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Preface

This book is a self-contained introduction to the core of the theory of dynami-
cal systems, with emphasis on the study of maps. This includes topological, low-
dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to
ergodic theory. It can be used primarily as a textbook for a one-semester or two-
semesters course on dynamical systems at the advanced undergraduate or beginning
graduate levels. It can also be used for independent study and as a rigorous starting
point for the study of more advanced topics.

The exposition is direct and rigorous. In particular, all the results formulated in
the book are proven. We also tried to make each proof as simple as possible. Some-
times, this required a careful preparation or the restriction to appropriate classes of
dynamical systems, which is fully justified in a first introduction. The text also in-
cludes many examples that illustrate in detail the new concepts and results, as well
as 140 exercises, with different levels of difficulty.

The theory of dynamical systems is very broad and is extremely active in terms
of research. It also depends substantially on most of the main areas of mathematics.
So, in order to give a sufficiently broad view, but still self-contained and with a
controlled size, it was necessary to make a selection of the material. In view of the
necessary details or the need for results from other areas, some topics have been
omitted, most notably Hamiltonian and holomorphic dynamics, although we have
indicated references for these and other topics. We have also provided references
for further reading on topics that are natural continuations of the material in the
book. These suggestions, together with a short description of the contents and of the
interdependence of the various chapters, are grouped together in the introduction.

Luis Barreira
Claudia Valls

Lisbon, Portugal
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Chapter 1
Introduction

This introductory chapter is a user’s guide for the book. It includes a brief descrip-
tion of the contents of each chapter and of the interdependence of the various topics.
It also includes suggestions for further reading and for specific courses based on the
book.

1.1 Contents and Suggestions for Further Reading

We first summarize the contents of each chapter. We emphasize that we do not strive
for completeness. Instead, the idea is to give a brief overview of the contents, high-
lighting the main topics and pointing out those that can be considered more ad-
vanced. We also indicate references for further reading on topics that are natural
continuations of the material in the book.

1.1.1 Basic Notions and Examples

Chapter 2 forms the basis for the rest of the book. It is here that we introduce the no-
tion of a dynamical system, both for discrete and continuous time. We also describe
many examples that, together with other examples introduced throughout the book,
are used to illustrate new concepts and results. The examples include rotations and
expanding maps of the circle, endomorphisms and automorphisms of the torus, and
autonomous differential equations and their flows. In addition, we describe some ba-
sic constructions that determine new dynamical systems. This includes going back
and forth between discrete and continuous time.

The emphasis of the book is primarily on dynamical systems with discrete time,
although we still develop to a reasonable extent the corresponding theory for flows.
A natural playground for the study of flows is the theory of ordinary differential
equations. In particular, any (autonomous) differential equation x′ = F(x) with

L. Barreira, C. Valls, Dynamical Systems, Universitext, DOI 10.1007/978-1-4471-4835-7_1,
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2 1 Introduction

unique global solutions determines a flow. A natural continuation for the study of
topics in the theory of flows, such as topological conjugacies, Lyapunov functions
and stability theory, index theory, bifurcation theory, and Hamiltonian dynamics,
would be our book [12] since the level and philosophy of the presentation are quite
similar. We refer the reader to the books [3, 5, 21, 23] for additional topics in the
theory of dynamical systems with continuous time.

1.1.2 Topological Dynamics

In Chap. 3 we consider the class of topological dynamical systems, that is, of con-
tinuous maps or homeomorphisms of a topological space. For example, one can ask
whether there are dense orbits or whether all orbits are dense. One can also ask
whether a given orbit returns arbitrarily close to itself, which corresponds the con-
cept of recurrence. In particular, we study the notions of α-limit set and ω-limit set,
which to some extent capture the asymptotic behavior of a dynamical system. We
also consider several notions of topological recurrence, such as topological transi-
tivity and topological mixing.

Then we introduce the notion of the topological entropy of a dynamical system
(with discrete time), which is a measure of the complexity of a dynamical system
from the topological point of view. We also illustrate its computation in various
examples. Topological entropy and some of its modifications and generalizations
stand as principal measures of the complexity of a dynamics, from various points
of view. The topics in Sects. 3.4.3 and 3.4.4 on alternative characterizations of the
topological entropy and on the particular case of expansive maps are somewhat more
advanced.

For additional topics in topological dynamics, topological recurrence and topo-
logical entropy we refer the reader to the books [17, 18, 32, 53].

1.1.3 Low-Dimensional Dynamics

In Chap. 4 we consider several classes of dynamical systems in low-dimensional
spaces. This essentially means dimension 1 for discrete time and dimension 2 for
continuous time. In particular, we consider homeomorphisms and diffeomorphisms
of the circle, continuous maps of the interval and flows defined by autonomous dif-
ferential equations in the plane. For the orientation-preserving homeomorphisms of
the circle, we introduce the notion of rotation number and we describe the behavior
of the orbits depending on whether it is rational or irrational. We also study the ex-
istence of periodic points for the continuous maps of the interval and we establish
Sharkovsky’s theorem relating the existence of periodic points with different peri-
ods. Finally, we give a brief introduction to the Poincaré–Bendixson theory of flows
on surfaces. The topics in Sects. 4.2 and 4.3.2 on diffeomorphisms of the circle
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with irrational rotation number that are topologically conjugate to rotations and on
Sharkovsky’s theorem are somewhat more advanced. For additional topics in low-
dimensional dynamics we refer the reader to [2, 25, 32] for the case of discrete time
and to [12, 23] for the case of continuous time.

In certain cases, the low-dimensionality of the space allows one to present some
notions and results without the technical complications of arbitrary spaces. On the
other hand, one should be aware that some of the methods and results only work
precisely because of the low-dimensionality of the space. For example, the use of
conformality for a smooth dynamics of the circle, which means that the derivative
at each point is a multiple of an isometry, or the use of Jordan’s curve theorem
for a flow in the plane make some of the results in Chap. 4 belong strictly to low-
dimensional dynamics.

1.1.4 Hyperbolic Dynamics

Chapter 5 is an introduction to hyperbolic dynamics, which can be described as
the study of the properties of a smooth dynamics that expands or contracts in some
privileged directions. All the pre-requisites from the theory of smooth manifolds
are fully recalled in the chapter. After introducing the notion of a hyperbolic set,
we describe the Smale horseshoe and some of its modifications. This allows us to
illustrate some notions and results without the additional complications arising from
considering arbitrary hyperbolic sets. We also establish the continuity of the stable
and unstable spaces on the base point. Moreover, we discuss the characterization of
hyperbolic sets in terms of invariant families of cones. In particular, this allows us
to describe some stability properties of hyperbolic sets under sufficiently small per-
turbations. The relations between invariant families of cones, Lyapunov functions
and hyperbolicity are in fact important in much more general classes of dynamics.

Chapter 6 is a natural continuation of Chap. 5 and considers topics that are some-
what less elementary. In particular, we describe the behavior of the orbits of a dif-
feomorphism near a hyperbolic fixed point, establishing two fundamental results
of hyperbolic dynamics: the Grobman–Hartman theorem and the Hadamard–Perron
theorem. The proofs are somewhat simple-minded but also long and unavoidably
more technical. We also establish the existence of stable and unstable manifolds for
all points of a hyperbolic set, with an elaboration of the proof of the Hadamard–
Perron theorem, and we show how they give rise to a local product structure for any
locally maximal hyperbolic set.

Section 6.3 is an introduction to the study of geodesic flows on surfaces of con-
stant negative curvature and their hyperbolicity. All the pre-requisites from hyper-
bolic geometry are fully recalled in the section. In particular, we consider isometries,
Möbius transformations, geodesics as the shortest paths between two points, quo-
tients by isometries and the construction of compact surfaces of genus at least 2.
The material showing that the geodesic flow on compact surfaces is hyperbolic is
somewhat more advanced.
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For additional topics in hyperbolic dynamics, such as transversality and gener-
icity, homoclinic behavior, and growth of the number of periodic points, we refer
the reader to the books [28, 31, 32, 44, 45, 55, 60]. See also [12, 21] for the case of
continuous time.

We refer the reader to [4, 13, 34] for background and further developments of
hyperbolic geometry.

1.1.5 Symbolic Dynamics

Chapter 7 is an introduction to symbolic dynamics, with emphasis on its relations to
hyperbolic dynamics. In particular, we illustrate how one can associate a symbolic
dynamics (also called a coding) to a hyperbolic set and how it can be used to solve
certain problems related to the counting of periodic points (without actually find-
ing them). The examples include expanding maps, quadratic maps and the Smale
horseshoe. We also consider topological Markov chains, and their periodic points,
topological entropy, recurrence properties and zeta functions.

For additional topics in symbolic dynamics and its relations to hyperbolic dy-
namics we refer the reader to the books [17, 32]. Good references for the core of
symbolic dynamics are [36, 37]. See also [48] for a detailed study of zeta functions
in hyperbolic dynamics.

1.1.6 Ergodic Theory

Chapter 8 is a first introduction to ergodic theory and the consequences of the ex-
istence of a finite invariant measure. After introducing the notions of a measurable
map and of an invariant measure, we establish two basic but also fundamental results
of ergodic theory: Poincaré’s recurrence theorem and Birkhoff’s ergodic theorem.
We also introduce the notion of entropy and we illustrate its computation in various
examples.

All the pre-requisites from measure theory and integration theory are fully re-
called in the chapter. Nevertheless, due to the necessary familiarity with standard
arguments of measure theory, the whole chapter should be considered more ad-
vanced. Further developments of ergodic theory clearly fall outside the scope of the
book.

For additional topics in ergodic theory and its applications we refer the reader to
the books [9, 38, 51, 61, 63, 65] and for further developments to [24, 47, 52, 56, 62].
In particular, [9, 65] include introductions to the thermodynamic formalism and its
applications and [38, 52] include introductions to smooth ergodic theory (also called
Pesin theory).
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1.2 Further Topics and Suggested References

We emphasize that each of the topics discussed in the former section, that is, topo-
logical dynamics, low-dimensional dynamics, hyperbolic dynamics, symbolic dy-
namics and ergodic theory can be (and are) the object, by itself, of several books. So
it would be impossible to be much more detailed in a self-contained introduction to
the core of the theory of dynamical systems and choices had to be made. Certainly,
our particular selection of topics may also reflect a personal taste. But it would be
very hard to argue, perhaps with the exception of ergodic theory, that any of the
topics considered in the book should be omitted from a first introduction.

The following is an incomplete list of topics that were left out of the book to-
gether with recommendations for further reading:

• holomorphic dynamics (see [14, 19, 39–41, 54]);
• bifurcation theory and normal forms (see [5, 12, 22, 28]);
• Hamiltonian dynamics (see [1, 6, 12, 32, 42]);
• dimension theory and multifractal analysis (see [7, 49]);
• thermodynamic formalism and its applications (see [8, 16, 35, 57]);
• hyperbolicity and homoclinic bifurcations (see [46]);
• partial hyperbolicity and stable ergodicity (see [50]);
• nonuniform hyperbolicity and smooth ergodic theory (see [10, 11, 15]);
• hyperbolic systems with singularities and billiards (see [20, 33]);
• algebraic dynamics and ergodic theory (see [58]);
• infinite-dimensional dynamics (see [29, 30, 59, 64]).

1.3 Suggestions for Courses Based on the Book

The book can be used as a basis for several advanced undergraduate or beginning
graduate courses. Other than some basic pre-requisites from linear algebra, differen-
tial and integral calculus, complex analysis and topology, all the notions and results
used in the book are recalled along the way.

The interdependence of the chapters is indicated in Fig. 1.1. An arrow going
from Chapter A to Chapter B means that part of the material in Chapter A is used in
Chapter B. This leads naturally to the following courses:

1. topological dynamics and symbolic dynamics: Chaps. 2, 3 and 7;
2. hyperbolic dynamics and symbolic dynamics: Chaps. 2, 5 and 7;
3. low-dimensional dynamics: Chaps. 2, 3 and 4;
4. hyperbolic dynamics, including geodesic flows: Chaps. 2, 5 and 6;
5. symbolic dynamics and ergodic theory: Chaps. 2, 7 and 8.

Other selections are also possible, depending on the audience and on the available
time. Moreover, some sections can be used for short expositions, such as for example
Sects. 3.4.3, 3.4.4, 4.2 and 4.3.2, and all sections in Chaps. 6 and 7.
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Fig. 1.1 Interdependence of the chapters



Chapter 2
Basic Notions and Examples

In this chapter we introduce the notion of a dynamical system, both for discrete
and continuous time. We also describe many examples, including rotations and ex-
panding maps of the circle, endomorphisms and automorphisms of the torus, and
autonomous differential equations and their flows. Together with other examples in-
troduced throughout the book, these are used to illustrate new concepts and results.
We also describe some basic constructions determining new dynamical systems, in-
cluding suspension flows and Poincaré maps. Finally, we consider the notion of an
invariant set, both for maps and flows.

2.1 The Notion of a Dynamical System

In the case of discrete time, a dynamical system is simply a map.

Definition 2.1 Any map f : X → X is called a dynamical system with discrete time
or simply a dynamical system.

We define recursively

f n+1 = f ◦ f n

for each n ∈ N. We also write f 0 = Id, where Id is the identity map. Clearly,

f m+n = f m ◦ f n (2.1)

for every m,n ∈ N0, where N0 = N ∪ {0}. When the map f is invertible, we also
define f −n = (f −1)n for each n ∈ N. In this case, identity (2.1) holds for every
m,n ∈ Z.

Example 2.1 Given dynamical systems f : X → X and g : Y → Y , we define a new
dynamical system h : X × Y → X × Y by

h(x, y) = (
f (x), g(y)

)
.

L. Barreira, C. Valls, Dynamical Systems, Universitext, DOI 10.1007/978-1-4471-4835-7_2,
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7

http://dx.doi.org/10.1007/978-1-4471-4835-7_2


8 2 Basic Notions and Examples

We note that if f and g are invertible, then the map h is also invertible and its
inverse is given by

h−1(x, y) = (
f −1(x), g−1(y)

)
.

Now we consider the case of continuous time.

Definition 2.2 A family of maps ϕt : X → X for t ≥ 0 such that ϕ0 = Id and

ϕt+s = ϕt ◦ ϕs for every t, s ≥ 0

is called a semiflow. A family of maps ϕt : X → X for t ∈ R such that ϕ0 = Id and

ϕt+s = ϕt ◦ ϕs for every t, s ∈ R

is called a flow.

We also say that a family of maps ϕt is a dynamical system with continuous time
or simply a dynamical system if it is a flow or a semiflow. We note that if ϕt is a
flow, then

ϕt ◦ ϕ−t = ϕ−t ◦ ϕt = ϕ0 = Id

and thus, each map ϕt is invertible and its inverse is given by ϕ−1
t = ϕ−t .

A simple example of a flow is any movement by translation with constant veloc-
ity.

Example 2.2 Given y ∈ R
n, consider the maps ϕt : Rn →R

n defined by

ϕt (x) = x + ty, t ∈R, x ∈ R
n.

Clearly, ϕ0 = Id and

ϕt+s(x) = x + (t + s)y

= (x + sy) + ty = (ϕt ◦ ϕs)(x).

In other words, the family of maps ϕt is a flow.

Example 2.3 Given two flows ϕt : X → X and ψt : Y → Y , for t ∈ R, the family of
maps αt : X × Y → X × Y defined for each t ∈ R by

αt (x, y) = (
ϕt (x),ψt (y)

)

is also a flow. Moreover,

α−1
t (x, y) = (

ϕ−t (x),ψ−t (y)
)
.

We emphasize that the expression dynamical system is used to refer both to dy-
namical systems with discrete time and to dynamical systems with continuous time.
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2.2 Examples with Discrete Time

In this section we describe several examples of dynamical systems with discrete
time.

2.2.1 Rotations of the Circle

We first consider the rotations of the circle. The circle S1 is defined to be R/Z, that
is, the real line with any two points x, y ∈ R identified if x − y ∈ Z. In other words,

S1 = R/Z = R/∼,

where ∼ is the equivalence relation on R defined by x ∼ y ⇔ x − y ∈ Z. The cor-
responding equivalence classes, which are the elements of S1, can be written in the
form

[x] = {
x + m : m ∈ Z

}
.

In particular, one can introduce the operations

[x] + [y] = [x + y] and [x] − [y] = [x − y].
One can also identify S1 with [0,1]/{0,1}, where the endpoints of the interval [0,1]
are identified.

Definition 2.3 Given α ∈R, we define the rotation Rα : S1 → S1 by

Rα

([x]) = [x + α]
(see Fig. 2.1).

Sometimes, we also write

Rα(x) = x + α mod 1,

thus identifying [x] with its representative in the interval [0,1). The map Rα could
also be called a translation of the interval. Clearly, Rα : S1 → S1 is invertible and
its inverse is given by R−1

α = R−α .
Now we introduce the notion of a periodic point.

Definition 2.4 Given q ∈ N, a point x ∈ X is said to be a q-periodic point of a map
f : X → X if f q(x) = x. We also say that x ∈ X is a periodic point of f if it is
q-periodic for some q ∈N.

In particular, the fixed points, that is, the points x ∈ X such that f (x) = x are q-
periodic for any q ∈ N. Moreover, a q-periodic point is kq-periodic for any k ∈N.
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Fig. 2.1 The rotation Rα

Definition 2.5 A periodic point is said to have period q if it is q-periodic but is not
l-periodic for any l < q .

Now we consider the particular case of the rotations Rα of the circle. We verify
that their behavior is very different depending on whether α is rational or irrational.

Proposition 2.1 Given α ∈R:

1. if α ∈R \Q, then Rα has no periodic points;
2. if α = p/q ∈ Q with p and q coprime, then all points of S1 are periodic for Rα

and have period q .

Proof We note that [x] ∈ S1 is q-periodic if and only if [x + qα] = [x], that is, if
and only if qα ∈ Z. The two properties in the proposition follow easily from this
observation. �

2.2.2 Expanding Maps of the Circle

In this section we consider another family of maps of S1.
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Fig. 2.2 The expanding
map E2

Definition 2.6 Given an integer m > 1, the expanding map Em : S1 → S1 is defined
by

Em(x) = mx mod 1.

For example, for m = 2, we have

E2(x) =
{

2x if x ∈ [0,1/2),

2x − 1 if x ∈ [1/2,1)

(see Fig. 2.2).
Now we determine the periodic points of the expanding map Em. Since E

q
m(x) =

mqx mod 1, a point x ∈ S1 is q-periodic if and only if

mqx − x = (
mq − 1

)
x ∈ Z.

Hence, the q-periodic points of the expanding map Em are

x = p

mq − 1
, for p = 1,2, . . . ,mq − 1. (2.2)

Moreover, the number nm(q) of periodic points of Em with period q can be com-
puted easily for each given q (see Table 2.1 for q ≤ 6). For example, if q is prime,
then

nm(q) = mq − m.
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Table 2.1 The number
nm(q) of periodic points of
Em with period q

q nm(q)

1 m − 1

2 m2 − m = m2 − 1 − (m − 1)

3 m3 − m = m3 − 1 − (m − 1)

4 m4 − m2 = m4 − 1 − (m2 − 1)

5 m5 − m = m5 − 1 − (m − 1)

6 m6 − m3 − m2 + m

2.2.3 Endomorphisms of the Torus

In this section we consider a third family of dynamical systems with discrete time.
Given n ∈ N, the n-torus or simply the torus is defined to be

T
n = R

n/Zn = R
n/∼,

where ∼ is the equivalence relation on R
n defined by x ∼ y ⇔ x − y ∈ Z

n. The
elements of Tn are thus the equivalence classes

[x] = {
x + y : y ∈ Z

n
}
,

with x ∈R
n. Now let A be an n × n matrix with entries in Z.

Definition 2.7 The endomorphism of the torus TA : Tn → T
n is defined by

TA

([x]) = [Ax] for [x] ∈ T
n.

We also say that TA is the endomorphism of the torus induced by A.

Since A is a linear transformation,

Ax − Ay ∈ Z
n when x − y ∈ Z

n.

This shows that Ay ∈ [Ax] when y ∈ [x] and hence, TA is well defined.
In general, the map TA may not be invertible, even if the matrix A is invertible.

When TA is invertible, we also say that it is the automorphism of the torus induced
by A. We represent in Fig. 2.3 the automorphism of the torus T

2 induced by the
matrix

A =
(

2 1
1 1

)
.

Now we determine the periodic points of a class of automorphisms of the torus.

Proposition 2.2 Let TA : Tn → T
n be an automorphism of the torus induced by a

matrix A without eigenvalues with modulus 1. Then the periodic points of TA are
the points with rational coordinates, that is, the elements of Qn/Zn.
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Fig. 2.3 An automorphism of the torus T2

Proof Let [x] = [(x1, . . . , xn)] ∈ T
n be a periodic point. Then there exist q ∈ N and

y = (y1, . . . , yn) ∈ Z
n such that Aqx = x + y, that is,

(
Aq − Id

)
x = y.

Since A has no eigenvalues with modulus 1, the matrix Aq − Id is invertible and one
can write

x = (
Aq − Id

)−1
y.

Moreover, since Aq − Id has only integer entries, each entry of (Aq − Id)−1 is a
rational number and thus x ∈Q

n.
Now we assume that [x] = [(x1, . . . , xn)] ∈Q

n/Zn and we write

(x1, . . . , xn) =
(

p1

r
, . . . ,

pn

r

)
, (2.3)
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where p1, . . . , pn ∈ {0,1, . . . , r − 1}. Since A has only integer entries, for each
q ∈N we have

Aq(x1, . . . , xn) =
(

p′
1

r
, . . . ,

p′
n

r

)
+ (y1, . . . , yn)

for some p′
1, . . . , p

′
n ∈ {0,1, . . . , r −1} and (y1, . . . , yn) ∈ Z

n. But since the number
of points of the form (2.3) is rn, there exist q1, q2 ∈N with q1 �= q2 such that

Aq1(x1, . . . , xn) − Aq2(x1, . . . , xn) ∈ Z
n.

Assuming, without loss of generality, that q1 > q2, we obtain

Aq1−q2(x1, . . . , xn) − (x1, . . . , xn) ∈ Z
n

(see Exercise 2.12) and thus T
q1−q2
A ([x]) = [x]. �

The following example shows that Proposition 2.2 cannot be extended to arbi-
trary endomorphisms of the torus.

Example 2.4 Consider the endomorphism of the torus TA : T2 → T
2 induced by the

matrix

A =
(

3 1
1 1

)
.

We note that TA is not an automorphism since detA = 2 (see Exercise 2.12). Now
we observe that

TA

(
0,

1

2

)
=

(
1

2
,

1

2

)
, TA

(
1

2
,

1

2

)
= (0,0) and TA(0,0) = (0,0).

This shows that the points with rational coordinates (0,1/2) and (1/2,1/2) are not
periodic. On the other hand, the eigenvalues of A are 2 + √

2 and 2 − √
2, both

without modulus 1.

2.3 Examples with Continuous Time

In this section we give some examples of dynamical systems with continuous time.

2.3.1 Autonomous Differential Equations

We first consider autonomous (ordinary) differential equations, that is, differential
equations not depending explicitly on time. We verify that they give rise naturally
to the concept of a flow.
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Proposition 2.3 Let f : Rn → R
n be a continuous function such that, given x0 ∈

R
n, the initial value problem

{
x′ = f (x),

x(0) = x0
(2.4)

has a unique solution x(t, x0) defined for t ∈R. Then the family of maps ϕt : Rn →
R

n defined for each t ∈R by

ϕt (x0) = x(t, x0)

is a flow.

Proof Given s ∈R, consider the function y : R → R
n defined by

y(t) = x(t + s, x0).

We have y(0) = x(s, x0) and

y′(t) = x′(t + s, x0) = f (x(t + s, x0)) = f (y(t))

for t ∈ R. In other words, the function y is also a solution of the equation x′ = f (x).
Since by hypothesis the initial value problem (2.4) has a unique solution, we obtain

y(t) = x
(
t, y(0)

) = x
(
t, x(s, x0)

)
,

or equivalently,

x(t + s, x0) = x
(
t, x(s, x0)

)
(2.5)

for t, s ∈ R and x0 ∈ R
n. It follows from (2.5) that ϕt+s = ϕt ◦ ϕs . Moreover,

ϕ0(x0) = x(0, x0) = x0,

that is, ϕ0 = Id. This shows that the family of maps ϕt is a flow. �

Now we consider two specific examples of autonomous differential equations
and we describe the flows that they determine.

Example 2.5 Consider the differential equation

{
x′ = −y,

y′ = x.

If (x, y) = (x(t), y(t)) is a solution, then

(
x2 + y2)′ = 2xx′ + 2yy′ = −2xy + 2yx = 0.
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Thus, there exists a constant r ≥ 0 such that

x(t)2 + y(t)2 = r2.

Writing

x(t) = r cos θ(t) and y(t) = r sin θ(t),

where θ is some differentiable function, it follows from the identity x′ = −y that

−rθ ′(t) sin θ(t) = −r sin θ(t).

Hence, θ ′(t) = 1 and there exists a constant c ∈ R such that θ(t) = t + c. Thus,
writing

(x0, y0) = (r cos c, r sin c) ∈R
2,

we obtain
(

x(t)

y(t)

)
=

(
r cos(t + c)

r sin(t + c)

)

=
(

cos t · r cos c − sin t · r sin c

sin t · r cos c + cos t · r sin c

)

=
(

cos t − sin t

sin t cos t

)(
x0

y0

)
.

Notice that

R(t) =
(

cos t − sin t

sin t cos t

)

is a rotation matrix for each t ∈R. Since R(0) = Id, it follows from Proposition 2.3
that the family of maps ϕt : R2 → R

2 defined by

ϕt

(
x0

y0

)
= R(t)

(
x0

y0

)

is a flow. Incidentally, the identity ϕt+s = ϕt ◦ ϕs is equivalent to the identity be-
tween rotation matrices

R(t + s) = R(t)R(s).

Example 2.6 Now we consider the differential equation
{

x′ = y,

y′ = x.

If (x, y) = (x(t), y(t)) is a solution, then
(
x2 − y2)′ = 2xx′ − 2yy′ = 2xy − 2yx = 0.
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Thus, there exists a constant r ≥ 0 such that

x(t)2 − y(t)2 = r2 or x(t)2 − y(t)2 = −r2. (2.6)

In the first case, one can write

x(t) = r cosh θ(t) and y(t) = r sinh θ(t),

where θ is some differentiable function. Since x′ = y, we have

rθ ′(t) sinh θ(t) = r sinh θ(t)

and hence, θ(t) = t + c for some constant c ∈R. Thus, writing

(x0, y0) = (r cosh c, r sinh c) ∈ R
2,

we obtain
(

x(t)

y(t)

)
=

(
r cosh(t + c)

r sinh(t + c)

)

=
(

cosh t · r cosh c + sinh t · r sinh c

sinh t · r cosh c + cosh t · sinh c

)

=
(

cosh t sinh t

sinh t cosh t

)(
x0

y0

)
= S(t)

(
x0

y0

)
,

where

S(t) =
(

cosh t sinh t

sinh t cosh t

)
.

In the second case in (2.6), one can write

x(t) = r sinh θ(t) and y(t) = r cosh θ(t).

Proceeding analogously, we find that θ(t) = t + c for some constant c ∈ R. Thus,
writing

(x0, y0) = (r sinh c, r cosh c) ∈ R
2,

we obtain
(

x(t)

y(t)

)
=

(
r sinh(t + c)

r cosh(t + c)

)

=
(

sinh t · r cosh c + cosh t · r sinh c

cosh t · r cosh c + sinh t · r sinh c

)

= S(t)

(
x0

y0

)
.
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Notice that S(0) = Id. It follows from Proposition 2.3 that the family of maps
ψt : R2 → R

2 defined by

ψt

(
x0

y0

)
= S(t)

(
x0

y0

)

is a flow. In particular, it follows from the identity ψt+s = ψt ◦ ψs that

S(t + s) = S(t)S(s) for t, s ∈ R.

2.3.2 Discrete Time Versus Continuous Time

In this section we describe some relations between dynamical systems with discrete
time and dynamical systems with continuous time.

Example 2.7 Given a flow ϕt : X → X, for each T ∈ R, the map f = ϕT : X → X

is a dynamical system with discrete time. We note that f is invertible and that its
inverse is given by f −1 = ϕ−T . Similarly, given a semiflow ϕt : X → X, for each
T ≥ 0, the map f = ϕT : X → X is a dynamical system with discrete time.

Now we describe a class of semiflows obtained from a dynamical system with
discrete time f : X → X. Given a function τ : X → R

+, consider the set Y obtained
from

Z = {
(x, t) ∈ X ×R : 0 ≤ t ≤ τ(x)

}

identifying the points (x, τ (x)) and (f (x),0), for each x ∈ R. More precisely, we
define Y = Z/∼, where ∼ is the equivalence relation on Z defined by

(x, t) ∼ (y, s) ⇔ y = f (x), t = τ(x) and s = 0

(see Fig. 2.4).

Definition 2.8 The suspension semiflow ϕt : Y → Y over f with height τ is defined
for each t ≥ 0 by

ϕt (x, s) = (x, s + t) when s + t ∈ [0, τ (x)] (2.7)

(see Fig. 2.4).

One can easily verify that each suspension semiflow is indeed a semiflow. More-
over, when f is invertible, the family of maps ϕt in (2.7), for t ∈ R, is a flow. It is
called the suspension flow over f with height τ .

Conversely, given a semiflow ϕt : Y → Y , sometimes one can construct a dynam-
ical system with discrete time f : X → X such that the semiflow can be seen as a
suspension semiflow over f .
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Fig. 2.4 A suspension flow

Fig. 2.5 A Poincaré section

Definition 2.9 A set X ⊂ Y is said to be a Poincaré section for a semiflow ϕt if

τ(x) := inf
{
t > 0 : ϕt (x) ∈ X

} ∈ R
+ (2.8)

for each x ∈ X (see Fig. 2.5), with the convention that inf∅ = +∞. The number
τ(x) is called the first return time of x to the set X.

Thus, the first return time to X is a function τ : X → R
+. We observe that (2.8)

includes the hypothesis that each point of X returns to X. In fact, each point of X

returns infinitely often to X.
Given a Poincaré section, one can introduce a corresponding Poincaré map.

Definition 2.10 Given a Poincaré section X for a semiflow ϕt , we define its
Poincaré map f : X → X by

f (x) = ϕτ(x)(x).
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2.3.3 Differential Equations on the Torus T2

We also consider a class of differential equations on T
2. We recall that two vectors

x, y ∈ R
2 represent the same point of the torus T2 if and only if x − y ∈ Z

2.

Example 2.8 Let f,g : R2 → R be C1 functions such that

f (x + k, y + l) = f (x, y) and g(x + k, y + l) = g(x, y)

for any x, y ∈ R and k, l ∈ Z. Then the differential equation in the plane R
2 given

by
{

x′ = f (x, y),

y′ = g(x, y)
(2.9)

can be seen as a differential equation on T
2. Clearly, Eq. (2.9) has unique solutions

(that are global, that is, they are defined for t ∈ R since the torus is compact). Let
ϕt : T2 → T

2 be the corresponding flow (see Proposition 2.3).
Now we assume that f takes only positive values. Then each solution ϕt (0, z) =

(x(t), y(t)) of Eq. (2.9) crosses infinitely often the line segment x = 0, which is
thus a Poincaré section for ϕt (see Definition 2.9). The first intersection (for t > 0)
occurs at the time

Tz = inf
{
t > 0 : x(t) = 1

}
.

We also consider the map h : S1 → S1 defined by

h(z) = y(Tz) (2.10)

(see Fig. 2.6). One can use the C1 dependence of the solutions of a differential
equation on the initial conditions to show that h is a diffeomorphism, that is, a
bijective (one-to-one and onto) differentiable map with differentiable inverse (see
Exercise 2.20).

For example, if f = 1 and g = α ∈ R, then

ϕt (0, z) = (t, z + tα) mod 1.

Thus, Tz = 1 for each z ∈R and

h(z) = z + α mod 1 = Rα(z).

2.4 Invariant Sets

In this section we introduce the notion of an invariant set with respect to a dynamical
system.
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Fig. 2.6 The Poincaré map
determined by the Poincaré
section x = 0

Definition 2.11 Given a map f : X → X, a set A ⊂ X is said to be:

1. f -invariant if f −1A = A, where

f −1A = {
x ∈ X : f (x) ∈ A

};
2. forward f -invariant if f (A) ⊂ A;
3. backward f -invariant if f −1A ⊂ A.

Example 2.9 Consider the rotation Rα : S1 → S1. For α ∈ Q, each set

γ (x) = {
Rn

α(x) : n ∈ Z
}

is finite and Rα-invariant. More generally, if α ∈ Q, then a nonempty set A ⊂ X is
Rα-invariant if and only if it is a union of sets of the form γ (x) (see the discussion
after Definition 2.12). For example, the set Q/Z is Rα-invariant.

On the other hand, for α ∈ R \ Q, each set γ (x) is also Rα-invariant, but now
it is infinite. Again, a nonempty set A ⊂ X is Rα-invariant if and only if it is a
union of sets of the form γ (x). One can show that each set γ (x) is dense in S1 (see
Example 3.2) and thus, the closed Rα-invariant sets are ∅ and S1.

Example 2.10 Now we consider the expanding map E4 : S1 → S1, given by

E4(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4x if x ∈ [0,1/4),

4x − 1 if x ∈ [1/4,2/4),

4x − 2 if x ∈ [2/4,3/4),

4x − 3 if x ∈ [3/4,1)
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Fig. 2.7 The expanding map
E4

(see Fig. 2.7). For example, the set

A =
⋂

n≥0

E−n
4

([0,1/4] ∪ [2/4,3/4]) (2.11)

is forward E4-invariant. We note that A is a Cantor set, that is, A is a closed set
without isolated points and containing no intervals.

We also introduce the notions of orbit and semiorbit.

Definition 2.12 For a map f : X → X, given a point x ∈ X, the set

γ +(x) = γ +
f (x) = {

f n(x) : n ∈ N0
}

is called the positive semiorbit of x. Moreover, when f is invertible,

γ −(x) = γ −
f (x) = {

f −n(x) : n ∈ N0
}

is called the negative semiorbit of x and

γ (x) = γf (x) = {
f n(x) : n ∈ Z

}

is called the orbit of x.

We note that when f is invertible, a nonempty set A ⊂ X is f -invariant if and
only if it is a union of orbits. Indeed, A ⊂ X is f -invariant if and only if

x ∈ A ⇔ x ∈ f −1A ⇔ f (x) ∈ A.
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By induction, this is equivalent to

x ∈ A ⇔ {
f n(x) : n ∈ Z

} ⊂ A ⇔ γ (x) ∈ A

since f is invertible. Thus, a nonempty set A ⊂ X is f -invariant if and only if

A =
⋃

x∈A

γ (x).

Now we introduce the notion of an invariant set with respect to a flow or a semi-
flow.

Definition 2.13 Given a flow Φ = (ϕt )t∈R of X, a set A ⊂ X is said to be
Φ-invariant if

ϕ−1
t A = A for t ∈ R.

Given a semiflow Φ = (ϕt )t≥0 of X, a set A ⊂ X is said to be Φ-invariant if

ϕ−1
t A = A for t ≥ 0.

In the case of flows, since ϕ−1
t = ϕ−t for t ∈ R, a set A ⊂ X is Φ-invariant if and

only if

ϕt (A) = A for t ∈ R.

Example 2.11 Consider the differential equation
{

x′ = 2y3,

y′ = −3x.
(2.12)

Each solution (x, y) = (x(t), y(t)) satisfies

(
3x2 + y4)′ = 6xx′ + 4y3y′

= 12xy3 − 12y3x = 0.

Thus, for each set I ⊂ R
+, the union

A =
⋃

a∈I

{
(x, y) ∈ R

2 : 3x2 + y4 = a
}

is invariant with respect to the flow determined by Eq. (2.12).

We also introduce the notions of orbit and semiorbit for a semiflow.

Definition 2.14 For a semiflow Φ = (ϕt )t≥0 of X, given a point x ∈ X, the set

γ +(x) = γ +
Φ (x) = {

ϕt (x) : t ≥ 0
}
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is called the positive semiorbit of x. Moreover, for a flow Φ = (ϕt )t∈R of X,

γ −(x) = γ −
Φ (x) = {

ϕ−t (x) : t ≥ 0
}

is called the negative semiorbit of x and

γ (x) = γΦ(x) = {
ϕt (x) : t ∈ R

}

is called the orbit of x.

2.5 Exercises

Exercise 2.1 Determine whether the map f : R → R given by f (x) = 3x − 3x2

has periodic points with period 2.

Exercise 2.2 Determine whether the map f : R → R given by f (x) = x2 + 1 has
periodic points with period 5.

Exercise 2.3 Given a continuous function f : R → R, show that:

1. if [a, b] ⊂ f ([a, b]), then f has a fixed point in [a, b];
2. if [a, b] ⊃ f ([a, b]), then f has a fixed point in [a, b].

Exercise 2.4 Let f : R → R be a continuous function and let [a, b] and [c, d] be
intervals in R such that

[c, d] ⊂ f
([a, b]), [a, b] ⊂ f

([c, d]) and [a, b] ∩ [c, d] = ∅.

Show that f has a periodic point with period 2.

Exercise 2.5 Show that if f : [a, b] → [a, b] is a homeomorphism (that is, a con-
tinuous bijective function with continuous inverse), then f has no periodic points
with period 3 or larger.

Exercise 2.6 Determine whether there exists a homeomorphism f : R →R with:

1. a periodic point with period 2;
2. a periodic point with period 3.

Exercise 2.7 Show that any power of an expanding map is still an expanding map.

Exercise 2.8 Show that the set of periodic points of the expanding map Em is dense
in S1.
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Exercise 2.9 For each q ∈ N, find the number of q-periodic points of the map
f : R → R defined by f (z) = z2 in the set

R = {
z ∈ C : |z| = 1

}
.

Exercise 2.10 Show that the number of periodic points of the expanding map Em

with period p = qr , for q prime and r ∈ N, is given by

nm(p) = mp − mp/q.

Exercise 2.11 Find the smallest E3-invariant set containing [0,1/3] ∪ [2/3,1].

Exercise 2.12 Show that the following properties are equivalent:

1. the endomorphism of the torus TA : Tn → T
n is invertible;

2. x ∈ Z
n if and only if Ax ∈ Z

n;
3. |detA| = 1.

Exercise 2.13 Let TA : Tn → T
n be an endomorphism of the torus. Show that for

each x ∈Q
n/Zn, there exists an m ∈N such that T m

A (x) is a periodic point of TA.

Exercise 2.14 Show that the complement of a forward f -invariant set is backward
f -invariant.

Exercise 2.15 Given a map f : X → X, show that:

1. a set A ⊂ X is f -invariant if and only if f −1A ⊂ A and f (A) ⊂ A;
2. a set A ⊂ X is f -invariant if and only if X \ A is f -invariant.

Exercise 2.16 Show that if X is a Poincaré section for a semiflow ϕt , then:

1. ϕt has no fixed points in X;
2. f is invertible when ϕt is a flow.

Exercise 2.17 Find the flow determined by the equation x′′ + 4x = 0.

Exercise 2.18 Find the flow determined by the equation x′′ − 5x′ + 6x = 0.

Exercise 2.19 Show that the equation x′ = x2 does not determine a flow.

Exercise 2.20 Use the C1 dependence of the solutions of a differential equation on
the initial conditions1 together with the implicit function theorem to show that the
map h defined by (2.10) is a diffeomorphism.

1Theorem (See for example [12]) If f : D → R
n is a C1 function in an open set D ⊂ R

n and
ϕ(·, x0) is the solution of the initial value problem (2.4), then the function (t, x) �→ ϕ(t, x) is of
class C1.



Chapter 3
Topological Dynamics

In this chapter we consider the class of topological dynamical systems, that is, the
class of continuous maps of a topological space X. For simplicity of the exposition,
we always assume that X is a locally compact metric space with a countable basis
(this means, respectively, that each point has a compact neighborhood and that there
exists a countable family of open sets such that each open set can be written as a
union of elements of this family). In particular, we consider the notions of α-limit set
and ω-limit set, as well as some basic notions and results of (topological) recurrence,
including the notions of topological transitivity and topological mixing. Finally, we
introduce the notion of topological entropy, which measures the complexity of a
dynamical system, and we illustrate its computation in several examples. We also
show that the topological entropy is a topological invariant and we give several
alternative characterizations, including for expansive maps.

3.1 Topological Dynamical Systems

In this section we introduce the notion of a topological dynamical system.

Definition 3.1 A continuous map f : X → X is said to be a topological dynamical
system with discrete time or simply a topological dynamical system. When f is a
homeomorphism (that is, a bijective continuous map with continuous inverse), we
also say that it is an invertible topological dynamical system.

For example, each rotation Rα : S1 → S1 is a homeomorphism of the circle, with
the topology and the distance on S1 = R/Z induced from R. More precisely, the
topology of S1 is generated by the sets of the form (a, b) and [0, a) ∪ (b,1], with
0 < a < b < 1, and the distance d on S1 is given by

d(x, y) = min
{∣∣(x + k) − (y + l)

∣∣ : k, l ∈ Z
}

= min
{|x − y − m| : m ∈ Z

}
. (3.1)
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Now we consider the case of continuous time.

Definition 3.2 Any flow (respectively, any semiflow) ϕt : X → X such that the map
(t, x) �→ ϕt (x) is continuous in R×X (respectively, in R

+
0 ×X) is said to be a topo-

logical flow (respectively, a topological semiflow). Any topological flow or semiflow
is also said to be a topological dynamical system with continuous time or simply a
topological dynamical system.

In particular, the continuity assumptions imply that each map ϕt : X → X is con-
tinuous (in the case of flows it is even a homeomorphism).

Example 3.1 Let f : Rn → R
n be a Lipschitz function with f (0) = 0. We recall

that f is said to be a Lipschitz function if there exists an L > 0 such that

‖f (x) − f (y)‖ ≤ L‖x − y‖
for x, y ∈ R

n. Now we consider the initial value problem (2.4), which has a unique
solution x(t, x0) for each x0 ∈R

n. It follows from

x(t, x0) = x0 +
∫ t

0
f (x(s, x0)) ds

that

‖x(t, x0)‖ ≤ ‖x0‖ +
∣∣∣∣

∫ t

0
‖f (x(s, x0))‖ds

∣∣∣∣

≤ ‖x0‖ + L

∣∣∣∣

∫ t

0
‖x(s, x0)‖ds

∣∣∣∣.

By Gronwall’s lemma,1 we obtain

‖x(t, x0)‖ ≤ ‖x0‖eL|t |

for t in the domain of the solution. This implies that the solution ϕt (x0) = x(t, x0)

is defined for t ∈ R. It follows from the continuous dependence of the solutions

1Theorem (See for example [12]) If u,v : [a, b] → R are continuous functions with v ≥ 0 such
that

u(t) ≤ c +
∫ t

a

u(s)v(s) ds for t ∈ [a, b],

then

u(t) ≤ c exp
∫ t

a

v(s) ds for t ∈ [a, b].
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of a differential equation on the initial conditions2 that the flow ϕt : Rn → R
n is a

topological dynamical system.

3.2 Limit Sets and Basic Properties

In this section we introduce the notions of α-limit set and ω-limit set for a dynamical
system. These sets contain information about the asymptotic behavior of each orbit.
More precisely, the ω-limit set of a point x is formed by the points that are arbitrarily
approximated by the images f n(x) while the α-limit set of x is formed by the points
that are arbitrarily approximated by the preimages f −n(x).

3.2.1 Discrete Time

We begin with the case of discrete time. Let f : X → X be a map (it need not be
continuous).

Definition 3.3 Given a point x ∈ X, the ω-limit set of x is defined by

ω(x) = ωf (x) =
⋂

n∈N

{
f m(x) : m ≥ n

}
.

Moreover, when f is invertible, the α-limit set of x is defined by

α(x) = αf (x) =
⋂

n∈N

{
f −m(x) : m ≥ n

}
.

Now we give some examples.

Example 3.2 Let Rα : S1 → S1 be a rotation of the circle. For α ∈Q, we have

ω(x) = α(x) = γ (x)

for x ∈ S1. On the other hand, for α ∈R \Q, we have

ω(x) = α(x) = S1 (3.2)

for x ∈ S1. In order to establish (3.2), we show that the sets
{
Rm

α (x) : m ≥ n
}

and
{
R−m

α (x) : m ≥ n
}

(3.3)

2Theorem (See for example [12]) If f : D → R
n is a Lipschitz function on an open set D ⊂ R

n

and ϕ(·, x0) is the solution of the initial value problem (2.4), then the function (t, x) �→ ϕ(t, x) is
continuous.
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are dense in S1 for every x ∈ S1 and n ∈ N. We first assume that R
m1
α (x) = R

m2
α (x)

for some integers m1 > m2 ≥ n. This is the same as

x + m1α = x + m2α mod 1

or equivalently,

m1α − m2α = m

for some m ∈ Z. Then α = m/(m1 − m2), but this is impossible since α is
irrational. Thus, for each n ∈ N, the points Rm

α (x) are pairwise distinct for
m ≥ n. Now let us take ε > 0 and N ∈ N such that 1/N < ε. Since the points
Rn

α(x),Rn+1
α (x), . . . ,Rn+N

α (x) are distinct, there exist integers i1 and i2 such that
0 ≤ i1 < i2 ≤ N and

d
(
Rn+i1

α (x),Rn+i2
α (x)

) ≤ 1

N
< ε, (3.4)

where d is the distance in (3.1). Hence,

d
(
Ri2−i1

α (x), x
) = d

(
Ri2−i1

α

(
Rn+i1

α (x)
)
,Rn+i1

α (x)
)

= d
(
Rn+i2

α (x),Rn+i1
α (x)

)
< ε

and the sequence xm = R
m(i2−i1)
α (x), with m ∈ N, is ε-dense in S1 (in other words,

for each y ∈ S1 there exists an m ∈ N such that d(y, xm) < ε). Since ε is arbitrary,
we conclude that the first set in (3.3) is dense in S1. In order to prove that the second
set is also dense in S1 it is sufficient to repeat the above argument to show that there
exist no integers m1 > m2 ≥ n with R

−m1
α (x) = R

−m2
α (x) (or to observe that this

identity is equivalent to R
m1
α (x) = R

m2
α (x)).

Example 3.3 Given α ∈ R \ Q and δ > 0, we show that there exist integers p ∈ Z

and q ∈ (0,1/δ] such that
∣
∣∣∣α − p

q

∣
∣∣∣ ≤ δ

q
. (3.5)

Take an integer N > 1 such that 1/N ≤ δ. Proceeding as in (3.4), we find that there
exist integers m and n such that 0 ≤ n < m ≤ N and

d
(
Rm

α (0),Rn
α(0)

)
<

1

N
.

Taking q = m − n, we obtain

d
(
Rq

α(0),0
) = d

(
Rq

α

(
Rn

α(0)
)
,Rn

α(0)
)

= d
(
Rm

α (0),Rn
α(0)

)
<

1

N
≤ δ.
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Finally, it follows from (3.1) that there exists a p ∈ Z such that

∣∣Rq
α(0) − p

∣∣ <
1

N
≤ δ.

Since 1/N < 1 and R
q
α(0) = qα mod 1, we obtain

|qα − p| < 1

N
≤ δ,

which establishes inequality (3.5).

Example 3.4 Now we consider the expanding map E2 : S1 → S1 and the point

x = 0. 0 1 00 01 10 11 000 001 010 · · · ,

whose base-2 expansion comprises the sequence of all length 1 binary strings (0,1)

followed by all length 2 binary strings (00,01,10,11), then all length 3 binary
strings (000,001,010, . . .), and so on. Since

Em
2 (0.x1x2 · · · ) = 0.xm+1xm+2 · · · ,

each set {Em
2 (x) : m ≥ n} is dense in S1 and thus ω(x) = S1.

We note that the same happens when x is replaced by any point in S1 whose
base-2 representation contains all finite binary strings, in any order.

Example 3.5 Let f : R2 → R
2 be the map given by

f (r cos θ, r sin θ) =
(

r

r + (1 − r)/2
cos

(
θ + π

4

)
,

r

r + (1 − r)/2
sin

(
θ + π

4

))

(see Fig. 3.1). One can easily verify that f is invertible and that

f n(r cos θ, r sin θ)

=
(

r

r + (1 − r)/2n
cos

(
θ + nπ

4

)
,

r

r + (1 − r)/2n
sin

(
θ + nπ

4

))

for each n ∈ Z. Clearly, the origin (r = 0) and the circle r = 1 are f -invariant sets.
For r > 0, we have

lim
n→+∞

r

r + (1 − r)/2n
= 1

and thus, the ω-limit set of a point p = (r cos θ, r sin θ) outside the origin is given
by

ω(p) =
{(

cos

(
θ + nπ

4

)
, sin

(
θ + nπ

4

))
: n = 0,1,2,3,4,5,6,7

}
.
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Fig. 3.1 The map f in
Example 3.5

On the other hand, for r ∈ (0,1), we have

lim
n→−∞

r

r + (1 − r)/2n
= 0

and thus, the α-limit set of any point in the region 0 < r < 1 is the origin.

Now we establish some properties of the α-limit sets and ω-limit sets. We recall
that X is a metric space, say with distance d .

Proposition 3.1 Given a map f : X → X, for each x ∈ X the following properties
hold:

1. y ∈ ω(x) if and only if there exists a sequence nk ↗ ∞ in N such that
f nk (x) → y when k → ∞;

2. if f is continuous, then ω(x) is forward f -invariant.

Proof We have ω(x) = ⋂
m≥1 Am, where

Am = {
f n(x) : n ≥ m

}
.

Now let y ∈ ω(x). We consider two cases:

1. if y /∈ ⋂
m≥1 Am, then there exists p ≥ 1 such that y /∈ Ap . Hence, y ∈ Ap \ Ap

and there exists a sequence nk ↗ ∞ in N such that f nk (x) → y when k → ∞.
2. if y ∈ ⋂

m≥1 Am, then there exists p ≥ 1 such that y = f p(x). Since y ∈ Am for
m > p, there exists q > p such that y = f q(x). Thus,

f (q−p)k
(
f p(x)

) = y for k ∈ N

and the increasing sequence nk = (q − p)k + p satisfies f nk (x) = y.
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On the other hand, if there exists a sequence nk ↗ ∞ in N such that f nk (x) → y

when k → ∞, then y ∈ Am for every m ∈N. Hence, y ∈ ω(x).
Now let us take y ∈ ω(x) and n ∈N. By the first property, there exists a sequence

nk ↗ ∞ in N such that f nk (x) → y when k → ∞. It follows from the continuity
of f that f nk+n(x) → f n(y) when k → ∞ and hence f n(y) ∈ ω(x). This shows
that ω(x) is forward f -invariant. �

Proposition 3.2 Given a continuous map f : X → X, if the positive semiorbit
γ +(x) of a point x ∈ X has compact closure, then:

1. ω(x) is compact and nonempty;
2. inf{d(f n(x), y) : y ∈ ω(x)} → 0 when n → ∞.

Proof For the first property, we note that by definition the set ω(x) is closed. Since
ω(x) ⊂ γ +(x) and the closure of the semiorbit γ +(x) is compact, the set ω(x) is
also compact.

Now we consider the sequence f n(x). Since it is contained in the compact subset
γ +(x) of the metric space X, there exists a convergent subsequence f nk (x), with
nk ↗ ∞ when k → ∞. Thus, one can apply the first property in Proposition 3.1 to
conclude that the limit of f nk (x) is in ω(x). This shows that ω(x) is nonempty.

Finally, if the last property did not hold, then there would exist δ > 0 and a
sequence nk ↗ ∞ such that

inf
{
d
(
f nk (x), y

) : y ∈ ω(x)
} ≥ δ (3.6)

for k ∈ N. Since the set γ +(x) is compact, there would exist a convergent subse-
quence f mk (x) of f nk (x) whose limit, by the first property in Proposition 3.1, is a
point p ∈ ω(x). On the other hand, it follows from (3.6) that

d
(
f mk (x), y

) ≥ δ

for k ∈ N and y ∈ ω(x) and thus, d(p,y) ≥ δ for y ∈ ω(x). But this is impossible
since p ∈ ω(x). This contradiction yields the last property in the proposition. �

For invertible maps, we have the following results for the α-limit set.

Proposition 3.3 Given an invertible map f : X → X, for each x ∈ X the following
properties hold:

1. y ∈ α(x) if and only if there exists a sequence nk ↗ ∞ in N such that
f −nk (x) → y when k → ∞;

2. if f has a continuous inverse, then α(x) is backward f -invariant.

Proposition 3.4 Given an invertible map f : X → X with continuous inverse, if the
negative semiorbit γ −(x) of a point x ∈ X has compact closure, then:
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1. α(x) is compact and nonempty;
2. inf{d(f n(x), y) : y ∈ α(x)} → 0 when n → −∞.

In order to obtain these two propositions, it suffices to apply Propositions 3.1
and 3.2 to the map g = f −1.

3.2.2 Continuous Time

Now we introduce the notions of α-limit set and ω-limit set for a dynamical system
with continuous time.

Definition 3.4 Given a semiflow Φ = (ϕt )t≥0 of X, the ω-limit set of a point x ∈ X

is defined by

ω(x) = ωΦ(x) =
⋂

t>0

{
ϕs(x) : s > t

}
.

Moreover, given a flow Φ = (ϕt )t∈R of X, the α-limit set of a point x ∈ X is defined
by

α(x) = αΦ(x) =
⋂

t<0

{
ϕs(x) : s < t

}
.

Example 3.6 Consider the differential equation in polar coordinates
{

r ′ = r(r − 1)(r − 2),

θ ′ = 1.
(3.7)

We note that r ′ > 0 for r ∈ (0,1) ∪ (2,+∞) and that r ′ < 0 for r ∈ (1,2). Now we
consider the sets

Cr = {
(x, y) ∈R

2 : x2 + y2 = r2}

for r > 0. Given p ∈ Cr , we have

α(p) = ω(p) = {
(0,0)

}
for r = 0,

α(p) = {
(0,0)

}
, ω(p) = C1 for r ∈ (0,1),

α(p) = ω(p) = C1 for r = 1,

α(p) = C1, ω(p) = C2 for r ∈ (1,2),

α(p) = ω(p) = C2 for r = 2,

α(p) = C2, ω(p) = ∅ for r > 2

(see Fig. 3.2).



3.2 Limit Sets and Basic Properties 35

Fig. 3.2 The phase portrait
of Eq. (3.7)

We also describe some properties of the α-limit set and the ω-limit set for flows
and semiflows. With the exception of the connectedness of these sets, all the remain-
ing properties are analogous to those already obtained for dynamical systems with
discrete time.

Proposition 3.5 Given a semiflow Φ = (ϕt )t≥0 of X, for each x ∈ X the following
properties hold:

1. y ∈ ω(x) if and only if there exists a sequence tk ↗ +∞ in R
+ such that

ϕtk (x) → y when k → ∞;
2. if Φ is a topological semiflow, then ω(x) is forward Φ-invariant.

Proof Both properties can be obtained repeating arguments in the proof of Proposi-
tion 3.1. �

Proposition 3.6 Given a topological semiflow Φ = (ϕt )t≥0 of X, if the positive
semiorbit γ +(x) of a point x ∈ X has compact closure, then:

1. ω(x) is compact, connected and nonempty;
2. inf{d(ϕt (x), y) : y ∈ ω(x)} → 0 when t → +∞.

Proof With the exception of the connectedness of the ω-limit set, the remaining
properties can be obtained repeating arguments in the proof of Proposition 3.2.

In order to show that ω(x) is connected, we proceed by contradiction. If ω(x)

was not connected, then we could write it in the form ω(x) = A ∪ B for some
nonempty sets A and B such that

A ∩ B = A ∩ B = ∅.
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Fig. 3.3 The set
C ∩ {ϕs(x) : s > t}

Since ω(x) is closed, we have

A = A ∩ ω(x) = A ∩ (A ∪ B)

= (A ∩ A) ∪ (A ∩ B) = A

and analogously B = B . This shows that the sets A and B are also closed. This
implies that they are at a positive distance, that is,

δ := inf
{
d(a, b) : a ∈ A, b ∈ B

}
> 0.

Now we consider the closed set

C = {
z ∈ X : d(z, y) ≥ δ/4 for y ∈ ω(x)

}
. (3.8)

We note that

C ∩ {
ϕs(x) : s > t

} �= ∅ (3.9)

for t > 0. Otherwise, the set {ϕs(x) : s > t} would be completely contained in the
δ/4-neighborhood of A or in the δ/4-neighborhood of B . Hence, by the first prop-
erty in Proposition 3.5, we would have ω(x) ∩ B = ∅ or ω(x) ∩ A = ∅. But this
is impossible since ω(x) = A ∪ B with A and B nonempty. It follows from (3.9)
that there exists a sequence tk ↗ +∞ such that ϕtk (x) ∈ C for k ∈ N (see Fig. 3.3).
Hence, it follows from the compactness of C ∩ γ +(x) and again from the first prop-
erty in Proposition 3.5 that C ∩ ω(x) �= ∅. On the other hand, it follows from (3.8)
that C ∩ ω(x) = ∅. This contradiction shows that the set ω(x) is connected. �

In the case of flows, we have analogous results for the α-limit set.

Proposition 3.7 Given a flow Φ = (ϕt )t∈R of X, for each x ∈ X the following prop-
erties hold:
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1. y ∈ α(x) if and only if there exists a sequence tk ↘ −∞ in R
− such that

ϕtk (x) → y when k → ∞;
2. if Φ is a topological flow, then α(x) is backward Φ-invariant.

Proposition 3.8 Given a topological flow Φ = (ϕt )t∈R of X, if the negative semior-
bit γ −(x) of a point x ∈ X has compact closure, then:

1. α(x) is compact, connected and nonempty;
2. inf{d(ϕt (x), y) : y ∈ α(x)} → 0 when t → −∞.

3.3 Topological Recurrence

In this section we discuss some recurrence properties of the orbits of a topological
dynamical system (with discrete time). Roughly speaking, a point x is recurrent if
its orbit returns arbitrarily close to x.

3.3.1 Topological Transitivity

Let f : X → X be a continuous map.

Definition 3.5 A point x ∈ X is said to be (positively) recurrent (with respect to f )
if x ∈ ω(x).

It follows from Proposition 3.1 that a point x is recurrent if and only if there exists
a sequence nk ↗ ∞ in N such that f nk (x) → x when k → ∞. Moreover, the set of
recurrent points (with respect to f ) is forward invariant. Indeed, if f nk (x) → x with
nk ↗ ∞ when k → ∞, then also f nk+n(x) → f n(x) when k → ∞, for n ∈ N.

For example, any periodic point x is recurrent since x ∈ γ +(x) = ω(x).

Example 3.7 Consider the rotation Rα : S1 → S1. When α is rational, all points are
periodic and thus, they are also recurrent. When α is irrational, for each x ∈ S1, we
have ω(x) = S1 and again all points are recurrent.

More generally, each point x ∈ X with ω(x) = X is recurrent. Moreover, its
positive semiorbit γ +(x) is dense in X (see Exercise 3.2).

Now we show that in compact metric spaces without isolated points, the existence
of a dense positive semiorbit is equivalent to the following property.

Definition 3.6 A map f : X → X is called topologically transitive if given
nonempty open sets U,V ⊂ X, there exists an n ∈N such that f −nU ∩ V �= ∅.

The following result establishes the desired equivalence.
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Theorem 3.1 Let f : X → X be a continuous map of a locally compact metric
space with a countable basis. Then the following properties hold:

1. if f is topologically transitive, then there exists an x ∈ X whose positive semior-
bit γ +(x) is dense in X;

2. if X has no isolated points and there exists an x ∈ X whose positive semiorbit
γ +(x) is dense in X, then f is topologically transitive.

Proof We first assume that f is topologically transitive. Given a nonempty open set
U ⊂ X, the union

⋃
n∈N f −nU is dense in X since it intersects all open sets. Now

let {Ui}i∈N be a countable basis of X. Since any locally compact metric space is a
Baire space (that is, it has the property that any countable intersection of dense open
sets is dense), the set

Y =
⋂

i∈N

⋃

n∈N
f −nUi

is nonempty. Given x ∈ Y , we have x ∈ ⋃
n∈N f −nUi for i ∈N and thus,

γ +(x) ∩ Ui �= ∅ for i ∈N.

This shows that the positive semiorbit of x is dense in X.
Now we assume that X has no isolated points and that there exists an x ∈ X with

dense positive semiorbit. Let U,V ⊂ X be nonempty open sets. Since X has no
isolated points, the semiorbit γ +(x) visits infinitely often U and V . Hence, there
exist m,n ∈ N with m > n such that f m(x) ∈ U and f n(x) ∈ V . Therefore,

x ∈ f −mU ∩ f −nV = f −n
(
f −(m−n)U ∩ V

)
(3.10)

and the set f −(m−n)U ∩ V is nonempty. �

For example, it follows from Theorem 3.1 together with Example 3.2 that for
each α ∈ R \Q the rotation Rα : S1 → S1 is topologically transitive.

It is also common to use as an alternative definition of topological transitivity the
existence of a dense positive semiorbit.

Finally, we show that for homeomorphisms of a compact metric space without
isolated points, the existence of a dense orbit implies the existence of a dense posi-
tive semiorbit, possibly of another point.

Theorem 3.2 Let f : X → X be a homeomorphism of a locally compact metric
space with a countable basis and without isolated points. If there exists an x ∈ X

whose orbit γ (x) is dense in X, then there exists a y ∈ X whose positive semiorbit
γ +(y) is dense in X.

Proof A dense orbit γ (x) visits infinitely often each open neighborhood of x

(since x is not isolated). Thus, there exists a sequence nk with |nk| ↗ ∞ such that
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f nk (x) → x when k → ∞. Since f is a homeomorphism, we also have

f nk+m(x) → f m(x) when k → ∞, (3.11)

for each m ∈ Z. We note that the sequence nk takes infinitely many positive values
or infinitely many negative values (or both). In the first case, it follows from (3.11)
that the positive semiorbit γ +(x) is dense in X, which establishes the desired result.
In the second case, the negative semiorbit γ −(x) is dense in X. Now let U,V ⊂ X

be nonempty open sets. Since γ −(x) is dense and X has no isolated points, there
exist negative integers m > n such that f m(x) ∈ U and f n(x) ∈ V . Hence, prop-
erty (3.10) holds and the set f −(m−n)U ∩V is nonempty. This shows that the map f

is topologically transitive and it follows from Theorem 3.1 that there exists a dense
positive semiorbit. �

3.3.2 Topological Mixing

In this section we consider a recurrence property that is stronger than topological
transitivity.

Definition 3.7 A map f : X → X is called topologically mixing if given nonempty
open sets U,V ⊂ X, there exists an n ∈ N such that f −mU ∩ V �= ∅ for m ≥ n.

Clearly, any topologically mixing map is also topologically transitive. The fol-
lowing example shows that the converse is false.

Example 3.8 Let Rα : S1 → S1 be a rotation of the circle with α ∈ R \ Q. Given
ε < 1/4, we consider the open interval

U = (x − ε, x + ε) ⊂ S1.

Since each preimage R−n
α U is an open interval of length 2ε < 1/2 and the orbit of x

is dense, there exists a sequence nk ↗ ∞ in N such that R
−nk
α (x) → x + 1/2 when

k → ∞. Thus, R
−nk
α U ∩ U = ∅ for any sufficiently large k. This shows that the

rotation Rα is not topologically mixing.

Example 3.9 Now we consider the expanding map E2 : S1 → S1. By Example 3.4,
there exists a point x ∈ S1 whose positive semiorbit γ +(x) is dense in S1. Hence, it
follows from Theorem 3.1 that the map E2 is topologically transitive.

Now we show that E2 is also topologically mixing. Let U,V ⊂ S1 be nonempty
open sets and consider an open interval I ⊂ V of the form

I = (
0.x1x2 · · ·xn,0.x1x2 · · ·xn11 · · · ),
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with the endpoints written in base-2. Given y = 0.y1y2 · · · ∈ U , the point

x = 0.x1x2 · · ·xny1y2 · · · ∈ I

is in E−n
2 U since En

2 (x) = y. Therefore,

E−n
2 U ∩ V ⊃ E−n

2 U ∩ I �=∅.

This shows that the map E2 is topologically mixing.

Example 3.10 Let TA : T
2 → T

2 be an automorphism of the torus T
2 with

|trA| > 2. By Exercise 2.12, we have detA = ±1. We also have

det(A − λId) = λ2 − trAλ + detA,

and since |trA| > 2, the eigenvalues of the matrix A are the real numbers

λ1 = trA + √
(trA)2 − 4 detA

2
and λ2 = trA − √

(trA)2 − 4 detA

2
.

In particular, there exists a λ > 1 such that {|λ1|, |λ2|} = {λ,λ−1}. Now we show that
λ1 and λ2 are irrational. Clearly, λ1 and λ2 are rational if and only if m2 ± 4 = l2

for some integer l ∈N, where m = trA. Hence,

(m − l)(m + l) = ±4

and thus,

m + l = 4 and m − l = 1

or

m + l = −1 and m − l = −4

(since m+ l > m− l). It is easy to verify that these systems have no integer solutions.
This implies that λ1 and λ2 are irrational. In particular, the eigendirections of A have
irrational slopes.

Now let U,V ⊂ T
2 be nonempty open sets and let I ⊂ U be a line segment

parallel to the eigendirection of A corresponding to the eigenvalue with modulus
λ−1 < 1. Then A−mI ⊂R

2 is a line segment of length λm|I |, where |I | is the length
of I . On the other hand, since the eigendirection of A corresponding to λ−1 has
irrational slope, one can show that for any straight line J ⊂ R

2 with this direction,
the set J/Z2 is dense in T

2. This implies that, given ε > 0, there exists an L > 0
such that for any line segment J ′ ⊂R

2 of length L with that direction, the set J ′/Z2

is ε-dense in T
2. In other words, the ε-neighborhood of J ′/Z2 coincides with T

2

(see Fig. 3.4). Now take ε > 0 such that V contains an open ball B of radius ε

and take n = n(ε) ∈ N such that λn|I | > L (recall that λ > 1). Since λm|I | > L for
m ≥ n, we obtain

T −m
A U ∩ V ⊃ T −m

A I ∩ B �=∅
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Fig. 3.4 An ε-dense line
segment in T

2

for m ≥ n (since T −m
A I is ε-dense in T

2). This shows that the automorphism of the
torus TA is topologically mixing.

3.4 Topological Entropy

In this section we introduce the notion of the topological entropy of a dynamical
system (with discrete time). Roughly speaking, topological entropy measures how
the orbits of a dynamical system move apart as time increases and thus, it can be
seen as a measure of the complexity of the dynamics. In addition to establishing
some basic properties of topological entropy, we also illustrate its computation with
several examples. The emphasis of this section is on the computation of topological
entropy. In particular, we describe several alternative characterizations of topolog-
ical entropy that are particularly useful for its explicit computation. We also show
that topological entropy is a topological invariant, that is, it takes the same value for
topologically conjugate dynamical systems.

3.4.1 Basic Notions and Examples

Let f : X → X be a continuous map of a compact metric space X, say with dis-
tance d . For each n ∈N, we introduce a new distance on X by

dn(x, y) = max
{
d
(
f k(x), f k(y)

) : 0 ≤ k ≤ n − 1
}
.
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Definition 3.8 The topological entropy of f is defined by

h(f ) = lim
ε→0

lim sup
n→∞

1

n
logN(n, ε), (3.12)

where N(n, ε) is the largest number of points p1, . . . , pm ∈ X such that

dn(pi,pj ) ≥ ε for i �= j.

We note that N(n, ε) is always finite. Indeed, let B1,B2, . . . be a cover of X by
open balls of radius ε/2 in the distance dn. Since X is compact, there exists a finite
subcover, say B ′

1, . . . ,B
′
m, and thus N(n, ε) ≤ m. We also note that the function

ε �→ lim sup
n→∞

1

n
logN(n, ε) (3.13)

is nonincreasing and thus, the limit in (3.12) when ε → 0 always exists.

Example 3.11 Let Rα : S1 → S1 be a rotation of the circle. For the distance d

in (3.1), we have

d
(
Rα(x),Rα(y)

) = d(x, y)

for x, y ∈ S1. Thus, dn = d1 = d for n ∈N and

h(Rα) = lim
ε→0

lim sup
n→∞

1

n
logN(1, ε) = 0.

Example 3.12 Now we consider the expanding map E2 : S1 → S1. Since the func-
tion in (3.13) is nonincreasing, we have

h(E2) = lim
k→∞ lim sup

n→∞
1

n
logN(n,ak)

for any sequence (ak)k∈N ⊂ R
+ such that ak → 0 when k → ∞.

Now let us take ak = 2−(k+1). We show that

N
(
n,2−(k+1)

) = 2n+k for n, k ∈ N. (3.14)

We first observe that if d(x, y) < 2−n, then

dn(x, y) = d
(
En−1

2 (x),En−1
2 (y)

) = 2n−1d(x, y). (3.15)

Now consider the points pi = i/2n+k for i = 0, . . . ,2n+k − 1. It follows from (3.15)
that

dn(pi,pi+1) = 2−(k+1) for i = 0, . . . ,2n+k − 1.
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Since there is no point pj between pi and pi+1, we have

dn(pi,pj ) ≥ 2−(k+1) for i �= j

and thus,

N
(
n,2−(k+1)

) ≥ 2n+k. (3.16)

Now consider a set A ⊂ S1 with cardinality at least 2n+k + 1. Clearly, there exist
points x, y ∈ A with x �= y such that d(x, y) < 2−(n+k). This implies that dn(x, y) <

2−(k+1) and hence,

N
(
n,2−(k+1)

) ≤ 2n+k. (3.17)

It follows from (3.16) and (3.17) that property (3.14) holds. Thus,

h(E2) = lim
k→∞ lim sup

n→∞
1

n
logN

(
n,2−(k+1)

)

= lim
k→∞ lim sup

n→∞
n + k

n
log 2 = log 2. (3.18)

3.4.2 Topological Invariance

In this section we show that topological entropy is a topological invariant. We first
introduce the notion of topological conjugacy.

Definition 3.9 Two maps f : X → X and g : Y → Y , where X and Y are topolog-
ical spaces, are said to be topologically conjugate if there exists a homeomorphism
H : X → Y such that

H ◦ f = g ◦ H.

Then H is called a topological conjugacy.

Example 3.13 Consider the map f : R → R defined by f (z) = z2 on the set

R = {
z ∈ C : |z| = 1

}

(see Exercise 2.9). We also consider the continuous map H : S1 → R defined by

H(x) = e2πix .

One can easily verify that H is a homeomorphism, with inverse given by

H−1(z) = arg z

2π
mod 1.
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We have

(f ◦ H)(x) = f
(
e2πix

) = e4πix

and

(H ◦ E2)(x) = H(2x) = e4πix.

This shows that

H ◦ E2 = f ◦ H

and thus, the maps E2 and f are topologically conjugate.

We say that a certain quantity, such as, for example, topological entropy, is a
topological invariant if it takes the same value for topologically conjugate dynami-
cal systems. Now we show that topological entropy is a topological invariant.

Theorem 3.3 Let f : X → X and g : Y → Y be continuous maps of compact metric
spaces. If f and g are topologically conjugate, then h(f ) = h(g).

Proof Let H : X → Y be a homeomorphism such that

H ◦ f = g ◦ H. (3.19)

Since the map H is uniformly continuous, given ε > 0, there exists a δ > 0 such that

dY

(
H(x),H(y)

)
< ε when dX(x, y) < δ, (3.20)

where dX and dY are, respectively, the distances on X and Y . We note that δ → 0
when ε → 0. On the other hand, it follows from (3.19) that

H
(
f m(x)

) = gm(H(x))

for m ∈N and x ∈ X. Hence, by (3.20), if p1, . . . , pm ∈ Y are such that

max
{
dY

(
gm(qi), g

m(qj )
) : m = 0, . . . , n − 1

} ≥ ε for i �= j,

where qi = H(pi), then

max
{
dX

(
f m(pi), f

m(pj )
) : m = 0, . . . , n − 1

} ≥ δ for i �= j.

This shows that

Nf (n, δ) ≥ Ng(n, ε), (3.21)

where we indicated the particular dynamical system used in Definition 3.8. It fol-
lows from (3.21) that

lim sup
n→∞

1

n
logNf (n, δ) ≥ lim sup

n→∞
1

n
logNg(n, ε)
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for each ε > 0. Letting ε → 0, we have δ → 0 and thus h(f ) ≥ h(g). Now we
rewrite identity (3.19) in the form

H−1 ◦ g = f ◦ H−1.

Repeating the previous argument with H replaced by H−1, we obtain h(g) ≥ h(f ).
Therefore, h(f ) = h(g). �

Example 3.14 The map f in Example 3.13 is topologically conjugate to the ex-
panding map E2. Hence, it follows from Theorem 3.3 together with Example 3.12
(see (3.18)) that

h(f ) = h(E2) = log 2.

3.4.3 Alternative Characterizations

In this section we describe several alternative characterizations of topological en-
tropy. These are particularly useful in the computation of the entropy.

Definition 3.10 Given n ∈ N and ε > 0, we denote by M(n, ε) the least number of
points p1, . . . , pm ∈ X such that each x ∈ X satisfies dn(x,pi) < ε for some i.

Definition 3.11 Given n ∈ N and ε > 0, we denote by C(n, ε) the least number of
elements of a cover of X by sets U1, . . . ,Um with

sup
{
dn(x, y) : x, y ∈ Ui

}
< ε for i = 1, . . . ,m. (3.22)

The supremum in (3.22) is called the dn-diameter of Ui .
We have the following relations between these numbers and N(n, ε) (see Defini-

tion 3.8).

Proposition 3.9 For each n ∈N and ε > 0, we have

C(n,2ε) ≤ M(n, ε) ≤ N(n, ε) ≤ M(n, ε/2) ≤ C(n, ε/2). (3.23)

Proof We establish successively each of the inequalities:

1. Take points p1, . . . , pm ∈ X such that each x ∈ X satisfies dn(x,pi) < ε for some
i, where m = M(n, ε). Clearly, the dn-open balls

Bn(pi, ε) = {
x ∈ X : dn(x,pi) < ε

}

cover X. Since Bn(pi, ε) has dn-diameter 2ε, we conclude that m ≥ C(n,2ε).
2. Now let p1, . . . , pm ∈ X be points such that dn(pi,pj ) ≥ ε for i �= j , where

m = N(n, ε). We note that each x ∈ X \ {p1, . . . , pm} satisfies dn(x,pi) < ε for
some i. Hence, M(n, ε) ≤ m.
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3. For the third inequality, we note that no dn-open ball of radius ε/2 contains two
points at a dn-distance ε. Thus N(n, ε) ≤ M(n, ε/2).

4. Finally, let U1, . . . ,Um be a cover of X by sets of dn-diameter less than
ε/2, where m = C(n, ε/2). Now take a point pi ∈ Ui for each i. Clearly,
Bn(pi, ε/2) ⊃ Ui and these dn-balls form a cover of X. Hence, M(n, ε/2) ≤
C(n, ε/2).

This completes the proof of the proposition. �

Now we obtain several alternative formulas for the topological entropy of a dy-
namical system.

Theorem 3.4 If f : X → X is a continuous map of a compact metric space, then

h(f ) = lim
ε→0

lim inf
n→∞

1

n
logN(n, ε)

= lim
ε→0

lim sup
n→∞

1

n
logM(n, ε)

= lim
ε→0

lim inf
n→∞

1

n
logM(n, ε)

= lim
ε→0

lim
n→∞

1

n
logC(n, ε). (3.24)

Proof We first establish the existence of the limit when n → ∞ in the last expres-
sion in (3.24).

Lemma 3.1 Given m,n ∈ N and ε > 0, we have

C(m + n, ε) ≤ C(m,ε)C(n, ε).

Proof Let U1, . . . ,Uk be a cover of X by sets of dn-diameter less than ε, where
k = C(n, ε). Let also V1, . . . , Vl be a cover of X by sets of dm-diameter less than ε,
where l = C(m,ε). Then the sets Ui ∩ f −nVj , with i = 1, . . . , k and j = 1, . . . , l,
form a cover of X and have dm+n-diameter less than ε since

dm+n(x, y) = max
{
dn(x, y), dm

(
f n(x), f n(y)

)}
.

Thus,

C(m + n, ε) ≤ lk = C(m,ε)C(n, ε),

which yields the desired inequality. �

Now we establish an auxiliary result.
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Lemma 3.2 If (cn)n∈N is a sequence of real numbers such that

cm+n ≤ cm + cn (3.25)

for m,n ∈N, then the limit

lim
n→∞

cn

n
= inf

{
cn

n
: n ∈N

}

exists.

Proof Given integers n, k ∈ N, write n = qk + r with q ∈ N ∪ {0} and r ∈
{0, . . . , q − 1}. We have

cn

n
≤ cqk + cr

qk + r
≤ qck + cr

qk + r

and thus,

lim sup
n→∞

cn

n
≤ ck

k

since q → ∞ when n → ∞ (for a fixed k). Since k is arbitrary, this implies that

lim sup
n→∞

cn

n
≤ inf

{
ck

k
: k ∈ N

}
≤ lim inf

n→∞
cn

n
,

which yields the desired result. �

It follows from Lemmas 3.1 and 3.2 that the limit

lim
n→∞

1

n
logC(n, ε) = inf

{
1

n
logC(n, ε) : n ∈ N

}

exists. Using (3.23), we obtain

lim
n→∞

1

n
logC(n,2ε) ≤ lim inf

n→∞
1

n
logM(n, ε)

≤ lim inf
n→∞

1

n
logN(n, ε)

≤ lim sup
n→∞

1

n
logN(n, ε)

≤ lim sup
n→∞

1

n
logM(n, ε/2)

≤ lim
n→∞

1

n
logC(n, ε/2)



48 3 Topological Dynamics

and letting ε → 0 yields the inequalities

lim
ε→0

lim
n→∞

1

n
logC(n,2ε) ≤ lim

ε→0
lim inf
n→∞

1

n
logM(n, ε)

≤ lim
ε→0

lim inf
n→∞

1

n
logN(n, ε)

≤ h(f )

≤ lim
ε→0

lim sup
n→∞

1

n
logM(n, ε/2)

≤ lim
ε→0

lim
n→∞

1

n
logC(n, ε/2).

The equality of the first and the last terms establishes the desired result. �

Now we use Theorem 3.4 to compute the topological entropy of a class of auto-
morphisms of the torus T2.

Example 3.15 Let TA : T2 → T
2 be an automorphism of the torus as in Exam-

ple 3.10. We recall that along the eigendirections of A the distances are multiplied
by λ or λ−1, for some λ > 1.

Now we consider a cover of T2 by dn-open balls Bn(pi, ε). We have

Bn(pi, ε) =
n−1⋂

k=0

T −k
A B

(
T k

A(pi), ε
)

and thus, there exists a C > 0 (independent of n, ε and i) such that the area of the
ball Bn(pi, ε) is at most Cλ−nε2. Hence,

M(n, ε) ≥ 1

Cλ−nε2

and it follows from Theorem 3.4 that

h(f ) = lim
ε→0

lim inf
n→∞

1

n
logM(n, ε) ≥ logλ. (3.26)

We also consider partitions of T
2 by parallelograms with sides parallel to the

eigendirections of A (see Fig. 3.5). More precisely, we consider a partition of T2 by
parallelograms Pi with sides of length ελ−n and ε, up to a multiplicative constant,
along the eigendirections of λ and λ−1, respectively. Now we note that there exists
a D > 1 (independent of n, ε and i) such that each Pi has area at least D−1λ−nε2

and has dn-diameter less than Dε. Thus,

C(n,Dε) ≤ 1

D−1λ−nε2
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Fig. 3.5 A partition of the
torus T2 into parallelograms

and by Theorem 3.4, we have

h(f ) = lim
ε→0

lim
n→∞

1

n
logC(n, ε) ≤ logλ.

Together with (3.26) this shows that h(f ) = logλ.

3.4.4 Expansive Maps

In this section we describe a class of maps for which the limit when ε → 0 in the
definition of topological entropy is not necessary.

Definition 3.12 A map f : X → X is called (positively) expansive if there exists a
δ > 0 such that if

d
(
f n(x), f n(y)

)
< δ for all n ≥ 0,

then x = y.

Example 3.16 The expanding map Em : S1 → S1 is expansive. Indeed, if d(x, y) <

1/m2 and x �= y, then there exists an n ∈ N such that

d
(
En

m(x),En
m(y)

) = mnd(x, y) ≥ 1

m2
.
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Fig. 3.6 A quadratic map

This implies that if

d
(
En

m(x),En
m(y)

)
<

1

m2
for all n ≥ 0,

then x = y and the expanding map Em is expansive.

Example 3.17 Given a > 4, let f : [0,1] → R be the quadratic map

f (x) = ax(1 − x)

(see Fig. 3.6). The set

X =
∞⋂

n=0

f −n[0,1] (3.27)

is compact and forward f -invariant. In particular, one can consider the restriction

f |X : X → X.

Since f (x) = 1 for x = (1 ± c)/2, where c = √
1 − 4/a, we have

|f ′(x)| = a|1 − 2x| ≥ ac for x ∈ X. (3.28)

Now let us assume that a > 4 is so large that ac > 1, or equivalently that a > 2+√
5.

Given x, y ∈ X such that
∣∣f k(x) − f k(y)

∣∣ < c for k ∈ N∪ {0},
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we have

f k(x), f k(y) ∈ I1 or f k(x), f k(y) ∈ I2,

where

I1 = [
0, (1 − c)/2

]
and I2 = [

(1 + c)/2,1
]
.

It then follows from (3.28) that

c >
∣∣f k(x) − f k(y)

∣∣ ≥ (ac)k|x − y| for k ∈N.

Since ac > 1, we conclude that x = y and the map f |X is expansive.

Now we consider the particular case of the expansive maps in the definition of
topological entropy and we show that the limit when ε → 0 is not necessary in any
of the formulas in (3.24), provided that ε is sufficiently small.

Theorem 3.5 Let f : X → X be a continuous expansive map of a compact metric
space. Then

h(f ) = lim
n→∞

1

n
logN(n,α)

= lim
n→∞

1

n
logM(n,α)

= lim
n→∞

1

n
logC(n,α) (3.29)

for any sufficiently small α > 0.

Proof Take constants ε,α > 0 such that 0 < ε < α < δ, where δ is the con-
stant in Definition 3.12. Now let A ⊂ X be a set with cardA = N(n, ε) such
that dn(x, y) ≥ ε for any x, y ∈ A with x �= y. We show that there exists an
m = m(ε,α) ∈N such that if d(x, y) ≥ ε, then

d
(
f i(x), f i(y)

)
> α for some i ∈ {0, . . . ,m}. (3.30)

Given

q ∈ K := {
(x, y) ∈ X × X : d(x, y) ≥ ε

}
,

there exist an open ball B(q) ⊂ X×X centered at q and an integer i = i(q) ∈ N∪{0}
such that if (x, y) ∈ B(q), then

d
(
f i(x), f i(y)

)
> δ > α

(recall that f is continuous and expansive). The balls B(q) cover the compact set K

and hence, there exists a finite subcover B(qj ), with j = 1, . . . , p. Taking

m = max
{
i(qj ) : j = 1, . . . , p

}
,
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we obtain property (3.30) for (x, y) ∈ K . This implies that when dn(x, y) ≥ ε

and hence, for x, y ∈ A with x �= y, we have

dn

(
f j (x), f j (y)

)
> α for some j ∈ {0, . . . ,m}.

Thus, for z,w ∈ f −mA with f m(z) �= f m(w), we have

dn+2m(z,w) ≥ max
{
dn

(
f i(z), f i(w)

) : i = m, . . . ,2m
}

= max
{
dn

(
f j+m(z), f j+m(w)

) : j = 0, . . . ,m
}

> α

since f m(z), f m(w) ∈ A. This yields the inequality

N(n + 2m,α) ≥ N(n, ε).

It follows from Proposition 3.9 that

N(n, ε) ≤ N(n + 2m,α)

≤ M(n + 2m,α/2)

≤ C(n + 2m,α/2)

≤ C(n + 2m,ε/2).

Thus, applying Theorem 3.4, we conclude that

lim sup
n→∞

1

n
logN(n, ε) ≤ lim sup

n→∞
1

n
logN(n + 2m,α)

≤ lim sup
n→∞

1

n
logM(n + 2m,α/2)

≤ lim
n→∞

1

n
logC(n + 2m,α/2)

≤ lim
n→∞

1

n
logC(n + 2m,ε/2). (3.31)

Letting ε → 0 yields the inequalities

h(f ) ≤ lim sup
n→∞

1

n
logN(n,α)

≤ lim sup
n→∞

1

n
logM(n,α/2)

≤ lim
n→∞

1

n
logC(n,α/2) ≤ h(f ). (3.32)

One can also replace each lim sup in (3.31) by lim inf and letting ε → 0, we obtain
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h(f ) ≤ lim inf
n→∞

1

n
logN(n,α)

≤ lim inf
n→∞

1

n
logM(n,α/2)

≤ lim
n→∞

1

n
logC(n,α/2) ≤ h(f ). (3.33)

The identities in (3.29) now follow readily from (3.32) and (3.33). �

By Example 3.16, the expanding maps Em are expansive and thus, their topolog-
ical entropies are given by (3.29). In particular, this implies that the limits in (3.18)
when k → ∞ are not necessary.

Now we consider another expansive map.

Example 3.18 Consider the restriction E4|A : A → A, where A is the compact for-
ward E4-invariant set in (2.11). We proceed in an analogous manner to that in Ex-
ample 3.12. We first note that if d(x, y) < 4−n, then

dn(x, y) = d
(
En−1

4 (x),En−1
4 (y)

) = 4n−1d(x, y). (3.34)

Given k ∈N, consider the 2n+k+1 points xi on the boundary of the set

n+k−1⋂

m=0

E−m
4

([0,1/4] ∪ [2/4,3/4]).

It follows from (3.34) that

dn(xi, xj ) ≥ 4n−1 · 1

4n+k
= 4−(k+1)

for i �= j and thus,

N
(
n,4−(k+1)

) ≥ 2n+k+1.

On the other hand, given a set B ⊂ A with at least 2n+k+1 + 1 points, there exist
x, y ∈ B with x �= y such that d(x, y) < 4−(n+k) and thus dn(x, y) < 4−(k+1). This
implies that

N
(
n,4−(k+1)

) = 2n+k+1 for n, k ∈ N.

Since E4 is an expansive map (by Example 3.16), the same happens to the restriction
E4|A. It then follows from Theorem 3.5 that

h(E4|A) = lim
n→∞

1

n
logN

(
n,4−(k+1)

)

= lim
n→∞

n + k + 1

n
log 2 = log 2.
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3.5 Exercises

Exercise 3.1 Show that if f : X → X is a homeomorphism, then for each x ∈ X

the sets α(x) and ω(x) are f -invariant.

Exercise 3.2 Given a map f : Rn → R
n, show that the positive semiorbit γ +(x) is

dense if and only if ω(x) = R
n.

Exercise 3.3 Determine whether there exists a differential equation in R
2 whose

flow:

1. has an ω-limit set that is the boundary of a square;
2. has a disconnected ω-limit set.

Exercise 3.4 Sketch the phase portrait of a differential equation in R
2 whose flow

has an ω-limit set that is the boundary of a triangle.

Exercise 3.5 Let ϕt be a flow determined by a differential equation x′ = f (x) for
some C1 function f : R2 → R

2. Show that if L ⊂ R
2 is a transversal to f (that is,

a line segment such that for each x ∈ L the directions of L and f (x) generate R
2),

then for each x ∈ R
2 the set ω(x) ∩ L contains at most one point.

Exercise 3.6 Show that no increasing homeomorphism f : I → I , where I ⊂ R is
an interval, is topologically transitive.

Exercise 3.7 Let f : I → I be a continuous onto map, where I ⊂ R is an interval.
Show that the following properties are equivalent:

1. f is topologically transitive;
2. for any open interval J ⊂ I , the set

⋃∞
n=0 f −nJ is dense in I ;

3. for any open interval J ⊂ I , the set
⋃∞

n=0 f n(J ) is dense in I .

Exercise 3.8 Show that:

1. for each α ∈Q, the rotation Rα : S1 → S1 is not topologically mixing;
2. the expanding map Em is topologically mixing.

Exercise 3.9 Determine whether the maps f,g : R → R are topologically conju-
gate for:

1. f (x) = x and g(x) = x2;
2. f (x) = x/3 and g(x) = 2x;
3. f (x) = 2x and g(x) = x3.

Exercise 3.10 Given an integer m > 1, consider the map f : R → R defined by
f (z) = zm on the set

R = {
z ∈ C : |z| = 1

}
.

Show that Em and f are topologically conjugate.
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Exercise 3.11 Compute the topological entropy of the map f : Tn → T
n defined

by f (x) = x + v, where v ∈R
n.

Exercise 3.12 Show that h(Em) = logm for each integer m > 1.

Exercise 3.13 Show that if f : X → X is a homeomorphism of a compact metric
space, then h(f −1) = h(f ).

Exercise 3.14 Let f : X → X be a continuous map of a compact metric space.
Show that if X = ⋃m

i=1 Xi , where each set Xi is closed and forward f -invariant,
then

h(f ) = max
{
h(f |Xi) : i = 1, . . . ,m

}
.

Exercise 3.15 Show that if TA : Tn → T
n is an automorphism of the torus induced

by a matrix A without eigenvalues with modulus 1, then

h(TA) =
n∑

i=1

max
{
0, log|λi |

}
,

where λ1, . . . , λn are the eigenvalues of A, counted with their multiplicities.

Exercise 3.16 Compute the topological entropy of the endomorphism of the torus
T

2 induced by the matrix

A =
(

2 0
0 3

)
.

Exercise 3.17 Show that if f : X → X and g : Y → Y are continuous maps of
compact metric spaces (X,dX) and (Y, dY ), then

h(v) = h(f ) + h(g)

for the map v : X × Y → X × Y defined by

v(x, y) = (
f (x), g(y)

)
,

with the distance on X × Y given by

d
(
(x, y), (x′, y′)

) = max
{
dX(x, x′), dY (y, y′)

}
.

Exercise 3.18 Let f : X → X be a continuous map of a compact metric space and
take k ∈N.

1. Writing dn,f = dn and Nf (n, ε) = N(n, ε), show that dn,f k (x, y) ≤ dnk,f (x, y)

and thus,

Nf k (n, ε) ≤ Nf (nk, ε).
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2. Conclude that h(f k) ≤ kh(f ).
3. Show that

lim
ε→0

lim sup
n→∞

1

n
logNf (nk, ε) ≤ h

(
f k

)
.

Hint: By the uniform continuity of f , given ε > 0, there exists a δ(ε) ∈ (0, ε)

such that dk(x, y) < ε when d(x, y) < δ(ε). Hence, it follows from

dnk,f (x, y) = max
{
dk

(
f ik(x), f ik(y)

) : 0 ≤ i ≤ n − 1
}

that

dn,f k (x, y) ≥ δ(ε) when dnk,f (x, y) ≥ ε,

which yields the inequality

Nf (nk, ε) ≤ Nf k

(
n, δ(ε)

)
.

4. Use inequality (3.23) and Theorem 3.4 to conclude that h(f k) ≥ kh(f ).

The exercise shows that h(f k) = kh(f ).

Exercise 3.19 Show that if f : X → X is a continuous map of a compact metric
space and h(f n) ≤ an + b for any n ∈N, then h(f ) ≤ a.

Exercise 3.20 Let f,g : X → X be continuous maps of a compact metric space.
Show that if

∣∣h
(
f n

) − h
(
gn

)∣∣ <
√

n

for any n ∈ N, then h(f ) = h(g).



Chapter 4
Low-Dimensional Dynamics

In this chapter we consider several classes of dynamical systems in low-dimensional
spaces. This essentially means dimension 1 for maps and dimension 2 for flows. In
particular, we consider homeomorphisms and diffeomorphisms of the circle, con-
tinuous maps of a compact interval and flows defined by autonomous differential
equations in the plane. For the orientation-preserving homeomorphisms of the cir-
cle, we consider the notion of rotation number and we describe the behavior of the
orbits depending on whether it is rational or irrational. We also show that any suf-
ficiently regular orientation-preserving diffeomorphism of the circle with irrational
rotation number is topologically conjugate to a rotation. For the continuous maps of
an interval, we study the existence of periodic points and we establish Sharkovsky’s
theorem relating the existence of periodic points with different periods. Finally, we
establish the Poincaré–Bendixson theorem for differential equations in the plane.

4.1 Homeomorphisms of the Circle

In this section we consider orientation-preserving homeomorphisms of the circle
and we introduce the notion of rotation number. Essentially, it gives the average
angular speed with which a point of the circle rotates (or translates) under the action
of the homeomorphism.

4.1.1 Lifts

In order to introduce the notion of a lift, we consider the projection π : R → S1

defined by

π(x) = [x].
We often represent the equivalence class [x] by its representative in the inter-
val [0,1), that is, by the number x − �x�, where �x� is the integer part of x.

L. Barreira, C. Valls, Dynamical Systems, Universitext, DOI 10.1007/978-1-4471-4835-7_4,
© Springer-Verlag London 2013
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Fig. 4.1 The construction of a lift

Now let f : S1 → S1 be a homeomorphism of the circle.

Definition 4.1 A continuous function F : R →R is said to be a lift of f if

f ◦ π = π ◦ F (4.1)

(see Fig. 4.1).

Example 4.1 Given α ∈ R, consider the rotation Rα : S1 → S1 given by

Rα(x) = x + α mod 1. (4.2)

Clearly, Rα is a homeomorphism. Given k ∈ Z, the function F : R → R defined by

F(x) = x + α + k (4.3)
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satisfies

π(F(x)) = π(x + α + k)

= x + α + k mod 1

= π(x) + α mod 1

= Rα(π(x)).

Hence, F is a lift of Rα .

Example 4.2 Given β ∈ R, consider the continuous function f : S1 → S1 defined
by

f (x) = x + β sin(2πx) mod 1. (4.4)

We first show that f is a homeomorphism for |β| < 1/(2π). The function F : R →
R defined by

F(x) = x + β sin(2πx) (4.5)

is increasing since

F ′(x) = 1 + 2πβ cos(2πx) ≥ 1 − 2π |β| > 0.

In particular, for x ∈ [0,1), we have

F(x) < F(1) = 1 (4.6)

and thus, the function f is one-to-one and onto. Since f is continuous, it maps
compact sets to compact sets. Thus, it also maps open sets to open sets, which shows
that its inverse is continuous. Hence, it is a homeomorphism. Moreover, it follows
from (4.6) that

π(F(x)) = x + β sin(2πx) mod 1

= x − �x� + β sin(2πx)

= x − �x� + β sin
(
2π

(
x − �x�))

= f (π(x))

and F is a lift of f .

The lifts of a homeomorphism have the following properties.

Proposition 4.1 Let f : S1 → S1 be a homeomorphism. Then:

1. f has lifts;
2. if F and G are lifts of f , then there exists a k ∈ Z such that G − F = k;
3. any lift of f is a homeomorphism of R.
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Proof We define a function F : R → R by

F(x) = f
(
x − �x�) + �x�, (4.7)

where f (x − �x�) is the representative in the interval [0,1). Since x − �x� and �x�
are continuous functions on R \Z, so too is F . Moreover, for each k ∈ Z, we have

F(k) = f (0) + k, F
(
k−) = f (1) + k and F

(
k+) = f (0) + k.

Since the function f takes values in S1, we have f (0) = f (1) and thus,

F(k) = F
(
k−) = F

(
k+)

for k ∈ Z. This shows that the function F is continuous on R. We also have

π(F(x)) = f
(
x − �x�) = f (π(x))

and hence, F is a lift of f .
Now let F and G be lifts of f . Then

π ◦ F = π ◦ G = f ◦ π. (4.8)

It follows from the first identity in (4.8) that for each x ∈ R, there exists a p(x) ∈ Z

such that

G(x) − F(x) = p(x).

Since F and G are continuous, the function x 	→ p(x) is also continuous. Moreover,
since it takes only integer values, it must be constant and thus, there exists a k ∈ Z

such that

G(x) − F(x) = p(x) = k

for any x ∈R.
For the last property, since the lifts are unique up to an additive constant (by the

second property), it is sufficient to show that the lift F constructed in (4.7) is a
homeomorphism. Consider the continuous function H : R → R defined by

H(x) = f −1(x − �x�) + �x�,

where f −1(x − �x�) is the representative in the interval [0,1). We note that

⌊
f −1(x − �x�) + �x�⌋ = �x�

and
⌊
f

(
x − �x�) + �x�⌋ = �x�.
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Fig. 4.2 An
orientation-preserving
homeomorphism

Thus,

(F ◦ H)(x) = F
(
f −1(x − �x�) + �x�)

= f
(
f −1(x − �x�)) + �x�

= x − �x� + �x� = x

and

(H ◦ F)(x) = H
(
f

(
x − �x�) + �x�)

= f −1(f
(
x − �x�)) + �x�

= x − �x� + �x� = x

for x ∈ R. This shows that H is the inverse of F . Hence, F is a homeomorphism. �

Now we consider the class of orientation-preserving homeomorphisms.

Definition 4.2 A homeomorphism f : S1 → S1 is said to be orientation-preserving
if it has a lift which is an increasing function (see Fig. 4.2).

It follows from Proposition 4.1 that f is orientation-preserving if and only if all
its lifts are increasing functions.

For example, the homeomorphisms of the circle considered in Examples 4.1
and 4.2 are orientation-preserving since the lifts in (4.3) and (4.5) are increasing
functions. We also give an example of a homeomorphism that is not orientation-
preserving.
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Example 4.3 Given α ∈ R, consider the homeomorphism f : S1 → S1 defined by

f (x) = −x + α mod 1.

One can easily verify that the function F : R → R defined by F(x) = −x + α is a
lift of f . Since it is decreasing, the homeomorphism f is not orientation-preserving.

4.1.2 Rotation Number

In this section we establish the existence of a limit that can be described as an
average speed for any lift of an orientation-preserving homeomorphism of the circle.

Theorem 4.1 Let f : S1 → S1 be an orientation-preserving homeomorphism. If F

is a lift of f , then for each x ∈ R the limit

ρ(F ) = lim
n→∞

Fn(x) − x

n
∈ R

+
0 (4.9)

exists and is independent of x. Moreover, if G is another lift of f , then

ρ(G) − ρ(F ) ∈ Z.

Proof We first assume that F(x) > x for every x ∈ R. Given a point x ∈R, consider
the sequence an = Fn(x) − x. For each m,n ∈ N, we have

am+n = Fm+n(x) − x

= Fm
(
Fn(x)

) − Fn(x) + an. (4.10)

Since

�an� ≤ Fn(x) − x < �an� + 1, (4.11)

we obtain

Fm
(
Fn(x)

)
< Fm

(
x + �an�

) + 1. (4.12)

On the other hand, we have

Fm
(
x + �an�

) − (
x + �an�

) = Fm(x) − x = am

and it follows from (4.10) and (4.12) that

am+n < Fm
(
x + �an�

) + 1 − Fn(x) + an

= am + an + x + �an� − Fn(x) + 1.

Finally, by (4.11), we obtain

am+n ≤ am + an + 1
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and the sequence cn = an + 1 satisfies condition (3.25) in Lemma 3.2. Hence, the
limit

lim
n→∞

Fn(x) − x

n
= lim

n→∞
an

n
= inf

{
an

n
: n ∈ N

}
(4.13)

exists. Since

an = Fn(x) − x > 0

(recall that F is increasing), the limit in (4.13) is finite.
Now we show that the limit in (4.13) is independent of x. Given x, y ∈ R and

k ∈N with |x − y| ≤ k, we have

F(x) ≤ F(y + k) = F(y) + k

and

F(x) ≥ F(y − k) = F(y) − k.

Hence, |F(x) − F(y)| ≤ k and it follows by induction that

∣∣Fn(x) − Fn(y)
∣∣ ≤ k for n ∈N.

This implies that

∣∣∣∣
Fn(x) − x

n
− Fn(y) − y

n

∣∣∣∣ =
∣∣∣∣
Fn(x) − Fn(y)

n
+ y − x

n

∣∣∣∣ ≤ 2k

n
→ 0

when n → ∞ and thus,

lim
n→∞

Fn(x) − x

n
= lim

n→∞
Fn(y) − y

n

for x, y ∈ R (given x, y ∈R, one can always choose k ∈N such that |x − y| ≤ k).
It remains to establish the last property in the theorem. By Proposition 4.1, if F

and G are lifts of f , then there exists a k ∈ Z such that G − F = k. It follows by
induction that

Gn(x) = Fn(x) + nk.

Therefore,

ρ(G) = lim
n→∞

Gn(x) − x

n

= lim
n→∞

Fn(x) − x

n
+ k = ρ(F ) + k,

which establishes the last property in the theorem. �



64 4 Low-Dimensional Dynamics

For each x ∈R, we also have

ρ(F ) = lim
n→∞

Fn(x)

n
.

Now we introduce the notion of the rotation number.

Definition 4.3 The rotation number of an orientation-preserving homeomorphism
f : S1 → S1 is defined by

ρ(f ) = π(ρ(F )), (4.14)

where F is any lift of f and where π(x) = [x].

It follows from the last property in Theorem 4.1 that the rotation number is well
defined, that is, ρ(f ) does not depend on the lift F used in (4.14).

Example 4.4 Given α ∈ R, consider the rotation Rα in (4.2). For the lift F in (4.3),
we obtain

Fn(x) − x

n
= x + n(α + k) − x

n
= α + k

and thus, ρ(F ) = α + k. Hence,

ρ(Rα) = π(ρ(F )) = α mod 1.

Example 4.5 Now we consider the homeomorphism f : S1 → S1 defined in (4.4),
with |β| < 1/(2π). Since the limit in (4.9) does not depend on x, for the lift F

in (4.5), we obtain

ρ(F ) = lim
n→∞

Fn(0) − 0

n
= 0.

4.1.3 Rational Rotation Number

Here and in the next section, we verify that the properties of an orientation-
preserving homeomorphism of the circle strongly depend on whether the rotation
number is rational or irrational.

In this section we consider the homeomorphisms with rational rotation num-
ber. We recall that x ∈ S1 is said to be a periodic point of a map f : S1 → S1 if
f q(x) = x for some q ∈ N.

Theorem 4.2 Let f : S1 → S1 be an orientation-preserving homeomorphism. Then
ρ(f ) ∈ Q if and only if f has at least one periodic point.
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Proof We first assume that ρ(f ) = 0 and we show that f has a fixed point. Other-
wise, if f has no fixed points and F is a lift of f , then

F(x) − x ∈R \Z (4.15)

for x ∈ R. Indeed, if F(x) − x ∈ Z for some x ∈R, then

π(x) = π
(
F(x)

) = f
(
π(x)

)

and thus, π(x) would be a fixed point of f . Since F is continuous, it follows
from (4.15) that there exists a k ∈ Z such that

k < F(x) − x < k + 1 for x ∈R. (4.16)

On the other hand,

F(x + 1) − (x + 1) = F(x) − x (4.17)

for x ∈ R and thus, the continuous function x 	→ F(x) − x is completely deter-
mined by its values on the compact interval [0,1]. Hence, it follows from (4.16) and
Weierstrass’ theorem that there exists an ε > 0 such that

k + ε ≤ F(x) − x ≤ k + 1 − ε (4.18)

for x ∈ R. Since

Fn(x) − x =
n−1∑

i=0

[
F

(
F i(x)

) − F i(x)
]
,

it follows from (4.18) that

k + ε ≤ Fn(x) − x

n
≤ k + 1 − ε

and thus,

ρ(f ) = lim
n→∞

Fn(x) − x

n
mod 1 ∈ [ε,1 − ε].

This contradicts the hypothesis that ρ(f ) = 0 and thus, f must have a fixed point.
Now we assume that ρ(f ) = p/q ∈Q. Since Fq is a lift of f q , we obtain

ρ
(
f q

) = lim
n→∞

(F q)n(x) − x

n
mod 1

= q lim
n→∞

Fqn(x) − x

qn
mod 1

= qρ(f ) mod 1

= p mod 1 = 0.
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It follows from the above argument for a zero rotation number that the homeomor-
phism f q has a fixed point, which is a periodic point of f .

For the converse statement, we assume that f has a periodic point. Then there
exist y ∈ R and q ∈ N such that

f q
(
π(y)

) = π(y).

It follows from (4.1) by induction that f q ◦ π = π ◦ Fq and thus,

π
(
Fq(y)

) = π(y).

Hence, Fq(y) = y + p for some p ∈ Z. On the other hand, it follows from (4.17)
that

F(x + p) = F(x) + p

for x ∈ R and thus, we also have

Fq(x + p) = Fq(x) + p (4.19)

for x ∈ R and q ∈ N. In particular, taking x = y, we obtain

F 2q(y) = Fq
(
Fq(y)

) = Fq(y + p)

= Fq(y) + p = y + 2p

and it follows by induction that

Fnq(y) = y + np for n ∈ N.

Thus,

ρ(F ) = lim
n→∞

Fnq(y) − y

nq

= lim
n→∞

np

nq
= p

q
.

This completes the proof of the theorem. �

We continue to consider a homeomorphism f : S1 → S1. We recall that, given
q ∈ N, a point x ∈ S1 is said to be a q-periodic point of f if f q(x) = x. It follows
from the proof of Theorem 4.2 that f q has a fixed point, that is, f has a q-periodic
point if and only if ρ(f ) = p/q for some p ∈ N. Thus, f has a periodic point with
period q if and only if ρ(f ) = p/q with p and q coprime. Indeed, by the previous
observation, f has no l-periodic points for any l < q .

We also have the following result.

Theorem 4.3 Let f : S1 → S1 be an orientation-preserving homeomorphism. If
ρ(f ) = p/q with p and q coprime, then all periodic points of f have period q .
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Proof Let x ∈ S1 be a periodic point of f . It follows from the former discussion
that x has period l = dq for some d ∈ N. On the other hand, it follows from the
proof of Theorem 4.2 that if F is a lift of f , then

F l(x) = x + dp + ml (4.20)

for some m ∈ Z. In fact, one can always assume that m = 0. Indeed, if G is another
lift of f , then F = G + m for some m ∈ Z and thus, F l = Gl + ml. Hence, it is
sufficient to replace F by G.

Now we show that Fq(x) = x +p. Since F is increasing, if Fq(x) > x +p, then
it follows from (4.19) that

F 2q(x) > Fq(x + p) = Fq(x) + p > x + 2p

and by induction,

F l(x) = Fdq(x) > x + dp.

This contradicts (4.20) (with m = 0). We obtain in an analogous manner a contra-
diction when Fq(x) < x + p. Thus, Fq(x) = x + p and the point x has period q . �

4.1.4 Irrational Rotation Number

In this section we consider the homeomorphisms of the circle with irrational rotation
number. We first show that the orbits of these homeomorphisms are ordered as the
orbits of the rotation Rρ , where ρ is the rotation number.

Theorem 4.4 Let F be a lift of an orientation-preserving homeomorphism of the
circle f : S1 → S1 with ρ(f ) ∈ R \Q. For each x ∈ R and n1, n2,m1,m2 ∈ Z, we
have

Fn1(x) + m1 < Fn2(x) + m2 (4.21)

if and only if

n1ρ(F ) + m1 < n2ρ(F ) + m2. (4.22)

Proof It is sufficient to take n1 �= n2 since otherwise there is nothing to prove.
We first assume that (4.21) holds. For n1 > n2, we have

Fn1−n2(x) < x + m2 − m1

for x ∈ R. Thus,

F 2(n1−n2)(x) < Fn1−n2(x) + m2 − m1 < x + 2(m2 − m1)
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and by induction,

Fn(n1−n2)(x) < x + n(m1 − m2).

We obtain

ρ(F ) = lim
n→∞

Fn(n1−n2)(x) − x

n(n1 − n2)
<

m2 − m1

n1 − n2
,

with strict inequality since ρ(f ) is irrational. This shows that inequality (4.22)
holds. Analogously, for n1 < n2, we have

Fn2−n1(x) > x + m1 − m2

for x ∈ R and thus,

Fn(n2−n1)(x) > x + n(m1 − m2).

Hence,

ρ(F ) = lim
n→∞

Fn(n2−n1)(x) − x

n(n2 − n1)
>

m1 − m2

n2 − n1

and inequality (4.22) also holds in this case.
In the other direction, we must show that if

Fn1(x) + m1 ≥ Fn2(x) + m2,

then

n1ρ(F ) + m1 ≥ n2ρ(F ) + m2.

But since ρ(f ) is irrational, none of these inequalities can be an equality. Thus, this
is equivalent to show that if

Fn1(x) + m1 > Fn2(x) + m2,

then

n1ρ(F ) + m1 > n2ρ(F ) + m2.

For this it is sufficient to reverse all inequalities in the previous argument. �

Now we establish a more precise relation between a homeomorphism of the circle
with irrational rotation number ρ and the rotation of the circle Rρ .

Theorem 4.5 Let f : S1 → S1 be an orientation-preserving homeomorphism with
rotation number ρ(f ) ∈ R \Q. Then there exists a nondecreasing and onto contin-
uous function h : S1 → S1 such that h ◦ f = Rρ(f ) ◦ h.

Proof Given a lift F of the homeomorphism f and a point x ∈ R, consider the sets

A = {
Fn(x) + m : n,m ∈ Z

}
and B = {

nρ + m : n,m ∈ Z
}
, (4.23)
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where ρ = ρ(F ). We define a function H : R → R by

H(y) = sup
{
nρ + m : Fn(x) + m ≤ y

}
. (4.24)

It follows from Theorem 4.4 that H is nondecreasing. Moreover, H is constant on
each interval contained in the complement of A. Indeed, if [a, b] ⊂ S1 \ A, then

Fn(x) + m ≤ a ⇔ Fn(x) + m ≤ b

for every n,m ∈ Z and thus H(a) = H(b).

Lemma 4.1 The set B is dense in R.

Proof Since y ∈ B if and only if y +m ∈ B for some m ∈ Z, it suffices to show that
B ∩ [0,1] is dense in [0,1]. Clearly, the set B ∩ [0,1] is infinite. Otherwise, there
would exist pairs (n1,m1) �= (n2,m2) in Z

2 such that

n1ρ + m1 = n2ρ + m2,

but this is impossible since ρ is irrational (if n1 = n2, then m1 �= m2). Let then xn

be a sequence in B ∩ [0,1] with infinitely many values. Since [0,1] is compact,
one can assume that the sequence xn is convergent. Hence, given ε > 0, there exist
m,n ∈ N such that 0 < |xn − xm| < ε. Writing

xn = n1ρ + m1 and xm = n2ρ + m2,

we obtain

xn − xm = (n1 − n2)ρ + (m1 − m2) ∈ B.

This shows that the set B ⊃ {k(xn −xm) : k ∈ Z} is ε-dense in R. Since ε is arbitrary,
we conclude that B is dense in R. �

Since ρ is irrational, it follows from Theorem 4.4 that

H
(
Fn(x) + m

) = nρ + m. (4.25)

This implies that the function H has no jumps. Indeed, by (4.25), we have

H(R) ⊃ H(A) = B

and by Lemma 4.1, the set B is dense in R. Since H is monotonous, this implies
that it is also continuous.

Now we consider the lift S : R → R of Rρ given by S(x) = x + ρ. By (4.25), we
have

(H ◦ F)
(
Fn(x) + m

) = H
(
Fn+1(x) + m

) = (n + 1)ρ + m
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and

(S ◦ H)
(
Fn(x) + m

) = S(nρ + m) = (n + 1)ρ + m.

Thus,

H ◦ F = S ◦ H in A. (4.26)

Since the maps H , F and S are continuous, identity (4.26) holds in A and thus also
in R (recall that H is constant on each interval contained in the complement of A).
That is, we have

H ◦ F = S ◦ H in R. (4.27)

On the other hand,

H(y + 1) = sup
{
nρ + m : Fn(x) + m ≤ y + 1

}

= sup
{
nρ + m : Fn(x) + m − 1 ≤ y

}

= sup
{
nρ + m − 1 : Fn(x) + m − 1 ≤ y

} + 1

= H(y) + 1.

The function H is also onto. Indeed, since it is continuous, we have

H(R) = H
([0,1]) ⊃ B =R.

Hence, the function h : S1 → S1 defined by

h(y) = H(y) mod 1

is continuous, nondecreasing and onto. Moreover, it follows from property (4.27)
that h ◦ f = Rρ ◦ h. �

If the homeomorphism has a dense positive semiorbit, which by Theorem 3.2 is
equivalent to the existence of a dense orbit, then Theorem 4.5 can be strengthened
as follows.

Theorem 4.6 (Poincaré) Let f : S1 → S1 be an orientation-preserving homeomor-
phism with ρ(f ) ∈R\Q. If f has a dense positive semiorbit, then it is topologically
conjugate to the rotation Rρ(f ), that is, there exists a homeomorphism h : S1 → S1

such that h ◦ f = Rρ(f ) ◦ h.

Proof Let x ∈ S1 be a point whose positive semiorbit is dense in S1. Now consider
the function h : S1 → S1 constructed in Theorem 4.5 taking the point x in (4.23)
and (4.24). Now the set A is dense in S1 and thus, the function H in (4.24) is
bijective (we recall that H is constant on each interval contained in R \ A, which
now is the empty set). Thus, the function h is also bijective. It remains to show that
h is open, that is, that the image h(U) of an open set U is also open. Since h is
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continuous, it maps compact sets to compact sets. Hence, given an open set U , the
image h(S1 \ U) = S1 \ h(U) is compact and thus, h(U) is an open set. This shows
that h is a homeomorphism. �

4.2 Diffeomorphisms of the Circle

In this section we consider the particular case of the diffeomorphisms of the circle
(we recall that a diffeomorphism is a bijective differentiable map with differentiable
inverse). We show that any sufficiently regular diffeomorphism f : S1 → S1 with
irrational rotation number is topologically conjugate to a rotation. More precisely,
there exists a homeomorphism h : S1 → S1 such that

h ◦ f = Rρ(f ) ◦ h.

We first recall that a function ϕ : S1 →R is said to have bounded variation if

Var(ϕ) = sup
n∑

k=1

∣∣ϕ(xk) − ϕ(yk)
∣∣ < +∞,

where the supremum is taken over all disjoint open intervals (x1, y1), . . . , (xn, yn),
with n ∈N.

Example 4.6 Let ϕ : S1 → R be a differentiable function with bounded derivative.
Then there exists a K > 0 such that |ϕ′(x)| ≤ K for x ∈ S1. If (xi, yi), for i =
1, . . . , n, are disjoint open intervals with y1 ≤ x2, y2 ≤ x3, . . . , yn−1 ≤ xn, then

n∑

i=1

∣∣ϕ(yi) − ϕ(xi)
∣∣ =

n∑

i=1

∣∣ϕ′(zi)
∣∣(yi − xi)

≤
n∑

i=1

K(yi − xi) ≤ K,

where zi is some point in the interval (xi, yi). Thus, Var(ϕ) ≤ K and ϕ has bounded
variation.

The following result gives conditions for a diffeomorphism of the circle to be
topologically conjugate to a rotation.

Theorem 4.7 (Denjoy) Let f : S1 → S1 be an orientation-preserving C1 diffeo-
morphism whose derivative has bounded variation. If ρ(f ) ∈ R \Q, then f is topo-
logically conjugate to the rotation Rρ(f ).

Proof By Theorem 4.6, it suffices to show that there exists a point z ∈ S1 whose
positive semiorbit is dense, which is equivalent to ω(z) = S1. If ω(z) �= S1, then
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the set S1 \ ω(z) is a disjoint union of maximal intervals (we say that an open
interval I ⊂ S1 \ ω(z) is maximal if any nonempty open interval J such that I ⊂
J ⊂ S1 \ ω(z) coincides with I ). Moreover, since f is a homeomorphism, the set
ω(z) is f -invariant and thus, the image and the preimage of any of these intervals
are also maximal intervals.

Now let I ⊂ S1 \ ω(z) be a maximal interval. We show that the sets f n(I ), for
n ∈ Z, are pairwise disjoint. By the former paragraph, if there exist integers m > n

such that f m(I) ∩ f n(I ) �= ∅, then

f m−n(I ) ∩ I �= ∅

and thus f m−n(I ) = I . Since f is continuous, we also have f m−n(I ) = I .

Lemma 4.2 Let g : J → J be a continuous function on some interval J ⊂ R. If
K ⊂ J is a compact interval such that g(K) ⊃ K , then g has a fixed point in K .

Proof Write K = [α,β]. Since g(K) ⊃ K , there exist a, b ∈ K such that

g(a) = α ≤ a and g(b) = β ≥ b.

Since g(a) − a ≤ 0 and g(b) − b ≥ 0, the continuous function x 	→ g(x) − x has a
zero in K . �

It follows from the lemma that f m−n has a fixed point in I , but this is impossible
since the rotation number is irrational. Thus, the intervals f n(I ) are pairwise disjoint
and their lengths λn satisfy

∑

n∈Z
λn ≤ 1. (4.28)

Now we establish some auxiliary results.

Lemma 4.3 There exist infinitely many n ∈N such that for each x ∈ S1 the intervals
J = (x, f −n(x)), f (J ), . . . , f n(J ) are pairwise disjoint.

Proof For each k = 0, . . . , n, we have

f k(J ) = (
f k(x), f k−n(x)

)

since f is orientation-preserving. Hence, the intervals f k(J ) are pairwise disjoint if
and only if f k(x), f k−n(x) /∈ f l(J ) for k, l = 0, . . . , n with l < k, or equivalently,

f k(x) /∈ J for |k| ≤ n.

We note that this property only depends on the ordering of the orbit of x. By The-
orem 4.4, this is the same as the ordering of the orbits of the rotation Rρ , where
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ρ = ρ(f ). Since ρ is irrational, all negative semiorbits are dense. Thus, there exist
infinitely many n ∈N such that

Rk
ρ(y) /∈ (

y,R−n
ρ (y)

)
for |k| ≤ n and y ∈ S1.

This yields the desired result. �

Lemma 4.4 If J ⊂ S1 is an open interval such that the sets J,f (J ), . . . , f n−1(J )

are pairwise disjoint, then

c−1 ≤ (f n)′(y)

(f n)′(z)
≤ c (4.29)

for any y, z ∈ J , where c = exp Var(logf ′) < +∞.

Proof We define a function ϕ : S1 → R by ϕ = logf ′ (f is orientation-preserving
and hence f ′ > 0). Since the sets J, . . . , f n−1(J ) are pairwise disjoint, given y, z ∈
J , the open intervals determined by the pairs of points f k(y) and f k(z), for k =
0, . . . , n − 1, are also disjoint. Thus,

Var(ϕ) ≥
n−1∑

k=0

∣∣ϕ
(
f k(y)

) − ϕ
(
f k(z)

)∣∣

≥
∣∣
∣∣∣

n−1∑

k=0

ϕ
(
f k(y)

) − ϕ
(
f k(z)

)
∣∣
∣∣∣

=
∣∣
∣∣∣
log

n−1∏

k=0

f ′(f k(y)
) − log

n−1∏

k=0

f ′(f k(z)
)
∣∣
∣∣∣

=
∣∣∣∣
∣
log

(f n)′(y)

(f n)′(z)

∣∣∣∣
∣
.

This implies that

−Var(ϕ) ≤ log
(f n)′(y)

(f n)′(z)
≤ Var(ϕ),

which yields inequality (4.29) provided that Var(ϕ) is finite. Since S1 is compact
and f ′ is continuous, we have inff ′ > 0. Hence,

∣∣ϕ(y) − ϕ(z)
∣∣ = ∣∣logf ′(y) − logf ′(z)

∣∣ ≤ |f ′(y) − f ′(z)|
inff ′

for x, y ∈ S1 and since f ′ has bounded variation, we obtain

Var(ϕ) ≤ Var(f ′)
inff ′ < +∞.

This completes the proof of the lemma. �
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Applying Lemma 4.4 to the intervals J = (x, f −n(x)) in Lemma 4.3, with y =
x ∈ I and z = f −n(x) (with n independent of x), we conclude that

c−1 ≤ (
f n

)′
(x)

(
f −n

)′
(x) ≤ c.

Since

a + b ≥ √
ab for a, b ≥ 0,

we obtain

λn + λ−n =
∫

I

(
f n

)′
(x) dx +

∫

I

(
f −n

)′
(x) dx

=
∫

I

[(
f n

)′
(x) + (

f −n
)′
(x)

]
dx

≥
∫

I

√(
f n

)′
(x)

(
f −n

)′
(x) dx

≥ c−1/2λ0,

for the integers n given by Lemma 4.3. This implies that

∑

m∈Z
λm = +∞,

which contradicts (4.28). Thus, there exists a point z ∈ S1 with ω(z) = S1. �

4.3 Maps of the Interval

In this section we consider the class of continuous maps of a compact interval.
In particular, we study the properties of their periodic points. We also establish
Sharkovsky’s theorem, which describes how the existence of periodic points with
a given period determines the existence of periodic points with another period.

4.3.1 Existence of Periodic Points

Let f : I → I be a continuous map of an interval I ⊂ R.

Definition 4.4 Given intervals J,K ⊂ I such that f (J ) ⊃ K , we say that J cov-
ers K and we write J → K .

This notion can be used in the study of the existence of periodic points.
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Proposition 4.2 Let f : I → I be a continuous map of a compact interval I ⊂ R.
If there exist closed intervals I0, I1, . . . , In−1 ⊂ I such that

I0 → I1 → I2 → ·· · → In−1 → I0,

then f has an n-periodic point x ∈ I such that f m(x) ∈ Im for m = 0,1, . . . , n − 1.

Proof We first show that there exists a closed interval J0 ⊂ I0 such that f (J0) = I1.
Since f (I0) ⊃ I1, there exist points a0, b0 ∈ I0 whose images are the endpoints of
I1. If J0 is the closed interval with endpoints a0 and b0, then f (J0) = I1.

Now let us assume that we constructed closed intervals

J0 ⊃ J1 ⊃ · · · ⊃ Jm−1

contained in I0, for some m < n, such that f k+1(Jk) = Ik+1 for k = 0, . . . ,m − 1.
Then

f m+1(Jm−1) = f (Im) ⊃ Im+1

and an analogous argument shows that there exists a closed interval Jm ⊂ Jm−1 such
that f m+1(Jm) = Im+1. Thus, we obtain closed intervals

J0 ⊃ J1 ⊃ · · · ⊃ Jn−1

such that f k+1(Jk) = Ik+1 for k = 0, . . . , n − 1, where In = I0. In particular,

f n(Jn−1) = I0 ⊃ Jn−1 (4.30)

and each point x ∈ Jn−1 satisfies

f m(x) ∈ f m(Jn−1) ⊂ f m(Jm−1) = Im (4.31)

for m = 0, . . . , n − 1. On the other hand, it follows from (4.30) and Lemma 4.2 that
f n has a fixed point in Jn−1. Thus, f has an n-periodic point in Jn−1, which also
satisfies (4.31). �

Now we consider a quadratic map.

Example 4.7 Given a > 4, consider the map f : [0,1] → R defined by

f (x) = ax(1 − x).

We have

f

([
1

a
,

1

2

])
=

[
1 − 1

a
,
a

4

]
⊃

[
1 − 1

a
,1

]

and

f

([
1 − 1

a
,1

])
=

[
0,1 − 1

a

]
⊃

[
1

a
,

1

2

]
.
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Since
[

1

a
,

1

2

]
∩

[
1 − 1

a
,1

]
= ∅,

it follows from Proposition 4.2 that f has a periodic point in [1/a,1/2] with pe-
riod 2.

The criterion in Proposition 4.2 can be used to establish the following particular
case of Sharkovsky’s theorem (Theorem 4.9).

Theorem 4.8 Let f : I → I be a continuous map of a compact interval I ⊂ R. If f

has a periodic point with period 3, then it has periodic points with all periods.

Proof Let x1 < x2 < x3 be the elements of the orbit of a periodic point with pe-
riod 3. We first assume that f (x2) = x3. We have f 2(x2) = x1 and thus,

[x1, x2] ↔ [x2, x3] ý .

On the other hand, if f (x2) = x1, then

[x2, x3] ↔ [x1, x2] ý .

In both cases, we have I → I taking, respectively, I = [x2, x3] or I = [x1, x2]. It
follows from Proposition 4.2 that f has a fixed point.

Furthermore, given an integer n ≥ 2 with n �= 3, we have

I1 → I2 → I2 → ·· · → I2 → I2 → I1, (4.32)

with n + 1 elements, taking, respectively,

I1 = [x1, x2] and I2 = [x2, x3]

or

I1 = [x2, x3] and I2 = [x1, x2].
It follows from Proposition 4.2 that f has an n-periodic point x ∈ I1. If it did not
have period n, then x ∈ I1 ∩ I2 = {x2}, that is, x = x2. The orbit of x2 belongs
successively to the intervals

I1 I2 I2 I1 I2 I2 I1 · · ·

and thus, it cannot belong successively to the intervals in (4.32) unless n = 3 (but
we took n �= 3). This contradiction shows that the periodic point x has period n. �
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Fig. 4.3 A periodic point
with period 3

Fig. 4.4 A periodic point
with period 5

Figures 4.3 and 4.4 give examples on the interval [0,1] with periods 3 and 5,
respectively.
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4.3.2 Sharkovsky’s Theorem

In this section we establish Sharkovsky’s theorem relating the existence of periodic
points with different periods. We consider the ordering ≺ on N defined by

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · · ≺ 2m ≺ · · ·
· · ·
≺ · · · ≺ 2m(2n + 1) ≺ · · · ≺ 2m7 ≺ 2m5 ≺ 2m3 ≺ · · ·
· · ·
≺ · · · ≺ 2(2n + 1) ≺ · · · ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ · · ·
≺ · · · ≺ 2n + 1 ≺ · · · ≺ 7 ≺ 5 ≺ 3.

Theorem 4.9 (Sharkovsky) Let f : I → I be a continuous map of a compact inter-
val I ⊂ R. If f has a periodic point with period p and q ≺ p, then f has a periodic
point with period q .

Proof We first establish two auxiliary results.

Lemma 4.5 Let x ∈ I be a periodic point with odd period p > 1 such that there
exist no periodic points with odd period less than p. Then the intervals determined
in I by the orbit of x can be numbered I1, . . . , Ip−1 so that the graph obtained from
the covering relations between them (see Definition 4.4) contains the subgraph

ü I1 Ip−1 Ip−2

I2 · · ·

I3 I4 I5

�

�

�
�

�
�

�
�

�
�

���

�
�
�
�
�
�
�
�
���

��

�

	

� �

	
,

that is,

I1 → I1 → I2 → ·· · → Ip−1 and Ip−1 → Ik

for any odd k.

Proof Consider the interval I1 = [u,v], where

u = max
{
y ∈ γ (x) : f (y) > y

}
and v = min

{
y ∈ γ (x) : y > u

}
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(recall that γ (x) is the orbit of x). By the definition of u, we have f (v) < v (note
that x is not a fixed point and thus f (v) �= v). Moreover, f (u) ≥ v (since f (u) > u)
and f (v) ≤ u (since f (v) < v). Therefore,

I1 → I1. (4.33)

Moreover, the inclusion f (I1) ⊃ I1 is proper (otherwise x would have period 2).
Since

f p(I1) ⊃ f p−1(I1) ⊃ · · · ⊃ f (I1) ⊃ I1

and x is p-periodic, we have f p(I1) ⊃ γ (x) and so f p(I1) contains all intervals
determined by adjacent points in the orbit of x.

Now let r = card I− and s = card I+, where

I− = γ (x) ∩ (−∞, u] and I+ = γ (x) ∩ [v,+∞).

Since r + s = p, we have r �= s (recall that p is odd). This implies that there exist
adjacent points of γ (x) in I− or in I+, thus determining an interval J , such that
only one of them is mapped by f to the other interval. Otherwise, we would have
f (I−) ⊂ I+ and f (I+) ⊂ I− (since f (u) > u and f (v) < v), but this is impossible
since r �= s. We also note that J → I1.

Now let

I1 → I2 → ·· · → Ik → I1

be the shortest cycle of the form I1 → ·· · → I1 that is different from I1 ý (it
follows from the former discussion that such a cycle always exists). Clearly, k ≤
p − 1 since the orbit of x determines p − 1 intervals. Let q be the odd element of
{k, k + 1}. Since

I1 → ·· · → Ik → I1 and I1 → ·· · → Ik → I1 → I1,

it follows from Proposition 4.2 that f q has a fixed point y. We note that y is not a
fixed point of f . Otherwise,

y ∈ I1 ∩ · · · ∩ Ik ⊂ I1 ∩ I2 (4.34)

(recall that k ≥ 2) would be in the orbit of x, which yields a contradiction since x is
not a fixed point. It follows from the minimality of the odd period p that q ≥ p and
thus k = p − 1. This shows that

I1 → I2 → ·· · → Ip−1 → I1 (4.35)

is the shortest cycle of the form I1 → ·· · → I1 that is different from I1 ý.
Now we show that Ip−1 → Ik for k odd, which includes Ip−1 → Ip−2 since p is

odd. We first verify that the intervals Ii are ordered in I in the form

Ip−1, Ip−3, . . . , I2, I1, I3, . . . , Ip−2 (4.36)
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(up to orientation). Since I1 → ·· · → Ip−1 → I1 is the shortest cycle of the form
I1 → ·· · → I1 that is different from I1 ý, we conclude that if Ik → Il , then l ≤
k + 1 (or there would exist a shorter cycle of this form). This implies that I1 only
covers I1 and I2 (see (4.33) and (4.35)) and hence, I2 is adjacent to I1 (since f (I1)

is connected). Since I1 = [u,v], we have I2 = [w,u], with f (u) = v (recall that
f (u) > u) and f (v) = w, or we have I2 = [v,w], with f (u) = w and f (v) = u.
We analyze only the first case since the second one is entirely analogous. Since
f (u) = v and I2 does not cover I1, we obtain f (I2) ⊂ [v,+∞). But since I2 covers
I3, we conclude that I3 = [v, t], with t = f (w) = f 2(v) (since I2 covers no other
interval). Continuing this procedure yields the ordering in (4.36). This implies that

up−1 < up−3 < · · · < u2 < u < u1 < u3 < · · · < up−2,

where ui = f i(u). Thus, we obtain Ip−1 = [up−1, up−3] → Ik for k odd since
f (up−1) = u and f (up−3) = up−2. This completes the proof of the lemma. �

Lemma 4.6 If f has a periodic point with even period, then it has a periodic point
with period 2.

Proof Let x be a periodic point with even period p > 2. We consider two cases:

1. We first assume that there are no adjacent points in the orbit of x determining
an interval J �= I1 that covers I1. Let y and z be, respectively, the minimum and
maximum of the orbit of x, that is,

y = minγ (x) and z = maxγ (x).

By construction, f (u) ≥ v and thus, f ([y,u]) intersects [v,+∞). On the other
hand, by hypothesis, the interval [y,u] does not cover I1 and thus, f ([y,u]) ⊂
[v,+∞). One can show in an analogous manner that f ([v, z]) ⊂ (−∞, u]. Since
f permutes the points in the orbit of x, we obtain

[y,u] → [v, z] → [y,u]
and it follows from Proposition 4.2 that f has a periodic point with period 2.

2. Now we assume that there are adjacent points in the orbit of x determining an
interval Ik �= I1 that covers I1. If

I1 → ·· · → Ik → I1

is the shortest cycle of the form I1 → ·· · → I1 that is different from I1 ý, then
k ≤ p − 1. Now take q ∈ {k, k + 1} even. Clearly q ≤ p. Since

I1 → ·· · → Ik → I1 and I1 → ·· · → Ik → I1 → I1,

it follows from Proposition 4.2 that f q has a fixed point y. We note that y is not
a fixed point of f (see (4.34)). If p was the smallest even period, then q = p and
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thus k = p − 1. Proceeding as in the proof of Lemma 4.5, one could then show
that the intervals Ii must be ordered in I in the form

Ip−2, . . . , I2, I1, I3, . . . , Ip−1

(up to orientation) and that Ip−1 → Ik for k even. In particular, we would obtain
the cycle Ip−1 → Ip−2 → Ip−1 and, by Proposition 4.2, f would have a periodic
point with period 2 (since Ip−2 ∩ Ip−1 = ∅). This contradiction shows that p

cannot be the smallest even period. So one can consider a periodic point with
smaller even period and restart the process.

This yields the desired result. �

We proceed with the proof of the theorem.

Case 1. p = 2k and q = 2l ≺ p with l < k.

Take l > 0. If x is a periodic point of f with period p, then it is a periodic point of
f q/2 with period 2k−l+1. Since k − l + 1 ≥ 2, it follows from Lemma 4.6 that f q/2

has a periodic point y with period 2, which is a periodic point of f with period q .
Now take l = 0. It follows from Lemma 4.6 that f has a periodic point with

period 2. It determines an interval I1 in I whose endpoints are permuted by f .
Since f is continuous, it must have a fixed point in I1.

Case 2. p = 2kr and q = 2ks ≺ p with r > 1 odd minimal and s even.

We note that r is the smallest odd period of the periodic points of f 2k
. It follows

from Lemma 4.5 that there exists a cycle of length s. More precisely, when s < r ,
take

Ir−1 → Ir−s → ·· · → Ir−2 → Ir−1

and when s ≥ r , take

I1 → I2 → ·· · → Ir−1 → I1 → I1 → ·· · → I1.

It follows from Proposition 4.2 that f 2k
has a periodic point with period s, which is

a periodic point of f with period 2ks = q .

Case 3. p = 2kr and q = 2l ≺ p with r > 1 odd minimal and l ≤ k.

Taking s = 2 in Case 2, we obtain a periodic point of f with period 2ks = 2k+1. It
follows from Case 1 that f has a periodic point with period 2l for each l ≤ k.

Case 4. p = 2kr and q = 2ks ≺ p with r > 1 odd minimal and s > r odd.

Again, r is the smallest odd period of the periodic points of f 2k
. By Lemma 4.5, we

obtain the cycle of length s given by

I1 → I2 → ·· · → Ir−1 → I1 → I1 → ·· · → I1.
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It follows from Proposition 4.2 that f 2k
has a periodic point x with period s. If x is

a periodic point of f with period 2ks, then the proof is complete. Otherwise, x has
period 2ls for some l < k. Take p̄ = 2ls and q̄ = 2l s̄ = q , where s̄ = 2k−ls. Since
s̄ is even, it follows from Case 2 that there exists a periodic point of f with period
q̄ = q . �

4.4 The Poincaré–Bendixson Theorem

In this section we establish one of the most important results of the qualitative theory
of differential equations in the plane: the Poincaré–Bendixson theorem.

Given a C1 function f : R2 → R
2, consider the initial value problem

{
x′ = f (x),

x(0) = x0
(4.37)

for each x0 ∈ R
2. We assume that the unique solution x(t, x0) of (4.37) is defined

for t ∈ R. It follows from Proposition 2.3 that the family of maps ϕt : R2 → R
2

defined for each t ∈ R by ϕt (x0) = x(t, x0) is a flow.
Now we establish the Poincaré–Bendixson theorem. We recall that a point x ∈R

2

with f (x) = 0 is called a critical point of f .

Theorem 4.10 (Poincaré–Bendixson) Let f : R2 → R
2 be a C1 function. For the

flow ϕt determined by the equation x′ = f (x), if the positive semiorbit γ +(x) of
a point x ∈ R

2 is bounded and ω(x) contains no critical points, then ω(x) is a
periodic orbit.

Proof Since the positive semiorbit γ +(x) is bounded, it follows from Proposi-
tion 3.6 that ω(x) is nonempty. Take a point p ∈ ω(x). Since ω(x) is contained
in the closure of γ +(x), it follows from the first property in Proposition 3.6 that
ω(p) is nonempty and it follows from the second property in Proposition 3.5 that
ω(p) ⊂ ω(x). Now take a point q ∈ ω(p). By hypothesis, q is not a critical point
and thus, there exists a line segment L containing q that is a transversal to f (see
Exercise 3.5). Since q ∈ ω(p), it follows from the first property in Proposition 3.5
that there exists a sequence tk ↗ +∞ in R

+ such that ϕtk (p) → q when k → ∞.
One can also assume that ϕtk (p) ∈ L for k ∈ N. On the other hand, since p ∈ ω(x),
it follows from the second property in Proposition 3.5 that ϕtk (p) ∈ ω(x) for k ∈N.
Since ϕtk (p) ∈ ω(x) ∩ L, it follows from Exercise 3.5 that

ϕtk (p) = ϕtl (p) = q

for k, l ∈N. This implies that γ (p) ⊂ ω(x) is a periodic orbit.
Now we show that ω(x) = γ (p). Let us assume that ω(x) \ γ (p) �= ∅. Since

ω(x) is connected (by Proposition 3.6), in each open neighborhood of γ (p) there
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exist points of ω(x) that are not in γ (p). Moreover, any sufficiently small open
neighborhood of γ (p) contains critical points. Thus, there exists a transversal L′
to f containing one of these points, which is in ω(x), and a point of γ (p). This
shows that ω(x) ∩ L′ contains at least two points since γ (p) ⊂ ω(x), which contra-
dicts Exercise 3.5. Thus, ω(x) = γ (p) and the ω-limit set of x is a periodic orbit. �

The following example is an application of Theorem 4.10.

Example 4.8 Consider the differential equation
{

x′ = x(3 − 2y − x2 − y2) − y,

y′ = y(3 − 2y − x2 − y2) + x
(4.38)

that in polar coordinates takes the form
{

r ′ = r(3 − 2r sin θ − r2),

θ ′ = 1.

For any sufficiently small r , we have

r ′ = r
(
3 − 2r sin θ − r2) ≥ r

(
3 − 2r − r2) > 0 (4.39)

and for any sufficiently large r , we have

r ′ = r
(
3 − 2r sin θ − r2) ≤ r

(
3 + 2r − r2) < 0. (4.40)

Since the origin is the only critical point, for any r2 > r1 > 0 there are no critical
points in the ring

D = {
x ∈ R

2 : r1 < ‖x‖ < r2
}
.

Moreover, provided that r1 is sufficiently small and r2 is sufficiently large, it follows
from (4.39) and (4.40) that any positive semiorbit γ +(x) of a point x ∈ D is con-
tained in D. By Theorem 4.10, the set ω(x) ⊂ D is a periodic orbit for each x ∈ D.
In particular, the flow determined by Eq. (4.38) has at least one periodic orbit in the
set D.

We have an analogous result for bounded negative semiorbits.

Theorem 4.11 Let f : R2 →R
2 be a C1 function. For the flow ϕt determined by the

equation x′ = f (x), if the negative semiorbit γ −(x) of a point x ∈ R
2 is bounded

and α(x) contains no critical points, then α(x) is a periodic orbit.

4.5 Exercises

Exercise 4.1 Find the fixed points of the map f in (4.4) for |β| < 1/(2π).
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Fig. 4.5 An
orientation-reversing
homeomorphism

Exercise 4.2 Determine whether the map f in (4.4) has dense orbits for |β| <

1/(2π).

Exercise 4.3 A homeomorphism f : S1 → S1 is said to be orientation-reversing
if at least one of its lifts is a decreasing function (see Fig. 4.5). Show that f is
a orientation-reversing homeomorphism if and only if all its lifts are decreasing
functions.

Exercise 4.4 Show that if f,g : S1 → S1 are homeomorphism with lifts F and G,
respectively, then F ◦ G is a lift of f ◦ g.

Exercise 4.5 Show that the composition of two orientation-preserving homeomor-
phisms of the circle is still an orientation-preserving homeomorphism.

Exercise 4.6 Show that the composition of two orientation-reversing homeomor-
phisms of the circle is an orientation-preserving homeomorphism.

Exercise 4.7 Show that if f : S1 → S1 is an orientation-preserving homeomor-
phism, then ρ(f n) = nρ(f ) mod 1 for n ∈ N.

Exercise 4.8 Let f,g : S1 → S1 be orientation-preserving homeomorphisms. Show
that if f ◦ g = g ◦ f , then

ρ(f ◦ g) = ρ(f ) + ρ(g) mod 1.
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Exercise 4.9 Let f,g : S1 → S1 be orientation-preserving homeomorphisms. Show
that if f and g are topologically conjugate, then ρ(f ) = ρ(g).

Exercise 4.10 Show that each orientation-reversing homeomorphism of the circle
has exactly two fixed points.

Exercise 4.11 Let f : S1 → S1 be an orientation-preserving C2 diffeomorphism.
Show that if ρ(f ) ∈ R \Q, then f is topologically conjugate to the rotation Rρ(f ).

Exercise 4.12 Show that any monotonous function ϕ : S1 → R has bounded varia-
tion.

Exercise 4.13 Given a function ϕ : S1 → R, show that if there exists L > 0 such
that

∣∣ϕ(x) − ϕ(y)
∣∣ ≤ L|x − y|

for x, y ∈ S1, then ϕ has bounded variation.

Exercise 4.14 Consider the continuous function ϕ : S1 →R defined by

ϕ(x) =
{

x sin(π/x) if x �= 0,

0 if x = 0.

1. Given n ∈ N, show that

n−1∑

i=1

∣∣ϕ(xi) − ϕ(xi−1)
∣∣ = 4

n∑

i=1

1

2i + 1

for the disjoint open intervals (xi−1, xi) with

x0 = 0, x1 = 2

2n + 1
, x2 = 2

2n − 1
, . . . , xn−1 = 2

5
,

xn = 2

3
, xn+1 = 1.

2. Conclude that ϕ does not have bounded variation.

Exercise 4.15 Determine whether there exists a homeomorphism f of the circle
such that f ◦ E2 = E3 ◦ f .

Exercise 4.16 Given α ∈ R, determine whether there exists a homeomorphism f

of the circle such that f ◦ Rα = R−α ◦ f .
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Exercise 4.17 Verify that the flow determined by the equation
{

x′ = y + x3,

y′ = −1 − x4

has no periodic orbits contained in the first quadrant.

Exercise 4.18 Verify that the flow determined by the equation
{

x′ = x(2 − x − x2 − 2y2) − y,

y′ = y(2 − x − x2 − 2y2) + x

has a periodic orbit.

Exercise 4.19 Determine whether the flow defined by the equation
{

r ′ = r(1 + cos θ),

θ ′ = 1

has a periodic orbit.

Exercise 4.20 Determine whether there exists a differential equation in R
2 deter-

mining a flow with a dense orbit.



Chapter 5
Hyperbolic Dynamics I

This chapter is an introduction to hyperbolic dynamics. We first introduce the notion
of a hyperbolic set. In particular, we describe the Smale horseshoe and some of its
modifications. We also establish the continuity of the stable and unstable spaces on
the base point. We then consider the characterization of a hyperbolic set in terms
of invariant families of cones. In particular, this allows us to describe some sta-
bility properties of hyperbolic sets under sufficiently small perturbations. The pre-
requisites from the theory of smooth manifolds are fully recalled in Sect. 5.1.

5.1 Smooth Manifolds

In this section we recall some basic notions of the theory of smooth manifolds.

Definition 5.1 A set M is said to admit a differentiable structure of dimension n ∈N

if there exist injective maps ϕi : Ui → M in open sets Ui ⊂ R
n for i ∈ I such that:

1.
⋃

i∈I ϕi(Ui) = M ;
2. for any i, j ∈ I such that

V = ϕi(Ui) ∩ ϕj (Uj ) �= ∅,

the preimages ϕ−1
i (V ) and ϕ−1

j (V ) are open and the map ϕ−1
j ◦ϕi is of class C1.

Each map ϕi : Ui → M is called a chart or a coordinate system. Given a differ-
entiable structure on M , we consider the topology on M formed by the sets A ⊂ M

such that ϕ−1
i A ⊂ R

n is open for every i ∈ I .

Definition 5.2 A set M is said to be a (smooth) manifold of dimension n if it admits
a differentiable structure of dimension n and is a Hausdorff topological space with
countable basis.
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We recall that a topological space is said to be Hausdorff if any distinct points
have disjoint open neighborhoods, and that it is said to have a countable basis if
there exists a countable family of open sets such that each open set can be written
as a union of elements of this family.

Example 5.1 Let ϕ : U → R
m be a function of class C1 in an open set U ⊂ R

n.
Then the graph

M = {(
x,ϕ(x)

) : x ∈ U
} ⊂ R

n ×R
m

is a manifold of dimension n. A differentiable structure is given by the single map
ψ : U →R

n ×R
m defined by ψ(x) = (x,ϕ(x)).

Example 5.2 The set

T = {
(x, y) ∈ R

2 : x2 + y2 = 1
}

is a manifold of dimension 1. A differentiable structure is given by the maps

ϕi : (−1,1) → T, i = 1,2,3,4

defined by

ϕ1(x) = (
x,

√
1 − x2

)
, ϕ2(x) = (

x,−
√

1 − x2
)
,

ϕ3(x) = (√
1 − x2, x

)
, ϕ4(x) = (−

√
1 − x2, x

)
.

(5.1)

We note that T can be identified with S1. In particular, the map χ : S1 → T

defined by

χ(x) = (
cos(2πx), sin(2πx)

)

is a homeomorphism.

Example 5.3 The torus T
n = S1 is a manifold of dimension n. A differentiable

structure is given by the maps ψ : (−1,1)n → T
n defined by

ψ(x1, . . . , xn) = ((
χ−1 ◦ ψ1

)
(x1), . . . ,

(
χ−1 ◦ ψn

)
(xn)

)
,

where each ψi is any of the functions ϕ1, ϕ2, ϕ3 and ϕ4 in (5.1).

Now we introduce the notion of a differentiable map.

Definition 5.3 A map f : M → N between manifolds is said to be differentiable at
a point x ∈ M if there exist charts ϕ : U → M and ψ : V → N such that:

1. x ∈ ϕ(U) and f (ϕ(U)) ⊂ ψ(V );
2. ψ−1 ◦ f ◦ ϕ is differentiable at ϕ−1(x).
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Moreover, f is said to be of class Ck in an open set W ⊂ M if all maps ψ−1 ◦ f ◦ϕ

are of class Ck in ϕ−1(W).

We also recall the notion of a tangent vector. Let M be a manifold of dimension n

and let Dx be the set of all functions g : M → R that are differentiable at x ∈ M .

Definition 5.4 The tangent vector to a differentiable path α : (−ε, ε) → M with
α(0) = x at t = 0 is the function vα : Dx →R defined by

vα(g) = d(g ◦ α)

dt

∣∣∣∣
t=0

.

We also say that vα is a tangent vector at x.

One can show that the set TxM of all tangent vectors at x is a vector space of
dimension n. It is called the tangent space of M at x. Moreover, the set

T M = {
(x, v) : x ∈ M, v ∈ TxM

}

is a manifold of dimension 2n, called the tangent bundle of M . A differentiable
structure can be obtained as follows. Let ϕ : U → M be a chart and let (x1, . . . , xn)

be the coordinates in U . Consider the differentiable paths αi : (−ε, ε) → M for i =
1, . . . , n defined by αi(t) = ϕ(tei), where (e1, . . . , en) is the standard basis of Rn.
The tangent vector to the path αi at t = 0 is denoted by ∂/∂xi . One can show that
(∂/∂x1, . . . , ∂/∂xn) is a basis of the tangent space Tϕ(0)M and that a differentiable
structure on T M is given by the maps ψ : U ×R

n → T M defined by

ψ(x1, . . . , xn, y1, . . . , yn) =
(

ϕ(x1, . . . , xn),

n∑

i=1

yi

∂

∂xi

)

.

5.2 Hyperbolic Sets

In this section we introduce the notion of a hyperbolic set. We also give some ex-
amples of hyperbolic sets and we establish the continuity of the stable and unstable
spaces on the base point.

5.2.1 Basic Notions

Let f : M → M be a C1 diffeomorphism of a manifold M (this means that f is an
invertible C1 map whose inverse is also of class C1). For each x ∈ M , we define a
linear transformation

dxf : TxM → Tf (x)M
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between the tangent spaces TxM and Tf (x)M by

dxf v = vf ◦α

for any differentiable path α : (−ε, ε) → M such that α(0) = x and vα = v (one can
show that the definition does not depend on the path α).

We always assume that M is a Riemannian manifold. This means that each
tangent space TxM is equipped with an inner product 〈·, ·〉x such that the map
T M 
 (x, v) �→ 〈v, v〉′x is differentiable. It induces the norm

‖v‖x = 〈v, v〉1/2
x for v ∈ TxM.

For simplicity of notation, we always write 〈·, ·〉 and ‖·‖, without indicating the
dependence on x (which can easily be deduced from the context).

Now we introduce the notion of a hyperbolic set.

Definition 5.5 A compact f -invariant set Λ ⊂ M is said to be a hyperbolic set for
f if there exist λ ∈ (0,1), c > 0, and a decomposition

TxM = Es(x) ⊕ Eu(x) (5.2)

for each x ∈ Λ such that:

1.

dxf Es(x) = Es(f (x)) and dxf Eu(x) = Eu(f (x)); (5.3)

2. if v ∈ Es(x) and n ∈N, then

∥∥dxf
nv

∥∥ ≤ cλn‖v‖;
3. if v ∈ Eu(x) and n ∈ N, then

∥∥dxf
−nv

∥∥ ≤ cλn‖v‖. (5.4)

The linear spaces Es(x) and Eu(x) are called, respectively, the stable and unstable
spaces at the point x.

We first consider the particular case of the fixed points.

Example 5.4 Given a ∈ (0,1) and b > 1, let f : R2 → R
2 be the linear transforma-

tion defined by

f (x, y) = (ax, by).

We have f (0) = 0 and hence, the origin is a fixed point. We also consider the de-
composition R

2 = Es ⊕ Eu, where Es and Eu are, respectively, the horizontal and
vertical axes. For the linear transformation A = d0f = f , we have:
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Fig. 5.1 A diffeomorphism f on an open neighborhood of the square Q

1. AEs = Es and AEu = Eu;
2. ‖Av‖ ≤ a‖v‖ for v ∈ Es ;
3. ‖A−1v‖ ≤ b−1‖v‖ for v ∈ Eu.

This shows that {0} ⊂ R
2 is a hyperbolic set for the diffeomorphism f , taking λ =

max{a, b−1} and c = 1.

More generally, one can show that if x ∈ M is a fixed point of f , then {x} is a
hyperbolic set for f if and only if the linear transformation dxf : TxM → TxM has
no eigenvalues with modulus 1 (see Exercise 5.14).

5.2.2 Smale Horseshoe

In this section we consider other examples of hyperbolic sets. More precisely, we
consider the Smale horseshoe and some of its modifications (see also Sect. 7.4).

Let f be a diffeomorphism on an open neighborhood of the square Q = [0,1]2

with the behavior shown in Fig. 5.1. Consider the horizontal strips

H1 = [0,1] × [0, a] and H2 = [0,1] × [1 − a,1]
and the vertical strips

V1 = [0, a] × [0,1] and V2 = [1 − a,1] × [0,1], (5.5)

for some constant a ∈ (0,1/2). We assume that

f (H1) = V1 and f (H2) = V2 (5.6)
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Fig. 5.2 Horizontal and vertical strips

(see Fig. 5.2), which yields the identity

Q ∩ f (Q) = V1 ∪ V2. (5.7)

We also assume that the restrictions f |H1 are f |H2 are affine, with

f (x, y) =
{

(ax, by) if (x, y) ∈ H1,

(−ax + 1,−by + b) if (x, y) ∈ H2,
(5.8)

where b = 1/a. We shall see that the construction of the Smale horseshoe only
depends on the restriction f |(H1 ∪ H2).

Now we consider the diffeomorphism f −1. By (5.6), we have

f −1(V1) = H1 and f −1(V2) = H2

and thus, it follows from (5.7) that

f −1(Q) ∩ Q = f −1(V1) ∪ f −1(V2) = H1 ∪ H2. (5.9)

Combining (5.7) and (5.9), we conclude that

1⋂

k=−1

f n(Q) = (H1 ∪ H2) ∩ (V1 ∩ V2)

is the union of 4 squares of size a (see Fig. 5.3 for an example with a = 1/3).
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Fig. 5.3 The intersection
f −1(Q) ∩ Q ∩ f (Q)

Fig. 5.4 The intersection
Λ2 = ⋂2

k=−2 f k(Q)

Fig. 5.5 The intersection
Λ3 = ⋂3

k=−3 f k(Q)

Iterating this procedure, that is, considering successively the images f n(Q) and
the preimages f −n(Q), we find that the intersection

Λn =
n⋂

k=−n

f k(Q)

is the union of 4n squares of size an. For example, for n = 2 and n = 3 we ob-
tain, respectively, the sets in Figs. 5.4 and 5.5 (again for a = 1/3). Since Λn is a
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decreasing sequence of nonempty closed sets, the compact set

Λ =
⋂

n∈N
Λn =

⋂

k∈Z
f k(Q) (5.10)

is nonempty. It is called a Smale horseshoe (for f ).
Clearly, the set Λ has no interior points since the diameters of the 4n squares

in Λn tend to zero when n → ∞. One can also verify that Λ has no isolated points.
Hence, it is a Cantor set (it is closed and has neither interior points nor isolated
points).

Proposition 5.1 Λ is a hyperbolic set for the diffeomorphism f .

Proof It follows from (5.10) that Λ is f -invariant, that is, f −1Λ = Λ. On the other
hand, it follows from (5.8) that

dxf =
(

a 0
0 b

)
for x ∈ H1 (5.11)

and

dxf =
(−a 0

0 −b

)
for x ∈ H2. (5.12)

For each x ∈ Λ, consider the decomposition

R
2 = Es(x) ⊕ Eu(x),

where Es(x) and Eu(x) are, respectively, the horizontal and vertical axes. Since the
matrices in (5.11) and (5.12) are diagonal, the identities in (5.3) hold. Moreover, it
follows from (5.11) and (5.12) that

‖dxf v‖ =
{

a‖v‖ if v ∈ Es(x),

b‖v‖ if v ∈ Eu(x).

Hence, one can take λ = a and c = 1 in the definition of a hyperbolic set. �

One can also consider other types of constructions. For example, let g be a dif-
feomorphism on an open neighborhood of the square Q with the behavior shown in
Fig. 5.6. We assume that the identities in (5.6) hold and that

g(x, y) =
{

(x/3,3y) if (x, y) ∈ H1,

(x/3 + 2/3,3y − 2) if (x, y) ∈ H2.

Then the compact g-invariant set

Λg =
⋂

n∈Z
gn(Q)
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Fig. 5.6 A diffeomorphism g on an open neighborhood of Q

Fig. 5.7 A diffeomorphism h on an open neighborhood of Q

coincides with the set Λ in (5.10). One can also show that it is a hyperbolic set.

Proposition 5.2 Λg is a hyperbolic set for the diffeomorphism g.

We mention still another modification of the initial construction of the Smale
horseshoe. Let h be a diffeomorphism on an open neighborhood of the square Q

such that Q ∩ h(Q) has a finite number of connected components. More precisely,
consider pairwise disjoint closed horizontal strips H1, . . . ,Hm ⊂ Q (see Fig. 5.7 for
an example for m = 3). We assume that the images Vi = h(Hi), for i = 1, . . . ,m,
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are vertical strips in Q (they are necessarily disjoint since h is invertible). Moreover,
we assume that h|Hi is an affine transformation of the form

(h|Hi)(x, y) = (λix + ai,μiy + bi),

for i = 1, . . . ,m, with |λi | < 1 and |μi | > 1. Now let

μ = max
{|λi |, |μi |−1 : i = 1, . . . ,m

}
.

One can easily verify that for each n ∈ N the intersection

Λh
n =

n⋂

k=−n

hk(Q)

is the union of m2n rectangles with sides of length at most μn. This implies that the
compact h-invariant set

Λh =
⋂

n∈Z
hn(Q)

has no interior points. One can also verify that Λh has no isolated points.

Proposition 5.3 Λh is a hyperbolic set for the diffeomorphism h, taking λ = μ and
c = 1 in Definition 5.5.

5.2.3 Continuity of the Stable and Unstable Spaces

In this section we establish the continuity of the stable and unstable spaces Es(x)

and Eu(x) on the point x. We first introduce a distance between subspaces of Rp .
Given E ⊂ R

p and v ∈R
p , let

d(v,E) = min
{‖v − w‖ : w ∈ E

}
. (5.13)

Moreover, given subspaces E,F ⊂ R
p , we define

d(E,F ) = max
{

max
v∈E,‖v‖=1

d(v,F ), max
w∈F,‖w‖=1

d(w,E)
}
.

Example 5.5 If E,F ⊂ R
2 are subspaces of dimension 1, then d(E,F ) = sinα,

where α ∈ [0,π/2] is the angle between E and F . Indeed, in this case, we have

max
v∈E,‖v‖=1

d(v,F ) = d(vE,F ) and max
v∈F,‖w‖=1

d(w,E) = d(vF ,E),

where vE ∈ E and vF ∈ F are any vectors with norm 1. These numbers coincide
and hence,

d(E,F ) = d(vE,F ) = d(vF ,E) = sinα.
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Now we consider the stable and unstable spaces Es(x) and Eu(x) for x in a
hyperbolic set Λ ⊂ R

p .

Theorem 5.1 If Λ ⊂ R
p is a hyperbolic set, then the spaces Es(x) and Eu(x) vary

continuously with x ∈ Λ, that is, if xm → x when m → ∞, with xm,x ∈ Λ for each
m ∈ N, then

d
(
Es(xm),Es(x)

) → 0 when m → ∞
and

d
(
Eu(xm),Eu(x)

) → 0 when m → ∞.

Proof Let (xm)m∈N be a sequence as in the statement of the theorem.

Lemma 5.1 Any sublimit of a sequence vm ∈ Es(xm) ⊂ R
p with ‖vm‖ = 1 is in

Es(x).

Proof Since the closed unit sphere of Rp is compact, the sequence vm has sublimits.
On the other hand, since vm ∈ Es(xm), we have

∥∥dxmf nvm

∥∥ ≤ cλn‖vm‖
for m,n ∈ N. Letting m → ∞, we obtain

∥∥dxf
nv

∥∥ ≤ cλn‖v‖
for n ∈ N, where v is any sublimit of the sequence vm. Finally, it follows from (5.4)
that v has no component in Eu(x) and thus, v ∈ Es(x). �

Lemma 5.2 There exists an m ∈N such that

dimEs(xp) = dimEs(xq) and dimEu(xp) = dimEs(xq)

for any p,q > m.

Proof Since the dimensions dimEs(xm) and dimEu(xm) can only take finitely
many values, there exists a subsequence ym of xm such that the numbers dimEs(ym)

and dimEu(ym) are independent of m. Now let

v1m, . . . , vkm ∈ Es(ym) ⊂ R
p

be an orthonormal basis of Es(ym), where k = dimEs(ym) (that by hypothesis
is independent of m). Since the closed unit sphere of R

p is compact, the se-
quence (v1m, . . . , vkm) has sublimits. Moreover, each sublimit (v1, . . . , vk) is still
an orthonormal set. It follows from Lemma 5.1 that v1, . . . , vk ∈ Es(x) and thus
dimEs(x) ≥ k (since (v1, . . . , vk) is an orthonormal set). Proceeding analogously
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for the unstable spaces, we obtain dimEu(x) ≥ dimM − k. It follows from (5.2)
that

dimEs(x) = k and dimEu(x) = dimM − k. (5.14)

In particular, the vectors v1, . . . , vk generate Es(x). We also note that each vector
v ∈ Es(x) with norm ‖v‖ = 1 is a sublimit of some sequence vm ∈ Es(ym) with
‖vm‖ = 1. Indeed, writing v = ∑k

i=1 αivi with
∑k

i=1 α2
i = 1, one can take

vm =
k∑

i=1

αivim

/
∥∥∥∥
∥

k∑

i=1

αivim

∥∥∥∥
∥
.

If zm is another subsequence of xm such that the dimensions dimEs(zm) and
dimEu(zm) are independent of m, respectively, with values l and dimM − l, then
we also have

dimEs(x) = l and dimEu(x) = dimM − l.

Comparing with (5.14), we conclude that l = k. This shows that dimEs(xm) and
dimEu(xm) are constant for any sufficiently large m. �

Now we estimate the distance d(Es(xm),Es(x)).

Lemma 5.3 Given δ > 0, there exists a p ∈ N such that

max
w∈Es(xm),‖w‖=1

d
(
w,Es(x)

)
< δ for m > p. (5.15)

Proof We note that given ε > 0 and a sequence wm ∈ Es(xm) with ‖wm‖ = 1, we
have d(wm,Es(x)) < ε for any sufficiently large m. Otherwise, there would exist a
subsequence wkm such that

d
(
wkm,Es(x)

) ≥ ε for m ∈N.

By (5.13), any sublimit w of the sequence wkm satisfies d(w,Es(x)) ≥ ε. But this
is impossible since by Lemma 5.1, we have w ∈ Es(x).

Now we consider orthonormal bases (v1m, . . . , vkm) of Es(xm) (for each suffi-
ciently large m such that dimEs(xm) = k). It follows from the former paragraph
that there exist integers p1, . . . , pk ∈N such that

d
(
vim,Es(x)

)
< ε for m > pi. (5.16)

We also take vectors wm ∈ Es(xm) with norm ‖wm‖ = 1 and we write

wm =
k∑

i=1

αimvim
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with
∑k

i=1 α2
im = 1. By (5.16), for each i = 1, . . . , k and m > p := max{p1, . . . , pk},

there exists a wim ∈ Es(x) such that ‖vim − wim‖ < ε. Then

d
(
wm,Es(x)

) ≤
∥∥∥∥∥
wm −

k∑

i=1

αimwim

∥∥∥∥∥

≤
k∑

i=1

|αim| · ‖vim − wim‖ < kε

and hence,

max
w∈Es(xm),‖w‖=1

d
(
w,Es(x)

)
< kε for m > p.

This establishes the desired result. �

Lemma 5.4 Given δ > 0, there exists a q ∈ N such that

max
v∈Es(x),‖v‖=1

d
(
v,Es(xm)

)
< δ for m > q. (5.17)

Proof Given ε > 0 and v ∈ Es(x), we show that d(v,Es(xm)) < ε for any suffi-
ciently large m. Otherwise, there would exist a sequence xkm such that

d
(
v,Es(xkm)

) ≥ ε for m ∈N.

Now we consider a sequence wm ∈ Es(xkm) with ‖wm‖ = 1 having v as a sublimit
(we recall that each element of Es(x) is obtained as a sublimit of vectors wm of this
form). But this is impossible since then we would have ‖v − wm‖ ≥ ε for m ∈ N

and thus also 0 = ‖v − v‖ ≥ ε. Now we consider an orthonormal basis v1, . . . , vk of
Es(x) and we take integers q1, . . . , qk ∈ N such that

d
(
vi,E

s(xm)
)
< ε for m > qi.

For each i, there exists a vim ∈ Es(xm) with ‖vi − vim‖ < ε. Given v ∈ Es(x) with
norm ‖v‖ = 1, we write v = ∑k

i=1 αivi with
∑k

i=1 α2
i = 1. Then

d
(
v,Es(xm)

) ≤
∥∥∥∥∥
v −

k∑

i=1

αivim

∥∥∥∥∥

≤
k∑

i=1

|αi | · ‖vi − vim‖ < kε

for m > q := max{q1, . . . , qk} and hence,

max
v∈Es(x),‖v‖=1

d
(
v,Es(xm)

)
< kε for m > q.

This establishes the desired result. �
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Finally, it follows from (5.15) and (5.17) that

d
(
Es(xm),Es(x)

)
< 2δ for m > max{p,q}.

We obtain in a similar manner the corresponding result for the unstable spaces. �

Lemma 5.2 says that if xm → x when m → ∞, with xm,x ∈ Λ for each m ∈ N,
then dimEs(xm) and dimEu(xm) are constant for any sufficiently large m.

5.3 Hyperbolic Sets and Invariant Families of Cones

In this section we describe a characterization of hyperbolic sets in terms of invariant
families of cones.

5.3.1 Formulation of the Result

Let f : M → M be a C1 diffeomorphism and let Λ ⊂ M be a compact f -invariant
set. For each x ∈ Λ, we consider a decomposition

TxM = F s(x) ⊕ Fu(x) (5.18)

and an inner product 〈·, ·〉′ = 〈·, ·〉′x in TxM . We emphasize that this may not be
the original inner product. We always assume that the dimensions dimF s(x) and
dimFu(x) are independent of x. On the other hand, we do not require that

dxf F s(x) = F s(f (x)) and dxf Fu(x) = Fu(f (x))

for x ∈ Λ.

Definition 5.6 Given γ ∈ (0,1) and x ∈ Λ, we define the cones

Cs(x) = {
(v,w) ∈ F s(x) ⊕ Fu(x) : ‖w‖′ < γ ‖v‖′} ∪ {0} (5.19)

and

Cu(x) = {
(v,w) ∈ F s(x) ⊕ Fu(x) : ‖v‖′ < γ ‖w‖′} ∪ {0} (5.20)

(see Figs. 5.8 and 5.9).

The following result gives a characterization of a hyperbolic set in terms of cones.

Theorem 5.2 Let f : M → M be a C1 diffeomorphism and let Λ ⊂ M be a com-
pact f -invariant set. Then Λ is a hyperbolic set for f if and only if there exist
a decomposition (5.18) and an inner product 〈·, ·〉′x in TxM , for each x ∈ Λ, and
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Fig. 5.8 The cone Cs(x)

constants μ,γ ∈ (0,1) such that:

1. for any x ∈ Λ,

dxf Cu(x) ⊂ Cu(f (x)) and dxf
−1Cs(x) ⊂ Cs

(
f −1(x)

); (5.21)

2. for any x ∈ Λ,

‖dxf v‖′ ≥ μ−1‖v‖′ for v ∈ Cu(x) (5.22)

and
∥∥dxf

−1v
∥∥′ ≥ μ−1‖v‖′ for v ∈ Cs(x). (5.23)

Theorem 5.2 is an immediate consequence of Theorems 5.3 and 5.4 proven, re-
spectively, in Sects. 5.3.2 and 5.3.3.

5.3.2 Existence of Invariant Families of Cones

In this section we show that any hyperbolic set has associated families of cones
Cs(x) and Cu(x) with the properties in Theorem 5.2.

Theorem 5.3 Let f : M → M be a C1 diffeomorphism and let Λ ⊂ M be a hyper-
bolic set for f . Then there exist an inner product 〈·, ·〉′x in TxM varying continuously
with x ∈ Λ and constants μ,γ ∈ (0,1) such that, taking

F s(x) = Es(x) and Fu(x) = Eu(x) (5.24)

in (5.19) and (5.20), the cones Cs(x) and Cu(x) satisfy properties (5.21), (5.22)
and (5.23) for any x ∈ Λ.



102 5 Hyperbolic Dynamics I

Fig. 5.9 The cone Cu(x)

Proof We divide the proof into steps.

Step 1. Construction of an inner product.

Take m ∈N such that cλm < 1. Given v,w ∈ Es(x), we define

〈v,w〉′ =
m−1∑

n=0

〈
dxf

nv, dxf
nw

〉
.

For each v ∈ Es(x), we have

(‖dxf v‖′)2 =
m−1∑

n=0

∥∥dxf
n+1v

∥∥2

=
m−1∑

n=0

∥∥dxf
nv

∥∥2 − ‖v‖2 + ∥∥dxf
mv

∥∥2

≤ (‖v‖′)2 − (
1 − c2λ2m

)‖v‖2.
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On the other hand,

(‖v‖′)2 ≤
m−1∑

n=0

c2λ2n‖v‖2 ≤ c2m‖v‖2 (5.25)

and thus,

‖dxf v‖′ ≤ τ‖v‖′, (5.26)

where

τ =
√

1 − 1 − c2λ2m

c2m
< 1.

Analogously, given v,w ∈ Eu(x), we define

〈v,w〉′ =
m−1∑

n=0

〈
dxf

−nv, dxf
−nw

〉
.

One can verify that
∥∥dxf

−1v
∥∥′ ≤ τ‖v‖′ (5.27)

for v ∈ Eu(x). Now we consider the inner product 〈·, ·〉 = 〈·, ·〉x in TxM defined by

〈v,w〉′ = 〈
vs,ws

〉′ + 〈
vu,wu

〉′ (5.28)

for each v,w ∈ TxM , where

v = vs + vu and w = ws + wu,

with vs,ws ∈ Es(x) and vu,wu ∈ Eu(x). We also take F s(x) and Fu(x) as
in (5.24), and we consider the cones Cs(x) and Cu(x) in (5.19) and (5.20), with
the norm ‖·‖′ induced from the inner product in (5.28).

Step 2. Invariance of the families of cones.

Given (v,w) ∈ Cu(x), we have

‖v‖′ ≤ γ ‖w‖′

and it follows from (5.3) that

dxf (v,w) = (
dxf v, dxf w

) ∈ Es(f (x)) ⊕ Eu(f (x)).

Using (5.26) and (5.27), we obtain

‖dxf v‖′ ≤ τ‖v‖′

≤ τγ ‖w‖′

≤ τ 2γ ‖dxf w‖′
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and thus, dxf (v,w) ∈ Cu(f (x)). Analogously, given (v,w) ∈ Cs(x), we have

‖w‖′ ≤ γ ‖v‖′

and thus,

∥∥dxf
−1w

∥∥′ ≤ τ‖w‖′

≤ τγ ‖v‖′

≤ τ 2γ
∥
∥dxf

−1v
∥
∥′

.

This shows that dxf
−1(v,w) ∈ Cs(f −1(x)) and we obtain the inclusions in (5.21).

Step 3. Estimates inside the cones.

Given (v,w) ∈ Cu(x), it follows from (5.26) and (5.27) that

‖dxf (v,w)‖′ ≥ ‖dxf w‖′ − ‖dxf v‖′

≥ τ−1‖w‖′ − τ‖v‖′

≥ τ−1‖w‖′ − τγ ‖w‖′.

Since

‖(v,w)‖′ < (1 + γ )‖w‖′,

we have

‖dxf (v,w)‖′ ≥ τ−1 − τγ

1 + γ
‖(v,w)‖′.

Taking γ sufficiently small so that

μ :=
(

τ−1 − τγ

1 + γ

)−1

> 1,

we obtain property (5.22). Analogously, given (v,w) ∈ Cs(x), it follows from (5.26)
and (5.27) that

∥∥dxf
−1(v,w)

∥∥′ ≥ ∥∥dxf
−1v

∥∥′ − ∥∥dxf
−1w

∥∥′

≥ τ−1‖v‖′ − τ‖w‖′

≥ τ−1 − τγ

1 + γ
‖(v,w)‖′

= μ−1‖(v,w)‖′,

which yields property (5.23). This completes the proof of the theorem. �
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5.3.3 Criterion for Hyperbolicity

The following result shows that the existence of cones Cs(x) and Cu(x) as in The-
orem 5.2 guarantees that the compact f -invariant set Λ is a hyperbolic set for f .

Theorem 5.4 Let f : M → M be a C1 diffeomorphism and let Λ ⊂ M be a com-
pact f -invariant set. If there exist a decomposition (5.18) and an inner product
〈·, ·〉′x in TxM , for each x ∈ Λ, and constants μ,γ ∈ (0,1) such that the cones
Cs(x) and Cu(x) satisfy properties (5.21), (5.22) and (5.23) for any x ∈ Λ, then Λ

is a hyperbolic set for f , taking λ = μ and c = 1. Moreover, the stable and unstable
spaces are given by

Es(x) =
∞⋂

n=0

df n(x)Cs
(
f n(x)

)

and

Eu(x) =
∞⋂

n=0

df −n(x)C
u
(
f −n(x)

)
.

Proof We divide the proof into steps.

Step 1. Construction of invariant sets.

For each x ∈ Λ, we consider the sets

Gs(x) =
∞⋂

n=0

df n(x)f
−nCs

(
f n(x)

)

and

Gu(x) =
∞⋂

n=0

df −n(x)f
nCu

(
f −n(x)

)
.

By (5.21), we have

Gs(x) ⊂ Cs(x) and Gu(x) ⊂ Cu(x), (5.29)

and thus,

dxf
−1Gs(x) ⊂ Cs

(
f −1(x)

)
and dxf Gu(x) ⊂ Cu(f (x)).

Writing y = f −1(x), we obtain

dxf
−1Gs(x) = Cs(y) ∩ dxf

−1Gs(x)

= Cs(y) ∩
∞⋂

n=0

df n(x)f
−(n+1)Cs

(
f n(x)

)
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= Cs(y) ∩
∞⋂

n=0

df n+1(y)f
−(n+1)Cs

(
f n+1(y)

) = Gs(y) (5.30)

and analogously,

dxf Gu(x) = Gu(f (x)). (5.31)

Step 2. Construction of stable and unstable spaces.

Since the dimensions k = dimF s(x) and l = dimFu(x) are independent of x, for
each m ∈ N the sets

m⋂

n=0

df n(x)f
−nCs

(
f n(x)

) = df m(x)f
−mCs

(
f m(x)

)

and
m⋂

n=0

df −n(x)f
nCu

(
f −n(x)

) = df −m(x)f
mCu

(
f −m(x)

)

contain subspaces Es
m(x) and Eu

m(x), respectively, of dimensions

dimEs
m(x) = k and dimEu

m(x) = l.

Given an orthonormal basis v1m, . . . , vkm of Es
m(x) for each m ∈ N, there exists a

convergent subsequence, say with limits v1, . . . , vk that also form an orthonormal
set. This shows that Gs(x) contains a subspace Es(x) of dimension k (generated by
v1, . . . , vk). Analogously, one can show that Gu(x) contains a subspace Eu(x) of
dimension l. On the other hand, it follows from (5.29) that

Es(x) ∩ Eu(x) ⊂ Gs(x) ∩ Gu(x)

⊂ Cs(x) ∩ Cu(x) = {0}
since γ < 1. Moreover, it follows from (5.18) that

dimM = dimFs(x) + dimFu(x)

= k + l

= dimEs(x) + dimEu(x)

and thus, the spaces Es(x) and Eu(x) generate TxM . Hence, we obtain the direct
sum in (5.2).

Step 3. Estimates on the spaces Es(x) and Eu(x).

Given v ∈ Es(x) and n ∈ N, it follows from (5.21) together with (5.29) and (5.30)
that

dxf
kv ∈ dxf

kGs(x) = Gs
(
f k(x)

) ⊂ Cs
(
f k(x)

)
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for k = 0, . . . , n. Hence, it follows from (5.23) that
∥∥dxf

nv
∥∥′ ≤ μn‖v‖′. (5.32)

Analogously, given v ∈ Eu(x) and n ∈N, it follows from (5.22) that
∥∥dxf

−nv
∥∥′ ≤ μn‖v‖′. (5.33)

Now we show that

Es(x) = Gs(x) and Eu(x) = Gu(x)

for any x ∈ Λ. If there existed a v ∈ Gs(x) \ Es(x) ⊂ Cs(x), then one could write
v = vs + vu, where vs ∈ Es(x) and vu ∈ Eu(x) \ {0}. For each n ∈ N, we would
have

μ−n
∥∥vu

∥∥′ ≤ ∥∥dxf
nvu

∥∥′

≤ ∥∥dxf
nv

∥∥′ + ∥∥dxf
nvs

∥∥′

≤ μn
(‖v‖′ + ∥∥vs

∥∥′)
.

This implies that
∥∥vu

∥∥′ ≤ μ2n
(‖v‖′ + ∥∥vs

∥∥′) → 0

when n → ∞ and thus vu = 0. This contradiction shows that Es(x) = Gs(x).
One can show in an analogous manner that Eu(x) = Gu(x). Finally, it follows
from (5.30) and (5.31) that

dxf
−1Es(x) = Es

(
f −1(x)

)
and dxf Eu(x) = Eu(f (x)).

Therefore, Λ is a hyperbolic set, taking the constants λ = μ and c = 1, in view
of (5.32) and (5.33). �

5.4 Stability of Hyperbolic Sets

In this section we describe briefly some stability properties of a hyperbolic set un-
der sufficiently small perturbations. In particular, we consider diffeomorphisms for
which the whole manifold is a hyperbolic set.

Given differentiable maps f,g : M → M , we define

d(f,g) = sup
x∈M

d
(
f (x), g(x)

) + sup
x∈M

‖dxf − dxg‖. (5.34)

Theorem 5.5 Let Λ be a hyperbolic set for a C1 diffeomorphism f : M → M .
Then there exist ε > 0 and an open set U ⊃ Λ such that if g : M → M is a C1

diffeomorphism with d(f,g) < ε and Λ′ ⊂ U is a compact g-invariant set, then Λ′
is a hyperbolic set for g.
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Proof By Theorem 5.1, the stable and unstable spaces Es(x) and Eu(x) vary con-
tinuously with x ∈ Λ. Hence, by Tietze’s extension theorem,1 one can consider
continuous extensions Fs(x) and Fu(x), respectively, of Es(x) and Eu(x), for x

in some open neighborhood U of Λ such that

TxM = F s(x) ⊕ Fu(x) for x ∈ U. (5.35)

Given γ > 0, consider the cones Cs(x) and Cu(x) in (5.19) and (5.20) associated
to the decompositions in (5.35). By Theorem 5.3, there exist constants μ,γ ∈ (0,1)

and an inner product 〈·, ·〉′ = 〈·, ·〉′x in TxM varying continuously with x such that:

1. for each x ∈ Λ,

dxf Cu(x) � Cu(f (x)) and dxf
−1Cs(x) � Cs

(
f −1(x)

);
2. for each x ∈ Λ,

‖dxf v‖′ > μ−1‖v‖′ for v ∈ Cu(x) \ {0}
and

∥∥dxf
−1v

∥∥′
> μ−1‖v‖′ for v ∈ Cs(x) \ {0}.

Denoting by Sx the closed unit sphere in TxM (with respect to the norm ‖·‖ = ‖·‖′
x ),

these properties are equivalent to:

1. for each x ∈ Λ,

dxf
(
Sx ∩ Cu(x)

)
� Cu(f (x)) and dxf

−1(Sx ∩ Cs(x)
)
� Cs

(
f −1(x)

);
2. for each x ∈ Λ,

‖dxf v‖′ > μ−1 for v ∈ Sx ∩ Cu(x)

and
∥∥dxf

−1v
∥∥′

> μ−1 for v ∈ Sx ∩ Cs(x).

Now we note that the set

{
(x, v) ∈ Λ × TxM : ‖v‖′

x = 1
}

is compact since the inner product 〈·, ·〉′x and thus also the norm ‖·‖′
x vary continu-

ously with x. For any sufficiently small open neighborhood U ⊃ Λ, the properties
above hold for any x ∈ U (and some continuous extension of the inner product).
Moreover, for any sufficiently small ε the same properties also hold for any x ∈ U

1Theorem (See for example [43]) If f : A →R is a continuous function in a closed subset A ⊂ X

of a normal space (that is, a space such that any two disjoint closed sets have disjoint open neigh-
borhoods), then there exists a continuous function g : X →R such that g|A = f .
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with f replaced by g. It follows from Theorem 5.4 that any compact g-invariant set
Λ′ ⊂ U is a hyperbolic set for g. �

Now we consider the particular case of the Anosov diffeomorphisms.

Definition 5.7 A diffeomorphism f : M → M of a compact manifold M is called
an Anosov diffeomorphism if M is a hyperbolic set for f .

For example, any automorphism of the torus induced by a matrix without eigen-
values with modulus 1 (called a hyperbolic automorphism of the torus) is an Anosov
diffeomorphism (see Exercise 5.15).

The following result is an immediate consequence of Theorem 5.5.

Theorem 5.6 The set of Anosov diffeomorphisms of class C1 of a compact mani-
fold M is open with respect to the topology induced by the distance d in (5.34).

5.5 Exercises

Exercise 5.1 Use Theorem 5.1 to show that if Λ is a hyperbolic set, then

inf
{
∠

(
Es(x),Eu(x)

) : x ∈ Λ
}

> 0.

Exercise 5.2 Find explicitly the 2-periodic points of the Smale horseshoe.

Exercise 5.3 Let T : X → X be a map of a complete metric space X. Show that if
T 2 is a contraction, then T has a unique fixed point in X.

Exercise 5.4 Determine whether the set of all bounded C1 functions f : R → R is
a complete metric space with the distance

d(f,g) = sup
{|f (x) − g(x)| : x ∈R

}
. (5.36)

Exercise 5.5 Determine whether the set of all bounded functions f : R → R such
that

|f (x) − f (y)| ≤ |x − y| for x, y ∈ R (5.37)

is a complete metric space with the distance d in (5.36).

Exercise 5.6 Repeat Exercise 5.5 with condition (5.37) replaced by

|f (x) − f (y)| ≤ c|x − y|α for |x − y| ≤ d.

Exercise 5.7 Determine whether there exists a diffeomorphism h : R → R such that

h ◦ f = g ◦ h
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for the maps:

1. f (x) = 2x and g(x) = 3x;
2. f (x) = 4x and g(x) = −2x;
3. f (x) = 3x and g(x) = x3.

Exercise 5.8 Give an example of a hyperbolic set for which not all spaces Es(x)

have the same dimension.

Exercise 5.9 Determine whether S1 is a hyperbolic set for some diffeomorphism of
the circle.

Exercise 5.10 Show that the stable and unstable spaces of a hyperbolic set are
uniquely determined.

Exercise 5.11 Find spaces F s(x),F u(x) ⊂ R
2 and an inner product 〈·, ·〉′x such that

Cs(x) = {0} ∪ {
(v,w) ∈R

2 : vw > 0
}
.

Exercise 5.12 Show that if Λ is a hyperbolic set for a diffeomorphism f , then it is
also a hyperbolic set for f 2.

Exercise 5.13 Identify the following statement as true or false: if Λ is a hyperbolic
set for f 2, where f is a diffeomorphism, then Λ is a hyperbolic set for f .

Exercise 5.14 Let x be a fixed point of a diffeomorphism f : M → M . Show that
{x} is a hyperbolic set for f if and only if the linear transformation

dxf : TxM → TxM

has no eigenvalues with modulus 1. Hint: Since dxf |TxM can have nonreal eigen-
values, consider the complexification

TxM
C = {

u + iv : u,v ∈ TxM
}

of the tangent space TxM , with the norm

‖u + iv‖ =
√

‖u‖2 + ‖v‖2 for u,v ∈ TxM,

and consider the extension A : TxM
C → TxM

C of dxf defined by

A(u + iv) = dxf u + idxf v.

Exercise 5.15 Given an automorphism of the torus TA : Tn → T
n, show that Tn is

a hyperbolic set for TA if and only if A has no eigenvalues with modulus 1 (with the
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inner product in each tangent space TxT
n induced from the standard inner product

in R
n). Hint: Consider the extension of A : Rn → R

n to C
n defined by

A(u + iv) = Au + iAv.

Exercise 5.16 Let x be a periodic point with period n of a diffeomorphism f . Give
a necessary and sufficient condition in terms of dxf

n so that the periodic orbit

{
f k(x) : k = 0, . . . , n − 1

}

is a hyperbolic set for f .

Exercise 5.17 Let f : M → M be a C1 diffeomorphism and let Λ ⊂ M be a com-
pact f -invariant set. Show that Λ is a hyperbolic set for f if and only if there exist
a decomposition (5.18) and an inner product 〈·, ·〉′x in TxM , for each x ∈ Λ, and a
constant γ ∈ (0,1) such that:

1. for any x ∈ Λ,

dxf Cu(x) ⊂ Cu(f (x)) and dxf
−1Cs(x) ⊂ Cs

(
f −1(x)

);

2. for any x ∈ Λ,

‖dxf v‖′ > ‖v‖′ for v ∈ Cu(x) \ {0}
and

∥∥dxf
−1v

∥∥′
> ‖v‖′ for v ∈ Cs(x) \ {0}.

Exercise 5.18 Consider the set

N = S1 × {
(x, y) ∈R

2 : x2 + y2 ≤ 1
}

and the map f : N → N defined by

f (θ, x, y) =
(

2θ,λx + 1

2
cos(2πθ),μy + 1

2
sin(2πθ)

)

for some constants λ,μ ∈ (0,1/2). Show that:

1. the map f is one-to-one;
2. the solenoid Λ = ⋂

n∈N f n(N) is a compact f -invariant set;
3. the restriction f |U : U → f (U) of f to the set

U = S1 × {
(x, y) ∈ R

2 : x2 + y2 < 1
}

is a diffeomorphism;
4. Λ is a hyperbolic set for f .
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Exercise 5.19 Determine whether the map f |Λ in Exercise 5.18 has periodic points
with period 3.

Exercise 5.20 Show that the periodic points of the Smale horseshoe Λ are dense
in Λ.



Chapter 6
Hyperbolic Dynamics II

This chapter is a natural continuation of the former chapter. We consider topics that,
in view of the necessary details or in view of the need for results from other areas,
may be considered less elementary. We first describe the behavior of the orbits of a
diffeomorphism near a hyperbolic fixed point. More precisely, we establish two fun-
damental results of hyperbolic dynamics: the Grobman–Hartman theorem and the
Hadamard–Perron theorem. We also establish the existence of stable and unstable
manifolds for all points of a hyperbolic set and we show how they give rise to a local
product structure for any locally maximal hyperbolic set. We conclude the chapter
with an introduction to geodesic flows on surfaces of constant negative curvature
and their hyperbolicity. In particular, we consider isometries, Möbius transforma-
tions, geodesics, quotients by isometries and the construction of compact surfaces
of genus at least 2.

6.1 Behavior Near a Hyperbolic Fixed Point

Let x be a fixed point of a diffeomorphism f . When {x} is a hyperbolic set for f ,
we say that x is a hyperbolic fixed point. In this section we describe the behavior of
the orbits of a diffeomorphism in an open neighborhood of a hyperbolic fixed point.
For simplicity of exposition, we consider only diffeomorphisms on R

p .

6.1.1 The Grobman–Hartman Theorem

We first establish a result showing that in a sufficiently small open neighborhood of
a hyperbolic fixed point x the orbits of f are obtained from the orbits of the linear
transformation dxf applying a homeomorphism. This corresponds to the notion of
a local topological conjugacy (compare with Definition 3.9).
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Definition 6.1 Two maps f : X → X and g : Y → Y , where X and Y are topologi-
cal spaces, are said to be (locally) topologically conjugate, respectively, in open sets
U ⊂ X and V ⊂ Y if there exists a homeomorphism h : U → V with h(U) = V

such that h ◦ f = g ◦ h in U .

The Grobman–Hartman theorem establishes the existence of a (local) topological
conjugacy between f and dxf in open neighborhoods, respectively, of x and 0.

Theorem 6.1 (Grobman–Hartman) Let x ∈R
p be a hyperbolic fixed point of a C1

diffeomorphism f : Rp → R
p . Then there exists a homeomorphism h : U → V with

h(U) = V , where U and V are, respectively, open neighborhoods of x and 0, such
that

h ◦ f = dxf ◦ h in U. (6.1)

Proof We divide the proof into steps.

Step 1. Preliminaries.

Without loss of generality, one can always assume that x = 0. Indeed, the map
f̄ : Rp → R

p defined by

f̄ (y) = f (y + x) − f (x)

is also a diffeomorphism and it satisfies

f̄ (0) = 0 and d0f̄ = dxf.

In particular, 0 is a hyperbolic fixed point of f̄ . Now we modify the diffeomor-
phism f outside an open neighborhood of 0 (already assuming that 0 is a hyperbolic
fixed point of f ). More precisely, given δ > 0, take r ∈ (0,1) so small that

sup
{‖dyf − d0f ‖ : y ∈ B(0, r)

} ≤ δ/3 (6.2)

(recall that the function y �→ dyf is continuous). Consider also a C1 function
α : Rp → [0,1] such that:

1. α(y) = 1 for y ∈ B(0, r/3);
2. α(y) = 0 for y ∈R

p \ B(0, r);
3. sup{‖dyα‖ : y ∈ R

p} ≤ 2/r .

We define a map g : Rp →R
p by

g(y) = Ay + α(y)F (y),

where

A = d0f and F(y) = f (y) − Ay.
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Note that

g(y) = Ay + F(y) = f (y)

for y ∈ B(0, r/3), that is, g coincides with f on the ball B(0, r/3). Since F(0) = 0,
it follows from (6.2) and the mean value theorem that

sup
{‖F(y)‖ : y ∈ B(0, r)

} ≤ δr/3.

Since r < 1 and the function α is zero outside the ball B(0, r), we have

sup
{‖α(y)F (y)‖ : y ∈ B(0, r)

} ≤ δr/3 < δ. (6.3)

Moreover,

‖dy(αF)‖ = ∥
∥dyαF(y) + α(y)dyF

∥
∥

≤ sup
y∈Rp

‖dyα‖ sup
y∈B(0,r)

‖F(y)‖ + sup
y∈Rp

‖dyF‖

<
2

r
· δr

3
+ δ

3
= δ

and it follows again from the mean value theorem that

∥∥α(y)F (y) − α(z)F (z)
∥∥ ≤ δ‖y − z‖ (6.4)

for y, z ∈ R
p .

Step 2. Construction of a norm.

Now we consider a norm that is analogous to the one introduced in the proof of
Theorem 5.3. Namely, given m ∈N such that cλm < 1, for each v ∈R

p , let

‖v‖′ = max
{∥∥vs

∥∥′
,
∥∥vu

∥∥′}
,

where v = vs + vu, with vs ∈ Es(0) and vu ∈ Eu(0), and where

(∥∥vs
∥
∥′)2 =

m−1∑

n=0

∥
∥Anvs

∥
∥2 (6.5)

and

(∥∥vu
∥
∥′)2 =

m−1∑

n=0

∥
∥A−nvu

∥
∥2

. (6.6)

It follows from (6.5) and (6.6) that

∥∥vs
∥∥ ≤ ∥

∥vs
∥∥′ ≤ C

∥∥vs
∥∥ (6.7)
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and
∥
∥vu

∥
∥ ≤ ∥

∥vu
∥
∥′ ≤ C

∥
∥vu

∥
∥, (6.8)

where C = c
√

m (see (5.25)). Moreover, it follows from (5.26) and (5.27) that
∥
∥Avs

∥
∥′ ≤ τ

∥
∥vs

∥
∥′ and

∥
∥A−1vu

∥
∥′ ≤ τ

∥
∥vu

∥
∥′

, (6.9)

where

τ =
√

1 − 1 − c2λ2m

c2m
< 1.

Step 3. Formulation of an abstract problem.

Let X be the space of bounded continuous functions v : Rp → R
p with v(0) = 0.

One can easily verify that X is a Banach space (that is, a complete normed space)
with the norm

‖v‖∞ = max
{‖vs‖∞,‖vu‖∞

}
,

where

v(y) = (
vs(y), vu(y)

) ∈ Es(0) ⊕ Eu(0)

and

‖vs‖∞ = sup
{‖vs(y)‖′, y ∈ R

p
}
, ‖vu‖∞ = sup

{‖vu(y)‖′, y ∈R
p
}
.

We write

As = A|Es(0), Au = A|Eu(0), (6.10)

and we consider functions G,H : Rp →R
p with G(0) = H(0) = 0 such that

‖G(y)‖ ≤ δ, ‖H(y)‖ ≤ δ (6.11)

and

‖G(y) − G(z)‖ ≤ δ‖y − z‖, ‖H(y) − H(z)‖ ≤ δ‖y − z‖, (6.12)

for y, z ∈ R
p . We note that, by (6.3) and (6.4), the function G = αF satisfies these

properties. Writing

G(y) = (
Gs(y),Gu(y)

) ∈ Es(0) ⊕ Eu(0)

and

H(y) = (
Hs(y),Hu(y)

) ∈ Es(0) ⊕ Eu(0),

it follows from (6.11) together with (6.7) and (6.8) that

‖Gs(y)‖′ ≤ C‖Gs(y)‖ ≤ C‖G(y)‖ ≤ Cδ (6.13)
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and analogously,

‖Gu(y)‖′ ≤ C‖Gu(y)‖ ≤ C‖G(y)‖ ≤ Cδ, (6.14)

with identical inequalities for Hs and Hu. On the other hand, since

√
a2 + b2 ≤

√
2 max

{
a2, b2

} ≤ √
2 max

{|a|, |b|},
it follows from (6.12) together with (6.7) and (6.8) that

‖Gs(y) − Gs(z)‖′ ≤ C‖Gs(y) − Gs(z)‖ ≤ C‖G(y) − G(z)‖
≤ Cδ‖y − z‖ ≤ Cδ

√
2 max

{∥∥ys − zs
∥∥,

∥∥yu − zu
∥∥}

≤ Cδ
√

2 max
{∥∥ys − zs

∥∥′
,
∥∥yu − zu

∥∥′} = Cδ
√

2‖y − z‖′ (6.15)

and analogously,

‖Gu(y) − Gu(z)‖′ ≤ Cδ
√

2‖y − z‖′, (6.16)

again with identical inequalities for Hs and Hu.
Now we consider the equation

(A + G) ◦ h = h ◦ (A + H), (6.17)

where h = Id + v. It is equivalent to the system of equations

As ◦ hs + Gs ◦ h = hs ◦ (A + H),

Au ◦ hu + Gu ◦ h = hu ◦ (A + H).
(6.18)

Since

As ◦ hs = As + As ◦ vs and hs ◦ (A + H) = As + Hs + vs ◦ (A + H),

the first equation in (6.18) is equivalent to

As ◦ vs + Gs ◦ h = Hs + vs ◦ (A + H). (6.19)

Analogously, the second equation in (6.18) is equivalent to

Au ◦ vu + Gu ◦ h = Hu + vu ◦ (A + H). (6.20)

Now we show that the functions A+G and A+H are invertible for any sufficiently
small δ. It follows from (6.4) that

∥
∥(A + G)(y) − (A + G)(z)

∥
∥ = ∥

∥A(y − z) + G(y) − G(z)
∥
∥

≥ ∥
∥A−1

∥
∥−1 · ‖y − z‖ − ‖G(y) − G(z)‖

≥ (∥∥A−1
∥∥−1 − δ

)‖y − z‖
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and thus, the function A + G is invertible for δ < ‖A−1‖−1. Likewise for the func-
tion A + H . This allows us to write Eqs. (6.19) and (6.20) in the form

vs = (
As ◦ vs + Gs ◦ (Id + v) − Hs

) ◦ (A + H)−1,

vu = A−1
u ◦ (

vu ◦ (A + H) + Hu − Gu ◦ (Id + v)
)
.

(6.21)

Step 4. Existence of a fixed point.

We define a map T in the space X by T (v) = w = (ws,wu), where

ws = (
As ◦ vs + Gs ◦ (Id + v) − Hs

) ◦ (A + H)−1,

wu = A−1
u ◦ (

vu ◦ (A + H) + Hu − Gu ◦ (Id + v)
)
.

We note that v is a fixed point of T , that is, T (v) = v if and only if system (6.21)
holds, which is equivalent to identity (6.17).

Now we show that T (X) ⊂ X and that T is a contraction. It follows from (6.9),
(6.13) and (6.14), together with the analogous inequalities for Hs and Hu, that

‖ws‖∞ ≤ τ‖vs‖∞ + 2Cδ < +∞
and

‖wu‖∞ ≤ τ‖vu‖∞ + 2τCδ < +∞.

Moreover, w(0) = 0 and w = (ws,wu) ∈ X. On the other hand, given functions
v = (vs, vu), v̄ = (v̄s, v̄u) ∈ X, we have

T (v) − T (v̄) = ([
As ◦ (vs − v̄s) + Gs ◦ (Id + v) − Gs ◦ (Id + v̄)

] ◦ (A + H)−1,

A−1
u ◦ [

(vu − v̄u) ◦ (A + H) − Gu ◦ (Id + v) + Gu ◦ (Id + v̄)
])

.

It follows from (6.9) and (6.10) that

∥∥(
As ◦ (vs − v̄s) ◦ (A + H)−1)(y)

∥∥′ ≤ ‖As ◦ (vs − v̄s)‖∞ ≤ τ‖vs − v̄s‖∞

and

∥∥(
A−1

u ◦ (vu − v̄u) ◦ (A + H)
)
(y)

∥∥′ ≤ ∥∥A−1
u ◦ (vu − v̄u)

∥∥∞ ≤ τ‖vu − v̄u‖∞.

Moreover, it follows from (6.15) and (6.16) that

∥∥Gs ◦ (Id + v) − Gs ◦ (Id + v̄)
∥∥∞ ≤ Cδ

√
2‖v − v̄‖∞

and
∥∥−Gu ◦ (Id + v) + Gu ◦ (Id + v̄)

∥∥∞ ≤ Cδ
√

2‖v − v̄‖∞.
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Hence, we obtain

‖T (v) − T (v̄)‖∞
≤ max

{
τ‖vs − v̄s‖∞ + Cδ

√
2‖v − v̄‖∞, τ‖vu − v̄u‖∞ + τCδ

√
2‖v − v̄‖∞

}

≤ (τ + Cδ
√

2)‖v − v̄‖∞.

If necessary, one can go back and take δ > 0 such that τ + Cδ
√

2 < 1, which guar-
antees that T is a contraction in the Banach space X. By the contraction mapping
principle,1 there exists a unique function v ∈ X such that T (v) = v, that is, such that
Eq. (6.17) holds with h = Id + v.

Step 5. Conclusion of the proof.

Finally, we consider several particular cases of Eq. (6.17). Taking G = 0 and H =
αF (which is possible in view of (6.3) and (6.4)), we obtain a unique function v ∈ X

such that h = Id + v satisfies

A ◦ h = h ◦ g (6.22)

(we recall that g = A + αF ). Similarly, taking G = αF and H = 0, we obtain a
unique function v̄ ∈ X such that h̄ = Id + v̄ satisfies

g ◦ h̄ = h̄ ◦ A. (6.23)

We show that

h ◦ h̄ = h̄ ◦ h = Id.

It follows from (6.22) and (6.23) that

A ◦ (h ◦ h̄) = h ◦ g ◦ h̄ = (h ◦ h̄) ◦ A (6.24)

and

(h̄ ◦ h) ◦ g = h̄ ◦ A ◦ h = g ◦ (h̄ ◦ h). (6.25)

Since

‖h ◦ h̄ − Id‖∞ = ∥∥(Id + v) ◦ (Id + v̄) − Id
∥∥∞

= ∥∥v̄ + v ◦ (Id + v̄)
∥∥∞

≤ ‖v̄‖∞ + ‖v‖∞ < +∞
and

‖h̄ ◦ h − Id‖∞ ≤ ‖v‖∞ + ‖v̄‖∞ < +∞,

1Theorem (See for example [12]) If T : X → X is a contraction (that is, there exists a λ ∈ (0,1)

such that d(T (x), T (y)) ≤ λd(x, y) for x, y ∈ X) in a complete metric space, then T has a unique
fixed point.
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the continuous functions h◦ h̄− Id and h̄◦h− Id belong to X. It follows from (6.24)
and (6.25) together with the uniqueness of the solutions v ∈ X of the equations

A ◦ (Id + v) = (Id + v) ◦ A and g ◦ (Id + v) = (Id + v) ◦ g, (6.26)

taking, respectively, G = H = 0 and G = H = αF , that

h ◦ h̄ − Id = h̄ ◦ h − Id = 0.

Indeed, v = 0 is a solution of both equations in (6.26). This shows that h is a home-
omorphism, with inverse h̄. Since g = f in B(0, r/3), it follows from (6.22) that
property (6.1) holds for U = B(0, r/3). �

Theorem 6.1 establishes a precise relation between the orbits of f and the orbits
of the linear transformation A = dxf . Namely, it follows from (6.1) that

h
(
f n(y)

) = An(h(y)) (6.27)

whenever

n ∈ Z
+ and y ∈

n−1⋂

m=0

f −mU

or

n ∈ Z
− and y ∈

n−1⋂

m=0

f mU.

In other words, the points of the orbit γf (y) that are in U are mapped by the home-
omorphism h to corresponding points of the orbit γA(h(y)), that is,

h
(
γf (y) ∩ U

) = γA(h(y)) ∩ V. (6.28)

We also have

h
(
γ +
f (y) ∩ U

) = γ +
A (h(y)) ∩ V and h

(
γ −
f (y) ∩ U

) = γ −
A (h(y)) ∩ V

for each y ∈R
p .

6.1.2 The Hadamard–Perron Theorem

In this section we continue the study of the behavior of the orbits of a diffeomor-
phism in an open neighborhood of a hyperbolic fixed point.

Let f : Rp → R
p be a C1 diffeomorphism and let x ∈ R

p be a hyperbolic fixed
point of f . It follows from the Grobman–Hartman theorem (Theorem 6.1) that there
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exists a homeomorphism h : U → V with h(U) = V , where U and V are, respec-
tively, open neighborhoods of x and 0, such that

h ◦ f = A ◦ h in U, (6.29)

where A = dxf . In view of (6.28), identity (6.29) establishes a relation between the
orbits of f and the orbits of A.

Now let Es(x) and Eu(x) be the stable and unstable spaces at x. We have

Es(x) = {
y ∈R

p : Any → 0 when n → +∞}
(6.30)

and

Eu(x) = {
y ∈ R

p : Any → 0 when n → −∞}
. (6.31)

Moreover, one can always assume that the neighborhood V is such that

A
(
Es(x) ∩ V

) ⊂ Es(x) ∩ V (6.32)

and

A−1(Eu(x) ∩ V
) ⊂ Eu(x) ∩ V. (6.33)

Indeed, let 〈·, ·〉′ be the inner product constructed in the proof of Theorem 5.3 with
dxf replaced by A (and thus with dxf

n replaced by An). By (5.26) and (5.27),
given r > 0, any open neighborhood V of 0 such that

Es(x) ∩ V = {
v ∈ Es(x) : ‖v‖′ < r

}

and

Eu(x) ∩ V = {
v ∈ Eu(x) : ‖v‖′ < r

}

satisfies (6.32) and (6.33). It follows from (6.30) and (6.31) together with (6.32)
and (6.33) (using, for example, the Jordan form of A) that

Es(x) ∩ V = {
y ∈ V : Any ∈ V for n > 0

}
(6.34)

and

Eu(x) ∩ V = {
y ∈ V : Any ∈ V for n < 0

}
. (6.35)

We also consider the sets

V s(x) = h−1(Es(x) ∩ V
)

and V u(x) = h−1(Eu(x) ∩ V
)

(both are contained in U ). We note that x ∈ V s(x) ∩ V u(x). It follows from (6.34)
and (6.35) together with (6.27) that

V s(x) = {
y ∈ U : f n(y) ∈ U for n > 0

}
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and

V u(x) = {
y ∈ U : f n(y) ∈ U for n < 0

}
.

Combining these identities with (6.32) and (6.33), we conclude that

f
(
V s(x)

) ⊂ V s(x) and f −1(V u(x)
) ⊂ V u(x). (6.36)

The Hadamard–Perron theorem says that the sets V s(x) and V u(x) are mani-
folds, tangent, respectively, to the spaces Es(x) and Eu(x).

Theorem 6.2 (Hadamard–Perron) Let x ∈ R
p be a hyperbolic fixed point of a C1

diffeomorphism f : Rp →R
p . Then there exists an open neighborhood B of x such

that the sets V s(x) ∩ B and V u(x) ∩ B are manifolds of class C1 with

Tx

(
V s(x) ∩ B

) = Es(x) and Tx

(
V u(x) ∩ B

) = Eu(x). (6.37)

For simplicity of exposition, we divide the proof into two steps.

Proposition 6.1 Let x ∈ R
p be a hyperbolic fixed point of a C1 diffeomorphism f .

Then there exists an open neighborhood B of x such that the sets V s(x) ∩ B and
V u(x) ∩ B are graphs of Lipschitz functions.

Proof We establish the result only for V s(x) since the argument for V u(x) is en-
tirely analogous. Again we divide the proof into steps.

Step 1. Preliminaries.

Consider the map F : Rp → R
p defined by

F(y) = f (y + x) − f (x).

It can be written in the form

F(v,w) = (
Av + g(v,w),Bw + h(v,w)

) ∈ Es(x) ⊕ Eu(x) (6.38)

for each (v,w) ∈ Es(x) ⊕ Eu(x), where

A = dxf |Es(x) : Es(x) → Es(x)

and

B = dxf |Eu(x) : Eu(x) → Eu(x).

We note that A and B are invertible linear transformations and that g and h are C1

functions with

g(0) = 0, h(0) = 0, d0g = 0, d0h = 0.
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Proceeding as in Step 1 of the proof of Theorem 5.3, one can always assume that
the inner product 〈·, ·〉x on the tangent space TxR

p is such that

‖A‖ < τ and
∥
∥B−1

∥
∥ < τ

for some constant τ ∈ (0,1) (independent of x). Moreover,

(g,h)(y) = f (y + x) − f (x) − dxfy

and the function

G : y �→ dy(g,h) = dy+xf − dxf

is continuous since f is of class C1. Given ε > 0, let

Dε(x) = Bs
2ε(x) ⊕ Bu

2ε(x),

where

Bs
2ε(x) ⊂ Es(x) and Bu

2ε(x) ⊂ Eu(x)

are the open balls of radius 2ε centered at the origin. Since G(0) = 0, we have

K := sup
{‖G(y)‖ : y ∈ Dε(x)

} → 0

when ε → 0. We also have

‖d(v,w)g‖ ≤ K and ‖d(v,w)h‖ ≤ K (6.39)

for (v,w) ∈ Ds
ε ⊕ Du

ε , where

Ds
ε = Bs

ε (x) and Du
ε = Bu

ε (x). (6.40)

Step 2. Formulation of an abstract problem.

Given σ ∈ (0,1], let X be the space of functions ϕ : Ds
ε → Eu(x) such that ϕ(0) = 0

and

‖ϕ(v) − ϕ(w)‖ ≤ σ‖v − w‖ (6.41)

for v,w ∈ Ds
ε . One can easily verify that X is a complete metric space with the

distance

d(ϕ,ψ) = sup
{‖ϕ(v) − ψ(v)‖ : v ∈ Ds

ε

}
.

We want to show that there exists a function ϕ ∈ X such that

V s(x) ⊃ x + {(
v,ϕ(v)

) : v ∈ Ds
ε

}
. (6.42)
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We first proceed formally, assuming that (6.42) holds. It follows from (6.38) and the
invariance property in (6.36) that

F
(
v,ϕ(v)

) = (
Av + g

(
v,ϕ(v)

)
,Bϕ(v) + h

(
v,ϕ(v)

))

and

Bϕ(v) + h
(
v,ϕ(v)

) = ϕ
(
Av + g

(
v,ϕ(v)

))
.

Thus,

ϕ(v) = B−1ϕ
(
Av + g

(
v,ϕ(v)

)) − B−1h
(
v,ϕ(v)

)
.

This leads us to introduce a map T on X by

T (ϕ)(v) = B−1ϕ
(
Av + g

(
v,ϕ(v)

)) − B−1h
(
v,ϕ(v)

)
.

We note that ϕ is a fixed point of T if and only if the graph of the function ϕ in (6.42)
satisfies the invariance property in (6.36). Hence, if we show that T has a unique
fixed point ϕ ∈ X, then the set on the right-hand side of (6.42) coincides with V s(x)

in some open neighborhood of x, which yields the desired result.

Step 3. Existence of a fixed point.

We first show that the map T is well defined. This amounts to verifying that each
point Av + g(v,ϕ(v)) is in the domain of ϕ, that is,

∥∥Av + g
(
v,ϕ(v)

)∥∥ < ε.

We have

‖ϕ(v)‖ = ‖ϕ(v) − ϕ(0)‖ ≤ σ‖v‖ ≤ ε

and it follows from (6.39) that

∥∥Av + g
(
v,ϕ(v)

)∥∥ ≤ τ‖v‖ + K
∥∥(

v,ϕ(v)
)∥∥

≤ [
τ + K(1 + σ)

]‖v‖
≤ [

τ + K(1 + σ)
]
ε.

Since K → 0 when ε → 0, taking ε sufficiently small, we obtain

[
τ + K(1 + σ)

]
ε < ε

and hence, the map T is well defined.
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Now we show that T (X) ⊂ X. We first observe that T (ϕ)(0) = 0 since g(0) = 0
and h(0) = 0. Moreover, given v,w ∈ Ds

ε , we have
∥∥T (ϕ)(v) − T (ϕ)(w)

∥∥ ≤ τ
∥∥ϕ

(
Av + g

(
v,ϕ(v)

)) − ϕ
(
Aw + g

(
w,ϕ(w)

))∥∥

+ τ
∥∥h

(
v,ϕ(v)

) − h
(
w,ϕ(w)

)∥∥

≤ τσ
∥∥A(v − w) + g

(
v,ϕ(v)

) − g
(
w,ϕ(w)

)∥∥

+ τK
∥∥(

v,ϕ(v)
) − (

w,ϕ(w)
)∥∥

≤ τ 2σ‖v − w‖ + τ(1 + σ)K
∥∥(

v,ϕ(v)
) − (

w,ϕ(w)
)∥∥

≤ [
τ 2σ + τ(1 + σ)2K

]‖v − w‖.
Since K → 0 when ε → 0, taking ε sufficiently small, we obtain

τ 2σ + τ(1 + σ)2K < σ

and hence,
∥∥T (ϕ)(v) − T (ϕ)(w)

∥∥ ≤ σ‖v − w‖
for v,w ∈ Ds

ε . This shows that T (X) ⊂ X.
Finally, we show that T is a contraction. Given ϕ,ψ ∈ X and v ∈ Ds

ε , we have
∥∥T (ϕ)(v) − T (ψ)(v)

∥∥ ≤ τ
∥∥ϕ

(
Av + g

(
v,ϕ(v)

)) − ψ
(
Av + g

(
v,ψ(v)

))∥∥

+ τ
∥∥h

(
v,ϕ(v)

) − h
(
v,ψ(v)

)∥∥

≤ τ
∥∥ϕ

(
Av + g

(
v,ϕ(v)

)) − ϕ
(
Av + g

(
v,ψ(v)

))∥∥

+ τ
∥∥ϕ

(
Av + g

(
v,ψ(v)

)) − ψ
(
Av + g

(
v,ψ(v)

))∥∥

+ τK
∥∥ϕ(v) − ψ(v)

∥∥

≤ τσ
∥∥g

(
v,ϕ(v)

) − g
(
v,ψ(v)

)∥∥ + τd(ϕ,ψ) + τKd(ϕ,ψ)

≤ [
τ + τ(1 + σ)K

]
d(ϕ,ψ).

Taking ε sufficiently small so that

τ + τ(1 + σ)K < 1,

the map T is a contraction in the complete metric space X. Thus, T has a unique
fixed point ϕ ∈ X. �

Now we show that the function ϕ obtained in the proof of Proposition 6.1 is of
class C1.

Proposition 6.2 Let x ∈ R
p be a hyperbolic fixed point of a C1 diffeomorphism f .

Then there exists an open neighborhood B of x such that the sets V s(x) ∩ B and
V u(x) ∩ B are manifolds of class C1 and satisfy (6.37).
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Fig. 6.1 The vector
u = (w,ϕ(w)) − (v,ϕ(v))

Proof We divide the proof into steps.

Step 1. Preliminaries.

Given v,w ∈ Ds
ε with v �= w, let

Δv,w = (w,ϕ(w)) − (v,ϕ(v))

‖(w,ϕ(w)) − (v,ϕ(v))‖
(see Fig. 6.1, where Δv,w = u/‖u‖). We denote by Sv the set of all vectors w ∈ TxM

such that Δv,vm → w when m → ∞, for some sequence (vm)m∈N converging to v.
When ϕ is differentiable at v, each of these vectors w is tangent to the graph of ϕ at
the point (v,ϕ(v)) and has norm 1. We also consider the set

τ(v,ϕ(v))V
s = {

λw : w ∈ Sv,λ ∈R
}
, (6.43)

where

V s = {(
v,ϕ(v)

) : v ∈ Ds
ε

}
.

Lemma 6.1 The function ϕ is differentiable at v if and only if τ(v,ϕ(v))V
s is a sub-

space of dimension dimEs(x).

Proof By the former discussion, if ϕ is differentiable at v, then the vectors λw

in (6.43) are exactly the elements of the tangent space to the graph of ϕ at the point
(v,ϕ(v)). Hence, τ(v,ϕ(v))V

s coincides with this tangent space and has dimension
dimEs(x).

On the other hand, if τ(v,ϕ(v))V
s is a subspace of dimension dimEs(x), then for

each vector u ∈ Ds
ε \ {0} with v + u ∈ Ds

ε , the limit

C(v,u) := lim
m→∞Δv,v+smu (6.44)

exists for any sequence sm such that sm → 0 when m → ∞. Moreover, C(u, v) is
independent of the sequence sm. Indeed, since each vector Δv,v+smu has norm 1,
it follows from the compactness of the closed unit sphere of Rp that the sequence
(Δv,v+smu)m has sublimits. Moreover, since τ(v,ϕ(v))V

s is a subspace, for each u
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there exists a unique vector w = wv,u ∈ Eu(x) such that (u,w) ∈ τ(v,ϕ(v))V
s . This

implies that the limit in (6.44) exists and

C(v,u) = (u,wv,u)/‖(u,wv,u)‖.
In other words, dvϕu = wv,u and the function ϕ is differentiable at v. �

Now we observe that Δv,vm → w when m → ∞ if and only if

lim
m→∞

F(vm,ϕ(vm)) − F(v,ϕ(v))

‖F(vm,ϕ(vm)) − F(v,ϕ(v))‖ = d(v,ϕ(v))Fw

‖d(v,ϕ(v))Fw‖ .

This implies that

(d(v,ϕ(v))F )τ(v,ϕ(v))V
s = τF(v,ϕ(v))F

(
V s

)
. (6.45)

Step 2. Invariant cones.

Given γ ∈ (0,1), consider the cones

Cs = {
(v,w) ∈ Es(x) × Eu(x) : ‖w‖ < γ ‖v‖} ∪ {0}

and

Cu = {
(v,w) ∈ Es(x) × Eu(x) : ‖v‖ < γ ‖w‖} ∪ {0}.

Lemma 6.2 For any sufficiently small ε, given (v,w) ∈ Ds
ε × Du

ε , we have

d(v,w)F
−1Cs ⊂ Cs and d(v,w)FCu ⊂ Cu. (6.46)

Proof Given (y, z) ∈ Es(x) × Eu(x), let

(ȳ, z̄) = d(v,w)F (y, z)

= (
Ay + d(v,w)g(y, z),Bz + d(v,w)h(y, z)

)
. (6.47)

We have

‖ȳ‖ ≤ τ‖y‖ + K‖(y, z)‖ (6.48)

and

‖z̄‖ ≥ τ−1‖z‖ − K‖(y, z)‖. (6.49)

For (y, z) ∈ Cu \ {0}, we also have ‖y‖ < γ ‖z‖ and thus,

‖ȳ‖ ≤ τγ ‖z‖ + K(1 + γ )‖z‖
and

γ ‖z̄‖ ≥ τ−1γ ‖z‖ − Kγ (1 + γ )‖z‖.
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Hence, taking ε sufficiently small so that

τγ + K(1 + γ )2 ≤ τ−1γ,

we obtain ‖ȳ‖ < γ ‖z̄‖ and (ȳ, z̄) ∈ Cu. This establishes the second inclusion in
(6.46). The first inclusion can be obtained in a similar manner. �

Step 3. Stable and unstable spaces.

Given (v,w) ∈ Ds
ε × Du

ε , consider the intersections

Es(v,w) =
∞⋂

j=0

d(v,w)F
−jCs (6.50)

and

Eu(v,w) =
∞⋂

j=0

d(v,w)F
jCu. (6.51)

It follows from Lemma 6.2 that

Es(v,w) ⊂ Cs and Eu(v,w) ⊂ Cu.

Lemma 6.3 For any sufficiently small ε and γ , the sets Es(v,w) and Eu(v,w) are
subspaces of TxM , respectively, of dimensions dimEs(x) and dimEu(x). Moreover,
they vary continuously with (v,w) and

Es(v,w) ⊕ Eu(v,w) = TxM.

Proof We note that each set

Hj = d(v,w)F
jCu

contains a subspace Fu
j of dimension k = dimEu(x). Now let v1j , . . . , vkj be an

orthonormal basis of Fu
j . Since Hj is nonincreasing in j (by Lemma 6.2) and the

closed unit sphere of Eu(x) is compact, there exists a sequence kj such that

vikj
→ vi when j → ∞,

for i = 1, . . . , k, where v1, . . . , vk is some orthonormal set in Eu(v,w). This shows
that Eu(v,w) contains a subspace Gu of dimension k. An analogous argument
shows that Es(v,w) contains a subspace Gs of dimension dimM − k. By (6.50)
and (6.51), we have

Gs ⊂ Es(v,w) ⊂ Cs and Gu ⊂ Eu(v,w) ⊂ Cu.

Since Cs ∩ Cu = {0}, we obtain

Gs ⊕ Gu = TxM.
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Now we show that the inclusions

Gs ⊂ Es(v,w) and Gu ⊂ Eu(v,w)

are in fact equalities. Given

(y, z) ∈ Es(x) × Eu(x),

let (ȳ, z̄) be as in (6.47). If (y, z) ∈ Cu, then it follows from (6.48) and (6.49) that

‖(ȳ, z̄)‖ ≥ ‖z̄‖ − ‖ȳ‖
≥ τ−1‖z‖ − K‖(y, z)‖ − τ‖y‖ − K‖(y, z)‖.

Since ‖y‖ ≤ γ ‖z‖, we have

‖(y, z)‖ ≤ ‖y‖ + ‖z‖ ≤ (1 + γ )‖z‖

and thus,

‖(ȳ, z̄)‖ ≥ (
τ−1 − γ τ

)‖z‖ − 2K‖(y, z)‖

≥
(

τ−1 − γ τ

1 + γ
− 2K

)
‖(y, z)‖. (6.52)

On the other hand, if (y, z) ∈ Cs , then ‖z‖ ≤ γ ‖y‖ and

‖(ȳ, z̄)‖ ≤ ‖ȳ‖ + ‖z̄‖
≤ τ‖y‖ + K‖(y, z)‖ + τ−1‖z‖ + K‖(y, z)‖
≤ (

τ + γ τ−1)‖y‖ + 2K‖(y, z)‖.

Since

‖(y, z)‖ ≥ ‖y‖ − ‖z‖ ≥ (1 − γ )‖y‖,
we obtain

‖(ȳ, z̄)‖ ≤
(

τ + γ τ−1

1 − γ
+ 2K

)
‖(y, z)‖. (6.53)

Now we assume that Eu(v,w) \ Gu �= ∅. Each vector q ∈ Eu(v,w) \ Gu can
be written in the form q = qs + qu, with qs ∈ Gs \ {0} and qu ∈ Gu. It follows
from (6.52) and (6.53) that
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‖qs‖ ≤
(

τ + γ τ−1

1 − γ
+ 2K

)m∥
∥d(v,w)F

−mqs

∥
∥

=
(

τ + γ τ−1

1 − γ
+ 2K

)m∥∥d(v,w)F
−m(q − qu)

∥∥

≤ αm‖q − qu‖, (6.54)

where

α := (τ + γ τ−1)/(1 − γ ) + 2K

(τ−1 − γ τ)/(1 + γ ) − 2K
.

Taking ε and γ sufficiently small so that α < 1 and letting m → ∞ in (6.54), we
obtain qs = 0. This contradiction shows that Gu = Eu(v,w). One can show in an
analogous manner that Gs = Es(v,w).

Finally, we establish the continuous dependence of the spaces Es(v,w) and
Eu(v,w) on the point (v,w). By (6.52) and (6.53), we have

∥∥d(v,w)F
m(y, z)

∥∥ ≤
(

τ + γ τ−1

1 − γ
+ 2K

)m

‖(y, z)‖

for (y, z) ∈ Es(v,w) and m > 0, and

∥∥d(v,w)F
−m(y, z)

∥∥ ≤
(

τ−1 − γ τ

1 + γ
− 2K

)m

‖(y, z)‖

for (y, z) ∈ Eu(v,w) and m < 0. One can now repeat the arguments in the proof
of Theorem 5.1 to establish the continuity of the spaces Es(v,w) and Eu(v,w)

on (v,w). �

Step 4. C1 regularity.

It remains to show that the function ϕ is of class C1. Taking σ < γ , we have

τ(v,ϕ(v))V
s ⊂ Cs. (6.55)

On the other hand, it follows from (6.50) and (6.51) that

d(v,w)FEs(v,w) = Es(F (v,w)) (6.56)

and

d(v,w)FEu(v,w) = Eu(F (v,w)) (6.57)

(compare with (5.30) and (5.31)). In particular, Es(v,w) and Eu(v,w) are the
largest sets contained, respectively, in Cs and Cu and satisfying (6.56) and (6.57).
It follows from (6.45) and (6.55) that

τ(v,ϕ(v))V
s ⊂ Es

(
v,ϕ(v)

)
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for v ∈ Ds
ε . But since τ(v,ϕ(v))V

s and Es(v,ϕ(v)) project both onto Ds
ε (we recall

that V s is a graph over Ds
ε), we obtain

τ(v,ϕ(v))V
s = Es

(
v,ϕ(v)

)
(6.58)

and thus, τ(v,ϕ(v))V
s is a linear space of dimension

dimEs
(
v,ϕ(v)

) = dimEs(x).

It follows from Lemma 6.1 that the function ϕ is differentiable. Moreover, by
Lemma 6.3, the function v �→ Es(v,ϕ(v)) is continuous since it is a composition
of continuous functions and thus, V s is a manifold of class C1. One can show in
an analogous manner that V u is a manifold of class C1. Taking v = 0, it follows
from (6.58) and the corresponding identity for V u that

T0V
s = Es and T0V

u = Eu.

This establishes the identities in (6.37). �

Definition 6.2 The manifolds V s(x) and V u(x) or, more precisely, the manifolds
V s(x) ∩ B and V u(x) ∩ B are called, respectively, stable and unstable manifolds at
the point x.

By (6.36), V s(x) is forward f -invariant and V u(x) is backward f -invariant.
Theorem 6.2 is a particular case of a more general result (Theorem 6.3) for arbi-

trary hyperbolic sets.

6.2 Stable and Unstable Invariant Manifolds

In this section we establish a basic but also fundamental result on the behavior of
the orbits of a diffeomorphism with a hyperbolic set. It is in fact a substantial gener-
alization of the Hadamard–Perron theorem (Theorem 6.2) on the existence of stable
and unstable manifolds for a hyperbolic fixed point. More precisely, it establishes
the existence of stable and unstable manifolds for all points of a hyperbolic set.

6.2.1 Existence of Invariant Manifolds

Let Λ be a hyperbolic set for a C1 diffeomorphism f : Rp → R
p . Given ε > 0, for

each x ∈ Λ, we consider the sets

V s(x) = {
y ∈ B(x, ε) : ∥∥f n(y) − f n(x)

∥∥ < ε for n > 0
}

(6.59)
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and

V u(x) = {
y ∈ B(x, ε) : ∥∥f n(y) − f n(x)

∥∥ < ε for n < 0
}
, (6.60)

where B(x, ε) ⊂R
p is the ball of radius ε centered at x. Clearly, x ∈ V s(x)∩V u(x).

We also have

f
(
V s(x)

) ⊂ V s(f (x)) and f −1(V u(x)
) ⊂ V u

(
f −1(x)

)
. (6.61)

Example 6.1 Let Λ be the Smale horseshoe constructed in Sect. 5.2.2. For any point
x ∈ Λ outside the boundary of the square [0,1]2, given ε > 0 sufficiently small, the
set V s(x) is a horizontal line segment and the set V u(x) is a vertical line segment.
In order to determine V s(x) and V u(x) at the remaining points, we would need to
know explicitly the diffeomorphism f outside the square.

Now we consider arbitrary hyperbolic sets.

Theorem 6.3 (Stable and Unstable Manifolds) Let Λ be a hyperbolic set for a
C1 diffeomorphism f : Rp → R

p . For any sufficiently small ε > 0, the following
properties hold:

1. for each x ∈ Λ, the sets V s(x) and V u(x) are manifolds of class C1 satisfying

TxV
s(x) = Es(x) and TxV

u(x) = Eu(x);
2. there exist ρ ∈ (0,1) and C > 0 such that

∥∥f n(y) − f n(x)
∥∥ ≤ Cρn‖y − x‖ for y ∈ V s(x)

and
∥∥f −n(y) − f −n(x)

∥∥ ≤ Cρn‖y − x‖ for y ∈ V u(x),

for any x ∈ Λ and n ∈N.

Proof The proof is an elaboration of the proof of Theorem 6.2 and so we only
describe the changes that are necessary.

For each x ∈ Λ, consider the map fx : Rp → R
p defined by

fx(y) = f (y + x) − f (x).

One can write fx in the form

fx(v,w) = (
As

xv + gs
x(v,w),Au

xw + gu
x (v,w)

) ∈ Es(x) ⊕ Eu(x)

for each (v,w) ∈ Es(x) ⊕ Eu(x), where

As
x = dxf |Es(x) : Es(x) → Es

(
f (x)

)
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and

Au
x = dxf |Eu(x) : Eu(x) → Eu

(
f (x)

)
.

We note that As
x and Au

x are invertible linear transformations and that gs
x and gu

x are
C1 functions with

gs
x(0) = 0, gu

x (0) = 0, d0g
s
x = 0, d0g

u
x = 0.

Moreover, one can always assume that the inner products 〈·, ·〉x in the tangent spaces
TxR

p are such that
∥∥As

x

∥∥ < τ and
∥∥(

Au
x

)−1∥∥ < τ

for any x ∈ Λ and some constant τ ∈ (0,1).
Now we consider separately each orbit of f . Given x ∈ Λ and n ∈ Z, write the

map Fn = ff n(x) in the form

Fn(v,w) = (
Anv + gn(v,w),Bnw + hn(v,w)

)
, (6.62)

where

An = As
f n(x), Bn = Au

f n(x), gn = gs
f n(x), hn = gu

f n(x).

We also consider the spaces

Es
n = Es

(
f n(x)

)
and Eu

n = Eu
(
f n(x)

)
.

The linear transformations

An : Es
n → Es

n+1 and Bn : Eu
n → Eu

n+1

satisfy

‖An‖ < τ and
∥∥B−1

n

∥∥ < τ

for each n ∈ Z. Moreover,
(
gs

x, g
u
x

)
(y) = f (y + x) − f (x) − dxfy

and the function

G : (x, y) �→ dy

(
gs

x, g
u
x

) = dy+xf − dxf

is continuous since f is of class C1. Since Λ is compact, given ε > 0 and open balls

Bs
2ε(x) ⊂ Es(x) and Bu

2ε(x) ⊂ Eu(x)

of radius 2ε centered at the origin, the function G is uniformly continuous on the
set

{
(x, y) : x ∈ Λ,y ∈ Dε(x)

}
, where Dε(x) = Bs

2ε(x) ⊕ Bu
2ε(x).
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Since G(x,0) = 0, we have

K := sup
{‖G(x,y)‖ : (x, y) ∈ Λ × Dε(x)

} → 0

when ε → 0. Moreover,

‖d(v,w)gn‖ ≤ K and ‖d(v,w)hn‖ ≤ K

for n ∈ Z and (v,w) ∈ Ds
ε ⊕ Du

ε , where

Ds
ε = Bs

ε

(
f n(x)

)
and Du

ε = Bu
ε

(
f n(x)

)
.

Given σ ∈ (0,1], let X be the space of sequences ϕ = (ϕn)n∈Z of functions
ϕn : Ds

ε → Eu
n such that ϕn(0) = 0 and

‖ϕn(v) − ϕn(w)‖ ≤ σ‖v − w‖
for n ∈ Z and v,w ∈ Ds

ε . One can easily verify that X is a complete metric space
with the distance

d(ϕ,ψ) = sup
{‖ϕn(v) − ψn(v)‖ : n ∈ Z, v ∈ Ds

ε

}
.

We want to show that there exist functions ϕn such that

V s
(
f n(x)

) ⊃ x + {(
v,ϕn(v)

) : v ∈ Ds
ε

}
(6.63)

for n ∈ Z. We first proceed formally, assuming that (6.63) holds. It follows from
(6.62) and the invariance in (6.61) that

Fn

(
v,ϕn(v)

) = (
Anv + gn

(
v,ϕn(v)

)
,Bnϕn(v) + hn

(
v,ϕn(v)

))

and

Bnϕn(v) + hn

(
v,ϕn(v)

) = ϕn+1
(
Anv + gn

(
v,ϕn(v)

))
.

Thus,

ϕn(v) = B−1
n ϕn+1

(
Anv + gn

(
v,ϕn(v)

)) − B−1
n hn

(
v,ϕn(v)

)

for each n ∈ Z. This leads us to introduce a map T on X by

T (ϕ)n(v) = B−1
n ϕn+1

(
Anv + gn

(
v,ϕn(v)

)) − B−1
n hn

(
v,ϕn(v)

)
.

We note that ϕ = (ϕn)n∈Z is a fixed point of T if and only if the graphs of the
functions ϕn in (6.63) satisfy the invariance property in (6.61). Hence, if we prove
that T has a unique fixed point ϕ ∈ X, then the sets on the right-hand side of (6.63)
coincide with V s(f n(x)) in some open neighborhood of f n(x).

The remaining steps are analogous to those in the proof of Theorem 6.2 and thus
are omitted. �
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6.2.2 Local Product Structure

In this section we show that some hyperbolic sets have what is called a local product
structure. Let Λ be a hyperbolic set for a C1 diffeomorphism f : Rp → R

p . Given
x, y ∈ Λ, we write

[x, y] = V s(x) ∩ V u(y).

Definition 6.3 Λ is said to have a local product structure if there exist ε > 0 and
δ > 0 such that

card[x, y] = 1 and [x, y] ∈ Λ

for any x, y ∈ Λ with ‖x − y‖ < δ (with the constant ε as in Theorem 6.3).

When Λ has a local product structure, we obtain a function

[·, ·] : {
(x, y) ∈ Λ × Λ : ‖x − y‖ < δ

} → Λ.

Now we consider a class of hyperbolic sets for which there exists a local product
structure.

Definition 6.4 A hyperbolic set Λ for a diffeomorphism f : Rp →R
p is said to be

locally maximal if there exists an open neighborhood U ⊃ Λ such that

Λ =
⋂

n∈Z
f n(U).

In other words, a hyperbolic set is locally maximal if all orbits remaining in some
open neighborhood of Λ are in fact in Λ.

Theorem 6.4 Any locally maximal hyperbolic set Λ for a C1 diffeomorphism f has
a local product structure.

Proof By Theorem 5.1, the spaces Es(x) and Eu(x) vary continuously with x ∈ Λ.
This implies that the map

Λ � x �→ ∠
(
Es(x),Eu(x)

) ∈ (0,π/2]
is continuous since it is a composition of continuous functions. On the other hand,
since Λ is compact, there exists an α > 0 such that

∠
(
Es(x),Eu(x)

)
> α for x ∈ Λ.

Now we show that there exists a δ > 0 such that

∠
(
Es(x),Eu(y)

)
>

α

2
(6.64)
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for any x, y ∈ Λ with ‖x − y‖ ≤ δ. Given x ∈ Λ, let Ux ⊂ Λ × Λ be an open ball
centered at the pair (x, x) such that

∠
(
Es(y),Eu(z)

)
>

α

2
for (y, z) ∈ Ux. (6.65)

This is always possible since the function (y, z) �→ (Es(y),Eu(z)) is continuous.
Moreover, since Λ is compact, the diagonal

D = {
(x, x) : x ∈ Λ

} ⊂ Λ × Λ

is also compact and there exists a finite subcover Ux1, . . . ,Uxn of D. Now take δ > 0
such that any open ball of radius 2δ centered at a point (x, x) ∈ Λ × Λ is contained
in some open set Uxi

(it is sufficient to assume that 2δ is a Lebesgue number2 of the
open cover of D formed by the sets Uxi

∩ D, for i = 1, . . . , n). Given x, y ∈ Λ with
‖x − y‖ ≤ δ, we have

‖(x, y) − (x, x)‖ = ‖(0, y − x)‖ ≤ ‖y − x‖ ≤ δ.

Hence, the point (x, y) is in some open set Uxi
and it follows from (6.65) that

inequality (6.64) holds.
Now take ε > 0 in (6.59) and (6.60) such that

⋃

x∈Λ

(
V s(x) ∪ V u(x)

) ⊂ U, (6.66)

with the open set U as in Definition 6.4. By Theorem 6.3, the manifolds V s(x)

and V u(x) are graphs of C1 functions. Moreover, they are tangent, respectively, to
the spaces Es(x) and Eu(x). This implies that taking ε sufficiently small, one can
make the constant σ in (6.41) as small as desired. Since the angle between Es(x)

and each tangent space to V s(x) is at most tan−1 σ , the angle between Eu(y) and
each tangent space to V s(x) is contained in the interval

(
α

2
− tan−1 σ,

α

2
+ tan−1 σ

)

(see Fig. 6.2). Thus, the angle between each tangent space to V s(x) and each tangent
space to V u(y) is contained in the interval

(
α

2
− 2 tan−1 σ,

α

2
+ 2 tan−1 σ

)

(see Fig. 6.2). Taking σ sufficiently small so that

α

2
− 2 tan−1 σ > 0 and

α

2
+ 2 tan−1 σ <

π

2
,

2Theorem (See for example [43]) Given an open cover of a compact metric space X, there exists
a positive number δ (called a Lebesgue number of the cover) such that any subset of X of diameter
less than δ is contained in some element of the cover.



6.3 Geodesic Flows 137

Fig. 6.2 Tangent spaces to the manifolds V s(x) and V u(y)

we obtain

card[x, y] = card
(
V s(x) ∩ V u(y)

) ≤ 1

for any x, y ∈ Λ with ‖x − y‖ ≤ δ. Since the sizes of the open neighborhoods Ds
ε

and Du
ε (see (6.40) and (6.42)) only depend on ε, taking δ sufficiently small yields

that card[x, y] = 1 for any x, y ∈ Λ with ‖x − y‖ < δ.
Finally, it follows from (6.61) and (6.66) that f n([x, y]) ∈ U for n ∈ Z. Since the

set Λ is locally maximal, we conclude that [x, y] ∈ Λ. �

6.3 Geodesic Flows

In this section we consider the geodesic flow in hyperbolic geometry. In particular,
we show how it gives rise to examples of hyperbolic flows. More precisely, after a
brief introduction to hyperbolic geometry and its geodesic flow, we introduce the
notion of a hyperbolic set for a flow and we show how to obtain examples of hy-
perbolic sets from the geodesic flow. We note that some basic results of hyperbolic
geometry are formulated without proof.

6.3.1 Hyperbolic Geometry

Consider the upper half-plane

H = {
z ∈ C : Im z > 0

}
,

with the inner product in each tangent space TzH = C = R
2 given by

〈v,w〉z = 〈v,w〉
(Im z)2

, (6.67)
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where 〈v,w〉 is the standard inner product in R
2. The inner product in (6.67) induces

the norm

|v|z = |v|
Im z

. (6.68)

Hence, the length of a C1 path γ : [0, τ ] → H is given by

Lγ =
∫ τ

0

|γ ′(t)|
Imγ (t)

dt.

Definition 6.5 The hyperbolic distance between two points z,w ∈ H is defined by

d(z,w) = infLγ ,

where the infimum is taken over all C1 paths joining z to w, that is, all C1 paths
γ : [0, τ ] → H with γ (0) = z and γ (τ) = w.

Now let S∗L(2,R) be the group of matrices

A =
(

a b

c d

)

with real entries and determinant 1 or −1, and define maps TA on H by

TA(z) = az + b

cz + d
or TA(z) = az + b

cz + d
, (6.69)

respectively, when ad − bc = 1 or ad − bc = −1. Clearly, the matrices A and −A

represent the same map, that is, T−A = TA.
We also recall the notion of an isometry.

Definition 6.6 A map T : H → H is said to be an isometry if

d
(
T (z), T (w)

) = d(z,w)

for any z,w ∈H.

Now we show that the elements of the group S∗L(2,R) or, more precisely, the
maps in (6.69), are isometries.

Proposition 6.3 The maps TA in (6.69) take H to itself and are isometries.

Proof We first show that S∗L(2,R) is generated by the group SL(2,R) of matrices

A =
(

a b

c d

)
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with real entries and determinant 1 and by the matrix

B =
(−1 0

0 1

)
.

Indeed, if A has determinant 1, then the matrix

AB =
(

a b

c d

)(−1 0
0 1

)
=

(−a b

−c d

)

has determinant −1. This yields the desired result since all matrices with determi-
nant −1 can be written in this form.

Now we show that the maps TA defined by matrices A with determinant 1 (called
Möbius transformations) and the map z �→ −z = TB(z) take H to itself. If

w = TA(z) = az + b

cz + d
,

then

w = (az + b)(cz + d)

|cz + d|2

= ac|z|2 + adz + bcz + bd

|cz + d|2

and thus,

Imw = w − w

2i

= (ad − bc)z − (ad − bc)z

2i|cz + d|2

= z − z

2i|cz + d|2

= Im z

|cz + d|2 > 0. (6.70)

This shows that w ∈ H. We also have

Im(−z) = −z − −z

2i

= z − z

2i
= Im z > 0.

It remains to show that these maps preserve the hyperbolic distance. For this it
is sufficient to show that the length of any C1 path is preserved under their action.
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Indeed, the image of a C1 path under a map TA is still a C1 path and all C1 paths
are of this form. Hence,

d
(
TA(z), TA(w)

) = infLα,

where the infimum is taken over all paths α = TA ◦ γ obtained from a C1 path γ

joining z to w. Now let γ : [0, τ ] → H be a C1 path and let

α(t) = TA(γ (t)) = aγ (t) + b

cγ (t) + d
,

with A ∈ SL(2,R). We have

α′(t) = aγ ′(t)(cγ (t) + d) − cγ ′(t)(aγ (t) + b)

(cγ (t) + d)2

= ad − bc

(cγ (t) + d)2
γ ′(t)

= 1

(cγ (t) + d)2
γ ′(t) (6.71)

and, as in (6.70),

Imα(t) = Imγ (t)

|cγ (t) + d|2 .

Hence,

Lα =
∫ τ

0

|α′(t)|
Imα(t)

dt

=
∫ τ

0

|γ ′(t)|
|cγ (t) + d|2 · |cγ (t) + d|2

Imγ (t)
dt

=
∫ τ

0

|γ ′(t)|
Imγ (t)

dt = Lγ .

Finally, if α(t) = −γ (t), then

α′(t) = −γ ′(t) and Imα(t) = Imγ (t).

Hence,

Lα =
∫ τ

0

|α′(t)|
Imα(t)

dt =
∫ τ

0

|γ ′(t)|
Imγ (t)

dt = Lγ .

This completes the proof of the proposition. �

Since the matrices
(

a b

c d

)
and −

(
a b

c d

)
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Fig. 6.3 Geodesics of H

represent the same map, we also consider the groups

PSL(2,R) = SL(2,R)/{Id,−Id}
and

PS∗L(2,R) = S∗L(2,R)/{Id,−Id},
where two matrices are identified if one is the negative of the other. Proposition 6.3
says that PS∗L(2,R) and its subgroup PSL(2,R) are formed by isometries.

Now we consider the geodesics, that is, the shortest paths between two points.

Proposition 6.4 The geodesics between two points of H are the vertical half-lines
and the semicircles centered at points of the real axis (see Fig. 6.3). More precisely,
given z ∈H and v ∈ C \ {0}:
1. if v is parallel to the imaginary axis, then the geodesic passing through z with

direction v at this point is the half-line {z + vt : t ∈ R} ∩H;
2. if v is not parallel to the imaginary axis, then the geodesic passing through z

with direction v at this point is the semicircle centered at the real axis that is
tangent to v at the point z.

Proof Take z = ic and w = id , with d > c. Let γ : [0, τ ] → H be a C1 path with
γ (0) = z and γ (τ) = w. Writing γ (t) = x(t) + iy(t), we obtain

Lγ =
∫ τ

0

|γ ′(t)|
y(t)

dt ≥
∫ τ

0

|y′(t)|
y(t)

dt

≥
∫ τ

0

y′(t)
y(t)

dt = logy(t)|t=τ
t=0 = log

d

c
. (6.72)

On the other hand, for the C1 path α : [c, d] → H defined by α(t) = it , we have

Lα =
∫ d

c

|α′(t)|
Imα(t)

dt =
∫ d

c

1

t
dt = log

d

c
.

Comparing with (6.72), we conclude that the geodesic joining ic to id is the vertical
line segment between these two points.
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Now let z,w ∈H be arbitrary points with z �= w and let R be the unique vertical
line segment or the unique arc of circle centered at the real axis joining z to w. One
can show that there exists a Möbius transformation T such that T (R) is a vertical
line segment on the positive part of the imaginary axis (we recall that Möbius trans-
formations take straight lines and circles to straight lines or circles). It follows from
the previous argument and Proposition 6.3 that the geodesic joining the points z and
w is precisely R. �

6.3.2 Quotients by Isometries

In this section we consider the quotient of H by subgroups of isometries. The
procedure is analogous to an alternative construction of the torus T

n. Namely, let
Ti : Rn → R

n, for i = 1, . . . , n, be the translations

Ti(x) = x + ei,

where ei is the ith vector of the standard basis of Rn. Then the torus Tn is obtained
identifying the points of Rn that can be obtained from each other applying succes-
sively any of the maps Ti and their inverses T −1

i . Given m = (m1, . . . ,mn) ∈ Z, we
have

(
T

m1
1 ◦ T

m2
2 ◦ · · · ◦ T mn

n

)
(x) = x + m.

Since the maps T1, . . . , Tn commute, the points x + m are precisely those that can
be obtained from x successively applying the maps Ti and their inverses. In other
words, two points x, y ∈ R

n are identified if and only if x − y ∈ Z
n and thus, this

procedure yields the torus Tn.
The genus of a connected orientable surface M is the largest number g of closed

simple curves γ1, . . . , γg ⊂ M with

γj ∩ γj = ∅ for i �= j

such that M \⋃g

i=1 γi is connected. It can be described as the number of handles on
the surface. For example, the sphere has genus 0 and the torus T2 has genus 1 (see
Fig. 6.4). See Fig. 6.5 for a compact surface of genus 2.

Now we consider the group of isometries PSL(2,R). We show that each com-
pact surface of genus at least 2 can be obtained as the quotient of H by a subgroup
of PSL(2,R).

Proposition 6.5 Given g ≥ 2, there exists a subgroup G of PSL(2,R) such that the
quotient H/G is a compact surface of genus g.

Proof We first consider the map

T (z) = z − i

z + i
.
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Fig. 6.4 The torus T2

Fig. 6.5 A compact surface
of genus 2

One can easily verify that T maps H onto the unit disk

D = {
z ∈ C : |z| < 1

}
.

Indeed, T (i) = 0 and each x ∈ R is mapped to a point with modulus

|T (x)| =
∣∣∣
∣
x − i

x + i

∣∣∣
∣ = |x − i|

|x + i| = 1.

Moreover, the map T takes geodesics to diameters of D or circular arcs that are
orthogonal to the boundary of D.

Given r ∈ (0,1), consider the points zk = reiπk/4 for k = 0, . . . ,7. We also con-
sider the circular arcs

R1, R2, R3, R4, R′
1, R′

2, R′
3, R′

4 (6.73)

that are orthogonal to the boundary of D, determined successively by the pairs of
points

(z0, z1), (z1, z2), . . . , (z6, z7), (z7, z0)

(see Fig. 6.6). Now take r such that the sum of the interior angles of the octagon in
Fig. 6.6 is 2π . One can show that there exist unique Möbius transformations Tj , for
j = 1,2,3,4, such that

Sj (Rj ) = R′
j , where Sj = T ◦ Tj ◦ T −1,

reversing the direction of the arcs, that is,

S1(z0) = z5, S2(z1) = z6, S3(z2) = z7, S4(z3) = z0.

Finally, let G be the group generated by the Möbius transformations T1, T2, T3
and T4. One can verify that the quotient H/G is a compact surface of genus 2.

Replacing the 8 arcs in (6.73) by 4g arcs such that the sum of the interior angles
of the polygon that they determine is equal to 2π , we obtain in an analogous manner
a quotient of H that is a compact surface of genus g. �



144 6 Hyperbolic Dynamics II

Fig. 6.6 Arcs Rj and R′
j for

j = 1,2,3,4

6.3.3 Geodesic Flow

In this section we describe the geodesic flow on H or, more precisely, on its unit
tangent bundle

SH= {
(z, v) ∈H×C : |v|z = 1

}
,

where the norm |v|z is given by (6.68).

Example 6.2 The C1 path γ : R → H defined by γ (t) = iet travels along the
geodesic {z ∈ H : Re z = 0}. Moreover,

|γ ′(t)|γ (t) = 〈iet , iet 〉1/2

Im(iet )

= 〈(0, et ), (0, et )〉1/2

et
= 1.

Thus, we obtain a path

R � t �→ (
γ (t), γ ′(t)

) ∈ SH

in the unit tangent bundle with (γ (0), γ ′(0)) = (i, i).

Now let us take (z, v) ∈ SH. One can show that there exists a unique Möbius
transformation T such that (see Fig. 6.7)

T (i) = z and T ′(i)i = v,

which thus takes the geodesic iet traversing the positive part of the imaginary axis
to the geodesic γ (t) passing through z with direction v at this point. More precisely,
let x, y ∈ R ∪ {∞} be, respectively, the limits γ (−∞) and γ (+∞). We consider
four cases:
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Fig. 6.7 The Möbius
transformation T

1. when x, y ∈R and x < y, we have

T (w) = αyw + x

αw + 1
, where α =

∣∣∣∣
z − x

z − y

∣∣∣∣;

2. when x, y ∈R and x > y, we have

T (w) = yw − αx

w − α
, where α =

∣
∣∣∣
z − y

z − x

∣
∣∣∣;

3. when x ∈R and y = ∞, we have

T (w) = αw + x, where α = Im z;
4. when x = ∞ and y ∈R, we have

T (w) = −α/w + y, where α = Im z.

Now we use the map T (that depends on z and v) to introduce the geodesic flow.

Definition 6.7 The geodesic flow ϕt : SH→ SH is defined by

ϕt (z, v) = (
γ (t), γ ′(t)

)
,

where γ (t) = T (iet ).

We verify that ϕt is indeed a flow.

Proposition 6.6 The family of maps ϕt is a flow of SH.

Proof Writing

T (z) = az + b

cz + d
,

it follows from (6.70) and (6.71) that

Imγ (t) = Im(iet )

|ciet + d|2 and γ ′(t) = iet

(ciet + d)2
.
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Thus,

|γ ′(t)|γ (t) = et

|ciet + d|2 · |ciet + d|2
Im(iet )

= 1

and hence, ϕt (SH) ⊂ SH.
Now we show that ϕt is a flow. We have

ϕ0(z, v) = (
γ (0), γ ′(0)

)

= (
T (i), T ′(i)i

) = (z, v).

Moreover,

(ϕt ◦ ϕs)(z, v) = ϕt

(
γ (s), γ ′(s)

)

with γ (s) = S−1(ies), where S(w) = T (esw). Indeed, writing R = S−1, we have

R(γ (s)) = e−sT −1(T
(
ies

)) = i

and

R′(γ (s))γ ′(s) = (R ◦ γ )′(t)|t=s

= (
ie−s+t

)′∣∣
t=s

= i.

Hence,

(ϕt ◦ ϕs)(z, v) = (
α(t), α′(t)

)
,

where

α(t) = S
(
ieit

) = T
(
iet+s

) = γ (t + s),

which yields the identity

(ϕt ◦ ϕs)(z, v) = (
γ (t + s), γ ′(t + s)

) = ϕt+s(z, v).

This completes the proof of the proposition. �

We also introduce a distance on SH. Given (z, v), (z′, v′) ∈ SH, let γ : [0,1] → H

be the unique geodesic arc such that

γ (0) = z and γ (1) = z′.

Let also F : [0,1] → H \ {0} be a continuous vector field with F(0) = v such that
the angle between F(t) and γ ′(t) is equal to the angle between v and γ ′(0) for every
t ∈ [0,1]. The distance between (z, v) and (z′, v′) is defined by

d
(
(z, v), (z′, v′)

) =
√

d(z, z′)2 + α2, (6.74)

where α is the angle between F(1) and v′. One can verify that there exist inner
products 〈·, ·〉(z,v) on the tangent spaces T(z,v)SH that yield this distance.
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6.3.4 Hyperbolic Flows

In this section we first introduce the notion of a hyperbolic set for a flow. We then
show that for the geodesic flow in hyperbolic geometry any compact quotient is a
hyperbolic set.

Let ϕt : M → M be a flow of a manifold M . We always assume that the map
(t, x) �→ ϕt (x) is of class C1. We recall that a set Λ ⊂ M is said to be Φ-invariant,
where Φ = (ϕt )t∈R, if ϕt (Λ) = Λ for t ∈ R.

Definition 6.8 A compact Φ-invariant set Λ ⊂ M is said to be a hyperbolic set
for Φ if there exist λ ∈ (0,1), c > 0, and decompositions

TxM = Es(x) ⊕ E0(x) ⊕ Eu(x) for x ∈ Λ

such that, for any x ∈ Λ:

1. E0(x) is the space of dimension 1 generated by the vector

X(x) = d

dt
ϕt (x)

∣∣∣∣
t=0

;

2. for each t ∈ R,

dxϕtE
s(x) = Es(ϕt (x)) and dxϕtE

u(x) = Eu(ϕt (x)); (6.75)

3. for each t > 0,

‖dxϕtv‖ ≤ cλt‖v‖ for v ∈ Es(x)

and

‖dxϕ−t v‖ ≤ cλt‖v‖ for v ∈ Eu(x).

The linear spaces Es(x) and Eu(x) are called, respectively, the stable and unstable
spaces at the point x.

Now we consider the particular case of the geodesic flow in hyperbolic geometry.
For a quotient H/G as in Sect. 6.3.2, the inner product 〈·, ·〉(z,v) on each tangent
space

T(z,v)S(H/G) = T(z,v)SH

is the one yielding the distance d on S(H/G) (see (6.74)).

Theorem 6.5 For the compact surface H/G of genus g ≥ 2 in Proposition 6.5, the
unit tangent bundle S(H/G) is a hyperbolic set for the geodesic flow. Moreover, for
each (z, v) ∈ S(H/G), there exist manifolds

V s(z, v),V u(z, v) ⊂ S(H/G)
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Fig. 6.8 The sets Hs
z,v and

Hu
z,v

Fig. 6.9 The sets V s(z, v)

and V u(z, v)

containing (z, v) that are tangent, respectively, to the stable and unstable spaces at
(z, v) and which satisfy

ϕt

(
V u(z, v)

) = V u(ϕt (z, v)) and ϕt

(
V s(z, v)

) = V s(ϕt (z, v)) (6.76)

for any (z, v) ∈ SH and t ∈R.

Proof Given (z, v) ∈ SH, let γ (t) be the geodesic with γ (0) = z and γ ′(0) = v.
Moreover, let Hs

z,v and Hu
z,v be the circles passing through z that are tangent to the

real axis, respectively, at the points γ (+∞) and γ (−∞) (see Fig. 6.8). Now we
consider the set

V s(z, v) ⊂ S(H/G)

formed by the vectors with norm 1 that are on Hs
z,v , are normal to Hs

z,v , and point
in the same direction as v (see Fig. 6.9). Analogously, we consider the set

V u(z, v) ⊂ S(H/G)

formed by the vectors with norm 1 that are on Hu
z,v , are normal to Hu

z,v , and point
in the same direction as v (see Fig. 6.9). One can verify that the sets V s(z, v) and
V u(z, v) are manifolds of dimension 1. Moreover, property (6.76) holds. Indeed, the
restriction of the geodesic flow to H maps circles tangent to the real line and hori-
zontal lines to circles tangent to the real line or horizontal lines. On the other hand,
by (6.67), the angles are preserved under the action of the geodesic flow and thus,
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Fig. 6.10 The sets Hs
i,i and

Hu
i,i

the image of a normal vector to Hs
z,v or Hu

z,v is still a normal vector, respectively, to
the images of Hs

z,v and Hu
z,v .

It remains to establish the third property in Definition 6.8 since then prop-
erty (6.75) follows from (6.76). We first note that it is sufficient to consider
the geodesic traversing the positive part of the imaginary axis, that is, the path
γ : R → H given by γ (t) = iet . In this case, Hu

i,i is the circle having as diameter
the line segment between 0 and i, while Hs

i,i is the horizontal straight line passing
through i (see Fig. 6.10). For each t > 0, we have

d(i,i)ϕt (1,0) = lim
h→0

ϕt ((i, i) + h(1,0)) − ϕt (i, i)

h

= lim
h→0

(iet + h, iet ) − (iet , iet )

h
= (1 + i0,0) (6.77)

and hence,

‖d(i,i)ϕt (1,0)‖ϕt (i,i) = ‖1 + i0‖iet = e−t . (6.78)

Finally, we note that the Möbius transformation T (z) = −1/z takes Hs
i,i to Hu

i,i ,
while the derivative T ′(i) = −1 reverses the direction of all vectors with norm 1.
Together with (6.77) and (6.78), this implies that

‖d(i,i)ϕ−t v‖ = e−t‖v‖

for v ∈ T(i,i)V
u(i, i) and t > 0. Therefore, S(H/G) is a hyperbolic set for the

geodesic flow. �

The sets V s(z, v) and V u(z, v) are called, respectively, the stable and unstable
manifolds at the point (z, v).
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6.4 Exercises

Exercise 6.1 Show that if 0 ∈R
p is a hyperbolic fixed point for an invertible linear

transformation A : Rp → R
p , then

Es(0) = {
y ∈R

p \ {0} : λ(y) < 0
} ∪ {0}

and

Eu(0) = {
y ∈R

p \ {0} : λ(y) > 0
} ∪ {0},

where

λ(y) = lim sup
n→∞

1

n
log

∥
∥Any

∥
∥. (6.79)

Exercise 6.2 Given a p × p matrix A, show that any two vectors v1, v2 ∈ R
p \ {0}

with λ(v1) �= λ(v2) (see (6.79)) are linearly independent.

Exercise 6.3 Let f be a diffeomorphism. Show that Λ is a hyperbolic set for f if
and only if Λ is a hyperbolic set for f −1.

Exercise 6.4 Determine whether a stable manifold can contain two periodic points.

Exercise 6.5 Show that the Smale horseshoe is locally maximal.

Exercise 6.6 Show that the solenoid Λ in Exercise 5.18 is locally maximal.

Exercise 6.7 Let Λ be a hyperbolic set for a diffeomorphism f : Rp → R
p with

Eu(x) = {0} for each x ∈ Λ. Show that Λ is the union of a finite number of periodic
points of f .

Exercise 6.8 Let x be a hyperbolic fixed point of a diffeomorphism f . Show that
for each n ∈ N, there exists an open neighborhood V of x such that any periodic
point of f in V has period greater than n.

Exercise 6.9 Determine whether there exists a homeomorphism f : T2 → T
2 such

that f ◦ TA = TB ◦ f , where

A =
(

2 1
1 1

)
and B =

(
3 1
1 1

)
.

Exercise 6.10 Construct a topological conjugacy h : R2 → R
2 between the flows

determined by the differential equations x′ = 3x and x′ = 4x, that is, construct a
homeomorphism h such that

h ◦ ϕt = ψt ◦ h for t ∈R,

where ϕt and ψt are the flows determined by the two equations.
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Exercise 6.11 Determine whether the topological conjugacy h : R2 → R
2 con-

structed in Exercise 6.10 can be a diffeomorphism.

Exercise 6.12 Determine whether, up to compactness, the set R2 satisfies the con-
ditions in the notion of a hyperbolic set for the flow ϕt : R2 → R

2 defined by

ϕt (x, y) = (
etx, e−t y

)
.

Exercise 6.13 Determine whether, up to compactness, the set R3 satisfies the con-
ditions in the notion of a hyperbolic set for the flow ϕt : R3 → R

3 defined by

ϕt (s, x, y) = (
s + t, etx, e−t y

)
.

Exercise 6.14 Determine whether there exists a topological conjugacy h : R2 →R
2

between the flows defined by the equations
{

x′ = y,

y′ = −x
and

{
x′ = y,

y′ = −2x.

Exercise 6.15 Determine whether there exists a topological conjugacy h : R2 →R
2

between the flows determined by the equations
{

x′ = y,

y′ = x
and

{
x′ = y,

y′ = 3x.

Exercise 6.16 Show that Möbius transformations map straight lines and circles to
straight lines or circles.

Exercise 6.17 Show that if Λ is a hyperbolic set for a flow Φ = (ϕt )t∈R, then Λ is
not a hyperbolic set for the diffeomorphism ϕT , for any T ∈R.

Exercise 6.18 Show that if Λ is a hyperbolic set for a flow Φ , then the stable and
unstable subspaces Es(x) and Eu(x) vary continuously with x ∈ Λ.

Exercise 6.19 Give an example of a hyperbolic set Λ for a diffeomorphism f such
that h(f |Λ) = 0.

Exercise 6.20 Show that any Anosov diffeomorphism has positive topological en-
tropy.



Chapter 7
Symbolic Dynamics

This chapter is an introduction to symbolic dynamics, with emphasis on its relations
to hyperbolic dynamics. In particular, it is sometimes easier to solve certain prob-
lems of hyperbolic dynamics, such as those concerning periodic points, after associ-
ating a symbolic dynamics (also called a coding) to a hyperbolic set. After introduc-
ing some basic notions of symbolic dynamics, we illustrate with several examples
how one can associate naturally a coding to several dynamical systems considered in
the former chapters. These include expanding maps, quadratic maps and the Smale
horseshoe. We also consider topological Markov chains, and we study their periodic
points, topological entropy, and recurrence properties. Finally, we consider briefly
the notion of the zeta function of a dynamical system.

7.1 Basic Notions

In this section we introduce some basic notions of symbolic dynamics. We also
compute the topological entropy of the shift map.

7.1.1 Shift Map

Given an integer k > 1, consider the set Σ+
k = {1, . . . , k}N of sequences

ω = (
i1(ω)i2(ω) · · · ),

where in(ω) ∈ {1, . . . , k} for each n ∈N.

Definition 7.1 The shift map σ : Σ+
k → Σ+

k is defined by

σ(ω) = (
i2(ω)i3(ω) · · · ). (7.1)
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Clearly, the map σ is not invertible.

Example 7.1 Given m ∈ N, we compute the number of m-periodic points of σ .
These are the sequences ω ∈ Σ+

k such that σm(ω) = ω. It follows from (7.1) that ω

is m-periodic if and only if

in+m(ω) = in(ω) for n ∈N, (7.2)

or equivalently, the first m elements of ω are repeated indefinitely. Thus, in order
to specify an m-periodic point it is sufficient to specify its first m elements. On the
other hand, given integers j1, . . . , jm ∈ {1, . . . , k}, the sequence ω ∈ Σ+

k with

in(ω) = jn for n = 1, . . . ,m

that satisfies (7.2) is an m-periodic point. Thus, the number of m-periodic points
of σ is equal to

card
({1, . . . , k}m) = km.

Now we introduce a distance and thus also a topology on Σ+
k . Given β > 1, for

each ω,ω′ ∈ Σ+
k , let

d(ω,ω′) =
{

β−n if ω �= ω′,
0 if ω = ω′,

(7.3)

where n = n(ω,ω′) ∈ N is the smallest positive integer such that in(ω) �= in(ω
′).

Proposition 7.1 For each β > 1, the following properties hold:

1. d is a distance on Σ+
k ;

2. (Σ+
k , d) is a compact metric space;

3. the shift map σ : Σ+
k → Σ+

k is continuous.

Proof It follows from (7.3) that

d(ω′,ω) = d(ω,ω′)

and that d(ω,ω′) = 0 if and only if ω = ω′. Moreover, given ω,ω′,ω′′ ∈ Σ+
k , we

have

d(ω,ω′′) = β−n1, d(ω,ω′) = β−n2, d(ω′,ω′′) = β−n3 ,

where n1, n2 and n3 are, respectively, the smallest positive integers such that

in1(ω) �= in1(ω
′′), in2(ω) �= in2(ω

′), in3(ω
′) �= in3(ω

′′). (7.4)

We note that if n2 > n1 and n3 > n1, then in1(ω) = in1(ω
′) = in1(ω

′′), which con-
tradicts (7.4). Hence, n2 ≤ n1 or n3 ≤ n1 and thus,

β−n1 ≤ β−n2 or β−n1 ≤ β−n3 .
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This establishes the triangle inequality.
In order to show that Σ+

k is compact, we first note that the sets

Cj1···jm = {
ω ∈ Σ+

k : in(ω) = jn for n = 1, . . . ,m
}
, (7.5)

with j1, . . . , jm ∈ {1, . . . , k}, are exactly the d-open balls. Equipping {1, . . . , k} with
the discrete topology (in which all subsets of {1, . . . , k} are open), the product topol-
ogy on Σ+

k = {1, . . . , k}N coincides with the topology generated by the open balls
Cj1···jm in (7.5). In other words, it coincides with the topology induced by the dis-
tance d . It follows from Tychonoff’s theorem1 that (Σ+

k , d) is a compact topological
space (it is the product of compact topological spaces, with the product topology).

For the last property, we note that if d(ω,ω′) = β−n, then

d
(
σ(ω),σ (ω′)

) ≤ β−(n−1) = βd(ω,ω′)

and the shift map is continuous. �

It also follows from the proof of Proposition 7.1 that

d(ω,ω′′) ≤ max
{
d(ω,ω′), d(ω′,ω′′)

}
.

7.1.2 Topological Entropy

By Proposition 7.1, σ : Σ+
k → Σ+

k is a continuous map of a compact metric space.
Hence, its topological entropy is well defined (see Definition 3.8).

Proposition 7.2 We have h(σ |Σ+
k ) = logk.

Proof Given m,p ∈ N and ω,ω′ ∈ Σ+
k , we have

dm(ω,ω′) = max
{
d
(
σ j (ω), σ j (ω′)

) : j = 0, . . . ,m − 1
}
.

Clearly, d(σ j (ω), σ j (ω′)) ≥ β−p if and only if

n = n(ω,ω′) ∈ {1 + j, . . . ,p + j}

1Theorem (See for example [43]) Any product of compact topological spaces equipped with the
product topology is a compact topological space.
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and thus,

dm(ω,ω′) ≥ β−p if and only if n ≤ p + m − 1. (7.6)

This implies that

N
(
m,β−p

) ≤ kp+m−1 (7.7)

since the right-hand side is exactly the largest number of distinct sequences in Σ+
k

that differ in some of their first p + m − 1 elements.
Now we note that the number of (p + m − 1)-periodic points of σ is kp+m−1. If

ω and ω′ are two of these points, then

dm(ω,ω′) = max
{
d
(
σ j (ω), σ j (ω′)

) : j = 0, . . . ,m − 1
} ≥ β−p (7.8)

since

n(ω,ω′) ∈ {1, . . . , p + m − 1}.
Hence, N(m,β−p) ≥ kp+m−1 and it follows from (7.7) that

N
(
m,β−p

) = kp+m−1.

Finally,

h(σ |Σ+
k ) = lim

p→∞ lim
m→∞

1

m
logN

(
m,β−p

)

= lim
p→∞ lim

m→∞
p + m − 1

m
logk = logk,

which yields the desired result. �

7.1.3 Two-Sided Sequences

One can consider in an analogous manner the case of two-sided sequences. Namely,
given an integer k > 1, consider the set Σk = {1, . . . , k}Z of sequences

ω = (· · · i−1(ω)i0(ω)i1(ω) · · · ).

Definition 7.2 The shift map σ : Σk → Σk is defined by σ(ω) = ω′, where

in(ω
′) = in+1(ω) for n ∈ Z.

We note that the shift map on Σk is invertible.
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Example 7.2 In an analogous manner to that in Example 7.1, given m ∈ N, a point
ω ∈ Σk is m-periodic if and only if

in+m(ω) = in(ω) for n ∈ Z. (7.9)

Hence, in order to specify an m-periodic point ω ∈ Σk it is sufficient to spec-
ify the elements i1(ω), . . . , im(ω). On the other hand, given integers j1, . . . , jm ∈
{1, . . . , k}, the sequence ω ∈ Σk with

in(ω) = jn for n = 1, . . . ,m

that satisfies (7.9) is an m-periodic point. This implies that the number of m-periodic
points of σ |Σk is equal to km.

Now we introduce a distance and thus also a topology on Σk . Given β > 1, for
each ω,ω′ ∈ Σk , let

d(ω,ω′) =
{

β−n if ω �= ω′,
0 if ω = ω′,

where n = n(ω,ω′) ∈ N is the smallest integer such that

in(ω) �= in(ω
′) or i−n(ω) �= i−n(ω

′).

One can verify that d is a distance on Σk .

7.2 Examples of Codings

In this section we illustrate how one can naturally associate a symbolic dynamics
(that is, a shift map on some space Σ+

k or Σk), also known as a coding, to several
dynamical systems introduced in the former chapters.

7.2.1 Expanding Maps

We first consider the expanding maps and their topological entropy.

Example 7.3 Consider the expanding map E2 : S1 → S1. As we observed in Ex-
ample 3.4, writing x = 0.x1x2 · · · ∈ S1 in base-2 (with xn ∈ {0,1} for each n), we
have

E2(0.x1x2 · · · ) = 0.x2x3 · · · .

This is precisely the behavior observed in (7.1) and thus, it is natural to expect that
there exists some relation between E2 and σ |Σ+

2 .
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We define a function H : Σ+
2 → S1 by

H(i1i2 · · · ) =
∞∑

n=1

(in − 1)2−n = 0.(i1 − 1)(i2 − 1) · · · . (7.10)

Then

(H ◦ σ)(i1i2 · · · ) = H(i2i3 · · · ) =
∞∑

n=1

(in+1 − 1)2−n

= 0.(i2 − 1)(i3 − 1) · · ·
= E2

(
0.(i1 − 1)(i2 − 1) · · · )

= (E2 ◦ H)(i1i2 · · · ),
that is,

H ◦ σ = E2 ◦ H in Σ+
2 . (7.11)

We note that the map H is not one-to-one since

H(i1 · · · in211 · · · ) = H(i1 · · · in122 · · · )

for any i1, . . . , in ∈ {1,2}. However, if B ⊂ Σ+
2 is the subset of all sequences with

infinitely many consecutive 2’s, then the map

H |(Σ+
2 \ B) : Σ+

2 \ B → S1 (7.12)

is bijective.

Example 7.4 Now we use the former example to find the number of m-periodic
points of the expanding map E2. By Example 7.1, the number of m-periodic points
of the shift map σ |Σ+

2 is 2m. Only one of them belongs to B (see (7.12)), namely the
constant sequence (22 · · · ). Thus, the number of m-periodic points of σ |(Σ+

2 \ B)

is 2m − 1. We note that the set Σ+
2 \ B is forward σ -invariant and hence, the orbits

of these points are in fact in Σ+
2 \ B .

On the other hand, it follows from (7.11) that

H ◦ σm = Em
2 ◦ H in Σ+

2 , (7.13)

for each m ∈N. Now take ω ∈ Σ+
2 \ B and m ∈ N. Since the set Σ+

2 \ B is forward
σ -invariant, we have σm(ω) ∈ Σ+

2 \ B . Moreover, since the function H |(Σ+
2 \ B)

is bijective, it follows from (7.13) that σm(ω) = ω if and only if

H(ω) = H
(
σm(ω)

) = Em
2 (H(ω)).
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Thus, ω ∈ Σ+
2 \ B is an m-periodic point of σ if and only if H(ω) is an m-periodic

point of E2. This implies that the number of m-periodic points of the expanding
map E2 is 2m − 1 (as we already saw in Sect. 2.2.2), namely

xi1···im = H(i1 · · · imi1 · · · im · · · ) ∈ S1

for (i1, . . . , im) ∈ {1, . . . , k}m \ {(2, . . . ,2)}. It follows from (7.10) that

xi1···im =
m∑

n=1

(in − 1)2−n
(
1 + 2−m + 2−2m + · · · )

= 1

1 − 2−m

m∑

n=1

(in − 1)2−n

= 1

2m − 1

m∑

n=1

(in − 1)2m−n.

The sum
∑m

n=1(in − 1)2m−n takes the values 0,1, . . . ,2m − 1 since (i1, . . . , im) �=
(2, . . . ,2). Hence, we recover the periodic points already obtained in (2.2).

The following example also illustrates how a coding can be used to compute the
topological entropy.

Example 7.5 Consider the restriction E4|A : A → A of the map E4, where A is the
compact forward E4-invariant set in (2.11). Writing x = 0.x1x2 · · · ∈ S1 in base-4,
with xn ∈ {0,1,2,3} for each n ∈ N, we have

E4(0.x1x2 · · · ) = 0.x2x3 · · · .

Now we define a function H : Σ+
2 → S1 by

H(i1i2 · · · ) =
∞∑

n=1

2(i1 − 1)4−n = 0.j1j2 · · · ,

also in base-4, where

jn = 2(in − 1) ∈ {0,2} for n ∈N. (7.14)

We have

(H ◦ σ)(i1i2 · · · ) = H(i2i3 · · · ) =
∞∑

n=1

2(in+1 − 1)4−n

and

(E4 ◦ H)(i1i2 · · · ) = E4(0.j1j2 · · · ) = 0.j2j3 · · · .



160 7 Symbolic Dynamics

Hence, it follows from (7.14) that

H ◦ σ = E4 ◦ H in Σ+
2 .

We note that the map H is one-to-one, unlike in Example 7.3. It is also a homeo-
morphism onto its image H(Σ+

2 ) = A. Indeed, given ω,ω′ ∈ Σ+
2 with ω �= ω′, we

have

dS1

(
H(ω),H(ω′)

) ≤
∞∑

m=n

2 · 4−m = 8 · 4−n

3

= 8

3

(
β−n

)log 4/ logβ

= 8

3
d(ω,ω′)log 4/ logβ,

where n = n(ω,ω′) ∈ N is the smallest integer such that in(ω) �= in(ω
′) and where

dS1 is the distance on S1. On the other hand, given

x = 0.j1j2 · · · , x′ = 0.j ′
1j

′
2 · · · ∈ A,

or equivalently, (j1j2 · · · ), (j ′
1j

′
2 · · · ) ∈ {0,2}N, we have

d
(
H−1(x),H−1(x′)

) = d

( ∞∑

n=1

2(in − 1)4−n,

∞∑

n=1

2
(
i′n − 1

)
4−n

)

,

with

jn = 2(in − 1) and j ′
n = 2(i′n − 1)

for n ∈N. Now take x �= x′ such that

dS1(x, x′) = |x − x′|.
If n ∈ N is the smallest integer such that jn �= j ′

n or, equivalently, in �= i′n, then

dS1(x, x′) ≥ 2 · 4−n −
∞∑

m=n+1

2 · 4−m = 1

3
4−n+1

and

d
(
H−1(x),H−1(x′)

) = β−n = 4−n logβ/ log 4

=
(

3

4
· 1

3
4−n+1

)logβ/ log 4

≤
(

3

4
dS1(x, x′)

)logβ/ log 4

.
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This shows that H : Σ+
2 → A is a homeomorphism. Finally, it follows from Theo-

rem 3.3 together with Proposition 7.2 that

h(E4|A) = h(σ |Σ+
2 ) = log 2,

as we already obtained in Example 3.18.

7.2.2 Quadratic Maps

In this section we consider a class of quadratic maps.

Example 7.6 Given a > 4, let f : [0,1] →R be the quadratic map

f (x) = ax(1 − x)

and let X ⊂ [0,1] be the forward f -invariant set in (3.27). We also consider the
restriction f |X : X → X. Now we define a function H : Σ+

2 → X by

H(i1i2 · · · ) =
∞⋂

n=1

f −n+1Iin , (7.15)

where

I1 = [
0, (1 − √

1 − 4/a)/2
]

and I2 = [
(1 + √

1 − 4/a)/2,1
]
.

We show that for any sufficiently large a the map H is well defined, that is, the
intersection in (7.15) contains exactly one point for each sequence (i1i2 · · · ) ∈ Σ+

2 .
Given a > 2 + √

5, we have

|f ′(x)| = a|1 − 2x| ≥ λ > 1 (7.16)

for x ∈ I1 ∪ I2, where λ = a
√

1 − 4/a. Hence, each interval

Ii1···im =
m⋂

n=1

f −n+1Iin

has length at most λ−(m−1) and thus, each intersection in (7.15) contains exactly one
point. Since f −1[0,1] = I1 ∪ I2, it follows from (3.27) that

X =
∞⋂

n=0

f −n(I1 ∪ I2) =
⋃

(i1i2··· )∈Σ+
2

H(i1i2 · · · ),

and the map H is onto. It is also invertible, with its inverse given by H−1(x) =
(i1i2 · · · ), where in = j when f n−1(x) ∈ Ij , for each n ∈ N.
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We also show that H is a homeomorphism. Given distinct points ω,ω′ ∈ Σ+
2

with n = n(ω,ω′) > 1, we have

∣∣H(ω) − H(ω′)
∣∣ = ai1···in−1,

where ai1···in−1 is the length of the interval Ii1···in−1 . It follows from (7.16) that

∣∣H(ω) − H(ω′)
∣∣ ≤ λ−(n−2) → 0

when n → ∞. This shows that the map H is continuous. On the other hand, given
distinct points x, x′ ∈ X, there exists an n ∈N such that

Ii1···in−1 = Ii′1···i′n−1
and Ii1···in ∩ Ii′1···i′n =∅, (7.17)

where

H−1(x) = (i1i2 · · · ) and H−1(x′) = (i′1i′2 · · · ).
Then

d
(
H−1(x),H−1(x′)

) = β−n → 0

when n → ∞. It follows from (7.17) that |x − x′| ≥ λ−(n−1) and thus, if x′ → x,
then n → ∞. This shows that the map H−1 is continuous.

Since H : Σ+
2 → X is a homeomorphism, it follows from Theorem 3.3 together

with Proposition 7.2 that

h(f |X) = h(σ |Σ+
2 ) = log 2.

7.2.3 The Smale Horseshoe

We also associate a symbolic dynamics to the Smale horseshoe.

Example 7.7 Let Λ ⊂ [0,1]2 be the Smale horseshoe constructed in Sect. 5.2.2
from a diffeomorphism f defined in an open neighborhood of the square [0,1]2. We
continue to consider the vertical strips V1 and V2 in (5.5) and we define a function
H : Σ2 → Λ by

H(· · · i−1i0i1 · · · ) =
⋂

n∈Z
f −nVin . (7.18)

In order to verify that H is well defined, consider the sets

Rn(ω) =
n⋂

k=−n

f −kVik ,
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where ω = (· · · i−1i0i1 · · · ). Each Rn(ω) is contained in a square of size an and thus,
diamRn(ω) → 0 when n → ∞. This implies that each intersection

⋂

n∈Z
f −nVin =

⋂

n∈Z
Rn(ω)

has at most one point. On the other hand, since Rn(ω) is a decreasing sequence
of nonempty closed sets, the intersection

⋂
n∈N Rn(ω) has at least one point. This

shows that cardH(ω) = 1 for each ω ∈ Σ2 and the function H is well defined.
Moreover, it follows from the construction of the Smale horseshoe that

Λ =
⋂

n∈Z
f −n(V1 ∪ V2)

=
⋃

ω∈Σ2

⋂

n∈Z
f −nVin =

⋃

ω∈Σ2

H(ω)

and thus, the map H is onto. In order to show that it is one-to-one, let us take
sequences ω,ω′ ∈ Σ2 with ω �= ω′. Then there exists an m ∈ Z such that im(ω) �=
im(ω′) and thus also

Vim(ω) ∩ Vim(ω′) = ∅.

Hence,

H(ω) ∩ H(ω′) =
(⋂

n∈Z
f −nVin(ω)

)
∩

(⋂

n∈Z
f −nVin(ω′)

)
= ∅.

This shows that H(ω) �= H(ω′) and the map H is one-to-one.

We also have

H(σ(ω)) =
⋂

n∈Z
f −nVin+1(ω)

=
⋂

n∈Z
f 1−nVin(ω) = f (H(ω)),

that is,

H ◦ σ = f ◦ H in Σ2.

Given m ∈N and ω ∈ Σ2, we obtain

H
(
σm(ω)

) = f m(H(ω)).

This implies that ω is an m-periodic point of σ if and only if H(ω) is an m-periodic
point of f |Λ. Moreover, ω is a periodic point of σ with period m if and only if H(ω)

is a periodic point of f |Λ with period m. In particular, it follows from Example 7.2
that the number of m-periodic points of f |Λ is 2m.
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7.3 Topological Markov Chains

In this section we consider a class of subsets of Σ+
k that are forward σ -invariant.

They give rise to topological Markov chains.

7.3.1 Basic Notions

Given an integer k > 1, let A = (aij ) be a k × k matrix with entries aij ∈ {0,1} for
each i and j . We consider the subset of Σ+

k defined by

Σ+
A = {

ω ∈ Σ+
k : ain(ω)in+1(ω) = 1 for n ∈ N

}
. (7.19)

Clearly, σ(Σ+
A ) ⊂ Σ+

A . This allows one to introduce the following notion.

Definition 7.3 The restriction σ |Σ+
A : Σ+

A → Σ+
A is called the topological Markov

chain with transition matrix A.

It is also common to use the alternative expression (sub)shift of finite type to refer
to a topological Markov chain.

Example 7.8 Let A be the k × k matrix with all entries equal to 1. In this case, it
follows from (7.19) that Σ+

A = Σ+
k and thus, the topological Markov chain σ |Σ+

A

coincides with the shift map σ : Σ+
k → Σ+

k .

Example 7.9 For the matrix

A =
(

0 1
1 1

)
, (7.20)

we have

Σ+
A = {

ω ∈ Σ+
2 : ain(ω)in+1(ω) = 1 for n ∈ N

}

= {
ω ∈ Σ+

2 : (in(ω), in+1(ω)
) �= (1,1) for n ∈N

}
.

In other words, Σ+
A is the subset of all sequences in Σ+

2 in which the symbol 1 is
always isolated (whenever it occurs).

One can consider in an analogous manner the case of two-sided sequences.
Namely, given an integer k > 1, let A = (aij ) be a k × k matrix with entries
aij ∈ {0,1} for each i and j . We consider the subset of Σk defined by

ΣA = {
ω ∈ Σk : ain(ω)in+1(ω) = 1 for n ∈ Z

}
.

We have σ(ΣA) = ΣA and thus, one can introduce the following notion.
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Definition 7.4 The restriction σ |ΣA : ΣA → ΣA is called the (two-sided) topolog-
ical Markov chain with transition matrix A.

We also give some examples.

Example 7.10 For the matrix

A =
(

0 1
1 0

)
,

we have

ΣA = {
ω ∈ Σ2 : ain(ω)in+1(ω) = 1 for n ∈ Z

}

= {
ω ∈ Σ2 : in(ω) �= in+1(ω) for n ∈ Z

}
.

Hence, the set ΣA has exactly two sequences, namely

ω1 = (· · · i0 · · · ) and ω2 = (· · · j0 · · · ),
where

in =
{

1 if n is even,

2 if n is odd
and jn =

{
2 if n is even,

1 if n is odd.

We note that σ(ω1) = ω2 and σ(ω2) = ω1. Thus, ΣA = {ω1,ω2} is a periodic orbit
with period 2.

Example 7.11 Let Σ ⊂ Σ2 be the subset of all sequences in Σ2 in which the sym-
bol 1 occurs finitely many times and always in pairs (when it occurs). Clearly,
σ(Σ) = Σ and one can consider the restriction σ |Σ : Σ → Σ . Now we show that
σ |Σ is not a topological Markov chain. Consider the sequence ω = (· · · i0 · · · ) with
i0 = i1 = 1 and ij = 2 for j /∈ {0,1}. We note that ω ∈ Σ . Thus, if σ |Σ was a topo-
logical Markov chain, then we would have Σ = Σ2. Indeed, the sequence ω contains
the transitions 1 → 1, 1 → 2, 2 → 1 and 2 → 2. Since Σ �= Σ2, we conclude that
σ |Σ is not a topological Markov chain.

7.3.2 Periodic Points

In this section we compute the number of m-periodic points of an arbitrary topolog-
ical Markov chain. We start with an example.

Example 7.12 Let σ |Σ+
A be the topological Markov chain with the transition ma-

trix A in (7.20). We compute explicitly the number of m-periodic points for m = 1
and m = 2 (Example 7.13 considers the general case):

1. For m = 1, the sequence (22 · · · ) is the only fixed point of σ |Σ+
A since a11 = 0.
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2. Now let m = 2. We note that a point ω ∈ Σ+
A is m-periodic if and only if prop-

erty (7.2) holds. Hence, we have to find the number of sequences in Σ+
A with

this property, which coincides with the number of vectors (i, j) ∈ {1,2}2 such
that the transitions

i → j → i

are allowed. This condition is equivalent to aij = aji = 1 and thus, the number
of 2-periodic points of σ |Σ+

A is equal to

2∑

i=1

2∑

j=1

aij aji =
2∑

i=1

(
A2)

ii
= tr

(
A2),

where (A2)ii is the entry (i, i) of the matrix A2.

Now we consider arbitrary matrices.

Proposition 7.3 For each m ∈ N, the number of m-periodic points of the topologi-
cal Markov chain σ |Σ+

A is equal to tr(Am).

Proof We proceed in an analogous manner to that in Example 7.12. Since the point
ω ∈ Σ+

A is m-periodic if and only if property (7.2) holds, we have to find the number
of sequences in Σ+

A with this property. This coincides with the number of vectors
(i1, . . . , im) ∈ {1, . . . , k}m such that the transitions

i1 → i2 → ·· · → im → i1

are allowed. This condition is equivalent to

ai1i2 = ai2i3 = · · · = aim−1im = aimi1 = 1

and thus, the number of m-periodic points of σ |Σ+
A is equal to

∑

(i1,...,im)∈{1,...,k}m
ai1i2ai2i3 · · ·aimi1 =

∑

i1∈{1,...,k}

(
Am

)
i1i1

= tr
(
Am

)
.

This yields the desired result. �

Example 7.13 Let A be the matrix in (7.20). By Proposition 7.3, for each m ∈ N,
the number of m-periodic points of σ |Σ+

A is equal to tr(Am). On the other hand, we
have

A =
(

0 1
1 1

)
= S

(
(1 + √

5)/2 0
0 (1 − √

5)/2

)
S−1,

where

S =
(

(−1 + √
5)/2 (−1 − √

5)/2
1 1

)
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and thus,

Am = S

(
(1 + √

5)/2 0
0 (1 − √

5)/2

)m

S−1.

Hence,

tr
(
Am

) =
(

1 + √
5

2

)m

+
(

1 − √
5

2

)m

and this is the number of m-periodic points of σ |Σ+
A (which must be an integer).

For example,

tr
(
A3) = 4, tr

(
A7) = 29 and tr

(
A11) = 199.

7.3.3 Topological Entropy

Now we compute the topological entropy of an arbitrary topological Markov chain.

Theorem 7.1 We have h(σ |Σ+
A ) = logρ(A), where ρ(A) is the spectral radius

of A.

Proof We proceed in an analogous manner to that in the proof of Proposition 7.2.
We first observe that since the map σ |Σ+

k is expansive, the same happens to the
topological Markov chain σ |Σ+

A and thus, one can apply Theorem 3.5.
Given m,p ∈N and ω,ω′ ∈ Σ+

k , by (7.6), we have

dm(ω,ω′) ≥ β−p if and only if n = n(ω,ω′) ≤ p + m − 1.

Hence,

N
(
m,β−p

) ≤
∑

(i1,...,iq )∈{1,...,k}q
ai1i2 · · ·aiq−1iq =

k∑

i1=1

k∑

iq=1

(
Aq−1)

i1iq
,

where q = p + m − 1. Using the Jordan form of A, we conclude that there exists a
polynomial c(q) such that

k∑

i1=1

k∑

iq=1

(
Aq−1)

i1iq
≤ c(q)ρ(A)q−1.



168 7 Symbolic Dynamics

It follows from Theorem 3.5 that

h(σ |Σ+
A ) = lim

m→∞
1

m
logN

(
m,β−p

)

≤ lim
m→∞

1

m
log

[
c(q)ρ(A)p+m−2]

= logρ(A).

On the other hand, by Proposition 7.3, the number of q-periodic points of σ |Σ+
A

is equal to tr(Aq). By (7.8), if ω and ω′ are two of these points, then dm(ω,ω′) ≥
β−p . Hence,

N
(
m,β−p

) ≥ tr
(
Aq

)

and it follows from Theorem 3.5 that

h(σ |Σ+
A ) = lim

m→∞
1

m
logN

(
m,β−p

)

≥ lim
m→∞

1

m
log tr

(
Ap+m−1)

= lim
m→∞

1

m
log tr

(
Am

)
.

Now let λ1, . . . , λk be the eigenvalues of A, counted with their multiplicities. Since

tr
(
Am

) =
k∑

i=1

λm
i ,

we obtain

h(σ |Σ+
A ) ≥ lim

m→∞
1

m
log

k∑

i=1

λm
i

= log lim
m→∞

(∣∣∣
∣∣

k∑

i=1

λm
i

∣∣∣∣∣

1/m)

= log max
{|λi | : i = 1, . . . , k

}

= logρ(A).

This completes the proof of the theorem. �
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7.3.4 Topological Recurrence

In this section we consider a particular class of topological Markov chains and we
study their recurrence properties (see Sect. 3.3). We first introduce two classes of
matrices.

Definition 7.5 A k × k matrix A is called:

1. irreducible if for each i, j ∈ {1, . . . , k} there exists an m = m(i, j) ∈ N such that
the (i, j)th entry of Am is positive;

2. transitive if there exists an m ∈ N such that all entries of the matrix Am are
positive.

Clearly, any transitive matrix is irreducible. However, an irreducible matrix may
not be transitive.

Example 7.14 Let

A =
(

0 1
1 0

)
.

No power of A has all entries positive. However, A2 = Id and thus, for each pair
(i, j), either A or A2 has positive (i, j)th entry. Hence, the matrix A is irreducible
but is not transitive.

Now we consider topological Markov chains with an irreducible or a transitive
transition matrix and we study their recurrence properties.

Proposition 7.4 If the matrix A is irreducible, then the topological Markov chain
σ |Σ+

A is topologically transitive.

Proof We first note that the sets

Dj1···jn = Cj1···jn ∩ Σ+
A

= {
ω ∈ Σ+

A : im(ω) = jm for m = 1, . . . , n
}

(7.21)

generate the (induced) topology of Σ+
A . Hence, it is sufficient to consider only these

sets in the definition of topological transitivity (see Definition 3.6). Let us then take
two nonempty sets Dj1···jn ,Dk1···kn ⊂ Σ+

A . We have to show that there exists an
m ∈ N such that

σ−mDj1···jn ∩ Dk1···kn �=∅.

We first verify that there exists an m ≥ n such that the (kn, j1)th entry of the matrix
Am−n+1 is positive (we note that the integer m in Definition 7.5 can be less than n).



170 7 Symbolic Dynamics

Since the matrix A is irreducible, there exist positive integers m1 and m2 such that
(Am1)knj1 > 0 and (Am2)j1kn > 0. Then

(
A(m1+m2)l+m1

)
knj1

=
k∑

p=1

(
A(m1+m2)l

)
knp

(
Am1

)
pj1

≥ (
A(m1+m2)l

)
knkn

(
Am1

)
knj1

≥ (
Am1+m2

)l

knkn

(
Am1

)
knj1

≥ (
Am1

)l

knj1

(
Am2

)l

j1kn

(
Am1

)
knj1

> 0

for l ∈N since

(
Am1+m2

)
knkn

=
k∑

p=1

(
Am1

)
knp

(
Am2

)
pkn

.

This shows that there exists a transition from kn to j1 in

q = (m1 + m2)l + m1

steps. Taking m = q + n − 1, we obtain the desired result. Hence, given a sequence
(i1i2 · · · ) ∈ Dj1···jn , there exist l1, . . . , lm−n ∈ {1, . . . , k} such that

ω = (k1 · · ·knl1 · · · lm−ni1i2 · · · ) ∈ Σ+
A .

We note that ω ∈ Dk1···kn and that σm(ω) = (i1i2 · · · ) ∈ Dj1···jn . Therefore,

ω ∈ σ−mDj1···jn ∩ Dk1···kn �= ∅

and the topological Markov chain σ |Σ+
A is topologically transitive. �

Now we consider topological Markov chains with a transitive transition matrix.

Proposition 7.5 If the matrix A is transitive, then the topological Markov chain
σ |Σ+

A is topologically mixing.

Proof We proceed in an analogous manner to that in the proof of Proposition 7.4.
Given nonempty sets Dj1···jn ,Dk1···kn ⊂ Σ+

A as in (7.21), we show that there exists
a q ∈ N such that

σ−pDj1···jn ∩ Dk1···kn �= ∅

for any p ≥ q .

Lemma 7.1 If all entries of the matrix Am are positive, then for each p ≥ m all
entries of the matrix Ap are positive.
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Proof We first observe that for each j ∈ {1, . . . , k} there exists an r = r(j) ∈
{1, . . . , k} such that arj = 1. Otherwise, we would have (Ap)ij = 0 for any p ∈ N

and i ∈ {1, . . . , k} and thus, the matrix A would not be transitive.
Now we use induction on p. If for some p ≥ m the matrix Ap has only positive

entries, then

(
Ap+1)

ij
=

k∑

l=1

(
Ap

)
il
alj

≥ (
Ap

)
ir

arj > 0.

This completes the proof of the lemma. �

It follows from Lemma 7.1 that for each p ∈ N with p ≥ m + n − 1, given two
nonempty sets Dj1···jn ,Dk1···kn ⊂ Σ+

A , there exist l1, . . . , lp−n ∈ {1, . . . , k} such that

ω = (k1 · · · knl1 · · · lp−ni1i2 · · · ) ∈ Σ+
A

for any sequence (i1i2 · · · ) ∈ Dj1···jn . Therefore,

ω ∈ σ−pDj1···jn ∩ Dk1···kn �=∅

for p ≥ m + n − 1 and the topological Markov chain σ |Σ+
A is topologically mix-

ing. �

In order to obtain a lower bound for the topological entropy of a topological
Markov chain, we need the following simplified version of the Perron–Frobenius
theorem.

Theorem 7.2 Any square matrix with all entries in N has a real eigenvalue greater
than 1.

Proof Consider the set

S = {
v ∈ (R+

0 )k : ‖v‖ = 1
}
,

where ‖v‖ = ∑k
i=1|vi | and v = (v1, . . . , vk). Given a k ×k matrix B with all entries

bij in N, we define a function F : S → S by F(v) = Bv/‖Bv‖. Since the set S is
homeomorphic to the closed unit ball of Rk−1 and the function F is continuous, it
follows from Brouwer’s fixed point theorem2 that F has a fixed point v ∈ S. Hence,

2Theorem (See for example [26]) Any continuous map f : B → B of a closed ball B ⊂R
n has at

least one fixed point.
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Bv = ‖Bv‖v and v is an eigenvector of B associated to the real eigenvalue

λ = ‖Bv‖ =
k∑

i=1

(Bv)i

=
k∑

i=1

k∑

j=1

bij vj ≥
k∑

i=1

k∑

j=1

vj

= k

k∑

j=1

vj = k > 1.

This completes the proof of the theorem. �

One can use Theorem 7.2 to show that any topological Markov chain with a
transitive transition matrix has positive topological entropy.

Proposition 7.6 If the matrix A is transitive, then h(σ |Σ+
A ) > 0.

Proof Take m ∈ N such that Am has only positive entries. By Theorem 7.2, the
matrix Am has a real eigenvalue λ > 1. Hence, it follows from Theorem 7.1 that

h(σ |Σ+
A ) = logρ(A)

= 1

m
logρ

(
Am

)

≥ 1

m
logλ > 0.

This completes the proof of the proposition. �

7.4 Horseshoes and Topological Markov Chains

In this section we illustrate how appropriate modifications of the Smale horseshoe
give rise to nontrivial topological Markov chains. More precisely, in contrast to all
examples of a symbolic coding given in Sect. 7.2, here not all entries of the transition
matrix A are equal to 1.

For a better illustration, we consider a specific example. Namely, let f be a dif-
feomorphism in an open neighborhood of the square [0,1]2 with the behavior shown
in Fig. 7.1. We note that one can choose the sizes of the horizontal strips Hi and of
their images Vi = f (Hi), for i = 1,2,3, as well as the diffeomorphism, so that

Λ =
⋂

n∈Z
f n(H1 ∪ H2 ∪ H3)
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Fig. 7.1 A diffeomorphism f in an open neighborhood of the square [0,1]2

is a hyperbolic set for f .
Now we consider the 3 × 3 matrix A = (aij ) with entries

aij =
{

1 if f (Hi) ∩ Hj �= ∅,

0 if f (Hi) ∩ Hj = ∅,
(7.22)

that is,

A =
⎛

⎝
1 0 1
1 1 1
1 1 0

⎞

⎠ . (7.23)

We also consider the set ΣA ⊂ Σ3 induced by this matrix and we define

H(ω) =
⋂

n∈Z
f −nHin(ω).

Proposition 7.7 The function H : ΣA → Λ is well defined and

f ◦ H = H ◦ σ in ΣA. (7.24)

Proof Proceeding in an analogous manner to that in Example 7.7, we conclude that

cardH(ω) ≤ 1 for ω ∈ ΣA. (7.25)

Now we show that cardH(ω) ≥ 1 for ω ∈ ΣA. We first note that the following
Markov property holds:

1. if f (Hi)∩Hj �= ∅, then the image f (Hi) intersects Hj along the whole unstable
direction;
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2. if f −1(Hi)∩Hj �= ∅, then the preimage f −1(Hi) intersects Hj along the whole
stable direction.

Now let Hi , Hj and Hk be rectangles such that

f (Hi) ∩ Hj �= ∅ and f (Hj ) ∩ Hk �= ∅.

By the Markov property, we conclude that f (Hi) intersects Hj along the whole
unstable direction. Thus, the set f 2(Hi) also intersects f (Hj ) along the whole un-
stable direction. Since f (Hj ) intersects Hk along the whole unstable direction, this
implies that

f 2(Hi) ∩ f (Hj ) ∩ Hk �= ∅. (7.26)

Now take ω ∈ ΣA. By (7.22), we have

f (Hin(ω)) ∩ Hin+1(ω) �= ∅

for each n ∈ Z. By induction, it follows from (7.26) that

n⋂

k=−n

f n−k(Hik(ω)) �= ∅

and

Kn :=
n⋂

k=−n

f −k(Hik(ω)) �= ∅.

Since the sets Kn are closed and nonempty, the intersection H(ω) = ⋂
n∈N Kn is

also nonempty and

cardH(ω) = card
⋂

n∈N
Kn ≥ 1.

It follows from (7.25) that the function H is well defined.
In order to establish property (7.24), we note that

H(σ(ω)) =
⋂

n∈Z
f −n(Hin+1(ω))

=
⋂

n∈Z
f 1−n(Hin(ω))

= f (H(ω)).

This completes the proof of the proposition. �
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7.5 Zeta Functions

In this section we consider the zeta function of a dynamical system (with discrete
time) and in particular of a topological Markov chain.

Definition 7.6 Given a map f : X → X with

an := card
{
x ∈ X : f n(x) = x

}
< ∞ (7.27)

for each n ∈ N, its zeta function is defined by

ζ(z) = exp
∞∑

n=1

anz
n

n
(7.28)

for each z ∈C such that the series in (7.28) converges.

We recall that the radius of convergence of the power series in (7.28) is given by

R = 1
/

lim sup
n→∞

n

√
an

n
= 1

/
lim sup
n→∞

n
√

an.

In particular, the series converges for |z| < R and the function ζ is holomorphic on
the ball B(0,R) ⊂ C. Clearly, the function ζ is uniquely determined by the sequence
(an)n∈N and vice versa.

Now we determine the zeta function of a topological Markov chain.

Example 7.15 Let σ |Σ+
A : Σ+

A → Σ+
A be a topological Markov chain defined by

a k × k matrix A with spectral radius ρ(A) > 0. It follows from Proposition 7.3
that the sequence (an)n∈N in (7.27) is now an = tr(An). Now let λ1, . . . , λk be the
eigenvalues of A, counted with their multiplicities. We have

an = tr
(
An

) =
k∑

i=1

λn
i .
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Thus,

ζ(z) = exp
k∑

i=1

∞∑

n=1

λn
i z

n

n

= exp
k∑

i=1

− log(1 − λiz)

= exp
k∑

i=1

log
1

1 − λiz

=
k∏

i=1

1

1 − λiz
,

since

log(1 + w) =
∞∑

n=1

(−1)n

n
wn

for |w| < 1, where log is the principal branch of the logarithm. On the other hand,
the complex numbers 1 − λiz are the eigenvalues of the matrix Id − zA, counted
with their multiplicities. This implies that

ζ(z) = 1

det(Id − zA)
(7.29)

for

|z| < min

{
1

|λi | : i = 1, . . . , k

}
= 1

ρ(A)
.

Example 7.16 The shift map σ : Σ+
k → Σ+

k coincides with the topological Markov
chain defined by the k × k matrix A = Ak with all entries equal to 1. It follows
from (7.29) that

ζ(z) = 1

det(Id − zAk)

for |z| < 1/ρ(Ak) = 1/k. Subtracting the first row of Id − zAk from the other rows
and then expanding the determinant along the second column, we obtain
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det(Id − zAk) = det

⎛

⎜⎜⎜
⎝

1 − z −z · · · −z

−1
... Id

−1

⎞

⎟⎟⎟
⎠

= z det

⎛

⎜⎜⎜
⎝

−1 0 · · · 0
−1
... Id

−1

⎞

⎟⎟⎟
⎠

+ det

⎛

⎜⎜⎜
⎝

1 − z −z · · · −z

−1
... Id

−1

⎞

⎟⎟⎟
⎠

= −z + det(Id − zAk−1).

Since det(Id − zA1) = 1 − z, it follows by induction that

det(Id − zAk) = 1 − kz

and thus,

ζ(z) = 1

1 − kz
for |z| < 1

k
.

Alternatively, the number of n-periodic points of σ |Σ+
k is kn (by Example 7.1)

and thus,

ζ(z) = exp
∞∑

n=1

knzn

n
.

Since
( ∞∑

n=1

knzn

n

)′
=

∞∑

n=1

knzn−1 = k

1 − kz

for |z| < 1/k, we conclude that

ζ(z) = exp
[− log(1 − kz)

] = 1

1 − kz
,

also for |z| < 1/k.

Example 7.17 Now we consider the expanding map E2 : S1 → S1. It follows from
(2.2) that the number of n-periodic points of E2 is 2n − 1. Hence,

ζ(z) = exp
∞∑

n=1

(2n − 1)zn

n
.

Since
( ∞∑

n=1

(2n − 1)zn

n

)′
=

∞∑

n=1

(
2n − 1

)
zn−1 = 2

1 − 2z
− 1

1 − z
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for |z| < 1/2, we obtain

ζ(z) = exp
[− log(1 − 2z) + log(1 − z)

] = 1 − z

1 − 2z
,

also for |z| < 1/2.

7.6 Exercises

Exercise 7.1 Determine whether two distances dβ and dβ ′ in Σ+
k with β �= β ′ can

be equivalent.

Exercise 7.2 Show that ΣA is a closed subset of Σk .

Exercise 7.3 Show that (Σ+
k , d) is a complete metric space.

Exercise 7.4 Determine whether the shift map σ |Σk is topologically mixing.

Exercise 7.5 Let A be a k × k matrix with entries in {0,1}. Show that:

1. if A is irreducible, then σ |ΣA is topologically transitive;
2. if A is transitive, then σ |ΣA is topologically mixing.

Exercise 7.6 Determine whether the matrix A in (7.23) is irreducible or transitive.

Exercise 7.7 Show that the shift map σ |Σ+
k is expansive.

Exercise 7.8 Determine whether the shift map σ |Σk is expansive.

Exercise 7.9 Determine whether:

1. the maps σ |Σ+
3 and σ |Σ+

5 are topologically conjugate;
2. the maps σ |Σ+

k and σ |Σk are topologically conjugate.

Exercise 7.10 Determine whether the topological Markov chains σ |Σ+
A and σ |Σ+

B

are topologically conjugate for:

1. A = ( 1 1
1 0

)
and B = ( 1 0

0 1

)
;

2. A = ( 1 1
1 0

)
and B = ( 0 1

1 1

)
.

Exercise 7.11 Show that:

1. h(σ |Σk) = logk;
2. the function H : Σ2 → Λ defined by (7.18) is a homeomorphism;
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3. h(f |Λ) = h(σ |Σ2) = log 2.

Exercise 7.12 Given an integer k > 1, determine whether the set of the topological
entropies of all topological Markov chains σ |Σ+

A with Σ+
A ⊂ Σ+

k contains some
interval.

Exercise 7.13 Show that for each integer m ≥ 2 there exists a continuous map
h : Σ+

m → S1 such that h ◦ σ = Em ◦ h in Σ+
m .

Exercise 7.14 Show that the periodic points of σ |Σ+
k are dense.

Exercise 7.15 Show that the periodic points of σ |Σk are dense.

Exercise 7.16 Show that the Smale horseshoe Λ has no isolated points.

Exercise 7.17 Show that the periodic points with even period of the Smale horse-
shoe are dense.

Exercise 7.18 Construct a symbolic coding for the Smale horseshoe Λh in Propo-
sition 5.3.

Exercise 7.19 Compute the zeta function of:

1. the shift map σ |Σ+
k ;

2. the expanding map Em;

3. the automorphism of the torus T2 induced by the matrix
( 3 1

2 1

)
.

Exercise 7.20 Verify that topologically conjugate maps have the same zeta func-
tion.



Chapter 8
Ergodic Theory

This chapter gives a first and brief introduction to ergodic theory, avoiding on pur-
pose more advanced topics. After introducing the notions of a measurable map and
of an invariant measure, we establish Poincaré’s recurrence theorem and Birkhoff’s
ergodic theorem. We also consider briefly the notions of Lyapunov exponent and of
metric entropy. The pre-requisites from measure theory and integration theory are
fully recalled in Sect. 8.1.

8.1 Notions from Measure Theory

In this section we recall the necessary notions and results from measure theory and
integration theory. Let X be a set and let A be a family of subsets of X.

Definition 8.1 A is said to be a σ -algebra in X if:

1. ∅,X ∈ A;
2. X \ B ∈A when B ∈ A;
3.

⋃∞
n=1 Bn ∈ A when Bn ∈ A for each n ∈N.

We also consider the σ -algebra generated by a family A of subsets of X: this is
the smallest σ -algebra in X containing all elements of A.

Now we introduce the notion of a measure.

Definition 8.2 Given a σ -algebra A in X, a function μ : A → [0,+∞] is called a
measure on X (with respect to A) if:

1. μ(∅) = 0;
2. given pairwise disjoint sets Bn ∈ A for n ∈ N, we have

μ

( ∞⋃

n=1

Bn

)

=
∞∑

n=1

μ(Bn).
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We then say that (X,A,μ) is a measure space.

When the σ -algebra is understood from the context, we still refer to the pair
(X,μ) as a measure space.

Example 8.1 Let A be the σ -algebra in X containing all subsets of X. We define a
measure μ : A →N0 ∪ {∞} on X by

μ(B) = cardB.

We call μ the counting measure on X.

Example 8.2 Now let B be the Borel σ -algebra in R, that is, the σ -algebra gen-
erated by the open intervals. Then there exists a unique measure λ : B → [0,+∞]
on R such that

λ
(
(a, b)

) = b − a for a < b.

We call λ the Lebesgue measure on R.
We also describe a corresponding measure on R

n. Let B be the Borel σ -algebra
in R

n, that is, the σ -algebra generated by the open rectangles
∏n

i=1(ai, bi), with
ai < bi for i = 1, . . . , n. Then there exists a unique measure λ : B→ [0,+∞] on R

n

such that

λ

(
n∏

i=1

(ai, bi)

)

=
n∏

i=1

(bi − ai)

for any ai < bi and i = 1, . . . , n. We call λ the Lebesgue measure on R
n.

Now we consider measurable functions and their integrals. Let A be a σ -algebra
in the set X.

Definition 8.3 A function ϕ : X → R is said to be A-measurable or simply mea-
surable if ϕ−1B ∈A for every B ∈B, where B is the Borel σ -algebra in R.

In order to introduce the notion of the integral of a measurable function, we first
consider the class of simple functions. The characteristic function of a set B ⊂ X

χB : X → {0,1} is defined by

χB(x) =
{

1 if x ∈ B,

0 if x /∈ B.

Definition 8.4 Given sets B1, . . . ,Bn ∈ A and numbers a1, . . . , an ∈R, the function

s =
n∑

k=1

akχBk

is called a simple function.
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Clearly, all simple functions are measurable.
Now we introduce the notion of the integral of a nonnegative measurable func-

tion.

Definition 8.5 Given a measure space (X,μ), the (Lebesgue) integral of a measur-
able function ϕ : X → R

+
0 is defined by

∫

X

ϕ dμ = sup

{
n∑

k=1

akμ(Bk) :
n∑

k=1

akχBk
≤ ϕ

}

. (8.1)

The integral of an arbitrary function can now be introduced as follows.

Definition 8.6 Given a measure space (X,μ), a measurable function ϕ : X → R is
said to be μ-integrable if

∫

X

ϕ+ dμ < ∞ and
∫

X

ϕ− dμ < ∞,

where

ϕ+ = max{ϕ,0} and ϕ− = max{−ϕ,0}. (8.2)

The (Lebesgue) integral of a μ-integrable function ϕ is defined by
∫

X

ϕ dμ =
∫

X

ϕ+ dμ −
∫

X

ϕ− dμ. (8.3)

8.2 Invariant Measures

In this section we introduce the notion of an invariant measure with respect to a
measurable map. We also give several examples of invariant measures.

We first introduce the notion of a measurable map. Let (X,A,μ) be a measure
space.

Definition 8.7 A map f : X → X is said to be A-measurable or simply measurable
if f −1B ∈ A for every B ∈ A, where

f −1B = {
x ∈ X : f (x) ∈ B

}
.

Now we introduce the notion of an invariant measure.

Definition 8.8 Given a measurable map f : X → X, we say that μ is f -invariant
and that f preserves μ if

μ
(
f −1B

) = μ(B) for B ∈A. (8.4)
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Fig. 8.1 A translation of R2

Fig. 8.2 A rotation of R2

We note that when f is an invertible map with measurable inverse, condi-
tion (8.4) is equivalent to

μ(f (B)) = μ(B) for B ∈A.

Example 8.3 Given v ∈ R
n, let f : Rn → R

n be the translation f (x) = x + v (see
Fig. 8.1). Clearly, f is invertible. We also consider the Lebesgue measure λ on R

n.
For each B ∈B, we have

λ
(
f (B)

) =
∫

f (B)

1dλ =
∫

B

|detdxf |dm(x)

=
∫

B

1dλ = λ(B)

and the measure λ is f -invariant. In other words, the translations of Rn preserve
Lebesgue measure.

Example 8.4 Now let f : Rn → R
n be a rotation (see Fig. 8.2). Then there exists an

n × n orthogonal matrix A (this means that AᵀA = Id, where Aᵀ is the transpose
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of A) such that f (x) = Ax. Since orthogonal matrices have determinant ±1, for
each B ∈ B, we have

λ(f (B)) =
∫

f (B)

1dλ =
∫

B

|detdxf |dλ(x)

=
∫

B

|detA|dλ =
∫

B

1dλ = λ(B),

where λ is the Lebesgue measure on R
n. Since rotations are invertible maps, this

shows that λ is f -invariant and thus, the rotations of Rn preserve Lebesgue measure.

Example 8.5 Consider a rotation of the circle Rα : S1 → S1. Without loss of gener-
ality, we assume that α ∈ [0,1]. We first introduce a measure μ on S1. For each set
B ⊂ [0,1] in the Borel σ -algebra in R, we define

μ(B) = λ(B). (8.5)

Then μ is a measure on S1 with μ(S1) = 1. We also have R−1
α B = B − α, where

B − α = {
x − α : x ∈ B

} ⊂ R.

Therefore,

μ
(
R−1

α B
) = λ(B − α) = λ(B) = μ(B)

since Lebesgue measure is invariant under translations (see Example 8.3). This
shows that the rotations of the circle preserve the measure μ.

Example 8.6 For the expanding map Em : S1 → S1, we show that the measure μ

introduced in Example 8.5 is Em-invariant. Given a set B ⊂ [0,1] in the Borel σ -
algebra in R, we have

E−1
m B =

m⋃

i=1

Bi, (8.6)

where

Bi =
{

x + i

m
: x ∈ B

}
mod 1

(see Fig. 8.3). Since the sets Bi are pairwise disjoint, it follows from (8.6) that

μ
(
E−1

m B
) =

m∑

i=1

λ(Bi)

=
m∑

i=1

λ(B + i)

m
=

m∑

i=1

λ(B)

m

= λ(B) = μ(B)

and the μ measure is Em-invariant.
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Fig. 8.3 The expanding map
E2 and the preimage E−1

2 B

of a set B

Example 8.7 The Gauss map f : [0,1] → [0,1] is defined by

f (x) =
{

1/x mod 1 if x �= 0,

0 if x = 0

(see Fig. 8.4). The map f is closely related to the theory of continued fractions: if

x = 1

n1 + 1

n2 + · · ·
is the continued fraction of an irrational number x ∈ (0,1), then

nj =
⌊

1

f j−1(x)

⌋
for j ∈ N.

Now we show that the Gauss map preserves the measure μ in [0,1] defined by

μ(A) =
∫

A

1

1 + x
dx.

We note that it is sufficient to consider the intervals of the form (0, b), with b ∈ (0,1)

(because they generate the Borel σ -algebra). Since

f −1(0, b) =
∞⋃

n=1

(
1

n + b
,

1

n

)
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Fig. 8.4 The Gauss map

is a disjoint union, we obtain

μ
(
f −1(0, b)

) =
∞∑

n=1

μ

((
1

n + b
,

1

n

))

=
∞∑

n=1

∫ 1/n

1/(n+b)

1

1 + x
dx

=
∞∑

n=1

log
1 + 1/n

1 + 1/(n + b)

=
∞∑

n=1

(
log

n + 1

n + 1 + b
− log

n

n + b

)

= − log
1

1 + b

=
∫ b

0

1

1 + x
dx = μ((0, b))

and the measure μ is f -invariant.
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8.3 Nontrivial Recurrence

In this section we show that any finite invariant measure gives rise to a nontrivial
recurrence. More precisely, for a finite invariant measure almost every point of a
given set returns infinitely often to this set.

Theorem 8.1 (Poincaré’s Recurrence Theorem) Let f : X → X be a measurable
map and let μ be a finite f -invariant measure on X. For each set A ∈A, we have

μ
({

x ∈ A : f n(x) ∈ A for infinitely many values of n
}) = μ(A).

Proof Let

B = {
x ∈ A : f n(x) ∈ A for infinitely many values of n

}
.

We have

B = A ∩
∞⋂

n=1

An = A \
∞⋃

n=1

(A \ An), (8.7)

where

An =
∞⋃

k=n

f −kA.

We note that

A \ An ⊂ A0 \ An = A0 \ f −nA0. (8.8)

Since A0 ⊃ An = f −nA0 and the measure μ is finite, it follows from (8.8) that

0 ≤ μ(A \ An)

≤ μ
(
A0 \ f −nA0

)

= μ(A0) − μ
(
f −nA0

) = 0

(because the measure μ is f -invariant). It follows from (8.7) that μ(B) = μ(A). �

Now we describe some applications of Theorem 8.1.

Example 8.8 Let Rα : S1 → S1 be a rotation of the circle. By Example 8.5, the mea-
sure μ on S1 defined by (8.5) is Rα-invariant. Hence, it follows from Theorem 8.1
that, given c ∈ [0,1], the set

{
x ∈ [−c, c] : ∣∣Rn

α(x)
∣
∣ ≤ c for infinitely many values of n

}

has measure μ([−c, c]) = 2c. In other words, almost all points in [−c, c] return
infinitely often to [−c, c].
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We note that the property established in Example 8.8 is trivial for α ∈ Q. When
α ∈ R \Q, it also follows from the density of the orbits of the rotation Rα .

Example 8.9 Consider the expanding map Em : S1 → S1. By Example 8.6, the mea-
sure μ on S1 defined by (8.5) is Em-invariant. Hence, it follows from Theorem 8.1
that for each interval [a, b] ⊂ [0,1], the set

{
x ∈ [a, b] : En

m(x) ∈ [a, b] for infinitely many values of n
}

has measure μ([a, b]) = b − a.

8.4 The Ergodic Theorem

Poincaré’s recurrence theorem (Theorem 8.1) says that for a finite invariant measure
almost all points of a given set return infinitely often to this set. However, the the-
orem says nothing about the frequency with which these returns occur. Birkhoff’s
ergodic theorem establishes the existence of a frequency for almost all points.

Theorem 8.2 (Birkhoff’s Ergodic Theorem) Let f : X → X be a measurable map
and let μ be a finite f -invariant measure on X. Given a μ-integrable function
ϕ : X → R, the limit

ϕf (x) = lim
n→∞

1

n

n−1∑

k=0

ϕ
(
f k(x)

)
(8.9)

exists for almost every point x ∈ X, the function ϕf is μ-integrable, and

∫

X

ϕf dμ =
∫

X

ϕ dμ. (8.10)

We postpone the proof of Theorem 8.2 until Sect. 8.6.

Example 8.10 Let f : X → X be a measurable map and let μ be a finite f -invariant
measure on X. Given a set B ∈A, consider the μ-integrable function ϕ = χB . Then

∫

X

ϕ dμ =
∫

X

χB dμ = μ(B)

and

ϕf (x) = lim
n→∞

1

n

n−1∑

k=0

χB

(
f k(x)

)

= lim
n→∞

1

n
card

{
k ∈ {0, . . . , n − 1} : f k(x) ∈ B

}
.
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It follows from Theorem 8.2 that
∫

X

lim
n→∞

1

n
card

{
k ∈ {0, . . . , n − 1} : f k(x) ∈ B

}
dμ(x) = μ(B).

In this case, the number ϕf (x) can be described as the frequency with which the
orbit of x visits the set B . Thus, in contrast to Poincaré’s recurrence theorem (Theo-
rem 8.1), Birkhoff’s ergodic theorem describes in quantitative terms how each orbit
returns to the set B .

We also consider briefly the notion of Lyapunov exponent and its relation to
Birkhoff’s ergodic theorem. Let f : M → M be a differentiable map.

Definition 8.9 Given x ∈ M and v ∈ TxM , the Lyapunov exponent of the pair (x, v)

is defined by

λ(x, v) = lim sup
n→∞

1

n
log

∥∥dxf
nv

∥∥.

Now we consider the particular case of the maps of the circle.

Theorem 8.3 Let f : S1 → S1 be a C1 map and let μ be a finite f -invariant mea-
sure on S1. Then λ(x, v) is a limit for almost every x, that is,

λ(x, v) = lim
n→∞

1

n

n−1∑

k=0

ϕ
(
f k(x)

)

for almost every x ∈ S1 and any v �= 0, where ϕ(x) = log‖dxf ‖.

Proof Since the circle S1 has dimension 1, we have

∥∥dxf
nv

∥∥ = ∥∥dxf
n
∥∥ · ‖v‖

and thus,

λ(x, v) = lim sup
n→∞

1

n
log

∥∥dxf
n
∥∥ (8.11)

for each v �= 0. Moreover, it follows from the identity

dxf
n = df n−1(x)f ◦ · · · ◦ df (x)f ◦ dxf

that

∥∥dxf
n
∥∥ =

n−1∏

k=0

‖df k(x)f ‖.
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Thus,

1

n
log

∥∥dxf
n
∥∥ = 1

n

n−1∑

k=0

log‖df k(x)f ‖ = 1

n

n−1∑

k=0

ϕ
(
f k(x)

)
,

where ϕ(x) = log‖dxf ‖. Together with (8.11), this implies that

λ(x, v) = lim sup
n→∞

1

n

n−1∑

k=0

ϕ
(
f k(x)

)

for each v �= 0. Since ϕ is continuous, the desired result is now an immediate con-
sequence of Birkhoff’s ergodic theorem (Theorem 8.2). �

8.5 Metric Entropy

In this section we consider briefly the notion of metric entropy of an invariant mea-
sure. We deliberately present only a (very) simplified version of the theory.

We first introduce the notion of a partition. Let (X,A,μ) be a measure space
with μ(X) = 1.

Definition 8.10 A finite set ξ ⊂ A is called a partition of X (with respect to μ) if
(see Fig. 8.5):

1. μ(
⋃

C∈ξ C) = 1;
2. μ(C ∩ D) = 0 for any C,D ∈ ξ with C �= D.

Now let f : X → X be a measurable map preserving the measure μ. Given n ∈N

and a partition ξ of X, we construct a new partition ξn formed by the sets

C1 ∩ f −1C2 ∩ · · · ∩ f −(n−1)Cn,

with C1, . . . ,Cn ∈ ξ .

Definition 8.11 We define

hμ(f, ξ) = inf
n∈N−1

n

∑

C∈ξn

μ(C) logμ(C),

with the convention that 0 log 0 = 0.

Example 8.11 Let f = Id. Given n ∈ N and a partition ξ of X, we have ξn = ξ .
Thus,

hμ(f, ξ) = inf
n∈N−1

n

∑

C∈ξ

μ(C) logμ(C) = 0.
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Fig. 8.5 A partition of X

Example 8.12 Consider the expanding map E2 : S1 → S1 and the E2-invariant mea-
sure μ defined by (8.5). Given n ∈N and the partition

ξ = {[0,1/2], [1/2,1]},

we have

ξn =
{[

i

2n
,
i + 1

2n

]
: i = 0, . . . ,2n − 1

}
.

Thus,

hμ(E2, ξ) = inf
n∈N−1

n

∑

C∈ξn

μ(C) logμ(C)

= inf
n∈N−1

n
· 2n · 1

2n
log

1

2n
= log 2.

Finally, we introduce the notion of metric entropy.

Definition 8.12 The metric entropy of f with respect to μ is defined by

hμ(f ) = sup
n∈N

hμ

(
f, ξ (n)

)
,

where ξ (n) is any sequence of partitions such that:

1. given n ∈ N and C ∈ ξ (n), there exist C1, . . . ,Cm ∈ ξ (n+1) such that

μ

(

C \
m⋃

i=1

Ci

)

= μ

(
m⋃

i=1

Ci \ C

)

= 0;

2. the union of all partitions ξ (n) generates the σ -algebra A.
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One can show that the definition of hμ(f ) indeed does not depend on the partic-
ular sequence ξ (n), but the proof falls outside the scope of this book.

Example 8.13 Let Rα : S1 → S1 be a rotation of the circle and let μ be the Rα-
invariant measure defined by (8.5). Given n ∈N and a partition ξ of X by intervals,
we have

card ξn ≤ n card ξ (8.12)

since the endpoints of the intervals in the preimages f −iξ , for i = 0, . . . , n − 1,
determine at most a number n card ξ of points in S1. Now we note that

−
∑

C∈ξn

μ(C) logμ(C) =
∑

C∈ξn

ϕ(μ(C)),

where

ϕ(x) =
{

−x logx if x ∈ (0,1],
0 if x = 0.

Since ϕ′′(x) = −1/x < 0 for x ∈ (0,1), the function ϕ is strictly concave and thus,

−
∑

C∈ξn

μ(C) logμ(C) =
∑

C∈ξn

1

card ξn

ϕ(μ(C)) card ξn

≤ ϕ

( ∑

C∈ξn

μ(C)

card ξn

)
card ξn

= ϕ

(
1

card ξn

)
card ξn

= − log
1

card ξn

= log card ξn.

Hence, it follows from (8.12) that

hμ(f, ξ) ≤ inf
n∈N

1

n
log card ξn

≤ inf
n∈N

1

n
log(n card ξ) = 0

and thus hμ(f ) = 0.

Example 8.14 Consider the expanding map E2 : S1 → S1 and the E2-invariant mea-
sure μ defined by (8.5). We proceed in an analogous manner to that in Example 8.12.
Given n ∈ N, consider the partition

ξ (m) =
{[

i

2m
,
i + 1

2m

]
: i = 0, . . . ,2m − 1

}
.
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For each m,n ∈N, we obtain

ξ (m)
n =

{[
i

2m+n−1
,

i + 1

2m+n−1

]
: i = 0, . . . ,2m+n−1 − 1

}
= ξ (m+n−1).

Thus,

hμ

(
E2, ξ

(m)
) = inf

n∈N−1

n

∑

C∈ξ
(m)
n

μ(C) logμ(C)

= inf
n∈N−1

n

∑

C∈ξ (m+n−1)

μ(C) logμ(C)

= inf
n∈N−1

n
· 2m+n−1 · 1

2m+n−1
log

1

2m+n−1

= inf
n∈N

m + n − 1

n
log 2 = log 2.

Since the partitions ξ (m) satisfy the hypotheses of Definition 8.12, we conclude that

hμ(f ) = sup
m∈N

hμ

(
f, ξ (m)

) = log 2.

8.6 Proof of the Ergodic Theorem

This section contains a proof of Theorem 8.2. We first establish an auxiliary result.

Lemma 8.1 Given a μ-integrable function ψ : X → R, the function ψ ◦ f is also
μ-integrable and

∫

X

(ψ ◦ f )dμ =
∫

X

ψ dμ.

Proof Given a set B ∈A, condition (8.4) is equivalent to
∫

X

χf −1B dμ =
∫

X

χB dμ,

or equivalently,
∫

X

(χB ◦ f )dμ =
∫

X

χB dμ (8.13)

since χB ◦ f = χf −1B . For a simple function

s =
n∑

k=1

akχBk
,
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it follows from (8.13) that

∫

X

(s ◦ f )dμ =
∫

X

s dμ. (8.14)

Since ψ = ψ+ − ψ− and ψ+,ψ− ≥ 0, it follows from (8.3) that it is sufficient
to establish the result for nonnegative functions. Let then ψ : X → R

+
0 be a μ-

integrable function. By the definition of the integral in (8.1), there exists a sequence
of simple functions (sn)n∈N such that:

1. 0 ≤ sn ≤ sn+1 ≤ ψ for n ∈ N, with

lim
n→∞ sn(x) = ψ(x) for x ∈ X;

2.

lim
n→∞

∫

X

sn dμ =
∫

X

ψ dμ. (8.15)

It follows from Fatou’s lemma1 and (8.14) that

∫

X

lim
n→∞(sn ◦ f )dμ ≤ lim inf

n→∞

∫

X

(sn ◦ f )dμ

= lim inf
n→∞

∫

X

sn dμ

= lim
n→∞

∫

X

sn dμ

=
∫

X

ψ dμ < ∞.

Hence, the function

lim
n→∞(sn ◦ f ) = ψ ◦ f

1Theorem (See for example [27]) Given a measure space (X,μ), if ϕn : X →R
+
0 is a sequence of

measurable functions, then

∫

X

lim inf
n→∞ ϕn dμ ≤ lim inf

n→∞

∫

X

ϕn dμ.
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is μ-integrable. Since sn ◦ f ↗ ψ ◦ f when n → ∞, it follows from the monotone
convergence theorem2 that the limit

lim
n→∞

∫

X

(sn ◦ f )dμ =
∫

X

lim
n→∞(sn ◦ f )dμ =

∫

X

(ψ ◦ f )dμ (8.16)

exists. Finally, it follows from (8.15) and (8.16) together with (8.14) that
∫

X

(ψ ◦ f )dμ = lim
n→∞

∫

X

(sn ◦ f )dμ

= lim
n→∞

∫

X

sn dμ =
∫

X

ψ dμ.

This completes the proof of the lemma. �

Now we consider the set

A =
{

x ∈ X : sup
n∈N

n−1∑

k=0

ϕ
(
f k(x)

)
> 0

}

.

Lemma 8.2 We have
∫
A

ϕ dμ ≥ 0.

Proof The functions s0(x) = 0 and

sn(x) =
n−1∑

k=0

ϕ
(
f k(x)

)
, for n ∈ N,

satisfy the identity

sn(f (x)) = sn+1(x) − ϕ(x). (8.17)

Writing

tn(x) = max
{
s1(x), . . . , sn(x)

}
and rn(x) = max

{
0, tn(x)

}
,

it follows from (8.17) that

rn(f (x)) = tn+1(x) − ϕ(x). (8.18)

On the set

An = {
x ∈ X : tn(x) > 0

}
,

2Theorem (See for example [27]) Given a measure space (X,μ), if ϕn : X →R
+
0 is a nondecreas-

ing sequence of measurable functions, then
∫

X

lim
n→∞ϕn dμ = lim

n→∞

∫

X

ϕn dμ.
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we have tn(x) = rn(x) and thus,
∫

An

tn+1 dμ ≥
∫

An

tn dμ

=
∫

An

rn dμ

=
∫

X

rn dμ.

We also have
∫

An

rn dμ ≤
∫

X

rn dμ.

It then follows from (8.18) and Lemma 8.1 that
∫

An

ϕ dμ ≥
∫

An

tn+1 dμ −
∫

An

rn dμ

≥
∫

X

rn dμ −
∫

X

(rn ◦ f )dμ = 0. (8.19)

Now we note that An ⊂ An+1 for each n ∈ N and
⋃∞

n=1 An = A. Hence, letting
n → ∞ in (8.19) we obtain

∫
A

ϕ dμ ≥ 0. �

We proceed with the proof of the theorem. Given a, b ∈ Q with a < b, consider
the set

B = Ba,b =
{

x ∈ X : lim inf
n→∞

1

n

n−1∑

k=0

ϕ
(
f k(x)

)
< a < b < lim sup

n→∞
1

n

n−1∑

k=0

ϕ
(
f k(x)

)
}

and the function

ψ(x) =
{

ϕ(x) − b if x ∈ B,

0 if x /∈ B.

It follows from Lemma 8.2 that
∫

Aψ

ψ dμ ≥ 0, (8.20)

where

Aψ =
{

x ∈ X : sup
n∈N

1

n

n−1∑

k=0

ψ
(
f k(x)

)
> 0

}

=
{

x ∈ X : sup
n∈N

1

n

n−1∑

k=0

ϕ
(
f k(x)

)
> b

}

.
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We note that Aψ ⊃ B . Since f −1B = B , we also have

n−1∑

k=0

ψ
(
f k(x)

) = 0 for x /∈ B,

that is, X \B ⊂ X \Aψ . This shows that Aψ = B and inequality (8.20) is equivalent
to

∫

B

ϕ dμ ≥ bμ(B). (8.21)

Analogously, considering the function

ψ̄(x) =
{

a − ϕ(x) if x ∈ B,

0 if x /∈ B,

one can show that
∫

B

ϕ dμ ≤ aμ(B). (8.22)

Since a < b, it follows from (8.21) and (8.22) that

μ(Ba,b) = μ(B) = 0.

Moreover, since the union of the sets Ba,b for a, b ∈ Q with a < b coincides with
the set of points x ∈ X such that

lim inf
n→∞

1

n

n−1∑

k=0

ϕ
(
f k(x)

)
< lim sup

n→∞
1

n

n−1∑

k=0

ϕ
(
f k(x)

)
,

we conclude that the limit ϕf (x) in (8.9) exists for almost every x ∈ X.
It remains to establish the integrability of the function ϕf and identity (8.10).

Write ϕ = ϕ+ −ϕ−, with ϕ+ and ϕ− as in (8.2). Since the functions ϕ+ and ϕ− are
μ-integrable, it follows from the previous argument that the limits

ϕ+
f (x) = lim

n→∞
1

n

n−1∑

k=0

ϕ+(
f k(x)

)

and

ϕ−
f (x) = lim

n→∞
1

n

n−1∑

k=0

ϕ−(
f k(x)

)
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exist for almost every x ∈ X. One can now use Fatou’s lemma together with
Lemma 8.1 to conclude that

∫

X

ϕ+
f dμ ≤ lim inf

n→∞
1

n

n−1∑

k=0

(
ϕ+ ◦ f k

)
dμ

= lim inf
n→∞

1

n

n−1∑

k=0

∫

X

ϕ+ dμ =
∫

X

ϕ+ dμ < ∞

and analogously,
∫

X

ϕ−
f dμ ≤

∫

X

ϕ− dμ < ∞.

Thus, the functions ϕ+
f and ϕ−

f are μ-integrable and hence, ϕf is also μ-integrable.
Finally, we consider the set

Da,b = {
x ∈ X : a ≤ ϕf (x) ≤ b

}
,

for each a, b ∈ Q with a < b. One can repeat the former argument to show that

aμ(Da,b) ≤
∫

Da,b

ϕ dμ ≤ bμ(Da,b).

We also have

aμ(Da,b) ≤
∫

Da,b

ϕf dμ ≤ bμ(Da,b)

and thus,
∣∣∣∣

∫

Da,b

ϕf dμ −
∫

Da,b

ϕ dμ

∣∣∣∣ ≤ (b − a)μ(Da,b).

Hence, given r > 0, we obtain

∣∣∣∣

∫

X

ϕf dμ −
∫

X

ϕ dμ

∣∣∣∣ ≤
∑

n∈Z

∣∣∣∣

∫

En

ϕf dμ −
∫

En

ϕ dμ

∣∣∣∣

≤
∑

n∈Z
rμ(En) = r,

where En = Dnr,(n+1)r . Letting r → 0, we conclude that

∫

X

ϕf dμ =
∫

X

ϕ dμ.
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8.7 Exercises

Exercise 8.1 For a σ -algebra A, show that if Bn ∈A for n ∈ N, then
⋂∞

n=1 Bn ∈ A.

Exercise 8.2 Show that the Borel σ -algebra in R coincides with the σ -algebra gen-
erated by the closed sets in R.

Exercise 8.3 For a measure space (X,A,μ), show that:

1. if the sets Bn ∈A satisfy Bn ⊂ Bn+1 for n ∈N, then

μ

( ∞⋃

n=1

Bn

)

= lim
n→∞μ(Bn) = sup

n∈N
μ(Bn);

2. if the sets Bn ∈A satisfy Bn ⊃ Bn+1 for n ∈N and μ(B1) < ∞, then

μ

( ∞⋂

n=1

Bn

)

= lim
n→∞μ(Bn) = inf

n∈Nμ(Bn).

Exercise 8.4 Given a set X and a point p ∈ X, let

δp(B) =
{

1 if p ∈ B,

0 if p /∈ B

for each B ⊂ X. Show that:

1. δp is a measure on the σ -algebra of all subsets of X;
2. any function ϕ : X → R is measurable;
3. any function ϕ : X → R is δp-integrable and

∫

X

ϕ dδp = ϕ(p).

Exercise 8.5 Verify that any translation of a set in the Borel σ -algebra B in R is
still in B.

Exercise 8.6 Show that:

1. any continuous function ϕ : R → R is B-measurable;
2. any monotonous function ϕ : R →R is B-measurable.

Exercise 8.7 Show that a function ϕ : R → R is B-measurable if and only if
{
x ∈R : ϕ(x) > α

} ∈B for α ∈R.

Exercise 8.8 Show that the sum and the product of measurable functions are still
measurable functions. Hint: Use Exercise 8.7.
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Exercise 8.9 Show that the supremum and the limit of a sequence ϕn : R → R of
measurable functions are still measurable functions. Hint: Note that

{
x ∈R : sup

n∈N
ϕn(x) ≤ α

}
=

⋂

n∈N

{
x ∈ R : ϕn(x) ≤ α

}

and
{
x ∈ R : lim

n→∞ϕn(x) ≤ α
}

=
⋂

k∈N

⋃

n∈N

⋂

m≥n

{
x ∈R : ϕm(x) ≤ α + 2−k

}
.

Exercise 8.10 Show that a measurable function ϕ is integrable if and only if |ϕ| is
integrable.

Exercise 8.11 Show that if the function ϕ : X →R is μ-integrable, then
∣∣∣∣

∫

X

ϕ dμ

∣∣∣∣ ≤
∫

X

|ϕ|dμ.

Exercise 8.12 Show that a point x ∈ [0,1] is rational if and only if f m(x) = 0 for
some m ∈N, where f is the Gauss map.

Exercise 8.13 Let f : Rn → R
n be a C1 diffeomorphism. Show that f preserves

Lebesgue measure if and only if |detdxf | = 1 for every x ∈R
n.

Exercise 8.14 Verify that Poincaré’s recurrence theorem cannot be generalized to
infinite measure spaces.

Exercise 8.15 Let f : X → X be a measurable map and let μ be a finite f -invariant
measure on X. Show that if the function ϕ : X →R is μ-integrable, then

lim
n→∞

ϕ(f n(x))

n
= 0

for almost every x ∈ X.

Exercise 8.16 Let f : X → X be a measurable map preserving a measure μ on X

with μ(X) = 1. Show that if ξ is a partition of X, then hμ(f, ξ) ≤ log card ξ .

Exercise 8.17 Compute the metric entropy of the expanding map Em : S1 → S1

with respect to the Em-invariant measure μ defined by (8.5).

Exercise 8.18 Show that any automorphism of the torus Tn preserves the measure
induced on T

n by the Lebesgue measure λ on R
n.

Exercise 8.19 Show that any endomorphism of the torus Tn preserves the measure
induced on T

n by the Lebesgue measure λ on R
n.
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Exercise 8.20 Given constants p1, . . . , pk > 0 with
∑k

i=1 pi = 1, consider the mea-
sure μ on Σ+

k defined by

μ(Ci1···in ) = pi1 · · ·pin

for each set Ci1···in in (7.5). Show that:

1. μ is σ -invariant and μ(Σ+
k ) = 1;

2. hμ(σ ) = −∑k
i=1 pi logpi .
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Anosov diffeomorphism, 109, 151
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B
Backward invariant set, 21
Birkhoff’s ergodic theorem, 189
Bounded variation, 71

C
Cantor set, 22
Characteristic function, 182
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Circle, 9
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rotation, 9
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invariance, 100, 102
Conjugacy, 43
Coordinate system, 87
Counting measure, 182
Critical point, 82

D
Diffeomorphism

Anosov, 109, 151
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Differentiable
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structure, 87

Differential equation, 14, 20
Dynamical system, 7, 8

continuous time, 8
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topological, 27, 28
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symbolic, 153
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F
Fatou’s lemma, 195
First return time, 19
Fixed point, 113
Flow, 8

geodesic, 137, 144, 145
hyperbolic, 147
suspension, 18
topological, 28

Forward invariant set, 21
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characteristic, 182
integrable, 183
Lipschitz, 28
measurable, 182
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zeta, 175

G
Gauss map, 186
Genus, 142
Geodesic flow, 137, 144, 145
Grobman–Hartman theorem, 113, 114

H
Hadamard–Perron theorem, 120, 122
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Homeomorphism
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distance, 138
dynamics, 87, 113
fixed point, 113
flow, 147
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Integrable function, 183
Integral, 183
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Irreducible matrix, 169
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Lebesgue

integral, 183
measure, 182
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Local topological conjugacy, 114
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Lyapunov exponent, 190
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Manifold, 87
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quadratic, 50, 75, 161
shift, 153, 156

Markov
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Measure, 181
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invariant, 183
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Metric entropy, 191, 192
Monotone convergence theorem, 196
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Poincaré
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recurrence theorem, 188
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theorem, 70

Poincaré–Bendixson theorem, 82
Point

critical, 82
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recurrent, 37

Positive semiorbit, 22, 24
Product structure, 135
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Quadratic map, 50, 75, 161
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Recurrence, 188
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S
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Set
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Cantor, 22
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hyperbolic, 89, 90, 147
invariant, 21, 23
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Sharkovsky
theorem, 78
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finite type, 164
map, 153, 156

Simple function, 182
Smale horseshoe, 91, 94

coding, 162
Solenoid, 111
Space

stable, 90, 96, 147
unstable, 90, 96, 147
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manifold, 131, 132, 149
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Suspension
flow, 18
semiflow, 18

Symbolic dynamics, 153

T
Tangent

bundle, 89
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vector, 89
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Birkhoff, 189
Denjoy, 71
ergodic, 189
Grobman–Hartman, 113, 114
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monotone convergence, 196
Poincaré, 70, 188
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Sharkovsky, 78

Theory
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Topological
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dynamical system, 27, 28
dynamics, 27
entropy, 42, 155, 167
flow, 28
invariant, 44
Markov chain, 164, 165
mixing, 169
semiflow, 28
transitivity, 169

Topologically
mixing, 39
transitive, 37

Torus, 12
automorphism, 12
endomorphism, 12

Transition matrix, 164, 165
Transitive matrix, 169
Translation of the interval, 9

U
Unstable

manifold, 131, 132, 149
space, 90, 96, 147
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Zeta function, 175


	1

