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Preface

This book provides an introduction to the theory of dynamical systems with
the aid of Python. It is written for both senior undergraduates and graduate
students. Chapter 1 provides a tutorial introduction to Python—new users
should go through this chapter carefully while those moderately familiar and
experienced users will find this chapter a useful source of reference. The first
part of the book deals with continuous systems using differential equations,
including both ordinary and delay differential equations (Chapters 2–12), the
second part is devoted to the study of discrete systems (Chapters 13–17), and
Chapters 18–21 deal with both continuous and discrete systems. Chapter 22
gives examples of coursework and also lists three Python-based examinations
to be sat in a computer laboratory with access to Python. Chapter 23 lists
answers to all of the exercises given in the book. It should be pointed out that
dynamical systems theory is not limited to these topics but also encompasses
partial differential equations, integral and integro-differential equations, and
stochastic systems, for instance. References [1–6] given at the end of the Pref-
ace provide more information for the interested reader. The author has gone
for breadth of coverage rather than fine detail and theorems with proofs are
kept at a minimum. The material is not clouded by functional analytic and
group theoretical definitions, and so is intelligible to readers with a general
mathematical background. Some of the topics covered are scarcely covered
elsewhere. Most of the material in Chapters 9–12 and 16–21 is at postgrad-
uate level and has been influenced by the author’s own research interests.
There is more theory in these chapters than in the rest of the book since it is
not easily accessed anywhere else. It has been found that these chapters are
especially useful as reference material for senior undergraduate project work.
The theory in other chapters of the book is dealt with more comprehensively
in other texts, some of which may be found in the references section of the
corresponding chapter. The book has a very hands-on approach and takes
the reader from the basic theory right through to recently published research
material.

v
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Python is extremely popular with a wide range of researchers from all
sorts of disciplines; it has a very user-friendly interface and has extensive
visualization and numerical computation capabilities. It is an ideal package to
adopt for the study of nonlinear dynamical systems; the numerical algorithms
work very quickly, and complex pictures can be plotted within seconds.

The first chapter provides an efficient tutorial introduction to Python.
Simple Python programming is introduced using three basic programming
structures: defining functions, for loops, and if, then, else constructs. New
users will find the tutorials will enable them to become familiar with Python
within a few days. Both engineering and mathematics students appreciate
this method of teaching and I have found that it generally works well with
one staff member to about twenty students in a computer laboratory. In most
cases, I have chosen to list the Python commands at the end of each chapter;
this avoids unnecessary cluttering in the text. The Python programs have
been kept as simple as possible and should run under later versions of the
package. All Python files for the book (including updates and extra files) can
even be downloaded from the Web via GitHub at:

https://github.com/springer-math/dynamical-systems-with-applications-
using-python

Readers will find that they can reproduce the figures given in the text, and
then it is not too difficult to change parameters or equations to investigate
other systems.

Chapters 2–12 deal with continuous dynamical systems. Chapters 2 and 3
cover some theory of ordinary differential equations and applications to mod-
els in the real world are given. The theory of differential equations applied
to chemical kinetics and electric circuits is introduced in some detail. The
memristor is introduced and one of the most remarkable stories in the history
of mathematics is relayed. Chapter 2 ends with the existence and uniqueness
theorem for the solutions of certain types of differential equations. The theory
behind the construction of phase plane portraits for two-dimensional systems
is dealt with in Chapter 3. Applications are taken from chemical kinetics, eco-
nomics, electronics, epidemiology, mechanics, and population dynamics. The
modeling of the populations of interacting species is discussed in some detail
in Chapter 4 and domains of stability are discussed for the first time. Limit
cycles, or isolated periodic solutions, are introduced in Chapter 5. Since we
live in a periodic world, these are the most common type of solution found
when modeling nonlinear dynamical systems. They appear extensively when
modeling both the technological and natural sciences. Hamiltonian, or con-
servative, systems and stability are discussed in Chapter 6, and Chapter 7
is concerned with how planar systems vary depending upon a parameter.
Bifurcation, bistability, multistability, and normal forms are discussed.

https://github.com/springer-math/dynamical-systems-with-applications-using-python
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The reader is first introduced to the concept of chaos in continuous sys-
tems in Chapters 8 and 9, where three-dimensional systems and Poincaré
maps are investigated. These higher-dimensional systems can exhibit strange
attractors and chaotic dynamics. One can rotate the three-dimensional ob-
jects in Python and plot time series plots to get a better understanding of
the dynamics involved. Once again, the theory can be applied to chemi-
cal kinetics (including stiff systems), electric circuits, and epidemiology; a
simplified model for the weather is also briefly discussed. Chapter 9 deals
with Poincaré first return maps that can be used to untangle complicated
interlacing trajectories in higher-dimensional spaces. A periodically driven
nonlinear pendulum is also investigated by means of a nonautonomous dif-
ferential equation. Both local and global bifurcations are investigated in
Chapter 10. The main results and statement of the famous second part of
David Hilbert’s sixteenth problem are listed in Chapter 11. In order to un-
derstand these results, Poincaré compactification is introduced. The study
of continuous systems ends with one of the authors specialities—limit cycles
of Liénard systems. There is some detail on Liénard systems, in particular,
in this part of the book, but they do have a ubiquity for systems in the
plane. Chapter 12 provides an introduction to delay differential equations
with applications in biology and nonlinear optics.

Chapters 13–17 deal with discrete dynamical systems. Chapter 13 starts
with a general introduction to iteration and linear recurrence (or difference)
equations. The bulk of the chapter is concerned with the Leslie model used
to investigate the population of a single species split into different age classes.
Harvesting and culling policies are then investigated and optimal solutions are
sought. Nonlinear discrete dynamical systems are dealt with in Chapter 14.
Bifurcation diagrams, chaos, intermittency, Lyapunov exponents, periodic-
ity, quasiperiodicity, and universality are some of the topics introduced. The
theory is then applied to real-world problems from a broad range of disci-
plines including population dynamics, biology, economics, nonlinear optics,
and neural networks. Chapter 15 is concerned with complex iterative maps
in the Argand plane, where Julia sets and the now-famous Mandelbrot set
are plotted. Basins of attraction are investigated for these complex systems
and Newton fractals are introduced. As a simple introduction to optics, elec-
tromagnetic waves and Maxwell’s equations are studied at the beginning of
Chapter 16. Complex iterative equations are used to model the propagation
of light waves through nonlinear optical fibers. A brief history of nonlinear
bistable optical resonators is discussed and the simple fiber ring resonator
is analyzed in particular. Chapter 16 is devoted to the study of these op-
tical resonators, and there is discussion on phenomena such as bistability,
chaotic attractors, feedback, hysteresis, instability, linear stability analysis,
multistability, nonlinearity, and steady states. The first and second iterative
methods are defined in this chapter. Some simple fractals may be constructed
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using pencil and paper in Chapter 17, and the concept of fractal dimension
is introduced. Fractals may be thought of as identical motifs repeated on
ever-reduced scales. Unfortunately, most of the fractals appearing in nature
are not homogeneous but are more heterogeneous, hence the need for the
multifractal theory given later in the chapter. It has been found that the
distribution of stars and galaxies in our universe is multifractal, and there
is even evidence of multifractals in rainfall, stock markets, and heartbeat
rhythms. Applications in geoscience, materials science, microbiology, and
image processing are briefly discussed. Chapter 18 provides a brief introduc-
tion to image processing which is being used more and more by a diverse
range of scientific disciplines, especially medical imaging. The fast Fourier
transform is introduced and has a wide range of applications throughout the
realms of science.

Chapter 19 is devoted to the new and exciting theory behind chaos con-
trol and synchronization. For most systems, the maxim used by engineers
in the past has been “stability good, chaos bad,” but more and more nowa-
days this is being replaced with “stability good, chaos better.” There are
exciting and novel applications in cardiology, communications, engineering,
laser technology, and space research, for example. A brief introduction to
the enticing field of neural networks is presented in Chapter 20. Imagine
trying to make a computer mimic the human brain. One could ask the ques-
tion: In the future will it be possible for computers to think and even be
conscious? The human brain will always be more powerful than traditional,
sequential, logic-based digital computers and scientists are trying to incor-
porate some features of the brain into modern computing. Neural networks
perform through learning and no underlying equations are required. Mathe-
maticians and computer scientists are attempting to mimic the way neurons
work together via synapses; indeed, a neural network can be thought of as a
crude multidimensional model of the human brain. The expectations are high
for future applications in a broad range of disciplines. Neural networks are
already being used in machine learning and pattern recognition (computer vi-
sion, credit card fraud, prediction and forecasting, disease recognition, facial
and speech recognition), the consumer home entertainment market, psycho-
logical profiling, predicting wave over-topping events, and control problems,
for example. They also provide a parallel architecture allowing for very fast
computational and response times. In recent years, the disciplines of neu-
ral networks and nonlinear dynamics have increasingly coalesced and a new
branch of science called neurodynamics is emerging. Lyapunov functions can
be used to determine the stability of certain types of neural network. There
is also evidence of chaos, feedback, nonlinearity, periodicity, and chaos syn-
chronization in the brain.

Chapter 21 focuses on binary oscillator computing, the subject of UK,
International, and Taiwanese patents. The author and his co-inventor, Jon
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Borresen, came up with the idea when modeling connected biological neu-
rons. Binary oscillator technology can be applied to the design of arithmetic
logic units (ALUs), memory, and other basic computing components. It
has the potential to provide revolutionary computational speed-up, energy
saving, and novel applications and may be applicable to a variety of techno-
logical paradigms including biological neurons, complementary metal-oxide-
semiconductor (CMOS), memristors, optical oscillators, and superconducting
materials. The research has the potential for MMU and industrial partners
to develop super fast, low-power computers and may provide an assay for
neuronal degradation for brain malfunctions such as Alzheimer’s, epilepsy,
and Parkinson’s disease!

Examples of coursework and three examination-type papers are listed in
Chapter 22, and a complete set of solutions for the book is listed in Chap-
ter 23.

Both textbooks and research papers are presented in the list of references.
The textbooks can be used to gain more background material, and the re-
search papers have been given to encourage further reading and independent
study.

This book is informed by the research interests of the author, which are
currently nonlinear ordinary differential equations, nonlinear optics, multi-
fractals, neural networks, and binary oscillator computing. Some references
include recently published research articles by the author along with two
patents.

The prerequisites for studying dynamical systems using this book are
undergraduate courses in linear algebra, real and complex analysis, calculus,
and ordinary differential equations; a knowledge of a computer language such
as Basic, C, or Fortran would be beneficial but not essential.

Recommended Textbooks

[1] H.P Langtangen and A. Logg, Solving PDEs in Python: The FEniCS
Tutorial I (Simula SpringerBriefs on Computing), Springer, New York, 2017.

[2] B. Bhattacharya and M. Majumdar, Random Dynamical Systems in Fi-
nance, Chapman & Hall/CRC, New York, 2016.

[3] L.C. de Barros, R.C. Bassanezi and W.A. Lodwick, A First Course in
Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics: Theory and
Applications, Springer, New York, 2016.

[4] V. Volterra, Theory of Functionals and of Integral and Integro-Differential
Equations, Dover Publications, New York, 2005.
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[5] J. Mallet-Paret (Editor), J. Wu (Editor), H. Zhu (Editor), Y. Yi (Editor),
Infinite Dimensional Dynamical Systems (Fields Institute Communications),
Springer, New York, 2013.

[6] C. Bernido, M.V. Carpio-Bernido, M. Grothaus et al., Stochastic and In-
finite Dimensional Analysis, Birkhäuser, New York, 2016.

Special thanks go to Ben Nuttall (Python guru), Community Manager,
the Raspberry Pi Foundation, Cambridge, UK (www.raspberrypi.org), for
reviewing this book. I would also like to express my sincere thanks to all of the
reviewers of this book and the other editions of my books. As always, thanks
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9 Poincaré Maps and Nonautonomous Systems in the Plane 215
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Chapter 1

A Tutorial Introduction
to Python

Aims and Objectives

• To introduce simple programming in Python.

• To provide tutorial guides to modules in Python.

• To promote self-help using the online help facilities.

• To provide a concise source of reference for experienced users.

On completion of this chapter, the reader should be able to

• download and use IDLE to write simple Python programs;

• download the open data science platform Anaconda and use Spyder
(Scientific PYthon Development EnviRonment) to run more advanced
Python programs;

• access Python program files over the World Wide Web.
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It is assumed that the reader is familiar with at least one of either the
Windows , Mac Operating System (OS), or UNIX platforms. This book was
prepared using Python version 3.7 on a Mac OS but most programs should
work under earlier and later versions of Python 3. Note that the programs
will not be compatible with Python 2, and that Python 2 is due for end-of-life
in 2020. Note that the online version of the Python programs for this book
will be written using the most up to date version of the package. Python
programs can be downloaded from GitHub at:

https://github.com/springer-math/dynamical-systems-with-applications-using-

python

Readers should note that this is not a chapter dedicated to programming
but is intended to provide a concise introduction to Python in order to tackle
problems outlined later in the book. The programs and commands listed
in this chapter have been chosen to allow the reader to become familiar
with Python within a few days. They provide a concise summary of the
type of commands that will be used throughout the text. New users should
be able to start on their own problems after completing the chapter, and
experienced users should find this chapter an excellent source of reference. Of
course, there are many Python textbooks on the market for those who require
further applications or more detail. For a more in-depth introduction to
programming with Python, the reader is directed to the texts [1, 3, 6, 12, 13],
and [15], for mathematical applications the reader should consult [3, 4, 5],
and [10], and for an introduction to programming with the Raspberry Pi,
please see [11].

As with other chapters in the book, the reader is encouraged to learn
programming by example thus avoiding many hours of decoding. The reader
should run the example programs and then seek syntax and explanations on
program structure either from the Python help pages on the web or in books
such as those referred to in the reference section.

1.1 The IDLE Integrated Development Envi-
ronment for Python

Python was developed by Guido van Rossum and first released in 1991. It
is a high-level programming language and supports functional, imperative,
object-oriented, and procedural styles of programming. The official home of
the Python programming language is:

https://www.python.org/

and part of the homepage is illustrated in Figure 1.1.
Click on the Download tab to install Python on to your computer if it is

not already there. Once you have downloaded the latest version of Python

https://github.com/springer-math/dynamical-systems-with-applications-using-python
https://www.python.org/


A Tutorial Introduction to Python 3

Figure 1.1: Part of the official Python programming language homepage.

you will need to access IDLE, which is bundled with Python and is Python’s
integrated development and learning environment which works on Windows,
Mac OS, and Unix platforms. Readers can use either a shell window or an
Editor window; the author has used an Editor window in this chapter, as
illustrated in Figure 1.2.

The following commands show how Python can be used as a powerful
calculator within IDLE.

Figure 1.2: The IDLE Editor window as it first appears when opened on a
Macbook. The chevron prompt >>> signals that Python is waiting for input.
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1.1.1 Tutorial One: Using Python as a Powerful Calcu-
lator

Copy the commands after the chevron prompt >>> in the IDLE Editor win-
dow (see Figure 1.2). There is no need to copy the comments, they are there
to help you. The output is not displayed. New users should type the com-
mands line by line while experienced users can use the tutorial for reference.
For help on the math module type >>>import math, then >>>help(math), in
the Python Editor Window (Python Shell).

Python Command Lines Comments

>>> # This is a comment. # Helps when writing programs.

>>> 2 + 3 - 36 / 2 - 5 # Simple arithmetic.

>>> 2**5 # Exponentiation.

>>> 2**0.5 # Fractional powers.

>>> x = 3 # Assign a variable.

>>> x**2 + 1 # Work with the variable.

>>> type(x) # x is type (class) integer.

>>> x1 = 4.2; x2 = 2.675; # Assign x1 and x2.

>>> type(x1) # x1 is float.

>>> int(x1) # Truncates to integer.

>>> -7 // 3 # Floor division.

>>> round(x2, 2) # Floating point arithmetic.

>>> # Complex Numbers.

>>> z1=2 + 3j; z2 = 3 - 1j # Assign z1 and z2.

>>> type(z1) # z1 is class complex.

>>> z1**2 - 2 * z2 # Complex arithmetic.

>>> abs(z1) # The modulus.

>>> z1.real # The real part of z1.

>>> z1.imag # Imaginary part of z1.

>>> z1.conjugate() # The complex conjugate.

>>> # Lists.

>>> a=[1, 2, 3, 4, 5] # A list of integers.
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>>> type(a) # Determine a is a list.

>>> a[0] # 1st element, 0 based

indexing.

>>> a[-1] # The last element.

>>> len(a) # The number of elements.

>>> min(a) # The smallest element.

>>> max(a) # The largest element.

>>> 5 in a # True, 5 is in the list a.

>>> 2 * a # [1,2,3,4,5,1,2,3,4,5].

>>> a.append(6) # Now a=[1,2,3,4,5,6].

>>> a.remove(6) # Removes the first 6 found.

>>> print(a) # Prints the list

a=[1,2,3,4,5].

>>> a[1 : 3] # Slice to get the list [2,3].

>>> range(10) # A range object zero to nine.

>>> list(range(5)) # A list [0,1,2,3,4].

>>> list(range(4, 9)) # A list [4,5,6,7,8].

>>> list(range(2, 10, 2)) # A list [2,4,6,8].

>>> list(range(10, 5, -2)) # A list [10,8,6].

>>> A=[[1, 2], [3, 4]] # A list of lists.

>>> A[0] # The first list [1,2].

>>> A[0][1] # Second element in list 1.

>>> import math # # Import all under name

space math.

>>> from math import sin # Import sine command only.

>>> from math import * # Import all math commands.

>>> sin(pi) # Sine function.

>>> acos(0) # Inverse cosine.

>>> exp(0.3) # Exponential function.

>>> log10(0.3) # Log base 10.

>>> floor(2.35) # Return floor as integer.
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1.1.2 Tutorial Two: Simple Programming with Python

Tutorial One demonstrated how one may use the IDLE Editor window as a
powerful calculator using Python commands. In this subsection, the reader
will be shown how to construct simple Python programs. In the IDLE Editor
window, click on the File tab and then New File. An Untitled window opens
and the reader types in Python command lines as illustrated in Figure 1.3.

In this section, the author has decided to concentrate on three program-
ming structures: (i) defining functions, (ii) using for and while loops, and (iii)
if, elif, else constructs. These three structures are commonly taught to new
programmers and readers will see that they are used extensively in this book.

Figure 1.3: File Editor window displaying a Python program defining the
logistic function.

(i) Defining Functions. Examples 1 and 2 illustrate how functions are
defined in Python.

Example 1. Write a Python program that defines the logistic function given
by fμ(x) = μx(1−x). Once defined and executed, the function gives an extra
command within IDLE.

Solution. The first program is shown in Figure 1.3 and defines the logistic
function saved as f_mu.py. All Python programs should be saved with .py
at the end of the filename. Note that comments appear as red text, and
non-executable author text can be inserted between the triple quotes (green
text). The def command defines the function, which in this case is a function
of two variables, μ and x. At the end of the def line one types a colon and
then IDLE automatically indents the next line after you type the ENTER key.
In the final line one types return followed by your choice of function. The
program then returns that function.
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To run the program, click on Run and Run Module or click the F5 function
button. You will see that the program has executed in the IDLE Editor win-
dow. One can then call this function in the IDLE Editor window as shown
below. The output has also been included.

>>> f_mu(2, 0.8)

0.31999999999999995

Thus, Python calculates f2(0.8) as 0.31999999999999995, this is as a result
of floating point arithmetic.

Example 2. Write a Python Program that converts degrees Fahrenheit in
to Kelvin.

Figure 1.4: File Editor window showing a Python program for converting
degrees Fahrenheit into Kelvin, saved as F2K.py.

Solution. The Python program to convert Fahrenheit to Kelvin is shown in
Figure 1.4 and the IDLE command line and output is listed below. Run the
module before entering the IDLE command line.

>>> F2K()

Enter temperature in degrees Fahrenheit: 68
Temperature in Kelvin is: 293.15000000000003 K

(ii) Using Loops. Examples 3 and 4 illustrate how for and while loops can
be used for repetitive tasks.

Example 3. Use the for statement to write a Python Program that lists the
first n terms of the Fibonacci sequence.
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Solution. The Python program for listing the first n terms of the Fibonacci
sequence is shown in Figure 1.5 and the IDLE command line and output is
listed below. Run the module before entering the IDLE command line.

Figure 1.5: File Editor window showing a Python program for listing the first
n terms of the Fibonacci sequence.

>>> fibonacci(20)

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181

Example 4. Use the while command to write a Python Program that sums
the natural numbers to n.

Solution. The Python program for summing the first n natural numbers is
shown in Figure 1.6 and the IDLE command line and output is listed below.
Run the module before entering the IDLE command line.

>>> sum_n(100)

The sum is 5050

(iii) If, elif, else. Examples 5 and 6 illustrate how to use conditional
statements in programming.

Example 5. Write a Python program that grades students’ results.

Solution. A Python program for grading students’ results is shown in Fig-
ure 1.7 and the IDLE command line and output is listed below. Run the
module before entering the IDLE command line.
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Figure 1.6: File Editor window showing a Python program for listing the
sum of the first n natural numbers.

>>> grade(90)

’A’

Example 6. Write an interactive Python program to play a “guess the
number” game. The computer should think of a random integer between
1 and 20 and the user (player) has to try to guess the number within six
attempts. The program should let the player know if the guess is too high or
too low.

Solution. The Python program for playing the guess the number game is
shown in Figure 1.8.

The program for Example 6 is the first program that has imported a
module. In order to use Python to study Dynamical Systems more modules
and libraries have to be imported as demonstrated in the following sections
and subsections.

Figures 1.3–1.8 were screen shots of the IDLE file editor window and the
reader should now be familiar with the color command codes used by Python;
the remaining program files are listed in the text between horizontal lines and
the color coding has been omitted.

1.1.3 Tutorial Three: Simple Plotting Using
the Turtle Module

Python comes with the turtle module (turtle.py) already built in and func-
tions within the module enable users to move the turtle around the screen to



10 Chapter 1: c©Springer

Figure 1.7: File Editor window showing a Python program for grading stu-
dent results.

create graphics. In order to import the turtle module and its files one simply
types >>> from turtle import * in the IDLE Editor window. Readers in-
terested in more detail on the Turtle module are directed to the Kindle books
[14] and [16].

The Turtle module is an excellent tool for plotting fractals as the next
three examples demonstrate. Fractals are discussed in more detail in Chap-
ter 17.

Example 7. Write a Python program that plots a fractal tree.

Solution. A Python program for plotting fractal trees is listed below. See
Figure 1.9.

# A program for plotting fractal trees.

# Save file as fractal_tree_color.py.

# Remember to run the Module (or type F5).

# Run Module and type >>> fractal_tree_color(200,10) in the Python Shell.

from turtle import *

setheading(90) # The turtle points straight up.

penup() # Lift the pen.

setpos(0, -250) # Set initial point.

pendown() # Pen down.

def fractal_tree_color(length, level):

"""

Draws a fractal tree

"""
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Figure 1.8: File Editor window showing a Python program for playing the
guess the number game.

pensize(length/10) # Thickness of lines.

if length < 20:

pencolor("green")

else:

pencolor("brown")

speed(0) # Fastest speed.

if level > 0:

fd(length) # Forward.

rt(30) # Right turn 30 degrees.

fractal_tree_color(length*0.7, level-1)

lt(90) # Left turn 90 degrees.

fractal_tree_color(length*0.5, level-1)

rt(60) # Right turn 60 degrees.

penup()

bk(length) # Backward.

pendown()

>>> fractal_tree_color(200, 10)
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Figure 1.9: [Python] A color fractal tree when length=200 and level=10.

Example 8. Write a Python program that plots a Koch square fractal curve.

Solution. A Python program for plotting a Koch square curve is listed be-
low. See Figure 1.10.

# A program for plotting a Koch square curve.

# Save file as koch_square.py.

# Remember to run the Module (or type F5).

from turtle import *

def koch_square(length, level): # Koch square function.

speed(0) # Fastest speed.

for i in range(4):

plot_side(length, level)

rt(90)

def plot_side(length, level): # Plot side function.

if level==0:

fd(length)

return

plot_side(length/3, level - 1)

lt(90)

plot_side(length/3, level - 1)

rt(90)

plot_side(length/3, level - 1)

rt(90)

plot_side(length/3, level - 1)

lt(90)

plot_side(length/3, level - 1)
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>>> koch_square(200, 4)

Figure 1.10: [Python] (a) Koch square fractal at level 1; (b) Koch square
fractal at level 4. Fractals are discussed in more detail in Chapter 17.

Example 9. Write a Python program that plots a Sierpinski triangle fractal.

Solution. The Python program for plotting a Sierpinski triangle fractal is
listed below. See Figure 1.11.

# A program that plots the Sierpinski fractal.

# Save file as sierpinski.py.

# Remember to run the Module (or type F5).

from turtle import *

def sierpinski(length, level): # Sierpinski function.

speed(0) # Fastest speed.

if level==0:

return

begin_fill() # Fill shape.

color(’red’)

for i in range(3):

sierpinski(length/2, level-1)

fd(length)

lt(120)

end_fill()

>>> sierpinski(200, 4)
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Figure 1.11: [Python] (a) Sierpinski triangle fractal at level 1; (b) Sierpinski
triangle fractal at level 4. Fractals are discussed in more detail in Chapter 17.

1.2 Anaconda, Spyder and the Libraries,
Sympy, Numpy, and Matplotlib

The first section introduces the reader to Python using the IDLE editor;
however, in order to perform scientific computing and computational model-
ing additional libraries (or packages) that are not part of the Python stan-
dard library are required. The additional libraries required for this book
include sympy (SYMbolic PYthon) for symbolic computation, numpy (NU-
Meric PYthon) for numerical routines, and matplotlib (PLOTting LIBrary)
for creating plots. Python has a number of interpreters along with pack-
ages and editors and the author has found that the Anaconda free package
manager, environment manager and Python distribution is one of the best
for dynamical systems work. Readers may also be interested in alternatives
to Anaconda such as WinPython and Enthought Canopy. The Anaconda
Python distribution is available for download for Windows, Mac OS, and the
Linux operating systems. The current URL to download Anaconda is at:

https://www.continuum.io/downloads

Readers should click on the Anaconda Navigator icon and a window opens
as displayed in Figure 1.12.

By clicking on the Launch button under the Spyder icon (see Figure 1.12)
an Integrated Development Environment (IDE) or notebook opens as dis-
played in Figure 1.13. The three windows are described below:

1. The editor window is used to write code and save to file.

2. The variable/file explorer window can display detailed help on variables
or files and is useful when debugging.

3. The console window is where one can work interactively and where
output results and error messages are displayed. The console can be
used in the same way as the IDLE editor window - see Subsection 1.1.1.

https://www.continuum.io/downloads
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Figure 1.12: The Anaconda Navigator window on a Mac OS.

Note that when saving a file and running the code the file should be located
in the working directory indicated in the top right corner of the IDE.

1.2.1 Tutorial One: A Tutorial Introduction to Sympy

Sympy is a computer algebra system and a Python library for symbolic
mathematics written entirely in Python. The following tutorial has been de-
signed to allow new users to become familiar with the commands by means
of example. For more detailed information please refer to sympy’s document
pages at:

http://docs.sympy.org/latest/index.html

The following command lines should be typed in the console window. There
is no need to copy the comments, they are there to help you.

Python Commands Comments

In[1]: 2 / 3 + 4 / 5 # Approximate decimal.

In[2]: from fractions import Fraction # To work with fractions.

In[3]: Fraction(2, 3)+Fraction(4, 5) # Symbolic answer.

In[4]: sqrt(16) # Square root.

In[5]: sin(pi) # Trigonometric function.
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Figure 1.13: A Spyder IDE (notebook) showing the Editor window, the Vari-
able/File Explorer window, and the Console window.

In[6]: from sympy import * # Import everything from sympy

# library into global scope.

In[7]: x,y=symbols(’x y’) # Declare x and y symbolic.

In[8]: factor(x**3 - y**3) # Factorize.

In[9]: expand(Out[8]) # Expand the last result.

In[10]: factor((x**3 - y**3)/(x - y)) # Simplify an expression.

In[11]: apart(1/((x + 2)*(x + 1))) # Partial fractions.

In[12]: trigsimp(cos(x) - cos(x)**3) # Simplify a trig expression.

In[13]: limit(1/x, x, oo) # Limits.

In[14]: diff(x**2 - 3*x + 6,x) # Total differentiation.

In[15]: diff(x**3*y**5, x, y, 3) # Partial differentiation.

In[16]: integrate(sin(x)*cos(x),x) # Indefinite integration.

In[17]: integrate(exp(-x**2 - y**2), # Definite integration.

(x, 0, oo),(y, 0, oo))

In[18]: (exp(x)*cos(x)).series(x,0,10) # Taylor series expansion.

In[19]: summation(1 / x**2,(x,1,oo)) # An infinite sum.
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In[20]: solve(x**5 - 1, x) # Solving equations. Roots

In[21]: solve([x+5*y-2, -3*x+6*y-15], # Solving simultaneous equations.

[x, y])

In[22]: z1 = 3 + 1*I; z2 = 5 - 4*I # Note that 1j=I can be used too.

In[23]: 2 * z1 + z1 * z2 # Simple complex arithmetic.

In[24]: conjugate(z1) # Complex conjugate.

In[25]: arg(z1) # The argument of z1.

In[26]: abs(z1) # The modulus of z1.

In[27]: re(z1) # The real part.

In[28]: im(z1) # The imaginary part.

In[29]: exp(I*z1).expand(complex=True) # Express in form x+iy.

In[30]: A=Matrix([[1, -1], [2, 3]]); # Two 2x2 matrices.

B=Matrix([[0, 2], [3, 3]]);

In[31]: 2 * A + 3 * A * B # Matrix algebra.

In[32]: A.row(0) # Access the first row.

In[33]: A.T # The transpose of a matrix.

In[34]: A.T.row(1) # Access the second column of A.

In[35]: A[0, 1] # The element in row 1, column 2.

In[36]: A**(-1) # The inverse of a matrix.

In[37]: A**5 # The power of a matrix.

In[38]: A.det() # The determinant of A.

In[39]: zeros(3, 3) # A 3x3 matrix of zeros.

In[40]: ones(1, 5) # A 1x5 matrix of ones.

In[41]: C=Matrix([[2,1,0], [-1,4,0], # A 3x3 matrix.

[-1,3,1]])

In[42]: C.rref() # The row reduced echelon form.

In[43]: C.eigenvals() # The eigenvalues of C.

In[44]: C.eigenvects() # The eigenvectors of C.

In[45]: s, t, w = symbols(’s t w’) # Declare s,t,w symbolic.

In[46]: laplace_transform(t**3,t,s) # Laplace transform.

In[47]: inverse_laplace_transform # Inverse transform.

(6/s**4, s, t)
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In[48]: fourier_transform(-2 * pi * # Fourier transform.

abs(t), t, w)

In[49]: inverse_fourier_transform(1/ # Inverse transform.

(pi * w**2), w, t)

In[50]: quit # Quits IPython console.

1.2.2 Tutorial Two: A Tutorial Introduction to Numpy
and Matplotlib

Numpy’s main object is the homogeneous multidimensional array and al-
lows Python to compute with vectors and matrices. Matplotlib is a Python
2-dimensional plotting library used to generate bar charts, error charts, his-
tograms, plots, power spectra, and scatterplots, for example. When combin-
ing the pyplot module with IPython a MATLAB-like interface is provided
and the user can control axes properties, font properties, and line styles via
an object oriented interface. For a more detailed reference guide to numpy,
readers are directed to:

https://docs.scipy.org/doc/numpy/reference/

and an introduction to matplotlib is given here:

https://matplotlib.org

The following command lines provide a concise introduction to numpy and
matplotlib by means of example. The following command lines should be
typed in the IPython console window. There is no need to copy the comments,
they are there to help you.

Python Commands Comments

In[1]: import numpy as np # Import numpy into the np

# namespace.

In[2]: a = np.arange(5) # A 1d array [0 1 2 3 4].

In[3]: b = np.arange(6).reshape(2,3) # A 2d array [[0 1 2],[3 4 5]].

In[4]: A = np.array([[1, 1], [0, 1]]) # A 2d array.

In[5]: B = np.array([[2, 0], [3, 4]]) # A 2d array.

In[6]: A * B # Elementwise product [[2 0],

# [0 4]].

In[7]: A.dot(B) # Matrix product [[5 4],[3 4]].



A Tutorial Introduction to Python 19

In[8]: np.dot(A, B) # Matrix product [[5 4],[3 4]].

In[9]: c=np.arange(12).reshape(3, 4) # A 2d array.

In[10]: c.sum(axis = 0) # Sum each column.

In[11]: c.min(axis = 1) # Minimum of each row.

In[12]: c.cumsum(axis = 1) # Cumulative sum for each row.

In[13]: np.linspace(0, 2, 5) # Gives array([ 0.,0.5,1.,

# 1.5,2.]).

In[14]: # Simple plots with Python and matplotlib

In[15]: from numpy import * # Import numpy.

In[16]: import matplotlib.pyplot as plt # Import pyplot.

In[17]: x = np.linspace(-2, 2, 50) # Set up the domain.

In[18]: y = x**2 # A function of x.

In[19]: plt.plot(x, y) # A basic plot.

In[20]: # Two plots on one graph

In[21]: t = np.linspace(0, 100, 1000); # Set the domain.

p1 = np.exp(-.1*t) * np.cos(t); # Two functions.

p2 = np.cos(t);

plt.plot(t, p1);plt.plot(t, p2); # Plot two curves.

In[22]: # Plot with a legend

In[23]: plt.plot(t, p1, label = ’p1’); plt.plot(t, p2, label = ’p2’);

plt.legend();

In[24]: # Plot with labels and title

In[25]: plt.xlabel(’x’);plt.ylabel(’y’);plt.title(’y=x^2’);

plt.plot(x,y)

In[26]: # Change line width and colour

In[27]: plt.plot(x,y,color = ’green’, linewidth = 4)

In[28]: # Plotting implicit functions

In[29]: x,y=np.mgrid[-5:5:100j,-5:5:100j] # A grid of x,y values.

z = x**2 / 4 + y**2 # A function of two variables.

plt.contour(x,y,z,levels=[1]) # The curve x**2/4+y**2=1.

In[30]: # A parametric plot

In[31]: t=np.linspace(0, np.pi, 100); # A set of t values.

x = 0.7*np.sin(t+1)*np.sin(3*t); # A set of x values.

y = 0.7*np.cos(t+1)*np.sin(3*t); # A set of y values.

plt.plot(x, y) # The 2D parametric plot.

In[32]: quit # Quits IPython console.



20 Chapter 1: c©Springer

1.2.3 Tutorial Three: Simple Programming, Solving
ODEs, and More Detailed Plots

In order to solve ordinary differential equations (ODEs) and produce more
detailed plots the reader is advised to write short programs rather than using
the console window. Examples are listed below, where each file is listed be-
tween horizontal lines and the output is also included in the indicated figures.

Readers can get help from within the Python console using the help com-
mand. For example, by typing >>>help(dsolve), information and examples
are listed in the console.

Hints for Programming.

1. Indentation: The indentation level in Python code is significant.

2. Common typing errors: Include all operators, make sure parentheses
match up in correct pairs, Python is case sensitive, check syntax using
the help command.

3. Use continuation lines: Use a backslash to split code across multiple
lines.

4. Preallocate arrays using the zeros command.

5. If a program involves a lot of iterations, 100,000, say, then run the code
for two iterations initially and use print.

6. Read the warning messages supplied by Python before running the
code.

7. Check that you are using the correct libraries and modules.

8. If you cannot get your program to work, look for similar programs
(including Maple, Mathematica, and MATLAB programs) on theWorld
Wide Web.

Example 10. Write a Python program that solves the ODE: dx
dt + x = 1.

Solution. The Python program for solving the ODE is listed below.

# Program 01a: A program that solves a simple ODE.

from sympy import dsolve, Eq, symbols, Function

t = symbols(’t’)

x = symbols(’x’, cls=Function)

deqn1 = Eq(x(t).diff(t), 1 - x(t))

sol1 = dsolve(deqn1, x(t))

print(sol1)
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Eq(x(t), C1*exp(-t) + 1)

Example 11. Write a Python program that solves the ODE: d2y
dt2 + dy

dt +y =
et.

Solution. The Python program for solving the second order ODE is listed
below.

# Program 01b: A program that solves a second order ODE.

from sympy import dsolve, Eq, exp, Function, symbols

t = symbols(’t’)

y = symbols(’y’, cls=Function)

deqn2 = Eq(y(t).diff(t,t) + y(t).diff(t) + y(t), exp(t))

sol2 = dsolve(deqn2, y(t))

print(sol2)

Eq(y(t),(C1*sin(sqrt(3)*t/2)+C2*cos(sqrt(3)*t/2))/sqrt(exp(t))+exp(t)/3)

Example 12. Write a Python program that plots two curves on one graph.

Solution. The Python program for plotting Figure 1.14 is listed below.

# Program 01c: A program that plots two curves on one graph.

# Remember to run the Module (or type F5).

import matplotlib.pyplot as plt

import numpy as np

t = np.arange(0.0, 2.0, 0.01)

c = 1 + np.cos(2*np.pi*t)

s = 1 + np.sin(2*np.pi*t)

plt.plot(t, s, ’r--’, t, c, ’b-.’)

plt.xlabel(’time (s)’)

plt.ylabel(’voltage (mV)’)

plt.title(’Voltage-time plot’)

plt.grid(True)

plt.savefig("Voltage-Time Plot.png")

plt.show()
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Figure 1.14: [Python] A voltage time plot. Note that ’r–’ gives a red dashed
curve and ’b-.’ gives a blue dash-dot curve. Using savefig, the figure is saved
in the same folder where the python program is stored.

Example 13. Write a Python program that plots subplots.

Solution. The Python program for plotting Figure 1.15 is listed below. Note
that the syntax for the subplot command is subplot(number of rows, number
of columns, figure number).

# Program 01d: A program that plots subplots.

# Remember to run the Module (or type F5).

import matplotlib.pyplot as plt

import numpy as np

def f(t):

return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)

t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1)

plt.subplot(211) #subplot(num rows,num cols,fig num)

plt.plot(t1,f(t1), ’bo’, t2, f(t2), ’k’, label=’damping’)

plt.xlabel(’time (s)’)

plt.ylabel(’amplitude (m)’)

plt.title(’Damped pendulum’)

legend = plt.legend(loc=’upper center’, shadow=True)
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Figure 1.15: [Python] Two subplots for a damped and undamped pendulum.
The upper plot also has a figure legend.

plt.subplot(212)

plt.plot(t2, np.cos(2*np.pi*t2), ’g--’, linewidth=4)

plt.xlabel(’time (s)’)

plt.ylabel(’amplitude (m)’)

plt.title(’Undamped pendulum’)

plt.subplots_adjust(hspace=0.8)

plt.show()

Example 14. Write a Python program that plots a surface and correspond-
ing contour plots in 3D.

Solution. The Python program for plotting Figure 1.16 is listed below.

# Program 01e: A program that plots a surface and contour plots in 3D.

# Remember to run the Module (or type F5).

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

alpha = 0.7

phi_ext = 2 * np.pi * 0.5
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Figure 1.16: [Python] A surface and contour plot. Note that the font size
of ticks and axis labels have also been set. In this case the axis labels are
generated with LaTeX code.

def flux_qubit_potential(phi_m, phi_p):

return 2+alpha-2*np.cos(phi_p)*np.cos(phi_m)-alpha*np.cos

(phi_ext-2*phi_p)

phi_m = np.linspace(0, 2 * np.pi, 100)

phi_p = np.linspace(0, 2 * np.pi, 100)

X,Y = np.meshgrid(phi_p, phi_m)

Z = flux_qubit_potential(X, Y).T

fig = plt.figure(figsize = (8, 6))

ax=fig.add_subplot(1, 1, 1, projection=’3d’)

p=ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4)

ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)

cset=ax.contour(X,Y,Z,zdir=’z’, offset=-np.pi, cmap=plt.cm.coolwarm)

cset=ax.contour(X,Y,Z,zdir=’x’, offset=-np.pi, cmap=plt.cm.coolwarm)

cset=ax.contour(X,Y,Z,zdir=’y’, offset=3*np.pi, cmap=plt.cm.coolwarm)

ax.set_xlim3d(-np.pi, 2*np.pi);

ax.set_ylim3d(0, 3*np.pi);

ax.set_zlim3d(-np.pi, 2*np.pi);

ax.set_xlabel(’$\phi_p$’, fontsize=15)

ax.set_ylabel(’$\phi_m$’, fontsize=15)
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ax.set_zlabel(’Potential’, fontsize=15)

plt.tick_params(labelsize=15)

ax.set_title("Surface and contour plots",fontsize=15)

plt.show()

Example 15. Write a Python program that plots a parametric plot in 3D.

Solution. The Python program for plotting Figure 1.17 is listed below.

Figure 1.17: [Python] A parametric plot in 3D.

# Program 01f: A program that plots a parametric curve in 3D.

# Remember to run the Module (or type F5).

import numpy as np

import matplotlib.pyplot as plt

#from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8, 6))

ax = fig.add_subplot(1, 1, 1, projection=’3d’)

t = np.linspace(-10, 10, 1000)

x = np.sin(t)

y = np.cos(t)

z = t

ax.plot(x, y, z)

ax.set_xlabel("X Axis")
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ax.set_ylabel("Y Axis")

ax.set_zlabel("Z Axis")

ax.set_title("3D Parametric Curve")

plt.show()

Example 16. Write a Python program that animates a simple curve.

Solution. The Python program for producing an animation is listed below.

# Program 01g: A program that animates a simple curve.

# Remember to run the Module (or type F5).

import numpy as np

from matplotlib import pyplot as plt

from matplotlib import animation

fig = plt.figure()

ax = plt.axes(xlim=(0, 2), ylim=(-2, 2))

line, = ax.plot([], [], lw=2)

plt.xlabel(’time’)

plt.ylabel(’sin($\omega$t)’)

def init():

line.set_data([], [])

return line,

# The function to animate.

def animate(i):

x = np.linspace(0, 2, 1000)

y = np.sin(2 * np.pi * (0.1 * x * i))

line.set_data(x, y)

return line,

# Note: blit=True means only re-draw the parts that have changed.

anim=animation.FuncAnimation(fig, animate, init_func=init, \

frames=100, interval=200, blit=True)

plt.show()

Readers may be interested in my other Dynamical Systems books based
on Mathematica, MATLAB, and Maple, [7, 8, 9], where introductory chapters
provide tutorial guides to those packages.
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1.3 Exercises

1. Simple Python programming.

(a) Write a function for converting degrees Fahrenheit to degrees Centi-
grade.

(b) Write a Python program that sums the subset of prime numbers
up to some natural number, n, say.

(c) Consider Pythagorean triples, positive integers a, b, c, such that
a2 + b2 = c2. Suppose that c is defined by c = b + n, where n is
also an integer. Write a Python program that will find all such
triples for a given value of n, where both a and b are less than or
equal to a maximum value, m, say. For the case n = 1, find all
triples with 1 ≤ a ≤ 100 and 1 ≤ b ≤ 100. For the case n = 3,
find all triples with 1 ≤ a ≤ 200 and 1 ≤ b ≤ 200.

(d) Edit the Koch square Python program to plot a Koch snowflake,
where each segment is replaced with 4 segments, each one-third
the length of the previous segment. Use an equilateral triangle as
a base.

(e) Edit the sierpinski.py Python program to construct a Sierpinski
square fractal, where the central square is removed at each stage
and the length scales decrease by one-third.

2. Evaluate the following:

(a) 4 + 5− 6;

(b) 312;

(c) sin(0.1π);

(d) (2− (3− 4(3 + 7(1− (2(3− 5))))));

(e) 2
5 − 3

4 × 2
3 .

3. Given that

A =

⎛
⎝

1 2 −1
0 1 0
3 −1 2

⎞
⎠ , B =

⎛
⎝

1 2 3
1 1 2
0 1 2

⎞
⎠ , C =

⎛
⎝

2 1 1
0 1 −1
4 2 2

⎞
⎠ ,

determine the following:

(a) A+ 4BC;

(b) the inverse of each matrix if it exists;
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(c) A3;

(d) the determinant of C;

(e) the eigenvalues and eigenvectors of B.

4. Given that z1 = 1 + i, z2 = −2 + i and z3 = −i,
evaluate the following:

(a) z1 + z2 − z3;

(b) z1z2
z3

;

(c) ez1 ;

(d) ln(z1);

(e) sin(z3).

5. Evaluate the following limits if they exist:

(a) limx→0
sin x
x ;

(b) limx→∞
x3+3x2−5
2x3−7x ;

(c) limx→π
cos x+1
x−π ;

(d) limx→0+
1
x ;

(e) limx→0
2 sinh x−2 sin x

cosh x−1 .

6. Find the derivatives of the following functions:

(a) y = 3x3 + 2x2 − 5;

(b) y =
√
1 + x4;

(c) y = ex sinx cosx;

(d) y = tanhx;

(e) y = xln x.

Evaluate the following definite integrals:

(f)
∫ 1

x=0
3x3 + 2x2 − 5 dx;

(g)
∫∞
x=1

1
x2 dx;

(h)
∫∞
−∞ e−x2

dx;

(i)
∫ 1

0
1√
x
dx;

(j)
∫ 2

π

0
sin(1/t)

t2 dt.
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7. Graph the following:

(a) y = 3x3 + 2x2 − 5;

(b) y = e−x2

, for −5 ≤ x ≤ 5;

(c) x2 − 2xy − y2 = 1;

(d) z = 4x2ey − 2x4 − e4y, for −3 ≤ x ≤ 3 and −1 ≤ y ≤ 1;

(e) x = t2 − 3t, y = t3 − 9t, for −4 ≤ t ≤ 4.

8. Solve the following differential equations:

(a) dy
dx = x

2y , given that y(1) = 1;

(b) dy
dx = −y

x , given that y(2) = 3;

(c) dy
dx = x2

y3 , given that y(0) = 1;

(d) d2x
dt2 + 5dx

dt + 6x = 0, given that x(0) = 1 and ẋ(0) = 0;

(e) d2x
dt2 + 5dx

dt + 6x = sin(t), given that x(0) = 1 and ẋ(0) = 0.

9. Carry out one hundred iterations on the recurrence relation

xn+1 = 4xn(1− xn),

given that (a) x0 = 0.2 and (b) x0 = 0.2001. List the final ten iterates
in each case.

10. Use a while loop to program Euclid’s algorithm for finding the greatest
common divisor of two integers. Use your program to find the greatest
common divisor of 12348 and 14238.
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Chapter 2

Differential Equations

Aims and Objectives

• To review basic methods for solving some differential equations.

• To apply the theory to simple mathematical models.

• To introduce an existence and uniqueness theorem.

On completion of this chapter, the reader should be able to

• solve certain first- and second-order differential equations;

• apply the theory to chemical kinetics and electric circuits;

• interpret the solutions in physical terms;

• understand the existence and uniqueness theorem and its implications.

The basic theory of ordinary differential equations (ODEs) and analytical
methods for solving some types of ODEs are reviewed. This chapter is not
intended to be a comprehensive study on differential equations, but more an
introduction to the theory that will be used in later chapters. Most of the ma-
terials will be covered in first- and second-year undergraduate mathematics
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courses. The differential equations are applied to all kinds of models, but this
chapter concentrates on chemical kinetics and electric circuits in particular.

The chapter ends with the existence and uniqueness theorem and some
analysis.

2.1 Simple Differential Equations and Appli-
cations

Definition 1. A differential equation that involves only one independent
variable is called an ordinary differential equation (ODE). Those involving
two or more independent variables are called partial differential equations
(PDEs). This chapter will be concerned with ODEs only.

The subject of ODEs encompasses analytical, computational, and applica-
ble fields of interest. There are many textbooks written from the elementary
to the most advanced, with some focusing on applications and others concen-
trating on existence theorems and rigorous methods of solution. This chapter
is intended to introduce the reader to all three branches of the subject. For
more information the reader should consult the ODE textbooks in the bibli-
ography [1, 6, 7, 10, 15].

2.1.1 Linear Differential Equations

Consider differential equations of the form

dx

dt
+ P (t)x = Q(t). (2.1)

Multiplying through by an integrating factor, say, J(t), (2.1) becomes

J
dx

dt
+ JPx = JQ. (2.2)

Find J such that (2.2) can be written as

d

dt
(Jx) = J

dx

dt
+ x

dJ

dt
= JQ.

In order to achieve this, set
dJ

dt
= JP

and integrate to get

J(t) = exp

(∫
P (t) dt

)
.
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Thus the solution to system (2.1) may be found by solving the differential
equation

d

dt
(Jx) = JQ,

as long as the right-hand side is integrable.

Example 1. A chemical company pumps v liters of solution containing mass
m grams of solute into a large lake of volume V per day. The inflow and
outflow of the water are constant. The concentration of solute in the lake,
say, σ, satisfies the differential equation

dσ

dt
+

v

V
σ =

m

V
. (2.3)

Determine the concentration of solute in the lake at time t assuming that
σ = 0 when t = 0. What happens to the concentration in the long term?

Solution. This is a linear differential equation, and the integrating factor is
given by

J = exp

(∫
v

V
dt

)
= e

vt
V .

Multiply (2.3) by the integrating factor to obtain

d

dt

(
e

vt
V σ

)
= e

vt
V
m

V
.

Integration gives

σ(t) =
m

v
− ke−

vt
V ,

where k is a constant. Substituting the initial conditions, the final
solution is

σ(t) =
m

v

(
1− e−

vt
V

)
.

As t → ∞, the concentration settles to m
v gl−1.

2.1.2 Separable Differential Equations

Consider the differential equation

dx

dt
= f(t, x) (2.4)

and suppose that the function f(t, x) can be factored into a product f(t, x) =
g(t)h(x), where g(t) is a function of t and h(x) is a function of x. If f can
be factored in this way, then equation (2.4) can be solved by the method of
separation of variables .
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To solve the equation, divide both sides by h(x) to obtain

1

h(x)

dx

dt
= g(t);

and integration with respect to t gives

∫
1

h(x)

dx

dt
dt =

∫
g(t) dt.

Changing the variables in the integral gives

∫
dx

h(x)
=

∫
g(t) dt.

An analytic solution to (2.4) can be found only if both integrals can be
evaluated. The method can be illustrated with some simple examples.

Example 2. Solve the differential equation dx
dt = − t

x .

Solution. The differential equation is separable. Separate the variables and
integrate both sides with respect to t. Therefore,

∫
x
dx

dt
dt = −

∫
t dt,

and so ∫
x dx = −

∫
t dt.

Integration of both sides yields

t2 + x2 = r2,

where r2 is a constant. There are an infinite number of solutions. The solu-
tion curves are concentric circles of radius r centered at the origin. There are
an infinite number of solution curves that would fill the plane if they were all
plotted. Three such solution curves are plotted in Figure 2.1.

Example 3. Solve the differential equation dx
dt = t

x2 .

Solution. The differential equation is separable. Separate the variables and
integrate both sides with respect to t to give

∫
x2 dx =

∫
t dt.
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Figure 2.1: Three of an infinite number of solution curves for Example 2.

Integration of both sides yields

x3

3
=

t2

2
+ C,

where C is a constant. Six of an infinite number of solution curves are plotted
in Figure 2.2.

–4

–2

0

2

4

x

2–2–4 4
t

Figure 2.2: Six solution curves for Example 3.
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Example 4. The population of a certain species of fish living in a large lake
at time t can be modeled using Verhulst’s equation, otherwise known as the
logistic equation,

dP

dt
= P (β − δP ),

where P (t) is the population of fish measured in tens of thousands, and β
and δ are constants representing the birth and death rates of the fish living
in the lake, respectively. Suppose that β = 1, δ = 10−3, and the initial
population is N = 800. Solve this initial value problem and interpret the
results in physical terms.

Solution. Using the methods of separation of variables gives

∫
dP

P (β − δP )
=

∫
dt.

The solution to the integral on the left may be determined using partial
fractions. The solution is

P (t) =
βNeβt

β − δN +Nδeβt
,

computed using Python. Substituting the parameters listed in the question,
the solution is

P (t) =
800

0.8 + 0.2e−t

Thus as time increases, the population of fish tends to a value of 1000. The
solution curve is plotted in Figure 2.3.

Figure 2.3: The solution curve for the initial value problem in Example 4.

Note the following:

• The quantity β
δ is the ratio of births to deaths and is called the carrying

capacity of the environment.
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• Take care when interpreting the solutions. This and similar continuous
models only work for large species populations. The solutions give ap-
proximate numbers. Even though time is continuous, the population
size is not. For example, you cannot have a fractional living fish, so
population sizes have to be rounded out to whole numbers in applica-
tions.

• Discrete models can also be applied to population dynamics (see Chap.
13).

2.1.3 Exact Differential Equations

A differential equation of the form

M(t, x) +N(t, x)
dx

dt
= 0 (2.5)

is said to be exact if there exists a function, say, F (t, x), with continuous
second partial derivatives such that

∂F

∂t
= M(t, x), and

∂F

∂x
= N(t, x).

Such a function exists as long as

∂M

∂x
=

∂N

∂t
,

and then the solution to (2.5) satisfies the equation

F (t, x) = C,

where C is a constant. Differentiate this equation with respect to t to obtain
(2.5).

Example 5. Solve the differential equation

dx

dt
=

9− 12t− 5x

5t+ 2x− 4
.

Solution In this case, M(t, x) = −9 + 12t + 5x and N(t, x) = 5t + 2x − 4.
Now

∂M

∂x
=

∂N

∂t
= 5

and integration gives the solution F (t, x) = x2 + 6t2 + 5tx − 9t − 4x = C.
There are an infinite number of solution curves, some of which are shown in
Figure 2.4.
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2.1.4 Homogeneous Differential Equations

Consider differential equations of the form

dx

dt
= f

(x
t

)
. (2.6)

Substitute v = x
t into (2.6) to obtain

d

dt
(vt) = f(v).

Therefore,

v + t
dv

dt
= f(v),

and so
dv

dt
=

f(v)− v

t
,

which is separable. A complete solution can be found as long as the equations
are integrable, and then v may be replaced with x

t .

–6

–4

–2

0

2

4

6

x

321 4
t

Figure 2.4: Some solution curves for Example 5.
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Example 6. Solve the differential equation

dx

dt
=

t− x

t+ x
.

Solution. The equation may be rewritten as

dx

dt
=

1− x
t

1 + x
t

. (2.7)

Let v = x
t . Then (2.7) becomes

dv

dt
=

1− 2v − v2

t(1 + v)
.

This is a separable differential equation. The general solution is given by

x2 + 2tx− t2 = C,

where C is a constant. Some solution curves are plotted in Figure 2.5.

t

x

–4

–2

0

2

4

2–2–4 4

Figure 2.5: Some solution curves for Example 6.
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In most cases, especially in ODE models of real world problems, the ODEs
do not have nice analytical solutions and numerical methods need to be em-
ployed to make any progress. This is particularly true for nonlinear systems
as seen in other chapters of this book.

Numerical and Series Solutions of ODEs
To integrate a system of ODEs numerically, one uses the odeint function from
the scipy.integrate library (see Program 02e, in Section 2.5). For more detail
on the numerical solution of ODEs, the reader is directed to [5]. Note that
numerical solutions of ODEs are used extensively in other chapters of the
book.

Another very useful method for determining the solutions to some ODEs
is the series solution method. The basic idea is to seek a series solution
(assuming that the series converge) of the form

x(t) =

∞∑
n=0

an(t− t0)
n,

about the point t0. The method holds for infinitely differentiable functions
(that is, functions that can be differentiated as often as desired), and is
outlined using two simple examples.

Example 7. Determine a series solution to the initial value problem

dx

dt
+ tx = t3, (2.8)

given that x(0) = 1.

Solution. Given that t0 = 0, set x(t) =
∑∞

n=0 ant
n. Substituting into (2.8)

gives
∞∑

n=1

nant
n−1 + t

( ∞∑
n=0

ant
n

)
= t3.

Combining the terms into a single series

a1 +

∞∑
n=1

((n+ 1)an+1 + an−1) t
n = t3.

Equating coefficients gives

a1 = 0, 2a2 + a0 = 0, 3a3 + a1 = 0, 4a4 + a2 = 1, 5a5 + a3 = 0, . . .

and solving these equations gives a2n+1 = 0, for n = 0, 1, 2, . . .,

a2 = −a0
2
, a4 =

1− a2
4

,
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and

a2n = −a2n−2

2n
,

where n = 3, 4, 5, . . .. Based on the assumption that x(t) =
∑∞

n=0 ant
n,

substituting x(0) = 1 gives a0 = 1. Hence, the series solution to the ODE
(2.8) is

x(t) = 1− 1

2
t2 +

3

8
t4 +

∞∑
n=3

(−1)n
(

1

(2n)

1

(2n− 2)
. . .

1

6

3

8

)
t2n.

A Python program for calculating the series solution is listed in Section 2.5.
Note that the analytic solution can be found in this case and is equal to

x(t) = −2 + t2 + 3e−
t2

2 ,

which is equivalent to the series solution above.

Example 8. Consider the second order ODE given by:

d2x

dt2
+ 2t2

dx

dt
+ x = 0, (2.9)

where x(0) = 1 and ẋ(0) = 0. Use Python to plot a numerical solution
against a series solution up to order 6 near to the point x(0) = 1.

Solution. Using Python, the series solution is computed to be

x(t) = C1

(
t− t3

6
− t4

6

)
+ C2

(
1− t2

2
− t4

24

)
+O(t6).

Figure 2.6: [Python] Numerical and truncated series solutions for the ODE
(2.9) near x(0) = 1.
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Substituting the initial conditions gives C1 = 0 and C2 = 1. Figure 2.6
shows the truncated series and numerical solutions for the ODE (2.9) near
to x(0) = 1. The upper red curve is the truncated series approximation that
diverges quite quickly away from the numerical solution (lower blue curve).
Of course, one must also take care that the numerical solution is correct.

2.2 Applications to Chemical Kinetics

Even the simplest chemical reactions can be highly complex and difficult to
model. Physical parameters such as temperature, pressure, and mixing, for
example, are ignored in this text, and differential equations are constructed
that are dependent only on the concentrations of the chemicals involved in
the reaction. This is potentially a very difficult subject and some assump-
tions have to be made to make progress.

The Chemical Law of Mass Action. The rates at which the concentra-
tions of the various chemical species change with time are proportional to
their concentrations.

Consider the simple chemical reaction

A+ βB � γC,

where β and γ are the stoichiometric coefficients, A and B are the reactants,
C is the product, and k1 is the forward rate constant of the equation. The
rate of reaction, say, r, is given by

r =
change in concentration

change in time
.

For this simple example,

r = k1[A][B]β = −d[A]

dt
= − 1

β

d[B]

dt
=

1

γ

d[C]

dt
,

where [A], [B], and [C] represent the concentrations of A, B, and C, respec-
tively. By adding a second chemical equation, a slightly more complex system
is produced,

αA � δD,

where k2 is the rate constant of the second equation and α and δ are the stoi-
chiometric coefficients. Note that the chemical equations whose stoichiometry
determines the form of their rates are known as elementary steps. Two of
the possible reaction rate equations for this system now become

d[A]

dt
= −k1β[A][B]β − k2α[A]

α,
d[D]

dt
= k2δ[A]

α.
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Consider the following example, where one molecule of hydrogen reacts
with one molecule of oxygen to produce two molecules of hydroxyl (OH):

H2 +O2 → 2OH.

Suppose that the concentration of hydrogen is [H2] and the concentration of
oxygen is [O2]. Then from the chemical law of mass action, the rate equation
is given by

Rate = k[H2][O2],

where k is called the rate constant , and the reaction rate equation is

d[OH]

dt
= 2k[H2][O2].

Unfortunately, it is not possible to write down the reaction rate equations
based on the stoichiometric (balanced) chemical equations alone. There may
be many mechanisms involved in producing OH from hydrogen and oxygen
in the above example. Even simple chemical equations can involve a large
number of steps and different rate constants. A rate-determining step is a
step in a sequence of reactions that is slower than the other steps, so that its
rate determines the rate of the entire sequence.

Table 2.1: One of the possible reaction rate equations for each chemical
reaction.

Chemical reaction The reaction rate equation for one species
may be expressed as follows:

A+B → C dc
dt = kfab = kf (a0 − c)(b0 − c)

2A � B db
dt = kf (a0 − 2b)2 − krb

A � 2B db
dt = kf

(
a0 − b

2

)
− krb

2

A � B+C dc
dt = kf (a0 − c)− kr(b0 + c)(c0 + c)

A+B � C dc
dt = kf (a0 − c)(b0 − c)− krc

A+B � C+D dc
dt = kf (a0 − c)(b0 − c)− kr(c0 + c)(d0 + c)
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Suppose that species A, B, C, and D have concentrations a(t), b(t), c(t),
and d(t) at time t and initial concentrations a0, b0, c0, and d0, respectively.
Table 2.1 lists some reversible chemical reactions and one of the correspond-
ing reaction rate equations, where kf and kr are the forward and reverse rate
constants, respectively.

Example 9. A reaction equation for sulfate and hydrogen ions to form bisul-
fite ions is given by

SO2−
3 +H+ � HSO−

3 ,

where kf and kr are the forward and reverse rate constants, respectively.
Denote the concentrations by a = [SO2−

3 ], b = [H+], and c = [HSO−
3 ], and let

the initial concentrations be a0, b0, and c0. Assume that there is much more
of species H+ than the other two species, so that its concentration b can be
regarded as constant. The reaction rate equation for c(t) is given by

dc

dt
= kf (a0 − c)b− kr(c0 + c).

Find a general solution for c(t).

Solution. The differential equation is separable and

∫
dc

kf (a0 − c)b− kr(c0 + c)
=

∫
dt.

Integration yields

c(t) =
kfa0b− krc0
kfb+ kr

− krc0
kfb+ kr

+Ae(−kfa0−kr)t,

where A is a constant.

Example 10. The chemical equation for the reaction between nitrous oxide
and oxygen to form nitrogen dioxide at 25oC,

2NO +O2 → 2NO2

obeys the law of mass action. The rate equation is given by

dc

dt
= k(a0 − c)2

(
b0 −

c

2

)
,

where c = [NO2] is the concentration of nitrogen dioxide, k is the rate con-
stant, a0 is the initial concentration of NO, and b0 is the initial concentration
of O2. Find the concentration of nitrogen dioxide after time t given that
k = 0.00713l2M−2s−1, a0 = 4Ml−1,b0 = 1Ml−1, and c(0) = 0Ml−1.
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Solution. The differential equation is separable and

∫
dc

(4− c)2(1− c/2)
=

∫
k dt.

Integrating using partial fractions gives

kt =
1

c− 4
+

1

2
ln |c− 4| − 1

2
ln |c− 2|+ 1

4
− 1

2
ln 2.

It is not possible to obtain c(t) explicitly, so numerical methods are employed
using Python. The concentration of nitrogen dioxide levels off at two moles
per liter as time increases, as depicted in Figure 2.7.

Chemical reactions displaying periodic behavior will be dealt with in
Chapter 8. There may be a wide range of time scales involved in chemi-
cal reactions and this can lead to stiff systems.

Definition 2. A stiff system is a system of ODEs for which certain numerical
methods for solving the equation are numerically unstable. Loosely speaking,
a stiff system of ODEs is one in which the velocity or magnitude of the vector
field changes rapidly in phase space.
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Figure 2.7: [Python] The concentration of NO2 in moles per liter against
time in seconds.
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2.3 Applications to Electric Circuits

For many years, differential equations have been applied to model simple
electrical and electronic circuits. If an oscilloscope is connected to the cir-
cuit, then the results from the analysis can be seen to match very well with
what happens physically. As a simple introduction to electric circuits, lin-
ear systems will be considered and the basic definitions and theory will be
introduced. The section ends with an introduction to the nonlinear circuit
element known as the memristor.

Current and Voltage
The current I flowing through a conductor is proportional to the number of
positive charge carriers that pass a given point per second. The unit of current
is the ampere A. A coulomb is defined to be the amount of charge that flows
through a cross section of wire in 1 second when a current of 1A is flowing,
so 1 amp is 1 coulomb per second. As the current passes through a circuit
element, the charge carriers exchange energy with the circuit elements, and
there is a voltage drop or potential difference measured in joules per coulomb,
or volts V .

Consider simple electric circuits consisting of voltage sources, resistors,
inductors, and capacitors, or RLC circuits. A series RLC circuit is shown
schematically in Figure 2.8. The voltage drop across a resistor and the cur-
rent flowing through it are related by Ohm’s Law.

R

E L

C

Figure 2.8: Schematic of a simple RLC series circuit.

Ohm’s Law. The voltage drop V across a resistor is proportional to the
current I flowing through it:

V = IR,
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where R is the resistance of the resistor measured in ohms (Ω).

A changing electric current can create a changing magnetic field that in-
duces a voltage drop across a circuit element, such as a coil.

Faraday’s Law. The voltage drop across an inductor is proportional to the
rate of change of the current:

V = L
dI

dt
,

where L is the inductance of the inductor measured in henries (H).

A capacitor consists of two plates insulated by some medium. When
connected to a voltage source, charges of opposite sign build up on the two
plates, and the total charge on the capacitor is given by

q(t) = q0 +

∫ t

t0

I(s) ds,

where q0 is the initial charge.

Capacitor. The voltage drop across a capacitor is proportional to the charge
on the capacitor:

V (t) =
1

C
q(t) =

1

C

(
q0 +

∫ t

t0

I(s) ds

)
,

where C is the capacitance of the capacitor measured in farads (F ).

The physical laws governing electric circuits were derived by G.R. Kirch-
hoff in 1859.

Kirchhoff’s Current Law. The algebraic sum of the currents flowing into
any junction of an electric circuit must be zero.

Kirchhoff’s Voltage Law. The algebraic sum of the voltage drops around
any closed loop in an electric circuit must be zero.

Applying Kirchhoff’s voltage law to the RLC circuit gives

VL + VR + VC = E(t),

where VR, VL, and VC are the voltage drops across R,L, and C, respectively,
and E(t) is the voltage source, or applied electromotive force (EMF). Sub-
stituting for the voltages across the circuit components gives

L
dI

dt
+RI +

1

C
q = E(t).
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Since the current is the instantaneous rate of change in charge, I = dq
dt , this

equation becomes

L
d2q

dt2
+R

dq

dt
+

1

C
q = E(t). (2.10)

This differential equation is called a linear second-order differential equa-
tion. It is linear because there are no powers of the derivatives, and second
order since the order of the highest occurring derivative is two. This equa-
tion can be solved by the method of Laplace transforms [12]; there are other
methods available, and readers should use whichever method they feel most
comfortable with. The method of Laplace transforms can be broken down
into four distinct steps when finding the solution of a differential equation:

• rewrite equation (2.10) in terms of Laplace transforms;

• insert any given initial conditions;

• rearrange the equation to give the transform of the solution;

• find the inverse transform.

The method is illustrated in the following examples.

Example 11. Consider a series resistor-inductor electrical circuit. Kirch-
hoff’s voltage law gives

L
dI

dt
+RI = E.

Given that L = 10H; R = 2Ω, and E = 50 sin(t)V , find an expression for the
current in the circuit if I(0) = 0.

Solution. Take Laplace transforms of both sides. Then

10(sĪ − I(0)) + 2Ī =
50

s2 + 1
.

Inserting the initial condition and rearranging,

Ī(5s+ 1) =
25

s2 + 1
,

and splitting into partial fractions,

Ī =
25

26

1

s2 + 1
− 125

26

s

s2 + 1
− 125

126

1

(s− 1/5)
.

Take inverse Laplace transforms to give

I(t) =
25

26
sin(t)− 125

26
cos(t)− 125

126
e−

t
5 .
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The periodic expression 25
26 sin(t) −

125
26 cos(t) is called the steady state, and

the term 125
126e

− t
5 is called the transient . Note that the transient decays to

zero as t → ∞.

Example 12. Differentiate equation (2.10) with respect to time and substi-
tute for dq

dt to obtain

L
d2I

dt2
+R

dI

dt
+

1

C
I =

dE

dt
.

The second-order differential equation for a certain RLC circuit is given by

d2I

dt2
+ 5

dI

dt
+ 6I = 10 sin(t).

Solve this differential equation given that I(0) = İ(0) = 0 (a passive circuit).

Solution. Take Laplace transforms of both sides:

(s2Ī − sI(0)− İ(0)) + 5(sĪ − I(0)) + 6Ī =
10

s2 + 1
.

Substitute the initial conditions to obtain

Ī(s2 + 5s+ 6) =
10

s2 + 1
.

Splitting into partial fractions gives

Ī =
2

s+ 2
− 1

s+ 3
+

1

s2 + 1
− s

s2 + 1
.

Take inverse transforms to get

I(t) = 2e−2t − e−3t + sin(t)− cos(t).

The Memristor. The examples discussed thus far have concerned electric
circuits with linear elements; however, nonlinear electric circuits are now
coming to the fore. It is now widely acknowledged that Professor Leon Chua
is the father of nonlinear circuit theory. Chua’s famous nonlinear electric
circuit is discussed in Chapter 8 and the circuit is easy to construct even
in school physics laboratories. It has long been believed that there are only
three fundamental passive circuit elements, the capacitor, the inductor, and
the resistor. In 1971, Chua [2] used mathematics to prove the existence
of a fourth fundamental nonlinear element which acts like a resistor with
memory, he called the new device the memristor. The three well-known
circuit elements are described by the equations

1

C
=

dv

dq
, L =

dφ

di
, R =

dv

di
,
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where 1
C is the inverse capacitance, L is inductance, R is incremental resis-

tance, v is voltage, i is current, q is charge, and φ is flux. In addition, the
current and voltage are described by the following physical laws:

i =
dq

dt
, v =

dφ

dt
.

This gives five relationships on three elements and leaves a gap in the har-
monic symmetry of Chua’s aesthetics. Chua discovered the missing functional
relationship between charge and flux which is given by

M =
dφ

dq
,

where M is the memristance. Figure 2.9 displays the relationships between
the four fundamental elements.

In 1976, Chua and Kang [3] discovered that a memristor displays a pinched
hysteresis and suggested that this effect could be used as a test to determine
if a device could be truly categorized as a memristor. A pinched hysteresis
loop is demonstrated in Chapter 21 and the Python program for plotting the
loop is listed within the Python commands section of that chapter.

In 2008, a team at HP Laboratories [13] announced that they had ev-
idence that many nanoscale electronic devices which involve the motion of
charged atomic or molecular species act as memristors. Their analysis was
based on results from a thin film of titanium dioxide and they are currently

Figure 2.9: The memristor: the missing link discovered.
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building devices for computer logic, nanoelectronic memories, and neuromor-
phic computer architectures. A long-term project of HP Labs Research has
been the development of The Machine, which was supposed to reinvent the
fundamental architecture of computing. Among the principal components to
be used were the memristor and silicon photonics using optical communica-
tions; unfortunately, in June 2015, HP Labs announced that memristors were
to be removed from The Machine’s roadmap. Some researchers believe that
Strukov’s memristor modeling equations [13] do not simulate the devices’
physics very well but believe that Chang’s and Yakopcic’s models [8] provide
a good compromise.

It is now understood that man-made memristive devices have been around
for over two hundred years. In 2012, Prodromakis et al. [9] published a pa-
per entitled “Two centuries of memristors.” Indeed it is now known that the
first demonstration of a memristor device took place at the Royal Institu-
tion in 1808. Sir Humphrey Davy produced a 1000 V carbon arc discharge,
and modern technology has demonstrated a pinched hysteresis effect in this
system.

Incredibly, natural memristors have been around for hundreds of millions
of years, and there are memristors in plants and early life forms. Chua [4]
shows that sodium and potassium ion channel memristors are the key to gen-
erating action potentials in the Hodgkin-Huxley equations (see Chapter 21)
and he explains some unresolved anomalies with the original equations. In
terms of neurobiology, the tutorial shows that synapses are locally passive
memristors, and that neurons act as locally active memristors. Chua also
shows that the circuits used to model the Josephson junction effect should
include memristor elements to explain the workings of these devices accu-
rately. The author and Borresen believe it is possible to make super fast
low power computers using Josephson junctions acting as neurons connected
together with memristors acting as axons and synapses. More details are
provided in Chapter 21.

2.4 Existence and Uniqueness Theorem

Definition 3. A function f(x) with f : �n → �n is said to satisfy a Lipschitz
condition in a domain D ⊂ �n if there exists a constant, say, L, such that

‖ f(x1)− f(x2) ‖≤ L ‖ x1 − x2 ‖,

where x1,x2 ∈ D.

If the function f satisfies the Lipschitz condition, then it is said to be
Lipschitz continuous. Note that Lipschitz continuity in x implies continuity
in x, but the converse is not always true.
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Existence and Uniqueness Theorem. Suppose that f is continuously Lip-
schitz; then for an initial point x0 ∈ D, the autonomous differential equation

dx

dt
= ẋ = f(x) (2.11)

has a unique solution, say, φt(x0), that is defined on the maximal interval of
existence.

Note that (2.11) is called autonomous as long as f is independent of t.
The proof of this theorem can be found in most textbooks that specialize in
the theory of ODEs. As far as the reader is concerned, this theorem implies
that as long as f is continuously differentiable, i.e., f ∈ C1(D), then two
distinct solutions cannot intersect in finite time.

The following simple examples involving first-order ODEs illustrate the
theorem quite well.

Example 13. Solve the following linear differential equations and state the
maximal interval of existence for each solution:

(a) ẋ = x, x(0) = 1;

(b) ẋ = x2, x(0) = 1;

(c) ẋ = x
1
3 , x(0) = 0.

Solutions.

(a) The solution to this elementary differential equation is, x(t) = et,
which is unique and defined for all t. The maximal interval of existence in
this case is −∞ < t < ∞. Note that f(x) = x is continuously differentiable.

(b) The solution is given by

x(t) =
1

1− t
,

which is not defined for t = 1. Therefore, there is a unique solution on the
maximal interval of existence given by −∞ < t < 1.

(c) The function f(x) = x
1
3 is not continuously differentiable and does

not satisfy the Lipschitz condition at x = 0. Any function of the form

x(t) =
(

2(x−C)
3

) 3
2

, for x ≥ C, and x(t) = 0, for x < C serves as a solution

to this initial value problem when C ≥ 0, and there are infinitely many
solutions.
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Note that the solution would be unique on the maximal interval of exis-
tence 0 < t < ∞ if the initial condition was x(1) = 1.

Consider autonomous differential equations of the form:

ẋ = f(x), (2.12)

where x ∈ �n.

Definition 4. A critical point (equilibrium point , fixed point , stationary
point) is a point that satisfies the equation ẋ = f(x) = 0. If a solution starts
at this point, it remains there forever.

Definition 5. A critical point, say, x0, of the differential equation (2.12)
is called stable if given ε > 0, there is a δ > 0, such that for all t ≥ t0,
‖ x(t)− x0(t) ‖< ε, whenever ‖ x(t0)− x0(t0) ‖< δ, where x(t) is a solution
of (2.12).

A critical point that is not stable is called an unstable critical point.

Example 14. Find and classify the critical points for the following one-
dimensional differential equations.

(a) ẋ = x;

(b) ẋ = −x;

(c) ẋ = x2 − 1.

Solutions.

(a) There is one critical point at x0 = 0. If x < 0, then ẋ < 0, and if
x > 0, then ẋ > 0. Therefore, x0 is an unstable critical point. Solutions
starting either side of x0 are repelled away from it.

(b) There is one critical point at x0 = 0. If x < 0, then ẋ > 0, and if
x > 0, then ẋ < 0. Solutions starting either side of x0 are attracted towards
it. The critical point is stable.

(c) There are two critical points, one at x1 = −1 and the other at x2 = 1.
If x > 1, then ẋ > 0; if −1 < x < 1, then ẋ < 0; and if x < −1, then ẋ > 0.
Therefore, solutions starting near to x1, but not on it are attracted towards
this point, and x1 is a stable critical point. Solutions starting near x2 but
not on it move away from this point, and x2 is an unstable critical point.

By linearizing near a critical point, one can obtain a quantitative measure
of stability as demonstrated below. Consider one-dimensional systems here;
higher-dimensional systems will be investigated in other chapters.
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Linear Stability Analysis

Let x∗ be a critical point of ẋ = f(x), x ∈ �. Consider a small perturbation,
say, ξ(t), away from the critical point at x∗ to give x(t) = x∗ + ξ(t). A
simple analysis is now applied to determine whether the perturbation grows
or decays as time evolves. Now

ξ̇ = ẋ = f(x) = f(x∗ + ξ),

and after a Taylor series expansion,

ξ̇ = f(x∗) + ξf ′(x∗) +
ξ2

2
f ′′(x∗) + · · · .

In order to apply a linear stability analysis, the nonlinear terms are ignored.
Hence

ξ̇ = ξf ′(x∗),

since f(x∗) = 0. Therefore, the perturbation ξ(t) grows exponentially if
f ′(x∗) > 0 and decays exponentially if f ′(x∗) < 0. If f ′(x∗) = 0, then
higher-order derivatives must be considered to determine the stability of the
critical point.

A linear stability analysis is used extensively throughout the realms of
nonlinear dynamics and will appear in other chapters of this book.

Example 15. Use a linear stability analysis to determine the stability of the
critical points for the following differential equations:

(a) ẋ = sin(x);

(b) ẋ = x2;

(c) ẋ = e−x − 1.

Solutions.

(a) There are critical points at xn = nπ, where n is an integer. When n
is even, f ′(xn) = 1 > 0, and these critical points are unstable. When n is
odd, f ′(xn) = −1 < 0, and these critical points are stable.

(b) There is one critical point at x0 = 0 and f ′(x) = 2x in this case. Now
f ′(0) = 0 and f ′′(0) = 2 > 0. Therefore, x0 is attracting when x < 0 and
repelling when x > 0. The critical point is called semistable.

(c) There is one critical point at x0 = 0. Now f ′(0) = −1 < 0, and
therefore the critical point at the origin is stable.

The theory of autonomous systems of ODEs in two dimensions will be
discussed in the next chapter.
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2.5 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

dsolve # Solve ODEs symbolically.

Function # Base class for mathematical function.

odeint # Python numerical solver.

pprint # Pretty print Python data structures.

symbols # Create symbol to namespace, accepts a

range notation.

# Program 02a: A simple separable ODE. See Example 1.

from sympy import dsolve, Eq, Function, symbols

t = symbols(’t’)

x = symbols(’x’, cls=Function)

sol = dsolve(Eq(x(t).diff(t), -t/x(t)), x(t))

print(sol)

# Program 02b: The logistic equation. See Example 3.

from sympy import dsolve, Eq, Function, symbols

t = symbols(’t’)

a = symbols(’a’)

b=symbols(’b’)

P=symbols(’P’, cls=Function)

sol=dsolve(Eq(P(t).diff(t), P(t)*(a - b * P(t))), P(t))

print(sol)

# Program 02c : Power series solution first order ODE.

# See Example 7.

from sympy import dsolve, Function, pprint

from sympy.abc import t

x = Function(’x’)

ODE1 = x(t).diff(t) + t*x(t) - t**3

pprint(dsolve(ODE1, hint=’1st_power_series’, n=8, ics={x(0):1}))
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# Program 02d : Power series solution of a second order ODE.

# See Example 8.

from sympy import dsolve, Function, pprint

from sympy.abc import t

x = Function(’x’)

ODE2 = x(t).diff(t,2) + 2*t**2*x(t).diff(t) + x(t)

pprint(dsolve(ODE2, hint=’2nd_power_series_ordinary’, n=6))

# Program 02e: Numerical and truncated series solutions.

# See Figure 2.6.

from scipy.integrate import odeint

import matplotlib.pyplot as plt

import numpy as np

def ODE2(X, t):

x = X[0]

y = X[1]

dxdt = y

dydt = x-t**2*y

return [dxdt, dydt]

X0 = [1, 0]

t = np.linspace(0, 10, 1000)

sol = odeint(ODE2, X0, t)

x = sol[:, 0]

y = sol[:, 1]

fig, ax = plt.subplots()

ax.plot(t,x,label=’Numerical’)

ax.plot(t, 1 + t**2/2 + t**4/24, ’r-’, label=’Truncated series’)

plt.xlabel("t", fontsize=15)

plt.ylabel("x", fontsize=15)

plt.tick_params(labelsize=15)

plt.xlim(0, 4)

plt.ylim(0, 4)

ax.legend(loc=’lower center’, shadow=True)

plt.show()

# Program 02f: A linear first order ODE.

from sympy import Function, dsolve, Eq, symbols, sin

t = symbols(’t’);

I = symbols(’I’, cls=Function)

sol = dsolve(Eq(I(t).diff(t), 5*sin(t) - I(t)/5), I(t))

print(sol)
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# Program 02g: A second order ODE.

from sympy import symbols, dsolve, Function, Eq, sin

t = symbols(’t’);

I = symbols(’I’, cls=Function)

sol = dsolve(Eq(I(t).diff(t,t) + 5*I(t).diff(t) + 6*I(t),

10*sin(t)),I(t))

print(sol)

2.6 Exercises

1. Sketch some solution curves for the following differential equations:

(a) dy
dx = − y

x ;

(b) dy
dx = 2y

x ;

(c) dy
dx = y

2x ;

(d) dy
dx = y2

x ;

(e) dy
dx = − xy

x2+y2 ;

(f) dy
dx = y

x2 .

2. Fossils are often dated using the differential equation

dA

dt
= −αA,

where A is the amount of radioactive substance remaining, α is a con-
stant, and t is measured in years. Assuming that α = 1.5 × 10−7,
determine the age of a fossil containing radioactive substance A if only
30% of the substance remains.

3. Write down the chemical reaction rate equations for the reversible re-
action equations

(a) A+B + C � D,

(b) A+A+A � A3,
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given that the forward rate constant is kf and the reverse rate constant
is kr, in each case. Assume that the chemical equations are the rate-
determining steps.

4. (a) Consider a series resistor-inductor circuit with L = 2H, R = 10Ω
and an applied EMF of E = 100 sin(t). Use an integrating factor to
solve the differential equation, and find the current in the circuit after
0.2 seconds given that I(0) = 0.

(b) The differential equation used to model a series resistor-capacitor
circuit is given by

R
dQ

dt
+

Q

C
= E,

where Q is the charge across the capacitor. If a variable resistance
R = 1/(5 + t) Ω and a capacitance C = 0.5F are connected in series
with an applied EMF, E = 100V , find the charge on the capacitor
given that Q(0) = 0.

5. (a) A forensic scientist is called to the scene of a murder. The tem-
perature of the corpse is found to be 75oF and one hour later the
temperature has dropped to 70oF . If the temperature of the room in
which the body was discovered is a constant 68oF , how long before the
first temperature reading was taken did the murder occur? Assume
that the body obeys Newton’s Law of Cooling,

dT

dt
= β(T − TR),

where T is the temperature of the corpse, β is a constant, and TR is
room temperature.

(b) The differential equation used to model the concentration of glucose
in the blood, say, g(t), when it is being fed intravenously into the body,
is given by

dg

dt
+ kg =

G

100V
,

where k is a constant, G is the rate at which glucose is admitted, and
V is the volume of blood in the body. Solve the differential equation
and discuss the results.

(c) Single fiber muscle can be modeled using simple differential equa-
tions [11]. Download our preprint paper on “Hysteresis in muscle” from
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ResearchGate and use Python to reproduce the results of the Hill model
given in that paper.

6. Show that the series solution of the Airy equation

d2x

dt2
− tx = 0,

where x(0) = a0 and ẋ(0) = a1, used in physics to model the defraction
of light, is given by

x(t) = a0

(
1 +

∞∑
1

(
t3k

(2.3)(5.6) · · · ((3k − 1)(3k))

))

+a1

(
t+

∞∑
1

(
t3k+1

(3.4)(6.7) · · · ((3k)(3k + 1))

))
.

7. A chemical substance A changes into substance B at a rate α times the
amount of A present. Substance B changes into C at a rate β times
the amount of B present. If initially only substance A is present and
its amount is M , show that the amount of C present at time t is

M +M

(
βe−αt − αe−βt

α− β

)
.

8. Two tanks A and B, each of volume V , are filled with water at time
t = 0. For t > 0, volume v of solution containing mass m of solute flows
into tank A per second; mixture flows from tank A to tank B at the
same rate; and mixture flows away from tank B at the same rate. The
differential equations used to model this system are given by

dσA

dt
+

v

V
σA =

m

V
,

dσB

dt
+

v

V
σB =

v

V
σA,

where σA,B are the concentrations of solute in tanks A and B, respec-
tively. Show that the mass of solute in tank B is given by

mV

v

(
1− e−vt/V

)
−mte−vt/V .

9. In an epidemic the rate at which healthy people become infected is a
times their number, the rates of recovery and death are, respectively,
b and c times the number of infected people. If initially there are N
healthy people and no sick people, find the number of deaths up to time
t. Is this a realistic model? What other factors should be taken into
account?
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10. (a) Determine the maximal interval of existence for each of the following
initial value problems:

(i) ẋ = x4, x(0) = 1;

(ii) ẋ = x2−1
2 , x(0) = 2;

(iii) ẋ = x(x− 2), x(0) = 3.

(b) For what values of t0 and x0 does the initial value problem

ẋ = 2
√
x, x(t0) = x0,

have a unique solution?
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Chapter 3

Planar Systems

Aims and Objectives

• To introduce the theory of planar autonomous linear differential equa-
tions.

• To extend the theory of linear systems to that of nonlinear systems.

On completion of this chapter, the reader should be able to

• find and classify critical points in the plane;

• carry out simple linear transformations;

• construct phase plane diagrams using nullclines, vector fields, and eigen-
vectors;

• apply the theory to simple modeling problems.

Basic analytical methods for solving two-dimensional linear autonomous
differential equations are reviewed and simple phase portraits are constructed
in the plane.

The method of linearization is introduced and both hyperbolic and non-
hyperbolic critical points are defined. Phase portraits are constructed using
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Hartman’s theorem. The linearization technique used here is based on a linear
stability analysis. There are many textbooks on planar systems, for example,
see [1, 2, 3, 4, 5, 6, 7, 8, 9].

3.1 Canonical Forms

Consider linear two-dimensional autonomous systems of the form

dx

dt
= ẋ = a11x+ a12y,

dy

dt
= ẏ = a21x+ a22y, (3.1)

where the aij are constants. The system is linear as the terms in x, y, ẋ, and
ẏ are all linear. System (3.1) can be written in the equivalent matrix form as

ẋ = Ax, (3.2)

where x ∈ �2 and

A =

(
a11 a12
a21 a22

)
.

Definition 1. Every solution of (3.1) and (3.2), say, φ(t) = (x(t), y(t)),
can be represented as a curve in the plane. The solution curves are called
trajectories or orbits .

The existence and uniqueness theorem guarantees that trajectories do not
cross. Note that there are an infinite number of trajectories that would fill
the plane if they were all plotted. However, the qualitative behavior can be
determined by plotting just a few of the trajectories given the appropriate
number of initial conditions.

Definition 2. The phase portrait is a two-dimensional figure showing how
the qualitative behavior of system (3.1) is determined as x and y vary with
t.

With the appropriate number of trajectories plotted, it should be pos-
sible to determine where any trajectory will end up from any given initial
condition.

Definition 3. The direction field or vector field gives the gradients dy
dx and

direction vectors of the trajectories in the phase plane.

The slope of the trajectories can be determined using the chain rule,

dy

dx
=

ẏ

ẋ
,

and the direction of the vector field is given by ẋ and ẏ at each point in the
xy plane.
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Definition 4. The contour lines for which dy
dx is a constant are called iso-

clines .

Definition 5. The contour lines for which dy
dt = 0 and dx

dt = 0 are called
nullclines .

Isoclines may be used to help with the construction of the phase portrait.
For example, the nullclines for which ẋ = 0 and ẏ = 0 are used to determine
where the trajectories have vertical and horizontal tangent lines, respectively.
If ẋ = 0, then there is no motion horizontally, and trajectories are either
stationary or move vertically. A similar argument is used when ẏ = 0.

Using linear algebra, the phase portrait of any linear system of the form
(3.2) can be transformed to a so-called canonical form ẏ = Jy by applying
a transformation x = Py, where P is to be determined and J = P−1AP is
of one of the following forms:

J1 =

(
λ1 0
0 λ2

)
, J2 =

(
α β
−β α

)
,

J3 =

(
λ1 0
0 λ1

)
, J4 =

(
λ1 μ
0 λ1

)
,

where λ1,2, α, β, and μ are real constants. Matrix J1 has two real distinct
eigenvalues, matrix J2 has complex eigenvalues, and matrices J3 and J4 have
repeated eigenvalues. The qualitative type of phase portrait is determined
from each of these canonical forms.

Nonsimple Canonical Systems
The linear system (3.2) is nonsimple if the matrix A is singular (i.e., det(A) =
0, and at least one of the eigenvalues is zero). The system then has critical
points other than the origin.

Example 1. Sketch a phase portrait of the system ẋ = x, ẏ = 0.

Solution. The critical points are found by solving the equations ẋ = ẏ = 0,
which has the solution x = 0. Thus there are an infinite number of critical
points lying along the y-axis. The direction field has gradient given by

dy

dx
=

ẏ

ẋ
=

0

x
= 0

for x �= 0. This implies that the direction field is horizontal for points not
on the y-axis. The direction vectors may be determined from the equation
ẋ = x since if x > 0, then ẋ > 0, and the trajectories move from left to right;
and if x < 0, then ẋ < 0, and trajectories move from right to left. A phase
portrait is plotted in Figure 3.1.



68 Chapter 3: c©Springer

Figure 3.1: Six trajectories and a vector field plot for Example 1. Note that
there are an infinite number of critical points lying on the y-axis. The vector
field is also plotted.

Simple Canonical Systems
System (3.2) is simple if det(A) �= 0, and the origin is then the only criti-
cal point. The critical points may be classified depending upon the type of
eigenvalues.

3.1.1 Real Distinct Eigenvalues

Suppose that system (3.2) can be diagonalized to obtain

ẋ = λ1x, ẏ = λ2y.

The solutions to this system are x(t) = C1e
λ1t and y(t) = C2e

λ2t, where
C1 and C2 are constant. The solution curves may be found by solving the
differential equation given by

dy

dx
=

ẏ

ẋ
=

λ2y

λ1x
,

which is integrable. The solution curves are given by |y|λ1 = K|x|λ2 . The
type of phase portrait depends on the values of λ1 and λ2, as summarized
below:

• If the eigenvalues are distinct, real, and positive, then the critical point
is called an unstable node.
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• If the eigenvalues are distinct, real, and negative, then the critical point
is called a stable node.

• If one eigenvalue is positive and the other negative, then the critical
point is called a saddle point or col .

Possible phase portraits for these canonical systems along with vector fields
superimposed are shown in Figure 3.2.

a b c

Figure 3.2: Possible phase portraits for canonical systems with two real dis-
tinct eigenvalues: (a) unstable node; (b) stable node; (c) saddle point or
col.

3.1.2 Complex Eigenvalues (λ = α± iβ)

Consider a canonical system of the form

ẋ = αx+ βy, ẏ = −βx+ αy. (3.3)

Convert to polar coordinates by making the transformations x = r cos θ and
y = r sin θ. Then elementary calculus gives

rṙ = xẋ+ yẏ, r2θ̇ = xẏ − yẋ.

System (3.3) becomes
ṙ = αr, θ̇ = −β.

The type of phase portrait depends on the values of α and β:

• If α > 0, then the critical point is called an unstable focus.

• If α = 0, then the critical point is called a center.

• If α < 0, then the critical point is called a stable focus.
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a b c

Figure 3.3: Possible phase portraits for canonical systems with complex eigen-
values: (a) unstable focus; (b) stable focus; (c) center.

• If θ̇ > 0, then the trajectories spiral counterclockwise around the origin.

• If θ̇ < 0, then the trajectories spiral clockwise around the origin.

Phase portraits of the canonical systems with the vector fields superimposed
are shown in Figure 3.3.

3.1.3 Repeated Real Eigenvalues

Suppose that the canonical matrices are of the form J3 or J4. The type of
phase portrait is determined by the following:

• If there are two linearly independent eigenvectors (see Section 3.2), then
the critical point is called a singular node.

• If there is one linearly independent eigenvector, then the critical point
is called a degenerate node.

Possible phase portraits with vector fields superimposed are shown in Fig-
ure 3.4.

The classifications given in this section may be summarized using the trace
and determinant of the matrix A as defined in system (3.2). If the eigenvalues
are λ1,2, then the characteristic equation is given by (λ − λ1)(λ − λ2) =
λ2 − (λ1 + λ2)λ+ λ1λ2 = λ2 − trace(A)λ+ det(A) = 0. Therefore,

λ1,2 =
trace(A)±

√
(trace(A))2 − 4det(A)

2
.

The summary is depicted in Figure 3.5.
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ba

Figure 3.4: Possible phase portraits for canonical systems with repeated
eigenvalues: (a) an unstable singular node; (b) an unstable degenerate node.

Figure 3.5: Classification of critical points for system (3.2). The parabola
has equation T 2 − 4D = 0, where D = det(A) and T = trace(A).
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3.2 Eigenvectors Defining Stable and Unstable
Manifolds

Consider Figure 3.5. Apart from the region T 2 − 4D < 0, where the trajec-
tories spiral, the phase portraits of the canonical forms of (3.2) all contain
straight line trajectories that remain on the coordinate axes forever and ex-
hibit exponential growth or decay along it. These special trajectories are
determined by the eigenvectors of the matrix A and are called the manifolds.
If the trajectories move towards the critical point at the origin as t → ∞
along the axis, then there is exponential decay and the axis is called a stable
manifold. If trajectories move away from the critical point as t → ∞, then
the axis is called an unstable manifold.

In the general case, the manifolds do not lie along the axes. Suppose that
a trajectory is of the form

x(t) = exp(λt)e,

where e �= 0 is a vector and λ is a constant. This trajectory satisfies equation
(3.2) since it is a solution curve. Therefore, substituting into (3.2),

λ exp(λt)e = exp(λt)Ae

or
λe = Ae.

From elementary linear algebra, if there exists a nonzero column vector e
satisfying this equation, then λ is called an eigenvalue of A and e is called an
eigenvector of A corresponding to the eigenvalue λ. If λ is negative, then the
corresponding eigenvector gives the direction of the stable manifold, and if λ
is positive, then the eigenvector gives the direction of the unstable manifold.

When λ1 �= λ2, it is known from elementary linear algebra that the eigen-
vectors e1 and e2, corresponding to the eigenvalues λ1 and λ2, are linearly
independent. Therefore, the general solution to the differential equations
given by (3.1) is given by

x(t) = C1 exp(λ1t)e1 + C2 exp(λ2t)e2,

where C1, C2 are constants. In fact, for any given initial condition, this
solution is unique by the existence and uniqueness theorem.

Definition 6. Suppose that 0 ∈ �2 is a critical point of the linear sys-
tem (3.2). Then the stable and unstable manifolds of the critical point 0
are denoted by ES(0) and EU (0), respectively, and are determined by the
eigenvectors of the critical point at 0.

Consider the following two simple illustrations.
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Example 2. Determine the stable and unstable manifolds for the linear
system

ẋ = 2x+ y, ẏ = x+ 2y.

Solution. The system can be written as ẋ = Ax, where

A =

(
2 1
1 2

)
.

The characteristic equation for matrix A is given by det(A − λI) = 0, or in
this case,

∣∣∣∣
2− λ 1
1 2− λ

∣∣∣∣ = 0.

Therefore, the characteristic equation is λ2 − 4λ + 3 = 0, which has roots
λ1 = 1 and λ2 = 3. Since both eigenvalues are real and positive, the critical
point at the origin is an unstable node. The manifolds are determined from
the eigenvectors corresponding to these eigenvalues. The eigenvector for λ1 is
e1 = (1,−1)T and the eigenvector for λ2 is e2 = (1, 1)T , where T represents
the transpose matrix. The manifolds are shown in Figure 3.6.

y

–1 x

1

–1

1

Figure 3.6: The two unstable manifolds, defined by the eigenvectors e1 and
e2, for Example 2.

For the sake of completeness, the general solution in this case is given by

x(t) = C1 exp(t)(1,−1)T + C2 exp(3t)(1, 1)
T .

Example 3. Determine the stable and unstable manifolds for the linear
system

ẋ =

(
−3 4
−2 3

)
x.
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Solution. The characteristic equation for matrix A is given by

∣∣∣∣
−3− λ 4
−2 3− λ

∣∣∣∣ = 0.

Therefore, the characteristic equation is λ2 − 1 = 0, which has roots λ1 = 1
and λ2 = −1. Since one eigenvalue is real and positive and the other is real
and negative, the critical point at the origin is a saddle point. The mani-
folds are derived from the eigenvectors corresponding to these eigenvalues.
The eigenvector for λ1 is (1, 1)T and the eigenvector for λ2 is (2, 1)T . The
manifolds are shown in Figure 3.7.

For the sake of completeness, the general solution in this case is given by

x(t) = C1 exp(t)(1, 1)
T + C2 exp(−t)(2, 1)T .

Notation. The stable and unstable manifolds of linear systems will be de-
noted by ES and EU , respectively. Center manifolds (where the eigenvalues
have zero real part) will be discussed in Chapter 8.

y

2

1

x21

Figure 3.7: The stable and unstable manifolds for Example 3. The trajec-
tories lying on the stable manifold tend to the origin as t → ∞ but never
reach it.

3.3 Phase Portraits of Linear Systems in the
Plane

Definition 7. Two systems of first-order autonomous differential equations
are said to be qualitatively (or topologically) equivalent if there exists an
invertible mapping that maps one phase portrait onto the other while pre-
serving the orientation of the trajectories.

Phase portraits can be constructed using nullclines, vector fields, and
eigenvectors (for real eigenvalues).
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Example 4. Consider the system

ẋ =

(
2 1
1 2

)
x.

Find (a) the eigenvalues and corresponding eigenvectors of A; (b) a nonsin-
gular matrix P such that J = P−1AP is diagonal; (c) new coordinates (u, v)
such that substituting x = x(u, v), y = y(u, v), converts the linear dynamical
system

ẋ = 2x+ y, ẏ = x+ 2y, into u̇ = λ1u, v̇ = λ2v

for suitable λ1, λ2; (d) sketch phase portraits for these qualitatively equivalent
systems.

Solutions The origin is a unique critical point.
(a) From Example 2, the eigenvalues and corresponding eigenvectors are

given by λ1 = 1, (1,−1)T and λ2 = 3, (1, 1)T ; the critical point is an unstable
node.

(b) Using elementary linear algebra, the columns of matrix P are these
eigenvectors and so

P =

(
1 1
−1 1

)
,

and

J = P−1AP =

(
1 0
0 3

)
.

(c) Take the linear transformation x = Pu to obtain the system u̇ = u,
v̇ = 3v.

(d) Consider the nullclines. In the xy plane, the flow is horizontal on the
line where ẏ = 0 and hence on the line y = −x/2. On this line, ẋ = 3x/2;
thus ẋ > 0 if x > 0 and ẋ < 0 if x < 0. The flow is vertical on the line
y = −2x. On this line, ẏ < 0 if x > 0 and ẏ > 0 if x < 0.

Vector fields: The directions of the vector fields can be determined from
ẋ and ẏ at points (x, y) in the plane.

Consider the slope of the trajectories. If x + 2y > 0 and 2x + y > 0,
then dy

dx > 0; if x + 2y < 0 and 2x + y > 0, then dy
dx < 0; if x + 2y > 0 and

2x+ y < 0, then dy
dx < 0; and if x+ 2y < 0 and 2x+ y < 0, then dy

dx > 0.
Manifolds: From the eigenvectors, both manifolds are unstable. One

passes through (0, 0) and (1, 1) and the other through (0, 0) and (1,−1).
Putting all of this information together gives the phase portrait in Fig-

ure 3.8(a). The canonical phase portrait is shown in Figure 3.8(b).
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Figure 3.8: [Python] Qualitatively equivalent phase portraits for Example 4.

Example 5. Sketch a phase portrait for the system

ẋ = −x− y, ẏ = x− y.

Solution. The origin is the only critical point. The characteristic equation
is given by

|A− λI| = λ2 + 2λ+ 2 = 0,

which has complex solutions λ1,2 = −1 ± i. The critical point at the origin
is a stable focus.

Consider the nullclines. In the xy plane, the flow is horizontal on the line
where ẏ = 0 and hence on the line y = x. On this line, ẋ = −2x; thus ẋ < 0
if x > 0 and ẋ > 0 if x < 0. The flow is vertical on the line where ẋ = 0 and
hence on the line y = −x. On this line ẏ < 0 if x > 0 and ẏ > 0 if x < 0.

Vector fields: The directions of the vector fields can be determined from
ẋ and ẏ at points (x, y) in the plane.

Consider the slope of the trajectories. If y > x and y > −x, then dy
dx > 0;

if y > x and y < −x, then dy
dx < 0; if y < x and y > −x, then dy

dx < 0; and if

y < x and y < −x, then dy
dx > 0.

Manifolds: The eigenvectors are complex and there are no real manifolds.
Converting to polar coordinates gives ṙ = −r, θ̇ = 1. Putting all of this

information together gives the phase portrait in Figure 3.9.

Example 6. Sketch a phase portrait for the system

ẋ = −2x, ẏ = −4x− 2y.

Solution. The origin is the only critical point. The characteristic equation
is given by

|A− λI| = λ2 − 4λ+ 4 = 0,
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Figure 3.9: Some trajectories for Example 5. The critical point is a stable
focus.

which has repeated roots λ1,2 = −2.

Consider the nullclines. In the xy plane, the flow is horizontal on the line
where ẏ = 0 and hence on the line y = −2x. Trajectories which start on the
y-axis remain there forever.

Vector fields: The directions of the vector fields can be determined from
ẋ and ẏ at points (x, y) in the plane.

Consider the slope of the trajectories. The slopes are given by dy
dx at each

point (x, y) in the plane.

Manifolds: There is one linearly independent eigenvector, (0, 1)T . There-

Figure 3.10: Some trajectories for Example 6. The critical point is a stable
degenerate node.
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fore, the critical point is a stable degenerate node. The stable manifold ES

is the y-axis.
Putting all of this together gives the phase portrait in Figure 3.10.
Phase portraits of nonlinear planar autonomous systems will be consid-

ered in the following sections, where stable and unstable manifolds do not
necessarily lie on straight lines. However, all is not lost as the manifolds for
certain critical points are tangent to the eigenvectors of the linearized system
at that point.

Manifolds in three-dimensional systems will be discussed in Chapter 14.

3.4 Linearization and Hartman’s Theorem

Suppose that the nonlinear autonomous system

ẋ = P (x, y), ẏ = Q(x, y) (3.4)

has a critical point at (u, v), where P and Q are at least quadratic in x and
y. Take a linear transformation which moves the critical point to the origin.
Let X = x− u and Y = y − v. Then system (3.4) becomes

Ẋ = P (X + u, Y + v) = P (u, v) + X
∂P

∂x

∣∣∣∣
x=u,y=v

+ Y
∂P

∂y

∣∣∣∣
x=u,y=v

+R(X,Y )

Ẏ = Q(X + u, Y + v) = Q(u, v) + X
∂Q

∂x

∣∣∣∣
x=u,y=v

+ Y
∂Q

∂y

∣∣∣∣
x=u,y=v

+ S(X,Y )

after a Taylor series expansion. The nonlinear terms R and S satisfy the
conditions R

r → 0 and S
r → 0 as r =

√
X2 + Y 2 → 0. The functions R and

S are said to be “big Oh of r2,” or in mathematical notation, R = O(r2)
and S = O(r2). Discard the nonlinear terms in the system and note that
P (u, v) = Q(u, v) = 0 since (u, v) is a critical point of system (3.4). The
linearized system is then of the form

Ẋ = X
∂P

∂x

∣∣∣∣
x=u,y=v

+ Y
∂P

∂y

∣∣∣∣
x=u,y=v

Ẏ = X
∂Q

∂x

∣∣∣∣
x=u,y=v

+ Y
∂Q

∂y

∣∣∣∣
x=u,y=v

(3.5)

and the Jacobian matrix is given by

J(u, v) =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)∣∣∣∣∣
x=u,y=v

.
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Definition 8. A critical point is called hyperbolic if the real part of the
eigenvalues of the Jacobian matrix J(u, v) is nonzero. If the real part of
either of the eigenvalues of the Jacobian is equal to zero, then the critical
point is called nonhyperbolic.

Hartman’s Theorem. Suppose that (u, v) is a hyperbolic critical point of
system (3.4). Then there is a neighborhood of this critical point on which
the phase portrait for the nonlinear system resembles that of the linearized
system (3.5). In other words, there is a curvilinear continuous change of co-
ordinates taking one phase portrait to the other, and in a small region around
the critical point, the portraits are qualitatively equivalent.

A proof to this theorem may be found in Hartman’s book [2]. Note that
the stable and unstable manifolds of the nonlinear system will be tangent to
the manifolds of the linearized system near the relevant critical point. These
trajectories diverge as one moves away from the critical point; this is illus-
trated in Examples 7 and 8.

Notation. Stable and unstable manifolds of a nonlinear system are labeled
WS and WU , respectively.

Hartman’s theorem implies that WS and WU are tangent to ES and EU

at the relevant critical point. If any of the critical points are nonhyperbolic,
then other methods must be used to sketch a phase portrait, and numerical
solvers may be required.

3.5 Constructing Phase Plane Diagrams

The method for plotting phase portraits for nonlinear planar systems having
hyperbolic critical points may be broken down into three distinct steps:

• Locate all of the critical points.

• Linearize and classify each critical point according to Hartman’s theo-
rem.

• Determine the nullclines and use dy
dx to obtain slopes of trajectories.

The method can be illustrated with some simple examples. Examples 10—12
illustrate possible approaches when a critical point is not hyperbolic.

Example 7. Sketch a phase portrait for the nonlinear system

ẋ = x, ẏ = x2 + y2 − 1.
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Solution. Locate the critical points by solving the equations ẋ = ẏ = 0.
Hence ẋ = 0 if x = 0 and ẏ = 0 if x2 + y2 = 1. If x = 0, then ẏ = 0 if
y2 = 1, which has solutions y = 1 and y = −1. Therefore, there are two
critical points, (0, 1) and (0,−1).

Linearize by finding the Jacobian matrix; hence

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
1 0
2x 2y

)
.

Linearize at each critical point; hence

J(0,1) =

(
1 0
0 2

)
.

The matrix is in diagonal form. There are two distinct positive eigenvalues
and hence the critical point is an unstable node.

For the other critical point,

J(0,−1) =

(
1 0
0 −2

)
.

There is one positive and one negative eigenvalue, and so this critical point
is a saddle point or col.

Note that the matrices J(0,1) and J(0,−1) are in diagonal form. The eigen-
vectors for both critical points are (1, 0)T and (0, 1)T . Thus in a small
neighborhood around each critical point, the stable and unstable manifolds
are tangent to the lines generated by the eigenvectors through each critical
point. Therefore, near each critical point the manifolds are horizontal and
vertical. Note that the manifolds of the nonlinear system WS and WU need
not be straight lines but are tangent to ES and EU at the relevant critical
point.

Consider the nullclines. Now ẋ = 0 on x = 0, and on this line ẏ = y2 − 1.
Thus if |y| < 1, then ẏ < 0, and if |y| > 1, then ẏ > 0. Also, ẏ = 0 on the
circle x2 + y2 = 1, and on this curve ẋ = x. Thus if x > 0, then ẋ > 0, and
if x < 0, then ẋ < 0. The slope of the trajectories is given by

dy

dx
=

x2 + y2 − 1

x
.

Putting all of this information together gives a phase portrait as depicted in
Figure 3.11.
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Figure 3.11: A phase portrait for Example 7. The stable and unstable man-
ifolds (WS , WU ) are tangent to horizontal or vertical lines (ES , EU ) in a
small neighborhood of each critical point.

Example 8. Sketch a phase portrait for the nonlinear system

ẋ = y, ẏ = x(1− x2) + y.

Solution. Locate the critical points by solving the equations ẋ = ẏ = 0.
Hence ẋ = 0 if y = 0 and ẏ = 0 if x(1 − x2) + y = 0. If y = 0, then ẏ = 0
if x(1 − x2) = 0, which has solutions x = 0, x = 1, and x = −1. Therefore,
there are three critical points, (0, 0), (1, 0), and (−1, 0).

Linearize by finding the Jacobian matrix; hence

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
0 1

1− 3x2 1

)
.

Linearize at each critical point; hence

J(0,0) =

(
0 1
1 1

)
.

The eigenvalues are

λ1 =
1 +

√
5

2
and λ2 =

1−
√
5

2
.

The corresponding eigenvectors are (1 λ1)
T

and (1 λ2)
T
. Thus the critical

point at the origin is a saddle point or col.
For the other critical points,

J(1,0) = J(−1,0) =

(
0 1
−2 1

)
.
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The eigenvalues are

λ =
1± i

√
7

2
,

and so both critical points are unstable foci.
Consider the nullclines. Now ẋ = 0 on y = 0, and on this line, ẏ =

x(1−x2). Thus if 0 < x < 1, then ẏ > 0; if x > 1, then ẏ < 0; if −1 < x < 0,
then ẏ < 0, and if x < −1, then ẏ > 0. Also, ẏ = 0 on the curve y = x− x3,
and on this curve, ẋ = y. Thus if y > 0, then ẋ > 0, and if y < 0, then ẋ < 0.
The slope of the trajectories is given by

dy

dx
=

x− x3 + y

y
.

Note that on x = 0 and x = ±1, dy
dx = 1. Putting all of this information

together gives a phase portrait as depicted in Figure 3.12.

Example 9. Plot a phase portrait for the system

ẋ = x
(
1− x

2
− y

)
, ẏ = y

(
x− 1− y

2

)
.

Solution. Locate the critical points by solving the equations ẋ = ẏ = 0.
Hence ẋ = 0 if either x = 0 or y = 1 − x

2 . Suppose that x = 0. Then
ẏ = 0 if y

(
−1− y

2

)
= 0, which has solutions y = 0 or y = −2. Suppose that

y = 1 − x
2 . Then ẏ = 0 if either 1 − x

2 = 0 or 1 − x
2 = 2x − 2, which has

solutions x = 2 or x = 6
5 . Thus there are four critical points at (0,0), (2,0),

(0,-2), and
(
6
5 ,

2
5

)
. Notice that ẋ = 0 when x = 0, which means that the

flow is vertical on the y-axis. Similarly, ẏ = 0 when y = 0, and the flow is
horizontal along the x-axis. In this case, the axes are invariant. A Python
program for locating the critical points is listed in Section 3.6.

Figure 3.12: [Python] A phase portrait for Example 8. Note that, in a small
neighborhood of the origin, the unstable manifold (WU ) is tangent to the line
EU given by y = λ1x, and the stable manifold (WS) is tangent to the line
ES given by y = λ2x.
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Linearize by finding the Jacobian matrix; hence

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
1− x− y −x

y x− 1− y

)
.

Linearize around each of the critical points and apply Hartman’s theorem.
Consider the critical point at (0,0). The eigenvalues are λ = ±1 and the
critical point is a saddle point or col. Next, consider the critical point at
(2,0); now the eigenvalues are λ1 = 1 and λ2 = −1. The corresponding
eigenvectors are (−1, 1)T and (1, 0)T , respectively. This critical point is also a
saddle point or col. Consider the critical point at (0,-2). Now the eigenvalues
are λ1 = 3 and λ2 = 1; the corresponding eigenvectors are (1,−1)T and
(0, 1)T , respectively. The critical point at (0,−2) is therefore an unstable
node. Finally, consider the critical point at

(
6
5 ,

2
5

)
. The eigenvalues in this

case are

λ =
−2± i

√
11

5

and the critical point is a stable focus. There is no need to find the eigenvec-
tors; they are complex in this case.

Consider the nullclines. Now ẋ = 0 on x = 0 or on y = 1− x
2 , and ẏ = 0

on y = 0 or on y = 2x − 2. The directions of the flow can be found by
considering ẏ and ẋ on these curves.

The slope of the trajectories is given by

dy

dx
=

y
(
x− 1− y

2

)

x
(
1− x

2 − y
) .

A phase portrait indicating the stable and unstable manifolds of the critical
points is shown in Figure 3.13.

Figure 3.13: A phase portrait for Example 9. The axes are invariant.
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Example 10. Sketch a phase portrait for the nonlinear system

ẋ = y2, ẏ = x.

Solution. Locate the critical points by solving the equations ẋ = ẏ = 0.
Therefore, ẋ = 0 if y = 0 and ẏ = 0 if x = 0. Thus the origin is the only
critical point.

Attempt to linearize by finding the Jacobian matrix; hence

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
0 2y
1 0

)
.

Linearize at the origin to obtain

J(0,0) =

(
0 0
1 0

)
.

The origin is a nonhyberbolic critical point. To sketch a phase portrait,
solve the differential equation

dy

dx
=

ẏ

ẋ
=

x

y2
,

using the method of separation of variables highlighted in the previous chap-
ter.

Consider the nullclines. Now ẋ = 0 on y = 0, and on this line ẏ = x.
Thus if x > 0, then ẏ > 0, and if x < 0, then ẏ < 0. Also, ẏ = 0 on x = 0,
and on this line ẋ = y2. Thus ẋ > 0 for all y. The slope of the trajectories
is given by dy

dx = x
y2 . Putting all of this information together gives a phase

portrait as depicted in Figure 3.14.

Figure 3.14: A phase portrait for Example 10 that has a nonhyperbolic crit-
ical point at the origin. There is a cusp at the origin.
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Example 11. A simple model for the spread of an epidemic in a city is given
by

Ṡ = −τSI, İ = τSI − rI,

where S(t) and I(t) represent the numbers of susceptible and infected indi-
viduals scaled by 1000, respectively; τ is a constant measuring how quickly
the disease is transmitted; r measures the rate of recovery (assume that those
who recover become immune); and t is measured in days. Determine a value
for S at which the infected population is a maximum.

Given that τ = 0.003 and r = 0.5, sketch a phase portrait showing three
trajectories whose initial points are at (1000, 1), (700, 1), and (500, 1). Give
a physical interpretation in each case.

Solution. The maximum number of infected individuals occurs when dI
dS =

0. Now
dI

dS
=

İ

Ṡ
=

τS − r

−τS
.

Therefore, dI
dS = 0 when S = r

τ . The number r
τ is called the threshold value.

The critical points for this system are found by solving the equations
Ṡ = İ = 0. Therefore, there are an infinite number of critical points lying
along the horizontal axis. A phase portrait is plotted in Figure 3.15.

Figure 3.15: A phase portrait showing three trajectories for Example 11. The
axes are scaled by 103 in each case. Trajectories are only plotted in the first
quadrant since populations cannot be negative.

In each case, the population of susceptibles decreases to a constant value
and the population of infected individuals increases and then decreases to
zero. Note that in each case, the maximum number of infected individuals
occurs at S = r

τ ≈ 167, 000.
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Example 12. Chemical kinetics involving the derivation of one differential
equation were introduced in Chapter 8. This example will consider a system
of two differential equations. Consider the isothermal chemical reaction

A + B � C,

in which one molecule of A combines with one molecule of B to form one
molecule of C. In the reverse reaction, one molecule of C returns to A +
B. Suppose that the rate of the forward reaction is kf and the rate of the
backward reaction is kr. Let the concentrations of A, B, and C be a, b, and
c, respectively. Assume that the concentration of A is much larger than the
concentrations of B and C and can therefore be thought of as constant. From
the law of mass action, the equations for the kinetics of b and c are

ḃ = krc− kfab, ċ = kfab− krc.

Find the critical points and sketch a typical trajectory for this system. In-
terpret the results in physical terms.

Solution. The critical points are found by determining where ḃ = ċ = 0.
Clearly, there are an infinite number of critical points along the line c =

kfa
kr

b.
The slope of the trajectories is given by

dc

db
=

ċ

ḃ
= −1.

If c <
kfa
kr

b, then ḃ < 0 and ċ > 0. Similarly, if c >
kfa
kr

b, then ḃ > 0 and
ċ < 0. Two typical solution curves are plotted in Figure 3.16.

Thus the final concentrations of B and C depend upon the initial concen-
trations of these chemicals. Two trajectories starting from the initial points
at (b0, 0) and (b0, c0) are plotted in Figure 3.16. Note that the chemical reac-
tion obeys the law of conservation of mass ; this explains why the trajectories
lie along the lines b+ c = constant.

Example 13. Suppose that H is a population of healthy rabbits and I is
the sub-population of infected rabbits that never recover once infected, both
measured in millions. The following differential equations can be used to
model the dynamics of the system:

Ḣ = (b− d)H − δI, İ = τI(H − I)− (δ + d)I,

where b is the birth rate, d is the natural death rate, δ is the rate of death of
the diseased rabbits, and τ is the rate at which the disease is transmitted.

Given that b = 4, d = 1, δ = 6, and τ = 1 and given an initial population
of (H0, I0) = (2, 2), plot a phase portrait and explain what happens to the
rabbits in real-world terms.
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(b0, c0)

c

b b0

Figure 3.16: Two solution curves for the chemical kinetic equation in Exam-
ple 12, where a is assumed to be constant. The dotted line represents the
critical points lying on the line c =

kfa
kr

b.

Solution. There are two critical points in the first quadrant at 0 = (0, 0)
and P = (14, 7). The Jacobian matrix is given by

J =

(
(b− d) −δ
τI τH − 2τI − (δ + d)

)
.

The critical point at the origin is a col with eigenvalues and corresponding
eigenvectors given by λ1 = 3, (1, 0)T and λ2 = −7, (3, 5)T . The critical point
at P = (14, 7) has eigenvalues λ = −2± i

√
17, and is therefore a stable focus.

A phase portrait is plotted in Figure 3.17. Either the population of rabbits
stabilizes to the values at P or they become extinct, depending on the initial
populations. For example, plot a solution curve for the trajectory starting at
(H0, I0) = (7, 14).

Models of interacting species will be considered in Chapter 4.

3.6 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.
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Python Commands Comments

np.mgrid # Create a grid of (x,y) coordinates.

pl.quiver # Plot arrows.

sm.solve # Sympy solve command.

Figure 3.17: A trajectory starting from the initial point (2, 2). The popula-
tion stabilizes to 14 million healthy rabbits and 7 million infected rabbits.

# Program 03a: Linear systems in the plane. See Figure 3.8(a).

# Phase portrait with vector field. Check two systems are the same.

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import odeint

import pylab as pl

# The 2-dimensional linear system.

a, b, c, d = 2, 1, 1, 2

def dx_dt(x, t):

return [a*x[0] + b*x[1], c*x[0] + d*x[1]]

# Trajectories in forward time.

ts = np.linspace(0, 4, 100)

ic = np.linspace(-1, 1, 5)

for r in ic:

for s in ic:
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x0 = [r, s]

xs = odeint(dx_dt, x0, ts)

plt.plot(xs[:,0], xs[:,1], "r-")

# Trajectories in backward time.

ts = np.linspace(0, -4, 100)

ic = np.linspace(-1, 1, 5)

for r in ic:

for s in ic:

x0 = [r, s]

xs = odeint(dx_dt, x0, ts)

plt.plot(xs[:,0], xs[:,1], "r-")

# Label the axes and set fontsizes.

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

plt.xlim(-1, 1)

plt.ylim(-1, 1);

# Plot the vectorfield.

X,Y = np.mgrid[-1:1:10j, -1:1:10j]

u = a*X + b*Y

v = c*X + d*Y

pl.quiver(X, Y, u, v, color = ’b’)

plt.show()

# Program 03b: Nonlinear system, phase portrait with vector plot.

# See Figure 3.12.

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import odeint

import pylab as pl

# The 2-dimensional nonlinear system.

def dx_dt(x, t):

return [x[1], x[0] * (1 - x[0]**2) + x[1]]

# Trajectories in forward time.

ts = np.linspace(0, 10, 500)

ic = np.linspace(-3, 3, 6)

for r in ic:

for s in ic:

x0 = [r, s]

xs = odeint(dx_dt, x0, ts)

plt.plot(xs[:,0], xs[:,1], "r-")
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# Trajectories in backward time.

ts = np.linspace(0, -10, 500)

ic = np.linspace(-3, 3, 6)

for r in ic:

for s in ic:

x0 = [r, s]

xs = odeint(dx_dt, x0, ts)

plt.plot(xs[:,0], xs[:,1], "r-")

# Label the axes and set fontsizes.

plt.xlabel("x", fontsize=15)

plt.ylabel("y", fontsize=15)

plt.tick_params(labelsize=15)

plt.xlim(-3, 3)

plt.ylim(-3, 3);

# Plot the vectorfield.

X, Y = np.mgrid[-3:3:20j, -3:3:20j]

u=Y

v=X * (1 - X**2) + Y

pl.quiver(X, Y, u, v, color = ’b’)

plt.show()

# Program 03c: Finding critical points.

# See Example 9.

import sympy as sm

x, y = sm.symbols(’x, y’)

P = x * (1 - x/2 - y)

Q = y * (x - 1 - y/2)

# Set P(x,y)=0 and Q(x,y)=0.

Peqn = sm.Eq(P, 0)

Qeqn = sm.Eq(Q, 0)

criticalpoints = sm.solve((Peqn, Qeqn), x, y)

print(criticalpoints)

3.7 Exercises

1. (a) Find the eigenvalues and eigenvectors of the matrix

B =

(
−7 6
2 −6

)
.
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Sketch a phase portrait for the system ẋ = Bx and its correspond-
ing canonical form.

(b) Carry out the same procedures as in part (a) for the system

ẋ = −4x− 8y, ẏ = −2y.

2. Sketch phase portraits for the following linear systems:

(a) ẋ = 0, ẏ = x+ 2y;

(b) ẋ = x+ 2y, ẏ = 0;

(c) ẋ = 3x+ 4y, ẏ = 4x− 3y;

(d) ẋ = 3x+ y, ẏ = −x+ 3y;

(e) ẋ = y, ẏ = −x− 2y;

(f) ẋ = x− y, ẏ = y − x.

3. A very simple mechanical oscillator can be modeled using the second-
order differential equation

d2x

dt2
+ μ

dx

dt
+ 25x = 0,

where x measures displacement from equilibrium.

(a) Rewrite this equation as a linear first order system by setting
ẋ = y.

(b) Sketch phase portraits when (i) μ = −8, (ii) μ = 0, (iii) μ = 8,
and (iii) μ = 26.

(c) Describe the dynamical behavior in each case given that x(0) = 1
and ẋ(0) = 0.

Plot the corresponding solutions in the tx plane.

4. Plot phase portraits for the following systems:

(a) ẋ = y, ẏ = x− y + x3;

(b) ẋ = −2x− y + 2, ẏ = xy;

(c) ẋ = x2 − y2, ẏ = xy − 1;

(d) ẋ = 2− x− y2, ẏ = −y(x2 + y2 − 3x+ 1);

(e) ẋ = y2, ẏ = x2;

(f) ẋ = x2, ẏ = y2;

(g) ẋ = y, ẏ = x3;
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(h) ẋ = x, ẏ = μ− y2, for μ < 0, μ = 0, and μ > 0.

5. Construct a nonlinear system that has four critical points: two saddle
points, one stable focus, and one unstable focus.

6. A nonlinear capacitor-resistor electrical circuit can be modeled using
the differential equations

ẋ = y, ẏ = −x+ x3 − (a0 + x)y,

where a0 is a nonzero constant and x(t) represents the current in the
circuit at time t. Sketch phase portraits when a0 > 0 and a0 < 0 and
give a physical interpretation of the results.

7. An age-dependent population can be modeled by the differential equa-
tions

ṗ = β + p(a− bp), β̇ = β(c+ (a− bp)),

where p is the population, β is the birth rate, and a, b, and c are all
positive constants. Find the critical points of this system and determine
the long-term solution.

8. The power, say, P , generated by a water wheel of velocity V can be
modeled by the system

Ṗ = −αP + PV, V̇ = 1− βV − P 2,

where α and β are both positive. Describe the qualitative behavior of
this system as α and β vary and give physical interpretations of the
results.

9. A very simple model for the economy is given by

İ = I −KS, Ṡ = I − CS −G0,

where I represents income, S is the rate of spending, G0 denotes con-
stant government spending, and C and K are positive constants.

(a) Plot possible solution curves when C = 1 and interpret the solu-
tions in economic terms. What happens when C �= 1?

(b) Plot the solution curve when K = 4, C = 2, G0 = 4, I(0) = 15,
and S(0) = 5. What happens for other initial conditions?

10. Given that
d3η

dτ3
= −η

d2η

dτ2
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and

x =
η dη
dτ

d2η
dτ2

, y =

(
dη
dτ

)2

η d2η
dτ2

and t = log

∣∣∣∣
dη

dτ

∣∣∣∣ ,

prove that
ẋ = x(1 + x+ y), ẏ = y(2 + x− y).

Plot a phase portrait in the xy plane.
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Chapter 4

Interacting Species

Aims and Objectives

• To apply the theory of planar systems to modeling interacting species.

On completion of this chapter, the reader should be able to

• plot solution curves to modeling problems for planar systems;

• interpret the results in terms of species behavior.

The theory of planar ODEs is applied to the study of interacting species.
The models are restricted in that only two species are considered and external
factors such as pollution, environment, refuge, age classes, and other species
interactions, for example, are ignored. However, even these restricted systems
give useful results. These simple models can be applied to species living in
our oceans and to both animal and insect populations on land. Note that
the continuous differential equations used in this chapter are only relevant
if the species populations under consideration are large, typically scaled by
104, 105, or 106 in applications.

A host-parasite system is presented subject to different types of predation
by a predator species.

© Springer International Publishing AG, part of Springer Nature 2018
S. Lynch, Dynamical Systems with Applications using Python,
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4.1 Competing Species

Suppose that there are two species in competition with one another in an
environment where the common food supply is limited. For example, sea lions
and penguins, red and gray squirrels, and ants and termites are all species
which fall into this category. There are two particular types of outcome that
are often observed in the real world. In the first case, there is coexistence,
in which the two species live in harmony. (In nature, this is the most likely
outcome; otherwise, one of the species would be extinct.) In the second case,
there is mutual exclusion, in which one of the species becomes extinct. (For
example, American gray squirrels imported into the United Kingdom are
causing the extinction of the smaller native red squirrels.)

Both coexistence and mutual exclusion can be observed when plotting
solution curves on a phase plane diagram. Consider the following general
model for two competing species.

Example 1. Sketch possible phase plane diagrams for the following system:

ẋ = x(β − δx− γy), ẏ = y(b− dy − cx), (4.1)

where β, δ, γ, a, b, and c are all positive constants with x(t) and y(t)—both
positive—representing the two species populations measured in tens or hun-
dreds of thousands.

Solution. The terms appearing in the right-hand sides of equation (4.1)
have a physical meaning as follows:

• The terms βx− δx2 and by− dy2 represent the usual logistic growth of
one species (Verhulst’s equation).

• Both species suffer as a result of competition over a limited food supply,
hence the terms −γxy and −cxy in ẋ and ẏ.

Construct a phase plane diagram in the usual way. Find the critical
points, linearize around each one, determine the nullclines, and plot the phase
plane portrait.

Locate the critical points by solving the equations ẋ = ẏ = 0. There are
four critical points at

O = (0, 0), P =

(
0,

b

d

)
, Q =

(
β

δ
, 0

)
, and R =

(
γb− βd

γc− δd
,
βc− δb

γc− δd

)
.

Suppose that C1 = γc − δd, C2 = γb − βd, and C3 = βc − δb. For the
critical point R to lie in the first quadrant, one of the following conditions
must hold: Either
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(i) C1, C2, and C3 are all negative, or

(ii) C1, C2, and C3 are all positive.

Linearize by finding the Jacobian matrix. Therefore,

J =

(
β − 2δx− γy −γx

−cy b− 2dy − cx

)
.

Linearize at each critical point. Thus

JO =

(
β 0
0 b

)
.

For the critical point at P ,

JP =

(
β − γb/d 0
−bc/d −b

)
.

For the critical point at Q,

JQ =

(
−β −γβ/δ
0 b− βc/δ

)
.

Finally, for the critical point at R,

JR =
1

C1

(
δC2 γC2

cC3 dC3

)
.

Consider case (i) first. The fixed points are all simple and it is not diffi-
cult to show that O is an unstable node, P and Q are cols, and for certain
parameter values R is a stable fixed point. A phase portrait is plotted in
Figure 4.1(a), where eight of an infinite number of solution curves are plot-
ted. Each trajectory is plotted numerically for both positive and negative
time steps; in this way, critical points are easily identified in the phase plane.
For the parameter values chosen here, the two species coexist and the pop-
ulations stabilize to constant values after long time periods. The arrows in
Figure 4.1(a) show the vector field plot and define the direction of the trajec-
tories for system (4.1). The slope of each arrow is given by dy

dx at the point,
and the direction of the arrows is determined from ẋ and ẏ. There is a stable
node lying wholly in the first quadrant at R, and the nonzero populations
x(t) and y(t) tend to this critical point with increasing time no matter what
the initial populations are. The domain of stability for the critical point at
R is therefore SR = {(x, y) ∈ �2 : x > 0, y > 0}. Now consider case (ii). The
fixed points are all simple, and it is not difficult to show that O is an unstable
node, P and Q are stable nodes, and R is a col. A phase portrait is shown in
Figure 4.1(b), where nine of an infinite number of solution curves are plotted.
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a b

Figure 4.1: (a) A possible phase portrait showing coexistence. Typically,
C1, C2, and C3 are all negative. (b) A possible phase portrait depicting
mutual exclusion. Typically, C1, C2, and C3 are all positive. Note that the
axes are invariant in both cases.

Once more the trajectories are plotted for both positive and negative time
iterations. In this case, one of the species becomes extinct.

In Figure 4.1(b), the critical point lying wholly in the first quadrant is a
saddle point or col, which is unstable. The long-term behavior of the system
is divided along the diagonal in the first quadrant. Trajectories starting to
the right of the diagonal will tend to the critical point at Q = (2, 0), which
implies that species y becomes extinct. Trajectories starting to the left of
the diagonal will tend to the critical point at P = (0, 2), which means that
species x will become extinct. Numerically, the trajectories lying on the stable
manifold of the saddle point in the first quadrant will tend towards the critical
point at R. However, in the real world, populations cannot remain exactly on
the stable manifold, and trajectories will be diverted from this critical point
leading to extinction of one of the species. The domain of stability for the
critical point at P = (0, 2) is given by SP = {(x, y) ∈ �2 : x > 0, y > 0, y >
x}. The domain of stability for the critical point at Q = (2, 0) is given by
SQ = {(x, y) ∈ �2 : x > 0, y > 0, y < x}.
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4.2 Predator-Prey Models

Consider a two-species predator-prey model in which one species preys on an-
other. Examples in the natural world include sharks and fish, lynx and snow-
shoe hares, and ladybirds and aphids. A very simple differential equation—
first used by Volterra in 1926 [10, 7] and known as the Lotka-Volterra model—
is given in Example 2.

Example 2. Sketch a phase portrait for the system

ẋ = x(α− cy), ẏ = y(γx− δ), (4.2)

where α, c, γ, and δ are all positive constants, with x(t) and y(t) representing
the scaled population of prey and predator, respectively, and t is measured
in years.

Solution. The terms appearing in the right-hand sides of equation (4.2)
have a physical meaning as follows:

• The term αx represents the growth of the population of prey in the ab-
sence of any predators. This is obviously a crude model; the population
of a species cannot increase forever.

• The terms −cxy and +γxy represent species interaction. The popula-
tion of prey suffers and predators gain from the interaction.

• The term −δy represents the extinction of predators in the absence of
prey.

Attempt to construct a phase plane diagram in the usual way. Find the
critical points, linearize around each one, determine the nullclines, and plot
the phase plane portrait.

The critical points are found by solving the equations ẋ = ẏ = 0. There

are two critical points, one at O = (0, 0) and the other at P =
(

δ
γ ,

α
c

)
.

Linearize to obtain

J =

(
α− cy −cx
γy −δ + γx

)
.

The critical point at the origin is a saddle point, and the stable and un-
stable manifolds lie along the axes. The stable manifold lies on the positive
y-axis and the unstable manifold lies on the x-axis. The critical point at
P is not hyperbolic, and so Hartman’s Theorem cannot be applied. Sys-
tem (4.2) has solution curves (the differential equation is separable) given
by xδyαe−γxe−cy = K, where K is a constant. These solution curves may



100 Chapter 4: c©Springer

be plotted in the phase plane. The nullclines are given by x = 0, y = α
c ,

where the flow is vertical, and y = 0, x = δ
γ , where the flow is horizontal.

The vector fields are found by considering ẋ, ẏ, and dy
dx . A phase portrait is

shown in Figure 4.2.

Figure 4.2: A phase portrait for the Lotka-Volterra model.

The population fluctuations can also be represented in the tx and ty
planes. The graphs shown in Figure 4.3 show how the populations of predator
and prey typically oscillate. Note that the oscillations are dependent on the

Figure 4.3: (a) Time series plots, periodic behavior of the prey and predators
for one set of initial conditions, namely x(0) = 1, y(0) = 2. The population
of prey is shown as the dashed curve and the population of predator is a solid
curve.

initial conditions. In Figure 4.3, the period of both cycles is about 5 years.
Different sets of initial conditions can give solutions with different amplitudes.
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For example, plot the solution curves in the tx and ty planes for the initial
conditions x(0) = 3 and y(0) = 5.

How can this system be interpreted in terms of species behavior? Consider
the trajectory passing through the point (1, 1) in Figure 4.2. At this point
the ratio of predators to prey is relatively high; as a result the population of
predators drops. The ratio of predators to prey drops, and so the population
of prey increases. Once there are lots of prey, the predator numbers will
again start to increase. The resulting cyclic behavior is repeated over and
over and is shown as the largest closed trajectory in Figure 4.2.

If small perturbations are introduced into system (4.2)—to model other
factors, for example—then the qualitative behavior changes. The periodic
cycles can be destroyed by adding small terms into the right-hand sides of
system (4.2). The system is said to be structurally unstable (or not robust).

Many predator-prey interactions have been modeled in the natural world.
For example, there are data dating back over 150 years for the populations
of lynx and snowshoe hares from the Hudson Bay Company in Canada. The
data clearly shows that the populations periodically rise and fall (with a
period of about 10 years) and that the maximum and minimum values (am-
plitudes) are relatively constant. This is not true for the Lotka-Volterra
model (see Figure 4.2). Different initial conditions can give solutions with
different amplitudes. In 1975, Holling and Tanner constructed a system of
differential equations whose solutions have the same amplitudes in the long
term, no matter what the initial populations. Two particular examples of the
Holling-Tanner model for predator-prey interactions are given in Example 3.

The reader is encouraged to compare the terms (and their physical mean-
ing) appearing in the right-hand sides of the differential equations in Exam-
ples 1–3.

Example 3. Consider the specific Holling-Tanner model

ẋ = x
(
1− x

7

)
− 6xy

(7 + 7x)
, ẏ = 0.2y

(
1− Ny

x

)
, (4.3)

where N is a constant with x(t) �= 0 and y(t) representing the populations
of prey and predators, respectively. Sketch phase portraits when (i) N = 2.5
and (ii) N = 0.5.

Solution. The terms appearing in the right-hand sides of equation (4.3)
have a physical meaning as follows:

• The term x
(
1− x

7

)
represents the usual logistic growth in the absence

of predators.

• The term − 6xy
(7+7x) represents the effect of predators subject to a maxi-

mum predation rate.
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• The term 0.2y
(
1− Ny

x

)
denotes the predator growth rate when a max-

imum of x/N predators is supported by x prey.

Construct a phase plane diagram in the usual way. Find the critical
points, linearize around each one, determine the nullclines, and plot a phase
plane portrait.

Consider case (i). The critical points are found by solving the equations
ẋ = ẏ = 0. There are two critical points in the first quadrant, A = (5, 2) and
B = (7, 0). The Jacobian matrices are given by

JA =

(
−1 −3/4
0 1/5

)

and

JB =

(
−10/21 −5/7
2/25 −1/5

)
.

The eigenvalues and eigenvectors of JA are given by λ1 = −1; (1, 0)T

and λ2 = 1/5; (− 5
8 , 1)

T . Therefore, this critical point is a saddle point or
col with the stable manifold lying along the x-axis and the unstable manifold
tangent to the line with slope − 8

5 in a small neighborhood around the critical
point. The eigenvalues of JB are given by λ ≈ −0.338 ± 0.195i. Therefore,
the critical point at B is a stable focus.

A phase portrait showing four trajectories and the vector field is shown
in Figure 4.4(a).

The populations eventually settle down to constant values. If there are
any natural disasters or diseases, for example, the populations would both
decrease but eventually return to the stable values. This is, of course, as-
suming that neither species becomes extinct. There is no periodic behavior
in this model.

Consider case (ii). The critical points are found by solving the equations
ẋ = ẏ = 0. There are two critical points in the first quadrant, A = (1, 2) and
B = (7, 0). The Jacobian matrices are given by

JA =

(
−1 −3/4
0 1/5

)

and

JB =

(
2/7 −3/7
2/5 −1/5

)
.

The eigenvalues and eigenvectors of JA are given by λ1 = −1; (1, 0)T and
λ2 = 1/5; (− 5

8 , 1)
T . Therefore, this critical point is a saddle point or col

with the stable manifold lying along the x-axis and the unstable manifold
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a b

Figure 4.4: (a) A phase portrait for system (4.3) when N = 2.5. (b) Inter-
section of the nullclines.

tangent to the line with slope − 8
5 near to the critical point. The eigenvalues

of JB are given by λ ≈ 0.043 ± 0.335i. Therefore, the critical point at B
is an unstable focus. All trajectories lying in the first quadrant are drawn
to the closed periodic cycle shown in Figure 4.5(a). Therefore, no matter
what the initial values of x(t) and y(t), the populations eventually rise and
fall periodically. This isolated periodic trajectory is known as a stable limit
cycle. In the long term, all trajectories in the first quadrant are drawn to this
periodic cycle, and once there, remain there forever. Definitions and the the-
ory of limit cycles will be introduced in Chapter 5. The nullclines are plotted
in Figure 4.5(b), these curves show where the flow is horizontal or vertical,
in this case. Figure 4.6 shows the time series plots for the Holling-Tanner
model. The limit cycle persists if small terms are added to the right-hand
sides of the differential equations in system (4.3). The system is structurally
stable (or robust) since small perturbations do not affect the qualitative be-
havior. Again the populations of both predator and prey oscillate in a similar
manner to the Lotka-Volterra model with another major exception. The final
steady-state solution for the Holling-Tanner model is independent of the ini-
tial conditions. Use Python to plot time series plots for the solutions plotted
in Figure 4.5(a) as in Program 4b in Section 4.4. The period of the limit
cycle can be easily established from the time series plot. This model appears
to match very well with what happens for many predator-prey species in the
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a b

Figure 4.5: [Python] (a) A phase portrait for system (4.3) when N = 0.5.
(b) Intersection of the nullclines.

natural world—for example, house sparrows and sparrow hawks in Europe,
muskrat and mink in Central North America, and white-tailed deer and wolf
in Ontario.

From the time series plot, the period, say, T , of the limit cycle is approx-
imately 19 units of time. Thus if t is measured in six-month intervals, then
this would be a good model for the lynx and snowshoe hare populations,
which have a natural period of about 10 years. Periodicity of limit cycles will
be discussed in the next chapter.

4.3 Other Characteristics Affecting Interact-
ing Species

A simple model of one species infected with a disease was considered in
Chapter 3. The models considered thus far for interacting species have been
limited to only two populations, and external factors have been ignored. Hall
et al. [3] consider a stable host-parasite system subject to selective predation
by a predator species. They consider a microparasite—zooplankton—fish
system where the host is Daphnia dentifera and the predator fish species is
bluegill sunfish. They investigate how predator selectivity on parasitized and
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Time Series

time 200

0

1

2

3

4

5

6

7 prey
predator

Figure 4.6: [Python] Time series for the Holling-Tanner predator-prey model.

nonparasitized hosts affects the populations. The differential equations are
given by

Ṡ = bS[1− c(S + I)]− dS − βSI − fS(S, I, P ),

İ = βSI − (d+ α)I − fI(S, I, P ), (4.4)

where S is the susceptible population, I is the infected population, b is the
birth rate, c is the density dependence of birth rates, d is the mortality
rate, β represents contact with infected hosts, and α is the parasite induced
mortality rate. The functions fS and fI represent predator interaction with
a saturating functional response, given by

fS(S, I, P ) =
PS

hS + S + θγI
, fI(S, I, P ) =

PθI

hS + S + θγI
,

where P is a predation intensity term, θ represents the selectivity of the
predator, hS represents a half-saturation constant of predators for susceptible
hosts, and γ is a handling time for susceptible and infected hosts. More
details and bifurcation diagrams are plotted in the research paper [3], and it
is shown how predation selectivity can affect the host-parasite system. For
example, for the parameter values b = 0.4, c = 1

20 , θ = 5, α = β = d = 0.05,
P = 1, and γ = hS = 1, it is shown that the host-parasite system coexists
in a periodic manner as depicted in Figure 4.7. Python command lines for
producing time series data are listed in Section 4.4.

Note that for other parameter values, predation can catalyze extinction
of both hosts and parasites.

There are a great many research papers published every year on interact-
ing species, and the author hopes that this chapter will inspire the reader
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Figure 4.7: Coexistence of the host-parasite species when P = 1 and the
productivity term, 1

c = 20. There is a limit cycle in the SI plane.

to investigate further. To conclude Chapter 4, some other characteristics ig-
nored here will be listed. Of course, the differential equations will become
more complicated and are beyond the scope of this chapter.

• Age classes—for example, young, mature, and old; time lags need to
be introduced into the differential equations (see Chapters 12 and 13).

• Diseases—epidemics affecting one or more species (see Chapter 3).

• Environmental effects.

• Enrichment of prey—this can lead to extinction of predators.

• Harvesting and culling policies (see Chapter 13).

• Pollution—persistence and extinction.

• Refuge—for example, animals in Africa find refuge in the bush.

• Seasonal effects—for example, some animals hibernate in winter.

• Three or more species interactions (see the exercises in Section 4.5).

One interesting example is discussed by Lenbury et al. [6], where predator-
prey interaction is coupled to parasitic infection. One or both of the species
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can become infected, and this can lead to mathematical problems involving
four systems of differential equations. The dynamics become far more compli-
cated, and more interesting behavior is possible. Higher-dimensional systems
will be discussed later in the book. Different types of species interaction are
investigated in [8].

4.4 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

figsize # The size of the figure.

infodict # Dictionary containing extra

information.

legend # Plot a legend on a figure.

subplots # Multiple plots on one graph.

# Program 04a: Holling-Tanner model. See Figures 4.5 and 4.6.

# Time series and phase portrait for a predator-prey system.

import numpy as np

from scipy import integrate

import matplotlib.pyplot as plt

# The Holling-Tanner model.

def Holling_Tanner(X, t=0):

# here X[0] = x and X[1] = y

return np.array([ X[0] * (1 - X[0]/7) - 6 * X[0] *

X[1]/(7 + 7*X[0]),

0.2 * X[1] * (1 - 0.5 * X[1] / X[0]) ])

t = np.linspace(0, 200, 1000)

# initial values: x0 = 7, y0 = 0.1

Sys0 = np.array([7, 0.1])

X, infodict = integrate.odeint(Holling_Tanner, Sys0, t,

full_output = True)

x,y = X.T

fig = plt.figure(figsize=(15, 5))
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fig.subplots_adjust(wspace = 0.5, hspace = 0.3)

ax1 = fig.add_subplot(1, 2, 1)

ax2 = fig.add_subplot(1, 2, 2)

ax1.plot(t, x, ’r-’, label = ’prey’)

ax1.plot(t, y, ’b-’, label = ’predator’)

ax1.set_title("Time Series")

ax1.set_xlabel("time")

ax1.grid()

ax1.legend(loc=’best’)

ax2.plot(x, y, color = "blue")

ax2.set_xlabel(’x’)

ax2.set_ylabel(’y’)

ax2.set_title(’Phase portrait’)

ax2.grid()

plt.show()

4.5 Exercises

1. Plot a phase portrait for the following competing species model

ẋ = 2x− x2 − xy, ẏ = 3y − y2 − 2xy

and describe what happens in terms of species behavior.

2. Plot a phase plane diagram for the following predator-prey system and
interpret the solutions in terms of species behavior:

ẋ = 2x− xy, ẏ = −3y + xy.

3. Plot a phase portrait for the following system and describe what hap-
pens to the population for different initial conditions:

ẋ = 2x− x2 − xy, ẏ = −y − y2 + xy.

4. The differential equations used to model a competing species are given
by

ẋ = x(2− x− y), ẏ = y
(
μ− y − μ2x

)
,

where μ is a constant. Describe the qualitative behavior of this system
as the parameter μ varies.
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5. (a) Sketch a phase portrait for the system

ẋ = x(4− y − x), ẏ = y(3x− 1− y), x ≥ 0, y ≥ 0,

given that the critical points occur at O = (0, 0), A = (4, 0), and
B = (5/4, 11/4).

(b) Sketch a phase portrait for the system

ẋ = x(2− y − x), ẏ = y(3− 2x− y), x ≥ 0, y ≥ 0,

given that the critical points occur at O = (0, 0), C = (0, 3),
D = (2, 0), and E = (1, 1).

One of the systems can be used to model predator-prey interactions and
the other competing species. Describe which system applies to which
model and interpret the results in terms of species behavior.

6. A predator-prey system may be modeled using the differential equations

ẋ = x(1− y − εx), ẏ = y(−1 + x− εy),

where x(t) is the population of prey and y(t) is the predator population
size at time t, respectively. Classify the critical points for ε ≥ 0 and plot
phase portraits for the different types of qualitative behavior. Interpret
the results in physical terms.

7. A predator-prey model is given by

ẋ = x(x− x2 − y), ẏ = y(x− 0.6).

Sketch a phase portrait and interpret the results in physical terms.

8. Use Python to plot a trajectory for the predator-prey system

ẋ = x(x− x2 − y), ẏ = y(x− 0.48)

using the initial condition (0.6, 0.1). What can you deduce about the
long-term populations?

9. Suppose that there are three species of insect X,Y , and Z, say. Give
rough sketches to illustrate the possible ways in which these species
can interact with one another. You should include the possibility of
a species being cannibalistic. Three-dimensional systems will be dis-
cussed later.
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10. The following three differential equations are used to model a combined
predator-prey and competing species system:

ẋ = x(a10 − a11x+ a12y − a13z),

ẏ = y(a20 − a21x− a22y − a23z),

ż = z(a30 + a31x− a32y − a33z),

where aij are positive constants. Give a physical interpretation for the
terms appearing in the right-hand sides of these differential equations.
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Chapter 5

Limit Cycles

Aims and Objectives

• To give a brief historical background.

• To define features of phase plane portraits.

• To introduce the theory of planar limit cycles.

• To introduce perturbation methods.

On completion of this chapter, the reader should be able to

• prove existence and uniqueness of a limit cycle;

• prove that certain systems have no limit cycles;

• interpret limit cycle behavior in physical terms;

• find approximate solutions for perturbed systems.

Limit cycles, or isolated periodic solutions, are the most common form
of solution observed when modeling physical systems in the plane. Early
investigations were concerned with mechanical and electronic systems, but
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periodic behavior is evident in all branches of science. Two limit cycles were
plotted in Chapter 4 when considering the modeling of interacting species.

The chapter begins with a historical introduction, and then the theory of
planar limit cycles is introduced.

5.1 Historical Background

Definition 1. A limit cycle is an isolated periodic solution.

Limit cycles in planar differential systems commonly occur when modeling
both the technological and natural sciences. Most of the early history in the
theory of limit cycles in the plane was stimulated by practical problems. For
example, the differential equation derived by Rayleigh in 1877 [14], related
to the oscillation of a violin string, is given by

ẍ+ ε

(
1

3
ẋ2 − 1

)
ẋ+ x = 0,

where ẍ = d2x
dt2 and ẋ = dx

dt . Let ẋ = y. Then this differential equation can
be written as a system of first-order autonomous differential equations in the
plane

ẋ = y, ẏ = −x− ε

(
y2

3
− 1

)
y. (5.1)

A phase portrait is shown in Figure 5.1.
Following the invention of the triode vacuum tube, which was able to

produce stable self-excited oscillations of constant amplitude, van der Pol
[17] obtained the following differential equation to describe this phenomenon

ẍ+ ε
(
x2 − 1

)
ẋ+ x = 0,

which can be written as a planar system of the form

ẋ = y, ẏ = −x− ε
(
x2 − 1

)
y. (5.2)

A phase portrait is shown in Figure 5.2.
The basic model of a cell membrane is that of a resistor and capacitor in

parallel. The equations used to model the membrane are a variation of the van
der Pol equation. The famous Fitzhugh-Nagumo oscillator [11, 15, 24] used
to model the action potential of a neuron is a two-variable simplification of
the Hodgkin-Huxley equations [14] (see Chapter 21). The Fitzhugh-Nagumo
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Figure 5.1: Periodic behavior in the Rayleigh system (5.1) when ε = 1.0

Figure 5.2: Periodic behavior for system (5.2) when ε = 5.0.
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model creates quite accurate action potentials and models the qualitative
behavior of the neurons. The differential equations are given by

u̇ = −u(u− θ)(u− 1)− v + ω, v̇ = ε(u− γv),

where u is a voltage, v is the recovery of voltage, θ is a threshold, γ is a
shunting variable, and ω is a constant voltage. For certain parameter values,
the solution demonstrates a slow collection and fast release of voltage; this
kind of behavior has been labeled integrate and fire. Note that, for biological
systems, neurons cannot collect voltage immediately after firing and need
to rest. Oscillatory behavior for the Fitzhugh-Nagumo system is shown in
Figure 5.3. Python command lines for producing Figure 5.3 are listed in
Section 5.4.

Figure 5.3: [Python] A limit cycle for the Fitzhugh-Nagumo oscillator. In this
case, γ = 2.54, θ = 0.14, ω = 0.112, and ε = 0.01. The blue dashed curves
are the nullclines, where the trajectories cross horizontally and vertically.

Note that when ω = ω(t) is a periodic external input the system be-
comes nonautonomous and can display chaotic behavior [15]. The reader can
investigate these systems via the exercises in Chapter 9.

Perhaps the most famous class of differential equations that generalize
(5.2) are those first investigated by Liénard in 1928 [6],

ẍ+ f(x)ẋ+ g(x) = 0,

or in the phase plane

ẋ = y, ẏ = −g(x)− f(x)y. (5.3)

This system can be used to model mechanical systems, where f(x) is
known as the damping term and g(x) is called the restoring force or stiffness.
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Equation (5.3) is also used to model resistor-inductor-capacitor circuits (see
Chapter 2) with nonlinear circuit elements. Limit cycles of Liénard systems
will be discussed in some detail in Chapters 10 and 11.

Possible physical interpretations for limit cycle behavior of certain dy-
namical systems are listed below:

• For an economic model, Bella [2] considers a Goodwin model of a class
struggle and demonstrates emerging multiple limit cycles of different
orientation.

• For predator-prey and epidemic models, the populations oscillate an-
tiphase with one another and the systems are robust (see Examples in
Chapter 4, and Exercise 8 in Chapter 8).

• Periodic behavior is present in integrate and fire neurons (see Fig-
ure 5.3). Indeed, the human body is full of oscillatory behavior as
described in Chapter 12.

• For mechanical systems, examples include the motion of simple non-
linear pendula (see Section 9.3), wing rock oscillations in aircraft flight
dynamics [11], and surge oscillations in axial flow compressors [1], for
example.

• For periodic chemical reactions, examples include the Landolt clock
reaction and the Belousov-Zhabotinski reaction (see Chapter 8).

• For electrical or electronic circuits, it is possible to construct simple
electronic oscillators (Chua’s circuit, for example) using a nonlinear
circuit element; a limit cycle can be observed if the circuit is connected
to an oscilloscope.

Limit cycles are common solutions for all types of dynamical systems.
Sometimes it becomes necessary to prove the existence and uniqueness of a
limit cycle, as described in the next section.

5.2 Existence and Uniqueness of Limit Cycles
in the Plane

To understand the existence and uniqueness theorem, it is necessary to de-
fine some features of phase plane portraits. Assume that the existence and
uniqueness theorem from Chapter 2 holds for all solutions considered here.

The definitions listed in Chapter 2 can be extended to nonlinear pla-
nar systems of the form ẋ = P (x, y), ẏ = Q(x, y), thus every solution, say,
φ(t) = (x(t), y(t)), can be represented as a curve in the plane and is called a
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trajectory. The phase portrait shows how the qualitative behavior is deter-
mined as x and y vary with t. The trajectory can also be defined in terms of
the spatial coordinates x, as in Definition 3 below. A brief look at Example 1
will help the reader to understand Definitions 1–7 in this section.

Definition 2. A flow on �2 is a mapping π : �2 → �2 such that

1. π is continuous;

2. π(x, 0) = x for all x ∈ �2;

3. π(π(x, t1), t2) = π(x, t1 + t2).

Definition 3. Suppose that Ix is the maximal interval of existence. The
trajectory (or orbit) through x is defined as γ(x) = {π(x, t) : t ∈ Ix}.

The positive semiorbit is defined as γ+(x) = {π(x, t) : t > 0} .
The negative semiorbit is defined as γ−(x) = {π(x, t) : t < 0} .

Definition 4. The positive limit set of a point x is defined as

Λ+(x) = {y : there exists a sequence tn → ∞ such that π(x, t) → y} .

The negative limit set of a point x is defined as

Λ−(x) = {y : there exists a sequence tn → −∞ such that π(x, t) → y} .

In the phase plane, trajectories tend to a critical point, a closed orbit, or
infinity.

Definition 5. A set S is invariant with respect to a flow if x ∈ S implies
that γ(x) ⊂ S.

A set S is positively invariant with respect to a flow if x ∈ S implies that
γ+(x) ⊂ S.

A set S is negatively invariant with respect to a flow if x ∈ S implies that
γ−(x) ⊂ S.

A general trajectory can be labeled γ for simplicity.

Definition 6. A limit cycle, say, Γ, is

• a stable limit cycle if Λ+(x) = Γ for all x in some neighborhood; this
implies that nearby trajectories are attracted to the limit cycle;

• an unstable limit cycle if Λ−(x) = Γ for all x in some neighborhood;
this implies that nearby trajectories are repelled away from the limit
cycle;

• a semistable limit cycle if it is attracting on one side and repelling on
the other.



Limit Cycles 119

The stability of limit cycles can also be deduced analytically using the
Poincaré map (see Chapter 9). The following example will be used to illus-
trate each of the Definitions 1–6 above and 7 below.

Definition 7. The period, say, T , of a limit cycle is given by x(t) = x(t+T ),
where T is the minimum period. The period can be found by plotting a time
series plot of the limit cycle (see the Python command lines in Chapter 4).

Example 1. Describe some of the features for the following set of polar
differential equations in terms of Definitions 1–7:

ṙ = r(1− r)(2− r)(3− r), θ̇ = −1. (5.4)

Solution. A phase portrait is shown in Figure 5.4. There is a unique critical
point at the origin since θ̇ is nonzero. There are three limit cycles that may
be determined from the equation ṙ = 0. They are the circles of radii one,
two, and three, all centered at the origin. Let Γi denote the limit cycle of
radius r=i.

2

Figure 5.4: Three limit cycles for system (5.4).

There is one critical point at the origin. If a trajectory starts at this point,
it remains there forever. A trajectory starting at (1, 0) will reach the point
(−1, 0) when t1 = π and the motion is clockwise. Continuing on this path
for another time interval t2 = π, the orbit returns to (1, 0). Using part 3 of
Definition 2, one can write π (π((1, 0), t1), t2) = π ((1, 0), 2π) since the limit
cycle is of period 2π (see below). On the limit cycle Γ1, both the positive
and negative semiorbits lie on Γ1.

Suppose that P = ( 12 , 0) and Q = (4, 0) are two points in the plane.
The limit sets are given by Λ+(P ) = Γ1, Λ

−(P ) = (0, 0), Λ+(Q) = Γ3, and
Λ−(Q) = ∞.
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The annulus A1 = {r ∈ �2 : 0 < r < 1} is positively invariant, and the
annulus A2 = {r ∈ �2 : 1 < r < 2} is negatively invariant.

If 0 < r < 1, then ṙ > 0 and the critical point at the origin is unstable. If
1 < r < 2, then ṙ < 0 and Γ1 is a stable limit cycle. If 2 < r < 3, then ṙ > 0
and Γ2 is an unstable limit cycle. Finally, if r > 3, then ṙ < 0 and Γ3 is a
stable limit cycle.

Integrate both sides of θ̇ = −1 with respect to time to show that the
period of all of the limit cycles is 2π.

The Poincaré-Bendixson Theorem. Suppose that γ+ is contained in a
bounded region in which there are finitely many critical points. Then Λ+(γ)
is either

• a single critical point ;

• a single closed orbit ;

• a graphic—critical points joined by heteroclinic orbits.

A heteroclinic orbit connects two separate critical points and takes an infi-
nite amount of time to make the connection; more details are provided in
Chapter 6.

Corollary. Let D be a bounded closed set containing no critical points and
suppose that D is positively invariant. Then there exists a limit cycle con-
tained in D.

A proof to this theorem involves topological arguments and can be found
in [13], for example.

Example 2. By considering the flow across the rectangle with corners at
(−1, 2), (1, 2), (1,−2), and (−1,−2), prove that the following system has at
least one limit cycle:

ẋ = y − 8x3, ẏ = 2y − 4x− 2y3. (5.5)

Solution. The critical points are found by solving the equations ẋ = ẏ = 0.
Set y = 8x3. Then ẏ = 0 if x(1−4x2+256x8) = 0. The graph of the function
y = 1 − 4x2 + 256x8 is given in Figure 5.5(a). The graph has no roots and
the origin is the only critical point.

Linearize at the origin in the usual way. It is not difficult to show that
the origin is an unstable focus.
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Consider the flow on the sides of the given rectangle:

• On y = 2, |x| ≤ 1, ẏ = −4x− 12 < 0.

• On y = −2, |x| ≤ 1, ẏ = −4x+ 12 > 0.

• On x = 1, |y| ≤ 2, ẋ = y − 8 < 0.

• On x = −1, |y| ≤ 2, ẏ = y + 8 > 0.

The flow is depicted in Figure 5.5(b). The rectangle is positively invari-
ant and there are no critical points other than the origin, which is unstable.
Consider a small deleted neighborhood, say, Nε, around this critical point.
For example, the boundary of Nε could be a small ellipse. On this ellipse, all
trajectories will cross outwards. Therefore, there exists a stable limit cycle
lying inside the rectangular region and outside of Nε by the corollary to the
Poincaré-Bendixson theorem.

a b

Figure 5.5: (a) Polynomial of degree 8. (b) Flow across the rectangle for
system (5.5).

Definition 8. A planar simple closed curve is called a Jordan curve.

Consider the system

ẋ = P (x, y), ẏ = Q(x, y), (5.6)

where P and Q have continuous first-order partial derivatives. Let the vector
field be denoted by X and let ψ be a weighting factor that is continuously



122 Chapter 5: c©Springer

differentiable. Recall Green’s Theorem, which will be required to prove the
following two theorems.

Green’s Theorem. Let J be a Jordan curve of finite length. Suppose that
P and Q are two continuously differentiable functions defined on the interior
of J , say, D. Then

∫∫

D

[
∂P

∂x
+

∂Q

∂y

]
dx dy =

∮

J

Pdy −Qdx.

Dulac’s Criterion. Consider an annular region, say, A, contained in an
open set E. If

∇.(ψX) = div (ψX) =
∂

∂x
(ψP ) +

∂

∂y
(ψQ)

does not change sign in A, where ψ is continuously differentiable, then there
is at most one limit cycle entirely contained in A.

Proof. Suppose that Γ1 and Γ2 are limit cycles encircling K, as depicted in
Figure 5.6, of periods T1 and T2, respectively. Apply Green’s Theorem to the
region R shown in Figure 5.6.

∫∫

R

[
∂(ψP )

∂x
+

∂(ψQ)

∂y

]
dx dy =

∮

Γ2

ψPdy − ψQdx+

∫

L

ψPdy − ψQdx−
∮

Γ1

ψPdy − ψQdx−
∫

L

ψPdy − ψQdx.

Now on Γ1 and Γ2, ẋ = P and ẏ = Q, so
∫∫

R

[
∂(ψP )

∂x
+

∂(ψQ)

∂y

]
dx dy

=

∫ T2

0

(ψPQ− ψQP ) dt−
∫ T1

0

(ψPQ− ψQP ) dt,

which is zero and contradicts the hypothesis that div(ψX) �= 0 in A. There-
fore, there is at most one limit cycle entirely contained in the annulus A.

Example 3. Use Dulac’s criterion to prove that the system

ẋ = −y + x(1− 2x2 − 3y2), ẏ = x+ y(1− 2x2 − 3y2) (5.7)

has a unique limit cycle in an annulus.

Solution. Convert to polar coordinates using the transformations

rṙ = xẋ+ yẏ, r2θ̇ = xẏ − yẋ.
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Γ1

Γ2

K
L

R
A

Figure 5.6: Two limit cycles encircling the region K.

Therefore, system (5.7) becomes

ṙ = r(1− 2r2 − r2sin2θ), θ̇ = 1.

Since θ̇ = 1, the origin is the only critical point. On the circle r = 1
2 ,

ṙ = 1
2 (

1
2 − 1

4 sin
2 θ). Hence ṙ > 0 on this circle. On the circle r = 1,

ṙ = −1 − sin2 θ. Hence ṙ < 0 on this circle. If r ≥ 1, then ṙ < 0, and if
0 < r ≤ 1

2 , then ṙ > 0. Therefore, there exists a limit cycle in the annulus
A = {r : 1

2 < r < 1} by the corollary to the Poincaré-Bendixson theorem.

Consider the annulus A. Now div(X) = 2(1 − 4r2 − 2r2 sin2 θ). If 1
2 <

r < 1, then div(X) < 0. Since the divergence of the vector field does not
change sign in the annulus A, there is at most one limit cycle in A by Dulac’s
criterion.

A phase portrait is given in Figure 5.7.

Example 4. Plot a phase portrait for the Liénard system

ẋ = y, ẏ = −x− y(a2x
2 + a4x

4 + a6x
6 + a8x

8 + a10x
10 + a12x

12 + a14x
14),

where a2 = 90, a4 = −882, a6 = 2598.4, a8 = −3359.997, a10 = 2133.34, a12 =
−651.638, and a14 = 76.38.

Solution. Not all limit cycles are convex closed curves as Figure 5.8 demon-
strates.

5.3 Nonexistence of Limit Cycles in the Plane

Bendixson’s Criterion. Consider system (5.6) and suppose that D is a
simply connected domain (no holes in D) and that

∇.(ψX) = div (ψX) =
∂

∂x
(ψP ) +

∂

∂y
(ψQ) �= 0
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Figure 5.7: A phase portrait for system (5.7) showing the unique limit cycle.

–3

–2

–1

0–3 –2 –1 1 2 3

1

2

3

y

x

Figure 5.8: A phase portrait for Example 4. The limit cycle is a nonconvex
closed curve.
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in D. Then there are no limit cycles entirely contained in D.

Proof. Suppose that D contains a limit cycle Γ of period T . Then from
Green’s Theorem

∫∫

D

[
∂(ψP )

∂x
+

∂(ψQ)

∂y

]
dx dy =

∮

Γ

(ψPdy − ψQdx)

=

∫ T

0

(
ψP

dy

dt
− ψQ

dx

dt

)
dt = 0

since on Γ, ẋ = P and ẏ = Q. This contradicts the hypothesis that div(ψX) �=
0, and therefore D contains no limit cycles entirely.

Definition 9. Suppose there is a compass on a Jordan curve C and that the
needle points in the direction of the vector field. The compass is moved in a
counterclockwise direction around the Jordan curve by 2π radians. When it
returns to its initial position, the needle will have moved through an angle,
say, Θ. The index , say, IX(C), is defined as

IX(C) =
ΔΘ

2π
,

where ΔΘ is the overall change in the angle Θ.

The above definition can be applied to isolated critical points. For exam-
ple, the index of a node, focus, or center is +1 and the index of a col is −1.
The following result is clear.

Theorem 1. The sum of the indices of the critical points contained entirely
within a limit cycle is +1.

The next theorem then follows.

Theorem 2. A limit cycle contains at least one critical point.

When proving that a system has no limit cycles, the following items should
be considered:

1. Bendixson’s criterion;

2. indices;

3. invariant lines;

4. critical points.
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Example 5. Prove that none of the following systems have any limit cycles:
(a) ẋ = 1 + y2 − exy, ẏ = xy + cos2y.
(b) ẋ = y2 − x, ẏ = y + x2 + yx3.
(c) ẋ = y + x3, ẏ = x+ y + y3.
(d) ẋ = 2xy − 2y4, ẏ = x2 − y2 − xy3.
(e) ẋ = x(2− y − x), ẏ = y(4x− x2 − 3), given ψ = 1

xy .

Solutions.

(a) The system has no critical points and hence no limit cycles by Theo-
rem 2.

(b) The origin is the only critical point and it is a saddle point or col.
Since the index of a col is −1, there are no limit cycles from Theorem 1.

(c) Find the divergence, divX = ∂P
∂x + ∂Q

∂y = 3x2 + 3y2 + 1 �= 0. Hence
there are no limit cycles by Bendixson’s criterion.

(d) Find the divergence, divX = ∂P
∂x + ∂Q

∂y = −3x2y. Now divX = 0 if

either x = 0 or y = 0. However, on the line x = 0, ẋ = −2y4 ≤ 0, and on the
line y = 0, ẏ = x2 ≥ 0. Therefore, a limit cycle must lie wholly in one of the
four quadrants. This is not possible since divX is nonzero here. Hence there
are no limit cycles by Bendixson’s criterion. Draw a small diagram to help
you understand the solution.

(e) The axes are invariant since ẋ = 0 if x = 0 and ẏ = 0 if y = 0.
The weighted divergence is given by div(ψX) = ∂

∂x (ψP ) + ∂
∂y (ψQ) = − 1

y .
Therefore, there are no limit cycles contained entirely in any of the quadrants,
and since the axes are invariant, there are no limit cycles in the whole plane.

Example 6. Prove that the system

ẋ = x(1− 4x+ y), ẏ = y(2 + 3x− 2y)

has no limit cycles by applying Bendixson’s criterion with ψ = xmyn.

Solution. The axes are invariant since ẋ = 0 on x = 0 and ẏ = 0 on y = 0.
Now

div(ψX) =
∂

∂x

(
xm+1yn − 4xm+2yn + xm+1yn+1

)
+

∂

∂y

(
2xmyn+1 + 3xm+1yn+1 − 2xmyn+2

)
,

which simplifies to

div(ψX) = (m+2n+2)xmyn+(−4m+3n−5)xm+1yn+(m−2n−3)xmyn+1.

Select m = 1
2 and n = − 5

4 . Then

div(ψX) = −43

4
x

3
2 y−

5
4 .
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Therefore, there are no limit cycles contained entirely in any of the four quad-
rants, and since the axes are invariant, there are no limit cycles at all.

5.4 Perturbation Methods

This section introduces the reader to some basic perturbation methods by
means of example. The theory involves mathematical methods for finding
series expansion approximations for perturbed systems. Perturbation theory
can be applied to algebraic equations, boundary value problems, difference
equations, Hamiltonian systems, ODEs, PDEs, and in modern times the
theory underlies almost all of quantum field theory and quantum chemistry.
There are whole books devoted to the study of perturbation methods and the
reader is directed to the references [4, 9], and [16], for more detailed theory
and more in-depth explanations.

The main idea begins with the assumption that the solution to the per-
turbed system can be expressed as an asymptotic or Poincaré expansion of
the form

x(t, ε) = x0(t) + εx1(t) + ε2x2(t) + . . . . (5.8)

Definition 10. The sequence f(ε) ∼
∑∞

n=0 anφn(ε) is an asymptotic expan-
sion of the continuous function f(ε) if and only if, for all n ≥ 0,

f(ε) =
N∑

n=0

anφn(ε) +O (φN+1(ε)) as ε → 0, (5.9)

where the sequence constitutes an asymptotic scale such that for every n ≥ 0,

φn+1(ε) = o (φn(ε)) as ε → 0.

Definition 11. An asymptotic expansion (5.9) is said to be uniform if in
addition

|RN (x, ε)| ≤ K|φN+1(ε)|,
for ε in a neighborhood of 0, where the Nth remainder RN (x, ε) = O(φN+1(ε))
as ε → 0, and K is a constant.

In this particular case, we will be looking for asymptotic expansions of
the form

x(t, ε) ∼
∑
k

xk(t)δk(ε),

where δk(ε) = εk is an asymptotic scale. It is important to note that the
asymptotic expansions often do not converge; however, one-term and two-
term approximations provide an analytical expression that is dependent on
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the parameter, ε, and some initial conditions. The major advantage that the
perturbation analysis has over numerical analysis is that a general solution is
available through perturbation methods where numerical methods only lead
to a single solution.

As a simple introduction consider the following first order ordinary dif-
ferential equation:

Example 7. Suppose that for x ≥ 0,

dx

dt
+ x− εx2 = 0, x(0) = 2. (5.10)

Determine a three term approximation and use Python to plot these approx-
imations against the numerical solution when ε = 0.3.

Solution. This equation can be solved directly using Python, see Chapter 2,
and a numerical solution can also be computed. To obtain a series solution,
set

x(t, ε) = x0(t) + εx1(t) + ε2x2(t) + . . . ,

where in order to satisfy the initial condition x(0) = 2, we will have x1(0) =
0, x2(0) = 0, and so on. To compute to O(ε2), substitute the first three
terms into system (5.10) and collect powers of ε using the collect command
in Python. The commands are:

In[1]: from sympy import *

In[2]: x0=Function(’x0’);x1=Function(’x1’);x2=Function(’x2’);

x=Function(’x’);

In[3]: t=Symbol(’t’);eps=Symbol(’eps’);

In[4]: x=x0(t)+eps*x1(t)+eps**2*x2(t);

In[4]: expr=x.diff(t)+x-eps*x**2;

In[5]: expr=expand(expr);

In[6]: collect(expr,eps)

one obtains:

ε0 : ẋ0(t) + x0(t) = 0
ε1 : ẋ1(t) + x1(t)− x0(t)

2 = 0,
ε2 : ẋ2(t) + x2(t)− 2x0(t)x1(t) = 0,
...

...

and we solve at each order, applying the initial conditions as we proceed.

For O(1):
ẋ0(t) + x0(t) = 0, x0(0) = 2,
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and the solution using Python:

In[7]:=dsolve(x(t).diff(t)+x(t),x(t))

is x0(t) = C1e−t, and as x0(0) = 2, then C1 = 2.

For O(ε):
ẋ1(t) + x1(t) = 4e−2t, x1(0) = 0,

and the solution using Python is x1(t) = (C1− 4e−t) e−t, and substituting
x1(0) = 0, gives x1(t) = 4

(
e−t − e−2t

)
.

For O(ε2):
ẋ2(t) + x2(t) = 4e−tx1(t), x2(0) = 0,

and the solution using Python is x2(t) =
(
C1− 16e−t + 8e−2t

)
e−t, and sub-

stituting x2(0) = 0, gives x2(t) = 8
(
e−t − 2e−2t + e−3t

)
.

Therefore, the solution to second order is:

x(t) ≈ 2e−t + 4ε
(
e−t − e−2t

)
+ 8ε2

(
e−t − 2e−2t + e−3t

)
.

Figure 5.9 shows the approximate solutions against the numerical solution.

Figure 5.9: [Python] The numerical solution against the O(1), O(ε), and
O(ε2) solutions when ε = 0.3.

To keep the theory simple and in relation to other material in this chapter,
the author has decided to focus on perturbed ODEs of the form

ẍ+ x = εf (x, ẋ) , (5.11)

where 0 ≤ ε � 1 and f (x, ẋ) is an arbitrary smooth function. The unper-
turbed system represents a linear oscillator and when 0 < ε � 1, system
(5.11) becomes a weakly nonlinear oscillator. Systems of this form include
the Duffing’s equation

ẍ+ x = εx3, (5.12)
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and the van der Pol equation

ẍ+ x = ε
(
x2 − 1

)
ẋ. (5.13)

Example 8. Use perturbation theory to find a one-term and two-term
asymptotic expansion of Duffing’s equation (5.12) with initial conditions
x(0) = 1 and ẋ(0) = 0.

Solution. Substitute (5.8) into (5.12) to get

d2

dt2
(x0 + εx1 + . . .) + (x0 + εx1 + . . .) = ε (x0 + εx1 + . . .)

3
.

Use the collect command in Python to group terms according to powers of ε,

[ẍ0 + x0] + ε
[
ẍ1 + x1 − x3

0

]
+O(ε2) = 0.

The order equations are

O(1) : ẍ0 + x0 = 0, x0(0) = 1, ẋ0(0) = 0,

O(ε) : ẍ1 + x1 = x3
0, x1(0) = 0, ẋ1(0) = 0.

...
...

The O(1) solution is x0 = cos(t). Let us compare this solution with the
numerical solution, say, xN , when ε = 0.01. Figure 5.10 shows the time
against the error, xN − x0, for 0 ≤ t ≤ 100.

Using Python, the O(ε) solution is computed to be

x1 =
3

8
t sin(t) +

1

8
cos(t)− 1

8
cos3(t).

Using the trigsimp command in Python does not simplify the expression any
further; therefore, we have

x ∼ xP = x0 + εx1 = cos(t) + ε

(
3

8
t sin(t) +

1

8
cos(t)− 1

8
cos3(t)

)
,

xN–x

Figure 5.10: [Python] The error between the numerical solution xN and the
one-term expansion x0 for the Duffing system (5.12) when ε = 0.01.
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where xP represents the Poincaré expansion up to the second term. The
term t sin(t) is called a secular term and is an oscillatory term of growing
amplitude. Unfortunately, the secular term leads to a nonuniformity for
large t. Figure 5.11 shows the error for the two-term Poincaré expansion,
xN − xP , when ε = 0.01.

Figure 5.11: The error between the numerical solution xN and the two-term
expansion xP for the Duffing system (5.12) when ε = 0.01.

By introducing a strained coordinate, the nonuniformity may be overcome
and this is the idea behind the Lindstedt-Poincaré technique for periodic
systems. The idea is to introduce a transformation of the form

τ

t
= 1 + εω1 + ε2ω2 + . . . , (5.14)

and seek values ω1, ω2, . . . that avoid secular terms appearing in the expan-
sion.

Example 9. Use the Lindstedt-Poincaré technique to determine a two-term
uniform asymptotic expansion of Duffing’s equation (5.12) with initial con-
ditions x(0) = 1 and ẋ(0) = 0.

Solution. Using the transformation given in (5.14)

d

dt
=

dτ

dt

d

dτ
=
(
1 + εω1 + ε2ω2 + · · ·

) d

dτ
,

d2

dt2
=
(
1 + εω1 + ε2ω2 + · · ·

)2 d2

dτ2
.

Applying the transformation to equation (5.12) leads to

(
1 + 2εω1 + ε2

(
ω2
1 + 2ω2

)
+ · · ·

) d2x
dτ2

+ x = εx3,

where x is now a function of the strained variable τ . Assume that

x(τ, ε) = x0(τ) + εx1(τ) + ε2x2(τ) + . . . . (5.15)
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Substituting (5.15) into (5.12) using Python (see Section 5.5) gives the fol-
lowing order equations:

O(1) :
d2x0

dτ2
+ x0 = 0,

x0(τ = 0) = 1,
dx0

dτ
(τ = 0) = 0,

O(ε) :
d2x1

dτ2
+ x1 = x3

0 − 2ω1
d2x0

dτ2
,

x1(0) = 0,
dx1

dτ
(0) = 0,

O(ε2) :
d2x2

dτ2
+ x2 = 3x2

0x1 − 2ω1
d2x1

dτ2
− (ω2

1 + 2ω2)
d2x0

dτ2
,

x2(0) = 0,
dx2

dτ
(0) = 0.

The O(1) solution is x0(τ) = cos(τ). Using Python and the trigsimp com-
mand, the solution to the O(ε) equation is

x1(τ) =
1

8
sin(τ) (3τ + 8ω1τ + cos(τ) sin(τ)) .

To avoid secular terms, select ω1 = − 3
8 , then the O(ε) solution is

x1(τ) =
1

8
sin2(τ) cos(τ).

Using Python, the O(ε2) solution is

x2(τ) =
1

512
sin(τ) (42τ + 512ω2τ + 23 sin(2τ)− sin(4τ)) ,

and selecting ω2 = − 21
256 avoids secular terms.

The two-term uniformly valid expansion of equation (5.12) is

x(τ, ε) ∼ xLP = cos(τ) +
ε

8
sin2(τ) cos(τ),

where

τ = t

(
1− 3

8
ε− 21

256
ε2 +O(ε3)

)
,

as ε → 0. Note that the straining transformation is given to a higher or-
der than the expansion of the solution. The difference between the two-
term uniform asymptotic expansion and the numerical solution is depicted in
Figure 5.12.
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Figure 5.12: The error between the numerical solution xN and the two-term
Linstedt-Poincaré expansion xLP for the Duffing system (5.12) when ε = 0.01.

Unfortunately, the Lindstedt-Poincaré technique does not always work for
oscillatory systems. An example of its failure is provided by the van der Pol
equation (5.13).

Example 10. Show that the Lindstedt-Poincaré technique fails for the ODE
(5.13) with initial conditions x(0) = 1 and ẋ(0) = 0.

Solution. Substituting (5.15) into (5.13) using Python gives the following
order equations:

O(1) :
d2x0

dτ2
+ x0 = 0,

x0(τ = 0) = 1,
dx0

dτ
(τ = 0) = 0,

O(ε) :
d2x1

dτ2
+ x1 =

dx0

dτ
− x2

0

dx0

dτ
− 2ω1

d2x0

dτ2
,

x1(0) = 0,
dx1

dτ
(0) = 0,

The O(1) solution is x0(τ) = cos(τ). Using Python, the solution to the O(ε)
equation can be simplified to

x1(τ) =
1

16
(6τ cos(τ)− (5− 16τω1 + cos(2τ)) sin(τ))

or

x1(τ) =
1

16
({6τ cos(τ) + 16τω1 sin(τ)} − (5 + cos(2τ)) sin(τ)) .

To remove secular terms set ω1 = − 3
8 cot(τ), then

x(τ, ε) = cos(τ) +O(ε),

where

τ = t− 3

8
εt cot(t) +O(ε2).
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This is invalid since the cotangent function is singular when t = nπ, where n
is an integer. Unfortunately, the Lindstedt-Poincaré technique does not work
for all ODEs of the form (5.11); it cannot be used to obtain approximations
that evolve aperiodically on a slow time scale.

Consider the van der Pol equation (5.13), Figure 5.13 shows a trajectory
starting at x(0) = 0.1, ẋ(0) = 0 for ε = 0.05 and 0 ≤ t ≤ 800. The trajec-
tory spirals around the origin and it takes many cycles for the amplitude to
grow substantially. As t → ∞, the trajectory asymptotes to a limit cycle
of approximate radius two. This is an example of a system whose solutions
depend simultaneously on widely different scales. In this case there are two
time scales: a fast time scale for the sinusoidal oscillations ∼ O(1), and a slow
time scale over which the amplitude grows ∼ O( 1ε ). The method of multiple
scales introduces new slow-time variables for each time scale of interest in
the problem.

The Method of Multiple Scales
Introduce new time scales, say, τ0 = t and τ1 = εt, and seek approximate
solutions of the form

x(t, ε) ∼ x0 (τ0, τ1) + εx1 (τ0, τ1) + · · · . (5.16)

Substitute into the ODE and solve the resulting PDEs. An example is given
below.

Example 11. Use the method of multiple scales to determine a uniformly
valid one-term expansion for the van der Pol equation (5.13) with initial
conditions x(0) = a and ẋ(0) = 0.

–3

–3

–2

–1

0

1

2

3

–2 –1 0 1 2 3

x

dx
dt

Figure 5.13: A trajectory for the van der Pol equation (5.13) when ε = 0.05.
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Solution. Substituting equation (5.16) into (5.13) using Python gives the
following order equations:

O(1) :
∂2x0

∂τ20
+ x0 = 0,

O(ε) :
∂2x1

∂τ20
+ x1 = −2

∂x0

∂τ0τ1
−
(
x2
0 − 1

) ∂x0

∂τ0
.

The general solution to the O(1) PDE may be found using Python,

x0 (τ0, τ1) = c1(τ1) cos(τ0) + c2(τ1) sin(τ0)

which using trigonometric identities can be expressed as

x0 (τ0, τ1) = R(τ1) cos(τ0 + θ(τ1)), (5.17)

where R(τ1) and θ(τ1) are the slowly varying amplitude and phase of x0,
respectively. Substituting (5.17), the O(ε) equation becomes

∂2x1

∂τ20
+ x1 =− 2

(
dR

dτ1
sin(τ0 + θ(τ1)) +R(τ1)

dθ

dτ1
cos(τ0 + θ(τ1))

)

−R(τ1) sin(τ0 + θ(τ1))
(
R2(τ1) cos

2(τ0 + θ(τ1))− 1
)
. (5.18)

In order to avoid resonant terms on the right-hand side which lead to secular
terms in the solution it is necessary to remove the linear terms cos(τ0+θ(τ1))
and sin(τ0+θ(τ1)) from the equation. Use the trigsimp command in Python to
reduce an expression to a form linear in the trigonometric function. Equation
(5.18) then becomes

∂2x1

∂τ20
+ x1 =

{
−2

dR

dτ1
+R− R3

4

}
sin(τ0 + θ(τ1))

{
−2R

dθ

dτ1

}
cos(τ0 + θ(τ1))−

R3

4
sin(3τ0 + 3θ(τ1)).

To avoid secular terms set

− 2
dR

dτ1
+R− R3

4
= 0 and

dθ

dτ1
= 0. (5.19)

The initial conditions are x0(0, 0) = a and ∂x0

∂τ0
= 0 leading to θ(0) = 0 and

R(0) = a
2 . The solutions to system (5.19) with these initial conditions are

easily computed with Python, thus

R(τ1) =
2√

1 +
(

4
a2 − 1

)
e−τ1

and θ(τ1) = 0.
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Therefore, the uniformly valid one-term solution is

x0(τ0, τ1) =
2 cos(τ0)√

1 +
(

4
a2 − 1

)
e−τ1

+O(ε)

or

x(t) =
2 cos(t)√

1 +
(

4
a2 − 1

)
e−εt

+O(ε).

As t → ∞, the solution tends asymptotically to the limit cycle x = 2 cos(t)+
O(ε), for all initial conditions. Notice that only the initial condition a = 2
gives a periodic solution.

Figure 5.14 shows the error between the numerical solution and the one-
term multiple scale approximation, say, xMS , when ε = 0.01, and x(0) =
1, ẋ(0) = 0.

5.5 Python Programs

See earlier chapters for comments to aid understanding of some of the com-
mands listed within the programs.

# Program 05a: Limit cycle for Fitzhugh-Nagumo.

# See Figure 5.3.

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import odeint

20

–0.6
–0.4
–0.2

0.2
0.4
0.6

xN– xMS

40 60 80 100
t

Figure 5.14: The error between the numerical solution xN and the one-term
multiple scale expansion xMS for the van der Pol equation (5.13) when ε =
0.01, and x(0) = 1, ẋ(0) = 0.
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theta = 0.14

omega = 0.112

gamma = 2.54

epsilon = 0.01;

xmin = -0.5

xmax = 1.5

ymin = 0

ymax = 0.3;

def dx_dt(x, t):

return [-x[0] * (x[0] - theta) * (x[0] - 1) - x[1] + omega,

epsilon * (x[0] - gamma * x[1])]

# Trajectories in forward time.

xs=odeint(dx_dt, [0.5, 0.09], np.linspace(0, 100, 1000))

plt.plot(xs[:,0], xs[:,1], "r-")

# Label the axes and set fontsizes.

plt.xlabel(’u’, fontsize=15)

plt.ylabel(’v’, fontsize=15)

plt.tick_params(labelsize=15)

plt.xlim(xmin, xmax)

plt.ylim(ymin, ymax);

# Plot the nullclines.

x=np.arange(xmin, xmax, 0.01)

plt.plot(x, x/gamma, ’b--’, x, -x * (x - theta) * (x - 1)

+ omega, ’b--’)

plt.show()

# Program 05b: Example 7, approximate solutions.

# See Figure 5.9.

from scipy.integrate import odeint

import matplotlib.pyplot as plt

import numpy as np

eps=0.3

def ODE(x, t):

return eps*x**2-x

x0 = 2

t = np.linspace(0, 10, 1000)

sol = odeint(ODE, x0, t)

x = np.array(sol).flatten()

plt.plot(t,x,label=’x(t)’)

plt.plot(t,2*np.exp(-t),label=’O(1)’)
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plt.plot(t,2*np.exp(-t)+4*eps*(np.exp(-t)-np.exp(-2*t)), \

label=’O($\epsilon $)’)

plt.plot(t,2*np.exp(-t)+4*eps*(np.exp(-t)-np.exp(-2*t))+ \

eps**2*8*(np.exp(-t)-2*np.exp(-2*t)+np.exp(-3*t)), \

label=’O($\epsilon^2$)’)

plt.xlabel(’t’, fontsize=15)

plt.ylabel(’x’, fontsize=15)

plt.tick_params(labelsize=15)

plt.xlim(0, 8)

plt.ylim(0, 2.1)

plt.legend()

plt.show()

# Program 05c: Error between xN and x0. See Figure 5.10.

# Error between one term solution and numerical solution.

from scipy.integrate import odeint

import matplotlib.pyplot as plt

import numpy as np

def dx_dt(x,t):

return [x[1], 0.01 * x[0]**3 - x[0]]

x0 = [1, 0]

ts = np.linspace(0, 100, 2000)

xs = odeint(dx_dt, x0, ts)

xN = xs[:, 0]

xpert0 = np.cos(ts)

plt.plot(ts, xN - xpert0)

plt.xlabel(’t’)

plt.ylabel(’$x_N-x_0$’)

plt.show()

# Program 05d: The Lindstedt-Poincare Method

# Deriving the order epsilon equations.

# See Example 9.

from sympy import collect, expand, Function, Symbol

x0 = Function(’x0’)

x1 = Function(’x1’)

x2 = Function(’x2’)

x = Function(’x’)

t = Symbol(’t’)

eps = Symbol(’eps’)

w1 = Symbol(’w1’)
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w2 = Symbol(’w2’)

x = x0(t) + eps * x1(t) + eps ** 2 * x2(t)

expr = (1 + eps * w1 + eps ** 2 * w2) **2 * x.diff(t, t) + x

- eps * x ** 3

expr = expand(expr)

expr = collect(expr, eps)

print(expr)

5.6 Exercises

1. Prove that the system

ẋ = y + x

(
1

2
− x2 − y2

)
, ẏ = −x+ y

(
1− x2 − y2

)

has a stable limit cycle. Plot the limit cycle.

2. By considering the flow across the square with coordinates (1, 1), (1,−1),
(−1,−1), (−1, 1), centered at the origin, prove that the system

ẋ = −y + x cos(πx), ẏ = x− y3

has a stable limit cycle. Plot the vector field, limit cycle, and square.

3. Prove that the following systems have a unique limit cycle:

(a) ẋ = x− y − x3, ẏ = x+ y − y3;

(b) dx
dt = −y+ x

(
1−μx2−(μ+ρ)y2

)
, dy

dt = x+ y
(
1−μx2−(μ+ ρ)y2

)
,

where μ > ρ > 0.

4. Prove that the system

ẋ = y + x(α− x2 − y2), ẏ = −x+ y(1− x2 − y2),

where 0 < α < 1 has a limit cycle and determine its stability.

5. For which parameter values does the Holling-Tanner model

ẋ = xβ
(
1− x

k

)
− rxy

(a+ ax)
, ẏ = by

(
1− Ny

x

)

have a limit cycle?

6. Plot phase portraits for the Liénard system

ẋ = y − μ(−x+ x3), ẏ = −x,

when (a) μ = 0.01, and (b) μ = 10.
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7. Prove that none of the following systems have limit cycles:

(a) ẋ = y, ẏ = −x− (1 + x2 + x4)y;

(b) ẋ = x− x2 + 2y2, ẏ = y(x+ 1);

(c) ẋ = y2 − 2x, ẏ = 3− 4y − 2x2y;

(d) ẋ = −x+ y3 − y4, ẏ = 1− 2y − x2y + x4;

(e) ẋ = x2 − y − 1, ẏ = y(x− 2);

(f) ẋ = x− y2(1 + x3), ẏ = x5 − y;

(g) ẋ = 4x− 2x2 − y2, ẏ = x(1 + xy).

8. Prove that neither of the following systems have limit cycles using the
given multipliers:

(a) ẋ = x(4 + 5x+ 2y), ẏ = y(−2 + 7x+ 3y), ψ = 1
xy2 .

(b) ẋ = x(β − δx− γy), ẏ = y(b− dy − cx), ψ = 1
xy .

In case (b), prove that there are no limit cycles in the first quadrant
only. These differential equations were used as a general model for
competing species in Chapter 4.

9. Use the Lindstedt-Poincaré technique to obtain:

(a) a one-term uniform expansion for the ODE d2x
dt2 +x = εx

(
1−

(
dx
dt

)2)
,

with initial conditions x(0) = a and ẋ(0) = 0.

(b) TheO
(
ε2
)
solution to the van der Pol equation: d2x

dt2 +ε
(
x2−1

)
dx
dt+

x = 0, given that x(0) = a, ẋ(0) = 0.

Hint: Show that secular terms are removed by choosing ω1 =
0, a = 2 and ω2 = − 1

16 .

(c) The O
(
ε2
)
solution to the nonlinear spring equation:

d2x

dt2
+ εx3 + x = 0,

given that x(0) = b, ẋ(0) = 0.

Hint: Show that secular terms are removed by choosing ω1 = 3b2

8

and ω2 = − 21b4

256 .
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10. Using the method of multiple scales, show that the one-term uniform
valid expansion of the ODE

d2x

dt2
+ x = −ε

dx

dt
,

with initial conditions x(0) = b, ẋ(0) = 0 is

x(t, ε) ∼ xMS = be−
εt
2 cos(t),

as ε → 0.
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Chapter 6

Hamiltonian Systems,
Lyapunov Functions, and
Stability

Aims and Objectives

• To study Hamiltonian systems in the plane.

• To investigate stability using Lyapunov functions.

On completion of this chapter, the reader should be able to

• prove whether or not a system is Hamiltonian;

• sketch phase portraits of Hamiltonian systems;

• use Lyapunov functions to determine the stability of a critical point;

• distinguish between stability and asymptotic stability.

The theory of Hamiltonian (or conservative) systems in the plane is in-
troduced. The differential equations are used to model dynamical systems in
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which there is no energy loss. Hamiltonian systems are also used extensively
when bifurcating limit cycles in the plane (see Chapters 10 and 11).

Sometimes it is not possible to apply the linearization techniques to de-
termine the stability of a critical point or invariant set. In certain cases,
the flow across level curves, defined by Lyapunov functions, can be used to
determine the stability.

6.1 Hamiltonian Systems in the Plane

Definition 1. A system of differential equations on �2 is said to be Hamil-
tonian with one degree of freedom if it can be expressed in the form

dx

dt
=

∂H

∂y
,

dy

dt
= −∂H

∂x
, (6.1)

where H(x, y) is a twice-continuously differentiable function. The system
is said to be conservative and there is no dissipation. In applications, the
Hamiltonian is defined by

H(x, y) = K(x, y) + V (x, y),

where K is the kinetic energy and V is the potential energy. Hamiltonian
systems with two degrees of freedom will be discussed in Chapter 9.

Theorem 1 (Conservation of Energy). The total energy H(x, y) is a first
integral and a constant of the motion.

Proof. The total derivative along a trajectory is given by

dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂y

dy

dt
= 0

from the chain rule and (6.1). Therefore, H(x, y) is constant along the so-
lution curves of (6.1), and the trajectories lie on the contours defined by
H(x, y) = C, where C is a constant.

Consider a simple mechanical system which is Hamiltonian in the plane.

The Simple Nonlinear Pendulum. The differential equation used to
model the motion of a pendulum in the plane (see Figure 6.1) may be derived
using Newton’s law of motion:

d2θ

dt2
+

g

l
sin θ = 0, (6.2)
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where θ is the angular displacement from the vertical, l is the length of the
arm of the pendulum, which swings in the plane, and g is the acceleration
due to gravity.

θ

Pivot

Figure 6.1: A simple nonlinear pendulum.

This model does not take into account any resistive forces, so once the
pendulum is set into motion, it will swing periodically forever, thus obeying
the conservation of energy. The system is called conservative since no energy
is lost. A periodically forced pendulum will be discussed in Chapter 9.

Let θ̇ = φ. Then system (6.2) can be written as a planar system in the
form

θ̇ = φ, φ̇ = −g

l
sin θ. (6.3)

The critical points occur at (nπ, 0) in the (θ, φ) plane, where n is an
integer. It is not difficult to show that the critical points are hyperbolic if n
is odd and nonhyperbolic if n is even. Therefore, Hartman’s theorem cannot
be applied when n is even. However, system (6.3) is a Hamiltonian system

with H(θ, φ) = φ2

2 − g
l cos θ (kinetic energy+potential energy), and therefore

the solution curves may be plotted. The direction field may be constructed
by considering dφ

dθ , θ̇, and φ̇. Solution curves and direction fields are given in
Figure 6.2(a).

The axes of Figure 6.2(a) are the angular displacement (θ) and angular
velocity (θ̇). The closed curves surrounding the critical points (2nπ, 0) rep-
resent periodic oscillations, and the wavy lines for large angular velocities
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Figure 6.2: [Python] (a) A contour plot for system (6.3) when −4π ≤ θ ≤ 4π.
(b) The surface z = H(θ, φ).

correspond to motions in which the pendulum spins around its pivotal point.
The closed curves correspond to local minima on the surface z = H(θ, φ), and
the unstable critical points correspond to local maxima on the same surface.

Definition 2. A critical point of the system

ẋ = f(x), x ∈ �2, (6.4)

at which the Jacobian matrix has no zero eigenvalues is called a nondegenerate
critical point ; otherwise, it is called a degenerate critical point .

Theorem 2. Any nondegenerate critical point of an analytic Hamiltonian
system is either a saddle point or a center.

Proof. Assume that the critical point is at the origin. The Jacobian matrix
is equal to

JO =

(
∂2H
∂x∂y (0, 0)

∂2H
∂y2 (0, 0)

−∂2H
∂x2 (0, 0) − ∂2H

∂y∂x (0, 0)

)
.

Now trace(J0) = 0 and

det(J0) =
∂2H

∂x2
(0, 0)

∂2H

∂y2
(0, 0)−

(
∂2H

∂x∂y
(0, 0)

)2

.

The origin is a saddle point if det(J0) < 0. If det(J0) > 0, then the origin
is either a center or a focus. Note that the critical points of system (6.1)
correspond to the stationary points on the surface z = H(x, y). If the origin
is a focus, then the origin is not a strict local maximum or minimum of the
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Hamiltonian function. Suppose that the origin is a stable focus, for instance.
Then

H(x0, y0) = lim
t→∞

H(x(t, x0, y0), y(t, x0, y0)) = H(0, 0),

for all (x0, y0) ∈ Nε(0, 0), where Nε denotes a small deleted neighborhood of
the origin. However, H(x, y) > H(0, 0) at a local minimum and H(x, y) <
H(0, 0) at a local maximum, a contradiction. A similar argument can be
applied when the origin is an unstable focus.

Therefore, a nondegenerate critical point of a Hamiltonian is either a
saddle point or a center.

Example 1. Find the Hamiltonian for each of the following systems and
sketch the phase portraits:

(a) ẋ = y, ẏ = x+ x2;

(b) ẋ = y + x2 − y2, ẏ = −x− 2xy.

Solution. (a) Integration gives H(x, y) = y2

2 − x2

2 − x3

3 ; the solution curves
are given by H(x, y) = C. There are two critical points at (0, 0) and (−1, 0),
which are both nondegenerate. The critical point at the origin is a saddle
point or col from linearization, and the eigenvectors are (1,−1)T and (1, 1)T .
The critical point at (−1, 0) is a center from Theorem 1. If y > 0, then ẋ > 0,
and if y < 0, then ẋ < 0. A phase portrait is given in Figure 6.3.

Figure 6.3: A phase portrait for Example 1(a).
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(b) Integration gives H(x, y) = x2

2 + y2

2 +x2y− y3

3 ; the solution curves are
given by H(x, y) = C. There are four critical points at O = (0, 0), A = (0, 1),

B =
(√

3
2 ,− 1

2

)
, and C =

(
−

√
3
2 ,− 1

2

)
, which are all nondegenerate. The

critical point at the origin is a center by Theorem 1, and the critical points
at A,B, and C are saddle points or cols from linearization. The eigenvectors
determine the stable and unstable manifolds of the cols. The eigenvectors for
point A are (1,

√
3)T and (1,−

√
3)T ; the eigenvectors for B are (1,−

√
3)T

and (1, 0)T ; and the eigenvectors for C are (1, 0)T and (1,
√
3)T . The solution

curves and direction fields are shown in Figure 6.4.

Definition 3. Suppose that x0 is a critical point of system (6.4). If Λ+(γ) =
Λ−(γ) = x0, then γ is a homoclinic orbit .

An example of a homoclinic orbit is given in Figure 6.3. The unstable and
stable manifolds from the origin form a homoclinic loop around the critical
point at (−1, 0). A homoclinic orbit connects a critical point to itself and
takes an infinite amount of time to make the connection.

Figure 6.4: A phase portrait for Example 1(b). The lines y = − 1
2 , y =

−
√
3x+ 1, and y =

√
3x+ 1 are invariant.

Definition 4. Suppose that x0 and y0 are distinct critical points. If Λ+(γ) =
x0 and Λ−(γ) = y0, then γ is called a heteroclinic orbit .
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Examples of heteroclinic orbits are given in Figure 6.4. They are the

three orbits lying on the line segments {y = − 1
2 ,−

√
3
2 < x <

√
3
2 }, {y =

−
√
3x+ 1,−

√
3
2 < x <

√
3
2 }, and {y =

√
3x+ 1,−

√
3
2 < x <

√
3
2 }.

Definition 5. A separatrix is an orbit that divides the phase plane into
two distinctly different types of qualitative behavior. The homoclinic and
heteroclinic orbits are examples of separatrix cycles.

For example, in Figure 6.3, orbits are bounded inside the homoclinic orbit
surrounding the point(−1, 0) and unbounded outside it.

6.2 Lyapunov Functions and Stability

Consider nonlinear systems of the form (6.4). The stability of hyperbolic
critical points may be determined from the eigenvalues of the Jacobian ma-
trix. The critical point is stable if the real part of all of the eigenvalues is
negative and unstable otherwise. If a critical point is nonhyberbolic, then a
method due to Lyapunov may sometimes be used to determine the stability
of the critical point.

Imagine a system defined by the potential function V (x, y), where

ẋ = −∂V

∂x
, ẏ = −∂V

∂y
.

The negative signs arise from the analogies with potential energy from physics.
Now

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
= −

(
∂V

∂x

)2

−
(
∂V

∂y

)2

≤ 0.

This implies that V (t) decreases along trajectories and the motion is always
toward lower potentials. Now ẋ = ẏ = 0 when ∂V

∂x = ∂V
∂y = 0, corresponding

to local maxima, minima, or saddle points on V (x, y). Local maxima cor-
respond to unstable critical points, and local minima correspond to stable
critical points.

Example 2. Plot a phase portrait for the system ẋ = x − x3, ẏ = −y, and
plot the potential function for this system.

Solution. There are three critical points at O = (0, 0), A = (−1, 0), and
B = (1, 0). The origin is unstable and the critical points A and B are stable,
as seen in Figure 6.5(a). The function z = V (x, y) = −x2/2 + x4/4 + y2/2,
plotted in Figure 6.5(b), is known as the double-well potential . The system
is multistable since it has two stable critical points.

The local minima in Figure 6.5(b) correspond to the stable critical points
at A and B. The local maximum at the origin corresponds to the saddle
point in Figure 6.5(a).
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Figure 6.5: (a) A phase portrait for Example 2. (b) The double-well potential.

Definition 6. A critical point, say, x0, of system (6.4) is called stable if given
ε > 0 there is a δ > 0 such that for all t ≥ t0, ‖ x(t) − x0(t) ‖< ε whenever
‖ x(t0)− x0(t0) ‖< δ, where x(t) is a solution of (6.4).

Definition 7. A critical point, say, x0, of system (6.4) is called asymptoti-
cally stable if it is stable and there is an η > 0 such that

lim
t→∞

‖ x(t)− x0(t) ‖= 0,

whenever ‖ x(t0)− x0(t0) ‖< η.

A trajectory near a stable critical point will remain close to that point,
whereas a trajectory near an asymptotically stable critical point will move
closer and closer to the critical point as t → ∞.

The following theorem holds for system (6.4) when x ∈ �n. Examples in
�3 are given in Chapter 8.

The Lyapunov Stability Theorem. Let E be an open subset of �n con-
taining an isolated critical point x0. Suppose that f is continuously differen-
tiable and that there exists a continuously differentiable function, say, V (x),
which satisfies the conditions:

• V (x0) = 0;

• V (x) > 0, i f x �= x0,
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where x ∈ �n. Then

1. if V̇ (x) ≤ 0 for all x ∈ E, x0 is stable;

2. if V̇ (x) < 0 for all x ∈ E, x0 is asymptotically stable;

3. if V̇ (x) > 0 for all x ∈ E, x0 is unstable.

Proof. 1. Choose a small neighborhood Nε surrounding the critical point
x0. In this neighborhood, V̇ (x) ≤ 0, so a positive semiorbit starting inside
Nε remains there forever. The same conclusion is drawn no matter how small
ε is chosen to be. The critical point is therefore stable.

2. Since V̇ (x) < 0, the Lyapunov function must decrease monotonically
on every positive semiorbit x(t). Let φt be the flow defined by f(x). Then
either V (φt) → x0 as t → ∞ or there is a positive semiorbit x(t) such that

V (φt) ≥ n > 0, for all t ≥ t0, (6.5)

for some n > 0. Since x0 is stable, there is an annular region A, defined by
n ≤ V (x) ≤ c, containing this semiorbit. Suppose that V̇ attains its upper
bound in A, say, −N , so

V̇ (x) ≤ −N < 0, x ∈ A, N > 0.

Integration gives

V (x(t))− V (x(t0)) ≤ −N(t− t0),

where t > t0. This contradicts (6.5), and therefore no path fails to approach
the critical point at x0. The critical point is asymptotically stable.

3. Since V̇ (x) > 0, V (x) is strictly increasing along trajectories of (11.4).
If φt is the flow of (11.4), then

V (φt) > V (x0) > 0

for t > 0 in a small neighborhood of x0, Nε. Therefore,

V (φt)− V (x0) ≥ kt

for some constant k and t ≥ 0. Hence for sufficiently large t,

V (φt) > kt > K,

where K is the maximum of the continuous function V (x) on the compact
set Nε. Therefore, φt lies outside the closed set Nε and x0 is unstable.
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Definition 8. The function V (x) is called a Lyapunov function.

Unfortunately, there is no systematic way to construct a Lyapunov func-
tion. The Lyapunov functions required for specific examples will be given
in this book. Note that if V̇ (x) = 0, then all trajectories lie on the curves
(surfaces in �n) defined by V (x) = C, where C is a constant. The quantity
V̇ gives the rate of change of V along trajectories, or in other words, V̇ gives
the direction that trajectories cross the level curves V (x) = C.

Example 3. Determine the stability of the origin for the system

ẋ = −y3, ẏ = x3.

Solution. The eigenvalues are both zero and the origin is a degenerate
critical point. A Lyapunov function for this system is given by V (x, y) =
x4 + y4, and furthermore

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
= 4x3(−y3) + 4y3(x3) = 0.

Hence the solution curves lie on the closed curves given by x4+ y4 = C. The
origin is thus stable but not asymptotically stable. The trajectories that start
near to the origin remain there but do not approach the origin asymptotically.
If y > 0, then ẋ < 0, and if y < 0, then ẋ > 0. The level curves and direction
fields are given in Figure 6.6.

Example 4. Investigate the stability of the origin for the system

ẋ = y, ẏ = −x− y(1− x2)

using the Lyapunov function V (x, y) = x2 + y2.

Solution. Now

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
= 2x(y) + 2y(−x− y + yx2),

so
dV

dt
= 2y2(x2 − 1)

and V̇ ≤ 0 if |x| ≤ 1. Therefore, V̇ = 0, if either y = 0 or x = ±1. When
y = 0, ẋ = 0 and ẏ = −x, which means that a trajectory will move off the
line y = 0 when x �= 0. Hence if a trajectory starts inside the circle of radius
one centered at the origin, then it will approach the origin asymptotically.
The origin is asymptotically stable.
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Figure 6.6: A phase portrait for Example 3.

Definition 9. Given a Lyapunov function V (x, y), the Lyapunov domain of
stability is defined by the region for which V̇ (x, y) < 0.

Example 5. Prove that the origin of the system

ẋ = −8x− xy2 − 3y3, ẏ = 2x2y + 2xy2

is asymptotically stable using the Lyapunov function V (x, y) = 2x2 + 3y2.
Determine the Lyapunov domain of stability based on V (x, y).

Solution. Now

V̇ = 4x(−8x− xy2 − 3y3) + 6y(2x2y + 2xy2) = 8x2(y2 − 4)

and V̇ ≤ 0 if |y| ≤ 2. Therefore, V̇ = 0 if either x = 0 or y = ±2. When
x = 0, ẋ = −3y3 and ẏ = 0, which means that a trajectory will move off
the line x = 0 when y �= 0. Now V̇ < 0 if |y| < 2. This implies that V̇ < 0
as long as V (x, y) = 2x2 + 3y2 < 12. This region defines the domain of
Lyapunov stability. Therefore, if a trajectory lies wholly inside the ellipse
2x2 +3y2 = 12, it will move to the origin asymptotically. Hence the origin is
asymptotically stable.

An approximation of the true domain of stability for the origin of the
system in Example 5 is indicated in Figure 6.7(a). Notice that it is larger
than the Lyapunov domain of stability (Figure 6.7(b)) and that the x-axis is
invariant.
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a b

Figure 6.7: (a) A phase portrait for Example 5. (b) The domain of Lyapunov
stability.

Example 6. Consider the system defined by:

dx

dt
= −x+ y2 + 2x2,

dy

dt
= −y + y2.

Prove that the origin is asymptotically stable within a suitable basin of at-
traction. Determine this basin of attraction given that V (x, y) = x2 + y2 is
a suitable Lyapunov function.

Solution. Now

V̇ = (2x)(−x+ y2 +2x2)+ (2y)(−y+ y2) = 2
(
x2(−1 + 2x) + y2(y − 1 + x

)
.

Therefore, dV
dt < 0, as long as x < 1

2 and y < 1− x. Plotting these lines, it is
not difficult to see that the basin of attraction is estimated by V (x, y) < 1

4 .

Example 7. A suitable Lyapunov function for the recurrent Hopfield net-
work modeled using the differential equations

ẋ = −x+ 2

(
2

π
tan−1

(γπx
2

))
, ẏ = −y + 2

(
2

π
tan−1

(γπy
2

))
,

is given by

V (a1, a2) = −
(
a21 + a22

)
− 4

γπ2

(
ln
(
cos

(πa1
2

))
+ ln

(
cos

(πa2
2

)))
,
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where

a1(t) =
2

π
tan−1

(γπx
2

)
and a2(t) =

2

π
tan−1

(γπy
2

)
.

Set γ = 0.7. A vector field plot for the recurrent Hopfield network is given
in Chapter 20. There are nine critical points, four are stable and five are
unstable.

Plot the function V (a1, a2) and the corresponding contour plot when
|ai| ≤ 1, i = 1, 2. Continuous Hopfield models are discussed in Chapter 20.

Solution. Figure 6.8(a) shows the surface plot V (a1, a2) when γ = 0.7,
there is one local maximum and there are four local minima. Figure 6.8(b)
shows the corresponding contour plot.

Figure 6.8: The Lyapunov function V (a1, a2) when γ = 0.7. (a) Surface plot;
(b) contour plot.

6.3 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

meshgrid # Return coordinate matrices from

coordinate vectors.

ravel # Return a contiguous flattened array.
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# Program 06a: Contour plot. See Figure 6.2(a).

import numpy as np

import matplotlib.pyplot as plt

xlist = np.linspace(-10.0, 10.0, 100)

ylist = np.linspace(-4.0, 4.0, 100)

X, Y = np.meshgrid(xlist, ylist)

Z = Y ** 2 / 2 - 5 * np.cos(X)

plt.figure()

plt.contour(X, Y, Z)

plt.xlabel(r’$\theta$’, fontsize=15)

plt.ylabel(r’$\phi$’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 06b: Surface plot of Hamiltonian. See Figure 6.2(b).

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

def fun(x, y):

return y ** 2 / 2 - 5 * np.cos(x)

fig = plt.figure()

ax = fig.add_subplot(111, projection = ’3d’)

x = np.arange(-10.0, 10.0, 0.1)

y = np.arange(-4.0, 4.0, 0.1)

X, Y = np.meshgrid(x, y)

zs = np.array([fun(x,y) for x, y in zip(np.ravel(X), np.ravel(Y))])

Z = zs.reshape(X.shape)

ax.plot_surface(X, Y, Z)

ax.set_xlabel(r’$\theta$’, fontsize=12)

ax.set_ylabel(r’$\phi$’, fontsize=12)

ax.set_zlabel(r’$H(\theta,\phi)$’, fontsize=12)

plt.tick_params(labelsize=12)

ax.view_init(30, -70)

plt.show()

6.4 Exercises

1. Find the Hamiltonian of the system

ẋ = y, ẏ = x− x3

and sketch a phase portrait.

2. Given the Hamiltonian function H(x, y) = y2

2 + x2

2 − x4

4 , sketch a phase
portrait for the Hamiltonian system.
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3. Plot a phase portrait for the damped pendulum equation

θ̈ + 0.15θ̇ + sin θ = 0

and describe what happens physically.

4. Plot a phase portrait of the system

ẋ = y(y2 − 1), ẏ = x(1− x2).

5. Investigate the stability of the critical points at the origin for the sys-
tems:

(a) ẋ = −y − x3, ẏ = x− y3, using the Lyapunov function V (x, y) =
x2 + y2;

(b) ẋ = x(x− α), ẏ = y(y − β), using the Lyapunov function

V (x, y) =
(x
α

)2

+

(
y

β

)2

;

(c) ẋ = y ẏ = y − x3, using the Lyapunov function V (x, y) = ax4 +
bx2 + cxy + dy2.

6. Prove that the origin is a unique critical point of the system

ẋ = −1

2
y(1 + x) + x(1− 4x2 − y2), ẏ = 2x(1 + x) + y(1− 4x2 − y2).

Determine the stability of the origin using the Lyapunov function V (x, y) =
(1− 4x2 − y2)2. Find Λ+(p) for each p ∈ �2. Plot a phase portrait.

7. Determine the values of a for which V (x, y) = x2 + ay2 is a Lyapunov
function for the system

ẋ = −x+ y − x2 − y2 + xy2, ẏ = −y + xy − y2 − x2y.

8. Determine the basin of attraction of the origin for the system

ẋ = x(x2 + y2 − 4)− y, ẏ = x+ y(x2 + y2 − 4)

using the Lyapunov function V (x, y) = x2 + y2.

9. Plot a phase portrait for the system in Exercise 8.

10. Consider the system:

ẋ = −2x− 3y + x2, ẏ = x+ y.

Prove that the origin is asymptotically stable. For suitable A and B,
in the Lyapunov function V (x, y) = x2 + Axy + By2, determine the
basin of attraction. Use Python to plot a phase portrait and the basin
of attraction.
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Chapter 7

Bifurcation Theory

Aims and Objectives

• To introduce bifurcation theory of continuous systems in the plane.

• To introduce the notion of steady-state solution and investigate multi-
stability and bistability.

• To introduce the theory of normal forms.

On completion of this chapter, the reader should be able to

• describe how a phase portrait changes as a parameter changes;

• animate phase portraits and plot bifurcation diagrams;

• take transformations to obtain simple normal forms;

• interpret the bifurcation diagrams in terms of physical behavior.

If the behavior of a dynamical system changes suddenly as a parameter
is varied, then it is said to have undergone a bifurcation. At a point of
bifurcation, stability may be gained or lost.

It may be possible for a nonlinear system to have more than one steady-
state solution. For example, different initial conditions can lead to different
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stable solutions. A system of this form is said to be multistable. Bifurcations
of the so-called large-amplitude limit cycles are discussed. By introducing
a feedback mechanism into the system it is possible to obtain hysteresis, or
bistable behavior.

7.1 Bifurcations of Nonlinear Systems in the
Plane

Definition 1. A vector field f ∈ �2, which is continuously differentiable, is
called structurally stable if small perturbations in the system ẋ = f(x) leave
the qualitative behavior unchanged. If small perturbations cause a change in
the qualitative behavior of the system, then f is called structurally unstable.

For example, the Lotka-Volterra model (Example 2, Chapter 4) is struc-
turally unstable, while the Holling-Tanner model (Example 3, Chapter 4) is
structurally stable.

Peixoto’s Theorem in the Plane. Let the vector field f be continuously
differentiable on a compact set, say, D. Then f is structurally stable on D if
and only if

• the number of critical points and limit cycles is finite and each is hy-
perbolic;

• there are no trajectories connecting saddle points to saddle points.

Consider systems of the form

ẋ = f(x, μ), (7.1)

where x ∈ �2 and μ ∈ �. A value, say, μ0, for which the vector field f(x, μ0)
is not structurally stable is called a bifurcation value.

Four simple types of bifurcation, all at nonhyperbolic critical points, will
be given in order to illustrate how the qualitative behavior of a structurally
unstable system of differential equations can change with respect to a pa-
rameter value. Certain bifurcations can be classified by the so-called normal
forms . By finding suitable transformations it is possible to reduce systems to
a normal form. Schematic diagrams depicting four normal form bifurcations
are illustrated below, and the theory of normal forms is introduced in the
next section along with some simple examples. The example bifurcations are
presented in the plane rather than on the line to give the reader more practice
at plotting phase portraits.
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7.1.1 A Saddle-Node Bifurcation

Consider the system

ẋ = μ− x2, ẏ = −y. (7.2)

The critical points are found by solving the equations ẋ = ẏ = 0. There
are (i) zero, (ii) one, or (iii) two critical points, depending on the value of μ.
Consider the three cases separately.

Case (i). When μ < 0, there are no critical points in the plane and the
flow is from right to left since ẋ < 0. If y > 0, then ẏ < 0 and if y < 0, then
ẏ > 0. A plot of the vector field is given in Figure 7.1(a). Note that the flow
is invariant on the x-axis.

Case (ii). When μ = 0, there is one critical point at the origin and it is
nonhyperbolic. The solution curves may be found by solving the differential
equation

dy

dx
=

ẏ

ẋ
=

y

x2
.

This is a separable differential equation (see Chapter 2) and the solution is

given by |y| = Ke−
1
x , where K is a constant. Note that ẋ < 0 for all x. The

vector field is plotted in Figure 7.1(b). Note that the flow is invariant along
both the x-axis and the y-axis.

Case (iii). When μ > 0, there are two critical points at A = (
√
μ, 0) and

B = (−√
μ, 0). Linearize in the usual way. The Jacobian matrix is given by

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
=

(
−2x 0
0 −1

)
,

where ẋ = P (x, y) and ẏ = Q(x, y). Therefore,

JA =

(
−2

√
μ 0

0 −1

)

and the eigenvalues and eigenvectors are given by λ1 = −2
√
μ, (1, 0)T and

λ2 = −1, (0, 1)T . The critical point at A is thus a stable node and the stable
manifolds are orthogonal to one another.

The Jordan matrix for the critical point at B is

JB =

(
2
√
μ 0

0 −1

)

and the eigenvalues and eigenvectors are λ1 = 2
√
μ, (1, 0)T and λ2 = −1,

(0, 1)T . This critical point is a saddle point. The vector field and orthogonal
stable and unstable manifolds are plotted in Figure 7.1(c).
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a b c

Figure 7.1: Vector field plots and manifolds when (a) μ < 0, (b) μ = 0, and
(c) μ > 0. There are no manifolds when μ < 0.

In summary, there are no critical points if μ is negative; there is one non-
hyperbolic critical point at the origin if μ = 0; and there are two critical
points—one a saddle and the other a node—when μ is positive. The qual-
itative behavior of the system changes as the parameter μ passes through
the bifurcation value μ0 = 0. The behavior of the critical points can be
summarized on a bifurcation diagram as depicted in Figure 7.2.

0

0 μ

x

Figure 7.2: A schematic of a bifurcation diagram for system (7.2) showing
a saddle-node bifurcation. The solid curves depict stable behavior and the
dashed curves depict unstable behavior.
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When μ < 0, there are no critical points, and as μ passes through zero
the qualitative behavior changes and two critical points bifurcate from the
origin. As μ increases, the critical points move farther and farther apart.
Note that the critical points satisfy the equation μ = x2, hence the parabolic
form of the bifurcation curve. More examples of saddle-node bifurcations are
given in Section 7.3.

7.1.2 A Transcritical Bifurcation

Consider the system
ẋ = μx− x2, ẏ = −y. (7.3)

The critical points are found by solving the equations ẋ = ẏ = 0. There
are either one or two critical points depending on the value of the parameter
μ. The bifurcation value is again μ0 = 0. Consider the cases (i) μ < 0, (ii)
μ = 0, and (iii) μ > 0 separately.

Case (i). When μ < 0, there are two critical points, one at O = (0, 0) and
the other at A = (μ, 0). The origin is a stable node and A is a saddle point.
A vector field and manifolds are plotted in Figure 7.3(a).

Case (ii). When μ = 0, there is one nonhyperbolic critical point at the
origin. The solution curves satisfy the differential equation

dy

dx
=

y

x2

which has solutions |y| = Ke−
1
x , where K is a constant. A vector field and

the manifolds through the origin are shown in Figure 7.3(b).
Case (iii). When μ > 0, there are two critical points, one at O = (0, 0)

and the other at B = (μ, 0). The origin is now a saddle point and B is a
stable node. A vector field and manifolds are plotted in Figure 7.3(c).

The behavior of the critical points can be summarized on a bifurcation
diagram as depicted in Figure 7.4.

7.1.3 A Pitchfork Bifurcation

Consider the system
ẋ = μx− x3, ẏ = −y. (7.4)

The critical points are found by solving the equations ẋ = ẏ = 0. There are
either one or three critical points depending on the value of the parameter
μ. The bifurcation value is again μ0 = 0. Consider the cases (i) μ < 0, (ii)
μ = 0, and (iii) μ > 0, separately.

Case (i). When μ < 0, there is one critical point at O = (0, 0). The origin
is a stable node. A vector field and the manifolds at the origin are shown in
Figure 7.5(a).
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Case (ii). When μ = 0, there is one nonhyperbolic critical point at the
origin. The solution curves satisfy the differential equation

dy

dx
=

y

x3

a b c

Figure 7.3: Vector field plots and manifolds when (a) μ < 0, (b) μ = 0, and
(c) μ > 0.

0

0 μ

x
x = μ

Figure 7.4: A bifurcation diagram for system (7.3) showing a transcritical
bifurcation. The solid lines depict stable behavior and the dashed lines depict
unstable behavior.

which has solutions |y| = Ke−
1

2x2 , where K is a constant. A vector field is
plotted in Figure 7.5(a).

Case (iii). When μ > 0, there are three critical points at O = (0, 0),
A = (

√
μ, 0), and B = (−√

μ, 0). The origin is now a saddle point and A and
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B are both stable nodes. A vector field and all of the stable and unstable
manifolds are plotted in Figure 7.5(b).

a b

Figure 7.5: Vector field plots and manifolds when (a) μ ≤ 0 and (b) μ > 0.

The behavior of the critical points can be summarized on a bifurcation
diagram as depicted in Figure 7.6.

0

0 μ

x

Figure 7.6: A schematic of a bifurcation diagram for system (7.4) showing a
pitchfork bifurcation. The solid curves depict stable behavior and the dashed
curves depict unstable behavior. Note the resemblance of the stable branches
to a pitchfork.
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7.1.4 A Hopf Bifurcation

Consider the system

ṙ = r(μ− r2), θ̇ = −1. (7.5)

The origin is the only critical point since θ̇ �= 0. There are no limit cycles if
(i) μ ≤ 0 and one if (ii) μ > 0. Consider the two cases separately.

Case (i). When μ ≤ 0, the origin is a stable focus. Since θ̇ < 0, the flow
is clockwise. A phase portrait and vector field are shown in Figure 7.7(a).

Case (ii). When μ > 0, there is an unstable focus at the origin and a
stable limit cycle at r =

√
μ since ṙ > 0 if 0 < r <

√
μ and ṙ < 0 if r >

√
μ.

A phase portrait is shown in Figure 7.7(b).
The qualitative behavior can be summarized on a bifurcation diagram

as shown in Figure 7.8. As the parameter μ passes through the bifurca-
tion value μ0 = 0, a limit cycle bifurcates from the origin. The ampli-
tude of the limit cycle grows as μ increases. Think of the origin blowing a
smoke ring. The program for an animation of a Hopf bifurcation is listed in
Section 7.4.

a b

Figure 7.7: [Python animation] Phase portraits when (a) μ ≤ 0 and (b)
μ > 0.

7.2 Normal Forms

This section introduces some basic theory of normal forms without any rig-
orous justification. To keep the theory simple, the author has decided to
illustrate the method for planar systems only. Note that the theory can be
applied to n-dimensional systems in general, see [2, 9], and [10]. The theory
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of normal forms began with Poincaré and Dulac and was later applied to
Hamiltonian systems by Birkhoff.

0

0 μ

r

Figure 7.8: A schematic of a bifurcation diagram for system (7.5) showing
a Hopf bifurcation. The solid curves depict stable behavior and the dashed
curves depict unstable behavior.

The basic idea is to take nonlinear transformations of the nonlinear system
ẋ = X(x), to obtain a linear system u̇ = Ju, where X(0) = 0,

(
x,X,u ∈ �2

)
and J is a Jacobian matrix (see Section 3.4). The nonlinear terms are removed
in a sequential manner starting with the quadratic terms. Of course, it is not
always possible to obtain a linear system. In the majority of cases, one has
to be satisfied with a “simplest” possible form, or normal form, which may
not be unique. Normal forms are useful in the study of the local qualitative
behavior of critical points and bifurcation problems.

In order to keep the explanations simple we will start by trying to elimi-
nate the quadratic terms of a planar system. Suppose that

ẇ = Aw +H2(w) + O
(
|w|3

)
, (7.6)

where w ∈ �2, H2 is a homogeneous polynomial vector of degree two, A is
a 2× 2 matrix, and O

(
|w|3

)
denotes higher order terms. Let w = Px, then

system (7.6) becomes

P ẋ = APx+H2(Px) + O
(
|x|3

)

and multiplying by P−1

ẋ = Jx+ h2(x) + O
(
|x|3

)
, (7.7)

where P is such that J = P−1AP is a Jacobian matrix, and h2(x) =
P−1H2(Px) is a homogeneous vector of degree two. Take a transformation
of the form

x = u+ f2(u) + O
(
|u|3

)
, (7.8)
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Substitute (7.8) into (7.7). Thus

u̇+Df2(u)u̇+O
(
|u|2

)
u̇ = J

(
u+ f2(u) + O

(
|u|3

))
+

h2

(
u+ f2(u) + O

(
|u|3

))
+O

(
|u|3

)
,

where D is the matrix of partial derivatives, an explicit example is given be-
low. Now h2 (u+ f2(u)) = h2(u)+O

(
|u|3

)
and u̇ = Ju+O

(
|u|2

)
, therefore

u̇ = Ju− (Df2(u)Ju− Jf2(u)) + h2(u) + O
(
|u|3

)
. (7.9)

Equation (7.9) makes it clear how one may remove the quadratic terms by
a suitable choice of the homogeneous quadratic polynomial f2. To eliminate
the quadratic terms one must find solutions to the equation

Df2(u)Ju− Jf2(u) = h2(u). (7.10)

The method of normal forms will now be illustrated by means of simple
examples.

Example 1. Determine the nonlinear transformation which eliminates terms
of degree two from the planar system

ẋ = λ1x+ a20x
2 + a11xy+ a02y

2, ẏ = λ2y+ b20x
2 + b11xy+ b02y

2, (7.11)

where λ1,2 �= 0.

Solution. Now

J =

(
λ1 0
0 λ2

)

and

h2(x) =

(
h12

h22

)
=

(
a20x

2 + a11xy + a02y
2

b20x
2 + b11xy + b02y

2

)
,

also

f2(u) =

(
f12
f22

)
=

(
f20u

2 + f11uv + f02v
2

g20u
2 + g11uv + g02v

2

)
.

Equating coefficients of u2, uv, and v2, equation (7.10) can be written in
the matrix form

MF = H

or more explicitly
⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 0 0 0
0 λ2 0 0 0 0
0 0 2λ2 − λ1 0 0 0
0 0 0 2λ1 − λ2 0 0
0 0 0 0 λ1 0
0 0 0 0 0 λ2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

f20
f11
f02
g20
g11
g02

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a20
a11
a02
b20
b11
b02

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The inverse of matrix M exists if and only if all of the diagonal elements are
nonzero. The computations above may be checked with Python.
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Definition 2. The 2-tuple of eigenvalues (λ1, λ2) is said to be resonant of
order 2 if at least one of the diagonal elements of M is zero.

Therefore, if none of the diagonal elements of M are zero

f20 =
a20
λ1

, f11 =
a11
λ2

, f02 =
a02

2λ2 − λ1
, g20 =

b20
2λ1 − λ2

, g11 =
b11
λ1

, g02 =
b02
λ2

,

and all of the quadratic terms can be eliminated from system (7.11) resulting
in a linear normal form u̇ = Ju.

Example 2. Find the change of coordinates of the form x = u+ f2(u) which
transforms the system

(
ẋ
ẏ

)
=

(
5 0
0 3

)(
x
y

)
+

(
5x2

0

)
, (7.12)

into the form (
u̇
v̇

)
=

(
5 0
0 3

)(
u
v

)
+O

(
|u|3

)
, (7.13)

Transform the system to verify the results.

Solution. Using the results from Example 1, f20 = 1, and

x = u+ u2, y = v.

Differentiating with respect to time gives

ẋ = u̇+ 2uu̇, ẏ = v̇.

Therefore

u̇ =
ẋ

1 + 2u
=

5x+ 5x2

1 + 2u
, v̇ = ẏ = 3y = 3v.

Now, taking a Taylor series expansion about u = 0,

1

1 + 2u
= 1− 2u+ 4u2 − 8u3 +O

(
u4
)
,

and

5x+ 5x2 = 5(u+ u2) + 5(u+ u2)2 = 5u+ 10u2 + 10u3 +O
(
u4
)
.

Therefore

u̇ = 5u
(
1 + 2u+ 2u2 +O

(
u3
)) (

1− 2u+ 4u2 +O
(
u3
))

, v̇ = 3v.

Finally, the linearized system is

u̇ = 5u+O
(
u3
)
, v̇ = 3v.

Note that in general, any terms that cannot be eliminated are called
resonance terms, as the third example demonstrates.
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Example 3. Determine the normal form of the following system with a
nonhyperbolic critical point at the origin.

(
ẋ
ẏ

)
=

(
λ1 0
0 0

)(
x
y

)
+

(
a20x

2 + a11xy + a02y
2

b20x
2 + b11xy + b02y

2

)
+O

(
|x|3

)
, (7.14)

where λ1 �= 0.

Solution. Referring to Example 1, in this case λ2 = 0, and the zero elements
in matrix M are in the second and sixth rows. Therefore there are resonance
terms, auv and bv2, and the normal form of equation (7.14) is given by

(
u̇
v̇

)
=

(
λ1 0
0 0

)(
u
v

)
+

(
auv
bv2

)
+O

(
|u|3

)
.

7.3 Multistability and Bistability

There are two types of Hopf bifurcation, one in which stable limit cycles
are created about an unstable critical point, called the supercritical Hopf
bifurcation (see Figure 7.8), and the other in which an unstable limit cycle is
created about a stable critical point, called the subcritical Hopf bifurcation
(see Figure 7.9).

0

0 μ

r

Figure 7.9: A schematic of a bifurcation diagram showing a subcritical Hopf
bifurcation. The solid curves depict stable behavior and the dashed curves
depict unstable behavior.

In the engineering literature, supercritical bifurcations are sometimes
called soft (or safe); the amplitude of the limit cycles build up gradually as
the parameter, μ in this case, is moved away from the bifurcation point. In
contrast, subcritical bifurcations are hard (or dangerous). A steady state, say
at the origin, could become unstable as a parameter varies and the nonzero
solutions could tend to infinity although they are more likely to tend to-
wards another finite-amplitude attractor in applications. An example of this
type of behavior can be found in Figure 7.9. As μ passes through zero from
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positive to negative values, the steady-state solution at the origin becomes
unstable and trajectories starting anywhere other than the origin would tend
to infinity.

It is also possible for limit cycles of finite amplitude to suddenly appear
as the parameter μ is varied. These limit cycles are known as large-amplitude
limit cycles. Examples of this type of behavior include surge oscillations in
axial flow compressors and wing rock oscillations in aircraft flight dynam-
ics; see [8] for examples. Generally, unstable limit cycles are not observed in
physical applications, so it is only the stable large-amplitude limit cycles that
are of interest. These limit cycles can appear in one of two ways; either there
is a jump from a stable critical point to a stable large-amplitude limit cycle
or there is a jump from one stable limit cycle to another of larger amplitude.
These bifurcations are illustrated in the following examples.

Large-Amplitude Limit Cycle Bifurcations.

Consider the system

ṙ = r(μ+ r2 − r4), θ̇ = −1. (7.15)

The origin is the only critical point since θ̇ �= 0. This critical point is stable
if μ < 0 and unstable if μ > 0. The system undergoes a subcritical Hopf
bifurcation at μ = 0 as in Figure 7.9. However, the new feature here is the
stable large-amplitude limit cycle which exists for, say, μ > μS = − 1

4 . In the
range μS < μ < 0, there exist two different stable solutions; hence system
(7.15) is multistable in this range. The choice of initial conditions determines
which stable limit cycle will be approached as t → ∞.

Definition 3. A dynamical system, say (7.1), is said to be multistable if
there is more than one possible stable attractor solution (including steady
states, limit cycles, and strange attractors (see Chapter 8)) for a fixed value
of the parameter μ. The stable attractor obtained depends on the initial
conditions.

The existence of multistable solutions allows for the possibility of bista-
bility (or hysteresis) as a parameter is varied. The two essential ingredients
for bistable behavior are nonlinearity and feedback . To create a bistable re-
gion there must be some history in the system. Bistability is also discussed
at some length in Chapter 16 when investigating nonlinear optical fiber res-
onators. Suppose that the parameter μ is increased from some value less
than μS . The steady state remains at r = 0 until μ = 0, where the origin
loses stability. There is a sudden jump (a subcritical Hopf bifurcation) to the
large-amplitude limit cycle, and the steady state remains on this cycle as μ is
increased further. If the parameter μ is now decreased, then the steady state
remains on the large-amplitude limit cycle until μ = μS , where the steady
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state suddenly jumps back to the origin (a saddle-node bifurcation of a limit
cycle) and remains there as μ is decreased further. In this way a bistable
region is obtained as depicted in Figure 7.10.

0

0 μμs

r

Figure 7.10: A schematic of a bifurcation diagram depicting bistable behavior
for system (7.15).

Definition 4. A dynamical system, say (7.1), has a bistable solution if there
are two stable states for a fixed parameter μ and the steady state obtained
depends on the history of the system.

Now consider the system

ṙ = r(μ− 0.28r6 + r4 − r2). θ̇ = −1. (7.16)

A bistable region may be obtained by increasing and then decreasing the
parameter μ as in the example above. A possible bifurcation diagram is
given in Figure 7.11. In this case, there is a supercritical Hopf bifurcation at
μ = 0 and saddle-node bifurcations of limit cycles at μB and μA, respectively.

Jumps between different stable states have been observed in mechanical
systems. Parameters need to be chosen which avoid such large-amplitude
limit cycle bifurcations, and research is currently underway in this respect.

Bistability also has many positive applications in the real-world; for ex-
ample, nonlinear bistable optical resonators are investigated in Chapter 16.
The author is also currently investigating multistability and bistability in a
wide range of disciplines, including biology.

A Saddle-Node on an Invariant Cycle (SNIC) Bifurcation. In this
case, a limit cycle bifurcates on an invariant cycle as a saddle point and a
stable node collide. This type of bifurcation is best illustrated by means of
an example.
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0

0 μμBμA

r

Figure 7.11: A schematic of a bifurcation diagram depicting bistable behavior
for system (7.16).

Example 4. Consider the system:

dx

dt
= x

(
1− x2 − y2

)
− y(1 + γ + x),

dy

dt
= y

(
1− x2 − y2

)
+ x(1 + γ + x),

where γ is a constant. Convert this system to polar form and show that the
system has three critical points for −2 < γ < 0, and one critical point and
one limit cycle if either, γ > 0, or if γ < −2. Determine the stability of the
critical points, use Python to produce an animation of the phase portrait and
plot a bifurcation diagram as γ increases from γ = −3 to γ = 1.

Solution. Converting to polar coordinates one obtains:

ṙ = r
(
1− r2

)
, θ̇ = 1 + γ + r cos(θ).

The origin O = (0, 0) is a critical point and there are an additional two
critical points at A =

(
1, cos−1(−1− γ)

)
and B =

(
1,−cos−1(−1− γ)

)
. The

Jacobian matrix is:

J =

(
1− 3r2 0
cos(θ) −r sin(θ)

)
.

When −2 < γ < 0, there is an invariant circle with a saddle point and a
stable node which collide and vanish when either γ = −2 or γ = 0. The
origin is unstable as, ṙ > 0, for 0 < r < 1, the critical point at A is a saddle
point as det (JA) = −2

√
1− (γ + 1)2 < 0 and the critical point at B is stable

as trace (JB) = −2 − 2
√

1− (γ + 1)2 < 0, det (JB) = 2
√
1− (γ + 1)2 > 0.

When γ > 0 or γ < −2, there is a stable limit cycle of radius one and one
unstable critical point at the origin. Figure 7.12 shows a schematic of a
saddle-node invariant cycle bifurcation diagram for Example 4 and a Python
program showing an animation of the bifurcation is listed in the next section.
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Figure 7.12: [Python animation] A schematic of a bifurcation diagram show-
ing a saddle-node invariant cycle (SNIC) bifurcation. The solid red curves
depict stable critical points, the dashed red curves denote unstable critical
points, and the blue dots represent a stable limit cycle.

7.4 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

ArtistAnimation # Animation using a fixed set of

Artist objects.

blit=True # Only redraw the parts

that have changed.

FuncAnimation # Makes an animation by

repeatedly calling

# a function func.

# Program 07a: Animation of a simple curve. Saddle-node bifurcation.

# See Figure 7.2.

# Animation of mu-x**2, as mu increases from mu=-3 to mu=3.

# Type - %matplotlib qt5 - in IPython Console window.

import numpy as np

from matplotlib import pyplot as plt

from matplotlib.animation import FuncAnimation
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xmin, xmax = -4, 4

mu_min, mu_max = -3, 3

# Set up the figure.

fig = plt.figure()

ax = plt.axes(xlim=(xmin, xmax), ylim=(xmin, xmax))

line, = ax.plot([], [], lw=2)

ax.plot([xmin, xmax], [0, 0], ’m’)

ax.plot([0, 0], [xmin, xmax], ’m’)

def init():

line.set_data([], [])

return line,

# Animate mu-x^**2, where -3<mu<3.

def animate(mu):

x = np.linspace(mu_min, mu_max, 100)

y = mu - x**2

line.set_data(x, y)

return line,

bifurcation = animation.FuncAnimation(fig,animate, init_func=init, \

frames=np.linspace(mu_min, mu_max,1000),

interval=10,blit=True)

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 07b: Animation of a subcritical Hopf bifurcation.

# See Figure 7.7.

from matplotlib import pyplot as plt

from matplotlib.animation import ArtistAnimation

import numpy as np

from scipy.integrate import odeint

fig = plt.figure()

myimages = []

def hopf(x, t):

return [x[1] + mu * x[0] - x[0] * x[1] **2, mu * x[1] - x[0]

- x[1] **3]
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time = np.arange(0, 200, 0.01)

x0 = [1, 0]

for mu in np.arange(-1, 1, 0.1):

xs = odeint(hopf, x0, time)

imgplot = plt.plot(xs[:, 0], xs[:, 1], "r-")

myimages.extend([imgplot])

my_anim = ArtistAnimation(fig, myimages, interval = 100, \

blit = False, repeat_delay = 100)

plt.show()

# Program 07c: Animation of a SNIC bifurcation.

# See Figure 7.12.

from matplotlib import pyplot as plt

from matplotlib.animation import ArtistAnimation

import numpy as np

from scipy.integrate import odeint

fig=plt.figure()

def snic(x, t):

return [x[0] * (1 - x[0]**2 - x[1]**2) - x[1] * (1 + mu + x[0]),

x[1] * (1 - x[0]**2 - x[1]**2) + x[0] * (1 + mu + x[0])]

time = np.arange(0, 200, 0.01)

x0=[0.5,0]

myimages=[]

for mu in np.arange(-3, 1, 0.1):

xs = odeint(snic, x0, time)

imgplot = plt.plot(xs[:, 0], xs[:, 1], ’r-’)

myimages.append(imgplot)

my_anim = ArtistAnimation(fig, myimages, interval = 100, \

blit = False, repeat_delay = 100)

plt.show()

7.5 Exercises

1. Consider the following one-parameter families of first order differential
equations defined on �:

(a) ẋ = μ− x− e−x;

(b) ẋ = x(μ+ ex);

(c) ẋ = x− μx
1+x2 .
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Determine the critical points and the bifurcation values, plot vector
fields on the line, and draw a bifurcation diagram in each case.

Use an animation program in Python to show how ẋ varies as μ in-
creases from −4 to +4, for each of the differential equations in (a)–(c).

2. Construct first order ordinary differential equations having the follow-
ing:

(a) three critical points (one stable and two unstable) when μ < 0, one
critical point when μ = 0, and three critical points (one unstable
and two stable) when μ > 0;

(b) two critical points (one stable and one unstable) for μ �= 0 and
one critical point when μ = 0;

(c) one critical point if |μ| ≥ 1 and three critical points if |μ| < 1.

Draw a bifurcation diagram in each case.

3. A certain species of fish in a large lake is harvested. The differential
equation used to model the population, x(t) in hundreds of thousands,
is given by

dx

dt
= x

(
1− x

5

)
− hx

0.2 + x
.

Determine and classify the critical points and plot a bifurcation dia-
gram. How can the model be interpreted in physical terms?

4. Consider the following one-parameter systems of differential equations:

(a) ẋ = x, ẏ = μ− y4;

(b) ẋ = x2 − xμ2, ẏ = −y;

(c) ẋ = −x4 + 5μx2 − 4μ2, ẏ = −y.

Find the critical points, plot phase portraits, and sketch a bifurcation
diagram in each case.

5. Consider the following one-parameter systems of differential equations
in polar form:

(a) ṙ = μr(r + μ)2, θ̇ = 1;

(b) ṙ = r(μ− r)(μ− 2r), θ̇ = −1;

(c) ṙ = r(μ2 − r2), θ̇ = 1.

Plot phase portraits for μ < 0, μ = 0, and μ > 0 in each case. Sketch
the corresponding bifurcation diagrams.
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6. Determine the nonlinear transformation which eliminates terms of de-
gree three from the planar system

ẋ = λ1x+ a30x
3 + a21x

2y + a12xy
2 + a03y

3,

ẏ = λ2y + b30x
3 + b21x

2y + b12xy
2 + b03y

3,

where λ1,2 �= 0.

7. Show that the normal form of a nondegenerate Hopf singularity is given
by

(
u̇
v̇

)
=

(
0 −β
β 0

)(
u
v

)
+

(
au

(
u2 + v2

)
− bv

(
u2 + v2

)
av

(
u2 + v2

)
+ bu

(
u2 + v2

)
)

+O
(
|u|5

)
,

where β > 0 and a �= 0.

8. Plot bifurcation diagrams for the planar systems

(a) ṙ = r
(
μ− 0.2r6 + r4 − r2

)
, θ̇ = −1,

(b) ṙ = r
(
(r − 1)2 − μr

)
, θ̇ = 1.

Give a possible explanation as to why the type of bifurcation in part
(b) should be known as a fold bifurcation.

9. Show that the one-parameter system

ẋ = y + μx− xy2, ẏ = μy − x− y3

undergoes a Hopf bifurcation at μ0 = 0. Plot phase portraits and sketch
a bifurcation diagram.

10. Thus far, the analysis has been restricted to bifurcations involving only
one-parameter, and these are known as codimension-1 bifurcations.
This example illustrates what can happen when two parameters are
varied, allowing the so-called codimension-2 bifurcations .

The following two-parameter system of differential equations may be
used to model a simple laser:

ẋ = x(y − 1), ẏ = α+ βy − xy.

Find and classify the critical points and sketch the phase portraits. Il-
lustrate the different types of behavior in the (α, β) plane and determine
whether or not any bifurcations occur.
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Chapter 8

Three-Dimensional
Autonomous Systems and
Chaos

Aims and Objectives

• To introduce first-order ODEs in three variables.

• To plot phase portraits and chaotic attractors.

• To identify chaos.

On completion of this chapter, the reader should be able to

• construct phase portraits for linear systems in three dimensions;

• use Python to plot phase portraits and time series for nonlinear systems;

• identify chaotic solutions;

• interpret the solutions to modeling problems taken from various scien-
tific disciplines, and in particular, chemical kinetics, electric circuits,
and meteorology.
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Three-dimensional autonomous systems of differential equations are con-
sidered. Critical points and stability are discussed and the concept of chaos is
introduced. Examples include the Lorenz equations, used as a simple meteo-
rological model and in the theory of lasers; Chua’s circuit, used in nonlinear
electronics and radiophysics; and the Belousov-Zhabotinski reaction, used in
chemistry and biophysics. All of these systems can display highly complex
behavior that can be interpreted from phase portrait analysis or Poincaré
maps (see Chapter 9).

Basic concepts are explained by means of example rather than mathemat-
ical rigor. Strange or chaotic attractors are constructed using Python, and
the reader is encouraged to investigate these systems through the exercises
at the end of the chapter. Chaos will also be discussed in other chapters of
the book.

8.1 Linear Systems and Canonical Forms

Consider linear three-dimensional autonomous systems of the form

ẋ = a11x+ a12y + a13z,

ẏ = a21x+ a22y + a23z,

ż = a31x+ a32y + a33z, (8.1)

where the aij are constants. The existence and uniqueness theorem (see
Section 2.4) holds, which means that trajectories do not cross in three-
dimensional space. The real canonical forms for 3× 3 matrices are

J1 =

⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠ , J2 =

⎛
⎝

α −β 0
β α 0
0 0 λ3

⎞
⎠ ,

J3 =

⎛
⎝

λ1 1 0
0 λ1 0
0 0 λ2

⎞
⎠ , J4 =

⎛
⎝

λ1 1 0
0 λ1 1
0 0 λ1

⎞
⎠ .

Matrix J1 has three real eigenvalues; matrix J2 has a pair of complex
eigenvalues; and matrices J3 and J4 have repeated eigenvalues. The type of
phase portrait is determined from each of these canonical forms.

Definition 1. Suppose that 0 ∈ �3 is a critical point of the system (8.1).
Then the stable and unstable manifolds of the critical point 0 are defined by

ES(0) = {x : Λ+(x) = 0}, EU (0) = {x : Λ−(x) = 0}.
Example 1. Solve the following system of differential equations, sketch a
phase portrait, and define the manifolds:

ẋ = x, ẏ = y, ż = −z. (8.2)
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Solution. There is one critical point at the origin. Each differential equa-
tion is integrable with solutions given by x(t) = C1e

t, y(t) = C2e
t, and

z(t) = C3e
−t. The eigenvalues and corresponding eigenvectors are λ1,2 =

1, (0, 1, 0)T , (1, 0, 0)T and λ3 = −1, (0, 0, 1)T . System (8.2) may be uncou-
pled in any of the xy, xz, or yz planes. Planar analysis gives an unstable
singular node in the xy plane and cols in each of the xz and yz planes. The
phase plane portraits for two of the uncoupled systems are given in Figure 8.1.
If z > 0, ż < 0, and if z < 0, ż > 0. The z-axis is a one-dimensional stable
manifold since trajectories on this line are attracted to the origin as t → +∞.
The xy plane is a two-dimensional unstable manifold since all trajectories in
this plane are attracted to the origin as t → −∞.

y(t

2
x(t

z(t

2
x(t

a b

Figure 8.1: Phase plane portraits in the (a) xy and (b) xz planes. Note that
(a) is an unstable planar manifold.

Putting all of these together, any trajectories not lying on the mani-
folds flow along “lampshades” in three-dimensional space, as depicted in Fig-
ure 8.2.

Example 2. Given the linear transformations x = x1 − 2y1, y = −y1, and
z = −y1 + z1, show that the system

ẋ1 = −3x1 + 10y1, ẏ1 = −2x1 + 5y1, ż1 = −2x1 + 2y1 + 3z1
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can be transformed into

ẋ = x− 2y, ẏ = 2x+ y, ż = 3z. (8.3)

Make a sketch of some trajectories in xyz space.

x(t

y(t

z(t

Figure 8.2: Phase portrait for system (8.2). The manifolds are not shown
here.

Solution. The origin is the only critical point. Consider the transformations.
Then

ẋ = ẋ1 − 2ẏ1 = (−3x1 + 10y1)− 2(−2x1 + 5y1) = x1 = x− 2y

ẏ = −ẏ1 = −(−2x1 + 5y1) = 2x1 − 5y1 = 2x+ y

ż = −ẏ1 + ż1 = −(−2x1 + 5y1) + (−2x1 + 2y1 + 3z1) = 3(−y1 + z1) = 3z.

System (8.3) is already in canonical form, and the eigenvalues are λ1,2 =
1 ± i and λ3 = 3; hence the critical point is hyperbolic. The system can
be uncoupled; the critical point at the origin in the xy plane is an unstable
focus. A phase plane portrait is given in Figure 8.3.

Note that all trajectories spiral away from the origin, as depicted in Fig-
ure 8.4. Since all trajectories tend to the origin as t → −∞, the whole phase
space forms an unstable manifold.

Example 3. Use Laplace transforms to solve the following initial value prob-
lem

ẋ = z − x, ẏ = −y, ż = z − 17x+ 16, (8.4)
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y(t

2
x(t

Figure 8.3: Some trajectories in the xy plane.

x(t

y(t

z(t

Figure 8.4: Phase portrait for system (8.3).

with x(0) = y(0) = z(0) = 0.8, and plot the solution curve in three-
dimensional space.

Solution. System (8.4) can be uncoupled. The differential equation ẏ = −y
has general solution y(t) = y0e

−t, and substituting y0 = 0.8 gives y(t) =
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0.8e−t. Now z = ẋ+x, and therefore the equation ż = z− 17x+16 becomes

(ẍ+ ẋ) = (ẋ+ x)− 17x+ 16,

which simplifies to
ẍ+ 16x = 16.

Take Laplace transforms of both sides and insert the initial conditions to
obtain

x(s) =
1

s
− 0.2s

s2 + 16
.

Take inverse transforms to get

x(t) = 1− 0.2 cos(4t),

and therefore
z(t) = 1 + 0.8 sin(4t)− 0.2 cos(4t).

The solution curve is plotted in Figure 8.5.

8.2 Nonlinear Systems and Stability

If the critical point of a three-dimensional autonomous system is hyperbolic,
then the linearization methods of Hartman can be applied. If the critical
point is not hyperbolic, then other methods need to be used.

x(t
y(t

z(t

Figure 8.5: The solution curve for the initial value problem in Example 3.
The trajectory ends up on an ellipse in the y = 0 plane.
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Definition 2. Suppose that p ∈ �3 is a critical point of the nonlinear system
ẋ = f(x), where x ∈ �3. Then the stable and unstable manifolds of the
critical point p are defined by

WS(p) = {x : Λ+(x) = p}, WU (p) = {x : Λ−(x) = p}.

As for two-dimensional systems, three-dimensional systems can have stable
and unstable manifolds. These manifolds can be convoluted surfaces in three-
dimensional space. A survey of methods used for computing some manifolds
is presented in [12].

Theorem 1. Consider the differential equation

ẋ = f(x), x ∈ �n,

where f ∈ C1(E) and E is an open subset of �n containing the origin. Sup-
pose that f(0) = 0 and that the Jacobian matrix has n eigenvalues with
nonzero real part. Then, in a small neighborhood of x = 0, there exist stable
and unstable manifolds WS and WU with the same dimensions nS and nU as
the stable and unstable manifolds (ES, EU ) of the linearized system

ẋ = Jx,

where WS and WU are tangent to ES and EU at x = 0.

A proof to this theorem can be found in Hartman’s book, see Chapter 3.

Definition 3. The center eigenspace, say, EC , is defined by the eigenvectors
corresponding to the eigenvalues with zero real part, and the center manifold,
say, WC , is the invariant subspace which is tangent to the center eigenspace
EC . In general, the center manifold is not unique.

Theorem 2 (The Center Manifold Theorem). Let f ∈ Cr(E), (r ≥ 1),
where E is an open subset of �n containing the origin. If f(0) = 0 and the
Jacobian matrix has nS eigenvalues with negative real part, nU eigenvalues
with positive real part, and nC = n− nS − nU purely imaginary eigenvalues,
then there exists an nC-dimensional center manifold WC of class Cr which
is tangent to the center manifold EC of the linearized system.

To find out more about center manifolds, see Wiggins [20].

Example 4. Determine the stable, unstable, and center manifolds of the
nonlinear system

ẋ = x2, ẏ = −y, ż = −2z.

Solution. There is a unique critical point at the origin. This system is easily
solved, and it is not difficult to plot phase portraits for each of the uncoupled
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systems. The solutions are x(t) = 1
C1−t , y(t) = C2e

−t, and z(t) = C3e
−2t.

The eigenvalues and corresponding eigenvectors of the Jacobian matrix are
λ1 = 0, (1, 0, 0)T , λ2 = −1, (0, 1, 0)T , and λ3 = −2, (0, 0, 1)T . In this
case, WC = EC , the x-axis, and the yz plane forms a two-dimensional stable
manifold, where WS = ES . Note that the center manifold is unique in this
case, but it is not in general.

Example 5. Solve the following nonlinear differential system

ẋ = −x, ẏ = −y + x2, ż = z + x2,

and determine the stable and unstable manifolds.

Solution. The point O = (0, 0, 0) is a unique critical point. Linearize by
finding the Jacobian matrix. Hence

J =

⎛
⎜⎝

∂P
∂x

∂P
∂y

∂P
∂z

∂Q
∂x

∂Q
∂y

∂Q
∂z

∂R
∂x

∂R
∂y

∂R
∂z

⎞
⎟⎠ ,

where ẋ = P (x, y, z), ẏ = Q(x, y, z), and ż = R(x, y, z). Therefore,

JO =

⎛
⎝

−1 0 0
0 −1 0
0 0 1

⎞
⎠ ,

and the origin is an unstable critical point. Note that two of the eigenvalues
are negative. These give a two-dimensional stable manifold, which will now
be defined.

The differential equation ẋ = −x is integrable and has solution x(t) =
C1e

−t. The other two differential equations are linear and have solutions

y(t) = C2e
−t+C2

1 (e
−t−e−2t) and z(t) = C3e

t+
C2

1

3 (et−e−2t). Now Λ+(x) = 0

if and only if C3 +
C2

1

3 = 0, where x ∈ �3, C1 = x(0), C2 = y(0), and
C3 = z(0). Therefore, the stable manifold is given by

WS =

{
x ∈ �3 : z = −x2

3

}
.

Using similar arguments, Λ−(x) = 0 if and only if C1 = C2 = 0. Hence the
unstable manifold is given by

WU = {x ∈ �3 : x = y = 0}.

Note that the surface WS is tangent to the xy plane at the origin.



Three-Dimensional Autonomous Systems and Chaos 193

Definition 4. An attractor is a minimal closed invariant set that attracts
nearby trajectories lying in the domain of stability (or basin of attraction)
onto it.

Example 6. Sketch a phase portrait for the system

ẋ = x+ y − x(x2 + y2), ẏ = −x+ y − y(x2 + y2), ż = −z. (8.5)

Solution. Convert to cylindrical polar coordinates by setting x = r cos θ
and y = r sin θ. System (8.5) then becomes

ṙ = r(1− r2), θ̇ = −1, ż = −z.

The origin is the only critical point. The system uncouples; in the xy plane,
the flow is clockwise and the origin is an unstable focus. If z > 0, then ż < 0,
and if z < 0, then ż > 0. If r = 1, then ṙ = 0. Trajectories spiral towards the
xy plane and onto the limit cycle, say, Γ1, of radius 1 centered at the origin.
Hence Λ+(x) = Γ1 if x �= 0 and Γ1 is a stable limit cycle. A phase portrait
is shown in Figure 8.6.

Lyapunov functions were introduced in Chapter 6 and were used to de-
termine the stability of critical points for certain planar systems. The theory
is easily extended to the three-dimensional case as the following examples
demonstrate. Once again, there is no systematic way to determine the Lya-
punov functions, and they are given in the question.

x(t y(t

z(t

Figure 8.6: Trajectories are attracted to a stable limit cycle (an attractor) in
the xy plane.
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Example 7. Prove that the origin of the system

ẋ = −2y + yz, ẏ = x(1− z), ż = xy

is stable but not asymptotically stable by using the Lyapunov function
V (x, y, z) = ax2 + by2 + cz2.

Solution. Now

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
+

∂V

∂z

dz

dt
= 2(a− b+ c)xyz + 2(b− 2a)xy.

If b = 2a and a = c > 0, then V (x, y, z) > 0 for all x �= 0 and dV
dt = 0. Thus

the trajectories lie on the ellipsoids defined by x2+2y2+ z2 = r2. The origin
is thus stable but not asymptotically stable.

Example 8. Prove that the origin of the system

ẋ = −y − xy2 + z2 − x3, ẏ = x+ z3 − y3, ż = −xz − x2z − yz2 − z5

is asymptotically stable by using the Lyapunov function V (x, y, z) = x2 +
y2 + z2.

Solution. Now

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
+

∂V

∂z

dz

dt
= −2(x4 + y4 + x2z2 + x2y2 + z6).

Since dV
dt < 0 for x, y, z �= 0, the origin is asymptotically stable. In fact, the

origin is globally asymptotically stable since Λ+(x) = (0, 0, 0) for all x ∈ �3.

8.3 The Rössler System and Chaos

8.3.1 The Rössler Attractor

In 1976, Otto E. Rössler [16] constructed the following three-dimensional
system of differential equations:

ẋ = −(y + z), ẏ = x+ ay, ż = b+ xz − cz, (8.6)

where a, b, and c are all constants. Note that the only nonlinear term appears
in the ż equation and is quadratic. As the parameters vary, this simple system
can display a wide range of behavior. Set a = b = 0.2, for example, and vary
the parameter c. The dynamics of the system can be investigated using
Python. Four examples are considered here. Transitional trajectories have
been omitted to avoid confusion. The initial conditions are x(0) = y(0) =
z(0) = 1 in all cases.
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Definition 5. A limit cycle in three-dimensional space is called a period-n
cycle if x(t) = x(t+ nT ) for some minimum constant T . Note that n can be
determined by the number of distinct amplitudes in a time series plot.

When c = 2.3, there is a period-one limit cycle which can be plotted in
three-dimensional space. Figure 8.7(a) shows the limit cycle in phase space,
and the periodic behavior with respect to x(t) is shown in Figure 8.7(b).

x(t
y(t

z(t

x(t

a b

Figure 8.7: (a) A limit cycle for system (8.6) when c = 2.3. (b) Period-one
behavior for x(t).

When c = 3.3, there is period-two behavior. Figure 8.8(a) shows the
closed orbit in phase space, and the periodic behavior is shown in Fig-
ure 8.8(b). Notice that there are two distinct amplitudes in Figure 8.8(b).
This periodic behavior can be easily detected using Poincaré maps (see Chap-
ter 9).

When c = 5.3, there is period-three behavior. Figure 8.9(a) shows the
closed orbit in three-dimensional space, and the periodic behavior is shown in
Figure 8.9(b). Note that there are three distinct amplitudes in Figure 8.9(b).

When c = 6.3, the system displays what appears to be random behav-
ior . This type of behavior has been labeled deterministic chaos . A system
is called deterministic if the behavior of the system is determined from the
time evolution equations and the initial conditions alone, as in the case of the
Rössler system. Nondeterministic chaos arises when there are no underlying
equations, as in the United Kingdom national lottery, or there is noisy or
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Figure 8.8: (a) A period two limit cycle for system (8.6) when c = 3.3. (b)
Period-two behavior for x(t).

random input. This text will be concerned with deterministic chaos only,
and it will be referred to simply as chaos from now on.

8.3.2 Chaos

Chaos is a multifaceted phenomenon that is not easily classified or identified.
There is no universally accepted definition for chaos, but the following char-
acteristics are nearly always displayed by the solutions of chaotic systems:

1. long-term aperiodic (nonperiodic) behavior ;

2. sensitivity to initial conditions ;

3. fractal structure (see Chapter 17).

Consider each of these items independently. Note, however, that a chaotic
system generally displays all three types of behavior listed above.

Case 1. It is very difficult to distinguish between aperiodic behavior and
periodic behavior with a very long period. For example, it is possible for a
chaotic system to have a periodic solution of period 10100.
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Case 2. A simple method used to test whether or not a system is chaotic is to
check for sensitivity to initial conditions. Figure 8.10(a) shows the trajectory
in phase space and Figure 8.10(b) illustrates how the system is sensitive to
the choice of initial conditions.

Definition 6. A strange attractor , (chaotic attractor , fractal attractor) is
an attractor that exhibits sensitivity to initial conditions.

x(t
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z(t
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x(t)
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a b

Figure 8.9: (a) A period three limit cycle for system (8.6) when c = 5.3; (b)
period three behavior for x(t).

Definition 7. The spectrum of Lyapunov exponents are quantities that char-
acterize the rate of separation of infinitesimally close trajectories. They are
used to determine where dynamical systems are periodic, undergo bifurca-
tion, or are chaotic.

An example of a strange attractor is shown in Figure 8.10(a). Another
method for establishing whether or not a system is chaotic is to use the Lya-
punov exponents (see Chapter 14 for examples in the discrete case). A system
is chaotic if at least one of the Lyapunov exponents is positive. This implies
that two trajectories that start close to each other on the strange attractor
will diverge as time increases, as depicted in Figure 8.10(b). Note that an
n-dimensional system will have n different Lyapunov exponents. Think of
an infinitesimal sphere of perturbed initial conditions for a three-dimensional
system. As time increases the sphere will evolve into an infinitesimal ellip-
soid. If d0 is the initial radius of the sphere, then dj = d0e

λjt(j = 1, 2, 3)
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Figure 8.10: [Python] (a) The chaotic attractor for system (8.6) when c = 6.3.
In this case, iteration was used to solve the ODEs. (b) Time series plot of x(t)
showing sensitivity to initial conditions; the initial conditions for one time
series are x(0) = y(0) = z(0) = 1 and for the other are x(0) = 1.01, y(0) =
z(0) = 1. Use different colors when plotting in Python.

define the axes of the ellipsoid. The following results are well known for three-
dimensional systems. For chaotic attractors λ1 > 0, λ2 = 0, and λ3 < 0; for
single critical points λ1 < 0, λ2 < 0, and λ3 < 0; for limit cycles λ1 = 0,
λ2 < 0, and λ3 < 0; and for a 2-torus λ1 = 0, λ2 = 0, and λ3 < 0. A com-
parison of different methods for computing the Lyapunov exponents is given
in [9]. One interesting feature of strange attractors is that it is sometimes
possible to reconstruct the attractor from time series data alone, see [23], for
example. Many papers have also been published on the detection of chaos
from time series data [6, 7, 10, 15], and [21], where the underlying equations
may not be required.

Gottwald and Melbourne [10] describe a new test for deterministic chaos.
Their diagnostic is the real valued function

p(t) =

∫ t

0

φ(x(s)) cos(ω0s)ds,

where φ is an observable on the dynamics x(t) and ω0 �= 0 is a constant.
They set

K = lim
t→∞

logM(t)

log(t)
,
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where M is the mean-square displacement for p(t). Typically, K = 0 signi-
fying regular dynamics, or K = 1 indicating chaotic dynamics. They state
that the test works well for both continuous and discrete systems.

Case 3. The solution curves to chaotic systems generally display fractal struc-
ture (see Chapter 17). The structure of the strange attractors for general n-
dimensional systems may be complicated and difficult to observe clearly. To
overcome these problems, Poincaré maps, which exist in lower-dimensional
spaces, can be used, as in Chapter 9.

Case 4. Power spectra of time series data can be used to determine whether
a system is periodic, quasiperiodic, or chaotic (see Chapter 18).

8.4 The Lorenz Equations, Chua’s Circuit, and
the Belousov-Zhabotinski Reaction

Note that, in the natural world, most nonlinear systems display periodic
behavior most of the time. Fortunately, it is sometimes possible to predict, for
example, the weather, the motion of the planets, the spread of an epidemic,
or the beat of the human heart. However, nonlinear systems can also display
chaotic or stochastic behavior where prediction becomes impossible.

There are many examples of applications of three-dimensional autonomous
systems to the real world. These systems obey the existence and uniqueness
theorem, but the dynamics can be much more complicated than in the two-
dimensional case. The following examples taken from meteorology, electric
circuit theory, and chemical kinetics have been widely investigated in recent
years. There are more examples in the exercises at the end of the chapter.

Note that the Lorenz attractor appeared before the Rössler attractor, but
the dynamics of the latter attractor are simpler, that is why the Rössler at-
tractor appeared in the previous section.

8.4.1 The Lorenz Equations

In 1963, the MIT meteorologist Edward Lorenz [13] constructed a highly
simplified model of a convecting fluid. This simple model also displays a wide
variety of behavior and for some parameter values is chaotic. The equations
can be used to model convective flow up through the center and down on the
sides of hexagonal columns (due to convection). The system is given by

ẋ = σ(y − x), ẏ = rx− y − xz, ż = xy − bz, (8.7)
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where x measures the rate of convective overturning, y measures the horizon-
tal temperature variation, z measures the vertical temperature variation, σ is
the Prandtl number, r is the Rayleigh number, and b is a scaling factor. The
Prandtl number is related to the fluid viscosity, and the Rayleigh number
is related to the temperature difference between the top and bottom of the
column. Lorenz studied the system when σ = 10 and b = 8

3 .
The system can be considered to be a highly simplified model for the

weather. Indeed, satellite photographs from space show hexagonal patterns
on undisturbed desert floors - this is as a result of convection of air cur-
rents. The astonishing conclusion derived by Lorenz is now widely labeled as
the butterfly effect . Even this very simple model of the weather can display
chaotic phenomena. Since the system is sensitive to initial conditions, small
changes to wind speed (convective overturning), for example, generated by
the flap of a butterfly’s wings, can change the outcome of the results con-
siderably. For example, a butterfly flapping its wings in Britain could cause
or prevent a hurricane from occurring in the Bahamas in the not-so-distant
future. Of course, there are many more variables that should be considered
when trying to model weather systems, and this simplified model illustrates
some of the problems meteorologists have to deal with.

Some simple properties of the Lorenz equations will now be listed, and
all of these characteristics can be investigated with the aid of Python:

1. System (8.7) has natural symmetry (x, y, z) → (−x,−y, z).

2. The z-axis is invariant.

3. The flow is volume contracting since divX = −(σ + b + 1) < 0, where
X is the vector field.

4. If 0 < r < 1, the origin is the only critical point, and it is a global
attractor.

5. At r = 1, there is a bifurcation, and there are two more critical points at
C1 = (

√
b(r − 1),

√
b(r − 1), r−1) and C2 = (−

√
b(r − 1),−

√
b(r − 1), r−

1).

6. At r = rH ≈ 13.93, there is a homoclinic bifurcation (see Chapter 7)
and the system enters a state of transient chaos.

7. At r ≈ 24.06, a strange attractor is formed.

8. If 1 < r < rO, where rO ≈ 24.74, the origin is unstable and C1 and C2

are both stable.

9. At r > rO, C1 and C2 lose their stability by absorbing an unstable limit
cycle in a subcritical Hopf bifurcation.
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For more details, see the work of Sparrow [19] or most textbooks on
nonlinear dynamics. Most of the results above can be observed by plotting
phase portraits or time series using Python. A strange attractor is shown in
Figure 8.11.

Figure 8.11: [Python] A strange attractor for the Lorenz system when σ =
10, b = 8

3 , and r = 28. In this case, the odeint numerical solver was used to
solve the ODEs.

The trajectories wind around the two critical points C1 and C2 in an
apparently random unpredictable manner. The strange attractor has the
following properties:

• The trajectory is aperiodic (or not periodic).

• The trajectory remains on the attractor forever (the attractor is invari-
ant).

• The general form is independent of initial conditions.

• The sequence of windings is sensitive to initial conditions.

• The attractor has fractal structure.

A variation on the Lorenz model has recently been discovered by Guan-
rong Chen and Tetsushi Ueta (see Figure 8.12). The equations are

ẋ = σ(y − x), ẏ = (r − σ)x+ ry − xz, ż = xy − bz. (8.8)

8.4.2 Chua’s Circuit

Elementary electric circuit theory was introduced in Chapter 2. In the mid-
1980s Chua modeled a circuit that was a simple oscillator exhibiting a variety
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Figure 8.12: A strange attractor for system (8.8) when σ = 35, b = 3, and
r = 28.

of bifurcation and chaotic phenomena. The circuit diagram is given in Fig-
ure 8.13. The circuit equations are given by

dv1
dt

=
(G(v2 − v1)− f(v1))

C1
,
dv2
dt

=
(G(v1 − v2) + i)

C2
,
di

dt
= −v2

L
,

where v1, v2, and i are the voltages across C1, C2, and the current through

2
–

Figure 8.13: Chua’s electric circuit.

L, respectively. The characteristic of the nonlinear resistor NR is given by

f(v1) = Gbv1 + 0.5(Ga −Gb) (|v1 +Bp| − |v1 −Bp|) ,

whereG = 1/R. Typical parameters used are C1 = 10.1nF,C2 = 101nF,L =
20.8mH,R = 1420Ω, r = 63.8Ω, Ga = −0.865mS,Gb = −0.519mS, and
Bp = 1.85V .
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In the simple case, Chua’s equations can be written in the following di-
mensionless form:

ẋ = a(y − x− g(x)), ẏ = x− y + z, ż = −by, (8.9)

where a and b are dimensionless parameters. The function g(x) has the form

g(x) = cx+
1

2
(d− c) (|x+ 1| − |x− 1|) ,

where c and d are constants.
Chua’s circuit is investigated in some detail in [14] and exhibits many

interesting phenomena including period-doubling cascades to chaos, inter-
mittency routes to chaos, and quasiperiodic routes to chaos. For certain
parameter values, the solutions lie on a double-scroll attractor , as shown in
Figure 8.14.

Figure 8.14: [Python animation] Chua’s double-scroll attractor: Phase por-
trait for system (8.9) when a = 15, b = 25.58, c = −5/7, and d = −8/7. The
initial conditions are x(0) = −1.6, y(0) = 0, and z(0) = 1.6.

The dynamics are more complicated than those appearing in either the
Rössler or Lorenz attractors. Chua’s circuit has proved to be a very suitable
subject for study since laboratory experiments produce results which match
very well with the results of the mathematical model. In 2002, the author
and Borresen [2] showed the existence of a bistable cycle for Chua’s electric
circuit for the first time. Power spectra for Chua’s circuit simulations are
used to show how the qualitative nature of the solutions depends on the
history of the system. A Python program showing an animation of a Chua
circuit bifurcation is listed in Program 8d in Section 8.5.

Zhou et al. [22] report on a new chaotic circuit that consists of only a
few capacitors, operational amplifiers, and resistors and [5] provides a concise
guide to chaotic electronic circuits up to 2014.
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8.4.3 The Belousov-Zhabotinski (BZ) Reaction

Oscillating chemical reactions such as the Bray-Liebhafsky reaction [3], the
Briggs-Rauscher reaction [4], and the BZ reaction provide wonderful examples
of relaxation oscillations in science (see [1, 8, 18]). They are often demon-
strated in chemistry classes or used to astound the public at university open
days. The first experiment of the BZ reaction was conducted by the Russian
biochemist Boris Belousov in the 1950s, and the results were not confirmed
until as late as 1968 by Zhabotinski.

Consider the following recipe for a BZ oscillating chemical reaction.

Ingredients.

• Solution A: Malonic acid, 15.6 gm/l.

• Solution B: Potassium bromate, 41.75 gm/l, and potassium bromide,
0.006 gm/l.

• Solution C: Cerium IV sulfate, 3.23 gm/l in 6M sulfuric acid.

• Solution D: Ferroin indicator.

Procedure. Add 20 ml of solution A and 10 ml of solution B to a mixture
of 10 ml of solution C and 1 ml of solution D. Stir continuously at room
temperature. The mixture remains blue for about 10 minutes and then begins
to oscillate blue-green-pink and back again with a period of approximately
two minutes.

This reaction is often demonstrated by Chemistry Departments during
university open days and is always a popular attraction.

Following the methods of Field and Noyes (see [8]) the chemical rate equa-
tions for an oscillating Belousov-Zhabotinski reaction are frequently written
as

BrO−
3 + Br− → HBrO2 +HOBr, Rate = k1[BrO

−
3 ][Br

−]
HBrO2 + Br− → 2HOBr, Rate = k2[HBrO2][Br

−]
BrO−

3 +HBrO2 → 2HBrO2 + 2MOX, Rate = k3[BrO
−
3 ][HBrO2]

2HBrO2 → BrO−
3 +HOBr, Rate = k4[HBrO2]

2

OS +MOX → 1
2CBr−, Rate = k5[OS][MOX]

where OS represents all oxidizable organic species and C is a constant. Note
that in the third equation, species HBrO2 stimulates its own production, a
process called autocatalysis . The reaction rate equations for the concentra-
tions of intermediate species x = [HBrO2], y = [Br−], and z = [MOX] are

ẋ = k1ay − k2xy + k3ax− 2k4x
2,

ẏ = −k1ay − k2xy +
1

2
Ck5bz,

ż = 2k3ax− k5bz, (8.10)
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where a = [BrO−
3 ] and b = [OS] are assumed to be constant, and [MOX]

represents the metal ion catalyst in its oxidized form. Taking the transfor-
mations

X =
2k4x

k5a
, Y =

k2y

k3a
, Z =

k5k4bz

(k3a)2
, τ = k5bt,

system (8.10) becomes

dX

dτ
=

qY −XY +X(1−X)

ε1
,

dY

dτ
=

−qY −XY + CZ

ε2
,

dZ

dτ
= X − Z, (8.11)

where ε1 = k5b
k3a

, ε2 = 2k5k4b
k2k3a

, and q = 2k1k4

k2k3
. Next, one assumes that ε2 � 1

so that dY
dτ is large unless the numerator −qY − XY + CZ is also small.

Assume that

Y = Y ∗ =
CZ

q +X

at all times, so the bromide concentration Y = [Br−] is in a steady state com-
pared to X. In this way, a three-dimensional system of differential equations
is reduced to a two-dimensional system of autonomous ODEs

ε1
dX

dτ
= X(1−X)− X − q

X + q
CZ,

dZ

dτ
= X − Z. (8.12)

For certain parameter values, system (8.12) has a limit cycle that repre-
sents an oscillating Belousov-Zhabotinski chemical reaction, as in Figure 8.15.

Example 9. Find and classify the critical points of system (8.12) when
ε1 = 0.05, q = 0.01, and C = 1. Plot a phase portrait in the first quadrant.

Solution. There are two critical points, one at the origin and the other at
A ≈ (0.1365, 0.1365). The Jacobian matrix is given by

J =

(
1
ε1

(
1− 2X − Z

X+q + (X−q)Z
(X+q)2

)
1
ε1

(
q−X
X+q

)

1 −1

)
.

It is not difficult to show that the origin is a saddle point and A is an unstable
node. A phase portrait showing periodic oscillations is given in Figure 8.15.

The period of the limit cycle in Figure 8.15 is approximately 3.4. The
trajectory moves quickly along the right and left branches of the limit cycle
(up and down) and moves relatively slowly in the horizontal direction. This
accounts for the rapid color changes and time spans between these changes.
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Figure 8.15: A limit cycle in the XZ plane for system (8.12) when ε1 =
0.05, q = 0.01, and C = 1.

It is important to note that chemical reactions are distinct from many
other types of dynamical system in that closed chemical reactions cannot
oscillate about their chemical equilibrium state. The concentrations of some
reactants of the mixture pass repeatedly through the same value; however,
the energy-releasing reaction that drives the oscillations moves continuously
toward completion, which means that the oscillations will eventually stop.

It is also possible for the BZ reaction to display chaotic phenomena; see [1],
for example. Multistable and bistable chemical reactions are also discussed
in [18]. In these cases, there is an inflow and outflow of certain species and
more than one steady state can coexist.

Finally, consider the dimensionless system (8.11) when ε1 = 0.0099, ε2 =
2.4802e-5, q = 3.1746e-5, and C = 1. This is a stiff system of ODEs and is
intractable to analytical approaches, instead we solve the system numerically.
The relative concentrations of bromous acid, bromide ions, and cerium ions
are shown in Figure 8.16.
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Figure 8.16: [Python] Periodic behavior for the stiff ODE (8.11) whenX(0) =
0, Y (0) = 0, Z(0) = 0.1, ε1 = 0.0099, ε2 = 2.4802e-5, q = 3.1746e-5, and
C = 1. Note that the direct physical significance is lost and the graph shows
relative concentrations of each of the concentrations of ions.

8.5 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

Axes3D # Object created using projection=’3d’.

mplot3d # Toolkit adds simple 3D plotting

capabilities.

# Program 08a: The Rossler chaotic attractor. See Fig. 8.10(a).

# In this case, iteration is used to solve the ODEs.

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

def Rossler(x, y, z, a = 0.2, b=0.2, c=6.3):

x_dot = - y - z

y_dot = x + a * y

z_dot = b + x * z - c * z
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return x_dot, y_dot, z_dot

dt = 0.01

step_count = 50000

xs=np.empty((step_count + 1,))

ys=np.empty((step_count + 1,))

zs=np.empty((step_count + 1,))

# The initial conditions.

xs[0], ys[0], zs[0] = (1.0, 1.0, 1.0)

# Iterate.

for i in range(step_count):

x_dot, y_dot, z_dot = Rossler(xs[i], ys[i], zs[i])

xs[i+1] = xs[i] + (x_dot*dt)

ys[i+1] = ys[i] + (y_dot*dt)

zs[i+1] = zs[i] + (z_dot*dt)

fig=plt.figure()

ax=Axes3D(fig)

ax.plot(xs, ys, zs, lw=0.5)

ax.set_xlabel(’x’, fontsize=15)

ax.set_ylabel(’y’, fontsize=15)

ax.set_zlabel(’z’, fontsize=15)

plt.tick_params(labelsize=15)

ax.set_title(’Rossler Attractor’, fontsize=15)

plt.show()

# Program 08b: The Lorenz attractor. See Figure 8.11.

# In this case, the odeint numerical solver was used to solve the ODE.

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Lorenz parameters and initial conditions

sigma, beta, rho = 10, 2.667, 28

x0, y0, z0 = 0, 1, 1.05

# Maximum time point and total number of time points

tmax, n = 100, 10000

def Lorenz(X, t, sigma, beta, rho):

"""The Lorenz equations."""
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x, y, z = X

dx = -sigma * (x - y)

dy = rho * x - y - x * z

dz = -beta * z + x * y

return dx, dy, dz

# Integrate the Lorenz equations on the time grid t.

t = np.linspace(0, tmax, n)

f = odeint(Lorenz, (x0, y0, z0), t, args=(sigma, beta, rho))

x, y, z = f.T

# Plot the Lorenz attractor using a Matplotlib 3D projection.

fig=plt.figure()

ax = Axes3D(fig)

ax.plot(x, y, z, ’b-’, lw=0.5)

ax.set_xlabel(’x’, fontsize=15)

ax.set_ylabel(’y’, fontsize=15)

ax.set_zlabel(’z’, fontsize=15)

plt.tick_params(labelsize=15)

ax.set_title(’Lorenz Attractor’, fontsize=15)

plt.show()

# Program 08c: The Belousov-Zhabotinski Reaction. See Figure 8.16.

# Plotting time series for a 3-dimensional ODE.

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

# B_Z parameters and initial conditions.

q, f, eps, delta = 3.1746e-5, 1, 0.0099, 2.4802e-5

x0, y0, z0 = 0, 0, 0.1

# Maximum time point and total number of time points.

tmax, n = 50, 10000

def bz_reaction(X,t,q,f,eps,delta):

x, y, z = X

dx = (q * y - x * y + x * (1 - x))/eps

dy = (-q * y - x * y + f * z)/delta

dz = x - z

return dx, dy, dz

t = np.linspace(0, tmax, n)

f = odeint(bz_reaction, (x0, y0, z0), t, args=((q, f, eps, delta)))

x, y, z = f.T
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# Plot time series.

fig = plt.figure(figsize=(15,5))

fig.subplots_adjust(wspace = 0.5, hspace = 0.3)

ax1 = fig.add_subplot(1, 3, 1)

ax1.set_title(’Relative concentration bromous acid’, fontsize=12)

ax2 = fig.add_subplot(1,3,2)

ax2.set_title(’Relative concentration bromide ions’, fontsize=12)

ax3 = fig.add_subplot(1,3,3)

ax3.set_title(’Relative concentration cerium ions’, fontsize=12)

ax1.plot(t, x, ’b-’)

ax2.plot(t, y, ’r-’)

ax3.plot(t, z, ’m-’)

plt.show()

# Programs 08d: Animation of a Chua circuit bifurcation.

# You can watch a YouTube animation on the web.

# Search for Chua circuit AND oscilloscope.

from matplotlib import pyplot as plt

from matplotlib.animation import ArtistAnimation

import numpy as np

from scipy.integrate import odeint

fig=plt.figure()

mo = -1/7

m1 = 2/7

tmax = 100;

def chua(x, t):

return [a * (x[1] - (m1 * x[0] + (mo - m1) / 2 *

(np.abs(x[0] + 1) - \

np.abs(x[0] - 1)))), x[0] - x[1] + x[2], -15 * x[1]]

time = np.arange(0, tmax, 0.1)

x0=[1.96, -0.0519, -3.077]

myimages = []

for a in np.arange(8, 11, 0.1):

xs = odeint(chua, x0, time)

imgplot = plt.plot(xs[:, 0], xs[:, 1], "r-")

myimages.append(imgplot)

my_anim=ArtistAnimation(fig, myimages, interval=500,\

blit=False, repeat_delay=500)

plt.show()
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8.6 Exercises

1. Find the eigenvalues and eigenvectors of the matrix

A =

⎛
⎝

1 0 −4
0 5 4
−4 4 3

⎞
⎠ .

Hence show that the system ẋ = Ax can be transformed into u̇ = Ju,
where

J =

⎛
⎝

3 0 0
0 −3 0
0 0 9

⎞
⎠ .

Sketch a phase portrait for the system u̇ = Ju.

2. Classify the critical point at the origin for the system

ẋ = x+ 2z, ẏ = y − 3z, ż = 2y + z.

3. Find and classify the critical points of the system

ẋ = x− y, ẏ = y + y2, ż = x− z.

4. Consider the system

ẋ = −x+ (λ− x)y, ẏ = x− (λ− x)y − y + 2z, ż =
y

2
− z,

where λ ≥ 0 is a constant. Show that the first quadrant is positively
invariant and that the plane x + y + 2z = constant is invariant. Find
λ+(p) for p in the first quadrant given that there are no periodic orbits
there.

5. (a) Prove that the origin of the system

ẋ = −x−y2+xz−x3, ẏ = −y+z2+xy−y3, ż = −z+x2+yz−z3

is globally asymptotically stable.

(b) Determine the domain of stability for the system

ẋ = −ax+ xyz, ẏ = −by + xyz, ż = −cz + xyz.

6. The chemical rate equations for the Chapman cycle modeling the pro-
duction of ozone are

O2 + hv → O+O, Rate = k1,
O2 +O+M → O3 +M, Rate = k2,
O3 + hv → O2 +O, Rate = k3,
O+O3 → O2 +O2, Rate = k4,
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where O is a singlet, O2 is oxygen, and O3 is ozone. The reaction rate
equations for species x = [O], y = [O2], and z = [O3] are

ẋ = 2k1y + k3z − k2xy[M]− k4xz,

ẏ = k3z + 2k4xz − k1y − k2xy[M],

ż = k2xy[M]− k3z − k4xz.

This is a stiff system of differential equations. Many differential equa-
tions applied in chemical kinetics are stiff. Given that [M] = 9e17,
k1 = 3e−12, k2 = 1.22e−33, k3 = 5.5e−4, k4 = 6.86e−16, x(0) = 4e16,
y(0) = 2e16, and z(0) = 2e16, show that the steady state reached is
[O] = 4.6806e7, [O2] = 6.999e16, and [O3] = 6.5396e12.

7. A three-dimensional Lotka-Volterra model is given by

ẋ = x(1−2x+y−5z), ẏ = y(1−5x−2y−z), ż = z(1+x−3y−2z).

Prove that there is a critical point in the first quadrant at P ( 1
14 ,

3
14 ,

3
14 ).

Plot possible trajectories and show that there is a solution plane x +
y + z = 1

2 . Interpret the results in terms of species behavior.

8. Assume that a given population consists of susceptibles (S), exposed
(E), infectives (I), and recovered/immune (R) individuals. Suppose
that S + E + I + R = 1 for all time. A seasonally driven epidemic
model is given by

Ṡ = μ(1− S)− βSI, Ė = βSI − (μ+ α)E, İ = αE − (μ+ γ)I,

where β = contact rate, α−1 = mean latency period, γ−1 = mean
infectivity period, and μ−1 = mean lifespan. The seasonality is in-
troduced by assuming that β = B(1 + A cos(2πt)), where B ≥ 0
and 0 ≤ A ≤ 1. Plot phase portraits when A = 0.18, α = 35.84,
γ = 100, μ = 0.02, and B = 1800 for the initial conditions: (i) S(0) =
0.065, E(0) = 0.00075, I(0) = 0.00025, and (ii) S(0) = 0.038, E(0) =
3.27 × 10−8, I(0) = 1.35 × 10−8. Interpret the results for the popula-
tions.

9. Plot some time series data for the Lorenz system (8.7) when σ = 10, b =
8
3 and 166 ≤ r ≤ 167. When r = 166.2, the solution shows intermittent
behavior, and there are occasional chaotic bursts in between what looks
like periodic behavior.

10. Consider system (8.12) given in the text to model the periodic behavior
of the Belousov-Zhabotinski reaction. By considering the nullclines and
gradients of the vector fields, explain what happens to the solution
curves for ε1 � 1 and appropriate values of q and C.
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Chapter 9

Poincaré Maps and
Nonautonomous Systems
in the Plane

Aims and Objectives

• To introduce the theory of Poincaré maps.

• To compare periodic and quasi-periodic behavior.

• To introduce Hamiltonian systems with two degrees of freedom.

• To use Poincaré maps to investigate a nonautonomous system of differ-
ential equations.

On completion of this chapter, the reader should be able to

• understand the basic theory of Poincaré maps;

• plot return maps for certain systems;

• use the Poincaré map as a tool for studying stability and bifurcations.
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Poincaré maps are introduced via example using two-dimensional au-
tonomous systems of differential equations. They are used extensively to
transform complicated behavior in the phase space to discrete maps in a
lower-dimensional space. Unfortunately, this nearly always results in numer-
ical work since analytic solutions can rarely be found.

A periodically forced nonautonomous system of differential equations is
introduced, and Poincaré maps are used to determine stability and plot bi-
furcation diagrams.

Discrete maps have been dealt with in Chapters 13–18 of the book.

9.1 Poincaré Maps

When plotting the solutions to some nonlinear problems, the phase space can
become overcrowded and the underlying structure may become obscured. To
overcome these difficulties, a basic tool was proposed by Henri Poincaré [10]
at the end of the 19th century. An historical introduction to Poincaré maps
is given in [4] and some mathematical applications are discussed in [6]. As a
simple introduction to the theory of Poincaré (or first return) maps consider
two-dimensional autonomous systems of the form

ẋ = P (x, y), ẏ = Q(x, y). (9.1)

Suppose that there is a curve or straight line segment, say Σ, that is crossed
transversely (no trajectories are tangential to Σ). Then Σ is called a Poincaré
section. Consider a point r0 lying on Σ. As shown in Figure 9.1, follow the
flow of the trajectory until it next meets Σ at a point r1. This point is known
as the first return of the discrete Poincaré map P : Σ → Σ, defined by

rn+1 = P(rn),

where rn maps to rn+1 and all points lie on Σ. Finding the function P is
equivalent to solving the differential equations (9.1). Unfortunately, this is
very seldom possible, and one must rely on numerical solvers to make any
progress.

0
r0

r1
Σ

Figure 9.1: A first return on a Poincaré section, Σ.
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Definition 1. A point r∗ that satisfies the equation P(r∗) = r∗ is called a
fixed point of period one.

To illustrate the method for finding Poincaré maps, consider the following
two simple examples (Examples 1 and 2), for which P may be determined
explicitly.

Example 1. By considering the line segment Σ = {(x, y) ∈ �2 : 0 ≤ x ≤
1, y = 0}, find the Poincaré map for the system

ẋ = −y − x
√
x2 + y2, ẏ = x− y

√
x2 + y2 (9.2)

and list the first eight returns on Σ given that r0 = 1.

Solution. Convert to polar coordinates. System (9.2) then becomes

ṙ = −r2, θ̇ = 1. (9.3)

The origin is a stable focus and the flow is counterclockwise. A phase
portrait showing the solution curve for this system is given in Figure 9.2.

Figure 9.2: [Python] A trajectory starting at (1, 0), (0 ≤ t ≤ 40) for system
(9.3).

The set of equations (9.3) can be solved using the initial conditions r(0) =
1 and θ(0) = 0. The solutions are given by

r(t) =
1

1 + t
, θ(t) = t.

Trajectories flow around the origin with a period of 2π. Substituting for t,
the flow is defined by

r(t) =
1

1 + θ(t)
.
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The flow is counterclockwise, and the required successive returns occur when
θ = 2π, 4π, . . .. A map defining these points is given by

rn =
1

1 + 2nπ

on Σ, where n = 1, 2, . . .. As n → ∞, the sequence of points moves towards
the fixed point at the origin as expected. Now

rn+1 =
1

1 + 2(n+ 1)π
.

Elementary algebra is used to determine the Poincaré return map P, which
may be expressed as

rn+1 = P(rn) =
rn

1 + 2πrn
.

The first eight returns on the line segment Σ occur at the points r0 =
1, r1 = 0.13730, r2 = 0.07371, r3 = 0.05038, r4 = 0.03827, r5 = 0.03085, r6 =
0.02584, r7 = 0.02223, and r8 = 0.01951, to five decimal places, respectively.
Check these results for yourself using the Python program at the end of the
chapter.

Example 2. Use a one-dimensional map on the line segment Σ = {(x, y) ∈
�2 : 0 ≤ x < ∞, y = 0} to determine the stability of the limit cycle in the
following system:

ẋ = −y + x(1−
√
x2 + y2), ẏ = x+ y(1−

√
x2 + y2). (9.4)

Solution. Convert to polar coordinates, then system (9.4) becomes

ṙ = r(1− r), θ̇ = 1. (9.5)

The origin is an unstable focus, and there is a limit cycle, say Γ, of radius
1 centered at the origin. A phase portrait showing two trajectories is given
in Figure 9.3.

System (9.5) can be solved since both differential equations are separable.
The solutions are given by

r(t) =
1

1 + Ce−t
, θ(t) = t+ θ0,

where C and θ0 are constants. Trajectories flow around the origin with a
period of 2π.



Poincaré Maps and Nonautonomous Systems in the Plane 219

Suppose that a trajectory starts outside Γ on Σ, say at r0 = 2. The
solutions are then given by

r(t) =
1

1− 1
2e

−t
, θ(t) = t.

Therefore a return map can be expressed as

rn =
1

1− 1
2e

−2nπ
,

where n is a natural number. If, however, a trajectory starts inside Γ at, say
r0 = 1

2 , then

r(t) =
1

1 + e−t
, θ(t) = t,

and a return map is given by

rn =
1

1 + e−2nπ
.

1

–2

–1

0

1

2

y

–2 –1 1 2x

Figure 9.3: Two trajectories for system (9.5), one starting at (2, 0) and the
other at (0.01, 0).

In both cases rn → 1 as n → ∞. The limit cycle is stable on both sides,
and the limit cycle Γ is hyperbolic stable since rn → 1 as n → ∞ for any
initial point apart from the origin. The next theorem gives a better method
for determining the stability of a limit cycle.

Theorem 1. Define the characteristic multiplier M to be

M =
dP

dr

∣∣∣∣
r∗

,
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where r∗ is a fixed point of the Poincaré map P corresponding to a limit
cycle, say Γ. Then

1. if |M | < 1, Γ is a hyperbolic stable limit cycle;

2. if |M | > 1, Γ is a hyperbolic unstable limit cycle;

3. if |M | = 1, and d2P
dr2 �= 0, then the limit cycle is stable on one side and

unstable on the other; in this case Γ is called a semistable limit cycle.

Theorem 1 is sometimes referred to as the derivative of the Poincaré map
test.

Definition 2. A fixed point of period one, say r∗, of a Poincaré map P is
called hyperbolic if |M | �= 1.

Example 3. Use Theorem 1 to determine the stability of the limit cycle in
Example 2.

Solution. Consider system (9.5). The return map along Σ is given by

rn =
1

1 + Ce−2nπ
, (9.6)

where C is a constant. Therefore,

rn+1 =
1

1 + Ce−2(n+1)π
. (9.7)

Substituting C = 1−rn
rn

e2nπ from equation (9.6) into (9.7) gives the Poincaré
map

rn+1 = P(rn) =
rn

rn + (1− rn)e−2π
.

The Poincaré map has two fixed points, one at zero (a trivial fixed point)
and the other at r∗ = 1, corresponding to the critical point at the origin and
the limit cycle Γ, respectively. Now

dP

dr
=

e−2π

(r + (1− r)e−2π)2
,

using elementary calculus, and

dP

dr

∣∣∣∣
r∗=1

= e−2π ≈ 0.00187 < 1,

and so the limit cycle Γ is hyperbolic attracting.
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Definition 3. A point r∗ that satisfies the equation Pm(r∗) = r∗ is called a
fixed point of period m.

Example 4. Consider the circle map P defined by

rn+1 = P(rn) = ei2π
q1
q2 rn,

which maps points on the unit circle to itself. Assuming that r0 = 1, plot
iterates when

(a) q1 = 0, q2 = 1,

(b) q1 = 1, q2 = 2,

(c) q1 = 2, q2 = 3, and

(d) q1 = 1, q2 =
√
2.

Explain the results displayed in Figures 9.4(a)–(d).

Solution. In Figure 9.4(a), there is a fixed point of period one since rn+1 =
P = rn. Similarly, in Figures 9.4(b)–(c), there are fixed points of periods two
and three since rn+2 = P2 = rn and rn+3 = P3 = rn. For Figure 9.4(d), q1
and q2 are rationally independent since c1q1+c2q2 = 0 with c1 and c2 integers
is satisfied only by c1 = c2 = 0. This implies that the points on the circle
map are never repeated and there is no periodic motion. (There is no integer
c such that rn+c = Pc = rn). Figure 9.4(d) shows the first 1000 iterates of
this mapping. If one were to complete the number of iterations to infinity,
then a closed circle would be formed as new points approach other points
arbitrarily closely an infinite number of times. This new type of qualitative
behavior is known as quasi-periodicity . Note that one has to be careful when
distinguishing between quasi-periodic points and points that have very high
periods. For example, Figure 9.4(d) could be depicting a very high period
trajectory. Systems displaying quasi-periodicity will be discussed in the next
section.

9.2 Hamiltonian Systems with Two Degrees of
Freedom

Hamiltonian systems with one degree of freedom were introduced in Chap-
ter 6. These systems can always be integrated completely. Hamiltonian (or
conservative) systems with two degrees of freedom will be discussed briefly in
this section, but the reader should note that it is possible to consider Hamil-
tonian systems with N—or even an infinite number of—degrees of freedom.

In general, the set of Hamiltonian systems with two degrees of freedom
are not completely integrable, and those that are from a very restricted but
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Figure 9.4: Fixed points of periods (a) one; (b) two; (c) three, and (d) quasi-

periodic behavior, for the circle map rn+1 = P(rn) = ei2π
q1
q2 rn.

important subset. The trajectories of these systems lie in four-dimensional
space, but the overall structure can be determined by plotting Poincaré maps.
It is known that completely integrable systems display remarkable smooth
regular behavior in all parts of the phase space, which is in stark contrast to
what happens with nonintegrable systems, which can display a wide variety
of phenomena including chaotic behavior. A brief definition of integrability
is given below, and Hamiltonian systems with two degrees of freedom will
now be defined.
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Definition 4. A Hamiltonian system with two degrees of freedom is de-
fined by

ṗ1 = −∂H

∂q1
, q̇1 =

∂H

∂p1
, ṗ2 = −∂H

∂q2
, q̇2 =

∂H

∂p2
, (9.8)

where H is the Hamiltonian of the system. In physical applications, q1 and q2
are generalized coordinates and p1 and p2 represent a generalized momentum.
The Hamiltonian may be expressed as

H(p,q) = KE(p,q) + PE(q),

where KE and PE are the kinetic and potential energies, respectively.

Definition 5. The Hamiltonian system with two degrees of freedom given
by (9.8) is integrable if the system has two integrals, say F1 and F2, such that

{F1, H} = 0, {F2, H} = 0, {F1, F2} = 0,

where F1 and F2 are functionally independent and {, } are the so-called Pois-
son brackets defined by

{F1, F2} =
∂F1

∂q

∂F2

∂p
− ∂F1

∂p

∂F2

∂q
.

Some of the dynamics involved in these type of systems will now be de-
scribed using some simple examples.

Example 5. Consider the Hamiltonian system with two degrees of freedom
given by

H(p,q) =
ω1

2
(p21 + q21) +

ω2

2
(p22 + q22), (9.9)

which is integrable with integrals given by F1 = p21+q21 and F2 = p22+q22 . This
system can be used to model a linear harmonic oscillator with two degrees of
freedom.

Plot three-dimensional and two-dimensional projections of the Poincaré
surface-of-section for system (9.9) given the following set of initial conditions
for p1, p2 and q1, q2:

(i) ω1 = ω2 = 2 with the initial conditions t = 0, p1 = 0.5, p2 = 1.5, q1 =
0.5, q2 = 0;

(ii) ω1 = 8, ω2 = 3 with the initial conditions t = 0, p1 = 0.5, p2 =
1.5, q1 = 0.3, q2 = 0;

(iii) ω1 =
√
2, ω2 = 1 with the initial conditions t = 0, p1 = 0.5, p2 =

1.5, q1 = 0.3, q2 = 0.
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Figure 9.5: [Python] Projections of the Poincaré surface-of-section for system
(9.9) when (a)–(b) ω1 = ω2 = 2, (c)–(d) ω1 = 8 and ω2 = 3, and (e)–
(f) ω1 =

√
2 and ω2 = 1. The initial conditions are listed in (i)–(iii) of

Example 5.
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Solutions. A Python program is listed in Section 9.4 (see Figure 9.5).
The results may be interpreted as follows: in cases (i) and (ii) the solutions

are periodic, and in case (iii) the solution is quasi-periodic. For the quasi-
periodic solution, a closed curve will be formed in the p1q1 plane as the
number of iterations goes to infinity. The quasiperiodic cycle never closes
on itself; however, the motion is not chaotic. Once more the trajectories are
confined to invariant tori (see Figure 9.5(e), which shows a section of the
torus).

Example 6. Consider the Hénon-Heiles Hamiltonian system (which may be
used as a simple model of the motion of a star inside a galaxy) given by

H(p,q) =
1

2
(p21 + q21 + p22 + q22) + q21q2 −

q32
3
.

This Hamiltonian represents two simple harmonic oscillators (see Exam-
ple 5(i)) coupled with a cubic term. The Hamiltonian in this case is non-
integrable. Plot three-dimensional and two-dimensional projections of the
Poincaré surface-of-section of the Hamiltonian system for the set of initial
conditions given by t = 0, p1 = 0.06, p2 = 0.1, q1 = −0.2, q2 = −0.2.

Solution. See Figure 9.6.

p1

q1

q2

H = .4146600000e – 1

q

q1

H = .4146600000e – 1
a b

Figure 9.6: A three-dimensional and two-dimensional projection of the
Poincaré surface-of-section for the Hénon-Heiles system with the initial con-
ditions t = 0, p1 = 0.06, p2 = 0.1, q1 = −0.2, q2 = −0.2. Note that the energy
level is equal to 0.041466 in this case.
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A rich variety of behavior is observed in the Poincaré section for the
Hénon-Heiles system as the energy levels increase. For example, Figure 9.7

H = .5555500000e – 1H = .4166600000e – 1
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Figure 9.7: The Poincaré transversal plane for the Hénon-Heiles Hamiltonian
system with different energy levels. The smoothness of the curves in both
(p,q) planes is related to the integrability of the system.
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shows how the Poincaré section changes as the energy level increases from
0.041666 to 0.166666.

As the energy levels increase the closed orbits, representing quasiperiodic
behavior, are replaced by irregular patterns, and eventually the Poincaré
plane seems to be swamped by chaos. In fact, there is a famous theorem
due to Kolmogorov, Arnold, and Moser, now known as the KAM theorem.
Interested readers are referred to the book of Guckenheimer and Holmes [5].

Theorem 2. Suppose that a Hamiltonian system with two degrees of freedom
is given by H = H0 + εH1, where ε is a small parameter, H0 is integrable,
and H1 makes H nonintegrable. The quasiperiodic cycles (also known as
KAM tori), which exist for ε = 0, will also exist for 0 < ε � 1 but will
be deformed by the perturbation. The KAM tori dissolve one by one as ε
increases and points begin to scatter around the Poincaré plane. A similar
pattern of behavior can be seen in Figure 9.7.

9.3 Nonautonomous Systems in the Plane

The existence and uniqueness theorems introduced in Chapter 2 hold for au-
tonomous systems of differential equations. This means that trajectories can-
not cross, and the Poincaré-Bendixson Theorem implies that there is no chaos
in two dimensions. However, chaos can be displayed in three-dimensional au-
tonomous systems as shown in Chapter 8, where various strange attractors
were plotted using Python. This section is concerned with nonautonomous
(or forced) systems of differential equations of the form

ẍ = f(x, ẋ, t),

where the function f depends explicitly on t. There is no longer uniqueness
of the solutions, and trajectories can cross in the phase plane. For certain
parameter values, the phase portrait can become entangled with trajecto-
ries crisscrossing one another. By introducing a Poincaré map, it becomes
possible to observe the underlying structure of the complicated flow.

As a particular example, consider the Duffing equation given by

ẍ+ kẋ+ βx+ αx3 = Γcos(ωt),

where, in physical models, k ≥ 0 is the damping coefficient, β is the stiffness,
α is the nonlinear stiffness parameter, ẋ is the speed of the mass, Γ is the
amplitude of force vibration, and ω is the frequency of the driving force. Let
ẋ = y; then the Duffing equation can be written as a system of the form

ẋ = y, ẏ = −βx− ky − αx3 + Γcos(ωt), (9.10)

When β < 0, the Duffing equation models a periodically forced steel beam de-
flected between two magnets [7], see Figure 9.8(a). When β > 0, the Duffing
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equation models a periodically forced pendulum as depicted in Figure 9.8(b).
When α > 0, the spring is called a hardening spring and when α < 0, the
spring is called a softening spring. Consider the Poincaré map of system
(9.10) as the amplitude Γ varies when k, β, α, and ω are fixed. The radius of
the limit cycle on the Poincaré section is given by r.

Γ cos(ωt)

x

a b

Figure 9.8: (a) A steel beam between two magnets. (b) A periodically driven
pendulum.

Systems of the form (9.10) have been studied extensively in terms of,
for example, stability, harmonic solutions, subharmonic solutions, transients,
chaotic output, chaotic control, and Poincaré maps. The work here will
be restricted to considering the Poincaré maps and bifurcation diagrams for
system (9.10) as the driving amplitude Γ varies when α = 1, β = −1, k = 0.3,
and ω = 1.25 are fixed.

It is interesting to apply quasiperiodic forcing to nonlinear systems, as in
[9], where nonchaotic attractors appear for a quasiperiodically forced van der
Pol system.

Any periodically forced nonautonomous differential equation can be rep-
resented in terms of an autonomous flow in a torus. To achieve this trans-
formation, simply introduce a third variable θ = ωt. System (9.10) then
becomes a three-dimensional autonomous system given by

ẋ = y, ẏ = −βx− ky − αx3 + Γcos(θ), θ̇ = ω. (9.11)

A flow in this state space corresponds to a trajectory flowing around a
torus with period 2π

ω . This naturally leads to a Poincaré mapping of a θ = θ0
plane to itself as depicted in Figure 9.9.

When Γ = 0, system (9.10) has three critical points at M = (−1, 0), N =
(1, 0), and O = (0, 0). The points M and N are stable foci when 0 < k < 2

√
2



Poincaré Maps and Nonautonomous Systems in the Plane 229

Figure 9.9: The first return of a point P0 to P1 in the plane θ = θ0. The
trajectories flow inside a torus in three-dimensional space.

and O is a saddle point. As Γ is increased from zero, stable periodic cycles
appear from M and N and there are bifurcations of subharmonic oscillations.
The system can also display chaotic behavior for certain values of Γ.

Only periodic cycles initially appearing from the critical point N will
be considered here. A gallery of phase portraits along with their respective
Poincaré return maps are presented in Figures 9.10 and 9.11.

When Γ = 0.2, there is a period-one harmonic solution of period 2π
ω ,

which is depicted as a closed curve in the phase plane and as a single point
in the θ = 0 plane (see Figure 9.10(a)). When Γ = 0.3, a period-two cycle of
period 4π

ω appears; this is a subharmonic of order 1
2 . A period-two cycle is

represented by two points in the Poincaré section (see Figure 9.10(b)); note
that the trajectory crosses itself in this case. A period-four cycle of period
8π
ω is present when Γ = 0.31 (see Figure 9.10(c)). When Γ = 0.37, there is
a period-five cycle that is centered at O and also surrounds both M and N
(see Figure 9.11(a)). When Γ = 0.5, the system becomes chaotic. A single
trajectory plotted in the phase plane intersects itself many times, and the
portrait soon becomes very messy. However, if one plots the first returns on
the Poincaré section, then a strange attractor is formed that demonstrates
some underlying structure (see Figure 9.11(b)). It must be noted that the
chaotic attractor will have different forms on different Poincaré sections. This
strange (or chaotic) attractor has fractal structure. At Γ = 0.8, there is once
more a stable period-one solution. However, it is now centered at O (see
Figure 9.11(c)).

Figures 9.10 and 9.11 display some of the behavior possible for the Duffing
equation for specific values of the parameter Γ. Of course, it would be far
better to summarize all of the possible behaviors as the parameter Γ varies
on one diagram. To achieve this goal, one must plot bifurcation diagrams.
There are basically two ways in which bifurcation diagrams may be produced;
one involves a feedback mechanism, the other does not. The first and second
iterative methods are described in Chapter 16.

Figure 9.12 shows a possible bifurcation diagram for system (9.10) for
forcing amplitudes in the range 0 < Γ < 1 near the critical point at N . The
vertical axis labeled r represents the distance of the point in the Poincaré map
from the origin (r =

√
x2 + y2). The first iterative method was employed in
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Figure 9.10: A gallery of phase portraits and Poincaré maps for system (9.10)
when α = 1, β = −1, k = 0.3 and ω = 1.25: (a) Γ = 0.2 (forced period one),
(b) Γ = 0.3 (a period-two subharmonic), and (c) Γ = 0.31 (a period-four
subharmonic).
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Figure 9.11: [Python] A gallery of phase portraits and Poincaré maps for
system (9.10) when α = 1, β = −1, k = 0.3, and ω = 1.25: (a) Γ = 0.37 (a
period-five subharmonic); (b) Γ = 0.5 (chaos), 4000 points are plotted; (c)
Γ = 0.8 (forced period one).
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this case. For each value of Γ, the last 10 of 50 iterates were plotted, and
the step length used in this case was 0.01. The initial values were chosen
close to one of the existing periodic solutions. The diagram shows period-one
behavior for 0 < Γ < 0.28, approximately. For values of Γ > 0.28, there is
period-two behavior, and then the results become a little obscure.

Figure 9.13 shows a possible bifurcation diagram produced using the sec-
ond iterative method. The parameter Γ is increased from zero to 0.4 and
then decreased from Γ = 0.4 back to zero. A similar study was carried out
in Chapter 5. There were 4000 iterates used as Γ was increased and then
decreased. The solid curve lying approximately between 0 ≤ Γ < 0.32 rep-
resents steady-state behavior. As Γ increases beyond 0.32, the system goes
through a chaotic regime and returns to periodic behavior before Γ = 0.4.
As the parameter Γ is decreased, the system returns through the periodic
paths, enters a chaotic region, and period undoubles back to the steady-state
solution at Γ ≈ 0.28. Note that on the ramp-up part of the iterative scheme,
the steady state overshoots into the region where the system is of period two,
roughly where 0.28 < Γ < 0.32.

Γ

0 0.2 0.4

1

2

r

 

Figure 9.12: A bifurcation diagram for system (9.10) when α = 1, β =
−1, k = 0.3, and ω = 1.25, produced using the first iterative method.

Figure 9.14 shows a bifurcation diagram produced as Γ is increased from
zero to 0.4002 and then decreased back to zero. Once more as Γ is increased,
there is steady-state behavior for Γ lying between zero and approximately
0.32. However, as the parameter is decreased a different steady state is
produced and a large bistable region is present.
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Note that there will also be steady-state behavior and bifurcations asso-
ciated with the critical point at M . The flow near to saddle fixed points will
now be considered.

Figure 9.13: [Python] A bifurcation diagram for system (9.10) when α =
1, β = −1, k = 0.3, and ω = 1.25, 0 ≤ Γ ≤ 0.4, produced using the second
iterative method. The ramp up points are colored red and the ramp down
points are colored blue.

Figure 9.14: [Python] A bifurcation diagram for system (9.10) when α =
1, β = −1, k = 0.3, and ω = 1.25, 0 ≤ Γ ≤ 0.4002, produced using the second
iterative method. There is a large bistable region. The ramp up points are
colored red and the ramp down points are colored blue.
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Homoclinic and Heteroclinic Bifurcations. Some of the theory involved
in the bifurcations to chaos for flows and maps is a result of the behavior of
the stable and unstable manifolds of saddle points. Discrete maps have been
discussed in some detail in earlier chapters. The stable and unstable man-
ifolds can form homoclinic and heteroclinic orbits as a parameter is varied.
Homoclinic and heteroclinic orbits were introduced in Chapter 6. It is also
possible for the stable and unstable manifolds to approach one another and
eventually intersect as a parameter varies. When this occurs, there is said
to be a homoclinic (or heteroclinic) intersection. The intersection is homo-
clinic if a stable/unstable branch of a saddle point crosses the unstable/stable
branch of the same saddle point, and it is heteroclinic if the stable/unstable
branches of one saddle point cross the unstable/stable branches of a different
saddle point. If the stable and unstable branches of saddle points intersect
once, then it is known that there must be an infinite number of intersections,
and a so-called homoclinic (or heteroclinic) tangle is formed. In 1967, Smale
[11] provided an elegant geometric construction to describe this phenomenon.
The mapping function used is now known as the Smale horseshoe map. Con-
sider a small square, say S, of initial points surrounding a saddle point in the
Poincaré section. Under the iterative scheme, this square of points will be
stretched out in the direction of the unstable manifold and compressed along
the stable branch of the saddle point. In Smale’s construction, a square of
initial points is stretched in one direction and then compressed in an orthog-
onal direction. Suppose that the map is given by H : S → �2 and that H
contracts S in the horizontal direction, expands S in the vertical direction,
and then folds the rectangle back onto itself to form a horseshoe, as in Fig-
ure 9.15. Similarly, the action of H−1 on S is also given in Figure 9.15. The
result of the intersection of these first two sets is given in Figure 9.16.

H–1 (S)SS

S
H (S)S

Figure 9.15: The mappings H and H−1.
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H (S)SH–1 (S)

Figure 9.16: The first stage of the Smale horseshoe map.

As this process is iterated to infinity, points fall into the area contained
by the original square in smaller and smaller subareas. The result is an
invariant Cantor set that contains a countable set of periodic orbits and an
uncountable set of bounded nonperiodic orbits.

The Smale-Birkhoff Theorem states that homoclinic tangles guarantee
that a dynamical system will display horseshoe dynamics. For more details,
the reader is directed once again to the excellent textbook of Guckenheimer
and Holmes [5].

9.4 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

Axes3D(fig) # Set properties of 3D axes.

ax.set_title # Put a title on 3D axes.

# Program 09a: Poincare first return map.

# See Figure 9.2.

import matplotlib.pyplot as plt

from sympy import sqrt
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import numpy as np

from scipy.integrate import odeint

xmin, xmax = -1, 1

ymin, ymax = -1, 1

def dx_dt(x, t):

return [- x[1] - x[0] * sqrt(x[0]**2 + x[1]**2),

x[0] - x[1] * sqrt(x[0]**2 + x[1]**2)]

# Phase portrait.

t=np.linspace(0,16*np.pi,10000)

xs=odeint(dx_dt, [1, 0], t)

plt.plot(xs[:, 0], xs[:, 1], "r-")

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

plt.xlim(xmin,xmax)

plt.ylim(ymin,ymax);

# First eight returns on x-axis.

t = np.linspace(0, 9*2*np.pi, 900000)

xs = odeint(dx_dt, [1, 0], t)

for i in range(9):

print(’r{} = {}’.format(i, xs[100000*i, 0]))

plt.show()

# Program 09b: Hamiltonian with two degrees of freedom.

# See Figure 9.5(e).

import numpy as np

from scipy.integrate import odeint

from sympy import sqrt

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Maximum time point and total number of time points

tmax, n = 100, 20000

w1 = sqrt(2)

w2 = 1

def hamiltonian_4d(X, t):

p1, p2, q1, q2 = X

dp1 = -w1* q1

dp2 = -w2 * q2

dq1 = w1 * p1

dq2 = w2 * p2

return (dp1, dp2, dq1, dq2)
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t = np.linspace(0, tmax, n)

f = odeint(hamiltonian_4d, (0.5, 1.5, 0.5, 0), t)

p1, p2, q1, q2 = f.T

fig=plt.figure()

ax = Axes3D(fig)

ax.plot(p1, q1, q2,’b-’, lw=0.5)

ax.set_xlabel(r’$p_1$’, fontsize=15)

ax.set_ylabel(r’$q_1$’, fontsize=15)

ax.set_zlabel(r’$q_2$’, fontsize=15)

plt.tick_params(labelsize=12)

ax.set_title(’H=1.365416, fontsize=15)

plt.show()

# Program 09c: Phase portrait and Poincare map of a nonautonomous ODE.

# See Figure 9.11(b).

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import odeint

xmin, xmax = -2, 2

ymin, ymax = -2, 2

k = 0.3

omega = 1.25

gamma = 0.5

def dx_dt(x, t):

return [x[1], x[0] - k * x[1] - x[0]**3 + gamma * np.cos(omega*t)]

# Phase portrait.

t = np.linspace(0, 500, 10000)

xs = odeint(dx_dt, [1, 0], t)

plt.plot(xs[:, 0], xs[:, 1], "r-", lw=0.5)

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

plt.xlim(xmin,xmax)

plt.ylim(ymin,ymax);

plt.title(’Phase portrait’)

# The Poincare section. Plot 4000 points.

x = []

y = []

fig, ax = plt.subplots(figsize=(6, 6))

t=np.linspace(0, 4000*(2*np.pi)/omega, 16000000)

xs = odeint(dx_dt, [1, 0], t)



238 Chapter 9: c©Springer

x = [xs[4000*i, 0] for i in range(4000)]

y = [xs[4000*i, 1] for i in range(4000)]

ax.scatter(x, y, color = ’blue’, s=0.1)

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

plt.title(’The Poincare section’)

plt.show()

# Program 09d: Bifurcation diagram of the Duffing equation.

# See Figure 9.14.

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import odeint

k = 0.3

omega = 1.25

alpha = 1

beta = -1;

rs_up=[]

rs_down=[]

def duffing(x, t):

return [x[1], -beta * x[0] - k * x[1] - alpha * x[0] **3 + \

gamma * np.cos(omega*t)]

# Take N_steps=4000 to get Figure 9.13.

num_steps = 4002

step = 0.0001

interval = num_steps * step

a, b = 1, 0

ns=np.linspace(0,num_steps,num_steps)

# Ramp the amplitude of vibration, Gamma, up.

for n in ns:

gamma = step * n

t = np.linspace(0, (4*np.pi) / omega, 200)

xs = odeint(duffing, [a, b], t)

for i in range(2):

a = xs[100, 0]

b = xs[100, 1]

r = np.sqrt(a**2 + b**2)

rs_up.append([n, r])
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rs_up = np.array(rs_up)

# Ramp the amplitude of vibration, Gamma, down.

for n in ns:

gamma = interval - step * n

t=np.linspace(0, (4*np.pi) / omega, 200)

xs=odeint(duffing, [a, b], t)

for i in range(2):

a=xs[100, 0]

b=xs[100, 1]

r=np.sqrt(a**2 + b**2)

rs_down.append([num_steps - n, r])

rs_down=np.array(rs_down)

fig, ax = plt.subplots()

xtick_labels = np.linspace(0, interval, 5)

ax.set_xticks([x / interval * num_steps for x in xtick_labels])

ax.set_xticklabels([’{:.1f}’.format(xtick) for \

xtick in xtick_labels])

plt.plot(rs_up[:, 0], rs_up[:, 1], ’r.’, markersize=0.1)

plt.plot(rs_down[:, 0], rs_down[:, 1], ’b.’, markersize=0.1)

plt.xlabel(r’$\Gamma$’, fontsize=15)

plt.ylabel(’r’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

9.5 Exercises

1. Consider the system

ẋ = −y − 0.1x
√

x2 + y2, ẏ = x− 0.1y
√

x2 + y2.

By considering the line segment Σ = {(x, y) ∈ �2 : 0 ≤ x ≤ 4, y = 0},
list the first ten returns on Σ given that a trajectory starts at the point
(4, 0).

2. Obtain a Poincaré map for the system

ẋ = μx+ y − x
√
x2 + y2, ẏ = −x+ μy − y

√
x2 + y2

on the Poincaré section Σ = {(x, y) ∈ �2 : 0 ≤ x < ∞, y = 0}.
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3. Use the characteristic multiplier to determine the stability of the limit
cycle in Example 2.

4. Solve the following differential equations:

ṙ = r(1− r2), θ̇ = 1.

Consider the line segment Σ = {(x, y) ∈ �2 : 0 ≤ x ≤ ∞} and find the
Poincaré map for this system.

5. Use the characteristic multiplier to determine the stability of the limit
cycle in Example 4.

6. Consider the two degrees of freedom Hamiltonian given by

H(p,q) =
ω1

2
(p21 + q21) +

ω2

2
(p22 + q22).

Plot three-dimensional and two-dimensional Poincaré sections when

(a) ω1 = 3 and ω2 = 7 for the set of initial conditions t = 0, p1 =
0.5, p2 = 1.5, q1 = 0.5, q2 = 0,

(b) ω1 =
√
2 and ω2 = 3 for the set of initial conditions t = 0, p1 =

0.5, p2 = 1.5, q1 = 0.5, q2 = 0.

7. Plot three-dimensional and two-dimensional Poincaré sections of the
Toda Hamiltonian given by

H =
p21
2

+
p22
2

+
e2q2+2

√
3q1

24
+

e2q2−2
√
3q1

24
+

e−4q2

24
− 1

8
,

for several different energy levels of your choice.

8. Plot the chaotic solution of the periodically driven Fitzhugh-Nagumo
system

u̇ = 10

(
u− v − u3

3
+ I(t)

)
, v̇ = u− 0.8v + 0.7,

where I(t) is a periodic step function of period 2.025, amplitude 0.267,
and width 0.3.
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9. A damped driven pendulum may be modeled using the nonautonomous
system of differential equations defined by

d2θ

dt2
+ k

dθ

dt
+

g

l
sin(θ) = Γ cos(ωt),

where k is a measure of the frictional force, Γ and ω are the amplitude
and frequency of the driving force, g is the acceleration due to gravity,
and l is the length of the pendulum. Plot a Poincaré map for this sys-
tem when k = 0.3, Γ = 4.5, ω = 0.6, and g

l = 4.

10. (a) Consider system (9.10) with α = 1, β = −1, k = 0.1, and ω = 1.25.
Plot a bifurcation diagram for 0 ≤ Γ ≤ 0.1 and show that there is a
clockwise hysteresis loop at approximately 0.04 < Γ < 0.08. Note that
there is ringing (oscillation) at the ramp-up and ramp-down parts of
the bistable region.

(b) Plot the two stable limit cycles in the bistable region for Exercise
10(a) on one phase portrait. This shows that the system is multistable.
For example, take Γ = 0.07. These limit cycles correspond to steady
states on the upper and lower branches of the bistable cycle.
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Chapter 10

Local and Global
Bifurcations

Aims and Objectives

• To introduce some local and global bifurcation theory in the plane.

• To bifurcate limit cycles in the plane.

• To introduce elementary theory of Gröbner bases.

On completion of this chapter, the reader should be able to

• bifurcate small-amplitude limit cycles from fine foci;

• solve systems of multivariate polynomial equations;

• bifurcate limit cycles from a center;

• investigate limit cycle bifurcation from homoclinic loops, numerically.

The problem of determining the maximum number of limit cycles for pla-
nar differential systems dates back more than 100 years and will be discussed
in more detail in Chapter 11. Local limit cycles can be analyzed in terms
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of local behavior of the system near to a relevant critical point or limit cy-
cle. The theory involved in global bifurcations is not so well developed and
involves larger-scale behavior in the plane.

An algorithm is presented for bifurcating small-amplitude limit cycles out
of a critical point. Gröbner bases are then introduced which can help with the
reduction phase of the algorithm. The Melnikov function is used to determine
the approximate location and number of limit cycles when a parameter is
small. The limit cycles are bifurcated from a center. Bifurcations involving
homoclinic loops are discussed in Section 10.4.

10.1 Small-Amplitude Limit Cycle
Bifurcations

The general problem of determining the maximum number and relative con-
figurations of limit cycles in the plane has remained unresolved for over a
century. The problem will be stated in Chapter 11. Both local and global bi-
furcations have been studied to create vector fields with as many limit cycles
as possible. All of these techniques rely heavily on symbolic manipulation
packages such as Python. Unfortunately, the results in the global case num-
ber relatively few. Only in recent years have many more results been found
by restricting the analysis to small-amplitude limit cycle bifurcations; see, for
example, Chapter 11 and the references therein.

Consider systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (10.1)

where P and Q are polynomials in x and y. It is well known that a nonde-
generate critical point, say, x0, of center or focus type can be moved to the
origin by a linear change of coordinates to give

ẋ = λx− y + p(x, y), ẏ = x+ λy + q(x, y), (10.2)

where p and q are at least quadratic in x and y. If λ �= 0, then the origin is
structurally stable for all perturbations.

Definition 1. A critical point, say, x0, is called a fine focus of system (10.1)
if it is a center for the linearized system at x0. Equivalently, if λ = 0 in
system (10.2), then the origin is a fine focus.

In the work to follow, assume that the unperturbed system does not
have a center at the origin. The technique used here is entirely local; limit
cycles bifurcate out of a fine focus when its stability is reversed by perturbing
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λ and the coefficients arising in p and q. These are said to be local or
small-amplitude limit cycles. How close the origin is to being a center of
the nonlinear system determines the number of limit cycles that may be
obtained from bifurcation. The method for bifurcating limit cycles will now
be summarized and is given in detail in [15] and [16].

By a classical result, there exists a Lyapunov function, say, V (x, y) =
V2(x, y)+V3(x, y)+. . .+Vk(x, y)+. . ., where Vk is a homogeneous polynomial
of degree k, such that

dV

dt
= η2r

2 + η4r
4 + . . .+ η2ir

2i + . . . , (10.3)

where r2 = x2 + y2. The η2i are polynomials in the coefficients of p and q
and are called the focal values . The origin is said to be a fine focus of order
k if η2 = η4 = . . . = η2k = 0 but η2k+2 �= 0. Take an analytic transversal
through the origin parameterized by some variable, say, c. It is well known
that the return map of (10.2), c �→ h(c), is analytic if the critical point is
nondegenerate. Limit cycles of system (10.2) then correspond to zeros of
the displacement function, d(c) = h(c) − c; see Chapter 9 Hence at most
k limit cycles can bifurcate from the fine focus. The stability of the origin
is clearly dependent on the sign of the first nonzero focal value, and the
origin is a nonlinear center if and only if all of the focal values are zero.
Consequently, it is the reduced values, or Lyapunov quantities , say, L(j),
that are significant. One needs only consider the value η2k reduced modulo
the ideal 〈η2, η4, . . . , η2k−2〉 to obtain the Lyapunov quantity L(k − 1). To
bifurcate limit cycles from the origin, select the coefficients in the Lyapunov
quantities such that

|L(m)| � |L(m+ 1)| and L(m)L(m+ 1) < 0,

for m = 0, 1, . . . , k − 1. At each stage, the origin reverses stability and a
limit cycle bifurcates in a small region of the critical point. If all of these
conditions are satisfied, then there are exactly k small-amplitude limit cycles.
Conversely, if L(k) �= 0, then at most k limit cycles can bifurcate. Sometimes
it is not possible to bifurcate the full complement of limit cycles; an example
is given in [10].

The algorithm for bifurcating small-amplitude limit cycles may be split
into the following four steps:

1. computation of the focal values using a mathematical package;

2. reduction of the n-th focal value modulo a Gröbner basis of the ideal
generated by the first n − 1 focal values (or the first n − 1 Lyapunov
quantities);

3. checking that the origin is a center when all of the relevant Lyapunov
quantities are zero;
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4. bifurcation of the limit cycles by suitable perturbations.

Dongming Wang [17] has recently developed software to deal with the
reduction part of the algorithm for several differential systems and Gröbner
bases are introduced in the next section.

For some systems, the following theorems can be used to prove that the
origin is a center.

The Divergence Test. Suppose that the origin of system (10.1) is a critical
point of focus type. If

div (ψX) =
∂(ψP )

∂x
+

∂(ψQ)

∂y
= 0,

where ψ : �2 → �2, then the origin is a center.

The Classical Symmetry Argument. Suppose that λ = 0 in system
(10.2) and that either

(i) p(x, y) = −p(x,−y) and q(x, y) = q(x,−y) or

(ii) p(x, y) = p(−x, y) and q(x, y) = −q(−x, y).

Then the origin is a center.
Adapting the classical symmetry argument, it is also possible to prove the

following theorem.

Theorem 1. The origin of the system

ẋ = y − F (G(x)), ẏ = −G′(x)

2
H(G(x)),

where F and H are polynomials, G(x) =
∫ x

0
g(s)ds with g(x)sgn(x) > 0 for

x �= 0, g(0) = 0, is a center.

The reader is asked to prove this theorem in the exercises at the end of the
chapter.

To demonstrate the method for bifurcating small-amplitude limit cycles,
consider Liénard equations of the form

ẋ = y − F (x), ẏ = −g(x), (10.4)

where F (x) = a1x+a2x
2+ . . .+aux

u and g(x) = x+b2x
2+b3x

3+ . . .+bvx
v.

This system has proved very useful in the investigation of limit cycles when
showing existence, uniqueness, and hyperbolicity of a limit cycle. In recent
years, there have also been many local results; see, for example, Table 11.1
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in Chapter 11. Therefore, it seems sensible to use this class of system to
illustrate the method.

The computation of the first three focal values will be given and a Python
program for computing the first two nontrivial focal values is listed in Sec-
tion 10.5. Write Vk(x, y) =

∑
i+j=k Vi,jx

iyj and denote Vi,j as being odd or
even according to whether i is odd or even and that Vi,j is 2-odd or 2-even ac-
cording to whether j is odd or even, respectively. Solving equation (10.4), it
is easily seen that V2 = 1

2 (x
2+ y2) and η2 = −a1. Therefore, set a1 = 0. The

odd and even coefficients of V3 are then given by the two pairs of equations

3V3,0 − 2V1,2 = b2,

V1,2 = 0

and

−V2,1 = a2,

2V2,1 − 3V0,3 = 0,

respectively. Solve the equations to give

V3 =
1

3
b2x

3 − a2x
2y − 2

3
a2y

3.

Both η4 and the odd coefficients of V4 are determined by the equations

−η4 − V3,1 = a3,

−2η4 + 3V3,1 − 3V1,3 = −2a2b2,

−η4 + V1,3 = 0.

The even coefficients are determined by the equations

4V4,0 − 2V2,2 = b3 − 2a22,

2V2,2 − 4V0,4 = 0

and the supplementary condition V2,2 = 0. In fact, when computing subse-
quent coefficients for V4m, it is convenient to require that V2m,2m = 0. This
ensures that there will always be a solution. Solving these equations gives

V4 =
1

4
(b3 − 2a22)x

4 − (η4 + a3)x
3y + η4xy

3
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and

η4 =
1

8
(2a2b2 − 3a3).

Suppose that η4 = 0 so that a3 = 2
3a2b2. It can be checked that the two sets

of equations for the coefficients of V5 give

V5 =

(
b4
5

− 2a22b2
3

)
x5 + (2a32 − a4)x

4y +

(
8a32
3

− 4a4
3

+
2a2b3
3

)
x2y3

+

(
16a32
15

− 8a4
15

− 4a2b3
15

)
y5.

The coefficients of V6 may be determined by inserting the extra condition
V4,2 + V2,4 = 0. In fact, when computing subsequent even coefficients for
V4m+2, the extra condition V2m,2m+2 +V2m+2,2m = 0 is applied, which guar-
antees a solution. The polynomial V6 contains 27 terms and will not be listed
here. However, η6 leads to the Lyapunov quantity

L(2) = 6a2b4 − 10a2b2b3 + 20a4b2 − 15a5.

Lemma 1. The first three Lyapunov quantities for system (10.4) are L(0) =
−a1, L(1) = 2a2b2 − 3a3, and L(2) = 6a2b4 − 10a2b2b3 + 20a4b2 − 15a5.

Let Ĥ(u, v) denote the maximum number of small-amplitude limit cycles
that can be bifurcated from the origin for system (10.4).

Example 1. Prove that

(i) Ĥ(3, 2) = 1 and

(ii) Ĥ(3, 3) = 2

for system (10.4).

Solutions. (i) Consider the case where u = 3 and v = 2. Now L(0)=0 if
a1 = 0 and L(1) = 0 if a3 = 2

3a2b2. Thus system (10.4) becomes

ẋ = y − a2x
2 − 2

3
a2b2x

3, ẏ = −x− b2x
2,

and the origin is a center by Theorem 1. Therefore, the origin is a fine focus
of order one if and only if a1 = 0 and 2a2b2 − 3a3 �= 0. The conditions are
consistent. Select a3 and a1 such that

|L(0)| � |L(1)| and L(0)L(1) < 0.

The origin reverses stability once and a limit cycle bifurcates. The pertur-
bations are chosen such that the origin reverses stability once and the limit



Local and Global Bifurcations 251

cycles that bifurcate persist. Thus Ĥ(3, 2) = 1. Figure 10.1(a) shows a
small-amplitude limit cycle for system (10.4) when u = 3 and v = 2.

(ii) Consider system (10.4) with u = 3 and v = 3. Now L(0) = 0 if a1 = 0,
L(1) = 0 if a3 = 2

3a2b2, and L(2) = 0 if a2b2b3 = 0. Thus L(2) = 0 if

(a) a2 = 0,

(b) b3 = 0, or

(c) b2 = 0.

If condition (a) holds, then a3 = 0 and the origin is a center by the divergence
test (divX = 0). If condition (b) holds, then the origin is a center since
Ĥ(3, 2) = 1. If condition (c) holds, then a3 = 0 and system (10.3) becomes

ẋ = y − a2x
2, ẏ = −x− b3x

3,

and the origin is a center by the classical symmetry argument. The origin is
thus a fine focus of order two if and only if a1 = 0 and 2a2b2 − 3a3 = 0 but
a2b2b3 �= 0. The conditions are consistent. Select b3, a3, and a1 such that

|L(1)| � |L(2)|, L(1)L(2) < 0 and |L(0)| � |L(1)|, L(0)L(1) < 0.

The origin has changed stability twice, and there are two small-amplitude
limit cycles. The perturbations are chosen such that the origin reverses sta-
bility twice and the limit cycles that bifurcate persist. Thus Ĥ(3, 3) = 2.
Figure 10.1(b) shows two small-amplitude limit cycles for system (10.4) when
u = 3 and v = 3.

x(t)

-0.4
-0.4 -0.2 0 0.2 0.4 -1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

y(
t)

x(t)

-0.6

-0.1

0.4

0.9

1.4

y(
t)

a b

Figure 10.1: Small-amplitude limit cycles (blue trajectories) for system
(10.4): (a) one limit cycle when u = 3 and v = 2 and a1 = 0.01, a2 =
1, b2 = 1, and a3 = 1

3 ; (b) two limit cycles when u = 3 and v = 3 and
a1 = 0.01, a2 = 1, b2 = 1, a3 = 1

3 , and b2 = 2.
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The algorithm for bifurcating limit cycles for Liénard systems can be
extended to generalized Liénard systems, as demonstrated in [12, 13, 14].

10.2 Gröbner Bases

The field of computer algebra has expanded considerably in recent years and
extends deeply into both mathematics and computer science. One funda-
mental tool in this new field is the theory of Gröbner bases [1, 6, 18]. In
1965, as part of his PhD research studies, Bruno Buchberger [5] devised an
algorithm for computing Gröbner bases for a set of multivariate polynomi-
als. The Gröbner bases algorithm was named in honor of his PhD supervisor
Wolfgang Gröbner. The most common use of the Gröbner bases algorithm is
in computing bases which can be related to operations for ideals in commuta-
tive polynomial rings. Most mathematical packages now have the Buchberger
algorithm incorporated for computing Gröbner bases and Python is no ex-
ception. This section aims to give a brief overview of the method including
some notation, definitions, and theorems without proof. Introductory theory
on commutative rings and ideals and proofs to the theorems listed in this
section can be found in most of the textbooks in the reference section of this
chapter. There are a wide range of applications, see [4], for example; how-
ever, for this text we will be interested in Gröbner bases in polynomial rings
in several variables only. The theory of Gröbner bases originated with the
desire to solve systems of nonlinear equations involving multivariate polyno-
mial equations. Wang et al. [16, 17] have used Gröbner bases among other
methods to test elimination algorithms when solving multivariate polynomial
systems. One interesting unsolved example appears in [16], when attempting
to prove complete center conditions for a certain cubic system.

Recall some basic algebraic definitions:

Definition 2. A ring, say, (R,+, ∗) is a set R with two binary operations +
and ∗, satisfying the following conditions:

1. (R,+) is an Abelian group;

2. (R, ∗) is a semigroup, and

3. the distributive laws hold.

If (R,+) is commutative, then (R,+, ∗) is called a commutative ring.

Definition 3. A nonempty subset I ⊂ (R,+, ∗) is called an ideal if for all
r ∈ R and a ∈ I, r ∗ a ∈ I and a ∗ r ∈ I.

Notation. Let N denote the set of nonnegative integers N = {0, 1, 2, . . .}.
Let α = (α1, α2, . . . , αn) be a power vector in N

n, and let x1, x2, . . . , xn be any
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n variables. Write xα = xα1
1 xα2

2 . . . xαn
n , where |α| = (α1 + α2 + . . .+ αn) is

the total degree of the monomial xα. Let R = K[x] = K [x1, x2, . . . , xn] be a
commutative polynomial ring in n variables over an algebraically closed field
K such as C,Q, or R. Recall that a field is an algebraic structure in which
the operations addition, subtraction, multiplication, and division (except by
zero) may be performed.

Definition 4. Let P = {p1, p2, . . . , ps} be a set of multivariate polynomials,
then the ideal generated by P , denoted by I = 〈P 〉, is given by:

{
s∑

i=1

fipi : f1, f2, . . . , fs ∈ K[x]

}
,

where the polynomials pi form a basis for the ideal they generate.

In 1888, David Hilbert proved the following theorem:

Theorem 2. (Hilbert’s Bases Theorem). If K is a field, then every ideal
in the polynomial ring K[x] is finitely generated.

A proof to this theorem can be found in most textbooks in the reference
section of this chapter.

An extremely useful basis of an ideal is the Gröbner basis, which will be
defined after the notion of monomial ordering is introduced.

Definition 5. A monomial order, say, �, is a total order on the monomials
of R such that

1. for all α ∈ N
n, α � 0;

2. for all α, β, γ ∈ N
n, α � β implies that α+ γ � β + γ.

The three most common monomial orderings are defined by the following:

Definition 6. Suppose that α, β ∈ N
n. Then the

1. lexicographical order is such that, α �lex β if and only if the left-most
nonzero entry in α− β is positive;

2. degree lexicographical order is such that, α �dlex β if and only if |α| �
|β| or (|α| = |β| and α �lex β);

3. degree reverse lexicographical order is such that, α �drevlex β if and
only if |α| � |β| or (|α| = |β| and the right-most nonzero entry in α−β
is negative.

Note that there are many other monomial orderings including weighted and
grouped orders [8].
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Example 2. Suppose that xα = x3y3z, xβ = x2y4z2, and xγ = xy6z. Then

1. (3, 3, 1) = α �lex β = (2, 4, 2) since in (α − β) = (1,−1,−1), the
left-most nonzero entry is positive. Hence x3y3z �lex x2y4z2.

2. (i) β = (2, 4, 2) �dlex α = (3, 3, 1) since |β| = 8 > |α| = 7. Hence
x2y4z2 �dlex x3y3z. (ii) β = (2, 4, 2) �dlex γ = (1, 6, 1) since |β| =
|γ| = 8 and in (β − γ) = (1,−2, 1), the left-most nonzero entry is
positive. Hence x2y4z2 �dlex xy6z.

3. (i) β = (2, 4, 2) �drevlex α = (3, 3, 1) since |β| = 8 > |α| = 7. Hence
x2y4z2 �drevlex x3y3z. (ii) γ = (1, 6, 1) �drevlex β = (2, 4, 2) since
|γ| = |β| = 8 and in (γ−β) = (−1, 2,−1), the right-most nonzero entry
is negative. Hence xy6z �drevlex x2y4z2.

Definition 7. Assume that there is a fixed term order � on a set of mono-
mials that uniquely orders the terms in a given nonzero polynomial p =∑

α cαx
α ∈ K[x]. Define the

1. multidegree of p as multideg(p) = max (α ∈ N
n : cα �= 0);

2. leading coefficient of p as LC(p) = cmultideg(p);

3. leading monomial of p as LM(p) = xmultideg(p);

4. leading term of p as LT(p) = LC(p)LM(p);

Example 3. Suppose that p(x, y, z) = 2x3y3z + 3x2y4z2 − 4xy6z, then

• with respect to �lex, multideg(p) = (3, 3, 1), LC(p) = 2, LM(p) =
x3y3z, LT(p) = 2x3y3z;

• with respect to �dlex, multideg(p) = (2, 4, 2), LC(p) = 3, LM(p) =
x2y4z2, LT(p) = 3x2y4z2;

• with respect to �drevlex, multideg(p) = (1, 6, 1), LC(p) = −4, LM(p) =
xy6z, LT(p) = −4xy6z.

Definition 8. A polynomial f is reduced with respect to P = {p1, p2, . . . , ps}
(or modulo P), f →P h, if and only if there exists pi ∈ P , such that

h = f − LT(f)

LT(pi)
.

Furthermore, a polynomial g is completely reduced with respect to P if no
monomial of g is divisible by any of the LM(pi), for all 1 ≤ i ≤ s.
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Division Algorithm for Multivariate Polynomials. Let P = {p1, p2, . . . ,
ps} be an ordered set of polynomials in K[x], then there exist polynomials
q1, q2, . . . , qs, r ∈ K[x] such that for p ∈ K[x]

p = q1p1 + q2p2 + . . .+ qsps + r,

and either r = 0 or r is completely reduced with respect to P . The algorithm
is described briefly here and is a generalization of the division algorithm in
K [x1]. Perform the reduction of p modulo p1, p2, . . . , ps by repeatedly ap-
plying the following procedure until doing so leaves p unchanged. Take the
smallest i such that ai = LT (pi) divides one of the terms of p. Let f be
the largest (with respect to some monomial ordering �) term of p that is

divisible by ai, replace p by p −
(

f
ai

)
pi, the process eventually terminates.

For a more detailed explanation see the textbooks at the end of the chapter.

When dealing with large ordered sets of polynomials with high total de-
grees one must use computer algebra. There is a command in Python for
carrying out the division algorithm. The syntax is

sympy.polys.polytools.reduced(f, G, *gens, **args)

which reduces a polynomial f modulo a set of polynomials G. Given a
polynomial f and a set of polynomials G = (f1, . . . , fn), Python computes
a set of quotients q = (q1, . . . , qn) and the remainder r such that f =
q1 ∗ f1 + . . . + qn ∗ fn + r, where r vanishes or r is a completely reduced
polynomial with respect to G.

Example 4. Fix a lexicographical order x �lex y �lex z. (i) Divide the poly-
nomial f = x4 + y4 + z4 by the ordered list of polynomials

{
x2 + y, z2y − 1,

y − z2
}
. (ii) Repeat the division with the divisors listed as

{
y − z2, z2y − 1,

x2 + y
}
.

Solution. The Python commands are listed in Section 10.5. Using the
reduced command in Python one obtains

(i) x4 + y4 + z4 =
(
x2 − y

) (
x2 + y

)
+
(
2 + y2

) (
z2y − 1

)
+(

2y + y3
) (

y − z2
)
+ 2 + z4;

(ii) x4 + y4 + z4 =
(
−x2 + y3 + z2 + y2z2 + yz4 + z6

) (
y − z2

)
+ 0

(
z2y − 1

)

+
(
x2 − z2

) (
x2 + y

)
+ 2z4 + z8.

Note that the remainders are different. Unfortunately, the division algorithm
for multivariate polynomials does not produce unique remainders. However,
all is not lost, unique remainders exist when the basis of the ideal is a Gröbner
basis.
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Definition 9. The lowest common multiple (LCM) of two monomials xα1
1

xα2
2 . . . xαn

n and xβ1

1 xβ2

2 . . . xβn
n is given by

LCM
(
xα,xβ

)
= x

max(α1,β1)
1 x

max(α2,β2)
2 . . . xmax(αn,βn)

n .

Definition 10. The S-polynomial of two nonzero ordered polynomials f, g ∈
K[x] is defined by

S (f, g) =
LCM(LM(f),LM(g))

LT (f)
f − LCM(LM(f),LM(g))

LT (g)
g. (10.5)

The S-polynomials are constructed to cancel leading terms. The function
in Python for computing S-polynomials is:

def s_polynomial(f,g):

return expand(lcm(LM(f), LM(g))*(1/LT(f)*f - 1/LT(g)*g))

Example 5. The Python program for computing the S-polynomial is listed
in Section 10.5. Suppose that p = x − 13y2 − 12z3 and π = x2 − xy + 92z,
determine S (p, π) with respect to the term order x �lex y �lex z.

Solution. Substituting into equation (10.5)

S (p, π) =
x2

x

(
x− 13y2 − 12z3

)
− x2

x2

(
x2 − xy + 92z

)
.

Hence

S(p, π) = −13xy2 − 12xz3 + xy − 92z

and the leading terms of p and π have canceled.

The following theorem gives rise to Buchberger’s algorithm:

Theorem 3 (Buchberger’s Theorem). Let G = {g1, g2, . . . , gs} be a set of
nonzero polynomials in K[x], then G is a Gröbner basis for the ideal I = 〈G〉
if and only if for all i �= j,

S (gi, gj) →G 0.

Buchberger’s Algorithm to Compute Gröbner Bases. The algorithm
is used to transform a set of polynomial ideal generators into a Gröbner basis
with respect to some monomial ordering. Suppose that P = {p1, p2, . . . , ps}
is a set of multivariate polynomials with a fixed term order �.
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Step 1. Using the division algorithm for multivariate polynomials (the
reduced command in Python), reduce all of the possible S-polynomial com-
binations modulo the set P .

Step 2. Add all nonzero polynomials resulting from Step 1 to P , and
repeat Steps 1 and 2 until nothing new is added.

The Hilbert basis theorem guarantees that the algorithm eventually stops.
Unfortunately, there are redundant polynomials in this Gröbner basis.

Definition 11. A Gröbner basis G = {g1, g2, . . . gs} is minimal if for all
1 ≤ i ≤ s, LT (gi) /∈ 〈LT (g1) ,LT (g2) , . . . ,LT (gs)〉.

Definition 12. A minimal Gröbner basis G = {g1, g2, . . . gs} is reduced if for
all pairs i, j, i �= j, no term of gi is divisible by LT (gj).

Theorem 4. Every polynomial ideal I ⊂ K[x] has a unique reduced Gröbner
basis.

AGröbner basis for a polynomial ideal may be computed using the Python
command groebner.

Example 6. Determine the critical points of the system

ẋ = x+ y2 − x3, ẏ = 4x3 − 12xy2 + x4 + 2x2y2 + y4. (10.6)

Solution. The critical points are found by solving the equations ẋ = ẏ = 0.
Suppose that

I = 〈x+ y2 − x3, 4x3 − 12xy2 + x4 + 2x2y2 + y4〉,

then a reduced Gröbner basis for I with respect to �lex may be computed
using Python. The command lines are given in Section 10.5. Note that a
different reduced Gröbner basis might result if a different ordering is taken.

{
−195y4 + 1278y6 − 1037y8 + 90y10 + y12, 5970075x+ 5970075y2

+163845838y4 − 162599547y6 + 14472880y8 + 160356y10
}
.

The first generator is expressed in terms of y alone, which can be determined
from any one-variable technique. Back substitution is then used to determine
the corresponding x values. There are seven critical points at

(0, 0), (2.245,−3.011), (2.245, 3.011), (1.370,−1.097),

(1.370, 1.097), (−0.895,−0.422), (−0.895, 0.422).
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Of course, the reader could also use the solve command in Python which is
based on the Buchberger algorithm.

Example 7. The first five Lyapunov quantities for the Liénard system

ẋ = y − a1x− a2x
2 − a3x

3 − a4x
4, ẏ = −x− b2x

2 − b3x
3,

are

L(0) = −a1;

L(1) = −3a3 + 2b2a2;

L(2) = 5b2(2a4 − b3a2);

L(3) = −5b2(92b
2
2a4 − 99b23a2 + 1520a22a4 − 760a32b3 − 46b22b3a2 + 198b3a4);

L(4) = −b2(14546b
4
2a4 + 105639a32b

2
3 + 96664a32b

2
2b3 − 193328a22b

2
2a4−

891034a42a4 + 445517a52b3 + 211632a2a
2
4 − 317094a22b3a4 − 44190b22b3a4+

22095b22b
2
3a2 − 7273b42b3a2 + 5319b33a2 − 10638b23a4),

where a3 = 2
3a2b2 was substituted from L(1) = 0. The polynomials can be

reduced using a number of substitutions; however, the Gröbner basis is easily
computed as:

GB = {−4b2a4 + 3b3a3,−3a3 + 2b2a2, a1} ,

under the ordering a1, a2 � a3 � a4 � b2 � b3. The Gröbner basis can then
be used to help show that the origin is a center when all of the Lyapunov
quantities are zero. The Python program for computing the Gröbner basis
is listed in Section 10.5.

Note that there are specialist commutative algebraic packages, such as
Singular and Macaulay, that use Gröbner bases intensely for really tough
problems.

10.3 Melnikov Integrals and Bifurcating Limit
Cycles from a Center

Consider perturbed two-dimensional differential systems of the form

ẋ = f(x) + εg(x, ε, μ). (10.7)

Assume that the unperturbed system

ẋ = f(x) (10.8)
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has a one-parameter family of periodic orbits given by

Γr : x = γr(t),

where the functions γr(t) have minimum periods Tr and r belongs to an in-
dexing set, say, I, that is either a finite or semi-infinite open interval of �.

Definition 13. The Melnikov function for system (10.7) along the cycle
Γr : x = γr(t), 0 ≤ t ≤ Tr, of (10.8) is given by

M(r, μ) =

∫ Tr

0

exp

(
−
∫ t

0

∇.f(γr(s))ds

)
f ∧ g(γr(t), 0, μ)dt.

Theorem 5. Suppose that

M(r0, μ0) = 0 and
∂M

∂r

∣∣∣∣
(r0,μ0)

�= 0,

where r0 ∈ I. Then for 0 < ε � 1, system (10.7) has a unique hyperbolic
limit cycle close to Γr0 . System (10.7) has no limit cycle close to Γr0 if
M(r0, μ0) �= 0 and ε is small.

Theorem 6. Suppose that M(r, μ0) = 0 has exactly k solutions r1, r2, . . . , rk
∈ I with

∂M

∂r

∣∣∣∣
(ri,μ0)

�= 0,

for some i from 1 to k. Then for 0 < ε � 1, exactly k one-parameter families
of hyperbolic limit cycles bifurcate from the period annulus of (10.8) at the
points r1, r2, . . . , rk. If M(r, μ0) �= 0, then there are no limit cycles.

Melnikov-type integrals have been widely used since Poincaré’s investi-
gations at the end of the 19th century. It is well known that the Melnikov
function for system (10.7) is proportional to the derivative of the Poincaré
map for (10.7) with respect to ε. The interested reader may consult [2] for
more details; the paper also deals with limit cycles of multiplicity greater
than one and the bifurcation of limit cycles from separatrix cycles. To avoid
elliptic integrals, only systems with γr(t) = (x(t), y(t)) = (r cos t, r sin t) will
be considered in this book.

Example 8. Consider the van der Pol system

ẋ = y, ẏ = −x− ε(1− x2)y.

Prove that there is a limit cycle asymptotic to the circle of radius two when
ε is small.
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Solution. In this case, f(x) = (y,−x)T , Tr = 2π, g(x, ε) = (0,−εy(1 −
x2))T , x = r cos(t), y = r sin(t) and ∇.f(x) = 0. Therefore,

M(r, μ) =

∫ Tr

o

f ∧ g(γr(t), 0, μ) dt.

Thus

M(r, μ) =

∫ 2π

0

−r2
(
sin2 t(1− r2 cos2 t)

)
dt

and
M(r, μ) =

π

4
r2(r2 − 4).

Hence M(r0, μ) = 0 when r0 = 2 and ∂M
∂r

∣∣
(r0,0)

= πr0(r
2
0−2) �= 0. Therefore,

there exists a unique hyperbolic limit cycle asymptotic to a circle of radius
two for the van der Pol system when ε is sufficiently small.

Example 9. Consider the Liénard system

ẋ = −y + ε(a1x+ a3x
3 + a5x

5), ẏ = x. (10.9)

Determine the maximum number and approximate location of the limit cycles
when ε is sufficiently small.

Solution. Again, f(x) = (−y, x)T , Tr = 2π, g(x, ε) = (ε(a1x + a3x
3 +

a5x
5), 0)T and ∇.f(x) = 0. Therefore,

M(r, μ) =

∫ 2π

0

−a1r
2 cos2 t− a3r

4 cos4 t− a5r
6 cos6 t dt

and

M(r, μ) = −πr2
(
a1 +

3a3
4

r2 +
5a5
8

r4
)
.

The polynomial m(r) = a1 +
3a3

4 r2 + 5a5

8 r4 has at most two positive roots.
Therefore, when ε is sufficiently small, system (10.9) has at most two hyper-
bolic limit cycles asymptotic to circles of radii rj (j=1,2), where rj are the
positive roots of m(r).

10.4 Bifurcations Involving Homoclinic Loops

Global bifurcations of limit cycles from centers were investigated in the pre-
vious section. Consider the following van der Pol type system

ẋ = y + 10x(0.1− y2), ẏ = −x+ C, (10.10)
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where C is a constant. If C = 0, the system has one critical point at the
origin and a stable limit cycle surrounding it. However, if C �= 0, there is a

second critical point at

(
C, 1

20C +

√(
1

20C

)2
+ 0.1

)
, which is a saddle point.

Figure 10.2 shows three possible phase portraits for varying values of the
parameter C.

a b c
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Figure 10.2: [Python animation] Typical phase portraits for system (10.10)
when (a) C < −0.18 (no limit cycle), (b) −0.18 < C < 0.18 (a stable limit
cycle), and (c) C > 0.18 (no limit cycle).

When C is large and negative, the saddle point is far from the origin.
As C is increased, and approaches the approximate value C ≈ −0.18, one
of the stable and one of the unstable branches of the saddle point coalesce
to form a homoclinic loop. As C is increased further towards C = 0, the
saddle point moves away from the limit cycle (down the negative y axis).
As C is increased through C = 0, the saddle point moves towards the limit
cycle (down the positive y axis) and once more a homoclinic loop is formed
at C ≈ 0.18. As C passes through C ≈ 0.18, the limit cycle vanishes.

Homoclinic Bifurcation. The global bifurcation of limit cycles from ho-
moclinic loops will now be discussed via example. The analysis involved in
bifurcating limit cycles from separatrix cycles is beyond the scope of this
book; however, interested readers are referred to [2]. Both homoclinic and
heteroclinic bifurcations are used to obtain polynomial systems with a num-
ber of limit cycles; see Chapter 11. Python can be used to investigate some
of these systems numerically.

Example 10. Investigate the system

ẋ = y, ẏ = x+ x2 − xy + λy

as the parameter λ varies and plot possible phase portraits.
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Solution. There are two critical points at O = (0, 0) and P = (−1, 0). The
Jacobian is given by

J =

(
0 1

1 + 2x− y −x+ λ

)
.

The origin is a saddle point, and it can be shown that the point P is a node
or focus. Since trace JP = 1 + λ, it follows that P is stable if λ < −1 and
unstable if λ > −1. The point P is also stable if λ = −1.

It can be shown that a limit cycle exists for −1 < λ < λ0, where λ0 ≈
−0.85. Since the limit cycle appears from a homoclinic loop, which exists at
a value, say λ0, this is known as a homoclinic bifurcation. More details can
be found in [2]. Phase portraits for three values of λ are shown in Figure 10.3
and a Python program showing an animation is listed in the next section.

a b c

Figure 10.3: [Python animation] Phase portraits for Example 10 when (a)
λ = −1.5, (b) λ = −0.9, and (c) λ = 0.

Another example is given in the exercises in Section 10.6.

10.5 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

append # Append an object to the end of a list.

reduced # Reduced Groebner basis.
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# Program 10a: Computing Lyapunov quantities for the Lienard system.

# Compute L(1) and L(2).

from sympy import symbols, solve

a2, a3, a4, a5 = symbols(’a2 a3 a4 a5’)

b2, b3, b4, b5 = symbols(’b2 b3 b4 b5’)

V30, V21, V12, V03 = symbols(’V30 V21 V12 V03’)

V3 = solve([3*V30-2*V12-b2, V12, V21+a2, 2*V21-3*V03],

[V30, V21, V12, V03])

print(V3)

V40,V31,V22,V13,V04,eta4 = symbols(’V40 V31 V22 V13 V04 eta4’)

V4=solve([4*V40-2*V22-b3+2*a2**2, 2*V22-4*V04, -eta4-V31-a3, V22,\

-2*eta4+3*V31-3*V13+2*a2*b2, -eta4+V13],\

[V40, V31, V22, V13, V04, eta4])

print(V4)

# Set a3=-2*a2*b2/3.

V50,V41,V32,V23,V14,V05 = symbols(’V50 V41 V32 V23 V14 V05’)

V5=solve([5*V50-2*V32-b4+10*a2**2*b2/3, 3*V32-4*V14, V14,\

-V41-a4+2*a2**3,4*V41-3*V23+2*a2*b3, 2*V23-5*V05],\

[V50, V41,V32, V23, V14,V05])

print(V5)

V60,V51,V42,V33,V24,V15,V06,eta6 = symbols(’V60 V51 V42 V33

V24 V15 V06 eta6’)

V6=solve([6*V60-2*V42-b5+6*a2*a4+4*a2**2*b2**2/3-8*a2**4,\

4*V42-4*V24-16*a2**4/3-4*a2**2*b3/3+8*a2*a4/3,\

V24-6*V06,\

V42+V24,\

-eta6-V51-a5+8*a2**3*b2/3,\

-3*eta6+5*V51-3*V33+2*a2*b4-8*a2**3*b2-2*a2*b2*b3+4*a4*b2,\

-3*eta6+3*V33-5*V15-16*a2**3*b2/3-4*a2*b2*b3/3+8*a4*b2/3,\

-eta6+V15],\

[V60, V51, V42, V33, V24, V15, V06, eta6])

print(V6)

# Program 10b: Division algorithm for multivariate polynomials.

# See Example 4.

from sympy import reduced

from sympy.abc import x,y,z

f = x**4 + y**4 + z**4

p=reduced(f,[x**2 + y ,z**2 * y - 1, y - z**2])
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print(p)

q=reduced(f, [y - z**2, z**2 * y - 1, x**2 + y])

print(q)

# Program 10c: The S-Polynomial. See Example 5.

from sympy import expand, LM, LT, lcm

from sympy.abc import x, y, z

def s_polynomial(f, g):

return expand(lcm(LM(f), LM(g))*(1/LT(f)*f - 1/LT(g)*g))

f, g = [x - 13*y**2 - 12*z**3, x**2 - x*y + 92*z]

s=s_polynomial(f, g)

print(s)

# Program 10d: Computing a Groebner basis. See Example 6.

# Groebner

from sympy import groebner

from sympy.abc import x,y

G=groebner([x+y**2-x**3, 4*x**3-12*x*y**2+x**4+2*x**2*y**2+y**4],

order=’lex’)

print(G)

# Program 10e: Computing Groebner bases. See Example 7.

# Reducing the first five Lyapunov quantities of a Lienard system.

from sympy import groebner, symbols

a1, a2, a3, a4, b2, b3 = symbols(’a1 a2 a3 a4 b2 b3’)

g=groebner([-a1, 2*a2*b2-3*a3,5*b2*(2*a4-b3*a2),\

-5*b2*(92*b2**2*a4 - 99*b3**2*a2 + 1520*a2**2*a4 - 760*a2**3*b3 - \

46*b2**2*b3*a2 +198*b3*a4),\

-b2*(14546*b2**4*a4 + 105639*a2**3*b3**2 + 96664*a2**3*b2**2*b3 -\

193328*a2**2*b2**2*a4 - 891034*a2**4*a4 + 445517*a2**5*b3 + \

211632*a2*a4**2 - 317094*a2**2*b3*a4 - 44190*b2**2*b3*a4 + \

22095*b2**2*b3**2*a2 -7273*b2**4*b3*a2 + 5319*b3**3*a2 - \

10638*b3**2*a4)], order=’lex’)

print(g)

GroebnerBasis([a1,2*a2*b2-3*a3,3*a3*b3-4*a4*b2],a1,a2,a3,a4,b2,b3,

domain=’ZZ’,order=’lex’)
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# Programs 10f: Homoclinic Bifurcation. See Figure 10.2.

from matplotlib import pyplot as plt

from matplotlib.animation import ArtistAnimation

import numpy as np

from scipy.integrate import odeint

fig = plt.figure()

plt.title(’Homoclinic Bifurcation’)

plt.axis([-1.5, 1.5, -1.5, 1.5])

def homoclinic1(x, t):

return [x[1] + 10 * x[0] * (0.1 - x[1]**2), -x[0] + C]

time = np.arange(0, 200, 0.01)

x0=[1, 0]

myimages=[]

for C in np.arange(-0.2, 0.2, 0.01):

xs = odeint(homoclinic1, x0, time)

imgplot = plt.plot(xs[:, 0], xs[:, 1], "r-")

myimages.append(imgplot)

my_anim = ArtistAnimation(fig, myimages, interval = 100, blit=False,

repeat_delay=100)

plt.show()

# Programs 10g: Homoclinic Bifurcation. See Figure 10.3.

from matplotlib import pyplot as plt

from matplotlib.animation import ArtistAnimation

import numpy as np

from scipy.integrate import odeint

fig = plt.figure()

plt.title(’Homoclinic Bifurcation’)

plt.axis([-2, 0.5, -1, 1])

def homoclinic2(x, t):

return [x[1], x[0] + x[0]**2 - x[0] * x[1] + L * x[1]]

time = np.arange(0, 50, 0.005)

x0=[-0.1, 0.1]

myimages=[]

for L in np.arange(-2, -0.5, 0.01):

xs = odeint(homoclinic2, x0, time)

imgplot2 = plt.plot(xs[:, 0], xs[:, 1], "r-")

myimages.append(imgplot2)
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my_anim = ArtistAnimation(fig, myimages, interval = 100, blit = False,

repeat_delay=100)

plt.show()

10.6 Exercises

1. Prove that the origin of the system

ẋ = y − F (G(x)), ẏ = −G′(x)

2
H(G(x))

is a center using the transformation u2 = G(x) and the classical sym-
metry argument.

2. Fix a lexicographical order x � y � z. Divide the multivariate polyno-
mial p = x3+y3+z3 by the ordered list of polynomials

{
x+ 3y, xy2 − x,

y − z}. Repeat the division with the divisors listed as
{
xy2 − x, x+ 3y,

y − z}.

3. Use Python to compute a Gröbner basis for the set of polynomials
{
y2 − x3 + x, y3 − x2

}

under lexicographical, degree lexicographical, and degree reverse lex-
icographical ordering, respectively. Solve the simultaneous equations,
y2 − x3 + x = 0, y3 − x2 = 0, for x and y.

4. Write a program to compute the first seven Lyapunov quantities of the
Liénard system

ẋ = y − (a1x+ a2x
2 + . . .+ a13x

13), ẏ = −x. (10.11)

Prove that at most six small-amplitude limit cycles can be bifurcated
from the origin of system (10.11).

5. Consider the system

ẋ = y − (a1x+ a3x
3 + . . .+ a2n+1x

2n+1), ẏ = −x.

Prove by induction that at most n small-amplitude limit cycles can be
bifurcated from the origin.

6. Write a program to compute the first five Lyapunov quantities for the
Liénard system

ẋ = y− (a1x+a2x
2+ . . .+a7x

7), ẏ = −(x+ b2x
2+ b3x

3+ . . .+ b6x
6).

Prove that Ĥ(4, 2) = 2, Ĥ(7, 2) = 4, and Ĥ(3, 6) = 4. Note that in
Ĥ(u, v), u is the degree of F and v is the degree of g.
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7. Consider the generalized mixed Rayleigh-Liénard oscillator equations
given by

ẋ = y, ẏ = −x− a1y − b30x
3 − b21x

2y − b41x
4y − b03y

3.

Prove that at most three small-amplitude limit cycles can be bifurcated
from the origin.

8. Plot a phase portrait for the system

ẋ = y, ẏ = x+ x2.

Determine an equation for the curve on which the homoclinic loop lies.

9. Consider the Liénard system given by

ẋ = y − ε(a1x+ a2x
2 + a3x

3), ẏ = −x.

Prove that for sufficiently small ε, there is at most one limit cycle that
is asymptotic to a circle of radius

r =

√
4|a1|
3|a3|

.

10. Using Python, investigate the system

ẋ = y, ẏ = x− x3 + ε(λy + x2y)

when ε = 0.1 for values of λ from −1 to −0.5. How many limit cycles
are there at most?
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Chapter 11

The Second Part of
Hilbert’s Sixteenth
Problem

Aims and Objectives

• To describe the second part of Hilbert’s sixteenth problem.

• To review the main results on the number of limit cycles of planar
polynomial systems.

• To consider the flow at infinity after Poincaré compactification.

• To review the main results on the number of limit cycles of Liénard
systems.

• To prove two theorems concerning limit cycles of certain Liénard
systems.

On completion of this chapter, the reader should be able to

• state the second part of Hilbert’s sixteenth problem;
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• describe the main results for this problem;

• compactify the plane and construct a global phase portrait which shows
the behavior at infinity for some simple systems;

• compare local and global results;

• prove that certain systems have a unique limit cycle;

• prove that a limit cycle has a certain shape for a large parameter value.

The second part of Hilbert’s sixteenth problem is stated and the main
results are listed. To understand these results, it is necessary to introduce
Poincaré compactification, where the plane is mapped onto a sphere and the
behavior on the equator of the sphere represents the behavior at infinity for
planar systems.

Many autonomous systems of two-dimensional differential equations can
be transformed to systems of Liénard type. In recent years, there have been
many results published associated with Liénard systems. The major results
for both global and local bifurcations of limit cycles for these systems are
listed.

A method for proving the existence, uniqueness, and hyperbolicity of a
limit cycle is illustrated in this chapter, and the Poincaré-Bendixson theorem
is applied to determine the shape of a limit cycle when a parameter is large.

11.1 Statement of Problem and Main Results

Poincaré began investigating isolated periodic cycles of planar polynomial
vector fields in the 1880s. However, the general problem of determining the
maximum number and relative configurations of limit cycles in the plane has
remained unresolved for over a century. Recall that limit cycles in the plane
can correspond to steady-state behavior for a physical system (see Chapter 7),
so it is important to know how many possible steady states are there.

In 1900, David Hilbert presented a list of 23 problems to the International
Congress of Mathematicians in Paris. Most of the problems have been solved,
either completely or partially. However, the second part of the sixteenth
problem remains unsolved. Il’yashenko [16] presents a centennial history of
Hilbert’s 16th problem, Jibin Li [19] has written a review article of the major
results up to 2003, and more recently Han Maoan and Jibin Li [22] present
some new lower bounds associated with the problem.

The Second Part of Hilbert’s Sixteenth Problem. Consider planar
polynomial systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (11.1)
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where P and Q are polynomials in x and y. The question is to estimate the
maximal number and relative positions of the limit cycles of system (11.1).
Let Hn denote the maximum possible number of limit cycles that system
(16.1) can have when P and Q are of degree n. More formally, the Hilbert
numbers Hn are given by

Hn = sup{π(P,Q) : ∂P, ∂Q ≤ n},

where ∂ denotes “the degree of” and π(P,Q) is the number of limit cycles of
system (11.1).

Dulac’s Theorem states that a given polynomial system cannot have in-
finitely many limit cycles. This theorem has only recently been proved inde-
pendently by Ecalle et al. [14] and Il’yashenko [17], respectively. Unfortu-
nately, this does not imply that the Hilbert numbers are finite.

Of the many attempts to make progress in this question, one of the more
fruitful approaches has been to create vector fields with as many isolated pe-
riodic orbits as possible using both local and global bifurcations. There are
relatively few results in the case of general polynomial systems even when con-
sidering local bifurcations. Bautin [1] proved that no more than three small-
amplitude limit cycles could bifurcate from a critical point for a quadratic
system. For a homogeneous cubic system (no quadratic terms), Sibirskii [29]
proved that no more than five small-amplitude limit cycles could be bifur-
cated from one critical point. Zoladek [33] recently found an example where
11 limit cycles could be bifurcated from the origin of a cubic system, but he
was unable to prove that this was the maximum possible number.

Although easily stated, Hilbert’s sixteenth problem remains almost com-
pletely unsolved. For quadratic systems, Shi Songling [28] has obtained a
lower bound for the Hilbert number H2 ≥ 4. A possible global phase por-
trait showing the configuration of the limit cycles is given in Figure 11.1.
The line at infinity is included and the properties on this line are determined
using Poincaré compactification, which is described in Section 11.2. There
are three small-amplitude limit cycles around the origin and at least one
other surrounding another critical point. Some of the parameters used in
this example are very small.

Blows and Rousseau [2] consider the bifurcation at infinity for polyno-
mial vector fields and give examples of cubic systems having the following
configurations:

{(4), 1}, {(3), 2}, {(2), 5}, {(4), 2}, {(1), 5} and {(2), 4},

where {(l), L} denotes the configuration of a vector field with l small-
amplitude limit cycles bifurcated from a point in the plane and L large-
amplitude limit cycles simultaneously bifurcated from infinity. There are
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many other configurations possible, some involving other critical points in
the finite part of the plane as shown in Figure 11.2. Recall that a limit cycle
must contain at least one critical point.

Figure 11.1: A possible configuration for a quadratic system with four limit
cycles: one of large amplitude and three of small amplitude.

By considering cubic polynomial vector fields, in 1985, Li Jibin and Li
Chunfu [20] produced an example with 11 limit cycles by bifurcating limit
cycles out of homoclinic and heteroclinic orbits; see Figure 11.2. Yu Pei and
Han Maoan [26] bifurcated 12 small-amplitude limit cycles (two nests of six)
from a cubic system with one saddle point at the origin and two focus points
symmetric about the origin. In 2009, Chengzhi Li et al. proved that H3 ≥ 13,
having found a cubic system with 13 limit cycles [5].

Figure 11.2: A possible configuration for a cubic system with 11 limit cycles.
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Returning to the general problem, in 1995, Christopher and Lloyd [9]
considered the rate of growth of Hn as n increases. They showed that Hn

grows at least as rapidly as n2 log n. Other rates of growth of Hn with n are
presented in [19] and [22].

In recent years, the focus of research in this area has been directed at a
small number of classes of systems. Perhaps the most fruitful has been the
Liénard system.

11.2 Poincaré Compactification

The method of compactification was introduced by Henri Poincaré at the
end of the 19th century. By making a simple transformation, it is possible to
map the phase plane onto a sphere. Note that the plane can be mapped to
both the upper and lower hemispheres. In this way, the points at infinity are
transformed to the points on the equator of the sphere. Suppose that a point
(x, y) in the plane is mapped to a point (X,Y, Z) on the upper hemisphere
of a sphere, say, S2 = {(X,Y, Z) ∈ �3 : X2 + Y 2 + Z2 = 1}. (Note that it
is also possible to map onto the lower hemisphere). The equations defining
(X,Y, Z) in terms of (x, y) are given by

X =
x√

1 + r2
, Y =

y√
1 + r2

, Z =
1√

1 + r2
,

where r2 = x2 + y2. A central projection is illustrated in Figure 11.3.

(x,y)

y

x

Z

X

Y

S2

(X,Y,Z)

Figure 11.3: A mapping of (x, y) in the plane onto (X,Y, Z) on the upper
part of the sphere.
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Consider the autonomous system (11.1). Convert to polar coordinates.
Thus system (11.1) transforms to

ṙ = rnfn+1(θ) + rn−1fn−1(θ) + . . .+ f1(θ)

θ̇ = rn−1gn+1(θ) + rn−2gn−1θ + . . .+ r−1g1(θ), (11.2)

where fm and gm are polynomials of degree m in cos θ and sin θ.
Let ρ = 1

r . Hence ρ̇ = − ṙ
r2 , and system (11.2) becomes

ρ̇ = −ρfn+1(θ) +O(ρ2), θ̇ = gn+1(θ) +O(ρ).

Theorem 1. The critical points at infinity are found by solving the equations
ρ̇ = θ̇ = 0 on ρ = 0, which is equivalent to solving

gn+1(θ) = cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ) = 0,

where Pn and Qn are homogeneous polynomials of degree n. Note that the
solutions are given by the pairs θi and θi+π. As long as gn+1(θ) is nonzero,
there are n+1 pairs of roots and the flow is clockwise when gn+1(θ) < 0 and
it is counterclockwise when gn+1(θ) > 0.

To determine the flow near the critical points at infinity, one must project
the hemisphere with X > 0 onto the plane X = 1 with axes y and z or project
the hemisphere with Y > 0 onto the plane Y = 1 with axes x and z. The
projection of the sphere S2 onto these planes is depicted in Figure 11.4.

Z

Y

S2

xy

z

z

X

Figure 11.4: The projections used to determine the behavior at infinity.

If n is odd, the antinodal points on S2 are qualitatively equivalent. If n
is even, the antinodal points are qualitatively equivalent but the direction of
the flow is reversed.

The flow near a critical point at infinity can be determined using the
following theorem.
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Theorem 2. The flow defined on the yz plane (X = ±1), except the points
(0,±1, 0), is qualitatively equivalent to the flow defined by

±ẏ = yznP

(
1

z
,
y

z

)
− znQ

(
1

z
,
y

z

)
, ±ż = zn+1P

(
1

z
,
y

z

)
,

where the direction of the flow is determined from gn+1(θ).
In a similar way, the flow defined on the xz plane (Y = ±1), except the

points (±1, 0, 0), is qualitatively equivalent to the flow defined by

±ẋ = xznQ

(
x

z
,
1

z

)
− znP

(
x

z
,
1

z

)
, ±ż = zn+1Q

(
x

z
,
1

z

)
,

where the direction of the flow is determined from gn+1(θ).

Example 1. Construct global phase portraits, including the flow at infinity,
for the following linear systems:

(a)ẋ = −x+ 2y, ẏ = 2x+ 2y;

(b) ẋ = x+ y, ẏ = −x+ y.

Solutions. (a) The origin is a saddle point with eigenvalues and correspond-
ing eigenvectors given by λ1 = 3, (1, 2)T and λ2 = −2, (2,−1)T . The critical
points at infinity satisfy the equation g2(θ) = 0, where

g2(θ) = cos θQ1(cos θ, sin θ)− sin θP1(cos θ, sin θ).

Now
g2(θ) = 2 cos2 θ + 3 cos θ sin θ − 2 sin2 θ.

The roots are given by θ1 = tan−1(2) radians, θ2 = tan−1(2) + π radians,
θ3 = tan−1(− 1

2 ) radians, and θ4 = tan−1(− 1
2 ) + π radians.

A plot of g2(θ) is given in Figure 11.5.
The flow near a critical point at infinity is qualitatively equivalent to the

flow of the system

±ẏ = yz

(
−1

2
+

2y

z

)
− z

(
2

z
− 2y

z

)
, ±ż = z2

(
−1

z
+

2y

z

)
.

From Figure 11.5, the flow is counterclockwise if tan−1(− 1
2 ) < θ < tan−1(2).

Therefore the flow at infinity is determined by the system

−ẏ = −3y + 2y2 − 2, −ż = −z + 2yz.

There are critical points at A = (2, 0) and B = (− 1
2 , 0) in the yz plane. Point

A is a stable node and point B is an unstable node. A phase portrait is given
in Figure 11.6.
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g2

θ

Figure 11.5: The function g2(θ).

Figure 11.6: Some trajectories in the yz plane (X=1) that define the flow at
infinity.
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Since n is odd, the antinodal points are qualitatively equivalent. A global
phase portrait is shown in Figure 11.7.

y = –x/2

y = 2x

Figure 11.7: A global phase portrait for Example 1(a).

(b) The origin is an unstable focus and the flow is clockwise. The critical
points at infinity satisfy the equation g2(θ) = 0, where

g2(θ) = cos θQ1(cos θ, sin θ)− sin θP1(cos θ, sin θ) = −(cos2 θ + sin2 θ).

There are no roots for g2(θ), so there are no critical points at infinity. A
global phase portrait is given in Figure 11.8.

Figure 11.8: A global phase portrait for Example 1(b). There are no critical
points at infinity and the flow is clockwise.

Example 2. Show that the system given by

ẋ = −x

2
− y − x2 + xy + y2, ẏ = x(1 + x− 3y)

has at least two limit cycles.



280 Chapter 11: c©Springer

Solution. There are two critical points at O = (0, 0) and A = (0, 1). The
Jacobian matrix is given by

J =

(
− 1

2 − 2x+ y −1 + x+ 2y
1 + 2x− 3y −3x

)
.

Now

JO =

(
− 1

2 −1
1 0

)
and JA =

(
1
2 1
−2 0

)
.

Therefore, O is a stable focus and A is an unstable focus. On the line L1 :
1 + x− 3y = 0, ẏ = 0 and ẋ < 0, so the flow is transverse to L1.

The critical points at infinity satisfy the equation g3(θ) = 0, where

g3(θ) = cos θQ2(cos θ, sin θ)− sin θP2(cos θ, sin θ).

Now

g3(θ) = cos3 θ − 2 cos2 θ sin θ − cos θ sin2 θ − sin3 θ.

A plot for g3(θ) is given in Figure 11.9.

g3
θ

Figure 11.9: The function g3(θ).

There are two roots for g3(θ): θ1 = 0.37415 radians and θ2 = 3.51574
radians. The flow near a critical point at infinity is qualitatively equivalent
to the flow of the system
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±ẏ = −yz

2
− y2z + 2y + y2 + y3 − z − 1

±ż = −z2

2
− yz2 − z + yz + y2z.

There is one critical point at (y, z) = (0.39265, 0), which is a saddle point.
Since n is even, the antinodal point is also a saddle point, but the direction
of the flow is reversed. The direction of the flow may be established by
inspecting g3(θ) in Figure 11.9.

Part of the global phase portrait is shown in Figure 11.10, and from the
corollary to the Poincaré-Bendixson Theorem, there are at least two limit
cycles.

Figure 11.10: A global phase portrait showing at least two limit cycles. UF
and SF denote an unstable and stable focus, respectively.

If the system is nonlinear and there are no critical points at infinity, it
is also possible to bifurcate limit cycles from infinity; see, for example, the
work of Blows and Rousseau [2].

Guillaume Cantin has produced web pages with some Python code for
dynamical systems [4] and one of his examples demonstrates a saddle-node
bifurcation at infinity.

Marasco and Tenneriello [24] use Mathematica to propose methods that
give the Fourier series of the periodic solutions and period of planar systems
in the presence of isochronous centers and unstable limit cycles.

11.3 Global Results for Liénard Systems

Consider polynomial Liénard equations of the form

ẍ+ f(x)ẋ+ g(x) = 0, (11.3)



282 Chapter 11: c©Springer

where f(x) is known as the damping coefficient and g(x) is called the restoring
coefficient. Equation (11.3) corresponds to the class of systems

ẋ = y, ẏ = −g(x)− f(x)y, (11.4)

in the phase plane. Liénard applied the change of variable Y = y + F (x),
where F (x) =

∫ x

0
f(s)ds, to obtain an equivalent system in the so-called

Liénard plane:

ẋ = Y − F (x), Ẏ = −g(x). (11.5)

For the critical point at the origin to be a nondegenerate focus or center, the
conditions g(0) = 0 and g′(0) > 0 are imposed. Periodic solutions of (11.5)
correspond to limit cycles of (11.2) and (11.5). There are many examples in
both the natural sciences and technology where these and related systems are
applied. The differential equation is often used to model either mechanical
systems or electric circuits, and in the literature, many systems are trans-
formed to Liénard type to aid in the investigations. For a list of applications
to the real world, see, for example, Moreira [20]. In recent years, the number
of results for this class of system has been phenomenal, and the allocation of
this topic to a whole section of the book is well justified.

These systems have proved very useful in the investigation of multiple
limit cycles and also when proving existence, uniqueness, and hyperbolicity
of a limit cycle. Let ∂ denote the degree of a polynomial, and let H(i, j)
denote the maximum number of global limit cycles, where i is the degree of
f and j is the degree of g. The main global results for systems (11.2) and
(11.5) to date are listed below:

• In 1928, Liénard proved that when ∂g = 1 and F is a continuous odd
function, which has a unique root at x = a and is monotone increasing
for x ≥ a, then (11.5) has a unique limit cycle.

• In 1973, Rychkov [27] proved that if ∂g = 1 and F is an odd polynomial
of degree five, then (11.5) has at most two limit cycles.

• In 1976, Cherkas [6] gave conditions in order for a Liénard equation to
have a center.

• In 1977, Lins, de Melo, and Pugh [21] proved that H(2, 1) = 1. They
also conjectured that H(2m, 1) = H(2m + 1, 1) = m, where m is a
natural number.

• In 1988, Coppel [10] proved that H(1, 2) = 1.

• In 1992, Zhang Zhifen [39] proved that a certain generalized Liénard
system has a unique limit cycle.
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• In 1996, Dumortier and Chengzhi Li [11] proved that H(1, 3) = 1.

• In 1997, Dumortier and Chengzhi Li [12] proved that H(2, 2) = 1.

• In 2005, Jiang et al. [18] proved that when f and g are odd polynomials,
H(5, 3) = 2.

• In 2007, Dumortier et al. [13] proved that the conjecture by Lins, de
Melo, and Pugh from 1977 was incorrect.

• In 2014, Xiong and Han [31] obtain some new lower bounds for the
Hilbert numbers of certain Liénard systems.

• In 2017, Sun and Huang [30] show that a Liénard system of type (4, 3)
can have six limit cycles using an algorithm based on the Chebyshev
criteria and the tools of regular chain theory in polynomial algebra.

Giacomini and Neukirch [15] introduced a new method to investigate the
limit cycles of Liénard systems when ∂g = 1 and F (x) is an odd polynomial.
They are able to give algebraic approximations to the limit cycles and obtain
information on the number and bifurcation sets of the periodic solutions even
when the parameters are not small. Other work has been carried out on the
algebraicity of limit cycles, but it is beyond the scope of this book.

Limit cycles were discussed in some detail in Chapter 5, and a method
for proving the existence and uniqueness of a limit cycle was introduced.
Another method for proving the existence, uniqueness, and hyperbolicity of
a limit cycle is illustrated in Theorem 4.

Consider the general polynomial system

ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials in x and y, and define X = (P,Q) to be the
vector field. Let a limit cycle, say, Γ(t) = (x(t), y(t)), have period T .

Definition 1. The quantity
∫
Γ
div(X) dt is known as the characteristic ex-

ponent .

Theorem 3. Suppose that

∫

Γ

div(X) dt =

∫ T

0

(
∂P

∂x
+

∂Q

∂y

)
(x(t), y(t)) dt.

Then

(i) Γ is hyperbolic attracting if
∫
Γ
div(X) dt < 0;

(ii) Γ is hyperbolic repelling if
∫
Γ
div(X) dt > 0.
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Theorem 4. Consider the Liénard system

ẋ = y − (a1x+ a2x
2 + a3x

3), ẏ = −x. (11.6)

There exists a unique hyperbolic limit cycle if a1a3 < 0.

Proof. The method is taken from the paper of Lins, de Melo, and Pugh [21].
Note that the origin is the only critical point. The flow is horizontal on the
line x = 0 and vertical on the curve y = a1x+ a2x

2 + a3x
3. It is not difficult

to prove that a trajectory starting on the positive (or negative) y-axis will
meet the negative (or positive) y-axis. The solution may be divided into
three stages:

I Every limit cycle of system (11.6) must cross both of the lines given by

L1 : x0 = −
√
−a1
a3

and L2 : x1 =

√
−a1
a3

.

II System (11.6) has at least one and at most two limit cycles; one of
them is hyperbolic.

III System (11.6) has a unique hyperbolic limit cycle.

Stage I. Consider the Lyapunov function given by

V (x, y) = e−2a2y

(
y − a2x

2 +
1

2a2

)

. Now
dV

dt
= 2a2e

−2a2yx2(a1 + a3x
2).

The Lyapunov function is symmetric with respect to the y-axis since V (x, y) =
V (−x, y), and there is a closed level curve V (x, y) = C that is tangent to
both L1 and L2. Since

dV
dt does not change sign inside the disc V (x, y) = C,

no limit cycle can intersect the disk, which proves Stage I.

Stage II. Suppose that there are two limit cycles γ1 ⊂ γ2 surrounding the
origin as in Figure 11.11.

Suppose that a1 < 0 and a3 > 0. Then the origin is unstable. Let
γ1 be the innermost periodic orbit, which must be attracting on the inside.
Therefore,

∫

γ1

div(X) dt =

∫

γ1

−(a1 + 2a2x+ 3a3x
2) ≤ 0.

Let Pi and Qi, i = 0, 1, 2, 3, be the points of intersection of γ1 and γ2,
respectively, with the lines L1 and L2. Now

∫
γ1

x dt =
∫
γ1

−dy
dt dt = 0, and

similarly for the periodic orbit γ2.
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Q0 Q1

Q3 Q2

L2L1

P1

x

y

γ2 γ1

P0

P2P3

Figure 11.11: Two limit cycles crossing the lines L1 and L2.

Consider the branches P0P1 and Q0Q1 on γ1 and γ2, respectively. The
flow is never vertical on these branches. Hence one may parameterize the
integrals by the variable x. Thus

∫

P0P1

−(a1 + 3a3x
2) dt =

∫ x1

x0

−(a1 + 3a3x
2)

yγ1
(x)− F (x)

dx

and ∫

Q0Q1

−(a1 + 3a3x
2) dt =

∫ x1

x0

−(a1 + 3a3x
2)

yγ2
(x)− F (x)

dx.

In the region x0 < x < x1, the quantity −(a1 + 3a3x
2) > 0 and yγ2

(x)−
F (x) > yγ1

(x)− F (x) > 0. It follows that

∫

Q0Q1

−(a1 + 3a3x
2) dt <

∫

P0P1

−(a1 + 3a3x
2) dt.

Using similar arguments, it is not difficult to show that

∫

Q2Q3

−(a1 + 3a3x
2) dt <

∫

P2P3

−(a1 + 3a3x
2) dt.

Consider the branches P1P2 and Q1Q2 on γ1 and γ2, respectively. The
flow is never horizontal on these branches. Hence one may parameterize the
integrals by the variable y. Thus

∫

P1P2

−(a1 + 3a3x
2) dt =

∫ y2

y1

(a1 + 3a3(xγ1
(y))2)

xγ1

dy

and ∫

Q1Q2

−(a1 + 3a3x
2) dt =

∫ y2

y1

−(a1 + 3a3(xγ2
(y))2)

xγ2

dy.
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In the region y1 < y < y2, xγ2
(y) > xγ1

(y). It follows that

∫

Q1Q2

−(a1 + 3a3x
2) dt <

∫

P1P2

−(a1 + 3a3x
2) dt.

Using similar arguments, it is not difficult to show that
∫

Q3Q0

−(a1 + 3a3x
2) dt <

∫

P3P0

−(a1 + 3a3x
2) dt.

Thus adding all of the branches together,
∫

γ2

div(X) dt <

∫

γ1

div(X) dt ≤ 0

which proves Stage II.

Stage III. Since the origin is unstable and
∫
γ2

div(X)dt <
∫
γ1

div(X)dt ≤ 0,
the limit cycle γ2 is hyperbolic stable and the limit cycle γ1 is semistable.
By introducing a small perturbation such as ẋ = y−F (x)− εx, it is possible
to bifurcate a limit cycle from γ1 that lies between γ2 and γ1. Therefore,
system (11.6) has at least three limit cycles, which contradicts the result at
Stage II. Hence system (11.6) has a unique hyperbolic limit cycle.

A Liénard System with a Large Parameter. Consider the parameter-
ized cubic Liénard equation given by

ẍ+ μf(x)ẋ+ g(x) = 0,

where f(x) = −1 + 3x2 and g(x) = x, which becomes

ẋ = μy − μF (x), μẏ = −g(x), (11.7)

where F (x) =
∫ x

0
f(s)ds = −x + x3, in the Liénard plane. Liénard (see

Chapter 10) proved that system (11.7) has a unique limit cycle. Systems
containing small parameters were considered in Chapter 10 using Melnikov
integrals.

The obvious question then is, what happens when μ is large? Figure 11.12
shows the limit cycle behavior in the Liénard and tx planes, when μ = 20
for system (11.7). Let μ = 1

ε . Then system (11.7) can be written as an
equivalent system in the form

εẋ = y − F (x), ẏ = −εg(x). (11.8)

Theorem 5. Consider system (11.8) and the Jordan curve J shown in Fig-
ure 11.13. As μ → ∞ or, alternatively, ε → 0, the limit cycle tends towards
the piecewise analytic Jordan curve J .
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1

x(t

a b

Figure 11.12: (a) [Python Animation] A limit cycle for the cubic system when
F (x) = −x+ x3; the function y = F (x) is also shown. (b) Periodic behavior
in the tx plane.

y = F(x)

x

J

y

Figure 11.13: The Jordan curve and the function y = F (x).

Proof. The method of proof involves the Poincaré-Bendixson Theorem from
Chapter 5. Thus everything is reduced to the construction of an annular
region A that is positively invariant and that contains no critical points. The
construction is shown in Figure 11.14.

Note that system (11.8) is symmetric about the y-axis, so we need only
consider one half of the plane.
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6

4

3

2

y

x

7

y = F(x) y = F(x) – h

1

8

10

5

9

Figure 11.14: Construction of the inner and outer boundaries of the annular
region that forms a positively invariant set in one half of the plane. A similar
construction is used in the other half of the plane using symmetry arguments.

First, consider the outer boundary. The arc 1-2 is a horizontal line, and
2-3 is a vertical line from the graph y = F (x) to the graph y = F (x) − h,
where h is a small constant. The arc 3-4 follows the y = F (x)−h curve, and
the line 4-5 is a tangent.

Now consider the inner boundary. The line 6-7 is sloped below the hor-
izontal, and the line 7-8 is vertical and meets the curve y = F (x). The arc
8-9 follows the curve y = F (x), and the line 9-10 is horizontal.

To prove that the region is positively invariant, one must show that the
marked arrows point in the directions indicated in Figure 11.14. Consider
each arc separately.

Notation. For any point n in Figure 11.14, let F ′(n) and g(n) be the values
of these functions at the abscissa of n.

Arc 1-2. On this line, ẏ < 0 since ẏ = −x and x > 0.

Arc 2-3. On this line, y ≤ F (x), so εẋ = y − F (x) ≤ 0. Note that ẏ < 0
at point 2.
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Arc 3-4. Suppose that p is a point on this arc. The slope of a trajectory
crossing this arc is given by

dy

dx

∣∣∣∣
p

=
−ε2g(p)

−h
<

ε2g(3)

h
,

and
dy

dx

∣∣∣∣
p

→ 0,

as ε → 0. Therefore, for ε small enough,

dy

dx

∣∣∣∣
p

< F ′(4) < F ′(p)

on the arc. Since ẋ < 0 along the arc, trajectories cross the boundary inwards.

Arc 4-5. Since |y − F (x)| > h, the slope of the curve 4-5 is

dy

dx

∣∣∣∣
4

<
ε2g(4)

h
,

which tends to zero as ε → 0. Once more ẋ < 0 on this arc, for ε small
enough, and the pointing is inward.

Arc 6-7. Let d1 be the vertical distance of the line 7-8. For d1 small
enough, along the line 6-7, |y − F (x)| > d1. Thus the slope of the curve at a
point q say, on the line 6-7 is given by

dy

dx

∣∣∣∣
q

<
ε2g(q)

d1
<

ε2g(7)

d1
,

which tends to zero as ε → 0. Since ẋ > 0 on this arc, for ε small enough,
the pointing will be as indicated in Figure 11.14.

Arc 7-8. On this line, y − F (x) > 0, so ẋ > 0.

Arc 8-9. On the curve, y = F (x) with x > 0, ẏ < 0, and ẋ = 0.

Arc 9-10. On this line, y − F (x) < 0 and ẏ < 0.

Using similar arguments on the left-hand side of the y-axis, a positively
invariant annulus can be constructed. Since system (11.8) has a unique crit-
ical point at the origin, the Poincaré-Bendixson theorem can be applied to
prove that there is a limit cycle in the annular region A. For suitably small
values of h and d1, the annular region will be arbitrarily near the Jordan
curve J . Therefore, if Γ(ε) is the limit cycle, then Γ(ε) → J as ε → 0.
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11.4 Local Results for Liénard Systems

Although the Liénard equation (11.5) appears simple enough, the known
global results on the maximum number of limit cycles are scant. By contrast,
if the analysis is restricted to local bifurcations, then many more results may
be obtained. The method for bifurcating small-amplitude limit cycles is given
in Chapter 10. Consider the Liénard system

ẋ = y, ẏ = −g(x)− f(x)y, (11.9)

where f(x) = a0 + a1x + a2x
2 + . . . + amxm and g(x) = x + b2x

2 + b3x
3 +

. . .+ bnx
n; m and n are natural numbers. Let Ĥ(m,n) denote the maximum

number of small-amplitude limit cycles that can be bifurcated from the origin
for system (11.9), where m is the degree of f and n is the degree of g.

In 1984, Blows and Lloyd [3] proved the following results for system (11.9):

• If ∂f = m = 2i or 2i+ 1, then Ĥ(m, 1) = i.

• If g is odd and ∂f = m = 2i or 2i+ 1, then Ĥ(m,n) = i.

In addition to the above the author has proved the following results by
induction.

• If ∂g = n = 2j or 2j + 1, then Ĥ(1, n) = j.

• If f is even, ∂f = 2i, then Ĥ(2i, n) = i.

• If f is odd, ∂f = 2i+1 and ∂g = n = 2j+2 or 2j+3; then Ĥ(2i+1, n) =
i+ j.

• If ∂f = 2, g(x) = x + ge(x), where ge is even and ∂g = 2j; then
Ĥ(2, 2j) = j.

Christopher and the author [7] have more recently developed a new alge-
braic method for determining the Lyapunov quantities, and this has allowed
further computations. Let �.� denote the integer part. Then the new results
are listed below:

• Ĥ(2, n) =
⌊
2n+1

3

⌋
.

• Ĥ(m, 2) =
⌊
2m+1

3

⌋
.

• Ĥ(3, n) = 2
⌊
3n+6

8

⌋
, for all 1 < n ≤ 50.

• Ĥ(m, 3) = 2
⌊
3m+6

8

⌋
, for all 1 < m ≤ 50.
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50 38
49 24 33 38
48 24 32 36

13 6 9 10
12 6 8 10
11 5 7 8
10 5 7 8
9 4 6 8 9
8 4 5 6 9
7 3 5 6 8
6 3 4 6 7
5 2 3 4 6 6
4 2 3 4 4 6 7 8 9 9
3 1 2 2 4 4 6 6 6 8 8 8 10 10 36 38
2 1 1 2 3 3 4 5 5 6 7 7 8 9 32 33
1 0 1 1 2 2 3 3 4 4 5 5 6 6 24 24

1 2 3 4 5 6 7 8 9 10 11 12 13 48 49 50
degree of g

38

. . .

. . .

. . .

. . .

..
.

..
.

..
.

..
.

de
gr

ee
 o

f  
f

Table 11.1: The values of Ĥ(m,n) for varying values of m and n.

Complementing these results is the calculation of Ĥ(m,n) for specific values
of m and n. The results are presented in Table 11.1.

The ultimate aim is to establish a general formula for Ĥ(m,n) as a func-
tion of the degrees of f and g. Christopher and Lloyd [8] have proven that
Table 11.1 is symmetric but only in the restricted cases where the linear coef-
ficient in f(x) is nonzero. The author et al. [18] have recently started working
on simultaneous bifurcations for symmetric Liénard systems, and Maoan and
Romanovski [23] have used a new method to give more results. Future work
will concentrate on attempting to complete Table 11.1 and determining a
relationship, if any, between global and local results.

It is important to note that programming with mathematical packages
is a key tool that has to be used carefully. For example, it may be that
two limit cycles bifurcating from a fine focus cannot be distinguished on a
computer screen. There are always restrictions on how far a package can be
used and this presents a good example of that fact. An example of a system
with four limit cycles in close proximity is given in the Coursework examples
in Chapter 22.

11.5 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.
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Python Commands Comments

myimages=[] # Set up an empty vector.

plt.axes # Set axes limits.

# Program 11a: Animation of a limit cycle for a Lienard system.

# See Figure 11.12.

from matplotlib import pyplot as plt

from matplotlib.animation import ArtistAnimation

import numpy as np

from scipy.integrate import odeint

fig = plt.figure()

xmin, xmax = -1.5, 1.5

ymin, ymax = -5, 5

ax = plt.axes(xlim=(xmin, xmax), ylim=(ymin, ymax))

def Lienard(x, t):

return [mu * x[1] - mu * (-x[0] + x[0]**3), -x[0]/mu]

time = np.arange(0, 20, 0.1)

x0=[1, 0]

myimages=[]

for mu in np.arange(0, 5, 0.1):

xs = odeint(Lienard, x0, time)

imgplot = plt.plot(xs[:, 0], xs[:, 1], "r-")

myimages.append(imgplot)

my_anim = ArtistAnimation(fig, myimages, interval = 100,\

blit = False, repeat_delay = 100)

plt.show()

11.6 Exercises

1. Draw a global phase portrait for the linear system

ẋ = y, ẋ = −4x− 5y

including the flow at infinity.

2. Draw a global phase portrait for the system

ẋ = −3x+ 4y, ẏ = −2x+ 3y

and give the equations defining the flow near critical points at infinity.
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3. Determine a global phase portrait for the quadratic system given by

ẋ = x2 + y2 − 1, ẏ = 5xy − 5.

4. Draw a global phase portrait for the Liénard system

ẋ = y − x3 − x, ẏ = −y.

5. Draw a global phase portrait for the Liénard system

ẋ = y − x3 + x, ẏ = −y.

6. Use Python to compare the limit cycles for Liénard systems in the phase
plane and in the Liénard plane. Plot the periodic orbits in the xt plane.

7. Use Python to investigate the system

ẋ = y − (a1x+ a2x
2 + a3x

3), ẏ = −x

for varying values of the parameters a1, a2, and a3.

8. Use Python to investigate the limit cycles, if they exist, of the system

ẋ = y − ε(a1x+ a2x
2 + . . .+ aMxM ), ẏ = −x,

as the parameter ε varies from zero to infinity.

9. Prove Liénard’s theorem that when ∂g = 1 and F (x) is a continuous
odd function that has a unique root at x = a and is monotone increasing
for x ≥ a, (11.5) has a unique limit cycle.

10. This is quite a difficult question. Consider the Liénard system

ẋ = y − F (x), ẏ = −x, (11.10)

where F (x) = (a1x + a3x
3 + a5x

5) is odd. Prove that system (11.10)
has at most two limit cycles.
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Chapter 12

Delay Differential
Equations

Aims and Objectives

• To introduce the method of steps for Delay Differential Equations
(DDEs).

• To investigate the stability of simple DDEs.

• To solve DDEs numerically using Python.

• To investigate applications in dynamical systems.

On completion of this chapter, the reader should be able to

• use the method of steps to solve simple DDEs;

• determine the stability of simple DDEs;

• apply the theory of DDEs to examples from biology, economics, envi-
ronmental science, mechanical systems, neural networks, and nonlinear
optics and interpret the numerical solutions physically.
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Almost all dynamical systems can be subject to some sort of feedback con-
trol, where a time delay arises due to a finite time interval being required for
the system to sense a change and react to it. Also, many dynamical systems,
especially in biology, have the delays inherently built in. Seeking solutions to
these type of problems has led to the field of mathematics known as Delay
Differential Equations, abbreviated to DDEs in most of the literature.

There are a number of DDE solvers in Python including, for example,
PyDDE authored by the University of Oxford, ddeint authored by Valentin
Zulko, and pydelay licensed under the MIT License. Currently, these pack-
ages are not that user-friendly and it is hoped that a more robust solver will
be developed in Python in the near future.

The chapter begins with an introduction and an outline of the method of
steps used to solve certain DDEs. The following sections highlight applica-
tions in biology, nonlinear optics, and other dynamical systems.

12.1 Introduction and the Method of Steps

Dynamical systems subject to some sort of delay have been studied for over
two hundred years, and the paper of Schmitt [23] provides references and lists
some properties of simple linear DDEs. DDEs were studied more extensively
after the second world war with the need for control engineering in technology
but it is only in the last few decades that DDEs have become extensively
studied with the development of mathematics packages such as Python. An
introduction to the theory of DDEs is given in [7], applications of DDEs are
discussed in [8], DDEs applied to the life sciences are covered in [27], and a
nice introduction to the dynamics of nonlinear time delay systems is provided
in [17]. DDEs differ from ODEs in that the derivative any time depends on
the solution at prior times. These systems are infinite-dimensional; it is
necessary to provide a so-called initial history function to specify the value
of the solution set before time t = 0, and the time delays could be constants
or state-dependent. Recent developments in the field of DDEs are outlined
in [16].

Definition 1. A DDE subject to constant time delays is of the form:

dx

dt
= f (x(t),x(t− τ1),x(t− τ2), . . . ,x(t− τn)) , (12.1)

where x ∈ �n and the delays τi are positive constants.

In order to solve DDEs it is necessary to define an initial history function
which determines the behavior of the dynamical system x(t) defined on the
interval [−τ, 0], assuming that the systems start at t = 0.
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The simplest method for solving some systems of DDEs has been labeled
as the method of steps. DDEs differ from ODEs in that the solution for the
DDE can be thought of as a mapping from functions on an interval [t− τ, t]
onto functions on an interval [t, τ+t]. In some very simple cases, it is possible
to work out an analytical solution to this problem as the following example
demonstrates.

Example 1. Solve the simple linear DDE given by

dx

dt
= −x(t− 1), (12.2)

with initial history function x(t) = 1, on [−1, 0].

Solution. Suppose that x(t) = φi−1(t) on the interval [ti − 1, ti]. Then,
using separation of variables, on the interval [ti, ti + 1]:

∫ x(t)

φi−1

dx′ = −
∫ t

ti

φi−1 (t
′ − 1) dt′.

and

x(t) = φi(t) = φi−1 (ti)−
∫ t

ti

φi−1 (t
′ − 1) dt′. (12.3)

Therefore, in the interval [0, 1], equation (12.3) gives

x(t) = 1−
∫ t

0

1dt′ = 1− t

and in the interval [1, 2]:

x(t) = 0−
∫ t

1

1− (t′ − 1)dt′ = −
[
2t− t2

2

]t
1

= −2t+
t2

2
+

3

2
.

One could continue to calculate the solution on further intervals by hand but
the process can be easily implemented in Python. The Python program for
computing the analytical solution for −1 ≤ t ≤ 10 is listed in Section 12.5
and the computed solutions on the further intervals are listed below:

On [2,3], x(t)=-t**3/6+3*t**2/2-4*t+17/6.

On [3,4], x(t)=t**4/24-2*t**3/3+15*t**2/4-17*t/2+149/24.

On [4,5], x(t)=-t**5/120+5*t**4/24-2*t**3+109*t**2/12-115*t/6+1769/120.

On [5,6], x(t)=t**6/720-t**5/20+35*t**4/48-197*t**3/36+1061*t**2/48-

1085*t/24+26239/720.
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On [6,7], x(t)=-t**7/5040+7*t**6/720-t**5/5+107*t**4/48-521*t**3/36+

13081*t**2/240-13201*t/120+463609/5040.

On [7,8], x(t)=t**8/40320-t**7/630+7*t**6/160-487*t**5/720+3685*t**4/576

-27227*t**3/720+39227*t**2/288-39371*t/144 +3157891/13440.

On [8,9], x(t)=-t**9/362880+t**8/4480-t**7/126+701*t**6/4320-1511*t**5/720

+51193*t**4/2880-212753*t**3/2160+1156699*t**2/3360-

1158379*t/1680+43896157/72576.

On [9,10], x(t)=t**10/3628800-t**9/36288+11*t**8/8960-323*t**7/10080+

1873*t**6/3456-89269*t**5/14400+ 279533*t**4/5760-

7761511*t**3/30240+23602499*t**2/26880-23615939*t/13440+

5681592251/3628800.

Figure 12.1: [Python] The solution x(t) for the DDE equation (12.2) for
−1 < t < 10. The initial history function in this case was x(t) = 1 on [−1, 0].

Figure 12.1 shows the solution obtained by the method of steps for −1 <
t < 10. The Python program is listed in Section 12.5 and uses the piecewise
command from the NumPy package. The next example shows how the initial
history function affects the solution for t > 0.

Example 2. Solve the simple linear DDE (12.2) with initial history functions
on [−1, 0] given by: (a) x(t) = et; (b) x(t) = t2; (c) x(t) = t; (d) x(t) = sin(t).

Solution. The graphical solutions are shown in Figure 12.2.

Linear Stability Analysis. As with ODEs it is important to establish the
location and stability of critical points of DDEs. A critical point of a DDE
of the form (12.1) satisfies the equation

f (x∗,x∗, . . . ,x∗) = 0,
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a b

c d

Figure 12.2: Solutions to the DDE (12.2) with initial history functions on
[−1, 0] defined by: (a) x(t) = et; (b) x(t) = t2; (c) x(t) = t; (d) x(t) = sin(t).

where x∗ is a critical point of system (12.1). The methods to determine the
location and stability of critical points of ODEs are covered in other chapters
of the book. The process is similar with DDEs except that the solution
space is an infinite-dimensional function space. Consider small perturbations
from equilibrium in this space, then the displacements are time-dependent
functions, δx(t), say, that can persist for an interval at least the maximum
value of τi. In order to simplify the notation it is usual to write xτ = x(t−τ),
which is what we will do here. Using methods similar to those described in
Chapters 2 and 3, suppose that

x = x∗ + δx,
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take a Taylor series expansion and linearize to obtain

δẋ ≈ J0δx+ Jτ1δxτ1 + . . .+ Jτnδxτn , (12.4)

where the matrices Jτi are Jacobians of the corresponding xτi . Supposing
that DDEs have exponential solutions as with ODEs, then

δx(t) = Aeλt,

where λ is an eigenvalue of the Jacobian matrix. Substituting into (12.4)
gives

λA = A
(
J0 + e−λτ1Jτ1 + . . .+ e−λτnJτn

)
.

The characteristic equation is then given by

∣∣J0 + e−λτ1Jτ1 + . . .+ e−λτnJτn − λI
∣∣ = 0. (12.5)

Expanding out the determinant leads to polynomials which include some
terms in eλτi and these are called quasi-polynomials. As with ODEs, if all of
the solutions of equation (12.5) have negative real part, then the critical point
is stable, otherwise it is unstable, or if some of the leading characteristic values
are zero, the critical point is non-hyperbolic. Quasi-polynomials generally
have an infinite number of roots in the complex plane and this is where
Python can help in determining the stability of critical points. The method
will now be illustrated by means of an example.

In the next example, a type of logistic equation subject to delay is in-
vestigated. It is shown that there are two critical points and the stability of
one of these points will be investigated. For this simple logistic DDE it is
shown that a Hopf bifurcation takes place, where a stable critical point loses
its stability and a stable limit cycle bifurcates from the point.

Example 3. Investigate the logistic DDE given by

dx

dt
= μx(t)(1− x(t− τ1)), (12.6)

with initial history function x(t) = 0.1, on [−1, 0], τ1 = 1, as the parameter
μ varies.

Solution. For system (12.6) there are two critical points at x∗ = 0 and
x∗ = 1. One can show that the trivial critical point at x∗ = 0 is unstable.
Consider the critical point at x∗ = 1, where more interesting behavior is
present. The characteristic equation is given by

μe−λτ1 + λ = 0. (12.7)
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c d

a b

Figure 12.3: Solutions to the DDE (12.4) with initial history function on
[−1, 0] defined by x(t) = 0.1 for varying values of the parameter μ. (a) Time
series showing that when μ = 1.2, x(t) approaches the stable critical point at
x∗ = 1. (b) Time series showing that when μ = 1.6, x(t) approaches a stable
limit cycle. (c) Phase portrait showing that when μ = 1.2, x(t) approaches
the stable critical point at x∗ = 1. (d) Phase portrait showing that when
μ = 1.6, x(t) approaches a stable limit cycle. A linear stability analysis shows
that the system goes through a Hopf bifurcation when μ = π

2 .

For the critical point x∗ = 1 to be stable, the complex roots of equation
(12.7) must lie on the left half of the λ plane. A Hopf bifurcation is a
local bifurcation in which a critical point loses stability as a pair of complex
conjugate eigenvalues cross the imaginary axis. Therefore, a bifurcation takes
place when the roots lie on the imaginary axis. Suppose that λ = 0 + iy,
then equation (12.7) becomes

μe−iyτ1 + iy = 0

or
μ (cos (yτ1)− i sin (yτ1)) + iy = 0.
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Equating real and imaginary parts to zero, one obtains

μ cos (yτ1) = 0, y − μ sin (yτ1) = 0.

The first equation has solution yτ1 = (2n+1)π
2 , n = 0, 1, 2, . . ., and the mini-

mum order solution is found when n = 0, giving μτ1 = π
2 . Hence, a necessary

and sufficient condition for the critical point at x∗ = 1 to be stable is μτ1 < π
2 ,

and when μτ1 ≥ π
2 , the critical point goes through a bifurcation and becomes

unstable and a small-amplitude limit cycle bifurcates from the critical point.
Typical time series and phase portraits for the DDE logistic model are shown
in Figure 12.3.

The biological logistic DDE was first investigated by Hutchinson [15] in
1948 who devised a more realistic single species model subject to time de-
lays. These time delays could be a result of density dependent population
growth, discrete breeding seasons, disease, food supply, and seasonal effects,
for example. In 2016, Agarwal [1] published a book on logistic DDEs and
considers oscillation of delay logistic models and chapters also cover stability,
piecewise arguments, food-limited populations, and diffusion. Predator-prey
DDE models with disease in prey are investigated in [28], the effect of diffu-
sion in predator-prey DDE models is covered in [10], and predator-prey DDE
models with multiple delays are investigated in [5]. When considering DDE
models in epidemiology, a pest management strategy is considered in [39], an
analysis of an SEIRS model with two delays is investigated in [6], and global
stability for DDE SIR and SEIR models with nonlinear incidence rate are
discussed in [14].

Most processes in biology and especially in the human body are subject
to some kind of time delay and this naturally leads to systems displaying
oscillatory behavior. The next section concentrates on examples of DDEs in
the field of biology.

12.2 Applications in Biology

Interacting species were discussed in some detail in Chapter 4 and the Lotka-
Volterra predator-prey system was investigated. The next example illustrates
what can happen when a delay is introduced in the equations.

Example 4. Investigate the following delayed predator-prey model with a
single delay:

dx

dt
= x(t) (r1 − a11xτ − a12yτ ) ,

dy

dt
= y(t) (−r2 + a21xτ − a22yτ ) (12.8)

where r1, r2, a11, a12, a21, a22 are constants and the delay τ ≥ 0 denotes the
gestation period of the predator, and xτ = x(t− τ), yτ = y(t− τ).
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Solution. Without any delay, a typical Lotka-Volterra system displays pe-
riodic solutions which are affected by small perturbations. More interesting,
and realistic, behavior results from introducing the gestation period of the
predator. Suppose that r1 = 1, r2 = 1, a11 = 1, a12 = 1, a21 = 2, a22 = 1,
and vary the gestation period τ . Typical phase portraits are shown in Fig-
ure 12.4. When τ = 1, there is a period-one limit cycle, when τ = 1.2, there
is a period-two limit cycle, when τ = 1.25, there is a period-4 limit cycle, and
when τ = 1.5, the system displays chaos.

Figure 12.4: Phase portraits of the DDE (12.8) with initial history function
on [−τ, 0] defined by x(t) = τ, y(t) = τ , when r1 = 1, r2 = 1, a11 = 1, a12 =
1, a21 = 2, a22 = 1. When (a) τ = 1, period-one limit cycle; (b) τ = 1.2,
period-two limit cycle; (c) τ = 1.25, period-four limit cycle; (d) τ = 1.5, a
chaotic solution.

The human body is predominantly composed of periodic processes from
the cellular and molecular level up to the organ and inter-organ system level.
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Many cells such as neurons, heart cells, muscle cells, retinal cells, and blood
cells oscillate [22] and periodic processes in the human body encompass phe-
nomena such as heartbeat rhythms, bacterial oscillations, cytoskeletal struc-
tures, genetic interactions, rhythmic behavior in growth and development
and cancer, for instance, see [3] and [29].

In this section, the author has decided to concentrate on two physiologi-
cal processes, namely hematopoiesis (the formation of blood cellular compo-
nents) and angiogenesis (the development of new blood vessels) which include
the dynamics of tumor growth from a dormant to a malignant state. More
detailed information can be found in [16].

A DDE Model of Hematopoiesis. Consider the one-dimensional Mackey-
Glass model related to hematopoiesis [21] defined by

dx

dt
=

βx(t− τ)

1 + x(t− τ)n
− δx(t), (12.9)

where x(t) is the blood cell population at time t, τ is a constant time lag, and
n is a constant. The first term in the right-hand side of equation (12.9) models
the delayed production rate of the blood cells and δ represents a death rate
of blood cells. The DDE can be numerically solved with Python. Figure 12.5
(a) shows a phase portrait of equation (12.9) and Figure 12.5(b) shows the
corresponding power spectrum (see Chapter 18) for parameter values β = 2,
n = 10, τ = 2, and δ = 0.8. The Python program for plotting the solutions
to the Mackey-Glass model is listed in Section 12.5.

a b

Figure 12.5: [Python] Periodic behavior in the blood cell population model
for equation (12.9) when β = 2, n = 10, τ = 2, and δ = 0.8. (a) Phase
portrait. (b) Power spectrum.
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Figure 12.6 (a) shows a phase portrait of equation (12.9) and Figure 12.6(b)
shows the corresponding power spectrum for parameter values β = 2, n = 10,
τ = 2, and δ = 1.

a b

Figure 12.6: Chaotic behavior in the blood cell population model for equation
(12.9) when β = 2, n = 10, τ = 2, and δ = 1. (a) Phase portrait. (b) Power
spectrum.

Figure 12.7 shows the bifurcation diagram for system (12.9) obtained
using the second iterative method with feedback. There are clearly regions
of periodic behavior and regions of period doubling and un-doubling to and
from chaos.

Figure 12.7: Bifurcation diagram for system (12.9) as the parameter δ is
increased linearly from δ = 0 to δ = 1.8, and then ramped back down again.
Note that the single branches are depicting periodic solutions.
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To complete the study of the Mackey-Glass system, consider the following
modified model with two constant time delays:

dx

dt
=

βx (t− τ1) + βx (t− τ2)

1 + (x (t− τ1) + βx (t− τ2))
n − δx(t), (12.10)

where the time delays are τ1 and τ2. Fix the parameters β = 2.4, n = 10,
τ1 = 2.4, τ2 = 6.2, and δ = 2. Figure 12.8 shows the phase portrait and corre-
sponding power spectrum and the system is clearly demonstrating quasiperi-
odic behavior. A double Hopf bifurcation is a local bifurcation in which a
critical point has two pairs of purely imaginary eigenvalues. Generically, two
branches of torus bifurcations evolve leading to periodic, quasiperiodic, and
chaotic behaviors. Equation (12.10) allows double Hopf bifurcations.

a b

Figure 12.8: Quasiperiodic behavior in the blood cell population model for
equation (12.9) when β = 2.4, n = 10, τ1 = 2.4, τ2 = 6.2, and δ = 2. (a)
Phase portrait. (b) Power spectrum.

DDE Model of Angiogenesis. The final biological example presents a
mathematical model of angiogenesis. Angiogenesis is the process where new
blood vessels are formed from pre-existing vessels and is vital in growth and
development and is part of wound healing and the formation of granulation
tissue. Unfortunately, there are also negative effects of angiogenesis partic-
ularly in the promotion of cancer growth. Following the work of Hahnfeltd
[13], Agur et al. [2], and Bodnar et al. [4], the following DDEs can be used
to model cancer growth:

dN

dt
= αN(t)

(
1− N(t)

1 + f1(E(t− τ1))

)
,

dP

dt
= f2(E(t))N(t)− δP (t),

dE

dt
= f3(P (t− τ2))− α

(
1− N(t)E(t)

1 + f1(E(t− τ1))

)
, (12.11)
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Figure 12.9: A periodically forced angiogenesis model (12.10) with parameter
values defined by (12.11) and m = 1.05 + 0.1 cos(t/120): (a) τ1 = 1, τ2 = 1,
periodic; (b) τ1 = 1, τ2 = 3, bursting; (c) τ1 = 1, τ2 = 5, bursting; (d)
τ1 = 3, τ2 = 3, amplitude modulation; (e) τ1 = 1, τ2 = 15, fast spiking; (f)
τ1 = 10, τ2 = 10, large amplitude modulation in E(t).

where N is the number of tumor cells or tumor size, P is the quantity growth
factors known to be involved in supplying the tumor, and E represents the
vessel density, where E = V

N , and V is the volume of blood vessels feeding
the tumor. The functions f1, f2, f3, model tumor cell proliferation rate, the
protein production rate, and the vessel growth rate, respectively, and are
given by:

f1(E) =
b1E

n

c1 + En
, f2(E) =

a2c2
c2 + E

, f3(P ) =
b3
(
P 2 −m(t)2

)
m(t)2b3

a3
+ P 2

. (12.12)
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Take α = 1, a2 = 0.4, a3 = 1, b1 = 2.3, b3 = 1, c1 = 1.5, c2 = 1, and δ = 0.34.
The parameter m alters the stimulation of tumor vessel production and is
taken to be:

m(t) = 1.05 + 0.1 cos(t/120).

Figure 12.9 shows a gallery of time series plots for the quantities N(t), P (t)
and E(t) for system (12.11) subject to conditions (12.12) for varying param-
eter values of τ1 and τ2 when driven by a periodic stimulation of tumor vessel
production, m(t) = 1.05 + 0.1 cos(t/120). In Figure 12.9(a) there is regular
oscillatory behavior; in Figure 12.9(b) one can see that bursting is starting
to form and becomes well established in Figure 12.9(c). In Figure 12.9(d),
there is large amplitude modulation in all N(t), P (t), E(t). In Figure 12.9(e),
there is intermittent fast spiking and finally in Figure 12.9(f), there is large
amplitude modulation in E(t) but not in P (t) or N(t).

12.3 Applications in Nonlinear Optics

Electromagnetic waves and optical resonators are discussed in some detail
in Chapter 16. Here we present three DDE models from nonlinear optics.
The first example is the Lang-Kobayashi semiconductor laser model with de-
layed optical feedback due to an external cavity formed from a regular mirror
[18]. Secondly, the Ikeda DDE modeling a nonlinear passive cavity in a ring
resonator, derived from the Maxwell-Debye equations for highly dispersive
media is investigated. Readers should look at Chapter 16 for more details
and a figure of a ring cavity is given there. Finally, delayed-dynamical optical
bistability within and without the rotating wave approximation is introduced.

The Lang-Kobayashi Equations. The Lang-Kobayashi (LK) equations
model a conventional optical feedback laser and describe the dynamics of the
complex electric field, E(t) = Ex(t) + iEy(t), and the inversion (number of
electron-hole pairs, N(t) say) inside the laser. Two modeling assumptions
are made: firstly, the feedback is relatively weak (a small percentage of the
emitted light), and secondly the mirror is far away from the laser (typically
several centimeters to meters). In dimensionless form, the DDEs are:

dE

dt
=

(1 + iα)

2
N(t)E(t) + κE(t− τ),

T
dN

dt
= P −N(t)− (1 +N(t))|E(t)|2, (12.13)

where T is the ratio of decay times, α is the linewidth-enhancement factor,
κ is feedback strength, P is pump current, and τ is the delay time. Fig-
ure 12.10 shows a time series solution for the LK equations when α = 4,
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κ = 0.1, P = 1, T = 200, and τ = 1000. The Python program is listed in
Section 12.5 and uses pydelay — a python library for solving DDEs.

Figure 12.10: [Python] The solution |E(t)| for the DDE equation (12.13) for
9500 < t < 10000.

The Ikeda DDEs. The Ikeda model is discussed in some detail in Chap-
ter 16. The coupled DDEs are given by:

E = A+BE (t− τC) e
i(φ−φ0), τ

dφ

dt
= −φ+ |E (t− τC)|2 ,

where E is the electric field strength in a ring cavity, φ is a phase shift as light
propagates around the ring, φ0 is a linear phase shift, A is related to input
intensity, B is related to dissipation in the cavity, τ is the Debye relaxation
time, and τC is the delay time of light in the ring. The coupled DDE may be
simplified [9] to obtain the Ikeda DDE:

τ
dφ

dt
= −φ+A2 [1 + 2B cos (φ (t− τC)− φ0)] . (12.14)

It is shown in [9] that as well as displaying chaos, Hopf bifurcations to sine
wave oscillations occur for small time delays and that square wave oscillations
occur for large delays. Fix the parameters A = 2, B = 0.4, τ = 0.8, φ0 = 0
and vary the cavity delay time τC .

Figure 12.11 shows two time series displaying chaos and a square wave
oscillation. Readers will be asked to find a Hopf bifurcation to a limit cycle
in the Exercises at the end of the chapter.
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Figure 12.11: The Ikeda DDE (12.14) for parameter values A = 2, B = 0.4,
τ = 0.8, φ0 = 0 and vary the cavity delay time τC . (a) τC = 7; (b) τC = 40.

Delayed-Dynamical Optical Bistability Within and Without the
Rotating Wave Approximation. The work to follow here is based on our
recent papers [17] and [25]. We consider a bistable model of homogeneously
broadened two-level atomic medium of length l placed inside a bulk ring
cavity of length L. In the paper it is shown that the DDEs for the field
components x0,± are given by:

dx0

dτ
= |y| − (1 + iθ)x0 (τ − τ0)−

2Cx0(τ)(1− iδ)

1 + δ2 + |x0(τ)|2

dx+

dτ
= −(1 + iθ)x+ (τ − τ0)−

iη

κ
x+(τ)−

2Cx∗
0(τ)(1 + δ2)(

1 + δ2 + |x0(τ)|2
) (

1 + iδ+2i
λ

)

dx−
dτ

= −(1 + iθ)x− (τ − τ0) +
iη

κ
x−(τ),

(12.15)

where |y| is the normalized input field amplitude; θ = ωc−ωL

κ is the normalized
cavity detuning with cavity mode frequency ωc, input field frequency ωL, and
κ is the cavity decay constant; τ = L−l

c is the cavity round trip delay, where

c is the velocity of light in a vacuum, C = g2

γκ is the cooperative parameter,
where g is the coupling constant between the cavity field and the atoms, and

γ is the A-coefficient; δ = 2(ω0−ωL)
γ is the normalized atomic detuning with

the atomic transition frequency ω0, and finally η = 2ωL. Note that x0(τ) is
the fundamental field component (of the same form within the Rotating Wave
Approximation (RWA)) and the nonlinear source term for the first harmonic
field component x+ in equation (12.15) depends on x0 and is of O

(
λ2
)
, to

the same order.
When the delay is zero τ = 0, the system can display three different forms

of hysteresis as shown if Figure 12.12. Readers are directed to the research
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Figure 12.12: Bistable regions for system (12.15) when τ = 0. (a) A coun-
terclockwise bistable region in the fundamental field component when θ = 2,
δ = 8, C = 50, γ = 1, κ = 0.1, and λ = 10−9. (b) A clockwise bistable cycle
for the first harmonic field component when θ = 0, δ = 0, C = 24, κ = 0.1,
γ = 1, and λ = 10−7. (c) A butterfly bistable region for the first harmonic
field component when θ = 2, δ = 8, C = 50, γ = 1, κ = 0.1, and λ = 10−9.

papers [17] and [25] to see how time delays affect the bistable operations
depicted in Figure 12.12; however, in the main, time delays cause instabilities
to encroach upon the bistable regions. There are some exceptions to the rule
however. Figure 12.13 shows a large butterfly bistable region for transverse
Gaussian field effects within RWA when subject to a time delay. Readers can
find further details in our paper [25].

Figure 12.13: For certain parameter values with transverse Gaussian field
effects within the RWA and with a nonzero time delay τ , a large butterfly
bistable region, isolated from any instabilities, is clearly evident. Please see
[25] for more details.

12.4 Other Applications

The ENSO Environmental Model. The first example presented is a
simple nonlinear model for the El Niño and La Niña phenomena in the East-
ern Pacific Ocean. The El Niño Southern Oscillation (ENSO) refers to the
warming and cooling cycles of sea surface temperatures — the warm phase
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of the cycle is called El Niño and the cool phase is called La Niña. The
ENSO events have been occurring for thousands of years and with the devel-
opment of global warming and climate change over past decades the mathe-
matical models have become increasingly important and heavily investigated.
In 1988, Schopf and Suarez [24] devised a simple nonlinear DDE model for
ENSO. Suppose that T (t) represents the temperature anomaly, which rep-
resents a small perturbation from the long-term temperature average. The
DDE model is given by:

dT

dt
= T − T 3 − rT (t− τw), (12.16)

Figure 12.14: Phase portraits of the ENSO model (12.16) when r = 0.7 and
the initial history function is T (t) = 0.1. (a) When τw = 1.5, there is no
oscillation. (b) When τw = 5, there is an oscillation.

where r represents the influence of the returning signal relative to local feed-
back and τw is the nondimensional delay representing the wave transit time.
Figure 12.14 shows that when r = 0.7, there is a bifurcation point where
a limit cycle bifurcates (the bifurcation occurs at τw ≈ 1.84). The delay
time in this model represents the time taken for equatorially trapped oceanic
waves to propagate across the Pacific Ocean. When the delay time is below
a certain threshold τw ≈ 1.84, in this case, then there is no oscillation, this
could explain the lack of ENSO phenomena in smaller bodies of water such
as the Atlantic and Indian Oceans. At the current time, the most cited paper
on ENSO was published in 1997 [32] and there is also a lot of information
published on the web.
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A Simple DDE Neural Network Model. This work follows the paper by
Gopalsamy and He [11] on stability in asymmetric Hopfield nets with trans-
mission delays. Neural networks are covered in some detail in Chapter 20. A
simple two-neuron coupled DDE network is given by:

dx

dt
= −x(t) + a11 tanh (x (t− τ1)) + a12 tanh (y (t− τ2))

dy

dt
= −y(t) + a21 tanh (x (t− τ1)) + a22 tanh (y (t− τ2)) , (12.17)

where x, y are activation levels, aij denote couplings between the two neurons,
and τ1, τ2 are transmission delays. A linear stability analysis shows that
the system can go through a Hopf bifurcation and a pitchfork bifurcation
simultaneously. This is demonstrated in Figure 12.15, where the different
dynamics of the system are shown in four plots.

Figure 12.15 shows solutions to the two-neuron neural network DDE
(12.17) with varying parameters and initial history functions. (a) Phase
portrait showing that when a11 = a12 = −1, a21 = 2, a22 = 1, τ1 = τ2 = 1,
and the initial history functions, x(t) = y(t) = 0.5, (x(t), y(t)) approaches
a stable critical point at the origin. (b) Phase portrait showing that when
a11 = −1, a12 = a21 = −2, a22 = −3, τ1 = τ2 = 1, and the initial his-
tory functions, x(t) = y(t) = 0.5, (x(t), y(t)) approaches in-phase oscilla-
tion. (c) Phase portrait showing that when a11 = 0.33, a12 = −1, a21 =
2, a22 = 0.34, τ1 = τ2 = 1, and the initial history functions, x(t) = y(t) = 0.5,
(x(t), y(t)) approaches out of phase oscillation. (d) Three time series show-
ing that when a11 = −1, a12 = 2, a21 = 3, a22 = −1, τ1 = τ2 = 1, and the
initial history functions (i) x(t) = 2, y(t) = 1, (ii) x(t) = −1, y(t) = 1, and
(iii) x(t) = −1, y(t) = −1, there are two stable critical points and one stable
oscillation in x(t).

12.5 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

dde23 # Imported from Pydelay to solve DDEs .

lambdas # Creation of anonymous functions

(without a name).

piecewise # Evaluate a piecewise defined function.

pow(x,y) # Return x to the power y.
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Figure 12.15: A gallery of plots for system (12.17) for varying parameter
values and initial history functions. (a) The solution approaches the stable
critical point at the origin; (b) the system settles on to two oscillating so-
lutions which are in-phase; (c) the system has settled on to an oscillatory
solution where x(t) and y(t) are now out of phase; (d) the system has co-
existing stable critical points and oscillatory solutions which depend upon
the initial history functions.
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# Program 12a: The method of steps.

# Analytical solution.

from sympy import integrate, symbols

xi, t, i = symbols(’xi t i’)

def phi(i, t):

if i == 0:

return 1 # Initial history x(t)=1 on [-1,0].

else:

return phi(i-1, i-1) - integrate(phi(i-1, xi-1), (xi, i-1, t))

tmax=10;

x = [phi(j, t) for j in range(tmax + 1)]

print(’x(t) = {}’.format(x))

# Program 12b: Solution of a DDE using the method of steps.

# See Figure 12.1. The plot is a piecewise function.

# The lambda t: functions are computed in Programs 12a.

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(-1, 10, 1000)

conditions = [t<=0, t>0, t>1, t>2, t>3, t>4, t>5, t>6, t>7, t>8, t>9]

lambdas = [

lambda t: 1,

lambda t: 1-t,

lambda t: t**2/2-2*t+3/2,

lambda t: -t**3/6+3*t**2/2-4*t+17/6,

lambda t: t**4/24-2*t**3/3+15*t**2/4-17*t/2+149/24,

lambda t: -t**5/120 + 5*t**4/24 - 2*t**3 + 109*t**2/12

- 115*t/6 + 1769/120,

lambda t: t**6/720 - t**5/20 + 35*t**4/48 - 197*t**3/36

+ 1061*t**2/48 - 1085*t/24 + 26239/720,

lambda t: -t**7/5040 + 7*t**6/720 - t**5/5 + 107*t**4/48 -

521*t**3/36 + 13081*t**2/240 - 13201*t/120 + 463609/5040,

lambda t: t**8/40320 - t**7/630 + 7*t**6/160 - 487*t**5/720 +

3685*t**4/576 - 27227*t**3/720 + 39227*t**2/288 - 39371*t/144

+ 3157891/13440,

lambda t: -t**9/362880 + t**8/4480 - t**7/126 + 701*t**6/4320 -

1511*t**5/720 + 51193*t**4/2880 - 212753*t**3/2160 + 1156699*t**2/3360

- 1158379*t/1680 + 43896157/72576,

lambda t: t**10/3628800 - t**9/36288 + 11*t**8/8960 - 323*t**7/10080 +

1873*t**6/3456 - 89269*t**5/14400 + 279533*t**4/5760

- 7761511*t**3/30240 + 23602499*t**2/26880 - 23615939*t/13440
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+ 5681592251/3628800

]

plt.plot(t, np.piecewise(t, conditions, lambdas))

plt.xlabel(’t’, fontsize=25)

plt.ylabel(’x(t)’, fontsize=25)

plt.tick_params(labelsize=25)

plt.show()

# Program 12c: The Mackey-Glass DDE.

# See Figure 12.5(a).

# pydelay must be on your computer

import numpy as np

import pylab as pl

from pydelay import dde23

# define the equations

eqns = {

’x’ : ’2 * x(t-tau) / (1.0 + pow(x(t-tau),p)) - x’

}

#define the parameters

params = {

’tau’: 2,

’p’ : 10

}

# Initialise the solver

dde = dde23(eqns=eqns, params=params)

# set the simulation parameters

# (solve from t=0 to t=1000 and limit the maximum step size to 1.0)

dde.set_sim_params(tfinal=1000, dtmax=1.0)

# set the history of to the constant function 0.5 (using a python

lambda function)

histfunc = {

’x’: lambda t: 0.5

}

dde.hist_from_funcs(histfunc, 51)

# run the simulator

dde.run()
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# Make a plot of x(t) vs x(t-tau):

# Sample the solution twice with a stepsize of dt=0.1:

# once in the interval [515, 1000]

sol1 = dde.sample(515, 1000, 0.1)

x1 = sol1[’x’]

# and once between [500, 1000-15]

sol2 = dde.sample(500, 1000-15, 0.1)

x2 = sol2[’x’]

pl.plot(x1, x2)

pl.xlabel(’$x(t)$’)

pl.ylabel(’$x(t - 15)$’)

pl.show()

# Program 12d: The Lang-Kobayashi DDEs.

# See Figure 12.10.

# pydelay must be on your computer.

import numpy as np

import pylab as pl

from pydelay import dde23

tfinal = 10000

tau = 1000

# The laser equations

laser_equations = {

’E:c’: ’0.5*(1.0+ii*a)*E*n + K*E(t-tau)’,

’n’ : ’(p - n - (1.0 +n) * pow(abs(E),2))/T’

}

params = {

’a’ : 4.0,

’p’ : 1.0,

’T’ : 200.0,

’K’ : 0.1,

’tau’: tau,

’nu’ : 10**-5,

’n0’ : 10.0

}

noise = { ’E’: ’sqrt(0.5*nu*(n+n0)) * (gwn() + ii*gwn())’ }
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dde = dde23(eqns=laser_equations, params=params, noise=noise)

dde.set_sim_params(tfinal=tfinal)

# use a dictionary to set the history

thist = np.linspace(0, tau, tfinal)

Ehist = np.zeros(len(thist))+1.0

nhist = np.zeros(len(thist))-0.2

dic = {’t’ : thist, ’E’: Ehist, ’n’: nhist}

# ’useend’ is True by default in hist_from_dict and thus the

# time array is shifted correctly

dde.hist_from_arrays(dic)

dde.run()

t = dde.sol[’t’]

E = dde.sol[’E’]

n = dde.sol[’n’]

spl = dde.sample(-tau, tfinal, 0.1)

pl.plot(t[:-1], t[1:] - t[:-1], ’0.8’, label=’step size’)

pl.plot(spl[’t’], abs(spl[’E’]), ’g’, label=’sampled solution’)

pl.plot(t, abs(E), ’.’, label=’calculated points’)

pl.legend()

pl.xlabel(’$t$’)

pl.ylabel(’$|E|$’)

pl.xlim((0.95*tfinal, tfinal))

pl.ylim((0,3))

pl.show()

12.6 Exercises

1. Use the method of steps to show that an analytical solution in the range
[−1, 2] to the DDE (12.2) with the initial history function x(t) = et on
[−1, 0] is given by:

{
et, 1− et − 1

e
, 2− e− 1

e
+ et−2 − t− t

e

}
.

Use Python to determine an analytical solution on [−1, 4].
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2. Use the method of steps to show that an analytical solution in the range
[−1, 2] to the DDE (12.2) with the initial history function x(t) = t2 on
[−1, 0] is given by:

{
t2,−t+ t2 − t3/3,

7

12
− 7t

3
+ 2t2 − 2t3

3
+

t4

12

}
.

Use Python to determine an analytical solution on [−1, 4].

3. Use a linear stability analysis to prove that the critical point x∗ = 0 is
stable for the system

dx

dt
= −x(t− 1).

4. Consider the logistic DDE subject to two delays:

dx

dt
= −μx(t) (1− x (t− τ1)− x (t− τ2)) .

Show that a necessary and sufficient condition for the critical point at
x∗ = 1

2 to be stable is

μ (τ1 + τ2) cos

(
π (τ1 − τ2)

2 (τ1 + τ2)

)
< π.

Use Python to show a Hopf bifurcation of a limit cycle for suitable
parameter values.

5. Plot a bifurcation diagram for the modified Mackey-Glass system (12.10)
when β = 2.4, δ = 2, n = 10, τ1 = 2.4, as the parameter τ2 is linearly
ramped up from τ2 = 0 to τ2 = 10, and then ramped down again.

6. Perform a linear stability analysis on the Ikeda DDE (12.14) and show
that there exists both stable and unstable Hopf bifurcation points.

7. A simple ENSO environmental model with a global warming effect, W ,
say, is given by:

dT

dt
= T (t)− T (t)3 − rT (t− τw) +W.

Using the same parameters as those given in equation (12.16), investi-
gate how the global warming term W affects the model.

8. Consider the periodically forced mechanical oscillator described by the
equations:

d2x

dt2
+ a

(
dx

dt

)3

− b
dx

dt
+ cx = Γcos(ωt) +A (ẋτ ) +B (ẋτ )

3
,
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where constants a, b, c, and Γ are positive, xτ = x(t−τ), and τ is a time
delay. The feedback is negative if A,B < 0, and positive if A,B > 0.
Suppose that a = 0.3, b = 2, c = 2, ω = 2, A = 6, B = 2, Γ = 9,
and vary the delay τ . Plot phase portraits of x(t) versus ẋ(t) when (i)
τ = 0.4; (ii) τ = 0.8; (iii) τ = 1.2. Describe the behavior in each case.
Read paper [30], where a study of double Hopf bifurcation and chaos
for this system is analyzed.

9. Consider the simple mathematical model of an inverted pendulum that
is balanced using linear feedback control [26]. Think of an inverted
pendulum that is pivoted on a cart and the cart can move horizontally
left and right. The system is modeled by a pair of DDEs:

d2θ

dt2
= sin(θ)− F cos(θ),

d2δ

dt2
=

2

3
LF,

F =

(
c1θ(t− τ) + c2

dθ

dt
(t− τ)

)
,

where θ is an angular displacement of the inverted pendulum, c1, c2
are feedback control gains, δ is the horizontal displacement from the
pivot point, F is a delayed feedback control force, L is the length of the
pendulum, and τ is a control loop latency. Use Python to investigate
the system and show that there are parameter regions which show (i)
stabilization to θ = 0; (ii) small oscillations about θ = 0; (iii) runaway
oscillations, where δ gets large, and (iv) chaotic solutions.

10. Consider the economic model of neoclassical growth with both work-
ers and capitalists [12], using the Cobb-Douglas production function,
f (kt) = kαt , where α ∈ (0, 1), given by:

dk

dt
= (sW + α (sC − sW )) k(t− τ)α − nk(t− τ),

where k(t) denotes capital per worker, sW and sC are the propen-
sities for workers and capitalists to save, respectively, n > 0 is the
constant labor force growth rate, and τ represents a time lag in the
production technology. Prove that there is a unique critical point at

k∗ =
(

(sW+α(sC−sW ))
n

) 1
1−α

, and prove that there is a Hopf bifurcation

point at τ = π
2n(1−α) .
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Chapter 13

Linear Discrete Dynamical
Systems

Aims and Objectives

• To introduce recurrence relations for first- and second-order difference
equations.

• To introduce the theory of the Leslie model.

• To apply the theory to modeling the population of a single species.

On completion of this chapter, the reader should be able to

• solve first- and second-order homogeneous linear difference equations;

• find eigenvalues and eigenvectors of matrices;

• model a single population with different age classes;

• predict the long-term rate of growth/decline of the population;

• investigate how harvesting and culling policies affect the model.
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This chapter deals with linear discrete dynamical systems, where time is
measured by the number of iterations carried out and the dynamics are not
continuous. In applications this would imply that the solutions are observed
at discrete time intervals.

Recurrence relations can be used to construct mathematical models of
discrete systems. They are also used extensively to solve many differential
equations which do not have an analytic solution; the differential equations
are represented by recurrence relations (or difference equations) that can be
solved numerically on a computer. Of course one has to be careful when
considering the accuracy of the numerical solutions. Ordinary differential
equations are used to model continuous dynamical systems in the first part
of the book. More information on discrete systems can be found in the
textbooks [1, 2], and [5].

The bulk of this chapter is concerned with a linear discrete dynamical
system that can be used to model the population of a single species. As with
continuous systems, in applications to the real world, linear models generally
produce good results over only a limited range of time. The Leslie model
introduced here is useful when establishing harvesting and culling policies.
References [3, 4, 6, 7, 8, 9], and [23] are concerned with the Leslie model.

Nonlinear discrete dynamical systems will be discussed in the next chap-
ter, and the Poincaré maps introduced in Chapter 9, for example, illustrates
how discrete systems can be used to help in the understanding of how con-
tinuous systems behave.

13.1 Recurrence Relations

This section is intended to give the reader a brief introduction to difference
equations and illustrate the theory with some simple models.

First-Order Difference Equations

A recurrence relation can be defined by a difference equation of the form

xn+1 = f(xn), (13.1)

where xn+1 is derived from xn and n = 0, 1, 2, 3, . . .. If one starts with an
initial value, say, x0, then iteration of equation (13.1) leads to a sequence of
the form

{xi : i = 0 to ∞} = {x0, x1, x2, . . . , xn, xn+1, . . .}.

In applications, one would like to know how this sequence can be interpreted
in physical terms. Equations of the form (13.1) are called first-order difference
equations because the suffices differ by one. Consider the following simple
example.
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Example 1. The difference equation used to model the interest in a bank
account compounded once per year is given by

xn+1 =

(
1 +

3

100

)
xn, n = 0, 1, 2, 3, . . . .

Find a general solution and determine the balance in the account after five
years given that the initial deposit is 10,000 dollars and the interest is com-
pounded annually.

Solution. Using the recurrence relation

x1 =

(
1 +

3

100

)
× 10, 000,

x2 =

(
1 +

3

100

)
× x1 =

(
1 +

3

100

)2

× 10, 000,

and, in general,

xn =

(
1 +

3

100

)n

× 10, 000,

where n = 0, 1, 2, 3, . . .. Given that x0 = 10, 000 and n = 5, the balance after
five years will be x5 = 11, 592.74 dollars.

Theorem 1. The general solution of the first-order linear difference equation

xn+1 = mxn + c, n = 0, 1, 2, 3, . . . , (13.2)

is given by

xn = mnx0 +

{
mn−1
m−1 c if m �= 1

nc if m = 1.

Proof. Applying the recurrence relation given in (13.2)

x1 = mx0 + c,

x2 = mx1 + c = m2x0 +mc+ c,

x3 = mx2 + c = m3x0 +m2c+mc+ c,

and the pattern in general is

xn = mnx0 + (mn−1 +mn−2 + . . .+m+ 1)c.

Using geometric series, mn−1 +mn−2 + . . . +m + 1 = mn−1
m−1 , provided that

m �= 1. If m = 1, then the sum of the geometric sequence is n. This concludes
the proof of Theorem 1. Note that, if |m| < 1 then xn → c

1−m as n → ∞.
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Second-Order Linear Difference Equations

Recurrence relations involving terms whose suffices differ by two are known as
second-order linear difference equations . The general form of these equations
with constant coefficients is

axn+2 = bxn+1 + cxn. (13.3)

Theorem 2. The general solution of the second-order recurrence relation
(13.3) is

xn = k1λ
n
1 + k2λ

n
2 ,

where k1, k2 are constants and λ1 �= λ2 are the roots of the quadratic equation
aλ2 − bλ− c = 0. If λ1 = λ2, then the general solution is of the form

xn = (k3 + nk4)λ
n
1 .

Note that when λ1 and λ2 are complex, the general solution can be ex-
pressed as

xn = k1λ
n
1 + k2λ

n
2 = k1(re

iθ)n + k2(re
−iθ)n = rn (A cos(nθ) +B sin(nθ)) ,

where A and B are constants. When the eigenvalues are complex, the solution
oscillates and is real.

Proof. The solution of system (13.2) gives us a clue where to start. Assume
that xn = λnk is a solution, where λ and k are to be found. Substituting,
equation (13.3) becomes

aλn+2k = bλn+1k + cλnk

or

λnk(aλ2 − bλ− c) = 0.

Assuming that λnk �= 0, this equation has solutions if

aλ2 − bλ− c = 0. (13.4)

Equation (13.4) is called the characteristic equation. The difference equation
(13.3) has two solutions and because the equation is linear, a solution is
given by

xn = k1λ
n
1 + k2λ

n
2 ,

where λ1 �= λ2 are the roots of the characteristic equation.
If λ1 = λ2, then the characteristic equation can be written as

aλ2 − bλ− c = a(λ− λ1)
2 = aλ2 − 2aλ1λ+ aλ2

1.
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Therefore, b = 2aλ1 and c = −aλ2
1. Now assume that another solution is of

the form knλn. Substituting, equation (13.3) becomes

axn+2 − bxn+1 − cxn = a(n+ 2)kλn+2
1 − b(n+ 1)kλn+1

1 − cnkλn
1 ,

therefore

axn+2 − bxn+1 − cxn = knλn
1 (aλ

2
1 − bλ1 − c) + kλ1(2aλ1 − b),

which equates to zero from the above. This confirms that knλn is a solution
to equation (13.3). Since the system is linear, the general solution is thus of
the form

xn = (k3 + nk4)λ
n
1 .

The values of kj can be determined if x0 and x1 are given. Consider the
following simple examples.

Example 2. Solve the following second-order linear difference equations:

(i) xn+2 = xn+1 + 6xn, n = 0, 1, 2, 3, . . ., given that x0 = 1 and x1 = 2;

(ii) xn+2 = 4xn+1 − 4xn, n = 0, 1, 2, 3, . . ., given that x0 = 1 and x1 = 3;

(iii) xn+2 = xn+1 − xn, n = 0, 1, 2, 3, . . ., given that x0 = 1 and x1 = 2.

Solution. (i) The characteristic equation is

λ2 − λ− 6 = 0,

which has roots at λ1 = 3 and λ2 = −2. The general solution is therefore

xn = k13
n + k2(−2)n, n = 0, 1, 2, 3, . . . .

The constants k1 and k2 can be found by setting n = 0 and n = 1. The final
solution is

xn =
4

5
3n +

1

5
(−2)n, n = 0, 1, 2, 3, . . . .

(ii) The characteristic equation is

λ2 − 4λ+ 4 = 0,

which has a repeated root at λ1 = 2. The general solution is

xn = (k3 + k4n)2
n, n = 0, 1, 2, 3, . . . .

Substituting for x0 and x1 gives the solution

xn =
(
1 +

n

2

)
2n, n = 0, 1, 2, 3, . . . .
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(iii) The characteristic equation is

λ2 − λ+ 1 = 0,

which has complex roots λ1 = 1
2 + i

√
3
2 = e

iπ
3 and λ2 = 1

2 − i
√
3
2 = e

−iπ
3 . The

general solution is

xn = k1λ
n
1 + k2λ

n
2 , n = 0, 1, 2, 3, . . . .

Substituting for λ1 and λ2, the general solution becomes

xn = (k1 + k2) cos
(nπ

3

)
+ i(k1 − k2) sin

(nπ
3

)
, n = 0, 1, 2, 3, . . . .

Substituting for x0 and x1 gives k1 = 1
2 − i

2
√
3
andk2 = 1

2 + i
2
√
3
, and so

xn = cos
(nπ

3

)
+
√
3 sin

(nπ
3

)
, n = 0, 1, 2, 3, . . . .

Example 3. Suppose that the national income of a small country in year n is
given by In = Sn+Pn+Gn, where Sn, Pn, andGn represent national spending
by the populous, private investment, and government spending, respectively.
If the national income increases from one year to the next, then assume that
consumers will spend more the following year; in this case, suppose that
consumers spend 1

6 of the previous year’s income, then Sn+1 = 1
6In. An

increase in consumer spending should also lead to increased investment the
following year, assume that Pn+1 = Sn+1 − Sn. Substitution for Sn then
gives Pn+1 = 1

6 (In − In−1). Finally, assume that the government spending
is kept constant. Simple manipulation then leads to the following economic
model

In+2 =
5

6
In+1 −

1

6
In +G, (13.5)

where In is the national income in year n, and G is a constant. If the initial
national income is G dollars and one year later is 3

2G dollars, determine

(i) a general solution to this model;

(ii) the national income after 5 years; and

(iii) the long-term state of the economy.

Solution. (i) The characteristic equation is given by

λ2 − 5

6
λ+

1

6
= 0,

which has solutions λ1 = 1
2 and λ2 = 1

3 . Equation (13.5) also has a constant
term G. Assume that the solution involves a constant term also; try In =
k3G, then from equation (13.5)

k3G =
5

6
k3G− 1

6
k3G+G,
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and so k3 = 1
1− 5

6+
1
6

= 3. Therefore, a general solution is of the form

In = k1λ
n
1 + k2λ

n
2 + 3G.

(ii) Given that I0 = G and I1 = 3
2G, simple algebra gives k1 = −5 and

k2 = 3. When n = 5, I5 = 2.856G, to three decimal places.
(iii) As n → ∞, In → 3G, since |λ1| < 1 and |λ2| < 1. Therefore, the

economy stabilizes in the long term to a constant value of 3G. This is obvi-
ously a very crude model.

A general n-dimensional linear discrete population model is discussed in
the following sections using matrix algebra.

13.2 The Leslie Model

The Leslie model was developed around 1940 to describe the population dy-
namics of the female portion of a species. For most species the number of
females is equal to the number of males and this assumption is made here.
The model can be applied to human populations, insect populations, and an-
imal and fish populations. The model is an example of a discrete dynamical
system. As explained throughout the text, we live in a nonlinear world and
universe; since this model is linear, one would expect the results to be inaccu-
rate in the long term. However, the model can give some interesting results
and it incorporates some features not discussed in later chapters. The follow-
ing characteristics are ignored—diseases, environmental effects, and seasonal
effects. The book [9] provides an extension of the Leslie model, where indi-
viduals exhibit migration characteristics. A nonlinear Leslie matrix model for
predicting the dynamics of biological populations in polluted environments
is discussed in [7].

Assumptions: The females are divided into n age classes; thus, if N is the
theoretical maximum age attainable by a female of the species, then each age
class will span a period of N

n equally spaced, days, weeks, months, years, etc.
The population is observed at regular discrete time intervals which are each
equal to the length of one age class. Thus, the kth time period will be given

by tk = kN
n . Define x

(k)
i to be the number of females in the ith age class after

the kth time period. Let bi denote the number of female offspring born to
one female during the ith age class, and let ci be the proportion of females
which continue to survive from the ith to the (i+ 1)st age class.

In order for this to be a realistic model the following conditions must be
satisfied:

(i) bi ≥ 0, 1 ≤ i ≤ n;

(ii) 0 < ci ≤ 1, 1 ≤ i < n.
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Obviously, some bi have to be positive in order to ensure that some births do
occur and no ci are zero, otherwise there would be no females in the (i+1)st
age class.

Working with the female population as a whole, the following sets of linear
equations can be derived. The number of females in the first age class after
the kth time period is equal to the number of females born to females in all
n age classes between the time tk−1 and tk; thus

x
(k)
1 = b1x

(k−1)
1 + b2x

(k−1)
2 + . . .+ bnx

(k−1)
n .

The number of females in the (i + 1)st age class at time tk is equal to the
number of females in the ith age class at time tk−1 who continue to survive
to enter the (i+ 1)st age class, hence

x
(k)
i+1 = cix

(k−1)
i .

Equations of the above form can be written in matrix form, and so

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(k)
1

x
(k)
2

x
(k)
3
...

x
(k)
n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

b1 b2 b3 · · · bn−1 bn
c1 0 0 · · · 0 0
0 c2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cn−1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(k−1)
1

x
(k−2)
2

x
(k−1)
3
...

x
(k−1)
n

⎞
⎟⎟⎟⎟⎟⎟⎠

,

or

X(k) = LX(k−1), k = 1, 2, . . . ,

where X ∈ �n and the matrix L is called the Leslie matrix .
Suppose that X(0) is a vector giving the initial number of females in each

of the n age classes, then

X(1) = LX(0),

X(2) = LX(1) = L2X(0),

...

X(k) = LX(k−1) = LkX(0).

Therefore, given the initial age distribution and the Leslie matrix L, it is
possible to determine the female age distribution at any later time interval.

Example 4. Consider a species of bird that can be split into three age
groupings: those aged 0-1 year, those aged 1-2 years, and those aged 2-3
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years. The population is observed once a year. Given that the Leslie matrix
is equal to

L =

⎛
⎝

0 3 1
0.3 0 0
0 0.5 0

⎞
⎠ ,

and the initial population distribution of females is x
(0)
1 = 1000, x

(0)
2 = 2000,

and x
(0)
3 = 3000, compute the number of females in each age group after

(a) 10 years;

(b) 20 years;

(c) 50 years.

Solution. Using the above,

(a) X(10) = L10X(0) =

⎛
⎝

5383
2177
712

⎞
⎠ ,

(b) X(20) = L20X(0) =

⎛
⎝

7740
2388
1097

⎞
⎠ ,

(c) X(50) = L50X(0) =

⎛
⎝

15695
4603
2249

⎞
⎠ .

The numbers are rounded down to whole numbers since it is not possible to
have a fraction of a living bird. Obviously, the populations cannot keep on
growing indefinitely. However, the model does give useful results for some
species when the time periods are relatively short.

In order to investigate the limiting behavior of the system it is necessary
to consider the eigenvalues and eigenvectors of the matrix L. These can be
used to determine the eventual population distribution with respect to the
age classes.

Theorem 3. Let the Leslie matrix L be as defined above and assume that

(a) bi ≥ 0 for 1 ≤ i ≤ n;

(b) at least two successive bi are strictly positive; and

(c) 0 < ci ≤ 1 for 1 ≤ i < n.

Then,

(i) matrix L has a unique positive eigenvalue, say, λ1;
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(ii) λ1 is simple, or has algebraic multiplicity one;

(iii) the eigenvector—X1, say—corresponding to λ1, has positive compo-
nents;

(iv) any other eigenvalue, λi �= λ1, of L satisfies

|λi| < λ1,

and the positive eigenvalue λ1 is called strictly dominant.

The reader will be asked to prove part (i) in the exercises at the end of
the chapter.

If the Leslie matrix L has a unique positive strictly dominant eigenvalue,
then an eigenvector corresponding to λ1 is a nonzero vector solution of

LX = λ1X.

Assume that x1 = 1, then a possible eigenvector corresponding to λ1 is given
by

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
c1
λ1
c1c2
λ2
1

...
c1c2...cn−1

λn−1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Assume that L has n linearly independent eigenvectors, say,X1, X2, . . . , Xn.
Therefore, L is diagonizable. If the initial population distribution is given by
X(0) = X0, then there exist constants b1, b2, . . . , bn, such that

X0 = b1X1 + b2X2 + . . .+ bnXn.

Since
X(k) = LkX0 and LkXi = λk

iXi,

then

X(k) = Lk(b1X1 + b2X2 + . . .+ bnXn) = b1λ
k
1X1 + b2λ

k
2X2 + . . . bnλ

k
nXn.

Therefore,

X(k) = λk
1

(
b1X1 + b2

(
λ2

λ1

)k

X2 + . . .+ bn

(
λn

λ1

)k

Xn

)
.

Since λ1 is dominant,
∣∣∣ λi

λ1

∣∣∣ < 1 for λi �= λ1, and
(

λi

λ1

)k

→ 0 as k → ∞. Thus

for large k,
X(k) ≈ b1λ

k
1X1.
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In the long run, the age distribution stabilizes and is proportional to the
vector X1. Each age group will change by a factor of λ1 in each time period.
The vector X1 can be normalized so that its components sum to one, the
normalized vector then gives the eventual proportions of females in each of
the n age groupings.

Note that if λ1 > 1, the population eventually increases; if λ1 = 1, the
population stabilizes, and if λ1 < 1, the population eventually decreases.

Example 5. Determine the eventual distribution of the age classes for Ex-
ample 4.

Solution. The characteristic equation is given by

det(L− λI) =

∣∣∣∣∣∣
−λ 3 1
0.3 −λ 0
0 0.5 −λ

∣∣∣∣∣∣
= −λ3 + 0.9λ+ 0.15 = 0.

The roots of the characteristic equation are:

λ1 = 1.023, λ2 = −0.851, λ3 = −0.172,

to three decimal places. Note that λ1 is the dominant eigenvalue.
To find the eigenvector corresponding to λ1, solve

⎛
⎝

−1.023 3 1
0.3 −1.023 0
0 0.5 −1.023

⎞
⎠
⎛
⎝

x1

x2

x3

⎞
⎠ =

⎛
⎝

0
0
0

⎞
⎠ .

One solution is x1 = 2.929, x2 = 0.855, and x3 = 0.420. Divide each term by
the sum to obtain the normalized eigenvector

X̂1 =

⎛
⎝

0.696
0.204
0.1

⎞
⎠ .

Hence, after a number of years, the population will increase by approximately
2.3% every year. The percentage of females aged 0–1 year will be 69.6%; aged
1–2 years will be 20.4%; and aged 2–3 years will be 10%.

13.3 Harvesting and Culling Policies

This section will be concerned with insect and fish populations only since
they tend to be very large. The model has applications when considering
insect species which survive on crops, for example. An insect population can
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be culled each year by applying either an insecticide or a predator species.
Harvesting of fish populations is particularly important nowadays; certain
policies have to be employed to avoid depletion and extinction of the fish
species. Harvesting indiscriminately could cause extinction of certain species
of fish from our oceans. References [8] and [23] provide examples for the
populations of yellow legged gulls in the Mediterranean and roach in rivers
in Belgium, respectively.

A harvesting or culling policy should only be used if the population is
increasing.

Definition 1. A harvesting or culling policy is said to be sustainable if the
number of fish, or insects, killed and the age distribution of the population
remaining are the same after each time period.

Assume that the fish or insects are killed in short sharp bursts at the
end of each time period. Let X be the population distribution vector for
the species just before the harvesting or culling is applied. Suppose that a
fraction of the females about to enter the (i + 1)st class are killed, giving a
matrix

D =

⎛
⎜⎜⎜⎜⎜⎝

d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn

⎞
⎟⎟⎟⎟⎟⎠

.

By definition, 0 ≤ di ≤ 1, where 1 ≤ i ≤ n. The numbers killed will be given
by DLX and the population distribution of those remaining will be

LX −DLX = (I −D)LX.

In order for the policy to be sustainable one must have

(I −D)LX = X. (13.6)

If the dominant eigenvalue of (I−D)L is one, thenX will be an eigenvector
for this eigenvalue and the population will stabilize. This will impose certain
conditions on the matrix D. Hence

I −D =

⎛
⎜⎜⎜⎜⎜⎝

(1− d1) 0 0 · · · 0
0 (1− d2) 0 · · · 0
0 0 (1− d3) · · · 0
...

...
...

. . .
...

0 0 0 · · · (1− dn)

⎞
⎟⎟⎟⎟⎟⎠
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and the matrix, say, M = (I − D)L, is easily computed. The matrix M is
also a Leslie matrix and hence has an eigenvalue λ1 = 1 if and only if

(1− d1)(b1 + b2c1(1− d1) + b3c1c2(1− d2)(1− d3) + . . .

+bnc1 . . . cn−1(1− d1) . . . (1− dn)) = 1. (13.7)

Only values of 0 ≤ di ≤ 1, which satisfy equation (13.7) can produce a
sustainable policy.

A possible eigenvector corresponding to λ1 = 1 is given by

X1 =

⎛
⎜⎜⎜⎜⎜⎝

1
(1− d2)c1

(1− d2)(1− d3)c1c2
...

(1− d2) . . . (1− dn)c1c2 . . . cn−1

⎞
⎟⎟⎟⎟⎟⎠

.

The sustainable population will be C1X1, where C1 is a constant. Con-
sider the following policies:

Sustainable Uniform Harvesting or Culling. Let d = d1 = d2 = . . . =
dn, then (13.6) becomes

(1− d)LX = X,

which means that λ1 = 1
1−d . Hence a possible eigenvector corresponding to

λ1 is given by

X1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
c1
λ1
c1c2
λ2
1

...
c1c2...cn−1

λn−1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Sustainable Harvesting or Culling of the Youngest Class. Let d1 = d
and d2 = d3 = . . . = dn = 0, therefore equation (13.7) becomes

(1− d)(b1 + b2c1 + b3c1c2 + . . .+ bnc1c2 . . . cn−1) = 1,

or, equivalently,

(1− d)R = 1,

where R is known as the net reproduction rate. Harvesting or culling is only
viable if R > 1, unless you wish to eliminate an insect species. The age
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distribution after each harvest or cull is then given by

X1 =

⎛
⎜⎜⎜⎜⎜⎝

1
c1
c1c2
...

c1c2 . . . cn−1

⎞
⎟⎟⎟⎟⎟⎠

.

Definition 2. An optimal sustainable harvesting or culling policy is one in
which either one or two age classes are killed. If two classes are killed, then
the older age class is completely killed.

Example 6. A certain species of fish can be divided into three six-month
age classes and has Leslie matrix

L =

⎛
⎝

0 4 3
0.5 0 0
0 0.25 0

⎞
⎠ .

The species of fish is to be harvested by fishermen using one of four differ-
ent policies which are uniform harvesting or harvesting one of the three age
classes, respectively. Which of these four policies are sustainable? Decide
which of the sustainable policies the fishermen should use.

Solution. The characteristic equation is given by

det(L− λI) =

∣∣∣∣∣∣
−λ 4 3
0.5 −λ 0
0 0.25 −λ

∣∣∣∣∣∣
= −λ3 + 2λ+ 0.375 = 0.

The eigenvalues are given by λ1 = 1.5, λ2 = −0.191, and λ3 = −1.309 to
three decimal places. The eigenvalue λ1 is dominant and the population will
eventually increase by 50% every six months. The normalized eigenvector
corresponding to λ1 is given by

X̂1 =

⎛
⎝

0.529
0.177
0.294

⎞
⎠ .

So, after a number of years there will be 52.9% of females aged 0–6 months;
17.7% of females aged 6–12 months; and 29.4% of females aged 12–18 months.

If the harvesting policy is to be sustainable, then equation (13.7) becomes

(1− d1)(b1 + b2c1(1− d2) + b3c1c2(1− d2)(1− d3)) = 1.

Suppose that hi = (1− di), then

h1h2(2 + 0.375h3) = 1. (13.8)
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Consider the four policies separately.

(i) Uniform harvesting: let h = (h, h, h). Equation (13.8) becomes

h2(2 + 0.375h) = 1,

which has solutions h = 0.667 and d = 0.333. The normalized eigenvector is
given by

X̂U =

⎛
⎝

0.720
0.240
0.040

⎞
⎠ .

(ii) Harvesting the youngest age class: let h = (h1, 1, 1). Equation (13.8)
becomes

h1(2 + 0.375) = 1,

which has solutions h1 = 0.421 and d1 = 0.579. The normalized eigenvector
is given by

X̂A1
=

⎛
⎝

0.615
0.308
0.077

⎞
⎠ .

(iii) Harvesting the middle age class: let h = (1, h2, 1). Equation (13.8)
becomes

h2(2 + 0.375) = 1,

which has solutions h2 = 0.421 and d2 = 0.579. The normalized eigenvector
is given by

X̂A2
=

⎛
⎝

0.791
0.167
0.042

⎞
⎠ .

(iv) Harvesting the oldest age class: let h = (1, 1, h3). Equation (13.8)
becomes

1(2 + 0.375h3) = 1,

which has no solutions if 0 ≤ h3 ≤ 1.

Therefore, harvesting policies (i)–(iii) are sustainable and policy (iv) is
not. The long-term distributions of the populations of fish are determined by
the normalized eigenvectors X̂U , X̂A1

, and X̂A2
, given above. If, for exam-

ple, the fishermen wanted to leave as many fish as possible in the youngest
age class, then the policy which should be adopted is the second age class
harvesting. Then 79.1% of the females would be in the youngest age class
after a number of years.
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13.4 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

eig # Gives eigenvalues and right

eigenvectors.

rsolve # Solve a recurrence equation.

# Program_13a: Computing bank interest. See Example 1.

from sympy import Function, rsolve

from sympy.abc import n

x = Function(’x’);

f = x(n+1) - (1+3/100) * x(n);

sol = rsolve(f, x(n), {x(0):10000});

print(’x_n = ${}’.format(sol))

x_5 = round(sol.subs(n, 5), 2)

print(’x(5) = {:,}’.format(x_5))

xn = 10000 ∗ 1.03 ∗ ∗n
x(5) = $11592.74

# Program_13b: Solving a second order recurrence relation.

# See Example 2.

from sympy import Function, rsolve

from sympy.abc import n

x = Function(’x’);

f = x(n+2) - x(n+1) - 6*x(n);

sol = rsolve(f, x(n), {x(0):1, x(1):2});

print(’x_n = {}’.format(sol))

xn = 1
5 ((−2)n + 4× 3n)

# Program_13c: The Leslie matrix. See Example 4.

# Compute the population distribution after 50 years.

# Determine the eigenvalues and eigenvectors of a Leslie matrix.

import numpy as np

import numpy.linalg as LA

L = np.array([[0,3,1], [0.3,0,0], [0,0.5,0]])
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X0 = np.array([[1000], [2000], [3000]])

X_50 = np.dot(LA.matrix_power(L, 50), X0)

X_50 = X_50.round()

print(’X(50) = {}’.format(X_50))

dL,VL = LA.eig(L)

print(’Eigenvalues = {}’.format(dL))

print(’Eigenvectors = {}’.format(VL))

X(50) = [[15696], [4604], [2249]]
Eigenvalues= 1.02305,−0.850689,−0.172356
Eigenvectors= [[0.950645, 0.278769, 0.136245], [−0.925557, 0.326403,

−0.191846],
[0.184033,−0.320326, 0.929259]]

13.5 Exercises

1. The difference equation used to model the length of a carpet, say, ln,
rolled n times is given by

ln+1 = ln + π(4 + 2cn), n = 0, 1, 2, 3, . . . ,

where c is the thickness of the carpet. Solve this recurrence relation.

2. Solve the following second order linear difference equations:

(a) xn+2 = 5xn+1 − 6xn, n = 0, 1, 2, 3, . . ., if x0 = 1, x1 = 4;

(b) xn+2 = xn+1 − 1
4xn, n = 0, 1, 2, 3, . . ., if x0 = 1, x1 = 2;

(c) xn+2 = 2xn+1 − 2xn, n = 0, 1, 2, 3, . . ., if x0 = 1, x1 = 2;

(d) Fn+2 = Fn+1 + Fn, n = 0, 1, 2, 3, . . ., if F1 = 1 and F2 = 1 (the
sequence of numbers is known as the Fibonacci sequence);

(e) xn+2 = xn+1 + 2xn − f(n), n = 0, 1, 2, . . ., given that x0 = 2 and
x1 = 3, when (i) f(n) = 2, (ii) f(n) = 2n, and (iii) f(n) = en (use
Python for part (iii) only).

3. Consider a human population that is divided into three age classes;
those aged 0–15 years, those aged 15–30 years, and those aged 30–45
years. The Leslie matrix for the female population is given by

L =

⎛
⎝

0 1 0.5
0.9 0 0
0 0.8 0

⎞
⎠ .

Given that the initial population distribution of females is x
(0)
1 = 10000,

x
(0)
2 = 15000, and x

(0)
3 = 8000, compute the number of females in each

of these groupings after
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(a) 225 years;

(b) 750 years;

(c) 1500 years.

4. Consider the following Leslie matrix used to model the female portion
of a species

L =

⎛
⎝

0 0 6
1
2 0 0
0 1

3 0

⎞
⎠ .

Determine the eigenvalues and eigenvectors of L. Show that there is no
dominant eigenvalue and describe how the population would develop in
the long term.

5. Consider a human population that is divided into five age classes: those
aged 0–15 years, those aged 15–30 years, those aged 30–45 years, those
aged 45–60 years, and those aged 60–75 years. The Leslie matrix for
the female population is given by

L =

⎛
⎜⎜⎜⎜⎝

0 1 1.5 0 0
0.9 0 0 0 0
0 0.8 0 0 0
0 0 0.7 0 0
0 0 0 0.5 0

⎞
⎟⎟⎟⎟⎠

.

Determine the eigenvalues and eigenvectors of L and describe how the
population distribution develops.

6. Given that

L =

⎛
⎜⎜⎜⎜⎜⎝

b1 b2 b3 · · · bn−1 bn
c1 0 0 · · · 0 0
0 c2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cn−1 0

⎞
⎟⎟⎟⎟⎟⎠

,

where bi ≥ 0, 0 < ci ≤ 1, and at least two successive bi are strictly
positive, prove that p(λ) = 1, if λ is an eigenvalue of L, where

p(λ) =
b1
λ

+
b2c1
λ2

+ . . .+
bnc1c2 . . . cn−1

λn
.

Show the following:

(a) p(λ) is strictly decreasing;

(b) p(λ) has a vertical asymptote at λ = 0;
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(c) p(λ) → 0 as λ → ∞.

Prove that a general Leslie matrix has a unique positive eigenvalue.

7. A certain species of insect can be divided into three age classes: 0–
6 months, 6–12 months, and 12–18 months. A Leslie matrix for the
female population is given by

L =

⎛
⎝

0 4 10
0.4 0 0
0 0.2 0

⎞
⎠ .

Determine the long-term distribution of the insect population. An in-
secticide is applied which kills off 50% of the youngest age class. De-
termine the long-term distribution if the insecticide is applied every six
months.

8. Assuming the same model for the insects as in Exercise 7, determine
the long-term distribution if an insecticide is applied every six months
which kills 10% of the youngest age class, 40% of the middle age class,
and 60% of the oldest age class.

9. In a fishery, a certain species of fish can be divided into three age
groups each one year long. The Leslie matrix for the female portion of
the population is given by

L =

⎛
⎝

0 3 36
1
3 0 0
0 1

2 0

⎞
⎠ .

Show that, without harvesting, the fish population would double each
year. Describe the long-term behavior of the system if the following
policies are applied:

(a) harvest 50% from each age class;

(b) harvest the youngest fish only, using a sustainable policy;

(c) harvest 50% of the youngest fish;

(d) harvest 50% of the whole population from the youngest class only;

(e) harvest 50% of the oldest fish.

10. Determine an optimal sustainable harvesting policy for the system given
in Exercise 9 if the youngest age class is left untouched.
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Chapter 14

Nonlinear Discrete
Dynamical Systems

Aims and Objectives

• To introduce nonlinear one- and two-dimensional iterated maps.

• To investigate period-doubling bifurcations to chaos.

• To introduce the notion of universality.

On completion of this chapter, the reader should be able to

• produce graphical iterations of one-dimensional iterated maps;

• test whether or not certain systems are chaotic;

• plot bifurcation diagrams;

• apply some of the theory to model simple problems from biology, eco-
nomics, neural networks, nonlinear optics, and population dynamics.
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Most of the dynamics displayed by highly complicated nonlinear systems
also appear for simple nonlinear systems. The reader is first introduced to the
tent function, which is composed of two straight lines. The graphical method
of iteration is introduced using this simple function since the constructions
may be easily carried out with graph paper, rule, and pencil. The reader is
also shown how to graph composite functions. The system can display peri-
odicity, mixing, and sensitivity to initial conditions, the essential ingredients
for chaos.

The logistic map is used as a simple model for the population growth
of an insect species. Bifurcation diagrams are plotted and period-doubling
bifurcations to chaos are displayed.

Bifurcation diagrams are plotted for the Gaussian map. Two-dimensional
Hénon maps are investigated, periodic points are found, and chaotic (or
strange) attractors are produced.

The chapter ends with some applications from biology, economics, nonlin-
ear optics, and neural networks. There are a number of textbooks available
on discrete dynamical systems, for example, see [4, 7, 8], and [14]. Recent
conferences have concentrated on applications of discrete dynamical systems,
see [2] and [16], for example.

14.1 The Tent Map and Graphical Iterations

As a simple introduction to one-dimensional nonlinear discrete dynamical
systems, consider the tent map, T : [0, 1] → [0, 1] defined by

T (x) =

{
μx 0 ≤ x < 1

2
μ(1− x) 1

2 ≤ x ≤ 1,

where 0 ≤ μ ≤ 2. The tent map is constructed from two straight lines, which
makes the analysis simpler than for truly nonlinear systems. The graph of
the T function may be plotted by hand and is given in Figure 14.1.
Define an iterative map by

xn+1 = T (xn), (14.1)

where xn ∈ [0, 1]. Although the form of the tent map is simple and the
equations involved are linear, for certain parameter values, this system can
display highly complex behavior and even chaotic phenomena. In fact, most
of the features discussed in other chapters of this text are displayed by this
relatively simple system. For certain parameter values, the mapping under-
goes stretching and folding transformations and displays sensitivity to initial
conditions and periodicity. Fortunately, it is not difficult to carry out simple
iterations for system (14.1) as the following examples demonstrate.
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0 10
x

T

μ/2

Figure 14.1: A graph of the tent function.

Example 1. Iterate the tent function (14.1) numerically for the following μ
and x0 values:

(I) μ = 1
2 :

(i) x0 = 1
4 , (ii) x0 = 1

2 , (iii) x0 = 3
4 ;

(II) μ = 1 :

(i) x0 = 1
3 , (ii) x0 = 2

3 ;

(III) μ = 3
2 :

(i) x0 = 3
5 , (ii) x0 = 6

13 , (iii) x0 = 1
3 ;

(IV ) μ = 2 :

(i) x0 = 1
3 , (ii) x0 = 1

5 , (iii) x0 = 1
7 , (iv) x0 = 1

11 .

Solution. A calculator or computer is not needed here. It is very easy to
carry out the iterations by hand. For the sake of simplicity, the iterates will
be listed as {x0, x1, x2, . . . , xn, . . .}. The solutions are as follows:

(I) μ = 1
2 :

(i) { 1
4 ,

1
8 ,

1
16 , . . . ,

1
4×2n , . . .};

(ii) { 1
2 ,

1
4 ,

1
8 , . . . ,

1
2n+1 , . . .};

(iii) { 3
4 ,

3
8 ,

3
16 , . . . ,

3
4×2n , . . .}.

In each case, xn → 0 as n → ∞.

(II) μ = 1:

(i) { 1
3 ,

1
3 ,

1
3 , . . . ,

1
3 , . . .};
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(ii) { 2
3 ,

1
3 ,

1
3 , . . . ,

1
3 , . . .}.

The orbits tend to points of period one in the range
[
0, 1

2

]
.

(III) μ = 3
2 :

(i) { 3
5 ,

3
5 ,

3
5 , . . . ,

3
5 , . . .};

(ii) { 6
13 ,

9
13 ,

6
13 ,

9
13 . . . ,

6
13 ,

9
13 , . . .};

(iii) { 1
3 ,

1
2 ,

3
4 ,

3
8 ,

9
16 ,

21
32 ,

33
64 ,

93
128 ,

105
256 ,

315
512 ,

591
1024 , . . .}.

In case (i), the iterate xn+1 is equal to xn for all n. This type of sequence
displays period-one behavior. In case (ii), the iterate xn+2 is equal to xn

for all n, and the result is period-two behavior. In case (iii), the first 11
iterates are listed but other methods need to be used in order to establish
the long-term behavior of the sequence.

(IV ) μ = 2:

(i) { 1
3 ,

2
3 ,

2
3 , . . . ,

2
3 , . . .};

(ii) { 1
5 ,

2
5 ,

4
5 ,

2
5 ,

4
5 . . . ,

2
5 ,

4
5 , . . .};

(iii) { 1
7 ,

2
7 ,

4
7 ,

6
7 ,

2
7 ,

4
7 ,

6
7 , . . . ,

2
7 ,

4
7 ,

6
7 , . . .};

(iv) { 1
11 ,

2
11 ,

4
11 ,

8
11 ,

6
11 ,

10
11 ,

2
11 , . . . ,

2
11 ,

4
11 ,

8
11 ,

6
11 ,

10
11 , . . .}.

The sequences behave as follows: (i) there is period-one behavior, (ii) there
is period-two behavior, (iii) there is a period-three sequence, and (iv) there
is a period-five sequence.

Example 2. Using the tent map defined by equation (14.1) when μ = 2,
compute the first 20 iterates for the following two initial conditions:

(i) x0 = 0.2;

(ii) x0 = 0.2001 = 0.2 + ε.

Solution. The iterates may be computed using Python. The first 20 iterates
for both initial conditions are listed side-by-side in Table 14.1.

The system clearly shows sensitivity to initial conditions for the param-
eter value μ = 2. Comparing the numerical values in the second and third
columns, it is not difficult to see that the sequences diverge markedly when
n > 9. This test for sensitivity to initial conditions gives researchers a sim-
ple tool to determine whether or not a system is chaotic. A more in-depth
description of chaos is given in Chapter 8.

The results of Examples 1 and 2 show that there is a rich variety of dynam-
ics which system (14.1) can display. Indeed, a now famous result due to Li
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and Yorke [17] states that if a system displays period-three behavior, then the
system can display periodic behavior of any period, and they go on to prove
that the system can display chaotic phenomena. Hence when μ = 2, system
(14.1) is chaotic since it has a period-three sequence (Example 1(IV)(iii)).

Table 14.1: The first 20 iterates for both initial conditions in Example 2.

n xn xn

0 x0 = 0.2 x0 = 0.2001
1 0.4 0.4002
2 0.8 0.8004
3 0.4 0.3992
4 0.8 0.7984
5 0.4 0.4032
6 0.8 0.8064
7 0.4 0.3872
8 0.8 0.7744
9 0.4 0.4512
10 0.8 0.9024
11 0.4 0.1952
12 0.8 0.3904
13 0.4 0.7808
14 0.8 0.4384
15 0.4 0.8768
16 0.8 0.2464
17 0.4 0.4928
18 0.8 0.9856
19 0.4 0.0288
20 0.8 0.0576

Unfortunately, numerical iterations do not always give a clear insight into
how the sequences develop as n gets large. Another popular method used
to display the sequence of iterations more clearly is the so-called graphical
method.

The Graphical Method. From an initial point x0, draw a vertical line up to
the function, in this case, T (x). From this point, draw a horizontal line either
left or right to join the diagonal y = x. The x-ordinate corresponds to the it-
erate x1 = T (x0). From the point (x1, T (x0)), draw a vertical line up or down
to join the function T (x). Draw a horizontal line from this point to the diag-
onal at the point (x2, T (x1)). The first two iterates are shown in Figure 14.2.

The iterative procedure may be summarized as a simple repeated two-step
algorithm.
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1. Draw a vertical line to the function (evaluation).

0 1
0

x0 x1 x2

T(x0)

T(x1)

Figure 14.2: A possible graphical iteration when n = 2.

2. Draw a horizontal line to the diagonal (feedback); go back to 1.

The algorithm generates successive iterates along the x-axis, corresponding
to the the sequence of points {x0, x1, x2, . . . , xn, . . .}.

To demonstrate the method, the numerical iterations carried out in Ex-
amples 1 and 2 will now be repeated using the graphical method.

Example 3. Iterate the tent function graphically for the following μ and x0

values:

(I) μ = 1
2 :

(i) x0 = 1
4 , (ii) x0 = 1

2 , (iii) x0 = 3
4 ;

(II) μ = 1 :

(i) x0 = 1
3 , (ii) x0 = 2

3 ;

(III) μ = 3
2 :

(i) x0 = 3
5 , (ii) x0 = 6

13 , (iii) x0 = 1
3 ;

(IV ) μ = 2 :

(i) x0 = 1
3 , (ii) x0 = 1

5 , (iii) x0 = 1
7 , (iv) x0 = 1

11 .
(V ) μ = 2 :

(i) x0 = 0.2, (ii) x0 = 0.2001.

Solution. Each of the diagrams (Figures 14.3–14.7) can be reproduced us-
ing Python. Most of the graphical iterations are self-explanatory; however,
Figures 14.5(c) and 14.7 warrant further explanation. When μ = 3

2 , the tent
map displays sensitivity to initial conditions and can be described as being
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chaotic. The iterative path plotted in Figure 14.5(c) appears to wander ran-
domly. It is still not clear whether the path is chaotic or whether the path
is periodic of a very high period. Figure 14.7 clearly shows the sensitivity
to initial conditions. Again, it is not clear in case (ii) whether the path is
chaotic or of a very high period.

What is clear from the diagrams is that the three basic properties of
chaos—mixing, periodicity, and sensitivity to initial conditions—are all ex-
hibited for certain parameter values.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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0.8
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

T

a b

c

Figure 14.3: Graphical iterations when μ = 1
2 : (a) x0 = 1

4 ; (b) x0 = 1
2 ; and

(c) x0 = 3
4 .

14.2 Fixed Points and Periodic Orbits

Consider the general map

xn+1 = f(xn). (14.2)
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Figure 14.4: Graphical iterations when μ = 1: (a) x0 = 1
3 and (b) x0 = 2

3 .
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Figure 14.5: Graphical iterations when μ = 3
2 : (a) x0 = 3

5 ; (b) x0 = 6
13 ; and

(c) x0 = 1
3 , for 200 iterations.
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Figure 14.6: Graphical iterations when μ = 2: (a) x0 = 1
3 ; (b) x0 = 1

5 ; (c)
x0 = 1

7 ; and (d) x0 = 1
11 .

Definition 1. A fixed point , or point of period one, of system (14.2) is a
point at which xn+1 = f(xn) = xn, for all n.

For the tent map, this implies that T (xn) = xn, for all n. Graphically,
the fixed points can be found by identifying intersections of the function T (x)
with the diagonal.

As with other dynamical systems, the fixed points of period one can be
attracting, repelling, or indifferent. The type of fixed point is determined
from the gradient of the tangent to the function, T (x) in this case, at the
fixed point. For straight line segments with equation y = mx + c, it can be
easily shown that if

• m < −1, the iterative path is repelled and spirals away from the fixed
point;

• −1 < m < 0, the iterative path is attracted and spirals into the fixed
point;



356 Chapter 14: c©Springer

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2
x

T(
x)

0.4 0.6 0.8 1.0

a b

Figure 14.7: [Python] Graphical iterations when μ = 2: (a) x0 = 1
5

(linewidth=2), and (b) x0 = 0.2001, for 100 iterations (linewidth=0.5).

• 0 < m < 1, the iterative path is attracted and staircases into the fixed
point;

• m > 1, the iterative path is repelled and staircases away from the
critical point.

When |m| = 1, the fixed point is neither repelling nor attracting and
m = 0 is a trivial case. A test for stability of fixed points for nonlinear
iterative maps will be given in Section 14.2.

Using Definition 1, it is possible to determine the fixed points of period
one for the tent map (14.1). If 0 < μ < 1, the only fixed point is at x = 0
(see Figure 14.8) and since the gradient at x = 0 is less than one, the fixed
point is stable. Note that the origin is called the trivial fixed point .

0 1
0

x

T

μ/2

Figure 14.8: The intersection T (x) = x when 0 < μ < 1.

When μ = 1, the branch μx of T (x) coincides with the diagonal and all
points lying in the interval 0 ≤ x ≤ 1/2 are of period one. Once the tent
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function crosses the diagonal the origin becomes unstable since the gradient
of the tent map at this point now exceeds one.

When 1 < μ ≤ 2, there are two fixed points of period one, x1,1 = 0 and
x1,2 = μ

1+μ (see Figure 14.9).

0 1
0

x

T
μ/2

Figure 14.9: The intersections T (x) = x when 1 < μ ≤ 2. There are two
intersections.

Notation. Throughout this text, the periodic point given by xi,j will de-
note the jth point of period i. This notation is useful when determining the
number of points of period i. For example, x1,1 and x1,2 above are the two
fixed points of period one.

The gradient of the function T (x) is greater than one at x1,1, so this point
is unstable; the gradient of T (x) at the point x1,2 is less than −1. Therefore,
this point is also unstable.

In summary, when 0 ≤ μ < 1, there is one stable period-one point at
x = 0; when μ = 1, there are an infinite number of period-one points in the
interval 0 ≤ x ≤ 1/2; and when 1 < μ ≤ 2, there are two unstable period-one
points at x1,1 and x1,2. The obvious question then is, where do the paths go
if not to these two points of period one? The answer to this question will be
given later (see Exercise 3 in Section 14.7).

Definition 2. For system (14.2), a fixed point of period N is a point at which
xn+N = fN (xn) = xn, for all n.

In order to determine the fixed points of period two for the tent map
it is necessary to find the points of intersection of T 2(x) with the diagonal.
Consider the case where μ = 2, the methods below can be applied for any
value of μ in the interval [0, 2].
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The function of the function T (T (x)) = T 2(x) is determined by replacing
x with T (x) in the mapping

T (x) =

{
2x 0 ≤ x < 1

2
2(1− x) 1

2 ≤ x ≤ 1.

Hence

T 2(x) =

{
2T (x) 0 ≤ T (x) < 1

2
2(1− T (x)) 1

2 ≤ T (x) ≤ 1.

The interval 0 ≤ T (x) < 1
2 on the vertical axis corresponds to two inter-

vals, namely, 0 ≤ x < T−1
(
1
2

)
and T−1

(
1
2

)
≤ x ≤ 1 on the horizontal axis.

When μ = 2, it is not difficult to show that T−1
(
1
2

)
= 1

4 or 3
4 , depending

on the branch of T (x). The process may be repeated for T (x) lying in the
interval

[
1
2 , 1

]
. Therefore, T 2(x) becomes

T 2(x) =

⎧⎪⎪⎨
⎪⎪⎩

4x 0 ≤ x < 1
4

2− 4x 1
4 ≤ x < 1

2
4x− 2 1

2 ≤ x < 3
4

4− 4x 3
4 ≤ x ≤ 1.

This function intersects the diagonal at four points corresponding to x =
0, 2/5, 2/3, and 4/5 as shown in Figure 14.10.

0 10

1

x

T
2

Figure 14.10: The graphs of T 2(x) and y = x when μ = 2.

The fixed points at x = 0 and x = 2/3 are of period one; therefore,
there are two points of period two given by x2,1 = 2

5 and x2,2 = 4
5 . Since

the gradient of |T 2(x)| is greater than one at these points, x2,1 and x2,2 are
unstable.

It is not difficult to show that there are no period-two points for 0 ≤ μ ≤ 1
and there are two points of period two for 1 < μ ≤ 2.
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To determine the fixed points of period three, it is necessary to find the
points of intersection of T 3(x) with the diagonal. Consider the case where
μ = 2. The methods below can be applied for any value of μ in the interval
[0, 2].

The function T (T (T (x))) = T 3(x) is determined by replacing x with T (x)
in the mapping for T 2(x). Hence

T 3(x) =

⎧⎪⎪⎨
⎪⎪⎩

4T (x) 0 ≤ T (x) < 1
4

2− 4T (x) 1
4 ≤ T (x) < 1

2
4T (x)− 2 1

2 ≤ T (x) < 3
4

4− 4T (x) 3
4 ≤ T (x) ≤ 1.

The interval 0 ≤ T (x) < 1
4 on the vertical axis corresponds to two inter-

vals, namely 0 ≤ x < T−1
(
1
4

)
and T−1

(
1
4

)
≤ x ≤ 1 on the horizontal axis.

When μ = 2, it is not difficult to show that T−1
(
1
4

)
= 1

8 or 7
8 , depending on

the branch of T (x). The process may be repeated for T (x) lying in the other
intervals. Therefore, T 3(x) becomes

T 3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8x 0 ≤ x < 1
8

2− 8x 1
8 ≤ x < 1

4
8x− 2 1

4 ≤ x < 3
8

4− 8x 3
8 ≤ x < 1

2
8x− 4 1

2 ≤ x < 5
8

6− 8x 5
8 ≤ x < 3

4
8x− 6 3

4 ≤ x < 7
8

8− 8x 7
8 ≤ x ≤ 1.

This function intersects the diagonal at eight points corresponding to
x = 0, 2

9 ,
2
7 ,

4
9 ,

4
7 ,

2
3 ,

6
7 , and

8
9 as shown in Figure 14.11. Note that points of

period two do not repeat on every third cycle and hence do not appear here.

0 10

1

x

T
3

Figure 14.11: The graphs of T 3(x) and y = x when μ = 2.
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The fixed points at x = 0 and x = 2/3 are of period one; therefore, there
are six points of period three given by x3,1 = 2

9 , x3,2 = 4
9 , x3,3 = 8

9 , x3,4 =
2
7 , x3,5 = 4

7 , and x3,6 = 6
7 . Since the gradient of |T 3(x)| is greater than one

at these points, all six points are unstable. Thus an initial point close to the
periodic orbit, but not on it, will move away and the orbits will diverge.

This process may be repeated to determine points of any period for the
tent map. Recall that the results due to Li and Yorke imply that the map
contains periodic points of all periods. It is therefore possible to find points
of period 10, 106, or even 10100, for example. There are also aperiodic (or
nonperiodic) orbits and the system is sensitive to initial conditions. Sim-
ilar phenomena are observed for three-dimensional autonomous systems in
Chapter 8, in fact, most of the dynamics exhibited there appear for this
much simpler system.

14.3 The Logistic Map, Bifurcation Diagram,
and Feigenbaum Number

In the early 1970s, May [13] and others began to investigate the equations
used by fish biologists and entomologists to model the fluctuations in certain
species. Simple population models have been discussed in other chapters
using continuous dynamical models but the analysis here will be restricted
to simple nonlinear discrete systems. Perhaps the most famous system used
to model a single species is that known as the logistic map given by

xn+1 = fμ(xn) = μxn(1− xn), (14.3)

where μ is a parameter and 0 ≤ xn ≤ 1 represents the scaled population
size. Consider the case where μ is related to the reproduction rate and xn

represents the population of blowflies at time n, which can be measured in
hours, days, weeks, months, etc. Blowflies have a relatively short lifespan
and are easy to monitor in the laboratory. Note that this model is extremely
simple but as with the tent map a rich variety of behavior is displayed as
the parameter μ is varied. We note that scientists would find it difficult
to change reproduction rates of individual flies directly; however, for many
species the reproduction rate depends on other factors such as temperature.
Hence imagine a tank containing a large number of blowflies. Experimentally,
we would like to observe how the population fluctuates, if at all, at different
temperatures. A population of zero would imply that the tank is empty and
a scaled population of one would indicate that the tank is full. The numbers
produced in this model would be rounded down to guarantee that fractions
would be ignored as in the continuous case.

It must be pointed out that this model does not take into account many
features which would influence a population in real applications. For example,
age classes, diseases, other species interactions, and environmental effects are
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all ignored. Even though many factors are left out of the equation, the
results show a wide range of dynamical behavior which has been observed
both experimentally and in the field.

Consider the logistic map fμ : [0, 1] → [0, 1] given by

xn+1 = fμ(xn),

where fμ(x) = μx(1 − x). The parameter μ lies in the interval [0, 4]. The
graph of fμ is given in Figure 14.12.

0 10
x

f μ

μ/4

Figure 14.12: A graph of the logistic map function.

As with the tent map, simple numerical and graphical iterations may
be carried out for varying values of the parameter μ. To avoid repetition,
these tasks will be left as exercises at the end of the chapter. Instead, the
analysis will be restricted to finding periodic points and plotting a bifurcation
diagram.

To find points of period one, it is necessary to solve the equation given by

fμ(x) = μx(1− x) = x,

which gives the points which satisfy the condition xn+1 = xn for all n. There
are two solutions given by x1,1 = 0 and x1,2 = 1 − 1

μ . The stability of the
critical points may be determined using the following theorem.

Theorem 1. Suppose that the map fμ(x) has a fixed point at x∗. Then the
fixed point is stable if ∣∣∣∣

d

dx
fμ(x

∗)

∣∣∣∣ < 1

and it is unstable if ∣∣∣∣
d

dx
fμ(x

∗)

∣∣∣∣ > 1.

Using Theorem 1,
∣∣∣dfμ(0)dx

∣∣∣ = μ. Thus the point x1,1 is stable for 0 < μ < 1

and unstable if μ > 1. Since
∣∣∣dfμ(x1,2)

dx

∣∣∣ = 2− μ, this fixed point is stable for

1 < μ < 3 and is unstable when μ < 1 or μ > 3.
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To find points of period two, it is necessary to solve the equation given
by

f2
μ(x) = μ(μx(1− x)(1− μx(1− x))) = x, (14.4)

which gives the points which satisfy the condition xn+2 = xn for all n. Two
solutions for equation (14.4) are known, namely x1,1 and x1,2, since points
of period one repeat on every second iterate. Therefore, equation (14.4)
factorizes as follows:

x

(
x−

(
1− 1

μ

))
(−μ3x2 + (μ2 + μ3)x− (μ2 + μ)) = 0.

The equation −μ3x2 + (μ2 + μ3)x− (μ2 + μ) = 0 has roots at

x2,1 =
μ+ 1 +

√
(μ− 3)(μ+ 1)

2μ
and x2,2 =

μ+ 1−
√

(μ− 3)(μ+ 1)

2μ
.

Thus there are two points of period two when μ > 3. Let b1 = 3 correspond
to the first bifurcation point for the logistic map. Now

d

dx
f2
μ(x2,1) = −4μ3x3 + 6μ3x2 − 2(μ2 + μ3)x+ μ2

and ∣∣∣∣
d

dx
f2
μ(x2,1)

∣∣∣∣ = 1,

when μ = b2 = 1 +
√
6. The value b2 corresponds to the second bifurcation

point for the logistic map. Hence x2,1 and x2,2 lose their stability at μ = b2
(check this using Python).

In summary, for 0 < μ < 1, the fixed point at x = 0 is stable and
iterative paths will be attracted to that point. Physically, this would mean
that the population of blowflies would die away to zero. One can think
of the temperature of the tank being too low to sustain life. As μ passes
through one, the trivial fixed point becomes unstable and the iterative paths
are attracted to the fixed point at x1,2 = 1 − 1

μ . For 1 < μ < b1, the fixed
point of period one is stable which means that the population stabilizes to
a constant value after a sufficiently long time. As μ passes through b1, the
fixed point of period one becomes unstable and a fixed point of period two is
created. For b1 < μ < b2, the population of blowflies will alternate between
two values on each iterative step after a sufficient amount of time. As μ
passes through b2, the fixed point of period two loses its stability and a fixed
point of period four is created.

As with other dynamical systems, all of the information gained so far can
be summarized on a bifurcation diagram. Figure 14.13 shows a bifurcation
diagram for the logistic map when 0 ≤ μ ≤ 3.5. The first two bifurcation
points are labeled b1 and b2.
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Figure 14.13: The first two bifurcations for the logistic map.

For other values of μ, it is interesting to plot time series data obtained
from the logistic map. Figure 14.14 shows iterative paths and time series data
when x0 = 0.2 (assuming the tank is initially, say, 1

5 full) for the following
four cases: (i) μ = 2, (ii) μ = 3.2, (iii) μ = 3.5, and (iv) μ = 4.

It is not too difficult to extend the diagram to cover the whole range
of values for μ, namely 0 ≤ μ ≤ 4. The bifurcation diagram given in Fig-
ure 14.15 was produced using Python. Thus even the simple quadratic func-
tion fμ(x) = μx(1 − x) exhibits an extraordinary variety of behaviors as
μ varies from one to four. In the past scientists believed that in order to
model complicated behavior one must have complicated or many equations.
One of the most exciting developments to emerge from the realm of nonlin-
ear dynamical systems was the realization that simple equations can lead to
extremely complex seemingly random behavior.

Figure 14.15 shows period-doubling bifurcations to chaos . This means
that as μ increases beyond b1, points of period one become period two; at b2
points of period two become period four, and so on. The sequence of period-
doublings ends at about μ = 3.569945 . . ., where the system becomes chaotic.
This is not the end of the story; however, Figure 14.16 clearly shows regions
where the system returns to periodic behavior, even if for only a small range
of μ values. These regions are called periodic windows .

Near to the period-three window, the logistic map can display a new
type of behavior known as intermittency , which is almost periodic behavior
interrupted by occasional chaotic bursts. A graphical iteration and time
series plot are shown in Figure 14.17. The intermittent nature becomes more
evident as more points are plotted.

The geometry underlying this behavior can be seen by plotting a graphical
iteration for f3

μ when μ = 3.8282, for example. This is left as an exercise for
the reader. As the parameter μ is increased, the length of the intervals
of chaotic bursts become larger and larger until the system becomes fully
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Figure 14.14: Iterative paths and time series data representing the population
of blowflies at time n. The population can vary periodically or in an erratic
unpredictable manner.
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Figure 14.15: [Python] The bifurcation diagram of the logistic map produced
using the first iterative method (see Chapter 16).
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Figure 14.16: [Python] A magnification of the bifurcation diagram for the
logistic map in the range 3.5 ≤ μ ≤ 4.

chaotic. This phenomenon is known as an intermittency route to chaos and
appears in many other physical examples.

An even more remarkable discovery was made by Mitchell J. Feigen-
baum in the mid-1970s and involves the concept of universality . The first
seven bifurcation points computed numerically are given by b1 = 3.0, b2 =
3.449490 . . . , b3 = 3.544090 . . . , b4 = 3.564407 . . . , b5 = 3.568759 . . . , b6 =
3.569692 . . ., and b7 = 3.569891 . . .. Feigenbaum discovered that if dk is de-
fined by dk = bk+1 − bk, then

δ = lim
k→∞

dk
dk+1

= 4.669202 . . . .

The number δ, known as the Feigenbaum constant , is much like the numbers
π and e in that it appears throughout the realms of science. The constant δ
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can be found, not only in iterative maps but also in certain differential equa-
tions and even in physical experiments exhibiting period-doubling cascades
to chaos. Hence the Feigenbaum constant is called a universal constant.

Figure 14.15 also has fractal structure, one may see similar patterns as
you zoom into the picture. Fractals will be discussed in detail in Chapter 17.
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Figure 14.17: (a) Iterative paths when μ = 3.8282 and x0 = 0.2. (b) Time
series data.

Another method often used to determine whether or not a system is
chaotic is to use the Lyapunov exponent . One of the properties of chaos
is the sensitivity to initial conditions. However, it is known that an orbit on
a chaotic attractor for a bounded system also returns to all accessible states
with equal probability. This property is known as ergodicity . Thus iterates
return infinitely closely, infinitely often to any previous point on the chaotic
attractor. The formula below may be applied to compute the Lyapunov ex-
ponent for iterates in the logistic map. It gives an indication as to whether
two orbits starting close together diverge or converge.

Definition 3. The Lyapunov exponent L computed using the derivative
method is defined by

L =
1

n

(
ln |f ′

μ(x1)|+ ln |f ′
μ(x2)|+ . . .+ ln |f ′

μ(xn)|
)
,

where f ′
μ represents differentiation with respect to x and x0, x1, x2, . . . , xn are

successive iterates. The Lyapunov exponent may be computed for a sample
of points near the attractor to obtain an average Lyapunov exponent .

Theorem 2. If at least one of the average Lyapunov exponents is positive,
then the system is chaotic; if the average Lyapunov exponent is negative,
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then the orbit is periodic and when the average Lyapunov exponent is zero, a
bifurcation occurs.

Table 14.2 lists Lyapunov exponents computed for the logistic map (14.3)
for several values of the parameter μ. Note that there are other methods
available for determining Lyapunov exponents (see Chapter 8).

Table 14.2: The Lyapunov exponents computed to 4 decimal places using the
first derivative method for the logistic map. A total of 50000 iterates was
used in each case.

μ 0.5 1 2.1 3 3.5 3.8282 4

Average L -0.6932 -0.0003 -2.3025 -0.0002 -0.8720 0.2632 0.6932

The numerical results agree quite well with Theorem 2. In fact, the more
chaotic a system the higher the value of the Lyapunov exponent, as can be
seen in Table 14.2. In order to find a better approximation of the Lyapunov
exponent a much larger number of iterates would be required.

A Python program is given in Section 14.6 for plotting Figure 14.18 show-
ing the Lyapunov exponents and a part of the bifurcation diagram for the
logistic map.

Figure 14.18: [Python] The Lyapunov exponent and bifurcation diagram for
the logistic map in the range 3 ≤ μ ≤ 4.
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Let us return briefly to the tent map (14.1). The Lyapunov exponent
of the tent map can be found exactly since T ′(x) = ±μ for all values of x.
Hence

L = lim
n→∞

(
1

n

n∑
i=1

ln |T ′(xi)|
)

= lnμ.

Problem. Show that for the logistic map with μ = 4, the Lyapunov exponent
is in fact L = ln(2).

14.4 Gaussian and Hénon Maps

The Gaussian Map. Another type of nonlinear one-dimensional iterative
map is the Gaussian map G : � → � defined by

G(x) = e−αx2

+ β,

where α and β are constants. The graph of the Gaussian function has a
general form as depicted in Figure 14.19. The parameters α and β are related
to the width and height of the Gaussian curve, respectively.

Figure 14.19: The Gaussian map function.

Define an iterative map by

xn+1 = G(xn).

Since there are two parameters associated with this map, one would expect
the dynamics to be more complicated than for the logistic map. All of the
features which appear in the logistic map are also present for the Gaussian
map. However, certain features of the latter map are not exhibited at all
by the logistic map. Some of these additional phenomena may be described
as period bubblings , period undoublings , and bistability . These features can
appear in the bifurcation diagrams.
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Simple numerical and graphical iterations may be carried out as for the
tent and logistic maps (see the exercises at the end of the chapter). The
fixed points of period one may be found by solving the iterative equation
xn+1 = xn for all n, which is equivalent to finding the intersection points
of the function G(x) with the diagonal. It is not difficult to see that there
can be one, two, or three intersections as shown in Figure 14.20. For cer-
tain parameter values it is possible to have two stable fixed points of period
one.

The Gaussian map has two points of inflection at x = ± 1√
2α

. This implies

that period-one behavior can exist for two ranges of the parameters. This in
turn means that a period-one point can make a transition from being stable
to unstable and back to stable again, as depicted in Figure 14.21.

a b

c

Figure 14.20: Possible intersections of the Gaussian function with the
diagonal.
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As the parameter β is increased from β = −1, a fixed point of period
one becomes unstable and a sequence of period bubbling occurs through
period-two, period-four, and back to period-two behavior. As the parameter
is increased still further, the unstable fixed point of period one becomes
stable again and a single branch appears once more. For higher values of the
parameter α, the system can display more complex dynamics. An example
is shown in Figure 14.22.

Figure 14.22 displays period-doubling and period-undoubling bifurcations
and multistability. For example, when β = −1, there are two possible steady-
state solutions. It is possible for these systems to display bistable phenomena
as explained in other chapters of the book. The tent and logistic maps cannot
display bistability.

The Hénon Map. Consider the two-dimensional iterated map function
given by

xn+1 = 1 + yn − αx2
n

yn+1 = βxn, (14.5)

Figure 14.21: A bifurcation diagram for the Gaussian map when α = 4
produced using the first iterative method.
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Figure 14.22: Bifurcation diagrams for the Gaussian map when α = 8 pro-
duced using the first iterative method. In (a) x0 = 0 and (b) x0 = −1 for
each value of β.

where α > 0 and |β| < 1. The map was first discussed by Hénon [6] in 1976
who used it as a simple model for the Poincaré map of the Lorenz system. The
Hénon map displays periodicity, mixing, and sensitivity to initial conditions.
The system can also display hysteresis and bistability can be observed in the
bifurcation diagrams. Each of these phenomena will now be discussed briefly
in turn.

Suppose that the discrete nonlinear system

xn+1 = P (xn, yn), yn+1 = Q(xn, yn),

has a fixed point at (x1, y1), where P and Q are at least quadratic in xn

and yn. The fixed point can be transformed to the origin and the nonlinear
terms can be discarded after taking a Taylor series expansion. The Jacobian
matrix is given by

J(x1, y1) =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)∣∣∣∣∣
(x1,y1)

Definition 4. Suppose that the Jacobian has eigenvalues λ1 and λ2. A fixed
point is called hyperbolic if both |λ1| �= 1 and |λ2| �= 1. If either |λ1| = 1 or
|λ2| = 1, then the fixed point is called nonhyperbolic.

The type of fixed point is determined using arguments similar to those
used in Chapter 3. In the discrete case, the fixed point is stable as long as
|λ1| < 1 and |λ2| < 1, otherwise the fixed point is unstable. For example,
the fixed points of period one for the Hénon map can be found by solving
the equations given by xn+1 = xn and yn+1 = yn simultaneously. Therefore,
period-one points satisfy the equations

x = 1− αx2 + y, y = βx.
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The solutions are given by

x =
(β − 1)±

√
(1− β)2 + 4α

2α
, y = β

(
(β − 1)±

√
(1− β)2 + 4α

2α

)
.

Thus the Hénon map has two fixed points of period one if and only if (1 −
β)2 + 4α > 0. As a particular example, consider system (14.5) with α = 3

16
and β = 1

2 . There are two fixed points of period one given by A = (−4,−2)
and B =

(
4
3 ,

2
3

)
. The Jacobian is given by

J =

(
−2αx 1
β 0

)
.

The eigenvalues for the fixed point A are λ1 ≈ −0.28 and λ2 ≈ 1.78; therefore,
A is a saddle point. The eigenvalues for the fixed point B are λ1 = −1 and
λ2 = 0.5. Thus this critical point is nonhyperbolic.

Fix the parameter β = 0.4 in the Hénon map (14.5). There are points of
periods one (when α = 0.2), two (when α = 0.5), and four (when α = 0.9),
for example. The reader can verify these results using the Python program
in Section 14.6. Some iterative plots are given in Figure 14.23.

The choice of initial conditions is important in these cases as some orbits
are unbounded and move off to infinity. One must start with points that are
within the basin of attraction for this map. Basins of attraction are discussed
in other chapters of this book. Of course, all of this information can be
summarized on a bifurcation diagram, and this will be left as an exercise
for the reader. There are the usual phenomena associated with bifurcation
diagrams. However, for the Hénon map, different chaotic attractors can exist
simultaneously for a range of parameter values of α. This system also displays
hysteresis for certain parameter values.

a b

Figure 14.23: [Python] Iterative plots for system (14.5) when β = 0.4 and
(a) α = 1 and (b) α = 1.2. In each case the initial point was (0.1, 0).
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To demonstrate the stretching and folding associated with this map, con-
sider a set of initial points lying on the square of length two centered at
the origin. Figure 14.24 shows how the square is stretched and folded after
only two iterations. This stretching and folding are reminiscent of the Smale
horseshoe discussed in Chapter 9.

The chaotic attractor formed is an invariant set and has fractal structure.
Note that det(J) for the Hénon map is equal to |β|. This implies that a small
area is reduced by a factor of β on each iteration since |β| < 1.

14.5 Applications

This section introduces four discrete dynamical systems taken from biology,
economics, nonlinear optics, and neural networks. The reader can investigate
these systems via the exercises in Section 14.7.
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Figure 14.24: Application of the Hénon transformation to a square when
α = 1.2 and β = 0.4: (a) initial points, (b) first iterates, and (c) second
iterates.



374 Chapter 14: c©Springer

Biology. The average human 70 liter body contains five liters of blood, a
small amount of which consists of erythrocytes or red blood cells. These cells,
which are structurally the simplest in the body, can be counted to measure
hematologic conditions such as anemia. Anemia is any condition resulting
in a significant decrease in total body erythrocyte mass. The population of
red blood cells oscillates in a healthy human with the average woman having
4.2-5.4 per μL, and the average man having 4.7-6.1 per μL. A simple blood
cell population model was investigated by Lasota [9] in 1977. Let cn denote
the red cell count per unit volume in the nth time interval, then

cn+1 = cn − dn + pn,

where dn and pn are the number of cells destroyed and produced in one
time interval, respectively. In the model considered by Lasota dn = acn and
pn = bcrne

−scn , where 0 < a ≤ 1 and b, r, s > 0. Hence

cn+1 = (1− a)cn + bcrne
−scn . (14.6)

Typical parameters used in the model are b = 1.1 × 106, r = 8, and s = 16.
Clinical examples are cited in the author’s paper [11], where a model is in-
vestigated in which production and destruction rates vary.

Economics. The Gross National Product (GNP) measures economic activ-
ity based on labor and production output within a country. Consider the
following simple growth model investigated by Day [3] in 1982:

kt+1 =
s(kt)f(kt)

1 + λ
,

where kt is the capital-labor ratio, s is the savings ratio function, f is the per
capita production function, and λ is the natural rate of population growth.
In one case considered by Day,

s(k) = σ, f(k) =
Bkβ(m− k)γ

(1 + λ)
,

where β, γ,m > 0. This leads to the following discrete dynamical system:

kt+1 = σ
Bkβt (m− kt)

γ

(1 + λ)
, (14.7)

which can be thought of as a highly simplified model for the GNP of a country.

Nonlinear Optics. When modeling the intracavity field of a laser in a
bulk cavity ring under the assumption that saturable absorption can be ig-
nored, Hammel, Jones, and Moloney [5] obtained the following complex one-
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dimensional difference equation relating the field amplitude, say, En+1, at
the (n+ 1)st cavity pass to that of a round trip earlier:

En+1 = A+BEn exp

[
i

(
φ− C

1 + |En|2
)]

, (14.8)

where φ is a phase angle, and A, B, C are all constant. This mapping can
also be thought of as two dimensional (one-dimensional complex). Splitting
En into its real and imaginary parts, equation (14.8) becomes

xn+1 = A+B [xn cos(θ)− yn sin(θ)]

yn+1 = B [xn sin(θ) + yn cos(θ)] , (14.9)

where θ =
(
φ− C

1+|En|2
)
. Equations (14.8) and (14.9) are known as Ikeda

mappings. Electromagnetic waves and optical resonators are dealt with in
some detail in Chapter 16.

Neural Networks. According to Pasemann and Stollenwerk [15], the ac-
tivity of a recurrent two-neuron module shown in Figure 14.25 at time n is
given by the vector xn = (xn, yn)

T . The discrete dynamical system used to
model the neuromodule is given by

xn+1 = θ1 + w11σ(xn) + w12σ(yn)

yn+1 = θ2 + w21σ(xn), (14.10)

yxw11

w21

w12

Figure 14.25: A recurrent two-neuron module with an excitory neuron with
activity yn, and a self-connected inhibitory neuron with activity xn.

where σ defines the sigmoidal transfer function defining the output of a neu-
ron

σ(x) =
1

1 + e−x
;

θ1 and θ2 are the neuron biases; the wij are weights; the index i indicates the
neuron destination for that weight; and the index j represents the source of
the signal fed to the neuron. The author and Bandar [12] consider a simple
neuromodule subject to feedback. Neural networks are dealt with in some
detail in Chapter 20.
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14.6 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

Rational(1,2) # Symbolic 1/2.

# Program_14a: Graphical iteration of the tent map.

# See Figure 14.7(a).

from sympy import Rational

import numpy as np

import matplotlib.pyplot as plt

x = Rational(1, 5) # Initial value

inputs = np.array([])

outputs = np.array([])

inputs = np.append(inputs, x)

outputs = np.append(outputs, 0)

print(x)

for i in range(2, 10):

inputs = np.append(inputs, x)

inputs = np.append(inputs, x)

outputs = np.append(outputs, x)

if x < Rational(1, 2):

x = 2 * x

elif x > Rational(1, 2):

x = 2 - 2 * x

outputs = np.append(outputs, x)

print(x)

plt.plot(inputs, outputs, lw=2)

# Plot the tent function and line y=x.

X1 = np.linspace(0, 0.5, 100, endpoint=True)

X2 = np.linspace(0.5, 1, 100, endpoint=True)

X = np.linspace(0, 1, 200, endpoint=True)

plt.plot(X1, 2*X1, ’k-’)

plt.plot(X2, 2*(1-X2), ’k-’)

plt.plot(X, X, ’r-’)

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’T(x)’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()
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# Program 14b: Bifurcation diagram of the logistic map.

# See Figures 14.15 and 14.16.

import numpy as np

import matplotlib.pyplot as plt

def f(x, r):

return r * x * (1 - x)

if __name__ == ’__main__’:

ys = []

rs = np.linspace(0, 4, 2000)

#rs = np.linspace(3.5, 4, 2000) # For Figure 14.16.

for r in rs:

x = 0.1

for i in range(500):

x = f(x, r)

for i in range(50):

x = f(x, r)

ys.append([r, x])

ys = np.array(ys)

plt.plot(ys[:, 0],ys[:, 1], ’r.’, markersize=0.05)

plt.xlabel(’$\mu$’, fontsize=15)

plt.ylabel(’x’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 14c: Lyapunov exponents of the logistic map.

# See Figure 14.18.

import numpy as np

import matplotlib.pyplot as plt

Numpoints = 16000;

result = []

lambdas = []

maps = []

xmin, xmax = 3, 4

mult=(xmax-xmin)*num_points

mu_values = np.arange(xmin, xmax, 20/num_points)

for r in mu_values:

x = 0.1

result = []



378 Chapter 14: c©Springer

for t in range(100):

x = r * x * (1 - x)

result.append(np.log(abs(r - 2*r*x)))

lambdas.append(np.mean(result))

# Ignore first 100 iterates.

for t in range(20):

x = r * x * (1 - x)

maps.append(x)

fig = plt.figure(figsize=(10, 7))

ax1 = fig.add_subplot(1,1,1)

xticks = np.linspace(xmin, xmax, mult)

zero = [0] * mult

ax1.plot(xticks, zero, ’k-’, linewidth=3)

ax1.plot(xticks, maps, ’r.’, alpha = 0.3, label=’Logistic map’)

ax1.set_xlabel(’r’)

ax1.plot(muvalues, lambdas, ’b-’, linewidth=1,

label=’Lyapunov exponent’)

ax1.grid(’on’)

ax1.set_ylim(-1, 1)

ax1.set_xlabel(’$\mu$’, fontsize=15)

ax1.legend(loc=’best’)

ax1.set_title(’Logistic map versus Lyapunov exponent’, fontsize=15)

plt.show()

# Program 14d: Iteration of the Henon Map.

# See Figure 14.23.

import matplotlib.pyplot as plt

# Parameters

a=1.2 # Set a=1 to get Figure 14.23(a).

b=0.4

num_iterations=10000

def henon(X):

x, y = X

xn = 1 - a * x * x + y

yn = b * x

return xn, yn

# Ignore the first 100 iterates.

X0 = [(1 - b)/2, (1 - b)/2]

X, Y=[], []

for i in range(100):

xn, yn = henon(X0)

X, Y = X + [xn], Y + [yn]
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X0 = [xn, yn]

X, Y = [], []

for i in range(num_iterations):

xn, yn = henon(X0)

X, Y = X + [xn], Y + [yn]

X0 = [xn, yn]

fig, ax = plt.subplots(figsize = (8, 8))

ax.scatter(X, Y, color = ’blue’, s = 0.1)

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 14e: Lyapunov exponents of the Henon map.

# See Exercise 8(c).

import numpy as np

a = 1.2

b = 0.4

x = y = 0

vec1 = [1, 0]

vec2 = [0, 1]

for i in range(490):

xn = 1 - a*x*x + y

yn = b*x

x = xn

y = yn

J = np.array([[-2*a*x, 1], [b, 0]])

vec1 = J.dot(vec1)

vec2 = J.dot(vec2)

dotprod1 = np.dot(vec1, vec1)

dotprod2 = np.dot(vec1, vec2)

vec2 = vec2 - np.multiply((dotprod2/dotprod1), vec1)

lengthv1 = np.sqrt(dotprod1)

area = np.multiply(vec1[0], vec2[1]) - np.multiply(vec1[1],

vec2[0])

h1 = np.log(lengthv1)/i

h2 = np.log(area)/i-h1

print(’h_1 = {}’.format(h1))

print(’h_2 = {}’.format(h2))

h1 = 0.33916, h2 = −1.25654
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14.7 Exercises

1. Consider the tent map defined by

T (x) =

{
2x 0 ≤ x < 1

2
2(1− x) 1

2 ≤ x ≤ 1.

Sketch graphical iterations for the initial conditions (i) x0 = 1
4 , (ii)

x0 = 1
6 , (iii) x0 = 5

7 , and (iv) x0 = 1
19 . Find the points of periods

one, two, three, and four. Give a formula for the number of points of
period N .

2. (a) Let T be the function T : [0, 1] → [0, 1] defined by

T (x) =

{
3
2x 0 ≤ x < 1

2
3
2 (1− x) 1

2 ≤ x ≤ 1.

Sketch the graphs of T (x), T 2(x), and T 3(x). How many points
are there of periods one, two, and three, respectively?

(b) Let T be the function T : [0, 1] → [0, 1] defined by

T (x) =

{
9
5x 0 ≤ x < 1

2
9
5 (1− x) 1

2 ≤ x ≤ 1.

Determine the fixed points of periods one, two, and three.

3. By editing the Python program given in Section 14.6, plot a bifurcation
diagram for the tent map.

4. Consider the logistic map function defined by fμ(x) = μx(1−x). Deter-
mine the functions fμ(x), f

2
μ(x), f

3
μ(x), and f4

μ(x), and plot the graphs
when μ = 4.0. How many points are there of periods one, two, three,
and four?

5. Consider the iterative equation

xn+1 = μxn(100− xn),

which may be used to model the population of a certain species of
insect. Given that the population size periodically alternates between
two distinct values, determine a value of μ that would be consistent
with this behavior. Determine an equation that gives the points of
period two for a general μ value.
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6. Plot bifurcation diagrams for

(a) the Gaussian map when α = 20 for −1 ≤ β ≤ 1;

(b) the Gaussian map when β = −0.5 for 0 ≤ α ≤ 20.

7. Find the fixed points of periods one and two for the Hénon map given
by

xn+1 =
3

50
+

9

10
yn − x2

n, yn+1 = xn.

Derive the inverse map.

8. (a) Show that the Hénon map given by

xn+1 = 1− αx2
n + yn, yn+1 = βxn,

where α > 0 and |β| < 1 undergoes a bifurcation from period-one

to period-two behavior exactly when α = 3(β−1)2

4 for fixed β.

(b) Investigate the bifurcation diagrams for the Hénon map by plot-
ting the xn values as a function of α for β = 0.4.

(c) Derive the Lyapunov exponents of the Hénon map when α = 1.2
and β = 0.4.

9. (a) Consider the blood-cell iterative equation (14.6). Assuming that
b = 1.1×106, r = 8, and s = 16, show that there are (i) two stable
and one unstable fixed points of period one when a = 0.2, and
(ii) two unstable and one stable fixed point of period one when
a = 0.3.

(b) Assume that σ = 0.5, β = 0.3, γ = 0.2, λ = 0.2, m = 1 in the
economic model (14.7). Show that there is a stable fixed point of
period one at x1,2 = 0.263 when B = 1, and an unstable fixed
point of period one at x1,2 = 0.873 when B = 3.3.

(c) Show that the inverse map of equation (14.8) is given by

En+1 =
(En −A)

B
exp

[
−i

(
φ− CB2

(B2 + |En −A|2)

)]
.

(d) Consider the neuromodule model (14.10). Assume that θ1 = −2,
θ2 = 3, w11 = −20, w12 = 6, and w21 = −6. Show that there
is one fixed point of period one approximately at (−1.280, 1.695),
and that it is a saddle point.
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10. According to Ahmed et al. [1], an inflation-unemployment model is
given by

Un+1 = Un−b(m−In), In+1 = In−(1−c)f(Un)+f(Un−b(m−In)),

where f(U) = β1 + β2e
−U , Un and In are measures of unemployment

and inflation at time n, respectively, and b, c, β1 and β2 are constants.
Show that the system has a unique fixed point of period one at

(
ln

(
−β2

β1

)
,m

)
.

Given that m = 2, β1 = −2.5, β2 = 20, and c = 0.18, show that the
eigenvalues of the Jacobian matrix are given by

λ1,2 = 1− 5b

4
±

√
25b2 − 40bc

4
.
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Chapter 15

Complex Iterative Maps

Aims and Objectives

• To introduce simple complex iterative maps.

• To introduce Julia sets, the Mandelbrot set, and Newton fractals.

• To carry out some analysis on these sets.

On completion of this chapter, the reader should be able to

• carry out simple complex iterations;

• plot Julia sets, the Mandelbrot set, and Newton fractals using simple
Python programs;

• determine boundaries of points with low periods;

• find basins of attraction (or domains of stability).

It is assumed that the reader is familiar with complex numbers and the
Argand diagram. Julia sets are defined, and Python is used to plot approxi-
mations of these sets.

There are an infinite number of Julia sets associated with one mapping.
In one particular case, these sets are categorized by plotting a so-called Man-
delbrot set. A Python program for plotting a color version of the Mandelbrot
set is listed.

Newton fractals are defined and a simple Python program for plotting
these is listed.

Applications of complex iterative maps to the real world are presented in
Chapter 16 and generalizations of Julia and Mandelbrot sets are discussed in
[4].
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15.1 Julia Sets and the Mandelbrot Set

As a simple introduction to one-dimensional nonlinear complex iterative
maps, consider the quadratic map

zn+1 = fc(zn) = z2n + c, (15.1)

where zn and c are complex numbers. Although equation (15.1) is as simple
as the equation of a real circle, the dynamics displayed are highly compli-
cated. In 1919, Gaston Julia published a prize-winning lengthy article on
certain types of conformal complex mappings, the images of which would not
appear until the advent of computer graphics many years later. Recall that
a conformal mapping preserves both the size and the sign of angles.

Definition 1. Consider a complex polynomial mapping of the form zn+1 =
f(zn). The points that lie on the boundary between points that orbit under
f and are bounded and those that orbit under f and are unbounded are
collectively referred to as the Julia set .

The following properties of a Julia set, say, J , are well known:

• The set J is a repellor.

• The set J is invariant.

• An orbit on J is either periodic or chaotic.

• All unstable periodic points are on J .

• The set J is either wholly connected or wholly disconnected.

• The set J nearly always has fractal structure (see Chapter 17).

As a gentle introduction to Julia sets and the Mandelbrot set the reader
is directed to the book entitled “Fractals for the Classroom” [22], and to see
the true beauty and some detail of the Julia sets and the Mandelbrot set, the
author would encourage the reader to watch the video [23]. There are also
numerous videos on YouTube, where the viewer can take a virtual journey
into the Mandelbrot set.

To generate Julia sets, some of the properties listed above are utilized.
For example, if the set J is a repellor under the forward iterative map (15.1),
then the Julia set will become an attractor under an inverse mapping. For
computational reasons, it is best to work with the real and imaginary parts
of the complex numbers separately. For equation (15.1) it is not difficult to
determine the inverse map. Now

zn+1 = z2n + c,
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and thus

xn+1 = x2
n − y2n + a, and yn+1 = 2xnyn + b,

where zn = xn + iyn and c = a+ ib. To find the inverse map, one must find
expressions for xn and yn in terms of xn+1 and yn+1. Now

x2
n − y2n = xn+1 − a,

and note that

(x2
n + y2n)

2 = (x2
n − y2n)

2 + 4x2
ny

2
n = (xn+1 − a)2 + (yn+1 − b)2.

Hence

x2
n + y2n = +

√
(xn+1 − a)2 + (yn+1 − b)2,

since x2
n + y2n > 0. Suppose that

u =

√
(xn+1 − a)2 + (yn+1 − b)2

2
, and v =

xn+1 − a

2
.

Then

xn = ±
√
u+ v and yn =

yn+1 − b

2xn
. (15.2)

In terms of the computation, there will be a problem if xn = 0. To
overcome this difficulty, the following simple algorithm is applied. Suppose
that the two roots of equation (15.2) are given by x1 + iy1 and x2 + iy2. If
x1 =

√
u+ v, then y1 =

√
u− v if y > b, or y1 = −

√
u− v if y < b. The

other root is then given by x2 = −
√
u+ v and y2 = −y1.

This transformation has a two-valued inverse, and twice as many predeces-
sors are generated on each iteration. One of these points is chosen randomly
in the computer program. Recall that all unstable periodic points are on J .
It is not difficult to determine the fixed points of period one for mapping
(15.1). Suppose that z is a fixed point of period one. Then zn+1 = zn = z,
and

z2 − z + c = 0,

which gives two solutions, either

z1,1 =
1 +

√
1− 4c

2
or z1,2 =

1−
√
1− 4c

2
.
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The stability of these fixed points can be determined in the usual way. Hence
the fixed point is stable if

∣∣∣∣
dfc
dz

∣∣∣∣ < 1

and it is unstable if

∣∣∣∣
dfc
dz

∣∣∣∣ > 1.

By selecting an unstable fixed point of period one as an initial point, it is
possible to generate a Julia set using a so-called backward training iterative
process .

Julia sets define the border between bounded and unbounded orbits. Sup-
pose that the Julia set associated with the point c = a + ib is denoted by
J(a, b). As a simple example, consider the mapping

zn+1 = z2n. (15.3)

One of two fixed points of equation (15.3) lies at the origin, say, z∗. There is
also a fixed point at z = 1. Initial points that start wholly inside the circle
of radius one are attracted to z∗. An initial point starting on |z| = 1 will
generate points that again lie on the unit circle |z| = 1. Initial points starting
outside the unit circle will be repelled to infinity, since |z| > 1. Therefore, the
circle |z| = 1 defines the Julia set J(0, 0) that is a repellor (points starting
near to but not on the circle are repelled), invariant (orbits that start on the
circle are mapped to other points on the unit circle), and wholly connected.
The interior of the unit circle defines the basin of attraction (or domain
of stability) for the fixed point at z∗. In other words, any point starting
inside the unit circle is attracted to z∗. Suppose that c = −0.5 + 0.3i, in
equation (15.1). Figure 15.1(a) shows a picture of the Julia set J(−0.5, 0.3)
containing 216 points. The Julia set J(−0.5, 0.3) defines the border between
bounded and unbounded orbits. For example, an orbit starting inside the
set J(−0.5, 0.3) at z0 = 0 + 0i remains bounded, whereas an orbit starting
outside the set J(−0.5, 0.3) at z = −1 − i, for instance, is unbounded. The
reader will be asked to demonstrate this in the exercises at the end of the
chapter.

Four of an infinite number of Julia sets are plotted in Figure 15.1. The first
three are totally connected, but J(0, 1.1) is totally disconnected. A Python
program for plotting Julia sets is listed in Section 15.4. Note that there may
be regions where the Julia set is sparsely populated (see Figure 15.1(c)). You
can of course increase the number of iterations to try to close these gaps, but
other improved methods are available.
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Figure 15.1: [Python] Four Julia sets for the mapping (15.1), where J(a, b)
denotes the Julia set associated with the point c = a + ib: (a) J(−0.5, 0.3),
(b) J(0, 1), (c) J(−1, 0), and (d) J(0, 1.1).

Color maps may also be used to plot colorful Julia sets like those plotted
in Figure 15.2. The Python program for plotting these colorful Julia sets is
listed in Section 15.4.

In 1979, Mandelbrot devised a way of distinguishing those Julia sets that
are wholly connected from those that are wholly disconnected. He used
the fact that J(a, b) is connected if and only if the orbit generated by z →
z2 + c is bounded. In this way, it is not difficult to generate the now famous
Mandelbrot set.

Assign a point on a computer screen to a coordinate position c = (a, b), in
the Argand plane. The point z = 0 + 0i is then iterated under the mapping
(15.1) to give an orbit

0 + 0i, c, c2 + c, (c2 + c)2 + c, . . . .
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Figure 15.2: [Python] Six colormap Julia sets for mapping (15.1),
where J(a, b) denotes the Julia set associated with the point c = a +
ib: (a) J(−0.5, 0.3), (b) J(0, 1.000001), (c) J(−1, 0), (d) J(0, 1.1),(e)
J(−0.123, 0.745), and (f) J(−0.1, 0.65).

If after 50 iterations, the orbit remains bounded (within a circle of radius 4 in
the program used here), then the point is colored yellow. If the orbit leaves
the circle of radius 4 after m iterations, where 1 < m < 50, then the point is
given a shaded color. A Python program that gives Figure 15.3 is listed in
Section 15.4.
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Figure 15.3: [Python] The color Mandelbrot set (central yellow figure) pro-
duced using a personal computer.

Unfortunately, Figure 15.3 does no justice to the beauty and intricacy of
the Mandelbrot set. This figure is a theoretical object that can be generated
to an infinite amount of detail, and the set is a kind of fractal displaying self-
similarity in certain parts and scaling behavior. One has to try to imagine
a whole new universe that can be seen by zooming into the picture. For a
video journey into the Mandelbrot set, the reader is once more directed to
the video [23] and YouTube. In 2018, the current record for an animated
zoom consisted of 750 million iterations. The reader can edit Programs 15c
listed in Section 15.4 to produce their own zoom-in figures.

It has been found that this remarkable figure is a universal “constant”
much like the Feigenbaum number introduced in Chapter 14. Some simple
properties of the Mandelbrot set will be investigated in the next section.

15.2 Boundaries of Periodic Orbits

For the Mandelbrot set, the fixed points of period one may be found by
solving the equation zn+1 = zn for all n, or equivalently,

fc(z) = z2 + c = z,
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which is a quadratic equation of the form

z2 − z + c = 0. (15.4)

The solutions occur at

z1,1 =
1 +

√
1− 4c

2
and z1,2 =

1−
√
1− 4c

2
,

where z1,1 is the first fixed point of period one and z1,2 is the second fixed
point of period one using the notation introduced in Chapter 14. As with
other discrete systems, the stability of each period-one point is determined
from the derivative of the map at the point. Now

dfc
dz

= 2z = reiθ, (15.5)

where r ≥ 0 and 0 ≤ θ < 2π. Substituting from equation (15.5), equation
(15.4) then becomes

(
reiθ

2

)2

− reiθ

2
+ c = 0.

The solution for c is

c =
reiθ

2
− r2ei2θ

4
. (15.6)

One of the fixed points, say, z1,1, is stable as long as

∣∣∣∣
dfc
dz

(z1,1)

∣∣∣∣ < 1.

Therefore, using equation (15.5), the boundary of the points of period one is
given by

∣∣∣∣
dfc
dz

(z1,1)

∣∣∣∣ = |2z1,1| = r = 1

in this particular case. Let c = x + iy. Then from equation (15.6), the
boundary is given by the following parametric equations:

x =
1

2
cos θ − 1

4
cos(2θ), y =

1

2
sin θ − 1

4
sin(2θ).
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−1 −0.5 0 0.5

−0.5

0

0.5

Re z

Im
 z Period one

Figure 15.4: The boundary of fixed points of period one for the Mandelbrot
set.

The parametric curve is plotted in Figure 15.4 and forms a cardioid that lies
at the heart of the Mandelbrot set.

Using similar arguments to those above, it is not difficult to extend the
analysis to determine the boundary for the fixed points of period two. Fixed
points of period two satisfy the equation zn+2 = zn for all n. Therefore,

f2
c (z) = (z2 + c)2 + c = z,

or, equivalently,

z4 + 2cz2 − z + c2 + c = 0. (15.7)

However, since points of period one repeat on every second iterate, the points
z1,1 and z1,2 satisfy equation (15.7). Therefore, equation (15.7) factorizes into

(z2 − z + c)(z2 + z + c+ 1) = 0.

Hence the fixed points of period two satisfy the quadratic equation

z2 + z + c+ 1 = 0, (15.8)

which has roots at

z2,1 =
−1 +

√
−3− 4c

2
and z2,2 =

−1−
√
−3− 4c

2
.

Once more the stability of each critical point is determined from the derivative
of the map at the point, now

df2
c

dz
= 4z3 + 4cz = 4z(z2 + c).
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−1 −0.5 0

−0.5

0

0.5

Re z

Im
 z Period onePeriod

two

Figure 15.5: The boundary of fixed points of periods one and two for the
Mandelbrot set.

Thus, ∣∣∣∣
df2

c

dz
(z2,1)

∣∣∣∣ = |4 + 4c|,

and the boundary is given by

|c+ 1| = 1

4
.

The parametric curve is plotted in Figure 15.5 and forms a circle centered at
(−1, 0) of radius 1/4 in the Argand plane. This circle forms the “head” of
the Mandelbrot set, sometimes referred to as the potato man.

Figure 15.6: The Mandelbrot set for the mapping zn+1 = z2n − 2zn + c.
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The Mandelbrot set for the nonlinear complex iterative map zn+1 = z2n−
2zn + c is plotted in Figure 15.6.

15.3 The Newton Fractal

It is well known that in numerical analysis [5], Newton’s method, or the
Newton-Raphson method can be used to find the roots of the equation f(z) =
0 using the iterative formula

zn+1 = zn − f (zn)

f ′ (zn)
.

Definition 2. A Newton fractal is the Julia set of the meromorphic function
zn+1 = f (zn), and shows that the numerical method can be very sensitive
to its choice of initial starting point.

A Julia set for the rational function associated with Newton’s method for
the function f(z) = z3 − 1 is plotted in Figure 15.7. The boundary between
the different basins of attraction form a Julia set. Fractals are discussed in
more detail in Chapter 17.

Figure 15.7: [Python] Julia set for the rational function associated with New-
ton’s method for the complex function f(z) = z3 − 1.
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Note that other fractals may be constructed using different numerical
techniques such as the Halley, Householder, Secant, and Schröder methods
[10].

Mandelbrot and Hudson [6] provide a fractal view of the stockmarkets,
and Chapter 16 illustrates how nonlinear complex iterative maps are being
applied in physical applications when modeling lasers and the propagation of
light through optical fibers.

15.4 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

cmap # Color map.

complex(x,y) # The complex number x+iy.

im # Imaginary part of complex number.

re # Real part of complex number.

# Program 15a: Plot points for the Julia set.

# See Figure 15.1.

from matplotlib import pyplot as plt

import random

from sympy import sqrt, re, im, I

# Parameters

a, b = 0, 1.1 # To plot J(a,b).

k=15

Num_iterations = 2**k

def julia(X):

x, y = X

x1, y1 = x, y

u = sqrt((x1-a)**2 + (y1-b)**2) / 2

v = (x-a) / 2

u1 = sqrt(u + v)

v1 = sqrt(u - v)

xn, yn = u1, v1

if y1<b:

yn = -yn

if random.random() < 0.5:
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xn, yn = -u1, -yn

return (xn, yn)

x1 = (re(0.5 + sqrt(0.25 - (a + b*I)))).expand(complex=True)

y1 = (im(0.5 + sqrt(0.25 - (a + b*I)))).expand(complex=True)

is_unstable = 2 * abs(x1 + y1*I)

print(is_unstable)

X0 = [x1, y1]

X, Y = [], []

for i in range(num_iterations):

xn, yn = julia(X0)

X, Y = X + [xn], Y + [yn]

X0 = [xn, yn]

fig, ax = plt.subplots(figsize=(8, 8))

ax.scatter(X, Y, color=’blue’, s=0.15)

ax.axis(’off’)

plt.show()

# Program 15b: Colormap of a Julia set.

# See Figure 15.2.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm # Use a colormap.

# Set image dimensions.

im_w, im_h = 500, 500

c = complex(-0.1, 0.65) # To plot J(a,b).

max_abs_z = 10

max_iter = 1000

xmin, xmax = -2, 2

xrange = xmax - xmin

ymin, ymax = -2, 2

yrange = ymax - ymin

julia = np.zeros((im_w, im_h))

for re_z in range(im_w):

for im_y in range(im_h):

nit = 0

# Map pixel position to a point in the plane

z = complex(re_z / im_w * xrange+ xmin,

im_y / im_h * yrange + ymin)

# Do the iterations

while abs(z) <= max_abs_z and nit < max_iter:

z = z**2 + c

nit += 1
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ratio = nit / max_iter

julia[-im_y, re_z] = ratio # Set axes to Re(z) and Im(z).

fig, ax = plt.subplots()

ax.axis(’off’)

ax.imshow(julia, interpolation=’nearest’, cmap=cm.hot)

plt.show()

# Program 15c: The Mandelbrot set.

# See Figure 15.3.

import numpy as np

import matplotlib.pyplot as plt

xmin, xmax = -2.5, 1

ymin, ymax = -1.5, 1.5

xrange, yrange = xmax-xmin, ymax-ymin;

def mandelbrot(h, w, Max_it=50):

y, x = np.ogrid[ ymin:ymax:h*1j, xmin:xmax:w*1j ]

c = x+y*1j

z = c

div_iter = max_iter + np.zeros(z.shape, dtype=int)

for i in range(max_iter):

z = z**2 + c

div_test = z*np.conj(z) > 2**2

div_num = div_test & (div_iter == max_iter)

div_iter[div_num] = i

z[div_test] = 2

return div_iter # Number of iterations to diverge.

scale=1000 # Amount of detail in the set.

# Set the tick labels to the Argand plane.

fig, ax = plt.subplots()

ax.imshow(mandelbrot(scale, scale))

xtick_labels = np.linspace(xmin, xmax, xrange / 0.5)

ax.set_xticks([(x-xmin) / xrange * scale for x in xtick_labels])

ax.set_xticklabels([’{:.1f}’.format(xtick) for xtick in xtick_labels])

ytick_labels = np.linspace(ymin, ymax, yrange / 0.5)

ax.set_yticks([-(y+ymin) / yrange * scale for y in ytick_labels])

ax.set_yticklabels([’{:.1f}’.format(ytick) for ytick in ytick_labels])

plt.show()

# Program 15d: Plotting a Newton fractal.
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# See Figure 15.7.

from PIL import Image

width = height = 512

image = Image.new(’RGB’, (width, height))

xmin, xmax = -1.5, 1.5

ymin, ymax = -1.5, 1.5

max_iter = 20

h = 1e-6 # Step size

eps = 1e-3 # Maximum error

def f(z):

return z**3 - 1.0 # Complex function.

# Draw the fractal.

for y in range(height):

zy = y * (ymax - ymin) / (height - 1) + ymin

for x in range(width):

zx = x * (xmax - xmin) / (width - 1) + xmin

z = complex(zx, zy)

for i in range(max_iter):

# Complex numerical derivative.

dz = (f(z + complex(h, h)) - f(z)) / complex(h, h)

z0 = z - f(z) / dz # Newton iteration.

if abs(z0 - z) < eps: # Stop when close enough to any root.

break

z = z0

image.putpixel((x, y), (i % 4 * 64, i % 8 * 32, i % 16 * 16))

image.save(’Newton_Fractal.png’, ’PNG’)

image.show()

15.5 Exercises

1. Consider the Julia set given in Figure 15.1(a). Take the mapping
zn+1 = z2n + c, where c = −0.5 + 0.3i.

(a) Iterate the initial point z0 = 0 + 0i for 500 iterations and list the
final 100. Increase the number of iterations, what can you deduce
about the orbit?

(b) Iterate the initial point z0 = −1− i and list z1 to z10. What can
you deduce about this orbit?
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2. Given that c = −1 + i, determine the fixed points of periods one and
two for the mapping zn+1 = z2n + c.

3. Consider equation (15.1); plot the Julia sets J(0, 0), J(−0.5, 0),
J(−0.7, 0), and J(−2, 0).

4. Compute the fixed points of period one for the complex mapping

zn+1 = 2 +
zne

i|zn|2

10
.

5. Determine the boundaries of points of periods one and two for the
mapping

zn+1 = c− z2n.

6. Plot the Mandelbrot set for the mapping

zn+1 = c− z2n.

7. Determine the fixed points of periods one and two for the mapping
zn+1 = z2n − 2zn + c.

8. Modify the Python program in Section 15.4 to plot a Mandelbrot set
for the mappings (i) zn+1 = z4n + c and (ii) zn+1 = z3n + c.

9. Determine the periods of the points (i) c = −1.3 and (ii) c = −0.1+0.8i
for the mapping zn+1 = z2n + c.

10. Plot a Newton fractal (of the same format to that shown in Figure 15.6)
for the function f(z) = z3 − 2z + 2.
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Chapter 16

Electromagnetic Waves
and Optical Resonators

Aims and Objectives

• To introduce some theory of electromagnetic waves.

• To introduce optical bistability and show some related devices.

• To discuss possible future applications.

• To apply some of the theory of nonlinear dynamical systems to model
a real physical system.

On completion of this chapter, the reader should be able to

• understand the basic theory of Maxwell’s equations;

• derive the equations to model a nonlinear simple fiber ring (SFR) res-
onator;

• investigate some of the dynamics displayed by these devices and plot
chaotic attractors;
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• use a linear stability analysis to predict regions of instability and bista-
bility;

• plot bifurcation diagrams using the first and second iterative methods;

• compare the results from four different methods of analysis.

As an introduction to optics, electromagnetic waves are discussed via
Maxwell’s equations.

The reader is briefly introduced to a range of bistable optical resonators
including the nonlinear Fabry-Perot interferometer, the cavity ring, the SFR,
the double-coupler fiber ring, the fiber double-ring, and a nonlinear optical
loop mirror (NOLM) with feedback. All of these devices can display hysteresis
and all can be affected by instabilities. Possible applications are discussed in
the physical world.

Linear stability analysis is applied to the nonlinear SFR resonator. The
analysis gives intervals where the system is bistable and unstable but does
not give any information on the dynamics involved in these regions. To use
optical resonators as bistable devices, the bistable region must be isolated
from any instabilities. To supplement the linear stability analysis, iterative
methods are used to plot bifurcation diagrams.

For a small range of parameter values, the resonator can be used as a
bistable device. Investigations are carried out to see how the bistable region
is affected by the linear phase shift due to propagation of the electric field
through the fiber loop.

For Python programming in optics, the reader is directed to [12].

16.1 Maxwell’s Equations and Electromagnetic
Waves

This section is intended to give the reader a simple general introduction to
optics. Most undergraduate physics textbooks discuss Maxwell’s electromag-
netic equations in some detail. The aim of this section is to list the equa-
tions and show that Maxwell’s equations can be expressed as wave equations .
Maxwell was able to show conclusively that just four equations could be used
to interpret and explain a great deal of electromagnetic phenomena.

The four equations, collectively referred to as Maxwell’s equations, did
not originate entirely with him but with Ampère, Coulomb, Faraday, Gauss,
and others. First, consider Faraday’s law of induction, which describes how
electric fields are produced from changing magnetic fields. This equation can
be written as ∮

C

E . dr = −∂φ

∂t
,
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where E is the electric field strength, r is a spatial vector, and φ is the
magnetic flux. This equation may be written as

∮

C

E . dr = − ∂

∂t

∫∫

S

B . dS,

where B is a magnetic field vector. Applying Stokes’s theorem,

∫∫

S

∇∧E . dS = − ∂

∂t

∫∫

S

B . dS.

Therefore,

∇∧E = −∂B

∂t
, (16.1)

which is the point form of Faraday’s law of induction.
Ampère’s law describes the production of magnetic fields by electric cur-

rents. Now ∮

C

H . dr =

∫∫

S

J . dS,

where H is another magnetic field vector (B = μH) and J is the current
density. By Stokes’s theorem

∮

C

H . dr =

∫∫

S

∇∧H . dS =

∫∫

S

J . dS.

Therefore,

∇∧H = J.

Maxwell modified this equation by adding the time rate of change of the
electric flux density (electric displacement) to obtain

∇∧H = J+
∂D

∂t
, (16.2)

where D is the electric displacement vector.
Gauss’s law for electricity describes the electric field for electric charges,

and Gauss’s law for magnetism shows that magnetic field lines are continuous
without end. The equations are

∇ .E =
ρ

ε0
, (16.3)

where ρ is the charge density and ε0 is the permittivity of free space (a
vacuum), and

∇ .B = 0. (16.4)
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In using Maxwell’s equations, (16.1) to (16.4), above and solving problems
in electromagnetism, the three so-called constitutive relations are also used.
These are

B = μH = μrμ0H; D = εE = εrε0E and J = σE,

where μr, μ0 are the relative permeabilities of a material and free space,
respectively; εr, ε0 are the relative permittivities of a material and free space,
respectively; and σ is conductivity.

If E and H are sinusoidally varying functions of time, then in a region of
free space, Maxwells’ equations become

∇ .E = 0; ∇ .H = 0; ∇∧E+ iωμ0H = 0 and ∇∧H− iωε0E = 0.

The wave equations are obtained by taking the curls of the last two equations;
thus

∇2E+ ε0μ0ω
2E = 0 and ∇2H+ ε0μ0ω

2H = 0,

where ω is the angular frequency of the wave. These differential equations
model an unattenuated wave traveling with velocity

c =
1

√
ε0μ0

,

where c is the speed of light in a vacuum. The field equation

E(r, t) = E0 exp [i(ωt− kr)] ,

satisfies the wave equation, where |k| = 2π/λ is the modulus of the wave
vector and λ is the wavelength of the wave. The remarkable conclusion drawn
by Maxwell is that light is an electromagnetic wave and that its properties can
all be deduced from his equations. The electric fields propagating through
an optical fiber loop will be investigated in this chapter.

Similar equations are used to model the propagation of light waves through
different media including a dielectric (a nonconducting material whose prop-
erties are isotropic); see the next section. In applications to nonlinear optics,
the Maxwell-Debye or Maxwell-Bloch equations are usually used. Interested
readers are referred to Chapter 12, [9, 16], and the research papers listed at
the end of this chapter.

16.2 Historical Background

In recent years, there has been a great deal of interest in optical bistability
because of its potential applications in high-speed all-optical signal processing
and all-optical computing. Indeed, in 1984 Smith [22] published an article
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in Nature with the enthralling title “Towards the Optical Computer,” and in
1999, Matthews [18] reported on work carried out by A. Wixforth and his
group on the possibility of optical memories. Bistable devices can be used
as logic gates, memory devices, switches, and differential amplifiers. The
electronic components used nowadays can interfere with one another, need
wires to guide the electronic signals, and carry information relatively slowly.
Using light beams, it is possible to connect all-optical components. There is
no interference; lenses and mirrors can be used to communicate thousands of
channels of information in parallel; the information-carrying capacity—the
bandwidth—is enormous; and there is nothing faster than the speed of light
in the known universe.

In 1969, Szöke et al. [25] proposed the principle of optical bistability
and suggested that optical devices could be superior to their electronic coun-
terparts. The two essential ingredients for bistability are nonlinearity and
feedback. For optical hysteresis, nonlinearity is provided by the medium as
a refractive (or dispersive) nonlinearity or as an absorptive nonlinearity, or
as both. Refractive nonlinearities alone will be considered in this chapter.
The feedback is introduced through mirrors or fiber loops or by the use of
an electronic circuit. The bistable optical effect was first observed in sodium
vapor in 1976 at Bell Laboratories, and a theoretical explanation was pro-
vided by Felber and Marburger [7] in the same year. Nonlinearity was due
to the Kerr effect (see Section 16.3), which modulated the refractive index of
the medium.

Early experimental apparatus for producing optical bistability consisted
of hybrid devices that contained both electronic and optical components.
Materials used included indium antimonide (InSb), gallium arsenide (GaAs),
and tellurium (Te). By 1979, micron-sized optical resonators had been con-
structed. A fundamental model of the nonlinear Fabry-Perot interferometer
is shown in Figure 16.1.

Nonlinear
medium T

R

I

Figure 16.1: A Fabry-Perot resonator; I, R, and T stand for incident, re-
flected, and transmitted intensities, respectively.

An excellent introduction to nonlinearity in fiber optics is provided by the
textbook of Agrawal [1]. Applications in nonlinear fiber optics are presented
in [2] and [21]. In recent years, there has been the development of microfibers
and resonators composed of these types of fiber [14]. Now the fiber diameter
has been reduced down to the nanoscale and resonator ring lengths are of
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the order of millimeters. Because of the narrowness of the fiber diameter
a significant proportion of the guided electric field can extend beyond the
optical fiber core, known as the evanescent field, which makes them of interest
in optical sensing applications.

A block diagram of the first electro-optic device is shown in Figure 16.2
and was constructed by Smith and Turner in 1977 [23]. Nonlinearity is in-
duced by the Fabry-Perot interferometer and a He-Ne (helium-neon) laser is
used at 6328Å. A bistable region is observed for a small range of parameter
values. An isolated bistable region is shown in Figure 16.4(a). For input
values between approximately 4 and 5 units there are two possible output
values. The output is dependent upon the history of the system, that is,
whether the input power is increasing or decreasing.

Amplifier

Detector

BeamsplitterFabry–Perot
Resonator

TI

R

Figure 16.2: The first electro-optic device to display bistability.

In theoretical studies, Ikeda, Daido, and Akimoto [10] showed that optical
circuits exhibiting bistable behavior can also contain temporal instabilities
under certain conditions. The cavity ring (CR) resonator, first investigated
by Ikeda, consists of a ring cavity comprising four mirrors that provide the
feedback and containing a nonlinear dielectric material (see Figure 16.3).
Light circulates around the cavity in one direction and the medium induces
a nonlinear phase shift dependent on the intensity of the light. Mirrors M1

and M2 are partially reflective, while mirrors M3 and M4 are 100% reflective.
Possible bifurcation diagrams for this device are shown in Figure 16.4. In

Figure 16.4(a), the bistable region is isolated from any instabilities, but in
Figure 16.4(b), instabilities have encroached upon the bistable cycle. These
figures are similar to those that would be seen if the CR were connected to
an oscilloscope. However, most of the dynamics are lost; mathematically it is
best to plot bifurcation diagrams using points alone. The length L is different
in the two cases and hence so is the cavity round-trip time (the time it takes
light to complete one loop in the cavity).

In recent years, there has been intense research activity in the field of fiber
optics. Many school physics textbooks now provide an excellent introduction
to the subject, and [4] provides an introduction to nonlinear optics. The
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L

TI

R

M3

M1 Nonlinear Passive
Medium

M2

M4

Figure 16.3: The CR resonator containing a nonlinear dielectric medium.
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Figure 16.4: Possible bifurcation diagrams for the CR resonator: (a) an
isolated bistable region and (b) instabilities within the bistable region. S
represents stable behavior, P is period undoubling, and C stands for chaos.

interest in this chapter, however, lies solely in the application to all-optical
bistability. A block diagram of the SFR resonator is shown in Figure 16.5.
It has recently been shown that the dynamics of this device are the same as
those for the CR resonator (over a limited range of initial time) apart from a
scaling. The first all-optical experiment was carried out using a single-mode
fiber in a simple loop arrangement, the fiber acting as the nonlinear medium
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[19]. In mathematical models, the input electric field is given as

Ein(t) = ξj(t)e
iωt,

where ξj represents a complex amplitude (which may contain phase informa-
tion) and ω is the circular frequency of the light.

Fiber coupler

L

EoutEin

Figure 16.5: A schematic of the SFR resonator. The input electric field is
Ein and the output electric field is Eout.

In experimental setups, for example, the light source could be a Q-switched
YAG laser operating at 1.06 μm. The optical fiber is made of fused silica and
is assumed to be lossless.

Analysis of the SFR resonator will be discussed in more detail in the next
section, and the stability of the device will be investigated in Sections 16.5
and 16.6.

The double-coupler fiber ring resonator was investigated by Li and Ogusu
[17] in 1998 (see Figure 16.6). It was found that there was a similarity
between the dynamics displayed by this device and the Fabry-Perot resonator
in terms of transmission and reflection bistability. It is possible to generate
both clockwise and counterclockwise hysteresis loops using this device. An
example of a counterclockwise bistable cycle is given in Figure 16.4(a). The
reader will be asked to carry out some mathematical analysis for this device
in the exercises at the end of the chapter (Section 16.8).

In 1994, Ja [11] presented a theoretical study of an optical fiber double-
ring resonator, as shown in Figure 16.7. Ja predicted multiple bistability of
the output intensity using the Kerr effect. However, instabilities were not
discussed. It was proposed that this type of device could be used in new
computer logic systems where more than two logic states are required. In
principle, it is possible to link a number of loops of fiber, but instabilities are
expected to cause some problems.

The nonlinear optical loop mirror (NOLM) with feedback, [6, 14], and
[24], has been one of the most novel devices for demonstrating a wide range
of all-optical processing functions including optical logic. The device is shown
in Figure 16.8. Note that the beams of light are counterpropagating in the
large loop but not in the feedback section and that there are three couplers.
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Eout
T

EinE R
out

Fiber coupler

Fiber coupler

L

Figure 16.6: The double-coupler fiber ring resonator: Ein is the input field
amplitude, ER

out is the reflected output, and ET
out is the transmitted output.

Fiber
coupler

Fiber
coupler EoutEin

L1 L3

L2

Figure 16.7: A fiber double-ring resonator with two couplers.

coupler 2

coupler 3

coupler 1
Fiber
loop

Eout

Ein

Figure 16.8: A schematic of a NOLM with feedback.

All of the devices discussed thus far can display bistability and instability
leading to chaos. In order to understand some of these dynamics, the SFR
resonator will now be discussed in some detail.
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16.3 The Nonlinear SFR Resonator

Consider the all-optical fiber resonator as depicted in Figure 16.9 and define
the slowly varying complex electric fields as indicated.

Note that the power P and intensity I are related to the electric field in
the following way:

P ∝ I ∝ |E|2.

If the electric field crosses the coupler, then a phase shift is induced, which is
represented by a multiplication by i in the equations. Assume that there is

Ein Eout

E1E2

L

κ : 1 – κ

Figure 16.9: The SFR resonator. The electric field entering the fiber ring
is labeled E1 and the electric field leaving the fiber ring is labeled E2. The
coupler splits the power intensity in the ratio κ : 1− κ.

no loss at the coupler. Then across the coupler the complex field amplitudes
satisfy the following equations:

E1 =
√
κE2 + i

√
1− κEin (16.5)

and

Eout =
√
κEin + i

√
1− κE2, (16.6)

where κ is the power-splitting ratio at the coupler. Consider the propagation
from E1 to E2. Then

E2 = E1e
iφ, (16.7)

where the total loss in the fiber is negligible (typically about 0.2 dB/km) and

φ = φL + φNL.

The linear phase shift is φL, and the nonlinear phase shift due to propagation
is given by

φNL =
2πr2L

λ0Aeff
|E1|2,
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where λ0 is the wavelength of propagating light in a vacuum, Aeff is the
effective core area of the fiber, L is the length of the fiber loop, and r2 is the
nonlinear refractive index coefficient of the fiber. It is well known that when
the optical intensity is large enough, the constant r2 satisfies the equation

r = r0 + r2I = r0 +
r2r0
2η0

|E1|2 = r0 + r2
P

Aeff
,

where r is the refractive index of the fiber, r0 is the linear value, I is the
instantaneous optical intensity, and P is the power. If the nonlinearity of the
fiber is represented by this equation, then the fiber is said to be of Kerr type.
In most applications, it is assumed that the response time of the Kerr effect
is much less than the time taken for light to circulate once in the loop.

Substitute (16.7) into equations (16.5) and (16.6). Simplify to obtain

E1(t) = i
√
1− κEin(t) +

√
κE1(t− tR)e

iφ(t−tR),

where tR = rL
c is the time taken for the light to complete one loop, r is the

refractive index, and c is the velocity of light in a vacuum. Note that this is
an iterative formula for the electric field amplitude inside the ring. Take time
steps of length equal to tR. This expression can be written more conveniently
as an iterative equation of the form

En+1 = A+BEn exp

(
i

(
2πr2L

λ0Aeff
|En|2 + φL

))
, (16.8)

where A = i
√
1− κEin, B =

√
κ, and Ej is the electric field amplitude at

the jth circulation around the fiber loop. Typical fiber parameters chosen for
this system are λ0 = 1.55×10−6 m, r2 = 3.2×10−20 m2W−1, Aeff = 30 μm2,
and L = 80 m.

Equation (16.8) may be scaled without loss of generality to the simplified
equation

En+1 = A+BEn exp
[
i(|En|2 + φL)

]
. (16.9)

Some of the dynamics of equation (16.9) will be discussed in the next section.

16.4 Chaotic Attractors and Bistability

Split equation (16.9) into its real and imaginary parts by setting En = xn +
iyn, and set φL = 0. The equivalent real two-dimensional system is given by

xn+1 = A+B
(
xn cos |En|2 − yn sin |En|2

)

yn+1 = B
(
xn sin |En|2 + yn cos |En|2

)
, (16.10)
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where |B| < 1. This system is one version of the so-called Ikeda map. As
with the Hénon map, introduced in Chapter 14, the Ikeda map can have fixed
points of all periods. In this particular case, system (16.10) can have many
fixed points of period one depending on the parameter values A and B.

Example 1. Determine and classify the fixed points of period one for system
(16.10) when B = 0.15 and

(i) A = 1;

(ii) A = 2.2.

Solution. The fixed points of period one satisfy the simultaneous equations

x = A+Bx cos(x2 + y2)−By sin(x2 + y2)

and
y = Bx sin(x2 + y2) +By cos(x2 + y2).

(i) When A = 1 and B = 0.15, there is one solution at x1,1 ≈ 1.048,
y1,1 ≈ 0.151. The solution is given graphically in Figure 16.10(a). To classify
the critical point P ∗ = (x1,1, y1,1), consider the Jacobian matrix

J(P ∗) =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)∣∣∣∣∣
P∗

.

The eigenvalues of the Jacobian matrix at P ∗ are λ1 ≈ −0.086 + 0.123i and
λ2 ≈ −0.086− 0.123i. Therefore, P ∗ is a stable fixed point of period one.

(ii) When A = 2.2 and B = 0.15, there are three points of period
one, as the graphs in Figure 16.10(b) indicate. The fixed points occur ap-
proximately at the points U = (2.562, 0.131), M = (2.134,−0.317), and
L = (1.968,−0.185). Using the Jacobian matrix, the eigenvalues for U are
λ1,2 = −0.145 ± 0.039i; the eigenvalues for M are λ1 = 1.360, λ2 = 0.017;
and the eigenvalues for L are λ1 = 0.555, λ2 = 0.041.

Therefore, U and L are stable fixed points of period one, while M is an
unstable fixed point of period one. These three points are located within a
bistable region of the bifurcation diagram given later in this chapter. The
point U lies on the upper branch of the hysteresis loop and the point L lies on
the lower branch. Since M is unstable it does not appear in the bifurcation
diagram but is located between U and L.

As the parameter A changes, the number of fixed points and the dynamics
of the system change. For example, when A = 1, there is one fixed point of
period one; when A = 2.2, there are two stable fixed points of period one
and one unstable fixed point of period one; when A = 2.4, there are two
stable fixed points of period two. As A increases the system displays chaotic
behavior (see Example 2). All of the information can be summarized on a
bifurcation diagram that will be shown later in this chapter.
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Figure 16.10: [Python] The fixed points of period one are determined by the
intersections of the two curves, x = A+0.15x cos(x2+y2)−0.15y sin(x2+y2)
and y = 0.15x sin(x2 + y2) + 0.15y cos(x2 + y2); (a) A = 1 and (b) A = 2.2.
Note in case (b) that the small closed curve and the vertical curve form one
solution set.

Example 2. Plot iterative maps for system (16.10) when B = 0.15 and

(a) A = 5;

(b) A = 10.

Solution. Two chaotic attractors for system (16.10) are shown in Fig-
ure 16.11.

a b

Figure 16.11: [Python] The chaotic attractors when (a) A = 5 (5000 iterates)
and (b) A = 10 (5000 iterates).
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Theorem 1. The circle of radius |AB|
1−B centered at A is invariant for system

(16.10).

Proof. Suppose that a general initial point in the Argand diagram is taken
to be En; then the first iterate is given by

En+1 = A+BEne
i|En|2 .

The second iterate can be written as

En+2 = A+BEn+1e
i|En+1|2 = A+B

(
A+BEne

i|En|2
)
ei|En+1|2 .

Thus
En+2 = A+ABei|En+1|2 +B2Ene

i(|En|2+|En+1|2).

Using a similar argument, the third iterate is

En+3 = A+B
(
A+ABei|En+1|2 +B2Ene

i(|En|2+|En+1|2)
)
ei|En+2|2 .

Therefore,

En+3 = A+ABei|En+2|2+AB2ei(|En+1|2+|En+2|2)+B3Ene
i(|En|2+|En+1|2+|En+2|2).

A general expression for the Nth iterate En+N is not difficult to formulate.
Hence

En+N =A+ABei|En+N−1|2 +AB2ei(|En+N−2|2+|En+N−1|2) + . . .

+ABN−1 exp

⎛
⎝i

N−1∑
j=1

|En+j |2
⎞
⎠+BNEn exp

⎛
⎝i

N−1∑
j=0

|En+j |2
⎞
⎠ .

As N → ∞, BN → 0, since 0 < B < 1. Set Rj = |En+N−j |2. Then

|En+N −A| = |ABeiR1 +AB2ei(R1+R2) + . . .+ABN−1ei(R1+R2+...+RN−1)|.

Since |z1 + z2 + . . .+ zm| ≤ |z1|+ |z2|+ . . .+ |zm| and |eiθ| = 1,

|En+N −A| ≤ |AB|+ |AB2|+ . . .+ |ABN−1|.

This forms an infinite geometric series as N → ∞. Therefore

|En+N −A| ≤ |AB|
1−B

.

The disc given by |E − A| = AB/(1 − B) is positively invariant for sys-
tem (16.10). The invariant disks in two cases are easily identified in Fig-
ures 16.11(a) and (b).
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16.5 Linear Stability Analysis

To investigate the stability of the nonlinear SFR resonator, a linear stability
analysis (see Chapter 2) will be applied. A first-order perturbative scheme
is used to predict the values of a parameter where the stationary solutions
become unstable. Briefly, a small perturbation is added to a stable solution
and a Taylor series expansion is carried out, the nonlinear terms are ignored,
and a linear stability analysis is applied.

It was shown in Section 16.3 that the following simplified complex iterative
equation can be used to model the electric field in the fiber ring:

En+1 = A+BEn exp
[
i
(
|En|2 − φL

)]
, (16.11)

where En is the slowly varying field amplitude; A = i
√
1− κEin, is related

to the input; B =
√
κ, where κ is the power coupling ratio; and φL is the

linear phase shift suffered by the electric field as it propagates through the
fiber loop. To simplify the linear stability analysis, there is assumed to be
no loss at the coupler and the phase shift φL is set to zero. The effect of
introducing a linear phase shift will be discussed later in this chapter.

Suppose that ES is a stable solution of the iterative equation (16.11).
Then

ES = A+BESe
i|ES |2 .

Therefore,

A = ES

[
1−B

(
cos(|ES |2) + i sin |ES |2

)]
.

Using the relation |z|2 = zz∗, where z∗ is the conjugate of z,

|A|2 =
(
ES

[
1−B

(
cos(|ES |2) + i sin |ES |2

)])
×(

E∗
S

[
1−B

(
cos(|ES |2)− i sin |ES |2

)])
.

Hence

|A|2 = |ES |2
(
1 +B2 − 2B cos(|ES |2)

)
. (16.12)

The stationary solutions of system (16.11) are given as a multivalued function
of A satisfying equation (16.12). This gives a bistable relationship equivalent
to the graphical method , which is well documented in the literature; see, for
example, [3, 17], and [28].

Differentiate equation (16.12) to obtain

d|A|2
d|ES |2

= 1 +B2 + 2B
(
|ES |2 sin(|ES |2)− cos(|ES |2)

)
. (16.13)
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To establish where the stable solutions become unstable, consider a slight
perturbation from the stable situation in the fiber ring, and let

En(t) = ES + ξn(t) and En+1(t) = ES + ξn+1(t), (16.14)

where ξn(t) is a small time-dependent perturbation to ES . Substitute (16.14)
into (16.11) to get

ES + ξn+1 = A+B(ES + ξn) exp [i(ES + ξn)(E
∗
S + ξ∗n)] ,

so

ES+ξn+1 = A+B(ES+ξn) exp[i|ES |2] exp[i(ESξ
∗
n+ξnE

∗
S+ |ξn|2)]. (16.15)

Take a Taylor series expansion of the exponential function to obtain

exp
[
i(ESξ

∗
n + ξnE

∗
S + |ξn|2)

]
=1 + i(ESξ

∗
n + ξnE

∗
S + |ξn|2)+

i2(ESξ
∗
n + ξnE

∗
S + |ξn|2)2

2
+ . . . .

Ignore the nonlinear terms in ξn. Equation (16.15) then becomes

ES + ξn+1 = A+B(ES + ξn) exp[i|ES |2] (1 + iESξ
∗
n + ξnE

∗
S) .

Since A = ES −BES exp[i|ES |2], the equation simplifies to

ξn+1 = B
(
ξn + i|ES |2ξn + i(ES)

2ξ∗n
)
exp

(
i|ES |2

)
. (16.16)

Since ξ is real, it may be split into its positive and negative frequency
parts as follows:

ξn = E+e
λt + E−e

λ∗t and ξn+1 = E+e
λ(t+tR) + E−e

λ∗(t+tR), (16.17)

where |E+|, |E−| are much smaller than |ES |, tR is the fiber ring round trip
time, and λ is the amplification rate of a small fluctuation added to a sta-
ble solution. Substitute equation (16.17) into (16.16). Then the validity of
(16.16) at all times t requires that

E+e
λtR = B

(
E+ + i|ES |2E+ + iE2

SE
∗
−
)
exp

(
i|ES |2

)
,

E∗
−e

λtR = B
(
E∗

− − i|ES |2E∗
− − i (E∗

S)
2
E+

)
exp

(
−i|ES |2

)
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or, equivalently,(
β
(
1 + i|ES |2

)
− eλtR iβE2

S

−iβ∗(E∗
S)

2 β∗ (1− i|ES |2
)
− eλtR

)(
E+

E∗
−

)
=

(
0
0

)
,

where β = B exp
(
i|ES |2

)
. To obtain a valid solution, the characteristic

equation must be solved:

e2λtR − 2eλtRB
(
cos |ES |2 − |ES |2 sin |ES |2

)
+B2 = 0.

Substituting from equation (16.13), the characteristic equation becomes

e2λtR − eλtR
(
1 +B2 − d|A|2

d|ES |2
)
+B2 = 0. (16.18)

Let D = d|A|2
d|ES |2 . The stability edges for ES occur where eλtR = +1 and

eλtR = −1, since this is a discrete mapping. Using equation (16.18), this
yields the conditions

D+1 = 0 and D−1 = 2
(
1 +B2

)
.

Thus the system is stable as long as

0 < D < 2
(
1 +B2

)
. (16.19)

The condition D = 0 marks the boundary between the branches of positive
and negative slope on the graph of |ES |2 versus |A|2 and hence defines the
regions where the system is bistable. Thus the results from the graphical
method match with the results from the linear stability analysis. The system
becomes unstable at the boundary where D = D−1.

It is now possible to apply four different methods of analysis to determine
the stability of the electric field amplitude in the SFR resonator. Linear
stability analysis may be used to determine both the unstable and bistable
regions and bifurcation diagrams can be plotted. The graphical method [1]
is redundant in this case.

There are two methods commonly used to plot bifurcation diagrams—the
first and second iterative methods.

The First Iterative Method. A parameter is fixed and one or more ini-
tial points are iterated forward. Transients are ignored and a number of the
final iterates are plotted. The parameter is then increased by a suitable step
length and the process is repeated. There are many points plotted for each
value of the parameter. For example, the bifurcation diagrams plotted in
Chapter 14 were all generated using the first iterative method.
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The Second Iterative Method. A parameter is varied and the solution
to the previous iterate is used as the initial condition for the next iterate. In
this way, a feedback mechanism is introduced. In this case, there is a history
associated with the process and only one point is plotted for each value of
the parameter. For example, most of the bifurcation diagrams plotted in
Section 16.6 were plotted using the second iterative method.

The first and second iterative methods are used in other chapters of the
book.

16.6 Instabilities and Bistability

In the previous section, the results from the linear stability analysis estab-
lished that system (16.11) is stable as long as equation (16.19) is satisfied.
A possible stability diagram for system (16.11) is given in Figure 16.12,

which shows the graph of D = d|A|2
d|ES |2 and the bounding lines D+1 = 0

and D−1 = 2
(
1 +B2

)
when B = 0.15.

|A|

|ES|2

Figure 16.12: Stability diagram for the SFR resonator when B = 0.15 (κ =
0.0225). The system is stable as long as 0 < D < 2

(
1 +B2

)
.

Table 16.1 lists the first two bistable and unstable intensity regions for
the SFR resonator (in Watts per meter squared in physical applications) for
a range of fixed values of the parameter B.
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The dynamic behavior of system (16.11) may also be investigated by plot-
ting bifurcation diagrams using either the first or second iterative methods. In
order to observe any hysteresis, one must, of course, use the second iterative
method, which involves a feedback. The method developed by Bischofberger
and Shen [3] in 1979 for a nonlinear Fabry-Perot interferometer is modified
and used here for the SFR resonator. The input intensity is increased to

Table 16.1: The first two regions of bistability and instability computed for
the SFR resonator to three decimal places using a linear stability analysis.

First First Second Second
B bistable region unstable region bistable region unstable region

A2/Wm−2 A2/Wm−2 A2/Wm−2 A2/Wm−2

0.05 10.970–11.038 12.683–16.272 16.785–17.704 17.878–23.561

0.15 4.389–4.915 5.436–12.007 9.009–12.765 9.554–20.510

0.3 3.046–5.951 1.987–4.704 6.142–16.175 3.633–15.758

0.6 1.004–8.798 1.523–7.930 2.010–24.412 1.461–24.090

0.9 0.063–12.348 1.759–11.335 0.126–34.401 0.603–34.021

a maximum and then decreased back to zero, as depicted in Figure 16.13.
In this case, the simulation consists of a triangular pulse entering the ring
configuration, but it is not difficult to modify the Python program to inves-
tigate Gaussian input pulses. The input intensity is increased linearly up
to 16Wm−2 and then decreased back down to zero. Figure 16.13 shows the
output intensity and input intensity against the number of passes around the
ring, which in this particular case was 4000. To observe the bistable region,
it is necessary to display the ramp-up and ramp-down parts of the diagram
on the same graph, as in Figure 16.14(b).

Figure 16.14 shows a gallery of bifurcation diagrams, corresponding to
some of the parameter values used in Table 16.1 produced using the sec-
ond iterative method. The diagrams make interesting comparisons with the
results displayed in Table 16.1.

A numerical investigation has revealed that for a small range of values
close to B = 0.15, (see Figure 16.14(b)), the SFR resonator could be used as
a bistable device. Unfortunately, for most values of B, instabilities overlap
with the first bistable region. For example, when B = 0.3 (Figure 16.14(c)),
the first unstable region between 1.987 Wm−2 and 4.704 Wm−2 intersects
with the first bistable region between 3.046 Wm−2 and 5.951 Wm−2. Clearly,
the instabilities have affected the bistable operation. In fact, the hysteresis
cycle has failed to materialize. Recall that B =

√
κ, where κ is the power

coupling ratio. As the parameter B gets larger, more of the input power is
circulated in the ring, and this causes the system to become chaotic for low
input intensities.
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Figure 16.13: Bifurcation diagram when B = 0.15 using the second iterative
method showing a plot of triangular input and output intensities against
number of ring passes for the SFR resonator.

The first iterative method can be employed to show regions of instability.
Note, however, that bistable regions will not be displayed since there is no
feedback in this method. It is sometimes possible for a small unstable region
to be missed using the second iterative method. The steady state remains
on the unstable branch until it becomes stable again. Thus in a few cases,
the first iterative method gives results which may be missed using the second
iterative method. As a particular example, consider system (16.10) where
B = 0.225. Results from a linear stability analysis indicate that there should
be an unstable region in the range 2.741−3.416 Wm−2. Figure 16.15(a) shows
that this region is missed using the second iterative method, whereas the first
iterative method (Figure 16.15(b)) clearly displays period-two behavior. In
physical applications, one would expect relatively small unstable regions to
be skipped, as in the former case.

Consider the complex iterative equation

En+1 = i
√
1− κEin +

√
κEn exp

[
i

(
2πn2L

λ0Aeff
|En|2 − φL

)]
, (16.20)
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Figure 16.14: A gallery of bifurcation diagrams for the SFR resonator (equa-
tion 16.11) when (a) B = 0.05, (b) B = 0.15, (c) B = 0.3, and (d) B = 0.6.
In each case, 10000 iterations were carried out.

which was derived earlier. Equation (16.20) is the iterative equation that
models the electric field in the SFR resonator. Typical fiber parameters
chosen for this system are λ0 = 1.55 × 10−6 m; n2 = 3.2 × 10−20 m2W−1;
Aeff = 30μm2; and L = 80 m. Suppose that equation (16.11) was iterated
10000 times. This would equate to hundredths of a second of elapsed time in
physical applications using these values for the fiber parameters.

In the work considered so far, the linear phase shift due to propagation
φL has been set to zero. Figure 16.16 shows how the bistable region is
affected when φL is nonzero and B = 0.15. As the linear phase shift increases
from zero to π

4 , the first bistable region gets larger and shifts to the right
slightly, as depicted in Figure 16.16(b). When φL = π

2 , an instability has

appeared between 20 Wm−2 and 40 Wm−2 and a second unstable region has
encroached on the first bistable region, as shown in Figure 16.16(c). When
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3 3

a b

Figure 16.15: Bifurcation diagrams when B = 0.225 (a) using the second iter-
ative method with feedback and (b) using the first iterative method without
feedback.

φL = π, instabilities appear at both ends of the bistable region, as shown
in Figure 16.16(d). Therefore, the linear phase shift can affect the bistable
operation of the SFR resonator. Should such systems be used for bistable
operation, then the results indicate the need to control the feedback phase
to prevent any instabilities from entering the power range in the hysteresis
loop.

In conclusion, the dynamic properties of a nonlinear optical resonator
have been analyzed using a graphical method, a linear stability analysis,
and bifurcation diagrams using the first and second iterative methods. The
bifurcation diagrams give a clearer insight into the dynamics than the results
from the linear stability analysis and graphical method, but all four used in
conjunction provide useful results.

16.7 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.
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a b

c d

Figure 16.16: [Python] Bifurcation diagrams for the SFR resonator using
equation (16.8) when κ = 0.0225 and (a) φL = 0, (b) φL = π

4 , (c) φL = π
2 ,

and (d) φL = π. The output power for ramp-up is colored red and the output
power for ramp-down is colored blue.

Python Commands Comments

mgrid # Return coordinate matrices from

coordinate

# vectors.

scatter # A scatter plot of y vs x with varying

# marker size and/or color.

# Program 16a: Intersection of implicit curves.

# See Figure 16.10(b).
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import numpy as np

import matplotlib.pyplot as plt

A, B = 2.2, 0.15

x, y = np.mgrid[0:4:100j, -4:4:100j]

z1 = A + B*x*np.cos(x**2 + y**2) - B*y*np.sin(x**2 + y**2) - x

z2 = B*x*np.sin(x**2 + y**2) + B*y*np.cos(x**2 + y**2) - y

fig, ax = plt.subplots()

plt.contour(x, y, z1, levels = [0])

plt.contour(x, y, z2, levels = [0], colors=’r’)

ax.set_xlabel(’x(t)’, fontsize=15)

ax.set_ylabel(’y(t)’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 16b: Iteration of the Ikeda map.

# See Figure 16.11(b).

from matplotlib import pyplot as plt

import numpy as np

# Parameters

A, B = 10, 0.15

def ikeda(X):

x, y = X

xn = A + B*x*np.cos(x**2 + y**2) - B*y*np.sin(x**2 + y**2)

yn = B*x*np.sin(x**2+y**2) + B*y*np.cos(x**2 + y**2)

return (xn, yn)

X0 = [A, 0]

X, Y = [], []

for i in range(10000):

xn, yn = ikeda(X0)

X, Y = X + [xn], Y + [yn]

X0 = [xn, yn]

fig, ax = plt.subplots(figsize=(10,10))

ax.scatter(X, Y, color=’blue’, s=0.1)

plt.xlabel("$Re(E_n)$", fontsize=15)

plt.ylabel("$Im(E_n)$", fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 16c: Bifurcation diagram of the Ikeda map.

# See Figure 16.16(d).

from matplotlib import pyplot as plt

import numpy as np
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# Parameters

C = 0.345913

kappa = 0.0225

Pmax = 120

phi = np.pi

half_N = 1999

N = 2*half_N + 1

N1 = 1 + half_N

esqr_up, esqr_down = [], []

E1 = E2 = 0

ns_up = np.arange(half_N)

ns_down = np.arange(N1, N)

# Ramp the power up

for n in ns_up:

E2 = E1 * np.exp(1j*((abs(C*E1))**2 - phi))

E1 = 1j * np.sqrt(1 - kappa) * np.sqrt(n * Pmax / N1) +

np.sqrt(kappa) * E2

esqr1 = abs(E1)**2

esqr_up.append([n, esqr1])

esqr_up = np.array(esqr_up)

# Ramp the power down

for n in ns_down:

E2 = E1 * np.exp(1j * ((abs(C*E1))**2 - phi))

E1 = 1j * np.sqrt(1 - kappa) * np.sqrt(2 * Pmax - n * Pmax / N1)

+ np.sqrt(kappa) * E2

esqr1 = abs(E1)**2

esqr_down.append([N-n, esqr1])

esqr_down=np.array(esqr_down)

fig, ax = plt.subplots()

xtick_labels = np.linspace(0, Pmax, 6)

ax.set_xticks([x / Pmax * N1 for x in xtick_labels])

ax.set_xticklabels([’{:.1f}’.format(xtick) for xtick in xtick_labels])

plt.plot(esqr_up[:, 0], esqr_up[:, 1], ’r.’, markersize=0.1)

plt.plot(esqr_down[:, 0], esqr_down[:, 1], ’b.’, markersize=0.1)

plt.xlabel(’Input’, fontsize=15)

plt.ylabel(’Output’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()
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16.8 Exercises

1. Determine the number of fixed points of period one for system (16.10)
when B = 0.4 and A = 3.9 by plotting the graphs of the simultaneous
equations.

2. Plot iterative maps for equation (16.8), using the parameter values
given in the text, when κ = 0.0225 and (i) Ein = 4.5, (ii) Ein = 6.3,
and (iii) Ein = 11.

3. Given that

En+1 = A+BEne
i|En|2 ,

prove that the inverse map is given by

En+1 =

(
En −A

B

)
exp

(
−i|En −A|2

B2

)
.

4. Given the complex Ikeda mapping

En+1 = A+BEn exp

[
i

(
φ− C

1 + |En|2
)]

,

where A, B, and C are constants, show that the steady-state solution,
say, En+1 = En = ES , satisfies the equation

cos

(
C

1 + |ES |2
− φ

)
=

1

2B

(
1 +B2 − A2

|ES |2
)
.

5. Consider the double-coupler nonlinear fiber ring resonator as shown in
Figure 16.17.

κ : 1 − κ

κ : 1 − κ

L /2 L /2

E4

E2

E1

E3

Ein ER

ET

Figure 16.17: Schematic of a double-coupler fiber ring resonator.
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Suppose that

ER(t) =
√
κEin(t) + i

√
1− κE4(t);

E1(t) =i
√
1− κEin(t) +

√
κE4(t);

E2(t) =E1(t− tR)e
iφ1(t−tR);

φ1(t− tR) =
πr2L

λAeff
|E1(t− tR)|2;

E3(t) =
√
κE2(t);

ET (t) =i
√
1− κE2(t);

E4(t) =E3(t− tR)e
iφ2(t−tR);

φ2(t− tR) =
πr2L

λAeff
|E3(t− tR)|2;

where the fiber loop is of length L; both halves are of length L/2; tR is
the time taken for the electric field to complete half a fiber loop; and
both couplers split the power in the ratio κ : 1 − κ. Assuming that
there are no losses in the fiber, show that

ET (t) = −(1−κ)Ein(t−tR)e
iφ1(t−tR)+κET (t−2tR)e

i(φ1(t−tR)+φ2(t−2tR)).

6. Consider the complex iterative equation

En+1 = A+BEn exp
[
i
(
|En|2

)]
,

used to model the SFR resonator. Use a linear stability analysis to
determine the first bistable and unstable regions when (a) B = 0.1, (b)
B = 0.2, and (c) B = 0.25 to three decimal places, respectively.

7. Plot bifurcation diagrams for Exercise 6, parts (a)–(c), when the max-
imum input intensity is 25 Wm−2 and the input pulse is triangular.

8. Plot the bifurcation diagram for the iterative equation in Exercise 6
for B = 0.15 when the input pulse is Gaussian with a maximum of
25 Wm−2. How is the bistable region affected by the width of the
pulse?

9. Consider the complex iterative equation

En+1 = A+BEn exp
[
i
(
|En|2 − φL

)]
,

where B = 0.15 and φL represents a linear phase shift. Plot bifurcation
diagrams for a maximum input intensity of A = 3 units when
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(a) φL = π
4 ,

(b) φL = π
2 ,

(c) φL = 3π
4 ,

(d) φL = π,

(e) φL = 5π
4 ,

(f) φL = 3π
2 ,

(g) φL = 7π
4 .

10. Apply the linear stability analysis to the iterative equation

En+1 = i
√
1− κEin +

√
κEn exp

[
i

(
2πn2L

λ0Aeff
|En|2

)]
,

for the parameter values given in this chapter. Compare the results
with the bifurcation diagrams.
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Chapter 17

Fractals and Multifractals

Aims and Objectives

• To provide a brief introduction to fractals.

• To introduce the notion of fractal dimension.

• To provide a brief introduction to multifractals and define a multifractal
formalism.

• To consider some very simple examples.

On completion of this chapter, the reader should be able to

• plot early stage generations of certain fractals using either graph paper,
pencil, and rule, or Python;

• determine the fractal dimension of some mathematical fractals;

• estimate the fractal dimension using simple box-counting techniques;

• distinguish between homogeneous and heterogeneous fractals;

• appreciate how multifractal theory is being applied in the real world;

© Springer International Publishing AG, part of Springer Nature 2018
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• construct multifractal Cantor sets and Koch curves and plot graphs of
their respective multifractal spectra.

Fractals are introduced by means of some simple examples, and the fractal
dimension is defined. Box-counting techniques are used to approximate the
fractal dimension of certain early stage generation fractals, which can be
generated using pencil, paper, and rule.

A multifractal formalism is introduced that avoids some of the more ab-
stract pure mathematical concepts. The theory is explained in terms of box-
counting dimensions, which are introduced in this chapter. This is potentially
a very complicated topic, and readers new to this field are advised to look at
Example 4 before attempting to understand the formalism.

Some applications of multifractal analysis to physical systems in the real
world are also discussed. A few simple self-similar multifractals are con-
structed, and the analysis is applied to these objects.

17.1 Construction of Simple Examples

Definition 1. A fractal is an object that displays self-similarity under mag-
nification and can be constructed using a simple motif (an image repeated
on ever-reduced scales).

Fractals have generated a great deal of interest since the advent of the
computer. Many shops now sell colorful posters and T-shirts displaying frac-
tals, and some color fractals have been plotted in Chapter 15. Although the
Julia sets and the Mandelbrot set are not true fractals, they do have frac-
tal structure. Many objects in nature display this self-similarity at different
scales; for example, cauliflower, ferns, trees, mountains, clouds, and even
blood vessel networks in our own bodies have some fractal structure. These
objects cannot be described using the geometry of lines, planes, and spheres.
Instead, fractal geometry is required. Fractal analysis is being applied in
many branches of science—for example, to computer graphics and image
compression (for example, take a closer look at the images on the Web) and
to oil extraction from rocks using viscous fingering—and multifractal analysis
has expanded rapidly over recent years (see later in this chapter). The reader
is directed to Falconer’s text [8] for a simple introduction to fractals and their
many applications and reference [9] gives a more mathematical perspective.

It is important to note that all of the fractals appearing in this textbook
are early generation fractals. However, there is nothing to stop scientists
from imagining an ideal mathematical fractal that is constructed to infinity.
Some of these fractals will now be investigated.
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The Cantor Set. The Cantor fractal was first considered by Georg Cantor
in 1870. It is constructed by removing the middle third of a line segment
at each stage of construction. Thus at stage 0, there is one line segment of
unit length. At stage 1, the middle third is removed to leave two segments
each of length 1

3 . At stage 2, there will be four segments each of length 1
9 .

Continuing in this way, it is not difficult to see that at the kth stage, there
will be N = 2k segments each of length l = 3−k. An early stage construction
(up to stage 3) is shown in Figure 17.1.

Stage 0

Stage 1

Stage 2

Stage 3

Figure 17.1: An early generation of the Cantor set.

If this process is continued to infinity, then

lim
k→∞

2k = ∞ and lim
k→∞

3−k = 0.

The Cantor set will therefore consist of an infinite number of discrete points
that, unfortunately, is impossible to generate on a computer screen. However,
all is not lost. By using the ternary number system, it is possible to classify
which points in the unit interval belong to the Cantor set and which do
not. Recall that ternary proper fractions can be expanded by applying a
simple algorithm: Treble the numerator of the proper fraction concerned;
when this number is larger than or equal to the denominator, subtract the
denominator, noting down the ternary factor above the line, and continue
with the remainder. For example, 4

7 = 0.120102, since

1 2 0 1 0 2 1 . . .
4 12

5 15
1 3 9

2 6 18
4 12

5 . . . ,

where the underlining after the decimal point represents a recurring decimal.
It is not too difficult to show that the Cantor set can be identified by points
whose ternary fractions consist of zeroes and twos only. Thus p1 = 0.20202
will belong to the Cantor set, whereas p2 = 0.120102 will not.
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The Koch Curve. Helge von Koch first imagined the Koch curve in 1904.
It is constructed by replacing a unit line segment with a motif consisting of
four line segments each of length 1

3 , as depicted in Figure 17.2.

Stage 0

Stage 2

Stage 4

Stage 1

Stage 3

Stage 5

Figure 17.2: [Python] Construction of the Koch curve up to stage 5.

A simple Python program is given in Section 17.5 to plot early generations
of the Koch curve. Note that at the kth stage there are N = 4k line segments
each of length l = 3−k. Thus for the mathematical fractal constructed to
infinity,

lim
k→∞

4k = ∞ and lim
k→∞

3−k = 0,

so the mathematical Koch curve consists of a curve that is infinitely long.

The Koch Square. Consider a variation of the Koch curve that is con-
structed by replacing one line segment with five line segments each of length
1
3 . Furthermore, suppose that these curves are attached to the outer edge of
a unit square. The first five stages of construction are shown in Figure 17.3.

It is possible to determine the area and perimeter bounded by the Koch
square in the following way. Suppose that at stage 0 that the square has area
A0 = 1 unit2 and that the area at stage k is Ak. Then

A1 = 1 + 4(3−2) unit2.
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Stage 0 Stage 1

Stage 2 Stage 3

Stage 4 Stage 5

Figure 17.3: The Koch square fractal constructed to stage 5. Note that
this fractal was also plotted in Chapter 1 using the Turtle module. See
Figure 1.10.
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Figure 17.4: The inverted Koch square at stage 5.

At stage 2, the area is given by

A2 = 1 + 4(3−2) + 4× 5× (3−4) unit2.

Continuing in this way, the area at the kth stage is given by

Ak = 1+4(3−2)+4×5×(3−4)+4×52×(3−6)+ . . .+4×5k−1×(3−2k) unit2.

Take the limit k → ∞. Then

A∞ = 1 +
4

9
+

∞∑
i=1

4× 5i × (9−(i+1)) unit2.

This is the sum of an infinite geometric series, and hence

A∞ = 1 +
4

9
+

4×5
92

1− 5
32

= 2 unit2.

It is not difficult to show that the perimeter Pk at the kth stage is given by

Pk = 4×
(
5

3

)k

,

and P∞ = ∞. Therefore, the Koch square has infinite perimeter and finite
area.

It is possible to construct an inverted Koch square fractal by attaching
the Koch curves to the inner edge of the unit square. The result up to stage
5 is shown in Figure 17.4.
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The Sierpiński Triangle. This fractal may be constructed in a number of
ways; see the exercises at the end of the chapter (Section 17.6). One way is
to play a so-called chaos game with a die. Consider an equilateral triangle
with vertices A, B, and C, as depicted in Figure 17.5.

C B

A

x0

Figure 17.5: A triangle used in the chaos game with an initial point x0.

The rules of the chaos game are very simple. Start with an initial point
x0 somewhere inside the triangle.

Step 1. Cast an ordinary cubic die with six faces.

Step 2. If the number is either 1 or 2, move half way to the point A and plot
a point.

Step 2. Else, if the number is either 3 or 4, move half way to the point B
and plot a point.

Step 2. Else, if the number is either 5 or 6, move half way to the point C
and plot a point.

Step 3. Starting with the new point generated in Step 2, return to Step 1.

The die is cast again and again to generate a sequence of points {x0, x1, x2, x3, . . .}.
As with the other fractals considered here, the mathematical fractal would
consist of an infinite number of points. In this way, a chaotic attractor
is formed, as depicted in Figure 17.6. A Python program is given in Sec-
tion 17.5.
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The first few initial points are omitted to reveal the chaotic attractor.
This object is known as the Sierpiński triangle.

Stochastic processes can be introduced to obtain fractals that look more
like objects in nature. We restrict ourselves to two-dimensional figures only
in this chapter.

Definition 2. An iterated function system (IFS) is a finite set T1, T2, T3, . . . ,

Figure 17.6: [Python] An early stage-generation Sierpiński triangle plotted
using the chaos game. There are 50,000 points plotted. Note that the Turtle
module was used to plot the Sierpiński triangle in Chapter 1. See Figure 1.11.

Tn of affine linear transformations of �2, where

Tj(x, y) = (ajx+ bjy + cj , djx+ ejy + fj) .

Furthermore, a hyperbolic iterated function system is a collection of affine
linear transformations that are also contractions.

The IFSs follow basic rules, as in the case of the chaos game used to gen-
erate the Sierpiński triangle. The rules of the chaos game can be generalized
to allow greater freedom as follows:

Step 1. Create two or more affine linear transformations.

Step 2. Assign probabilities to each of the transformations.

Step 3. Start with an initial point.

Step 4. Select a random transformation to get a second point.

Step 5. Repeat the process.
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An IFS consisting of four transformations was used to generate Figure 17.7.
This figure resembles a fern in nature and is known as Barnsley’s fern. A
Python program is listed in Section 17.5.

The affine linear transformations may be found by taking reflections, ro-
tations, scalings, and translations of triangles that represent the fronds of
the fern.

Figure 17.7: [Python] A fractal attractor of an IFS. Barnsley’s fern, generated
using 60,000 points.

17.2 Calculating Fractal Dimensions

Definition 3. A self-similar fractal has fractal dimension (or Hausdorff in-
dex ) Df given by

Df =
lnN(l)

− ln l
,

where l represents a scaling and N(l) denotes the number of segments of
length l. Thus the relationship

N(l) ∝ (l)−Df (17.1)

is also valid. The number Df , which need not be an integer, gives a measure
of how the density of the fractal object varies with respect to length scale.

Definition 4. A fractal is an object that has noninteger fractal dimension.
(This is an alternative to Definition 1).



442 Chapter 17: c©Springer

Example 1. Determine the fractal dimension of

(i) the Cantor set,

(ii) the Koch curve,

(iii) the Koch square, and

(iv) the Sierpiński triangle.

Solution. (i) A construction of the Cantor set up to stage 3 is depicted
in Figure 17.1. At each stage, one segment is replaced with two segments
that are 1

3 the length of the previous segment. Thus in this case, N(l) = 2
and l = 1

3 . The mathematical self-similar Cantor set fractal constructed to
infinity will therefore have dimension given by

Df =
ln 2

ln 3
≈ 0.6309.

Note that a point is defined to have dimension zero and a line dimension one.
Hence the Cantor set is more dense than a point but less dense than a line.

(ii) The Koch curve is constructed up to stage 5 in Figure 17.2. In this
case, one segment is replaced with four segments which are scaled by 1

3 ;
therefore, N(l) = 4 and l = 1

3 . The mathematical self-similar Koch fractal
generated to infinity will have dimension

Df =
ln 4

ln 3
≈ 1.2619.

Thus the Koch curve is more dense than a line but less dense than a plane,
which is defined to have dimension two.

(iii) The Koch square generated to stage 5 is shown in Figure 17.3.
Note that this object is not strictly self-similar; magnification will not reveal
smaller Koch squares. However, it is possible to define a fractal dimension,
since there is a scaling behavior. For the Koch square,

Df =
ln 5

ln 3
≈ 1.4650.

Hence the Koch square is more dense than the Koch curve but is still less
dense than the plane. Note that the inverted Koch square will have exactly
the same fractal dimension.

(iii) The mathematical Sierpiński triangle fractal (see Figure 17.6) may be
constructed by removing the central triangle from equilateral triangles to in-
finity. A motif is shown in Figure 17.8 and a Python program for constructing
the fractal in this way is listed in Chapter 1.

It is important to note that the scaling l referred to in Definition 2 is
linear. Thus the linear scale is 1

2 since the sides of the smaller triangles
are half as long as the sides of the original triangle in the motif. At each
stage, one triangle is replaced with three triangles, so l = 1

2 and N(l) = 3.
The fractal dimension of the mathematical Sierpiński triangle generated to
infinity is

Df =
ln 3

ln 2
≈ 1.5850.
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Figure 17.8: The motif used to generate the Sierpiński triangle.

The Sierpiński triangle has the highest dimension in examples (i)–(iv) and
is therefore the most dense.

Box-Counting Dimensions. The fractal dimensions calculated so far have
been for hypothetical fractal objects that cannot exist in the real world.
Mandelbrot [17] shows how fractals appear throughout science and nature.
Trees, clouds, rocks, and the fractals generated in earlier chapters can display
a certain type of scaling and self-similarity. Mandelbrot showed that these
objects obey a power law as described in equation (17.1) over a certain range
of scales. By covering the object with boxes of varying sizes and counting
the number of boxes that contain the object, it is possible to estimate a so-
called box-counting dimension, which is equivalent to the fractal dimension.
Mandelbrot defined the fractal dimension to be

Df = lim
l→0

lnN(l)

− ln l
,

where N(l) boxes of length l cover the fractal object. These boxes need not
be square.

Consider the following two examples (see Figures 17.9 and 17.11).

Example 2. The Koch curve is covered with boxes of varying scales, as
shown in Figure 17.9. Use a box-counting technique to show that the object
obeys the power law given in equation (17.1) and hence estimate the box-
counting dimension.

Solution. Table 17.1 gives the box count N(l) for the different scalings l,
and the natural logs are calculated.
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l = 1
12 l = 1

15

l = 1
18 l = 1

24

l = 1
38 l = 1

44

Figure 17.9: Different coarse coverings of the Koch curve generated to stage 6.
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Table 17.1: Box-count data for the Koch curve generated to stage 6.

l 12−1 15−1 18−1 24−1 38−1 44−1

N(l) 14 24 28 34 60 83
− ln l 2.4849 2.7081 2.8904 3.1781 3.6376 3.7842
lnN(l) 2.6391 3.1781 3.3322 3.5264 4.0943 4.4188

Using the least-squares method of regression, the line of best fit on a log-
log plot is given by y ≈ 1.2246x − 0.2817, and the correlation coefficient is
approximately 0.9857. The line of best fit is shown in Figure 17.10.

ln(N(l))

–ln(l)

Figure 17.10: The line of best fit on a log-log plot for the early generation
Koch curve. The correlation coefficient is 0.9857.

Therefore, the box-counting dimension of the Koch curve generated to
stage 6 is approximately 1.2246. There is obviously a scaling restriction with
this object since the smallest segment is of length 3−6 ≈ 0.0014 units and the
box-counting algorithm will break down as boxes approach this dimension.
There is always some kind of scaling restriction with physical images as there
are a limited number of pixels on a computer screen. It is interesting to note
that the mathematical Koch curve has a higher dimension of approximately
1.2619. This is to be expected as true mathematical fractal is a lot more
dense.

Example 3. A chaotic attractor comprising 5000 points for the Hénon map

xn+1 = 1.2 + 0.4yn − x2
n, yn+1 = xn
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is covered with boxes of varying scales, as shown in Figure 17.11. Use a
box-counting technique to show that the object obeys the power law given in
equation (17.1) and hence estimate the box-counting dimension.

l = 1
12 l = 1

16

l = 1
20 l = 1

24

l = 1
28 l = 1

32

Figure 17.11: Different coarse coverings of the Hénon chaotic attractor.
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Table 17.2: Box-count data for the Hénon map with 5000 points

l 12−1 16−1 20−1 24−1 28−1 32−1

N(l) 47 58 76 93 109 131
− ln l 2.4849 2.7726 2.9957 3.1781 3.3322 3.4657
lnN(l) 3.8501 4.0604 4.3307 4.5326 4.6914 4.8752

Solution. Table 17.2 gives the box count N(l) for the different scalings l,
and the natural logs are calculated.

Using the least-squares method of regression, the line of best fit on a log-
log plot is given by y ≈ 1.0562x + 1.1810, and the correlation coefficient is
approximately 0.9961. The line of best fit is shown in Figure 17.12.

ln(N(l))

–ln(l)

Figure 17.12: The line of best fit on a log-log plot for the early generation
Hénon attractor. The correlation coefficient is 0.9961.

Therefore, the box-counting dimension of the Hénon attractor with 5000
points is approximately 1.0562. There is a scaling restriction in this case as
there are only 5000 data points. Once more, the dimension of the mathemat-
ical fractal with an infinite number of data points will be larger.

The Hénon map is not self-similar and is, in fact, a multifractal. See the
next section. Recent applications of fractals are presented in [3].
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17.3 A Multifractal Formalism

In the previous section, it was shown that a fractal object can be character-
ized by its fractal dimension Df , which gives a measure of how the density
varies with respect to length scale. Most of the fractals appearing earlier in
this chapter can be constructed to the infinite stage in the minds of mathe-
maticians. They are homogeneous since the fractals consist of a geometrical
figure repeated on an ever-reduced scale. For these objects, the fractal di-
mension is the same on all scales. Unfortunately, in the real world, fractals
are not homogeneous; there is rarely an identical motif repeated on all scales.
Two objects might have the same fractal dimension and yet look completely
different. It has been found that real-world fractals are heterogeneous ; that
is, there is a nonuniformity possessing rich scaling and self-similarity prop-
erties that can change from point to point. Put plainly, the object can have
different dimensions at different scales. It should also be pointed out that
there is always some kind of scaling restriction with physical fractals. These
more complicated objects are known as multifractals, and it is necessary to
define continuous spectra of dimensions to classify them.

There are many different ways in which a mathematician can define di-
mension, and the subject can become very complicated and abstract. For
example, there is Hausdorff dimension, topological dimension, Euclidean di-
mension, and box-counting dimension to name but a few. More details on
the pure mathematical approach to multifractals are presented in [9] and [23].
The most widely used method of determining multifractal spectra is that of
Falconer [9], which is described briefly below.

Let μ be a self-similar probability measure defined on an object S ⊂
�d, where μ(B) is a probability measure determined from the probability of
hitting the object in the box Bi(l) and N ∝ 1

l2 is the number of boxes in
the grid. The generalized fractal dimensions Dq or, alternatively, the f(α)
spectrum of singularities may be computed using box-counting techniques.
First, consider the generalized fractal dimensions. Cover the object S with
a grid of boxes (Bi(l))

N
i=1 of size l as in Section 17.1. The qth moment (or

partition function) Zq is defined by

Zq (l) =
∑

μ(B) �=0

[μ(B)]
q
=

N∑
i=1

pqi (l), (17.2)
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For self-similar multifractals, given a real number q, τ(q) may be defined
as the positive number satisfying

N∑
i=1

pqi r
τ(q)
i = 1, (17.3)

where pi represent probabilities (
∑N

i=1 pi = 1) with ri fragmentation ratios.
The function τ : � → � is a decreasing real analytic function with

lim
q→−∞

τ(q) = ∞ and lim
q→∞

τ(q) = −∞.

The generalized dimensions Dq and the scaling function τ(q) are de-
fined by

τ(q) = Dq(1− q) = lim
l→0

lnZq(l)

− ln l
. (17.4)

The generalized dimensions are obtained from an assumed power-law behav-
ior of the partition function in the limit as l → 0 and N → ∞,

Zq ∝ lDq(q−1).

Definition 5. The generalized (box-counting) fractal dimensions Dq, where
q ∈ �, are defined by

Dq = lim
l→0

1

1− q

ln
∑N

i=1 pqi (l)

− ln l
, (17.5)

where the index i labels the individual boxes of size l and pi(l) denotes the
relative weight of the ith box or the probability of the object lying in the
box. Hence

pi(l) =
Ni(l)

N
,

where Ni(l) is the weight of the ith box and N is the total weight of the
object. When q = 0,

D0 = Df = lim
l→0

lnN(l)

− ln(l)
,

where N(l) is the number of boxes contained in the minimal cover. When
q = 1, L’Hopital’s Rule can be applied (see the exercises in Section 17.6)
to give

D1 = lim
l→0

∑N
i=1 pi ln(pi)

− ln(l)
,
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which is known as the information dimension. This gives an indication of
how the morphology increases as l → 0. The quantity D2 is known as the
correlation dimension and indicates the correlation between pairs of points
in each box. The generalized dimensions D3, D4, . . . are associated with cor-
relations between triples, quadruples, etc., of points in each box.

Now consider the so-called f(α) spectrum of dimensions. The weight ps
of segments of type s scales with the size l of a box as follows:

ps(l) ∝ (l)αs ,

where αs is the so-called coarse Hölder exponent defined by

αs =
ln ps(l)

ln l
.

The number of segments Ns of type s scales with the size l of a box accord-
ing to

Ns(l) ∝ (l)−fs .

The exponents αs and fs can then be used to determine f(α), as demon-
strated in the examples in the next section.

In many cases, f(α) = dimHSα is related to the Hausdorff-Besicovich
dimension of the set x ∈ S; see [9] for more information. In most cases, a
multifractal spectrum f(α) may be obtained from τ(q) by a so-called Legendre
transformation, which is described here briefly for completeness. Hence

f(α) = inf
−∞<q<∞

(τ(q) + αq) .

The f(α) can be derived from τ(q), and vice versa, by the identities

f (α(q)) = qα(q) + τ(q) and α = −∂τ

∂q
. (17.6)

It is known that the function f(α) is strictly cap convex (see Figure 17.13(c)),
and that α(q) is a decreasing function of q.

In practice, to compute τ(q) using the partition function, the following
three steps are required:

• Cover the object with boxes (Bi(l))
N
i=1 of size l and compute the cor-

responding box-measures μi = μ (Bi(l)) = pi(l).

• Compute the partition function Zq for various values of l.

• Check that the log-log plots for Zq against l are straight lines. If so,
then τ(q) is the slope of the line corresponding to the exponent q.
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In summary, τ(q) and Dq can be obtained from equations (17.2) and
(17.4), and the f(α) values can be determined as above or computed (see [6])
using the expressions

f(q) = lim
l→0

∑N
i=1 μi(q, l) lnμi(q, l)

ln l
(17.7)

and

α(q) = lim
l→0

∑N
i=1 μi(q, l) ln pi(l)

ln l
, (17.8)

where μi(q, l) are the normalized probabilities

μi(q, l) =
pqi (l)∑N

j=1 pqj(l)
.

In physical applications, an image on a computer screen of 512 × 512 pixels
is typically used. A problem arises with negative values of q; boxes with very
low measure may contribute disproportionately. Several papers have been
published addressing this clipping problem; see [2], for example. This is not
a problem with some of the physical applications discussed here since most
of the useful results are obtained for 0 ≤ q ≤ 5.

The multifractal functions τ(q), Dq, and f(α) have typical forms for self-
similar measures. For example, consider f : [αmin, αmax] → �, then −αmin

and −αmax are the slopes of the asymptotes of the strictly convex function
τ . The geometry of the Legendre transform determines that f is continuous
on [αmin, αmax] and f (αmin) = f (αmax) = 0. It is not difficult to show that
τ(0) = D0 and q = 0 corresponds to the maximum of f(α). When q = 1,
τ(q) = 0, and so f(α) = α. Moreover, d

dα (f(α)− α)) = q − 1 = 0. Thus
f(α) is tangent to f(α) = α at q = 1.

Typical τ(q), Dq, and f(α) curves and some of their properties are shown
in Figure 5.13. Note that in Figure 17.13(a), the line asymptotic to the curve
as q → ∞ has slope −αmin, and line asymptotic to the curve as q → −∞ has
slope −αmax.

There are major limitations associated with this so-called fixed-size box-
counting algorithm, and in many applications, results are only reliable for
a narrow range of q values, typically 0 ≤ q ≤ 5. In [16], Mach, Mas, and
Sagués also consider a fixed-weight box-counting algorithm, where the measure
quantities pi are fixed and the size factors ri vary; see equation (17.3). They
show that the fixed-size box-counting algorithm gives good results for small
positive q, and the fixed-weight box-counting algorithm can be used to give
good results for small negative q. Recently, Alber and Peinke [2] developed
an improved multifractal box-counting algorithm using the so-called fuzzy
discs and a symmetric scaling-error compensation. They apply their method
to the Hénon map with great success.
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Some simple multifractals are constructed in the next section, and a mul-
tifractal analysis is applied to determine multifractal spectra.

17.4 Multifractals in the Real World and Some
Simple Examples

Since the publication of the seminal paper by Halsey et al. [12] on multifrac-
tals, there has been intense research activity, and numerous papers have been
published in many diverse fields of science. A small selection of this research
material will be discussed in order to demonstrate how the analysis is being
applied in the physical world.

1

0

q

τ(
q)

0
0

q

D
q

q=1

αmax

q=0

f(α)

αmin

α

a b

c

Figure 17.13: Typical curves of (a) the τ(q) function, (b) the Dq spectrum,
and (c) the f(α) spectrum. In case (c), points on the curve near αmin corre-
spond to values of q → ∞, and points on the curve near αmax correspond to
values of q → −∞.
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In 1989, Chhabra et al. [6] used equations (17.7) and (17.8) to deter-
mine the f(α) spectrum for fully developed turbulence in laboratory and
atmospheric flows directly from experimental data. The same methods were
employed by Blacher et al. [4] in 1993 and Mills et al. [18] and [19], when char-
acterizing the morphology of multicomponent polymer systems. They found
that there was a correlation between the mechanical properties of the samples
and their respective f(α) curves. There have been many other studies into
the mechanical properties of plastics and rubbers using image analysis tech-
niques. A very useful tool is the multifractal analysis of density distributions.
The analysis is usually applied to elemental dot maps produced by scanning
electron microscopy coupled with energy dispersive X-ray spectroscopy. The
analysis is used to produce generalized dimensions, and it has been found
that w = D0 − D5 is related to factors such as tensile strength, elongation
at break, and energy to break. The quantity w is a measure of the nonuni-
formity of the structure. The smaller the value of w, the more homogeneous
the structure and the stronger the material. Multifractals are being applied
in image compression techniques and signal processing. In [24], Sarkar and
Chaudhuri estimate fractal and multifractal dimensions of grey-tone digital
images, and in [11] a multifractal approach is used to extract relevant in-
formation on textural areas in satellite meteorological images. Generalized
dimensions are being applied extensively in the geosciences to classify sedi-
mentary rocks. In [21], Muller, Huseby, and Saucier relate porosity and per-
meability to the multifractal spectra of the relevant samples. The analysis is
also often applied to diffusion-limited aggregates (DLA) clusters. For exam-
ple, Mach, Mas, and Sagués [16] consider the electrodeposition of zinc sulfate
on an electrode and apply the fixed-size and fixed-weight box algorithms to
obtain the generalized dimensions. Multifractal characteristics are displayed
by propagating cracks in brittle materials, as reported by Silberschmidt in
[26]. In physics, the box-counting method was applied to show the multi-
fractality of secondary-electron emission sites in silicon in [14]. In economics,
Calvet and Fisher [5] provide a unified treatment on the use of multifractal
techniques in finance. An accessible text on fractals and multifractals applied
to ecology and aquatic science is given in [25].

Other examples of multifractal phenomena can be found in, for example,
stock market analysis, rainfall, and even the distribution of stars and galax-
ies in the universe. Multifractal phenomena in chemistry and physics are
presented in [27]. The examples listed above are by no means exhaustive,
but the author hopes that the reader will be encouraged to look for more
examples in his/her own particular field of specialization.

In the following examples, simple multifractals are constructed using
nonuniform generalizations of the Cantor set and the Koch curve. Multi-
fractal spectra curves are plotted in both cases.
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Example 4. A Cantor multifractal set is constructed by removing the middle
third segment at each stage and distributing a weight so that each of the
remaining two segments receive a fraction p1 and p2 units, respectively, and
such that p1 + p2 = 1. Illustrate how the weight is distributed after the first
two stages of construction. Plot τ(q) curves, Dq spectra, and f(α) spectra
when

(i) p1 = 1
3 and p2 = 2

3 ,

(ii) p1 = 1
9 and p2 = 8

9 .

Which of the multifractals is more heterogeneous?

Solution. Figure 17.14 illustrates how the weight is distributed up to the
second stage of construction.

At stage k, each segment is of length ( 13 )
k and there are N = 2k segments.

Assign a unit weight to the original line. Then for k = 1, one line segment has

Stage 0

Stage 1

p0 = 1

p1 p2

p1
2 2p2p1 p2 p2 p1Stage 2

Figure 17.14: The weight distribution on a Cantor multifractal set up to
stage 2.

weight p1 and the other has weight p2. For k = 2, there are four segments:
one with weight p21, two with weight p1p2 and one with weight p22. At stage 3,
there are eight segments: one with weight p31, three with weight p21p2, three
with weight p1p

2
2, and one with weight p32. It is not difficult to see that at

stage k, there will be

Ns(l) =

(
k
s

)
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segments of weight ps1p
k−s
2 . From equation (17.2), the partition function Zq(l)

is given by

Zq(3
−k) =

k∑
s=0

(
k
s

)
pqs1 p

q(k−s)
2 = (pq1 + pq2)

k,

from the binomial theorem. Therefore, from equation (17.4),

τ(q) = Dq(1− q) = lim
l→0

ln(pq1 + pq2)
k

− ln 3−k
,

so

τ(q) =
ln(pq1 + pq2)

ln 3
.

The Dq spectrum can be plotted using continuity at q = 1.
To construct an f(α) spectrum, consider how the weight ps and the num-

ber of segments Ns each of type s, scales with segment size l. Now

ps(l) ∝ (l)αs , and Ns(l) ∝ (l)−fs ,

where s = 0, 1, . . . , k. Now ps = ps1p
k−s
2 and l = 3−k. Hence

αs =
s ln p1 + (k − s) ln p2

ln 3−k
.

The number of segments of weight ps at the kth stage is

Ns =

(
k
s

)
.

Hence

−fs =

ln

(
k
s

)

ln 3−k
.

These parametric curves may be plotted to produce f(α) using Python. The
programs are listed in the next section.

(i) Suppose that p1 = 1
3 and p2 = 2

3 . The multifractal curves are given in
Figure 17.15.

(ii) Suppose that p1 = 1
9 and p2 = 8

9 . The multifractal curves are given
in Figure 17.16.

Notice that in all cases, D0 = Df = ln 2
ln 3 ≈ 0.63. The multifractal in case

(ii) is more heterogeneous. The f(α) curve is broader and the generalized
dimensions Dq cover a wider range of values.

The following images and plots have been generated using image process-
ing techniques (see Chapter 18).
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Figure 17.15: Multifractal spectra for part (i) of Example 1 when p1 = 1/3
and p2 = 2/3. (a) τ(q) curve; (b) Dq spectrum; (c) f(α) spectrum when
k = 500.

Example 5. Consider the images in Figure 17.17, produced by applying the
weight distributions as indicated. Using the computer algorithms described
in various papers, it is possible to compute the f(α) spectra. The theoretical
multifractal spectra may be derived analytically using methods similar to
those used in [9]. Compare the theoretical and numerical f − alpha curves
for each of the images in Figures 17.7(b), (d), and (f).

Solution. The computed multifractal spectra are plotted in Figure 17.18.
For the motifs displayed in Figure 17.17, it is not difficult to show that

τ =
ln (pq1 + pq2 + pq3 + pq4)

ln(2)
,
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Figure 17.16: [Python] Multifractal spectra for part (ii) of Example 1 when
p1 = 1/9 and p2 = 8/9: (a) τ(q) curve; (b) Dq spectrum; (c) f(α) spectrum
when k = 500.

and then the theoretical f(α) spectrum can be plotted using the relations

α = −dτ

dq
, f = qα+ τ.

The reader is asked to plot these multifractal spectra in the coursework ex-
ercises in Chapter 22.

Note that in Figure 17.18(a), the f(α) curve is skewed right indicating
clusters of brighter pixels. In Figure 17.18(b), the f(α) curve is skewed left
indicating clusters of darker pixels. Finally, in Figure 17.18(c), the f(α) curve
is not skewed indicating there are no clusters. Notice that dispersion (given
by the width of the f(α) curves) is greatest in 17.18(b) and least in 17.18(c),
where the figure is most homogeneous. The heights of the f(α) curves gives
a measure of density.
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Figure 17.17: Multifractal images and the weight distribution motifs. The
weights are related to the gray scale; for example, p1 = 1 would be white and
p1 = 0 would be black on this scale.

Example 6. Plot the multifractal spectra for the images in Figures 17.19(a),
(c), and (d).

Solution. The computed multifractal spectra are plotted in Figures 17.19(b),
(d), and (f).
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The plots in Figure 17.19 are typical of those displayed in the research
literature. The f(α) curves give researchers a method to quantify density
(the height of the f(α)) curve, dispersion (the width of the f(α) curve),
and clustering (the f(α) curve is skewed right for cells and left for gaps).
Interested readers should consult our recent papers [20, 28], and [29].

Mulitifractal generalized Sierpiński triangles are considered in [10], and a
multifractal spectrum of the Hénon map is discussed in [2].

17.5 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

comb(k,s) # The number of combinations of k

things

# taken s at a time.

randint(a,b) # Return a random integer N, a<=N<=b.

# Program 17a: Plotting the Koch curve.

# See Figure 17.2.

import numpy as np

import matplotlib.pyplot as plt

from math import floor

k=6

n_lines = 4**k

h = 3**(-k);

x = [0]*(n_lines+1)

y = [0]*(n_lines+1)

x[0], y[0] = 0, 0

segment=[0] * n_lines;

# The angles of the four segments.

angle=[0, np.pi/3, -np.pi/3, 0]

for i in range(n_lines):

m=i

ang=0

for j in range(k):
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Figure 17.18: Plots for Example 5: the f(α) spectra showing both theoretical
(plotted with a blue line) and numerical (plotted with red plus signs) curves.
In all cases q was taken in the range −10 ≤ q ≤ 10.

segment[j] = np.mod(m, 4)

m = floor(m / 4)

ang = ang + angle[segment[j]]

x[i+1] = x[i] + h*np.cos(ang)

y[i+1] = y[i] + h*np.sin(ang)
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Figure 17.19: Plots for Example 6: binary images of microbes on a surface,
(a), (c), and (e), and the corresponding f(α) spectra (b), (d), and (f). In all
cases q was taken in the range −10 ≤ q ≤ 10.

plt.axis(’equal’)

plt.plot(x,y)

plt.show()

# Program 17b: The chaos game and Sierpinski triangle.

# See Figure 17.6.

import matplotlib.pyplot as plt

from random import random, randint

import numpy as np
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def midpoint(P, Q):

return (0.5*(P[0] + Q[0]), 0.5*(P[1] + Q[1]))

# The three vertices.

vertices = [(0, 0), (2, 2*np.sqrt(3)), (4, 0)]

iterates = 50000

x, y = [0]*iterates, [0]*iterates

x[0], y[0] = random(), random()

for i in range(1, iterates):

k = randint(0, 2)

x[i], y[i] = midpoint( vertices[k], (x[i-1], y[i-1]) )

fig, ax=plt.subplots(figsize=(8, 8))

ax.scatter(x, y, color = ’r’, s=0.1)

ax.axis(’off’)

plt.show()

# Program 17c: Barnsley’s fern.

# See Figure 17.7.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

# The transformation T.

f1 = lambda x,y: (0., 0.2*y)

f2 = lambda x,y: (0.85*x + 0.05*y, -0.04*x + 0.85*y + 1.6)

f3 = lambda x,y: (0.2*x - 0.26*y, 0.23*x + 0.22*y + 1.6)

f4 = lambda x,y: (-0.15*x + 0.28*y, 0.26*x + 0.24*y + 0.44)

fs = [f1, f2, f3, f4]

num_points = 60000

width = height = 300

fern = np.zeros((width, height))

x, y = 0, 0

for i in range(num_points):

# Choose a random transformation.

f = np.random.choice(fs, p=[0.01, 0.85, 0.07, 0.07])

x, y = f(x, y)

# Map (x,y) to pixel coordinates.

# Center the image.
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cx, cy = int(width / 2 + x * width / 10), int(y * height / 10)

fern[cy, cx] = 1

fig, ax = plt.subplots(figsize=(8, 8))

plt.imshow(fern[::-1,:], cmap=cm.Greens)

ax.axis(’off’)

plt.show()

# Program 17d: Plot multifractal tau curve, D_q curve and f(alpha)

curve.

# See Figure 17.16.

import numpy as np

import matplotlib.pyplot as plt

import scipy.misc

plt.subplots_adjust(hspace = 1)

plt.figure(1)

# The tau curve.

x = np.linspace(-20, 20, 1000)

y = (np.log((1/9)**x + (8/9)**x) / np.log(3))

plt.subplot(3, 1, 1)

plt.plot(x, y)

plt.xlabel(’$q$’, fontsize=15)

plt.ylabel(r’$\tau(q)$’, fontsize=15)

plt.tick_params(labelsize=15)

# The D_q curve.

x1 = np.linspace(-20, 0.99, 100)

x2 = np.linspace(0.99, 20, 100)

Dq1 = (np.log((1/9)**x1 + (8/9)**x1) / (np.log(3) * (1-x1)))

Dq2 = (np.log((1/9)**x2 + (8/9)**x2) / (np.log(3) * (1-x2)))

plt.subplot(3, 1, 2)

plt.plot(x1, Dq1, x2, Dq2)

plt.xlabel(’q’, fontsize=15)

plt.ylabel(’$D_q$’, fontsize=15)

plt.tick_params(labelsize=15)

# The f(alpha) curve.

p1, p2 =1/9, 8/9

k = 500

s = np.arange(500)

x = (s*np.log(p1) + (k-s)*np.log(p2)) / (k*np.log(1/3))
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f = -(np.log(scipy.misc.comb(k,s))) / (k*np.log(1/3))

plt.subplot(3, 1, 3)

plt.plot(x, f)

plt.xlabel(r’$\alpha$’, fontsize=15)

plt.ylabel(r’$f(\alpha)$’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

17.6 Exercises

1. (a) Consider the unit interval. A variation of the Cantor set is con-
structed by removing two line segments each of length 1

5 . Thus
at stage 1, remove the segments between {1

5 ..
2
5} and { 3

5 ..
4
5} from

the unit interval, leaving three line segments remaining. Contin-
uing in this way, construct the fractal up to stage three either on
graph paper or on a computer screen. Find the length of seg-
ment remaining at stage k. Determine the fractal dimension of
the mathematical fractal constructed to infinity.

(b) A Lévy fractal is constructed by replacing a line segment with a
try square. Thus, at each stage one line segment of length, 1,
say, is replaced by two of length 1√

2
. Construct the fractal up to

stage 7 either on graph paper or on a computer screen. When
using graph paper it is best to draw a skeleton (dotted line) of the
previous stage. What is the true fractal dimension of the object
generated to infinity?

(c) A Koch snowflake is constructed by adjoining the Kock curve to
the outer edges of a unit length equilateral triangle. Construct
this fractal up to stage 4 either on graph paper or on a computer
screen and show that the area bounded by the true fractal A∞ is
equal to

A∞ =
2
√
3

5
units2.

(d) The inverted Koch snowflake is constructed in the same way as in
Exercise 1(c) but the Koch curve is adjoined to the inner edges
of an equilateral triangle. Construct the fractal up to stage 4 on
graph paper or stage 6 on the computer.

2. Consider Pascal’s triangle given below. Cover the odd numbers with
small black discs (or shade the numbers). What do you notice about
the pattern obtained?
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 x0 x1 x1 x0 715 286 78 13 1

1 14 91 364 x2 x3 x4 x5 x4 x3 x2 364 91 14 1

1 15 105 455 x6 x7 x8 x9 x9 x8 x7 x6 455 105 15 1

where x0 = 1287, x1 = 1716, x2 = 1001, x3 = 2002, x4 = 3003,
x5 = 3432, x6 = 1365, x7 = 3003, x8 = 5005, and x9 = 6435.

3. The Sierpiński triangle can be constructed by removing the central
inverted equilateral triangle from an upright triangle; a motif is given
in this chapter. Construct the Sierpiński triangle up to stage 4 on graph
paper using this method.

4. A Sierpiński square is constructed by removing a central square at each
stage. Construct this fractal up to stage 3 and determine the fractal
dimension of the theoretical object generated to infinity.

5. Use the box-counting algorithm to approximate the fractal dimension
of Barnsley’s fern. The Python program for plotting the fern is given
in Section 17.5.

6. Consider the map defined by xn+1 = f (xn), where f(x) is defined by

f(x) =

{
1− 4x x ≤ 1

2
4x− 3 x > 1

2 .
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Plot the function on graph paper. Consider the sets, Sn say, which
remain in the interval [0, 1] after n iterations. List the intervals in S1

and S2. The set of points that never escape from the interval [0, 1] form
a Cantor set. What is the fractal dimension of this Cantor set?

7. Plot τ(q) curves, Dq, and f(α) spectra for the multifractal Cantor set
described in Example 1 when (i) p1 = 1

2 and p2 = 1
2 , (ii) p1 = 1

4 and
p2 = 3

4 , and (iii) p1 = 2
5 and p2 = 3

5 .

p1 p2

p2 p1

Figure 17.20: The motif used to construct the Koch curve multifractal, where
2p1 + 2p2 = 1.

p1 p1

p2 p2

p1

Figure 17.21: The motif used to construct the Koch curve multifractal, where
3p1 + 2p2 = 1.

p1 p4

p2 p3

Figure 17.22: The motif used to construct the Koch curve multifractal, where
p1 + p2 + p3 + p4 = 1.

8. A multifractal Koch curve is constructed and the weight is distributed
as depicted in Figure 17.20. Plot the f(α) spectrum when p1 = 1

3 and
p2 = 1

6 .



Fractals and Multifractals 467

9. A multifractal square Koch curve is constructed and a weight is dis-
tributed as depicted in Figure 17.21. Plot the τ(q) curve, the Dq, and
f(α) spectra when p1 = 1

9 and p2 = 1
3 .

10. A multifractal Koch curve is constructed and a weight is distributed as
depicted in Figure 17.22, where p1 + p2 + p3 + p4 = 1. Determine αs

and fs.
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Chapter 18

Image Processing with
Python

Aims and Objectives

• To provide a tutorial guide to image processing.

• To show how to manipulate images.

• To provide tools to analyze images.

• To introduce fast Fourier transforms.

On completion of this chapter, the reader should be able to

• load and save images;

• perform analysis on color, grayscale, and black and white images;

• plot power spectra of discrete and continuous dynamical systems;

• perform simple image processing.
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S. Lynch, Dynamical Systems with Applications using Python,
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Scikit-image is a collection of algorithms for image processing and is pack-
aged with Anaconda. It includes algorithms for analysis, color space manip-
ulation, feature detection, filtering, geometric transformations, morphology,
segmentation, and more. It is designed to interoperate with the Python nu-
merical and scientific libraries NumPy and SciPy. For more information, the
reader is directed to:

http://scikit-image.org

OpenCV (Open Source Computer Vision Library) is a computer vision
library while Pillow (the Python Imaging Library) is an image manipulation
and processing library. For more information on OpenCV, the reader is
directed to [1], and for more details on Pillow and SciPy, the reader is directed
to reference [12].

18.1 Image Processing and Matrices

There is extensive online documentation accompanying image processing and
analysis with Python. Probably the most popular image processing text-
books specializing to date are [8, 10], and [13], whereas [2] and [14] specialize
in bio-signal and medical image processing. Image processing books based
on Python include [5] and [15].

The reader will be shown how to read and write image files and perform
image processing techniques on those images. As a simple introduction, let
us construct a multifractal image (see Chapter 17) using a simple motif.

Example 1. Construct an image of a multifractal lattice using the motif
displayed in Figure 18.1(a) and save the image as a png file.

Solution. The Python program for producing Figure 18.1(b) is listed as
Programs 18a below.

# Program 18a: Generating a multifractal image.

# Save the image.

# See Figure 18.1(b).

import numpy as np

import matplotlib.pyplot as plt

from skimage import exposure, io, img_as_uint

p1, p2, p3, p4 = 0.3, 0.4, 0.25, 0.05

http://scikit-image.org
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p=[[p1, p2], [p3, p4]]

for k in range(1, 9, 1):

M = np.zeros([2**(k + 1), 2**(k + 1)])

M.tolist()

for i in range(2**k):

for j in range(2**k):

M[i][j] = p1 * p[i][j]

M[i][j + 2**k] = p2 * p[i][j]

M[i + 2**k][j] = p3 * p[i][j]

M[i + 2**k][j + 2**k] = p4 * p[i][j]

p = M

# Plot the multifractal image.

M = exposure.adjust_gamma(M, 0.2)

plt.imshow(M, cmap=’gray’, interpolation=’nearest’)

# Save the image as a portable network graphics (png) image.

im = np.array(M, dtype = ’float64’)

im = exposure.rescale_intensity(im, out_range = ’float’)

im = img_as_uint(im)

io.imsave(’Multifractal.png’, im)

io.show()

Figure 18.1: [Python] (a) A weight distribution motif; (b) the multifractal
image. The weights are related to the grayscale, for example, p1 = 1 would
be white and p1 = 0 would be black on this scale.

Without changing the exposure, you will note that the value of most
pixels is close to zero and this is why the screen initially looks black. The
result, after changing the exposure, is shown in Figure 18.1(b). The image
is a 512 × 512 pixel image. Note that the coordinate system used in image
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processing is ordered from top to bottom and from left to right from the top
left corner of the image. As the reader moves the mouse across the image in
Python the coordinate position and the grayscale pixel values are displayed at
the bottom of the figure window. To compute the pixel value at a coordinate
position (x = 10, y = 10) (the pixel is near the top left corner of the image),
one types >>>M[10,10], and this gives the pixel value 0.055918789097870264.
To save the image, use the >>>io.imsave command.

A truecolor image, or RGB image, is an image in which each pixel is
defined by three numerical values for Red, Green, and Blue. Python stores
truecolor images as m× n× 3 arrays. Suppose that one wanted to establish
the number of colored pixels in a color image. A simple program is listed
below. The image, face, of a raccoon can be downloaded from scipy.misc and
is shown in Figure 18.2(a).

Example 2. Use Python to determine the number of white pixels in the
image displayed in Figure 18.2(a).

Solution. The program for computing the number of white pixels in im-
age 18.2(a) is listed below. It is shown that there are 61248 white pixels.

# Program 18b: Counting white pixels in a color picture of a raccoon.

# See Figure 18.2.

from scipy import misc

import matplotlib.pyplot as plt

import numpy as np

face = misc.face()

fig1 = plt.figure()

plt.imshow(face)

width, height, _ = face.shape

print(’RGB value=’, face[100,100]) # RGB values of pixel.

print(’Image dimensions: {}x{}’.format(width, height))

white_pixels = np.zeros((width, height))

def white_pixel_filter(pixel, threshold):

return 1 if all(value > threshold for value in pixel) else 0

for i, row in enumerate(face):

for j, pixel in enumerate(row):

white_pixels[i, j] = white_pixel_filter(pixel, threshold=180)

fig2 = plt.figure()

plt.imshow(white_pixels, cmap = ’gray’)
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print(’There are {:,} white pixels’.format(int(np.sum(white_pixels))))

plt.show()

Dimensions= (768, 1024, 3)

RGB value= [94 82 92]

There are 61248 white pixels.

Figure 18.2: [Python] Using Python to binarize a color image. (a) The image
face of a raccoon. (b) The white pixels computed using Programs 18b. There
are 61248 white pixels.
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To compute the dimensions of the image, use the command >>>face.shape.
The dimensions of the face image are (768, 1024, 3). To compute the RGB
pixel value at coordinate (100, 100), (here x = 100 (going left to right) and
y = 100 (going top to bottom)) one uses the command >>>face[100,100],
which gives the RGB value [94,82, 92]. To determine the data type of the
image, type >>>face.dtype. The data type is uint8, and the pixel values can-
not be above 28 − 1.

The next example demonstrates how one may obtain a binary image
from a grayscale image and how to apply some statistical analysis to the
image.

Example 3. Load the file Microbes.png and convert the grayscale image
into a binary image. Determine the centroids and edges of the clusters, and
plot a histogram of the areas of the clusters.

Solution. The Python program for producing Figures 18.3 and 18.4 is listed
as Programs 18c below.

# Program 18c: Image and statistical analysis on the image Microbes.png.

# See Figures 18.3 and 18.4.

import matplotlib.pyplot as plt

from skimage import io

import numpy as np

from skimage.measure import regionprops

from scipy import ndimage

from skimage import feature

microbes_img = io.imread(’Microbes.png’)

fig1 = plt.figure()

plt.imshow(microbes_img,cmap=’gray’, interpolation=’nearest’)

width, height, _ = microbes_img.shape

binary = np.zeros((width, height))

for i, row in enumerate(microbes_img):

for j, pixel in enumerate(row):

if pixel[0] > 80:

binary[i, j] = 1
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fig2 = plt.figure()

plt.imshow(binary,cmap=’gray’)

print(’There are {:,} white pixels’.format(int(np.sum(binary))))

blobs = np.where(binary>0.5, 1, 0)

labels, no_objects = ndimage.label(blobs)

props = regionprops(blobs)

print(’There are {:,} clusters of cells:’.format(no_objects))

fig3 = plt.figure()

edges=feature.canny(binary,sigma=2,low_threshold=0.5)

plt.imshow(edges,cmap=plt.cm.gray)

fig4 = plt.figure()

labeled_areas = np.bincount(labels.ravel())[1:]

print(labeled_areas)

plt.hist(labeled_areas,bins=no_objects)

plt.xlabel(’Area’,fontsize=15)

plt.ylabel(’Number of clusters’,fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

Figure 18.3(a) shows the original image, Microbes.png, taken with a
scanning microscope. The image is converted into a grayscale image us-
ing the rgb2gray command. A filter is then applied to this image and pix-
els are assigned values “0” or “1,” to give the binary image displayed in
Figure 18.3(b). The centroids of the clusters of cells are marked with red
dots in Figure 18.3(c); this is left as an exercise for the reader. Finally,
Figure 18.3(d) shows the edges of the clusters using a canny edge detec-
tor. More detail on binarizing images, edge detection, filtering, and re-
gionprops can be found in the image processing textbooks listed in the
bibliography.

Figure 18.4 shows a histogram of the areas of the clusters of microbes
using the data from Figure 18.3(b). The area of the clusters is given as the
number of white pixels in the cluster.

18.2 The Fast Fourier Transform

The Fourier transform is a mathematical transform with many applications
in image processing, mathematics, engineering, and the physical sciences.
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Figure 18.3: [Python] (a) The image Microbes.png. (b) A binary image of
Microbes.png. (c) The centroids of the microbes clusters are shown as red
dots. (d) The edges of the clusters.

Definition 1. The continuous Fourier transform is defined by

F (ω) =

∫ ∞

−∞
f(t)e−2πiωtdt,

which transforms a mathematical function of time, f(t), into a function of
frequency, F (ω). The new function is the Fourier transform or the Fourier
spectrum of the function f .
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Figure 18.4: [Python] Histogram of the areas of the clusters. There are 106
clusters.

Definition 2. The inverse Fourier transform is defined by

f(t) =

∫ ∞

−∞
F (ω)e2πiωtdω.

The continuous Fourier transform converts an infinitely long time-domain
signal into a continuous spectrum of an infinite number of sinusoidal curves.
In many physical applications, scientists deal with discretely sampled signals,
usually at constant intervals. For such data, the discrete Fourier transform
is appropriate.

Definition 3. The discrete Fourier transform and its inverse for vectors of
length N are defined by

Xk =

N∑
n=1

tnω
(n−1)(k−1)
N ,

and

xn =
1

N

N∑
k=1

Xkω
−(n−1)(k−1)
N ,

where
ωN = e(−2πi)/N ,

and each Xk is a complex number that encodes both amplitude and phase of
a sinusoidal component of function xn.
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A fast Fourier transform, or FFT, is an algorithm to compute the discrete
Fourier transform. The FFT was first discovered by Gauss in 1805 but the
modern incarnation is attributed to Cooley and Tukey [6] in 1965. Computing
a set of N data points using the discrete Fourier transform requires O

(
N2

)
arithmetic operations, while an FFT can compute the same discrete Fourier
transform in only O(N logN) operations.

FFT is a powerful signal analysis tool, applicable to a wide variety of
fields including acoustics, applied mechanics, communications, digital filter-
ing, instrumentation, medical imaging, modal analysis, numerical analysis,
seismography, and spectral analysis.

Example 4. A common use of Fourier transforms is to find the frequency
components of a signal buried in a noisy time domain signal. Consider data
sampled at 800Hz. Form a signal containing a 50Hz sinusoid of amplitude
0.7 and 120Hz sinusoid of amplitude 1 and corrupt it with some zero-mean
random noise. Use Python to plot a graph of the signal and write a program
that plots an amplitude spectrum for the signal.

Solution. Figure 18.5(a) shows the sum of a 50Hz sinusoid and a 120Hz
sinusoid corrupted with zero-mean random noise and 18.5(b) displays the am-
plitude spectrum of y(t). The program for plotting the figures is listed below.

# Program 18d: Fast Fourier transform of a noisy signal.

# See Figure 18.5.

import numpy as np

import matplotlib.pyplot as plt

from scipy.fftpack import fft

Ns = 1000 # Number of sampling points

Fs = 800 # Sampling frequency

T = 1/Fs # Sample time

t = np.linspace(0, Ns*T, Ns)

amp1, amp2 = 0.7, 1

freq1, freq2 = 50, 120

# Sum a 50Hz and 120 Hz sinusoid

x = amp1 * np.sin(2*np.pi * freq1*t) + amp2*np.sin(2*np.pi * freq2*t)

y = x + 0.5*np.random.randn(Ns)

fig1 = plt.figure()

plt.plot(t, y)

plt.xlabel(’Time (ms)’, fontsize=15)

plt.ylabel(’y(t)’, fontsize=15)

plt.tick_params(labelsize=15)

fig2 = plt.figure()

yf = fft(y)

xf = np.linspace(0, 1/(2*T), Ns//2)

plt.plot(xf, 2/Ns * np.abs(yf[0:Ns//2]))
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plt.xlabel(’Frequency (Hz)’, fontsize=15)

plt.ylabel(’$|Y(f)|$’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

Figure 18.5: [Python] (a) Signal corrupted with zero-mean random noise.
(b) The amplitude spectrum of y(t). You can read off the amplitude and
frequencies.
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Readers interested in signal processing with Python are directed to ref-
erences [4] and [16]. The next example illustrates an application of FFT
for finding the power spectra of time series data. Interested readers should
consult Melbourne and Gottwald [11], who present results on the broad-
band nature of power spectra for diverse classes of discrete dynamical sys-
tems. For many years, the power spectrum has been used to distinguish
periodic, quasiperiodic, and chaotic motions of certain dynamical systems
from a broad range of fields. The power spectrum plotted for a periodic
or quasiperiodic signal has discrete peaks at the harmonics and subhar-
monics, while the chaotic signal has a broadband component in its power
spectrum. In order to illustrate these phenomena consider the following
simple example.

Example 5. Consider the 2-dimensional discrete map defined by

xn+1 = 1 + βxn − αy2n

yn+1 = xn, (18.1)

where α and β are constants. Suppose that α = 1, plot iterative plots and
power spectra for system (18.1) when (i) β = 0.05; (ii) β = 0.12, and (iii)
β = 0.3.

Solution. The Python program for producing the plots in Figure 18.6 is
listed below.

# Program 18e: Iterative map and power spectra.

# See Figure 18.6.

import matplotlib.pyplot as plt

from scipy.fftpack import fft

import numpy as np

# Parameters

a, b = 1, 0.3 # To get Figures 18.6(e) and (f)

n = 50000

def map_2d(X):

x, y = X

xn = 1 - a*y**2 + b*x

yn = x

return (xn, yn)

X0 = [(1 - b) / 2, (1 - b) / 2]
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Figure 18.6: [Python] Iterative plots and power spectra for system (18.1). (a)
Periodic behavior when β = 0.05. (b) Power spectrum when β = 0.05. (c)
Quasiperiodic behavior when β = 0.12. (d) Power spectrum when β = 0.12.
(e) Chaotic behavior when β = 0.3. (f) Power spectrum when β = 0.3.
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X, Y = [], []

for i in range(n):

xn, yn = map_2d(X0)

X, Y = X + [xn], Y + [yn]

X0 = [xn, yn]

fig, ax = plt.subplots(figsize=(8, 8))

ax.scatter(X, Y, color=’blue’, s=0.05)

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

fig2 = plt.figure()

f = np.linspace(-1, 1, n)

power = np.abs(fft(X)**2)

power = np.log(power)

plt.plot(f, power)

plt.xlim(0, 1)

plt.xlabel(’Frequency (Hz)’, fontsize=15)

plt.ylabel(’log(Power)’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

18.3 The Fast Fourier Transform on Images

Among the many applications of the two-dimensional Fourier transform there
are some very interesting and useful image processing tools which include
image compression, blurring and de-blurring, sharpening, noise removal, and
edge detection, for example. Figure 18.7 depicts how to apply a low pass fil-
ter to a jpeg image of Lena, and a Python program to produce a fast Fourier
transform is listed below. Note that the ideal low pass filter applies a Gaus-
sian function (interested readers should consult some of the textbooks in the
reference section of this chapter for more details). A low pass filter is used
to compress an image. A high pass filter (where the circular region would be
colored black in Figure 18.7(c)) is used in edge detection (Figure 18.8).

# Program 18f: Fast Fourier transform of the Lena image.

# See Figure 18.7.

import numpy as np

import skimage.io as io

import pylab

import matplotlib.pyplot as plt
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Figure 18.7: [Python] Low pass filtering of the Lena image. (a) Lena.jpg, (b)
fast Fourier transform, (c) a circular low pass filter, and (d) a compressed
image of Lena. Use the Python help pages for function definitions and syntax.

from skimage.color import rgb2gray

lena = rgb2gray(io.imread(’lena.jpg’))

fig1 = plt.figure()

plt.imshow(lena, cmap=’gray’)

fig2 = plt.figure()

# Take the 2-dimensional DFT and centre the frequencies

ftimage = np.fft.fft2(lena)

ftimage = np.fft.fftshift(ftimage)

ftimage = np.abs(ftimage)

fftimage = np.log(ftimage)

fftimage = rgb2gray(fftimage)

pylab.imshow(fftimage, cmap=’gray’)

plt.show()

The final example illustrates the Roberts and Sobel edge detection algo-
rithms. The Python program for producing Figure 18.8 is listed below.
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# Program 18g: Edge detection on the Lena image.

# See Figure 18.8.

import matplotlib.pyplot as plt

import skimage.io as io

from skimage.filters import roberts, sobel

from skimage.color import rgb2gray

lena = rgb2gray(io.imread(’lena.jpg’))

edge_roberts = roberts(lena)

edge_sobel = sobel(lena)

fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True,

figsize=(8, 4))

ax[0].imshow(edge_roberts, cmap=plt.cm.gray)

ax[0].set_title(’Roberts Edge Detection’)

ax[1].imshow(edge_sobel, cmap=plt.cm.gray)

ax[1].set_title(’Sobel Edge Detection’)

for a in ax:

a.axis(’off’)

plt.tight_layout()

plt.show()

Figure 18.8: [Python] Edge detection in the Lena image using both Roberts
and Sobel edge detection.
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18.4 Exercises

1. Use the matrix motif M = [0.1, 0.2; 0.2, 0.5] to produce a multifractal
image up to stage 8. Use Python to produce a figure representation of
the multifractal.

2. Use the matrix M = [0.1, 0.2, 0.05; 0.2, 0.05, 0.01; 0.3, 0.04, 0.05] to pro-
duce a multifractal image up to stage 5. Use Python to produce a figure
representation of the multifractal.

3. Use Python to produce a binary image of the green pixels in face (see
Figure 18.2(a)). Determine an approximate number of green pixels.

4. Write a Python program to plot the centroids of the Microbes.png image
(see Figure 18.3).

5. Compute the first 10000 iterates of the logistic map

xn+1 = 4xn(1− xn),

given that x0 = 0.1. Use Python to plot a power series spectrum.

6. Compute the first 10000 iterates of the Gaussian map

xn+1 = e−8x2
n − 0.6,

given that x0 = 0.1. Use Python to plot a power series spectrum.

7. Compute the first 10000 iterates of the Hénon map

xn+1 = 1 + yn − 1.2x2
n, yn+1 = 0.4xn

given that x0 = 0.1, y0 = 0. Use Python to plot a power series spec-
trum.

8. Compute the first 10000 iterates of the minimal chaotic neuromodule

xn+1 = 2 + 3.5φ1 (xn)− 4φ2 (yn) , yn+1 = 3 + 5φ1 (xn) ,

where φ1(x) = φ2(x) = 1/ (1 + e−x), given that x0 = 1, y0 = 0. Use
Python to plot a power series spectrum.

9. Write Python programs to produce (i) a circular high pass filter of the
Lena.jpg image (used for edge detection); (ii) an ideal low pass filter of
the Lena.jpg image using a suitable Gaussian function.

10. Carry out your own research to find other high pass filters used for edge
detection on images.
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Chapter 19

Chaos Control and
Synchronization

Aims and Objectives

• To provide a brief historical introduction to chaos control and synchro-
nization.

• To introduce two methods of chaos control for one- and two-dimensional
discrete maps.

• To introduce two methods of chaos synchronization.

On completion of this chapter, the reader should be able to

• control chaos in the logistic and Hénon maps;

• plot time series data to illustrate the control;

• synchronize chaotic systems;

• appreciate how chaos control and synchronization are being applied in
the real world.
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This chapter is intended to give the reader a brief introduction into the
new and exciting field of chaos control and synchronization and to show how
some of the theory is being applied to physical systems. There has been con-
siderable research effort into chaos control in recent times, and practical meth-
ods have been applied in, for example, biochemistry, cardiology, communica-
tions, physics laboratories, and turbulence. Chaos control has been achieved
using many different methods, but this chapter will concentrate on two pro-
cedures only. Chaos synchronization has applications in analog or digital
communications and cryptography. For more background material on chaos
control, the reader is directed to references [6, 8, 10, 12, 13, 15, 19, 21, 23, 24],
and [25]. The other references are predominantly concerned with chaos syn-
chronization.

Control and synchronization of chaotic systems are possible for both dis-
crete and continuous systems. Analysis of chaos control will be restricted
to discrete systems in this chapter and synchronization will be restricted to
continuous systems.

19.1 Historical Background

Even simple, well-defined discrete and continuous nonlinear dynamical sys-
tems without random terms can display highly complex, seemingly random
behavior. Some of these systems have been investigated in this book, and
mathematicians have labeled this phenomenon deterministic chaos. Nonde-
terministic chaos , where the underlying equations are not known, such as
that observed in a lottery or on a roulette wheel, will not be discussed in
this text. Throughout history, dynamical systems have been used to model
both the natural and technological sciences. In the early years of investiga-
tions, deterministic chaos was nearly always attributed to random external
influences and was designed out if possible. The French mathematician and
philosopher Henri Poincaré laid down the foundations of the qualitative the-
ory of dynamical systems at the turn of the century and is regarded by many
as being the first chaologist. Poincaré devoted much of his life in attempt-
ing to determine whether or not the solar system is stable. Despite knowing
the exact form of the equations defining the motions of just three celestial
bodies, he could not always predict the long-term future of the system. In
fact, it was Poincaré who first introduced the notion of sensitivity to initial
conditions and long-term unpredictability.

In recent years, deterministic chaos has been observed when applying sim-
ple models to cardiology, chemical reactions, electronic circuits, laser technol-
ogy, population dynamics, turbulence, and weather forecasting. In the past,
scientists have attempted to remove the chaos when applying the theory to
physical models, and it is only since 1990 that they have come to realize the
potential uses for systems displaying chaotic phenomena. For some systems,
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scientists are replacing the maxim “stability good, chaos bad” with “stability
good, chaos better.” It has been found that the existence of chaotic behavior
may even be desirable for certain systems.

Since the publication of the seminal paper of Ott, Grebogi, and Yorke
[21] in 1990, there has been a great deal of progress in the development of
techniques for the control of chaotic phenomena. Basic methods of control-
ling chaos along with several reprints of fundamental contributions to this
topic may be found in the excellent textbooks of Kapitaniak [13, 14]. Some
of these methods will now be discussed very briefly, and then a selection of
early applications of chaos control in the real world will be listed.

I. Changing the systems parameters. The simplest way to suppress chaos
is to change the system parameters in such a way as to produce the
desired result. In this respect, bifurcation diagrams can be used to de-
termine the parameter values. For example, in Chapter 5, bifurcation
diagrams were used to determine regions of bistability for nonlinear
bistable optical resonators. It was found that isolated bistable regions
existed for only a narrow range of parameter values. However, the ma-
jor drawback with this procedure is that large parameter variations may
be required, which could mean redesigning the apparatus and changing
the dimensions of the physical system. In many practical situations,
such changes are highly undesirable.

II. Applying a damper . A common method for suppressing chaotic oscil-
lations is to apply some kind of damper to the system. In mechanical
systems, this would be a shock absorber, and for electronic systems,
one might use a shunt capacitor. Once more, this method would mean
a large change to the physical system and might not be practical.

III. Pyragas’ method . This method can be divided into two feedback con-
trolling mechanisms: linear feedback control and time-delay feedback
control. In the first case, a periodic external force is applied whose
period is equal to the period of one of the unstable periodic orbits
contained in the chaotic attractor. In the second case, self-controlling
delayed feedback is used in a similar manner. This method has been
very successful in controlling chaos in electronic circuits such as the
Duffing system and Chua’s circuit. A simple linear feedback method
has been applied to the logistic map in Section 19.2.

IV. Stabilizing unstable periodic orbits (the Ott, Grebogi, and Yorke (OGY)
method). The method relies on the fact that the chaotic attractors
contain an infinite number of unstable periodic orbits. By making small
time-dependent perturbations to a control parameter of the system, it
is possible to stabilize one or more of the unstable periodic orbits. The



494 Chapter 19: c©Springer

method has been very successful in applications but there are some
drawbacks. This method will be discussed in some detail at the end of
this section.

V. Occasional proportional feedback (OPF). Developed by Hunt [12] in
1991, this is one of the most promising control techniques for real ap-
plications. It is a one-dimensional version of the OGY method and has
been successful in suppressing chaos for many physical systems. The
feedback consists of a series of kicks, whose amplitude is determined
from the difference of the chaotic output signal from a relaxation oscil-
lation embedded in the signal, applied to the input signal at periodic
intervals.

VI. Synchronization. The possibility of synchronization of two chaotic sys-
tems was first proposed by Pecora and Carroll [22] in 1990 with ap-
plications in communications. By feeding the output from one chaotic
oscillator (the transmitter) into another chaotic oscillator (the receiver),
they were able to synchronize certain chaotic systems for certain pa-
rameter choices. The method opens up the possibilities for secure in-
formation transmission. More historical information and examples of
chaos synchronization are presented in Section 19.4.

Before summarizing the OGY method, it is worthwhile to highlight some
of the other major results not mentioned above. The first experimental sup-
pression of chaos was performed by Ditto, Rausseo, and Spano [8] using the
OGY algorithm. By making small adjustments to the amplitude of an exter-
nal magnetic field, they were able to stabilize a gravitationally buckled mag-
netostrictive ribbon that oscillated chaotically in a magnetic field. They pro-
duced period-one and period-two behavior, and the procedure proved to be
remarkably robust. Using both experimental and theoretical results, Singer,
Wang, and Bau [25] applied a simple on-off strategy in order to laminarize
(suppress) chaotic flow of a fluid in a thermal convection loop. The on-off
controller was applied to the Lorenz equations, and the numerical results
were in good agreement with the experimental results. Shortly afterwards,
Hunt [12] applied a modified version of the OGY algorithm called occasional
proportional feedback (OPF) to the chaotic dynamics of a nonlinear diode
resonator. Small perturbations were used to stabilize orbits of low period,
but larger perturbations were required to stabilize orbits of high periods. By
changing the level, width, and gain of the feedback signal, Hunt was able to
stabilize orbits with periods as high as 23. Using the OPF algorithm devel-
oped by Hunt, Roy et al. [23] were able to stabilize a weakly chaotic green
laser. In recent years, the implementation of the control algorithm has been
carried out electronically using either digital signals or analog hardware. The
hope for the future is that all-optical processors and feedback can be used in
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order to increase speed. The first experimental control in a biological system
was performed by Garfinkel et al. [10] in 1992. They were able to stabilize
arrhythmic behavior in eight out of eleven rabbit hearts using a feedback-
control mechanism. It has been reported in [5] that a company has been set
up to manufacture small defibrillators that can monitor the heart and deliver
tiny electrical pulses to move the heart away from fibrillation and back to
normality. It was also conjectured in the same article that the chaotic heart
is more healthy than a regularly beating periodic heart. The OGY algorithm
was implemented theoretically by the author and Steele [19] to control the
chaos within a hysteresis cycle of a nonlinear bistable optical resonator us-
ing the real and imaginary parts of the electrical field amplitude. The same
authors have recently managed to control the chaos using feedback of the
electric field. This quantity is easy to continuously monitor and measure and
could lead to physical applications in the future.

Methods I-VI and results given above are by no means exhaustive. This
section is intended to provide a brief introduction to the subject and to en-
courage further reading.

The OGY Method
Following the paper of Ott, Grebogi, and Yorke [21], consider the n-
dimensional map

Zn+1 = f(Zn, p), (19.1)

where p is some accessible system parameter that can be changed in a small
neighborhood of its nominal value, say, p0. In the case of continuous-time
systems, such a map can be constructed by introducing a transversal surface
of section and setting up a Poincaré map.

It is well known that a chaotic attractor is densely filled with unstable
periodic orbits and that ergodicity guarantees that any small region on the
chaotic attractor will be visited by a chaotic orbit. The OGY method hinges
on the existence of stable manifolds around unstable periodic points. The
basic idea is to make small time-dependent linear perturbations to the control
parameter p in order to nudge the state towards the stable manifold of the
desired fixed point. Note that this can only be achieved if the orbit is in a
small neighborhood, or control region, of the fixed point.

Suppose that ZS(p) is an unstable fixed point of equation (19.1). The
position of this fixed point moves smoothly as the parameter p is varied. For
values of p close to p0 in a small neighborhood of ZS(p0), the map can be
approximated by a linear map given by

Zn+1 − ZS(p0) = J(Zn − ZS(p0)) +C(p− p0), (19.2)

where J is the Jacobian and C = ∂f
∂p . All partial derivatives are evaluated at

ZS(p0) and p0.
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Assume that in a small neighborhood around the fixed point

p− p0 = −K(Zn − ZS(p0)), (19.3)

where K is a constant vector of dimension n to be determined. Substitute
(19.3) into (19.2) to obtain

Zn+1 − ZS(p0) = (J−CK)(Zn − ZS(p0)). (19.4)

The fixed point is then stable as long as the eigenvalues, or regulator poles ,
have modulus less than unity. The pole-placement technique from control
theory can be applied to find the vector K. A specific example is given in
Section 19.3.

A simple schematic diagram is given in Figure 19.1 to demonstrate the
action of the OGY algorithm. Physically, one can think of a marble placed
on a saddle. If the marble is rolled towards the center (where the fixed point
lies), then it will roll off as depicted in Figure 19.1(a). If, however, the saddle
is moved slightly from side to side, by applying small perturbations, then the
marble can be made to balance at the center of the saddle, as depicted in
Figure 19.1(b).

m + 1Z

mZ

(p )Z

Z

m + 3Z
m + 2

0S

m +

(p

m +

m +

a b

Figure 19.1: Possible iterations near the fixed point (a) without control and
(b) with control. The double ended arrows are supposed to represent small
perturbations to the system dynamics. The iterates Ẑj represent perturbed
orbits.

Some useful points to note:

• The OGY technique is a feedback-control method.

• If the equations are unknown, sometimes delay-coordinate embedding
techniques using a single variable time series can be used (the map can
be constructed from experimental data).

• There may be more than one control parameter available.
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• Noise may affect the control algorithm. If the noise is relatively small
the control algorithm will still work in general.

It should also be pointed out that the OGY algorithm can only be applied
once the orbit has entered a small control region around the fixed point.
For certain nonlinear systems the number of iterations required—and hence
the time—for the orbit to enter this control region may be too many to be
practical. Shinbrot et al. [24] solved this problem by targeting trajectories to
the desired control regions in only a small number of iterations. The method
has also been successfully applied in physical systems.

19.2 Controlling Chaos in the Logistic Map

Consider the logistic map given by

xn+1 = fμ(xn) = μxn(1− xn) (19.5)

as introduced in Chapter 14. There are many methods available to control
the chaos in this one-dimensional system, but the analysis is restricted to
periodic proportional pulses in this section. For more details on the method
and its application to the Hénon map the reader is directed to [6]. To control
the chaos in this system, instantaneous pulses will be applied to the system
variables xn once every p iterations such that

xi → kxi,

where k is a constant to be determined and p denotes the period.
Recall that a fixed point of period one, say, xS , of equation (19.5) satisfies

the equation
xS = fμ(xS),

and this fixed point is stable if and only if
∣∣∣∣
dfμ(xS)

dx

∣∣∣∣ < 1.

Define the composite function Fμ(x) by

Fμ(x) = kfp
μ(x).

A fixed point of the function Fμ satisfies the equation

kfp
μ(xS) = xS , (19.6)

where the fixed point xS is stable if
∣∣∣∣k

dfp
μ(xS)

dx

∣∣∣∣ < 1. (19.7)
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Define the function Cp(x) by

Cp(x) =
x

fp
μ(x)

dfp
μ(xS)

dx
.

Substituting from (19.6), equation (19.7) becomes

|Cp(xS)| < 1. (19.8)

A fixed point of this composite map is a stable point of period p for the
original logistic map when the control is switched on, providing condition
(19.8) holds. In practice, chaos control always deals with periodic orbits of
low periods, say, p = 1 to 4 and this method can be easily applied.

To illustrate the method, consider the logistic map when μ = 4 and the
system is chaotic. The functions C1(x), C2(x), C3(x), and C4(x) are shown
in Figure 19.2.

Figure 19.2(a) shows that fixed points of period one can be stabilized for
every xS in the range between zero and approximately 0.67. When p = 2,
Figure 19.2(b) shows that fixed points of period two can only be stabilized
in three ranges of xS values. Figures 19.2(c) and (d) indicate that there are
seven and 14 acceptable ranges for fixed points of periods three and four,
respectively. Notice that the control ranges are getting smaller and smaller
as the periodicity increases.

Figure 19.3 shows time series data for specific examples when the chaos is
controlled to period-one, period-two, period-three, and period-four behavior,
respectively.

The values of xS chosen in Figure 19.3 were derived from Figure 19.2. The
values of k were calculated using equation (19.6). Note that the system can
be stabilized to many different points on and even off the chaotic attractor
(see the work of Chau [6]). A Python program is listed in Section 19.5.

This method of chaos control by periodic proportional pulses can also be
applied to the two-dimensional discrete Hénon map. The interested reader is
again directed to [6]. The OGY algorithm will be applied to the Hénon map
in the next section.

19.3 Controlling Chaos in the Hénon Map

Ott, Grebogi, and Yorke [21] used the Hénon map to illustrate the control
method. A simple example will be given here. Consider the Hénon map
as introduced in Chapter 14. The two-dimensional iterated map function is
given by

Xn+1 = 1 + Yn − αX2
n, Yn+1 = βXn, (19.9)
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C 2

C 3 C 4

a b

c d

Figure 19.2: Control curves Ci, i = 1, 2, 3, 4, for the logistic map when μ = 4.
The range is restricted to −1 < Cp(xS) < 1 in each case.
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xn xn

xn xn

a b

c d

Figure 19.3: [Python] Stabilization of points of periods one, two, three, and
four for the logistic map when μ = 4; (a) xS = 0.4, k = 0.417; (b) xS = 0.2,
k = 0.217; (c) xS = 0.3, k = 0.302; and (d) xS = 0.6, k = 0.601. In each case
k is computed to three decimal places.
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where α > 0 and |β| < 1. Take a transformation Xn = 1
αxn and Yn = β

αyn,
then system (19.9) becomes

xn+1 = α+ βyn − x2
n, yn+1 = xn. (19.10)

The proof that system (19.9) can be transformed into system (19.10) will
be left to the reader in the exercises at the end of this chapter. The Hénon
map is now in the form considered in [21], and the control algorithm given
in Section 19.1 will now be applied to this map. Set β = 0.4 and allow
the control parameter, in this case α, to vary around a nominal value, say,
α0 = 1.2, for which the map has a chaotic attractor.

The fixed points of period one are determined by solving the simultaneous
equations

α0 + βy − x2 − x = 0 and x− y = 0.

In Chapter 14, it was shown that the Hénon map has two fixed points of
period one if and only if (1 − β)2 + 4α0 > 0. In this particular case, the
fixed points of period one are located approximately at A = (x1,1, y1,1) =
(0.8358, 0.8358) and B = (x1,2, y1,2) = (−1.4358,−1.4358). The chaotic
attractor and points of period one are shown in Figure 19.4.

Figure 19.4: Iterative plot for the Hénon map (3000 iterations) when α0 = 1.2
and β = 0.4. The two fixed points of period one are labeled A and B.
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The Jacobian matrix of partial derivatives of the map is given by

J =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)
,

where P (x, y) = α0 + βy − x2 and Q(x, y) = x. Thus

J =

(
−2x β
1 0

)
.

Consider the fixed point at A; the fixed point is a saddle point. Using the
notation introduced in Section 19.1, for values of α close to α0 in a small
neighborhood of A, the map can be approximated by a linear map

Zn+1 − ZS(α0) = J(Zn − ZS(α0)) +C(α− α0), (19.11)

where Zn = (xn, yn)
T , A = ZS(α0), J is the Jacobian, and

C =

(
∂P
∂α
∂Q
∂α

)
,

and all partial derivatives are evaluated at α0 and ZS(α0). Assume in a small
neighborhood of A,

α− α0 = −K(Zn − ZS(α0)), (19.12)

where

K =

(
k1
k2

)
.

Substitute (19.12) into (19.11) to obtain

Zn+1 − ZS(α0) = (J−CK)(Zn − ZS(α0)).

Therefore, the fixed point at A = ZS(α0) is stable if the matrix J − CK
has eigenvalues (or regulator poles) with modulus less than unity. In this
particular case,

J−CK ≈
(

−1.671563338− k1 0.4− k2
1 0

)
,

and the characteristic polynomial is given by

λ2 + λ(1.671563338 + k1) + (k2 − 0.4) = 0.

Suppose that the eigenvalues (regulator poles) are given by λ1 and λ2; then

λ1λ2 = k2 − 0.4 and − (λ1 + λ2) = 1.671563338 + k1.
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The lines of marginal stability are determined by solving the equations λ1 =
±1 and λ1λ2 = 1. These conditions guarantee that the eigenvalues λ1 and
λ2 have modulus less than unity. Suppose that λ1λ2 = 1. Then

k2 = 1.4.

Suppose that λ1 = +1. Then

λ2 = k2 − 0.4 and λ2 = −2.671563338− k1.

Therefore,

k2 = −k1 − 2.271563338.

If λ1 = −1, then

λ2 = −(k2 − 0.4) and λ2 = −0.671563338− k1.

Therefore,

k2 = k1 + 1.071563338.

The stable eigenvalues (regulator poles) lie within a triangular region as de-
picted in Figure 19.5.

k

k

Figure 19.5: The bounded region where the regulator poles are stable.
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Select k1 = −1.5 and k2 = 0.5. This point lies well inside the triangular
region as depicted in Figure 19.5. The perturbed Hénon map becomes

xn+1 = (−k1(xn − x1,1)− k2(yn − y1,1) + α0) + βyn − x2
n, yn+1 = xn.

(19.13)

Figure 19.6: [Python] Time series data for the Hénon map with and without
control, r2n = x2

n + y2n. In case (a), the control is activated after the 199th
iterate, and in case (b), the control is switched off after the 400th iterate.
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Applying equations (19.10) and (19.13) without and with control, respec-
tively, it is possible to plot time series data for these maps. Figure 19.6(a)
shows a time series plot when the control is switched on after the 199th iter-
ate; the control is left switched on until the 400th iterate. In Figure 19.6(b),
the control is switched on after the 199th iterate and then switched off after
the 400th iterate. Remember to check that the point is in the control region
before switching on the control. If one attempts to switch on the control after
the 200th iterate, an error results, as the 200th iterate is not in the control
region.

Once again, the Python program is listed in Section 19.5.

19.4 Chaos Synchronization

The first recorded experimental observation of synchronization is attributed
to Huygens in 1665. Huygens was attempting to increase the accuracy of time
measurement and the experiment consisted of two huge pendula connected
by a beam. He recorded that the imperceptible motion of the beam caused
mutual anti-phase synchronization of the pendula. Synchronization phenom-
ena were also observed by van der Pol (1927) and Rayleigh (1945) when
investigating radio communication systems and acoustics in organ pipes, re-
spectively. For other interesting examples of synchronization without chaos
the reader is directed to the excellent book of Strogatz [26].

This section is concerned with chaos synchronization, where two, or more,
coupled chaotic systems (which may be equivalent or nonequivalent) exhibit
a common, but still chaotic, behavior. Boccaletti et al. [4] present a review
of the major methods of chaotic synchronization including complete synchro-
nization, generalized synchronization, lag synchronization, phase, and imper-
fect phase synchronization. However, examples and theory of complete and
generalized synchronization alone are presented here. The reader is directed
to the textbooks [20] and [27] for more information.

Since the pioneering work of Pecora and Carroll [22], the most popular
area of study is probably in secure communications. Electronic and optical
circuits have been developed to synchronize chaos between a transmitter and
a receiver. Cuomo and Oppenheim [7] built electronic circuits consisting of
resistors, capacitors, operational amplifiers, and analog multiplier chips in
order to mask and retrieve a message securely. Optically secure communica-
tions using synchronized chaos in lasers were discussed by Luo et al. in [18].
More recently, many papers have appeared on chaos synchronization with
cryptographic applications, see [16], for example. Other examples of chaotic
synchronization can be found in chemical kinetics [17], physiology [11], neural
networks [39], and economics [28].
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Complete Synchronization
Pecora and Carroll [22] consider chaotic systems of the form

u̇ = f(u), (19.14)

where u ∈ �n and f : �n → �n. They split system (19.14) into two subsys-
tems, one the driver system and the other the response.

ẋ = d(x(t)) driver,

ẏ = r(y(t),x(t)) response,

where x ∈ �k, y ∈ �m, and k + m = n. The vector x(t) represents the
driving signal. Some of the outputs from the driver system are used to
drive the response system. Consider the following simple example involving
a Lorenz system (see Section 8.4). The driver Lorenz system is

ẋ1 = σ(x2 − x1), ẋ2 = rx1 − x2 − x1x3, ẋ3 = x1x2 − bx3, (19.15)

and the response is given by

ẏ2 = −x1y3 + rx1 − y2, ẏ3 = x1y2 − by3. (19.16)

Note that the response Lorenz system is a subsystem of the driver, and in this
case x1(t) is the driving signal. Choose the parameter values σ = 16, b = 4,
and r = 45.92, then the driver system (19.15) is chaotic. Pecora and Carroll
[22] establish that synchronization can be achieved as long as the conditional
Lyapunov exponents of the response system, when driven by the driver, are
negative. However, the negativity of the conditional Lyapunov exponents
gives only a necessary condition for stability of synchronization, see reference
[4]. To prove stability of synchronization it is sometimes possible to use a
suitable Lyapunov function (see Chapter 6). Suppose, in this case, that

e = (x2, x3)− (y2, y3) = error signal, (19.17)

then we can prove that e(t) → 0 as t → ∞, for any set of initial conditions
for the coupled systems (19.15) and (19.16). Consider the following example:

Example 1. Find an appropriate Lyapunov function to show that e(t) → 0
as t → ∞, for the driver-response system (19.15) and (19.16). Use Python
to show that the system synchronizes.

Solution. The equations governing the error dynamics (19.17) are given by

ė2 = −x1(t)e3 − e2

ė3 = x1(t)e2 − be3.
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Multiply the first equation by e2 and the second equation by e3 and add
to give

e2ė2 + e3ė3 = −e22 − be23,

and the chaos terms have cancelled out. Note that

e2ė2 + e3ė3 =
1

2

d

dt

(
e22 + e23

)
.

Define a Lyapunov function

V (e2, e3) =
1

2

(
e22 + e23

)
,

then

V (e2, e3) ≥ 0 and
dV

dt
= −e22 − be23 < 0,

since b > 0. Therefore, V (e1, e2) is a Lyapunov function and (e2, e3) = (0, 0)
is globally asymptotically stable. A Python program for system (19.15) is
listed in Section 19.5 and Figures 19.7(a) and (b) show synchronization of
x2(t) with y2(t), and x3(t) with y3(t).

The choice of driving signal is crucial in complete synchronization, some
conditional Lyapunov exponents can be positive. A different choice of driving
signal can lead to unstable synchronized states, see [4], for example. An al-
ternative coupling configuration that addresses this problem is the auxiliary
system approach which leads to generalized synchronization.

Generalized Synchronization
Abarbanel et al. [1] introduce the auxiliary system approach which utilizes a
second, identical response system to monitor the synchronized motions. They
take system (19.14) and split it into three subsystems, one the driver system,

40 20 20 40 x2 t

40

20

20

40
y2 t

10 20 30 40 50 60 70 x3 t
10
20
30
40
50
60
70
y3 t

a b

Figure 19.7: [Python] Synchronization between (19.15) and (19.16): (a) x2(t)
and y2(t), (b) x3(t) and y3(t).
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one the response, and the third an auxiliary system, which is identical to the
response system.

ẋ = d(x(t)) driver,

ẏ = r(y(t),g,x(t)) response,

ż = a(z(t),g,x(t)) auxiliary,

where x ∈ �k, y ∈ �m, z ∈ �l, k + m + l = n, and g represents the
coupling strength. They state that two systems are generally synchronized
if there is a transformation, say, T, so that y(t) = T (x(t)). When the
response and auxiliary are driven by the same signal, then y(t) = T (x(t))
and z(t) = T (x(t)), and it is clear that a solution of the form y(t) = z(t)
exists as long as the initial conditions lie in the same basin of attraction.
They further show that when the manifold y = z is linearly stable, then the
conditional Lyapunov exponents for the response system, driven by x(t), are
all negative.

As a specific example, they consider generalized synchronization of chaotic
oscillations in a three-dimensional Lorenz system that is driven by a chaotic
signal from a Rössler system. The driver Rössler system is

ẋ1 = −(x2 + x3), ẋ2 = x1 + 0.2x2, ẋ3 = 0.2 + x3(x1 − μ), (19.18)

the response Lorenz system is

ẏ1 = σ(y2−y1)−g(y1−x1), ẏ2 = ry1−y2−y1y3, ẏ3 = y1y2−by3, (19.19)

and the auxiliary Lorenz system is

ż1 = σ(z2−z1)−g(z1−x1), ż2 = rz1−z2−z1z3, ż3 = z1z2−bz3. (19.20)

Consider
e = y(t)− z(t) = error signal. (19.21)

The function

V (e1, e2, e3) =
1

2

(
4e21 + e22 + e23

)

can be used as a Lyapunov function for the coupled system (19.19) and (19.20)
as long as the coupling parameter g satisfies the inequality

g <

(
1

4
σ + r − z3

)2

+
z22
b

− σ.

The zi(t), i = 1, 2, 3, are bounded on a chaotic attractor, and so this con-
dition can be satisfied when g is large enough. The numerical solutions to
the nine-dimensional differential equations are easily computed with Python.
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A program is listed in Section 19.5. Figure 19.8(a) shows synchronization
between y2(t) and z2(t) when g = 8. Figure 19.8(b) shows that y2(t) and
z2(t) are not synchronized when g = 4.
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a b

Figure 19.8: [Python] (a) Synchronization between y2(t) and z2(t) when the
coupling coefficient is g = 8 between systems (19.18), (19.19), and (19.20).
(b) When g = 4, the system is not synchronized. The coupling is not strong
enough.

There are examples of chaos control and synchronization in brain dynam-
ics, see Chapter 21, and open problems are considered in [29].

19.5 Python Programs

# Program 19a: Chaos control in the logistic map.

# Control to period two.

# See Figure 19.3(b).

import matplotlib.pyplot as plt

import numpy as np

# Parameters

mu = 4

k = 0.217

num_iterations = 60

xs, x = [], [0.6]

ns = np.arange(0, num_iterations, 2)

nsc = np.arange(num_iterations, 2*num_iterations, 2)

for n in ns:

x1 = mu*x[n] * (1 - x[n])

x.append(x1)

xs.append([n, x1])

x2 = mu*x1 * (1 - x1)
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x.append(x2)

xs.append([n+1, x2])

for n in nsc:

x1 = k*mu*x[n] * (1 - x[n])

x.append(x1)

xs.append([n, x1])

x2 = mu*x1 * (1 - x1)

x.append(x2)

xs.append([n+1, x2])

xs = np.array(xs)

fig, ax = plt.subplots(figsize=(8, 8))

plt.plot(xs[:, 0], xs[:, 1])

plt.plot(xs[:, 0], xs[:, 1], ’ro’)

plt.xlabel(’n’, fontsize=15)

plt.ylabel(r’$x_n$’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 19b: Chaos control in the Henon Map.

# See Figure 19.6.

import matplotlib.pyplot as plt

import numpy as np

# Parameters

a, b = 1.2, 0.4

xstar = ystar = 0.8358

k1, k2 = -1.8, 1.2

num_iterations = 199

rs = []

x, y = 0.5, 0.6

ns = np.arange(num_iterations)

nsc = np.arange(num_iterations, 2*num_iterations)

for n in ns:

xn = a + b*y - x**2

yn = x

x, y = xn, yn

r = np.sqrt(x**2 + y**2)

rs.append([n, r])

# Check point is in control region

print(x, y)
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for n in nsc:

xn = -k1 * (x - xstar) - k2 * (y - ystar) + a + b*y - x**2

yn = x

x, y = xn, yn

r = np.sqrt(x**2 + y**2)

rs.append([n, r])

rs = np.array(rs)

fig, ax = plt.subplots(figsize=(8,8))

plt.plot(rs[:, 0], rs[:, 1])

plt.plot(rs[:, 0], rs[:, 1], ’ro’)

plt.xlabel(’n’, fontsize=15)

plt.ylabel(r’$r_n^2$’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 19c: Synchronization between two Lorenz systems.

# See Figure 19.7(b).

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

# Constants

sigma = 16

b = 4

r = 45.92

tmax = 100

t = np.arange(0.0, tmax, 0.1)

def two_lorenz_odes(X, t):

x1, x2, x3, y2, y3 = X

dx1 = sigma * (x2 - x1)

dx2 = -x1 * x3 + r*x1 - x2

dx3 = x1 * x2 - b*x3

dy2 = -x1 * y3 + r*x1 - y2

dy3 = x1 * y2 - b*y3

return (dx1, dx2, dx3, dy2, dy3)

y0 = [15, 20, 30, 10, 20]

X = odeint(two_lorenz_odes, y0, t, rtol=1e-6)

x1, x2, x3, y2, y3 = X.T # unpack columns

plt.figure(1)

plt.plot(x3, y3)
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plt.xlabel(r’$x_3$’, fontsize=15)

plt.ylabel(r’$y_3$’, fontsize=15)

plt.show()

# Program 19d: Generalized synchronization.

# See Figure 19.8(a).

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

# Constants

mu = 5.7

sigma = 16

b = 4

r = 45.92

g = 8 # When g=4, there is no synchronization.

tmax = 100

t = np.arange(0.0, tmax, 0.1)

def rossler_lorenz_odes(X,t):

x1, x2, x3, y1, y2, y3, z1, z2, z3 = X

dx1 = -(x2 + x3)

dx2 = x1 + 0.2*x2

dx3 = 0.2 + x3 * (x1 - mu)

dy1 = sigma * (y2 - y1) - g * (y1 - x1)

dy2 = -y1 * y3 + r*y1 - y2

dy3 = y1 * y2 - b*y3

dz1 = sigma * (z2 - z1) - g * (z1 - x1)

dz2 = -z1*z3 + r*z1 - z2

dz3 = z1*z2 - b*z3

return (dx1, dx2, dx3, dy1, dy2, dy3, dz1, dz2, dz3)

y0 = [2, -10, 44, 30, 10, 20, 31, 11, 22]

X = odeint(rossler_lorenz_odes, y0, t, rtol=1e-6)

x1, x2, x3, y1, y2, y3, x1, z2, z3 = X.T # unpack columns

plt.figure(1)

# Delete first 500 iterates.

plt.plot(y2[500:len(y2)], z2[500:len(z2)])

plt.xlabel(r’$y_2$’, fontsize=15)

plt.ylabel(r’$z_2$’, fontsize=15)

plt.show()
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19.6 Exercises

1. Show that the map defined by

xn+1 = 1 + yn − ax2
n, yn+1 = bxn

can be written as

un+1 = a+ bvn − u2
n, vn+1 = un

using a suitable transformation.

2. Apply the method of chaos control by periodic proportional pulses (see
Section 19.2) to the logistic map

xn+1 = μxn(1− xn)

when μ = 3.9. Sketch the graphs Ci(x), i = 1 to 4. Plot time series data
to illustrate control of fixed points of periods one, two, three, and four.

3. Find the points of periods one and two for the Hénon map given by

xn+1 = a+ byn − x2
n, yn+1 = xn

when a = 1.4 and b = 0.4, and determine their type.

4. Apply the method of chaos control by periodic proportional pulses (see
Section 19.2) to the two-dimensional Hénon map

xn+1 = a+ byn − x2
n, yn+1 = xn,

where a = 1.4 and b = 0.4. (In this case, you must multiply xm by k1
and ym by k2, say, once every p iterations). Plot time series data to
illustrate the control of points of periods one, two, and three.

5. Use the OGY algorithm given in Section 19.3 to stabilize a point of
period one in the Hénon map

xn+1 = a+ byn − x2
n, yn+1 = xn

when a = 1.4 and b = 0.4. Display the control using a time series
graph.

6. Consider the Ikeda map, introduced in Chapter 16, given by

En+1 = A+BEne
i|En|2 .

Suppose that En = xn+iyn, rewrite the Ikeda map as a two-dimensional
map in xn and yn. Plot the chaotic attractor for the Ikeda map

En+1 = A+BEne
i|En|2

when A = 2.7 and B = 0.15. How many points are there of period one?
Indicate where these points are with respect to the attractor.
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7. Plot the chaotic attractor for the Ikeda map

En+1 = A+BEne
i|En|2

when

(i) A = 4 and B = 0.15;

(ii) A = 7 and B = 0.15.

How many points are there of period one in each case? Indicate where
these points are for each of the attractors on the figures.

8. Use the OGY method (see Section 19.3 the parameter A to control the
chaos to a point of period one in the Ikeda map

En+1 = A+BEne
i|En|2

when A0 = 2.7 and B = 0.15. Display the control on a time series plot.
(N.B.: Use a two-dimensional map).

9. Try the same procedure of control to period one for the Ikeda map as in
Exercise 8 but with the parameters A0 = 7 and B = 0.15. Investigate
the size of the control region around one of the fixed points in this case
and state how it compares to the control region in Exercise 8. What
can you say about flexibility and controllability?

10. Use the methods described in Section 19.4 to demonstrate synchroniza-
tion of chaos in Chua’s circuit.
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Chapter 20

Neural Networks

Aims and Objectives

• To provide a brief historical background to neural networks.

• To investigate simple neural network architectures.

• To consider applications in the real world.

• To present working Python program files for some neural networks.

• To introduce neurodynamics.

On completion of this chapter, the reader should be able to

• use the generalized delta learning rule with backpropagation of errors
to train a network;

• determine the stability of Hopfield networks using a suitable Lyapunov
function;

• use the Hopfield network as an associative memory;

• study the dynamics of a neuromodule in terms of bistability, chaos,
periodicity, quasiperiodicity, and chaos control.

© Springer International Publishing AG, part of Springer Nature 2018
S. Lynch, Dynamical Systems with Applications using Python,
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Neural networks are being used to solve all kinds of problems from a
wide range of disciplines. Some neural networks work better than others
on specific problems and the models are run using continuous, discrete, and
stochastic methods. For more information on stochastic methods, the reader
is directed to the textbooks at the end of this chapter. The topic is highly
interdisciplinary in nature, and so it is extremely difficult to develop an in-
troductory and comprehensive treatise on the subject in one short chapter
of a textbook. A brief historical introduction is given in Section 20.1 and
the fundamentals are reviewed. Real-world applications are then discussed.
The author has decided to concentrate on three types of neural network—the
feedforward multilayer network and backpropagation of errors using the gen-
eralized delta learning rule, the recurrent Hopfield neural network, and the
minimal chaotic neuromodule. The first network is probably the most widely
used in applications in the real world; the second is a much studied network
in terms of stability and Lyapunov functions; and the third provides a useful
introduction to neurodynamics.

For a more detailed historical introduction and review of the theory of
neural networks, the reader is once more directed to the textbooks in the
reference section of this chapter, see [2, 3, 4, 5, 6, 7, 8, 9, 13, 11, 12, 13, 14,
15, 16, 23, 18, 22], and [24, 25, 26, 27, 28, 29, 30], for example. For Python
programming in neural networks, see [28].

Some of the Python programs listed in Section 20.5 are quite long. Re-
member that you can download the Python files from the Web. Those readers
already familiar with neural networks should read the Python Help pages for
more advanced features.

20.1 Introduction

This textbook has thus far been concerned with deterministic dynamical
systems where the underlying equations are known. This chapter provides
a means of tackling nondeterministic systems, where the equations used to
model the system are not known. Unfortunately, many real-world problems
do not come prepackaged with mathematical equations, and often the equa-
tions derived might not be accurate or suitable. Throughout history, scien-
tists have attempted to model physical systems using mathematical equa-
tions. This has been quite successful in some scientific fields, but not in all.
For example, what equations would a doctor use to diagnose an illness and
then prescribe a treatment? How does a bank manager determine whether
to issue a mortgage? How can we tell whether somebody is telling the truth?
These questions have been successfully dealt with by the adoption of neural
networks, or artificial neural networks, as they are sometimes referred to,
using machine learning or data mining. Applications of this theory will be
dealt with in more detail at the end of this section.
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Definition 1. A neural network is a parallel information-processing system
that has certain characteristics in common with certain brain functions. It
is composed of neurons and synaptic weights and performs complex compu-
tations through a learning process.

The brain is a highly complex nonlinear information-processing system. It
is a parallel computer, infinitely more powerful than traditional, electronic,
sequential, logic-based digital computers, and powerful parallel and vector
computers on the market today. The average human brain consists of some
1011 neurons, each about 100μm in size, and approximately 1014 synapses.
The synapses, or dendrites, are mainly chemical, converting electrical signals
into chemical signals and back to electrical again. The synapses connecting
neurons store acquired knowledge and can be excitatory or inhibitory. It
should be pointed out that the numbers of neurons and synaptic weights do
not remain constant in the human brain. Scientists are attempting to incor-
porate some features of the way the brain works into modern computing.

Network Architecture

The neuronal model is made up of four basic components: an input vector, a
set of synaptic weights, a summing junction with an activation, or (transfer),
function, and an output. The bias increases or decreases the net input of
the activation function. Synapses receive input signals that they send to the
neural cell body; the soma (summing junction) sums these signals; and the
axon transmits the signal to synapses of connecting neurons. A schematic
illustrating a simple mathematical model of a neuron is shown in Figure 20.1.

wk1

wk2

.

.

.

bk

1

yk

wkn

Σ φ(.)

xn

x2

x1

Figure 20.1: A simple nonlinear model of a single neuron k. The vector
x = (x1, x2, . . . , xn)

T
represents the input; the synaptic weights are denoted

by wk = wkj , j = 1, 2, . . . , n; bk is the bias; φ(.) is the activation function
applied after a summation of the products of weights with inputs; and yk is
the output of neuron k.
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The neuron has bias bk, which is added to the summation of the products
of weights with inputs to give

vk = wkx+ bk,

where vk is the activation potential. The neuron output is written as

yk = φ (vk) .

Note in this case that wk is a vector. The activation function φ(.) typically
ranges from −1 to +1 (is bipolar) in applications, and has an antisymmet-
ric form with respect to the origin. This textbook will be concerned mainly
with bipolar activation functions. There are unipolar activation functions,
where the function ranges from 0 to +1, but bipolar functions are predomi-
nantly used in applications. Some bipolar activation functions are shown in
Figure 20.2. They are defined by the following equations:

(a) φ(v) =

{
1, v ≥ 0
−1, v < 0;

(b) φ(v) =

⎧⎨
⎩

1, v ≥ 0.5
v, −0.5 < v < 0.5
−1, v ≤ −0.5;

(c) φ(v) = tanh(av);

(d) φ(v) =
1

2a
log

cosh(a(v + 1))

cosh(a(v − 1))
.

The all-or-none law model of a neuron devised by McCulloch and Pitts
[23] in the early 1940s is widely acknowledged as the origin of the mod-
ern theory of neural networks. They showed, in principle, that the neuron
could compute any arithmetic or logical function. Indeed, even today, the
McCulloch-Pitts neuron is the one most widely used as a logic circuit. In
1949 Hebb [13] proposed the first learning law for neural networks used to
modify synaptic weights. He suggested that the strength of the synapse con-
necting two simultaneously active neurons should be increased. There are
many variations of Hebb’s learning law, and they are being applied to a va-
riety of neural network architectures; see Section 20.3, for example. In 1958
Rosenblatt [22] introduced a class of neural network called the perceptron. A
typical architecture is shown in Figure 20.3. It was found that the perceptron
learning rule was more powerful than the Hebb rule. Unfortunately, shortly
afterwards it was shown that the basic perceptron could only solve problems
that were linearly separable. One simple example of a problem that is not
linearly separable is the exclusive or (XOR) gate. An XOR gate is a circuit
in a computer that fires only if one of its inputs fire.
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Figure 20.2: Some activation functions: (a) a Heaviside function; (b) a piece-
wise linear function; (c) a sigmoid function; (d) a low-gain saturation func-
tion.
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Figure 20.3: A feedforward single layer network.
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Training
In 1960 Widrow and Hoff [30] introduced the ADALINE (ADAptive LInear
NEuron) network, and a learning rule labeled as the delta learning rule or
the least mean squared (LMS) algorithm. The perceptron learning rule ad-
justs synaptic weights whenever the response is incorrect, whereas the delta
learning rule adjusts synaptic weights to reduce the error between the output
vector and the target vector. This led to an improved ability of the network
to generalize. Neither the ADALINE nor the perceptron were able to solve
problems that were not linearly separable, as reported in the widely publi-
cized book of Minsky and Papert [18]. Rumelhart and McClelland [24] edited
a book that brought together the work of several researchers on backprop-
agation of errors using multilayer feedforward networks with hidden layers
(see Figure 20.4). This algorithm partially addressed the problems raised by
Minsky and Papert in the 1960s. Nowadays, over 90% of the applications
to real-world problems use the backpropagation algorithm with supervised
learning. Supervised learning is achieved by presenting a sequence of train-
ing vectors to the network, each with a corresponding known target vector.
A complete set of input vectors with known targets is known as an epoch; it
is usually loaded as a data file. A backpropagation algorithm using a super-
vised generalized delta learning rule is discussed in more detail in Section 20.2.
Throughout the 1980s, Kohonen [15] developed self-organizing feature maps
to form clusters for unsupervised learning. No target vectors are required for
this algorithm—similar input vectors are assigned the same output cluster.

x2

x1

x3

y2

y1

Figure 20.4: A feedforward neural network with one hidden layer; there are
three neurons in the hidden layer and two in the output layer.

The seminal paper of Hopfield [13] published in 1982 used statistical me-
chanics to explain the operation of a recurrent neural network used as an
associative memory. The architecture of a recurrent Hopfield neural net-
work comprising three neurons is shown in Figure 20.5. The main difference
between a feedforward network and a recurrent network is that there is feed-
back in the latter case. Figure 20.5 illustrates the multiple-loop feedback for
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a three-neuron module. Note that the output of each neuron is fed back to
each of the other neurons in the network.

x

z

y

bias

Figure 20.5: A recurrent Hopfield neural network with feedback. Note that
there is no self-feedback in this case.

The network operation can be analyzed using Lyapunov functions (see
Chapter 6). Both continuous and discrete recurrent Hopfield networks are
discussed in more detail in Section 20.3.

Applications. The field of neural networks has generated a phenomenal
amount of interest from a broad range of scientific disciplines. One of the
reasons for this is adaptability. Innovative architectures and new training
rules have been tested on powerful computers, and it is difficult to predict
where this research will take us in the future. As mentioned earlier, the
vast majority of real-world applications have relied on the backpropagation
algorithm for training multilayer networks, and recently kernel machines have
proved to be useful for a wide range of applications, including document
classification and gene analysis, for example. In general, more than one
network is required and each network is designed to perform a specific task.
Some well-known applications are listed and a more in-depth account is given
for the research carried out on psychological profiling in the Department of
Computing and Mathematics at Manchester Metropolitan University. The
list is by no means exhaustive and it will not be difficult for the reader to
find examples applied in their own research area.

Neural networks are being used extensively in the fields of aeronautics,
banking, defense, engineering, finance, insurance, marketing, manufacturing,
medicine, robotics, psychology, security, and telecommunications. One of
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the early applications was in signal processing; the ADALINE was used to
suppress noise on a telephone line. Many neural networks are being used as
associative memories for pattern and speech production and recognition, for
example. Simple networks can be set up as instant physicians. The expertise
of many general practitioners can be used to train a network using symptoms
to diagnose an illness and even suggest a possible treatment. In engineering,
neural networks are being used extensively as controllers, and in banking they
are being used in mortgage assessment. Scientists find them very useful as
function approximators. They can test whether the mathematical equations
(which could have been used for many years) used to model a system are
correct.

The Artificial Intelligence Group at Manchester Metropolitan University
has developed a machine for automatic psychological profiling. The work
has generated a huge amount of interest and recently was reported on na-
tional television in many countries around the world. Bandar et al. [1] have
patented the machine, and the expectations are high for future applications.
The machine could be used in police questioning, at airport customs, and by
doctors diagnosing schizophrenia, depression, and stress. A short article on
using the machine as a lie detector has recently appeared in New Scientist
[23]. The group claims that the lie detector is accurate in 80% of test cases.
Their machine uses about 20 independent neural networks; each one using
the generalized delta learning rule and backpropagation of errors. Some of
the channels used in the machine include eye gaze, blinking, head movement
forward, hand movement, and blushing.

The same group has also carried out extensive work on conversational
agents. It will not be long before we are all able to have conversations with
our computers.

This introductory section has given a brief overview of neural networks.
For more detailed information the reader is directed to the many Neural
Networks textbooks listed in the reference section of this chapter.

20.2 The Delta Learning Rule and Backprop-
agation

Widrow and Hoff [30] generalized the perceptron training algorithm to contin-
uous inputs and outputs and presented the delta rule (or LMS rule). Consider
a single neuron as in Figure 20.1. If the activation function is linear, then

yk =
∑
j

wkjxj + bk.
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Define an error function by the mean squared error, so

E =
1

2N

∑
x

(Ex
k )

2 =
1

2N

∑
x

(tk − yk)
2
,

where the index x ranges over all input vectors, N is the number of neurons,
Ex is the error on vector x, and tk is the target (or desired) output when
vector x is presented. The aim is to minimize the error function E with
respect to the weights wkj . It is an unconstrained optimization problem;
parameters wkj are sought to minimize the error. The famous method of
steepest descent is applied to the error function. Theorem 1 gives the delta
rule when the activation function is linear. There are two ways to update
the synaptic weights using the generalized delta rule. One is instantaneously
(a weight is updated on each iteration) and the other is batch (where the
weights are updated based on the average error for one epoch).

Theorem 1. The iterative method of steepest descent for adjusting the weights
in a neural network with a linear activation function is given by

wkj(n+ 1) = wkj(n)− ηgkj ,

where n is the number of iterates, gkj = − (tk − yk)xj is the gradient vector,
and η is a small positive constant called the learning rate.

Proof. Partially differentiating the error with respect to the weight vector
gives

∂E(wkj)

∂wkj
=

∂E

∂Ex
k

∂Ex
k

∂yk

∂yk
∂wkj

.

Now
∂E

∂Ex
k

= Ex
k = (tk − yk) ,

and
∂Ex

k

∂yk
= −1,

and
∂yk
∂wkj

= xj .

An estimate for the gradient vector is

gkj = (yk − tk)xj .

The delta rule for a linear activation function is thus formulated as

wkj(n+ 1) = wkj(n)− ηgkj ,
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where η is the learning rate parameter. The choice of η is important in
applications. If it is too large the algorithm can become unstable. One
normally experiments with η; it is not desirable for the algorithm to converge
too slowly.

Note that there are other optimization methods available, such as New-
ton’s method and the Gauss-Newton method, which converge quicker and
are less sensitive to the choice of η.

Theorem 2. When the activation function is nonlinear, say, yk = φ (vk),
the generalized delta rule can be formulated as

wkj(n+ 1) = wkj(n)− ηgkj , (20.1)

where

gkj = (yk − tk)
∂φ

∂vk
xj . (20.2)

Proof. The proof will be left as an exercise for the reader in Section 20.6.

The Backpropagation Algorithm

If neuron k is an output neuron, then Theorem 2 can be applied to adjust the
weights of the synapses. However, if neuron j is a hidden neuron in a layer
below neuron k, as depicted in Figure 20.6, then a new algorithm is required.

Theorem 3. When neuron j is in a hidden layer, the error backpropagation
rule is formulated as

wji(n+ 1) = wji(n)− ηgji, (20.3)

where

gji =
∑
k

(
(yk − tk)

∂φ

∂vk
wkj

)
∂φ

∂vj
ui. (20.4)

Proof. The proof is left as an exercise for the reader. The error is backprop-
agated through the network, layer by layer—back to the input layer, using
gradient descent.

Figure 20.6: An output neuron k connected to a hidden neuron j.
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The generalized delta rule and backpropagation will now be applied to
examples for estimating the value of owner-occupied homes in Boston, Mas-
sachusetts, in the 1970s.

The Boston housing data was downloaded from the UCI Machine Learning
Repository on the Web at

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

The data can be found in the file housing.txt that can be downloaded with the
Python files. Other databases at the site include arrhythmia data, automobile
miles per gallon data, breast cancer data, and credit screening data.

The Boston housing data was created by D. Harrison and D.L. Rubinfeld,
(Hedonic prices and the demand for clean air, J. Environmental Economics
and Management, 5 (1978), 81–102). They reported on housing values in the
suburbs of Boston. There are 506 input vectors and 14 attributes including
per capita crime rate by town, average number of rooms per dwelling, and
pupil-teacher ratio by town.

Example 1. Write a Python program to apply the generalized delta learning
rule to the Boston housing data for three attributes: columns six (average
number of rooms), nine (index of accessibility to radial highways), and 13
(percentage lower status of population), using the target data presented in
column 14 (median value of owner-occupied homes in thousands of dollars).
Use the activation function φ(v) = tanh(v) and show how the weights are
adjusted as the number of iterations increases. This is a simple three-neuron
feedforward network; there are no hidden layers and there is only one output
(see Figure 20.1).

Solution. The Python program file is listed in Section 20.5. A summary of
the algorithm is listed below to aid in understanding the program:

1. Scale the data to zero mean, unit variance, and introduce a bias on the
input.

2. Set small random weights.

3. Set the learning rate, say, η, and the number of epochs.

4. Calculate model outputs yk, the error tk − yk, the gradients g, and
perform the gradient descent to evaluate wkj(n + 1) = wkj(n) − ηgkj
for each weight, see Equation (20.3).

5. Plot a graph of weight values versus number of iterations.

Note that φ′(v) = 1 − (φ(v))2, since φ(v) = tanh(v). The reader will
be asked to verify this in the exercises. The synaptic weights converge to
the following approximate values: b1 ≈ −0.27, w11 ≈ 0.2, w12 ≈ −0.04, and
w13 ≈ −0.24, as shown in Figure 20.7.
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Example 2. Use the generalized delta rule with batch backpropagation of
errors on the full data set listed in housing.txt for the Boston house data.
Use the same activation function as in Example 1 and introduce one hidden
layer in the neural network. Compare performance for one and two neurons

Figure 20.7: [Python] Updates of the four weights (including the bias) against
the number of iterations.

in the hidden layer, when η = 0.05. One epoch consists of 506 input vectors,
each with one target, and there are 13 input vectors.

Solution. A summary of the algorithm is listed below to aid in producing
the program (which is left as an exercise for the reader):

1. Scale the data to zero mean, unit variance, and introduce a bias on the
input.

2. Iterate over the number of neurons in the hidden layer.

3. Set random weights for the hidden and output layers.

4. Iterate over a number of epochs using batch error backpropagation.

(a) Compute model outputs and the error.

(b) Compute output and hidden gradients and perform gradient de-
scent.

(c) Determine the mean squared error for each epoch.

5. Plot a graph of mean squared error versus the number of epochs for
each number of neurons in the hidden layer.
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Note that it is possible to work with any number of hidden layers, but
in general one hidden layer suffices. Indeed, it has been shown that one
hidden layer is sufficient to approximate any continuous function. Often
the functionality that comes from extra hidden layers causes the network to
overfit. The results on the full data set are shown in Figure 20.8.
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Figure 20.8: Number of epochs versus mean squared error for the Boston
housing data. The upper curve is the error with one hidden neuron (settles
to approximately 0.2); the lower curve is the error with two hidden neurons
(stabilizes to approximately 0.14). The learning rate used in this case was
η = 0.05.

20.3 The Hopfield Network and Lyapunov Sta-
bility

This section is concerned with recurrent neural networks that have fixed
synaptic weights but where the activation values undergo relaxation pro-
cesses through feedback. A primary application of the Hopfield network is
as an associative memory, where the network is used to store patterns for
future retrieval. The synaptic weights are set such that the stable points of
the system correspond with the input patterns to be stored. One can think of
these states as local minima in energy space. When a noisy or incomplete test
pattern is input, the system should settle onto a stable state that corresponds
to a stored pattern. A discrete Hopfield network is discussed in some detail
later in this section, where it is used as an associative memory on some pat-
terns. It should be noted that another famous problem addressed by Hopfield
and Tank [11] was in optimization and is known as the traveling salesman
problem. Simple continuous Hopfield networks are considered before the ap-
plications in order to highlight stability properties using Lyapunov functions.
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The Continuous Hopfield Model

A Hopfield network does not require training data with targets. A network
consisting of three neurons is shown in Figure 20.5, and a two-neuron module
is shown in Figure 20.6. In 1984, Hopfield [12] showed how an analog electrical
circuit could behave as a small network of neurons with graded response. He
derived a Lyapunov function for the network to check for stability and used
it as a content-addressable memory. The differential equations derived by
Hopfield for the electrical circuit using Kirchhoff’s laws could be reduced to
the following system of differential equations

d

dt
x(t) = −x(t) +Wa(t) + b, (20.5)

where x(t) is a vector of neuron activation levels, W is the weight matrix
representing synaptic connections, b are the biases, and a(t) = φ (x(t)) are
the nonlinear input/output activation levels. Hopfield derived the following
theorem for stability properties.

x

y

w21

w22

w12

w11

b2

b1

Figure 20.9: A simple recurrent Hopfield neural network, a two-neuron
module.

Theorem 4. A Lyapunov function for the n-neuron Hopfield network defined
by equation (20.5) is given by

V(a) = −1

2
aTWa+

n∑
i=1

(∫ ai

0

φ−1(u)du

)
− bTa (20.6)
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as long as

1. φ−1(ai) is an increasing function, that is,

d

dai
φ−1(ai) > 0, and

2. the weight matrix W is symmetric.

Proof. The proof is left as an exercise for the reader (see Section 20.6).

Consider the following two-neuron module taken from Hopfield’s original
paper [13].

Example 3. A schematic of the two-neuron module is shown in Figure 20.9.
The differential equations used in Hopfield’s model are given by

ẋ = −x+
2

π
tan−1

(γπy
2

)
, ẏ = −y +

2

π
tan−1

(γπx
2

)
,

where the activation functions are arctan. Determine the stable critical points
and derive a Lyapunov function.

Solution. In this case

W =

(
0 1
1 0

)
, b =

(
0
0

)
, a1 =

2

π
tan−1

(γπx
2

)
, a2 =

2

π
tan−1

(γπy
2

)
.

A Lyapunov function, derived using equation (20.6), is given by

V(a) = −1

2
(a1 a2)

(
0 1
1 0

)(
a1
a2

)
+

∫ a1

0

φ−1(u)du+

∫ a2

0

φ−1(u)du− (0 0)

(
a1
a2

)
.

Therefore,

V(a) = −a1a2 −
4

γπ2
(log (cos(πa1/2)) + log (cos(πa2/2))) .

Vector field plots for the differential equations are shown in Figure 20.10.
The corresponding Lyapunov functions can be plotted using Python when γ
is given (see Section 6.2). Plot the surface for |ai| ≤ 1, i = 1, 2.

When 0 < γ ≤ 1, there is one stable critical point at the origin (see Fig-
ure 20.10(a)). As γ passes through one, two stable critical points bifurcate
from the origin and the critical point at the origin becomes unstable (see
Figure 20.10(b)). As γ → ∞, the stable critical points approach corners of
the unit square as depicted in Figure 20.10(c).
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Example 4. Consider the recurrent Hopfield network modeled using the
differential equations

ẋ = −x+ 2

(
2

π
tan−1

(γπx
2

))
, ẏ = −y + 2

(
2

π
tan−1

(γπy
2

))
.
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Figure 20.10: Vector field plots when (a) 0 < γ ≤ 1, (b) γ > 1, and (c)
γ → ∞.
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Plot a vector field portrait and derive a suitable Lyapunov function.

Solution. In this case,

W =

(
2 0
0 2

)
and b =

(
0
0

)
.

A vector field plot is shown in Figure 20.11. There are four stable critical
points and five unstable critical points.
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x

Figure 20.11: A vector field plot for Example 4 when γ = 0.7. There are nine
critical points.

A Lyapunov function is given by

V(a) = −(a21 + a22)−
4

γπ2
(log (cos(πa1/2)) + log (cos(πa2/2))) .

You can plot the Lyapunov function using Python.

Continuous Hopfield networks with self-feedback loops can be Lyapunov
stable. However, discrete systems must have no self-feedback to guarantee
Lyapunov stability.
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The Discrete Hopfield Model

Hopfield [11, 12, 13] used his network as a content-addressable memory using
fixed points as attractors for certain fundamental memories. The Hopfield
model can be summarized using the following four-step algorithm. There is
no self-feedback in this case.

1. Hebb’s Postulate of Learning. Let x1,x2, . . . ,xM denote a set of
N -dimensional fundamental memories. The synaptic weights of the
network are determined using the formula

W =
1

N

M∑
r=1

xrx
T
r − M

N
In

where In is the N ×N identity matrix. Once computed, the synaptic
weights remain fixed.

2. Initialization. Let xp denote the unknown probe vector to be tested.
The algorithm is initialized by setting

xi(0) = xip, i = 1, 2, . . . , N,

where xi(0) is the state of neuron i at time n = 0, xip is the ith element
of vector xp, and N is the number of neurons.

3. Iteration. The elements are updated asynchronously (i.e., one at a
time in a random order) according to the rule

xi(n+ 1) = hsgn

⎛
⎝

N∑
j=1

wijxj(n)

⎞
⎠ , i = 1, 2, . . . , N,

where

hsgn(vi(n+ 1)) =

⎧⎨
⎩

1, vi(n+ 1) > 0
xi(n), vi(n+ 1) = 0
−1, vi(n+ 1) < 0

and vi(n + 1) =
∑N

j=1 wijxj(n). The iterations are repeated until the
vector converges to a stable value. Note that at least N iterations are
carried out to guarantee convergence.
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4. Result. The stable vector, say, xfixed, is the result.

The algorithm above uses asynchronous updating of synaptic weights.
Synchronous updating is the procedure by which weights are updated simul-
taneously. The fundamental memories should first be presented to the Hop-
field network. This tests the network’s ability to recover the stored vectors
using the computed synaptic weight matrix. The desired patterns should be
recovered after one iteration; if not, then an error has been made. Distorted
patterns or patterns missing information can then be tested using the above
algorithm. There are two possible outcomes.

1. The network converges to one of the fundamental memories.

2. The network converges to a spurious steady state. Spurious steady
states include the following:

(a) Reversed fundamental memories—e.g., if xf is a fundamental mem-
ory then so is −xf .

(b) Mixed fundamental memories—a linear combination of fundamen-
tal memories.

(c) Spin-glass states—local minima not correlated with any funda-
mental memories.

Before looking at an application of a Hopfield network as a content-addressable
memory, a simple example is shown below to illustrate the algorithm.

Example 5. A five-neuron discrete Hopfield network is required to store the
following fundamental memories:

x1 = (1, 1, 1, 1, 1)T , x2 = (1,−1,−1, 1,−1)T , x3 = (−1, 1,−1, 1, 1)T .

(a) Compute the synaptic weight matrix W.

(b) Use asynchronous updating to show that the three fundamental mem-
ories are stable.

(c) Test the following vectors on the Hopfield network (the random orders
affect the outcome):

x4 = (1,−1, 1, 1, 1)T , x5 = (0, 1,−1, 1, 1)T , x6 = (−1, 1, 1, 1,−1)T .

Solution. (a) The synaptic weight matrix is given by

W =
1

5

(
x1x

T
1 + x2x

T
2 + x3x

T
3

)
− 3

5
I5,
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so

W =
1

5

⎛
⎜⎜⎜⎜⎝

0 −1 1 1 −1
−1 0 1 1 3
1 1 0 −1 1
1 1 −1 0 1
−1 3 1 1 0

⎞
⎟⎟⎟⎟⎠

.

(b) Step 1. First input vector, x1 = x(0) = (1, 1, 1, 1, 1)T .

Step 2. Initialize x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1, x5(0) = 1.

Step 3. Update in random order x3(1), x4(1), x1(1), x5(1), x2(1), one at
a time.

x3(1) = hsgn(0.4) = 1,

x4(1) = hsgn(0.4) = 1,

x1(1) = hsgn(0) = x1(0) = 1,

x5(1) = hsgn(0.8) = 1,

x2(1) = hsgn(0.8) = 1.

Thus x(1) = x(0) and the net has converged.

Step 4. The net has converged to the steady state x1.

Step 1. Second input vector, x2 = x(0) = (1,−1,−1, 1,−1)T .

Step 2. Initialize x1(0) = 1, x2(0) = −1, x3(0) = −1, x4(0) = 1,
x5(0) = −1.

Step 3. Update in random order x5(1), x3(1), x4(1), x1(1), x2(1), one at
a time.

x5(1) = hsgn(−0.8) = −1,

x3(1) = hsgn(−0.4) = −1,

x4(1) = hsgn(0) = x4(0) = 1,

x1(1) = hsgn(0.4) = 1,

x2(1) = hsgn(−0.8) = −1.

Thus x(1) = x(0) and the net has converged.

Step 4. The net has converged to the steady state x2.
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Step 1. Third input vector, x3 = x(0) = (−1, 1,−1, 1, 1)T .

Step 2. Initialize x1(0) = −1, x2(0) = 1, x3(0) = −1, x4(0) = 1, x5(0) = 1.

Step 3. Update in random order x5(1), x1(1), x4(1), x2(1), x3(1), one at
a time.

x5(1) = hsgn(0.8) = 1,

x1(1) = hsgn(−0.4) = −1,

x4(1) = hsgn(0.4) = 1,

x2(1) = hsgn(0.8) = 1,

x3(1) = hsgn(0) = x3(0) = −1.

Thus x(1) = x(0) and the net has converged.

Step 4. The net has converged to the steady state x3.

(c) Step 1. Fourth input vector, x4 = x(0) = (1,−1, 1, 1, 1)T .

Step 2. Initialize x1(0) = 1, x2(0) = −1, x3(0) = 1, x4(0) = 1, x5(0) = 1.

Step 3. Update in random order x2(1), x4(1), x3(1), x5(1), x1(1), one at
a time.

x2(1) = hsgn(0.8) = 1,

x4(1) = hsgn(0.4) = 1,

x3(1) = hsgn(0.4) = 1,

x5(1) = hsgn(0.8) = 1,

x1(1) = hsgn(0) = x1(0) = 1.

Thus x(1) = x1 and the net has converged.

Step 4. The net has converged to the steady state x1.

Step 1. Fifth input vector, x5 = x(0) = (0, 1,−1, 1, 1)T , information is
missing in the first row.

Step 2. Initialize x1(0) = 0, x2(0) = 1, x3(0) = −1, x4(0) = 1, x5(0) = 1.
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Step 3. Update in random order x4(1), x5(1), x1(1), x2(1), x3(1), one at a
time.

x4(1) = hsgn(0.6) = 1,

x5(1) = hsgn(0.6) = 1,

x1(1) = hsgn(−0.4) = −1,

x2(1) = hsgn(0.8) = 1,

x3(1) = hsgn(0) = x3(0) = −1.

Thus x(1) = x3 and the net has converged.

Step 4. The net has converged to the steady state x3.

Step 1. Sixth input vector, x6 = x(0) = (−1, 1, 1, 1,−1)T .

Step 2. Initialize x1(0) = −1, x2(0) = 1, x3(0) = 1, x4(0) = 1, x5(0) = −1.

Step 3. Update in random order x3(1), x2(1), x5(1), x4(1), x1(1), one at a
time.

x3(1) = hsgn(−0.4) = −1,

x2(1) = hsgn(−0.4) = −1,

x5(1) = hsgn(−0.4) = −1,

x4(1) = hsgn(−0.4) = −1,

x1(1) = hsgn(0) = x1(0) = −1.

Step 3 (again). Update in random order x2(1), x1(1), x5(1), x4(1), x3(1), one
at a time.

x2(2) = hsgn(−0.8) = −1,

x1(2) = hsgn(0) = x1(1) = −1,

x5(2) = hsgn(−0.8) = −1,

x4(2) = hsgn(−0.4) = −1,

x3(2) = hsgn(−0.4) = −1.

Thus x(2) = x(1) and the net has converged.

Step 4. The net has converged to the spurious steady state −x1.

A Python program implementing the above algorithm can be found in
Section 20.5.
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Example 6. Write a Python program that illustrates the behavior of the
discrete Hopfield network as a content-addressable memory using N = 81
neurons and the set of handcrafted patterns displayed in Figure 20.12.

Solution. See Programs 20b listed in Section 20.5 as a guide. Set a noise
level to 1

3 . On average the network will converge after 1
3 ×81 = 27 iterations.

In order for this algorithm to work, the vectors defining the patterns have to
be as orthogonal as possible. If some patterns are similar, the network will
not perform very well.

20.4 Neurodynamics

It is now understood that chaos, oscillations, synchronization effects, wave
patterns, and feedback are present in higher-level brain functions and on
different levels of signal processing. In recent years, the disciplines of neuro-
science and nonlinear dynamics have increasingly coalesced, leading to a new
branch of science called neurodynamics. This section will concentrate on a
minimal chaotic neouromodule, studied in some detail by Pasemann and his

Figure 20.12: The patterns to be used as fundamental memories for the
discrete Hopfield model.

group [19] and [20]. They have considered chaos control and synchronization
effects for this simple model.
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A Minimal Chaotic Neuromodule
The discrete two-dimensional system investigated by Pasemann is defined by
the map

xn+1 = b1 + w11φ1(xn) + w12φ2(yn), yn+1 = b2 + w21φ1(xn) + w22φ2(yn),
(20.7)

where its activity at time n is given by (xn, yn), b1, b2 are biases, wij are the
synaptic weights connecting neurons, and φ represents the transfer function
defined by

φ1(x) = φ2(x) =
1

1 + e−x
. (20.8)

The simple network architecture of this recurrent module with an excitory
neuron and an inhibitory neuron with self-connection is shown in Figure 20.9.
Pasemann and Stollenwerk (see reference in Chapter 3) considered the model
with the following parameter values

b1 = −2, b2 = 3, w11 = −20, w21 = −6, w12 = 6, and w22 = 0. (20.9)

Figure 20.13 shows the chaotic attractor for system (20.7) using the trans-
fer function in equation (20.8) and the parameters listed in (20.9).
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Figure 20.13: [Python] The chaotic attractor for a minimal chaotic neuro-
module.

The fixed points of periods one and two may be found in the usual way.
Fixed points of period one satisfy the simultaneous equations xn+1 = xn =
x, and yn+1 = yn = y. There is one fixed point of period one at P11 =
(−1.2804, 1.6951), working to four decimal places. The stability of this fixed
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point is determined by considering the eigenvalues of the Jacobian matrix
given by

J =

(
w11

∂
∂xφ1(x) w12

∂
∂yφ2(y)

w21
∂
∂xφ1(x) 0

)
.

The eigenvalues for the fixed point of period one are given by λ1 = −3.1487,
λ2 = −0.2550, and the fixed point is a saddle point. Hence P11 is unstable.
The fixed points of period two are found by solving the equations xn+2 =
xn = x, and yn+2 = yn = y, which has two solutions at P21 = (−7.8262,
−0.4623), and P22 = (0.3107, 2.9976). These fixed points are also unstable.

A Bistable Neuromodule

As with many nonlinear dynamical systems, higher-level brain functions can
be subject to feedback. The author and Bandar have investigated system
(20.7) with the following choice of parameters

b1 = 2, b2 = 3, w11 = 7, w21 = 5, w12 = −4, and w22 = 0, (20.10)

and using the transfer functions

φ1(x) = tanh(ax) and φ2(y) = tanh(αy), (20.11)

with a = 1 and α = 0.3. Using numerical techniques, there are three fixed
points of period one at P11 = (−2.8331,−1.9655), P12 = (0.2371, 4.1638), and
P13 = (5.0648, 7.9996). Using the Jacobian matrix, point P11 has eigenvalues
λ1 = 0.0481 + 0.2388i, λ2 = 0.0481− 0.2020i. The fixed point is stable since
|λ1| < 1 and |λ2| < 1. Points P12 and P13 have eigenvalues λ1 = 6.3706,
λ2 = 0.2502 and λ1 = 0.0006 + 0.0055i, λ2 = 0.0006 − 0.0055i, respectively.
Therefore point P12 is an unstable saddle point, and point P13 is stable, since
both eigenvalues have modulus less than one. We conclude that system (20.7)
with the parameter values given above (20.10) and the transfer functions
defined by equations (20.11), is multistable. That is, there are two stable
fixed points for one set of parameter values and the fixed point attained is
solely dependent upon the initial conditions chosen.

Now introduce a feedback mechanism. In the first case we vary the pa-
rameter α, which determines the gradient of the transfer function φ2(y). The
other parameters are fixed as above (20.10). The parameter α is increased
linearly from α = −5 to α = 5, and then decreased back down to α = −5.
Figure 20.14 shows the bifurcation diagrams for the activity of neuron x.
Similar bifurcation diagrams may be plotted for the neuron y. The upper
figure shows the activity against the number of iterations. The lower figure
shows the activity level of neuron x as the parameter α is increased then
decreased. As α is increased from −5, the steady state is on the lower branch
until α ≈ 1, where there is a sudden jump to the other steady state. As α
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increases further, the steady state remains at xn ≈ 5. As α is decreased, the
steady state remains at xn ≈ 5 until α ≈ 0 where it jumps to xn ≈ 15. There
is a large bistable region for −5 < α < 1, approximately.

In the second case, fix the parameters and vary b1, which is the bias for
neuron x. The parameter b1 is ramped up from b1 = −5 to b1 = 5, and
then ramped back down to b1 = −5. There is an isolated counterclockwise
bistable region for −1 < b1 < 3.5, approximately (Figure 20.15).

In the final case, fix the parameters and vary w11, which is the synaptic
weight connecting neuron x to itself. The parameter is decreased from w11 =
7 down to zero and then increased back up to w11 = 7. The activity of neuron
x is on the lower branch until w11 ≈ 5.5, where it jumps to the upper branch.
As w11 decreases, the system descends into regions of quasiperiodicity and
periodicity. As the parameter is increased from zero, the steady state remains
on the upper branch, and there is a bistable region for 5.5 < w11 < 7,
approximately; see Figure 20.16.

Clearly, the dynamics of this simple two-neuron module are dependent
upon the history of the system. The author and his coworkers at Manchester
Metropolitan University are currently investigating areas of application for
this research.
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Figure 20.14: Bifurcation diagrams for system (20.7) under conditions (20.10)
and (20.11) as α varies. The initial conditions chosen at α = −5 were x0 =
−10 and y0 = −3.
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Figure 20.15: [Python] Bifurcation diagram for system (20.7) under condi-
tions (20.10) and (20.11) as b1 varies. The initial conditions chosen at b1 = −5
were x0 = −10 and y0 = −3. Ramp up in red and ramp down in blue. There
is a large counterclockwise bistable cycle.

20.5 Python Programs

Comments to aid understanding of some of the commands listed within the
programs.

Python Commands Comments

data[:, [5, 8, 12]] # Take data from columns 5,8,12.

X.mean # Mean of data X.

X.std # Standard deviation of data X.

# Program 20a: The generalized delta learning rule.

# See figure 20.7.

import matplotlib.pyplot as plt

import numpy as np

data = np.loadtxt(’housing.txt’)

rows, columns = data.shape

columns = 4 # Using 4 columns from data in this case
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Figure 20.16: Bifurcation diagrams for system (20.7) under conditions (20.10)
and (20.11) as w11 varies. The initial conditions chosen at w11 = 7 were x0 =
−3 and y0 = −2. There is a bistable region for approximately, 5.5 < w11 < 7.

X = data[:, [5, 8, 12]]

t = data[:, 13]

ws1, ws2, ws3, ws4 = [], [], [], []

k = 0

xmean = X.mean(axis=0)

xstd = X.std(axis=0)

ones = np.array([np.ones(rows)])

X = (X - xmean * ones.T) / (xstd * ones.T)

X = np.c_[np.ones(rows), X]

tmean = (max(t) + min(t)) / 2

tstd = (max(t) - min(t)) / 2

t = (t - tmean) / tstd

w = 0.1 * np.random.random(columns)

y1 = np.tanh(X.dot(w))

e1 = t - y1

mse = np.var(e1)
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num_epochs = 10 # number of iterations

eta = 0.001

k = 1

for m in range(num_epochs):

for n in range(rows):

yk = np.tanh(X[n, :].dot(w))

err = yk - t[n]

g = X[n, :].T * ((1 - yk**2) * err)

w = w - eta*g

k += 1

ws1.append([k, np.array(w[0]).tolist()])

ws2.append([k, np.array(w[1]).tolist()])

ws3.append([k, np.array(w[2]).tolist()])

ws4.append([k, np.array(w[3]).tolist()])

ws1 = np.array(ws1)

ws2 = np.array(ws2)

ws3 = np.array(ws3)

ws4 = np.array(ws4)

plt.plot(ws1[:, 0], ws1[:, 1], ’k.’, markersize=0.1)

plt.plot(ws2[:, 0], ws2[:, 1], ’g.’, markersize=0.1)

plt.plot(ws3[:, 0], ws3[:, 1], ’b.’, markersize=0.1)

plt.plot(ws4[:, 0], ws4[:, 1], ’r.’, markersize=0.1)

plt.xlabel(’Number of iterations’, fontsize=15)

plt.ylabel(’Weights’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 20b: The discrete Hopfield network.

# See Example 5.

from sympy import Matrix, eye

import random

# The fundamental memories:

x1 = [1, 1, 1, 1, 1]

x2 = [1, -1, -1, 1, -1]

x3 = [-1, 1, -1, 1, 1]

X = Matrix([x1, x2, x3])

W = X.T * X / 5 - 3*eye(5) / 5

def hsgn(v, x):

if v > 0:
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return 1

elif v == 0:

return x

else:

return -1

L = [0, 1, 2, 3, 4]

n = random.sample(L, len(L))

xinput = [1, -1, -1, 1, 1]

xtest = xinput

for j in range(4):

M = W.row(n[j]) * Matrix(xtest)

xtest[n[j]] = hsgn(M[0], xtest[n[j]])

if xtest == x1:

print(’Net has converged to X1’)

elif xtest == x2:

print(’Net has converged to X2’)

elif xtest == x3:

print(’Net has converged to X3’)

else:

print(’Iterate again: May have converged to spurious state’)

“Net has converged to x2”

# Program 20c: Iteration of the minimal chaotic neuromodule.

# See Figure 20.13.

import matplotlib.pyplot as plt

import numpy as np

# Parameters

b1, b2, w11, w21, w12, a = -2, 3, -20, -6, 6, 1

num_iterations = 10000

def neuromodule(X):

x,y=X

xn=b1+w11/(1+np.exp(-a*x))+w12/(1+np.exp(-a*y))

yn=b2+w21/(1+np.exp(-a*x))

return xn,yn

X0 = [0, 2]

X, Y = [], []

for i in range(num_iterations):

xn, yn = neuromodule(X0)

X, Y = X + [xn], Y + [yn]
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X0 = [xn, yn]

fig, ax = plt.subplots(figsize=(8, 8))

ax.scatter(X, Y, color=’blue’, s=0.1)

plt.xlabel(’x’, fontsize=15)

plt.ylabel(’y’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 20d: Bifurcation diagram of the neuromodule.

# See Figure 20.16.

from matplotlib import pyplot as plt

import numpy as np

# Parameters

b2, w11, w21, w12, a = 3, 7, 5, -4, 1

start, max = -5, 10

half_N = 1999

N = 2 * half_N + 1

N1 = 1 + half_N

xs_up, xs_down = [], []

x, y = -10, -3

ns_up = np.arange(half_N)

ns_down = np.arange(N1, N)

# Ramp b1 up

for n in ns_up:

b1 = start + n*max / half_N

x = b1 + w11 / (1 + np.exp(-a*x)) + w12 / (1 + np.exp(-a*y))

y = b2+w21 / (1 + np.exp(-a*x))

xn = x

xs_up.append([n, xn])

xs_up = np.array(xs_up)

# Ramp b1 down

for n in ns_down:

b1 = start + 2*max - n*max / half_N

x = b1 + w11 / (1 + np.exp(-a*x)) + w12 / (1 + np.exp(-a*y))

y = b2 + w21 / (1 + np.exp(-a*x))

xn = x

xs_down.append([N-n, xn])

xs_down = np.array(xs_down)

fig, ax = plt.subplots()

xtick_labels = np.linspace(start, max, 7)

ax.set_xticks([(-start + x) / max * N1 for x in xtick_labels])
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ax.set_xticklabels([’{:.1f}’.format(xtick) for xtick in xtick_labels])

plt.plot(xs_up[:, 0], xs_up[:, 1], ’r.’, markersize=0.1)

plt.plot(xs_down[:, 0], xs_down[:,1], ’b.’, markersize=0.1)

plt.xlabel(r’$b_1$’, fontsize=15)

plt.ylabel(r’$x_n$’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

20.6 Exercises

1. For the following activation functions, show that

(a) if φ(v) = 1/(1 + e−av), then φ′(v) = aφ(v)(1− φ(v));

(b) if φ(v) = a tanh(bv), then φ′(v) = b
a (a

2 − φ2(v));

(c) if φ(v) = 1
2a log cosh(a(v+1))

cosh(a(v−1)) , then

φ′(v) = (tanh(a(v + 1))− tanh(a(v − 1)))/2.

2. Prove Theorem 2, showing that when the activation function is non-
linear, say, yk = φ (vk), the generalized delta rule can be formulated
as

wkj(n+ 1) = wkj(n)− ηgkj ,

where

gkj = (yk − tk)
∂φ

∂vk
xj .

3. By editing the programs listed in Section 20.5:

(a) Investigate what happens to the mean squared error for varying
eta values of your choice.

(b) Investigate what happens to the mean squared error as the number
of hidden neurons increases to five.

4. Use another data set of your choice from the URL

http://www.ics.uci.edu/∼mlearn/MLRepository.html

using an edited version of the programs listed in Section 20.5 to carry
out your analysis.

5. (a) Prove Theorem 3 regarding Lyapunov functions of continuous Hop-
field models.
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(b) Consider the recurrent Hopfield network modeled using the differ-
ential equations

ẋ = −x+ 7

(
2

π
tan−1

(γπx
2

))
+ 6

(
2

π
tan−1

(γπy
2

))
,

ẏ = −y + 6

(
2

π
tan−1

(γπx
2

))
− 2

(
2

π
tan−1

(γπy
2

))
.

Plot a vector field portrait and derive a suitable Lyapunov func-
tion.

(c) Plot surface plots for the Lyapunov functions for Examples 3 and
4 and Exercise 5(b). Plot the surfaces for |ai| ≤ 1, i = 1, 2.

6. Consider the discrete Hopfield model investigated in Example 5. Test
the vector x7 = (−1,−1, 1, 1, 1)T , update in the following orders, and
determine to which vector the algorithm converges:

(a) x3(1), x4(1), x5(1), x2(1), x1(1);

(b) x1(1), x4(1), x3(1), x2(1), x5(1);

(c) x5(1), x3(1), x2(1), x1(1), x4(1);

(d) x3(1), x5(1), x2(1), x4(1), x1(1).

7. Add suitable characters “3” and “5” to the fundamental memories
shown in Figure 20.12. You may need to increase the grids to 10× 10
and work with 100 neurons.

8. A simple model of a neuron with self-interaction is described by Pase-
mann [19]. The difference equation is given by

an+1 = γan + θ + wσ(an), 0 ≤ γ < 1,

where an is the activation level of the neuron, θ is a bias, w is a self-
weight, γ represents dissipation in a neuron, and the output is given by
the sigmoidal transfer function

σ(x) =
1

1 + e−x
.

(a) Determine an equation for the fixed points of period one and show
that the stability condition is given by |γ + wσ′(a)| < 1, where a
is a fixed point of period one.

(b) Show that the system is bistable in the region bounded by the
parametric equations:

θ(a) = (1− γ)a− (1− γ)

(1− σ(a))
, w(a) =

(1− γ)

σ′(a)
.
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(c) Show that the system is unstable in the region bounded by the
parametric equations:

θ(a) = (1− γ)a+
(1 + γ)

(1− σ(a))
, w(a) = − (1 + γ)

σ′(a)
.

(d) Use the first iterative method to plot a bifurcation diagram when
θ = 4 and w = −16 for 0 < γ < 1.

(e) Use the second iterative method to plot a bifurcation diagram
when θ = −2.4 and γ = 0 for 3 < w < 7. Ramp w up and down.

9. Consider the neuromodule defined by the equations

xn+1 = 2 + 3.5 tanh(x)− 4 tanh(0.3y), yn+1 = 3 + 5 tanh(x).

Iterate the system and show that it is quasiperiodic.

10. Use the OGY method to control chaos in the minimal chaotic neuro-
module.
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Chapter 21

Binary Oscillator
Computing

Aims and Objectives

• To provide a brief historical introduction to binary oscillator computing.

• To review basic operations of neurons.

• To introduce threshold oscillatory logic and memory.

On completion of this chapter, the reader should be able to

• perform simple binary logic operations using threshold oscillators;

• plot time series data to illustrate the functionality;

• appreciate the potential applications of the devices in the real world.

The work presented in this chapter is inspired by brain dynamics and has
led to the submission of International, UK, and Taiwanese patents [16, 17,
19]. The author and co-inventor Jon Borresen are currently working with
collaborators towards building superfast binary oscillator computers as well
as assays for electrochemical cell degradation.

© Springer International Publishing AG, part of Springer Nature 2018
S. Lynch, Dynamical Systems with Applications using Python,
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21.1 Brain Inspired Computing

As with Neural Networks, the subject of Chapter 20, the main ideas in this
chapter are inspired by biological brain dynamics which will now be briefly
discussed for completeness. Figure 21.1 shows a schematic of a neuron which

Figure 21.1: Schematic of a neuron. Notice how this figure is similar to that
shown in Figure 20.1 for the neuronal mathematical model.

is comprised of typical parts of cells with a few specialized structures that
make it unique. The main part of the cell is the cell body (or soma) which
contains the cell nucleus comprising genetic material in the form of chromo-
somes. Dendrites branch out from the cell body and it is primarily these
spikes that receive chemical signals from other neurons. If the neuron fires,
an electro-chemical signal is transmitted along the axon to the axon termi-
nals. Note that longer axons are usually covered with a myelin sheath that
act in a similar manner to insulation around an electrical wire. In order
for signals (or action potentials) to be transmitted from neuron to neuron,
between the axon terminal and the dendrite of a connecting neuron there ex-
ists a very tiny membrane junction or gap called the synaptic gap (or cleft).
As the signal reaches the axon terminal, tiny bubbles of chemicals called

synaptic vesicles release their contents which diffuse across the gap to bind
with specific receptors in the membrane of the adjoining neuron. The en-
dogenous chemicals transmitted are called neurotransmitters which may be
excitatory or inhibitory. Examples of excitatory neurotransmitters include
glutamate (the most prevalent neurotransmitter in the brain), acetylcholine,
aspartate, histamine, and noradrenaline, while GABA (γ-aminobutyric acid,
the second most prevalent neurotransmitter in the brain), glycine, and sera-
tonin are inhibitory. Among the many neurotransmitters, note that certain
neurotransmitters such as acetylcholine and dopamine have both excitatory
and inhibitory receptors, so it is an oversimplification to label them in this
way. It has been estimated that the typical human brain has approximately
80% excitatory and 20% inhibitory neurotransmitters.
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A neuron’s membrane forms a barrier between the extracellular space
around the cell and its intracellular fluid, and is selectively permeable to ions
such as sodium

(
Na+

)
, potassium (K+), and chlorine

(
Cl−

)
. It is mostly

permeable to K+ ions, less so to Cl− ions, and a lot less to Na+ ions. The
voltage difference between the extracellular and intracellular spaces is typ-
ically between −60mV and −80mV for a neuron in a resting state. If a
stimulus causes the membrane potential to reach −50mV or above, then an
action potential develops. A depolarization occurs whereby the Na+ channels
open and Na+ begins to enter the cell, further depolarizing the cell. At the
end of the depolarization phase the Na+ channels become refractory and no
more Na+ ions enter the cell. The K+ channels are then activated and K+

ions start to leave the cell, a process called repolarization, and the membrane
potential falls below the level of the resting potential where the membrane is
actually hyperpolarized. The K+ channels close and the Na+ channels reset,
while the extra K+ ions in the extracellular space diffuse away and the resting
membrane potential is finally reestablished. If the stimulus remains, then a
series of action potentials (known as a spike train) is generated as shown in
Figure 21.2.

Figure 21.2: [Python] Spike train of action potentials that travel down the
axon. At the beginning of the action potential the Na+ channels open and
Na+ ions move into the axon causing depolarization. Repolarization occurs
when the K+ channels open and K+ ions move out of the axon. The signal
travels down the axon to the axon terminal (see Figure 21.1) where it can
trigger other neurons.

In the simplest sense, neurons are either firing or not firing. Once the
neuron has been sufficiently excited above some threshold (typically −55mV
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for human neurons), the cell fires, if the neuron does not reach this thresh-
old, it will not depolarize or create an action potential. If the stimulus does
not reach threshold, then the neuron does not fire. As the stimulus passes
the threshold value and continues to rise, the neuron starts to fire and the
amplitude of oscillation remains constant, hence the All or None principle of
neuron firing. Note, however, as the stimulus increases (up to a limit) the
frequency of oscillation increases. The reader can verify this by attempting
one of the exercises in Section 21.6.

The Hodgkin-Huxley Equations. In 1952, Alan Lloyd Hodgkin and An-
drew Huxley were modeling the ionic mechanisms underlying the initiation
and propagation of action potentials in the giant squid axon [14]. By treating
each component of the excitable cell as an electrical element, and applying
the conservation of electric charge on a piece of membrane, they were able to
derive the following equation for membrane current density:

I = C
dV

dt
+ INa + IK + IL, (21.1)

where I is the total membrane current density, C is the membrane capaci-
tance, V is the difference between the membrane potential and the resting
potential, INa is the sodium current, IK is the potassium current, and IL
is the leakage current. Using Ohm’s law, Hodgkin and Huxley were able to
expand equation (21.1) to give:

C
dV

dt
= I − gNam

3h (V − VNa)− gKn4 (V − VK)− gL (V − VL) , (21.2)

where VNa, VK , VL, C, and gL are all constants determined from experimen-
tal data, and gNa and gK are both functions of time and membrane potential.
The three dimensionless quantities m, h, and n represent sodium, potassium,
and leakage gating variables and evolve according to the differential equa-
tions:

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

dn

dt
= αn(1− n)− βnn,

(21.3)

where αi and βi are the transition rate constants for the i-th ion channel. The
individual gates act in a similar manner to first order chemical reactions with
two states. The rate constant αi represents the number of times per second
that a shut gate opens, and similarly, βi represents the number of times per
second that an open gate shuts. Based on experimental data, the following
parameter values have been chosen to generate Figures 21.2 and 21.3:
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αm =
0.1(V + 40)

1− exp(−0.1(V + 40))
, βm = 4 exp(−0.0556(V + 65)),

αh = 0.07 exp(−0.05(V + 65)), βh =
1

1 + exp(−0.1(V + 35))
,

αn =
0.01(V + 55)

1− exp(−0.1(V + 55))
, βn = 0.125 exp(−0.0125(V + 65)), (21.4)

and additionally,

C = 1μFcm−2,

gL = 0.3mmhocm−2, gK = 36mmhocm−2, gNa = 120mmhocm−2,

VL = −54.402mV, VK = −77mV, VNa = 50mV. (21.5)

The Python program for producing Figures 21.2 and 21.3 is listed in
Section 21.5.

Figure 21.3: [Python] The upper blue curve is the neuron action potential,
the middle black, red and green curves are the gating variables m, h, and
n for equations and parameters listed in equations (21.2) to (21.5), and the
lower magenta curve displays the input current.

In 1994, Destexhe et al. [8] derived an efficient method for computing
synaptic conductances based on chemical kinetics. Figure 12.4 shows the
results of modeling chemical excitation and inhibition. In Figure 12.4(a), the
upper green trace is the action potential of an excitatory neuron, the middle
magenta trace depicts the ratio of excitatory conductance, and the lower blue
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curve shows that the postsynaptic neuron is firing. In Figure 12.4(b), the
upper red trace is the action potential of an inhibitory neuron, the middle
magenta trace depicts the ratio of excitatory conductance, and the lower
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Figure 21.4: (a) Mathematical modeling of chemical excitation. The green
trace depicts the action potential in the excitatory neuron, the magenta trace
is the proportion of bound receptors, and the blue trace is the action potential
of the postsynaptic neuron. (b) Mathematical modeling of chemical inhibi-
tion. The red trace depicts the action potential in the inhibitory neuron, the
magenta trace is the proportion of bound receptors, and the blue trace is the
action potential of the postsynaptic neuron.
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blue curve shows that the postsynaptic neuron is switched off. Readers can
reproduce these results in Python.

In order to simplify the work to follow in this chapter the Fitzhugh-
Nagumo system [11, 24], which is essentially a reduction of the Hodgkin-
Huxley equations [14], will be used to model the action potential of a spiking
neuron. The describing equations are:

v̇ = C + v(v − α)(1− v)− w, ẇ = ε(v − γw), (21.6)

where v is a fast variable (in biological terms - the action potential) and w
represents a slow variable (biologically - the sodium gating variable). The
parameters α, γ, and ε dictate the threshold, oscillatory frequency, and the
location of the critical points for v and w. A neuron will begin to oscillate
when the input current C is above a critical threshold CT , say. Figure 21.5
shows a typical phase portrait and time series solution for the integrate and
fire neuron when the critical point is at the origin. When the input current is
below the threshold CT , the solution quickly settles to the stable critical point
at the origin and there is no oscillation. When the input current exceeds the
threshold, then the neuron displays oscillatory behavior as in Figure 21.5(b).
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Figure 21.5: (a) Typical phase portrait of a stable limit cycle for the Fitzhugh-
Nagumo equation (21.6), there is also a critical point at the origin in this case.
(b) Typical time series of an integrate and fire neuron for the variable v(t).

21.2 Oscillatory Threshold Logic

Computing using oscillators is not a new concept, indeed the first modern
computers were made using vacuum tube oscillators, and oscillators in a va-
riety of forms are integral components in many devices. The use of neural
oscillators has also been widely studied; however, in all cases the method of
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computation is derived from concepts of biological neural encoding. Current
research into encoding using neural oscillators is therefore spatio-temporal,
rate, or more usually synchronization based [2, 31], and [39]. Borresen and
Lynch [3, 4] have proposed using oscillators as the fundamental components
of computing devices (with all the inherent dynamical richness that this pro-
vides) and designing them in such a way as to perform binary logic in an
equivalent manner to standard transistor logic. In implementation, the os-
cillator will provide a binary output (1 equivalent to an oscillator firing or 0
where the oscillator does not fire) and the output from a single oscillator can
be interpreted in exactly the same way as that of a transistor.

Threshold logic has been studied as an alternative to Boolean logic for
some time. For many implementations this is advantageous, allowing for
reduced component counts and/or number of logic levels, as the implemen-
tation of complex logical operations may be achieved using a single gate
[34]. Threshold logic gates [23] have a set of inputs {I1, I2, . . . In}, weights
{w1, w2, . . . wn} and a binary output y. The output y is typically
described by:

y = φ

(
n∑

i=1

Iiwi

)
,

where the function φ is an activation function (e.g., Heaviside, tanh, sigmoid,
piecewise linear, low gain saturation, see Chapter 20) and the binary output
1 is defined at some threshold, y > T , say.

Threshold logic implementation has not supplanted standard logic im-
plementation in CMOS due to sensitivity to parameter changes and variable
connection weights requiring very low tolerance engineering. Recent advances
in nanotechnology, in particular, Resonant Tunneling Devices (RTD) [35] and
memristor devices [29] have the potential to overcome such
concerns.

A threshold oscillator is an oscillatory device that will begin oscillating
when the input to the device is above a certain threshold. Below this level
the oscillator remains in a resting state and gives no output. It is possible to
use the output of one threshold oscillator as the input of another oscillator
to cause the second oscillator to operate (excitation) and under certain cir-
cumstances, it is also possible to cause the input of one oscillator to suppress
the output of another oscillator (inhibition), see Figure 21.4.

There are numerous viable methods for implementing binary computation
using threshold oscillators. In order to perform the logical operations it
is necessary that either oscillators with differing thresholds be used or the
connections to the oscillators be of differing weights. The latter method is
used here as this mimics more closely biological neural systems, from where
the idea originated.
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Logical operations can be performed in a similar manner to standard
logic circuits; however, due to the threshold nature it is possible to formulate
logical operations as solutions of sets of linear inequalities. For instance, the
AND function can be replicated by a threshold oscillator with two inputs,
where the input strengths are scaled such that the total input is only above
threshold if both the inputs are on. For a single input or for no input the total
input would be below threshold. Defining the inputs to the logical circuits
in vector form and scaling the input strength to a binary 1 or 0, we write∑

I = I1,1 + I2,1 as the total input to the circuit. The threshold equations
may be thus written as:

for I =

(
0
0

)
,

(
1
0

)
,

(
0
1

) ∑
Iw < T

for I =

(
1
1

) ∑
Iw > T, (21.7)

where T is the oscillator threshold and w the coupling weight between the
inputs and the oscillator performing the AND operation. Clearly the solution
to the above system (21.7) is T

2 < w < T . For the logical OR operation, the
solution w > T would suffice.

Using threshold oscillators in this manner it is straightforward to imple-
ment the logical NOT operation using a negative coupling strength; however,
as the logical NOT is effectively redundant in more complex logically com-
plete circuit design where NAND and XOR operations are used, all models
using the latter formulations will be implemented.

One of the simplest computing circuits is the binary half adder. The
binary half adder gives the sum of two binary inputs as a two bit binary
output. Standard transistor implementation of a binary half adder uses one
XOR gate (to give the sum) and one AND gate (to give the carry). Im-
plementation of this circuit using threshold oscillators can be achieved via
a similar design, with two oscillators replicating the logical functions. The
AND operation is implemented as described above and the XOR operation
can be achieved using an OR operation (as above) with an additional con-
nection from the AND oscillator, which in some way inhibits the operation of
the OR oscillator if the AND oscillator is active. The method by which inhi-
bition occurs would be dependent upon the oscillators being used to form the
circuitry.

Figure 21.6(a) demonstrates a viable circuit schematic for half adder im-
plementation using two oscillators O1 and O2 and two inputs I1 and I2, which
may themselves be the output from other oscillators in a more complex cir-
cuit. Schematically, the circuit design is not dissimilar to standard threshold
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logic half adders [22]; however, due to the nature of the connections between
oscillators, implementation may be markedly different. If we consider oscil-
lators with identical thresholds we will require that the coupling strength,
w1, say, from I1 and I2 to O1 be sufficient to cause O1 to oscillate for only
one input and for the coupling strength, w2, say, from I1 and I2 to O2 to be
sufficient for it to oscillate for two inputs. The additional connection x1, say,
from O2 to O1 is inhibitory such that if O2 is oscillating it suppresses O1.
Denoting the output from O2 as Ô2, the total input to O1 and O2 are thus
given by:

O1 =
∑

Iw1 − Ô2x1

O2 =
∑

Iw2. (21.8)

We can consider such a system as a set of linear inequalities with normalized
input vectors I and threshold T requiring solutions of the form:

for I =

(
0

0

) ⎧⎨
⎩

∑
Iw1 − Ô2x1 < T

∑
Iw2 < T

for I =

(
1

0

)
,

(
0

1

) ⎧⎨
⎩

∑
Iw1 − Ô2x1 > T

∑
Iw2 < T

for I =

(
1

1

) ⎧⎨
⎩

∑
Iw1 − Ô2x1 < T

∑
Iw2 > T.

(21.9)

Thus, for instance, for a total input of
∑

I = 1, only O1 will be above
threshold causing oscillation giving a binary equivalent output of 1. If both
I1 and I2 are active, O2 will oscillate but O1 is suppressed if Ô2x1 > T/2+w1,
giving a binary output 1 + 1 = 10, as required.

It is possible to couple the oscillators together via various methods. For
biological neural systems, where there is synaptic coupling between neurons
the coupling function is complex, relying on diffusion of neurotransmitters
across a synaptic gap. The connections between neurons may either depolar-
ize (excite) or hyperpolarize (inhibit) the postsynaptic neuron.

Crucially, the hyperpolarizing inhibitory effect has a temporal component
such that if inhibition occurs, the postsynaptic neuron remains inhibited for
some period of time after the presynaptic neuron fires.It is not straightfor-
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ward to simulate such a system using the Fitzhugh-Nagumo model without
either integration of the signal pulse or introducing arbitrary conditions on
oscillators receiving an inhibitory pulse - which would not be viable from
an implementation perspective. As such a method which is phenomenolog-
ically similar to neural hyperpolarization is employed but is not necessarily
consistent with any biological process.

Implementation by coupling through either the fast v variable or the slow
w variable is equally viable. Any coupling function to be used must take into
account the specific dynamics of whichever variable is used. As is common
in such biologically inspired models, a sigmoidal transfer function is applied
between oscillators of the form:

S(x) =
1

1 + em(−x+c)
, (21.10)

where c is the threshold at which the output begins to rise and m denotes
the steepness of the curve of the function S(x). In biological systems, neu-
ral connections can exhibit plastic responses and become “tuned” (via some
Hebbian learning rule [13]) allowing for more reliable excitation and inhibi-
tion. Choosing suitable values of m and c would in many respects replicate
such a process.

Numerical simulations for systems of Fitzhugh Nagumo oscillators cou-
pled as in Figure 21.6(a) will now be discussed. The inputs to the logical
circuits are oscillatory, being provided by Fitzhugh-Nagumo oscillators with
similar coupling and parameter values to the computational oscillators. Os-
cillatory inputs of this form have been chosen over continuous inputs, as
this demonstrates the necessary robustness of signal integrity which would
be required for larger computational circuits. Continuous inputs to the com-
putational oscillators would be equally viable and present no difficulties in
implementation. As such the matrix form for the input weights for each os-
cillator is 4 × 4 rather than 2 × 2 as two additional oscillators are used as
inputs. One solution, in matrix form, to the inequalities (21.9) for the binary
half adder would be:

W =

⎛
⎜⎜⎝

0 0 0.8 0.45
0 0 0.8 0.45
0 0 0 0
0 0 −1.5 0

⎞
⎟⎟⎠ , (21.11)

where C = 0.5 in equation (21.6) for the inputs I1 and I2. This would give
the parameter values shown in Figure 21.6(a) as w1 = 0.8, w2 = 0.45 and
x1 = 1.5. The time series for such is shown in Figure 21.6(b) and the Python
program is listed in Section 21.5.
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Figure 21.6: [Python] (a) Schematic of a binary oscillator half adder compris-
ing two inputs I1 and I2, two oscillators O1 and O2 and a set of excitatory
synaptic connections with weights w1, w2, and an inhibitory connection with
weight x1. The sum oscillator O1 will oscillate if either I1 or I2 are active.
The carry oscillator O2 will oscillate if both I1 and I2 are active. The in-
hibitory connection x1 from O2 to O1 suppresses oscillator O1 if O2 is active.
(b) Time series showing that the half-adder is functioning correctly when the
oscillations are simulated using Fitzhugh-Nagumo systems. Oscillations are
equivalent to a binary one in these simulations and no oscillation is zero.

A two-oscillator binary full adder can be constructed by simply introduc-
ing another input, I3, say, as in Figure 21.7(a), and Figure 21.7(b) shows the
time series for the Fitzhugh-Nagumo two-oscillator full adder. Deriving the
threshold inequalities for the full adder is left as an exercise for the reader
(see Section 21.6).
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In order to more fully demonstrate the applicability of binary oscillator
computing more complex circuits, such as the three oscillator seven input
full adder and the 2× 2 bit binary multiplier may be constructed [4]. This is
again left as an exercise for the reader (see Section 21.6).

Figure 21.8(a) shows a schematic of a Set-Reset (SR) flip-flop circuit, the
input I1 is commonly referred to as the Set and input I2 is referred to as the
Reset. Output Ô2 is the complement of output Ô1. Note that both oscillators
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Figure 21.7: (a) Oscillator circuit diagram for a binary full adder comprising
three inputs I1, I2, and I3 and two oscillators O1 and O2. Oscillator O1

will oscillate if either I1, I2, or I3 are active. Oscillator O2 will oscillate if
any two of I1, I2, and I3 are active. An inhibitory connection from O2 to
O1 suppresses oscillator O1 if O2 is active; however, the inhibition is only
sufficient to suppress O1 for

∑
I = 2. For inputs of

∑
I = 3 the total input

to O1 is still sufficient to induce oscillation. (b) Time series for a Fitzhugh-
Nagumo two oscillator full adder. All binary combinations of oscillatory
inputs I1, I2, and I3 give the required binary outputs for O1 and O2.
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Figure 21.8: (a) Schematic of an SR flip-flop for memory. (b) Time series
of an SR flip-flop using single input pulses (ballistic propagation) to switch
based on Fitzhugh-Nagumo oscillations.

require a constant input IC , say, for the circuit to function properly. This
circuit acts as a memory, storing a bit and presenting it on its output Ô1, as
can be seen in Figure 21.8(b).

The SR flip-flop described here is an application of the “winnerless com-
petition” principle. In the absence of coupling between the oscillators, both
will remain active. However, a symmetric inhibitory coupling between them
ensures that from an initial state, where only one oscillator is active, the
other will remain suppressed in the absence of any external perturbation.
When an input is given to the inactive oscillator this is switched on, simul-
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taneously suppressing the previously active oscillator. When the external
input is turned off, the system remains in the switched state. Note that
for a switch to occur, an input pulse of only one period is required (see
Figure 21.8(b)). Switching using a single pulse in this way can open an op-
portunity to use ballistic propagation of signals between gates and memory
cells, which could significantly reduce the energy required to operate memory
circuits, where currently power intensive line charging is required to initiate
memory switches. One important consideration, particularly with respect to
flip-flop circuits, is the ability to switch accurately in the presence of noise,
and the authors have demonstrated that oscillator-based SR flip-flops are
highly noise resistant [4].

21.3 Applications and Future Work

In 1948, the world’s first successful program was run on Manchester Uni-
versity’s small-scale experimental machine the “Baby.” To mark the 50th
anniversary, the museum of Science and Industry based in Manchester con-
structed a working replica which is still on display today. In 1951, Manchester
University in partnership with Ferranti Limited built the world’s first com-
mercially available general-purpose computer, the Ferranti Mark 1. Given
that one of the principal components in those machines was the vacuum tube
oscillator (see Chapter 5) and the fact that the most powerful computer, the
brain, also works with threshold oscillators, then the proposition of build-
ing modern computers using naturally oscillating devices should come as no
surprise.

There are potentially five major avenues of research for binary oscillator
computing which are listed below:

• Josephson Junction (JJ) Oscillators. JJs are superconducting nat-
ural threshold oscillators that cycle one hundred million times faster
than biological neurons. The inventors are currently working with col-
laborators based at Colgate University and HYPRES Inc., both based
in New York in the USA.

• Biological Neuron Oscillators. The inventors are currently working
with cell biologists, stem cell researchers and engineers in order to build
the world’s first assay for neuronal degradation. It is likely that further
patents will be applied for as these biological logic circuits are built
and further details will be published once the work is protected. See
Section 21.4.

• CMOS Oscillators. In 2011, Manchester Metropolitan University
employed a SPICE (Simulation Program with Integrated Circuit Em-
phasis) modeler to simulate the binary half adder circuits using CMOS-
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based oscillators and the simulations produced the required output [16].
Once more, the inventors are seeking industrial partners and results will
be published at a later date.

• Memristors. Memristor circuits can be built to make neuristors [28]
(they mimic neurons), and axons and synapses are natural memristors.
It is believed that highly connected neuronal circuits can be fabricated
using memristors.

• Optical Oscillators. This avenue of research has yet to be pursued
but interested readers should consult [12] where photonic synapses are
employed for brain-like computing.

Currently, the inventors are pursuing two of the avenues of research high-
lighted above, namely JJ and biological neuron computing. The biological
neuron oscillators will be used to make an assay for neuronal degradation
and results and patents will follow. The oscillators depicted in Figures 21.6
to 21.8 could be fabricated using biological neurons, memristors, transis-
tor circuits, all-optical circuits, or from JJ circuits [16]. JJs are natural
threshold oscillators and unsurprisingly they can be designed to act like
biological neurons with excitatory or inhibitory connections between them
[20, 21, 22, 23, 24, 25, 26]. Crotty et al. [6] have even suggested that JJ
neuronal circuits could be built to model parts of the brain. Superconduc-
tive computing based on Rapid Single Flux Quantum (RSFQ) technology is
at an advanced stage and has already produced practical digital and mixed-
signal circuits with world record processing speeds at exceptionally low power
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. An 8-bit high frequency RSFQ-
based arithmetic logic unit (ALU) was fabricated with HYPRES’ standard
4.5kAcm−2 process and consisted of 7950 JJs, including input and output
interfaces. A high performance ALU is a fundamental building block for any
computer processor and we now demonstrate how threshold oscillatory logic
could help to further improve on this JJ performance. HYPRES foundry
is producing complex digital RSFQ circuits operating at tens of gigahertz
clock speed. Small RSFQ circuits were demonstrated to operate up to 770
GHz. As far as energy consumption is concerned, the current industry best
for CMOS is approximately 1.7 GFLOPS/Watt compared with a potential
500 GFLOPS/Watt for JJ circuits. As well as a linear increase in compo-
nents using binary oscillator logic described here [4], there are no migration
issues and a proven radiation hardness with JJs. In 2005, the US National
Security Agency published a report entitled “Superconducting Technology
Assessment” [25] written by experts in the field. The authors concluded that
transistors were rapidly approaching the limits of functionality and that the
most likely successor to that technology would be based on JJs. They sur-
mised that, given the investment required, a true petascale computer could
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be built by 2012. This chapter demonstrates how coupled threshold oscil-
lators may be used to perform both binary logic and memory in a manner
entirely consistent with modern architectures. The benefits of using JJ-based
components in terms of speed and energy usage are well documented. The
additional benefits of JJ oscillator based computing include a doubling of
processing power with a linear increase in components as well as ballistic
propagation-based data interconnect between processor and memory. By
utilizing some of the dynamics of the brain and using JJ circuitry it should
be possible to build a true exascale supercomputer based on this technol-
ogy. In a recent development, Ken Segall et al. [30] have demonstrated
synchronization dynamics on the pico-second timescale for physical JJ cir-
cuits acting like neurons. We are currently working with Ken in an attempt
to build prototypes of our patented circuitry. We expect that the problem of
fan-in and fan-out (connecting to and from JJ neurons) will be addressed us-
ing either low power memristor cross-bar lattices [33] or low power graphene
nano-ribbon electronics [5].

To conclude this section, simple mathematical models of a JJ and a mem-
ristor (see Chapter 8) will be presented.

Mathematical Model of a JJ. A JJ with two superconducting layers
sandwiching an insulating layer will be investigated. The differential equation
used to model the resistively shunted JJ is written as

d2φ

dτ2
+ βJ

dφ

dτ
+ sinφ = κ, (21.12)

where φ is a phase difference, βJ is a parameter inversely related to the
Josephson plasma frequency ωJ , κ is related to the total current across the
junction, and

dφ

dt
= ωJ

dφ

dτ
.

Let dφ
dτ = Ω, then the second order ODE (21.12) can be written in the form

dφ

dτ
= Ω,

dΩ

dτ
= κ− βJΩ− sinφ, (21.13)

where η = βJΩ, is proportional to voltage. When κ = βJ = 0, then system
(21.13) represents a Hamiltonian system given by

H(φ,Ω) =
Ω2

2
− cosφ.

Note that the Hamiltonian is very similar to that for the simple nonlinear
pendulum depicted in Figure 6.1 and the trajectories are similar to those
displayed in Figure 6.2. Note that the resistively shunted JJ acts as a thresh-
old oscillator. Figure 21.9 shows a limit cycle when κ = 2, when βJ = 1.2.
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A Python program for plotting Figure 21.9 is listed in Section 21.5. There is
also a Python program listed that shows an animation of the bifurcating limit
cycle. The tunneling JJ also displays hysteresis as shown in Figure 21.10,

Figure 21.9: [Python plot and animation] A limit cycle in a resistively shunted
JJ.

which shows a typical I-V (κ-〈η〉) characteristic curve for a tunneling JJ as
the voltage is increased and decreased. When 〈η〉 = 0, Josephson current (up
to a maximum threshold value, Ic) flows. A direct current (DC) Josephson
supercurrent flows under 〈η〉 = 0. When the current exceeds Ic, there is a
bifurcation to an oscillating tunneling current. As 〈η〉 is increased further,
the relation κ = 〈η〉 holds valid. As the voltage 〈η〉 is decreased, the relation
κ = 〈η〉 still holds until a point where κc ≈ 0.6965, and 〈η〉 = 2Δ/e, where
Δ is an energy gap of the superconductor, where there is a bifurcation from
oscillatory behavior back to the zero-voltage state. Note that the normalized
DC voltage 〈η〉 = βJ〈Ω〉, where 〈Ω〉, is the average of the maximum and
minimum values of Ω in the long τ region.

Mathematical Model of a Memristor. The memristor was briefly dis-
cussed in Chapter 8. A simple mathematical model will be presented in this
section and a Python program for plotting a pinched hysteresis loop will
be listed in Section 21.5. Figure 21.11 depicts a titanium dioxide memristor
which was first presented by Hewlett-Packard Laboratories in 2008 (see refer-
ence [11] in Chapter 8). The instantaneous resistance M(w) of the memristor
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is given by

M(w) =
w

D
RON +

(
1− w

D

)
ROFF, (21.14)

where RON and ROFF are the resistances of the completely doped and the
undoped memristor, respectively. Suppose that D = 1, then the speed of
dopant movement is expressed as
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2Δ/e
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Figure 21.10: A typical I-V characteristic curve usually observed in a tunnel-
ing JJ. The blue curve shows the current for increasing voltage and the red
curve depicts current for decreasing voltage. There is a clockwise hysteresis
cycle. Note that κ = I

Ic
and the average voltage, 〈η〉 = βJ〈Ω〉.

dw

dt
=

ηf(w(t), p)v0 sin
(
2πt
T

)
wRON + (1− w)ROFF

, (21.15)

where η is the polarity of the memristor (if η = +1, then w increases with
positive voltage), v0 is the voltage amplitude, and the function, f(w(t), p) =
1− (2w(t)− 1)2p, is the window function for the nonlinear dopant drift. The
differential equation has initial condition w0 = w(0).

Figure 21.11: Abstract structure of a two terminal titanium dioxide (TiO2)
HP Labs memristor.
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The differential equation (21.15) can be solved with Python (see Sec-
tion 21.5) and the voltage against current pinched hysteresis loop can be
plotted. Two pinched hysteresis loops are shown in Figure 21.12.

a

b

Figure 21.12: [Python] Pinched hysteresis (voltage against current) of a mem-
ristor for a sinusoidal wave input voltage v(t) = v0 sin

(
πt
T

)
. The memristors

parameters are D = 1, ROFF = 70, RON = 1, η = 1, p = 10, v0 = 1, T = 20,
and f(w, p) = 1− (2w − 1)2p. (a) When w0 = 0.5; (b) when w0 = 0.6.
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The author and Borresen believe that JJ neurons can be connected to-
gether using memristors as axons and synapses. This is another avenue for
research.

21.4 An Assay for Neuronal Degradation

There are estimated to be over five hundred neurological conditions and dis-
orders that affect the human brain, spine, and nerves that connect them.
These conditions include Alzheimer’s disease, autism, epilepsy, multiple scle-
rosis, and Parkinson’s disease, for example. In 2005, the World Health Orga-
nization (WHO) estimated that neurological disorders affected more than one
billion people worldwide. Just one of these disorders, Alzheimer’s disease (the
most common form of dementia) currently has no cure and it is estimated that
1.2% of the world’s population will be affected by 2050. Growing cells atop
multi-electrode arrays (MEA) is now a well-established practice and these
devices enable fundamental neurophysiological insights at both the circuit
and cellular level. The author and his collaborators are proposing to build
assays for neuronal degradation where the functionality of the neurons and
neural networks will be known. The assays will consist of healthy/diseased
logic and memory circuits composed of biological neurons. These assays could
have major implications for the UK NC3Rs agenda of Replacing, Reducing
and Refining the use of animals for scientific testing. As long ago as 2005,
C. Wyart [36] and her group devised a new technique to control the archi-
tecture of neuronal networks in vitro. Figure 21.13 shows a magnification of
individual neurons sitting atop a multi-electrode array, where the black lines
and circles are the electrodes, the bright lights are neurons, which are linked

Figure 21.13: A magnification of individual neurons sat atop an MEA. Used
with the permission of C. Wyart.

by axons. Figure 21.14 shows the MEA apparatus for recording electrical
activity of neurons. The device is connected to a computer where the user
can send electrical signals to electrodes and also record electrical activity at
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the same time. The computer screen displays some output from electrodes -
the spike trains are similar to those shown in Figure 21.2.

Figure 21.14: The multi-electrode array apparatus connected to a computer
monitor. Note the spike trains on the computer screen, these indicate that
some of the neurons are firing.

The author is currently working with Jon Borresen and Mark Slevin
(Manchester Metropolitan University, UK), in collaboration with Paul Roach
(University of Loughborough, UK) and Mark Kotter (University of Cam-
bridge, UK) to build an assay for neuronal degradation. Paul Roach and
his team manufacture platforms for connecting neurons that can be placed
on MEAs, and Mark Kotter and his group are able to grow neurons using
stem cell research. Mark Slevin is a professor of cell biology and specializes
in Alzheimer’s disease. The idea is to build logic and memory circuits from
diseased neurons and test which drugs best preserve the functionality of the
circuits (Figure 21.14).

In 2002, Zemelman et al. [38] developed a method for stimulating genet-
ically modified neurons using light and this has led to the field of research
known as optogenetics. The field of optogenetics is quickly moving beyond
proof of concept and is finding applications in cell signaling, biophysical mod-
eling, and systems biology, see [32] for a review up to 2014. In the future,
we will build threshold oscillator logic and memory circuits using genetically
modified neurons, where neurons will be stimulated with light, and excitatory
neurons will glow green and inhibitory neurons will glow red.

Results of this research will be published at a later date.
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21.5 Python Programs

# Program 21a: The Hodgkin-Huxley Equations.

# See Figures 21.2 and 21.3.

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

# Constants

C_m = 1.0 # uF/cm^2

g_Na = 120.0 # mS/cm^2

g_K = 36.0

g_L = 0.3

V_Na = 50.0 # mV

V_K = -77.0

V_L = -54.402

# See equations (21.4)

def alpha_m(V): return 0.1 * (V + 40.0) / (1.0 - np.exp(-0.1 *

(V + 40.0)))

def beta_m(V): return 4.0 * np.exp(-0.0556 * (V + 65.0))

def alpha_h(V): return 0.07 * np.exp(-0.05 * (V + 65.0))

def beta_h(V): return 1.0 / (1.0 + np.exp(-0.1 * (V + 35.0)))

def alpha_n(V): return 0.01 * (V + 55.0) / (1.0 - np.exp(-0.1 *

(V + 55.0)))

def beta_n(V): return 0.125 * np.exp(-0.0125 * (V + 65))

# See equation (21.2)

def I_Na(V,m,h): return g_Na * m**3 * h * (V - V_Na)

def I_K(V, n): return g_K * n**4 * (V - V_K)

def I_L(V): return g_L * (V - V_L)

# Input current

def Input_current(t): return 10 * (t > 100) - 10 * (t > 200) + 25 *

(t > 300)

t = np.arange(0.0, 400.0, 0.1)

# Set up the ODEs, see equations (21.3)

def hodgkin_huxley(X, t):

V, m, h, n = X

dVdt = (Input_current(t) - I_Na(V, m, h) - I_K(V, n) -

I_L(V)) / C_m

dmdt = alpha_m(V) * (1.0 - m) - beta_m(V) * m

dhdt = alpha_h(V) * (1.0 - h) - beta_h(V) * h

dndt = alpha_n(V) * (1.0 - n) - beta_n(V) * n
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return (dVdt, dmdt, dhdt, dndt)

y0 = [-65, 0.05, 0.6, 0.32]

X = odeint(hodgkin_huxley, y0, t)

V = X[:, 0]

m = X[:, 1]

h = X[:, 2]

n = X[:, 3]

ina = I_Na(V, m, h)

ik = I_K(V, n)

il = I_L(V)

plt.subplots_adjust(hspace = 1)

plt.figure(1)

plt.subplot(5, 1, 1)

plt.title(’Hodgkin-Huxley Neuron’)

plt.plot(t, V, ’b’)

plt.ylabel(’V (mV)’)

plt.subplot(5, 1, 2)

plt.plot(t, m, ’k’)

plt.ylabel(’m(V)’)

plt.subplot(5, 1, 3)

plt.plot(t, h, ’r’)

plt.ylim(0, 1)

plt.ylabel(’h(V)’)

plt.subplot(5, 1, 4)

plt.plot(t, n, ’g’)

plt.ylim(0, 1)

plt.ylabel(’n(V)’)

plt.subplot(5, 1, 5)

plt.plot(t, Input_current(t), ’m’)

plt.ylabel(’Input current’)

plt.xlabel(’Time (ms)’)

plt.ylim(-1, 31)

plt.show()

# Program 21b: The Fitzhugh-Nagumo Half-Adder.

# See Figure 21.6.

import numpy as np
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import matplotlib.pyplot as plt

from scipy.integrate import odeint

# Input current

def input_1(t): return 1 * (t > 500) - 1 * (t>1000) + 1 * (t > 1500)

def input_2(t): return 1 * (t > 1000)

# Constants

theta = gamma = epsilon = 0.1

tmax, m, c = 2000, -100, 60

t = np.arange(0.0, 2000.0, 0.1)

def fn_odes(X, t):

u1, v1, u2, v2, u3, v3, u4, v4 = X

du1 = -u1 * (u1 - theta) * (u1 - 1) - v1 + input_1(t)

dv1 = epsilon * (u1 - gamma * v1)

du2 = -u2 * (u2 - theta) * (u2 - 1) - v2 + input_2(t)

dv2 = epsilon * (u2 - gamma * v2)

du3 = -u3 * ((u3 - theta) * (u3 - 1) - v3 + 0.8

/ (1 + np.exp(m*v1 + c)) + 0.8

/ (1 + np.exp(m*v2 + c)) - 1.5

/ (1 + np.exp(m*v4 + c)))

dv3 = epsilon * (u3 - gamma*v3)

du4 = (-u4 * (u4 - theta) * (u4 - 1) - v4 + 0.45

/ (1 + np.exp(m*v1 + c)) + 0.45

/ (1 + np.exp(m*v2 + c)))

dv4 = epsilon * (u4 - gamma * v4)

return (du1, dv1, du2, dv2, du3, dv3, du4, dv4)

y0 = [0.01, 0.01, 0.01, 0.01, 0, 0, 0, 0]

X = odeint(fn_odes, y0, t, rtol=1e-6)

u1, v1, u2, v2, u3, v3, u4, v4 = X.T # unpack columns

plt.subplots_adjust(hspace=1)

plt.figure(1)

plt.subplot(4, 1, 1)

plt.title(’Fitzhugh-Nagumo Half-Adder’)

plt.plot(t, u1, ’b’)

plt.ylim(-1, 1.5)

plt.ylabel(’I$_1$’)

plt.subplot(4, 1, 2)

plt.plot(t, u2, ’b’)

plt.ylim(-1, 1.5)

plt.ylabel(’I$_2$’)



582 Chapter 21: c©Springer

plt.subplot(4, 1, 3)

plt.plot(t, u3, ’g’)

plt.ylim(0, 1)

plt.ylim(-1, 1.5)

plt.ylabel(’O$_1$’)

plt.subplot(4, 1, 4)

plt.plot(t, u4, ’g’)

plt.ylim(-1, 1.5)

plt.ylabel(’O$_2$’)

plt.xlabel(’Time’)

plt.show()

# Program 21c: Josephson junction limit cycle.

# See Figure 21.9.

from matplotlib import pyplot as plt

import numpy as np

from scipy.integrate import odeint

fig = plt.figure()

bj = 1.2

tmax = 100

kappa = 1.4

def jj_ode(x, t):

return [x[1], kappa - bj*x[1] - np.sin(x[0])]

time = np.arange(0, tmax, 0.1)

x0=[0.1,0.1]

xs = odeint(jj_ode, x0, time)

imgplot = plt.plot(np.sin(xs[:, 0]), xs[:, 1], ’r-’)

plt.xlabel(r’$\sin(\phi)$’, fontsize=15)

plt.ylabel(r’$\Omega$’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

# Program 21d: Animation of a JJ limit cycle bifurcation.

# See Figure 21.9.

from matplotlib import pyplot as plt

from matplotlib.animation import ArtistAnimation

import numpy as np
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from scipy.integrate import odeint

fig = plt.figure()

myimages = []

bj = 1.2

tmax = 100

def jj_ode(x, t):

return [x[1], kappa - bj*x[1] - np.sin(x[0])]

time = np.arange(0, tmax, 0.1)

x0 = [0.1, 0.1]

for kappa in np.arange(0.1, 2, 0.1):

xs = odeint(jj_ode, x0, time)

imgplot = plt.plot(np.sin(xs[:, 0]), xs[:, 1], ’r-’)

myimages.append(imgplot)

my_anim = ArtistAnimation(fig,myimages,interval=100,blit=False,

repeat_delay=100)

plt.show()

# Program 21e: Pinched hysteresis in a memristor.

# See Figure 21.12.

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

# Constants

eta, L, Roff, Ron, p, T, w0 = 1.0, 1.0, 70.0, 1.0, 10.0, 20.0, 0.5

t=np.arange(0.0, 40.0, 0.01)

# Set up the ODEs, see equations (21.3)

def memristor(X, t):

w = X

dwdt = ((eta * (1 - (2*w - 1) ** (2*p)) * np.sin(2*np.pi * t/T))

/ (Roff - (Roff - Ron) * w))

return dwdt

X = odeint(memristor, [w0], t, rtol=1e-12)

w = X[:, 0]

plt.plot(np.sin(2*np.pi * t/T), np.sin(2*np.pi * t/T)

/ (Roff - (Roff - Ron) * X[:, 0]), ’b’)
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plt.xlabel(’voltage’, fontsize=15)

plt.ylabel(’current’, fontsize=15)

plt.tick_params(labelsize=15)

plt.show()

21.6 Exercises

1. Approximate the threshold input, I, for the Hodgkin-Huxley equations
described by equations (21.2) to (21.5). Determine the frequency of
spiking when (a) I = 8mV, and (b) I = 20mV.

2. Determine a Fitzhugh-Nagumo system (see equation (21.6)) that has a
critical point at the origin.

3. Using a similar notation used in equation (21.9) for the half-adder,
determine the set of corresponding linear inequalities for the binary
oscillator full-adder depicted in Figure 21.7(a).

4. Write a Python program to produce time series of the Fitzhugh-Nagumo
two oscillator full-adder as depicted in Figure 21.7.

5. Write a Python program to produce a time series of the Fitzhugh-
Nagumo seven input three oscillator full adder as depicted in
Figure 21.15.

6. Write down the truth table for a 2×2 bit binary multiplier and use the
schematic shown in Figure 21.16 to produce a time series for a 2 × 2
bit Fitzhugh-Nagumo binary multiplier.

7. Write a Python program to produce a time series of the Fitzhugh-
Nagumo SR flip-flop as depicted in Figure 21.8.

8. Show that the Fitzhugh-Nagumo SR flip-flop modeled in the previous
exercise is resistant to noise.

9. Plot the trajectories for the Hamiltonian modeling the resistively shunted
JJ system (21.14) when κ = βJ = 0, given by

H(φ,Ω) =
Ω2

2
− cosφ.

10. Use Python to plot the hysteresis curve displayed in Figure 21.10.
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Figure 21.15: Schematic of a seven input, three oscillator full adder.
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Figure 21.16: Schematic of a 2× 2 bit multiplier based on standard circuitry.
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Chapter 22

Coursework and
Examination-Type
Questions

Aims and Objectives

• To model real-world problems.

• To investigate data generated by Python.

• To use Python in an examination environment.

On completion of this chapter, the reader should be able to

• write Python programs to solve real-world problems;

• give a physical interpretation of the results;

• use Python to solve examination questions.

This chapter provides examples of both coursework questions and exam-
ination questions that I have used with my students for nearly two decades.
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Most of the coursework questions require programming in Python and are un-
suitable for an examination environment. The examination questions require
the use of Python as a graphing calculator with some short programming.
Short answers to the examination questions have been listed in Chapter 23.
If any instructors require solutions to the coursework questions, then they
can email me directly. I still use these questions with my current students.

Note that the numbers given in square brackets denote the marks available
for each part question.

22.1 Examples of Coursework Questions

1. A very simple model of the spread of a mobile phone virus (such as
Commwarrior-A) via Multimedia Messaging Services (MMS) and Bluetooth
is represented by the smart phone state conversion schematic shown in Fig-
ure 22.1. We divide the phone modes into SEIRD states and ten kinds of
state conversions. Among them: S → I, I → D, and D → I are related to
Bluetooth spread mode; S → E, E → S, and E → R are related to MMS
spread mode; and S → R, I → R, E → I, and I → S are owned in common
by Bluetooth and MMS two way.

Figure 22.1: Smart phone state conversions. A Susceptible-Exposed-Infected-
Recovered-Dormant (SEIRD) model for MMS and Bluetooth mixed virus
spread.

(i) Assuming a simple linear model of the state vector x = [S,E, I,R,D],
where fi represent forward state conversions and ri represent reverse state
conversions, write down the differential equations that model this system.
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(ii) Given that f1 = 0.09, f2 = 0.02, f3 = 0.01, f4 = 0.04, f5 = 0.01, f6 =
0.01, f7 = 0.01, r1 = 0.01, r2 = 0.006, r3 = 0.01, S(0) = 1000, and E(0) =
I(0) = D(0) = R(0) = 0, use Python to solve the differential equations and
plot the time series on one graph for 0 ≤ t ≤ 500.

(iii) Determine the maximum values of E(t), I(t), and D(t) for 0 ≤ t ≤ 500.

[25]

2. The differential equations used to model the motion of the double pendu-
lum are given by

θ̈1 =
−g (2m1 +m2) sin θ1 −m2g sin (θ1 − 2θ2)

L1 (2m1 +m2 −m2 cos (2θ1 − 2θ2))

−2 sin (θ1 − θ2)m2

(
θ̇2

2
L2 + θ̇1

2
L1 cos (θ1 − θ2)

)

L1 (2m1 +m2 −m2 cos (2θ1 − 2θ2))
,

θ̈2 =
2 sin (θ1 − θ2)

(
θ̇1

2
L1 (m1 +m2) + g (m1 +m2) cos θ1 + θ̇2

2
L2m2 cos (θ1 − θ2)

)

L2 (2m1 +m2 −m2 cos (2θ1 − 2θ2))
.

Use Python to plot phase solutions, θ1 against θ2, for the following parameter
values:

(a) g = 9.8,m1 = m2 = 1, L1 = 5, L2 = 1, θ1(0) = 0.5, θ̇1 = 1.5, θ2 =
0, θ̇2 = 0;

(b) g = 9.8,m1 = m2 = 1, L1 = 6, L2 = 1, θ1(0) = 0.5, θ̇1 = 1.5, θ2 =
0, θ̇2 = 0.

Vary the initial conditions for θ̇1 slightly and run the simulations for parts
(a) and (b) again. Give a physical interpretation of the results.

[25]

3. The differential equation used to calculate the precession of the perihelion
of the planet Mercury using General Relativity is given by:

d2

dθ2

(
1

r (θ)

)
+

1

r(θ)
=

GM

h2
+

3GM

c2r(θ)2
, (22.1)

where r(θ) is the path of Mercury around the sun (taken to be at the origin),
M is the mass of the sun, G is the gravitational constant, h is related to the
angular velocity of Mercury, and c is the speed of light in a vacuum.
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(i) Consider a scaled model in which M = 1, G = 1, h = 1, and c = 8. Use
Python to solve the differential equation (22.1) given the initial conditions
r(0) = 2/3 and dr

dθ (0) = 0. Finally, plot a polar solution of r(θ) versus θ, for
0 ≤ θ ≤ 10π. HINT: Solve for 1

r(θ) .

(ii) Using the same set of parameters as in part (i), plot Cartesian plots of
r(θ) against θ and dr

dθ against θ. HINT: Solve for 1
r(θ) .

(iii) The perihelion of an orbit is defined to be the point on the orbit where
Mercury is closest to the sun. In this case, the perihelion rotates about the
sun and describes a precessing perihelion. The perihelia occur when r(θ) is a
local minimum, and the first perihelion occurs at θ1 = 0. Use the graph from
part (ii) to determine the next three perihelia, θ2,3,4. Hence, deduce that
the amount that the perihelion precesses per revolution is approximately
δθ = θi+1 − θi − 2π ≈ 0.336 radians per revolution.

[25]

4. The Hamiltonian function for a particle of mass m that bounces on a
springy surface is approximated by

H(x, p) =
1

2m
p2 + V (x),

where

V (x) =

⎧⎨
⎩

1
2Cx2 x ≤ 0

mgx x ≥ 0,

and x is the position of the particle, p is the momentum of the particle, V (x)
is the potential energy, and C and g are positive constants.

(a) Write down the equations of motion for x and p in the cases where x ≥ 0
and x ≤ 0.

(b) Given that m = 1, g = 10, C = 2 and E = 10:

(i) sketch the contour of the Hamiltonian H(x, p) = E;

(ii) solve the equations of motion for x(t) and p(t) for this trajectory,
giving expressions for both x ≤ 0 and x ≥ 0, separately;

Hint: for x ≥ 0, assume x(0) = 0, p(0) = 2
√
5.
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(iii) prove that the solution spends a time T1 = 2√
5
in the region x ≥ 0,

and a time T2 = π
√

1
2 in the region x ≤ 0.

[25]

5. The following five-dimensional system models a dispersive driven Jaynes-
Cummings model from quantum optics:

ẋ1 = αx2 + x3 + ε
ẋ2 = x4 − αx1

ẋ3 = βx4 + x1x5

ẋ4 = x2x5 − βx3

ẋ5 = −4 (x1x3 + x2x4) .

Use Python to plot 3-D phase portraits (using x1, x2, and x5 axes) and the
corresponding power spectra when:

(i) ε = 2, α = 2, β = 2;

(ii) ε = 2, α = 0.1, β = 30.

Take initial conditions x1(0) = x2(0) = x3(0) = x4(0) = 0 and x5(0) = −1.
Describe the solutions in both cases.

[25]

6. Consider the following two-dimensional system:

ẋ = y
ẏ = by − nx−m− rx2 − x2y − x3,

when r = 0.87,m = −1, n = −1.127921667, and b = 0.897258546.

(i) Determine the critical point(s) and their stability.

(ii) Given that there are four limit cycles in the region −2 ≤ x ≤ 2 and
−2 ≤ y ≤ 3, use Python to plot all four limit cycles.

Hint: Three of the limit cycles are very close to one another. Zoom in near
the cusp point.

[25]
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7. Use the Lindstedt-Poincaré technique to determine an O(ε3) solution to
the van der Pol equation:

d2x

dt2
+ ε

(
x2 − 1

) dx
dt

+ x = 0,

given that x(0) = a and ẋ(0) = 0.

[25]

8. A preloaded two-bar linkage mechanism with joints P,Q, and R, preloaded
by a stiffness k, is shown in Figure 22.2. A periodic force F = sin(ωt) is
applied at Q, where the two bars are joined by a frictionless pin. The angle
θ denotes the counterclockwise angle the left bar makes with the horizontal,
q denotes the distance between P and R, and x is the distance between the
joint Q and the horizontal dashed line. Then

x = l sin θ, q = 2l cos θ. (22.2)

Figure 22.2: The preloaded two-bar linkage with a periodic force F acting
at the joint Q. As the point Q moves vertically up and down, the mass m
moves horizontally left and right.

The equations of dynamics for the preloaded two-bar linkage are given by

((2ml2 + 9
8mbarl

2) sin2 θ + 5
24mbarl

2)θ̈ + (2ml2 + 9
8mbarl

2)θ̇2 sin θ cos θ

+ 2cl2θ̇ sin2 θ + 2kl2(cos θ0 − cos θ) sin θ = − l cos θ

2
F, (22.3)

where θ0 = π
4 .
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(i) Rewrite equation (22.3) as a 2-D system of ODEs
(
let θ̇ = φ

)
and use

Python to plot the solutions to these differential equations given that the
parameters used are ω = 0.05 (per second), k = 1 (N/m), m = 1 (kg),
c = 1 (Ns/m), mbar = 0.5 (kg), l = 1 (m), and F = sin(ωt). Taking
θ(0) = 0.8, φ(0) = 0, plot F , on the x-axis, against the vertical displacement
x, on the y-axis, as F varies sinusoidally from F = −1 to F = +1. How
would you describe this solution?

(ii) Given the same parameters as those used in part (i), use Python to plot
F , on the x-axis, against the horizontal displacement q, on the y-axis, as F
varies sinusoidally from F = −1 to F = +1. How would you describe this
solution?

(iii) Use equations (22.2) and (22.3) to prove that

((m+ 9
16mbar)(4l

2 − q2) + 5
12mbarl

2)(4l2 − q2)q̈ + 5
12mbarl

2qq̇2

+ cq̇(4l2 − q2)2 + k(q − q0)(4l
2 − q2)2 =

1

2
q(4l2 − q2)

3
2F, (22.4)

where q0 = 2l cos(θ0).

[50]

9. In 1991, Tso et al. [1] published a paper on the energy exchange model
for climate change and urban climatological studies. Since that publication
it has been shown that by adding 10% green cover to areas with little green,
such as town centers and high density residential areas, maximum surface
temperatures in these areas can be kept below 1961–1990 baseline tempera-
tures.

By linearizing the heat storage surface energy balance model, Tso et al. ar-
rive at the following set of simultaneous differential equations for TS , the
surface temperature and TL, the soil temperature:

The Pre-dawn Model. 0 ≤ t ≤ 4.

dTS

dt
= B (b1 + b2TS + b3TL + b4) ,

dTL

dt
= B (b5TS + b6TL + b7) .

The Daytime Model. 4 ≤ t ≤ 20.

dTS

dt
=B (c1 sin (wB(t−4))+b2TS + b3TL + b4) ,

dTL

dt
= B (b5TS + b6TL + b7) .
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The Nightime Model. 20 ≤ t ≤ 24.

dTS

dt
= B (b1 + b2TS + b3TL + b4) ,

dTL

dt
= B (b5TS + b6TL + b7) . (22.5)

[1] Tso C.P., Chan B.K., and Hashim M.A., Analytical solutions to the near-
neutral atmospheric surface energy balance with and without heat storage
for urban climatological studies, American Meteorological Society, 30 4, 413–
424, 1991.

(a) Solve the pre-dawn model equations (22.5) analytically using Laplace
transforms.

(b) Given that, for Greater Manchester,

b1 = −4.1706e− 004; b2 = −0.0003453037152548344;

b3 = 0.000048566764726985724; b4 = 0.003747576508219105;

b5 = 0.000050988700564971743; b6 = −0.00010197740112994349;

b7 = 0.001019774011299435; c1 = 0.0035987838128722104;

ω = 5.4542e− 005 and B = 3600;

and the initial conditions TS(0) = 12.1174, TL(0) = 17.0565, use Python to
plot the solution curves for TS and TL for 0 ≤ t ≤ 24. Determine the maxi-
mum of TS , and the maximum of TL over this time interval.

[50]

10. Consider the Fitzhugh-Nagumo system defined by:

ẋ = x(μ− x)(x− λ)− y + I(t), ẏ = ε (x− δy) ,

where μ, λ, ε, and δ are constants and I(t) is an external input. Determine
the number of limit cycles when μ = 1, λ = −0.04, ε = 0.015, δ = 3, and
I(t) = 0, use Python to:

(i) show that the origin is the only critical point;

(ii) plot the limit cycles and comment on their stability.

[25]

11. Consider the Morris-Lecar neuron model defined by:

C dV
dt =I − gfastMSS(V ) (V − ENa)− gslowN (V − EK)− gleak (V − Eleak)

dN
dt = φ (NSS(V )−N) /τN(V ),
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where V is membrane potential, N is a recovery variable, I is the applied
current, C is membrane capacitance, gfast, gslow, gleak represent conductances
through membrane channels, ENa, EK, Eleak are equilibrium potentials of the
relevant ion channels, and φ is a constant, and

MSS(V ) = 1
2

(
1 + tanh

(
V−βm

γm

))
,

NSS(V ) = 1
2

(
1 + tanh

(
V−βN

γN

))
,

τN (V ) = 1(
cosh

(
V −βN
2γN

)) ,

where βm, βN , γm, and γN are constants.

(i) Use Python to show that the system has three limit cycles when I =
82mA, gfast = 20mS/cm2, gslow = 20mS/cm2, gleak = 2mS/cm2, ENa =
50mV, EK = −100mV, Eleak = −70mV, φ = 0.15, βm = −1.2mV, βN =
−20.5mV, γm = 18mV, γN = 10mV, and C = 2μF/cm2. Comment on the
stability of each limit cycle.

(ii) Use Python to produce an animation for the Morris-Lecar model us-
ing the same parameters listed in part (i) as the input current I increases
from I = 75mA to I = 85mA. Taking initial values of V0 = −40mV and
N0 = 0.1mV, how would you describe the bifurcations that occur? Take
snapshots of the animation to include in your submitted work.

[50]

12. Consider the following map:

xn+1 = (xn + yn + μ cos (2πyn))mod 1, yn+1 = (xn + 2yn)mod 1.

(a) Given that μ = 0.1 with initial conditions x0 = 0.1, y0 = 0.1, plot the
first 10,000 iterates, ignoring the first 100. What can you deduce about the
orbit?

(b) Determine the number of fixed points of period one when μ = 0.5, and
determine the stability of the fixed point at (0.5, 0.5).

(c) Suppose that μ = 0.5 and d0 = 10−10. Let x(n) = (xn, yn) be the n’th
iterate of the initial point x(0) = (0.5 + d0, 0.5). Furthermore, let

d(n) =

√
(xn − 0.5)

2
+ (yn − 0.5)

2
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be the distance of x(n) from the initial point. Given that

F (n) =
1

n
ln

(
d(n)

d0

)
,

compute F (4), F (20), and F (100). What is the relationship between these
values of F (n) and the magnitude of the largest value of the Jacobian matrix
for the fixed point (0.5, 0.5)?

[25]

13. Consider the following 2-dimensional mapping:

xn+1 = x2
n − y2n + a1xn + a2yn,

yn+1 = 2xnyn + a3xn + a4yn. (22.6)

(a) Given that a1 = 0.9, a2 = −0.6, a3 = 2, and a4 = 0.5:

(i) determine the fixed points of period one for system (22.6) and deter-
mine their stability;

(ii) obtain an iterative plot given that x0 = y0 = 0.1 explain the results;

(iii) suppose that d0 = 10−10, and let x(n)= (xn, yn) be the n’th iterate
of the point x(0)= (0, d0). Let

d(n) =
√
x2
n + y2n

be the distance of x(n) from the fixed point (0, 0) and

F (n,m) =
1

n−m
ln

(
d(n)

d(m)

)
.

Use Python to compute F (4, 1), F (20, 4), and F (100, 20). Comment on the
relationship between these values of F (n,m) and the magnitude of the largest
eigenvalue of the Jacobian matrix for the fixed point (0, 0).

(b) Try to obtain iterative plots in the cases:

(i) a1 = 0.5, a2 = −0.5, a3 = 2, and a4 = 0.3, given x(0) = y(0) = 0.1
explain the results;

(ii) a1 = 0.9, a2 = −0.6, a3 = 2, and a4 = 0.8, given x(0) = y(0) = 0.1
explain the results.

[25]
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14. A simple model of a two-neuron module with one self-interaction is
described by the difference equations

xn+1 = b1 + w11 tanh (axn) + w12 tanh (byn) , yn+1 = b2 + w21 tanh (axn)

where xn, yn are the activation levels of neurons x and y, b1, b2 are bi-
ases, w11 is a self-weight, and w12, w21 are weights of synaptic connections
(Figure 22.3).

Figure 22.3: A two-neuron module.

(a) Given that a = 1, b = 0.3, b2 = −3, w11 = −2, w12 = −1, and w21 = 5, use
Python to determine the number, location, and stability of the fixed points
of period one when: (i) b1 = −4 and (ii) b1 = −2.

(b) Using the same parameter values listed in part (a), edit the relevant
Python program from the notes to plot bifurcation diagrams for −5 ≤ b1 ≤ 5,
and give a physical interpretation of the results.

[25]

15. The Tinkerbell map is given by:

xn+1 = x2
n − y2n + axn + byn, yn+1 = 2xnyn + cxn + dyn, (22.7)

where a, b, c, and d are all constants.

(a) Suppose that b = −0.5, c = 2.3, and d = 0.5 in system (22.7). Use
Python to obtain iterative plots when: (i) a = 0.2; (ii) a = 0.4; (iii) a = 0.6;
(iv) a = 0.8; (v) a = 1. Describe the behavior of the system (22.7) for each
value of a listed above.
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(b) Using the same parameter values listed in part (a), plot a bifurcation
diagram for system (22.7) for 0 ≤ a ≤ 1.

[25]

16. Use Python to plot a Newton fractal for the function f(z) = (z2+1)(z2−
5.29). If you have plotted the correct figure, you will notice that there are
regions in which the Newton method failed to converge to one of the roots.
How would you explain this phenomenon?

[25]

17. Consider the weight distribution motif displayed in Figure 22.4. How will
the weight be distributed at stage 2 of the construction of the multifractal?

Figure 22.4: Motif of a multifractal.

Given that:

τ(q) =
ln
(∑N

i=1 pqi (ε)
)

− ln(ε)
,

α = −∂τ

∂q
,

and
f(α(q)) = qα(q) + τ(q),

use Python to plot an f(α) curve for the multifractal generated by the weight
distribution motif given in Figure 22.4.

[25]

18. Using the housing.txt data presented in Chapter 20, reproduce Fig-
ure 20.8 showing the number of epochs versus the mean squared error for the
complete Boston housing data when (i) one neuron, and (ii) two neurons are
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in the hidden layer.

[25]

19. Using the results of the Destexhe et al. paper referenced in Section 21.1
reproduce figures 21.4(a) and (b) using the Hodgkin-Huxley equations, illus-
trating excitation and inhibition.

[25]

20. The MATLAB code below computes the Lyapunov exponents of the
Lorenz system. Convert this code into Python.

% Taken from my MATLAB book.

% Programs 14d - Lyapunov exponents of the Lorenz system.

% Chapter 14 - Three-Dimensional Autonomous Systems and Chaos.

% Copyright Springer 2014. Stephen Lynch.

% Special thanks to Vasiliy Govorukhin for allowing me to use his

% M-files. For continuous and discrete systems see the Lyapunov

% Exponents Toolbox of Steve Siu at the MathWorks file exchange.

% Reference.

% A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano,

% "Determining Lyapunov Exponents from a Time Series," Physica D,

% Vol. 16, pp. 285--317, 1985.

% You must read the above paper to understand how the program works.

% Lyapunov exponents for the Lorenz system below are:

% L_1 = 0.9022, L_2 = 0.0003, L_3 = -14.5691 when tend=10,000.

function [Texp,Lexp]=lyapunov(n,rhs_ext_fcn,fcn_integrator,tstart,...

stept,tend,ystart,ioutp);

n=3;rhs_ext_fcn=@lorenz_ext;fcn_integrator=@ode45;

tstart=0;stept=0.5;tend=300;

ystart=[1 1 1];ioutp=10;

n1=n; n2=n1*(n1+1);

% Number of steps.

nit = round((tend-tstart)/stept);

% Memory allocation.

y=zeros(n2,1); cum=zeros(n1,1); y0=y;

gsc=cum; znorm=cum;
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% Initial values.

y(1:n)=ystart(:);

for i=1:n1 y((n1+1)*i)=1.0; end;

t=tstart;

% Main loop.

for ITERLYAP=1:nit

% Solutuion of extended ODE system.

[T,Y] = feval(fcn_integrator,rhs_ext_fcn,[t t+stept],y);

t=t+stept;

y=Y(size(Y,1),:);

for i=1:n1

for j=1:n1 y0(n1*i+j)=y(n1*j+i); end;

end;

% Construct new orthonormal basis by Gram-Schmidt.

znorm(1)=0.0;

for j=1:n1 znorm(1)=znorm(1)+y0(n1*j+1)^2; end;

znorm(1)=sqrt(znorm(1));

for j=1:n1 y0(n1*j+1)=y0(n1*j+1)/znorm(1); end;

for j=2:n1

for k=1:(j-1)

gsc(k)=0.0;

for l=1:n1 gsc(k)=gsc(k)+y0(n1*l+j)*y0(n1*l+k); end;

end;

for k=1:n1

for l=1:(j-1)

y0(n1*k+j)=y0(n1*k+j)-gsc(l)*y0(n1*k+l);

end;

end;

znorm(j)=0.0;

for k=1:n1 znorm(j)=znorm(j)+y0(n1*k+j)^2; end;

znorm(j)=sqrt(znorm(j));

for k=1:n1 y0(n1*k+j)=y0(n1*k+j)/znorm(j); end;

end;
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% Update running vector magnitudes.

for k=1:n1 cum(k)=cum(k)+log(znorm(k)); end;

% Normalize exponent.

for k=1:n1

lp(k)=cum(k)/(t-tstart);

end;

% Output modification.

if ITERLYAP==1

Lexp=lp;

Texp=t;

else

Lexp=[Lexp; lp];

Texp=[Texp; t];

end;

for i=1:n1

for j=1:n1

y(n1*j+i)=y0(n1*i+j);

end;

end;

end;

% Show the Lyapunov exponent values on the graph.

str1=num2str(Lexp(nit,1));str2=num2str(Lexp(nit,2));str3=num2str

(Lexp(nit,3));

plot(Texp,Lexp);

title(’Dynamics of Lyapunov Exponents’);

text(235,1.5,’\lambda_1=’,’Fontsize’,10);

text(250,1.5,str1);

text(235,-1,’\lambda_2=’,’Fontsize’,10);

text(250,-1,str2);

text(235,-13.8,’\lambda_3=’,’Fontsize’,10);

text(250,-13.8,str3);

xlabel(’Time’); ylabel(’Lyapunov Exponents’);

% End of plot

function f=lorenz_ext(t,X);

%

% Values of parameters.

SIGMA = 10; R = 28; BETA = 8/3;
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x=X(1); y=X(2); z=X(3);

Y= [X(4), X(7), X(10);

X(5), X(8), X(11);

X(6), X(9), X(12)];

f=zeros(9,1);

%Lorenz equation.

f(1)=SIGMA*(y-x);

f(2)=-x*z+R*x-y;

f(3)=x*y-BETA*z;

%Linearized system.

Jac=[-SIGMA, SIGMA, 0;

R-z, -1, -x;

y, x, -BETA];

%Variational equation.

f(4:12)=Jac*Y;

%Output data must be a column vector.

% End of Programs 14d.

[50]
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22.2 Examination 1

Typically, students would be required to answer five out of 8 questions in
three hours. The examination would take place in a computer laboratory
with access to Python.

1. (a) Sketch a phase portrait for the following system showing all null-
clines:

dx

dt
= 3x+ 2y,

dy

dt
= x− 2y.

[8]

(b) Show that the system

dx

dt
= xy − x2y + y3,

dy

dt
= y2 + x3 − xy2

can be transformed into

dr

dt
= r2 sin(θ),

dθ

dt
= r2 (cos(θ)− sin(θ)) (cos(θ) + sin(θ))

using the relations rṙ = xẋ + yẏ and r2θ̇ = xẏ − yẋ. Sketch a
phase portrait for this system given that there is one nonhyperbolic
critical point at the origin.

[12]

2. (a) Prove that the origin of the system

dx

dt
= −x

2
+ 2x2y,

dy

dt
= x− y − x3

is asymptotically stable using the Lyapunov function V = x2+2y2.

[6]

(b) Solve the differential equations

dr

dt
= −r2,

dθ

dt
= 1,

given that r(0) = 1 and θ(0) = 0. Hence show that the return
map, say, P, mapping points, say, rn, on the positive x-axis to
itself is given by

rn+1 = P (rn) =
rn

1 + 2πrn
.

[14]
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3. (a) Find the eigenvalues of the following system and sketch a phase
portrait in three-dimensional space

dx

dt
= −2x− z,

dy

dt
= −y,

dz

dt
= x− 2z.

[12]

(b) Show that the origin of the following nonlinear system is not hy-
perbolic:

dx

dt
= −2y + yz,

dy

dt
= x− xz − y3,

dz

dt
= xy − z3.

Prove that the origin is asymptotically stable using the Lyapunov
function V = x2+2y2+z2. What does asymptotic stability imply
for a trajectory γ(t) close to the origin?

[8]

4. (a) Consider the 2-dimensional system

dr

dt
= r (μ− r)

(
μ− r2

)
,

dθ

dt
= −1.

Show how the phase portrait changes as the parameter μ varies
and draw a bifurcation diagram.

[10]

(b) Prove that none of the following systems has a limit cycle:

(i) dx
dt = y − x3, dy

dt = x− y − x4y;

(ii) dx
dt = y2 − 2xy + y4, dy

dt = x2 + y2 + x3y3;

(iii) dx
dt = x+ xy2, dy

dt = x2 + y2.

[10]

5. (a) Let T be the function T : [0, 1] → [0, 1] defined by

T (x) =

{
7
4x 0 ≤ x < 1

2
7
4 (1− x) 1

2 ≤ x ≤ 1.

Determine the fixed points of periods one, two, and three.

[12]
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(b) Determine the fixed points of periods one and two for the complex
mapping

zn+1 = z2n − 3.

Determine the stability of the fixed points of period one.

[8]

6. (a) Starting with an equilateral triangle (each side of length 1 unit)
construct the inverted Koch snowflake up to stage two on graph
paper. At each stage, each segment is 1

3 the length of the pre-
vious segment, and each segment is replaced by four segments.
Determine the area bounded by the true fractal and the fractal
dimension.

[14]

(b) Prove that

D1 = lim
l→0

∑N
i=1 pi ln(pi)

− ln(l)
,

by applying L’Hopital’s rule to the equation

Dq = lim
l→0

1

1− q

ln
∑N

i=1 pqi (l)

− ln l
.

[6]

7. (a) Find and classify the fixed points of period one of the Hénon map
defined by

xn+1 = 1− 9

5
x2
n + yn yn+1 =

1

5
xn.

[8]

(b) Consider the complex iterative equation

En+1 = A+BEn exp
(
i |En|2

)
.

Derive the inverse map and show that

d|A|2
d|ES |2

= 1 +B2 + 2B
(
|ES |2 sin |ES |2 − cos |ES |2

)
,

where ES is a steady-state solution.

[12]
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8. (a) A four-neuron discrete Hopfield network is required to store the
following fundamental memories:

x1 = (1, 1, 1, 1)T , x2 = (1,−1, 1,−1)T x3 = (1,−1,−1, 1)T .

(i) Compute the synaptic weight matrix W.

(ii) Use asynchronous updating to show that the three fundamen-
tal memories are stable.

(iii) Test the vector (−1,−1,−1, 1)T on the Hopfield network.

Use your own set of random orders in (ii) and (iii).

[10]

(b) Derive a suitable Lyapunov function for the recurrent Hopfield
network modeled using the differential equations

ẋ = −x+

(
2

π
tan−1

(γπx
2

))
+

(
2

π
tan−1

(γπy
2

))
+ 6,

ẏ = −y +

(
2

π
tan−1

(γπx
2

))
+ 4

(
2

π
tan−1

(γπy
2

))
+ 10.

[10]

22.3 Examination 2

Typically, students would be required to answer five out of 8 questions in
three hours. The examination would take place in a computer laboratory
with access to Python.

1. (a) The radioactive decay of Polonium-218 to Bismuth-214 is given by

218Po → 214Pb → 214Bi,

where the first reaction rate is k1 = 0.5 s−1, and the second reac-
tion rate is k2 = 0.06 s−1.

(i) Write down the differential equations representing this system.
Solve the ODEs.

(ii) Determine the amount of each substance after 20 seconds
given that the initial amount of 218Po was one unit. Assume
that the initial amounts of the other two substances was zero.

(iii) Plot solution curves against time for each substance.

(iv) Plot a trajectory in three-dimensional space.

[14]
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(b) Plot the limit cycle of the system

dx

dt
= y + 0.5x(1− 0.5− x2 − y2),

dy

dt
= −x+ 0.5y(1− x2 − y2).

Find the approximate period of this limit cycle.

[6]

2. (a) Two solutes X and Y are mixed in a beaker. Their respective
concentrations x(t) and y(t) satisfy the following differential equa-
tions:

dx

dt
= x− xy − μx2,

dy

dt
= −y + xy − μy2.

Find and classify the critical points for μ > 0, and plot possible
phase portraits showing the different types of qualitative behavior.
Interpret the results in terms of the concentrations of solutes X
and Y .

[14]

(b) Determine the Hamiltonian of the system

dx

dt
= y,

dy

dt
= x− x2.

Plot a phase portrait.

[6]

3. (a) For the system
dx

dt
= μx+ x3,

dy

dt
= −y

sketch phase portraits for μ < 0, μ = 0, and μ > 0. Plot a
bifurcation diagram.

[10]

(b) Plot a phase portrait and Poincaré section for the forced Duffing
system

dx

dt
= y,

dy

dt
= x− 0.3y − x3 + 0.39 cos(1.25t).

Describe the behavior of the system.

[10]
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4. (a) Given that f(x) = 3.5x(1− x),

(i) plot the graphs of f(x), f2(x), f3(x), and f4(x);

(ii) approximate the fixed points of periods one, two, three, and
four, if they exist;

(iii) determine the stability of each point computed in part (ii).

[12]

(b) Use Python to approximate the fixed points of periods one and
two for the complex mapping zn+1 = z2n + 2 + 3i.

[8]

5. (a) Find and classify the fixed points of period one for the Hénon map

xn+1 = 1.5 + 0.2yn − x2
n, yn+1 = xn.

Find the approximate location of fixed points of period two if they
exist. Plot a chaotic attractor using suitable initial conditions.

[14]

(b) Using the derivative method, compute the Lyapunov exponent of
the logistic map xn+1 = μxn(1− xn), when μ = 3.9.

[6]

6. (a) Edit the given program for plotting a bifurcation diagram for the
logistic map to plot a bifurcation diagram for the tent map. (Stu-
dents would have access to the Python program listed in Chap-
ter 14).

[10]

(b) Write a program to plot a Julia set J(0, 1.3), for the mapping
zn+1 = z2n + 1.3i.

[10]

7. (a) Given the complex mapping En+1 = A + BEne
i|En|2 , determine

the number and approximate location of fixed points of period one
when A = 3.2 and B = 0.3.

[10]
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(b) Write a Python program for producing a triangular Koch curve,
where at each stage one segment is replaced by four segments and
the scaling factor is 1

3 .

[10]

8. (a) A six-neuron discrete Hopfield network is required to store the
following fundamental memories:

x1 = (1, 1, 1, 1, 1, 1)T ,

x2 = (1,−1, 1,−1,−1, 1)T ,

x3 = (1,−1,−1, 1,−1, 1)T .

(i) Compute the synaptic weight matrix W.

(ii) Use asynchronous updating to show that the three fundamen-
tal memories are stable.

(iii) Test the vector (−1,−1,−1, 1, 1, 1)T on the Hopfield network.

Use your own set of random orders in (ii) and (iii).

[10]

(b) Given that

αs =
s ln p1 + (k − s) ln p2

−k ln 3
, −fs =

ln
(
kCs

)
−k ln 3

,

write a short Python program to plot the f(α) spectrum for the
multifractal Cantor set constructed by removing the middle third
segment at each stage and distributing the weight in the propor-
tions p1 = 1

7 and p2 = 6
7 . Sketch the f(α) curve and write down

the Python code in your answer booklet. What information does
the width of the curve give?

[10]

22.4 Examination 3

Typically, students would be required to answer five out of 8 questions in
three hours. The examination would take place in a computer laboratory
with access to Python.
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1. (a) Sketch a phase portrait for the following system showing all null-
clines:

dx

dt
= x+ 3y,

dy

dt
= 2x− 4y.

[8]

(b) Solve the differential equations

dr

dt
= r − r2,

dθ

dt
= 1,

given that r(0) = 2 and θ(0) = 0. Hence determine the Poincaré
return map mapping points, say, rn, on the positive x-axis to itself.

[12]

2. (a) Plot phase portraits and a bifurcation diagram for the system

dx

dt
= −x,

dy

dt
= y(y − μ+ 1).

[14]

(b) Plot a bifurcation diagram for the system

dr

dt
= r(μ+ r),

dθ

dt
= −1.

[6]

3. (a) An interacting species model of the Balsan fir tree, moose, and
wolf at the Isle Royale National Park USA is given by

db

dt
= b(1−b)−bm,

dm

dt
= m(1−m)+bm−mw,

dw

dt
= w(1−w)+mw,

where b(t) represents the population of Balsan fir trees, m(t) is
the population of moose, and w(t) gives the population of wolves
at time t. Determine the number and location of all critical points
and show that there is a stable critical point for b(t),m(t), w(t) > 0.

[12]



Coursework and Examination-Type Questions 615

(b) Find the fixed points of periods one and two for the complex map-
ping:

zn+1 = z2n − 1 + i.

[8]

4. (a) Consider the mathematical model of glycolysis:

ẋ = −x+ 0.1y + x2y, ẏ = 0.5− 0.1y − x2y,

where x and y represent the concentrations of ADP (adenosine
diphosphate) and F6P (fructose 6-phosphate), respectively. Plot
the nullclines given by (ẋ = ẏ = 0) and show where the flow is
vertical and horizontal. Given that there is a critical point in the
first quadrant at (0.5, 1.4286),show that it is unstable.

[10]

(b) Show that there is an annular region which is positively invariant
by considering the critical point from part (a) and the flow along
the lines:

L1 : y = 5, 0 ≤ x ≤ 0.5;

L2 : x = 5.4, 0 ≤ y ≤ 0.1;

L3 : x = 0, 0 ≤ y ≤ 5;

L4 : y = 0, 0 ≤ x ≤ 5.4;

L5 : y = −x+ 5.5, 0.5 ≤ x ≤ 5.4.

What can you deduce from these results and the results in part
(a)?

[10]

5. (a) Derive the inverse of the complex Ikeda mapping

En+1 = A+BEn exp

(
i

(
φ− C

1 + |En|2
))

.

[8]

(b) A highly simplified model for the Gross National Product (GNP)
of a country is given by the iterative equation

kt+1 = f (kt) = 0.5
Bk0.3t (1− kt)

0.2

1.2
.
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Plot the curves for f(k) when B = 1 and B = 4. Use Python to
plot the corresponding curves for df

dk . Show that there is a stable
fixed point of period one when B = 1 and an unstable fixed point of
period one when B = 4. What happens when B is approximately
3.26?

[12]

6. (a) Find the fixed points of periods one and two for the Lozi map

xn+1 = 1 + yn − 2|xn|, yn+1 =
1

2
xn

and classify the fixed points of period one.

[10]

(b) Consider the map defined by xn+1 = f (xn), where f(x) is defined
by

f(x) =

{
−6x+ 2 x ≤ 1

2 ,
6x− 4 x > 1

2 .

Plot the function on graph paper. Consider the sets, Sn say, which
remain in the interval [0, 1] after n iterations. List the intervals in
S1 and S2. The set of points that never escape from the interval
[0, 1] form a Cantor set. What is the fractal dimension of this
Cantor set?

[10]

7. (a) A certain species of insect can be divided into three age classes:
0–6 months, 6–12 months, and 12–18 months. A Leslie matrix for
the female population is given by

L =

⎛
⎝

0 10 20
1
2 0 0
0 1

3 0

⎞
⎠ .

Determine the long-term distribution of the insect population. An
insecticide is applied which kills off 50% of the youngest age class.
Determine the long-term distribution if the insecticide is applied
every six months.

[10]

(b) Consider the Ikeda map given by:

En+1 = 10 + 0.15En exp
(
i|En|2

)
,
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where En is the electric field strength of propagating light in an
SFR resonator (see Chapter 5). Using Python and taking E(1) =
10, iterate 10000 times and plot a power spectrum for |En|2. Write
down the Python program in your answer booklet.

[10]

8. (a) The Lyapunov exponent, say λ, for the map

xn+1 = f (xn)

is defined by

λ = lim
n→∞

(
1

n

n−1∑
i=0

ln |f ′ (xi) |
)
.

Use Python to compute the Lyapunov exponent of the sine map

xn+1 = r sin (πxn) ,

for 0 ≤ xn ≤ 1, when r = 1.3 and x0 = 0.1. Write down the value
of the Lyapunov exponent and the Python code in your answer
booklet. What type of solution is defined by (i) λ < 0, (ii) λ = 0,
and (iii) λ > 0?

[10]

(b) Motifs for the Koch curve and Lévy curve are shown in Figure 22.5
and a Python program for plotting the Koch curve up to stage 7
is listed below. Edit this program (copy your program in to the
answer booklet) to plot the Lévy curve up to stage 7.

Figure 22.5: Motifs for the Koch curve and Lévy curves.

# The Koch curve up to stage 7.

import numpy as np

import matplotlib.pyplot as plt
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from math import floor

k=6;N_lines=4**k;h=3**(-k);

x = [0]*(N_lines+1)

y = [0]*(N_lines+1)

x[0] = 0;y[0] = 0;

segment=[0]*N_lines;

# The angles of the four segments.

angle=[0,np.pi/3,-np.pi/3,0]

for i in range(N_lines):

m=i;ang=0;

for j in range(k):

segment[j]=np.mod(m,4)

m=floor(m/4)

ang=ang+angle[segment[j]]

x[i+1]=x[i]+h*np.cos(ang)

y[i+1]=y[i]+h*np.sin(ang)

plt.axis(’equal’)

plt.plot(x,y)

[10]

END



Chapter 23

Solutions to Exercises

23.1 Chapter 1

1. (a) # A function to convert degrees Fahrenheit to degrees

Centigrade.

# Save file as F2C.py.

# Run the Module (or type F5).

def F2C():

F = int(input(’Enter temperature in degrees Fahrenheit: ’))

C = (F - 32) * 5 / 9

print(’Temperature in degrees Centigrade is: { } degrees

C’.format(C))

(b) # Sum of primes to n.

# Save file as sum_primes.py.

n = int(input(’What do you want to sum to? ’))

sum_p = 0

for n in range(2, n+1):

if all(n % i for i in range(2, n)):

sum_p += n

print(’The sum of the first {:,} primes is {:,}’.format(n,

sum_p))

(c) # Part solution to Pythagorean triples.

# Save file as pythag_triples.py.

n = 1

m = 100

for a in range(1, m):

for b in range(1, m):

if a**2 + b**2 == (b+n)**2:

print(a, b, b+n)

(d) # Plot the Koch snowflake.

© Springer International Publishing AG, part of Springer Nature 2018
S. Lynch, Dynamical Systems with Applications using Python,
https://doi.org/10.1007/978-3-319-78145-7 23
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# Save file as koch_snowflake.py.

from turtle import *

def koch_snowflake(length, level): # KochSnowflake function.

speed(0) # Fastest speed.

for i in range(3):

plot_side(length, level)

rt(120)

def plot_side(length, level): # Plot side function.

if level==0:

fd(length)

return

plot_side(length/3, level - 1)

lt(60)

plot_side(length/3, level - 1)

lt(-120)

plot_side(length/3, level - 1)

lt(60)

plot_side(length/3, level - 1)

(e) # Plot the Sierpinski square.

# Save file as sierpinski_square.py.

from turtle import *

def sierpinski_square(length, level):

speed(0) # Fastest speed

if level==0:

return

begin_fill() # Fill shape

color("red")

for i in range(4):

sierpinski_square(length/3, level-1)

fd(length/2)

sierpinski_square(length/3, level-1)

fd(length/1)

lt(90) # Left turn 90 degrees

end_fill()

2. (a) 3; (b) 531441; (c) 0.3090; (d) 151; (e) − 1
10
.

3. (a)

A+ 4BC =

⎛
⎝

57 38 19
40 25 16
35 19 14

⎞
⎠ .
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(b)

A−1 =

⎛
⎝

0.4 −0.6 0.2
0 1 0

−0.6 1.4 0.2

⎞
⎠ , B−1 =

⎛
⎝

0 1 −1
2 −2 −1
−1 1 1

⎞
⎠ .

The matrix C is singular.

(c)

A3 =

⎛
⎝

−11 4 −4
0 1 0
12 20 −7

⎞
⎠ .

(d) Determinant of C = 0.

(e) Eigenvalues and corresponding eigenvectors are

λ1 = −0.3772, (0.4429,−0.8264, 0.3477)T ;

λ2 = 0.7261, (0.7139, 0.5508,−0.4324)T ;

λ3 = 3.6511, (0.7763, 0.5392, 0.3266)T .

4. (a) −1+3i; (b) 1−3i; (c) 1.4687+2.2874i; (d) 0.3466+0.7854i; (e)−1.1752i.

5. (a) 1; (b) 1
2
; (c) 0; (d) ∞; (e) 0.

6. (a) 9x2 + 4x; (b) 2x3√
1+x4

; (c) ex(sin(x) cos(x) + cos2(x)− sin2(x)); (d) 1−

tanh2 x; (e) 2 ln xxln x

x
.

(f) − 43
12
; (g) 1; (h)

√
π; (i) 2; (j) divergent.

7. See Section 1.2.2.

8. (a) y(x) = 1
2

√
2x2 + 2; (b) y(x) = 6

x
; (c) y(x) = (108x3+81)1/4

3
; (d) x(t) =

−2e−3t + 3e−2t; (e) 16
5
e−2t − 21

10
e−3t − 1

10
cos t+ 1

10
sin t.

9. (a) When x(0)=0.2, (b) when x(0)=0.2001,

x(91)=0.8779563852 x(91)=0.6932414820

x(92)=0.4285958836 x(92)=0.8506309185

x(93)=0.9796058084 x(93)=0.5082318360

x(94)=0.7991307420e-1 x(94)=0.9997289475

x(95)=0.2941078991 x(95)=0.1083916122e-2

x(96)=0.8304337709 x(96)=0.4330964991e-2

x(97)=0.5632540923 x(97)=0.1724883093e-1

x(98)=0.9839956791 x(98)=0.6780523505e-1

x(99)=0.6299273044e-1 x(99)=0.2528307406

x(100)=0.2360985855 x(100)=0.7556294285

10. Euclid’s algorithm, greatest common divisor.
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# Euclid’s algorithm to find the gcd.

# See Exercise 10.

# Run the Module (or type F5).

a = 12348

b = 14238

while b != 0:

d = a % b

a = b

b = d

print(’The greatest common divisor is {}’.format(a))

The greatest common divisor is 126

23.2 Chapter 2

1. (a) y = C
x
; (b) y = Cx2; (c) y = C

√
x; (d) 1

y
= ln

(
C
x

)
; (e) y4

4
+ x2y2

2
= C;

(f) y = Ce−
1
x .

2. The fossil is 8.03× 106 years old.

3. (a) ḋ = kf (a0 − d)(b0 − d)(c0 − d)− kr(d0 + d);

(b) ẋ = kf (a0 − 3x)3 − krx, where a = [A], x = [A3], b = [B], c = [C], and
d = [D].

4. (a) The current is I = 0.733 amps;

(b) the charge is Q(t) = 50(1− exp(−10t− t2)) coulombs.

5. (a) Time 1.18 hours. (b) The concentration of glucose is

g(t) =
G

100 kV
− Ce−kt.

6. Set x(t) =
∑∞

n=0 ant
n.

7. The differential equations are

Ȧ = −αA, Ḃ = αA− βB, Ċ = βB.

8. The differential equations are

Ḣ = −aH + bI, İ = aH − (b+ c)I, Ḋ = cI.

The number of dead is given by

D(t) = acN

(
α− β + βeαt − αeβt

αβ(α− β)

)
,

where α and β are the roots of λ2+(a+ b+ c)λ+ac = 0. This is not realistic
as the whole population eventually dies. In reality people recover and some
are immune.
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9. (a) (i) Solution is x3 = 1/(1 − 3t), with maximal interval (MI) −∞ <
t < 1

3
; (ii) x(t) = (et + 3)/(3 − et), with MI −∞ < t < ln 3; (iii)

x(t) = 6/(3− e2t), with MI −∞ < t < ln
√
3.

(b) Solution is x(t) = (t+ x
1/2
0 − t0)

2, with MI t0 − x
1/2
0 < t < ∞.

23.3 Chapter 3

1. (a) Eigenvalues and eigenvectors are λ1 = −10, (−2, 1)T ; λ2 = −3, ( 3
2
, 1)T .

The origin is a stable node.

(b) Eigenvalues and eigenvectors are λ1 = −4, (1, 0)T ; λ2 = 2, (− 4
3
, 1)T .

The origin is a saddle point.

2. (a) All trajectories are vertical and there are an infinite number of critical
points on the line y = −x

2
.

(b) All trajectories are horizontal and there are an infinite number of critical
points on the line y = −x

2
.

(c) Eigenvalues and eigenvectors are λ1 = 5, (2, 1)T ; λ2 = −5, (1,−2)T .
The origin is a saddle point.

(d) Eigenvalues are λ1 = 3 + i, λ2 = 3 − i, and the origin is an unstable
focus.

(e) There are two repeated eigenvalues and one linearly independent eigen-
vector: λ1 = −1, (−1, 1)T . The origin is a stable degenerate node.

(f) This is a nonsimple fixed point. There are an infinite number of critical
points on the line y = x.

3. (a) ẋ = y, ẏ = −25x− μy;

(b) (i) unstable focus, (ii) center, (iii) stable focus, (iv) stable node;

(c) (i) oscillations grow (not physically possible), (ii) periodic oscillations,
(iii) damping, (iv) critical damping.

The constant μ is called the damping coefficient.

4. (a) There is one critical point at the origin which is a col. Plot the nullclines.

The eigenvalues are λ = −1±
√
5

2
with eigenvectors

(
1
λ1

)
and

(
1
λ2

)
.

(b) There are two critical points at A = (0, 2) and B = (1, 0). A is a stable
focus and B is a col with eigenvalues and corresponding eigenvectors

given by λ1 = 1,

(
1
−3

)
and λ2 = −2,

(
1
0

)
.

(c) There are two critical points at A = (1, 1) and B = (1,−1). A is an
unstable focus and B is a stable focus. Plot the nullclines where ẋ = 0
and ẏ = 0.

(d) There are three critical points at A = (2, 0), B = (1, 1), and C = (1,−1);
A is a col and B and C are both stable foci.
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(e) There is one nonhyperbolic critical point at the origin. The solution
curves are given by y3 = x3 +C. The line y = x is invariant, the flow is
horizontal on ẏ = x2 = 0, and the flow is vertical on the line ẋ = y2 = 0.

The slope of the trajectories is given by dy
dx

= x2

y2 .

(f) There is one nonhyperbolic critical point at the origin. The solution
curves are given by y = x

1+Cx
. The line y = x is invariant.

(g) There is one nonhyperbolic critical point at the origin. The solution
curves are given by 2y2 = x4 + C. The slope of the orbits is given by
dy
dx

= x3

y
.

(h) When μ < 0 there are no critical points. When μ = 0, the solution

curves are given by |x| = Ce
1
y . When μ > 0, there are two critical

points at A = (0,
√
μ) and B = (0,−√

μ); A is a col and B is an
unstable node.

5. One possible system is

ẋ = y2 − x2, ẏ = x2 + y2 − 2,

for example.

6. There are three critical points at O = (0, 0), A = (1, 0), and B = (−1, 0). If
a0 > 0, since det JO > 0 and trace JO < 0, the origin is stable and A and B
are cols because det J < 0 for these points. If a0 < 0, the origin is unstable
and A and B are still cols. Therefore, if a0 > 0, the current in the circuit
eventually dies away to zero with increasing time. If a0 < 0, the current
increases indefinitely, which is physically impossible.

7. There are three critical points atO = (0, 0), A = (a
b
, 0), andB =

(
c+a
b

, c(c+a)
b

)
.

The origin is an unstable node and A is a col. The critical point at B is stable
since det JB > 0 and trace JB < 0. Therefore, the population and birth rate
stabilize to the values given by B in the long term.

8. When αβ > 1, there is one stable critical point at A = (0, 1
β
). When αβ < 1,

A becomes a col and B = (
√
1− αβ, α) and C = (−

√
1− αβ, α) are both

stable. When αβ > 1, the power goes to zero and the velocity of the wheel
tends to 1

β
and when αβ < 1, the power and velocity stabilize to the point

B.

9. (a) There is one critical point at
(

KG0
K−C

, G0
K−C

)
, which is in the first quad-

rant if K > C. When C = 1, the critical point is nonhyberbolic. The
system can be solved and there are closed trajectories around the crit-
ical point. The economy oscillates (as long as I(t), S(t) > 0). If C �= 1,
then the critical point is unstable if 0 < C < 1 and stable if C > 1.

(b) The critical point is stable and the trajectory tends to this point. The
choice of initial condition is important to avoid I(t) or S(t) from going
negative, where the model is no longer valid.

10. Note that dη
dτ

= et and d2η
dτ2 = dη

dτ
dt
dτ

. There are four critical points: O = (0, 0),
an unstable node; A = (−1, 0), a col; B = (0, 2), a col; and C =

(
− 3

2
, 1
2

)
, a

stable focus.
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23.4 Chapter 4

1. This is a competing species model. There are four critical points in the first
quadrant at O = (0, 0), P = (0, 3), Q = (2, 0), and R = (1, 1). The point
O is an unstable node, P and Q are both stable nodes, and R is a saddle
point. There is mutual exclusion and one of the species will become extinct
depending on the initial populations.

2. This is a Lotka-Volterra model with critical points at O = (0, 0) and A =
(3, 2). The system is structurally unstable. The populations oscillate but the
cycles are dependent on the initial values of x and y.

3. This is a predator-prey model. There are three critical points in the first
quadrant at O = (0, 0), F = (2, 0), and G = ( 3

2
, 1
2
). The points O and F are

saddle points and G is a stable focus. In terms of species behavior, the two
species coexist and approach constant population values.

4. Consider the three cases separately.

(i) If 0 < μ < 1
2
, then there are four critical points at O = (0, 0), L = (2, 0),

M = (0, μ), and N =
(

μ−2
μ2−1

, μ(2μ−1)

μ2−1

)
. The point O is an unstable

node, L and M are saddle points, and N is a stable point. To classify
the critical points, consider det J and trace J . The two species coexist.

(ii) If 1
2
< μ < 2, then there are three critical points in the first quadrant,

all of which lie on the axes. The point O is an unstable node, L is a
stable node, and M is a saddle point. Species y becomes extinct.

(iii) If μ > 2, then there are four critical points in the first quadrant. The
point O is an unstable node, L and M are stable nodes, and N is a
saddle point. One species becomes extinct.

5. (a) A predator-prey model. There is coexistence; the populations stabilize
to the point ( 5

4
, 11

4
).

(b) A competing species model. There is mutual exclusion; one species
becomes extinct.

6. There are three critical points in the first quadrant if 0 ≤ ε < 1: at O = (0, 0),
A = ( 1

ε
, 0) and B = ( 1+ε

1+ε2
, 1−ε
1+ε2

). There are two when ε ≥ 1. The origin is
always a col. When ε = 0, the system is Lotka-Volterra, and trajectories lie
on closed curves away from the axes. If 0 < ε < 1, A is a col, and B is stable
since the trace of the Jacobian is negative and the determinant is positive.
When ε ≥ 1, A is stable.

7. There are three critical points at O = (0, 0), P = (1, 0), and Q = (0.6, 0.24).
Points O and P are cols and Q is stable. There is coexistence.

8. There is a limit cycle enclosing the critical point at (0.48, 0.2496). The pop-
ulations vary periodically and coexist.

9. One example would be the following. X and Y prey on each other; Y has can-
nibalistic tendencies and also preys on Z. A diagram depicting this behavior
is plotted in Figure 23.1.
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10. Let species X, Y , and Z have populations x(t), y(t), and z(t), respectively.
The interactions are as follows: X preys on Y ; Z preys on X; Y and Z are
in competition.

23.5 Chapter 5

1. Convert to polar coordinates to get

ṙ = r

(
1− r2 − 1

2
cos2 θ

)
, θ̇ = −1 +

1

2
cos θ sin θ.

X Y

Z

Figure 23.1: One possible interaction between three interacting insect species.

Since θ̇ < 0, the origin is the only critical point. On r = 1
2
, ṙ > 0, and on

r = 2, ṙ < 0. Therefore, there exists a limit cycle by the corollary to the
Poincaré-Bendixson Theorem.

2. Plot the graph of y = x − x3 cos3(πx) to prove that the origin is the only
critical point inside the square. Linearize to show that the origin is an un-
stable focus. Consider the flow on the sides of the rectangle, for example, on
x = 1, with −1 ≤ y ≤ 1, ẋ = −y + cosπ ≤ 0. Hence the flow is from right to
left on this line. Show that the rectangle is invariant and use the corollary
to the Poincaré-Bendixson Theorem.

3. (a) Substitute for y from ẋ = 0 and plot the graph of y = x8 − 3x6 + 3x4 −
2x2 + 2 to prove that the origin is a unique critical point. Convert to polar
coordinates to get

ṙ = r
(
1− r2(cos4 θ + sin4 θ)

)
, θ̇ = 1− r2 cos θ sin θ(sin2 θ − cos2 θ).

Now div(X) = 2 − 3r2 and so div(X) is nonzero in the annulus A = {1 <
r < 2}. On the circle r = 1 − ε, ṙ > 0, and on the circle r = 2 + ε, ṙ < 0.
Therefore there is a unique limit cycle contained in the annulus by Dulac’s
criteria. (b) Convert to polar coordinates and consider the annular region

1√
μ+ρ

< r < 1√
μ
.
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4. Convert to polars and use the Poincaré-Bendixson theorem.

5. Consider the nullcline curves. If the straight line intersects the parabola to
the right of the maximum, then there is no limit cycle. If the straight line
intersects the parabola to the left of the maximum, then there exists a limit
cycle.

6. (a) The limit cycle is circular. (b) The limit cycle has fast and slow
branches.

7. It will help if you draw rough diagrams.

(a) Now div(X) = −(1 + x2 + x4) < 0. Hence there are no limit cycles by
Bendixson’s criteria.

(b) Now div(X) = 2−x. There are four critical points at (0, 0), (1, 0), (−1, 1),
and (−1,−1). The x axis is invariant. On x = 0, ẋ = 2y2 ≥ 0. Hence
there are no limit cycles in the plane.

(c) Now div(X) = −6 − 2x2 < 0. Hence there are no limit cycles by
Bendixson’s criteria.

(d) Now div(X) = −3−x2 < 0. Hence there are no limit cycles by Bendix-
son’s criteria.

(e) Now div(X) = 3x − 2, and div(X) = 0 on the line x = 2
3
. There are

three critical points at (1, 0), (−1, 0), and (2, 3). The x-axis is invariant,
and ẋ < 0 for y > 0 on the line x = 2

3
. Hence there are no limit cycles

by Bendixson’s criteria.

(f) Now div(X) = −3x2y2. Therefore there are no limit cycles lying entirely
in one of the quadrants. However, ẋ = −y2 on the line x = 0 and ẏ = x5

on the line y = 0. Hence there are no limit cycles by Bendixson’s
criteria.

(g) Now div(X) = (x − 2)2. On the line x = 2, ẋ = −y2, and so no limit
cycle can cross this line. Hence there are no limit cycles by Bendixson’s
criteria.

8. (a) The axes are invariant. Now div(ψX) = 1
xy2 (2−2x) and so div(ψX) = 0

when x = 1. There are four critical points and only one, (−16, 38), lying
wholly in one of the quadrants. Since the divergence is nonzero in this
quadrant, there are no limit cycles.

(b) Now div(ψX) = − δ
y
− d

x
and so div(ψX) = 0 when y = − δx

d
. Since

δ > 0 and d > 0, there are no limit cycles contained in the first quadrant.

9. (a) The one-term uniform expansion is x(t, ε) = a cos(t)
(
1 − ε

(
1
2
+ a2

8

)
+

· · ·
)
+O(ε), as ε → 0.

10. See Section 5.4.
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23.6 Chapter 6

1. The Hamiltonian is H(x, y) = y2

2
− x2

2
+ x4

4
. There are three critical points:

(0, 0), which is a saddle point and (1, 0) and (−1, 0), which are both centers.

2. There are three critical points: (0, 0), which is a center, and (1, 0) and (−1, 0),
which are both saddle points.

3. The critical points occur at (nπ, 0), where n is an integer. When n is odd,
the critical points are saddle points, and when n is even the critical points
are stable foci. The system is now damped and the pendulum swings less
and less, eventually coming to rest at θ = 2nπ degrees. The saddle points
represent the unstable equilibria when θ = (2n+ 1)π degrees.

4. The Hamiltonian is H(x, y) = y4

4
− y2

2
− x2

2
+ x4

4
. There are nine critical

points.

5. (a) The origin is asymptotically stable.

(b) The origin is asymptotically stable if x < α and y < β.

(c) The origin is unstable.

6. The origin is asymptotically stable. The positive limit sets are either the
origin or the ellipse 4x2 + y2 = 1, depending on the value of p.

7. The function V (x, y) is a Lyapunov function if a > 1
4
.

8. The basin of attraction of the origin is the circle x2 + y2 < 4.

9. Use Python.

10. The basin of attraction is V (x, y) = x2 + 3xy + 3y2 < 1
36
.

23.7 Chapter 7

1. (a) There is one critical point when μ ≤ 0, and there are two critical points
when μ > 0. This is a saddle-node bifurcation.

(b) When μ < 0, there are two critical points and the origin is stable. When
μ > 0, there is one critical point at the origin which is unstable. The
origin undergoes a transcritical bifurcation.

(c) There is one critical point at the origin when μ ≤ 0, and there are
three critical points—two are unstable—when μ > 0. This is called a
subcritical pitchfork bifurcation.

2. Possible examples include

(a) ẋ = μx(μ2 − x2);

(b) ẋ = x4 − μ2; and

(c) ẋ = x(μ2 + x2 − 1).
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3. The critical points are given by O = (0, 0), A = 12+
√
169−125h
5

, and B =
12−

√
169−125h
5

. There are two critical points if h ≤ 0, the origin is unstable,
and A is stable (but negative harvesting is discounted). There are three
critical points if 0 < h < 1.352, the origin and A are stable, and B is unstable.
There is one stable critical point at the origin if h ≥ 1.352.

The term x(1 − x
5
) represents the usual logistic growth when there is no

harvesting. The term hx
0.2+x

represents harvesting from h is zero up to a
maximum of h, no matter how large x becomes (plot the graph).

When h = 0, the population stabilizes to 5 × 105; when 0 < h < 1.352,
the population stabilizes to A × 105; and when h > 1.352, the population
decreases to zero. Use animation in Python to plot ẋ as h varies from zero to
eight. The harvesting is sustainable if 0 < h < 1.352, where the fish persist,
and it is unsustainable if h > 1.352, when the fish become extinct from the
lake.

4. (a) No critical points if μ < 0. There is one nonhyperbolic critical point at
O = (0, 0) if μ = 0, and there are two critical points at A = (0, 4

√
μ)

and B = (0,− 4
√
μ). Both A and B are unstable.

(b) There are two critical points at O = (0, 0) and A = (μ2, 0) if μ �= 0
(symmetry). O is stable and A is unstable. There is one nonhyperbolic
critical point at O = (0, 0) if μ = 0.

(c) There are no critical points if μ < 0. There is one nonhyperbolic critical
point at O = (0, 0) if μ = 0, and there are four critical points at
A = (2

√
μ, 0), B = (−2

√
μ, 0), C = (

√
μ, 0), and D = (−√

μ, 0) if
μ > 0. The points A and D are stable, while B and C are unstable.

5. (a) If μ < 0, there is a stable critical point at the origin and an unstable
limit cycle of radius r = −μ. If μ = 0, the origin is a center, and if
μ > 0, the origin becomes unstable. The flow is counterclockwise.

(b) If μ ≤ 0, the origin is an unstable focus. If μ > 0, the origin is unstable,
and there is a stable limit cycle of radius r = μ

2
and an unstable limit

cycle of radius r = μ.

(c) If μ �= 0, the origin is unstable and there is a stable limit cycle of radius
|r| = μ. If μ = 0, the origin is stable.

6. Take x = u + f3(u). Then, if the eigenvalues of J are not resonant of order
3,

f30 =
a30

2λ1
, f21 =

a21

λ1 + λ2
, f12 =

a12

2λ2
, f03 =

a03

3λ2 − λ1
,

g30 =
b30

3λ1 − λ2
, g21 =

b21
2λ1

, g12 =
b12

λ1 + λ2
, g03 =

b03
2λ2

and all of the cubic terms can be eliminated from the system resulting in a
linear normal form u̇ = Ju.

7. See the book of Guckenheimer and Holmes referenced in Chapter 9.

8. (a) There is one critical point at the origin and there are at most two stable
limit cycles. As μ increases through zero there is a Hopf bifurcation at



630 Chapter 23: c©Springer

the origin. Next there is a saddle-node bifurcation to a large-amplitude
limit cycle. If μ is then decreased back through zero, there is another
saddle-node bifurcation back to the steady state at the origin.

(b) If μ < 0, the origin is unstable, and if μ = 0, ṙ > 0 if r �= 0 the origin
is unstable and there is a semistable limit cycle at r = 1. If μ > 0, the

origin is unstable, there is a stable limit cycle of radius r =
2+μ−

√
μ2+4μ

2

and an unstable limit cycle of radius r =
2+μ+

√
μ2+4μ

2
. It is known as a

fold bifurcation because a fold in the graph of y = (r− 1)2 −μr crosses
the r-axis at μ = 0.

9. If μ < 0, the origin is a stable focus and as μ passes through zero, the origin
changes from a stable to an unstable spiral. If μ > 0, convert to polars. The
origin is unstable and a stable limit cycle bifurcates.

10. The critical points occur at A = (0,−α
β
) and B = (α + β, 1). Thus there

are two critical points everywhere in the (α, β) plane apart from along the
line α = −β where there is only one. The eigenvalues for the matrix JA

are λ1 = β and λ2 = − (α+β)
β

. The eigenvalues for the matrix JB are λ =

−α±
√

α2−4(α+β)

2
. There is a codimension-2 bifurcation along the line α = −β

and it is a transcritical bifurcation.

23.8 Chapter 8

1. Eigenvalues and eigenvectors given by [3, (−2,−2, 1)T ], [−3, (−2, 1,−2)T ], and
[9, (1,−2,−2)T ]. The origin is unstable; there is a col in two planes and an
unstable node in the other.

2. Eigenvalues are λ1,2 = 1 ± i
√
6, λ3 = 1. The origin is unstable and the flow

is rotating. Plot solution curves using Python.

3. There are two critical points at O = (0, 0, 0) and P = (−1,−1,−1). The
critical points are both hyperbolic and unstable. The eigenvalues for O are
[1, 1,−1] and those for P are [1,−1,−1].

4. Consider the flow on x = 0 with y ≥ 0 and z ≥ 0, etc. The first quadrant is
positively invariant. The plane x+y+2z = k is invariant since ẋ+ ẏ+2ż = 0.
Hence if a trajectory starts on this plane, then it remains there forever. The

critical points are given by
(

λy
1+y

, y, y/2
)
. Now on the plane x+ y + 2z = k,

the critical point satisfies the equation λy
1+y

+ y + y = k, which has solutions

y =
(2−λ)±

√
(2−λ)2+32

4
. Since the first quadrant is invariant, λ+(p) must tend

to this critical point.

5. (a) Take V = x2+y2+z2. Then V̇ = −
(
x2 + y4 + (y − z2)2 + (z − x2)2

)
≤

0. Now V̇ = 0 if and only if x = y = z = 0; hence the origin is globally
asymptotically stable.

(b) Consider V = ax2 + by2 + cz2. Now V̇ = −2(a2x2 + b2y2 + c2z2) +

2xyz(ax+by+cz). Hence V̇ < V 2

c
−2cV and V̇ < 0 in the set V < 2c2.

Therefore the origin is asymptotically stable in the ellipsoid V < 2c2.
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6. See the Python program listed in Chapter 8.

7. There are eight critical points at (0, 0, 0), (0, 0, 1/2), (0, 1/2, 0), (0, 1,−1), (1/2,
0, 0), (−1/3, 0, 1/3), (1/3,−1/3, 0), and (1/14, 3/14, 3/14). The plane x+y+
z = 1/2 is a solution plane since ẋ+ ẏ + ż = (x+ y + z)− 2(x+ y + z)2 = 0
on this plane. There are closed curves on the plane representing periodic
behavior. The three species coexist and the populations oscillate in phase.
The system is structurally unstable.

8. (i) The populations settle onto a period-2 cycle. (ii) The populations settle
onto a period-4 cycle.

9. Use Python to plot a time series.

10. A Jordan curve lying wholly in the first quadrant exists, similar to the limit
cycle for the Liénard system when a parameter is large. The choice of q and
C are important.

23.9 Chapter 9

1. Starting with r0 = 4, the returns are r1 = 1.13854, r2 = 0.66373, . . ., r10 =
0.15307, to five decimal places.

2. The Poincaré map is given by rn+1 = P(rn) =
μrn

rn+e−2μπ(μ−rn)
.

3. Now dP
dr

∣∣
μ
= e−2μπ. Therefore the limit cycle at r = μ is hyperbolic stable

if μ > 0 and hyperbolic unstable if μ < 0. What happens when μ = 0?

4. The Poincaré map is given by rn+1 = P(rn) =
(

r2n
r2n+e−4π(1−r2n)

) 1
2
.

5. The limit cycle at r = 1 is stable since dP
dr

∣∣
r=1

= e−4π.

6. (a) The Poincaré section in the p1q1 plane is crossed 14 times. (b) The
trajectory is quasiperiodic.

7. Edit the Python program listed in Chapter 9.

8. Edit the Python program listed in Chapter 9.

9. A chaotic attractor is formed.

10. (a) See Figure 23.2(a).

(b) See Figure 23.2(b). Take Γ = 0.07. For example, choose initial condi-
tions (i) x0 = 1.16, y0 = 0.112 and (ii) x0 = 0.585, y0 = 0.29.

23.10 Chapter 10

1. Differentiate to obtain 2uu̇ = G′(x)ẋ and find dy
du

.

2. Using Python:
{{

x2 − 3xy + 9y2, 0,−26y2 − 36yz − 26z2
}
,−25z3

}
and{{

9, 9 + x2 − 3xy,−27 + y2 + yz + z2
}
,−27z + 2z3

}
.

3. Lex
{
y3−y4−2y6 + y9, x+ y2 + y4−y7

}
; DegLex

{
−x2 + y3,−x+ x3−y2

}
;

DegRevLex
{
−x2 + y3,−x+ x3 − y2

}
. Solutions are (0, 0), (−0.471074,

0.605423), and (1.46107, 1.28760).
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Figure 23.2: (a) Bifurcation diagram. (b) Multistable behavior.

4. The Lyapunov quantities are given by L(i) = a2i+1, where i = 0 to 6.

5. See the Lloyd and Lynch paper in the Bibliography.

7. The Lyapunov quantities are given by L(0) = −a1, L(1) = −3b03−b21, L(2) =
−3b30b03 − b41, and L(3) = b303.

8. The homoclinic loop lies on the curve y2 = x2 + 2
3
x3.

10. There are three limit cycles when λ = −0.9.

23.11 Chapter 11

1. There is one critical point in the finite plane at the origin which is a stable
node. The eigenvalues and eigenvectors are given by λ1 = −1, (1,−1)T and
λ2 = −4, (1,−4)T , respectively. The function g2(θ) is defined as

g2(θ) = −4 cos2 θ − 5 cos θ sin θ − sin2 θ.

There are four critical points at infinity at θ1 = tan−1(−1), θ2 = tan−1(−1)+
π, θ3 = tan−1(−4), and θ4 = tan−1(−4) + π. The flow in a neighborhood
of a critical point at infinity is qualitatively equivalent to the flow on X = 1
given by

ẏ = −y2 − 5y − 4, ż = −yz.

There are two critical points at (−1, 0), which is a col and (−4, 0), which is an
unstable node. Since n is odd, antinodal points are qualitatively equivalent.
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2. There is one critical point in the finite plane at the origin which is a col.
The eigenvalues and eigenvectors are given by λ1 = 1, (1, 1)T and λ2 = −1,
(2, 1)T , respectively. The function g2(θ) is defined as

g2(θ) = −2 cos2 θ + 6 cos θ sin θ − 4 sin2 θ.

There are four critical points at infinity at θ1 = tan−1(1), θ2 = tan−1(1)+π,
θ3 = tan−1(1/2), and θ4 = tan−1(1/2) + π. The flow in a neighborhood of a
critical point at infinity is qualitatively equivalent to the flow on X = 1 given
by

ẏ = −4y2 + 6y − 2, ż = 3z − 4yz.

There are two critical points at (1, 0), which is a stable node and (1/2, 0),
which is an unstable node. Since n is odd, antinodal points are qualitatively
equivalent.

3. There are no critical points in the finite plane. The function g3(θ) is given
by

g3(θ) = 4 cos2 θ sin θ − sin3 θ.

The function has six roots in the interval [0, 2π), at θ1 = 0, θ2 = 1.10715,
θ3 = 2.03444, θ4 = 3.14159, θ5 = 4.24874, and θ6 = 5.1764. All of the angles
are measured in radians. The behavior on the plane X = 1 is determined
from the system

ẏ = 4y − 5z2 − y3 + yz2, ż = −z − zy2 + z3.

There are three critical points at O = (0, 0), A = (2, 0), and B = (−2, 0).
Points A and B are stable nodes and O is a col. Since n is even, antinodal
points are qualitatively equivalent, but the flow is reversed.

All of the positive and negative limit sets for this system are made up of the
critical points at infinity.

4. There is one critical point at the origin in the finite plane which is a stable
focus. The critical points at infinity occur at θ1 = 0 radians, θ2 = π

2
radians,

θ3 = −π
2
radians, and θ4 = π radians. Two of the points at infinity are cols

and the other two are unstable nodes.

5. There is a unique critical point in the finite plane at the origin which is an
unstable node. The critical points at infinity occur at θ1 = 0 radians, θ2 = π

2

radians, θ3 = −π
2
radians, and θ4 = π radians. Two of the points at infinity

are cols and the other two are unstable nodes. There is at least one limit cycle
surrounding the origin by the corollary to the Poincaré-Bendixson Theorem.

7. If a1a3 > 0, then the system has no limit cycles. If a1a3 < 0, there is a
unique hyperbolic limit cycle. If a1 = 0 and a3 �= 0, then there are no limit
cycles. If a3 = 0 and a1 �= 0, then there are no limit cycles. If a1 = a3 = 0,
then the origin is a center by the classical symmetry argument.

8. When ε is small one may apply the Melnikov theory of Chapter 11 to estab-
lish where the limit cycles occur. The limit cycles are asymptotic to circles
centered at the origin. If the degree of F is 2m+ 1 or 2m+ 2, there can be
no more than m limit cycles. When ε is large, if a limit cycle exists, it shoots
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across in the horizontal direction to meet a branch of the curve y = F (x),
where the trajectory slows down and remains near the branch until it shoots
back across to another branch of F (x) where it slows down again. The tra-
jectory follows this pattern forever. Once more there can be no more than
m limit cycles.

9. Use a similar argument to that used in the proof to Theorem 4. See Liénard’s
paper in Chapter 5.

10. The function F has to satisfy the conditions a1 > 0, a3 < 0, and a2
3 > 4a1,

for example. This guarantees that there are five roots for F (x). If there is a
local maximum of F (x) at say (α1, 0), a root at (α2, 0), and a local minimum
at (α3, 0), then it is possible to prove that there is a unique hyperbolic limit
cycle crossing F (x) in the interval (α1, α2) and a second hyperbolic limit
cycle crossing F (x) in the interval (α3,∞). Use similar arguments to those
used in the proof of Theorem 4.

23.12 Chapter 12

1.,2. Work out the solution on [−1, 2] by hand and then edit the Python program
listed in Section 12.1 to determine the analytical solution on [−1, 4].

5. Edit the Python program listed in Section 12.2. There is periodic, quasiperi-
odic, and possibly chaotic behavior.

7. When the global warming term W is small we see no discernible difference in
the steady-state solutions; however, when the global warming gets too large,
the oscillatory solution disappears.

8. It will help if you plot Poincaré sections. (i) Periodic; (ii) quasiperiodic; (iii)
chaotic.

9. See the paper cited in the question.

10. See the paper cited in the question.

23.13 Chapter 13

1. The general solution is xn = π(4n+ cn(n− 1)).

2. (a) 2× 3n − 2n; (b) 2−n(3n+ 1); (c) 2
n
2 (cos(nπ/4) + sin(nπ/4));

(d) Fn = 1

2n
√
5

[
(1 +

√
5)n − (1−

√
5)n

]
;

(e) (i) xn = 2n + 1;

(ii) xn = 1
2
(−1)n + 2n + n+ 1

2
;

(iii) xn = 1
3
(−1)n + 5

3
2n − 1

6
en(−1)n − 1

3
en2n + 1

2
en.

3. The dominant eigenvalue is λ1 = 1.107 and

(a)

X(15) =

⎛
⎝

64932
52799
38156

⎞
⎠ ;
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(b)

X(50) =

⎛
⎝

2.271× 106

1.847× 106

1.335× 106

⎞
⎠ ;

(c)

X(100) =

⎛
⎝

3.645× 108

2.964× 108

2.142× 108

⎞
⎠ .

4. The eigenvalues are λ1 = 1 and λ2,3 = −1±
√
3

2
. There is no dominant eigen-

value since |λ1| = |λ2| = |λ3|. The population stabilizes.

5. The eigenvalues are 0,0,−0.656 ± 0.626i, and λ1 = 1.313. Therefore the
population increases by 31.3% every 15 years. The normalized eigenvector is
given by

X̂ =

⎛
⎜⎜⎜⎜⎝

0.415
0.283
0.173
0.092
0.035

⎞
⎟⎟⎟⎟⎠

.

7. Before insecticide is applied, λ1 = 1.465, which means that the population
increases by 46.5% every 6 months. The normalized eigenvector is

X̂ =

⎛
⎝

0.764
0.208
0.028

⎞
⎠ .

After the insecticide is applied, λ1 = 1.082, which means that the population
increases by 8.2% every 6 months. The normalized eigenvector is given by

X̂ =

⎛
⎝

0.695
0.257
0.048

⎞
⎠ .

8. For this policy, d1 = 0.1, d2 = 0.4, and d3 = 0.6. The dominant eigenvalue is
λ1 = 1.017 and the normalized eigenvector is

X̂ =

⎛
⎝

0.797
0.188
0.015

⎞
⎠ .

9. Without any harvesting the population would double each year since λ1 = 2.

(a) λ1 = 1; X̂ =

⎛
⎝

24/29
4/29
1/29

⎞
⎠ .

(b) h1 = 6/7; X̂ =

⎛
⎝

2/3
2/9
1/9

⎞
⎠ .
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(c) λ1 = 1.558; X̂ =

⎛
⎝

0.780
0.167
0.053

⎞
⎠ .

(d) h1 = 0.604, λ1 = 1.433; X̂ =

⎛
⎝

0.761
0.177
0.062

⎞
⎠ .

(e) λ1 = 1.672; X̂ =

⎛
⎝

0.668
0.132
0.199

⎞
⎠ .

10. Take h2 = h3 = 1, then λ1 = 1, λ2 = −1, and λ3 = 0. The population
stabilizes.

23.14 Chapter 14

1. The iterates give orbits with periods (i) one, (ii) one, (iii) three, and (iv) nine.
There are two points of period one, two points of period two, six points of
period three, and twelve points of period four. In general, there are 2N -(sum
of points of periods that divide N) points of period N .

2. (a) The functions are given by

T 2(x) =

⎧⎪⎪⎨
⎪⎪⎩

9
4
x 0 ≤ x < 1

3
3
2
− 9

4
x 1

3
≤ x < 1

2
9
4
x− 3

4
1
2
≤ x < 2

3
9
4
(1− x) 2

3
≤ x ≤ 1

and

T 3(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

27
8
x 0 ≤ x < 2

9
3
2
− 27

8
x 2

9
≤ x < 1

3
27
8
x− 3

4
1
3
≤ x < 4

9
9
4
− 27

8
x 4

9
≤ x < 1

2
27
8
x− 9

8
1
2
≤ x < 5

9
21
8
− 27

8
x 5

9
≤ x < 2

3
27
8
x− 15

8
2
3
≤ x < 7

9
27
8
(1− x) 7

9
≤ x < 1.

There are two points of period one, two points of period two, and no
points of period three.

(b) x1,1 = 0, x1,2 = 9
14
; x2,1 = 45

106
, x2,2 = 81

106
; x3,1 = 45

151
, x3,2 = 81

151
,

x3,3 = 126
151

, x3,4 = 225
854

, x3,5 = 405
854

, x3,6 = 729
854

.

4. Use functions of functions to determine fN
μ . There are two, two, six, and

twelve points of periods one, two, three, and four, respectively.

5. A value consistent with period-two behavior is μ = 0.011. Points of period
two satisfy the equation

μ2x2 − 100μ2x− μx+ 100μ+ 1 = 0.
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6. Edit a program from Section 14.6.

7. Points of period one are (−3/10,−3/10) and (1/5, 1/5). Two points of period
two are given by (x1/2, (0.1− x1)/2), where x1 is a root of 5x2 − x− 1 = 0.
The inverse map is given by

xn+1 = yn, yn+1 =
10

9

(
xn − 3

50
+ y2

n

)
.

8. (a) The eigenvalues are given by λ1,2 = −αx ±
√

α2x2 + β. A bifurcation
occurs when one of the |λ| = 1. Take the case where λ = −1.

(c) The program is listed in Section 14.6.

9. (a) (i) When a = 0.2, c1,1 = 0 is stable, c1,2 = 0.155 is unstable, and
c1,3 = 0.946 is stable. (ii) When a = 0.3, c1,1 = 0 is stable, c1,2 = 0.170
is unstable, and c1,3 = 0.897 is unstable.

10. See the Ahmed paper in the Bibliography.

23.15 Chapter 15

1. (a) The orbit remains bounded forever, z500 ≈ −0.3829 + 0.1700i;

(b) the orbit is unbounded, z10 ≈ −0.6674× 10197 + 0.2396× 10197.

2. Fixed points of period one are given by

z1,1 =
1

2
+

1

4

√
10 + 2

√
41− i

4

√
2
√
41− 10,

z1,2 =
1

2
− 1

4

√
10 + 2

√
41 +

i

4

√
2
√
41− 10.

Fixed points of period two are given by

z2,1 = −1

2
+

1

4

√
2 + 2

√
17− i

4

√
2
√
17− 2,

z2,2 = −1

2
− 1

4

√
2 + 2

√
17 +

i

4

√
2
√
17− 2.

3. Use the Python program listed in Chapter 15; J(0, 0) is a circle and J(−2, 0)
is a line segment.

4. There is one fixed point located approximately at z1,1 = 1.8202− 0.0284i.

5. See the example in the text. The curves are again a cardioid and a circle but
the locations are different in this case.

7. Fixed points of period one are given by

z1,1 =
3 +

√
9− 4c

2
, z1,2 =

3−
√
9− 4c

2
.

Fixed points of period two are given by

z2,1 =
1 +

√
5− 4c

2
, z2,2 =

1−
√
5− 4c

2
.
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9. (i) Period four and (ii) period three.

10. There are regions where periodic points fail to converge. You should write
your program so that these points are plotted in black.

23.16 Chapter 16

1. There are 11 points of period one.

2. See the programs in Section 16.7.

3. Find an expression for En in terms of En+1.

5. See the paper of Li and Ogusu in the Bibliography.

6. (a) Bistable: 4.765 − 4.766 Wm−2. Unstable: 6.377 − 10.612 Wm−2. (b)
Bistable: 3.936 − 5.208 Wm−2. Unstable: 4.74 − 13.262 Wm−2. (c)
Bistable: 3.482− 5.561 Wm−2. Unstable: 1.903− 3.995 Wm−2.

8. Use the function G(x) = ae−bx2

to generate the Gaussian pulse. The param-
eter b controls the width of the pulse.

23.17 Chapter 17

1. (a) The length remaining at stage k is given by

L = 1− 2

5
− 2× 3

52
− . . .− 2× 3k−1

5k
.

The dimension is Df = ln 3
ln 5

≈ 0.6826.

(b) Df = ln 2

ln
√
2
= 2. If the fractal was constructed to infinity, there would

be no holes and the object would have the same dimension as a plane.
Thus this mathematical object is not a fractal.

2. The figure is similar to the stage 3 construction of the Sierpiński triangle. In
fact, this gives yet another method for constructing this fractal as Pascal’s
triangle is extended to infinity.

3. See Figure 17.8 as a guide.

4. The dimension is Df = ln 8
ln 3

≈ 1.8928.

6. S1 =
[
0, 1

4

]
∪
[
3
4
, 1
]
, S2 =

[
0, 1

16

]
∪
[

3
16
, 1
4

]
∪
[
3
4
, 13
16

]
∪
[
15
16
, 1
]
. Df = 0.5.

7. (i) The fractal is homogeneous; (ii) αmax ≈ 1.26 and αmin ≈ 0.26; (iii)
αmax ≈ 0.83 and αmin ≈ 0.46. Take k = 500 in the plot commands.

8. Using the same methods as in Example 7:

D0 =
ln 4

ln 3
, αs =

s ln p1 + (k − s) ln p2
−k ln 3

, and − fs =

ln

(
2k

(
k
s

))

−k ln 3
.
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9. At the kth stage, there are 5k segments of length 3−k. A number

Ns = 3k−s2s
(

k
s

)

of these have weight pk−s
1 ps2. Use the same methods as in Example 7.

10. Using multinomials,

αs =
n1 ln p1 + n2 ln p2 + n3 ln p3 + n4 ln p4

ln 3−k
and − fs =

ln 4!
n1!n2!n3!n4!

ln 3−k
,

where n1 + n2 + n3 + n4 = k.

23.18 Chapter 18

For questions 1. 5. 6. 7. and 8., see the Python programs in Chapter 18.

3. Choose suitable RGB values to identify green pixels. Scan across the image
with the mouse to gauge values.

9. Gaussian function is

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
.

10. Other edge detection algorithms include Prewitt, fuzzy logic, Laplacian of
Gaussian (LoG), and Canny, for example.

23.19 Chapter 19

1. Take the transformations xn = 1
a
un and yn = b

a
vn.

2. There is one control range when p = 1, there are three control ranges when
p = 2, seven control ranges when p = 3, and twelve control ranges when
p = 4.

3. Points of period one are located at approximately (−1.521,−1.521) and
(0.921, 0.921). Points of period two are located near (−0.763, 1.363) and
(1.363,−0.763).

4. See the paper of Chau in the Bibliography.

5. See Section 19.3.

6. The two-dimensional mapping is given by

xn+1 = A+B(xn cos(x2
n + y2

n)− yn sin(x2
n + y2

n)),

yn+1 = B(xn sin(x2
n + y2

n) + yn cos(x2
n + y2

n)).

The one point of period one is located near (2.731, 0.413).



640 Chapter 23: c©Springer

7. (i) There are three points of period one; (ii) there are nine points of period
one.

8. See our research paper on chaos control in the Bibliography.

9. The control region is very small and targeting is needed in this case. The
chaotic transients are very long. Targeting is not required in Exercise 9,
where the control region is much larger. Although there is greater flexibility
(nine points of period one) with this system, the controllability is reduced.

23.20 Chapter 20

2. Use the chain rule.

5. (a) Show that dV(a)
dt

= −
∑n

i=1

(
d

dai

(
φ−1(ai)

))(
dai
dt

)2

.

(b)

V(a)=− 1

2

(
7a2

1+12a1a2−2a2
2

)
− 4

γπ2
(log (cos(πa1/2))+ log (cos(πa2/2))) .

There are two stable critical points, one at (12.98, 3.99), and the other
at (−12.98,−3.99).

6. The algorithm converges to (a) x2; (b)x1; (c)x3; (d)− x1.

8. (a) Fixed points of period one satisfy the equation a = γa+ θ + wσ(a).

(b–d) See Pasemann’s paper referenced in Chapter 14.

(e) There is a bistable region for 4.5 < w < 5.5, approximately.

9. Iterate 10, 000 times. A closed loop starts to form, indicating that the system
is quasiperiodic.

23.21 Chapter 21

1. The threshold voltage is approximately 6.3mV. (a) When I = 8mV, fre-
quency is approximately 62.5Hz. (b) When I = 20mV, frequency is approx-
imately 80Hz.

2. An example of a Fitzhugh-Nagumo system with a critical point at the origin
is given by

ẋ = (x+ 0.1) ∗ ((x− 0.039)(0.9− x))− 0.0035− y, ẏ = 0.008(x− 2.54y).
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3. The inequalities are given by:

for I =

⎛
⎝

0
0
0

⎞
⎠

{ ∑
Iw1 − Ô2x1 < T∑
Iw2 < T

for I =

⎛
⎝

1
0
0

⎞
⎠ ,

⎛
⎝

0
1
0

⎞
⎠ ,

⎛
⎝

0
0
1

⎞
⎠

{ ∑
Iw1 − Ô2x1 > T∑
Iw2 < T

for I =

⎛
⎝

1
1
0

⎞
⎠ ,

⎛
⎝

1
0
1

⎞
⎠ ,

⎛
⎝

0
1
1

⎞
⎠

{ ∑
Iw1 − Ô2x1 < T∑
Iw2 > T

for I =

⎛
⎝

1
1
1

⎞
⎠

{ ∑
Iw1 − Ô2x1 > T∑
Iw2 > T.

(23.1)

6. The truth table and time series are shown in Figure 23.3.

9. See Chapter 6.

10. Use the second iterative method, ramp kappa up and down. See Programs
9d: Bifurcation diagram of the Duffing equation, for a similar example.

23.22 Chapter 22

Examination 1

1. (a) Eigenvalues and eigenvectors λ1 = 3.37, (1, 0.19)T ; λ2 = −2.37,
(1,−2.7)T . Saddle point, ẋ = 0 on y = − 3

2
x, ẏ = 0 on y = 1

2
x.

(b) ṙ > 0 when 0 < θ < π, ṙ < 0 when π < θ < 2π, ṙ = 0 when θ = 0, π,

θ̇ = 0 when θ = (2n−1)
4

π, n = 1, 2, 3, 4.

2. (a) V̇ = −(x− 2y)2, V̇ = 0 when y = x
2
. On y = x

2
, ẋ, ẏ �= 0, therefore, the

origin is asymptotically stable.

(b) r = 1
t+1

, θ = t+ 2nπ.

3. (a) λ1 = −1, λ2 = −2 + i, λ3 = −2 − i. Origin is globally asymptotically
stable.

(b) V̇ = −4y4 − 2z4 < 0, if y, z �= 0. Therefore, the origin is asymptotically
stable, trajectories approach the origin forever.

4. (a) One limit cycle when μ < 0, three limit cycles when μ > 0, μ �= 1, and
two limit cycles when μ = 1.

(b) Use Bendixson’s criteria:

(i) divX = −(1 + 3x2 + x4) < 0;

(ii) divX = 3x3y2, on x = 0, ẋ ≥ 0, on y = 0, ẏ ≥ 0, no limit cycles in
the quadrants and axes invariant;

(iii) divX = (1 + y)2. On y = −1, ẏ > 0.



642 Chapter 23: c©Springer

I1

I2

I3

I4

O1

O2

O3

O4

O5

O6

O7

0 1000 2000 3000 4000 5000 6000 7000 8000
time

O8

a

b

Figure 23.3: (a) Truth table for a 2× 2 bit binary multiplier. (b) Time series
of a 2× 2 bit binary multiplier based on Fitzhugh-Nagumo oscillations.
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5. (a) x1,1 = 0, x1,2 = 7
11
; x2,1 = 28

65
, x2,2 = 49

65
; x3,1 = 28

93
, x3,2 = 49

93
, x3,3 =

77
93
, x3,4 = 112

407
, x3,5 = 196

407
, x3,6 = 343

407
.

(b) z1,1 = 1+
√
13

2
, z1,2 = 1−

√
13

2
; z2,1 = 1, z2,2 = −2. Fixed points of period

one are unstable.

6. (a) Area of inverted Koch snowflake is
√
3

10
units2, Df = 1.2619.

(b) Use L’Hopital.

7. (a) Period one
(
5
9
, 1
9

)
,
(
−1,− 1

5

)
, both fixed points are unstable.

(b) See Chapter 6.

8. (a)

W =
1

4

⎛
⎜⎜⎝

0 −1 1 1
−1 0 1 1
1 1 0 −1
1 1 −1 0

⎞
⎟⎟⎠ .

(b)

V(a) =− 1

2

(
a2
1 + 2a1a2 + 4a2

2 + 12a1 + 20a2

)

− 4

γπ2
(log (cos(πa1/2)) + log (cos(πa2/2))) .

Examination 2

1. (a) ẋ = −k1x, ẏ = k1x − k2y, ż = k2y; x(20) = 4.54 × 10−5, y(20) =
0.3422, z(20) = 0.6577.

(b) Period is approximately T ≈ −6.333.

2. (a) See Section 10.5, Exercise 6.

(b) H(x, y) = y2

2
− x2

2
+ x3

3
, saddle point at origin, center at (1, 0).

3. (a) Three critical points when μ < 0, one when μ ≥ 0.

(b) Chaos.

4. (a) x1,1 = 0, x1,2 = 0.716, x2,1 = 0.43, x2,2 = 0.858, no points of period
three, x4,1 = 0.383, x4,2 = 0.5, x4,3 = 0.825, x4,4 = 0.877.

(b) z1,1 = −0.428+1.616i, z1,2 = 1.428−1.616i; z2,1 = −1.312+1.847i, z2,2 =
0.312 − 1.847i; z3,1 = −1.452 + 1.668i, z3,2 = −1.269 + 1.800i, z3,3 =
−0.327 + 1.834i, z3,4 = 0.352 − 1.891i, z3,5 = 0.370 − 1.570i, z3,6 =
1.326− 1.845i.

5. (a) Fixed points of period one (0.888, 0.888), (−1.688,−1.688); fixed points
of period two (1.410,−0.610), (−0.610, 1.410).

(b) Lyapunov exponent is approximately 0.4978.

6. (b) J(0, 1.3): Scattered dust, totally disconnected.

7. (a) Period-one points (2.76, 0.73), (3.21,−1.01), (3.53, 1.05), (4.33, 0.67).

(b) The Python program to plot a Koch snowflake is listed in the solutions
for Chapter 1.
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8. (a)

W =
1

6

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 1 1 −1 3
−1 0 1 1 3 −1
1 1 0 −1 1 1
1 1 −1 0 1 1
−1 3 1 1 0 −1
3 −1 1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(b) See Chapter 17.

Examination 3

1. (a) Eigenvalues and eigenvectors λ1 = 2, (3, 1)T ; λ2 = −5, (1,−2)T . Saddle
point.

(b) rn+1 = rn
rn−(rn−1)e−2π .

2. (a) Critical points at (0, 0) and (0, μ−1). Critical point at origin is unstable
for μ < 1 and stable for μ > 1. Other critical point has opposite
stability.

(b) One unstable limit cycle when μ < 0. Critical point at origin is stable
when μ < 0 and unstable when μ > 0.

3. (a) Critical points at (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), and ( 2
3
, 1
3
, 4
3
).

Critical point away from axes is stable.

(b) z1,1 = 1.6939 − 0.4188i, z1,2 = −0.6939 + 0.4188i, z1,2 = −1.3002 +
0.6248i, z2,2 = 0.3002− 0.6248i.

4. (a) Critical point at (0.5, 1.428), is an unstable focus.

(b) There exists a limit cycle by the Poincaré-Bendixson theorem.

5. (a) Determine an expression for En in terms of En+1.

(b) Fixed point at k ≈ 0.26, is stable when B = 1, and fixed point k ≈ 0.92
is unstable when B = 4. There is a bifurcation when B ≈ 0.36.

6. (a) Period one fixed points at ( 2
5
, 1
5
) and (− 2

3
,− 1

3
). Period two fixed points

at ( 10
17
,− 3

17
) and (− 6

17
, 5
17
).

(b) S1 =
[
1
6
, 2
6

]
∪
[
4
6
, 5
6

]
. Df ≈ 0.3869.

7. (a) Eigenvalues are λ1 = 2.5150, λ2 = −1.7635, λ3 = −0.7516. Long-term
population is [0.8163; 0.1623; 0.0215].

(b) Edit Program 17b.

8. (a) Lyapunov exponent=0.940166.

(b) N_lines=2**k;h=3**(-k);

angle=[np.pi/4,-np.pi/4];segment[j]=np.mod(m,2);m=floor(m/2).
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Index of Python Programs

Readers can download the Python program files via GitHub:

https://github.com/springer-math/dynamical-systems-with-applications-
using-python

These files will be kept up-to-date and extra files will be added in the
forthcoming years.

A.1 IDLE Python Programs

These files include solutions to the Exercises listed in Chapter 1.

euclid_algorithm.py --- See Exercise 10.

F2C.py --- See Exercise 1(a).

F2K.py --- Converts degrees Fahrenheit to Kelvin.

fibonacci.py --- Lists first n terms of the Fibonacci sequence.

fmu.py --- The logistic function.

fractal_tree.py --- Plots a fractal tree.

fractal_tree_color.py --- Plots a color fractal tree.

grade.py --- Converts a score to a grade.

guess_number.py --- Guess the number game.

koch_snowflake.py --- See Exercise 1(d).

koch_square.py --- Plots a Koch square fractal.

Pythag_Triples.py --- See Exercise 1(c).

sierpinski.py --- Plots a Sierpinski triangle fractal.

sierpinski_square.py --- Plots a Sierpinski square fractal.

© Springer International Publishing AG, part of Springer Nature 2018
S. Lynch, Dynamical Systems with Applications using Python,
https://doi.org/10.1007/978-3-319-78145-7
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sum_primes.py --- See Exercise 1(b).

sum_n.py --- Sums the natural numbers to n.

A.2 Anaconda Python Programs

If you have difficulty with the animation programs in Spyder, you have to
change the backend to run an animation in the IPython console. You can do
that by running

In[1]: %matplotlib qt5

before the animation. If you don’t want to use this command every time,
you can go to: Tools, Preferences, IPython Console, Graphics, Backend, and
change it from “Inline” to “Automatic.”

Program_01a.py --- Solve a simple ODE.

Program_01b.py --- Solve a second order ODE.

Program_01c.py --- Plot two curves on one graph.

Program_01d.py --- Subplots.

Program_01e.py --- Surface and contour plot in 3D.

Program_01f.py --- A parametric curve in 3D.

Program_01g.py --- Animation of a simple curve.

Program_02a.py --- Solve a separable ODE.

Program_02b.py --- Solve the logistic ODE.

Program_02c.py --- Power series solution.

Program_02d.py --- Power series solution for van der Pol.

Program_02e.py --- Plot series solution against numerical

solution.

Program_02f.py --- Solve a linear first order ODE.

Program_02g.py --- Solve a linear second order ODE.

Program_03a.py --- Plot the phase portrait of a linear system.

Program_03b.py --- Plot the phase portrait of a nonlinear

system.

Program_03c.py --- Finding critical points.

Program_04a.py --- Phase portrait and time series of Holling-

Tanner model.
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Program_05a.py --- Limit cycle of a Fitzhugh-Nagumo system.

Program_05b.py --- Approximate and numerical solutions to ODEs.

Program_05c.py --- Error between one-term and numerical

solution.

Program_05d.py --- Lindstedt-Poincare technique.

Program_06a.py --- Contour plot.

Program_06b.py --- Surface plot.

Program_07a.py --- Animation of a simple curve.

Program_07b.py --- Animation of a subcritical Hopf bifurcation.

Program_07c.py --- Animation of a SNIC bifurcation.

Program_08a.py --- The Rossler attractor.

Program_08b.py --- The Lorenz Attractor.

Program_08c.py --- The Belousov-Zhabotinsky reaction.

Program_08d.py --- Animation of a Chua circuit bifurcation.

Program_09a.py --- Simple Poincare return map.

Program_09b.py --- Hamiltonian with two degrees of freedom plot.

Program_09c.py --- Phase portrait and Poincare map for the

Duffing system.

Program_09d.py --- Bifurcation diagram of Duffing equation.

Program_10a.py --- Computing Lyapunov quantities.

Program_10b.py --- Division algorithm for multivariate

polynomials.

Program_10c.py --- S-polynomial.

Program_10d.py --- Computing the Groebner basis.

Program_10e.py --- Computing Groebner basis of Lyapunov

quantities.

Program_10f.py --- Animation of a homoclinic limit cycle

bifurcation.

Program_10g.py --- Animation of a homoclinic limit cycle

bifurcation.

Program_11a.py --- Animation of a Lienard limit cycle.

Program_12a.py --- The method of steps.

Program_12b.py --- Plot of solution by method of steps.

Program_12c.py --- The Mackey-Glass DDE.

Program_12d.py --- The Lang-Kobayashi DDEs.
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Program_13a.py --- Computing bank interest.

Program_13b.py --- Solving a second order recurrence relation.

Program_13c.py --- The Leslie matrix, eigenvalues and

eigenvectors.

Program_14a.py --- Graphical iteration of the tent map.

Program_14b.py --- Bifurcation diagram of the logistic map.

Program_14c.py --- Computing Lyapunov exponents for the

logistic map.

Program_14d.py --- Iteration of the Henon map.

Program_14e.py --- Lyapunov exponents of the Henon map.

Program_15a.py --- Point plot for a Julia set.

Program_15b.py --- Colormap of a Julia set.

Program_15c.py --- Color Mandelbrot set.

Program_15d.py --- Color Newton fractal Julia set.

Program_16a.py --- Intersection of implicit curves.

Program_16b.py --- Chaotic Attractor of the Ikeda map

Program_16c.py --- Bifurcation diagram of the Ikeda map.

Program_17a.py --- The Koch curve.

Program_17b.py --- Chaos game and the Sierpnski triangle.

Program_17c.py --- Barnsley’s fern.

Program_17d.py --- Subplots of tau, D_q and f(alpha)

multifractal spectra.

Program_18a.py --- Generating a multifractal image

Program_18b.py --- Counting pixels in a color image.

Program_18c.py --- Image and statistical analysis on

microbes.png

Program_18d.py --- Fast Fourier transform of a noisy signal

Program_18e.py --- Iterative map and power spectra

Program_18f.py --- Fast Fourier transform of Lena image

Program_18g.py --- Edge detection in Lena image

Program_19a.py --- Chaos control in the logistic map.

Program_19b.py --- Chaos control in the Henon map.

Program_19c.py --- Chaos synchronization between two Lorenz

systems.

Program_19d.py --- Generalized synchronization.

Program_20a.py --- The generalized delta learning rule.
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Program_20b.py --- The discrete Hopfield network.

Program_20c.py --- Iteration of a minimal chaotic neuromodule.

Program_20d.py --- Bifurcation diagram of neuromodule.

Program_21a.py --- The Hodgkin-Huxley equations.

Program_21b.py --- The Fitzhugh-Nagumo half-adder.

Program_21c.py --- Phase portrait Josephson junction limit

cycle.

Program_21d.py --- Animated Josephson junction limit cycle.

Program_21e.py --- Pinched hysteresis of a memristor.
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absorptive nonlinearity, 407
action potential, 114, 559
activation

function, 521, 550
level, 532
potential, 522

ADALINE network, 524
affine linear transformation, 440
age class, 106, 333
Airy equation, 61
algebraicity of limit cycles, 283
All or None principle, 560
Alzheimer’s disease, 577
ampere, 48
Ampere’s law, 405
Anaconda, 14
Anaconda Python programs, 646
anemia, 374
angiogenesis, 308
angular frequency of the wave,

406
animation, 26

Spyder, 646
ants and termites, 96
aperiodic, 201, 360

behavior, 196
append, 262
applying a damper, 493
arrhythmic, 495
Artificial Intelligence Group, 526
artificial neural networks, 520

ArtistAnimation, 178
assay for neuronal degradation,

577
associative memory, 524, 531
asymptotic expansion, 127
asymptotically stable

critical point, 152
asynchronous updating, 536
attractor, 193
attributes, 529
autocatalysis, 204
autonomous differential equation,

54
autonomous system, 186
auxiliary system approach, 507
average Lyapunov exponent, 366
ax.set title, 235
Axes3D(fig), 235
axial flow compressors, 175
axon, 521, 558

Baby computer, 571
backpropagation, 526

algorithm, 528
backward training, 388
ballistic propagation, 571
bandwidth, 407
Barnsley’s fern, 441
basin of attraction, 159, 193, 372,

388
basis, 253
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batch data, 530
Belousov-Zhabotinski reaction,

204, 212
Bendixson’s criterion, 123
bias, 521
bifurcating limit cycles from a

center, 258
bifurcation

curve, 167
diagram, 166
at infinity, 273
point, 362
value, 164

bifurcation diagram
CR resonator, 409
DDE
field components, 313
Mackey-Glass, 307

Duffing equation, 232
Gaussian map, 370
Ikeda map, 425
Josephson junction, 575
limit cycles, 177
logistic map, 365
neuromodule, 544
periodically forced

pendulum, 233
SFR resonator, 422
SNIC, 178

binarize, 475
binary half adder, 565
biology, 374
bipolar activation function, 522
bistability, 174, 175, 368, 421
bistable, 175, 206, 370, 408

cycle, 203
device, 407, 421
neuromodule, 543
optical resonator, 495
region, 233, 241, 409, 414
solution, 176

bistable region, 544
blit, 178

blowflies, 360
bluegill sunfish, 104
Boston housing data, 529
boundaries of periodic orbits, 391
box-counting dimension, 443, 448
brain functions, 521
Briggs-Rauscher, 204
bursting, 310
butterfly effect, 200
BZ reaction, 204

canny edge detector, 477
canonical form, 66, 67, 186
Cantor

multifractal, 454
set, 235, 435

capacitance, 49
capacitor, 49
cardioid, 393
cardiology, 492
carrying capacity, 38
cavity ring (CR) resonator, 408
cavity round-trip time, 408
cell body, 558
center, 69, 148, 246

manifold
theorem, 191

changing the system parameters,
493

chaologist, 492
chaos, 194, 196, 350, 353, 409

control, 541, 552
synchronization, 505

chaos control
OGY method, 493
periodic proportional pulses,

513
chaos game, 439
chaotic

attractor, 197, 229, 415
dynamics, 199
phenomena, 348
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chaotic attractor
Hénon map, 501
neuromodule, 542
Sierpiński, 440

Chapman cycle, 211
characteristic

equation, 302, 330
exponent, 283
multiplier, 219

charge density, 405
chemical

kinetics, 44, 86, 117, 204,
505, 561

reaction, 59
signals, 521
substance, 61

chemical law of mass action, 44
Chua’s circuit, 51, 117, 201, 493,

514
circle map, 221
circular frequency of light, 410
classical symmetry argument, 248
classification of critical points, 71
climate change, 314
clipping problem, 451
clockwise bistable cycle, 632
clockwise hysteresis, 241, 410
cluster, 524
cmap, 396
CMOS oscillators, 571
coarse Hölder exponent, 450
codimension-1 bifurcation, 182
codimension-2 bifurcation, 182
coexistence, 96
coexisting chaotic attractors, 372
col, 69
collect, 128
comb(k,s), 459
common typing errors, 20
commutative ring, 252
competing species, 96, 110, 140
complete synchronization, 506

completely
integrable, 221
reduced, 254

complex eigenvalues, 69, 330
complex iterative equation, 417
complex(x,y), 396
compound interest, 329
computer algebra, 252
concentrations, 44
conditional Lyapunov exponents,

506
conductivity, 406
conformal mapping, 386
conservation of energy, 146
conservation of mass, 86
conservative, 146
contact rate, 212
content-addressable memory, 532
continuation lines, 20
continuous Hopfield model, 532
contour plot, 24
control curves, 499
control engineering, 526
control parameter, 495
control region, 495
controlling chaos

Hénon map, 498
logistic map, 497

conversational agents, 526
convex closed curve, 123
convoluted surfaces, 191
coordinates of an image, 474
core area of the fiber, 413
corollary to Poincaré-Bendixson

theorem, 120
correlation dimension, 450
coulomb, 48
counterclockwise hysteresis, 410
coupler, 412
critical point, 55, 72, 186, 191,

300
at infinity, 276
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culling, 106
policy, 337

current, 48
density, 405

cusp, 84
cylindrical polar coordinates, 193

damping, 116
damping coefficient, 282
dangerous bifurcation, 174
Daphnia dentifera, 104
dashed curve, 22
data, 545
data mining, 520
databases, 529
DDE, 298
dde23, 315
ddeint, 298
def, 6
defibrillator, 495
defraction, 61
degenerate

critical point, 148
node, 70

degree, 273
degree lexicographical order, 253
delay differential equation, 298
deleted neighborhood, 121
delta learning rule, 524, 526
dendrites, 521, 558
depolarization, 559
depolarize, 566
derivative of the Poincaré map

test, 220
desired vector, 527
deterministic chaos, 195, 492
deterministic system, 520
Df , 441
dielectric, 406
difference equation, 328, 551
differential amplifier, 407
diffusion limited aggregates

(DLA), 453

dimension, 448
direction

field, 66
vector, 66

discrete Fourier transform, 479
discrete Hopfield model, 536
dispersive nonlinearity, 407
displacement function, 247
distributive laws, 252
divergence test, 248
domain of stability, 97, 193, 388
double-coupler fiber ring

resonator, 410, 428
double Hopf bifurcation, 308, 322
double-scroll attractor, 203
double-well potential, 151
Dq, 448
driver system, 506, 507
dsolve, 57
Duffing

equation, 129, 227
system, 493, 611

Dulac’s criterion, 122
Dulac’s theorem, 273

EC , 191
economic model, 117, 322, 332
economics, 92, 374, 382, 453, 505
edge detection

Roberts, 485
Sobel, 485

eig, 342
eigenvector, 72
El Niño, 313
electric

circuit, 48, 92, 117, 201, 532
displacement, 405
displacement vector, 405
field, 412, 417, 495
field strength, 405
flux density, 405

electromotive force (EMF), 49
elementary steps, 44
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elliptic integral, 259
EMF, 49
energy level, 227
enrichment of prey, 106
ENSO model, 313
Enthought Canopy, 14
environmental effects, 106
environmental model, 313
epidemic, 61, 85, 106, 117, 212
epilepsy, 577
epoch, 524
equilibrium point, 55
ergodicity, 366, 495
error backpropagation rule, 528
error function, 527
erythrocytes, 374
ES , 72, 186, 191
EU , 72, 186, 191
Euclidean dimension, 448
Euclid’s algorithm, 29
exact, 39
exact differential equation, 39
excitatory, 521, 558
existence and uniqueness

limit cycle, 117
existence theorem, 53
extinct, 96

Fabry-Perot
interferometer, 407
resonator, 407

farad, 49
Faraday’s law, 49

of induction, 404
fast Fourier transform, 480
feedback, 175, 407, 420
feedback mechanism, 543
feedforward single layer network,

523
Feigenbaum constant, 365
Ferranti Mark 1, 571
FFT, 480
fiber parameters, 423

Fibonacci sequence, 343
field, 253
figsize, 107
fine focus, 246
first integral, 146
first iterative method, 419, 422,

552
first return map, 216
first-order difference equation,

328
fish population, 38, 181, 345
Fitzhugh-Nagumo

equations, 116
oscillator, 114
system, 563

fixed point, 55, 355
period m, 221
period N, 357
period one, 217, 414, 497
period two, 498

fixed size box-counting algorithm,
451

fixed weight box-counting
algorithm, 451

flow, 118
focal values, 247
fold bifurcation, 182
for loop, 6
forced system, 227
forward rate constant, 46
fossil dating, 59
Fourier spectrum, 478
Fourier transform, 477
fractal, 434, 441

attractor, 197, 441
dimension, 441
Cantor set, 442
Koch curve, 442
Koch square, 442
Sierpiński triangle, 442

geometry, 434
structure, 196, 201, 386

fragmentation ratios, 449
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f(α) spectrum, 448
FuncAnimation, 178, 207
Function, 57
function approximators, 526
fundamental memory, 536
fuzzy discs, 451

Gauss’s law
electricity, 405
magnetism, 405

Gauss-Newton method, 528
Gaussian input pulse, 421
Gaussian map, 368
Gaussian pulse, 638
generalized delta rule, 528
generalized fractal dimensions,

448
generalized mixed Rayleigh

Liénard equations, 267
generalized synchronization, 507
gestation period, 304
GitHub, 2
global bifurcation, 260, 273
global warming, 314
globally asymptotically stable,

194, 211
glucose in blood, 60
Gröbner bases, 252
gradient, 66
gradient vector, 527
graphene nano-ribbon, 573
graphic, 120
graphical method, 351, 417
gray scale, 458, 473
Green’s theorem, 122
Gross National Product (GNP),

374
Guido van Rossum, 2

Hénon-Heiles Hamiltonian, 225
haematopoiesis, 306
Hamiltonian, 146, 611

Hamiltonian systems
with two degrees of freedom,

221
handcrafted patterns, 541
hard bifurcation, 174
Hartman’s theorem, 79
harvesting, 106, 181

policy, 337
Hausdorff dimension, 448
Hausdorff index, 441
Hausdorff-Besicovich dimension,

450
Heaviside function, 523
Hebb’s learning law, 522
Hebb’s postulate of learning, 536
help command, 20
Hénon map, 370, 445, 451, 609,

612
henry, 49
heteroclinic

bifurcation, 234
orbit, 120, 150, 234, 274
tangle, 234

heterogeneous, 448
hidden layer, 524, 528, 603
high pass filter, 484
Hilbert numbers, 273
Hints for programming, 20
history, 176
history function, DDEs, 298
Hodgkin-Huxley equations, 114,

560
Holling-Tanner model, 101, 139,

164
homoclinic

bifurcation, 200, 234, 261
loop, 260, 261, 267
orbit, 150, 234, 274
tangle, 234

homogeneous, 448
homogeneous differential

equation, 40
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Hopf
bifurcation, 170, 182, 303
singularity, 182

Hopfield network, 156, 531, 551,
610, 613

Hopfield neural network, 525
horseshoe dynamics, 235
host-parasite system, 104
human population, 85, 343
hyperbolic

attracting, 283
critical point, 79
fixed point, 220, 371
iterated function system, 440
repelling, 283
stable limit cycle, 220
unstable limit cycle, 220

hyperpolarize, 566
hyperpolarized, 559
hysteresis, 175, 371, 421

curves, 313
Josephen junction, 574

IDE, 14
ideal, 252
IDLE, 2
IDLE Python programs, 645
if, elif, else, 6
Ikeda

DDE, 310
map, 375, 414, 428, 513

im, 396
image analysis, 453
image compression, 434, 484
incident, 407
indentation level, 20
index, 125
inductance, 49
infected population, 105
infectives, 85
inflation unemployment model,

382
infodict, 107

information dimension, 450
inhibitory, 521, 558
initial value problem, 38
input vector, 521
insect population, 109, 345, 616
instability, 421
instant physician, 526
integrable, 223
integrate and fire neuron, 116
Integrated Development

Environment, 2, 14
integrating factor, 34
intensity, 412
interacting species, 95, 626
intermittency, 203, 212, 363

route to chaos, 365
invariant, 118, 201, 416

axes, 82, 98
inverse discrete Fourier

transform, 479
inverted Koch snowflake, 609
inverted Koch square, 438
inverted pendulum, 322
io.imsave, 474
isoclines, 67
isolated periodic solution, 114
isothermal chemical reaction, 86
iterated function system (IFS),

440
iteration, 328

Jacobian, 171
Jacobian matrix, 78, 192, 205,

371, 502
Jaynes-Cummings model, 595
Jordan curve, 121, 286
Josephson junction

mathematical model, 573
Josephson junction (JJ), 571
jth point of period i, 357
Julia set, 386, 389, 434, 612

color, 390
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KAM
theorem, 227
tori, 227

kernel machines, 525
Kerr

effect, 407, 413
type, 413

kinetic energy, 146
Kirchhoff’s

current law, 49
laws, 532
voltage law, 49

Koch
curve, 436
snowflake, 464
square, 436

ladybirds and aphids, 99
lambdas, 315
laminarize, 494
Lang-Kobayashi equations, 310
Laplace transform, 50
large-amplitude limit cycle, 175

bifurcation, 175
laser, 182, 374, 410, 494

model, 310
LaTeX, 24
law of mass action, 86
learning process, 521
learning rate, 527
least mean squared (LMS)

algorithm, 524
legend, 23, 107
Legendre transformation, 450
Leslie

matrix, 334
model, 333

lexicographical order, 253
lie detector, 526
Liénard

equation, 248
plane, 282

system, 116, 123, 139, 260,
281

large parameter, 286
local results, 290

theorem, 293
limit cycle, 106, 114, 118, 206,

595, 611
hyperbolic, 259
neuron, 116
nonexistence, 608
3-D, 195

Lindstedt-Poincaré technique, 131
linear differential equation, 34
linear phase shift, 412, 423
linear stability analysis, 56, 300,

417
linear transformation, 187
linearization, 78
linearized system, 78
Lipschitz

condition, 53
continuous, 53

local bifurcation, 273
log-log plot, 445
logic gates, 407
logic operations, 565
logistic

equation, 38, 302
function, 6
growth, 101
map, 360, 497, 612

Lorenz
attractor, 201
equations, 199, 494

loss in the fiber, 412
Lotka-Volterra model, 99, 164,

212, 304
low-gain saturation function, 523
low pass filter, 484
lowest common multiple, 256
Lyapunov

quantity, 247
stability, 531
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Lyapunov domain of stability, 155
Lyapunov exponent, 197, 366, 612

Lorenz system, 603
Lyapunov function, 151, 154, 194,

247, 284, 550, 607
Hopfield network, 532

Lyapunov quantities, 290
Lyapunov stability theorem, 152
lynx and snowshoe hares, 99

Mac OS, 2
Mackey-Glass model, 306
magnetic field vector, 405
magnetic flux, 405
magnetostrictive ribbon, 494
Mandelbrot, 443
Mandelbrot set, 389, 391, 434
manifold, 72
Maple, 26
math module, 4
Mathematica, 26
MATLAB, 26
MATLAB code to Python, 603
matplotlib, 18
maximal interval of existence, 54,

62, 118
Maxwell’s equations, 404
Maxwell-Bloch equations, 406
Maxwell-Debye equations, 406
McCulloch-Pitts neuron, 522
MEA, 577
mean, 545

infectivity period, 212
latency period, 212

mechanical oscillator, 91
DDE, 321

mechanical system, 117, 176
Melnikov

function, 259
integral, 258

memory devices, 407
memristance, 52
memristor, 51, 572, 573

mathematical model, 574
meshgrid, 157
meteorology, 199
method of multiple scales, 134
method of steepest descent, 527
method of steps, 299
mgrid, 425
micro-parasite—zooplankton—

fish system,
104

minimal chaotic neuromodule,
542

minimal Gröbner basis, 257
mixed fundamental memories, 537
mixing, 353
modulo, 254
monomial, 253

ordering, 253
mortgage assessment, 526
motif, 434
mplot3d, 207
multi-electrode array, 577
multidegree, 254
multifractal, 447, 472, 602

formalism, 448
Hénon map, 459
Sierpiński triangle, 459
spectra, 448

multistability, 174
multistable, 151, 175, 206, 241,

543
murder, 60
muscle model, 60
mutual exclusion, 96
myimages, 292
mylein sheath, 558

national income, 332
negative

limit set, 118
semiorbit, 118

negatively, invariant, 118
net reproduction rate, 339
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network architecture, 521
neural network, 375, 505, 521

DDE, 315
neuristor, 572
neurodynamics, 541
neurological assay, 577
neuromodule, 541
neuron

module, 375
neuron(s), 114, 521, 551, 558
neuronal model, 521
neurotransmitters, 558
Newton fractal, 395, 602
Newton’s law of cooling, 60
Newton’s law of motion, 146
Newton’s method, 395, 528
noise, 497
NOLM, 404

with feedback, 410
nonautonomous system, 116, 227
nonconvex closed curve, 124
nondegenerate

critical point, 148, 246
nondeterministic chaos, 195, 492
nondeterministic system, 520
nonexistence of limit cycles, 123
nonhyperbolic

critical point, 79, 151, 607
fixed point, 371

nonlinear
center, 247
optics, 374
phase shift, 412
refractive index coefficient,

413
nonlinearity, 175, 407
nonperiodic behavior, 196
nonsimple canonical system, 67
normal form, 164, 170
normalized eigenvector, 340
not robust, 101
notebook, 14
np.mgrid, 88

nullclines, 67
numerical solutions, 42
numpy, 18

occasional proportional feedback
(OPF), 494

ODE, 34
odeint, 42, 57
OGY method, 495
ohm, 49
Ohm’s law, 48
optical

bistability, 407
computer, 407
fiber, 410
fiber double ring, 410
memories, 407
oscillators, 572
resonator, 176
sensor, 408

optimal sustainable, 340
optogenetics, 578
orbit, 66, 118
ordinary differential equation, 34
oscillation of a violin string, 114
oscillatory threshold logic, 563
output vector, 521
ozone production, 211

parasitic infection, 111
Parkinson’s disease, 577
partial differential equations, 34
partition function, 448
Pascal’s triangle, 464
passive circuit, 51
Peixoto’s theorem in the plane,

164
pendulum, 147, 159, 241

double, 593
perceptron, 522
perihelion, 593
period, 259

bubblings, 368
limit cycle, 103, 119, 205
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undoublings, 368
period-doubling, 203
period-doubling bifurcations to

chaos, 363
period-n cycle, 195
period-one behavior, 350
period-two, 196

behavior, 350
period-three behavior, 351
periodic

behavior, 115
orbit, 259
windows, 363

periodicity, 348, 353
permittivity of free space, 405
perturbation methods, 127
phase portrait, 66
phase shift, 412
physiology, 505
piecewise, 300, 315
piecewise linear function, 523
pinched hysteresis, 52, 574
pitchfork bifurcation, 167
pixels, 451
planar manifold, 187
plastics, 453
plt.axes, 292
Poincaré

compactification, 275
map, 119, 199, 216, 259, 371,

495
section, 216, 611

Poincaré-Bendixson theorem, 120,
227, 281, 287

Poisson brackets, 223
polar coordinates, 69, 276
pole placement technique, 496
pollution, 106
polymer, 453
population, 92

of rabbits, 86
population model, 614

positive
limit set, 118
semiorbit, 118

positively, invariant, 118
potato man, 394
potential difference, 48
potential energy, 146, 151
potential function, 151
pow(x,y), 315
power, 412

law, 443
spectra, 199, 203
of a waterwheel, 92

power-splitting ratio, 412
pprint, 57
Prandtl number, 200
preallocate, 20
predation, 104

rate, 101
predator-prey, 117

DDE, 304
models, 99
system, 109

probe vector, 536
propagation, 412
psychological profiling, 526
PyDDE, 298
pydelay, 298, 311
Pyragas’s method, 493
Python

based exam, 607, 613
files download, 2

qth moment, 448
qualitative behavior, 66
qualitatively equivalent, 74
quasi-periodicity, 221
quasi-polynomials, 302
quasiperiodic, 544, 552

route to chaos, 203
quasiperiodic forcing, 228
quiver, 88
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Rössler
attractor, 194
system, 194

radioactive decay, 610
randint(a,b), 459
random behavior, 195
Raspberry Pi, 2
rate constant, 45
rate-determining step, 45
Rational(1,2), 376
rationally independent, 221
ravel, 157
Rayleigh number, 200
Rayleigh system, 115
re, 396
reaction rate equation, 45
real distinct eigenvalues, 68
recurrence relation, 328
recurrent neural network, 524,

531
red blood cells, 374
red and grey squirrels, 96
reduced, 262
reduced Gröbner basis, 257
reflected, 407
refractive index, 407
refractive nonlinearity, 407
refuge, 106
regionprops, 477
regulator poles, 496
relative permeabilities, 406
relative permittivities, 406
repeated real eigenvalues, 70
repolarization, 559
resistance, 49
resonance terms, 173
resonant, 173
response system, 506, 508
restoring coefficient, 282
restoring force, 116
restrictions in programming, 291
return map, 247, 607
reverse rate constant, 46

reversed fundamental memories,
537

RGB image, 474
rgb2gray, 477
ring, 252
ringing, 241
RLC circuit, 51, 117
roach:fish population, 338
robust, 103
Rotating Wave Approximation

(RWA), 312
rsolve, 342
rubbers, 453

S-polynomial, 256
saddle point, 69, 148
saddle-node bifurcation, 165
saddle-node on an invariant cycle

bifurcation, 176
safe bifurcation, 174
save image, 472
savefig, 22
scaling, 443, 448
scatter, 425
sea lions and penguins, 96
seasonal effects, 106
seasonality, 212
second iterative method, 420,

422, 552
second order linear difference

equation, 330
second part of Hilbert’s sixteenth

problem, 272
second-order differential equation,

50
secular term, 131
sedimentary rocks, 453
self-similar, 448
self-similar fractal, 441
self-similarity, 434
semistable

critical point, 56
limit cycle, 118, 220, 286
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sensitivity to initial conditions,
196, 348, 353, 492

separable differential equation, 35
separation of variables, 35
separatrix, 151

cycle, 261
series solutions, 42
SFR, 403

resonator, 409, 412
sharks and fish, 99
Sierpiński triangle, 439
sigmoid function, 523
signal processing, 453, 482
simple canonical system, 68
simple nonlinear pendulum, 146
simply connected domain, 123
singlet, 212
singular node, 70
Smale horseshoe map, 234, 373
Smale-Birkhoff theorem, 235
small perturbation, 56, 417
small-amplitude limit cycle, 246
soft bifurcation, 174
solar system, 492
solution curves, 36
solve, 88, 258
soma, 521, 558
spatial vector, 405
spectrum of Lyapunov exponents,

197
speed of light, 406
spike train, 559
spin-glass states, 537
spirals, 355
spurious steady state, 537
SR flip-flop, 569
stability, 151, 190

diagram, 420
stable

critical point, 55, 152
fixed point, 361, 388
focus, 69
limit cycle, 103, 118

manifold, 72, 79, 186, 191,
495

node, 69
staircases, 356
stationary point, 55
std, 545
steady state, 51, 103
stem cell, 578
stiff system, 47, 212
stiffness, 116
stochastic methods, 520
stock market analysis, 453
stoichiometric equations, 45
Stokes’s theorem, 405
strange attractor, 197
stretching and folding, 348
strictly dominant, 336
structurally

stable, 103, 164
unstable, 101, 164

subcritical Hopf bifurcation, 174,
200

subharmonic oscillations, 229
subplots, 22, 107
summing junction, 521
superconductor, 573
supercritical Hopf bifurcation,

174
supervised learning, 524
surface plot, 24
susceptible population, 105
susceptibles, 85
sustainable, 338
switches, 407
symbols, 57
sympy, 15
synaptic

cleft, 558
gap, 558
vesicles, 558
weights, 521

synchronization, 494, 505, 541
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synchronization of chaos, 505
synchronous updating, 537

target vector, 524, 527
targeting, 497
τ(q), 449
Taylor series expansion, 56, 78,

371, 417
tent map, 348, 608
3D plot, 23
three-dimensional system, 186
threshold, 559

logic, 564
value, 85

time series, 105, 364
chaos detection, 198
plot, 198

Tinkerbell map, 601
Toda Hamiltonian, 240
topological dimension, 448
topologically equivalent, 74
torus, 228
total degree, 253
totally

connected, 388
disconnected, 388

training, 524
trajectory, 66, 118
transcritical bifurcation, 167
transfer function, 521, 551
transient, 51
transmitted, 407
transversal, 247
transversely, 216
travelling salesman problem, 531
triangular pulse, 421
trigsimp, 130
trivial fixed point, 356
turbulence, 453, 492
2D plot, 21
two-neuron module, 533

uint8, 476
unconstrained optimization

problem, 527
uncoupled, 187
uniform asymptotic expansion,

127
uniform harvesting, 341
unipolar activation function, 522
uniqueness theorem, 53
universality, 365
Unix, 2
unstable

critical point, 55, 153
fixed point, 361, 388
focus, 69
limit cycle, 118
manifold, 72, 79, 186, 191
node, 68

unsupervised learning, 524

vacuum, 405
vacuum tube oscillator, 571
value of homes in Boston, 529
van der Pol equation, 130
van der Pol system, 114, 259
vector field, 66

plot, 533
velocity of light, 413
Verhulst’s equation, 38, 96
virus, mobile phone, 592
viscosity, 200
viscous fingering, 434
volt, 48
voltage drop, 48

wave equations, 404
wave vector, 406
wavelength, 406

light, 413
WC , 191
while loop, 6, 29



Index 665

Windows, 2
wing rock, 175
WinPython, 14
WS , 79, 191
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X-ray spectroscopy, 453

XOR gate, 522

You Tube, 386
youngest class harvesting, 339

Zq, 448


	Preface
	Contents
	1 A Tutorial Introduction to Python
	1.1 The IDLE Integrated Development Environment  for Python
	1.1.1 Tutorial One: Using Python as a Powerful Calculator
	1.1.2 Tutorial Two: Simple Programming with Python
	1.1.3 Tutorial Three: Simple Plotting Usingthe Turtle Module

	1.2 Anaconda, Spyder and the Libraries,Sympy, Numpy, and Matplotlib
	1.2.1 Tutorial One: A Tutorial Introduction to Sympy
	1.2.2 Tutorial Two: A Tutorial Introduction to Numpy and Matplotlib
	1.2.3 Tutorial Three: Simple Programming, SolvingODEs, and More Detailed Plots

	1.3 Exercises

	2 Differential Equations
	2.1 Simple Differential Equations and Applications
	2.1.1 Linear Differential Equations
	2.1.2 Separable Differential Equations
	2.1.3 Exact Differential Equations
	2.1.4 Homogeneous Differential Equations

	2.2 Applications to Chemical Kinetics
	2.3 Applications to Electric Circuits
	2.4 Existence and Uniqueness Theorem
	2.5 Python Programs
	2.6 Exercises

	3 Planar Systems
	3.1 Canonical Forms
	3.1.1 Real Distinct Eigenvalues
	3.1.2 Complex Eigenvalues (λ=αi β)
	3.1.3 Repeated Real Eigenvalues

	3.2 Eigenvectors Defining Stable and Unstable Manifolds
	3.3 Phase Portraits of Linear Systems in the Plane
	3.4 Linearization and Hartman's Theorem
	3.5 Constructing Phase Plane Diagrams
	3.6 Python Programs
	3.7 Exercises

	4 Interacting Species
	4.1 Competing Species
	4.2 Predator-Prey Models
	4.3 Other Characteristics Affecting Interacting Species
	4.4 Python Programs
	4.5 Exercises

	5 Limit Cycles
	5.1 Historical Background
	5.2 Existence and Uniqueness of Limit Cycles in the Plane
	5.3 Nonexistence of Limit Cycles in the Plane
	5.4 Perturbation Methods
	5.5 Python Programs
	5.6 Exercises

	6 Hamiltonian Systems, Lyapunov Functions, and Stability
	6.1 Hamiltonian Systems in the Plane
	6.2 Lyapunov Functions and Stability
	6.3 Python Programs
	6.4 Exercises

	7 Bifurcation Theory
	7.1 Bifurcations of Nonlinear Systems in the Plane
	7.1.1 A Saddle-Node Bifurcation
	7.1.2 A Transcritical Bifurcation
	7.1.3 A Pitchfork Bifurcation
	7.1.4 A Hopf Bifurcation

	7.2 Normal Forms
	7.3 Multistability and Bistability
	7.4 Python Programs
	7.5 Exercises

	8 Three-Dimensional Autonomous Systems and Chaos
	8.1 Linear Systems and Canonical Forms
	8.2 Nonlinear Systems and Stability
	8.3 The Rössler System and Chaos
	8.3.1 The Rössler Attractor
	8.3.2 Chaos

	8.4 The Lorenz Equations, Chua's Circuit, and the Belousov-Zhabotinski Reaction
	8.4.1 The Lorenz Equations
	8.4.2 Chua's Circuit
	8.4.3 The Belousov-Zhabotinski (BZ) Reaction

	8.5 Python Programs
	8.6 Exercises

	9 Poincaré Maps and Nonautonomous Systems in the Plane
	9.1 Poincaré Maps
	9.2 Hamiltonian Systems with Two Degrees of Freedom
	9.3 Nonautonomous Systems in the Plane
	9.4 Python Programs
	9.5 Exercises

	10 Local and Global Bifurcations
	10.1 Small-Amplitude Limit CycleBifurcations
	10.2 Gröbner Bases
	10.3 Melnikov Integrals and Bifurcating Limit Cyclesfrom a Center
	10.4 Bifurcations Involving Homoclinic Loops
	10.5 Python Programs
	10.6 Exercises

	11 The Second Part of Hilbert's Sixteenth Problem
	11.1 Statement of Problem and Main Results
	11.2 Poincaré Compactification
	11.3 Global Results for Liénard Systems
	11.4 Local Results for Liénard Systems
	11.5 Python Programs
	11.6 Exercises

	12 Delay Differential Equations
	12.1 Introduction and the Method of Steps
	12.2 Applications in Biology
	12.3 Applications in Nonlinear Optics
	12.4 Other Applications
	12.5 Python Programs
	12.6 Exercises

	13 Linear Discrete Dynamical Systems
	13.1 Recurrence Relations
	13.2 The Leslie Model
	13.3 Harvesting and Culling Policies
	13.4 Python Programs
	13.5 Exercises

	14 Nonlinear Discrete Dynamical Systems
	14.1 The Tent Map and Graphical Iterations
	14.2 Fixed Points and Periodic Orbits
	14.3 The Logistic Map, Bifurcation Diagram,and Feigenbaum Number
	14.4 Gaussian and Hénon Maps
	14.5 Applications
	14.6 Python Programs
	14.7 Exercises

	15 Complex Iterative Maps
	15.1 Julia Sets and the Mandelbrot Set
	15.2 Boundaries of Periodic Orbits
	15.3 The Newton Fractal
	15.4 Python Programs
	15.5 Exercises

	16 Electromagnetic Waves and Optical Resonators
	16.1 Maxwell's Equations and Electromagnetic Waves
	16.2 Historical Background
	16.3 The Nonlinear SFR Resonator
	16.4 Chaotic Attractors and Bistability
	16.5 Linear Stability Analysis
	16.6 Instabilities and Bistability
	16.7 Python Programs
	16.8 Exercises

	17 Fractals and Multifractals
	17.1 Construction of Simple Examples
	17.2 Calculating Fractal Dimensions
	17.3 A Multifractal Formalism
	17.4 Multifractals in the Real World and Some Simple Examples
	17.5 Python Programs
	17.6 Exercises

	18 Image Processing with Python
	18.1 Image Processing and Matrices
	18.2 The Fast Fourier Transform
	18.3 The Fast Fourier Transform on Images
	18.4 Exercises

	19 Chaos Control and Synchronization
	19.1 Historical Background
	19.2 Controlling Chaos in the Logistic Map
	19.3 Controlling Chaos in the Hénon Map
	19.4 Chaos Synchronization
	19.5 Python Programs
	19.6 Exercises

	20 Neural Networks
	20.1 Introduction
	20.2 The Delta Learning Rule and Backpropagation
	20.3 The Hopfield Network and Lyapunov Stability
	20.4 Neurodynamics
	20.5 Python Programs
	20.6 Exercises

	21 Binary Oscillator Computing
	21.1 Brain Inspired Computing
	21.2 Oscillatory Threshold Logic
	21.3 Applications and Future Work
	21.4 An Assay for Neuronal Degradation
	21.5 Python Programs
	21.6 Exercises

	22 Coursework and Examination-Type Questions
	22.1 Examples of Coursework Questions
	22.2 Examination 1
	22.3 Examination 2
	22.4 Examination 3

	23 Solutions to Exercises
	23.1 Chapter 1
	23.2 Chapter 2
	23.3 Chapter 3
	23.4 Chapter 4
	23.5 Chapter 5
	23.6 Chapter 6
	23.7 Chapter 7
	23.8 Chapter 8
	23.9 Chapter 9
	23.10 Chapter 10
	23.11 Chapter 11
	23.12 Chapter 12
	23.13 Chapter 13
	23.14 Chapter 14
	23.15 Chapter 15
	23.16 Chapter 16
	23.17 Chapter 17
	23.18 Chapter 18
	23.19 Chapter 19
	23.20 Chapter 20
	23.21 Chapter 21
	23.22 Chapter 22

	Appendix A Index of Python Programs
	A.1 IDLE Python Programs
	A.2 Anaconda Python Programs

	Index

