8 and f/J are related by 

a8 = hf/J 

Thus, 

Notice that the vertical component of force Fin each wire is equal to mg/2. The horizon­
tal component of F is mgf/Jl2. The horizontal components of F of both wires produce a 
torque mgf/Ja to rotate the body. Thus, the equation of motion for the oscillation is 

.. a28 
J8 = -mgf/Ja = -mg­

h 
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.... --2a 

or 

Flgure 3-20 Experimental setup for 
measuring the moment of inertia of a 
rotating body. 

.. a2mg 
8 + --8 = 0 

Jh 

from which the period of the oscillation is found to be 

T = 21T 

~a2mg 
Jh 

Solving this last equation for J gives 

} = (l)2a2mg 
21T h 

Problem A-3-3 
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A brake is applied to a car traveling at a constant speed of 90 kmlh.lf the deceleration 
ex caused by the braking action is 5 mls2, find the time and distance before the car stops. 

Solution Note that 

90 kmJh = 25 mls 

The equation of motion for the car is 

mx = -ma 
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where m is the mass of the car and x is the displacement of the car, measured from the 
point where the brake is first applied. Integrating this last equation, we have 

X(/) = -al + v(O) 

and 

1 
X(/) = - ia/2 + V(O)I + x(O) 

where x(O) = 0 and v(O) = 25 mls. 

from 

or 

Assume that the car stops at I = 11. Then x(/d = O. The value of 11 is determined 

x(tt) = -all + v(O) = 0 

v(O) 25 
I} = -- = - = 5s 

a 5 

The distance traveled before the car stops is 

1 1 
x(/d :: - -aIr + V(O)/} = - - x 5 X 52 + 25 x 5 

2 2 
:: 62.5 m 

Problem A-3-4 

Consider a homogeneous cylinder with radius 1 m. The mass of the cylinder is 100 kg. 
What will be the angular acceleration of the cylinder if it is acted on by an external 
torque of 10 N-m about its axis? Assume no friction in the system. 

Solution The moment of inertia is 

1 1 
J = -mR2 = - X 100 X 12 = 50kg-m2 

2 2 

The equation of motion for this system is 

/8 = T 

where 8 is the angular acceleration. Therefore, 

.. T lON-m 2 
8 = - = = 0.2 radls 

J 50 kg-m2 

(Note that, in examining the units of this last equation, we see that the unit of 8 is not 
s-2, but rad/s2. This usage occurs because writing rad/s2 indicates that the angle 8 is 
measured in radians. The radian is the ratio of a length of arc to the radius of a circle. 
That is, in radian measure, the angle is a pure number. In the algebraic handling of 
units, the radian is added as necessary.) 

Problem A-3-S 

Suppose that a disk is rotated at a constant speed of 100 radls and we wish to stop it in 
2 min. Assuming that the moment of inertia J of the disk is 6 kg-m2, determine the 
torque T necessary to stop the rotation. Assume no friction in the system. 
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Solution The necessary torque T must act so as to reduce the speed of the disk. Thus, 
the equation of motion is 

Ii» = -T, w(O) = 100 

Noting that the torque T is a constant and taking the Laplace transform of this last 
equation, we obtain 

T 
l[sfl(s) - w(O)) = --

s 

Substituting I = 6 and w(O) = 100 into this equation and solving for fl(s), we get 

fl(s) = 100 _ I...-
S 6s2 

The inverse Laplace transform of fl(s) gives 

T 
wet) = 100 - -t 

6 

At t = 2 min::: 120 s, we want to stop, so w(120) must equal zero. Therefore, 

T 
w(120) ::: 0 = 100 - 6" X 120 

Solving for T, we get 

Problem A-3-6 

600 
T = - = SN-m 

120 

Obtain the equivalent spring constant for the system shown in Figure 3-21. 

Solution For the springs in parallel, the equivalent spring constant keq is obtained 
from 

or 

Problem A-~7 

Figure 3-21 System consisting of two 
springs in parallel. 

Fmd the equivalent spring constant for the system shown in Figure 3-22(a), and show 
that it can also be obtained graphically as in Figure 3-22(b). 

Solution For the springs in series, the force in each spring is the same. Thus, 

kty = F, 



86 Mechanical Systems 

Figure 3-22 (a) System consisting of 
two springs in series; (b) diagram show­
ing the equivalent spring constant. 

c 

A 

Eliminating y from these two equations yields 

k2( x - :.) = F 

or 

k2 kl + k2 
k2x = F + -F = ---F 

kl kl 

y 

(a) 

p 

(b) 

The equivalent spring constant for this case is then found to be 

k =f=~= 1 
eq x kl + k2 1 1 

-+­
kl k2 

For the graphical solution, notice that 

AC AB 
PQ:::: PB' 

from which it follows that 

_ "Ali.JiQ 
PB:::: AC ' 

- AB·PQ 
AP=--.....;,.;;;.. 

BD 

Since AP + P B :::: AB, we have 

AB·PQ AB·PQ ----=- + = AB 
BD AC 

B 

Chap. 3 

x 
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or 

PQ PQ 
=+==1 
BD AC 

Solving for PQ, we obtain 

1 
PQ = 1 1 

AC + BD 

So if lengths AC and BD represent the spring constants kl and k2' respectively, then 
length PQ represents the equivalent spring constant keq. That is, 

1 
PQ = 1 1 = keq 

-+-
kl k2 

Problem A-3-8 

In Figure 3-23, the simple pendulum shown consists of a sphere of mass m suspended 
by a string of negligible mass. Neglecting the elongation of the string, find a mathemat­
ical model of the pendulum. In addition, find the natural frequency of the system when 
8 is small. Assume no friction. 

Solution The gravitational force mg has the tangential component mg sin 8 and the 
normal component mg cos 8. The torque due to the tangential component is -mgl sin 8, 
so the equation of motion is 

iii = -mgl sin 8 

where J = m12• Therefore, 

mP'8 + mgl sin 8 = 0 

For small 8, sin 8 ::i= 8, and the equation of motion simplifies to 

.. g 
8 + -8 = 0 

I 

mg Figure 3-23 Simple pendulum. 
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This is a mathematical model of the system. The natural frequency is then obtained as 

(J) = f! 
n '/i 

Problem A-3-9 

Consider the spring-loaded pendulum system shown in Figure 3-24. Assume that the 
spring force acting on the pendulum is zero when the pendulum is vertical (8 = 0). 
Assume also that the friction involved is negligible and the angle of oscillation, 8, is 
small. Obtain a mathematical model of the system. 

Solution 1\vo torques are acting on this system, one due to the gravitational force and 
the other due to the spring force. Applying Newton's second law, we find that the equa­
tion of motion for the system becomes 

/8 = -mgt sin 8 - 2(ka sin 8) (a cos 8) 

where J = m/2• Rewriting this last equation, we obtain 

mp(j + mgt sin 8 + 2 ka2 sin 8 cos 8 = 0 

For small 8, we have sin 8 = 8 and cos 8 = 1. So the equation of motion can be simpli­
fied to 

or 

.. (8 ka
2

) 8 + - + 2- 8 = 0 
I m/2 

This is a mathematical model of the system. The natural frequency of the system is 

Figure ~24 Spring-loaded pendulum 
system. 

g ka2 
(J) = - + 2-

n I m/2 

mg 
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Problem A-3-10 

Consider the rolling motion of the ship shown in Figure 3-25. The force due to buoyan­
cy is -wand that due to gravity is w. These two forces produce a couple that causes 
rolling motion of the ship. The point where the vertical line through the center of buoy­
ancy, C, intersects the symmetrical line through the center of gravity, which is in the 
ship's centerline plane, is called the metacenter (point M). Define 

R = distance of the metacenter to the center of gravity of the ship = MG 

J = moment of inertia of the ship about its longitudinal centroidal axis 

Derive the equation of rolling motion of the ship when the roIling angle 8 is small. 

Solution From Figure 3-25, we obtain 

iiJ = -wR sin 8 

or 

iiJ + w R sin 8 = 0 

For small 8, we have sin 8 * 8. Hence, the equation of rolling motion of the ship is 

iiJ + wR8 = 0 

The natural frequency of the rolling motion is v' w RIl. Note that the distance 
R( = MG) is considered positive when the couple of weight and buoyancy tends to 
rotate the ship toward the upright position. That is, R is positive if point M is above 
point G, and R is negative if point M is below point G. 

-w 

w Figure 3-25 Rolling motion of a ship. 

Problem A-3-11 

In Figure 3-26, a homogeneous disk of radius R and mass m that can rotate about the cen­
ter of mass of the disk is hung from the ceiling and is spring preloaded. (1\vo springs are 
connected by a wire that passes over a pulley as shown.) Each spring is prestretched by an 
amount x. Assuming that the disk is initially rotated by a small angle 8 and then released, 
obtain both a mathematical model of the system and the natural frequency of the system. 

Solution If the disk is rotated by an angle 8 as shown in Figure 3-26, then the right 
spring is stretched by x + R8 and the left spring is stretched by x - R8. So, applying 
Newton's second law to the rotational motion of the disk gives 

iiJ = -k(x + R8)R + k(x - R8)R 
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(Prestretched) 

Flgure 3-26 Spring-pulley system. 

where the moment of inertia J is ! mR2. Simplifying the equation of motion, we have 

.. 4k 
8 + -8 = 0 

m 

This is a mathematical model of the system. The natural frequency of the system is 

lI) = f4k 
n \j-;;; 

Problem A-3-U 

For the spring-mass-pulley system of Figure 3-27, the moment of inertia of the pulley 
about the axis of rotation is J and the radius is R. Assume that the system is initially at 
equilibrium. The gravitational force of mass m causes a static deflection of the spring 
such that k5 = mg. Assuming that the displacement x of mass m is measured from the 
eqUilibrium position, obtain a mathematical model of the system. In addition, find the 
natural frequency of the system. 

Solution Applying Newton's second law, we obtain, for mass m, 

mx= -T (3-20) 

where T is the tension in the wire. (Note that since x is measured from the static equi­
librium position the term mg does not enter into the equation.) For the rotational 
motion of the pulley, 

iiJ = TR - kxR (3-21) 

If we eliminate the tension T from Equations (3-20) and (3-21), the result is 

iiJ = -mxR - kxR (3-22) 

Noting that x = R8, we can simplify Equation (3-22) to 

(J + mR2fiJ + kR28 = 0 

or 

.. kR2 
8 + 28 = 0 

J + mR 
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Figure 3-27 
Spring-Mass-pulley system. 

This is a mathematical model of the system. The natural frequency is 

~
R2 

W -
n - J + mR2 

Problem A-3-13 
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In the mechanical system of Figure 3-28, one end of the lever is connected to a spring 
and a damper, and a force F is applied to the other end of the lever. Derive a mathe­
matical model of the system. Assume that the displacement x is small and the lever is 
rigid and massless. 

Solution From Newton's second law, for small displacement x, the rotational motion 
about pivot P is given by 

Fit - (bx + kx)/2 = 0 

or 

• 11 
bx + kx =-F 

12 

which is a mathematical model of the system. 

Figure 3-28 Lever system. 
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Problem A-3-14 

Consider the mechanical system shown in Figure 3-29(a). The massless bar AA' is dis­
placed 0.05 m by a constant force of 100 N. Suppose that the system is at rest before the 
force is abruptly released. The time-response curve when the force is abruptly released at 
t = 0 is shown in Figure 3-29(b). Determine the numerical values of band k. 

Solution Since the system is at rest before the force is abruptly released, the equation 
of motion is 

kx = F t s 0 

Note that the effect of the force F is to give the initial condition 

F 
x(O) = k 

Since x(O) = 0.05 m, we have 

F 100 
k == x(O) = 0.05 = 2000 N/m 

At t = 0, F is abruptly released, so, for t > 0, the equation of motion becomes 

bi + kx = 0 t > 0 

Taking the Laplace transform of this last equation, we have 

b[sX(s) - x(O)] + kX(s) = 0 

Substituting x(O) = 0.05 and solving the resulting equation for Xes), we get 

Xes) = 0.05 
k 

s+-
b 

x 

(m) 

F= lOON 0.05 

t 
x 

~ 0.04 
A' 

0.03 

0.02 

0.01 

o 6 10 20 
(seconds) 

(a) (b) 

30 

Figure 3-29 (a) Mechanical system; (b) response curve. 
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The inverse Laplace transform of X(s), using the value of k = 2000 just obtained, is 

x(t) = O.OSe-(2000lb)t 

Since the solution is an exponential function, at t = time constant = b12000 the 
response becomes 

X(2~) = 0.05 x 0.368 = 0.0184m 

From Figure 3-29(b), x = 0.0184 m occurs at t = 6 s. Hence, 

b 
2000 = 6 

from which it follows that 

b = 12,000 N-s/m 

Problem A-3-lS 

~ 
~ 

In the rotating system shown in Figure 3-30, assume that the torque T applied to the 
rotor is of short duration, but large amplitude, so that it can be considered an impulse 
input. Assume also that initially the angular velocity is zero, or £tJ(0-) = O. Given the 
numerical values 

J = 10kg-m2 

and 

b = 2N-s/m 

find the response £tJ( t) of the system. Assume that the amplitude of torque Tis 300 N­
mls and that the duration of Tis 0.1 s; that is, the magnitude of the impulse input is 
300 x 0.1 = 30 N-m. Show that the effect of an impulse input on a first-order system 
that is at rest is to generate a nonzero initial condition at t = 0+. 

Solution The equation of motion for the system is 

Ji» + b£tJ = T, £tJ(O-) = 0 

Let us define the impulsive torque of magnitude 1 N-m as a(t). Then, by substituting 
the given numerical values into this last equation, we obtain 

10i» + 2w = 30a(t) 

Taking the ~_ transform of this last equation, we have 

Rotor 

J 

10[sfl(s) - £tJ(O-)] + 2fl(s) = 30 

m 
, 
w 

ill 
b 

~ 
~ 

Figure 3-30 Mechanical rotating 
system. 
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or 

30 3 
!l(s) = lOs + 2 = -s-+-0.-2 

The inverse Laplace transform of !l( s) is 

w(t) = 3e-o·21 (3-23) 

Note that w(O+) = 3 radls. The angular velocity of the rotor is thus changed instanta­
neously from w(O-) = 0 to w(O+) = 3 radls. 

lithe system is subjected only to the initial condition w(O) = 3 radls and there is 
no external torque (T = 0), then the equation of motion becomes 

lOa, + 2w = 0, w(O) = 3 

Taking the Laplace transform of this last equation, we obtain 

10[s!l(s) - w(O)] + 2!l(s) = 0 

or 

10w(0) 30 3 
!l(s) - - =---

lOs + 2 lOs + 2 s + 0.2 

The inverse Laplace transform of !l( s) gives 

w(t) = 3e-o·21 

which is identical to Equation (3-23). 
From the preceding analysis, we see that the response of a first-order system that 

is initially at rest to an impulse input is identical to the motion from the initial condition 
at t = 0+. That is, the effect of the impulse input on a first-order system that is initially 
at rest is to generate a nonzero initial condition at t = 0+. 

Problem A-3-16 

A mass M = 8 kg is supported by a spring with spring constant k = 400 N/m and a 
damper with b = 40 N-s/m, as shown in Figure 3-31. When a mass m = 2 kg is gently 
placed on the top of mass M, the system exhibits vibrations. Assuming that the dis­
placement x of the masses is measured from the equilibrium position before mass m is 
placed on mass M, determine the response x(t) of the system. Determine also the static 
deflection c5-the deflection of the spring when the transient response died out. 
Assume that x(O) = 0 and X(O) = O. 

m 

M 

x 

Figure 3-31 Mechanical system. 
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Notice that the numerical values of M, m, b, and k are given in the SI system of 
units. If the units are changed to BES units, how does the mathematical model change? 
How will the solution be changed? 

Solution We shall first solve this problem using SI units. The input to the system is a 
constant force mg that acts as a step input to the system. The system is at rest before 
t = 0, and at t = 0+ the masses start to move up and down. A mathematical model, or 
equation of motion, is 

(M + m)x + bi + kx = mg 

where M + m = 10 kg, b = 40 N-s/m, k = 400 N/m, and g = 9.807 m/s1• 

Substituting the numerical values into the equation of motion, we find that 

lOx + 40i + 400x = 2 X 9.807 

or 

x + 4i + 40x = 1.9614 (3-24) 

Equation (3-24) is a mathematical model for the system when the units used are SI 
units. To obtain the response x(t), we take the Laplace transform of Equation (3-24) and 
substitute the initial conditions x(O) = 0 and i(O) = 0 into the Laplace-transformed 
equation as follows: 

Solving for X(s) yields 

1.9614 
s2X(s) + 4sX(s) + 40X(s) = -­

s 

X(s) = 1.9614 
(s2 + 4s + 40)s 

1.9614(1 s + 4 ) 
= ~ -; - s2 + 4s + 40 

= 0 04904[! - 2 6 _ s + 2 1 
. s 6 (s + 2)2 + 62 (s + 2)2 + 62 

The inverse Laplace transform of this last equation gives 

x(t) = 0.04904 ( 1 - ~e-21 sin 6t - e-21 cos 6t) m 

This solution gives the up-and-down motion of the total mass (M + m). The static 
deflection 8 is 0.04904 m. 

Next, we shall solve the same problem using BES units. If we change the numer­
ical values of M, m, b, and k given in the SI system of units to BES units, we obtain 

M = 8 kg = 0.54816 slug 

m = 2 kg = 0.13704 slug 
b = 40 N-s/m = 2.74063Ibr s/ft 
k = 400 N/m = 27.4063Ibf /ft 

mg = 0.13704 slug x 32.174 ft/s2 = 4.4091 slug-ft/s2 

= 4.40911bf 
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Then the equation of motion for the system becomes 

0.6852:i + 2.74063i + 27.4063x = 4.4091 

which can be simplified to 

:i + 4i + 40x = 6.4348 (3-25) 

Equation (3-25) is a mathematical model for the system. Comparing Equations (3-24) 
and (3-25), we notice that the left-hand sides of the equations are the same, which means 
that the characteristic equation remains the same. The solution of Equation (3-25) is 

x(t) = 0.1609 (1 - ~e-2' sin 6t - e-2, cos 6t) ft 

The static deflection 8 is 0.1609 ft. (Note that 0.1609 ft = 0.04904 m.) Notice that, 
whenever consistent systems of units are used, the results carry the same information. 

Problem A-3-17 

Consider the spring-loaded inverted pendulum shown in Figure 3-32. Assume that the 
spring force acting on the pendulum is zero when the pendulum is vertical (8 = 0). 
Assume also that the friction involved is negligible. Obtain a mathematical model of 
the system when the angle 8 is small, that is, when sin 8 * 8 and cos 8 =? 1. Also, 
obtain the natural frequency Wn of the system. 

Solution Suppose that the inverted pendulum is given an initial angular displacement 
8(0) and released with zero initial angular velocity. Then, from Figure 3-32, for small 8 
such that sin 8 * 8 and cos 8 ~ 1, the left-hand side spring is stretched by h8 and the 
right-hand side spring is compressed by h8. Hence, the torque acting on the pendulum 
in the counterclockwise direction is 2kh28. The torque due to the gravitational force is 
mgl8, which acts in the clockwise direction. The moment of inertia of the pendulum is 
m12• Thus, the equation of motion of the system for small 8 is 

Figure 3-32 Spring-loaded inverted 
pendulum. 

m12(j = mgl8 - 2kh28 
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or 

8 + (2kJil -!) 8 = 0 
mP / 
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This is a mathematical model of the system for small 8. If 2kh2 > mgt, the torques act­
ing in the system cause it to vibrate. The undamped natural frequency of the system is 

Ct) = n 

If, however, 2kh2 < mgt, then, starting with a small disturbance, the angle 8 increases 
and the pendulum will fall down or hit the vertical wall and stop. The vibration will not 
occur. 

Problem A-3-18 

Consider the spring-mass-pulley system of Figure 3-33(a). If the mass m is pulled 
downward a short distance and released, it will vibrate. Obtain the natural frequency of 
the system by applying the law of conservation of energy. 

Solution Define x, y, and 8 as the displacement of mass m, the displacement of the 
pulley, and the angle of rotation of the pulley, measured respectively from their corre­
sponding eqUilibrium positions. Note that x = 2y, R8 = x - y = y, and J = 1 M R2. 

x x mg 

(a) (b) 

Figure 3-33 (a) Spring-mass-puUey system; (b) diagram for figuring out potential 
energy of the system. 
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The kinetic energy of the system is 

The potential energy V of the system can be obtained from Figure 3-33(b). At 
the equilibrium state, the potential energy is 

1 
Vo = i krl + Mg{l - Yo) + mg{l - xo) 

where Y8 is the static deflection of the spring due to the hanging masses M and m. When 
masses m and M are displaced by x and y, respectively, the instantaneous potential 
energy can be obtained as 

1 
V = ik(Y8 + y)2 + Mg(l - Yo - y) + mg(l - xo - x) 

1 1 
= ikY~ + kY8Y + iky2 + Mg(/ - Yo) - Mgy + mg(l- xo) - mgx 

1 
= Vo + iky2 + kY8Y - Mgy - mgx 

Again from Figure 3-33(b), the spring force kYa must balance with Mg + 2mg, or 

kY8 = Mg + 2mg 

Therefore, 

kY8Y = Mgy + 2mgy = Mgy + mgx 

and 

1 1 
U = Vo + -ki = Vo + -kx2 

2 8 

where Vo is the potential energy at the equilibrium state. 
Applying the law of conservation of energy to this conservative system gives 

T + V = ~mx2 + :6Mx2 + Vo + ~kx2 = constant 

and differentiating this last equation with respect to t yields 

... 3 M ,,, lk' 0 
mxx + 8" xx + 4" xx = 
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or 

[ ( m + ~ M )X + ~ kx ]X = 0 

Since x is not always zero, we must have 

( m + ~M )X + ~kx = 0 

or 

.. 2k 0 
x + Sm + 3M x = 

The natural frequency of the system, therefore, is 

Wn = Jsm ~ 3M 

Problem A-~19 

If, for the spring-mass system of Figure 3-34, the mass ms of the spring is small, but not 
negligibly small, compared with the suspended mass m, show that the inertia of the 
spring can be allowed for by adding one-third of its mass ms to the suspended mass m 
and then treating the spring as a massless spring. 

Solution Consider the free vibration of the system. The displacement x of the mass is 
measured from the static equilibrium position. In free vibration, the displacement can 
be written as 

x = A cos wt 

Since the mass of the spring is comparatively small, we can assume that the spring is 
stretched uniformly. Then the displacement of a point in the spring at a distance e from 
the top is given by (g/l)A cos wt. 

In the mean position, where x = 0 and the velocity of mass m is maximum, the 
velocity of the suspended mass is Aw and that of the spring at the distance g from the 

x Figure 3-34 Spring-mass system. 
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top is (~Il)Aw. The maximum kinetic energy is 

Tm .. = im (Aw)2 + f.'H~')(fAW)' dt 

= ~mA2w2 + ~(~s )( A;~2) ~/3 
= ~(m + ~s)A2w2 

Chap. 3 

Note that the mass of the spring does not affect the change in the potential energy of 
the system and that, if the spring were massless, the maximum kinetic energy would 
have been ~ mA2w2• Therefore, we conclude that the inertia of the spring can be allowed 
for simply by adding one-third of mass ms to the suspended mass m and then treating 
the spring as a massless spring, provided that ms is small compared with m. 

PROBLEMS 

Problem 8-3-1 

A homogeneous disk has a diameter of 1 m and mass of 100 kg. Obtain the moment of 
inertia of the disk about the axis perpendicular to the disk and passing through its center. 

Problem 8-3-2 

Figure 3-35 shows an experimental setup for measuring the moment of inertia of a 
rotating body. Suppose that the moment of inertia of a rotating body about axis AA' is 
known. Describe a method to determine the moment of inertia of any rotating body, 
using this experimental setup. 

Figure 3-35 Experimental setup for 
measuring the moment of inertia of a 
rotating body. 

Unknown moment 
of inertia 

h 

Known moment 
of inertia 
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Problem 8-3-3 

A ball is dropped from a point 100 m above the ground with zero initial velocity. How 
long will it take until the ball hits the ground? What is the velocity when the ball hits 
the ground? 

Problem 8-3-4 

A flywheel of J = 50 kg-m2 initially standing still is subjected to a constant torque. If 
the angular velocity reaches 20 Hz in 5 S, find the torque given to the flywheel. 

Problem 8-3-S 

A brake is applied to a flywheel rotating at an angular velocity of 100 radls. If the angu­
lar velocity reduces to 20 radls in 15 s, find (a) the deceleration produced by the brake 
and (b) the total angle the flywheel rotates in the 15-s period. 

Problem 8-3-6 

Consider the series-connected springs shown in Figure 3-36(a). Referring to Figure 
3-36(b), show that the equivalent spring constant keq can be graphically obtained as the 
length OC if lengths 0 A and 0 B represent k 1 and k2' respectively. 

\ 
B 

(a) (b) 

FJgUre 3-36 (a) System consisting of two springs in series; (b) diagram showing the equivalent 
spring constant. 

Problem B-3-7 

Obtain the equivalent spring constant keq for the system shown in Figure 3-37. 

/ 

Figure 3-37 System consisting of three 
springs. 
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Problem 8-3-8 

Obtain the equivalent viscous-friction coefficient beq for each of the systems shown in 
Figure 3-38 (a) and (b). 

x y x y 

(a) (b) 

Figure 3-38 (a) Two dampers connected in parallel; (b) two dampers connected in 
series. 

Problem 8-3-9 

Obtain the equivalent viscous-friction coefficient beq of the system shown in Figure 3-39. 

[ 
Figure 3-39 Damper system. x y 

Problem 8-3-10 

Find the natural frequency of the system shown in Figure 3-40. 

x 

Figure 3-40 Mechanical system. 

Problem 8-3-11 

Consider the V-shaped manometer shown in Figure 3-41. The liquid partially fills the 
V-shaped glass tube. Assuming that the total mass of the liquid in the tube is m, the 
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Figure 3-41 V-shaped manome­
tersystem. 
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total length of liquid in the tube is L, and the viscosity of the liquid is negligible, what is 
the equation of motion of the liquid? Fmd the frequency of oscillation. 

Problem 8-3-U 

In the mechanical system shown in Figure 3-42, assume that the rod is massless, per­
fectly rigid, and pivoted at point P. The displacement x is measured from the equilibri­
um position. Assuming that x is small, that the weight mg at the end of the rod is 5 N, 
and that the spring constant k is 400 N/m, find the natural frequency of the system. 

--~--------~ ------~ 

mg 

Figure 3-42 Mechanical system. 

Problem 8-3-13 

Obtain a mathematical model of the system shown in Figure 3--43. The input to the sys­
tem is the angle OJ and the output is the angle °0 , 

J b Figure 3-43 Mechanical system. 

Problem 8-3-14 

Obtain a mathematical model for the system shown in Figure 3-44. 

Problem B-3-15 

Consider the system shown in Figure 3-45, where m = 2 kg, b = 4 N-s/m, and 
k = 20 N/m. Assume that x(O) = 0.1 m and X(O) = O. [The displacement x(t) is mea­
sured from the equilibrium position.] 
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Figure 3-44 Mechanical system. 

Figure 3-45 Mechanical system. 

Derive a mathematical model of the system. Then find x(t) as a function of time t. 

Problem 8-3-16 

By applying Newton's second law to the spring-mass-pulley system of Figure 3-33(a), 
obtain the motion of mass m when it is pulled down a short distance and then released. 
The displacement x of a hanging mass m is measured from the equilibrium position. 
(The mass, the radius, and the moment of inertia of the pulley are M, R, and J = ~ M R2, 
respectively. ) 

Problem 8-3-17 

Consider the mechanical system shown in Figure 3~6. Two pulleys, small and large, are 
bolted together and act as one piece. The total moment of inertia of the pulleys is J. The 
mass m is connected to the spring k 1 by a wire wrapped around the large pulley. The 
gravitational force mg causes static deflection of the spring such that k 18 = mg. 
Assume that the displacement x of mass m is measured from the eqUilibrium position. 
1\vo springs (denoted by k2) are connected by a wire that passes over the small pulley 
as shown in the figure. Each of the two springs is prestretched by an amount y. 

Obtain a mathematical model of the system. Also, obtain the natural frequency 
of the system. 

Problem B-3-18 

A disk of radius 0.5 m is subjected to a tangential force of 50 N at its periphery and is rotat­
ing at an angular velocity of 100 rad/s. Calculate the torque and power of the disk shaft. 
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Figure 3-46 Mechanical system. 

Problem 8-3-19 

Referring to the spring-loaded inverted pendulum system shown in Figure 3-32, obtain 
the natural frequency Wn of the system, using the energy method that equates the max­
imum kinetic energy Tmax and the maximum potential energy Umax• (Choose the poten­
tial energy at the equilibrium state to be zero.) 

Problem 8-3-20 

Assuming that mass m of the rod of the pendulum shown in Figure 3-47 is small, but 
not negligible, compared with mass M, find the natural frequency of the pendulum 
when the angle 9 is small. (Include the effect of m in the expression of the natural 
frequency. ) 

\ 

Figure 3-47 Pendulum system. 



Transfer-Function 
Approach to Modeling 
Dynamic Systems 

4-1 INTRODUCTION 

In this chapter, we present the transfer-function approach to modeling and analyzing 
dynamic systems. We first define the transfer function and then introduce block dia­
grams. Since MATLAB plays an important role in obtaining computational solu­
tions of transient response problems, we present a detailed introduction to writing 
MATLAB programs to obtain response curves for time-domain inputs such as the 
step, impulse, ramp, and others. 

In the field of system dynamics, transfer functions are frequently used to char­
acterize the input--output relationships of components or systems that can be 
described by linear, time-invariant differential equations. We begin this section by 
derming the transfer function and deriving the transfer function of a mechanical sys­
tem. Then we discuss the impulse response function, or the weighting function, of 
the system. 

Transfer Function. The transfer function of a linear, time-invariant differen­
tial-equation system is defined as the ratio of the Laplace transform of the output 
(response function) to the Laplace transform of the input (driving function) under 
the assumption that all initial conditions are zero. 

106 
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Consider the linear time-invariant system defined by the differential equation 
(n) (n-I) 

aoY +aIY + ... + an-IY + anY 

(m) (m-I) 
= bo x + bi X + ... + bm-1x + bmx (n ~ m) 

where Y is the output of the system and x is the input. The transfer function of this 
system is the ratio of the Laplace-transformed output to the Laplace-transformed 
input when all initial conditions are zero, or 

. ;e[ output] I Transfer functIOn = G( s) = ---.,;;.-. ~~ 
;e[ mput] zero initial conditions 

Y(S) bosm + blsm- 1 + ... + bm-1s + bm 
= X(S) = aOsn + alSn- 1 + ... + an-IS + an (4-1) 

By using the concept of a transfer function, it is possible to represent system 
dynamics by algebraic equations in s. If the highest power of s in the denominator of 
the transfer function is equal to n, the system is called an nth-order system. 

Comments on the Transfer Function. The applicability of the concept of 
the transfer function is limited to linear, time-invariant differential-equation sys­
tems. Still, the transfer-function approach is used extensively in the analysis and de­
sign of such systems. The following list gives some important comments concerning 
the transfer function of a system described by a linear, time-invariant differential 
equation: 

L The transfer function of a system is a mathematical model of that system, in 
that it is an operational method of expressing the differential equation that re­
lates the output variable to the input variable. 

2. The transfer function is a property of a system itself, unrelated to the magni­
tude and nature of the input or driving function. 

3. The transfer function includes the units necessary to relate the input to the 
output; however, it does not provide any information concerning the physical 
structure of the system. (The transfer functions of many physically different 
systems can be identical.) 

4. If the transfer function of a system is known, the output or response can be 
studied for various forms of inputs with a view toward understanding the 
nature of the system. 

S. If the transfer function of a system is unknown, it may be established experi­
mentally by introducing known inputs and studying the output of the system. 
Once established, a transfer function gives a full description of the dynamic 
characteristics of the system, as distinct from its physical description. 

Example 4-1 

Consider the mechanical system shown in Figure 4-1. The displacement x of the mass m 
is measured from the eqUilibrium position. In this system, the external force f(t) is the 
input and x is the output. 



108 Transfer-Function Approach to Modeling Dynamic Systems Chap. 4 

Figure 4-1 Mechanical system. x 

The equation of motion for the system is 

mx + bi + kx = f(t) 

Taking the Laplace transform of both sides of this equation and assuming that all initial 
conditions are zero yields 

(ms2 + bs + k)X(s) = F(s) 

where X(s) = !:e[x(t)) and F(s) = !£(f(t)]. From Equation (4-1), the transfer func­
tion for the system is 

X(s) 1 

F (s) = ms2 + bs + k 

Impulse-Response Function. The transfer function of a linear, time-invariant 
system is 

Y(s) 
G(s) = X(s) 

where X(s) is the Laplace transform of the input and Y(s) is the Laplace transform 
of the output and where we assume that all initial conditions involved are zero. It 
follows that the output Y(s) can be written as the product of G(s) and X(s), or 

Yes) = G(s)X(s) (4-2) 

Now, consider the output (response) of the system to a unit-impulse input 
when the initial conditions are zero. Since the Laplace transform of the unit-impulse 
function is unity, or X (s) = 1, the Laplace transform of the output of the system is 

Yes) = G(s) (4-3) 

The inverse Laplace transform of the output given by Equation (4-3) yields the 
impulse response of the system. The inverse Laplace transform of G(s), or 

;e -l[G(s)] = g(t) 

is called the impulse-response function, or the weighting function, of the system. 
The impulse-response function g(t) is thus the response of a linear system to a 

unit-impulse input when the initial conditions are zero. The Laplace transform of g(t) 
gives the transfer function. Therefore, the transfer function and impulse-response 
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function of a linear, time-invariant system contain the same information about the 
system dynamics. It is hence possible to obtain complete information about the 
dynamic characteristics of a system by exciting it with an impulse input and measur­
ing the response. (In practice, a large pulse input with a very short duration compared 
with the significant time constants of the system may be considered an impulse.) 

Outline of the Chapter. Section 4-1 has presented the concept of the trans­
fer function and impulse-response function. Section 4-2 discusses the block diagram. 
Section 4-3 sets forth the MATLAB approach to the partial-fraction expansion of a 
ratio of two polynomials, B(s)IA(s). Section 4-4 details the MATLAB approach to 
the transient response analysis of transfer-function systems. 

4-2 BLOCK DIAGRAMS 

Block diagrams of dynamic systems. A block diagram of a dynamic sys­
tem is a pictorial representation of the functions performed by each component of 
the system and of the flow of signals within the system. Such a diagram depicts the 
interrelationships that exist among the various components. Differing from a purely 
abstract mathematical representation, a block diagram has the advantage of indicat­
ing the signal flows of the actual system more realistically. 

In a block diagram, all system variables are linked to each other through func­
tional blocks. The functional block, or simply block, is a symbol for the mathematical 
operation on the input signal to the block that produces the output. The transfer 
functions of the components are usually entered in the corresponding blocks, which 
are connected by arrows to indicate the direction of the flow of signals. Note that a 
signal can pass only in the direction of the arrows. Thus, a block diagram of a dynam­
ic system explicitly shows a unilateral property. 

Figure 4-2 shows an element of a block diagram. The arrowhead pointing toward 
the block indicates the input to the block, and the arrowhead leading away from the 
block represents the output of the block. As mentioned, such arrows represent signals. 

Note that the dimension of the output signal from a block is the dimension of 
the input signal multiplied by the dimension of the transfer function in the block. 

The advantages of the block diagram representation of a system lie in the fact 
that it is easy to form the overall block diagram for the entire system merely by con­
necting the blocks of the components according to the signal flow and that it is pos­
sible to evaluate the contribution of each component to the overall performance of 
the system. 

In general, the functional operation of a system can be visualized more readily 
by examining a block diagram of the system than by examining the physical system 
itself. A block diagram contains information concerning dynamic behavior, but it 

Transfer 
function 

G(s) 

Figure 4-2 Element of a block diagram. 
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does not include any information about the physical construction of the system. 
Consequently, many dissimilar and unrelated systems can be represented by the 
same block diagram. 

Note that in a block diagram the main source of energy is not explicitly shown 
and that the block diagram of a given system is not unique. A number of different 
block diagrams can be drawn for a system, depending on the point of view of the 
analysis. (See Example 4-2.) 

Summing point. Figure 4-3 shows a circle with a cross, the symbol that 
stands for a summing operation. The plus or minus sign at each arrowhead indicates 
whether the associated signal is to be added or subtracted. It is important that the 
quantities being added or subtracted have the same dimensions and the same units. 

Branch point. A branch point is a point from which the signal from a block 
goes concurrently to other blocks or summing points. 

Block diagram of a closed-loop system. Figure 4-4 is a block diagram of 
a closed-loop system. The output C(s) is fed back to the summing point, where it is 
compared with the input R(s). The closed-loop nature of the system is indicated 
clearly by the figure. The output C(s) of the block is obtained by multiplying the 
transfer function G(s) by the input to the block, E(s). 

Any linear system can be represented by a block diagram consisting of blocks, 
summing points, and branch points. When the output is fed back to the summing 
point for comparison with the input, it is necessary to convert the form of the output 
signal to that of the input signal. This conversion is accomplished by the feedback 
element whose transfer function is H(s), as shown in Figure 4-5. Another important 
role of the feedback element is to modify the output before it is compared with the 
input. In the figure, the feedback signal that is fed back to the summing point for 
comparison with the input is B(s) = H(s)C(s). 

Figure 4-3 Summing point. 

Figure 4-4 Block diagram of a closed­
loop system. 

R(s) 

a ~ a-b 

· l ... _____ b 

Branch 
point 

! 
C(s) 
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C(s) 

B(s) 

Flgure ~s Block diagram of a closed-loop 
system with feedback element. 

Simplifying complex block diagrams and obtaining overall transfer functions 
from such block diagrams are discussed in Chapter 5. 

ExampJe4-2 

Consider again the mechanical system shown in Figure 4-1. The transfer function of 
this system (see Example 4-1) is 

X(s) 

F( s) = ms2 + bs + k 
1 

(4-4) 

A block diagram representation of the system is shown in Figure 4-6(a). 
Notice that Equation (4-4) can be written as 

(ms2 + bs + k)X(s) = F(s) (4-5) 

F(s) 

F(s) 

(a) 

(mr + bs) Xes) 

Xes) ., 

Xes) 

k~------'" 

(b) 

Xes) 

'--___ ~ .Ii. ~ _____ .... 
m 

(c) 

Figure 4-6 Block diagrams of the system shown in Figure 4-1. (a) Block dia­
gram based on Equation (4-4); (b) block diagram based on Equation (4-6); 
(c) block diagram based on Equation (4-7). 
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Rewriting the latter equation as 

(ms2 + bs)X(s) = F(s) - kX(s) (4-6) 

we can obtain a different block diagram for the same system, as shown in Figure 4-6(b). 
Equation (4-5) can also be rewritten as 

F(s) - [kX(s) + bsX(s)] = ms2X(s) 

or 

1 k b 
-F(s) - -X(s) - -sX(s) = s2X(s) 
m m m 

(4-7) 

A block diagram for the system based on Equation (4-7) is shown in Figure 4-6(c). 
Figures 4-6(a), (b), and (c) are thus block diagrams for the same system-that 

shown in Figure 4-1. (Many different block diagrams are possible for any given system.) 

4-3 PARTIAL-FRACTION EXPANSION WITH MATLAB 

We begin this section, with an examination of the partial-fraction expansion of the 
transfer function B(s)/A(s) with MATLAB. Then we discuss how to obtain the sys­
tem response analytically. Computational solutions (response curves) for the system 
responses to time-domain inputs are given in Section 4-4. 

MATLAB representation of transfer functions. The transfer function of a 
system is represented by two arrays of numbers. For example, consider a system de­
fined by 

Y(s) 25 
U (s) = s2 + 4s + 25 

This system is represented as two arrays, each containing the coefficients of the 
polynomials in decreasing powers of s as follows: 

nurn = [25] 
den = [1 4 25J 

Partial-fraction expansion with MATLAB. MATLAB allows us to obtain 
the partial-fraction expansion of the ratio of two polynomials, 

B(s) num b(l)sh + b(2)sh-l + + b(h) 

A(s) = den = a(l)sn + a(2)sn-l + ... + a(n) 

where a(l) :I: 0, some of a(i) and b(j) may be zero, and num and den are row vec­
tors that specify the coefficients of the numerator and denominator of B(s)/A(s). 
That is, 

nurn = [b(1) b(2) b(h)} 
den = [a(1) a(2) a(n)] 
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The command 

[r,p,k] = residue(nurn,den) 

finds the residues, poles, and direct terms of a partial-fraction expansion of the ratio 
of the two polynomials B(s) and A(s). The partial-fraction expansion of B(s)/A(s) is 
given by 

B(s) r(l) r(2) 
- = k(s) + + + 
A(s) s - p(l) s - p(2) 

r(n) 
+-~-

s - p(n) 

As an example, consider the function 

For this function, 

Entering the command 

B(s) s4 + 8s3 + 16~ + 9s + 6 
-- = ---------
A(s) s3 + 6s2 + lIs + 6 

nurn = [1 8 16 9 6] 
den = [1 6 11 6) 

[r,p,k] = residue(num,den) 

as shown in MATLAB Program 4-1, we obtain the residues (r), poles (P), and direct 
terms (k). 

MATLAR Program 4-1 

» num = [1 8 16 9 6); 
» den = [1 6 11 6]; 
» [r,p,k] = residue(num,den) 

r= 

-6.0000 
-4.0000 

3.0000 

p= 

-3.0000 
-2.0000 
-1.0000 

k= 

2 
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MATLAB Program 4-1 is the MATLAB representation of the partial-fraction 
expansion of B(s)/A(s): 

B(s) S4 + 8s3 + 16s2 + 9s + 6 
A(s) = s3 + 6s2 + 11s + 6 

= s + 2 + _-_6_ + _-_4_ + _3_ 
s+3 s+2 s+l 

Note that MATLAB first divides the numerator by the denominator and produces a 
polynomial in s (denoted as row vector k) plus a remainder (a ratio of polynomials 
in s, where the numerator is of lower degree than the denominator). Then MAT­
LAB expands this remainder into partial fractions and returns the residues as col­
umn vector r and the pole locations as column vector p. 

The command 

[num,den) = residue(r,p,k) 

where r, p, and k are outputs in MATLAB Program 4-1, converts the partial-fraction 
expansion back to the polynomial ratio B(s)/A(s), as shown in MATLAB Program 4-2. 

Example 4-3 

MATLAB Program 4-2 
» r = [-6 -4 3); 
»p=[-3 -2 -1); 
» k = [1 2); 
» [nurn, den) = residue(r,p,k) 

nurn = 
8 16 9 

den = 

6 11 6 

6 

Consider the spring-mass-dashpot system mounted on a massless cart as shown in 
Figure 4-7. A dashpot is a device that provides viscous friction, or damping. It consists 
of a piston and oil-filled cylinder. Any relative motion between the piston rod and the 
cylinder is resisted by the oil because the oil must flow around the piston (or through 
orifices provided in the piston) from one side of the piston to the other. The dashpot 
essentially absorbs energy, which is dissipated as heat. The dashpot, also called a 
damper, does not store any kinetic or potential energy. 

Let us obtain a mathematical model of this system by assuming that both the cart 
and the spring-mass-dashpot system on it are standing still for t < O. In this system, 
u(t) is the displacement of the cart and the input to the system. The displacement y(t) of 
the mass relative to the ground is the output. Also, m denotes the mass, b denotes the 
viscous friction coefficient, and k denotes the spring constant. We assume that the fric­
tion force of the dashpot is proportional to y - it and that the spring is linear; that is, 
the spring force is proportional to y - u. 

After a mathematical model of the system is obtained, we determine the output 
y(t) analytically when m = 10 kg, b = 20 N-s/m, and k = 100 N/m. The input is assumed 
to be a unit-step input. 
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Figure 4-7 Spring-mass-dash­
pot system mounted on a cart. 

For translational systems, Newton's second law states that 

ma= ~F 

where m is a mass, a is the acceleration of the mass, and I.F is the sum of the forces act­
ing on the mass in the direction of the acceleration. Applying Newton's second law to 
the present system and noting that the cart is massless, we obtain 

d
2
y (dY dU) m- = -b - - - - key - u) 

dt2 dt dt 

or 

d2y dy du 
m dt2 + b"dt + ky = b"dt + ku 

The latter equation represents a mathematical model of the system under consideration. 
Taking the Laplace transform of the equation, assuming zero initial conditions, gives 

(ms2 + bs + k)Y(s) = (bs + k)U(s) 

Taking the ratio of Y(s) to U(s), we find the transfer function of the system to be 

Yes) bs + k 
Transfer function = U(s) = 2 (4-8) 

ms + bs + k 

Next, we shall obtain an analytical solution of the response to the unit-step input. 
Substituting the given numerical values into Equation (4-8) gives 

yes) 20s + 100 2s + 10 
U(s) = 10s2 + 20s + 100 S2 + 2s + 10 

Since the input u is a unit-step function, 

Then the output Y(s) becomes 

1 
U(s) = -

s 

yes) = 2s + 10 ! = 2s + 10 
s2 + 2s + 10 s s3 + 2S2 + lOs 
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To obtain the inverse Laplace transform of Y(s), we need to expand Y(s) into partial 
fractions. 

Applying MATLAB and noting that num and den of the system are 

num = [2 10] 
den = [1 2 10 0] 

we may use the residue command 

[r,p,k] = residue(num,den) 

to find the residues (r), poles (p),and direct term (k) as shown in MATLAB Program 4-3. 
MATLAB Program 4-3 is the MATLAB representation of the partial-fraction expan­
sion of Y(s): 

-0.5 - jO.1667 -0.5 + jO.I667 1 
Y(s) = + +-

s+l-j3 s+l+j3 s 

MATLAB Program 4-3 

»num = [2 10]; 
» den = [1 2 10 0]; 
» [r,p,k] = residue(num,den) 

r= 

-0.5000 - 0.1667i 
-0.5000 + 0.1667i 

1.0000 

p= 

-1 .0000 + 3.000Oi 
-1.0000 - 3.000Oi 

o 
k= 

[] 

Since Y(s) involves complex-conjugate poles, it is convenient to combine two complex­
conjugate terms into one as follows: 

-0.5 - jO.1667 -0.5 + jO.1667 -s 
----- + = ----""7 

S + 1 - j3 s + 1 + j3 (s + 1)2 + 32 

Then Y(s) can be expanded as 

1 s 
Y(s) = -; - (s + 1)2 + 32 

1 S + 1 - 1 
s (s + 1)2 + 32 

1 s+l 1 3 - - - + -----""7 
- S (s + 1)2 + 32 3 (s + 1)2 + 32 
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The inverse Laplace transform of Y(s) is obtained as 

y(t) = 1 - e-t cos 3t + ~e-t sin 3t 

where y(t) is measured in meters and t in seconds. This equation is an analytical solu­
tion to the problem. 

Note that a plot of y(t) versus t can be obtained easily with MATLAB from the 
information on num, den, and u(t) without using the partial-fraction expansion. (See 
Example 4-5.) 

ExampJe4-4 

Consider the mechanical system shown in Figure 4-8. The system is at rest initially. The 
displacements x and yare measured from their respective equilibrium positions. 
Assuming that p(t) is a step force input and the displacement x(t) is the output, obtain 
the transfer function of the system. Then, assuming that m = 0.1 kg, b2 = 0.4 N-s/m, 
kl = 6 N/m, k2 = 4 N/m, and p(t) is a step force of magnitude 10 N, obtain an analyti­
cal solution x(t). 

The equations of motion for the system are 

mx + k1x + k2(x - y) = p 

k2(x - y) = ~y 

Laplace transforming these two equations, assuming zero initial conditions, we obtain 

(ms2 + kl + k2)X(S) = k2Y(S) + P(s) (4-9) 

k2X(S) = (k2 + b2s)Y(s) (4-10) 

Solving Equation (4-10) for Y(s) and substituting the result into Equation (4-9), we get 

k 2 
(m~ + kl + k2)X(s) = k 2 b X(s) + P(s) 

2 + 2s 
or 

[(ms2 + kl + k2)(k2 + ~s) - k2~X(S) = (k2 + ~s)P(s) 
from which we obtain the transfer function 

X(s) ~s + k2 

P(s) = m~s3 + mk2s2 + (k1 + k2)~S + klk2 

p 

x Figure 4-8 Mechanical system. 

(4-11) 
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Substituting the given numerical values for m, kh k2' and b2 into Equation (4-11), 
we have 

X(s) O.4s + 4 

P( s) = 0.04s3 + 0.4s2 + 4s + 24 
lOs + 100 

S3 + 10s2 + 100s + 600 

Since P{s) is a step force of magnitude 10 N, 

10 
P(s) =-

s 

Then, from Equation (4--12),X{s) can be written as 

X(s) _ lOs + 100 10 
- s3 + 10s2 + 100s + 600 s 

(4-12) 

To find an analytical solution, we need to expand X{s) into partial fractions. For this 
purpose, we may use MATLAB Program 4-4, which produces the residues, poles, and 
direct term. 

MATLAB Program ~ 

» num = [100 1000}; 
»den = [1 10 100 600 0]; 
» [r,p,k] = residue(num, den) 

r= 

-0.6845 + 0.2233i 
-0.6845 - 0.2233i 
-0.2977 

1.6667 

p= 

-1.2898 + 8.8991 i 
-1.2898 - 8.8991 i 
-7.4204 

o 
k= 

[) 

On the basis of the MATLAB output, X(s) can be written as 

-0.6845 + jO.2233 -0.6845 - jO.2233 
X (s) = s + 1.2898 - j8.8991 + s + 1.2898 + j8.8991 

-0.2977 1.6667 
+ +--

s + 7.4204 s 
-1.3690(s + 1.2898) - 3.9743 0.2977 1.6667 
-----.,;...---~---- +--

(s + 1.2898)2 + 8.89912 
S + 7.4204 s 
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The inverse Laplace transform of X(s) gives 

x(t) = -1.3690e-1.2898t cos(8.8991t) 

- O.4466e-1.2898t sin(8.8991t) - O.2977e-7.42041 + 1.6667 
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where x(t) is measured in meters and time 1 in seconds. This is the analytical solution to 
the problem. [For the response curvex(/) versus I, see Example 4-6.] 

From the preceding examples, we have seen that once the transfer function 
X(s)/U(s) = G(s) of a system is obtained, the response of the system to any input 
can be determined by taking the inverse Laplace transform of Xes), or 

~-l[X(s)] = ;e-l[G(s)U(s)] 

Fmding the inverse Laplace transform of G(s) U(s) may be time consuming if the 
transfer function G(s) of the system is complicated, even though the input U(s) may 
be a simple function of time. Unless, for some reason, an analytical solution is needed, 
we should use a computer to get a numerical solution. Throughout this book, we use 
MATLAB to obtain numerical solutions to many problems. Obtaining numerical 
solutions and presenting them in the form of response curves is the subject discussed 
in the next section. 

4-4 TRANSIENT·RESPONSE ANALYSIS WITH MATLAB 

This section presents the MATLAB approach to obtaining system responses when 
the inputs are time-domain inputs such as the step, impUlse, and ramp functions. The 
system response to the frequency-domain input (e.g., a sinusoidal input) is present­
ed in Chapters 9 and 11. 

MATLAB representation of transfer-function systems. Figure 4-9 shows 
a block with a transfer function. Such a block represents a system or an element of a 
system. To simplify our presentation, we shall call the block with a transfer function 
a system. MATLAB uses sys to represent such a system. The statement 

sys = tf(num, den) 

represents the system. For example, consider the system 

Yes) 2s + 25 
--=-----
X (s ) s2 + 4s + 25 

----~·~I __ G_(_s)_=_n_~_~ __ ~----~.- Figure 4-9 Block diagram of transfer­
function system. 

(4-13) 
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This system can be represented as two arrays, each containing the coefficients of the 
polynomials in decreasing powers of s as follows: 

nurn = [2 251 
den = [1 4 25] 

Entering MATLAB Program 4-5 into a computer produces the transfer function of 
the system. 

MATLAB Program 4-5 

» num = [2 25]; 
» den = [1 4 251; 
» sys = tf(num,den) 

Transfer function: 
2 s + 25 

sl\2 + 4 s + 25 

In this book, we shall use Equation (4-13) to represent the transfer function system. 

Step response. If num and den (the numerator and denominator of a trans­
fer function) are known, we may define the system by 

sys = tf(num,den) 

Then, a command such as 

step(sys) or step(num,den) 

will generate a plot of a unit-step response and will display a response curve on the 
screen. The computation interval at and the time span of the response are deter­
mined by MATLAB. 

If we wish MATLAB to compute the response every at seconds and plot the 
response curve for 0 :S t ::::;; T (where T is an integer multiple of at), we enter the 
statement 

t = 0: at: T; 

in the program and use the command 

step(sys, t) or step(nurn,den,t) 

where t is the user-specified time. 
If step commands have left-hand arguments, such as 

y = step(sys,t) or y = step(nurn,den,t) 

and 

ly,t] = step(sys,t) or [y,t1 = step(num,den,t) 

MATLAB produces the unit-step response of the system, but displays no plot on 
the screen. It is necessary to use a plot command to see response curves. 

The next two examples demonstrate the use of step commands. 
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Example 4-5 

Consider again the spring-mass-dashpot system mounted on a cart as shown in 
Figure 4-7. (See Example 4-3.) The transfer function of the system is 

Y(s) bs + k 

U (s) = ms2 + bs + k 

Assuming that m = 10 kg, b = 20 N-s/m, k = 100 N/m, and the input u(t) is a unit­
step input (a step input of 1 m), obtain the response curve y(t). 

Substituting the given numerical values into the transfer function, we have 

Y(s) 20$ + 100 2s + 10 

U(s) = 10s2 + 20s + 100 s2 + 2s + 10 

MATLAB Program 4-6 will produce the unit-step response y(t). The resulting unit­
step response curve is shown in Figure 4-10. 

MATLAB Program 4-6 

»nurn = [2 10]; 
»den = [1 2 10]; 
» sys = tf(nurn,den); 
» step(sys) 
» grid 

In this plot, the duration of the response is automatically determined by MATLAB. 
The title and axis labels are also automatically determined by MATLAB. 

If we wish to compute and plot the curve every 0.01 sec over the interval 
o s t S 8, we need to enter the following statement in the MATLAB program: 

t = 0:0.01 :8; 

Step Response 
1.5 r----,r---~--__.,..-----r----r---..., 

0.5 

2 3 
Tune (sec) 

4 5 6 

Figure 4-10 Unit-step response curve. 
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Also, if we wish to change the title and axis labels, we enter the desired title and desired 
labels as shown in MATLAB Program 4-7. 

MATLAB Program 4-7 

» t = 0:0.01 :8; 
»nurn = [2 10J; 
»den=[1 2 10]; 
» sys = tf(num,den); 
> > step (sys, t) 
» grid 
»title('Unit-Step Response', 'Fontsize',20') 
» xlabe/{'t', 'Fontsize',20') 
» ylabel ('Output yl, 'Fontsize',20') 

Note that if we did not enter the desired title and desired axis labels in the pro­
gram, the title, x-axis label, and y-axis label on the plot would have been "Step 
Response", "Tune (sec)", and "Amplitude", respectively. (This statement applies to 
MATLAB version 6 and not to versions 3,4, and 5.) When we enter the desired title and 
axis labels as shown in MATLAB Program 4-7, MATLAB erases the predetermined title 
and axis labels, except "(sec)" in the x-axis label, and replaces them with the ones we have 
specified. If the font sizes are too small, they can be made larger. For example, entering 

'Fontsize',20 

in the title, xlabel, and ylabel variables as shown in MATLAB Program 4-7 results in 
that size text appearing in those places. Figure 4-11 is a plot of the response curve 
obtained with MATLAB Program 4-7. 

~ ..... ::s 
0.. ..... ::s 
o 

Unit-Step Response 
1.5 ..---r---~-~---r---"--..---r-----' 

0.5 

Figure 4-11 Unit-step response 
curve. Font sizes for title, xlabel, 
and ylabel are enlarged. 

1 2 345 

t (sec) 
6 7 8 
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Example 4-6 

Consider again the mechanical system shown in Figure 4-8. (See Example 4-4.) The 
transfer function X(s)IP(s) was found to be 

X(s) ~s + k2 

P(s) = m~s3 + mk2s2 + (k1 + k2)~S + klk2 
(4-14) 

The transfer function Y(s)IX(s) is obtained from Equation (4-10): 

Y(s) k2 
X(s) = ~s + k2 

Hence, 

Y(s) Y(s) X(s) k2 

P(s) = X(s) P(s) = ~s3 + mk2s2 + (k1 + k2)~S + klk2 
(4-15) 

Assuming that m = 0.1 kg, ~ :;: 0.4 N-s/m, kl = 6 N/m, k2 :;: 4 N/m, and p(t) is a step 
force of magnitude 10 N, obtain the responses x(t) and y(t). 

Substituting the numerical values for m, ~, kh and k2 into the transfer functions 
given by Equations (4-14) and (4-15), we obtain 

and 

X(s) O.4s + 4 

P( s) = 0.04s3 + 0.4s2 + 4s + 24 

lOs + 100 
:;: --------

s3 + 10s2 + 100s + 600 

Y(s) 4 

P(s) = 0.04s3 + O.4i + 4s + 24 

100 

S3 + 10s2 + 100s + 600 

(4-16) 

(4-17) 

Since p(t) is a step force of magnitude 10 N, we may define p(t) = 10u(t), where u(t) is 
a unit-step input of magnitude 1 N. Then Equations (4-16) and (4-17) can be written as 

X(s) 100s + 1000 
U(s) = S3 + 10s2 + 100s + 600 (4-18) 

and 

Y(s) 1000 

U(s) = s3 + 10s2 + 100s + 600 
(4-19) 

Since u(t) is a unit-step input,x(t) and y(t) can be obtained from Equations (4-18) and 
(4-19) with the use of a step command. (Step commands assume that the input is the 
unit-step input.) 

In this example, we shall demonstrate the use of the commands 

y = step(sys, t) 

and 

plot(t,y) 
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Figure 4-U Step-response curves 
x(t) and y(t). 

Unit-Step Responses 
3 .--r-----~~-----~-----.-~-----~-----~~~ 

2.5 

2 --;::: 
'"0 ; 1.5 ... 

1 

0.5 

o L-~ _____ ~~ _____ ~ _____ ~~ _____ ~ _____ ~~~ 

o 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
t (sec) 

MATLAB Program 4-8 produces the responses x(t) and y(t) of the system on one 
diagram. 

MATLAR Program 4-8 

» t = 0:0.01 :5; 
» numl = [100 1000]; 
» num2 = [1000); 
»den = [1 10 100 600); 
» sysl = tf(num1 ,den); 
» sys2 = tf(num2,den); 
»yl = step(sysl ,t); 
» y2 = step(sys2,t); 
» plot(t,y1,t,y2) 
» grid 
» title ('Unit-Step Responsesl) 
» xlabel ('t (sec)') 
» ylabel ex(t) and y(t)l) 
» text(0.07,2.8,lx(t)l) 
» text(0.7,2.3S,'y(t)') 

The response curves x(t} and y(t} are shown in Figure 4-12. 
Writing text on the graph. When we plot two or more curves on one diagram, we 

may need to write text on the graph to distinguish the curves. For example, to write the text 
'x(t}' horizontally, beginning at the point (0.07,2.8) on the graph, we use the command 

text(O.07,2.8,'x(t)') 

Impulse response. The unit-impulse response of a dynamic system defined 
in the form of the transfer function may be obtained by use of one of the following 
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MATLAB commands: 

impulse(sys) or 
impulse(sys,t) or 
y = impulse(sys) or 
[y,tl = impulse (sys,t) 

impulse(num,den) 
impulse(num,den,t) 

y = impulse(num,den) 
or [y,tl = impulse(num,den,t) 

The command impuIse(sys) will generate a plot of the unit-impulse response and 
will display the impulse-response curve on the screen. If the command has a left­
hand argument, such as y = impulse(sys), no plot is shown on the screen. It is then 
necessary to use a plot command to see the response curve on the screen. 

Before discussing computational solutions of problems involving impulse 
inputs, we present some necessary background material. 

Impulse input. The impulse response of a mechanical system can be observed 
when the system is subjected to a very large force for a very short time, for instance, 
when the mass of a spring-mass-dashpot system is hit by a hammer or a bullet. Math­
ematically, such an impulse input can be expressed by an impulse function. 

The impulse function is a mathematical function without any actual physical 
counterpart. However, as shown in Figure 4-13(a), if the actual input lasts for a 
short time (at s) but has a large amplitude (h), so that the area (hat) in a time plot 
is not negligible, it can be approximated by an impulse function. The impulse input 
is usually denoted by a vertical arrow, as shown in Figure 4-13(b), to indicate that it 
has a very short duration and a very large height. 

In handling impulse functions, only the magnitude (or area) of the function is 
important; its actual shape is immaterial. In other words, an impUlse of amplitude 2h 
and duration atl2 can be considered the same as an impulse of amplitUde hand 
duration at, as long as at approaches zero and hat is finite. 

We next briefly discuss a review of the law of conservation of momentum, 
which is useful in determining the impulse responses of mechanical systems. 

Area not negligible 
x 

1 
h 

~~ 
0 

41 

(a) (b) Figure 4-13 Impulse inputs. 
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Law of conservation of momentum. The momentum of a mass m moving 
at a velocity v is mv. According to Newton's second law, 

dv d 
F = ma = m dt = dt (mv) 

Hence, 

Pdt = d(mv) 

Integrating both sides of Equation (4-20), we have 

(4-20) 

j'2p dt = (1)zd(mv) = m~ - mVl 
'I lv, 

(4-21) 

where VI = V(tl) and'V2 = V(t2)' Equation (4-21) states that a change in momen­
tum equals the time integral of force between t = tl and t = t2' 

Momentum is a vector quantity, with magnitude, direction, and sense. The 
direction of the change in momentum is the direction of the force. 

In the absence of any external force, Equation (4-20) becomes 

d(mv) = 0 

or 

mv = constant 

Thus, the total momentum of a system remains unchanged by any action that may 
take place within the system, provided that no external force is acting on the system. 
This principle is called the law of conservation of momentum. 

The angular momentum of a rotating system is J Cd, where J is the moment of 
inertia of a body and Cd is the angular velocity of the body. In the absence of an 
external torque, the angular momentum of a body remains unchanged. This princi­
ple is the law of conservation of angular momentum. 

Example 4-7 

A bullet is fired horizontally into a wood block resting on a horizontal, frictionless sur­
face. If the mass ml of the bullet is 0.02 kg and the velocity is 600 mls, what is the veloc­
ity of the wood block after the bullet is embedded in it? Assume that the wood block 
has a mass m2 of 50 kg. 

If we consider the bullet and wood block as constituting a system, no external 
force is acting on the system. Consequently, its total momentum remains unchanged. 
Thus, we have 

momentum before impact = mivi + m2~ 
where Vi' the velocity of the bullet before the impact, is equal to 600 mls and 'V2, the 
velocity of the wood block before the impact, is equal to zero. Also, 

momentum after impact = (ml + m2)v 

where V is the velocity of the wood block after the bullet is embedded. (Velocities VI 

and V are in the same direction.) 
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The law of conservation of momentum states that 

mtVI + m2~ = (ml + m2)v 

Substituting the given numerical values into this last equation, we obtain 

0.02 X 600 + SO X 0 = (0.02 + SO)v 

or 

v = 0.24m1s 

Hence, the wood block after the bullet is embedded will move at the velocity of 0.24 mls 
in the same direction as the original velocity VI of the bullet. 

Example 4-8 

m 
- --c::::> 

Consider the mechanical system shown in Figure 4-14. A bullet of mass m is shot into a 
block of mass M (where M lB> m). Assume that when the bullet hits the block, it 
becomes embedded there. Determine the response (displacement x) of the block after 
it is hit by the bullet. The displacement x of the block is measured from the equilibrium 
position before the bullet hits it. Suppose that the bullet is shot at t = 0- and that the 
initial velocity of the bullet is v(O-). Assuming the following numerical values for M, 
m, b, k, and v(O- ), draw a curve x(t) versus t: 

M = SO kg, m = 0.01 kg, b = 100 N-s/m, 

k = 2500N/m, v(O-) = 800 mls 

The input to the system in this case can be considered an impulse, the magnitude 
of which is equal to the rate of change of momentum of the bullet. At the instant the 
bullet hits the block, the velocity of the bullet becomes the same as that of the block, 
since the bullet is assumed to be embedded in it. As a result, there is a sudden change in 
the velocity of the bullet. [See Figure 4-1S(a).1 Since the change in the velocity of the 
bullet occurs instantaneously, v has the form of an impulse. (Note that v is negative.) 

For t > 0, the block and the bullet move as a combined mass M + m. The equa­
tion of motion for the system is 

(M + m):i + bi + kx = F(t) (4-22) 

where F(t}, an impulse force, is equal to -mv. [Note that -mv is positive; the impulse 
force F(t) is in the positive direction of x.] From Figure 4-1S(b}, the impulse force can 
be written as 

x 

M 
v(o-) 

F{t) = -mv = A 6.t 8{t) 

k 

Figure 4-14 Mechanical system 
subjected to an impulse input. 
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Figure 4-15 (a) Change in velocity of the 
bullet when it hits the block; (b) change in 
acceleration of the bullet when it hits the 
block. 

v 

------l v(O-) 

v(O+) 

o I1t 

(a) 

o 

-A 

(b) 

where A At is the magnitude of the impulse input. Thus, 

fO+ A At 8(t) dt = -m fO+ v dt 
Jo- Jo-

or 

A At = mv(O-) - mv(O+) 

The momentum of the bullet is changed from mv(O- ) to mv(O+ ). Since 

v(O+) = x(O+) = initial velocity of combined mass M + m 

we can write Equation (4-23) as 

A At = mv(O-) - mx(O+) 

Then Equation (4-22) becomes 

(M + m)x + bi + kx = F(t) = [mv(O-) - mi(O+ )]8(t) 

Taking the ~ _ transform of both sides of this last equation, we see that 

(M + m)[s2 Xes) - sx(O-) - x(O-)] + b[sX(s) - x(O-)] + kX(s) 
= mv(O-) - mx(O+) 

(4-23) 
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Also, noting that x(O-) = 0 and x(O-) = 0, we have 

mv(O-) - mx(O+) 
Xes) -------­

- (M + m); + bs + k 

To determine the value of x(O+), we apply the initial-value theorem: 

x(O+) = lim x(t) = lim s[sX(s)] 
1-0+ $-00 

from which we get 

or 

= lim ;[mv(O-) - mx(O+)] 

$-00 (M + m)s2 + bs + k 
mv(O-) - mx(O+) 

M+m 

mv(O-) - mx(O+) = (M + m)x(O+) 

x(O+) = M = 2m v(O-) 

So Equation (4-24) becomes 

(M + m)x(O+) 
x (s) = (M + m )S2 + bs + k 

1 (M+m)mv(O-) 

(M + m)s2 + bs + k M + 2m 
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(4-24) 

(4-25) 

The inverse Laplace transform of Equation (4-25) gives the impulse response x(t). 
Substituting the given numerical values into Equation (4-25), we obtain 

X( ) 1 50.01 x 0.01 x 800 
s = 50.01s2 + 100s + 2500 50.02 

7.9984 

50.01s2 + 100s + 2500 

= 0.02285 6.9993 
(s + 0.9998)2 + (6.9993)2 

Taking the inverse Laplace transform of this last equation yields 

x(t) = 0.02285e-o·99981 sin 6.9993t 

Thus, the response x(t) is a damped sinusoidal motion. 

Example 4-9 

Referring to Example 4-8, obtain the impulse response of the system shown in 
Figure 4-14 with MATLAB. Use the same numerical values for M, m, b, k, and 
v(O-) as in Example 4-8. 

The response Xes) was obtained in Example 4-8, as given by Equation (4-25). 
'This is the response to the impulse input [mv(O-) - mx(O+ )]8(t). Note that the mag­
nitude of the impulse input is 

m(M + m) 
mv(O-) - mx(O+) = (M + m)x(O+) = M + 2m v(O-) 
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Figure 4-16 Impulse-response 
curve of the system shown in Figure 
4-14 with M = 50 kg, m = 0.01 kg, 
b = 100 N-s/m, k = 2500 N/m, and 
v(O-) = 800 mls. 
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Hence, the impulse input can be written as 

m(M + m) 
F(t) = M + 2m v(O- )6(t) = 7.9984 6(t) 

The system equation is 

(M + m):i + bi + kx = F(t) = 7.99846(1) 

so that 

)(s) 1 

F (s) = (M + m )s2 + bs + k 
(4-26) 

To find the response of the system to F(t) (which is an impulse input whose magnitude 
is not unity), we modify Equation (4-26) to the following form: 

X(s) 1 m(M + m) v(O-) 

:f[6(t)] = (M + m); + bs + k M + 2m 

If we defme 

then the command 

7.9984 
50.01s2 + 100s + 2500 

nurn = [7.9984]; 

den = [50.01 100 2500]; 

sys = tf(nurn,den) 

irnpulse(sys) 

(4-27) 

will produce the unit-impulse response of the system defined by Equation (4-27), which 
is the same as the response of the system of Equation (4-26) to the impulse input 
F(t) = 7.99846(t). MATLAB Program 4-9 produces the response of the system sub­
jected to the impulse input F(t). The impulse response obtained is shown in Figure 4-16. 
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MATlAR Program 4-9 

» num = [7.9984); 
» den = [50.01 100 2500); 
» sys = tf(num,den); 
» impulse (sys) 
» grid 
»title ('Impulse Response of System Shown in Figure 4-141) 
» xlabel('t ') 
» ylabel('Response X(t)l) 
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Obtaining response to arbitrary input. The command Isim produces the 
response of linear, time-invariant systems to arbitrary inputs. If the initial conditions 
of the system are zero, then 

Isim(sys,u,t) or Isim(num,den,u,t) 

produces the response of the system to the input u. Here, u is the input and t repre­
sents the times at which responses to u are to be computed. (The response time span 
and the time increment are stated in t; an example of how t is specified is 
t = 0: 0.01: 10). If the initial conditions are nonzero, use the state-space approach 
presented in Section 5-2. 

If the initial conditions of the system are zero, then any of the commands 

y = Isim(sys,u,t) or y = Isim(num,den,u,t) 

and 

[y,t] = ISim(sys,u,t) or [y,t] = Isim(num,den,u,t) 

returns the output response y. No plot is drawn. To plot the response curve, it is nec­
essary to use the command plot( t,y). 

Note that the command 

Isim(sysl,sys2, ... ,u,t) 

plots the responses of systems sysl, sys2, ... on a single diagram. Note also that, by 
using lsim commands, we are able to obtain the response of the system to ramp 
inputs, acceleration inputs, and any other time functions that we can generate with 
MATLAB. 

Ramp response. The next example plots the unit-ramp response curve with 
the use of the Isim command 

lsi m(sys, u, t) 

where u = t. 
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Figure 4-17 Plots of unit-ramp 
response curve yet) and input ramp 
function u(t). 
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Example 4-10 

Consider once again the system shown in Figure 4-7. (See Example 4-3.) Assume that 
m == 10 kg, b = 20 N-s/m, k == 100 N/m, and u(t) is a unit-ramp input-that is, the dis­
placement u increases linearly, or u = at, where ex = 1. We shall obtain the unit-ramp 
response using the command 

Isim(sys,u,t) 
The transfer function of the system, derived in Example 4-3, is 

Y(s) 2s + 10 
U(s) == s2 + 2s + 10 

MATLAB Program 4-10 produces the unit-ramp response. The reSUlting response 
curve y(t) versus t and the input ramp function u(t) versus t are shown in FIgure 4-17. 

MATlAR Program 4-10 

»num = [2 10]; 
»den=[l 2 10]; 
» sys = tf(num, den); 
» t = 0:0.01 :4; 
»u = t; 
» Isim(sys,u,t) 
» grid 
» title('Unit-Ramp Response') 
» xlabel('t') 
» ylabel('Output yet) and Input u(t) = tl} 
» text(0.8,O.25,'y') 
» text(0.15,O.8,'u') 
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[Note that the command lsim(sys,u,t) produces plots ofbothy(t) versus t and u(t) versus I.] 
In some cases it is desired to plot multiple curves on one graph. This can be done 

by using a plot command with mUltiple arguments, for example, 

plot(t,yl, t,y2, ... , t,yn) 

MATLAB Program 4-11 uses the command 

plot(t,y,t,u) 

to plot a curve y(t) versus t and a line u(t) versus t. The resulting plots are shown in 
Figure 4-18. 

MATLAR Program 4-11 

»nurn = [2 101; 
»den = [1 2 10); 
» sys = tf(nurn,den); 
» t = 0:0.01 :4; 
» u = t; 
» y = Isirn(sys,u,t); 
» plot(t,y,t,u) 
» grid 
» title{'Unit-Rarnp Response') 
» xlabel{'t (sec)') 
» ylabelCOutput y(t) and Input u(t) = tl) 
» text(0.85,0.25, Iyl) 
» text(0.15,O.8,'u ') 

Unit-Ramp Response 
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Flgure 4-18 Plots of unit-ramp response curve y(t) and input 
ramp function u(t). (Plots are obtained with the use of the com­
mand plot(t,y,t,u).) 
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Response to initial condition (transfer-function approach). The next 
example obtains the response of a transfer-function system subjected to an initial 
condition. 

Example 4-11 

Consider the mechanical system shown in Figure 4-19, where m = 1 kg, b = 3 N-s/m, 
and k = 2 N/m. Assume that the displacement x of mass m is measured from the equi­
librium position and that at t:::: 0 the mass m is pulled downward such that 
x(O) = 0.1 m and X(O) = 0.05 mls. Obtain the motion of the mass subjected to the ini­
tial condition. (Assume no external forcing function.) 

The system equation is 

mx + bi + kx = 0 

with the initial conditions x(O) = 0.1 m and X(O) = 0.05 mls. The Laplace transform of 
the system equation gives 

m[s2X(s) - sx(O) - x(O)] + b[sX(s) - x(O)] + kX(s) = 0 

or 

(ms2 + bs + k)X(s) = mx(O)s + mx(O) + bx(O) 

Solving this last equation for X(s) and substituting the given numerical values into x(O) 
and x(O), we obtain 

mx(O)s + mx(O) + bx(O) 
X(s) - -....;.....;....------

- m,s2 + bs + k 
O.is + 0.35 

s2 + 3s + 2 

This equation can be written as 

() 
0.is2 + 0.35s 1 

X s = -
s2 + 3s + 2 s 

Hence, the motion of the mass m is the unit-step response of the following system: 

G( s) = 0.ls2 + 0.35s 
S2 + 3s + 2 

MATLAB Program 4-12 produces a plot of the motion of the mass when the system 
is subjected to the initial condition. The plot is shown in Figure 4-20. 

Flgure ~19 Mechanical system. x 
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Response of System Subjected to Initial Condition 
0.12 ,.-----,----r----,..---r---r----, 

0.1 

0.08 

0.06 

0.04 

0.02 

0 
0 1 2 3 4 

I (sec) 

MATLAB Program 4-12 

5 6 Flgure 4-20 Response of system 
subjected to initial condition. 

» % ------------ Response to initial condition -------------
» 
» % System response to initial condition is converted to a 
» % unit-step response by modifying the numerator polynomial. 
» 
» num = [0.1 0.35 0]; 
» den = [1 3 2]; 
» sys = tf(num,den); 
» step(sys) 
» grid 
» title('Response of System Subjected to Initial Condition') 
» xlabe/('t') 
» ylabel('Output x(t)') 

EXAMPLE PROBLEMS AND SOLUTIONS 

Problem A-4-1 

Consider the satellite attitude control system depicted in Figure 4-21. The diagram 
shows the control of only the yaw angle 8. (In the actual system, there are controls 
about three axes.) Small jets apply reaction forces to rotate the satellite body into the 
desired attitude. The two skew symmetrically placed jets denoted by A and B operate 
in pairs. Assume that each jet thrust is FI2 and a torque T = FI is applied to the system. 
The jets are turned on for a certain length of time, so the torque can be written as T(t). 
The moment of inertia about the axis of rotation at the center of mass is 1. 
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Figure 4-21 Schematic diagram of a 
satellite attitude control system. 

F 
2 

',,­
'~8 

____ '\.>0--\ ________ Reference 

Obtain the transfer function of this system by assuming that the torque T(t) is the 
input, and the angular displacement 6{ t) of the satellite is the output. (We consider the 
motion only in the plane of the page.) 

Solution Applying Newton's second law to this system and noting that there is no 
friction in the environment of the satellite, we have 

Jd
2
6 == T 

dt2 

Taking the Laplace transform of both sides of this last equation and assuming that all 
initial conditions are zero yields 

1S2@(S) = T(s) 

where @(s) = ~[6(t)] and T(s) = ~[T(t)]. The transfer function of the system is thus 

8(s) 1 
Transfer function = -- = -

T(s) Js2 

Problem A-4-2 

Consider the mechanical system shown in Figure 4-22. Displacements Xi and Xo are 
measured from their respective equilibrium positions. Derive the transfer function of 
the system wherein Xi is the input and Xo is the output. Then obtain the response Xo (t) 
when input Xi (t) is a step displacement of magnitude Xi occurring at t = O. Assume 
that xo(O-) = O. 

Solution The equation of motion for the system is 

bl(.x; - xo) + kl(Xi - xo) = bzxo 
Taking the :£ _ transform of this equation and noting that x;(O-) = 0 and xo(O-) = 0, 
we have 

(bls + kl)X;(S) = (bls + kl + bzs)Xo(s) 

The transfer function Xo( s)/ X;( s) is 

Xo(s) b1s + kl 
X;(s) = (bl + b2)s + kl 

(4-28) 
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Figure 4-22 Mechanical system. 

The response xo( t) when the input x;( t) is a step displacement of magnitude Xi 
occurring at t = 0 can be obtained from Equation (4-28). First we have 

X (s) = bis + kl Xi = {.!. _ ~ 1 }x. 
o (hI + hz)s + k} s S hI + b2 s + [k}/(bz + b2») I 

Then the inverse Laplace transform of Xo(s) gives 

x (t) = [1 - _hz __ e-klll(bl+b2>]X. 
o bI + hz I 

Notice that xo(O+) = [bl/(bl + hz)]Xi• 

Problem A-4-3 

The mechanical system shown in Figure 4-23 is initially at rest. At t = 0, a unit-step dis­
placement input is applied to point A. Assume that the system remains linear through­
out the response period. The displacement x is measured from the equilibrium position. 
H m = 1 kg, b = 10 N-s/m, and k = 50 N/m, find the response x(t) as well as the values 
of x(O+ ), i(O+ ), and x( 00). 

Solution The equation of motion for the system is 

mx + b(x - y) + kx = 0 

or 

m'i + bi + kx = by 

(U~t-step) Input 
x y 

b 

m t----oA 

Figure 4-23 Mechanical 
system. 
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Noting that x(O-) = 0, x(O-) = 0, and y(O-) = 0, we take the ~_ transform of this 
last equation and obtain 

(ms2 + bs + k)X(s) = bsY(s) 

Thus, 

X(s) bs 

Y (s) = ms2 + bs + k 

Since the input y is a unit step, Y(s) = lis. Consequently, 

bs 1 b 
X(s) = - = ----

ms2 + bs + k s ms2 + bs + k 

Substituting the given numerical values for m, b, and k into this last equation, we get 

X(s) - 10 = 10 
- s2 + lOs + 50 (s + 5f + S2 

The inverse Laplace transform of X(s) is 

x(t) = 2e-51 sin St 

The values of x(O+ ), x(O+ ), and x( 00) are found from the preceding equation and are 

x(O+) = 0, x(O+) = 10, x(oo) = 0 

Thus, the mass m returns to the original position as time elapses. 

Problem A-4-4 

Find the transfer function Xo(s)IXj(s) of the mechanical system shown in Figure 4-24. 
Obtain the response xo(t) when the input Xj(t) is a step displacement of magnitude X j 
occurring at t = O. Assume that the system is initially at rest [xo(O-) = 0 and 
y(O-) = 0]. Assume also that Xj and Xo are measured from their respective equilibrium 
positions. The numerical values of bh hz, kJ, and k2 are as follows: 

bl = SN-slm, bz = 20 N-s/m, kl = SN/m, k2 = 10N/m 

Figure 4-24 Mechanical system. 
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Solution The equations of motion for the mechanical system are 

bt(.xj - xo) + kt(Xi - Xo) = b2(xo - j) 
hz(xo - j) = k2y 
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Taking the ;£ _ transform of these two equations, with the initial conditions x;(O-) = 0, 
xo(O-) == 0 and y(O-) = 0, we get 

bt[sX;(s) - sXo(s)] + kt[X;(s) - Xo(s)] == b2[sXo(s) - sY(s)] 
hz[sXo{s) - sY{s)] = k2Y(S) 

If we eliminate Y(s) from the last two equations, the transfer function X()(s)/X;(s) 
becomes 

(:: s + 1 ) (~ s + 1 ) 

Substitution of the given numerical values into the transfer function yields 

Xo(s) (s + 1)(2s + 1) S2 + 1.5s + 0.5 

X;(s) == (s + 1)(15 + 1) + 4s s2 + 3.5s + 0.5 

For an input Xi( I) = X;, 1 (I), the response xo( t) can be obtained as follows: Since 

Xo(s) == s2 + 1.5s + 0.5 Xi 
s2 + 3.5s + 0.5 s 

(
0.6247 0.6247 1 )x 

== s + 3.3508 - s + 0.1492 + -; ; 

we find that 

Xo(t) == (0.6247e-3.3508t - 0.6247e-o.l492t + l)X; 

Notice that xo(O+) == X;. 

Problem A-4-S 

Obtain the transfer function X{s)/U{s) of the system shown in Figure 4-25, where u is the 
force input. The displacement x is measured from the equilibrium position. 

x 
Figure 4-25 Mechanical 
system. 
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Solution The equations of motion for the system are 

mx = -k2x - ~(x - y) + u 

b1(x - y) = k1y 

Chap. 4 

Laplace transforming these two equations and assuming initial conditions equal to 
zero, we obtain 

ms2 Xes) = -k2X(S) - ~sX(s) + b1sY(s) + U(s) 

blsX(s) - blsY(s) = kIY(S) 

Eliminating Yes) from the last two equations yields 

2 bls 
(ms- + bIs + k2)X(s) = bIs b k Xes) + U(s) 

IS + } 
Simplifying, we obtain 

[(ms2 + bIs + k2)(b}s + k}) - b}2s2]X(S) = (bls + kl)V(S) 

from which we get the transfer function X(s)/V(s) as 

Xes) bls + kl 

V(s) = mbl~ + mkls2 + bl(kl + k2)S + klk2 

Problem A-4-6 

Figure 4-26(a) shows a schematic diagram of an automobile suspension system. As the 
car moves along the road, the vertical displacements at the tires excite the automobile 
suspension system, whose motion consists of a translational motion of the center of 
mass and a rotational motion about the center of mass. Mathematical modeling of the 
complete system is quite complicated. 

y 

Center of mass 

u 
• Auto body 

(a) (b) 

Figure 4-26 (a) Automobile suspension system; (b) simplified suspension system. 



Example Problems and Solutions 141 

A highly simplified version of the suspension system is shown in Figure 4-26(b). 
Assuming that the motion u at point P is the input to the system and the vertical 
motion y of the body is the output, obtain the transfer function Y(s)/U(s). (Consider 
the motion of the body only in the vertical direction.) The displacement y is measured 
from the eqUilibrium position in the absence of the input u. 

Solution The equation of motion for the system shown in Figure 4-26(b) is 

my + bey - it) + key - u) = 0 

or 

my + by + ky = bit + ku 

Taking the Laplace transform of this last equation, assuming zero initial conditions, we 
obtain 

(ms2 + bs + k)Y(s) = (bs + k)U(s) 

Hence, the transfer function Y (s )IU (s) is 

Yes) bs + k 
U (s) = mil + bs + k 

Problem A-4-7 

Obtain the transfer function Y(s)/U(s) of the system shown in Figure 4-27. The vertical 
motion u at point P is the input. (Similar to the system of Problem A-4-6, this system is 
also a simplified version of an automobile or motorcycle suspension system. In 
Figure 4-27, ml and kl represent the wheel mass and tire stiffness, respectively.) 
Assume that the displacements x and yare measured from their respective equilib­
rium positions in the absence of the input u. 

Solution Applying Newton's second law to the system, we get 

mtx = k2(y - x) + b(Y - i) + kt(u - x) 

m2Y = -k2(y - x) - bey - i) 

y 

x 

u 

F1gure 4-27 Suspension system. 
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Hence, we have 

mIx + bi + (k1 + k2)x = by + k2y + k1u 

m2Y + by + k2y = bi + k2x 

Taking the Laplace transforms of these two equations, assuming zero initial conditions, 
we obtain 

[mls2 + bs + (kl + k2)]X(S) = (bs + k2)Y(S) + k1U(s) 

[m2s2 + bs + k2]Y(S) = (bs + k2)X(S) 

Eliminating X(s) from the last two equations, we have 

2 m2; + bs + k2 
(mls + bs + kl + k2) b k Y(s) = (bs + k2)Y(S) + klU(s) 

s + 2 

which yields 

Y(s) kl(bs + k2) 

U(s) = mlm2s4 + (ml + m2)bs3 + [k1m2 + (ml + m2)k2]s2 + k1bs + klk2 

ProblemA~ 

Expand the function 

B(s) 3s3 + 5s2 + lOs + 40 

A(s) = s4 + 16s3 + 69s2 + 94s + 40 

into partial fractions with MATLAB. 

Solution A MATLAB program for obtaining the partial-fraction expansion is given 
in MATLAB Program 4-13. 

MATLAR Program 4-13 

»num = [3 5 10 40]; 
» den = [1 16 69 94 40]; 
» [r, p, k] = residue(num,den) 

r= 

5.2675 
-2.0741 
-0.1934 

1.1852 

p= 

-10.0000 
-4.0000 
-1.0000 
-1.0000 

k= 
[] 

From the results of the program, we get the following expression: 

B(s) 5.2675 -2.0741 -0.1934 1.1852 --=--+ + +--~ 
A(s) s + 10 s + 4 s + 1 (s + 1)2 
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Note that the row vector k is zero, because the degree of the numerator is lower than 
that of the denominator. 

Problem A-4-9 

Expand the function 

B{s) 2s2 + Ss + 7 
A( s) = s3 + 3s2 + 7 s + 5 

into partial fractions with MATLAB. 

Solution A MATLAB program for obtaining the partial-fraction expansion is shown 
in MATLAB Program 4-14. 

MATLAR Program 4-14 

» nurn = [2 5 7]; 
» den = [1 3 7 5]; 
» [r, p, k] = residue(nurn,den) 

r= 

0.5000 - 0.2500i 
0.5000 + 0.2500i 
1.0000 

p= 

-1 .0000 + 2.0000i 
-1 .0000 - 2.0000i 
-1.0000 

k= 
[] 

From the MATLAB output, we get the following expression: 

B( s) 0.5 - jO.2S 0.5 + jO.2S 1 
--= + +--
A(s) s + 1 - j2 s + 1 + j2 s + 1 

(0.5 - jO.2S)(s + 1 + j2) + (0.5 + jO.2S)(s + 1 - j2) 1 
= +--

(s + 1 - j2){s + 1 + j2) s + 1 

s + 2 1 
= +--

s2 + 2s + 5 s + 1 

Note that, because the row vector k is zero, there is no constant term in this partial-frac­
tion expansion. 

Problem A-4-10 

Consider the mechanical system shown in Figure 4-28. The system is initially at rest, 
and the displacement x is measured from the equilibrium position. Assume that 
m = 1 kg, b = 12 N-s/m, and k = 100 N/m. 

Obtain the response of the system when 10 N of force (a step input) is applied to 
the mass m. Also, plot a response curve with the use of MATLAB. 
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P (10 N offorce) 

x 

Figure 4-28 Mechanical system. 

Solution The equation of motion for the system is 

mx + bi + kx = P 

Substituting the numerical values into this last equation, we get 

x + 12i + 100x = 10 

Taking the Laplace transform of this last equation and substituting the initial condi­
tions [x(O) = 0 and X(O) = 0] yields 

Solving for X(s), we obtain 

10 
(s2 + 12s + 100)X(s) = -

s 

X(s) _ 10 
- s(S2 + 12s + 100) 

0.1 O.ts + 1.2 
S s2 + 12s + 100 

0.1 0.1(s + 6) (0.6) 8 
= --;- - (s + 6)2 + 82 - "8 (s + 6)2 + 82 

The inverse Laplace transform of this last equation gives 

x(t) = 0.1 - 0.le-61 cos 8t - 0.075e-61 sin 8t 

The response exhibits damped vibration. 
A MATLAB program to plot the response curve is given in MATLAB Program 

4-15. The resulting response curve is shown in Figure 4-29. 

MATLAB Program 4-15 

» t = 0:0.01 :2; 
» nurn = [10]; 
» den = [1 12 100]; 
» sys = tf(nurn,den); 
» step(sys,t) 
» grid 
» title ('Step Response') 
» xlabelCt') 
» ylabelCOutput X(t)l) 

/ 
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Step Response 
0.12 r-----"T-"""T""-,-----.r----r--r--.,.......---,,..---r--, 

0.1 

0.08 

0.06 

0.04 

0.02 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Figure 4-29 Step response of mechani­
cal system. I (sec) 

Problem A-4-11 

Consider the mechanical system shown in Figure 4-30, where bi = 0.5 N -s/m, 
~ = 1 N-sfm, kl = 1 N/m, and k2 = 2 N/m. Assume that the system is initially at rest. 
The displacements Xi and Xo are measured from their respective equilibrium positions. 
Obtain the response xo(t) when x;{t) is a step input of magnitude 0.1 m. 

Solution From Problem A-4-4, the transfer function Xo(s)/X;(s) is 

Xo(s) (!: s + 1 )(~ s + 1) 
--=--~---""'----Xj(S) (!: s + 1 )(~ S + 1) + ~ S 

Figure 4-30 Mechanical system. 
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Substitution of the given numerical values yields 

Xo(s) (O.Ss + l)(O.Ss + 1) 
-- = --------
Xj(s) (O.Ss + l)(O.Ss + 1) + s 

0.25s2 + s + 1 

0.2Ss2 + 2s + 1 
s2+4s+4 

s2+8s+4 
Since x;(t) = (O.l)l(t), we have 

Hence, 

0.1 
X;(s) =-; 

Xo(s) = S2 + 4s + 4 0.1 
S2 + 8s + 4 S 

0.1s2 + O.4s + 0.4 1 
s2+8s+4 s 

MATLAB Program 4-16 is used to obtain the step response, which is shown in Figure 4-31. 

MATLAR Program 4-16 

» t = 0:0.02:12; 
» num = [0.1 0.4 0.4]; 
» den = [1 8 4]; 
» sys = tf(num,den); 
» [x_o,t] = step(sys,t); 
» plot(t,x_o) 
» grid 
» title('Step Response of (0.1 sA2 + O.4s + 0.4) / (sA2 + 8s + 4)') 
» xlabel{'t (sec)') 
» ylabel('x_o(t)') 

0.1 
Step Response of (o.W + 0.4s + 0.4)/(; + 8s + 4) 

Figure 4-31 Step response of system 
shown in Figure 4-30. 
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-2 

Figure 4-31 shows the response curve from t ::: 0+ to t = 12. Note that 
xo(O+) = 0.1. If we wish to plot the curve from xo(O-) = 0 to xo(12) = 0.1, we may 
add the axis command 

v = [-2 12 -0.02 0.12]; axis(v) 

to the program, as shown in MATLAB Program 4-17. Then the xy domain of the plot 
becomes -2 S x S 12, -0.02 S Y S 0.12. The plot of the response curve produced 
by MATLAB Program 4-17 is shown in Figure 4-32. 

MATLAB Program 4-17 

» t = 0:0.02:12; 
» num = [0.1 0.4 0.4]; 
» den = [1 8 4]; 
» sys = tf(num,den); 
» [x_o, tJ = step(sys,t); 
» plot(t,x_o) 
» v = [-2 12 -0.02 0.12]; axis(v) 
» grid 
» titieCStep Response of (0.1 sl\2 + O.4s + 0.4) / (s1\2 + 8s + 4)1) 
» xlabelCt (sec)l) 
» ylabeICx_o(t)l) 
» text (1.5, 0.007, 'These two lines are manually drawn.') 

Step Response of (0.1.s2 + O.4s + 0.4)/(.s2 + 8s + 4) 

: : : : : 

These two\lines are manually drawn. 

o 2 4 6 8 10 
t (sec) 

12 
Figure 4-32 Step response of system, 
shown in the region -2 s x s 12, 
-0.02 s y s 0.12. 

Problem A-4-12 

Plot the unit-step response curves of the two systems defined by the transfer functions 

Jr(s) 25 

and 
U (s) = s2 + 5s + 25 

Y(s) 5s + 25 
U (s) = s2 + 5s + 25 

in one diagram. Then plot each curve in a separate diagram, using the subplot command. 
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Solution MATLAB Program 4-18 produces the unit-step response curves of the two 
systems. The curves are shown in Figure 4-33. 

Multiple curves on one diagram can be split into multiple windows with the use of 
the sUbplot command. MATLAB Program 4-19 uses the subplot command to plot two 
curves in two subwindows, one curve per subwindow. Figure 4-34 shows the resulting plot. 

MATLAB Program 4-18 

» t = 0:0.05:3; 
» sys1 = tf([25], [1 5 25]); 
» sys2 = tf([5 25), [1 5 25]); 
» [x, t) = step(sys1,t); 
» [y, t1 = step(sys2,t); 
» plot(t,x,t,y,t,y,'o') 
» grid 
» title('Unit-Step Responses') 
» xlabel{'t (sec)') 
» ylabel('Outputs x(t) and y(t)') 
» text(1.25,l.15, 'x'} 
» text(1.25, 1.3, 'y') 

Unit-Step Responses 
1.4 ,...--____ r-------r-----r-----r---.....,---__ 

1.2 

-=:- 1 
';;:: 
"0 

~ 0.8 
S 
~ 

; 0.6 
S-
:;, 

o 0.4 

0.2 

Figure 4-33 1\vo unit-step response 
curves shown in one diagram. 

0.5 1.5 
t (sec) 

2 2.5 3 

Problem A-4-13 

Consider the system shown in Figure 4-35. The system is initially at rest. Suppose that 
the cart is set into motion by an impulsive force whose strength is unity. Can it be 
stopped by another such impulsive force? 

Solution When the mass m is set into motion by a unit-impulse force, the system 
equation becomes 

m'i + kx = 8(t) 
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MATlAR Program 4-19 

» t = 0:0.05:3; 
»sys1 = tf([25], [1 5 25]); 
» sys2 = tf([5 25), [1 5 25]); 
» [x, tl = step(sys1 ,t); 
» [y, tl = step(sys2,t); 
» subplot(121), plot(t,x), grid 
» title('Unit-Step Response') 
» xlabel('t (sec)') 
» ylabel('Output x(t)') 
» subplot(122), plot(t,y), grid 
» title('Unit-Step Response') 
» xlabel('t (sec)') 
» ylabel('Output yet)') 
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Unit-Step Response 
1.4 r-----,r-----,r------, 

Unit-Step Response 
1.4 r-----,r-----,r------, 

1.2 1.2 

1 

;;:::-
-;::: 0.8 
:; 
S-O 0.6 

0.4 1--1-········;··········· 0.4 

0.2 

1 2 
t (sec) 

Impulsive 
force 

3 

0.2 ~ ........... ; ...... . 

1 2 
t (sec) 

x 

6(t) m 

3 
Figure 4-34 Plots of two unit-step 
response curves in two subwindows, one 
in each subwindow. 

Figure 4-35 Mechanical system. 

We define another impulse force to stop the motion as AcS(t - T), where A is the 
undetermined magnitude of the impulse force and t = T is the undetermined instant 
that this impulse is to be given to the system to stop the motion. Then, the equation for 
the system when the two impulse forces are given is 

mx + kx = cS(t) + AcS(t - T), x(O-) = 0, x(O-) = 0 
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The :£ _ transform of this last equation with x(O-) = 0 and x(O-) = 0 gives 

(ms2 + k)X(s) = 1 + Ae-sT 

Solving for X(s), we obtain 

X(s) = 1 + Ae-
sT 

ms2 + k ms2 + k 

1 ~ A ~e-ST 
=-----+-----
~S2+.!!.. ~ s2+.!!.. 

m m 

The inverse Laplace transform of X(s) is 

x(t) = ~Sin~t + ~ [Sin~(t - T)] 1(t - T) 

Chap. 4 

If the motion of the mass m is to be stopped at t = T, then x(t) must be identically zero 
for t ~ T, a condition we can achieve if we choose 

A = 1, T=~ 
~' 

Thus, the motion of the mass m can be stopped by another impulse force, such as 

Problem A-4-14 

Consider the mechanical system shown in Figure 4-36. Suppose that a person drops a 
steel ball of mass m onto the center of mass M from a height d and catches the ball on 
the fust bounce. Assume that the system is initially at rest. The ball hits mass M at 
t = O. Obtain the motion of mass M for 0 < t. Assume that the impact is perfectly elas­
tic. The displacement x of mass M is measured from the equilibrium position before the 
ball hits it. The initial conditions are x(O-) = 0 and i(O-) = O. 

Assuming that M = 1 kg, m = 0.015 kg, b = 2 N-s/m, k = 50 N/m, and d = 
1.45 m, plot the response curve with MATLAB. 

Solution The input to the system can be taken to be an impulse, the magnitude of 
which is equal to the change in momentum of the steel ball. At t = 0, the ball hits mass 
M.Assume that the initial velocity of the ball is v(O-). At t = 0, the ball bounces back 
with velocity v(O+). Since the impact is assumed to be perfectly elastic, 
v(O+) = -v(O-). Figure 4-37(a) shows a sudden change in the velocity of the ball. 
Define the downward velocity to be positive. Since the change in velocity of the ball oc­
curs instantaneously, iJ has the form of an impulse, as shown in Figure 4-37(b). Note 
that iJ(O+) is negative. 

The equation of motion for the system is 

M'i + bi + kx = F(t) (4-29) 
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Figure 4-36 Mechanical system subjected to an 
impulse input. 

v(O+) -~---

o 

-A 

fl.t 

Figure 4-37 (a) Sudden change in the velocity v 
of steel ball; (b) plot of v versus t. 
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where F(t), an impulse force, is equal to -mv. [Note that -mv is positive; the impulse 
force F(t) is in the positive direction of x.] From Figure 4--37(b), the impulse force can 
be written as 

F(t) = A !!it 8(t) 

where A !!it is the magnitude of the impulse input. Thus, 

F(t) = A !!it 8(t) = -mv 
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from which we can get 

rO+ 0+ 

Jo- A at 8(t)dt = -m L v dt 

or 

Aat = mv(O-) - mv(O+) (4-30) 

The momentum of the steel ball is changed from mv( 0-) (downward at t = 0-) to 
mv(O+) (upward at t = 0+). Since v(O+) = -v(O-), Equation (4-30) can be written as 

A at = 2mv(0-) 

Then Equation (4-29) becomes 

M'i + bi + kx = F(t) = 2mv(0-) 8(t) 

Taking the :e _ transforms of both sides of this last equation, we get 

M[S2 X(s) - sx(O-) - i(O-)] + b[5X(S) - x(O-)] + kX(s) = 2mv(0-) 

Noting that x(O-) = 0 and i(O-) = 0, we have 

(MS2 + bs + k)X(s) = 2mv(0-) 

Solving for X(s), we obtain 

2mv(0-) 
X (s) = M s2 + bs + k 

Since the velocity of the steel ball after falling a distance dis V2id, we have 

v(O-) = V2id 
It follows that 

2mV2id 
X (5

) = M 52 + bs + k 

Substituting the given numerical values into Equation (4-31), we obtain 

() 
2 X 0.015V2 x 9.807 X 1.45 

X 5 = ----:--------
S2 + 25 + 50 

0.15999 

52 + 2s + 50 

0.15999 7 

7 (5 + 1)2 + 72 

The inverse Laplace transform of X(5) gives 

x(t) = 0.02286e-1 sin 7t m 

Thus, the response of the mass M is a damped sinusoidal motion. 

(4-31) 

A MATLAB program to produce the response curve is given in MATLAB Pro­
gram 4-20. The resulting curve is shown in Figure 4-38. 
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0.02 

0.015 

0.01 

0.005 

0 

-0.005 

-0.01 

-0.015 
0 

MATLAB Program 4-20 

» num = [0.15999]; 
» den = [1 2 50]; 
» sys = tf(num,den); 
» impulse(sys) 
» grid 
»title('lmpulse Response of Mechanical System ') 
» xlabelCt') 
» ylabelCOutput X(t)l) 

Impulse Response of Mechanical System 

1 2 3 
t (sec) 

4 5 6 
Figure 4-38 Response of mass M 
subjected to impulse input. 

Problem A-4-lS 

Figure 4-39 shows a mechanism used for a safety seat belt system. Under normal oper­
ating conditions, the reel rotates freely and it is possible to let out more slack in the 
belt, allowing the passenger to move forward even with the belt fastened. However, if 
the car decelerates rapidly in a collision or sudden stop, the pendulum is subjected to 
an impulsive torque that causes it to swing forward and also causes the bar to engage 
the ratchet, locking the reel and safety belt. Thus, the passenger is restrained in place. 

Referring to Figure 4-40, assume that the car is moving at a speed of 10 mls 
before a sudden stop. The stopping time At is 0.3 s. The pendulum length is 0.05 m. Find 
the time needed for the pendulum to swing forward by 20°. 

Solution From Figure 4-41, the moment of inertia of the pendulum about the pivot is 
J = mP. The angle of rotation of the pendulum is 8 rad. Define the force that acts on the 
pendulum at the instant the car stops suddenly as F(t). Then the torque that acts on the 
pendulum due to the force F(t) is F(t)l cos 8. The equation for the pendulum system is 

ml28 = F(t)l cos 8 - mgl sin 8 (4-32) 

We linearize this nonlinear equation by assuming that the angle 8 is small. 
(Although 8 = 20° is not quite small, the resulting linearized equation will give an 
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Figure ~39 Mechanism used for a safety 
seat belt system. (a) Normal operating 
condition; (b) emergency condition. 

Figure 4-40 Pendulum attached 
to auto body. 

Pendulum 

Figure 4-41 Pendulum system. 

® 

(a) 

(b) 

v(o-) 
~Autobody 

Seat belt 

x ------f-----.... 

l 
mg 

Chap. 4 

Ratchet 
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approximate solution.) Approximating cos 8 =P 1 and sin 8 =P 8, we can write Equa­
tion (4-32) as 

m/28 = F(t)1 - mglB 

or 

ml8 + mg8 = F(t) (4-33) 

Since the velocity of the car at t = 0- is 10 mls and the car stops in 0.3 s, the average 
deceleration is 33.3 mls2• 

Under the assumption that a constant acceleration of magnitude 33.3 rnIs2 acts 
on the pendulum mass for 0.3 sec, F(t) may be given by 

F(t) = m'i = 33.3m[1(t) - l(t - 0.3)] 

Then, Equation (4-33) may be written as 

ml8 + mg8 = 33.3m[1(t) - l(t - 0.3)] 

or 

.. g 33.3 
8 + [8 = -1-[I(t) - l(t - 0.3)] 

Since I = 0.05 m, this last equation becomes 

8 + 196.148 = 666[1(t) - l(t - 0.3)] 

Taking 9'" _ transforms of both sides of the preceding equation, we obtain 

(s2 + 196.14)6(s) = 666(; - ;e-O
.
3S

) (4-34) 

where we used the initial conditions that 8(0-) = 0 and 8(0-) = O. Solving Equation 
(4-34) for 6( s) yields 

6(s) = 666 (1 _ e- 0.3s ) 

s(s2 + 196.14) 

(
1 s) 666 (1 -0.3s) 

= -; - S2 + 196.14 196.14 - e 

The inverse Laplace transform of 6( s) gives 

8(t) = 3.3955(1 - cos 14t) 
- 3.3955{1(t - 0.3) - [cos 14(t - 0.3)]I(t - 0.3)} (4-35) 

Note that l(t - 0.3) = 0 for 0 :S t < 0.3. 
Now assume that at t = tt. 8 = 200 = 0.3491 rad. Then, tentatively assuming 

that I} occurs before t = 0.3, we seek to solve the following equation for 1}: 

0.3491 = 3.3955(1 - cos 141t) 

Simplifying yields 

cos 14tl = 0.8972 

and the solution is 

tl = 0.0326 s 
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Since tl = 0.0326 < 0.3, our assumption was correct. The terms involving l(t - 0.3) in 
Equation (4-35) do not affect the value of t l' It thus takes approximately 33 millisec­
onds for the pendulum to swing 20°. 

Problem A-4-16 

Consider the mechanical system shown in Figure 4-42(a). The cart has the mass of m kg. 
Assume that the wheels have negligible masses and there is no friction involved in the 
system. The force u(t) applied to the cart is increased linearly from 0 to 5 N for the period 
o :s; t :s; 10, as shown in Figure 4-42(b). Att = 10+, the force u(t) is disengaged, or 

u(t) = 0 for 10 < t 
Assuming that m = 100 kg, obtain the displacement x(t) of the cart for 0 :s; t :s; 30 
with MATLAB. The cart is at rest for t < 0, and the displacement x is measured from 
the rest position. 

Solution The equation of motion for the system is 

mx = u 

Hence, the transfer function of the system is 

Jr(s) 1 1 
U(s) = ms2 = 100s2 

The input u(t) is a ramp function for 0 :s; t :s; 10 and is zero for 10 < t, as shown in 
Figure 4-42(b). (At t = 10, U ::: 5 N.) Thus, in MATLAB, we define 

u1 = 0.5*[0: 0.02: 10] for 0 :s; t :s; 10 

u2 = 0*[10.02:0.02:30] for 10 < t :s; 30 

where u is either u1 or u2, depending on which interval u is in. Then the input force u(t) 
for 0 :S t :S 30 can be given by the MATLAB array 

u = [ul u2] 

MATLAR Program 4-21 

»t = 0:0.02:30; 
» ul = 0.5*[0:0.02:10]; 
» u2 = 0*[10.02:0.02:30]; 
» u = [ul u2]; 
»nurn = [1]; den = [100 0 0]; 
» sys = tf(nurn,den); 
» x = Isirn(sys,u,t); 
» subplot(211 ),plot(t,x) 
» grid 
» ylabel('Output X(t)l) 
» subplot (212), plot(t,u) 
»v = [0 30 -1 6]; axis (v) 
» grid 
» xlabelCt (sec)') 
» ylabel('lnput Force u(t) newton ') 
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MATLAB Program 4-21 produces the response curve. The curves of x(t) versus t and 
the input force u(t) versus t are shown in Figure 4-43. 

x 
u(t) 

5N 

o 10 

(a) 

Flgore 4-42 (a) Mechanical system; (b) force u(t) applied to the cart. 
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Figure 4-43 Response curve x(t) versus t and input curve u(t) versus t. 

Problem A-4-17 

Using MATLAB, generate a triangular wave as shown in Figure 4-44. 

30 

Solution There are many ways to generate the given triangular wave. In MATLAB 
Program 4-22, we present one simple way to do so. The resulting wave is shown in 
Figure 4-45. 
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MATLAB Program 4-22 

»t = 0:1:8; 
» u1 = [0:0.5:1]; 
» u2 = [0.5:-0.5:-1]; 
» u3 = [-0.5:0.5:0]; 
» u = [u1 u2 u3]; 
» plot(t,u) 
» v = [-2 10 -1.5 1.5]; axis(v) 
» grid 
» title('Triangular Wave I) 
» xlabelCt (sec)') 
» ylabelCOisplacement U(t)l) 

u 

Figure 4-44 Triangular wave. 
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Problem A-4-18 

Consider the spring-mass-dashpot system shown in Figure 4-46(a). Assume that the 
displacement U of point P is the input to the system. Assume also that the input u(t) is a 
small bump, as shown in Figure 4-46(b). Obtain the response Y(/) of the mass m. The 
displacement y is measured from the equilibrium position in the absence of the input 
u(t). To obtain the response curve, assume that m ::: 100 kg, b = 400 N-s/m, and 
k = BooN/m. 

Solution From Problem A-4-6, the transfer function of the system is 

Y(s) bs + k 

U (s) = ms2 + bs + k 

Substituting the given numerical values for m, b, and k into this transfer function, we 
obtain 

Y(s) 400s + BOO 
U(s) = loos2 + 400s + BOO 

4s + B 

s2 + 4s + B 

The input U(/) is a triangular wave for 0 ::; t ::; 4 and is zero for 4 < 1 ::; B. (For the 
generation of a triangular wave, see Problem A-4-17.) 

As in Problem A-4-17, the input U(/) can be generated by first defining, in MAT­
LAB, 

and then defining 

u1 = [0:0.02:1]; 

u2 = [0.98:-0.02:-1); 

u3 = [-0.98:0.02:0); 

u4 = 0*[4.02:0.02:8]; 

u = [u1 u2 u3 u4] 

MATLAB Program 4-23 produces the response Y(/) of the system. The response curve 
Y(/) versus 1 and the input curve U(/) versus 1 are shown in Figure 4-47. 

y U 

1 

o 
U 

-1 

(a) (b) 

Figure 4-46 (a) Spring-mass-dashpot system; (b) input U(/) versus I. 
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MATLAR Program 4-23 

» t = 0:0.02:8; 
» num = [4 8]; 
> > den = [1 4 8]; 
» sys = tf(num,den); 
» u1 = [0:0.02:1]; 
»u2 = [0.98:-0.02:-1); 
» u3 = [-0.98:0.02:0); 
» u4 = 0*[4.02:0.02:8]; 
» u = [u1 u2 u3 u4]; 
» y = Isim(sys,u,t); 
» plot(t,y,t,u) 
» grid 
»titieCResponse of Spring-Mass-Dashpot System and Input U(t)l) 
» xlabel('t (sec)') 
» ylabel('Output y(t) and Input U(t)I) 
> > text(2 .2,0.72, Iyl) 
» text(1.05,0.1, lUi) 

Response of Spring-Mass-Dashpot System and Input u(t) 
1.5 ,....---r----r---...,.---,---.,---r---.,.-----, 

Figure 4-47 Response of 
spring-mass-dashpot system subjected to 
the input shown in Figure 4-46(b). 

Problem A-4-19 
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Consider the spring-mass system shown in Figure 4-48. The displacement x is mea­
sured from the equilibrium position. The system is initially at rest. Assume that at t = 0 
the mass is pulled downward by 0.1 m [i.e., x(O) = 0.1) and released with the initial 
velocity of 0.5 mls [i.e., X(O) = 0.5]. Obtain the response curve x(t) versus t with MAT­
LAB. Assume that m = 1 kg and k = 9 N/m. 
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x Flgure 4-48 Spring-mass system. 

Solution The equation of motion for the system is 

mx = -kx 

Taking the Laplace transform of the preceding equation, we obtain 

m[s2X(s) - SX(O) - X(O)] = -kX(s) 

Substituting the given numerical values for m, k, x(O), and X(O) into this last equation, 
we have 

S2X(S) -O.ls - 0.5 + 9X(s) = 0 

Solving for X(s), we get 

Xes) = O.ls + 0.5 = 0.1s
2 + 0.5s .! 

s2 + 9 s2 + 9 s 

Hence, the response X{I) can be obtained as the unit-step response of 

G(s) = 0.ls2 + 0.5s 
s2 + 9 

MATLAB Program 4-24 produces the response curve x(t) versus t. The curve is shown 
in Figure 4-49. 

MATlAR Program 4-24 

» t = 0:0.001 :4; 
» num = [0.1 0.5 0]; 
» den = [1 0 9]; 
» sys = tf(nurn,den); 
» x = step(sys,t); 
» plot(t,x) 
» v = [-1 4 -0.4 0.4]; axis(v) 
» grid 
» title ('Response of System Subjected to Initial Condition I) 
» xlabelCt (sec)') 
» ylabel('x(t) meter') 
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Flgure 4-49 Response of spring-mass 
system subjected to the initial condition 
x(O) = 0.1 m and X(O) = 0.5 mls. 

-0.4 '----'-_--'-_-'-----11...---'-_-'--_ ......... ---1_-'-_...1 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 
t (sec) 

PROBLEMS 

Problem 8-4-1 

Find the transfer function Xo( s)/ X;( s) of the mechanical system shown in Figure 4-50. 
The displacements Xi and Xo are measured from their respective equilibrium positions. 
Obtain the displacement xo( t) when the input x;( t) is a step displacement of magnitude 
Xi occurring at t = O. Assume that xo(O-) = O. 

Figure 4-50 Mechanical system. 

Problem B-4-2 

Derive the transfer function Xo( s)/ X j ( s) ofthe mechanical system shown in Figure 4-51. 
The displacements Xi and Xo are measured from their respective equilibrium positions. 
Obtain the response xo(t) when the input Xj(t) is the pulse 

Assume that xo(O-) = O. 

o < t < tl 
elsewhere 
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Figure 4-51 Mechanical system. 

ProblemB+3 

Consider the mechanical system shown in Figure 4-52. Assume that u(t) is the force 
applied to the cart and is the input to the system. The displacement x is measured from 
the equilibrium position and is the output of the system. Obtain the transfer function 
X(s)/U(s) of the system. 

x (Output) 

Figure 4-52 Mechanical system. 

Problem B-4-4 

In the mechanical system shown in Figure 4-53, the force u is the input to the system 
and the displacement x, measured from the equilibrium position, is the output of the 
system, which is initially at rest. Obtain the transfer function X(s)/U(s). 

x 

Figure 4-53 Mechanical system. 

Problem B-4-S 

The system shown in Figure 4-54 is initially at rest, and the displacement x is measured 
from the eqUilibrium position. At t = 0, a force u is applied to the system. If u is the 
input to the system and x is the output, obtain the transfer function X(s)/U(s). 
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Figure 4-54 Mechanical system. 

Problem B-4-6 

Consider the mechanical system shown in Figure 4-55. The system is at rest for t < O. 
The input force u is given at t = O. The displacement x is the output of the system and 
is measured from the equilibrium position. Obtain the transfer function X(s)/U(s). 

Figure 4-55 Mechanical system. 

Problem B-t-7 

In the system of Figure 4-56,x(t) is the input displacement and 8(t) is the output angular 
displacement. Assume that the masses involved are negligibly small and that all motions 
are restricted to be small; therefore, the system can be considered linear. The initial con­
ditions for x and 8 are zeros, or x(O-) = 0 and 8(0-) = O. Show that this system is a dif­
ferentiating element. Then obtain the response 8(/) when x(t) is a unit-step input. 

~---L----.. 

---- No friction 

Figure 4-56 Mechanical system. 
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Problem B-4-8 

Consider the mechanical system shown in Figure 4-57. The system is initially at rest. 
Assume that u is the displacement of point P and x is the displacement of mass m. The 
displacement x is measured from the eqUilibrium position when u = O. Draw four dif­
ferent block diagrams for the system. 

x 

u 

p Figure 4-57 Mechanical system. 

Problem 8-4-9 

Using MATLAB, obtain the partial-fraction expansion of 

B(s) 1 
Jl(s) = s4 + s3 + 81s2 + 81s 

Problem B-4-10 

Using MATLAB, obtain the partial-fraction expansion of 

B(s) 5(s + 2) 

Jl(s) = s5 + 5s4 + 19s3 + 12s2 

Problem B-4-11 

Consider the mechanical system shown in Figure 4-58. Plot the response curve x(t) ver­
sus t with MATLAB when the mass m is pulled slightly downward, generating the ini­
tial conditions x(O) = 0.05 m and x(O) = 1 mis, and released at t = O. The 
displacement x is measured from the equilibrium position before m is pulled down­
ward. Assume that m = 1 kg, bi = 4 N-s/m, kl = 6 N/m, and k2 = 10 N/m. 

/ 

x 

Figure 4-58 Mechanical system. 
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Problem B-4-12 

Consider the mechanical system shown in Figure 4-59. The system is initially at rest. 
The displacements Xl and X2 are measured from their respective eqUilibrium positions 
before the input u is applied. Assume that bl = 1 N-s/m, ~ = 10 N-s/m, kl = 4 N/m, 
and k2 = 20 N/m. Obtain the displacement X2(t) when u is a step force input of 2 N. 
Plot the response curve X2( t) versus t with MATLAB. 

Figure 4-59 Mechanical system. 

Problem 8-4-13 

Figure 4-60 shows a mechanical system that consists of a mass and a damper. The sys­
tem is initially at rest. Find the response x(t) when the system is set into motion by an 
impulsive force whose strength is unity. Determine the initial velocity of mass m. Plot 
the response curve x(t) versus t when m = 100 kg and b = 200 N-s/m. 

x 

0(1)- m 

Figure 4-60 Mechanical system. 

Problem B-4-14 

Consider the mechanical system shown in Figure 4-61. Suppose that the system is ini­
tially at rest [x(O-) = 0, x(O-) = 0] and at t = 0 it is set into motion by a unit-impulse 
force. Obtain the transfer function of the system. Then obtain an analytical solution 
x(t). What is the initial velocity X(O+) after the unit-impulse force is given to the cart? 

Figure 4-61 Mechanical system. 

Impulsive 
force 

x 

O(t) m 
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Problem 11-4-15 

The mechanical system shown in Figure 4-62 is initially at rest. The displacement x of 
mass m is measured from the rest position. At t = 0, mass m is set into motion by an 
impulsive force whose strength is unity. Using MATLAB, plot the response curve x(t) 
versus t when m = 10 kg, b = 20 N-s/m, and k = 50 N/m. 

6(1) 

Figure 4-62 Mechanical system. 

Problem 11-4-16 

A mass m of 1 kg is vibrating initially in the mechanical system shown in Figure 4-63. 
At t = 0, we hit the mass with an impulsive force p(t) whose strength is 10 N.Assuming 
that the spring constant k is 100 N/m, that x(O-) = 0.1 m, and that x(O-) = 1 mis, 
find the displacement x(t) as a function of time t. The displacement x(t) is measured 
from the eqUilibrium position in the absence of the excitation force. 

x Figure 4-63 Mechanical system. 

Problem 11-4-17 

Consider the system shown in Figure 4-64. The system is at rest for t < O. Assume that 
the displacement x is the output of the system and is measured from the equilibrium 
position. At t = 0, the cart is given initial conditions x(O) = Xo and x(O) = Vo' Obtain 
the output motion x(t). Assume that m = 10 kg, bI = 50 N-s/m, b2 = 70 N-s/m, kI = 
400 N/m, and k2 = 600 N/m. 

x 

Figure 4-64 Mechanical system. 
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Problem B-4-18 

Referring to Problem 8-4-17, assume that m = 100 kg, bi = 120 N-slm, bz =80 N-s/m, 
kl = 200 N/m, and k2 = 300 N/m. The initial conditions are x(O) = 0 m and x(O) = 
0.5 m/s. Obtain the response curve x(t) versus t with MATLAB. 



State-Space Approach 
to Modeling Dynamic 
Systems 

5-1 INTRODUCTION 

The modern trend in dynamic systems is toward greater complexity, due mainly to 
the twin requirements of complex tasks and high accuracy. Complex systems may 
have multiple inputs and multiple outputs. Such systems may be linear or nonlinear 
and may be time invariant or time varying. A very powerful approach to treating 
such systems is the state-space approach, based on the concept of state. This con­
cept, by itself, is not new; it has been in existence for a long time in the field of clas­
sical dynamics and in other fields. What is new is the combination of the concept of 
state and the capability of high-speed solution of differential equations with the use 
of the digital computer. 

This chapter presents an introductory account of modeling dynamic systems in 
state space and analyzing simple dynamic systems with MATLAB. (More on the 
state-space analysis of dynamic systems is given in Chapter 8.) If the dynamic sys­
tem is formulated in the state space, it is very easy to simulate it on the computer 
and find the computer solution of the system's differential equations, because the 
state-space formulation is developed precisely with such computer solution in mind. 
Although we treat only linear, time-invariant systems in this chapter, the state-space 
approach can be applied to both linear and nonlinear systems and to both time­
invariant and time-varying systems. 

169 
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In what follows, we shall first give definitions of state, state variables, statevec­
tor, and state space. Then we shall present the outline of the chapter. 

State. The state of a dynamic system is the smallest set of variables (called 
state variables) such that knowledge of these variables at t = to, together with 
knowledge of the input for t ~ to, completely determines the behavior of the system 
for any time t ~ to. 

Thus, the state of a dynamic system at time t is uniquely determined by the 
state at time to and the input t ~ to and is independent of the state and input before 
to. In dealing with linear time-invariant systems, we usually choose the reference 
time to to be zero. 

State variables. The state variables of a dynamic system are the variables 
making up the smallest set of variables that determines the state of the dynamic sys­
tem. If at least n variables Xh X2, ••• , Xn are needed to completely describe the be­
havior of a dynamic system (so that, once the input is given for t ~ to and the initial 
state at t = to is specified, the future state of the system is completely determined), 
then those n variables are a set of state variables. It is important to note that vari­
ables that do not represent physical quantities can be chosen as state variables. 

- State vector. If n state variables are needed to completely describe the be­
havior of a given system, then those state variables can be considered the n compo­
nents of a vector x called a state vector. A state vector is thus a vector that uniquely 
determines the system state x(t) for any time t ~ to, once the state at t = to is given 
and the input u(t) for t ~ to is specified. 

State space. The n-dimensional space whose coordinate axes consist of the 
Xl-axis, xraxis, ... , xn-axis is called a state space. Any state can be represented by a 
point in the state space. 

State-space equations. In state-space analysis, we are concerned with three 
types of variables that are involved in the modeling of dynamic systems: input vari­
ables, output variables, and state variables. As we shall see later, the state-space rep­
resentation for a given system is not unique, except that the number of state variables 
is the same for any of the different state-space representations of the same system. 

If a system is linear and time invariant and if it is described by n state variables, 
r input variables, and m output variables, then the state equation will have the form 

Xl = allxl + a12x 2 + + alnxn + bllUl + b12U2 + 
X2 = a2l Xl + a22x 2 + ... + a2nx n + ~l Ul + bnU2 + 

Xn = anlxl + a n2x 2 + ... + annxn + bn1Ul + bn2U2 + 
and the output equation will have the form 

Yl = CllXl + C12X2 + + ClnXn + dllUl + d 12U2 + 
Y2 = C21Xl + C22X2 + ... + C2nXn + d21Ul + d 22U2 + 



Sec. 5-1 Introduction 171 

where the coefficients aij' bij, Cij' and dij are constants, some of which may be zero. If 
we use vector-matrix expressions, these equations can be written as 

i = Ax + Du (5-1) 

y=Cx+Du (5-2) 

where 

[Xl] [au al2 a~] [bU bl2 ~] =[::] x = ~2 , A = afl 
a22 a~ ,D = ~l ~ : ,u : . . . . 

Xn anI an2 ann bn1 bn2 bnr Ur 

[ ~ ] [CU 
Cl2 

CI. ] [dU dl2 

d

lr

] y = Y2 C = C21 C22 C~n ,D = dfl 
d22 do 

:' : . . 
Ym Cml Cm2 Cmn dml dm2 dmr 

Matrices A, D, C, and D are called the state matrix, input matrix, output matrix, and 
direct transmission matrix, respectively. Vectors x, u, and yare the state vector, input 
vector, and output vector, respectively. (In control systems analysis and design, the 
input matrix B and input vector u are called the control matrix and control vector, 
respectively.) The elements of the state vector are the state variables. The elements 
of the input vector u are the input variables. (If the system involves only one input 
variable, then u is a scalar.) The elements of the output vector yare the output vari­
ables. (The system may involve one or more output variables.) Equation (5-1) is 
called the state equation, and Equation (5-2) is called the output equation. [In this 
book, whenever we discuss state-space equations, they are described by Equations 
(5-1) and (5-2).] 

A block diagram representation of Equations (5-1) and (5-2) is shown in 
Figure 5-1. (In the figure, double-line arrows are used to indicate that the signals are 
vector quantities.) 

Figure 5-1 Block diagram of the linear, continuous-time system represented in 
state space. 
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ExampJe5-1 

Consider the mechanical system shown in Figure 5-2. The displacement y of the mass is 
the output of the system, and the external force u is the input to the system. The dis­
placement y is measured from the equilibrium position in the absence of the external 
force. Obtain a state-space representation of the system. 

From the diagram, the system equation is 

my + by + ky = u (5-3) 

This system is of second order. (This means that the system involves two integrators.) 
Thus, we need two state variables to describe the system dynamics. Since y(O),y(O), and 
u(t) ~ 0 completely determine the system behavior for t ~ 0, we choose y(t) and y(t) 
as state variables, or define 

Then we obtain 

Xl = X2 

. .. 1 (k b') 1 X2 = Y = - - y - y +-u 
m m 

or 

Xl = X2 

. k b 1 
X2=--XI--X2+-u 

m m m 

The output equation is 

y = Xl 

In vector-matrix form, Equations (5-4) and (5-5) can be written as 

~1 = k b Xl + 1 u [ 'J [0 1][ J [ 0] 
X2 - m - m X2 m 

The output equation, Equation (5-6), can be written as 

u 

Figure 5-2 Mechanical system. 

(5-4) 

(5-5) 

(5-6) 

(5-7) 

(5-8) 
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u XI =y 

Figure 5-3 Block diagram of the mechanical system shown in Figure 5-2. 

Equation (5-7) is a state equation, and Equation (5-8) is an output equation for the 
system. Equations (5-7) and (5-8) are in the standard form 

where 

or 

i = Ax + Bu 
Y = ex + Du 

B = [II c = [1 0], 

Note that Equation (5-3) can be modified to 

u k b... 
m - m Y - mY=Y 

D = 0 

On the basis of this last equation, we can draw the block diagram shown in Figure 5-3. 
Notice that the outputs of the integrators are state variables. 

In a state-space representation, a system is represented by a state equation 
and an output equation. In this representation, the internal structure of the system is 
described by a first-order vector-matrix differential equation. This fact indicates 
that the state-space representation is fundamentally different from the transfer­
function representation, in which the dynamics of the system are described by the 
input and the output, but the internal structure is put in a black box. 

Outline of the chapter. Section 5-1 has defined some terms that are necessary 
for the modeling of dynamic systems in state space and has derived a state-space model 
of a simple dynamic system. Section 5-2 gives a transient-response analysis of systems 
in state-space form with MATLAB. Section 5-3 discusses the state-space modeling of 
systems wherein derivative terms of the input function do not appear in the system dif­
ferential equations. Numerical response analysis is done with MATLAB. Section 5-4 
presents two methods for obtaining state-space models of systems in which derivative 
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terms of the input function appear explicitly in the system differential equations. 
Section 5-5 treats the transformation of system models from transfer-function repre­
sentation to state-space representation and vice versa. The section also examines the 
transformation of one state-space representation to another. 

5-2 TRANSIENT-RESPONSE ANALYSIS OF SYSTEMS 
IN STATE-SPACE FORM WITH MATLAB 

This section presents the MATLAB approach to obtaining transient-response 
curves of systems that are written in state-space form. 

Step response. We first define the system with 

sys = ss(A,B,C,D) 

For a unit-step input, the MATLAB command 

step(sys) or step(A,B,C,D) 

will generate plots of unit-step responses. The time vector is automatically deter­
mined when t is not explicitly included in the step commands. 

Note that when step commands have left-hand arguments, such as 

y = step(sys,t), [y,t,x] = step(sys,t), 
[y,x,t] = step(A,B,C,D,iu), [y,x,t) = step(A,B,C,D,iu,t) 

no plot is shown on the screen. Hence, it is necessary to use a plot command to see 
the response curves. The matrices y and x contain the output and state response of 
the system, respectively, evaluated at the computation time points t. (Matrix y has as 
many columns as outputs and one row for each element in t. Matrix x has as many 
columns as states and one row for each element in t.) 

Note also that the scalar iu is an index into the inputs of the system and speci­
fies which input is to be used for the response; t is the user-specified time. If the sys­
tem involves multiple inputs and multiple outputs, the step commands produces a 
series of step response plots, one for each input and output combination of 

(For details, see Example 5-2.) 

x=Ax+Bu 
y=Cx+Du 

Transfer matrix. Next, consider a multiple-input-multiple-output system. 
Assume that there are r inputs Uh U2, ••• , u" and m outputs Yh Y2, ... , Ym' Define 
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The transfer matrix G(s) relates the output Y(s) to the input U(s), or 

Y(s) = G(s)U(s) 
where 

G(s) = C(sI - A)-lB + D 

175 

(5-9) 

[The derivation of Equation (5-9) is given in Example 5-2, to follow.] Since the 
input vector u is r dimensional and the output vector y is m dimensional, the trans­
fer matrix G(s) is an m X r matrix. 

ExampleS-2 

Consider the following system: 

[Xl] [-1 -1][XI] [1 1][U1] 
X2 = 6.5 0 X2 + 1 0 U2 

[~] = [~ ~t:] + [~ ~][::l 
Obtain the unit-step response curves. 

Although it is not necessary to obtain the transfer-function expression for the 
system in order to obtain the unit-step response curves with MATLAB, we shall derive 
such an expression for reference purposes. For the system defined by 

i = Ax + Bu 
y=Cx+Du 

the transfer matrix G(s) is a matrix that relates Y(s) and U(s) through the formula 

Yes) = G(s)U(s) 

Taking Laplace transforms of the state-space equations, we obtain 

sX(s) - x(O) = AX(s) + DU(s) 
Yes) = CX(s) + DU(s) 

(5-10) 

(5-11) 
(5-12) 

In deriving the transfer matrix, we assume that x(O) = O. Then, from Equation (5-11), 
we get 

Xes) = (sI - ArIBU(s) 

Substituting this equation into Equation (5-12) yields 

Yes) = [C(sI - Ar1B + D]U(s) 

Upon comparing this last equation with Equation (5-10), we see that 

G(s) = C(sI - ArID + D 

The transfer matrix G(s) for the given system becomes 

G(s) = C(sI - A)-lB 

= [~ ~][ s _:.~ !rl~ ~] 
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1 [ s -1 ][1 01] 
= S2 + S + 6.5 6.5 S + 1 1 

1 [S-l s] 
= s2 + S + 6.5 s + 7.5 6.5 

Hence, 

[ 

s-l S 1 
[
Yt(S)] = s2 + S + 6.5 S2 + S + 6.5 [U1(S)] 
Y2(S) S + 7.5 6.5 U2(s) 

S2 + S + 6.5 S2 + S + 6.5 

Since this system involves two inputs and two outputs, four transfer functions can 
be defined, depending on which signals are considered as input and output. Note that, 
when considering the signal Ul as the input, we assume that signal U2 is zero, and vice 
versa. The four transfer functions are 

Yt(S) S -1 Yt(s) S 
--= --= 
UI(s) s2 + S + 6.5' U2(s) s2 + S + 6.5 

Y2(s) s + 7.5 }2(s) 6.5 
--= 

U2(s) = VI(s) s2 + S + 6.5' s2 + s + 6.5 

The four individual step-response curves can be plotted with the use of the command 

step (A, B,C, D) 

or 

sys = ss(A,B,C,D); step(sys) 

MATLAB Program 5-1 produces four individual unit-step response curves, shown in 
Figure 54. 

MATLAB Program 5-1 

»A = [-1 -1;6.5 0]; 
» B = [1 1;1 0]; 
» C = [1 0;0 1]; 
» D = [0 0;0 0]; 
» sys = ss(A,B,C,D); 
» step(sys) 
» grid 
» title('Unit-Step Responses ') 
» xlabel('t') 
» ylabel('Outputs') 

To plot two step-response curves for the input Ul in one diagram and two step­
response curves for the input U2 in another diagram, we may use the commands 

step(A,B,C,D,l ) 

and 

step(A,B,C,D,2) 
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Unit-Step Responses 
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Figure 5-4 Unit-step response curves. 

MATlAR Program 5-2 

» % ----- In this program, we first plot step-response curves 
»0/0 when the input is u1. Then we plot response curves when 
» % the input is u2. -----
» 
»A = [-1 
» B = [1 
»C = [1 
»D = [0 
» 

-1 ;6.5 0]; 
1;1 0]; 
0;0 1]; 
0;0 0]; 

» step(A,B,C,D,1) 
» grid 
»titieCStep-Response Plots (u_' = Unit-Step Input, u_2 = 0)') 
» xlabel('t'); ylabel('Outputs') 
» 
» step(A,B,C,D,2) 
» grid 
» title('Step-Response Plots (u_1 = 0, u_2 = Unit-Step Input)') 
» xlabeICt'); ylabel('Outputs') 

177 

respectively. MATLAB Program 5-2 does just that. Figures 5-5 and 5-6 show the two 
diagrams produced, each consisting of two unit -step response curves. 
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Step-Response Plots (Ul = Unit-Step Input, u2 = 0) 
0.4 
0.3 

-. 0.2 
~ 0.1 :; 
0 0 
(:) -0.1 
f-t -0.2 

-0.3 
rIl 

:; -0.4 
c. 
:; 2 0 

-. 1.5 
~ 
:; 
0 

~ 
0.5 

2 4 6 8 10 12 
t (sec) 

Figure S-S Unit-step response curves when Ul is the input and U2 = o. 

Step-Response Plots (Ul = 0, U2 == Unit-Step Input) 
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Figure S-6 Unit-step response curves when U2 is the input and Ul = o. 

Impulse response. The unit-impulse response of a dynamic system defined 
in a state space may be obtained with the use of one of the following MATLAB 
commands: 
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sys = ss(A,B,C,D); impulse(sys), y = impulse(sys, t), 
[y,t,x] = impulse(sys}, [y,t,x] = impulse(sys,t), 
impulse(A,B,C, D), [y,x,t] = impulse(A,B,C,D), 
[y,x,t] = impulse(A,B,C,D,iu), [y,x,t] = impulse(A,B,C,D,iu,t) 

The command impulse(sys) or impulse(A,B,C,D) produces a series of unit-impulse 
response plots, one for each input-output combination of the system 

i = Ax + Bu 
y=Cx+Du 

with the time vector automatically determined. If the right-hand side of a command 
includes the scalar iu (an index into the inputs of the system), then that scalar speci­
fies which input to use for the impulse response. 

Note that if a command includes t, it is the user-supplied time vector, which 
specifies the times at which the impulse response is to be computed. 

If MATLAB is invoked with the left-hand argument [y,t,x], as in the case of 
[y,t,x] = impulse(sys,t), the command returns the output and state responses of the 
system and the time vector t. No plot is drawn on the screen. The matrices y and x 
contain the output and state responses of the system, evaluated at the time points t. 
(Matrix y has as many columns as outputs and one row for each element in t. Matrix 
x has as many columns as state variables and one row for each element in t.) 

Response to arbitrary input. The command lsim produces the response of 
linear time-invariant systems to arbitrary inputs. If the initial conditions of the sys­
tem in state-space form are zero, then 

Isim(sys,u,t) 

produces the response of the system to an arbitrary input u with user-specified time t. 
If the initial conditions are nonzero in a state-space model, the command 

Isim(sys,u,t,xo) 

where Xo is the initial state, produces the response of the system, subject to the input 
u and the initial condition Xo. 

The command 

[y,tl = Isim(sys,u,t,xo) 

returns the output response y. No plot is drawn. To plot the response curves, it is 
necessary to use the command plot(t,y). 

Response to initial condition. To find the response to the initial condition 
Xo given to a system in a state-space form, the following command may be used: 

[y,tl = Isim(sys,u,t,xo) 

Here, u is a vector consisting of zeros having length size(t). Alternatively, if we 
choose B = 0 and D = 0, then u can be any input having length size(t). 
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Another way to obtain the response to the initial condition given to a system 
in a state-space form is to use the command 

initial(A,B,C,D,xo,t) 

Example 5-3 is illustrative. 

Example 5-3 

Consider the system shown in Figure 5-7. The system is at rest for t < O. At t = 0, the 
mass is pulled downward by 0.1 m and is released with an initial velocity of 0.05 mls. 
That is, x(O) = 0.1 m and i(O) = 0.05 mls. The displacement x is measured from the 
eqUilibrium position. There is no external input to this system. 

Assuming that m = 1 kg, b = 3 N-s/m, and k = 2 N/m, obtain the response 
curves x(t) versus t and i(t) versus twith MATLAB. Use the command initial. 

The system equation is 

mx + bi + kx = 0 

Substituting the given numerical values for m, b, and k yields 

x + 3i + 2x = 0 

If we define the state variables as 

and the output variables as 

then the state equation becomes 

The output equation is 

[~l = [~ ~l[::l + [~lu 
Thus, 

A = [_~ _!], B = [~l, D = [~], 
Using the command 

initial(A,B,C,D,xo,t) 

Figure ~7 Mechanical system. 

[
0.1 1 

Xo = 0.05 
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we can obtain the responses x(t) = Yt(t) versus t and x(t) = Y2(t) versus t. MATLAB 
Program 5-3 produces the response curves, which are shown in Figure 5--8. 

0.12 
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0.06 

N 
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-0.06 
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Figure S-8 Response curves to initial condition. 

MATlAR Program 5-3 

» t = 0:0.01 :6; 
»A = [0 1;-2 -3]; 
» B = [0;0]; 
» C = [1 0;0 1]; 
» D = [0;0]; 

5 

» [y, x, t] = initial(A,B,C,D,[0.1; O.OS],t); 
»y1 = [1 0] *yl; 
»y2 = [0 1] *yl; 
» plot(t,y1 ,t,y2) 
» grid 
» title{'Response to Initial Condition ') 
» xlabel{'t (sec)') 
» ylabel('y_1 and y_21) 
»text(1.6,0.OS,'y_11) 
»text(1.6, -O.026,'y_21) 

5-3 STATE-SPACE MODELING OF SYSTEMS WITH NO INPUT 
DERIVATIVES 

6 

In this section, we present two examples of the modeling of dynamic systems in state­
space form. The systems used are limited to the case where derivatives of the input 
functions do not appear explicitly in the equations of motion. In each example, we 
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first derive state-space models and then find the response curves with MATLAB, 
given the numerical values of all of the variables and the details of the input functions. 

ExampleS-4 

Consider the mechanical system shown in Figure 5-9. The system is at rest for t < O. At 
t = 0, a unit-impulse force, which is the input to the system, is applied to the mass. The 
displacement x is measured from the equilibrium position before the mass m is hit by 
the unit-impulse force. 

Assuming that m = 5 kg, b = 20 N-s/m, and k = 100 N/m, obtain the response 
curves x(t) versus t and x(t) versus t with MATLAB. 

The system equation is 

mx + bx + kx = u 

The response of such a system depends on the initial conditions and the forcing func­
tion u. The variables that provide the initial conditions qualify as state variables. Hence, 
we choose the variables that specify the initial conditions as state variables Xl and X2' 

Thus, 

The state equation then becomes 

Xl = X2 

. 1 ( k b') k b 1 X2 = - U - X - X = - - Xl - - X2 + -u 
m m m m 

For the output variables, we choose 

Yl = X 

Yl = X 

Rewriting the state equation and output equation, we obtain 

and 

x 

Figure 5-9 Mechanical system. 
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Substituting the given numerical values for m, b, and k into the state space equations 
yields 

A = [-2~ -!J, c = [~ ~], D = [~] 
MATLAB Program ~ produces the impulse-response curves x(t) versus t and x( t) 
versus t, shown in Figure 5-10. 

Impulse Response 
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Figure 5-10 Impulse-response curves. 

MATLAB Program 5-4 

» t = 0:0.01 :3; 
»A = [0 1; -20 -4]; 
» B = [0;0.2]; 
» C = [1 0;0 11; 
»D = [0;01; 
» sys = ss(A,B,C,D); 
» [y, t1 = impulse(sys,t); 
»y1 = [1 0] *y'; 
»y2 = [0 11 *y'; 
> > subplot(211); plot(t, y1 ); grid 
» title('lmpulse Response') 
» ylabel{'x') 
»subplot(212); plot(t,y2); grid 
» xlabel('t (sec)'); ylabel{'x dot') 

2.5 3 
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Example 5-5 

Consider the mechanical system shown in Hgure 5-11. The system is at rest for t < O. At 
t = 0, a step force f of a newtons is applied to mass m2. [The force f = au, where u is a 
step force of 1 newton.] The displacements Zl and Z2 are measured from the respective 
equilibrium positions of the carts before f is applied. Derive a state-space representation 
of the system. Assuming that ml = 10 kg, m2 = 20 kg, b = 20 N-s/m, kl = 30 N/m, 
k2 = 60 N/m, and a = 10, obtain the response curves Zl(t) versus t, Z2(t) versus t, and 
Zl(t) - Z2(t) versus twith MATLAB.Also, obtain Zl(oo) and Z2(oo). 

The equations of motion for this system are 

mlZI = -ktZt - k2(ZI - Z2) - b(Zt - Z2) 

m2Z2 = -k2(Z2 - Zl) - b(Z2 - Zt) + au 

(5-13) 

(5-14) 

In the absence of a forcing function, the initial conditions of any system determine the 
response of the system. The initial conditions for this system are Zt (0), Zl (0), Z2(0), and 
Z2(0). Hence, we choose Zit Zit Z2, and Z2 as state variables for the system and thus 
define 

Xl = Zl 

X2 = Zl 
X3 = Z2 

X4 = Z2 

Then Equation (5-13) can be rewritten as 

kl + k2 b k2 b 
----"-xl - -X2 + -X3 + -X4 

ml ml ml ml 

and Equation (5-14) can be rewritten as 

· ~ b ~ b 1 
X4 = -Xl + -X2 - -X3 - -X4 + -au 

m2 m2 m2 m2 m2 

The state equation now becomes 

Xl = X2 

· kl + k2 b k2 b 
X2 = - ---Xl - -X2 + -X3 + -X4 

ml ml ml ml 
X3 = X4 

· ~ b ~ b 1 
X4 = -Xl + -X2 - -X3 - -X4 + -au 

m2 m2 m2 m2 m2 

Note that Zl and Z2 are the outputs of the system; hence, the output equations are 

Figure 5-11 Mechanical system. 

YI = Zt 

Y2 = Z2 
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In terms of vector-matrix equations, we have 

0 1 0 0 
0 

[~~] = 

kl + k2 b k2 b 

[~~] + 

0 
ml ml ml ml o u 
0 0 0 1 
k2 k2 

a 
b b -

m2 

(5-15) 

m2 m2 m2 m2 

[~] = [~ 0 0 ~][~;] + [~]u 0 1 
(5-16) 

Equations (5-15) and (5-16) represent the system in state-space form. 
Next, we substitute the given numerical values for mit m2, b, kh and k2 into 

Equation (5-15). The result is 

[
;:] = [-~ -~ ~ ~][::] + [~ ]u 
X4 3 1 - 3 -1 X4 0.5 

(5-17) 

From Equations (5-17) and (5-16), we have 

= -9 -2 6 2 

[ 

0 1 0 0] 

A 0 0 0 l' B = [~ ], [
1 0 0 0] 

c= 0 0 1 0' D = [~] 
3 1 -3 -1 0.5 

MATLAB Program 5-5 produces the response curves Zl(t) versus t, Z2(t) versus t, and 
Zl(t) - Z2(t) versus t. The curves are shown in Figure 5-12. 

MATLAR Program 5-5 

» t = 0:0.1 :200; 
»A= [0 1 0 0;-9 -2 6 2;0 0 0 1;3 1 -3 -1]; 
» B = [0;0;0;0.5); 
» C = [1 0 0 0;0 0 1 0); 
»0 = [0;0); 
» sys = ss(A,B,C,O); 
» [y,t) = step(sys,t); 
»y1 = [1 O)*yl; 
» y2 = [0 1 J*yl; 
»zl = yl; subplot(311); plot(t,zl); grid 
» title{,Responses z_l Versus t, z_2 Versus t, and z_l - z_2 Versus tl) 
» ylabel{'Output z_ll) 
» z2 = y2; subplot(312); plot(t,z2); grid 
» ylabel('Output Z_21) 
» subplot(313); plot(t,zl - z2); grid 
» xlabel('t (sec)I); ylabel('z_l - Z_21) 
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Figure 5-12 Step-response curves. 

To obtain Zt ( 00) and Z2( 00), we set all derivatives of Zt and Z2 in Equations 
(5-13) and (5-14) equal to zero, because all derivative terms must approach zero at 
steady state in the system. Then, from Equation (5-14), we get 

from which it follows that 

k2[Z2( 00) - Zt( 00)] = au 

au 10 1 
Z2(00) - Zt(oo) = - = - = -

k2 60 6 

From Equation (5-13), we have 

ktzt(oo) = k2[Z2(00) - Zt(oo)] 

Hence, 

k2 60 1 1 
Zt(oo) = -[Z2(00) - Zl(OO)] = -- =-

kl 306 3 

and 

1 1 
Z2(00) = - + Zt(oo) = -

6 2 
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The final values of Zt(t) and Z2(t) obtained with MATLAB (see the response curves in 
Figure 5-12) agree, of course, with the result obtained here. 

5-4 STATE-SPACE MODELING OF SYSTEMS WITH INPUT 
DERIVATIVES 

In this section, we take up the case where the equations of motion of a system 
involve one or more derivatives of the input function. In such a case, the variables 
that specify the initial conditions do not qualify as state variables. The main problem 
in defining the state variables is that they must be chosen such that they will elimi­
nate the derivatives of the input function u in the state equation. 

For example, consider the mechanical system shown in Figure 5-13. The dis­
placements y and u are measured from their respective equilibrium positions. The 
equation of motion for this system is 

or 

my = -ky - bey - it) 

.. k b. b . 
y = --y - -y +-u 

m m m 

If we choose the state variables 

then we get 

Xl = X2 

. k b b. 
X2=--XI--X2+-U 

m m m 
(5-18) 

The right-hand side of Equation (5-18) involves the derivative term it. Note that, in 
formulating state-space representations of dynamic systems, we constrain the input 
function to be any function of time of order up to the impulse function, but not any 
higher order impulse functions, such as d8(t)/dt, d28(t)/dt2, etc. 

y u 

b 

m 

Figure 5-13 Mechanical system. 
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To explain why the right-hand side of the state equation should not involve the 
derivative of the input function u, suppose that u is the unit-impulse function 8(t). 
Then the integral of Equation (5-18) becomes 

kJ b k X2 = -- ydt - -y + -8(t) 
m m m 

Notice that X2 includes the term (kIm) cS(t). This means that X2(O) = 00, which is 
not acceptable as a state variable. We should choose the state variables such that the 
state equation will not include the derivative of u. 

Suppose that we try to eliminate the term involving u from Equation (5-18). 
One possible way to accomplish this is to define 

Then 

Xl = Y 
. b 

X2 = Y --u 
m 

. .. b. 
X2 = Y --u 

m 

k b . b . b. = --y - -y + -u - -u 
m m m m 
k b b 

= --Xl - -(X2 + -u) 
m m m 

= -~XI - ~X2 - (~)2u 
m m m 

Thus, we have eliminated the term that involves u. The acceptable state equation 
can now be given by 

[~:] = [_o! _1!][::] + [-(iy} 
If equations of motion involve u, u, u, etc., the choice of state variables 

becomes more complicated. Fortunately, there are systematic methods for choosing 
state variables for a general case of equations of motion that involve derivatives of 
the input function u. In what follows we shall present two systematic methods for 
eliminating derivatives of the input function from the state equations. Note that 
MATLAB can also be used to obtain state-space representations of systems involv­
ing derivatives of the input function u. (See Section 5-5.) 

State-space representation of dynamic systems in which derivatives of 
the input function appear in the system differential equations. We consider 
the case where the input function u is a scalar. (That is, only one input function u is 
involved in the system.) 
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The differential equation of a system that involves derivatives of the input 
function has the general form 
(n) (n-l) (n) (n-l) 
y + alY + ... + an-IY + anY = bou + blu + ... + bn-Iu + bnu (5-19) 

To apply the methods presented in this section, it is necessary that the system be 
written as a differential equation in the form of Equation (5-19) or its equivalent 
transfer function 

Yes) bosn + blsn- l + ... + bn-ls + bn 
U(s) = sn + alsn- l + ... + an-IS + an 

We examine two methods when n = 2; for an arbitrary n = 1, 2, 3, ... , see 
Problems A-5-12 and A-5-13. 

Method 1. Consider the second-order system 

y + alY + a2Y = boil + bl U + ~u 
As a set of state variables, suppose that we choose 

Xl = Y - f30u 
X2 = Xl - f3IU 

where 

f30 = bo 
f31 = bl - alf30 

Then, from Equation (5-21), we have 

Y = Xl + f30u 

Substituting this last equation into Equation (5-20), we obtain 

Xl + f30il + al(xi + f3ou) + a2(xl + f3ou) = boil + blu + ~u 

(5-20) 

(5-21) 
(5-22) 

(5-23) 
(5-24) 

(5-25) 

Noting that f30 = bo and f31 = bl - alf3o, we can simplify the preceding equation to 

Xl + alxl + a2xI = f3IU + (~ - a2f30)u (5-26) 

From Equation (5-22), we have 

Xl = x2 + f3lu 

Substituting Equation (5-27) into Equation (5-26), we obtain 

X2 + f3lu + al(x2 + f3IU) + a2xI = f3IU + (~ - a2f30)u 

which can be simplified to 

where 

f32 = ~ - alf31 - a2f3o 

From Equations (5-27) and (5-28), we obtain the state equation: 

[Xl] [0 1][XI] [f31] 
X2 = -a2 -al x2 + f32 U 

(5-27) 

(5-28) 

(5-29) 

(5-30) 
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From Equation (5-25), we get the output equation: 

y = [1 ot:] + f30u (5-31) 

Equations (5-30) and (5-31) represent the system in a state space. 
Note that if f30 = bo = 0, then the state variable Xl is the output signal y, 

which can be measured, and, in this case, the state variable X2 is the output velocity 
Y minus blu. 

Note that, for the case of the nth-order differential-equation system 
(n) (n-I) (n) (n-l) 
y + at Y +... + an-tY + anY = bo u + bl u + ... + bn-tu + bnu 

the state equation and output equation can be given by 

Xl 0 1 0 0 Xl 

X2 0 0 1 0 X2 

Xn-t 0 0 0 1 Xn-t 
xn -an -an-l -an-2 -at 

and 

y = [1 0 o{~:l + f30u 

where f3o, f3b f32,"" f3n are determined from 

f30 = bo 
f31 = bt - alf30 
f32 = ~ - alf31 - a2f3o 
f33 = ~ - atf32 - a2f3I - a3f3o 

Xn 

f3n = bn - alf3n-1 - ... - an-If31 - anf30 

Method 2. Consider the second-order system 

y + alY + a2Y = bou + biu + ~u 
or its equivalent transfer function 

Yes) bos2 + bis + ~ 
lIes) = s2 + als + a2 

Equation (5-32) can be split into two equations as follows: 

+ 

Z(s) _ 1 Yes) _ 2 

lIes) - S2 + als + a2' Z(s) - bos + bis + ~ 

f31 
f32 

u 

f3n-t 
f3n 

(5-32) 
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We then have 

If we define 

z + alZ + a2Z = u 

boz + btZ + ~z = Y 

Xl = Z 

x2 = Z 

then Equation (5-33) can be written as 

X2 = -a2Xt - atX2 + u 

and Equation (5-34) can be written as 

bOX2 + btX2 + ~Xt = Y 

Substituting Equation (5-36) into this last equation, we obtain 

bo{ -a2Xt - atX2 + u) + btX2 + b2Xt = Y 

which can be rewritten as 

Y = (b2 - a2bO)Xt + (bt - at bO)X2 + bou 

From Equations (5-35) and (5-36), we get 

Xt = x2 

X2 = -a2Xt - atX2 + u 
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(5-33) 
(5-34) 

(5-35) 

(5-36) 

(5-37) 

These two equations can be combined into the vector-matrix differential equation 

(5-38) 

Equation (5-37) can be rewritten as 

(5-39) 

Equations (5-38) and (5-39) are the state equation and output equation, respective­
ly. Note that the state variables Xl and X2 in this case may not correspond to any 
physical signals that can be measured. 

If the system equation is given by 

(n) (n-t) (n) (n-t) 
Y + al Y + ... + an-tY + anY = bo u + bI u + ... + bn-1u + bnu 

or its equivalent transfer function 

Yes) bosn + bIsn- I + ... + bn-ts + bn 
--=---'---~--------
U(s) sn + atSn-I + ... + an-Is + an 
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then the state equation and the output equation obtained with the use of Method 2 
are given by 

Xl 0 1 0 0 Xl 0 

X2 0 0 1 0 X2 0 

= + . u (5-40) 

Xn-l 0 0 0 1 Xn-l 0 

Xn -an -an-l -an-2 -al Xn 1 

and 

Xl 

X2 

bl - albo] + bou (5-41) 

Xn 

Examples 5-6 and 5-7 illustrate the use of the preceding two analytical meth­
ods for obtaining state-space representations of a differential-equation system 
involving derivatives of the input signal. 

ExampJeS-6 

Consider the spring-mass-dashpot system mounted on a cart as shown in Figure 5-14. 
Assume that the cart is standing still for 1 < O. In this system, U(/) is the displacement 
of the cart and is the input to the system. At t =: 0, the cart is moved at a constant 
speed, or u = constant. The displacement y of the mass is the output. (y is measured 

u y 

k 

m 

Figure 5-14 Spring-mass-dashpot system mounted on a cart. 
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from the rest position and is relative to the ground.) In this system, m denotes the mass 
of the small cart on the large cart (assume that the large cart is massless), b denotes the 
viscous-friction coefficient, and k is the spring constant. We assume that the entire sys­
tem is a linear system. 

Obtain a state-space representations of the system based on methods 1 and 2 just 
presented. Assuming that m = 10 kg, b = 20 N-s/m, k = 100 N/m, and the input is a 
ramp function such that u = 1 mis, obtain the response curve y(t) versus t with MATLAB. 

FIrSt, we shall obtain the system equation. Applying Newton's second law, we obtain 

d
2
y (dY dU) m- = -b - - - - k(y - u) 

dt2 dt dt 

or 

d2y dy du 
m- + b- + ky = b- + ku 

dt2 dt dt 
(5-42) 

Equation (5-42) is the differential equation (mathematical model) of the system. The 
transfer function is 

Y(s) bs + k 

U (s) = ms2 + bs + k 

Method 1. We shall obtain a state-space model of this system based on Method 1. 
We first compare the differential equation of the system, 

with the standard form 

and identify 

.. b. k b. k 
Y + -y + -y = -u + -u 

m m m m 

b 
a1 =-, 

m 

k 
a2 =-, 

m 
bo = 0, 

b 
bi =-, 

m 

From Equations (5-23), (5-24), and (5-29), we have 

f30 = bo = 0 

b 
f3I = bl - alf30 = -

m 

f32 = ~ - alf31 - a2f3o = ~ _ (!)2 

From Equations (5-21) and (5-22), we define 

Xl = Y - f30u = y 

. . b 
X2 = Xl - f3lu = Xl - -u 

m 

From Equations (5-43) and (5-28), we obtain 

. b 
Xl = X2 + {3IU = X2 + -u 

m 

k 
~=-m 

(5-43) 

(5-44) 

(5-45) 
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and the output equation is 

y = Xl (5-46) 

Combining Equations (5-44) and (5-45) yields the state equation, and from Equation 
(5-46), we get the output equation: 

[::l = [_o! _l!][~:l + [! -1!)} 
y = [1 O][~~l 

These two equations give a state-space representation of the system. 
Next, we shall obtain the response curve y(t) versus t for the unit-ramp input 

U = 1 mls. Substituting the given numerical values for m, b, and k into the state equa­
tion, we obtain 

and the output equation is 

MATLAB Program 5--6 produces the response y(t) of the system to the ramp input 
U = 1 mls. The response curve y(t) versus t and the unit-ramp input are shown in 
Figure 5-15. 

MAT LAB Program 5-6 

» % ----- The response y(t) is obtained by use of the 
»% state-space equation obtained by Method 1. ----­
» 
» t = 0:0.01 :4; 
»A = [0 1;-10 -2]; 
» 8 = [2;6]; 
»C = [1 0]; 
»0 = 0; 
» sys = ss(A,8,C,O); 
»u = t; 
» Isim(sys,u,t) 
» grid 
» titieCUnit-Ramp Response (Method 1 )1) 
» xlabelCtl) 
» ylabel('Output y and Unit-Ramp Input ul) 
» text(0.85, 0.25,lyl) 
» text(0.15,O.8, lUi) 
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Unit-Ramp Response (Method 1) 
4.5 ,---r----r------r-----,r-----r------r-----r-----, 

4 I- ............ ~ ........... ; .. .. 
::! 

g, 3.5 
.s 
~ 3 
= '! 2.5 

·S 
:> 2 
"0 
C 

:. 1.5 
:; 
B- 1 
=' o 

0.5 

0.5 1 1.5 2 2.5 3 3.5 
I (sec) 

Figure 5-15 Unit-ramp response obtained with the use of 
Method 1. 

Method 2. Since 

bo = 0 
k k k 

b2 - a2bo = - - - X 0 = -
m m m 

b b b 
bl - albo = - - - X 0 = -

m m m 

from Equations (5-38) and (5-39), we obtain 

[::] = [_o! _l!J~J + [~]u 

y = [~ !][~~] 

4 

The last two equations give another state-space representation of the same system. 

195 

Substituting the given numerical values for m, b, and k into the state equation, we 
get 

and the output equation is 
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MATLAB Program 5-7 produces the response y(t) to the unit-ramp input u = 1 mis. The 
resulting response curve y(t) versus t and the unit-ramp input are shown in Figure 5-16. 
Notice that the response curve here is identical to that shown in Figure 5-15. 

4.5 
Unit-Ramp Response (Method 2) 

4 
::s 

8. 3.5 
c -Q. 3 
~ 
'! 2.5 
'a 
::> 2 
"'0 c:: 
:. 1.S 

-= .e- 1 
::I 
0 

0.5 

0 
0 0.5 1 1.5 2 2.5 3 3.5 

t (sec) 

Figure 5-16 Unit-ramp response obtained with the use of 
Method 2. 

MATlAR Program 5-7 

» % ----- The response y(t) is obtained by use of the 

4 

» % state-space equation obtained by Method 2. ----­
» 
» t = 0:0.01 :4; 
»A = [0 1;-10 -2]; 
» B = [0;1]; 
»C = [10 2]; 
»D =0; 
» sys = ss(A,B,C,D); 
»u = t; 
» Isim(sys,u,t) 
» grid 
» titieCUnit-Ramp Response (Method 2)1) 
» xlabeICt') 
» ylabel('Output y and Unit-Ramp Input u l

) 

» text(0.85,0.25,'y') 
» text(0.15,0.8, lUi) 

ExampleS-7 

Consider the front suspension system of a motorcycle. A simplified version is shown in 
Figure 5-17(a). Point P is the contact point with the ground. The vertical displacement u 
of point P is the input to the system. The displacements x and y are measured from their 
respective eqUilibrium positions before the input u is given to the system. Assume that 



Sec. 5-4 State-Space Modeling of Systems with Input Derivatives 197 

y 

u 

x 

u 
P ~_-----l 

(a) (b) 

Figure 5-17 (a) Mechanical system; (b) triangular bump input u. 

mh bh and kl represent the front tire and shock absorber assembly and m2, b,., and k2 
represent half of the body of the vehicle. Assume also that the system is at rest for t < O. 
At t = 0, P is given a triangular bump input as shown in Figure 5-17(b). Point P moves 
only in the vertical direction. Assume that ml = 10 kg, m2 = 100 kg, bl = 50 N-s/m, 
~ = 100 N-s/m, kl = 50 N/m, and k2 = 200 N/m. (These numerical values are chosen 
to simplify the computations involved.) Obtain a state-space representation of the sys­
tem. Plot the response curve y(t) versus t with MATLAB. 

Method 1. Applying Newton's second law to the system, we obtain 

which can be rewritten as 

mIx = -k1(x - u) - bl(.k - u) 
m2Y = -k2(y - x) - b,.(Y - x) 

mix + b1x + k1x = b1u + k1u 
m2Y + b,.Y + k2y = b2x + k2x 

If we substitute the given numerical values for mh m2, bit b,., kit and k2' the equations 
of motion become 

lOx + SOx + SOx = SOu + SOu 
100y + 100y + 200y = 100x + 200x 

which can be simplified to 

x + Sx + 5x = 5u + Su 
y + y + 2y = x + 2x 

(S-47) 
(S-48) 

Laplace transforming Equations (5-47) and (S-48), assuming the zero initial condi­
tions, we obtain 

(S2 + 5s + 5)X(s) = (5s + 5)U(s) 

(s2 + s + 2)Y(s) = (s + 2)X(s) 

Eliminating X(s) from these two equations, we get 

(s2 + 5s + 5)(s2 + s + 2)Y(s) = 5(s + l)(s + 2)U(s) 
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or 

(S4 + 6~ + 12,yl + ISs + 10)Y(s) = (5s2 + ISs + 10)U(s) 

Equation (5-49) corresponds to the differential equation 

. y' + 6,V + 12y + 15y + lOy = 5u + 15u + lOu 

(5-49) 

Comparing this last equation with the standard fourth-order differential equation 

'y' + al''v + a2Y + a3Y + a4Y = bo'ii' + bt'it' + ~u + b3u + b4u 

we find that 

at = 6, a2 = 12, a3 = 15, 
bo = 0, bi = 0, b2 = 5, 

Next, we define the state variables as follows: 

where 

Hence, 

where 

Thus, 

(30 = bo = 0 

Xl = Y - (3ou 
X2 = Xl - 13IU 
X3 = X2 - 132U 

X4 = X3 - 133U 

(3t = bt - at(3o = 0 

(32 = ~ - at(3t - a2/30 = 5 

(33 = ~ - al(32 - a2/31 - a3f30 = 15 - 6 X 5 = -15 

Xt = X2 
X2 = X3 + 5u 
X3 = X4 - 15u 

X4 = -a4x I - a3x2 - a2x3 - at X4 + f34U 

= -10XI - 15x2 - 12x3 - 6X4 + f34u 

(34 = b4 - atf33 - a2(32 - a3f31 - a4f30 
= 10 + 6 X 15 - 12 X 5 - 15 X 0 - 10 X 0 = 40 

X4 = -10XI - 15x2 - 12x3 - 6X4 + 40u 

and the state equation and output equation become 

[~:l = [~ ~ ! ~l[::l + [-l~lu 
X4 -10 -15 -12 -6 X4 40 

Y = [1 0 0 o{ ~~l + ~ 
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MATLAB Program 5-8 produces the response Y(/) to the triangular bump input shown 
in Figure 5-17(b). The resulting response curve y(t) versus I, as well as the input u(t) 
versus t, is shown in Figure 5--18. 

MATLAR Program 5-8 

» t = 0:0.01 :16; 
»A=[O 1 0 0;0 0 1 0;0 0 0 1;-10 -15 -12 -6]; 
»B = [0;5;-15;40]; 
» C = [1 0 0 0]; 
»0 = 0; 
» sys = ss(A,B,C,D); 
» ul = [0:0.01:1]; 
» u2 = [0.99:-0.01 :-1]; 
» u3 = [-0.99:0.01 :0]; 
» u4 = 0*[4.01 :0.01 :16]; 
» u = [ul u2 u3 u4]; 
» y = Isim(sys,u,t); 
» plot(t,y,t,u) 
»v = [0 16 -1.5 1.5]; axis(v) 
» grid 
» title('Response to Triangular Bump (Method 1 )1) 
» xlabel('t (sec)') 
»ylabel('Triangular Bump and Response') 

Response to Triangular Bump (Method 1) 
1.5 ,----r----r----.---.,..----r-----.-----r--, 

~ 
fI.l 
C 
0 
C. 
fI.l 
~ 0.5 a:: 

"0 c 
~ 

c. 0 e 
= I:Q ... 
~ -0.5 
~ c 
~ 

E5 -1 

-1.5 
0 2 4 6 8 10 12 14 16 

t (sec) 

Flgure 5-18 Response curve y(t) and triangular bump input U(I). 
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Method 2. From Equation (5-49), the transfer function of the system is given by 

yes) 5s2 + ISs + 10 

U(s) s4 + 6s3 + 12s2 + ISs + 10 

Figure 5-19 shows a block diagram in which the transfer function is split into two parts. 
If we define the output of the first block as Z(s), then 

Z(s) = 1 
U(s) S4 + 6s3 + 12s2 + ISs + 10 

1 

and 

Yes) 2 4 3 2 
Z(s) = 5s + ISs + 10 = bos + bls + b2s + b3s + b4 

from which we get 

al = 6, 

bo = 0, 

a2 = 12, 

bl = 0, 

a3 = 15, 

~ = 5, 

Next, we define the state variables as follows: 

Xl = Z 

X2 = Xl 
X3 = X2 
X4 = X3 

From Equation (5-40), noting that al = 6, a2 = 12, a3 = 15, and a4 = 10, we obtain 

Similarly, from the output equation given by Equation (5-41), we have 

U(s) Y(s) 
--~-l -s4""--+-6s-:-3-+-1-2=-s2-+-IS-s -+-1-0 ~--..... -t 5s2 + ISs + 10 ..... -__t-

Figure 5-19 Block diagram of Y(s)/U(s). 
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or 

y = [10 15 5 o{~il + ~ 
MATLAB Program 5-9 produces the response y(t) to the triangular bump input. The 
response curve is shown in Figure 5-20. (This response curve is identical to that shown 
in Figure 5-19.) 

MATlAR Program 5-9 

» t = 0:0.01 :16; 
»A=[O 1 0 0;0 0 1 0;0 0 0 1;-10 -15 -12 -6}; 
» B = [0;0;0;1]; 
» C = [10 15 5 0]; 
»0 = 0; 
» sys = ss(A,B,C,D); 
» ul = [0:0.01:1]; 
» u2 = [0.99:-0.01 :-1]; 
» u3 = [-0.99:0.01 :0]; 
» u4 = 0*[4.01 :0.01 :16]; 
» u = [ul u2 u3 u4]; 
» y = Isim(sys,u,t); 
» plot(t,y,t,u) 
» v = [0 16 -1.5 1.5]; axis(v) 
» grid 
» title(IResponse to Triangular Bump (Method 2)1) 
» xlabelCt (sec)') 
» ylabel(ITriangular Bump and Response') 

Response to Triangular Bump (Method 2) 
1.5 ,.....--r---r---r---r---,r---,,--,r----, 

0.5 

0 

-0.5 

-1 

-1.5 
0 2 4 6 8 10 12 14 16 Figure 5-20 Response y(t) to the 

t (sec) triangular bump input u(t). 
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5-5 TRANSFORMATION OF MATHEMATICAL MODELS 
WITH MATLAB 

MATLAB is quite useful in transforming a system model from transfer function to 
state space and vice versa. We shall begin our discussion with the transformation 
from transfer function to state space. 

Let us write the transfer function Y(s}/U(s} as 

Y(s) numerator polynomial in s num 
U(s) = denominator polynomial in s = -d-en-

Once we have this transfer-function expression, the MATLAB command 

[A, B, C, 0] = tf2ss(num,den) 

will give a state-space representation. Note that the command can be used when the 
system equation involves one or more derivatives of the input function. (In such a 
case, the transfer function of the system involves a numerator polynomial in s.) 

It is important to note that the state-space representation of any system is not 
unique. There are many (indeed, infinitely many) state-space representations of the 
same system. The MATLAB command gives one possible such representation. 

Transformation from transfer function to state space. Consider the 
transfer function system 

Y(s) s 
--=--------
U(s) S3 + 14s2 + 56s + 160 

(5-50) 

Of the infinitely many possible state-space representations of this system, one 
is 

[Xl] [ ° 1 0][ XI] [ 0] 
X2 = 0 0 1 X2 + 1 U 

X3 -160 -56 -14 X3 -14 

Y = [1 0 O{::] + [Oju 

Another is 

[~1]_[-14 -56 -160][ XI] [1] 
X2 - 1 0 o X2 + 0 U 

X3 0 1 o X3 0 
(5-51) 

Y = [0 1 O{::] + [Oju (5-52) 
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MATLAB transforms the transfer function given by Equation (5-50) into the state­
space representation given by Equations (5-51) and (5-52). For the system consid­
ered here, MATLAB Program 5-10 will produce matrices A, B, C, and D. 

MATLAB Program 5-10 

» % ----- Transforming transfer-function model to 
» % state-space model -----
» 
» num = [0 0 1 0]; 
» den = [1 14 56 160]; 
» 
» % ----- Enter the following transformation command -----
» 
» [A, B, C, 0] = tf2ss(num,den) 

A= 

-14 
1 
0 

B= 

1 
0 
0 

C= 

0 

0= 

0 

-56 
0 
1 

160 
o 
o 

o 

Transformation from state space to transfer function. To obtain the 
transfer function from state-space equations, use the command 

[num,den] = ss2tf(A,B,C,O,iu) 

Note that iu must be specified for systems with more than one input. For example, if 
the system has three inputs (u1, u2, u3), then iu must be either 1,2, or 3, where 1 
implies u1, 2 implies u2, and 3 implies u3. 

H the system has only one input, then either 

[num,den] = ss2tf(A,B,C,D) 

or 

[num,den] = ss2tf(A, B,C, 0, 1) 

may be used. (For the case where the system has mUltiple inputs and multiple out­
puts, see Example 5-9.) 



204 State-Space Approach to Modeling Dynamic Systems Chap. 5 

Example 5-8 

Obtain the transfer function of the system defined by the following state-space equations: 

[~:l = [~ ~ ~ ~l[::l + [-l~lu 
~ -w -~ -u -6 ~ ~ 

Y = [1 0 0 o{ ~~l + ~ 
MATLAB Program 5-11 produces the transfer function of the system, namely, 

Y(s) 5s2 + 15s + 10 

U(s) = S4 + 6s3 + 12s2 + 15s + 10 

MATLAB Program 5-11 

» % ----- Transforming state-space model to 
» % transfer function model-----
» 
»A= [0 1 0 0;0 0 1 0;0 0 0 1;-10 -15 -12 -6]; 
»B = [0;5;-15;40]; 
» C = [1 0 0 0]; 
»0 = 0; 
» 
» % ----- Enter the following transformation command -
» 
» [num,den] = ss2tf(A,B,C,D) 
num= 

o 0 5.0000 

den = 
1.0000 6.0000 12.0000 

Example 5-9 

15.0000 10.0000 

15.0000 10.0000 

Consider a system with multiple inputs and multiple outputs. When the system has 
more than one output, the command 

[NUM,den] = ss2tf(A,B,C,D,iu) 

produces transfer functions for all outputs to each input. (The numerator coefficients 
are returned to matrix NUM with as many rows as there are outputs.) 

Let the system be defined by 
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This system involves two inputs and two outputs. Four transfer functions are involved: 
Y1(S)/U1(s), }2(s)/Ut(s), Y1(S)/U2(s), and }2(s)/U2(s). (When considering input UJ, we 
assume that input U2 is zero, and vice versa.) 

MATLAB Program 5-12 produces representations of the following four trans­
fer functions: 

Yt(s) s+4 Yt(s) s+5 --= --= 
U1(s) s2+4s+25' U2(s) s2 + 4s + 25 
Y2(s) -25 }2(s) s - 25 
Ut(s) = s2 + 4s + 25' 

--= 
U2(s) s2+4s+25 

MATLAB Program 5-12 

»A = [0 1;-25 -4]; 
»B=[1 1;0 1]; 
» C = [1 0;0 1]; 
» D = [0 0;0 0]; 
» [NUM,den] = ss2tf(A,B,C,D, 1) 

NUM= 

o 
o 

1.0000 
o 

4.0000 
-25.0000 

den = 

1.0000 4.0000 25.0000 
» [NUM,den] = ss2tf(A,B,C,D,2) 

NUM= 

o 1.0000 5.0000 
o 1.0000 -25.0000 

den = 

1.0000 4.0000 25.0000 

Nonuniqueness of a set of state variables. A set of state variables is not 
unique for a given system. Suppose that Xb X2, ••• , Xn are a set of state variables. 
Then we may take as another set of state variables any set of functions 

Xl = Xl(Xb X2,"" xn) 

X2 = X2(Xh X2,"" xn) 

provided that, for every set of values Xb X2' .•. , xm there corresponds a unique set 
of values Xb X2, ••• , Xm and vice versa. Thus, if x is a state vector, then 

i = Px 
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is also a state vector, provided that the matrix P is nonsingular. (Note that a square 
matrix P is nonsingular if the determinant Ipi is nonzero.) Different state vectors 
convey the same information about the system behavior. 

Transformation of a state-space model into another state-space model. 
A state-space model 

i = Ax + Du 
y=Cx+Du 

(5-53) 
(5-54) 

can be transformed into another state-space model by transforming the state vector 
x into state vector i by means of the transformation 

x = pi 

where Pis nonsingular. Then Equations (5-53) and (5-54) can be written as 

Pi = APi + Du 

or 

y=CPi+Du 

i = P-1APi + P-1Du 

y=CPi+Du 
(5-55) 
(5-56) 

Equations (5-55) and (5-56) represent another state-space model of the same sys­
tem. Since infinitely many n X n nonsingular matrices can be used as a transforma­
tion matrix P, there are infinitely many state-space models for a given system. 

Eigenvalues of an n x n matrix A. The eigenvalues of an n X n matrix A 
are the roots of the characteristic equation 

IAI - AI = 0 

The eigenvalues are also called the characteristic roots. 
Consider, for example, the matrix 

The characteristic equation is 

A = [ ~ 
-6 

1 
o 

-11 

A -1 0 

IAI - AI = 0 A -1 
6 11 A + 6 

= A3 + 6A2 + 11A + 6 
= (A + 1)(A + 2)(A + 3) = 0 

(5-57) 

The eigenvalues of A are the roots of the characteristic equation, or -1, -2, and -3. 
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It is sometimes desirable to transform the state matrix into a diagonal matrix. 
This may be done by choosing an appropriate transformation matrix P. In what fol­
lows, we shall discuss the diagonalization of a state matrix. 

Diagonalization of state matrix A. Consider an n X n state matrix 

0 1 0 0 
0 0 1 0 

A= (5-58) 
0 0 0 1 

-an -an-l -an-2 -al 

We first consider the case where matrix A has distinct eigenvalues only. If the state 
vector x is transformed into another state vector z with the use of a transformation 
matrix P, or 

x = pz 

where 

1 1 1 
Al A2 An 

P= AI A~ A~ (5-59) 

Aq-l Aq-l An- 1 
n 

in which Ah A2, ••• , and An are n distinct eigenvalues of A, then p-1AP becomes a 
diagonal matrix, or 

o 

(5-60) 

o 
Note that each column of the transformation matrix P in Equation (5-59) is an 

eigenvector of the matrix A given by Equation (5-58). (See Problem A-S-18 for 
details.) 

Next, consider the case where matrix A involves multiple eigenvalues. In this 
case, diagonalization is not possible, but matrix A can be transformed into a Jordan 
canonical form. For example, consider the 3 X 3 matrix 

1 
o 
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Assume that A has eigenvalues Ah Ah and A3, where A1 ¢ A3. In this case, the trans­
formation x = Sz, where 

(5-61) 

will yield 

(5-62) 

This matrix is in Jordan canonical form. 

Example 5-10 

Consider a system with the state-space representation 

[
Xl] [0 
~2 = 0 
X3 -6 

y = [1 0 

or 

x =Ax + Bu (5-63) 

y = Cx + Du 

where 

A = [ ~ 
1 

~l B=Ul 0 C = [1 0 0], 
-6 -11 -6 

D = 0 

The eigenvalues of the state matrix A are -1, -2, and -3, or 

Al = -1, A2 = -2, A3 = -3 

We shall show that Equation (5-63) is not the only possible state equation for the sys­
tem. Suppose we define a set of new state variables Zit Z2, and Z3 by the transformation 

or 

x = pz (5-64) 



Example Problems and Solutions 

where 

p = [-~ -~ -!] 
Then, substituting Equation (5-64) into Equation (5-63), we obtain 

Pi = APz + Bu 

Premultiplying both sides of this last equation by P -I, we get 

i = p-1APz + P-1Bu 

or 

[i'] [3 2.5 0.5][ 0 1 ~][ -~ 1 

!: = -~ -4 -1 0 0 -2 
1.5 0.5 -6 -11 -6 1 4 

+ [-~ 
2.5 0.5][0] -4 -1 0 u 
1.5 0.5 6 
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(5-65) 

(5-66) 

-~][~:] 

(5-67) 

Equation (5-67) is a state equation that describes the system defined by Equation 
(5-63). 

The output equation is modified to 

y = [1 0 o{ -~ -! -:][;:] 
= [1 1 1{;:] (5-68) 

Notice that the transformation matrix P defined by Equation (5-65) changes the 
coefficient matrix of z into the diagonal matrix. As is clearly seen from Equation (5-67), 
the three separate state equations are uncoupled. Notice also that the diagonal elements 
of the matrix p-1AP in Equation (5-66) are identical to the three eigenvalues of A. (For 
a proof, see Problem A-S-20.) 

EXAMPLE PROBLEMS AND SOLUTIONS 

Problem A-S-l 

Consider the pendulum system shown in Figure 5-21. Assuming angle 8 to be the out­
put of the system, obtain a state-space representation of the system. 
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Figure S-Zl Pendulum system. 

Solution The equation for the pendulum system is 

ml2e = -mgt sin 8 

or 

.. g 
8 + -sin8 = 0 

I 

l 
mg 

Chap. 5 

This is a second-order system; accordingly, we need two state variables, Xl and X2, to 
completely describe the system dynamics. If we define 

then we get 

Xl = X2 

. g . 
X2 = -ism Xl 

(There is no input u to this system.) The output y is angle 8. Thus, 

y = 8 = Xl 

A state-space representation of the system is 

[XI]_ [~ 1][XI] . - gsmxl 
X2 ---- 0 X2 

t Xl 

Y = [1 O][~~] 
Note that the state equation just obtained is a nonlinear differential equation. 

If the angle 8 is limited to be small, then the system can be linearized. For small 
angle 8, we have sin 8 = sin Xl * Xl and (sin XI)!XI * 1. A state-space representation 
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of the linearized model is then given by 

[!:] = [_Of ~ ]r~:] 
Y = [1 O][~:] 

Problem A-S-2 

Obtain a state-space representation of the mechanical system shown in Figure 5-22. 
The external force u(t) applied to mass m2 is the input to the system. The displacements 
Y and z are measured from their respective equilibrium positions and are the outputs of 
the system. 

Solution Applying Newton's second law to this system, we obtain 

m2Y + blU - z) + k1(y - z) + k2y = u 

mlZ + b1(z - y) + kl(z - y) = 0 

If we define the state variables 

then, from Equation (5-69), we get 

Xl = Y 
X2 = Y 
X3 = Z 

X4 = Z 

m2x2 = -(kl + k2)Xl - b1X2 + k lX3 + blX4 + u 

Also, from Equation (5-70), we obtain 

mlx4 = k1XI + blX2 - k tX3 - b1X4 

Figure 5-22 Mechanical system. 

(5-69) 

(5-70) 
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Hence, the state equation is 

0 1 0 0 

[~~l + [ {2U [~;l = 

kl + k2 hl kl hI 

m2 m2 m2 m2 (5-71) 
0 0 0 1 

kl hI kl hI 

ml ml ml ml 

The outputs of the system are Y and z. Consequently, if we define the output variables 
as 

then we have 

Yl = Y 
Y2 = z 

YI = Xl 

Y2 = X3 

The output equation can now be put in the form 

[Yl] = [1 0 0 o][;~l 
Y2 0 0 1 0 X3 

X4 

(5-72) 

Equations (5-71) and (5-72) give a state-space representation of the mechanical sys­
tem shown in Figure 5-22. 

Problem A-S-3 

Obtain a state-space representation of the system defined by 

(n) (n-l) 
Y + at Y +. .. + an-I.V + anY = u (5-73) 

where u is the input and Y is the output of the system. 

Solution Since the initial conditions y(O), Y(O), ... , (nyl) (0), together with the input 
u(t} for t ~ 0, determines completely the future behavior of the system, we may take 

y(t}, y(t), ... , (nyl) (t) as a set of n state variables. (Mathematically, such a choice of 
state variables is quite convenient. Practically, however, because higher order deriva­
tive terms are inaccurate due to the noise effects that are inherent in any practical sys­
tem, this choice of state variables may not be desirable.) 

Let us define 

(II-I) 
Xn = Y 
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Then Equation (5-73) can be written as 

Xn-l = Xn 

Xn = -anXl - .•. - alxn + u 

or 

i = Ax + Bu 

where 

x = [j:J 
0 1 0 
0 0 1 

A= 
0 0 0 

-an -an-l -an-2 

The output can be given by 

y = [1 0 

or 

y = Cx 

where 

C = [1 0 0] 

o 
o 

1 
B= 

o 
o 

o 
1 
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(5-74) 

(5-75) 

Equation (5-74) is the state equation and Equation (5-75) is the output equation. 
Note that the state-space representation of the transfer function of the system, 

Y(s) 1 

U(s) = sn + atSn-1 + ... + an-IS + an 

is also given by Equations (5-74) and (5-75). 

Problem A-5-4 

Consider a system described by the state equation 

i=Ax+Bu 

and output equation 

y = Cx + Du 

where 

[ 
-0.25] 

B = 0.34375 ' 

Obtain the transfer function of this system. 

C = [1 0], D = 1 
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Solution From Equation (5-9), the transfer function G(s) can be given in terms of 
matrices A, B, C, and D as 

G(s) = C(sI - AtlB + D 

Since 

sI - A = [ s -1] 
0.125 s + 1.375 

we have 

( ) -t 1 [s + 1.375 s1] sI - A = -------
s2 + 1.375s + 0.125 -0.125 

Therefore, the transfer function of the system is 

G() [1 0] 1 [s + 1.375 
s = s2 + 1.375s + 0.125 -0.125 

1][ -0.25 ] 
s 0.34375 + 1 

-0.25(s + 1.375) + 0.34375 
= +1 

s2 + 1.375s + 0.125 
s2 + 1.125s + 0.125 

s2 + 1.375s + 0.125 
8s2 + 9s + 1 

8s2 + Us + 1 

Problem A-5-S 

Consider the following state equation and output equation: 

The system involves two inputs and two outputs, so there are four input-output combi­
nations. Obtain the impulse-response curves of the four combinations. (When Ul is a 
unit-impulse input, we assume that U2 = 0, and vice versa.) 

Next, find the outputs Yl and Yz when both inputs, Ul and U2, are given at the same 
time (i.e., Ul = U2 = unit-impulse function occurring at the same time 1 = 0). 

Solution The command 

sys = ss(A,B,C,Dl), impulse(sys,t) 

produces the impUlse-response curves for the four input-output combinations. (See 
MATLAB Program 5-13; when Ul is a unit-impulse function, we assume that U2 = 0, 
and vice versa.) The resulting curves are shown in Figure 5-23. 

When both unit-impulse inputs Ul(l) and U2(/) are given at the same time 1 = 0, 
the responses are 

Yt(t) = Yu(l) + Yzt(t) 
Yz(I) = Y12(1) + )22(1) 
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1 

05 --'-' ~ 0 
~ 

-0.5 

n -1 ::l 
Q. 

-= 0 

3 

2 

N- 1 '-' 
~ 

~ 0 

MATLAR Program 5-13 

» t = 0:0.01:10; 
»A= [-1 -1;6.5 0]; 
» B = [1 1;1 0]; 
» C = [1 0;0 1 ]; 
» D = [0 0;0 0]; 
»sys = ss(A,B,C,D); 
» impulse(sys,t) 
» grid 
» title{'lmpulse-Response Curves ') 
» xlabel{'t'); ylabel('Outputs ') 

Impulse-Response Curves 
From:U(l) 

o 2 
I (sec) 

From: U(2) 

4 6 

Figure 5-23 Unit-impulse response curves. (The left column corresponds to 
Ul = unit-impulse input and U2 = o. The right column corresponds to Ul = 0 and 
U2 = unit-impulse input.) 

where 

Yll = Yl 
Y12 = Y2 

>'21 = YI 
fu = Y2 

when UI = 8(t), U2 = 0 
when Ul = 8(t), U2 = 0 

when Ul = 0, U2 = ~(t) 
when U1 = 0, U2 = 8(t) 

215 

8 10 
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MATLAB Program 5-14 produces the responses Yl(t) = Yn(t) + Y2t(t) and 
)2{t) = Y12(t) + )22{t). The resulting response curves are shown in Figure 5-24. 

MATLAB Program 5-14 

» t = 0:0.01:10; 
»A= [-1 -1;6.5 0]; 
» B = [1 1;1 0]; 
»C=[l 0;0 1]; 
» D = [0 0;0 0]; 
» sys = ss(A,B,C,D); 
» [y,t,x] = impulse(sys,t); 
» y11 = [1 O]*y(:,:,l )1; 
» y12 = [0 l)*y(:,:,l)'; 
» y21 = [1 0]*y(:,:,2)'; 
» y22 = [0 1 ]*y(:,:,2)'; 
» subplot(211); plot(t, yll +y21); grid 
» title('lmpulse Response when Both u_1 and u_2 are given at t = 01) 
» ylabel(,y_1 1) 
» subplot(212); plot(t,y12+y22); grid 
» xlabel('t (sec)I); ylabelCy _21) 

Impulse Response when Both uland U2 are given at t = 0 
2 

1.5 

1 

0.5 
>: 

0 
-0.5 

-1 

-1.5 

6 

4 

2 
~ 

0 

-2 

2 3 456 
t (sec) 

7 8 9 10 

Figure 5-24 Response curves Yl (t) versus t and Y2( t) versus t when Ul (t) and U2( t) 
are given at the same time. [Both UI(t) and U2(t) are unit-impulse inputs occurring 
at t = 0.] 
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Problem A-S-6 

Obtain the unit-step response and unit-impulse response of the following system with 
MATLAB: 

[i'] [ 0 

1 0 0 

][x'] [ 0 1 X2 _ 0 0 1 o X2 0.04 
X3 - 0 0 0 

+ u 
1 X3 -0.012 

X4 -0.01 -0.1 -0.5 -1.5 X4 0.008 

Y = [1 0 0 o{~~l 
The initial conditions are zeros. 

Solution To obtain the unit-step response of this system, the following command 
may be used: 

[y, x, t] = step(A, S, C, D) 

Since the unit-impulse response is the derivative of the unit-step response, the deriva­
tive of the output (y = xl) will give the unit-impulse response. From the state equa­
tion, we see that the derivative of y is 

x2 = [0 1 0 OJ*x' 

Hence,x2 versus t will give the unit-impulse response. 
MATLAB Program 5-15 produces both the unit-step and unit-impulse responses. 

The resulting unit-step response curve and unit-impulse curve are shown in Figure 5-25. 

Unit-Step Response 
1.4 
1.2 

~ 
1 

= 0.8 
50 0.6 ::s 
0 

0.4 

0.2 

0 
~ Unit-Impulse Response 
E 0.15 c. 
~ 
a> 0.1 fI) 

"3 c. 

~ 0.05 

'8 
;:J 0 
B 
E 
50 -0.05 
::s 0 0 10 20 30 40 

t (sec) 
50 60 70 

Flgure 5-25 Unit-step response curve and unit-impulse response curve. 
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MATLAR Program 5-15 

»A = [0 1 0 0;0 0 1 0;0 0 0 1 ;-0.01 -0.1 -0.5 -1.5]; 
» B = [0;0.04;-0.012;0.008]; 
» C = [1 0 0 0]; 
»D = 0; 
» 
» % To get the step response, enter, for example, the following 
» % command: 
» 
» [y,x,t] = step(A,B,C,D); 
» subplot(211); plot(t,y); grid 
» title('Unit-Step Response') 
» ylabel('Output y') 
» 
» % The unit-impulse response of the system is the same as the 
» % derivative of the unit-step response. (Note that x_l dot 
» % = x_2 in this system.) Hence, the unit-impulse response 
» % of this system is given by ydot = x_2. To plot the unit-
» % impulse response curve, enter the following command: 
» 
»x2 = [0 1 0 O]*x'; subplot(212); plot(t,x2); grid 
» title('Unit-lmpulse Response') 
» xlabel('t (sec)I); ylabel('Output to Unit-Impulse Input, x_2') 

Problem A-S-7 

'!\vo masses ml and m2 are connected by a spring with spring constant k, as shown in 
Figure 5-26. Assuming no friction, derive a state-space representation of the system, 
which is at rest for t < O. The displacements Yl and )2 are the outputs of the system and 
are measured from their rest positions relative to the ground. 

Assuming that ml = 40 kg, m2 = 100 kg, k = 40 N/m, and/is a step force input 
of magnitude of 10 N, obtain the response curves Yl (t) versus t and )2( t) versus t with 
MATLAB. Also, obtain the relative motion between ml and m2' Define )2 - Yl = x 
and plot the curve x(t) versus t. Assume that we are interested in the period 0 ~ t ~ 20. 

Solution Let us define a step force input of magnitude 1 N as u. Then the equations of 
motion for the system are 

mlYl + k(Yl - )2) = 0 

m2Y2 + k()2 - Yl) = / 
We choose the state variables for the system as follows: 

Figure 5-26 Mechanical system. 

Xl = Yl 
X2 = Yl 

Yl 

k 
~f 
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Then we obtain 
Xl = X2 

. k k 
X2 = --Xl + -X3 

ml ml 

X3 = X4 

. k k 1 f 
X4 = -Xl - -X3 + -

m2 m2 m2 

Noting that f = lOu and substituting the given numerical values for mh m2, and k, we 
obtain the state equation 

[~:] = [-~ ~ ~ ~][::] + [ ~ ]u 
X3 0 0 0 1 X3 0 
X4 0.4 0 -0.4 0 X4 0.1 

The output equation is 

[Yl] = [1 0 0 0][;:] + Ou 
Y2 0 0 1 0 X3 

X4 

MATLAB Program 5-16 produces the outputs Yl and Y2 and the relative motion 
x( = Y2 - Yl = X3 - Xl)' The resulting response curves Yl(t) versus t,Y2(t) versus t, and 
x(t) versus t are shown in Figure 5-27. Notice that the vibration between ml and m2 

continues forever. 

MATLAR Program 5-16 

»t = 0:0.02:20; 
»A=[O 1 0 0;-1 0 1 0;0 0 0 1;0.4 0 -0.4 0]; 
» B = [OiOiO;0.1]; 
» C = [1 0 0 0;0 0 1 0]; 
»D = 0; 
» sys = ss(A,B,C,D); 
» [y,t,x] = step(sys,t); 
»y1 = [1 O]*y'; 
» y2 = [0 1 J*y'; 
» subplot(311); plot(t, y1), grid 
»title('Step Response') 
» ylabel('Output y_1') 
» subplot(312); plot(t,y2), grid 
» ylabel('Output y_2') 
» subplot(313); plot(t,y2 - y1), grid 
»xlabel('t (sec)'); ylabel('x = y_2 - y_1') 
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:; ::: ~ ~ : : : ~ ~ :: I''''''''''''!!''''''''!~' ..... . ~:uTur= 
o 2 4 6 8 10 12 14 16 18 20 

O'2~A~AiJF1 ~ 0.15 ........ ~ ......... : ...; ............. :..... ···· .. · .. ~·" .... · .... ;· ...... " .. ·i- .. · ........ ·i .... · .... · .. 
~ 01 ........ :........ .•.. ........... L .... '" ......... t .... : ....... ! ...... ; ... " ... ~o.~==±==i± 
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I (sec) 

Figure 5-27 Response curves Yt(l) versus I, .Y2(I) versus I, andx(I) versus t. 

Problem A-S-8 

Obtain the unit-ramp response of the following system: 

[~~] = [ _~ -~.4 ][;~] + [~]u 
y = [1 0][;:] + [O]u 

The system is initially at rest. 

Solution Noting that the unit-ramp input is defined by 

u = t (0 ::;; t) 

we may use the command 

Isim(sys, U, t) 

as shown in MATLAB ProgramS-17. The unit-ramp response curve and the unit-ramp 
input are shown in Figure S-28. 
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Problem A-5-9 

MArLAR Program 5-17 

» t = 0:0.01 :18; 
»A = [0 1;-1 
» 8 = [0;1]; 
»C = [1 0]; 
»D = 0; 
» sys = ss(A,8,C,D); 
» u = t; 
» Isim(sys,u,t) 
» grid 

-0.4]; 

» title('Unit-Ramp Response ') 
» xlabeICt') 
» ylabel('Output yl) 
» text(3.5,0.6,'y') 
» text(0.5,3.2,'u ') 

Unit-Ramp Response 
18 '-~~~--~--~---r--~--~--'-~ 

16 

14 

12 1- ......... " ............ : ........... : .......... -: 

.:- 10 
=' c. 
:; 8 o 

6 

4 

2 

2 4 6 8 10 12 14 16 18 
t (sec) 

Flgore 5-28 Plot of unit-ramp response curve, together with unit­
ramp input. 
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A mass M (where M = 8 kg) is supported by a spring (where k = 400 N/m) and a 
damper (where b = 40 N-s/m), as shown in Figure 5-29. At t = 0, a mass m = 2 kg is 
gently placed on the top of mass M, causing the system to exhibit vibrations. Assuming 
that the displacement x of the combined mass is measured from the equilibrium posi­
tion before m is placed on M, obtain a state-space representation of the system. Then 
plot the response curve x(t) versus t. (For an analytical solution, see Problem A-3-16.) 

Solution The equation of motion for the system is 

(M + m)x + bi + kx = mg (0 < t) 
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m 

M 

x 

Figure 5-29 Mechanical system. 

Substituting the given numerical values for M, m, b, k, and g = 9.807 rnls2 into this last 
equation, we obtain 

lOx + 40x + 400x = 2 X 9.807 

or 

x + 4x + 40x = 1.9614 

The input here is a step force of magnitude 1.9614 N. 
Let us define a step force input of magnitude 1 N as u. Then we have 

x + 4x + 40x = 1.9614u 

If we now choose state variables 

then we obtain 

Xl == X2 
X2 = -40XI - 4X2 + 1.96l4u 

The state equation is 

and the output equation is 

y = [1 O][;~l + Ou 

MATLAB Program 5-18 produces the response curve y( t) [= x( t)] versus t, shown in 
Figure 5-30. Notice that the static deflection x( 00) = y( 00) * y( 6(0) is 0.049035 m. 

Problem A-5-10 

Consider the system shown in Figure 5-31. The system is at rest for t < O. The displace­
ments ZI and Z2 are measured from their respective equilibrium positions relative to the 
ground. Choosing Zit zt. Z2, and Z2 as state variables, derive a state-space representation 
of the system. Assuming that ml = 10 kg, m2 = 20 kg, b = 20 N-s/m, k = 60 N/m, and 
tis a step force input of magnitude 10 N, plot the response curves Zl (I) versus t, Z2( I) ver­
sus t, Z2(t) - ZI(t) versus I, and Z2(t) - ZI(t) versus t. Also, obtain the steady-state val­
ues of Zh Z2, and Z2 - ZI' 
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0.07 

0.06 

0.05 

::.- 0.04 :; 
c.. 
:; 

0.03 0 

0.02 

0.01 

MATlAR Program 5-18 

» t = 0:0.01 :6; 
» A = [0 1 ;-40 -4); 
» B = [0;1.9614]; 
» C = [1 0); 
» 0= 0; 
» sys == ss(A,B,C,D); 
» [y,t] == step(sys,t); 
» plot(t,y) 
» grid 
» title('Step Response') 
» xlabel{'t (sec)'); ylabel{'Output y') 
» 
» format long; 
» y(600) 

ans = 

0.04903515818520 

Step Response 

1 2 3 
t (sec) 

4 5 

Figure ~30 Step~response curve. 

b 

-t-f 

6 

77;~'?h;77i>17.777.77?77J77J7.t7fi~~77h~, Figure ~31 Mechanical system. 
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Solution The equations of motion for the system are 

mizi = k(Z2 - Zl) + b(Z2 - Zl) 

m2z2 = -k(Z2 - Zl) - b(Z2 - Zl) + / 

Since we chose state variables as 

Xl = Zl 

X2 = ZI 
X3 = Z2 

X4 = Z2 

Equations (5-76) and (5-77) can be written as 

mlx2 = k(X3 - Xl) + b(X4 - X2) 

m2x4 = -k(X3 - Xl) - b(X4 - X2) + / 

We thus have 

Xl = X2 

. k b k b 
X2 = --Xl - -X2 + -X3 + -X4 

ml ml ml ml 

X3 = X4 

. k b k b 1 
X4 = -Xl + -X2 - -X3 - -X4 + -/ 

m2 m2 m2 m2 m2 

Let us define Zl and Z2 as the system outputs. Then 

Y1 = Zl = Xl 

Y2 = Z2 = X3 

Chap. 5 

(5-76) 

(5-77) 

After substitution of the given numerical values and / = lOu (where u is a step force 
input of magnitude 1 N occurring at t = 0), the state equation becomes 

The output equation is 

MATLAB Program 5-19 produces the response curves Zl versus t, Z2 versus t, Z2 - Zl 

versus t, and Z2 - Zt versus t. The resulting curves are shown in Figure 5-32. 
Note that at steady state Zl(t) and Z2(t) approach a constant value, or 

Zl(oo) = Z2(oo) = a 

Also, at steady state the value of Z2(t) - Zl(t) approaches a constant value, or 
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N 

-= 0. 

-= 0 

N 
I 
N 
~ 

-= Q. 

-= 0 

MATlAB Program 5-19 

» t = 0:0.01 :15; 
»A= [0 1 0 0;-6 -2 6 2;0 0 0 1;3 1 -3 -1]; 
» B = [0;0;0;0.5]; 
»C = [1 0 0 0;0 0 0]; 
» D= [0;0]; 
» sys = ss(A,B,C,D); 
» [y,t,x] = step(sys, t); 
» xl = [1 0 0 OJ*XI; 
» x2 = [0 1 0 OJ*XI; 
» x3 = [0 0 1 OJ*XI; 
»x4 = [0 0 0 lJ*x'; 
» subplot(221); plot(t,xl); grid 
» xlabeH't (sec)I); ylabelCOutput z_ll) 
» subplot(222); plot(t,x3); grid 
» xlabelCt (sec)I); ylabelCOutput Z_21) 
» subplot(223); plot(t,x3 - xl); grid 
» xlabel('t (sec)I); ylabel('Output z_2 - z_ll) 
» subplot(224); plot(t,x4 - x2); grid 
» xlabelCt (sec)I); ylabel('z_2dot - z_l dot') 

40 40 

30 30 
N 
~ 

20 -= 20 Q. 

-= 0 
10 10 

0 
0 5 10 15 

t (sec) 

0.07 0.1 

0.06 0.08 
0.05 '0 0.06 "0 
0.04 N 

I 0.04 
0.03 0 
0.02 ~ 0.02 

~ 

0.01 0 .. 

0 -0.02 
0 5 10 15 0 

I (sec) 

5 10 
I (sec) 

5 10 
I (sec) 

15 

15 
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The steady-state value of Z2(/) - Zt(/) is zero, or 

Z2(00) - Zl(OO) = 0 

For I = 00, Equation (5-76) becomes 

mIZI(oo) = k[Z2(oo) - Zt(oo)} + b[Z2(00) - ZI(oo)] 

or 

lOa = k(3 + b X 0 

Also, Equation (5-77) becomes 

m2Z2(00) = -k[Z2(00) - Z1(00)) - b[Z2(00) - ZI(oo)] + f 
or 

20a = -k(3 - b x 0 + I 
Hence, 

lOa = 60(3 
20a = -60(3 + I 

from which we get 

I 10 1 
a;:-=-;:-

30 30 3 

and 

lOa 1 1 1 
(3=-=-x-=-

60 6 3 18 

Thus, 

Problem A-S-U 

Obtain two state-space representations of the mechanical system shown in Figure 5-33 
where u is the input displacement and y is the output displacement. The system is ini­
tially at rest. The displacement y is measured from the rest position before the input u 
is given. 

Solution The equation of motion for the mechanical system shown in Figure 5-33 is 

II(u - y) + kt(u - y) = hy 
Rewriting, we obtain 

or 

. kt 11. kl 
Y + --y = --u + --u 

II + h 11 + h 11 + h 
(5-78) 
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y 

Figure 5-33 Mechanical system. 

Comparing this last equation with 

y + aIY = boit + btU (5-79) 

we get 

kl 
al == II + 12' 

II 
bo == II + 12' 

We shall obtain two state-space representations of the system, based on Methods 1 and 
2 presented in Section 5-4. 

Method 1. First calculate f30 and f31: 

{3t == b1 - al/3o = (II + 12)2 

Define the state variable x by 

11 
X == Y - f30u = Y - II + 12 U 

Then the state equation can be obtained from Equation (5-78) as follows: 

The output equation is 

. kl klh 
x == ---x + U 

II + h (II + 12)2 

11 y=x+--u 
11 + 12 

Equations (5-80) and (5-81) give a state-space representation of the system. 

Method 2. From Equation (5-79), we have 

yes) bas + bt 

U(s) = s + al 

(5-80) 

(5-81) 
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If we define 

then we get 

Z(s) 1 
U(s) = s + aI' 

Y(s) 
-- = bos + b t 
Z(s) 

z + alZ = u 
boz + btZ = Y 

Next, we define the state variable x by 

x=Z 

Then Equation (5-82) can be written as 

x = -alx + U 

or 

, kl 
X = ---x + U 

II +12 
and Equation (5-83) becomes 

or 

kl II, 
y=--x+--x 

11 + h It + 12 
Substituting Equation (5-84) into Equation (5-85), we get 

y =:: ktf2 X +~u 
(fl + 12)2 /1 + 12 

Equations (5-84) and (5-86) give a state-space representation of the system, 

Problem A-5-U 

Show that, for the differential-equation system 

'y + alY + a2Y + a3Y = bo'u' + btU + ~u + b3u 

state and output equations can be given, respectively, by 

and 

where the state variables are defined by 

Xt = Y - f30u 

X2 = Y - f30u - f3t U = Xt - f3t U 

X3 = Y - f30u - f31U - f32u = X2 - f32U 

(5-82) 
(5-83) 

(5-84) 

(5-85) 

(5-86) 

(5-87) 

(5-88) 

(5-89) 
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The constants, /30, /31, /32, and /33 are defined by 

/30 = bo 
/31 = bt - Ql/30 

/32 = ~ - Ql/3t - Q2/30 

/33 = b3 - Qt/32 - Q2/31 - Q3/30 

Solution From the definition of the state variables X2 and X3, we have 

Xl = X2 + /31 u 
X2 = X3 + /32u 

To derive the equation for X3' we note that 

',v = -alY - Q2Y - Q3Y + bo'it' + btU + b2u + b3u 

Since 

we have 

X3 = ',V - /3o'u' - /3tU - /32U 
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(5-90) 
(5-91) 

= (-alY - Q2Y - Q3Y) + bo'u' + btU + ~u + b3u - /3o'u' - /31U - /32U 

= -at(Y - /3ou - /3IU - /32U) - at/3ou - Ql/31U - Ql/32u 

- a2(.Y - /3ou - /31U) - a2/3ou - Q2/3tU - Q3(Y - /3ou) - Q3/3ou 
+ bo'u' + blu + ~u + b3u - /3o'u' - /3I U - /32u 

= -QIX3 - Q2X2 - Q3X I + (bo - /3o)'u' + (bl - /31 - Ql/30)U 

+ (~ - /32 - Ql/31 - Q2/30)U + (~ - Ql/32 - a2/3t - Q3/30)U 
= -a1x3 - Q2X2 - Q3X I + (~ - al/32 - Q2/31 - Q3/30)U 
= -a)x3 - Q2X2 - a3xI + /33u 

Hence, we get 

(5-92) 

Combining Equations (5-90), (5-91), and (5-92) into a vector-matrix differential equa­
tion, we obtain Equation (5-88), Also, from the definition of state variable Xh we get 
the output equation given by Equation (5-89). 

Note that the derivation presented here can be easily extended to the general 
case of an nth-order system. 

Problem A-5-13 

Show that, for the system 

.,v + QIY + Q2Y + a3Y = bo'u' + blu + ~u + b3u 

or 

Y(s) bos3 + b1s
2 + b2s + b3 

U(s) = s3 + QIS2 + Q2S + a3 

state and output equations may be given, respectively, by 

1 
o 
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and 

y = [11, - a3bo : b, - azbo : b, - a,bo{~:] + bou 

Solution Let us define 

~(s) 1 

U(s) = S3 + aIs2 + a2s + a3' 

Y(s) 3 2 
~ (s) = bos + bl s + ~s + b3 

Then we obtain 

. z' + alZ + a2z + a3Z = u 

boo z' + bIZ + ~z + ~z = y 

Now we define 

Xl = Z 

X2 = Xl 
X3 = X2 

Then, noting that X3 = X2 = 'x't = . z', we obtain 

or 

Also, 

X3 = -a3Z - azZ - alZ + u 

y = boo z' + bl Z + bzz + ~z 
= bOX3 + bl X3 + bzX2 + ~XI 
= boH -Q3Xl - Q2X2 - QtX3) + u] + b1X3 + ~X2 + ~XI 
= (b3 - Q3bO)XI + (bz - a2bO)x2 + (bl - al bO)X3 + bou 

From Equations (5-93), (5-94), and (5-95), we obtain 

[~~] = [~ ~ ~][:~] + [~]u 
X3 -a3 -a2 -al X3 1 

which is the state equation. From Equation (5-96), we get 

y = [11, - a3bo : b, - azbo : b,. - a,bo{~:] + bou 

which is the output equation. 

Chap.S 

(5-93) 

(5-94) 

(5-95) 

(5-96) 

Note that the derivation presented here can be easily extended to the general 
case of an nth-order system. 

Problem A-5-14 

Consider the mechanical system shown in Figure 5-34. The system is initially at rest. 
The displacements u, y, and z are measured from their respective rest positions. 
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Figure 5-34 Mechanical system. 

Assuming that u is the input and y is the output, obtain the transfer function 
Y(s)lU(s) of the system, Then obtain a state-space representation of the system. 

Solution The equations of motion for the system are 

bt(u - y) + kt(u - y) = ~(y - z) 
~(y - z) = k2z 

Laplace transforming these two equations, assuming zero initial conditions, we obtain 

b1[sU(s) - sY(s)] + kl[U(s) - Y(s)] = ~[sY(s) - sZ(s)] 

~[sY(s) - sZ(s)] = k2Z(S) 

Eliminating Z(s) from the last two equations yields 

(bls + kl)U(s) = (blS + kl + b,s - b,;:2
k
Jy(S) 

Multiplying both sides of this last equation by (~s + k2), we get 

(bis + kd(~s + k2)U(S) = [(bls + kl)(~S + k2) + ~k2S]Y(S) 

The transfer function of the system then becomes 

Y(s) (bls + kl)(bls + kz) 
U(s) = (bts + kl)(~S + k2) + ~kzs 

-.2 (kl k2) klk2 
:r + b1 + bz s + b1bz 

(5-97) 

Next, we shall obtain a state-space representation of the system, The differential equa­
tion corresponding to Equation (5-97) is 

"+ 1+2+2,+12 "+ 1+2,+1 
(

k k k ) k k (k k ) k kz y - - - y -y = u - - u -u 
bl bl bl bl~ bl bz b1bz 
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Comparing this equation with the standard second-order differential equation given by 
Equation (5-20), namely, 

y + aIY + a2Y = boii + btU + bzu 

we find that 

kl k2 k2 
al = b

l 
+ bz + b;' 

klk2 
a2 = blbz 

kl k2 
bo=l bl =-+-

, bl hz' 
k t k2 

bz = b1bz 

From Equations (5-23), (5-24), and (5-29), we have 

f30 = bo = 1 
k2 

/31 = bi - aIf30 = -­
bl 

klk2 kl k22 
f32 = bz - alf3l - Q2/30 = - + - +-

bl
2 blbz bl2 

From Equations (5-21) and (5-22), we define the state variables Xl and X2 as 

Xl = Y - f30u = Y - u 

. . k2 
X2 = Xl - f3lU = XI + -u 

bl 

The state equation is given by Equation (5-30) as 

[Xl] [0 1 ][XI] [131] 
X2 = -a2 -al X2 + /32 U 

or 

[ 

k2 1 . 0 1 --
Xl Xl bl [xJ = [- klk2 _(kl + k2 + k2)] [xJ + klk2 kl kl u 

blbz bl bz bl bl
2 + bliJz + bt2 

The output equation is given by Equation (5-31) as 

Y = [1 O][~~] + f30u 

or 

Y = [1 O][~J + u 

(5-98) 

(5-99) 

Equations (5-98) and (5-99) constitute a state-space representation of the system. 

Problem A-5-lS 

Consider the mechanical system shown in Figure 5-35, in which m = 0.1 kg, b = 
0.4 N-s/m, kl = 6 N/m, and k2 = 4 N/m. The displacements Y and z are measured from 
their respective eqUilibrium positions. Assume that force u is the input to the system. 
Considering that displacement y is the output, obtain the transfer function Y(s)IU(s). 
Also, obtain a state-space representation of the system. 
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y Figure 5-35 Mechanical system. 

Solution The equations of motion for the system are 

my + k1y + k2(y - z) = u 

k2(y - z) = bi 
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(5-100) 

(5-101) 

Taking the Laplace transforms of Equations (5-100) and (5-101), assuming zero initial 
conditions, we obtain 

[ms2 + (k1 + k2)]Y(S) = k2Z(S) + U(s) 
k2Y(S) = (k2 + bs)Z(s) 

Eliminating Z(s) from these two equations yields 

Y(s) k2 + bs 

U(s) = mbs3 + mk2s2 + (k} + k2)bs + klk2 
1 k2 
-s+-
m mb =----------

3 k2 2 k} + k2 klk2 
S + -s + s +--

b m mb 

Substituting numerical values for m, b, kh and k2 into this last equation results in 

Y(s) lOs + 100 

U(s) = ~ + lOr + loos + 600 
(5-102) 

This is the transfer function of the system. 
Next, we shall obtain a state-space representation of the system using Method 1 

presented in Section 5~. From Equation (5-102), we obtain 

. Y' + lOy + 100y + 600y = lOu + 100u 

Comparing this equation with the standard third-order differential equation, namely, 

'Y' + atY + a2Y + a3Y = bo'u' + btU + bzu + b3u 

we find that 

at = 10, 
bo = 0, 

a3 = 600 

bz = 10, b3 = 100 
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Referring to Problem A-S-12, define 

where 

Also, note that 

Xl = Y - f30u 

X2 = Xl - f3IU 

X3 = X2 - f32 u 

f30 = bo = 0 

f31 = bi - Qlf30 = 0 
f32 = ~ - Qlf31 - Q2f3o = 10 

f33 = b3 - Qlf32 - Q2f31 - Q3f3o = 100 - 10 X 10 = 0 

Then the state equation for the system becomes 

[
Xl] [0 1 O][Xl] [0] X2 = 0 0 1 X2 + 10 U 

X3 -600 -100 -10 X3 0 

and the output equation becomes 

y = [1 0 o{:~] 
Equations (5-103) and (5-104) give a state-space representation of the system. 

(5-103) 

(5-104) 

Problem A-5-16 

Consider the system defined by 

'.v + 6y + 11y + 6y = 6u (5-105) 

Obtain a state-space representation of the system by the partial-fraction expansion 
technique. 

Solution Frrst, rewrite Equation (5-105) in the form of a transfer function: 

Y(s) 6 6 

U(s) = S3 + 6s2 + 11s + 6 (s + l)(s + 2)(s + 3) 

Next, expanding this transfer function into partial fractions, we get 

from which we obtain 

Y(s) 3 -6 3 
--=--+--+-­
U(s) s + 1 s + 2 s + 3 

3 -6 3 
Yes) = --lU(s) + --2U(s) + --3U(s) 

s+ s+ s+ 

Let us define 

3 
XI(s) = --1 U(s) 

s+ 
-6 

X2(S) = --2U(s) 
s+ 

3 
X3(S) = --3U(s) 

s+ 

(5-106) 



Example Problems and Solutions 

Then, rewriting these three equations, we have 

sXI(s) = -Xl(S) + 3U(s) 
sX2(s) = -2X2(s) - 6U(s) 
SX3(S) = -3X3(S) + 3U(s) 

The inverse Laplace transforms of the last three equations give 

Xl = -Xl + 3u 
X2 = -2x2 - 6u 
X3 = -3X3 + 3u 

Since Equation (5-106) can be written as 

Y(s) = Xl(S) + X2(S) + X3(S) 

we obtain 
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(5-107) 
(5-108) 
(5-109) 

Y = Xl + X2 + X3 (5-110) 

Combining Equations (5-107), (5-108), and (5-109) into a vector-matrix differential 
equation yields the following state equation: 

(5-111) 

From Equation (5-110), we get the following output equation: 

y = [1 1 1{~:] (5-112) 

Equations (5-111) and (5-112) constitute a state-space representation of the system 
given by Equation (5-105). (Note that this representation is the same as that obtained 
in Example 5-10.) 

Problem A-5-17 

Show that the 2 x 2 matrix 

A = [~ ~] 
has two distinct eigenvalues and that the eigenvectors are linearly independent of each 
other. 

Solution The eigenvalues, obtained from 

I

A - 1 -1 1 IAI - AI = = (A - 1)(A - 2) = 0 o A-2 

are 

and 

Thus, matrix A has two distinct eigenvalues. 
There are two eigenvectors Xl and X2 associated with Al and A2, respectively. If 

we define 

Xl = [xu], 
X21 
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then the eigenvector Xl can be found from 

Axl = AIXI 

or 

Noting that Al = 1, we have 

[1 -1 -1 ][xu] = [0] ° 1 - 2 X21 ° 
which gives 

Xu = arbitrary constant 

Hence, eigenvector x I may be written as 

and 

Xl = [:::] = [~] 
where CI ::;: ° is an arbitrary constant. 

Similarly, for the eigenvector X2, we have 

Ax2 = A2X2 

or 

Noting that..\2 = 2, we obtain 

[2 -1 -1 ][XI2] = [0] ° 2 - 2 X22 ° 
from which we get 

Xl2 - X22 = ° 
Thus, the eigenvector associated with A2 = 2 may be selected as 

X2 = [X12] = [C2] 
x22 C2 

where C2 ::;: ° is an arbitrary constant. 
The two eigenvectors are therefore given by 

and 

Chap. 5 

That eigenvectors Xl and X2 are linearly independent can be seen from the fact that the 
determinant of the matrix [Xl X2] is nonzero: 

I~ 
Problem A-5-18 

Obtain the eigenvectors of the matrix 

1 
o -a~] 
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Assume that the eigenvalues are Ah A2, and A3; that is, 

A -1 0 
IAI - AI = 0 A -1 

a3 a2 A + ai 

= A3 + aIA2 + a2A + a3 
= (A - AI)(A - A2)(A - A3) 

Assume also that Ah A2, and A3 are distinct. 

Solution The eigenvector Xj associated with an eigenvalue Aj is a vector that satisfies 
the equation 

which can be written as 

Axj = AjXj 

1 
o o ][Xil] [XiI] 1 Xj2 = Aj x,'2 

-al Xj3 Xj3 

Simplifying this last equation, we obtain 

Thus, 

Hence, the eigenvectors are 

X,'2 = AjXil 

XiJ = AjX,'2 

-a3xil - a2xi2 - atx j3 = AjX i3 

(5-113) 

(5-114) 

Note that if x/ is an eigenvector, then ax; (where a = scalar:¢:. 0) is also an eigenvector, 
because Equation (5-113) can be written as 

a(Axj) = a(AjXj) 

or 

A(axj) = Aj(axj) 

Thus, by dividing the eigenvectors given by (5-114) by Xlh X2h and X3h respectively, we 
obtain 

These are also a set of eigenvectors. 
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Problem A-S-19 

Consider a matrix 

1 
o 

Assume that AJ, A2, and A3 are distinct eigenvalues of matrix A. 
Show that if a transformation matrix P is defined by 

then 

Solution First note that 

P = [;. 

At 

A2 
A~ 

-a3 - a2A2 - a. A~ 

Since AJ, A2' and A3 are eigenvalues, they satisfy the characteristic equation, or 

At + alAr + a2Ai + a3 = 0 

Thus, 

Hence, 

-a3 - a2Al - alAI = At 

-a3 - a2A2 - alA~ = A~ 
-a3 - a2A3 - alA~ = A~ 

Consequently, Equation (5-115) can be written as 

Next, define 

[

AI 

D = ~ 

Chap. 5 

(5-115) 

(5-116) 
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Then 

Comparing Equations (5-116) and (5-117), we have 

AP=PD 

Thus, we have shown that 

[

AI 
p-lAP = D = ~ 

Problem A-5-20 
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(5-117) 

Prove that the eigenvalues of a square matrix A are invariant under a linear transfor­
mation. 

Solution To prove the invariance of the eigenvalues under a linear transformation, 
we must show that the characteristic polynomials IAI - AI and IAI - p-lAPI are 
identical. 

Since the determinant of a product is the product of the determinants, we obtain 

IAI - p-lAPI = IAP-Ip - p-IAPI 
= Ip-l('\1 - A)PI 
= Ip-liIAI - Ailpi 
= Ip-lllpllAI - AI 

Noting that the product of the determinants Ip-II and Ipi is the determinant of the 
product Ip-lpl, we obtain 

IAI - p-lAPI = Ip-lpllAI - AI 

= IAI - AI 

Thus, we have proven that the eigenvalues of A are invariant under a linear transfor­
mation. 

PROBLEMS 

Problem B-5-1 

Obtain state-space representations of the mechanical systems shown in Figures 5-36( a) 
and (b). 

Problem B-5-2 

For the spring-mass-pulley system of Figure 5-37, the moment of inertia of the pulley 
about the axis of rotation is J and the radius is R. Assume that the system is initially in 
equilibrium. The gravitational force of mass m causes a static deflection of the spring 
such that kS = mg. Assuming that the displacement y of mass m is measured from the 
equilibrium position, obtain a state-space representation of the system. The external 
force u applied to mass m is the input and the displacement y is the output of the system. 
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x (Output) 

k 

(a) 

x (Output) 

Figure 5-36 (a) and (b) Mechanical systems. 
(b) 

Figure 5-37 Spring-mass-pulley system. '/ 

Problem 8-5-3 

Obtain a state-space representation of the mechanical system shown in Figure 5-38. 
The force u(t) applied to mass ml is the input to the system. The displacements y and z 
are the outputs of the system. Assume that y and z are measured from their respective 
equilibrium positions. 

Problem 8-5-4 

Obtain a state-space representation of the mechanical system shown in Figure 5-39, 
where Ul and U2 are the inputs and Yt and Y2 are the outputs. The displacements Yt and 
Y2 are measured from their respective equilibrium positions. 
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U(I) 

y 

Figure 5-38 Mechanical system. 

Yl 

Y2 
Figure 5-39 Mechanical system. 

Problem B-S-S 

Given the state equation 

[
Xl] [0 1 O][XI] [1] ~2 = 0 0 1 X2 + 1 U 

x3 1 -3 3 X3 1 

and output equation 

obtain the corresponding scalar differential equation in terms of y and u. 
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Problem 8-5-6 

Consider the system defined by 

'.v + 6y + 11y + 6y = 6u 

where y is the output and u is the input of the system. Obtain a state-space representa­
tion for the system. 

Problem 8-S-7 

Consider the system described by 

[~~] = [-: =~ ][~~] + [~]u 
y = [1 O][~~] 

Obtain the transfer function of the system. 

Problem B-S-8 

Consider a system described by the state equation 

i = Ax + Bu 

and the output equation 

y:::: Cx + Du 

where 

B :::: [~], C = [1 0], 

Obtain the transfer function of the system. 

Problem 8-S-9 

Consider the system 

where 

i=Ax+Bu 
y = Cx + Du 

D = 1 

A:::: [ ~ 1 
o 

-100 

0] 1 , B=[~l C :::: [1 0 0], 
-600 -10 

Obtain the transfer function of the system. 

Problem 8-5-10 

Consider the following system: 

Obtain the unit-step response curves with MATLAB. 

D:::: 0 
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Problem 8-5-11 

Obtain the unit-step response curve and unit-impulse response curve of the following 
system with MATLAB: 

[~l] _ [-5 -25 
X2 - 1 0 
X3 0 1 

Y = [0 25 S{;:] + [Olu 

Problem 8-5-12 

Consider the system defined by 

where 

i = Ax + Bu, 
y = ex + Du 

B = [~], 
Obtain the response to the initial condition 

Xo = [~] 

x(O) = Xo 

c = [1 0], 

Use MATLAB command initial(A,B,C,D,[initial condition],t). 

Problem 8-5-13 

Consider the system 

.y. + 8y + 17j + lOy = 0 

subjected to the initial condition 

y(O) = 2, j(O) = 1, y(O) = 0.5 

D =0 

(No external forcing function is present.) Obtain the response curve y(l) to the given 
initial condition with MATLAB. Use command Isim. 

Problem 8-5-14 

Consider the mechanical system shown in Figure 5-40(a). The system is at rest for 
1 < o. The displacement y is measured from the equilibrium position for 1 < O. At 
1 = 0, an input force 

U(I) = 1 N 
=0 

forO SIS 5 

for 5 < 1 

is given to the system. [See Figure 5-40(b).] Derive a state-space representation of the 
system. Plot the response curve Y(I) versus 1 (where 0 < 1 < 10) with MATLAB. 
Assume that m = 5 kg, b = 8 N-s/m, and k = 20 N/m. 
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o 5 10 

(a) (b) 

Figure S-4O (a) Mechanical system; (b) input force u. 

Problem 8-5-15 

Consider the mechanical system shown in Figure 5-41 (a). Assume that at t = 0 mass m 
is placed on the massless bar AA'. [See Figure 5-41(b).] Neglecting the mass of the 
spring-damper device, what is the subsequent motion y(t) of the bar AA'? The dis­
placement y(t) is measured from the equilibrium position before the mass is placed on 
the bar AA'. Assume that m = 1 kg, the viscous-friction coefficient b = 4 N-s/m, and 
the spring constant k = 40 N/m. Derive a state-space representation of the system, and 
plot the response curve y(t) versus t with MATLAB. 

A A' 

y 

t<O 1>0 

(a) (b) 

Figure 5-41 (a) Mechanical device; (b) vibration caused by placement 
of mass m on bar AA'. 

Problem 8-5-16 

Consider the system shown in Figure 5-42. The system is at rest for t < O. Assume that 
the input and output are the displacements u and y, respectively, measured from the 
rest positions. Assume that m = 10 kg, b = 20 N-s/m, and k = 40 N/m. The input u is a 
step displacement input of 0.2 m. Assume also that the system remains linear through­
out the transient period. Obtain a state-space representation of the system. Plot the 
response curve y(t) versus t with MATLAB. 
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y u 

b 

m 

Figure 5-42 Mechanical system. 

Problem B-5-17 

Referring to Problem A-S-I0, consider the system shown in Figure 5-31. The system is 
at rest for t < O. The displacements Zl and Z2 are measured from their respective equi­
librium positions relative to the ground. Define Z2 - Zt = z. Derive a state-space 
equation when z, Z, Zit and it are chosen as state variables. Assuming that mt = 10 kg, 
m2 = 20 kg, b = 20 N-s/m, k = 60 N/m, and fis a step force input of magnitude 10 N, 
plot the response curves Zl(t) versus t, Z2(t) versus I, and z(t) versus t. 

Problem B-5-18 

Consider the system shown in Figure 5-43(a). The system is at rest for t < O. The dis­
placements Zt and Z2 are measured from their respective equilibrium positions before 
the input force 

(a) 

f 

10N 

o 10 

(b) 

f = tN 
=0 

(0 < t ~ 10) 

(10 < t) 

Figure S-43 (a) Mechanical system; 
(b) input force f 
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[see Figure 5-43(b») is given to the system. Assume that ml = 10 kg, m2 = 20 kg, 
b = 20 N-s/m. k t = 30 N/m, and k2 = 60 N/m, and derive a state-space representation 
of the system. Then plot the response curves Zl(t) versus t, Z2(t) versus t, and 
Z2(t) - Zt(t) versus t. 

Problem 8-5-19 

Consider the system equation given by 

(n) (n-l) (n) (n-l) 
Y + alY + ... + an-I] + anY = bou + btU + ... + bn-1u + bnu 

By choosing appropriate state variables, derive the state equation 

[
Xl] [0 0 0 -an ][XI] [b

n 
- anb

o 
] ? = ~ 0 0 -a,n-l ? + bn- 1 -, an-Ibn u 

Xn 0 0 1 -al Xn bi - a1bo 

(5-118) 

and output equation 

Xl 

X2 
Y = [0 0 0 1] + bou (5-119) 

Xn-l 
Xn 

Problem 8-5-20 

Consider the system defined by the following transfer function: 

Y(s) 160(s + 4) 

U(s) = S3 + 18s2 + 192s + 640 

Using Methods 1 and 2 presented in Section 5-4, obtain two state-space representa­
tions of the system. 

Problem 8-5-21 

Using the partial-fraction expansion approach, obtain a state-space representation for 
the following system: 

Y(s) 5 
U(s) = (s + 1)2(s + 2) 

Problem 8-5-22 

Consider the mechanical system shown in Figure 5-44. The system is at rest for t < O. 
The force u is the input to the system and the displacement y, measured from the equi­
librium position before u is given at t = 0, is the output of the system. Obtain a state­
space representation of the system. 

Problem 8-5-23 

Consider the system shown in Figure 5-45. The system is at rest for t < O. The dis­
placements Yl and Y2 are measured from their respective equilibrium positions before 
the input force u is given at t = O. Obtain a state-space representation of the system. 



Problems 247 

Figure S-44 Mechanical system. 

Fagure S-45 Mechanical system. 

Assuming that m} = 10 kg, m2 = 5 kg, b = 10 N-s/m, k} = 40 N/m, and k2 = 
20 N/m and that input force u is a constant force of 5 N, obtain the response of the sys­
tem. Plot the response curves Yt(t) versus t and .Y2(t) versus t with MATLAB. 

Problem B-5-24 

Consider the mechanical system shown in Figure 5-46. The system is initially at rest. 
The displacement u is the input to the system, and the displacements y and z, measured 

Figure 5-46 Mechanical system. 
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from their respective rest positions before the input displacement u is given to the sys­
tem, are the outputs of the system. Obtain a state-space representation of the system. 

Problem B-S-25 

Consider the mechanical system shown in Figure 5-47. The system is at rest for t < O. 
The force u is the input to the system and the displacements Zt and Z2, measured from 
their respective equilibrium positions before u is applied at t = 0, are the outputs of 
the system. Obtain a state-space representation of the system. 

Figure 5-47 Mechanical system. 

Problem B-S-26 

Consider the system shown in Figure 5-48. The system is at rest for t < O. The force u 
is the input to the system and the displacements Zt and Z2, measured from their respec­
tive eqUilibrium positions before u is applied at t = 0, are the outputs of the system. 
Obtain a state-space representation of the system, 

Assume that ml = 100 kg, m2 = 200 kg, b = 25 N-s/m, kl = 50 N/m, and k2= 
100 N/m. The input force u is a step force of magnitude 10 N. Plot the response curves 
Zl(t) versus t, Z2(t) versus t, and Z2(t) - Zt(t) versus t. 

Figure 5-48 Mechanical system. 

Problem B-S-27 

Consider the system 

Y(s) 25s + 5 

U (s) = s3 + 5s2 + 25s + 5 

Obtain a state-space representation of the system with MATLAB. 

Problem B-S-28 

Consider the system 

Y(s) s3 + 2s2 + 15s + 10 

U (s) = S3 + 4s2 + 8s + 10 

Obtain a state-space representation of the system with MATLAB. 
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Problem 8-5-29 

Consider the system defined by 

[Xl] [ 0 l][XI] [1 1][U1] 
X2 = -25 -4 X2 + 0 1 U2 

[~] = [~ ~t:] + [~ ~][::] 
This system involves two inputs and two outputs. Four transfer functions are involved: 
Yt(s)/UJ(s), ~(S)/UI(S), Yt(s)/U2(s), and ~(S)/U2(S). (When considering input Uh we 
assume that input U2 is zero, and vice versa.) 

Obtain the transfer matrix (consisting of the preceding four transfer functions) 
of the system. 

Problem 8-5-30 

Obtain the transfer matrix of the system defined by 

Problem 8-5-31 

[f~] = U2 ~4 ~J[~~] + [~ !J[::] 
[~] = [~ ~ ~][~:J 

Consider a 3 X 3 matrix having a triple eigenvalue of A l' Then anyone of the following 
Jordan canonical forms is possible: 

[~ [~ 
Each of the three matrices has the same characteristic equation (A - Al)3 = O. The 
first corresponds to the case where there exists only one linearly independent eigen­
vector. This fact can be seen by denoting the first matrix by A and solving the following 
equation for x: 

That is, 

which can be rewritten as 

[~ 
AtXl + X2 = AIXI 
AtX2 + X3 = A\X2 

AtX3 = A\X3 
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which, in tum, gives 

xl = arbitrary constant, 

Hence, 

x=GJ 
where a is a nonzero constant. Thus, there is only one linearly independent eigenvector. 

Show that the second and third of the three matrices have, respectively, two and 
three linearly independent eigenvectors. 



Electrical Systems 
and Electromechanical 
Systems 

6-1 INTRODUCTION 

This chapter is concerned with mathematical modeling and the response analysis of 
electrical systems and electromechanical systems. Electrical systems and mechanical 
systems (as well as other systems, such as fluid systems) are very often described by 
analogous mathematical models. Therefore, we present brief discussions on analo­
gous systems in the chapter. 

In this section, we first review three types of basic elements of electrical systems: 
resistance, capacitance, and inductance elements. (These elements are passive ele­
ments, because, although they can store or dissipate energy that is already present in 
the circuit, they cannot introduce additional energy into the circuit.) Then we briefly 
discuss voltage and current sources. (These are active elements, because they can 
introduce energy into the circuit.) Fmally, we provide an outline of the chapter. 

Resistance elements. The resistance R of a linear resistor is given by 

R = eR 
i 

where e R is the voltage across the resistor and i is the current through the resistor. 
The unit of resistance is the ohm (n), where 

volt 
ohm=---

ampere 
251 
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Resistors do not store electric energy in any form, but instead dissipate it as 
heat. Note that real resistors may not be linear and may also exhibit some capaci­
tance and inductance effects. 

Capacitance elements. '!\vo conductors separated by a nonconducting 
medium form a capacitor, so two metallic plates separated by a very thin dielectric 
material form a capacitor. The capacitance C is a measure of the quantity of charge 
that can be stored for a given voltage across the plates. The capacitance C of a ca­
pacitor can thus be given by 

C =!L 
ee 

where q is the quantity of charge stored and ee is the voltage across the capacitor. 
The unit of capacitance is the farad (F), where 

or 

ampere-second coulomb 
farad = 1 = vo t volt 

Note that, since i = dqldt and ee = qlC, we have 

dec 
i=C-

dt 

dec = l.idt 
C 

Therefore, 

1 (t 
ee(t) = C 10 i dt + ee(O) 

Although a pure capacitor stores energy and can release all of it, real capaci­
tors exhibit various losses. These energy losses are indicated by a power factor, 
which is the ratio of the energy lost per cycle of ac voltage to the energy stored per 
cycle. Thus, a small-valued power factor is desirable. 

Inductance elements. If a circuit lies in a time-varying magnetic field, an 
electromotive force is induced in the circuit. The inductive effects can be classified 
as self-inductance and mutual inductance. 

Self-inductance is that property of a single coil that appears when the magnet­
ic field set up by the current in the coilllnks to the coil itself. The magnitude of the 
induced voltage is proportional to the rate of change of flux linking the circuit. If the 
circuit does not contain ferromagnetic elements (such as an iron core), the rate of 
change of flux is proportional to dildt. Self-inductance, or simply inductance, L, is 
the proportionality constant between the induced voltage eL volts and the rate of 
change of current (or change in current per second) dildt amperes per second; that is, 

eL 

L = dildt 
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The unit of inductance is the henry (H). An electrical circuit has an inductance 
of 1 henry when a rate of change of 1 ampere per second will induce an emf of 1 volt: 

h 
volt weber 

enry -
ampere/second ampere 

The voltage eL across the inductor L is given by 

diL 
eL = Ldi" 

where iL is the current through the inductor. The current idt) can thus be given by 

idt) = ~lt eLdt + iL(O) 

Because most inductors are coils of wire, they have considerable resistance. 
The energy loss due to the presence of resistance is indicated by the quality factor Q, 
which denotes the ratio of stored to dissipated energy. A high value of Q generally 
means that the inductor contains small resistance. 

Mutual inductance refers to the influence between inductors that results 
from the interaction of their fields. If two inductors are involved in an electrical 
circuit, each may come under the influence of the magnetic field of the other 
inductor. Then the voltage drop in the first inductor is related to the current flow­
ing through the first inductor, as well as to the current flowing through the second 
inductor, whose magnetic field influences the first. The second inductor is also 
influenced by the first in exactly the same manner. When a change in current of 1 
ampere per second in either of the two inductors induces an electromotive force 
of 1 volt in the other inductor, their mutual inductance Mis 1 henry. (Note that it 
is customary to use the symbol M to denote mutual inductance, to distinguish it 
from self-inductance L.) 

Voltage and current sources. A voltage source is a device that causes a 
specified voltage to exist between two points in a circuit. The voltage may be time 
varying or time invariant (for a sufficiently long time). Figure 6-1(a) is a schematic 
diagram of a voltage source. Figure 6-1(b) shows a voltage source that has a con­
stant value for an indefinite time. Often the voltage is denoted by E. A battery is an 
example of this type of voltage source. 

A current source causes a specified current to flow through a wire containing 
this source. Figure 6-1(c) is a schematic diagram of a current source. 

Outline of the chapter. Section 6-1 has presented introductory material. 
Section 6-2 reviews the fundamentals of electrical circuits that are presented in col­
lege physics courses. Section 6-3 deals with mathematical modeling and the re­
sponse analysis of electrical systems. The complex-impedance approach is included. 
Section 6-4 discusses analogous systems. Section 6-5 offers brief discussions of 
electromechanical systems. Finally, Section 6-6 treats operational-amplifier systems. 
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e(t) Circuit E Circuit 

(a) (b) 

Circuit 

(c) 

Figure 6-1 (a) Voltage source; (b) constant voltage source; (c) current 
source. 

6-2 FUNDAMENTALS OF ELECTRICAL CIRCUITS 

In this section, we review Ohm's law, series and parallel circuits, and Kirchhoff's cur­
rent and voltage laws. 

Ohm's law. Ohm's law states that the current in a circuit is proportional to 
the total electromotive force (emf) acting in the circuit and inversely proportional 
to the total resistance of the circuit. Ohm's law can be expressed as 

. e 
l = R 

where i is the current (amperes), e is the emf (volts), and R is the resistance (ohms). 

Series circuits. The combined resistance of series-connected resistors is the 
sum of the separate resistances. Figure 6-2 shows a simple series circuit. The voltage 
between points A and B is 

Figure 6-2 Series circuit. 
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Figure 6-3 Parallel circuit. 

where 

Thus, 

The combined resistance is then given by 

R = Rl + Rz + R3 

Parallel circuits. For the parallel circuit shown in Figure 6-3, 

. e 
11 = R

1
' 

. e 
IZ = R

2
' 

Since i = i1 + i2 + i3, it follows that 

. e e e e 1=-+-+-=-
R1 R2 R3 R 

where R is the combined resistance. Hence, 

or 

1 1 1 1 
-=-+-+­
R Rl Rz R3 

255 

Resistance of combined series and parallel resistors. Consider the cir­
cuit shown in Figure 6-4(a). The combined resistance between points Band Cis 

RzR3 

RBC = R2 + R3 
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A 

(a) 
R} 

A 
R} 

A 

(b) 

Aa-1 

A 

(c) A 

Figure 6-4 Combined series and parallel resistors. 

The combined resistance R between points A and C is 

R2R3 

R} 

R3 

R} 

R = Rl + RBe = Rl + R R 
2 + 3 

R2 
B 

B 

RBe 

R2 

R4 

£R' 
R3+ R4 

R2 

Chap.S 

C 

C 

B 

~B 

B 

The circuit shown in Figure 6-4(b) can be considered a parallel circuit consist­
ing of resistances (Rl + R2) and (R3 + R4)' So the combined resistance R between 
points A and B is 

or 

R = (RI + R2)(R3 + R4) 

Rl + R2 + R3 + R4 

Next, consider the circuit shown in Figure 6-4(c). Here, Rl and R3 are parallel 
and R2 and R4 are parallel, and the two parallel pairs of resistances are connected in 
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series. Redrawing this circuit as shown in Figure 6-4( c), therefore, we obtain 

RIR3 R2R4 
RAP = R1 + R3' RpB = R2 + R4 

As a result, the combined resistance R becomes 

R1R3 R2R4 
R = RAP + RpB = R R + R R 

1+ 3 2+ 4 

Kirchhoff's laws. In solving circuit problems that involve many electromo­
tive forces, resistances, capacitances, inductances, and so on, it is often necessary to 
use Kirchhoff's laws, of which there are two: the current law (node law) and the 
voltage law (loop law). 

Kirchhoff's current law (node law). A node in an electrical circuit is a point 
where three or more wires are joined together. Kirchhoffs current law (node law) 
states that the algebraic sum of all currents entering and leaving a node is zero. (This 
law can also be stated as follows: The sum of all the currents entering a node is equal 
to the sum of all the currents leaving the same node.) In applying the law to circuit 
problems, the following rules should be observed: Currents going toward a node 
should be preceded by a plus sign; currents going away from a node should be pre­
ceded by a minus sign. As applied to Figure 6-5, Kirchhoffs current law states that 

i1 + i2 + i3 - i4 - is = 0 

Kirchhoff's voltage law (loop law). Kirchhoff's voltage law states that at 
any given instant of time the algebraic sum of the voltages around any loop in an 
electrical circuit is zero. This law can also be stated as follows: The sum of the volt­
age drops is equal to the sum of the voltage rises around a loop. In applying the law 
to circuit problems, the following rules should be observed: A rise in voltage [which 
occurs in going through a source of electromotive force from the negative to the 
positive terminal, as shown in Figure 6--6(a), or in going through a resistance in op­
position to the current flow, as shown in Figure 6--6(b)] should be preceded by a plus 
sign. A drop in voltage [which occurs in going through a source of electromotive 
force from the positive to the negative terminal, as shown in Figure 6-6 ( c), or in 
going through a resistance in the direction of the current flow, as shown in Figure 
6--6(d)] should be preceded by a minus sign. 

Figure 6-7 shows a circuit that consists of a battery and an external resistance. 
Here, E is the electromotive force, r is the internal resistance of the battery, R is the 
external resistance, and i is the current. If we follow the loop in the clockwise direction 

Figure 6-5 Node. 
i, + i2 + i3 - i4 - i5 = o. 



258 Electrical Systems and Electromechanical Systems Chap.S 

i 

(a) E1e J 
eAB= +E (b) R:~ eAB= +Ri 

i 

(c) E1e 
J 

eAB= -E (d) R:~ eAB = -Ri 

Figure 6-6 Diagrams showing voltage rises and voltage drops in circuits. (Note: Each cir­
cular arrow shows the direction one follows in analyzing the respective circuit.) 

,-----+-----.... B 

'----------.... C 
Figure 6-7 Electrical circuit. 

(A ~ B ~ C ~ A) as shown, then we have 

e;; + e it + ec:t = 0 

or 

E - iR - ir = 0 

from which it follows that 

. E 
l=--

R+r 

A circuit consisting of two batteries and an external resistance appears in 
Figure 6-8(a), where E} and r} (E2 and '2) are the electromotive force and internal 
resistance of battery 1 (battery 2), respectively, and R is the external resistance. By 
assuming the direction of the current i as shown and following the loop clockwise as 
shown, we obtain 

E} - iR - E2 - i'2 - ir} = 0 

or 

. E} - E2 
1=---'----

,} + r2 + R 
(6-1) 
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(a) (b) 

Figure 6-8 Electrical circuits. 

If we assume that the direction of the current i is reversed [Figure 6-8(b )], then, by 
following the loop clockwise, we obtain 

E} + iR - E2 + iT2 + iTt = ° 
or 

i = ~ - El (6-2) 
Tl + T2 + R 

Note that, in solving circuit problems, if we assume that the current flows to the right 
and if the value of i is calculated and found to be positive, then the current i actual­
ly flows to the right. If the value of i is found to be negative, the current i actually 
flows to the left. For the circuits shown in Figure 6-8, suppose that El > E2• Then 
Equation (6-1) gives i > 0, which means that the current i flows in the direction 
assumed. Equation (6-2), however, yields i < 0, which means that the current i 
flows opposite to the assumed direction. 

Note that the direction used to follow the loop is arbitrary, just as the direction of 
current flow can be assumed to be arbitrary. That is, the direction used in following the 
loop can be clockwise or counterclockwise; the final result is the same in either case. 

Circuits with two or more loops. For circuits with two or more loops, both 
Kirchhoff's current law and voltage law may be applied. The first step in writing the 
circuit equations is to define the directions of the currents in each wire. The second 
is to determine the directions that we follow in each loop. 

Consider the circuit shown in Figure 6-9, which has two loops. Let us find the 
current in each wire. Here, we can assume the directions of currents as shown in the 
diagram. (Note that these directions are arbitrary and could differ from those shown 

i1 A i2 

i3 

E1 n E'n R3 

R2 

B Figure 6-9 Electrical circuit. 
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in the diagram.) Suppose that we follow the loops clockwise, as is shown in the figure. 
(Again, the directions could be either clockwise or counterclockwise.) Then we 
obtain the following equations: 

At point A: il + i3 - i2 = 0 
For the left loop: El - E2 + i3R2 - ilRI = 0 

For the right loop: E2 - i2R3 - i3R2 = 0 

Eliminating i2 from the preceding three equations and then solving for il and i3, we 
find that 

Hence, 

Writing equations for loops by using cyclic currents. In this approach, we 
assume that a cyclic current exists in each loop. For instance, in Figure 6-10, we assume 
that clockwise cyclic currents i1 and i2 exist in the left and right loops, respectively, of 
the circuit. 

Applying Kirchhoffs voltage law to the circuit results in the following equations: 

For left loop: E1 - E2 - R2{il - i2) - R1i1 = 0 
For right loop: E2 - R3i2 - R2( i2 - i1) = 0 

Note that the net current through resistance R2 is the difference between i1 and i2. 
Solving for i1 and i2 gives 

. E1(R2 + R3) - E2R3 
11 = 

RIR2 + R2R3 + R3R l 

. EIR2 + E2R1 
12 = 

RIR2 + R2R3 + R3R l 

(By comparing the circuits shown in Figures 6-9 and 6-10, verify that i3 in Figure 6-9 
is equal to i2 - i1 in Figure 6-10.) 

Figure 6-10 Electrical circuit. 
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6-3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS 

The first step in analyzing circuit problems is to obtain mathematical models for the 
circuits. (Although the terms circuit and network are sometimes used interchange­
ably, network implies a more complicated interconnection than circuit.) A mathe­
matical model may consist of algebraic equations, differential equations, 
integrodifferential equations, and similar ones. Such a model may be obtained by 
applying one or both of Kirchhoff's laws to a given circuit. The variables of interest 
in the circuit analysis are voltages and currents at various points along the circuit. 

In this section, we first present the mathematical modeling of electrical circuits 
and obtain solutions of simple circuit problems. Then we review the concept of com­
plex impedances, followed by derivations of mathematical models of electrical circuits. 

Example 6-1 

Consider the circuit shown in Figure 6-11. Assume that the switch S is open for 1 < 0 
and closed at 1 = O. Obtain a mathematical model for the circuit and obtain an equa­
tion for the current i(I). 

By arbitrarily choosing the direction of the current around the loop as shown in 
the figure, we obtain 

or 

E - L di - Ri = 0 
dt 

L
di 

R' E - + 1= 
dt 

(6-3) 

This is a mathematical model for the given circuit. Note that at the instant switch S is 
closed the current i(O) is zero, because the current in the inductor cannot change from 
zero to a finite value instantaneously. Thus, i(O) = O. 

Let us solve Equation (6-3) for the current i(t). Taking the Laplace transforms of 
both sides, we obtain 

L[sl(s) - i(O)] + RI(s) = E 
s 

Noting that i(O) = 0, we have 

G
L 

E () 

i 

E 
(Ls + R)/(s) = -

s 

R 

Figure 6-11 Electrical circuit. 
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Chap.S 

Figure 6-12 Plot of i(t) versus I for the 
circuit shown in Figure 6-11 when switch S 
is closed at t = O. 

o L 
Ii 

or 

E E [1 1] 
I(s) == s(Ls + R) = R -; - s + (RlL) 

The inverse Laplace transform of this last equation gives 

i(t) == E [1 _ e-(RIL)t] 
R 

A typical plot of i(t) versus t appears in Figure 6-12. 

ExampJe6-Z 

(6-4) 

Consider again the circuit shown in Figure 6-11. Assume that switch S is open for 
t < 0, it is closed at t = 0, and is open again at t = tl > O. Obtain a mathematical 
model for the system, and find the current i(t) for t ~ O. 

The equation for the circuit is 

L di + Ri = E 
dt 

;(0) = 0 tl > t ~ 0 

From Equation (6-4), the solution of Equation (6-5) is 

i(t) == E [1 - e-(RIL)/] tl > t ;;:: 0 
R 

At t = tIt the switch is opened. The equation for the circuit for t ~ tl is 

L
di 

R' 0 -+ 1= 
dt 

where the initial condition at t == t} is given by 

i(tt> == E [1 - e-(RIL)/I] 
R 

(6-5) 

(6-6) 

(6-7) 

(6-8) 

(Note that the instantaneous value of the current at the switching instant t == tl serves 
as the initial condition for the transient response for t ;;:: tl') Equations (6-5), (6-7), 
and (6-8) constitute a mathematical model for the system. 

Now we shall obtain the solution of Equation (6-7) with the initial condition 
given by Equation (6-8). The Laplace transform of Equation (6-7), with t == tl the ini­
tial time, gives 

L[sJ(s) - ;(tl)] + RI(s) == 0 
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i(t) 

E 
R 

(1- e-f/l)j 
-------------::-~~~~~---­.. -

Figure 6-13 Plot of i(l) versus 1 for the 
circuit shown in Figure 6-12 when switch S 
is closed at t = 0 and opened at 1 = I). 

or 

(Ls + R)/(s) = Li(td 

Hence, 

I(s) = Li(tl) = E [1 _ e-(RIL)t l ] 1 
Ls + R R s + (RIL) 

(6-9) 

The inverse Laplace transform of Equation (6-9) gives 

i{t) = ~[1 - e-(RIL)tl]e-(RlL)(t-td 
R 

(6-10) 

Consequently, from Equations (6-6) and (6-10), the current i{t) for 1 ?! 0 can be 
written 

i{l) = E [1 _ e-(RIL)/] 
R 

= E [1 _ e-(RlL)/I]e-(RlL)(t-tt) 

R 

11 > t ?! 0 

A typical plot of i(l) versus I for this case is given in Figure 6-13. 

Example 6-3 

Consider the electrical circuit shown in Figure 6-14. The circuit consists of a resistance 
R(in ohms) and a capacitance C (in farads). Obtain the transfer function Eo(s)IE;(s). 
Also, obtain a state-space representation of the system. 

Applying Kirchhoffs voltage law to the system, we obtain the following equations: 

Ri + iJi dt = e; (6-11) 

.!..Ji dt = e C Q 
(6-12) 

The transfer-function model of the circuit can be obtained as follows: Taking the Laplace 
transfonns of Equations (6-11) and (6-12), assuming zero initial conditions, we get 

1 1 
RI{s) + C-;/(s) = Ej(s) 

1 1 C -; /(s) = Eo{s) 



264 Electrical Systems and Electromechanical Systems Chap. 6 

Figure 6-14 RC circuit 

Assuming that the input is ei and the output is eo, the transfer function of the system is 

1 1 
Eo(s) c; J(s) 

Ej(s) = ( 11) 
R + c-; J(s) 

1 
(6-13) 

RCs + 1 

This system is a first-order system. 
A state-space model of the system may be obtained as follows: First, note that, 

from Equation (6-13), the differential equation for the circuit is 

RCeo + eo = ej 

If we defIne the state variable 

and the input and output variables 

u = ej, y = eo = x 

then we obtain 

. 1 1 
x=--x+-u 

RC RC 
y=x 

These two equations give a state-space representation of the system. 

Example 6-4 

Consider the electrical circuit shown in Figure 6-15. The circuit consists of an inductance 
L (in henrys), a resistance R (in ohms), and a capacitance C (in farads). Obtain the trans­
fer function Eis)IE;(s). Also, obtain a state-space representation of the system. 

Applying Kirchhoffs voltage law to the system, we obtain the following equations: 

L di + Ri + .!..!i dt = e· (6-14) 
dt C I 

(6-15) 

L R 

e; ) 
Figure 6-15 Electrical circuit. o~------------------~----o 
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The transfer-function model of the circuit can be obtained as follows: Taking the 
Laplace transforms of Equations (6-14) and (6-15), assuming zero initial conditions, 
we get 

1 1 
Ls/(s) + R/(s) + C -; /(s) = E;(s) 

1 1 C -; /(s) = Eo(s) 

Then the transfer function Eo(s)/E;(s) becomes 

Eo(s) 1 

Ej(s) = Lcil + RCs + 1 
(6-16) 

A state-space model of the system may be obtained as follows: FITSt, note that, 
from Equation (6-16), the differential equation for the system is 

.. +!i. + 1 _ 1 
eo Leo LC eo - LC e; 

Then, by defining state variables 

and the input and output variables 

we obtain 

[. 1 [0 1 ][ 1 [0] Xl = 1 R Xl + 1 U 
X2 -- -- X2 -

LC L LC 

and 

These two equations give a mathematical model of the system in state space. 

Transfer Functions of Nonloading Cascaded Elements. The transfer 
function of a system consisting of two nonloading cascaded elements can be obtained 
by eliminating the intermediate input and output. For example, consider the system 
shown in Figure 6-16(a). The transfer functions of the elements are 

)(2(S) )(3(S) 
Gt(s) = )(l(S) and G2(s) = )(2(S) 

If the input impedance of the second element is infinite, the output of the first ele­
ment is not affected by connecting it to the second element. Then the transfer func­
tion of the whole system becomes 

)(3(S) )(2(S))(3(S) 
G(s) = )(l(S) = )(1(S))(2(S) = G1(S)G2(s) 
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Xt(S) I I • Gt(S) G2(S) ..... --... -

(a) (b) 

Figure 6-16 (a) System consisting of two nonloading cascaded elements; (b) an equivalent system. 

The transfer function of the whole system is thus the product of the transfer functions 
of the individual elements. This is shown in Figure 6-16(b). 

As an example, consider the system shown in Figure 6-17. The insertion of an 
isolating amplifier between the circuits to obtain nonloading characteristics is fre­
quently used in combining circuits. Since amplifiers have very high input imped­
ances, an isolation amplifier inserted between the two circuits justifies the 
nonloading assumption. 

The two simple RC circuits, isolated by an amplifier as shown in Figure 6-17, 
have negligible loading effects, and the transfer function of the entire circuit equals 
the product of the individual transfer functions. Thus, in this case, 

Eo(s) _ ( 1 )(K)( 1 ) 
E;(s) - RlClS + 1 R2C2s + 1 

K 

Transfer functions of cascaded elements. Many feedback systems have 
components that load each other. Consider the system shown in Figure 6-18. 
Assume that e; is the input and eo is the output. The capacitances Cl and C2 are not 
charged initially. Let us show that the second stage of the circuit (the R2C2 por­
tion) produces a loading effect on the first stage (the RlCl portion). The equations 
for the system are 

~lJ (it - i2) dt + Rtit = ei (6-17) 

~t J (i2 - ill dt + R2i2 + ~2 J i2dt = 0 (6-18) 

ej 

Figure 6-17 Electrical system. 

~2Ji2dt = eo (6-19) 

Isolating 
amplifier 
(gainK) 
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Taking the Laplace transforms of Equations (6-17) through (6-19), respectively, 
assuming zero initial conditions, we obtain 

(6-20) 

(6-21) 

(6--22) 

Eliminating II(S) from Equations (6--20) and (6-21) and writing E;(s) in terms of 
12(s), we find the transfer function between Eo(s) and E;(s) to be 

Eo(s) 1 
E;(s) = (RICIS + 1)(R2C2S + 1) + RIC2S 

1 

RICIR2C2S2 + (RICI + R2C2 + RIC2)S + 1 
(6-23) 

The term R1C2S in the denominator of the transfer function represents the interac­
tion of two simple RC circuits. Since (RICI + R2C2 + RIC2)2 > 4RICIR2C2, the 
two roots of the denominator of Equation (6-23) are real. 

The analysis just presented shows that, if two RC circuits are connected in 
cascade so that the output from the first circuit is the input to the second, the over­
all transfer function is not the product of 1/(R1C1S + 1) and 1I(R2C2s + 1). The 
reason for this is that, when we derive the transfer function for an isolated circuit, 
we implicitly assume that the output is unloaded. In other words, the load imped­
ance is assumed to be infinite, which means that no power is being withdrawn at the 
output. When the second circuit is connected to the output of the first, however, a 
certain amount of power is withdrawn, and thus the assumption of no loading is 
violated. Therefore, if the transfer function of this system is obtained under the 
assumption of no loading, then it is not valid. The degree of the loading effect 
determines the amount of modification of the transfer function. 

Complex impedances. In deriving transfer functions for electrical circuits, 
we frequently find it convenient to write the Laplace-transformed equations directly, 
without writing the differential equations. Consider the system shown in Figure 6--19. 
In this system, Zl and Z2 represent complex impedances. The complex impedance 
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Figure 6-19 Electrical circuit. ~----------e----------~ 

Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace transform of the volt­
age across the terminals, to /(s), the Laplace transform of the current through the el­
ement, under the assumption that the initial conditions are zero, so that 
Z(s) = E(s)II(s). If the two-terminal element is a resistance R, a capacitance C, or 
an inductance L, then the complex impedance is given by R, lICs, or Ls, respectively. 
If complex impedances are connected in series, the total impedance is the sum of the 
individual complex impedances. 

The general relationship 

E(s) = Z(s)/(s) 

corresponds to Ohm's law for purely resistive circuits. (Note that, like resistances, 
impedances can be combined in series and in parallel.) 

Remember that the impedance approach is valid only if the initial conditions 
involved are all zero. Since the transfer function requires zero initial conditions, the 
impedance approach can be applied to obtain the transfer function of the electrical 
circuit. This approach greatly simplifies the derivation of transfer functions of elec­
trical circuits. 

Deriving transfer functions of electrical circuits with the use of complex 
impedances. The transfer function of an electrical circuit can be obtained as a 
ratio of complex impedances. For the circuit shown in Figure 6-20, assume that the 
voltages ei and eo are the input and output of the circuit, respectively. Then the trans­
fer function of this circuit can be obtained as 

Eo(s) 22(s)I(s) Z2(S) 
E;(s) = Zl(S)/(S) + 22(s)/(s) = Zl(S) + Z2(s) 

where /(s) is the Laplace transform of the current i(t) in the circuit. 

Figure 6-20 Electrical circuit. 
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01-----------""'---_0 Figure 6-21 Electrical circuit. 

For the circuit shown in Figure 6-21, 

Zl = Ls + R, 

Hence, the transfer function Eo( s )/ Ei( s) is 

1 

1 
Z2=­

Cs 

Eo(s) Cs 1 
E;(s) = 1 = LCs2 + RCs + 1 

Ls + R + Cs 

Example 6-5 

269 

Consider the system shown in Figure 6-22. Obtain the transfer function Eo( s)/ E;( s) by 
the complex-impedance approach. (Capacitances C1 and C2 are not charged initially.) 

The circuit shown in Figure 6-22 can be redrawn as that shown in Figure 6-23(a), 
which can be further modified to Figure 6-23 (b). 

In the system shown in Figure 6-23(b), the current I is divided into two currents 
I} and h. Noting that 

we obtain 

Figure 6-22 Electrical circuit. 
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I 

Ej(s) 
Ej(s) 

(a) (b) 

Figure 6-23 (a) The circuit of Figure 6-22 shown in terms of impedances; (b) equivalent circuit diagram. 

Observing that 

we get 

Eo(s) Z2Z4 
E;(s) = Z1(Z2 + Z3 + Z4) + ~(Z3 + Z4) 

Substituting ZI = R., Z2 = 1I(C1s), Z3 = R2, and Z4 = 1I(C2s) into this last equation 
yields 

1 1 

Eo(s) = CIS C2s 

Ej(s) R{c~s + R2 + C~s) + ~s (R2 + C~s) 
1 

which is the transfer function of the system. [Notice that it is the same as that given by 
Equation (6-23).] 

6-4 ANALOGOUS SYSTEMS 

Systems that can be represented by the same mathematical model, but that are phys­
ically different, are called analogous systems. Thus, analogous systems are described 
by the same differential or integrodifferential equations or transfer functions. 

The concept of analogous systems is useful in practice, for the following reasons: 

1. The solution of the equation describing one physical system can be directly 
applied to analogous systems in any other field. 
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2. Since one type of system may be easier to handle experimentally than anoth­
er, instead of building and studying a mechanical system (or a hydraulic sys­
tem, pneumatic system, or the like), we can build and study its electrical 
analog, for electrical or electronic systems are, in general, much easier to deal 
with experimentally. 

This section presents analogies between mechanical and electrical systems. 

Mechanical-electrical analogies. Mechanical systems can be studied 
through their electrical analogs, which may be more easily constructed than models 
of the corresponding mechanical systems. There are two electrical analogies for 
mechanical systems: the force-voltage analogy and the force--current analogy. 

Force-voltage analogy. Consider the mechanical system of Figure 6-24(a) 
and the electrical system of Figure 6-24(b). In the mechanical system p is the exter­
nal force, and in the electrical system e is the voltage source. The equation for the 
mechanical system is 

d2x dx 
m-+ b-+ kx = P 

dt2 dt 
(6-24) 

where x is the displacement of mass m, measured from the equilibrium position. The 
equation for the electrical system is 

L
di 

R' lJ'd -+ Z+- l t=e 
dt C 

In terms of the electric charge q, this last equation becomes 

d2q dq 1 
L-+ R-+-q = e 

dt2 dt C 
(6-25) 

Comparing Equations (6-24) and (6-25), we see that the differential equations for 
the two systems are of identical form. Thus, these two systems are analogous systems. 

0. 

L R 
p 

e J c 
x 

(a) (b) 

Figure ~24 Analogous mechanical and electrical systems. 
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TABLE 6-1 Force-Voltage Analogy 

Mechanical Systems Electrical Systems 

Force p (torque n Voltagee 
Mass m (moment of inertia 1) Inductance L 
Viscous-friction coefficient b Resistance R 
Spring constant k Reciprocal of capacitance, lie 
Displacement x (angular displacement 8) Charge q 
Velocity i (angular velocity 8) Current i 

The terms that occupy corresponding positions in the differential equations are 
called analogous quantities, a list of which appears in Table 6-1. The analogy here is 
called the force-voltage analogy (or mass-inductance analogy). 

Force-current analogy. Another analogy between mechanical and electri­
cal systems is based on the force-current analogy. Consider the mechanical system 
shown in Figure 6-25(a), where p is the external force. The system equation is 

d2x dx 
m dt2 + bdi + kx = p (6-26) 

where x is the displacement of mass m, measured from the eqUilibrium position. 
Consider next the electrical system shown in Figure 6-25 (b) , where is is the 

current source. Applying Kirchhoff's current law gives 

where 

. IJ lL = L edt, 

/. 

(a) 

. e 
lR = R' 

iL 

L 

i = C
de 

C dt 

iR ic 

R C 

(b) 

Figure 6-25 Analogous mechanical and electrical systems. 

(6-27) 

I 
e 

~ 
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I 
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Sec. 6-4 Analogous Systems 

Thus, Equation (6-27) can be written as 

1 J e de. - e dt + - + C- = l 
L R dt S 

Since the magnetic flux linkage y, is related to the voltage e by the equation 

dy, 
-=e 
dt 
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(6-28) 

Equation (6-28) can be written in terms of y, as 

d2y, 1 dy, 1 
C dt2 + R dt + L Y, = is (6-29) 

Comparing Equations (6-26) and (6-29), we find that the two systems are analo­
gous. The analogous quantities are listed in Table 6-2. The analogy here is called the 
force-current analogy (or mass-capacitance analogy). 

Comments. Analogies between two systems break down if the regions of 
operation are extended too far. In other words, since the mathematical models on 
which the analogies are based are only approximations to the dynamic characteris­
tics of physical systems, the analogy may break down if the operating region of one 
system is very wide. Nevertheless, even if the operating region of a given mechanical 
system is wide, it can be divided into two or more subregions, and analogous electri­
cal systems can be built for each subregion. 

Analogy, of course, is not limited to mechanical-electrical analogy, but includes 
any physical or nonphysical system. Systems having an identical transfer function (or 
identical mathematical model) are analogous systems. (The transfer function is one 
of the simplest and most concise forms of mathematical models available today.) 

Analogous systems exhibit the same output in response to the same input. 
For any given physical system, the mathematical response can be given a physical 
interpretation. 

The concept of analogy is useful in applying well-known results in one field to 
another. It proves particularly useful when a given physical system (mechanical, 
hydraulic, pneumatic, and so on) is complicated, so that analyzing an analogous elec­
trical circuit first is advantageous. Such an analogous electrical circuit can be built 
physically or can be simulated on the digital computer. 

TABLE 6-2 Force-Current Analogy 

Mechanical Systems Electrical Systems 

Force p (torque 1) Current i 
Mass m (moment of inertia 1) Capacitance C 
Viscous-friction coefficient b Reciprocal of resistance, 11 R 
Spring constant k Reciprocal of inductance, 11 L 
Displacement x (angular displacement 8) Magnetic flux linkage y, 
Velocity x (angular velocity 8) Voltage e 
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Example 6-(i 

Obtain the transfer functions of the systems shown in Figures 6-26(a) and (b), and 
show that these systems are analogous. 

For the mechanical system shown in Figure 6-26(a), the equation of motion is 

b(x; - xo) = kxo 

or 

bx; = kxo + bxo 

Taking the Laplace transform of this last equation, assuming zero initial conditions, we 
obtain 

bsXj(s) = (k + bs)Xo(s) 

Hence, the transfer function between Xo(s) and Xj(s) is 

b 
Xo(s) bs is 
X;(s) = bs + k = ~1 

is + 

For the electrical system shown in Figure 6-26(b), we have 

Eo(s) RCs 
E;(s) = Res + 1 

Comparing the transfer functions obtained, we see that the two systems are analogous. 
(Note that both b/k and RC have the dimension of time and are time constants of the 
respective systems.) 

c 
0 I 

e; J 
Figure 6-26 (a) Mechanical system; 
(b) analogous electrical system. (a) 

6-5 MATHEMATICAL MODELING OF ELECTROMECHANICAL 
SYSTEMS 

(b) 

R eo 

In this section, we obtain mathematical models of dc servomotors. To control the 
motion or speed of dc servomotors, we control the field current or armature current 
or we use a servodriver as a motor-driver combination. There are many different 

~ 
I 
I 
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types of servodrivers. Most are designed to control the speed of dc servomotors, 
which improves the efficiency of operating servomotors. Here, however, we shall 
discuss only armature control of a dc servomotor and obtain its mathematical model 
in the form of a transfer function. 

Armature control of dc servomotors. Consider the armature-controlled 
dc servomotor shown in Figure 6-27, where the field current is held constant. In this 
system, 

Ra = armature resistance, n 
La = armature inductance, H 
ia = armature current, A 
if = field current,A 
ea = applied armature voltage, V 
eb = back emf, V 
8 = angular displacement of the motor shaft, rad 
T = torque developed by the motor,N-m 
J = moment of inertia of the motor and load referred to the motor shaft, 

kg-m2 

b = viscous-friction coefficient of the motor and load referred to the motor 
shaft, N-mJradis 

The torque T developed by the motor is proportional to the product of the 
armature current ia and the air gap flux !/I, which in tum is proportional to the field 
current, or 

!/I = Kfif 
where Kf is a constant. The torque T can therefore be written as 

T = KfifKtia 

where K 1 is a constant. 
For a constant field current, the flux becomes constant and the torque 

becomes directly proportional to the armature current, so 

T = Kia 

where K is a motor-torque constant. Notice that if the sign of the current ia is 
reversed, the sign of the torque T will be reversed, which will result in a reversal of 
the direction of rotor rotation. 

if = constant Figure 6-27 Armature-controlled 
de servomotor. 
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When the armature is rotating, a voltage proportional to the product of the 
flux and angular velocity is induced in the armature. For a constant flux, the induced 
voltage eb is directly proportional to the angular velocity dO/dt, or 

(6-30) 

where eb is the back emf and Kb is a back-emf constant. 
The speed of an armature-controlled dc servomotor is controlled by the arma­

ture voltage ea' The differential equation for the armature circuit is 

dia . 
Lad! + Ra1a + eb = ea (6-31) 

The armature current produces the torque that is applied to the inertia and friction; 
hence, 

d20 de . 
J-+ b-= T = Kl 

dt2 dt a 
(6-32) 

Assuming that all initial conditions are zero and taking the Laplace transforms of 
Equations (6-30), (6-31), and (6-32), we obtain the following equations: 

KbSB(S) = Eb(S) 

(Las + Ra)IaCs) + Eb(S) = Ea(s) 

(Js2 + bs)B(s) = T(s) = KIa(s) 

(6-33) 

(6-34) 

(6-35) 

Considering Ea( s) as the input and B( s) as the output and eliminating la( s) and 
Eb(S) from Equations (6-33), (6-34), and (6-35), we obtain the transfer function for 
the dc servomotor: 

(6-36) 

The inductance La in the armature circuit is usually small and may be neglect­
ed. If La is neglected, then the transfer function given by Equation (6-36) reduces to 

K 
B(s) K Raj --=--------=-------

( 
Rab + KKb) 

S S + Raj 

(6-37) 

Notice that the term (Rab + KKb)/(RaJ) in Equation (6-37) corresponds to the 
damping term. Thus, the back emf increases the effective damping of the system. 
Equation (6-37) may be rewritten as 

B(s) Km 
Ea(s) = s(Tms + 1) 

(6-38) 
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Input 

Output 

Figure 6-28 Gear train system. 

where 

Km = KI(Rab + KKb ) = motor gain constant 

Tm = RaJ1(Rab + KKb) = motor time constant 

Equation (6-38) is the transfer function of the dc servomotor when the armature 
voltage ei t) is the input and the angular displacement 8( t) is the output. Since the 
transfer function involves the term 1/s, this system possesses an integrating proper­
ty. (Notice that the time constant Tm of the motor becomes smaller as the resistance 
Ra is reduced and the moment of inertia J is made smaller.) 

Gear train. Gear trains are frequently used in mechanical systems to reduce 
speed, to magnify torque, or to obtain the most efficient power transfer by matching 
the driving member to the given load. Figure 6-28 illustrates a simple gear train sys­
tem in which the gear train transmits motion and torque from the input member to 
the output member. If the radii of gear 1 and gear 2 are '1 and '2, respectively, and 
the numbers of teeth on gear 1 and gear 2 are nl and n2, respectively, then 

'1 nl -=-
'2 n2 

Because the surface speeds at the point of contact of the two gears must be identi­
cal, we have 

'lWl = '2W2 

where WI and ~ are the angular velocities of gear 1 and gear 2, respectively. Therefore, 

~ '1 nl -=-=-
W1 '2 n2 

If we neglect friction loss, the gear train transmits the power unchanged. In other 
words, if the torque applied to the input shaft is Tl and the torque transmitted to the 
output shaft is T2, then 

ExampJe6-7 

Consider the system shown in Figure 6-29. Here, a load is driven by a motor through the 
gear train. Assuming that the stiffness of the shafts of the gear train is infmite, that there 
is neither backlash nor elastic deformation, and that the number of teeth on each gear is 
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Motor shaft (shaft 1) 

Input torque 
from motor 

Gear 1 

Chap.S 

Load torque TL 

Gear 2 Load shaft (shaft 2) 

Figure 6-29 Gear train system. 

proportional to the radius of the gear, find the equivalent inertia and equivalent friction 
referred to the motor shaft (shaft 1) and those referred to the load shaft (shaft 2). The 
numbers of teeth on gear 1 and gear 2 are ni and n2, respectively, and the angular veloc­
ities of shaft 1 and shaft 2 are WI and ~, respectively. The inertia and viscous friction 
coefficient of each gear train component are denoted by lit hI and 12, ~, respectively. 

By applying Newton's second law to this system, the following two equations can 
be derived: For the motor shaft (shaft 1), 

(6-39) 

where T m is the torque developed by the motor and TI is the load torque on gear 1 due 
to the rest of the gear train. For the load shaft (shaft 2), 

(6-40) 

where T2 is the torque transmitted to gear 2 and TL is the load torque. Since the gear 
train transmits the power unchanged, we have 

TIWt = T2~ 
or 

W2 nl 
Tt = T2- = T2-

Wl n2 

If nI/n2 < 1, the gear ratio reduces the speed in addition to magnifying the torque. 
Eliminating TI and T2 from Equations (6-39) and (6-40) yields 

(6-41) 

Since W2 = (nI/n2)wh eliminating ClJ2 from Equation (6-41) gives 

[II + (::YJ2 ]WI + [hI + (::)2 ~ ]WI + (::) TL = Tm (6-42) 
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Thus, the equivalent inertia and equivalent viscous friction coefficient of the gear train 
referred to shaft 1 are given by 

The effect of 12 on the equivalent inertia II cq is determined by the gear ratio nI1n2. For 
speed-reducing gear trains, the ratio nl/n2 is much smaller than unity. If nl1n2 ~ 1, then 
the effect of 12 on the equivalent inertia II eq is negligible. Similar comments apply to 
the equivalent friction of the gear train. 

In terms of the equivalent inertia II eq and equivalent viscous friction coefficient 
b1 eq' Equation (6-42) can be simplified to give 

II eqWl + bi eqWI + nTL = Tn! 

where n = nlln2. 
The equivalent inertia and equivalent viscous friction coefficient of the gear train 

referred to shaft 2 are 

12eq = 12 + (::)2Ilt 

So the relationship between II eq and 12 eq is 

and that between bl eq and bz eq is 

bl eq = (:~) 
2 

b2 eq 

and Equation (6-42) can be modified to give 

ExampJe6-8 

12eqWz + bzeqWz + TL = !Tm 
n 

Consider the dc servomotor system shown in Figure 6-30. The armature inductance is 
negligible and is not shown in the circuit. Obtain the transfer function between the out­
put 82 and the input ea. In the diagram, 

'. J e. 
'a 

Ra = armature resistance, n 
ia = armature current, A 

Figure 6-30 DC servomotor system. 
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if = field current, A 
ea = applied armature voltage, V 

eb = back emf, V 
81 = angular displacement of the motor shaft, rad 

82 = angular displacement of the load element, rad 
T = torque developed by the motor, N-m 
1) = moment of inertia of the rotor of the motor, kg-m2 

12 = moment of inertia of the load, kg-m2 

nl = number of teeth on gear 1 

n2 = number of teeth on gear 2 

The torque T developed by the dc servomotor is 

T = Kia 

Chap. 6 

where K is the I1.1otor torque constant. The induced voltage eb is proportional to the 
angular velocity 81, or 

d(h 
eb = KbTt 

where Kb is the back-emf constant. 
The equation for the armature circuit is 

(6-43) 

(6-44) 

The equivalent moment of inertia of the motor rotor plus the load inertia referred to 
the motor shaft is 

11eq = 11 + (:~)212 
The armature current produces the torque that is applied to the equivalent moment of 
inertia 11 eq. Thus, 

(6-45) 

Assuming that all initial conditions are zero and taking the Laplace transforms of 
Equations (6-43), (6-44), and (6-45), we obtain 

Eb(s) = KbS@t(s) 
RaIa(s) + Eb(s) = Ea(s) 

1} eqs2@}(s) = KIa(s) 

(6-46) 

(6-47) 

(6-48) 

Eliminating Eb(s) and la(s) from Equations (6-46), (6-47), and (6-48), we obtain 

( 
KKb ) K 

Jt eqs2 + R;s @t(s) = Ra Ea(s) 

Noting that @1(s)/@2(S) = n21nh we can write this last equation as 

( 
2 KKb )n2 K 

Jt eqS + R;S n1 8z(s) = Ra Ea(s) 



Sec. 6-6 Mathematical Modeling of Operational-Amplifier Systems 

Hence, the transfer function ~(s)IEa(s) is given by 

nl K 
~(s) n2 

Ea( s) = {[ ()2 1 } Ra J1 + :~ J2 s + KKb S 

6-6 MATHEMATICAL MODELING OF OPERATIONAL-AMPLIFIER 
SYSTEMS 

281 

In this section, we briefly discuss operational amplifiers. We present several exam­
ples of operational-amplifier systems and obtain their mathematical models. 

Operational amplifiers, often called op-amps, are important building blocks in 
modem electronic systems. They are used in filters in control systems and to amplify 
signals in sensor circuits. 

Consider the operational amplifier shown in Figure 6-31. There are two termi­
nals on the input side, one with a minus sign and the other with a plus sign, called the 
inverting and non inverting terminals, respectively. We choose the ground as 0 volts 
and measure the input voltages el and e2 relative to the ground. (The input el to the 
minus terminal of the amplifier is inverted; the input e2 to the plus terminal is not 
inverted.) The total input to the amplifier is e2 - el' The ideal operational amplifier 
has the characteristic 

eo = K(e2 - el) = -K(el - e2) 

where the inputs el and e2 may be dc or ac signals and K is the differential gain or 
voltage gain. The magnitUde of K is approximately 105 to 106 for dc signals and ac 
signals with frequencies less than approximately 10 Hz. (The differential gain K 
decreases with the frequency of the signal and becomes about unity for frequencies 
of 1 MHz to about 50 MHz.) Note that the operational amplifier amplifies the dif­
ference in voltages el and e2' Such an amplifier is commonly called a differential 
amplifier. Since the gain of the operational amplifier is very high, the device is inher­
ently unstable. To stabilize it, it is necessary to have negative feedback from the out­
put to the input (feedback from the output to the inverted input). 

In the ideal operational amplifier, no current flows into the input terminals 
and the output voltage is not affected by the load connected to the output terminal. 
In other words, the input impedance is infinity and the output impedance is zero. In 

:: : _____ b>>-------oo 

o o 

Figure ~31 Operational amplifier. 
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Figure 6-32 Operational-amplifier 
system. 

an actual operational amplifier, a very small (almost negligible) current flows into 
an input terminal and the output cannot be loaded too much. In our analysis here, 
however, we make the assumption that the operational amplifiers are ideal. 

Inverting amplifier. Consider the operational-amplifier system shown in 
Figure 6-32. Assume that the magnitudes of the resistances R 1 and R2 are of compa­
rable order. 

Let us obtain the voltage ratio eolei. In the derivation, we assume the voltage 
gain to be K » 1. Let us derme the voltage at the minus terminal as e'. Ignoring 
the current flowing into the amplifier, we have 

e· - e' eo - e' 
-'--+ =0 

Rl R2 
from which we get 

Thus, 

(6-49) 

Also, 

eo = -Ke' (6-50) 

Eliminating e' from Equations (6-49) and (6-50), we obtain 

or 

( 
1 1 1 ) ei e -------- --

o KRI KR2 R2 - Rl 
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Hence, 

R2 

eo Rl -=----
e; 1 + R2 

1 + Rl 
K 

Since K » 1 + (R2IR1), we have 

(6-51) 

Equation (6-51) gives the relationship between the output voltage eo and the input 
voltage ej. From Equations (6-49) and (6-51) we have 

e; eo -+-
e' = Rl R2 = 0 

1 1 -+­
Rl R2 

In an operational-amplifier circuit, when the output signal is fed back to the 
minus terminal, the voltage at the minus terminal becomes equal to the voltage at 
the plus terminal. This is called an imaginary short. If we use the concept of an imag­
inary short, the ratio eole; can be obtained much more quickly than the way we just 
found it, as the following analysis shows: 

Consider again the amplifier system shown in Figure 6-32, and define 

. ej - e' 
ll=~' 

e' - eo 
i2 = --­

R2 

Since only a negligible current flows into the amplifier, the current i1 must be equal 
to the current i2• Thus, 

e; - e' e' - eo 
--= 

Rl R2 

Because the output signal is fed back to the minus terminal, the voltage at the minus 
terminal and the voltage at the plus terminal become equal, or e' = O. Hence, we 
have 

e; -eo 
-=-

or 

R2 
eo = - Rl ej 

This is a mathematical model relating voltages eo and e;. We obtained the same 
result as we got in the previous analysis [see Equation (6-51)], but much more 
quickly. 
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Note that the sign of the output voltage eo is the negative of that of the input 
voltage ei. Hence, this operational amplifier is called an inverted amplifier. If 
Rl = R2, then the circuit is a sign inverter. 

Obtaining mathematical models of physical operational-amplifier sys­
tems by means of equations for idealized operational-amplifier systems. In 
the remaining part of this section, we derive mathematical models of operational-am­
plifier systems, using the following three conditions that apply to idealized operational­
amplifier systems: 

1. From Figure 6-31, the output voltage eo is the differential input voltage 
(e2 - el) multiplied by the differential gain K. That is, 

eo = K(e2 - el) 

where K is infinite. In designing active filters, we construct the circuit such 
that the negative feedback appears in the operational amplifier like the sys­
tem shown in Figure 6-32. As a result, the differential input voltage becomes 
zero, and we have 

Voltage at negative terminal = Voltage at positive terminal 

2. The input impedance is infinite. 
3. The output impedance is zero. 

The use of these three conditions simplifies the derivation of transfer func­
tions of operational-amplifier systems. The derived transfer functions are, of course, 
not exact, but are approximations that are sufficiently accurate. 

In what follows, we shall derive the characteristics of circuits consisting of 
operational amplifiers, resistors, and capacitors. 

Example 6-9 

Consider the operational-amplifier circuit shown in Figure 6-33. Obtain the relation­
ship between eo and ej. 

Figure 6-33 Operational-amplifier 
circuit. 

e' 

i' 



e} 

e2 

e3 
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If the operational amplifier is an ideal one, then the output voltage eo is limited 
and the differential input voltage becomes zero, or voltage e' (= e;) and voltage e", 
which is equal to [Rl/(Rl + Rz)]eo are equal. Thus, 

R} 

from which it follows that 

e = (1 + RZ)e. 
o Rl I 

This operational-amplifier circuit is a noninverting circuit. If we choose R} = 00, then 
eo = e;, and the circuit is called a voltage follower. 

Example 6-10 

Consider the operational-amplifier circuit shown in Figure 6-34. Obtain the relation­
ship between the output eo and the inputs eh ez, and e3' 

We define 

• el - e' 
ll=~' 

. e3 - e' 
13=~' 

Noting that the current flowing into the amplifier is negligible, we have 

el - e' ez - e' e3 - e' eo - e' 
--+--+--+--=0 

R) Rz R3 R4 
(6-52) 

Since the amplifier involves negative feedback, the voltage at the minus terminal and 
that at the plus terminal become equal. Thus, e' = 0, and Equation (6-52) becomes 

el ez e3 eo 0 -+-+-+-= 
Rl Rz R3 R4 

or 

Rl R4 

R2 

e' 

R3 

eo 

Figure 6-34 Operational-amplifier circuit. 
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If we choose R1 = R2 = R3 = R4, then 

eo = -(e1 + e2 + e3) 

The circuit is an inverting adder. 

Example 6-11 

Consider the operational-amplifier system shown in Figure 6-35. Letting e;(t) be the 
input and eo( t) be the output of the system, obtain the transfer function for the system. 
Then obtain the response of the system to a step input of a small magnitude. 

Let us define 

. ej - e' . dee' - eo) . e' - eo 
'I = ~' '2 = C dt ' '3 = ~ 

Noting that the current flowing into the amplifier is negligible, we have 

i1 = i2 + i3 

Hence, 

e· - e' d(e' - e ) e' - e _, __ = C 0 + ___ 0 

Rl dt R2 
(6-53) 

Since the operational amplifier involves negative feedback, the voltage at the minus 
terminal and that at the plus terminal become equal. Hence, e' = O. Substituting e' = 0 
into Equation (6-53), we obtain 

!!... = -c deo _ !!2-
Rl dt R2 

Taking the Laplace transform of this last equation, assuming a zero initial condition, we 
have 

which can be written as 

Eo(s) R2 1 
Ej(s) = - Rl R2Cs + 1 (6-54) 

Equation (6-54) is the transfer function for the system, which is a first-order lag system. 

Figure 6-35 First-order lag circuit using an 
operational amplifier. 

e' 
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Next, we shall find the response of the system to a step input. Suppose that the 
input e;( t) is a step function of E volts; that is, 

e;(t) = 0 

=E 
fort < 0 

for t > 0 

where we assume 0 < (R2IR1)E < 10 V. The output eo(t) can be determined from 

R2 1 
Rl R

2
Cs + 1 E;(s) 

R2 1 E 

The inverse Laplace transform of Eo( s) gives 

eo(t) ::: - R~~ [1 - e-II(R2C)] 

The output voltage reaches -(R2IRl)E volts as t increases to infinity. 

Example 6-12 

Consider the operational-amplifier circuit shown in Figure 6-36. Obtain the transfer 
function Eo( s)/ Ej ( s) of the circuit. 

The voltage at point A is 

1 
eA = 2(e; + eo) 

The Laplace-transformed version of this last equation is 

1 
EA(S) = 2[E;(s) + Eo(s)] 

The voltage at point B is 

1 
Cs 1 

En(s) = --1-E;(s) = R
2
Cs + 1 E;(s) 

R2 + Cs 

O--------------~--------------~O 

Figure 6-36 Operational-amplifier circuit. 
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Since the operational amplifier involves negative feedback, the voltage at the minus 
terminal and that at the plus terminal become equal. Thus, 

EA(S) =: EB(S) 

and it follows that 

or 

EXAMPLE PROBLEMS AND SOLUTIONS 

Problem A-6-1 

Obtain the resistance between points A and B of the circuit shown in Figure 6-37. 

Solution This circuit is equivalent to the one shown in Figure 6-38(a). Since 
Rl = ~ = 10 nand R2 = R3 = 20 fi, the voltages at points C and D are equal, and 
there is no current flowing through Rs. Because resistance Rs does not affect the value 
of the total resistance between points A and B, it may be removed from the circuit, as 
shown in Figure 6-38(b}. Then 

and 

1 1 1 1 1 3 
-= + =-+-=-
RAB Rl + 14 R2 + R3 20 40 40 

Figure 6-37 Electrical circuit. 

40 
RAB =: 3" = 13.3 n 

Bo--'---JVvw\l\t--......... ----D 

Rl = R4 = 100, R2 :::: R3 :::: 200 

Rs:::: 1000 



(a) 

(b) 
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Rl 
Ao--oor--Y\I\Ah-~ 

c 

A -----.. 

289 

>---oB 

D 
Figure 6-38 Equivalent circuits to 
the one shown in Figure 6-37. 

ProblemA+2 

Given the circuit of Figure 6-39, calculate currents i lt i2, and ;3' 

Solution The circuit can be redrawn as shown in Figure 6-40. The combined resis­
tance R of the path in which current ;2 flows is 

R = 100 + 1 1 1 + 50 = 158 n 
10 + 40 

The combined resistance Ro as seen from the battery is 

1 1 1 
Ro = 40 + 158 

or 

Ro = 31.92 n 
Consequently, 

. . 12 12 
'I + '2 = - = -- = 0.376 A 

Ro 31.92 

12V 400 400 100 

500 Figure 6-39 Electrical circuit. 
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i2 

it > 
:~ 1000 
.> 

12V 
~ i3 

•• 400.: 400:= 
c~ 

::- ~> 

;2 

500 :: .-
Figure 6-40 Equivalent circuit to the 
one shown in Figure 6-39. 

Noting that 4O;t = 158i2, we obtain 

il = 0.300 A, i2 = 0.076 A 

To determine i3, note that 

Then 

Problem A-6-3 

Obtain the combined resistance between points A and B of the circuit shown in Figure 
6-41, which consists of an infinite number of resistors connected in the form of a ladder. 

Solution We define the combined resistance between points A and BasRa. Now, let us 
separate the first three resistors from the rest. [See Figure 6-42(a).] Since the circuit con~ 
sists of an infinite number of resistors, the removal of the first three resistors does not af­
fect the combined resistance value. Therefore, the combined resistance between points C 
and D is the same as Ro. Then the circuit shown in Figure 6-41 may be redrawn as shown 
in Figure 6-42(b), and Ro, the resistance between points A and B, can be obtained as 

1 RRo 
Ro = 2R + 1 1 = 2R + Ro + R 

-+-
R Ro 

R R R R 

Figure 6-41 Electrical circuit consisting of an infinite number of resistors con­
nected in the form of a ladder. 
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R 
Ao---~NV----~~ 

R 

R 

(a) 

R 

R 

B~--~~----~----~ 
R 

(b) 

Figure 6-42 Equivalent circuits to the one shown in Figure 6-41. 

Rewriting, we get 

Rij - 2RRo - 2R2 = 0 

Solving for Ro, we find that 

Ro = R ± V3R 

Finally, neglecting the negative value for resistance, we obtain 

Ro = R + V3R = 2.732R 

Problem A-+-4 

Find currents i h i2, and i3 for the circuit shown in Figure 6-43. 

Solution Applying Kirchhoff's voltage law and current law to the circuit, we have 

12 - 10i1 - 5i3 = 0 

8 - 15;2 - 5;3 = 0 
;1 + i2 - ;3 = 0 

Ion lsn 

12V 50 8V 

Figure 6-43 Electrical circuit. 

291 
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A 13 = 55 
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Since all ; values are found to be positive, the currents actually flow in the directions 
shown in the diagram. 

Problem A-6-S 

Given the circuit shown in Figure 6-44, obtain a mathematical model. Here, currents il 
and ;2 are cyclic currents. 

Solution Applying Kirchhoffs voltage law gives 

R1i1 + ~ J (il - i2) dt = E 

L ~: + R2i2 + ~ J (i2 - id dt = ° 
These two equations constitute a mathematical model for the circuit. 

L 

E 

Figure 6-44 Electrical circuit. 

Problem A-6-6 

In the circuit of Figure 6-45, assume that, for I < 0, switch S is connected to voltage 
source E, and the current in coil L is in a steady state. At t = 0, S disconnects the volt­
age source and simultaneously short-circuits the coil. What is the current i(t) for t > 01 

Solution For t > 0, the equation for the circuit is 

di . 
L- + Rl = 0 

dt ' 

Figure 6-4S Electrical circuit. 

i(O) = E 
R 
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[Note that there is a nonzero initial current ;(0-) = EIR. Since inductance L stores 
energy, the current in the coil cannot be changed instantaneously. Hence, i(O+) = 
i(O-) = i(O) = EIR.] 

Taking the Laplace transform of the system equation, we obtain 

or 

Thus, 

L[s/(s) - ;(0)] + R/(s) = 0 

(Ls + R)/(s) = Li(O) = LE 
R 

E L 
/(s) = R Ls + R 

The inverse Laplace transform of this last equation gives 

i(t) = E e-(RIL)r 
R 

Problem A-6-7 

Consider the circuit shown in Figure 6-46, and assume that capacitor C is initially 
charged to qo. At t ::: 0, switch S is disconnected from the battery and simultaneously 
connected to inductor L. The capacitance has a value of 50 /LF. Calculate the value of 
the inductance L that will make the oscillation occur at a frequency of 200 Hz. 

Solution The equation for the circuit for t > 0 is 

L di + .!.!i dt = 0 
dt C 

or, by substituting; = dqldt into this last equation, 

d2q 1 
L dt2 + Cq = 0 

where q(O) = qo and q(O) = O. The frequency of oscillation is 

Wn=Hc 
Since 

200 Hz = 200 cps = 200 x 6.28 radls = 1256 radls 

L 

Figure 6-46 Electrical circuit. 
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we obtain 

lIJn = 1256 = .f£ == ~ L X 501 X 10-6 

Thus, 

1 
L = == 0.0127H 

12562 X 50 X 10-6 

Problem A-6-8 

E 

In Figure 6-47(a), suppose that switch S is open for t < 0 and that the system is in a 
steady state. Switch S is closed at t = O. Fmd the current i(t) for t ~ O. 

Solution Notice that, for t < 0, the circuit resistance is Rl + R2• There is a nonzero 
initial current 

i(O-) = E 
Rl + R2 

For t ~ 0, the circuit resistance becomes R I' Because of the presence of inductance L, 
there is no instantaneous change in the current in the circuit when switch S is closed. 
Hence, 

i(O+) == i(O-) = E = i(O) 
RI + R2 

Therefore, the equation for the circuit for t ~ 0 is 

where 

L
di 

R' E dt + I' = 

i(O) = E 
Rl + R2 

Taking the Laplace transforms of both sides of Equation (6-55), we obtain 

L[sI(s) - i(O)] + RII(s) = E 
s 

i(t) 

E 

(6-55) 

L Ri ----- - - -:=-.:;--=-.-----

s 

L 
Ri o 

(a) (b) 

Figure 6-47 (a) Electrical circuit; (b) plot of i(t) versus t of the circuit when switch S is closed at t = O. 
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Substituting the initial condition i(O) into this last equation and simplifying, we get 

E LE 
(Ls + Rl)/(s) = - + R R 

s 1 + 2 

Hence, 

I(s) = E + E L 
s(Ls + Rt ) Rl + R2 Ls + Rl 

E (1 L) E L 
= Rl ; - Ls + Rl + Rl + R2 Ls + Rl 

E (1 R2 L) 
= Rl ; - Rl + R2 Ls + Rl 

Taking the inverse Laplace transform of this equation, we obtain 

;(t) = .E... [1 _ R2 e-(R1/L)I] 
Rl Rl + R2 

A typical plot of ;(t) versus t is shown in Figure 6-47(b). 

Problem A-6-9 

In the electrical circuit shown in Figure 6-48, there is an initial charge qo on the capaci­
tor just before switch S is closed at t = O. Find the current i(t). 

Solution The equation for the circuit when switch S is closed is 

Ri + ~jidt = E 

Taking the Laplace transform of this last equation yields 

l(s) + ji(t) dtl 
1 1=0 E 

RI(s) + - =-C s s 

Since 

we obtain 

1 I(s) + qo E 
RI(s) + - =-

C s s 

Figure 6-48 Electrical circuit. 
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or 

RCsl{s) + l{s) + qo = CE 

Solving for l(s), we have 

CE - qo (E qo ) 1 
1 (s) = RCs + 1 = Ii - RC 1 

s + RC 

The inverse Laplace transform of this last equation gives 

;(I) = (E _ ~)e-rIRC 
R RC 

Problem A-6-10 

Obtain the impedances of the circuits shown in Figures 6-49(a) and (b). 

Solution Consider the circuit shown in Figure 6-49(a). From 

E(s) = Eds) + ER(S) + Ec(s) = ( Ls + R + ~s)I(S) 

where l(s) is the Laplace transform of the current ;(t) in the circuit, the complex imped­
ance is 

E(s) 1 
Z(s) = -- = Ls + R + -

l(s) Cs 

For the circuit shown in Figure 6-49(b) , 

Consequently, 

L 

[.I. 

E(s) E(s) E(s) ( 1 1 ) 
l(s) = - + - + -- = E(s) - + - + Cs 

Ls R l/(Cs) Ls R 

R 
WW 

.I. eR 

(a) 

E(s) 1 
Z(s) = - = ---­

l(s) 1 1 C' -+-+ s 
Ls R 

C 

r IJ e 

ec 

L R 

(b) 

Figure 6-49 Electrical circuits. 

C 
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Problem A-6-11 

Find the transfer function Eo(s)/E;(s) of the electrical circuit shown in Figure 6-50. 
Obtain the voltage eo(t) when the input voltage ej(t) is a step change of voltage E; 
occurring at t = O. Assume that ej(O-) = O. Assume also that the initial charges in the 
capacitors are zero. [Thus, eo(O-) = 0.] 

Solution With the complex-impedance method, the transfer function Eo(s)IE;(s) can 
be obtained as 

1 

Next, we determine eo(t). For the input ej(t) = E; ·l(t), we have 

R2C1S E; 
Eo(s) = R

2
(C

1 
+ C

2
)s + 1 -; 

R2C1Ei 

R2(C1 + C2)S + 1 

Inverse Laplace transforming Eo( s), we get 

C1£. e (t) = 'e-t/[R2(Ct +C2)] 
o C1 + C2 

from which it follows that eo(O+) = C1E;I(C1 + C2)· 

Cl 

o I J--_--..--Cl 

Figure 6-50 Electrical circuit. 

Problem A-6-U 
Derive the transfer function Eo(s)/E;(s) of the electrical circuit shown in Figure 6-51. 
The input voltage is a pulse signal given by 

ej(t) = 10 V 
=0 

0:::t:::5 
elsewhere 

Obtain the output eo(t). Assume that the initial charges in the capacitors C1 and C2 

are zero. Assume also that C2 = 1.5 C1 and RICI = 1 s. 
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Figure 6-51 Electrical circuit. 
o o 

Solution By the use of the complex-impedance method, the transfer function 
Eo( S )1 Ei ( s) can be obtained as 

1 

For the given input ei(t), we have 

10 
E;(s) = -;(1 - e-5s ) 

Thus, the response Eo( s) can be given by 

Eo(s) = S + 1 10 (1 _ e-5s) 
2.5 S + 1 s 

= (10 _ 15 ) (1 _ e-5s) 
S 2.5 s + 1 

The inverse Laplace transform of Eo( s) gives 

eo(t) = (10 - 6 e-O•41) 

- [10 - 6 e-o·4(1-5)] l(t - 5) 

Figure 6-52 shows a possible response curve eo(t) versus t. 

s + 1 
2.5 s + 1 

Problem A-6-13 

Obtain the transfer functions Eo( s)1 Ei( s) of the bridged T networks shown in 
Figures 6-53(a) and (b). 

Solution The bridged T networks shown can both be represented by the network of 
Figure 6-54(a), which uses complex impedances. This network may be modified to that 
shown in Figure 6-54(b), in which 

Hence, 
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10 ::...._-----------

4 

O~----~----~~------------------~ ,5 
~ 
" " 

-10 --------~~~---------

Figure 6-52 Response curve eo{t) versus t. 

R2 

0 I II : 
c 

ej Rl 

(b) 

Figure 6-53 Bridged T networks. 

,:1 
c 

eo 
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(a) 

Ej(s) 

Figure 6-54 (a) Bridged Tnetwork 
in terms of complex impedances; (b) 
equivalent network. (b) 

Thus, the transfer function of the network shown in Figure 6-54(a) is 

Eo(s) Z3Z1 + Z2(ZI + Z3 + Z4) 
- == (6-56) 
E;{s) ~(ZI + Z3 + Z4) + Z1Z3 + Z1Z4 

For the bridged T network shown in Figure 6-53 ( a), we substitute 

1 1 
ZI = R, ~ = -, Z3 = R, Z4 = -

CIS C2s 

into Equation (6-56). Then we obtain the transfer function 

R2 + _1_ (R + R + ~) 
Eo(s) CIS C2s 

Ej{s) == _1_(R + R + _1_) + R2 + R_1_ 
CIS C2s C2s 

RCI RC2s2 + 2RC2s + 1 

RC}RC2S
2 + (2RCz + RCt)s + 1 

Similarly, for the bridged T network shown in Figure 6-S3(b), we substitute 

1 1 
Z} = Cs' Z2 = Rh Z3 = Cs' Z4 = R2 



Example Problems and Solutions 301 

into Equation (6-56). Then we obtain the transfer function 

11 (1 1 ) 
Eo(s) C;C; + RI C; + Cs + R2 

E;( s) = (1 1 ) 1 1 1 
Rt Cs + Cs + R2 + Cs Cs + R2 Cs 

RICR2CS2 + 2RICs + 1 

Problem A-6-14 

Consider the electrical circuit shown in Figure 6-55. Assume that voltage ej is the input 
and voltage eo is the output of the circuit. Derive a state equation and an output equation. 

Solution The transfer function for the system is 

Hence, we have 

RIC2S + (RtCls + 1)(R2C2S + 1) 

RtCIR2C2S2 + (RICI + R2C2)S + 1 

[RICtR2C2S2 + (RICI + R2C2 + RIC2)S + 1]Eis) 

= [RICIR2C2S2 + (RICI + R2C2)S + 1]E;(s) 

The inverse Laplace transform of this last equation gives 

RtCIR2Cieo + (R1CI + R2C2 + RI C2)eo + eo 

= R1C1R2Ciej + (R1CI + R2C2)ej + ej 

Gir 0-0 _______ L-..--oo Figure 6-55 Electrical circuit. 

(6-57) 
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By dividing each term of the preceding equation by RICI R2C2 and defining eo = yand 
ej = u, we obtain 

" (1 1 1), 1 y+ --+--+-- y+ Y 
RICI R2C2 R2C1 R1CIR2C2 

= U + (_1_ + _l_)u + 1 U 
RICI R2C2 R1C1R2C2 

(6-58) 

To derive a state equation and an output equation based on Method 1 given in 
Section 5~, we first compare Equation (6-58) with the following standard second­
order equation: 

y + alY + a2Y = bou + blu + b2u 

We then identify aJ, a2, bo, bJ, and ~ as follows: 

111 
a1 = -- + -- + --

RICI R2C2 R2C1 

1 
a2==--­

R ICI R2C2 

bo = 1 

1 1 
bl =--+--

RICI R2C2 

~ == 1 
R1C1R2C2 

From Equations (5-23), (5-24), and (5-29), we have 

130 = bo = 1 

If we define state variables x I and X2 as 

Xl = Y - f30u 

X2 = Xl - f3Iu 

then, from Equations (5-30) and (5-31), the state-space representation for the system 
can be given by 

['] [0 1] ~~ = 1 __ 1 ___ 1 ___ 1_ [;1] 
R1C1R2C2 RICI R2CZ R2C1 2 
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Problem A-6-lS 

Show that the mechanical and electrical systems illustrated in Figure 6-56 are analo­
gous. Assume that the displacement x in the mechanical system is measured from the 
equilibrium position and that mass m is released from the initial displacement 
x(O) = Xo with zero initial velocity, or x(O) ;:: O. Assume also that in the electrical sys­
tem the capacitor has the initial charge q(O) = qo and that the switch is closed at t = O. 
Note that q(O) = i(O) = O. Obtain x(t) and q(t). 

Solution The equation of motion for the mechanical system is 

For the electrical system, 

mx + kx = 0 

L
di 

1/'d 0 -+- I t= 
dt C 

or, by substituting i = dqldt = q into this last equation, 

.. 1 0 Lq + -q = 
C 

(6-59) 

(6-60) 

Since Equations (6-59) and (6-60) are of the same form, the two systems are analogous 
(i.e., they satisfy the force-voltage analogy). 

The solution of Equation (6-59) with the initial condition x(O) = Xo, x(O) = 0 is 
a simple harmonic motion given by 

x(t) = xocos~t 

Similarly, the solution of Equation (6--60) with the initial condition q(O) = qo, q(O) = 0 is 

q(t) = qo cos ~t 

L 

c 
x 

Figure 6-56 Analogous mechanical and electrical systems. 
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Problem A-6-16 

Obtain mathematical models for the systems shown in Figures 6-57(a) and (b), and 
show that they are analogous systems. In the mechanical system, displacements Xl and 
X2 are measured from their respective equilibrium positions. 

Solution For the mechanical system shown in Figure 6-57(a), the equations of motion 
are 

mlXI + btxI + klXI + k 2(XI - X2) = 0 
bzX2 + k2(X2 - Xl) = 0 

These two equations constitute a mathematical model for the mechanical system. 
For the electrical system shown in Figure 6-S7(b), the loop-voltage equations are 

LI ~: + ~2f(i1 - i2) dt + R1il + ~lfildt = 0 

R2i2 + ~2 f (i2 - id dt = 0 

Let us write il = III and i2 = lI2' Then, in terms of ql and q2, the preceding two equa­
tions can be written 

L '· R' 1 1( lq) + lql + C
I 
ql + C

2 
ql - q2) = 0 

R2q2 + ~2 (q2 - ql) = 0 

These two equations constitute a mathematical model for the electrical system, 
Comparing the two mathematical models, we see that the two systems are analo­

gous. (Le., they satisfy the force-voltage analogy). 

(a) (b) 

Figure 6-57 Analogous mechanical and electrical systems. 
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Problem A+17 

Using the force-voltage analogy, obtain an electrical analog of the mechanical system 
shown in Figure 6-58. Assume that the displacements Xl and X2 are measured from 
their respective equilibrium positions. 

Solution The equations of motion for the mechanical system are 

mtXl + blXl + klXl + ~(Xl - X2) + k2(Xl - X2) = 0 

m2x2 + ~(X2 - Xl) + k2(X2 - Xl) = 0 

With the use of the force-voltage analogy, the equations for an analogous electrical sys­
tem may be written 

Llql + Rlql + ~I ql + R2(ql - q2) + ~2 (ql - q2) = 0 

Lzq2 + R2(q2 - qI) + ~2 (q2 - qt) = 0 

Substituting qI = il and q2 = i2 into the last two equations gives 

LI ~: + Rli l + ~1 IiI dt + R2(il - i2) + ~21 (il - i2) dt = 0 

Lz ~: + R2(i2 - i l ) + ~21 (i2 - i l ) dt = 0 

(6-61) 

(6-62) 

These two equations are loop-voltage equations. From Equation (6-61), we obtain the 
diagram shown in Figure 6-59(a). Similarly, from Equation (6-62), we obtain the one 
given in Figure 6-59(b). Combining these two diagrams produces the desired analo­
gous electrical system (Figure 6-60). 

Flgure ~S8 Mechanical system. 
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(a) (b) 

Figure 6-59 (a) Electrical circuit corresponding to Equation (6-61); (b) elec­
trical circuit corresponding to Equation (6-62). 

Figure 6-60 Electrical system analogous to 
the mechanical system shown in Figure 6-58 
(force-voltage analogy). 

Problem A-6-18 

Chap. 6 

Figure 6-61 shows an inertia load driven by a de servomotor by means of pulleys and a 
belt. Obtain the equivalent moment of intertia, Jeq, of the system with respect to the 
motor shaft axis. Assume that there is no slippage between the belt and the pulleys. 

Pulley 2 Pulley 1 

Load DC servomotor 

Figure 6-61 Inertia load driven by a de servomotor by means of pulleys and belt. 
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Assume also that the diameters of pulleys 1 and 2 are d1 and d2, respectively. The 
moment of inertia of the rotor of the motor is J, and that of the load element is J L. The 
moments of inertia of pulleys 1 and 2 are J1 and J2, respectively. Neglect the moment of 
inertia of the belt. 

Solution The given system uses a belt and two pulleys as a drive device. The system 
acts similarly to a gear train system. Since we assume no slippage between the belt and 
pulleys, the work done by the belt and pulley 1(TI81) is equal to that done by the belt 
and pulley 2 (T282), or 

(6-63) 

where T} is the load torque on the motor shaft, 81 is the angular displacement of pulley 
1, T2 is the torque transmitted to the load shaft, and 82 is the angular displacement of 
pulley 2. Note that 

For the servomotor system, 

(11 + Jr)61 + Tl = Tm 

where Tm is the torque developed by the motor. For the load shaft. 

(it + J2)62 = T2 

From Equations (6-63) and (6--64), we have 

81 d2 
T2 =T1-=T1-

82 d1 

Then Equation (6-66) becomes 

.. d2 
(JL + 12)82 = Tl d

t 

From Equations (6-65) and (6-67), we obtain 

.. d1 .. 
(11 + Jr)(lt + d

2 
(it + J2)82 = Tm 

Since 82 = (d1Id2)flt, this last equation can be written as 

.. (d1)2 .. 
(Jl + J,)81 + d

2 
(JL + J2)81 = Tm 

or 

[(J, + J,) + (h + J2)(~:rlii, = Tm 

(6-64) 

(6-65) 

(6-66) 

(6-67) 

The equivalent moment of inertia of the system with respect to the motor shaft axis is 
thus given by 



308 Electrical Systems and Electromechanical Systems Chap.S 

Problem A-6-19 
Obtain the transfer function Eo(s)/Ej(s) of the operational-amplifier circuit shown in 

Figure 6-62. 

Solution Define the voltage at point A as eA. Then 

EA(S) R} R}Cs 
Ej(s) = 1 R}Cs + 1 

Cs + R} 

Define the voltage at point B as eB. Then 

R3 

R1Cs R3 
EA(S) = R1Cs + 1 E;(s) = EB(S) = R2 + R3 Eo(s) 

from which we obtain 

Eo(s) R2 + R3 R1Cs 
E;(s) = R3 R1Cs + 1 

c 
o 11----,----4 

B 

Figure &-62 Operational-amplifier circuit. 

Problem A-6-20 

Consider the operational-amplifier circuit shown in Figure 6-63. Obtain the transfer 
function of this circuit by the complex-impedance approach. 

Solution For the circuit shown, we have 

Ej(s) - E'(s) E'(s) - Eo(s) 

Z} Z2 

Since the operational amplifier involves negative feedback, the differential input volt­
age becomes zero. Hence, E'(s) = O. Thus, 

Eis) ~(s) 

Ej(s) = - Z}(s) 



E;(s) 

Example Problems and Solutions 309 

1(s) 

Flgure 6-63 Operational-amplifier circuit. 

Problem A-'-21 

Obtain the transfer function Eo( s)/ E;( s) of the operational-amplifier circuit shown in 
Figure 6-64 by the complex-impedance approach. 

Solution The complex impedances for this circuit are 

and 
1 

Z2(S) = 1 
Cs+­

R2 

From Problem A-'-20, the transfer function of the system is 

R2Cs + 1 

Notice that the circuit considered here is the same as that discussed in Example 6-11. 
Accordingly, the transfer function Eo(s)/E;(s) obtained here is, of course, the same as 
the one obtained in that example. 

----------
c I 

Flgure 6-64 Operational-amplifier circuit. 
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Problem A-6-22 

Obtain the transfer function Eo(s)/E;(s) of the operational-amplifier circuit shown in 
Figure 6-65. 

Solution We shall first obtain currents i1> i2, i3, i4, and is. Then we shall use the node 
equation at nodes A and B. The currents are 

(6-68) 

At node B, we have eB = 0, and no current flows into the amplifier. Thus, we get 
i4 = is, or 

eA -deo 
R2 = C2dt 

Rewriting Equation (6-68), we have 

de A ( 1 1 1 ) ej eo 
C1- + - + - + - eA = - + -

dt Rl R2 R3 Rl R3 

From Equation (6-69), we get 

Figure 6-65 Operational. 
amplifier circuit. 

ej 

i l R1 
iz 

A i4 R2 

C1 

(6-69) 

(6-70) 

(6-71) 



ej 
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Laplace transforming this last equation, assuming zero initial conditions, yields 

2 ( 1 1 1 ) 1 E;( S ) 
-C1C2R2s Eo(s) + RI + R2 + R3 (-R2C2)sEo(s) - R

3
Eo(s) = li: 

from which we get the transfer function Eo(s)/E;(s): 

Eo(s) 1 

E;(s) = - RIC1R2C2S2 + [R2C2 + RIC2 + (R 1/R3)R2C2]S + (RI/R3) 

Problem A-6-23 

Obtain the transfer function Eo(s)/E;(s) of the op-amp circuit shown in Figure 6-66 in 
terms of the complex impedances Z .. Z2, Z3, and Z4. Using the equation derived, 
obtain the transfer function Eo( s)/ E;( s) of the op-amp circuit shown in Figure 6-36. 

Solution From Figure 6-66, we find that 

E;(s) - EA(S) EA(S) - Eo(s) 

Z3 Z4 

or 

E;(s) - (1 + ~:)EA(S) = - ~: Eo(s) 

Since the system involves negative feedback, we have EA(S) = E8(S), or 

ZI 
EA(S) = E8(S) = Z Z E;(s) 

1 + 2 

By substituting Equation (6-73) into Equation (6-72), we obtain 

[
Z4Z1 + Z4Z2 - Z4Z1 - Z3Z1]E;(S) = _ Z3 Eo(s) 

Z4(ZI + Z2) Z4 

from which we get the transfer function 

Eo(s) Z4Z2 - Z3Z1 
E;(s) = Z3(ZI + Z2) 

(6-72) 

(6-73) 

(6-74) 

Figure 6-66 Operational-amplifier circuit. 
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To find the transfer function Eo( S )/ Ei( s) of the circuit shown in Figure 6-36, we substitute 

1 
Zl = Cs' Z2 = R2, Z3 = Rh Z4 = Rl 

into Equation (6-74). The result is 

1 
RIR2 - Rrc.; 

R{~s + R2) 

which is, as a matter of course, the same as that obtained in Example 6-12. 

PROBLEMS 

Problem 8-6-1 
Three resistors Rh R2, and R3 are connected in a triangular shape (Figure 6-67). 
Obtain the resistance between points A and B. 

Flgure 6-(,7 Three resistors connected in 
a triangular shape. 

Problem 8-6-2 

A 0--------_ 

B~------~~--~~~----~ 

Calculate the resistance between points A and B for the circuit shown in Figure 6-68. 

100 
A O--.....:---~I\NW'v---~--..... C 

B~-~--~~~---~-.D 
Flgure 6-68 Electrical circuit. 100 

Problem B-6-3 

In the circuit of Figure 6-69, assume that a voltage E is applied between points A and B 
and that the current i is io when switch S is open. When switch S is closed, i becomes 
equal to 2io• Fmd the value of the resistance R. 
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lOon 

t-----oB 
60n R 

I---------------E--------------~ 
Figure 6-69 Electrical circuit. 

Problem B-6-4 

Obtain a mathematical model of the circuit shown in Figure 6-70. 

L 

e(t) c 

Figure 6-70 Electrical circuit. 

ProblemB+5 

Consider the circuit shown in Figure 6-71. Assume that switch S is open for t < 0 and 
that capacitor C is initially charged so that the initial voltage q(O)/C = eo appears on 
the capacitor. Calculate cyclic currents i1 and i2 when switch S is closed at t = O. 

s 
........ 

Figure 6-71 Electrical circuit. 

Problem~ 

The circuit shown in Figure 6-72 is in a steady state with switch S closed. Switch Sis 
then opened at t = O. Obtain i(t}. 
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Figure ~ 72 Electrical circuit. 

Problem 8-6-7 

Obtain the transfer function Eo(s)/Ej(s) of the circuit shown in Figure 6-73 . 

. . 
1'1'1'1' 

Figure ~73 Electrical circuit. -

Problem B-6-8 

Obtain the transfer function Eo(s)/Ej(s) of the system shown in Figure 6-74. 

Figure ~ 74 Electrical circuit. 

Problem 8-6-9 

Obtain the transfer function Eo(s)/Ej(s) of the circuit shown in Figure 6-75. 

R 

e,{t) L c 

Figure ~75 Electrical circuit. 
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Problem 11-6-10 

Obtain the transfer function Eo(s)/Ej(s) of the electrical circuit shown in Figure 6-76. 

Rl R2 

ej ) ) C eo 

Figure 6-76 Electrical circuit. 

Problem 11-6-11 

Determine the transfer function Eo(s)/Ej(s) of the circuit shown in Figure 6-77. Use 
the complex-impedance method. 

Zl .---------, 

I ' 
, c I e, L- - - - - - - - -' 

Figure 6-77 Electrical circuit. 

Problem 8-6-12 

Obtain the transfer function Eo(s)/Ej(s) of the circuit shown in Figure 6-78. Use the 
complex-impedance method. 

Zl r-----' 
O-~'-J ~~'------~-------Q 

I L I 

Figure 6-78 Electrical circuit. 
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Problem 8-6-13 

Obtain a state-space representation for the electrical circuit shown in Figure 6-79. 
Assume that voltage ei is the input and voltage eo is the output of the system. 

Figure 6-79 Electrical circuit. 

Problem 8-6-14 

In the circuit shown in Figure 6--80, define il = ql and i2 = q2' where ql and q2 are 
charges in capacitors Cl and C2, respectively. Write equations for the circuit. Then obtain 
a state equation for the system by choosing state variables Xh X2, and X3 as follows: 

Figure 6-80 Electrical circuit. 

Problem 8-6-15 

Xl = ql 

X2 = ql 
X3 = q2 

Show that the mechanical system illustrated in Figure 6-81(a) is analogous to the elec­
trical system depicted in Figure 6-81(b). 

Problem 8-6-16 

Derive the transfer function of the electrical circuit shown in Figure 6-82. Draw a 
schematic diagram of an analogous mechanical system. 

Problem 8-6-17 

Obtain a mechanical system analogous to the electrical system shown in Figure 6-83. 



(a) 

Problems 317 

C 
Xj 0 I 

ej J R eo 

Xo 

(b) Figure 6-81 (a) Mechanical system; 
(b) analogous electrical system. 

Rl Cl 

<>-----WIv-----
R2 

ei eo 

0 

C2T 
0 Flgure 6-82 Electrical circuit. 

Flgure 6-83 Electrical system. 

Problem B-6-18 

Determine an electrical system analogous to the mechanical system shown in Figure 6-84, 
where p(t) is the force input to the system. The displacements Xl and X2 are measured from 
their respective equilibrium positions. 

Problem B-6-19 

Consider the dc servomotor shown in Figure 6-85. Assume that the input of the system 
is the applied armature voltage ea and the output is the load shaft position 82' Assume 
also the following numerical values for the constants: 

Ra = armature winding resistance = 0.2 n 
La = armature winding inductance = negligible 

Kb = back-emf constant = 5.5 X 10-2 V-s/rad 
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K = motor-torque constant = 6 x lO-slbrftlA 
Jr = moment of inertia of the rotor of the motor = 1 x 10-s lbr ft-s2 

br = viscous-friction coefficient of the rotor of the motor = negligible 

h = moment of inertia of the load = 4.4 X 10-3 Ibr ft-s2 

bL = viscous-friction coefficient of the load = 4 x 10-2 lbr ftlradls 

n = gear ratio = Nl/N2 = 0.1 

Obtain the transfer function €h(s)/Ea(s). 

Figure 6-84 Mechanical system. 

Figure 6-8S DC servomotor. 
if = constant 

Problem 8-6-20 

Obtain the transfer function Eo( s)/ E;( s) of the operational-amplifier circuit shown in 
Figure 6-86. 

Problem 8-6-21 

Obtain the transfer function Eo( s)/ E;( s) of the operational-amplifier circuit shown in 
Figure 6-87. 
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R 

Figure 6-86 Operational-amplifier circuit. 

R 

Figure 6-87 Operational-amplifier circuit. 

Problem 8-6-22 

Obtain the transfer function Eo( s)1 E;( s) of the operational-amplifier circuit shown in 
Figure 6-88. 

Problem 8-6-23 

Figure 6-88 Operational-amplifier 
circuit. 

Obtain a state-space representation of the operational-amplifier circuit shown in 
Figure 6-89. 

Problem 8-6-24 

Obtain the transfer function Eo( s)1 E;( s) of the operational-amplifier circuit shown in 
Figure 6-90. 

Problem 8-6-25 

Obtain the transfer function Eo(s)IE;(s) of the operational-amplifier circuit shown in 
Figure 6-91. 
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c 

Figure 6-89 Operational-amplifier circuit. 

R 

C

T 
o----------------------------=±:~------------------~o 

Figure 6-90 Operational-amplifier circuit. 

Figure 6-91 Operational-amplifier circuit. 

Problem B-6-26 

Obtain the transfer function Eo(s)/E;(s) of the operational-amplifier circuit shown in I 
Figure 6-92. 

Problem B-6-27 

Obtain the transfer function Eo( s)/ E;( s) of the operational-amplifier circuit shown in 
Figure 6-93. 

Problem 8-6-28 

Obtain the transfer function Eo( s)/ E;( s) of the operational-amplifier circuit shown in 
Figure 6-94. 

r1 
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C 

Flgure 6-92 Operational-amplifier circuit. 

C1-::-o~--------------------+-----------------------o 

ej 

Flgure 6-93 Operational-amplifier circuit. 

ej 

FIgure 6-94 Operational-amplifier circuit. 

Problem 8-6-29 

Obtain the transfer function Eo(s)/Ej(s) of the operational-amplifier circuit shown in 
Figure 6-95. 

Problem 8-6-30 

Using the impedance approach, obtain the transfer function Eo(s)/Ej(s) of the 
operational-amplifier circuit shown in Figure 6-96. 
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Figure 6-95 Operational-amplifier 
circuit. 

Figure 6-96 Operational-amplifier circuit. 

Problem 8-6-31 

ej 

Chap. 6 

Obtain the output voltage eo of the operational-amplifier circuit shown in Figure 6-97 
in terms of the input voltages el and e2' 

Figure ~97 Operational-amplifier circuit. 



Fluid Systems and 
Thermal Systems 

7-1 INTRODUCTION 

As the most versatile medium for transmitting signals and power, fluids-liquids or 
gases-have wide usage in industry. Liquids and gases can be distinguished from 
each other by their relative incompressibilities and from the fact that a liquid may 
have a free surface whereas a gas expands to fill its vessel. In the engineering field, 
the term hydraulic describes fluid systems that use liquids and pneumatic applies to 
those using air or gases. 

Mathematical models of fluid systems are generally nonlinear. However, if we 
assume that the operation of a nonlinear system is near a normal operating point, 
then the system can be linearized near the operating point, and the mathematical 
model can be made linear. 

Mathematical models of fluid systems obtained in this chapter are linearized 
models near normal operating points. 

Thermal systems generally have distributed parameters. Mathematical models 
of thermal systems normally involve partial differential equations. In this chapter, 
however, we assume that thermal systems have lumped parameters, so that approxi­
mate mathematical models may be obtained in terms of ordinary differential equa­
tions or transfer functions. Such simplified models provide fairly good approximations 
to actual systems near their normal operating points. 

323 
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Since fluid systems inevitably involve pressure signals, we shall briefly review 
units of pressure, gage pressure, and absolute pressure. 

Units of pressure. Pressure is defined as force per unit area. The units of 
pressure include N/m2, kgt'cm2, Ibt'in.2, and so on. In the SI system, the unit of pres­
sure is N/m2• The name pascal (abbreviated Pa) has been given to this unit, so 

1 Pa = 1 N/m2 

Kilopascals (103 Pa = kPa) and megapascals (106 Pa = MPa) may be used in 
expressing hydraulic pressure. Note that 

1Ibt'in.2 = 6895 Pa 

1 kgt'cm2 = 14.22Ibt'in.2 = 0.9807 X lOS N/m2 = 0.09807 MPa 

Gage pressure and absolute pressure. The standard barometer reading 
at sea level is 760 mm of mercury at O°C (29.92 in. of mercury at 32°F). Gage pres­
sure refers to the pressure that is measured with respect to atmospheric pressure. It 
is the pressure indicated by a gage above atmospheric pressure. Absolute pressure is 
the sum of the gage and barometer pressures. Note that, in engineering measure­
ment, pressure is expressed in gage pressure. In theoretical calculations, however, 
absolute pressure must be used. Note also that 

760 mm Hg = 1.0332 kgt'cm2 = 1.0133 X 105 N/m2 = 14.7 Ibt'in.2 

o N/m2 gage = 1.0133 X 105 N/m2 abs 

o kgt'cm2 gage = 1.0332 kglcm2 abs 

o Ibt'in.2 gage = 0 psig = 14.7Ibt'in.2 abs = 14.7 psia 

Outline of the chapter. Section 7-1 has presented introductory material for 
the chapter. Section 7-2 discusses liquid-level systems and obtains their mathemati­
cal models. Section 7-3 treats pneumatic systems and derives·a mathematical model 
for a pressure system. Section 7-4 presents a useful linearization method: Lin­
earized models are obtained for nonlinear systems near their respective operating 
points. Section 7-5 deals with hydraulic systems and derives mathematical models of 
such systems. Finally, Section 7-6 discusses the mathematical modeling of thermal 
systems. 

7-2 MATHEMATICAL MODELING OF LIQUID-LEVEL SYSTEMS 

Industrial processes often involve systems consisting of liquid-filled tanks connected 
by pipes having orifices, valves, or other flow-restricting devices. Often, it is important 
to know the dynamic behavior of such systems. The dynamic behavior can be pre­
dicted once mathematical models of the systems are known. 

In this section, we first review the Reynolds number, laminar flow, and turbu­
lent flow. We then derive mathematical models of liquid-level systems. We shall see 
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that, by introducing the concept of resistance and capacitance, it is possible to 
describe the dynamic characteristics of such systems in simple forms. 

Reynolds number. The forces that affect fluid flow are due to gravity, bouyan­
cy, fluid inertia, viscosity, surface tension, and similar factors. In many flow situations, 
the forces resulting from fluid inertia and viscosity are most significant. In fact, fluid 
flows in many important situations are dominated by either inertia or viscosity of the 
fluid. The dimensionless ratio of inertia force to viscous force is called the Reynolds 
number. Thus, a large Reynolds number indicates the dominance of inertia force and a 
small number the dominance of viscosity. The Reynolds number R is given by 

R = pvD 
f.L 

where p is the mass density of the fluid, f.L is the dynamic viscosity of the fluid, v is 
the average velocity of flow, and D is a characteristic length. For flow in pipes, the 
characteristic length is the inside pipe diameter. Since the average velocity v for 
flow in a pipe is 

Q 4Q 
v=-=--

A 11'D2 

where Q is the volumetric flow rate, A is the area of the pipe and D is the inside 
diameter of the pipe, the Reynolds number for flow in pipes can be given by 

R = pvD = 4pQ 
f.L 11'f.LD 

Laminar flow and turbulent flow. Flow dominated by viscosity forces is 
called laminar flow and is characterized by a smooth, parallel-line motion of the 
fluid. When inertia forces dominate, the flow is called turbulent flow and is charac­
terized by an irregular and eddylike motion of the fluid. For a Reynolds number 
below 2000 (R < 2000), the flow is always laminar. For a Reynolds number above 
4000 (R > 4000), the flow is usually turbulent, except in special cases. 

In capillary tubes, flow is laminar. If velocities are kept very low or viscosities 
are very high, flow in pipes of relatively large diameter may also result in laminar 
flow. In general, flow in a pipe is laminar if the cross section of the passage is com­
paratively small or the pipe length is relatively long. Otherwise, turbulent flow 
results. (Note that laminar flow is temperature sensitive, for it depends on viscosity.) 

For laminar flow, the velocity profile in a pipe becomes parabolic, as shown in 
Figure 7-1(a). Figure 7-1(b) shows a velocity profile in a pipe for turbulent flow. 

Industrial processes often involve the flow of liquids through connecting pipes 
and tanks. In hydraulic control systems, there are many cases of flow through small 
passages, such as flow between spool and bore and between piston and cylinder. The 
properties of such flow through small passages depend on the Reynolds number of 
flow involved in each situation. 

Resistance and capacitance of liquid-level systems. Consider the flow 
through a short pipe with a valve connecting two tanks, as shown in Figure 7-2. The 
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Figure 7-1 (a) Velocity profile for laminar flow; 
(b) velocity profile for turbulent flow. 

Figure 7-2 1\vo tanks connected by a short 
pipe with a valve. 

'-.!) 

/;) 

...!) 

~ 

~ 
Laminar flow in pipe 

(a) 

~ ~ 
(..!) ..!) 

~ '? ~ 

Turbulent flow in pipe 

(b) 

-Q 
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1 

resistance R for liquid flow in such a pipe or restriction is defined as the change in 
the level difference (the difference of the liquid levels of the two tanks) necessary to 
cause a unit change in flow rate; that is, 

change in level difference m 
R= -

change in flow rate m3/s 

Since the relationship between the flow rate and the level difference differs for lam­
inar flow and turbulent flow, we shall consider both cases in what follows. 

Consider the liquid-level system shown in Figure 7-3(a). In this system, the liq­
uid spouts through the load valve in the side of the tank. If the flow through the 
valve is laminar, the relationship between the steady-state flow rate and the steady­
state head at the level of the restriction is given by 

Q= K/H 

where 

Q = steady-state liquid flow rate, m3/s 

K/ = constant, m2/s 

H = steady-state head, m 

For laminar flow, the resistance RJ is 

dH 1 H 
R/=-=-=-

dQ KJ Q 

The laminar-flow resistance is constant and is analogous to the electrical resistance. 
(The laminar-flow resistance of the flow in a capillary tube is given by the 
Hagen-Poiseuille formula; see Problem A-7-1.) 
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Figure 7-3 (a) Liquid-level system; (b) curve of head versus flow rate. 
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Flow rate 

Slope = 2!! :;:: .b.. 
Q q 

(b) 

If the flow through the restriction is turbulent, the steady-state flow rate is 
given by 

Q = KtYH 

where 

Q = steady-state liquid flow rate, m3/s 

K t = constant, m2.5/s 

H = steady-state head, m 

The resistance Rt for turbulent flow is obtained from 

dH 
Rt = dQ 

From Equation (7-1), we obtain 

Consequently, we have 

Thus, 

dQ=~dH 
2YH 

dH 2YH 2YHYH 2H 
-=--= =-
dQ K t Q Q 

R _ 2H 
t - Q 

(7-1) 

(7-2) 

The value of the turbulent-flow resistance Rt depends on the flow rate and the head. 
The value of Rt , however, may be considered constant if the changes in head and 
flow rate are small. 
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If the changes in the head and flow rate from their respective steady-state val­
ues are small, then, from Equation (7-2), the relationship between Q and H is given 
by 

Q= 2H 
Rt 

In many practical cases, the value of the constant K t in Equation (7-1) is not 
known. Then the resistance may be determined by plotting the curve of head versus 
flow rate based on experimental data and measuring the slope of the curve at the 
operating condition. An example of such a plot is shown in Figure 7-3(b). In the 
figure, point P is the steady-state operating point. The tangent line to the curve at 
point P intersects the ordinate at the point (Head = -H). Thus, the slope of this 
tangent line is 2H IQ. Since the resistance Rt at the operating point P"is given by 
2HIQ, the resistance Rt is the slope of the curve at the operating point. 

Now define a small deviation of the head from the steady-state value as hand 
the corresponding small change in the flow rate as q. Then the slope of the curve at 
point P is given by 

I f . h 2H R 
s ope 0 curve at pomt P = q = Q = t 

The capacitance C of a tank is defined to be the change in quantity of stored 
liquid necessary to cause a unit change in the potential, or head. (The potential is the 
quantity that indicates the energy level of the system.) Thus, 

change in liquid stored m3 2 
C = . -orm 

change m head m 

Note that the capacity (m3) and the capacitance (m2) are different. The capacitance 
of the tank is equal to its cross-sectional area. If this is constant, the capacitance is 
constant for any head. 

Inertance. The terms inertance, inertia, and inductance refer to the change in 
potential required to make a unit rate of change in flow rate, velocity, or current 
[change in flow rate per second, change in velocity per second (acceleration), or 
change in current per second], or 

Inertance (inertia or inductance) 

change in potential 

change in flow rate (velocity or current) per second 

For the inertia effect of liquid flow in pipes, tubes, and similar devices, the 
potential may be either pressure (N/m2) or head (m), and the change in flow rate 
per second may be the volumetric liquid-flow acceleration (m3/s2). Applying the 
preceding general definition of inertance, inertia, or inductance to liquid flow gives 

change in pressure N/m2 N-s2 

Inertance I = -- or --
change in flow rate per second m3/s2 mS 
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or 

change in head m s2 
Inertance I = -- or -

change in flow rate per second m3/s2 m2 

(For the computation of inertance, see Problem A-7-2.) 
Inertia elements in mechanical systems and inductance elements in electrical 

systems are important in describing system dynamics. However, in deriving math­
ematical models of liquid-filled tanks connected by pipes with orifices, valves, and 
so on, only resistance and capacitance are important, and the effects of liquid-flow 
inertance may be negligible. Such liquid-flow inertance becomes important only in 
special cases. For instance, it plays a dominant role in vibration transmitted 
through water, such as water hammer, which results from both the inertia effects 
and the elastic or capacitance effects of water flow in pipes. Note that this vibra­
tion or wave propagation results from inertance-capacitance effects of hydraulic 
circuits-comparable to free vibration in a mechanical spring-mass system or free 
oscillation in an electrical LC circuit. 

Mathematical modeling of liquid-level systems. In the mathematical 
modeling of liquid-level systems, we do not take inertance into consideration, be­
cause it is negligible. Instead, we characterize liquid-level systems in terms of resis­
tance and capacitance. Let us now obtain a mathematical model of the liquid-level 
system shown in Figure 7-3(a). If the operating condition as to the head and flow 
rate varies little for the period considered, a mathematical model can easily be 
found in terms of resistance and capacitance. In the present analysis, we assume that 
the liquid outflow from the valve is turbulent. 

Let us define 

H = steady-state head (before any change has occurred), m 
h = small deviation of head from its steady-state value, m 

Q = steady-state flow rate (before any change has occurred), m3/s 

qi = small deviation of inflow rate from its steady-state value, m3/s 

qo = small deviation of outflow rate from its steady-state value, m3/s 

The change in the liquid stored in the tank during dt seconds is equal to the net 
inflow to the tank during the same dt seconds, so 

(7-3) 

where C is the capacitance of the tank. 
Note that if the operating condition varies little (i.e., if the changes in head and 

flow rate are small during the period of operation considered), then the resistance R 
may be considered constant during the entire period of operation. 

In the present system, we defined hand qo as small deviations from steady­
state head and steady-state outflow rate, respectively. Thus, 

dH = h, 
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and the resistance R may be written as 

R = dH =!!... 
dQ qo 

Substituting qo = hlR into Equation (7-3), we obtain 

dh h 
C dt = q; - R 

or 

dh 
RC- + h = Rq· dt I 

(7-4) 

Note that RC has the dimension of time and is the time constant of the system. 
Equation (7-4) is a linearized mathematical model for the system when h is consid­
ered the system output. Such a linearized mathematical model is valid, provided that 
changes in the head and flow rate from their respective steady-state values are small. 

If qo (the change in the outflow rate), rather than h (the change in head), is 
considered the system output, then another mathematical model may be obtained. 
Substituting h = Rqo into Equation (7-4) gives 

dqo 
RC dt + qo = q; (7-5) 

which is also a linearized mathematical model for the system. 

Analogous systems. The liquid-level system considered here is analogous 
to the electrical system shown in figure 7-4(a).1t is also analogous to the mechanical 
system shown in Figure 7-4(b). For the electrical system, a mathematical model is 

deo 
RC- + e = e· dt 0 I 

For the mechanical system, a mathematical model is 

b dxo --+ x = x· k dt 0 I 

(7-6) 

(7-7) 

Equations (7-5), (7-6), and (7-7) are of the same form; thus, they are analogous. 
Hence, the liquid-level system shown in Figure 7-3(a), the electrical system shown 

Figure 7-4 Systems analogous to the liquid­
level system shown in Figure 7-3(a). (a) Elec­
trical system; (b) mechanical system. 

R 

(a) 

k 

b 

o 

(b) 
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Tank! Tank 2 

figure 7-5 Liquid-level system with interaction. 

in Figure 7-4(a), and the mechanical system shown in Figure 7-4(b) are analogous 
systems. [Note that there are many other electrical and mechanical systems that are 
analogous to the liquid-level system shown in Figure 7-3(a).] 

Liquid-level system with interaction. Consider the liquid-level system 
shown in Figure 7-5. In this system, the two tanks interact. (Note that the transfer func­
tion for such a case is not the product of two individual first-order transfer functions.) 

If the variations of the variables from their respective steady-state values are 
small, the resistance R I stays constant. Hence, at steady state, 

- HI - H2 
Q = (7-8) 

Rl 

After small changes have occurred, we have 

- HI + hi - (H2 + h2) 
Q + ql = RI 

HI - H2 hi - h2 
= +---

Rl Rl 

Substituting Equation (7-8) into this last equation, we obtain 

hi - h2 
ql = 

Rl 

In the analysis that follows, we assume that variations of the variables from their 
respective steady-state values are small. Then, using the symbols as defined in 
Figure 7-5, we can obtain the following four equations for the system: 

hI - h2 = ql (7-9) 
Rl 

dh l 
C1 dt = q - ql (7-10) 

h2 - = q2 (7-11) 
R2 

dh2 
C2 dt = ql - q2 (7-12) 
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If q is considered the input and q2 the output, the transfer function of the system can 
be obtained by eliminating qh hh and h2 from Equations (7-9) through (7-12). The 
result is 

Q2(S) 1 

Q(s) = RlClR2C2S2 + (RICl + R2C2 + R2Ct )s + 1 
(7-13) 

(See Problem A-7-5 for the derivation of this transfer function.) 

7-3 MATHEMATICAL MODELING OF PNEUMATIC SYSTEMS 

Pneumatic systems are fluid systems that use air as the medium for transmitting sig­
nals and power. (Although the most common fluid in these systems is air, other 
gases can be used as well.) 

Pneumatic systems are used extensively in the automation of production 
machinery and in the field of automatic controllers. For instance, pneumatic circuits 
that convert the energy of compressed air into mechanical energy enjoy wide usage, 
and various types of pneumatic controllers are found in industry. 

In our discussions of pneumatic systems here, we assume that the flow condi­
tion is subsonic. If the speed of air in the pneumatic system is below the velocity of 
sound, then, like liquid-level systems, such pneumatic systems can be described in 
terms of resistance and capacitance. (For numerical values of the velocity of sound, 
see Problem A-7-13.) 

Before we derive a mathematical model of a pneumatic system, we examine 
some physical properties of air and other gases. Then we define the resistance and 
capacitance of pneumatic systems. Fmally, we derive a mathematical model of a 
pneumatic system in terms of resistance and capacitance. 

Physical properties of air and other gases. Some physical properties of 
air and other gases at standard pressure and temperature are shown in Table 7-l. 
Standard pressure p and temperature t are defined as 

p = 1.0133 x lOS N/m2 abs = 1.0332 kglcm2 abs 

= 14.7Iblin.2 abs = 14.7 psia 

t = O°C = 273 K = 32°P = 492°R 

TABLE 7-1 Properties of Gases 

Gas constant Specific heat, 

Molecular Rgas 
kcal/kgK or 

Gas weight 
Btu/lb OR 

N-mlkgK ft-Ib"lb OR cp Cv 

Air 29.0 287 53.3 0.240 0.171 
Hydrogen (H2) 2.02 4121 766 3.40 2.42 
Nitrogen (N2) 28.0 297 55.2 0.248 0.177 
Oxygen (02) 32.0 260 48.3 0.218 0.156 
Water vapor(H20) 18.0 462 85.8 0.444 0.334 

Specific 
heat 
ratio, 
c/cv 

1.40 
1.41 
1.40 
1.40 
1.33 
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The density p, specific volume v, and specific weight 'Y of air at standard pres-
sure and temperature are 

p = 1.293 kg/m3 

v = 0.7733 m3Jkg 

'Y = 12.68 N/m3 

Resistance and capacitance of pneumatic systems. Many industrial 
processes and pneumatic controllers involve the flow of air (or some other gas) 
through connected pipelines and pressure vessels. 

Consider the pneumatic system shown in Figure 7--6(a).Assume that at steady 
state the pressure in the system is P. H the pressure upstream changes to P + Pi, 
where Pi is a small quantity compared with P, then the pressure downstream (the 
pressure in the vessel) changes to P + Po, where Po is also a small quantity com­
pared with P. Under the condition that the flow is subsonic, Ipi » IPol, and 
Ipi » Ipil, the airflow rate through the restriction becomes proportional to 
V Pi - Po' Such a pneumatic system may be characterized in terms of a resistance 
and a capacitance. 

Airflow resistance in pipes, orifices, valves, and any other flow-restricting 
devices can be defined as the change in differential pressure (existing between 
upstream and downstream of a flow-restricting device) (N/m2) required to make a 
unit change in the mass flow rate (kg/s), or 

. change in differential pressure N/m2 N-s 
resistance R =. --or --

change m mass flow rate kg/s kg-m2 

Therefore, resistance R can be expressed as 

R = d(l1p) 
dq 

where d ( 11 p) is a change in the differential pressure and dq is a change in the mass 
flow rate. A theoretical determination of the value of the airflow resistance R is very 
time consuming. Experimentally, however, it can be easily determined from a plot of 

(a) 

Capacitance 
C o 

Slope = R 

q 

(b) 

F1gure 7-6 (a) Pneumatic system; (b) curve of pressure difference versus flow rate. 
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the pressure difference A p versus flow rate q by calculating the slope of the curve at 
a given operating condition, as shown in Figure 7-6(b). Notice that the airflow resis­
tance R is not constant, but varies with the change in the operating condition. 

For a pneumatic pressure vessel, capacitance can be defined as the change in 
the mass of air (kg) [or other gas (kg)] in the vessel required to make a unit change 
in pressure (N/m2), or 

. change in mass of air (or gas) kg kg-m2 

capacitance C = -- or --
change in pressure N/m2 N 

which may be expressed as 

c = dm =V dp ~ 
dp dp N/m2 

where 

m = mass of air (or other gas) in vessel, kg 

p = absolute pressure of air (or other gas), N/m2 

V = volume of vessel, m3 

p = mass density of air (or other gas), kglm3 

(7-14) 

Such a capacitance C may be calculated with the use of the perfect-gas law. For air, 
we have 

where 

p R 
pv = - = -T = R . T 

p M atr 

p = absolute pressure of air, N/m2 

v = specific volume of air, m3/kg 

M = molecular weight of air per mole, kglkg-mole 

R = universal gas constant, N-mIkg-mole K 
Rair = gas constant of air, N-mlkg K 

T = absolute temperature of air, K 

(7-15) 

If the change of state of air is between isothermal and adiabatic, then the expansion 
process can be expressed as polytropic and can be given by 

where 

n = polytropic exponent 

p 
n = constant 
p 

Since dpldp can be obtained from Equation (7-16) as 

dp p 
dp = np 

(7-16) 



/ 
( Sec. 7-3 Mathematical Modeling of Pneumatic Systems 335 

by substituting Equation (7-15) into this last equation, we have 

dp 1 
-=--
dp nRairT 

(7-17) 

Then, from Equations (7-14) and (7-17), the capacitance C of a vessel is 

C=_V_~ 
nRairT N/m2 (7-18) 

Note that if a gas other than air is used in a pressure vessel, the capacitance C is 
given by 

C= V ~ 
nRgasT N/m2 

(7-19) 

where Rgas is the gas constant for the particular gas involved. 
From the preceding analysis, it is clear that the capacitance of a pressure vessel 

is not constant, but depends on the expansion process involved, the nature of the gas 
(air, N2, H 2, and so on) and the temperature of the gas in the vessel. The value of the 
polytropic exponent n is approximately constant (n = 1.0 to 1.2) for gases in unin­
sulated metal vessels. 

Example 7-1 

Fmd the capacitance C of a 2-m3 pressure vessel that contains air at 50°c' Assume that 
the expansion and compression of air occur slowly and that there is sufficient time for 
heat to transfer to and from the vessel so that the expansion process may be considered 
isothermal, or n = 1. 

The capacitance C is found by substituting V = 2 m3, Rair = 287 N-mlkg K, 
T = 273 + 50 == 323 K, and n = 1 into Equation (7-18) as follows: 

C = n~T = 1 x 28~ x 323 = 2.16 x 10-
5 

kg-m
2
/N 

Example 7-2 

In Example 7-1, if hydrogen (H2), rather than air, is used to fill the same pressure ves­
sel, what is the capacitance? Assume that the temperature of the gas is 50°C and that 
the expansion process is isothermal, or n = 1. 

The gas constant for hydrogen is 

RH2 = 4121 N-mlkg K 

Substituting V = 2 m3, RHz = 4121 N-mlkg K, T = 273 + 50 = 323 K, and n = 1 into 
Equation (7-19), we have 

V 2 
C = nRH2T = 1 x 4121 X 323 = 1.50 X 10-6 kg-m

2
/N 

Mathematical modeling of a pneumatic system. The pneumatic pressure 
system shown in Figure 7-7(a) consists of a pressure vessel and connecting pipe with 
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Figure 7-7 (a) Pneumatic pressure system; (b) curve of pressure difference versus mass flow rate. 

a valve. If we assume only small deviations in the variables from their respective 
steady-state values, then this system may be considered linear. We define 

P = steady-state pressure of the system, N/m2 

Pi = small change in inflow pressure, N/m2 
Po = small change in air pressure in vessel, N/m2 
V = volume of vessel, m3 

m = mass of air in vessel, kg 
q = mass flow rate, kgls 

Let us obtain a mathematical model of this pneumatic pressure system. Assume that 
the system operates in such a way that the average flow through the valve is zero 
(i.e., the normal operating condition corresponds to Pi - Po = 0, q = 0). Assume 
also that the flow is subsonic for the entire range of operation of the system. 

As noted earlier, the resistance R is not constant. Hence, for the present system, 
we shall use an average resistance in the region of its operation. From Figure 7-7(b), 
the average resistance of the valve may be written as 

R = Pi - Po 
q 

From Equation (7-14), the capacitance of the pressure vessel can be written 

C = dm 
dpo 

or 

Cdpo = dm 

This last equation states that the capacitance C times the pressure change dpo (dur­
ing dt seconds) is equal to dm, the change in the mass of air in the vessel (during dt 
seconds). Now, the change in mass, dm, is equal to the mass flow during dt seconds, 
or q dt; hence, 

Cdpo = qdt 
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Substituting q = (Pi - Po)IR into this last equation, we have 

Cd = Pi - Po dt 
Po R 

Rewriting yields 

dpo 
RCTt + Po = Pi 
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(7-20) 

where RC has the dimension of time and is the time constant of the system. 
Equation (7-20) is a mathematical model for the system shown in Figure 7-7(a). 

Note that the pneumatic pressure system considered here is analogous to the 
electrical system shown in Figure 7-4(a) and the mechanical system shown in 
Figure 7-4(b ).It is also analogous to the liquid-level system shown in Figure 7-3(a). 

7-4 LINEARIZATION OF NONLINEAR SYSTEMS 

In this section, we present a linearization technique that is applicable to many nonlin­
ear systems. The process of linearizing nonlinear systems is important, for by linearizing 
nonlinear equations, it is possible to apply numerous linear analysis methods that will 
produce information on the behavior of those systems. The linearization procedure 
presented here is based on the expansion of the nonlinear function into a Taylor series 
about the operating point and the retention of only the linear term. Because we neglect 
higher order terms of the Taylor series expansion, these neglected terms must be small 
enough; that is, the variables must deviate only slightly from the operating condition. 

Linearization of z = f(x) about a point (x, z). Consider a nonlinear system 
whose input is x and output is z. The relationship between z and x may be written 

z = f(x) (7-21) 

If the normal operating condition corresponds to a point (x, z), then Equation 
(7-21) can be expanded into a Taylor series about this point as follows: 

df 1 d2f 2 
Z = f(x) = [(x) + dx (x - x) + 2! dx2 (x - x) + ... (7-22) 

Here, the derivatives dfldx, d2fldx2, ••• are evaluated at the operating point, 
x = x, z = z. If the variation x - x is small, we can neglect the higher order terms 
in x-x. Noting that z = f(x), we can write Equation (7-22) as 

z - z = a(x - x) (7-23) 

where 

a = dfl 
dx x=x 

Equation (7-23) indicates that z - z is proportional to x-x. The equation is a lin­
ear mathematical model for the nonlinear system given by Equation (7-21) near the 
operating point x = x, z = z. 
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Linearization of z = f(x, y) about a point (x, y, z). Next, consider a non­
linear system whose output z is a function of two inputs x and y, or 

z = i(x,y) (7-24) 

To obtain a linear mathematical model for this nonlinear system about an operating 
point (x, y, z), we expand Equation (7-24) into a Taylor series about that point. 
Then Equation (7-24) becomes 

z = i(x, y) + [ai (x - x) + ai (y - y)] 
ax ay 

1 [a2i ili (Pi] + - -(x - x)2 + 2--(x - x)(y - y) + -(y - y)2 + 
2! ax2 ax ay ay2 

where the partial derivatives are evaluated at the operating point, x = x, y = y, 
z = Z. Near this point, the higher order terms may be neglected. Noting that 
Z = i(x, y), we find that a linear mathematical model of this nonlinear system near 
the operating point x = x, y = y, z = z is 

z - z = a(x - x) + b(y - y) 

where 

b = ail 
iJy x=x,y=y 

It is important to remember that in the present linearization procedure, the 
deviations of the variables from the operating condition must be sufficiently small. 
Otherwise, the procedure does not apply. 

ExampJe7-3 

Linearize the nonlinear equation 

z = xy 

in the region 5 =::; x =::;7, 10 =::; Y ~ 12. Find the error if the linearized equation is used 
to calculate the value of z when x = 5 and y = 10. 

Since the region considered is given by 5 ~ x ~ 7,10 s y s 12, choose 
x = 6, Y = 11. Then z = xy = 66. Let us obtain a linearized equation for the nonlin­
ear equation near a point x = 6, Y = 11, Z = 66. 

Expanding the nonlinear equation into a Taylor series about the point 
x = x, y = y, z = z and neglecting the higher order terms, we have 

z - z = a( x - x) + b(y - y) 
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where 

a = a(xy) I = y = 11 
ax x=x.y=y 

a(xy) I 
b=-- =x=6 

ay x=X.y=y 

Hence, the linearized equation is 

z - 66 = 11(x - 6) + 6(y - 11) 

or 

z = llx + 6y - 66 

When x = 5 and y = 10, the value of z given by the linearized equation is 

z = 11x + 6y - 66 = 55 + 60 - 66 = 49 
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The exact value of z is z = xy = 50. The error is thus 50 - 49 = 1. In terms of per­
centage, the error is 2%. 

ExampJe7-4 

Consider the liquid-level system shown in Figure 7-8. At steady state, the inflow rate is 
Q; = Q, the outflow rate is Qo = (1, and the head is H = H. Assume that the flow is 
turbulent. Then 

For this system, we have 

dH 4 r;; 
C- = Q. - Q = Q. - K v H dt I 0 I 

where C is the capacitance of the tank. Let us define 

dH 1 KYH dt = CQ; - -C- = f(H, Q;) (7-25) 

Assume that the system operates near the steady-state condition (H, (2). That is, 
H = H + h and Q; = Q + q;, where h and q; are small quantities (either positive or 
negative). At steady-state operation, dH Idt = O. Hence, f( H, Q) = O. 

Q;= Q +qj 

----Yrk...--
U 
t 
H=il+h 

Figure 7-8 Liquid-level system. 
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Let us linearize Equation (7-25) near the operating point (H, Q). Using the lin­
earization technique just presented, we obtain the linearized equation 

dH - - af - af (Q -Q) - - f(H Q) = -(H - H) + - j-
dt 'aH aQj 

where 

f(H,Q) = 0 

:~IH.H.Q,.Q = - 2C~ = - In 2C~ = - ~H = - ;c 
in which we used the resistance R defined by 

Also, 

R=~ 
Q 

~l.H.Q,.Q = ~ 
Then Equation (7-26) can be written as 

dH 1 - 1 -dr = - RC (H - H) + C(Qj - Q) 

Since H - H = h and Qj - Q = qj, Equation (7-27) can be written as 

or 

dh 1 1 
-= --h +-q. 
dt RC C I 

RC
dh + h = Rq· dt I 

(7-26) 

(7-27) 

which is the linearized equation for the liquid-level system and is the same as Equa­
tion (7-4). (See Section 7-2.) 

7-5 MATHEMATICAL MODELING OF HYDRAULIC SYSTEMS 

The widespread use of hydraulic circuitry in machine tool applications, aircraft con­
trol systems, and similar operations occurs because of such factors as dependability; 
accuracy; flexibility; a high horsepower-to-weight ratio; fast starting, stopping, and 
reversal with smoothness and precision; and simplicity of operation. 

In many machine tool applications, for instance, the traverse and feed cycles 
required are best handled by hydraulic circuits. These cycles-in which the piston 
advances rapidly on the work stroke until the work is contacted, advances slowly 
under pressure while the work is done, and then retracts rapidly at the end of the 

! 
t 
\, 
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slow tool feed stroke-are easily handled by the use of two pumps (one large-capacity, 
low-pressure pump and one small-capacity, high-pressure pump) and flow control 
devices. The large-capacity, low-pressure pump is used only during the rapid advance 
and return of the cylinder. The small-capacity, high-pressure pump supplies hydraulic 
fluid for the compression stroke. An unloading valve maintains high pressure while the 
low-pressure pump is unloaded to the reservoir. (The unloading valve unloads whatev­
er is delivered by the large-capacity, low-pressure pump during the small-capacity, 
high-pressure phase of a cycle.) Such an unloading valve is designed for the rapid dis­
charge of hydraulic fluid at near atmospheric pressure after permitting the buildup of 
pressure to a preset value. 

Generally, the operating pressure in hydraulic systems is somewhere between 
106 N/m2 (1 MPa) and 35 X 106 N/m2 (35 MPa) (approximately between 10 kgtlcm2 
and 350 kglcm2

, or approximately between 145 Iblin.2 and 5000 Iblin.2). In some 
special applications, the operating pressure may go up to 70 X 106 N/m2 (70 MPa, 
which is approximately 700 kglcm2 or 10,000 Iblin.2). For the same power require­
ment, the weight and size of the hydraulic unit can be made smaller by increasing 
the supply pressure. 

In this section, we first present some properties of hydraulic fluids and then 
introduce general concepts of hydraulic systems. We then model a hydraulic servo. 
Since this is a nonlinear device, we linearize the nonlinear equation describing the 
dynamics of the hydraulic servo by using the linearization technique presented in 
Section 7-4. Afterward, we obtain the transfer function of the hydraulic servo. Fmally, 
we derive a mathematical model of a hydraulic damper. 

Properties of hydraulic fluids. The properties of hydraulic fluids have an im­
portant effect on the performance of hydraulic systems. Besides serving as a power­
transmitting medium, a hydraulic fluid must minimize the wear of moving parts by 
providing satisfactory lubrication. In practice, petroleum-based oils with proper addi­
tives are the most commonly used hydraulic fluids, because they give good lubrication 
for the moving parts of a system and are almost imcompressible. The use of a clean, 
high-quality oil is required for satisfactory operation of the hydraulic system. 

Vzscosity, the most important property of a hydraulic fluid, is a measure of the 
internal friction or the resistance of the fluid to flow. Low viscosity means an 
increase in leakage losses, and high viscosity implies sluggish operation. In hydraulic 
systems, allowable viscosities are limited by the operating characteristics of the 
pump, motor, and valves, as well as by ambient and operating temperatures. The vis­
cosity of a liquid decreases with temperature. 

The resistance of a fluid to the relative motion of its parts is called dynamic, or 
absolute, viscosity. It is the ratio of the shearing stress to the rate of shear deforma­
tion of the fluid. The SI units of dynamic viscosity are N-s/m2 and kglm-s. The cgs 
unit of dynamic viscosity is the poise (P) (dyn-s/cm2 or g/cm-s). The SI unit is 10 
times larger than the poise. The centipoise (cP) is one-hundredth of a poise. The 
BES units of dynamic viscosity are Ibr s/fi2 and slug/ft-s. Note that 

1 sluglft-s = 1lbr s/ft2 = 47.9 kglm-s = 47.9 N-s/m2 

1 P = 100 cP = 0.1 N-s/m2 
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The kinematic viscosity v is the dynamic viscosity IL divided by the mass density 
p,or 

IL v=-
p 

For petroleum-based oils, the mass density is approximately 

p = 820 kg/m3 = 51.2 Ib/ft3 = 1.59 slug/ft3 

The SI unit of kinematic viscosity is m2/s; the cgs unit of kinematic viscosity is the 
stoke(St) (cm2/s), and one-hundredth of a stoke is called a centistoke (cSt). The 
BES unit of kinematic viscosity is fills. In changing from the stoke to the poise, mul­
tiply by the mass density in g/cm3. Note that 

1 m2/s (SI unit of kinematic viscosity) 

= 10.764 ft2/s (BES unit of kinematic viscosity) 

1 St = 100 cSt = 0.0001 m2/s 

For hydraulic oils at normal operating conditions, the kinematic viscosity is about 5 
to 100 centistokes (5 X 10-6 to 100 X 10-6 m2/s). 

Petroleum oils tend to become thin as the temperature increases and thick as the 
temperature decreases. If the system operates over a wide temperature range, fluid 
having a viscosity that is relatively less sensitive to temperature changes must be used. 

Some additional remarks on hydraulic fluids are as follows: 

1. The operating life of a hydraulic fluid depends on its oxidation resistance. Ox­
idation of hydraulic fluid is caused by air, heat, and contamination. Note that 
any hydraulic fluid combines with air to a certain extent, especially at high op­
erating temperatures. Note also that the operating temperature of the hy­
draulic system should be kept between 30 and 60°C. For operating 
temperatures above 70°C, oxidation is accelerated. Premium-grade fluids usu­
ally contain inhibitors to slow down oxidation. 

2. For hydraulic systems located near high-temperature sources, fire-resistant 
fluids should be used. These fluids are available in several general types, such 
as water-glycol, synthetic oil, and water-oil emulsions. 

Hydraulic circuits. Hydraulic circuits are capable of producing many differ­
ent combinations of motion and force. All, however, are fundamentally the same, re­
gardless of the application. Such circuits involve four basic components: a reservoir to 
hold the hydraulic fluid, a pump or pumps to force the fluid through the circuit, valves 
to control fluid pressure and flow, and an actuator or actuators to convert hydraulic 
energy into mechanical energy to do the work. Figure 7-9 shows a simple circuit that 
involves a reservoir, a pump, valves, a hydraulic cylinder, and so on. 

High-pressure hydraulic systems enable very large forces to be derived. More­
over, these systems permit a rapid and accurate positioning of loads. 

Hydraulic servomotor. Figure 7-10 shows a hydraulic servomotor consist­
ing of a spool valve and a power cylinder and piston. The valve admits hydraulic 
fluid under high pressure into a power cylinder that contains a large piston, so a 
large hydraulic force is established to move a load. Assume that the spool valve is 



( Sec. 7-5 Mathematical Modeling of Hydraulic Systems 

Electric 

Hydraulic 
cylinder 

Po 

t 
Ps 

1 
Po 

t 

Directional 
control valve 

X---. o-----~--~--~--~-----o 

y ___ 0-------:=-----

343 

Figure 7-9 Hydraulic circuit. 

Figure 7-10 Hydraulic servomotor. 

symmetrical and has zero overlapping, that the valve orifice areas are proportional 
to the valve displacement x, and that the orifice coefficient and the pressure drop 
across the orifice are constant and independent of the valve position. Assume also 
the following: The supply pressure is Ps' the return pressure Po in the return line is 
small and can be neglected, the hydraulic fluid is incompressible, the inertia force of 
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the power piston and the load reactive forces are negligible compared with the hy­
draulic force developed by the power piston, and the leakage flow around the spool 
valve from the supply pressure side to the return pressure side is negligible. 

Let us derive a linearized mathematical model of the spool valve near the ori­
gin. The flow rates through the valve orifices are given by 

qI = cV Ps - PI X 

q2 = cV P2 - POX = C-v'P;x 
where we assumed that Po = 0 and C is a proportionality constant. Noting that 
ql = q2, we have 

Ps - PI = P2 

Let us define the pressure difference across the power piston as 

Ap = P1 - P2 

Then PI and P2 can be written 

Ps + Ap 
PI = 2 

Ps - Ap 
P2= 

2 

The flow rate ql to the right side of the power piston is 

, /p - £p 
ql = CY Ps - PI X = C.v s 2 X = I(x, Ap) 

Using the linearization technique discussed in Section 7-4, we obtain the linearized 
equation near the operating point x = X, Ap = Ap, q1 = (it to be 

ql - fil = a(x - x) + b(Ap - Ap) (7-28) 
where 

a = at I = C Ips - A P 
ax x:::i. Ap=Ap 'V 2 

b = al I = - C x ~ 0 
aAp x=i.Ap=Ap 2VzV Ps - Ap 

Near the origin (x = 0, Ap = 0, ql = 0), Equation (7-28) becomes 

ql = KIx - K2Ap 
where 

Hence, 

ql = KIx 

This is a linearized model of the spool valve near the origin. 
(7-29) 

I 
\ 
\ 
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Mathematical model of hydraulic servomotor. In obtaining a mathemat­
ical model of the hydraulic servomotor shown in Figure 7-10, we assume that the 
hydraulic fluid is incompressible and that the inertia force of the power piston and 
load is negligible compared with the hydraulic force at the power piston. We also as­
sume that the pilot valve is a zero-lapped valve. As given by Equation (7-29), the oil 
flow rate is proportional to the pilot valve displacement. 

The operation of this hydraulic servomotor is as follows: If input x moves the 
pilot valve to the right, port 1 is uncovered, and high-pressure oil enters the right­
hand side of the power piston. Since port 2 is connected to the drain port, the oil on 
the left-hand side of the power piston is returned to the drain. The oil flowing into 
the power cylinder is at high pressure; the oil flowing out from the power cylinder 
into the drain is at low pressure. The resulting difference in pressure on both sides of 
the power piston will cause it to move to the left. 

Note that the rate of flow of oil, ql (kg/s), times dt (s) is equal to the power pis­
ton displacement dy (m) times the piston area A (m2) times the density of the oil, 
p (kg/m3

). That is, 

(7-30) 

As given by Equation (7-29), the oil flow rate ql is proportional to the pilot valve 
displacement x, or 

(7-31) 

where Kl is a proportionality constant. From Equations (7-30) and (7-31), we 
obtain 

dy 
Ap dt = K1x 

The Laplace transform of this last equation, assuming a zero initial condition, gives 

Aps Yes) = KIX(S) 

or 

Yes) Kl K 
Xes) = Aps = --; (7-32) 

where K = Kl/(Ap). Thus, the hydraulic servomotor shown in Figure 7-10 acts as 
an integral controller. 

Dash pots. The dashpot (also called a damper) shown in Figure 7-11(a) acts 
as a differentiating element. Suppose that we introduce a step displacement into the 
piston position x. Then the displacement y becomes momentarily equal to x. Because 
of the spring force, however, the oil will flow through the resistance R, and the cylin­
der will come back to the original position. The curves of x versus t and y versus tare 
shown in Figure 7-11(b). 

Let us derive the transfer function between the displacement y and the dis­
placement x. We define the pressures existing on the right-hand side and left-hand 
side of the piston as PI (Ibt'in.2) and P2 (lbt'in.2), respectively. Suppose that the 
inertia force involved is negligible. Then the force acting on the piston must balance 
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q R 
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x y 

(a) (b) 

Figure 7-11 (a) Dashpot; (b) step change in x and the corresponding change in y 
plotted against t. 

the spring force. Thus, 

where 

A = piston area, in.Z 

k = spring constant, Ibtlin. 

The flow rate q through the restriction, in IbIs, is given by 

PI - Pz q= 
R 

where R is the resistance to flow at the restriction, lbrs/in.z-Ib. 
Since the flow through the restriction during dt seconds must equal the change 

in the mass of oil to the left of the piston during the same dt seconds, we obtain 

q dt = Ap(dx - dy) (7-33) 

where p = density,lb/in.3. (We assume that the fluid is incompressible, or 
p = constant.) Equation (7-33) can be rewritten as 

dx dy q PI - Pz ky 
dt - dt = Ap = RAp = RAzp 

or 

dx dy ky 
-=-+--
dt dt RAzp 

Taking the Laplace transforms of both sides of this last equation, assuming zero ini­
tial conditions, we obtain 

k 
sX(s) = sY(s) + -z-Y(s) 

RAp 

I 
\ 
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The transfer function of the system thus becomes 

Let us define RA2plk = T. Then 

Y(s) s 

X(s) = k 
s+-­

RA2p 

Y(s) Ts 

X(s) = Ts + 1 

347 

(7-34) 

In earlier chapters, we frequently treated the spring-dashpot system as shown 
in Figure 7-12, which is equivalent to the system of Figure 7-11(a). A mathematical 
model of the system shown in Figure 7-12 is 

or 

b(x - y) = ky 

Y(s) bs 
X(s) = bs + k 

b 
-s 
k 

b 
-s + 1 
k 

Ts 
Ts + 1 

(7-35) 

where b/k is the time constant T. 
Notice that, since T = RA2p/k in Equation (7-34) and T = blk in Equation 

(7-35), we find the viscous-friction coefficient b to be equal to RA2p or 

b = RA2p 

Note that the resistance R depends on the viscosity of oil. 

Comments. Since hydraulic systems are used frequently in industry, in what 
follows we shall list the advantages and disadvantages of using hydraulic systems 
over comparable electrical systems. 

Advantages and disadvantages of hydraulic systems. Some of the ad­
vantages to using hydraulic systems rather than electrical systems are as follows: 

L Hydraulic fluid acts as a lubricant, in addition to carrying away heat generat­
ed in the system to a convenient heat exchanger. 

2. Comparatively small hydraulic actuators can develop large forces or torques. 
3. Hydraulic actuators have a higher speed of response, with fast starts, stops, 

and reversals of speed. 

x y Figure 7-12 Spring-dashpot system. 
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4. Hydraulic actuators can be operated under continuous, intermittent, revers­
ing, and stalled conditions without damage. 

5. The availability of both linear and rotary actuators lends flexibility to design. 

6. Because of low leakages in hydraulic actuators, drops in speed when loads are 
applied are small. 

Several disadvantages, however, tend to limit the use of hydraulic systems: 

1. Hydraulic power is not readily available, compared with electric power. 
2. The cost of a hydraulic system may be higher than that of a comparable elec­

trical system performing a similar function. 
3. Fire and explosion hazards exist, unless fire-resistant fluids are used. 
4. Because it is difficult to maintain a hydraulic system that is free from leaks, 

the system tends to be messy. 
5. Contaminated oil may cause failure in the proper functioning of a hydraulic 

system. 
6. As a result of the nonlinear and other complex characteristics involved, the 

design of sophisticated hydraulic systems is quite involved. 
7. Hydraulic circuits have generally poor damping characteristics. If a hydraulic 

circuit is not designed properly, some unstable phenomena may appear or dis­
appear, depending on the operating condition of the circuit. 

7-6 MATHEMATICAL MODELING OF THERMAL SYSTEMS 

Thermal systems involve the transfer of heat from one substance to another. Ther­
mal systems may be analyzed in terms of resistance and capacitance, although the 
thermal capacitance and thermal resistance may not be represented accurately as 
lumped parameters, since they are usually distributed throughout the substance. 
(For precise analysis, distributed-parameter models must be used.) Here, however, 
to simplify the analysis, we shall assume that a thermal system can be represented by 
a lumped-parameter model, that substances characterized by resistance to heat flow 
have negligible heat capacitance, and that substances characterized by heat capaci­
tance have negligible resistance to heat flow. 

Before we derive mathematical models of thermal systems, let us review units 
of heat. 

Units of heat. Heat is energy transferred from one body to another because 
of a temperature difference. The SI unit of heat is the joule (J). Other units of heat 
commonly used in engineering calculations are the kilocalorie (kcal) and Btu 
(British thermal unit). The following conversions are applicable: 

1 J = 1 N-m = 2.389 X 10-4 kcal = 9.480 X 10-4 Btu 
1 

1 kcal = 4186 J = 0.860 Wh = 1.163 Wh 

1 Btu = 1055 J = 778 ft-IbJ 
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From an engineering point of view, the kilocalorie can be considered to be that 
amount of energy needed to raise the temperature of 1 kilogram of water from 14.5 
to IS.SoC. The Btu can be considered as the energy required to raise 1 pound of 
water 1 degree Fahrenheit at some arbitrarily chosen temperature. (These units give 
roughly the same values as those previously defined.) 

Heat transfer by conduction, convection, and radiation. Heat can flow 
from one substance to another in three different ways: conduction, convection and 
radiation. In this section, we shall be concerned with systems that involve just con­
duction and convection; radiation heat transfer is appreciable only if the tempera­
ture of the emitter is very high compared with that of the receiver. Most thermal 
processes in process control systems do not involve radiation heat transfer and may 
be described in terms of thermal resistance and thermal capacitance. 

For conduction or convection heat transfer, 

q = KJ18 

where 

q = heat flow rate, kcalls 

118 = temperature difference, °C 

K = coefficient, kcalls °C 

The coefficient K is given by 

where 

K = kA for conduction 
I1X 

= H A for convection 

k = thermal conductivity, kcallm soC 

A = area normal to heat flow, m2 

I1X = thickness of conductor, m 

H = convection coefficient, kcallm2 soC 

Thermal resistance and thermal capacitance. The thermal resistance R 
for heat transfer between two substances may be defined as follows: 

change in temperature difference °C 
R= --

change in heat flow rate kcalls 

Thus, the thermal resistance for conduction or convection heat transfer is given by 

R = d(118) = ~ 
dq K 

Since the thermal conductivity and convection coefficients are almost constant, the 
thermal resistance for either conduction or convection is constant. The thermal 
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capacitance C is defined by 

change in heat stored kcal 
C== -

change in temperature °C 

Accordingly, the thermal capacitance is the product of the specific heat and the mass 
of the material. Therefore, thermal capacitance can also be written as 

C = me 

where 

m = mass of substance considered, kg 
e == specific heat of substance, kcaUkg °C 

Mathematical modeling of a thermal system: thermometer system. 
Consider the thin, glass.walled mercury thermometer system shown in Figure 7-13. 
Assume that the thermometer is at a uniform temperature @ °C (ambient tempera· 
ture) and that at t == 0 it is immersed in a bath of temperature @ + Bb °C, where Bb is 
the bath temperature (which may be constant or changing), measured from the am· 
bient temperature @. Let us denote the instantaneous thermometer temperature by 
@ + 8°C, so that 8 is the change in the temperature of the thermometer, satisfying 
the condition that B( 0) == o. The dynamics of this thermometer system can be char· 
acterlzed in terms of a thermal resistance R (OC/kcalls) that resists the heat flow and 
a thermal capacitance C (kcall°C) that stores heat. 

A mathematical model for this thermal system can be derived by considering 
heat balance as follows: The heat entering the thermometer during dt seconds is q dt, 
where q (kcaUs) is the heat flow rate to the thermometer. This heat is stored in the 
thermal capacitance C of the thermometer, thereby raising its temperature by dB. 
Thus, the heat balance equation is 

C d8 == q dt 

Since the thermal resistance may be written 

R == d(A8) == AB 
dq q 

Thermometer 

Figure 7-13 Thin, glass-walled mercury 
thermometer system. 

/ 
e+8 

(7-36) 

Bath 

I 
\ 
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the heat flow rate q may be given, in terms of R, as 

(@ + 8b) - (@ + 8) 8b - 8 
q= =--

R R 
where B + 8b is the bath temperature and B + 8 is the thermometer temperature. 
Consequently, we can rewrite Equation (7-36) as 

CdB = 8b - 8 
dt R 

or 

dB 
RC dt + 8 = 8b 

where RC is the time constant. This is a mathematical model of the thermometer sys­
tem, which is analogous to the electrical system shown in Figure 7-4(a), the mechan­
ical system of Figure 7-4(b), the liquid-level system depicted in Figure 7-3(a), and 
the pneumatic pressure system shown in Figure 7-7(a). 

Example7-S 

Consider the air-heating system shown in Figure 7-14. Assuming small deviations from 
steady-state operation, let us derive a mathematical model for the system. We shall also 
assume that the heat loss to the surroundings and the heat capacitance of the metal 
parts of the heater are negligible. 

To derive a mathematical model for the system, let us define 

8; == steady-state temperature of inlet air, °C 

8 0 = steady-state temperature of outlet air, °C 
G == mass flow rate of air through the heating chamber, kgls 
M == mass of air contained in the heating chamber, kg 

c = specific heat of air, kcal/kg °C 
R = thermal resistance, °C slkcal 
C = thermal capacitance of air contained in the heating chamber == M c, kcaYoC 

H = steady-state heat input, kcaVs 

Let us assume that the heat input is suddenly changed from H to H + h, and at 
the same time, the inlet air temperature is suddenly changed from @; to @; + 8;. Then 
the outlet air temperature will be changed from 8 0 to 8 0 + 80 , 

il + h 

t 
Heater 

-.... 
-----------+-------+--~ 

Figure 7-14 Air-heating system. 
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The equation describing the system behavior is 

or 

Noting that 

we obtain 

or 

C dBo :; [h + Gc(Bj - Bo)] dt 

dBo ) c- = h + Gc( Bj - Bo 
dt 

1 
Gc=­

R 

d80 1 
C- = h + -(8- - (J ) 

dt R'O 

(7-37) 

Taking the Laplace transforms of both sides of this last equation and substituting the 
initial condition 80 (0) = 0 yields 

R 1 
8 0 (s) = RCs + 1 H(s) + RCs + 18;(s) (7-38) 

Equation (7-37) is a mathematical model of the system. Equation (7-38) is also a math­
ematical model of the system, but one in which the Laplace transform of the output 
8 0 (s) is given as a sum of the responses to the inputs H(s) and 8;(s). 

EXAMPLE PROBLEMS AND SOLUTIONS 

ProblemA-7-1 

Liquid flow resistance depends on the flow condition, either laminar or turbulent. 
Here, we consider the laminar-flow resistance. 

For laminar flow, the flow rate Q m3/s and differential head (HI - H2) m are 
proportional, or 

where K is a proportionality constant. Since 

. change in differential head m 
resIstance R = . -

change m flow rate m3/s 

_ d(Hl - H2) 2 
- dQ slm 

I 
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the laminar-flow resistance can be given by 

R = d(Bt - H2) = .!s/m2 
dQ K 

Note that the laminar flow resistance is constant. 
In considering laminar flow through a cylindrical pipe, the relationship between 

the differential head h (= HI - H2) m and the flow rate Q m3/s is given by the 
Hagen-Poiseuille formula 

where 

v = kinematic viscosity, m2/s 

L = length of pipe, m 

D = diameter of pipe, m 

So the laminar-flow resistance R for liquid flow through cylindrical pipes is given by 

h 

dh 128vL 
R = - = -- s/m2 (7-39) 

dQ g'TJ'D4 

Figure 7-15 Flow of water through a 
capillary tube. 

Now consider the flow of water through a capillary tube as shown in Figure 7-15. 
Assuming that the temperature of the water is 20°C and that the flow is laminar, fmd 
the resistance R of the capillary tube. The kinetic viscosity v of water at 20°C is 
1.004 X 10-6 m2/s. 

Solution Substituting numerical values into Equation (7-39), we obtain 

Problem A-7-2 

R = 128 X 1.004 X 10-
6 

X 1 = 5.15 X 104 s/m2 
9.807 X 3.14 X (3 X 10-3)4 

Consider a liquid flow in a pipe. The liquid-flow inertance is the potential difference 
(either pressure difference or head difference) between two sections in the pipe 
required to cause a unit rate of change in flow rate (a unit volumetric flow acceleration). 

Suppose that the cross-sectional area of a pipe is constant and equal to A m2 and 
that the pressure difference between two sections in the pipe is flp N/m2

• Then the 
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force A IIp will accelerate the liquid between the two sections, or 

dv 
M dt = A IIp 

Chap. 7 

where M kg is the mass of liquid in the pipe between the two sections and v mls is the 
velocity of liquid flow. Note that the mass M is equal to pAL, where p kglm3 is the den­
sity and L m is the distance between the two sections considered. Therefore, the last 
equation can be written 

dv 
pAL dt = A IIp 

Noting that Av m3/s is the volumetric flow rate and defining Q = Av m3/s, we can 
rewrite the preceding equation as 

pL dQ --- = IIp 
A dt 

(7-40) 

If pressure (N/m2) is chosen as a measure of potential, then the liquid-flow inertance I 
is obtained as 

If head (m) is chosen as a measure of potential, then, noting that IIp ::: Ilhpg, where 
Ilh is the differential head, we see that Equation (7-40) becomes 

or 

pL dQ 
--- = Ilhpg 
A dt 

~ dQ = Ilh 
Ag dt 

Consequently, the liquid-flow inertance I is obtained as 

Ilh L s2 
1=--=--

dQldt Ag m2 

Now consider water flow through a pipe whose cross-sectional area is 
1 x 10-3 m2 and in which two sections are 15 m apart. Compute the inertance 1. 
Assuming that the differential head between two sections is 1 m, compute the volumet­
ric water flow acceleration dQldt. 

Solution The liquid-flow inertance is 

or 

L 15 m s2 
I = - = -- = 1529.5s2/m2 

Ag 1 X 10-3 X 9.807 m2 m 
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For a differential head of 1 m between two sections that are 15 m apart, the volumetric 
water flow acceleration is 

dQ _ Ah _ Ah _ 1 _ 3 2 
dt - I - LIAg - 1529.5 - O.OO0654m Is 

Problem A-7-3 

Consider the liquid-level system shown in Figure 7-16. Assume that the outflow rate 
Q m3/s through the outflow valve is related to the head H m by 

Q = KYH = 0.01 Vii 
Assume also that, when the inflow rate Qi is 0.015 m3/s, the head stays constant. At 
t = 0 the inflow valve is closed, so there is no inflow for t ~ o. Find the time necessary 
to empty the tank to half the original head. The capacitance of the tank is 2 m2

• 

Solution When the head is stationary, the inflow rate equals the outflow rate. Thus, 
the head Ho at t = 0 is obtained from 

0.015 = 0.01 Viio 
or 

Ho = 2.25m 

The equation for the system for t > 0 is 

-CdH = Qdt 

or 

dH Q -O.OIVH 
-;Jt=-C= 2 

Consequently, 

dH Vii = -0.005 dt 

Assume that H = 1.125 m at 1 = 11. Integrating both sides of this last equation, we 
have 

11.125 dH /.11 
.. r;; = (-0.005) d1 = -0.005tl 

2.25 V H 0 

Qi-

H 
Capacitance C 

Figure 7-16 Liquid-level system. 
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It follows that 

1

1.125 

2YH = 2V1.125 - 2\1'2.25 = -0.005tl 
2.25 

or 

tl = 175.7 

Thus, the time necessary to empty the tank to half the original head is 175.7 s. 

Problem A-7-4 

Consider the liquid-level system of Figure 7-17(a). The curve of head versus flow rate 
is shown in Figure 7-17(b). Assume that at steady state the liquid flow rate is 
4 X 10-4 m3/s and the steady-state head is 1 m. At t = 0, the inflow valve is opened fur­
ther and the inflow rate is changed to 4.5 X 10-4 m3/s. Determine the average resis­
tance R of the outflow valve. Also, determine the change in head as a function of time. 
The capacitance C of the tank is 0.02 m2• 

Solution The flow rate through the outflow valve can be assumed to be 

Q=KYH 

Next, from the curve given in Figure 7-17 (b), we see that 

4 X 10-4 = KVi. 
or 

K = 4 X 10-4 

So if the steady-state flow rate is changed to 4.5 X 10-4 m3/s, then the new steady-state 
head can be obtained from 

or 

H = 1.266m 

Head 
m 

Ii + h 

c= O.02m2 

o 

(a) (b) 

Figure 7-17 (a) Liquid-level system; (b) curve of head versus flow rate. 
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This means that the change in head is 1.266 - 1 = 0.266 m. The average resistance R 
of the outflow valve is then 

dB 1.266 - 1 
R = - = = 0.532 X 104s/m2 

dQ (4.5 - 4) X 10-4 

Noting that the change in the liquid stored in the tank during dt seconds is equal 
to the net flow into the tank during the same dt seconds, we have 

C dh = (qj - %) dt 

where qj and qo are the changes in the inflow rate and outflow rate of the tank, respec­
tively, and h is the change in the head. Thus, 

Since 

it follows that 

or 

dh Cdt = qj - % 

h 
R=­

% 

RC
dh + h = Rq· dt I 

Substituting R = 0.532 X 104 51m2, C = 0.02 m2
, and qj = 0.5 X 10-4 m3/s into this 

last equation yields 

or 

0.532 X 104 X 0.02 dh + h = 0.532 X 104 X 0.5 X 10-4 
dt 

dh 
106.47t + h = 0.266 

Taking Laplace transforms of both sides of this last equation, with the initial condition 
h(O) = 0, we obtain 

or 

0.266 
(106.4s + 1)H(s) = -­

s 

0.266 [1 1 1 
H(s) = s(106.4s + 1) = 0.266 -; - s + (11106.4) 

The inverse Laplace transform of H(s) gives 

h(t) = 0.266(1 - e-tl106
.
4

) m 

This equation gives the change in head as a function of time. 
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Problem A-7-S 

For the liquid-level system shown in Figure 7-18, the steady-state flow rate through the 
tanks is Q and the steady-state heads of tank 1 and tank 2 are HI and H2, respectively. At 
t = 0, the inflow rate is changed from Q to Q + q, where q is small. The corresponding 
changes in the heads (h I and h2) and changes in flow rates (qi and q2) are assumed to be 
small as well. The capacitances of tank 1 and tank 2 are C 1 and C2, respectively. The resis­
tance of the valve between the tanks is R 1 and that of the outflow valve is R2• Assuming 
that q is the input and q2 the output, derive the transfer function for the system. 

Solution For tank 1, we have 

Hence, 

For tank 2, we get 

Therefore, 

hi - h2 
ql = Rl 

dhi 
CIT! = q - ql 

C
2 

dh2 + h2 + h2 = !!.! 
dt Rl R2 Rl 

(7-41) 

(7-42) 

Taking Laplace transforms of both sides of Equations (7-41) and (7-42), under the ini­
tial conditions hI (0) = 0 and h2(0) = 0, we obtain 

(c,s + ~JH'(S) = Q(s) + ~, H2(S) (7-43) 

(7-44) 

Q+q-~ 
Tank 1 Tank 2 

Figure 7-18 Liquid-level system. 
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From Equation (7-43), we have 

or 

(R}CIs + I)Hl(S) = RIQ(S) + H2(S) 

() 
RIQ(S) + H2(s) 

HI S = ------'-­
RICIS + 1 

Substituting this last equation into Equation (7-44) yields 

(
C2s + ~ + ~)H2(S) = 1 RIQ(S) + H2(S) 

RI R2 RI RICIS + 1 

Since H2(S) = R2Q2(S), we get 

( C2S + ~ + -l.)R2Q2(S) = Q(s) + R2 Q2(S) 
Rl R2 RICIS + 1 Rl RICIS + 1 

which can be simplified to 

[(C2R2s + I)(RIClS + 1) + R2C1S)Q2(S) = Q(s) 

Thus, the transfer function Q2( s )/Q( s) can be given by 

Q2(S) 1 

Q(s) = R1C}R2C2s
2 + (RICI + R2C2 + R2C.)s + 1 

which is Equation (7-13). 

Problem A-7-6 
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Consider the liquid-level system of Figure 7-19. At steady state, the inflow rate and out­
flow rate are both Q, the flow rate between the tanks is zero, and the heads of tank 1 and 
tank 2 are both H. At t = 0, the inflow rate is changed from Q to Q + q, where q is small. 
The resulting changes in the heads (hI and h2) and flow rates (ql and q2) are assumed to be 
small as well. The capacitances of tanks 1 and 2 are CI and C2, respectively_ The resistance 
of the valve between the tanks is Rl and that of the outflow valve is R2-

Derive the transfer function for the system when q is the input and h2 is the output. 

Solution For tank 1, we have 

Tank 2 

Q+q-~ 
Tank 1 

"-.. 

Figure 7-19 Liquid-level system_ 
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where 

Consequently, 

(7-45) 

For tank 2, we get 

where 

It follows that 

dh2 R2 R2 
R2C2Tt + RI h2 + h2 = R2q + RI hI (7-46) 

Eliminating hI from Equations (7-45) and (7-46), we have 

d2h2 dh2 dq 
RIC1R2C2 dt2 + (R1CI + R2C2 + R2CI)Tt + h2 = R1C1R2 dt + R2q (7-47) 

The transfer function H2(s)/Q(s) is then obtained from Equation (7-47) and is 

H2(s) R1C1R2s + R2 

Q(s) = RICIR2C2S2 + (RICI + R2C2 + R2Ctls + 1 

Problem A-7-7 

Consider the liquid-level system shown in Figure 7-20. In the system, QI and Q2 are 
steady-state inflow rates and H1 and H2 are steady·state heads. The quantities 
qih q,'2, hh h2' qh and % are considered small. Obtain a state-space representation of 
the system when hi and h2 are the outputs and qil and q,'2 are the inputs. 

Solution The equations for the system are 

C1 dh1 = (qil - ql) dt (7-48) 

Figure 7-20 LiqUid-level system. 
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hI - h2 
RI = qi 

C2dh2 = (ql + qi2 - %) dt 

h2 
R2 =% 

Using Equation (7-49) to eliminate ql from Equation (7-48) results in 

dhl _ ~ ( _ hI - h2) 
dt - C

1 
q;l Rl 

361 

(7-49) 

(7-50) 

(7-51) 

(7-52) 

Using Equations (7-49) and (7-51) to eliminate ql and qo from Equation (7-50) gives 

dhz 1 (hI - h2 h2) 
dt = C

2 
RI + qiZ - R2 

If we define state variables 

input variables 

and output variables 

UI = qil 
Uz = qil 

YI = hI = Xl 

Y2 :::: hl = Xl 

then Equations (7-52) and (7-53) can be written as 

. 1 1 1 
Xl = - RIC

I 
Xl + RIC

I 
Xl + C

1 
UI 

. 1 (1 1) 1 
X2 = RIC

l 
Xl - Rie

Z 
+ RzCz X2 + C

2 
U2 

In standard vector-matrix representation, we have 

which is the state equation, and 

which is the output equation. 

Problem A-7-8 

(7-53) 

Obtain a mechanical analog of the liquid-level system shown in Figure 7-21 when q is 
the input and qz the output. 
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Tank! Tank 2 

iit + hI t 

1 
~+~ -

L--L~~~~==L--L~ __ ~==~~=Q+q2 

Figure 7-21 Liquid-level system. 

Solution The equations for the liquid-level system are 

hI - hz 
qi = R} 

dhz 
CzTt = qi - q2 

h2 
qz=-

R2 

Chap. 7 

(7-54) 

(7-55) 

(7-56) 

(7-57) 

Analogous quantities in a mechanical-liquid-level analogy are shown in Table 7-2. 
(Note that other mechanical-liquid-level analogies are possible as well.) Using the 
analogous quantities shown in the table, Equations (7-54) through (7-57) can be mod­
ified to 

b1Xl = F - Fl 

PI = kl(Xl - Xz) 

!Jzxz = Fl - F2 
F2 = k2X 2 

TABLE 7-2 Mechanical-Liquid-Level Analogy 

Mechanical Systems Liquid-Level Systems 

F(force) q (flow rate) 
x (displacement) ~ (head) 
x (velocity) h (time change of head) 
b (viscous-friction coefficient) C (capacitance) 

k (spring constant) ~ (reciprocal of resistance) 

(7-58) 

(7-59) 

(7-60) 
(7-61) 
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Rewriting Equations (7-58) through (7-61), we obtain 

bIXl + kt(Xl - X2) = F 

~X2 + k 2X2 = kt(Xl - X2) 

363 

On the basis of the last two equations, we can obtain an analogous mechanical system 
as shown in Figure 7-22. 

Problem A-7-C) 

In dealing with gas systems, we find it convenient to work in molar quantities, because 
1 mole of any gas contains the same number of molecules. Thus, 1 mole occupies the 
same volume if measured under the same conditions of pressure and temperature. 

At standard pressure and temperature (1.0133 x 105 N/m2 abs and 273 K, or 
14.7 psia and 492°R), 1 kg mole of any gas is found to occupy 22.4 m3 (or lib mole of 
any gas is found to occupy 359 rt3). For instance, at standard pressure and temperature, 
the volume occupied by 2 kg of hydrogen, 32 kg of oxygen, or 28 kg of nitrogen is the 
same, 22.4 m3• This volume is called the molal volume and is denoted by v. 

For 1 mole of gas, 

pv= RT (7-62) 

The value of R is the same for all gases under alI conditions. The constant R is the uni­
versal gas constant. 

Fmd the value of the universal gas constant in S1 and BES units. 

Solution Substituting p = 1.0133 x lOS N/m2 abs, v = 22.4 m3/kg-mole, and T = 
273 K into Equation (7-62), we obtain 

R = pv = 1.0133 X 10
5 

x 22.4 = 8314 N-mlkg-mole K 
T 273 

This is the universal gas constant in SI units. 
To obtain the universal gas constant in BES units, we substitute p = 14.7 psia 

= 14.7 x 144 Iblft2 abs, v = 359 ft3Ilb-mole, and T = 492°R into Equation (7-62). 

R = pv = 14.7 X 144 X 359 = 1545 ft-Ibfllb-mole OR 
T 492 

= 1.985 Btullb-mole OR 

Figure 7-ZZ Mechanical analog of the liquid-level 
system shown in Figure 7-21. 
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Problem A-7-10 

Referring to the pneumatic pressure system shown in Figure 7-23, assume that the sys­
tem is at steady state for t < 0 and that the steady-state pressure of the system is 
P = 5 X lOS N/m2 abs. At t = 0, the inlet pressure is suddenly changed from P to 
P + Ph where Pi is a step change with a magnitude equal to 2 X 10" N/m2

• This change 
causes the air to flow into the vessel until the pressure equalizes. Assume that the initial 
flow rate is q(O) = 1 X 10-4 kg/so As air flows into the vessel, the pressure of the air in 
the vessel rises from P to P + Po. Determine Po as a function of time. Assume that the 
expansion process is isothermal (n = 1), that the temperature of the entire system is 
constant at T = 293 K, and that the vessel has a capacity of 0.1 m3• 

Solution The average resistance of the valve is 

ap 2 X 104 
R = - = = 2 X 108 N-slkg-m2 

q 1 X 10-4 

The capacitance of the vessel is 

where 

Thus, 

C - _v_ _ 0.1 _ -6 2 
- nRairT - 1 X 287 X 293 - 1.19 X 10 kg-m IN 

A mathematical model for this system is obtained from 

C dpo = qdt 

ap Pi - Po 
q=-=--

R R 

dpo 
RCTt + Po = Pi 

Substituting the values of R, C, and Pi into this last equation, we have 

2 X 108 X 1.19 X 10-
6dpo + Po = 2 X 104 

dt 

Capacitance C 

~/ 
P+Po 

Figure 7-23 Pneumatic pressure system. 

q(kgls) 
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or 

dpo 4 
238- + n = 2 X 10 dt 1'0 

365 

(7-63) 

Taking Laplace transforms of both sides of Equation (7-63), with the initial condition 
Po(O) = 0, we get 

or 

(238s + I)Po(s) = 2 X 104! 
s 

2 X 104 

Po(s) = s(238s + 1) 

= 2 X 104(! _ 1 ) 
s s + 0.0042 

The inverse Laplace transform of this last equation is 

Po{t) = 2 X 104(1 - e-o·00421 ) 

which gives Po{ t) as a function of time. 

ProblemA-7-11 

Air is compressed into a tank of volume 2 m3• The compressed air pressure is 
5 X 105 N/m2 gage and the temperature is 20°C. Find the mass of air in the tank. Also, 
find the specific volume and specific weight of the compressed air. 

Solution The pressure and temperature are 

P = (5 + 1.0133) X lOS N/m2 abs 

T = 273 + 20 = 293 K 

From Table 7-1, the gas constant of air is Rair = 287 N-mlkg K. Therefore, the mass of 
the compressed air is 

m = pV = 6.0133 X 10
5 

X 2 = 14.3 kg 
RairT 287 X 293 

The specific volume v is 

V 2 
v = - = - = 0.140m3/kg 

m 14.3 

The specific weight 'Y is 

'Y = n;; = 14.3 ~ 9.807 = 70.1 N/m3 

Problem A-7-12 

The molecular weight of a pure substance is the weight of one molecule of the sub­
stance, compared with the weight of one oxygen atom, which is taken to be 16. That is, 
the molecular weight of carbon dioxide (C02) is 12 + (16 X 2) = 44. The molecular 
weights of (molecular) oxygen and water vapor are 32 and 18, respectively. 

Determine the specific volume v of a mixture that consists of 100 m3 of oxygen, 
5 m3 of carbon dioxide, and 20 m3 of water vapor when the pressure and temperature 
are 1.0133 X 105 N/m2 abs and 294 K, respectively. 
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Solution The mean molecular weight of the mixture is 

M = (32 X ~~) + ( 44 X 1~) + (18 X 1~) = 30.24 
Thus, 

RT 8314 X 294 v ::: - = = 0.798 m3/kg 
M p 30.24 X 1.0133 X 105 

Problem A-7-13 

Sound is a longitudinal wave phenomenon representing the propagation of compres­
sional waves in an elastic medium. The speed e of propagation of a sound wave is given 
by 

c=~ 
Show that the speed e of sound can also be given by 

e = VkRT 

where 

k = ratio of specific heats, elev 

R = gas constant 

T = absolute temperature 

Fmd the speed of sound in air when the temperature is 293 K. 

Solution Since the pressure and temperature changes due to the passage of a sound 
wave are negligible, the process can be considered isentropic. Then 

Therefore, 

Since p = pRT, we obtain 

p 
- = constant 
pk 

dp kp 
dp =-;; 

e = {Qp:::: fliP = VkRT -Vd; -V--; 
For a given gas, the values of k and R are constant. So the speed of sound in a gas is a 
function only of the absolute temperature of the gas. 

Noting that, for air, 

k = 1.40 

Rair = 287 N-mlkg K 

we find the speed of sound to be 

e :::: V kRairT = V 1.40 X 287 X 293 = 343.1 mls 

= 1235 kmlh = 1126 ftls = 768 miIh 

! 
I , 
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Problem A-7-14 

Fmd a linearized equation for 

z = 0.4x3 = f(x) 

about a point x = 2, Z = 3.2. 

Solution The Thylor series expansion of f(x) about the point (2,3.2), neglecting the 
higher order terms, is 

z - z = a(x - x) 

where 

a = dfl = 1.2X21 = 4.8 
dx x=2 x=2 

So the linear approximation of the given nonlinear equation is 

z - 3.2 = 4.8( x - 2) (7-64) 

Figure 7-24 depicts a nonlinear curve z = 0.4x3 and the linear equation given by 
Equation (7-64). Note that the straight-line approximation of the cubic curve is valid 
near the point (2,3.2). 

6 

z - 3.2 = 4.8 (x - 2) 
5 

4 

3 

2 

1 

o 1 2 3 4 x 

Problem A-7-lS 

Linearize the nonlinear equation 

Figure 7-24 Nonlinear curve z = 0.4x3 

and its linear approximation at point x = 2 
andz = 3.2. 

z = xl 
in the region 5 S x S 7,10 s y s 12. Find the error if the linearized equation is used 
to calculate the value of z when x = 5, Y = 10. 

Solution Since the region considered is given by 5 s x s 7, 10 s Y s 12, choose 
x = 6, Y = 11. Then z = xy2 = 726. Let us obtain a linearized equation for the non­
linear equation near a point x = 6, Y = 11, Z = 726. 
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Expanding the nonlinear equation into a Taylor series about the point 
x = :i, Y = y, z = z and neglecting the higher order terms, we have 

z - z = a( x - x) + bey - y) 

where 

a(xl) I a = -- = y2 = 121 ax x::::x,y::::y 

b = a(xl) I = 2xy = 132 
ay x::::x,y=y 

Hence, the linearized equation is 

z - 726 = 121(x - 6) + 132(y - 11) 

or 

z = 121x + 132y - 1452 

When x == 5, y = 10, the value of z given by the linearized equation is 

z == 121x + 132y - 1452 = 605 + 1320 - 1452 = 473 

The exact value of z is z = xl = 500. The error is thus 500 - 473 = 27. In terms of 
percentage, the error is 5.4%. 

Problem A-7-16 

Linearize the nonlinear equation 

x z=-
Y 

in the region defined by 90 s x :s 110,45 s y s 55. 

Solution Let us choose x = 100, Y = 50. The given function z = xl y can be expanded 
into a Taylor series as follows: 

x 
z = - = t(x,y) 

y 

;;; t(x, y) + at (x _ x) + at (y _ y) + 
ax ay 

Thus, a linearized equation for the system is 

x 
z - = = a( x - x) + bey - y) y 

where:i = 100, Y = 50, and 

a = :~L."",y.5O = ;L.,~Y-5O = 5~ 
b = :;I%.,00,Y.5O = - ;2 Loo,y.so = -~ 

Hence, 

100 1 1 
z - - = -(x - 100) - -(y - 50) 

50 50 25 
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or 

x - 2y - 50z + 100 = 0 

This is a linearized equation for the nonlinear system in the given region. 

Problem A-7-17 

A six-pulley hoist is shown in Figure 7-25. If the piston area A is 30 X 10-4 m2 and the 
pressure difference PI - P2 is 5 X 106 N/m2, find the mass m of the maximum load that 
can be pulled up. Neglect the friction force in the system. 

Solution The hydraulic force on the piston is 

A(PI - P2) = 30 X 10-4 X 5 X 106 = 15,000 N 

Note that in this system the piston pulls six cables. Since the tension is the same on the 
entire length of the cable, we obtain 

6F = 15,OOON 

Figure 7-25 Six-pulley hoist. 
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where F is the tension in the cable and also is the lifting force. This force should be 
equal to mg; that is, 

F=mg 

or 

15,000 
m = 9.807 X 6 = 254.9 kg 

ProblemA-7-18 

Consider the hydraulic system shown in Figure 7-26. The left-hand side of the pilot valve 
is joined to the left-hand side of the power piston by a link ABC. This link is a floating 
link rather than one moving about a fixed pivot. The system is a hydraulic controller. 

The system operates in the following way: If input e moves the pilot valve to the 
right, port I will be uncovered and high-pressure oil will flow through that port into the 
right-hand side of the power piston, forcing it to the left. The power piston, in moving to 
the left, will carry the feedback link ABC with it, thereby moving the pilot valve to the 
left. This action continues until the pilot valve again covers ports I and II. 

Derive the transfer function Y(s)IE(s). 

Solution At the moment point A is moved to the right, point C acts as a fixed point. 
Therefore, the displacement of point B is ebl( 0 + b). As the power piston moves to the 
left, point A acts as a fixed point, and the displacement of point B due to the motion of 
the power piston is yal( 0 + b). Hence, the net displacement x of point B is 

eb ya 
x = -- - -- (7--65) 

o+b o+b 

From Equation (7-32), the transfer function between displacement y and displacement 
xis given by 

Yes) K 
Xes) =-; 

Equation (7--65) can be rewritten as 

b 0 
Xes) = 0 + b E(s) - a + b Yes) 

Figure 7-26 Hydraulic system. 

A 

a 

Oil 
under 

y -- lOf----:~--

""'---';;=-_-Ir 

(7--66) 

(7-67) 
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Eliminating X{s) from Equations (7-66) and (7-67), we obtain 

s b a 
- Y{s) = --£(s) - --Y(s) 
K a+b a+b 

or 

(
sa ) b - + -- Y(s) = --£(s) 
K a+b a+b 

Hence, 

bK 
Y(s) (a + b)s 

£(s) = 1 + aK 
(a + b)s 

(7-68) 

Under normal operations of the system, IKa/[s(a + b)]1 ~ 1. Thus, Equation (7-68) 
can be simplified to 

Y(s) =!!. = K 
£(s) a P 

Thus the transfer function between y and e becomes a constant. The hydraulic system 
shown in Figure 7-26 acts as a proportional controller, the gain of which is Kp. This gain 
can be adjusted by effectively changing the lever ratio bla. (The adjusting mechanism is 
not shown in the diagram.) 

Problem A-7-19 

Consider the thermal system shown in Figure 7-27. Assume that the tank is insulated to 
eliminate heat loss to the surrounding air. Assume also that there is no heat storage in 
the insulation and that the liquid in the tank is perfectly mixed so that it is at a uniform 
temperature. Thus, a single temperature is used to describe both the temperature of the 
liquid in the tank and that of the outflowing liquid. 

Cold 

Let us define 

e; = steady-state temperature of inflowing liquid, °C 

eo = steady-state temperature of outflowing liquid, °C 

G = steady-state liquid flow rate, kgls 

M = mass of liquid in tank, kg 

c = specific heat of liquid, kcal/kg °C 

liquid ~-----'~"'77'"r7'-r7""7'"""r~ 
Figure 7-27 Thermal system. 
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R = thermal resistance, °C slkcal 

C = thermal capacitance, kcall°C 

H = steady-state heat input rate, kcalls 

Chap. 7 

Suppose that the system is subjected to changes in both the heat input rate and the 
temperature of the inflow liquid, while the liquid flow rate is kept constant. Define 8 as 
the change in the temperature of the outflowing liquid when both the heat input rate 
and inflow liquid temperature are changed. Obtain a differential equation in 8. 

Solution The system is subjected to two inputs. In Example 7-5, we considered two in­
puts at the same time in deriving the system equation there. In the current example prob­
lem, we consider the two inputs independently. (This approach is valid for any linear 
system.) We shall first consider the change in the temperature of the outflowing liquid 
when the heat input rate is changed. 

Assume that the temperature of the inflowing liquid is kept constant and that the 
heat input rate to the system (the heat supplied by the heater) is suddenly changed from 
H to H + hi' where h; is small. The heat outflow rate will then change gradually from 
H to H + ho. The temperature of the outflowing liquid will also change, from @o to 
@o + 81· For this case, 

ho = Ge81 

C= Me 

R=~=.l... 
ho Ge 

The differential equation for the system is 

d81 
C- = h· - h dt I 0 

which may be rewritten as 

d81 RC- + 81 = Rh· dt I 

Next, consider the change in the temperature of the outflowing liquid when the 
temperature of the inflowing liquid is changed. If the temperature of the inflowing 
liquid is suddenly changed from 8; to 8 j + 8j while the heat input rate H and the liq­
uid flow rate G are kept constant, then the heat outflow rate will be changed from H 
~ H + ho, and the temperature of the outflowing liquid will be changed from @o to 
@o + 82• The differential equation for this case is 

d82 C- = Ge8· - h dt I 0 

which may be rewritten 

d82 RC- + 82 = 8· dt I 

where we used the relationship ho = Ge82. 
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Since the present thermal system is subjected to changes in both the temperature 
of the inflow liquid and the heat input rate, the total change (J in the temperature of the 
outflowing liquid is the sum of the two individual changes, or (J = (Jl + (J2. Thus, we 
obtain 

d(J 
RC- + (J = (J. + Rh· dt I I 

Problem A-7-20 

In the thermal system shown in Figure 7-28(a), it is assumed that the tank is insulated 
to eliminate heat loss to the surrounding air, that there is no heat storage in the insula­
tion, and that the liquid in the tank is perfectly mixed so that it is at a uniform temper­
ature. (Thus, a single temperature can be used to denote both the temperature of the 
liquid in the tank and that of the outflowing liquid.) It is further assumed that the flow 
rate of liquid into and out of the tank is constant and that the inflow temperature is 
constant at ate. For t < 0, the system is at steady state and the heater supplies heat at 
the rate H J/s. At t = 0, the heat input rate is changed from H to H + h J/s. This 
change causes the outflow liquid temperature to change from @o to @o + (J°C. Sup­
pose that the change in temperature, (J°C, is the output and that the change in the heat 
input, h lIs, is the input to the system. Determine the transfer function 8( s)1 H (s ) ,where 
8(s) = !f[(J(t)] and H(s) = !f[h(t)]. Show that the thermal system is analogous to 
the electrical system of Figure 7-28(b), where voltage eo is the output and current i is 
the input. 

Solution Define 

Then 

G = liquid flow rate, kgls 

c = specific heat of liquid, J/kg-K 

M = mass of liquid in the tank, kg 

R = thermal resistance, K-sII 
C :::: thermal capacitance, JIK 

ho = change in heat added to outflowing liquid, Jls 

(a) 

C =Mc 

Hot 
V77.:m;-'77)z/ liquid 

Figure 7-28 (a) Thermal system; (b) analogous electrical system. 

R c 

(b) 
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Note that 

H = Gc(8o - @j) 

H + ho = Gc(Bo + 8 - B;) 

So we have 

Note also that 

The heat balance equation is 

or 

Thus, 

and the transfer function is 

ho = Gc8 

8 1 
R=-=­

ho Gc 

C d8 = (h - ho) dt 

d8 8 
C- = h --

dt R 

d8 
RC- + 8 = Rh 

dt 

8(s) R 
H(s) = RCs + 1 

For the electrical circuit shown in Figure 7-28(b), define the currents through 
resistance R and capacitance C as il and i2, respectively. Then the equation for the cir­
cuit becomes 

Ri} = ~ / i2 dt = eo 

The Laplace transform of this last equation, assuming a zero initial condition, is 

1 
RII(S) = Cs 12(s) = Eo(s) 

Substituting 12(s) = I(s) - It(s) into the preceding equation, we have 

1 
Rlt(s) = Cs [/(s) - It(s)] 

or 

R 
Rlt(s) = RCs + 1/(s) == Eo(s) 

The transfer function Eo( s )/ / (s) is 

Eo(s) R 
/(s) = RCs + 1 
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Comparing the transfer function of the thermal system with that of the electrical sys­
tem, we find the analogy apparent. 

PROBLEMS 

Problem 8-7-1 

For laminar flow through a cylindrical pipe, the relationship between the differential 
head h m and flow rate Q m3/s is given by the Hagen-Poiseuille formula 

where 

v = kinematic viscosity, m2/s 

L = length of pipe, m 

D = diameter of pipe, m 

h = 128vL Q 
g'fl'D4 

Thus, the laminar-flow resistance R/ for the liquid flow through cylindrical pipes is 
given by 

R - dh _ 128vL I 2 I-----sm 
dQ g'fl'D4 

Now consider the flow of water through a capillary tube. Assuming that the temperature 
of the water is 20°C and that the flow is laminar, obtain the resistance R/ of the capillary 
tube. The kinematic viscosity v of water at a temperature of 20°C is 1.004 X 10-6 m2/s. 
Assume that the length L of the capillary tube is 2 m and the diameter is 4 mm. 

Problem 8-7-2 

In the liquid-level system shown in Figure 7-29, the head is kept at 1 m for t < O. The 
inflow valve opening is changed at t = 0, and the inflow rate is 0.05 m3/s for t 2: O. 
Determine the time needed to fill the tank to a 2.5-m level. Assume that the outflow 
rate Q m3/s and head H m are related by 

Q = O.02vR 

The capacitance of the tank is 2 m2
• 

r 
2.sm 

1 
t----y---+- t = 0 

-L4--L-~J:=.'-- Q 

C=2m2 Figure 7-29 Liquid-level system. 
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Problem B-7-3 

At steady state, the flow rate throughout the liquid-level system shown in Figure 7-30 
is Q, and the heads of tanks 1 and 2 are HI and H2, respectively. At t = 0, the inflow 
rate is changed from Q to Q + q, where q is small. The resulting changes in the heads 
(hi and h2) and flow rates (qt and q2) are assumed to be small as well. The capacitances 
of tanks 1 and 2 are CI and C2, respectively. The resistance of the outflow valve of tank 
1 is Rl and that of tank 2 is R2• Obtain the transfer function for the system when q is the 
input and q2 the output. 

Q+q-~ 
Tank! 

Tank 2 

Figure 7-30 Liquid-level system. 

Problem 8-7-4 

Tank 1 

Consider the liquid-level system shown in Figure 7-31. At steady state, the inflow 
rate and outflow rate ar~oth Q and the heads of tanks 1, 2, and 3 are HIt H2, and 
!!.3, respectively, where HI == H2• At t == 0, the inflow rate is changed from Q to 
Q + qi' Assuming that hit h2' and h3 are small changes, obtain the transfer function 
Qo(s)/Q;(s). 

Tank 2 Tank 3 

Figure 7-31 Liquid-level system. 
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Problem 8-7-5 

Consider the conical water tank system shown in Figure 7-32. The flow through the 
valve is turbulent and is related to the head H by 

Q = O.oosVn 
where Q is the flow rate measured in m3/s and H is in meters. Suppose that the head is 
2 m at t = O. What will be the head at t = 60 s? 

Figure 7-32 Conical water tank system. 

Problem 8-7-6 

Obtain an electrical analog of the liquid-level system shown in Figure 7-30. 

Problem 8-7-7 

Obtain an electrical analog of the liquid-level system shown in Figure 7-21 when q is 
the input and q2 the output. 

Problem 8-7-8 

Air is compressed into a tank of volume 10 m3• The pressure is 7 X 105 N/m2 gage and 
the temperature is 20°C. Fmd the mass of air in the tank. If the temperature of the com­
pressed air is raised to 40°C, what is the gage pressure of air in the tank in N/m2, in 
kgjlcm2, and in Ibt'in.2? 

Problem 8-7-9 

For the pneumatic system shown in Figure 7-33, assume that the steady-state values of 
the air pressure and the displacement of the bellows are P and X, respectively. Assume 
also that the input pressure is changed from P to P + Pi, where Pi is small. This change 
will cause the displacement of the bellows to change a small amount x. Assuming that 
the capacitance of the bellows is C and the resistance of the valve is R, obtain the trans­
fer function relating x and Pi' 
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x+x 

c 

--+- ---V" ....... -....,.,. 

ji + Po 

Figure 7-33 Pneumatic system. 

Problem B-7-10 

Consider the pneumatic pressure system shown in Figure 7-34. For t < 0, the inlet 
valve is closed, the outlet valve is fully opened to the atmosphere, and the pressure P2 
in the vessel is atmospheric pressure. At t = 0, the inlet valve is fully opened. The inlet 
pipe is connected to a pressure source that supplies air at a constant pressure Ph where 
PI = 0.5 X 105 N/m2 gage. Assume that the expansion process is isothermal (n = 1) 
and that the temperature of the entire system stays constant. 

Determine the steady-state pressure P2 in the vessel after the inlet valve is fully 
opened, assuming that the inlet and outlet valves are identical (i.e., both valves have 
identical flow characteristics). 

Inlet 
valve 

Figure 7-34 Pneumatic pressure system. 

Problem B-7-11 

Figure 7-35 shows a toggle joint. Show that 

F = 22R 
12 

Outlet 
valve 

P3 

Atmospheric 
pressure 
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R 

t 

, 
R Figure 7-35 Toggle joint. 

Problem 8-7-12 

Consider the pneumatic system shown in Figure 7-36. The load consists of a mass m 
and friction. The frictional force is assumed to be p.N = p.mg. If m = 1000 kg, p, = 0.3, 
and PI - P2 = 5 X lOS N/m2, find the minimum area of the piston needed if the load is 
to be moved. Note that the frictional force p. mg acts in the direction opposite to the 
intended direction of motion. 

x 

A 

~F 

N 

Figure 7-36 Pneumatic system. 

Problem 8-7-13 

In the system of Figure 7-37, a mass m is to be pushed upward along the inclined plane 
by the pneumatic cylinder. The friction force ILN is acting opposite to the direction of 
motion or intended motion. If the load is to be moved, show that the area A of the pis­
ton must not be smaller than 

mg sin(6 + a) 

(PI - P2)cos6 

where 6 = tan-1 p, and a is the angle of inclination of the plane. 
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x 

mg N;:: mg cosoc 

Figure 7-37 Pneumatic system. 

Problem 8-7-14 

The system shown in Figure 7-38 consists of a power cylinder and a rack-and-pinion 
mechanism to drive the load. Power piston D moves rack C, which, in turn, causes pin­
ion B to rotate on rack A. Fmd the displacement y of the output when the displacement 
of the power piston is x. 

D 

Figure 7-38 Pneumatic system. 

Problem 8-7-15 

Obtain a linear approximation of 

Q = 0.1YH = f{H) 

about the operating point H = 4, Q :: 0.2. 

Problem 8-7-16 

Fmd a linearized equation of 

about the point x :: 2, Z = 20. 

Problem 8-7-17 

Linearize the nonlinear equation 

Z = x2 + 2xy + 5y2 

in the region defined by 10 s x s 12, 4 s Y so 6. 

y 
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Problem 8-7-18 

Pascal's law states that the pressure at any point in a static liquid is the same in every 
direction and exerts equal force on equal areas. Examine Figure 7-39. If a force of Pl is 
applied to the left-hand·side piston, find the force P2 acting on the right-hand-side pis­
ton. Also, find the distance X2 m traveled by the piston on the right-hand side when the 
one on the left-hand side is moved by Xl m. 

Figure 7-39 Hydraulic system. 

Problem B-7-19 

Figure 7-40 is a schematic diagram of an aircraft elevator control system. The input to the 
system is the deflection angle 8 of the control lever, and the output is the elevator angle 
q,. Assume that angles 8 and q, are relatively small. Show that, for each angle 8 of the con­
trollever, there is a corresponding (steady-state) elevator angle q,. 

Oil under 

I a 

\.tot---::----II--....--=--

Figure 7-40 Aircraft elevator control system. 
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Problem 8-7-20 

Consider the thermal system shown in Figure 7-41. The temperature of the inflow liq­
uid is kept constant, and the liquid inflow rate G kgls is also kept constant. For t < 0, 
the system is at steady state, wherein the heat input from the heater is U kcal/s and the 
temperature of the liquid in tank 2 is 82°C. At t = 0, the heat input is changed from U 
to U + u, where U is small. This change will cause the temperature of the liquid in tank 
2 to change from @2 to @2 + 82• Taking the change in the heat input from the heater to 
be the input to the system and the change in the temperature of the liquid in tank 2 to 
be the output, obtain the transfer function ~ (s)JU(s). Assume that the thermal 
capacitances of tanks 1 and 2 are C1 kcal/°C and C2 kcal/oC, respectively, and that the 
specific heat of the liquid is c kcal/kgOC. The steady-state heat flow rates from tanks 1 
and 2 are the same, Q kcal/s. The changes in heat flow rates from tanks 1 and 2 are qh 
and Q2, respectively. 

Tankl~ 

\ 
Figure 7-41 Thermal system. Tank 2 



Time-Domain Analysis 
of Dynamic Systems 

8-1 INTRODUCTION 

This chapter deals primarily with the transient-response analysis of dynamic sys­
tems and obtains analytical solutions giving the responses. The chapter also derives 
an analytical solution of the state equation when the input is a step, impulse, or ramp 
function. (The method can be extended to obtain an analytical solution for any 
time-domain input.) 

Natural and forced responses. Consider a system defined by a differential 

equation, for instance, 
(n) (n-l) . _ () (8-1) 
x + al x + + an-IX + anx - P t 

. a are constants, x{t) is the dependent variable, tis 
where the coefficients al, Q2, ••• , ~ • functi' 

. bl d pet) IS the mput on. 
the indepe~dent v~a e, a; (8-1) has a complete solution x(t) composed of two 

The differential equa Ion. t and the articular solution x p( t). The com-
parts: the complementarY ~olntiO; :c~) uating th~ right-hand side of Equation .(8-1) 
plementaIY solution le(t) 1S~o:d hJm;geneous differential equ~tion. The particular 
to zero and solving the ass~: functional form of the input function pet). 

. (t) depends on 
so)utJon xp 
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If the complementary solution xc(t) approaches zero or a constant value as 
time t approaches infinity and if limt_ooX p( t) is a bounded function of time, the sys­
tem is said to be in a steady state. 

Customarily, engineers call the complementary solution xC< t) and the particu­
lar solution x p( t) the natural and forced responses, respectively. Although the natur­
al behavior of a system is not itself a response to any external or input function, a 
study of this type of behavior will reveal characteristics that will be useful in pre­
dicting the forced response as well. 

Transient response and steady-state response. Both the natural and 
forced responses of a dynamic system consist of two parts: the transient response and 
the steady-state response. Transient response refers to the process generated in going 
from the initial state to the final state. By steady-state response, we mean the way in 
which the system output behaves as t approaches infinity. The transient response of a 
dynamic system often exhibits damped vibrations before reaching a steady state. 

Outline of the chapter. Section 8-1 has presented introductory material. 
Section 8-2 deals with the transient-response analysis of first-order systems subjected to 
step and ramp inputs. Section 8-3 begins with the transient-response analysis of second­
order systems subjected to initial conditions only. A discussion of the transient response 
of such systems to step inputs then follows. Section 8-4 treats higher order systems. Fi­
nally, Section 8-5 presents an analytical solution of the state-space equation. 

8-2 TRANSIENT-RESPONSE ANALYSIS OF FIRST-ORDER SYSTEMS 

From time to time in Chapters 2 through 7, we analyzed the transient response of 
several first-order systems. Essentially, this section is a systematic review of the tran­
sient response analysis of first-order systems. In the current section, we consider a 
thermal system (a thin, glass-walled mercury thermometer system) as an example of 
a first-order system. We shall find the system's response to step and ramp inputs. 
Then we point out that the mathematical results obtained can be applied to any 
physical or nonphysical system having the same mathematical model. 

Step response of first-order system. For the thin, glass-walled mercury 
then:nometer system ~own in Figure 8-1, assume that the thermometer is at the 
ambIent ~mperature eoc and that at t = 0 it is immersed in a water bath of tem­
Pheratur~ @+Oboe.(8bisthedifferencebetweenthetemperatureofthebathand 
t e ambIent temperature.) Let us define th . t 
ture ase + BOC. [Note that 8' th h.e 

IDS antaneous thermometer tempera-
ing the condition 8(0) = O.JIS Wee ~ha::l~~ ~e thermometer temperature satisfy­
temperature is constant, or 8

b 
is constant. " . he response fJ( t) when the bath 

'!Ie presented a mathematical model of -fbi . 
equatIon for the heat balance for this system is s system m Section 7-6. The basic 

C d8 ::: qdt 
;~ere C. (kcal/oc) is the thermal capacitaeof (8-2) 

beat Input to the thermomctc;I. The beat~ut ~~;:.r:nollleter iI!ld q (kcaJ/s) . 
\' CIlIS) can be g.lve . IS 

DIn terms of 
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Let us derive the ramp response 8{t). 
FIrst, note that 

Substituting this equation into Equation (8-5), we find that 

1 r [1 T T] 
B( s) = Ts + 1 s2 = r s2 - -; + s + (liT) 

The inverse Laplace transform of this last equation gives 

8(t) = ret - T + Te-trI) t ~ 0 (8-7) 

The error e(t) between the actual bath temperature and the indicated thermometer 
temperature is 

e(t) = rt - 8{t) = rT{l - e- trr ) 

As t approaches infinity, e-trr approaches zero. Thus, the error e(t) approaches rT, or 

e{oo) = rT 

The ramp input rt and response 8(t) versus t are shown in Figure 8-3. The error in 
following the ramp input is equal to rT for sufficiently large t. The smaller the time 
constant T, the smaller is the steady-state error in following the ramp input. 

Comments. Since the mathematical analysis does not depend on the physi­
cal structure of the system, the preceding results for step and ramp responses can be 
applied to any systems having the mathematical model 

9(t) 

o Figure 8-3 Ramp response curve for the 
first-order system. 

(8-8) 
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where 

T = time constant of the system 
Xi = input or forcing function 
Xo = output or response function 

From Equation (8-6), for a step input Xi(t) = r 'l(t), any system described by 
Equation (8-8) will exhibit the following response: 

xo(t) = (1 - e-t/T)r 

Similarly, for a ramp input Xi(t) = rt ·l(t), any system described by Equation (8-8) 
will exhibit the following response [see Equation (8-7)]: 

xo(t) = r(t - T + Te-t/T) 

Many physical systems have the mathematical model given by Equation (8-8); 
Table 8-1 shows several such systems, which are analogous. All analogous systems 
exhibit the same response to the same input function. 

8-3 TRANSIENT-RESPONSE ANALYSIS OF SECOND-ORDER 
SYSTEMS 

Let us next consider the transient-response analysis of second-order systems such as 
a spring-mass system and a spring-mass-dashpot system. The results obtained can 
be applied to the response of any analogous systems. 

We first discuss the free vibration of a spring-mass system and then treat the 
free vibration of a spring-mass-dashpot system. Since the step response of the sec­
ond-order system is discussed fully in Chapter 10, we shall not present the details of 
such a response here. Instead, we shall treat only illustrative examples of the step 
responses of second-order systems with and without damping. 

Free vibration without damping. Consider the spring-mass system shown 
in Figure 8-4. We shall obtain the response of the system when the mass is displaced 
downward by a distance x(O) and released with an initial velocity x(O). The dis­
placement X is measured from the equilibrium position . 

The mathematical model of the system is 

mx + kx = 0 

The solution of the preceding equation gives the response x(t). To solve this differ­
ential equation, let us take Laplace transforms of both sides: 

m[s2X(s) - sx(O) - x(O)] + kX(s) = 0 

which can be rewritten as 

(ms2 + k)X(s) = m[sx(O) + x(O)] 
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TABLE 8-1 Examples of Physical Systems Having a Mathematical 
Model of the Form T( dxo/dt) + Xo = XI 

_----'I I 
.i • 

dpo 
RC - + p = p. 

7 R 1 P+Po 
P+Pi 

dt 0 , 

Solving for X(s) yields 

) 
sx(O) + x(O) 

X (s = ---.,;�-....;,.......;. 
S2 + (kIm) 

x(O) � x(O)s = -- +--....:........:--
v7d; s2 + (v7d;)2 s2 + (v7d;)2 

389 
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Figure � Spring-mass system. 
x 

The inverse Laplace transform of this last equation gives 

x(t) = X(O)� sin J!; t + x(o) cosJ!;t 

The response x(t) consists of a sine and a cosine function and depends on the values 
of the initial conditions x(O) and x(O). A typical free-vibration curve is shown in 
Figure 8-5. If, for example, the mass is released with zero velocity, so that X(O) = 0, 
then the motion x(t) is a simple cosine function: 

x(t) = x(O) cosJ!;t 

Free vibration with viscous damping. Damping is always present in actu­
al mechanical systems, although in some cases it may be negligibly small. 

The mechanical system shown in Figure 8-6 consists of a mass, a spring, and a 
dashpot. If the mass is pulled downward and released, it will vibrate freely. The 
amplitude of the resulting motion will decrease with each cycle at a rate that 
depends on the amount of viscous damping. (Since the damping force opposes 
motion, there is a continual loss of energy in the system.) 

x 

x(O) 

O�----�� ________ � ________ � ____ � 

Figure 8-S Free-vibration curve. 
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elise 1. Ullderdlllllped (0 < t; < 1). The Laplace transform of Equation 
(8-10) gives 

[s'X(s) - sx(O) - .t(O)] + 2(w,,[sX(s) - x(O)] + w;,X(s) = 0 
Solving for Xes), we have 

or 

(s + 2(w,,)x(0) + x(O) 
X(s) = , , s- + 2twns + WII 

(w"x(O) + x(O) w,,� Xes) = _ � , _ � , w" V 1 - (- (s + (w,,) + (w" V 1 - (.) 

+
----�(s_+�(w�,,�)x�(O�)===_ 
(s + ?w,,)' + (w,,�)' 

The inverse Laplace transform of this last equation gives 

_ (w"x(O) + .t(O) -(w",' _ � 
X(I) - _ r::---7i e stnw"v1 - ('1 

w" V 1 - (' 
+ x(O)e'(w", cos w" VI - ('I 

Next, we define 

Wd = WII� = damped natural frequency, fad/s 

Then the response X(I) is given by 

X(I) = e'(W'''{[hX(O) + 2.,t(O)] sin wdl + x(O)cos w'lt} 
1 - (' Wd 

If the initial velocity is zero, or .t(O) = 0, Equation (8-12) simplifies to 

or 

X(I) = x(o)e'(W"{ h sin wdl + cos Wdl) 
t(l) = x(O) 

e'(w", sin (W I + tan' I _V,-1_--".?') ' �  d ( 

(8-1 1 )  

(8-12) 

(8-13) 

(8-14) 

Notice that, in the present case, the damping introduces the term e-{rIJ"r as a 
multiplicative factor. 1l1is factor is a decreasing exponential and becomes smaller 
and smaller as time increases, thus causing the amplitude of the harmonic motion to 
decrease with time. 
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/ 

x Figure 8--6 Spring-rnass-dashpol system. 

11,e mathematical model of this system is 

111:'; + b.t + kx = 0 (8-9) 

where the displacement x is measured from the equilibrium position. 
111e characteristic of the natural response of a second-order system like this 

one is determined by the roots of the characteristic equation 

I11S' + bs + k = 0 

The two roots of this equation are 

-b ± Vb' - 411lk 
s = 

2m 

If the damping coefficient b is small, so that b' < 4111k, the roots of the char­
acteristic equation are complex conjugates. The natural response is then an expo­
nentially decaying sinusoid, and the system is said to be underdamped. 

If the damping coefficient b is increased. a point will be reached at which b' = 411lk. When the damping has reached this value (b = 2 v;;;/; ), the two roots of 
the characteristic equation become real and equal. 111e system is then said to be 
crilically damped. 

I f  the damping coefficient b i s  increased further, so that b' > 4mk, the two 
roots are real and distinct. The response is  the sum of two decaying exponentials, 
and the system is said to be overdamped. 

In solving Equation (8-9) for the response X(I), it is convenient to define 

w" = (k = undamped natural frequency, rad/s \/7;; 
actual damping value t = damping ratio = . .  . 
critical dampmg value 

and rewrite Equation (8-9) as follows: 

x + 2, ww\- + w�x = 0 

b 

(8-10) 

In what follows, we shall use Equation (8-10) as the system equation and 
derive the response X(I) for three cases: the underdamped case (0 < � < 1), the 
overdamped case (� > 1 ) ,  and the critically damped case (t = 1) .  
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Bath 

Figure 8-1 Thin, glass-walled mercury 
thermometer system. 

the thermal resistance R (OC/kcaVs) as 

8b - 8 
q = -­R 

Substituting Equation (8-3) into Equation (8-2), we obtain 

or 

C d8 = 
8b - 8 

dt R 

d8 
T- + 8 = 8b 

dt 

385 

(8-3) 

(8-4) 

where T = RC = time constant. Equation (8-4) is a mathematical model of the 
thermometer system. 

To obtain the step response of this system, we first take the Laplace transform 
of Equation (8-4): 

T[s8(s) - 8(0)] + 8(s) = 8b(s) 

Since 8(0) = 0, this last equation simplifies to 1 
8(s) = 

Ts + 18b(s) 

Note that, for 8b = constant, we have 

Hence, Equation (8-5) becomes 1 8b [1 1] 
8( s) = 

Ts + 1 -; = -; - s + (liT) 8b 

The inverse Laplace transform of this last equation gives 

8(t) = (1 - e-tIT)8b 

(8-5) 

(8-6) 



386 

Figure 8-2 Step response curve for 
the first-order system. 
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6(t) 

o 

6 
Slope =" 

T 2T 3T 4T 5T -t 

The response curve 8( t) versus t is shown in Figure 8-2. Equation (8-6) states that, 
initially, the response 8( t) is zero and that it finally becomes 8b' (There is no steady­
state error.) One important characteristic of such an exponential response curve is 
that at t = T the value of 8(1) is 0.6328b, or the response 8(t) has reached 63.2% of 
its total change. This fact can readily be seen by substituting e-1 = 0.368 into the 
equation. 

Another important property of the exponential response curve is that the 
slope of the tangent line at 1 = 0 is 8,,1T, since 

d8 1 _ 8b 
e-1rr l _ 8b 

dt 1=0 T 1=0 T 

The response would reach the final value at 1 = T if it maintained its initial speed. 
The slope of the response curve 8(1) decreases monotonically from 8,,1T at t = 0 to 
zero at 1 = 00. 

Figure 8-2 shows that in one time constant the exponential response curve has 
gone from zero to 63.2% of the total change. In two time constants, the response 
reaches 86.5% of the total change. At 1 = 3T , 4T, and 5 T, the response 8(1) reaches 
95, 98.2, and 99.3% of the total change, respectively. So, for t � 4T, the response 
remains within 2% of the final value. As can be seen from Equation (8-6), the 
steady state is reached mathematically only after an infinite time. In practice, how­
ever, a reasonable estimate of the response time is the length of time that the 
response curve needs to reach the 2 % line of the final value, or four time constants. 

Ramp response of first-order system. Consider again the thermometer 
system shown in Figure 8-1 . Assume that, for t < 0, both the bath temperature and 
the thermometer temperature are in a steady state at the ambient temperature 8°C 
and that, for t � 0, heat is added to the bath and the bath temperature changes lin­
early at the rate of rOC/s; that is, 
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Case 2. Overdamped (� > 1). Here, the two roots of the characteristic equa­
tion are real, so Equation (8-1 1 )  can be written 

where 

x (s) = ____ 
('--S _+
;=

2=: (
=
w� ,,)-X('-0!...) _+_x-'(O:..!.)'----;==� 

(s + (w" + w,,�)(s + (w" - ,",,�) 

a b = + ------;=== s+(wn+WII� S +{WII-W/l� 

a = 
H+ �)x(O) 

2� 
.t(O) 

2w,,� 

b = ([ + �)x(O) 
2V(2 - 1 

.t(O) 
+ ---0=== 2w,,� 

TIle inverse Laplace transform of X(s) gives the following response: 

X(I) = ae-l(w"+w"V!'-I)I + be-l!w"-w"V('-I)I 
[ ( -( + V (2 - 1 )x(O) .«0) ]-I( + Vl'=l) = _ e w" wlI � I 

2� 2w,,� [«( + �)x(O) .t(O) ]-I( - V-'-I) + + e W"w,,� t 

2� 2w,,� 
Notice that both terms on the right-hand side of this last equation decrease expo­
nentially. The motion of the mass in this case is a gradual creeping back to the equi­
librium position. 

Case 3. Critically damped (� = 1). In reality, aU systems have a damping 
ratio greater or less than unity, and ( = 1 rarely occurs in practice. Nevertheless, the 
case ( = 1 is useful as a mathematical reference. (The response does not exhibit any 
vibration, but it is the fastest among such nonvibratory motions.) 

I n  the critically damped case, the damping ratio ( is equal to unity. So the two 
roots of the characteristic equation are the same and are equal to the negative of the 
natural frequency w". Equation (8-11) can, therefore, be written 

(s + 2w,,)x(0) + .«0) X(s) = 
2 ' S + 2wlls + w� 

(s + w,,)x(O) + w"x(O) + .t(O) 
(s + w"f 

x(O) w"x(O) + .t(O) 
= -- + -"--'-'-----,'-'-S + WI/ (s + w,,)2 

1lle inverse Laplace transform of this last equation gives 

X(I) = x(O)e-W"I + [w"x(O) + .',(O)jte-W"I 
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Figure 8-7 Typical response curves of Ihe 
spring-mass-dashpol system. 

xC,) 

\ > 1 

Chap. 8 

The response X(I) is similar to that found for the overdamped case. The mass, 
when displaced and released, will return to the equilibrium position without vibration. 

Figure 8-7 shows the response x(l) versus I for the three cases (underdamped, 
critically damped, and overdamped) with initial conditions x(O) * 0 and .r(O) = o. 

Experimental determination of damping ratio. I t  is sometimes necessary 
to determine the damping ratios and damped natural frequencies of recorders and 
other instruments. To determine the damping ratio and damped natural frequency 
of a system experimentally, a record of decaying or damped oscillations, such as that 
shown in Figure 8-8, is needed. (Such an oscillation may be recorded by giving the 
system any convenient initial conditions.) 

The period of oscillation, T, can be measured directly from crossing points on 
the zero axis, as shown in Figure 8-8. 

To determine the damping ratio, from the rate of decay of the oscillation, we 
measure amplitudes; that is. at time t = (\ we measure the amplitude Xh and at time 
I = 11 + (11 - l)T we measure the amplitude x". Note that it is necessary to choose 
11 large enough so that x"lx, is not near unity. Since the decay in amplitude from one 
cycle to the next may be represented as the ratio of the exponential multiplying fac­
tors at times I, and I, + T, we obtain, from Equation (8-12), 

Similarly, 

x" 

e-{wllt[ 
e-{w,,(I[+T) 

1 _;-;_= = e(IJ-I);w"T 
e (u,,{n I ) T 

Figure 8-8 Decaying oscillation. 
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The logarithm of the ratio of succeeding amplitudes is called the logarithmic decre­
ment. Thus, Xl 1 ( Xl) logarithmic decrement = In -:- = -- In-

':\:2 11 - 1 X'I 
2.". 2.".� 

= 'wI! -w = � ;-:---::;; d vI - �-

= �w"T 

Once the amplitudes Xl and x" are measured and the logarithmic decrement is 
calculated, the damping ratio � is found from 

1 (Xl) 21T
�

� -- In- = -=  
n-l x" � 

or 

1 ( Xl) -- In-
n - 1 Xn � = -;===:=====i===;o"", 

4.".2 + [_1 . ( In::i) ]2 
11 - 1 xI! 

(8-15) 

Note that this equation is valid only for the system described by Equation (8-10). 

Example 8-1 

In  the system shown in Figure 8-6, assume that 111 = 1 kg, b = 2 N-s/m, and 
k = 100 N/m. The mass is displaced 0.05 m and released without initial velocity. (The 
displacement x is measured from the equilibrium position.) Find the frequency 
observed in the vibration. In  addition, find the amplitude four cycles later. 

The equation of motion for the system is 

11IX + b.i: + kx = 0 

Substituting the numerical values for m, b, and k into this equation gives 

:i + h + 100x = 0 

where the initial conditions are x(O) = 0.05 and i(O) = O. From the system equation, 
the undamped natural frequency Wit and the damping ratio {are respectively found to be 

( = 0.1 

The frequency actually observed in the vibration is the damped natural frequency w(/: 

w" = w,,� = 10\11 - om = 9.95 radls 

In the present analysis, -':(0) is given as zero. So, from Equation (8-13), the solu� 
tion can be written as 

x(t) = x(o)e-tw.'( h sin w"t + cos w"t) 
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It follows that at 1 = nT, where T = 27T/Wd, 

x(nT) = x(O)e-,·,,,T 

Consequently, the amplitude four cycles later becomes 

x(4T) = x(O)e-<·,'T = x(O)e-(o.IIIIOII'lIo.63) 

= 0.05e-2.52 = 0.05 x 0.0804 = 0.00402 m 

Chap. 8 

Estimate of response time. The mass of the mechanical system shown in 
Figure 8-6 i s  displaced x(O) and released without initial velocity. The response is 
given by Equation (8-14), rewritten thus: 

A typical response curve is shown in Figure 8-9. Note that such a response curve is 
tangent to the envelope exponentials ±[x(O)/�le-'w,/ The time constant T 
of these exponential curves is li«(wn). 

The fact that the response curve X(I) is tangent to the exponential curves 
enables us to estimate the response time of a second-order system such as that 
shown in Figure 8-6 in terms of the settling time I, defined by 

XIi) 

o 

4 
1 = 4T = -5 CWn 

T= ...!.. �w" 

31" 41" 

I-----,-L---- /, -------j 

Figure 8-9 Typical response curve of the system shown in Figure 8-6 and 
its envelope exponentials. 
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The settling time Is can be considered an approximale response time of the system, 
since, for t > ls, the response curve remains within 2% of the final value or 2% of 
the total change. 

Comments. The preceding analysis. as well as the results derived, can be 
applied to any analogous systems having mathematical models of the form of 
Equation (8-10). 

Step-response of second-order system. Consider the mechanical system 
shown in Figure 8-10. Assume that the system is at rest for 1 < O. At 1 = 0, force 
/I = a '1(1) [where a is a constant and 1(1) is a step force of magnitude 1 newton] is 
applied to the mass m. 111e displacement x is measured from the equilibrium posi­
tion before the input force /I is applied. Assume that the system is underdamped. 

11,e equation of motion for the system is 

lII:r + b.i: + kx = /I = Q'l(l) 

The transfer function for the system is 

Hence 

Let us define 

Then 

b 
J"";"1 '-=-.J 

'k 

X(s) 
= 

1 
U(s) illS' + bs + k 

a 

Q 
m X(S) 

.'£[1(1)] = ----;;,---- = --,--,-ms' + bs + k , b k 

X(s) 
.'£[1(1)] 

In 

( ) 

s- + -s +-III m 

b 
? = -= z y"k;, 

a ( w;, ) 
= -,-, , , IJIW;j S + 2� Wll5 + WII 

-�x 

_u 

( ) 

(8-16) 

/: /: Figure 8-10 Mechanical system. 
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Hence, 
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II ( w� 1) 
X(s) = -2 2 2 I11Wn S + 2(w"s + WI! S 

1/ ( 1 s + 2( w" ) :::: mw� -; - s2 + 2( w"s + w� 

II [1 (w" 
= 

mw; ---; - (s + ,wI!)2 + w� -

s + (w" 1 (s + (w,,)2 + w� 

Chap. 8 

where Wd :::: w,,�. The inverse Laplace transform of this last equation gives 

X(I) 

(8-17) 

The response starts from x(O) = 0 and reaches x( 00 ) = II/(mw�). The general 
shape of the response curve is shown in Figure 8-11. 

Note that Equation (8-17) is an analytical solution for the step response of the 
system. If the numerical values of m,! b, k, and a are given, an exact response curve 
can be plotted easily with MATLAB. 

Figure 8-11 Step response of second­
order system. (The response curve shown 
corresponds to the case where { = 0 ... and 
w" = 1 rnd/s.) 

-'(I) 
r-----�----�----_, 

a -, IIIW,� 

5 
r (sec) 

10 15 
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8-4 TRANSIENT-RESPONSE ANALYSIS OF HIGHER ORDER 
SYSTEMS 

Consider an nth-order (n ;:: 3) dynamic system defined by 

X(s) boslll + b\sm-l + . . .  + bn-1s + bl! --= 
U( ) .n + 11-1 + + + s .') 0jS . . .  (i,,_IS a/1 

399 

(8-18) 

where In :s; n. The transient response of this system to any given time-domain input 
can be obtained easily by a computer simulation. If an analytical expression for the 
transient response is desired, then it is necessary to expand X(s)/U(s) into partial 
(ractions. (Use MATLAB command residue for the partial-fraction expansion.) 

Unit-step response of higher order systems. Let us examine the re­
sponse of the system to a unit-step input. If all poles of the denominator polynomi­
als are real and distinct, then, for a unit-step input U(s) = lis, Equation (8-18) can 
be wri t ten as 

a II (l. 
X(s) = - + 2:-'-

5 i=1 S + Pi 
(8-19) 

where a; is the residue of the pole at s = -p;. [If the system involves multiple poles, 
then X(s) will have multiple-pole terms.] 

Next, consider the case where the poles of X(s) consist of real poles and pairs 
of complex-conjugate poles. A pair of complex-conjugate poles yields a second­
order term in s. Since the factored form of the higher order characteristic equation 
consists of first-order and second-order terms, Equation (8-19) can be rewritten as 

X(s) a q aj , bk(s + ?kwd + CkWk V1 - d = - + 2:-- +2: , , s j=1 S + Pi k=1 S" + 2�kWkS + wk 
(q + 2r = n ) 

(8-20) 
where we assume that all poles of X(s) are distinct. [If some of the poles of X(s-) are 
multiple poles, then X(s) must have multiple-pole terms.] From this last equation, we 
see that the response of a higher order system is composed of a number of terms 
involving the simple functions found in the responses of first-order and second-order 
systems. From Equation (8-19), the unit-step response X(f), the inverse Laplace 
transform of X(s), is 

" 
X(f) = a + Laje-P,/ for t === 0 

i=\ 

or, from Equation (8-20), 
q , 

X(f) = a + 2:aje-Pi + 2:bke-l,w" cos Wk � f 
j=l k=l 

for f ;:: 0 
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Thus, the response curve of a higher order system is the sum of a number of expo­
nential curves and damped sinusoidal curves. [If the poles of X(s) involve multiple 
poles, then X(I) must have the corresponding mUltiple-pole term& 1 

If all poles of X(s) lie in the left-half s-plane, then the exponential terms 
[including those terms multiplied by I, 12, etc., that occur when X(s) involves multi­
ple poles] and the damped exponential terms in X(I) will approach zero as the time I 
increases. The steady-state output is then x( 00) = a. 

8-5 SOLUTION OF THE STATE EQUATION 

In this section, we shall obtain the general solution of the linear time·invariant state 
equation. We first consider the homogeneous case and then the nonhomogeneous 
case. After we obtain the general solution, we shall derive the analytical expression 
for the step response. (For details of analytical expressions for the step response, 
impulse response, and ramp response, see Problems A-8-13, A-8-14, and A-8-1S.) 

Solution of homogeneous state equations. Before we solve vector-matrix 
differential equations, let us review the solution of the scalar differential equation 

x = ax 
In solving this equation, we may assume a solution of the form 

x(r) = bo + bll + b21
2 + . . . + bklk + . . . 

Substituting this assumed solution into Equation (8-2 1 ), we obtain 

bl + 2b2r + 3b312 + . . . + k bklk-I + ... 

(8-21) 

(8-22) 

= a(bo + bll + b212 + ... + bkrk + . . . ) (8-23) 

If the assumed solution is the true solution, Equation (8-23) must hold for any I. 
Hence, equating the coefficients of equal powers of I, we find that 

bl = abo 
1 1 2 b2 = ia bl = ia bo 
1 1 3 b3 = "3ab2 = 

3 X 2 
a bo 

b 1 k k=k,a bo 

The value of bo is determined by substituting I = 0 into Equation (8-22), or 

X(O) = bo 
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Hence, the solution can be written as 

x(t) = (1 + at + 
-.!ca2t2 + 
2 !  

= e"'x(O) 

+ -.!ca't' + ... )X(O) 
k! 

We shall now solve the vector-matrix differential equation 

x = Ax 

where 

x = n-vector 
A = 11 X 11 constant matrix 

401 

(8-24) 

By analogy with the scaJar case, we assume that the solution is i n  the form of a vec­
tor power series in t, or 

x(t) = bo + bit + b2t2 + ... + b,t' + ... (8-25) 

Substituting this assumed solution into Equation (8-24), we obtain 

bl + 2b2t + 3b3t2 + .. . + kb,t'-I + ... 

= A(bo + bit + b2t2 + . .. + b,t' + . . .  ) (8-26) 

If the assumed solution is the true solution, Equation (8-26) must hold for all t. 
Thus, equating the coefficients of like powers of t on both sides of Equation (8-26), 
we find that 

b 1 , 
, = k! A: bo 

Substituting t = 0 into Equation (8-25) yields 

x(O) = bo 

Thus, the solution x(t) can be written as 

x(t) = (I + At + 
-.!cA2t2 + ... + 

-.!cA't' + ... )X(O) 
2!  k! 

The multi term expression in parentheses on the right-hand side of this last equation 
is an n X n matrix. Because of its similarity to the infinite power series for a scalar 
exponential, we call it the matrix exponential and write 
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In terms of the matrix exponential, the solution of Equation (8-24) can be written as 

(8-27) 

Since the matrix exponential is very important in the state-space analysis of 
linear systems. we examine its properties next. 

Matrix exponential. It can be proved that the matrix exponential 

00 Ak[k 
eAI = 2:--

k'O k! 

of an /I X /I matrix A converges absolutely for all finite I. (Hence, computer calcula­
tions for evaluating the elements of eAI by using the series expansion can easily be 
carried au!.) 

Because of the convergence of the infinite series 2:�.0 Aklklk!, the series can 
be differentiated term by term to give 

Aklk-1 
... + + 

(k - I)! 
... J = AeAI 

[ A'I' = I + At + -- + ... 
2! 

Ak-1tk-1 J + 
(k _ I)! 

+ ... A = eAIA 

The matrix exponential has the property that 

eA(t+s) = eAreAS 

This can be proved as follows: (00 Aktk)( 00 NI,.,,) 
eAteA' = 2:-- 2:--

k=O k! h=O h! 

Let k + It = m. Then 

00 00 tksm-k 00 1 00 Itk m-k A A "" " ,', " m. s e · Ie S = � .L Nil = .L -I\: L., 

In particular, if s 

k.O",.k k!(m - k)! ",.om! k.ok!(m - k)! 

00 1 
= 2: - A'/(l + s)m = eA(t+s) 

m=om! 

-(I then 

cAle-AI = e-A'eAt = eA(r-t) = I 
Thus, the inverse of eAI is e-A1. Since the inverse of eAI always exists, eAI is nonsingular. 

It is very important to remember that 

e(A+Il)t = eAteHI, 
e(A+R)I '* eAteUl

, 

if AB = BA 

if AB #' BA 
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To prove this, note that 

(A + B)2, (A + B)3 , e(A+B)1 = I + (A + B), + ,- + " + ... 
2! 3! 

eAte"1 = I + At + -- + -- + . . . 1+ B, + -- + -- + ( A2,2 A3,3 ) ( B2,2 B3,3 
2! 3! 2! 3! 

Hence, 

A2t 2 ., 82(2 A3,3 
= I + (A + B), + - + AB,- + - + -

2! 2! 3! 

A2B,3 AB2,3 B3,3 + -- + -- +--+ 
2! 2! 3!  

BA - AB e(A+U)1 _ eAteUI = 12 
2! 

403 

BA2 + ABA + B2A + BAB - 2A2B - 2AB2 3 + , + ... 
'I o. 

The difference between e(A+B)f and eAteBt vanishes if A and B commute. 

Laplace transform approach to the solution of homogeneous state 
equations. Let us first consider the scalar case: 

x = ax 
Taking the Laplace transform of Equation (8-28), we obtain 

sX(s) - x(O) = aX(s) 
where X(s) = X[x]. Solving Equation (8-29) for X(s) gives 

X(s) = x(O) = (s - ar'x(O) s - a 
The inverse Laplace transform of this last equation produces the solution: 

x(,) = e'''x(O) 

(8-28) 

(8-29) 

TI,e foregoing approach to the solution of the homogeneous scalar differential 
equation can be extended to the homogeneous state equation 

i(,) = Ax(,) 
Taking the Laplace transForm of both sides of Equation (8-30). we obtain 

sX(s) - x(O) = AX(s) 
where X(s) = X[x]. Hence, 

(sl - A)X(s) = x(O) 
Premultiplying both sides of this last equation by (sl - A rl. we obtain 

X(s) = (sl - Ar'x(O) 

(8-30) 
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The inverse Laplace transform of Xes) gives the solution 

X(I) � ;e-l[(sl - Atl]x(O) 

Note that 

I A A2 
(sl - Atl � - + - + - + ... S S2 53 

Hence, the inverse Laplace transform of (sl - Atl gives 

A212 �13 
;e-l[(sl - Atl] � I + AI + 

2! 
+ 3! + . . . � eM 

(8-31) 

(8-32) 

(The inverse Laplace transform of a matrix is the matrix consisting of the inverse 
Laplace transforms of all of the elements of the matrix.) From Equations (8-31) and 
(8-32). the solution of Equation (8-30) is 

X(I) � eAlx(O) 

The importance of Equation (8-32) lies in the fact that it provides a conve­
nient means for finding the closed solution of the matrix exponential. 

State-transition matrix. We can write the solution of the homogeneous 
state equation 

x � Ax (8-33) 

as 

X(I) � <t>(I)X(O) (8-34) 

where <t>(I) is an 11 X 11 matrix and is the unique solution of 

<i>(I) � A<t>(I), <t>(0) � I 

To verify this, note that 

X(O) = <t>(O)x(O) � x(O) 

and 

X(I) � <i>(I)X(O) � A<t>(I)x(O) � AX(I) 

We thus confirm that Equation (8-34) is the solution of Equation (8-33). 
From Equations (8-27), (8-32), and (8-34), we obtain 

<t>(I) = e" � ;e-l[(sl - Atl] 

Note that 

<t>-l(l) � e-AI � <t>( -I) 

From Equation (8-34), we see that the solution of Equation (8-33) is simply a trans­
formation of the initial condition. Hence, the unique matrix <t>(I) is called the stale­
tralls;rion matrix. TIlis matrix contains all the information about the free motions of 
the system defined by Equation (8-33). 
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EX311l1)lc 8-2 

Obtain the state-transition matrix <1>(1) of the following system: 

Obtain also the inverse of the state-transition matrix, q,-l(r). 
For this system, 

The state-transition matrix is given by 

<1>(1) = e'" = ,e'l(sJ - Af'l 

Since -I] 
s + 3 

the inverse o[ (sl - A)  is given by 

Hence. 

J A -I _ I [s + 3 
(s - ) - (s + l)(s + 2) -2 �] 

[ s + 3 

= (s+l)(s+2) -2 
(s+l)(s+2) 

[21 

= 
s+"] s+2 

-2 2 
-- +--5+1 s+2 

(5 + ]):(S + 2)
_ (s + I)(s + 2) 

1 1 1 
s+1-s+2 

-] 2 
-- + --5+1 s+2 

<1>(1) = e'" = ,e'f(sJ - Af'l 
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Noting that ¢-I(f) = ct>(-r), we obtain the inverse of the state-transition matrix as 
follows: 
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Solution of nonhomogeneous state equations. We shall begin by con­
sidering the scalar case 

.r = ax + bit 
Let us rewrite this equation as 

.r - ax = bll 
Multiplying both sides of the latter equation bye-at, we obtain 

d e-'Tic(l) - aX(I)] = -, [e-atx(I)] = e-atbfl(l) 
({ 

Integrating this equation between 0 and t gives 

e-atx(t) = x(O) + l'e-a'bfl(T) dT 

or 

TIle first term on the right-hand side is the response to the initial condition, and the 
second term is the response to the input U(I). 

Let us now consider the nonhomogeneous state equation defined by 

x = Ax + Bu 
where 

x = II-vector 
u = r-vector 

A = 11 X n constant matrix 
B = II X r constant matrix 

Writing Equation (8-35) as 

X(I) - Ax(r) = BU(I) 
and premultiplying both sides of this equation bye-AI, we obtain 

d e-AI[x(l) - AX(I)] = -[e-Alx(I)] = e-AIBu(l) dl 
Integrating the preceding equation between 0 and t gives 

e-Alx(l) = x(O) + l'e-AcBU(.) dT 

or 

(8-35) 

(8-36) 
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Equation (8-36) can also be written as 

x(t) = <I>(t)x(O) + l<l>(t - T)Bu(T) dT (8-37) 

where <I>(t) = eA'. Equation (8-36) or Equation (8-37) is the solution of Equation 
(8-35). The solution x(t) is clearly the sum of a term consisting of the transition of 
the initial state and a term arising from the input vector. 

Laplace transform approach to the solution of nonhomogeneous state 
equations. The solution of the nonhomogeneous state equation 

x = Ax + Bu 
can also be obtained by the Laplace transform approach. The Laplace transform of 
this last equation yields 

sX(s) - x(O) = AX(s) + BU(s) 
or 

(51 - A)X(s) = x(O) + BU(s) 
Premultiplying both sides of the foregoing equation by (51 - Af', we obtain 

X(s) = (sl - Af'x(O) + (51 - Af'BU(s) 
Using the relationship given by Equation (8-32) yields 

X(s) = X[e"']x(O) + X [eA']BU(s) 
The inverse Laplace transform of this last equation can be obtained with the use of 
the convolution integral as follows: 

x(t) = eA'x(O) + l'eA('-'lBU(T) dT 

Solution in terms of xlt.,. Thus far, we have assumed the initial time to be 
zero. If, however, the initial time is given by to instead of 0, then Equation (8-36), the 
solution of Equation (8-35), must be modified to 

x(t) = eA('-'olx(/o) + l'eA('-'lBU(T) dT 
'0 

Example 3--3 

Obtain the time response of the system [.,, ] = [_0 _1 ][ �' ] + [O ]" 
X2 2 3 .\2 1 

where l.I(f) is the unil-slCp function occurring at 1 = O. or 

u(t) = 1(/) 

For this system. 

B = [�] 

(8-38) 
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TIle state·transition matrix was obtained in Example 8-2 as 

The response to the unit-step input is then obtained as f'[ 2e-('-') - e-2(,-,) e-('-') - e-2(,-,) ][0] 
'(I) = e''',(O) + io -2e-('-') + 2e-2(,-,) -e-('-') + 2e-2(,-,) 1 Itj dT 

or 

In the special case where the initial stale is zero, or x(O) = 0, the solution x(t} can be 
simplified to 

Analytical solution for step response of system in state-space form. 
Consider the system described by 

x =A,+B1I 
where matrix A is nonsingular. Let us show that the response x(t) when the input 11 
is a unit-step function 1(1) can be given by 

Since 

X(I) = eA'x(O) + A-I(eA' - I )n 
From Equation (8-37), the response x(t) is 

x(t) = eA'x(O) + l'e""-')nll(7) dT 

= e"'x(O) + e"'[l'e-'\'I(T) dT]n 

= e"'x(O) + eA'[l'(I - AT + ;!A2T2 - ... )cIT]n 

= eA'x(O) + e"'(It - 2.At2 + 2. A2t3 - ... )n 2! 3! 

.. 1 ')j 1 33 e'" = I + At + -AT + -A/'+ 2! 3! 
we have 

\ j 'J? 1 33 e-' , = I - AI + -AT - -A/'+ 
2! 3! 



Example Problems and Solutions 

1 1 
It - -At2 + -kt3 - . . .  

2! 3! 

Therefore, we get 

= -A I -At + -A2t2 - -A3t3 + ... _ ( 1 1 ) 
2! 3! 

-I ( 1 " 1 3 3 
= -A I - At + - kr - -A I + 

2! 3! 
= -A-I(e-A' - I) 
= A-I(I - e-A<) 

X(I )  = e"'x(O) + e"'A-I(1 - e-A')B 

= eA<x(O) + A-I(eA' - I)B 

409 

(8-39) 

More on analytical solutions [or responses of systems in state-space form is 
given in Problems A-8-13, A-8-14, and A-8-1S. 

EXAMPLE PROBLEMS AND SOLUTIONS 
Problem A-8-1 

Consider the electrical circuit shown in Figure 8-12. Assume that there is an initial 
charge qo on the capacitor just before switch S is closed at I = O. Find the current ;(r). 

Solution The equation for the circuit when switch S is closed is 

Ri + Z.!i dl � £ 

Taking the Laplace transform of this last equation yields 

1(5) + .!i(l) dll 
I ,=0 £ RI(5) + C 5 � -; 

Figure 8-12 Electrical circuit. 
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Since 

we obtain 

or 

Solving for I(s), we have 

Time-Domain Analysis of Dynamic Systems 

I /(s) + '10 E 
II/(s) + - =-

C s s 

IICs/(s) + /(s) + '10 = CE 

CE - '10 (E '10 ) I 
/(s) = IICs + I = R -

IIC I 
s + ­

IIC 

The inverse Laplace transform of this equation gives the current i(t): 

i(l) = (5. _ �)e-"RC 
II IIC 

Chap. 8 

Problem A--8-2 

Suppose that a disk is rotated at a constant speed of 100 Tad/s and we wish to stop it in 
2 min. Assuming that the moment of inertia j of the disk is 6 kg.m2, find the constant 
torque T necessary to stop the rotation. 

Solution The necessary torque T must act so as to reduce the speed of the disk. Thus, 
the equation of motion is 

Jw =-T w(O) = 100 
Taking the Laplace transform of this last equation, under the condition that the torque 
T is a constant, we obtain 

T 
J[sfl(s) - w(O)] = --

s 

Substituting J = 6 and w(O) = 100 into this equation and solving for fl(s), we get 

100 T 
fl(s) = - --, 

s 6s-

The inverse Laplace transform of the latter equation gives 

T W(I) = 100 - 6' 
AI f = 2 min = 120 S, we want to stop, or w{ 120) must equal zero. Therefore, 

T 
w( 120) = 0 = 100 - 6 x 120 

Solving for T, we get 

600 
T = - = 5N-m 120 
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Problem A-8--3 

Find the transfer function Eo(s)/E,(s) of the electrical circuit shown in Figure 8-13. 
Obtain the voltage eo(t) when the input voltage ei(t) is a step change of voltage Ej 
occurring at t = 0 [ej(O-) = 0). Assume that the initial charges in the capacitors are 
zero. [Thus, eo(O-) = 0.) 

Solution Using the complex·impedance method, we obtain the transfer function 
Eo(s)/E,(s) as 

I 

Eo(s) 
= 

_--,(c:II;.:.R;.:'!.-) _+_C.::.:';cs_ 
E,(s) 1 1 - + 

CIS (IIR,) + C,S 

Next, we determine eo(I). For the input e,(I) = E,'J (I), we have 

E (s) _ R,CIs E, 
o - R,(CI + C,)S + 1 s 

R2CtEj 
R,(CI + C,)s + 1 

Then, inverse Laplace transforming Eo(5), we gCI 

from which we see that e,,(O+) = CI E,I(CI + C,). Since eo(O-) = 0, there is a sudden 
change in co(t) at I = O. 

" R, C, 

Figure 8-13 Electrical circuit. 

Problem A-8--4 

Derive the transfer function Eo(s)/E;(s) of the electrical circuit shown in Figure 8-14. 
The input voltage is a pulse signal given by 

e,(I) = E, 
= 0 o :$ I $ IJ 

elsewhere 

Obtain the output ea(r). Assume that the initial charges in the capacitors C1 and C2 are 
zero. 
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Figure 8-14 Electrical circuit. 

Solution By using the complex-impedance method, the transfer function Eo(5)/EI(S) 
can be obtained as 

1 

For the given input ej(t).  we have 

Thus, the response £0(5) can be given by 

The inverse Laplace transform of EQ(s) gives 

e (r) = { I _ 
C, e-"IR,(C,+C,)I}E. 

o C1 + Cz I - { I - C2 e-<t-II)lfRI(CI+CzH}£j O l (I - II ) c, + C, 

Figure 8-15 shows a possible response curve eo(t) versus t, 

Problem A-8-S 

A mass 111 is attached to a string that is under tension T in the mechanical system of 
Figure 8-16(a) . We assume that tension Tis to remain constant for small displacement x. 
(The displacement x is that of mass m perpendicular to the string.) Neglecting gravity, 
find the natural frequency of the vertical motion of mass m. What is the displacement 
x(r) when the mass is given initial conditions x(O) = Xo and X(O) = O? 

Solution From Figure 8-16(b), the vertical component of the force due to tension is 

-T sin 81 - T sin O2 



Example Problems and Solutions 

e,(I) 

E; - - - - - -_�--�-----

o �----+_--��------------------
I ' I 
� 

" 

' ..... 
- - - - - - - - ��� - - - - - - - - -

Figure �15 Response curve eo(l) versus t (solid curve). 

(a) 

I*!�I - (I - IJ ;/, 
(b) 

Figure 8-16 (a) Mechanical vibratory system: 
(b) diagram showing tension forces. 

For smal l  x, angles 01 and O2 are small. and 

x = -
n 

. x 
sm (h = tan (h = b 

The equation of motion for the system when x is small is 

x x m:i = -T sin Ol - T sin 02 = -T- - T-
n b 

or . . ( 1  I )  IIlX + T ;; + b x = 0 

413 
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Hence, the natural frequency of the vertical motion of the mass is 

w" � J: G + �) 
When the initial conditions are x(O) � x" and .« 0) � O. the solution x(,) is given by 

x(t) = Xo cos Wilt 
Problem A-3-{j 

Two masses 1111 and f1l2 are connected by a spring with spring constant k, as shown in 
Figure 8-17. Assuming no friction, derive the equation of motion. In addition, find Xl ( f )  
and X2( t )  when the external force f i s  constant. Assume that x](O) = 0,  X1(O) = 0, 
x,(O) � 0, and .<,(0) � O. 

Solution The equations of motion are 

Rewriting yields 

mlxl = -k(xJ - X2) 
11l2:Y:2 = -k(x2 - Xl ) + f 

nlj:Y:, + k(x[ - X2) = 0 
m,:" + k(x, - Xt ) � f 

From Equations (8-40) and (8-41),  we obtain 

IJIlnl2(:t2 - :id + (km2 + kml ) (X2 - xd = mJ 
If we define .1.'2 - Xl = x ,  then this last equation simplifies to 

11I11112:i + k(m] + nI2)x = mrf 
It follows that 

Let us define 

2 k(m] + 1112) WI' = 
m1nl2 

Then Equation (8-42) becomes 

:r + lU;'X f 

r- X! 

k 
1111 VV' f1l2 

\ 0 
Figure 8-17 Mechanical system. 

'--' X1 

f 

(8-40) 
(8-41) 

(8-42) 

, 
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Takiry. the Laplace transform of this last equation, substituting the initial conditions 
x(O) .= 0 and X(O) = O. and noting that/is a constant, we have 

or 

(s' + w;,)X(s) � L 
"'25 

f I f ( I  s ) X(,) � - -- � -- - - --. m 5 52 + w2 m w2 s 52 + w2 2 11 2 fJ tI 

Th :!  inverse Laplace transform of X(s) gives 

f 
X(f) � --, ( I  - cos w"f) 

nl2W;; 
Now we shall determine -,,(f ) .  From Equations (8-40) and (8-43), we find that 

f1I j :r\ = kx = 
kf, ( 1  - cos Wilt ) 11l2W;; 

(8-43) 

Since f is a constant, we can easily integrate the right-hand side of this last equation. 
Noting that x,(O) � 0 and -',(0) � 0, we get 

and 

Thus, 

and the solution x2(t) is obtained from 

X,(f) � X(f) + x,(f )  

k(mj + m2) r ] 
m lm2 

(8-44) 

Substituting Equations (8-43) and (8-44) into this last equation and simplifying yields 

Problem A-&-7 

J [2 fmT [ 
X,(f ) � - +  I - cos 

ml + 1112 2 k(m] + 1112)2 

k (m , + m,) 
f] 

m [ ml 

The step response of a second-order system may be described by 

Y(s) w� 
U(s) = 

52 + 2(wns + w� 

To see this, refer to Equation (8-16), rewritten thus: 

If we define 

X(s) a w� 
9; [1(t ) ]  = mw� 52 + 2{wlIs + w� 

, mw� 
-X(s) � Y(s), 

a 
:£ I l (f)] � U(s) 

(8-45) 
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then Equation (8-45) can be written as 

Y(s) w;, 
U(s) s2 + 2{wlls + w� 

Chap. 8 

(8-46) 

The maximum overshoot in the step response depends on {, and the lime taken for the 
response to reach 2 %  of the final value depends on , and WI!" 

Obtain unit-step response curves of the system defined by Equation (8-46) for 
the following three cases: 

1. Case I :  {; � 0.3, W/I = 1 
2. Case 2 :  (; � 0.5, W/1 = 2 

3. Case 3: r; � 0.7, WI) = 4 

Solution In writing a MATLAB program, we use a "for loop." Define w;, = a and 
2lw,! = b. Then, a and b each have three elements as follows: 

a = [ l 4 1 6[ 
b = [0.6 2 5.6] 

Using vectors a and b. MATLAB Program 8-1 will produce the unit-step response 
curves as shown in Figure 8-18. 

MA TlAB Program 8-1 

» a = [1 4 
» b = [0.6 2 
» t = 0:0.1 : 1 0; 
» y = zeros(l 01 ,3]; 
» for i = 1 :3; 

1 6] ;  
5 .61 ; 

num = [0 0 atil t ; 
den = [1 b(i) ali)]; 
y(:,i) = step(num,den,t); 

end 
» p[ot(t,y( : ,l ), '0',t,y(:,2),'x',t,),(:,3), ' - ' )  
» grid 
» tit[e('Unit-Step Response Curves for Three Cases') 
» x[abe[('t (sec)') 
» y[abe[('Outputs') 
» text(4.5, 1 .28, ' 1  ' )  
» text(2 .8, 1 . 1 ,  ' 2 ' )  
» text(0.35, 0.93, '3 ' )  

Problem A-8-8 

As mentioned in Problem A-8-7. (he slep response of a second-order sys(em may be 
described by 

Y(s) w;, 
U(s) � 1 + 1r + ' S _�WIIS w� 

(8-47) 
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Unit-Step Response Curves for Three Cases 1.4 ,-�-�-=;:'-_�-�-��_�_, 

1.2 

3 

00 
.- . . . .  � 0·· ·  ." ;,0 

ca.,. 2 o o o o .g 0.8 o 
0- o 
S 0 0.6 o ' b o o 0.4 , , . o o 0.2 . 0 

. 0  o . 0  
O ��� __ �-L� __ �-L __ L-�� 0 2 3 4 5 6 7 8 9 10 

I (sec) Figure S-18 Unit-step 
response curves for three cases. 

This equation involves two parameters: { and Ww If we normalize the system equation 
by defining I = ( l/w/I)' and writing the system equation in terms of T, then Equation 
(8-47) may be modified to 

Y(s) 1 
U(s) s' + 21;s + 1 

(8-48) 

This normalized equation involves only one parameter: {. It is easy to see the effect of , 
on the unit-step response of the second-order system if it is defined by Equation (8-48). 

Obtain the unit-step response curves of the system defined by Equation (8-48), 
where I; = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. Write a MATLAB program that uses a "for loop" 
to obtain the two-dimensional and three-dimensional plots of the system output. 

Solution MATLAB Program 8-2 obtains two-dimensional and three-dimensional plots. 
Figure 8-19 is a two-dimensional plot of the unit-step response curves for the specified 
values of [. Figure 8-20 is a three-dimensional plot obtained with the use of the com­
mand "mesh(y')". [Note that if we use the command "mesh(y)", we get a similar three­
dimensional plot, but the x-axis and y-axis are interchanged.] 

Problem A-8-9 

Obtain eAI, where 

Solution Since 

- 1 1 s + 2 
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MATLAS Program 8-2 

» t ;  0:0.2 : 1 2; 
» for n ; 1 :6; 

num ; 10 ° 1 1 ;  
den ; 1 1  2 *(n-1 )*0.2 1 1 ; 
ly(1 :61 ,n),x,tl ; step(num,den,t); 

end 
» p lot(t,y) 
» grid 
» title('Two-Dimensional Plot of Unit-Step Response Curves') 
» xlabel('t (sec)') 
» ylabel('Outputs') 
» text(3 .5, 1 .7, ' \zeta ; 0') 
» text(3, 1 .52, '0.2 ') 
» text(3, 1 .23 ,  '0.4') 
» text(3, 1 .05, '0.6') 
» text(3,0.93, '0.8') 
» text(3,0.8, ' 1 .0') 
» 
» % To draw a three-dimensional plot, enter the command mesh(y'). 
» 
» mesh(y') 
» title(,Three-Dimensional Plot of Uni t-Step Response Curves' )  
» xlabel( 'Computation "Time Points') 
» ylabel('n I\zeta ; 0.2 (n-1  ) 1 ' )  
» zlabel('Outputs') 

Chap. 8 

2 
1.8 
1 .6 
1.4 

Two-Dimensional Plot of Unit-Step Response Curves 

Figure 8--l9 Two-dimensional plot of unit­
step response curves. 

rn 1.2 :; 
=- 1 " 0 0.8 

0.6 
0.4 

0.2 
2 4 6 8 10 12 

I (sec) 
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Three-Dimensional Plot of Unit-Step Response Curves 

2 

1.5 

• 
:; Q. 
:; 0 

0.5 

0
6 

70 

" [( = 0.2(" - III Computation Time Points 

Figure 8-20 Three-dimensional plot ofunil-slcp response curves. (In the plol. 
C = 0.2(1/ - I )  and the incremental computation lime is 0.2 s.] 

it follows that 

(sl - At! 

Hence, 

Problem A-S--IO 

Obtain eAl, where 

Solution Since 

sl - A = [� 0 
s 

0 

I [s + 2 
s(s + 2) 0 

A = [� 2 

o 

[ 1 
1 1 � 1 = ! s(s ; 2) 

s + 2 

- ) s - 2 o 
o ] 

- ) s - 2 

419 



420 

we have 
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I [ (5 - 2)2 
(rl - A)� = 0 

(5 - 2)3 0 
1 

5 - 2 (5 - 2)2 0 1 
5 - 2  

0 0 

(5 - 2) (5 � 2) ] (5 - 2)2 0 (5 - 2)2 

(5 - 2)3 1 
(5 - 2)2 

1 
5 - 2 

(See Appendix C to obtain the inverse of a 3 X 3 matrix.) Hence, 

o 
Problem A-8-11 

Obtain the response of the system 

when the input /l is a unit-step function. Assume that x(O) = O. 

Solution From Problem A-8-9, we have 

From Equation (8-36), 

x(t ) = e"'x(O) + l'eA1'-'lBII( r) dr 

Since x(O) = 0 and lI(t) = I (t) ,  we get 

x(t) = l'eA1'-'lBl (7) dr 

= eA1 l
i
e-A. B d'T 

Chap. 8 
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Thus. 

Problem A-8-12 
Obtain the response Y(I) of the system 

[tl ] = [-1 -O.5 ][XI ]  + [0.5 ]11, 
Xl 1 0 X2 0 

Y = [ l Ot: ] 
[XI (O)] = [0] 
x,(O) ° 

where u(!) is the unit-step input occurring at ( = 0, or 

11(1) = 1 ( 1 )  
Solution For Ihis system. 

A =  [- I 

1 
-0.5] 

° ' 

The state transition matri.x <P(r) = eAI can be obtained as follows: 

<1>(1)  = e'" = 9;-I [(sl - Arll 
Since 

we have 

(sl _ Arl = [s + 1 0.5 ]-1 = ,  1 [s -0.5 ] 
- I  s s · + s + 0.5 1 s + 1 
[ s + 0.5 - 0.5 -0.5 1 = (s + 0.5)' + 0.5' (s + 0.5)' + 0.5' 

1 s + 0.5 + 0.5 
(s + 0.5)' + 0.5' (s + 0.5)' + 0.5' 

<1>(1) = eA' = 9;-I[(sl - A)-II 

= [e .... {t5t (COS 0.5/ - sin D.Sf) 
2e-o·51 sin 0.51 

_e-o.51 sin 0.51 ] 
e-O.5,(cos 0.51 + sin 0.51) 

Since x(O) = 0 and 11(1) = 1 (1) .  referring to Equation (8-39), we get 

X(I) = e"'x(O) + A-I(eA' - 1)8 

= A-I (eA' - 1)8 

1 ][0.5e-0.,, (COS 0.51 - sin 0.51) - 0.5 ] -2 e-o·sl sin 0.5! [ e-0.51 sin 0.5/ ] 
= 

-e-{J.5,(cos 0.51 + sin 0.51) + 1 

Hence. the output Y(I} is given by 

Y(I) = [ I OI[XI ] = Xl = e-O.51 sin 0.5/ 
X2 

421 
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Problem A-8-13 
Consider the system defined by 

where 

x = Ax + Bu 

x = state vector (n-vector) 

u = input vector (r-vector) 

A = 11 X n constant matrix 

B = II X r constant matrix 

(8-49) 

Obtain the response of the system to the input u whose r components are step func­
tions of variolls magnitudes, or [III] [kl ' I (I)] 

11 = I:' = k" ,I (I ) = k ' I (I ) 
II, k, ' 1 (1) 

Solution The response to the step input u = k ' l (t) given at I = 0 is X(I) = e"'x(O) + l'e"(I-'lBk d. 

( Ar2 A21) 
= e"'x(O) + e'" II - - + -- -. 2! 3! 

If A is nonsingular, then this last equation can be simplified to give X(I) = e"'x(O) + e"'[-(KI)(e-'" - 1)]Bk 
= e"'x(O) + A-I (e'" - I)Bk 

This is the analytical expression of the step response of the system defined by 
Equal;on (8-49). 

Problem A-8-14 
Consider the system defined by 

where 

x = state vector (n-vector) 

u = input vector (r-vector) 

A = II X 1/ constant matrix 
B = II X r constant matrix 

x = Ax + Uo 

Obtain the response of the system to the input u whose rcomponents are impulse func· 
lions or various magnitudes occuring at I = 0, or 

u = w8(1) 
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where w is a vector whose components are the magnitudes of r impulse functions 
applied at I � O. 
Solution From Equation (8-38), the solution of the given state equation is 

X(I) � eA1'-" )X(lo) + 1'e"I<-')BU(T) dT 
" 

Substituting to = 0- into this solution, we obtain 

X(I) � e"'x(O-) + [eA1'-')BU(T) dT 

The solution of the stale equation when the impulse input w 5(1) is given at ! = 0 is 

X(I) � e"'x(O-) + [eA1'-')BO(T)W dT 

= eA1x(O-) + eA1Bw 
This last equation gives the response to the impulse input w S(/). 

Problem A-8-15 
Consider the system defined by 

where 

x = state vector (n-vector) 

u = input vector (r-vector) 

A = II X 1/ constant matrix 
B = " x r constant matrix 

x = A'-I( + Bu 

Obtain the response of the system to the input u whose r components are ramp func­
tions of various magnitudes, or 

u = vt 

where v is a vector whose components are magnitudes of ramp functions applied at 
I � O. 
Solution The response to the ramp input VI given at ( = 0 is 

X(I) � e'''x(O) + 1.'e"I<-')B7V dT 

= eA1x(O) + eAllle-AT'T d'TBv 

( I 2A 3A' 4AJ = e'\/x(O) + eAt _(2 _ _ I' + _I' _ _  I' + 2 3 !  4! 5!  
If A is nonsingular, then this last equation can be simplified to 

X(I) � e"'x(O) + ( A-')(e'" - 1 - AI)Bv 
� e"'x(O) + [K'(e'" - I) - A-'ljBv 

The latter equation gives the response to the ramp input VI. 
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PROBLEMS 
Problem B-8-1 

In the electrical system of Figure 8-21, switch S is closed at t = O. Find the voltage 
eQ(t). Assume that the capacitor is initially uncharged. 

Figure S-21 Electrical system. 

Problem B-8-2 

Consider the electrical system shown in Figure 8-22. The voltage source E is suddenly 
connected by means of switch 5 at 1 = O. Assume that capacitor C is initially uncharged 
and that inductance L carries no initial current. What is the current i(/) for I > O? 

Figure 8-22 Electrical system. 

Problem B-8-3 

Derive the transfer function Eo(s)/E;(5) of the electrical circuit shown in Figure 8-23. 
Then obtain the response eo(t) when the input ei(r) is a step function of magnitude Ej, or 

e;{I) = £; ' I {I) 
Assume that the initial charge in the capacitor is zero. 

R, 
eo 

Figure 8-23 Electrical circuit. o 

C'T 0 
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Problem B-8-4 

Find the transfer function Xo(s)/Xj(s) of the mechanical system shown in Figure 8-24. 
Obtain the displacement xo(t) when the input Xj(c) is a step displacement of magnitude 
Xi occurring at 1 =  O. Assume that -"0(0-) = O. The displacement xo(r) is measured 
from the equilibrium position before the input xi(r) is given. 

Figure 8-24 Mechanical system. 

Problem B--3-5 

Derive the transfer function Xo(s)/Xj(s) of the mechanical system shown in Figure 8-25. 
Then obtain the response .\'"0(/) when the input X;(/) is a pulse signal given by 

xj(r) = Xi 0 < t < 1] 
= 0 elsewhere 

Assume that xo(O-) = O. 1l1C displacement xu(t) is measured from the rest position 
before the input Xi(t) is given. 

Figure 8-25 Mechanical system. 

Problem B-lHi 

Find the transfer function Eo(5)/E;(s) of (he electrical circuit shown in Figure 8-26. 
Suppose that the input ej(t) is a pulse signal given by 

e,(I) = E, 0 < I < I, 
= 0 elsewhere 
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R, 

C, R, e, eo 
Figure 8--26 Electrical circuit. C'T 

Obtain the output co(r). Assume that R2 = 1 .5RJ, C2 = Ch and RICI = 1 s. Assume 
also that the initial charges in the capacitors are zero. 

Problem 8-8-7 

A free vibration of the mechanical system shown in Figure 8-27(a) indicates that the 
amplitude of vibration decreases 10 25% of the value at t = to after four consecutive 
cycles of motion, as Figure 8-27(b) shows. Determine the viscous-friction coefficient b 
of the system if III � 1 kg and k � 500 N/m. 

x 

., 

(a) (b) 

Figure 8--27 (a) Mechanical system; (b) portion of a frcc-vibration curve. 

Problem 8-8-8 

A mass of20 kg is supported by a spring and damper as shown in Figure 8--28(a). The sys­
tem is at rest for I < O. At f = 0, a mass of 2 kg is added to the 20-kg mass. The system 
vibrates as shown in Figure 8-2S(b). Determine the spring constant k and the viscous­
friction coefficient b. rNote that (0.02/0.0S) X 100 = 25% maximum overshoot corre­
sponds to I � 0.4. J 

Problem 8-8-9 

Consider the mechanical system shown in Figure 8-29. It is at rest for 1 < O. The pen­
dulum "'2 is supported by mass "' I .  which vibrates because of an elastic connection. 
Derive the equations of motion for the system. The displacement x is measured from 
the equilibrium position for I < O. The angular displacement () is measured from the 
vertical axis passing through the pivot of the pendulum. 
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2 kg 

o
� 

____________ �� __ _ j" , 0.08 m '� I 

x 

(a) (b) 

Figure 8-28 (a) Mechanical system: (b) step-response curve. 

x 

k 

I e 

\ 
Figure 8--29 Mechanical system. 

Assuming the initial conditions to be x(O) = 0.1 m, .« 0) = 0 mis, 8(0) = 0 rad, 
and e(O) = 0 rad/s, obtain the motion of the pendulum. Assume also that IIll = 10 kg, 
1112 = 1 kg, k = 250 N/m, and { = 1 m. 

Problem 8-8-10 

Mass m = 1 kg is vibrating initially in the mechanical system shown in Figure 8-30. At 
1 = O. we hit the mass with an impulsive force pet) whose strength is 10 N. Assuming 
that the spring constant k is 100 N/m and that x(O-) = 0.1 m and .« 0-) = 1 mis, find 
the displacement x(t) as a function of time t. The displacement X(/} is measured from 
the equilibrium position in the absence of an excitation force. 

k 

x Figure 8-30 Mechanical system. 
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Problem B-S--ll 

Figure 8-31 shows a mechanical system that consists of a mass and a damper. TIle sys­
tem, initially at rest, is set into motion by an impulsive force whose strength is unity. 
Find the response x(t) and the initial velocity of mass m. 

- x  

8(1) � m 

() () 
Figure 8-31 Mechanical system. 

Problem B-S--U 

Consider the mechanical system shown in Figure 8-32. The system is at rest for 1 < O. 
Assume that k, � 4 N/m, k, � 20 N/m, h, � 1 N-s/m, and b, � 10 N-s/m. Obtain the 
displacement xl(r) when 1/ is a step force input of 2 N. Plot the response curve x2(r) 
versus ( with MATLAB. The displacements X l  and X2 are measured from their respec­
tive equilibrium positions before the input u is given. 

Figure 8-32 Mechanical system. 

Problem B-S--13 

b, � � 

I II 

Consider the electrical circuit shown in Figure 8-33. Obtain the response eo{t) when a 

step input ej(t) = 5 V is applied to the system. Plot the response curve eoCt )  versus [ with 

MATLAB. Assume that R, � I MO, R, � 0.5 MO, C1 � 0.5 fLF, and C, � 0.1 fLF. 

Assume also that the capacitors are not charged initially. 

Problem B-S--14 

Consider a second-order system defined by 

Yes) 
U(s) s' + s +  
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c, 

e, eo 

o>-______ c_'_T.L---<o Figure 8-33 Electrical circuit. 

Obtain the response y(/) when the input 1/(1) is a unit acceleration input [l/(I) = 1,/']. 
Obtain the response curve with MATLAB. 

Problem B-8-15 

Consider a second-order system defined by 

Y(s) 1 
U(s) = s' + 2,s + 1 

Obtain the unit-impulse response curves of the system for { = 0, 0.2, 0.4,0.6, 0.8, and 
1.0. Plot the six response curves in a two-dimensional diagram and a three-dimensional 
diagram. 

Problem B-8-16 

Obtain eAt, where 

A =  [ -2 2 

Problem B-8-17 

Obtain eAt, where 

A = [� 
"I 

Problem B-8-18 

Consider the system defined by 

x = Ax + Bu, 
where 

A = [ 0 
-6 �l, -) 

1 

o 
-3 

-�l -) 

x(O) = 0 

B = [� l 
Obtain the response X(/) analytically when II i s  a unit-step function. 
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Problem 8-8-19 

Consider the system defined by 

x = Ax + Bu, x{O) = 0 
where 

B = [� : ] 
and 

" = [", ] = [: ' I {t ) ] 
", ) · ) ( t )  

Obtain the response XCI) analyticaIly. 

Problem 8-8-20 

For the system of Problem 8-8-19, obtain the response curves xd1) versus I and x2(r) 
versus t with MATLAB. 



Frequency-Domain 
Analys is of Dynamic 
Systems 

9-1 INTRODUCTION 

Responses of linear, time-invariant systems to sinusoidal inputs are the major sub­
ject of this chapter. First we define the sinusoidal transfer function and explain its 
use i n  the steady-state sinusoidal response. Then we treat vibrations in rotating 
mechanical systems, present some vibration isolation problems, and examine 
dynamic vibration absorbers. Finally, we deal with vibrations in multi-degrees-of­
freedom systems. 

Outline of the chapter. Section 9-1 gives introductory material. Section 9-2 
begins with forced vibrations of mechanical systems and then derives the sinusoidal 
transfer function for the linear, time-invariant dynamic system. Section 9-3 treats vi­
brations in rotating mechanical systems. Section 9-4 examines vibration isolation 
problems that arise in rotating mechanical systems. In this regard, transmissibility for 
force excitation and that for motion excitation are discussed. Section 9-5 presents a 
way to reduce vibrations caused by rotating unbalance and treats a dynamic vibra­
tion absorber commonly used in industries. Section 9-6 analyzes free vibrations in 
multi-degrees-of-freedom systems and discusses modes of vibration. 

431 
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9-2 SINUSOIDAL TRANSFER FUNCTION 

When a sinusoidal input is applied to a linear, time-invariant system, the system will 
tend to vibrate at its own natural frequency, as well as follow the frequency of the 
input. In the presence of damping, that portion of motion not sustained by the sinu­
soidal input will gradually die out. As a result, the response at steady state is sinusoidal 
at the same frequency as the input. The steady-state output differs from the input only 
in the amplitude and phase angle. Thus, the output-input amplitude ratio and the 
phase angle between the output and input sinusoids are the only two parameters 
needed to predict the steady-state output of a linear, time-invariant system when the 
input is a sinusoid. In general, the amplitude ratio and the phase angle depend on the 
input frequency. 

Frequency response. The term frequency response refers to the steady­
state response of a system to a sinusoidal input. For all frequencies from zero to in­
finity, the frequency-response characteristics of a system can be completely 
described by the output-input amplitude ratio and the phase angle between the out­
put and input sinusoids. In this method of systems analysis, we vary the frequency of 
the input signal over a wide range and study the resulting response. (We shall pre­
sent detailed discussions of frequency response in Chapter 1 1 .) 

Forced vibration without damping. Figure 9-1 illustrates a spring-mass 
system in which the mass is subjected to a sinusoidal input force P sin wt. Let us find 
the response of the system when it is initially at rest. 

If we measure the displacement x from the equilibrium position, the equation 
of motion for the system becomes 

or 

m�t + kx = P sin wI 

. .  k P .  
x + -x = - sm wt m In (9-1) 

Note that the solution of this equation consists of the vibration at its own natural 
frequency (the complementary solution) and that at the forcing frequency (the par­
ticular solution). Thus, the solution X(I) can be written as 

X(I) = complementary solution + particular solution 

/ 

k 

Figure 9-1 Spring-mass system. x 
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Now we shall obtain the solution of Equation (9- 1 )  under the condition that the sys­
tem is initially at rest. Taking the Laplace transform of Equation (9-1 )  and using the 
initial conditions x(O) = 0 and .ic(O) = 0, we obtain 

Solving for Xes) yields 

P w 1 
X (s) = - -';-----0;: --0:--­m 52 + w2 52 + (kim) 

= -P w y;;;jk V"k/,;, 
' 2  + 

k - mw- s + (kim) 
P w 

k - mw2 52 + w2 

The inverse Laplace transform of this last equation gives 

P w v;;;ik . p;" P .  X(I) = - 2 Sin \ -I + 2 SJIl wI 
k - mw '" k - 11lw 

(9-2) 

This is the complete solution. The first term is the complementary solution (the nat­
ural frequency vibration does not decay in this system), and the second term is the 
particular solution. [Note that if we need only a steady-state solution (particular 
solution) of a stable system, the use of the sinusoidal transfer function simplifies the 
solution. TIle sinusoidal transfer function is discussed in detail later in this section.] 

Let us examine Equation (9-2). As the forcing frequency w approaches zero, the 
amplitude of the vibration at the natural frequency vklm approaches zero and the 
amplitude of the vibration at the forcing frequency w approaches Plk. This value Plk 
is the deflection of the mass that would result if the force P were applied steadily (at 
zero frequency). TIlat is, Plk is the static deflection. As the frequency w increases 
from zero, the denominator k - mw2 of the solution becomes smaller and the 
amplitudes become larger. As the frequency w is further increased and becomes 
equal to the natural frequency of the system (i.e., w = w" = V"k/,;,), resonance 
occurs. At resonance, the denominator k - mw2, becomes zero, and the amplit ude 
of vibration will increase without bound. (When the sinusoidal input is applied at 
the natural frequency and in phase with tbe motion-that is, in the same direction as 
the velocity-the input force is actually doing work on the system and is adding 
energy to it that will appear as an increase in amplitudes.) As w continues to 
increase past resonance, the denominator k - IIlW2 becomes negative and assumes 
increasingly larger values, approaching negative infinity. Therefore, the amplitudes 
of vibration (at the natural frequency and at the forcing frequency) approach zero 
from the negative side, starting at negative infinity when w = w,,+ . In other words, if 
w is below resonance, that part o[ the vibration at the forcing frequency (particular 
solution) is in phase with the forcing sinusoid. If w is above resonance, this vibration 
becomes 1800 out of phase. 

Sinusoidal transfer function. The sillllsoidal tral1sfer flll1Cliol1 is defined as 
the transfer function C(s) in which 5 is replaced by jw. When only the steady-state 
solution (the particular solution) is wanted, the sinusoidal transfer function C(jw) 
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can simplify the solution. In the discussion that follows, we shall consider the behav­
ior of stable linear, time-invariant systems under steady-state conditions-that is, 
after the initial transients bave died out. We shall see that sinusoidal inputs produce 
sinusoidal outputs in the steady state, with the amplitude and phase angle at each 
frequency w determined by the magnitude and angle of G(jw), respectively. 

Deriving steady-state output caused by sinusoidal input. We shall show 
how the frequency-response characteristics of a stable system can be derived directly 
from the sinusoidal transfer function. For the linear, time-invariant system G(s) 
shown in Figure 9-2, the input and output are denoted by p(l) and X(I), respectively. 
111e input p(l) is sinusoidal and is given by 

p(l)  = P sin wI 

We shall show that the output X(I) at steady state is given by 

X(I) = IG(jw) I P sin(wl + <1» 

where IG(jw) 1 and cP are the magnitude and angle of G(jw), respectively. 
Suppose that the transfer function G(s) can be written as a ratio of two poly­

nomials in s; that is, 

K(s + z , ) ( s  + z, ) ' "  ( s  + z",) 
G (s) - -'---'-'-''-----'''''-----'----''''­

(s + s , ) (s  + s,) ' "  (s + s,,) 

The Laplace-transformed output Xes) is 

Xes) = G(s)P(s) 

where pes) is the Laplace transform of the input p(I). 

(9-3) 

Let us limit our discussion to stable systems. For such systems, the real parts of 
the -s; are negative. The steady-state response of a stable linear system to a sinu­
soidal input does not depend on the initial conditions, so they can be ignored. 

If G(s) has only distinct poles, then the partial-fraction expansion of Equa­
tion (9-3) yields 

Pw 
Xes)  = G(s) , , 

s· + w 
o a b, b, 

= --- + --- + -- + -- + 
s + jw S - jw S + s[ S + 52 

b" 
+ -­

S + SII 
(9-4) 

where 0 and b;(i = 1 , 2, . . .  , 11) are constants and a is the complex conjugate of o. 
The inverse Laplace transform of Equation (9-4) gives 

X(/ )  = ae-jw/ + aejwl + bl e-SII + bze-S21 + . . . + bile-slit 

p(l) = P sin WI x(t) 
G(s) 

Figure 9-2 Linear, linlC·invarianl system. 
P(s) X(s) 
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For a stable system, as I approaches infinity. the terms e-SI', e-S2', • • • •  e-s,,1 approach 
zero, since -s[,  -S2 • . . .  , -s" have negative real parts. Thus, all terms on the right­
hand side of this last equation, except the first two, drop out at steady state. 

If C(s) involves k multiple poles Sj, then xCt) will involve such terms as t"e-S, I 

(where h = 0, 1 ,  . . .  , k - 1 ) .  Since the real part of the -Sj is negative for a stable 
system, the terms (he-sl, approach zero as ( approaches infinity. 

Regardless of whether the system involves multiple poles, the steady-state 
response thus becomes 

x(t) ::;: ae-fw, + nejw/ 

where the constants a and ii can be evaluated from Equation (9-4): 

Pw ! P 
a = C(s) 2 2(S + jw) = - -

2
· C( -jw) 

s + W s=-jw ] 

ii = C(s) 2 
Pw 

2
(S - jW) !  = 

2
P

C(jw) 
s + w s=jw J 

(9-5) 

(Note that a is the complex conjugate of a.) Referring to Figure 9-3, we can write 

C(jw) = C, + jCy 
= iC(jw) icos <I> + j ic(j,u) isin <I> 
= iC(jw)i (cos <I> + j sin <1» 
= iC(jw) iej� 

(Note that IC(jw) = lei� = <1>.) Similarly, 

It follows that 

jw 

o 

C( -jw) = iC( -jw) le-j� = iC(jw) i e-N 

, 
, , , 
, 

a = - :. i C(jw) i e-i� 
-J 

ii = � iC(jw) iei� 

CUw) 

G( -jw) Figure 9-3 Complex function and its 
complex conjugate. 
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Then Equation (9-5) can be wrillen as 

ei(wt+c/J) _ e-j(wt+d1) 
X(I ) � iG(jw) i p 2j 

� iG(jw ) iPsin(wr + </» 
� Xsin(wl + </» 

Chap. 9 

(9-6) 

where X � iG(jw) ip and </> � /G(jw). We see that a stable linear system subjected 
to a sinusoidal input will, at steady state, have a sinusoidal output of the same fre­
quency as the input. But the amplitude and phase angle of the output will, in general, 
differ from the input's. In fact, the output's amplitude is given by the product of the 
amplitude of the input and iG(jw) i ,  whereas the phase angle diners from that of the 
input by the amount </> � /G(jw). 

On the basis of the preceding analysis, we are able to derive the following 
important result: For sinusoidal inputs, . _ I  X (jw) 1 _  amplitude ratio of the output iG(Jw) i - P(jw) - sinusoid to the input sinusoid 

X (jw) _l[ imaginary part of G(jw) 1 /G(jw) � P[f;;;; � tan 
real part of G(jw) 

_ phase shih of the output sinusoid - with respect to the input sinusoid 

(9-7) 

(9-8) 

Thus, the steady-state response characteristics of a linear system to a sinusoidal 
input can be found directly from G(jw), the ratio of X (jw) to P(jw). 

Note that the sinusoidal transfer [unction G(jw) is a complex quantity that can 
be represented by the magnitude and phase angle with the frequency w as a parameter. 
To characterize a linear system completely by its frequency-response curves, we must 
specify both the amplitUde ratio and the phase angle as a function of the frequency w. 

Comments. Equation (9-6) is valid only if G(s) � X(s)IP(s) is a stable 
system, that is, if all poles of G(s) lie in the left half s-plane. If a pole is at the origin 
and/or poles of G(s) lie on the jw-axis (any poles on the jw-axis, except that at the 
origin, must occur as a pair of complex conjugates), the output X(I) may be obtained 
by taking the inverse Laplace transform of the equation 

or 

Pw 
X es)  � G(s) P(s) � G(s) , , s- + w-

X(I )  � ;e-l [x(s)]  � ;e-l [G(s) ,
Pw 1 s- + w2 

Note that if one or more poles of G(s) lie in the right half s-plane, then the system is 
unstable and the response grows indefinitely. There is no steady state for such an 
unstable system. 
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Example 9-1 

Consider the transfer· function system 

)((s) 1 
pes) 

= C(s) = Ts + I 

For the sinusoidal input p(t) = P sin we, what is the steady-state output X(/)? 
Substituting jw for s in C(s) yields 

C( ' ) - I }W - Tjw + 1 

The output-input amplitude ratio is 

ICUw) 1  

whereas the phase angle cf> is 

<I> = � = -tan-I Tw 

So, for the input p(l) = P sin wI, the steady-state output X(I) can be found as 

X(I) = 
P 

sin(wl - tan-I Tw) 
VT'w' + I 

437 

(9-9) 

From this equation, we see that, for small w, the amplitude of the output x(t) is almost 
equal to the amplitude of the input. For large w, the amplitude of the output is small 
and almost inversely proportional to w. The phase angle is 0° at w = 0 and approaches 
-900 as w increases indefinitely. 

Example 9-2 

Suppose that a sinusoidal force p(t) = P sin wr is applied to the mechanical system 
shown in Figure 9-4. Assuming that the displacement x is measured from the equilibrium 
position, Gnd the sleady·slale output. 

The equation of motion for the system is 

m:i + b.t + kx = p(l) 

The Laplace transform of this equation, assuming zero initial conditions, is 

(ms' + bs + k)X(s) = pes) 

/ 

pet) = P sin WI 

x Figure � Mechnnical system. 
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where X(s) = :£ lx(I)1  and P(s) = :£ lp(/)]. (Note that the initial conditions do not 
affect the steady-state output and so can be taken to be zero.) The transfer function 
between the displacement Xes) and the input force pes) is, therefore, obtained as 

X(s) 1 
- = G(s) = P(s) illS' + bs + k 

Since the input is a sinusoidal function pCt) = P sin wf, we can use the sinusoidal trans­
fer function to obtain the steady-state solution. The sinusoidal transfer function is 

X(�I . I 

P(jwl 
= G{jw) 

= -IIlW' + bjw + k (k - IIlw'l + jbw 

From Equation (9-61_ the steady-state output x(/1 can be written 

where 

and 

Thus, 

x(/1 = IG(jw) lp  sin (wI + </» 

</> = /G(jw) = , .  = -tan-I , / 1 bw 
(k - nlW-) + /bw k - I'1lW· 

X(f) = 
P 

sin (WI - tan-1 
bw 2) 

V (k - I1lW2)2 + b2w2 k - mw 

Since kIm = W7t and blk = 2�/w/l! the equation for x(t) can be written 

.v(l ) x" . [ -I 2t;w/w" 1 � Sin w{ - tan , V[1 - (w'/w;,)]' + (2t;w/w,,)' 1 - (w-/w;,1 

where XS1 = Plk is the static deflection. 

(9-10) 

Writing the amplitude of x(I) as X. we find that the amplitude ratio Xlxs1 is 

and the phase shift rI> is 

X 

x" V[I - (w'/w;,11' + (2\w/w,,)' 

-I 2{wlwn cb = -tan ') I - (w'/w;1 

9-3 VIBRATIONS IN ROTATING MECHANICAL SYSTEMS 

Vibration is, in general, undesirable because it may cause parts to break down, gen­
erate noise, transmit forces to foundations, and so on. To reduce the amount of force 
transmitted 10 the foundation as a result of a machine's vibration (a technique 
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known as force iso/arion) as much as possible. machines are usually mounted on 
vibration isolators that consist of springs and dampers. Similarly, to reduce the 
amount of motion transmitted to a delicate instrument by the motion of its founda· 
tion (a technique called mOliol1 isolariol1). instruments are mounted on isolators. In 
this section, centripetal force, centrifugal force. and force due to a rotating unbal· 
ance are described first. Aftenvard, vibrations caused by the excitatory force result­
ing from unbalance are discussed. Vibration isolation is examined in Section 9-4. 

Centripetal force and centrifugal force. Suppose that a point mass III is 
moving in a circular path with a constant speed, as shown in Figure 9-5(a). The mag­
nitudes of the velocities of the mass m at point A and point B are � same, but the 
directions are different. Referring to Figure 9-5(b). the direction PQ becomes per· 
pendicular to the direction AP (the direction of the velocity vector at point A)  if 
points A and B are close to each other. This means that the point mass must be sub· 
jected to a force that acts toward the center of rotation, point O. Such a force is 
called a celllriperal force. For example, if a mass is attached to the end of a cord and 
is rotated at an angular speed w in a horizontal plane like a conical pendulum, then 
the horizontal component of the tension in the cord is the centripetal force acting to 
keep the rotating configuration. 

TIle force lila acting toward the center of rotation is derived as follows: Noting 
that triangles OAB and APQ are similar, we have 

I' 118 = 
I' 

where I llvl and IVAI represent the magnitudes of velocity Ilv and velocity VA, 
respectively. Observing that IVAI = wI' and w = lim",_o ( 1l811l1), we obtain 

. I llv l  . IVAII'M , 
a = hm -- = hm = w 7  ut--+O tlr �t-O r tlt  

\ ' 
A8 0-=--.', =-----1A 

(a) (b) 

Figure 9-5 (n) Point mass moving in a circular path: (b) velocity vector diagram. 
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Figure 9-6 Unbalanced machine 
resting on shock mounts. 

Total [ 
mass M 

Chap. S 

This acceleration acts toward the center of rotation, and the centripetal force is 
l11a = IIIw2r. The centrifugal force i s  the opposing inertia force that acts outward. Its 
magnitude is also mw2r. 

Vibration due to rotating unbalance. Force inputs Ihat excite vibratory 
motion often arise from rotating unbalance, a condition that arises when the mass 
center of a rotating rigid body and the center of rotation do not coincide. Figure 9-6 
shows an unbalanced machine resting on shock mounts. Assume that the rotor is ro­
tating at a constant speed w rad/s and that the unbalanced mass In is located a dis­
tance r from the center of rotation. Then the unbalanced mass will produce a 
centrifugal force of magnitude mw 2,. 

In the present analysis, we limit the motion to the vertical direction only, even 
though Ihe rotating unbalance produces a horizontal component of force. The verti­
cal component of this force, I11w2r sin wr, acts on the bearings and is thus transmitted 
to the foundation. Ihereby possibly causing Ihe machine to vibrate excessively. 
[Note that, for convenience, we arbitrarily choose Ihe time origin t = 0, so that the 
unbalance force applied to the system is mw2,. sin wr.] 

Let us assume that the total mass of the system is M, which includes the unbal­
anced mass IH. Here, we consider only vertical motion and measure the vertical dis­
placemenl x from the equilibrium position in the absence of the forcing function. 
Then the equation of motion for the system becomes 

Mx + b_t + kx = p(t) (9-1 1 )  

where 

p( r) = IIIw2r sin wr 

is the force applied to the system. Taking the Laplace transform of both sides of 
Equation (9-1 1 ), assuming zero initial conditions, we have 

(Ms' + bs + k)X(s) = P(s) 
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or 

Vibration Isolation 

X(s) 1 
P(s) Ms2 + bs + k  

The sinusoidal transfer function is 
X(jw) . 1 

P(jw) = G(jw) = -Mw2 + bjw + k 
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For the sinusoidal forcing function p(I). the steady-state output is obtained from 
Equation (9-6) as 

X(I) = Xsin(wl + cp) 
= IG(jw)lmw2r sin(wl _ tan-I 

bw ,) k - Mw-
_
r=�I�n�w�2�r<==;;=;; 

. ( -I bw ) SIn wt - tan ., V(k - Mw2)2 + b2w2 k - Mw-

In this last equation, if we divide the numerator and denominator of the amplitude 
and those of the phase angle by k and substitute kiM = w;, and blM = 2{w" into 
the result, the steady-state output becomes 

/IIw2rlk [ 2{wlw" 1 
X(I )  = sin wI - tan-I , 

'11[1 - (w2/w;,)f + (2{wlw,,)2 1 - (w2/w;,) 

Thus, the steady-state output is a sinusoidal motion whose amplitude becomes large 
when the damping ratio { is small and the forcing frequency w is close to the natural 
frequency Ww 

9-4 VIBRATION ISOLATION 

Vibration isolation is a process by which vibratory effects are minimized or climi­
nated.1l1c function of a vibration isolator is to reduce the magnitude of force trans­
mitted from a machine to its foundation or to reduce the magnitude of motion 
transmitted from a vibratory foundation to a machine. 

111e concept is illustrated in Figures 9-7(a) and (b). The system consists of a 
rigid body representing a machine connected to a foundalion by an isolator that 
consists of a spring and a damper. Figure 9-7(a) illustrates the case in which the 
source of vibration is a vibrating force originating within the machine (force excita­
lion).l1lC isolator reduces the force transmitted to the foundation. In Figure 9-7(b). 
the source of vibration is a vibrating motion of the foundation (motion excitation). 
111e isolator reduces the vibration amplitude of the machine. 

The isolator essentially consists of a resilient load-supporting means (such as a 
spring) and an energy·dissipating means (such as a damper). A typical vibration iso­
lator appears in Figure 9-8. (In a simple vibration isolator, a single element like syn­
thetic rubber can perform the functions of both the load-supporting means and the 
energy-dissipating means.) In the analysis given here, the machine and the founda· 
lion are assumed rigid and the isolator is assumed massless. 
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Force 

t � 
Motion 

Machine Machine 0 0 0  V V  

I 
Isolator 

I MOltOn 

0 1'\ 1'\  / \TV 

t � 
Force 

(a) (b) 

Figure 9-7 Vibration isolation. (a) Force excitation: (b) motion excitation. 

Figure 9-8 Vibration isolator. 

} Vibration 
isolator 

Chap. S 

Transmissibility. Transmissibility is a measure of the reduction of a trans­
mitted force or of motion afforded by an isolator. If the source of vibration is a vi­
brating force due to the unbalance of the machine (force excitation), transmissibility 
is the ratio of the amplitude of the force transmitted to the foundation to the ampli­
tude of the excitatory force. Lf the source of vibration is a vibratory motion of the 
foundation (motion excitation), transmissibility is the ratio of the vibration ampli­
tude of the machine to the vibration amplitude of the foundation. 

Transmissibility for force excitation. For the system shown in Figure 9-6, 
the source of vibration is a vibrating force resulting from the unbalance of the ma­
chine. TIle transmissibility in this case is the force amplitude ratio and is given by 

F, amplitude of the transmitted force 
transmissibility = TR = - = . Fo amplitude of the excItatory force 

Let us find the transmissibility of this system in terms of the damping ratio ? and the 
frequency ratio {3 = wlww 
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The excitatory force (in the vertical direction) is caused by the unbalanced 
mass of the machine and is  

p(l) = mw'r sin wI = Fo sin wI 

The equation of motion for the system is Equation (9-1 1 ) ,  rewritten here for 
convenience: 

M:i + b.i: + kx = p(l) (9-12) 
where M i s  the total mass of the machine including the unbalance mass m. The force 
/(1) transmitted to the foundation is the sum of the damper and spring forces, or 

/(1) = b.i: + kx = F, sin(wl + cf» (9-13) 

Taking the Laplace transforms of Equations (9-12) and (9-13), assuming zero initial 
conditions, gives 

(MS2 + bs + k)X(s) = P(s) 
(bs + k)X(s) = F(s) 

where X(s) = 9: [X(I)], P(s) = 9:[p(I)], and F(s) = 9: (f(I)]. Hence, 

X(s) 1 
P(s) Ms2 + bs + k 
F(s) 

-- = bs + k X(s) 

Eliminating X(s) from the last two equations yields 

F(s) F(s) X(s) bs + k - = -- -- = -,,-----P(s) X(s) P(s) Ms2 + bs + k 

The sinusoidal transfer function is thus 

F(jw) 
P(jw) 

bjw + k (bIM)jw + (kiM) 
-----,;---- = 
-Mw2 + bjw + k -w' + (bIM)jw + (kiM) 

Substituting kiM = w;' and blM = 2(w" into this last equation and simplifying, we 
have 

F(jw) 1 + j(2(wlw,,) 
P(jw) = 

1 - (w'lw;,) + j(2(wlwn) 

from which it follows that 

I F(jw) I VI + (2(wlw,, )2 VI + (2(f3 )2 
P(jw) = V[1 - (w2Iw;,)1' + (2(wlw,,)' 

= V(l - {32)2 + (2({3)' 
where {3 = w/ww 
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Noting that the amplitude of the excitatory force is Fo = Ip(jw) 1 and that the 
amplitude of the transmitted force is F, = 1 F(jw) I. we obtain the transmissibility: 

F, 
TR = - = Fo 

I F(jw) 1  
I p(jw) 1  

(9-14) 

From Equation (9-14), we see that the transmissibility depends on both f3 and r 
When f3 = v'2, however, the transmissibility is equal to unity, regardless of the 
value of the damping ratio r 

Figure 9-9 shows some curves of transmissibility versus f3 (  = wlw,,). We see 
that all of the curves pass through a critical point where TR = 1 and f3 = v'2. For 
f3 < v'2, as the damping ratio ? increases, the transmissibility at resonance decreas­
es. For f3 > v'2, as ( increases, the transmissibility increases. Therefore, for 
f3 < v'2, or w < v'2 w" (the forcing frequency w is smaller than v'2 times the 
undamped natural frequency W,l) , increasing damping improves the vibration isola· 
tion. For f3 > v'2, or w > v'2 w'" increasing damping adversely affects the vibra­
tion isolation. 

Note that, since I p(jw)1 = Fo = mw'r, the amplitude of the force transmitted 
to the foundation is 

7 

6 

5 
TR 

3 

, 

1 

o 

F, = I F(jw)1 
mw'rV1 + (2(f3)' 

'11( 1  - f3')' + (2{f3)' 

I 
( � O  

k" / 
I II \ 

j, V-Y � ( - 0.2 
I I 

�, ( � 0.5 
., ,v 

) 1 
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0.2 0.4 0.6 0.8 1.2 1 .4 1.6 1.8 , 

Figure 9-9 Curves of transmissibility TR versus f3( =: wlw,,}, 

(9-15) 
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Example 9-3 

In the system shown in Figure 9-6. if M = 15  kg, b = 450 N-s/m. k = 6000 N/m, 
m = 0.005 kg. r = 0.2 m. and w = 16 fad/s. what is the force transmitted to the foun­
dation? 

The equation of motion for the system is 

15:, + 450.< + 6000x = (0.005) (  1 6)'(0.2) sin 161 

Consequently. 

W/I = 20 rad/s, , = 0.75 

and we find that f3 = w/w,r = 16/20 = 0.8. From Equation (9-15). we have 

F. = , 
IIIw'rVI + (2?{3)' 

V(1 - f3')' + (2!:f3) ' 

(0.005)(  16 )'( 0.2)  Vel -+-c(;-:-2
-

x-'0=-=.70":"5
-

X""0:-:.S"')' -'---;����==;��:=:==c:=:,:,,'- = 0.319 N V( I - O. S')' + ( 2 x 0.75 x O.S)' 

The force transmitted to the foundation is sinusoidal with an amplitude 0(0.319 N. 

Automobile suspension system. Figure 9-10(a) shows an automobile sys­
tem. Figure 9-10(b) is a schematic diagram of an automobile suspension system. As 
the car moves along the road, the vertical displacements at the tires act as motion 
excitation to the automobile suspension system. The motion of this system consists 
of a translational motion of the center of mass and a rotational motion about the 
ccnter of mass. A complete analysis of the slispension system would be very in­
volved. A highly simplified version appears in Figure 9-1 1 .  Let us analyze this sim­
ple model when the motion input is sinusoidal. We shall derive the transmissibility 
for the motion excitation system. (As a related problem, see Problem B-9-13.) 

(a) 

Center of mass 

(b) 

Auto body 

Figure 9-10 (a) Automobile system: 
(b) schematic diagram of an automobile 
suspcnsion systcm. 
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Figure 9-11 Simplified version of the automo­
bile suspension system of Figure 9-10. 

Chap. 9 

Transmissibility for motion excitation. I n  the mechanical system shown 
in Figure 9-12, the motion of the body is in the vertical direction only. The motion 
1'(1) at point A is the input to tbe system; the vertical motion X(I) of the body is the 
output. 1l1e displacement X(I) is measured from the equilibrium position in the ab­
sence of input p(I). We assume that 1'(1) is sinusoidal, or 1'( 1 )  = P sin wI. 

The equation of motion for the system is 

Ill:" + b(.i: - jJ) + k(x - 1') = a 

or 

111:,0 + b.¥ + kx = bi; + kp 

The Laplace transform of this last equation, assuming zero initial conditions, gives 

(l/1s2 + bs + k ) X (s) = (bs + k )P(s) 
Hence, 

X(s) 
= 

bs + k 
P(s) ms2 + bs + k  

1lle sinusoidal transfer function is 
X(jw) 

= 
bjw + k 

P(jw) -mw2 + bjw + k 

A >----, 

Figure 9-U Mechanical system. 
p(r) = P sin Wf 
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The steady-state output x(t) has the amplitude I X(jw ) l .  The input amplitude is 
1 P(jw) I. The transmissibility TR in this case is the displacement amplitude ratio and 
is given by 

TI1US, 

amplitude of the output displacement 
TR = -'-::----:---::--:--:---''---:c-'o---­

amplitude of the input displacement 

I X (jw) 1  Vb2w2 + k2 
TR = = �C:===��=:=i;=:; I p(jw) 1 V(k - IIIw2f + b2w2 

Noting that kIm = w� and hIm = 2{w". we see that the transmissibility is given, in 
terms of the damping ratio ( and the undamped natural frequency w". by 

VI + ( 2({3)2 
TR = -:-r:===:;c�====.o:; 

V( 1  - (32)2 + (2({3f 
(9-16) 

where {3 = wlw". TIlis equation is identical to Equation (9-14). 

Example 9-4 

A rigid body is mounted on an isolator to reduce vibratory effects. Assume that the 
mass of the rigid body is 500 kg. the damping coefficient of the isolator is vcry small 
«( = Om),  and the effective spring constant of the isolator is 12.500 N/m. Find the per­
centage of motion transmitted to the body if the frequency of the motion excitation of 
the base of the isolator is 20 fad/so 

so 

1l1C undamped natural frequency W,) of the system is /2.500 
WI! = 

500 
= 5 rad/s 

w 20 
{3 = - = - = 4 

WII 5 

Substituting ( = 0.01 and {3 = 4 into Equation (9-16), we have 

VI + (2(13)' 
TR = ---r.===<'��=, V( 1  - {3')' + (2(/3)' 

VI + (2 x 0.01 x 4)' 
,==�=�"'=�=", = 0.0669 
V(I - 4' ) ' + (2 x 0.01 x 4)' 

The isolator thus reduces the vibratory motion of the rigid body to 6.69% of the vibra­
tory motion of the base of the isolator. 

9-5 DYNAMIC VIBRATION ABSORBERS 

If a mechanical system operates near a critical frequency, the amplitude of vibration 
increases to a degree that cannot be tolerated, because the machine might break 
down or might transmit too much vibration to the surrounding machines. This sec­
lion discusses a way to reduce vibrations near a specified operating frequency that is 
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close to the natural frequency (i.e., the critical frequency) of the system by the use of 
a dynamic vibration absorber. 

Basically, the dynamic vibration absorber adds one degree of freedom to the 
system. I f  the original system is a one-degree-of-freedom system (meaning that the 
system has only one critical frequency w,), the addition of the dynamic vibration 
absorber increases the number of degrees of freedom to two and thereby increases 
the number of critical frequencies to two. This means that it is possible to shif1 the 
critical frequencies from the operating frequency. One of the two new critical fre­
quencies will be well below the original critical frequency w" and the other will be 
well above w,. Therefore, operation at the given frequency (near w,) is possible. 

Before we present vibration absorbers, we shall discuss systems with two or 
more degrees of freedom. 

Mechanical systems with two or more degrees of freedom. I n  real-life 
situations, the motion of a mechanical system may be simultaneously translational 
and rotational in three-dimensional space, and parts of the system may have con­
straints on where they can move. The geometrical description of such motions can 
become complicated, but the fundamental physical laws still apply. 

For some simple systems, only one coordinate may be necessary to specify the 
motion of the system. However. more than one coordinate is necessary to describe 
the motion of complicated systems. The term used to describe the minimum number 
of independent coordinates required to specify this motion is degrees of freedom. 

Degrees of freedom. The number of degrees of freedom that a mechanical 
system possesses is the minimum number of independent coordinates required to 
specify the positions of all of the elemcnts of the systcm. For instance, if only one in­
dependent coordinate is needed to completely specify the geometric location of the 
mass of a system in space, the system has a one degree of freedom. Thus, a rigid body 
rotating on an axis has one degree of freedom, whereas a rigid body in space has six 
degrees of freedom-three translational and three rotational. 

It is important to note that. in general. neither the number of masses nor any 
other obvious quantity will always lead to a correct assessment of the number of 
degrees of freedom. 

In terms of the number of equations of motion and the number of constraints, 
we have 

number of degrees of freedom = ( numb!;;r of equations of motion) 

- (number of equations of constraint) 

EXUIIlI)lc 9-5 

Let us find the degrees of freedom of each of the systems shown in Figure 9-13. 

(a) We begin with the system shown in Figure 9-13(a). If the mass m is constrained 
to move vertically. only one coordinate x is required to define the location of the mass at 
any time. Thus. the system shown in Figure 9-13(a) has one degree of freedom. 
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Figure 9-13 Mechanical systems. 
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We can verify this statement by counting the number of equations of motion and 
the number of equations of constraint. This system has one equation of motion, namely. 

m:i + b.t + kx = 0 

and no equation of constraint. Consequently, 

degree of freedom = 1 - 0 = 

(b) ext, consider the system shown in Figure 9-13(b). The equations of mOl ion 
here are 

111:\:1 + k\xj + k2(x\ - X2) = 0 

k2(x, - x,) � b,.t, 

so the number of equations of motion is two. There is no equation of constraint. Therefore. 

degrees of freedom � 2 - 0 � 2 
(c) Finally, consider the pendulum system shown in Figure 9-13(c). If we define 

the coordinates of the pendulum mass as (x, y), then the equations of motion are 

m:t = -T sin 8 

my = mg - T eas e 

where T is the tension in the wire. Thus, the number of equations of motion is two. The 
constraint equation for this system is 

The number of equations of constraint is one, so 

degree of freedom � 2 - 1 � 1 

Note that when physical constraints are present, the most convenient coordinate 
system may not be a rectangular one. In the pendulum system of Figure 9-13(c). the 
pendulum is constrained to move in a circular path. The most convenient coordinate 
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system here would be a polar coordinate system. lllcn the only coordinate that is 
needed is the angle 8 through which the pendulum has swung. The rectangular coordi­
nates x, y and polar coordinates 8. 1 (where I is a constant) are related by 

or 

x = I sin e, y = / cos O 

In terms of the polar coordinate system. the equation of motion becomes , . . 
ml-O = -mgl sin () 

. .  g 
0 +  , sin 0 = 0 

Note that, since f is constant, the configuration of the system can be specified by 
one coordinate, O. Consequently, this is a one-degree-of-freedom system. 

Dynamic vibration absorber. In many situations, rotating machines (such 
as turbines and compressors) cause vibrations and transmit large vibratory forces to 
the machines' foundations. Vibratory forces may be caused by an unbalanced mass 
of the rotor. If the excitatory frequency w is equal to or nearly equal to the un­
damped natural frequency of the rotating machine on its mounts, then resonance 
occurs and large forces are transmitted to the foundation. 

If the machine operates at nearly constant speed, a device called a dynamic 
vibrariol1 absorber can be attached to it to eliminate the large transmitted force. This 
device is usually in the form of a spring-mass system tuned to have a natural fre­
quency equal to the operating frequency w. When a vibration absorber is added to a 
one-degree-of-freedom vibratory system, the entire system becomes a two-degrees­
of-freedom system with two natural frequencies. To reduce or nearly eliminate the 
transmitted force, one of the natural frequencies is set above the operating frequency, 
the other below it. 

Our discussion here focuses on a simple dynamic vibration absorber that will 
reduce the vertical force transmitted to the foundation. Note that only vertical 
motions are discussed. 

Reducing vibrations by means of a dynamic vibration absorber. If the 
mass of the rotor of a rotating machine is unbalanced, the machine transmits a large 
vibratory force to its foundation. Let us assume that the machine is supported by a 
spring and a damper as shown in Figure 9-14(a). The unbalanced rotor is represented 
by mass M, which includes the unbalanced mass, and is rotating at frequency w. The 
excitatory force is p(l) = P sin wI, where P = IIlw2r. (Here, III is the unbalanced 
mass and r is the distance of the unbalanced mass from the center of rotation.) Be­
cause of this force excitation, a sinusoidal force of amplitude 

mw2rVk2 + b2w2 
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p(/) = P sin W( y 

(a) (b) 

Figure 9-14 (a) Machine supported by a spring and damper: (b) m;lchinc 
with a dynamic vibration absorber. 
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is transmitted to the foundation. [To obtain this amplitude, substitute (3 = wlw" 
= wlVklM and � = bl(2VklVi) into Equation (9-15).] 

If the viscous damping coefficient b is small and the natural frequency VkiM of 
the system is equal to the excitation frequency, then resonance occurs, the machine is 
subjected to excessive vibration, and the transmitted force becomes extremely large. 

In  the analysis which follows, we assume that b is very small and that the nat· 
ural frequency \/kiM is very close to the excitation frequency w. In such a case, to 
reduce the transmitted force, a dynamic vibration absorber consisting of a mass 
(III,,) and a spring (k,,) may be added to the machine as shown in Figure 9-14(b). 

The equations of motion for the system of Figure 9-14(b) arc 

M:, + b.t + kx + k,,(x - y) = p(r)  = P sin wr 

lII"y + k,,(y - x) = 0 

where x and y, the displacements of mass M and mass 111(1) respectively, are measured 
from the respective equilibrium positions of these masses in the absence of excita­
tion force p(r). Taking the Laplace transforms of the last two equations, assuming 
zero initial conditions, we obtain 

( MS2 + bs + k + k,,)X(s) - k"Y(s) = P(s) 
(lII"s2 + k,, )Y(s)  - k"X(s) = 0 

Eliminating Y(s) from these equations yields 

pes) 
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It (allows that 

X(s) 
= 

_�,-___ "-,I,,,-,s_2_+_k-,-a�,-_
__ -c;-

P(s} ( Ms' + bs + k + ka) (lIIaS' + ka) - k� 

The sinusoidal transfer function is 

X(jw} 
= 

__ � ____ -_"-,la_W_'_+_k-,a_� ___ � 
P(jw} ( -Mw' + bjw + k + ka) (-l1IaW' + ka) - k� 

If the viscous damping coefficient b is negligibly small, we may substitute 
b = 0 into this last equation. 11,en 

X(jw} � 

P(jw} � ( - Mw' + k + k,,) (  -//laW' + ka} - k� 
[Note that, in the actual system, free vibrations eventually die out due to damping 
(even though it may be negligibly small), and the forced vibration at steady state can be 
represented by the preceding equation.J 111e force}(t} transmitted to the foundation is 

f(l} = kx + bi � kx 

The amplitude of this transmitted force is k I x  (jw) I .  where 

I X(jw } 1  = I (k  + ka _ �:�(%:< //law'} _ k� I I P(jw} 1 

I IIIw'r(k" - lIIaW'} I = 
(k  + k - Mw'}(k - III w') - k' a (/ (j (I 

[Note that I p(jw} 1 = P = I1Iw'r.J 

(9-17) 

In examining Equation (9-1 7), observe that if ilia and ka are chosen such that 

ka - I1I(1W2 = 0 
or k"llll" = w'. then I X(jw } 1  = 0 and the force transmitted to the foundation is 
zero. So if the natural frequency V k"lllla of the dynamic vibration absorber is made 
equal to the excitation frequency w, it is possible to eliminate the force transmitted 
to the foundation. In general. such a dynamic vibration absorber is used only when 
the natural frequency V k! M of the original system is very close to the excitation 
frequency w. (Without this device, the system would be in near resonance.) 

Physically, the effect of the dynamic vibration absorber is to produce a spring 
force kaY that cancels the excitation force p(t}. To see this point, note that if the vis­
cous damping coefficient b is negligibly small. then 

Y(jw} X(jw} Y(jw} 
P(jw} = P(jw} X(jw} 

ka 
( - Mw' + k + k } ( -III W' + k ) - k' (/ II (I a 

(9-18) 
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If 1110 and ka are chosen so that kll = 11ltlW2, we find that 

Consequently. 

Y(jw) ka 1 
P(jw) 

= 
-k� = 

-
k" 

yet) = 1 -:,,1 P Sin( wt + /-:J 
= � sin(wt - 180') 

k(l 
P .  = - - Sin wI 
k" 

453 

This means that the spring kfl transmits a force koY = -P sin w( to mass M. The 
magnitude of this force is equal to that of the excitation force, and the phase angle 
lags 180' from that of the excitation force (mass III" is vibrating in phase opposition 
to the excitation force), with the result that the spring force kaY and the excitation 
force pet) cancel each other and mass M stays stationary. 

We have shown that the addition of a dynamic vibration absorber will reduce 
the vibration of a machine and the force transmitted to the foundation to zero when 
the machine is excited by an unbalanced mass at a frequency w. It can also be shown 
that there will now be two frequencies at which mass M will be in resonance. TI,ese 
two frequencies are the natural frequencies of the two-degrees-of-freedorn system 
and can be found from the characteristic equation for the sinusoidal transfer function 
Y(jw)IP(jw) given by Equation (9-18): 

( k  + k - Mw') (k - /1/ w') - k' = 0 a I /I II I (j i = 1 .  2 

The two values of frequency, W, and w" that satisfy this last equation are the natural 
frcquencies of the system with a dynamic vibration absorber. Figures 9-15(a) and 
(b) show the curves of amplitude IX (jw)1 versus frequency w for the systems 
depicted in Figures 9-14(a) and (b), respectively, when b is negligibly small. 

Note that the addition of viscous damping in parallel with the absorber spring 
k(j relieves excessive vibrations at the two natural frequencies. That is, very large 
amplitudes at the two resonance frequencies may be reduced to smaller values. 

9-6 FREE VIBRATIONS IN MULTI-DEGREES-OF-FREEDOM 
SYSTEMS 

In this section, we shall discuss vibrations that may occur in multi-degrees-of-[reedoll1 
systems. Ln particular, we treat free vibrations of a two-degrees-of-freedolll system in 
detail. (Discussions of free vibrations of a three-degrees-of-freedom system arc given 
in Problem A-9-15.) 

Two-degrees-of-freedom system.  A /ll'o-degrees-oFfreedolll system re­
quires two independent coordinates to specify the system's configuration. Considcr the 
mechanical system shown in Figure 9-16. which illustrates the two-degrees-of-freedom 



454 Frequency-Domain Analysis of Dynamic Systems 

IXUW)I 

5 

4 

3 

2 

o 

IXUw)1 

5 

4 

3 

2 

o 

(a) 

(b) 

!k 2..J/J 

!k 2..J/J !k 3..J jfi 

Figure 9-15 (a) Curve of amplitude \'crsus frequency for the system of 
Figure 9-1-'(<1): (b) curve of amplitude versus frequency for the system of 
Figure 9-14(b). 
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Figure 9-16 Mechanical system with 
two degrees of freedom. 
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k k k 
111 III 

�XI x , 

�n77.nzn���n7.n77.n���n7n77n� Figure 9-17 Mechanical system with two 
degrees of freedom. 

case. Let us derive a mathematical model of this system. We assume that the masses 
move without friction. Applying Newton's second law to mass 1111 and mass "'2. we 
have 

Rearranging terms yields 

1111:"1 = -klxl - k,(xi - x,) 
I1lz:tz = - k3X2 - kZ(X2 - xd 

1111\1 + k lx l  + k,(xi - x,) = 0 
111,:", + k3X, + k,(x, - .I'll = 0 

(9- 19 )  
(9-20) 

These two equations represent a mathematical model of the system. [Free vibra­
tions of the mechanical system described by Equations (9-19) and (9-20) are dis­
cussed in Problem A-9-14.] 

Free vibrations in two-degrees-of-freedom system. Consider the me­
chanical system shown in Figure 9-17, which is a special case of the system given in 
Figure 9-16. The equations of motion for the system of Figure 9-17 can be obtained 
by substituting 111 1  = 111, = III and kl = k, = k3 = k into Equations (9-]9) and 
(9-20), yielding 

111:"1 + 2kxI - kx, = 0 
III:", + 2kx, - kXI = 0 

(9-21) 
(9-22) 

Let us examine the frec vibration of this system. To find the natural frequen­
cies of the free vibration, we assume that the motion is harmonic. 111at is, we assume 
that 

Xl = A sin wt, .\"2 = B sin wt 

Then 

:tl = - Aw2 sin wI, 

If the preceding expressions are substituted into Equations (9-21)  and (9-22), the 
resulting equations are 

( -mAw' + 2kA - kB) sin wi = 0 
(-IIIB,"' + 2kB - kA)  sin wi = 0 

Since these equations must be satisfied at all times and since sin wi cannot be zero at 
all times, the quantities in  parentheses must be equal to zero. Thus, 

-mAw' + 2kA - kB ; 0 
-mBw' + 2kB - k A  = 0 
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Rearranging terms, we ha ve 

(2k - mw')A - kB = 0 

-kA + (2k - mw')B = 0 

Chap. 9 

(9-23) 
(9-24) 

For constants A and B to be nonzero, the determinant of the coefficients of Equa­
tions (9-23) and (9-24) must be equal to zero, or 12k - mw2 

-k 
-k I - 0 2k - II1W' -

This determinantal equation determines the natural frequencies of the system and 
can be rewritten as 

or 

(2k - mw')' - e = 0 

k ? k' 
w' - 4-w- + 3- = 0 m n12 

Equation (9-25) can be factored as 

or 

k 3k 
w2 = - w2 =

-

m' In 

(9-25) 

Consequently, w2 has two values, the first representing the first natural frequency WI 
(first mode) and the second representing the second natural frequency w, (second 
mode): 

f3k W2 = \j -;;; 
It should be remembered that in the one-degree-of-freedom system only one 

natural frequency exists, whereas the two-degrees-of-freedom system has two natural 
frequencies. 

Note that, frol11 Equation (9-23), we obtain 

A k 
B 2k - I1lW' 

Also, from Equation (9-24), we have 

A 2k - mw' 
B k 

(9-26) 

(9-27) 

If we substitute w' = kim (first mode) into either Equation (9-26) or (9-27), we 
obtain, in both cases, 

A - = 1 
B 
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(b) 
Figure 9-18 (a) First mode of vibra­
tion: (b) second mode of vibration. 

If we substitute w' = 3klm (second mode) into either Equation (9-26) or (9-27), we 
have 

A 
- = - 1 
B 

I f  the system vibrates at either of its two natural frequencies, the two masses must 
vibrate at the same frequency. From the first equation for the amplitude ratio NB, at 
the lowest natural frequency w, the amplitude ratio becomes unity, or A = B (the 
first mode of vibration), which means that both masses move the same amount in the 
same direction; that is, the motions are in phase. [See Figure 9-18(a).] At the second 
natural frequency w" the amplitude ratio becomes - 1 ,  or A = -B (the second mode 
of vibration), so the motions are opposite in phase. [See Figure 9-18(b).] In the pre­
sent system, the amplitude ratio becomes equal to 1 or - 1  when the masses vibrate at 
a natural frequency. The reason for this is that we assumed that 1111 = n/2 and 
k, = k, = k3. Without such assumptions, the ratio AlB may not be equal to l or - I .  
(See Problem A-9-14.) 

Note that it is possible to excite only one of the two modes by properly setting the 
initial conditions. (See Problem A-9-16.) For arbitrary initial conditions, two modes of 
vibration may occur simultaneously. That i� the vibration of 1111 may consist of the sum 
of two components: a harmonic motion with amplitude A I at the frequency W I and a 
hamlOnic motion with amplitude A ,  at the frequency w,. I n  this case, the vibration of 
11/, consists of the sum of two harmonic components: one with amplitude 8, at the fre­
quency w, and one with amplitude B, at the frequency w,. 

Comments. To rind the natural frequencies of the system, we need only the 
characteristic equation. For example, in the present problem, taking the Laplace 
transforms of Equations (9-2 1 )  and (9-22), we have 

11/[5' X,(s) - sx,(O) - .1:,(0)] + 2kX,(s) - kX,(s) = 0 
II/[s' X,(s) - 5X,(0) - .1:,(0)] + 2kX,(5) - kX,(s) = 0 
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Eliminating X2(S) from the last two equations, we obtain 

[SXI(O) + '<1(0)]( s2 + �) + � [SX2(0) + '<2(0)] 

k k2 s' + 4-s2 + 3 -m 1112 
The characteristic equation for the system is 

k e s' + 4-s2 + 3- = 0 m 11/2 
If we substitute s = jw, the characteristic equation can be rewritten as 

, k 2 k2 w - 4-w + 3- = 0 
111 1'112 

Chap. 9 

which is exactly the same as Equation (9-25). 111e advantage of the method using 
the assumed harmonic solution is that one can easily visualize the mode of vibration 
by the sign of the amplitude ratio NB. 

Many-degrees-of-freedom system. Generally, an n-degrees-of-freedom 
system (such as that consisting of II masses and II + 1 springs) has n natural fre­
quencies. I f  free vibration takes place at any one of the system's natural frequencies, 
all the n masses will vibrate at that frequency, and the amplitude of any mass will 
bear a fixed value relative to the amplitude of any other mass. The system, however, 
may vibrate with more than one natural frequency.TIlen the resultant vibration may 
appear quite complicated and may seem to be a random vibration, although it is not. 

EXAMPLE PROBLEMS AND SOLUTIONS 
Problem A-9-1 

Assuming that the mechanical system shown in Figure 9-19 is at rest before the excita­
tion force p(f) = P si n w( is applied, derive the complete solution x(t) and the steady­
state solution xss(t) .  The displacement x is measured from the equilibrium position 
before the excitation force is applied. 

k 
p(r) =P sin wr 

x 

Figure 9-l9 Mechanical system. 
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Solution The equation of motion for the system is 

niX + bi + kx = P sin w( 

Noting that x(O) � 0 and itO) � 0, we find that the Laplace transfoml of this equation is 

or 

, W (IIW + bs + k )X(s) � P-,--, 

s- + w-

Pw 
X(s) 

� , ' --�2-�-­
s- + w- illS + hs + k 

Pw 1 1 

where w" 
� ....;k;;;, and i: � bl(2v;;;k). We can expand X(s) as 

X( 

) 
� 

Pw ( as + c -as + d ) 
s ., ., + ') 

m s- + w- 52 + 2{wlls + Wn 

By simple calculations, we find that 

Hence, 

a = 
(w� 

_ 
w

2
)
2 + 4{2

w;,w
2 

w� - w2 

- {WIIS + wI! - W 2[wn S + [W,1 + 2[ wI! - w'1 - W ) [ 
2 ( 

2 2) ( ) 
2 2 ( 2 2 1 

X 2 "  
+ 2 2 

S + w- s + 2[wns + wI! 

The inverse Laplace transform of Xes) gives 
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state, 
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At steady state (r -+ 00 ) , the terms involving e-(wnt approach zero. Thus, at steady 

Pw (w;, - w' . ) -"50S(t) = ., " 1. ' 2  Sln Wl - 2{w" COS Wf m[(wn - w�)- + 4{ WnW ] W 
Pw (k - IIIW' ) 2 2 1. "  sin w( - b cos wI 

(k - IIIW ) + b w- W 

-,====
P
o;=;c==""" sin 

(WI - tan-1 bw .,) 
Y(k - mw2)2 + b2w2 k - mw· 

Problem A-9-2 

Consider the mechanical system shown in Figure 9-20. If m = 10 kg, b = 30 N-s/m, 
k = 500 N/m, P = 10 N. and w = 2 rad/s, what is the steady-state output x(r)? The dis­
placement x is measured from the equilibrium position before the input p(/) is applied. 

Solution The equation of motion for the system is 

mx + b.t + 2kx = p(r) = P sin wr 
The transfer function of the system is 

X(s) 
I'(s) = ",s2 + bs + 2k 

where X(s) = 9: [x(r)] and I'(s) = 9: [p(r)]. Substituting the given numerical values 
for 111, b, and k into this last equation, we obtain 

X(s) 
I'(s) = G(s) = lOs' + 30s + 1000 

Then the sinusoidal transfer function becomes 

. I G(}w) = 10(jw)' + 30jw + 1000 

.r 
k 

Figure 9-20 Mechanical system. 

per) = P sin WI 
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From Equation (9--6), the stcady·state output x{t) is given by 
x{t) = Xsin{wt + <!» 

= IG(jw) IP sin[wt + �l 
For w = 2 Tadls, we obtain 

Hence. 

G( '? ) - I 
J- - ( 1000 - 40) + j60 

IG(j2) 1 = I = 0.0010396 
Y960' + 60' 

!S!JJJJ. = -tan-I :6� = -0.0624 rad 

Thus. for P = 10 N, the steady-state output is 

Problem A-9-3 

x(t) = 0.0010396 X IO sin(2t - 0.0624) 
= 0.010396 sin(2t - 0.0624) 
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Consider the spring-mass system shown in Figure 9-21.  The system is initially at rest. or 
x(O) = 0 and .« 0) = O. At t = O. a force p(l) = P sin wt is applied to Ihe mass. Using 
the Laplace transform method. determine xCt) for ( 2: O. Find the solution x(t) when 
III = 1 kg, k = 100 N/m, P = 50 N. and w = 5 fa dis. Assume that the mass III moves 
without friction. 

SoluHoll The equation of motion for the system is 

111:\: + kx = P sin wf 
By defining w" = VJJ;;;, this last equation can be written 

. . , P .  x + w;;x = - sm wr 
11/ 

The Laplace transform of the preceding equation. under the initial conditions x(O) = 0 
and itO) = 0, is 

'%; � � 
k 

.All, '" 
U U  

" p w (s- + w;,)X(s) = --,--, m r + w  

- x  

p(l) = P sin w 

% Figure 9-21 Spring-mass system. 
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Consequently. 
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Pw 1 X(s) = - ,  2 ' , 
III (s- + w,,)(s- + w-) 

= P
" W, (w2 � w2 s2 +1 w'Z _ t 

1 ) 
/I 11 w2 - w;, S2 + w2 

TIle inverse Laplace transform of this last equation is 

( )  
P 1 ( w ,  ' ) x r = - ., , - Sin Will - Sin wI 
m w- - w;, W" 

Chap, 9 

From the given numerical values. we find that WI1 = -y-;;;;;; = v'lOci/l = 
10 fad/so Plm = 50 N/kg. and wlw/l = 5/10 = 0.5. Substituting these numerical values 
into the equation for x(t). we have 

( ) 
1 ' 0 2 ' 5 x t  = - "3 sm 1 t + '3 SlIl r m  

Problem A-9-4 

In the electrical circuit of Figure 9-22, assume that voltage e; is applied to the input ter­
minals and voltage eo appears at the output terminals. In addition, assume that the 
input is sinusoidal and is given by 

ej(l ) = £j sin wf 
What is the steady-state current jet)? 

Solution Applying KirchhofPs voltage law to the circuit yields L- + Ri + - i tit = e· 
di I J  
dt C ' 

Then the Laplace transform of this last equation, assuming zero initial conditions, is 

(LS + R + �S)/(S) = £,(s) 

Hence, the transfer function between I(s) and £,(s) becomes 

/(s) 
= 

Cs 
£,(s) Ls + R + (1/Cs) LCs2 + RCs + 

L 

" R 

Figure 9-22 Eleclric<l1 circuit. 
c 

e u 
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The sinusoidal transfer function is 

JUw) . Cjw 
-- = G (jw) = ----:--::-c.--'-''-::-::c:------,­
EiUW) - LCw' + RCjw + I 

Therefore, the steady·state current i(t) is [see Equation (9-6)J  

i(t) = IGUw) I Ei sin[wt + /G(jw)J 

Problem A-9-5 

CEjw 
Sin
(

wr + 900 _ tao-I Rew .,) 
Y{l - LCw')' + (RCw)' I - LCw' 

CEi,,; ( -I RCw ) -:-;;;:===::=i2T=:="'=""" cos wt - tan , 
Y{l - LCw')' + (RCw)' I - LCw' 
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Consider the mechanical system shown in Figure 9-23. If the excitation force 
per) = P sin wI, where P = 1 N and w = 2 radls, is applied, the steady-state amplitude 
of XCI} is found to be 0.05 m. If the forcing frequency is changed to w = to Tad/s, the 
steady-state amplitude of .r(t) is found to be 0.02 m. Determine the values of b and k. 

Solution The equation of motion for the system is 

bi + kx = (1(1) 

TIlC transfer function is 

X(s) 
P(s) bs + k 

Hence, the sinusoidal transfer [unction is 

XUw) 
PUw) bjw + k 

TIle amplitude ratio is I XUw) 1 
PUw) 

so 

p(l) = P sin Wt 

x 
b 

Figure 9-23 Mechanical system. 
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From the problem statement. if p(l) = P sin wI = sin 21, the amplitude of X(I) is 0.05 m. 
Therefore, 

or 

1 0.05 = --;=<==�=, 
Vb' x 2' + k' 

4b' + k' = 400 
If  p(l) = P sin wI = sin 101, then the amplitude of X(I) is 0.02 m. Hence. 

or 

1OOb' + k' = 2500 
From Equations (9-28) and (9-29), we obtain 

96b' = 2100 
or 

b = 4.677 N-s!m 

Also. 

k' = 312.57 
or 

k = 17.68 N!m 

(9-28) 

(9-29) 

Problem A-9-6 

In the mechanical system shown in Figure 9-24, assume that the input and output are 
the displacements p and x. respectively. The displacement x is measured from the equi· 
librium position. Suppose that p(r) = P sin wr. What is the output X(I) at steady state? 
Assume that the system remains linear throughout the operating period. 

Solution The equation of motion for the system is 

111:< + b(x - p) + kx = 0 
or 

m:i + b.t + kx = bi) 

, 
,..- x - p{t) = P sin rut 

k b 
'" r 

z 

Figure 9-24 Mechanical system. 
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Hence, the transfer function between X(s) and P(s) is 

X{s) bs P{s) = ms' + bs + k 

Then the sinusoidal transfer function is 

Thus, 

and 

X(jw) bjw 
P(jw) -mw' + bjw + k 

I
X(j

W
)
1 P(jw) bw 

rg
w
; -I bw -I bw 

¢ = -- = tan - - tan p 'w 0 k - mwz bw 
= 900 - 1ao-1 ., k - mw· 

Noting that Ip(jw) I = P, the output is obtained as 

X{I) = I X(jw) 1 sin{wl + ¢) 

= Pbw Sin(wl + 900 _ tao-I 
bw ) V(k - mw2)2 + b2w2 k - mw2 
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The angle lan- I [bwl(k - mw2)] varies from 0° to 1800 as w increases from zero to infin­
ity. So, for small w the output leads the input by almost 900, and for large w the output 
lags the input by almost 90'. 

Problem A-9-7 

Find the steady-state displacements XI(/) and X],(f) of the mechanical system shown 
in Figure 9-25. Assume that the viscous damping coefficients bl and b2 are positive. 
but negligibly small. [This means that, in obtaining equations, we may assume that bl =i= 0 and b2 *" O. Since b! and b2 are positive, however small, the system is stable 
and Equation (9-6) can be used to find the steady-state solution. I The displacements 
XI and Xl are measured from the respective equilibrium positions in the absence of 
the excitation forcc. 

Solution The equations of motion for the system are 

m ixi + bl.tl + klxl + lr.!(.tl - X2) + k2(xi - X2) = p(t) = P sin wI 
f1l2Xl + b2(.tl - X l )  + k2(X2 - X l )  = 0 

Since bl and b2 are negligibly small, let us substitute bl = 0 and b2 = 0 into the equa­
tions of motion. Then 

mixi + klxl + k,{xi - x,) = p{/) 

11I2X2 + k2(X2 - XI ) = 0 
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Figure 9-25 Mechanical system. 

Taking the Laplace transforms of these two equations, assuming zero initial conditions, 
we have 

(mis' + kl + k,)XI(s) - k,X,(s) � P(s) 
(Ill,S' + k,)X,(s) - k,XI(s) � 0 

from which it follows that 

and 

X,(s) 
� 

k, 
XI(S) 111252 + k2 

Xl(S) 
= 

111252 + k2 
P(s) (mis' + kl + k, ) (III,S' + k,) - kl 

Since the system is basically stable, Equation (9-6) can be applied. In so doing, the 
amplitudes Ix,(jw) 1 and Ix,(jw) I are obtained from the sinusoidal transfer functions 

and 

X1(jW) k2 - nl2W2 
P(jw) (kl + k, - III IW')(k, - "" w') - kl 

X,(jw) k, 
XI(jW) k, - m,w' 

Thus, the steady-state solution Xl(t) is 

(0 � 0' or 180') 
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The steady-state solution x2(f) is [ X,(jw) ] 
x2(1) = I X2(jw) 1  sin wi + P(;;;;) 

(k, 

X,(jw)X,(jw) ] 
X,(jw)P(jw) 
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NOle lhal lhe angles IX,(jw)IP(jw) and IX,(jw)IP(jw) are eilher 0' or 180', Conse­

quently, the motions of masses "'l  and 1112 are either in phase or 1800 out of phase with 

the excitation. That is, masses Ill! and nil move in the same direction if w < Ykzlm2 
and in  the opposite direction if w > Vk1lml. If w = v'k1/m1. mass 1111 stays still. but 

mass /Ill moves sinusoidally. 

Problem A-9-8 

Find the period of a conical pendulum in which a ball of mass m revolves about a fixed 
vertical axis at a con slant speed, as shown in Figure 9-26. 

Solution As the ball stands out at a constant angle, the vertical component of the ten­
sion S in the cord balances with the gravitational force mg, and the horizolltal compo­
nent of S balances with the centrifugal force mw'1r Hence. from geometry. 

or 

Therefore. the period T is 

, mw-r r 

mg II 

, g w- = -
" 

2rr {li T = -;;; = 2"Yg 

Note that, since II = I cos O .  the period i s  a function of  the angle O. 

A 

IIlg 
Figure 9-26 Conical pendulum. 



468 Frequency-Domain Analysis of Dynamic Systems Chap. 9 

Problem A-9-9 

A boy riding a bicycle with a constant speed of 800 m/min around a horizontal cireu· 
lar path of radius r = 50 m leans inward at angle () with the vertical, as shown in 
Figure 9-27. Determine the angle of inclination 0 needed to maintain a steady·state 
circular motion. 

Solution TIle centripetal force that is necessary for a circular motion is 

") v2 
mw-r = m ­r 

The gravitational force mg can be resolved into two component forces, F and R, as 
shown in Figure 9-27. TIle horizontal force F = mg tan 0 must provide the necessary 
centripetal [orce mv2lr. (Note that F can be supplied by friction if the surface is suffi­
ciently rough. If it is not. the boy must reduce his speed if he is to avoid slipping.) 
Hence. 

or 

u' 
mg tan O = m ­

r 

v' 
tan 0 = ­gr 

Substituting the given numerical values into this last equation, we find that 

(800/60)' 
tan 8 = 9.807 X 50 

= 0.3626 

or 

Figure 9-27 Boy riding a bicycle 
around a circular palh. 

8 = 19.93" 

mg R 
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Problem A-9-10 

e 

X' 

In rotating systems, if shafts rotate at critical speeds, large vibrations may develop as a 
result of resonance effects. In Figure 9-28(a), a disk of mass m is mounted on an elastic 
shaft whose mass is negligible compared with that of the disk, which is placed midway 
between bearings. Assume that the disk is not perfectly symmetrical and thaI there is 
an eccentricity e from the center of the disk. The geometrical center of the disk, the cen� 
ler of mass of the disk, and the center of rotation are denoted by points 0, G, and R, 
respectively. The distance between points R and 0 is r, and that between points 0 and 
G is e. Assume that the equivalent spring constant of the elastic shaft is k, so that the 
restoring force due to the elastic shaft is kr. ·What is the critical speed of the system? 

Solution From Figure 9-28(a), the centrifugal force acting on the shaft is I1lw2(e + r) .  
This force balances with the restoring force of the elastic shaft, kr. So 

or 

w2(e + r) = w�r 
where WI! = v;;J;;;. Solving for ,. yields 

x' 

(9-30) 

(a) (b) 

Figure 9-28 (a) Rotating system in 
which the angular speed is lower than the 
critical speed; (b) rotating system in which 
the anglllar speed is higher than the criti­
cal speed. 
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The deflection r tends to increase rapidly as w approaches W/l" At W == Wm resonance 
occurs. The deflection r increases until Equation (9-30) no longer holds. 1l1C critical 
speed of the shaft is thus 

At speeds higher than critical, the center of gravity G will be situated as shown in 
Figure 9-28(b), and the centrifugal force becomes 

mw\r - e) 

This force balances with the restoring force of the elastic shaft kr: hence, 

mw2(r - e) == kr 

Solving for r and noting that kIm == w�. we have 

e 

For w > Will the deflection r decreases and approaches e with increasing w. For 
w � Wm the center of gravity of the disk moves toward the line X X', and in this case 
the disk does not whirl, but the deflected shaft whirls about the center of gravity, G. 

Problem A-9-11 

Figure 9-29 is a schematic diagram of a seismograph, a device used to measure ground 
displacement during earthquakes. The displacement of mass III relative to inertial space is 
denoted by x, the displacement of the case relative to ineTlial space by y. TIle displace­
ment x is measured from the equilibrium position when y = O. The displacement y is the 
input to the system and. in the case of eaTlhquakes. is approximately sinusoidal, or 
y(t) = Y sin wI. In the seismograph, we measure the relative displacement between x 

and y. Define the displacement of the mass III relative to the case as z, or 

Z = x - y  

Case 

(Output � :) 

Figure 9-29 Seismograph. y (Input = y) 
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Show that the seismograph measures and records the displacement of its case y accu. 
rat ely if w � w", where WI! = Yk/;;;. 
Solution The equation of motion for the seismograph is 

III:' + bU - y) + k(x - y) = 0 

In terms of the relative displacement z = x - Y. Equation (9-3 1 )  becomes 

III(Y + i) + bz + kz = 0 

or 

mz + bi: + kz = -my 

(9-31)  

Taking the Laplace transform of this last equation and assuming zero initial conditions, 
we find that 

(illS' + bs + k)2(s) = -ms'Y(s) 

Note that the input to the system is the displacement y and that the output is the rela­
tive displacement z. The transfer function between Z(5) and Yes) is 

2(s) 
Y(s)  = ms2 + bs + k  

The sinusoidal transfer function is 

2 (jw) = _-c,, __ ,, __ w
,--
'
_----:­Y(jw) -IIIW' + bjw + k 

Substituting kIm = w;, and blm = 2Cwn into this last equation gives 

2(jw) w' /3' -- = 
Y(jw) -w' + 2,w"jw + w;' 1 - /3' + j2,/3 

where (3 = wlwn-

(9-32) 

In the seismograph, we want to determine the input displacement yet) accurately 
by measuring the relative displacement Z(I). A glance at Equation (9-32) tells us that 
we can do so easily if (3 � 1, in which case Equation (9-32) reduces to 

2(jw) . /3' -- = - - = -1 
Y(jw) ' /3' 

The seismograph measures and records the displacement of its case y accurately if (3 � I 
or W � WI/' In fact, for W � WI/! mass m tends to remain fixed in space, and the motion of 
the case can be seen as a relative motion between the mass and the case. 

To produce the condition W � Wm we choose the undamped natural frequency WI! 
as low as possible. (Choose a relatively large mass and a spring as soft as the elastic and 
stalic deflection limits allow.) Then the seismograph will measure and record the displace­
ments of all frequencies well above the undamped natural frequency Win which is very low. 

Problem A-9-U 

A schematic diagram of a translational accelerometer is given in Figure 9-30. The sys­
tem configuration is basically the same as that of the seismograph, but their essential 
difference lies in the choice of the undamped natural frequency WI! = Yk/;;;. Let us 
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Figure 9-30 Translational accelerometer. 

, = x - y (Output = z) 

y (Input = y) 

Chap. 9 

denote the displacement of mass III relative to inertial space by x and that of the case 
relative to inertial space by y. The displacement x is measured from the equilibrium 
position when y = 0. 111e input to the translational accelerometer is the acceleration y. 
The output is the displacement of the mass III relative to the case, or z = x - y. (We 
measure <lnd record the relative displacement z. not the absolute displacement x.) 

Show that if the undamped natural frequency w" is sufficiently high compared 
with the frequencies of the input, then the displacement z can be made nearly propor­
tional to y. 

Solution The equation of motion for the system is 

niX + b(.r - y) + k(x - y) = 0 

In terms of the relative displacement Z, this last equation becomes 

II/(Y + i) + bi + k z = 0 

or 

IIlZ + bi. + kz = -my 

1l1e Laplace transform of the preceding equation, assuming zero initial conditions, 
gives 

(II/S' + bs + k)Z(s) = -I/lS'Y(s) 

The transfer function between output 2(5) and input s2y(S) [the input is the accelera· 
tion y, and thus its Laplace transform is s2y (s) 1 is 

2(s) 
= -11/ 

s2y(s) IIIs2 + bs + k 
- I 

(9-33) 

From Equation (9-33), we see that if [he undamped natural frequency WI! is sufficiently 
high compared with the frequencies of the input. then 

Z(s) 

s2y(s) w� 
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r--- p(t) M ([)  
k b = negligible 

1 Dynamic 
vibration 
absorber } ROIating 
machine 
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} Moo"" 

Figure 9-31 Rotating machine with a 
dynamic vibration absorber. 

Thus, the displacement z is nearly proportional to )i. Hence, in the accelerometer, we 
choose the undamped natural frequency Wn = ViJiij to be sufficiently high. 

Problem A-9-13 

A rotating machine with a mass of 100 kg and mounted on an isolator rotates at a can· 
stant speed of 10 Hz. An unbalanced mass III loca ted a distance r from the centcr of the 
rotor is exciting vibrations at a frequency w that is very close to the natural frequency 
WI! of the system, with the result that the machine vibrates violently and a large vibra­
tory force is transmilted to the foundation. 

Design a dynamic vibration absorber to reduce the vibration. When the 
dynamic vibration absorber is added to the rotating machine as shown in Figure 
9-31, the entire system will become a two·degrees·of-freedom system. Determine 
the mass mil and spring constant ka of the dynamic vibration absorber such that the 
lower natural frequency is 20% off the operating frequency. Determine also the 
higher natural frequency of the system. Assume that the values of b (the viscous­
friction coefficient of the isolator) and bu (the viscous·friction coefficient of the 
dynamic vibration absorber) are positive. but negligibly small. (Note that, since the 
values of b and bll are positive, however small. the system is stable. Therefore. the 
steady-state displacements can be obtained with the use of the sinusoidal transfer 
function.) 

Solution llle equations of motion for the system are 

tv/:\: + h.i.: + kx + bl/(''\: - .v) + kl/(x - y) = p(/) = mw2r sin wI 
I1II/Y + b(,(Y - .i.:) + kl/(Y - x) = 0 

where x and y are the displacements of mass M and mass 111m respectively, and both x 
and y are measured from the respective equilibrium positions. Since b =i= 0 and b" =i= 0, 
the last two equations may be simplified to 

tv/i + kx + kl/(x - y) = p(/) 
I1II/Y + kl/(Y - x) = 0 
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\Vhen the viscous frictions are neglected, the system becomes the same as that shown in 
Figure 9-14(b) with b = O. 1l1crefore, from Equation (9-17), we obtain the amplitude 

IX(jw) 1 afx(t) as: 

To make this amplitude equal to zero, we choose 

kll = maw1 
Since the operating speed is 10 Hz, we have 

so 

w = 10 X 27T = 62.8 radls 

k" , - = 62.8- = 3944 
111(1 

(9-34) 

The two natural frequencies w\ and W2 (where WI < (2) of the entire system can 
be found from the characteristic equation. [TIle denominator of Equation (9-34) is the 
characteristic polynomial.} We have 

or 

( k" M ,)( III" ') k" 1 + k - TWi 1 - kaWj - k = 0 

i = 1 , 2 

(9-35) 

Note that in the present system, since the natural frequency W'I = -VkiM is very close 
to the operating frequency w = Ykjmm we can set 

{k {k:; V M = V -;;;: = w = 62.8 

Now: the lower natural frequency must be 20% off the operating frequency w. Since WI < W, this means that 

Wi = 0.8w = 0.8 x 62.8 

Substituting Wi = WI and kIM = k./ma = w2 into Equation (9-35), we have ( 1 + k" _ wl)( l _ w!) _ k" = 0 
k w2 w- k 

Substituting wl/w = 0.8 into this last equation, we obtain 

Solving for k,/k yields 

It follows that 

( k ) k 
1 + -" - 0 8' ( 1 - 0 8') - -" = 0 

k '  
. 

k 

k" = 0 2025 k 
. 

mil = kll = 0 2025 M k . 
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Since M = 100 kg, we have 

Because 

we obtain 

m" = 0.2050 x 100 = 20.25 kg 

� 
= 

k" 
= 62.8' 

M ffla 

k" = (62.8)'m" = (62.8)'(20.25) = 79.9 X 103 N/m 

475 

11lU5, the mass and spring constant of the dynamic vibration absorber are 
mn = 20.25 kg and kl/ = 79.9 X 103 N/rn, respectively. 

The two natural frequencies WI and W2 can be determined by substituting 
k"lk = 0.2025 into the equation 

or 

( k" wl)( wi) k" 
1 + - - ,  1 - ,  - - = 0  k w- w- k i = 1,2 

( w2)( w') 
1 + 0.2025 -

w
; 1 -

w
; - 0.2025 = 0 

Solving for w/w, we obtain 

Therefore, 

and 

Problem A-9-14 

w� 
-; = 0.64, 
w-

WI , =  0.64, 
w-

or 1 .5625 

1 .5625 

WI = 0.8w = 0.8 x 62.8 = 50.24 radls = 8 Hz 

w, = 1 .25", = 1.25 x 62.8 = 78.5 radls = 12.5 Hz 

Consider the two-degrees-of-freedom mechanical system shown in Figure 9�32. Obtain 
the first and second modes of vibration. The displacements Xl and Xl are measured 
from the respective equilibrium positions. Assume that masses nI] and 1112 move with­
out friction. 

Figure 9-32 Mechanical system. 
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Solution The equations of motion for the system arc 

mlXj = -kjXl - k2(xj - X2) 
m2:r2 = -k3X2 - k2(X2 - Xl)  

which can be rewritten as 

mJXj + (kJ + k2)x\ - k2X2 = 0 
nJl\:2 + ( k2 + k3)X2 - k2Xl = 0 

Chap. 9 

(9-36) 
(9-37) 

To find the natural frequencies of the free vibration, assume that the motion is har­
monic. That is, assume that 

Xl = A sin wr, X2 = B sin wt 

Then 

Substituting the harmonic solutions into Equations (9-36) and (9-37), we get 

[( -m,w' + k, + k,)A - k,B] sin wI � 0 

[-k,A + (-m,w' + k, + k3)B] sin wI � 0 

Since these two equations must be satisfied at all times, and since sin wr cannot be zero 
at all times, the quantities in the brackets must be equal to zero. Thus, 

(-mlw2 + k\ + k2)A - kzB = 0 

-k,A + (-m,w' + k, + k3)B � 0 
(9-38) 

(9-39) 

For constants A and B to be nonzero, the determinant of the coefficient matrix must be 
zero, or l-m 1w2 + kJ + k2 

-k2 

which can be simplified to 

or 

(-mlw2 + kl + k2)( -11l2W
2 + k2 + k3) - k� = 0 

w
4 _ (k l + k2 

+ 
k2 + k3)

w2 + 
klk2 + k2k] + k3k] 

= 0 111] 1112 11l 1nJ2 

Solving this last equation for w2, we obtain 
r7��--��,,--� 

w' � 1. (k' + k, 
+ 

k, + k3 ) ± 1 (k' + k, k, + k3 ) ' k, 
2 nl] nl2 "4 -,-,,-, - - ------;;;;- + 111 1 1112 

Now, we define 

w
; 

� 
1. (k' + k, 

+ 
k, + k3) 

_ 
2 ml  nl2 

l (k' + k, k, + k3)' k, 
:( -,-" ,- - ------;;;;- + 11I1m2 
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The vibration at frequency WI is the first mode of vibration and that at frequency W;z is 
the second mode of vibration. Note that. from Equation (9-38), we obtain 

A k2 
B -mlw2 + kJ + k2 

Also, from Equation (9-39), we get 

A -m2w2 + k2 + k3 
B k, 

(9-40) 

(9-41) 

Substituting wi into Equations (9-40) and (9-41) and writing NB as AliBI yields 

A l k2 -m2wy + k2 + k3 
BJ -m]Wr + kJ + k2 k2 Al 

Similarly, substituting wl into Equations (9-40) and (9-41)  and writing NB as A,IB" 
we obtain 

Notice that 

Also, 

Thu� 

A2 k2 -m2w� + k2 + k] 
B2 -mw� + k] + kz k2 '\2 

which means that in the first mode of vibration masses m I and 1112 move in the same 
direction, whereas in the second mode of vibration masses m I and nlz move in opposite 
directions. Figures 9-33(a) and (b) show the first and second modes of vibration, 
respectively. 

Problem A-9-15 

Figure 9-34 shows a three-degrees-of-freedom system. To simplify the analysis, we 
assume that all of the masses are equal and the four springs are identical. We also 
assume that the masses move without friction. The displacements Xl> Xl, and x) are 
measured from their respective equilibrium positions. Obtain the natural frequencies 
and the modes of vibration of the system. 
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-- - - ...... - -

� k\ k2 k) 

:: r; 
(a) 

- - -- -- - -

�- -k, � � 

Z 
(b) 

Figure 9-33 (a) First mode of vibration: (b) second mode of vibration. 

� k k k k 

% 

Figure 9-34 Mechanical system with three degrees of freedom. 

Solution The equations of motion for the system are 

mx} + kXJ + k(xJ - X2) = 0 
IIIX, + k(x2 - xil + k(X2 - x,) � 0 

m:t) + k(X3 - X2) + kX3 = 0 
which can be rewritten as 

nlX1 + 2kx1 - kX2 = 0 
mXl - kX1 + 2kx2 - kX3 = 0 

Ill:!) - kX2 + 2kx3 = 0 

Chap. 9 

(9-42) 
(9-43) 
(9-44) 

To obtain the natural frequencies of the system, we assume that the motion is 
harmonic. That is, we assume that 

Xl = A sin wt 

X2 = B sin wi 

x) = C sin w( 

Then Equations (9-42), (9-43), and (9-44) become, respectively, 

(-mw2 A + 2kA - kB)sin wI � 0 
(-lIIw'B - kA + 2kB - kC)sin wI � a 

(-IIIW'C - k B + 2kC)sin wI � 0 
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Since these three equations must be satisfied at all  limes, and since sin wI cannot be 
zero at all times. the quantities in parentheses must be equal to zero. That is, 

(2k - IIIw')A - kB = 0 
-kA + (2k - IIIw')B - kC = 0 

-kB + (2k - IIIW')C = 0 
These three equations can be simplified to 

mw-( ') 2 - -k- A - B = O  (9-45) 

( IIIW') -;\ + 2 - -k- B - C = 0 (9-46) 

mw-( 
'

) -B + 2 - -k- C = 0 (9-47) 

For constants A, B, and C to be nonzero, the determinant of the coefficients of Equa­
tions (9-45), (9-46), and (9-47) must be zero, or 

, mw- 0 2 - - - 1  k 
, 

-1 mw-2 - -k - I  = 0 

0 - 1  mw2 2 - -k 
Expanding this determinantal equation, we obtain 

or 

from which we get 

Thus, 

( IIlW')" ( 11lW') ( IIIW') _ 2 - - - 2 - - - 2 - - - 0 k k k 

mw2 = 2 k ' 

- �  W = 0.76)4 \ -, {f' W = 1.4142 -, III W = 1.8478 fk \j-;;; III 

Hence, the [irst mode of vibration is at w = 0.7654 v'kj;" the second mode of vibra­
tion is at w = 1.4142v'kj;" and the third mode of vibration is at w = 1 .847Sv'kj;,. 

Firsr mode of vibration (mw'/k = 0,5858),  From Equations (9-45) and 
(9-47), we have 

1.4142A = B 
B = 1.4142C 
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Thus, the amplitude ratio becomes 

A : B : C  = 1 : 1.4142 : 1  

Second mode of vibrarion (mw'/k = 2)_ From Equations (9-45) and 
(9-46), we have 

B = O  
A = -C 

Hence, the amplitude ratio becomes 

A : B : C  = 1 : 0 : -1 

Note that the second mass does not move, because amplitude B = O. 

Third mode of vibm/ion (mw'lk = 3.4142). From Equations (9-45) and 
(9-47), we get 

-1.4142A = B 
B = -1.4142C 

Thus, the amplitude ratio becomes 

A : B : C  = 1 : - 1.4142 : 1  

Figure 9-35 depicts the three modes of vibration of the system. 

� k k k k 

% 
(a) 

k k k k 

(b) 

k k k k 

(e) 

r.; 

% 

Figure 9-35 (a) First mode of vibration: (b) second mode of vibration; (c) third 
mode of vibration. 
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Problem A-9-16 

Consider the mechanical system shown in Figure 9-36. Determine the natural frequen· 
cies and modes of vibration. In the diagram. the displacements x and y are measured 
from their respective equilibrium positions. Assume that 

11/ = I kg. M = 2 kg, k, = 10 N/m. k, = 40 N/m 

Determine the vibration when the initial conditions arc given by 

(a) x(O) = 0.028078 m, 

(b) x(O) = 0.17808 m. 

.i(O) = 0 mis, 

itO) = 0 mls. 

y(O) = 0.1 01, 

y(O) = -O.l m. 

Solution The equations of motion for the system arc 

M:i + k,(x - y) + k,x = 0 
lIIi; + k,(y - x) = 0 

HO) = O mls 

y(O) = 0 mls 

Substituting the given numerical values into these two equations, we obtain 

z:r + lO(x - y) + 40x = 0 
j + 10(y - x) = 0 

(9-48) 
(9-49) 

To find the natural frequencies of the free vibration. assume that the motion is har­
monic. That is. assume that 

x = A sin wI. y = B sin wI 
Then 

:i = -Aw2 sin Wf, y = -Bw2 sin wI 

If the preceding expressions are substituted into Equations (9-48) and (9-49), we 
obtain 

[-2w'A + IO(A - 8) + 4011] sin wI = 0 
[-w'8 + 10(8 - A)] sin wI = 0 

Since these equations must be satisfied at all times, and since sin w( cannot be zero at 
all times. the quantities in the brackets must be equal 10 zero. Thus, 

k, y 

x 

-2w'A + IO(A - 8) + 4011 = 0 
-w'8 + 10(8 - A )  = 0 

Figure 9-36 Mechanical system with two degrees 
of freedom. 
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Rearranging terms yields 

(50 - 2w')A - lOB = 0 
-lOA + (10 - w')B = 0 

Chap. 9 

(9-50) 
(9-51) 

For constants A and B to be nonzero, the determinant of the coefficient matrix must be 
equal to zero, or 

which yields 

or 

Hence, 

or 

1 50 - 2w' 
-10 

- 10 
I 10 _ w' 

= 0 

w4 - 35w2 + 200 = 0 

(w' - 7.1922)(w' - 27.808) = 0 

WT = 7.1922 and w� = 27.808 

WI = 2.6818 and w, = 5.2733 

Note that WI is the frequency of the first mode of vibration and W2 is the frequency of 
the second mode of vibration. Note also that, [rom Equations (9-50) and (9-5 1 ), we 
obtain 

A 10 - =  A 10 - w2 
B 50 - 2w2' B 10 

Substituting WI = 7.1922 into AlB, we get 

A 10 
B 50 - 2wT 

10 - w2 
10 

I = 0.28078 > 0 

Similarly. substituting w� = 27.808 into AlB, we find that 

A 10 
B 50 - 2wl 

10  - w� 
10 

- = - 1.7808 < 0  

Hence, in the first mode of vibration two masses move in the same direction (two 
motions are in phase), while in the second mode of vibration two masses move in oppo­
site directions (two motions arc out of phase). Figure 9-37 shows the first and sccond 
modes of vibratioll. 

Next, wc shall obtain the vibrations XCI) and Y(I). subject to the given initial COIl­
dilions. Laplace transforming Equations (9-48) and (9-49), we obtain 

2[s'X(s) - sx(O) - .,(0)1 + 1 0[X(s) - Y(s)1 + 40X(s) = 0 
Is'Y(s) - s)'(O) - y(O)1 + 1OIY(s) - X(s)1 = 0 

Using the initial conditions that x(O) " 0, x(O) = 0, )'(0) " 0, and y(O) = 0, we can 
simplify the last two equations as follows: 

(25' + 50)X(s) = 25X(0) + 1OY(s) 
(s' + IO)Y(5) = 5)'(0) + lOX(s) 

(9-52) 
(9-53) 
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I ; 
I I 

(a) 

1 

(b) Figure 9-37 (a) First mode of vibration: 
(b) second mode of vibration. 

Eliminating Y(s) from Equations ( 9-52) and ( 9-53) and solving for X(s). we obtain 

(s' + 10)sx(0) + 5sy(0) 
XIs) = 

s' + 35s' + 200 
(9-54) 

Case (a), ill which rlie inilial cOlldiriofls are x(O) = 0.028078. _l:(O) = O. 
yeO) = 0.1. and yeO) = 0: Substituting the initial conditions into Equation (9-54), we gel 

(s' + lO)s X 0.028078 + 5s X 0.1 
XIs) = 

s' + 35s' + 200 
0.028078s(s' + 27.808) 

(s' + 27.808 )(s' + 7.1922) 
0.028078s 

52 + 7.1922 
The inverse Laplace transform of Xes) gives 

X(I) = 0.028078 cos 2.68181  

(9-55) 

Substituting Equation (9-55) il1lO Equation (9-53) and solving for Yes). we obtain 

1 [ 0.28078s 1 
VIs) = 

s' + 10 
sy(O) + 

s' + 7.1922 
Substituting yeO) = 0.1 into this last equat ion. we gel 

Hence. 

Y(s) = ,.Q:!.- s3 + 7.�922s + 2.8078s 
s- + 10 s- + 7.1922 

0.1 sIs' + 10) 
= 52 + 10 s2 + 7 . 1922 

O.ls 
s' + 7.1922 

Y(I ) = 0.1 cos 2.68181 
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Notice that both XCl) and yet) exhibit harmonic motion at w = 2.6818 rad/s. Only the 
first mode of vibration appears in this casco 

Case (b), ill which fhe initial conditions are x(O) = 0.17808, .r(O) = 0, 
y(o) � -0. 1 ,  alld j,(O) � 0: Substituting the initial conditions into Equation (9-54), we 
have 

Hence, 

0. 178085(5' + 7. 1922) 
X (5) - -,--:;----'---,,-----'--­-

(5' + 27.808)(5' + 7.1922) 
0.178085 

5' + 27.808 

x( I) � 0.17808 cos 5.27331 

Substituting Equation (9-56) and y(O) � -0.1 into Equation (9-53), we get 

-0. 15(5' + 10) 
Y ( s ) - -,--;;---:-:-'--,-----'---__ -

(5' + 10) (5' + 27.808) 
0.15 

5' + 27.808 

Thus, 

Y(I) � -0.1 cos 5.27331 

In this case, only the second mode of vibration appears. 

(9-56) 

Note that, for arbitrary initial conditions. both the first and second modes of 
vibration appear. 

PROBLEMS 
Problem 8-9-1 

TIle spring-mass system shown in Figure 9-38 is initially at rest. If mass III is excited by 
a sinusoidal force pet) = P sin wf, what is the response XCl)? Assume that 
III = 1 kg, k = 100 N/m, P = 5 N, and w = 2 rad/s. The displacement x(t) is measured 
from the equilibrium position before the force p(t) is applied. 

// / 

k 
t p(l) = P sin WI 

Figure 9-38 Spring-mass system. 
x 

Problem 8-9-2 

Consider the mechanical vibratory system shown in Figure 9-39. Assume that the dis­
placement x is measured from the equilibrium position in the absence of the sinusoidal 
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Input force 
per) :=: P sin WI 

k b 
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x 

Figure 9-39 Mechanical vibrntory system. 

excitation force. The initial conditions are x(O) = 0 and _teO) = 0, and the input force 
p(r) = P sin WI is applied at I = O. Assume that m = 2 kg, b = 24 N-s/m, k = 200 N/m, 
P = 5 N. and w = 6 rad/s. Obtain the complete solution XCI). 

Problem 8-9-3 

Consider the electrical circuit shown in Figure 9-40. If the input voltage ej(f )  is 
Ej sin Wf, what is the output voltage eQ(t) at steady state? 

Figure 9-40 Elcclrical circuit. 

Problem 8-9-4 

Consider the mechanical system shown in Figure 9-41 .  Obtain the steady�state outputs 
X,(I) and X,(I) when the input p(l) is a sinusoidal force given by 

p(l) = P sin wI 

k 

r- p(l ) 
,---'-----'---, 

Figure 9-41 Mcchanical syslcm. 
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The output displacements .\'"\ (1)  and X2(1) are measured from the respective equilibri� 
urn positions. 

Problem 8-9-5 

Consider a conical pendulum consisting of a SlOne of mass 0.1 kg attached to the end of 
1 -01 cord and rotated at an angular speed of 1 Hz. Find the tension in the cord. If the 
maximum allowable tension in the cord is 10 N, what is the maximum angular speed (in 
hertz) that can be attained without breaking the cord? 

Problem 8-9--6 

In the speed-regulator system of Figure 9-42. what is the frequency w needed to main­
tain the configuration shown in the diagram? 

Figure 9-42 Speed-regulator 
system. 

Problem 8-9-7 

0'" 
� 

/)1 
I 
¢w 
I III 

15 cm] , 

A rotating machine of mass M = 100 kg has an unbalanced mass m = 0.2 kg a dis­
lance r = 0.5 m from the center of rotation. (The mass M includes mass m.) The oper­
ating speed is 10 Hz. Suppose that the machine is mounted on an isolator consisting of 
a spring and damper, as shown in Figure 9-43. If it is desired that , be 0.2, specify the 
spring constant k such that only 10% of the excitation force is transmitted to the foun­
dation. Determine the amplitude of the transmitted force. 

Figure 9-43 ROI<1ting machine mounted 
on a vibration isolator. 

k 
x 



Problems 487 

Problem 8-9-8 

In Figure 9-44, an instrument is attached to a base whose motion is to be measured. TIle 
relative motion between mass 111 and the base recorded by a rotating drum will indicate 
the motion of the basco Assume that x is the displacement of the mass,y is the displace­
menl of the base, and z = x - Y is the motion of the pen relative to the base. If the 
motion of the base is y = Y sin wI, what is the steady-state amplitude ratio of z to y? 
Show that if w ;s::. W", where WI! = �, the device can be used for measuring the dis­
placement of the basco Show also that if w � Wm the device can be used for measuring 
the acceleration of the base. 

Base 

Problem 8-9-9 

J' 
Figure 9-44 Motion- or accelera· 
tion-measuring instrument. 

Figure 9-45 shows a machine of mass III mounted on a vibration isolator in which 
spring k] is the load-carrying spring and viscous damper b2 is in series with spring k2• 
DClcrminc the force transmissibility when the machine is subjected 10 a sinusoidal 
excitation force p{t) = P sin wf. Determine also the amplitude of the force Iransmit­
ted to the foundation. TIle displacement x is measured from the equilibrium position 
before the excitation force p(t) is applied. 

(J(I) = P sin W( 

Figure 9.45 Mnchinc mounted on a 
vibration isolator. 
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I'roblcm 8-9-10 

A In<lchine of mass m is mounted on a vibration isolator as shown in Figure 9-46. If the 
foundation is vibrating according to p = P sin w(, where p is the displacement of the 
foundation, find the vibration amplitude. of the machine. Determine the motion trans­
missibility. The displacement x is measured from the equilibrium position in the 
absence of the vibration of the foundation. 

Figure 9-46 Machine mounted on a vibra­
lion isolator. 

Problem 8-9-11 

p = P sin  W{ 

Figure 9-47 shows a machine with a dynamic vibration absorber. The undamped natur­
al frequ�' of the system in the absence of the dynamic vibration absorber is 
W/l = V kim. Suppose that the operatio frequency w is close to WH• If the dynamic 
vibration absorber is tuned so that kjlll(l = w, what is the amplitude of mass ma of 
the vibration absorbcr? TIle displacement x is measurcd from the equilibrium position 
in the absence of the excitation force p(t). 

Figure 9-47 Machine wilh a dynamic ,ribration 
absorber. 

Problem 8-9-12 

p{t) = P Sill WI 

Consider the pendulum system shown in Figure 9-48. Determine the natural frequen­
cies and modes of vibration. 
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Figure 9-48 Pendulum system. 

Consider the pitching motion of an automobile. Figure 9-49(a) shows a simpli[ied 
model of the auto body and the front and rear springs. Figure 9-49(b) shows the cou­
pling of the translational and rotational vibrations. Determine the natural frequencies 
and modes of vibration. TIle vertical displacement x of the centcr of gravity (point G) is 
measured from the equilibrium position in the absence of any motions. Assume t he fol­
lowing numerical values: 

11/ = 2000 kg, I, = 1 .5 m. k, = 4 X 10' N/m 

k, = 4 X 10' N/m. J = 2500 kg-m' 

(J is the moment of inertia of the body about point G. lhe center of gravity of the body.) 

• I' I -t- - --

/ 

(a) (b) 

Figure 9-49 (a) AulO body and front and rear springs: (b) coupling of the translational 
and rotational vibrations. 

Problem 8-9-14 

Consider the mechanical system shown in Figure 9-50. Obtain the first and second 
modes of vibration. The displacements Xl and X2 are measured from their respective 
equilibrium positions. Assume that the mass elements move without friction. 



490 Frequency-Domain Analysis of Dynamic Systems Chap. 9 

III III 

Figure 9-50 Mechanical system. 
� % 

Problem 8-9-15 

Consider the mechanical system shown in Figure 9-5 1 .  Determine the mlturai frequen­
cies and modes of vibration. In the diagram. the displacements x and y arc measured 
from their respective equilibrium positions. Assume that 

111 = 1 kg. !vi = IO kg, k, = IO N/m, k, = 100 Nlm 

Determine the vibration when the initial conditions are given by 

.t(0) = 0.05 m. .r(O) = 0 mis, yeO) = 0 m . yeO) = 0 01/5 

k , y 

x 

Figure 9-51 Mechanical system. 

Problem 8-9-16 

Consider the mechanical system shown in Figure 9-36. Using the same numerical val­
ues for III, M. k ! .  and k2 as given in Problem A-9-16.obtain computer solutions for x(t) 
and Y(/) for the following initial conditions: 

(a) .t(0) = 0.028078 111. 
(b) .t(0) = 0.17808 m. 
(e) .t(0) = 0. 1  m. 

. i(O) = 0 mis, 
. i(O) = 0 m/s. 

.r(O) = O m/s. 

yeO) = 0.1 m . 
yeO) = -0.1 m . 

yeO) = -0.1 m. 

yeO) = 0 mls 
yeO) = 0 mls 

yeO) = 0 01/5 

\Vrite a MATLAB program that plots curves .r(t) versus t and yet) versus t for each of 
the three sets of initial conditions. Plot the resulting curves. 



Time-Domain Analysis 
and Des ign of Control 
Systems 

1 0-1 INTRODUCTION 

This chapter presents basic information on control systems. Our discussions are lim­
ited to time-domain analysis and design based on the transient-response analysis 
and root-locus analysis. 

We begin the chapter by defining some terms that are essential in describing 
control systems; we then follow with a description of closed-loop and open-loop 
control systems. Finally, the advantages and disadvantages of closed-loop and open­
loop control systems are compared. 

Plants. A planl is a piece of equipment-perhaps a set of machine parts 
functioning together-the purpose of which is to perform a particular operation. In 
this book, we shall call any physical object that is to be controlled a plant. 

Disturbances. A disturbance is a signal that tends to affect the value of the 
output of a system adversely. If the disturbance is generated within the system, it is 
called internal; an external disturbance is generated outside the system and is an 
input. 

491 
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Feedback control. Feedback colltrol refers to  an operation that, in  the pres­
ence of disturbances, tends to reduce the difference between the output of a system 
and the reference input and that does so on the basis of this difference. Here, only 
unpredictable disturbances are so specified, since predictable or known distur­
bances can always be compensated for within the system. 

Feedback control systems. A system that maintains a prescribed relation­
ship between the output and the reference input by comparing them and using the 
difference as a means of control is called a feedback control system or simply a 
control system. An example is a room temperature control system. By measuring the 
actual room temperature and comparing it with the reference temperature (the de­
sired temperature), the thermostat turns the heating or cooling equipment on or off 
in such a way as to ensure that the temperature of the room remains at a comfort­
able level, regardless of outside conditions. 

Feedback control systems, of course, are not limited to engineering, but can be 
found in various nonengineering fields as well. The human body, for instance, is a 
highly advanced feedback control system. Both body temperature and blood pres­
sure are kept constant by means of physiological feedback. In fact, feedback per­
forms the vital function of making the human body relatively insensitive to external 
disturbances, thus enabling it to function properly in a changing environment. 

As another example, consider the control of automobile speed by a human 
operator. For a given situation, the driver decides on an appropriate speed, which 
may be the posted speed limit on the road or highway involved. This speed acts as 
the reference speed. The driver observes the actual speed by looking at the 
speedometer. If he or she is traveling too slowly, the driver depresses the accelerator 
and the car speeds up. If the actual speed is too high, the driver releases the pressure 
on the accelerator and the car slows down. 111is is a feedback control system with a 
human operator. The human operator here can easily be replaced by a mechanical, 
an electrical, or some similar device. Instead of the driver observing the speedome­
ter, an electric generator can be used to produce a voltage that is proportional to the 
speed. This voltage can be compared with a reference voltage that corresponds to 
the desired speed. The difference in the voltages can then be used as the error signal 
to position the throttle to increase or decrease the speed as needed. 

Closed-loop control systems. Feedback control systems are often re­
ferred to as closed-loop cOl1lrol systems. In practice, the terms feedback COl1lrol and 
closed-loop cOlllrol are used interchangeably. In a closed-loop control system, the 
actuating error signal, which is the difference between the input signal and the feed­
back signal (which may be the output signal itself or a function of the output signal 
and its derivatives), is fed to the controller so as to reduce the error and bring the 
output of the system to a desired value. The term closed-loop cOlltrol always implies 
the use of feedback control action in order to reduce system error. 

Open-loop control systems. Those control systems in which the output 
has no effect on the control action are called opell-Ioop cOlltrol systems. In other 
words, in an open-loop control system, the output is neither measured nor fed back 
for comparison with the input. One practical example is a washing machine. Soaking, 
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washing, and rinsing in the washer operate on a time basis. 111e machine does not 
measure the output signal, that is, the cleanliness of the clothes. 

In an open-loop control system, the output is not compared with the refer­
ence input. Thus, to each reference input, there corresponds a fixed operating con­
dition, and as a result, the accuracy of the system depends on calibration. In the 
presence of disturbances, an open-loop control system will not perform the desired 
task. Open-loop control can be used, in practice, only if the relationship between 
the input and output is known and if there are neither internal nor external distur­
bances. Clearly, such systems are not feedback control systems. Note that any con­
trol system that operates on a time basis is an open-loop control system. For 
example, traffic control by means of signals operated on a time basis is another 
example of open-loop control. 

Closed-loop versus open-loop control systems. An advantage of the 
closed-loop control system is the fact that the use of feedback makes the system re­
sponse relatively insensitive to external disturbances and internal variations in sys­
tem parameters. It is thus possible to use relatively inaccurate and inexpensive 
components to obtain accurate control of a given plant, whereas doing so is impos­
sible in the open-loop case. 

From the point of view of stability, the open-loop control system is easier to 
build, because system stability is not a major problem. By contrast, stability is a 
major problem in the closed-loop control system, which may tend to overcorrect 
errors that can cause oscillations of constant or changing amplitude. 

General requirements of control systems. A primary requirement of any 
control system is that it must' be stable. In addition to absolute stability, a control 
system must have a reasonable relative stability; that is, the response must show rea­
sonable damping. Moreover, the speed of response must be reasonably fast. A con­
trol system must also be capable of reducing errors to zero or to some small 
tolerable value. 

Because the needs for reasonable relative stability and for steady-state accu­
racy tend to be incompatible, in designing control systems it is necessary to make 
the most effective compromise between the two. 

Outline of the chapter. This chapter presents introductory material on con­
trol systems analysis and design in the time domain. Specifically, Section 10-1 has pre­
sented an introduction to control systems. Section 10-2 deals with block diagrams of 
control systems. Section 10-3 discusses, first, control actions generally found in indus­
trial automatic controllers and, second, simple electronic controllers. Section 10-4 cov­
ers the transient-response analysis of control systems. 11,e responses of first- and 
second-order control systems to step inputs are examined, and the e(rects of various 
control actions on the transient-response characteristics of control systems are dis­
cussed. Section 10-5 is concerned with transient-response specifications. Section 10-6 
discusses improving transient-response and steady-state characteristics. Velocity feed­
back to improve the transient response is treated, and then static error constants are 
defined and used to obtain steady-state errors. Section ·1 0--7 deals with stability analy­
sis and presents Routh's stability criterion. Section 10-8 discusses the root-locus 
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method for analyzing and designing control systems. Basic rules for constructing root­
locus plots are presented. Section 10-9 treats the MATLAB approach to plotting root 
loci. Finally, Section 10-10 examines tuning rules for PID controllers. Ziegler-Nichols 
rules are detailed and PID-controlled systems are designed, utilizing the root-locus 
method. 

1 0-2 BLOCK DIAGRAMS AND THEIR SIMPLIFICATION 

A system may consist of a number of components. To show the functions performed 
by each component, block diagrams are frequently used in the analysis and design 
of control systems. This section first defines the open-loop transfer function, feed­
forward transfer function, and closed-loop transfer function. Then the simplification 
of block diagrams is discussed using general rules for reducing block diagrams. 
Finally, a MATLAB approach to obtaining transfer functions or state-space repre­
sentations of series-connected systems, parallel-connected systems, and feedback­
connected systems is presented. 

Open-loop transfer function and feedforward transfer function. Figure 
10-1 shows the block diagram of a closed-loop system with a feedback elemenl. 111e 
ratio of the feedback signal 8(s) to the actuating error signal £(s) is called the open­
loop transfer fllllclion. That is, 

8(s) 
open-loop transfer function = £(s) = G(s)H(s) 

The ratio of the output C(s) to the actuating error signal £(s) is called the 
JeedJonvard lre/IlSJer fllllClioll, so 

C(s) 
feedforward transfer function = £(s) = G(s) 

If the feedback transfer function is unity, then the open-loop transfer function and 
the feedforward transfer function are the same. 

Closed-loop transfer function. For the system shown in Figure 10-1, the 
output C(s) and input R(s) are related as follows: 

C(s) = G(s)£(s) 
£(s) = R(s) - 8(s) = R(s) - H (s)C(s) 

Eliminating £(s) from these equations gives 

C(s) = G(s) [R(s) - H(s)C(s)] 

Figure 10-1 Block dingram 
of a closed-loop system with a 
feedback element. 

"r: G(" : I H(s) 1_--oJ 

C(s) 



Sec. 1 0-2 

or 

Block Diagrams and Their Simplification 

C(s) 

R(s) 

G(s) 

1 + G(s)H(s) 
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(10-1 ) 
111e transfer function relating C(s) to R(s) is called the closed-loop tralls/er [I/nction. 
This transfer function relates the closed-loop system dynamics to the dynamics of 
the feed forward elements and feedback elements. Since, from Equation (10-1 ), 

G(s) 
C(s) = 1 + G(s)f-l (s)

R(s) 

the output response of a given closed-loop system clearly depends on both the 
closed-loop transfer function and the nature of the input. 

Block diagram reduction. Blocks can be connected in series only if the 
output of one block is not affected by the block that follows. If there are any loading 
effects between the components, these components must be combined into a single 
block. 

A complicated block diagram involving many feedback loops can be simpli­
fied by a step-by-step rearrangement, using rules of block diagram algebra. Some of 
these important rules are given in Table 10-1 .111ey are obtained by writing the same 

TABLE 10-1 Rules of Block Diagram Algebra 

Rule 
Original Block Diagrams No. I��@ AG - 8  

I 
B t ;�0 AG 

2 I AG 
A �G 

3 I A A �  - + _  Gi 
4 4J 
5 

A_@-IT 4J 

Equivalent Block Diagrams 

B A ��- B  - + G 
A 

!i L----[]] 
G G 

I� 
B ;lG ;lG 

A 0 AG - G L t ;lG ill----A 
G:z. + _ G:z. G1 ~ 
A_I G, � I + GJG2 . 
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equation in a different way. Simplification of the block diagram by rearrangements 
and substitutions considerably reduces the labor needed for subsequent mathemat­
ical analysis. Note, however, that as the block diagram is simplified, the transfer 
functions in new blocks become morc complex because new poles and new zeros 
are generated. 

In simplifying a block diagram, remember the following: 

1. The product of the transfer functions in the feedforward direction must re­
main the same. 

2. The product of the transfer functions around the loop must remain the 
same. 

A general rule for simplifying a block diagram is to move branch points and 
summing points, interchange summing points, and then eliminate internal feedback 
loops. 

Example HI-l 

Consider the system shown in Figure 10-2. Simplify this diagram by eliminating 
loops. 

Moving the Slimming point of the negative feedback loop containing /-/2 out­
side the positive feedback loop containing /-II _  we obtain Figure 1O-3(n ) .  Eliminating 
the positive feedback luup, Wt! have Figure 10-3(b). Then, eliminating the loop con­
taining HUGI gives Figure 10-3(c). Finally. eliminating the feedback loop results in 
Figure J0-3(d). 

Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the 
product of the transfer functions of the feedforward path. The denominator of 
C(s)/R(s) is equal to 

I - L (product of the transfer functions around each loop) 

- (G,N, - G,N, - G,G,) 

- G,N, + G,N, + G,G, 

(The positive feedback loop yields a negative term in the denominator.) 

C(s) 

Figure 10-2 Syslcm with mUlliplc loops. 
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C(s) 

(a) 

R(s) 

(b) 

C(s) 

(c) 

(d) 
R(s) C(s) 

, 

Figure 10-3 Successive simplifications of block diagram shown in Figure 10-2. 

Using MATLAB to obtain transfer functions of series-connected blocks, 
parallel-connected blocks, and feedback-connected blocks. A physical sys­
tem may involve many interconnected blocks. I n  what follows, we shall consider se­
ries-connecled blocks, parallel-connected blocks, and feedback-connected blocks. 
Any linear, time-invariant system may be represented by combinations of series­
connected blocks, parallel-connected blocks, and fcedback-conneclcd blocks. 

Series-collnected blocks. I n  the system shown in Figure 1 0-4, G, and G, are 
series connected. System G, and system G, are respectively defined by 

sys1 = tf(nurnl ,den 1 )  
sys2 = tf(nurn2,den2) 

sys 

G, G, 

sys 1 sys 2 FigUTC 10-4 Series-connected blocks. 
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provided that these two systems are themselves defined in terms of  transfer func­
tions. Then the series-connected system G,G, can be given by 

sys = series(sys1 ,sys2) 

The system's numerator and denominator can be given by 

[num,denl = series(num1 ,den1 ,num2,den2) 

Consider the case where 

G __ 
10 

1 - s2 + 2s + la' 
5 

G, = -­
s + 5 

MATLAB Program 10--1 produces the transfer function of the series-connected system. 

MAHAB Program 1 0--1 

» num1 = 1 1 01; den1 = 1 1 2 1 01; 
» sys1 = tf(num1 ,den 1 ); 
» num2 = [5]; den2 = 1 1  5 1 ;  
» sys2 = tf(num2,den2); 
» sys = series(sys1 ,sys2) 

Transfer function: 
50 

sl\3 + 7 sl\2 + 20 s + 50 

If systems G,  and G, are given in state-space form, then their MATLAB rep­
resentations are respectively given by 

sys1 = ss(A1 , B 1 ,C l ,D l ) 
sys2 = ss(A2 , B2,C2,D2) 

The series-connected system G,G, is given by 

sys = series(sys1 ,sys2) 

or 

IA,B,C,DI = series(A 1 , B 1  ,Cl ,D1  ,A2,B2,C2,D2) 

Parallel-collllec/eli blocks. Figures 1 0--5(a) and (b) show porollel-connected 
systems. In Figure 10--5(a) two systems G, and G, are added, while in Figure 10--5(b) 

c, 

c, 

(aJ (b) 

Figure 10-5 Parallel-connected systems. (a) G1 + G2: (b) Gt - G2. 
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system G, is subtracted from system G,. I f  G, and G, are defined in terms of trans­
fer functions, then 

5)'51 ; tf(num1 ,den1 )  
s)'s2 ; tf(num2,den2) 

and the parallel-connected system G1 + Gz is given by 

sys ; parallel(sys1 ,sys2) 

or 

I num,denl ; paral iel(num1 ,den1 ,num2,den2) 

Consider the case where 

1 0  
G1 = ., , 

s· + 2s + 10  
5 

G, = --. 
s + � 

MATLAB Program 10-2 produces the transfer function of the parallel-connected 
system. 

MATlAB Program 1 0-2 

» num1 ; 1 1 01; den1 ; 1 1  2 1 01; 
» sys1 ; tf(num1 ,den1 ); 
» num2 ; 15 1 ;  den2 ; 11 5 1 ;  
» sys2 ; tf(num2,clen2); 
» sys ; paraliel(sys1 ,sys2) 

Transfer function: 
5 51\2 + 20 s + 1 00 

51\3 + 7 51\2 + 20 5 + 50 

If G] and Gz are given in state-space form. then 

5),51 ; ss(A 1 ,B1  ,C1 ,01 ) 
sys2 ; ss(A2,B2,C2,02) 

and the parallel-connected system G, + G, is given by 

5)'5 ; paraliel(sys1 ,5),52) 

or 
IA,B,COI ; parallel(A 1 ,B1 ,C1 ,01 ,A2,B2,C2,02) 

If the parallel-connected system is G, - G" as shown in Figure 10-5(b), then we define 
sys1 and sys2 as before, but change sys2 to -sys2 in the expression for sys; that is, 

sys ; paraliel(sys1 ,-5),52) 

Feedback-connected blocks: Figure 10-6(a) shows a negative feedback sys­
tem, and Figure 10-6(b) shows a positive feedback system. 

If G and J-/ are defined in terms of transfer functions, then 

sysg ; Inumg,clengl 
s)'sh ; Inumh,denhl 



500 Time-Domain Analysis and Design of Control Systems Chap. 1 0  

-@- G 

LG 
(a) (b) 

Figure 10-6 (a) Negative feedback system; (b) positive feedback system. 

and the entire feedback system is given by 

sys ; feedback(sysg,sysh) 

or 

Inum,denl ; feedback(numg,cleng,numh,denh) 

If the system has a unity feedback function, then f-{ = [ 1 ]  and sys can be given by 

sys ; feedback(sysg, 11 I) 

Note that, in treating the feedback system, MATLAB assumes that the feed­
back is negative. If the system involves a positive feedback, we need to add " + 1 "  in 
the argument of feedbHck as follows: 

sys ; feedback(sysg,sysh,+ 1 )  

Alternatively, we may lise H-sysh" in the sys statement; that is, 

sys ; feedback(sysg,-sysh) 

for the positive feedback system. 
Consider the case where 

5 
G = " , S' + 25 

f-{ = 0.15 + 1 

MATLAB Program 10-3 produces the transfer function of the feedback-connected 
system. 

MAHAB Program 1 0-3 

» numg ; 15 1 ;  deng ; 11 2 01 ;  
» sysg ; tf(numg,deng); 
» numh ; 10.1  1 1 ; denh ; 1 1 1 ;  
» sysh ; tf(numh,denh); 
» sys ; feeclback(sysg,sysh) 

Transfer function: 
5 

s/\2 + 2.5 s + 5 
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10-3 AUTOMATIC CONTROLLERS 

An automatic controller compares the actual value of the plant output with the 
desired value, determines the deviation. and produces a control signal that will 
reduce the deviation to zero or a small value. The way in which the automatic con� 
troller produccs the control signal is called thc cOl/Ira/ aCliol/. 

Here, we describe the fundamental control actions commonly used in industri­
al automatic controllers. We then briefly discuss an electronic controller. 

Control actions. The control actions normally found in industrial automat­
ic controllers consist of the following: two-position, or on-off: proportional; integral; 
derivative; and combinations of proportional, integral, and derivative. A good un­
derstanding of the basic properties of various control actions is necessary for the en­
gineer to select the one best suited to his or her particular application. 

Classifications of industrial automatic controllers. Industrial automatic 
controllers can be classified according to their control action as follows: 

1. Two-position, or on-off, controllers 
2. Proportional controllers 
3. Integral controllers 
4. Proportional-plus-integral controllers 
5. Proportional-plus-derivative controllers 
6. Proportional-plus-integral-plus-derivative controllers 

Automatic controller, actuator, and sensor (measuring element). 
Figure 1 0-7 is a block diagram of an industrial control system consisting of an auto· 
matic controller, an actuator, a plant. and a sensor or measuring element. The con­
troller detects the actuating error signal, which is usually at a very low power level, 

Aulomiltic controller 

R

_

ef

_

e

,-

re

_

n

_

ee

_-;-<_

�lrror detector 

input 
I 

(p!��t) : 
Ampllflcr 

- \ 
I 
I 

Actuating 
crror signal 

H-I 
I 
I 
I L _ _  - - - - - - - - - - -

r--- Plant 
Output 

Actuator 

Sensor 

Figure 10-7 Block diagram of an industrial control system consisting of an automatic controller. an 
actuator.:t plant. and a sensor (measuring element). 
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and amplifies it to a sufficiently high level. (TIl US. the automatic controller compris­
es an error detector and an amplifier.) Quite often, a suitable feedback circuit, to­
gether with an amplifier, is used to alter the actuating error signal to produce a 
beller control signal. 

TIle actuator is an element that produces the input to the plant according to 
the control signal, so that the feedback signal will correspond to the reference input 
signal. 

The sensor or measuring element is a device that converts the output variable 
into another suitable variable, such as a displacement. pressure, or voltage, which 
can be lIsed to compare the output with the reference input signaJ. 1l1is element is in 
the feedback path of the closed-loop system. TI,e set point of the controller must be 
converted to a reference input of the same units as the feedback signal from the sen­
sor or measuring element. 

Two-position, or on-off, control action. In a two-position control system, 
the actuating element has only two fixed positions, which arc, in many cases, simply 
on and off. 1\vo-position, or on-off, control is simple and inexpensive and, for this 
reason, is used extensively in both industrial and household control systems. 

To explain the concept, let the output signal from the controller be m(l) and 
the actuating error signal be e(I). In two-position control, the signal 1'11(1) remains at 
either a maximum or ct minimum value, depending on whether the actuating error 
signal is positive or negative, so that 

m(l)  = M, 
= M2 

e(l) > 0 
e(l) < 0 

where M, and M2 are constants. TI1e minimum value A12 is generally either zero or 
-M" As a rule, two-position controllers are electrical devices, and an electric solenoid­
operated valve is widely used in such controllers. 

Figure ]0-8 shows the block diagram of a two-position controller. The range 
through which the actuating error signal must move before switching occurs is 
called the differelllial gap. Figure 10-9 shows the block diagram of a two-position 
controller with a differential gap. Such a gap causes the controller output m(l) to 
maintain its present value until the actuating error signal has moved slightly beyond 
the zero value. In some cases, the differential gap is a result of unintentional friction 
and lost motion; however, quite often it is intentionally provided in order to prevent 
too frequent operation of the on-off mechanism. 

Let us look at the liquid-level control system of Figure 1 0-10. With two­
position control, the input valve is either open or closed, so the liquid inflow rate 
is either a positive constant or zero. As shown in Figure 1 0- ]  1 ,  the output signal 

Figure JO-8 Block diagram 
of <I two-position controller. 

-� I 1-"-' t i M, 
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Differential gap \ 
M, ---� - 111 t '-.1 -_�M,,-, 

'tJ-----�...ro l l� V 

,{ 1 

Figure 10-9 Block diagram of a two­
position controller with a differential gap. 
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R Figure 10--10 Liquid·level control system. 

moves continuously between the two limits required. thereby causing the actuat­
ing element to shift from one fixed position to the other. Such output oscillation 
between two limits is a typical response characteristic of a system that is under 
two-position control. 

From Figure 10-1 1 ,  we see that the amplitude of the output oscillation can be 
reduced by decreasing the differential gap. This step. however, increases the number 
of on-off switchings per unit time and reduces the useful life of the component. The 
magnitude of the differential gap must be determined from such factors as the accu­
racy required and the life of the component. 

Proportional, integral, and derivative control actions. In addition to two­
position or on-off control action, proportional, integral, and derivative control actions 
are basic control actions found in industrial automatic controllers. For each control ac­
tion, the output of the controller, M(s), and the actuating error signal £(s) are related 
by a transfer function of a specific form. In what follows, we illustrate transfer functions 

. - ."'/\7"1: "" . � _ ---./.. ...l.C _ \L.. .'oL-V _ . 

/' Differential _ 1/_ gap 

Figure 10-11 Head-versus-time curve 
of the system shown in Figure 10-10. 



504 Time-Domain Analysis and Design of Control Systems Chap. 1 0  

M(s) 

Figure 10-12 Block diagram of a conlroller. 

M(s)/£(s) for proportional control action, proportional-plus-integral control action, 
proportional-plus-derivative control action, and proportional-plus-integral-plus-de­
rivative control action. 

Referring to the controller shown in Figure 10-12, for proportional control 
action. M(s) and £(s) are related by 

M(s) 
£(s)  � G,(s) � Kp 

where Kp is termed the proportiollal gain. 
For integral control action, the relationship betwcen M(s) and £(s) is 

M(s) Ki 
£(s) � G,(s) � --; 

where Ki is called the inlegral gain. 
For proportional-plus-integral control action, M(s) and £(s) are related by 

M(s) ( . 1 ) £(s) � G,(s) � Kp I + 
T;s 

where Kp is the proportional gain and T; is a constant called the integral time. 
For proportional-plus-derivative control action, M(s) and £(s) are related by 

M(s) . £(s) � G,(s) � K,,( l + T" s) 

where K" is the proportional gain and �I is a constant called the derivative lime. 
Finally, for proportional-plus-integral-plus-derivative control action, M(s) and 

£(s) are related by 

where Kp is the proportional gain, T; is the integral time, and �I is the derivative 
time. 

Electronic PID controllers. PI D controllers are used frequently in industri­
al control systems. Since the transfer function G,(s) of the PID controller is 

G,(s) � Kp( 1 + ;,,. + T" s) ( 1 0-2) 



Sec. 1 0-3 Automatic Controllers 505 

if e(t) is the input to the PID controller, then the output l11(t) from the controller is 
given by 

l11 ( t )  = Kp[e(t )  + �1' e(t)  dt + 
T" de(t) 1 � -00 dr 

Constants Kp, T" and T" are the controller parameters. Equation ( 1 0-2) can also be 
written as 

where 

K p = proportional gain 
Ki = K piT, = integral gain 
K(I = KpTd = derivative gain 

I n  this case, KPI K;I and Kd become controller parameters. 

(10-3) 

In actual prD controllers, instead of adjusting the proportional gain, we adjust 
the proportional band. The proportional band is proportional to 1/ K p and is 
expressed in percent. (For example, 25 % proportional band corresponds to K p = 4.) 

Figure 10-13 shows an electronic PID controller that uses operational ampli­
fiers. The transfer function £(5)/ £,(5 )  is given by 

where 

Ei(S) 

£(s) Z2 
Ei(S) ZI 

.R:=,2 C.:c2,:,s_+--...:cI Z2 = - C2s 

z, 
, - - - - --, z, 

c, 
-� R2 C2 ' 

, R : L _ _ c _.J + 
+ 

E(s) 

Figure 10-13 Electronic PID controller. 

EJs) 
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Noting that 

we have 

Eo(s) E(s) -- --
E(s) Ei(s) 

Hence, 

K = R.(R,C, + R2C2) 
p R3R,C2 

Ti = R,C, + R2C2 
R,C,R2C2 

I, = -=--=-'---'':::-''::-, R,C, + R2C2 

R,C,R2C2 1 R,C, + R2C2 S 

In terms of the proportional gain, integral gain, and derivative gain, we have 

R.(R,C, + R2C2) Kp = 
R3R,C2 

R. K = -=-=� , R3R, C2 
R.R2C, K" = R3 

( 10-4) 

Notice that the second operational-amplifier circuit acts as a sign inverter as well as 
a gain adjuster. 

Hydraulic controllers. In addition to electronic controllers, hydraulic con­
trollers are used extensively in industry. High-pressure hydraulic systems enable 
very large forces to be derived. Moreover, these systems permit a rapid and accurate 
positioning of loads. Frequently, a combination of dectronic and hydraulic systems 
is found because of the advantages resulting from a mixture of both electronic con­
trol and hydraulic power. 

1 0-4 TRANSIENT-RESPONSE ANALYSIS 

In this section, we treat the transient-response analysis of control systems and the 
effects of integral and derivative control actions on the transient-response perfor­
mance. We begin with an analysis of the proportional control of a first-order system. 
after which we describe the effects of integral and derivative control actions on the 
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Figure 10--14 Liquid-level conlroi 
system. 

transient performance of the system. Then we present the proportional control of a 
system with an inertia load and illustrate the fact that adding derivative control 
action markedly improves the transient performance. 

Proportional control of first-order system.  Suppose that the controller in 
the liquid-level control system of Figure 10-14 is a proportional controller. Suppose 
also that the reference input to the system is X.  At r = 0, a change in the reference 
input is made from X to X + .t. Assume that all the variables shown in the dia­
gram-x, qi. h, and C/o-are measured from their respective steady-state values 
X, Q. H, and Q. Assume also that the magnitudes of the variables .t, q;, ii, and '10 
are sufficiently small, which means that the system can be approximated by a linear 
mathematical model. 

Referring to Section 7-2. the following equation for the liquid-level system 
can be derived: 

dil 
RC- + h = Rq· 

dr ' (10-5) 

[See Equation (7-4).] So the transfer function between H(s) and Q;(s) is found to be 

H(s) R 
Q;(s) RCs + 1 

( 10-6) 

Here, we assume that the gain Kv of the control valve is constant near the steady­
state operating condition. Then, since the controller is a proportional one, the change 
in inflow rale fJi is proportional to the actuating error e (when:: e = .\" - 11), or 

( 10-7) 

where K p is the gain of the proportional controller. In terms of Laplace-transformed 
quantities, Equation ( 10-7) becomes 

Q;(s) = KpK,£(s) 

A block diagram of this system appears in Figure 10-15(a). To simplify our analysis, 
we assume that x and h are the same kind of signal with the same units, so that they 
can be compared directly. (Otherwise, we must insert a feedback transfer function 
Kb in the feedback path.) A simplified block diagram is given in Figure 10-1 5(b), 
where K = K pK ,. 
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(a) 

__ X(S) @--0-K I -R- '-I ----,..:..:.H .. (,) 

L _______ r-_-JI ' - Res + I 

t Figure 10-15 (a) Block dia­
gram of the liquid-level control 
system shown in Figure 10--14; 
(b) simplified block diagram. (b) 

Next, we investigate the response h(l) to a change in the reference input. We shall 
assume a unit-step change in x(t). The closed-loop transfer function between H(s) 
and Xes) is given by 

I-I(s) K R 
Xes) RCs + 1 + KR (10-8) 

Since the Laplace transform of the unit-step function is 1/s, substituting X(s) = 1/ s 
into Equation ( 10-8) gives 

KR 1 H (s) - -=-::--,----:-:-::c RCs + 1 + KR s 
Then the expansion of H(s) into partial fractions results in 

KR { 1 1 } H(s) = 1 + KR :;: - s + [(l + KR)/RC] (10-9) 

Next, by taking the inverse Laplace transforms of both sides of Equation (10-9), we 
obtain the time solution 

where 

h(t) = 
KR 

( 1 _ e-tIT, ) 
1 + KR 

RC 
TJ = 1 + KR 

1 ;,: 0  (10-10) 

Notice that the time constant TJ of the closed-loop system is different from the time 
constant RC of the liquid-level system alone. 

The response curve h(l) is plotted against I in Figure 10-16. From Equation 
( 1 0-10), we see that, as I approaches infinity, the value of h(l) approaches 
KR/(1 + KR),  or 
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0 2T, 4T[ 
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6T, 
Figure 10-16 Unit-step response curve 
for the system shown in Figure \O-lS(b). 

KR 
h ( oo )  = 

1 + KR 

Since x(  (0) = 1 ,  there is a steady-state error of  magnitude 1/ ( 1  + KR) .  Such an 
error is called offset. The value of offset becomes smaller as the gain K becomes 
larger. 

Eliminating offset by the use of integral control. In the proportional 
control of a plant whose transfer function does not possess an integrator lis (and 
thus, the feed-forward transfer function does not involve an integrator or integra­
tors), there is a steady-state error, or offset, in the response to a step input. Such an 
offset can be eliminated if integral control action is included in the controller. 

Under integral control action, the control signal (the output signal from the 
controller) at any instant is the area under the actuating-error-signaI curve up to 
that instant. The control signal met) can have a nonzero value when the actuating 
error signal e(t) is zero, as Figure 10-17(a) shows. This situation is impossible in 
the case of the proportional controller, since a nonzero control signal requires a 
nonzero actuating error signal. (A nonzero actuating error signal at steady state 
means that there is an offse!.) Figure 1O-17(b) shows the curve of e(t) versus t and 
the corresponding curve of met) versus t when the controller is of the proportion­
al type. 

e(I) � 
............... o 

m(l) Lc=:-:-
o 

(a) 

e(I) � 
o � ............... __ ��C= ____ � 

m(l) l 
o '""=-"' 

(b) 

, 
1 

Figure 10-17 (<I) Error curve and control signal curve for a system that uses an integral con­
troller: (b) error cun'e and control signal curve for a system that uses a proportional controller. 
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Figure 10--18 (a) Liquid-level control system: (b) block diagram. 

Note that integral control action improves steady-state accuracy by removing 
offset, or steady-state error. However, it may lead to an oscillatory response of slow­
ly decreasing amplitude or even increasing amplitude, both of which are undesirable. 

Integral control of a liquid-level system. Figure 10-18(a) shows a liquid­
level control system. We assume that the controller is an integral one. We also as­
sume that the variables x, qil h, and qo: which are measured from their respective 
steady-state values X, (2, H, and (2, are small quantities; therefore, the system can 
be considered linear. Under these assumptions, the block diagram of the system can 
be obtained as shown in Figure l0-18(b). From this diagram, the closeLl-loop lrans­
fer function between H(s) and Xes) i s  

It follows that 

£(s) 
Xes)  

K R  HCs) 
Xes) Res' + s + KR 

X Cs) - H Cs) 
XCs) 

Res' + s 
Res' + s + K R  

Since the system is stable, the steady-state error ess for the unit-step response can be 
obtained by applying the final-value theorem: 
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e" = lim sEes) ,-0 
. s(RCs' + s) 1 

= lIm -�---'--­
,-0 RCs' + s + K R s 

= 0 

51'  

Integral control of the liquid-level system thus eliminates the steady-state error in 
the response to the step input, thereby improving steady-state accuracy. This is an 
important improvement over proportional control alone, which gives offset. 

Note that proportional-plus-integral control action gives just as good a steady­
state accuracy as integral control action alone. In fact, the use of proportional-plus­
integral control action will enable the transient response to decay faster. 

Derivative control action. Derivative control action, when added to a pro­
portional controller, provides a means of obtaining high sensitivity. An advantage of 
using derivative control action is that it responds to the rate of change of the actuat­
ing error and can produce a significant correction before the magnitude of the actu­
ating error becomes too large. Derivative control thus anticipates the actuating 
error, initiates an early corrective action, and tends to increase the stability of the 
system. 

Although derivative control does not affect the steady-state error directly, it 
adds damping to the system and therefore permits the use of a larger value of the 
system gain, a factor that yields an improvement in steady-state accuracy. 

Notice that, because derivative control operates on the rate of change of the 
actuating error and not on the actuating error itself, this mode is never used alone. It 
is always used in combination with proportional or proportional-plus-integral con­
trol action. 

Proportional control of a system with inertia load. Before considering 
the effect of derivative control action on a system's performance, let us discuss the 
proportional control of an inertia load. 

In the position control system of Figure 10-19(a), the box with the transfer 
function K" represents a proportional controller. Its output is a torque signal T, 
which is applied to an inertia element (rotor) 1. The output of the system is the angu­
lar displacement c of the inertia element. For the inertia element, we have 

}(3 = T 

The Laplace transform of this last equation, assummg zero initial conditions, 
becomes 

Hence, 

.Is'C(s) = T(s) 

C(s) 1 
T(s) is' 

The diagram of Figure 1O-19(a) can be redrawn as shown in Figure 1O-19(b). From 
this diagram, the closed-loop transfer function is 
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Figure 10-19 (a) Position con­
trol system; (b) block diagram; 
(c) unit-step response curve. 

R(s) �(S) - +  K - I' 

C(I) 

o 

C(s) Kp 
R(s) Is' + Kp 

Since the roots of the characteristic equation 

is' + K = 0 p 

(0) 

C(s) 

(b) 

(c) 

are imaginary, the response to a unit-step input continues to oscillate indefinitely, as 
shown in Figure 1O-19(c). 

Control systems exhibiting such sustained oscillations are not acceptable. We 
shall see that the addition of derivative control will stabilize the system. 

Proportional-plus-derivative control of a system with inertia load. Let 
us modify the proportional controller to a proportional-plus-derivative controller 
whose transfer function is Kp( l + T" s) .  The torque developed by the controller is 
proportional to Kp(e + �/e), where e is the actuating error signal. Derivative coo­
trol action is essentially anticipatory, measuring the instantaneous error velocity and 
predicting the large overshoot ahead of time in order to produce an appropriate 
counteraction before too large an overshoot occurs. 

For the system shown in Figure 1O-20(a), the closed-loop transfer function is 
given by 
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(a) " '}'IL 
o 

The characteristic equation 

(b) 

C(s) 
R(s)  

C(s) 

is' + KpTds + Kp = 0 
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Figure 10-20 (a)  Block dia­
gram of a position control system 
that uses a proportional-plus­
derivative controller; (b) unit­
step response curve. 

now has two roots with negative real parts, because the values of i, Kin and Td are 
positive. Thus, derivative control action introduces a damping effect. A typical 
response curve C(I) to a unit-step input is presented in Figure 1O-20(b). Clearly, the 
response curve is a marked improvement over the original response curve, shown in 
Figure 1O-19(c). 

1 0-5 TRANSIENT-RESPONSE SPECIFICATIONS 

Because systems that store energy cannot respond instantaneously, they exhibit a 
transient response when they are subjected to inputs or disturbances. Consequently, 
the transient-response characteristics constitute one of the most important factors 
in system design. 

I n  many practical cases, the desired performance characteristics of control sys­
tems can be given in terms of transient-response specifications. Frequently, such per­
formance characteristics are specified in terms of the transient response to a 
unit-step input, since such an input is easy to generate and is sufficiently drastic. (If 
the response of a linear system to a step input is known, it is  mathematically possible 
to compute the system's response to any input.) 

The transient response of a system to a unit-step input depends on initial con­
ditions. For convenience in comparing the transient responses of various systems, it 
is common practice to use a standard initial condition: The system is at rest initially, 
with its output and all time derivatives thereof zero. Then the response characteris­
tics can be easily compared. 
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Transient-response specifications. Th e  transient response of a practical 
control system often exhibits damped oscillations before reaching a steady state. I n  
specifying the transient·response characteristics of a control system t o  a unit-step 
input, it is common to name the following: 

1. Delay time, f" 
2. Rise time, t , 
3. Peak time, f p 
4. Maximum overshoot, Mp 
5. Settling time, f, 

These specifications are defined next and are shown graphically in  Figure 10-21 .  

Delay time. The delay time fd i s  the time needed for the response to  reach 
half the final value the very first time. 

Rise time. The rise time t, is the time required for the response to rise from 
10% to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped sec­
ond-order systems, the 0% to 100% rise time is normally used. For overdamped sys­
tems, the 10% to 90% rise time is common. 

Peak time. The peak time fp is the time required for the response to reach 
the first peak of the overshoot. 

Maximum (percent) overshoot. The maximum overshoot Mp is the maxi­
mum peak value of the response curve [the curve of c(t) versus fl, measured from 
c(oo). If c (oo)  = 1 ,  the maximum percent overshoot is Mp X 100%. If the final 

cCt) 

1.0 
0.9 

0.5 

Allowable tolerance ��L _ _ _ _ _ _ _ _ _ _ _ _  1.-.---; 0.02 
- - 1- - - - - - - - - - - - -

0.1 
O ����_+----------_+--------------------� 

f------ t, ----�.j 
Figure 10-21 Transient-response specifications. 
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steady-state value c (  00) of the response differs from unity, then it is common prac­
tice to use the following definition of the maximum percenl overshoot: 

C(lp) - c( oo ) 
maximum percent overshoot = 

c( 00 )  
X 100% 

11,e amount of the maximum (percent) overshoot directly indicates the relative sta­
bility of the system. 

Settling time. 111e settling time I, is the time required for the response curve 
to reach and stay within 2% of the final value. In some cases, 5%, instead of 2%, is 
used as the percentage of the final value. Throughout this book, however, we use the 
2% criterion. The settling time is related to the largest time constant of the system. 

Comments. If we specify the values of rd, tn lp, IS) and MPI the shape of the 
response curve is virtually fixed. 111is fact can be seen clearly from Figure 1 0-22. 

Note that not all these specifications necessarily apply to any given case. For 
instance, for an overdamped system, the terms peak titHe and maximum overshoot 
do not apply. 

Position control system. 11le position control system (servo system) 
shown in Figure 1O-23(a) consists of a proportional controller and load elements 
(inertia and viscous-friction elements). Suppose that we wish to control the output 
position C in accordance with the input position r. 

The equation for the load elements is 

Jc + be = T 

where T is the torque produced by the proportional controller, whose gain constant 
is K. Taking Laplace transforms of both sides of this last equation, assuming zero ini­
tial conditions, we find that 

c(r) 

1.0 

0.5 

Js'C(s) + bsC(s) = T(s) 

For ( > 15, response 
remains within this strip. 

�//t( f///((((((////I/// J_ 0.02 

, 
These points fIre specified. 

o �--���--------�------------------_ 
r, 

Figure 10-22 Specifications of transient-response curve. 
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J l'J 

(a) 

(b) 

C(s) 

(c) 

c 

C(s) 

Figure 10-23 (a) Position control system; 
(b) block diagram: (c) block diagram of a 
second-order system in standard form. 

So the transfer function between C(s) and T(s) is 

C(s) 1 
T(s) s(is + b) 

With the use of this transfer function, Figure 1O-23(a) can be redrawn as shown in 
Figure 1O-23(b). TI,e closed-loop transfer function is then 

or 

C(s) K Kjl 
R(s) = ls2 + bs + K S2 + (bj.! )s + (Kjl) 

C(s)  
= 

w;, 
R(s) S2 + 2Cw"s + w;, ( 10-1 1 )  
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2v KJ 
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In terms of C and W," the block diagram of Figure 10-23(b) can be redrawn as shown 
in Figure 10-23(c). 

Next, let us consider the unit-step response of this system when 0 < C < 1 .  
For a unit-step input, we have R(s) = 1/s. 111en 

w� 1 
C(s) = 2 2 S + 2( Wll5 + WI! S 

1 
s 
s 

s + 2Cw" 
S2 + ?rw S + w2 -� II II 

( s  + Cw,,)2 + W;' (s + Cw,,)2 + w;, (10-12) 

where Wd = w,,�. The inverse Laplace transform of Equation ( J O-12) gives 

or 

C(I) = 1 - C 
e-" ",,I sin wdl - e-,w,,1 cos wII � 1 

= 1 - e-,W" ' (h s i n Wdl + COS Wdl) 
1 - C- (10-13) 

(10-14) 

A family of curves C(I) plotted against I with various values of C is shown in 
Figure 10-24, where the abscissa is the dimensionless variable W"I. The curves are 
functions only of r 

A few comments on transient-response specifications. Except in cer­
tain applications in which oscillations cannot be tolerated, it is preferable that the 
transient response be sufficiently fast as well as reasonably damped. So, in order to 
get a desirable transient response for a second-order system, the damping ratio l 
may be chosen between 0.4 and 0.8. Small values of C (C < 0.4) yield excessivc 
overshoot in the transient response, and a system with a large value of C (C > 0.8) 
responds sluggishly. 

Later we shall see that the maximum overshoot and the rise time conflict with 
each other. In other words, both the maximum overshoot and the rise time cannot 
be made smaller simultaneously. If one is made smaller, the other necessarily 
becomes larger. 
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7 8 9 10 11 12 

Figure 10-24 Unit-step response curves for the system shown in Figure 10-23{c). 

Second-order systems and transient-response specifications. Let us 
now obtain the rise time, peak time, maximum overshoot, and settling time of the 
second-order system given by Equation (10-11) .  These values will be derived in 
terms of , and w". The system is assumed to be underdamped. 

Rise time t,. We find the rise time I, by letting c(t,) = 1 in Equation (10-13), or 

e(t,) = 1 = 1 - e-iw",,( b sin wdl, + cos Wdl,) (10-15) 
1 - ,-

Since e-(w"" '" 0, Equation (10-15) yields 

or 

Thus, the rise time If is 

, . 0 � ;-:---:::; SIn wdl r + cos wdt r = 
v I  _ " 

1 
_ ( t, = - tan 1 

Wd 
r. - {3  

Wd 
(10-16) 

where {3 is defined in Figure 10-25. Clearly, to obtain a small value of ,,, we must 
have a large Wd. 
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jw 

Figure 10--25 Definilion of angle (3. 

Peak time II'" We obtain the peak time by differentiating crt) in Equation 
(10-13) with respect to time t and letting this derivative equal zero. That is, 

I t  follows that 

or 

de 
dt 

Since the peak time corresponds to the first peak overshoot, Wt; have wt/lp = 'Tr. 
Then 

7r 
t ; ­P Wd ( 10-17) 

The peak time t I' corresponds to one half-cycle of the frequency of damped oscillation. 

Maximum overshoot Mp- The maximum overshoot occurs at the peak time 
'I' ; 7r/Wd' Thus, from Equation ( 10-13), 

Mp ; C(lp) - 1 

; _e-iW"(�/W"{ h sin 7r + cos 7r ) 
= e-{r. 1_{1 

Since c (oo) ; 1, the maximum percent overshoot is e-ir./Vt-i' x 100%. 

( 10-18) 

SellUIIg time I,. For an underdamped second-order system, the transient 
response for a unit-step input is given by Equation ( 1 0-14). Notice that the re­
sponse curve c(r) always remains within a pair of the envelope curves, as shown in 
Figure 10-26. [The curves 1 ± (e-lw"I/�) are the envelope ClIrves of the 
transient response to a unit-step input.] The time constant of these envelope 
curves is 1/ Cw,.. The settling time I, is four times this time constant, or 

(10-19) 



I 
520 Time-Domain Analysis and Design of Control Systems Chap. 1 0  
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Figure 10--26 Unit-step response curve and its envelope curves. 

Note that the settling time is inversely proportional to the undamped natural 
frequency of the system. Since the value of � is usually determined from the require­
ment of permissible maximum overshoot, the settling time is determined primarily 
by the undamped natural frequency w". In other words, the duration of the transient 
period can be varied, without changing the maximum overshoot, by adjusting the 
undamped natural frequency w". 

From the preceding analysis, it is clear that Wil must be large if we are to have 
a rapid response. To limit the maximum overshoot Mp and make the settling time 
small, the damping ratio � should not be too small. The relationship between the 
maximum overshoot and the damping ratio is presented in Figure 10-27. Note that 
if the damping ratio is between 0.4 and 0.8, then the maximum percent overshoot 
for a step response is between 25% and 2.5%. 

Examplc W-2 

Determine the rise time, peak time, maximum overshoot, and settling lime when the 
control system shown in Figure 10-28 is subjected to a unit-step input. 

Notice that Wn = 1 rad/s and , = 0.5 for this system. So 

w" � w,,� � VI - 0.5' � 0.866 

Rise time tr: From Equation (10-16), the rise time is 

7T - /3  
1, = -­

w,/ 
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Figure 10-27 Curve relating maximum overshoot /\4p and damping ralio r 
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Figure 10-28 Control system. 

where f3 = sin-l 0.866 = 1 .05 fad. lllerefore, 

3.14 - 1.05 t, � 
0.866 

� 2.41 s 

Peak rillle 11': The peak time Ip is given by Equation ( 10-17): 

7r 3.14 tp � Wd 
� 

0.866 � 3.63 s 

Maximum overshoot MfI: From Equation (I0-iS), the maximum overshoot is 

M = e-;'rr/� = e-O.sX3. 1-l/0.866 = e-1 .8! = 0 163 . . 

Settling rime ts: The settling time t.n defined by Equation (10-19), is 

4 ls = -
0
---- = 8 s  .) X 1 
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1 0-6 IMPROVING TRANSIENT-RESPONSE AND STEADY-STATE 
CHARACTERISTICS 

In Section 10-5, we considered the step response of position control systems. We 
showed that a small damping ratio will make the maximum overshoot in the step 
response large and the settling time large as well. Such features are generally unde­
sirable.1l,is section begins with the derivation of the transfer function of a servo sys­
tem that uses a dc servomotor. Then we discuss a method for improving the 
damping characteristics of second-order systems through velocity feedback (also 
called tachometer feedback). Next, the response of second-order systems to ramp 
inputs is considered. We present a method for improving the steady-state behavior 
of a ramp response by means of proportional-plus-derivative control action, fol­
lowed by another method for improving such steady-state behavior through the use 
of a proportional-plus-derivative type of prefilter. Finally. we define system types 
and static error constants that are related to steady-state errors in the transient 
response. 

DC servomotors. There are many types of de motors in use in industries. 
DC motors that are used in servo systems are called dc servomotors. [n de servomo­
tors, the rotor inertias have been made very small, with the result that motors with 
very high torque-to-inertia ratios are commercially available. Some de servomotors 
have extremely small time constants. DC servomotors with relatively small power 
ratings are used in instruments and computer-related equipment such as disk drives, 
tape drives, printers, and word processors. DC servomotors with medium and large 
power ratings are used in robot systems, numerically controlled milling machines, 
and so on. 

In de servomotors, the field windings may be connected in series with the 
armature, or the field windings may be separate from the armature. (That is, the 
magnetic field is produced by a separate circuit.) In the latter case, where the field 
is excited separately, the magnetic flux is independent of the armature current. In 
some de servomotors, the magnetic field is produced by a permanent magnet; 
therefore, the magnetic flux is constant. Such de servomotors are called permallent­
magne( de servomotors. DC servomotors with separately excited fields, as well as 
permanent-magnet de servomotors, can be controlled by the armature current. The 
technique is called armature COlllro/ of de servomOlOrs. 

In the case where the armature current is maintained constant and the speed is 
controlled by the field voltage, the de motor is called a field-co11lrolled de motor. 
(Some speed control systems use field-controlled de motors.) The requirement of 
constant armature current, however, is a serious disadvantage. (Providing a constant 
current source is much more difficult than providing a constant voltage source.) The 
time constants of the field-controlled de motor are generally large compared with 
the time constants of a comparable armature-controlled dc motor. 

A de servomotor may also be driven by an e lectronic motion controller, fre­
quently called a servodriver, as a motor-driver combination. The servodriver controls 
the motion of the dc servomotor and operates in various modes. Some of the servo­
driver's features are point-lo-point positioning, velocity profiling, and programmable 
acceleration. Electronic motion controllers that use a pulse-width-modulated driver 
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Figure 10--29 (a) Schematic diagram of servo system: (b) block diagram of the system; (e) simplified block diagram. 

to control a de servomotor are frequently seen in robot control systems, numerical 
control systems, and other position or speed control systems. 

In what follows we shall discuss a servo system that uses armature control of a 
de servomotor. 

A servo system. Consider the servo system shown in Figure 1 0-29(a). 111e 
objective of this system is to control the position of the mechanical load in accor­
dance with the reference position, The operation of the system is as follows: A pair 
of potentiometers acting as an error-measuring device converts the input and out­
put positions into proportional electric signals. The command input signal deter­
mines the angular position r of the wiper arm of the input potentiometer. The 
angular position r is the reference input to the system, and the electric potential of 
the arm is proportional to the angular position of the arm. The output shaft position 
determines the angular position c of the wiper arm of the output potentiometer. The 
difference between the input angular position r and the output angular position c is 
the error signal e, or 

e = r - c 

The potential difference e, - ec = e,u is the error voltage, where er is proportional to 
r and ec is proportional to c; that is, e, = Kor and ec = Koc, where Ko is a propor­
tionality constant. The error voltage that appears at the potentiometer terminals is 
amplified by the amplifier, whose gain constant is K\. The output voltage of this 
amplifier is applied to the armature circuit of the de motor. (The amplifier must 
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have very high input impedance, because the potentiometers are essentially high­
impedance circuits and do not tolerate current drain. At the same time, the amplifi­
er must have low output impedance, since it feeds into the armature circuit of the 
motor.) A fixed voltage is applied to the field winding. If an error exists, the motor 
develops a torque to rotate the output load in such a way as to reduce the error to 
zero. For constant field current, the torque developed by the motor is 

T = K2i, 

where K2 is the motor torque constant and ia is the armature current. 
Notice that if the sign of the current i" is reversed, the sign of the torque T will 

be reversed, which will result in a reversal of the direction of rotor rotation. 
When the armature is rotating, a voltage proportional to the product of the 

flux and the angular velocity is induced in the armature. For a constant flux, the 
induced voltage eb is directly proportional to the angular velocity dO/dt, or 

(10-20) 

where eb is the back emf, K3 is the back-emf constant of the motor, and 0 is the angu­
lar displacement of the motor shaft. 

11,e speed of an armature-controlled dc servomotor is controlled by the arma­
ture voltage ew (The armature voltage en = Kiev is the output of the amplifier.) The 
differential equation for the armature circuit is 

or 

di, . L,,- + Ra1(/ + eb = ea 
dt 

di, . dO 
La- + Rala + K3-

d 
= Kle" 

dt t 

The equation for torque equilibrium is 

,(0 dO . 
Jo- + bo- = T = K,I·a 

dt2 dt 
-

( 10-21 )  

( 10-22) 

where Jo is the inertia of the combination of the motor, load, and gear train, referred 
to the motor shaft, and bo is the viscous-friction coefficient of the combination of the 
motor, load, and gear train, referred to the motor shaft. The transfer function 
between the motor shaft displacement and the error voltage is obtained from Equa­
tions ( 10-21) and (10-22) as follows: 

s( L"s + R,,)(J05 + bo) + K2K3s 
( 1 0-23) 

where 6(5) = X[O(t)] and £,,(5) = X[e,,(t) ] .  We assume that the gear ratio of the 
gear train is such that the output shaft rotates n times for each revolution of the 
motor shaft. Thus, 

C(5) = n6(s) ( 10-24) 
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where C(s) = ;£[c(t)] and c(t) is the angular displacement of the output shaft. The 
relationship among Ev(s), R(s), and C(s) is 

Ev(s) = Ko[R(s) - C(s)J = KoE(s) ( 10--25) 

where R(s) = ;£[r(I)J .  The block diagram of this system can be constructed from 
Equations (10-23), ( 10-24), and (10-25) as shown in Figure 10--29(b). The transfer 
function in the feedforward path of this system is 

C(s) e(s) E,(s) KoK[K,11 
C (s) = - -- -- = --,-,-------,--"----'----'----,------,-

e(s) £,(s) E(s) s[(L"s + R,,) (Jos + bo) + K,K,J 

Since L" is usually small, it can be neglected, and the transfer function in the feed­
forward path becomes 

KoK[K,11 
C ( s) = -;-::::-;-:--"---:'-:-"---:-:---:-:-;­s[R,,(fos + bo) + K,K,J 

KoK[ K,I1/R" 
, ( K,K,) fos + bo + --- s R" 

(10--26) 

The term [bo + (K,K3/ R,,)Js indicates that the back emf of the motor effectively 
increases the viscous friction of the system. The inertia 10 and the viscous-friction 
coefficient bo + (K,K,/ Ra) are referred to the motor shaft. When fo and 
bo + (K,Kj Ra) are multiplied by l/n', the inertia and viscous-friction coefficient 
are expressed in terms of the output shaft. Introducing new parameters defined by 

I = fo/n' = moment of inertia referred to the output shaft 
b = [bo + (K,K,/ Ra)J!n' = viscous-friction coefficient referred to the output shaft 

K = KoK[ KzlIlR" 
we can simplify the transfer function C(s) given by Equation (10-26) to 

C (s) = -Js-OC., 
K:..::.+-b-s (10--27) 

The block diagram of the system shown in Figure 1O-29(b) can thus be simplified as 
shown in Figure 10--29(c). 

From Equations (10-26) and (10-27), it can be seen that the transfer func­
tions involve the term lis. Thus, this system possesses an integrating property. In 
Equation (10-27), the time constant fib of the motor becomes smaller for a small­
er Ra and smaller 10, With small fo, as the resistance R" is reduced, the motor time 
constant approaches zero, and the motor acts as an ideal integrator. 

Tachometers. A dc tachometer is a generator that produces a voltage pro­
portional to its rotating speed. 11le device is used as a transducer, converting the ve­
locity of the rotating shaft into a proportional dc voltage. If the input to the 
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The undamped natural frequency w" i s  cqual to V K/J � YKji, so 

K � 2w; � 24.92 N-m 

K" is then obtained from Equation ( 10-28) as 

2VKl? - I 
K" � 

K 
� 0.218 5 

Steady-state error in ramp responses. Position control systems may be sub­
jected to changing inputs that can be approximated by a series of piecewise ramp in­
puts. In such a ramp response, the steady-state error for a ramp response must be small. 

Consider the system shown in Figure 10-31. The transient response of this sys­
tem when it is subjected to a ramp input can be found by a straightforward method. 
In the present analysis, we shall examine the steady-state error when the system is 
subjected to such an input. 

From the block diagram, we have 

E(s) R(s) - C(s) - � � I 
R(s) R(s) 

_ C( s) � 
----;;

I_s_' _+_b_s_ 
R(s) Is2 + bs + K  

The steady-state error for the unit-ramp response can be obtained as follows: For a 
unit-ramp input r(l) � I, we have R(s) � I/s2 The steady-state error e" is then 
obtained as 

Is' + bs 1 
e" � lim sE(s) � lim S --c,--------

,-0 ,-0 J s2 + bs + K s' 
. s'(1 s + b) b � hm � -

,-o s'(Is' + bs + K )  K 

To ensure the small steady-state error for the ramp response, the value of K must be 
large and the value of b small. However, a large value of K and a small value of b will 
make the damping ratio � small and will, in general, result in undesirable transient­
response characteristics. Consequently, some means of improving steady-state error 
for the ramp response without adversely affecting transient-response behavior is 
necessary. Two such means are discussed next. 

R(s) £(s) � I C(s) 
- K 

s(Js + b) ,� 
Figure 10-31 Block diagram of a position control system with a propor­
tional controller. 
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R(s) -� 1 C(s) Kp + K(/s s(Js + b) 

Figure 10-32 Block diagram of a position control system with a proportional­
plus-derivative controller. 

Proportional-plus-derivative control of second-order systems. A com­
promise between acceptable transient-response behavior and acceptable steady­
state behavior can be achieved through proportional-plus-derivative control action. 

For the system shown in Figure 1 0-32, the closed-loop transfer function is 

Therefore, 

E(s) 
R(s) = 

C(s) 
R(s) 

R(s) - C(s) 
R(s) 

For a unit-ramp input, R(s) = 1/5'. So it follows that 

Js' + bs 1 
E(s) = --c;----,----

is' + ( b + Kd)S + Kp s' 

The steady-state error for a unit-ramp response is 

. . is' + bs 1 b 
e = hm sEts) = hm s - - -
" s-o s-o is' + (b + Kd)S + Kp ,-2 Kp 

The characteristic equation is 

.Is' + (b + Kd)S + Kp = 0 

( 10-29) 

The effective damping of this system is thus b + Kd rather than b. Since the damp­
ing ratio ? of this system is 

it is possible to have both a small steady-state error e" for a ramp response and a 
reasonable damping ratio by making b small and Kp large and choosing Kd large 
enough so that ? is between 0.4 and 0.8. 
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Let us examine the unit-step response of this system. I f  we define 

fK" wn ::::; \/i' 
then Equation ( 10-29) can be written in terms of w,,, t, and z as 

C(s) ( s) w� 
R(s) = 1 + Z s' + 2tw"s + w� 

Notice that if a zero s = - z  is located near the closed-loop poles, the transient­
response behavior differs considerably from that of a second-order system without 
a zero. Typical step-response curves of this system with t = 0.5 and various values 
of zjtw" are shown in Figure 10-33. From these curves, we see that proportional­
plus-derivative control action will make the rise time smaller and the maximum 
overshoot larger. 

Second-order systems with a proportional-plus-derivative type of pre­
filter. The steady-state error for the ramp response can be eliminated if the input 
is introduced to the system through a proportional-pius-derivative type of prefilter, 
as shown in Figure 10-34, and if the value of k is properly set. 

The transfer function C(s)/R(s) for this system is 

Figure 10-33 Unit-step response 
curves for the system shown in 
Figure 10-32 with the damping 
ratio C equal to 0.5. 

C(s) ( 1  + ks)K 
1« s) is' + bs + K 
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R(s) 

Figure 10-34 Block diagram of a position control system with a propor­
tional-pius-derivative type of prefilter. 

Therefore, the difference between R(s) and C(s) is 

E(s) � R(s) - C(s) � [ I - C(s) jR(S) 
R(s) 

1S2 + (b - Kk)s 
� 

1s2 + bs + K R(s) 

The steady-state error [or a ramp response is 

1S2 + (b - Kk)s 1 
e" � lim sEes) � lim s 2 2 ,-0 ,-0 1 s + bs + K s 

So if we choose 

k � � K 

b - Kk 
K 

the steady-state error for the ramp response can be made equal to zero. 

531 

Given the values of 1 and b, the value of K is normally determined from the 
requirement that w" � VKjJ. Once the value of K is determined, bl K is a constant 
and the value of k � bl K becomes constant. The use of such a prefilter eliminates 
the steady-state error for a ramp response. 

Note that the transient response of this system to a unit-step input will exhibit 
a smaller rise time and a larger maximum overshoot than the corresponding system 
without the prefilter will show. 

I! is worthwhile pointing out that the block diagram of a system with a pro­
portional-pius-derivative controller shown in Figure 10-32 can be redrawn as in 
Figure 10-35. From this diagram, i t  can be seen that the proportional-plus-derivative 
controller is, in fact, a combination of a prefilter and velocity feedback in which the 
values of both k and K" are chosen to be K"I K". 

R(,) q,) 

Figure 10-35 Modified block diagram of the system shown in Figure 10-32. 
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I f  the prefilter and velocity feedback are provided separately, the values of  k 
and K" can be chosen independently of each other. A proper choice of these values 
may enable the engineer to compromise between acceptable steady-state error for 
the ramp response and acceptable transient-response behavior to the step input. 

Higher order systems. Thus far, we have discussed the transient-response 
analysis of second-order systems. Higher order systems involve more than two 
closed-loop poles. Since all closed-loop poles more or less contribute to the tran­
sient response of such systems, analytical expressions of the output become very 
complicated, and a computer approach to obtaining the response curve becomes 
necessary. 

A well-designed higher order system may have a pair of complex-conjugate 
closed-loop poles that are located to the right of all other closed-loop poles, so that 
the response of the system is dominated by that pair of complex-conjugate c1osed­
loop poles. 

Dominant closed-loop poles. The relative dominance of closed-loop poles 
is determined by the ratio of the real parts of those poles, as well as by the relative 
magnitudes of the residues evaluated at the closed-loop poles. The magnitudes of 
the residues depend on both the closed-loop poles and zeros. 

If the ratios of the real parts exceed 5 and there are no zeros nearby, then the 
closed-loop poles nearest the jw-axis will dominate in the transient-response behav­
ior, because these poles correspond to transient-response terms that decay slowly. 
Those closed-loop poles which have dominant effects on the transient-response 
behavior are called dominant closed-loop poles. Quite often, the dominant c1osed­
loop poles occur in the form of a complex-conjugate pair. Among all closed-loop 
poles, the dominant ones are the 1110st important. 

The gain of a higher order system is often adjusted so that there will exist a 
pair of dominant complex-conjugate closed-loop poles. The presence of such poles 
in a stable system reduces the effect of such nonlinearities as dead zone, backlash, 
and coulomb friction. 

Classification of control systems. System types. Any physical control 
system inherently suffers steady-state errors in response to certain types of inputs. A 
system may have no steady-state error to a step input, but may exhibit nonzero 
steady-state error to a ramp input. (The only way we may be able to eliminate this 
error is to modify the structure of the system.) 

Control systems may be classified according to their ability to follow step 
inputs, ramp inputs, parabolic inputs. and so on. This is a reasonable classification 
scheme because actual inputs may frequently be considered combinations of such 
inputs. TIle magnitudes of the steady-state crrors due to these individual inputs are 
indicative of the accuracy of the system. 

Consider the unity-feedback control system with the following open-loop 
transfer function G(s) : 

K(T"s  + l ) ( TbS + 1 ) · · ·  (T,,,s + 1 )  
G(s) = , ( 10-30) 

s" (T,s + 1 ) (T2s + l ) · · · (Tps + 1 )  
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This transfer function involves the term sN in the denominator, representing a pole 
of multiplicity N at the origin. The present classification scheme is based on the 
number of integrations indicated by the open-loop transfer function. A system is 
called type 0, type 1, type 2, . . .  , if N = 0, N = 1. N = 2, . . .  , respectively. Note 
that this classification is different from that of the order of a system. As the type 
number is increased, accuracy is improved; however, increasing the type number 
aggravates the stability problem. A compromise between steady-state accuracy and 
relative stability is always necessary. In practice, it is rather exceptional to have type 
3 or higher systems, because we find it generally difficult to design stable systems 
having more than two integrations in the feedforward path. 

We shall see later that, if G(s) is written so that each term in the numerator 
and denominator, except the term sN, approaches unity as 5 approaches zero, then 
the open-loop gain K is directly related to the steady-state error. 

Steady-state errors in the transient response. We have discussed 
steady-state errors in step and ramp responses both in Section 10-4 and in the cur­
rent section. Next, we present a systematic discussion of steady-state errors in the 
transient response. 

Consider the system shown in Figure 10-36. The closed-loop transfer function is 

C(s) 
= 

G(s) 

R(s) 1 + G(s) 

The transfer function between the error signal e(t) and the input signal r(t) is 

_
E(

_
s) 

= 
1 

_ _ 
C(

_
s) 

= 
J 

R ( s ) R ( s ) -:-1 -+ --=G
:-:-

( s
-:-

) 

where the error e(t) is the difference between the input signal and the output signal. 
The final-value theorem provides a convenient way to find the steady-state 

performance of a stable system. Since 

J 
E ( s ) = .,----:::-:--:- R ( s ) 

1 + G(s) 

if the system is stable, the steady-state error is 

e" = lim e(r) = lim sE(s) 
t-OO 5-0 

. sR(s) 
= "m .,-------'::-;'--:­,-0 1 + G(s) 

The static effor constants defined next are figures of merit of control systems. 
The higher the constants, the smaller is the steady-state error. In a given system. the 

� C(s) 
� � G(s) i---r';";"-

FiJ.:urc 10-36 Control system. 
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output may be position, velocity, pressure, temperature, or the like; the physical 
form of the outpul is immaterial to the present analysis. Therefore, in what follows, 
we shall call the output "position," the rate of change of the output "velocity," and so 
on. This means that, in a temperature control system, "position" represents the out­
put temperature, "velocity" represents the rate of change of the output temperature, 
and so on. 

Static position error constant Kp" The steady-state error of the system of 
Figure 10-36 for a unit-step input is 

I. 
s 1 e = 1m ss ,-0 1 + C(s) s 

1 
= -:---=-;-:-:-1 + C (O) 

11,e static position error constant Kp is defined by 

Kp = lim C(s)  = C(O) 
,-0 

Thus, the steady-state error in terms of the static position error constant Kp is given 
by 

1 

For a type 0 system, 

. _K;'":( T:-,"'---s _+
-cc

1",,)-;,:( T,.::b_S _+
:c

1,:-)_"_' __ K K ,  = lim I ,-0 ( TIs + 1 ) ( T2s + 1 ) · · · 

For a type 1 or higher system, 

. K ( T"s + 1 ) (TbS + 1 ) ' "  
Kp = Itm '1\' = 00 

,-o s' (TIs + l ) ( Tzs + 1 ) · · ·  
for N '" 1 

Hence, for a type 0 system, the static position error constant Kp i s  finite, while for a 
type 1 or higher system, Kp is infinite. 

For a unit-step input, the steady-state error ess may be summarized as follows: 

1 ess = 1 + K  
ess = 0 

for type 0 systems 

for type 1 or higher systems 

The foregoing analysis indicates that the response of the feedback control sys­
tem shown in Figure 10-36 to a step input involves a steady-state error if there is no 
integration in the feedforward path. (If small errors for step inputs can be tolerated, 
then a type 0 system is permissible, provided that the gain K is sufficiently large. If 
the gain K is too large, however, it is difficult to obtain reasonable relative stability.) 
If zero steady-state error for a step input is desired, the type of the system must be 1 
or higher. 
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Static velacity error constant K,. The steady-state error of the system of 
Figure 1 0-36 with a unit-ramp input is given by 

s 1 
e" = lim 

1 G( ) --' 5-0 + 5 s-
. 1 

iIm -­
,-osG(s) 

The static velocity error constant K v is defined by 

K, = lim sG(s) ,-0 
TIlUS, the steady-state errar in terms of the static velocity error constant K, is given by 

1 
e = ­" K, 

The term velocily error is lIsed here to express the steady-state error for a 
ramp input. The dimension af the velocity error is the same as that of the system 
error. That is, velocity error is an error, not in velocity, but in position due to a ramp 
input. The values af K, are obtained as follows: 

For a type 0 system, 

. sK(T"s + 1 ) ( TbS + 1 ) · · ·  
K, = Itm = 0 

,-0 (TIs + 1 ) ( T2S + 1 ) · · ·  

For a type l system, 

. sK (T" s + 1 ) ( TbS + 1 ) · · 
K, = Itm = K 

,-0 s(Tls + 1 ) ( T2S + 1 ) · · · 

For a type 2 or higher system, 

. sK(T"s + I ) ( Tbs + 1 ) · · ·  
K = Itm = 00 , '-'0 sN(TIS + I ) ( Tzs + 1 ) ·  

for N 2: 2 

The steady-state error ess for the unit-ramp input can be summarized as follows: 

1 
e = - = 00 

5S Kv 

1 1 
e = - = ­ss Kv K 

1 
e" = I( = O  

., 

for type 0 systems 

for type 1 systems 

for Iype 2 or higher systems 

The foregoing analysis indicates that a type 0 system is incapable of following a 
ramp input in the steady state. TI,e type 1 system with unity feedback can follow the 
ramp input with a finite error. In steady-state operation, the output velocity is exact­
ly the same as the input velocity, but there is a positional error that is proportional to 
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Figure 10-37 Response o f  a type 1 unity-

,(I) 
C(/) 

feedback system 10 il ramp input. 0 

the velocity of the input and inversely proportional 10 the gain K. Figure 10-37 is an 
example of the response of a Iype 1 system with unily feedback to a ramp input. The 
type 2 or higher system can follow a ramp input with zero error at steady slate. 

Static acceleration error constant Kao 111e steady-state error of the sys­
tem of Figure 1 0-36 with a unit-parabolic input (an acceleration input) defined by 

is given by 

12 r(l) = "2 
= 0  

for I 2: 0 
for t < 0 

,. 1 
+ G(s) ,. 3  

1 
= -�-lim ,.2G( s ) ,-0 

The sialic acceleration error constant Ka is defined by Ihe equation 

The steady-state error is then 

Note thai the acceleralion error-the steady-state error due to a parabolic input-is 
an error in position. 

The values of Ka are obtained as follows: 
For a type 0 system, 

= 0 
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Figure 10-38 Response of a type 2 unity­
feedback system to a parabolic input. 

For a type 1 system, 

For a type 2 system, 

. s'K(Tas + l ) (Tbs + 1 ) · · ·  
Ka = 11m = 0 

,�O s(T,s + l ) (T,s + 1 ) · · ·  

. s'K(T" s  + I ) (Tbs + 1 )  . . · 
K{/ = lim 2 = K ,-0 s (T,s + l ) (T,s + 1 ) · · ·  

For a type 3 or higher system, 

. s'K (Tas + l ) (Tbs + 1 )  . . .  
Kn = 11m 'II! = 00 

,-0 s' (T,s + l ) (T,s + 1 ) · · ·  

Thus, the steady-state error for the unit parabolic input is 

for N "" 3 

ess = 00 for type 0 and type 1 systems 
1 

for type 2 systems ess = -K 
for type 3 or higher systems 

Note that both type 0 and type 1 systems are incapable of following a parabol­
ic input in the steady state. The type 2 system with unity feedback can follow a para­
bolic input with a finite error signal. Figure 10-38 shows an example of the response 
of a type 2 system with unity feedback to a parabolic input. The type 3 or higher sys­
tem with unity feedback follows a parabolic input with zero error at steady statc. 

Summary. Table 1 0-2 summarizes the steady-state errors for type 0, type 1 ,  
and type 2 unity-feedback systems subjected to various inputs. The finite values for 
steady-state errors appear on the diagonal linc. Above the diagonal, the steady-state 
errors are infinity; below the diagonal, they are zero. 

Remember that the terms position error, velocity error, and acceleration error 
indicate steady-state deviations in the output position. A finite velocity error implies 
that, after transients have died out. the input and output move at the same velocity. 
but have a finite position difference. 
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TABLE 10-2 Steady-State Errors of Unity-Feedback Systems i n  Terms of 

Gain K, where K i s  defined in Equation ( 1 0-30) 

Step Input Ramp Input Acceleration Input 
r(r ) = 1 r(r) = r r(r) = ! r2 

1 
Type 0 system -- 00 00 1 + K  

Type 1 system 0 
I - 00 
K 

Type 2 system 0 0 1 -
K 

The error constants Kp, K" and K" describe the ability of a unity-feedback 
system to reduce or eliminate steady-state error. Therefore, these constants are 
indicative of the steady-state performance of the system. It is generally desirable to 
increase the error constants, while maintaining the transient response within an 
acceptable range. To improve the steady-state performance, we can increase the 
type of the system by adding an integrator or integrators to the feed forward path. 
This, however, introduces an additional stability problem. The design of a satisfacto­
ry system with morc than two integrators in series in the feedfofward path is gener­
ally difficult. 

Example l� 

Obtain the steady-state error in the unit-ramp response or the system shown in 
Figure 1 0-3 1 ,  using the SIalic velocity error constant Kw 

For the system of Figure 10-31 ,  

. K K 
K, = hm s (1 b) s-o s s + 

b e = - = ­ss 
Kv K 

b 

which is the same result as obtained earlier. 

1 0-7 STABILITY ANALYSIS 

The most important question about the closed-loop control system is concerned 
with stability. For any practical purpose, the system must be stable. TllltS, stability 
analysis is most important in control systems analysis. 

Stability analysis in the complex plane. Tile stability of a linear c1osed­
loop system can be determined from the location of the closed-loop poles in the s­
plane. If any of these poles lie in the right-half s-planc, then, with increasing time, 
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they give rise to the dominant mode, and the transient response increases monoton­
ically or oscillates with increasing amplitude. Either of these motions represents an 
unstable system. For such a system, as soon as the power is turned on, the output 
may increase with time. If no saturation takes place in the system and no mechanical 
stop is provided, then the system may eventually be damaged and fail, since Ihe re­
sponse of a real physical system cannot increase indefinitely. Therefore, closed-loop 
poles in the right-half s-plane are not permissible in the usual linear control system. 
If all closed-loop poles lie to the left of the jw-axis, any transient response eventual­
ly reaches equilibrium. This represents a stable system. 

Whether a linear system is stable or unstable is a property of the system itself 
and does not depend on the input, or driving function, of the system. The poles of 
the input, or driving function, do not affect the stability of the system, but contribute 
only to steady-state response terms in the solution. Thus, the problem of absolute 
stability can be solved readily by choosing no closed-loop poles in the right-half s­
plane, including the jw-axis. (Mathematically. closed-loop poles on the jw-axis will 
yield oscillations, the amplitude of which neither decays nor grows with time. In 
practical cases, where noise is present, however. the amplitude of oscillations may 
increase at a rate determined by the noise power level. Therefore, a control system 
should not have closed-loop poles on the jw-axis.) The absolute stability of higher 
order systems can be examined easily with the use of Routh's stability criterion. 

Routh's stability criterion. Most linear closed-loop control systems have 
closed-loop transfer functions of the form 

C(s) bos"' + b1s",-1 + 

R(s) = aos" + a,s" 1 + 
+ b",-IS + b", 8(s) = --
+ (In- IS + (I" A{s) 

where the a's and b's are constants and 111 S II. The locations of the roots of the 
characteristic equation (the denominator of the preceding equation) determine the 
stability of the closed-loop system. A simple criterion, known as ROlllil's Slability cri­
terion , enables us to determine the number of closed-loop poles that lie in the right­
half s-plane without having to factor the polynomial. This criterion applies only to 
polynomials with a finite number of terms. When Routh's stability criterion is 
applied to a control system, information about the absolute stability of the system 
can be obtained directly from the coefficients of the characteristic equation. 

The procedure used in Routh's stability criterion is as follows: 

1. Write the polynomial in s in the following form: 

( 10-31) 

where the coefficients are real quantities. Assume that all ¢ 0; that is, any zero 
root has been removed. 

2. If any of the coefficients are zero or negative in the presence of at least one 
positive coefficient, there is a root or roots that arc imaginary or that have pos­
itive real parts. In such a case, the system is not stable. If we are interested in 
only the absolute stability of the system, there is no need to follow the proce­
dure further. Note that all the coefficients must be positive. This is a necessary 
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condition, as  may be seen from the following argument: A polynomial in s hav­
ing real coefficients can always be factored into linear and quadratic factors, 
such as ( s + a) and (S2 + bs + c), where a, b, and c are real. The linear factors 
yield real roots, and the quadratic factors yield complex roots of the polynomi­
al. The factor (s2 + bs + c) yields roots having negative real parts only if b 
and c are both positive. For all roots to have negative real parts, the constants a, 
b, c, and so on, in all factors must be positive. The product of any number of lin­
ear and quadratic factors containing only positive coefficients always yields a 
polynomial with positive coefficients. It is important to note that the condition 
that all the coefficients be positive is not sufficient to assure stability. The nec­
essary, but not sufficient, condition for stability is that the coefficients of Equa­
tion (10-31) all be present and have a positive sign. (If all a's are negative, they 
can be made positive by multiplying both sides of the equation by - 1.) 

3. If all of the coefficients of the polynomial are positive, arrange the coefficients 
of the polynomial in rows and columns according to the following pattern: 

s" ao a2 ". a6 
S"- l al a3 as a7 
5'1-2 bl b2 b3 b. 

5,,-3 CI c2 C3 C, 
511-4 dl d2 d3 d. 

S2 el e2 
sl 

II 
sO gl 

The coefficients bl > 1>" b3, and so on, are evaluated as follows: 

The evaluation of the b's is continued until the remaining ones are all zero. 
The same pattern of cross multiplying the coefficients of the two previous 
rows is followed in evaluating the c's, d's, e's, and so on. That is, 
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and 

CI 
cIb3 - bIC3 ti, ; -'--'---'--" 

CI 

541 

The process continues until the nth row has been completed. The finished 
array of coefficients is triangular. Note that. in developing the array, an entire 
row may be divided or multiplied by a positive number in order to simplify 
the subsequent numerical calculation without altering the stability conclusion. 

Routh's stability criterion states that the number of roots of Equation ( 10-31 )  
with positive real parts i s  equal to  the number of  changes in  sign of the coefficients of 
the first column of the array. (TIle column consisting of Sil, S,,-I ,  . . .  , sO on the far left 
side of the table is used [or identification purposes only. In counting the column num­
ber, this colunm is not included. The first column of the array means the first numeri­
cal column.) Note that the exact values of the terms in the first column need not be 
known; only the signs are needed. The necessary and sufficient condition that all roots 
of Equation ( 1 0-3 1 )  lie in the left-half s-plane is that all the coefficients of Equation 
(10-31) be positive and all terms in the first column of the array have positive signs. 

Example l()-S 
Let us apply Routh's stability criterion to the third·order polynomial 

aos3 + a[52 + "2S + a3 = 0 

where all the coefficients are positive numbers. The array of coefficients becomes 

s' a. a, 
, s- a ,  a, 

5' "ta2 - aOa3 
a, 

s· a, 
The condition that all roots have negative real parts is given by 

Example 10-6 

Consider the polynomial 
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Let us follow the procedure just presented and construct the array of  coef[jcicnts. (The 
first two rows can be obtained directly from the given polynomial. TIle remaining terms 
are obtained from these rows. If any coefficients are missing, they may be replaced by 
zeros in the array.) The completed array is as follows: 5' I 3 5 5' 3 5 53 2 4 0 53 2 4 e 2 0 The second row is divided by 2. , 1 5 , 5 r 5-

,. '  -6 5' -3 sO 5 5° 5 
In this example, the number of changes in sign of the coefficients in the first column of 
the array is 2. This means that there are two roots with positive real parts. Note that the 
result is unchanged when the coef[icienls of any row are multiplied or divided by a pos­
itive number in  order to simplify the computation. 

Special cases. If a term in the first column of the array in any row is zero, 
but the remaining terms are not zero or there is no remaining term, then the zero 
term is replaced by a very small positive number E and the rest of the array is evalu­
ated. For example, consider the following equation: 

(10-32) 

TIle array of coefficients is 

S3 1 1 , 
2 2 s-

s' o '" • 

SO 2 

If the sign of the coefficient above the zero ( . ) is the same as that below it, it indi­
cates that there is a pair of imaginary roots. Actually, Equation ( 10-32) has two roots 
at s = ±j. 

If, however, the sign of the coefficient above the zero ( . ) is opposite that 
below it, then there is one sign change. For example, for the equation 

S3 - 35 + 2 = (s - 1 )2(s + 2) = 0 

the array o[ coefficients is as follows: 

( :� 
1 -3 

One sign change: o '" • 2 

5' 
2 

- 3 - -( 5° 

• 
One sign change: 

2 

TIlere are two sign changes of the coefficients in the first column of the array. TIlis 
agrees with the correct result indicated by the factored form of the polynomial 
equation. 
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If all of the coefficients in any derived row are zero, then there are roots of 
equal magnitude lying radially opposite each other in the s-plane; that is, there are 
two real roots of equal magnitude and opposite sign andlor two conjugate imaginary 
roots. In such a case, the evaluation of the rest of the array can be continued by 
forming an auxiliary polynomial with the coefficients of the last row and by using 
the coefficients of the derivative of this polynomial in the next row. Such roots of 
equal magnitude and lying radially opposite each other in the s-plane can be found 
by solving the auxiliary polynomial, which is always even. For a 211-degree auxiliary 
polynomial, there are II pairs of equal and opposite roots. For example, consider the 
following equation: 

S5 + 2S4 + 24s3 + 48s2 - 25s - SO = a 

The array of coefficients is 

s5 1 24 -25 
s· 2 48 -50 <- Auxiliary polynomial P(s) 

s3 a a 

The terms in the S3 row are all zero. The auxiliary polynomial is then formed from 
the coefficients of the ;.4 row.111e auxiliary polynomial P(s) i s  

P(s) = 2s' + 48s2 - 50 

which indicates that there are two pairs of roots of equal magnitude and opposite 
sign. These pairs are obtained by solving the auxiliary polynomial equation 
P(s) = O. The derivative of P(s) with respect to s is 

dP(s) 
= 8s3 + 96s 

ds 

The terms in the S3 row are replaced by the coefficients of the last equation, that is, 
S and 96.111e array of coefficients then becomes 

S5 1 24 -25 
s • 2 48 -SO 
S3 8 96 <- Coefficients of dP(s)/ds , 24 -SO ,.-
Sl 1 12.7 a 
SO -50 

We see that there is  one change in sign in the first column of the new array. Thus, the 
original equation has one root with a positive real part. By solving for roots of the 
auxiliary polynomial equation, 

2s' + 48s2 - 50 = a 
we obtain 

S2 = -25 
or 

s = ±1, s = ±j5 
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These two pairs of  roots are a part of the roots of  the original equation. As a matter 
of fact, the original equation can be written in factored form as follows: 

(s + l ) (s - l ) (s + j5) (s - j5) (s + 2) = 0 

Relative stability analysis. Routh's stability criterion provides the answer 
to the question of absolute stability. In many practical cases, however, th.is answer is 
not sufficient; we usually require information about the relative stability of the sys­
tem. A useful approach to examining relative stability is to shift the s-plane axis and 
apply Routh's stability criterion. That is, we substitute 

S = S - fJ  (CT = positive constant ) 
into the characteristic equation of the system, write the polynomial in terms of s, 
and apply Routh's stability criterion to the new polynomial in s. The number of 
changes of sign in the first column of the array developed for the polynomial in s is 
equal to the number of roots that are located to the right of the vertical line s = -CT. 
Thus, this test reveals the number of roots that lie to the right of the vertical line 
s = -u. 

Application of Routh's stability criterion to control systems analysis. 
Routh's stability criterion is of limited usefulness in linear control systems analysis, 
mainly because it does not suggest how to improve relative stability or how to stabi­
lize an unstable system. It is possible, however, to determine the effects of changing 
one or two parameters of a system by examining the values that cause instability. We 
close this section with a brief consideration of the problem of determining the sta­
bility range of a parameter value. 

Consider the system shown in Figure 10-39. Let liS determine the range of K 
for stability. The closed-loop transfer function is 

C(s) 
R(s) 

The characteristic equation is 

K = -,----:-�---::-:---:-:­s(s + l ) (s + 2 ) + K 

s' + 352 + 25 + K = 0 

The array of coefficients becomes 

s3 1 2 , 3 K s' 

st 6 - K 
3 

0 

sO K 

K 
s(s + 1)(s + 2) 

}�igurc 10-39 Control system. 

C(s) 
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For stability, K musl be positive, and all coefficients in the first column of the array 
must be positive. Therefore, 

6 >  K > 0 
When K = 6, the system becomes oscillatory, and, mathematically, the oscillation is 
sustained at constant amplitude. 

1 0-8 ROOT-LOCUS ANALYSIS 

11,e basic characteristic of the transient response of a closed-loop system is closely 
related to the location of the closed-loop poles. If the system has a variable loop 
gain, then the location of the closed-loop poles depends on the value of the loop 
gain chosen. It is important, therefore, that the designer know how the closed-loop 
poles move in the s-plane as the loop gain is varied. 

From the design viewpoint, in some systems simple gain adjustment may move 
the closed-loop poles to desired locations. Then the design problem may become 
merely the selection of an appropriate gain value. If, however, the gain adjustment 
alone does not yield a desired result, the addition of a compensator to the system 
will become necessary. 

A simple method for finding the roots of the characteristic equation has been 
developed by W. R. Evans and is used extensively in control engineering. In this 
method, called the root-locus metltod, the roots of the characteristic equation are 
plotted for all values of a system parameter. The roots corresponding to a particular 
value of this parameter can then be located on the resulting graph. Note that the 
parameter is usually the gain, but any other variable of the open-loop transfer func­
tion may be used. Unless otherwise stated, we shall assume that the gain of the 
open-loop transfer function is the parameter to be varied through all values, from 
zero to infinity. 

By using the root-locus method. the designer can predict the effects on the 
location of the closed-loop poles of varying the gain value or adding open-loop 
poles andlor open-loop zeros. Therefore, it is desired that the designer have a good 
understanding of the method for generating the root loci of the closed-loop system, 
both by hand and with the use of computer software like MATLAB. 

Root-locus method. The basic idea behind the root-locus method is that 
the values of s that make the transfer function around the loop equal to - 1 must sat­
isfy the characteristic equation of the system. 

The locus of roots of the characteristic equation of the closed-loop system as 
the gain is varied from zero to infinity gives the method its name. Such a plot clearly 
shows the contributions of each open-loop pole or zero to the locations of the closed­
loop poles. 

In  designing a linear control system, we find that the root-locus method proves 
quite useful, since it indicates the manner in which the open-loop poles and zeros 
should be modified so that the response meets system performance specifications. 
The method is particularly suited to obtaining approximate results very quickly. 
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C(,) �� � G(s) f--,---'-

Figure 10-40 Control system. LB� 
Angle and magnitude conditions. Consider the system shown in Figure 

10-40. The closed-loop transfer function is 

C(s) G(s) 
R(s) = 1 + G(s)H(s) (10-33) 

The characteristic equation for this closed-loop system is obtained by setting the 
denominator of the right-hand side of Equation (10-33) equal to zero. That is, 

1 + G(s)H(s)  = 0 

or 

G(s)H(s) = -1 (10-34) 
Here, we assume that G(s)H(s) is a ratio of polynomials in s. Since G(s)H(s) is a 
complex quantity, Equation (10-34) can be split into two equations by equating the 
angles and magnitudes of both sides, respectively, to obtain the following: 

Angle condition: 

/G(s)H(s) = ± 1800(2k + 1 )  k = 0, 1 , 2, . . .  ( 10-35) 

Magnitude condition: 

IG(s)H(s) 1 = 1 (10-36) 

The values of s that fulfill both the angle and magnitude conditions are the roots of 
the characteristic equation, or the closed-loop poles. A plot of the points in the com­
plex plane satisfying the angle condition alone is the root locus. The roots of the 
characteristic equation (the closed-loop poles) corresponding to a given value of the 
gain can be determined from the magnitude condition. The details of applying the 
angle and magnitude conditions to obtain the closed-loop poles are presented later 
in this section. 

In many cases, G(s)H(s) involves a gain parameter K, and the characteristic 
equation may be written as 

1 + 
K(s + 'I) (S + ,,) " ' ( s + Zm) 

= 0 
(s + p , ) (s + p,) ' "  (s + p,,) ( 10-37) 

Then the root loci for the system are the loci of the closed-loop poles as the gain K 
is varied from zero to infinity. 

Note that, to begin sketching the root loci of a system by the root-locus 
method, we must know the locations of the poles and zeros of G(s)H(s). Remember 
that the angles of the complex quantities originating from the open-loop poles and 
open-loop zeros to the test point s are measured in the counterclockwise direction. 
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Note that, because the open-loop complex-conjugate poles and complex­
conjugate zeros, if any, are always located symmetrically about the real axis, the 
root loci are always symmetrical with respect to that axis. Therefore, we need to 
construct only the upper half of the root loci and draw the mirror image of the 
upper half in the lower half s-plane. 

I llustrative example. Although computer approaches to the construction 
of the root loci are easily available, let us use graphical computation, combined with 
inspection, to determine and plot the root loci upon which the roots of the charac­
teristic equation of the closed-loop system must lie. Such a graphical approach en­
hances one's understanding of how the closed-loop poles move in the complex 
plane as the open-loop poles and zeros are moved. 

The first step in the procedure for constructing a root-locus plot is to use the 
angle condition to seek out the loci of possible roots. Then, if necessary, the loci can 
be scaled, or graduated, in gain with the use of the magnitude condition. 

Because graphical measurements of angles and magnitudes are involved in the 
analysis, we find it necessary to use the same divisions on the abscissa as on the ordi­
nate in sketching the root locus on graph paper. 

Exmnplc 10-7 
Consider the system shown in Figure 10-41.  For this system, 

K 
G ( 5) = -:----:':':-----::-:-5(5 + 1 )( s + 2 ) ' 

H(5) = I 

\Ve assume that the value of the gain K is nonnegative. Let us sketch the root-locus plOl 
and determine the value of K such that the damping ratio { of a pair of dominant complex­
conjugate closed-loop poles is 0.5. 

For the given system, the angle condition becomes 

K � = /S(5 + 1)(5 + 2) 
= -!..!. - L£.:!:J. - � 

k = O. 1 .  2 . . . .  

The magnitude condition is 

IC(5) 1  = 1 5(5 + 1�(5 + 2) I = I 
A typical procedure for sketching the root-locus plot is as follows: 

1. Derermine rhe roor loci 011 rhe real ax;s. 1l1c first step in constructing a rool-locus 
plot is to locate the open-loop poles s = o. s = - I , and s = -2 in the complex 

R(s) @-- K - +  
'-_.,-'.( ':.... +-,1 )",( s:...+:...2,,)_J 

C(s) 

Figure 10-41 Control system. 
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plane. (There are no open-loop zeros in this system.) The locations of the opcn­
loop poJes are indicated by crosses. (111e locations of the open-loop zeros in this 
book will be indicated by small circles.) Note that the starting points of the rool 
loci (the points corresponding to K = 0) are open-loop poles. TIle number of in­
dividual root loci for the given system is three. which is the same as the number 
of open-loop poles. 

To determine the Toot loci on the real axis, we select a lest point s. If the 
test point is on the positive real axis, then 

f..s. � f..s....:':.... � f..s.:....:t:.. � o· 
TIlis shows that the angle condition cannot be satisfied. Hence, there is no root 
locus on the positive real axis. Next, select a test point on the negative real axis 
between 0 and - 1 .  TIlCn 

Thus. 

-f..s. - f..s....:':.... - f..s.:....:t:.. � -180' 

and the angle condition is satisfied. Therefore, the ponion of the negative real axis 
between 0 and -1 forms a portion of the root locus. If a test point is selected 
between -1 and -2, then 

and 

-f..s. - f..s....:':.... - /s + 2 � -360' 

ft can be seen that the angle condition is not satisfied. Therefore, the negative 
real axis from - \  to -2 is not a part of the root loclls. Similarly. if a test point is 
located on the negative real axis from -2 to -00. the angle condition is satisfied. 
Thus, root loci exist on the negative real axis between 0 and -1 and between -2 
and -00. 

2. Determine the asymptotes of the root loci. The asymptotes of the root loci as s 
approaches infinity can be determined as follows: If a test point s is selected very 
far from the origin. then angles f..!.., f..s....:':...., and f..!.. + 2 may be considered the 
same. Therefore. the root loci for very large values of s must be asymptotic to 
straight lines whose angles are given by 

±180'(2k + I )  
angles of asymptotes = 

3 
k � 0, 1 , 2. 

Since the angle repeats itself as k is varied. the distinct angles for the asymptotes 
are determined to be 60°, -60°, and 180°. Thus, there are three asymptotes. The 
one having an angle of 180° is the negative real axis. 

Before we can draw these asymptotes in the complex plane, we must find 
the point where they intersect the real axis. Since 

K G ( s) - -;---:-:'-C7---:-::-c - s(s + 1 ) (s + 2) 
(10-38) 

if a test point is located very far from the origin. then G(s) may be written as 

G(s) K 
(10-39) 
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TIle characteristic equation is 

G(s) = -j 

so, from Equation (10-39), the characteristic equation may be written as 

,53 + 352 + . . . = -K 

For a large value of s .  this last equation may be approximated by 

(s + l )' = O  

549 

If the abscissa of the intersection of the asymptotes and the real axis is denoted 
by S = (T", then 

au = - 1  
and the point o f  origin o f  the asymptotes is ( - 1 . 0). The asymptotes are almost 
part of the rcol lad in regions very far from the origin. 

3. Determine the breakaway pOIIII. To plot rOOI loci accurately. we must find the 
breakaway point. where the root-locus branches originating from the poles at 0 
and -1  break away (as K is increased) from the real axis and move into the COI11-
plex plane. The breakaway point corresponds to a point in the s-plane where 
multiple roOIS of the characteristic equation occur. 

A simple method for finding the breakaway point is available. The method 
is as follows: Let us write the charctcteristic equation as 

its) = 8(s) + K A(s) = 0 ( 1 0-40) 

where A(s) and 8(s) do not contain K. Note that its) = 0 has multiple roots at 
points where 

d[(s) 
-- = 0 ds 

This can be seen from the following reasoning: Suppose that f{s) has multiple 
roots of order r. Then f(s) may be written as 

its) = (s - st l'(s - S2) ' "  (s - s,,) 

If we differentiate this equation with respect to s and sel s = SI' then we get 

d[(s) 
I = 0 ds s=s, 

(J0-4L) 

1l1is means that multiple roots of f(s) will satisfy Equation ( 10-41 ). From Equa­
tion ( 1 0-40). we obtain 

where 

ri[(s) = 
8'(s) + KA'(s) = 0 ( 10-42) ds 

rl/\(s) 
A'(s) = -, -. 

< S  

ri8(s) 
8 ' (s) = -­

ds 
From Equation (10-42). the particular value of K that will yield multiple roots of 
the characteristic equation is 

K 
8'(s) 

A'(s)  
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( [ we substitute this value of K into Equation {l0-40). we get 

8' (s) 
/(s) = 8(s) - A'

(s) A(s) = 0 

or 

8(s)A'(s) - 8'(s)lI(s) = 0 (10-43) 

If Equation ( 10-43) is solved for s. the points where mulliple roots occur can be 
obtained. On the other hand, from Equation (10-40), we have 

and 

8(s) 
K = - --

lI(s) 

dK 8'(s)A(s)  - S(s)II ' (s )  
ds 

If (/I(Jds is set equal to zero. we gel Equation (10-43). Therefore. the breakaway 
points can be determined simply from the rooLs of 

dK 
= 0 tis 

Note that not all lhc solutions of Equation ( 10-43) or of d Kids = 0 correspond 
to .actual breakaway points. If a point at which df(s)/ds = 0 is on a root locus. it 
is an actual breakaway point. Stated differently, if. at a point at which 
df(s)/ds = O. the value of K takes a real positive value. then that point is an 
actual breakaway point. 

For the present example. the characteristic equation G(s) + J = 0 is 
given by 

or 

--,---c:cKc-;---,--:::- + 1 = 0 s(s + 1 ) (5 + 2) 

K = _ (s3 + 3s' + 2s) 

Setting dK/ds = 0, we obtain 

or 

dK , - = - (3,- + 6s + 2 )  = 0 
tis 

s = -0.4226. s = - 1.5774 

Since the breakaway point must lie all a rool locus between 0 and - I .  it is clear 
that s = -0.4226 corresponds to the actual breakaway point. The point 
s = - 1 .5774 is not on the root locus: hence, this point is not an actual breakaway 
point. In fact, evaluating the values of K corresponding to s = -0.4226 and 
s = -1.5774 yields 

K = 0.3849 

K = -0.3849 

for s = -0.4226 

for s = - 1 .5774 
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Note that when the two branches enter the complex region from the breakaway 
point, they leave the real axis at angles of ±90°. 

4. Dcrermillc the points where the rOOl loci cross rhe imaginary axis. These points 
can be found easily by substituting 5 = jw into the characteristic equation, 
equating both the real and imaginary parts. to zero. and then solving for w and K. 
For the present system, the characteristic equation is 

.... 3 + 352 + 25 + K = 0 

Substituting s = jw into the characteristic equation, we obtain 

(jW)3 + 3(jw)' + 2(jw) + K = 0 

or 

( K  - 3w') + j(2w - w3) = 0 

Equaling both the real and imaginary pans of this last equation to zero yields 

K - 3w2 = O. 2w - w3 = 0 

from which it follows that 

w = ± Yz. K = 6 or w = 0, K = 0 

Thus, root loci cross the imaginary axis at w = ± Vz, and the value of K at the 
crossing points is 6. Also, a root-Joe us branch on the real axis touches the imagi­
nary axis at w = O. 

5_ Choose a (eSI point ill lhe broad neighborhood of (he jw-axis (llld (he origin. as 
shown in Figure 10-42, and apply the angle condition. If a test point is on the 
root loci, then the sum of the three angles, Ol + O2 + 03, must be 180°. If the test 
point does not satisfy the angle condition. select another test point until it satis­
fies thc condition. (llle sum of the angles at the test point will indicatc in which 
direction the test point should be moved.) Continue this process and locate a 
sufficient number of points satisfying the angle condition. 

6. Draw Ihe roar loci, based on the information obtained in the foregoing steps, as 
shown in Figure 10-43. 

7. De/ermine a pair of r/ominalll complex-conjugale closed-loop poles sl/eh film the 
damping mlio { is O.j. Closed-loop poles with { = 0.5 lie on lines passing 
through the origin and making the angles ±cos-I { = ±cas-l 05 = ±60° with 

jw 

-2 

- jl 

(J 

Figure 10-42 Construction of 
root locus. 
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jw 

Jl \ J1 

\ 
K = 1 .0383 /\ ji 

I 
600 

K = 6  / K = 1.0383 

-3 -2 - I u 

-jl 

Figure 10-43 Root-locus plot. 

the negative rca I axis. From Figure 10-43, such closed-loop poles having , == 0.5 
are obtained as follows: 

s, = -0.3337 + jO.5780, s, = -0.3337 - jO.5780 

lllC valuc of K that yields these poles is found from the magnitude condition as 
fol lows: 

K = Is(s + 1 ) (5 + 2) IF-o.33J7-Jo.s;so 
= 1 .0383 

Using this value of K. we find the third pole at s = -2.3326. 

Note thai, from step 4. it can be seen that for K = 6 the dominant closed-loop 
poles lie on the imaginary axis at s = ±jV2. \Vith this value of K, the system will 
exhibit sustained oscillations. For K > 6, the dominant closed-loop poles lie in the 
right-half s-pJane. resulting in an unst.able system. 

Finally. note that, if necessary, the rool loci can be easily graduated in terms of K 
with the use of the magnitude condition. We simply pick out a point on a root locus, 
measure the magnitudes of the three complex quant ities 5, 5 + 1 ,  and 5 + 2, and multi· 
ply these magnitudes; the product is equal to the gain value K at that point, or 

15 1 · Is + 1 1 · 15 + 21 = K 

General rules for constructing root loci. We next summarize the general 
rules and procedure for constructing the root loci of the system shown in Figure 1 0-44. 

First, obtain the characteristic equation 

1 + G(s)H(s) = 0 
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C(s) 

Figure 10� Control system. 

Then rearrange this equation into the form 

1 + 
K(s + z\ ) (s + Z2) · · (s + z.,,) = 0 
(s + pi l es + p,) . . .  ( s + p,,) 
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(10-44) 

so that the parameter of interest appears as the multiplicative factor. In the present 
discussion, we assume that the parameter of interest is the gain K, where K > O. 

1. Locare Ihe poles and zeros of G(s)H(s) all Ihe s-plalle. The rOOl-loclls brallc"es 
srarl from open-loop poles and lerminare at zeros (finite zeros or zeros at infinity). 

Note that the root loci are symmetrical about the real axis of the s-plane, 
because the complex poles and complex zeros occur only in conjugate pairs. 

Find the starting points and terminating points of the root loci, and find 
also the number of separate root loci. The points on the root loci correspond­
ing to K = 0 are open-loop poles. Each root locus thus originates at a pole of 
the open-loop transfer function G(s)H(s). As K is increased to infinity, each 
root-locus approaches either a zero of the open-loop transfer function or 
infinity in the complex plane. 

A root-locus plot will have just as many branches as there are roots of 
the characteristic equation. Since the number of open-loop poles generally 
exceeds that of zeros, the number of branches usually equals that of poles. I f  
the number of  closed-loop poles i s  the same as  the number of open-loop 
poles, then the number of individual root-locus branches terminating at finite 
open-loop zeros is equal to the number 111 of open-loop zeros. The remaining 
/I - m branches terminate at infinity (n - m implicit zeros at infinity) along 
asymptotes. 

2. Determine the root loci 011 the real axis. Root loci on the real axis are deter­
mined by open-loop poles and zeros lying on the axis. TIle complex-conjugate 
poles and zeros of the open-loop transfer function have no effect on tbe loca­
tion of the root loci on the real axis, because the angle contribution of a pair of 
complex-conjugate poles or zeros is 3600 on that axis. If the total number of 
real poles and real zeros to the right of a test point is odd, then that point lies 
on a root locus. The root locus and its complement form alternate segments 
along the real axis. 

3. Determine the asympTOtes of rool loci. If the test point s is located far from the 
origin, then the angle of each complex quantity may be considered the same. 
One open-loop zero then cancels the effects of one open-loop pole and vice 
versa. 
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Therefore, the root loci for very large values of  s must be  asymptotic to 
straight lines whose angles (slopes) are given by 

where 

±lSO' (2k + 1)  
angles of asymptotes = ---'----'-

11 - m 

11 = number of finite poles of G(s)H(s) 
III = number of finite zeros of G(s) H(s) 

k = 0, 1 , 2, ' "  

Here, k = 0 corresponds to the asymptotes making the smallest angle with 
the real axis. Although k assumes an infinite number of values, as k is 
increased, the angle repeats itself, and the number of distinct asymptotes is 
11 - Ill. Note that if the number of asymptotes is odd, then one of the asymp­
totes is the negative real axis. 

All the asymptotes intersect on the real axis. The point at which they do 
so is obtained as follows: If both the numerator and denominator of the open­
loop transfer function are expanded, the result is 

K [SIll + ( z, + Z2 + . . .  + zm) sm- l + . .  + Z ,Z2 ' " ZIII] G( s) H (s)  = ---'::---:-'-'----=---�"-::=,__-__:_--'--=--= 
5 'l + ( PI + P2 + . . . + PI1 )5" I + . . .  + PI P2 . . .  PII 

If a test point is located very far from the origin, then dividing the denomina­
tor by the numerator yields 

K 
G(s)H(s)  = 

.\"" m + [( PI + p, + . . .  + p,,) - (ZI + Z, + 
Since the characteristic equation is 

G(s)I-/(s) -1 

i t  may be written 

s,,-m + [(p, + p, + . . .  + Pn) - (" + Z, + . . . + Zm)] S,,-m- I 
+ = -K ( 10-45) 

For a large value of s, Equation (10-45) may be approximated by [s + e:( P,-,Ic..+---,P-",_+_·_· _+
--'P'-',"',)_-----:-(:'-ZIc..+_'-=.2_+ ___ +_z-""::..' ) j,, -m 

= 0 
n. 111 

If the abscissa of the intersection of the asymptotes and the real axis is denot­
ed by S = u{/l then 

(PI + p, + + p,, ) - ( ZI + 2 , + . . . + Zm) �n = - ����---����-�----­
n 111 

( 10-46) 

Because all the complex poles and zeros occur in conjugate pairs, Un is always 
a real quantity. Once the intersection of the asymptotes and the real axis is 
found, the asymptotes can be readily drawn in the complex plane. 
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It is important to note that the asymptotes show the behavior of the root 
loci for ls i  � 1. A root locus branch may Lie on one side of the corresponding 
asymptote or may cross the corresponding asymptote from one side to the 
other side. 

4. Find rhe breakmvay and break-in poims. [A break-in point is a point where a 
root locus in the complex plane enters the real axis (or other root locus) as 
the gain K is increased. (A break-in point, like a breakaway point, corre­
sponds to a point in the s-plane where multiple roots of the characteristic 
equation OCCUL)] Because of the conjugate symmetry of the root loci, the 
breakaway points and break-in points either lie on the real axis or occur in 
complex-conjugate pairs. 

If a root locus lies between two adjacent open-loop poles on the real 
axis, then there exists at least one breakaway point between the two poles. 
Similarly, if the root locus lies between two adjacent zeros (one zero may be 
located at - 00 ) on the real axis, then there always exists at least one break-in 
point between the two zeros. If the root locus lies between an open-loop pole 
and a zero (finite or infinite) on the real axis, then there may exist no break­
away or break-in points, or there may exist both breakaway and break-in 
points. 

Suppose that the characteristic equation is given by 

S(s) + KA(s) = 0 

The breakaway points and break-in points correspond to multiple roots of the 
characteristic equation. As shown earlier, the breakaway and break-in points 
can be determined from the roots of 

dK 
ds 

_S--,' (,-," ),---A-,-( s-'-) -;;--,--,S--,(,-," ),---A--,' (,--,-s) 
= 0 

A\s) 
( 1 0-47) 

where the prime indicates differentiation with respect to s. It i s  important to 
note that the breakaway points and break-in points must be roots of Equation 
( 1 0-47), but not all roots of Equation (10-47) are breakaway or break-in 
points. If a real root of Equation (10-47) lies on the root-locus portion of the 
real axis, then it is an actual breakaway or break-in point. If a real root of 
Equation (10-47) is not on the root-locus portion of the real axis, then this 
1'001 corresponds to neither a breakaway point nor a break-in point. If two 
roots s = ", and s = -s, of Equation ( 10-47) are a complex-conjugate pair, 
and if it is not certain whether they are on root loci, then it is necessary to 
check the corresponding K value. If the value of K corresponding to a root 
S = SI of d Kids = 0 is positive, point s = 5, is an actual breakaway or break­
in point. (Since K is assumed to be nonnegative, if the value of K thus 
obtained is negative, then point s = 51 is neither a breakaway nor a break-in 
point.) 

5. Derermine rhe angle of deparrure (angle of arrival) of rhe roar locus from a 
complex pole (ar a complex zero). To sketch the root loci with reasonable 
accuracy, we must find the directions of the root loci near the complex poles 
and zeros. If a test point is chosen and moved in the very vicinity of a complex 
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pole (or a complex zero), the sum of the angular contributions from all other 
poles and zeros can be considered to remain the same. Therefore, the angle of 
departure (or angle of arrival) of the root locus from a complex pole (or at a 
complex zero) can be found by subtracting from 180' the sum of all the angles 
of vectors from all other poles and zeros to the complex pole (or complex 
zero) in question, with appropriate signs included. That is, 

Angle of departure from a complex pole = 180' 

- (sum of the angles of vectors to a complex pole in question from other poles) 

+ (sum of the angles of vectors to a complex pole in question from zeros) 

Angle of arrival at a complex zero = 180' 

- (sum of the angles of vectors to a complex zero in question from other zeros) 
+ (sum of the angles of vectors to a complex zero in question from poles) 

The angle of departure is shown in Figure 10-45. 

6. Find the poinrs where the root loci may cross the imaginary axis. The points 
where the root loci intersect the jw-axis can be found by letting s = jw in the 
characteristic equation, equating both the real part and the imaginary part to 
zero, and solving for w and K. The values of w thus found give the frequencies 
at which root loci cross the imaginary axis. TI,e K value corresponding to each 
crossing frequency gives the gain at the crossing point. 

7. Taking (/ series of test points in the broad neighborhood of the origin of the s· 
plane, sketch the root loci. Determine the root loci in the broad neighborhood 
of the jw·axis and the origin. The most important part of the root loci is on 
neither the real axis nor the asymptotes, but is in the broad neighborhood of 
the jw·axis and the origin. The shape of the root loci in this important region 
in the s-plane must be obtained with sufficient accuracy. 

8. Determine the closed-loop poles. A particular point on each root· locus branch 
is a closed·loop pole if the value of K at that point satisfies the magnitude con­
dition. Conversely, the magnitude condition enables us to determine the value 

Figure 10-45 Construction of the root locus. 
(Angle of departure = 1800 - (O! + 02) + Ip.] 

e, 

jw 

Angle of 
aeparture 
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of the gain K at any specific root location on the locus. (If necessary, the root 
loci may be graduated in  terms of K. The root loci are continuous wilh K.) 

The value of K corresponding to any point s on a root locus can be 
obtained using the magnitude condition, or 

product of lenglhs between point s to poles 
K = '--------"'------=----,-------=---­

product of lengths between point s to zeros 

This value can be evaluated either graphically or analytically. 

I f  the gain K of the open-loop transfer function is given in the problem, then, 
applying the magnitude condition, we can find the correct locations of the c1osed­
loop poles for a given K on each branch of the rool loci by a trial-and-error 
approach or with the use of MATLAB (see Section 10-9). 

Constructing root loci when a variable parameter does not appear as a 
multiplicative factor. In  some cases, the variable parameter K may not appear as 
a multiplicative factor of G(s)H(s). In such cases. it may be possible to rewrite the 
characteristic equation so that K does appear as a multiplicative factor of G(s)H(s). 
Example 1 0-8 illustrates how to proceed. 

Example 10-8 

Consider the system shown in Figure 10-46. Draw a root�locus diagram, anu then deter­
mine the value of k such that the damping ratio of the dominant closed-loop poles is 0.4. 

Here, the system involves veloci ty feedback. TIle open-loop transfer function is 

open loop transfer function = 
( ) (  

20 
) s s + I s + 4 + 20ks 

Notice that the adjustable variable k docs not appear as a multiplicative factor. The 
characteristic equation for the system is 

s3 + 5s' + 4s + 20 + 20ks = 0 (10-48) 

If we define 

20k = K 
then Equation ( 10-48) becomes 

53 + 5s2 + 45 + K 5 + 20 = 0 ( 10-49) 

C(s) 

Figure 10-46 Control system. 
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Dividing both sides of Equation (10-49) by the SUIll of the terms that do not contain K, 
we ger 

or 

Ks 
I + -c;---;-':::""-- � 0 

53 + 552 + 45 + 20 

Ks 
I + -:---::::-:-':':'::'=-c----,,- - 0 (s + j2) (s - j2)(s + 5) -

Equation ( 10-50) is now of the form of Equation ( 10-37). 

( 10-50) 

We shall now sketch the root loci of the system given by Equation (10-50). 
Notice that the open-loop poles are located at s = j2, s = -j2, and s = -5, and the 
open-loop zero is located at s = O. TIle root locus exists on the real axis between 0 and 
-5. If the test point s is located far from the origin, then the angles 
L.!.., ! s + i2, Is - ;2, and � may be considered the same. Since one open-loop 
zero cancels the effects of one open-loop pole and vice versa, the root loci for very 
large values of s must be asymptotic to straight lines whose angles are given by 

±1800(2k + I )  
angles of asymptotes = 3 _ 1 = ±90° 

The intersection of the asymptotes with the real axis can be found from 

as 

Ks 
I. 

K 
l im �--.,.:..:.::....--- = 1m S ---o00 53 + 552 + 45 + 20 s-00052 + 55 + 

(Til = -2.5 

K = lim ') ,-= (s + 2.5)-

11le angle of departure ( angle 0) from the pole at 5 = j2 is obtained as follows: 

8 � 180° - 90° - 21.8° + 90° � 158.2° 

111US, the angle of departure from the pole 5 = j2 is 158.2°. Figure 1O-47 shows a root· 
locus plot of the system. 

Note that the closed-loop poles with , = 0.4 must lie on straight lines passing 
through the origin and making the angles ±66.42° with the negative real axis. I n  the 
present case, there are two intersections of the root-locus branch in the upper-half 5-
plane with the straight line of angle 66.42°. Thus, two values of K will give the damping 
ratio ( of the closed-loop poles equal to 0.4. At point P, the value of K is 

Hence. 

K � I (s + j2)(s - j2)(s + 5) I � 8.9801 
5 l=o-I .W90+j2.4065 

K k � - � 0 4490 20 . at point P 

At point Q. the value of K is 

I ( s  + j2)(s - j2)(s + 5 )  I K � � 28.260 
S .f=-2. 1589+j4.%52 
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Thus, 

Root-Locus Analysis 

s = -2.1589 + j4.9652 

-7 -6 -5 -4 

Q 

jw 

j6 

j5 

j4 
s = -1 .0490 + /1.4065 

j3 

/1 

j l 

0 a 

-jl 

-/1 

-j3 

-j4 

-j5 

-j6 

Figure 10-47 Root-locus plot for the system shown in Figure 10-46. 

K 
k = - = 1.4130 

20 
at point Q 

559 

Consequently, we have two solutions for this problem. For k = 0.4490, the three 
closed-loop poles are located at 

s = - 1.0490 + }2.4065. s = - 1 .0490 - )1.4065. s = -2.9021 

For k = 1.4130, the three closed-loop poles are located at 

s = -2.1589 + }4.9652, s = -2.1589 - }4.9652, s = -0.6823 

It is important to point out that the zero at the origin is the open-loop zero, not 
the closed-loop zero. This is evident because the original system shown in Figure 10--46 
does not have a closed-loop zero, since 

C(s) 20 

R(s) = s(s + l ) (s + 4) + 20(1 + ks) 

The open-loop zero al s = 0 was introduced in the process of modifying the character­
istic equation such that the adjustable variable K = 20k was to appear as a mullipJica­
tive factor. 
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\Ye have obtained two different values o f  k which satisfy the requirement that 
the damping ratio of the dominant closed-loop poles be equal to OA. The closed-loop 
transfer function with k = 0.4490 is given by 

C(s) 20 
R(s) � s3 + 5s' + l2.98s + 20 

20 
(s + 1.0490 + j2.4065)(s + 1 .0490 - j2.4065 )(s + 2.9021 )  

TIle closed-loop transfer function with k = 1.4130 is given by 

C(s) 20 
R(s) � s3 + 5s' + 32.26s + 20 

20 
(s + 2.1589 + j4.9652)(s + 2.1589 - j4.9652)(s + 0.6823) 

Notice that the system with k = 0.4490 has a pair of dominant complex-conjugate 
closed-loop poles, whereas in the system with k = 1.4130, the real closed-loop pole at 
s = -0.6823 is dominant and the complex-conjugate closed-loop poles are not domi­
nant. l n  this case, the response characteristic is determined primarily by the real c1osed­
loop pole. 

Let us compare the unit-step responses of both systems. MATLAB Program 
10--4 may be used to plot the unit-step response curves in one diagram. TIle resulting 
unit-step response curves [C I (t)  for k = 0.4490 and c2(r) for k = 1.4130] are shown in 
Figure 10-48. 

From Figure 10--48 we notice that the response of the system with k = 0.4490 is 
oscillatory. (The effect of the closed-loop pole at s = �2.9021 on the unit-step response 
is small.) For the system with k = 1.4130, the oscillations due to the closed-loop poles 

MA HAB Program 10-4 

» % Enter n umerators and denominators of systems 
» % with k � 0.4490 and k � 1 .41 30, respectively. 
» 
» num1 = [0 
» den1 � [ 1  
» num2 � [ 0  
» den2 � [ 1  
» t � 0:0. 1 :  1 0; 

o 0 201; 
5 1 2 .98 20[ ;  
o 0 20[ ;  

5 32.26 201 ;  

» [c1 ,xl  ,t[ � step{num1 ,den1 ,t); 
» [c2,x2,t[ � step{num2 ,den2,t); 
» plot{t,c1 ,t,c2) 
» text{3 . 1 , 1 . 1 , ' k  = 0.4490') 
» text{4.8,0.86, 'k = 1 .41 30' )  
» grid 
» title{ 'Unit-Step Responses ofTwo Systems') 
» xlabel{'t (sec)') 
» ylabel{'Outputs c_1 and c_2 ' )  
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Unit-Step Responses of Two Systems 
l.4 r-�-��'--.,.-'-�-�--'--��-, 

1.2 

c;' 
"0 
� 0.8 

k = 1.4130 

� � 0.6 
0; 
o 

0.4 

0.2 

2 3 4 5 6  
( (sec) 

7 8 9 lO 

Figure 10-48 Unit-step response 
curves for the system shown in Figure 
10-46 when the damping ratio ( of 
the dominant closed-loop poles is set 
equal to 0.4. (Two values of k give the 
damping ralio � equal to 0.4.) 

at s = -2.1589 ± j4.9652 damp out much faster than the purely exponential response 
due to the closed-loop pole at s � -0.6823. 

The system with k = 0.4490 (which exhibits a faster response with relatively 
small overshoot) has a much better response characteristic than the system with 
k := 1.4130 (which exhibits a slow overdamped response). Therefore, we should choose 
k = 0.4490 for the present system. 

Typical pole-zero configurations and corresponding root loci. In con­
cluding this section, we present several open-loop pole-zero configurations and their 
corresponding root loci in Table 10-3. The pattern of the root loci depends only on 
the relative separation of the open-loop poles and zeros. If the number of open-loop 
poles exceeds the number of finite zeros by three or more, there is a value of the gain 
K beyond which root loci enter the right-half s-plane; thus, the system can become 
unstable. A stable system musl have all its closed-loop poles in the left-half s-plane. 

Note that once we have some experience with the method, we can easily eval­
uate the changes in the root loci due to the changes in the number and location of 
the open-loop poles and zeros by visualizing the root-locus plots resulling from var­
ious pole-zero configurations. 

Summary. From the preceding discussions, it should be clear that it is possi­
ble to sketch a reasonably accurate root-locus diagram for a given system by follow­
ing simple rules. (The reader is urged to study various root-locus diagrams shown in 
the solved problems at the end of the chapter.) At preliminary design stages, we may 
not need the precise locations of the closed-loop poles; ollen, their approximate lo­
cations are aU that is needed to make an estimate of a system's performance. In that 
case, it is important that the designer have the capability of quickly sketching lhe 
root loci for a given system. 
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TABLE 1 0-3 Open-Loop Pole-Zero Configurations and the Corresponding 

Root Loci 

jw jw 

u 

� 
�w 

/ ( 
jw ) jw jw 

\ 
I jw jw jw ! 

u 

\ 

1 0-9 ROOT-LOCUS PLOTS WITH MATLAB 

In this section, we present the MATLAB approach to generating root-locus plots. 

Plotting root loci with MATLAB. In plotting root loci with MATLAB, we 
deal with the system equation given in the form of Equation ( 10-37), which may be 
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written as 

Root-Locus Plots with MATLAB 

num 
1 + K -- = 0 

den 

563 

where num is the numerator polynomial and den is the denominator polynomial. 
Note that both vectors num and den must be written in descending powers of s. 

A MATLAB command commonly used for plotting root loci is 

rlocus( num,den ) 

With this command, the root-locus plot is drawn on the screen. The gain vector K is 
automatically determined. 

Note that command 

rlocus(num,c1en, K) 

utilizes the user-supplied gain vector K. (The vector K contains all the gain values for 
which the closed-loop poles are to be computed.) 

If the preceding two commands are invoked with left-hand arguments, that is, 

Ir,K] = rlocus(num,den) 
Ir,KI = rlocus(num,c1en,K) 

the screen will show the matrix r and gain vector K. (r has length K rows and length 
den - 1 columns containing the locations of complex roots. Each row of the matrix 
corresponds to a gain from vector K.) The plot command 

plot(r, ' - ' )  

plots the root loci. 
If it is desired to plot the root loci with marks '0' and 'x', it is necessary to use 

the following command: 

r = rlocus(num,den) 
plot(r, 'o ' )  or p lot(r, 'x ' )  

Plotting root loci with marks '0' or I X '  is  instructive, since each calculated 
closed-loop pole is shown graphically; in some portion of the root loci those marks 
are densely situated, and in another portion of the root loci they are sparsely situat­
ed. Through an internal adaptive step-size routine, MATLAB supplies its own set of 
gain values that are used to calculate a root-locus pial. Also, MATLAB uses the 
automatic axis-scaLing feature of the plOl command. 

FinaUy, note that, since the gain vector is determined automatically. rool-locus 
plots of 

K(s + 1 )  
G(s) /-/(s) 

s(s + 2 ) ( s  + 3) 
10K(s  + 1 )  

G(s)H(s) = 
s(s + 2) (s  + 3)  

200K (s  + 1 )  
G(s)J-/(s)  = ( 2) (  3 )  s s + s + 
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are all the same. The num and den set is the same for all three systems. The num 
and den are 

Example 10-9 

num = 10 0 1 1 1  
den = j1 5 6 01 

Consider a system whose open-loop transfer function G(s)H(s) is 

K 
G(s) H (s) = ----.:.:, '------­

s(s + O.5)(s- + 0.6s + 10) 
K 

54 + 1 . 1sj + 10.352 + 55 

lllcre are no open-loop zeros. Open-loop poles are located at s = -0.3 + j3.1480. 
s = -0.3 - j3. 1480, s = -0.5, and s = 0. 

To sct the plot region on the screen to be square, enter the command axis 
('equaJ'). With this command, a line with unity slope is at a true 45° angle and is not 
skewed by the irregular shape of the screen. Entering MATLAB Program 10-5 into the 
computer. we obtain the rool-Iocus plot shown in Figure 10-49. 

MA HAB Program 1 0-5 

» num = 1 1 1 ;  
» den = [ 1  1 . 1 1 0.3 5 01; 
» Ir, KI = r1ocus(num,den); 
» plot(r, '- ' ) 
» axis('equal'); v = 1-4 4 -4 41; axis(v) 
» grid 
» title(' Root-Locus Plot of G(s) = Klls(s+0.5) (5/\2+0.65+ 1 0)1 ' )  
» xlabel ( 'Real Axis'); ylabel ( ' Imaginary Axis') 

Figure 10-49 ROOl-locus plOL 

Root-Locus Plot of G(s) = Klls(s + 0.5)(s2 + 0.6s + 10)1 
4 �-.--��'----.-�--��,-� 

3 

2 

-2 

-3 

� ���-7--�-7--�--��---� -3 -2 -I 0 2 3 4 
Real Axis 
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Example 10-10 
Consider the system shown in Figure 10-50. Plot the root loci with a square aspect ratio 
so that a line with unity slope is a true 45° line. 

MATLAB Program 10-6 produces a root-locus plot in a square region. The re­
sulting plot is shown in Figure 10-51. Note that this system is stable only for a limited 
range of gain K. (For the exact range of K, see Problem A-IO-IO.) 

MATLAS Program 1 0-6 

» num = [ 1  1 [ ;  
» den = [ 1  3 12  - 1 6  0[; 
» K1 = [0:0.0 1 :5 [ ;  K2 = [5:0.02 : 1 00[; K3 = [ 1 00:0.5:500[; 
» K = [K1 K2 K3[; 
» [r, K[ = rlocus(num,den,K); 
» plot(r, '- ') 
» axis('equal'); v = [ -6 6 - 6  6[ ;  axis (v) 
» grid 
» title ( ,Root-Locus Plot of G(s) = K(s+ 1 )/[s(s- l )  (sI\2+4s+ 1 6)] ') 
» xlabel(,Real Axis'); yiabel('lmaginary Axis') 

K(s + I )  

s(s- t)(s2 + 4s + 16) 

Figure 10-50 Control system. 

Root-Locus Plot of G(,) � K(s + t )/ 1'(s - 1 )(s' + 4s + 16)] 
6 r---'---���--�--�---

4 

� 
a a I-------i-� '00 " 
E 

-2 

-4 

-��6-�_47
-
--�2�-O�-�2�-�4-�6 

Real Axis 

Figure 10-51 Root-locus p[OI. 
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10-10 TUNING RULES FOR PIO CONTROLLERS 

I t  is interesting to note that more than half of the industrial controllers in use today 
utilize PID or modified PID control schemes. Analog PID controllers are mostly 
hydraulic, pneumatic, electric, and electronic types or their combinations. Currently, 
many of these are transformed into digital forms through the use of microprocessors. 

Because most PID controllers are adjusted on-site, many different types of 
tuning rules have been proposed in the literature. With these tuning rules, PID con­
trollers can be delicately and finely tuned. Also, automatic tuning methods have 
been developed, and some PID controllers may possess on-line automatic tuning 
capabilities. Many practical methods for bumpless switching (from manual opera­
tion to automatic operation) and gain scheduling are commercially available. 

The usefulness of PID controls lies in their general applicability to most control 
systems. In the field of process control systems, it is a well-known fact that both basic 
and modified PID control schemes have provcd their usefulness in providing satisfac­
tory control, although they may not provide optimal control in many given situations. 

PIO control of plants. Figure 10-52 shows the PID control of a plant. I f  a 
mathematical model of the plant can be derived, then i t  is possible to apply various 
design techniques for determining the parameters of the controller that will meet 
the transient and steady-state specifications of the closed-loop system. However, if 
the plant is so complicated that its mathematical model cannot be easily obtained, 
then an analytical approach to the design of a PID controller is not possible. I n  that 
case, we must resort to experimental approaches to the tuning of PID controllers. 

TIle process of selecting the controller parameters to meet given performance 
specifications is known as controller wning. Ziegler and Nichols suggested rules for 
tuning PID controllers (to set values Kin T;, and T,,) based on experimental step 
responses or based on the value of Kp that results in marginal stability when only 
the proportional control action is used. Ziegler-Nichols rules, presented next, are 
convenient when mathematical models of plants are not known. (These rules can, of 
course, be applied to the design of systems willi known mathematical models.) 

Ziegler-Nichols rules for tuning PIO controllers. Ziegler and Nichols pro­
posed rules for determining values of the proportional gain K", integral time T;, and 
derivative time �I based on the transient-response characteristics of a given plant. 
Such determination of the parameters of PID controllers or tuning of PID con­
trollers can be made by engineers on-site by experimenting on the plant. (Numerous 
tuning rules for PID controllers have been proposed since Ziegler and Nichols of­
fered their rules. Here, however, we introduce only the Ziegler-Nichols tuning rules.) 

111e two methods called Ziegler-Nichols tuning rules are aimed at obtaining 
25% maximum overshoot in the step response. (See Figure 10-53.) 

Figure 10-52 PID control 
of a plant. 

C(s) 



C(I) 
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Figure 10-53 Unit-step response curve 
showing 25% maximum overshoot. 

First method. In  the first Ziegler-Nichols method, we obtain the response 
of the plant to a unit-step input experimentally, as shown in Figure 10-54. If the 
plant involves neither integrators nor dominant complex-conjugate poles, then such 
a unit-step response curve may look like an S-shaped curve, as shown in Figure 
10-55. (If the response does not exhibit an S-shaped curve, this method does not 
apply.) Step-response curves of this nature may be generated experimentally or 
from a dynamic simulation of the plant. 

The S-shaped curve may be characterized by two constants-the delay lime L 
and a time constant T -determined by drawing a line tangent to the S-shaped curve 
at the inflection point. These constants are determined by the intersections of the 
tangent line with the time axis and the line C(I) = K, as shown in Figure 10-55. The 
transfer function C(s)/U(s) may then be approximated by a first-order system with a 
transport lag as follows: 

CCS) Ke-Ls 
= 

U(s) Ts + 1 

Ziegler and Nichols suggested setting the values of Kp' 7;, and 7;, according to the 
formula shown in Table 10-4. 

Notice that the PID controller tuned by the first Ziegler-Nichols method gives 

GAs) = Kp( l + ;'s + TdS) 
= 1.22:(1 + _1_ + O.5LS) 

L 2Ls (, + 2.)2 
= O.6T L 

s 

_I t-..",---_. I r.:;:ll--_V_�,_ 
11 (1 ) D C(I) 

Figure 10-54 Unit-step 
response of a plant. 
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Figure 10--55 S-shaped 
response curve. 
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c(/) 
, Tangent line at 

inflection point 

K r---------7f�------------------

Thus, the PID controller has a pole at the origin and double zeros at s = -1/  L. 

Second method. In the second Ziegler-Nichols method, we first set 
T; = 00 and Td = O. Using the proportional control action only (see Figure 10-56), 
we increase Kp from 0 to a critical value Kcr at which the output first exhibits sus­
tained oscillations. ( If the output does not exhibit sustained oscillations for whatev­
er value Kp may take, then this method does not apply.) Thus the critical gain K" 
and the corresponding period Pu are determined experimentally. (See Figure 
10-57.) Ziegler and Nichols suggested that we set the values of the parameters 
Kp' T;, and 0, according to the formula shown in Table 1 0-5. 

gives 
Notice that the PID controller tuned by the second Ziegler-Nichols method 

TABLE 10-4 Ziegler-Nichols Tuning Rule Based on 
Step Response of Plant (First Method) 

Type of Controller KI' T; �I 

P 
T 
-
L 

00 0 

PI 
T L 

0 9- - 0 . 
L 0.3 

PID 
T 

0.5L 1 2- 2L . 
L 
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C(I) 

C(I) 

o 

Figure 10--57 Sustained oscillation with period Per. 

Figure 10--56 Closed-loop system 
with a proportional controller. 

Thus, the PID controller has a pole at the origin and double zeros at s = -4/ P". 
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Comments. Ziegler-Nichols tuning rules (and other lUning rules presented 
in the literature) have been widely used to tune PID controllers in process control 
systems for which the plant dynamics are not precisely known. Over many years, 
such tuning rules have proved to be highly useful. Ziegler-Nichols luning rules can, 
of course, be applied to plants whose dynamics are known. (If plant dynamics are 
known, many analytical and graphical approaches to the design of PID controllers 
are available in addition to Ziegler-Nichols tuning rules.) 

If the transfer function of the plant is known, a unit-step response may be cal­
culated or Ihe critical gain K" and critical period P" may be calculated. Then, with 
those calculated values, it is possible to determine the parameters K", 0, and 01 
from Table 10-4 or Table 10-5. However, the real usefulness of Ziegler-Nichols tun­
ing rules (and other tuning rules) becomes apparent when the plant dynamics are 
1101 known, so that no analylical or graphical approaches to the design of controllers 
are available. 

TABLE 10-5 Ziegler-Nichols Tuning Rule Based on Critical 

Gain �r and Critical Period Pcr (Second Method) 

Type of Controller K" 

P O.5Kn 

PI c.4SKcr 

PID Q.6Kcr 

T; 

00 

1 
-p 1.2 c r  

O,SPer 

T" 

0 

D 

D. 1 2SP" 
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Generally, for plants with complicated dynamics, but no integrators, 
Ziegler-Nichols tuning rules can be applied. If, however, the plant has an integrator, 
the rules may not be applicable in some cases, either because the plant does not 
exhibit the S-shaped response or because the plant does not exhibit sustained oscil­
lations no matter what gain K is chosen. 

If the plant is such that Ziegler-Nichols rules can be applied, then the plant 
with a PID controller tuned by such rules will exhibit approximately 10% to 60% 
maximum overshoot in step response. On the average (obtained by experimenting 
on many different plants), the maximum overshoot is approximately 25%. (This is 
quite understandable, because the values suggested in Tables 1 0-4 and 1 0-5 are 
based on the average.) In a given case, if the maximum overshoot is excessive, it is 
always possible (experimentally or otherwise) to fine-tune the closed-loop system 
so that it will exhibit satisfactory transient responses. I n  fact, Ziegler-Nichols tuning 
rules give an educated guess for the parameter values and provide a starting point 
for fine-tuning. 

Examplc 10-11 

Consider the control system shown in Figure 10--58, in which a PID controller is used to 
control the system. The PID controller has the transfer function 

G,.(s) � Kp( l + J.... + 7;15) 7is 
Although many analytical methods are available for the design of a PID controller for 
this system. let us apply a Ziegler-Nichols tuning rule for the determination of the val­
ues of parameters Kp. 711 and �/' Then we will obtain a unit-step response curve and 
check whether the designed system exhibits approximately 25% maximum overshoot. 
If the maximum overshoot is excessive (40% or more), fine-tunc the system and reduce 
the amount of the maximum overshoot to approximately 25%. 

Since the plant has an integrator, we use the second Ziegler-Nichols method. 
Setting 7j = 00 and �I = O. we obtain the closed-loop transfer function C(s) Kp 

R(s) � s(s + l ) (s + 5) + Kp 

The value of Kp that makes the system marginally stable so that sustained oscillations 
occur can be obtained by the use of Routh's stability criterion. Since the characteristic 
equation for the closed-loop system is 

Figure 10-58 PID-controlled 
system. 

53 + 6s2 + 55 +  K = 0  p 

PID 
Controller 

C(s) 
S(5 + t )(5 + 5) 
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the Routh array becomes 

53 I 
5' 6 

5 1 30 - Kp 
6 

sO K,J 

571 

5 
Kp 

Examining the coefficients of the first column of the Routh array, we find that sus­
tained oscillation will occur if Kp = 30. Thus. the critical gain Kcr is 

Kcr = 30 
With the gain Kp set equal to Kcr( = 30), the characteristic equation becomes 

s3 + 6s2 + 5s + 30 = 0 
To find the frequency of the sustained oscillations, we substitute s = jw into this char­
acteristic equation and obtain 

(jw)' + 6(jw)' + 5(jw) + 30 = 0 
or 

6(5 - w') + jw(5 - w') = 0 
from which we find the frequency of the sustained oscillation to be w2 = 5 or w = Vs. 
Hence, the period of sustained oscillation is 

?" = 
211 

= ,
2::: = 2.B099 w v5 

From Table 10--5, we determine 

Kfl = O.6Kcr = 18  

o = 0.5?" = l AOS 

0, = 0.125?" = 0.35124 
The transfer function of the PID controller is thus 

G,(5) = Kp( 1 + -.!.... + 7;,-,) 
T;s 

= I B(1 + �O' + 0.351245) 1.4 )5 
6.3223(5 + 1.4235)' 

-' 

The PID controller has a pole at the origin and double zero at s = -1 .4235. A block dia­
gram of the control system with the designed PIU controller is shown in Figure 10-59. 

Next. let us examine the unit-step response of the system. The closed-loop trans­
rer runction C(5)/R(5) is given by 

C(5) 6.32235' + IB5 + 12.B l l  
R(5) 5' + 6s3 + 1 1 .32235' + 1Bs + 12.B l l  

The unit-step response of this system can be obtained easily with MATLAB. (See 
MATLAB Program 10--7.) TIle resulting unit-step response curve is shown in Figure 
10-60. TIle maximum overshoot in the unit-step response is approximately 62%, is 
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� 6.3223 (s + 1 .4235)' 
s L-____ -' 

PIO Controller 

C(s) 

s(s + I )(s + 5) 

Figure 10-59 Block diagram of the system with PID controller designed by the 
use of the second Ziegler-Nichols tuning method. 

Unit-Step Response 
1.8 .---�-�--...-:-...;....-�--_----, 

1.6 

1 .4 

1 .2 
<::' 
'G I 
S Q. 
:; 0.8 
o 

0.6 

0.4 

Figure 10-60 Unit-step response 
curve of PIO-controlled system 
designed by the use of the second 
Ziegler-Nichols luning method. 

0.2 

O L-�-�----�-�-�� 
o 2 4 6 8 10 12 14 

I (sec) 

excessive. It can be reduced by fine-tuning the controller parameters, possibly on the 
computer. We find that, by keeping Kf! = 18 and by moving the double zero of the PID 
controller to s = -0.65. thaI is, using the PID controller ( 1 ) (s + 0.65)' 

G,(s)  � 18  1 + 
3.077s 

+ 0.7692s � 13.846 
s 

MA HAB Program 1 0-7 

» t � 0:0.01 : 1 4; 
» num = [0 0 6.3223 
» den = [1 6 1 1 .3223 
» step(num,den,l) 
» grid 

1 8  
1 8  

» title('Unit-Step Response') 

1 2 .81 1 1 ; 
1 2 .81 1 [ ; 

» x[abe[('I'); ylabe[('Output cit) ' )  

(10-51) 
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Unit-Step Response 
1 .4 .--�-�-�-'-�'---�-�--
1.2 

s- 0.8 
"5 0-:5 0.6 

0.4 

0.2 

O L-_�_�_�_� __ L-_�_� 
o 2 3 5 6 7 

, (sec) 

Figure 10-61 Unit-step response of the system shown in Figure 
10-58 with PID cOOlro\ler with parameters Kp = 18. T; = 3.077. 
and T" � 0.7692. or G,(') � 13.846(, + 0.65)'/,. 
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the maximum overshoot in the unit-step response can be reduced to approximately 
18%. (See Figure !O-61.) If the proportional gain Kp is increased to 39.42, without 
changing the location of the double zero (s = -0.65), thai is, if thc PID controller ( I ) (s + 0 65 )

' 

G,(s) = 39.42 I + -
3.
-
07
-

7
-
s 

+ 0.7692s = 30.322 "'---
s
--'-'''-- ( 10-52) 

is used, then the speed of response is increased. but the maximum overshoot is also 
increased, to approximately 28%. as shown in Figure 10-62. Since the maximum over­
shoot in this case is fairly close to 25% and the response is faster than the system with 
G,(s) given by Equation (10-51), we may consider G,(s), as given by Equation (10-52). 
to be acceptable. Then the tuned values of K p' ri• and �I become 

Kp = 39.42, T, = 3.077. T" � 0.7692 

It is interesting to observe that these values are approximately twice the values sug· 
gested by the second Ziegler-Nichols tuning method.1l1e important thing to note here 
is that the Ziegler-Nichols rule has provided a starting point for fine·tuning. 

It is instructive to note that, in the case where the double zero is located at 
s = -1.4235, increasing the value of KI' increases the speed of response, but as far as the 
percentage maximum overshoot is concerned, varying gain Kp has very little effect. llle 
reason for this may be seen from the root· locus analysis. Figure 10--63 shows the root· 
locus diagram for the system designed with the second Ziegler-Nichols tuning method. 
Since the dominant branches of root loci are along the ( = 0.3 lines for a considerable 
range of K, varying the value of K (from 6 to 30) will not change the damping ratio of the 
dominant c1osed·loop poles very much. However, varying the location of the double zero 
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Figure 10-62 Unit-step response of the 
system shown in Figure 10-58 with PID 
controller with parameters K p = 39..12. 
Ti = 3.077, and T.I = 0.7692. or G("(s) 
= 30.322(s + 0.65)'ls. 
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j2 
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Figure 10-63 ROOI-Iocus diagram of system when PID controller has double zero at s = -1 .4235. 
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S(H 1)($+ 5) 

1 jw 

jS 

j6 
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Figure 1� Root-locus diagram of system when PID controller has double zero at 
s = -0.65. K = 13.846 corresponds to Ge(s) given by Equation (10--51) and K = 30.322 corresponds to 
G,(s) given by Equation (10-52). 

has a considerable effect on the maximum overshoot, because the damping ratio of the 
dominant closed-loop poles can be changed significantly. This can also be seen from the 
root-locus analysis. Figure 10--64 show'S the root-locus diagram for the system with PID 
controller with a double zero at s = -0.65. Notice the change of the roOl-locus configu­
ration, making it possible to change the damping ratio of the dominant closed-loop poles. 

In the figure, notice that, in the case where the system has gain K = 30.322, the 
closed-loop poles at s = -2.35 ± j4.82 act as dominant poles. Two additional closed­
loop poles are very near the double zero at s = -0.65, with the result that these closed­
loop poles and the double zero almost cancel each other. The dominant pair of 
closed-loop poles indeed determines the nature of the response. By contrast, when the 
system has K = 13.846, the closed-loop poles at s = -2.35 ± j2.62 are not quite dom­
inant, because the two other closed-loop poles near the double zero at s = -0.65 have 
a considerable effect on the response. The maximum overshoot in the step response in 
this case (18%) is much larger than in the case of a second-order system having only 
dominant closed-loop poles. (In the laner case, the maximum overshoot in the step 
response would be approximately 6%.) 
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EXAMPLE PROBLEMS AND SOLUTIONS 
Problem A-IO-l 

Simplify the block diagram shown in Figure 1O--{j5. 

Solution First, move the branch point of the path involving HI outside the loop in­
volving H2 as shown in Figure 10-66(a). Then, eliminating two loops results in Figure 
1O--{j6(b). Combining two blocks into one gives Figure 1O--{j6(c). 

Figure 10-65 Block diagram 
of a system. 

(a) 

(b) 

(e) 

G 
1 + GH2 

H, 1----, 

H 1 + ----' 
G 

Figure 10-66 Block diagrams showing steps for simplifying the system 
of Figure 10-65. 
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Problem A-I0-2 

For the block diagram shown in Figure 10--67, derive the transfer function relating C(s) 
and R(s). 
Solution The signal Xes) is the sum of two signals GIR(s) and R(s): 

Xes) = GIR(s) + R(s) 
The output signal C(s) is the sum of G,X(s) and R(s): 

C(s) = G,X(s) + R(,) = G,[GIR(s) + R(s)) + R(s) 
\Ve thus have 

C(s) 
R(s) = GIG, + G, + 1 

R(s) ! '� C(s) 

Figure 10--67 Block diagram of a system. 

Problem A-I0-3 

Consider the system shown in Figure 10-68. A state-space representation of G1 is 
.r = -5x + f{ 
y = -1.5x + 0.5// 

or 

Ai = [-5], Bl = [l!. Cl = [-LS]. D1 = [0.5] 
A state space representation of G2 is 

or [ -2 0] A2 = 1 O ·  

-'©--I 
t sysg 

[ " 1 ]  [-2 O][XI] [ 1 ] 
;i-, 

= l O x, + 0 Y - -

z = [0 lOt;] + [O]y 
B2 = 

[a C2 = [0 10). D2 = [a] 

Figure lQ-68 Closed-loop system. 
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Define 

sysl = sslA 1 , B l  ,Cl , 0 1 )  
sys2 = ssIA2,B2,C2,02) 

Obtain a state-space expression of the series connection of Gt and G2 with MATLAB. 
Use the command 

sysg = series{sys1 ,sys2) 
Then plot the unit-step response of the closed-loop system shown in Figure 10--68 by 
using the following commands: 

sys = feedback{sysg, [1 [); steplsys) 
Solution MATLAB Program 10-8 produces sysg characterized by 

A = [�2 � -� 5]. B = [0�5], 
o 0 -5 I 

MA HAB Program 1 0-8 

C = [0 10 OJ, 
» A1 = 1 -5 1 ; B 1 = 11 1 ; Cl = 1- 1 .51; 01 = [0.51; 
» A2 = [-2 0; 1 01; B2 = 11 ; 01; C2 = [0 1 01 ;  02 = 101; 
» sys1 = ss(A1 , B 1 ,C1 , 0 1 ); 
» sys2 = ssIA2,B2,C2,D2); 
» sysg = serieslsys1 ,sys2) 
a =  

xl x2 x3 
x l  -2 0 - 1 .5 
x2 0 0 
x3 0 0 -5 

b =  

u1 
xl 0.5 
x2 0 
x3 

c =  

xl x2 x3 
y 1 0 1 0  0 

d = 

u1 
y1 0 

Continuous-time model. 
» sys = feedbacklsysg , l l I) ;  
» steplsys) 
» grid 
» tit[e( 'Un i t-Step Response') 
» x[abe[('t ') 
» y[abe[('Output zit)') 

D = [OJ 
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Figure 10-69 Unit-step response curve. 
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3 3.5 

MATLAB Program 10-8 <lIsa produces the unit-step response of the closed-loop sys­
tcm, as shown in Figure 10-69. 

Problem A-l� 

Consider the control system shown in Figure 1 0-70, in which a proportional-plus­
integral controller is used to control the load element consisting of a moment of iner­
tia and viscous friction. Show that if the system is stable this controller eliminates 
steady-slate error in the response to a step reference input and a step disturbance 
input. Show also that if the controller is replaced by an integral controller, as shown 
in Figure 10-71. the system becomes unstable. 

Solution For the control system shown in Figure 1 0-70, the closed-loop transfer func­
tion between C(s) and R(s) in the absence of the disturbance input D(s) is 

K" 
K + -

C(s) P T;s 
R(s) = , K" 

Js- + bs + Kp + -
T,s 

D(s) 

C(s) 

Figure 10-70 Proportional-plus-integral control of a load clement consisting of 
moment of inertia and viscous friction. 
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C(s) 

Figure 10--71 Integra! control of a load element consisting of moment of 
inertia and viscous friction. 

TIle error signal can be obtained from 

£(s)  R(s) - C(s) 
R(s) R(s) ., Kp 

is- + bs + Kp + -
7fs 

Hence, for the unit-step input R(s) = l/s, 

£(s) � 
J 52 + bs 1 

., Kp S 
is- + bs + Kp + -

7js 

If the system is stable, the steady-slate error css can be obtained as follows: 

lS2 + bs 
e" � l im s£(s) � lim K � 0 

s-o s-o P 152 + bs + Kp + -
TiS 

For the system shown in Figure 10-70, the closed-loop transfer function between 
C(s) and D(s) in the absence of the reference input R(s) is 

C(s) 
D(s) 

The error signal is obtained from 

£(s) � -C(s) 

s 

s ---::.....----;-K;- D( s )  
J 5"; + bs2 + K s + ---.!!.. /' 7j 

If the system is stable, the steady-state crror ess in the response to a step disturbance 
torque of magnitude D [D(s) � Dis] is 

e � lim s£(s) ss s--o 

_.'12 D 
� l im � 0 s-o ., Kp 5 

is] + bs- + Kps + -
T, 

Thus, the steady-state error to the step disturbance torque is zero. 
If the controller were an integral controller, as in Figure 10-71, then the system 

would always become unstable, because the characteristic equation 

lsJ + bs2 + K = O 
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will have at least onc root with a positive real part. Such an unstable system cannot be 
used in practice. 

Note that in the system of Figure 10-70, the proportional control action tends to 
stabilize the system, while the integral control action tends 10 eliminate or reduce 
steady·state error in response to various inputs. 

Problem A-10-5 

Determine the values of K and k such that the closed-loop system shown in Figure 
10-72 has a damping ratio { of 0.7 and an undamped natural frequency w" of 4 Tadls. 

Solution The closed-loop transfer function is 

C(s) K 
R(s) 

= 
s' + (2 + Kk)s + K 

Noting that 

W,, = VK. 2{w" = 2 + Kk 

we obtain 

and 

Thus, 

or 

K = w� = 42 = 16 

2 + Kk = 2{w" = 2 x 0.7 x 4 = 5.6 

R(s) @-@--+ + - -

Kk = 3.6 

k = 3.6 = 0 225 16 . 

l..-_--' 

Figure 10-72 Closed-loop sysrem. 

Problem A-10-6 

C(s) 

Determine the values of K and k of the closed-loop system shown in Figure 1 0-73 so 
that the maximum overshoot in unit-step response is 25% and the peak lime is 2 s. 
Assume that J = 1 kg_m2. 

Solution The closed-loop transfer function is 

C(s) K 
R(s) 

= 1s' + Kks + K 
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R(s) @--@--
- +  + - -

LG 
Figure 10--73 Closed-loop system. 

Substituting J = 1 kg_m2 into this last equation, we have 

Note that 

C(s) 
= K 

R(s) s' + Kks + K 

WI! = VK. 
The maximum overshoot M p is 

M - -'1f/� p - e 

which is specified as 25%. Hence. 

e-M� = 0.25 
from which it follows that 

or 

!: = 0.404 
The peak time tp is specified as 2 s, so 

1 = � = 2 
P W(t 

or 

Wt/ = 1.57 

The undamped natural frequency WII is then 

Therefore, we obtain 

w =  
W

d = 1.57 = 1 72 " VI="? VI - 0.404' . 

K = w� = L7i� = 2.95 N-m 

k = 
2!:w" = 2 X 0.404 X 1 .72 = 0.471 s 

K 2.95 

C(s) 
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Problem A-I0-7 

When the closed-loop system shown in Figure 10-74(a) is subjected to a unit-step 
input, the system output responds as shown in Figure 10-74(b). Detennine the values 
of K and T from the response curve. 

Solution The maximum overshoot of 25.4 % corresponds to , = 0.4. From the re­
sponse curve, we have 

Consequently, 

It follows that 

'TT 7T 
l,, = w(/ 

= 
W11� 

WI! = 1.143 

From the block diagram, we have 

from which we obtain 

C(I) 

o 3 

(a) 

0.254 

(seconds) 

(b) 

C(s) 

R(s) 

w" = Jf. 
C(s) 

I 2Tw = -!> /I T 

Figure 10-74 (a) Closed-loop sys­
tem: (b) unit-step response curve. 
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111crefore, 
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1 I T = - =  = 1 094 2(w" 2 x 0.4 x 1.143 . 

K = w;,T = 1 . 143' x 1 .094 = 1.429 
Problem A-I0-8 

For the closed-loop system shown in Figure 10-75, discuss the effects that varying 
the values of K and b have on the steady-state error in a unit-ramp response. Sketch 
typical unit-ramp response curves for a small value, a medium value, and a large 
value of K. 
Solution The closed-loop transfer function is 

Therefore. 

C(s) K 
R( s) J s' + bs + K 

£(s) R(s) - C(s) 
R(s) R(s) ls2 + bs + K  

For a unit-ramp input, R(s) 1/5'- Thus, 

The steady-state error is 

£(5) 

. ( b 
ess = hm sE s) = -J-O K 

We sec that we can reduce the steady-state error ess by increasing the gain K or 
decreasing the viscous-friction coefficient b. However, increasing the gain or decreas­
ing the viscous-f:riction coefficient causes the damping ratio to decrease, with the 
result that the transient response of the system becomes more oscillatory. On the one 
hand, doubling K decreases ess to half its original value, whereas ( is decreased to 
0.707 of its original value, since ( is inversely proportional to the square root of K. On 
the other hand, decreasing b to half its original value decreases both ess and ( to half 
their original values. So it is advisable to increase the value of K rather than decrease 
the value of b. 

After the transient response has died out and a steady state has been reached, 
the output velocity becomes the same as the input velocity. However, there is a 
steady·state positional error between the input and the output. Examples of the 
unit·ramp response of the system for three different values of K are illustrated in 
Figure 1 0-76. 

C(s) 

Figure 10-75 Closed-loop system. 
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,(I) 
c(/) Large K 

Medium K 

Small K 

o 

Problem A-I0-9 

Consider the following characteristic equation: 

s"' + Ks3 + 52 + S + I = 0 

Determine the range of K for stability. 

Solution The Routh array of coefficients is 

5 4 

5' 
52 

51 

5° 

For stability, we require that 

I 
K 

K - I 
K 

K' 
0 - ---

K -

K > 0 

K - I -- > 0  
K 
K' 

- -- > 0  K - 1 

I 
0 

0 

585 

Figure 10-76 Unit-ramp 
response curves for the sys­
tem shown in Figure 10-75. 

From the first and second conditions. K mllst be greater than unity. For K > 1. notice 
that the term 1 - f K2j( K - "1 )  I is always negative, since 

K - I - K' 
K - 1 

--_I _+_K...:' (c-I_-_K---,-) < 0  K - I 

lllUS. the three conditions cannot be fulfilled simultaneously. lllcreforc. there is no 
value of K that allows stability of the system. 
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Problem A-IO-IO 

A simplified form of the open-loop transfer function of an airplane with an autopilot in 
the longitudinal mode is 

K(5 + 1 ) 
G(5) N (5) = ----''"',--'--­

s(s - 1 ) (s- + 45 + 16) 

Determine the range of the gain K for stability. 

Solution The characteristic equation is 

or 

which can be rewritten as 

G(s)N(s) + 1 = a 

___ K"':('-c5
_
+--,1 )'

-
--

+ 1 = a 5(S - 1 ) (s' + 45 + 16) 

5(S - 1 ) (5' + 4s + 16) + K(s + 1) = 0 

or 

5' + 3s3 + I2s' + (K - 16)s + K = a 
The Routh array for this characteristic equation is 

5' 1 1 2  K 
53 3 K - 16  a 
, 52 - K s- --- K a 3 

51 -K' + 59K - 832 
52 - K a 

SU K 

The values of K that make the 5 1 term in the first column of the array equal to zero are 
K = 35.68 and K = 23.32. Hence, the fourth term in the first column of the array 
becomes 

-(K - 35.68)(K - 23.32) 
52 - K 

The condition for stability is that all terms in the first column of the array be positive. 
Thus, we require that 

52 > K 
35.68 > K > 23.32 

K > a 

from which we conclude that K must be greater than 23.32, but smaller than 35.68, or 

35.68 > K > 23.32 

A root-locus plot for this system is shown in Figure 10-77. From the plot, it is clear that 
the system is stable for 35.68 > K > 23.32. 
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jw 

-6 -4 

Figure 10-17 Root-locus plot. 

Problem A-lil-ll 

A control system with 

K G(s) = '
( I ) ' s s + 

H(s) = I 

is unstable for all positive values of the gain K. 
Plot the root loci of the system. Using the plot, show that the system can be sta­

bilized by adding a zero on the negative real axis or by modifying G(s) to G,(s), 
where 

G (s) -
-,K,.:-( s_+_a-,-) 

, - s'{s + 1 )  

Solution A root-locus plot for the system with 

G(s) _ 
K 

- s'(s + I )  

( 0  " a < I )  

H(s) = 1 

is shown in Figure 10-78(a). Since two branches lie in the right half-plane, the system is 
unstable for any value of K > O. 

The addition of a zero to the transfer function G(s) bends the right half-plane 
branches to the left and brings all root-locus branches to the left half-plane, as shown in 
the root-locus plot of Figure 10-78(b). Thus, the system with 
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K(s + a) 
G1 = , , r(s + 1) 

H(s) � 1 (0 s a < 1 )  

is stable for aU K > O. 

•• K < 
>. -e c 
'0;, e 
E 

� 
.;; 
< 
t-0 c 
'Qh 0 
E 

Root-Locus Plot of G(s) = K�s'(s + I»), H(,) = I 
2 ,-��--��--���--. 

1.5 

0.5 

0 

-0.5 

-I 
-1.5 

-2
_2 -1.5 -I -0.5 0 0.5 

Real Axis 
(a) 

1.5 2 

Root-Locus Plot of G(,) = K(, + 0.5)/[s'(, + 1») , fI(,) = I 2 r-��--��--���� 
1.5 

1 

0.5 

O 

-0.5 f 
-I 

-1.5 
Figure 10--78 (a) Root-locus plot of the 
system with G(,) = K/[,'(, + 1») and 
H(s) = 1; (b) root-locus plot of the sys­
tem with G,(,)= K(, + a)/[,'(, + 1») 
and H(s) = 1 , where a = 0.5. 

� ���7--7�7-���-7�� 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Real Axis 
(b) 

Problem A-l(l-U 

Consider the control system shown in Figure 10-79. Plot the root loci for the system. 
Then determine the value of the gain K such that the damping ratio { of the dominant 
closed-loop poles is 0.5. Using MATLAB, determine all closed-loop poles. Finally, plot 
the unit-step response curve with MATLAB. 
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Figure 10-79 Control system. 

Solution TIle open-loop transfer function is 

Hence, for this system, 

K 
G(s) = ,  _ s(s- + 4s + )) 

num = I I I  
den = 1 1  4 5 01 

589 

MATLAB Program 10-9 produces a rOOl-locus plot for the system, as well as the 
( = 0.5 line (a line radiating frorn the origin and having an angle of 60° from the nega­
tive real axis if the axes are square). The root-locus plot is shown in Figure 10-80. 

MA TlAB Program 1 0-9 

» num = Il l ; 
» den = 1 1  4 5 01; 
» K1 = 10:0.001 :2 .51 ;  K2 = 12.5:0.01 : 1 001; K3 = 1 1 00:0.5 : 1 0001; 
» K  = IK1 K2 K3 1 ;  
» Ir, KI = rlocus(num,den,K); 
» plot(r, '- ' )  
» axisCequal'); v = [-4 4 -4 4[; axis(v) 
» hold 
Current plot held 
» x  = 10 -2]; y = [0 3 .464]; l ine(x,y) 
» grid 
» title C Roat-Locus Plot') 
» xlabelCReal Axis'); ylabelC lmaginary Axis') 
» text(-3 .5,2.5 , ' \zeta = 0.5') 
» hold 
Current plot released 

Next. we shall determine the value of the gain K such that the dominant closed-loop 
poles have a damping ratio { of 0.5. We may write the dominant closed-loop poles as 

s = x ± j'v3x 
where x is an unknown constant to be determined. Since the characteristic equation for 
the system is 

53 + 4s2 + 5s + K = 0 

substituting s = x + jV3x into this last equation, we obtain 

(x + jV:lX)3 + 4(x + jV:lx)' + 5(x + jV:lx) + K = a 
or 

-8x3 - 8x' + 5x + K + 2V:lj(4x' + 2.Sx) = a 
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Root-Locus Plot 
4 

3 
, = 0.5 

2 
'-.;; 

<: 
1:-" 0 .� 0 
.§ -I 

-2 

-3 

-4-4 -3 -2 -I 0 2 
J'igurc 10-80 Root-locus plol. Real Axis 

Equating the real part and imaginary part to zero, respectively, we get 

-8x3 - 8x2 + 5x + K = 0 
4x' + 2.5x = 0 

Noting that x '¢ 0, we obtain, from Equation ( 10--54), 
4x + 2.5 = 0 

or 

x = -0.625 
Substituting x = -0.625 into Equation (10-53) , we get 

K = 8x3 + 8x2 - 5x 
= 8( -0.625)3 + 8( -0.625)' - 5( -0.625) 
= 4.296875 

lllUS, we determine that K equals 4.296875. 

3 4 

( 10-53) 
(10-54) 

To determine all closed-loop poles. we may enter MATLAB Program 10-10 into 
the compulCr. 

MAHAB Program 1 0-1 0 

p = 11 4 5 4.2968751; 
rOO(5(p) 
ans = 

-2 .7500 
-0.6250 + 1 .0825i 
-0.6250 - 1 .0825i 
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Unit- Step Respon se 
1 .4 r-�-�-��--'-�-�-r-�-...., 
1 .2 

0.8 

0.6 

0.4 

0.2 

0 
0 2 3 4 5 

r (sec) 
6 7 8 9 

Figure 10-81 Unit-step response. 

Thus.lhe closed-loop poles are located al S � -0.625 ± jl .0825 and S � -2.75. 
111e unit-step response curve can be plotted by entering MATLAB Program 10-11 

into the computer. The resulting unit-step response curve is shown in Figure 10-8 1 .  

MA HAB Program 1 0-1 1 

» num = [4.2969[; 

» den = [1 4 5 4.29691; 
» step[num,den) 
» grid 
» title( 'Unit-Step Response') 
» xlabel('t') 
» ylabel('Output') 

Problem A-IO-13 

Consider the system shown in Figure '10-82. Design a compensator such that the domi­
nant closed-loop poles arc located at s = -2 ± j2V3. Plot the unit-step response 
curve of Ihe designed system with MATLAB. 

Solution From Figure 10-83(a), if the closed-loop pole is to be located at 
s = -2 + j2V3, the sum of the angle contributions of the open-loop poles (at s = 0 
and s = -2) is - 120° - 90° = -210°. This means that. to have the closed-loop pole at 

Figure J0-82 Conlroi syslcm. 
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s = -2 + j2,f] 
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jw 
s = -2 + ]2{3 

jw 

j4 '" j4 

j3 ]3 

j2 
30· 

jl 
90· :-"\ 120· 

-4 -3 -2 -I 0 (]' -4 -3 -2 -I 0 
-jl -jl 

(a) (b) 

Figure 10-83 (a) Open·1oop poles and a desired closed-loop pole; (b) compensator pole-zero con· 
figuration to contribute phase IC<ld angle of 30°, 

s = -2 + j2Y3, we must add 30° to the opcn-Ioop transfer function. Stated different­
ly, the angle deficiency of the given open-loop transfer function at the desired closed­
loop pole 5 � -2 + j2V3 is 

180' - 120' - 90' � -30' 

The compensator must contribute 30°. A compensator that contributes a positive angle 
is called a lead compeflsaror, a possible form of which is given by 

5 + a 
G,(5) � K --

b 5 + 

Let us choose the zero of the lead compensator at s = -2. Then the pole of the com­
pensator must be located at s = -

4 
in order to have a phase lead angle of 30°. [See 

Figure 10-83(b).] thus, 

5 + 2 
GA5) � K -­

s + 4 

The gain K is determined from the magnitude condition 

or 

Hence, 

IK 5 + 2  _ 5  
5 + 4 5(0.05 + I � 1 

1 )  s=-2+j2V3 

1 5(5 

+ 
4

) 1 K � � 1.6 
10 s=-2+j2VJ 

s + 2 
1.6 -­

s + 4 
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The open-loop transfer function of the compensated system is 

5 
6 5 + 2  10 

G (5) = 1 - -, 5(0.55 + 1 )  . 5 + 4 5(5 + 2) 
16 

5(5 + 4) 

Next. we shall obtain unit-step responses of the original system and the compen­
sated system. TIle original system has the following closed-loop transfer function: 

C(5) 10 
R(5) = 52 + 25 + 10 

The compensated system has the following closed-loop transfer function: 

C(5) 16 
R(5) 5' + 45 + 16 

MATLAB Program 10--12 plots the unit-step response curves of the original and com­
pensated systems. The resulting unit-step response curves are shown in Figure 10-84. 

MATlAB Program 1 0-1 2 

» num = 1 101 ;  den = [1 2 
» numc = [ 1 61; denc = [ 1  
» t = 0:0.01 :5; 
» cl = step(num,den,t); 
» c2 = step(numc,denc,t); 
» plot(t,cl , ' ,',t,c2,'·I ) 
» grid 

1 01 ;  
4 1 61 ;  

» title( 'Unit-5tep Responses of Original System and Compensated System') 
» xlabel('t (sec)'); ylabel('Outputs') 
» text(I .75, 1 .2 7, 'Original system') 
» text(l .75,1 . 1 2 , 'Compensated system') 

Unit-Step Responses of Original System 
and Compensated System 

1.4 ,-�-_�-...,.-:_--,-:�_�-�-
1.2 

S 0.8 
a. '" 0 0.6 

0.4 

0.2 

Original system 

1.5 2 2.5 3 3.5 4 4.5 5 
t (sec) 

Figure 10-84 Unit-step 
response curves. 
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Problem A-IO-14 

Consider the system shown in Figure 10-85. Design a compensator such that the domi­
nant closed-loop poles are located at s = - 1 ± j1. Then obtain the unit-step and unit­
ramp responses of the uncompensated and compensated systems. 

Solution For a desired closed-loop pole at s = - 1  + j I, the angle contribution of the 
two open-loop poles at the origin is - 1350 - 135° = - 270°. Hence, the angle deficien­
cy is 

180' - 135' - 135' = -90' 

The compensator must contribute 900• 
Let us use a lead compensator of the form 

s + a 
G,(s) = K --b 

s + 

and let us choose the zero of the lead compensator at s = -0.5. (Note that the choice 
of the zero at s = -0.5 is, in a sense, arbitrary. The zero should not be too close to the 
origin and should be located somewhere between -0.4 and -0.8, so that the lead com­
pensator can provide a 90' phase lead.) To obtain a phase lead angle of 90', the pole of 
the compensator must be located at s = -3. (See Figure 10-86.) Thus, 

Figure l()....SS Control system. 

Figure 10-86 Pole-zero 
location of lead compen­
sator contributing 90° 
phase lead. 

-3 

s + 0.5 
G,(s) = K -­

s + 3 

-2 

Lead 
compensator 

-I 

Space 
vehicle 

jw 

j2 

jl 

o 

-jl 

(]" 
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where the gain K must be determined from the magnitude condition 

or 

I K s + 0.5 �1 � 1 
s + 3 52 s=-l+ji 

K � I (S + 3)S' 1 � 4  s + 0.5 s'=-I-}1 

Hence, the lead compensator becomes 

G (s) � 4 s + 0.5 c s + 3 
Then the feed forward transfer function becomes 

1 4s + 2 G,(s),. � 3 ' s- s + 3s-
A root·locus plOI of the system is shown in Figure 10-87. 

Note that the closed-loop transfer function is 

C(s) 4s + 2  
R(s) � ,3 + 3,' + 4s + 2 

The closed-loop poles arc located at s = - 1  ± j l  and s = -1 .  

595 

Next, we shall obtain the unit-step and unit-ramp responses of the uncompensat­
ed and compensated systems. MATLAB Program 10-13 obtains the unit-step response 
curves, which aTC shown in Figure 10-88. 

MATLAB Program 10-14 obtains the unit-ramp response curves, which arc 
shown in Figure 10-89. 

Root-Locus Plot of (45 + 2)/(s' + 3-") 
3 r----r----r--,rr----r----r---, 

Closed-loop poles 
2 

-2 

-3_';-4 ---_""C3;---_-';;2,---'-_';-1 ---;.O,--7"-----!2 
Real Axis Figure 10-87 Root-locus plot. 
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Unit-Step Responses o f  Uncompensated 
and Compensated Systems 

2 ,---__ �� __ ��--� ____ �----, 

Figure 10-88 Unit­
step response curves 
of uncompensated and 
compensated systems. 

1 .8 
1 .6 
1.4 

"" 1.2 
:5 
9- 1 " 
0 0.8 

0.6 
0.4 
0.2 

MATlAB Program 1 0-1 3 

» num = 1 1 1 ;  den = 1 1  0 1 1; 

, 
! 

Unc�mpcnsale.d 
system 

! \ 

\ 
Compensated \ 
system 

2 4 6 
, (sec) 

i 

, 
f 

f 
f 

8 

» numc = 14 2 1 ;  denc = 1 1  3 4 2 1 ;  
» t = 0:0.02 : 1 2; 
» c1 = step(num,den,t); 
» c2 = slep(numc,denc,t); 
» plot{l,cl , 1 . I ,t,e2, 1_ 1 ) 
» grid 

\ 

10 12 

» title('Unit-Step Responses of Uncompensated and Compensated Systems') 
» xlabel('t (sec) '); ylabel('Outputs') 
» text( 1 .95,0.73,'Compensated'); text( 1 .95,0.6,'system') 
» text(4.9, 1 .65, 'Uncompensated'); text(4. 9, 1 .53,  'system') 

MATlAB Program 1 0-1 4 

» num = 1 1 1; den = 1 1  0 
» numc = 14 21; denc = 1 1  
» t = 0:0.02 : 1 5; 
» c1 = step(num,den,t); 
» c2 = step(numc,denc,t); 
» plot(t,I, 1 , 1 ,I, c 1 , 1 _, I ,t,c2, 1_ 1 ) 
» grid 

01; 
3 4 2 OJ; 

» title('Unit-Ramp Responses of Uncompensated and Compensated Systems') 
» xlabel('t (sec)'); ylabel('lnput and Outputs') 
» lext(6.3, 1 .85, 'Compensated'); text(6.3 ,0.85, 'system') 
» text(l 0.3,7.2, 'Uncompensated'); text(1 0.3,6.2, 'system') 
» text(1 2 .8, 1 0. 9, ' lnpuI ' )  
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Unit-Ramp Responses of Uncompensated 
and Compensated Systems 15 r--------=������r_--------� 

, 
-; 10 
::-
o 
"" " o 
;; 
§- 5 

""'-- Uncompensated 
_+-' system 

�---- Compensated 
system 

o ��------�--------�--------� Figure 10-89 Unit-ramp response 
curves of uncompensated and com­
pensated systems. 

o 5 1 0  1 5  
t (sec) 

Problem A-lO-IS 

Consider the system shown in Figure 10-90, which represents PID control of a second­
order plant G(s). Assume that disturbances D(s) cntcr the system as shown in the 
diagram. It is assumed that the reference input R(s) is normally held constant. and 
the response characteristics to disturbances <lrc a vcry important consideration in this 
system. 

Design a control system such that the response to any step disturbance will be 
damped Qui quickly (in 2 to 3 s in terms of the 2% settling time). Choose the configu­
ration of the closed-loop poles such that there is a pair of dominant closed-loop poles. 
Thcll obtain the response to the unit-step disturbance input. Obtain also the response 
to the unit-step reference input. 

Solution TIle PID controller has the transfer function 

K(t1s + 1 )(bs + 1) 
G,(s) = 

s 

O(s) 

� K(as + 1}(bS + I ) � ®-- -=----,-l ___ J-__ T"C';'(s.;.· )� 
PID Controller Plant G(s) 

Figure 10-90 PI D-conlrolled system. 
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For the disturbance input i n  the absence of  the reference input, the closed·loop trans. 
fer function becomes 

Cd(5) 5 
0(5) 

= 5(-" + 3.6-, + 9) + K(n5 + 1 )(b5 + I )  
5 

53 + (3.6 + Knb)5' + (9 + Kn + Kb)5 + K 
( 10-55) 

The specification requires that the settling lime of the response to the unit-step distur­
bance be 2 to 3 s and that the system have reasonable damping. We may interpret the 
specification as ( = 0.5 and w" = 4 rad/s for the dominant closed-loop poles. We may 
choose the third pole at s = - 10 so that the effect of this real pole on the response is 
small. Then the desired characteristic equation can be written as 

(5 + 10)(5' + 2 x 0.5 x 4s + 4') = (5 + 10)(5' + 45 + 16) 
= 53 + 1452 + 565 + 160 

TIle characteristic equation for the system given by Equation (10-55) is 

5' + (3.6 + KGb)5' + (9 + Kn + Kb)5 + K = 0 
Hence, we require 

which yields 

3.6 + Knb = 14 
9 + Kn + Kb = 56 

K = 160 

nb = 0.065, n + b = 0.29375 
The transfer function of the PID controller now becomes 

K[nb5' + (n + b)5 + iJ 
G,( 5 )  = ---'-----'-----'------' 

5 

160(0.065s' + 0.293755 + I )  
, 

10.4(5' + 4.5192s + 15.385) 
5 

\Vith this PID controller. the response to the disturbance is given by 

(5 + 

s 
, 0(5) 

14s- + 565 + 160 
, 

, O(s) 1O)(s- + 4, + 16)  

Clearly, for a unit-step disturbance input. the stcady-state output is  zero, sincc 

5' I 
lim C,,(I) = lim 5Cd(5) = lim , ) 

= 0 
,_00 ,-0 ,-0 (5 + 1O)(s- + 45 + 16  5 

The response to a unit-step disturbance input can be obtained easily with MATLAB 
Program 10-15. which produces the response curve shown in Figure 10-91 (a). From the 
response curve, we sec that the settling time is approximately 2.7 s. Thus, the response 
damps out quickly and the system designed here is acceptable. 
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x 10-3 Response to Unit-Step Disturbance Input 
1 4 r-�--�-'-----'��� __ �--�-
12 

� 10 

8 8 
= 
.E 6 � 6 4 

;; 2 
Q. 

8 0 

-2 

1.4 

1.2 

;; 
g. 1 .0 
0 u = 

0.8 � 
� 0 '" 0.6 " 

g. 0 ... 6 
0.2 

0 
0 0.5 

1.5 2 2.5 3 3.5 4 �.5 5 
I (sec) 

(a) 

Response to Unit-Step Reference Input 

1.5 2 2.5 3 3.5 � �.5 5 
f (sec) 

(b) 
Figure 10-91 (a) Response 10 unit­
step disturbance input; (b) response 
to unit-slep reference input. 

For the reference input 1'(1), the closed-loop transfer function is 

C,(s) 
= 

R(s) 

10A(s' + 4.5192s + 15.385) 

s3 + 14s' + 56s + 160 

WAs' + 47s + 160 

s3 + 14s' + 56s + 160 

The response 10 a unit-step reference input can also be obtained with the usc of 
MATLAB Program 10-l5. The resulting response curve is shown in Figure J 0-91(b). 
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111e response curve shows that the maximum overshoot is 7.3% and the settling lime is 
1 .7 S. 111C system has quite acceptable response characteristics. 

MATlAB Program 1 0-1 5 

» % ---- Response to unit-step d isturbance i nput -----
» 
» numd = 1 1  
» dend = 11 
» t = 0:0.01 :5; 

0]; 
1 4  56 1 60]; 

» Ic1  ,xl , tl = step(numd,dend,t); 
» plot(t,c1 ) 
» grid 
» title('Response to Un i t-Step Disturbance Input') 
» xlabelCt (sec) ' )  
» ylabelCOutput to Disturbance Input') 
» 
» % ----- Response to uni t-step reference input -----
» 
» numr = 1 1 0.4 47 1 601; 
» denr = 11 1 4  56 1 601; 
» Ic2, x2, tl = step(numr,denr,t); 
» plot(t,c2 ) 
» grid 
» titleCResponse to Un i t-Step Reference Input'l 
» xlabelCt (sec)') 
» ylabelCOutput to Reference Input') 

PROBLEMS 
Proble", 8-10-1 

Simplify the block diagram shown in Figure 10-92 and obtain the transfer function 

C(s)/R(s). 

Figure 10-92 Block 
diagram of a system. 

r;,-t-L:J J C(s) h----'-'-

-+-EJ 
LG 
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Problem 8-10-2 

Simplify the block diagram shown in Figure 10-93 and obtain the transfer function 
C(s)/R(s). 

C(s) 
G, hr---

H, I-----i 

Figure 10-93 Block diagram of a system. 

Problem 8-10-3 

Use the following series and feedback commands of MATLAB to obtain the c1osed­
loop transfer function C(s)IR(s) of the system shown in Figure LO-94: 

sysg = series(sys1 ,sys2) 
sys = feedback(sysg, 11 ) )  

0.55 + 1 f--� C(s) 

sys I sys 2 

Figure 10-94 Control system. 

Problem 8-10-4 

Use the parallel, series, and feedback commands of MATLAB to obtain the c1osed­
loop transfer function C(s)/R(s) of the system shown in Figure l0-95. 

R(s) 
+ )--L-- 5 + ��..",. f----,.---D-®- 10 C(s) 

sIs + l ) (s + 2)  

'---------i O.5s + 1 I--------...J 
Figure 10-95 Control system. 
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Problem 8-10-5 

Derive the transfer function Eo(5)/ Ej(s) of the electronic controller shown in Figure 
10-96. \Vhat is the control action of this controller? 

e· , 
+ 

Figure 10-96 Electronic controller. 

Problem 8-1� 

R, 

+ 

Explain the operation of the speed-control system shown in Figure 10-97. 

Figure 10-97 Speed­
control system. 

Problem 8-10-7 

y 
Fuel -

Engine 

e 

Oil under 
pressure 

w 

Consider a glass-walled mercury thermometer. If the thermal capacitance of the glass 
of the thermometer is negligible, then the thermometer may be considered a first-order 
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'c 

30 

20 

system, and its transfer function may be given by 

0(s) 1 
Ts + 1 

where 9(5) is the Laplace transform of the thermometer temperature 0 and 01J(s) is 
the Laplace transform of the bath temperature (h. both temperatures measured from 
the ambient temperature. 

Assume that a glass-walled mercury thermometer is used (0 measure the tem­
perature of a bath and that the thermal capacitance of the glass is negligible. Assume 
also that the time constant of the thermometer is not known, so it is experimentally 
determined by lowering the device into a pail of water held at l O°e. Figure 10-98 
shows the temperature response observed during the test. [0(0) = 30"C.) Find the 
time constant. If  the thermometer is placed in a bath, the temperature of which is 
increasing linearly at a rate of 10°C/min, how much steady-state error does the ther­
mometer show? 

If the thermal capacitance of the glass of a mercury thermometer is not negligi­
ble, the thermometer may be considered a second-order system and the transfer func­
tion may be modified to 

1 

(T,s + I ) (T,s + I )  
where T\ and T2 are time constants. Sketch a typical temperature response curve (0 vcr­
sus f) when such a thermometer with two lime constants is placed in a bath held at (I 
constant temperature (Jb, where both the thermometer temperature (J and the bath tem­
perature Ob are measured from the ambient temperature. 

to L---�----�--���=-------­ Figure 10--98 Response 
curve for a thermometer 
system. 

o 2 4 6 8 
(seconds) 

Problem B-l(HI 

Obtain the unit-step response of the control system shown in Figure 10--99. 
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�©-I S+ 1 r C(s) 

Figure 10-99 Control system. 

Problem 8-10--9 

Consider a system defined by 

C(s) 

R(s) = 

Determine the values of ( and WI! so that the system responds to a step input with 
approximately 5 %  overshoot and with a settling time of 2 s. 

Problem 8-10--10 

Figure to-LOO shows a position control system with velocity feedback. \Vhat is the 
response c(r) to the unjl step input? 

C(s) 

Figure 10-100 Block diagram of a position control system with velocity 
feedback. 

Problem 8-10--11 

Consider the system shown in Figure 10-101. Determine the value of k such that the 
damping ratio [ is 0.5. Then obtain the rise time fn peak time [p. maximum overshoot 
MI" and settling lime Is in the unit-step response. 

16 R(s) DL....... DL....... 
---.-�� 45-----, 

C(s) 

Figure 10-101 Control system. 
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Problem 8-10-12 

Consider the system shown in Figure 10--102, which involves velocity feedback. Deter­
mine the values of the amplifier gain K and the velocity feedback gain Kh so that the 
following specifications are satisfied: 

1. Damping ratio of the closed-loop poles is 0.5 

2. Seuling lime :s; 2 s 

3. Static velocity error constant Kv � 50 5-1 

4. 0 <  K" < 1 

-+ + K R(s) @--@--

- � 
Figure 10-102 Control system. 

Problem 8-10-13 

C(s) 

Find the response c(c) of the system shown in Figure 1 0--"103 when the input r(r) is a 
unit ramp. Also, find the steady-state error for the unit-ramp response. Assume thai the 
system is underdamped. 

R(s) -+ 

Problem 8-10-14 

C(s) 

Figure 10-103 Block diagram of 

a system. 

Determine the range of the gain K required for the stability of a unity-feedback control 
system whose open·loop transfer function is 

Use Routh's stability criterion. 

Problem 8-10-15 

K 
G( s) - --;--...,--:�--,-::-:­- s(s + I )( s + 5 ) 

Consider the c1osed·loop control system shown in Figure 10--104. Determine the range 
of the gain K required for stability. Plot a root·locus diagram for the system. 
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�tPL-- K(s' . 2s + 4) If---,..-C,,:,(s.:.,)_ � s(s + 4)(s + 6)(; + L .4s + I )  I 
Figure 10-104 Control system. 

Problem 8-10-16 

Consider the system whose open·)oop transfer function is 

K 
C(5) N (5) = -----7'-----

5(5 + 0.5 )(5' + 0.65 + 10) K 
54 + 1.1s3 + 10.352 + 55 

Plot the root loci for the system with MATLAB. 

Problem 8-10-17 

Plot the root loci for the system shown in Figure 1 0-105. Determine the range of the 
gain K required for stability. 

Figure 10-105 COnlrol system. 

Problem 8-10-18 

Consider the system shown in Figure 10-106. Design a compensator such thal 1he dam· 
inan! closed-loop poles are located at s = -1 ± /vi 

Figure 10-106 Control system. 

ProbLem 8-10-19 

Consider the system shown in Figure 10-107. Plot the root loci for the system. Detemline 
the value of K such that the damping ratio { of the dominant closed-loop poles is 0.6. 
lllen determine all closed-loop poles. Plol lhe unit-step response curve with MATLAB. 

Figure 10-107 Control system. 

-------OL..- K � '(5 + 1 )(5 + 4) 
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Problem 8-10-20 

Consider the system shown in Figure 1 0-108. I t  is desired to design a PID controller 
GAs) such that the dominant closed-loop poles are located at s = -1 ± jl. For the 
prD controller, choose a = 0.5, and then determine the values of K and b. Draw a roat­
locus plot with MATLAR 

_R_(S_)�_�
�
I
_

K __ �
_

+
_

a
_
�(

_
s +  __ b)� 

PID control ler 
Gc(s) 

Figure 10-108 PID-controlled system. 

Plant 
G(s) 

C(s) 



Frequency-Domain 
Analys is and Design of 
Control  Systems 

1 1-1 INTRODUCTION 

This chapter deals with the frequency-response approach to the analysis and design 
of control systems. By the term frequency respOllse, we mean the steady-state 
response of a system to a sinusoidal input. 

An advantage of the frequency-response approach is that frequency-response 
tests are, in general, simple and can be made accurately by use of readily available 
sinusoidal signal generators and precise measurement equipment. Often. the trans­
fer functions of complicated components can be determined experimentally by fre­
quency-response tests. 

Frequency-response analysis and design of linear control systems is based on 
the Nyquist stability criterion, which enables us to investigate both the absolute and 
relative stabilities of linear closed-loop systems from a knowledge of their open­
loop frequency-response characteristics. 

In this chapter, we first present Bode diagrams (logarithmic plots). We then 
discuss the Nyquist stability criterion, after which the concept of the phase margin 
and gain margin is introduced. Finally, the frequency-response approach to the 
design of control systems is treated. MATLAB approaches to obtain Bode diagrams 
and Nyquist plots are included in this chapter. 

It is noted that although the frequency response of a control system presents a 
qualitative picture of the transient response, the correlation between the frequency 

608 
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and transient responses is indirect, except in the case of second-order systems. In  
designing a closed-loop system, we adjust the frequency-response characteristic of 
the open-loop transfer function by using several design criteria in order to obtain 
acceptable transient-response characteristics for the system. 

Outline of the chapter. Section 1 1-1 has given introductory remarks. Section 
1 1-2 presents Bode diagrams of transfer-function systems. In  particular, first-order 
systems and second-order systems are examined in detail. The determination of static 
error constants from Bode diagrams is also discussed. Section 11-3 treats plotting 
Bode diagrams with MATLAB. Section 11-4 deals with Nyquist plots and the Nyquist 
stability criterion. The concept of phase margin and gain margin is introduced. Section 
1 1-5 discusses plotting Nyquist diagrams with MATLAB. Finally, Section 1 1 -6 pre­
sents the Bode diagram approach to the design of control systems. Specifically, we dis­
cuss the design of the lead compensator, lag compensator, and lag-lead compensator. 

1 1-2 BODE DIAGRAM REPRESENTATION OF THE FREOUENCY 
RESPONSE 

A useful way to represent frequency-response characteristics of dynamic systems is 
the Bode diagram. (Bode diagrams are also called logarithmic plots of freqllellcy 
respollse.) In this section we treat basic materials associated with Bode diagrams, 
using first- and second-order systems as examples. We then discuss the problem of 
identifying the transfer function of a system from the Bode diagram. 

Bode diagrams. A sinusoidal transfer function may be represented by two 
separate plots, one giving the magnitude versus frequency of the function, the other 
the phase angle (in degrees) versus frequency. A Bode diagram consists of two 
graphs: a curve of the logarithm of the magnitude of a sinusoidal transfer function 
and a curve of the phase angle; both curves are plotted against the frequency on a 
logarithmic scale. 

The standard representation of the logarithmic magnitude of G(jw) is 
20 log IG(jw) I , where the base of the logarithm is 10. The unit used in this represen­
tation is the decibel, usually abbreviated dB. In the logarithmic representation, the 
curves are drawn on semi log paper, using a logarithmic scale for frequency and a lin­
ear scale for either magnitude (but in decibels) or phase angle (in degrees). (The 
frequency range of interest determines the number of logarithmic cycles required 
on the abscissa.) 

The main advantage of using a Bode diagram is that multiplication of magni­
tudes can be converted into addition. Furthermore, a simple method for sketching 
an approximate log-magnitude curve is available. TIle method, based on asymptotic 
approximation by straight-line asymptotes, is sufficient if only rough information on 
the frequency-response characteristics is needed. Should exact curves be desired, 
corrections can be made easily. The phase-angle curves are readily drawn if a tem­
plate for the phase-angle curve of 1. + jw is available. 

Note that the experimental determination of a transfer function can be made 
simple if frequency-response data are presented in the form of a Bode diagram. 
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The logarithmic representation is useful in that it shows both the low- and 
high-frequency characteristics of the transfer function in one diagram. Expanding 
the low-frequency range by means of a logarithmic scale for the frequency is highly 
advantageous, since characteristics at low frequencies are most important in practi­
cal systems. Although it is not possible to plot the curves right down to zero fre­
quency (because log 0 = - co ) , this does not create a serious problem. 

Number-decibel conversion line. A number-decibel conversion line is 
shown in Figure 1 1-1. The decibel value of any number can be obtained from this 
line. As a number increases by a factor of 10, the corresponding decibel value in­
creases by a factor of 20. This relationship may be seen from the formula 

20 log ( K  X 10") = 20 log K + 20n 

Note that, when expressed in decibels, the reciprocal of a number differs from 
its value only in sign; that is, for the number K, 

1 
20 log K = -20 log 

K 

Bode diagram of gain K. A number greater than unity has a positive value 
in decibels, while a number smaller than unity has a negative value. The log-magni­
tude curve of a constant gain K is a horizontal straight line at the magnitude of 20 log 
K decibels. The phase angle of the gain K is zero. Varying K in the transfer function 

iii' 
"'-

� Ol "' ·0 0 0 
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10 
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/ 
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V V 
-40 
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0.1 0.2 0.4 0.6 
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Figure 11-1 Number-decibel conversion line. 
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raises or lowers the log-magnitude curve of the transfer function by the correspond­
ing constant amount, but does not affect the phase angle. 

Bode diagrams of integral and derivative factors. The log magnitude of 
lI(jw) in decibels is 

20 log I
j
� I = -20 log w dB 

The phase angle of l/jw i s  constant and equal to -90". 
If the log magnitude -20 log ,odB is plotted against w on a logarithmic scale. 

the resulting curve is a straight line. Since 

( -20 log lOw) dB = ( -20 log w - 20) dB 

the slope of the line is -20 dB/decade. 
Similarly, the log magnitude of jw in decibels is 

20 log Ijwl = 20 log w dB 

The phase angle of jw is constant and equal to 90". The log-magnitude curve is a 
straight line with a slope of 20 dB/decade. Figures 1 1 -2 and 1 1 -3 show Bode dia­
grams of lIjw and jw, respectively. 

Bode diagram of first-order system. Consider the sinusoidal transfer 
function 

X(jw) 1 
-- = G (j w) = :::-:--=------:­
P(jw) Tjw + 1 

dB 
40 

20 

o 
-20 

- 40 � __ � __ � __ � __ � 
O.t to tOO w 

t.1 90'1-----------

-�80' L __ ___' __ _'_ _ _'__� O. t to tOO w 
Figure U-2 Bode diagram of 
G(jw) = lI(jw). 
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dB 

40 

20 

o 
Slope = 20 dB/decade 

-20 

- 40 � __ � __ � ____ �� 
0.1 10 100 w 

Figure 11-3 Bode diagram of 
G(jw) = jw. 

'��--------------
0.1 10 100 w 

The log magnitude of this first-order sinusoidal lransfcr function, in decibels, is 

20 log I . 
1 I = -20 log V w'T' + 1 dB 

TJw + ] 
For low frequencies such that w "" liT, the log magnitude may be approximated by 

-20 log V w'T' + 1 '" -20 log 1 = 0 dB 

11ll1s, the log-magnitude curve at low frequencies is the constant O-dB line. For high 
frequencies such that w i> l/T, 

-20 log V w'T' + 1 '" -20 log wT dB 

111is is an approximate expression for the high-frequency range. At w = liT, the log 
magnitude equals 0 dB; at w = lO/T, the log magnitude is -20 dB. Hence, the value 
of -20 log wT dB decreases by 20 dB for every decade of w. For w i> l/T, the log­
magnitude curve is therefore a straight line with a slope of -20 dB/decade (or 
-6 dB/octave). 

The preceding analysis shows that the logarithmic representation of the fre­
quency-response curve of the factor l/(Tjw + 1 )  can be approximated by two 
straight-line asymptotes: a straight line at 0 dB for the frequency range 
o < w < liT and a straight line with slope -20 dB/decade (or -6 dB/octave) for 
the frequency range liT < w < 00. 11,e exact log-magnitude curve, the asymptotes, 
and the exact phase�angle curve are shown in Figure 1 1-4. 

The frequency at which the two asymptotes meet is called the corner frequen­
cy or break frequency. For the factor lI(Tjw + 1 ), the frequency w = liT is the cor­
ner frequency, since, at w = liT, the two asymptotes have the same value. (TIle 
low-frequency asymptotic expression at w = l/T is 20 log 1 dB = 0 dB, and the 
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Figure 11-4 Log-magnitude curve together with the asymptotes and phase-angle 
curve of I/(jwT + I ) .  

20 
T 
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high-frequency asymptotic expression at w = liT is also 20 log 1 dB = 0 dB.) The 
corner frequency divides the frequency-response curve into two regions: a curve for 
the low-frequency region and a curve for the high-frequency region. The corner fre­
quency is very important in sketching logarithmic frequency-response curves. 

The exact phase angle </> of the factor 1/(Tjw + 1 )  is 

</> = -tan-1 wT 

At zero frequency, the phase angle is 0'. At the corner frequency, the phase angle is 

At infinity, the phase angle becomes -90°, Because it is given by an inverse-tangent 
function, the phase angle is skew symmetric about the inflection point at </> = -45'. 

TIle error in the magnitude curve caused by the use of asymptotes can be cal­
culated. The maximum error occurs at the corner frequency and is  approximately 
equal to -3 dB, since 

-20 log "\1'1+1 + 20 log 1 = - 10 log 2 = -3.03 dB 
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111e error at the frequency one octave below the corner frequency, that is, at 
w � 1I(2T), is 

� v'5 -20 log -V 4 + 1 + 20 log 1 � -20 log 2 � -0.97 dB 

The error at the frequency one octave above the corner frequency, that is, at 
w � 2/T, is 

v'5 
-20 log v'2'+1 + 20 log 2 � -20 log / � -0.97 dB 

111US, the error one octave below or above the corner frequency is approximately 
equal to - 1  dB. Similarly, the error one decade below or above the corner frequency 
is approximately -0.04 dB. The error, in decibels, involved in using the asymptotic 
expression for the frequency response curve of 1/(Tjw + 1 )  is shown in Figure 1 1-5. 
The error is symmetric with respect to the corner frequency. 

Since the asymptotes are easy to draw and are sufficiently close to the exact 
curve, the use of such approximations in drawing Bode diagrams is convenient in  
establishing the general nature of  the frequency-response characteristics quickly 
and with a minimum amount of calculation. Any straight-line asymptotes must have 
slopes of ±2011 dB/decade (II � 0, 1 , 2, . . .  ); that is, their slopes Illust be 0 
dB/decade, ±20 dB/decade, ±40 dB/decade, and so on. If accurate frequency­
response curves are desired, corrections may easily be made by referring to the 
curve given in Figure 11-5. In practice, an accurate frequency·response curve can be 
drawn by introducing a correction of 3 dB at the corner frequency and a correction 
of 1 dB at points one octave below and above the corner frequency and then con­
necting these points by a smooth curve. 

Note that varying the time constant T shifts the corner frequency to the left or 
to the right, but the shapes of the log-magnitude and the phase-angle curves remain 
the same. 

The transfer function 1/(Tjw + 1 )  has the characteristics of a low-pass filter. 
For frequencies above w � liT, the log magnitude falls off rapidly toward -00, 

Figure 11-5 Log-magnitude error in the 
asymptotic expression of the frequency­
response curve of II(jwT + I } .  

- 1 

dB -2 

-3 

-4 
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essentially because of the presence of the time constant. In the low-pass filter, the 
output can follow a sinusoidal input faithfully at low frequencies, but as the input 
frequency is increased, the output cannot follow the input because a certain amount 
of time is required for the system to build up in magnitude. Therefore, at high fre­
quencies, the amplitude of the output approaches zero and the phase angle of the 
output approaches -90°. Therefore, if the input function contains many harmonics, 
then the low-frequency components are reproduced faithfully at the output, while 
the high-frequency components are attenuated in amplitude and shifted in phase. 
Thus, a first-order element yields exact, or almost exact, duplication only for con­
stant or slowly varying phenomena. 

The shapes of phase-angle curves are the same for any factor of the form 
(Tjw + 1 )'1. Hence, it is convenient to have a template for the phase-angle curve 
on cardboard, to be used repeatedly for constructing phase-angle curves for any 
function of the form (Tjw + 1 )·1 If no such template is available, we have to locate 
several points on the curve. The phase angles of ( Tjw + 1 )±l are 

±45° at w = -
T 

±26.6° 
1 

at w = 2T 

±5.7° 1 
at w = --

l OT 

±63.4° 
2 

at w = -
T 

±84.3° 
10 

at w = -
T 

Bode diagram of second-order system. Next, we shall consider a second­
order system in the standard form 

The sinusoidal transfer function G(jw) is 

or 

2 
G( ' ) 

w" 
JW = 

( ' )' ? ( . ) JW + _(WI! JW 

G(jw) 
1 (j�)' 

+ 2?(j�) + 1 
Wfl Wn 

( 1 1- 1 )  

I f  ? > 1 ,  G(jw) can be expressed as  a product of  two first-order terms with real 
poles. If 0 < ? < 1, G(jw) is a product of two complex-conjugate terms. Asymptot­
ic approximations to the frequency-response curves are not accurate for this G(jw) 
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with low values of (, because the magnitude and phase of C(jw) depend on both the 
corner frequency and the damping ratio r 

Noting that 

iC(jw) i 

or 

iC(jw) i 

1 (j-� Y + 2((j-�-) + 1 
W" W/I 

1 

�( 1 - :;,y + (2(:J 
we may obtain the asymptotic frequency-response curve as follows: Since 

(1 1-2) 

1 I( w2)' ( w )2 
20 log ( . w )' ( . w ) = -20 log \ 1 -

w� + 2( w" 
J- + 2( J- + 1 

WI! WI! 

for low frequencies such that w � w'" the log magnitude bccomes 

-20 log 1 = 0 dB 

The low-frequency asymptote is thus a horizontal line at 0 dB. For high frequencies 
w � OJ'I> the log magnitude becomes 

w2 w -20 log - = -40 log - dB 
w� WI! 

The equation for the high-frequency asymptote is a straight line having the slope 
-40 dBJdecade, since 

10 w w 
-40 log - = -40 - 40 10g -

WI! OJ" 

The high-frequency asymptote intersects the low-frequency one at w = w" since at 
this frequency 

w" 
-40 log - = -40 log 1 = 0 dB w" 

This frequency, w,,, is the corner frequency for the quadratic function considered. 
The two asymptotes just derived are independent of the value of r Near the fre­

quency w = w,,, a resonant peak occurs, as may be expected fTOm Equation ( 1 1-1). 
The damping ratio ( determines the magnitude of this resonant peak. Errors obvious­
ly exist in the approximation by straight-line asymptotes. The magnitude of the error 
is large for small values of r Figure 1 1-6 shows the exact log-magnitude curves, 
together with the straight-line asymptotes and the exact phase-angle curves for the 
quadratic function given by Equation (1 1-1) with several values of r If corrections 
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Figure 11--6 Log-magnitude curves together with the asymptoles and phase-angle 
curves of the quadratic sinusoidal transfer function given by Equation ( 1 1-1). 
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are desired in the asymptotic curves, the necessary amounts of correction at a suffi­
cient number of frequency points may be obtained from Figure 11-6. 

The phase angle of Ihe quadratic funclion given by Equation (1 1-1) is 

w 
2(-

1 -1 WI! 

(j.!!!...) 2 
+ 2((j.!!!...) + 1 

= 
-tan 

1 _ (.!!!...)2 WI! Wn WI! L-�� ____ �� __ _ 

( 1 1-3) 
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The phase angle is a function of both w and r At w = 0, the phase angle equals 0°. 
At the corner frequency w = w", the phase angle is -90°, regardless of ?, since 

d> = -tan-I(2t) = -tan-loo = -90° 

At w = 00, the phase angle becomes -180°. The phase-angle curve is skew sym­
metric about the inflection point, the point where 1> = -90°. There are no simple 
ways to sketch such phase curves; one needs to refer to the phase-angle curves 
shown in Figure 1 1-6. 

To obtain the frequency-response curves of a given quadratic transfer func­
tion, we must first determine the value of the corner frequency w" and that of the 
damping ratio r 11,en, by using the family of curves given in Figure 11-6, the fre­
quency-response curves can be plotted. 

Note that Figure 11-6 shows the effects of the input frequency w and the 
damping ratio ? on the amplitude and phase angle of the steady-state output. From 
the figure, we see that, as the damping ratio is increased, the amplitude ratio 
decreases. The maximum amplitude ratio for a given value of C occurs at a frequen­
cy that is less than the undamped natural frequency w'" Notice that the frequency w, 
at which the amplitude ratio is a maximum occurs at 

w, = w"V1 - 2?2 

This frequency is called the resonant frequency. 
The value of w, can be obtained as follows: From Equation ( 1 1-2), since the 

numerator of IC(jw) I is constant, a peak value of IC(jw) I will occur when ( w2 )2 ( w )2 
g(w) = 1 - 2" + 2?;;; 

WI! 1/ 

is a minimum. Since Equation (1 1-4) can be written as [w2 - w2(1  - 2r2 ) ]2 
g(w) = "

2
> 

+ 4?2( 1 - ?') 
w" 

(11-4) 

�-� 
the minimum value of g(w) occurs at w = w"V1 - 2?2 Thus the resonant frequen-
cy Wr IS 

o " ( " 0.707 (11-5) 

As the damping ratio ? approaches zero, the resonant frequency approaches 
w". For 0 < ? " 0.707, the resonant frequency w, is less than the damped natural 
frequency w" = w" VI - (2, which is exhibited in  the transient response. From Equa­
tion (11-5), it can be seen that, for ( > 0.707, there is no resonant peak. The magni­
tude IC(jw) I decreases monotonically with increasing frequency w. (11,e magnitude is 
less than 0 dB for all values of w > 0; recall that, for 0.7 < ? " 1, the step response is 
oscillatory, but the oscillations are well damped and are hardly perceptible.) 

The magnitude of the resonant peak M, can be found by substituting Equation 
(1 1-5) into Equation (1 1-2). For 0 " ? " 0.707, 

M, = IC(jw) lm", = IC(jw,) I 
1 

(1 1-6) 
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As ' approaches zero, M, approaches infinity. This means that, if the undamped sys­
tem is excited at its natural frequency, the magnitude of G(jw) becomes infinite. For 
, > 0.707, 

M, = 1 (1 1-7) 

The relationship between M, and , given by Equations ( 1 1-6) and (11-7) is shown 
in Figure 1 1-7. 

The phase angle of G(jw) at the frequency where the resonant peak occurs 
can be obtained by substituting Equation (11-5) into Equation ( 11-3). Thus, at the 
resonant frequency w" 

. _ VI - 2,2 
. _ , 

/G(/w,) = -tan 1 = -90' + sm 1 _ r::---::? 
, vI - ,2 

Minimum-phase systems and nonminimum-phase systems. Transfer 
functions having neither poles nor zeros in the right-half s-plane are called 
minimum-phase transfer functions, whereas those having poles and/or zeros in the 
right-half s-plane are called nonl1linimlll1l-phase transfer functions. Systems with 
minimum-phase transfer functions are called minimum-phase systems; those with 
non minimum-phase transfer functions are called IIomnininwl1'I-phase systems. 

For systems with the same magnitude characteristic, the range in phase angle 
of the minimum-phase transfer function is minimum for all such systems, while the 
range in phase angle of any nonminimum-phase transfer function is greater than 
this minimum. 

Consider as an example the two systems whose sinusoidal transfer functions 
arc, respectively, 

14 

1 2  

1 0  

.= 

4 

2 

o 

1\ \ \ 
'" 

0.2 0.4 0.6 O.S 

, 

and 

1.0 Figure U-7 Curve of Mr versus { for the second­
order system l/[(jw/w,y + 2{(jwlw,,) + 1 ] .  
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jw 

-+ I - r;  

G ( )  I + Ts 
J S  = I + T 5 1 

(J" -+ 1 

jw 

I 
T 

Figure 11--8 Pole-zero configurations of minimum-phase and noomini­
mum-phase systems (G1: minimum phase, Gz: nonminimum phase). 

The pole-zero configurations of these systems are shown in Figure 1 1-8. The two 
sinusoidal transfer functions have the same magnitude characteristics, but they have 
different phase-angle characteristics, as shown in Figure 1 1-9. The two systems dif­
fer from each other by the factor 

GUw) = 
1 - jwT 

1 + jwT 

The magnitude of the factor ( 1  - jwT)/(1 + jwT) is always unity. But the 
phase angle equals -2tan-1 wT and varies from 0 to -180° as w is increased from 
zero to infinity. 

For a minimum-phase system, the magnitude and phase-angle characteristics 
are directly related. That is, if the magnitude curve of a system is specified over the 
entire frequency range from zero to infinity, then the phase-angle curve is uniquely 
determined, and vice versa. This relationship, however, does not hold for a nonmini­
mum-phase system. 

Nonminimum-phase situations may arise ( 1 )  when a system includes a nonmin­
imum-phase element or elements and (2) in the case where a minor loop is unstable. 

Figure 11-9 Phase-angle characteris­
tics of minimum-phase and noomini­
mum-phase systems (G1: minimum 
phase. G2: nonminilllum phase). 

- 90· 

- 180' '----------_-==""-__ 
w 
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For a minimum-phase system, the phase angle at w = 00 becomes 
-900(q - p), where p and q are, respectively. the degrees of the numerator and 
denominator polynomials of the transfer function. For a nonminimum-phase sys­
tem, the phase angle at w = 00 differs from -90'(q - pl. In either system, the 
slope of the log-magnitude curve at w = 00 is equal to -20(q - p) dB/decade. It is 
therefore possible to detect whether the system is minimum phase by examining 
both the slope of the high-frequency asymptote of the log-magnitude curve and the 
phase angle at w = 00. If the slope of the log-magnitude curve as w approaches 
infinity is -20(q - p) dB/decade and the phase angle at w = 00 is equal to 
-90'(q - p),  the system is minimum phase. 

Nonminimum-phase systems are slow in response because of their faulty 
behavior at the start of the response. In most practical control systems, excessive 
phase lag should be carefully avoided. In designing a system, if a fast response is of 
primary importance, nonminimum-phase components should not be used. 

Example 11-1 

Consider the mechanical system shown in Figure 11-10. An experimental Bode dia· 
gram for this system is shown in Figure 11-11.  The ordinate of the magnitude curve is 
the amplitude ratio of the output to the input, measured in decibels-that is, 
IX (jw)IP(jw) 1 in dB. The units of IX (jw)IP(jw) 1  are mIN. The phase angle is 
! X (jw)1 P(jw) in degrees. The input is a sinusoidal force of the form 

pe,) = P sin wI 

where P is the amplitude of the sinusoidal input force and the input frequency is varied 
from 0.01 to '100 Tad/s. The displacement x is measured from the equilibrium position 
before the sinusoidal force is applied. Note that the amplitude ratio IX(jw )IP(jw) I does 
not depend on the absolute value of P. (This is because, if the input amplitude is dou­
bled, the output amplitude is also doubled. Therefore, we can choose any convenient 
amplitude P.) Determine the numerical values of 111, b, and k from the Bode diagram. 

/ . 

b 

k 

x 

/ 
Figure 11-10 Mechanical system. 
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Figure 11-11 Experimental Bode diagram for the system shown in Figure 1 1-10. 

First, we need to determine the transfer function of the system. The system 
equation is 

IIIX + bi: + kx = p(r) = P sin wr 

The Laplace transform of this last equation, with zero initial condition, gives 

(illS' + bs + k)X(s) = P(s) 

where P(s) = .::E[p(r)J. The transfer function for the system is 

X(s) 1 
P(s) 

= 
IIIs2 + bs + k 

This mechanical system possesses poles only in the left-half s-planc, so it is a 

minimum-phase system. For a minimum-phase system, the transfer function can be 
uniquely determined solely from the magnitude curve of the Bode diagram. 

The sinusoidal transfer function is 

X(jw) 

P(jw) 
= 

m(jw)' + bjw + k 

Now, from the Bode diagram, we find that 

X(jO+ ) 

P(jO+) 
= -26 dB 

( 1 1-8) 



Sec. 1 1-2 Bode Diagram Representation of the Frequency Response 623 

Hence, 

X( '0+ )  
J = .!. = -26 dB = 0.0501 

P(jO+) k 

or 

k = 19.96 Nlm 

Also from the Bode diagram, the corner frequency WI! is seen to be 3.2 fad/so Since the 
corner frequency of the system given by Equation (11-8) is vkllll, it follows that 

Thus, 

w" = \� = 3.2 III 

k 19.96 III = -- = -- = 1.949 kg 
(3.2)' 10.24 

Next, we need to estimate the value of the damping ratio (. Comparing the Bode dia­
gram of Figure 11-11 with the Bode diagram of the standard second-order system 
shown in Figure 1 1-6, we find the damping ratio { to be approximately 0.32, or 
, = 0.32. Then, noting that 

we obtain 

b = 2,w"m = 2 X 0.32 X 3.2 X 1 .949 = 3.992 N-slm 

We have thus determined the values of III, b, and k to be as follows: 

III = 1 .949 kg, b = 3.992 N-slm, k = 19.96 Nlm 

Relationship between system type and log-magnitude curve. Consider 
the unity-feedback control system. 111e static position, velocity, and acceleration 
error constants describe the low-frequency behavior of type 0, type 1, and type 2 sys­
tems, respectively. For a given system, only one of the static error constants is finite 
and significant. (The larger the value of the finite static error constant, the higher the 
loop gain is as w approaches zero.) 

The type of the system determines the slope of the log-magnitude curve at low 
frequencies. Thus, information concerning the existence and magnitude of the steady­
state error in the response of a control system to a given input can be determined by 
observing the low-frequency region of the log-magnitude curve of the system. 

Determination of static position error constants. Consider the unity­
feedback control system shown in Figure 1 1-12. Assume that the open-loop transfer 
function is given by 

G(s) = 
K ( Tos + 1 ) (Tbs + 1 )  . . · (7;"s + 1 )  
sN(T!s + I ) (T,s + 1 )  . . · (Tl's + 1 )  
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C(s) 

Figure ll-U Unity-reedback conlrol system. 

dB 

20 log Kp t---........ 

O �-----------�------_ 

Figure 11-13 Log-magnitude curve of a type 
o system. 

or 

. K(Taiw + l ) ( Tbiw + 1 ) · · ·  (T",iw + 1 )  
G(Jw) = 

(jw)N(Tliw + l ) ( Tziw + 1 ) · · ·  (Tpjw + 1 )  

Figure 1 1-13 is an example of the log-magnitude plot of a type 0 system. In  such a 
system, the magnitude of G(jw) equals Kp at low frequencies, or 

lim G(jw) = Kp w-o 
I t  follows that the low-frequency asymptote is a horizontal line at 20 log Kp dB. 

Determination of static velocity error constants. Consider again the 
unity-feedback control system shown in Figure 11-12. Figure 1 1-14 is an example of 
the log-magnitude plot of a type J system. The intersection of the initial 
-20-dB/decade segment (or its extension) with the line w = 1 has the magnitude 
20 log K,. This may be seen as follows: For a type 1 system, 

Thus, 

Kv G(jw) = -. JW 
for w "" 1 

20 10g lKv l = 20 log Kv JW w=l 
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dB 

O �----���--�----�--� 
WI W in log scale w, 

W =  I 
Figure 11-14 Log-magnitude curve of a type 
1 system. 

The intersection of the initial -20-dB/decade segment (or its extension) with the 0-
dB line has a frequency numerically equal to K", To see this, define the frequency at 
this intersection to be W,;  then 

or 

Kv = WI 
As an example, consider the type 1 system with unity feedback whose open­

loop transfer function is 

K 
G (s) = -:-�---:­

s(is + F ) 

If we define the corner frequency to be w, and the frequency at the intersection of 
the -40-dB/decade segment (or its extension) with the O-dB line to be W3, then 

Since 

it follows that 

or 

K 
wj = ­

J 
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On the Bode diagram, 

log WI - log W3 = log w3 - log w2 

Thus, the W3 point is just midway between the W2 and WI points. The damping ratio [ 
of the system is then 

F W2 
[ = -- = -

2 VKJ 2W3 

Determination of static acceleration error constants. Consider once 
more the unity-feedback control system shown in Figure 1 1-12. Figure 1 1-15 is an 
example of the log-magnitude plot of a type 2 system. The intersection of the initial 
-40-dB/decade segment (or its extension) with the W = 1 line has the magnitude of 
20 log K". Since, at low frequencies, 

it follows tbat 

Ka 
G(jw) = -­

(jw)2 for W � 1 

20 log I Ka , I = 20 log Ka 
(Jw)- w-I 

The frequency Wa at Ihe intersection of the initial -40-dB/decade segment (or its 
extension) with the O-dB line gives the square root of Ka numerically. This can be 
seen [rom the following: 

Figure ] 1-15 Log-magnitude curve of a 
type 2 system. 

I Ka I 20 log -. -, = 20 log 1 = 0 
(Jwa)-

dB 
-40 dB/decade 

/ 
-60 dB/decade 

, 
, 1 ___ 20 Iog K, 
"0, ... -20 dB/decade 

/ O �---�--4r���--��-­
w i n log scale 

W = 1 
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which yields W(I = Vi<;, 
Cutoff frequency and bandwidth. Referring to Figure 1 1-16, the fre­

quency wb at which the magnitude of the closed-loop frequency response is 3 dB 
below its zero-frequency value is called the cutoff frequency. Thus, I CUW) 1 < I CUO) 1 - 3 dB for W > Wb RUw) RUO) 
For systems in which lC(jO)/ RUO) I = 0 dB, 

l C(jW) 1 < -3 dB RUw) for W > Wb 
The closed-loop system filters out the signal components whose frequencies are 
greater than the cutoff frequency and transmits those signal components with fre­
quencies lower than the cutoff frequency. 

The frequency range 0 ,;; W ,;; Wb in  which the magnitude of the closed loop 
does not drop -3 dB is called the bandwidth of the system. The bandwidth indicates 
the frequency where the gain starts to fall off from its low-frequency value. Thus, the 
bandwidth indicates how well the system will track an input sinusoid. Note that, for 
a given w'" the rise time increases with increasing damping ratio r On the other 
hand, the bandwidth decreases with increasing r Therefore, the rise time and the 
bandwidth are inversely proportional to each other. 

111e specification of the bandwidth may be determined by the following factors: 

1. 111e ability to reproduce the input signal. A large bandwidth corresponds to a 
small rise time, or a fast response. Roughly speaking, we can say that the band­
width is proportional to the speed of the response. 

2. 11,e necessary filtering characteristics for high-frequency noise. 

For the system to follow arbitrary inputs accurately, it is necessary that it have 
a large bandwidth. From tbe viewpoint of noise, however, the bandwidth should 
not be too large. Thus, there are conflicting requirements on the bandwidth, and a 

dB 

o�----"" 
-3 + - -- - - - - - - - - - - - - - - - - - --- - - I , , , , 

I�-- Bandwidth : 

w" 

w in log scale 
Figure U-16 Logarithmic plot showing 
cutoff frequency Wb and bandwidth. 
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compromise is usually necessary for good design. Note that a system with a large 
bandwidth requires high-performance components, so the cost of components usu­
ally increases with the bandwidth. 

Cutoff rate. The cutoff rate is the slope of the log-magnitude curve near the 
cutoff frequency. The cutoff rate indicates the ability of a system to distinguish a sig­
nal from noise. 

Note that a closed-loop frequency response curve with a steep cutoff charac­
teristic may have a large resonant peak magnitude, which implies that the system 
has a relatively small stability margin. 

Example 11-2 

dB 

Consider the following two systems: 

C(s) 

R(s) = 01' System I: System II: 
C(s) 

R(s) 3s + I 
Compare the bandwidths of these systems. Show that the system with the larger band­
width has a faster speed of response and can foUow the input much better than the sys­
tem with a smaller bandwidth. 

Figure 1 1-17(a) shows the closed-loop frequency-response curves for the Iwo sys­
tcms. (Asymptotic curves arc represented by dashed lines.) \Vc find that the bandwidth 
of system I is 0 :5 w s I Tad/s and that of system II is 0 :s; w :5 0.33 Tad/s. Figures 
] l-17(b) and (e) show, respecti\'ely, the unit-step response and unit-ramp response 
curves for the two systems. Clearly, system I, whose bandwidth is three times wider than 
that of system II. has a faster speed of response and can follow the input much better. 

0f--=::=�:.;;c 
-20 

0.33 I 
(a) 

w (in log scale) 0 

r(l) e(l) 

o 
(e) 

(b) 

Figure 11-17 Comparison of the dynamic characteristics of the two systems considered in Exam­
ple 1 1-2: (a) closed-loop frequency-response curves; (b) unit-step response curves: (c) unit-ramp 
response curves. 
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1 1-3 PLOITING BODE DIAGRAMS WITH MATLAB 

In MATLAB, the command 'bode' computes magnitudes and phase angles of the 
frequency response of continuous-time, linear, time-invariant systems. 

When the command 'bode' (without left-hand arguments) is entered in the 
computer, MATLAB produces a Bode plot on the screen. When invoked with left­
hand arguments, as in 

[mag,phase,wl = bode(num,den,w) 

'bode' returns the fTequency response of the system in matrices mag, phase, and w. 
No plot is drawn on the screen. The matrices mag and phase contain the magnitudes 
and phase angles respectively, of the frequency response of the system, evaluated at 
user-specified frequency points. The phase angle is returned in degrees. The magni­
tude can be converted to decibels with tbe statement 

magdB = 20' 10gl O(mag) 

To specify the frequency range, use the command logspace(d1,d2) or log­
space(d1,d2,n). logspace(d1,d2) generates a vector of 50 points logarithmically 
equally spaced between decades 1 0  dt and 1 0  d2. That is, to generate 50 points 
between 0.1 radls and 100 radls, enter the command 

w = logspace( - 1 ,2) 

logspace(d1,d2,n) generates n points logarithmically equally spaced between 
decades 10 dt and 1 0  d2 For example, to generate 100 points between 1 radls and 
1000 radls, enter the following command: 

w = logspace(0,3,1  00) 

To incorporate these frequency points when plotting Bode diagrams, use the 
command bode(num,den,w) or bode(A,B,C,D,iu,w), each of which employs the 
user-specified frequency vector w. 

Example 11-3 

Plot a Bode diagram of the ITansfer function 

C(s) = 25 
s2 + 4s + 25 

When the system is defined in the form 

num(s) 
C(s) = dents) 

use the command bode(num,dcn) to draw the Bode diagram. [When the numerator 
and denominator contain the polynomial coefficients in descending powers of s, 
bode(num,den) draws the Bode diagram.) MATLAB Program 11-1 plots the Bode 
diagram for this system. The resulting Bode diagram is shown in Figure 11-18. 
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Figure 11-18 Bode diagram of G(s) = ') 
25 

. 
s� + 45 + 25 

MAHAB Program 1 1 -1 

» num = 1251 ;  
» den = 1 1  4 251 ;  
» bode(num,den) 
» grid 
» title('Bode Diagram of G(s) = 25/(51\2+45+25)') 

11-4 NYQUIST PLOTS AND THE NYQUIST STABILITY CRITERION 

In this section, we first discuss Nyquist plots and then the Nyquist stability criterion. 
We then define the phase margin and gain margin, which are frequently used for 
determining the relative stability of a control system. Finally, we discuss conditional­
ly stable systems. 

Nyquist plots. The Nyquist plot of a sinusoidal transfer function C(jw) is a 
plot of the magnitude of C(jw) versus the phase angle of C(jw) in polar coordinates 
as w is varied from zero to infinity. Thus, the polar plot is the locus of vectors 
IC(jw) I/C(jw) as w is varied from zero to infinity. Note that, in polar plots, a posi­
tive (negative) phase angle is measured counterclockwise (clockwise) from the pos­
itive rcal axis. 111C Nyquist plot is often callcd the polar plot. An example of such a 
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1m 

Re[COw)] 

Re 

COw 

w = 0 
Figure 11-19 Nyquist plot. 

plot is shown in Figure 1 1-19. Each point on the polar plot of C(jw) represents the 
terminal point of a vector at a particular value of w. The projections of C(jw) on the 
real and imaginary axes are the real and imaginary components of the function. 

An advantage in using a Nyquist plot is that it depicts the frequency­
response characteristics of a system over the entire frequency range in a single 
plot. One disadvantage is that the plot does not clearly indicate the contribution of 
each individual factor of the open-loop transfer function. 

Table 1 1-1 shows examples of Nyquist plots of simple transfer functions. 
TIle general shapes of the low-frequency portions of the Nyquist plots of type 

0, type 1 , and type 2 minimum-phase systems are shown in Figure 11-20(a). 1t can be 
seen that, i f  the degree of the denominator polynomial of C(jw) is greater than that 
of the numerator, then the C(jw) loci converge clockwise to the origin. At w = 00, 
the loci are tangent to one or the other axis, as shown in Figure 1 1-20(b). 

1m 

1m n - I1I = 3  
Type 2 system " 

w = co 

Re Rc 

1/ - 11/ = 1 

Type I system Type 0 system 

(0) (b) 

Figure 11-20 (a) Nyquist plots or type 0, type 1, and type 2 systems; (b) Nyquist plots in the high-frequency range. 
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TABLE 1 1-1 Nyquist Plots of Simple Transfer Functions 

1 
(jw)' 

\ O - w 
1m 
o 

1m 

1m 00 

jw - L IJ � o  
o Re 

1m 
w = oo 1/ 

0 Rc 

\.w �o:J Re 

-, 1 +/ru T 1 + jwaT 
(a > I )  

Re 

1m 

1m 
1 + jWT--t __ ll 

o 
� Im I + jwT �17' 

w 
�� 

Re 

Re 

01" 1 Re 
w = O  

(I + jwT,) ( I  + jwT,) ( I  + jw"[�) 1m w = 00 ).--./ I 

jw(1 + jwT,) ( 1  + jWT,) \ - 1m . 

For the case where the degrees of the denominator and numerator polynomi­
als of G(jw) are the same, the Nyquist plol starts at a finite distance on the real axis 
and ends at a finite point on the real axis. 

Nole that any complicated shapes in the Nyquist plot curves are caused by the 
numerator dynamics-that is, the time constants in the numerator of the transfer 
function. 
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C(s) 

Figure 11-21 Modification of a control system with 
feedback elements 10 a unity-feedback control system. 

Nyquist stability criterion. In designing a control system, we require that the 
system be stable. Furthermore, it is necessary that the system have adequate relative 
stability. In what follows, we shall show that the Nyquist plot indicates not only whether 
a system is stable, but also the degree of stability of a stable system. TI,e Nyquist plot 
also gives information as to how stability may be improved if that is necessary. 

In the discussion that follows, we shall assume that the systems considered 
have unity feedback. Note that it is always possible to reduce a system with feed­
back elements to a unity-feedback system, as shown in Figure 1 1-21 .  Hence, the 
extension of relative stability analysis for the unity-feedback system to nonunity­
feedback systems is possible. 

Now consider the system sbown In Figure 1 1-22. The closed-loop transfer 
function is 

C(s) G(s) 
R(s) 1 + G(s) 

For stability, a l l  roots of the characteristic equation 

l + G(s) = O  

must lie in the left-half s-plane. TIle Nyquist stability criterion relates the open-loop 
frequency response G(jw) to the number of zeros and poles of I + G(s) that lie in 
the right-half s-plane.TIlis criterion, due to H. Nyquist, is useful in control engineering 

�@--I G(s) 

t 
C(s) 

Figure 11-22 Unity-feedback control sySICIl1. 
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becallse the absolute stability of the closed-loop system can be determined graphi­
ca lly from open-loop frequency-response curves and there is no need for actually 
determining the closed-loop poles. Analytically obtained open-loop frequency­
response curves, as well as experimentally obtained curves, can be used for the sta­
bility analysis. This connuence of the two types of curve is convenient because, in 
designing a control system, it often happens that mathematical expressions for some 
of the components are not known; only their frequency-response data are available. 

The Nyquist stability criterion can be stated as follows: 

Nyquist srability criterion: In the system shown in Figure 1 1-22. if the open-loop 
transfer function C(s) has P poles in the right-half s-plane, then, for stability, the C(s) 
locus as a representative point s traces alit the Nyquist path in the clockwise direc­
tion must encircle the - 1  + iO point P times in the counterclockwise direction. 

The Nyquist path is a closed contour that consists of the entire iw-axis from 
w = - 00  to + 00  and a semicircular path of infinite radius in the right-half s-plane. 
Thus, the Nyquist path encloses the entire right-half s-plane. The direction of the 
path is clockwise. 

Remarks on the Nyquist stability criterion 

1. The Nyquist stability criterion can be expressed as 

Z ; N + P  

where 

Z ; number of zeros of 1 + C(s) in the right-half s-plane. 

N ; number of clockwise encirclements of the - 1  + iO point 

P ; number of poles of C(s) in the right-half s-plane 

( 1 1-9) 

If P is not zero, then, for a stable control system, we must have Z ; 0, or 
N = - P, which means that we must have P counterclockwise encirclements 
of the - 1  + iO point. 

If C(s) does not have any poles in the right-half s-plane, then, from 
Equation ( 1 1-9), we must have Z ; N for stability. For example, consider the 
system with the following open-loop transfer function: 

K 
C(s) ; 

s(Tls + J ) (T2s + 1 )  

Figure 1 1-23 shows the Nyquist path and C(s) loci for a small and large value 
of the gain K. Since the number of poles of C(s) in the right-half s-plane is 
zero. for this system to be stable, it is necessary that N ; Z ; 0, or that the 
C(s) locus not encircle the -1 + iO point. 

For small values of K, there is no encirclement of the - 1  + iO point; 
hence, the system is stable for small values of K. For large values of K, the 
locus of C(s) encircles the -1 + iO point twice in the clockwise direction, 
indicating two closed-loop poles in the right-half s-plane, and the system is 
unstable. For good accuracy, K should be large. From the stability viewpoint, 
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Figure 11-23 Nyquist path and G(s) loci for a small and large value of the gain K. lll\c Nyquist path (a closed COIl­
tour) must not pass through a pole or zero. Because the given G(s) hrls a pole at the origin, the contour must be modi· 
fied by use of a semicircle with an infinitesimal radius e as shown in lhe figure. From s = jO - to .� = jO + Ihe 
representative point moves along the semicircle of radius l;:. lnc arca thal lhc modified closed contour avoids is very 
small and approaches zero as the radius e approaches zero. Thus. the Nyquist path encloses the entire right-half .f 
plane·1 
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however, a large value of K causes poor stability or even instability. To com­
promise between accuracy and stability, it is necessary to insert a compensator 
into the system. 

2. We must be careful when testing the stability of multiple-loop systems, since they 
may include poles in the right-half s-plane. (Note that, although an inner loop 
may be unstable, the entire closed-loop system can be made stable by proper 
design.) Simple inspection of the encirdements of the - 1 + jO point by the 
G(jw) locus is not sufficient to detect instability in multiple-loop systems. In such 
cases, however, whether any pole of 1 + G(s) is in the right-half s-plane may be 
determined easily by applying the Routh stability criterion to the denominator 
of G(s) or by actually finding the poles o� G(s) with the use of MATLAB. 

3. I f  the locus of G(jw) passes through the - 1 + jO point, then the zeros of the 
characteristic equation, or closed-loop poles, are located on the jw-axis. This is 
not desirable for practical control systems. For a well-designed closed-loop sys­
tem, none of the roots of the characteristic equation should lie on the jw-axis. 

Phase and gain margins. Figure 1 1-24 shows Nyquist plots of G(jw) for 
three different values of the open-loop gain K. For a large value of the gain K, the 
system is unstable. As the gain is decreased to a certain value, the G(jw) locus pass­
es through the -1 + jO point. 111is means that, with this gain, the system is on the 
verge of instability and will exhibit sustained oscillations. For a small value of the 
gain K, the system is stable. 

In general, the closer the GUw) locus comes to encircling the - 1  + jO point, 
the more oscillatory is the system response. The closeness of the G(jw) locus to the 
- 1  + jO point can be used as a measure of the margin of stability. (This does not 
apply, however, to conditionally stable systems.) It is common practice to represent 
the closeness in terms of phase margin and gain margin. 

Phase m argin. The phase margin is that amount of additional phase lag at 
the gain crossover frequency required to bring the system to the verge of instability. 

Figure 11-24 Polar plots of 
K(I + jw'/;,)( l  + jwTb) ' 

(jw)( l + jwT, ) ( l  + jwT,) · ·  

G-plane 

K :  Large 
K : Smllll 

K = Open-loop gain 

1m 

o Re 
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The gain crossover frequency is the frequency at which IG(jw) I, the magnitude of 
the open-loop transfer function, is unity. The phase margin )' is 1800 plus the phase 
angle <p of the open-loop transfer function at the gain crossover frequency, or 

)' = 1800 + <!> 
On the Nyquist plot, a line may be drawn from the origin to the point at which 

the unit circle crosses the G(jw) locus. The angle from the negative real axis to this 
line is the phase margin, which is positive for ), > 0 and negative for ), < O. For a 
minimum-phase system to be stable, the phase margin must be positive. 

Figures 11-25(a) and (b) illustrate the phase margins of a stable system and an 
unstable system in Nyquist plots and Bode diagrams. In the Bode diagrams, the crit­
ical point in the complex plane corresponds to the O-dB line and - 1 800 line. 
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phase 
margin 

-
GUw) 

Stable system 

-90' t-__ _ 
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'" 0 f---r�'-----;--­
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-Qj - 180' f--�d------:--
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-270' 
Negative 

phase margin 

Unstable system 

Figure 11-25 Phase and gain margins or stable and unstable systems: (a) Nyquist plols: (b) Bode 
diagrams. 
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Gaill m argill_ The gain margin is the reciprocal of the magnitude IG(jw)1 
at the frequency at whIch the phase angle is - 1 80°. Defining the phase crossover 
frequency w, to be the frequency at which the phase angle of the open-loop transfer 
functIOn equals -180° gives the gain margin Kg: 

1 
K = -,-:-,--:-;-g 

IG(jw, ) 1 

In terms of decibels, 

Kg dB = 20 log Kg = -20 log IG(jw, ) 1  

Expressed in decibels, the gain margin is positive if Kg is greater than unity 
and negative if Kg is smaller than unity. Thus, a positive gain margin (in decibels) 
means that the system is stable, and a negative gain margin (in decibels) means that 
the system is unstable. The gain margin is shown in Figures 1 1-25(a) and (b). 

For a stable minimum-phase system, the gain margin indicates how much the 
gain can be increased before the system becomes unstable. For an unstable system, 
the gain margin is indicative of how much the gain must be decreased to make the 
system stable. 

TIle gain margins of first- and second-order minimum-phase systems are infi­
nite, since the Nyquist plots for such systems do not cross the negative real axis. 
Thus, such first- and second-order systems cannot be unstable. 

A tew comments on phase and gain margins. The phase and gain mar­
gins of a control system are a measure of the cioseness of the Nyquist plot to the 
- 1  + jO point. Therefore, these margins may be used as design criteria. 

Note that either the gain margin alone or the phase margin alone does not give 
a sufficient indication of relative stability. BOlh should be given in the determination 
of relative stability. 

For a minimum�phase system, the phase and gain margins must be positive for 
the system to be stable. Negative margins indicate instability. 

Proper phase and gain margins ensure against variations in a system's compo­
nents. For satisfactory performance, the phase margin should be between 30° and 
60°, and the gain margin should be greater than 6 dB. With these values, a minimum­
phase system has guaranteed stability, even if the open-loop gain and time constants 
of the components vary to a certain extent. Although the phase and gain margins 
give only rough estimates of the effective damping ratio of a closed-loop system, 
they do offer a convenient means for designing control systems or adjusting the gain 
constants of systems. 

For minimum-phase systems, the magnitude and phase characteristics of the 
open-loop transfer function are definitely related. The requirement that the phase 
margin be between 30° and 60° means thal, in a Bode diagram, the slope of the log­
magnitude curve at the gain crossover frequency is more gradual than -40 
dB/decade. In most practical cases, a slope of -20 dB/decade is desirable at the gain 
crossover frequency for stability. If the slope is -40 dB/decade, the system could be 
either stable or unstable. (Even if the system is stable, however, the phase margin is 
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Figure 11-26 Nyquist plots showing more than two phase or gain crossover frequencies. 
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Re 

smaiL) I f  Ihe slope at Ihe gain crossover frequency is -60 dB/decade or steeper, the 
system will be unstable. 

For a nonminimum-phase system with unstable open loop, the stability condi­
tion will not be satisfied unless the G(jw) plot encircles the - 1  + jO point. Hence, 
such a stable nonminimum-phase system will have negative phase and gain margins. 

It is also important to point out that conditionally stable systems will have two 
or more phase crossover frequencies, and some higher order systems with compli­
cated numerator dynamics may also have two or more gain crossover frequencies, as 
shown in Figure 1 1-26. For stable systems having two or more gain crossover fre­
quencies, the phase margin is measured at the highest gain crossover frequency. 

Conditionally stable systems. Figure 1 1-27 is an example of a G(jw) 
locus for which the closed-loop system can be made stable or unstable by varying 
the open-loop gain. If the open-loop gain is increased sufficiently, the G(jw) locus 
encloses the - 1  + jO point twice, and the system becomes unstablc. If the open­
loop gain is decreased sufficiently, again the C(jw) locus encloses the - 1  + jO point 
twice. The system is stable only for the limited range of values of the open-loop gain 
for which the - 1  + jO point is completely outside the C(jw) locus. Such a system is 
cOlldiliollally slable. 

Such a conditionally stable system becomes unstable when large input signals 
are applied, since a large signal may cause saturation, which in turn reduces the 
open-loop gain of the system. 

For stable operation of the conditionally stable system considered here, the 
critical point - 1  + jO must not be located in the regions between OA and Be 
shown in Figure 1 1-27. 
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Figure 11-27 Nyquist plot of a condi· 
tionally stable system. 

1 1-5 DRAWING NYQUIST PLOTS WITH MATLAB 

1m 
G·plane 

w = o:> 

Re 

Nyquist plots, just like Bode diagrams, are commonly used in the frequency­
response representation of linear, time-invariant control systems. Nyquist plots are 
polar plots, while Bode diagrams are rectangular plots. One plot or the other may be 
more convenient for a particular operation, but a given operation can always be car­
ried out in either plot. 

The command 'nyquist' computes the frequency response for continuous-time, 
linear, time-invariant systems. When invoked without left-hand arguments, 'nyquist' 
produces a Nyquist plot on the screen. That is, the command 

nyquist(num,den) 

draws the Nyquist plot of the transfer function 

num(s) 
C(s) = 

dents) 

where num and den contain the polynomial coefficients in descending powers of s. 
The command 

nyquist(num,den,w) 

employs the user-specified frequency vector w. which gives the frequency points in 
radians per second at which the frequency response will be calculated. 

When invoked with left-hand arguments, as in 

jre,im,wj = nyquist(num,den) 

or 

jre,im,wj = nyqu ist(num,den,w) 

MATLAB returns the frequency response of the system in the matrices re, im, and 
\Y. No plot is drawn on the screen. The matrices re and im contain the real and imag­
inary parts of the frequency response of the system, evaluated at the frequency 
points specified in the vector w. Note that re and im have as many columns as out­
puts and one row for each element in w. 
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Example 11-4 

Consider the following open-loop transfer function: 

�_1=---_ G(s) = 5' + O.Ss + 1 
Draw a Nyquist plot with MATLAB. 

Since the system is given in the form of the transfer function, the command 

nyquist(num,den) 
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may be used to draw a Nyquist plot. MATLAB Program 11-2 produces the Nyquist 
plot shown in Figure 1 1-28. In this plot, the ranges for the real axis and imaginary axis 
are automatically determined. 

[f we wish to draw the Nyquist plot using manually determined ranges-for 
example, from -2 to 2 on the real axis and [rom - 2  to 2 on the imaginary axis-we 
enter the fol lowing command into the computer: 

v=I-2 2 -2 21;  
axis(v); 

Alternatively, we may combine these two lines inLO one as follows: 

. ;; 
< 
� -� c '" " 
E 

axis(l-2 2 -2 2(); 

MA HAB Program 1 1 -2 

» num = 1 1 ] ;  
» den = 1 1  0.8 1 1 ; 
» nyquist(num,clen) 
» title('Nyquist Plot of G(s) = 1 /(51\2+0.85+ 1 ) , )  

Nyquist Plot of G(s) = 1 I(i' + 0.& + I ) 
I .5 r--'-'-r---.----'-,...:....-��___, 

0.5 

0 

-0.5 

-I 

-1.5_1 -0.5 0 0.5 1.5 
Real Axis 

Figure 11-28 Nyquist plot of 
1 

G(s) = , . 
s� + 0.8.\' + I 
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EXUlllpic 11-5 

Draw a Nyquist plot for 

G(s) _ -;-1� 
s(s + 1 ) 

MATLAB Program 11-3 will produce a correct Nyquist plot on the computer, even 
though a warning message "Divide by zero" may appear on the screen. The resulting 
Nyquist plot is shown in Figure 1 1-29. Notice that the plot includes the loci for both 
w > 0 and w < O. If we wish to draw the Nyquist plot for only the positive frequency 
region (w > 0), then we need to use the commands 

Figure 11-29 Nyquist plot of 

(re,im,wj = nyquist(num,den,w) 

plot(re, im) 

MA HAB Program 1 1 -3 

» num = [ 1 ] ;  
» den = [ 1  1 0]; 
» nyquist(num,den) 
» v  = 1-2 2 -5 5 1 ;  axis(v) 
» title('Nyquist Plot of G(s) = 1 /[s(s+ 1 )J ') 

Nyquist PIOI of G(,) = 11[,(s + I )] 
5 
4 

3 
2 " "K 

.: 
C 

0 
"Sn " -I E 

-2 

\ 
( 

-3 
-4 

-G(s) = IIs(.\" + I ). (TIle plot shows 
Nyquist loci for both w > 0 ilnd w < 0.) 

-5_2 -1 .5 -I -0.' 0 0.5 
Real Axis 

1.5 2 

MATLAB Program 11-4 uses these two lines of commands. The resulting Nyquist plot 
is presented in Figure 1 1-30. 
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MA HAB Program 1 1 -4 

» num = [ 1 ] ;  
» den = [ l 1 0[; 
» w  = 0.1  :0.1 : 1 00; 
» [re,im,w[ = nyquist(num,den,w); 
» plot(re, im) 
» v = [-2 2 -5  5] ;  axis(v) 
» grid 
» title(' Nyquist Plot of G(s) = 1 /]5(5+ 1 )] ' )  
» x[abel('Real Axis') 
» ylabel(, lmaginary Axis') 
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NyquiSi Plot of Cis) = 1I[s(s + l)] 
5 

4 

3 

2 

0 

-l 

-2 

-3 

-4 
-5 

-2 -1.5 -l -0.5 0 0.5 
Real Axis 

1.5 2 Figure 11-30 Nyquist plo! of G(s) = IIs(s + 1 ) .  
(The plot shows nyquist locus for w > 0.) 

1 1-6 DESIGN OF CONTROL SYSTEMS IN THE FREQUENCY 
DOMAIN 

This section discusses control systems design based on the Bode diagram approach, 
an approach that is particularly useful for the following reasons: 

1, In Ihe Bode diagram, the low-frequency asymptote of the magnitude curve is 
indicative of one of the static error constants Kp. K.v• or Ka-

2. Specifications of the transient response can be translated into those of the fre­
quency response in terms of the phase margin, gain margin, bandwidth, and so 
forth. TIlese specifications can be easily handled in the Bode diagram, In partic­
ular, the phase and gain margins can be read directly from the Bode diagram. 

3. TIle design of a compensator or controller to satisfy the given specifications 
(in terms of the phase margin and gain margin) can be carried out in the Bode 
diagram in a simple and straightforward manner. 
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In this section we present the lead, lag, and lag-lead compensation techniques. 
Before we begin design problems. we shall briefly explain each of these compensations. 

Lead compensation is commonly used for improving stability margins. Lead 
compensation increases the system bandwidth; thus, the system has a faster 
response. However, a system using lead compensation may be subjected to high-fre­
quency noise problems due to its increased high-frequency gains. 

Lag compensatioJl reduces the system gain at higher frequencies without 
reducing the system gain at lower frequencies. The system bandwidth is reduced, 
and thus the system has a slower speed of response. Because of the reduced high­
frequency gain, the total system gain can be increased, and thereby low-frequency 
gain can be increased and the steady-state accuracy can be improved. Also, any 
high-frequency noises involved in the system can be attenuated. 

Lag-lead compensation is a combination of lag compensation and lead com­
pensation. A compensator that has characterstics of both a lag compensator and a 
lead compensator is known as a lag-lead compensator. With the use of a lag-lead 
compensator, the low-frequency gain can be increased (and hence the steady-state 
accuracy can be improved), while at the same time the system bandwidth and stabil­
ity margins can be increased. 

The PI D controller is a special case of a lag-lead controller. The PD control 
action, which affects the high-frequency region, increases the phase-lead angle and 
improves the system stability, as well as increasing the system bandwidth (ancl thus 
increasing the speed of response). That is, the PD controller behaves in much the 
same way as a lead compensator. The PI control action affects the low-frequency 
portion and, in fact, increases the low-frequency gain and inlproves steady-state 
accuracy. TIlCrefore, the PI controller acts as a lag compensator. The PID control 
action is a combination of the PI and PD control actions. The design techniques for 
PI D controllers basically follow those of lag-lead compensators. ( In  industrial con­
trol systems, however, each of the PID control actions in the PID controller may be 
adjusted experimentally.) 

In what follows, we first discuss the design of a lead compensator. TIlen we 
treat the design of a lag compensator, followed by the design of a lag-lead compen­
sator. We lise MATLAB to obtain step and ramp responses of the designed systems 
to verify their transient-response performance. 

Frequency characteristics of lead, lag, and lag-lead compensators. 
Before we discuss design problems, we shall examine the frequency characteristics 
of the lead compensator, lag compensator, and lag-lead compensator. 

Characteristics of a lead compellsator. Consider a lead compensator having 
the following transfer function: 

I 
s + -

Ts + 1 T 
K,a aTs + l = K' 1 

s + ­
aT 

0 < a < 1 
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W = CD  

Re Figure 11-31 yquist plOl of a lead compen­
sator crUwT + l )/(jwaT + I ). where 
0 < 0' < 1 . 
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The lead compensator has a zero at s = - liT and a pole at s = - l/(aT) . Since 
o < a < 1 ,  the zero is always located to the right of the pole in the complex plane. 
Note that, for a small value of a. the pole is located far to the left. The minimum 
value of a is limited by the physical construction of the lead compensator and is usu­
ally taken to be about 0.05. (This means that the maximum phase lead that may be 
produced by a lead compensator is about 65°. ) 

Figure 1 1-31 shows the Nyquist plot of 

jwT + l 
K,a -'--:::--,-jwaT + 1 

0 <  a < 1 

with Kc = 1 .  For a given value of 0': the angle between the positive real axis and the 
tangent line drawn from the origin to the semicircle gives the maximum phase lead 
angle <p",. We shall call the frequency at the tangent point w"'. From Figure 1 1-31 Ihe 
phase angle at w = WIll is cJ>m. where 

1 - a 
. 2 1 - a 

SlI1 cPm = 
1 + a 

= 
1 + a 

2 

Equation ( 1 1-10) relates the maximum phase-lead angle to the value of a. 

( 1 1- 10 )  

Figure 1 1-32 shows the Bode diagram of  a lead compensator when K, = 1 
and a = 0. 1 .  TIle corner frequencies for the lead compensator are w = l iT and 
w = lI(aT) = 101T. Examining Figure 1 1-32, we see that w'" is the geometric mean 
of the two corner frequencies, or 

Hence, 

1 ( 1 1 ) 
log wm = "2  log"T + log

aT 

w = --
III -va T  

( 1 1-1 1 )  
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Figure 11-32 Bode diagram of a lead compensator 
a{jwT + 1)/(jwaT + I) .  where a = 0. 1 .  

As the figure indicates. the lead compensator i s  basically a high-pass filter. 
(High frequencies are passed. but low frequencies are attenuated.) 

Characteristics of a lag compensator. Consider a Jag compensator that has 
the following transfer function: 

1 
s + ­

T = K,----=l-
s + ­

{3T 

f3 > 1 

In the complex plane, the lag compensator has a zero at s = -liT and a pole at 
s = -lI(f3T).  111e pole is located to the right of the zero. 

Figure 1 1-33 shows a Bode diagram of the given lag compensator, where 
K, = 1 and f3 = 10. The corner frequencies are at w = liT and w = 1I(f3T).  As 
seen from Figure 1 1-33, where the values of K, and {3 are set equal to 1 and 10. 
respectively, the magnitude of Ihe lag compensator becomes 10 (or 20 dB) at low 
frequencies and unity (or 0 dB) at high (requencies. 11ll1s, the lag compensator is 
essentially a low-pass filter. 

Characteristics of a lag-lead compellsator. Consider the lag-lead compen­
sator given by 

J I 
s + - s + -

G,(s) = K, 
T, T, 

(11-12) 
Y 1 

s + - s + -
T, f3T, 
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Figure 11-33 Bode diagram of a lag compcnsalor 
(JUwT + I )IUw{JT + I ) .  where {J = 10. 

where y > 1 and {3 > 1 .  TIle term 

y > I 

produces Ihe effeci of the lead network, and the tcrm 

{3 > 1 

produces the effect of the lag network. 
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In designing a lag-lead compensator, we frequently choose y = {3. (This is 
not necessary. We can, of course, chose 'Y :;:. f3,) In what follows, we shall consider 
the case where y = {3. The Nyquist plot of the lag-lead compensator with Kr = 1 
and y = {3 is shown in Figure 1 1 -34. It can be seen that. for 0 < W < Wt. the COIll­
pensator acts as a lag compensator, while for WI < W < 00, it acts as a lead com­
pensator. The frequency WI is the Frequency at which the phase angle is zero. It is 
given by 

1 

VT;T; 
(For a derivation of this equation, see Problem A-1l-14.) 



648 Frequency-Domain Analysis and Design of Control Systems Chap. 1 1  

1m 

w = oo 
/ 

o ' w = O Re 

Figure 11-34 Nyquist plot of the lag-lead compensator 
given by Equation (1 1-12) with K( = I and y = (3. 
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Figure J 1-35 Bode diagram of the Jag-lead compensator given by 
Equation (1 1-12) with K" = l , y = {3 =  lO and T2 =  lOTI. 

Figure 1 1-35 shows the Bode diagram of a lag-lead compensator when 
K, = 1 ,  ')' = f3 = 10, and T2 = lOT,. Notice thai the magnitude curve has the value 
o dB in Ihe low- and high-frequency regions. 

Example 11-6 Design of a Lead Compensator 

Consider the system shown in Figure 1 1-36(a). \Ve wish to design a compensator such 
that the closed-loop system will satisfy the following requirements: 

static velocity error constant = K" = 20 5-1 
phase margin = 50Q 

gain margin � 10  dB 
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(aJ (bJ 

Figure 11-36 (a) Uncompensated system; (b) compensated system. 

We shall design a lead compensator Ge(s) of the form 

1 
s + -

Ts + 1 T 
CJ s) = K a --:::----:- = K, --I­

e aTs + 1 s + ­
aT 

The compensated system is shown in Figure 1 1 -36 (b). 
We define 

C,(s) = KC(s) 
4K 

s(s + 2) 

where K = Kea. 

O < a < l  

649 

The first step in the design is to adjust the gain K to meet the stcady·state per­
formance specification or to provide the required static velocity error constant K'I' 
Since KlJ is given as 20 S-l, we have 

or 

Ts + 1 
K, = l im sC,(s)C(s) = lim s 

T I C,(s) 
$-0 ,f-Q a S + 

s4K 
= lim = 2K = 20 

,-0 s(s + 2)  

K = IO 

\Vith K = to, the compensated system will satisfy the steady-state requirement. 
We shall next plot the Bode diagram of 

40 
C,(s) = s(s + 2)  

MATLAB Program 11-5 produces the Bode diagram shown in Figure 11-37. From this 
plot, the phase margin is found to be 17°. The gain margin is +00 dB. 

Since the specification calls for a phase margin of 50°, the additional phase lead 
necessary to satisfy the phase-margin requircment is 33°. A lead compensator can con­
tribute this amount. 

Noting that the addition of a lead compensator modifies the magnitude curve in 
the Bode diagram. we realize that the gain crossover frequency will be shifted to the 
right. Accordingly. we must offsct the increased phase lag of Gj (jw) due to this increase 
in the gain crossover frequency. Taking the shift of the gain crossover frequency into con­
sideration, we may assume that c/>m. the maximum phase lead required, is approximately 
38°. (This means that approximately 5° has been added to compensate for the shift in 
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MA HAB Program 1 1 -5 

» num = [40]; 
» den = [1  2 0[;  
» W = [og5pace( - 1 , 1 , 1 00); 
» bode(num,den,w) 
» grid 
» lille(' Bode Diagram of G_1 (5) = 40/[5(5+2)[ ' )  

.. __ .1..._. 

............ _ ... L ... 
.- .-.�=J. 

Bode Diagram of G,(,) = 40/[,(, + 2)[ 

, I i ;  I ' j i I j j i i i ! 1 -�� 'H-ii I+I�I -- --, -'·-1 1 1  i 
I I I i I I I 

-180 '-,-__ "---'---'L...J....L...L.l...Ll.;;-_--'-_...L....L-L...LL.LLJ 
10- 1 100 101 

Frequency (Tad/sec) 

Figure 11-37 Bode diagram of G1 {s) = 40/[s(5 + 2)]. 

the gain crossover frequency,) Since 

1 - a 
sin ¢m = --1 + " 

CPm = 38° corresponds to a = 0.2379. Note that a = 0.24 corresponds to CPm = 37.8°. 
Whether we choose cPm = 38° or ¢m == 37.8° does not make much difference in the 
final solution. Hence, let us choose a = 0.24. 

Once the attenuation factor a has been determined on the basis of the required 
phase-lead angle, the next step is to determine the corner frequencies w = liT and 
w = lI(aT) of the lead compensator. Notice that the maximum phase-lead angle cPm 
occurs at the geometric mean of the two corner frequencies, or w = 1/( vaT).  

The amount of  the modification in the magnitude curve at w = lI(VaT)  due to 
the inclusion of the term (Ts + 1)!(aTs + 1) is 

1 1  + jwT I "I + jwaT ",=..1....-v"r 

1 1 + j­Va 1 
1 + ja 

Va 
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Note that 

I I - = -- = 0.2041 = 6.2 dB 
Va \10.24 
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We need to find the frequency point where the total magnitude becomes 0 dB when the 
lead compensator is added. 

From Figure 1 1-37, we see that the frequency point where the magnitude of 
GI (jw) is -6.2 dB occurs between w = I and 10 rad/s. Hence, we plot a new Bode dia­
gram of G1(jw) in the frequency range between w = 1 and 10 to locate the exact point 
where GI(jw) = -6.2 dB. MATLAB Program 1 1-6 produces the Bode diagram in this 
frequency range, which is shown in Figure 1 1-38. From the diagram, we find that the 
frequency point where IGI(jw)1 = -6.2 dB is w = 9 rad/s. Let us select this frequency 
to be the new gain crossover frequency, or We = 9 Tad/s. Noting that this frequency cor· 
responds to I/( VaT),  or 

30 
25 

a;- 20 
� 15 " " 10 " 
.� 5 
� 0 ::. 

-5 
-10 

-90 

� -120 
� 
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.2 -150 0.. 

I 
w = --

, vaT 

MA TlAB Program 1 1 -6 

» num = 1401; 
» den = 11 2 01; 
» w = 10gspace(0, 1 , 1 00); 
» bode(num,den,w) 
» grid 
» lille('Bode Diagram of C(s) = 40/Is(s+2)]') 

Bode Diagram of G(5) = 40/15(5 + 2)1 

-100 � __________ J-____ � ____ -L __ -L __ L--L-L-L� 
� tOI 

Frequency (rad/sec) 

Figurc ll-38 Bodc diagram of G1{s) = 40/fs(s + 2)1 .  



652 Frequency-Domain Analysis and Design of Control Systems Chap. 1 1  

we obtain 

and 

1 We 9 - = - = -- = 18.371 aT Va \10.24 

The lead compensator thus determined is 

s + 4.409 0.227 s + 1 
G,(s) = K, s + 18.371 = K,a 

0.0544s + 1 

where Kc is determined as 

K 10  K = - = - = 41.667 c a 0.24 

lllUS, the transfer function of the compensator becomes 

G (s) = 41 .667 
s + 4.409 = 10  

0.227s + 1 
, s + 18.371 0.0544s + 1 

MATLAB Program 1 1-7 produces the Bode diagram of Ihis lead compensator, which 
is shown in Figure 1 1-39. Note that 

Bode Diagram of G,(s) = 41.667(s + 4.409)/(,. + 18.371) 
35 
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� 30 
0 "0 
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.� 25 " 
:;; 
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I , r III I I ill -BIi+ - - . _ - Til --TTl rw II ! !  d 
i I ! It: 
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-;;; 30 
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� 

20 0 • " � 
"- 10 

Figure 11-39 Bode diagram of the compensator. 
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MA TlAB Program 1 1 -7 

» numc = [41 .667 1 83 . 7 1 ]; 
» denc = [ 1  1 8.371 ] ;  
» W = logspace( - 1 ,3 , 1 00); 
» bode(numc,denc,w) 
» grid 
» title('Bode Diagram of G_C(5) = 41 .667 (s + 4.409)/(5+ 1 8.371  I ' )  

The open-loop transfer function of the designed system is 

5 + 4.409 4 
G,(S)G(5) = 41.667 5 + 18.371 5(S + 2) 

166.6685 + 734.839 
s3 + 20.37 1 s' + 36.742s 
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MATLAB Program 1 1-8 will produce the Bode diagram of G,(5)G(5). which is shown 
in Figure 1 1-40. From the figure. notice that the phase margin is approximately 50Q and 

MA TlAB Program 1 1 -8 

» num = 1 1 66.668 734.8391; 
» den = 1 1  20.371  36.742 01; 
» w  = logspace(- l ,l , l OO); 
» bode(num,den,w) 
» grid 
» title(' Bode Diagram of G_c(s)G(s)') 

Bode Diagram of Gc(s)G(s) 
50 

iii' 
� 0 
0 "0 
" 
.� -50 
� 

Figure 11-40 Bode diagram of Gc(s)G( .... ) . 



654 Frequency-Domain Analysis and Design of Control Systems Chap. 1 1  

the gain margin is + 00  dB. Since the static velocity error constant is 20 S- l 
(734.839/36.742 = 20), all requirements are satisfied. Hence. the designed system is 
satisfactory. 

Unit-step response \Ve shall check the unit-step response of the designed system. 
We plol both the unit-step response of the designed system and that of the original, un­
compensated system. 

TIle closed-loop transfer function of the original, uncompensated system is 

C,(s) 4 
R,(s) 

= 
s2 + 2s + 4 

The closed-loop transfer function of the compensated system is 

C2(s) = 41 .667(s + 4.409) X 4 

R,(s) (s + 18.37 1 )s(s + 2) + 41 .667(s + 4.409) x 4 

166.668s + 734.839 

S3 + 20.371s2 + 203.41 s + 734.839 

MATLAB Program 11-9 produces the unit-step responses of the uncompensated and 
compensated systems. The resulting response curves are shown in Figure 1 1-41. 

Unit-ramp response It is worthwhile to check the unit·ramp response of the compen· 
sated system. Since Kv = 20 S-l, the steady·state error following the unit·rarnp input will 
be lIKv = 0.05. TIle static velocity error constant of the uncompensated system is 
2 S-l. Hence, the original uncompensated system will have a large steady·state error 
following the unit·ramp input. 

MA HAB Program 1 1 -9 

» % - In Ihis program, we obtain unil-step responses 
» % of uncompensated and compensated systems -
» 
» num1 = 141; 
» den1 = 1 1  2 41; 
» num2 = 1 1 66.668 
» den2 = 11 20.3 71 
» t = 0:0.01 :6; 

734.8391; 
203.41 

» c1 = slep(num1 ,den1 ,J); 
» c2 = slep(num2,den2,J); 
» plot(t,c1 ,1,c2} 
» grid 

734.8391;  

» titlee Unit-Step Responses of Uncompensated and Compensated Systems') 
» xlabelet (sec}') 
» ylabel('Oulputs c_1 and c_2 ' )  
» texl(3.1 , 1 . 1 , 'Uncompensaled system'} 
» texl(0.8, 1 .24,'Compensated system') 
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Unit-Step Responses of Uncompensated 
and Compensated Systems 
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Figure 11-41 Unit-step responses of uncompensated and compen­
sated systems. 
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MATLAB Program 1 1 -10 produces the unit-ramp response curves. [Note that 
the unit-ramp response is obtained as the unit-stcp response of Cj(s)/sR(s), where 
i = 1. 2 and R(s) is a unit-step input.] The resulting curves are shown in Figure 1 1 -42. 
The compensated system has a steady-state error equal 10 onc-tenth that of the origi­
nal. uncompensated system. 

MAHAR Program 1 1 -1 0 

» % - In this program, we obtain un it-ramp responses 
» % of uncompensated and compensated systems -
» 
» num1 = 141; 
» den1 = 1 1  2 4 
» num2 = [1 66.668 

OJ; 
734.8391; 

203 A1 » den2 = 11 20.371 
» t = 0:0.01 :4; 
» c1 = step(num1 ,den1 ,t); 
» c2 = step(num2,den2,t); 
» plot(t,c1 ,t,c2,t,t, ' - ' )  
» grid 

734.839 OJ; 

» title('Unit-Ramp Responses of Uncompensated and Compensated Systems') 
» xlabel( 't (sec)') 
» ylabel('lnput and Outputs c_1 and c_2 ' )  
» text( 1 .85,3.35, ' lnput') 
» text(2 .7, 1 . 1 ,  'Uncompensated') 
» text(2 .7,0.85, 'system') 
» text(OA,2 .35,  'Compensated') 
» text(OA,2 . 1  ' system ' )  
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Unit-Ramp Responses of Uncompensated 
and Compensated Systems 
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Figure 11�2 Unit-ramp responses of uncompensated and com­
pensated systems. 
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Example 11-7 Design of a Lag Compensator 

Consider the system shown in Figure 1 1-43. The open-loop transfer function is given by 

1 
G ( s) - --,----,.c:,-".---,-c 

s(s + 1 ) (0. 5s + 1 )  

It is desired to compensate the system so that the static velocity error constant Ku is 
5 5-I, the phase margin is at least 40°, and the gain margin is at least 10 dB. 

We shall use a lag compensator of the form 

Define 

and 

Ts + 1 
G,(s) = K,{3 {3Ts + 1 

G, (s) = KG(s) 

Figure 11-:13 Control system. 

1 
s + -

= K  T 
, 1 
s + --

(3T 

K 

(3 > 1 

s(s + 1 ) (0.5s + I )  

S(5 +1)(0.55 + I) r--........ -
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The first step in the design is to adjust the gain K to meet the required static velocity 
error constant. Thus, 

or 

Ts + 1 
K, � lim sG,(s)G(s) � lim s 

T 1 
GJ(s) � lim sGJ(s) 

s-O 5-0 (3 S + s-o 

� lim 
sK � K � 5 

,-0 s(s + 1) (0.5s + I )  

K � 5 

With K = 5, the compensated system satisfies the steady-state performance requirement. 
We shall next plot the Bode diagram of 

. 5 
GJ(jw) � 

jw(jw + I ) (O.5jw + 1 )  

The magnitude curve and phase-angle curve of G1 (jw) are shown in Figure 11-44. From 
this plot, the phase margin is found to be -20°, which means that the gain adjusted but 
uncompensated system is unstable. 

Noting that the addition of a lag compensator modifies the phase curve of the 
Bode diagram, we must allow 5° to 12° to the specified phase margin to compensate for 
the modification of the phase curve. Since the frequency corresponding to a phase mar­
gin of 40Q is 0.7 rad/s, the new gain crossover frequency (of the compensated system) 
must be chosen to be near this value. To avoid overly large time constants for the lag 
compensator, we shall choose the corner frequency w = liT (which corresponds to the 
zero of the lag compensator) to be 0.1 rad/s. Since this corner frequency is not too far 
below the new gain crossover frequency, the modification in the phase curve may not be 

dB 

w in radls 

Figure 1l� Bode diagrams for G1 = KG (gain-adjusted, but 
uncompensated system), Gc!K (gain-adjusted compensator), and GeG 
(compensated system). 
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small. Hence, we add about 12° to the given phase margin as an allowance to account for 
the lag angle introduced by the lag compensator. The required phase margin is now 52°, 
The phase angle of the uncompensated open·loop transfer function is -128° at about 
w == 0.5 radls, so we choose the new gain crossover frequency to be 0.5 rad/s. To bring 
the magnitude curve down to 0 dB at this new gain crossover frequency, the lag com· 
pensator must give the necessary attenuation, which in this case is -20 dB. Hence, 

or 

1 
20 10g- = -20 f3 

f3 = lO 
TIle other corner frequency w == l/{f3T) which corresponds to the pole of the lag 

compensator, is then determined as 

1 
f3T = am radls 

lllUS, the transfer function of the lag compensator is 

1 

G (s) = K ( 10) las + 1 
C C 100s + 1 

s + -
K 10 

, 1 s + ­lOa 
Since the gain K was determined to be 5 and (3 was determined to be 10, we have 

K = 
K = � = 0.5 , f3 10 

Hence, the compensator Gc(s) is determined to be 

lOs + 1 G,(s) = 5 lOOs + 1 
The open·!oop transfer function of the compensated system is thus 

5( lOs + 1 )  
G,(s)G(s) = s( lOOs + 1 ) (s + 1 ) (0.5s + 1 )  

The magnitude and phase·angle curves of Gc(}w )G(}w) are also shown in Figure 1 1-44. 
The phase margin of the compensated system is about 40°, which is the required 

value. TIle gain margin is approximately 11 dB, which is quite acceptable. TIle static 
velocity error constant is 5 S-I , as required. The compensated system, therefore, satis· 
fies the requirements regarding both the steady state and the relative stability. 

Note that the new gain crossover frequency is decreased from approximately 2 to 
0.5 rad/s.1l1is means that the bandwidth of the system is reduced. 

Compensators designed by different methods or by different designers (even 
using the same approach) may look sufficiently different. Any of the well·designed sys­
tems, however, will give similar transient and steady-state performance. The best 
among many alternatives may be chosen from the economic consideration that the 
time constants of the lag compensator should not be too large. 

Finally, we shall examine the unit-step response and unit-ramp response of the 
compensated system and the original, uncompensated system. The closed-loop transfer 
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functions of the compensated and uncompensated systems are 

and 

C(s) 50s + 5 
R(s) 50s' + 150.5s' + 101 .5s' + Sis + 5 

C(s) 

R(s) 

respectively. MATLAB Program 11-11 will produce the unit-step and unit-ramp 
responses of the compensated and uncompensated systems. TIle resulting unit-step 
response curves and unit-ramp response curves are shown in Figures 11--45 and 11-46. 

Unit-Step Responses of Compensated 

5 

5 

and Uncompensated Systems 

� Uncompensated system 

10 15 
t (sec) 

20 25 

nit-Ramp Responses of Compensated 
and Uncompensated Systems 

Input 

30 

Uncompcns<llcd system 

10 

Compensated system 

15  
( (sec) 

20 25 30 

Figure 1 1-45 Unit-step response 
curves for the compensated and 
uncompensated systems. 

Figure 11-46 Unit-ramp response 
curves for the compensated and 
uncompensated systems. 
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MA nAB Program 1 1 -1 1 

» %  - Unit-step response ­
» 
» num = [1 [ ;  
» clen = [0.5 1 .5 1 [ ;  
» nume = [50 5 [ ;  
» dene = [ 50  1 50.5 1 01 .5 5 1  5 [ ;  
» t = 0:0.01 :30; 
» [e1 ,xl ,t[ = step(num,den,t); 
» [e2,x2,t[ = step(nume,dene,t); 
» plot{t,c1 , ' , ' ,t,e2, ' . ' )  
» grid 
» title('Un it-Step Responses of Compensaled and Uncompensated Systems') 
» xlabel('t (sec)') 
» ylabel( 'Oulpuls') 
» text(1 2 .6, 1 .32, 'Compensated system') 
» text(1 2 .6,0.7, ' Uncompensated system') 
» 
» % - Uni t-ramp response -
» 
» num1 = 1 1 1 ;  
» den 1 = [0.5 
» num1 e = [50 
» denl e = [50 
» I = 0:0.01 :30; 

1 .5 
51; 

1 50.5 

0[; 

1 01 .5 51 

» [y l ,  z l ,  t[ = step(num1 ,den1 ,t); 
» ly2, z2, t[ = step(num1 e,den1 e,t); 
» plot (t,y1 , ' , ' ,t,y2,'· ' ,t,V--') 
» grid 

5 0[; 

» tit le('Unit-Ramp Responses of Compensated and Uncompensated Systems') 
» xlabel('t (sec) ') 
» ylabel( ' l nput and Outputs') 
» lext(l 0.7,2 .5 ,  'Compensated system') 
» texl(1 7.2,8.3 , 'Uncompensated system') 
» lexl(1 2 , 23 , ' lnpul ' )  

respectively. From the response curves, we find that the designed system is 
satisfactory. 

Note that the zero and the poles of the designed closed-loop systems are as follows: 

zero at s = -0.1 

poles at s = -0.2859 ± j0.5196, s = -0. 1228. s = -2.3155 
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The dominant closed-loop poles are very close to the jw-axis, with the result that the 
response is slow. Also, a pair consisting of the closed-loop pole at s = -0.1228 and the 
zero at s = -0.1 produces a slowly decreasing tail of small amplitude. 

A few comments on lag compensation 

1. Lag compensators are essentially low-pass filters. Therefore, lag compensa­
tion permits a high gain at low frequencies (which improves the steady-state 
performance of a system) and reduces gain in the higher critical range of fre­
quencies so as to improve the phase margin. Note that in lag compensation we 
utilize the attenuation characteristic of the lag compensator at high frequen­
cies, rather than the phase-lag characteristic. (The phase-lag characteristic is 
of no use for compensation purposes.) 

2. Suppose that the zero and pole of a lag compensator are located at s = - z 
and s = - p, respectively. Then the exact location of the zero and pole is not 
critical, provided that they are close to the origin and the ratio zip is equal to 
the required multiplication factor of the static velocity error constant. 

Note, however, that the zero and pole of the lag compensator should not 
be located unnecessarily close to the origin, because the lag compensator will 
create an additional closed-loop pole in  the same region as the zero and pole 
of the lag compensator. 

The closed-loop pole located near the origin gives a very slowly decay­
ing transient response, although its magnitude will become very small because 
the zero of the lag compensator wiLl almost cancel the effect of this pole. How­
ever, the transient response (decay) due to this pole is so slow that the settling 
time will be adversely affected. 

It is also noted that in the system compensated by a lag compensator 
the transfer function between the plant disturbance and the system error 
may not involve a zero that is near the closed-loop pole that is located close 
to the origin. Therefore, the transient response to the disturbance input may 
last very long. 

3. The attenuation due to the lag compensator will shift the gain crossover fre­
quency to a lower frequency at which the phase margin is acceptable. Thus, the 
lag compensator will reduce the bandwidth of the system and will result in a 
slower transient response. [111e phase-angle curve of G,(jw )G(jw) is relative­
ly unchanged near and above the new gain crossover frequency.] 

4. Since the Jag compensator tends to integrate the input signal, it acts approxi­
mately as a proportional-plus-integral controller. Because of this, a lag-com­
pensated system tends to become less stable. To avoid this undesirable 
feature, the time constant Tshould be made sufficiently larger than the largest 
time constant of the system. 

S. Conditional stability may occur when a system baving saturation or limiting is 
compensated by the use of a lag compensator. When saturation or limiting 
takes place in the system, it reduces the effective loop gain. Then the system 
becomes less stable, and may even become unstable, as shown in Figure 1 1-47. 
To avoid this possibility, the system must be designed so that the effect of lag 
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Figure 11-47 Bode diagram of a condition­
aUy stable system. w in radls 

compensation becomes significant only when the amplitude of Ihe input to 
the saturating element is small. (111is can be done by means of minor feed­
back-loop compensation.) 

Example 11-8 Design of a Lag-Lead Compensator 

Consider the unity-feedback system whose open-loop transfer function is 

K 
G (s) - --;---'7-:---C:­

- s(s + l )(s + 4) 

Design a compensator Gc{s) such that the static velocity error constant is lO S-I ,  the 
phase margin is 50°, and the gain margin is to dB or more. 

We shall design a lag-lead compensator of the form 

Then the open-loop transfer function of the compensated system is Gc(s)G(s). Since 
the gain K of tbe plant is adjustable, let us assume that K, = I. Then lim G,(s) = 1 .  
From the requirement on  the static velocity error constant. we obtainS-O 

Hence. 

K" = lim sG,.(s)G(s) = lim sGc(s) ( I�( ) s ..... O 5 ..... 0 S S + s + 4 
K = - = 10 
4 

K = 40 
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We shall first plot a Bode diagram of the uncompensated system with K = 40. 
MATLAB Program 1 1-12 may be used to plot this Bode diagram, which is shown in 
Figure 1 1-48. 

From Figure 1 1-48 the phase margin of the uncompensated system is found to be 
-16°, which indicates that the gain adjusted but uncompensated system is unstable. 
The next step in the design of a Jag-lead compensator is to choose a new gain crossover 
frequency. From the phase· angle curve for G(jw) ,  we notice that the phase crossover 
frequency is w = 2 Tad/s. We may choose the new gain crossover frequency to be 2 
Tad/s so that the phase-lead angle required at w = 2 Tad/s is about 50°. A single 
lag-lead compensator can provide this amount of phase-lead angle quite easily. 

Once we choose the gain crossover frequency to be 2 radls, we can determine the 
corner frequencies of the phase-lag portion of the lag-lead compensator. Let us choose 
the corner frequency w = 1IT2 (which corresponds to the zero of the phase-lag portion 
of the compensator) to be 1 decade below the new gain crossover frequency; that is, 
w � 0.2 radls. For another corner frequency w � lI({3T,), we need the value of {3, 
which can be determined from a consideration of the lead portion of the compensator. 

MA HAB Program 1 1 -1 2  

» num = 1401; 
» den = 11 5 4 01; 
» w = logspace(-l , 1 , 1 00); 
» bode(num,den,w) 
» grid 
» title('Bode D iagram of C(s) = 40/[s(s+ 1 )(s+4lJ ' ) 

-. -135 
If 
." i -180 

� 

� -225 

-270 L __ L---L�Li---Li..l...LL;;--_.-..l._-.L-L--"---.LJL.LL 
10-1 1 0° 101 

Frequency (rad/sec) 

Figurc ll-48 Bode diagram of C(s) = 40/1s(s + 1)(, + 4)1· 
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For the lead compensator, the maximum phase-lead angle q>m is given by Equa­
tion ( 1 1-10). By substituting a = 1I{3 into that equation, we have 

. f3 - 1 
sm cPm = f3 + 1 

Notice that f3 = 10 corresponds to cPIII = 54.9°. Since we need a 50° phase margin, we 
may choose {3 = 10. (Note that we will be using several degrees less than the maximum 
angle, 54.9'.) Thus, 

f3 = 10 
111el1 the corner frequency w = lI({3T2) (which corresponds to the pole of the phase­
lag portion of the compensalOr) becomes 

w = 0.02 

The transfer function of the phase-lag pan ion of the lag-lead compensator becomes 

s + 0.2 = 10 ( 5s + 1 ) 
s + 0.02 50s + I 

The phase-lead portion can be determined as follows: Since the new gain 
crossover frequency is w = 2 radls, from Figure 11-48, IG(j2 ) 1  is found to bc 6 dB. 
Hence, if the lag-lead compensalOr contributes -6 dB at w = 2 rad/s, then the new gain 
crossover frequency is as desired. From this requirement, it is possible to draw a straight 
line of slope 20 dB/decade passing through the point ( - 6  dB, 2 rad/s). (Such a line has 
been drawn manually in Figure '11-48.) The intersections of this line and the O-dB line 
and -20-dB line detennine the corner frequencies. From this consideration, for the lead 
portion, the corner frequencies can be determined as w = 0.4 radls and w = 4 rad/s. 
TIlUS, the transfer function of the lead portion of the lag-lead compensator becomes 

s + 0.4 = ...!... ( 2.5s + 1 ) 
s + 4 10 0.25s + 1 

Combining the transfer functions of the lag and lead portions of the compensator, we 
can obtain the transfer function Ge(s) of the lag-lead compensator. Since we chose 
Kc = l. we have 

G,.(s)  = 
s + 0.4 s + 0.2 
s + 4 s + 0,02 

(2.5s + 1 ) (5s + 1 )  
(0.25s + 1 ) (50s + 1 )  

TIle Bode diagram of the lag-lead compensator Ge(.'i') can be obtained by entering 
MATLAB Program 1 1-13 into the computer.1l1e resuhing plot is shown in Figure 1 1-49. 

MAHAR Program 1 1 -1 3 

» num = 11 0.6 0.081; 
» den = [ 1  4.02 0.08l; 
» bode(num,den) 
» grid 
» titleCBode Diagram of Lag-Lead Compensator') 
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Figure 11-49 Bode diagram of the designed lag-lead compensator. 

The openwloop transfer function of the compensated system is 

(s + O.4)(s + 0.2) 40 G,(s)G(s) = (s + 4) (s + 0.02) s(s + l ) (s  + 4) 
40s' + 245 + 3.2 

s' + 9.02s' + 24.18s' + 16.48s' + 0.325 

665 

rrr-· .. · · 

t · 

The magnitude and phase-angle curves of the designed open-loop transfer function 
G,(s)G(s) are shown in the Bode diagram of Figure 1 1-50, obtained from MATLAB 
Program 11-14. From the diagram, we see that the requirements on the phase margin. 
gain margin, and static velocity error constant are all satisfied. 

We next investigate the transient-response characteristics of the designed system. 

Unit-step response Noting that 

40( s + O.4) (s + 0.2 ) 
G, ( s ) G ( s) = -:-( s-+-""'4 ),"",(-'-s -+-:0-:.0-=-2 )""'s""( s-+-:-:1 )-';-( s-+--'-;-4 ) 

MATLAB Program 1 1 -1 4 

» num = 140 24 3 .21 ;  
» den = 1 1  9.02 24. 1 8  1 6.48 0.32 OJ; 
» bode(num,den) 
» grid 
» title(' Bode Diagram of G_c(s)G(s)') 
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FiJ.:urc 11-50 Bode diagram of G .. (s)G(J). 

we have 

C(s) G,(s)G(s) 
R(s) � 1 + G,(s)G(s) 

40(s + O.4)(s + 0.2) 
(s + 4)(s + 0.02)s(s + I ) (s  + 4) + 40(s + O.4)(s + 0.2) 

40s' + 24,. + 3.2 
,.' + 9.02s' + 24.18s3 + 56.48s' + 24.32,. + 3.2 

To obtain the unit-step response, we may use MATLAB Program 1 1-15, which 
produces the unit-step response curve shown in Figure 11-51. (Note that the gain 
adjusted but uncompensated system is unstable.) 

MA HAB Program 1 1 -1 5  

» % - Unit-step response ­
» 
» num = [40 24 3.21 ;  
» den = [ 1  9.02 24. 1 8  56.48 24.32 3.2[ ;  
» t � 0:0.05:40; 
» step(num,den,t) 
» grid 
» title('Unit-Step Response of Designed System') 
» xlabel('t'); ylabel('Output') 
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Figure 11-51 Unit-stcp response of 
thc designed system. 

Unit-ramp response llle unit-ramp response of this system may be obtained by en­
tering MATLAB Program 1 1-16 into the computer. Here, we converted the unit-ramp 
response of G,GI(l + G,G) into the unit-step response of G,G/[s( l + G,G)] .  The 
unit-ramp response curve obtained from the program is shown in Figure 1 1-52. 
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Figure 11-52 Unit-ramp response of the designed system. 
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MA TlAB Program 1 1 -1 6 

» % - Unit-ramp response ­
» 
» num = [40 24 3 .2 J; 
» den = [1 9.02 24. 1 8  56.48 24.32 3 .2 OJ; 
» t = 0:0.05:20; 
» c = step(num,den,t); 
» plot(t,c,t,t, '-.') 
» grid 
» title! 'Un it-Ramp Response of Designed System')  
» xlabel!,t (sec)') 
» ylabel!'lnput and Output') 

EXAMPLE PROBLEMS AND SOLUTIONS 
Problem A-ll-l 

Plot a Bode diagram of a PID controller given by 

2 G,(s) = 2.2 + - + O.2s s 
Solution The controller lTansfer function G,(s) can be written as 

.:..:( O-,. I.:.-s _+_I.:..:) (,,-s _+
_,-!-) 

G,(s) = 2-
s 

Figure 1 1-53 shows a Bode diagram of the given PID controller. 

40 

'" 20 
'" I , ;-. j ---+-- 1_ .• _L_ 

.-

� 0 i • - - . . _--! 
90' 

I2J O· 

-90' 

J_ 

! 

Figure 11-53 Bode diagram of PID con­
troller given by 0.1 0.2 0.4 2 4 10 20 40 100 
G,(s) = 2(0.ls + l)(s + 1)ls. w in radls 
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Problem A-1l-2 

Consider the mechanical system shown in Figure I I-54. Assume that .\'"(0) = 0 and 
p(O) = O. The numerical values for bb bb kJ, and k2 are given as follows: 

b1 = I N-s/m, b, = 2.85 N-s/rn. kl = 4 N/m, k, = 57 N/m 

Assuming the displacement p as the input and the displacement x as the output, obtain 
the transfer function X(s)/P(s). Then plot a Bode diagram for the system. 

Solution The equations of motion for the system are 

b1 (p - .r) + k1(p - x) = b,(.r - y) 
b,(.t - y) = k,y 

Taking the Laplace transforms of these two equations, substituting zero initial condi­
tions, and eliminating Y(s), we find that 

X(s) 
= 

(b1s + kI l (b,s + k,) 
P(s) (b1s + k1)(b,s + k,) + b,k,s 

Substituting the given numerical values into this last equation, we obtain the transfer 
function X(s)/P(s) as follows: 

X(s) (s + 4){2.85s + 57) 
P(s) (s + 4){2.85s + 57) + 2.S5 x 57s 

(s + 4)(s + 20) 
(s + 1 )(s + 80) 

The sinusoidal transfer function is 

X(jw) 
P(jw) = 

x 

y 

(jw + 4)(jw + 20) 
(jw + l ) (jw + SO) 

( 1  + 0.25jw){ 1  + 0.05jw) 
( 1  + jW){ l + 0.0125jw) 

Figure 11-54 Mechanical system. 
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The carncr frequencies are w = 1 Tad/s, W = 4 Tadls, w = 20 Tad/s, and w = 80 Tad/s. 
Figure 11-55 shows a Bode diagram for this system. (Both the accurate magnitude 
curve and the approximate curve by asymptotes are shown.) 

Notice that the system acts as a band-stop filter. That is, for 1 < w < 80, the output 
is attenuated, and for 0 < w < 1 and 80 < W, the output can follow the input faithfully. 

, , 

IGI 
/ 

/ / 

...--� 
" Is!...-

1 0  
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/ / 
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o· 
� 

-90' 

100 1000 

Figure 11-55 Bode diagram for the system shown in Figure J 1-54. where bl = I N-s/m. 
b2 = 2.85 N-s/m. k\ = 4 N/m, and k2 = 57 N/m. 

Problem A-U-3 

Draw a Bode diagram of the following nonminimum-phase system: 

C(s) 
-� = 1 - Ts 
R(s) 

Obtain the unit-ramp response of the system and plot e(l) versus t. 

Solution The Bode diagram of the system is shown in Figure 1 1-56. For a unit-ramp 
input, R(s) = lIs2, we have 

C(s) 
1 - Ts T � --� = - - -

s' s' s 
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dB t 
II - jwTI 0 1�20, dBldecade 

I w in log scale 
T 

• 
w in log scale 

671 

Figure 11-56 Bode diagram of I - jwT. 

The inverse Laplace transform of C(s) gives 

c(r) � r - T for I 2: 0 

Figure 1 1-57 shows the response curve C(I) versus T. (Note the faully behavior at the 
start of the response.) A characteristic property of such a nonminimum-phase system is 
that the transient response starts Qut in a direction opposite that of the input, but even­
tually comes back in the same direction as the input. 

,(r) 

c(r) ,(r) " 

0 

Problem A-ll-4 

I 
I 
T 

" c(r) 

Figure 11-57 Unit-ramp response of the system 
considered in Problem A-I 1-3. 

A Bode diagram of a dynamic system is given in Figure 1 1-58. Determine the transfer 
function of the system from the diagram. 

Solution '''Ie first draw straight·line asymptotes to the magnitude curve, as shown in 
Figure 1 1-58. [The asymptotes must have slopes of ±2011 dB/decade (/I � 0, 1 , 2, . . . ).J 
The intersections of these asymptotes are corner frequencies. Notice that there arc two 
corner frequencies, w = 1 rad/s and w = 5 rad/s. 

To determine the transfer function of the system, we need to examine the low­
frequency region. We have 

G(jO+ ) � 14 dB 

Thus, 

G(jO+)  � 5.01 
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Figure 11-58 Bode diagram of a dynamic system. 
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Since, from w = 1 Tad/s to w = 5 Tad/s, the asymptote has the slope of -20 dB/decade, 
the transfer function must have a term 1/( 1 + jw). From w = 5 Tad/s to w = 00, the 
asymptote has a slope of -40 dB/decade. [This means that an additional 
-20-dB/decade slope has been added to the slope from w = 5 rad/s to w = 00, Hence, 
the transfer function must involve a term 1/ (1  + jO.2w).) 

Now, combining all the terms together, we find the transfer function to be 

5.01 
G(jw) = 

( 1  + jw) (1  + 0.2jw) 

Notice that the given phase-angle curve starts from 0° and approaches -180°. The sinu­
soidal transfer function G(jw) determined here is of second order, and the phase angle 
of the transfer function agrees with the given phase-angle curve. Consequently, the 
transfer function determined here is 

G s) _ 5.01 
( - (s + I ) (0.2s + 1 ) 
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Problem A-ll-S 

For the standard second-order system 

C(s) 
R(s) 

show that the bandwidth Wb is given by 

2 l' + ' 5 + _�WIIS W;, 

w" = w,,(1 - 2(,' + V4(,' - 4r,' + 2 )'12 
Note that Wb1wl1 is a function only of ,. Plot a curve of w,)wlI versus {. 

673 

( 1 1-13) 

Solulion The bandwidth w" is determined from IC(jw,,)IR(jw,,) I = -3 dB. Quite 
often, instead of -3 dB, we use -3.01 dB, which is equal to 0.707. Thus, 

Then 

from which we get 

_1_"_ = " = 0.707 I C( ·w ) I I w' I R(jw,,) (jw,,)' + 2(,w,,(jw,,) + w;' 

Dividing both sides of this last equation by w�. we obtain 

I = 05{ [ 1 - (::)']' + 4(,t:),} 
Solving this last equation for (Wb1w,J!. yields (w")' 

= -2(,' + I ± V4(,' - 4(,' + 2 
w" 

Since (Wb1wn)2 > 0, we take the plus sign in this last equation. Then 

w� = w;,(l - 2(,' + v' 4(,' - 4(,' + 2 )  

or 

w" = w,,( 1 - 2(' + v' 4(,' - 4(,' + 2 )  112 

Figure 11-59 shows a curve relating Wb1wII to {. 

Problem A-ll-6 

Transport lag, or dead time, is a feature of nonrninimum-phase behavior and has an 
excessive phase lag with no attenuation at high frequencies. Transport lags normally 
exist in thermal, hydraulic, and pneumatic systems. 

If x(r) and y(r) are the input and output, respectively, of a transport lag, then 

y(r) = x(r - L) 
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Figure 11-59 Curve of wtJw" versus � (where Wb is the bandwidth) for 
the slandard second-order system defined by Equation ( 1 1-13). 

where L is the dead time. The transfer function of the transport lag is 

. !£[X(l - L)I(1 - L)I I transfer funcllon of transport lag = 
<D [ ( ) I (  ) 1  . . .  . .  ;:r., x I I zero mllm! condlllon 

X(s)e-L, .:..:..:c:-;:',- = e -'-' 
X(s) 

Consider the transport lag given by 

G(jw) = e-jwL 

The magnitude of the transport lag is always equal to unity, since 

IG(jw)1 = leas wL - j sin wLI = I 

Therefore, the log magnitude of the transport lag e-jwl. is equal to 0 dB. 
Draw the phase angle curve of the transport lag on the Bode diagram. 

Solution For 

we have 

� = -wL (radians) 
= -57.3wL (degrees) 
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The phase angle thus varies linearly with the frequency w. The phase·angle ch:uacteris­
tic of transport lag is shown in Figure 1 1-60. 
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Figure 11-60 Phase.angle characteristic of transport ing. 

Problem A-U-7 

Consider the thermal system shown in Figure 11-61. The plant involves a dead time of 
L seconds. The controller is a proportional one. I f  L = O. such a system is stable for all 
values of the gain K (0 < K < ) . However, if the plant involves dead time. the 
closed-loop system can become unstable if K exceeds a certain critical value. Deter· 
mine the critical value of the gain K when T = I s and L = 0.5 s. 

Solution \Ve first plot a Bode diagram when K = 1. We then determine the value of 
K that will cause the system to be critically stable. 

C(s) 

G(s) 

Hgurc 11-61 1l1crmal system. 
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The sinusoidal transfer function G(jw) with K = 1 ,  T = 1, and L = 0.5 is 

e-O.5Jw 
G(jw) = -. -­JW + 1 

The log magnitude is 

20 log IG(jw) 1 = 20 log 1 e-05lwl + 20 log I }w � 1 1 
= 0 + 20 log 1_._1_1 JW + I 

The phase angle of G(jw) is 

� = !e-DSjw + Lw � 1 
= -O.5w - lan-1w (radians) 

= 57.3( -0.5w - lan-I w) (degrees) 

The log-magnitude and phase-angle curves are shown in Figure 1 1-62. 
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Figure U-62 Bode diagram of the system e-jwL/(jwT + 1 )  with L = 0.5 and T = l. 
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The phase crossover fTequency is approximately w = 3.7 rad/s. (TIle exact value 
is W = 3.6732 radis.) The gain value at this frequency is approximately - I I  dB. (The 
exact value is -10.99 dB.) This means that if the gain K is increased by 10.99 dB, the 
system will become critically stable. Thus, the critical value of the gain K is 

K = 10.99 dB = 3.544 

Problem A-ll-8 
Consider the closed-loop system shown in Figure 11-63. Determine the critical value of 
K for stability by use of the Nyquist stability criterion. 

R(s) 

Figure 11-63 Closed-loop system. 

Solution The Nyquist plot of 

. K 
G(Jw) = -. --

I JW -

C(s) 

is a circle with center at -KI2 on the negative real axis and radius KI2, as shown in 
Figure 1 1-64(a). As w is increased from - to 00, the G(jw} locus makes a counter­
clockwise rotation. In this system, P = I, because there is one pole of G(s) in the right­
half s-plane. For the closed-loop system to be stable, Z must be equal to zero. 
Therefore, N = Z - P must be equal to -1 ,  or there must be one counterclockwise 
encirclement of the -1 + jO point for stability. (If there is no encirclement of the 
-1 + jO point, the system is unstable.) lllUs, for stability, K must be greater than unity, 
and K = I gives the stability limit. Figure 11-64(b) shows both stable and unstable 
cases of G(jw) plots. 

Problem A-1l-9 

Draw a Nyquist plot of 

20(s' + 5 + 0.5 ) 
G (5) - --:-'----:-:-;----:-0::: -

5 ( S + 1)(5 + 10) 

On the plot. locate the frequency points where w = 0.1. 0.2, 0.4. 0.6. 1.0, 2.0, 4.0, 6.0, 
'j 0.0, 20.0, and 40.0 radis. 

Solution Noting that 

. 2(-w' + jw + 0.5) 
G(Jw) = 

jw(jw + I ) (O. ljw + 1 )  
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Figure 11-64 (a) Nyquist plot of KI(jw - I) ;  (b) Nyquist plots of KI(jw - I) 
for stable and unstable cases. 

we have 
2V(0.5 - w' ) ' + w' 

I G (jw ) I = --:-;�==;;:---;=!=====' 
wVl + w' Vl + om w' 

!.!lJj!il = tan-t( _ 
w 

,) _ 90' - tan-t w - tan-t(0.1 w) 
0.) - w-

The magnitude and phase angle may be computed as shown in Table 11-2. Figure 11-65 
shows the Nyquist plot. Notice the existence of a loop in the Nyquist plot. 

Problem A-ll-10 

Draw a Nyquist plot of the following system with MATLAB: 

20(s' + s + 0.5 ) 
G (s) - ="--'-_:::-C -

s(s + J )(s + 10) 

Draw the plot for only the positive frequency region. 

Solution To draw the Nyquist plot for only the positive frequency region. we use the 
following commands: 

[re,im,wj = nyquist(num,den,w) 

plot (re, im) 
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-2 

1m 
2 

TABLE 11-2 Magnitude and Phase of G(jw) Con· 
sidered in Problem A-11-9 

w IG(jw)1 LGUw) 

0.1 9.952 -84.75° 

0.2 4.918 -78.96° 

0.4 2.435 -64.46° 

0.6 1 .758 -47.53° 

1.0 1.573 -24.W 

2.0 1.768 - 14.49° 

4.0 1.801 -22.24° 

6.0 1 .692 -31.10° 

10.0 1.407 -45.03° 

20.0 0.893 - 63.44° 

40.0 0.485 -75.96° 

w = ec  
/ 

3 Re 

-I 'j'-�'­

w = 20 
-2 

-3 

-4 

-5 

w = 0.4 

w = O.2 Figure 11--65 Nyquist piot of G(s) 
= 20(s2 + S + O.5)/ls(s + I)(s + 10)]. 

The frequency region may be divided into several subregions by using different incre­
ments. For example. the frequency region of interest may be divided into three subre­
gions as follows: 

wI = 0.1:0.1:10; 

w2 = 10:2:100; 

w3 = 100:10:500; 

w = [wI w2 w3J 
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MATLAB Program 11-17 uses this frequency region. Using this program, we obtain 
the Nyquist plot shown in Figure 11-66. 

MAHAB Program 1 1 -1 7 

» num = 120 20 1 01; 
» den = 1 1 1 1 1 0 01;  
» w1 = 0 . 1  :0. 1 : 1 0; w2 = 1 0:2:1 00; w3 = 1 00:1 0:500; 
» w  = Iw1 w2 w31 ;  
» I re,im,wl = nyquist(num,den,w); 
» plot(re, im) 
» v = 1-3 3 -5 1 1; axis (v) 
» grid 
» title('Nyquist Plot of G(s) = 20(51\2+5+0.5)/15(5+ 1 )(5+ 1 0)] ' )  
» xlabel(,Real Axis'), ylabel ( ' Imaginary Axis') 

Nyquist Plot of G(s) = 20(" + s + O.5)/ls(s + I)(s + 10)] 
I r---r---�--�--.---'---, 

o 

• -I 
'x 
<: 
t-o -2 c '" " E 

-3 

-4 

Figure 11-66 Nyquist plot of 
G(s) = 20(s' + s + 0.5)/ls(s + I)(s + 10)]. 

-5 
-2 0 -3 -I 

Real Axis 
2 3 

Problem A-U-U 

Figure 11-67 shows a block diagram of a space vehicle control system. Determine the 
gain K such that the phase margin is 50°, \Vhal is the gain margin in this case? 

-®--&-
c(s) 

Figure 11-67 Space vchicle control system. 
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Solution Since 

. K(jw + 2) 
G(Jw) = 

(jw)
' 

we have 

� = jiw + 2 - 2& = tan-I � - 1800 

The requirement that the phase margin be 50° means that /G{jw,) must be equal to 
- 130°, where We is the gain crossover frequency_ or 

Hence, we set 

from which we obtain 

tan-1 
We = 500 
2 

w, = 2.3835 radls 

Since the phase curve never crosses the - 180° line, the gain margin is + 00  dB. Noting 
that the magnitude of G(jw) must be equal to 0 dB at w = 2.3835, we have 

from which we get 

I K(Jw + 2) 1 = I 
(jw)2 w=2.3835 

2.3835' K = ---r'��==" V2' + 2.3835 ' 
1 .8259 

This K value will give the phase margin of 50°, 

Problem A-U-12 

Draw a Bode diagram of the open-loop transfer funclion G(5) of the closed-loop sys­
tem shown in Figure 1 1--68. Determine the phase margin and gain margin. 

Solution Note that 

. 20(jw + 1 )  
G(jw) = . 

( . 5 ) [( ' ) ' ? 10) l'v JW + JW � + _Jw + 

O.4(jw + I )  

jw(O.2jw + 1 ) [ (!.;of + 
1

2
0

jw + 1 ] 

20(, + t) 
s(s + 5)(52 + 2s + 10) 

G(,) 

Figure U-68 Closed-loop system. 
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TIle quadralic term in the denominator has the corner frequency of VTO rad/s and the 
damping ratio r; of 0.3[62. or 

w, = VfQ, r; = 0.3[62 

The Bode diagram of GUw) is shown in Figure 11--69. From this diagram, we find the 
phase margin to be 1000 and the gain margin LO be + 13 .3 dB. 

40 r--'---'-"I'I---,--.-.-rr--'---TI-r" 

20 -I 
o �-+���� __ � ______ -L-. ____ LI __ � 

I �'I '-- - - I ) 1 3 3  dB 

-20 

dB 

-40 

-60 

-80 

-100 
0.1  

�-r-Ll I __ t--_
_ 
I \ � --

, I i I � I 

o 

---I��:+ T- - -r ---

_

�-f -r- - I -90' 

- T -iL l r J I -I I 
- - 180' 

I I I I I i , I I  -270' 
0.2 0.4 0.6 I 2 4 6 1 0 20 40 60 100 

w in radls 

Figure 11-69 Bode diagram of G(s) of the system shown in Figure 1 1-68. 

Problem A-1l-13 

Consider the control system shown in Figure 11-70. Determine the value of the gain K 
such that the phase margin is 60°. 

Figure 11-70 Control system. 
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Solution The open-loop transfer function is 

G(s) = K
S + 0. 1 10 
s + 0.5 s(s + 1) 
K(lOs + I )  

S3 + 1.5s' + 0.5s 

683 

Let us plot the Bode diagram of G(s) when K = 1 .  MATLAB Program 1 1-18 may be 
used for this purpose. Figure 11-71 shows the Bode diagram produced by the program. 
From the diagram, the required phase margin of 60° occurs at the frequency 
w = 1.15 rad/s. The magnitude of G(jw) at this frequency is found to be 14.5 dB. Then 
the gain K must satisfy the following equation: 

S 
� 
" � � ." �, " 
::;; 

OD 0 
� 
0 � " 

20 log K = - 14.5 dB 

MA HAB Program 1 1 -1 8 

» num = [ 1 0  l J; 
» den = 1 1  1 .5 0.5 01; 
» bode(num,den) 
» grid 
» titleCBode Diagram of G(5) = ( 1 05+ 1 )/15(5+0.5)(5+ 1 )J ') 

Bode Diagram of G(s) = (lOs + 1)/[s(s + O.5)(s + I)J 
100 
80 
60 
40 
20 

0 
-20 
-40 
--60 
-80 

-100 

-45 

-90 

0: -135 

-180 
10-] 10-2 10-' 10· 10' 

Frequency (fad/sec) 

Figure 11-71 Bode diagram of G(s) = (lOs + 1 )/[s(, + O.5)(s + 1)[ .  
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or 

K = 0.188 

Thus, we have determined the value of the gain K. 

Problem A-11-14 

Consider a lag-lead compensator G,( s) defined by 

Show that at frequency 

1 
WI = ---

YT,T, 

the phase angle of GcUw) becomes zero. (This compensator acts as a lag compensator 
for 0 < w < WI and as a lead compensator for WI < W < 00.) 
Solution �f3 �I 

JW + - - JW + -
TI f3T, 

= tan-1 wT1 + tao-I wT2 - tan-1 wT,/{3 - tan-1 wT2f3 

At w = WI = lrVTl T2• we have 

Since 

or 

and also 

we have 

/ G,(jw,) = 90' - 90' = A' 

Thus, Ihe angle of G,(jWI ) becomes A' al W = WI = 1/VT,T,. 
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Problem A-1l-15 

Consider the system shown in Figure 11-72. Design a lead compensator such that the 
closed-loop system will have the phase margin of 50° and the gain margin of not less 
than 10 dB. Assume that 

G,(s) = K,,,(_TT=
s_+----,-1 ) a s + 1 

0 < ,, < 1 

It is desired that the bandwidth of the closed-loop system be 1 - 2 fad/so 

Solution Notice that 

G . G ' K jW . ( T '  + 1 ) 0 2  ,(jw) (jw) = 
,,, aTjw + I (jw)1(0.2jw + 1) 

Since the bandwidth of the closed-loop system is close to the gain crossover frequency, 
we choose the gain crossover frequency to be 1 fad/so At w = 1 .  the phase angle of 
G(jw) is - 191.31 '. Hence, the lead network needs to supply SO' + 11 .3 1'  = 61.3 1' at 
w = 1. Accordingly, a can be determined from 

The result is 

sin <Pm = sin 61.31° = I -
a = 0.8772 1 + a 

a = 0.06541 
Noting that the maximum phase lead angle <Pm occurs at the geometric mean of the two 
corner frequencies. we have 

Thus. 

and 

Hence. 

or 

iTT 1 1 3.910 w'" = vY-;;[, = 
va T 

= VO.06541 T = T = 1 

1 1 - = -- = 0.2558 T 3.910 

_I = 0.2558 = 3 910 aT 0.06541 . 

. . _ 3.91Ojw + I G,(jW )G(jw) = 0.06)41 K, 0 2  - -8 . . .).) JW + I 

3.91Ojw + 1 

0.2 
(jW)l(O.2jw + I )  

0.2 G,.(jw)G(jw) 
0.06541 K, 0.2558jw + 1 (jw),(0.2jw + 1 )  

Compensator G(s) 

Figure 11-72 Closed·loop syslem. 
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A Bode diagram for G,(jw)G(jw)/(0.06541 K,) is shown in Figure 1 1-73. By simple cal­
culations (or from the Bode diagram), we find that the magnitude curve must be raised 
by 2.306 dB so that the magnitude equals 0 dB at w = 1 fad/s. Hence, we set 

20 log 0.06541 K, = 2.306 

or 

0.0654IK, = 1.3041 

which yields 

K, = 19.94 

TIle magnitude and phase curves of the compensated system show that the system has 
the phase margin of 50° and the gain margin of 16  dB. Consequently, the design specifi· 
cations are satisfied. 

Figure lI-73 Bode diagram of the syslem 
shown in Figure 1 1-72. 

Problem A-1l-16 

dB 

40 

20 

0 

-20 

-40 

--60 

-80 

0.1 0.2 0.4 2 4 lO 20 40 

w in radls 

Consider the unity-feedback system whose open-loop transfer function is 

K 
G (5) - -;--:-:�--:-:::­- 5(5 + 1 ) (5 + 2) 

90-

O· 

-90' 

-180' 

-270' 
100 

Design a compensator such that the syslCm will have the static velocity error constant 
of ) 0 5-1 , the phase margin of 5W,and the gain margin of to dB or more. 

Solution Let us use a lag-lead compensator of the form 
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TIl en the open�loop transfer function of the compensated system is Gc(s)G(s). Since 
the gain K of the plant is adjustable. let us assume that Kc = 1. Then lim Gr(s) = l .  
From the requirement on the static velocity error constant. we obtainS-O 

Hence, 

K" � lim sG,(s)G(s) � lim sG,(s) ( �( 2) �'-o 5-0 S S + I s + 

�
K � lO 
2 

K � 20 
We shall next draw the Bode diagram of the uncompensated system with K = 20. as 
shown in Figure 11-74. The phase margin of the uncompensated system is found to be 
-32°, which indicates that the uncompensated system with K = 20 is unstable. 

The next step in the design of a lag-lead compensator is to choose a new gain 
crossover frequency. From the phase-angle curve for G(jw), we notice that 
� = -180° at w = 1 .5 Tad/s. II is convenient to choose the new gain crossover 

0.01 0.02 0.04 0. 1  0.2 0.4 0.6 

w in radls 
2 4 6 10 

Figure 11-74 Bode diagrams for the uncompensated system. thc com­
pensator. and the compcnsated system. (G. uncompensated system: Ge• 
compensator: GrG. compensated system.) 
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frequency to be 1.5 rad/s so that the phase-lead angle required at w = 1 .5 rad/s is about 
50°, which is quite possible with the use of a single lag-lead network. 

Once we choose the gain crossover frequency to be 1.5 Tad/s, we can determine 
one of the corner frequencies of the phase-lag portion of the lag-lead compensator. Let 
us choose the corner frequency w = lIT2 (which corresponds to the zero of the phase­
lag portion of the compensator) to be 1 decade below the new gain crossover frequen­
cy, or w = 0. 15 fad/so 

For the lead compensator, the maximum phase-lead anglc CPm is given by Equa­
tion ( 1 1-10), wilh cr = 1/{3 in the present case. Substituting " = 1/{3 in Equation 
(1 1-10), we obtain 

I 
. {3 {3 - 1  

SIn ¢m = --1- = {3 + 1 1 + -{3 

Notice that f3 = 10 corresponds to cPm = 54.9°, Since we need a 50° phase margin, we 
may choose 

{3 � 1O 

(Note that we will be using several degrees less than the maximum angle, 54.9°.) Then 
the corner frequency w = 1/{3Tz (which corresponds to the pole of the phase-lag por­
tion of the compensator) becomes w = 0.015 rad/s. The transfer function of the phase­
lag portion of the lag-lead compensator then becomes 

s + 0. 15 _ 1 0(
6.675 + I ) 

s + 0.015 66.7s + I 
The phase-lead portion can be determined as follows: Since the new gain 

crossover frequency is w = 1.5 rad/s. from Figure 1 1 -74, GU1.5) is found to be 13 dB. 
Hence, if the lag-lead compensator contributes - 1 3 dB at w = 1.5 rad/s. then the 
new gain crossover frequency is as desired. From this requirement, it is possible 10 
draw a straight line of slope 20 dB/decade, passing through the point (-13 dB, 1 .5 
rad/s). The intersections of this line with the O-dB line and -20-dB line determine the 
corner frequencies. Thus, the corner frequencies for the lead portion are 
w = 0.7 rad/s and w = 7 rad/s, and the transfer function of the lead portion of the 
lag-lead compensator becomes 

s + 0.7 = ...!... ( 1 .435 + I 
) 5 + 7 10 0.1435 + I 

Combining the transfer functions of the lag and lead portions of the compensator, we 
obtain the transfer function of the lag-lead compensator. Since we chose K. = 1 , we have 

G (s) = (5 + 0.7)( 5 
+ 0.1 5  ) = ( 

1 .43s + 1 )(
6.67S + I ) 

, 5 + 7  s + 0.Ql5 0.143s + 1 66.7s + 1  
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The magnitude and phase·anglc curves of the Jag-lead compensator just designed 
are shown in Figure 1 1-74. The open-loop transfer function of the compensated 
system is 

(5 + 0.7)(5 + 0.15 )20 
G,(5)G(5) � 

(5 + 7)(5 + 0.015)5(5 + 1 ) (5 + 2)  

10(1.435 + 1 )(6.675 + I )  

5(0.1435 + 1 )(66.75 + 1 )(5 + 1 ) (0.55 + I )  
(1 1-14) 

TIle magnitude and phase-angle curves of the system of Equation (11-14) are also 
shown in Figure 1 1 -74. The phase margin of the compensated system is 50°, the gain 
margin is 16 dB, and the static velocity error constant is 10 5-1, All the requirements arc 
therefore met, and the design has been completed. 

Let us now examine the transient-response characteristics of the compensated 
system. (The uncompensated system with K = 20 is unstable.) The closed-loop transfer 
function of the compensated system is 

C(5) 95.3815' + 815 + 1 0  

R(5) 4.76915' + 47.72875' + 110.30265' + 163.7245' + 825 + 10 

The unit-step and unit-ramp response curves obtained with MATLAB arc shown in 
Figures 1 1-75 and 1 1-76, respectively. 

Note that the designed closed-loop control system has the following closed-loop 
zeros and poles: 

zeros at 5 � -0.1499, 5 � -0.6993 
poles at 5 � -0.8973 ± jl.4439 

5 � -0.1785, 5 � -0.5425, 5 � -7.4923 

Unit - Step Response of Compensated System 
1.4 r---�-'-----'�----;'----'�--., 

1.2 

" 0.8 
Co 

6 0.6 

0.4 

0.2 

o "---�---�---�--�-----' Figure 11-75 Unit-step response or 
o 5 10 15 20 25 the compensated system (Problem 

I (scc) A-ll-J6). 
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20 
Unit-Ramp Response of Compensated System 

18 

16 

:; 14 
'" 
:; 12 
0 
'0 lO � 
:; 8 '" 
-= 6 

4 

2 

0 
0 2 4 6 8 10 12 14 16 18 

t (sec) 

Figure 11-76 Unit-ramp response of the compensated system 
(Problem A-1l-16). 

20 

The pole at s = -0.1785 and the zero at s = -0.1499 are located very close to each 
other. Such a pair of pole and zero produces a long tail of small amplitude in the step 
response, as seen in Figure 11-75. Also, the pole at s = -0.5425 and the zero at 
s = -0.6993 are located fairly close to each other. This pair adds an amplitude to the 
long lail. 

PROBLEMS 
Problem 8-11-1 

Draw a Bode diagram of 

Problem 8-11-2 

G 
lOs (s) = s + 10 

Draw a Bode diagram of the following transfer function: 

Problem 8-11-3 

G( ) 
s + 5 s = s' + 2s + 1O 

Draw Bode diagrams of (he PI controller given by 
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and the PD controller given by 

GAs) = 5(1  + O.5s) 

Problem 8-11-4 

Consider a PID controller given by 

(s + 0.65 )' 
G,(s) = 30.3215 -'------"­

s 

Draw a Bode diagram of the controller. 

Problem 8-11-5 

c 

Draw Bode diagrams of the lead network and lag network shown in Figures 11-77(a) 
and (b), respectively. 

R 
o----j 1----.----0 � R 

(a) 

Problem 8-11-6 

0_--,-1_0 
(b) 

Figure 11-77 (a) Lead network: (b) lag 
network. 

In the mechanical system of Figure 11-78, x(t) is the input displacement and OCr) is the 
output angular displacement. Assume that the masses involved are negligibly small and 
that all motions are restricted to be small; therefore, the system can be considered lin­
ear. The initial conditions for x and 8 are zeros, or x(O - )  = 0 and 8(0 - ) = O. 

x 

b 

No friction 
k 

Figure 11-78 Mechanical system. 
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Consider the case where the input displacement X(I) is given by 

x(t) = X sin wI 
What is the steady-state output 8(t)? Also, draw a Bode diagram of 

. 0(jw) 
G(Jw) = X(jw) 

when I = 0.1 m, k = 2 N/m , and b = 0.2 N-s/m. 

Problem B-11-7 

Given 

show that 

Problem 8-11-11 

I 
IG(jw,,) I = 2, 

Plot a Bode diagram of the following G(s) with MATLAB. 

320(s + 2)  
G(s) = , s(s + 1)(5" + 8s + 64) 

Problem 8-11-9 

Plot a Bode diagram of the following G(s) with MATLAB. 

20(s' + s + 0.5) 
G ( s) - --:-'-----:-:-:-----:-::-:­s(s + l ) (s + 10) 

Problem 8-11-10 

Consider a unity-feedback system with the following fcedfofward-Iransfcr function: 

1 G (s) = ....,.-c;---:�--:-:­
s(s2 + 0.8s + I ) 

Draw a Nyquist plot of G(s) with MATLAB. ls this system stable? 

Problem 8-11-11 

Draw a Nyquist plot of the following G(s) with MATLAB. 

20(s + I )  
G(s) = , s(s + 5)(5" + 2s + 10) 

Problem B-11-U 

Consider a unity-feedback control system with the following open-loop transfer function: 

G(s) = 
s' + �s + I 

s3 + O.2s- + s + 
Draw a Nyquist plot of G(l') and examine the stability of the closed-loop system. 
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Problem 8-11-13 

A system with the open· loop transfer function 

G(s)H(s) = '(T ·1 ) s- I S + 

K 

is inherently unstable. The system can be stabilized by adding derivative control. Sketch 
the Nyquist plots for the open·loop transfer function with and without derivative can· 
trol. 

Problem 8-11-14 

Figure 1 1-79 shows a block diagram of a process control system. Determine the range 
of the gain K for stabilily. 

Figure 11-79 Process control system. 

Problem 8-11-15 

Consider a unity-feedback control system with the open-loop transfer function 

K 
G (s) = -,--,--'-'--,,­

s ( , ' + s + 4 ) 

Determine the value of the gain K such that the phase margin is 50°, \Vhal is the gain 
margin with this gain K? 

Problem 8-11-16 

Consider the system shown in Figure 11-80. Draw a Bode diagram of the open-loop 
transfer function and determine the value of the gain K such that the phase margin is 
50°. What is the gain margin of the system with this gain K? 

Figure 11-80 Control system. 

Problem 8-11-17 

Referring to the control system shown in Figure 1 1-81, design a lead compensator 
Gc(s) such that the phase margin is 45°, thc gain margin is not less than 8 dB, and thc 

static velocity error constant Ku is 4.0 S-I . Plot unit-slcp and unit-ramp response curves 
of the compensated system with MATLAB. 



• 
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---@---B-- 5(0. Is + �)(S + I) r--,...--

Figure 11-81 Control system. 

Problem 8-11-18 

Consider the system shown in Figure 1 1-82. Design a compensator such that the static 
velocity crror constant KIJ is 50 5-', the phase margin is 50°. and the gain margin is not 
less than 8 dB. Plot unit-step and unit-ramp response curves of the compensated and 
uncompensated systems with MATLAB. 

Figure 11-82 Control system . 



Appendix A 
Systems of Units 

In this appendix, we review systems of units commonly used in engineering fields, 
such as the cgs system of units, mks system of units, metric engineering system of 
units, British engineering system of units, and International System of units (SI). 

Units. A physical quantity can be measured only by comparison with a like quan­
tity. A distinct amount of a physical quantity is called a unit. (To be useful, the 
unit should be a convenient, practical size.) Any physical quantity of the same 
kind can be compared with it, and its value can be stated in terms of a ratio and 
the unit used. 

Basic units and derived units. The general unit of a physical quantity is defined 
as its dimension. A system of units can be developed by choosing, for each 
basic dimension of the system, a specific unit (e.g., the meter for length, the 
kilogram for mass, and the second for time). Such a unit is called a basic unit. 
The corresponding physical quantity is called a basic quantity. All units that 
are not basic are called derived units. 

Systematic units. Systematic units are systematically derived units within a unit 
system. They can be obtained by replacing the general units (dimensions) by 
the basic units of the system. 

695 
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If we define the dimensions of length, mass, and time as [L], [M], and [T], 
respectively, then physical quantities may be expressed as [L)X[M]Y[T]t. For 
instance, the dimension of acceleration is [L ][Tr2 and that of force is 
[L][M][Tr2. In the mks system of units, the systematic unit of acceleration is 
therefore 1 rnIs2 and that of force is 1 kg-rnIs2. 

Absolute systems of units and gravitational systems of units. Systems of 
units in which mass is taken as a basic unit are called absolute systems of units, 
whereas those in which force rather than mass is taken as a basic unit are 
called gravitational systems of units. 

The cgs system of units. The cgs system of units is an absolute system of units 
based on the centimeter, gram mass, and second. This system has been widely 
used in science. Among its disadvantages are the facts that the derived units 
for force and energy are too small for practical purposes and that the system 
does not combine with the practical electrical units to form a comprehensive 
system of units. 

The mks system of units. The mks system of units is an absolute system of units 
based on the meter, kilogram mass, and second. In this system, the derived 
units for force and energy are a convenient size in an engineering sense, and 
all the practical electrical units fit in as natural units to form a comprehensive 
system of units. 

Metric engineering system of units. The metric engineering system of units is a 
gravitational system of units based on the meter, kilogram force, and second. 
(Since the standard of force is defined as the weight of the prototype standard 
mass of the kilogram, the basic unit of force is variable, but this factor is not a 
serious disadvantage.) 

British engineering system of units. The British engineering system of units is a 
gravitational system of units based on the foot, pound force, and second. This 
system is the one that has been used in the United States. The derived unit of 
mass is Ib,-s2/ft and is called a slug (1 slug = I lb,-s2/ft) . 

International System of units (SI). The International System of units (Systeme 
International d'Unites) is the internationally agreed-upon system of units for 
expressing the values of physical quantities. (See Table A-I .) In this system, 
four more basic units are added to the customary three (meter, kilogram, sec­
ond) of the mks absolute system of units. The four added basic units are the 
ampere as the unit of electric current, the kelvin as the unit of thermodynam­
ic temperature, the candela as the unit of luminous intensity, and the mole as 
the unit of amount of substance. T hus, in SI units, the meter, kilogram, sec­
ond, ampere, kelvin, candela, and mole constitute the seven basic units. Two 
auxiliary SI units are the radian, which is the unit of a plane angle, and the 
steradian, which is the unit of a solid angle. Table A-I lists the seven basic 
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TABLE A-1 International System of Units (51) 
1YPe of 
Units Quantity Unit 

Length meter 
Mass kilogram 
Tune second 

Basic units Electric current ampere 
Temperature kelvin 

Luminous intensity candela 
Amount of substance mole 

Auxili Plane angle radian . ary  
umts Solid angle steradian 

Acceleration meter per second squared 

Activity (of radioactive 1 per second 
source) 

Angular acceleration radian per second squared 

Angular velocity radian per second 
Area square meter 

Density kilogram per cubic meter 

Dynamic viscosity 
newton second 

per square meter 
Electric capacitance farad 

Electric charge coulomb 

Electric field strength volt per meter 

Electric resistance ohm 

Derived 
Entropy joule per kelvin 

units Force newton 

Frequency hertz 

Illumination lux 

Inductance henry 
Kinematic viscosity square meter per second 

Luminance candela per square meter 

Luminous flux lumen 

Magnetic field strength ampere per meter 

Magnetic flux weber 

Magnetic flux density tesla 
Magnetomotive force ampere turn 

Power watt 

pascal (newton 
Pressure per square meter) 
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Symbol Dimension 

m 

kg 

s 

A 
K 

cd 

mol 

rad 

sr 

mls2 

S-1 

rad/s2 

rad/s 

m2 

kglm3 

N-s/m2 m-1 kg s-1 

F m-2 kg-1 S4 A2 
C As 

VIm m kg s-3 A-I 

n m2 kg S-3 A-2 

11K m2 kg s-2 K-1 

N m kg s-2 

Hz S-1 

Ix m-2 cd sr 

H m2 kg S-2 A-2 

m2/s 

cd/m2 

1m cd sr 

AIm 

Wb m2 kg s-2 A-I 

T kg S-2 A-I 

A A 

W m2 kg S-3 

Pa 
m-1 kg s-2 (N/m2) 
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TABLE A-1 (continued) 
lYPe of 
Units 

Derived 
units (cont.) 

Quantity Unit Symbol Dimension 

Radiant intensity watt per steradian W/sr m2 kg S-3 sr-1 

Specific heat 
joule per 

J/kg-K m2 S-2 K-1 
kilogram kelvin 

Thermal conductivity watt per meter kelvin W/m-K m kg s-3 K-1 

Velocity meter per second mls 

Voltage volt V m2 kg s 3 A l 
Volume cubic meter m3 

Wave number 1 per meter m-1 

Work, energy, 
joule J m2 kg S-2 

quantity of heat 

units, the two auxiliary units, and some of the derived units of the International 
System of units. (Multiples and submultiples of the units are indicated by a 
series of 16 prefixes for various powers of 10; see Table A-2.) 

TABLE A-2 Prefixes and Abbreviated Prefixes 
for Multiples and Submultiples in Powers of 10 

Prefix Abbreviated Prefix 
1018 exa E 

1015 peta P 

1012 tera T 

109 giga G 
106 mega M 

103 kilo k 

102 hecto h 

10 deka da 

10-1 deci d 

10-2 centi c 

10-3 milli m 

10-6 micro p. 
10-9 nano n 

10-12 pico p 

10-15 femto f 

10-18 atto a 
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The seven basic SI units are defined in the following way: 

Meter. The meter is the length equal to 1 650 763.73 wavelengths of radiation in 
vacuum corresponding to the unperturbed transition between levels 2PlO and 
5ds of the atom of krypton 86, the orange-red line. 

Kilogram. The kilogram is the mass of a particular cylinder (of diameter 39 mm and 
height 39 mm) of platinum-iridium alloy, called the International Prototype 
Kilogram, which is preserved in a vault at Sevres, France, by the International 
Bureau of Weights and Measures. 

Second. The second is the duration of 9 192 631 770 periods of the radiation corre­
sponding to the transition between the two hyperfine levels of the fundamental 
state of the atom of cesium 133. 

Ampere. The ampere is a constant current that, if maintained in two straight, par­
allel conductors of infinite length, of negligible circular cross sections, and 
placed 1 meter apart in a vacuum, will produce between these conductors a 
force equal to 2 X 10-7 newton per meter of length. 

Kelvin.  The kelvin is the fraction 1/273.16 of the thermodynamic temperature of 
the triple point of water. (Note that the triple point of water is 0.010 C.) 

Candela. The candela is the luminous intensity, in the direction of the normal, of a 
blackbody surface 1/600 000 square meter in area at the temperature of solidi­
fication of platinum under a pressure of 101 325 newtons per square meter. 

Mole. The mole is the amount of substance of a system that contains as many 
elementary entities as there are atoms in 0.012 kilogram of carbon 12. 

The two auxiliary units of SI (radian and steradian) are defined as follows: 

Radian. The radian is a unit of plane angular measurement equal to the angle at the 
center of a circle subtended by an arc equal in length to the radius. (The dimension 
of the radian is zero, since it is a ratio of quantities of the same dimension.) 

Steradian. The steradian is a unit of measure of solid angles that is expressed as 
the solid angle subtended at the center of a sphere by a portion of the surface 
whose area is equal to the square of the radius of the sphere. (The dimension of 
the steradian is also zero, since it is a ratio of quantities of the same dimension.) 
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Conversion Tables 

Conversion tables for mass, length, area, volume, energy, power, pressure, and tem­
perature are presented in Tables B-1 through B-9. 

TABLE B-1 Conversion Table for Mass 

g kg Ib oz grain slug 

1 10-3 2.205 X 10-3 3.527 X 10-2 15.432 6.852 X 10-5 

loJ 1 2.205 35.27 15.432 X 103 6.852 X 10-2 

453.6 0.4536 1 16 7000 3.108 X 10-2 

28.35 2.835 X 10-2 0.0625 1 437.5 1.943 X 10-3 

6.480 X 10-2 6.480 X 10-5 1.429 X 10-4 2.286 X 10-3 1 4.440 X 10-6 

1.459 X 104 14.59 32.17 514.78 2.252 X lOS I 

TABLE B-2 Conversion Tables for Length 

em m in. ft yd 

1 0.01 0.3937 0.03281 0.01094 

100 1 39.37 3.281 1.0936 

2.54 0.0254 1 0.08333 0.02778 

30.48 0.3048 12 1 0.3333 

91 .44 0.9144 36 3 1 

700 
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TABLE B-2 (continued) 
km mile nautical mile ft 

1 0.6214 0.5400 3280.84 

1 .6093 1 0.8690 5280 

1.852 1.151 1 6076 

TABLE B-3 Conversion Table for Length (from in. to mm) 

in. nun in. nun in. nun in. mm 
1132 0.794 9/32 7.144 17/32 13.494 25/32 19.844 

1116 1.587 5/16 7.937 9116 14.287 13/16 20.638 

3/32 2.381 1 1/32 8.731 19/32 15.081 27/32 21.431 

1/8 3.175 3/8 9.525 518 15.875 7/8 22.225 

5/32 3.969 13/32 10.319 21132 16.669 29/32 23.019 

3/16 4.762 7/16 1 1. 1 12 1 1/16 17.462 15116 23.812 

7/32 5.556 15/32 1 1.906 23/32 18.256 31132 24.606 

1/4 6.350 112 12.700 3/4 19.050 1 25.400 

TABLE B-4 Conversion Tables for Area 

cm2 m2 in.2 ft2 yd2 km2 mile2 

1 10-4 0.155 1.0764 X 10-3 1.196 X 10-4 1 0.3861 

104 1 1550 10.764 1.196 2.590 1 

6.452 6.452 X 10-4 1 6.944 X 10-3 7.716 X 10-4 

929.0 0.09290 144 1 0.1 1 1 1  

8361 0.8361 1296 9 1 
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TABLE B-5 Conversion Tables for Volume 

nun3 em3 • 3 m. m3 tt3 yd3 

1 10-3 6.102 X 10-5 1 35.315 1.308 

103 1 6.102 X 10-2 2.832 x 10-2 1 3.704 X 10-2 

1.639 X 104 16.39 1 0.7646 27 1 

U.S. gallon liter barrel 

1 3.785 2.381 x 10-2 

0.2642 1 0.6290 X 10-2 

42 159 1 

TABLE B-6 Conversion Table for Energy 

J kgrm ft-lb, kWh kcal Btu 

1 0.10197 0.7376 2.778 X 10-7 2.389 X 10-4 9.480 X 10-4 

9.807 1 7.233 2.724 X 10-6 2.343 X 10-3 9.297 X 10-3 

1.356 0.1383 1 3.766 X 10-7 3.239 X 10-4 1.285 X 10-3 

3.600 X 106 3.671 X lOS 2.655 X 106 1 860 3413 

4186 426.9 3087 1.163 X 10-3 1 3.968 

1055 107.6 778 2.930 X 10-4 0.2520 1 

TABLE B-7 Conversion Table for Power 

British 
kW kgrmls ft-Ibt's horsepower kcalls Btu/s 

hp 

1 101.97 737.6 1.341 0.2389 0.9480 

9.807 X 10-3 1 7.233 1.315 X 10-2 2.343 X 10-3 9.297 X 10-3 

1.356 X 10-3 0.1383 1 1.818 X 10-3 3.239 X 10-4 1.285 X 10-3 

0.7457 76.04 550 1 0.1782 0.7069 

4.186 426.9 3087 5.613 1 3.968 

1.055 107.6 778.0 1.414 0.2520 1 



TABLE B-8 Conversion Table for Pressure 

atm 

Pa or bar 
kglcm2 Iblin.2 

(standard 

N/m2 ( lOs N/m2) atmospheric 
mm Hg in. Hg m H20 

pressure) 

1 1 x 10-5 1 .0197 X 10-5 1 .450 X 10-4 9.869 X 10-6 7.501 X 10-3 2.953 X 10-4 1 .0197 X 10-4 

1 X lOS 1 1.0197 14.50 0.9869 750.1 29.53 10.197 

9.807 X 10" 0.9807 1 14.22 0.9678 735.6 28.96 10.000 

6.895 X 103 0.06895 0.07031 1 0.06805 51.71 2.036 0.7031 

1 .0133 X lOS 1.0133 1.0332 14.70 1 760 29.92 10.33 

1.3332 x 102 1.3332 x 10-3 1 .3595 X 10-3 19.34 X 10-3 1 .3158 X 10-3 1 3.937 X 10-2 1 .360 X 10-2 

3.386 X 103 0.03386 0.03453 0.4912 0.03342 25.4 1 0.3453 

9.807 X 103 0.09807 0.10000 1.422 0.09678 73.55 2.896 1 

.... 
S 
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TABLE B-9 Conversion Table for Temperature 

°C of °C of °C of 
-50 -58 16 60.8 44 111.2 

-40 -40 18 64.4 46 114.8 

-30 -22 20 68.0 48 118.4 

-20 -4 22 71.6 50 122.0 

-10 14 24 75.2 55 131.0 

-5 23 26 78.8 60 140.0 

0 32 28 82.4 65 149.0 

2 35.6 30 86.0 70 158.0 

4 39.2 32 89.6 75 167.0 

6 42.8 34 93.2 80 176.0 

8 46.4 36 96.8 85 185.0 

10 50.0 38 100.4 90 194.0 

12 53.6 40 104.0 95 203.0 

14 57.2 42 107.6 100 212.0 

To convert from Fahrenheit to Celsius, subtract 32 and multiply by 5/9: 

5 
te = g(tF - 32) 

To convert from Celsius to Fahrenheit, multiply by 9/5 and add 32: 

9 
tF = stc + 32 

Appendix B 

Absolute zero temperature occurs at -273.15° on the Celsius scale and at -459.67° 
on the Fahrenheit scale. Absolute temperatures on the two scales are tc + 273.15 
and tF + 459.67. Note that in most calculations the constants used are 273 and 460. 
Note also that 

tc degrees Celsius = (tc + 273.15) kelvin 
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Vector-Matrix Algebra 

C-1 INTRODUCTION 

In deriving mathematical models of modem dynamic systems, one finds that the differ­
ential equations involved may become very complicated due to the multiplicity of 
inputs and outputs. To simplify the mathematical expressions of the system equations, it 
is advantageous to use vector-matrix notation, such as that used in the state-space rep­
resentation of dynamic systems. For theoretical work, the notational simplicity gained 
by using vector-matrix operations is most convenient and is, in fact, essential for the 
analysis and design of modem dynamic systems. With vector-matrix notation, one can 

handle large, complex problems with ease by following the systematic format of repre­
senting the system equations and dealing with them mathematically by computer. 

The principal objective of this appendix is to present definitions associated with 
matrices and the basic matrix algebra necessary for the analysis of dynamic systems. 

C-2 DEFINITIONS ASSOCIATED WITH MATRICES 

Matrix. A matrix is defined as a rectangular array of elements that may be 
real numbers, complex numbers, functions, or operators. The number of columns, in 
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general, is not necessarily the same as the number of rows. Consider the matrix [an 

A = afl 
anI 

aIm] 
a2m 

anm 

where aij denotes the (i, j)th element of A. This matrix has n rows and m columns 
and is called an n X m matrix. The first index represents the row number, the second 
index the column number. The matrix A is sometimes written (aij) '  

Equality of two matrices. '!\vo matrices are said to be equal if and only if 
their corresponding elements are equal. Note that equal matrices must have the 
same number of rows and the same number of columns. 

Vector. A matrix having only one column, such as 

is called a column vector. A column vector having n elements is called an n-vector or 
n-dimensional vector. 

A matrix having only one row, such as 

is called a row vector. 

Square matrix. A square matrix is a matrix in which the number of rows is 
equal to the number of columns. A square matrix is sometimes called a matrix of 
order n, where n is the number of rows (or columns). 

Diagonal matrix. If all the elements other than the main diagonal elements 
of a square matrix A are zero, A is called a diagonal matrix and is written as 

all 0 

an 
A =  = (aij 8ij) 

0 ann 
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where the 8;j are the Kronecker deltas, defined by 

8ij = 1 if i = j 

= 0 if i #= j 

707 

Note that all of the elements that are not explicitly written in the foregoing matrix 
are zero. The diagonal matrix is sometimes written 

diag(alh a22, · · ·  , ann ) 

Identity matrix or unity matrix. The identity matrix or unity matrix I is a 
matrix whose elements on the main diagonal are equal to unity and whose other 
elements are equal to zero; that is, 

1 = [1 o 
1 

o !l = diag(1, 1 ,  . . .  , 1 ) 

Zero matrix. A zero matrix is a matrix whose elements are all zero. 

Determinant of a matrix. For each square matrix, there exists a determinant. 
The determinant has the following properties: 

1. If any two consecutive rows or columns are interchanged, the determinant 
changes its sign. 

2. If any row or any column consists only of zeros, then the value of the determi­
nant is zero. 

3. If the elements of any row (or any column) are exactly k times those of another 
row (or another column), then the value of the determinant is zero. 

4. If, to any row (or any column), any constant times another row (or column) is 
added, the value of the determinant remains unchanged. 

5. If a determinant is multiplied by a constant, then only one row (or one column) 
is multiplied by that constant. Note, however, that the determinant of k times 
an n X n matrix A is kn times the determinant of A, or 

I kAI = �IAI 

6. The determinant of the product of two square matrices A and B is the product 
of determinants, or 

IAB I = IA I IB I  

Singular matrix. A square matrix i s  called singular if the associated deter­
minant is zero. In a singular matrix, not all the rows (or not all the columns) are 
independent of each other. 

Nonsingular matrix. A square matrix is called nonsingular if the associated 
determinant is nonzero. 
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Transpose. If the rows and columns of an n X m matrix A are interchanged, 
the resulting m X n matrix is called the transpose of A. The transpose of the matrix 
A is denoted by A'. That is, if [all a12 aIm] 

A = atl a22 a2m 

anI an2 anm 

then [ all a21 anI ] 
A' = at2 a22 an2 

aIm a2m anm 

Note that (A' ) '  = A. 

Symmetric matrix. If a square matrix A is equal to its transpose, or 

A = A' 
then the matrix A is called a symmetric matrix. 

Skew-symmetric matrix. If a square matrix A is equal to the negative of 
its transpose, or 

A =  -A' 
then the matrix A is called a skew-symmetric matrix. 

Conjugate matrix. If the complex elements of a matrix A are replaced by 
their respective conjugates, then the resulting matrix is called the conjugate of A and 
is denoted by A = (a;j), where a;j is the complex conjugate of a;j. For example, if 

A = [-1
0
+ j  

1 
-1 � j4] -3 - j3 

-1 + j -1 -2 + j3 

then 

A = [-1
0
- j  

1 
-1 � j4] -3 + j3 

-1  - j -1 -2 - j3 

Conjugate transpose. The conjugate transpose is the conjugate of the 
transpose of a matrix. Given a matrix A, the conjugate transpose is denoted by A' or 
A*; that is, 
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For example, if 

then 

Note that 

1 + jS ] 
3 - j 

1 + j3 
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If A is a real matrix (i.e., a matrix whose elements are real), the conjugate transpose 
A* is the same as the transpose A' . 

Hermitian matrix. A matrix whose elements are complex quantities is 
called a complex matrix. If a complex matrix A satisfies the relationship 

A = A* or aij = (iji 

where (iji is the complex conjugate of aj;, then A is called a Hermitian matrix. An 
example is 

A = [ 1 4 + j3 ] 
4 - j3 2 

If a Hermitian matrix A is written as A = B + jC, where B and C are real matrices, 
then 

B =  B' and C = -C' 

In the preceding example, 

A = B + jC = [! �] + j[ _ � � ] 
Skew-Hermitian matrix. If a matrix A satisfies the relationship 

A = -A* 

then A is called a skew-Hermitian matrix. An example is _ [ jS 
A -

2 + j3 

If a skew-Hermitian matrix A is written as A = B + jC, where B and C are real 
matrices, then 

B = -B' and C =  C' 
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In the present example, 

C-3 MATRIX ALGEBRA 

This section presents the essentials of matrix algebra, as well as additional defini­
tions. It is important to remember that some matrix operations obey the same rules 
as those in ordinary algebra, but others do not. 

Addition and subtraction of matrices. '!\vo matrices A and B can be 
added if they have the same number of rows and the same number of columns. If 
A = (aij) and B = (bij), then 

A + B = (aij + b;j) 

Thus, each element of A is added to the corresponding element of B. Similarly, 
subtraction of matrices is defined as 

As an example, consider 

Then 

A = [! � !] 

A B = [6 4 6] + 
5 9 7 

and 

and 

B = [� � �] 

A _ B = [-4 0 0 ] 
3 1 5  

Multiplication of a matrix by a scalar. The product of a matrix and a 
scalar is a matrix in which each element is multiplied by the scalar; that is, for a 
matrix A and a scalar k, 

Multiplication of a matrix by a matrix. Multiplication of a matrix by a 
matrix is possible between conformable matrices (matrices such that the number of 
columns of the first matrix equals the number of rows of the second). Otherwise, 
multiplication of two matrices is not defined. 
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Let A be an n X m matrix and B be an m X p matrix. Then the product AB, 
which we read "A postmultiplied by B" or "B premultiplied by A," is defined as 
follows: 

i = 1, 2, . . .  , n; j = 1, 2, . . .  , p 

The product matrix C has the same number of rows as A and the same number of 
columns as B. Thus, the matrix C is an n X p matrix. 

Note that even if A and B are conformable for AD, they may not be con­
formable for BA, in which case BA is not defined. 

The associative and distributive laws hold for matrix multiplication; that is, 

(AB)C = A(BC) 
(A + B)C = AC + BC 
C(A + B)  = CA + CB 

If AB = BA, then A and B are said to commute. Note that, in general, 
AB #: BA. To show this, let 

Then 

A = [� !J and B = [� � �] 

AB = [ �  1 2 10 3 
:0] 15 and BA = [1: �1 ] 

Clearly, AB #: BA. As another example, let 

A = [� !] and B = [� �] 
Then 

AB = [:0 1�] and BA = [� 10] 12 
Again, AB #: BA. 

Because matrix multiplication is, in general, not commutative, we must preserve 
the order of the matrices when we multiply one matrix by another. (This is the reason 
why we often use the terms "premultiplication" or "postmultiplication," to indicate 
whether the matrix is multiplied from the left or the right.) 

An example of the case where AB = BA is given next. 

A = [� � ]. B = [� �] 
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AB and BA are given by 

AB = BA = [� 1�] 
Clearly, A and B commute in this case. 

Appendix C 

Power of a matrix. The kth power of a square matrix A is defined to be 
It!' = AA · · · A 

k 

Note that, for a diagonal matrix A = diag(au, a22, " . , ann}, 

It!' =  

k au 

o 
= diag(afh a�, . . . , a�n} 

o 

Further properties of matrices. The transposes of A + B and AB are 
respectively given by 

(A + B) '  = A' + B'  
(AB)'  = B'A' 

To prove the last relationship, note that the (i, j)th element of AB is 
m 
� aikbkj = Cij 
k=l 

The (� j)th element of B' A' is 
m m 
� bkia jk = � a jkbki = Cj; 
k=l k=l 

which is equal to the (j, i)th element of AB or the (i, j)th element of (AB)'. Hence, 
(AB) '  = B' A' , As an example, consider 

Then 

A = [� �] and B = [� �] 
AB = 

[24 26] 
23 22 

B'A' = [� !][! �] = [�: �] 
Clearly, (AB) '  = B'A', 
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In a similar way, we obtain for the conjugate transposes of A + B and AB, 

(A + B)- = A- + B-
(AD)- = B-A· 

Rank of matrix. A matrix A is said to have rank m if there exists an m X m 
submatrix M of A such that the determinant of M is nonzero and the determinant of 
every r X r submatrix (where r 2: m + 1)  of A is zero. 

As an example, consider the following matrix: 

A = [1 1 -1 il 
Note that IAI  = O. One of a number of largest submatrices whose determinant is 
not equal to zero is 

Hence, the rank of the matrix A is 3. 

C-4 MATRIX INVERSION 

Minor M;j. If the ith row and jth column are deleted from an n X n matrix 
A, the resulting matrix is an (n - 1 )  x (n - 1 )  matrix. The determinant of this 
(n - 1)  x (n 

-
1 )  matrix is called the minor Mij of the matrix A. 

Cofactor Aij• The cofactor Aij of the element a;j of the n x n matrix A is 
defined by the equation 

'+ ' Aij = ( - 1 )' JM;j 
That is, the cofactor Aij of the element aij is ( - 1 ) i+ j times the determinant of the 
matrix formed by deleting the ith row and the jth column from A. Note that the 
cofactor Aij of the element a;j is the coefficient of the term a;j in the expansion of 
the determinant IAI ,  since it can be shown that 

ailAn + a,'2A;2 + . . . + a;nA;n = IA I  

ajlAil + aJ'2AI'2 + . . .  + ajnAin = 0 i #: j 

because the determinant of A in this case possesses two identical rows. Hence, we 
obtain 

n 
�ajkA;k = 8j; IAI 
k=l 
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Similarly, 
n 

�akiAkj = cSijlA I  
k=l 

Adjoint matrix. The matrix B whose element in the ith row and jth column 
equals A j; is called the adjoint of A and is denoted by adj A, or 

B = (b;j) = (Aj;) = adj A 
That is, the adjoint of A is the transpose of the matrix whose elements are the 
cofactors of A, or [All A21 AnI] 

d' A = 
Al2 An An2 a J : :  
A1n A2n Ann 

Note that the element of the jth row and ith column of the product A(adj A) is 
n n 

�ajkbki = �ajkA;k = cSj; IA I  
k=l k=l 

Hence, A(adj A) is a diagonal matrix with diagonal elements equal to IAI ,  or 
A(adj A} = IA I  I 

Similarly, the element in the jth row and ith column of the product (adj A)A is 
n n 
�bjkaki = �Akjak; = cS;jlA I  
k=l k=l 

Hence, we have the relationship 
A(adj A) = (adj A}A = IAI  I 

For example, given the matrix 

A = G 
2 

-�] -1 
0 -3 

we find that the determinant of A is 17 and that 

I -� 
-

2

1 -3 - I � -� I  I -� 
adj A = - I 3 

-
2

1 I � -� I  - I 1 
1 -3 3 

1 3 -� I - I � � I 1 1 
1 3 

= [; 
6 

-�] -3 2 -7 

(C-1) 

-� I 
-� I 
-� I 
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Thus, 

A(adj A) = [� 2 

-1 
0 

= 1
7n 0 

1 
0 

= IA I I 

-�][� -3 1 

n 
6 

-3 

2 
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-�] -
7 

Inverse of a matrix. If, for a square matrix A, a matrix B exists such that 
BA = AB = I, then B is denoted by A-I and is called the inverse of A. The inverse 
of a matrix A exists if the determinant of A is nonzero or A is nonsingular. 

By definition, the inverse matrix A-I has the property that 

AA-I = A-IA = I 
where I is the identity matrix. If A is nonsingular and AD = C, then B = A-IC. This 
can be seen from the equation 

A-lAB = IB = B = A-Ie 
If A and B are nonsingular matrices, then the product AB is a nons in gular matrix. 
Moreover, 

(ABrl = B-IA-I 
The preceding equation may be proved as follows: 

Similarly, 

Note that 

(B-IA-I)AB = B-1 (A-IA)B = B-IIB = B-lB = I 

(A-Irl = A 
(AI)'  = (A' rl 
(A-I)- = (A-rl 

From Equation (C-l) and the definition of the inverse matrix, we have 

A-I = 
adj A 

IA I 

Hence, the inverse of a matrix is the transpose of the matrix of its cofactors, divided 
by the determinant of the matrix. That is, if 

A = [:f: :: 
anI an2 
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then 

All A21 AnI 
lAf 1Af W 
A12 All An2 

-I adj A 1Af 1Af lAf A = -- = IA I 
A1n A2n Ann 
W lAf W 

where Aij is the cofactor of aij of the matrix A. Thus, the terms in the ith column 
of A-I are 111AI times the cofactors of the ith row of the original matrix A. For 
example, if 

A = G 2 0] 
-1 -2 

o -3 

then the adjoint of A and the determinant IA I are respectively found to be 

adj A = [� 
Hence, the inverse of A is 

6 -4] 
-3 2 

2 -7 

A-I = af�� = [� 
17 

and IA I = 17 

-�] 17 7 
-17 

In what follows, we give formulas for finding inverse matrices for the 2 X 2 
matrix and the 3 X 3 matrix. For the 2 x 2 matrix 

A = [: !J where ad - be ::p 0 

the inverse matrix is given by 

For the 3 x 3 matrix 

A-I - 1 [ d -b
a J - ad - be -e 

where IAI ::p 0 
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the inverse matrix is given by 

Remarks on cancellation of matrices. Cancellation of matrices is not 
valid in matrix algebra. Consider, for example, the product of the two singular 
matrices 

and B = [ 1 

-2 

-2 ] 4 #= 0  

Then 

AB = 
[2 1 ][ 1 -2] 

= 
[0 0] 

= 0 
6 3 -2 

4 ° 0 
Qearly, AB = 0 implies neither that A = 0 nor that B = O. In fact, AB = 0 implies 
one of the following three statements: 

L A = 0  
2. B = 0 
3. Both A and B are singular. 

We can easily prove that, if both A and B are nonzero matrices and AB = 0, then 
both A and B are singular: Assume that A and B are not singular. Then a matrix A-I 
exists with the property that 

which contradicts the assumption that B is a nonzero matrix. Thus, we conclude that 
both A and B must be singular if A #= 0 and B #= O. 

Similarly, notice that if A is singular, then neither AB = AC nor BA = CA 
implies that B = C. If, however, A is a nonsingular matrix, then AD = AC implies 
that B = C and BA = CA also implies that B = C. 

C-5 DIFFERENTIATION AND INTEGRATION OF MATRICES 

The derivative of an n X m matrix A(t) is defined to be the n X m matrix, each ele­
ment of which is the derivative of the corresponding element of the original matrix, 
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provided that all the elements a;j( t) have derivatives with respect to t That is, 

!!.A(t) = ( !!.a . .  (t») = 
dt dt IJ 

d 
dt an(t) 

d 
dt a21 (t) 

d 
dt anl (t) 

d 
dt a12(t) 

d 
dt alm(t) 

d 
dt a22(t) 

d 
dt a2m(t) 

d 
dt an2(t) 

d 
dt anm(t) 

Similarly, the integral of an n X m matrix A(t) is defined to be 

1 an(t) dt 1adt) dt 1 alm(t) dt 

1 A(t) dt = (1 aij(t) dt) = 
1 a21(t) dt 1 a22(t) dt 1 a2m(t) dt 

1 anl(t) dt 1 a2n(t) dt 1 anm(t) dt 

Differentiation of the product of two matrices. If the matrices A(t) and 
B(t) can be differentiated with respect to t, then 

d dA(t) dB(t) 
dt [A(t)B(t») = dtB(t) + A(t)� 

Here again the multiplication of A{t) and dB(t)ldt [or dA(t)ldt and B{t)] is, in gener­
al, not commutative. 

Differentiation of A-I(t). If a matrix A(t) and its inverse A-I(t) are differ­
entiable with respect to t, then the derivative of AI(t) is given by 

dAI(t) dA(t) -- = -A-I(t) --A-1 (t) dt dt 
The derivative may be obtained by differentiating A(t)A-I (t) with respect to t. 
Since 

and 

d dA(t) dAI(t) 
dt [A(t)A-l (t)] = -

d-t-A-1(t) + A(t) -
d
-t 

-

�A(t)A-l (t) = �I = 0 dt dt 
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we obtain 

or 



Append ix 0 
Introduction to MATLAB 

0-1 INTRODUCTION 

MATLAB is a matrix-based system for performing mathematical and engineering 
calculations. We may think of MATLAB as a language of technical computing. All 
variables handled in MATLAB are matrices. That is, MATLAB has only one data 
type: a matrix, or rectangular array, of numbers. MATLAB has an extensive set of 
routines for obtaining graphical outputs. 

This section presents background materials necessary for the effective use of 
MATLAB in solving control engineering problems. FlI'St, we introduce MATLAB 
commands and mathematical functions. Then we present matrix operators, relational 
and logical operators, and special characters used in MATLAB. Fmally, we introduce 
the semicolon operator, MATLAB ways to enter vectors and matrices into the com­
puter, the colon operator, and other important materials that we must become famil­
iar with before writing MATLAB programs to solve system dynamics and control 
engineering problems. 

MATLAB is used with a variety of toolboxes. (A toolbox is a collection of spe­
cial files called M-files.) For control systems analysis and design, MATLAB is used 
with the control system toolbox. When we refer to MATLAB in this book, we 
include the base programs of MATLAB and the control system toolbox. (Student 
editions of MATLAB include the control system toolbox.) 

720 
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MATLAB is basically command driven. Therefore, the user must know vari­
ous commands that are used in solving computational problems. Table D-1 lists 
various types of MATLAB commands and predefined functions that are frequently 
used in solving system dynamics and control engineering problems. 

TABLE D-1 MATLAB Commands and Matrix Functions 

Commands and Matrix 
Functions Commonly Used Explanations of What Commands Do 
in Solving Control and Matrix Functions Mean 
Engineering Problems 

abs Absolute value, complex magnitude. 
acker Compute a state-feedback gain matrix for pole placement, 

using Ackermann's formula. 
angle Phase angle. 
ans Answer when expression is not assigned. 
atan Arctangent. 
axis Manual axis scaling. 

bode Plot Bode diagram. 

clear Oear workspace. 
clf Oear current figure. 
computer '!ype of computer. 
conj Complex conjugate. 
connect Derive state-space model for block diagram 

interconnection. 
conv Convolution, multiplication. 
corrcoef Correlation coefficients. 
cos Cosine. 
cosh Hyperbolic cosine. 
cov Covariance. 
ctrb Compute the controllability matrix. 
c2d Conversion of continuous-time models to 

discrete-time models. 

deconv Deconvolution, division. 
det Determinant. 
diag Diagonal matrix. 

eig Eigenvalues and eigenvectors. 
end Terminate scope of for, while, switch, try, 

and if statements. 
exit Terminate program. 
exp Exponential base e. 
expm Matrix exponential. 
eye Identity matrix. 
feedback Feedback connection of two LTI models. 
filter Direct filter implementation. 
for Repeat statements a specified number of times. 
format long FIfteen-digit scaled fixed point. 

(Example: 1.33333333333333) 
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TABLE D-1 (continued) 

Commands and Matrix 
Functions Commonly Used Explanations of What Commands Do 
in Solving Control and Matrix Functions Mean 
Engineering Problems 

format long e Fifteen-digit floating point. 
(Example: 1.33333333333333e + 000) 

format short Five-digit scaled fixed point. 
(Example: 1.3333) 

format short e Five-digit floating point. 
(Example: 1.3333e + 000) 

freqs Laplace transform frequency response. 
freqz z-Transform. frequency response. 

gram Controllability and observability gramians. 
grid Toggles the major lines of the current axes. 
grid off Removes major and minor grid lines from the 

current axes. 
grid on Adds major grid lines to the current axes. 

help Lists all primary help topics. 
hold Toggles the hold state. 
hold off Returns to the default mode whereby plot commands erase 

the previous plots and reset all axis properties before drawing 
new plots. 

hold on Holds the current plot and all axis properties so that subsequent 
graphing commands add to the existing graph. 

i v'=t 
imag Imaginary part. 
impulse Impulse response of LTI models. 
inf Infinity (00 ) 
inv Inverse 

j v'=t 

legend Graph legend. 
length Length of vector. 
linspace Linearly spaced vector. 
load Load workspace variables from disk. 
log Natural logarithm. 
loglog Loglog x-y plot. 
logm Matrix logarithm. 
logspace Logarithmically spaced vector. 
10glO Log base 10. 
lqe Linear quadratic estimator design. 
lqr Linear quadratic regulator design. 
lsim Simulate time response of LTI models to arbitrary inputs. 
lyap Solve continuous-time Lyapunov equations. 

margin Gain and phase margins and crossover frequencies. 
max Maximum value. 
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TABLE 0-1 (continued) 

Commands and Matrix 
Functions Commonly Used Explanations of What Commands Do 
in Solving Control and Matrix Functions Mean 
Engineering Problems 

mean Mean value. 
median Median value. 
mesh Three-dimensional mesh surface. 
meshgrid X and Y arrays for three-dimensional plots. 
min Minimum value. 
minreal Minimal realization and pole-zero cancellation. 

NaN Not a number. 
ngrid Generate grid lines for a Nichols plot. 
nichols Draw the Nichols plot of the LTI model. 
num2str Convert number to string. 
nyquist Plot Nyquist frequency response. 

obsv Compute the observability matrix. 
ode45 Solve nonstiff differential equations, 

medium-order method. 
ode23 Solve nonstiff differential equations, 

low order-method. 
ode1l3 Solve nonstiff differential equations, 

variable-order method. 
ones Constant. 
ord2 Generate continuous-time second-order system. 

pade Pade approximation of time delays. 
parallel Parallel interconnection of two LTI models. 
pi Pi( 1') 
place Compute a state-feedback gain matrix 

for pole placement. 
plot Linear x-y plot. 
polar Polar plot. 
pole Compute the poles of LTI models. 
poly Convert roots to polynomial. 
polyfit Polynomial curve fitting. 
polyval Polynomial evaluation. 
polyvalm Matrix polynomial evaluation. 
printsys Print system in pretty format. 
prod Product of elements. 
pzmap Pole-zero map of LTI models. 

quit Terminate program 

rand Generate random numbers and matrices. 
rank Calculate the rank of a matrix. 
real Real part. 
rem Remainder or modulus. 
residue Partial-fraction expansion. 
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TABLE D-1 (continued) 

Commands and Matrix 
Functions Commonly Used Explanations of What Commands Do 

in Solving Control and Matrix Functions Mean 

Engineering Problems 

rlocfind Find root-locus gains for a given set of roots. 

rlocus Plot root loci. 

rmodel Generate random stable continuous-time 
nth-order test models. 

roots Polynomial roots. 

semilogx Semilog x-y plot (x-axis logarithmic). 

semilogy Semilog x-y plot (y-axis logarithmic). 

series Interconnect two LTI models in series. 

shg Show graph window. 
sign Signum function. 
sin Sine. 
sinh Hyperbolic sine. 
size Size of matrix. 
sqrt Square root. 
sqrtm Matrix square root. 
ss Create state-space model or convert LTI 

model to state-space model. 
ss2tf Convert state-space model to transfer-function model. 
std Standard deviation. 
step Plot unit-step response. 
subplot Create axes in tiled positions. 
sum Sum of elements. 
switch Switch among several cases based on expression. 

tan Tangent. 
tanh Hyperbolic tangent. 
text Arbitrarily positioned text. 
tf Create transfer-function model or convert LTI model to 

transfer-function model. 
tflss Convert transfer-function model to state-space model. 
tflzp Convert transfer-function model to zero-pole model. 
title Plot title. 
trace nace of a matrix. 

who Lists all the variables currently in memory. 
whos List all the variables in the current workspace, together with infor-

mation about their size, bytes, class, etc. 

xlabel x-axis label. 

ylabel y-axis label. 

zero Transmission zeros of LTI systems. 
zeros Zeros array. 
zpk Create zero-pole-gain models or convert to zero-pole-gain format. 
zp2tf Convert zero-pole model to transfer-function model. 
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Accessing and exiting MATLAB. On most systems, once MATLAB has 
been installed, to invoke MATLAB, execute the command MATLAB. To exit MAT­
LAB, execute the command exit or quit. 

MATLAB has an on-line help facility that may be invoked whenever the need 
arises. The command help will display a list of predefined functions and operators 
for which on-line help is available. The command 

help 'function name' 

will give information on the purpose and use of the specific function named. The 
command 

help help 

will give information on how to use the on-line help. 

Matrix operators. The following notation is used in matrix operations: 

+ 

* 
II 

Addition 
Subtraction 
Multipl ication 
Power 
Conjugate transpose 

(If multiple operations are involved, the order of the arithmetic operations can be 
altered with the use of parentheses.) 

Relational and logical operators. The following relational operators are 
used in MATLAB: 

< Less than 
<= Less than or equal 
> Greater than 
>= Greater than or equal 

Equal 
Not equal 

The first four operators compare the real parts only. The last two (==, ----= ) com­
pare both the real and imaginary parts. Note that "=" is used in an assignment state­
ment while "==" is used in a relation. 

The logical operators are 

& AND 
I OR 

NOT 
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Special characters. The following special characters are used in MATLAB: 
[ ] Used to form vectors and matrices 
( ) Arithmetic expression precedence 

Separate subscripts and function arguments 
End rows, suppress printing 
Subscripting, vector generation 
Execute operating system command 

0/0 Comment 

Use of semicolon. The semicolon is used to suppress printing. If the last 
character of a statement is a semicolon, printing is suppressed; the command is still 
executed, but the result is not displayed. This is a useful feature, since one may not 
need to print intermediate results. Also, in entering a matrix, a semicolon is used to 
indicate the end of a row, except the last row. 

Use of colon. The colon plays an important role in MATLAB, being involved 
in creating vectors, subscripting matrices, and specifying iterations. For example, the 
statement 

t = 1 :5 

generates a row vector containing the numbers from 1 to 5 with unit increment­
that is, 

t =  
1 2 3 4 5  

An increment of other than unity can be used. For example, 

t = 1 :0.5:3 

will result in 

t =  
1 .0000 1 .5000 2 .0000 2 .5000 3.0000 

Negative increments may be used. For example, the statement 

t = 5 :- 1 :2 

gives 

t =  
5 4 3  2 

Other MATLAB commands that generate sequential data, such as linspace 
and logspace, are presented later in this section. 

The colon is frequently used to subscript matrices. A(:,j) is the jth column of A 
and A(i,:) is the ith row of A. For example, if matrix A is given by 

A = [: � !] 
7 8 9  
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then A(:,3) gives the third element in all of the rows (i.e., the third column), as follows: 

3 
6 
9 

A(2,:) gives the second row of A, namely, 

4 5 6  

A(:) returns a long column vector consisting elements of the first column, second 
column, and third column: 

1 
4 
7 
2 
5 
8 
3 
6 
9 

Note that A(ij) denotes the entry in the ith row,jth column of matrix A. For exam­
ple, A(2,3) is 6. 

An individual vector can be referenced with indexes inside parentheses. For 
example, if a vector x is given by 

x = [2 4 6 8 1 0J 

then x(3) is the third element of x and x([l 2 3]) gives the first three elements of x 
(that is, 2, 4, 6). 

Entering vectors in MATLAB programs. In entering vectors and matrices in 
MATLAB programs, no dimension statements or type statements are needed. Vectors, 
which are 1 X n or n X 1 matrices, are used to hold ordinary one-dimensional sam­
pled data signals, or sequences. One way to introduce a sequence into MATLAB is to 
enter it as an explicit list of elements separated by blank spaces or commas, as in 

x = [1 2 3 -4 -5] 

or 

x = [ 1 ,2,3, -4,-5] 

For readability, it is  better to provide spaces between the elements. The values must 
always be entered within square brackets. 

The statement 

x = [1 2 3 -4 -5J 

creates a simple five-element real sequence in a row vector. The sequence can be 
turned into a column vector by transposition. That is, 

y = x' 
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results in 

y = 

1 
2 
3 

- 4  
- 5  

How to enter matrices i n  MATLAB programs. A matrix [ 1.2 10 15] 
A = 3 5.5 2 

4 6.8 7 

may be entered in MATLAB programs by a row vector as follows: 

A = [1 .2 1 0  1 5; 3 5.5 2; 4 6.B 7] 
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Again, the values must be entered within square brackets. As with vectors, the ele­
ments of any row must be separated by blanks (or by commas). The end of each row, 
except the last, is indicated by a semicolon. 

Note that the elements of the matrix A are automatically displayed after the 
statement is executed following the carriage return: 

A = 

1 .2000 1 0.0000 1 5.0000 

3 .0000 5 .5000 2 .0000 

4.0000 6.8000 7.0000 

If we add a semicolon at the end of matrix statement such that 

A = [1 .2 1 0  1 5; 3 5.5 2; 4 6.B 7]; 

the output is suppressed and no output will be seen on the screen. 
A large matrix may be spread across several input lines. For example, consider 

the matrix [1.5630 2.4572 3.1113 4.1051] 
B = 3.2211 1.0000 2.5000 3.2501 

1.0000 2.0000 0.6667 0.0555 

0.2345 0.9090 1.0000 0.3333 

This matrix may be spread across four input lines, as follows: 

B = [1 .5630 2 .4572 3 . 1 1 1 3 4.1 051  

3 .22 1 1 1 .0000 2 .5000 3 .2501 

1 .0000 2 .0000 0.6667 0.0555 

0.2345 0.9090 1 .0000 0.3333] 
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Note that carriage returns replace the semicolons. 
As another example, a matrix 

may be entered as follows: 

_ [ 1 e-o.02j 
C - v2 3 

C = [1 exp( -0.02 ); sqrt(2 ) 3] 

After the carriage return, the following matrix will be seen on the screen: 

C =  
1 .0000 0.9802 

1 .4 1 42 3 .0000 
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Generating vectors. Besides the colon operator, the linspace and logspace 
commands generate sequential data: 

x = l inspace(n l ,n2,n) 
W = logspace(dl ,d2,n) 

The linspace command generates a vector from n1 to n2 with n points (including 
both endpoints). See the following example: 

» x = l inspace (-1 0, 1 0, 5) 
x =  

-1 0 -5 0 5 1 0  

The logspace command generates a logarithmically spaced vector from 10d! to 10d2 

with n points (again, including both endpoints). Frequently, n is chosen to be 50 or 
100, but it can be any number. For example, 

W = logspace (- 1 , 1 , 1 0) 

generates 10 points from 0.1 to 10, as shown below. (Note that 10 points include both 
endpoints. ) 

» W  = logspace (-1 , 1 , 1 0) 
W =  

Columns 1 through 8 

0.1 000 0. 1 668 0.2783 0.4642 0.7743 1 .291 5 2 . 1 544 3 .5938 

Columns 9 through 1 0  

5 .9948 1 0.0000 

Transpose and conjugate transpose. The apostrophe or prime denotes 
the conjugate transpose of a matrix. If the matrix is real, the conjugate transpose is 
simply the transpose. An entry such as 

A = [ 1  2 3;4 5 6;7 8 9] 
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will produce the following matrix on the screen: 

Also, if 

is entered, then 

appears on the screen. 

A =  

1 2 3 
4 5 6  
7 8 9  

B = AI 

B =  
1 4 7 
2 5 8  
3 6 9 
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Entering complex numbers. Complex numbers may be entered using the 
function i or j. For example, a number 1 + tV?' may be entered as 

x = 1 +sqrt(3)*i 

or 

x = 1 +sqrt(3)*j 

This complex number, 1 + rV?' = 2 exp[ ( 71'/3 )j], may also be entered as 

x = 2*exp« pil3)*j )  

I t  is important to  note that, when complex numbers are entered as matrix elements 
within brackets, we avoid blank spaces. For example, 1 + j5 should be entered as 

x = 1+5*j 

If spaces are provided around the + sign, as in 

x = 1 + 5*j 

two separate numbers are represented. 
If i and j are used as variables, a new complex unit may be generated as fol­

lows: 

i i  = sqrt( -1)  

or 

jj = sqrt( -1)  

Then - 1  + rV?' may be entered as 

x = - 1  +sqrt(3)*ii 

or 

x = - 1  +sqrt(3 ) *jj 
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If we defined ii = V-'l and want to change ii to the predefined i = V-'l, 
enter clear ii in the computer. Then the predefined variable i can be reset. 

Entering complex matrices. For the complex matrix 

_ [ 1  i ] 
X - -j5 2 

an entry like 

x = [1 j; -j*5 2]  

will produce the following matrix on the screen: 

Note that 

will yield 

which is 

X =  
1 .0000 

o - 5 .000Oi 

o + 1 .000Oi 

2 .0000 

Y = X' 

y =  
1 .0000 

o - 1 .000Oi 

o + 5 .0000i 

2 .0000 

y = [ 1 . j5 ] -} 2 

Since the prime gives the complex conjugate transpose, for an unconjugated 
transpose use one of the following two entries: 

Y.' or conj(Y ' )  

If we enter 

then the screen shows 
ans = 

, Y. ' 

1 .0000 

o + S.OOOOi 

Also, if 

o - 1 .000Oi 

2 .0000 

conj(Y') 

is entered, then the screen shows 
ans = 

1 .0000 

o + 5.000Oi 
o - 1 .0000i 

2.0000 
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Entering a long statement that will  not fit on one line. A statement is 
normally terminated with a carriage return or the enter key. If the statement being 
entered is too long for one line, an ellipsis consisting of three or more periods ( . . . ), 
followed by the carriage return, can be used to indicate that the statement continues 
on the next line. An example is 

x = 1 .234 + 2.345 + 3 .456 + 4.567 + 5.678 + 6.789 . . .  
+ 7.890 + 8.901 - 9.01 2; 

Note that the blank spaces around the = , + , and - signs are optional. Such 
spaces are often provided to improve readability. 

Entering several statements on one line. Several statements can be 
placed on one line if they are separated by commas or semicolons. Examples are 

and 

xl = [1 2 3], x2 = [4 5 6], x3 = [7 8 9] 

xl = [ 1  2 3];  x2 = [4 5 6];  x3 = [7 8 9] 

Selecting the output format. All computations in MATLAB are per­
formed in double precision. However, the displayed output may have a fixed point 
with four decimal places. For example, for the vector 

x = [1/3 0.00002] 

MATLAB exhibits the following output: 

x =  
0.3333 0.0000 

If at least one element of a matrix is not an exact integer, there are four possi­
ble output formats. The displayed output can be controlled with the use of the fol­
lowing commands: 

format short 
format long 
format short e 
format long e 

Once invoked, the chosen format remains in effect until changed. 
For systems analysis, format short and format long are commonly used. When­

ever MATLAB is invoked and no format command is entered, MATLAB shows the 
numerical results in format short, as follows: 

x = [ 1/3 0.00002];  

x 

x =  

0.3333 0.0000 
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For x = [113 0.00002], the commands format short; x and format long; x yield the 
following output: 

format short; x 

x =  

0.3333 0.0000 

format long; x 
x =  

0.33333333333333 0.00002000000000 

If all elements of a matrix or vector are exact integers, then format short and format 
long yield the same result as shown below. 

y = [2 5 40];  

y 

y =  
2 5 40 

format short; y 

y =  
2 5 40 

format long; y 

y =  
2 5 40 

Utility matrices. In MATLAB, the functions 

ones (n) 
ones (min) 
zeros (n) 
zeros (min) 

generate special matrices. The function ones(n) produces an n X n matrix of ones, 
while ones(m,n) produces an m X n matrix of ones. Similarly, zeros(n) produces an 
n X n matrix of zeros, while zeros(m,n) produces an m X n matrix of zeros. 

Identity matrix. We often need to enter an identity matrix I in MATLAB 
programs. The statement eye(n) gives an n X n identity matrix. That is, 

eye(5) 
ans = 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 



734 Appendix 0 

The statement eye (A) returns an identity matrix the same size as the matrix A. 

Diagonal matrix. If x is a vector, the statement diag(x) produces a diagonal 
matrix with x on the diagonal line. For example, for a vector 

x = [ones( l ,n )] 

diag([ones(l,n)]) gives the following n X n identity matrix: 

diag([ones(1 ,5)) )  

ans = 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

If A is a square matrix, then diag(A) is a vector consisting of the diagonal of A, and 
diag(diag(A» is a diagonal matrix with elements of diag(A) appearing on the diag­
onal line. See the following MATLAB output. 

Note that diag(l:S) gives 

A = [1 2 3;4 5 6;7 8 9] ;  
diag(A) 
ans = 

1 
5 
9 

diag(diag(A)) 

ans = 
1 0 0 
o 5 0 
o 0 9 

diag(l :5) 

ans = 
1 0 
0 2 
0 0 
0 0 
0 0 

0 0 0 
0 0 0 
3 0 0 
0 4 0 
0 0 5 
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and diag(O:4) gives 

diag(O:4) 

ans = 
0 0 0 0 0 
0 1 0 0 0 
0 0 2 0 0 
0 0 0 3 0 
0 0 0 0 4 

Hence, diag(l:5) - diag(O:4) is an identity matrix. 
It is important to note that diag(O,n) is quite different from diag(O:n).diag(O,n) is 

an (n + 1 ) x (n + 1 ) matrix consisting of all zero elements. See the following MAT­
LAB output. 

diag(O,4) 

ans = 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

Variables in MATLAB. A convenient feature of MATLAB is that variables 
need not be dimensioned before they are used. This is because a variable's dimen­
sions are generated automatically upon the first use of the variable. (The dimen­
sions of the variables can be altered later if necessary.) Such variables (and their 
dimensions) remain in memory until the command exit or quit is entered. 

Suppose that we enter the following statements in MATLAB workspace: 

» A  = [1 2 
» 1 5/3 1 ;  
» x  = [3 4 

3;4 

5] ; 

5 6;7 8 9] ; 

To obtain a list of the variables in the workspace, simply type the command who. Then 
all of the variables currently in the workspace appear on the screen as shown below. 

» who 
Your variables are: 

A ans x 

If, instead of entering the command who, we enter the command whos, the 
screen will show a list of all the variables in the current workspace, together with 
information about their size, number of bytes, and class. 
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The following MATLAB output is illustrative: 

» whos 
Name 

A 
ans 
x 

Size 

3x3 
l xl 
l x3 

Bytes 

72 
8 

24 

Class 

double array 
double array 
double array 

Grand total is 1 3  elements using 1 04 bytes 
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The command clear will clear all nonpermanent variables from the workspace. 
If it is desired to clear only a particular variable, say, 'x', from the workspace, enter 
the command clear x. 

How to save variables when exiting from MATLAB. When 'exit' or 'quit' 
is entered, all variables in MATLAB are lost. If the command save is entered before 
exiting, then all variables can be kept in a disk file named matlab.mat. When we later 
reenter MATLAB, the command load will restore the workspace to its former state. 

If you need to know the time and date. Statement clock gives the year, 
month, day, hour, minute, and second. That is, clock returns a six-element row vector 
containing the current time and date in decimal form: 

or 

clock 
ans= 

[year month day hour m inute second] 

» clock 
ans = 

1 .Oe + 003 * 
2 .0030 0.001 0 0.0200 0.01 70 

Statement date gives the current date: 

> date 
ans = 

20-Jan-2003 

0.02 1 0  0.0259 

Correcting mistyped characters. Use the arrow keys on the keypad to edit 
mistyped commands or to recall previous command lines. For example, if we typed 

x = (1 1 2] 
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then the parenthesis must be corrected. Instead of retyping the entire line, hit the 
up-arrow key. The incorrect line will be displayed again. Using the left-arrow key, 
move the cursor over the parenthesis, type [, and then hit the delete key. 

How MATLAB is used. MATLAB is usually used in a command-driven 
mode. When single-line commands are entered, MATLAB processes them immedi­
ately and displays the results. MATLAB is also capable of executing sequences of 
commands that are stored in files. 

The commands that are typed may be accessed later by using the up-arrow 
key. It is possible to scroll through some of the latest commands that are entered 
and recall a particular command line. 

How to enter comments in a MATLAB program. If you desire to enter 
comments that are not to be executed, use the % symbol at the start of the line. That 
is, the % symbol indicates that the rest of the line is a comment and should be ignored. 

0-2 ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION WITH MATLAB 

Addition and subtraction. Matrices of the same dimension may be added 
or subtracted. Consider the following matrices: 

A 
= [: n B = [� n 

If we enter 

A = [2 3;4 5;6 7] 

then the screen shows 

A =  

2 3 
4 5 

6 7 

If matrix 
B 

is entered as 

B = [1 0;2 3;0 4] 

then the screen shows 

B =  
1 0 

2 3 
0 4 

For the addition of two matrices, such as A + B, we enter 

C = A + B  
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Then matrix C appears on the screen as 

c =  

If a vector 
x 

is given by 

then we enter this vector as 

3 3 
6 8 
6 1 1  

x = [5;4;6] 

The screen shows the column vector as follows: 

x =  
5 

4 

6 

The following entry will subtract 1 from each element of vector x: 

The screen will show 

y = x - 1 

Y =  
4 

3 
5 

Matrix multiplication. Consider the matrices 

x
= DJ y

= [U [ 1 1 2] 
A = 3 4 0 

1 2 5  

or, in MATLAB, 
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x = [1 ;2;3]; 

If the expression 

y = [4;5;6] ; A = [1 1 2;3 4 0;1 2 5] 

z = x'*Y 

is entered into the computer, the result is 

z = 32 
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(Multiplication of matrices is denoted by *.) Note that when the variable name and 
"="  are not included in the expression, as in 

x '*y 

the result is assigned to the generic variable ans: 

Also, the entry 

» x ' *y 
ans = 

32 

x*y' 

will yield a 3 x 3 matrix, as follows: 

» x*y' 
ans = 

4 5 
8 1 0  

1 2  1 5  

Similarly, if we enter 
y*x' 

then the screen shows 
ans = 

4 8 1 2  
5 1 0  1 5  
6 1 2  1 8  

6 
1 2  
1 8  

Matrix-vector products are a special case of general matrix-matrix products. For 
example, an entry like 

will produce 
b =  

9 
11 
20 

Note that a scalar can multiply, or be multiplied by, any matrix. For example, 
entering 

5*A 

gives 
ans = 

5 5 1 0  

1 5  20 0 

5 1 0  25 
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and an entry such as 

will also give 
ans = 

5 5 1 0  
1 5  20 0 
5 1 0  25  
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Magnitude and phase angle of a complex number. The magnitude and 
phase angle of a complex number z = x + i Y = rei8 are respectively given by 

r = abs(z) 
theta = angle(z) 

and the statement 

z = r*exp( i*theta) 

converts them back to the original complex number z. 

Array multiplication. Array, or element-by-element, multiplication is denoted 
by '.*'. If x  and y have the same dimension, then 

x·*Y 
denotes the array whose elements are simply the products of the individual ele­
ments of x and y. For example, if 

then 

results in 

x = [1 2 3], y = [4 5 6] 

z = x.*Y 

z = [4 10 18] 

Obtaining squares of entries of vector x. For a vector x, x.1\2 gives the 
vector of the square of each element. For example, for 

x = [1 2 3] 

x.1\2 is given as shown in the following MATLAB output: 

x = [ 1  2 3}; 
x."2 

ans = 

4 9 

Also, for the vector 

y = [2 + 5j 3 + 4j 1 - j] I 
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y."2 is given as follows: 

y = [2+5*i 3+4*i 1 - i] ;  
y.1\2 

ans = 
-2 1 .0000 + 20.0000i - 7.0000 + 24.0000i 
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0 - 2 .0000i 

Similarly, if matrices A and B have the same dimensions, then A.*B denotes the 
array whose elements are simply the products of the corresponding elements of A 
and B. For example, if 

then 

results in 

A = [� � a B = [; � � ] 
C = A.*B 

c 
= [4 10 18] o 54 40 

Obtaining squares of entries of matrix A. For a matrix A, A. "2 gives the 
matrix consisting of the square of each element. For example, for matrices [1 2] [ 1 + j 2 - 2j] A = 3 4 ' B = 3 

+ 4j 
5 

-
j 

A."2 and B."2 are given as follows: 

A = [1 2;3 4] ; 
A.1\2 

ans = 
1 4 
9 1 6  

B = [l + i 2 -2*i ;3+4*i 5 - i) ;  
B.1\2 

ans = 
0 +  2 .0000i 

- 7.0000 + 24.0000i 
o - B.OOOOi 

24.0000 - 1 0.0000i 

Absolute values. The command abs(A) gives the matrix consisting of the 
absolute value of each element of A. 1f A is complex, abs(A) returns the complex 
modulus (magnitude): 

abs(A) = sqrt( real (A)."2 + imag(A)."2) 
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The command angle(A) returns the phase angles, in radians, of the elements of the 
complex matrix A. The angles lie between -11' and 11'. The following example is 
illustrative: 

A = [2+2*i 1 +3*i;4+5*i 6-i]; 
abs(A) 

ans = 
2.8284 
6.403 1 

angle(A) 

ans = 
0.7854 
0.8961 

3 . 1 623 
6.0828 

1 .2490 
-0. 1 651  

Array division. The expressions x.ly, x.\y, A./B, and A.\B give the quotients 
of the individual elements. Thus, for 

x = [1 2 3], y = [4 5 6] 

the statement 

u = x.ly 

gives 

u = [0.25 0.4 0.5] 

and the statement 

v = x.\y 

results in 

v = [4 2.5 2] 

Similarly, for matrices A and B, where 

the statement 

gives 

and the statement 

A = [� � � ]. B = [� � �] 
C = A.lB 

c = [0.2500 0.4000 0.5000] 
0.1429 1.5000 1 .6000 

D = A.\B 
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yields [4.0000 
D = 7.0000 

2.5000 2.0000] 
0.6667 0.6250 
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Note that whenever a division of a number by zero occurs, MATLAB gives a warn­
ing, as in the following outputs: 

» 5/0 » 010 
Warn ing: Divide by zero. Warn ing: Divide by zero. 

ans = ans = 

tnf NaN 

("Inf" denotes "infinity" and NaN means "not a number.") 

D-3 COMPUTING MATRIX FUNCTIONS 

In this section, we discuss computations of norms, eigenvalues, eigenvectors, and 
polynomial evaluation, among other topics. 

Norms. The norm of a matrix is a scalar that gives some measure of the size 
of the matrix. Several different definitions are commonly used. One is 

norm(A) = largest s ingular value of A 

Similarly, several definitions are available for the norm of a vector. One com­
monly used definition is 

norm(x) = sum(abs(x) ./\2)/\O.S 

The following example illustrates the use of the norm command: 

» x  = [2 3 6] ; 
» norm(x) 

ans = 

7 

Characteristic equation. The roots of the characteristic equation are the 
same as the eigenvalues of a matrix A. The characteristic equation of A is computed 
with 

p = poly(A) 
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For example, if 

A = [ � 
-6 

then the command poly(A) will yield 

p = poly(A) 

p =  

1 .0000 6.0000 

1 
o 

-11 

1 1 .0000 6.0000 

This is the MATLAB representation of the characteristic equation 

sl + 6; + 1 1  5 + 6 = 0 

Appendix D 

Note that polynomials are represented as row vectors containing the polynomial 
coefficients in descending order; that is, in the present example, 

p = [1 6 11 6] 

The roots of the characteristic equation p = 0 can be obtained by entering the com­
mand r = roots(p): 

r = roots(p) 
r =  

- 3.0000 
- 2 .0000 
- 1 .0000 

The roots are s = -3, s = -2, and s = -1.  Note that the commands poly and roots 
can be combined into a single expression, such as 

roots(poly(A) ) 

The roots of the characteristic equation may be reassembled back into the original 
polynomial with the command q = poly(r). For r = [-3 -2 -1], poly(r) will 
produce the polynomial equation 

sl + 6; + 1 1  5 + 6 = 0 

The following MATLAB output is illustrative: 

» r  = [-3 -2 -1 ] ;  
» q = poly(r) 

q =  

6 1 1  6 
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Addition or subtraction of polynomials. If the two polynomials are of the 
same order, add the arrays that describe their coefficients. If the polynomials are of 
different order (n and m, where m < n), then add n - m zeros to the left-hand side 
of the coefficient array of the lower order polynomial. The following MATLAB out­
put is illustrative: 

» a  = [3 
» b  = [0 
» a+b 

ans = 
3 

1 0  
o 

1 0  

25 
1 2 

26  

36 50] ; 
1 0] ;  

38 60 

For the subtraction of b from a, consider the subtraction as an addition of a and -b. 

Eigenvalues and eigenvectors. If A is an n X n matrix, then the n num­
bers ,\ that satisfy 

Ax = ,\x  

are the eigenvalues of A. They are obtained with the command 

eig(A) 

which returns the eigenvalues in a column vector. 
If A is real and symmetric, the eigenvalues will be real. But if A is not sym­

metric, the eigenvalues will frequently be complex numbers. 
For example, with 

A = [-! � n 
the command eig(A) produces the eigenvalues shown in the following output: 

» A  = [0 
» eig(A) 

ans = 
5 .2 1 30 

0;-1 

-0. 1 065 + 1 .4487i 
-0. 1 065 - 1 .4487i 

o 2;3 o 5]; 

MATLAB functions may have single- or mUltiple-output arguments. 
For example, as seen previously, eig(A) produces a column vector consisting of the 
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eigenvalues of A, while the double-assignment statement 

[X,D] = eig(A) 

produces eigenvalues and eigenvectors. The diagonal elements of �he �iagonal 

matrix D are the eigenvalues, and the columns of X are the correspondmg eIgenvec-

tors such that 

For example, if 

then the statement 

gives the following result: 

AX = XD  

A = [ � 
-6 

1 
o 

-11 

[X,D) = eig(A) 

» A = [0 1 0;0 0 1 ;-6 -1 1 -6]; 
» [X, D] = eig(A) 

X = 

-0.5774 0.2 1 82 -0.1 048 
0.5774 -0.4364 0.3 1 45 

-0.5774 0.8729 -0.9435 

D = 

-1 .0000 0 0 
0 -2.0000 0 
0 0 -3 .0000 

The eigenvectors are scaled so that the norm of each is unity. 
If the eigenvalues of a matrix are distinct, the eigenvectors are always inde­

pendent and the eigenvector matrix X will diagonalize the original matrix A if X is 
applied as a similarity transformation matrix. However, if a matrix has repeated 
eigenvalues (multiple eigenvalues), it is not diagonalizable unless it has a full (inde­
pendent) set of eigenvectors. If the eigenvectors are not independent, the original 
matrix is said to be defective. Even if a matrix is defective, the solution from eig sat­
isfies the relationship AX = XD. 

Convolution (product of polynomials) . Consider the polynomials 

a(s) = 3s4 + 10s3 + 25s2 + 36s + 50 
b(s) = s2 + 2s + 10 
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The product of the polynomials is the convolution of the coefficients. The product of 
polynomials a(s) and b(s) can be obtained by entering the command c = conv( a,b ) . 

» a = [3 1 0  25 36 50]; 
» b = [ 1  2 1 0] ;  
» % Define the product of a and b as c. 
» c  = conv(a,b) 

c =  

3 1 6  75 1 86 372 460 

The foregoing is the MATLAB representation of the polynomial 

500 

c(s) = 3s6 + 16s5 + 75s4 + 186s3 + 372s2 + 460s + 500 

Deconvolution (division of polynomials). To divide the polynomial a(s) 
by b(s), use the deconvolution command 

[q,r] = deconv(a,b) 

The following MATLAB output is illustrative: 

» a = [3 1 0  25 36 50] ;  
» b = [ 1  2 1 0] ;  
» % Define the quotient and remainder of alb as q and r, respectively. 
» [q, r] = deconv (a,b) 

q =  

r =  

3 4 -1 3 

o o o 22 1 80 

This MATLAB output means that 

3s4 + 10s3 + 25s2 + 36s + 50 
= (s2 + 2s + 10) (3s2 + 4s - 13) + 22s + 180 

Polynomial evaluation. If p is a vector whose elements are the coefficients 
of a polynomial in descending powers, then polyval(p,s) is the value of the polyno­
mial, evaluated at s. For example, to evaluate the polynomial 

at s = 5, enter the command 

p(s) = 3� + 2s + 1 

p = [3 2 1]; 
polyval (p,5 )  
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Then we get 

ans = 
86 

The command polyvalm(J) evaluates the polynomial p in a matrix sense. For 
example, consider the matrix [-2 + j2V3 0 0 ] 

J = 0 -2 - j2V3 0 
o 0 -10 

The command poly(J) gives the characteristic polynomial for J: 

» J = [-2+i*2*sqrt (3) 
» p  = poly 0) 

o 0;0 0;0 o -1 0]; 

p =  

1 .0000 1 4.0000 56.0000 1 60.0000 

This is the MATLAB expression for the characteristic polynomial for J: 

poly(J) = cp(J) = J3 + 14J2 + 56J + 1601 

Here, 1 is the identity matrix. For the matrix 

A = [ �  � �] 
-6 -11 -6 

the command polyvalm(poly(J),A) evaluates the following cp(A): [ 154 45 8] 
cp(A) = A? + 14A2 + 56A + 1601 = -48 66 -3 18 - 15 84 

See the following MATLAB output: 

» J  = [-2+i*2 *sqrt (3) a 0;0 
» A = [0 1 0;0 0 1 ;-6 
» polyvalm (poly 0), A) 

ans = 

-2-i*2*sqrt(3) 
-1 1 -6] ; 

1 54.0000 
-48.0000 

1 8.0000 

45 .0000 
66.0000 

-1 5 .0000 

8.0000 
-3.0000 
84.0000 

0;0 o -1 0] ; 
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Matrix exponential. The command expm(A) gives the matrix exponential of 
an n X n matrix A. That is, 

A2 N 
expm(A) = I + A + - + - + . . . 

2! 3! 

Note that a transcendental function is interpreted as a matrix function if an "m" is 
appended to the function name, as in expm(A) or sqrtm(A). 

As an example, consider the matrix 

A = [ � 
-6 

1 

o 

-11 

then the matrix exponential eA can be obtained as  follows: 

» A  = [0 0;0 0 1 ;-6 -1 1 -6]; 
» expm(A) 

ans = 
0.7474 

-0.441 0 
-0.0723 

0.4530 
-0.061 1 
-0.5735 

0.0735 
0.01 2 1  

-0. 1 334 

The following MATLAB output affords another example: 

» expm(eye (3)) 

ans = 
2.71 83 

o 
o 

D-4 PLOTTING RESPONSE CURVES 

o 
2 .71 83 

o 

o 
o 

2 .71 83 

MATLAB has an extensive set of routines for obtaining graphical output. The plot 
command creates linear x-y plots. (Logarithmic or polar plots are created by substi­
tuting the word loglog, semilogx, semilogy, or polar for plot.) All such commands are 
used the same way: They only affect how the axis is scaled and how the data are dis­
played. 

x-y plot. If x and y are vectors of the same length, the command 

plot(x,y) 

plots the values in y against the values in x. 
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Plotting multiple curves. To plot multiple curves on a single graph, use the 
plot command with multiple arguments: 

plot(Xl , Yl , X2, Y2, . . .  , Xn, Yn ) 

The variables Xl, Yl, X2, Y2, and so on, are pairs of vectors. Each x-y pair is 
graphed, generating multiple curves on the plot. Multiple arguments have the bene­
fit of allowing vectors of different lengths to be displayed on the same graph. Each 
pair uses a different type of line. 

Plotting more than one curve on a single graph may also be accomplished by 
using the command hold on (or the command hold), either of which freezes the cur­
rent plot and inhibits erasure and rescaling. Hence, subsequent curves will be plot­
ted over the original curve. Entering the command hold off (or the command hold 
again) releases the current plot. 

Adding grid lines, title of the graph, x-axis label, and y-axis label. 
Once a graph is on the screen, grid lines may be drawn, the graph may be titled, and 
x- and y-axes may be labeled. MATLAB commands to produce a grid, title, x-axis 
label, and y-axis label are as follows: 

grid (grid l i nes) 
title (graph title) 
xlabel (x-axis label )  
ylabel (y-axis label) 

Note that, once the command display has been brought back, grid lines, the graph 
title, and x and y labels can be put on the plot by successively entering the preceding 
commands. 

Writing text on the graph. To write a text on the plot, use the command 
text. The command text (X, Y, 'string') adds the text in quotes to location (X,Y) on 
the current plot, where (X, Y) is expressed in units of the current plot. For example, 
the statement 

text(3,0.45, lsin tl} 

will write sin t horizontally, beginning at point (3,0.45). 
Similarly, the command text (X, Y, Z, 'string') adds text to a three-dimensional 

plot. 
Another command used frequently to add text to a two-dimensional plot is 

gtext. The command gtext('string') displays the graph window, puts up a crosshair, 
and waits for a mouse button or keyboard key to be pressed. The crosshair can be 
positioned with the mouse. Pressing a mouse button or any key writes the text string 
onto the graph at the selected location. 

Imaginary and complex data. If z ia a complex vector, then plot(z) is 
equivalent to plot(real(z), imag(z» . That is, plot(z) will plot the imaginary part of z 
against the real part of z. 
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Polar plots. The command polar (theta, rho) will give a plot of the angle 
theta (in radians) versus the radius rho, in polar coordinates. Subsequent use of the 
grid command draws polar grid lines. 

Logarithmic plots. 

log log: 
semi logx: 

semi logy: 

The following commands produce the indicated plots: 

a plot using 10glO-loglO scales 
a plot using semi log scales; the x axis is lOglO. whi le the 
y axis is l inear 
a plot using semi log scales; the y axis is lOglO. whi le the 
x axis is l i near 

Automatic plotting algorithms. In MATLAB, a plot is automatically 
scaled. H another plot is requested, the old plot is erased and the axis is automati­
cally rescaled. The automatic plotting algorithms for transient-response curves, root 
loci, Bode diagrams, Nyquist plots, and the like are designed to work with a wide 
range of systems, but are not always perfect. Thus, in certain situations, it may be­
come desirable to override the automatic axis scaling feature of the plot command 
and to select the plotting limits manually. 

Manual axis scaling. If it is desired to plot a curve in a region specified by 

v = [x-min x-max y-min y-max] 

enter the command axis(v), where v is a four-element vector. This command sets the 
axis scaling to the prescribed limits. For logarithmic plots, the elements of v are 10glO 
of the minima and maxima. 

Executing axis (v) freezes the current axis scaling for subsequent plots. Enter­
ing the plot command and typing axis again resumes automatic scaling. 

The command axis('equal') sets the plot region on the screen to be square. 
With an equal aspect ratio, a line with unity slope is at a true 45°, not skewed by the 
irregular shape of the screen. The command axis('normal') sets the aspect ratio back 
to its normal appearance. 

Plot types. The command 

plot(x,y, 'o' ) 

draws a point plot using o-mark symbols. Note that the o-marks will not be connected 
with lines or curves. To connect them with solid lines or curves, plot the data twice by 
entering the command 

plot(x,y,x,y, '0' ) 

The command 

plot(Xl ,Yl , ' : ' ,X2,Y2, ' + ' )  

uses a dotted line for the first curve and the plus symbol ( + )  for the second curve. 
Available line and point types are as follows: 
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Line types Point types 

sol id point e 
dashed plus + 
dotted star * 
dash-dot _e circle 0 

x-mark x 

Available colors on the screen. The statements 

plot(X, Y, 1 r') 
plot(X,Y, '+g') 
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indicate the use of a red line on the first graph and green + marks on the second. 
The available colors are as follows: 

red 
green g 
blue b 
white w 
yellow y 
magenta m 
cyan c 
black black 

(Other colors can be generated using a color map.) 

Plotting and printing curves. Let us enter MATLAB Program D-l into 
the computer and print the resulting plot. 

MATLAB Program D-1 
» t = 0 : O. 01 *pi:2*pi; 
» alpha = 3; 
» y = sin(alpha*t); 
» plot(t,y) 
» grid 
» title( 'PJot of sin(\alphat) (\alpha = 3)1)  
» xlabelCt (sec)') 
» ylabel( ,sin (\alphat) ' )  

Note that the vector t is a partition of the domain 0 s t s 21T with mesh size 0.011T, 
while y is a vector giving the values of the sine at the nodes of the partition. 

Note that, in graphics screen mode, pressing any key will cause MATLAB to 
show the command screen. By using the up-arrow key, enter any one of the last sev­
eral commands (plot, grid, title, xlabel, or ylabel). MATLAB will then show the cur­
rent graphics screen. MATLAB will also show the current graphics screen, if the 
command shg (show graph) is entered. 

Figure D-l shows a plot of the output y = sin ( at) versus t, reduced to 50% of 
the actual print size. The letter size of the title, xlabel, and ylabel may be adequate 
for the plot as seen on the screen. However, if the plot size is reduced to half or less, 
the letters become too small. 
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2 

Plot of sin(ext) (ex = 3) 

3 4 
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5 6 7 
t (sec) Figure D-l Plot of y = sin(at) versus t. 

To enlarge the letter size, specify a larger fontsize in the title, xlabel, and yla­
bel. (See MATLAB Program D-2.) The size of the plot in Figure 0-2 is half that of 
the actual print from the computer. Notice that in Figure D-2 the letter size of the 
title, xlabel, and ylabel appears adequate. 

MATLAB Program D-2 
» t = 0 : 0.01 *pi:2*pi; 
» alpha = 3; 
» y = s in(alpha*t); 
» plot(t,y) 
» grid 
» title( 'Plot of sin(\alphat) (\a lpha = 3) ' , ' Fontsize', 20) 
» xlabel( 't (sec) ' , ' Fontsize', 20) 
» ylabel( 'sin(\alphat) ', ' Fontsize', 20) 

To generate greek letters, such as a, f3, 'Y, 8, w, or " use '\character'. See below. 

a \alpha 8 \theta 
f3 \ beta , \ zeta 
'Y \gamma A \Delta 
8 \delta e \Theta 
w \omega l: \Sigma 
u \sigma n \Omega 

etc. 

In addition to setting the font size with commands such as 

I Fonts ize', 1 5  
' Fonts ize', 20  
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Plot of sin(at) (a = 3) 
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Figure D-2 Plot of sin( at) versus t. 
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it is possible to set the font angle and font name, using commands such as 

' Fontangle', ' ital ic '  
' Fontname', 'Times New Roman i 

Subscripts can be obtained by using "_". For example, 

y _1 generates y, 
y _2 generates Y2 

Superscripts can be generated by using " A ". For example, 

xl\2 generates X­
xl\3 generates xl 

As another example, let us plot the graph of 

Y = X-

6 7 

over the interval 0 � x � 3 with increments of 0.1. MATLAB Program D-3 plots 
this graph. 

MATlAR Program 0-3 
» x  = 0:0. 1 :3; 
» y = x.1\2; 
» plot(x,y) 
» grid 
» title('Plot of y = xI\2 ',  ' Fontsize ',20, ' Fontangle', ' ital ic ' )  
» xlabel ( 'x ', ' Fontsize',20, ' Fontangle', ' ita l ic' ) 
» ylabel{'y', ' Fontsize',20, I Fontangle', ' ital ic ' )  
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3 
Figure 0-3 Plot of y = x2• 

Note that it is necessary that 'J\2' be preceded by a period to ensure that it operates 
entrywise. Figure D-3 shows the resulting plot. 

Use of subplot command. Multiple curves on one screen may be split into 
multiple windows with the use of the command 

5ubplot(m,n,p) 

The graph display is subdivided into m x n smaller subwindows numbered left to 
right and top to bottom. The integer p specifies the window. For example, sub­
plot(235) or subplot(2,3,5) splits the graph display into six subwindows numbered 
from left to right and top to bottom. The integer p = 5 means the fifth window (that 
is, the window located in the second row and second column). 

Let us next plot the four curves 

y, = sin t 
Y2 = sin 2t 
Y3 = sin t + sin 2t 

Y4 = (s in t) (s in 2t) 

for 0 s t :s:; 2",.. We shall plot the curves in four subwindows, one curve to a window. 
MATLAB Program D-4 produces the plots shown in Figure D-4. 
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Figure D-4 

MATLAB Program 0-4 
» t = 0 : 0.01 *pi :2*pi; 
» y1 = sin(t); 
» y2 = sin(2*t); 
» y3 = sin(t) + sin(2*t); 
» y4 = (sin(t)) .* (sin{2*t)); 
» subplot{2,2, 1 ), plot{t,y1 ), grid 
» x label ( 't (sec) I ), ylabel('y_1 = sin(t) ' ) 
» subplot(2,2,2), plot{t,y2), grid 
» xlabelCt (sec)I), ylabelCy_2 = sin{2t) ' )  
» subplot(2,2,3), plot(t,y3), grid 
» xlabelCt (sec)I), ylabel( 'y_3 = sin(t) + sin(2t) ' )  
» subplot(2,2,4), plot(t,y4), grid 
» xlabelCt (sec) I), ylabel( 'y_ 4 = (sin{t))*(sin{2t)) ' ) 
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Plots of sin t, sin 2t, sin t + sin 2t, and (sin t)(sin 21). 
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Index 

A 

Abscissa of convergence, 15 
Acceleronneter, 472 
Actuating error, 492 

signal, 501 
Actuator, 501-02 
Adjoint matrix, 714 
Air: 

properties of, 332-33 
Air heating system, 351 
Aircraft elevator control system, 381 
�pere, 696, 699 
Analogous quantities, 272 
Analogous systenns, 270, 303-04, 330, 

361-63, 373 
electrical and thermal, 373 
nnechanical and electrical, 

303-04, 330 
mechanical and liquid-level, 330, 

361-63 
Angle: 

of arrival, 555-56 
of departure, 555-56, 558 

Angle condition, 546 
Angles of asymptotes, 548, 554, 558 
Angular momentum, 61, 126 

law of conservation of, 126 
Associative law, 711 
Asymptotes: 

Bode diagram, 612, 616 
root loci, 548 

Attenuation factor, 650 
Automatic controller, 501 
Automobile suspension system, 140, 

445-46 
Auxiliary polynomial, 543 
Auxiliary units, 699 

B 
Back emf, 276, 524 

constant, 276, 280, 524 
Bandwidth, 627-28, 673 
Block, 109 
Block diagram, 109, 494 

algebra, 495 
simplification, 576 
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Bode diagram, 609-23 
asymptotes of, 612-14 
of derivative factor, 611 
of first-order system, 611, 613 
of gain K, 610 
of integral factor, 611 
log-magnitude error in asymptotic 

expression of, 614 
plotting with MATLAB, 629-30 
of second-order system, 615-19 

Branch point, 1 10 
Break frequency, 612 
Breakaway point, 549, 555 
Break-in point, 555 
Bridged T network, 300 
British engineering system of units, 696 
Btu, 73 

C 

Candela, 696, 699 
Capacitance: 

of electrical system, 252 
of liquid-level system, 328 
of pneumatic system, 334-35 
of thermal system, 349-50 

Capacitor, 252 
Capillary tube, 325, 353 
Celsius, 704 
Centrifugal force, 439-40 
Centripetal force, 439-40 
cgs system of units, 696 
Characteristic equation, 65 
Characteristic polynomial, 65 
Characteristic roots, 206 
Qosed-Ioop control, 492 

system, 492 
Closed-loop transfer function, 494-95 
Cofactor, 713 
Compensation: 

lag, 646-47, 656-62 
lag-lead, 646-48, 662-68 
lead, 644-46, 648-56 

Complementary solution, 383-84, 432 
Compliance, 59 
Complex algebra, 1 1  

addition, 1 1  
division, 12 
division by j, 12 
equality, 11 
multiplication, 11 
multiplication by j, 12 
powers of, 13 
roots of, 13 
subtraction, 11 

Complex conjugate, 9 
Complex function, 13 

Index 

Complex impedance, 267-68 
Complex number, 9 

polar form of, 9 
rectangular form of, 9 

Complex variable, 13 
Component, 1 
Conditionally stable system, 639-40 

Bode diagram of, 662 
Conduction heat transfer, 349 
Conical pendulum, 467 
Conical water tank, 377 
Conjugate matrix, 708 
Conjugate transpose, 708, 713, 729 
Conservation of angular momentum, 126 
Conservation of momentum, 125 

law of, 126 
Conservative system, 76 
Contact force, 55 
Continuous-time system, 3 
Control action: 501 

derivative, 503 
integral, 503 
on-off, 502 
proportional, 504 
proportional-plus-derivative, 504 
proportional-plus-integral, 504 
proportional-plus-integral-plus-

derivative, 504 
two-position, 502 

Control matrix, 171 
Control system, 501 
Control vector, 171 
Controller tuning, 566-75 
Convection heat transfer, 349 
Conversion tables: 56 

for area, 701 
for energy, 702 
for length, 700-01 
for mass, 700 
for power, 702 
for pressure, 703 
for temperature, 704 
for volume, 702 

Convolution, 41 
Comer frequency, 612, 616 
Critically damped system, 391, 393-94 
Current source, 253-54 
Cutoff frequency, 627 
Cutoff rate, 628 
cyclic current, 260 

D 
Damped natural frequency, 392 
Damper, 59, 1 14, 345 

ideal, 60 



Index 

Damping ratio, 391, 394-95 
experimental determination of, 

394-95 
Dashpot, 1 14, 345-46 
DC motor: 

field-controlled, 522 
DC servomotor, 275-76, 279-81, 317 

armature control of, 275-76, 522 
permanent magnet, 522 

Dead time, 673-74 
Decibel, 609 
Degrees of freedom, 448--50 
Delay time, 514 
Derivative control action, 51 1 
Derivative gain, 505 
Derivative of matrix, 718 
Derivative time, 504 
Derived units, 695 
Design procedures, 5-6 
Determinant, 707 
Diagonal matrix, 734 
Diagonalization of state matrix, 207-09 
Differential amplifier, 281 
Differential equation: 

linear, constant-coefficient, 2 
linear, time-invariant, 2 
linear, time-varying, 2 
nonlinear, 2 

Differential gain, 281 
Differential gap, 502-03 
Differentiation theorem, 24-26 
Dimension, 695 
Dirac delta function, 23 
Direct transmission matrix, 171 
Distributive law, 711 
Disturbance, 491 

external, 491 
internal, 491 

Dominant closed-loop poles, 532 
Dynamic vibration absorber, 447�8, 

450-53, 473-75 
Dyne, 55 

E 
eAt, 402 

computation of, 404-05, 419-21 
Eigenvalue, 206, 235, 239 

invariance of, 239 
Eigenvecto� 235-37, 249 
Electric solenoid-operated valve, 502 
Electronic PID controller, 504-06 
Energy, 73 

dissipated, 75 
kinetic, 74-75 

law of conservation of, 74 
potential, 74 

Energy method: 
for deriving equations of motion, 

76-80 
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for determining natural frequencies, 
80-81 

Equivalent friction, 278-79 
Equivalent inertia, 278-79 
Equivalent moment of inertia, 279 
Equivalent spring constant, 85-86, 100 
Equivalent viscous friction coefficient, 102 
erg, 73 
Euler's theorem, 10 
Evans, W. R., 545 
Expansion process, 335 

isothermal, 335 
Exponential order, 15 
Exponential response curve, 386 

F 
Fahrenheit, 704 
Farad, 252 
Feedback control, 492 

system, 492 
Feedback element, 110 
Feedforward transfer function, 494 
Field force, 55 
Final value theorem, 26-27 
First mode of vibration, 456-57, 477-78 
FIrst natural frequency, 456 
First-order lag system, 286 
FIrst-order system, 384-88 

ramp response of, 386-87 
step response of, 384-86 

Force, 55, 73 
contact, 55 
excitation, 942 
field, 55 
units of, 55 

Force-current analogy, 272-73 
Force-voltage analogy, 271-72, 303-06 
Forced response, 64, 384 
Format: 

long, 732 
short, 732 

Free vibration, 67-69, 388-94 
Frequency, 68 

response, 432, 608 
Friction: 

linear, 60 
nonlinear, 60 
square-law, 60-61 

Functional block, 109 
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G 
Gage pressure, 324 
Gain crossover frequency, 637, 639 
Gain margin, 637-38 
Gas: 

constant, 332 
properties of, 332 

Gear train, 277-81 
Gravitational acceleration constant, 54 
Gravitational systems of units, 696 

H 
Hagen-Poiseuille formula, 353, 375 
Henry, 253 
Hermitian matrix, 709 
Hertz, 68 
Higher order system, 532 
Homogeneous cylinder, 53, 79, 84 
Homogeneous state equation: 

solution of, 40�4 
Horsepower, 76 
Hydraulic circuit, 342-43 
Hydraulic controller, 345, 370--71 

integral, 345 
proportional, 371 

Hydraulic servomotor, 342-43, 345 
Hydraulic systems: 

I 

advantages and disadvantages of, 
347-48 

Identity matrix, 707 
Imaginary short, 283 
Impedance, 267-68, 296 
Impulse: 

force, 127 
function, 125 
input, 125, 151 
response, 124, 178 
response function, 108 

Inductance, 252 
Industrial automatic controllers, 501-06 
Inertance, 328-29 

liquid flow, 353-54 
Inertia, 57 
Inflection point, 567-68 
Initial condition: 

response to, 179-81 
Initial value theorem, 27, 44 
Input matrix, 171 
Input vector, 171 
Integral control, 509-11 

action, 504 

Index 

Integral gain, 504-05 
Integral of matrix, 718 
Integral time, 504 
Integration by parts, 16 
Integration theorem, 27-29 
International System of units, 696-98 
Inverse Laplace transformation, 15, 29 
Inverse Laplace transforms: 

partial-fraction expansion method for 
finding, 29-34 

Inverse matrix: 
formulas for finding, 716-17 

Inverting adder, 286 
Inverting amplifier, 282 

J 

Jordan canonical form, 207-08, 249 
Joule, 73, 348 

K 
Kelvin, 696, 699 
kilogram: 

force, 55 
mass, 55, 699 

Kinetic energy, 74-75 
Kirchhoff's current law, 257 
Kirchhoff's loop law, 257 
Kirchhoff's node law, 257 
Kirchhoff's voltage law, 257 
Kronecker delta, 707 

L 
Lag compensator, 644 

Bode diagram of, 647 
design of, 656-61 
frequency characteristics of, 646 

Lag-lead compensator, 644, 684, 686 
Bode diagram of, 648 
design of, 662-68 
frequency characteristics of, 646-48 
Nyquist plot of, 648 

Laminar flow, 325 
resistance, 326, 352 

Laplace integral, 14 
Lower limit of, 24 
Laplace transform: 

of convolution integral, 41-42 
of cosine function, 17 
existence of, 15 
of exponential function, 15 
of impulse function, 22 
of periodic function, 42-43 
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of pulse function, 21-22 
of ramp function, 16 
of sinusoidal function, 17 
of step function, 16 
table, 18-19 
of translated function, 17, 21 
of unit-impulse function, 23 
of unit-step function, 16 

Laplace transformation, 14 
Laplace transforms: 

properties of, 20 
Law of conservation of momentum, 126 
Lead compensator, 592, 594, 644 

Bode diagram of, 645-46 
design of, 648-56 
frequency characteristics of, 644-45 
Nyquist plot of, 645 

Linear system, 3 
Linear, time-invariant, differential 

equation, 2 
Linear, time-varying, differential 

equation, 2 
Linearization technique, 337-40 
Liquid-level system, 324-32 
Log-magnitude curve: 

of type 0 system, 624 
of type 1 system, 625 
of type 2 system, 626 

Logarithmic decrement, 395 
Logarithmic plots, 609 

M 
Magnetic flux linkage, 273 
Magnitude condition, 546 
Manometer: 

V-shaped, 102-03 
Mass, 54-55 
Mass-capacitance analogy, 273 
Mass-inductance analogy, 272 
Mathematical model, 2 
Mathematical modeling, 3-5 

of electrical systems, 261-65, 268-70 
of hydraulic servomotor, 345 
of liquid-level systems, 324-32 
of mechanical systems, 61-73 
of operational-amplifier systems, 

281-88 
of pneumatic systems, 332-37 
of thermal systems, 348-52 

MATLAB: 
drawing Nyquist plots with, 640-43 
obtaining response to arbitrary 

input with, 131, 179 
obtaining response to initial condition 

with, 134-35, 179-81 
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obtaining unit impulse response with, 
124-25, 178-79 

obtaining unit-ramp response with, 
131-34 

obtaining unit-step response with, 
120-24, 174-78 

partial-fraction expansion with, 112 
plotting Bode diagram with, 629-30 
plotting root loci with, 562-65 
representation of transfer function, 

1 12, 119 
writing text on plots, 124, 750 

MATLAB commands: 
[A, B, C, 0] = parallel (AI, B1, C1, 

01, A2, B2, C2, 02), 499 
[A, B, C, 0] ::: series (A1 ,  B1, C1, 01, 

A2, B2, C2, 02), 498 
[A, B, C, 0] = tf2ss (num, den), 202 
axis ('equal'), 564, 751 
axis ('normal'), 751 
bode (A, B, C, 0, iu, w), 629 
bode (num, den), 629 
bode (num, den, w), 629 
conv, 746-47 
format long, 732 
format short, 732 
impulse (A, B, C, D), 179 
impulse, (num, den), 125 
impulse (sys), 130, 179 
initial (A, B, C, 0, xo, t), 180 
logspace, (d1, d2), 629 
logspace, (d1, d2, n), 629 
!sim (num, den, u, t), 131 
lsim (sys, u, t), 131-32, 179, 220 
Isim (sys, u, t, Xo), 179 
Isim (sys1, sys2, . . .  , u, t), 131 
magdB = 20*log10 (mag), 629 
[mag, phase, w] = bode (num, den, 

w), 629 
[num, den] = feedback (numg, deng, 

numh, denh), 500 
[num, den] = parallel (num1, den1, 

num2, den2), 499 
[num, den] = residue (r, p, k), 1 14 
[num, den] = series (num1, den1, 

num2, den2) , 498 
[num, den] = ss2tf (A, B, C, 0), 203 
[num, den] = ss2tf (A, B, C, D, iu), 

203 
[NUM, den] = ss2tf (A, B, C, D, iu), 

204 
nyquist (num, den), 640 
nyquist (num, den, w), 640 
plot (re, im), 642, 678 
plot (t, y, t, u), 133 
plot (t, y1, t, y2, . . .  , t, yn), 133 
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MATLAB commands: (continued) 
[r, K) = rlocus (num, den), 563 
[r, K) = rlocus (num, den, K), 563 
[r, p, k] = residue (num, den), 1 13, 

116 
[re, im, w) = nyquist (num, den, w), 

640, 642-43, 678-80 
rlocus (num, den), 563 
rlocus (num, den, K), 563 
step (A, B, C, D), 174, 176 
step (num, den), 120 
step (num, den, t), 120 
step (sys), 120, 174, 176 
step (sys, t), 120 
subplot command, 148 
sys = feedback (sysg, sysh), 500 
sys = feedback (sysg, (1)), 500 
sys = parallel (sys1, sys2), 499 
sys = series (sys1, sys2), 498 
sys = ss (A, B, C, D), 174, 176 
sys = tf (num, den), 119-20 
text, 124 
y = impulse (num, den), 125 
y = lsim (num, den, u, t), 131 
y = lsim (sys, u, t), 131 
y = step (num, den , t), 120 
y = step (sys, t), 120, 123, 174 
[y, t] = impulse (num, den, t), 125 
[y, t] = lsim (num, den, u, t), 131 
[y, t] = lsim (sys, u, t), 131 
[y, t] = step (sys, t), 120 
[y, x, t] = impulse (A, B, C, D), 179 
[y, x, t] = impulse (A, B, C, D, iu), 179 
[y, x, t] = impulse (A, B, C, D, iu, t), 

179 
[y, x, t] = step (A, B, C, D), 217 
[y, x, t) = step (A, B, C, D, iu), 174 
[y, x, t) = step (A, B, C, D, iu, t), 174 
[y, x, t] = step (num, den, t), 120 
[y, x, t] = step (sys, t), 174 

Matrices: 
addition of, 710 
differentiation of product of two, 718 
subtraction of, 710 

Matrix, 705 
cancellation of, 717 
complex, 709 
conjugate, 708 
derivative of, 717 
diagonal, 706 
exponential of, 402 
Hermitian, 709 
identity, 707 
integral of, 718 
inverse of, 715-16 

Index 

multiplication by a matrix, 710 
multiplication by a scalar, 710 
nonsingular, 707 
of order n, 706 
power of, 712 
rank of, 713 
singular, 707 
skew-Hermitian, 709 
skew-symmetric, 708 
square, 706 
symmetric, 708 
unity, 707 
zero, 707 

Maximum overshoot, 514, 5 19 
in unit-step response, 5 14, 519 

Maximum percent overshoot, 514, 519 
versus damping ratio curve, 521 

Maximum phase lead angle, 645 
Measuring element, 501-02 
Mechanical capacitance, 59 
Mechanical-electrical analogies, 271 
Mechanical-liquid-Ievel analogy, 362 
Mechanical resistance, 60 
Mechanical system: 

with two or more degrees of freedom, 
475-80 

Metacenter, 89 
Meter, 699 
Metric engineering system of units, 696 
Minimum-phase system, 619-21 
Minimum-phase transfer function, 619 
Minor, 713 
mks system of units, 696 
Mode of vibration: 

first, 479 
second, 480 
third, 480 

Mole, 696, 699 
Molecular weight, 365 
Moment of force, 62 
Moment of inertia, 57, 62-63, 81, 307 

about axis other than geometrical 
axis, 64 

experimental determination of, 69, 
83, 100 

Momentum, 61 
law of conservation of, 126 

Motion: 
excitation, 442 

Motor: 
gain constant, 277 
time constant, 277 
torque constant, 275, 524 

Multiple pole, 14 
Mutual inductance, 253 



I ndex 

N 
n-degrees-of-freedom system, 458 
Natural frequency: 

damped, 392, 395 
first, 456 
second, 456 
undamped, 68 

Natural response, 64, 384 
Newton, 55 
Newton's first law, 61 
Newton's second law, 61-62 
Newton's third law, 61 
Noninverting operational amplifier, 285 
Nonlinear mathematical models: 

linear approximation of, 337-40 
Nonlinear system, 3 
Noruninimum-phase system, 619-21, 639, 

670-71 
Nonminimum-phase transfer function, 619 
Nonsingular matrix, 707 
Number-decibel conversion line, 610 
Nyquist: 

o 

path, 634-35 
plot, 630-32, 640 
stability criterion, 633-36 

Offset, 509 
Ohm, 251 
Ohm's law, 254 
On-off control action, 502 
Op amp, 281 
Open-loop control system, 492-93 
Open-loop transfer function, 494 
Operational amplifier, 281-88 

ideal, 281 
Output equation, 170-71 
Output mabix, 171 
Output vector, 171 
Overdamped system, 391, 393 

p 
Parallel circuit, 255-56 
Parallel-connected blocks, 498 
Parallel-connected system, 499 
Partial-fraction expansion, 1 12 

with MATLAB, 1 12-19 
Particular solution, 383-84, 432 
Pascal, 324 
Pascal's law, 381 
PD control action, 644 
Peak time, 514, 519 

Pendulum system, 209-21 1  
spring-Ioaded, 88 
spring-loaded inverted, 96-97 

Perfect gas law, 334 
Period, 68 
Phase crossover frequency, 638-39 
Phase margin, 636-38 
PI control action, 644 
PID control action, 644 
PID controller, 644 

Bode diagram of, 668 
tuning rules for, 566-75 

Plant, 491 
Pneumatic systems, 332-37 
Poise, 341 
Polar plot, 630 
Pole, 14, 1 13 

multiple, 14 
simple, 14 

Polytropic exponent, 335 
Position control system, 515-17 

with velocity feedback, 526-28 
Potential energy, 74 
Pound force, 55 
Pound mass, 55 
Poundal, 55 
Power, 73, 75-76 

cylinder, 342 
factor, 252 

Prefilter: 
proportional-plus-derivative type of, 

530-31 
Pressure: 

absolute, 324 
gage, 324 
standard, 332, 363 
units of, 324 

Principle of superposition, 3 
Proportional band, 505 
Proportional control action, 504 
Proportional controller: 

hydraulic, 370-71 
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Proportional gain, 504-05 
Proportional-plus-derivative control 

action, 504, 529 
Proportional-plus-derivative type of 

prefilter, 530-31 
Proportional-plus-integral control action, 

504 
ProportionaI-plus-integral-plus-derivative 

control action, 504 
Prototype, 6 
Pulleys and belt, 306 
Pulse function, 21-22 
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Q 
Quality factor, 253 

R 
Radian, 84, 696, 699 
Ramp function, 16--17 
Ramp response, 131-33, 386--87 

steady-state error in, 528 
MATLAB approach to obtain, 131-33 

Rank of matrix, 713 
Relative stability, 544, 638 
Residue, 113 
Resistance: 

electrical, 251 
laminar-flow, 326, 353 
of liquid-level system, 328 
of pneumatic system, 333 
thermal, 349 
turbulent-flow, 327 

Resonant frequency, 618 
Resonant peak, 616 
Resonant peak versus l curve, 619 
Response to arbitrary input, 131 
Response to initial condition: 

MATLAB approach to obtain, 179-81 
Reynolds number, 325 
Rigid body, 61 
Rise time, 514, 518 
Rolling motion: 

of ship, 89 
Root loci: 

asymptotes of, 548 
general rule for constructing, 552-57 
open-loop pole-zero configurations 

and corresponding, 562 
plotting with MATLAB, 562-65 

Root locus: 
analysis, 545-61 
angle of arrival of, 556 
angle of departure of, 556 

Rotational system, 65, 93 
Routh's stability criterion, 539-45 

s 
Safety seat belt system, 153-55 
Satellite-attitude control system, 135-36 
Second, 699 
Second mode of vibration, 456--57, 477-78 
Second-order system. 

impulse response of, 124-31 
step response of, 397-98 
transient response analysis of, 388-98 

Index 

transient response specifications of, 
514-21 

unit-step response curves of, 120-24 
Seismograph, 470-71 
SeH-inductance, 252 
Sensor, 501-02 
Series circuit 254 
Series-connected blocks, 497 
Series-connected system, 498 
Servo system, 523-25 
Servo driver, 522 
Servomotor, 275-76 
Settling time, 396, 515, 519 
SI units, 53-54 
Sign inverter, 284 
Simple harmonic motion, 68 
Simple pendulum, 87 
Simple pole, 14 
Singular matrix, 707 
Sinusoidal transfer function, 433-34, 436, 

438 
Skew-Hermitian matrix, 709 
Skew-symmetric matrix, 708 
Slug, 55, 696 
Sound: 

speed of, 366 
Space vehicle control system, 680-81 
Specific heat, 332 
Speed-control system, 602 
Spool valve, 342, 344 

linearized mathematical model of, 344 
Spring: 

constant, 57-59 
ideal, 59 
linear, 57 
nonlinear, 58 
torsional, 58 

Spring constant: 
equivalent, 85, 101 

Spring-dashpot system, 347 
Spring-mass system, 66, 99, 160,461 
Spring-mass-damper system, 70-72 
Spring-mass-dashpot system, 114-17, 121, 

159, 192-96, 391-94 
Spring-mass-pulley system, 90, 97, 239 
Spring-pulley system, 90 
Square-law friction, 60-61 
Square matrix, 706 
S-shaped response curve, 568 
Stability analysis: 

in complex plane, 538 
State, 170 
State equation, 170-71, 400-09 

Laplace transform approach to the 
solution of, 403-04, 407 
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solution of homogeneous, 400 
solution of nonhomogeneous, 406-07 

State matrix, 171 
diagonalization of, 207--09 

State space, 170 
State-space equation, 170-73 

analytical solutions for, 408--09 
correlation between transfer function 

and, 175 
State-space model: 

transforming a state-space model to 
another, 206 

transforming from transfer function 
to, 202-03 

transforming to transfer function 
model from, 203--05 

State-space modeling: 
with input derivatives, 187-201 
with no input derivatives, 181-87 

State-space representation: 
partial-fraction expansion technique 

to obtain, 234-35 
State-transition matrix, 404-05 
State variables, 170 

nonuniqueness of set of, 205 
State vector, 170-71 
Static acceleration error constant, 536, 626 
Static deflection, 66, 77, 94, 98 
Static position error constant, 534, 623 
Static velocity error constant, 535, 624 
Steady-state error: 

in ramp response, 528 
in terms of gain K, 538 
in transient response, 533 

Steady-state response, 384 
Step function, 16 
Step response: 

of first-order system, 384-86 
of higher order system, 399 
of second-order system, 397-98 

Steradian, 696, 699 
Summing point, 110 
Suspension system: 

automobile, 140-41 
motorcycle, 196-201 

Symmetric matrix, 708 
Synthesis, 5 
System, 1 

analysis, 5 
continuous-time, 3 
critically damped, 70 
design, S 
dynamic, 2 
dynamics, 1 
nonlinear, 2-3 

one-degree-of-freedom, 449 
overdamped, 70 
static, 2 
three-degrees-of-freedom, 477-80 
two-degrees-of-freedom, 453-58 
types, 532-33 
underdamped, 70 

System dynamics, 1 
System models: 

transformation of, 202--09 
System response to initial condition: 
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MATLAB approach to obtain, 179-81 
Systematic units, 695-96 
Systems of units: 53 

T 

absolute, 53-54 
British engineering, 53-54 
gravitational, 53-54 
metric absolute, 53-54 
metric engineering, 54 
SI, 53-54 

Tachometer, 525 
feedback, 526 

Taylor series expansion, 337-38 
Temperature: 

control system, 492 
standard, 332, 363 

Thermal capacitance, 349-50 
Thermal resistance, 349 
Thermal system, 323, 348, 371, 373, 675 
Thermometer system, 350, 385 
Third mode of vibration, 480 
Three-degrees-of-freedom system, 477 
Three-dimensional plot of unit-step 

response, 418-19 
Tune constant, 66 
Torque, 62 
Traffic control system, 493 
'Iransfer function, 106 

complex-impedance approach to 
obtain, 268-69 

of cascaded elements, 266-67 
of nonloading cascaded elements, 265 

Transfer function model: 
transforming state-space model to, 

203--05 
'Iransfer matrix, 174 
'Iransformation of mathematical models, 

202-04 
Transformation matrix, 238 
'Iransient period, 64 
Transient response, 384 

analysis with MATLAB, 119-35 
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Transient-response specifications, 513-21 
Translated function, 17, 21 
Translational accelerometer, 471-73 
Transmissibility, 442-44 

for force excitation, 442 
for motion excitation, 446--47 

Transpose, 708, 729 
conjugate, 708, 713, 729 

Transport lag, 673-74 
phase-angle characteristic of, 675 
transfer function of, 674 

Tripple point of water, 699 
TIming rules: 

for PID controllers, 566-75 
Thrbulent-flow, 325 
Thrbulent-flow resistance, 327 
Two-degrees-of-freedom system, 453-57, 

475-77 
1\vo-position control, 502-03 

action, 502 
Type 0 system, 533 

log-magnitude curve of, 624 
'TYPe 1 system, 533 

log-magnitude curve of, 625 
'TYpe 2 system, 533 

log-magnitude curve of, 626 

u 
Undamped natural frequency, 391 
Underdamped system, 391-92 
Unit, 695 
Unit-impUlse function, 23 
Unit-impulse response, 108 

obtained by use of MATLAB, 125 
of system defined in state space, 179 

Unit-ramp response: 
obtained by use of MATLAB, 

131-33 
of system defined in state space, 194 

Unit-step function, 16 
Unit-step response: 

obtained by use of MATLAB, 
120-24 

Unit-step response curves: 
for second-order systems, 518 

Units: 
absolute systems of, 696 
auxiliary, 699 
basic, 695 

Index 

British engineering system of, 696 
cgs system of, 696 
gravitational systems of, 696 
International System of, 696 
metric engineering system of, 696 
mks system of, 696 
systematic, 695-96 

Unity matrix, 707 
Universal gas constant, 363 

V 
Vector, 706 

column, 706 
row, 706 

Velocity error, 535 
Velocity feedback, 526 
Velocity profile, 325-26 
Vibration: 

isolation, 441-42 
isolator, 441-42 
due to rotating unbalance, 440-41 

Viscosity: 
absolute, 341 
dynamic, 341 

Viscous friction coefficient, 60 
equivalent, 102 

Viscous friction constant, 60 
Voltage: 

follower, 285 
gain, 281 
source, 253-54 

W 
Watt, 76 
Weber, 253 
Weight, 54 
Weighting function, 108 
Work, 73 

units of, 73 

z 
Zero, 14 
Ziegler-Nichols tuning rules, 566-75 

first method, 567-68 
PID controller designed by use of, 

570-75 
second method, 568-75 
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