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Preface

This book is for control engineers to learn dynamic system modelling and sim-
ulation and control design and analysis using MATLAB or Python. The readers
are assumed to have the undergraduate final-year level of knowledge on ordinary
differential equations, vector calculus, probability, and basic programming.

We have verified all the MATLAB and Python codes in the book using MATLAB
R2021a and Python 3.8 in Spyder, the scientific Python development environment.
To reduce the confusion in running a particular program, most of the programs are
independent on their own. Organizing programming with multiple files is left as
an advanced skill for readers to learn after reading this book.

Jongrae KimLeeds, West Yorkshire, England, UK
30 November 2021
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1

Introduction

1.1 Scope of the Book

This book is for advanced undergraduate students, post-graduate students, or engi-
neers to acquire programming skills for dynamic system modelling and analysis
using control theory. The readers are assumed to have a basic understanding of
computer programming, ordinary differential equations (ODE), vector calculus,
and probability.

Most engineering curricula at the undergraduate level include only an
elementary-level programming course in the early of the undergraduate years.
Only a handful of self-motivated engineering students acquire advanced level
programming skills mainly from self-study through tedious time-consuming
practices and trivial mistakes. As modern engineering systems such as aircraft,
satellite, automobile, or autonomous robots are implemented through inseparable
tight integration of hardware systems and software algorithms, the demand for
engineers having fluent skills in dynamic system modelling and algorithm design
is increasing. In addition, the emergence of interdisciplinary areas merging the
experimental domain with mathematical and computational approaches such
as systems biology, synthetic biology, or computational neuroscience further
increases the necessity of the engineers who understand dynamics and are
capable of computational implementations of dynamic models.

This book aims to fill the gap in learning practical dynamic modelling, simu-
lation, and analysis skills in aerospace engineering, robotics, and biology. Learn-
ing programming in the engineering or biology domain requires not only domain
knowledge but also a robust conceptual understanding of algorithm design and
implementation. It is not, of course, the skills to learn in 14 days or less as many
online courses claim. To be confident in dynamic system modelling and analysis
takes more than several years of practice and dedication. This book provides the
starting point of the long journey for the readers to equip and prepare better for
real engineering and scientific problems.

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers,
First Edition. Jongrae Kim.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling

http://www.wiley.com/go/kim/dynamicmodeling
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2 1 Introduction

1.2 Motivation Examples

1.2.1 Free-Falling Object

Newton’s second law of motion is given by∑
i

Fi =
d
dt

(m𝑣) (1.1)

where Fi is the i-th external force in Newtons (N) acting on the object characterized
by the mass, m, in kg, d∕dt is the time derivative, t is the time in seconds, 𝑣 is the
velocity in m/s, and m𝑣 is the momentum of the object. Newton’s second law states
that the sum of all external forces is equal to the momentum change per unit of time.

Consider a free-falling object shown in Figure 1.1. There exists only one exter-
nal force, i.e. the gravitational force acting downwards in the figure. Hence, the
left-hand side of (1.1) is simply given by

∑
iFi = Fg, where Fg is the gravitational

force. Introduce the additional assumption that the object is within the reasonable
range from the sea level. With the assumption, the gravitational force, Fg, is known
to be proportional to the mass, and the proportional constant is the gravitational
acceleration constant, g, which is equal to 9.81 m/s2 in the sea level. Therefore,
Fg = mg. Replace the left-hand side of (1.1), i.e.

∑
iFi, by Fg = mg provides

mg = Fg =
∑

i
Fi =

d
dt

(m𝑣) (1.2)

where the downward direction is set to the positive direction, which is the opposite
of the usual convention. It highlights that establishing a consistent coordinate system
at the beginning of modelling is vital in dynamic system simulation.

Fg

Figure 1.1 Free-falling object.
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1.2 Motivation Examples 3

From the kinematic relationship between the velocity, 𝑣, and the displacement,
x, we have

dx
dt

= 𝑣

where the origin of x is at the initial position of the object, m, and the positive
direction of x is downwards in the figure. The right-hand side of (1.2) becomes

mg = Fg =
∑

i
Fi =

d
dt

(m𝑣) = d
dt

(
m dx

dt

)
Finally, the leftmost and the rightmost terms are equal to each other as follows:

mg = d
dt

(
m dx

dt

)
and it is expanded as follows:

mg = dm
dt

dx
dt

+ m d2x
dt2

Using the short notations, ṁ = dm∕dt, ẋ = dx∕dt, and ẍ = d2x∕dt2, and after
rearrangements, the governing equation is given by

ẍ = g − ṁ
m

ẋ (1.3)

For purely educational purposes, assume that the mass change rate is given by

ṁ = −m + 2 (1.4)

We can identify now that there are three independent time-varying states, which
are the position, x, the velocity, ẋ, and the mass, m. All the other time-varying
states, for example, ẍ and ṁ, can be expressed using the independent state vari-
ables. Define the state variables as follows:

x1 = x

x2 = ẋ

x3 = m

Obtain the time derivative of each state expressed in the state variable as follows:

ẋ1 = ẋ = x2 (1.5a)

ẋ2 = ẍ = g − −m + 2
m

ẋ = g −
−x3 + 2

x3
x2 (1.5b)

ẋ3 = ṁ = −m + 2 = −x3 + 2 (1.5c)

and this is called the state-space form.
Let the initial conditions be equal to x1(0) = x(0) = 0.0 m, x2(0) = ẋ(0) = 0.5 m/s,

and x3(0) = m(0) = 5 kg. Equation (1.5) can be written in a compact form using the
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4 1 Introduction

matrix–vector notations. Define the state vector, x, as follows:

x =
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦
and the corresponding state-space form is written as

ẋ = f(x) =
⎡⎢⎢⎣

x2
g + (x3 − 2)(x2∕x3)

−x3 + 2

⎤⎥⎥⎦ (1.6)

The second-order differential equation, (1.3), and the first-order differential
equation, (1.4), are combined into the first-order three-dimensional vector
differential equation, (1.6). Any higher order differential equations can be
transformed into the first-order multi-dimensional vector differential equation,
ẋ = f(x). Numerical integration methods such as Runge–Kutta integration
(Press et al., 2007) solves the first-order ODE. They can solve any high-order
differential equations by transforming them into the corresponding first-order
multi-dimensional differential equation.

1.2.1.1 First Program in Matlab
We are ready to solve (1.6) with the initial condition equal to x(0) = [0.0 0.5 5.0]T ,
where the superscript T is the transpose of the vector. We solve the differen-
tial equation from t = 0 to t = 5 seconds using Matlab. Matlab includes many
numerical functions and libraries to be used for dynamic simulation and analysis.
A numerical integrator is one of the functions already implemented in Matlab.
Hence, the only task we have to do for solving the differential equation is to
learn how to use the existing functions and libraries in Matlab. The complete
programme to solve the free-falling object problem is given in Program 1.1.
Producing Figure 1.2 is left as an exercise in Exercise 1.1.

1 clear ;
2
3 g r v _ c o n s t = 9 . 8 1 ; % [m/ s ^ 2 ]
4 i n i t _ p o s = 0 . 0 ; %[m]
5 i n i t _ v e l = 0 . 5 ; % [m/ s ]
6 i n i t _ m a s s = 5 . 0 ; %[ kg ]
7
8 i n i t _ t i m e = 0 ; % [ s ]
9 f i n a l _ t i m e = 5 . 0 ; % [ s ]

10 t i m e _ i n t e r v a l = [ i n i t _ t i m e f i n a l _ t i m e ] ;
11
12 x0 = [ i n i t _ p o s i n i t _ v e l i n i t _ m a s s ] ;
13 [ tout , xout ] = ode45 (@( time , s t a t e ) f r e e _ f a l l i n g _ o b j ( time , s t a t e ,

g r v _ c o n s t ) , t i m e _ i n t e r v a l , x0 ) ;
14
15 f igure ( 1 ) ;
16 plot ( tout , xout ( : , 1 ) )
17 ylabel ( ’ p o s i t i o n [m] ’ ) ;
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18 xlabel ( ’ t ime [ s ] ’ ) ;
19
20 f igure ( 2 ) ;
21 plot ( tout , xout ( : , 2 ) )
22 ylabel ( ’ v e l o c i t y [m/ s ] ’ ) ;
23 xlabel ( ’ t ime [ s ] ’ ) ;
24
25 f igure ( 3 ) ;
26 plot ( tout , xout ( : , 3 ) )
27 ylabel ( ’m( t ) [ kg ] ’ ) ;
28 xlabel ( ’ t ime [ s ] ’ ) ;
29
30 function dxdt = f r e e _ f a l l i n g _ o b j ( time , s t a t e , g r v _ c o n s t )
31 x1 = s t a t e ( 1 ) ;
32 x2 = s t a t e ( 2 ) ;
33 x3 = s t a t e ( 3 ) ;
34
35 dxdt = zeros ( 3 , 1 ) ;
36 dxdt ( 1 ) = x2 ;
37 dxdt ( 2 ) = g r v _ c o n s t + ( x3−2) ∗ ( x2 / x3 ) ;
38 dxdt ( 3 ) = −x3 + 2 ;
39 end

Program 1.1 (Matlab) Free-falling object

(a) figure(1) (b) figure(2)

(c) figure(3)
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Now, we study the first program line by line. The m-script starts with the
command ‘clear’. The clear command removes all variables in the workspace.
In the workspace, there would be some variables defined and used in previous
activities. They may have the same names but different meanings and values in
the current calculation. For example, the gravitational acceleration ‘grv_const’ in
the third line is undefined in the current program and uses a variable of the same
name used to analyse objects falling on the moon. A falling object program in
the Moon was executed earlier, and ‘grv_const’ is still in the workspace. Without
the clear command, the incorrect constant is used in the program producing
wrong results. Hence, it is recommended to clear the workspace before starting
new calculations. We must be careful, however, that the clear command erases
all variables in the workspace. Before the clear command, we check if all values,
which might be generated from a long computer simulation, were saved.

From line 3 to line 12, several constants are defined. Based on the equations we
have seen earlier, it is tempting to write a code as follows:

g = 9 . 8 1
x = 0 . 0
v = 0 . 5
t = [ 0 5 ]
x0 = [ x v m]

Program 1.2 (Matlab) Poor style constant definitions

These seem to look compact and closer to the equations we derived. It is a bad
habit to write a program in this way. The list of problems in the above programming
style is as follows:

● It defines a variable with a single character, ‘g’, ‘x’, ‘v’, etc. Using a single char-
acter variable might cause confusion on the meaning of the variable and lead to
using them in wrong places with incorrect interpretations.

● Numerical numbers are written without units. There is no indication of units of
the numerical values, e.g. 9.81, is it m/s2 or ft/s2?

● It uses magic numbers. What do the numbers, 0 and 5, mean in defining ‘t’?

Program 1.1 uses a better style. The initial position is defined using the variable
name, ‘init_pos’, whose value is 0.0 and the unit is in metres. Appropriately named
variables reduce mistakes and confusion in the program. Program 1.1 indicates the
corresponding unit for each numerical value, e.g. the ‘init mass’ value 5.0 is in kg.
We understand the meaning of each variable by its name. The texts after ‘%’ are
the comments, where we could add various information such as the unit of each
numerical value.
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In line 13, the built-in Runge–Kutta integrator, ode45(), is used to integrate the
differential equation provided by the function, ‘free_falling_obj’, at the end of the
m-script. Frequently, each function is saved as a separate m-script. It could also
be included in the m-script for the cases that the functions might be used in the
specific m-script only. To include functions in the m-script, they must be placed at
the end of the m-script as in this example.

Functions in Matlab begin with the keyword function and close with the
keyword end. In line 30, ‘dxdt’ is the return variable of the function and
‘free_falling_obj’ is the function name. The function has three input arguments.
A function can have any input argument used by the function. This particular
function, ‘free_falling_obj’, is not an ordinary function, however. This is the
function to describe the ODE. The function is to be passed into the built-in
integrator, ode45. The first two arguments of the function for ode45 must be time
and states, i.e. t and x in (1.6).

In lines 31–33, the variable ‘state’ is assumed to be a three-dimensional vector,
and each element of the vector corresponds to the states, x1, x2, and x3. In line 35,
the return variable ‘dxdt’ is initialized as [0 0 0] by the built-in function zeros(3,1).
zeros(m,n) creates the m × n matrix filled in zeros. Lines 36, 37, and 38 define the
state-space form ODE, (1.6).

The function works perfectly well without the initialization line for ‘dxdt’,
line 35. However, it is not good programming if line 35 is removed. Without the
initialization, ‘dxdt’ in line 36 is a one-dimensional scalar value. In the next lines,
it becomes a two-dimensional value and a three-dimensional value. Each line, the
size of ‘dxdt’ changes, and this requires the computer to find additional memory
to store the additional value. This could increase the total computation time
longer and could be noticeably longer if this function is called a million times or
more. Hence, it is better to acquire all the required memory ahead as in line 35.

Efficiency vs. development cycle: We strive to create efficient programs, but
the prototyping phase requires a fast development cycle.

It is vital to have the habit of being conscious of the efficiency of algorithm imple-
mentation. On the other hand, try not to overthink the efficiency of the program.
Script languages such as Matlab and Python are for rapid implementation and
testing. Hence, it needs a proper balance between optimizing codes and saving the
development time.

Now, we are ready to solve the differential equation using the built-in numerical
integrator, ode45. ode45 stands for ODE with Runge–Kutta fourth- and fifth-order
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methods. Details of the Runge–Kutta integration methods can be found in Press
et al. (2007).

Recall, the following line from Program 1.1:

13 [ tout , xout ] = ode45 (@( time , s t a t e ) f r e e _ f a l l i n g _ o b j ( time , s t a t e ,
g r v _ c o n s t ) , t i m e _ i n t e r v a l , x0 ) ;

When we use ode45, the input argument starts with @ symbol, which is the
function handle. The function handle, @, is used when we pass function A, e.g.
‘free_falling_obj’, to function B, e.g. ode45, where function B would call function
A multiple times. With the function handle, we can control or construct the
function to be passed with some flexibility. ‘@(time,state)’ explicitly indicates
that the function to be passed has two arguments, ‘time’ and ‘state’, and they will
be passed between ode45 and ‘free_falling_obj’ function in the specific order, i.e.
‘time’ be the first and ‘state’ be the second argument. This order is required by the
integrator, ode45.

With the function handle, we can take some freedom to order the function argu-
ments differently in the function definition of ‘free_falling_obj’. For example, we
could write the function as follows:

function dxdt = f r e e _ f a l l i n g _ o b j ( time , g r v_c ons t , s t a t e )
x1 = s t a t e ( 1 ) ;
x2 = s t a t e ( 2 ) ;
x3 = s t a t e ( 3 ) ;

dxdt = zeros ( 3 , 1 ) ;
dxdt ( 1 ) = x2 ;
dxdt ( 2 ) = g r v _ c o n s t + ( x3−2) ∗ ( x2 / x3 ) ;
dxdt ( 3 ) = −x3 + 2 ;

end

and the integration part is updated to follow the updated function definition as
follows:

[ tout , xout ] = ode45 (@( time , s t a t e ) f r e e _ f a l l i n g _ o b j ( time , g r v_c ons t ,
s t a t e ) , t i m e _ i n t e r v a l , x0 ) ;

The program works the same as the ones before the modifications. Also, we
notice that we have an additional input argument, ‘grv_const’. Similarly, we could
add more input parameters if they are necessary. As long as the first argument,
‘time’, and the second argument, ‘state’, are indicated in the function handle, the
function can have any number of input arguments in any order to pass to the
integrator, ode45.

Once the integration is completed, the results return to two output variables,
‘tout’ and ‘xout’. Execute the command, whos, in the Matlab command prompt,
the following information is displayed:
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>> whos
Name S i z e B y t e s C l a s s A t t r i b u t e s

f i n a l _ t i m e 1 x1 8 double
g r v _ c o n s t 1 x1 8 double
i n i t _ m a s s 1 x1 8 double
i n i t _ p o s 1 x1 8 double
i n i t _ t i m e 1 x1 8 double
i n i t _ v e l 1 x1 8 double
t i m e _ i n t e r v a l 1 x2 16 double
t o u t 61 x1 488 double
x0 1 x3 24 double
xout 61 x3 1464 double

The first column shows all variables created including the two output results from
the integrator. The second column shows the size of each variable: ‘tout’ is 61
rows and 1 column and ‘xout’ is 61 rows and 3 columns. Hence, each row of ‘xout’
corresponds to the time instance of the corresponding row values of ‘tout’. Why
is the number of row 61? This is determined by the integrator automatically to
adjust the integration accuracy and computation time. We can assign the number
of rows or the number of time steps explicitly, and this is covered in the later
chapters. The three columns of ‘xout’ correspond to the state, x, ẋ, and m. The
first column of ‘xout’ is for x, the second column of ‘xout’ is for ẋ, and the last
column of ‘xout’ is for m.

By executing the following line in the Matlab command prompt, we can print
out all values of x(t) in the command window:

>> xout ( : , 1 )

where ‘:’ indicates all rows. If we want to see the values of x from the 11th row to
the 15th row, then

>> xout ( 1 1 : 1 5 , 1 )

Similarly, the time history of ẋ is xout(:,2) and the time history of m is xout(:,3).
The plot command in Matlab plots the results as follows:

plot ( tout , xout ( : , 1 ) )

Before plotting each figure, open a new figure window using figure(1), figure(2),
and figure(3), respectively. The label for each axis is created using the commands
xlabel and ylabel for the horizontal and the vertical axes, respectively, where each
axis must indicate what quantity and what units are used.
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1.2.1.2 First Program in Python
Program 1.3 solves the free-falling object differential equation. The program is
remarkably similar to the Matlab script in Program 1.1. There are, however, many
differences between the two languages.

1 from numpy import l i n s p a c e
2 from s c i p y . i n t e g r a t e import s o l v e _ i v p
3
4 g r v _ c o n s t = 9 . 8 1 # [m/ s ^ 2 ]
5 i n i t _ p o s = 0 . 0 # [m]
6 i n i t _ v e l = 0 . 5 # [m/ s ]
7 i n i t _ m a s s = 5 . 0 # [ kg ]
8
9 i n i t _ c o n d = [ i n i t _ p o s , i n i t _ v e l , i n i t _ m a s s ]

10
11 i n i t _ t i m e = 0 # [ s ]
12 f i n a l _ t i m e = 5 . 0 # [ s ]
13 num_data = 100
14 t o u t = l i n s p a c e ( i n i t _ t i m e , f i n a l _ t i m e , num_data )
15
16
17 def f r e e _ f a l l i n g _ o b j ( time , s t a t e , g r v _ c o n s t ) :
18 x1 , x2 , x3 = s t a t e
19 dxdt = [ x2 ,
20 g r v _ c o n s t + ( x3−2) ∗ ( x2 / x3 ) ,
21 −x3 + 2 ]
22 return dxd
23
24
25 s o l = s o l v e _ i v p ( f r e e _ f a l l i n g _ o b j , ( i n i t _ t i m e , f i n a l _ t i m e ) ,

i n i t _ c o n d , t _ e v a l=tout , a r g s =( g r v_cons t , ) )
26 xout = s o l . y
27
28 import m a t p l o t l i b . p y p l o t as p l t
29 p l t . f i g u r e ( 1 )
30 p l t . p l o t ( tout , xout [ 0 , : ] )
31 p l t . y l a b e l ( ’ p o s i t i o n [m] ’ ) ;
32 p l t . x l a b e l ( ’ t ime [ s ] ’ ) ;
33
34 p l t . f i g u r e ( 2 ) ;
35 p l t . p l o t ( tout , xout [ 1 , : ] )
36 p l t . y l a b e l ( ’ v e l o c i t y [m/ s ] ’ ) ;
37 p l t . x l a b e l ( ’ t ime [ s ] ’ ) ;
38
39 p l t . f i g u r e ( 3 ) ;
40 p l t . p l o t ( tout , xout [ 2 , : ] )
41 p l t . y l a b e l ( ’m( t ) [ kg ] ’ ) ;
42 p l t . x l a b e l ( ’ t ime [ s ] ’ ) ;

Program 1.3 (Python) Free-falling object
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On lines 4 through 14, the constants are defined with the proper naming and
the units indicated in the comments. In Python, comments are placed after #.

The first two lines shown are not trivial to understand for the beginners of the
Python language. Python has many packages, and each package is a collection of
functions. There are several different ways to load these functions and the first line
in the program,

1 from numpy import l i n s p a c e

shows one of the methods. from and import are the keywords in Python. It loads
the function linspace from the library called numpy. numpy is one of the scien-
tific and engineering libraries and includes many useful functions such as matrix
manipulations, and maths functions.

Numpy vs. scipy: The two packages are very similar and have many common
functions. The execution speed of numpy is faster than scipy; in general, as
numpy is written in C-language while scipy is written in Python. Scipy, how-
ever, has more specialized functions, which are not implemented in numpy.

We might wonder why each function is manually loaded before it is used, unlike
in Matlab. This is one of the design principles of the Python language. If all func-
tions are pre-loaded or they are automatically searched and loaded when they are
used, then the search time or the size of the memory storing the function lists is
long or larger. Hence, it is more efficient to load the functions manually when they
are used.

The function linspace has three input arguments, for example, line 14 generates
an array of numerical values starting from the initial time, 0.0, to the final time,
5.0, whose number of elements is equal to ‘num data’, 100. Unlike the integrator
in Matlab, the Python integrator, discussed shortly later, needs the explicit time
lists as one of the input arguments.

In the second line, the numerical integrator, solve_ivp, is loaded

2 from s c i p y . i n t e g r a t e import s o l v e _ i v p

This is slightly different from the way to load a function shown in the first line.
scipy is another science and engineering function library. Some library divides the
functions in the library into several categories. integrate is one of the categories in
the scipy library. To access the functions under the category, integrate, the period is
used after the library name, i.e. scipy.integrate. The numerical integrator, solve_ivp,
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is defined in the integrate category of the scipy library. If we try to load the function
using from scipy import solve_ivp, it cannot find the integrator and generates an
import error.

The ODE are defined between lines 17 and 22. The first line of the function
definition begins with the keyword, ‘def’, the function name, ‘free_falling_obj’,
the three input arguments, and the colon, ‘:’ as follows:

def f r e e _ f a l l i n g _ o b j ( time , s t a t e , g r v _ c o n s t ) :

In general, the function to be defined could have any input arguments. The func-
tion to be passed to solve_ivp, however, must have the first two input arguments,
time and state, in this order. solve_ivp assumes that the first arguments and the sec-
ond argument of the function passed are t and x in ẋ = dx∕dt in (1.6). The main
body of the function is between the line below the function heading and the return
line. Those lines that belong to the main part of the function are indented. The
indentation in Python is not a decoration to simply improve the readability as in
many other programming languages. The indentation in Python is the way to indi-
cate which lines belong to the function body. The following is the first line of the
function body:

x1 , x2 , x3 = s t a t e

where ‘state’ is presumed to have three elements, and they are assigned to the three
new variables on the left-hand side of the equal sign, ‘x1’, ‘x2’, and ‘x3’. Instead of
unpacking the three elements one by one, it unpacks all the three elements in
one line.

‘dxdt’ is the list element in Python. In the list, each element is separated by the
comma, ‘,’. Finally, ‘dxdt’ becomes the return value of the function by the keyword,
return, and the function is passed to the integrator, solve_ivp.

The first input argument of the integrator is the function name describing the
ODE. The second one is the integration time interval. The third one is the initial
condition. ‘t eval’ is the list of time points, where the solution, x(t), is stored to the
output of the integrator. The last one is the arguments, whose name is reserved by
args. As the function ‘free_falling_obj’ has the additional input variable apart from
the time and the state, i.e. ‘grv_const’, this value must be sent to ‘solve_ivp’. args
is the input variable of ‘solve_ivp’ to pass additional input variables. ‘grv const’
is passed to the integrator by ‘arg=(grv const,)’. The data type of args is a tuple.
(1.3, 4.2, 4.3) or (1.3, 2.3) is a tuple. When there is only one element in a tuple, for
example, (1.2,), the comma at the end must not be omitted. (1.2) is interpreted as
floating-point 1.2, not a tuple. To make it a tuple, it must be (1.2,). Hence, there is
the comma after ‘grv const’ in ‘args=(grv const,)’.
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Similar to Matlab, typing ‘whos’ at the command prompt in Python prints out
the following list to the screen:

V a r i a b l e Type Data / I n f o
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f i n a l _ t i m e f l o a t 5 . 0
f r e e _ f a l l i n g _ o b j f u n c t i o n < f u n c t i o n f r e e _ f a l l i n g _ o b j
g r v _ c o n s t f l o a t 9 . 8 1
i n i t _ c o n d l i s t n=3
i n i t _ m a s s f l o a t 5 . 0
i n i t _ p o s f l o a t 0 . 0
i n i t _ t i m e int 0
i n i t _ v e l f l o a t 0 . 5
l i n s p a c e f u n c t i o n < f u n c t i o n l i n s p a c e a t 0 x 7 f
num_data int 100
p l t module <module ’ m a t p l o t l i b . pyplo< . . .
s o l OdeResult message : ’ The s o l v e r su< .
s o l v e _ i v p f u n c t i o n < f u n c t i o n s o l v e _ i v p a t 0 x 7 f
t o u t ndarray 1 0 0 : 100 elems , type ‘ f l o a t 6 4 ‘ ,
xout ndarray 3 x100 : 300 elems , type ‘ f l o a t 6 4

The solution of the ODE is stored in ‘sol’, whose type is OdeResult, and it includes
various information about the integration results. Typing ‘sol’ in the command
prompt and hitting enter shows what variables are in ‘sol’. We can access x(t)
through ‘sol.y’. To avoid keep adding the dot to access x(t) inside ‘sol’, create a
new variable, ‘xout’, and store ‘sol.y’ into ‘xout’. We can also see from the variable
list that the size of ‘xout’ is 3 ×100. Each of the rows corresponds to x(t), ẋ(t), and
m(t), respectively.

To plot the results, a plotting library must be loaded. matplotlib is the most
widely used plotting library in Python. More specifically, plot functions under
matplotlib.pyplot category are the most frequently used. Load the functions as
follows:

import m a t p l o t l i b . p y p l o t

The way to access the functions under a specific category is using the dot next to
the package name. matplotlib.pyplot means that we want to access the functions
under the sub-category called pyplot in matplotlib instead of loading all functions
in matplotlib. Now, we can use the plot command in pyplot as follows:

m a t p l o t l i b . p y p l o t . p l o t ( tout , xout [ 0 , : ] )

This is inconvenient as the name becomes very long. To reduce the length of the
name, pyplot is loaded as follows:

import m a t p l o t l i b . p y p l o t as p l t
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After the keyword as, any convenient name we would call it could be used. By
convention or almost standard, matplotlib.pyplot is called ‘plt’. Hence, the long
name to call ‘plot’ is shortened to

p l t . p l o t ( tout , xout [ 0 , : ] )

This plots x(t) vs. time t. Unlike Matlab, array indices in Python start at 0, not 1.
The first row of ‘xout’ is ‘xout[0,:]’, the second row of ‘xout’ is ‘xout[1,:]’, and so
forth. xlabel and ylabel commend work the same way as the ones in Matlab.

1.2.2 Ligand–Receptor Interactions

Ligand–receptor interactions are one of the most common interactions in
biomolecular systems. As shown in Figure 1.3, the ligands, L, bind to the recep-
tors, R, which spread on the cell boundary, form the ligand–receptor complex,
C, and the complex evokes further reactions through various cascade signalling
pathways inside the cell. L is produced with the rate given by a function of time,
f (t). From the control point of view, f (t) is considered as the input, R is the internal
state, and the concentration of C is the output of the ligand–receptor interactions.

The following molecular interactions describe the interactions between L, R, C,
and f (t):

R + L
kon−−−→C (1.7a)

C
koff−−−→R + L (1.7b)

R
kt−−→ ∅ (1.7c)

C
ke−−→ ∅ (1.7d)

f(t)
1
−−→L (1.7e)

QR
1
−−→R (1.7f)

Intra-cellular

Extra-cellular

Cell membrane

Receptor (R)

Ligand–receptor complex (C)

Ligand (L)

Figure 1.3 Ligand–receptor interactions form ligand–receptor complex.
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where kon and koff are the reaction rates of binding or unbinding the receptor and
the ligand, R and L, respectively, to form or destroy the complex, C, the receptor
is destroyed with the rate of kt, the complex is also destroyed with the rate of ke,
f (t) is the stimulus that produces the ligand at the unit rate, and QR is the internal
receptor generation at the unit rate.

We derive a set of ODE using the molecular interactions. To this end, we intro-
duce the following two assumptions:

● All the molecules and the sources are uniformly distributed in the reaction space
● There are a sufficient number of molecules for every molecular species to con-

sider concentration alone.

The first assumption makes the modelling being ODE. Otherwise, partial differen-
tial equations with the spatial coordinates are solved. Solving partial differential
equations is computationally a lot more challenging than solving ODE. The sec-
ond assumption indicates that the population of each molecular species is far away
from 0. The randomness of molecular interactions and the integer nature of the
number of molecules are ignored in the modelling.

Molecular interactions are stochastic. The probability of the occurrence
of each reaction is calculated in stochastic simulations. We will discuss the
details of stochastic modelling and simulation in the later chapter. On the other
hand, deterministic simulations are performed by assuming a large number
of molecules. The average molecular numbers show deterministic trajectories,
where the random fluctuations are negligible.

Consider the receptor, R, which is directly involved in the three reactions. L
binds to R and becomes C in (1.7a). The concentration of R is decreased by this
reaction. The change rate is proportional to the concentrations of R and L as fol-
lows:

d[R]
dt

∝ −[R] × [L] (1.8)

where [⋅] is the concentration of the molecules. The proportional constant is given
by kon in the reaction. The concentration unit is nanomolar (nM). Molar is equal
to N∕(NAV), where N is the number of molecules, NA is Avogadro’s number equal
to 6.022 × 1023, and V is the reaction space volume in litres.

In (1.7b), C is decomposed into R and L. The concentration of R is increased
by this reaction. The decreasing rate is proportional to the concentration of C as
follows:

d[R]
dt

∝ [C] (1.9)

where the proportional constant is koff. The receptor is destroyed by itself at the
rate of kt as follows:

d[R]
dt

∝ −[R] (1.10)
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Finally, in (1.7f), R is created at the rate of QR:
d[R]

dt
∝ [QR] (1.11)

where the proportional constant is 1.
Combining (1.8)–(1.11) as follows: Shankaran et al. (2007)

d[R]
dt

= −kon[R][L] + koff[C] − kt[R] + [QR] (1.12)

Similarly, the following differential equations are established for L and C:
d[L]

dt
= −kon[R][L] + koff[C] + [f (t)] (1.13a)

d[C]
dt

= kon[R][L] − koff[C] − ke[C] (1.13b)

where koff = 0.24 [1/min], kon = 0.0972 [1/(min nM)], kt = 0.02 [1/min], ke = 0.15
[1/min], and [f (t)] = 0.0 [nM/min], i.e. no external stimulation. The values are the
ones for the epidermal growth factor receptor (EGFR), which plays an important
role in understanding tumour formation and growth.

Because of QR in d[R]∕dt, R would increase to infinity, which does not coin-
cide with the reality as there would be the possible maximum number of receptors
to be present in the cell. It is known that the maximum number of receptors for
the EGFR is around 100,000 (Wee and Wang, 2017, Carpenter and Cohen, 1979).
As the volume of the reaction space is given by 4 × 10−10𝓁 in Shankaran et al.
(2007), the maximum concentration of R is 10, 000∕(NAV) ≈ 0.415 nM. We model
QR as follows:

[QR] =
{

0.0166 [nM/min], for [R] ≤ [R]max
0, otherwise

(1.14)

where [R]max is equal to 0.415 nM.
The initial conditions for the following simulation are set as follows: [R(0)] =

0.1 nM, [L(0)] = 0.0415 nM, and [C(0)] = 0 nM. In biomolecular network simu-
lations, we must confirm that the molecular quantities such as the number of
molecules or the concentrations must be non-negative. [C] at the beginning of the
simulation could become negative if the time rate is negative. In the above initial
conditions, [C] is strictly increasing because d[C(0)]∕dt = kon[R(0)][L(0)] is posi-
tive at the beginning. As we can see from (1.13b), d[C]∕dt is only negative when
[C] is high enough, i.e. [C] > kon[R][L]∕(koff + ke).

The Matlab script to simulate the EGFR concentration kinetics is given in
Program 1.4.
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1 clear ;
2
3 i n i t _ r e c e p t o r = 0 . 1 ; % [nM]
4 i n i t _ l i g a n d = 0 . 0 4 1 5 ; %[nM]
5 i n i t _ c o m p l e x = 0 . 0 ; %[ kg ]
6
7 i n i t _ t i m e = 0 ; % [ min ]
8 f i n a l _ t i m e = 1 8 0 . 0 ; % [ min ]
9 t i m e _ i n t e r v a l = [ i n i t _ t i m e f i n a l _ t i m e ] ;

10
11 kon = 0 . 0 9 7 2 ; % [ 1 / ( min nM) ]
12 k o f f = 0 . 2 4 ; % [ 1 / min ]
13 kt = 0 . 0 2 ; %[ 1 / min ]
14 ke = 0 . 1 5 ; % [ 1 / min ]
15
16 f t = 0 . 0 ; % [nM/ min ]
17 QR = 0 . 0 1 6 6 ; % [nM/ min ]
18 R_max = 0 . 4 1 5 ; %[nM]
19
20 sim_para = [ kon k o f f kt ke f t QR R_max ] ;
21
22 x0 = [ i n i t _ r e c e p t o r i n i t _ l i g a n d i n i t _ c o m p l e x ] ;
23 [ tout , xout ] = ode45 (@( time , s t a t e ) RLC_kinet ics ( time , s t a t e , s im_para )

, t i m e _ i n t e r v a l , x0 ) ;
24
25 f igure ( 1 ) ; c l f ;
26 subplot ( 3 1 1 ) ;
27 plot ( tout , xout ( : , 1 ) )
28 ylabel ( ’ Receptor [nM] ’ ) ;
29 xlabel ( ’ t ime [ min ] ’ ) ;
30 axis ( [ t i m e _ i n t e r v a l 0 0 . 5 ] ) ;
31 subplot ( 3 1 2 ) ;
32 plot ( tout , xout ( : , 2 ) )
33 ylabel ( ’ Ligand [nM] ’ ) ;
34 xlabel ( ’ t ime [ min ] ’ ) ;
35 axis ( [ t i m e _ i n t e r v a l 0 0 . 0 5 ] ) ;
36 subplot ( 3 1 3 ) ;
37 plot ( tout , xout ( : , 3 ) )
38 ylabel ( ’ Complex [nM] ’ ) ;
39 xlabel ( ’ t ime [ min ] ’ ) ;
40 axis ( [ t i m e _ i n t e r v a l 0 0 . 0 0 4 ] ) ;
41
42 function dxdt = RLC_kinet ics ( time , s t a t e , s im_para )
43 R = s t a t e ( 1 ) ;
44 L = s t a t e ( 2 ) ;
45 C = s t a t e ( 3 ) ;
46
47 kon = sim_para ( 1 ) ;
48 k o f f = sim_para ( 2 ) ;
49 kt = sim_para ( 3 ) ;
50 ke = sim_para ( 4 ) ;
51 f t = sim_para ( 5 ) ;
52 QR = sim_para ( 6 ) ;
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53 R_max = sim_para ( 7 ) ;
54
55 i f R > R_max
56 QR = 0 ;
57 end
58
59 dxdt = zeros ( 3 , 1 ) ;
60 dxdt ( 1 ) = −kon∗R∗L + k o f f ∗C − kt∗R + QR;
61 dxdt ( 2 ) = −kon∗R∗L + k o f f ∗C + f t ;
62 dxdt ( 3 ) = kon∗R∗L − k o f f ∗C − ke∗C ;
63 end

Program 1.4 (Matlab) EGFR receptor, ligand, and complex kinetics

Figure 1.4 shows the simulation results. The receptor concentration increases
almost linearly at the beginning and fluctuates later around the maximum con-
centration limit. The ligand–receptor reaction steadily consumes the ligand when
they bind together and become the ligand–receptor complex. The complex has a
peak concentration that occurred around 20 minutes and then slowly decayed.

Figure 1.5 shows the simulation results of the Python program, Program 1.5.
Unlike the figure commands in Matlab for Figure 1.4, plotting subfigures in mat-
plotlib is not as simple as in Matlab. We need advanced features in matplotlib.
The advanced features of subplots in matplotlib are introduced in detail later in
Program 2.2. As we notice in the figure, the figure fonts are too small to read. How
to adjust the figure font sizes is also discussed in Program 2.2.
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Figure 1.4 (Matlab) EGFR receptor, ligand, and complex time histories.
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Program 1.5 uses two different integrators, i.e. solve_ivp and odeint. The ODE
includes the discontinuous part, QR, given in (1.14). odeint cannot handle the
differential equations with the discontinuity, and the solutions diverge. solve_ivp
returns the correct numerical results. We recommend using solve_ivp instead
of odeint.

1 from numpy import l i n s p a c e
2 from s c i p y . i n t e g r a t e import s o l v e _ i v p
3
4
5 i n i t _ r e c e p t o r = 0 . 0 1 # [nM]
6 i n i t _ l i g a n d = 0 . 0 4 1 5 # [nM]
7 i n i t _ c o m p l e x = 0 . 0 # [ kg ]
8
9 i n i t _ t i m e = 0 # [ min ]

10 f i n a l _ t i m e = 1 8 0 . 0 # [ min ]
11 t i m e _ i n t e r v a l = [ i n i t _ t i m e , f i n a l _ t i m e ]
12
13 kon = 0 . 0 9 7 2 # [ 1 / ( min nM) ]
14 k o f f = 0 . 2 4 # [ 1 / min ]
15 kt = 0 . 0 2 # [ 1 / min ]
16 ke = 0 . 1 5 # [ 1 / min ]
17
18 f t = 0 . 0 # [nM/ min ]
19 QR = 0 . 0 1 6 6 # [nM/ min ]
20 R_max = 0 . 4 1 5 # [nM]
21
22 sim_para = [ kon , k o f f , kt , ke , f t , QR, R_max ]
23
24 i n i t _ c o n d = [ i n i t _ r e c e p t o r , i n i t _ l i g a n d , i n i t _ c o m p l e x ]
25
26
27 num_data = int ( f i n a l _ t i m e ∗10)
28 t o u t = l i n s p a c e ( i n i t _ t i m e , f i n a l _ t i m e , num_data )
29
30
31 def RLC_kinet ics ( time , s t a t e , s im_para ) :
32 R , L , C = s t a t e
33
34 kon , k o f f , kt , ke , f t , QR, R_max = sim_para
35
36 i f R > R_max :
37 QR = 0
38
39 dxdt = [−kon∗R∗L + k o f f ∗C − kt∗R + QR,
40 −kon∗R∗L + k o f f ∗C + f t ,
41 kon∗R∗L − k o f f ∗C − ke∗C]
42 return dxdt
43
44 s o l _ o u t = s o l v e _ i v p ( RLC_kinet ics , ( i n i t _ t i m e , f i n a l _ t i m e ) ,

i n i t _ c o n d , a r g s =( sim_para , ) )
45
46 t o u t = s o l _ o u t . t
47 xout = s o l _ o u t . y
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48
49 from s c i p y . i n t e g r a t e import o d e i n t
50 x o u t _ o d e i n t = o d e i n t ( RLC_kinet ics , i n i t _ c o n d , l i n s p a c e ( i n i t _ t i m e ,

f i n a l _ t i m e , num_data ) , a r g s =( sim_para , ) , t f i r s t =True )
51
52 import m a t p l o t l i b . p y p l o t as p l t
53 p l t . f i g u r e ( 1 )
54 p l t . p l o t ( tout , xout [ 0 , : ] )
55 p l t . y l a b e l ( ’ Receptor [nM] ’ )
56 p l t . x l a b e l ( ’ t ime [ min ] ’ )
57 p l t . a x i s ( [ 0 , f i n a l _ t i m e , 0 , 0 . 5 ] )
58
59 p l t . f i g u r e ( 2 )
60 p l t . p l o t ( tout , xout [ 1 , : ] )
61 p l t . y l a b e l ( ’ Ligand [nM] ’ )
62 p l t . x l a b e l ( ’ t ime [ min ] ’ )
63 p l t . a x i s ( [ 0 , f i n a l _ t i m e , 0 , 0 . 0 5 ] )
64
65 p l t . f i g u r e ( 3 )
66 p l t . p l o t ( tout , xout [ 2 , : ] )
67 p l t . y l a b e l ( ’ Complex [nM] ’ )
68 p l t . x l a b e l ( ’ t ime [ min ] ’ )
69 p l t . a x i s ( [ 0 , f i n a l _ t i m e , 0 , 0 . 0 0 4 ] )

Program 1.5 (Python) EGFR receptor, ligand, and complex kinetics

(a) plt.figure(1)
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(b) plt.figure(2)

(c) plt.figure(3)
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Figure 1.5 (Python) EGFR receptor, ligand, and complex time histories.
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1.3 Organization of the Book

Chapters 2 and 3 cover the dynamics, control, and estimation algorithms of
autonomous vehicles. Chapters 4 and 5 cover modelling and analysis of biological
systems. Each of the chapters provides examples and exercises. We discuss
additional readings and topics in the last chapter, Chapter 6.

Exercises

Exercise 1.1 (Matlab) Run Matlab, open the editor, type Program 1.1, save it as
an m-script, execute the m-script in the Matlab command prompt, and obtain
Figure 1.2.

Exercise 1.2 (Matlab) Using the ode45 results from Program 1.1, plot Figure 1.6
using the subplot command in Matlab. Hint: Check the help for subplot in Matlab.

Exercise 1.3 (Python) Plot Figure 1.6 using the functions under matplotlib.pyplot
in Python.
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Figure 1.6 The time histories of (a) position (x), (b) velocity (ẋ), and (c) mass (m).
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Exercise 1.4 Derive (1.13) from the molecular interactions in (1.7).

Exercise 1.5 (Python) What is the purpose of ‘tfirst=True’ in the arguments of
odeint in Program 1.5?

Exercise 1.6 (Matlab/Python) Run the EGFR kinetic simulation 1000 times
using the Matlab or the Python script, randomly selecting the initial concentration
values in the following range: [R(0)] ∈ [0, 0.2] nM, [L(0)] ∈ [0, 0.05] nM, and
[C(0)] ∈ [0, 0.01] nM. Check if the concentrations are always positive.
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2

Attitude Estimation and Control

Attitude is one of the fundamental properties of objects moving in a three-
dimensional space. It is vital information for the satellite to point its camera in
the desired direction, autonomous humanoid robot to balance its body, aerial
vehicle to stabilize its attitude, and so forth.

2.1 Attitude Kinematics and Sensors

As shown in Figure 2.1, the rotation about the single axis, i.e. the z-axis perpen-
dicular to the plane defined by x and y axes, can be interpreted as a particle moving
on the unit circle in the two-dimensional space. The coordinates of the particle
are equal to (cos 𝜃, sin 𝜃), where 𝜃 is the angle measured from the positive x-axis
in the anti-clockwise direction. As the movement of the particle is constrained
on the perimeter of the unit circle, the coordinates of the particle are satisfied
with the algebraic equation, x2 + y2 = 1, which is the equation for the unit circle
centred at the origin.

The single-axis rotation about the z-axis is summarized as follows: the axis of
rotation is equal to k = [0, 0, 1]T , which is the unit vector towards the positive
z-axis, the coordinates of the particle are (cos 𝜃, sin 𝜃), and the constraint is
(sin 𝜃)2 + (cos 𝜃)2 = 1.

Consider pointing a telescope to observe a star in the sky as shown in Figure 2.2.
The telescope is at the centre of the unit sphere, and the star is at the surface of
the sphere. The initial pointing direction of the telescope is the positive x-axis, i.e.
i = [1, 0, 0]T . We want to direct the telescope to the star indicated by the vector, r2.

The required rotation for pointing the telescope to the star is a two-axis rotation.
The rotation angles are the azimuth angle, 𝛼, and the elevation angle, 𝛽, in the
figure. Rotate the telescope 𝛼 about k, and it points r1 after the rotation. In addi-
tion, rotate it from r1 pointing direction with 𝛽 about the axis obtained by r1 × k,

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers,
First Edition. Jongrae Kim.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling

http://www.wiley.com/go/kim/dynamicmodeling
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Figure 2.1 Single-axis rotation
about the axis perpendicular to
the surface defined by the x–y
axes.
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Figure 2.2 The two-axis rotation is
equivalent to the single-axis rotation about
the axis perpendicular to the surface
defined by r1 and r2.

where × is the vector cross product. The rotations about the two axes are equivalent
to a particle moving on the surface of the unit sphere in the three-dimensional
space. The particle position given by the vector, r2 = [rx, ry, rz]T , must satisfy
r2

x + r2
y + r2

z = 1 as it is on the surface of the unit sphere. The two-step rotation
from the initial pointing, i, to the final pointing, r2, can be achieved by the single
rotation about the axis defined by e = i × r2 with the rotation angle, 𝜃, equal to

𝜃 = cos−1 (i ⋅ r2
)

(2.1)

where (⋅) is the vector dot product. The single-step rotation exists for any star on the
surface of the unit sphere. However, it does not mean that the two-axis rotation is
the same as the fixed single-axis rotation discussed earlier. Unlike the fixed single-
axis rotation, where the rotation axis, e, is fixed to k, the axis to achieve a single-
axis rotation to point a star on the unit sphere surface changes depending on the
position of the star.
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We extend the same logic for the general object rotations in a three-dimensional
space. The rotation about three axes is equivalent to a particle moving on the surface
of the unit sphere in a four-dimensional space. The constraint to be satisfied is the
squared sum of the four coordinates of the particle given by q = [q1, q2, q3, q4]T

equal to 1, i.e.

qTq = q2
1 + q2

2 + q2
3 + q2

4 = 1; (2.2)

We can achieve any three-axis rotation with the corresponding single-axis rotation
where the rotation axis and the angle are given by e and 𝜃, respectively.

q is defined using e and 𝜃 as follows:

q =

⎡⎢⎢⎢⎢⎣

q1
q2
q3
q4

⎤⎥⎥⎥⎥⎦
=
[

q13
q4

]
=
⎡⎢⎢⎢⎣
e sin 𝜃

2

cos 𝜃
2

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 sin 𝜃
2

e2 sin 𝜃
2

e3 sin 𝜃
2

cos 𝜃
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

where the rotation axis, e, is the unit vector and is equal to [e1, e2, e3]T .
Equation (2.3) defines the quaternion, q. The quaternion is one of the most fre-
quently used attitude parameterization methods. The rotation angle, 𝜃, is divided
by 2 in the definition. The half-angle leads to a simple algebraic relation when
the governing equation for time-varying q, i.e. attitude kinematics, is derived.

Consider a tumbling three-dimensional object with the angular velocity, 𝝎.

𝝎 =
[
𝜔x 𝜔y 𝜔z

]T (2.4)

The triple arrowhead in Figure 2.3 indicates the 𝝎 vector, where𝜔x,𝜔y, and𝜔z are
the instantaneous angular velocity of the object at the current time towards each

Figure 2.3 The object is tumbling in a
three-dimensional space, where the body
coordinates xB , yB , and zB are attached to
the object.

x
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y
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ε
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body axis, xB, yB, and zB, respectively, and their unit is [rad/s]. The gyroscopes
attached to the object measures the three components of the angular velocity vec-
tor, where the gyroscope sensing directions are aligned to the body axes.

The quaternion kinematics is given by Crassidis and Junkins (2011)
dq
dt

= 1
2
Ω(𝝎)q (2.5)

where

Ω(𝝎) =

⎡⎢⎢⎢⎢⎣

0 𝜔z −𝜔y 𝜔x
−𝜔z 0 𝜔x 𝜔y
𝜔y −𝜔x 0 𝜔z
−𝜔x −𝜔y −𝜔z 0

⎤⎥⎥⎥⎥⎦
(2.6)

and this is written in a compact form as follows:

Ω(𝝎) =
[
−[𝝎×] 𝝎

−𝝎T 0

]
(2.7)

where

[𝝎×] =
⎡⎢⎢⎣

0 −𝜔z 𝜔y
𝜔z 0 −𝜔x
−𝜔y 𝜔x 0

⎤⎥⎥⎦ (2.8)

2.1.1 Solve Quaternion Kinematics

Consider the angular velocity given by

𝝎 =
⎡⎢⎢⎣

0.1 sin(2𝜋 × 0.005t)
0.05 cos(2𝜋 × 0.1t + 0.2)

0.02

⎤⎥⎥⎦ [rad/s] (2.9)

where t is the time in seconds,𝜔x and𝜔y oscillate with the frequency equal to 0.005
and 0.1 Hz, respectively, and the zB axis rotates with the constant angular velocity,
0.02 rad/s.

2.1.1.1 MATLAB
Modify Program 1.1 and solve the quaternion kinematic equation, (2.5), as
follows:

1 clear ;
2
3 i n i t _ t i m e = 0 ; % [ s ]
4 f i n a l _ t i m e = 6 0 . 0 ; % [ s ]
5 t i m e _ i n t e r v a l = [ i n i t _ t i m e f i n a l _ t i m e ] ;
6
7 q0 = [ 0 0 0 1 ] ’ ;
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8 [ tout , qout ] = ode45 (@( time , s t a t e ) d q d t _ a t t i t u d e _ k i n e m a t i c s ( time ,
s t a t e ) , t i m e _ i n t e r v a l , q0 ) ;

9
10 f igure ;
11 plot ( tout , qout ( : , 1 ) , ’ b− ’ , tout , qout ( : , 2 ) , ’ r−− ’ , tout , qout ( : , 3 ) , ’ g− . ’ ,

tout , qout ( : , 4 ) , ’m: ’ )
12 ylabel ( ’ q u a t e r n i o n ’ ) ;
13 xlabel ( ’ t ime [ s ] ’ ) ;
14 legend ( ’ q1 ’ , ’ q2 ’ , ’ q3 ’ , ’ q4 ’ ) ;
15 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
16
17 function dqdt = d q d t _ a t t i t u d e _ k i n e m a t i c s ( time , s t a t e )
18 q _ t r u e = s t a t e ( : ) ;
19
20 w_true ( 1 ) = 0 . 1∗ sin (2∗ pi ∗0 .005∗ t ime ) ; % [ rad / s ]
21 w_true ( 2 ) = 0 . 0 5∗ cos (2∗ pi ∗0 .01∗ t ime + 0 . 2 ) ; %[ rad / s ]
22 w_true ( 3 ) = 0 . 0 2 ; %[ rad / s ]
23 w_true = w_true ( : ) ;
24
25 wx = [ 0 −w_true ( 3 ) w_true ( 2 ) ;
26 w_true ( 3 ) 0 −w_true ( 1 ) ;
27 −w_true ( 2 ) w_true ( 1 ) 0 ] ;
28
29 Omega = [ −wx w_true ;
30 −w_true ’ 0 ] ;
31
32 dqdt = 0 . 5∗Omega∗q _ t r u e ;
33 end

Program 2.1 (MATLAB) Solve dq∕dt for 𝝎 given by (2.9)

The quaternion time history is shown in Figure 2.4. Whenever a figure is created
in MATLAB, all properties of the figure are stored in the automatically generated
variable called gca. One of the properties is the font size of the characters in the
figure, and it can be changed using the command, set, as follows:

set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;

where the default font size, 12 pt (point font), is changed to 14 pt.
Recall that the quaternion must satisfy the unit norm condition, (2.2). The ode45

function does not care constraints. It solves the differential equation given by (2.5)
as if there is no constraint. It is not trivial to integrate differential equations with
constraints. There is a way, however, to control the speed of the error growth.
Define the unit norm error as follows:

(q unit norm error) = log ||qTq − 1|| (2.10)

where log(⋅) is the natural logarithm.
The two options in ode45 to adjust the numerical errors are the relative toler-

ance, RelTol, and the absolute tolerance, AbsTol. ode45 adjusts the integration
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Figure 2.4 The quaternion time history for 𝝎 given by (2.9).

interval according to these two values. For the differential equation given by
ẋ = f (x), ode45 compares the value of f (x) at the previous integration at t with
the current at t + Δt. If the difference, |f [x(t + Δt)] − f [x(t)]|, is larger than
RelTol, it reduces Δt so that the difference is smaller than RelTol. Similarly, ode45
compares |f [x(t + Δt)]| with zero. If it is greater than AbsTol, it reduces Δt so that|f [x(t + Δt)]| becomes smaller than AbsTol. To adjust the tolerances, the odeset
function is used before ode45 is called as follows:

o d e _ o p t i o n s = o d e s e t ( ’ RelTol ’ ,1 e−3 , ’ AbsTol ’ ,1 e−6) ;

and the option is passed to ode45 as follows:

[ tout , qout ] = ode45 (@( time , s t a t e ) d q d t _ a t t i t u d e _ k i n e m a t i c s ( time ,
s t a t e ) , t i m e _ i n t e r v a l , q0 , o d e _ o p t i o n s ) ;

We cannot, however, reduce these two tolerances arbitrarily small. Unreason-
ably, small Δt slows down the integration speed or causes the round-off error.
The small numbers could be too small, and the computer cannot distinguish them
from zero. Then, the numerical error would increase, and this is called the round-
off error in the computer. As long as the tolerance remains within a reasonable
range, the smaller the tolerance, the smaller the numerical integration error.

Figure 2.5 compares three different cases, where the relative tolerances are as
shown in the labels and the absolute tolerances are 1000 times smaller than the rel-
ative tolerances. As time increases, the error gradually increases. At the end of the
simulation time, 6000 seconds, the error for the relative tolerance equal to 0.001
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Figure 2.5 The time history of the quaternion unit norm error, (2.10), for three different
tolerance settings for ode45.

reaches around e−4.33 ≈ 0.132. Hence, all interpretations of the rotations should
not be based on values less than this. For example, if we compare two quaternions,
only differences much larger than 0.132 have a meaningful interpretation based on
the numerical solution. Differences less than 0.132 would be numerical artefacts.

2.1.1.2 Python
Recall the first python program, Program 1.3, and modify it to solve the quaternion
kinematic equation given by (2.5), where the angular velocity is given by (2.9).

1 import numpy as np
2 from numpy import l i n s p a c e
3 from s c i p y . i n t e g r a t e import s o l v e _ i v p
4
5 i n i t _ t i m e = 0 # [ s ]
6 f i n a l _ t i m e = 6 0 . 0 # [ s ]
7 num_data = 1000
8 t o u t = l i n s p a c e ( i n i t _ t i m e , f i n a l _ t i m e , num_data )
9

10 q0 = np . a r r a y ( [ 0 , 0 , 0 , 1 ] )
11
12 def d q d t _ a t t i t u d e _ k i n e m a t i c s ( time , s t a t e ) :
13 quat = s t a t e
14 w_true = np . a r r a y ( [ 0 . 1 ∗ np . s i n (2∗np . p i ∗0 .005∗ t ime ) , # [ rad / s ]
15 0 . 0 5∗np . cos (2∗np . p i ∗0 .01∗ t ime + 0 . 2 ) , # [ rad

/ s ]
16 0 . 0 2 ] ) # [ rad / s ]
17
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18 wx=np . a r r a y ( [ [ 0 , −w_true [ 2 ] , w_true [ 1 ] ] ,
19 [ w_true [ 2 ] , 0 , −w_true [ 0 ] ] ,
20 [−w_true [ 1 ] , w_true [ 0 ] , 0 ] ] )
21
22 Omega_13 = np . h s t a c k ((−wx , np . r e s i z e ( w_true , ( 3 , 1 ) ) ) )
23 Omega_4 = np . h s t a c k ((−w_true , 0 ) )
24 Omega = np . v s t a c k ( ( Omega_13 , Omega_4 ) )
25
26 dqdt = 0 . 5∗ ( Omega@quat )
27
28 return dqdt
29
30
31 s o l = s o l v e _ i v p ( d q d t _ a t t i t u d e _ k i n e m a t i c s , ( i n i t _ t i m e , f i n a l _ t i m e ) ,

q0 , t _ e v a l=t o u t )
32 qout = s o l . y
33
34 import m a t p l o t l i b . p y p l o t as p l t
35
36 f i g , ax = p l t . s u b p l o t s ( )
37 ax . p l o t ( tout , qout [ 0 , : ] , ’ b− ’ , tout , qout [ 1 , : ] , ’ r−− ’ , tout , qout [ 2 , : ] , ’ g

− . ’ , tout , qout [ 3 , : ] , ’m: ’ )
38
39 f i g . s e t _ f i g h e i g h t ( 6 ) # s i z e i n i n c h e s
40 f i g . s e t _ f i g w i d t h ( 8 ) # s i z e i n i n c h e s
41
42 x t i c k _ l i s t = np . a r r a y ( [ 0 , 1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 ] )
43 ax . s e t _ x t i c k s ( x t i c k _ l i s t )
44 ax . s e t _ x t i c k l a b e l s ( x t i c k _ l i s t , f o n t s i z e =14)
45
46 y t i c k _ l i s t = np . a r r a y ( [ − 0 . 5 , 0 . 0 , 0 . 5 , 1 . 0 ] )
47 ax . s e t _ y t i c k s ( y t i c k _ l i s t )
48 ax . s e t _ y t i c k l a b e l s ( y t i c k _ l i s t , f o n t s i z e =14)
49
50 ax . legend ( ( ’ q1 ’ , ’ q2 ’ , ’ q3 ’ , ’ q4 ’ ) , f o n t s i z e =14 , l o c= ’ upper r i g h t ’ )
51 ax . a x i s ( ( 0 , 6 0 , − 0 . 5 , 1 . 0 ) )
52 ax . s e t _ x l a b e l ( ’ t ime [ s ] ’ , f o n t s i z e =14)
53 ax . s e t _ y l a b e l ( ’ q u a t e r n i o n ’ , f o n t s i z e =14)

Program 2.2 (Python) Solve dq∕dt for 𝝎 given by (2.9)

Be careful for the index numbering, the array index in Python starts from 0.
[𝝎×], (2.8), is defined as follows:

wx=np . a r r a y ( [ [ 0 , −w_true [ 2 ] , w_true [ 1 ] ] ,
[ w_true [ 2 ] , 0 , −w_true [ 0 ] ] ,
[−w_true [ 1 ] , w_true [ 0 ] , 0 ] ] )

where w_true[0] = 𝜔x, w_true[1] = 𝜔y, and w_true[2] = 𝜔z.
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Each row of a two-dimensional matrix is defined using box brackets, ‘[ ]’.
Commas separate the elements in a row and also different rows. Another two
box brackets construct a two-dimensional matrix. For example, [[2.0, −3.0, 1.5],
[0.0, 5.2, 9.8]] defines the 2 × 3 matrix.

The plot parts in Program 2.2 look very different from the plot commands used in
Program 1.3. The commands used in Program 1.3, i.e. ‘plt.plot()’, ‘plt.xlabel()’, and
‘plt.ylabel()’, provide convenient ways to plot simple figures. To have the capability
for fine-tuning figures such as adjusting font size, changing the tick intervals for
each axis and so forth, we must use these plot command styles shown in Program
2.2. Run the following lines directly in the iPython command prompt:

In [ 2 1 ] : import numpy as np
In [ 2 2 ] : import m a t p l o t l i b . p y p l o t as p l t
In [ 2 3 ] : x=np . l i n s p a c e ( 1 , 1 0 , 1 0 0 )
In [ 2 4 ] : y0=2∗x
In [ 2 5 ] : y1 =10+10∗(x ∗∗2)
In [ 2 6 ] : f i g , ( ax0 , ax1 )=p l t . s u b p l o t s ( nrows =2 , n c o l s =1)
In [ 2 7 ] : ax0 . p l o t ( x , y0 )
Out [ 2 7 ] : [ < m a t p l o t l i b . l i n e s . Line2D a t 0 x 7 f 9 c f 8 6 4 e d 9 0 > ]
In [ 2 8 ] : ax1 . p l o t ( x , y1 , ’ r−− ’ )
Out [ 2 8 ] : [ < m a t p l o t l i b . l i n e s . Line2D a t 0 x 7 f 9 c f 9 c 4 5 2 5 0 > ]

‘fig, (ax1, ax2) = plt.subplots(nrows=2,ncols=1)’ creates two sub-figures in the
figure placed in the two rows and one column format. The return variable, fig,
indicates the whole figure, and ax0 and ax1 indicate the first and the second
sub-figures, respectively. In Program 2.2, the figure size is set to 6′′ high and 8′′

wide using ‘fig.set_figheight(6)’ and ‘fig.set_figwidth(8)’, where the lengths are in
inches.

The plot command for drawing on the first sub-figure is ‘ax0.plot()’, and the
plot command for the second figure is ‘ax1.plot()’. Similarly, commands for the
tick intervals and labels, the font sizes, and the legend are indicated by ‘ax0’ or
‘ax1’ for each sub-figure in the example. In Program 2.2, the ticks for each axis can
be manually set using the ‘ax.set_xticks’ command, and the labels for the ticks can
also be manually set using ‘ax.set_xticklables’. Similarly, the ticks and the labels
for the y-axis are assigned using ‘set_yticks’ and ‘set_yticklabels’. In addition, the
font size and the location of the legend can be controlled using the additional argu-
ments in the ‘ax.legend’ command, and the font size for x-axis or y-axis labels can
be changed using the fontsize value in ‘ax.set_xlabel’ or ‘ax.set_ylabel’.

Figure 2.6 shows the quaternion time history calculated by the python program.
Figure 2.7 shows that the error for the relative tolerance equal to 0.001 increases

around e−7.24 ≈ 0.0007 at the time equal to 6000 seconds. Compared to the error
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Figure 2.6 The quaternion time history for 𝝎 given by (2.9).
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Figure 2.7 The time history of the quaternion unit norm error, (2.10), for three different
tolerance settings for ode45.

in MATLAB, it is less than 1000 times smaller. It would be, however, not correct
to conclude that solve_ivp in the Scipy is superior to ode45 in MATLAB. The algo-
rithms have different ways of controlling the numerical error, and the numerical
error is not necessarily always the same as the example. The important message is
that we must be aware of how the errors would be propagated as the time increases
for the given tolerance levels.
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2.1.2 Gyroscope Sensor Model

A rate gyro measures the angular velocity, and two different types of stochastic
noises corrupt its measurement as follows:

𝝎̃ = 𝝎 + 𝜷 + 𝜼
𝑣

(2.11)

where 𝝎̃ is the gyro measurement output, and the bias drift, 𝜷, and the white
noise, 𝜼

𝑣
, corrupt the true angular velocity, 𝝎. The measurement gives the sum

of three values, i.e. the truth and two random noises, and they cannot be distin-
guished. We do not exactly know the truth, 𝝎, but the corrupted information from
the sensor.

2.1.2.1 Zero-Mean Gaussian White Noise
The zero-mean Gaussian white noise, 𝜼

𝑣
, is one of the typical types of sensor noise.

The zero-mean indicates that the noise has a mean value of zero. Its distribution is
Gaussian or normal. The white noise signifies that the same strength of signals for
all frequencies as the term is derived from white light, which includes all visible
frequency lights with equal strength. The following two equations express these
properties of the noise:

E
{
𝜼
𝑣
(t)
}
= 0

E
{
𝜼
𝑣
(t1)𝜼T

𝑣
(t2)

}
= 𝜎

2
𝑣
𝛿(t1 − t2)I3

for all time, t, and any t1 and t2 in [0,∞), where E(⋅) is the expectation, 𝜎2
𝑣

is the vari-
ance of the noise, i.e. the strength of the noise, 𝛿(t1 − t2) is the Dirac delta function
equal to 1 only if t1 = t2 and zero otherwise, and I3 is the 3 × 3 identify matrix. As
the off-diagonal terms of I3 are all zero, the white noise for each axis is independent
or not correlated with each other.

For brevity, consider a one-dimensional random number, x(t), with the following
properties:

E {x(t)} = 0

E
{

x(t1)x(t2)
}
= 𝜎

2
𝛿(t1 − t2)

for all time, t, and any t1 and t2 in [0,∞). The extension of the discussion below
to the three-dimensional random vector 𝜼

𝑣
(t) is trivial. Let the probability density

function (pdf) of x at t be equal to p(x), and the expectation of x(t), i.e. the mean
value of x at the time t, is given by

E {x(t)} =
∫Ω

x(t)p(x)dx (2.12)

The expectation is the weighted integration of the variable by the probability
density function, where Ω is the sampling space of the random variable, x(t).
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2.1.2.2 Generate Random Numbers
The function, randn, in MATLAB generates random numbers with a mean and
variance of 0 and 1, respectively. Run the following lines in the MATLAB com-
mand prompt:

>> x = randn ( 1 , 1 0 0 ) ;
>> mean( x )
ans =

−0.2711
>> var ( x )
ans =

1 . 1 0 5 2

Program 2.3 (MATLAB) Generate 100 random numbers, x, whose mean and
variance are equal to 0 and 1, respectively

The mean value and the variance of x printed on the screen are different whenever
the commands are executed. When randn is called, it generates a different set of
100 random numbers drawn from Gaussian distribution, whose mean value and
variance are equal to 0 and 1, respectively. The mean and the variance calculated
using the samples, ‘x’, are only approximately close to 0 and 1, respectively. As the
number of the samples increases, they converge to the true values.

Gaussian distribution is also called the normal distribution and the ‘n’ at the end
in the function name, randn, stands for the normal distribution. Be careful to use
the correct random number generator; rand function generates the uniformly dis-
tributed random numbers between 0 and 1. The sensor noise is typically modelled
as the normal distribution rather than the uniform distribution.

Similarly, in Python, randn under the numpy.random package is used to gener-
ate the random numbers as follows:

In [ 5 4 ] : import numpy as np

In [ 5 5 ] : x=np . random . randn ( 1 0 0 )

In [ 5 6 ] : x . mean ( )
Out [ 5 6 ] : −0.05332928410865288

In [ 5 7 ] : x . var ( )
Out [ 5 7 ] : 0 .8078225617520309

Program 2.4 (Python) Generate 100 random numbers, x, whose mean and
variance are equal to 0 and 1, respectively

In Python, every variable created is an object in object-oriented programming.
When an object is created, various methods attach to the object. ‘x’ is the
object, and mean() and var() are the methods to calculate the mean value and
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the variance of ‘x’. To call each method, put ‘.’ and the method name after
‘x’, e.g. x.mean() for calculating the mean of x. There is another function to
generate random numbers with the normal distribution. The function is under
numpy.random package, called numpy.random.normal. This function is equiva-
lent to numpy.random.randn apart from some slight differences in the format of
input arguments.

How to generate the random number, z, with the mean equal to 0.5 and the
variance equal to 0.2 using randn in MATLAB is shown in Program 2.5.

>> mean_z = 0 . 5 ;
>> var_z = 0 . 2 ;
>> z = mean_x + sqrt ( var_x ) ∗randn ( 1 , 1 0 0 ) ;
>> mean( z )
ans =

0 . 6 1 3 7
>> var ( z )
ans =

0 . 1 9 1 7

Program 2.5 (MATLAB) Generate 100 random numbers, z, whose mean and
variance are equal to 0.5 and 0.2, respectively

Similarly, using Python, z is generated in Program 2.6.

In [ 5 8 ] : import numpy as np

In [ 5 9 ] : mean_z =0.5

In [ 6 0 ] : var_z =0.2

In [ 6 1 ] : z=mean_z+np . s q r t ( var_z ) ∗np . random . randn ( 1 0 0 )

In [ 6 2 ] : z . mean ( )
Out [ 6 2 ] : 0 .4834311699410189

In [ 6 3 ] : z . var ( )
Out [ 6 3 ] : 0 .24051712417906854

Program 2.6 (Python) Generate 100 random numbers, z, whose mean and
variance are equal to 0.5 and 0.2, respectively

As the number of samples increases, the mean and variance approach the given
true value.

We validate how to generate the random number, z, using the random number,
x, as follows:

z = 𝜇 +
√
𝜎2x (2.13)
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where x is the random variable whose mean and variance are equal to 0 and 1,
respectively. The mean value of z is given by

E(z) = E(𝜇 +
√
𝜎2x) = 𝜇 +

√
𝜎2E(x) = 𝜇 +

√
𝜎2 × 0 = 𝜇 (2.14)

where the expectations of the deterministic values, 𝜇 and 𝜎, are equal to the values
themselves. From the definition of the variance, the variance of z becomes

𝜎
2 = E(z2) − [E(z)]2 = E

[
(𝜇 +

√
𝜎2x)2

]
− 𝜇2

= 𝜇
2 + 2𝜇

√
𝜎2E(x) + 𝜎2E(x2) − 𝜇2 = 𝜎

2 (2.15)

where E(x) and E(x2) are equal to 0 and 1, respectively, by the definitions.
In the above examples, the 100 random numbers, x, generated by randn is drawn

from the following probability density function, p(x):

p(x) = 1√
2𝜋𝜎2

e−
(x−𝜇)2

2𝜎2 (2.16)

where 𝜇 and 𝜎 are the mean and the variance of x equal to 0 and 1, respectively.
The probability if the random number x belongs to the interval [xk, xk+1] is
given by

Pr [xk ≤ x ≤ xk+1] = ∫

x=xk+1

x=xk

p(x)dx (2.17)

1 clear ;
2
3 % t r u e p r o b a b i l i t y d e n s i t y f u n c t i o n ( pdf )
4 var_x = 1 ;
5 mean_x = 0 ;
6 Omega_x = l inspace ( −5 ,5 ,1000) ;
7 px = ( 1 / ( sqrt (2∗ pi∗ var_x ) ) ) ∗exp (−(Omega_x−mean_x ) . ^ 2 / ( 2∗ var_x ) ) ;
8
9 f igure ( 1 ) ; c l f ;

10 plot ( Omega_x , px , ’ LineWidth ’ , 2 ) ;
11 hold on ;
12
13 % g e n e r a t e N random numbers w i t h t h e mean z e r o and t h e v a r i a n c e 1

u s i n g
14 % randn
15 N_al l = [100 1 0 0 0 0 ] ;
16 x_bin = l inspace ( −5 , 5 , 3 0 ) ;
17 dx=mean( d i f f ( x_bin ) ) ;
18 l i n e _ s t y l e = { ’ rs− ’ ’ go− ’ } ;
19 for i d x =1: length ( N_al l )
20 N _ t r i a l = N_al l ( i d x ) ;
21 x_rand = randn ( 1 , N _ t r i a l ) ;
22
23 % number o f o c c u r a n c e o f x_rand i n x _ b i n
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24 N_occur = h i s t c o u n t s ( x_rand , x_bin ) ;
25
26 f igure ( 1 ) ;
27 plot ( x_bin ( 1 : end−1)+dx / 2 , N_occur / ( dx∗ N _ t r i a l ) , l i n e _ s t y l e { i d x } )

;
28 end
29
30 f igure ( 1 ) ;
31 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
32 xlabel ( ’Random V a r i a b l e x Sampling Space : $ \ Omega_x , ’ I n t e r p r e t e r ’ , ’

l a t e x ’ ) ;
33 ylabel ( ’ p r o b a b i l i t y d e n s i t y f u n c t i o n ’ ) ;
34 legend ( ’ True $p ( x ) , ’N=100 ’ , ’N=10 ,000 ’ , ’ L o c a t i o n ’ , ’ n o r t h e a s t ’ , ’

I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

Program 2.7 (MATLAB) Compare the true pdf with the approximated pdf
generated by randn

To check if the random numbers generated by randn are indeed from the normal
distribution, we estimated the pdf by counting the number of random numbers
fallen into each of the intervals, and the estimated pdf is compared with the true
pdf. Let the number of the random numbers in [xk, xk+1] be Nk. The estimated pdf
value at x in the interval, p̂(x), is derived from (2.17) as follows:

[LHS of (2.17)] ≈
Nk

Ntotal
(2.18a)

[RHS of (2.17)] ≈ p̂(x)Δxk (2.18b)

where Δxk = xk+1 − xk, Ntotal is the total number of samples equal to 100 in this
example, and p̂(x) is assumed to be constant for x ∈ [xk, xk+1]. Hence,

p̂(x) =
Nk

ΔxkNtotal
for x ∈ [xk, xk+1] (2.19)

Program 2.7 draws Figure 2.8, which shows the true pdf, p(x), and two approxi-
mated pdf for Ntotal equal to 100 and 10,000. As the total number of random num-
bers generated increases, the estimated pdf, p̂(x), converges to the true pdf. 30 bins
are generated below between x = −5 and x = 5, counting how many x generated
by randn belong to each bin.

x_bin = l inspace ( −5 , 5 , 3 0 ) ;

For the generated random number, ‘x_rand’, and the bin list, ‘x_bin’, the number
of occurrences for each bin is counted using histcounts command:

N_occur = h i s t c o u n t s ( x_rand , x_bin ) ;

The dimension of N_occur is one less than the dimension of x_bin as the i-th ele-
ment of N_occur corresponds to the interval given by the i-th and the (i + 1)-th
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elements of x_bin. Hence, when plotting N_occur with respect to x, the middle
point of each bin is used as follows:

plot ( x_bin ( 1 : end−1)+dx / 2 , N_occur / ( dx∗N) , l i n e _ s t y l e { i d x } ) ;

For each N_total-cases inside the loop, two different line styles are defined in the
strings, ’rs-’ and ’go-’, which produce the square marked line and the circle marked
line, respectively, in the figure. The lines are displayed in red or green if printed in
colour. To make a list to include these strings, the cell data format surrounded by
the curly bracket, {}, is used.

l i n e _ s t y l e = { ’ rs− ’ ’ go− ’ } ;

The following line in Program 2.9 makes the x-axis label in Figure 2.8 is in the
mathematical fonts instead of the normal fonts. In the xlabel command, the inter-
preter is indicated as latex.1

xlabel ( ’Random V a r i a b l e x Sampling Space : $ \ Omega_x$ ’ , ’ I n t e r p r e t e r ’
, ’ l a t e x ’ ) ;

LATEX is a typesetting system widely used in writing mathematical papers and
books. A draft version of this book is also written using LATEX. In MATLAB,
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Figure 2.8 The probability density function of the random number generated by randn
in MATLAB and the comparison with the true probability density function, p(x).

1 It is pronounced as Lay-Tech.
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mathematical symbols of LATEX can be used in the labels by indicating the
interpreter, ‘latex’. In LATEX, the characters surrounded by ‘$’ are interpreted as
mathematical expressions and ‘⧵Omega_x’ is appeared as ‘Ωx’ in the axis label.
More information on LATEX can be found in The LaTeX Project Team (2020).

The corresponding Python program to Program 2.7 is given in Program 2.8. The
labels interpreted as raw LATEX expressions start with ‘r’ and the single quotation
mark. In addition, maths symbols are surrounded by $ signs. Random numbers
from the normal distribution with mean 0 and variance 1 are generated using
numpy.random.randn. As numpy is imported in line 1 of the program, randn can
be called np.random.randn. It is, however, convenient to import numpy.random as
‘rp’ so that randn can be called in a compact way, i.e. rp.randn.

One of the main differences in syntax between Python and MATLAB is the pres-
ence of the comma in Python to distinguish the elements in an array or a list.
Two numbers, 100 and 1000 in ‘N_all’ array, are separated by a comma, Two line
styles in ‘line_style’ are also separated by a comma.

Parts included in for-loop are distinguished by indents the same way as indents
define the body of functions in Python. The lines between line 29 to line 22 belongs
to the for-loop. The for-loop in line 22 is a frequently used programming pattern
used in Python.

To print each element of ‘x = [1 2 3 4]’ in MATLAB,

x = [ 1 2 3 4 ] ;
for i d x = 1 : length ( x )

disp ( x )
end

In Python, a for-loop is implemented with the keyword, in, and a colon ‘:’ at the
end of the line as follows:

x = [ 1 , 2 , 3 , 4 ]
for x _ v a l in x :

print ( x _ v a l )
End

No index number has to be explicitly generated as ‘idx’ in the MATLAB program.
In the for-loop, each array value in ‘x’ is sequentially assigned to ‘x_val’. Similarly,
it can be done for two lists using the zip command as shown in line 22, where each
value of ‘N_all’ and ‘line_style’ is assigned to ‘N_trial’ and ‘lnsty’, respectively.

In line 26, np.histogram calculates the number of occurrences for the given
bin, ‘x_bin’, and the return values are stored in ‘N_occur’ as a tuple data format.
‘N_occur[0]’ is the array including the occurrence for each bin, and ‘N_occur[1]’
is the array including the bin list. The fig.savefig command in the last line saves
the figure in a specified format by the file name extension, e.g. pdf (Portable
Document Format).



�

� �

�

40 2 Attitude Estimation and Control

1 import numpy as np
2 from numpy import l i n s p a c e
3 import numpy . random as rp
4
5 import m a t p l o t l i b . p y p l o t as p l t
6
7 # t r u e p r o b a b i l i t y d e n s i t y f u n c t i o n ( pdf )
8 var_x = 1 ;
9 mean_x = 0 ;

10 Omega_x = l i n s p a c e ( −5 ,5 ,1000) ;
11 px = ( 1 / ( np . s q r t (2∗np . p i ∗ var_x ) ) ) ∗np . exp (−(Omega_x−mean_x ) ∗∗2/(2∗

var_x ) ) ;
12
13 f i g , ax = p l t . s u b p l o t s ( nrows =1 , n c o l s =1)
14 ax . p l o t ( Omega_x , px , l i n e w i d t h =3)
15
16 # g e n e r a t e N random numbers w i t h t h e mean z e r o and t h e v a r i a n c e
17 # 1 u s i n g numpy . random . randn
18 N_al l = np . a r r a y ( [ 1 0 0 , 1 0 0 0 0 ] )
19 x_bin = l i n s p a c e ( −5 , 5 , 3 0 )
20 dx=np . mean ( np . d i f f ( x_bin ) )
21 l i n e _ s t y l e = [ ’ rs− ’ , ’ go− ’ ]
22 for N _ t r i a l , l n s t y in zip ( N_all , l i n e _ s t y l e ) :
23 x_rand = rp . randn ( 1 , N _ t r i a l )
24
25 # number o f o c c u r r e n c e o f x_rand i n x _ b i n
26 N_occur = np . his togram ( x_rand , b i n s=x_bin )
27 N_occur = N_occur [ 0 ]
28
29 ax . p l o t ( x_bin [0: −1]+ dx / 2 , N_occur / ( dx∗ N _ t r i a l ) , l n s t y ) ;
30
31 ax . s e t _ x l a b e l ( r ’Random V a r i a b l e x Sampling Space : $ \ Omega_x$ ’ ,

f o n t s i z e =14)
32 ax . s e t _ y l a b e l ( ’ p r o b a b i l i t y d e n s i t y f u n c t i o n ’ , f o n t s i z e =14)
33 ax . legend ( ( r ’ True $p ( x ) $ ’ , ’N=100 ’ , ’N=10 ,000 ’ ) , l o c= ’ upper r i g h t ’ ,

f o n t s i z e =14)
34
35 f i g . s a v e f i g ( ’ compare_mu_sgm2_true_estimated_python . pdf ’ )

Program 2.8 (Python) Compare the true pdf with the ones approximated by the
random numbers generated by numpy.random.randn

2.1.2.3 Stochastic Process
The zero-mean white noise is a stochastic process. A stochastic process is a
time-dependent process. The random number generating procedure shown
previously is not a stochastic process as time is not introduced. Distinguishing
between a stochastic process and a random number based on whether it is a process
with time or not is an important concept in implementing stochastic process
simulations.
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Consider the following stochastic process:

E [x(t)] = 𝜇(t) (2.20a)

E
[
x(t1)x(t2)

]
= [𝜎(t)]2

𝛿(t1 − t2) (2.20b)

where the mean and the variance are time-varying, the pdf of x(t) is given by (2.16),
and 𝜇 and 𝜎 are time-varying. Whenever the time t is fixed, e.g. t = 2.5 seconds,
it is one of the cases of generating the random numbers examples shown in
Programs 2.3–2.8.

In computer simulations, the continuous time is approximated in a discrete
sampling sequence as follows:{

t0, t1, t2,… , tn−1, tn
}

(2.21)

where n is a positive integer, t0 is the initial time, tn is the final time of the simula-
tion, and we assume that

tk = tk−1 + Δt (2.22)

for k = 1, 2,… ,n − 1,n, i.e. the time interval between two sampling times is con-
stant Δt. 𝜇(tk) and

[
𝜎(tk)

]2 are the corresponding mean and variance for each
instance, respectively.

Let Δt = 0.1 seconds, n = 100, 𝜇(tk), and 𝜎(tk) given by

𝜇(tk) = −2 + 4k
n

(2.23a)

𝜎(tk) = 0.1 + 1.4k
n

(2.23b)

One specific time history of x(t) generated is called a realization of the stochastic
process. The stochastic process is implemented in MATLAB and Python in the
following two paragraphs.

2.1.2.4 MATLAB
Figure 2.9 shows the five realizations of x(t). All five realizations start around
−2 at t = 0, when the mean and the variance are equal to −2 and 0.1, respectively.
As the time increases, the mean value increases linearly to +2 at t = 10 seconds.

The variance increases with time, and the five realizations of x(t) spread wider
as the time increases. For each fixed time, tk, the realizations are random numbers
as in the previous section with the mean and the variance constants. We can calcu-
late the mean and the variance at the fixed time using the mean and the variance
functions in MATLAB or Python shown in Programs 2.3–2.8.

Five realizations are too small to have good estimates of the mean and the
variance. The number of realization increases to 1000. Figure 2.10 compares the
estimated values with the true mean and variance. The MATLAB program is
given in Program 2.9.
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Figure 2.9 Five realizations of x(t) whose mean and variance are given by (2.23).
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Figure 2.10 Compare the true 𝜇(t) and [𝜎(t)]2 with the estimated values using 1000
realizations.
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Be careful to execute the line to plot all realizations of x(t) in the following line:

% p l o t ( t ime , x _ r a n d _ a l l , ’ k− ’ ) ;

It is commented out to prevent accidental execution of the line with the large val-
ues of ‘N_sample’ and/or ‘N_realize’. It would consume the whole memory of the
computer to complete the plot. It is also difficult to kill the plotting procedures in
the middle of the execution.

1 clear ;
2
3 % numer o f t i m e samplng & number o f s t o c h a s t i c p r o c e s s t r i a l
4 N_sample = 1 0 0 ;
5 N _ r e a l i z e = 1 0 0 0 ;
6
7 % t i m e
8 dt = 0 . 1 ; % [ s e c o n d s ]
9 t i m e _ i n i t = 0 ;

10 t i m e _ f i n a l = dt∗N_sample ;
11 time = l inspace ( t i m e _ i n i t , t i m e _ f i n a l , N_sample ) ;
12
13 % d e c l a r e memory s p a c e f o r x _ r a n d _ a l l t o i n c l u d e a l l t r i a l s
14 x _ r a n d _ a l l = zeros ( N _ r e a l i z e , N_sample ) ;
15
16 % t i m e v a r y i n g mean and s q r t ( v a r i a n c e ) a t t h e t i m e i n s t a n c e
17 mu_all = l inspace ( −2 ,2 , N_sample ) ;
18 s i g m a _ a l l = l inspace ( 0 . 1 , 1 . 5 , N_sample ) ;
19
20 % f o r a f i x e d t i m e i n s t a n c e , g e n e r a t e t h e random numbers
21 % w i t h t h e mean and t h e v a r i a n c e a t t h e f i x e d t i m e
22 for i d x =1: N_sample
23 mu_t = mu_all ( i d x ) ;
24 s igma_t = s i g m a _ a l l ( i d x ) ;
25
26 x_rand = mu_t+sigma_t∗randn ( N _ r e a l i z e , 1 ) ;
27 x _ r a n d _ a l l ( : , i d x ) = x_rand ;
28 end
29
30 % p l o t a l l t r i a l s w i t h r e s p e c t t o t h e t i m e
31
32 % Warning : t h i s p a r t i s o n l y e x e c u t e d w i t h t h e s m a l l N _ t r i a l ,
33 % e . g . , 5 ,
34 % t h e p l o t t a k e s r e a l l y l o n g and c a u s i n g t h e computer c r a s h e d
35 % w i t h t h e l a r g e N _ t r i a l , e . g . , 1000
36 % f i g u r e ; c l f ;
37 % p l o t ( t ime , x _ r a n d _ a l l , ’ k− ’ ) ;
38 % s e t ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
39 % x l a b e l ( ’ t i m e [ s ] ’ ) ;
40 % y l a b e l ( ’ x ( t ) ’ ) ;
41
42 % a ppr ox i m a t e mean and v a r i a n c e from t h e r e a l i s a t i o n
43 % and compare w i t h t h e t r u e
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44 mu_approx = mean( x _ r a n d _ a l l ) ;
45 sigma2_approx = var ( x _ r a n d _ a l l ) ;
46 f igure ;
47 subplot ( 2 1 1 ) ;
48 plot ( time , mu_all ) ;
49 hold on ;
50 plot ( time , mu_approx , ’ r−− ’ ) ;
51 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
52 ylabel ( ’ $ \mu( t ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
53 legend ( ’ True ’ , ’ Es t imated ’ , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’ ) ;
54 subplot ( 2 1 2 ) ;
55 plot ( time , s i g m a _ a l l . ^ 2 ) ;
56 hold on ;
57 plot ( time , sigma2_approx , ’ r−− ’ ) ;
58 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
59 ylabel ( ’ $ [ \ sigma ( t ) ] ^ 2 $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
60 xlabel ( ’ t ime [ s ] ’ ) ;
61 legend ( ’ True ’ , ’ Es t imated ’ , ’ L o c a t i o n ’ , ’ s o u t h e a s t ’ ) ;

Program 2.9 (MATLAB) Realizations of the stochastic process x(t) given by (2.23)
and estimation of the mean and the variance

In Program 2.9, the i-th row of ‘x_rand_all’ is the i-th realization of x(t)
and the j-th column of ‘x_rand_all’ corresponds to x(t) for t is fixed to tj for
i = 1, 2,… ,N_realize and j = 1, 2,… ,N_sample. Continuing Program 2.10 from
Program 2.9 calculates the pdf for each time instance using the histcounts
function and stores the pdf in each column of ‘px_all’, two-dimensional matrix.
How the pdf changes over time is shown using surf command, which draws the
two-dimensional surface indicated by ‘px_all’ and the coordinates are indicated
by the sampling space, x, and the time series as shown in Figure 2.11.
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Figure 2.11 The estimated pdf, p̂(x), shows the complete picture of the Gaussian
distributions over time.
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As shown in line 37 in Program 2.9, the plot command finds the correct
dimension to plot figures. Hence, the following two lines in the MAT-
LAB command prompt generates the same plot: ‘plot(time, x_rand_all)’ or
‘plot(time,x_rand_all′)’, where ‘x_rand_all’ in the second plot command is
transposed by ‘( )′’.

This automatic manipulation in MATLAB would cause some confusion, e.g. the
size of ‘x_rand_all’ is 100 × 100. Each row is the realizations of x(t) at a fixed time
and each column is one realization of x(t) with respect to time, respectively. We
might not ensure which direction of the matrix is drawn with respect to the time
vector. Hence, it is a good practice to ensure that the size of the matrix is not square
when the row and the column have different physical interpretations.

1 % (continue from Program 2.9)
2 % e s i m a t e t h e pdf f o r each i n s t a n c e u s i n g N− t r i a l s a t each i n s t a n c e
3 N_bin = 1 0 0 ;
4 x_bin = l inspace ( −5 ,5 , N_bin ) ;
5 dx=mean( d i f f ( x_bin ) ) ;
6 p x _ a l l = zeros ( N_bin−1 , N_sample ) ;
7 for j d x =1: N_sample
8 x_rand = x _ r a n d _ a l l ( : , j d x ) ;
9 N_occur = h i s t c o u n t s ( x_rand , x_bin ) ;

10 p x _ a t _ t = N_occur / ( dx∗N _ r e a l i z e ) ;
11 p x _ a l l ( : , j d x ) = p x _ a t _ t ( : ) ;
12 end
13
14 % p l o t t h e e s t i m a t e d pdf
15 f igure ;
16 surf ( time , x_bin ( 1 : end−1) +0.5∗dx , p x _ a l l ) ;
17 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
18 xlabel ( ’ t ime [ s ] ’ ) ;
19 ylabel ( ’ x ’ ) ;
20 z l a b e l ( ’ $ \ hat { p } ( x ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;

Program 2.10 (MATLAB) Plot the pdf with respect to time

2.1.2.5 Python
Five realizations of x(t) given by (2.23) are drawn in Program 2.11. The for-loop in
the program needs some attention to understand.

for idx , ( mu_t , s igma_t ) in enumerate ( zip ( mu_all , s i g m a _ a l l ) ) :
x_rand = mu_t+sigma_t∗ rp . randn ( N _ r e a l i z e )
x _ r a n d _ a l l [ : , i d x ] = x_rand

The for-loop not only substitutes the values of ‘mu_all’ and ‘sigma_all’ one by
one into ‘mu_t’ and ‘sigma_t’ but also assigns the numerical index number to
‘idx’. enumerate generates the index number and passes it into the variable, idx.
For example, two arrays, a and b, have four elements. Each element in a or b is sub-
stituted into a_now or b_now, and idx stores the index number. In the following
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commands in the Python command prompt, print ‘idx’, ‘a_now’, and ‘b_now’ in
the screen.

In [ 1 ] : import numpy as np

In [ 2 ] : a=np . a r r a y ( [ 1 , 2 , 3 , 4 ] )

In [ 3 ] : b=[ ’ x1 ’ , ’ x2 ’ , ’ x3 ’ , ’ x4 ’ ]

In [ 4 ] : for idx , ( a_now , b_now ) in enumerate ( zip ( a , b ) ) :
. . . : print ( idx , a_now , b_now )
. . . :

0 1 x1
1 2 x2
2 3 x3
3 4 x4

The plot command from matplotlib in Python might generate the plot with
excessive empty space. The manual adjustment of the axis limitations using ax.set
provides a tight fit of the plots in the figure window. xlim and ylim in ax.set specify
the axis range. The values for xlim and ylim must be in the tuple format. It is
common for function arguments in Python to be in the tuple format, where the
values are in the bracket, ‘()’, and separated by the comma. To prevent accidental
attempts of plotting for the large N_realize, we add the if-condition so that the
plot parts are only executed if N_realise is less than 10.

1 import numpy as np
2 from numpy import l inspace
3 import numpy . random as rp
4
5 import m a t p l o t l i b . p y p l o t as p l t
6
7 # numer o f t ime samplng & number o f s t o c h a s t i c p r o c e s s t r i a l
8 N_sample = 100
9 N _ r e a l i z e = 5

10
11 # time
12 dt = 0 . 1 # [ seconds ]
13 t i m e _ i n i t = 0
14 t i m e _ f i n a l = dt∗N_sample
15 time = l inspace ( t i m e _ i n i t , t i m e _ f i n a l , N_sample )
16
17 # d e c l a r e memory space for x _ r a n d _ a l l t o i n c l u d e a l l t r i a l s
18 x _ r a n d _ a l l = np . zeros ( ( N _ r e a l i z e , N_sample ) )
19
20 # time v a r y i n g mean and sqrt ( v a r i a n c e ) a t the time i n s t a n c e
21 mu_all = l inspace ( −2 ,2 , N_sample )
22 s i g m a _ a l l = l inspace ( 0 . 1 , 1 . 5 , N_sample )
23
24 # for a f i x e d time i n s t a n c e , g e n e r a t e the random numbers
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25 # with the mean and the v a r i a n c e a t the f i x e d time
26 for idx , ( mu_t , s igma_t ) in enumerate ( z i p ( mu_all , s i g m a _ a l l ) ) :
27 x_rand = mu_t+sigma_t∗ rp . randn ( N _ r e a l i z e )
28 x _ r a n d _ a l l [ : , i d x ] = x_rand
29
30 # plot a l l t r i a l s with r e s p e c t t o the time
31
32 # Warning : t h i s p a r t i s only e xe cu te d with the s m al l N _ t r i a l ,
33 # e . g . , 5
34 # the plot t a k e s r e a l l y long and c a u s i n g the computer crashed
35 # with the l a r g e N _ t r i a l , e . g . , 1000
36 i f N _ r e a l i z e < 1 0 :
37
38 f i g , ax = p l t . s u b p l o t s ( nrows =1 , n c o l s =1)
39 ax . plot ( time , x _ r a n d _ a l l . t r a n s p o s e ( ) , ’ k− ’ )
40 ax . s e t _ x l a b e l ( ’ t ime [ s ] ’ , f o n t s i z e =14)
41 ax . s e t _ y l a b e l ( r ’ $x ( t ) $ ’ , f o n t s i z e =14)
42 ax . set ( xl im =(0 , t i m e _ f i n a l ) , yl im =(−4 ,6) )

Program 2.11 (Python) Realizations of the stochastic process x(t) given by (2.23)
and estimation of the mean and variance

The same array including the integer from 1 to 5 is generated in numpy and
MATLAB as follows:

# numpy
a = np . a r r a y ( [ 1 , 2 , 3 , 4 , 5 ] )

% matlab
a = [ 1 2 3 4 5 ]

One-dimensional array in numpy has only one index and starts from 0, i.e. ‘a[0]’
equal to 1, ‘a[1]’ equal to 2, and so forth. One-dimensional array in MATLAB has
both the one-dimensional index starting from 1 and the two-dimensional index
indicating the row and the column numbers, i.e. ‘a(2)’ can be accessed by the
first row and the second-column element of ‘a’, ‘a(1,2)’. The a.shape command
in the Python command prompt prints (5,), which indicates that the array has
five elements and a one-dimensional index. rp.rand in line 27 in Program 2.11 has
only one argument, N_realise, and it generates a one-dimensional array including
the ‘N_realise’ random numbers. One-dimensional array in numpy does not have
the information whether it is a row vector array or a column vector array as in
MATLAB. In the next line of the program, the one-dimensional array, ‘x_rand’, is
stored in the idx-column of ‘x_rand_all’, which is a two-dimensional array, without
checking whether ‘x_rand’ is a column vector or a row vector. This is automati-
cally completed as long as two sizes are matched to each other, i.e. the number of
elements of ‘x_rand’ is equal to the number of rows of ‘x_rand_all’.
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There is no automatic data manipulation for the plotting commands from
matplotlib. In line 39 in Program 2.11, ‘x_rand_all’ is transposed as the plot
command requires the dimension of time and the first dimension of ‘x_rand_all’
to be matched. For example, ‘N_sample = 1000’ and ‘N_realize = 5’, the
‘x_rand_all.shape()’ commands return the shape of the matrix equal to (5,100),
while ‘time.shape()’ prints out (100,). To make the first size element of ‘x_rand_all’
equal to 100, it needs to be transposed using ‘x_rand_all.transpose()’. It is always
recommended to generate a none-square matrix to prevent to interpreting or plotting
the data for the wrong axis. If ‘x_rand_all’ is a square matrix, then the plot would
succeed to produce a plot but it draw for the wrong axis.

Unlike the surf command in MATLAB, the plot_surface command in mat-
plolib needs the full list of the coordinates for the two-dimensional matrix data,
‘x_bin_matrix’, to be drawn in a three-dimensional space. The coordinate for each
element of the two-dimensional matrix is generated using meshgrid in numpy.
For example,

a =
[
0 1 2

]
, b =

[
0 1 2 3 4

]
, C_mat =

⎡⎢⎢⎢⎢⎢⎣

0 1 2
3 4 5
6 7 8
9 10 11

12 13 14

⎤⎥⎥⎥⎥⎥⎦
(2.24)

are generated by

In [ 1 ] : a=np . arange ( 3 )
In [ 2 ] : b=np . arange ( 5 )
In [ 3 ] : C_mat=np . reshape ( np . arange ( 1 5 ) , ( 5 , 3 ) )

where the ‘C_mat[i,j]’ element corresponds to ‘a[i]’ and ‘b[j]’, and the following
line

In [ 4 ] : A_mat , B_mat = meshgrid ( a , b )

generates ‘A_mat’ and ‘B_mat’ equal to

A_mat =

⎡⎢⎢⎢⎢⎢⎣

0 1 2
0 1 2
0 1 2
0 1 2
0 1 2

⎤⎥⎥⎥⎥⎥⎦
, B_mat =

⎡⎢⎢⎢⎢⎢⎣

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4

⎤⎥⎥⎥⎥⎥⎦
(2.25)

The coordinates ‘(a[i],b[j])’ for ‘C_mat[i,j]’ are given by ‘A_mat[i,j]’ and
‘B_mat[i,j]’. Then, the surface plot for ‘C_mat’ is drawn as follows:

f i g =p l t . f i g u r e ( )
ax=p l t . axes ( p r o j e c t i o n= ’ 3d ’ )
ax . p l o t _ s u r f a c e ( A_mat , B_mat , C_mat )
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Finding the purpose of the other options in plot_surface, rstride, cstride, and cmap
is left as an exercise. Plotting the pdf shown in Figure 2.12 is left as an exercise.

2.1.2.6 Gyroscope White Noise
The zero-mean white noise of the gyroscope, 𝜼

𝑣
, in (2.11) is implemented by

extending (2.20) into a vector form as follows:

E
[
𝜼
𝑣
(t)
]
= 03×1 (2.26a)

E
[
𝜼
𝑣
(t1)𝜼T

𝑣
(t2)

]
=
⎡⎢⎢⎣
𝜎

2
𝑣x 0 0
0 𝜎

2
𝑣y 0

0 0 𝜎
2
𝑣z

⎤⎥⎥⎦ 𝛿(t1 − t2) (2.26b)

where 03×1 is the 3 × 1 vector whose elements are all zeros, and 𝜎
𝑣x, 𝜎

𝑣y, and 𝜎
𝑣z

are the standard deviations of the white noise for x, y, and z directions of the gyro-
scope, respectively. As the noises for the three directions are not correlated, the
off-diagonal terms are all zeros. Generate three random variables whose mean zero
and variance are equal to 𝜎x, 𝜎y, and 𝜎z, respectively, for a fixed time and repeat it
for every instance implements 𝜼

𝑣
(t) time series.

Unlike the time-varying mean and variance case, where multiple realizations are
required to estimate the mean and the variance for a fixed time, the mean and the
variance of the white noise can be calculated using the sampled data from a single
realization over a period of time, which is long enough. This is an intuitive concept
of the ergodicity of white noise. A more precise statistical definition of ergodicity
requires the deeper understanding of statistics (Shanmugan and Breipohl, 1988).

1 # (continue from Program 2.11)
2 # e s t i m a t e t h e mean , t h e v a r i a n c e and t h e pdf f o r each i n s t a n c e
3 # u s i n g N− t r i a l s a t each i n s t a n c e
4
5 # a ppr ox i m a t e mean and v a r i a n c e from t h e r e a l i s a t i o n
6 # and compare w i t h t h e t r u e
7 mu_approx = np . mean ( x _ r a n d _ a l l , a x i s =0) ;
8 sigma2_approx = np . var ( x _ r a n d _ a l l , a x i s =0)
9 fig_ms , ( ax_ms_0 , ax_ms_1 ) = p l t . s u b p l o t s ( nrows =2 , n c o l s =1)

10 ax_ms_0 . p l o t ( time , mu_all )
11 ax_ms_0 . p l o t ( time , mu_approx , ’ r−− ’ )
12 ax_ms_0 . s e t _ y l a b e l ( r ’ $ \mu( t ) $ ’ , f o n t s i z e =14)
13 ax_ms_0 . legend ( ( ’ True ’ , ’ Es t imated ’ ) , l o c= ’ upper l e f t ’ , f o n t s i z e =14)
14
15 ax_ms_1 . p l o t ( time , s i g m a _ a l l ∗∗2) ;
16 ax_ms_1 . p l o t ( time , sigma2_approx , ’ r−− ’ ) ;
17 ax_ms_1 . s e t _ y l a b e l ( r ’ $ [ \ sigma ( t ) ] ^ 2 $ ’ , f o n t s i z e =14) ;
18 ax_ms_1 . s e t _ x l a b e l ( ’ t ime [ s ] ’ , f o n t s i z e =14) ;
19 ax_ms_1 . legend ( ( ’ True ’ , ’ Es t imated ’ ) , l o c= ’ upper l e f t ’ , f o n t s i z e =14) ;
20
21 # e s t i m a t e t h e pdf f o r each i n s t a n c e u s i n g N− t r i a l s a t each

i n s t a n c e
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22 N_bin = 100
23 x_bin = np . l i n s p a c e ( −5 ,5 , N_bin )
24 dx=np . mean ( np . d i f f ( x_bin ) )
25 p x _ a l l = np . z e r o s ( ( N_bin−1 , N_sample ) )
26 for j d x in range ( N_sample ) :
27 x_rand = x _ r a n d _ a l l [ : , j d x ]
28 N_occur = np . his togram ( x_rand , b i n s=x_bin )
29 N_occur = N_occur [ 0 ]
30 p x _ a t _ t = N_occur / ( dx∗N _ r e a l i z e )
31 p x _ a l l [ : , j d x ] = p x _ a t _ t
32
33 # p l o t t h e e s t i m a t e d pdf
34 t ime_matr ix , x_b in_m atr ix = np . meshgrid ( time , x_bin [ 0 : −1 ] )
35
36 f i g _ 3 d = p l t . f i g u r e ( )
37 ax_3d = p l t . axes ( p r o j e c t i o n= ’ 3d ’ )
38 ax_3d . p l o t _ s u r f a c e ( t ime_matr ix , x_bin_matr ix , p x _ a l l , r s t r i d e =1 ,

c s t r i d e =1 , cmap= ’ v i r i d i s ’ )
39 ax_3d . s e t _ x l a b e l ( ’ t ime [ s ] ’ , f o n t s i z e =14)
40 ax_3d . s e t _ y l a b e l ( r ’ sampling space $x$ ’ , f o n t s i z e =14)
41 ax_3d . s e t _ z l a b e l ( r ’ $ \ hat { p } ( x ) $ ’ , f o n t s i z e =14)

Program 2.12 (Python) Plot the mean, the variance, and the pdf with respect to
time

2.1.2.7 Gyroscope Random Walk Noise
Another type of random noise corrupting the gyro measurements in (2.11) is the
bias, 𝜷. The bias is modelled as the random walk: the difference between 𝜷(tk) and
𝜷(tk−1) for 0 ≤ tk−1 < tk is the independent random increment, and it follows the
normal distribution whose mean and variance are given by

E
[
𝜷(tk) − 𝜷(tk−1)

]
= 03×1 (2.27a)

E
{[

𝜷(tk) − 𝜷(tk−1)
] [
𝜷(tk) − 𝜷(tk−1)

]T
}
= diag

⎡⎢⎢⎢⎣
𝜎

2
𝛽x
𝜎

2
𝛽y
𝜎

2
𝛽z

⎤⎥⎥⎥⎦
Δtk (2.27b)

where 𝜎
𝛽x, 𝜎

𝛽y, and 𝜎
𝛽z are positive constants and Δtk is equal to tk − tk−1. Rigorous

mathematical definitions and discussions about the random walk can be found in
Van Kampen (2007).

The following equation simulates the random walk (Figure 2.12):

𝜷(tk) = 𝜷(tk−1) + Δ𝜷(tk) (2.28)

where tk is the sampling instance that the gyro measurement is obtained, and
Δ𝜷(tk) is the random increment. To simulate the random increment, firstly, the
random increment is implemented by

Δ𝜷(tk) = 𝜼u(tk)Δtk (2.29)
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Figure 2.12 The estimated pdf, p̂(x), plot using Python.

where 𝜼u(tk) is a 3 × 1 random vector at tk, whose each element is a random num-
ber generated from the normal distribution. Secondly, to match the mean of the
random increment given in (2.27a) of 𝜼u(tk) must satisfy

E
[
Δ𝜷(tk)

]
= E

[
𝜼u(tk)Δtk

]
= E

[
𝜼u(tk)

]
Δtk = 03×1 (2.30)

The mean value of each element of 𝜼u(tk) for a fixed time tk must be equal to zero,
i.e. E

[
𝜼u(tk)

]
= 03×1. Finally, to match the covariance of the random increment

given in (2.27b), the variance of 𝜼u(t) must satisfy

E
[
Δ𝜷(tk)Δ𝜷

T(tk)
]
= E

[
𝜼u(tk)Δtk 𝜼T

u (tk)Δtk
]

⇓

diag
⎡⎢⎢⎢⎣
𝜎

2
𝛽x
𝜎

2
𝛽y
𝜎

2
𝛽z

⎤⎥⎥⎥⎦
Δtk = E

[
𝜼u(tk)𝜼T

u (tk)
] (

Δtk
)2 (2.31)

Hence, the covariance of the random number, 𝜼u, is given by

E
[
𝜼u(tk)𝜼T

u (tk)
]
= diag

⎡⎢⎢⎣
𝜎

2
ux
𝜎

2
uy
𝜎

2
ux

⎤⎥⎥⎦ = diag
⎡⎢⎢⎢⎣
𝜎

2
𝛽x
𝜎

2
𝛽y
𝜎

2
𝛽z

⎤⎥⎥⎥⎦
1
Δtk

(2.32)
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For example, the standard deviation of the first element in 𝜼(tk), 𝜎ux, is equal to
𝜎
𝛽x∕

√
Δtk. A gyro noise characteristic given in the unit of (∘∕s)∕

√
s=∘∕s3∕2 is orig-

inated from this relationship (Woodman, 2007).
Note that 𝜼u(t) is not correlated with the white noise, 𝜼

𝑣
(t), in the gyroscope

sensor model, (2.11). Most optimal estimation algorithms assume that the mean
and the variance of the random noise are known. In practice, these values are fre-
quently found in the sensor specifications.

We are now ready to write a pseudo-code for simulating the bias noise in the
gyro measurement. Pseudo-code is a description of an algorithm in plain language
without any tight connection to a specific programming language. Pseudo-code is
for the simulator designers to have a clear picture of the algorithm, and it is useful
to design an initial structure of the simulation program. Translating a pseudo-code
to a specific programming language, e.g. MATLAB or Python, is rather straightfor-
ward. Algorithm 2.1 is the pseudo-code for generating the gyro bias noise whose
mathematical descriptions are provided earlier. The 10-realization of the bias time
history using MATLAB or Python is shown in Figure 2.13. The implementation of
the algorithm for each MATLAB or Python is left as the exercise.

Algorithm 2.1 Gyro bias noise, 𝜷(tk), simulation
1: Set 𝜎

𝛽x, 𝜎
𝛽y, 𝜎

𝛽z, and Δtk, n.b.: Δtk is usually set to a constant
2: Initialize 𝜷(t0), e.g. using a random number generator
3: for k = 1, 2,… do
4: for 𝓁 = x, y, z do
5: Generate 𝜂u𝓁 ∼ N(0, 𝜎2

𝛽𝓁∕Δtk), See (2.30) and (2.32)
6: end for
7: 𝜼u(tk) ←

[
𝜂ux 𝜂uy 𝜂uz

]T

8: Δ𝜷(tk) ← 𝜼u(tk)Δtk, See (2.29)
9: 𝜷(tk) ← 𝜷(tk−1) + Δ𝜷(tk), See (2.28)

10: tk ← tk−1 + Δtk
11: end for

It is important to use only the SI units in the main parts of all simulation imple-
mentations. All non-SI units given must be changed to the corresponding SI units
at the beginning of the program. Using the SI units only for the rest of the pro-
gram implementation can significantly reduce unit related mistakes. Keep in mind
that all dynamic equations are derived based on appropriate unit assumptions.
The assumption we use here for most cases is that variables are in the SI units.
The computer does not have the unit information but has the numerical values only.
It does not recognize that 0.1 is in degrees or radians. After the simulation com-
pletes, some quantities could be converted into non-SI units for some purposes.
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Figure 2.13 Bias noise simulation using (a) MATLAB/(b) Python.

For example, all angles must be in radians during the simulation, but they could
be converted into degrees for the visualization purpose.

2.1.2.8 Gyroscope Simulation
Given the angular velocity, 𝝎(t), as the function of time in (2.9), the gyroscope
sensor in (2.11) has the following noise characteristics indicated in the sensor
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specifications: 𝜎
𝛽x = 0.05 (∘∕s)∕

√
s, 𝜎

𝛽y = 0.04 (∘∕s)∕
√

s, 𝜎
𝛽z = 0.06 (∘∕s)∕

√
s,

𝜎
𝑣
= 0.01 ∘∕s, and Δtk = 0.05 seconds. In addition, the initial bias, 𝜷(t0 = 0), is

taken from the uniform distribution between −0.05 ∘∕s and +0.05 ∘∕s.
The simulation result of the gyroscope measurements is shown in Figures 2.14

and 2.15. See Program 2.13 for the MATLAB gyroscope simulation. The Python
program for simulating the gyroscope measurement is given in Program 2.14.
The measurements indicated in the dashed lines are drifting away from the true

–4

–2

0

2

4

6

0 20

ωx
ωy
ωz
ωx
~

~
~ωy
ωz

40

(°
/s

)

60

Time (s)

80 100 120

Figure 2.14 (MATLAB) Gyroscope measurement simulation.

–4

–2

0

2

4

6

0 20

ωx
ωy
ωz
ωx
~

~
~ωy
ωz

40

(°
/s

)

60

Time (s)

80 100 120

Figure 2.15 Gyroscope measurement simulation using Python Program 2.14.
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angular velocity. If the measurements are directly used to obtain the quaternion
by numerically integrating (2.5), where 𝝎 is replaced by 𝝎̃, the calculated quater-
nion quickly diverges from the true quaternion. No matter how expensive and
accurate the gyroscope is, the gyroscope sensor measurement alone is not enough
to prevent the divergence of the calculated quaternion from the true quaternion.
An additional sensor directly providing the attitude measurement is needed.

1 clear ;
2
3 %% S e t i n i t i a l v a l u e s & change non−SI u n i t s i n t o t h e SI U n i t s
4 dt = 0 . 0 5 ; % [ s e c o n d s ]
5 t i m e _ i n i t = 0 ;
6 t i m e _ f i n a l = 1 2 0 ;
7 time = t i m e _ i n i t : d t : t i m e _ f i n a l ;
8 N_sample = length ( t ime ) ;
9

10 % s t a n d a r d d e v i a t i o n o f t h e b i a s , s i g m a _ b e t a _ x y z
11 s igma_beta_xyz = [ 0 . 0 5 0 . 0 4 0 . 0 6 ] ; % [ d e g r e e s / s q r t ( s ) ]
12 s igma_beta_xyz = sigma_beta_xyz ∗ ( pi / 1 8 0 ) ; % [ rad / s q r t ( s ) ]
13 s igma_eta_xyz = sigma_beta_xyz / sqrt ( d t ) ;
14
15 % s t a n d a r d d e v i t a t i o n o f t h e w h i t e n o i s e , s igma_v
16 sigma_v = 0 . 0 1 ; %[ d e g r e e s / s ]
17 sigma_v = sigma_v ∗ ( pi / 1 8 0 ) ; %[ rad / s ]
18
19 % i n i t i a l b e t a ( t )
20 beta = (2∗ rand ( 3 , 1 ) −1) ∗ 0 . 0 5 ; % +/− 0 . 0 3 [ d e g r e e s / s ]
21 beta = beta ∗ ( pi / 1 8 0 ) ; % [ r a d i a n s / s ]
22
23 % p r e p a r e t h e data s t o r e
24 w_al l = zeros ( N_sample , 3 ) ;
25 w_measure_all = zeros ( N_sample , 3 ) ;
26
27 %% main s i m u l a t i o n l o o p
28 for i d x =1: N_sample
29
30 t ime_c = time ( i d x ) ;
31 w_true ( 1 , 1 ) = 0 . 1∗ sin (2∗ pi ∗0 .005∗ t ime_c ) ; % [ rad / s ]
32 w_true ( 2 , 1 ) = 0 . 0 5∗ cos (2∗ pi ∗0 .01∗ t ime_c + 0 . 2 ) ; %[ rad / s ]
33 w_true ( 3 , 1 ) = 0 . 0 2 ; %[ rad / s ]
34
35 % b e t a ( t )
36 eta_u = sigma_eta_xyz ( : ) .∗ randn ( 3 , 1 ) ;
37 dbeta = eta_u∗dt ;
38 beta = beta + dbeta ;
39
40 % e t a _ v ( t )
41 e t a _ v = sigma_v∗randn ( 3 , 1 ) ;
42
43 % w _ t i l d e
44 w_measurement = w_true + beta + e t a _ v ;
45
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46 % s t o r e h i s t o r y
47 w_al l ( idx , : ) = w_true ( : ) ’ ;
48 w_measure_all ( idx , : ) = w_measurement ( : ) ’ ;
49
50 end
51
52 % p l o t i n d e g r e e s / s
53 f igure ;
54 plot ( time , w_al l ∗ ( 1 8 0 / pi ) ) ;
55 hold on ;
56 plot ( time , w_measure_all ∗ ( 1 8 0 / pi ) , ’−− ’ ) ;
57 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
58 ylabel ( ’ $ [ ^ \ c i r c / s ] $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
59 xlabel ( ’ t ime [ s ] ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ) ;
60 legend ( ’ $ \ omega_x$ ’ , ’ $ \ omega_y$ , ’ $ \ omega_z$ , . . .
61 ’ $ \ t i l d e { \ omega } _x$ , ’ $ \ t i l d e { \ omega } _y$ , ’ $ \ t i l d e { \ omega } _z$ ,

. . .
62 ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ L o c a t i o n ’ , ’ SouthWest ’ ) ;

Program 2.13 (MATLAB) Gyroscope simulation with white noise and bias noise

1 import numpy as np
2 import m a t p l o t l i b . p y p l o t as p l t
3
4 # S e t i n i t i a l v a l u e s & change non−SI u n i t s i n t o t h e SI U n i t s
5 dt = 0 . 0 5 # [ s e c o n d s ]
6 t i m e _ i n i t = 0
7 t i m e _ f i n a l = 120 # [ s e c o n d s ]
8 N_sample = int ( t i m e _ f i n a l / dt ) + 1
9 time = np . l i n s p a c e ( t i m e _ i n i t , t i m e _ f i n a l , N_sample )

10
11 # s t a n d a r d d e v i a t i o n o f t h e b i a s , s i g m a _ b e t a _ x y z
12 s igma_beta_xyz = np . a r r a y ( [ 0 . 0 5 , 0 . 0 4 , 0 . 0 6 ] ) # [ d e g r e e s / s q r t ( s ) ]
13 s igma_beta_xyz = sigma_beta_xyz ∗ ( np . p i / 1 8 0 ) # [ rad / s q r t ( s ) ]
14 s igma_eta_xyz = sigma_beta_xyz / np . s q r t ( d t )
15
16 # s t a n d a r d d e v i t a t i o n o f t h e w h i t e n o i s e , s igma_v
17 sigma_v = 0 . 0 1 # [ d e g r e e s / s ]
18 sigma_v = sigma_v ∗ ( np . p i / 1 8 0 ) # [ rad / s ]
19
20 # i n i t i a l b e t a ( t )
21 b e t a = (2∗np . random . rand ( 3 ) −1) ∗0 . 0 3 # +/− 0 . 0 3 [ d e g r e e s / s ]
22 b e t a = b e t a ∗ ( np . p i / 1 8 0 ) # [ r a d i a n s / s ]
23
24 # p r e p a r e t h e data s t o r e
25 w_al l = np . z e r o s ( ( N_sample , 3 ) )
26 w_measure_all = np . z e r o s ( ( N_sample , 3 ) )
27
28 # main s i m u l a t i o n l o o p s
29 for i d x in range ( N_sample ) :
30
31 t ime_c = time [ i d x ]
32 w_true = np . a r r a y ( [ 0 . 1 ∗ np . s i n (2∗np . p i ∗0 .005∗ t ime_c ) , # [ rad / s ]
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33 0 . 0 5∗np . cos (2∗np . p i ∗0 .01∗ t ime_c + 0 . 2 ) , # [ rad / s ]
34 0 . 0 2 # [ rad / s ]
35 ] )
36 # b e t a ( t )
37 eta_u = sigma_eta_xyz∗np . random . randn ( 3 )
38 dbeta = eta_u∗dt
39 b e t a = b e t a + dbeta
40 # e t a _ v ( t )
41 e t a _ v = sigma_v∗np . random . randn ( 3 )
42 # w _ t i l d e
43 w_measurement = w_true + b e t a + e t a _ v
44 # s t o r e h i s t o r y
45 w_al l [ idx , : ] = w_true
46 w_measure_all [ idx , : ] = w_measurement
47
48 # p l o t a l l r e a l i z a t i o n o f b e t a i n d e g r e e s / s
49 f i g , ax = p l t . s u b p l o t s ( nrows =1 , n c o l s =1)
50 ax . p l o t ( time , w_al l ∗180/ np . p i )
51 ax . p l o t ( time , w_measure_all ∗180/ np . pi , ’−− ’ )
52 ax . s e t _ y l a b e l ( r ’ $ [ ^ \ c i r c / s ] $ ’ , f o n t s i z e =14) ;
53 ax . s e t _ x l a b e l ( r ’ t ime [ s ] ’ , f o n t s i z e =14) ;
54 ax . legend ( ( r ’ $ \ omega_x$ ’ , r ’ $ \ omega_y$ ’ , r ’ $ \ omega_z$ ’ ,
55 r ’ $ \ t i l d e { \ omega } _x$ ’ , r ’ $ \ t i l d e { \ omega } _y$ ’ , r ’ $ \ t i l d e { \ omega }

_z$ ’ ) ,
56 f o n t s i z e =14 , l o c= ’ lower l e f t ’ )
57 ax . s e t ( xl im =(0 , t i m e _ f i n a l ) , yl im =(−4 ,6) )
58 f i g . s e t _ s i z e _ i n c h e s ( 9 , 6 )
59 f i g . s a v e f i g ( ’ gyro_measurement_python . pdf ’ , dpi =250)

Program 2.14 (Python) Gyroscope simulation with white noise and bias noise

2.1.3 Optical Sensor Model

One of the common sensors used to provide attitude measurement directly is an
optical sensor, e.g. camera or star sensor. These sensors identify a priori known
objects and compare the direction of the objects in the sensor measurement with
the known directions of the objects in the reference coordinates.

To model a star sensor, it needs to understand the principle of vector observation
illustrated in Figure 2.16. The attitude of the body coordinates, B, indicated by
xB, yB, and zB with respect to the reference coordinates indicated by x, y, and z
is expressed in the quaternion, q. The vector pointing towards #1 star, r1, can be
expressed by the coordinates in the body coordinates or the reference coordinates
as follows:

r1 → r1
R =

[
x y z

]T (2.33)

r1 → r1
B =

[
xB yB zB

]T (2.34)

where r1
R and r1

B are the same vector but written in the two different coordinates,
{R} and {B}. r1

R is usually stored in the on-board computer of satellite as a part
of the star catalogue database. The star sensor with an identification algorithm
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x

xB

r1

#1

zB

yB

y

z Figure 2.16 Identified star in the
reference and the bode coordinates.

detects star #1, and its direction in the sensor coordinates is given by r1
B, where the

sensor coordinates are assumed to be the same as the body coordinates. As r1
R and

r1
B are vectors pointing the direction of the star, their magnitudes are assumed to

be normalized, i.e. ||r||1R = 1 and ||r||1B = 1.
Their coordinates are equated using the direction cosine matrix as follows:

⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦R

=
⎡⎢⎢⎣
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤⎥⎥⎦
⎡⎢⎢⎣
xB
yB
zB

⎤⎥⎥⎦B

(2.35)

where cij = cos 𝜃ij and 𝜃ij are the angles between x, y, or z and xB, yB, or zB. In a
compact form, it is written as

r1
B = CBRr1

R (2.36)

where CBR is the direction cosine matrix converting a vector in {R} to {B}. The
quaternion and the direction cosine matrix are two different ways to express atti-
tude information. They are equivalent to each other and one-to-one conversion
exists as follows:

CBR(q) =
(

q2
4 − qT

13q13
)

I3 + 2q13qT
13 − 2q4

[
q13×

]
(2.37)

where
[
q13×

]
is defined by (2.8) (Wie, 2008).

The conversion from the direction cosine matrix to the quaternion is performed
using Algorithm 2.2 (Schaub and Junkins, 2003). Finding the maximum value in
line 2 in Algorithm 2.2 is to prevent the divisions in lines 3–6 with a small value
in the numerator. All divisions in computer programs must be done with extreme
care. If the denominator in a division is equal to or close to zero, the result becomes
too large for the finite floating points in the computer to be contained. MATLAB or
Python, for example, returns inf for 1/10−309, where inf stands for the infinity,
while 1/10−308 returns 10308. The boundary value for separating the finite and the
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infinity values in the computer varies depending on the computer and/or software.
To check if the value of a variable is infinity or not, isinf in MATLAB or numpy.isinf
in numpy Python is used. It returns the logical value type 1 in MATLAB or True
in Python if the number is infinity and the logical type 0 in MATLAB or False in
Python if it is considered as a finite number.

Line 8 in Algorithm 2.2 is to provide the shortest rotational manoeuvre. q4 is
equal to cos(𝜃∕2) and cos(𝜃∕2) is greater than or equal to 0 for |𝜃| ≤ 180∘. Negative
q4 implies that |𝜃| is greater than 180∘. Then, the same attitude can be achieved by
the opposite direction rotation axis, i.e.−e, with the rotational angle equal to 𝜋 − 𝜃
radians. Also, notice that cos[(𝜋 − 𝜃)∕2] = − cos(𝜃∕2). Figure 2.17 shows that the
same attitude for the 275∘ rotation about the rotation axis e can be achieved by the
85∘ rotation about the opposite axis, −e.

Given the star direction, r1
R, and the star observation, r1

B, three algebraic
equations are established using (2.35). As there are nine unknowns, cij for
i, j = 1, 2, 3, in (2.35), six more equations are required to determine the nine
unknowns. Consider that another star, #2 star, is identified, and it provides

r2
B = CBR(q)r2

R (2.38)

where it is assumed that r1
R and r2

R are not parallel to each other. Hence, additional
three independent equations are provided by (2.38). Once two non-parallel direc-
tion stars are identified, the third vector can be established using the vector cross
product as follows:(

r1
B × r2

B
)
= CBR(q)

(
r1

R × r2
R
)

(2.39)

The simplest star tracker model is given by Crassidis (2002)

r̃i
B = ri

B + vi (2.40)

where vi is a 3 × 1 noise vector, which follows the zero-mean Gaussian distribu-
tion, i.e.

E(vi) = 𝟎3 (2.41a)

E
[
vi(vi)T

]
= 𝜎

2
s I3×3 (2.41b)

Figure 2.17 The shortest path rotation.

xB

e

–e

zB

yB θ = 275°

θ = 85°
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Algorithm 2.2 The quaternion from the direction cosine matrix
1: Calculate ai using the given cij for i, j = 1, 2, 3 in (2.35)

a1 = (1 + c11 − c22 − c33)∕4

a2 = (1 + c22 − c11 − c33)∕4

a3 = (1 + c33 − c11 − c22)∕4

a4 = (1 + c11 + c22 + c33)∕4

2: Find i∗ such that ai∗ = max(a1, a2, a3, a4) and calculate qi∗ =
√

ai∗

3: if i∗ is equal to 1 then

q2 = (c12 + c21)∕(4q1)

q3 = (c13 + c31)∕(4q1)

q4 = (c23 − c32)∕(4q1)

4: else if i∗ is equal to 2 then

q1 = (c12 + c21)∕(4q2)

q3 = (c23 + c32)∕(4q2)

q4 = (c31 − c13)∕(4q2)

5: else if i∗ is equal to 3 then

q1 = (c13 + c31)∕(4q3)

q2 = (c23 + c32)∕(4q3)

q4 = (c12 − c21)∕(4q3)

6: else if i∗ is equal to 4 then

q1 = (c23 − c32)∕(4q4)

q2 = (c31 − c13)∕(4q4)

q3 = (c12 − c21)∕(4q4)

7: end if
8: if q4 is negative then

q1 ← −q1, q2 ← −q2, q3 ← −q3, q4 ← −q4

9: end if
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and 𝜎s is the standard deviation of the star sensor noise. The justification of this
noise model is given in Shuster (1989). A more sophisticated star sensor noise
modelling can be found in Fialho and Mortari (2019).

Consider the following two stars in the reference coordinates:

r1
R =

[
0 1√

2
− 1√

2

]T

R
(2.42a)

r2
R =

[ 1√
2

0 1√
2

]T

R
(2.42b)

Assume that q(t) represents the attitude of a satellite relative to the reference coor-
dinates and the satellite equipped with multiple star sensors can see and identify
the stars all the time. In reality, the stars would be in and out of the field of view
of the star sensors. In Program 2.1 for MATLAB or 2.2 for Python, q(t) is given for
every instance of time. For each instance, the corresponding body frame, where it
is assumed that the sensor frames are aligned with the satellite body frame, repre-
sentations of the stars are given by

ri
B = CBR[q(t)]ri

R (2.43)

for i = 1, 2, 3, where CBR[q(t)] is given by (2.37), and

r3
R = r1

R × r2
R (2.44a)

r3
B = r1

B × r2
B (2.44b)

Re-arrange (2.43) and (2.44) as follows:

ri
B =

⎡⎢⎢⎢⎢⎣

(
ri

R
)T 01×3 01×3

01×3
(
ri

R
)T 01×3

01×3 01×3
(
ri

R
)T

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11
c12
c13
c21
c22
c23
c31
c32
c33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ai vec(CT) (2.45)

for i = 1, 2, 3, where Ai is a 3×9 matrix constructed using ri
R and vec(⋅) vectorizes

the matrix in the column direction as follows:

A =
⎡⎢⎢⎣
1 2 3
4 5 6
7 8 9

⎤⎥⎥⎦⇒ vec(A) =
[
1 4 7 2 5 8 3 6 9

]T (2.46)
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As MATLAB is the column-major language (The MathWorks, 2020), i.e. the ele-
ments in the array are indexed in the column direction first, the vectorization of
the matrix is performed as

>> A=[1 2 3 ; 4 5 6 ; 7 8 9 ]
>> A ( : )

Numpy array in Python, on the other hand, is the row-major, i.e. the elements in
the array are indexed in the row direction first, and the following flatten() function
returns A = [1, 2, 3, 4, 5, 6, 7, 8, 9]:

In [ 1 1 ] : A=np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
In [ 1 2 ] : A . f l a t t e n ( )

Hence, to obtain the same result for vec(⋅), the matrix is transposed first and then
flattened as follows:

In [ 1 3 ] : A . t r a n s p o s e ( ) . f l a t t e n ( )

Using three matrices, A1, A2, and A3,

⎡⎢⎢⎢⎣
r1

B

r2
B

r3
B

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
A1

A2

A3

⎤⎥⎥⎥⎦
vec(CT) = Avec(CT) (2.47)

where A is not singular, which means the inversion exists, as long as r1 and r2 are
not parallel to each other. Hence, the elements of the direction cosine matrix are
simply determined by

vec(CT) = A−1

⎡⎢⎢⎢⎣
r1

B

r2
B

r3
B

⎤⎥⎥⎥⎦
(2.48)

To construct an arbitrary attitude of the body relative to the reference frame, we
generate the following four values in MATLAB using the uniform random number
generator:

>> q_rand = 2∗rand ( 4 , 1 ) −1;
>> q_rand = q_rand /norm( q_rand ) ;

or in Python:

In [ 1 7 ] : q_rand=2∗np . random . rand ( 4 )−1
In [ 1 8 ] : q_rand=q_rand / np . l i n a l g . norm ( q_rand )

where they are normalized so that the random quaternion has the unit magnitude.
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The corresponding direction cosine matrix to the random quaternion generated
is calculated using (2.37) as follows in MATLAB:

>> q13=q_rand ( 1 : 3 ) ;
>> q4=q_rand ( 4 ) ;
>> q13x =[0 −q13 ( 3 ) q13 ( 2 ) ;

q13 ( 3 ) 0 −q13 ( 1 ) ;
−q13 ( 2 ) q13 ( 1 ) 0 ] ;

>> C_BR=(q4^2−q13 ’∗ q13 ) ∗eye ( 3 ) +2∗q13∗q13 ’−2∗q4∗q13x ;

or in Python:

In [ 2 2 ] : q13=np . reshape ( q_rand [ 0 : 3 ] , ( 3 , 1 ) )
In [ 2 3 ] : q4=q_rand [ 3 ]
In [ 2 4 ] : q13x = np . a r r a y ( [ [ 0 , −q13 [ 2 , 0 ] , q13 [ 1 , 0 ] ] , [ q13 [ 2 , 0 ] , 0 , − q13

[ 0 , 0 ] ] , [ − q13 [ 1 , 0 ] , q13 [ 0 , 0 ] , 0 ] ] )
In [ 2 5 ] : C_BR = ( q4∗∗2−q13 . t r a n s p o s e ( ) @q13 ) ∗np . eye ( 3 ) +2∗q13@q13 .

t r a n s p o s e ( ) −2∗q4∗q13x

A simple check if the conversion to the direction cosine matrix is performed cor-
rectly is checking CT

BRCBR equal to the identity matrix.
In Python, matrix multiplication is denoted by the ‘@’ sign. Note that the result

of multiplication of “*’ and ‘@’ multiplication in Python is different. For example,

In [ 8 0 ] : x=np . a r r a y ( [ [ 1 ] , [ 2 ] , [ 3 ] ] )

In [ 8 1 ] : x . t r a n s p o s e ( ) ∗x
Out [ 8 1 ] :
a r r a y ( [ [ 1 , 2 , 3 ] ,

[ 2 , 4 , 6 ] ,
[ 3 , 6 , 9 ] ] )

In [ 8 2 ] : x . t r a n s p o s e ( )@x
Out [ 8 2 ] : a r r a y ( [ [ 1 4 ] ] )

While ‘x.transpose()@x’ performs xTx operation, i.e. the dot product of the vectors,
‘x.transpose()*x’ performs[

x1x x2x x3x
]

(2.49)

where xT = [x1 x2 x3].
The measurements from the star sensor for the stars given in (2.42) correspond-

ing to the random attitude generated are obtained by (2.43). The implementation
in MATLAB is as follows:

>> r1R =[0 1/ sqrt ( 2 ) −1/ sqrt ( 2 ) ] ’ ;
>> r2R =[1/ sqrt ( 2 ) 0 1/ sqrt ( 2 ) ] ’ ;
>> r1B=C_BR∗r1R ;
>> r2B=C_BR∗r2R ;
>> r3R=cross ( r1R , r2R ) ;
>> r3B=C_BR∗r3R ;
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and the implementation in Python is as follows:

In [ 8 6 ] : r1R=np . a r r a y ( [ 0 , 1/ np . s q r t ( 2 ) , −1/np . s q r t ( 2 ) ] ) . reshape
( ( 3 , 1 ) )

In [ 8 7 ] : r2R=np . a r r a y ( [ 1 / np . s q r t ( 2 ) , 0 , 1/ np . s q r t ( 2 ) ] ) . reshape
( ( 3 , 1 ) )

In [ 8 8 ] : r1B=C_BR@r1R
In [ 8 9 ] : r2B=C_BR@r2R
In [ 9 0 ] : r3R=np . c r o s s ( r1R . f l a t t e n ( ) , r2R . f l a t t e n ( ) ) . reshape ( ( 3 , 1 ) )
In [ 9 1 ] : r3B=C_BR@r3R

where ‘r1R’ and ‘r2R’ vectors in Python are shaped as 3 × 1 vectors. They are
converted into one-dimensional arrays for np.cross() using flatten() function in
numpy, and the result is reshaped as 3 × 1 vector.

2.2 Attitude Estimation Algorithm

2.2.1 A Simple Algorithm

For the noise-free perfect star sensor measurement case, i.e. vi in (2.40) is zero for
all i, CBR is calculated using (2.48), where ri

B is from the noise-free sensor, and ri
R

is from the star catalogue for i = 1, 2, 3, as follows:

>> A1=b l k d i a g ( r1R ( : ) ’ , r1R ( : ) ’ , r1R ( : ) ’ ) ;
>> A2=b l k d i a g ( r2R ( : ) ’ , r2R ( : ) ’ , r2R ( : ) ’ ) ;
>> A3=b l k d i a g ( r3R ( : ) ’ , r3R ( : ) ’ , r3R ( : ) ’ ) ;
>> A=[A1 ; A2 ; A3 ] ;
>> vec_CT=A \ [ r1B ( : ) ; r2B ( : ) ; r3B ( : ) ] ;
>> C_BR_Cal=reshape ( vec_CT , 3 , 3 ) ’
>> norm( C_BR−C_BR_Cal )
ans =

1 . 6 9 0 9 e−16

In MATLAB, for calculating A−1x, the backslash operator ‘⧵’ is preferred to the
inverse function, i.e. ‘A⧵x’ instead of ‘inv(A)*x’. The backslash operator is a lot
faster and accurate than calculating the inversion matrix and performing the
multiplication to x. In general, calculating the inverse matrix and performing
some operations would cause more computing steps and produce larger numeri-
cal errors. The norm in the last line shows the difference between the true and
the calculated direction cosine matrices. If the difference is not small enough,
there would be some errors in the codes and/or the measurements would have
some problem, e.g. two vector observations are too close and the matrix A would
be close to being a singular matrix. The error is in the order of 10−16 that is close
enough to zero.
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Similarly, in Python,

In [ 1 4 8 ] : from s c i p y . s p a r s e import b l o c k _ d i a g
In [ 1 4 9 ] : A1=b l o c k _ d i a g ( ( r1R . t r a n s p o s e ( ) , r1R . t r a n s p o s e ( ) , r1R .

t r a n s p o s e ( ) ) ) . t o a r r a y ( )
In [ 1 5 0 ] : A2=b l o c k _ d i a g ( ( r2R . t r a n s p o s e ( ) , r2R . t r a n s p o s e ( ) , r2R .

t r a n s p o s e ( ) ) ) . t o a r r a y ( )
In [ 1 5 1 ] : A2=b l o c k _ d i a g ( ( r2R . t r a n s p o s e ( ) , r2R . t r a n s p o s e ( ) , r2R .

t r a n s p o s e ( ) ) ) . t o a r r a y ( )
In [ 1 5 2 ] : A3=b l o c k _ d i a g ( ( r3R . t r a n s p o s e ( ) , r3R . t r a n s p o s e ( ) , r3R .

t r a n s p o s e ( ) ) ) . t o a r r a y ( )

In [ 1 5 3 ] : A=np . v s t a c k ( ( A1 , A2 , A3 ) )

In [ 1 5 4 ] : from s c i p y . l i n a l g import s o l v e
In [ 1 5 5 ] : vec_CT=s o l v e (A, np . v s t a c k ( ( r1B , r2B , r3B ) ) )
In [ 1 5 6 ] : C_BR_Cal = vec_CT . reshape ( 3 , 3 )

In [ 1 5 8 ] : np . l i n a l g . norm ( C_BR−C_BR_Cal )
Out [ 1 5 8 ] : 2 .3714374201337736 e−16

numpy and scipy packages in Python have no backslash operator as in MATLAB.
A similar efficient way of calculating A−1x can be, however, achieved using the
solve function in scipy.linalg package. The error is in the order of 10−16, which is
close enough to zero, and the calculated direction cosine matrix is close to the
truth.

When there are four or more star vector observations, then (2.48) becomes an
over-determined problem, and the minimum norm solution is calculated using
the following formula:

vec(CT) =
(

ATA
)−1AT

⎡⎢⎢⎢⎢⎣

r1
B

r2
B
⋮
rk

B

⎤⎥⎥⎥⎥⎦
(2.50)

for k ≥ 4.

2.2.2 QUEST Algorithm

Solving the following minimization problem determines the best direction cosine
matrix, CBR:

Minimize
CBR

1
2

k∑
i=1

ai||ri
B − CBRri

R||2 (2.51)

where ri
B is corrupted by stochastic noise with the known variance, which is found

in the sensor specifications, ai is the positive weight for each observation, which is
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typically set to the inverse of the variance of each observation, and this is known
as Wahba’s problem (Wahba, 1965).

Shuster and Oh (1981) presents the QUEST (quaternion estimation) algo-
rithm,2 which calculates the optimal solution for estimating the best quaternion
solving Wahba’s problem, where CBR = CBR(q) given in (2.37). A pseudo-code
for the QUEST is given in Algorithm 2.3, and the implementation of the QUEST
algorithm is left as an exercise.

The QUEST algorithm provides the optimal quaternion estimation based on the
current vector measurements. It does not use, however, any dynamic model. It
purely solves the optimization problem for a fixed instant of time to estimate the
quaternion.

2.2.3 Kalman Filter

The Kalman filter is originally developed for the linear systems, which are written
as follows (Kalman, 1960):

xk = Axk−1 + wk (2.52a)

zk = Hxk + vk (2.52b)

where the system noise, wk, and the measurement noise, vk, are the zero-mean
Gaussian white noise, their covariances are known as Qk and Rk, respectively, and
A and H are the matrices with appropriate dimensions. In practice, it is frequently
that the covariance matrices are constant for all k. Note that the notation for the
discrete-time instances, tk and tk−1, are simply written as the subscripts, k and
k − 1, respectively. Both are used interchangeably whenever it is convenient, e.g.
x(tk) = xk.

The Kalman filter solves the following optimization problem:

Minimize
Kk

trace
[
E
(
Δxk ΔxT

k
)]

(2.53)

where Δxk is the estimation error, i.e. the difference between the true state and the
estimated state, xk − x̂k, and Kk is the Kalman gain to be designed. The pseudo-
code for the Kalman filter is given in Algorithm 2.4. The optimal estimated state,
x̂+

k , is obtained by combining the predicted state, x̂−
k , from the system model and

the measurements, zk, from the sensor, using the Kalman gain as follows:

x̂+
k = x̂−

k + Kk
(
zk − Hx̂−

k
)

(2.54)

When the simulator is implemented, confusion occurs frequently between what
physical object we simulate and what algorithm we implement. Both components

2 ‘QUEST is better than rest’ quoted by John after dinner with Malcolm, John, Jinho, and
Jongrae in Maryland, USA in May 1998.
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Algorithm 2.3 QUEST (quaternion estimation) algorithm
1: Construct B using ri

B and ri
R for i = 1, 2,… , k as follows:

B =
k∑

i=1
airi

B
(
ri

R
)T

where ai is equal to the inverse ofthe variance of the i-th observation.
2: Calculate S, 𝜎, 𝛿, and 𝜅 as follows:

S = B + BT
, 𝜎 = trace(B), 𝛿 = det(S) = |S|, 𝜅 = trace

[
adj(S)

]
where det(⋅) = | ⋅ | is the determinant of the matrix and adj(⋅) is the adjugate
of the matrix. For the 3 × 3 matrix S, 𝜅 is given by

𝜅 = (s22s33 − s2
23) + (s11s33 − s2

13) + (s11s22 − s2
12)

where sij is the i-th row and the j-th column element of S.
3: Construct z as follows:

z =
k∑

i=1
airi

B × ri
R

4: Calculate the coefficients of the following fourth order polynomial in 𝜆:

f (𝜆) = 𝜆
4 − (a + b)𝜆2 − c𝜆 + (ab + c𝜎 − d)

where a = 𝜎
2 − 𝜅, b = 𝜎

2 + zTz, c = 𝛿 + zTSz, d = zTS2z.
5: Set the initial guess of 𝜆∗ equal to 10 as the maximum 𝜆 for f (𝜆) = 0 is known

to be around 1.
6: Set the tolerance, 𝜀, equal to a small positive number, e.g. 10−6, and Δ𝜆 equal

to a positive number greater than 𝜀, e.g. 1000.
7: Find the 𝜆 satisfying f (𝜆) = 0 using the Newton–Raphson method (Press et al.,

2007) as follows:
8: while Δ𝜆 > 𝜀 do
9: df (𝜆∗)∕d𝜆← 4(𝜆∗)3 − 2(a + b)𝜆∗ − c

10: 𝜆new ← 𝜆
∗ − f (𝜆∗)∕[df (𝜆∗)∕d𝜆)]

11: Δ𝜆← ||𝜆new − 𝜆∗||
12: 𝜆

∗ ← 𝜆new
13: end while
14: y∗ ←

[
(𝜎 + 𝜆∗)I3 − S

]−1 z

15: q∗ ←
1√

1 + ‖ y∗‖2

[
y∗

1

]
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Algorithm 2.4 The Kalman filter for linear systems
1: Initialize

x̂+
0 , P+

0 = E
(
Δx0 ΔxT

0
)
, Q = E

(
wk wT

k
)
, R = E

(
vk vT

k
)

where Q and R are assumed to be constant for all k.
2: for k = 1, 2,… do
3: Prediction: from tk−1 to tk

x̂−
k = Ax̂+

k−1

P−
k = AP+

k−1AT + Q

4: Update: the measurement, zk, is available at tk

Kk = P−
k HT (HP−

k HT + R
)−1

x̂+
k = x̂−

k + Kk
(
zk − Hx̂−

k
)

P+
k =

(
I − KkH

)
P−

k

5: Substitute: No measurement, zk, is available at tk

x+
k = x−

k

P+
k = P−

k

6: end for

of the simulator are implemented as parts of the MATLAB or Python program.
Distinguishing clearly between what is simulated in the simulator and what algo-
rithm is tested in the simulator reduces any conceptual confusion and leads to a
clearer simulator structure.

Consider the following mass-spring-damper system:

ẍ = − k
m

x − c
m

ẋ +𝑤 (2.55)

where m = 1 kg, k = 0.5 N/m, c = 0.1 N/(m/s), and 𝑤 is the process noise, which
is the zero-mean Gaussian random noise. The standard deviation of process noise
is usually identified experimentally.

The stochastic differential equation, (2.55), however, has a mathematical ambi-
guity as the right-hand side of the equation is discontinuous everywhere because
of the random noise,𝑤. It can be written in a mathematically preferred form called
the Itô equation as follows (Van Kampen, 2007):

dẋ = − k
m

xdt − c
m

ẋdt + d𝛽 (2.56)

where the left-hand side of the equation is the velocity increment, and d𝛽 = 𝑤dt
in the right-hand side of the equation is a random increment, which is the same
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as (2.29). From an engineering point of view, these two ways of expression, (2.55)
and (2.56), do not make any significant difference as the random perturbation is
not infinitely fast, and these are used interchangeably.

From experiments, the velocity increments, dẋ, would be observed to diverge
from the trajectory expected by the deterministic parts of the model with the speed
corresponding to the variance of the process noise, 𝑤, as follows:

E{d𝛽}2 ≈ 𝜎
2
𝛽
Δt (2.57)

where the measurements are sampled at every Δt time interval. Suppose that the
estimated value of 𝜎

𝛽
is
√

0.5 m/s and Δt is equal to 0.01 seconds.
The next question is how to integrate the stochastic differential equation, (2.56).

Solving (2.56) is the simulation of the physical object. For each time interval,
[tk, tk + Δt), 𝑤k is fixed to a constant and (2.58) becomes simply an ordinary
differential equation (ODE). Hence, it can be solved using the ODE solver. In the
computer simulation, 𝑤 is replaced by the sampled random noise, 𝑤k, as follows:

ẍ = − k
m

x − c
m

ẋ +𝑤k (2.58)

where 𝑤k is a constant between t ∈ [tk, tk + Δt) for k = 1, 2,…, and its variance is
given by

E{d𝛽}2 = E{𝑤dt}2 → 𝜎
2
𝛽
Δt = 𝜎

2
𝑤
(Δt)2 → 𝜎

𝑤
=

𝜎
𝛽√
Δt

(2.59)

As long as Δt is shorter than the mass-spring-damper system response speed cor-
responding to the bandwidth of the system, the sampled noise simulates the white
noise to the system reasonably close. 𝑤k is sampled from the normal distribution
with the mean zero and the standard deviation, 𝜎

𝑤
, equal to

√
0.5∕

√
0.01 m/s3∕2.

Once the integration is complete, save the solution, reset the initial condition equal
to the final value of the solution, and solve the differential equation for the next
time interval. Repeat this until the simulation time reaches the final time. These
steps are implemented in Programs 2.15 and 2.16 in MATLAB and Python, respec-
tively. The stochastic realization of the position and the velocity histories is shown
in Figure 2.18. Aware that we expect the trajectory to be different for every simu-
lation as 𝑤k changes randomly for each simulation.

1 clear ;
2
3 m_mass = 1 . 0 ; %[ kg ]
4 k _ s p r i n g = 0 . 5 ; %[N/m]
5 c_damper = 0 . 0 1 ; %[N/ (m/ s ) ]
6 msd_const = [ m_mass k _ s p r i n g c_damper ] ;
7
8 i n i t _ p o s = 0 . 0 ; %[m]
9 i n i t _ v e l = 0 . 0 ; %[m/ s ]
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10
11 i n i t _ t i m e = 0 ; %[ s ]
12 f i n a l _ t i m e = 6 0 ; %[ s ]
13
14 D e l t a _ t = 0 . 0 1 ; %[ s ]
15
16 t i m e _ i n t e r v a l = [ i n i t _ t i m e f i n a l _ t i m e ] ;
17
18 num_w = f l o o r ( ( f i n a l _ t i m e − i n i t _ t i m e ) / D e l t a _ t ) +1;
19 s igma_beta = sqrt ( 0 . 5 ) ;
20 sigma_w =sigma_beta / sqrt ( D e l t a _ t ) ;
21 wk_noise = sigma_w ∗ ( randn (num_w, 1 ) ) ;
22
23 x0 = [ i n i t _ p o s i n i t _ v e l ] ;
24 t 0 = i n i t _ t i m e ;
25 t f = t 0 + D e l t a _ t ;
26
27 t o u t _ a l l = zeros (num_w, 1 ) ;
28 x o u t _ a l l = zeros (num_w, 2 ) ;
29
30 t o u t _ a l l ( 1 ) = t 0 ;
31 x o u t _ a l l ( 1 , : ) = x0 ;
32
33 for i d x =2:num_w
34
35 wk = wk_noise ( i d x ) ;
36
37 [ tout , xout ] = ode45 ( . . .
38 @( time , s t a t e ) msd_noisy ( time , s t a t e , wk , msd_const ) , . . .
39 [ t 0 t f ] , x0 ) ;
40
41 t o u t _ a l l ( i d x ) = t o u t ( end ) ;
42 x o u t _ a l l ( idx , : ) = xout ( end , : ) ;
43
44 x0 = xout ( end , : ) ;
45
46 % t i m e i n t e r v a l update
47 t 0 = t f ;
48 t f = t 0 + D e l t a _ t ;
49
50 end
51
52 f igure ( 1 ) ;
53 subplot ( 2 1 1 ) ;
54 plot ( t o u t _ a l l , x o u t _ a l l ( : , 1 ) ) ;
55 hold on ;
56 axis ( [ i n i t _ t i m e f i n a l _ t i m e −10 1 0 ] ) ;
57 set ( gca , ’ F o n t S i z e ’ , 1 2 ) ;
58 ylabel ( ’ p o s i t i o n [m] ’ ) ;
59 xlabel ( ’ t ime [ s ] ’ ) ;
60 subplot ( 2 1 2 ) ;
61 plot ( t o u t _ a l l , x o u t _ a l l ( : , 2 ) ) ;
62 hold on ;
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63 axis ( [ i n i t _ t i m e f i n a l _ t i m e −10 1 0 ] ) ;
64 set ( gca , ’ F o n t S i z e ’ , 1 2 ) ;
65 ylabel ( ’ v e l o c i t y [m/ s ] ’ ) ;
66 xlabel ( ’ t ime [ s ] ’ ) ;
67
68 function dxdt = msd_noisy ( time , s t a t e , wk , msd_const )
69 x1 = s t a t e ( 1 ) ;
70 x2 = s t a t e ( 2 ) ;
71 m = msd_const ( 1 ) ;
72 k = msd_const ( 2 ) ;
73 c = msd_const ( 3 ) ;
74
75 dxdt = zeros ( 2 , 1 ) ;
76 dxdt ( 1 ) = x2 ;
77 dxdt ( 2 ) = −(k /m) ∗x1 − ( c /m) ∗x2 + wk ;
78 end

Program 2.15 (MATLAB) Solve the stochastic mass-spring-damper system using
the ODE solver

1 import numpy as np
2 from s c i p y . i n t e g r a t e import s o l v e _ i v p
3
4 m_mass = 1 . 0 # [ kg ]
5 k _ s p r i n g = 0 . 5 # [N/m]
6 c_damper = 0 . 1 # [N/ (m/ s ) ]
7 msd_const = [ m_mass , k_spr ing , c_damper ]
8
9 i n i t _ p o s = 0 . 0 # [m]

10 i n i t _ v e l = 0 . 0 # [m/ s ]
11
12 i n i t _ t i m e = 0 # [ s ]
13 f i n a l _ t i m e = 60 # [ s ]
14
15 D e l t a _ t = 0 . 0 1 # [ s ]
16
17 t i m e _ i n t e r v a l = [ i n i t _ t i m e , f i n a l _ t i m e ]
18
19 num_w = int ( ( f i n a l _ t i m e − i n i t _ t i m e ) / D e l t a _ t ) +1
20 sigma_beta = np . s q r t ( 0 . 5 )
21 sigma_w =sigma_beta / np . s q r t ( D e l t a _ t )
22 wk_noise = sigma_w ∗ ( np . random . randn (num_w) )
23
24 x0 = [ i n i t _ p o s , i n i t _ v e l ]
25 t 0 = i n i t _ t i m e
26 t f = t 0 + D e l t a _ t
27
28 t o u t _ a l l = np . z e r o s (num_w)
29 x o u t _ a l l = np . z e r o s ( ( num_w, 2 ) )
30
31 t o u t _ a l l [ 0 ] = t 0
32 x o u t _ a l l [ 0 ] = x0
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33
34
35 def msd_noisy ( time , s t a t e , wk , msd_const ) :
36 x1 , x2 = s t a t e
37 m, k , c = msd_const
38
39 dxdt = [ x2 ,
40 −(k /m) ∗x1 − ( c /m) ∗x2 + wk]
41 return dxdt
42
43 for i d x in range ( 1 ,num_w) :
44
45 wk = wk_noise [ i d x ]
46
47 # RK45
48 s o l = s o l v e _ i v p ( msd_noisy , ( t0 , t f ) , x0 , a r g s =(wk , msd_const ) )
49 xout = s o l . y . t r a n s p o s e ( )
50
51 t o u t _ a l l [ i d x ] = s o l . t [−1]
52 x o u t _ a l l [ i d x ] = xout [−1]
53
54 x0 = xout [ −1 ] ;
55
56 # t i m e i n t e r v a l update
57 t 0 = t f
58 t f = t 0 + D e l t a _ t
59
60 import m a t p l o t l i b . p y p l o t as p l t
61
62 fig_ms , ( ax_ms_0 , ax_ms_1 ) = p l t . s u b p l o t s ( nrows =2 , n c o l s =1)
63 ax_ms_0 . p l o t ( t o u t _ a l l , x o u t _ a l l [ : , 0 ] )
64 ax_ms_0 . s e t _ y l a b e l ( r ’ $x ( t ) $ ’ , f o n t s i z e =14)
65 ax_ms_0 . set ( xl im =(0 , f i n a l _ t i m e ) , yl im =(−10 ,10) )
66
67 ax_ms_1 . p l o t ( t o u t _ a l l , x o u t _ a l l [ : , 1 ] )
68 ax_ms_1 . s e t _ y l a b e l ( r ’ $ \ dot { x } ( t ) $ ’ , f o n t s i z e =14)
69 ax_ms_1 . s e t _ x l a b e l ( ’ t ime [ s ] ’ , f o n t s i z e =14)
70 ax_ms_1 . set ( xl im =(0 , f i n a l _ t i m e ) , yl im =(−10 ,10) )

Program 2.16 (Python) Solve the stochastic mass-spring-damper system using
the ODE solver

To implement the Kalman filter given in Algorithm 2.4, the physical system,
(2.58), is seen as the discrete form given by (2.52). Integrate (2.58) from tk to tk+1

∫

t=tk+1

t=tk

dẋ = − 1
m ∫

t=tk+1

t=tk

(kx + cẋ) dt +
∫

t=tk+1

t=tk

𝑤k dt (2.60)

where assume thatΔtKF
k = tk+1 − tk is sufficiently small so that x(t) and ẋ(t) remain

constants during t ∈ [tk, tk+1).

ẋ(tk+1) − ẋ(tk) = − 1
m
[
kx(tk) + cẋ(tk)

]
ΔtKF

k +𝑤kΔtKF
k (2.61)
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Figure 2.18 Stochastic
simulations using the ODE
solvers for Δt = 0.01
seconds in (a) MATLAB and
(b) Python.
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It is important to be aware of the difference between Δt in (2.57) and ΔtKF
k in the

Kalman filter. Δt is to simulate the stochastic mass-spring-damper system, (2.56),
in the computer, while Δtk

KF is the time interval that the Kalman filter runs in the
on-board computer, which is possibly attached to the mass-spring-damper system.

The discrete form for the velocity is given by

ẋk+1 = −
k ΔtKF

k

m
xk +

(
1 −

c ΔtKF
k

m

)
ẋk +𝑤k ΔtKF

k (2.62)

Similarly,

xk+1 = xk + ẋk ΔtKF
k (2.63)
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In the state-space form,[
xk+1
ẋk+1

]
=

[
1 ΔtKF

k

−(k ΔtKF
k )∕m 1 − (c ΔtKF

k )∕m

][
xk
ẋk

]
+
[

0
ΔtKF

k

]
𝑤k (2.64)

In the Kalman filter algorithm design, the real system given by (2.56) is viewed
as (2.64).

Comparing (2.64) with (2.52), the following equation is identified:

wk =
[

0
ΔtKF

k

]
𝑤k

The covariance matrix of the system as seen in the Kalman filter is

Q = E
{

wkwT
k
}
=
[

0 0
0 (ΔtKF

k )2E{𝑤2
k}

]
=
[

0 0
0 (ΔtKF

k )2
𝜎

2
𝑤

]
(2.65)

where ΔtKF
k is assumed to be constant, equal to 0.2 seconds, for all k ∈ [1,∞). Q is

used to propagate the error covariance from P+
k−1 to P−

k in the prediction parts of
the Kalman filter in Algorithm 2.4.

The prediction of the states, xk+1 and ẋk+1, in Algorithm 2.4, is performed by[
xk+1
ẋk+1

]
=
[

1 Δtk
−(k Δtk)∕m 1 − (c Δtk)∕m

]
(2.66)

One last component to implement the Kalman filter is the sensor. Assume a sensor
to measure the position, xk, with the sampling frequency, ΔtKF

k , exists as follows:

zk = xk + 𝑣k (2.67)

where the noise characteristic of the sensor, i.e. the standard deviation of 𝑣k, 𝜎
𝑣
, is

assumed to be equal to 0.75 m, which would be found in the sensor specifications.
Comparing (2.67) with (2.52), the following values are identified:

H =
[
1 0

]
, R = 𝜎

2
𝑣

Figure 2.19 shows a time history example of the simulation scenario. The esti-
mated states for the position and the velocity follow the true states reasonably close
given that the noisy position measurements are indicated as the dots in the figure.

There is another important figure to be drawn for any Kalman filter simulations.
Recall (2.53), where the Kalman gain, Kk, is to minimize the sum of the diagonal
terms of the error covariance, Pk, which is equal to

Pk = E{ΔxkΔxT
k } (2.68)

The first and the second diagonal terms of Pk are p11 = E{(Δxk)2} and
p12 = E{(Δẋk)2}, respectively. ±3

√
p11 and ±3

√
p22 give the 3𝜎 bounds about

the error for the position and the velocity estimations, respectively. Given that
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Figure 2.19 The Kalman filter for the mass-spring-damper system.

the error distribution is also Gaussian, the 3𝜎 bounds provide a probabilistic
guarantee that the error has a 99.7% chance of staying within the boundary.

In practice, the true states are unknown, and the error is also unknown. In sim-
ulations, the true states are accessible, and an accurate evaluation of the filter
performance is made. As shown in Figure 2.20, the position error stays inside the
bounds most of the time, and the bounds are reasonably tight to the actual error
history. The velocity error is inside the bounds all the time, while the bounds are
rather wide for the given time history.

2.2.4 Extended Kalman Filter

Most autonomous vehicles use gyroscopes to provide angular velocity mea-
surements and optical sensors to provide absolute attitude measurements.
The gyroscope measurement is simulated with the white noise and the bias noise
in Figure 2.14. The main purpose of the Kalman filter in the attitude estimation
is to estimate the bias error, 𝜷, in the gyro measurements, (2.11), using optical
sensors and a dynamic model. The angular velocity measurement is corrected by
subtracting the bias error from the raw gyro measurement as follows:

𝝎̂(tk) = 𝝎̃(tk) − 𝜷̂(tk) (2.69)

where 𝝎̂(tk) is the estimated angular velocity at tk, and 𝜷̂(tk) is the estimated
bias at tk from the Kalman filter to be designed. For the full detailed discus-
sions of the attitude estimation Kalman filter to be introduced in the following
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Figure 2.20 The Kalman filter states error and 3𝜎 bounds for the mass-spring-damper
system.

derivations, we refer the interested readers to Lefferts et al. (1982) and Crassidis
and Junkins (2011).

2.2.4.1 Error Dynamics
We obtain the governing differential equation for the error dynamics of attitude.
Define the error quaternion, 𝛿q, equal to the quaternion between the estimated
and actual attitude. The dynamics of the error quaternion is given by Bani Younes
and Mortari (2019)

𝛿q̇13 = −1
2
[𝛿𝝎×]𝛿q13 − [𝝎̂×]𝛿q13 +

1
2
𝛿q4𝛿𝝎 (2.70a)

𝛿q̇4 = −1
2
𝛿𝝎T

𝛿q13 (2.70b)

where 𝛿𝝎 = 𝝎 − 𝝎̂. The error dynamics is non-linear and the original Kalman filter
for linear systems cannot be applied directly. To use the Kalman filter for non-
linear problems, non-linear dynamics is linearized. The technique is initially used
to estimate spacecraft orbit trajectories, and it is called the extended Kalman Filter
(EKF) (Grewal and Andrews, 2010).

For the linearization, assume that the magnitude of the error angle, |𝛿𝜃|, is small.
The approximation of error quaternion is as follows:

𝛿q13 = e sin 𝛿𝜃
2

≈ e𝛿𝜃
2

(2.71a)

𝛿q4 = cos 𝛿𝜃
2

≈ 1 (2.71b)
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Also, the magnitude of error angular velocity, ||𝛿𝝎||, is assumed to be small. The
non-linear error dynamics, (2.70), is linearized as follows:

𝛿q̇13 ≈ −[𝝎̂×]𝛿q13 +
1
2
𝛿𝝎 (2.72a)

𝛿q̇4 ≈ 0 (2.72b)

where the higher order terms are ignored. The error angular velocity can be
expressed as

𝛿𝝎 = 𝝎 − 𝝎̂ =
(
𝝎̃ − 𝜷 − 𝜼

𝑣

)
−
(
𝝎̃ − 𝜷̂

)
= −𝛿𝜷 − 𝜼

𝑣

where 𝛿𝜷 = 𝜷 − 𝜷̂, and the gyro measurement model, (2.11), is used. The error
dynamics, (2.72a), is re-written as

𝛿q̇13 ≈ −[𝝎̂×]𝛿q13 −
1
2
𝛿𝜷 − 1

2
𝜼
𝑣

(2.73)

or in the Itô’s form,

d
(
𝛿q13

)
= −[𝝎̂×]𝛿q13dt − 1

2
𝛿𝜷dt − 1

2
𝜼
𝑣
dt

2.2.4.2 Bias Noise
While the bias is assumed to be constant in the estimated

𝜷̂(tk+1) = 𝜷̂(tk) (2.74)

the true bias follows (2.29). Subtract (2.74) from (2.29)

𝜷(tk+1) − 𝜷̂(tk+1) = 𝜷(tk) − 𝜷̂(tk) + 𝜼u(tk+1)Δtk

The bias error dynamics is written using the definition of 𝛿𝜷 as follows:

𝛿𝜷(tk+1) = 𝛿𝜷(tk) + 𝜼u(tk+1)Δtk

and in the Itô’s form,

d (𝛿𝜷) = 𝜼u dt

or in the common form frequently used,

𝛿𝜷̇ = 𝜼u

To avoid frequent division by 2 in the equations in the following derivations,
define

𝛿𝜶 = 2𝛿q13 = e 𝛿𝜃 =
[
𝛿𝜃1 𝛿𝜃2 𝛿𝜃3

]T

which is equal to the small-angle rotation for each body axis, and (2.73) becomes

𝛿𝜶̇ = −[𝝎̂×]𝛿𝜶 − 𝛿𝜷 − 𝜼
𝑣
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Finally, the governing differential equation for the EKF for QUEST is summarized
as follows:

d
dt
Δx = FΔx + Gwc (2.75)

where

Δx =
[
𝛿𝜶

𝛿𝜷

]
, wc =

[
𝜼
𝑣

𝜼u

]
, F =

[
−[𝝎̂×] −I3

03 03

]
, G =

[
−I3 03
03 I3

]
,

and 03 is the 3 × 3 zero-matrix whose elements are all zero. The stochastic noise
vectors, 𝜼u and 𝜼

𝑣
, are the zero-mean Gaussian, and the covariances are given by

(2.26), 𝜎2
𝑣
I3, and (2.32), 𝜎2

uI3, respectively, i.e.

E(𝜼
𝑣
𝜼T
𝑣
) = 𝜎

2
𝑣
I3, E(𝜼u𝜼

T
u ) = 𝜎

2
uI3

where the sensors towards three body frame directions have the same noise char-
acteristics, and the two noises are not correlated, hence,

E(𝜼
𝑣
𝜼T

u ) = 03

2.2.4.3 Noise Propagation in Error Dynamics
For the discrete version of the Kalman filter, the governing equation, (2.75), is
transformed into a discrete equation. Integrate (2.75) from tk to tk+1 (Chen, 2009)

Δx(tk+1) = eFΔtkΔx(tk) + ∫

t=tk+1

t=tk

eFΔtGwc(t)dt (2.76)

where Δtk = tk+1 − tk and Δt = tk+1 − t for t ∈ [tk, tk+1). The Taylor series expan-
sion of the exponential matrix up to the third order in Δt is given by

eFΔt = I6 + FΔt + Δt2

2
F2 + Δt3

6
F3 + · · · =

[
Φ1(t, 𝝎̂) Φ2(t, 𝝎̂)

03 I3

]
(2.77)

where

Φ1(t, 𝝎̂) = I3 − Δt[𝝎̂×] + Δt2

2
[𝝎̂×]2 − Δt3

6
[𝝎̂×]3 + · · · (2.78a)

Φ2(t, 𝝎̂) = ΔtI3 −
Δt2

2
[𝝎̂×] + Δt3

6
[𝝎̂×]2 − · · · (2.78b)

Perform the integration in (2.76)

∫

t=tk+1

t=tk

eFΔtGwc dt =
∫

t=tk+1

t=tk

[
−Φ1(t, 𝝎̂)𝜼𝑣 + Φ2(t, 𝝎̂)𝜼u

𝜼u

]
dt = wd

where

wd =

⎡⎢⎢⎢⎢⎣
∫

t=tk+1

t=tk

Φ1(t, 𝝎̂)𝜼𝑣 dt −
∫

t=tk+1

t=tk

Φ2(t, 𝝎̂)𝜼u

∫

t=tk+1

t=tk

𝜼u dt

⎤⎥⎥⎥⎥⎦
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In a compact form similar to (2.64),

Δxk+1 = ΦΔxk + wd (2.79)

where Φ = eFΔtk . This is how the error dynamics, (2.79), is viewed in the Kalman
filter design. Unlike the state prediction for the linear Kalman filter, e.g. (2.66), it
would be surprising to see that the discrete error dynamics, (2.79), is not used to
propagate the states in the EKF for the QUEST. Two main purposes of the discrete
model are to obtain the state transition matrix, Φ, which is performed already and
find stochastic properties of the process noise, wd. Specifically, we are to identify
the mean and the covariance of the noise. It is easily shown that E(wd) = 𝟎.

The Kalman filter relies on the knowledge of the process noise covariance
matrix, i.e. E(wdwT

d ). Calculating the covariance matrix by hand following the
formula shown above is tedious and prone to errors. Symbolic calculation in
the computer is a powerful method for performing this type of long algebraic
operation. For a single-axis rotation case, the covariance is derived in Farrenkopf
(1978). The following procedures extend the derivation to arbitrary rotational
motions in a three-dimensional space.

Symbolic math toolbox in MATLAB and Sympy in Python provide symbolic
math operation capabilities. Although the symbolic operation capabilities are yet
to be fully automatic, they could save time and minimize mistakes in derivations
when we use them properly. Program 2.17 is the MATLAB m-script to define all
symbols and the matrix for F, G, wd, and eFΔt, where eFΔt is expanded up to the
fourth order in Δt.

1 clear ;
2
3 % s y m b o l s f o r omega , n o i s e and t h e v a r i a n c e s
4 syms w1 w2 w3 Dt nv1 nv2 nv3 nu1 nu2 nu3 real ;
5 syms sgm2_u sgm2_v real ; % t h e s e a r e v a r i a n c e , i . e . sigma−squared
6
7 wx=[ 0 −w3 w2 ; w3 0 −w1 ; −w2 w1 0 ] ;
8 nv=[nv1 ; nv2 ; nv3 ] ;
9 nu=[nu1 ; nu2 ; nu3 ] ;

10 wc=[nv ; nu ] ;
11
12 % F & G M a t r i c e s
13 F = [−wx −eye ( 3 ) ; zeros ( 3 , 6 ) ] ;
14 G = [−eye ( 3 ) zeros ( 3 ) ; zeros ( 3 ) eye ( 3 ) ] ;
15
16 % e ^{Ft }
17 Phi = eye ( 6 ) + F∗Dt + ( 1 / 2 ) ∗ (F ^ 2 )∗Dt ^2 + ( 1 / 6 ) ∗ (F ^ 3 )∗Dt ^3 + ( 1 / 2 4 )

∗ (F ^ 4 )∗Dt ^ 4 ;
18
19 % wd b e f o r e i n t e g r a l
20 wd = Phi∗wc ;
21
22 % E ( wd wd^T )
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23 cov_wd = s i m p l i f y ( expand (wd∗wd ’ ) ) ;
24 Q_cov = sym ( zeros ( 6 ) ) ;
25
26 eqn2=sgm2_u==nu1 ^ 2 ;
27 eqn3=sgm2_u==nu2 ^ 2 ;
28 eqn4=sgm2_u==nu3 ^ 2 ;
29 eqn5=sgm2_v==nv1 ^ 2 ;
30 eqn6=sgm2_v==nv2 ^ 2 ;
31 eqn7=sgm2_v==nv3 ^ 2 ;

Program 2.17 (MATLAB) Process noise covariance Q derivation using symbolic
manipulations: Define variables

In line 23, simplify and expand commands in the symbolic math toolbox are
used. These two functions should be used frequently to help symbolic computing
in the computer. As the capability of symbolic computations is not perfect, it needs
some help when these operations should be performed. Consider the following
calculation:

>> syms x y real ;
>> x ∗ ( y +1) − x∗y

syms is the keyword in MATLAB to define symbols. Two variables, x and y, are
defined and declared to be real variables. In the second line, we could expect x
because x(y + 1) − xy = xy + x − xy = x, but it is not. No automatic cancellation
occurs. It performs the simplification only when either

>> expand ( x ∗ ( y +1) − x∗y )

or

>> s i m p l i f y ( x ∗ ( y +1) − x∗y )

is explicitly called.
There is a difference between expand and simplify, for example,

>> expand ( cos ( x ) ^2+ sin ( x ) ^ 2 )

returns the original expression without any further simplification, and

>> s i m p l i f y ( cos ( x ) ^2+ sin ( x ) ^ 2 )

returns 1, which is preferred. Without considering when and which one exe-
cutes, we apply these two commands whenever we perform some algebraic
manipulation so that they have their simplest form before the next symbolic
operation.



�

� �

�

2.2 Attitude Estimation Algorithm 81

In line 24, the symbolic 6 × 6 zero-matrix to store the covariance calculation
result is declared using the sym() command. From line 26, define 𝜎2

i = E(𝜂2
ij) for

i = u, 𝑣 and j = x, y, z using ‘==’ notation, where the noise characteristics of the
sensor for each body axis are assumed to be equal to each other. ‘eqn2’ defines
𝜎

2
𝑣
= E(𝜈2

𝑣x). These definitions are later used in symbolic calculations to substitute
𝜈

2
ij for 𝜎2

ij.
Program 2.18 continues Program 2.17. Define eqn_1 equal to the first column

and the first low element of the inside the integration of wdwT
d and apply expand

to simplify the expression. As it is a polynomial, no further simplification occurs by
applying the simplify command. No harm to be done, of course, by calling the sim-
plification command apart from the additional computation done in the computer
giving the same result. In line 7, all 𝜈2

ij is replaced by 𝜎2
ij using the equations defined

in Program 2.17, where ‘rhs(eqn2)’ means the right-hand side of ‘eqn2’, which is
equal to 𝜎2

ux, and ‘lhs(eqn2)’ means the left-hand side of ‘eqn2’. subs command
substitutes one symbol by another one. For example, the following lines

>> syms x y x2 y2 real ;
>> eqn1 = x^2==x2
>> eqn2 = x ^2 + y ^2 + x∗y + x∗x∗y
>> subs ( eqn2 , { l h s ( eqn1 ) } , { rhs ( eqn1 ) } )

replace x2 in ‘eqn1’ with x2, and the answer becomes x2 + y2 + xy + x2y.

1
2 % ( c o n t i n u e from Program 2.17 )
3 syms q11 real ;
4
5 % s y m b o l i c c a l c u l a t i o n o f t h e i n s i d e i n t e g r a l
6 eqn_1=q11==expand ( cov_wd ( 1 , 1 ) ) ;
7 PPT_11 = subs ( eqn_1 , { rhs ( eqn2 ) , rhs ( eqn3 ) , rhs ( eqn4 ) , rhs ( eqn5 ) , rhs (

eqn6 ) , rhs ( eqn7 ) } , { l h s ( eqn2 ) , l h s ( eqn3 ) , l h s ( eqn4 ) , l h s ( eqn5 ) , l h s (
eqn6 ) , l h s ( eqn7 ) } ) ;

8 PPT_11 = subs ( rhs ( PPT_11 ) , { nv1 , nv2 , nv3 , nu1 , nu2 , nu3 } , { 0 , 0 , 0 , 0 , 0 , 0 } ) ;
9

10 % i n t e g r a l from t _ k t o t _ k + D e l t a t
11 eqn_1=q11==expand ( i n t ( PPT_11 , Dt , [ 0 Dt ] ) ) ;
12
13 % i g n o r e h i g h e r o r d e r t e r m s
14 Q_cov ( 1 , 1 ) = subs ( rhs ( eqn_1 ) , { Dt ^9 , Dt ^8 , Dt ^7 , Dt ^6 , Dt ^5 , Dt

^ 4 } , { 0 , 0 , 0 , 0 , 0 , 0 } ) ;

Program 2.18 (MATLAB) Process noise covariance Q derivation using symbolic
manipulations: Substitutions and Integration

Multiple substitutions are performed with additional symbols to be replaced
provided as in line 7, Program 2.18. In the two lines of the substitutions, the expec-
tations are applied by replacing 𝜂2

ij and 𝜂ij with 𝜎2
i and 0, respectively. In line 11,
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the symbolic integration by ‘Dt’, which is equal to Δt, is performed. As tk = 0,
tk+1 = Δtk, Δt = Δtk − t, and d(Δt) = −dt, the integration term in (2.76) becomes

wd =
∫

t=tk+1

t=tk

eFΔtGwc(t)dt =
∫

Δt=0

Δt=Δtk

eFΔtGwc(Δtk − Δt)
[
−d(Δt)

]
=
∫

Δt=Δtk

Δt=0
eFΔtGwc(Δtk − Δt)d(Δt)

Finally, the result is stored in the symbolic matrix defined earlier.
The same procedure is repeated for the rest of the eight elements of the covari-

ance matrix. We obtain the following result:

E(wdwT
d ) =

⎡⎢⎢⎢⎢⎣

(
𝜎

2
𝑣
Δtk +

Δt3
k

3
𝜎

2
u

)
I3 −

Δt2
k

2
𝜎

2
uI3 −

Δt3
k

6
𝜎

2
u[𝝎̂×]

−
Δt2

k

2
𝜎

2
uI3 −

Δt3
k

6
𝜎

2
u[𝝎̂×] 𝜎

2
uΔtkI3

⎤⎥⎥⎥⎥⎦
(2.80)

Introducing the assumption that the angular velocity, ||𝝎̂||, is small enough such
that Δt3[𝝎̂×] is negligible compared to the other terms, then the covariance matrix
becomes

E(wdwT
d ) =

⎡⎢⎢⎢⎢⎣

(
𝜎

2
𝑣
Δtk +

Δt3
k

3
𝜎

2
u

)
I3 −

Δt2
k

2
𝜎

2
uI3

−
Δt2

k

2
𝜎

2
uI3 𝜎

2
uΔtkI3

⎤⎥⎥⎥⎥⎦
(2.81)

In the covariance matrix, (2.81), the process noise in each direction of the body
frame is completely decoupled as the angular velocity is slow, while one in (2.80)
has the coupling terms through [𝝎̂×]. For Δtk and ||𝝎̂|| being sufficiently small,
where the higher order terms are all negligible, the covariance simply becomes

E(wdwT
d ) ≈

[
𝜎

2
𝑣
ΔtkI3 03
03 𝜎

2
uΔtkI3

]
(2.82)

Now, each axis is decoupled, and the effect of 𝜼u on 𝛿𝜶 disappeared.
The Python program obtaining the first-row and the first-column element

of (2.80) is shown in Program 2.19. sympy is the mathematical symbolic calcula-
tion module. We import the five specific functions. symbols are the function to
define symbols, Matrix is to define symbolic matrices, simplify and expand are
the same roles as in MATLAB symbolic toolbox, and integrate is the symbolic
function integrator. Unlike the MATLAB program, line 23 in 2.17, the Python
program, line 24 in 2.19, is not expanded and simplified. We only expand and
simplify the first-row and the first-column element individually in line 28. As we
observed, the expansion and the simplification for the whole matrix takes a longer
computation time compared to the MATLAB commands, and it is not required to
apply the operations for the whole elements. The same applies to the MATLAB
operations to prevent long computation time for a single line, which requires a
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large memory to complete the operations. The substitution is not an independent
function in sympy but a method in the symbolic equation. ‘cov_wd_11’ defined
in line 28 has the substitution method. ‘cov_wd_11.sub()’ in line 29 performs the
substitution. Finally, integrate at line 32 integrates ‘cov_wd_11’ by ‘Dt’ from 0 to
‘Dt’ indicated by the tuple, ‘(Dt,0,Dt)’.

1
2 from sympy import symbols , Matrix , s i m p l i f y , expand , i n t e g r a t e
3
4 w1 , w2 , w3 , Dt , nv1 , nv2 , nv3 , nu1 , nu2 , nu3 = symbols ( ’w1 w2 w3 Dt

nv1 nv2 nv3 nu1 nu2 nu3 ’ )
5 sgm2_u , sgm2_v = symbols ( ’ sgm2_u sgm2_v ’ ) # t h e s e a r e v a r i a n c e , i . e

. sigma−squared
6
7 wx = Matr ix ( [ [ 0 , −w3 , w2 ] , [w3 , 0 , −w1 ] , [−w2 , w1 , 0 ] ] )
8
9 nv = Matr ix ( [ [ nv1 ] , [ nv2 ] , [ nv3 ] ] )

10 nu = Matr ix ( [ [ nu1 ] , [ nu2 ] , [ nu3 ] ] )
11 wc = Matr ix ( [ nv , nu ] )
12
13 # F & G M a t r i c e s
14 F = Matr ix ( [ [ −wx,−Matr ix . eye ( 3 ) ] , [ Matr ix . z e r o s ( 3 , 6 ) ] ] )
15 G = Matr ix ( [ [ − Matr ix . eye ( 3 ) , Matr ix . z e r o s ( 3 ) ] , [ Matr ix . z e r o s ( 3 ) ,

Matr ix . eye ( 3 ) ] ] )
16
17 # e ^{Ft }
18 Phi = Matr ix . eye ( 6 ) + F∗Dt + ( 1 / 2 ) ∗ (F∗∗2) ∗ ( Dt∗∗2) + ( 1 / 6 ) ∗ (F∗∗3) ∗ (

Dt∗∗3) + ( 1 / 2 4 ) ∗ (F∗∗4) ∗ ( Dt∗∗4)
19
20 # wd b e f o r e i n t e g r a l
21 wd = Phi@wc
22
23 # E ( wd wd^T )
24 wd_wd_T = wd@wd. t r a n s p o s e ( )
25 Q_cov = Matr ix . z e r o s ( 6 )
26
27 # Q_11 : i n t e g r a t e from 0 t o Dt
28 cov_wd_11 = s i m p l i f y ( expand ( wd_wd_T [ 0 , 0 ] ) )
29 cov_wd_11 = cov_wd_11 . subs ( [ [ nu1∗∗2 , sgm2_u ] , [ nu2∗∗2 , sgm2_u ] , [ nu3

∗∗2 , sgm2_u ] , [ nv1 ∗∗2 , sgm2_v ] , [ nv2 ∗∗2 , sgm2_v ] , [ nv3 ∗∗2 , sgm2_v ] ] )
30 cov_wd_11 = cov_wd_11 . subs ( [ [ nu1 , 0 ] , [ nu2 , 0 ] , [ nu3 ∗∗2 , 0 ] , [ nv1 , 0 ] , [ nv2

, 0 ] , [ nv3 , 0 ] ] )
31
32 cov_wd_11 = i n t e g r a t e ( cov_wd_11 , ( Dt , 0 , Dt ) )
33 cov_wd_11 = s i m p l i f y ( expand ( cov_wd_11 ) )
34 cov_wd_11 = cov_wd_11 . subs ( [ [ Dt ∗∗4 , 0 ] , [ Dt ∗∗5 , 0 ] , [ Dt ∗∗6 , 0 ] , [ Dt

∗∗7 , 0 ] , [ Dt ∗∗8 , 0 ] , [ Dt ∗∗9 , 0 ] ] )
35 cov_wd_11 = expand ( cov_wd_11 )
36 Q_cov [ 0 , 0 ] = cov_wd_11

Program 2.19 (Python) Process noise covariance Q derivation using symbolic
manipulations: Define variables and Integration
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2.2.4.4 State Transition Matrix, 𝚽
The state transition matrices, Φ1 and Φ2, in (2.78) have the closed-form expres-
sions. Using the following identity:

[𝝎̂×]3 = −||𝝎̂||2[𝝎̂×],
we show that the higher order terms satisfy the following equations:

[𝝎̂×]4 = −||𝝎̂||2[𝝎̂×]2

[𝝎̂×]5 = −||𝝎̂||2[𝝎̂×]3 = ||𝝎̂||4[𝝎̂×]
[𝝎̂×]6 = ||𝝎̂||4[𝝎̂×]2

[𝝎̂×]7 = ||𝝎̂||4[𝝎̂×]3 = −||𝝎̂||6[𝝎̂×]
⋮

We replace the terms in Φ1 or Φ2 with the above equations and collect the terms
for [𝝎̂×] and [𝝎̂×]2, respectively. They are the Taylor series expansions of sin
and cos functions. Hence, the transition matrices are written as (Markley and
Crassidis, 2014)

Φ1 = I3 − [𝝎̂×]
[

sin(||𝝎̂||Δt)||𝝎̂||
]
+ [𝝎̂×]2

[
1 − cos(||𝝎̂||Δt)||𝝎̂||2

]
(2.83a)

Φ2 = −I3Δt + [𝝎̂×]
[

1 − cos(||𝝎̂||Δt)||𝝎̂||2
]
− [𝝎̂×]2

[ ||𝝎̂||Δt − sin(||𝝎̂||Δt)||𝝎̂||3
]
(2.83b)

We carefully construct the transition matrix that performs the divisions by the power
of the angular velocity magnitude, i.e. ||𝝎̂||p, for p = 1, 2, 3. These should be used
only for ||𝝎̂|| greater than 𝜖, which is a small positive number, for example, 0.0001,
and the following transition matrices are used for ||𝝎̂|| ≤ 𝜖,

Φ1 = I3 − [𝝎̂×]Δt (2.84a)

Φ2 = −I3Δt (2.84b)

Or, for Δt sufficiently small for any feasible magnitudes of the angular velocity,
we use the simpler forms of the transition matrix above all the time.

2.2.4.5 Vector Measurements
Once in a while, a set of the vector measurements from optical sensors, e.g. star
sensors, arrive as follows:

⎡⎢⎢⎢⎢⎣

r̃1
B(tk)

r̃2
B(tk)
⋮

r̃n
B(tk)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

CBR[q(tk)]r1
R

CBR[q(tk)]r2
R

⋮
CBR[q(tk)]rn

R

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

v1(tk)

v2(tk)
⋮

vn(tk)

⎤⎥⎥⎥⎥⎦
(2.85)
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where the n-vector measurements, r̃i
B, are obtained from the sensor at time tk, ri

R is
the direction vector towards the identified object, e.g. a star, stored in a database,
and the direction cosine matrix, CBR, in terms of the quaternion is given in (2.37).
q(tk) is the current true quaternion that is unknown.

The discrete non-linear measurement equation is given by

z(tk) = h[q(tk)] + v(tk) (2.86)

where

z(tk) =

⎡⎢⎢⎢⎢⎣

r̃1
B(tk)

r̃2
B(tk)
⋮

r̃n
B(tk)

⎤⎥⎥⎥⎥⎦
, v(tk) =

⎡⎢⎢⎢⎢⎣

v1(tk)

v2(tk)
⋮

vn(tk)

⎤⎥⎥⎥⎥⎦
, h[q(tk)] =

⎡⎢⎢⎢⎢⎣

CBR[q(tk)]r1
R

CBR[q(tk)]r2
R

⋮
CBR[q(tk)]rn

R

⎤⎥⎥⎥⎥⎦
and the covariance of the vector measurement noise, Rk, is assumed to be known as

Rk = E
[
v(tk)vT(tk)

]
which is uncorrelated with the noises in the gyroscopes.

Unlike the measurement equation for linear Kalman filter, (2.52), the matrix H is
not available, but the non-linear function h(⋅) is given. The corresponding H in the
non-linear measurement is obtained by the linearization procedures. Consider the
following i-th vector measurement,

zi(tk) = r̃i
B(tk) = CBR[q(tk)]ri

R + vi(tk)

for i = 1, 2,… ,n. The direction cosine matrix is written using the current esti-
mated quaternion as follows:

CBR[q(tk)] = CBB̂[𝛿q]CB̂R[q̂(tk)] (2.87)

where B̂ is the estimated attitude, and CBB̂ is the direction cosine matrix between
the estimated and actual attitudes, whose quaternion is given by 𝛿q = [𝛿qT

13 𝛿q4]T .
Apply the small attitude error assumption, (2.71), to the direction cosine matrix

using the definition in (2.37)

CBB̂[𝛿q] ≈ I3 − 2[𝛿q13×] = I3 − [𝛿𝜶×] (2.88)

where the higher order terms are neglected. Substitute (2.88) into (2.87)

CBR[q(tk)] = CB̂R[q̂(tk)] − [𝛿𝜶×]CB̂R[q̂(tk)]

Multiply both sides by ri
R, and it becomes

CBR[q(tk)]ri
R − CB̂R[q̂(tk)]ri

R = −[𝛿𝜶×]
{

CB̂R[q̂(tk)]ri
R
}

Let a = CB̂R[q̂(tk)]ri
R, then

−[𝛿𝜶×]a = [a×]𝛿𝜶 =
[
(CB̂R[q̂(tk)]ri

R)×
]
𝛿𝜶
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Define Δzi as follows:

Δzi(tk) = CBR
[
q(tk)

]
ri

R − CB′R
[
q̂(tk)

]
ri

R =
[
(CB′R[q̂(tk)]ri

R)×
]
𝛿𝜶,

for i = 1, 2,… ,n. Therefore,

Δzk =

⎡⎢⎢⎢⎢⎣

Δz1(tk)

Δz2(tk)
⋮

Δzn(tk)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

[
(CB′R[q̂(tk)]r1

R)×
]

03[
(CB′R[q̂(tk)]r2

R)×
]

03
⋮ ⋮[

(CB′R[q̂(tk)]rn
R)×

]
03

⎤⎥⎥⎥⎥⎦
[
𝛿𝜶(tk)

𝛿𝜷(tk)

]
= HkΔxk (2.89)

and the expression for Hk is established.

2.2.4.6 Summary
The linearized state-space form, (2.79), and the linearized measurement equation,
(2.89), are obtained as follows:

Δxk+1 = ΦΔxk + wd

Δzk = HkΔxk

where Φ is given by (2.83) and (2.84), Hk is given by (2.89), and Q = E[wdwT
d ] is

given by (2.80).

2.2.4.7 Kalman Filter Update
When the vector measurements are available, update the Kalman gain, Kk, and
the estimation error covariance matrix, Pk = E[ΔxkΔxT

k ], as follows:

Kk = P−
k HT

k
(

HkP−
k HT

k + Rk
)−1 (2.90a)

P+
k =

(
I6 − KkHk

)
P−

k (2.90b)

Δxk = Kk
[
zk − h

(
q̂−

k
)]

(2.90c)

In the standard EKF, the following state update equation is used

x+
k = x−

k + Δxk, (2.91)

which is the case for the bias estimation update as follows:

𝜷̂
+
k = 𝜷̂

−
k + Δ𝜷k = 𝜷̂

−
k +

[
03 I3

]
Δxk (2.92)

And the angular velocity is updated by (2.69).
The update equation, (2.91), is not, however, used for updating the quaternion.

As the quaternion is attitude information, it does have little physical meaning in
simple quaternion summation or subtraction. For the current quaternion esti-
mate, q̂−

k , and the error quaternion between the true and the current quaternions,
𝛿qk, then, q̂−

k + 𝛿qk does not have any clear physical interpretation to correct the
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error in the current quaternion estimate. Instead, acknowledge that the error
quaternion itself is an attitude, hence, the update should be done such that
rotating the current estimated quaternion with the amount of attitude indicated
by the current error quaternion estimated. This is done by the quaternion algebra
as follows that corresponds to the direction cosine matrix multiplication in (2.87)
(Wie, 2008):

q̂+
k = q̂−

k +

[
q̂−

4 (tk)I3 + [q̂−
13(tk)×]

−q̂−
13(tk)

]
𝛿q13(tk) (2.93)

where

𝛿q13(tk) = 2 𝛿𝜶k = 2
[
I3 03

]
Δxk

2.2.4.8 Kalman Filter Propagation
The quaternion is propagated as follows:

q−
k+1 =

⎡⎢⎢⎢⎢⎣
cos

Δ𝜃k

2
I3 −

sin(Δ𝜃k∕2)||𝝎̂k|| [𝝎̂k×]
sin(Δ𝜃k∕2)||𝝎̂k|| 𝝎̂k

−
sin(Δ𝜃k∕2)||𝝎̂k|| 𝝎̂T

k cos
Δ𝜃k

2

⎤⎥⎥⎥⎥⎦
q+

k (2.94)

which is the analytic solution of the quaternion kinematic equation with the con-
stant angular velocity assumption, where Δ𝜃k = ||𝝎̂k||Δt. In addition, the bias is
propagated by

𝜷̂
−
k+1 = 𝜷̂

+
k (2.95)

Finally, the error covariance, P, is propagated by

P−
k+1 = ΦkP+

k Φ
T
k + Q (2.96)

A summary of the quaternion and bias estimation Kalman filter is given in
Algorithm 2.5.

We must be careful in the implementation of (2.94) for the sinusoidal terms.
The sinusoidal terms divided by the magnitude of the angular velocity diverge to
infinity when the magnitude is equal to zero or close to zero. To avoid this issue,
robustly implement the sinusoidal terms considering the possibility to be divided
by zero. For example,

sin(Δ𝜃k∕2)||𝝎̂k|| =
⎧⎪⎨⎪⎩

sin(||𝝎̂k||Δt∕2)||𝝎̂k|| for ||𝝎̂k|| ≥ 𝜀

Δt∕2 for ||𝝎̂k|| < 𝜀
where 𝜀 is a small positive number to be chosen appropriately, and the small angle
approximation, i.e. sin 𝜃 ≈ 𝜃 for 𝜃 ≈ 0, is used.
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Algorithm 2.5 Extended Kalman filter for quaternion estimation
1: Initialize

q̂+
0 , 𝜷̂

+
0 = 0, 𝝎̂0 = 𝝎̃, P+

0 = E
(
Δx0 ΔxT

0
)

where, typically, the bias is set to zero, and the angular velocity is set to the
gyro measurement.

2: for k = 1, 2,… do
3: Correct the gyro measurement using (2.69): 𝝎̂(tk) = 𝝎̃(tk) − 𝜷̂(tk)
4: Prediction: from tk−1 to tk
5: Propagate the quaternion using (2.94), q̂−

k
6: Propagate the bias using (2.95), 𝜷̂−

k
7: Propagate the error covariance using (2.96), P−

k
8: Update: when the measurement, zk, is available at tk
9: Update Kk, P+

k , and Δxk using (2.90)
10: Update the bias using (2.92), 𝜷+

k
11: Update the quaternion using (2.93), q+

k
12: Substitute: when no measurement, zk, is available at tk

q+
k = q−

k , 𝜷
+
k = 𝜷−

k , P+
k = P−

k

13: end for

2.3 Attitude Dynamics and Control

2.3.1 Dynamics Equation of Motion

The angular velocity, 𝝎, in the kinematic equation, (2.5), evolves governed by the
attitude dynamic equation of motion from Newton’s second law (N2L) of motion
as follows:

𝝎̇ = −J−1𝝎 × (J𝝎) + J−1
∑

i
Mi (2.97)

where J is the moment of inertia of vehicle and Mi is the i-th external torque,
which could also be the torque from attitude actuators. The moment of inertia is
defined by

J =
⎡⎢⎢⎣

J11 −J12 −J13
−J12 J22 −J23
−J13 −J23 J33

⎤⎥⎥⎦
=
⎡⎢⎢⎢⎣
∫m y2 + z2 dm −∫m xy dm −∫m xz dm

−∫m xy dm ∫m x2 + z2 dm −∫m yz dm

−∫m xz dm −∫m yz dm ∫m x2 + y2 dm

⎤⎥⎥⎥⎦
(2.98)
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where x, y, and z are the coordinates of dm in the body frame. J is symmetric
and positive definite, i.e. all eigenvalues are strictly greater than zero. The positive
definiteness of J corresponds to the positiveness of mass. The definitions for the
off-diagonal terms, Jij for i ≠ j, do not include the minus signs. It is also common
to define the off-diagonal terms including the minus signs. Hence, the off-diagonal
term definitions must be checked when the moment of inertia matrix is provided by
or to others.

Unlike the mass in translational motions, however, the moment of inertia is
a matrix. It has an evident difference compared to the mass. The direction of
the vector multiplied by the mass remains the same, but the direction of the
vector multiplied by the moment of inertia generally changes. For the trans-
lational velocity, v, the linear momentum, mv, remains the same direction as
the direction of v. For the rotational velocity, 𝝎, the direction of the angular
momentum (or the moment of momentum), J𝝎, is, in general, different from the
direction of the angular velocity vector. Only for some special cases, for example,
J is a sphere and its moment of inertia is equal to 𝛼I3, where 𝛼 is a positive
constant, and the direction of J𝝎 = 𝛼𝝎 is the same as the angular velocity vector
direction.

Another property of the inertia matrix is

Jii < Jjj + Jkk (2.99)

where (i, j, k) is (1,2,3), (2,1,3), or (3,1,2). The summation of any two diagonal
terms must be greater than the other term. The following proves that for
(i, j, k) = (2, 1, 3)

J11 + J33 =
∫m

y2 + z2 dm +
∫m

x2 + y2 dm

=
∫m

x2 + z2 dm + 2
∫m

y2 dm = J22 + 2
∫m

y2 dm > J22 (2.100)

and a similar way proves for the other two cases.
The N2L of motion applies to the rotational motion exactly the same as the

law to translational motion as indicated by the equivalency between them in
Table 2.1, where h is the angular momentum or the moment of momentum and
M is torque or moment. While N2L takes the derivative by time in the inertial
coordinates, the angular momentum, h, is written in the body coordinate, i.e. J
is in the body coordinates as it is a property of satellite, and 𝝎 is expressed in the
body frame. The transport theorem applies to take the time derivative of a vector
expressed in the body frame relative to the inertial frame as follows (Schaub and
Junkins, 2018):

d(⋅)N

dt
= d(⋅)B

dt
+ 𝝎B × (⋅)B (2.101)
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Table 2.1 Translational and rotational motions.

Property Translation Rotation

Mass m = 2 [kg] J =
⎡⎢⎢⎢⎣

15 −0.2 −1.2
−0.2 20.5 0.3
−1.2 0.3 13

⎤⎥⎥⎥⎦
[kg m2]

Velocity v =
[
2 −2.5 3

]T
[m/s] 𝝎 =

[
−0.3 5 3

]T
[rad/s]

Momentum p = mv h = J𝝎
Force F M
N2L F = dp∕dt M = dh∕dt

where d(⋅)N∕dt or d(⋅)B∕dt indicates that the time derivative is in the inertia frame
or the body frame, respectively, and 𝝎B is the angular velocity of B with respect to
N expressed in the body frame. Most of the confusion in the rotational dynamics
occurs in distinguishing the following differences:

● a vector, x, expressed in N or B: xN or xB
● a vector differentiated by time in N or B

All the following four combinations are possible:

d(xN )N

dt
,

d(xN )B

dt
,

d(xB)N

dt
, or

d(xB)B

dt
For example, a vector x could be expressed in B, and we want to calculate the
derivative in the inertial frame, i.e. d(xB)N∕dt.

The time derivative in N2L must be in the inertial frame, i.e. d(⋅)N∕dt, while
the vector to be differentiated could be expressed in the inertial frame or the body
frame. The derivative of the angular momentum expressed in the body frame must
be in the inertial frame as follows:

d(hB)N

dt
(2.102)

To obtain the derivative expressed in the body frame, apply the transport theorem
to the derivative of the angular momentum, h,

d(hB)N

dt
=

d(hB)B

dt
+ 𝝎B × (hB)B (2.103)
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In many engineering mechanics books, this derivative relationship is written in a
compressed form as

dh
dt

= ḣ + 𝝎 × h (2.104)

where the confusion originates. We avoid using this notation.
Applying Newton’s law, the following equation of motion is obtained:

MB =
d(hB)N

dt
=

d[(J𝝎)B]N

dt
+ 𝝎B × (J𝝎)B = J𝝎̇B + 𝝎B × (J𝝎B) (2.105)

As it is clear that all vectors in the leftmost and the rightmost sides are in the
body frame including 𝝎 and its derivative, we drop the superscript, B, indicating
the body frame expressions, and Euler’s rigid-body rotational dynamic equation of
motion is given by

J𝝎̇ = −𝝎 × (J𝝎) + M (2.106)

where M is from the environment or actuators.
The equation of motion given in (2.106) is solved with the quaternion kinemat-

ics, (2.5). We modify MATLAB Program 2.1 and Python Program 2.2 to include
the rotational dynamics equation of motion. The angular velocity, 𝝎, is obtained
by solving (2.106). The moment of inertia matrix is given by

J =
⎡⎢⎢⎣

0.005 −0.001 0.004
−0.001 0.006 −0.002
0.004 −0.002 0.004

⎤⎥⎥⎦ [kg m2], (2.107)

which are the approximate values for a quadcopter unmanned aerial vehicle
(UAV) in Lee (2012). Let the initial angular velocity be zero and the initial quater-
nion equal to [0, 0, 0, 1]T . Assume that the torque, M, in the body coordinates is
given by

M(t) =
⎡⎢⎢⎣

0.00001 + 0.0005 sin 2t
−0.00002 + 0.0001 cos 0.1t

−0.0001

⎤⎥⎥⎦ [Nm] (2.108)

where t is in seconds.

2.3.1.1 MATLAB
The MATLAB program is given in 2.20. The differential equation includes dq∕dt
and d𝝎∕dt. In line 18, the initial condition includes q(0) and 𝝎(0). In line 20, the
max step size option is set to 0.01, which restricts the integration time interval
smaller than 0.01. It would prevent sparse time resolution that might occur in



�

� �

�

92 2 Attitude Estimation and Control

some cases. The two functions implemented, dq∕dt and d𝝎∕dt, are separate, and
they merge into one set of differential equations in dqdt_dwdt function, which is
passed to ode45. The time histories of the quaternion and the angular velocity are
shown in Figure 2.21.

1 clear ;
2
3 i n i t _ t i m e = 0 ; % [ s ]
4 f i n a l _ t i m e = 1 0 . 0 ; % [ s ]
5 t i m e _ i n t e r v a l = [ i n i t _ t i m e f i n a l _ t i m e ] ;
6
7 J _ i n e r t i a = [ 0 . 0 0 5 −0.001 0 . 0 0 4 ;
8 −0.001 0 . 0 0 6 −0 .002 ;
9 0 . 0 0 4 −0.002 0 . 0 0 4 ] ;

10 % v e h i c l e moment o f i n e r t i a [ kg m^ 2 ]
11 J _ i n v = inv ( J _ i n e r t i a ) ;
12
13 J _ i n v _ J _ i n e r t i a = [ J _ i n e r t i a ; J _ i n v ] ;
14
15 q0 = [ 0 0 0 1 ] ’ ; % i n i t i a l q u a t e r n i o n
16 w0 = [ 0 0 0 ] ’ ; % i n i t i a l a ngu l a r v e l o c i t y
17
18 s t a t e _ 0 = [ q0 ; w0 ] ; % s t a t e s i n c l u d i n g q0 and omega0
19
20 o d e _ o p t i o n s = o d e s e t ( ’ RelTol ’ ,1 e−6 , ’ AbsTol ’ ,1 e−9 , ’ MaxStep ’ , 0 . 0 1 ) ;

21 [ tout , s t a t e _ o u t ] = ode45 (@( time , s t a t e ) dqdt_dwdt ( time , s t a t e ,
J _ i n v _ J _ i n e r t i a ) , . . .

22 t i m e _ i n t e r v a l , s t a t e _ 0 , o d e _ o p t i o n s ) ;
23
24 qout = s t a t e _ o u t ( : , 1 : 4 ) ;
25 wout = s t a t e _ o u t ( : , 5 : 7 ) ;
26
27
28 % ⋮ (plot commands are left as an exercise)
29
30
31 function d s t a t e _ d t = dqdt_dwdt ( time , s t a t e , J _ i n v _ J _ i n e r t i a )
32
33 q _ c u r r e n t = s t a t e ( 1 : 4 ) ;
34 q _ c u r r e n t = q _ c u r r e n t ( : ) /norm( q _ c u r r e n t ) ;
35
36 w_current = s t a t e ( 5 : 7 ) ;
37 w_current = w_current ( : ) ;
38
39 J _ i n e r t i a = J _ i n v _ J _ i n e r t i a ( 1 : 3 , : ) ;
40 i n v _ J = J _ i n v _ J _ i n e r t i a ( 4 : 6 , : ) ;
41
42 M_torque = [ 0 .00001+0.0005∗ sin (2∗ t ime ) ;
43 −0.00002+0.0001∗ cos ( 0 . 1∗ t ime ) ;
44 −0 . 0 0 0 1 ] ; % [Nm]
45
46 dqdt = d q d t _ a t t i t u d e _ k i n e m a t i c s ( q_current , w_current ) ;
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47 dwdt = dwdt_at t i tude_dynamics ( w_current , J _ i n e r t i a , inv_J ,
M_torque ) ;

48
49 d s t a t e _ d t = [ dqdt ( : ) ; dwdt ( : ) ] ;
50
51 end
52
53 function dqdt = d q d t _ a t t i t u d e _ k i n e m a t i c s ( q_true , w_true )
54 q _ t r u e = q _ t r u e ( : ) ;
55 w_true = w_true ( : ) ;
56
57 wx = [ 0 −w_true ( 3 ) w_true ( 2 ) ;
58 w_true ( 3 ) 0 −w_true ( 1 ) ;
59 −w_true ( 2 ) w_true ( 1 ) 0 ] ;
60
61 Omega = [ −wx w_true ;
62 −w_true ’ 0 ] ;
63
64 dqdt = 0 . 5∗Omega∗q _ t r u e ;
65 end
66
67 function dwdt = dwdt_at t i tude_dynamics ( w_true , J _ i n e r t i a ,

i n v _ J _ i n e r t i a , M_torque )
68 w_true = w_true ( : ) ;
69 Jw = J _ i n e r t i a ∗w_true ;
70 Jw_dot = −cross ( w_true , Jw ) + M_torque ( : ) ;
71
72 dwdt = i n v _ J _ i n e r t i a ∗Jw_dot ;
73 end

Program 2.20 (MATLAB) Simulate rotational dynamics of quadcopter UAV
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Figure 2.21 Attitude dynamics and kinematics solutions.
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2.3.1.2 Python
While function definitions in MATLAB m-scripts must appear at the end of the
scripts with no restrictions in the order of appearance, a Python function definition
in Python scripts must appear before the function is used. In line 68 of Program
2.21, the relative tolerance, the absolute tolerance, and the maximum integration
step size are set using rtol, atol, and max_step, respectively. ‘J_inertia’ and ‘J_inv’
for J and J−1 are stacked vertically using the numpy vstack command to make the
6 × 3 matrix, which is passed to the ODE solver using args argument in line 69.

1 import numpy as np
2 from numpy import l i n s p a c e
3 from s c i p y . i n t e g r a t e import s o l v e _ i v p
4
5 i n i t _ t i m e = 0 # [ s ]
6 f i n a l _ t i m e = 1 0 . 0 # [ s ]
7 num_data = 200
8 t o u t = l i n s p a c e ( i n i t _ t i m e , f i n a l _ t i m e , num_data )
9

10 J _ i n e r t i a = np . a r r a y ( [ [ 0 . 0 0 5 , −0.001 , 0 . 0 0 4 ] ,
11 [ −0 .001 , 0 . 0 0 6 , −0 .002] ,
12 [ 0 . 0 0 4 , −0.002 , 0 . 0 0 4 ] ] )
13 J _ i n v = np . l i n a l g . inv ( J _ i n e r t i a )
14 J _ i n v _ J _ i n e r t i a = np . v s t a c k ( ( J _ i n e r t i a , J _ i n v ) )
15
16 q0 = np . a r r a y ( [ 0 , 0 , 0 , 1 ] )
17 w0 = np . a r r a y ( [ 0 , 0 , 0 ] )
18
19 s t a t e _ 0 = np . h s t a c k ( ( q0 , w0) )
20
21 def d q d t _ a t t i t u d e _ k i n e m a t i c s ( q_true , w_true ) :
22 quat=q _ t r u e
23
24 wx=np . a r r a y ( [ [ 0 , −w_true [ 2 ] , w_true [ 1 ] ] ,
25 [ w_true [ 2 ] , 0 , −w_true [ 0 ] ] ,
26 [−w_true [ 1 ] , w_true [ 0 ] , 0 ] ] )
27
28 Omega_13 = np . h s t a c k ((−wx , np . r e s i z e ( w_true , ( 3 , 1 ) ) ) )
29 Omega_4 = np . h s t a c k ((−w_true , 0 ) )
30 Omega = np . v s t a c k ( ( Omega_13 , Omega_4 ) )
31
32 dqdt = 0 . 5∗ ( Omega@quat )
33
34 return dqdt
35
36
37 def dwdt_at t i tude_dynamics ( w_true , J _ i n e r t i a , i n v _ J _ i n e r t i a , M_torque

) :
38
39 Jw = J _ i n e r t i a @ w _ t r u e
40 Jw_dot = −np . c r o s s ( w_true , Jw ) + M_torque
41
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42 dwdt = i n v _ J _ i n e r t i a @ J w _ d o t
43
44 return dwdt
45
46
47 def dqdt_dwdt ( time , s t a t e , J _ i n v _ J _ i n e r t i a ) :
48
49 q _ c u r r e n t = s t a t e [ 0 : 4 ]
50 q _ c u r r e n t = q _ c u r r e n t / np . l i n a l g . norm ( q _ c u r r e n t )
51 w_current = s t a t e [ 4 : : ]
52
53 J _ i n e r t i a = J _ i n v _ J _ i n e r t i a [ 0 : 3 , : ]
54 J _ i n v = J _ i n v _ J _ i n e r t i a [ 3 : : , : ]
55
56 M_torque = np . a r r a y ( [ 0 . 0 0 0 0 1 + 0 . 0 0 0 5∗np . s i n (2∗ t ime ) ,
57 −0.00002+0.0001∗np . cos ( 0 . 7 5∗ t ime ) ,
58 −0 . 0 0 0 1 ] )
59
60 dqdt = d q d t _ a t t i t u d e _ k i n e m a t i c s ( q_current , w_current )
61 dwdt = dwdt_at t i tude_dynamics ( w_current , J _ i n e r t i a , J_inv ,

M_torque )
62
63 d s t a t e _ d t = np . h s t a c k ( ( dqdt , dwdt ) )
64 return d s t a t e _ d t
65
66 s o l = s o l v e _ i v p ( dqdt_dwdt , ( i n i t _ t i m e , f i n a l _ t i m e ) , s t a t e _ 0 ,
67 t _ e v a l=tout ,
68 r _ t o l =1e−6 , a t o l =1e−9 , max_step =0.01 ,
69 a r g s =( J _ i n v _ J _ i n e r t i a , ) )
70
71 qout = s o l . y [ 0 : 4 , : ]
72 wout = s o l . y [ 4 : : , : ]
73
74 # ⋮ (plot commands are left as an exercise)

Program 2.21 (Python) Simulate rotational dynamics of quadcopter UAV

2.3.2 Actuator and Control Algorithm

Quadcopters have been widely used for many purposes typically equipped with
four identical motors driving four propellers as shown in Figure 2.22. From the
free-body diagram in Figure 2.22, the torques in xB and yB directions are given by
Beard (2008)

M1 = L
(

F𝓁 − Fr
)
= L ΔF𝓁r (2.109a)

M2 = L
(

Ff − Fb
)
= L ΔFfb (2.109b)

where L is the length from the centre of the body frame to the centre of the pro-
peller, Ff and Fb are the forces generated by the propellers in the forward and
the backward of the quadcopter, respectively, and F𝓁 and Fr are the forces in the
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Figure 2.22 Quadcopter UAV with the four actuators, where the body frame and the
reference frame are indicated by B and R, respectively, and the positive direction of zR is
the same as zB so that they are aligned in the primary stabilized attitude.

left-hand side and the right-hand side of the quadcopter, respectively. The torque
in zB is produced by the reaction torque by the motor torque as follows:

M3 = 𝜏f + 𝜏b − 𝜏𝓁 − 𝜏r = Δ𝜏 (2.110)

where 𝜏r, 𝜏𝓁 , 𝜏f , and 𝜏b are the motor torque acting on the body of the quad-
copter, whose direction is the opposite to the rotational direction of each propeller.
The rotational directions of the front and the back propellers are the opposite
of zB. The directions of the left and the right propellers are in the same direction
as zB. The desired moment, M1, M2, and M3, the desired force differences, ΔF𝓁r
and ΔFbf , and the desired torque difference, Δ𝜏, are to be determined by the con-
trol algorithm to be designed later. For the given desired forces and torques, the
forces and the torques for the four motors are determined by

⎡⎢⎢⎢⎢⎣

F
M1
M2
M3

⎤⎥⎥⎥⎥⎦desired

=

⎡⎢⎢⎢⎢⎣

−1 −1 −1 −1 0
0 0 L −L 0
L −L 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

Ff
Fb
F𝓁

Fr∑
i=s𝜏i

⎤⎥⎥⎥⎥⎥⎦
(2.111)
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where s = {f , b,𝓁, r}. We concern only the attitude control here. There would be
a desirable magnitude of the sum of the forces, F, to keep the same position.

The forces and the torques are proportional to the square of the rotational angu-
lar velocity of the propeller–motor as follows (Khodja et al., 2017):

Fs = CT 𝜔
2
s (2.112a)

𝜏s = CD 𝜔
2
s (2.112b)

where CT is the thruster coefficient of the propeller, CD is the drag coefficient of
the propeller, and𝜔s is the angular velocity of the motor relative to the quadcopter
body frame for s, which would be measured by a rotary encoder or it would be
calculated using the standard electrical motor equation providing the relationship
between the electrical voltage signal to the motor and the motor torque. Substitute
(2.112) into (2.111)

⎡⎢⎢⎢⎢⎣

F
M1
M2
M3

⎤⎥⎥⎥⎥⎦desired

=

⎡⎢⎢⎢⎢⎣

−1 −1 −1 −1 0
0 0 L −L 0
L −L 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

CT 0 0 0
0 CT 0 0
0 0 CT 0
0 0 0 CT

CD CD −CD −CD

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜔
2
f

𝜔
2
b

𝜔
2
𝓁

𝜔
2
r

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

−CT −CT −CT −CT

0 0 LCT −LCT

LCT −LCT 0 0

CD CD −CD −CD

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜔
2
f

𝜔
2
b

𝜔
2
𝓁

𝜔
2
r

⎤⎥⎥⎥⎥⎥⎦desired

As the matrix is invertible, the desired squared-angular velocity is obtained by

⎡⎢⎢⎢⎢⎢⎢⎣

𝜔
2
f

𝜔
2
b

𝜔
2
𝓁

𝜔
2
r

⎤⎥⎥⎥⎥⎥⎥⎦desired

= 1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
CT

0 2
L CT

1
CD

−1
CT

0 −2
L CT

1
CD

−1
CT

2
L CT

0 −1
CD

−1
CT

−2
L CT

0 −1
CD

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

F

M1

M2

M3

⎤⎥⎥⎥⎥⎥⎥⎦desired

(2.113)

The inversion can be easily obtained using the symbol manipulation functions in
MATLAB or Python and is left as an exercise. Note that the multiplication of the
inversion matrix with the desired force and torques does not guarantee to pro-
vide positive desired angular velocities. If negative values occur in 𝜔2

s , they are set
to zero.
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Set the propeller–motor parameters as follows: CT = 8.8 × 10−7 [N/(rad/s)2],
CD = 11.3 × 10−8 [Nm/(rad/s)2], and L = 0.127 m (Khodja et al., 2017).

2.3.2.1 MATLAB Program
To include the motor model, Program 2.22 is updated from Program 2.20.
Additional variables for motor characteristics are defined and included in ‘quad-
copter_uav’, which is the variable to be passed to the differential equation solver.
The variable includes different size variables, i.e. 3 × 3 inertia matrix and three
scalar constants. The cell type, created using ‘{…}’ brackets, can include different
types and/or sizes of data. To access each element in the cell, for example, the
third element is retrieved by ‘quadcopter_uav{3}’. The variables defined in line
47 and below access each value in the cell.

The control algorithm for attitude stabilization, for example, has not been
designed. It is important to consider all necessary components in simulation
design and clearly distinguish what is simulated and what is control algorithm
to be implemented. Inside the function, dqdt_dwdt, we declare the place to
implement the controller. The functionality of the controller includes the
following:

● calculate the desired force and torque
● convert them into the desired angular velocity of the motor
● send the desired angular velocity command to the motor

These are functionally implemented in the controller section. In the motor sim-
ulation, the motor receives the command angular velocity and converts it on line
94 to the motor angular velocity. An ideal motor is assumed such that the motor
angular velocity is the same as the command. For a realistic motor model, we can
implement a detailed motor model or simply implement a first-order model as
follows:

𝜔̇m =
(−𝜔m + 𝜔command)

𝜏m
(2.114)

where𝜔m and𝜔command are the motor angular velocity and the command velocity,
respectively, and 𝜏m is the motor time constant to be identified by some experi-
ment.

Global variable: Global variables should not be used for just immediate con-
venience. It should only be used when unavoidable or when other methods
are too complex to implement.

In the simulation, we are mainly interested in the force and torques generated
by the motor. However, extracting these values from the differential equations
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is not straightforward because they are not part of the state variables. There are
several methods to extract these values from the integrator. Here, we use a global
variable, which can be accessed from everywhere in the program. It is common
practice to avoid using global variables as it is difficult to track changes in global
variables. On the other hand, it is useful in this case to extract the inside values.
Global variables should not be used for just immediate convenience, however. It is
only used when unavoidable or when other methods are too complex. Line 13 in
Program 2.22 defines the global variable to store time, force, and three torque val-
ues. To distinguish between global variables and local variables, global variable
names start ‘global_’. In MATLAB, global variables are created with the keyword,
global. In the next line after the global variable is created, it is initialized. Also,
in the function, ‘dqdt_dwdt’, where the global variable is used, the global variable
is declared.

The four values are stored in each time instance. We do not know how many
time instances are there between the initial simulation time and the final simu-
lation time controlled by the integrator. To avoid excessive data size, the ‘dt_save’
variable to control the save time interval is defined as equal to 0.05 seconds. Inside
the definition of the differential equation, shown in line 74, the data is only stored
to the global variable when the current time is greater than the previous time by
0.05 seconds. After the simulation completes, the global variable values are trans-
ferred to local variables, and the global variable is deleted in line 32.

1
2 ⋮ (omitted)
3
4 C_T = 8 . 8 e−7; %motor t h r u s t e r c o e f f i c i e n t [N/ ( rad / s ) ^ 2 ]
5 C_D = 1 1 . 3 e−8;%motor drag c o e f f i c i e n t [Nm/ ( rad / s ) ^ 2 ]
6 L_arm = 0 . 1 2 7 ; %l e n g t h from c e n t r e o f q u a d c o p t e r t o motor [m]
7
8 quadcopter_uav = { J _ i n e r t i a , J_inv , C_T , C_D , L_arm } ;
9

10 ⋮ (omitted)
11
12 % u s e g l o b a l v a r i a b l e s o n l y f o r s a v i n g v a l u e s
13 global global_motor_t ime_FM_al l ;
14 global_motor_t ime_FM_al l = [ ] ;
15
16 % minimum t i m e i n t e r v a l f o r s a v i n g v a l u e s t o t h e g l o b a l
17 d t _ s a v e = 0 . 0 5 ; %[ s ]
18
19 %% s i m u l a t i o n
20 o d e _ o p t i o n s = o d e s e t ( ’ RelTol ’ ,1 e−6 , ’ AbsTol ’ ,1 e−9 , ’ MaxStep ’ , 0 . 0 1 ) ;
21 [ tout , s t a t e _ o u t ] = ode45 (@( time , s t a t e ) dqdt_dwdt ( time , s t a t e ,

quadcopter_uav , d t _ s a v e ) , . . .
22 t i m e _ i n t e r v a l , s t a t e _ 0 , o d e _ o p t i o n s ) ;
23
24 qout = s t a t e _ o u t ( : , 1 : 4 ) ;
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25 wout = s t a t e _ o u t ( : , 5 : 7 ) ;
26
27 time_Motor = global_motor_t ime_FM_al l ( : , 1 ) ;
28 Force_Motor = global_motor_t ime_FM_al l ( : , 2 ) ;
29 Torque_Motor = global_motor_t ime_FM_al l ( : , 3 : 5 ) ;
30
31 % c l e a r a l l g l o b a l v a r i a b l e s
32 c l e a r v a r s −global
33
34 ⋮ (omitted)
35
36 %% f u n c t i o n s
37 function d s t a t e _ d t = dqdt_dwdt ( time , s t a t e , quadcopter_uav , d t _ s a v e )
38
39 global global_motor_t ime_FM_al l ;
40
41 q _ c u r r e n t = s t a t e ( 1 : 4 ) ;
42 q _ c u r r e n t = q _ c u r r e n t ( : ) /norm( q _ c u r r e n t ) ;
43
44 w_current = s t a t e ( 5 : 7 ) ;
45 w_current = w_current ( : ) ;
46
47 J _ i n e r t i a = quadcopter_uav { 1 } ;
48 i n v _ J = quadcopter_uav { 2 } ;
49 C_T = quadcopter_uav { 3 } ;
50 C_D = quadcopter_uav { 4 } ;
51 L_arm = quadcopter_uav { 5 } ;
52
53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 % B e g i n : t h i s p a r t i s c o n t r o l l e r
55 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 M_Desired = [ 0 .00001+0.0005∗ sin (2∗ t ime ) ;
57 −0.00002+0.0001∗ cos ( 0 . 1∗ t ime ) ;
58 −0 . 0 0 0 1 ] ; %[N]
59
60 mg = 1 0 ; %[N]
61 F_M_desired = [−mg ; M_Desired ] ;
62
63 w _ m o t o r _ f b l r _ s q u a r e d _ d e s i r e d = propel ler_motor_FM2w_conversion (

F_M_desired , . . .
64 C_T , C_D , L_arm ) ;
65 w _ m o t o r _ f b l r _ d e s i r e d = sqrt ( w _ m o t o r _ f b l r _ s q u a r e d _ d e s i r e d ) ;
66 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 % End : t h i s p a r t i s c o n t r o l l e r
68 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69
70 % Motor F o r c e & Torque
71 FM_Motor = p r o p e l l e r _ m o t o r _ a c t u a t o r ( C_T , C_D , L_arm ,

w _ m o t o r _ f b l r _ d e s i r e d ) ;
72 M_torque = FM_Motor ( 2 : 4 ) ;
73
74 i f t ime < 1e−200
75 global_motor_t ime_FM_al l = [ time FM_Motor ( : ) ’ ] ;
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76 e l s e i f t ime > global_motor_t ime_FM_al l ( end , 1 ) +d t _ s a v e
77 global_motor_t ime_FM_al l = [ global_motor_t ime_FM_al l ; t ime

FM_Motor ( : ) ’ ] ;
78 end
79
80
81 % K i n e m a t i c s & Dynamics
82 dqdt = d q d t _ a t t i t u d e _ k i n e m a t i c s ( q_current , w_current ) ;
83 dwdt = dwdt_at t i tude_dynamics ( w_current , J _ i n e r t i a , inv_J ,

M_torque ) ;
84
85 d s t a t e _ d t = [ dqdt ( : ) ; dwdt ( : ) ] ;
86
87 end
88
89 ⋮ (omitted)
90
91 function FM_Motor = p r o p e l l e r _ m o t o r _ a c t u a t o r ( C_T , C_D , L_arm ,

w_command )
92
93 % assume p e r f e c t motor a ngu l a r v e l o c i t y c o n t r o l
94 w_motor = w_command ( : ) ;
95
96 F _ f b l r = C_T∗ ( w_motor . ^ 2 ) ;
97 t a u _ f b l r = C_D∗ ( w_motor . ^ 2 ) ;
98
99 F_motor = sum( F _ f b l r ) ;

100 M_motor = [ L_arm∗ ( F _ f b l r ( 3 )−F _ f b l r ( 4 ) ) ;
101 L_arm∗ ( F _ f b l r ( 2 )−F _ f b l r ( 1 ) ) ;
102 sum( t a u _ f b l r ( 1 : 2 ) )−sum( t a u _ f b l r ( 3 : 4 ) ) ] ;
103
104 FM_Motor = [ F_motor ; M_motor ] ;
105 end
106
107 ⋮ (omitted)

Program 2.22 (MATLAB) Simulate rotational dynamics of quadcopter UAV with
propeller–motor actuator model

2.3.2.2 Python
Program 2.23 is the Python program with the motor simulation model for quad-
copter dynamics.

We define the global variable using the keyword, global. It must be defined also
inside the function, ‘dqdt_dwdt(⋅)’, which uses the variable. In the lines from 64,
the global variable values are transferred to the local variables, and the global vari-
able is deleted using the command del. The simulation of the force and the torques
from the four motors is shown in Figure 2.23.
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1
2 ⋮ ( omit ted )
3
4 # u s e g l o b a l v a r i a b l e s o n l y f o r s a v i n g v a l u e s
5 global global_motor_t ime_FM_al l
6
7 # minimum t i m e i n t e r v a l f o r s a v i n g v a l u e s t o t h e g l o b a l
8 d t _ s a v e = 0 . 0 5
9

10 ⋮ ( omit ted )
11
12 def dqdt_dwdt ( time , s t a t e , J _ i n v _ J _ i n e r t i a , Motor_para , d t _ s a v e ) :
13
14 global global_motor_t ime_FM_al l
15
16 q _ c u r r e n t = s t a t e [ 0 : 4 ]
17 q _ c u r r e n t = q _ c u r r e n t / np . l i n a l g . norm ( q _ c u r r e n t )
18 w_current = s t a t e [ 4 : : ]
19
20 J _ i n e r t i a = J _ i n v _ J _ i n e r t i a [ 0 : 3 , : ]
21 J _ i n v = J _ i n v _ J _ i n e r t i a [ 3 : : , : ]
22 C_T = Motor_para [ 0 ]
23 C_D = Motor_para [ 1 ]
24 L_arm = Motor_para [ 2 ]
25
26 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 # B e g i n : t h i s p a r t i s c o n t r o l l e r
28 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 M_Desired = np . a r r a y ( [ 0 . 0 0 0 0 1 + 0 . 0 0 0 5∗np . s i n (2∗ t ime ) ,
30 −0.00002+0.0001∗np . cos ( 0 . 7 5∗ t ime ) ,
31 −0 . 0 0 0 1 ] )
32 mg = 1 0 . 0 # [N]
33 F_M_Desired = np . h s t a c k ([−mg, M_Desired ] )
34
35 w _ m o t o r _ f b l r _ s q u a r e d _ d e s i r e d = propel ler_motor_FM2w_conversion (

F_M_Desired , C_T , C_D , L_arm )
36 w _ m o t o r _ f b l r _ d e s i r e d = np . s q r t ( w _ m o t o r _ f b l r _ s q u a r e d _ d e s i r e d )
37 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 # End : t h i s p a r t i s c o n t r o l l e r
39 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40
41 # Motor F o r c e & Torque
42 FM_Motor = p r o p e l l e r _ m o t o r _ a c t u a t o r ( C_T , C_D , L_arm ,

w _ m o t o r _ f b l r _ d e s i r e d )
43 M_torque = FM_Motor [ 1 : : ]
44
45 c u r r e n t _ d a t a = np . h s t a c k ( ( time , FM_Motor , ) )
46 i f t ime < 1e −200:
47 global_motor_t ime_FM_al l = c u r r e n t _ d a t a . reshape ( 1 , 5 )
48 e l i f t ime > global_motor_t ime_FM_al l [−1 ,0]+ d t _ s a v e :
49 global_motor_t ime_FM_al l = np . v s t a c k ( (

global_motor_t ime_FM_al l , c u r r e n t _ d a t a , ) )
50
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51 dqdt = d q d t _ a t t i t u d e _ k i n e m a t i c s ( q_current , w_current )
52 dwdt = dwdt_at t i tude_dynamics ( w_current , J _ i n e r t i a , J_inv ,

M_torque )
53
54 d s t a t e _ d t = np . h s t a c k ( ( dqdt , dwdt ) )
55 return d s t a t e _ d t
56
57 # s o l v e ode
58 s o l = s o l v e _ i v p ( dqdt_dwdt , ( i n i t _ t i m e , f i n a l _ t i m e ) , s t a t e _ 0 ,
59 t _ e v a l=tout , a t o l =1e−9 , r t o l =1e−6 , max_step =0.01 ,
60 a r g s =( J _ i n v _ J _ i n e r t i a , Motor_para , dt_save , ) )
61 qout = s o l . y [ 0 : 4 , : ]
62 wout = s o l . y [ 4 : : , : ]
63
64 time_Motor = global_motor_t ime_FM_al l [ : , 0 ]
65 Force_Motor = global_motor_t ime_FM_al l [ : , 1 ]
66 Torque_Motor = global_motor_t ime_FM_al l [ : , 2 : : ]
67 del global_motor_t ime_FM_al l
68
69 ⋮ ( omit ted )

Program 2.23 (Python) Simulate rotational dynamics of quadcopter UAV with
propeller–motor actuator model

2.3.2.3 Attitude Control Algorithm
There are a plethora of attitude control algorithms for aircraft, satellites, UAVs,
etc. The quaternion feedback control is one of the commonly used attitude con-
trollers, particularly for satellites (Wie, 2008). It has the general form that could
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Figure 2.23 Quadcopter motor force and torques.
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also be used for quadcopter attitude stabilization. The quaternion feedback control
is given by

u = −Kq13 − C𝝎 − 𝝎 × (J𝝎) (2.115)

where the quaternion represents the attitude of quadcopter body frame, B, with
respect to the reference frame, R, in Figure 2.22, K and C are the control gain
positive definite matrices, i.e. symmetric and all eigenvalues are positive, and the
last term in the right-hand side is to cancel the non-linear gyroscopic effect in the
dynamics. The desired equilibrium point is

qeq
13 =

[
0 0 0

]T
, qeq

4 = 1, 𝜔
eq
1 = 0, 𝜔

eq
2 = 0, 𝜔

eq
3 = 0,

To provide stability conditions at the equilibrium point, firstly, define a candi-
date Lyapunov function, V , as a function of all states as follows:

V = V(q13, q4,𝝎),

which must satisfy the following two conditions:

V(q13, q4,𝝎) = 0, if and only if q13 = qeq
13, q4 = qeq

4 ,𝝎 = 𝝎eq (2.116a)

V(q13, q4,𝝎) > 0, otherwise (2.116b)

In dynamical systems, the total energy-like function satisfies the above condi-
tions. Let

V = 1
2
𝝎TK−1J𝝎 + qT

13q13 + (q4 − 1)2 (2.117)

where K is symmetric, and K−1 is also symmetric. Take the derivative V with
respect to time

dV
dt

= 𝝎TK−1J𝝎̇ + 2qT
13q̇13 + 2(q4 − 1)q̇4 (2.118)

Substitute

J𝝎̇ = −𝝎 × (J𝝎) + u = −Kq13 − C𝝎 (2.119a)

q̇13 = 1
2
(
−[𝝎×]q13 + 𝝎q4

)
(2.119b)

q̇4 = −1
2
𝝎Tq13 (2.119c)

into dV∕dt
dV
dt

= 𝝎TK−1 [−Kq13 − C𝝎
]
+ qT

13
(
− [𝝎×]q13 + 𝝎q4

)
− (q4 − 1) 𝝎Tq13

= −���𝝎Tq13 − 𝝎TK−1C𝝎 −�������qT
13 [𝝎×]q13

=0
+���qT

13𝝎q4 −
����q4𝝎

Tq13 +���𝝎Tq13

= −𝝎TK−1C𝝎 (2.120)
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where the fact that a is perpendicular to b × a and a ⋅ (b × a) = 0 is used for the
term to be zero. Hence, the derivative of V is less than or equal to zero, i.e. V̇ ≤ 0,
as K−1C is positive definite.

If it should have proven that V̇ < 0, i.e. the negative definite, the stability proof
is completed, and it concludes that the equilibrium point is asymptotically stable.
The equality sign in V̇ ≤ 0 implies that V̇ could be zero for non-equilibrium q as
V̇ is not a function of q. We have to consider how the subset, where V̇ = 0, in the
state-space, would be defined. For V̇ equal to zero, 𝝎 must be zero by the equation
derived for V̇ . Substitute𝝎 = 0 and 𝝎̇ = 0 into (2.119a), and we found that q13 must
be zero. Because of the unit norm condition for the quaternion, q4 must be 1. The
subset called the invariant set is composed of only one point, i.e. the equilibrium
point. LaSalle’s invariance theorem says that all state trajectories converge to the
invariant set (Slotine et al., 1991). Therefore, conclude that the equilibrium point
is asymptotically stable.

The desired torque is set to equal to the control input calculated by the quater-
nion feedback controller as follows:

⎡⎢⎢⎣
M1
M2
M3

⎤⎥⎥⎦desired

= u

2.3.2.4 Altitude Control Algorithm
Although the main purpose of the control design in this section is for stabilizing
the attitude, the translational motion is simulated using

ṙ = v

v̇ =
⎡⎢⎢⎣
0
0
g

⎤⎥⎥⎦ +
1
m

CT
BR(q)

⎡⎢⎢⎣
0
0

−
∑

i∈sFi

⎤⎥⎥⎦
where r is 3 × 1 to represent the coordinates of the quadcopter position in the
three-dimensional reference frame, g = 9.81 m/s2, the mass of quadcopter, m,
is equal to 0.45 kg, and CBR(q) is calculated using (2.37). To achieve the desired
altitude, hdesired = −(zR)desired, the desired force in zR-direction cancels the grav-
itational force and generates the feedback force proportional to the error in the
altitude and the velocity as follows:

( fz)desired =
⎡⎢⎢⎣

0
0

−mg

⎤⎥⎥⎦ + k1
[
(zR)desired − zR

]
+ k2

[
(żR)desired − żR

]
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where k1 and k2 are the control gains to be designed. The two control gains are
multiplied by the position difference and the velocity difference. This is the propor-
tional derivative (PD) control, and it is one of the most common controllers in the
industry. In addition, the desired force for the sum of four propellers is obtained by

Fdesired =
[
0 0 1

]
CBR(q)

⎡⎢⎢⎣
0
0

( fz)desired

⎤⎥⎥⎦
Designing the position tracking control for quadcopter is not the same control
problem as this attitude stabilization control design. The desired attitude must be
calculated to direct the propeller force in the desired direction. Some examples are
found in Beard (2008), Yu et al. (2019), and Xie et al. (2021).

2.3.2.5 Simulation
Set the initial conditions as follows:

q(0) = 1√
4

[
1 1 −1 1

]T

𝝎(0) =
[
0.1 −0.2 0.1

]T [rad/s]

r(0) =
[
0 0 −30

]T [m]

v(0) =
[
0 0 0

]T [m/s]

and the desired altitude and the velocity in zR direction are set to −30 m and 0 m/s,
respectively.

From several trials and errors to achieve reasonable convergent speeds and con-
trol input magnitudes, the control gains are designed as

K = 0.01I3, C = 0.001I3, k1 = 0.1, k2 = 0.5

Translational dynamics is coupled with attitude dynamics, and the above con-
trol design ignores the coupling. If k1 and k2 gains are too big, the coupling effect
would be significant, and the quadcopter would be unstable. Figure 2.24a shows
that the attitude converges to the desired equilibrium point in about 30 seconds.
Figure 2.24b shows that the altitude is settled to 30 m in a similar time length. The
velocity for xR and yR directions, 𝑣1 and 𝑣2, converge to non-zero values, and the
quadcopter will fly away from the starting location. The force and the torques gen-
erated by the motors are shown in Figure 2.25a, and the corresponding angular
velocity of the motor is shown in Figure 2.25b. If the motor angular velocities are
too high, they could be adjusted by

● tuning the control gains: K, C, k1, and k2
● changing the propeller: CT and CD
● resizing the quadcopter: m and L
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2.3.2.6 MATLAB
The controller is given in Program 2.24. Updating the simulation with the control
and producing Figures 2.24 and 2.25 are left as an exercise.

1 function w _ m o t o r _ f b l r _ d e s i r e d =
q u a t e r n i o n _ f e e d b a c k _ a n d _ a l t i t u d e _ c o n t r o l ( q_current , . . .

2 w_current , r v _ c u r r e n t , J _ i n e r t i a , C_T , C_D , L_arm , C_BR , . . .
3 mass_quadcopter , g r v _ a c c e )
4
5 z R _ d e s i r e d = −30; %[m]
6 z d o t R _ d e s i r e d = 0 ; %[m/ s ]
7 K_qf = 0 . 0 1∗ eye ( 3 ) ;
8 C_qf = 0 . 0 0 1∗ eye ( 3 ) ;
9 k1 = 0 . 1 ;

10 k2 = 0 . 5 ;
11
12 q_13 = q _ c u r r e n t ( 1 : 3 ) ; q_13 =q_13 ( : ) ;
13 w = w_current ( : ) ;
14
15 Fmg_R = g r v _ a c c e∗mass_quadcopter ; %[N]
16 Fal t_R = k1 ∗ ( zR_desired−r v _ c u r r e n t ( 3 ) )+k2 ∗ ( zdotR_des i red−

r v _ c u r r e n t ( 6 ) ) ;
17 F_desired_R = [ 0 ; 0 ; −Fmg_R+Fal t_R ] ;
18 F_desired_B = C_BR∗F_desired_R ;
19
20 u_qf = −K_qf∗q_13 − C_qf∗w − cross (w, J _ i n e r t i a ∗w) ;
21 M_Desired = u_qf ;
22
23 F_M_desired = [ F_desired_B ( 3 ) ; M_Desired ] ;
24
25 w _ m o t o r _ f b l r _ s q u a r e d _ d e s i r e d = propel ler_motor_FM2w_conversion (

F_M_desired , . . .
26 C_T , C_D , L_arm ) ;
27
28 w _ m o t o r _ f b l r _ d e s i r e d = sqrt ( w _ m o t o r _ f b l r _ s q u a r e d _ d e s i r e d ) ;
29
30 end

Program 2.24 (MATLAB) Quaternion feedback control and PD altitude control

2.3.2.7 Robustness Analysis
Once the control design is completed, the next step is the robustness analysis.
When the control gains are chosen or optimized, various physical parameters
are assumed to be certain values. In reality, the values would be different from
the assumed ones. Before the controller is finally implemented into the on-board
computer of an autonomous vehicle, it needs to be checked if the performance
is acceptable for some ranges of the uncertain variable changes. Consider the
settling time, ts, of the attitude as the performance measure of the quadcopter

||q13(t)||2 ≤ 0.01 [rad/s], for t ≥ ts (2.121)
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Figure 2.24 (a) Attitude stabilization using the quaternion feedback control and
(b) altitude stabilization using the PD control, where the altitude is the opposite
sign to zR.
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Figure 2.25 (a) Total propeller force and the torque for each direction in the body
coordinates and (b) quadcopter motor angular velocity in rpm.

where || ⋅ ||2 is the 2-norm, i.e. (qT
13q13)1∕2. The settling time ts is calculated in the

following program:

q13 = qout ( : , 1 : 3 ) ;
q13_norm = sqrt (sum( q13 . ^ 2 , 2 ) ) ;
q 1 3 _ t s = i n t 3 2 ( q13_norm > 0. 01) ;
q 1 3 _ t s = cumsum( q 1 3 _ t s ) ;
q 1 3 _ t s = t o u t ( q 1 3 _ t s==q 1 3 _ t s ( end ) ) ;
t s = q 1 3 _ t s ( 1 ) ;

where ||q13|| is calculated, int32 changes true/false into the integer 1 or 0, cumsum
returns the cumulative summation, for example,

cumsum([1 0 3 − 2 5]) ⇒ [1 1 4 2 7] (2.122)
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and the settling time index is the first index, whose corresponding cumulative
summation is equal to the last value. The main assumption in this calculation is
that the settling time exits in the simulation time interval. If the calculated set-
tling time is close to the final time of the simulation, the final time must increase
to confirm the calculated settling time as the trajectory might fluctuate out of the
bound, 0.01, after the calculated settling time.

In this robustness analysis, the uncertainty is introduced to the moment of
inertia matrix as follows:

J =
⎡⎢⎢⎣
0.005 + 𝛿J1 −0.001 0.004
−0.001 0.006 + 𝛿J2 −0.002
0.004 −0.002 0.004 + 𝛿J3

⎤⎥⎥⎦ [kg m2], (2.123)

and 𝛿Ji for i = 1, 2, 3 is sampled from the normal distribution with the standard
deviation equal to 0.002 kg⋅m2. As the moment of inertia matrix, J, must satisfy
the positive definiteness and (2.99) inequality, these conditions must be checked
for the perturbed J and reject the perturbation if the conditions are not met. The
rejection rate would not be high as the random sample space is three dimensional.
It becomes very high for high-dimension sample space, and we need better sam-
pling methods. Random sampling methods for control design and analysis have
been discussed thoroughly in Tempo et al. (2012). The pseudo-code of the random-
sampling-based robustness analysis is given in Algorithm 2.6.

Figure 2.26 shows that the settling time is shorter than about 80 seconds in the
worst case, where the uncertainty magnitude is up to 0.008 kg m2, where the num-
ber of random samples is 10,000. Based on the results, probabilistic conclusions are
drawn. The reader would find interesting concepts and methods in Tempo et al.
(2012) such as the Chernoff bound.

Algorithm 2.6 Robustness analysis using random samplings
1: Set the nominal moment of inertia, J̄
2: Initialize the rest of simulation parameters
3: for i dodx = 1, 2, …, (Maximum Simulation Number)
4: while the positive definiteness and (2.99) are not met do
5: Generate random 𝛿J1, 𝛿J2, and 𝛿J3 from some distribution
6: Set the moment of inertia, J = J̄ + diag[𝛿J1, 𝛿J2, 𝛿J3]
7: Check J for the conditions
8: end while
9: Run the simulation

10: Calculate the settling time
11: end for
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Figure 2.26 (a) Settling time distribution over the moment of inertia uncertainty
distribution; (b) the moment of inertia distribution; (c) Settling time distribution.

2.3.2.8 Parallel Processing
As the modern Central Processing Units (CPU) has multiple cores, multiple
simulations can be run in parallel, and the total computation time can be reduced.
The random-sampling-based robustness analysis, i.e. Monte Carlo Simulations,
is embarrassingly parallel as each simulation is completely independent of each
other and no effort is required to make the simulations running in parallel.
In the MATLAB parallel computing toolbox, the parallelization of the robustness
analysis is done simply replacing for into parfor in the implementation of Algo-
rithm 2.6. The number of cores used by parfor is set in the MATLAB preference
configuration.

Parallel computation in Python is simple enough but needs some minor
modifications from the non-parallel simulation program. Multiple executions of
a function are performed using the multiprocessing library in Python as shown in
Program 2.25. Firstly, it imports Pool from multiprocessing. Secondly, using map
function executes robustness_analysis_MC function implemented in Program
2.26, which solves the quadcopter closed-loop dynamics for each perturbed
moment of inertia. The first argument of map function is the name of the function
to be executed in parallel, and the second argument is the list of values, where
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Figure 2.27 CPU loading shows four of them running in 100%.

the size of the list is the number of simulations equal to 3000 for this example.
The number of CPU cores to be used is set to 4. Finally, the results are stored
in the return variable, result. result is a list, whose element is tuple as (ts, ||𝛿J||),
which are the return values by the function, robustness_analysis_MC.

1 from m u l t i p r o c e s s i n g import Pool
2 num_MC = 3000
3 num_core = 4
4 with Pool ( num_core ) as p :
5 r e s u l t = p .map( robustness_analys i s_MC , range (num_MC) )

Program 2.25 (Python) Parallel processing using multiprocessing library

It takes about 93 minutes of the total computation time for the sequential sim-
ulation one by one for the total number of simulations equal to 3000. The same
simulations using the parallel processing with 4 CPU cores takes about 25 minutes,
which is only 27% of 93 minutes, slightly more than 25% of 93 minutes as expected.
As shown in Figure 2.27, four CPUs are running 100%.

In Program 2.25, the Python keyword, with, is used to call map function. This
is one of the Python programming methods frequently used. In a simple explana-
tion, with makes the program finish properly even for some abnormal situations.
For example, while robustness_analysis_MC executes in parallel, some calcula-
tions would cause map function to crash and hang. Even for the case, the with
statement makes the function properly end so that there are no further memory
usages from the ghost process, which would slow down the computer.

1 def rob u s t n e ss_analys i s_MC ( MC_id ) :
2
3 J _ i n e r t i a = np . a r r a y ( [ [ 0 . 0 0 5 , −0.001 , 0 . 0 0 4 ] ,
4 [ −0 .001 , 0 . 0 0 6 , −0 .002] ,
5 [ 0 . 0 0 4 , −0.002 , 0 . 0 0 4 ] ] )
6
7 n o t _ f i n d _ d J = True
8
9 np . random . seed ( )

10
11 while n o t _ f i n d _ d J :
12
13 dJ = np . d i a g ( 0 . 0 0 2∗np . random . randn ( 3 ) )
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14
15 J _ i n e r t i a _ p e r t u r b e d = J _ i n e r t i a + dJ
16
17 pd_cond = np . min ( np . l i n a l g . e i g ( J _ i n e r t i a _ p e r t u r b e d ) [ 0 ] ) >0
18 j3_cond = J _ i n e r t i a _ p e r t u r b e d [ 0 , 0 ] + J _ i n e r t i a _ p e r t u r b e d [ 1 , 1 ]

> J _ i n e r t i a _ p e r t u r b e d [ 2 , 2 ]
19 j2_cond = J _ i n e r t i a _ p e r t u r b e d [ 0 , 0 ] + J _ i n e r t i a _ p e r t u r b e d [ 2 , 2 ]

> J _ i n e r t i a _ p e r t u r b e d [ 1 , 1 ]
20 j1_cond = J _ i n e r t i a _ p e r t u r b e d [ 1 , 1 ] + J _ i n e r t i a _ p e r t u r b e d [ 2 , 2 ]

> J _ i n e r t i a _ p e r t u r b e d [ 0 , 0 ]
21
22 i f pd_cond and j1_cond and j2_cond and j3_cond :
23 n o t _ f i n d _ d J = F a l s e
24
25 dJ_norm = np . l i n a l g . norm ( dJ )
26 J _ i n v _ p e r t u r b e d = np . l i n a l g . inv ( J _ i n e r t i a _ p e r t u r b e d )
27
28 quadcopter_uav =( J _ i n e r t i a _ p e r t u r b e d , J _ i n v _ p e r t u r b e d , C_T , C_D ,

L_arm )
29
30 s o l = s o l v e _ i v p ( dqdt_dwdt_drvdt , ( i n i t _ t i m e , f i n a l _ t i m e ) ,

s t a t e _ 0 , t _ e v a l=tout ,
31 a t o l =1e−9 , r t o l =1e−6 , max_step =0.01 ,
32 a r g s =( quadcopter_uav , ) )
33 qout = s o l . y [ 0 : 4 , : ]
34
35 q13=qout [ 0 : 3 , : ]
36 q13_norm = np . s q r t ( ( np . sum ( q13 ∗∗2 , a x i s =0) ) )
37 q 1 3 _ t s = ( q13_norm > 0. 01)∗np . ones ( num_data )
38 q 1 3 _ t s = np . cumsum( q 1 3 _ t s )
39 q 1 3 _ t s = t o u t [ q 1 3 _ t s==q 1 3 _ t s [ −1]]
40 t s = q 1 3 _ t s [ 0 ]
41
42 print ( f ’ #{ MC_id } : { np . l i n a l g . norm ( dJ ) : 6 . 5 f } , { q 1 3 _ t s : 4 . 2 f } \ n ’ )
43
44 return t s , dJ_norm

Program 2.26 (Python) Quadcopter closed-loop dynamics for perturbed moment
of inertia

The random number generations inside the function to be executed in paral-
lel using map must be done with the explicit random seed function call as line
9, Program 2.26. Otherwise, all 3000 executions use the same random seed, and
the random perturbation in line 13 generates the same number all the time. To
generate a different random number at each iteration, we call the seed function
explicitly before each run.

The print command in line 42 is introduced from Python 3.6. This is very conve-
nient to print formatted numbers, strings, etc. The number to be printed is simply
placed inside the curly bracket, and the format is indicated next to the colon.
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Exercises

Exercise 2.1 (MATLAB) Plot Figure 2.5 for the following three tolerance cases:
(i) RelTol=1e-3, AbsTol=1e-6; (ii) RelTol=1e-6, AbsTol=1e-9; and (iii) RelTol=1e-
9, AbsTol=1e-12. Also indicate and place the legend and the axis labels the same
as shown in the figure. Hint: Use odeset function to set the tolerances and pass the
option to ode45.

Exercise 2.2 (MATLAB) Draw Figure 2.11 using surf command and execute the
following in the MATLAB command prompt to see what changes they make in
the pdf plot: (i) shading flat, (ii) shading interp, and (iii) shading faceted.

Exercise 2.3 (Python) Change rstride and cstride values in line 38 Program
2.12 to positive integers larger than 1 and confirm the functionality of the two
optional arguments in Figure 2.12. Also, try to change the colormap to one of
these, {‘plasma’, ‘inferno’, ‘magma’}, and check the effect for each colormap.

Exercise 2.4 (MATLAB/Python) Implement MATLAB or Python program for
the bias noise generation using Algorithm 2.1 from 0 to 120 seconds, where
𝜎
𝛽x = 𝜎

𝛽y = 0.01 ∘∕
√

s, 𝜎
𝛽z = 0.02 ∘∕

√
s, and Δtk = 0.1 seconds. The initial bias,

𝜷(t0 = 0), is taken from the uniform distribution between −0.03 ∘∕s and +0.03 ∘∕s.

Exercise 2.5 Construct the simulation algorithm for the body coordinates and
the sensor coordinates, which are shown in Figure 2.28. How r1 in the body coor-
dinates could be obtained from r1 in the sensor coordinates?

Figure 2.28 The star sensor
frame and the body frame.

Optical lens

Star sensor image plane

xB

xS = xB

zS = –zB

–yB = yS

zB

yB
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Exercise 2.6 (MATLAB/Python) Implement the functions to convert the direc-
tion cosine matrix to the quaternion and the quaternion to the direction cosine
matrix using (2.37) and Algorithm 2.2.

Exercise 2.7 (MATLAB/Python) The following five stars in the star catalogue
database are identified by the star sensor:

r1
R =

[
−0.6794 −0.3237 −0.6586

]T
R

r2
R =

[
−0.7296 0.5858 0.3528

]T
R

r3
R =

[
−0.2718 0.6690 −0.6918

]T
R

r4
R =

[
−0.2062 −0.3986 0.8936

]T
R

r5
R =

[
0.6858 −0.7274 −0.0238

]T
R

and the star measurements are given by

r1
B =

[
−0.2147 −0.7985 0.5626

]T
B

r2
B =

[
−0.7658 0.4424 0.4667

]T
B

r3
B =

[
−0.8575 −0.4610 −0.2284

]T
B

r4
B =

[
0.4442 0.6863 0.5758

]T
B

r5
B =

[
0.9407 −0.1845 −0.2847

]T
B

Calculate CBR using (2.50) to show

CBR =
⎡⎢⎢⎣

0.4885 −0.8403 0.2350
0.1096 0.3263 0.9389
−0.8656 −0.4329 0.2516

⎤⎥⎥⎦
Exercise 2.8 (MATLAB/Python) Implement QUEST shown in Algorithm 2.3
and run a test simulation introducing multiple stars in the reference and the body
coordinates.

Exercise 2.9 The star sensor frame is given in Figure 2.28. Extend the simulation
implemented in Exercise 2.8 to include the effect of the sensor field of view. The
star sensor can only detect the stars when the angle between zS and the star vector,
which is from the origin of the sensor coordinates to each star, is less than or equal
to 12∘.

Exercise 2.10 (MATLAB/Python) Complete the MATLAB Program 2.15 or the
Python Program 2.16 to implement the Kalman filter for (2.64) and (2.67) using
Algorithm 2.4. Plot Figures 2.19 and 2.20.
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Exercise 2.11 Derive the quaternion error dynamics given in (2.70).

Exercise 2.12 (MATLAB/Python) Complete the MATLAB Program starting
from Programs 2.17 and 2.18 or the Python Program from Program 2.19 to
calculate the covariance matrix given in (2.80).

Exercise 2.13 (MATLAB/Python) Implement the Kalman filter given in Algo-
rithm 2.5 using MATLAB or Python. Use the vector measurements given in
Exercise 2.7 for the optical sensor with the assumption that they are always visible
from the sensor.

Exercise 2.14 (Attitude Dynamics) Complete Programs 2.20 and 2.21 to produce
Figure 2.21.

Exercise 2.15 (MATLAB/Python) Obtain the matrix in (2.113) by the symbolic
matrix inversions in MATLAB or Python.

Exercise 2.16 (MATLAB/Python) Update the simulator Program 2.22 or 2.23
to include the first-order motor model given in (2.114), where 𝜏m is equal to
0.01 seconds.

Exercise 2.17 (MATLAB/Python) Update the simulator Program 2.22 or 2.23 to
plot the angular velocities of the four motors.

Exercise 2.18 (MATLAB) Using Program 2.24, update line 94 of Program 2.22
and produce Figures 2.24 and 2.25.

Exercise 2.19 (MATLAB/Python) With the uncertain moment of inertia given in
(2.123), perform the robustness analysis described in the paragraph and produce
Figure 2.26.
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3

Autonomous Vehicle Mission Planning

Mission planning is an essential part of autonomous vehicles. Because of the wide
practical applicabilities and the simplicity path planning problem, we consider the
following simplified dynamics:

ṙ = v (3.1a)

v̇ = u (3.1b)

where r is the position vector, v is the velocity vector, and u is the command from
the mission planner. Solving (3.1) with the mission planner command, u, provides
a trajectory, r(t), from the initial location, r(t0), at the initial time, t0, to the desired
location, r(tf ), at the final time, tf .

3.1 Path Planning

Many practical path planning problems are in the two-dimensional spatial space.
r is given by the coordinates in x and y indicated in Figure 3.1. The vehicle is at the
origin of the coordinates, and the desired position is where the attractive potential
is, whose potential field is the lowest value at the desired destination, (xd, yd).

3.1.1 Potential Field Method

The potential field method introduces artificial potential functions to generate the
force, u, in the operation area. The idea is inspired by the physical forces generated
by the potential fields. For example, the spring force, −kx, where k is the spring
constant and x is the distance from the equilibrium, comes from the derivative of
the potential function, i.e. −dV∕dh, where the potential function, V , is equal to
kx2∕2. The minus sign in −dV∕dx indicates that the force is in the direction of the
potential energy decreasing.

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers,
First Edition. Jongrae Kim.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling

http://www.wiley.com/go/kim/dynamicmodeling
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Desired destination

Initial position

(xd, yd)

x

y

Figure 3.1 Three repulsive potential functions and one attractive potential function.

Figure 3.1 has three repulsive potential functions placed, where the obstacles or
hazardous areas for the vehicle to avoid are, and one attractive potential function
to pull the vehicle towards the desired destination. Many forms of the potential
fields would perform the desired functions, and one of the most common forms of
the potential functions is as follows:

Ua = 1
2

ka𝜌
2
a (3.2a)

Ui
r =

⎧⎪⎨⎪⎩
0, for 𝜌i

r > 𝜌
i
o

1
2

kr

(
1
𝜌

i
r
− 1
𝜌

i
o

)
, otherwise

(3.2b)

where Ua is the attractive potential function, Ui
r is the i-th repulsive potential func-

tion for the i-th obstacle, ka and kf are the attractive and the repulsive potential
strength, respectively, 𝜌i

0 is the radius of the i-th obstacle size,

𝜌a =
√

(x − xdst)2 + (y − ydst)2 (3.3a)

𝜌
i
r =

√
(x − xi

ost)2 + (y − yi
ost)2 (3.3b)
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(xdst, ydst) is the coordinates of the desired position of the vehicle, and (xi
ost, y

i
ost) is

the coordinates of the centre of the i-th obstacle.
The total sum of the forces from the potential functions are given by

F =
[

Fx
Fy

]
= −

⎡⎢⎢⎢⎢⎢⎣

𝜕Ua

𝜕x
+

Nost∑
i=1

𝜕Ui
r

𝜕x

𝜕Ua

𝜕y
+

Nost∑
i=1

𝜕Ui
r

𝜕y

⎤⎥⎥⎥⎥⎥⎦
(3.4)

where Nost is the number of obstacles. The attractive force in the positive x direc-
tion is obtained by

−
𝜕Ua

𝜕x
= − 𝜕

𝜕x

(1
2

ka𝜌
2
a

)
= − 𝜕

𝜕𝜌a

(1
2

ka𝜌
2
a

)
𝜕𝜌a

𝜕x
= −ka(x − xdst)

and the i-th repulsive in the positive x-direction for 𝜌i
r ≤ 𝜌

i
o

−
𝜕Ui

r

𝜕x
= − 𝜕

𝜕x

[
1
2

kr

(
1
𝜌

i
r
− 1
𝜌

i
o

)]
= 1

2
kr

(
1
𝜌

i
r

)2
𝜕𝜌

i
r

𝜕x
=

kr(x − xi
ost)

(𝜌i
r)3

(3.5)

We obtain the expression for the forces in the y-direction similarly, and it is left as
an exercise in Exercise 3.1.

The attractive force, ka(x − xdst), becomes large when the vehicle is far from the
desired location. Hence, we restrict the force magnitude to avoid having a large
acceleration. The equation of motion for the x-axis with the saturation is given by

𝑣̇x = ux =
Fx

m
=
⎧⎪⎨⎪⎩

sat[−ka(x − xdst), 𝑤x] for no contact to obstacle

sat[−ka(x − xdst), 𝑤x] +
kr(x − xi∗

ost)
(𝜌i∗

r )3

(3.6)

where m is the unit mass. The vehicle meets either no obstacle or only one obsta-
cle at a time among i∗ ∈ [1,Nobs]. 𝑤x is a positive number indicating the possible
maximum magnitude of the attractive force. The saturation function is defined by

sat(a, b) =

{
sgn(a)b for |a| > b
a for |a| ≤ b

where b is positive, and the sign function is defined by

sgn(a) =
⎧⎪⎨⎪⎩

−1 for a < 0
0 for a = 0
+1 for a > 0

The saturation function can be simply written as

sat(a, b) = sgn(a)min (|a|, b)
and this is compact to implement.
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For the no contact case, the equation of motion is the mass-spring system with
no damping. It will oscillate at the destination point. For example, let 𝑣(0) = 0,
xdst = 0, and ka = 1, and the equation of motion becomes

𝑣̇x = ẍ = −x

The solution is simply x(t) = x(0) sin t, which never converges to the desired x. It is
fixed by introducing a damping force such as

Fd = −cdv (3.7)

and the equation of motion becomes

v̇ = 1
m
(
F + Fd

)
(3.8)

Consider the following scenario: initially, the vehicle is at x = 0, y = 5 m, the
desired final destination, (xd, yd), is equal to (20 m, 5 m), and the four obstacles,
whose radius is equal to 2.4 m, is at (5 m, 8 m), (10 m, 5 m), (15 m, 8 m), and (15 m,
2 m) (Chou et al., 2017), and the maximum magnitude of the attractive force is 10.

One important issue to consider in the potential function method is the
local equilibrium point, where F + Fd = 0. Once the vehicle path is stuck in
a local equilibrium point, it cannot escape as v = 0. In addition, if the force is
normal towards the obstacle surface, the path cannot escape from the obstacle as
shown in Figure 3.2. In this scenario, the straight line from the initial position to
the desired position shown in the figure aligns to the line from the contact point
to the centre of the circular obstacle. There is no tangential component of the
force at the contact point, and the velocity in x direction, 𝑣x, vibrates with high
frequencies converging to zero.

There are several improvements and many variations of the potential field
method. Waydo and Murray (2003) and Chou et al. (2017) are presenting the
streamline function method to remove the local-minima problem. We take an
approach that adds a little noise that is relatively small in magnitude compared to
attractive and repulsive forces. The equation of motion is finally given by

v̇ = 1
m
(
F + Fd + wk

)
(3.9)

where wk is the noise force.

3.1.1.1 MATLAB
In Program 3.1, the simulation parameters, whose sizes are different from each
other, are packed into one cell array, ‘sim_para’. The cell array is defined using the
braces in line 24. Access the elements of cell is similar to accessing the elements
of matrices but using the curly bracket, e.g. ‘r_obs’, is ‘sim_para{2}’.

The integrator tolerances are carefully set using odeset so that the computation
time is not too long. In many path planning scenarios, we do not need highly
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Figure 3.2 (a) A path converges to the local equilibrium point; (b) the horizontal
direction velocity; (c) the vertical direction velocity.

accurate integration results as the missions could be achieved with more or less
several centimetres of numerical errors in the path commands.

1 %% s i m u l a t i o n p a r a m e t e r s
2 r _ v e h i c l e = [ 0 5 ] ; % i n i t i a l v e h i c l e p o s i t i o n ( x , y ) [m]
3 v _ v e h i c l e = [ 0 0 ] ; % i n i t i a l v e h i c l e v e l o c i t y ( vx , vy ) [m/ s ]
4
5 r _ d e s i r e d = [20 5 ] ; % d e s i r e d v e h i c l e p o s i t i o n ( x d s t , y d s t ) [m]
6 r_obs = [ 5 8 ; 10 5 ; 15 8 ; 15 2 ] ; % o b s t a c l e s ( xobs , y o b s ) [m]
7 rho_o_i = 2 . 4 ; % o b s t a c l e r a d i u s [m]
8
9 ka = 0 . 5 ;

10 kr = 1 0 0 ;
11 c_damping = 5 ;
12 F _ a t t r a c t i v e _ m a x = 1 0 ;
13
14 t i m e _ i n t e r v a l = [ 0 5 0 ] ; % [ s ]
15 s t a t e _ 0 = [ r _ v e h i c l e v _ v e h i c l e ] ;
16
17 % P e r t u r b a t i o n F o r c e
18 dt = 0 . 1 ;
19 wk_mag = 0 . 0 1 ;
20 N_noise = f l o o r ( d i f f ( t i m e _ i n t e r v a l ) / dt ) ;
21 wk_time = l inspace ( t i m e _ i n t e r v a l ( 1 ) , t i m e _ i n t e r v a l ( 2 ) , N_noise ) ;
22 wk_noise = wk_mag∗(2∗ rand ( N_noise , 2 ) −1) ;
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23
24 sim_para = { r _ d e s i r e d , r_obs , rho_o_i , ka , kr , c_damping ,

F _ a t t r a c t i v e _ m a x , wk_time , wk_noise } ;
25
26 %% s i m u l a t i o n
27 o d e _ o p t i o n s = o d e s e t ( ’ RelTol ’ ,1 e−2 , ’ AbsTol ’ ,1 e−3 , ’ MaxStep ’ , 0 . 1 ) ;
28 [ tout , s t a t e _ o u t ] = ode45 (@( time , s t a t e ) d r v d t _ p o t e n t i a l _ f i e l d ( time ,

s t a t e , sim_para ) , . . .
29 t i m e _ i n t e r v a l , s t a t e _ 0 , o d e _ o p t i o n s ) ;

Program 3.1 (MATLAB) Pass multiple variables to ode45 using a cell array

The differential equation passed to the differential equation solver, ode45, is
defined in Program 3.2. The cell array, ‘sim_para’, is used to define the simulation
parameters. The noise force, wk, is sampled from the uniform random distri-
bution between ±0.01 every 0.1 seconds at line 22. In line 49, wk is interpolated
using the noise samples. The MATLAB function, interp1, is the one-dimensional
interpolator, where each column of ‘wk_noise’ is interpolated with the default
linear option. There are several other interpolation methods available in this
function. As ode45 would call this function for any time in the given integration
time intervals, the noise value should be interpolated for the time instance, which
is not generated a priori.

Random number in differential equation: Direct inclusion of random number
generator inside the differential equation function causes highly discontinu-
ous behaviours. Every time the equation is called, it returns different values
because of the random number. The numerical integrator would slow down
significantly not be able to finish the integration.

1 function d s t a t e _ d t = d r v d t _ p o t e n t i a l _ f i e l d ( time , s t a t e , s im_para )
2
3 % s t a t e s
4 x _ v e h i c l e = s t a t e ( 1 ) ;
5 y _ v e h i c l e = s t a t e ( 2 ) ;
6 v _ c u r r e n t = s t a t e ( 3 : 4 ) ;
7
8 % s i m u l a t i o n s e t t i n g
9 x y _ d s t = sim_para { 1 } ;

10 xy_obs = sim_para { 2 } ;
11 rho_o_i = sim_para { 3 } ;
12 ka = sim_para { 4 } ;
13 kr = sim_para { 5 } ;
14 c_damping = sim_para { 6 } ;
15 Famax = sim_para { 7 }∗ ones ( 2 , 1 ) ;
16 wk_time = sim_para { 8 } ;
17 wk_noise = sim_para { 9 } ;
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18
19 num_obs = s i z e ( xy_obs , 1 ) ;
20
21 % d e s i r e d p o s i t i o n
22 x _ d s t = x y _ d s t ( 1 ) ;
23 y _ d s t = x y _ d s t ( 2 ) ;
24
25 % a t t a r a c t i v e & damping f o r c e
26 Fa = −ka ∗ [ ( x _ v e h i c l e −x _ d s t ) ; ( y _ v e h i c l e −y _ d s t ) ] ;
27 Fa = sign ( Fa ) .∗min ( [ abs ( Fa ( : ) ) Famax ( : ) ] , [ ] , 2 ) ;
28 Fd = −c_damping∗ v _ c u r r e n t ( : ) ;
29
30 % r e p u l s i v e f o r c e
31 Fr = [ 0 ; 0 ] ;
32 for i d x =1:num_obs
33
34 x _ o s t = xy_obs ( idx , 1 ) ;
35 y _ o s t = xy_obs ( idx , 2 ) ;
36 r h o _ r _ i = sqrt ( ( x _ v e h i c l e −x _ o s t ) ^2+( y _ v e h i c l e −y _ o s t ) ^ 2 ) ;
37 i f r h o _ r _ i > rho_o_i
38 Frx_ idx = 0 ;
39 Fry_idx = 0 ;
40 e l s e
41 Frx_ idx = kr ∗ ( x _ v e h i c l e −x _ o s t ) / ( r h o _ r _ i ^ 3 ) ;
42 Fry_ idx = kr ∗ ( y _ v e h i c l e −y _ o s t ) / ( r h o _ r _ i ^ 3 ) ;
43 end
44
45 Fr ( 1 ) = Fr ( 1 ) + F r x_ idx ;
46 Fr ( 2 ) = Fr ( 2 ) + Fry_idx ;
47 end
48
49 wk = interp1 ( wk_time , wk_noise , t ime ) ;
50
51 F_sum = Fa ( : ) + Fr ( : ) + Fd ( : ) + wk ( : ) ;
52
53 d r d t = v _ c u r r e n t ( : ) ;
54 dvdt = F_sum ;
55 d s t a t e _ d t = [ d r d t ; dvdt ] ;
56
57 end

Program 3.2 (MATLAB) Differential equation using potential fields for the path
planning

Figure 3.3 shows two example paths obtained for the same scenario. Because
of the random force, the path could go either direction from the first contact to
the obstacle. The obstacle configuration is symmetric along y = 5, and both paths
are qualitatively identical. The same behaviour of the path planner is shown in
Figure 3.4 when it determines the direction at the first contact point. The path
going above and the path going down are not qualitatively equal as the obsta-
cle configurations are not symmetric in this scenario. The lower path seems to
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Figure 3.3 Two equally probably paths shown in (a) and (b), in which the obstacle
configuration is symmetric along y = 5.
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Figure 3.4 Two equally probably paths shown in (a) and (b), in which the obstacle
configuration is not symmetric.

be better as it goes to the final destination with less turning manoeuvre compared
to the upper path. This path planning algorithm cannot distinguish between these
two paths at the point of solving the differential equation.

3.1.1.2 Python
The implementation in python is left as an exercise.

3.1.2 Graph Theory-Based Sampling Method

Graph theory is a field of mathematics to study graphs. A graph has two construc-
tion building blocks, called node and edge. Figure 3.5 shows an example of the
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Figure 3.5 A graph construction for the path planning.

graph for path planning. In the figure, the circled numbers from 0 to 5 are nodes,
and the nine edges are dashed lines connecting the nodes. The length of each edge
is indicated by the number next to each dashed line. The distance in the path plan-
ning could be a generalized concept beyond the physical length. It might represent
the physical distance, the risk, the energy consumption, the visibility of some area,
and the combinations of these. As the path is bidirectional, the vehicle can fly from
node 1 to node 4 or from node 4 to node 1, the matrix is symmetric. As there is
no cost for staying in the same location, the diagonal terms are zero. If the quad-
copter’s electrical energy consumption is important, the cost penalty of staying at
the same node should be introduced.

Construct the weighted adjacency matrix, A, as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 5 0 0
2 0 1 3 4 0
0 1 0 4 0 0
5 3 4 0 2 4
0 4 0 2 0 1
0 0 0 4 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.10)
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where each row or column represents each node, i.e. the i-th row or column is
for the i-th node, and the numbers in the matrix represent the distance between
the nodes, e.g. the second row and the fourth column element, 3, is the distance
between node 2 and node 4. One distinct characteristic of the adjacency matrix
is sparsity. There are 18 zeros out of 36 elements in the matrix. Half of the ele-
ments are zero. The sparsity is one of the common properties of many existing
network systems including communication networks, biomolecular interactions,
social networks, and so forth. Typically, the proportion of zeros increases as the
size of networks increases.

Both MATLAB and Python have efficient ways to process sparse matrices.
There have been continuing research studies on the computational algorithm
developments for sparse matrices (Press et al., 2007). Roughly saying, the zeros
in the sparse matrix are not stored in the memory, and the locations of non-zero
elements are stored instead. The computing algorithms exploit the location
information and reduce the number of operations. The computational cost
savings obtained in this way are significant for the large-scale sparse matrices.

3.1.2.1 MATLAB
Using the sparse command as in Program 3.3 converts the full matrix to a sparse
matrix.

1 A _ p a t h _ g r a p h _ f u l l = [ 0 2 0 5 0 0 ;
2 2 0 1 3 4 0 ;
3 0 1 0 4 0 0 ;
4 5 3 4 0 2 4 ;
5 0 4 0 2 0 1 ;
6 0 0 0 4 1 0 ] ;
7 A_path_graph_sparse = sparse ( A _ p a t h _ g r a p h _ f u l l ) ;

Program 3.3 (MATLAB) Construct sparse matrix

Type the sparse matrix in the command prompt window, and it prints

1 >> A_path_graph_sparse
2
3 A_path_graph_sparse =
4
5 ( 2 , 1 ) 2
6 ( 4 , 1 ) 5
7 ( 1 , 2 ) 2
8 ( 3 , 2 ) 1
9 . . . .

where row and column numbers and their element are printed.
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3.1.2.2 Python
Using the csr_matrix command as in Program 3.4 converts the full matrix to the
sparse matrix, where csr stands for compressed sparse row. Scipy has several func-
tions constructing sparse matrices. Each method has its numerical advantages
over the others. The details of the methods can be found in the Scipy reference
manual (Virtanen et al., 2020).

1 import numpy as np
2 from s c i p y import s p a r s e
3
4 A _ p a t h _ g r a p h _ f u l l = np . a r r a y ( [ [ 0 , 2 , 0 , 5 , 0 , 0 ] ,
5 [ 2 , 0 , 1 , 3 , 4 , 0 ] ,
6 [ 0 , 1 , 0 , 4 , 0 , 0 ] ,
7 [ 5 , 3 , 4 , 0 , 2 , 4 ] ,
8 [ 0 , 4 , 0 , 2 , 0 , 1 ] ,
9 [ 0 , 0 , 0 , 4 , 1 , 0 ] ] )

10
11 A_path_graph_sparse = s p a r s e . c s r _ m a t r i x ( A _ p a t h _ g r a p h _ f u l l )

Program 3.4 (Python) Construct sparse matrix

Print the sparse matrix in the python command prompt using the print command:

1 In [ 1 0 8 ] : print ( A_path_graph_sparse )
2 ( 0 , 1 ) 2
3 ( 0 , 3 ) 5
4 ( 1 , 0 ) 2
5 ( 1 , 2 ) 1
6 . . .

Python prints the matrix for each column element in a fixed row, while MATLAB
prints each row element for a fixed column. Construct the matrix using the
csc_matrix in Scipy, where csc stands for the compressed sparse column and
print the matrix. Then, the print sequence is the same as the one in the MATLAB
sparse matrix.

In both the MATLAB and the Python programs, the sparse matrix is created from
the full matrix. This method is not appropriate with large size matrices requiring
large memory to build the full matrix first. The direct sparse matrix construction
using the row and the column numbers for non-zero elements in the matrix is
suitable for large matrices. The python script is shown here, where the upper
triangular part is constructed and the lower triangular part is obtained by transpos-
ing the upper triangular part. A MATLAB implementation using row and column
numbers is left as an exercise.

1 # sparse matr ix from ( row , column , v a l u e s )
2 row_s ize = 6
3 c o l _ s i z e = 6
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4
5 row = np . a r r a y ( [ 0 , 0 , 1 , 1 , 1 , 2 , 3 , 3 , 4 ] )
6 c o l = np . a r r a y ( [ 1 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 5 ] )
7 v a l = np . a r r a y ( [ 2 , 5 , 1 , 3 , 4 , 4 , 2 , 4 , 1 ] )
8
9 A_path_graph_sparse = sparse . c s c _ m a t r i x ( ( va l , ( row , c o l ) ) , shape =(

row_size , c o l _ s i z e ) )
10 A_path_graph_sparse = A_path_graph_sparse+A_path_graph_sparse .

t r a n s p o s e ( )

The computational advantage is not noticeable for the 6 × 6 matrix. The supe-
riority of using sparse matrices is much evident for large size sparse matrices.
In path planning using the graph, most computation time spends for calculat-
ing the distance values for edges. Given the graph constructed, several existing
algorithms, known to be efficient for sparse matrix problems, solve the optimal
path planning problem. Dijkstra’s algorithm, Bellman–Ford Algorithm, and A*
algorithms are the most frequently used algorithms for the shortest path planning.

3.1.2.3 Dijkstra’s Shortest Path Algorithm
The algorithm solves the shortest path problem for the graphs with non-negative
edges (Dijkstra, 1959). The algorithm is simple to implement with a few lines codes
in MATLAB or Python. Understanding the algorithm and implementing it is not
straightforward without a few or many debug iterations. Here, we take this as an
opportunity for practising high-level design approaches. It is the same practice as
off-the-shelf hardware component usages in hardware system implementations.
Of course, for the correct integration, we must have proper high-level understand-
ings of the off-the-shelf components.

What levels of details need to be understood varies depending on each case.
In this case, acknowledging the following two would be enough: Dijkstra’s algo-
rithm is for the non-negative distance graph and returns the optimal paths from a
single source node to all the other nodes. The latter is an unavoidable step as it is
unknown whether the calculated path is optimal or not without checking all the
remaining possible paths.

3.1.2.4 MATLAB
Although we covered earlier how to construct sparse matrices in MATLAB,
MATLAB has the specialized data type for graphs. Creating a graph in
MATLAB is similar to building a sparse matrix. The row and the column
numbers and the values are given to the function, graph, as shown in Program 3.5.
Then, shortestpath calculates the shortest path from the given start node and
the end node. Several algorithms are available to choose from in shortestpath.
The default algorithm is Dijkstra’s one. The return variable, opt_path, gives the
sequence of the nodes for the optimal path, which is 1© → 2© → 5© → 6©, and
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Figure 3.6 (MATLAB)
Plot the graph and the
shortest path.
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opt_dist returns the corresponding distance, which is equal to 7. The last two
lines of Program 3.5 shows how to draw the graph and the optimal path with little
effort. The resulting plot is shown in Figure 3.6. The graph in the figure keeps
only the topology the same, where the dashed line indicates the optimal path.

1 % S h o r t e s t path p l a n n i n g
2 st_node = 1 ;
3 end_node = 6 ;
4
5 row_s ize = 6 ;
6 c o l _ s i z e = 6 ;
7
8 row = [ 1 1 2 2 2 3 4 4 5 ] ;
9 c o l = [ 2 4 3 4 5 4 5 6 6 ] ;

10 v a l = [ 2 5 1 3 4 4 2 4 1 ] ;
11
12 G_path_graph = graph ( row , col , v a l ) ;
13 [ opt_path , o p t _ d s t ] = s h o r t e s t p a t h ( G_path_graph , st_node , end_node ) ;
14
15 % P l o t t h e r e s u l t
16 G_graph_plot = plot ( G_path_graph , . . .
17 ’ EdgeLabel ’ , G_path_graph . Edges . Weight , . . .
18 ’ NodeFontSize ’ , 1 4 , ’ EdgeFontSize ’ , 1 2 ) ;
19 h i g h l i g h t ( G_graph_plot , opt_path , ’ EdgeColor ’ , ’ r ’ , . . .
20 ’ LineWidth ’ , 2 , ’ L i n e S t y l e ’ , ’−− ’ ) ;

Program 3.5 (MATLAB) Shortest path calculation using Dijkstra’s algorithm

3.1.2.5 Python
Dijkstra’s algorithm is available from Scipy. The dijkstra function imported from
scipy.sparse.csgraph is called in line 6 in Program 3.6. The first two input arguments
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are the graph and the start node. The end node is not indicated as the algorithm
calculates all optimal paths from the start node to every other node. The third input
argument indicates that the path returns to the second output variable, ‘pred’.
The i-th element of ‘pred’ gives the previous index in the optimal path to arrive
at the i-th element. For example, ‘pred[5]’ equal to 4 tells that the previous index
is 4, i.e. from index 4 to index 5, which implies that the path is from node 5 to node 6
as the python index starts from zero. If we try to keep translating the i-th index in
Python corresponding to the i + 1-th node in Figure 3.5, some confusion should
occur when the translation is forgotten. It would be convenient in python program-
ming to assume that the numbering of the nodes always starts from zero. Using the
while-loop in the program, the optimal path from the end node is obtained in
the backwards tracking. The list, path, is empty initially, and the node starting
from the end node is added to the list by path.append until it reaches the start
node. Applying path.reverse, the list starts from the start node. The first output
variable, ‘dist’, is the list of the distance costs from the start node to all the other
nodes in the graph.

Node index in Python: To reduce confusion in node numbers, we always
assume that the node starts from zero in Python.

1 # s h o r t e s t path from node 1
2 s t a r t _ n o d e = 0
3 end_node = 5
4
5 from s c i p y . s p a r s e . csgraph import d i j k s t r a
6 d i s t , pred = d i j k s t r a ( A_path_graph_sparse , i n d i c e s = s t a r t _ n o d e ,

r e t u r n _ p r e d e c e s s o r s=True )
7
8 # p r i n t o u t t h e d i s t a n c e from s t a r t _ n o d e t o end_node
9 print ( f " d i s t a n c e from { s t a r t _ n o d e } t o { end_node } : { d i s t [ end_node ] } .

" )
10
11 # c o n s t r u c t t h e path
12 path = [ ]
13 i d x=end_node
14 while i d x != s t a r t _ n o d e :
15 path . append ( i d x )
16 i d x = pred [ i d x ]
17
18 path . append ( s t a r t _ n o d e )
19 path . r e v e r s e ( )
20 print ( ’ path= ’ , path )

Program 3.6 (Python) Shortest path calculation using Dijkstra’s algorithm
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Figure 3.7 (Python) Plot the graph and the shortest path.

Figure 3.7 shows the graph and the optimal path drawn in Python. It is not
as simple as two lines in MATLAB to draw the graph and the optimal path in
Python. Program 3.7 shows how to use networkx with matplotlib to draw the graph.
All the optimal edges belonging to the optimal path are constructed using the
zip-command and assigned to opt_path_edge. The sparse matrix is converted to
networkx data type using from_scipy_sparce_matrix. There are a few layout func-
tions to choose from in networkx. planar_layout draws the graph avoiding edge
overlaps. The edge labels and the colours are constructed, and they are passed to
draw function in networkx.

1 opt_path_edge = [ ( i , j ) for i , j in z i p ( path [ 0 : −1 ] , path [ 1 : : ] ) ]
2
3 # draw graph
4 import m a t p l o t l i b . p y p l o t as p l t
5 f i g , ax = p l t . s u b p l o t s ( nrows =1 , n c o l s =1)
6
7 import networkx as nx
8 A_graph_nx = nx . f r o m _ s c i p y _ s p a r s e _ m a t r i x ( A_path_graph_sparse )
9

10 # pos=nx . s p r i n g _ l a y o u t ( A_graph_nx )
11 pos=nx . p l a n a r _ l a y o u t ( A_graph_nx )
12
13 e d g e _ l a b e l s=nx . g e t _ e d g e _ a t t r i b u t e s ( A_graph_nx , ’ weight ’ )
14 e d g e _ c o l o r = [ ’ red ’ i f key in opt_path_edge e l s e ’ green ’ for key in

e d g e _ l a b e l s . keys ( ) ]
15
16 nx . draw ( A_graph_nx , pos , n o d e _ s i z e =500 , node_color= ’ y e l l ow ’ ,

e d g e _ c o l o r=edge_color , l a b e l s ={node : node for node in A_graph_nx
. nodes ( ) } )
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17 nx . draw_networkx_edge_labels ( A_graph_nx , pos=pos , e d g e _ l a b e l s=
e d g e _ l a b e l s )

Program 3.7 (Python) Draw graph and optimal path

In line 15, construct edge_color list, whose element is red if the edge belongs to
the optimal path or green if not. It is one of the distinct ways of programming in
Python compared to MATLAB. Consider the following two lists:

F = [ ( 0 , 1 ) , ( 0 , 3 ) , ( 1 , 2 ) , ( 1 , 3 ) ]
A= [ ( 0 , 3 ) , ( 1 . 3 ) ]

and we want to find if each element of F is in A. The result must be [False, True,
False, True], which indicates that the second and the last elements in F are in A.
Some would try implementing a code similar to the following program using two
for-loops:

C = [ False , False , Fa lse , F a l s e ]
for aa in A:

i d x =0;
for f f in F :

i f aa==f f :
C[ i d x ] = True

i d x+=1

Instead, the following one line returns the same result:

C = [ True i f f f in A e l s e F a l s e for f f in F ]

The code is easier to understand and possibly more efficient than the previous one
with two for-loops. It takes one element from ‘F’, ‘for ff in F’, checks if it is in ‘A’,
‘if ff in A’, and returns True or False. These repeat for all elements in ‘F’.

3.1.3 Complex Obstacles

Consider the map given in Figure 3.8, where two obstacles, one circular obstacle
and another non-convex shape obstacle, are present. The initial position is at the
origin, and the destination is x = 9 and y = 4. Because of the non-convex shape
obstacle, it is not easy to apply the potential field method. Paths generated by the
potential function method may never reach the destination. The graph-based path
planning algorithm can solve these types of complex shape obstacle environments
without too many difficulties. Voronoi diagram is a set of convex polygons dividing
a two-dimensional space.
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Figure 3.8 Three repulsive potential functions and one attractive potential function.

3.1.3.1 MATLAB
Program 3.8 distributes uniformly generated random numbers over the operation
area defined by the map size. The function, Voronoi, constructs the Voronoi
diagram based on the random numbers. Voronoi diagram divides the two-
dimensional plane by a set of convex polygons (Klein, 2016). Each polygon
includes only one point from the generated random points, which is the closest
point to any location inside the polygon.

Figure 3.9 shows the random numbers and the corresponding Voronoi diagram.
Each polygon includes only one point. The polygons at the boundary would
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Figure 3.9 Random points and Voronoi diagram.
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be open to infinity. To prevent the infinite size polygons, we remove the edges
defining the polygons outside of the operational area. The random points near
the map boundary do not belong to any polygons. Adding more random points
would reduce these boundary effects caused by the removal.

1 % number o f s a m pl e s
2 num_sample = 2 0 0 ;
3
4 % map s i z e
5 x_min = 0 ; x_max = 1 0 ;
6 y_min = 0 ; y_max = 5 ;
7
8 % s t a r t i n g p o i n t
9 x y _ s t a r t = [ 0 0 ] ;

10 x y _ d e s t = [ 9 4 ] ;
11
12 % s p r e a d num_sample random p o i n t s o v e r t h e map area
13 xn=rand ( 1 , num_sample ) ∗ ( x_max−x_min ) + x_min ;
14 yn=rand ( 1 , num_sample ) ∗ ( y_max−y_min ) + y_min ;
15
16 % d i v i d e r e g i o n u s i n g v o r o n o i
17 [ vx , vy ] = v or onoi ( xn , yn ) ;
18
19 % r e j e c t p o i n t s o u t s i d e t h e map r e g i o n
20 i d x = ( vx ( 1 , : ) < x_min ) | ( vx ( 2 , : ) < x_min ) ;
21 vx ( : , i d x ) = [ ] ;
22 vy ( : , i d x ) = [ ] ;
23 i d x = ( vx ( 1 , : ) > x_max ) | ( vx ( 2 , : ) > x_max ) ;
24 vx ( : , i d x ) = [ ] ;
25 vy ( : , i d x ) = [ ] ;
26 i d x = ( vy ( 1 , : ) < y_min ) | ( vy ( 2 , : ) < y_min ) ;
27 vx ( : , i d x ) = [ ] ;
28 vy ( : , i d x ) = [ ] ;
29 i d x = ( vy ( 1 , : ) > y_max ) | ( vy ( 2 , : ) > y_max ) ;
30 vx ( : , i d x ) = [ ] ;
31 vy ( : , i d x ) = [ ] ;
32
33 % c i r c u l a r o b s t a c l e
34 th = 0 : 0 . 0 1 : 2∗ pi ;
35 c_cx = 3 ; c_cy = 3 ; c_r = 1 . 5 ;
36 xc=c_r∗cos ( th )+c_cx ;
37 yc=c_r∗sin ( th )+c_cy ;
38
39 % p o l y g o n o b s t a c l e
40 xv = [ 6 ; 8 ; 8 ; 5 ; 5 ; 7 ; 7 ; 6 ; 6 ] ;
41 yv = [ 1 ; 1 ; 4 ; 4 ; 3 ; 3 ; 2 ; 2 ; 1 ] ;
42
43 % draw sampl ing p o i n t s & o b s t a c l e s
44 f igure ( 1 ) ; c l f ;
45 plot ( xn , yn , ’ k . ’ ) ;
46 hold on ;
47 plot ( xc , yc , ’ r− ’ , ’ LineWidth ’ , 2 ) ;
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48 plot ( xv , yv , ’ r− ’ , ’ LineWidth ’ , 2 ) ;
49 axis equal ;
50 axis ( [ x_min −0.5 x_max y_min−0.5 y_max ] ) ;
51 plot ( vx , vy , ’ b− ’ ) ;

Program 3.8 (MATLAB) Path planning for complex shape obstacle

Program 3.9 removes the edges inside the obstacles and adds the start and the
destination points to the closest nodes in the graph, respectively. Use the following
inequality for circular objects to find the edges to remove:

(xi − xc)2 + (yi − yc)2
< r2

c

where (xi, yi) is the coordinate to define an edge, (xc, yc) is the centre of the circu-
lar obstacle, and rc is the radius of the obstacle. Finding whether a point is inside
an arbitrary shape polygon or not is a geometry problem. MATLAB has a func-
tion to solve the point-in-polygon problem, called inpolygon. Providing a polygon
shape by a series of coordinates describing the boundary to inpolygon, it returns a
Boolean value if the given point is inside (True) or outside (False) of the polygon.

The result with 200 random points is shown in Figure 3.10. If the number of
random points is too low, the graph would be disjointed, and there might be no
path between the start and the destination. The risk is negligible if a sufficient
number of random points are spread across the mission area. The example shown
in Figure 3.10 with 200 random points has the high possibility that the problem
would occur. To reduce the risk, use more than 1000 points in this case.
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Figure 3.10 Edges inside the obstacles removed and add start and destination.

1 % remove v e r t i c e s i n s i d e t h e c i r c u l a r o b j e c t
2 vx1=vx ( 1 , : ) ;
3 vy1=vy ( 1 , : ) ;
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4 r _ s q = ( vx1−c_cx ) . ^ 2 + ( vy1−c_cy ) . ^ 2 ;
5 i d x 1 =( r _ s q < ) c_r ^ 2 ) ;
6
7 vx2=vx ( 2 , : ) ;
8 vy2=vy ( 2 , : ) ;
9 r _ s q = ( vx2−c_cx ) . ^ 2 + ( vy2−c_cy ) . ^ 2 ;

10 i d x 2 =( r _ s q < ) c_r ^ 2 ) ;
11
12 i d x= or ( idx1 , i d x 2 ) ;
13 vx ( : , i d x ) = [ ] ;
14 vy ( : , i d x ) = [ ] ;
15
16 % remove v e r t i c e s i n s i d e t h e p o l y g o n
17 vx1=vx ( 1 , : ) ;
18 vy1=vy ( 1 , : ) ;
19 in = inpolygon ( vx1 , vy1 , xv , yv ) ;
20 vx ( : , in ) = [ ] ;
21 vy ( : , in ) = [ ] ;
22
23 vx2=vx ( 2 , : ) ;
24 vy2=vy ( 2 , : ) ;
25 in = inpolygon ( vx2 , vy2 , xv , yv ) ;
26 vx ( : , in ) = [ ] ;
27 vy ( : , in ) = [ ] ;
28
29 % add s t a r t & ) d e s t i n a t i o n p o i n t s t o t h e graph
30 vx1d = vx ( : ) ;
31 vy1d = vy ( : ) ;
32 dr = kron ( ones ( length ( vx1d ) , 1 ) , x y _ s t a r t ) − [ vx1d vy1d ] ;
33 [ ~ , min_id ] = min(sum( dr . ^ 2 , 2 ) ) ;
34 vx = [ vx [ x y _ s t a r t ( 1 ) ; vx1d ( min_id ) ] ] ;
35 vy = [ vy [ x y _ s t a r t ( 2 ) ; vy1d ( min_id ) ] ] ;
36
37 dr = kron ( ones ( length ( vx1d ) , 1 ) , x y _ d e s t ) − [ vx1d vy1d ] ;
38 [ ~ , min_id ] = min(sum( dr . ^ 2 , 2 ) ) ;
39 vx = [ vx [ x y _ d e s t ( 1 ) ; vx1d ( min_id ) ] ] ;
40 vy = [ vy [ x y _ d e s t ( 2 ) ; vy1d ( min_id ) ] ] ;

Program 3.9 (MATLAB) Remove the edges and add start and destination

Program 3.10 constructs the graph using the nodes and the vertices defined by
the Voronoi diagram. To this end, firstly, the start nodes and the end nodes are
stacked together in ‘xy_12’, whose size is (the number of edges) × 2. The first half
of the nodes in the matrix are the start nodes, and the other half of the nodes in
the matrix are the end nodes. Hence, the coordinate of one node would appear
more than once in the matrix as one node would belong to more than one edge.
To have a list of nodes where the same node does not appear multiple times, use
the function, unique, as follows:

[ node_coord , ~ , node_index ]= unique ( xy_12 , ’ rows ’ ) ;
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The option ’rows’ indicates that the row elements in the matrix are compared
and returned the list of the unique row elements to the first return variable,
‘node_coord’. In addition, the second and the third return variables store the list
of indices. These would be much easier to understand with an example. Assume
that ‘xy_12’ is given by

xy_12 = [
1 . 5 2 . 1 ;
3 . 2 −4 .2 ;
1 . 5 2 . 1 ;
4 . 2 4 . 3 ] ;

where the first and the third rows are the same. Call the unique function as fol-
lows:

>> [ node_unique , unique_index , f u l l _ i n d e x ] = unique ( xy_12 ) ;

Each return variable has the following result:

node_unique =
1 . 5 2 . 1
3 . 2 −4.2
4 . 2 4 . 3

unique_index =
1
2
4

f u l l _ i n d e x =
1
2
1
3

The first matrix, ‘node_unique’, removes the third-row element in the original
matrix, which is appeared twice. The second matrix, ‘unique_index’, includes
the row index to construct the first matrix using the original matrix, i.e. ‘xy_12
(unique_index,:)’ returns the matrix the same as the first matrix, ‘node_unique’.
Similarly, ‘node_unique(full_index,:)’ recovers the original matrix ‘xy_12’. In
Program 3.10, the second output of unique is not needed, and the corresponding
output variable name is replaced by ‘∼’. For example,

>> [ node_unique , ~ , f u l l _ i n d e x ] = unique ( xy_12 ) ;

where the second output is not created.
These nodes list and indices create the row and the column numbers of the

nodes defining bi-directional edges and their length, which are entered into the
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Figure 3.11 Shortest path in the graph constructed using Voronoi diagram.

graph function. Finally, the shortest path is obtained from the graph as shown in
Figure 3.11.

1 %% c o n s t r u c t graph
2 xy_1 = [ vx ( 1 , : ) ; vy ( 1 , : ) ] ;
3 xy_2 = [ vx ( 2 , : ) ; vy ( 2 , : ) ] ;
4 xy_12 = [ xy_1 xy_2 ] ’ ;
5 [ node_coord , ~ , node_index ]= unique ( xy_12 , ’ rows ’ ) ;
6 s t_node_index = node_index ( 1 : length ( vx ) ) ;
7 ed_node_index = node_index ( length ( vx ) +1:end ) ;
8 d s t _ e d g e s = sqrt (sum ( ( xy_1−xy_2 ) . ^ 2 ) ) ;
9 s t_node = node_index ( length ( vx ) −1) ;

10 ed_node = node_index ( length ( vx ) ) ;
11
12 row = [ s t_node_index ( : ) ; ed_node_index ( : ) ] ;
13 c o l = [ ed_node_index ( : ) ; s t_node_index ( : ) ] ;
14 v a l = kron ( [ 1 ; 1 ] , d s t _ e d g e s ( : ) ) ;
15 G_path_graph = graph ( row , col , v a l ) ;
16
17 %% c a l c u l a t e o p t i m a l path and p l o t t h e path
18 [ opt_path_idx , o p t _ d s t ] = s h o r t e s t p a t h ( G_path_graph , st_node , ed_node )

;
19 opt_path = node_coord ( opt_path_idx , : ) ;
20
21 % draw v o r o n o i a f t e r removing p o i n t s i n t h e o b s t a c l e s
22 f igure ( 1 ) ; c l f ;
23 plot ( xn , yn , ’ k . ’ ) ;
24 hold on ;
25 plot ( xc , yc , ’ r− ’ , ’ LineWidth ’ , 2 ) ;
26 plot ( xv , yv , ’ r− ’ , ’ LineWidth ’ , 2 ) ;
27 axis equal ;
28 plot ( vx , vy , ’ b .− ’ ) ;
29 axis ( [ x_min −0.5 x_max y_min−0.5 y_max ] ) ;
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30 plot ( x y _ s t a r t ( 1 ) , x y _ s t a r t ( 2 ) , ’ bx ’ , ’ MarkerSize ’ , 5 , ’ LineWidth ’ , 5 ) ;
31 plot ( x y _ d e s t ( 1 ) , x y _ d e s t ( 2 ) , ’ ro ’ , ’ MarkerSize ’ , 5 , ’ MarkerFacecolor ’ , ’

red ’ ) ;
32 plot ( opt_path ( : , 1 ) , opt_path ( : , 2 ) , ’ g− ’ , ’ LineWidth ’ , 2 ) ;

Program 3.10 (MATLAB) Shortest path in the graph

3.1.3.2 Python
Random points are spread uniformly over the designated map area. The initial
location and the destination are included as the first and the second nodes, respec-
tively. The boundary coordinates of the circular obstacle and the non-convex obsta-
cle are defined. These two boundaries define two path objects using Path in the
module matplotlib.path.

The Path object has a useful function called contains_points for checking
whether a set of points are inside (return True) or outside (return False) of the
objects. Negating the return values using ‘∼’ in front of the Boolean lists, we
obtain the lists of True or False, indicating if the corresponding point is outside of
the obstacles or inside of one of the obstacles. For the details, check the following
Program 3.11.

1 # number o f s a m pl e s
2 num_sample = 2000
3
4 # map s i z e
5 map_width = 10
6 map_height = 5
7
8 # x , y c o o r d i n a t e s o f s t a r t and d e s t i n a t i o n o f t h e path t o be

c a l c u l a t e d
9 x y _ s t a r t = np . a r r a y ( [ 0 , 0 ] )

10 x y _ d e s t = np . a r r a y ( [ 9 , 4 ] )
11
12 # s p r e a d num_sample random p o i n t s o v e r t h e map area
13 x y _ p o i n t s = np . random . rand ( num_sample , 2 )
14 x y _ p o i n t s [ : : , 0 ] = x y _ p o i n t s [ : : , 0 ] ∗ map_width
15 x y _ p o i n t s [ : : , 1 ] = x y _ p o i n t s [ : : , 1 ] ∗ map_height
16
17 # s t a c k i n g them a l l t o g e t h e r w i t h s t a r t and d e s t i n a t i o n
18 x y _ p o i n t s = np . v s t a c k ( ( x y _ s t a r t , xy_dest , x y _ p o i n t s ) )
19 s t a r t _ n o d e = 0
20 end_node = 1
21
22 # c i r c u l a r o b s t a c l e a t [ 3 , 3 ] , r a d i u s 1 . 5 & d e f i n e t h e boundary
23 obs_xy = [ 3 , 3 ]
24 obs_rad = 1 . 5
25 th = np . arange ( 0 , 2∗np . p i + 0 . 0 1 , 0 . 0 1 )
26 x_obs_0 = obs_rad∗np . cos ( th )+obs_xy [ 0 ]
27 y_obs_0 = obs_rad∗np . s i n ( th )+obs_xy [ 1 ]
28 xy_obs_0 = np . v s t a c k ( ( x_obs_0 , y_obs_0 ) ) . T



�

� �

�

142 3 Autonomous Vehicle Mission Planning

29
30 # non−c o n v e x o b s t a c l e boundary
31 x_obs_1 = np . a r r a y ( [ 6 , 8 , 8 , 5 , 5 , 7 , 7 , 6 , 6 ] )
32 y_obs_1 = np . a r r a y ( [ 1 , 1 , 4 , 4 , 3 , 3 , 2 , 2 , 1 ] )
33 xy_obs_1 = np . v s t a c k ( ( x_obs_1 , y_obs_1 ) ) . T
34
35 # d e f i n e o b s t a c l e u s i n g Path i n m a t p l o t l i b . path
36 from m a t p l o t l i b . path import Path
37 Obs_0 = Path ( xy_obs_0 )
38 Obs_1 = Path ( xy_obs_1 )
39
40 # found p o i n t s a r e not i n s i d e t h e c i r c u l a r o b s t a c l e
41 mask_0 = ~Obs_0 . c o n t a i n s _ p o i n t s ( x y _ p o i n t s )
42 x y _ p o i n t s = x y _ p o i n t s [ mask_0 , : : ]
43
44 mask_1 = ~Obs_1 . c o n t a i n s _ p o i n t s ( x y _ p o i n t s )
45 x y _ p o i n t s = x y _ p o i n t s [ mask_1 , : : ]

Program 3.11 (Python) Path planning for complex shape obstacle

A graph is constructed in Program 3.12 using delaunay. The Delaunay
triangulation is closely related to the Voronoi diagram (Klein, 2016). The
Delaunay triangulation constructs triangles using a given set of points. Each of
the points is the vertex of the triangles. The way of constructing the triangles is
that each circle circumscribes only one triangle, and no other triangles are inside
the circle. The Delaunay triangulation is closely related to the Voronoi diagram.
Fortune (1995) provides further details.

The return value, tri, from the Delaunay function is the delaunay object.
tri.simplices includes the list of vertices to define the triangles. Each row of
tri.simplices is an array with three elements, which defines a triangle. The three
elements define the three vertices of the triangle in each row of tri.simplices.

As we initially remove the points inside the obstacle, the vertices that cross the
obstacle tend to be longer in length than the vertices outside the obstacle. The cut-
off length is 1𝜎multiplied by the average length, and we remove the vertices longer
than the cutoff length from the graph. This method has still the problem that parts
of some vertices would pass through the obstacles. Some modifications of the algo-
rithm could fix the problem. For example, sample additional points along each
vertices and check if they are inside obstacles. Or, sample along the calculated
optimal path, construct a new graph using the new sample points, and calculate
the optimal path for the new graph.

1 # c o n s t r u c t graph u s i n g delaunay
2 from s c i p y . s p a t i a l import Delaunay
3 t r i = Delaunay ( x y _ p o i n t s )
4
5 # found t r i a n g l e d e f i n i t i o n i n d e x
6 temp_idx= t r i . s i m p l i c e s [ : : , 0 ]
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7 temp_jdx= t r i . s i m p l i c e s [ : : , 1 ]
8 temp_kdx= t r i . s i m p l i c e s [ : : , 2 ]
9

10 # remove l o n g e r paths , which a r e l i k e l y p a s s i n g t h r o u g h t h e
o b s t a c l e

11 d i s t _ i j = np . s q r t ( np . sum ( ( x y _ p o i n t s [ temp_idx , : : ] − x y _ p o i n t s [ temp_jdx
, : : ] ) ∗∗2 , 1 ) )

12 d i s t _ j k = np . s q r t ( np . sum ( ( x y _ p o i n t s [ temp_jdx , : : ] − x y _ p o i n t s [ temp_kdx
, : : ] ) ∗∗2 , 1 ) )

13 d i s t _ k i = np . s q r t ( np . sum ( ( x y _ p o i n t s [ temp_kdx , : : ] − x y _ p o i n t s [ temp_idx
, : : ] ) ∗∗2 , 1 ) )

14 d d _ a l l = np . h s t a c k ( ( d i s t _ i j , d i s t _ j k , d i s t _ k i ) )
15 c u t _ d i s t = np . mean ( d d _ a l l )+np . s t d ( d d _ a l l )
16
17 # d i s t a n c e t h r e s h o l d f o r removing l o n g e r p a t h s
18 c u t _ m a s k _ i j = d i s t _ i j < c u t _ d i s t
19 cut_mask_jk = d i s t _ j k < c u t _ d i s t
20 cut_mask_ki = d i s t _ k i < c u t _ d i s t
21 t e m p _ x y _ i j = np . v s t a c k ( ( temp_idx [ c u t _ m a s k _ i j ] , temp_jdx [ c u t _ m a s k _ i j

] ) )
22 temp_xy_jk = np . v s t a c k ( ( temp_jdx [ cut_mask_jk ] , temp_kdx [ cut_mask_jk

] ) )
23 temp_xy_ki = np . v s t a c k ( ( temp_kdx [ cut_mask_ki ] , temp_idx [ cut_mask_ki

] ) )
24
25 # c o r r e s p o n d i n g d i s t a n c e t o t h e p a t h s
26 d i s t _ i j = d i s t _ i j [ c u t _ m a s k _ i j ]
27 d i s t _ j k = d i s t _ j k [ cut_mask_jk ]
28 d i s t _ k i = d i s t _ k i [ cut_mask_ki ]
29
30 # change format i n t o row , column and t h e d i s t a n c e
31 xy_index = np . h s t a c k ( ( temp_xy_i j , temp_xy_jk , temp_xy_ki ) ) . T
32 row_org = xy_index [ : : , 0 ]
33 c o l _ o r g = xy_index [ : : , 1 ]
34 row = np . h s t a c k ( ( row_org , c o l _ o r g ) )
35 c o l = np . h s t a c k ( ( c o l _ o r g , row_org ) )
36 d i s t = np . h s t a c k ( ( d i s t _ i j , d i s t _ j k , d i s t _ k i ) )
37 d i s t = np . h s t a c k ( ( d i s t , d i s t ) )
38 num_node = x y _ p o i n t s . shape [ 0 ]
39
40 # c o n s t r u c t t h e d i s t a n c e m a t r i x
41 from s c i p y . s p a r s e import c s r _ m a t r i x
42 d i s t _ s p a r s e = c s r _ m a t r i x ( ( d i s t , ( row , c o l ) ) , shape =(num_node , num_node

) )
43
44 # c a l c u l a t e t h e s h o r t e s t path
45 from s c i p y . s p a r s e . csgraph import d i j k s t r a
46 d i s t , pred = d i j k s t r a ( d i s t _ s p a r s e , i n d i c e s = s t a r t _ n o d e ,

r e t u r n _ p r e d e c e s s o r s=True )
47 print ( f ’ d i s t a n c e from node #{ s t a r t _ n o d e : 0 d } t o node #{ end_node : 0 d } :

{ d i s t [ end_node ] : 4 . 2 f } ’ )
48
49 # o b t a i n t h e s h o r t e s t path
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50 path = [ ]
51 i=end_node
52 i f np . i s i n f ( d i s t [ end_node ] ) :
53 print ( ’ the path does not e x i s t ! ’ )
54 e l s e :
55 while i != s t a r t _ n o d e :
56 path . append ( i )
57 i = pred [ i ]
58 path . append ( s t a r t _ n o d e )
59 print ( ’ path= ’ , path [ : : − 1 ] )
60
61 opt_path = np . a s a r r a y ( path [ : : − 1 ] )

Program 3.12 (Python) Shortest path in the graph

Program 3.13 shows an example of re-sampling. Similar to the previous method,
we remove the edges with longer lengths to prevent the edges from overlapping
with the obstacles. Figure 3.12a compares the original path (the dashed–dotted
line) with the updated path (the solid line) by the re-samplings. The re-sampling
points are shown in Figure 3.12b. The updated path avoids the top-left corner,
unlike the original path that goes into the corner of the obstacle. Implementing
the program to generate Figure 3.12 is left as an exercise.
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Figure 3.12 (a) Original optimal path in the dash-dotted line and the updated optimal
path in the solid line and (b) updated optimal path shown with the re-sampled graph.

1 x y _ o p t _ p o i n t s = x y _ p o i n t s [ opt_path , : ]
2 d x y _ o p t _ d i s t = np . s q r t ( np . sum ( ( x y _ o p t _ p o i n t s [0: −1]− x y _ o p t _ p o i n t s

[ 1 : : ] ) ∗∗2 , 1 ) )
3 N_new_samp = 1000
4
5 xy_samp = np . empty ( ( 0 , 2 ) )
6
7 for crd , d s t in z i p ( x y _ o p t _ p o i n t s , d x y _ o p t _ d i s t ) :
8 xy_samp = np . append ( xy_samp , crd + np . random . randn ( N_new_samp , 2 )

∗dst , a x i s =0)

Program 3.13 (Python) Re-sampling around the optimal path
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The existence of diverse path planning scenarios makes it challenging to
construct one unique path planning algorithm outperforming over all the other
algorithms for any situation. Many heuristic approaches and variations are
possible in path planning problems. Understanding what types of operation
scenarios are considered and what assumptions are introduced is vital in path
planning algorithm design.

3.2 Moving Target Tracking

Consider a fixed-wing unmanned aerial vehicle (UAV) equipped with a vision sen-
sor to keep a moving ground target in the camera’s field of view, as shown in
Figure 3.13. Keeping the altitude in the z-axis as high as possible and the plane
distance from the UAV to the target in the x–y axes as close as possible maximizes
the camera field of view. Each UAV has the maximum altitude it could reach,
and the vision sensor performance, e.g. camera resolution, and the weather condi-
tion, e.g. clouds, also limit the possible maximum altitude. Given these limitations,
the best choice for the UAV in the z-direction is simply the maximum allowable
altitude, and the target tracking problem becomes one in the two-dimensional
space, i.e. x–y plane.

3.2.1 UAV and Moving Target Model

A simplified aircraft dynamics with a constant altitude shown in Figure 3.14 is
given by

ẋa = 𝑣x, ẏa = 𝑣y, 𝑣̇x = ux, 𝑣̇y = uy

where xa and ya are the x and y coordinates of aircraft location in metres, 𝑣x and 𝑣y
are the x and y directional velocities of aircraft in m/s, and ux and uy are the control

Figure 3.13 The higher altitude and the
closer distance relative to the target are the
optimal positions of UAVs in maximizing the
field of view.
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Figure 3.14 Global (x–y) and UAV local (xB–yB) coordinates with the control input
magnitude constraint indicated by the dotted box.

input in N, respectively. All quantities are expressed in the global coordinates, x and
y, as shown in Figure 3.14. In the state-space form,

ẋa =
[

02 I2
02 02

]
xa +

[
02
I2

]
u = Aaxa + Bau (3.11a)

y =
[
I2 02

]
xa = CAxa (3.11b)

where xa = [xa, ya, , 𝑣x, 𝑣y]T and u = [ux, uy]T .
To design an optimal guidance algorithm, consider the following important con-

straints on the aircraft:

● The velocity for x-direction in the body coordinates must satisfy the following
inequality:

0 < 𝑣min ≤ 𝑣
B
x ≤ 𝑣max (3.12)

where 𝑣B
x is the aircraft velocity in the body coordinates, and the aircraft atti-

tude is assumed to coincide with the velocity vector, and 𝑣B
y is always, hence,

equal to zero. Unlike quadcopters, as the fixed-wing UAV cannot hover, the min-
imum velocity magnitude, 𝑣min , is always greater than zero. As the velocity in
the global coordinates is given by

𝑣x = 𝑣
B
x cos𝜙, 𝑣y = 𝑣

B
x sin𝜙

where 𝜙 is equal to tan−1(𝑣y∕𝑣x), the inequality, (3.12), in the global coordi-
nates is

𝑣
2
min ≤ 𝑣

2
x + 𝑣2

y ≤ 𝑣
2
max (3.13)
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● The control input magnitudes are constrained as follows:

uxmin
≤ uB

x ≤ uxmax
(3.14a)

uymin
≤ uB

y ≤ uymax
(3.14b)

where uB
x and uB

y are the control input expressed in the aircraft body coordinates.
The inequalities given in (3.14) becomes

uxmin
≤ ux cos𝜙 + uy sin𝜙 ≤ uxmax

(3.15a)

uymin
≤ −ux sin𝜙 + uy cos𝜙 ≤ uxmax

(3.15b)

in the global coordinates.
● The aircraft turn radius must be larger than the minimum radius turn of the air-

craft. The radius of curvature of the flight path must be smaller than the inverse
of the minimum radius as follows:|||𝑣xuy − 𝑣yux

|||(
𝑣

2
x + 𝑣2

y
)3∕2 ≤

1
rmin

(3.16)

where rmin is the radius of the circle corresponding to the minimum radius turn,
and the left-hand side of the inequality is the curvature equation for curves in
the two-dimensional space.

The target tracking algorithm to provide the command acceleration input, ux
and uy, must satisfy the three constraints, i.e. (3.13), (3.15), and (3.16).

Let the target dynamics be equal to the following equations:

ẋt = 𝑤x (3.17a)

ẏt = 𝑤y (3.17b)

where xt and yt are the x and y coordinates of the target in metres and 𝑤x and 𝑤y
are the x and y directional velocities in m/s, respectively. From the target track-
ing design aspect, how the ground target would behave is unknown. The target
velocity in x and y coordinates, i.e. 𝑤x and 𝑤y, cannot be perfectly known, in gen-
eral. Using sensors in UAVs, a Kalman filter to estimate the target position and the
velocity could be designed. This is out of the scope of this chapter, and the reader
is referred to Julier and Uhlmann (2004) and Zhan and Wan (2007).

In the state-space form,

ẋt = I2w = Btw (3.18a)

z = I2xt = Ctxt (3.18b)

where xt = [xt, yt]T and w = [𝑤x, 𝑤y]T . The target modelled as the first-order
system can sharply change its velocity. As ground moving targets change
their velocity much faster than aircraft, it would be a reasonable assumption.
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The velocity range is bounded by

0 ≤ 𝑤
2
x +𝑤2

y ≤ 𝑤
2
max (3.19)

where 𝑤max greater than 0 is the maximum target speed.

3.2.2 Optimal Target Tracking Problem

The cost function to be minimized is the distance between the target and the air-
craft as follows:

Maximize
w(t)∈𝕎

Minimize
u(t)∈𝕌

J =
∫

t=tf

t=t0

[
y(t) − z(t)

]T [y(t) − z(t)
]

dt (3.20)

subject to

ẋa = Aaxa + Bau (3.21a)

ẋt = Btw (3.21b)

y = Caxa (3.21c)

z = Ctxt (3.21d)

and

𝑣
2
min ≤ 𝑣

2
x + 𝑣2

y ≤ 𝑣
2
max (3.22a)

uxmin
≤ ux cos𝜙 + uy sin𝜙 ≤ uxmax

(3.22b)

uymin
≤ −ux sin𝜙 + uy cos𝜙 ≤ uymax

(3.22c)

− 1
rmin

(
𝑣

2
x + 𝑣2

y
)3∕2

≤ 𝑣xuy − 𝑣yux ≤
1

rmin

(
𝑣

2
x + 𝑣2

y
)3∕2 (3.22d)

0 ≤ 𝑤
2
x +𝑤2

y ≤ 𝑤
2
max (3.22e)

where 𝕎 and 𝕌 are the feasible control input sets for the target and the aircraft,
respectively, which are not empty, t0 and tf are the initial time and the final time,
respectively, and the initial condition, xa(t0) and xt(t0), are given. The min–max
problem represents the tracking problem, where the UAV maximizes the target
tracking by the camera on the UAV while the target tries to evade it.

The above optimization problem is not easy to solve because of the input
constraints, ux and uy, and the state constraints, 𝑣x and 𝑣y, simultaneously.
To simplify the problem, the governing differential equation is discretized as
follows:

xa(k + 1) = Faxa(k) + Gau(k) (3.23a)

xt(k + 1) = Ftxt(k) + Gtw(k) (3.23b)
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y(k) = Caxa(k) (3.23c)

z(k) = Ctxt(k) (3.23d)

where Fa,Ga,Ft,Gt,Ha, and Ht are the matrices corresponding to the discretized
system of the continuous system using the zero-order holder. For example,

Fa =

⎡⎢⎢⎢⎢⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦
, Ga =

⎡⎢⎢⎢⎢⎣

0 0
0 0
Δt 0
0 Δt

⎤⎥⎥⎥⎥⎦
, Ft = I2, Gt = ΔtI2 (3.24)

The integral of the cost function is approximated as a finite sum as follows:

Maximize
w(0),w(1)∈𝕎

Minimize
u(0)∈𝕌

J
Δt∕2

≈
2∑

k=1
[𝓁(k)]2

where Δt is equal to tf − t0, and

𝓁(k) = y(k) − z(k)

We would approximate the above cost with a much smaller Δt, e.g. Δt = (tf −
t0)∕n, where n is the number of sub-intervals, then the decision variables include
all u(k) for k = 0,1,… ,n − 2. For simplicity, the two-step approximation is used,
and the extension for n > 2 is straightforward. n = 2 is the minimum interval num-
ber to make the control input appear in the approximated cost function, and such
n is called the relative degree of the system.

3.2.2.1 MATLAB
Program 3.14 performs symbolic operations to obtain the approximated cost func-
tion. Figure 3.15 shows the output of pretty(). It displays symbolic equations in a
better format to read.

4

3

22

2 2 2

2 2 22

2 2

2 2 2 2 2 2 2 2

3 3 2 2 2 2 2

2 3 3 3 2 2 24
Dt   ux0   +  (4 Dt   vxa0  – 2 Dt   wx0 – 2 Dt  wx1 + 2 Dt   xa0  – 2 Dt   xt0)  ux0 + Dt   uy0

+  (4 Dt   vya0 – 2 Dt   wy0 – 2 Dt   wy1 + 2 Dt   ya0  –  2 Dt   yt0)  uy0 + 5 Dt   vxa0   –  6 Dt   vxa0 wx0 

–  4 Dt   vxa0 wx1 + 5 Dt   vya0   –  6 Dt   vya0 wy0 – 4 Dt   vya0 wy1 + 2 Dt   wx0   + 2 Dt   wx0 wx1 + Dt   wx1 

+ 2 Dt   wy0  + 2 Dt   wy0 wy1 + Dt   wy1   + 6 Dt  vxa0 xa0 – 6 Dt vxa0 xt0 + 6 Dt  vya0 ya0 – 6 Dt vya0 yt0

–  4 Dt wx0 xa0 + 4 Dt wx0 xt0 – 2 Dt wx1 xa0 + 2 Dt wx1 xt0 – 4 Dt wy0 ya0 + 4 Dt wy0 yt0 – 2 Dt wy1 ya0 

+ 2 Dt wy1 yt0 + 2 xa0   –  4 xa0 xt0 + 2 xt0   +  2 ya0   –  4 ya0 yt0 + 2 yt0

Figure 3.15 MATLAB pretty() function output.

1 clear ;
2
3 % d e f i n e t i m e i n t e r v a l
4 syms Dt real ;
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5
6 % a i r c r a f t & t a r g e t dynamics
7 Fa = eye ( 4 ) + [ zeros ( 2 ) Dt∗eye ( 2 ) ; zeros ( 2 , 4 ) ] ;
8 Ga = [ zeros ( 2 ) ; Dt∗eye ( 2 ) ] ;
9 Ca = eye ( 2 , 4 ) ;

10
11 Ft = eye ( 2 ) ;
12 Gt = Dt∗eye ( 2 ) ;
13 Ct = eye ( 2 ) ;
14
15 % d e f i n e s y m b o l s f o r a i r c r a f t ’ s and t a r g e t ’ s c o n t r o l i n p u t s
16 syms ux0 uy0 ux1 uy1 real ;
17 syms wx0 wy0 wx1 wy1 real ;
18
19 u_vec_0 = [ ux0 uy0 ] ’ ;
20 w_vec_0 = [ wx0 wy0 ] ’ ;
21
22 u_vec_1 = [ ux1 uy1 ] ’ ;
23 w_vec_1 = [ wx1 wy1 ] ’ ;
24
25 % d e f i n e s y m b o l s f o r t h e i n i t i a l c o n d i t i o n s
26 syms xa0 ya0 vxa0 vya0 real ;
27
28 syms x t 0 y t 0 real ;
29
30 xa_vec_0 = [ xa0 ya0 vxa0 vya0 ] ’ ;
31 x t _ v e c _ 0 = [ x t 0 y t 0 ] ’ ;
32
33 xa_k_plus_1 = Fa∗xa_vec_0 + Ga∗u_vec_0 ;
34 xa_k_plus_2 = Fa∗xa_k_plus_1 + Ga∗u_vec_1 ;
35 y_k_plus_1 = Ca∗xa_k_plus_1 ;
36 y_k_plus_2 = Ca∗xa_k_plus_2 ;
37
38 x t _ k _ p l u s _ 1 = Ft∗ x t _ v e c _ 0 + Gt∗w_vec_0 ;
39 x t _ k _ p l u s _ 2 = Ft∗ x t _ k _ p l u s _ 1 + Gt∗w_vec_1 ;
40 z_k_plus_1 = Ct∗ x t _ k _ p l u s _ 1 ;
41 z_k_plus_2 = Ct∗ x t _ k _ p l u s _ 2 ;
42
43 dyz_1 =( y_k_plus_1−z_k_plus_1 ) ;
44 dyz_2 =( y_k_plus_2−z_k_plus_2 ) ;
45 J _ o v e r _ d t _ 2 = s i m p l i f y ( expand ( dyz_1 ’∗ dyz_1+dyz_2 ’∗ dyz_2 ) ) ;
46
47 p r e t t y ( c o l l e c t ( J_over_dt_2 , [ ux0 uy0 ux1 uy1 ] ) )

Program 3.14 (MATLAB) Obtain the approximated cost function using symbolic
manipulations

The cost function in Figure 3.15 is written in a compact form as follows:
J

Δt∕2
= Δt4 [u2

x(0) + 𝛼ux(0) + u2
y(0) + 𝛽uy(0)

]
+ 𝛾 (3.25)
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where 𝛼, 𝛽, and 𝛾 are the functions of the initial conditions, w(0) and w(1).
Program 3.15 obtains the functions. In the last line, the program constructs the
cost function using 𝛼, 𝛽, and 𝛾 , compares it with the original cost function to con-
firm the obtained 𝛼, 𝛽, and 𝛾 are correct. The min–max problem given in (3.25) is
impossible to solve as it requires the full knowledge of the target positions, which
is not available in general. The cost function could evaluate tracking algorithms
after the simulations are completed, where the target positions are all known. In
addition, we can check how close the achieved cost is to the true optimal.

1 ux_poly = c o e f f s ( J_over_dt_2 , ux0 ) ;
2 alpha = ux_poly ( 2 ) / ux_poly ( 3 ) ;
3
4 uy_poly = c o e f f s ( ux_poly ( 1 ) , uy0 ) ;
5 beta = uy_poly ( 2 ) / uy_poly ( 3 ) ;
6
7 gama = uy_poly ( 1 ) ;
8
9 p o l y _ r e c o v e r =( alpha ∗ ( Dt ^ 4 )∗ux0+Dt ^4∗ux0^2+beta ∗ ( Dt ^ 4 )∗uy0+Dt ^4∗uy0

^ 2 )+gama ;
10
11 % c h e c k alpha , be ta , gama a r e c o r r e c t : t h e f o l l o w i n g must r e t u r n

z e r o
12 zero_check = eval ( expand ( p o l y _ r e c o v e r −J _ o v e r _ d t _ 2 ) ) ;
13 f p r i n t f ( ’ I s t h i s zero ? %4.2 f \ n ’ , zero_check ) ;

Program 3.15 (MATLAB) Obtain 𝛼, 𝛽, and 𝛾 in (3.25)

3.2.2.2 Python
Program 3.16 is the python script to calculate the cost function symbolically.
Remind that the input argument to np.zeros() is the tuple. To make the 3 ×4 zero
matrix, it must be np.zeros((2,3)). np.zeros(2,3) produces an error. Also, the matrix
multiplication is ‘@’. In the Python sympy, the output of symbolic expression
is printed automatically in a figure format, and a function similar to pretty() in
MATLAB is not required.

1 import numpy as np
2 from sympy import symbols , s i m p l i f y , expand
3
4 Dt , ux0 , uy0 , ux1 , uy1 , wx0 , wy0 , wx1 , wy1 = symbols ( ’ Dt ux0 uy0

ux1 uy1 wx0 wy0 wx1 wy1 ’ )
5 xa0 , ya0 , vxa0 , vya0 , xt0 , yt0 , th , w_max = symbols ( ’ xa0 ya0 vxa0

vya0 x t 0 y t 0 th w_max ’ )
6
7 # Dynamics
8 Fa = np . eye ( 4 )+np . v s t a c k ( ( np . h s t a c k ( ( np . z e r o s ( ( 2 , 2 ) ) , Dt∗np . eye ( 2 ) ) )

, np . z e r o s ( ( 2 , 4 ) ) ) )
9 Ga = np . v s t a c k ( ( np . z e r o s ( ( 2 , 2 ) ) , Dt∗np . eye ( 2 ) ) )
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10 Ca = np . eye ( 2 , 4 )
11
12 Ft = np . eye ( 2 )
13 Gt = Dt∗np . eye ( 2 )
14 Ct = np . eye ( 2 )
15
16 # c o n t r o l i n p u t s
17 u_vec_0 = np . a r r a y ( [ [ ux0 ] , [ uy0 ] ] )
18 w_vec_0 = np . a r r a y ( [ [ wx0 ] , [ wy0 ] ] )
19 u_vec_1 = np . a r r a y ( [ [ ux1 ] , [ uy1 ] ] )
20 w_vec_1 = np . a r r a y ( [ [ wx1 ] , [ wy1 ] ] )
21
22 # i n i t i a l c o n d i t i o n s
23 xa_vec_0 = np . a r r a y ( [ [ xa0 ] , [ ya0 ] , [ vxa0 ] , [ vya0 ] ] )
24 x t _ v e c _ 0 = np . a r r a y ( [ [ x t 0 ] , [ y t 0 ] ] )
25
26 # s t a t e p r o p a g a t i o n
27 xa_k_plus_1 = Fa@xa_vec_0 + Ga@u_vec_0
28 xa_k_plus_2 = Fa@xa_k_plus_1 + Ga@u_vec_1 ;
29 y_k_plus_1 = Ca@xa_k_plus_1 ;
30 y_k_plus_2 = Ca@xa_k_plus_2 ;
31
32 x t _ k _ p l u s _ 1 = Ft@xt_vec_0 + Gt@w_vec_0
33 x t _ k _ p l u s _ 2 = Ft@xt_k_plus_1 + Gt@w_vec_1
34 z_k_plus_1 = Ct@xt_k_plus_1
35 z_k_plus_2 = Ct@xt_k_plus_2
36
37 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 # c a l c u l a t e t h e c o s t f u n c t i o n i n t h e o r i g i n a l form
39 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 dyz_1 = y_k_plus_1−z_k_plus_1
41 dyz_2 = y_k_plus_2−z_k_plus_2
42 J _ o v e r _ d t _ 2 = dyz_1 . T@dyz_1+dyz_2 . T@dyz_2
43 J _ o v e r _ d t _ 2 = s i m p l i f y ( expand ( J _ o v e r _ d t _ 2 [ 0 ] [ 0 ] ) )
44
45 alpha = J _ o v e r _ d t _ 2 . c o e f f ( ux0 , 1 ) / ( Dt∗∗4)
46
47 temp = J _ o v e r _ d t _ 2 . c o e f f ( ux0 , 0 )
48 b e t a = temp . c o e f f ( uy0 , 1 ) / ( Dt∗∗4)
49 gama = temp . c o e f f ( uy0 , 0 )
50
51 p o l y _ r e c o v e r = alpha ∗ ( Dt∗∗4)∗ux0 + ( Dt∗∗4) ∗ ( ux0 ∗∗2) + b e t a ∗ ( Dt∗∗4)∗

uy0 + ( Dt∗∗4) ∗ ( uy0 ∗∗2) + gama
52
53 # c h e c k alpha , be ta , gama a r e c o r r e c t : t h e f o l l o w i n g must r e t u r n

z e r o
54 zero_check = f l o a t ( expand ( p o l y _ r e c o v e r −J _ o v e r _ d t _ 2 ) )
55 print ( f " I s t h i s zero ? { zero_check : 4 . 2 f } \ n " )

Program 3.16 (Python) Obtain the approximated cost function using symbolic
manipulations
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Given that current and future positions of the target are known, (3.25) is simply
a minimization problem of the quadratic function with the constraints in (3.22).
The optimal solution is

𝜕J
𝜕ux(0)

= 0 → ux(0) = −𝛼
2

𝜕J
𝜕uy(0)

= 0 → uy(0) = −𝛽
2

for ux(0) and uy(0) satisfying the constraints or inspecting the cost functions at the
boundary of the constraints.

3.2.2.3 Worst-Case Scenario
Consider the min–max problem from a different aspect, i.e. the target point of
view. Assume that the UAV has the optimal tracking algorithm. What would be
the best policy for the target to maximize the sum of the relative distances? Con-
struct the worst-case target movement to maximize the cost function. The aircraft
moves from the position at k = 0 to the position at k = 1 as shown in Figure 3.16.
When the target is to decide which direction it has to move, the best choice would
be the same direction as the following vector with the maximum velocity:

ΔrT0A1
= [xt(0) − xa(1)]i + [yt(0) − ya(1)]j

l(1)

l(2)

x

xm

ym

rt

ra(0)

rt(0)

∆ra(1)

∆ra(2)

∆rt(0)?

∆rt(1)?

y

Figure 3.16 UAV target tracking in two-step prediction.
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x
∆r t(0

)

∆ra(2)

∆rT0A1

∆rT1A2
θ

(xa
(1), ya

(1))

(xa
(2), ya

(2))

(x t(2
), y t(2

))

(x t(1
), y t(1

))

(x t(0
), y t(0

))

∆r t(1
)

Figure 3.17 UAV target tracking in two-step prediction in the mission coordinates.

This direction, however, would not be optimal for the target to maximize the cost
function as it affects the distance to be achieved in the next step at k = 2. Introduce
the angle, 𝜃, as the optimization parameter to maximize the cost function. The
distance at k = 1, i.e. 𝓁(1), indicated in Figure 3.17 is obtained as follows:

𝓁(1) = ||ΔrT0A1
+ Δrt(0)|| = ||ΔrT0A1

+𝑤max Δt(cos 𝜃i + sin 𝜃j)||
For k = 2, the best choice for the target is to move away from the aircraft position
at k = 2 at full speed as indicated in Figure 3.17. Hence, the distance at k = 2, i.e.
𝓁(2), is obtained as follows:

𝓁(2) = ||ΔrT1A2
+ Δrt(1)|| = ||ΔrT1A1

|| + ||Δrt(1)|| = ||ΔrT1A1
|| +𝑤max Δt

where the fact that the two vectors are parallel makes it possible to calculate the
distance separately and add them. From minimizing the length, minimizing 𝓁(2)
is the same as minimizing the following function:

𝓁(2) = ||ΔrT1A1
|| = ||ΔrT0A1

− Δra(2) + Δrt(0)||
Minimizing the following cost function is equivalent to the original minimization
problem:

J = [𝓁(1)]2 + [𝓁(2)]2 (3.26)



�

� �

�

3.2 Moving Target Tracking 155

The symbolic expression of [𝓁(2)]2 is much simpler than that of [𝓁(2)]2. [𝓁(2)]2 is
given by

[𝓁(2)]2 = ||ΔrT1A1
||2 + 2𝑤max Δt||ΔrT1A1

|| +𝑤2
max Δt2

and the magnitude of ΔrT1A1
in the second term takes the square root of (ΔrT1A1

⋅
ΔrT1A1

), which results in a complex expression. Noticing the equivalency of 𝓁(2)
and 𝓁(2) provides significant computational benefits in the following steps.

1 clear ;
2
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % d e f i n e s y m b o l s
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % d e f i n e t i m e i n t e r v a l
7 syms Dt real ;
8
9 % d e f i n e s y m b o l s f o r a i r c r a f t ’ s and t a r g e t ’ s c o n t r o l i n p u t s

10 syms ux0 uy0 ux1 uy1 real ;
11 syms wx0 wy0 wx1 wy1 real ;
12
13 % d e f i n e s y m b o l s f o r t h e i n i t i a l c o n d i t i o n s
14 syms xa0 ya0 vxa0 vya0 real ;
15 syms x t 0 y t 0 real ;
16
17 % t a r g e t c h a r a c t e r i s t i c s
18 syms th w_max real ;
19
20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 % Dynamics
22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 % a i r c r a f t & t a r g e t dynamics
24 Fa = eye ( 4 ) + [ zeros ( 2 ) Dt∗eye ( 2 ) ; zeros ( 2 , 4 ) ] ;
25 Ga = [ zeros ( 2 ) ; Dt∗eye ( 2 ) ] ;
26 Ca = eye ( 2 , 4 ) ;
27
28 Ft = eye ( 2 ) ;
29 Gt = Dt∗eye ( 2 ) ;
30 Ct = eye ( 2 ) ;
31
32 % c o n t r o l i n p u t s
33 u_vec_0 = [ ux0 uy0 ] ’ ;
34 w_vec_0 = [ wx0 wy0 ] ’ ;
35 u_vec_1 = [ ux1 uy1 ] ’ ;
36 w_vec_1 = [ wx1 wy1 ] ’ ;
37
38 % i n i t i a l c o n d i t i o n s
39 xa_vec_0 = [ xa0 ya0 vxa0 vya0 ] ’ ;
40 x t _ v e c _ 0 = [ x t 0 y t 0 ] ’ ;
41
42 % s t a t e p r o p a g a t i o n
43 xa_k_plus_1 = Fa∗xa_vec_0 + Ga∗u_vec_0 ;
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44 xa_k_plus_2 = Fa∗xa_k_plus_1 + Ga∗u_vec_1 ;
45 y_k_plus_1 = Ca∗xa_k_plus_1 ;
46 y_k_plus_2 = Ca∗xa_k_plus_2 ;
47
48 x t _ k _ p l u s _ 1 = Ft∗ x t _ v e c _ 0 + Gt∗w_vec_0 ;
49 x t _ k _ p l u s _ 2 = Ft∗ x t _ k _ p l u s _ 1 + Gt∗w_vec_1 ;
50 z_k_plus_1 = Ct∗ x t _ k _ p l u s _ 1 ;
51 z_k_plus_2 = Ct∗ x t _ k _ p l u s _ 2 ;
52
53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 % c a l c u l a t e t h e c o s t f u n c t i o n w i t h t h e w o r s t t a r g e t manoeuvre
55 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 xa1 = y_k_plus_1 ( 1 ) ;
57 ya1 = y_k_plus_1 ( 2 ) ;
58 xa2 = y_k_plus_2 ( 1 ) ;
59 ya2 = y_k_plus_2 ( 2 ) ;
60
61 r_T0A1 = [ x t 0 − xa1 ; y t 0 − ya1 ] ;
62 D e l t a _ r t _ 0 = [ Dt∗w_max∗cos ( th ) ; Dt∗w_max∗sin ( th ) ] ;
63 r_A2A1 = [ xa2−xa1 ; ya2−ya1 ] ;
64
65 e l l _ 1 = r_T0A1 + D e l t a _ r t _ 0 ;
66 e l l _ 1 _ s q u a r e d = e l l _ 1 ( : ) ’∗ e l l _ 1 ( : ) ;
67
68 r_T1A2 = e l l _ 1 − r_A2A1 ;
69 e l l _ 2 _ s q u a r e d = r_T1A2 ( : ) ’∗ r_T1A2 ( : ) ; % + ( Dt∗w_max ) ^ 2 ;
70
71 J _ c o s t _ w o r s t = ( e l l _ 1 _ s q u a r e d + e l l _ 2 _ s q u a r e d ) ;
72 dJdth_wors t = s i m p l i f y ( d i f f ( J _ c o s t _ w o r s t , th ) ) ;
73 c o e f f _ c o s _ s i n = c o e f f s ( s i m p l i f y ( expand ( dJdth_wors t ) ) , [ cos ( th ) sin (

th ) ] ) ;
74
75 % c a l c u l a t e t h e w o r s t c o s t f u n c t i o n
76 a _ t r i a n g l e = c o e f f s ( dJdth_worst , cos ( th ) ) ;
77 a _ t r i a n g l e = −a _ t r i a n g l e ( 2 ) ; % do not f o r g e t t h e minus s i g n
78 b _ t r i a n g l e = c o e f f s ( dJdth_worst , sin ( th ) ) ;
79 b _ t r i a n g l e = b _ t r i a n g l e ( 2 ) ;
80 check_a_b = expand (− a _ t r i a n g l e ∗cos ( th )+b _ t r i a n g l e ∗sin ( th )−

dJdth_wors t ) ;
81 f p r i n t f ( ’ Check [ a∗ cos ( th )+b∗ s i n ( th ) ]−dJdth_wors t equal t o zero ?

%4.2 f \ n ’ , check_a_b ) ;
82
83 c _ t r i a n g l e = sqrt ( a _ t r i a n g l e ^2 + b _ t r i a n g l e ^ 2 ) ;
84 J _ c o s t _ w o r s t = eval ( J _ c o s t _ w o r s t ) ;
85 J _ c o s t _ w o r s t = subs ( J _ c o s t _ w o r s t , sin ( th ) , a _ t r i a n g l e / c _ t r i a n g l e ) ;
86 J _ c o s t _ w o r s t = subs ( J _ c o s t _ w o r s t , cos ( th ) , b _ t r i a n g l e / c _ t r i a n g l e ) ;
87 J _ c o s t _ w o r s t = expand ( J _ c o s t _ w o r s t ) ;
88
89 dJdux0 = s i m p l i f y ( d i f f ( J _ c o s t _ w o r s t , ux0 ) ) ;
90 dJduy0 = s i m p l i f y ( d i f f ( J _ c o s t _ w o r s t , uy0 ) ) ;

Program 3.17 (MATLAB) The cost function, J̄, with the worst target manoeuvre
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3.2.2.4 MATLAB
We can obtain the expression of J in terms of the initial conditions using the sym-
bolic computations shown in Program 3.17. Taking the derivative with respect to
𝜃 gives the following equation:

dJ
d𝜃

= 0 ⇒ −a△ cos 𝜃∗ + b△ sin 𝜃∗ = 0

⇒ tan 𝜃∗ =
uy(0)(Δt)2 + 3𝑣y(0)Δt + 2ya(0) − 2yt(0)
ux(0)(Δt)2 + 3𝑣x(0)Δt + 2xa(0) − 2xt(0)

=
a△

b△
(3.27)

where 𝜃∗ is the worst direction of the target to make for the given configuration.
Note that there is the minus sign in front of a△. Take caution to use the function
coeffs(). The coefficients returning from the function is ordered from the lowest to
the highest. For example, the function returns the following array for the function,
2 cos 𝜃 − 3 sin 𝜃 + 5:

1 >> syms t h e t a real ;
2 >> f =2∗cos ( t h e t a )−3∗sin ( t h e t a ) + 5 ;
3 >> c o e f f s ( f )
4 [−3∗ sin ( t h e t a ) +5 , 2 ]

where the coefficient of the cosine function, 2, is the second element of the return
array.

The sine and the cosine functions in J are replaced by

sin 𝜃∗ =
a△√

a2
△

+ b2
△

, cos 𝜃∗ =
b△√

a2
△

+ b2
△

(3.28)

Program 3.18 constructs J and its derivatives using the symbolic manipulation
functions in MATLAB. The worst possible cost for the tracking aircraft, J, is now
a function of the aircraft control input at k = 0, i.e. ux(0) and uy(0), only.

In line 47 of Program 3.18, the eval() function evaluates the symbolic expression
of the cost function, obtained in Program 3.17. Replacing the symbols by the given
values makes J_cost_uxuy0 a function of ux(0) and uy(0). Calling the eval() func-
tion for a fixed set of the control input values shows a cost function contour plot.
It evaluates the symbolic expression many times and is slower than usual numer-
ical evaluations. To speed up the symbolic evaluations, the symbolic expressions
are converted to a function using the matlabFunction(). Once it converts into a
function, it allows evaluating the function with vector or matrix inputs. Hence, a
set of all combinations of the control inputs is evaluated in one line, line 51.

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % e v a l u a t e t h e c o s t f u n c t i o n f o r t e s t s c e n a r i o v a l u e s
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4
5 % i n i t i a l t a r g e t p o s i t i o n
6 x t 0 = (2∗ rand ( 1 ) −1) ∗2 0 0 ; %[m]
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7 y t 0 = (2∗ rand ( 1 ) −1) ∗2 0 0 ; %[m]
8
9 % i n i t i a l uav p o s i t i o n

10 xa0 = (2∗ rand ( 1 ) −1) ∗1 0 0 ; %[m]
11 ya0 = (2∗ rand ( 1 ) −1) ∗1 0 0 ; %[m]
12
13 % i n i t i a l uav v e l o c i t y
14 tha0 = rand ( 1 ) ∗2∗pi ; %[ radian ]
15 c u r r e n t _ s p e e d = 2 5 ; %[m/ s ]
16 vxa0 = c u r r e n t _ s p e e d ∗cos ( tha0 ) ;
17 vya0 = c u r r e n t _ s p e e d ∗sin ( tha0 ) ;
18
19 % uav minimum & maximum s p e e d
20 v_min = 2 0 ; v_max = 4 0 ;
21
22 % t i m e i n t e r v a l f o r t h e c o s t a p p r o x i m a t i o n
23 Dt = 2 ; % [ s e c o n d s ]
24
25 % t a r g e t maximum s p e e d
26 w_max = 60∗1 e3 / 3 6 0 0 ; %[m/ s ]
27
28 % uav f l y i n g path c u r v a t u r e c o n s t r a i n t
29 r_min = 4 0 0 ; %[m]
30
31 % c o n t r o l a c c e l e r a t i o n i n p u t magnitude c o n s t r a i n t s
32 ux_max = 1 0 ; % [m/ s ^ 2 ]
33 ux_min = −1; % [m/ s ^ 2 ]
34 uy_max = 2 ; % [m/ s ^ 2 ]
35 uy_min = −2; % [m/ s ^ 2 ]
36
37 ux_max_org = ux_max ;
38 ux_min_org = ux_min ;
39
40 % e v a l u a t e t h e c o s t f u n c t i o n o v e r t h e ux0−uy0 c o n t r o l i n p u t
41 num_idx = 2 0 ;
42 num_jdx = 1 9 ;
43 min_max_u_plot = 2 0 ;
44 u x _ a l l = l inspace (−min_max_u_plot , min_max_u_plot , num_idx ) ;
45 u y _ a l l = l inspace (−min_max_u_plot , min_max_u_plot , num_jdx ) ;
46
47 J_cos t_uxuy0 = eval ( J _ c o s t _ w o r s t ) ;
48 J _ c o s t _ u x u y 0 _ f u n c t i o n = matlabFunct ion ( J_cos t_uxuy0 ) ;
49
50 [UX0 , UY0]=meshgrid ( u x _ a l l , u y _ a l l ) ;
51 J _ c o s t _ w o r s t _ v a l=J _ c o s t _ u x u y 0 _ f u n c t i o n (UX0 , UY0) ;

Program 3.18 (MATLAB) Evaluate the cost function, J̄, in the control input space

Run the following program and compare the execution time. The part with mat-
labFunction() is around 100 times faster than the nested for-loop part.
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1 clear ;
2
3 syms x1 x2 real ;
4 f _ x 1 x 2 = x1 + x2 ^ 2 ;
5
6 row = 1 0 0 ; c o l = 9 9 ;
7
8 x 1 _ l i s t = l inspace ( −10 ,10 , row ) ;
9 x 2 _ l i s t = l inspace ( −10 ,10 , c o l ) ;

10
11 f _ i j _ 1 = zeros ( row , c o l ) ;
12 t i c
13 for i d x =1: row
14 x1 = x 1 _ l i s t ( i d x ) ;
15 for j d x =1: c o l
16 x2 = x 2 _ l i s t ( j d x ) ;
17 f _ i j _ 1 ( idx , j d x ) = eval ( f _ x 1 x 2 ) ;
18 end
19 end
20 toc
21
22 t i c
23 f_x1x2_fun = matlabFunct ion ( f _x1x2 ) ;
24 [ X1 , X2]=meshgrid ( x 1 _ l i s t , x 2 _ l i s t ) ;
25 f _ i j _ 2 = f_x1x2_fun ( X1 ’ , X2 ’ ) ;
26 toc

3.2.2.5 Python
Program 3.19 calculates J and dJ∕d𝜃 symbolically. The derivative obtained in
line 68 can be collected by the trigonometric terms as follows:

1 In [ 1 9 ] : from sympy import c o l l e c t
2
3 In [ 2 0 ] : print ( c o l l e c t ( dJdth_worst , [ sin ( th ) , cos ( th ) ] ) )
4 ( 2 . 0∗ Dt∗∗3∗ux0∗w_max + 6 . 0∗Dt∗∗2∗ vxa0∗w_max + 4 . 0∗Dt∗w_max∗xa0 − 4∗

Dt∗w_max∗ x t 0 ) ∗sin ( th ) + ( −2.0∗Dt∗∗3∗uy0∗w_max − 6 . 0∗Dt∗∗2∗ vya0∗
w_max − 4 . 0∗Dt∗w_max∗ya0 + 4∗Dt∗w_max∗ y t 0 ) ∗cos ( th )

which confirms that the worst 𝜃 occurs at (3.27). Program 3.19 declares the sym-
bols as the real type in lines 12 and 13. As Δt and 𝑤max are always positive real
values, the real and the positive flags are set to True. This helps to simplify the
square root of square variables, for example,

√
x2, into x instead of |x|.

Declaring the symbol as real simplifies the rest of the symbolic calculation com-
pared to the computation time when the symbol type is complex. Unlike MATLAB,
𝜕J∕𝜕ux(0) and 𝜕J∕𝜕uy(0) at the end of Program 3.19 do not call simplify() in the
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Sympy. The MATLAB simplify() cannot make the derivative results simpler and
gives up on the tasks quickly. On the other hand, simplify() in the Sympy takes a
long computation without any meaningful simplification.

1 import numpy as np
2 import m a t p l o t l i b . p y p l o t as p l t
3 from m a t p l o t l i b import path
4
5 from sympy import symbols , s i m p l i f y , expand
6 from sympy import cos , s in , s q r t , d i f f
7 from sympy . u t i l i t i e s . lambdi fy import l ambdi fy
8
9 import t ime

10 from s c i p y . o p t i m i z e import minimize , f s o l v e
11
12 ux0 , uy0 , ux1 , uy1 , wx0 , wy0 , wx1 , wy1 = symbols ( ’ ux0 uy0 ux1 uy1

wx0 wy0 wx1 wy1 ’ , r e a l=True )
13 xa0 , ya0 , vxa0 , vya0 , xt0 , yt0 , th = symbols ( ’ xa0 ya0 vxa0 vya0 x t 0

y t 0 th ’ , r e a l=True )
14
15 Dt , w_max = symbols ( ’ Dt w_max ’ , r e a l=True , p o s i t i v e=True )
16
17 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 # Dynamics
19 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 Fa = np . eye ( 4 )+np . v s t a c k ( ( np . h s t a c k ( ( np . z e r o s ( ( 2 , 2 ) ) , Dt∗np . eye ( 2 ) ) )

, np . z e r o s ( ( 2 , 4 ) ) ) )
21 Ga = np . v s t a c k ( ( np . z e r o s ( ( 2 , 2 ) ) , Dt∗np . eye ( 2 ) ) )
22 Ca = np . eye ( 2 , 4 )
23
24 Ft = np . eye ( 2 )
25 Gt = Dt∗np . eye ( 2 )
26 Ct = np . eye ( 2 )
27
28 # c o n t r o l i n p u t s
29 u_vec_0 = np . a r r a y ( [ [ ux0 ] , [ uy0 ] ] )
30 w_vec_0 = np . a r r a y ( [ [ wx0 ] , [ wy0 ] ] )
31 u_vec_1 = np . a r r a y ( [ [ ux1 ] , [ uy1 ] ] )
32 w_vec_1 = np . a r r a y ( [ [ wx1 ] , [ wy1 ] ] )
33
34 # i n i t i a l c o n d i t i o n s
35 xa_vec_0 = np . a r r a y ( [ [ xa0 ] , [ ya0 ] , [ vxa0 ] , [ vya0 ] ] )
36 x t _ v e c _ 0 = np . a r r a y ( [ [ x t 0 ] , [ y t 0 ] ] )
37
38 # s t a t e p r o p a g a t i o n
39 xa_k_plus_1 = Fa@xa_vec_0 + Ga@u_vec_0
40 xa_k_plus_2 = Fa@xa_k_plus_1 + Ga@u_vec_1 ;
41 y_k_plus_1 = Ca@xa_k_plus_1 ;
42 y_k_plus_2 = Ca@xa_k_plus_2 ;
43
44 x t _ k _ p l u s _ 1 = Ft@xt_vec_0 + Gt@w_vec_0
45 x t _ k _ p l u s _ 2 = Ft@xt_k_plus_1 + Gt@w_vec_1
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46 z_k_plus_1 = Ct@xt_k_plus_1
47 z_k_plus_2 = Ct@xt_k_plus_2
48
49 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 # c a l c u l a t e t h e c o s t f u n c t i o n w i t h t h e w o r s t t a r g e t manoeuvre
51 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 xa1 = y_k_plus_1 [ 0 ] [ 0 ]
53 ya1 = y_k_plus_1 [ 1 ] [ 0 ]
54 xa2 = y_k_plus_2 [ 0 ] [ 0 ]
55 ya2 = y_k_plus_2 [ 1 ] [ 0 ]
56
57 r_T0A1 = np . a r r a y ( [ [ x t 0 − xa1 ] , [ y t 0 − ya1 ] ] )
58 D e l t a _ r t _ 0 = np . a r r a y ( [ [ Dt∗w_max∗ cos ( th ) ] , [ Dt∗w_max∗ s i n ( th ) ] ] )
59 r_A2A1 = np . a r r a y ( [ [ xa2−xa1 ] , [ ya2−ya1 ] ] )
60
61 e l l _ 1 = r_T0A1 + D e l t a _ r t _ 0
62 e l l _ 1 _ s q u a r e d = ( e l l _ 1 . T@ell_1 ) [ 0 ] [ 0 ]
63
64 r_T1A2 = e l l _ 1 − r_A2A1
65 e l l _ 2 _ s q u a r e d = ( r_T1A2 . T@r_T1A2 ) [ 0 ] [ 0 ]
66
67 J _ c o s t _ w o r s t = expand ( e l l _ 1 _ s q u a r e d + e l l _ 2 _ s q u a r e d )
68 dJdth_wors t = expand ( s i m p l i f y ( d i f f ( J _ c o s t _ w o r s t , th ) ) )
69 c o e f f _ c o s = dJdth_wors t . c o e f f ( cos ( th ) )
70 c o e f f _ s i n = dJdth_wors t . c o e f f ( s i n ( th ) )
71
72 # c a l c u l a t e t h e w o r s t c o a s t f u n c t i o n
73 a _ t r i a n g l e = −c o e f f _ c o s # do not f o r g e t t h e minus s i g n
74 b _ t r i a n g l e = c o e f f _ s i n
75 c _ t r i a n g l e = s i m p l i f y ( s q r t ( a _ t r i a n g l e ∗∗2 + b _ t r i a n g l e ∗∗2) )
76 check_a_b = f l o a t ( expand (− a _ t r i a n g l e ∗ cos ( th )+b _ t r i a n g l e ∗ s i n ( th )−

dJdth_wors t ) )
77 print ( f ’ Check [−a∗ cos ( th )+b∗ s i n ( th ) ]−dJdth_wors t equal t o zero ? {

check_a_b : 4 . 2 f } ’ )
78
79 J _ c o s t _ w o r s t = J _ c o s t _ w o r s t . subs ( s i n ( th ) , a _ t r i a n g l e / c _ t r i a n g l e )
80 J _ c o s t _ w o r s t = J _ c o s t _ w o r s t . subs ( cos ( th ) , b _ t r i a n g l e / c _ t r i a n g l e )
81
82 dJdux0 = d i f f ( J _ c o s t _ w o r s t , ux0 )
83 dJduy0 = d i f f ( J _ c o s t _ w o r s t , uy0 )
84
85 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 # e v a l u a t e t h e c o s t f u n c t i o n f o r t e s t s c e n a r i o v a l u e s
87 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88
89 # i n i t i a l t a r g e t p o s i t i o n
90 x t 0 _ v = (2∗np . random . rand ( 1 ) −1)∗200∗0+150 # [m]
91 y t 0 _ v = (2∗np . random . rand ( 1 ) −1)∗200∗0 # [m]
92
93 # i n i t i a l uav p o s i t i o n
94 xa0_v = (2∗np . random . rand ( 1 ) −1)∗100∗0 # [m]
95 ya0_v = (2∗np . random . rand ( 1 ) −1)∗100∗0 # [m]
96
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97 # i n i t i a l uav v e l o c i t y
98 tha0 = np . random . rand ( 1 ) ∗2∗np . p i ∗0 # [ radian ]
99 c u r r e n t _ s p e e d = 25 # [m/ s ]

100 vxa0_v = c u r r e n t _ s p e e d ∗np . cos ( tha0 )
101 vya0_v = c u r r e n t _ s p e e d ∗np . s i n ( tha0 )
102
103 # uav minimum & maximum s p e e d
104 v_min = 20 # [m/ s ]
105 v_max = 40 # [m/ s ]
106
107 # t i m e i n t e r v a l f o r t h e c o s t a p p r o x i m a t i o n
108 Dt_v = 2 # [ s e c o n d s ]
109
110 # t a r g e t maximum s p e e d
111 w_max_v = 60∗1 e3 /3600 # [m/ s ]
112
113 # uav f l y i n g path c u r v a t u r e c o n s t r a i n t
114 r_min = 400 # [m]
115
116 # c o n t r o l a c c e l e r a t i o n i n p u t magnitude c o n s t r a i n t s
117 ux_max = 10 # [m/ s ^ 2 ]
118 ux_min = −1 # [m/ s ^ 2 ]
119 uy_max = 2 # [m/ s ^ 2 ]
120 uy_min = −2 # [m/ s ^ 2 ]
121
122 ux_max_org = ux_max
123 ux_min_org = ux_min
124 uy_max_org = uy_max
125 uy_min_org = uy_min
126
127 # e v a l u a t e t h e c o s t f u n c t i o n o v e r t h e ux0−uy0 c o n t r o l i n p u t
128 num_idx = 20
129 num_jdx = 19
130 min_max_u_plot = 20
131 u x _ a l l = np . l i n s p a c e (−min_max_u_plot , min_max_u_plot , num_idx )
132 u y _ a l l = np . l i n s p a c e (−min_max_u_plot , min_max_u_plot , num_jdx )
133
134 v a l u e s = [ ( Dt , Dt_v ) , ( xa0 , xa0_v [ 0 ] ) , ( ya0 , ya0_v [ 0 ] ) , ( vxa0 , vxa0_v

[ 0 ] ) , ( vya0 , vya0_v [ 0 ] ) ,
135 ( xt0 , x t 0 _ v [ 0 ] ) , ( yt0 , y t 0 _ v [ 0 ] ) , ( w_max , w_max_v ) ]
136
137 J_cos t_uxuy0 = J _ c o s t _ w o r s t . subs ( v a l u e s )
138 J _ c o s t _ u x u y 0 _ f u n c t i o n = lambdi fy ( [ ux0 , uy0 ] , J_cos t_uxuy0 )
139
140 UX0 , UY0=np . meshgrid ( u x _ a l l , u y _ a l l )
141 J _ c o s t _ w o r s t _ v a l=J _ c o s t _ u x u y 0 _ f u n c t i o n (UX0 , UY0)
142
143 # r e p l a c e s y m b o l s by v a l u e s
144 Dt = Dt_v
145 xa0 = xa0_v [ 0 ]
146 ya0 = ya0_v [ 0 ]
147 vxa0 = vxa0_v [ 0 ]
148 vya0 = vya0_v [ 0 ]
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149 x t 0 = x t 0 _ v [ 0 ]
150 y t 0 = y t 0 _ v [ 0 ]
151 w_max = w_max_v

Program 3.19 (Python) The cost function, J̄, with the worst target manoeuvre

Program 3.19 uses subs() to substitute values into the symbols in sympy. After the
substitutions, the result is still a symbol, unlike floating-point values in MATLAB.
Consider the following Python commands:

1 In [ 1 ] : from sympy import symbols
2 In [ 2 ] : x=symbols ( ’ x ’ )
3 In [ 3 ] : f =(x +4)∗∗2

To evaluate ‘f ’ at ‘x=3.0’

1 In [ 4 ] : z=f . subs ( [ ( x , 3 . 0 ) ] )
2 In [ 5 ] : z2 =49.0
3 In [ 6 ] : whos
4 V a r i a b l e Type Data / I n f o
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 f Pow ( x + 4 ) ∗∗2
7 symbols function <function symbols a t 0 x 7 f 1 2 f 6 c 3 2 1 6 0 >
8 x Symbol x
9 z F l o a t 49 .000000000000000

10 z2 f l o a t 4 9 . 0

The result, z, is not a usual floating-point value but a symbolic float type, while z2
is a floating-point value. To convert the symbolic value to the floating-point value,
use float() as follows:

1 In [ 7 ] : z= f l o a t ( z )

Or, make a function using lambdify() as follows:

1 In [ 8 ] : from sympy . u t i l i t i e s . lambdi fy import lambdi fy
2 In [ 9 ] : g=lambdi fy ( [ x ] , f )
3 In [ 1 0 ] : z=g ( 3 . 0 )
4 In [ 1 1 ] : whos
5 V a r i a b l e Type Data / I n f o
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 f Pow ( x + 4 ) ∗∗2
8 g function <function _ l a m b d i f y g e n e r a t e d a t 0

x7f12daa26ee0 >
9 lambdi fy function <function l ambdi fy a t 0 x 7 f 1 2 f 6 d c 1 8 2 0 >

10 symbols function <function symbols a t 0 x 7 f 1 2 f 6 c 3 2 1 6 0 >
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11 x Symbol x
12 z f l o a t 4 9 . 0
13 z2 f l o a t 4 9 . 0

This is how the function is constructed and called on lines 138 and 141 of
Program 3.19.

3.2.2.6 Optimal Control Input
The next step is to calculate the control input to minimize the worst cost, and it
completes the min–max optimization problem. Assume that 𝑣x and 𝑣y at k = 0
satisfy the magnitude constraint. We check the velocity at k = 1 as follows:

𝑣
2
x(1) + 𝑣2

y(1)
(Δt)2 =

[
𝑣x(0)
Δt

+ ux(0)
]2

+
[
𝑣y(0)
Δt

+ uy(0)
]2

= r2
𝑣

(3.29)

It is the equation of a circle centred at (−𝑣x(0)∕Δt,−𝑣y(0)∕Δt) in the ux(0)–uy(0)
domain. The radius, r

𝑣
, is between 𝑣min ∕Δt and 𝑣max ∕Δt.

Figure 3.18 shows the two circles indicating the circular constraints. In the
figure, the control input magnitude given by (3.14) is the dashed line box.
The curvature limitation given by (3.16) adds two line restrictions parallel to uB

x (0)
indicated in the figure.

Curvature
constraints lines

Control input
magnitude constraint circles

ϕ

uy
B (0)

ux
B (0)uy (0)

ux (0)

vx (0)
– –,

ΔtΔt

vy (0)

Figure 3.18 Feasible control input space indicated by the painted region.
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As 𝑣x(0) is strictly greater than zero, i.e. safe for division, the following line
equation is obtained:

uy(0) = mcvtux(0) ± ccvt (3.30)

where

mcvt = tan𝜙 =
𝑣y(0)
𝑣x(0)

, ccvt =
1

rmin 𝑣x(0)
[
𝑣x(0)2 + 𝑣y(0)2]3∕2

For 𝑣x(0) closer to zero implying 𝑣y(0) away from zero, the lines are

ux(0) = ncvtuy(0) ∓ dcvt

where

ncvt = tan𝜓 =
𝑣x(0)
𝑣y(0)

= tan
(
𝜋

2
− 𝜙

)
, dcvt =

1
rmin 𝑣y(0)

[
𝑣x(0)2 + 𝑣y(0)2]3∕2

Including all restrictions, the feasible input space is indicated by the darker
(or gray) region in Figure 3.18.

For the following example values: 𝑣min = 20 m/s, 𝑣max = 40 m/s, uxmin
=

−1 m/s2, uxmax
= 10 m/s2, uymin

= −2 m/s2, uymax
= 2 m/s2, rmin = 400 m,

𝑤max = 60 km/h, Δt = 2 s, xa(0) = −84.86 m, ya(0) = 66.72 m, 𝑣x(0) = 19.12 m/s,
𝑣y(0) = −16.10 m/s, xt(0) = 50.15 m, and yt(0) = 125.02 m, the control input
constraints over the cost function are shown in Figure 3.19. For this example
set, the control input magnitude constraints, the curvature constraints, and the
maximum velocity constraint are all active, and the minimum occurs at the
boundary of the intersection area of the constraints.
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Target location direction
Curvature constraints
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Control input acceleration bound

Figure 3.19 Calculation examples of feasible control input space.
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In Program 3.17, we obtain the cost function derivative for the control input. In
addition, we would try to solve

dJ
dux(0)

= 0, dJ
duy(0)

= 0

by the following MATLAB command:

>> s o l v e ( [ dJdux0==0,dJduy0 ==0] ,[ ux0 uy0 ] )

The equations are complex and less likely would have analytical solutions except
for trivial cases. After all variables in the first derivatives are set to the values given
in Program 3.18 using eval() as follows:

>> s o l v e ( [ eval ( dJdux0 ) ==0, eval ( dJduy0 ) ==0] ,[ ux0 uy0 ] )

It returns the solution solved numerically. Then, we check the solution if it is inside
the constraints. For the given configurations of the aircraft and the target, the opti-
mal control would be inside the constraints for only a few limited cases. It is a waste
of computing resources as the results are mostly rejected.

Instead, we assume that the solution would be outside of the constraints. If
the solution is outside the bounds of the constraint, the minimum occurs at the
boundary. Sampling points along the boundary of the constraints, calculating
the cost values for the points, and selecting the control input corresponding to
the minimum cost value among the samples. The next step is checking if the
assumption is correct. Sampling points inside the constraints, calculating the cost
values, finding the minimum cost, and checking if it is smaller than the minimum
cost found at the boundary. If it is smaller than the one at the boundary, the global
minimum occurs inside the boundary. Then, we solve the optimization problem
with the initial guess that we just found. Otherwise, the minimum found on the
boundary is optimal. For example, the optimal input occurs at the boundary in a
scenario shown in Figure 3.20.

For solving the optimization problem inside the boundary, we do not need
to consider the constraint as long as the minimization algorithm converges to
the minimum inside. We guarantee convergence based on the convexity of the
cost function. The convexity of the cost function is checked numerically by
constructing the Hessian matrix as follows:

H[ux(0),uy(0)] =

⎡⎢⎢⎢⎢⎣

𝜕
2J
𝜕u2

x

𝜕
2J

𝜕ux𝜕uy

𝜕
2J

𝜕ux𝜕uy

𝜕
2J
𝜕u2

y

⎤⎥⎥⎥⎥⎦

|||||||||| ux = ux(0)
uy = uy(0)

(3.31)

calculating the eigenvalues and inspecting if the minimum eigenvalue is positive.
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Figure 3.20 Optimal control input for the target tracking.

3.3 Tracking Algorithm Implementation

Algorithm 3.1 summarizes the tracking algorithm. The gradient descent method
with Armijo’s rule in Algorithm 3.2 solves the minimization problem when the
solution is inside the boundary. The gradient vector, gk, determines the search
direction in the gradient descent, and Armijo’s rule by adjusting 𝛼amj determines
how far it moves in the search direction. We discuss step-by-step implementations
of the tracking algorithm in MATLAB and Python.

3.3.1 Constraints

3.3.1.1 Minimum Turn Radius Constraints
The curvature constraint in (3.30) given in the global frame becomes a lot simpler
if it is in the body frame. As shown in Figure 3.18, the UAV velocity is aligned with
the x-body axis and 𝑣B

y (0) = 0. The curvature lines in the body frame become

uB
y = ±cB

cvt

as the slope is zero in the body frame, where

cB
cvt =

1
rmin 𝑣

B
x (0)

{[
𝑣

B
x (0)

]2 + 0
}3∕2

=
[
𝑣

B
x (0)

]2

rmin

If cB
cvt is smaller than uymax

or uymin
, the corresponding bound is replaced by cB

cvt. In
the program, we assume that the UAV is symmetric along the x-body axis, hence,
uymin

= −uymax
.
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Algorithm 3.1 Optimal target tracking control input
1: Initialize the prediction interval and the UAV/target constraints

Δt, 𝑣max, 𝑣min, uxmax
, uxmin

, uymax
, uymin

, rmin, 𝑤max

2: Set the initial position/velocity of UAV and the target position

xa(0), ya(0), 𝑣x(0), 𝑣y(0), xt(0), yt(0)

3: Calculate 𝑣s(0) =
√
𝑣x(0)2 + 𝑣y(0)2

4: Calculate ucvt = 𝑣s(0)∕rmin
5: if ucvt < uymax

or ucvt < |uymin
| then replace

uymax
= ucvt, uymin

= −ucvt

6: end if
7: if 𝑣s(0)∕Δt + uxmax

> 𝑣max∕Δt then replace umax bound by the arc given by the
larger circle intersecting with the control constraint box in Figure 3.18.

8: end if
9: if 𝑣s(0)∕Δt + uxmin

< 𝑣min∕Δt then replace umin bound by the arc given by the
smaller circle intersecting with the control constraint box in Figure 3.18.

10: end if
11: Sample points along the boundary of the constraints, and calculate the cost for

the samples; Find the optimal control corresponding to the minimum cost,
J∗bd, among the samples

12: Sample points inside the boundary of the constraints and calculate the cost for
the samples; Find the optimal control corresponding to the minimum cost, J∗in,
among the samples

13: if J∗bd ≤ J∗in then
14: ux(0) and uy(0) corresponding to J∗bd are optimal
15: else
16: Let ux(0) and uy(0) corresponding to J∗in be the initial guess of the mini-

mization of (3.26), where the sine and the cosine functions are substituted by
(3.28). The optimization can be solved using the gradient descent method with
Armijo’s rule (Armijo, 1966) summarized in Algorithm 3.2.

17: end if

Programs 3.20 and 3.21 are part of the tracking algorithm implementation of
the algorithm in MATLAB and Python, respectively. Considering the input con-
straints in the body frame simplifies the calculations, and later, they can transform
into ones in the global frame when it needs them to be expressed in the global
coordinates.
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Algorithm 3.2 The gradient descent with Armijo’s rule
1: Initialize uk = [ux(0), uy(0)]T , samj = 0.01, 𝛽amj = 0.5, 𝜎amj = 10−5,Δu = 10 and
𝜖 = 10−6. Be careful as the solution may diverge if samj is set to a large value.

2: while Δu > 𝜖 do
3: Calculate J̄(uk) given in (3.26)
4: gk ← 𝜕J̄∕𝜕uk
5: 𝛼amj ← samj
6: uk+1 ← uk + 𝛼amjgk
7: while J̄(uk+1) > J̄(uk) + 𝜎amj𝛼amj

(
gT

k gk
)

do
8: 𝛼amj ← 𝛽amj𝛼amj
9: uk+1 ← uk + 𝛼amjgk

10: end while
11: Δu ← ‖uk − uk+1‖
12: uk ← uk+1
13: 𝛼amj ← samj
14: end while

3.3.1.2 Velocity Constraints
Two circles in Figure 3.21 represent the maximum and the minimum velocity con-
straints given in (3.29) equal to the following:[

𝑣
B
x (0)
Δt

+ uB
x (0)

]2

+ [uB
y (0)]2 = r2

𝑣

in the body frame. For the larger circle, i.e. the maximum velocity constraint at
uB

x (0) = uxmax
and uB

y (0) = 0 provides[
𝑣

B
x (0)
Δt

+ uxmax

]2

>

(
𝑣max

Δt

)2
⇒

||𝑣||
Δt

+ uxmax
>
𝑣max

Δt

where ||𝑣|| is the current speed of the UAV. If the inequality is true, the maximum
velocity circle passes through the control magnitude constraint as illustrated in
Figure 3.21. The xB coordinate of the square dot is smaller than the one of the star
dot. Therefore, the arc of the larger circle in the figure becomes the xB-direction
maximum control input bound.

To find the xB-coordinate of the square dot, establish the following equation:[ ||𝑣||
Δt

+ uxmax

]2

+ u2
ymax

=
(
𝑣max

Δt

)2

where uxmax
is not the original maximum control input in the xB-direction but

the xB-direction control input corresponding to uymax
illustrated in Figure 3.22.

The purpose of finding this value is to sample the dots along the arc as shown
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Curvature
constraints lines

Velocity
constraint circles

uy
B (0)

ux
B (0)

, 0–

ux
B (0)

uxmax

Δt

Figure 3.21 Maximum velocity constraints in the body frame.
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uxmaxu y m
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Figure 3.22 Maximum velocity arc sampling.
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in the figure. Expand the equation

u2
xmax

+ 2
||𝑣||
Δt

uxmax
+

[(||𝑣||
Δt

)2

+ u2
ymax

−
(
𝑣max

Δt

)2
]
= 0

and solve for uxmax

uxmax
= − ||𝑣||

Δt
±
√(

𝑣max

Δt

)2
− u2

ymax
(3.32)

where we take the larger uxmax
. A similar derivation is performed for a smaller cir-

cle, i.e. the minimum velocity constraint. Programs 3.20 and 3.21 implement these,
where the direction cosine matrix to transform between the global and the body
frames are calculated as follows:[

ux(k)
uy(k)

]
=
[

cos𝜙 − sin𝜙
sin𝜙 cos𝜙

] [
uB

x (k)
uB

y (k)

]

1 %% Optimal c o n t r o l i n p u t
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % f i n d o p t i m a l c o n t r o l
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5
6 % c h e c k t h e c u r v a t u r e c o n s t r a i n t i n t h e body frame
7 u _ c u r v a t u r e = c u r r e n t _ s p e e d ^2/ r_min ;
8 i f u _ c u r v a t u r e < uy_max
9 % a c t i v e c o n s t r a i n t & r e p l a c e t h e uy bound

10 uy_max = u _ c u r v a t u r e ;
11 uy_min = −u _ c u r v a t u r e ;
12 end
13
14 % a c t i v e t h e maximum v e l o c i t y c o n s t r a i n t
15 vmax_act ive = f a l s e ;
16 i f c u r r e n t _ s p e e d / Dt+ux_max > v_max / Dt
17 ux_max = −c u r r e n t _ s p e e d / Dt+sqrt ( ( v_max / Dt ) ^2−uy_max ^ 2 ) ;
18 vmax_act ive = t r u e ;
19 end
20
21 % a c t i v e t h e minimum v e l o c i t y c o n s t r a i n t
22 v m i n _ a c t i v e = f a l s e ;
23 i f c u r r e n t _ s p e e d / Dt+ux_min < v_min / Dt
24 ux_min = −c u r r e n t _ s p e e d / Dt+sqrt ( ( v_min / Dt ) ^2−uy_max ^ 2 ) ;
25 v m i n _ a c t i v e = t r u e ;
26 end
27
28 t h _ f l i g h t = atan2 ( vya0 , vxa0 ) ;
29 dcm_from_body_to_global = [ cos ( t h _ f l i g h t ) −sin ( t h _ f l i g h t ) ; sin (

t h _ f l i g h t ) cos ( t h _ f l i g h t ) ] ;

Program 3.20 (MATLAB) Turn-radius and velocity constraints in the body frame
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1 ## Optimal c o n t r o l i n p u t
2 #−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 # f i n d o p t i m a l c o n t r o l
4 #−−−−−−−−−−−−−−−−−−−−−−−−−−−
5
6 # c h e c k t h e c u r v a t u r e c o n s t r a i n t i n t h e body frame
7 u _ c u r v a t u r e = c u r r e n t _ s p e e d ∗∗2/ r_min
8 i f u _ c u r v a t u r e < uy_max :
9 # a c t i v e c o n s t r a i n t & r e p l a c e t h e uy bound

10 uy_max = u _ c u r v a t u r e
11 uy_min = −u _ c u r v a t u r e
12
13 # a c t i v e t h e maximum v e l o c i t y c o n s t r a i n t
14 vmax_act ive = F a l s e
15 i f c u r r e n t _ s p e e d / Dt+ux_max > v_max / Dt :
16 ux_max = −c u r r e n t _ s p e e d / Dt+np . s q r t ( ( v_max / Dt )∗∗2−uy_max∗∗2)
17 vmax_act ive = True
18
19 # a c t i v e t h e minimum v e l o c i t y c o n s t r a i n t
20 v m i n _ a c t i v e = F a l s e
21 i f c u r r e n t _ s p e e d / Dt+ux_min < v_min / Dt :
22 ux_min = −c u r r e n t _ s p e e d / Dt+np . s q r t ( ( v_min / Dt )∗∗2−uy_max∗∗2)
23 v m i n _ a c t i v e = True
24
25 t h _ f l i g h t = np . a r c t a n 2 ( vya0 , vxa0 )
26 dcm_from_body_to_global = np . a r r a y ( [
27 [ np . cos ( t h _ f l i g h t ) , −np . s i n ( t h _ f l i g h t ) ] ,
28 [ np . s i n ( t h _ f l i g h t ) , np . cos ( t h _ f l i g h t ) ] ] )

Program 3.21 (Python) Turn-radius and velocity constraints in the body frame

3.3.2 Optimal Solution

3.3.2.1 Control Input Sampling
Depending on which constraints are active, the feasible control input region
has four possible shapes shown in Figure 3.23. Each case has four sides, and
they are called the upper, the lower, the left, and the right sides, respectively, in
Programs 3.22 and 3.23. Sampling along the straight lines are trivial. Figure 3.22
indicates the samples along the arc. Whenever the maximum velocity constraint
is active, uxmax

is set to the uB
x coordinates corresponding to uymin

in Figure 3.22.
The uB

x -coordinates of the samples on the arc are between uxmax
and the point

where the arc and uB
x axis meet. The uB

x coordinate of the point, where the arc
meets uB

x axis, satisfies the equation for the circle with uB
y = 0, i.e.

uB
x =

𝑣max − ||𝑣||
Δt

(3.33)
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Figure 3.23 Four possible shapes of the feasible control input set: (a) the maximum and
the minimum velocity constraints active; (b) the maximum velocity constraint active; (c)
the minimum velocity constraint active; (d) no velocity constraints active.

The following equation from the circle equation obtains the uB
y -coordinates of the

samples:

uysample
= ±

√(
𝑣max

Δt

)2
−
[ ||𝑣||
Δt

+ uB
xsample

]2

where uB
xsample

is the sample from the interval in [uxmax
in (3.32), uB

x in (3.33)]. The
samples for the minimum velocity arc are obtained similarly.

We evaluate the cost function corresponding to samples along the boundary and
find its minimum. The control input is transformed to the coordinates in the global
frame using the direction cosine matrix. These are implemented in Programs 3.22
and 3.23.
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1 % ( c o n t i n u e )
2 % f i n d t h e o p t i m a l s o l u t i o n a l o n g t h e boundary
3 n_sample = 5 0 ;
4 ux_sample = l inspace ( ux_min , ux_max , n_sample ) ;
5 u p p e r _ l i n e = [ ux_sample ; ones ( 1 , n_sample ) ∗uy_max ] ;
6 l o w e r _ l i n e = [ ux_sample ; ones ( 1 , n_sample ) ∗uy_min ] ;
7
8 i f vmax_act ive
9 ux_sample = l inspace ( ux_max , ( v_max−c u r r e n t _ s p e e d ) / Dt , n_sample ) ;

10 uy_sample = sqrt ( ( v_max / Dt ) ^2−( ux_sample+c u r r e n t _ s p e e d / Dt ) . ^ 2 ) ;
11 r i g h t _ l i n e = [ ux_sample ux_sample ( end−1: −1:1) ; uy_sample −

uy_sample ( end−1: −1:1) ] ;
12 e l s e
13 uy_sample = l inspace ( uy_min , uy_max , n_sample ) ;
14 r i g h t _ l i n e = [ ones ( 1 , n_sample ) ∗ux_max ; uy_sample ] ;
15 end
16
17 i f v m i n _ a c t i v e
18 ux_sample = l inspace ( ux_min , ( v_min−c u r r e n t _ s p e e d ) / Dt , n_sample ) ;
19 uy_sample = sqrt ( ( v_min / Dt ) ^2−( ux_sample+c u r r e n t _ s p e e d / Dt ) . ^ 2 ) ;
20 l e f t _ l i n e = [ ux_sample ux_sample ( end−1: −1:1) ; uy_sample −

uy_sample ( end−1: −1:1) ] ;
21 e l s e
22 uy_sample = l inspace ( uy_min , uy_max , n_sample ) ;
23 l e f t _ l i n e = [ ones ( 1 , n_sample ) ∗ux_min ; uy_sample ] ;
24 end
25
26 a l l _ s a m p l e s _ i n _ b o d y _ f r a m e = [ u p p e r _ l i n e l o w e r _ l i n e r i g h t _ l i n e

l e f t _ l i n e ] ;
27 a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e = dcm_from_body_to_global∗

a l l _ s a m p l e s _ i n _ b o d y _ f r a m e ;
28 ux0_sample = a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e ( 1 , : ) ;
29 uy0_sample = a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e ( 2 , : ) ;
30
31 J_cos t_uxuy0 = eval ( J _ c o s t _ w o r s t ) ;
32 J _ c o s t _ u x u y 0 _ f u n c t i o n = matlabFunct ion ( J_cos t_uxuy0 ) ;
33 J _ v a l = J _ c o s t _ u x u y 0 _ f u n c t i o n ( a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e ( 1 , : ) ,

a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e ( 2 , : ) ) ;
34
35 [ J _ v a l _ o p t , o p t _ i d x ]=min( J _ v a l ) ;
36 uxy_opt_body = a l l _ s a m p l e s _ i n _ b o d y _ f r a m e ( : , o p t _ i d x ) ;
37 u x y _ o p t _ g l o b a l = a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e ( : , o p t _ i d x ) ;

Program 3.22 (MATLAB) Sampling along the control boundary

1 # c o n t i n u e
2 # f i n d t h e o p t i m a l s o l u t i o n a l o n g t h e boundary
3 n_sample = 50
4 ux_sample = np . l i n s p a c e ( ux_min , ux_max , n_sample )
5 u p p e r _ l i n e = np . v s t a c k ( ( ux_sample , np . ones ( n_sample ) ∗uy_max ) )
6 l o w e r _ l i n e = np . v s t a c k ( ( ux_sample , np . ones ( n_sample ) ∗uy_min ) )
7
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8 i f vmax_act ive :
9 ux_sample = np . l i n s p a c e ( ux_max , ( v_max−c u r r e n t _ s p e e d ) / Dt ,

n_sample )
10 uy_sample = np . s q r t ( ( v_max / Dt ) ∗∗2−( ux_sample+c u r r e n t _ s p e e d / Dt )

∗∗2)
11 r i g h t _ l i n e = np . v s t a c k ( ( np . h s t a c k ( ( ux_sample , np . f l i p ( ux_sample )

) ) , np . h s t a c k ( ( uy_sample ,−np . f l i p ( uy_sample ) ) ) ) )
12 e l s e :
13 uy_sample = np . l i n s p a c e ( uy_min , uy_max , n_sample )
14 r i g h t _ l i n e = np . v s t a c k ( ( np . ones ( n_sample ) ∗ux_max , uy_sample ) )
15
16 i f v m i n _ a c t i v e :
17 ux_sample = np . l i n s p a c e ( ux_min , ( v_min−c u r r e n t _ s p e e d ) / Dt ,

n_sample )
18 uy_sample = np . s q r t ( ( v_min / Dt ) ∗∗2−( ux_sample+c u r r e n t _ s p e e d / Dt )

∗∗2)
19 l e f t _ l i n e = np . v s t a c k ( ( np . h s t a c k ( ( ux_sample , np . f l i p ( ux_sample ) )

) , np . h s t a c k ( ( uy_sample ,−1∗np . f l i p ( uy_sample ) ) ) ) )
20 e l s e :
21 uy_sample = np . l i n s p a c e ( uy_min , uy_max , n_sample )
22 l e f t _ l i n e = np . v s t a c k ( ( np . ones ( n_sample ) ∗ux_min , uy_sample ) )
23
24 a l l _ s a m p l e s _ i n _ b o d y _ f r a m e = np . h s t ack ( ( upper_ l ine , l o w e r _ l i n e ,

r i g h t _ l i n e , l e f t _ l i n e ) )
25 a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e =

dcm_from_body_to_global@all_samples_in_body_frame
26 ux0_sample = a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e [ 0 , : ]
27 uy0_sample = a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e [ 1 , : ]
28 J _ v a l = J _ c o s t _ u x u y 0 _ f u n c t i o n ( ux0_sample , uy0_sample )
29
30 J _ v a l _ o p t = J _ v a l . min ( )
31 o p t _ i d x = J _ v a l . argmin ( )
32 uxy_opt_body = a l l _ s a m p l e s _ i n _ b o d y _ f r a m e [ : , o p t _ i d x ]
33 u x y _ o p t _ g l o b a l = a l l _ s a m p l e s _ i n _ g l o b a l _ f r a m e [ : , o p t _ i d x ]

Program 3.23 (Python) Sampling along the control boundary

3.3.2.2 Inside the Constraints
If the minimum of the cost function occurs inside the constraints, there are values
of the cost function smaller than the minimum value found on the boundary.
To check if the minimum is inside the boundary, we generate samples inside the
constraints, calculate the cost function values for the samples, and compare the
values with the minimum found on the boundary.

A polygon to describe the feasible control set must be defined. Both MAT-
LAB and Python have polygon functions to describe polygons and check
the points if they are inside or outside of polygons. The following MATLAB
commands create the polygon corresponding to arbitrary generated 10 points.
From the 10 points, the centre of the points is calculated. Construct a vector from
the centre to each of 10 points. The angles of the vectors from the horizontal
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axis are calculated. Then, the points are ordered by the magnitude of the angles.
Finally, the first point is added at the end of the array to define the polygon as the
polygon must be closed to return to the first point.

1 % matlab
2 p o l y g o n _ p o i n t s = randn ( 2 , 1 0 ) ;
3 p o l y g o n _ c e n t e r = mean( p o lygon_points , 2 ) ;
4 p c _ v e c t o r = p ol y g on_p oints −p o l y g o n _ c e n t e r ;
5 th_pc = atan2 ( p c _ v e c t o r ( 2 , : ) , p c _ v e c t o r ( 1 , : ) ) ;
6 [ ~ , idx_pc ] = sort ( th_pc ) ;
7 p o l y g o n _ p o i n t s = p o l y g o n _ p o i n t s ( : , idx_pc ) ;
8 p o l y g o n _ p o i n t s = [ p o l y g o n _ p o i n t s p o l y g o n _ p o i n t s ( : , 1 ) ] ;
9 f igure ;

10 plot ( p o l y g o n _ p o i n t s ( 1 , : ) , p o l y g o n _ p o i n t s ( 2 , : ) , ’ o ’ )
11 hold on
12 plot ( p o l y g o n _ p o i n t s ( 1 , : ) , p o l y g o n _ p o i n t s ( 2 , : ) , ’ r ’ )

In addition, the following is the python script to construct the polygon, where
the path module in matplotlib is used to construct the polygon, which has con-
tains_points() function to check if a point is inside the polygon or not. Unlike
MATLAB, the polygon points do not have to include the same points at the begin-
ning and the end of the array to close the path.

1 # python
2 from m a t p l o t l i b import path
3 p o l y g o n _ p o i n t s = np . random . randn ( 2 , 1 0 )
4 p o l y g o n _ c e n t e r = p o l y g o n _ p o i n t s . mean( axis =1)
5 p c _ v e c t o r = p ol y g on_p oints −p o l y g o n _ c e n t e r [ : , np . newaxis ]
6 th_pc = np . a r c t a n 2 ( p c _ v e c t o r [ 1 , : ] , p c _ v e c t o r [ 0 , : ] )
7 idx_pc = th_pc . a r g s o r t ( )
8 p o l y g o n _ p o i n t s = p o l y g o n _ p o i n t s [ : , idx_pc ]
9 polygon = path . Path ( p o l y g o n _ p o i n t s . t r a n s p o s e ( ) )

10 p l t . plot ( p o l y g o n _ p o i n t s [ 0 , : ] , p o l y g o n _ p o i n t s [ 1 , : ] , ’ o ’ )
11 p l t . plot ( p o l y g o n _ p o i n t s [ 0 , : ] , p o l y g o n _ p o i n t s [ 1 , : ] , ’ r− ’ )

Once random points are generated around the feasible control input sets, they
are checked using inpolygon() in MATLAB or contains_points() in Python as in
Program 3.24 or 3.25.

1 % c o n t i n u e
2 % c h e c k t h e c o s t f u n c t i o n i n s i d e t h e c o n s t r a i n t
3 p o l y g o n _ p o i n t s = [ ux0_sample ( : ) ’ ; uy0_sample ( : ) ’ ] ;
4 p o l y g o n _ c e n t e r = mean( p o lygon_points , 2 ) ;
5 p c _ v e c t o r = p ol y g on_p oints −p o l y g o n _ c e n t e r ;
6 th_pc = atan2 ( p c _ v e c t o r ( 2 , : ) , p c _ v e c t o r ( 1 , : ) ) ;
7 [ ~ , idx_pc ] = sort ( th_pc ) ;
8 p o l y g o n _ p o i n t s = p o l y g o n _ p o i n t s ( : , idx_pc ) ;
9 p o l y g o n _ p o i n t s = [ p o l y g o n _ p o i n t s p o l y g o n _ p o i n t s ( : , 1 ) ] ;
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10
11 n_ins ide_sample = 1 0 0 0 ;
12 x_sample = min( p o l y g o n _ p o i n t s ( 1 , : ) ) + . . .
13 (max( p o l y g o n _ p o i n t s ( 1 , : ) )−min( p o l y g o n _ p o i n t s ( 1 , : ) ) ) ∗rand ( 1 ,

n_ins ide_sample ) ;
14 y_sample = min( p o l y g o n _ p o i n t s ( 2 , : ) ) + . . .
15 (max( p o l y g o n _ p o i n t s ( 2 , : ) )−min( p o l y g o n _ p o i n t s ( 2 , : ) ) ) ∗rand ( 1 ,

n_ins ide_sample ) ;
16
17 [ in , on ] = inpolygon ( x_sample , y_sample , p o l y g o n _ p o i n t s ( 1 , : ) ,

p o l y g o n _ p o i n t s ( 2 , : ) ) ;
18 x_sample = x_sample ( in ) ;
19 y_sample = y_sample ( in ) ;
20 J _ v a l _ i n s i d e = J _ c o s t _ u x u y 0 _ f u n c t i o n ( x_sample , y_sample ) ;
21 J _ v a l _ i n s i d e = J _ v a l _ i n s i d e ( J _ v a l _ i n s i d e < J _ v a l _ o p t ) ;

Program 3.24 (MATLAB) Samples inside the control boundary

1 # c o n t i n u e
2 # c h e c k t h e c o s t f u n c t i o n i n s i d e t h e c o n s t r a i n t
3 p o l y g o n _ p o i n t s = np . v s t a c k ( ( ux0_sample , uy0_sample ) )
4 p o l y g o n _ c e n t e r = p o l y g o n _ p o i n t s . mean ( a x i s =1)
5 p c _ v e c t o r = p ol y g on_p oints −p o l y g o n _ c e n t e r [ : , np . newaxis ]
6 th_pc = np . a r c t a n 2 ( p c _ v e c t o r [ 1 , : ] , p c _ v e c t o r [ 0 , : ] )
7 idx_pc = th_pc . a r g s o r t ( )
8 p o l y g o n _ p o i n t s = p o l y g o n _ p o i n t s [ : , idx_pc ]
9

10 from m a t p l o t l i b import path
11 polygon = path . Path ( p o l y g o n _ p o i n t s . t r a n s p o s e ( ) )
12
13 n_ins ide_sample = 1 0 0 0 ;
14 x_sample = p o l y g o n _ p o i n t s [ 0 , : ] . min ( ) \
15 + ( p o l y g o n _ p o i n t s [ 0 , : ] . max ( )−p o l y g o n _ p o i n t s [ 0 , : ] . min ( ) ) ∗np .

random . rand ( n_ins ide_sample )
16 y_sample = p o l y g o n _ p o i n t s [ 1 , : ] . min ( ) \
17 + ( p o l y g o n _ p o i n t s [ 1 , : ] . max ( )−p o l y g o n _ p o i n t s [ 1 , : ] . min ( ) ) ∗np .

random . rand ( n_ins ide_sample )
18 xy_sample=np . v s t a c k ( ( x_sample , y_sample ) ) . t r a n s p o s e ( )
19
20 i n _ o u t = polygon . c o n t a i n s _ p o i n t s ( xy_sample )
21 x_sample = x_sample [ i n _ o u t ]
22 y_sample = y_sample [ i n _ o u t ]
23 J _ v a l _ i n s i d e = J _ c o s t _ u x u y 0 _ f u n c t i o n ( x_sample , y_sample )
24 J _ v a l _ i n s i d e = J _ v a l _ i n s i d e [ J _ v a l _ i n s i d e < J _ v a l _ o p t ]

Program 3.25 (Python) Sample inside the control boundary

3.3.2.3 Optimal Input
Programs 3.26 and 3.27 solves the optimization problem using three different
methods for the case that the minimum occurs inside the boundary. The following
three methods are implemented to obtain the optimal control inside the boundary:
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● Minimize the cost function, J, in (3.26) using fminunc in MATLAB and
minimize() in Python, which solves the unconstrained minimization problems

● Solve the first-optimality condition, i.e. 𝜕J∕𝜕ux(0) = 0 and 𝜕J∕𝜕uy(0) = 0, using
fsolve() in MATLAB or Python, which seeks the roots of a set of algebraic
equations

● Minimize the cost function, J, in (3.26) using Armijo’s rule given in Algo-
rithm 3.2

Considering that ultimately we implement the algorithm in the on-board com-
puter of an autonomous vehicle, we test further the third implementation as it is
less likely that the minimization or the root-finding functions are available in the
on-board computer.

1 % c o n t i n u e
2 i f ~isempty ( J _ v a l _ i n s i d e )
3 [ J _ v a l _ o p t , min_idx ] = min( J _ v a l _ i n s i d e ) ;
4
5 t i c
6 J_cos t_minimize=@( x ) J _ c o s t _ u x u y 0 _ f u n c t i o n ( x ( 1 ) , x ( 2 ) ) ;
7 u x y _ o p t _ g l o b a l _ 1 = fminunc ( J_cost_minimize , [ ux0_sample ( min_idx )

uy0_sample ( min_idx ) ] ) ;
8 toc
9

10 t i c
11 dJdux0_fun=matlabFunct ion ( eval ( dJdux0 ) ) ;
12 dJduy0_fun=matlabFunct ion ( eval ( dJduy0 ) ) ;
13 dJduxy=@( x ) [ dJdux0_fun ( x ( 1 ) , x ( 2 ) ) ; dJduy0_fun ( x ( 1 ) , x ( 2 ) ) ] ;
14 u x y _ o p t _ g l o b a l _ 2 = f s o l v e ( dJduxy , [ ux0_sample ( min_idx )

uy0_sample ( min_idx ) ] ) ;
15 toc
16
17 t i c
18 s_amj = 0 . 5 ;
19 alpha_amj = s_amj ; beta_amj = 0 . 5 ; sigma_amj = 1e−5;
20 u_xy_current = [ ux0_sample ( min_idx ) uy0_sample ( min_idx ) ] ;
21 J _ c u r r e n t = J_cos t_minimize ( u_xy_current ) ;
22 dJdu = dJduxy ( u_xy_current ) ;
23 while t r u e
24 u_xy_update = u_xy_current − alpha_amj∗dJdu ( : ) ’ ;
25 J_update = J_cos t_minimize ( u_xy_update ) ;
26 i f J_update < ( J _ c u r r e n t + sigma_amj∗alpha_amj∗sum( dJdu . ^ 2 )

)
27 i f norm( u_xy_current−u_xy_update ) <1e−6
28 break
29 end
30 alpha_amj = s_amj ;
31 J _ c u r r e n t = J_cos t_minimize ( u_xy_update ) ;
32 dJdu = dJduxy ( u_xy_update ) ;
33 u_xy_current = u_xy_update ;
34 e l s e
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35 alpha_amj = beta_amj∗alpha_amj ;
36 end
37
38 end
39 toc
40
41 u x y _ o p t _ g l o b a l = u_xy_current ( : ) ;
42 uxy_opt_body = dcm_from_body_to_global ’∗ u x y _ o p t _ g l o b a l ;
43
44 [ u x y _ o p t _ g l o b a l _ 1 ( : ) ’ ;
45 u x y _ o p t _ g l o b a l _ 2 ( : ) ’ ;
46 u x y _ o p t _ g l o b a l ( : ) ’ ]
47
48 end

Program 3.26 (MATLAB) Optimal tracking command solution

1 # c o n t i n u e
2 i f J _ v a l _ i n s i d e . shape [ 0 ] ! = 0 :
3 J _ v a l _ o p t = J _ v a l _ i n s i d e . min ( )
4 min_idx = J _ v a l _ i n s i d e . argmin ( )
5
6 t 0 = time . t ime ( )
7 J_cos t_minimize=lambda x : J _ c o s t _ u x u y 0 _ f u n c t i o n ( x [ 0 ] , x [ 1 ] )
8 s o l _ o p t=minimize ( J_cost_minimize , [ ux0_sample [ min_idx ] ,

uy0_sample [ min_idx ] ] , method= ’BFGS ’ )
9 u x y _ o p t _ g l o b a l _ 1 = s o l _ o p t . x

10 t f = time . t ime ( ) − t 0
11 print ( f ’ minimizat ion : { t f : 1 0 . 8 f } [ s ] \ n ’ )
12
13 t 0 = time . t ime ( )
14 dJdux0_fun = lambdi fy ( [ ux0 , uy0 ] , dJdux0 . subs ( v a l u e s ) )
15 dJduy0_fun = lambdi fy ( [ ux0 , uy0 ] , dJduy0 . subs ( v a l u e s ) )
16 dJduxy=lambda x : np . a r r a y ( [ dJdux0_fun ( x [ 0 ] , x [ 1 ] ) , dJduy0_fun ( x

[ 0 ] , x [ 1 ] ) ] )
17 u x y _ o p t _ g l o b a l _ 2 = f s o l v e ( dJduxy , [ ux0_sample [ min_idx ] ,

uy0_sample [ min_idx ] ] )
18 t f = time . t ime ( ) − t 0
19 print ( f ’ f s o l v e : { t f : 1 0 . 8 f } [ s ] \ n ’ )
20
21 t 0 = time . t ime ( )
22 s_amj = 0 . 0 1
23 alpha_amj = s_amj ; beta_amj = 0 . 5 ; sigma_amj = 1e−5
24 u_xy_current = np . a r r a y ( [ ux0_sample [ min_idx ] , uy0_sample [

min_idx ] ] )
25 J _ c u r r e n t = J_cos t_minimize ( u_xy_current )
26 dJdu = dJduxy ( u_xy_current )
27 while True :
28 u_xy_update = u_xy_current − alpha_amj∗dJdu
29 J_update = J_cos t_minimize ( u_xy_update )
30 i f J_update < ( J _ c u r r e n t + sigma_amj∗alpha_amj∗np . sum ( dJdu

∗∗2) ) :
31 i f np . l i n a l g . norm ( u_xy_current−u_xy_update ) <1e−6:
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32 break
33 alpha_amj = s_amj
34 J _ c u r r e n t = J_cos t_minimize ( u_xy_update )
35 dJdu = dJduxy ( u_xy_update )
36 u_xy_current = u_xy_update
37 e l s e :
38 alpha_amj = beta_amj∗alpha_amj
39
40 t f = time . t ime ( ) − t 0
41 print ( f ’ Gradient Descent with Armijo \ ’ s Rule : { t f : 1 0 . 8 f } [ s ] \ n ’

)
42
43 u x y _ o p t _ g l o b a l = u_xy_current
44 uxy_opt_body = dcm_from_body_to_global . T@uxy_opt_global
45
46 print ( u x y _ o p t _ g l o b a l _ 1 )
47 print ( u x y _ o p t _ g l o b a l _ 2 )
48 print ( u x y _ o p t _ g l o b a l )

Program 3.27 (Python) Optimal tracking command solution

3.3.3 Verification Simulation

The next step in algorithm development is to test the algorithm to verify the design.
There are different levels of verification, which could be flight tests, hardware-in-
the-loop simulations, computer simulations, etc. Zhu et al. (2017) and Chaves et al.
(2018). One of the vital aspects of control algorithm verification is to test the algo-
rithms against various cases, which are not perfectly satisfying all assumptions
made for the algorithm developments. For example, the target tracking algorithm
runs with inaccurate target position knowledge. Or, the maximum target acceler-
ation assumption in the algorithm is overestimated or underestimated of the true
target acceleration bounds.

The following verification is one of the preliminary levels. The only difference
from the assumptions made for the algorithm development is how the target
moves. Instead of the worst movement, the target velocity direction is set to a
random direction with the maximum velocity as follows:

ẋt = 𝑤max cos 𝜃t (3.34)

ẏt = 𝑤max sin 𝜃t (3.35)

where 𝜃t is a random number between 0 and 2𝜋 with the uniform distribution, and
the velocity is updated at every Δt.

In computer simulations, we have the advantage of knowing the full true states.
As the algorithm assumes the worst movement of the target by the random velocity
direction, we would be interested in how the performance varies when the target
has different strategies. The optimal control corresponding to the actual move-
ment of the target is obtained. We compare the control input from the worst-case



�

� �

�

3.3 Tracking Algorithm Implementation 181

assumption-based algorithm with the true optimal control using the following two
measures:

cos 𝜃∗ = u ⋅ u∗||u||||u∗||
Δu∗ = ||u||||u∗||

where u = [ux(0), uy(0)]T is from the optimal tracking algorithm, and
u∗ = [u∗

x (0), u∗
y (0)]T is the true optimal based on the actual target move-

ment. The closer the values of cos 𝜃∗ or Δu∗ to one, the closer the algorithm input
to the true optimal.

Figure 3.24 shows the UAV and the target trajectories for three 20 minute
intervals. The control input in terms of the relative direction and magnitude with
respect to the truth remains close to the true optimal more than 60% of one hour
time interval.
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Figure 3.24 (a–c) Traces of the UAV flight path and of the target for three time intervals,
respectively, and (d) the direction and the magnitude comparison to the true optimal.
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Exercises

Exercise 3.1 Derive the attractive and the repulsive forces by the potential func-
tions, (3.2), in the y direction.

Exercise 3.2 (MATLAB) Construct the sparse matrix in Program 3.3 using the
row and the column numbers for the non-zero elements.

Exercise 3.3 (MATLAB) Convert Program 3.10 to obtain the shortest path by
constructing the graph using the delaunay function.

Exercise 3.4 (Python) Convert Program 3.12 to obtain the shortest path by con-
structing the graph using the voronoi function.

Exercise 3.5 (MATLAB/Python) Implement a resampling method to improve
the optimal path obtained from the graph constructed by the Voronoi or the Delau-
nay function and plot the figures shown in Figure 3.12.

Exercise 3.6 Derive (3.15) from (3.14).

Exercise 3.7 (MATLAB/Python) Obtain (3.27) using symbolic computations
and discuss when a△ and b△ are equal to zero at the same time and how to
prevent it from happening.

Exercise 3.8 (MATLAB/Python) Using the following values: 𝑣min = 20 m/s,
𝑣max = 40 m/s, uxmin

= −1 m/s2, uxmax
= 10 m/s2, uymin

= −2 m/s2, uymax
= 2 m/s2,

rmin = 400 m, 𝑤max = 60 km/h, Δt = 2 s, xa(0) = −74.60 m, ya(0) = 82.68 m,
𝑣x(0) = −16.84 m/s, 𝑣y(0) = −18.48 m/s, xt(0) = 125.89 m, and yt(0) = 162.32 m,
draw Figure 3.19.

Exercise 3.9 (MATLAB/Python) Using (3.31), check the convexity of the cost
function for the values given in Exercise 3.8.

Exercise 3.10 (MATLAB/Python) Simulate the random target movement using
(3.34), test the optimal tracking algorithm, and generate a figure similar to
Figure 3.24.
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4

Biological System Modelling

4.1 Biomolecular Interactions

The genetic information of living organisms resides in deoxyribonucleic acid
(DNA), which is a double-stranded molecule. DNA is composed of a series
of nucleotides, which are sugar-phosphate molecules with nitrogen bases. Part
of DNA includes gene information, and it is transcribed into ribonucleic acid
(RNA) when it is activated by internal and/or external stimuli. RNA is translated
into a protein, which interacts with other proteins or evokes further interactions.
This process illustrated in Figure 4.1 is ubiquitous for all living organisms, and it
is called the central dogma of molecular biology. The interactions are stochastic
spatial-temporal and include non-linear complex feedback loops. Modelling
biomolecular networks becomes a quickly daunting task in dealing with the inter-
actions between hundreds or thousands of different molecular species. It needs
some level of approximation and simplification in the modelling and analysis
depending on the purposes of each study for a particular part of biomolecular
network interactions. Each modelling method has its advantages and limitations.

4.2 Deterministic Modelling

Biomolecular interactions can be modelled as a set of ordinary differential
equations (ODEs) as shown in the ligand–receptor example in Section 1.2. The
interactions are derived from chemical theory or experiments. Some of the
reaction rates in the interactions are directly measured or found by numerical
optimization to fit the model to experimental data. Usually, these experiments are
performed about culture cells, i.e. an isogenic cell population.
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© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling

http://www.wiley.com/go/kim/dynamicmodeling
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DNA

Gene Transcription

Translation

RNA Protein Figure 4.1 Transcription from DNA to RNA
and translation from RNA to protein.

4.2.1 Group of Cells and Multiple Experiments

Cell-to-cell variation is greatly reduced in culture measurements, but the response
is also dependent on environmental conditions. Morohashi et al. (2002) has pre-
sented two categories of the parameters of cell responses: parameters robust to
frequent variations and parameters hypersensitive to uncommon perturbations
(Carlson and Doyle, 2000).

Consider the following ODE:
dx(t)

dt
= f[x(t),pN + vN ,pE + cE + vE] + w(t)

where x(t) is an n-dimensional non-negative real vector, each element of x(t) is
the concentration of a molecular species, t is time, pN is the nominal values of the
kinetic parameters in the model affected by vN , which is the stochastic fluctuation
given by the zero mean random constant with unknown distribution, varies from
cell to cell, pE is the nominal values of the adaptive kinetic parameters affected
by cE, which varies with environmental changes such as different nutrition con-
centrations and temperature, and vE is the fluctuation in the adaptive parameters,
which is the zero-mean random constant and its distribution is unknown.

vN and vE are independent of each other and exist always. w(t) is the process
noise, i.e. unmodelled dynamics, which is the zero-mean Gaussian white noise.
In addition, f(⋅, ⋅, ⋅) is a non-linear function in general. After dividing the param-
eters into two types, we test whether the kinetic model is robust for a range of
perturbations or not and whether the adaptive parameters change appropriately
with the environmental changes (Morohashi et al., 2002).

Consider that the k-number of isogenic cells are observed in the same condition
and the kinetics for each cell is given by

dx1(t)
dt

= f[x1(t),pN + vN1
,pE + cE + vE1

] + w1(t) (4.1a)

dx2(t)
dt

= f[x2(t),pN + vN2
,pE + cE + vE2

] + w2(t) (4.1b)

⋮

dxk(t)
dt

= f[xk(t),pN + vNk
,pE + cE + vEk

] + wk(t) (4.1c)
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The resulting time histories, x1(t), x2(t), …, xk(t), would not be very different from
each other as all the kinetics describe the same type of cells in the same environ-
ment. Hence, the time history of xi(t) for i = 1, 3,… , k is written as

xi(t) = x̄(t) + 𝛿xi(t) (4.2)

where x̄(t) is the average equal to [
∑k

i=1 xi(t)]∕k and 𝛿x(t) is small compared to x̄(t).
Take the Taylor series expansion of (4.1) up to the first-order terms,

dxi(t)
dt

≈ f[x̄(t),pN ,pE + cE] +
𝜕f[x(t),pN ,pE + cE]

𝜕x

|||||x=x̄(t)
𝛿xi(t)

+
𝜕f[x̄(t),p,pE + cE]

𝜕p
||||p=pN

vNi
+
𝜕f[x̄(t),pN ,p]

𝜕p

|||||p=pE+cE

vEi
+ wi(t)

for i = 1, 2,… , k. The average of the time derivatives is

d[
∑k

i=1 xi(t)]∕k
dt

= dx̄(t)
dt

≈ f[x̄(t),pN ,pE + cE] (4.3)

where

1
k

k∑
i=1
𝛿xi(t) → 0, 1

k

k∑
i=1

vNi
→ 0, 1

k

k∑
i=1

vEi
→ 0, 1

k

k∑
i=1

wi(t) → 0

as k increases. The number of cells in one cell culture, k, is typically around several
million (Papadimitriou and Lelkes, 1993).

The main assumptions for the model, (4.3), to be valid are as follows:

● the same type of cells are in a culture, i.e. f(⋅, ⋅, ⋅) and pN are the same for all the
cells in the culture

● the cells are in the same environment, pE and cE are the same for all the cells in
the culture

● the unmodelled dynamics, wi(t) for i = 1, 2,… , k, is the same zero-mean
Gaussian process for all the cells in the culture

As long as ‖𝛿xi(t)‖ remains small, the error of the average model converges
to zero, i.e. the average model represents the behaviour of every single cell well.
However, if the effect of noise is significant to make the trajectories of the differ-
ential equations different from each other, then the estimated parameters for the
kinetics from culture measurements could be very different from the actual values
in each cell. In that case, the correct values in a cell cannot be extrapolated from the
parameters identified from the population or culture measurements and to iden-
tify the correct values separate measurements for each cell has to be obtained
(Elowitz et al., 2002, Colman-Lerner et al., 2005). A single cell modelling is con-
sidered later in this chapter.
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With the assumption that the states of most of the cells in an isogenic population
are close to each other, the environmental effect, cE, can be identified by exposing
the same culture to different environmental conditions. When L-different envi-
ronmental conditions are applied to subgroups of the same culture, the kinetics
for the subgroups are given by

dx̄1(t)
dt

= f[x̄1(t),pN ,pE + cE1
] (4.4a)

dx̄2(t)
dt

= f[x̄2(t),pN ,pE + cE2
] (4.4b)

⋮ (4.4c)

dx̄L(t)
dt

= f[x̄L(t),pN ,pE + cEL
] (4.4d)

where the initial conditions for each x̄1(t0), x̄2(t0), …, and x̄L(t0) are different from
each other in general.

4.2.1.1 Model Fitting and the Measurements
For each experiment, i = 1, 2,… ,L, finding the unknown model parameters is the
optimization problem given by

Minimize
pN ,pE+cEi

J =
r∑

j=1

‖‖‖ȳi(tj) − ỹi(tj)
‖‖‖2

(4.5)

subject to (4.4), where ȳi(tj) and ỹi(tj) are the values from the model and the
post-processed measurement at the time tj, respectively, and r is the number of
measurement for each experiment. The measurement before the post-processing,
ỹ∗

i (tj), is given by

ỹ∗
i (tj) = h[x̄i(tj), tj] ≈ 𝛼x̄i(tj)

where h(⋅, ⋅) is an unknown non-linear function and 𝛼, which is frequently
unknown, is constant. To obtain the linear approximation from the non-linear
function requires a significant amount of time and effort. Through experiment
preparation steps, cell sampling methods, post data processing, it could be
considered that the measurements, ỹ∗

i (tj), are linearly proportional, 𝛼, to the
quantity that we want to measure, x̄i(tj). For the measurement, ỹ∗

i (tj), to have a
linear relationship with the molecular concentration, x̄i(tj), careful experiment
design, preparation, and completion are required.

We rarely have molecular concentrations measured directly by counting the
number of molecules. In a Western blot, the size and colour intensity indicate
molecular concentration (Pediredla and Seelamantula, 2011). In the fluorescence
resonance energy transfer (FRET), the colour represents the interactions of
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proteins (Sekar and Periasamy, 2003). Frequently, the size and the colour intensity
would be normalized by the maximum size or the maximum intensity. In these
cases, the post-processing measurement is given by

ȳi(tj) =
ȳ∗

i (tj)
maxr

s=1 ȳ∗
i (ts)

where the measurement is normalized by the maximum measurement value. Or,
given that the measurements reach a steady state, they could be normalized by the
last measurement as follows:

ȳi(tj) =
ȳ∗

i (tj)
ȳ∗

i (tr)

Table 4.1 shows the data extracted from the experiments in Yanofsky and Horn
(1994). The experiments have shown the adaptive responses of the bacteria,
Escherichia coli, to the three different environmental conditions. E. coli, in
short, is one of the model organisms widely used in molecular biology to study
biomolecular interactions. E. coli is a bacteria found in diverse environments,
including the intestine of humans. The cylindrical cells grow from 1 to 7 μm in
length and have a doubling time of about 20 minutes (Osella et al., 2014).

The procedures and the nature of biological measurements are mostly very
different from the ones in engineering systems. The enzyme measurements
for each experiment in Table 4.1, for example, are not from the same cells.
A sample is taken from the same culture every 30 minutes or so and frozen. Each
frozen sample is thawed and suspended before the enzyme activity is measured
fluorometrically. During the procedures, the cell would grow and divide. Some

Table 4.1 E. coli enzyme responses for three different environmental Conditions.

Experiment A Experiment B Experiment C

Time Active Time Active Time Active
(min) Enzyme (a.u.) (min) Enzyme (a.u.) (min) Enzyme (a.u.)

0 25 0 0 0 0
20 657 29 1370 29 754
38 617 60 1362 58 888
59 618 89 1291 88 763
89 577 179 913 118 704
119 577 178 683
149 567

a) (a.u.), (arbitrary units).
Source: The data are extracted from the figures in Yanofsky and Horn (1994).
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Figure 4.2 E. coli tryptophan measurements normalized by the steady state.

proper considerations are applied to normalize these effects on the concentration
measurements. See the detailed descriptions of the a priori data processing in
Yanofsky and Horn (1994).

As the unit for the active enzyme is arbitrary, which implies that 𝛼 is unknown,
the values in Table 4.1 do not have immediate physical meanings, and we cannot
compare them directly. For example, we cannot conclude that the enzyme activity
in Experiment B is higher than the one in Experiment A by comparing the val-
ues in the table. They would be normalized by the last value assuming that all
three reach the steady states. Figure 4.2 shows the normalized time histories. In
the figure, their dynamic responses show the differences from each other in the
rising time, the overshoot, and the converging time.

Solving the optimization problem identifies the model parameters in the model
fitting. The parameters describing the dynamical interactions, pN and pE + cEj

,
are not distinguishable, however, from single experiment or multiple experiments
in the same environment. We do not know which parameters are for adapting
to environmental changes. Also, pE and cEj

cannot be separable from a single
or multiple experiments in the same environment. Separate identification of the
three-parameter types would be possible from multiple experiments for different
environmental conditions as the data given in Table 4.1.

4.2.1.2 Finding Adaptive Parameters
After solving the optimization problem for each experimental set, the optimal
parameter combination fitting each experimental data is obtained. Denote the



�

� �

�

4.2 Deterministic Modelling 191

optimal parameter set as 𝒫i = {p1, p2,… , pk} for i = 1, 2,… ,L, where pj for
j = 1, 2,… , k includes all elements in the vector parameters, pN and pE + cEi

.
However, we do not know whether pj belongs to pN or pE + wEi

. The average,
mj, and the variance, 𝜎2

j , for each parameter, pj, are calculated from the L-set
of measurements obtained from the L different environment conditions for
j = 1, 2,… , k. Noise, 𝜂j, and noise strength, 𝜑j, for each parameter are defined
by Kærn et al. (2005):

𝜂j =
𝜎j|mj| (4.6a)

𝜑j =
𝜎

2
j|mj| (4.6b)

for j = 1, 2,… , k. As pj in pN fluctuates only by the stochastic cell to cell variations,
the noises are not stronger than pj in pE + cEj

, which adjusts the responses to adapt
to environmental changes. Hence, the parameters in pE + cEj

would change signif-
icantly and the variance would be large. By inspecting the magnitudes of the noise
and/or the noise strength, we could distinguish if pj belongs to the non-adaptive
parameters, pN , or the adaptive parameters, pE + cEj

.
In Section 4.2.2, we apply the procedures described above to biomolecular net-

works in bacteria.

4.2.2 E. coli Tryptophan Regulation Model

Tryptophan is an essential amino acid for E. coli. The tryptophan operon is a cluster
of the genes in the DNA molecules and is transcribed by an mRNAP (messenger
RNA Polymerase) to produce tryptophan (Alberts et al., 2015). The tryptophan
operon regulation mechanisms for E. coli have been studied intensively, and sev-
eral important feedback mechanisms are revealed. Yanofsky and Horn (1994) have
presented the experimental results for E. coli tryptophan regulation mechanism
to external changes. The tryptophan responses are measured indirectly via the
concentration changes of the active enzyme related to the tryptophan changes as
shown in Table 4.1.

Santillán and Mackey (2001) have presented a mathematical model for the tryp-
tophan regulation mechanisms, which include the repression, feedback enzyme
inhibition, and transcription attenuation. The model is given in four non-linear
ODEs. The first equation is for the kinetics of the free operon, OF(t), given by

dOF (t)
dt

= Kr
Kr+RA[T(t)]

h(O,OF ,P) − 𝜇OF(t) (4.7)

where

h(O,OF ,P) = 𝜇O − kpPOF(t) + kpPOF(t − 𝜏p)e−𝜇𝜏p

RA[T(t)] =
R T(t)

Kt + T(t)
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O is the total operon concentration, OF(t) is the free operon concentration, P is
the mRNAP concentration to bind and transcribe the free operon, T(t) is the tryp-
tophan concentration, Kr is the repression equilibrium constant, 𝜇 is the growth
rate of the cell, kp is the DNA-mRNAP isomerization rate, 𝜏p is the time taking
that mRNAP binding the DNA moves away and frees the operon, RA[T(t)] is the
active repressor, R is the total repressor concentration, and Kt is the rate equilib-
rium constant between the total repressor and the active repressor.

RA[T(t)] has a common structure in many biomolecular models. Consider
enzyme (E), substrate (S), enzyme–substrate (ES) complex, and protein (P)
interactions given by Alberts et al. (2015)

E + S
kon−−⇀↽−−
koff

ES
kcat−−−→E + P (4.8)

The speed of the protein production, 𝑣, is

𝑣 = d[P]
dt

= kcat[ES]

The speed of the ES complex production is
d[ES]

dt
= kon[E][S] − koff[ES] − −kcat[ES]

and E = E0 − ES, where E0 is the total enzyme. Assume that [ES] reaches the
steady state faster than the other reactions and

d[ES]
dt

≈ 0 ⇒ [ES]ss =
kon

koff + kcat
[E][S] = 1

Km

(
[E0] − [ES]ss

)
[S]

Solve for the steady-state ES complex concentration, [ES]ss,

[ES]ss =
[E0][S]

Km + [S]
Hence, the protein production speed is given by

𝑣 =
kcat[E0][S]
Km + [S]

=
𝑣max[S]

Km + [S]

where 𝑣max = kcat[E0], and it is called the Michaelis–Menten equation. Several
observations on this equation are as follows:

● when [S]= 0, 𝑣 = 0
● when [S] ≪ Km, 𝑣 is linearly proportional to [S], i.e. 𝑣 ≈ 𝑣max[S]∕Km
● when [S]= km, 𝑣 is the half of 𝑣max
● when [S] ≫ Km, 𝑣 is equal to 𝑣max

The same interpretation can be made for RA[T(t)].
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The second equation of the model is for the kinetics of free mRNA
concentration. The free mRNA, MF(t), is produced by the mRNAP, P, binding to
the genes and transcribing the free tryptophan operon, OF(t).

dMF(t)
dt

= kpPOF(t − 𝜏m)e−𝜇𝜏m
[
1 − b

(
1 − e−T(t)∕c)]

− k
𝜌
𝜌

[
MF(t) − MF(t − 𝜏𝜌)e−𝜇𝜏𝜌

]
−
(

kdD + 𝜇
)

MF(t)
(4.9)

where MF(t) is free mRNA concentration, 𝜏m is the time taking that mRNA pro-
duces after mRNAP bound to the DNA, b and c are the constants for the transcrip-
tional attenuation, k

𝜌
is the mRNA-ribosome isomerization rate, 𝜌 is the ribosomal

concentration, 𝜏
𝜌

is the time taking that ribosome binds to mRNA and initiates
translation, kd is the mRNA destroying rate, and D is the mRNA destroying enzyme
concentration.

The third equation is for the kinetics of the enzyme produced by the mRNA,
MF(t), given by

dE(t)
dt

= 1
2

k
𝜌
𝜌MF(t − 𝜏e)e−𝜇𝜏e − (𝛾 + 𝜇)E(t) (4.10)

where E(t) is the total enzyme concentration, 𝜏e is a ribosome binding rate delay
for the enzyme, and 𝛾 is the enzymatic degradation rate constant.

The last equation is for the kinetics of the tryptophan production, T(t), given by

dT(t)
dt

= KEA(E,T) −
g T(t)

Kg+T(t)
+ d Text

e+Text[1+T(t)∕f ] − 𝜇T(t) (4.11)

where K is the tryptophan production rate, which is proportional to the active
enzyme concentration, EA(E,T), g is the maximum tryptophan consumption rate,
d, e, and f are the parameters for modelling the external tryptophan uptake rate,
Text is the external tryptophan uptake, and the internal tryptophan consumption
modelled by the Michaelis–Menten type equation with the constant Kg.

The active enzyme concentration, EA(E,T), is given by

EA(E,T) =
KnH

i

KnH
i + TnH (t)

E(t) (4.12)

where Ki is the equilibrium constant for the Trp feedback inhibition of anthrani-
late synthase reaction, which is modelled by the Hill equation with the coefficient,
nH (Alberts et al., 2015). The Hill equation is another common model structure in
biomolecular system modelling. The tryptophan reduces the production rate of the
active enzyme, which is from the fact that two tryptophans attach to and inacti-
vate the enzyme. nH is called the Hill coefficient to represent cooperative bindings.
For example, when two molecules bind to another molecule at the same time,
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nH is equal to 2. As the cooperative level increases, the rate reduces or increases,
depending on the sign in front of the Hill equation, faster than the non-cooperative
case, i.e. nH = 1, or the lower cooperative cases. For enzyme inhibition with two
tryptophans, the bindings do not occur simultaneously when nH is between 1
and 2. Detailed model explanations are found in Santillán and Mackey (2001).

4.2.2.1 Steady-State and Dependant Parameters
The steady-state concentration is for all derivatives equal to zero. However, the
algebraic equation from (4.11) for the steady state of T(t) is as follows:

0 = KEA(Ē, T̄) −
g T̄

Kg + T̄
− 𝜇T̄ (4.13)

has the TnH terms in ĒA = EA(Ē, T̄), where the external tryptophan is equal to zero,
Ē is the steady-state concentration of E(t), and T̄ is the steady-state concentration
of T(t). No analytic solution exists for this case in general. In the supplementary
material of Santillán and Mackey (2001), they have argued that the active enzyme,
EA, at the steady state, i.e. ĒA, is half of the amount of the steady-state enzyme, Ē.
From the Hill equation in (4.12), the steady state of T, i.e. T̄, must be

T̄ = Ki

so that ĒA is equal to Ē∕2. Substitute T̄ = Ki into (4.13) and solve for K

K =
2(Ḡ + 𝜇Ki)

Ē
where

Ḡ =
gKi

Kg + Ki

The maximum internal tryptophan consumption rate, g, is given by

g =
Tcr(Ki + Kg)

Ki

where Tcr is the steady-state internal tryptophan consumption rate to be estimated.
The algebraic equation from (4.10) for the steady state of E(t) is given by

0 = 1
2

k
𝜌
𝜌M̄Fe−𝜇𝜏e − (𝛾 + 𝜇) Ē

and the steady state, Ē, is equal to

Ē =
k
𝜌
𝜌M̄Fe−𝜇𝜏e

2 (𝛾 + 𝜇)
After the steady state, no time delay effect occurs, i.e. M̄(t)F equal to M̄F(t − 𝜏e).
The steady-state condition for Mf (t) is

0 = kpPŌFe−𝜇𝜏m
[
1 − b

(
1 − e−Ki∕c)] − k

𝜌
𝜌 (1 − e−𝜇𝜏𝜌 ) M̄F −

(
kdD + 𝜇

)
M̄F
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and M̄F is given by

M̄F =
kpPŌFe−𝜇𝜏m

[
1 − b

(
1 − e−Ki∕c)]

k
𝜌
𝜌 (1 − e−𝜇𝜏𝜌 ) + kdD + 𝜇

The steady state of OF is

0 =
Kr

Kr + RKi∕(Kt + Ki)
(
𝜇O − kpPŌF + kpPŌFe−𝜇𝜏p

)
− 𝜇ŌF

and

ŌF =
Kr𝜇O

KrkpP(1 − e−𝜇𝜏p ) + 𝜇
[
Kr + RKi∕(Kt + Ki)

]
The other dependent parameters in the model are as follows:

k
𝜌
= 1
𝜌𝜏

𝜌

, kp = 1
𝜏pP

, kdD =
𝜌 k

𝜌

30
, Kg =

T̄
20

and

Kr =
k−r

k+r
, Ki =

k−i

k+i
, Kt =

k−t

k+t

4.2.2.2 Padé Approximation of Time-Delay
There are four time delay terms in the differential equations. Solving delay differ-
ential equations is expensive compared to the ones without time delay. As delayed
states affect the derivatives of states, solvers must deal with possible discontinuities
in the derivatives and need to access the past states from the memory.

We are to search the best parameter set for the delay differential equations and
the experimental data by solving the differential equations many times through an
optimization process to be explained later. Short computation time for solving the
delay differential equation for each parameter set is preferable over the accuracy
of the solutions as long as they are in the tolerable range.

Consider the following delay equation

y(t) = x(t − 𝜏)

for t ∈ [0,∞), where y(t) is the delay of x(t) by 𝜏, which is strictly positive, and
x(t − 𝜏) = 0 for t < 𝜏. Take the Laplace transform,

Y (s) = e−𝜏sX(s) (4.14)

where X(s) and Y (s) are the Laplace transform of x(t) and y(t), respectively. The
time delay becomes the exponential function in the Laplace domain, s. Substitute
s = j𝜔, where j =

√
−1 and 𝜔 ∈ [0,∞), into the exponential function and apply

Euler’s formula

e−j𝜏𝜔 = cos(𝜏𝜔) − j sin(𝜏𝜔)
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The time delay does not affect the magnitude of the signal as the magnitude of
time delay is always 1 for all frequencies, 𝜔 ∈ [0,∞), but only affects the phase of
the signal.

For the relatively small 𝜏 and X(s) in the low-frequency ranges, the following
Padé approximation replaces the exponential function (Franklin et al., 2015):

e−𝜏s ≈
1 − (𝜏s)∕2 + (𝜏s)2∕12
1 + (𝜏s)∕2 + (𝜏s)2∕12

(4.15)

which is (p, q) = (2, 2) Padé approximation, where p is the order of the polynomial
in the numerator and q is the order of the polynomial in the denominator. For
𝜏 = 1.32 minutes, which would be twice the longest time delay in Table 4.2, the
phase angle comparison between (2, 2)-Padé approximation and the exponential
function is shown in Figure 4.3. The phase angles are matched well to each other
up to 2 rad/min for 𝜏 = 1.32 minutes.

4.2.2.3 State-Space Realization
There is no direct way to implement the transfer functions on the computer using
elementary operations such as summation and multiplication. The state-space
form is the realization of the transfer function as it is the first-order differential
equation to be solved by the elementary operations.

For the realization, we use one of the properties of the Laplace transform. The
differentiation of functions in the time domain and the corresponding Laplace
transform satisfy the following equation:

sY (s) − y(0) =
∫

t=∞

t=0
e−stẏ(t)dt
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Figure 4.3 Comparison phase angles of (2,2)-Padé approximation and e−𝜏s.
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We can show the following relation using the equation recursively:

snY (s) − sn−1y(0) − · · · − s
dn−2y(0)

dtn−2 −
dn−1y(0)

dtn−1 =
∫

t=∞

t=0
e−st dny(t)

dtn dt

Setting all the initial conditions to zero simply results in

snY (s) =
∫

t=∞

t=0
e−st dny(t)

dtn dt

Substitute the Padé approximation, (4.15), into (4.14)

Y (s) =
1 − (𝜏s)∕2 + (𝜏s)2∕12
1 + (𝜏s)∕2 + (𝜏s)2∕12

X(s)

Rearrange it

Y (s) =
[
1 − (𝜏s)∕2 + (𝜏s)2∕12

]
Z(s)

where

Z(s) = 1
1 + (𝜏s)∕2 + (𝜏s)2∕12

X(s)

Multiply both sides of the equation between Z(s) and X(s) by the denominator.[
1 + (𝜏s)∕2 + (𝜏s)2∕12

]
Z(s) = X(s)

Assuming all initial conditions are zero, the corresponding differential equation is
given by

z + 𝜏

2
ż + 𝜏

2

12
z̈ = x

Define the state vector, z,

z =
[

z
ż

]
Take the time derivative

ż =

[
0 1

−12
𝜏2 −6

𝜏

]
z +

[
0

12
𝜏2

]
x = Az + Bx

The output equation from the differential equation for y(t) and z(t) is

y = z − 𝜏

2
ż + 𝜏

2

12
z̈ = z − 𝜏

2
ż +

(
x − z − 𝜏

2
ż
)
= −𝜏 ż + x

=
[
0 −𝜏

]
z + x = Cz + Dx

In MATLAB and scipy in Python, tf2ss() returns the state-space form for the
given transfer function. Running the following in MATLAB

1 >> tau = 1 . 3 2 ;
2 >> num = [ tau ^2/12 −tau /2 1 ] ;
3 >> den = [ tau ^2/12 tau /2 1 ] ;
4 >> [A, B , C ,D] = t f 2 s s (num, den )
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or the following in Python

1 In [ 1 ] : from s c i p y . s i g n a l import t f 2 s s
2 In [ 2 ] : tau =1.32
3 In [ 3 ] : num=[ tau ∗∗2/12 , −tau / 2 , 1 ]
4 In [ 4 ] : den=[ tau ∗∗2/12 , tau / 2 , 1 ]
5 In [ 5 ] : A, B , C ,D= t f 2 s s (num, den )

returns

A =
[
−4.54 −6.89

1 0

]
, B =

[
1
0

]
, C =

[
−9.09 0

]
, D = 1

The results are different from what we expect from the state-space form derived
as follows:

A =
[

0 1
−6.89 −4.54

]
, B =

[
0

6.89

]
, C =

[
0 −1.32

]
, D = 1

The state-space form is given by

ż = Az + Bx

y = Cz + Dx

Taking the Laplace transform and finding the relationship between the input x
and the output y, we obtain the transfer function as follows:

sZ(s) = AZ(s) + BX(s) ⇒ Z = (sI − A)−1BX(s)

⇒ Y (s) =
[
C(sI − A)−1B + D

]
X(s)

where z(0) = 𝟎. The transfer function, C(sI − A)−1 + D, is the same for the above
two sets of (A,B,C,D). It implies that there is no unique state-space realization for
a given transfer function. Any linear transformation such as

q = Tz

where T is a non-singular matrix, i.e. T−1 exists, provides the following state-space
form:

q̇ = Tż = T Az + T Bx = T A(T−1Tz) + T Bx

= (T AT−1)q + (T B)x = Ãq + B̃x

y = C(T−1Tz) + Dx = (CT−1)q + Dx = C̃q + Dx

and C̃(sI − Ã)−1B̃ + D provides the same transfer function.
For a transfer function given by

Y (s) =
b0sn + b1sn−1 + · · · + bn−1s + bn

sn + a1sn−1 + · · · + an−1s + an
X(s)
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the controllable canonical form is as follows (The MathWorks, 2021):

A =

⎡⎢⎢⎢⎢⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

−an −an−1 … … −a1

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎦
,

C =
[
bn − anb0 bn−1 − an−1b0 … b2 − a2b0 b1 − a1b0

]
, D = b0

Divide the numerator and the denominator of (2,2)-Padé approximation by 𝜏2∕12

Y (s) =
s2 − (6∕𝜏)s + (12∕𝜏2)
s2 + (6∕𝜏)s + (12∕𝜏2)

X(s)

The controllable canonical form of (2,2) Padé approximation is

A =
[

0 1
−12∕𝜏2 −6∕𝜏

]
, B =

[
0
1

]
, C =

[
0 −12∕𝜏

]
, D = 1

Using this state-space realization, the time delays of OF and MF are implemented.
For example, OF(t − 𝜏p) is obtained by solving the following first-order differential
equation:

żp =
[

0 1
−12∕𝜏2

p −6∕𝜏p

]
zp +

[
0
1

]
OF(t) = A(𝜏p)zp + BpOF(t)

OF(t − 𝜏p) =
[
0 −12∕𝜏p

]
zp + OF(t) = C(𝜏p)zp + DpOF(t)

where zp(0) = 𝟎. Similarly, the realizations for OF(t − 𝜏m), MF(t − 𝜏𝜌), and
MF(t − 𝜏e) are implemented.

Define the state vector for the governing differential equations

x =
[
OF(t) MF(t) E(t) T(t) zT

p zT
m zT

𝜌
zT

e
]T

Programs 4.1 and 4.2 implement the original four non-linear differential equations
for OF , MF , E(t), and T(t) and additional eight linear differential equations for the
four delayed states in MATLAB and Python, respectively.

Line 5 in Program 4.1 and line 7 in Program 4.2 reset negative state values to
zero. All quantities in biological networks are positive values, e.g. molecular con-
centration. Numerical integrators do not concern if the solution includes negative
or positive values. The reset is one of the two safeguards to prevent negative molec-
ular concentrations. Another safeguard at the end of the programs, starting from
line 112 in Program 4.1 and line 121 in Program 4.2, respectively, resets the deriva-
tives of OF(t), MF(t), E(t), and T(t) equal to zero if the current concentrations are
negative to prevent the concentrations decreasing further.
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The functions receive all 23 model parameters. The six dependent parameters,
Ki, Kt, Kr, k

𝜌
, kp, and kdD, are calculated from the provided parameters. As the

steady state of T(t) is equal to Ki, K is calculated accordingly. To calculate K for
T̄ = Ki, Ḡ, and Ē are required. In addition, to calculate Ē, M̄F and ŌF are required.
The functions return dx∕dt as the 12 × 1 column vector.

1 %% S a n t i l l a n ’ s model d e l a y e d d i f f e r e n t i a l e q u a t i o n
2 function dxdt = S a n t i l l a n _ E _ c o l i _ T r y p t o p h a n ( time , s t a t e _ a l l ,

parameters , T_ext )
3
4 s t a t e _ o r g = s t a t e _ a l l ;
5 s t a t e _ a l l ( s t a t e _ a l l < 0 ) = 0 . 0 ;
6
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % U n c e r t a i n p a r a m e t e r s
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 tau_p = parameters ( 1 ) ;
11 tau_m = parameters ( 2 ) ;
12 tau_rho = parameters ( 3 ) ;
13 tau_e = parameters ( 4 ) ;
14 R = parameters ( 5 ) ;
15 n_H = parameters ( 6 ) ;
16 b = parameters ( 7 ) ;
17 e = parameters ( 8 ) ;
18 f = parameters ( 9 ) ;
19 O = parameters ( 1 0 ) ;
20 k_mr = parameters ( 1 1 ) ;
21 k_pr = parameters ( 1 2 ) ;
22 k_mi = parameters ( 1 3 ) ;
23 k_pi = parameters ( 1 4 ) ;
24 k_mt = parameters ( 1 5 ) ;
25 k_pt = parameters ( 1 6 ) ;
26 c = parameters ( 1 7 ) ;
27 d = parameters ( 1 8 ) ;
28 gama = parameters ( 1 9 ) ;
29 T_consume_rate = parameters ( 2 0 ) ;
30 P = parameters ( 2 1 ) ;
31 rho = parameters ( 2 2 ) ;
32 mu = parameters ( 2 3 ) ;
33
34 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 % Dependent v a r i a b l e s
36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 K_i = k_mi / k_pi ;
38 K_t = k_mt / k_pt ;
39 K_r = k_mr / k_pr ;
40
41 k_rho = 1 / ( tau_rho∗ rho ) ;
42 k_p = 1 / ( tau_p∗P ) ;
43 kdD = rho∗k_rho / 3 0 ;
44
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45 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 % Steady− s t a t e
47 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 T_SS = K_i ;
49 K_g = T_SS / 2 0 ;
50 g_SS = T_consume_rate ∗ ( K_i + K_g ) / K_i ;
51 G_SS = g_SS∗K_i / ( K_i+K_g ) ;
52
53 R_A_SS = T_SS / ( T_SS+K_t ) ∗R ;
54 O_F_SS = ( K_r∗mu∗O) / ( K_r∗k_p∗(1−exp(−mu∗ tau_p ) )+mu∗ ( K_r+R_A_SS )

) ;
55 M_F_SS = k_p∗P∗O_F_SS∗exp(−mu∗tau_m ) ∗(1−b∗(1−exp(−K_i / c ) ) ) …
56 / ( k_rho∗ rho∗(1−exp(−mu∗ tau_rho ) )+kdD+mu) ;
57 E_SS = ( k_rho∗ rho∗M_F_SS∗exp(−mu∗ tau_e ) ) / ( 2∗ ( gama+mu) ) ;
58
59 K = 2∗ ( G_SS + mu∗K_i ) / E_SS ;
60
61 % s t a t e
62 O_F = s t a t e _ a l l ( 1 ) ;
63 M_F = s t a t e _ a l l ( 2 ) ;
64 E = s t a t e _ a l l ( 3 ) ;
65 T = s t a t e _ a l l ( 4 ) ;
66
67 % d e l a y e d s t a t e
68 s t a t e _ t a u _ p = s t a t e _ a l l ( 5 : 6 ) ;
69 s ta te_tau_m = s t a t e _ a l l ( 7 : 8 ) ;
70 s t a t e _ t a u _ r h o = s t a t e _ a l l ( 9 : 1 0 ) ;
71 s t a t e _ t a u _ e = s t a t e _ a l l ( 1 1 : 1 2 ) ;
72
73 A_tau_p = [ 0 1 ; −12/ tau_p ^2 −6/ tau_p ] ;
74 A_tau_m = [ 0 1 ; −12/tau_m ^2 −6/tau_m ] ;
75 A_tau_rho = [ 0 1 ; −12/ tau_rho ^2 −6/ tau_rho ] ;
76 A_tau_e = [ 0 1 ; −12/ tau_e ^2 −6/ tau_e ] ;
77 B_tau = [ 0 ; 1 ] ;
78 C_tau_p = [ 0 −12/ tau_p ] ;
79 C_tau_m = [ 0 −12/tau_m ] ;
80 C_tau_rho = [ 0 −12/ tau_rho ] ;
81 C_tau_e = [ 0 −12/ tau_e ] ;
82 D_tau = 1 ;
83
84 % d x d t = Ax + Bu
85 dO_F_tau_p = A_tau_p∗ s t a t e _ t a u _ p ( : ) + B_tau∗O_F ;
86 dO_F_tau_m = A_tau_m∗ s ta te_tau_m ( : ) + B_tau∗O_F ;
87 dM_F_tau_rho = A_tau_rho∗ s t a t e _ t a u _ r h o ( : ) + B_tau∗M_F ;
88 dM_F_tau_e = A_tau_e∗ s t a t e _ t a u _ e ( : ) + B_tau∗M_F ;
89
90 % y = Cx + Du
91 O_F_tau_p = C_tau_p∗ s t a t e _ t a u _ p ( : ) + D_tau∗O_F ;
92 O_F_tau_m = C_tau_m∗ s ta te_tau_m ( : ) + D_tau∗O_F ;
93 M_F_tau_rho = C_tau_rho∗ s t a t e _ t a u _ r h o ( : ) + D_tau∗M_F ;
94 M_F_tau_e = C_tau_e∗ s t a t e _ t a u _ e ( : ) + D_tau∗M_F ;
95
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96 d _ d e l a y _ d t = [ dO_F_tau_p ( : ) ; dO_F_tau_m ( : ) ; dM_F_tau_rho ( : ) ;
dM_F_tau_e ( : ) ] ;

97
98 % a u x i l a r y v a r i a b l e s
99 A_T = b∗(1−exp(−T/ c ) ) ;

100 E_A = K_i ^n_H / ( K_i ^n_H + T^n_H) ∗E ;
101 R_A = T / ( T+K_t ) ∗R ;
102 G = g_SS∗T / ( T+K_g ) ;
103 F = d∗T_ext / ( e + T_ext ∗(1+T/ f ) ) ;
104
105 % k i n e t i c s
106 dOF_dt = K_r / ( K_r + R_A) ∗ (mu∗O − k_p∗P∗ (O_F − O_F_tau_p∗exp(−mu

∗ tau_p ) ) ) − mu∗O_F ;
107 dMF_dt = k_p∗P∗O_F_tau_m∗exp(−mu∗tau_m ) ∗(1−A_T ) …
108 − k_rho∗ rho ∗ (M_F − M_F_tau_rho∗exp(−mu∗ tau_rho ) ) − ( kdD +

mu) ∗M_F ;
109 dE_dt = 0 . 5∗ k_rho∗ rho∗M_F_tau_e∗exp(−mu∗ tau_e ) − ( gama + mu) ∗E ;
110 dT_dt = K∗E_A − G + F − mu∗T ;
111
112 i f s t a t e _ o r g ( 1 ) < 0 && dOF_dt < 0
113 dOF_dt = 0 ;
114 end
115 i f s t a t e _ o r g ( 2 ) < 0 && dMF_dt < 0
116 dMF_dt = 0 ;
117 end
118 i f s t a t e _ o r g ( 3 ) < 0 && dE_dt < 0
119 dE_dt = 0 ;
120 end
121 i f s t a t e _ o r g ( 4 ) < 0 && dT_dt < 0
122 dT_dt = 0 ;
123 end
124
125 dOF_MF_E_T_dt = [ dOF_dt dMF_dt dE_dt dT_dt ] ’ ;
126
127 % r e t u r n a l l s t a t e
128 dxdt = [ dOF_MF_E_T_dt ; d _ d e l a y _ d t ] ;
129
130 end

Program 4.1 (MATLAB) Santillan’s model for E. coli tryptophan operon
regulation with Padé approximation for the time delay

1 import numpy as np
2
3 # S a n t i l l a n ’ s model d e l a y e d d i f f e r e n t i a l e q u a t i o n
4 def S a n t i l l a n _ E _ c o l i _ T r y p t o p h a n ( time , s t a t e _ a l l , parameters , T_ext )

:
5
6 s t a t e _ o r g = s t a t e _ a l l
7 s t a t e _ a l l [ s t a t e _ a l l < 0 ] = 0 . 0
8
9 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 # U n c e r t a i n p a r a m e t e r s
11 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 tau_p = parameters [ 0 ]
13 tau_m = parameters [ 1 ]
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14 tau_rho = parameters [ 2 ]
15 tau_e = parameters [ 3 ]
16 R = parameters [ 4 ]
17 n_H = parameters [ 5 ]
18 b = parameters [ 6 ]
19 e = parameters [ 7 ]
20 f = parameters [ 8 ]
21 O = parameters [ 9 ]
22 k_mr = parameters [ 1 0 ]
23 k_pr = parameters [ 1 1 ]
24 k_mi = parameters [ 1 2 ]
25 k_pi = parameters [ 1 3 ]
26 k_mt = parameters [ 1 4 ]
27 k_pt = parameters [ 1 5 ]
28 c = parameters [ 1 6 ]
29 d = parameters [ 1 7 ]
30 gama = parameters [ 1 8 ]
31 T_consume_rate = parameters [ 1 9 ]
32 P = parameters [ 2 0 ]
33 rho = parameters [ 2 1 ]
34 mu = parameters [ 2 2 ]
35
36 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 # Dependent v a r i a b l e s
38 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 K_i = k_mi / k_pi
40 K_t = k_mt / k_pt
41 K_r = k_mr / k_pr
42
43 k_rho = 1 / ( tau_rho∗ rho )
44 k_p = 1 / ( tau_p∗P )
45 kdD = rho∗k_rho /30
46
47 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 # Steady− s t a t e
49 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 T_SS = K_i
51 K_g = T_SS /20
52 g_SS = T_consume_rate ∗ ( K_i + K_g ) / K_i
53 G_SS = g_SS∗K_i / ( K_i+K_g )
54
55 R_A_SS = T_SS / ( T_SS+K_t ) ∗R
56 O_F_SS = ( K_r∗mu∗O) / ( K_r∗k_p∗(1−np . exp (−mu∗ tau_p ) )+mu∗ ( K_r+

R_A_SS ) )
57 M_F_SS = k_p∗P∗O_F_SS∗np . exp (−mu∗tau_m ) ∗(1−b∗(1−np . exp (−K_i / c ) )

) \
58 / ( k_rho∗ rho∗(1−np . exp (−mu∗ tau_rho ) )+kdD+mu)
59 E_SS = ( k_rho∗ rho∗M_F_SS∗np . exp (−mu∗ tau_e ) ) / ( 2∗ ( gama+mu) )
60
61 K = 2∗ ( G_SS + mu∗K_i ) / E_SS
62
63 # s t a t e
64 O_F = s t a t e _ a l l [ 0 ]
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65 M_F = s t a t e _ a l l [ 1 ]
66 E = s t a t e _ a l l [ 2 ]
67 T = s t a t e _ a l l [ 3 ]
68
69 # d e l a y e d s t a t e
70 s t a t e _ t a u _ p = s t a t e _ a l l [ 4 : 6 ] ; s t a t e _ t a u _ p . r e s i z e ( ( 2 , 1 ) )
71 s ta te_tau_m = s t a t e _ a l l [ 6 : 8 ] ; s ta te_tau_m . r e s i z e ( ( 2 , 1 ) )
72 s t a t e _ t a u _ r h o = s t a t e _ a l l [ 8 : 1 0 ] ; s t a t e _ t a u _ r h o . r e s i z e ( ( 2 , 1 ) )
73 s t a t e _ t a u _ e = s t a t e _ a l l [ 1 0 : : ] ; s t a t e _ t a u _ e . r e s i z e ( ( 2 , 1 ) )
74
75 A_tau_p = np . a r r a y ( [ [ 0 , 1 ] , [−12/ tau_p ∗∗2 , −6/ tau_p ] ] )
76 A_tau_m = np . a r r a y ( [ [ 0 , 1 ] , [−12/ tau_m∗∗2 , −6/tau_m ] ] )
77 A_tau_rho = np . a r r a y ( [ [ 0 , 1 ] , [−12/ tau_rho ∗∗2 , −6/ tau_rho ] ] )
78 A_tau_e = np . a r r a y ( [ [ 0 , 1 ] , [−12/ tau_e ∗∗2 , −6/ tau_e ] ] )
79 B_tau = np . a r r a y ( [ [ 0 ] , [ 1 ] ] )
80 C_tau_p = np . a r r a y ( [ [ 0 , −12/ tau_p ] ] )
81 C_tau_m = np . a r r a y ( [ [ 0 , −12/tau_m ] ] )
82 C_tau_rho = np . a r r a y ( [ [ 0 , −12/ tau_rho ] ] )
83 C_tau_e = np . a r r a y ( [ [ 0 , −12/ tau_e ] ] )
84 D_tau = np . a r r a y ( [ [ 1 ] ] )
85
86 # d x d t = Ax + Bu
87 dO_F_tau_p = A_tau_p@state_tau_p + B_tau@np . a r r a y ( [ [ O_F ] ] )
88 dO_F_tau_m = A_tau_m@state_tau_m + B_tau@np . a r r a y ( [ [ O_F ] ] )
89 dM_F_tau_rho= A_tau_rho@state_tau_rho + B_tau@np . a r r a y ( [ [ M_F ] ] )
90 dM_F_tau_e = A_tau_e@state_tau_e + B_tau@np . a r r a y ( [ [ M_F ] ] )
91
92 # y = Cx + Du
93 O_F_tau_p = C_tau_p@state_tau_p + D_tau@np . a r r a y ( [ [ O_F ] ] )
94 O_F_tau_m = C_tau_m@state_tau_m + D_tau@np . a r r a y ( [ [ O_F ] ] )
95 M_F_tau_rho = C_tau_rho@state_tau_rho+ D_tau@np . a r r a y ( [ [ M_F ] ] )
96 M_F_tau_e = C_tau_e@state_tau_e + D_tau@np . a r r a y ( [ [ M_F ] ] )
97
98 # make 1 x1 a r r a y t o s c a l a r
99 O_F_tau_p=O_F_tau_p [ 0 ] [ 0 ]

100 O_F_tau_m=O_F_tau_m [ 0 ] [ 0 ]
101 M_F_tau_rho=M_F_tau_rho [ 0 ] [ 0 ]
102 M_F_tau_e=M_F_tau_e [ 0 ] [ 0 ]
103
104 d _ d e l a y _ d t = np . v s t a c k ( ( dO_F_tau_p , dO_F_tau_m , dM_F_tau_rho ,

dM_F_tau_e ) )
105 d _ d e l a y _ d t = d _ d e l a y _ d t . squeeze ( )
106
107 # a u x i l a r y v a r i a b l e s
108 A_T = b∗(1−np . exp (−T/ c ) )
109 E_A = K_i∗∗n_H / ( K_i∗∗n_H + T∗∗n_H) ∗E
110 R_A = T / ( T+K_t ) ∗R
111 G = g_SS∗T / ( T+K_g )
112 F = d∗T_ext / ( e + T_ext ∗(1+T/ f ) )
113
114 # k i n e t i c s
115 dOF_dt = K_r / ( K_r + R_A) ∗ (mu∗O − k_p∗P∗ (O_F − O_F_tau_p∗np . exp

(−mu∗ tau_p ) ) ) − mu∗O_F



�

� �

�

4.2 Deterministic Modelling 205

116 dMF_dt = k_p∗P∗O_F_tau_m∗np . exp (−mu∗tau_m ) ∗(1−A_T ) \
117 − k_rho∗ rho ∗ (M_F − M_F_tau_rho∗np . exp (−mu∗ tau_rho ) ) − ( kdD

+ mu) ∗M_F
118 dE_dt = 0 . 5∗ k_rho∗ rho∗M_F_tau_e∗np . exp (−mu∗ tau_e ) − ( gama + mu)

∗E ;
119 dT_dt = K∗E_A − G + F − mu∗T ;
120
121 i f s t a t e _ o r g [ 0 ] < 0 and dOF_dt < 0 :
122 dOF_dt = 0
123 i f s t a t e _ o r g [ 1 ] < 0 and dMF_dt < 0 :
124 dMF_dt = 0 ;
125 i f s t a t e _ o r g [ 2 ] < 0 and dE_dt < 0 :
126 dE_dt = 0
127 i f s t a t e _ o r g [ 3 ] < 0 and dT_dt < 0 :
128 dT_dt = 0
129
130 dOF_MF_E_T_dt = np . a r r a y ( [ dOF_dt , dMF_dt , dE_dt , dT_dt ] )
131
132 # r e t u r n a l l s t a t e
133 dxdt = np . h s t a c k ( ( dOF_MF_E_T_dt , d _ d e l a y _ d t ) )
134
135 return dxdt

Program 4.2 (Python) Santillan’s model for E. coli tryptophan operon regulation
with Padé approximation for the time delay

4.2.2.4 Python
Program 4.2 has several points related to matrix operations in constructing the
state-space form for the delay terms. We introduce one-dimensional arrays in
Python on page 47. Additional cares for matrices in Python stem from how
one-dimensional arrays or scalar values interact with two-dimensional arrays in
Python.

Consider the following Python code generating a 2 × 1 matrix, B:

1 In [ 1 ] : import numpy np
2 In [ 2 ] : B = np . a r r a y ( [ [ 1 ] , [ 2 ] ] )
3 In [ 3 ] : B . shape
4 Out [ 3 ] : ( 2 , 1 )

Multiple B by 3 in four ways:

1 In [ 4 ] : y = B∗3
2 In [ 5 ] : y . shape
3 Out [ 5 ] : ( 2 , 1 )

returns what we expect.

1 In [ 6 ] : y = B@3
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returns the dimension mismatch error. Python interprets B@3 as a 2 ×1 matrix
multiplies a 0 ×0 matrix.

1 In [ 7 ] : y = B@np . a r r a y ( [ [ 3 ] ] )
2 In [ 8 ] : y . shape
3 Out [ 8 ] : ( 2 , 1 )

returns what we expect in the matrix multiplication as Python interprets it as the
product of a 2 ×1 matrix and a 1 × 1 matrix. In addition,

1 In [ 7 ] : y = B@np . a r r a y ( [ 3 ] )
2 In [ 8 ] : y . shape
3 Out [ 8 ] : ( 2 , )

returns the same expected result, but the result is in one-dimensional array. This
will be confusing when it adds to two-dimensional array. For example,

1 In [ 9 ] : y = B@np . a r r a y ( [ 3 ] )
2 In [ 1 0 ] : x = np . a r r a y ( [ [ 1 ] , [ 2 ] ] )
3 In [ 1 1 ] : x+y

does not return the result of [1, 2]T + [3, 6]T = [4, 8]T but each element of x adds
to y as follows:

x + y =
[

1
2

]
+ y =

[
1 + y
2 + y

]
=
[

4 7
5 8

]

Matrix operations in Python: When two-dimensional arrays and one-
dimensional arrays are mixed in the matrix operations in Python, unexpected
results could occur. It is safe to use only two-dimensional arrays in Python
matrix operations.

4.2.2.5 Model Parameter Ranges
All 23 independent parameters are given in Table 4.2, where some are experi-
mentally measured and some are estimated (Santillán and Mackey, 2001). For
the wild-type E. coli, three different nutritional shift experiments are performed
in Yanofsky and Horn (1994):

● Experiment A: Tryptophan → the same media without tryptophan
● Experiment B: Tryptophan, phenylalanine, tyrosine → the same media without

tryptophan. This is considered to be the harshest condition
● Experiment C: Tryptophan, acid-hydrolyzed casein → the same media without

tryptophan
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Table 4.2 The nominal values of the model parameters in the tryptophan regulation
model by Santillán and Mackey (2001).

Unit Value Index Unit Value Index

𝜏p (min) 0.1 1 k−i (1/min) 0.072 13
𝜏m (min) 0.1 2 k+i (μM min)−1 0.0176 14
𝜏
𝜌

(min) 0.05 3 k−t (1/min) 2.1 × 104 15
𝜏e (min) 0.66 4 k+t (μM min)−1 348 16
R (μM) 0.8 5 c (⋅) 0.04 17
nH (⋅) 1.2 6 d (⋅) 23.5 18
b (⋅) 0.85 7 𝛾 (1/min) 0.0 19
e (⋅) 0.9 8 Tcr (μM/min) 22.7 20
f (⋅) 380 9 P (μM) 2.6 21
O (μM) 0.0033 10 𝜌 (μM) 2.9 22
k−r (1/min) 0.012∗ 11 𝜇 (1/min) 0.01 23
k+r (μM min )−1 4.6∗ 12

* One hundred times different values are found in Santillán and Mackey (2001) and its
supplementary material. The ratio, Kr = k−r∕k + r, remains the same for both cases,
however.

Source: Based on Santillán and Mackey (2001).

Table 4.1 provides the time history measurements of the active enzyme concen-
tration for each experiment in Yanofsky and Horn (1994). For three different exper-
imental sets in Table 4.1, to solve the model fitting optimization problem, (4.5), the
search space for the parameters in Table 4.2 needs to be set. A larger search space
would provide parameter combinations that better fit the experimental measure-
ments. However, we potentially have parameter combinations that extend beyond
the range of biologically meaningful values. Before solving the model-fitting opti-
mization problem, we establish the parameter search ranges.

The last four parameters in Table 4.2 have the experimentally known ranges.
Table 4.3 provides the ranges of these four parameters and their uncertainty for-
mula, where 𝛿20, 𝛿21, 𝛿22, and 𝛿23 are the real numbers between −1 and +1.

The uncertainties of the other parameters in Table 4.2 are modelled as follows:

pi = p̄i(1 + 𝛿i)

where pi is the perturbed parameter, p̄i is the nominal value, and 𝛿i is the uncer-
tainty in [−1,+1] for i = 1, 2, 3, 4, 5, 8, 9,… , 18, 19. For i = 6, the uncertainty is
modelled as follows:

nH = 2 + 𝛿6
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Table 4.3 Experimentally known ranges of the parameters from the
Supplementary of (Santillán and Mackey, 2001).

Parameter Unit Uncertainty range Uncertainty formula

Tcr (μM/min) [14.0, 29.0] 21.5 + 7.5𝛿20

P (μM) [2.11, 3.46] 2.785 + 0.675𝛿21

𝜌 (μM) [2.37, 3.87] 3.12 + 0.75𝛿22

𝜇 (μM) [0.01, 0.0418] 0.0259 + 0.0159𝛿23

Source: Based on Santillán and Mackey (2001).

where 𝛿6 ∈ [−1, 1]. The nominal value of the Hill coefficient is equal to 1.2, and
the uncertain range covers from 1 to 3. The lower bound restricts the minimum
Hill coefficient equal to 1. The upper bound allows us to consider up to 2.5 times
larger values from the nominal value. For i = 7, the uncertainty is modelled as
follows:

b = 0.65 + 0.35𝛿7

where 𝛿7 ∈ [−1, 1]. The nominal value of b is equal to 0.85, and the uncertain range
covers from 0.3 to 1.0. The term, b(1 − eT(t)∕c), in (4.9) is the probability of pre-
mature transcription termination. b restricts the maximum possible probability
between 30% and 100%.

The MATLAB and the Python scripts for the uncertainty modelling are imple-
mented in Program 4.3 and 4.4, respectively.

1 %% u n c e r t a i n p a r a m e t e r s
2 %
3 % [ R e f ] M o i s e s S a n t i l l a n and Michael C . Mackey . Dynamic r e g u i a t i o n

o f t h e t r y p t o p h a n
4 % operon : A model ing s t u d y and comparison w i t h e x p e r i m e n t a l data .
5 % P r o c e e d i n g s o f t h e N a t i o n a l Academy o f S c i e n c e s , 9 8 ( 4 ) :1364 −1369 ,

February 2 0 0 1 .
6 %
7 function [ perturbed_model_para ] =

S a n t i l l a n s _ T r y p t o p h a n _ M o d e l _ c o n s t a n t s ( d e l t a )
8
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % U n c e r t a i n r a n g e s w i t h o u t e x p e r i m e n t a l e v i d e n c e s
11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 S a n t i l l a n _ t a u _ p = 0 . 1∗ ( 1 + d e l t a ( 1 ) ) ; % 1
13 S a n t i l l a n _ t a u _ m = 0 . 1∗ ( 1 + d e l t a ( 2 ) ) ; % 2
14 S a n t i l l a n _ t a u _ r h o = 0 . 0 5∗ ( 1 + d e l t a ( 3 ) ) ; % 3
15 S a n t i l l a n _ t a u _ e = 0 . 6 6∗ ( 1 + d e l t a ( 4 ) ) ; % 4
16
17 S a n t i l l a n _ R = 0 . 8∗ ( 1 + d e l t a ( 5 ) ) ; % 5
18
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19 Sant i l l an_n_H = 2 + d e l t a ( 6 ) ; % 6
20 % nominal = 1 . 2
21 % d e l t a _ n o m i n a l = −0.8
22
23 S a n t i l l a n _ b = 0 . 6 5 + 0 . 3 5∗ d e l t a ( 7 ) ; % 7 [ 0 . 3 , 1 . 0 ]
24 % nominal = 0 . 8 5
25 % d e l t a _ n o m i n a l = 0 . 5 7 1 4
26
27 S a n t i l l a n _ e = 0 . 9∗ ( 1 + d e l t a ( 8 ) ) ; % 8
28 S a n t i l l a n _ f = 380∗ (1 + d e l t a ( 9 ) ) ; % 9
29
30 S a n t i l l a n _ O = 3 . 3 2 e−3∗(1 + d e l t a ( 1 0 ) ) ; % 10
31
32 S a n t i l l a n _ k _ m r = 1 . 2 e−2∗(1 + d e l t a ( 1 1 ) ) ; % 11
33 % v a l u e i n [ R e f ] & i t s s u p p l e m e n t a r y i s

d i f f e r e n t
34 S a n t i l l a n _ k _ p r = 4 . 6∗ ( 1 + d e l t a ( 1 2 ) ) ;
35 % v a l u e i n [ R e f ] & i t s s u p p l e m e n t a r y i s

d i f f e r e n t
36 % but t h e r a t i o , kmr / kpr i s t h e same
37
38 S a n t i l l a n _ k _ m i = 7 . 2 e−2∗(1 + d e l t a ( 1 3 ) ) ; % 13
39 S a n t i l l a n _ k _ p i = 1 . 7 6 e−2∗(1 + d e l t a ( 1 4 ) ) ; % 14
40
41 S a n t i l l a n _ k _ m t = 2 . 1 e4 ∗ (1 + d e l t a ( 1 5 ) ) ; % 15
42 S a n t i l l a n _ k _ p t = 348∗ (1 + d e l t a ( 1 6 ) ) ; % 16
43
44 S a n t i l l a n _ c = 4e−2∗(1 + d e l t a ( 1 7 ) ) ; % 17
45 S a n t i l l a n _ d = 2 3 . 5∗ ( 1 + d e l t a ( 1 8 ) ) ; % 18
46
47 S a n t i l l a n _ g a m a = 0 . 0 1∗ ( 1 + d e l t a ( 1 9 ) ) ; % 19
48 % nominal v a l u e 0
49 % d e l t a nominal = −1
50
51 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 % U n c e r t a i n r a n g e s from e x p e r i m e n t s
53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 S a n t i l l a n _ T _ c o n s u m e _ r a t e = 2 1 . 5 + 7 . 5∗ d e l t a ( 2 0 ) ; % 20
55 % range 14 ~ 29
56 % nominal 2 2 . 7 −> 0 . 1 6
57
58 S a n t i l l a n _ P = 2 . 7 8 5 + 0 . 6 7 5∗ d e l t a ( 2 1 ) ;
59 % 21
60 % range 2 . 1 1 − 3 . 4 6 micro−Molar ,
61 % nominal 2 . 6 −> −0.2741
62 % 1250 m o l e c u l e p e r c e l l , c e l l a v e r a g e volume 6 . 0 e−16 − 9 . 8 e−16
63 % l i t e r s , a v e r a g e volumn = ( 6 . 0 + 9 . 8 ) /2∗1 e−16 = 7 . 9 e−16 l i t e r s
64 % 1250 m o l e c u l e = 1 2 5 0 / 6 . 0 2 2 e23 = 2 . 0 7 5 7 e−21 mole
65 % 2 . 0 7 5 7 e −2 1 / 7 . 9 e−16 = 2 . 6 2 e−6 Molar = 2 . 6 2 micro−Molar
66
67 S a n t i l l a n _ r h o = 3 . 1 2 + 0 . 7 5∗ d e l t a ( 2 2 ) ;
68 % 22
69 % range 2 . 3 7 − 3 . 8 7 micro−Molar ,
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70 % nominal 2 . 9 −> −0.2933
71 % 1400 m o l e c u l e p e r c e l l , c e l l a v e r a g e volume 6 . 0 e−16 − 9 . 8 e−16
72 % l i t e r s , a v e r a g e volumn = ( 6 . 0 + 9 . 8 ) /2∗1 e−16 = 7 . 9 e−16 l i t e r s
73 % 1400 m o l e c u l e = 1 4 0 0 / 6 . 0 2 2 e23 = 2 . 3 2 4 8 e−21 mole
74 % 2 . 3 2 4 8 e −2 1 / 7 . 9 e−16 = 2 . 9 4 e−6 Molar = 2 . 9 4 micro−Molar
75
76 Sant i l lan_mu = 0 . 0 2 5 9 + 0 . 0 1 5 9∗ d e l t a ( 2 3 ) ;
77 % 23
78 % range 0 . 0 1 ~ 0 . 0 4 1 8 [ min ^ −1] ,
79 % nominal 0 . 0 1 −> −1
80 % a c t u a l range from 0 . 6 h^−1 ~ 2 . 5 h^−1
81
82 %% r e t u r n v a l u e s
83 num_para = 2 3 ;
84 perturbed_model_para = zeros ( 1 , num_para ) ;
85 perturbed_model_para ( 1 ) = S a n t i l l a n _ t a u _ p ;
86 perturbed_model_para ( 2 ) = S a n t i l l a n _ t a u _ m ;
87 perturbed_model_para ( 3 ) = S a n t i l l a n _ t a u _ r h o ;
88 perturbed_model_para ( 4 ) = S a n t i l l a n _ t a u _ e ;
89 perturbed_model_para ( 5 ) = S a n t i l l a n _ R ;
90 perturbed_model_para ( 6 ) = Sant i l l an_n_H ;
91 perturbed_model_para ( 7 ) = S a n t i l l a n _ b ;
92 perturbed_model_para ( 8 ) = S a n t i l l a n _ e ;
93 perturbed_model_para ( 9 ) = S a n t i l l a n _ f ;
94 perturbed_model_para ( 1 0 ) = S a n t i l l a n _ O ;
95 perturbed_model_para ( 1 1 ) = S a n t i l l a n _ k _ m r ;
96 perturbed_model_para ( 1 2 ) = S a n t i l l a n _ k _ p r ;
97 perturbed_model_para ( 1 3 ) = S a n t i l l a n _ k _ m i ;
98 perturbed_model_para ( 1 4 ) = S a n t i l l a n _ k _ p i ;
99 perturbed_model_para ( 1 5 ) = S a n t i l l a n _ k _ m t ;

100 perturbed_model_para ( 1 6 ) = S a n t i l l a n _ k _ p t ;
101 perturbed_model_para ( 1 7 ) = S a n t i l l a n _ c ;
102 perturbed_model_para ( 1 8 ) = S a n t i l l a n _ d ;
103 perturbed_model_para ( 1 9 ) = S a n t i l l a n _ g a m a ;
104 perturbed_model_para ( 2 0 ) = S a n t i l l a n _ T _ c o n s u m e _ r a t e ;
105 perturbed_model_para ( 2 1 ) = S a n t i l l a n _ P ;
106 perturbed_model_para ( 2 2 ) = S a n t i l l a n _ r h o ;
107 perturbed_model_para ( 2 3 ) = Sant i l lan_mu ;
108
109 end

Program 4.3 (MATLAB) Santillan’s model uncertain parameters

1 # u n c e r t a i n p a r a m e t e r s
2 #
3 # [ R e f ] M o i s e s S a n t i l l a n and Michael C . Mackey . Dynamic r e g u l a t i o n

o f t h e t r y p t o p h a n
4 # operon : A model ing s t u d y and comparison w i t h e x p e r i m e n t a l data .
5 # P r o c e e d i n g s o f t h e N a t i o n a l Academy o f S c i e n c e s , 9 8 ( 4 ) :1364 −1369 ,

February 2 0 0 1 .
6 #
7 def S a n t i l l a n s _ T r y p t o p h a n _ M o d e l _ c o n s t a n t s ( d e l t a ) :
8
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9 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 # U n c e r t a i n r a n g e s w i t h o u t e x p e r i m e n t a l e v i d e n c e s
11 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 S a n t i l l a n _ t a u _ p = 0 . 1∗ ( 1 + d e l t a [ 0 ] ) # 1
13 S a n t i l l a n _ t a u _ m = 0 . 1∗ ( 1 + d e l t a [ 1 ] ) # 2
14 S a n t i l l a n _ t a u _ r h o = 0 . 0 5∗ ( 1 + d e l t a [ 2 ] ) # 3
15 S a n t i l l a n _ t a u _ e = 0 . 6 6∗ ( 1 + d e l t a [ 3 ] ) # 4
16
17 S a n t i l l a n _ R = 0 . 8∗ ( 1 + d e l t a [ 4 ] ) # 5
18
19 Sant i l l an_n_H = 2 + d e l t a [ 5 ] # 6
20 # nominal = 1 . 2
21 # d e l t a _ n o m i n a l = −0.8
22
23 S a n t i l l a n _ b = 0 . 6 5 + 0 . 3 5∗ d e l t a [ 6 ] # 7 [ 0 . 3 , 1 . 0 ]
24 # nominal = 0 . 8 5
25 # d e l t a _ n o m i n a l = 0 . 5 7 1 4
26
27 S a n t i l l a n _ e = 0 . 9∗ ( 1 + d e l t a [ 7 ] ) # 8
28 S a n t i l l a n _ f = 380∗ (1 + d e l t a [ 8 ] ) # 9
29
30 S a n t i l l a n _ O = 3 . 3 2 e−3∗(1 + d e l t a [ 9 ] ) # 10
31
32 S a n t i l l a n _ k _ m r = 1 . 2 e−2∗(1 + d e l t a [ 1 0 ] ) # 11
33 # v a l u e i n [ R e f ] & i t s s u p p l e m e n t a r y i s d i f f e r e n t
34 S a n t i l l a n _ k _ p r = 4 . 6∗ ( 1 + d e l t a [ 1 1 ] ) # 12
35 # v a l u e i n [ R e f ] & i t s s u p p l e m e n t a r y i s d i f f e r e n t
36 # but t h e r a t i o , kmr / kpr i s t h e same
37
38 S a n t i l l a n _ k _ m i = 7 . 2 e−2∗(1 + d e l t a [ 1 2 ] ) # 13
39 S a n t i l l a n _ k _ p i = 1 . 7 6 e−2∗(1 + d e l t a [ 1 3 ] ) # 14
40
41 S a n t i l l a n _ k _ m t = 2 . 1 e4 ∗ (1 + d e l t a [ 1 4 ] ) # 15
42 S a n t i l l a n _ k _ p t = 348∗ (1 + d e l t a [ 1 5 ] ) # 16
43
44 S a n t i l l a n _ c = 4e−2∗(1 + d e l t a [ 1 6 ] ) # 17
45 S a n t i l l a n _ d = 2 3 . 5∗ ( 1 + d e l t a [ 1 7 ] ) # 18
46
47 S a n t i l l a n _ g a m a = 0 . 0 1∗ ( 1 + d e l t a [ 1 8 ] ) # 19
48 # nominal v a l u e 0
49 # d e l t a nominal = −1
50
51 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 # U n c e r t a i n r a n g e s from e x p e r i m e n t s
53 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 S a n t i l l a n _ T _ c o n s u m e _ r a t e = 2 1 . 5 + 7 . 5∗ d e l t a [ 1 9 ] # 20
55 # range 14 ~ 29
56 # nominal 2 2 . 7 −> 0 . 1 6
57
58 S a n t i l l a n _ P = 2 . 7 8 5 + 0 . 6 7 5∗ d e l t a [ 2 0 ]
59 # 21
60 # range 2 . 1 1 − 3 . 4 6 micro−Molar ,
61 # nominal 2 . 6 −> −0.2741
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62 # 1250 m o l e c u l e p e r c e l l , c e l l a v e r a g e volume 6 . 0 e−16 − 9 . 8 e−16
63 # l i t e r s , a v e r a g e volumn = ( 6 . 0 + 9 . 8 ) /2∗1 e−16 = 7 . 9 e−16 l i t e r s
64 # 1250 m o l e c u l e = 1 2 5 0 / 6 . 0 2 2 e23 = 2 . 0 7 5 7 e−21 mole
65 # 2 . 0 7 5 7 e −2 1 / 7 . 9 e−16 = 2 . 6 2 e−6 Molar = 2 . 6 2 micro−Molar
66
67 S a n t i l l a n _ r h o = 3 . 1 2 + 0 . 7 5∗ d e l t a [ 2 1 ]
68 # 21
69 # range 2 . 3 7 − 3 . 8 7 micro−Molar ,
70 # nominal 2 . 9 −> −0.2933
71 # 1400 m o l e c u l e p e r c e l l , c e l l a v e r a g e volume 6 . 0 e−16 − 9 . 8 e−16
72 # l i t e r s , a v e r a g e volumn = ( 6 . 0 + 9 . 8 ) /2∗1 e−16 = 7 . 9 e−16 l i t e r s
73 # 1400 m o l e c u l e = 1 4 0 0 / 6 . 0 2 2 e23 = 2 . 3 2 4 8 e−21 mole
74 # 2 . 3 2 4 8 e −2 1 / 7 . 9 e−16 = 2 . 9 4 e−6 Molar = 2 . 9 4 micro−Molar
75
76 Sant i l lan_mu = 0 . 0 2 5 9 + 0 . 0 1 5 9∗ d e l t a [ 2 2 ]
77 # 22
78 # range 0 . 0 1 ~ 0 . 0 4 1 7 [ min ^ −1] ,
79 # nominal 0 . 0 1 −> −1
80 # a c t u a l range from 0 . 6 h^−1 ~ 2 . 5 h^−1
81
82 # r e t u r n v a l u e s
83 num_para = 23
84 perturbed_model_para = np . z e r o s ( num_para )
85 perturbed_model_para [ 0 ] = S a n t i l l a n _ t a u _ p
86 perturbed_model_para [ 1 ] = S a n t i l l a n _ t a u _ m
87 perturbed_model_para [ 2 ] = S a n t i l l a n _ t a u _ r h o
88 perturbed_model_para [ 3 ] = S a n t i l l a n _ t a u _ e
89 perturbed_model_para [ 4 ] = S a n t i l l a n _ R
90 perturbed_model_para [ 5 ] = Sant i l l an_n_H
91 perturbed_model_para [ 6 ] = S a n t i l l a n _ b
92 perturbed_model_para [ 7 ] = S a n t i l l a n _ e
93 perturbed_model_para [ 8 ] = S a n t i l l a n _ f
94 perturbed_model_para [ 9 ] = S a n t i l l a n _ O
95 perturbed_model_para [ 1 0 ] = S a n t i l l a n _ k _ m r
96 perturbed_model_para [ 1 1 ] = S a n t i l l a n _ k _ p r
97 perturbed_model_para [ 1 2 ] = S a n t i l l a n _ k _ m i
98 perturbed_model_para [ 1 3 ] = S a n t i l l a n _ k _ p i
99 perturbed_model_para [ 1 4 ] = S a n t i l l a n _ k _ m t

100 perturbed_model_para [ 1 5 ] = S a n t i l l a n _ k _ p t
101 perturbed_model_para [ 1 6 ] = S a n t i l l a n _ c
102 perturbed_model_para [ 1 7 ] = S a n t i l l a n _ d
103 perturbed_model_para [ 1 8 ] = S a n t i l l a n _ g a m a
104 perturbed_model_para [ 1 9 ] = S a n t i l l a n _ T _ c o n s u m e _ r a t e
105 perturbed_model_para [ 2 0 ] = S a n t i l l a n _ P
106 perturbed_model_para [ 2 1 ] = S a n t i l l a n _ r h o
107 perturbed_model_para [ 2 2 ] = Sant i l lan_mu
108
109 return perturbed_model_para

Program 4.4 (Python) Santillan’s model uncertain parameters
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4.2.2.6 Model Fitting Optimization
All the three experiments provide the external tryptophan to the E. coli cell
cultures, wait until they reach the steady states, and shift them into no external
tryptophan conditions. We simulate these scenarios: Firstly, set the external tryp-
tophan equal to 400 times the steady state of the tryptophan, T̄ (Santillán and
Mackey, 2001), and the initial condition equal to zero. Secondly, solve the dif-
ferential equation until it reaches a steady state, where the simulation time sets
to 1200 minutes, which would be long enough to reach to a steady state for the
parameters in the uncertain space. Thirdly, set the external tryptophan equal to
zero and the initial condition equal to the steady state found in the previous step.
Finally, solve the differential equation, compare the normalized active enzyme
concentration with the normalized experiment data using the data in Table 4.1,
and calculate the cost function value to be minimized in (4.5). The pseudo-code
to implement the cost function is given in Algorithm 4.1.

Algorithm 4.1 E. coli model fitting cost function
1: Input: 𝛿i for i = 1, 2,… , 23
2: Set the initial condition and the external tryptophan equal to 400 times the

steady state of T as follows:

OF(0) = 0, MF(0) = 0, E(0) = 0, T(0) = 0,

Text = 400T̄ = 400Ki = 400k−i∕k+i

3: Solve (4.7), (4.9), (4.10), and (4.11) for t ∈ [0, 600]minutes.
4: Set the initial condition equal to the final values of the simulation and the

external tryptophan equal to zero

OF(0) = OF(1200), MF(0) = MF(1200),

E(0) = E(1200), T(0) = T(1200),Text = 0.0

5: Solve (4.7), (4.9), (4.10), and (4.11) for t ∈ [0, 1200]minutes
6: Calculate EA using (4.12) at the time points given in Table 4.1
7: Calculate J using (4.5)
8: Return J

After implementing Algorithm 4.1 and testing it with 𝛿 combinations for cal-
culating J, we would notice one possible issue in solving the non-linear differ-
ential equations. It is discussed earlier in the implementation of the differential
equations that they are not generic differential equations but the ones representing
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the kinetics of how the molecular concentrations evolve. As molecular concentra-
tions are non-negative quantities, they should not be allowed to decrease below
zero. Although we device two safeguards in the implementations, we keep moni-
toring the state values, and if they are below a threshold, the numerical integrator
stops. Both the ODE solvers, ode45() in MATLAB and solve_ivp() in Scipy, Python,
have the event detection capability. It can be used to detect if any states go below
a threshold.

The negative event detection function in MATLAB or Python is implemented as
follows:

1 function [ value , i s t e r m i n a l , d i r e c t i o n ] = n e g a t i v e C o n c e n t r a t i o n ( ~ ,
s t a t e )

2 t o l = −0 .1 ;
3 OF_MF_E_T = s t a t e ( 1 : 4 ) ;
4 d e l a y _ o u t p u t = s t a t e ( 5 : 2 : 1 1 ) ;
5 a l l _ p o s i t i v e _ s t a t e = [OF_MF_E_T ( : ) ’ d e l a y _ o u t p u t ( : ) ’ ] ;
6 v a l u e = any ( a l l _ p o s i t i v e _ s t a t e < t o l ) −1;
7 i s t e r m i n a l = 1 ;
8 d i r e c t i o n = 0 ;
9 end

Program 4.5 (MATLAB) Negative event detection function for ode45()

1 # c h e c k n e g a t i v e s t a t e s t o s t o p t h e i n t e g r a t o r
2 def n e g a t i v e C o n c e n t r a t i o n ( time , s t a t e , parameters , T_ext ) :
3 t o l = −1e−1;
4 OF_MF_E_T = s t a t e [ 0 : 4 ]
5 d e l a y _ o u t p u t = s t a t e [ 4 : : 2 ]
6 a l l _ p o s i t i v e _ s t a t e = np . h s t a c k ( ( OF_MF_E_T , d e l a y _ o u t p u t ) )
7 v a l u e = 1− f l o a t ( any ( a l l _ p o s i t i v e _ s t a t e < t o l ) )
8 return v a l u e

Program 4.6 (Python) Negative event detection function for solve_ivp()

For both event detection functions, the threshold equal to −0.1 allows the con-
centrations to become small negative numbers between 0 and −0.1. The argu-
ments of the MATLAB event detection functions must be the same as the functions
for implementing differential equations, i.e. the time and the states. When some
mandatory arguments are unused inside the functions, they can be replaced by ‘̃’.
The requirement to match the arguments in Python is stricter than in MATLAB.
The arguments of the negative detection function must be exactly the same as the
ones of the differential equation function in Program 4.2. Hence, parameters and
Text in the arguments of the negative event detection are included, although they
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are not used inside the function. The ODE solver in Algorithm 4.1 is implemented
as follows:

1 %% C o s t f u n c t i o n f o r t h e model f i t t i n g
2 function J _ c o s t = S a n t i l l a n _ M o d e l _ F i t _ C o s t ( d e l t a , tspan , time_exp ,

Act_Enzy_exp )
3
4 t r y
5 num_state = 1 2 ;
6 model_para = S a n t i l l a n s _ T r y p t o p h a n _ M o d e l _ c o n s t a n t s ( d e l t a ) ;
7
8 % I n i t i a l l y t h e c u l t u r e i n t h e medium w i t h p r e s e n c e o f t h e

e x t e r n a l t r y p t o p h a n
9 T_ext = 400∗ ( model_para ( 1 3 ) / model_para ( 1 4 ) ) ; % 400 t i m e s

o f T ( t ) s t e a d y s t a t e
10 ode_opt ion = o d e s e t ( ’ RelTol ’ ,1 e−3 , ’ AbsTol ’ ,1 e−6 , ’ Events ’ ,

@negat iveConcentra t ion ) ;
11 s t a t e _ t 0 = zeros ( 1 , num_state ) ;
12 s o l = ode45 (@( time , s t a t e ) S a n t i l l a n _ E _ c o l i _ T r y p t o p h a n ( time ,

s t a t e , …
13 model_para , T_ext ) , tspan , s t a t e _ t 0 , ode_opt ion ) ;
14 OF_MF_E_T_IC = mean( s o l . y ( : , end−50:end ) , 2 ) ; % i t r e a c h e s t o

t h e s t e a d y s t a t e
15
16 s o l 2 = s o l ;
17
18 % No e x t e r n a l t r y p t o p h a n medium s h i f t e x p e r i m e n t
19 T_ext = 0 ;
20 s t a t e _ t 0 = OF_MF_E_T_IC ( : ) ; % t h e s t e a d y s t a t e becomes t h e

i n i t i a l c o n d i t i o n
21 tspan_sim = [ 0 time_exp ( end ) ] ;
22 s o l = ode45 (@( time , s t a t e ) S a n t i l l a n _ E _ c o l i _ T r y p t o p h a n ( time ,

s t a t e , …
23 model_para , T_ext ) , tspan_sim , s t a t e _ t 0 , ode_opt ion ) ;
24
25 % e v a l u a t e t h e Enzyme and t h e Tryptophan a t t h e g i v e n

measurent t i m e
26 s t a t e _ a t _ t i m e _ e x p = d e v a l ( s o l , t ime_exp ) ;
27 E_at_t ime_exp = s t a t e _ a t _ t i m e _ e x p ( 3 , : ) ;
28 T_at_t ime_exp = s t a t e _ a t _ t i m e _ e x p ( 4 , : ) ;
29
30 % c a l c u l a t e t h e a c t i v e enzyme u s i n g t h e model
31 n_H = model_para ( 6 ) ;
32 K_i = model_para ( 1 3 ) / model_para ( 1 4 ) ;
33 EA_model = ( K_i ^n_H . / ( K_i ^n_H + T_at_t ime_exp . ^ n_H) ) .∗

E_at_t ime_exp ;
34
35 % n o r m a l i z e t h e a c t i v e enzyme
36 y_bar = EA_model / EA_model ( end ) ;
37 y _ t i l d e = Act_Enzy_exp / Act_Enzy_exp ( end ) ;
38



�

� �

�

216 4 Biological System Modelling

39 % c a l c u l a t e t h e c o s t
40 J _ c o s t = sum ( ( y_bar−y _ t i l d e ) . ^ 2 ) ;
41
42 c a t c h
43 J _ c o s t = 1 e3 ;
44 end
45
46 end

Program 4.7 (MATLAB) The cost function, J, with the event detection

1 # C o s t f u n c t i o n f o r t h e model f i t t i n g
2 def S a n t i l l a n _ M o d e l _ F i t _ C o s t ( d e l t a , tspan , time_exp , Act_Enzy_exp ) :
3
4 try :
5 num_state = 1 2 ;
6 model_para = S a n t i l l a n s _ T r y p t o p h a n _ M o d e l _ c o n s t a n t s ( d e l t a ) ;
7
8 n e g a t i v e C o n c e n t r a t i o n . t e r m i n a l = True
9 n e g a t i v e C o n c e n t r a t i o n . d i r e c t i o n = 0

10
11 # I n i t i a l l y t h e c u l t u r e i n t h e medium w i t h p r e s e n c e o f t h e

e x t e r n a l t r y p t o p h a n
12 T_ext = 400∗ ( model_para [ 1 2 ] / model_para [ 1 3 ] ) ; # 400 t i m e s o f

T ( t ) s t e a d y s t a t e
13 t i m e _ e v a l = np . l i n s p a c e ( t span [ 0 ] , t span [ 1 ] , 1 0 0 0 )
14 s t a t e _ t 0 = np . z e r o s ( num_state )
15
16 s o l = s o l v e _ i v p ( S a n t i l l a n _ E _ c o l i _ T r y p t o p h a n , tspan ,
17 s t a t e _ t 0 , e v e n t s=n e g a t i v e C o n c e n t r a t i o n , a r g s =(

model_para , T_ext ) ,
18 t _ e v a l=t ime_eva l , r t o l =1e−3 , a t o l =1e−6)
19 OF_MF_E_T_IC = np . mean ( s o l . y [ : , −5 0 : −1 ] , a x i s =1) # i t r e a c h e s

t o t h e s t e a d y s t a t e
20
21 # No e x t e r n a l t r y p t o p h a n medium s h i f t e x p e r i m e n t
22 T_ext = 0
23 s t a t e _ t 0=OF_MF_E_T_IC # t h e s t e a d y s t a t e becomes t h e

i n i t i a l c o n d i t i o n
24 s o l = s o l v e _ i v p ( S a n t i l l a n _ E _ c o l i _ T r y p t o p h a n , ( t span [ 0 ] ,

t ime_exp [ −1]) ,
25 s t a t e _ t 0 , a r g s =( model_para , T_ext ) ,
26 t _ e v a l=time_exp , r t o l =1e−3 , a t o l =1e−6)
27
28 # e v a l u a t e t h e Enzyme and t h e Tryptophan a t t h e g i v e n

measurement t i m e
29 s t a t e _ a t _ t i m e _ e x p = s o l . y [ 0 : 4 , : ]
30 E_at_t ime_exp = s t a t e _ a t _ t i m e _ e x p [ 2 , : ]
31 T_at_t ime_exp = s t a t e _ a t _ t i m e _ e x p [ 3 , : ]
32
33 # c a l c u l a t e t h e a c t i v e enzyme u s i n g t h e model
34 n_H = model_para [ 5 ]
35 K_i = model_para [ 1 2 ] / model_para [ 1 3 ]
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36 EA_model = ( K_i∗∗n_H / ( K_i∗∗n_H + T_at_t ime_exp∗∗n_H) ) ∗
E_at_t ime_exp

37
38 # n o r m a l i z e t h e a c t i v e enzyme
39 y_bar = EA_model / EA_model [−1]
40 y _ t i l d e = Act_Enzy_exp / Act_Enzy_exp [−1]
41
42 # c a l c u l a t e t h e c o s t
43 J _ c o s t = np . sum ( ( y_bar−y _ t i l d e ) ∗∗2)
44
45 except :
46 J _ c o s t = 1 e3
47
48 return J _ c o s t

Program 4.8 (Python) The cost function, J, with the event detection

Error or exception handling: try-catch in MATLAB and try-except in Python are
extremely useful methods to make programs robust.

The implementations of the cost function in Programs 4.7 and 4.8 use the error
handling method using try-catch in MATLAB or try-except in Python. Consider
the case illustrated in Figure 4.4, where 𝛿i and 𝛿j are the optimization parameters,

*1

*2

No solution area

Search bounds

*4

Global
solution

Local
solution

δi

δj

Figure 4.4 Nonlinear optimization problem.
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and *1, *2, *3, and *4 are the initial point of the optimization algorithm. The opti-
mization starting from *2 would have a higher chance to converge to the global
solution than the others. Whereas the one from *4 would have a higher chance
to arrive at the local solution. The optimizations starting from *1 or *3 have a
distinct issue. They are inside or closer to the regions where no solution exists,
i.e. the ODE solvers would stop by the negative concentration checking function.
When the ODE stops by the event checking function, it might not reach the final
simulation time, and the cost function does not have all the states to calculate its
value. For these erroneous or exceptional cases, try command detects the event and
passes the program flow to the error/exception handling parts, which are catch in
MATLAB and except in Python. The cost function values are set to an arbitrarily
chosen large number, 1000, for the exceptional cases.

Finally, the main part of the optimization is to be implemented using the genetic
algorithm and the differential evolution algorithm. Mathematical optimization
problems naturally arise in science or engineering problems. The optimization
algorithms are categorized into two broad types, i.e. the local and the global ones.
The local algorithms are mostly relying on the gradient of the cost function to be
minimized. There are many theoretical results about the convergence of the local
algorithms while the solutions depend highly on the initial guess. The global
algorithms attempt to find the global solution(s). Details on optimization algo-
rithms are found in Spall (2005) about stochastic global optimization algorithms,
Boyd et al. (2004) about convex optimization and Fletcher (2013) about local
optimizations.

Program 4.9 uses the genetic algorithm in MATLAB, which is a global optimiza-
tion algorithm. The genetic algorithm mimics the natural evolution that improves
survivability by adapting to the environment. The genetic algorithm uses a group
of sampling points called the population in the search space. The cost function
value for each sample is evaluated. Based on the cost function values, each sample
is kept, removed, or moved into a new location in the search space for the next
step or called the next generation. The genetic algorithm minimizes the cost func-
tion through the evolutionary process, namely, selection, crossover, and mutation
of the population (Menon et al., 2006). To use the genetic algorithm optimization
function, ga(), in MATLAB, the cost function is defined by the following:

F i t n e s s F u n c t i o n = @( d e l t a ) S a n t i l l a n _ M o d e l _ F i t _ C o s t ( d e l t a , time_span ,
time_exp , Enzy_exp ) ;

delta in front of the cost function, i.e. @(delta), is the optimization variable to be
identified in the optimizer, ga(). The search space is constrained between ±0.99
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instead of±1 to avoid some of the parameters becoming zero, which does not make
any biological sense, as follows:

l b = −0.99∗ ones ( 1 , de l ta_dim ) ;
ub = 0 . 9 9∗ ones ( 1 , de l ta_dim ) ;
o p t _ o p t s = o p t i m o p t i o n s ( ’ ga ’ , ’ D i s p l a y ’ , ’ i t e r ’ ) ;

where the optimization option indicates that the algorithm to be used is the genetic
algorithm and the intermediate result for each iteration is to be displayed. In addi-
tion, the following call executes the optimization:

[ d e l t a _ b e s t , f v a l ] = ga ( F i t n e s s F u n c t i o n , del ta_dim , [ ] , [ ] , [ ] , [ ] , lb , ub
, [ ] , o p t _ o p t s ) ;

where the default population size, 200, is used.

1 clear
2
3 time_A = [ 0 20 38 59 89 119 1 4 9 ] ;
4 Enzy_A = [25 657 617 618 577 577 5 6 7 ] ;
5
6 time_B = [ 0 29 60 89 1 7 9 ] ;
7 Enzy_B = [ 0 1370 1362 1291 9 1 3 ] ;
8
9 time_C = [ 0 29 58 88 118 1 7 8 ] ;

10 Enzy_C = [ 0 754 888 763 704 6 8 3 ] ;
11
12 %% Main P a r t : Parameter I d e n t i f i c a t i o n
13 experiment_num = 2 ; % 1 (A) , 2 ( B ) , 3 (C)
14
15 % c h o o s e e x p e r i m e n t
16 s w i t c h experiment_num
17 c a s e 1
18 time_exp = time_A ;
19 Enzy_exp = Enzy_A ;
20 c a s e 2
21 time_exp = time_B ;
22 Enzy_exp = Enzy_B ;
23 c a s e 3
24 time_exp = time_C ;
25 Enzy_exp = Enzy_C ;
26 end
27
28 del ta_dim = 2 3 ;
29
30 % t i m e span f o r o b t a i n i n g t h e s t e a d y s t a t e
31 time_span = [ 0 1 2 0 0 ] ; % [ minutes ]
32
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33 % model f i t t i n g o p t i m i z a t i o n
34 F i t n e s s F u n c t i o n = @( d e l t a ) S a n t i l l a n _ M o d e l _ F i t _ C o s t ( d e l t a , time_span ,

time_exp , Enzy_exp ) ;
35 l b = −0.99∗ ones ( 1 , de l ta_dim ) ;
36 ub = 0 . 9 9∗ ones ( 1 , de l ta_dim ) ;
37 o p t _ o p t s = o p t i m o p t i o n s ( ’ ga ’ , ’ D i s p l a y ’ , ’ i t e r ’ ) ;
38
39 [ d e l t a _ b e s t , f v a l ] = ga ( F i t n e s s F u n c t i o n , del ta_dim , [ ] , [ ] , [ ] , [ ] , lb , ub

, [ ] , o p t _ o p t s ) ;

Program 4.9 (MATLAB) The model-fitting optimization using genetic algorithm

Program 4.10 uses the differential evolution algorithm in scipy Python, which
is another global optimization algorithm (Storn and Price, 1997). The differential
evolution is an evolutionary global optimization algorithm the same as the genetic
algorithm. The main idea is to use the difference between two points in the search
space. The update part of each point in the population points uses the difference
vectors to direct the search direction.

1 experiment_num = 2 # 1 (A) , 2 ( B ) , 3 (C)
2
3 time_A = np . a r r a y ( [ 0 , 20 , 38 , 59 , 89 , 119 , 1 4 9 ] )
4 Enzy_A = np . a r r a y ( [ 2 5 , 657 , 617 , 618 , 577 , 577 , 5 6 7 ] )
5
6 time_B = np . a r r a y ( [ 0 , 29 , 60 , 89 , 1 7 9 ] )
7 Enzy_B = np . a r r a y ( [ 0 , 1370 , 1362 , 1291 , 9 1 3 ] )
8
9 time_C = np . a r r a y ( [ 0 , 29 , 58 , 88 , 118 , 1 7 8 ] )

10 Enzy_C = np . a r r a y ( [ 0 , 754 , 888 , 763 , 704 , 6 8 3 ] )
11
12 # c h o o s e e x p e r i m e n t
13 i f experiment_num ==1:
14 time_exp = time_A
15 Enzy_exp = Enzy_A
16 e l i f experiment_num ==2:
17 time_exp = time_B
18 Enzy_exp = Enzy_B
19 e l i f experiment_num ==3:
20 time_exp = time_C
21 Enzy_exp = Enzy_C
22
23 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 # Main Model F i t t i n g O p t i m i z a t i o n
25 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 del ta_dim = 2 3 ;
27
28 # t i m e span f o r o b t a i n i n g t h e s t e a d y s t a t e
29 time_span = np . a r r a y ( [ 0 , 1 2 0 0 ] ) # [ minutes ]
30
31 s t a t e _ a l l = np . random . randn ( 1 2 )
32 d e l t a = 0 . 9 9∗ ( 2∗np . random . rand ( 2 3 ) −1)
33
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34 Act_Enzy_exp = Enzy_exp
35 plot_sw = F a l s e
36 bounds = [ ( −0 . 9 9 , 0 . 9 9 ) ]∗ del ta_dim
37
38 from s c i p y import o p t i m i z e
39 r e s u l t = o p t i m i z e . d i f f e r e n t i a l _ e v o l u t i o n ( S a n t i l l a n _ M o d e l _ F i t _ C o s t ,
40 bounds ,
41 a r g s =( time_span , time_exp , Act_Enzy_exp , p lot_sw ) ,
42 updat ing= ’ d e f e r r e d ’ , d i s p=True , p o p s i z e =200 ,

m a x i t e r =100 , workers =4)

Program 4.10 (Python) The model-fitting optimization using genetic algorithm

4.2.2.7 Optimal Solution (MATLAB)
The genetic algorithm in MATLAB solves the model fitting problem and obtains
the following optimal solution for each experiment:

𝜹∗ =

⎡⎢⎢⎢⎢⎢⎣

𝛿
∗
1
𝛿
∗
2
⋮
𝛿
∗
22
𝛿
∗
23

⎤⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎣

𝛿
∗
1 𝛿

∗
2 𝛿

∗
3 𝛿

∗
4 𝛿

∗
5

𝛿
∗
6 𝛿

∗
7 𝛿

∗
8 𝛿

∗
9 𝛿

∗
10

𝛿
∗
11 𝛿

∗
12 𝛿

∗
13 𝛿

∗
14 𝛿

∗
15

𝛿
∗
16 𝛿

∗
17 𝛿

∗
18 𝛿

∗
19 𝛿

∗
20

𝛿
∗
21 𝛿

∗
22 𝛿

∗
23

⎤⎥⎥⎥⎥⎥⎦
(4.16)

→

⎡⎢⎢⎢⎢⎢⎣

−0.2810 −0.3898 0.7068 0.0111 0.6425
−0.8315 −0.4280 0.7985 0.1770 0.1069
−0.9174 0.6862 0.7437 −0.6154 0.8466
−0.5668 −0.9273 0.2702 −0.8495 −0.7187
0.8848 0.3515 0.6146

⎤⎥⎥⎥⎥⎥⎦A

(4.17)

→

⎡⎢⎢⎢⎢⎢⎣

0.6415 −0.8862 0.7426 0.2918 0.8398
−0.9839 −0.2078 0.0135 0.9869 −0.7969
−0.9889 0.9796 −0.5617 −0.9464 0.3877
−0.9095 −0.9177 0.8251 −0.9529 −0.7319
−0.1656 0.5099 0.2271

⎤⎥⎥⎥⎥⎥⎦B

(4.18)

→

⎡⎢⎢⎢⎢⎢⎣

−0.9895 0.9009 0.9616 0.9898 0.6706
−0.9865 −0.6868 0.1184 0.6514 0.7565
−0.9780 0.9749 0.9785 −0.4989 0.9878
−0.6734 −0.4203 0.9420 −0.2586 −0.7786
−0.6590 −0.5503 0.0357

⎤⎥⎥⎥⎥⎥⎦C

(4.19)

where [⋅]A, [⋅]B, and [⋅]C are the optimal solutions for Experiments A, B, and C,
respectively. The trajectory of the optimal model for each experiment is compared
with the measurements in Figure 4.5. All trajectories are reasonably close to the
experimental measurements.
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Figure 4.5 (MATLAB) Model fitting results for Experiments A, B, and C, where the
experimental data indicated by the crosses is normalized by the last data for each
experiment and the normalized model output of the optimal fitted model is in the solid
line.

The noise strength, (4.6b), for each parameter, 𝛿i for i = 1, 2,… , 23, is calculated
as follows:⎡⎢⎢⎢⎢⎢⎣

𝜑1 𝜑2 𝜑3 𝜑4 𝜑5
𝜑6 𝜑7 𝜑8 𝜑9 𝜑10
𝜑11 𝜑12 𝜑13 𝜑14 𝜑15
𝜑16 𝜑17 𝜑18 𝜑19 𝜑20
𝜑21 𝜑22 𝜑23

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

3.1900 6.8072 0.0237 0.5894 0.0159
0.0084 0.1304 0.5857 0.2737 27.4299
0.0015 0.0321 1.7800 0.0785 0.1329
0.0429 0.1114 0.1896 0.2042 0.0013

30.9861 3.1538 0.2974

⎤⎥⎥⎥⎥⎥⎦
where 𝛿2, 𝛿10, and 𝛿21 have significantly larger values compared to the others.
The changes of these three parameters for the experiments are summarized in
Table 4.4. The optimization results show that these three parameters 𝜏m, O, and P
belong to the adaptation parameter pE.
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Table 4.4 Three optimal parameters changed the most by
the genetic algorithm in MATLAB.

Experiment A Experiment B Experiment C

𝜏m 0.0610 0.0114 0.1901
O 0.0037 0.0007 0.0058
P 3.3822 2.6732 2.3402

4.2.2.8 Optimal Solution (Python)
The differential evolution in scipy Python solves the model fitting problem and
obtains the following solution for each experiment:

⎡⎢⎢⎢⎢⎢⎣

𝛿
∗
1 𝛿

∗
2 𝛿

∗
3 𝛿

∗
4 𝛿

∗
5

𝛿
∗
6 𝛿

∗
7 𝛿

∗
8 𝛿

∗
9 𝛿

∗
10

𝛿
∗
11 𝛿

∗
12 𝛿

∗
13 𝛿

∗
14 𝛿

∗
15

𝛿
∗
16 𝛿

∗
17 𝛿

∗
18 𝛿

∗
19 𝛿

∗
20

𝛿
∗
21 𝛿

∗
22 𝛿

∗
23

⎤⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎣

0.4139 −0.650 −0.5078 0.6556 0.8028
−0.6978 −0.014 −0.7477 −0.6088 −0.4281
−0.9512 0.984 0.4909 −0.6512 0.1610
−0.4746 −0.064 0.4921 −0.5255 −0.4847
−0.6853 0.266 0.1039

⎤⎥⎥⎥⎥⎥⎦A
(4.20)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿
∗
1 𝛿

∗
2

𝛿
∗
3 𝛿

∗
4

𝛿
∗
5 𝛿

∗
6

𝛿
∗
7 𝛿

∗
8

𝛿
∗
9 𝛿

∗
10

𝛿
∗
11 𝛿

∗
12

𝛿
∗
13 𝛿

∗
14

𝛿
∗
15 𝛿

∗
16

𝛿
∗
17 𝛿

∗
18

𝛿
∗
19 𝛿

∗
20

𝛿
∗
21 𝛿

∗
22

𝛿
∗
23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8164609821840342 −0.9377737042517797
−0.2790376682215831 0.9639037189678477
0.9899716285333048 −0.9403394600209112
0.7598769991256485 0.3748592645823837
0.9659493912171094 0.0057193188983498434
−0.9890715372649793 0.5645345097583515
0.35655407244896503 −0.6388522834084576
−0.4876497370209529 −0.4666376552759634
−0.3606741179703174 0.8618508223375989
−0.6752330337194928 −0.03575084441063797
0.22717349615134524 0.4169772469116487
0.3175712292813526

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦B

(4.21)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛿
∗
1 𝛿

∗
2 𝛿

∗
3 𝛿

∗
4

𝛿
∗
5 𝛿

∗
6 𝛿

∗
7 𝛿

∗
8

𝛿
∗
9 𝛿

∗
10 𝛿

∗
11 𝛿

∗
12

𝛿
∗
13 𝛿

∗
14 𝛿

∗
15 𝛿

∗
16

𝛿
∗
17 𝛿

∗
18 𝛿

∗
19 𝛿

∗
20

𝛿
∗
21 𝛿

∗
22 𝛿

∗
23

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.9529 −0.1960 0.8548 0.7683
−0.0008 −0.9602 −0.0880 −0.7117
0.9453 0.0330 −0.9786 0.0622
0.2542 −0.7535 0.6106 −0.8708
0.2591 0.8535 −0.0101 −0.8994
0.8292 0.2678 0.2170

⎤⎥⎥⎥⎥⎥⎥⎥⎦C

(4.22)

where the solution in Experiment B is presented with 16 decimal places.
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(a) Experiment A (b) Experiment B

(c) Experiment C
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Figure 4.6 (MATLAB) Model fitting results for Experiments A, B, and C, where the
experimental data indicated by the crosses is normalized by the last data for each
experiment and the normalized model output of the optimal fitted model is in the solid
line.

The trajectory of the optimal model for each experiment is compared with the
measurements in Figure 4.6. All trajectories are reasonably close to the experimen-
tal measurements.

The cost function values of Experiment B with the optimal 𝛿 is about 0.05, while
it is about 10 times larger, 0.4, with the approximated 𝛿 to 4 decimal places. The
question is whether 0.4 is the acceptable accuracy of the model. Figure 4.7 shows
the normalized active enzyme trajectories for Experiment B with two different
delta precisions. The optimal 𝛿 with 16 or 4 decimal points produces significantly
different histories from each other after around 20 minutes from the initial time.
Although they have significant quantitative differences, it might be acceptable dif-
ferences in terms of the unknown measurement errors. If the hypothetical error
bars shown in the figure are true, then two trajectories are equally acceptable in
terms of model fitting.
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Figure 4.7 (Python) Sensitivity to the decimal points of the optimal 𝛿.

The noise strength, (4.6b), for each parameter, 𝛿i for i = 1, 2,… , 23, is calculated
as follows:⎡⎢⎢⎢⎢⎢⎣

𝜑1 𝜑2 𝜑3 𝜑4 𝜑5
𝜑6 𝜑7 𝜑8 𝜑9 𝜑10
𝜑11 𝜑12 𝜑13 𝜑14 𝜑15
𝜑16 𝜑17 𝜑18 𝜑19 𝜑20
𝜑21 𝜑22 𝜑23

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0.836 0.157 15.7 0.0204 0.309
0.0164 0.671 0.751 1.25 0.344

0.000261 0.265 0.0256 0.00388 2.15
0.0589 2.87 0.0404 0.201 0.263

3.13 0.0158 0.0358

⎤⎥⎥⎥⎥⎥⎦
where 𝛿3, 𝛿15, 𝛿17, and 𝛿21 have significantly larger values compared to the others.
The changes of these three parameters for the experiments are summarized in
Table 4.5. Based on the optimization results, these four parameters, 𝜏

𝜌
, k−t, c, and

P would belong to the adaptive parameters, pE.

Table 4.5 Four optimal parameters changed the most by
the differential evolution algorithm in Python.

Experiment A Experiment B Experiment C

𝜏
𝜌

0.0246 0.0360 0.0927
k−t 24,382.5 10,759.4 33,823.2
c 0.0374 0.0256 0.0636
P 2.3224 2.9383 3.3448
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4.2.2.9 Adaptive Parameters
Tables 4.4 and 4.5 provide two groups of the adaptive parameters, pE. All adaptive
parameters in the groups directly affect the free operon, OF , and the free mRNA
productions, MF . The only common element found in both sets is the mRNA poly-
merase, P. The mRNA polymerase binds to the free operon and produces the
mRNA. Interestingly, the second messenger nucleotide ppGpp (Guanosine
tetraphosphate) is known to directly bind to the mRNA polymerase and alter the
transcription rate to adapt to environmental fluctuations (Sanchez-Vazquez et al.,
2019, Zuo et al., 2013).

To check the robustness of the optimal parameters, perturb the parameter uncer-
tainties as follows:

𝛿i = 𝛿
∗
i (1 + 0.05 ∗ 𝜖i) (4.23)

for i = 1, 2,… , 22, 23, where 𝛿∗i is the optimal parameter perturbation (4.16) to fit
the model to the measurements, 𝜖i is a random perturbation, and the parameter is
perturbed by ±5%. Take 10,000 random samples of 𝝐, which is the same dimension
as 𝜹∗, the i-th element, 𝜖i, is a random number from the uniform distribution in
[−1, 1]. The robustness of (4.16) is shown in Figure 4.8. The changes of the cost
function, J, with respect to the norm of 𝝐 are presented.

4.2.2.10 Limitations
There are only three experiments, which are far from enough experiments in the
statistical sense. There is no information about the errors in the measurements.
The numerical integrator in MATLAB or scipy Python would have different ways
to control numerical errors, which might affect the overall performance of the opti-
mization. Note that the scipy integrator is not as fast as the MATLAB integrator,
and the differential evolution in scipy requires a significant computation time.
The principal purpose of model fitting in systems biology is to establish hypotheses
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Figure 4.8 The cost
function, J, variations
with respect to the
optimal parameter
perturbation, ‖𝜖‖.
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and design experiments, which would, in turn, save the time and resources wasted
by unnecessary or poorly designed experiments.

4.3 Biological Oscillation

Periodic oscillations of biomolecular concentrations are crucial to keeping func-
tionalities of the living cells. For example, circadian rhythm, the 24 hours periodic
oscillation, exists in many life forms such as Drosophila, the fruit fly (Goldbeter,
1995), Neurospora, a fungus (Smolen et al., 2001), and the mammalian (Leloup
and Goldbeter, 2003), which are evolving on the Earth provided the 24 hours day
and night switching environment.

Dictyostelium discoideum is an amoeba, unicellular life form commonly found
in forest soil. A group of amoeba aggregates to form a spore when there is no
food available in the environment. The wave of the molecular concentration,
3′,5′-cyclic adenosine monophosphate (cyclic AMP or cAMP, in short), initiates
the aggregation, where each cell moves towards the higher concentration, called
chemotaxis. During the aggregation, an individual amoeba secretes cAMP from
inside the cell and reacts to the external concentration changes of cAMP. The
concentration changes periodically with a period of 5–10 minutes (Laub and
Loomis, 1998).

cAMP is an essential intracellular messenger molecule triggering various
responses inside the cell. To understand the meaning of the naming, 3′,5′-cAMP,
see the structure of the cAMP molecule in Figure 4.9. The pentagon structure

1′

2′3′

4′

5′

Sugar
pentose
five-carbone sugar

Adenine

NH2

H2

C

C

C

C
O

O

O

–O

O

P

HC

N

N
N

N

CH

CH

CHCH

OH

HC

Phosphate

Figure 4.9 3′ ,5′-cyclic adenosine monophosphate (cAMP or cyclic AMP, in short).
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in the centre is the sugar or ribose, where the five carbons number from 1′

(one-prime) to 5′ (five prime). In the upper-right part of the molecule, the
nitrogen and the 1′ carbon link the adenine and the sugar molecule. The lower
left part of the molecule is the phosphate. While adenosine triphosphate (ATP),
i.e. the energy storage and transferring molecule, has a chain of three phosphates,
the single (mono) phosphate is in the cyclic AMP holding two carbons, 3′ and
5′ carbons, in the sugar and forms the cyclic structure. Hence, the name of the
molecule is 3′,5′-cAMP.

Laub and Loomis (1998) have proposed the oscillation network model for
Dictyostelium cAMP concentration changes during the aggregation phase of the
amoeba.1 The mathematical model is given by

d[ACA]
dt

= k1[CAR1] − k2[ACA][PKA] (4.24a)

d[PKA]
dt

= k3[i-cAMP] − k4[PKA] (4.24b)

d[ERK2]
dt

= k5[CAR1] − k6[PKA][ERK2] (4.24c)

d[REG A]
dt

= k7 − k8[ERK2][REG A] (4.24d)

d[i-cAMP]
dt

= k9[ACA] − k10[REG A][i-cAMP] (4.24e)

d[e-cAMP]
dt

= k11[ACA] − k12[e-cAMP] (4.24f)

d[CAR1]
dt

= k13[e-cAMP] − k14[CAR1] (4.24g)

where ACA is adenylyl cyclase, PKA is the cAMP-dependent protein kinase, ERK2
is the extracellular signal-regulated kinase 2, a mitogen-activated protein kinase
(MAPK), REG A is an intercellular phosphodiesterase, CAR1 is the cell surface
receptor with a high affinity to cAMP, and i-cAMP and e-cAMP are the cAMP
concentrations of the internal and the external cellular space, respectively. The
nominal values of the kinetic parameters are summarized in Table 4.6 (Maeda
et al., 2004, Ma and Iglesias, 2002).

Recall the bracket, [⋅], indicates the concentration of molecules, e.g. [ACA] is
the concentration of the ACA molecule. When we consider the concentration
of molecules, it assumes that plenty of the concerned molecules exists, i.e. the
stochasticity from individual molecular interactions is negligible. We can infer all
detailed logic behind the model by examining the dynamic model, (4.24). CAR1
activates ACA, ACA makes more cAMP production, and the external cAMP
binding to CAR1 activates more ACA. This chain of reactions forms a positive

1 The model in Laub and Loomis (1998) includes typos. The correct model is found in Ma and
Iglesias (2002) or Maeda et al. (2004).
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Table 4.6 Laub–Loomis model kinetic parameters.

Parameter Value Unit Parameter Value Unit

k1 2.0 min−1 k8 1.3 μM−1 min−1

k2 0.9 μM−1 min−1 k9 0.3 min−1

k3 2.5 min−1 k10 0.8 μM−1 min−1

k4 1.5 min−1 k11 0.7 min−1

k5 0.6 min−1 k12 4.9 min−1

k6 0.8 μM−1 min−1 k13 23.0 min−1

k7 1.0 μM∕min k14 4.5 min−1

feedback loop. Another chain between ACA, the internal cAMP, PKA, and ACA
forms a negative feedback loop to reduce the production of cAMP via inhibiting
ACA. These negative and positive feedback loops are known to have an important
role in biological oscillations (Tsai et al., 2008). It is convenient to have a graphical
visualization of these interactions. Figure 4.10 is the interaction network of the
cAMP oscillation model, where → indicates activation and ⊣ indicates inhibition.
For two molecules connected by the arrow, if the molecule at the tail of the arrow
increases the change rate of the molecule at the arrowhead, it is activation. If the
change rate decreases, it is inhibition.

For the parameter values given in Table 4.6, Figure 4.11 shows the time histories
of the internal cAMP concentration and the CAR1 receptor concentration, i.e. the
solution of the ODE, (4.24). The oscillation has a stable period of seven minutes.

Figure 4.10 Dictyostelium
cAMP oscillation network.
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Figure 4.11 The concentration oscillations of the internal cAMP molecules and CAR1
receptors simulated using the ODE model.

The reverse procedure to the one shown in Section 1.2.2 obtains the 14 elemen-
tary biological interactions from the ODEs (4.24) as follows:

CAR1
k1−−→ACA + CAR1 (4.25a)

ACA + PKA
k2∕(NAV10−6)
−−−−−−−−−−→PKA (4.25b)

cAMPi
k3−−→PKA + cAMPi (4.25c)

PKA
k4−−→∅ (4.25d)

CAR1
k5−−→ERK2 + CAR1 (4.25e)

PKA + ERK2
k6∕(NAV10−6)
−−−−−−−−−−→PKA (4.25f)

1
k7×(NAV10−6)
−−−−−−−−−−→ [RegA] (4.25g)

ERK2 + RegA
k8∕(NAV10−6)
−−−−−−−−−−→ERK2 (4.25h)

ACA
k9−−→ cAMPi + ACA (4.25i)

RegA + cAMPi
k10∕(NAV10−6)
−−−−−−−−−−−→RegA (4.25j)

ACA
k11−−−→ cAMPe + ACA (4.25k)

cAMPe
k12−−−→∅ (4.25l)
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cAMPe
k13−−−→CAR1 + cAMPe (4.25m)

CAR1
k14−−−→∅ (4.25n)

where V is the cell volume equal to 3.672 × 10−14𝓁 (Kim et al., 2007a ) and 10−6

is multiplied because of changing the unit μM of k2, k6, k7, k8, and k10 to M. The
Molar (M) is the unit of the number of molecules per volume divided by Avogadro’s
number as follows:

1[M] = 1 [# of molecules]
NAV

For k2, k6, k8, and k10, the unit change from 1 per minute-Molar to 1 per minute-the
number of molecules is as follows:(

ki
1

[min][μM]

)
× 1

NAV
=

ki∕(NAV10−6)
[min] [M]

= ki∕(NAV10−6) 1
[min] [# of molecules]

for i = 2, 6, 8, and 10. Similarly, for k7,(
k7

[μM]
[min]

)
× (NAV) =

k7(NAV10−6)[M]
[min]

= k7 × (NAV10−6) [# of molecules]
[min]

4.3.1 Gillespie’s Direct Method

The method provides the exact simulation result for the molecular interactions,
where the principal assumption is the well-mixed condition, i.e. all the molecules
in the interactions distribute uniformly in the space (Gillespie, 1976).

Gillespie’s method answers the following two questions to simulate stochastic
molecular interactions:

● When does the next reaction occur?
● What reaction does occur?

When does the next reaction occur? The probability that the first reaction, (4.25a),
occurs during the time interval, 𝛿t, is proportional to (the current number of CAR1
molecules)×(the reaction rate) as follows:

p1(𝛿t) = k1 CAR1 𝛿t = a1𝛿t

where a1 is equal to (k1× CAR1) and is called the propensity function. Similarly,
the probability for the second reaction is

p2(𝛿t) =
k2

NAV10−6 ACA PKA 𝛿t = a2𝛿t
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where a2 is equal to (k2 × ACA PKA∕(NAV10−6). Obtaining the probabilities for
the rest of the reaction, from p3 to p14, is left as an exercise for the reader.

The probability that none of the 14 reactions occurs for 𝛿t is

pno reaction(𝛿t) = (1 − p1)(1 − p2)… (1 − p14) ≈ 1 −
14∑

i=1
pi = 1 −

14∑
i=1

ai𝛿t

where p1, p2,… , p14 are significantly smaller than 1 as 𝛿t is short, and the higher
order terms are neglected in the approximation. For 𝜏 > 0 and d𝜏 > 0, if none of
the reactions occurs from the current time, t, to t + 𝜏 and one of the reaction occurs
between t + 𝜏 and t + 𝜏 + d𝜏, what is the probability distribution of 𝜏? Note that d𝜏
is significantly smaller than 𝜏, i.e. d𝜏 ≪ 𝜏. By the definition, 𝜏 is the time interval
between any two reactions occurring. Let 𝜏 be equal to N number of 𝛿t, i.e. 𝜏 = N𝛿t.
The probability that no reaction occurs for 𝜏 is equal to

pno reaction(𝜏) = pno reaction(N𝛿t) =

(
1 −

14∑
i=1

ai𝜏

N

)N

Take the limitation by 𝛿t → 0 or equivalently by N → ∞

pno reaction(𝜏) = lim
N→∞

[
1 +

−
∑14

i=1
(

ai𝜏
)

N

]N

The term on the right-hand side is the definition of the exponential, i.e.

pno reaction(𝜏) = e−
∑

ai𝜏

The probability that no reaction occurs between t and t + 𝜏 and the i-th reaction
will occur between t + 𝜏 and t + 𝜏 + d𝜏 is

p(i, 𝜏)d𝜏 = pi(d𝜏) × pno reaction(𝜏) = aie−
∑

ai𝜏d𝜏

for i = 1, 2,… , 14. As a result, the probability density function for 𝜏 is given by

p(𝜏) =
14∑

i=1
p(i, 𝜏) =

( 14∑
i=1

ai

)
e−

∑
ai𝜏 (4.26)

for 𝜏 > 0 and p
𝜏
= 0 otherwise. p

𝜏
satisfies the condition for the function to be the

probability density function as follows (Shanmugan and Breipohl, 1988):

p(𝜏) ≥ 0

∫

∞

−∞
p(𝜏)d𝜏 =

∫

∞

0+

( 14∑
i=1

ai

)
e−

∑
ai𝜏 d𝜏 = −e−

∑
ai𝜏 |||𝜏→∞

𝜏=0
= 1

∫

a

b
p(𝜏)d𝜏 ≥ 0 for any b < a
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The time length from the current time to the next reaction time, 𝜏, follows the
exponential distribution. Hence, the answer to the first question of Gillespie’s
direct method is generating a random number, 𝜏 , whose distribution is given by the
exponential distribution, (4.26).

What reaction does occur? If one of the 14 reactions occurs, which one does
occur? As we know that the probability of each reaction will happen for the given
time interval, 𝛿t, normalize the propensity function by the sum of the propensity
function as follows:

āi =
ai∑14

i=1 ai

for i = 1, 2,… , 14. Generate a random number, x, from the uniform distribution
between 0 and 1 and determine the reaction to occur depending on the random
number and update the number of molecules as follows:

reaction #1 occurs if 0 ≤ x < ā1 (4.27a)

reaction #2 occurs if ā1 ≤ x < ā1 + ā2 (4.27b)

reaction #3 occurs if ā1 + ā2 ≤ x < ā1 + ā2 + ā3 (4.27c)

⋮ (4.27d)

reaction #13 occurs if
12∑

i=1
ai ≤ x <

13∑
i=1

ai (4.27e)

reaction #14 occurs if
13∑

i=1
ai ≤ x ≤ 1 (4.27f)

For each reaction, update the number of molecules as follows:

reaction #1 ACA ← ACA + 1 (4.28a)

reaction #2 ACA ← ACA − 1 (4.28b)

reaction #3 PKA ← PKA + 1 (4.28c)

reaction #4 PKA ← PKA − 1 (4.28d)

reaction #5 ERK2 ← ERK2 + 1 (4.28e)

reaction #6 ERK2 ← ERK2 − 1 (4.28f)

reaction #7 RegA ← RegA + 1 (4.28g)

reaction #8 RegA ← RegA − 1 (4.28h)

reaction #9 cAMPi ← cAMPi + 1 (4.28i)

reaction #10 cAMPi ← cAMPi − 1 (4.28j)

reaction #11 cAMPe ← cAMPe + 1 (4.28k)



�

� �

�

234 4 Biological System Modelling

reaction #12 cAMPe ← cAMPe − 1 (4.28l)

reaction #13 CAR1 ← CAR1 + 1 (4.28m)

reaction #14 CAR1 ← CAR1 − 1 (4.28n)

The pseudo-code of the direct method for (4.25) is summarized in Algorithm 4.2.

Algorithm 4.2 Gillespie’s direct method
1: Set the initial number of molecules: ACA, PKA, ERK2, RegA, cAMPi, cAMPe,

CAR1
2: Set the initial time, t = 0, and the final time, tf
3: while t < tf do
4: Generate the random number 𝜏 from the pdf, (4.26)
5: t ← t + 𝜏
6: Generate x from the uniform distribution between 0 and 1
7: Determine the reaction to occur using x and (4.27)
8: Update the number of molecules for the chosen reaction using (4.28)
9: end while

4.3.2 Simulation Implementation

Let the initial number of molecules for the seven molecular species be equal to

ACA = 35, 403, PKA = 32, 888, ERK2 = 11, 838, RegA = 27, 348,

cAMPi = 15, 489, cAMPe = 4980, CAR1 = 25, 423 (4.29)

This particular set of initial conditions is on the oscillation trajectory. Beginning
the simulation at arbitrary positive integer value,2 simulating the reactions until
they converge to the oscillation, and extracting the number of molecules at the end
of the simulation. This procedure provides the initial values given in (4.29).

Figure 4.12 shows the probability density function of 𝜏, (4.26), at the initial
condition. The histogram uses 𝜏 generated from the exponential distribution
during one minute of the simulation time. Initially, more than 1 million molecules
are evenly distributed in the cell volume, and many reactions occur in one minute
as shown in the histogram. As the number of molecules increases, the chance
that two molecules collide with each other increases, and the reaction time, 𝜏,
becomes shorter. These short 𝜏 will slow down the simulation progress as the
time increment is small. Gillespie’s direct method is mainly for the low number
of molecules simulations. Some other methods, such as 𝜏-leap or Langevin

2 Use small integer numbers for the initial condition. Why?
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Figure 4.12 Experimental and theoretical distributions of 𝜏 in Gillespie’s direct method,
where the experimental distribution is from 𝜏 generated for one minute from the
beginning of the simulation.

approximation, address slow simulation progress (Cao et al., 2006, Kim
et al., 2018).

Figure 4.12 shows that the average reaction time interval is around 0.4 ms.
That is, for every 0.4 ms, one of the reactions occurs. Storing all molecule number
changes by the reactions requires lots of computer memory space. To reduce the
memory size, we save the molecule numbers with a lot longer sampling time, e.g.
0.1 seconds.

Program 4.11 is the MATLAB implementation of the cAMP oscillation network
using Gillespie’s direct method. For the robustness analysis part from line 17,
which we shall discuss later, set p_delta equal to zero and simulate it for the
nominal kinetic parameter case. The initial molecular numbers are found by
a priori simulation with a simulation time longer than 60 minutes so that the
trajectory converges to the oscillation cycle close enough and sets to the molecular
numbers at the end of the simulation. To generate 𝜏, whose distribution is given
by (4.26), the inverse of

∑
ai is given to the MATLAB exprnd() function in line 55.

exprnd(a) generates a random number, x, from the following distribution:

p(x) = 1
a

e−x∕a

In the last parts of the program, the simulation history saves the simulation time
and the corresponding numbers of the molecules every 0.1 seconds.
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1 clear
2
3 % s i m u l a t i o n t i m e v a l u e s
4 t i m e _ c u r r e n t = 0 ; % i n i t i a l t i m e
5 t i m e _ f i n a l = 6 0 . 0 ; % f i n a l t i m e [ min ]
6 t i m e _ r e c o r d = t i m e _ c u r r e n t ; % data r e c o r d t i m e
7 d t _ r e c o r d = 0 . 1 ; % minimum t i m e i n t e r v a l f o r data r e c o r d i n g
8 max_num_data = f l o o r ( ( t i m e _ f i n a l −t i m e _ c u r r e n t ) / d t _ r e c o r d +0.5) ;
9

10 % k i n e t i c p a r a m e t e r s f o r t h e Laub−Loomis D i c t y cAMP o s c i l l a t i o n
11 % network model from k1 t o k14
12 k i _ p a r a _ o r g = [ 2 . 0 ; 0 . 9 ; 2 . 5 ; 1 . 5 ; 0 . 6 ; 0 . 8 ; 1 . 0 ; 1 . 3 ; 0 . 3 ; 0 . 8 ;

0 . 7 ; 4 . 9 ; 2 3 . 0 ; 4 . 5 ] ;
13 C e l l _ V o l = 3 . 6 7 2 e−14; % [ l i t r e ]
14 NA = 6 . 0 2 2 e23 ; % Avogadro ’ s number
15 num_molecule_species = 7 ;
16
17 % r o b u s t n e s s
18 d e l t a _ w o r s t = [−1 −1 1 1 −1 1 1 −1 1 1 −1 1 −1 1 ] ’ ;
19 p _ d e l t a = 0 ;
20 k i _ p a r a=k i _ p a r a _ o r g .∗ ( 1 + ( p _ d e l t a / 1 0 0 ) ∗ d e l t a _ w o r s t ) ;
21
22 % i n i t i a l number o f m o l e c u l e s
23 ACA = 3 5 4 0 3 ; % [# o f m o l e c u l e s ]
24 PKA = 3 2 8 8 8 ; % [# o f m o l e c u l e s ]
25 ERK2 = 1 1 8 3 8 ; % [# o f m o l e c u l e s ]
26 REGA = 2 7 3 4 8 ; % [# o f m o l e c u l e s ]
27 icAMP = 1 5 4 8 9 ; % [# o f m o l e c u l e s ]
28 ecAMP = 4 9 8 0 ; % [# o f m o l e c u l e s ]
29 CAR1 = 2 5 4 2 3 ; % [# o f m o l e c u l e s ]
30
31 % s t o r i n g data
32 s p e c i e s _ a l l = zeros ( max_num_data , num_molecule_species +1) ;
33 s p e c i e s _ a l l ( 1 , : ) = [ t i m e _ c u r r e n t ACA PKA ERK2 REGA icAMP ecAMP CAR1

] ;
34 d a t a _ i d x = 1 ;
35
36 while d a t a _ i d x < max_num_data
37
38 p r o p e n s i t y _ a ( 1 ) = k i _ p a r a ( 1 ) ∗CAR1 ;
39 p r o p e n s i t y _ a ( 2 ) = k i _ p a r a ( 2 ) ∗ACA∗PKA/ (NA∗C e l l _ V o l ∗1e−6) ;
40 p r o p e n s i t y _ a ( 3 ) = k i _ p a r a ( 3 ) ∗icAMP ;
41 p r o p e n s i t y _ a ( 4 ) = k i _ p a r a ( 4 ) ∗PKA ;
42 p r o p e n s i t y _ a ( 5 ) = k i _ p a r a ( 5 ) ∗CAR1 ;
43 p r o p e n s i t y _ a ( 6 ) = k i _ p a r a ( 6 ) ∗PKA∗ERK2 / (NA∗C e l l _ V o l ∗1e−6) ;
44 p r o p e n s i t y _ a ( 7 ) = k i _ p a r a ( 7 ) ∗ (NA∗C e l l _ V o l ∗1e−6) ;
45 p r o p e n s i t y _ a ( 8 ) = k i _ p a r a ( 8 ) ∗ERK2∗REGA/ (NA∗C e l l _ V o l ∗1e−6) ;
46 p r o p e n s i t y _ a ( 9 ) = k i _ p a r a ( 9 ) ∗ACA;
47 p r o p e n s i t y _ a ( 1 0 ) = k i _ p a r a ( 1 0 ) ∗REGA∗icAMP / (NA∗C e l l _ V o l ∗1e−6) ;
48 p r o p e n s i t y _ a ( 1 1 ) = k i _ p a r a ( 1 1 ) ∗ACA;
49 p r o p e n s i t y _ a ( 1 2 ) = k i _ p a r a ( 1 2 ) ∗ecAMP ;
50 p r o p e n s i t y _ a ( 1 3 ) = k i _ p a r a ( 1 3 ) ∗ecAMP ;
51 p r o p e n s i t y _ a ( 1 4 ) = k i _ p a r a ( 1 4 ) ∗CAR1 ;
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52
53 % d e t e r m i n e t h e r e a c t i o n t i m e tau
54 sum_propensi ty_a = sum( p r o p e n s i t y _ a ) ;
55 tau = exprnd ( 1 / sum_propensi ty_a ) ;
56
57 % d e t e r m i n e t h e r e a c t i o n
58 n o r m a l i z e d _ p r o p e n s i t y _ a = p r o p e n s i t y _ a / sum_propensi ty_a ;
59 cumsum_propensity_a = cumsum( n o r m a l i z e d _ p r o p e n s i t y _ a ) ;
60 w h i c h _ r e a c t i o n = rand ( 1 ) ;
61 r e a c t i o n _ i d x = cumsum( ( cumsum_propensity_a−w h i c h _ r e a c t i o n ) < 0 ) ;
62 r e a c t i o n = r e a c t i o n _ i d x ( end ) +1;
63
64 % update number o f m o l e c u l e s
65 s w i t c h r e a c t i o n
66 c a s e 1
67 ACA = ACA + 1 ;
68 c a s e 2
69 ACA = ACA − 1 ;
70 c a s e 3
71 PKA = PKA + 1 ;
72 c a s e 4
73 PKA = PKA − 1 ;
74 c a s e 5
75 ERK2 = ERK2 + 1 ;
76 c a s e 6
77 ERK2 = ERK2 − 1 ;
78 c a s e 7
79 REGA = REGA + 1 ;
80 c a s e 8
81 REGA = REGA − 1 ;
82 c a s e 9
83 icAMP = icAMP + 1 ;
84 c a s e 10
85 icAMP = icAMP − 1 ;
86 c a s e 11
87 ecAMP = ecAMP + 1 ;
88 c a s e 12
89 ecAMP = ecAMP − 1 ;
90 c a s e 13
91 CAR1 = CAR1 + 1 ;
92 c a s e 14
93 CAR1 = CAR1 − 1 ;
94 o t h e r w i s e
95 error ( ’ Wrong r e a c t i o n number ! ’ ) ;
96 end
97
98 t i m e _ c u r r e n t = t i m e _ c u r r e n t + tau ;
99

100 i f t i m e _ r e c o r d < t i m e _ c u r r e n t
101 d a t a _ i d x = d a t a _ i d x + 1 ;
102 s p e c i e s _ a l l ( da ta_ idx , : ) = [ t i m e _ c u r r e n t ACA PKA ERK2 REGA

icAMP ecAMP CAR1 ] ;
103 t i m e _ r e c o r d = t i m e _ r e c o r d + d t _ r e c o r d ;
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104 disp ( t i m e _ r e c o r d ) ;
105 end
106
107 end

Program 4.11 (MATLAB) cAMP oscillation network simulation using Gillespie’s
direct method

Figure 4.13 shows the stochastic simulation results of the Dictyostelium cAMP
oscillation network using Gillespie’s direct method. Compare the results with the
ones in Figure 4.11, which is from the deterministic simulation, their trajectories
show several quantitative measures well matched to each other. The periods are
about seven minutes, the phase difference between the internal cAMP and the
CAR1 receptor is about one minute, and the average value of the internal cAMP is
about twice bigger than the one of the CAR1 receptor. We conclude that both sim-
ulations in the deterministic and the stochastic settings provide the same results.

The Python implementation of Gillespie’s direct method is given in
Program 4.12 and the simulation results are shown in Figure 4.14. Unlike
MATLAB, Python does not have a switch-case statement,3 and the program
implements it using if-elif-else.

0 5 10 15 20 25 30
Time (min)

[#
 o

f 
m

ol
ec

ul
es

]

0

1

2

3

4

5

6
i-cAMP
CAR1

×104

Figure 4.13 (MATLAB) The concentration oscillations of the internal cAMP molecules
and CAR1 receptors simulated using Gillespie’s direct method.

3 Python 3.10 introduces match-case to provide the same functionality of switch-case in other
languages. https://www.python.org/dev/peps/pep-0622/.

https://www.python.org/dev/peps/pep-0622/
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Figure 4.14 (Python) The concentration oscillations of the internal cAMP molecules and
CAR1 receptors simulated using Gillespie’s direct method.

1 import numpy as np
2
3 # s i m u l a t i o n t i m e v a l u e s
4 t i m e _ c u r r e n t = 0 # i n i t i a l t i m e
5 t i m e _ f i n a l = 6 0 . 0 # f i n a l t i m e [ min ]
6 t i m e _ r e c o r d = t i m e _ c u r r e n t # data r e c o r d t i m e
7 d t _ r e c o r d = 0 . 1 # minimum t i m e i n t e r v a l f o r data r e c o r d i n g
8 max_num_data = np . f l o o r ( ( t i m e _ f i n a l −t i m e _ c u r r e n t ) / d t _ r e c o r d +0.5) ;
9

10 # k i n e t i c p a r a m e t e r s f o r t h e Laub−Loomis D i c t y cAMP o s c i l l a t i o n
11 # network model from k1 t o k14
12 k i _ p a r a _ o r g = np . a r r a y ( [ 2 . 0 , 0 . 9 , 2 . 5 , 1 . 5 , 0 . 6 , 0 . 8 , 1 . 0 , 1 . 3 ,

0 . 3 , 0 . 8 , 0 . 7 , 4 . 9 , 2 3 . 0 , 4 . 5 ] )
13 C e l l _ V o l = 3 . 6 7 2 e−14; # [ l i t r e ]
14 NA = 6 . 0 2 2 e23 ; # Avogadro ’ s number
15 num_molecule_species = 7
16 num_react ions = 14
17
18 # r o b u s t n e s s
19 d e l t a _ w o r s t = np . a r r a y ([ −1 , −1 , 1 , 1 , −1 , 1 , 1 , −1 , 1 , 1 , −1 , 1 ,

−1 , 1 ] )
20 p _ d e l t a = 0 ;
21 k i _ p a r a=k i _ p a r a _ o r g ∗(1+( p _ d e l t a / 1 0 0 ) ∗ d e l t a _ w o r s t )
22
23 # i n i t i a l number o f m o l e c u l e s
24 ACA = 35403 # [# o f m o l e c u l e s ]
25 PKA = 32888 # [# o f m o l e c u l e s ]
26 ERK2 = 11838 # [# o f m o l e c u l e s ]
27 REGA = 27348 # [# o f m o l e c u l e s ]
28 icAMP = 15489 # [# o f m o l e c u l e s ]
29 ecAMP = 4980 # [# o f m o l e c u l e s ]
30 CAR1 = 25423 # [# o f m o l e c u l e s ]



�

� �

�

240 4 Biological System Modelling

31
32 # s t o r i n g data
33 s p e c i e s _ a l l = np . z e r o s ( ( i n t ( max_num_data ) , num_molecule_species +1) )
34 s p e c i e s _ a l l [ 0 , : ] = np . a r r a y ( [ t im e _cu r r e nt , ACA, PKA, ERK2 , REGA,

icAMP , ecAMP , CAR1 ] )
35 d a t a _ i d x = 0
36
37 p r o p e n s i t y _ a = np . z e r o s ( num_react ions )
38
39 while d a t a _ i d x < max_num_data−1:
40
41 p r o p e n s i t y _ a [ 0 ] = k i _ p a r a [ 0 ]∗CAR1
42 p r o p e n s i t y _ a [ 1 ] = k i _ p a r a [ 1 ]∗ACA∗PKA/ (NA∗C e l l _ V o l ∗1e−6)
43 p r o p e n s i t y _ a [ 2 ] = k i _ p a r a [ 2 ]∗ icAMP
44 p r o p e n s i t y _ a [ 3 ] = k i _ p a r a [ 3 ]∗PKA
45 p r o p e n s i t y _ a [ 4 ] = k i _ p a r a [ 4 ]∗CAR1
46 p r o p e n s i t y _ a [ 5 ] = k i _ p a r a [ 5 ]∗PKA∗ERK2 / (NA∗C e l l _ V o l ∗1e−6)
47 p r o p e n s i t y _ a [ 6 ] = k i _ p a r a [ 6 ]∗ (NA∗C e l l _ V o l ∗1e−6)
48 p r o p e n s i t y _ a [ 7 ] = k i _ p a r a [ 7 ]∗ERK2∗REGA/ (NA∗C e l l _ V o l ∗1e−6)
49 p r o p e n s i t y _ a [ 8 ] = k i _ p a r a [ 8 ]∗ACA
50 p r o p e n s i t y _ a [ 9 ] = k i _ p a r a [ 9 ]∗REGA∗icAMP / (NA∗C e l l _ V o l ∗1e−6)
51 p r o p e n s i t y _ a [ 1 0 ] = k i _ p a r a [ 1 0 ]∗ACA
52 p r o p e n s i t y _ a [ 1 1 ] = k i _ p a r a [ 1 1 ]∗ecAMP
53 p r o p e n s i t y _ a [ 1 2 ] = k i _ p a r a [ 1 2 ]∗ecAMP
54 p r o p e n s i t y _ a [ 1 3 ] = k i _ p a r a [ 1 3 ]∗CAR1
55
56 # d e t e r m i n e t h e r e a c t i o n t i m e tau
57 sum_propensi ty_a = np . sum ( p r o p e n s i t y _ a )
58 tau = np . random . e x p o n e n t i a l ( 1 / sum_propensi ty_a )
59
60 # d e t e r m i n e t h e r e a c t i o n
61 n o r m a l i z e d _ p r o p e n s i t y _ a = p r o p e n s i t y _ a / sum_propensi ty_a
62 cumsum_propensity_a = np . cumsum( n o r m a l i z e d _ p r o p e n s i t y _ a )
63 w h i c h _ r e a c t i o n = np . random . rand ( 1 )
64 r e a c t i o n _ i d x = np . cumsum ( ( cumsum_propensity_a−w h i c h _ r e a c t i o n )

< 0 )
65 r e a c t i o n = r e a c t i o n _ i d x [−1]
66
67 # update number o f m o l e c u l e s
68 i f r e a c t i o n ==0:
69 ACA = ACA + 1
70 e l i f r e a c t i o n ==1:
71 ACA = ACA − 1
72 e l i f r e a c t i o n ==2:
73 PKA = PKA + 1
74 e l i f r e a c t i o n ==3:
75 PKA = PKA − 1
76 e l i f r e a c t i o n ==4:
77 ERK2 = ERK2 + 1
78 e l i f r e a c t i o n ==5:
79 ERK2 = ERK2 − 1
80 e l i f r e a c t i o n ==6:
81 REGA = REGA + 1
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82 e l i f r e a c t i o n ==7:
83 REGA = REGA − 1
84 e l i f r e a c t i o n ==8:
85 icAMP = icAMP + 1
86 e l i f r e a c t i o n ==9:
87 icAMP = icAMP − 1
88 e l i f r e a c t i o n ==10:
89 ecAMP = ecAMP + 1
90 e l i f r e a c t i o n ==11:
91 ecAMP = ecAMP − 1
92 e l i f r e a c t i o n ==12:
93 CAR1 = CAR1 + 1
94 e l i f r e a c t i o n ==13:
95 CAR1 = CAR1 − 1
96 e l s e :
97 print ( r e a c t i o n , ’ Wrong r e a c t i o n number ! ’ )
98
99 t i m e _ c u r r e n t = t i m e _ c u r r e n t + tau

100
101 i f t i m e _ r e c o r d < t i m e _ c u r r e n t :
102 d a t a _ i d x = d a t a _ i d x + 1
103 s p e c i e s _ a l l [ da ta_ idx , : ] = np . a r r a y ( [ t ime_current , ACA, PKA,

ERK2 , REGA, icAMP , ecAMP , CAR1 ] )
104 t i m e _ r e c o r d = t i m e _ r e c o r d + d t _ r e c o r d
105 print ( t i m e _ r e c o r d )

Program 4.12 (Python) cAMP oscillation network simulation using Gillespie’s
direct method

4.3.3 Robustness Analysis

Even within the same species, each cell is different. The kinetic parameters for
the cAMP network of Dictyostelium would vary from cell to cell. The robustness
evaluation towards parametric perturbations in the network models is a way to
provide the plausibility or verification tests of biomolecular networks.

Consider the parametric perturbations given by

ki = k̄i

(
1 +

p
𝛿

100
𝛿i

)
for i = 1, 2,… , 14, k̄i is the nominal values of the kinetic parameters of the cAMP
oscillation network given in Table 4.6, p

𝛿
is the percentage perturbation greater

than or equal to zero, and 𝛿i is the normalized perturbation between −1 and 1.
The worst perturbation, 𝜹∗, is the smallest magnitude perturbation destroying the
oscillation, where

𝜹 =
[
𝛿1 𝛿2 … 𝛿14

]T

and the magnitude would be a vector norm, typically the 2-norm or the ∞-norm.
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Destroying the oscillation is not trivial to define as an optimization problem.
If there is no oscillation, it is the case that the trajectories of the states are con-
verged or diverged. As the number of molecules in biological networks is finite,
we exclude diverging cases and only consider the converging ones. When the state
converges to constants, the time derivative converges to zero. The integral of the
time derivative can be a measure of how vivid the oscillations are. The cost func-
tion to be minimized is defined by

Minimize‖𝜹‖≤1
J = 1

2 ∫

tf

t0

(
d[ACA]

dt

)2

dt

= 1
2 ∫

tf

t0

(
k1 [CAR1] − k2 [ACA] [PKA]

)2 dt

≈ 1
2

N∑
i=0

{
k1 [CAR1(ti)] − k2 [ACA(ti)] [PKA(ti)]

}2Δt (4.30)

where t0 must be large enough to reduce the effect of the initial conditions to
the integration, tf is long enough to include several oscillations if they exist,
Δt = ti − ti−1, tf = tN , and N is the number of intervals. The last expression with
the summation is an approximation of the integral with N-Δt intervals. For a
fixed p

𝛿
, solve the minimization problem and check if the worst perturbation

destroys the oscillation manually. Repeat this procedure by reducing p
𝛿
. Write

pseudo-code for the robustness analysis of the oscillation is left as an exercise.
The MATLAB and the Python codes for the cost function are given in

Programs 4.13 and 4.14.

1 function J _ c o s t = D i c t y _ x 1 _ s q u a r e _ i n t e g r a l ( d e l t a )
2
3 k i _ p a r a _ o r g = [ 2 . 0 ; 0 . 9 ; 2 . 5 ; 1 . 5 ; 0 . 6 ; 0 . 8 ; 1 . 0 ; 1 . 3 ; 0 . 3 ;

0 . 8 ; 0 . 7 ; 4 . 9 ; 2 3 . 0 ; 4 . 5 ] ;
4 p _ d e l t a = 2 ; % [ p e r c e n t s ]
5 k i _ p a r a=k i _ p a r a _ o r g .∗ ( 1 + ( p _ d e l t a / 1 0 0 ) ∗ d e l t a ( : ) ) ;
6
7 x0 = rand ( 7 , 1 ) ;
8 dt = 0 . 1 ;
9 t i m e _ i n t e r v a l = 0 : dt : 1 2 0 0 ; % [ min ]

10
11 [ ~ , xout ] = ode45 (@( time , s t a t e ) Dicty_cAMP ( time , s t a t e , k i _ p a r a ) ,

t i m e _ i n t e r v a l , x0 ) ;
12
13 ACA = xout ( 6 0 0 0 : end , 1 ) ;
14 PKA = xout ( 6 0 0 0 : end , 2 ) ;
15 CAR1 = xout ( 6 0 0 0 : end , 7 ) ;
16 J _ c o s t = sum ( ( k i _ p a r a ( 1 ) ∗CAR1 − k i _ p a r a ( 2 ) ∗ (ACA.∗PKA) ) . ^ 2 ) ∗dt

∗ 0 . 5 ;
17
18 end

Program 4.13 (MATLAB) The cost function for the oscillation robustness
analysis
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1 # Cost function t o be minimized for r o b u s t n e s s a n a l y s i s
2 d e f D i c t y _ x 1 _ s q u a r e _ i n t e g r a l ( d e l t a ) :
3
4 k i _ p a r a _ o r g = np . a r r a y ( [ 2 . 0 , 0 . 9 , 2 . 5 , 1 . 5 , 0 . 6 , 0 . 8 , 1 . 0 , 1 . 3 ,

0 . 3 , 0 . 8 , 0 . 7 , 4 . 9 , 2 3 . 0 , 4 . 5 ] )
5 p _ d e l t a = 2 # [ p e r c e n t s ]
6 k i _ p a r a=k i _ p a r a _ o r g ∗(1+( p _ d e l t a / 1 0 0 ) ∗ d e l t a )
7
8 i n i t _ c o n d = np . random . rand ( 7 )
9 dt = 0 . 1

10 t f = 1200
11 t i m e _ i n t e r v a l = np . l inspace ( 0 , t f , i n t ( t f / d t ) ) # [min]
12
13 s o l _ o u t = s o l v e _ i v p ( Dicty_cAMP , ( 0 , t f ) , i n i t _ c o n d , t _ e v a l=

t i m e _ i n t e r v a l , a r g s =( ki_para , ) )
14 xout = s o l _ o u t . y
15
16 ACA = xout [ 0 , 5 9 9 9 : : ]
17 PKA = xout [ 2 , 5 9 9 9 : : ]
18 CAR1 = xout [ 6 , 5 9 9 9 : : ]
19 J _ c o s t = np . sum ( ( k i _ p a r a [ 0 ]∗CAR1 − k i _ p a r a [ 1 ]∗ (ACA∗PKA) ) ∗∗2)∗dt

∗0 . 5
20
21 return J _ c o s t

Program 4.14 (Python) The cost function for the oscillation robustness analysis

The worst perturbation found in Kim et al. (2006) is

𝜹∗ =
[
−1 −1 1 1 −1 1 1 −1 1 1 −1 1 −1 1

]T (4.31)

and p∗
𝛿
= 0.6. As shown in the time history of two molecular species concentra-

tion changes in Figure 4.15, it needs only 0.6% perturbation to the nominal kinetic
parameters to annihilate the oscillation. It is essential to consider the biological
interpretation or meaning in biological network models. The cAMP oscillation
takes place during the aggregation phase of Dictyostelium cells. The oscillation dis-
appears after the slug, a tight mould of the cells, forms (Hashimura et al., 2019).
The oscillation lasts less than 10 hours (600 minutes) before disappearing. Hence,
the fragility of oscillation in 50 hours (3000 minutes) could be acceptable.

p∗
𝛿

increases to 2% with the same 𝛿
∗ to have a better biological interpreta-

tion. Figure 4.16 shows that the oscillations diminish significantly in 6 hours
(300 minutes). If this happens to the cells during the aggregation phase, it has
damaging effects. From the robustness analysis results showing the biologically
acceptable fragility, we could conclude that the model might not be correct.
Is the conclusion acceptable? We cannot reject the model immediately now.
Multiple wet-lab experiments support most of the network connections shown in
Figure 4.10 and the kinetic parameters in Table 4.6. Recall that the simulations
shown in Figures 4.15 and 4.16 are based on the deterministic ODEs.

Figure 4.17 shows the stochastic simulation with the same 2% worst perturba-
tion used for the deterministic case shown in Figure 4.16. The difference between
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Figure 4.15 (Deterministic ODE model) The concentration change time history with the
0.6% worst perturbation (4.31).
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Figure 4.16 (Deterministic ODE model) The concentration change time history with the
2% worst perturbation (4.31).
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Figure 4.17 (Stochastic simulation) The concentration change time history with the 2%
worst perturbation (4.31).

these two simulations is dramatic. While the oscillation disappears for the deter-
ministic case, it sustains for the stochastic case, where the kinetic parameters are
the same for both. It tells us that the importance of stochastic fluctuations in bio-
logical interactions as it would make qualitative differences. The deterministic
model shows extreme sensitivity to the parametric perturbation. The stochastic
model shows resilience to the same perturbation. Stochastic noise, which degrades
the performance of engineering systems, in general, should be minimized, pro-
vides robustness to the oscillation.

Vilar et al. (2002) have presented the theoretical results of how the stochastic
nature of molecular interactions becomes the source of genetic oscillation. Kim
et al. (2008) have shown the necessary condition for the noise intensity to cause
vibration. Kim et al. (2007b ) show that synchronization between multiple Dic-
tyostelium cells via waves of external cAMP plays an important role in improving
the robustness of the oscillation.

Exercises

Exercise 4.1 Using the definition of Laplace transform,

Y (s) =
∫

t=∞

t=0
y(t)e−st dt



�

� �

�

246 4 Biological System Modelling

show that

y(t) = x(t − 𝜏) ⇒ Y (s) = e−𝜏sX(s)

where x(t − 𝜏) = 0 for t ∈ [0, 𝜏).

Exercise 4.2 Using the definition of Laplace transform,

Y (s) =
∫

t=∞

t=0
y(t)e−st dt

show that

sY (s) − y(0) =
∫

t=∞

t=0
ẏ(t)e−st dt

Exercise 4.3 (MATLAB/Python) Implement Algorithm 4.1 and test for random
parameter combinations to calculate the cost value, J, in (4.5). Find cases that the
function fails and discuss the main cause of the fails.

Exercise 4.4 Obtain the probability for each reaction in (4.25) occurs.

Exercise 4.5 (Python) Perturb the optimal parameters in (4.20), (4.21), or (4.22)
using (4.23). Plot the robustness of the parameters as shown in Figure 4.8 using
10,000 random samples of 𝜖.

Exercise 4.6 (MATLAB/Python) Implement the ODE model for the cAMP oscil-
lation in (4.24) and perform a simulation to produce Figure 4.11.

Exercise 4.7 Write pseudo-code for the robustness analysis algorithm of the Dic-
tyostelium cAMP network using (4.30) and the descriptions below (4.30).

Exercise 4.8 (MATLAB/Python) Using the cost functions in Program 4.13 or
Program 4.14, implement the pseudo-code in Exercise 4.7.

Exercise 4.9 (MATLAB/Python) Modify the 14 elementary reactions for a single
cell Dictyostelium cAMP oscillation in (4.28) for 20 cells and perform the simula-
tions for the worst perturbation given in (4.31) with p

𝛿
= 2.
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5

Biological System Control

5.1 Control Algorithm Implementation

Recall the enzyme–substrate interactions, (4.8),

E + S
kon−−−⇀↽−−−
koff

ES

ES
kcat−−−→P + E

P
kdg
−−−→∅

where the product, P, degrades with the rate of kdg. These four elementary
reactions represent the system whose input and output are S and P, respectively.
Figure 5.1 shows the block diagram for the reactions.

As we have the input/output system, we can set the standard control problem
with the feedback loop shown in Figure 5.2. By the definition given in Springer
Nature Limited (2021), ‘Synthetic biology is the design and construction of new
biological parts, devices, and systems, and the re-design of the existing, natural
biological systems for useful purposes.’ Elementary molecular interactions imple-
ment the desired P, the subtraction operator for calculating the error, and the con-
troller for providing the input S in Figure 5.2.

5.1.1 PI Controller

Consider the control to be the proportional integral (PI) controller

[Strue] = kP[ΔP] + kI ∫

t

0
[ΔP(𝜏)]d𝜏

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers,
First Edition. Jongrae Kim.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling

http://www.wiley.com/go/kim/dynamicmodeling
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Input S Output P
E + S         ES

kon

koff

ES −−→ P + E
kcat

P −−→ Økdg

−↽−−⇀−
Figure 5.1 Enzyme–substrate
reactions as an input (S) and output
(P) system.

Input S
Controller

Desired P Error Output P

+
–

Σ
ES −−→ P + E

kcat

P −−→ Økdg

E + S         ES
kon

koff

−↽−−⇀−

Figure 5.2 Feedback control structure for the enzyme–substrate system.

where [⋅] is the concentration of the molecules, kP and kI are the proportional gain
and integral gain, respectively, and ΔP is the error calculated by the subtraction
operator. The state-space form of the PI controller is given by

dz
dt

= [ΔP] = 0z + 1 × [ΔP] = Atruez + Btrue[ΔP]

[Strue] = kIz + kP[ΔP] = Ctruez + Dtrue[ΔP]

and the corresponding transfer function is given by

Ktrue(s) = Ctrue
(

s − Atrue
)−1Btrue + Dtrue =

kI

s
+ kP (5.1)

Direct implementations of the PI controller require two multiplications, kp and
kI , to the error and the integration of the error, respectively, one integration, and
the summation. These operations are not available immediately in biological
networks. Specifically designed multiple elementary molecular interactions
implement the operations.

5.1.1.1 Integral Term
Consider the following elementary chemical reaction (Foo et al., 2016):

ΔP
kI−−→ΔP + X1

where the ΔP molecule produces an intermediate molecular species, X1, and the
reaction rate is kI . The corresponding differential equation for X1 is

d[X1]
dt

= kI[ΔP]
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X1 becomes the integration term multiplied by the integration gain as follows:

[X1(t)] = kI ∫

t

0
[ΔP(𝜏)]d𝜏

5.1.1.2 Proportional Term
Consider the following two elementary chemical reactions (Foo et al., 2016):

ΔP
𝛾GkP−−−−→ΔP + X2

X2
𝛾G−−→∅

where theΔP molecule produces another intermediate molecular species, X2, with
the rate equal to 𝛾GkP, and X2 degrades with the rate of 𝛾G. The corresponding
differential equation for X2 is

d[X2]
dt

= −𝛾G[X2] + 𝛾GkP[ΔP]

Once it reaches the steady-state, i.e. [X2(t)] = [Xss
2 ] = const, then

0 = −𝛾G[Xss
2 ] + 𝛾GkP[ΔP] ⇒ [Xss

2 ] = kP[ΔP]

For a constant or slowly varying ΔP, the steady-state of [X2(t)] becomes the
proportional term.

5.1.1.3 Summation of the Proportional and the Integral Terms
Consider the following three elementary chemical reactions (Foo et al., 2016):

X1
ks2−−−→X1 + S

X2
ks2−−−→X2 + S

S
ks2−−−→∅

where two molecular species X1 and X2 produce the substrate, S, with the rate of
ks2, and the substrate degrades at the same rate. The corresponding differential
equation for S is

d[S]
dt

= ks2
(
[X1] + [X2] − [S]

)
Similar to before, consider the steady-state of S as follows:

0 = ks2
(
[Xss

1 ] + [Xss
2 ] − [Sss]

)
⇒ [Sss] = [Xss

1 ] + [Xss
2 ]

5.1.1.4 Approximated PI Controller
Therefore, the steady-state of the substrate is given by

[Sss] = [Xss
2 ] + [Xss

3 ] = kP[ΔP] + kI ∫

t

0
[ΔP](𝜏)d𝜏
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and it provides the approximated PI control input. Note that X1 reaches its steady-
state only if the error, ΔP, converges to zero, and X2 reaches its steady-state only
if the error, ΔP, is constant. S cannot converge to a steady-state unless X1 and X2
converge, and the above analysis based on approximations cannot be exact. As
long as all states change slowly, however, the approximation error would be in the
acceptable ranges. The linear time-invariant (LTI) model for the PI controller is
given by

d
dt

⎡⎢⎢⎣
[X1]
[X2]
[S]

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 0 0
0 −𝛾G 0

ks2 ks2 −ks2

⎤⎥⎥⎦
⎡⎢⎢⎣
[X1]
[X2]
[S]

⎤⎥⎥⎦ +
⎡⎢⎢⎣

kI
𝛾GkP

0

⎤⎥⎥⎦ [ΔP] = Acxc + Bc[ΔP]

[S] =
[
0 0 1

] ⎡⎢⎢⎣
[X1]
[X2]
[S]

⎤⎥⎥⎦ + 0[ΔP] = Ccxc + Dc[ΔP]

The transfer function of the approximated PI controller is given by

Kapprox(s) = Cc
(

sI4 − Ac
)−1Bc + Dc =

(
𝛾Gks2kp + ks2kI

)
s + 𝛾Gks2kI

s3 +
(

ks2 + 𝛾G
)

s2 + 𝛾Gks2s
(5.2)

For |s|≪ 1, the higher order terms are negligible and the transfer function is
approximated by

Kapprox(s) ≈

(
𝛾Gks2kp + ks2kI

)
s + 𝛾Gks2kI

𝛾Gks2s

=
𝛾Gks2kp + ks2kI

𝛾Gks2
+

kI

s
=
(

kp +
kI

𝛾G

)
+

kI

s
(5.3)

5.1.1.5 Comparison of PI Controller and the Approximation
Assume that the values of the reaction rates for the PI controller are given as fol-
lows: Foo et al. (2016)

kP = 20, kI = 2.5 × 10−4
, 𝛾G = 8 × 10−4

, ks2 = 4 × 10−4 (5.4)

where the units are arbitrary. Substitute these into (5.1) and (5.3)

Ktrue(s) =
2.5 × 10−4

s
+ 20

Kapprox(s) =
(

20 + 2.5 × 10−4

8 × 10−4

)
+ 2.5 × 10−4

s
= 2.5 × 10−4

s
+ 20.31

We confirm that Kapprox is approximately close to Ktrue in low frequency, i.e.|s| = |j𝜔| = 𝜔 ≪ 1. The bode plots of the true PI controller, (5.1), and the approx-
imation, (5.2), are shown in Figure 5.3. As shown in the above derivations, the
bode plots of the approximated and the true PI controller are well matched up to
𝜔 equal to 10−5.
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Figure 5.3 Comparison of the frequency responses between the true PI controller and
the approximation.
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Figure 5.4 Comparison of the step and the impulse responses between the true PI
controller and the approximation.

Programs 5.1 and 5.2 produce the bode plots given in Figure 5.3 and two time
responses shown in Figure 5.4. In line 21, the LTI system given by

ẋ = Ax + B [ΔP]

[S] = Cx + D [ΔP]
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is packed in MATLAB using ss(). In line 25, the magnitude and the phase values
are returned by the function bode(). The unit for the magnitude is not in the dB
unit, and they should be manually converted to the decibel unit using 20log10()
as shown in line 30, where log10() is the common logarithm function. The phase
angle values returned by bode() is in degrees.

The time responses shown in Figure 5.4 are for the step and the impulse inputs
produced by the MATLAB commands, step() and impulse(), respectively. For the
following two cases of ΔP,

Step input: [ΔP] =
{

1 for t ≥ 0
0 for t < 0

Impulse input: [ΔP] = 𝛿(t)

where 𝛿(t) is the Dirac delta function given by Franklin et al. (2015)

𝛿(t) = 0 for t ≠ 0, and
∫

∞

−∞
𝛿(t)dt = 1

As shown in the middle plot of Figure 5.5, the Dirac delta function is the operator
constructed by taking the limit ofΔt approaching zero while the total area remains
equal to 1. Consequently, the following integral

∫

∞

−∞
f (t)𝛿(t − a)dt = f (a)

provides the value of the function, f (t), at t equal to the instance that the delta
function is not zero, i.e. t = a.

While the step response measures how fast the system output reaches the
desired response and how the transient of the output response behaves, the Dirac
delta function expresses the impulse response, where the impulsive type input
excites the system. Ideally, the impulse input excites all frequencies in the bode
plot, and we observe the time response of the system when all frequency signals
are injected into the system at the same time, whereas the step input will excite
the system with the signal, which is mostly in the low-frequency range.

The step response in Figure 5.4 shows the approximated PI controller
approaches to the true PI controller response at around 300 minutes, where there
seems to have a constant bias error between them. The error could be reduced
by adjusting the kinetic parameters. It is not always possible to realize the exact
desired kinetic parameters, and the current setting producing the bias error for
the step input is left to see whether the overall response could be acceptable with
this deficiency.
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Figure 5.5 Dirac Delta
function 𝛿(t) and its
property with
integration.
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1 clear
2
3 kP = 2 0 ;
4 kI = 2 . 5 e−4;
5 gamma_G = 8e−4;
6 ks2 = 4e−4;
7
8
9 A_PI = [ 0 0 0 ; 0 −gamma_G 0 ; ks2 ks2 −ks2 ] ;

10 B_PI = [ kI ; gamma_G∗kP ; 0 ] ;
11 C_PI = [ 0 0 1 ] ;
12 D_PI = 0 ;
13
14 s y s _ P I = s s ( A_PI , B_PI , C_PI , D_PI ) ;
15
16 A_true = 0 ;
17 B_true = 1 ;
18 C_true = kI ;
19 D_true = kP ;
20
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21 s y s _ t r u e _ P I = s s ( A_true , B_true , C_true , D_true ) ;
22
23 % bode p l o t s
24 f r e q = logspace ( −7 , −3 ,1000) ; % [ rad / t i m e ]
25 [mm1, pp1]=bode ( sys_PI , f r e q ) ;
26 [mm2, pp2]=bode ( s y s _ t r u e _ P I , f r e q ) ;
27
28 f igure ; c l f ;
29 subplot ( 2 1 1 ) ;
30 semilogx ( f r e q , 2 0∗ log10 ( squeeze (mm1) ) ) ;
31 hold on ;
32 semilogx ( f r e q , 2 0∗ log10 ( squeeze (mm2) ) , ’ r−− ’ ) ;
33 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
34 ylabel ( ’ Magnitude [ dB ] ’ ) ;
35 legend ( ’ Approximation ’ , ’ True ’ ) ;
36 subplot ( 2 1 2 ) ;
37 semilogx ( f r e q , squeeze ( pp1 ) ) ;
38 hold on ;
39 semilogx ( f r e q , squeeze ( pp2 ) , ’ r−− ’ ) ;
40 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
41 ylabel ( ’ Phase [ \ c i r c ] ’ ) ;
42 xlabel ( ’ Frequency [ rad / time ] ’ ) ;
43
44
45 % s t e p r e s p o n s e and i m p u l s e r e s p o n s e
46 time_sim = l inspace ( 0 , 3 0 0 0 0 , 3 0 0 0 0 0 ) ;
47 [ ys1 , ~ , xs1 ]= s t e p ( sys_PI , t ime_sim ) ;
48 [ ys2 ,~]= s t e p ( s y s _ t r u e _ P I , t ime_sim ) ;
49 [ yp1 , ~ , xp2]= impulse ( sys_PI , t ime_sim ) ;
50 [ yp2 ,~]= impulse ( s y s _ t r u e _ P I , t ime_sim ) ;
51
52 f igure ; c l f ;
53 subplot ( 2 1 1 ) ;
54 plot ( t ime_sim / 6 0 , ys1 ) ;
55 hold on ;
56 plot ( t ime_sim / 6 0 , ys2 , ’ r−− ’ ) ;
57 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
58 ylabel ( ’ [ a . u . ] ’ ) ;
59 xlabel ( ’ t ime [ minutes ] ’ )
60 t i t l e ( ’ S tep Response ’ ) ;
61 legend ( ’ approximated PI ’ , ’ t r u e PI ’ ) ;
62 subplot ( 2 1 2 ) ;
63 plot ( t ime_sim / 6 0 , yp1 ) ;
64 hold on ;
65 plot ( t ime_sim / 6 0 , yp2 , ’ r−− ’ ) ;
66 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
67 legend ( ’ approximated PI ’ , ’ t r u e PI ’ ) ;
68 ylabel ( ’ [ a . u . ] ’ ) ;
69 xlabel ( ’ t ime [ minutes ] ’ )
70 t i t l e ( ’ Impulse Response ’ ) ;

Program 5.1 (MATLAB) Compare bode plot, step response, and impulse
response for the approximated PI controller and the true PI controller
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The python code, Program 5.2, produces the bode plots and the time responses.
The python commands for the bode plot and the time responses are under
scipy.signal, which is imported as spsg at the beginning of the program. In python,
the LTI system is constructed using the lti() command in scipy.signal as shown in
line 22. The bode command in python returns the frequency, the magnitude in
dB, and the phase angle in degrees. There are two commands for the step response
in python, step() and step2(). Each uses the ordinary differential equation (ODE)
solver lsim() or lsim2() in scipy.signal. It would be useful to check the responses
using two methods if they coincide with each other.

1 import numpy as np
2 import m a t p l o t l i b . p y p l o t as p l t
3 import s c i p y . s i g n a l as s p s g
4
5 kP = 20
6 kI = 2 . 5 e−4
7 gamma_G = 8e−4
8 ks2 = 4e−4
9

10 A_PI = np . a r r a y ( [ [ 0 , 0 , 0 ] , [ 0 , −gamma_G , 0 ] , [ ks2 , ks2 , −ks2 ] ] )
11 B_PI = np . a r r a y ( [ [ kI ] , [gamma_G∗kP ] , [ 0 ] ] )
12 C_PI = np . a r r a y ( [ [ 0 , 0 , 1 ] ] )
13 D_PI = np . a r r a y ( [ [ 0 ] ] )
14
15 s y s _ P I = s p s g . l t i ( A_PI , B_PI , C_PI , D_PI )
16
17 A_true = np . a r r a y ( [ [ 0 ] ] )
18 B_true = np . a r r a y ( [ [ 1 ] ] )
19 C_true = np . a r r a y ( [ [ kI ] ] )
20 D_true = np . a r r a y ( [ [ kP ] ] )
21
22 s y s _ t r u e _ P I = s p s g . l t i ( A_true , B_true , C_true , D_true )
23
24
25 # bode p l o t s
26 f r e q = np . l o g s p a c e ( −7 , −3 ,1000) # [ rad / t i m e ]
27 ww1, mm1, pp1 = s p s g . bode ( sys_PI ,w=f r e q )
28 ww2, mm2, pp2 = s p s g . bode ( s y s _ t r u e _ P I ,w=f r e q )
29
30 f i g 1 , ( ax1 , ax2 ) = p l t . s u b p l o t s ( nrows =2 , n c o l s =1)
31 ax1 . semi logx (ww1,mm1, ’ b− ’ ,ww2,mm2, ’ r−− ’ )
32 ax2 . semi logx (ww1, pp1 , ’ b− ’ ,ww2, pp2 , ’ r−− ’ )
33
34 ax1 . legend ( ( ’ approximated PI ’ , ’ t r u e PI ’ ) , f o n t s i z e =14)
35 ax2 . legend ( ( ’ approximated PI ’ , ’ t r u e PI ’ ) , f o n t s i z e =14)
36
37 ax1 . a x i s ( [ 1 e−7 ,1 e −3 , 0 , 6 5 ] )
38 ax2 . a x i s ( [ 1 e−7 ,1 e −3 , −1 5 0 , 0 . 0 ] )
39
40 ax1 . s e t _ y l a b e l ( ’ Magnitude [ dB ] ’ , f o n t s i z e =14)
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41 ax2 . s e t _ y l a b e l ( ’ Phase [ $ \ c i r c $ ] ’ , f o n t s i z e =14)
42
43 ax2 . s e t _ x l a b e l ( ’ Frequency [ rad / time ] ’ , f o n t s i z e =14)
44
45 # s t e p r e s p o n s e and i m p u l s e r e s p o n s e
46 time_sim = np . l i n s p a c e ( 0 , 3 0 0 0 0 , 3 0 0 0 0 0 )
47 t s 1 , ys1 = s p s g . s t e p 2 ( sys_PI , T=time_sim )
48 t s 2 , ys2 = s p s g . s t e p 2 ( s y s _ t r u e _ P I , T=time_sim )
49
50 tp1 , yp1 = s p s g . impulse ( sys_PI , T=time_sim )
51 tp2 , yp2 = s p s g . impulse ( s y s _ t r u e _ P I , T=time_sim )

Program 5.2 (Python) Compare bode plot, step response, and impulse response
for the approximated PI controller and the true PI controller

5.1.2 Error Calculation: 𝚫P

The next component to implement the synthetic control circuit in the biological
network in Figure 5.2 is the subtraction operation producing ΔP going into the PI
controller. Consider the following four elementary chemical reactions (Foo et al.,
2016):

Pd
ks1−−−→Pd + ΔP

ΔP + Xsensor
ks1−−−→∅

P
ks1−−−→P + Xsensor

ΔP
ks1−−−→∅

where the Pd concentration indicates the desired level of P concentration, which is
assumed to be given. The role of Xsensor in the control system is the sensor, which
measures P and feedbacks the measured information. Note that all the four reac-
tions have the same reaction rate, ks1.

Two ODE’s for ΔP and Xsensor corresponding to the reactions are given by
d[ΔP]

dt
= ks1[Pd] − ks1[ΔP] [Xsensor] − ks1[ΔP]

d[Xsensor]
dt

= −ks1[ΔP] [Xsensor] + ks1[P]

Once they reach the steady-state

0 = ks1[Pss
d ] − ks1[ΔPss] [Xss

sensor] − ks1[ΔPss] ⟹ [ΔPss]

= [Pss
d ] − [ΔPss] [Xss

sensor]

0 = −ks1[ΔPss] [Xss
sensor] + ks1[Pss] ⟹ [Pss] = [ΔPss] [Xss

sensor]
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SystemSum PI terms
Subtraction

PI terms

Intracellular

Extracellular

E + S            ES
kon

koff

ES −→ P + E
kcat

P −→ Ø
kdg

E + S            ES
kon

koff

ES −→ P + E
kcat

P −→ Ø
kdg

P −→ P + Xsensor

ΔP −→ Ø

ΔP

ks1

P −→ P + Xsensor

ks1

S −→ Ø

S P

ks2

X2 −→ X2 + S
ks2

X1 −→ X1 + S
ks2

S −→ Ø
ks2

X2 −→ X2 + S
ks2

X1 −→ X1 + S
ks2

Pd −→ Pd + ΔP
Pd

Pd

ks1

x2

xsensor

x3

ks1

ks1

ΔP + Xsensor −→ Ø
𝛾G

𝛾GkP

X2 −→ Ø
ΔP −−→ ΔP + X2

𝛾G

𝛾GkP

X2 −→ Ø
ΔP −−→ ΔP + X2

kIΔP −→ ΔP + X1

kIΔP −→ ΔP + X1

ΔP −→ Ø

Pd −→ Pd + ΔP
ks1

ks1

ks1

ΔP + Xsensor −→ Ø

−↽−−⇀−

−↽−−⇀−

Figure 5.6 Elementary reactions for enzyme–substrate system with feedback control.

where the superscript, (⋅)ss, indicates the steady-state of each molecular concen-
tration. Substituting the second equation to the first equation

[ΔPss] = [Pss
d ] − [Pss]

which is the error signal between the desired and the actual P.
A functional block diagram is shown in Figure 5.6. Unlike in engineering system

block diagrams, each block in the diagram does not have a physical boundary to
separate it from the other blocks. The block diagram shows functional separations.
The 13 elementary reactions take place in the same space, i.e. the intercellular area,
indicated in the lower plot of the figure.

Functional separation: Elementary molecular interactions in synthetic biolog-
ical circuits have functional roles distinguishable or separable from the rest.
The reactions would occur in the same spatial domain.

Recall all the differential equations for the enzyme–substrate reaction and the
PI controller as follows:

d[E]
dt

= −kon [E][S] + kcat [ES]
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d[P]
dt

= kcat [ES] − kdg [P]

d[ES]
dt

= kon [E][S] − kcat [ES]

d[X1]
dt

= kI[ΔP]

d[X2]
dt

= −𝛾G[X2] + 𝛾GkP[ΔP]

d[S]
dt

= ks2
(
[X1] + [X2] − [S]

)
d[ΔP]

dt
= ks1[Pd] − ks1[ΔP] [Xsensor] − ks1[ΔP]

d[Xsensor]
dt

= −ks1[ΔP] [Xsensor] + ks1[P]

where kon = 5 × 10−5, kcat = 1.6, kdg = 8 × 10−8, kP = 50, kI = 5 × 10−6,
𝛾G = 8 × 10−8, ks1 = 3, and ks2 = 4 × 10−4. We choose these particular values
for demonstrating the limitation of the subtraction operation.

Let the desired P, Pd, be equal to 1. Program 5.3 is the MATLAB program for
the simulation of the controller and the enzyme–substrate network in ODEs. The
chosen set of parameters makes the ODE being stiff. The usual MATLAB function
to solve ODE, ode45(), would struggle to solve the differential equation, has to
reduce the integration step size small to satisfy the given numerical tolerance, and
result in a very long computation time for solving the differential equations. The
cause of the slow computation is the parameters over the very different scales from
10−8 to 101. The MATLAB has the ODE solver for stiff equations called ode15s().
In line 26, the function solves the enzyme–substrate equation with the PI con-
troller and the subtractor and it solves the differential equations with a lot faster
speed.

1 clear ;
2
3 %% p a r a m e t e r s
4 kP = 5 0 ;
5 kI = 5e−6;
6 gamma_G = 8e−4;
7 ks2 = 4e−4;
8
9 kon = 5e−5;

10 k c a t = 1 . 6 ;
11 kdg = 8e−8;
12 ks1 = 3 ;
13
14 Pd = 1 ;
15
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16 para = [ kP kI gamma_G ks2 kon k c a t kdg ks1 Pd ] ;
17
18 %% s i m u l a t i o n t i m e v a l u e s
19 t i m e _ c u r r e n t = 0 ; % i n i t i a l t i m e
20 t i m e _ f i n a l = 3600∗16 ; % f i n a l t i m e [ min ]
21 tspan = [ t i m e _ c u r r e n t t i m e _ f i n a l ] ;
22
23 %% s i m u l a t i o n
24 ode_opt ion = o d e s e t ( ’ RelTol ’ ,1 e−3 , ’ AbsTol ’ ,1 e−6) ;
25 s t a t e _ t 0 = 0 . 1∗ ones ( 1 , 8 ) ; s t a t e _ t 0 ( 5 ) =1e−3;
26 s o l = ode15s (@( time , s t a t e ) E S _ P I _ H a l f _ S u b t r a c t i o n ( time , s t a t e , para

) , tspan , s t a t e _ t 0 , ode_opt ion ) ;
27
28 f igure ( 1 ) ;
29 c l f ;
30 t ime_hr = s o l . x / 3 6 0 0 ; % [ hour ]
31 P _ h i s t o r y = s o l . y ( 2 , : ) ;
32 plot ( time_hr , Pd∗ones ( s i z e ( t ime_hr ) ) , ’ r−− ’ ) ;
33 hold on ;
34 plot ( time_hr , P _ h i s t o r y , ’ b− ’ ) ;
35 set ( gca , ’ F o n t S i z e ’ , 1 4 ) ;
36 xlabel ( ’ t ime [ hour ] ’ ) ;
37 ylabel ( ’ P ( t ) [ a . u . ] ’ ) ;
38 legend ( ’ d e s i r e d P ’ , ’ a c h i e v e d P ’ ) ;
39
40 %% E−S PI C o n t r o l Hal f S u b t r a c t i o n
41 function dxdt = E S _ P I _ H a l f _ S u b t r a c t i o n ( time , s t a t e , k i _ p a r a )
42 E = s t a t e ( 1 ) ;
43 P = s t a t e ( 2 ) ;
44 ES = s t a t e ( 3 ) ;
45 X1 = s t a t e ( 4 ) ;
46 X2 = s t a t e ( 5 ) ;
47 S = s t a t e ( 6 ) ;
48 DP = s t a t e ( 7 ) ;
49 Xs = s t a t e ( 8 ) ;
50
51 kP = k i _ p a r a ( 1 ) ;
52 kI = k i _ p a r a ( 2 ) ;
53 gamma_G = k i _ p a r a ( 3 ) ;
54 ks2 = k i _ p a r a ( 4 ) ;
55 kon = k i _ p a r a ( 5 ) ;
56 k c a t = k i _ p a r a ( 6 ) ;
57 kdg = k i _ p a r a ( 7 ) ;
58 ks1 = k i _ p a r a ( 8 ) ;
59 Pd = k i _ p a r a ( 9 ) ;
60
61 dE_dt = −kon∗E∗S + k c a t∗ES ;
62 dP_dt = k c a t ∗ES − kdg∗P ;
63 dES_dt = kon∗E∗S − k c a t∗ES ;
64 dX1_dt = kI∗DP ;
65 dX2_dt = −gamma_G∗X2 + gamma_G∗kP∗DP ;
66 dS_dt = ks2∗X1 + ks2∗X2 − ks2∗S ;
67 dDP_dt = ks1∗Pd − ks1∗DP∗Xs − ks1∗DP ;
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68 dXs_dt = −ks1∗DP∗Xs + ks1∗P ;
69
70 dxdt = [ dE_dt ; dP_dt ; dES_dt ; dX1_dt ; dX2_dt ; dS_dt ; dDP_dt ;

dXs_dt ] ;
71
72 end

Program 5.3 (MATLAB) PI controller for enzyme–substrate network

Figure 5.7 shows the trajectories of the desired P and the actual P during the first
16 hours. The P trajectory in the figure has a large offset from the desired value of 1
and appears to diverge slowly. We could reduce the offset by adjusting the control
gains, kP and kI . In practice, it would be easier to simply tune the desired P, i.e.
re-scaling Pd by multiplying KF as follows:

Pd = Pdesired × KF

where Pdesired is the desired level of P, and Pd is the injected amount to the synthetic
circuit. With a few trials and errors, we find KF = 0.62 adjusts the offset roughly
zero as shown in Figure 5.8. The error, Pd − P, however, slowly diverges, and the
instability is inherent in the designed closed-loop system. Scaling the desired P by
KF does not make the error zero. Why?

To answer the question, consider the right-hand side of the differential equation
of d(ΔP)∕dt. The steady-state presumably produces the difference between Pd and
P. Consider a case that the initial Pd is greater than P as the initial time shown in
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Time (h)
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u.

)
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Achieved [P]

Figure 5.7 Concentration changes of the actual P with the PI controller for the desired P
equal to 1.
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Figure 5.8 Concentration changes of the actual P with the PI controller for the desired P
tuned.
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Figure 5.9 Comparison between ΔP and the true difference.

Figure 5.9, where the initial condition is given by

[E(0)] = 0.1, [P(0)] = 0.1, [ES(0)] = 0.1, [X1(0)] = 0.1,

[X2(0)] = 0.001, [S(0)] = 0.1, [ΔP(0)] = 0.1, [Xsensor(0)] = 0.1
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Figure 5.9 shows ks1[ΔP] and the true difference, ks1([Pd]KF − [P]). ks1[ΔP] follows
the true difference well until it becomes negative, i.e. when [Pd]KF < [P]. Initially,
for [Pd]KF > [P], the steady-state matches the difference, [Pd]KF − [P], and the
difference is positive. As [Pd] approaches [P] by the control actions, the positive
difference converges to zero at around 1.4 hours. Once the difference, [ΔP],
becomes zero and [P] overshoots [Pd]KF , the difference becomes negative. As a
result, the right-hand side of d[ΔP]∕dt becomes negative, and [ΔP] remains at zero.
Recognizing that all quantities in the biomolecular network are positive is crucial.
Molecular concentrations cannot express or convey negative quantities.

After the true difference becomes negative, [ΔP] stays at zero and [Xsensor can-
not produce a correct measure of [P] as shown in Figure 5.10, which provides a
comparison of the two terms on the right-hand side of d[Xsensor]∕dt. It is known
to be the limitation of the one-sided subtraction operation in biological networks
(Foo et al., 2016).

The limitation of the one-sided subtraction is more pronounced in the following
scenario. Specify the desired P as

Pdesired =
{

1 for t ≤ 8 [hours]
1∕2 for t > 8 [hours]

where the desired P is reduced to half from the initial desired P at eight hours.
Figure 5.11 shows the simulation results. P seems to converge to the first step com-
mand at around four hours, but it cannot react to the lower desired P command
after eight hours.
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Figure 5.10 Comparison of the terms in the right-hand side of d[Xsensor]∕dt.
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Figure 5.11 Responses of the closed-loop system with the one-sided subtraction for
two-step commands.

To overcome the lack of ability to represent negative quantities using molecular
concentrations, Oishi and Klavins (2011) present a method using two molecular
species. In the proposed approach, each molecular species is interpreted as having
a positive or negative value, respectively. It is not, however, implementation of
negative values. Besides, as we use two molecular species to express quantities,
we need at least twice as many molecular interactions.

Recall the differential equation for [P]

d[P]
dt

= kcat[ES] − kdg[P]

[P] is controlled by [ES], and [ES] is controlled by [S], which is the PI controller.
[ES], however, has only the capability to increase [P] as kcat > 0. We need another
mechanism to reduce [P]. Introduce the X3 molecule having the capability to
destroy P as follows:

X3 + P
kdeg
−−−→X3

the corresponding differential equation for X3 = 0 is given by

d[X3]
dt

= 0

and the differential equation for [P] is changed to

d[P]
dt

= kcat[ES] − kdg[P] − kdeg[X3][P]
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where kdeg[X3] is the additional degradation rate of [P]. The degradation effect
must not be significant beyond the increasing speed of kcat[ES] when the desired
P is larger than [P], i.e. [ΔP]≫ 0. For the simulation, Kdeg is set to 0.001 and [X3]
is equal to 1.

The last consideration is the integration part of the controller. [X1] integrates the
error, [ΔP], through

d[X1]
dt

= kI[ΔP]

Even after the error converges to zero, the integration would drift and diverge
unless the error remains exactly zero. To reject the drift, the following
self-annihilation is introduced:

X1
𝜂

−−→∅

and the differential equation becomes

d[X1]
dt

= kI[ΔP] − 𝜂[X1]

where 𝜂 is equal to 0.0001. The comparison of the frequency response of the pure
integrator, kI∕s, and the integrator with the annihilation, kI∕(s + 𝜂), is shown
in Figure 5.12. In frequency higher than 0.0001 rad/time, the integrator with
the annihilation is close to the pure integrator. In the lower frequency area, it
becomes a pure static gain.

Finally, the closed-loop response and the control input are shown in Figure 5.13.
[P] follows the desired P within a few hours after each step command initiation.

10–6 10–5 10–4 10–3 10–2

10–6 10–5 10–4 10–3 10–2

–60

–40

–20

0

Frequency (rad/time)

Ph
as

e 
(°

)
M

ag
ni

tu
de

 (
dB

)

–100

–50

0

η = 0.0001
η = 0

η = 0.0001
η = 0

Figure 5.12 Comparison of frequency response of kI∕s and kI∕(s + 𝜂).
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Figure 5.13 Responses of the closed-loop system with the degradation, kdeg , and the
annihilation, 𝜂.

5.2 Robustness Analysis: 𝝁-Analysis

Biological networks have inherent robustness towards environmental stress and
internal uncertainties. One of the plausibility tests for the dynamic models of bio-
logical systems is robustness analysis. The Monte Carlo approach in Algorithm 2.3
could be one of the options for robustness analysis. We introduce a systematic
approach for the robustness analysis of linear systems.

5.2.1 Simple Examples

𝜇-Analysis is a systematic robustness analysis method for linear systems (Doyle,
1982, Balas et al., 1993). We introduce the method using a simple example.
Consider the following ODE:

dx
dt

= − (2 + 𝛿) x (5.5)

where 𝛿 is the parametric uncertainty, and the initial condition is x(0) = x0. The
solution is given by

x(t) = x0e−(2+𝛿)t (5.6)

The condition for x(t) to diverge is the following inequality:

𝛿 > 2

The stable and the unstable regions for x(t) are divided by 𝛿 = 2.
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Rewrite (5.5) into the input–output format as follows:
dx
dt

= −2x +𝑤

z = x

where𝑤 is the input to the system and z is the system output. The transfer function
for the input–output relation is obtained as

Z(s) = 1
s + 2

W(s) = M(s)W(s)

where M(s) = 1∕(s + 2). The input, 𝑤, is given by

𝑤 = 𝛿z

where 𝛿 is the uncertainty and is interpreted as the feedback gain, and the transfer
function is

W(s) = Δ(s)Z(s) = 𝛿Z(s)

where Δ(s) = 𝛿. Two transfer functions are summarized as

Z(s) = M(s)W(s) (5.7a)

W(s) = Δ(s)Z(s) (5.7b)

which is called the M–Δ form or the linear fractional transformation (LFT).
As shown in Figure 5.14, once the oscillatory signal is introduced in the loop, the
amplitude of the signal would converge, diverge, or stay in the same magnitude.
Each corresponds to a stable, unstable, or neutrally stable state of the system to
the uncertainty, Δ. For this particular example, it is stable for 𝛿 < 2, unstable for
𝛿 > 2, or neutrally stable for 𝛿 = 2.

Combine two transfer functions in (5.7)

Z(s) = M(s)W(s) = M(s)Δ(s)Z(s) ⇒ Z(s) − M(s)Δ(s)Z(s) = 0

⇒ [1 − M(s)Δ(s)]Z(s) = 0

There are two cases for Z(s) in the above equation as follows:

● 1 − M(s)Δ(s) ≠ 0, then Z(s) = 0∕[1 − M(s)Δ(s)] = 0
● 1 − M(s)Δ(s) = 0, then any Z(s) satisfies the equation

Z(s)

W(s)
∆(s)

M(s)

Figure 5.14 M–Δ block diagram.



�

� �

�

5.2 Robustness Analysis: μ-Analysis 271

for all 𝜔 ∈ [0,∞), where s = j𝜔 and j =
√
−1. Consider the singularity condition

for the simple example as follows:

1 − M(j𝜔)Δ(j𝜔) = 1 − 1
j𝜔 + 2

𝛿 = 0 ⇒ j𝜔 + 2 − 𝛿 = 0

It becomes singular only for 𝜔 = 0 and 𝛿 = 2. The ODE solution, (5.6), shows that
x(t) remains at the initial condition, x0, if 𝛿 = 2. It makes the system neutrally sta-
ble. 𝛿 = 2 is the smallest of the perturbation that makes the system not stable,
𝛿 ≥ 2.
𝜇 is defined by

𝜇(𝜔) = 1
min(|𝛿|) such that 1 − M(j𝜔)𝛿 = 0

and for the example

𝜇(𝜔) =
⎧⎪⎨⎪⎩

1
2

for 𝜔 = 0

0 for 𝜔 ≠ 0, singular 𝛿 does not exist ⇒ lim
𝛿→±∞

1|𝛿| = 0

is zero for non-singular cases for any 𝛿 ∈ (−∞,∞).
To make the 𝜇-analysis problem more interesting, modify (5.5) as follows:

dx
dt

= −
(
2 + 0.1𝛿1 + 0.5𝛿2 + 0.1𝛿2

2
)

x (5.8)

where 𝛿1 and 𝛿2 are the real-valued uncertainties, and there is also the second-
order term of uncertainty in 𝛿2. Define

𝑤1 = 𝛿1x

𝑤2 = 𝛿2x

𝑤3 = 𝛿
2
2x = 𝛿2

(
𝛿2x

)
= 𝛿2𝑤2

In a compact form,

w =
⎡⎢⎢⎣
𝑤1
𝑤2
𝑤3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝛿1 0 0
0 𝛿2 0
0 0 𝛿2

⎤⎥⎥⎦
⎡⎢⎢⎣

x
x
𝑤2

⎤⎥⎥⎦ = Δz

and the system is written as

dx
dt

= −2x +
[
0.1 0.5 0.1

]
w = Ax + Bw

z =
⎡⎢⎢⎣

x
x
𝑤2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ x +
⎡⎢⎢⎣
0 0 0
0 0 0
0 1 0

⎤⎥⎥⎦w = Cx + Dw
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where A, B, C, and D are defined appropriately. In the M–Δ form,

M(s) = C[s − A]−1B + D =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦
1

s + 2
[
0.1 0.5 0.1

]
+
⎡⎢⎢⎣
0 0 0
0 0 0
0 1 0

⎤⎥⎥⎦ (5.9)

=

⎡⎢⎢⎢⎢⎢⎣

0.1
s + 2

0.5
s + 2

0.1
s + 2

0.1
s + 2

0.5
s + 2

0.1
s + 2

0 1 0

⎤⎥⎥⎥⎥⎥⎦
For general cases, 𝜇 is defined by

𝜇(𝜔) = 1
min (||Δ||) such that |I − M(j𝜔)Δ| = 0

where ||Δ|| is typically the ∞-norm of the matrix and I is the identity matrix with
the appropriate dimension.

Calculating 𝜇 is computationally expensive as increasing the computer opera-
tion exponentially with the size of M(j𝜔). Instead, we solve the lower and the upper
bound problem:

𝜇(𝜔) ≤ 𝜇(𝜔) ≤ 𝜇(𝜔)

5.2.1.1 𝝁 Upper Bound
There are several algorithms to provide the bounds. From the singularity condi-
tion, we deduce the following inequality for the upper bound:

||M(j𝜔)Δ|| ≤ 1 ⇒ |I − M(j𝜔)Δ| ≠ 0

As the norm of M(j𝜔)Δ is smaller than 1, the determinant cannot be equal to
zero. From the signal amplitude aspect in Figure 5.14, the amplitude multiplied
by M(j𝜔)Δ in the feedback loop, whose norm is less than 1, decreases every turn
of the feedback loop and converges to zero as t → ∞. With the following inequality

||M(j𝜔)Δ|| ≤ ||M(j𝜔)||||Δ||
we obtain the following non-singular condition:

||M(j𝜔)||||Δ|| ≤ 1 ⇒ ||M(j𝜔)|| ≤ 1||Δ||
Therefore,

𝜎 [M(j𝜔)] ≤ 1||Δ|| implies 𝜇(𝜔) ≤ 𝜎 [M(j𝜔)] (5.10)

where the matrix norm is 𝜎(⋅), i.e. the maximum singular value norm. Efficient
algorithms for calculating the singular value exist. For real parameter uncertain-
ties, Δ is a diagonal real matrix and ||Δ||p for p = 1,2,∞ are the same.
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Python linear algebra package and MATLAB have the singular value decompo-
sition function called svd(). In MATLAB,

1 >> [U, S , V] = svd (A)

or in python

1 In [ 1 3 ] : import numpy as np
2 In [ 1 4 ] : U, S , V = np . l i n a l g . svd (A)

returns the following result:

A = USV

where S is the diagonal matrix whose elements are the singular values, i.e. the
square root of the eigenvalues of A∗A, U, and V are unitary matrices, which
satisfies U∗U = I and VV∗ = I, respectively, and the superscript ∗ indicates the
complex conjugate transpose of the matrices.

Matrix norm: Matrix norms measure the magnitudes of matrices. Three of
the most frequently used matrix norms are the 1-norm, the 2-norm, and the
∞-norm. They are defined by

||A||1 = max
j∈[1,m]

n∑
i=1

|aij| = (maximum column sum)

||A||2 =
√

λ(A∗A) =
√

(maximum eigenvalue of A∗A)

= 𝜎(A∗A) = (maximum singular value of A)

||A||∞ = max
i∈[1,n]

m∑
j=1

|aij| = (maximum row sum)

where A is the n × m complex matrix, whose i-th row and j-th column element
is aij, and A∗ is the complex conjugate transpose of A, i.e. the transpose of A,
where the sign of the imaginary part of each element changes.

The upper bound in (5.10) is simply the maximum singular value at each 𝜔.
Program 5.4 calculates the upper bound between 𝜔 equal to 0.01 and 1000.
The maximum upper bound over the frequency is around 1.06. Can we make it
smaller? The smaller the upper bound is, the closer to 𝜇 is. Inspecting at (5.9), the
cause of the maximum singular value of about 1 is the constant 1 in the matrix D.
To change the constant smaller than 1, redefine z as follows:

w =
⎡⎢⎢⎣
𝑤1
𝑤2
𝑤3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝛿1 0 0
0 𝛿2 0
0 0 𝛿2

⎤⎥⎥⎦
⎡⎢⎢⎣

x
x

0.1𝑤2

⎤⎥⎥⎦ = Δz
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and the system becomes

dx
dt

= −2x +
[
0.1 0.5 1

]
w

z =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦ x +
⎡⎢⎢⎣
0 0 0
0 0 0
0 0.1 0

⎤⎥⎥⎦w

Construct M(s) as follows:

M(s) =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦
1

s + 2
[
0.1 0.5 1

]
+
⎡⎢⎢⎣
0 0 0
0 0 0
0 0.1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

0.1
s + 2

0.5
s + 2

1
s + 2

0.1
s + 2

0.5
s + 2

1
s + 2

0 0.1 0

⎤⎥⎥⎥⎥⎥⎦
For the updated M(s), the maximum upper bound over the frequency is 0.79, which
is about a 25% reduction from 1.06.

1 import numpy as np
2 import m a t p l o t l i b . p y p l o t as p l t
3
4
5 A = np . a r r a y ( [ [ − 2 ] ] )
6 B = np . a r r a y ( [ [ 0 . 1 , 0 . 5 , 0 . 1 ] ] )
7 C = np . a r r a y ( [ [ 1 ] , [ 1 ] , [ 0 ] ] )
8 D = np . a r r a y ( [ [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] , [ 0 , 1 , 0 ] ] )
9

10 N_omega = 300
11 omega = np . l o g s p a c e ( −2 ,3 , N_omega )
12 mu_ub = np . z e r o s ( N_omega )
13
14 for i d x in range ( 3 0 0 ) :
15 jw = complex ( 0 , omega [ i d x ] )
16 Mjw = C@np . l i n a l g . inv ( jw−A)@B+D
17 U, S , V=np . l i n a l g . svd (Mjw)
18
19 mu_ub [ i d x ] = S . max ( )
20
21
22 f i g 1 , ax = p l t . s u b p l o t s ( nrows =1 , n c o l s =1)
23 ax . semi logx ( omega , mu_ub )
24 ax . a x i s ( [ 1 e−2 ,1 e3 , 0 , 1 . 1 ] )
25 ax . s e t _ y l a b e l ( r ’ $ \ bar { \ sigma } \ , [M( j \ omega ) ] $ ’ , f o n t s i z e =14)
26 ax . s e t _ x l a b e l ( r ’ $ \ omega$ [ rad / time ] ’ , f o n t s i z e =14)

Program 5.4 (Python) 𝜇 upper bound by the maximum singular value
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Figure 5.15 Maximum 𝜇 with respect to 𝛼.

Based on the reduction, we would ask what is the best value to achieve the min-
imum value of the maximum upper bound. Consider the following generalized
form of M(s):

M(s) =

⎡⎢⎢⎢⎢⎢⎣

0.1
s + 2

0.5
s + 2

0.1∕𝛼
s + 2

0.1
s + 2

0.5
s + 2

0.1∕𝛼
s + 2

0 𝛼 0

⎤⎥⎥⎥⎥⎥⎦
Figure 5.15 shows how the maximum value of the upper bound changes with 𝛼.
The minimum, 0.50, occurs at 𝛼 = 0.266, and the corresponding upper bound is
shown in Figure 5.16. Depending on how we construct M(s), the upper bound
changes. There are advanced algorithms to obtain tighter upper bounds to the
true 𝜇 (Roos, 2013, Balas et al., 1993, Young et al., 1991).

5.2.1.2 𝝁 Lower Bound
Calculating the lower bound, i.e. searching for Δ, preferably the smallest magni-
tude, to make |I − MΔ| = 0, becomes the original problem itself. There have been
many studies of lower bound algorithms to find the minimum magnitude pertur-
bation. Fabrizi et al. (2014) compare eight 𝜇 lower bound algorithms for various
benchmark problems. Without a tight lower bound, Figure 5.16, for example, gives
no information about how far or close the upper bound is from 𝜇. If a lower bound
is far away from the upper bound, we do not know either if the upper bound is too
conservative or if the lower bound is far from 𝜇. Only when two bounds are tight,
we can draw a solid conclusion on system robustness.
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Figure 5.16 𝜇 Upper bound for 𝛼 = 0.266.

Singular point

(fR, fI) = (+, +)

fR(Δ) = R[|I – M(jω)Δ|] = 0

fI(Δ) = I[|I – M(jω)Δ|] = 0

(fR, fI) = (–, +)

(fR, fI) = (–, –)
(fR, fI) = (+, –)

δ2

δ1

Figure 5.17 Geometric approach for 𝜇 lower bound calculation.

A geometric approach to the 𝜇-lower bound problem has been presented first
in Kim et al. (2009). A simple version of the algorithm is explained in Figure 5.17.
The extension of the algorithm to the linear periodically time-varying system is
shown in Zhao et al. (2011), and the improved algorithm applied to a synthetic
circuit has been demonstrated its capability in Darlington et al. (2019). To provide
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a simple explanation of the algorithm in Figure 5.17, consider the following uncer-
tain system:

dx
dt

=
[
−2 + 𝛿1 + sin(𝛿1𝛿2)

]
x = A(𝛿1, 𝛿2)x (5.11)

where

A(𝛿1, 𝛿2) =
[
−2 + 𝛿1 + sin(𝛿1𝛿2)

]
Unlike (5.8), the system has the uncertainties, 𝛿1 and 𝛿2, which appeared in the
non-polynomial form. Because of the non-linear uncertainty, the system cannot
be in the LFT form, and the standard algorithms cannot calculate the bounds.
Define a new variable 𝛿3 = sin(𝛿1𝛿2) or approximate sin(𝛿1𝛿2) ≈ 𝛿1𝛿2 by assuming
that |𝛿1𝛿2| is small. Then, we can use the standard algorithms. These introduce
approximation errors in the bound calculations, however. To avoid the approxi-
mation, the system is written as

dx
dt

= −2x +
[
𝛿1 + sin(𝛿1𝛿2)

]
x = −2x + Δ(𝛿1, 𝛿2)x

where

Δ(𝛿1, 𝛿2) = 𝛿1 + sin(𝛿1𝛿2) = A(𝛿1, 𝛿2) − A(0,0)

Define

𝑤 = Δ(𝛿1, 𝛿2)x

z = x

The system is written as
dx
dt

= −2x +𝑤

and the singularity condition is given by

det
[

1 − 1
j𝜔 + 2

Δ(𝛿1, 𝛿2)
]
= fR(Δ) + fI(Δ)j = 0

where

fR(Δ) = 2 − 𝛿1 − sin(𝛿1𝛿2)

fI(Δ) = 𝜔

Note that in the bound algorithm illustrated in Figure 5.17, the explicit equations
for fR(Δ) and fI(Δ) are not necessary. The evaluations of the following equations
provide the values of fR(Δ) and fI(Δ):

fR(Δ) = ℜ
[

1 − 1
j𝜔 + 2

Δ(𝛿1, 𝛿2)
]

fI(Δ) = ℑ
[

1 − 1
j𝜔 + 2

Δ(𝛿1, 𝛿2)
]
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where ℜ(⋅) and ℑ(⋅) take the real part and the imaginary part of the argument,
respectively. As shown in Figure 5.17, fR(Δ) = 0 and fI(Δ) = 0 lines divide the
uncertain space into four sections, where each section has a different sign
combination of fR(Δ) and fI(Δ). For𝜔 ≠ 0, if the singular point is inside the square
box centred at the origin, we can find all four combinations of the signs along
the boundary, and the square box provides a 𝜇-lower bound. For 𝜔 = 0, fI(Δ)
is zero for the whole uncertain space. Hence, if the singular point is inside the
square box, i.e. the box includes or any part of fR(Δ) = 0, a singular point is inside
the box. In this case, we only need to find two sign combinations, fR(Δ) < 0 and
fR(Δ) > 0.

The geometric approach based on the above observation about the singular-
ity condition provides three advantages over most of the other lower bound
algorithms as follows:

● The algorithm can handle non-linear functions such as sin 𝛿 and cos 𝛿 without
approximation.

● The algorithm can use parallel computers.
● The algorithm based on random samples improves the bounds as the algorithm

evaluates more samples.

Random sample-based algorithms are powerful tools to solve many complex
problems, especially when we can afford to use parallel computer architectures
such as multi-core processors and parallel processing using a graphical processor
unit (GPU) (NVIDIA Developer, 2021).

The pseudo-code of the lower bound algorithm in Figure 5.17 is given in
Algorithm 5.1, where the bisection method is used to reduce the square box size
(Press et al., 2007). As the ∞-norm of the square box is half of the side length, the
𝜇-lower bound is equal to twice the maximum side length inversion, i.e. 2∕d.

Figure 5.18 shows the square box contact with the unstable region shaded in
the figure. The half of the side length is slightly bigger than 1. The true 𝜇, the
inversion of the half, is about 0.9. For Ns = 1000, 𝜀 = 10−6, d = 0.001, d = 10, and
𝜔 = 0, Algorithm 5.1 computes a lower bound around 0.92, which is reasonably
close to the true 𝜇.

5.2.1.3 Complex Numbers in MATLAB/Python
Both MATLAB and Python recognize 1j as the imaginary number,

√
−1. Also, 1i

or sqrt(-1) works as the imaginary number in MATLAB, not Python. In Python,
numpy.sqrt(-1) produces an error instead of generating the imaginary number. An
alternative way to have the imaginary number in Python is complex(0,1).
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Algorithm 5.1 Geometric approach based 𝜇-lower bound algorithm
1: Set the number of samples, Ns, the minimum and the maximum side length

of the square box, [d, d̄], the tolerance, 𝜀, and the frequency 𝜔
2: while d̄ − d > 𝜀 do the bisection search as follows:
3: Set the current side length of the square, d, equal to (d + d̄)∕2
4: Take Ns random samples on the boundary of the square box
5: if 𝜔 = 0 then
6: nsign equal to 2
7: else
8: nsign equal to 4
9: end if

10: Evaluate fR(Δ) and fI(Δ)
11: if the number of sign combinations found equal to nsign then
12: d̄ ← d
13: else
14: d ← d
15: end if
16: end while
17: Declare 𝜇(𝜔) = 1∕(d̄∕2)
18: Repeat all the steps for the other 𝜔

Figure 5.18 The square
box contacts the unstable
region shaded in the
figure, where
𝛿1 + sin(𝛿1𝛿2) ≥ 2.
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5.2.2 Synthetic Circuits

The synthetic circuit designed in Section 5.1.1 reaches the following steady-state:

[E]ss = 0.1998, [P]ss = 0.4999, [ES]ss = 0.0002, [X1]ss = 0.0558,

[X2]ss = 50.0415, [S]ss = 50.0723, [ΔP]ss = 1.0001, [Xsensor]
ss = 0.4999

Introduce a small perturbation to the steady-state of E as follows:

[E(t)] = [E]ss + 𝛿E(t)

and similar perturbations in all other states. Derivative of the perturbed E(t) with
respect to time is as follows:

d[E(t)]
dt

=
�
�
��d[E]ss

dt

0
+ d𝛿E(t)

dt
Substitute the perturbed states into the right-hand side of the following equation:

d[E]
dt

= −kon [E][S] + kcat [ES]

and obtain
d𝛿E(t)

dt
= −kon

{
[E]ss + 𝛿E(t)

}{
[S]ss + 𝛿S(t)

}
+ kcat

{
[ES]ss + 𝛿ES(t)

}
=
������������
−kon[E]ss[S]ss + kcat[ES]ss

0
− kon[S]ss

𝛿E(t) − kon[E]ss
𝛿S(t)

−�������kon𝛿E(t)𝛿S(t)
≈0

+ kcat𝛿ES(t)

where the higher order terms in the perturbations are negligible.
We write the procedures compactly. The kinetics is given by

dxi

dt
= fi(x)

for i = 1,2,… ,n, where

x =
[
x1 x2 … xn−1 xn

]T

and the steady-state, xss, is given by the solution of the n algebraic equations,
fi(xss) = 0 for i = 1,2,… ,n − 1,n. The perturbation dynamics is given by

d𝛿x(t)
dt

= df(x)
dx

||||x=xss
𝛿x(t) = A(Δ)𝛿x(t)

where

ai =
dfi(x)

dx
||||x=xss

and ai is the i-the column of A. It is the linearization process at the steady-state or
the equilibrium point, and we may automatize it using symbolic calculations in
MATLAB or Python.
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5.2.2.1 MATLAB
Program5.5 obtains A using the jacobian() function in MATLAB. Because the
largest real part of the eigenvalues is negative, the system is stable.

5.2.2.2 Python
Program 5.6 is the python script to obtain A using the jacobian() function in the
method of Matrix object of the sympy package. subs() replaces the variables with
the values. In line 66, the numpy.array() function converts the Matrix object of
sympy to the numpy array, where we declare the data type by setting dtype as
np.float64. If the data type is missing, we cannot calculate the eigenvalues in the
next line.

1 clear
2
3 syms kon k c a t kdg Kdeg kI e t a gamma_G kP ks2 ks1 Pd X3 real ;
4 syms E P ES X1 X2 S DP Xs real ;
5
6
7 dE_dt = −kon∗E∗S + k c a t∗ES ;
8 dP_dt = k c a t∗ES − kdg∗P − Kdeg∗X3∗P ;
9 dES_dt = kon∗E∗S − k c a t∗ES ;

10 dX1_dt = kI∗DP − e t a ∗X1 ;
11 dX2_dt = −gamma_G∗X2 + gamma_G∗kP∗DP ;
12 dS_dt = ks2∗X1 + ks2∗X2 − ks2∗S ;
13 dDP_dt = ks1∗Pd − ks1∗DP∗Xs − ks1∗DP ;
14 dXs_dt = −ks1∗DP∗Xs + ks1∗P ;
15
16 f x = [ dE_dt ; dP_dt ; dES_dt ; dX1_dt ; dX2_dt ; dS_dt ; dDP_dt ; dXs_dt ] ;
17 s t a t e = [E ; P ; ES ; X1 ; X2 ; S ; DP ; Xs ] ;
18
19 dfdx = j a c o b i a n ( fx , s t a t e ) ;
20
21 %% Steady− s t a t e
22 Ess = 0 . 1 9 9 8 ;
23 Pss = 0 . 4 9 9 9 ;
24 ESss = 0 . 0 0 0 2 ;
25 X1ss = 0 . 0 5 5 8 ;
26 X2ss = 5 0 . 0 4 1 5 ;
27 S s s = 5 0 . 0 7 2 3 ;
28 DPss = 1 . 0 0 0 1 ;
29 Xsss = 0 . 4 9 9 9 ;
30
31 d f d x _ a t _ s s = subs ( dfdx , { E , P , ES , X1 , X2 , S , DP , Xs } , { Ess , Pss ,

ESss , X1ss , X2ss , Sss , DPss , Xsss } ) ;
32
33 %% nomial s t a b i l i t y w i t h t h e nominal p a r a m e t e r s
34 kP = 5 0 ;
35 kI = 5e−6;
36 gamma_G = 8e−4;
37 ks2 = 4e−4;
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38 Kdeg = 1e−3;
39 X3 = 1 ;
40 KF = 3 ;
41 e t a = 1e−4;
42 Pd = 1 ;
43 kon = 5e−5;
44 k c a t = 1 . 6∗ 2 ;
45 kdg = 8e−8;
46 ks1 = 3 ;
47
48
49 dfdx_nominal = subs ( d f d x _ a t _ s s , . . .
50 { sym ( ’ kP ’ ) , sym ( ’ kI ’ ) , sym ( ’gamma_G ’ ) , sym ( ’ ks2 ’ ) , sym ( ’ Kdeg ’ ) ,

. . .
51 sym ( ’ X3 ’ ) , sym ( ’KF ’ ) , sym ( ’ e t a ’ ) , sym ( ’ Pd ’ ) , sym ( ’ kon ’ ) , sym ( ’ k c a t ’ )

, sym ( ’ kdg ’ ) , sym ( ’ ks1 ’ ) } , . . .
52 { kP , kI , gamma_G , ks2 , Kdeg , X3 , KF , eta , Pd , kon , kcat , kdg , ks1 } ) ;
53
54 dfdx_nominal_val = eval ( dfdx_nominal ) ;

Program 5.5 (MATLAB) Nominal linear stability check using the jacobian

1 from sympy import symbols , Matr ix
2
3 kon , kcat , kdg , Kdeg , kI , e ta , gamma_G , kP , ks2 , ks1 , Pd , X3 =

symbols ( ’ kon k c a t kdg Kdeg kI e t a gamma_G kP ks2 ks1 Pd X3 ’ )
4 E , P , ES , X1 , X2 , S , DP , Xs = symbols ( ’E P ES X1 X2 S DP Xs ’ )
5
6
7 dE_dt = −kon∗E∗S + k c a t∗ES ;
8 dP_dt = k c a t∗ES − kdg∗P − Kdeg∗X3∗P ;
9 dES_dt = kon∗E∗S − k c a t∗ES ;

10 dX1_dt = kI∗DP − e t a ∗X1 ;
11 dX2_dt = −gamma_G∗X2 + gamma_G∗kP∗DP ;
12 dS_dt = ks2∗X1 + ks2∗X2 − ks2∗S ;
13 dDP_dt = ks1∗Pd − ks1∗DP∗Xs − ks1∗DP ;
14 dXs_dt = −ks1∗DP∗Xs + ks1∗P ;
15
16 f x = Matr ix ( [ [ dE_dt ] , [ dP_dt ] , [ dES_dt ] , [ dX1_dt ] , [ dX2_dt ] , [ dS_dt

] , [ dDP_dt ] , [ dXs_dt ] ] )
17 s t a t e = Matr ix ( [ [ E ] , [ P ] , [ ES ] , [ X1 ] , [ X2 ] , [ S ] , [DP ] , [ Xs ] ] )
18
19 dfdx = f x . j a c o b i a n ( s t a t e )
20
21 # Steady− s t a t e
22 Ess = 0 . 1 9 9 8
23 Pss = 0 . 4 9 9 9
24 ESss = 0 . 0 0 0 2
25 X1ss = 0 . 0 5 5 8
26 X2ss = 5 0 . 0 4 1 5
27 S s s = 5 0 . 0 7 2 3
28 DPss = 1 . 0 0 0 1
29 Xsss = 0 . 4 9 9 9
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30
31 d f d x _ a t _ s s = dfdx . subs ( [ [ E , Ess ] , [ P , Pss ] , [ ES , ESss ] , [ X1 , X1ss ] , [ X2 ,

X2ss ] , [ S , S s s ] , [ DP , DPss ] , [ Xs , Xsss ] ] )
32
33 # nomial s t a b i l i t y w i t h t h e nominal p a r a m e t e r s
34 kP = 5 0 ;
35 kI = 5e−6;
36 gamma_G = 8e−4;
37 ks2 = 4e−4;
38 Kdeg = 1e−3;
39 X3 = 1 ;
40 KF = 3 ;
41 e t a = 1e−4;
42 Pd = 1 ;
43 kon = 5e−5;
44 k c a t = 1 . 6∗ 2 ;
45 kdg = 8e−8;
46 ks1 = 3 ;
47
48
49 dfdx_nominal = d f d x _ a t _ s s . subs ( [
50 [ symbols ( ’ kP ’ ) , kP ] ,
51 [ symbols ( ’ kI ’ ) , kI ] ,
52 [ symbols ( ’gamma_G ’ ) ,gamma_G ] ,
53 [ symbols ( ’ ks2 ’ ) , ks2 ] ,
54 [ symbols ( ’ Kdeg ’ ) , Kdeg ] ,
55 [ symbols ( ’ X3 ’ ) , X3 ] ,
56 [ symbols ( ’KF ’ ) ,KF ] ,
57 [ symbols ( ’ e t a ’ ) , e t a ] ,
58 [ symbols ( ’ Pd ’ ) , Pd ] ,
59 [ symbols ( ’ kon ’ ) , kon ] ,
60 [ symbols ( ’ k c a t ’ ) , k c a t ] ,
61 [ symbols ( ’ kdg ’ ) , kdg ] ,
62 [ symbols ( ’ ks1 ’ ) , ks1 ]
63 ] )
64
65 import numpy as np
66 dfdx_nominal_val = np . a r r a y ( dfdx_nominal , dtype=np . f l o a t 6 4 )
67 [ e i g _ v a l , e i g _ v e c ]=np . l i n a l g . e i g ( dfdx_nominal_val )

Program 5.6 (Python) Nominal linear stability check using the jacobian

The 𝜇-lower bound program implementing Algorithm 5.1 continues in
Program 5.7 or 5.8 from Program 5.5 or 5.6. The two for-loops in the program
that iterate over 𝜔 and the random samples, Δ, can be executed in a parallel
computation architecture to speed up the computation. See page 119 for examples
of parallel processing on multi-core CPU. The lower bound obtained by the
geometric approach algorithm is shown in Figure 5.19. The empty circle at the
top left corner indicates the lower bound value at 𝜔 = 0. As the maximum lower
bound is between 20,000 and 30,000, the magnitudes of destabilizing uncertainties
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Figure 5.19 𝜇 lower bound obtained by the geometric approach.

are at least smaller than 0.5 × 10−4. It shows an extreme sensitivity and fragility
of the synthetic circuits.

1 clear
2
3 syms kon k c a t kdg Kdeg kI e t a gamma_G kP ks2 ks1 Pd X3 real ;
4 syms E P ES X1 X2 S DP Xs real ;
5 syms d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 real ;
6
7
8 dE_dt = −(kon+d1 ) ∗E∗S + ( k c a t+d2 ) ∗ES ;
9 dP_dt = ( k c a t+d2 ) ∗ES − ( kdg+d3 ) ∗P − ( Kdeg+d4 ) ∗ ( X3+d5 ) ∗P ;

10 dES_dt = ( kon+d1 ) ∗E∗S − ( k c a t+d2 ) ∗ES ;
11 dX1_dt = ( kI+d6 ) ∗DP − ( e t a+d7 ) ∗X1 ;
12 dX2_dt = −(gamma_G+d8 ) ∗X2 + (gamma_G+d9 ) ∗ ( kP+d10 ) ∗DP ;
13 dS_dt = ( ks2+d11 ) ∗X1 + ( ks2+d12 ) ∗X2 − ( ks2+d13 ) ∗S ;
14 dDP_dt = ( ks1+d14 ) ∗Pd − ( ks1+d15 ) ∗DP∗Xs − ( ks1+d16 ) ∗DP ;
15 dXs_dt = −( ks1+d15 ) ∗DP∗Xs + ( ks1+d16 ) ∗P ;
16
17 f x = [ dE_dt ; dP_dt ; dES_dt ; dX1_dt ; dX2_dt ; dS_dt ; dDP_dt ; dXs_dt ] ;
18 s t a t e = [E ; P ; ES ; X1 ; X2 ; S ; DP ; Xs ] ;
19
20 dfdx = j a c o b i a n ( fx , s t a t e ) ;
21
22 %% Steady− s t a t e
23 Ess = 0 . 1 9 9 8 ;
24 Pss = 0 . 4 9 9 9 ;
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25 ESss = 0 . 0 0 0 2 ;
26 X1ss = 0 . 0 5 5 8 ;
27 X2ss = 5 0 . 0 4 1 5 ;
28 S s s = 5 0 . 0 7 2 3 ;
29 DPss = 1 . 0 0 0 1 ;
30 Xsss = 0 . 4 9 9 9 ;
31
32 d f d x _ a t _ s s = subs ( dfdx , { E , P , ES , X1 , X2 , S , DP , Xs } , { Ess , Pss ,

ESss , X1ss , X2ss , Sss , DPss , Xsss } ) ;
33
34 %% nomial s t a b i l i t y w i t h t h e nominal p a r a m e t e r s
35 kP = 5 0 ;
36 kI = 5e−6;
37 gamma_G = 8e−4;
38 ks2 = 4e−4;
39 Kdeg = 1e−3;
40 X3 = 1 ;
41 KF = 3 ;
42 e t a = 1e−4;
43 Pd = 1 ;
44 kon = 5e−5;
45 k c a t = 1 . 6∗ 2 ;
46 kdg = 8e−8;
47 ks1 = 3 ;
48
49
50 dfdx_nominal = subs ( d f d x _ a t _ s s , . . .
51 { sym ( ’ kP ’ ) , sym ( ’ kI ’ ) , sym ( ’gamma_G ’ ) , sym ( ’ ks2 ’ ) , sym ( ’ Kdeg ’ ) ,

. . .
52 sym ( ’ X3 ’ ) , sym ( ’KF ’ ) , sym ( ’ e t a ’ ) , sym ( ’ Pd ’ ) , sym ( ’ kon ’ ) , sym ( ’ k c a t ’ )

, sym ( ’ kdg ’ ) , sym ( ’ ks1 ’ ) } , . . .
53 { kP , kI , gamma_G , ks2 , Kdeg , X3 , KF , eta , Pd , kon , kcat , kdg , ks1 } ) ;
54
55 dfdx_nominal_val = eval ( dfdx_nominal ) ;
56
57
58 %% mu−a n a l y s i s
59 Ns = 5 0 0 0 ;
60 eps = 1e−6;
61
62 num_state = 8 ;
63 num_delta = 1 6 ;
64 A0 = eval ( subs ( dfdx_nominal , { d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

d12 d13 d14 d15 d16 } , { zeros ( 1 , 1 6 ) } ) ) ;
65
66 num_omega = 1 0 ;
67 omega_al l = [ 0 logspace (−3 ,−1 ,num_omega ) ] ;
68 num_omega = num_omega + 1 ;
69
70 mu_lb = zeros ( 1 , num_omega ) ;
71
72 %% l o w e r bound u s i n g g e o m e t r i c approach
73 for wdx=1:num_omega
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74 omega = omega_al l ( wdx ) ;
75 Mjw = inv ( 1 j ∗omega∗eye ( num_state )−A0 ) ;
76
77 d_lb = 1e−6;
78 d_ub = 1 0 ;
79 d_ulb = d_ub − d_lb ;
80
81 i f omega==0
82 s i z e _ c h e c k = 2 ;
83 e l s e
84 s i z e _ c h e c k = 4 ;
85 end
86
87 while d_ulb > eps
88
89 d = ( d_lb+d_ub ) / 2 ;
90
91 s i g n _ a l l = [ ] ;
92
93 for i d x =1:Ns
94 d e l t a _ v e c = rand ( 1 , num_delta ) ∗d−d / 2 ;
95 r a n d _ f a c e = r a n d i ( num_delta , 1 ) ;
96 d e l t a _ v e c ( r a n d _ f a c e ) = d / 2 ;
97
98 D e l t a = eval ( subs ( dfdx_nominal , { d1 d2 d3 d4 d5 d6 d7 d8

d9 d10 d11 d12 d13 d14 d15 d16 } , . . .
99 { d e l t a _ v e c } ) ) −A0 ;

100
101 I_MD = det ( eye ( num_state )−Mjw∗D e l t a ) ;
102 fR = sign ( real ( I_MD) ) ;
103 f I = sign ( imag ( I_MD) ) ;
104
105 s i g n _ a l l = unique ( [ s i g n _ a l l ; fR f I ] , ’ row ’ ) ;
106
107 end
108
109 i f s i z e ( s i g n _ a l l , 1 ) == s i z e _ c h e c k
110 d_ub = d ;
111 e l s e
112 d_lb = d ;
113 end
114
115 d_ulb = d_ub − d_lb ;
116
117 end
118
119 mu_lb ( wdx ) = 2/ d_ub ;
120 end

Program 5.7 (MATLAB) 𝜇-lower bound calculation
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1 import numpy as np
2 from sympy import symbols , Matr ix
3
4 kon , kcat , kdg , Kdeg , kI , e ta , gamma_G , kP , ks2 , ks1 , Pd , X3 =

symbols ( ’ kon k c a t kdg Kdeg kI e t a gamma_G kP ks2 ks1 Pd X3 ’ )
5 E , P , ES , X1 , X2 , S , DP , Xs = symbols ( ’E P ES X1 X2 S DP Xs ’ )
6
7 d1 , d2 , d3 , d4 , d5 , d6 , d7 , d8 = symbols ( ’ d1 d2 d3 d4 d5 d6 d7 d8 ’ )
8 d9 , d10 , d11 , d12 , d13 , d14 , d15 , d16 = symbols ( ’ d9 d10 d11 d12 d13

d14 d15 d16 ’ )
9

10 dE_dt = −(kon+d1 ) ∗E∗S + ( k c a t+d2 ) ∗ES ;
11 dP_dt = ( k c a t+d2 ) ∗ES − ( kdg+d3 ) ∗P − ( Kdeg+d4 ) ∗ ( X3+d5 ) ∗P ;
12 dES_dt = ( kon+d1 ) ∗E∗S − ( k c a t+d2 ) ∗ES ;
13 dX1_dt = ( kI+d6 ) ∗DP − ( e t a+d7 ) ∗X1 ;
14 dX2_dt = −(gamma_G+d8 ) ∗X2 + (gamma_G+d9 ) ∗ ( kP+d10 ) ∗DP ;
15 dS_dt = ( ks2+d11 ) ∗X1 + ( ks2+d12 ) ∗X2 − ( ks2+d13 ) ∗S ;
16 dDP_dt = ( ks1+d14 ) ∗Pd − ( ks1+d15 ) ∗DP∗Xs − ( ks1+d16 ) ∗DP ;
17 dXs_dt = −( ks1+d15 ) ∗DP∗Xs + ( ks1+d16 ) ∗P ;
18
19 f x = Matr ix ( [ [ dE_dt ] , [ dP_dt ] , [ dES_dt ] , [ dX1_dt ] , [ dX2_dt ] , [ dS_dt

] , [ dDP_dt ] , [ dXs_dt ] ] )
20 s t a t e = Matr ix ( [ [ E ] , [ P ] , [ ES ] , [ X1 ] , [ X2 ] , [ S ] , [DP ] , [ Xs ] ] )
21
22 dfdx = f x . j a c o b i a n ( s t a t e )
23
24 # Steady− s t a t e
25 Ess = 0 . 1 9 9 8
26 Pss = 0 . 4 9 9 9
27 ESss = 0 . 0 0 0 2
28 X1ss = 0 . 0 5 5 8
29 X2ss = 5 0 . 0 4 1 5
30 S s s = 5 0 . 0 7 2 3
31 DPss = 1 . 0 0 0 1
32 Xsss = 0 . 4 9 9 9
33
34 d f d x _ a t _ s s = dfdx . subs ( [ [ E , Ess ] , [ P , Pss ] , [ ES , ESss ] , [ X1 , X1ss ] , [ X2 ,

X2ss ] , [ S , S s s ] , [ DP , DPss ] , [ Xs , Xsss ] ] )
35
36 # nomial s t a b i l i t y w i t h t h e nominal p a r a m e t e r s
37 kP = 5 0 ;
38 kI = 5e−6;
39 gamma_G = 8e−4;
40 ks2 = 4e−4;
41 Kdeg = 1e−3;
42 X3 = 1 ;
43 KF = 3 ;
44 e t a = 1e−4;
45 Pd = 1 ;
46 kon = 5e−5;
47 k c a t = 1 . 6∗ 2 ;
48 kdg = 8e−8;
49 ks1 = 3 ;
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50
51
52 dfdx_nominal = d f d x _ a t _ s s . subs ( [
53 [ symbols ( ’ kP ’ ) , kP ] ,
54 [ symbols ( ’ kI ’ ) , kI ] ,
55 [ symbols ( ’gamma_G ’ ) ,gamma_G ] ,
56 [ symbols ( ’ ks2 ’ ) , ks2 ] ,
57 [ symbols ( ’ Kdeg ’ ) , Kdeg ] ,
58 [ symbols ( ’ X3 ’ ) , X3 ] ,
59 [ symbols ( ’KF ’ ) ,KF ] ,
60 [ symbols ( ’ e t a ’ ) , e t a ] ,
61 [ symbols ( ’ Pd ’ ) , Pd ] ,
62 [ symbols ( ’ kon ’ ) , kon ] ,
63 [ symbols ( ’ k c a t ’ ) , k c a t ] ,
64 [ symbols ( ’ kdg ’ ) , kdg ] ,
65 [ symbols ( ’ ks1 ’ ) , ks1 ]
66 ] )
67
68 # mu−a n a l y s i s
69 Ns = 5000
70 eps = 1e−6
71
72 num_state = 8
73 num_delta = 16
74 A0 = dfdx_nominal_val = dfdx_nominal . subs ( [
75 [ symbols ( ’ d1 ’ ) , 0 ] ,
76 [ symbols ( ’ d2 ’ ) , 0 ] ,
77 [ symbols ( ’ d3 ’ ) , 0 ] ,
78 [ symbols ( ’ d4 ’ ) , 0 ] ,
79 [ symbols ( ’ d5 ’ ) , 0 ] ,
80 [ symbols ( ’ d6 ’ ) , 0 ] ,
81 [ symbols ( ’ d7 ’ ) , 0 ] ,
82 [ symbols ( ’ d8 ’ ) , 0 ] ,
83 [ symbols ( ’ d9 ’ ) , 0 ] ,
84 [ symbols ( ’ d10 ’ ) , 0 ] ,
85 [ symbols ( ’ d11 ’ ) , 0 ] ,
86 [ symbols ( ’ d12 ’ ) , 0 ] ,
87 [ symbols ( ’ d13 ’ ) , 0 ] ,
88 [ symbols ( ’ d14 ’ ) , 0 ] ,
89 [ symbols ( ’ d15 ’ ) , 0 ] ,
90 [ symbols ( ’ d16 ’ ) , 0 ]
91 ] )
92 A0 = np . a r r a y ( A0 , dtype=np . f l o a t 6 4 )
93
94 num_omega = 10
95 omega_al l = np . h s t a c k ( ( 0 , np . l o g s p a c e (−3 ,−1 ,num_omega−1) ) )
96
97 mu_lb = np . z e r o s ( num_omega )
98
99 # l o w e r bound u s i n g g e o m e t r i c approach

100 for wdx , omega in enumerate ( omega_al l ) :
101 Mjw=np . l i n a l g . inv ( 1 j ∗omega∗np . eye ( num_state )−A0 )
102
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103 d_lb = 1e−6
104 d_ub = 10
105 d_ulb = d_ub − d_lb
106
107 i f omega==0:
108 s i z e _ c h e c k = 2
109 e l s e :
110 s i z e _ c h e c k = 4
111
112 while d_ulb > eps :
113
114 d = ( d_lb+d_ub ) /2
115
116 for i d x in range ( Ns ) :
117 d e l t a _ v e c = np . random . rand ( num_delta ) ∗d−d /2
118 r a n d _ f a c e = np . random . r a n d i n t ( 0 , num_delta , 1 ) [ 0 ]
119 d e l t a _ v e c [ r a n d _ f a c e ] = d /2
120
121 dfdx_nominal_val = dfdx_nominal . subs ( [
122 [ symbols ( ’ d1 ’ ) , d e l t a _ v e c [ 0 ] ] ,
123 [ symbols ( ’ d2 ’ ) , d e l t a _ v e c [ 1 ] ] ,
124 [ symbols ( ’ d3 ’ ) , d e l t a _ v e c [ 2 ] ] ,
125 [ symbols ( ’ d4 ’ ) , d e l t a _ v e c [ 3 ] ] ,
126 [ symbols ( ’ d5 ’ ) , d e l t a _ v e c [ 4 ] ] ,
127 [ symbols ( ’ d6 ’ ) , d e l t a _ v e c [ 5 ] ] ,
128 [ symbols ( ’ d7 ’ ) , d e l t a _ v e c [ 6 ] ] ,
129 [ symbols ( ’ d8 ’ ) , d e l t a _ v e c [ 7 ] ] ,
130 [ symbols ( ’ d9 ’ ) , d e l t a _ v e c [ 8 ] ] ,
131 [ symbols ( ’ d10 ’ ) , d e l t a _ v e c [ 9 ] ] ,
132 [ symbols ( ’ d11 ’ ) , d e l t a _ v e c [ 1 0 ] ] ,
133 [ symbols ( ’ d12 ’ ) , d e l t a _ v e c [ 1 1 ] ] ,
134 [ symbols ( ’ d13 ’ ) , d e l t a _ v e c [ 1 2 ] ] ,
135 [ symbols ( ’ d14 ’ ) , d e l t a _ v e c [ 1 3 ] ] ,
136 [ symbols ( ’ d15 ’ ) , d e l t a _ v e c [ 1 4 ] ] ,
137 [ symbols ( ’ d16 ’ ) , d e l t a _ v e c [ 1 5 ] ]
138 ] )
139
140 D e l t a = np . a r r a y ( dfdx_nominal_val , dtype=np . f l o a t 6 4 ) −

A0
141
142 I_MD = np . l i n a l g . d e t ( np . eye ( num_state )−Mjw∗D e l t a )
143 fR = np . s i g n ( np . r e a l ( I_MD) )
144 f I = np . s i g n ( np . imag (I_MD) )
145
146 i f i d x ==1:
147 s i g n _ a l l = np . a r r a y ( [ fR , f I ] )
148 e l s e :
149 s i g n _ a l l = np . v s t a c k ( ( s i g n _ a l l , [ fR , f I ] ) )
150 s i g n _ a l l = np . unique ( s i g n _ a l l , a x i s =0)
151
152 i f s i g n _ a l l . shape [ 0 ] == s i z e _ c h e c k :
153 d_ub = d
154 e l s e :
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155 d_lb = d
156
157 d_ulb = d_ub − d_lb
158
159 print ( omega )
160 print ( s i g n _ a l l )
161 print ( d_lb , d_ub )
162
163 mu_lb [ wdx ] = 2/ d_ub

Program 5.8 (Python) 𝜇-lower bound calculation

5.2.2.3 𝝁-Upper Bound: Geometric Approach
We can construct a 𝜇-upper bound algorithm based on the geometric approach.
The upper bound using the maximum singular value is too conservative for the
enzyme–substrate network. The maximum singular value of M(j𝜔) at 𝜔 = 0 is in
the order of 1020, which corresponds to the uncertainty magnitude to guarantee
the stability is less than 10−20. Given that the maximum 𝜇-lower bound found is
around 20,000, which corresponds to the uncertainty magnitude destabilizing the
system around 0.00005, the upper bound provided by the maximum singular value
is too big to estimate the true 𝜇 within the acceptable tolerance.

Figure 5.20 shows the concept of how to calculate the upper bound, i.e. the
stability guaranteed bound, using the geometric approach. Inside the stable guar-
anteed box, we can find only three or fewer sign combinations for 𝜔 not equal to

Singular point

(fR, fI) = (+, +)

fR(Δ) = R[|I – M(jω)Δ|] = 0

fI(Δ) = I[|I – M(jω)Δ|] = 0

(fR, fI) = (–, +)

(fR, fI) = (–, –)
(fR, fI) = (+, –)

δ2

δ1

Figure 5.20 Geometric approach for 𝜇 upper bound calculation.
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Figure 5.21 𝜇 upper bound with the lower bound obtained by the geometric approach.

zero or one sign combination for𝜔 equal to zero. In addition, the inverse of the half
of the side length provides an upper bound. The upper bound calculated by this
method is not deterministic as there is a chance that we miss finding all sign com-
binations. The upper bound, hence, only provides a probabilistic upper bound. It
has a non-zero probability to be failed. Figure 5.21 shows the upper bound calcu-
lated using the geometric approach at 𝜔 = 0, where the maximum lower bound
occurs. The upper bound is close to the maximum lower bound, and we conclude
that the true 𝜇 is between 20,000 and 30,000.

Exercises

Exercise 5.1 (MATLAB/Python) Implement the simulation program to produce
Figure 5.11.

Exercise 5.2 Derive the differential equations corresponding to the following
molecular interactions (Oishi and Klavins, 2011):

u+ 𝛼

−−→u+ + y+: catalysis

u− 𝛼

−−→u− + y−: catalysis

y+ + y−
𝜂

−−→∅: annihilation
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where u+ and u− or y+ and y− represent the positive and the negative quantities
corresponding to the signal u = u+ − u− or y = y+ + y−, respectively.

Exercise 5.3 Using the differential equations derived in Exercise 5.2, derive the
differential equations for u and y defined by

u = u+ − u−

y = y+ − y−

where the subtractions for u and y are not implemented. u and y are simply inter-
pretations of the signals generated by u+, u−, y+, and y−.

Exercise 5.4 (MATLAB) Modify Program 5.3 and produce the results in
Figure 5.13.

Exercise 5.5 (Python) Convert the MATLAB Program 5.3 to Python scripts and
produce the results in Figure 5.13.

Exercise 5.6 (MATLAB/Python) Write the Program to produce Figure 5.15.

Exercise 5.7 (MATLAB/Python) Implement Algorithm 5.1 to calculate the
𝜇-lower bound of (5.11) for Ns = 1000, 𝜀 = 10−6,

d
−−→ = 0.001, d = 10, and 𝜔 = 0.

Exercise 5.8 (MATLAB/Python) Construct an 𝜇-upper bound algorithm based
on Figure 5.20 and implement the algorithm in MATLAB or Python to calculate
the upper bound shown in Figure 5.21.

Bibliography

Gary J. Balas, John C. Doyle, Keith Glover, Andy Packard, and Roy Smith. 𝜇-Analysis
and Synthesis Toolbox. MUSYN Inc. and The MathWorks, Natick, MA, 1993.

Alexander P. S. Darlington, Jongrae Kim, and Declan G. Bates. Robustness analysis of
a synthetic translational resource allocation controller. IEEE Control Systems
Letters, 3(2):266–271, 2019. https://doi.org/10.1109/LCSYS.2018.2867368.

John Doyle. Analysis of feedback systems with structured uncertainties. In IEE
Proceedings D-Control Theory and Applications, volume 129, pages 242–250. IET,
1982.

Andrea Fabrizi, Clément Roos, and Jean-Marc Biannic. A detailed comparative
analysis of 𝜇 lower bound algorithms. In 2014 European Control Conference, ECC
2014, pages 220–226, 06 2014. ISBN 978-3-9524269-1-3. https://doi.org/10.1109/
ECC.2014.6862465.

https://doi.org/10.1109/LCSYS.2018.2867368
https://doi.org/10.1109/


�

� �

�

Bibliography 293

Mathias Foo, Jongrae Kim, Jongmin Kim, and Declan G. Bates. Proportional–integral
degradation control allows accurate tracking of biomolecular concentrations with
fewer chemical reactions. IEEE Life Sciences Letters, 2(4):55–58, 2016.
https://doi.org/10.1109/LLS.2016.2644652.

Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of
Dynamic Systems. Pearson, London, 2015.

Jongrae Kim, Declan G. Bates, and Ian Postlethwaite. A geometrical formulation of
the 𝜇-lower bound problem. IET Control Theory and Applications, 3(4):465–472,
2009.

NVIDIA Developer. CUDA GPUs — NVIDIA developer.
https://developer.nvidia.com/cuda-gpus, 2021. Accessed: 2021-11-07.

Kevin Oishi and Eric Klavins. Biomolecular implementation of linear I/O systems.
IET Systems Biology, 5(4):252–260, 2011.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
3rd Edition: The Art of Scientific Computing. Cambridge University Press, 2007.
ISBN 9780521880688.

Clément Roos. Systems modeling, analysis and control (SMAC) toolbox: an insight
into the robustness analysis library. In 2013 IEEE Conference on Computer Aided
Control System Design (CACSD), pages 176–181, 2013.
https://doi.org/10.1109/CACSD.2013.6663479.

Springer Nature Limited. Synthetic biology - latest research and news — nature.
https://www.nature.com/subjects/synthetic-biology, 2021. Accessed: 2021-10-08.

P. M. Young, M. P. Newlin, and J. C. Doyle. Mu analysis with real parametric
uncertainty. In [1991] Proceedings of the 30th IEEE Conference on Decision and
Control, pages 1251–1256 vol. 2, 1991. https://doi.org/10.1109/CDC.1991.261579.

Yun-Bo Zhao, Jongrae Kim, and Declan G. Bates. LFT-free 𝜇-analysis of LTI/LPTV
systems. In 2011 IEEE International Symposium on Computer-Aided Control System
Design (CACSD), pages 638–643, 2011. https://doi.org/10.1109/CACSD.2011.
6044563.

https://doi.org/10.1109/LLS.2016.2644652
https://developer.nvidia.com/cuda-gpus
https://doi.org/10.1109/CACSD.2013.6663479
https://www.nature.com/subjects/synthetic-biology
https://doi.org/10.1109/CDC.1991.261579
https://doi.org/10.1109/CACSD.2011


�

� �

�



�

� �

�

295

6

Further Readings

Several important dynamic system modelling and recent algorithms worth
including are beyond the scope of this book. Among them, we introduce Boolean
network, network structure analysis, spatial-temporal modelling, reinforcement
learning, and the deep learning neural network.

6.1 Boolean Network

In modelling biological networks, instead of tracking the concentrations of
molecules in the networks, we would be only interested in the qualitative levels of
the concentrations, i.e. high or low. Each molecule in the networks has the binary
state, 1 (high) or 0 (low). Boolean networks model the dynamics of networks with
binary states (Kauffman, 1969). For example Zhao et al. (2013),

x1(k + 1) = x2(k) ∧ x3(k)

x2(k + 1) = x1(k) ∨ x3(k)

x3(k + 1) = ¬x3(k)

where the binary state of xi at k + 1 step for i = 1, 2, 3 is the function of xi at k step,
∧ is the logical-and, which returns 1 only for both x2(k) and x3(k) equal to 1 and 0
otherwise, ∨ is the logical-or, which returns 1 for at least one of x1(k) or x3(k) equal
to 1 and 0 otherwise, and ¬ is the negation, which returns the opposite of x3(k). In
studying Boolean systems, how many stationary points exist and how large the
state space converges to each has some important biological implications. Solving
the following equation is to obtain stationary points:

x1(k) = x2(k) ∧ x3(k)

x2(k) = x1(k) ∨ x3(k)

x3(k) = ¬x3(k)
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Finding all stationary points is not easy to guarantee without performing the
exhaustive search, which requires a large computational cost even for the mod-
erate size of networks, i.e. 2n states for n molecular species in the network. One
of the interesting approaches to solving the Boolean network analysis problems
is the semi-tensor product approach in Cheng and Qi (2010). The semi-tensor
approach represents the state transition using a series of matrix manipulations,
which requires symbolic operations. An algorithm to perform the symbolic
matrix manipulations for large-size networks is yet to be developed (Daizhan
Cheng, 2021). It would significantly improve Boolean network analysis capability.

6.2 Network Structure Analysis

Large-scale networks are not only challenging to model but also to analyze. To
remove the necessity to identify the dynamics of large-scale networks, we concen-
trate purely on the structural aspect of the networks. Consider the network with
seven nodes and eight edges shown in Figure 6.1, where the network size is cho-
sen to be small for the demonstration purpose. By examining the graph, we can
see that there are two modules. One is a module by nodes 1, 2, 3 and the other
is a module by nodes 4, 5, 6. Node 7 belongs to either module or neither module.
We call it a grey node (Krishnadas et al., 2013).

By solving the following maximization problem, the module and the grey nodes
are identified (Newman, 2006):

s∗ = arg max
s∈{−1,0,1}n

Q = 1
4m

sT
(

A − kkT

2m

)
s

where s is the 7 × 1 vector, whose element is either−1, 0 or, 1, m is the total number
of edges equal to 8 for the example network, k is the 7 × 1 vector, whose element
is the number of edges connected to each node, i.e.

k =
[
2 2 3 3 2 2 2

]T

and A is the adjacency matrix. Q is the modularity defined by the difference
between the actual connection, A, and the expected connection, kkT∕(2m).

1

2

3 4

5

6

7

Figure 6.1 Two modules and a grey node in the network.
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If we find more connections than the expected ones, i.e. Q is positive, then there
exist modules. Among many possible module structures, we search the modules
providing the maximum Q. For the network in Figure 6.1, the optimal solution is
given by

s∗ =
[
1 1 1 −1 −1 −1 0

]T

which indicates two modules and one grey node.
Introducing perturbations in the network connections and analyzing how Q

varies with respect to the perturbations provide the robustness of modularity. Kim
and Cho (2015) present algorithms to calculate the upper and lower bounds of the
worst perturbation to destroy the modularity.

6.3 Spatial-Temporal Dynamics

Partial differential equation models spatial-temporal dynamics. The following par-
tial differential equation describes the mean firing rate of the neuron populations
in the human brain (Detorakis and Rougier, 2014):

𝜕u(x, t)
𝜕t

= −𝜏u(x, t) + 𝛼
∫y∈Ω(x)

𝑤(|x − y|)f [u(x, t)]dy + i(x, t)

where u(x, t) is the mean firing rate or the membrane potential activity of the neu-
ron population in the volume,Ω, at the position, x, in the brain, t is the time, 𝜏 is the
temporal decay, 𝛼 is the scale factor,𝑤(⋅) is the difference between the short-range
excitation and the long-range inhibition, which are functions of the distance from
x to y in Ω(x), f (u) is the firing function, and i(x, t) is the stimulus input.

functional Magnetic Resonance Image (fMRI) measures the localized oxygen
level changes in the brain, which correlates with neuronal activities in the brain
(Logothetis, 2008). fMRI measurements are noise corrupted and delayed signals of
u(x, t). We establish the system identification problems as follows: given a particu-
lar stimulus, i(x, t), and the fMRI measurements infer localized neuronal activities
and identify the unknowns in the dynamic model.

The molecular interactions studied in Chapters 4 and 5 are based on the spa-
tial uniformity assumption. However, the enzyme and substrate molecules in the
following reaction may spread unevenly over the reaction space:

E + S
kon−−−⇀↽−−−
koff

ES

and the reduction rates of [E] and [S] are not simply given as kon [E][S] but are
given in the form of partial differential equations, i.e. the reaction–diffusion
equation (Smith and Grima, 2019). Kim et al. (2018) present a modelling
method that includes spatial effect on molecular interactions using an additional
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parameter, 𝛿, in the kinetic rate such as kon(1 + 𝛿)[E][S], where 𝛿 absolves the
effect of spatial inhomogeneity of the molecular concentrations, [E] and [S].

6.4 Deep Learning Neural Network

Deep learning neural network is probably the most popular algorithm in the
current artificial intelligence research (Goodfellow et al., 2016). The algorithm
maps diverse forms of data to desired outputs and provides a certain level of
generalization capabilities. Thanks to the fast glowing computation speed, its
capabilities and application areas are growing. Deep learning neural network
would model the unknown structures of uncertainty dynamics using its general
function approximation capability (Eldan and Shamir, 2016). The fragile robust-
ness of the algorithm to the input data perturbation has been revealed (Papernot
et al., 2016, Su et al., 2019), and the ways to robustify the algorithms have been
studied (Gu and Rigazio, 2014, Madry et al., 2017).

6.5 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 2018) is a new control algorithm
that demonstrates the potential to solve many difficult control problems that
are non-linear, complex, and uncertain. Reinforcement learning has two modes
called exploration and exploitation. The exploration mode learns the environ-
ment. The value function and the action value function store and update the
expected rewards for the given states and actions. The exploitation mode chooses
the optimal action to maximize the reward based on the current action-value
function. The two important aspects of constructing a reinforcement learning
algorithm are as follows (i) how to balance between the time spent on exploration
or exploitation mode and (ii) how to design the rewards. The state action space
could be high dimensional. Deep learning neural network has been introduced
recently to express the value function and the action-value function (Mnih et al.,
2013, Lillicrap et al., 2015). The robustness of reinforcement learning embedded
systems is yet to be fully investigated.
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Appendix A

Solutions for Selected Exercises

A.1 Chapter 1

Exercise 1.4

The three reactions affecting ligand concentration are interpreted as

R + L
kon−−−→C ⇒

d[L]
dt

∝ −[R][L]

C
koff−−−→R + L ⇒

d[L]
dt

∝ [C]

f (t)
1
−−→L ⇒

d[L]
dt

∝ [f (t)]

Using the reaction rate constants, construct the following differential equation:
d[L]

dt
= −kon[R][L] + koff[C] + [f (t)]

Similarly, d[C]∕dt can be obtained.

Exercise 1.5

The function passed to odeint is ‘RLC_kinetics’. Its first and second arguments
are ‘time’ and ‘state’. The default argument order assumed in odeint is ‘state’ and
‘time’. The optional argument, tfirst, indicates whether the time is the first argu-
ment of the function to pass to the integrator. By setting the optional argument
equal to true, we can pass the same function to solve_ivp or odeint.
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A.2 Chapter 2

Exercise 2.5

We have the direction cosine matrix between the body frame and the reference
frame provided by the Kinematic equation of the body frame: CBR. Using the sensor
configuration in the body frame, we obtain the direction cosine matrix between the
sensor frame and the body frame: CSB. For the configuration of the sensor given in
Figure 2.28

CSB =
⎡⎢⎢⎣
1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎦
For the given configuration, the sensor on the body, CSB, is a constant matrix.
Therefore, the direction cosine matrix between the sensor frame and the reference
frame, CSR, is obtained as

CSR = CSBCBR

Hence, the following equation converts r1 in the reference frame to the one in the
sensor frame:

r1
S = CSRr1

R = CSBCBRr1
R

A.3 Chapter 3

Exercise 3.1

The attractive force in the positive y-direction is obtained by

−
𝜕Ua

𝜕y
= − 𝜕

𝜕y

(1
2

ka𝜌
2
a

)
= − 𝜕

𝜕𝜌a

(1
2

ka𝜌
2
a

)
𝜕𝜌a

𝜕y
= −ka(y − ydst)

and the i-th repulsive in the positive y-direction for 𝜌i
r ≤ 𝜌

i
o is

−
𝜕Ui

r

𝜕y
= − 𝜕

𝜕y

[
1
2

kr

(
1
𝜌

i
r
− 1
𝜌

i
o

)]
= 1

2
kr

(
1
𝜌

i
r

)2
𝜕𝜌

i
r

𝜕y
=

kr(y − yi
ost)

(𝜌i
r)3

(A.1)
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Exercise 3.6

As shown in Figure 3.14, the body frame and the reference frame correspond to
the following direction cosine matrix:

CBR =
[

cos𝜙 sin𝜙
− sin𝜙 cos𝜙

]
The following multiplication converts the control input in the reference frame to
the body frame:

uB =
[

uB
x

uB
y

]
= CBRuR =

[
cos𝜙 sin𝜙
− sin𝜙 cos𝜙

] [
ux
uy

]
=
[

ux cos𝜙 + uy sin𝜙
−ux sin𝜙 + uy cos𝜙

]

A.4 Chapter 4

Exercise 4.1

Y (s) =
∫

t=∞

t=0
x(t − 𝜏)e−st dt

Let 𝑣 = t − 𝜏 and d𝑣 = dt

Y (s) =
∫

𝑣=∞

𝑣=−𝜏
x(𝑣)e−s(𝑣+𝜏) d𝑣 = e−s𝜏

∫

𝑣=∞

𝑣=0
x(𝑣)e−s𝑣 d𝑣 = e−s𝜏X(s)

where x(𝑣) = 0 for 𝑣 ∈ [−𝜏, 0).

Exercise 4.2

Use the integration by parts, ∫ u𝑣̇ dt = u𝑣 − ∫ u̇𝑣 dt,

sY (s) − y(0) =
∫

t=∞

t=0
ẏ(t)e−st dt

where u = e−st and 𝑣 = ẏ(t), then the integral becomes

∫

t=∞

t=0
ẏ(t)e−st dt = e−sty(t)||t=∞t=0 + s

∫

t=∞

t=0
e−sty(t)dt = −y(0) + sY (s)
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Exercise 4.7

Pseudo-code for the robustness analysis is given by

1: Set t0 = 600 minutes, tf = 1200 minutes, Δt = 0.1 minutes and p
𝛿
= 2%

2: while p
𝛿

is not the smallest do
3: Solve the minimization problem in (4.30) and obtain 𝜹∗

4: Check the time history of [ACA] for 𝜹∗ if oscillation exists
5: if there is oscillation then
6: Increase p

𝛿
; use the bisection method

7: else if no oscillation then
8: Decrease p

𝛿
; use the bisection method

9: end if
10: end while

A.5 Chapter 5

Exercise 5.2

Deduce the differential equations as follows:
du+

dt
= 0

du−

dt
= 0

dy+

dt
= 𝛼u+ − 𝜂y+y−

dy−

dt
= 𝛼u− − 𝜂y+y−

Exercise 5.3

As the definitions for u and y are given by

u = u+ − u−

y = y+ − y−
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the differentiations are equal to
du
dt

= du+

dt
− du−

dt
= 0

dy
dt

=
dy+

dt
−

dy−

dt
=
(
𝛼u+ − 𝜂y+y−

)
−
(
𝛼u− − 𝜂y+y−

)
Therefore,

du
dt

= 0

dy
dt

= 𝛼u

i.e. y is the integration of u with the integral gain equal to 𝛼.
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M-Δ form 270
[𝝎×] 26
𝜇 bounds geometric approach 278
𝜇 upper bound 272
𝜇-analysis 269
𝜇 lower bound 275
𝝎 25
Dictyostelium discoideum 227
E.coli experiment data 190
E.coli tryptophan regulation 191
1d & 2d indices in numpy array 47

a
absolute tolerance 27
activation 229
adaptive parameters 190, 226
adjacency matrix 127
angular velocity 25
Armijo’s rule 169
attitude control 23, 88
attitude dynamics 88
attitude estimation 23
attractive force 121
autonomous vehicles 119
Avogadro’s number 15
ax.legend 31
ax.plot 31
ax.set 46

ax.set_xlabel 31
ax.set_ylabel 31

b
bias drift 33
bias noise model 77
biological oscillation 227
Bode plot 254
Boolean network 295

c
cAMP oscillation 227
cAMP oscillation robustness 241
cAMP oscillation worst perturbation

243
chemotaxis 227
complex numbers in MATLAB or Python

278
control input constraint 147
controllable canonical form 199
coordinate system 3
covariance matrix 82

d
DCM to quaternion 58, 60
deep learning neural network 298
deterministic modelling 185
Dijkstra’s shortest path algorithm 130
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Dirac delta function 256
discretization 78
DNA 185

e
eigenaxis rotation 24
EKF propagation 87
EKF update 86
elementary chemical reactions 14
enumerate 45
enzyme production 193
enzyme–substrate interaction 251
error handling 217, 218
error quaternion 76
exception handling 217, 218
exercise solutions 301
extended Kalman filter 75, 76, 88

f
fig.set_figheight 31
fig.set_figwidth 31
first-order optimality condition 153
free mRNA 193
free operon 191
free-falling object 2
Further Reading 295

g
Gaussian distribution 36
Gillespie’s Direct method 231
Gillespie’s direct method

implementation 234
global variable 98, 99
gradient descent 169
graph theory 126, 296
group of cells 186, 188
gyro bias estimation 88
gyro noise units [∘∕s3∕2] 52
gyro random walk noise 50
gyro white noise 49
gyroscope sensor model 33

h
Hill equation 193
histcounts 37

i
import 11
import … as 13
impulse response 255
indentation in Python 39
inhibition 229
integration error 27
Introduction 1

k
Kalman Filter 66, 68

l
Large-scale network 296
Laub-Loomis model 228
Laub-Loomis model parameters 228
Ligand-receptor 14
Linear Fractional Transformation (LFT)

270
linear time invariant 256
linspace 11
LTI 256
Lyapunov Direct Method 104

m
mass-spring-damper system 68
matlab function 8
matplotlib 13
matrix norm 273
matrix operation in python 206
Michaelis-Menten equation 192
min-max optimization 148
minimum turn radius constraint 147,

167
model fitting 188
Model fitting optimization 213
model parameter ranges 206
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Molar 15
Molecular interactions for Laub-Loomis

model 230
moment of inertia 88
Monte Carlo simulation 107
moving target tracking 145
multiple experiments 186

n
Newton’s second law of motion 2
nM (nanomolar) 15
nonconvex obstacles 134
normal distribution 36
numpy 11
numpy vs. scipy 11
numpy.histogram 39

o
ODE negative event detection 214
ode45 8
ode45 maximum step size 91
odeint 19
optical sensor 84
optical sensor measurement 84
optical sensor model 57
optimal target tracking control input

168

p
Padé approximation 195
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