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Preface

This book is for control engineers to learn dynamic system modelling and sim-
ulation and control design and analysis using MATLAB or Python. The readers
are assumed to have the undergraduate final-year level of knowledge on ordinary
differential equations, vector calculus, probability, and basic programming.

We have verified all the MATLAB and Python codes in the book using MATLAB
R2021a and Python 3.8 in Spyder, the scientific Python development environment.
To reduce the confusion in running a particular program, most of the programs are
independent on their own. Organizing programming with multiple files is left as
an advanced skill for readers to learn after reading this book.

Leeds, West Yorkshire, England, UK Jongrae Kim
30 November 2021
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Introduction

1.1 Scope of the Book

This book is for advanced undergraduate students, post-graduate students, or engi-
neers to acquire programming skills for dynamic system modelling and analysis
using control theory. The readers are assumed to have a basic understanding of
computer programming, ordinary differential equations (ODE), vector calculus,
and probability.

Most engineering curricula at the undergraduate level include only an
elementary-level programming course in the early of the undergraduate years.
Only a handful of self-motivated engineering students acquire advanced level
programming skills mainly from self-study through tedious time-consuming
practices and trivial mistakes. As modern engineering systems such as aircraft,
satellite, automobile, or autonomous robots are implemented through inseparable
tight integration of hardware systems and software algorithms, the demand for
engineers having fluent skills in dynamic system modelling and algorithm design
is increasing. In addition, the emergence of interdisciplinary areas merging the
experimental domain with mathematical and computational approaches such
as systems biology, synthetic biology, or computational neuroscience further
increases the necessity of the engineers who understand dynamics and are
capable of computational implementations of dynamic models.

This book aims to fill the gap in learning practical dynamic modelling, simu-
lation, and analysis skills in aerospace engineering, robotics, and biology. Learn-
ing programming in the engineering or biology domain requires not only domain
knowledge but also a robust conceptual understanding of algorithm design and
implementation. It is not, of course, the skills to learn in 14 days or less as many
online courses claim. To be confident in dynamic system modelling and analysis
takes more than several years of practice and dedication. This book provides the
starting point of the long journey for the readers to equip and prepare better for
real engineering and scientific problems.

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers,
First Edition. Jongrae Kim.

© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling


http://www.wiley.com/go/kim/dynamicmodeling

2

1 Introduction
1.2 Motivation Examples

1.2.1 Free-Falling Object

Newton’s second law of motion is given by
d
F,=— 1.1
Z i = o, (mv) (1.1)

where F, is the i-th external force in Newtons (N) acting on the object characterized
by the mass, m, in kg, d/dt is the time derivative, ¢ is the time in seconds, v is the
velocity in m/s, and muo is the momentum of the object. Newton’s second law states
that the sum of all external forces is equal to the momentum change per unit of time.

Consider a free-falling object shown in Figure 1.1. There exists only one exter-
nal force, i.e. the gravitational force acting downwards in the figure. Hence, the
left-hand side of (1.1) is simply given by ) ,F; = F,, where F, is the gravitational
force. Introduce the additional assumption that the object is within the reasonable
range from the sea level. With the assumption, the gravitational force, Fg, is known
to be proportional to the mass, and the proportional constant is the gravitational
acceleration constant, g, which is equal to 9.81 m/s? in the sea level. Therefore,
F, = mg. Replace the left-hand side of (1.1), i.e. > F;, by F, = mg provides

d
mg = F, = ZFi = (mv) (1.2)
where the downward direction is set to the positive direction, which is the opposite

of the usual convention. It highlights that establishing a consistent coordinate system
at the beginning of modelling is vital in dynamic system simulation.

Fy

O

Figure 1.1 Free-falling object.



1.2 Motivation Examples

From the kinematic relationship between the velocity, v, and the displacement,
X, we have
dr_,
dt
where the origin of x is at the initial position of the object, m, and the positive
direction of x is downwards in the figure. The right-hand side of (1.2) becomes

d d dx
ME= e Z‘ dt(mv) dt (mdt>

Finally, the leftmost and the rightmost terms are equal to each other as follows:

mo = L (&
= u dt

and it is expanded as follows:

_ dmdx m d’x
dt dt dr?
Using the short notations, w1 = dm/dt, X = dx/dt, and % = d?>x/dt?, and after
rearrangements, the governing equation is given by

X=g-——x 1.3
g- o (L3)
For purely educational purposes, assume that the mass change rate is given by
m=—-m+2 (1.4)

We can identify now that there are three independent time-varying states, which
are the position, x, the velocity, X, and the mass, m. All the other time-varying
states, for example, ¥ and i1, can be expressed using the independent state vari-
ables. Define the state variables as follows:

X =X
X, =X
X;=m

Obtain the time derivative of each state expressed in the state variable as follows:

X, =X=x, (1.5a)
- X3+ 2
X,=Xx=g- m+2x=g— > Tx, (1.5b)
X3
Xy=m=-m+2=-x;+2 (1.5¢)

and this is called the state-space form.
Let the initial conditions be equal to x, (0) = x(0) = 0.0 m, x,(0) = X(0) = 0.5m/s,
and x;(0) = m(0) = 5kg. Equation (1.5) can be written in a compact form using the

3
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1 Introduction

matrix—vector notations. Define the state vector, x, as follows:

X =|x,
X3
and the corresponding state-space form is written as
X
X=1(x) =[g+ (x; — 2)(x,/x;) (1.6)
—X;+2
The second-order differential equation, (1.3), and the first-order differential
equation, (1.4), are combined into the first-order three-dimensional vector
differential equation, (1.6). Any higher order differential equations can be
transformed into the first-order multi-dimensional vector differential equation,
% = f(x). Numerical integration methods such as Runge-Kutta integration
(Press et al., 2007) solves the first-order ODE. They can solve any high-order
differential equations by transforming them into the corresponding first-order
multi-dimensional differential equation.

1.2.1.1 First Program in Matlab

We are ready to solve (1.6) with the initial condition equal to x(0) = [0.0 0.5 5.0]7,
where the superscript T is the transpose of the vector. We solve the differen-
tial equation from ¢ =0 to t = 5seconds using Matlab. Matlab includes many
numerical functions and libraries to be used for dynamic simulation and analysis.
A numerical integrator is one of the functions already implemented in Matlab.
Hence, the only task we have to do for solving the differential equation is to
learn how to use the existing functions and libraries in Matlab. The complete
programme to solve the free-falling object problem is given in Program 1.1.
Producing Figure 1.2 is left as an exercise in Exercise 1.1.

clear;

grv_const = 9.81; % [m/s"2]

init_pos = 0.0; %[m]

init_vel = 0.5; % [m/s]

init_mass = 5.0; %[kg]

init_time = 0; % [s]

final_time = 5.0; % [s]

time_interval = [init_time final_time];

X0 = [init_pos init_vel init_mass];

[tout,xout] = oded5(@(time,state) free_falling_obj(time,state ,

grv_const), time_interval, x0);

figure(1);
plot(tout ,xout(:,1))
ylabel (’position [m]’);




18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1.2 Motivation Examples

xlabel (’time [s]’);

figure(2);

plot(tout ,xout(:,2))
ylabel(’velocity [m/s]’);
xlabel (’time [s]’);

figure(3);

plot(tout ,xout(:,3)
ylabel('m(t) [kg]’)
xlabel (’time [s]’);

)

function dxdt = free_falling_obj(time,state ,grv_const)

x1 = state(1);
x2 = state(2);
x3 = state(3);

dxdt = zeros(3,1);

dxdt(1) = x2;
dxdt(2) = grv_const + (x3-2)x(x2/x3);
dxdt(3) = -x3 + 2;

end

Program 1.1 (Matlab) Free-falling object

200 70
60
~ 150+ ~ 50
= z
=1 Ew
S 100t £
‘Z 30
g s
sol 20
10
00 1 2 3 4 5 00 1 2 3 4
Time (s) Time (s)
(a) figure(1) (b) figure(2)
5
4.5
4
o0
<
=35
=
3
2.5
20 1 2 3 4 5
Time (s)

(c) figure(3)

Figure 1.2 Free-falling object position, velocity, and mass time histories.
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Now, we study the first program line by line. The m-script starts with the
command ‘clear’. The clear command removes all variables in the workspace.
In the workspace, there would be some variables defined and used in previous
activities. They may have the same names but different meanings and values in
the current calculation. For example, the gravitational acceleration ‘grv_const’ in
the third line is undefined in the current program and uses a variable of the same
name used to analyse objects falling on the moon. A falling object program in
the Moon was executed earlier, and ‘grv_const’ is still in the workspace. Without
the clear command, the incorrect constant is used in the program producing
wrong results. Hence, it is recommended to clear the workspace before starting
new calculations. We must be careful, however, that the clear command erases
all variables in the workspace. Before the clear command, we check if all values,
which might be generated from a long computer simulation, were saved.

From line 3 to line 12, several constants are defined. Based on the equations we
have seen earlier, it is tempting to write a code as follows:

9.81
0.
0.

-+ < X o
wn O

[0 5]
X0 = [x v m]

Program 1.2 (Matlab) Poor style constant definitions

These seem to look compact and closer to the equations we derived. It is a bad
habit to write a program in this way. The list of problems in the above programming
style is as follows:

[P I 3

o It defines a variable with a single character, ‘g’, X', ‘v’, etc. Using a single char-
acter variable might cause confusion on the meaning of the variable and lead to
using them in wrong places with incorrect interpretations.

e Numerical numbers are written without units. There is no indication of units of
the numerical values, e.g. 9.81, is it m/s? or ft/s??

o It uses magic numbers. What do the numbers, 0 and 5, mean in defining ‘t’?

Program 1.1 uses a better style. The initial position is defined using the variable
name, ‘init_pos’, whose value is 0.0 and the unit is in metres. Appropriately named
variables reduce mistakes and confusion in the program. Program 1.1 indicates the
corresponding unit for each numerical value, e.g. the ‘init mass’ value 5.0 is in kg.
We understand the meaning of each variable by its name. The texts after ‘%’ are
the comments, where we could add various information such as the unit of each
numerical value.




1.2 Motivation Examples

In line 13, the built-in Runge-Kutta integrator, ode45(), is used to integrate the
differential equation provided by the function, ‘free_falling_obj’, at the end of the
m-script. Frequently, each function is saved as a separate m-script. It could also
be included in the m-script for the cases that the functions might be used in the
specific m-script only. To include functions in the m-script, they must be placed at
the end of the m-script as in this example.

Functions in Matlab begin with the keyword function and close with the
keyword end. In line 30, ‘dxdt’ is the return variable of the function and
‘free_falling obj’ is the function name. The function has three input arguments.
A function can have any input argument used by the function. This particular
function, ‘free_falling obj’, is not an ordinary function, however. This is the
function to describe the ODE. The function is to be passed into the built-in
integrator, ode45. The first two arguments of the function for ode45 must be time
and states, i.e. t and x in (1.6).

In lines 31-33, the variable ‘state’ is assumed to be a three-dimensional vector,
and each element of the vector corresponds to the states, x;, x,, and x;. In line 35,
the return variable ‘dxdt’ is initialized as [0 0 0] by the built-in function zeros(3,1).
zeros(m,n) creates the m X n matrix filled in zeros. Lines 36, 37, and 38 define the
state-space form ODE, (1.6).

The function works perfectly well without the initialization line for ‘dxdt’,
line 35. However, it is not good programming if line 35 is removed. Without the
initialization, ‘dxdt’ in line 36 is a one-dimensional scalar value. In the next lines,
it becomes a two-dimensional value and a three-dimensional value. Each line, the
size of ‘dxdt’ changes, and this requires the computer to find additional memory
to store the additional value. This could increase the total computation time
longer and could be noticeably longer if this function is called a million times or
more. Hence, it is better to acquire all the required memory ahead as in line 35.

Efficiency vs. development cycle: We strive to create efficient programs, but
the prototyping phase requires a fast development cycle.

Itisvital to have the habit of being conscious of the efficiency of algorithm imple-
mentation. On the other hand, try not to overthink the efficiency of the program.
Script languages such as Matlab and Python are for rapid implementation and
testing. Hence, it needs a proper balance between optimizing codes and saving the
development time.

Now, we are ready to solve the differential equation using the built-in numerical
integrator, ode45. ode45 stands for ODE with Runge-Kutta fourth- and fifth-order

7
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methods. Details of the Runge-Kutta integration methods can be found in Press
et al. (2007).
Recall, the following line from Program 1.1:

[tout,xout] = oded5(@(time,state) free_falling_obj(time,state ,
grv_const), time_interval, x0);

When we use ode45, the input argument starts with @ symbol, which is the
function handle. The function handle, @, is used when we pass function A, e.g.
‘free_falling_obj’, to function B, e.g. ode45, where function B would call function
A multiple times. With the function handle, we can control or construct the
function to be passed with some flexibility. ‘@(time,state)’ explicitly indicates
that the function to be passed has two arguments, ‘time’ and ‘state’, and they will
be passed between ode45 and ‘free_falling_obj’ function in the specific order, i.e.
‘time’ be the first and ‘state’ be the second argument. This order is required by the
integrator, ode45.

With the function handle, we can take some freedom to order the function argu-
ments differently in the function definition of ‘free_falling_obj’. For example, we
could write the function as follows:

function dxdt = free_falling_obj(time,grv_const,state)
x1 = state(1);
x2 = state(2);
x3 = state(3);

dxdt = zeros(3,1);

dxdt(1) = x2;

dxdt(2) grv_const + (x3-2)*(x2/x3);
dxdt(3) -x3 + 2;

end

and the integration part is updated to follow the updated function definition as
follows:

[tout ,xout] = ode45(@(time,state) free_falling_obj(time, grv_const,
state), time_interval , x0);

The program works the same as the ones before the modifications. Also, we
notice that we have an additional input argument, ‘grv_const’. Similarly, we could
add more input parameters if they are necessary. As long as the first argument,
‘time’, and the second argument, ‘state’, are indicated in the function handle, the
function can have any number of input arguments in any order to pass to the
integrator, ode45.

Once the integration is completed, the results return to two output variables,
‘tout’ and ‘“xout’. Execute the command, whos, in the Matlab command prompt,
the following information is displayed:




1.2 Motivation Examples

>> whos
Name Size Bytes Class Attributes
final_time 1x1 8 double
grv_const 1x1 8 double
init_mass 1x1 8 double
init_pos 1x1 8 double
init_time 1x1 8 double
init_vel 1x1 8 double
time_interval 1x2 16 double
tout 61x1 488 double
x0 1x3 24 double
xout 61x3 1464 double

The first column shows all variables created including the two output results from
the integrator. The second column shows the size of each variable: ‘tout’ is 61
rows and 1 column and ‘xout’ is 61 rows and 3 columns. Hence, each row of “xout’
corresponds to the time instance of the corresponding row values of ‘tout’. Why
is the number of row 61? This is determined by the integrator automatically to
adjust the integration accuracy and computation time. We can assign the number
of rows or the number of time steps explicitly, and this is covered in the later
chapters. The three columns of ‘xout’ correspond to the state, x, X, and m. The
first column of “xout’ is for x, the second column of ‘xout’ is for %, and the last
column of ‘xout’ is for m.

By executing the following line in the Matlab command prompt, we can print
out all values of x(t) in the command window:

‘>> xout (:,1)

where ‘.’ indicates all rows. If we want to see the values of x from the 11th row to
the 15th row, then

‘>> xout(11:15,1)

Similarly, the time history of X is xout(:,2) and the time history of m is xout(:,3).
The plot command in Matlab plots the results as follows:

‘plot(tout, xout (:,1))

Before plotting each figure, open a new figure window using figure(1), figure(2),
and figure(3), respectively. The label for each axis is created using the commands
xlabel and ylabel for the horizontal and the vertical axes, respectively, where each
axis must indicate what quantity and what units are used.

9
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1.2.1.2 First Program in Python

Program 1.3 solves the free-falling object differential equation. The program is
remarkably similar to the Matlab script in Program 1.1. There are, however, many
differences between the two languages.

from numpy import linspace
from scipy.integrate import solve_ivp

grv_const = 9.81 # [m/s"2]
init_pos = 0.0 # [m]
init_vel = 0.5 # [m/s]
init_mass = 5.0 #[kg]

init_cond = [init_pos, init_vel, init_mass]
init_time = 0 # [s]
final_time = 5.0 # [s]

num_data = 100
tout = linspace(init_time, final_time, num_data)

def free_falling_obj(time, state, grv_const):

x1, x2, x3 = state

dxdt = [x2,
grv_const + (x3-2)x(x2/x3),
-x3 + 2]

return dxd

sol = solve_ivp(free_falling_obj, (init_time, final_time),
init_cond, t_eval=tout, args=(grv_const,))
xout = sol.y

import matplotlib.pyplot as plt
plt.figure (1)
plt.plot(tout,xout[0,:])
plt.ylabel(’position [m]’);
plt.xlabel(’time [s]’);

plt.figure(2);
plt.plot(tout,xout[1,:])
plt.ylabel(’velocity [m/s]’);
plt.xlabel(’time [s]’);

plt.figure(3);
plt.plot(tout,xout[2,:])
plt.ylabel('m(t) [kg]’);
plt.xlabel(’time [s]’);

Program 1.3 (Python) Free-falling object
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On lines 4 through 14, the constants are defined with the proper naming and
the units indicated in the comments. In Python, comments are placed after #.

The first two lines shown are not trivial to understand for the beginners of the
Python language. Python has many packages, and each package is a collection of
functions. There are several different ways to load these functions and the first line
in the program,

1| from numpy import linspace

shows one of the methods. from and import are the keywords in Python. It loads
the function linspace from the library called numpy. numpy is one of the scien-
tific and engineering libraries and includes many useful functions such as matrix
manipulations, and maths functions.

Numpy vs. scipy: The two packages are very similar and have many common
functions. The execution speed of numpy is faster than scipy; in general, as
numpy is written in C-language while scipy is written in Python. Scipy, how-
ever, has more specialized functions, which are not implemented in numpy.

We might wonder why each function is manually loaded before it is used, unlike
in Matlab. This is one of the design principles of the Python language. If all func-
tions are pre-loaded or they are automatically searched and loaded when they are
used, then the search time or the size of the memory storing the function lists is
long or larger. Hence, it is more efficient to load the functions manually when they
are used.

The function linspace has three input arguments, for example, line 14 generates
an array of numerical values starting from the initial time, 0.0, to the final time,
5.0, whose number of elements is equal to ‘num data’, 100. Unlike the integrator
in Matlab, the Python integrator, discussed shortly later, needs the explicit time
lists as one of the input arguments.

In the second line, the numerical integrator, solve_ivp, is loaded

2| from scipy.integrate import solve_ivp

This is slightly different from the way to load a function shown in the first line.
scipy is another science and engineering function library. Some library divides the
functions in the library into several categories. integrate is one of the categories in
the scipy library. To access the functions under the category, integrate, the period is
used after the library name, i.e. scipy.integrate. The numerical integrator, solve_ivp,
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isdefined in the integrate category of the scipy library. If we try to load the function
using from scipy import solve_ivp, it cannot find the integrator and generates an
import error.

The ODE are defined between lines 17 and 22. The first line of the function
definition begins with the keyword, ‘def’, the function name, ‘free_falling_obj’,
the three input arguments, and the colon, “:’ as follows:

def free_falling_obj(time, state, grv_const):

In general, the function to be defined could have any input arguments. The func-
tion to be passed to solve_ivp, however, must have the first two input arguments,
time and state, in this order. solve_ivp assumes that the first arguments and the sec-
ond argument of the function passed are t and x in X = dx/dt in (1.6). The main
body of the function is between the line below the function heading and the return
line. Those lines that belong to the main part of the function are indented. The
indentation in Python is not a decoration to simply improve the readability as in
many other programming languages. The indentation in Python is the way to indi-
cate which lines belong to the function body. The following is the first line of the
function body:

x1, x2, x3 = state

where ‘state’ is presumed to have three elements, and they are assigned to the three
new variables on the left-hand side of the equal sign, ‘x1’, x2’, and ‘x3’. Instead of
unpacking the three elements one by one, it unpacks all the three elements in
one line.

‘dxdt’ is the list element in Python. In the list, each element is separated by the
comma, ‘,’. Finally, ‘dxdt’ becomes the return value of the function by the keyword,
return, and the function is passed to the integrator, solve_ivp.

The first input argument of the integrator is the function name describing the
ODE. The second one is the integration time interval. The third one is the initial
condition. ‘t eval’ is the list of time points, where the solution, x(¢), is stored to the
output of the integrator. The last one is the arguments, whose name is reserved by
args. As the function ‘free_falling_obj’ has the additional input variable apart from
the time and the state, i.e. ‘grv_const’, this value must be sent to ‘solve_ivp’. args
is the input variable of ‘solve_ivp’ to pass additional input variables. ‘grv const’
is passed to the integrator by ‘arg=(grv const,)’. The data type of args is a tuple.
(1.3,4.2,4.3) or (1.3, 2.3) is a tuple. When there is only one element in a tuple, for
example, (1.2,), the comma at the end must not be omitted. (1.2) is interpreted as
floating-point 1.2, not a tuple. To make it a tuple, it must be (1.2,). Hence, there is
the comma after ‘grv const’ in ‘args=(grv const,)’.
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Similar to Matlab, typing ‘whos’ at the command prompt in Python prints out

the following list to the screen:

Variable Type Data/Info

final_time float 5.0

free_falling_obj function <function free_falling_obj
grv_const float 9.81

init_cond list n=3

init_mass float 5.0

init_pos float 0.0

init_time int 0

init_vel float 0.5

linspace function <function linspace at 0x7f
num_data int 100

plt module <module ’matplotlib.pyplo<...
sol OdeResult message: 'The solver su<.
solve_ivp function <function solve_ivp at 0x7f
tout ndarray 100: 100 elems, type ‘float64 °,
xout ndarray 3x100: 300 elems, type ‘float64

The solution of the ODE is stored in ‘sol’, whose type is OdeResult, and it includes
various information about the integration results. Typing ‘sol’ in the command
prompt and hitting enter shows what variables are in ‘sol’. We can access x(t)
through ‘sol.y’. To avoid keep adding the dot to access x(¢) inside ‘sol’, create a
new variable, ‘xout’, and store ‘sol.y’ into ‘xout’. We can also see from the variable
list that the size of ‘xout’ is 3 x100. Each of the rows corresponds to x(t), x(t), and

m(t), respectively.

To plot the results, a plotting library must be loaded. matplotlib is the most
widely used plotting library in Python. More specifically, plot functions under
matplotlib.pyplot category are the most frequently used. Load the functions as

follows:

import matplotlib. pyplot

The way to access the functions under a specific category is using the dot next to
the package name. matplotlib.pyplot means that we want to access the functions
under the sub-category called pyplot in matplotlib instead of loading all functions
in matplotlib. Now, we can use the plot command in pyplot as follows:

‘ matplotlib.pyplot.plot(tout, xout[0,:])

This is inconvenient as the name becomes very long. To reduce the length of the

name, pyplot is loaded as follows:

‘import matplotlib.pyplot as plt

13
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After the keyword as, any convenient name we would call it could be used. By
convention or almost standard, matplotlib.pyplot is called ‘plt’. Hence, the long
name to call ‘plot’ is shortened to

plt.plot(tout, xout[0,:])

This plots x(¢) vs. time t. Unlike Matlab, array indices in Python start at 0, not 1.
The first row of “xout’ is ‘xout[0,:]’, the second row of ‘xout’ is ‘xout[1,:]’, and so
forth. xlabel and ylabel commend work the same way as the ones in Matlab.

1.2.2 Ligand-Receptor Interactions

Ligand-receptor interactions are one of the most common interactions in
biomolecular systems. As shown in Figure 1.3, the ligands, L, bind to the recep-
tors, R, which spread on the cell boundary, form the ligand-receptor complex,
C, and the complex evokes further reactions through various cascade signalling
pathways inside the cell. L is produced with the rate given by a function of time,
f(¢). From the control point of view, f(t) is considered as the input, R is the internal
state, and the concentration of C is the output of the ligand-receptor interactions.

The following molecular interactions describe the interactions between L, R, C,
and f(¢):

R+L—C (1.7a)
CELRAL (1.7b)
R g (1.7¢)
cle, g (1.7d)
f(t) — L (1.7¢)
Qr SR (1.7f)
@ Ligand (L)
° ® Y Receptor (R)
(] P ® o ? Ligand-receptor complex (C)

Extra-cellular
ell membrane
Intra-cellular

Figure 1.3 Ligand-receptor interactions form ligand-receptor complex.



1.2 Motivation Examples

where k , and kg are the reaction rates of binding or unbinding the receptor and
the ligand, R and L, respectively, to form or destroy the complex, C, the receptor
is destroyed with the rate of k,, the complex is also destroyed with the rate of k,,
f(@®) is the stimulus that produces the ligand at the unit rate, and Qy is the internal
receptor generation at the unit rate.

We derive a set of ODE using the molecular interactions. To this end, we intro-
duce the following two assumptions:

o All the molecules and the sources are uniformly distributed in the reaction space
o There are a sufficient number of molecules for every molecular species to con-
sider concentration alone.

The first assumption makes the modelling being ODE. Otherwise, partial differen-
tial equations with the spatial coordinates are solved. Solving partial differential
equations is computationally a lot more challenging than solving ODE. The sec-
ond assumption indicates that the population of each molecular species is far away
from 0. The randomness of molecular interactions and the integer nature of the
number of molecules are ignored in the modelling.

Molecular interactions are stochastic. The probability of the occurrence
of each reaction is calculated in stochastic simulations. We will discuss the
details of stochastic modelling and simulation in the later chapter. On the other
hand, deterministic simulations are performed by assuming a large number
of molecules. The average molecular numbers show deterministic trajectories,
where the random fluctuations are negligible.

Consider the receptor, R, which is directly involved in the three reactions. L
binds to R and becomes C in (1.7a). The concentration of R is decreased by this
reaction. The change rate is proportional to the concentrations of R and L as fol-
lows:

d[R]

dt
where [-] is the concentration of the molecules. The proportional constant is given
by k., in the reaction. The concentration unit is nanomolar (nM). Molar is equal
toN/(N,V), where N is the number of molecules, N, is Avogadro’s number equal
t0 6.022 X 10%3, and V is the reaction space volume in litres.

In (1.7b), C is decomposed into R and L. The concentration of R is increased
by this reaction. The decreasing rate is proportional to the concentration of C as
follows:

d[R]
dt
where the proportional constant is k. The receptor is destroyed by itself at the
rate of k, as follows:
R
dt

o« —[R] X [L] (1.8)

x [C] (1.9)

—-[R] (1.10)

15
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Finally, in (1.7f), R is created at the rate of Q:

d[R
% & [Qg] (1.11)

where the proportional constant is 1.
Combining (1.8)—(1.11) as follows: Shankaran et al. (2007)

dIR] _

g = KonlRIL] + kog[C] = Ky [R] + [Q] (1.12)
Similarly, the following differential equations are established for L and C:
d[L
) — e [RIL + gl + 0] (1130
% = kon[RI[L] = ko[ CT = k,[C] (1.13b)

where kg = 0.24 [1/min], k,, = 0.0972 [1/(minnM)], k, = 0.02 [1/min], k, = 0.15
[1/min], and [f(£)] = 0.0 [nM/min], i.e. no external stimulation. The values are the
ones for the epidermal growth factor receptor (EGFR), which plays an important
role in understanding tumour formation and growth.

Because of Qy in d[R]/dt, R would increase to infinity, which does not coin-
cide with the reality as there would be the possible maximum number of receptors
to be present in the cell. It is known that the maximum number of receptors for
the EGFR is around 100,000 (Wee and Wang, 2017, Carpenter and Cohen, 1979).
As the volume of the reaction space is given by 4 x 1071/ in Shankaran et al.
(2007), the maximum concentration of R is 10,000/(N, V) = 0.415nM. We model
Qg as follows:

Q4] = {0.0166 [nM/min], for [R] < [R],.x (1.14)

0, otherwise

where [R],,, is equal to 0.415nM.

The initial conditions for the following simulation are set as follows: [R(0)] =
0.1nM, [L(0)] = 0.0415nM, and [C(0)] = 0nM. In biomolecular network simu-
lations, we must confirm that the molecular quantities such as the number of
molecules or the concentrations must be non-negative. [C] at the beginning of the
simulation could become negative if the time rate is negative. In the above initial
conditions, [C] is strictly increasing because d[C(0)]/dt = k,,[R(0)][L(0)] is posi-
tive at the beginning. As we can see from (1.13b), d[C]/dt is only negative when
[C]is high enough, i.e. [C] > k., [RI[L]/ (kg + k).

The Matlab script to simulate the EGFR concentration kinetics is given in
Program 1.4.
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clear;
init_receptor = 0.1; % [nM]
init_ligand = 0.0415; %[nM]

init_complex = 0.0; %[kg]

init_time = 0; % [min]
final_time = 180.0; % [min]
time_interval = [init_time final_time];

kon = 0.0972; % [1/(min nM) ]

koff = 0.24; % [1/min]
kt = 0.02; %[1/min]
ke = 0.15; % [1/min]

ft 0.0; % [nM/min]
QR = 0.0166; % [nM/min]
R_max = 0.415; %[nM]

sim_para = [kon koff kt ke ft QR R_max];

X0 = [init_receptor init_ligand init_complex];
[tout ,xout] = ode45(@(time,state) RLC_kinetics(time,state ,sim_para)
, time_interval , x0);

figure(1); clf;
subplot(311);

plot(tout ,xout(:,1))

ylabel (’Receptor [nM]’);
xlabel(’time [min]’);

axis ([ time_interval 0 0.5]);
subplot(312);

plot(tout ,xout(:,2))
ylabel(’Ligand [nM]’);

xlabel (’time [min]’);

axis ([time_interval 0 0.05]);
subplot(313);

plot(tout ,xout(:,3))

ylabel (’Complex [nM]’);
xlabel(’time [min]’);

axis ([ time_interval 0 0.004]);

function dxdt = RLC_kinetics(time,state, sim_para)
R = state(1);
L state (2);
C state (3);

kon = sim_para(1);
koff = sim_para(2);

kt = sim_para(3);
ke = sim_para(4);
ft = sim_para(5);
QR = sim_para(6);

17
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R_max = sim_para(7);

if R > R_max
QR = 0;
end

dxdt = zeros(3,1);
dxdt(1) = —konxRxL + koffxC — ktxR + QR;
dxdt(2) = —kon*RxL + koffxC + ft;
dxdt(3) = kon*RxL — koff«xC — kexC;

end

Program 1.4 (Matlab) EGFR receptor, ligand, and complex kinetics

Figure 1.4 shows the simulation results. The receptor concentration increases
almost linearly at the beginning and fluctuates later around the maximum con-
centration limit. The ligand-receptor reaction steadily consumes the ligand when
they bind together and become the ligand-receptor complex. The complex has a
peak concentration that occurred around 20 minutes and then slowly decayed.

Figure 1.5 shows the simulation results of the Python program, Program 1.5.
Unlike the figure commands in Matlab for Figure 1.4, plotting subfigures in mat-
plotlib is not as simple as in Matlab. We need advanced features in matplotlib.
The advanced features of subplots in matplotlib are introduced in detail later in
Program 2.2. As we notice in the figure, the figure fonts are too small to read. How
to adjust the figure font sizes is also discussed in Program 2.2.
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Figure 1.4 (Matlab) EGFR receptor, ligand, and complex time histories.
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Program 1.5 uses two different integrators, i.e. solve_ivp and odeint. The ODE
includes the discontinuous part, Qg, given in (1.14). odeint cannot handle the
differential equations with the discontinuity, and the solutions diverge. solve_ivp
returns the correct numerical results. We recommend using solve_ivp instead
of odeint.

from numpy import linspace
from scipy.integrate import solve_ivp

init_receptor = 0.01 #[nM]
init_ligand = 0.0415 #[nM]
init_complex = 0.0 #[kg]

init_time = 0 #[min]
final_time = 180.0 #[min]
time_interval = [init_time , final_time]

kon = 0.0972 #[1/(min nM) ]
koff = 0.24 #[1/min]

kt = 0.02 #[1/min]

ke = 0.15 #[1/min]

ft = 0.0 #[nM/min]

QR = 0.0166 #[nM/min]

R_max = 0.415 #[nM]

sim_para = [kon, koff, kt, ke, ft, QR, R_max]
init_cond = [init_receptor, init_ligand , init_complex]
num_data = int(final_time *10)

tout = linspace(init_time , final_time, num_data)

def RLC_kinetics(time,state ,sim_para):

R, L, C = state
kon, koff, kt, ke, ft, QR, R_max = sim_para
if R > R_max:
QR = 0
dxdt = [-kon*RxL + koff*xC — ktxR + QR,
—kon*RxL + koffxC + ft,
kon#R«L — koff+xC — kexC]
return dxdt
sol_out = solve_ivp(RLC_kinetics, (init_time , final_time),
init_cond, args=(sim_para,))
tout = sol_out.t
xout = sol_out.y

19
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from scipy.integrate import odeint

xout_odeint = odeint(RLC_kinetics, init_cond, linspace(init_time,

final_time, num_data), args=(sim_para,),tfirst=True)

import matplotlib.pyplot as plt
plt.figure (1)
plt.plot(tout,xout[0,:])
plt.ylabel(’Receptor [nM]’)
plt.xlabel(’time [min]’)
plt.axis ([0, final_time, 0, 0.5])

plt.figure (2)
plt.plot(tout,xout[1,:])
plt.ylabel(’Ligand [nM]’)
plt.xlabel(’time [min]’)

plt.axis ([0, final_time, 0, 0.05])

plt.figure(3)
plt.plot(tout,xout[2,:])
plt.ylabel (’Complex [nM]’)
plt.xlabel(’time [min]’)

plt.axis ([0, final_time, 0, 0.004])

Program 1.5 (Python) EGFR receptor, ligand, and complex kinetics
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Figure 1.5 (Python) EGFR receptor, ligand, and complex time histories.
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Exercises
1.3 Organization of the Book

Chapters 2 and 3 cover the dynamics, control, and estimation algorithms of
autonomous vehicles. Chapters 4 and 5 cover modelling and analysis of biological
systems. Each of the chapters provides examples and exercises. We discuss
additional readings and topics in the last chapter, Chapter 6.

Exercises

Exercise 1.1 (Matlab) Run Matlab, open the editor, type Program 1.1, save it as
an m-script, execute the m-script in the Matlab command prompt, and obtain
Figure 1.2.

Exercise 1.2 (Matlab) Using the ode45 results from Program 1.1, plot Figure 1.6
using the subplot command in Matlab. Hint: Check the help for subplot in Matlab.

Exercise 1.3 (Python) Plot Figure 1.6 using the functions under matplotlib.pyplot
in Python.

150 _60r
E E
= 100¢ = 40 ¢
fé 'g
£ 50t ) 207
OO 2 4 0 2 4
Time (s) Time (s)
(@) ()
5
457t
= 357t
g 3¢t
2571
0 1 2 3 4 5
Time (s)
(©)

Figure 1.6 The time histories of (a) position (x), (b) velocity (x), and (c) mass (m).
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Exercise 1.4 Derive (1.13) from the molecular interactions in (1.7).

Exercise 1.5 (Python) What is the purpose of ‘tfirst=True’ in the arguments of
odeint in Program 1.5?

Exercise 1.6 (Matlab/Python) Run the EGFR kinetic simulation 1000 times
using the Matlab or the Python script, randomly selecting the initial concentration
values in the following range: [R(0)] € [0,0.2] nM, [L(0)] € [0,0.05] nM, and
[C(0)] € [0,0.01] nM. Check if the concentrations are always positive.
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2

Attitude Estimation and Control

Attitude is one of the fundamental properties of objects moving in a three-
dimensional space. It is vital information for the satellite to point its camera in
the desired direction, autonomous humanoid robot to balance its body, aerial
vehicle to stabilize its attitude, and so forth.

2.1 Attitude Kinematics and Sensors

As shown in Figure 2.1, the rotation about the single axis, i.e. the z-axis perpen-
dicular to the plane defined by x and y axes, can be interpreted as a particle moving
on the unit circle in the two-dimensional space. The coordinates of the particle
are equal to (cos 6, sin #), where 0 is the angle measured from the positive x-axis
in the anti-clockwise direction. As the movement of the particle is constrained
on the perimeter of the unit circle, the coordinates of the particle are satisfied
with the algebraic equation, x*> + y* = 1, which is the equation for the unit circle
centred at the origin.

The single-axis rotation about the z-axis is summarized as follows: the axis of
rotation is equal to k = [0,0,1]7, which is the unit vector towards the positive
z-axis, the coordinates of the particle are (cos#,sin#), and the constraint is
(sin 8)% + (cos 9)? = 1.

Consider pointing a telescope to observe a star in the sky as shown in Figure 2.2.
The telescope is at the centre of the unit sphere, and the star is at the surface of
the sphere. The initial pointing direction of the telescope is the positive x-axis, i.e.
i =[1,0,0]T. We want to direct the telescope to the star indicated by the vector, r,.

The required rotation for pointing the telescope to the star is a two-axis rotation.
The rotation angles are the azimuth angle, «, and the elevation angle, g, in the
figure. Rotate the telescope a about k, and it points r; after the rotation. In addi-
tion, rotate it from r; pointing direction with g about the axis obtained by r; X k,

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers,

First Edition. Jongrae Kim.

© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/kim/dynamicmodeling
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2 Attitude Estimation and Control

Figure 2.1 Single-axis rotation
about the axis perpendicular to
the surface defined by the x-y
axes.

z Figure 2.2 The two-axis rotation is

A equivalent to the single-axis rotation about
the axis perpendicular to the surface
defined by r, and r,.

where X is the vector cross product. The rotations about the two axes are equivalent
to a particle moving on the surface of the unit sphere in the three-dimensional
space. The particle position given by the vector, r, =[r,,7,, r,J7, must satisfy
r; + 1, +r; =1 as it is on the surface of the unit sphere. The two-step rotation
from the initial pointing, i, to the final pointing, r,, can be achieved by the single
rotation about the axis defined by e = i X r, with the rotation angle, 8, equal to

0 =cos™ (i-r,) (2.1)

where (-) is the vector dot product. The single-step rotation exists for any star on the
surface of the unit sphere. However, it does not mean that the two-axis rotation is
the same as the fixed single-axis rotation discussed earlier. Unlike the fixed single-
axis rotation, where the rotation axis, e, is fixed to k, the axis to achieve a single-
axis rotation to point a star on the unit sphere surface changes depending on the
position of the star.
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We extend the same logic for the general object rotations in a three-dimensional
space. The rotation about three axes is equivalent to a particle moving on the surface
of the unit sphere in a four-dimensional space. The constraint to be satisfied is the
squared sum of the four coordinates of the particle given by q = [q;, ¢, 43,4417
equal to 1, i.e.

d9=qg+g+q+q =1 2.2)
‘We can achieve any three-axis rotation with the corresponding single-axis rotation

where the rotation axis and the angle are given by e and 6, respectively.
q is defined using e and 0 as follows:

e, sin Q_
172
4 esin g e, sin g
4 4 cos = e, sin =
a4 2 2
0
cos =
2

where the rotation axis, e, is the unit vector and is equal to [e;,e,,e;]".
Equation (2.3) defines the quaternion, q. The quaternion is one of the most fre-
quently used attitude parameterization methods. The rotation angle, 0, is divided
by 2 in the definition. The half-angle leads to a simple algebraic relation when
the governing equation for time-varying q, i.e. attitude kinematics, is derived.
Consider a tumbling three-dimensional object with the angular velocity, ®.

o=lo, o, o] (24)

The triple arrowhead in Figure 2.3 indicates the @ vector, where @, , Wy, and w, are
the instantaneous angular velocity of the object at the current time towards each

Figure 2.3 The object is tumbling in a z
three-dimensional space, where the body A A
coordinates Xz, Yz, and z, are attached to y @
the object. 8
Xp
Zp
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body axis, X, Y5, and zg, respectively, and their unit is [rad/s]. The gyroscopes
attached to the object measures the three components of the angular velocity vec-

tor, where the gyroscope sensing directions are aligned to the body axes.
The quaternion kinematics is given by Crassidis and Junkins (2011)

dq _ 1

— =-Q(®

7 =y oa

where

0 o, -0 o

Q@) = -w, 0 o, o,
o, -0, 0 o
-0, —w, —w, 0

and this is written in a compact form as follows:

—[wX] ®
Q =
(®) [—mT 0]
where
0 -o, @,
[0X] =] w, 0 -w,
-0, o, 0

2.1.1 Solve Quaternion Kinematics
Consider the angular velocity given by

0.1sin(2z X 0.005¢)
® =[0.05cos(2zr X 0.1t + 0.2) | [rad/s]
0.02

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

where ¢ is the time in seconds, @, and w, oscillate with the frequency equal to 0.005
and 0.1 Hz, respectively, and the z; axis rotates with the constant angular velocity,

0.02rad/s.

2.1.1.1 MATLAB

Modify Program 1.1 and solve the quaternion kinematic equation, (2.5), as

follows:

clear;
init_time = 0; % [s]
final_time = 60.0; % [s]

time_interval = [init_time final_time |;

qgo = [0 0 0 1]’
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2.1 Attitude Kinematics and Sensors

[tout,qout] = ode45(@(time,state) dqdt_attitude_kinematics(time,
state), time_interval, q0);

figure;

plot(tout,qout(:,1),’b-",tout,qout(:,2),’r—"’,tout,qout(:,3),’g-.",
tout,qout(:,4),’m:”)

ylabel(’quaternion’);

xlabel(’time [s]’);
legend(’ql’,’q2’,’q3",°q4’);
set(gca, FontSize’ ,14);

function dqdt = dqdt_attitude_kinematics(time, state)
q_true = state (:);

w_true(1l) = 0.1xsin(2xpi*0.005xtime); % [rad/s]
w_true(2) = 0.05xcos(2xpi*0.01xtime + 0.2); %[rad/s]
w_true(3) = 0.02; %[rad/s]

w_true = w_true(:);

wx=1[ 0 —w_true(3) w_true(2);
w_true (3) 0 —w_true(1);
—w_true(2) w_true(1) 0];

Omega = [ —WX w_true;
—w_true’ 0];

dqdt = 0.5%xOmegaxq_true;
end

Program 2.1 (MATLAB) Solve dq/dt for @ given by (2.9)

The quaternion time history is shown in Figure 2.4. Whenever a figure is created
in MATLAB, all properties of the figure are stored in the automatically generated
variable called gca. One of the properties is the font size of the characters in the
figure, and it can be changed using the command, set, as follows:

set(gca, FontSize’ ,14);

where the default font size, 12 pt (point font), is changed to 14 pt.

Recall that the quaternion must satisfy the unit norm condition, (2.2). The ode45
function does not care constraints. It solves the differential equation given by (2.5)
as if there is no constraint. It is not trivial to integrate differential equations with
constraints. There is a way, however, to control the speed of the error growth.
Define the unit norm error as follows:

(q unit norm error) = log |q"q — 1] (2.10)

where log(-) is the natural logarithm.
The two options in ode45 to adjust the numerical errors are the relative toler-
ance, RelTol, and the absolute tolerance, AbsTol. ode45 adjusts the integration
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Quaternion

Time (s)
Figure 2.4 The quaternion time history for @ given by (2.9).

interval according to these two values. For the differential equation given by
X = f(x), ode45 compares the value of f(x) at the previous integration at t with
the current at t+ At. If the difference, |f[x(t+ Af)] — f[x(t)]], is larger than
RelTol, it reduces At so that the difference is smaller than RelTol. Similarly, ode45
compares |f[x(t + At)]| with zero. If it is greater than AbsTol, it reduces At so that
|f[x(t + At)]] becomes smaller than AbsTol. To adjust the tolerances, the odeset
function is used before ode45 is called as follows:

ode_options = odeset(’RelTol’,1e—3,’AbsTol’,1e-6);

and the option is passed to ode45 as follows:

[tout ,qout] = oded5(@(time,state) dqdt_attitude_kinematics(time,
state), time_interval, q0, ode_options);

We cannot, however, reduce these two tolerances arbitrarily small. Unreason-
ably, small At slows down the integration speed or causes the round-off error.
The small numbers could be too small, and the computer cannot distinguish them
from zero. Then, the numerical error would increase, and this is called the round-
off error in the computer. As long as the tolerance remains within a reasonable
range, the smaller the tolerance, the smaller the numerical integration error.

Figure 2.5 compares three different cases, where the relative tolerances are as
shown in the labels and the absolute tolerances are 1000 times smaller than the rel-
ative tolerances. As time increases, the error gradually increases. At the end of the
simulation time, 6000 seconds, the error for the relative tolerance equal to 0.001
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o
2;,‘3 20 ! 1
=25 1
—RelTol =0.001
-30r |7 RelTol = 1e-06 1
RelTol = 1e-09
=35 . ’
0 2000 4000 6000

Time (s)

Figure 2.5 The time history of the quaternion unit norm error, (2.10), for three different
tolerance settings for ode45.

reaches around e~*33 ~ 0.132. Hence, all interpretations of the rotations should
not be based on values less than this. For example, if we compare two quaternions,
only differences much larger than 0.132 have a meaningful interpretation based on
the numerical solution. Differences less than 0.132 would be numerical artefacts.

2.1.1.2 Python
Recall the first python program, Program 1.3, and modify it to solve the quaternion
kinematic equation given by (2.5), where the angular velocity is given by (2.9).

import numpy as np

from numpy import linspace

from scipy.integrate import solve_ivp

init_time = 0 # [s]

final_time = 60.0 # [s]

num_data = 1000

tout = linspace(init_time , final_time, num_data)

q0 = np.array([0,0,0,1])

def dqdt_attitude_kinematics(time, state):
quat = state
w_true = np.array ([0.1+np.sin(2+np.pi*0.005«time), #[rad/s]
0.05%np.cos(2*np.pi*0.01xtime + 0.2), #[rad
/s]
0.02]) #[rad/s]
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2 Attitude Estimation and Control

wx=np.array ([[O0, —w_true[2], w_true[1]],
[w_true[2], 0, —w_true[0]],
[-w_true[1], w_true[O0], o]l

Omega_13 np. hstack((—-wx,np. resize (w_true,(3,1))))

Omega_4 np. hstack((—w_true,0))
Omega = np.vstack ((Omega_13, Omega_4))

dqdt = 0.5%(Omega@quat)

return dqdt

sol = solve_ivp(dqdt_attitude_kinematics, (init_time , final_time),
q0, t_eval=tout)
gout = sol.y

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(tout,qout[0,:], ’b-",tout,qout[1,:], ’r—",tout,qout[2,:],’g
—.’ ,tout,qout[3,:],’m:’)

fig.set_figheight(6) # size in inches
fig.set_figwidth (8) # size in inches

xtick_list = np.array([0,10,20,30,40,50,60])
ax.set_xticks(xtick_list)
ax.set_xticklabels(xtick_list ,fontsize=14)

ytick_list = np.array([-0.5,0.0,0.5,1.0])
ax.set_yticks(ytick_list)
ax.set_yticklabels(ytick_list ,fontsize=14)

ax.legend((’ql’,’q2’,’q3’,’q4’) ,fontsize =14, loc=’upper right’)
ax.axis((0,60,-0.5,1.0))

ax.set_xlabel(’time [s]’,fontsize=14)
ax.set_ylabel(’quaternion’,fontsize =14)

Program 2.2 (Python) Solve dq/dt for @ given by (2.9)

Be careful for the index numbering, the array index in Python starts from 0.
[wx], (2.8), is defined as follows:

wx=np.array ([[0, —w_true[2], w_true[1]],
[w_true[2], 0, —w_true[0]],
[-w_true[1], w_true[O0], o]l

where w_true[0] = o,, w_true[1] = ), and w_true[2] = w,.
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Each row of a two-dimensional matrix is defined using box brackets, ‘[].
Commas separate the elements in a row and also different rows. Another two
box brackets construct a two-dimensional matrix. For example, [[2.0, —3.0, 1.5],
[0.0, 5.2, 9.8]] defines the 2 x 3 matrix.

The plot parts in Program 2.2 look very different from the plot commands used in
Program 1.3. The commands used in Program 1.3, i.e. ‘plt.plot()’, ‘plt.xlabel()’, and
‘plt.ylabel()’, provide convenient ways to plot simple figures. To have the capability
for fine-tuning figures such as adjusting font size, changing the tick intervals for
each axis and so forth, we must use these plot command styles shown in Program
2.2. Run the following lines directly in the iPython command prompt:

In [21]: import numpy as np

In [22]: import matplotlib.pyplot as plt

In [23]: x=np.linspace(1,10,100)

In [24]: y0=2%x

In [25]: y1=10+10%(x**2)

In [26]: fig,(ax0,ax1)=plt.subplots(nrows=2,ncols=1)
In [27]: ax0.plot(x,y0)

Out[27]: [<matplotlib.lines.Line2D at 0x7f9cf864ed90>]
In [28]: axl.plot(x,yl,’ r—")

Out[28]: [<matplotlib.lines.Line2D at 0x7f9cf9c45250>]

‘fig, (ax1, ax2) = plt.subplots(nrows=2,ncols=1)" creates two sub-figures in the
figure placed in the two rows and one column format. The return variable, fig,
indicates the whole figure, and ax0 and ax1 indicate the first and the second
sub-figures, respectively. In Program 2.2, the figure size is set to 6 high and 8"
wide using ‘fig.set_figheight(6)’ and ‘fig.set_figwidth(8)’, where the lengths are in
inches.

The plot command for drawing on the first sub-figure is ‘ax0.plot()’, and the
plot command for the second figure is ‘ax1.plot()’. Similarly, commands for the
tick intervals and labels, the font sizes, and the legend are indicated by ‘ax0’ or
‘ax1’ for each sub-figure in the example. In Program 2.2, the ticks for each axis can
be manually set using the ‘ax.set_xticks’ command, and the labels for the ticks can
also be manually set using ‘ax.set_xticklables’. Similarly, the ticks and the labels
for the y-axis are assigned using ‘set_yticks’ and ‘set_yticklabels’. In addition, the
font size and the location of the legend can be controlled using the additional argu-
ments in the ‘ax.legend’ command, and the font size for x-axis or y-axis labels can
be changed using the fontsize value in ‘ax.set_xlabel’ or ‘ax.set_ylabel .

Figure 2.6 shows the quaternion time history calculated by the python program.

Figure 2.7 shows that the error for the relative tolerance equal to 0.001 increases

around e~7%* ~ 0.0007 at the time equal to 6000 seconds. Compared to the error
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Figure 2.6 The quaternion time history for @ given by (2.9).
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Figure 2.7 The time history of the quaternion unit norm error, (2.10), for three different

tolerance settings for ode45.

in MATLAB, it is less than 1000 times smaller. It would be, however, not correct
to conclude that solve_ivp in the Scipy is superior to ode45 in MATLAB. The algo-
rithms have different ways of controlling the numerical error, and the numerical
error is not necessarily always the same as the example. The important message is
that we must be aware of how the errors would be propagated as the time increases

for the given tolerance levels
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2.1.2 Gyroscope Sensor Model

A rate gyro measures the angular velocity, and two different types of stochastic
noises corrupt its measurement as follows:

d=0+p+n, (2.11)

where @ is the gyro measurement output, and the bias drift, g, and the white
noise, 7, corrupt the true angular velocity, ®. The measurement gives the sum
of three values, i.e. the truth and two random noises, and they cannot be distin-
guished. We do not exactly know the truth, @, but the corrupted information from
the sensor.

2.1.2.1 Zero-Mean Gaussian White Noise

The zero-mean Gaussian white noise, n7,,, is one of the typical types of sensor noise.
The zero-mean indicates that the noise has a mean value of zero. Its distribution is
Gaussian or normal. The white noise signifies that the same strength of signals for
all frequencies as the term is derived from white light, which includes all visible
frequency lights with equal strength. The following two equations express these
properties of the noise:

E{n,®n} =0
E{n,(tpnl (1)} = 628(t, — I

for all time, ¢, and any ¢; and t, in [0, c0), where E(-) is the expectation, o2 is the vari-
ance of the noise, i.e. the strength of the noise, 6(¢; — t,) is the Dirac delta function
equal to 1 only if t; = ¢, and zero otherwise, and I is the 3 X 3 identify matrix. As
the off-diagonal terms of I, are all zero, the white noise for each axis is independent
or not correlated with each other.

For brevity, consider a one-dimensional random number, x(t), with the following
properties:

E{x(t)} =0
E {x(t)x(t)} = 6?8(t; — t,)

for all time, t, and any #; and ¢, in [0, o). The extension of the discussion below
to the three-dimensional random vector #,(t) is trivial. Let the probability density
function (pdf) of x at ¢ be equal to p(x), and the expectation of x(¢), i.e. the mean
value of x at the time ¢, is given by

E{x@®)} = / xX(t)p(x)dx (2.12)
Q

The expectation is the weighted integration of the variable by the probability
density function, where Q is the sampling space of the random variable, x(t).

33



34

2 Attitude Estimation and Control

2.1.2.2 Generate Random Numbers

The function, randn,in MATLAB generates random numbers with a mean and
variance of 0 and 1, respectively. Run the following lines in the MATLAB com-
mand prompt:

>> x = randn(1,100);
>> mean(x)
ans =
-0.2711
>> var(x)
ans =
1.1052

Program 2.3 (MATLAB) Generate 100 random numbers, X, whose mean and
variance are equal to 0 and 1, respectively

The mean value and the variance of x printed on the screen are different whenever
the commands are executed. When randn is called, it generates a different set of
100 random numbers drawn from Gaussian distribution, whose mean value and
variance are equal to 0 and 1, respectively. The mean and the variance calculated
using the samples, ‘x’, are only approximately close to 0 and 1, respectively. As the
number of the samples increases, they converge to the true values.

Gaussian distribution is also called the normal distribution and the ‘n’ at the end
in the function name, randn, stands for the normal distribution. Be careful to use
the correct random number generator; rand function generates the uniformly dis-
tributed random numbers between 0 and 1. The sensor noise is typically modelled
as the normal distribution rather than the uniform distribution.

Similarly, in Python, randn under the numpy.random package is used to gener-
ate the random numbers as follows:

In [54]: import numpy as np
In [55]: x=np.random.randn(100)

In [56]: x.mean()
Out[56]: —0.05332928410865288

In [57]: x.var()
Out[57]: 0.8078225617520309

Program 2.4 (Python) Generate 100 random numbers, X, whose mean and
variance are equal to 0 and 1, respectively

In Python, every variable created is an object in object-oriented programming.
When an object is created, various methods attach to the object. X’ is the
object, and mean() and var() are the methods to calculate the mean value and




2.1 Attitude Kinematics and Sensors

[

the variance of x’. To call each method, put .’ and the method name after
‘¥, e.g. xmean() for calculating the mean of x. There is another function to
generate random numbers with the normal distribution. The function is under
numpy.random package, called numpy.random.normal. This function is equiva-
lent to numpy.random.randn apart from some slight differences in the format of
input arguments.

How to generate the random number, z, with the mean equal to 0.5 and the
variance equal to 0.2 using randn in MATLAB is shown in Program 2.5.

>> mean_z = 0.5;
>> var_z = 0.2;
>> z = mean_x + sqrt(var_x)*randn(1,100);
>> mean(z)
ans =
0.6137
>> var(z)
ans =
0.1917

Program 2.5 (MATLAB) Generate 100 random numbers, z, whose mean and
variance are equal to 0.5 and 0.2, respectively

Similarly, using Python, z is generated in Program 2.6.

In [58]: import numpy as np

In [59]: mean_z=0.5

In [60]: var_z=0.2

In [61]: z=mean_z+np.sqrt(var_z)=np.random.randn(100)

In [62]: z.mean()
Out[62]: 0.4834311699410189

In [63]: z.var()
Out[63]: 0.24051712417906854

Program 2.6 (Python) Generate 100 random numbers, z, whose mean and
variance are equal to 0.5 and 0.2, respectively

As the number of samples increases, the mean and variance approach the given
true value.

We validate how to generate the random number, z, using the random number,
X, as follows:

Z2=u+ Voix (2.13)
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2 Attitude Estimation and Control

where x is the random variable whose mean and variance are equal to 0 and 1,
respectively. The mean value of z is given by

E@2) = E(u + Vo2x) = u+ Vo2Bx) = p + Vo2 x 0 = u (2.14)

where the expectations of the deterministic values, ¢ and o, are equal to the values
themselves. From the definition of the variance, the variance of z becomes

o} = B@) - [EQP = B |G+ Vorx?| -
= u? 4+ 2uVo2E(X) + 62 E(X?) — y? = 62 (2.15)
where E(x) and E(x?) are equal to 0 and 1, respectively, by the definitions.

In the above examples, the 100 random numbers, X, generated by randn is drawn
from the following probability density function, p(x):

_e=w?

e 22 (2.16)

p(Xx) =
27c?
where u and ¢ are the mean and the variance of x equal to 0 and 1, respectively.
The probability if the random number x belongs to the interval [x,x;,;] is
given by

X=Xper1

Prixg <x<x,l= / px)dx (2.17)

X=X

clear;

% true probability density function (pdf)

var_x = 1;

mean_x = 0;

Omega_x = linspace(-5,5,1000);

px = (1/(sqrt(2*pixvar_x)))*exp(—(Omega_x—mean_x)."2/(2xvar_x));

figure(1); clf;
plot (Omega_x,px, LineWidth’ ,2);
hold on;

% generate N random numbers with the mean zero and the variance 1
using

% randn

N_all = [100 10000];

x_bin = linspace(-5,5,30);

dx=mean( diff (x_bin));

line_style = {’rs-=" ’go-"};

for idx=1:length(N_all)
N_trial = N_all(idx);
x_rand = randn(1,N_trial);

% number of occurance of x_rand in x_bin
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2.1 Attitude Kinematics and Sensors

N_occur = histcounts(x_rand,x_bin);

figure(1);

plot(x_bin(1l:end—1)+dx/2, N_occur/(dxxN_trial),line_style{idx})
end
figure(1);
set(gca, FontSize’ ,14);

>

xlabel (’Random Variable x Sampling Space: $\Omega _x,’ Interpreter’,
latex’);

ylabel (’probability density function’);

legend ("True $p(x),’N=100",’N=10,000", Location’, northeast’,’
Interpreter’,’latex’);

Program 2.7 (MATLAB) Compare the true pdf with the approximated pdf
generated by randn

To check if the random numbers generated by randn are indeed from the normal
distribution, we estimated the pdf by counting the number of random numbers
fallen into each of the intervals, and the estimated pdf is compared with the true
pdf. Let the number of the random numbers in [x;, x;_, ] be N;.. The estimated pdf
value at x in the interval, p(x), is derived from (2.17) as follows:

[LHS of (2.17)] ~ N (2.18a)

total

[RHS of (2.17)] =~ p(x)Ax; (2.18b)

where Ax, =x;,; — X, Ny is the total number of samples equal to 100 in this
example, and p(x) is assumed to be constant for x € [x,, x;,,]. Hence,

N
Ax; N,

otal

px) = for x € [x;, %441 (2.19)
Program 2.7 draws Figure 2.8, which shows the true pdf, p(x), and two approxi-
mated pdf for N, equal to 100 and 10,000. As the total number of random num-
bers generated increases, the estimated pdf, p(x), converges to the true pdf. 30 bins
are generated below between x = —5 and x = 5, counting how many x generated
by randn belong to each bin.

‘ x_bin = linspace(-5,5,30);

For the generated random number, ‘x_rand’, and the bin list, x_bin’, the number
of occurrences for each bin is counted using histcounts command:

‘ N_occur = histcounts(x_rand,x_bin);

The dimension of N_occur is one less than the dimension of x_bin as the i-th ele-
ment of N_occur corresponds to the interval given by the i-th and the (i + 1)-th
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elements of x_bin. Hence, when plotting N_occur with respect to x, the middle
point of each bin is used as follows:

‘ plot(x_bin(1l:end-1)+dx/2, N_occur/(dxxN),line_style{idx});

For each N_total-cases inside the loop, two different line styles are defined in the
strings, ‘rs-’ and ’go-’, which produce the square marked line and the circle marked
line, respectively, in the figure. The lines are displayed in red or green if printed in
colour. To make a list to include these strings, the cell data format surrounded by
the curly bracket, {}, is used.

line_style = {’rs-=" ’go-"1};

The following line in Program 2.9 makes the x-axis label in Figure 2.8 is in the
mathematical fonts instead of the normal fonts. In the xlabel command, the inter-
preter is indicated as latex.!

xlabel ('Random Variable x Sampling Space: $\Omega_x$’, Interpreter’
, latex’);

BIEX is a typesetting system widely used in writing mathematical papers and
books. A draft version of this book is also written using BIgX. In MATLAB,

0.5 T
True p(x)
—a— N=100
04 N =10,000] |

I o
'8} w
T T

Probability density function
.O

-5
Random variable x Sampling space: Q_

Figure 2.8 The probability density function of the random number generated by randn
in MATLAB and the comparison with the true probability density function, p(x).

1 Itis pronounced as Lay-Tech.
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mathematical symbols of EIgX can be used in the labels by indicating the
interpreter, ‘latex’. In TEX, the characters surrounded by ‘$’ are interpreted as
mathematical expressions and “\Omega_x’ is appeared as ‘Q,’ in the axis label.
More information on KTEX can be found in The LaTeX Project Team (2020).

The corresponding Python program to Program 2.7 is given in Program 2.8. The
labels interpreted as raw ITEX expressions start with ‘T” and the single quotation
mark. In addition, maths symbols are surrounded by $ signs. Random numbers
from the normal distribution with mean 0 and variance 1 are generated using
numpy.random.randn. As numpy is imported in line 1 of the program, randn can
be called np.random.randn. It is, however, convenient to import numpy.random as
‘rp’ so that randn can be called in a compact way, i.e. rp.randn.

One of the main differences in syntax between Python and MATLAB is the pres-
ence of the comma in Python to distinguish the elements in an array or a list.
Two numbers, 100 and 1000 in ‘N_all’ array, are separated by a comma, Two line
styles in ‘line_style’ are also separated by a comma.

Parts included in for-loop are distinguished by indents the same way as indents
define the body of functions in Python. The lines between line 29 to line 22 belongs
to the for-loop. The for-loop in line 22 is a frequently used programming pattern
used in Python.

To print each element of ‘x = [1 2 3 4]’ in MATLAB,

x = [1 23 4];

for idx = 1:length(x)
disp(x)

end

In Python, a for-loop is implemented with the keyword, in, and a colon ‘’ at the
end of the line as follows:

x = [1, 2, 3, 4]
for x_val in x:

print(x_val)
End

No index number has to be explicitly generated as ‘idx’ in the MATLAB program.
In the for-loop, each array value in X’ is sequentially assigned to ‘x_val’. Similarly,
it can be done for two lists using the zip command as shown in line 22, where each
value of ‘N_all’ and ‘line_style’ is assigned to ‘N_trial’ and ‘Insty’, respectively.

In line 26, np.histogram calculates the number of occurrences for the given
bin, ‘x_bin’, and the return values are stored in ‘N_occur’ as a tuple data format.
‘N_occur[0]’ is the array including the occurrence for each bin, and ‘N_occur[1]’
is the array including the bin list. The fig.savefig command in the last line saves
the figure in a specified format by the file name extension, e.g. pdf (Portable
Document Format).
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import numpy as np
from numpy import linspace
import numpy.random as rp

import matplotlib.pyplot as plt

# true probability density function (pdf)

var_x = 1;

mean_x = 0;

Omega_x = linspace(-5,5,1000);

px = (1/(np.sqrt(2+np.pixvar_x)))*np.exp(—(Omega_x—mean_x) x*2/(2x
var_x));

fig, ax = plt.subplots(nrows=1,ncols=1)
ax.plot(Omega_x,px,linewidth=3)

# generate N random numbers with the mean zero and the variance
# 1 using numpy.random.randn
N_all = np.array([100,10000])
x_bin = linspace(-5,5,30)
dx=np.mean(np. diff(x_bin))
line_style = [’rs—=", go-"]
for N_trial, Insty in zip(N_all,line_style):
x_rand = rp.randn(1,N_trial)

# number of occurrence of x_rand in x_bin
N_occur = np. histogram (x_rand, bins=x_bin)
N_occur = N_occur[0]

ax.plot(x_bin[0:—1]+dx/2, N_occur/(dxxN_trial), lnsty);

ax.set_xlabel (r ’Random Variable x Sampling Space: $\Omega_x$’,
fontsize=14)

ax.set_ylabel(’probability density function’,fontsize=14)

ax.legend ((r’True $p(x)$’,’N=100",’N=10,000"),loc="upper right’,
fontsize =14)

fig.savefig(’compare_mu_sgm2_true_estimated_python.pdf”)

Program 2.8 (Python) Compare the true pdf with the ones approximated by the
random numbers generated by numpy.random.randn

2.1.2.3 Stochastic Process

The zero-mean white noise is a stochastic process. A stochastic process is a
time-dependent process. The random number generating procedure shown
previously is not a stochastic process as time is not introduced. Distinguishing
between a stochastic process and a random number based on whether it is a process
with time or not is an important concept in implementing stochastic process
simulations.
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Consider the following stochastic process:
Ex(®] = pu(®) (2.20a)
E [x(t)x(t)] = [o(®)?6(t; — 1) (2.20b)

where the mean and the variance are time-varying, the pdf of x(¢t) is given by (2.16),
and x4 and o are time-varying. Whenever the time ¢ is fixed, e.g. t = 2.5 seconds,
it is one of the cases of generating the random numbers examples shown in
Programs 2.3-2.8.

In computer simulations, the continuous time is approximated in a discrete
sampling sequence as follows:

{to bty tye ooty ty } (2.21)

where 7 is a positive integer, ¢, is the initial time, ¢, is the final time of the simula-
tion, and we assume that

tk = tk—l + At (2.22)

fork=1,2,...,n—1,n,i.e. the time interval between two sampling times is con-
stant At. u(t,) and [(7(l‘k)]2 are the corresponding mean and variance for each
instance, respectively.

Let At = 0.1seconds, n = 100, u(t,), and o(t,) given by

uty) = -2+ %‘ (2.232)
o(t) = 0.1+ % (2.23b)

One specific time history of x(t) generated is called a realization of the stochastic
process. The stochastic process is implemented in MATLAB and Python in the
following two paragraphs.

2.1.2.4 MATLAB

Figure 2.9 shows the five realizations of x(¢). All five realizations start around
—2 att = 0, when the mean and the variance are equal to —2 and 0.1, respectively.
As the time increases, the mean value increases linearly to +2 at t = 10 seconds.

The variance increases with time, and the five realizations of x(t) spread wider
as the time increases. For each fixed time, ¢, the realizations are random numbers
as in the previous section with the mean and the variance constants. We can calcu-
late the mean and the variance at the fixed time using the mean and the variance
functions in MATLAB or Python shown in Programs 2.3-2.8.

Five realizations are too small to have good estimates of the mean and the
variance. The number of realization increases to 1000. Figure 2.10 compares the
estimated values with the true mean and variance. The MATLAB program is
given in Program 2.9.
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x(7)

Time (s)

Figure 2.9 Five realizations of x(t) whose mean and variance are given by (2.23)

2

=t 0

True
— — —Estimated
-2 L |
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— — —Estimated
O 1 1
0 2 4 6 8 10
Time (s)

Figure 2.10 Compare the true u(t) and [o(t)]? with the estimated values using 1000
realizations.
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Be careful to execute the line to plot all realizations of x(¢) in the following line:

% plot(time,x_rand_all,’k-"); ‘

It is commented out to prevent accidental execution of the line with the large val-
ues of ‘N_sample’ and/or ‘N_realize’. It would consume the whole memory of the
computer to complete the plot. It is also difficult to kill the plotting procedures in
the middle of the execution.

clear;

% numer of time samplng & number of stochastic process trial
N_sample = 100;
N_realize = 1000;

% time

dt = 0.1; % [seconds]
time_init = 0;

time_final = dtxN_sample;

time = linspace(time_init,time_final ,N_sample);

% declare memory space for x_rand_all to include all trials
x_rand_all = zeros(N_realize ,N_sample);

% time varying mean and sqrt(variance) at the time instance
mu_all = linspace(-2,2,N_sample);
sigma_all = linspace(0.1,1.5,N_sample);

% for a fixed time instance, generate the random numbers
% with the mean and the variance at the fixed time
for idx=1:N_sample

mu_t = mu_all(idx);

sigma_t = sigma_all(idx);

x_rand = mu_t+sigma_txrandn(N_realize ,1);
x_rand_all(:,idx) = x_rand;
end

plot all trials with respect to the time

Warning: this part is only executed with the small N_trial,
e.g., 5,

the plot takes really long and causing the computer crashed
with the large N_trial, e.g., 1000

figure; clf;

plot(time,x_rand_all, 'k-");

set(gca, FontSize ’,14);

xlabel (’time [s]’);

ylabel (’x(t)’);

% approximate mean and variance from the realisation
% and compare with the true
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2 Attitude Estimation and Control

mu_approx = mean(x_rand_all);
sigma2_approx = var(x_rand_all);
figure;

subplot(211);

plot(time ,mu_all);

hold on;

plot(time ,mu_approx, 'r—");
set(gca,  FontSize’ ,14);

ylabel ("$\mu(t)$’, Interpreter’,’latex’);

legend (’True’,’Estimated’,’Location’,’southeast’);
subplot(212);

plot(time,sigma_all."2);

hold on;

plot(time ,sigma2_approx, ’'r—"’);

set(gca,  FontSize’ ,14);

ylabel (°$[\sigma(t)]*2$’, Interpreter’,’ latex’);
xlabel(’time [s]’);

legend ( ’True’,’ Estimated’,’Location’,’southeast’);

Program 2.9 (MATLAB) Realizations of the stochastic process x(t) given by (2.23)
and estimation of the mean and the variance

In Program 2.9, the i-th row of ‘x_rand_all’ is the i-th realization of x(¢)
and the j-th column of ‘x_rand_all’ corresponds to x(t) for ¢ is fixed to L for
i=1,2,...,N_realize and j = 1,2, ..., N_sample. Continuing Program 2.10 from
Program 2.9 calculates the pdf for each time instance using the histcounts
function and stores the pdf in each column of ‘px_all’, two-dimensional matrix.
How the pdf changes over time is shown using surf command, which draws the
two-dimensional surface indicated by ‘px_all’ and the coordinates are indicated
by the sampling space, x, and the time series as shown in Figure 2.11.

10

o

Sampling space x

5
5 0 Time (s)

Figure 2.11 The estimated pdf, p(x), shows the complete picture of the Gaussian
distributions over time.




03O U AW

2.1 Attitude Kinematics and Sensors

As shown in line 37 in Program 2.9, the plot command finds the correct
dimension to plot figures. Hence, the following two lines in the MAT-
LAB command prompt generates the same plot: ‘plot(time, x_rand_all)’ or
‘plot(time,x_rand_all’y’, where ‘x_rand_all’ in the second plot command is
transposed by ‘().

This automatic manipulation in MATLAB would cause some confusion, e.g. the
size of x_rand_all’ is 100 x 100. Each row is the realizations of x(¢) at a fixed time
and each column is one realization of x(t) with respect to time, respectively. We
might not ensure which direction of the matrix is drawn with respect to the time
vector. Hence, it is a good practice to ensure that the size of the matrix is not square
when the row and the column have different physical interpretations.

% (continue from Program 2.9)

% esimate the pdf for each instance using N-trials at each instance

N_bin = 100;

x_bin = linspace(-5,5,N_bin);

dx=mean( diff (x_bin));

px_all = zeros(N_bin—1,N_sample);

for jdx=1:N_sample
x_rand = x_rand_all(:,jdx);
N_occur histcounts(x_rand,x_bin);
px_at_t N_occur/(dx*N_realize);
px_all(:,jdx) = px_at_t(:);

end

% plot the estimated pdf

figure;

surf(time ,x_bin(1l:end—1)+0.5xdx, px_all);
set(gca, FontSize’ ,14);

xlabel (’time [s]’);

ylabel(’x’);

zlabel (’$\hat{p}(x)$’, Interpreter’,’latex’);

Program 2.10 (MATLAB) Plot the pdf with respect to time

2.1.2.5 Python
Five realizations of x(t) given by (2.23) are drawn in Program 2.11. The for-loop in
the program needs some attention to understand.

for idx, (mu_t, sigma_t) in enumerate(zip(mu_all,sigma_all)):
x_rand = mu_t+sigma_t*rp.randn(N_realize)
x_rand_all[:,idx] = x_rand

The for-loop not only substitutes the values of ‘mu_all’ and ‘sigma_all’ one by
one into ‘mu_t’ and ‘sigma_t’ but also assigns the numerical index number to
‘idx’. enumerate generates the index number and passes it into the variable, idx.
For example, two arrays, a and b, have four elements. Each element in a or b is sub-
stituted into a_now or b_now, and idx stores the index number. In the following
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commands in the Python command prompt, print ‘idx’, ‘a_now’, and ‘b_now’ in
the screen.

In [1]: import numpy as np
In [2]: a=np.array([1,2,3,4])
In [3]: b=["x1","%x2",’x3", x4’ ]

In [4]: for idx, (a_now, b_now) in enumerate(zip(a,b)):
: print(idx, a_now, b_now)

x1

X2

x3
x4

W= o
UV I NS

The plot command from matplotlib in Python might generate the plot with
excessive empty space. The manual adjustment of the axis limitations using ax.set
provides a tight fit of the plots in the figure window. xlim and ylim in ax.set specify
the axis range. The values for xlim and ylim must be in the tuple format. It is
common for function arguments in Python to be in the tuple format, where the
values are in the bracket, (), and separated by the comma. To prevent accidental
attempts of plotting for the large N_realize, we add the if-condition so that the
plot parts are only executed if N_realise is less than 10.

import numpy as np
from numpy import linspace
import numpy.random as rp

import matplotlib.pyplot as plt

# numer of time samplng & number of stochastic process trial
N_sample = 100
N_realize = 5

# time

dt = 0.1 # [seconds]

time_init = 0

time_final = dt«N_sample

time = linspace(time_init,time_final ,N_sample)

# declare memory space for x_rand_all to include all trials
x_rand_all = np.zeros((N_realize ,N_sample))

# time varying mean and sqrt(variance) at the time instance
mu_all = linspace(—-2,2,N_sample)

sigma_all = linspace(0.1,1.5,N_sample)

# for a fixed time instance, generate the random numbers
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# with the mean and the variance at the fixed time

for idx, (mu_t, sigma_t) in enumerate(zip(mu_all,sigma_all)):
x_rand = mu_t+sigma_txrp.randn(N_realize)
x_rand_all[:,idx] = x_rand

# plot all trials with respect to the time

# Warning: this part is only executed with the small N_trial,
#e.g., 5

# the plot takes really long and causing the computer crashed
# with the large N_trial, e.g., 1000

if N_realize < 10:

fig, ax = plt.subplots(nrows=1,ncols=1)
ax.plot(time,x_rand_all.transpose (), ’k-")
ax.set_xlabel(’time [s]’,fontsize=14)
ax.set_ylabel (r’$x(t)$’,fontsize=14)
ax.set(xlim=(0, time_final),ylim=(-4,6))

Program 2.11 (Python) Realizations of the stochastic process x(t) given by (2.23)
and estimation of the mean and variance

The same array including the integer from 1 to 5 is generated in numpy and
MATLAB as follows:

# numpy
a = np.array([1,2,3,4,5])

% matlab
a=1[12345]

One-dimensional array in numpy has only one index and starts from 0, i.e. ‘a[0]’
equal to 1, ‘a[1]’ equal to 2, and so forth. One-dimensional array in MATLAB has
both the one-dimensional index starting from 1 and the two-dimensional index
indicating the row and the column numbers, i.e. ‘a(2)’ can be accessed by the
first row and the second-column element of ‘a’, ‘a(1,2)’. The a.shape command
in the Python command prompt prints (5,), which indicates that the array has
five elements and a one-dimensional index. rp.rand in line 27 in Program 2.11 has
only one argument, N_realise, and it generates a one-dimensional array including
the ‘N_realise’ random numbers. One-dimensional array in numpy does not have
the information whether it is a row vector array or a column vector array as in
MATLAB. In the next line of the program, the one-dimensional array, ‘x_rand’, is
stored in the idx-column of ‘x_rand_all’, which is a two-dimensional array, without
checking whether ‘x_rand’ is a column vector or a row vector. This is automati-
cally completed as long as two sizes are matched to each other, i.e. the number of
elements of ‘x_rand’ is equal to the number of rows of ‘x_rand_all’.
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There is no automatic data manipulation for the plotting commands from
matplotlib. In line 39 in Program 2.11, ‘x_rand_all’ is transposed as the plot
command requires the dimension of time and the first dimension of “x_rand_all’
to be matched. For example, ‘N_sample = 1000’ and ‘N_realize = 5’, the
‘x_rand_all.shape()’ commands return the shape of the matrix equal to (5,100),
while ‘time.shape()’ prints out (100,). To make the first size element of *x_rand_all’
equal to 100, it needs to be transposed using ‘x_rand_all.transpose()’. It is always
recommended to generate a none-square matrix to prevent to interpreting or plotting
the data for the wrong axis. If *x_rand_all’ is a square matrix, then the plot would
succeed to produce a plot but it draw for the wrong axis.

Unlike the surf command in MATLAB, the plot_surface command in mat-
plolib needs the full list of the coordinates for the two-dimensional matrix data,
‘x_bin_matrix’, to be drawn in a three-dimensional space. The coordinate for each
element of the two-dimensional matrix is generated using meshgrid in numpy.
For example,

0 1 2
3 5
a=[012/,b=[0 12 3 4], Cmat=|6 7 8 (2.24)
9 10 11
12 13 14

are generated by

In [1]: a=np.arange(3)
In [2]: b=np.arange(5)
In [3]: C_mat=np.reshape(np.arange(15),(5,3))

where the ‘C_mat[i,j]’ element corresponds to ‘a[i]’ and ‘b[j]’, and the following
line

In [4]: A_mat, B_mat = meshgrid(a,b)

generates ‘A_mat’ and ‘B_mat’ equal to

012 000
01 2 111
A mat=|(0 1 2|, B.mat=[|2 2 2 (2.25)
01 2 33 3
01 2 4 4 4

The coordinates ‘(ali],b[j])’ for ‘C_mat[i,j]’ are given by ‘A_mat[i,j]’ and
‘B_mat[i,j]’. Then, the surface plot for ‘C_mat’ is drawn as follows:

—

fig=plt.figure ()
ax=plt.axes(projection="3d")
ax.plot_surface (A_mat,B_mat,C_mat)
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Finding the purpose of the other options in plot_surface, rstride, cstride, and cmap
is left as an exercise. Plotting the pdf shown in Figure 2.12 is left as an exercise.

2.1.2.6 Gyroscope White Noise
The zero-mean white noise of the gyroscope, n,, in (2.11) is implemented by
extending (2.20) into a vector form as follows:

E ["u(t)] = 039 (2.26a)
62, 0 0

Enn )] =] 0 62, 0 [5(t —1t,) (2.26b)
0 0 o2

vz
where 05, is the 3 x 1 vector whose elements are all zeros, and ¢,,, 0,,, and o,
are the standard deviations of the white noise for x, y, and z directions of the gyro-
scope, respectively. As the noises for the three directions are not correlated, the
off-diagonal terms are all zeros. Generate three random variables whose mean zero
and variance are equal to o, oy, and o, respectively, for a fixed time and repeat it
for every instance implements #,(¢) time series.

Unlike the time-varying mean and variance case, where multiple realizations are
required to estimate the mean and the variance for a fixed time, the mean and the
variance of the white noise can be calculated using the sampled data from a single
realization over a period of time, which is long enough. This is an intuitive concept
of the ergodicity of white noise. A more precise statistical definition of ergodicity
requires the deeper understanding of statistics (Shanmugan and Breipohl, 1988).

# (continue from Program 2.11)
# estimate the mean, the variance and the pdf for each instance
# using N-trials at each instance

# approximate mean and variance from the realisation

# and compare with the true

mu_approx = np.mean(x_rand_all , axis=0);

sigma2_approx = np.var(x_rand_all, axis=0)

fig_ ms, (ax_ms_0, ax_ms_1) = plt.subplots(nrows=2,ncols=1)
ax_ms_0.plot(time ,mu_all)

ax_ms_0.plot(time ,mu_approx, 'r—")
ax_ms_0.set_ylabel(r’$\mu(t)$’,fontsize=14)

ax_ms_0.legend (( ’True’,’Estimated’),loc="upper left’, fontsize=14)

ax_ms_1.plot(time,sigma_all*x2);
ax_ms_1.plot(time,sigma2_approx,’r—"’);
ax_ms_l.set_ylabel(r’$[\sigma(t)]*2$’,fontsize=14);
ax_ms_1.set_xlabel(’time [s]’,fontsize=14);

ax_ms_1.legend (( ’True’,’Estimated’),loc="upper left’, fontsize=14);

# estimate the pdf for each instance using N-trials at each
instance
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N_bin = 100
x_bin = np.linspace(-5,5,N_bin)
dx=np.mean(np. diff(x_bin))
px_all = np.zeros ((N_bin—1,N_sample))
for jdx in range(N_sample):
x_rand = x_rand_all[:,jdx]
N_occur = np. histogram (x_rand, bins=x_bin)
N_occur = N_occur[0]
px_at_t = N_occur/(dx*N_realize)
px_all[:,jdx] = px_at_t

# plot the estimated pdf
time_matrix, x_bin_matrix = np.meshgrid(time,x_bin[0:-1])

fig_3d = plt.figure ()

ax_3d = plt.axes(projection="3d")

ax_3d.plot_surface(time_matrix, x_bin_matrix, px_all, rstride=1,
cstride=1, cmap="viridis’)

ax_3d.set_xlabel(’time [s]’,fontsize=14)

ax_3d.set_ylabel(r’sampling space $x$’,fontsize=14)

ax_3d.set_zlabel(r’$\hat{p}(x)$’,fontsize=14)

Program 2.12 (Python) Plot the mean, the variance, and the pdf with respect to
time

2.1.2.7 Gyroscope Random Walk Noise

Another type of random noise corrupting the gyro measurements in (2.11) is the
bias, B. The bias is modelled as the random walk: the difference between f(t,) and
B(t,_y) for 0 < f,_, <, is the independent random increment, and it follows the
normal distribution whose mean and variance are given by

E [;B(tk) - ;B(tk_l)] = 03)(1 (2.273)
0.2
T . o

E{ [B(t) — Bt_))] [Bt) — Bti_y)] } = diag| o2, | At (2.27b)
(72
bz

where o, 0, and o, are positive constants and Aty is equal to f, — t,_;. Rigorous
mathematical definitions and discussions about the random walk can be found in
Van Kampen (2007).

The following equation simulates the random walk (Figure 2.12):

Bt = B(t_y) + AB(L) (2.28)

where £, is the sampling instance that the gyro measurement is obtained, and
AP(t) is the random increment. To simulate the random increment, firstly, the
random increment is implemented by

AB(t) = n, ()AL, (2.29)
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p(x)

Figure 2.12 The estimated pdf, p(x), plot using Python.

where 7,,(t,) is a 3 X 1 random vector at ¢, whose each element is a random num-
ber generated from the normal distribution. Secondly, to match the mean of the
random increment given in (2.27a) of n,(t,) must satisfy

E [AB(tY)] = E [n,(t)At ] = E [n,(t)] At = 03 (2.30)

The mean value of each element of #, (t,) for a fixed time ¢, must be equal to zero,
ie. E [nu(tk)] = 0,,;. Finally, to match the covariance of the random increment
given in (2.27b), the variance of ,(f) must satisfy

E [AB(t)AB"(tY)] = E [m,(t) AL, ml(t)AL]

U
e
diag| 02, | A, = E [n,(6)ml(t0)] (At,)° (2.31)
2
[0}
bz

Hence, the covariance of the random number, 5, is given by

o2 o’
r e B
E [n,(tom; (t)] = diag| o7, | = diag| o7, i (2.32)
2 7 | Ak
qu Uﬂz
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For example, the standard deviation of the first element in 5(t,), o, is equal to
Ol \/A_tk A gyro noise characteristic given in the unit of (°/s)/ \/§:° /s3/? is orig-
inated from this relationship (Woodman, 2007).

Note that 7, (¢) is not correlated with the white noise, 1,(¢), in the gyroscope
sensor model, (2.11). Most optimal estimation algorithms assume that the mean
and the variance of the random noise are known. In practice, these values are fre-
quently found in the sensor specifications.

We are now ready to write a pseudo-code for simulating the bias noise in the
gyro measurement. Pseudo-code is a description of an algorithm in plain language
without any tight connection to a specific programming language. Pseudo-code is
for the simulator designers to have a clear picture of the algorithm, and it is useful
to design an initial structure of the simulation program. Translating a pseudo-code
to a specific programming language, e.g. MATLAB or Python, is rather straightfor-
ward. Algorithm 2.1 is the pseudo-code for generating the gyro bias noise whose
mathematical descriptions are provided earlier. The 10-realization of the bias time
history using MATLAB or Python is shown in Figure 2.13. The implementation of
the algorithm for each MATLAB or Python is left as the exercise.

Algorithm 2.1 Gyro bias noise, f(t,), simulation

1: Set x> Opys Opzs and Af,, n.b.: Aty is usually set to a constant
2: Initialize B(f,), e.g. using a random number generator
3: fork=1,2,...do
4: for 7 = x,y,zdo

Generate 7, ~ N(O, UIZM/Atk), See (2.30) and (2.32)
end for

T

Mu(t) < [t My e
AB(L,) < n,(t) AL, See (2.29)
Bt < B(t_y) + AB(Ly), See (2.28)
10: b < by + At
11: end for

R A

It is important to use only the SI units in the main parts of all simulation imple-
mentations. All non-SI units given must be changed to the corresponding SI units
at the beginning of the program. Using the SI units only for the rest of the pro-
gram implementation can significantly reduce unit related mistakes. Keep in mind
that all dynamic equations are derived based on appropriate unit assumptions.
The assumption we use here for most cases is that variables are in the SI units.
The computer does not have the unit information but has the numerical values only.
It does not recognize that 0.1 is in degrees or radians. After the simulation com-
pletes, some quantities could be converted into non-SI units for some purposes.
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MATLAB

ROIGD)

BOCIS)

BOCIS)

pDCls)

<,
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0.0 20.0 40.0 60.0 80.0 100.0 120.0
Time (s)
(b)

Figure 2.13 Bias noise simulation using (a) MATLAB/(b) Python.

For example, all angles must be in radians during the simulation, but they could
be converted into degrees for the visualization purpose.

2.1.2.8 Gyroscope Simulation
Given the angular velocity, o(t), as the function of time in (2.9), the gyroscope
sensor in (2.11) has the following noise characteristics indicated in the sensor
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specifications: oy, = 0.05 (°/s)/\/§, 05 = 0.04 (°/s)/\/§, 04, = 0.06 (°/s)/\/§,
o, =0.01°/s, and At, = 0.05seconds. In addition, the initial bias, (¢, = 0), is
taken from the uniform distribution between —0.05° /s and +0.05 °/s.

The simulation result of the gyroscope measurements is shown in Figures 2.14
and 2.15. See Program 2.13 for the MATLAB gyroscope simulation. The Python
program for simulating the gyroscope measurement is given in Program 2.14.
The measurements indicated in the dashed lines are drifting away from the true

6 T T T T T

(°/s)

Time (s)

Figure 2.14 (MATLAB) Gyroscope measurement simulation.

(°1s)

)

SRS

2

]
NS
S

40 60 80 100 120
Time (s)

Figure 2.15 Gyroscope measurement simulation using Python Program 2.14.
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2.1 Attitude Kinematics and Sensors

angular velocity. If the measurements are directly used to obtain the quaternion
by numerically integrating (2.5), where o is replaced by @, the calculated quater-
nion quickly diverges from the true quaternion. No matter how expensive and
accurate the gyroscope is, the gyroscope sensor measurement alone is not enough
to prevent the divergence of the calculated quaternion from the true quaternion.
An additional sensor directly providing the attitude measurement is needed.

clear;

%% Set initial values & change non—SI units into the SI Units
dt = 0.05; % [seconds]

time_init = 0;

time_final = 120;

time = time_init:dt:time_final;

N_sample = length(time);

% standard deviation of the bias, sigma_beta_xyz
sigma_beta_xyz = [0.05 0.04 0.06]; % [degrees/sqrt(s)]
sigma_beta_xyz = sigma_beta_xyz«(pi/180); % [rad/sqrt(s)]
sigma_eta_xyz = sigma_beta_xyz/sqrt(dt);

% standard devitation of the white noise, sigma_v
sigma_v = 0.01; %[degrees/s]
sigma_v = sigma_vx(pi/180); %[rad/s]

% initial beta(t)
beta = (2xrand(3,1)-1)%0.05; % +/— 0.03[degrees/s]
beta = betax(pi/180); % [radians/s]

% prepare the data store
w_all = zeros(N_sample,3);
w_measure_all = zeros(N_sample,3);

%% main simulation loop
for idx=1:N_sample

time_c = time(idx);

w_true(1,1) = 0.1xsin(2xpi*0.005«xtime_c); % [rad/s]
w_true(2,1) = 0.05xcos(2*xpi*0.01xtime_c + 0.2); %[rad/s]
w_true(3,1) = 0.02; %[rad/s]

% beta(t)

eta_u = sigma_eta_xyz (:).+xrandn(3,1);
dbeta = eta_u=xdt;

beta = beta + dbeta;

% eta_v(t)
eta_v = sigma_vxrandn(3,1);

% w_tilde
w_measurement = w_true + beta + eta_v;
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2 Attitude Estimation and Control

% store history
w_all(idx ,:) = w_true(:) ’;
w_measure_all(idx ,:) = w_measurement(:) ’;
end
% plot in degrees/s

figure;
plot(time,w_all*(180/pi));
hold on;
plot(time ,w_measure_all«(180/pi), —’);
set(gca, FontSize’ ,14);
ylabel(’$[*\ circ/s]$’, Interpreter’,’latex’);
xlabel(’time [s]’,’Interpreter’,’latex’);
legend (’$\omega x$’,’$\omega_y$, '$\omega_z$, ...
"$\tilde {\omega}_x$, $\tilde {\omega}_y$, $\tilde {\omega}_z$,

5

’Interpreter ’,’latex’,’Location’,’SouthWest’);

Program 2.13 (MATLAB) Gyroscope simulation with white noise and bias noise

import numpy as np
import matplotlib.pyplot as plt

# Set initial values & change non—SI units into the SI Units
dt = 0.05 # [seconds]

time_init = 0

time_final = 120 # [seconds]

N_sample = int(time_final/dt) + 1

time = np.linspace(time_init,time_final, N_sample)

# standard deviation of the bias, sigma_beta_xyz

sigma_beta_xyz = np.array([0.05, 0.04, 0.06]) # [degrees/sqrt(s)]
sigma_beta_xyz = sigma_beta_xyzx(np.pi/180) # [rad/sqrt(s)]
sigma_eta_xyz = sigma_beta_xyz/np.sqrt(dt)

# standard devitation of the white noise, sigma_v
sigma_v = 0.01 #[degrees/s]
sigma_v = sigma_vx(np.pi/180) #[rad/s]

# initial beta(t)
beta = (2xnp.random.rand(3)—-1)%0.03 # +/— 0.03[degrees/s]
beta = betax(np.pi/180) # [radians/s]

# prepare the data store
w_all = np.zeros ((N_sample,3))
w_measure_all = np.zeros ((N_sample,3))

# main simulation loops
for idx in range(N_sample):

time[idx]
np.array ([0.1xnp.sin(2xnp.pi*x0.005«time_c) ,#[rad/s]

time_c
w_true
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0.05%np.cos(2xnp.pi*0.01*xtime_c + 0.2), #[rad/s]
0.02 #[rad/s]
D
# beta(t)
eta_u = sigma_eta_xyz=*np.random.randn(3)
dbeta = eta_u=xdt
beta = beta + dbeta
# eta_v(t)
eta_v = sigma_vxnp.random.randn(3)
# w_tilde
w_measurement = w_true + beta + eta_v
# store history
w_all[idx ,:] = w_true
w_measure_all[idx ,:] = w_measurement

# plot all realization of beta in degrees/s
fig, ax = plt.subplots(nrows=1,ncols=1)
ax.plot(time,w_all*180/np. pi)
ax.plot(time ,w_measure_all«180/np.pi, '—")
ax.set_ylabel(r’$["\ circ/s]$’,fontsize=14);
ax.set_xlabel(r’time [s]’,fontsize=14);
ax.legend ((r’$\omega_x$’,r’$\omega_y$’,r’$\omega_z$’,
r’$\tilde {\omega} x$’,r’$\tilde {\omega}_y$’,r $\tilde {\ omega}
_z$’),

fontsize =14, loc="lower left’)
ax.set(xlim=(0, time_final),ylim=(-4,6))
fig.set_size_inches(9,6)
fig.savefig(’gyro_measurement_python.pdf’,dpi=250)

Program 2.14 (Python) Gyroscope simulation with white noise and bias noise

2.1.3 Optical Sensor Model

One of the common sensors used to provide attitude measurement directly is an
optical sensor, e.g. camera or star sensor. These sensors identify a priori known
objects and compare the direction of the objects in the sensor measurement with
the known directions of the objects in the reference coordinates.

To model a star sensor, it needs to understand the principle of vector observation
illustrated in Figure 2.16. The attitude of the body coordinates, B, indicated by
Xg, ¥, and z; with respect to the reference coordinates indicated by x,y, and z
is expressed in the quaternion, q. The vector pointing towards #1 star, r!, can be
expressed by the coordinates in the body coordinates or the reference coordinates
as follows:

r'>rp=[xy z]T (2.33)
r! > r]13 = [xB Vg ZB]T (2.34)

where rlle and r}; are the same vector but written in the two different coordinates,
{R} and {B}. 1'11e is usually stored in the on-board computer of satellite as a part
of the star catalogue database. The star sensor with an identification algorithm
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z Figure 2.16 Identified star in the
A reference and the bode coordinates.

detects star #1, and its direction in the sensor coordinates is given by rl, where the
sensor coordinates are assumed to be the same as the body coordinates. As r} and
r}, are vectors pointing the direction of the star, their magnitudes are assumed to
be normalized, i.e. ||r||;, = 1 and ||r||; = 1.

Their coordinates are equated using the direction cosine matrix as follows:

=

Ci1 €2 G| XB
Y| =€ €2 C3||Vs (2.35)
Zlg L1 €2 C33]|%B R
where ¢; = cos §;; and ¢; are the angles between X, y, or z and Xg, y, or Zz. In a
compact form, it is written as

r} = Cppl'y (2.36)

where Cg; is the direction cosine matrix converting a vector in {R} to {B}. The
quaternion and the direction cosine matrix are two different ways to express atti-
tude information. They are equivalent to each other and one-to-one conversion
exists as follows:

Cpr(@) = (4 — a{3913) I + 2955415 — 24, [q13%] (237)

where [q,5x] is defined by (2.8) (Wie, 2008).

The conversion from the direction cosine matrix to the quaternion is performed
using Algorithm 2.2 (Schaub and Junkins, 2003). Finding the maximum value in
line 2 in Algorithm 2.2 is to prevent the divisions in lines 3-6 with a small value
in the numerator. All divisions in computer programs must be done with extreme
care. If the denominator in a division is equal to or close to zero, the result becomes
too large for the finite floating points in the computer to be contained. MATLAB or
Python, for example, returns inf for 1/1073%, where inf stands for the infinity,
while 1/1073% returns 10°%8. The boundary value for separating the finite and the
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infinity values in the computer varies depending on the computer and/or software.
To check if the value of a variable is infinity or not, isinf in MATLAB or numpy.isinf
in numpy Python is used. It returns the logical value type 1 in MATLAB or True
in Python if the number is infinity and the logical type 0 in MATLAB or False in
Python if it is considered as a finite number.

Line 8 in Algorithm 2.2 is to provide the shortest rotational manoeuvre. g, is
equal to cos(6/2) and cos(6/2) is greater than or equal to 0 for |f| < 180°. Negative
q, implies that |6| is greater than 180°. Then, the same attitude can be achieved by
the opposite direction rotation axis, i.e. —e, with the rotational angle equalto = — 6
radians. Also, notice that cos[(x — 6)/2] = — cos(8/2). Figure 2.17 shows that the
same attitude for the 275° rotation about the rotation axis e can be achieved by the
85° rotation about the opposite axis, —e.

Given the star direction, rllz, and the star observation, ré, three algebraic
equations are established using (2.35). As there are nine unknowns, o for
i,j=1,2,3, in (2.35), six more equations are required to determine the nine
unknowns. Consider that another star, #2 star, is identified, and it provides

1} = Cpr(Q)ry (2.38)

where it is assumed that rlle and 1'123 are not parallel to each other. Hence, additional
three independent equations are provided by (2.38). Once two non-parallel direc-
tion stars are identified, the third vector can be established using the vector cross
product as follows:

(rpxry) = Cpr(q) (rp X 1%) (2.39)
The simplest star tracker model is given by Crassidis (2002)
=1l +V (2.40)

where V' is a 3 x 1 noise vector, which follows the zero-mean Gaussian distribu-
tion, i.e.

EW) =0, (2.41a)
E [vi (vi)T] = 62, (2.41b)

Figure 2.17 The shortest path rotation. e

Py

B 6=275°

X

B
Zp
6=2385°
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Algorithm 2.2 The quaternion from the direction cosine matrix

1: Calculate g; using the given ¢y fori,j=1,2,3in(2.35)
a;=1+c — ¢y —c33)/4
a,=(1+cy—cpy —cy)/4
a;=(1+c33— ¢y —¢y)/4
a, =14c+cyy+c53)/4

2: Find i* such that a;, = max(a,, a,, a;,a,) and calculate gq;. =
3: if i* is equal to 1 then

4, = (¢ +¢5)/(4q,)
q; = (¢35 +¢31)/(4q)
44 = (3 — C3)/(4q,)
4: elseif i* is equal to 2 then
4y = (c13 +¢21)/(4q,)
43 = (3 + C3)/(44,)
44 = (¢35 — ¢13)/(4,)
5. else if i* is equal to 3 then
4, = (¢13 + ¢31)/(45)
4y = (3 + €3)/(4q3)
44 = (1 — ¢31)/(445)
6: elseif i* is equal to 4 then
41 = (3 = €32)/(4q,)
4y = (31 — ¢13)/(4q,)
43 = (¢ — ¢21)/(4q,)
7: end if
8: if g, is negative then
G < =41 Q2 < =Gy Gz < G5 G4 < G4

9: end if

a;.
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and o, is the standard deviation of the star sensor noise. The justification of this
noise model is given in Shuster (1989). A more sophisticated star sensor noise
modelling can be found in Fialho and Mortari (2019).

Consider the following two stars in the reference coordinates:

1 117

ri:[o 7 _TE]R (2.42a)
T

l‘zze=[\/% 0 \/%]R (2.42b)

Assume that q(¢) represents the attitude of a satellite relative to the reference coor-
dinates and the satellite equipped with multiple star sensors can see and identify
the stars all the time. In reality, the stars would be in and out of the field of view
of the star sensors. In Program 2.1 for MATLAB or 2.2 for Python, q(¢) is given for
every instance of time. For each instance, the corresponding body frame, where it
is assumed that the sensor frames are aligned with the satellite body frame, repre-
sentations of the stars are given by

1y = Cpelq(D)]ry (2.43)
for i =1, 2,3, where Cy[q(#)] is given by (2.37), and

=1l X1 (2.44a)

r, =1, X1 (2.44b)

Re-arrange (2.43) and (2.44) as follows:

) c
(rﬁq)T O O3 r

o= 0, (r)" 04, ||cn|=A" vecc”) (2.45)

. c
Oz O3 (r;z)T >

fori=1,2,3, where Al is a 3 X9 matrix constructed using r; and vec(-) vectorizes
the matrix in the column direction as follows:

123

A=[4 5 6|=>vect)=[1 4 7258 36 9 (2.46)
789
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As MATLAB is the column-major language (The MathWorks, 2020), i.e. the ele-
ments in the array are indexed in the column direction first, the vectorization of
the matrix is performed as

>> A=[1 2 3; 4 5 6; 7 8 9]
>> A(:)

Numpy array in Python, on the other hand, is the row-major, i.e. the elements in
the array are indexed in the row direction first, and the following flatten() function
returns A =[1,2,3,4,5,6,7,8,9]:

In [11]: A=np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [12]: A.flatten ()

Hence, to obtain the same result for vec(-), the matrix is transposed first and then
flattened as follows:

In [13]: A.transpose().flatten ()

Using three matrices, A', A%, and A3,

ry Al
r} [=]42] vec(CT) = Avec(CT) (2.47)
r; A3

where A is not singular, which means the inversion exists, as long as r! and r? are
not parallel to each other. Hence, the elements of the direction cosine matrix are
simply determined by

r
vee(CT)y=A"r

r

(2.48)

W me

To construct an arbitrary attitude of the body relative to the reference frame, we
generate the following four values in MATLAB using the uniform random number
generator:

>> q_rand = 2xrand(4,1) —1;
>> q_rand = q_rand/norm(q_rand);
or in Python:

In [17]: q_rand=2*np.random.rand(4)-1
In [18]: q_rand=q_rand/np.linalg.norm(q_rand)

where they are normalized so that the random quaternion has the unit magnitude.
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The corresponding direction cosine matrix to the random quaternion generated
is calculated using (2.37) as follows in MATLAB:

>> ql3=q_rand(1:3);
>> q4=q_rand(4);
>> q13x=[0 —q13(3) ql13(2);
q13(3) 0 —q13(1);
—q13(2) q13(1) 0];
>> C_BR=(q4"2—-ql13’xql3)*eye(3)+2xql3*ql3’—2xq4=*ql3x;

or in Python:

In [22]: ql3=np.reshape(q_rand[0:3],(3,1))

In [23]: q4=q_rand[3]

In [24]: ql13x = np.array([[0, —q13[2,0], q13[1,0]],[q13[2,0],0,—ql3
[0,0]],[—q13[1,0],913[0,0],0]])

In [25]: C_BR = (q4%x2—ql3.transpose ()@ql3)=np.eye(3)+2xql3@ql3.
transpose () —2xq4x*ql3x

A simple check if the conversion to the direction cosine matrix is performed cor-
rectly is checking CgRCBR equal to the identity matrix.

In Python, matrix multiplication is denoted by the ‘@’ sign. Note that the result
of multiplication of “*’ and ‘@’ multiplication in Python is different. For example,

In [80]: x=np.array([[1],[2],[3]])

In [81]: x.transpose ()*x

Out[81]:

array ([[1, 2, 3],
[2, 4, 6],
[3, 6, 91D

In [82]: x.transpose ()@x
Out[82]: array([[14]])

While ‘x.transpose()@x’ performs x”x operation, i.e. the dot product of the vectors,
‘x.transpose()*x’ performs

[xlx XX x3x] (2.49)

where xT = [x; x, x;].

The measurements from the star sensor for the stars given in (2.42) correspond-
ing to the random attitude generated are obtained by (2.43). The implementation
in MATLAB is as follows:

>> r1R=[0 1/sqrt(2) —-1/sqrt(2)]’;
>> r2R=[1/sqrt(2) 0 1/sqrt(2)]’;
>> r1B=C_BRxrlR;

>> 12B=C_BRx*r2R;

>> r3R=cross(rlR,r2R);

>> 1r3B=C_BRxr3R;
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and the implementation in Python is as follows:

In [86]: rl1R=np.array ([0, 1/np.sqrt(2), —1/np.sqrt(2)]).reshape
((3,1))

In [87]: r2R=np.array([1/np.sqrt(2), 0, 1/np.sqrt(2)]).reshape
((3,1))

In [88]: r1B=C_BR@rlR

In [89]: r2B=C_BR@r2R

In [90]: r3R=np.cross(rlR. flatten (),r2R. flatten ()).reshape((3,1))

In [91]: r3B=C_BR@r3R

where ‘T1R’ and ‘r2R’ vectors in Python are shaped as 3 x 1 vectors. They are
converted into one-dimensional arrays for np.cross() using flatten() function in
numpy, and the result is reshaped as 3 X 1 vector.

2.2 Attitude Estimation Algorithm

2.2.1 A Simple Algorithm

For the noise-free perfect star sensor measurement case, i.e. v in (2.40) is zero for
all i, Cyy is calculated using (2.48), where rg is from the noise-free sensor, and r;
is from the star catalogue for i = 1, 2, 3, as follows:

>> Al=blkdiag(r1R(:) ’,r1R(:) *,r1R(:) ’);
>> A2=blkdiag(r2R(:) ’,r2R(:) *,12R(:) ’);
>> A3=blkdiag(r3R(:) ’,r3R(:) *,13R(:) ’);
>> A=[A1;A2;A3];

>> vec_CT=A \ [r1B(:);r2B(:);r3B(:)];
>> C_BR_Cal=reshape(vec_CT,3,3)’

>> norm(C_BR-C_BR_Cal)

ans =

1.6909e-16

In MATLAB, for calculating A~'x, the backslash operator ‘\’ is preferred to the
inverse function, i.e. ‘A\x’ instead of ‘inv(A)*x’. The backslash operator is a lot
faster and accurate than calculating the inversion matrix and performing the
multiplication to x. In general, calculating the inverse matrix and performing
some operations would cause more computing steps and produce larger numeri-
cal errors. The norm in the last line shows the difference between the true and
the calculated direction cosine matrices. If the difference is not small enough,
there would be some errors in the codes and/or the measurements would have
some problem, e.g. two vector observations are too close and the matrix A would
be close to being a singular matrix. The error is in the order of 1071° that is close
enough to zero.
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Similarly, in Python,

In [148]: from scipy.sparse import block_diag

In [149]: Al=block_diag((r1R.transpose(),rl1R.transpose(),rlR.
transpose())).toarray ()

In [150]: A2=block_diag ((r2R.transpose(),r2R.transpose(),r2R.
transpose ())).toarray ()

In [151]: A2=block_diag ((r2R.transpose(),r2R.transpose(),12R.
transpose ())).toarray ()

In [152]: A3=block_diag((r3R.transpose(),r3R.transpose(),r3R.
transpose ())).toarray ()

In [153]: A=np.vstack ((Al,A2,A3))

In [154]: from scipy.linalg import solve

In [155]: vec_CT=solve (A,np.vstack ((r1B,r2B,r3B)))
In [156]: C_BR_Cal = vec_CT.reshape(3,3)

In [158]: np.linalg.norm(C_BR-C_BR_Cal)
Out[158]: 2.3714374201337736e-16

numpy and scipy packages in Python have no backslash operator as in MATLAB.
A similar efficient way of calculating A~'x can be, however, achieved using the
solve function in scipy.linalg package. The error is in the order of 1071¢, which is
close enough to zero, and the calculated direction cosine matrix is close to the
truth.

When there are four or more star vector observations, then (2.48) becomes an
over-determined problem, and the minimum norm solution is calculated using
the following formula:

r

r

W

vee(CT) = (ATA) A" (2.50)

1
for k > 4.

2.2.2 QUEST Algorithm

Solving the following minimization problem determines the best direction cosine
matrix, Cgp:

k
... 1 i i

Minimize= Y a;||r}, — Cpprh||? 2.51
in 221 illey = Copril (2.51)

where rg is corrupted by stochastic noise with the known variance, which is found
in the sensor specifications, g, is the positive weight for each observation, which is
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typically set to the inverse of the variance of each observation, and this is known
as Wahba’s problem (Wahba, 1965).

Shuster and Oh (1981) presents the QUEST (quaternion estimation) algo-
rithm,? which calculates the optimal solution for estimating the best quaternion
solving Wahba’s problem, where Cp; = Cpp(q) given in (2.37). A pseudo-code
for the QUEST is given in Algorithm 2.3, and the implementation of the QUEST
algorithm is left as an exercise.

The QUEST algorithm provides the optimal quaternion estimation based on the
current vector measurements. It does not use, however, any dynamic model. It
purely solves the optimization problem for a fixed instant of time to estimate the
quaternion.

2.2.3 Kalman Filter

The Kalman filter is originally developed for the linear systems, which are written
as follows (Kalman, 1960):

X, = AX;_; + W (2.52a)
z, = Hx, 4+ v, (2.52b)

where the system noise, w,, and the measurement noise, v, are the zero-mean
Gaussian white noise, their covariances are known as Q; and R, respectively, and
A and H are the matrices with appropriate dimensions. In practice, it is frequently
that the covariance matrices are constant for all k. Note that the notation for the
discrete-time instances, t, and t,_,, are simply written as the subscripts, k and
k — 1, respectively. Both are used interchangeably whenever it is convenient, e.g.
X(t) = Xy
The Kalman filter solves the following optimization problem:

MiniKlzlize trace [E (Ax, Ax])] (2.53)

where Ax, is the estimation error, i.e. the difference between the true state and the
estimated state, X, — %X;, and K is the Kalman gain to be designed. The pseudo-
code for the Kalman filter is given in Algorithm 2.4. The optimal estimated state,
f(;{r, is obtained by combining the predicted state, %X, , from the system model and
the measurements, z,, from the sensor, using the Kalman gain as follows:

X =% +K (z, — H&,) (2.54)

When the simulator is implemented, confusion occurs frequently between what
physical object we simulate and what algorithm we implement. Both components

2 ‘QUEST is better than rest’ quoted by John after dinner with Malcolm, John, Jinho, and
Jongrae in Maryland, USA in May 1998.
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Algorithm 2.3 QUEST (quaternion estimation) algorithm

1:

10:
11:
12:
13:
14:

15:

Construct B using r}; and rl, fori = 1,2, ..., k as follows:

k
)
B= Zaer rR
i=1

where q; is equal to the inverse ofthe variance of the i-th observation.

: Calculate S, o, 6, and « as follows:

S=B+B’, ¢ = trace(B), § = det(S) = S|, x = trace [adj(S)]

where det(-) = | - | is the determinant of the matrix and adj(-) is the adjugate
of the matrix. For the 3 X 3 matrix S, x is given by

2 2 2
K = (Sp833 = 833) + (11833 — 833) + (5118 — 573)

where s;; is the i-th row and the j-th column element of S.

: Construct z as follows:

Z—Zal‘ Xl‘

: Calculate the coefficients of the following fourth order polynomial in A:

fA) =A*—(a+b)A* —ci+(ab+co —d)

wherea =02 —k,b=02+2z"2,c=6 +27Sz,d = zTS’z.

: Set the initial guess of A* equal to 10 as the maximum A for f(4) = 0 is known

to be around 1.

: Set the tolerance, €, equal to a small positive number, e.g. 1075, and A equal

to a positive number greater than ¢, e.g. 1000.

: Find the A satisfying f(4) = 0 using the Newton-Raphson method (Press et al.,

2007) as follows:

: while A1 > ¢ do

df(A*)/dA < 4(A*) = 2(a+b)A* —¢
Apew < A" = f(/l*)/[df(/l*)/dﬁ)]
AL — | Aoy — A¥|
A’* « Anew
end while

v < 6+, -S|z

==
1+ [y2 L1

*
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Algorithm 2.4 The Kalman filter for linear systems
1: Initialize

X, P =E(Ax,Ax)), Q=E(w,w,), R=E (v, V])

where Q and R are assumed to be constant for all k.
2: fork=1,2,...do
3: Prediction: from ¢, _; to f;,

X =A%
P, =AP{ A" +Q
4: Update: the measurement, z,, is available at f,
K, =P H" (HP;H" +R)™
X =% +K (z, - HX)
Pl =(I-KH)P,

5: Substitute: No measurement, z,, is available at ¢,
+ _
X =X,
+
P =P
6: end for

of the simulator are implemented as parts of the MATLAB or Python program.
Distinguishing clearly between what is simulated in the simulator and what algo-
rithm is tested in the simulator reduces any conceptual confusion and leads to a
clearer simulator structure.

Consider the following mass-spring-damper system:

i= Ky Citw (2.55)
m m
where m = 1kg, k = 0.5N/m, ¢ = 0.1 N/(m/s), and w is the process noise, which
is the zero-mean Gaussian random noise. The standard deviation of process noise
is usually identified experimentally.

The stochastic differential equation, (2.55), however, has a mathematical ambi-
guity as the right-hand side of the equation is discontinuous everywhere because
of the random noise, w. It can be written in a mathematically preferred form called
the It6 equation as follows (Van Kampen, 2007):

k
—X
m
where the left-hand side of the equation is the velocity increment, and df = wdt
in the right-hand side of the equation is a random increment, which is the same

d = - xdt — %xdt +dp (2.56)
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as (2.29). From an engineering point of view, these two ways of expression, (2.55)
and (2.56), do not make any significant difference as the random perturbation is
not infinitely fast, and these are used interchangeably.

From experiments, the velocity increments, dx, would be observed to diverge
from the trajectory expected by the deterministic parts of the model with the speed
corresponding to the variance of the process noise, w, as follows:

E{dp}? ~ a;m (2.57)

where the measurements are sampled at every At time interval. Suppose that the
estimated value of 6 is 4/0.5 m/s and At is equal to 0.01 seconds.

The next question is how to integrate the stochastic differential equation, (2.56).
Solving (2.56) is the simulation of the physical object. For each time interval,
[t b + Ab), wy is fixed to a constant and (2.58) becomes simply an ordinary
differential equation (ODE). Hence, it can be solved using the ODE solver. In the
computer simulation, w is replaced by the sampled random noise, wy, as follows:

PR PR (2.58)
m m

where w), is a constant between t € [f;,t, + Af) for k = 1,2, ..., and its variance is
given by

o
E{dp)? = E{wdt)* - 62At = 63 (A1} > 0, = —— (2.59)

VAt

As long as At is shorter than the mass-spring-damper system response speed cor-
responding to the bandwidth of the system, the sampled noise simulates the white
noise to the system reasonably close. wy, is sampled from the normal distribution
with the mean zero and the standard deviation, o,,, equal to \/ﬁ / \/m m/s3/2.
Once the integration is complete, save the solution, reset the initial condition equal
to the final value of the solution, and solve the differential equation for the next
time interval. Repeat this until the simulation time reaches the final time. These
steps are implemented in Programs 2.15 and 2.16 in MATLAB and Python, respec-
tively. The stochastic realization of the position and the velocity histories is shown
in Figure 2.18. Aware that we expect the trajectory to be different for every simu-
lation as w), changes randomly for each simulation.

clear;

m_mass = 1.0; %[kg]

k_spring = 0.5; %[N/m]

c_damper = 0.01; %[N/(m/s)]

msd_const = [m_mass k_spring c_damper];
init_pos = 0.0; %[m]

init_vel = 0.0; %[m/s]
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10
11| init_time = 0; %[s]
12| final_time = 60; %[s]

13

14| Delta_t = 0.01; %[s]

15

16| time_interval = [init_time final_time ];
17

18| num_w = floor ((final_time—init_time)/Delta_t)+1;
19| sigma_beta = sqrt(0.5);

20| sigma_w =sigma_beta/sqrt(Delta_t);

21| wk_noise = sigma_w=x(randn(num_w,1));

22
23| x0 [init_pos init_vel];
24| t0 = init_time;

25| tf = t0 + Delta_t;

26
27| tout_all = zeros(num_w,1);
28| xout_all = zeros(num_w,2);
29

30| tout_all (1) = tO;
31| xout_all(1,:) = x0;

32

33| for idx=2:num w

34

35 wk = wk_noise(idx);

36

37 [tout ,xout] = ode45(

38 @(time , state )msd_noisy(time, state ,wk, msd_const) ,...
39 [to tf],x0);

40

41 tout_all(idx) = tout(end);

42 xout_all(idx,:) = xout(end,:) ;
43

44 x0 = xout(end,:) ;

45

46 % time interval update

47 to = tf;

48 tf = t0 + Delta_t;

49

50| end

51

52| figure (1) ;

53| subplot(211);

54| plot(tout_all ,xout_all(:,1));
55| hold on;

56| axis ([ init_time final_time —-10 10]);
57| set(gca, FontSize’ ,12);

58| ylabel (’position [m]’);

59| xlabel ("time [s]’);

60| subplot(212);

61| plot(tout_all ,xout_all(:,2));
62| hold on;
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axis ([ init_time final_time -10 10]);
set(gca, FontSize’ ,12);
ylabel(’velocity [m/s]’);

xlabel (’time [s]’);

function dxdt = msd_noisy(time,state ,wk, msd_const)
x1 = state(1);
x2 = state(2);
m = msd_const(1);
k msd_const(2);
c msd_const(3);

dxdt = zeros(2,1);

dxdt(1) = x2;

dxdt(2) = —(k/m)*x1 — (c/m)=*x2 + wk;
end

Program 2.15 (MATLAB) Solve the stochastic mass-spring-damper system using
the ODE solver

import numpy as np
from scipy.integrate import solve_ivp

m_mass = 1.0 #[kg]

k_spring = 0.5 #[N/m]

c_damper = 0.1 #[N/(m/s)]

msd_const = [m_mass, k_spring, c_damper]
init_pos = 0.0 #[m]

init_vel = 0.0 #[m/s]

init_time = 0 #[s]
final_time = 60 #[s]

Delta_t = 0.01 #[s]

time_interval = [init_time, final_time]
num w = int((final_time—init_time)/Delta_t)+1
sigma_beta = np.sqrt(0.5)

sigma_w =sigma_beta/np.sqrt(Delta_t)
wk_noise = sigma_wsx*(np.random.randn (num_w) )

x0 = [init_pos, init_vel]

t0 = init_time

tf = t0 + Delta_t

tout_all = np.zeros(num_w)
xout_all = np.zeros((num_w,2))
tout_all[0] = tO

xout_all[0] = x0
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def msd_noisy(time,state ,wk, msd_const):
x1, x2 = state
m, k, ¢ = msd_const

dxdt = [x2,

—(k/m)*x1 — (c/m)*x2 + wk]
return dxdt
for idx in range(1l,num w):
wk = wk_noise[idx]
# RK45
sol = solve_ivp(msd_noisy,(t0, tf),x0,args=(wk, msd_const))

xout = sol.y.transpose()

tout_all[idx] = sol.t[-1]
xout_all[idx] = xout[-1]

x0 = xout[—-1];

# time interval update
to = tf
tf = t0 + Delta_t

import matplotlib.pyplot as plt

fig_ms, (ax_ms_0, ax_ms_1) = plt.subplots(nrows=2,ncols=1)
ax_ms_0.plot(tout_all, xout_all[:,0])
ax_ms_0.set_ylabel(r’$x(t)$’,fontsize=14)
ax_ms_0.set(xlim=(0, final_time),ylim=(-10,10))

ax_ms_1.plot(tout_all, xout_all[:,1])
ax_ms_1.set_ylabel(r’$\dot{x}(t)$’,fontsize=14)
ax_ms_1.set_xlabel(’time [s]’,fontsize=14)
ax_ms_1.set(xlim=(0, final_time),ylim=(-10,10))

Program 2.16 (Python) Solve the stochastic mass-spring-damper system using
the ODE solver

To implement the Kalman filter given in Algorithm 2.4, the physical system,
(2.58), is seen as the discrete form given by (2.52). Integrate (2.58) from ¢, to ¢,

=l 1 =l =ty
/ dx =—— (kx + cx)dt + / wy dt (2.60)
t=t, m Ji=, t=t,

where assume that At>" = 1, ; — t; is sufficiently small so that x(¢) and X(f) remain
constants during ¢ € [£;, ;).

KF
tk

K(tyy) — X(t) = [kx(ty) + cx(t)] AL + w AL (2.61)

1
m
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Figure 2.18 Stochastic MATLAB
simulations using the ODE " " "
solvers for At = 0.01
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It is important to be aware of the difference between At in (2.57) and At]IfF in the

Kalman filter. At is to simulate the stochastic mass-spring-damper system, (2.56),

in the computer, while Atlk(F is the time interval that the Kalman filter runs in the

on-board computer, which is possibly attached to the mass-spring-damper system.
The discrete form for the velocity is given by

k AtF c AtF
X1 = — e 1- - X + wy ALE (2.62)

Similarly,

X1 = X + X AL (2.63)
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In the state-space form,

1 ARF 0
[{‘kﬂ] - k [J,Ck] + [ KF] w; (2.64)
el |-k AT /mo 1 - (c AT /m| K] 1AL

In the Kalman filter algorithm design, the real system given by (2.56) is viewed
as (2.64).
Comparing (2.64) with (2.52), the following equation is identified:

0
Wy = [ KF] Wy
ALK

The covariance matrix of the system as seen in the Kalman filter is

0 0 0 0
QZE{WkWIZ} = [0 (AtII:F)zE{M}i}] = [0 (At]l{(F)zo_i] (265)

where At}fF is assumed to be constant, equal to 0.2 seconds, for all k € [1, ). Q is
used to propagate the error covariance from P;_l to P, in the prediction parts of
the Kalman filter in Algorithm 2.4.

The prediction of the states, X, and X, ,, in Algorithm 2.4, is performed by

= y M ] 2.66
[xk+l] [_(k Atk)/m 1-(c Atk)/m (2.66)

One last component to implement the Kalman filter is the sensor. Assume a sensor
to measure the position, x;, with the sampling frequency, At}fF, exists as follows:

Z =X, + Uy (2.67)

where the noise characteristic of the sensor, i.e. the standard deviation of v, 5, is
assumed to be equal to 0.75 m, which would be found in the sensor specifications.
Comparing (2.67) with (2.52), the following values are identified:

H=[1 0],R=0]

Figure 2.19 shows a time history example of the simulation scenario. The esti-
mated states for the position and the velocity follow the true states reasonably close
given that the noisy position measurements are indicated as the dots in the figure.

There is another important figure to be drawn for any Kalman filter simulations.
Recall (2.53), where the Kalman gain, K}, is to minimize the sum of the diagonal
terms of the error covariance, P, which is equal to

P, = E{Ax AX] ) (2.68)

The first and the second diagonal terms of P, are p;; = E{(Ax,)?} and
D1, = E{(Ax,)?}, respectively. +34/p;; and +34/p,, give the 36 bounds about
the error for the position and the velocity estimations, respectively. Given that
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Figure 2.19 The Kalman filter for the mass-spring-damper system.

the error distribution is also Gaussian, the 30 bounds provide a probabilistic
guarantee that the error has a 99.7% chance of staying within the boundary.

In practice, the true states are unknown, and the error is also unknown. In sim-
ulations, the true states are accessible, and an accurate evaluation of the filter
performance is made. As shown in Figure 2.20, the position error stays inside the
bounds most of the time, and the bounds are reasonably tight to the actual error
history. The velocity error is inside the bounds all the time, while the bounds are
rather wide for the given time history.

2.2.4 Extended Kalman Filter

Most autonomous vehicles use gyroscopes to provide angular velocity mea-
surements and optical sensors to provide absolute attitude measurements.
The gyroscope measurement is simulated with the white noise and the bias noise
in Figure 2.14. The main purpose of the Kalman filter in the attitude estimation
is to estimate the bias error, B, in the gyro measurements, (2.11), using optical
sensors and a dynamic model. The angular velocity measurement is corrected by
subtracting the bias error from the raw gyro measurement as follows:

o) = at) — Bt (2.69)
where @(t,) is the estimated angular velocity at t,, and B(t,) is the estimated
bias at ¢, from the Kalman filter to be designed. For the full detailed discus-
sions of the attitude estimation Kalman filter to be introduced in the following
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Figure 2.20 The Kalman filter states error and 3¢ bounds for the mass-spring-damper
system.

derivations, we refer the interested readers to Lefferts et al. (1982) and Crassidis
and Junkins (2011).

2.2.4.1 Error Dynamics

‘We obtain the governing differential equation for the error dynamics of attitude.
Define the error quaternion, 6q, equal to the quaternion between the estimated
and actual attitude. The dynamics of the error quaternion is given by Bani Younes
and Mortari (2019)

. 1 N 1
6q;5 = —5[6wx]6q13 - [@X]6q;5 + £5q45w (2.70a)

8q, = —%&oTan (2.70b)

where 6@ = ® — @. The error dynamics is non-linear and the original Kalman filter

for linear systems cannot be applied directly. To use the Kalman filter for non-

linear problems, non-linear dynamics is linearized. The technique is initially used

to estimate spacecraft orbit trajectories, and it is called the extended Kalman Filter
(EKF) (Grewal and Andrews, 2010).

For the linearization, assume that the magnitude of the error angle, |66, is small.

The approximation of error quaternion is as follows:
50

.00
1) =esin — ~e— 2.71a
di3 D) > ( )

6q, = cos % ~1 (2.71b)
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Also, the magnitude of error angular velocity, ||6®]|, is assumed to be small. The
non-linear error dynamics, (2.70), is linearized as follows:

6q,5 = —[@X]16q;5 + %50) (2.72a)
83, ~0 (2.72b)

where the higher order terms are ignored. The error angular velocity can be
expressed as

5a)=a)—(i)=(cb—ﬂ—nu)—(@—ﬁ)=—5ﬂ—'1u

where 68 = p — B, and the gyro measurement model, (2.11), is used. The error
dynamics, (2.72a), is re-written as

54y, ~ ~[@x16a,; - 236~ 31, @73)
or in the It6’s form,
d (5q,) = ~[@X15q3dt — %é)ﬁdt - %nudt
2.2.4.2 Bias Noise
While the bias is assumed to be constant in the estimated
Blte) = Bt (2.74)
the true bias follows (2.29). Subtract (2.74) from (2.29)
Btar) = Bllir) = Bt = B + M, (4 ) Al
The bias error dynamics is written using the definition of 6§ as follows:
0B(tyyr) = 6B(t) + m, ()AL
and in the It6’s form,
d(p)=mn, dt
or in the common form frequently used,
5p=n,

To avoid frequent division by 2 in the equations in the following derivations,
define

da = 25q,, = e 60 = [60, 50, 60;]"
which is equal to the small-angle rotation for each body axis, and (2.73) becomes

o6& = —[@X]oa —6p — 1,
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Finally, the governing differential equation for the EKF for QUEST is summarized
as follows:
d%AX = FAx + Gw, (2.75)

where
A [Sa] R [n] p= [—[mx] —13] e [—13 03] ’
op U 05 0, 0; I
and 0, is the 3 X 3 zero-matrix whose elements are all zero. The stochastic noise

vectors, 77, and 7,,, are the zero-mean Gaussian, and the covariances are given by
(2.26), 621, and (2.32), 621, respectively, i.e.

Em,n,) = 071, Em,my) = 0,1,

where the sensors towards three body frame directions have the same noise char-
acteristics, and the two noises are not correlated, hence,

E("u'lg) = 03

2.2.4.3 Noise Propagation in Error Dynamics
For the discrete version of the Kalman filter, the governing equation, (2.75), is
transformed into a discrete equation. Integrate (2.75) from ¢, to ¢, ., (Chen, 2009)

=l
AX(t,,) = e"MAX(L) + / e MGw (ndt (2.76)
t=t,
where Aty =, —t; and At =, —t for t € [, t,,,). The Taylor series expan-
sion of the exponential matrix up to the third order in At is given by

2 3 A A

My par+ Al Al [P ) DL @) (2.77)

2 0, I
where
2 3

®,(1,6) = I, — Afox] + ATt[(bx]z - A?t[(bx]S b (2.782)
2 3

@, (t, @) = AtI, — %[@x] + A?t[é)x]z . (2.78b)

Perform the integration in (2.76)
=l =l [, (L. & . (t. &
/ eFAtGWC dt = / [ 1t o), + D, (t, d)n, di =w,
=t 1=t Un

where

=ty =l
/ @, (t, @), di — / D, (L, d),
L

t=t,

=ty
/ n, dt
=t

=t
W, =
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In a compact form similar to (2.64),
Axy ;= PAX, + W, (2.79)

where ® = eF'2%. This is how the error dynamics, (2.79), is viewed in the Kalman
filter design. Unlike the state prediction for the linear Kalman filter, e.g. (2.66), it
would be surprising to see that the discrete error dynamics, (2.79), is not used to
propagate the states in the EKF for the QUEST. Two main purposes of the discrete
model are to obtain the state transition matrix, ®, which is performed already and
find stochastic properties of the process noise, w,. Specifically, we are to identify
the mean and the covariance of the noise. It is easily shown that E(w,) = 0.

The Kalman filter relies on the knowledge of the process noise covariance
matrix, i.e. E(wdwg). Calculating the covariance matrix by hand following the
formula shown above is tedious and prone to errors. Symbolic calculation in
the computer is a powerful method for performing this type of long algebraic
operation. For a single-axis rotation case, the covariance is derived in Farrenkopf
(1978). The following procedures extend the derivation to arbitrary rotational
motions in a three-dimensional space.

Symbolic math toolbox in MATLAB and Sympy in Python provide symbolic
math operation capabilities. Although the symbolic operation capabilities are yet
to be fully automatic, they could save time and minimize mistakes in derivations
when we use them properly. Program 2.17 is the MATLAB m-script to define all
symbols and the matrix for F, G, w, and e, where ef2! is expanded up to the
fourth order in At.

clear;

% symbols for omega, noise and the variances
syms wl w2 w3 Dt nvl nv2 nv3 nul nu2 nu3 real;
syms sgm2_u sgm2_v real; % these are variance, i.e. sigma-—squared

wx=[ 0 —w3 w2; w3 0 —wl; —w2 wl 0];
nv=[nvl;nv2;nv3];

nu=[nul;nu2;nu3];

we=[nv;nu];

F & G Matrices
[-wx —eye(3); zeros(3,6)];
[-eye(3) zeros(3); zeros(3) eye(3)];

% e™Ft}
Phi = eye(6) + F«Dt + (1/2)*(F"2)«Dt"2 + (1/6)*(F~3)«Dt"3 + (1/24)
«(FA4)*DtA4;

% wd before integral
wd = Phixwc;

% E(wd wd"T)

79



80

23
24
25
26
27
28
29
30
31

2 Attitude Estimation and Control

cov_wd = simplify(expand(wdxwd’));
Q_cov = sym(zeros(6));

eqn2=sgm2_u==nul”"2;
eqn3=sgm2_u==nu2”"2;
eqn4=sgm2_u==nu3”2;
eqn5=sgm2_v==nv1"2;
eqné=sgm2_v==nv2”"2;
eqn7=sgm2_v==nv3"2;

Program 2.17 (MATLAB) Process noise covariance Q derivation using symbolic
manipulations: Define variables

In line 23, simplify and expand commands in the symbolic math toolbox are
used. These two functions should be used frequently to help symbolic computing
in the computer. As the capability of symbolic computations is not perfect, it needs
some help when these operations should be performed. Consider the following
calculation:

>> syms X y real;
>> xx(y+1) — Xxy

syms is the keyword in MATLAB to define symbols. Two variables, x and y, are
defined and declared to be real variables. In the second line, we could expect x
because x(y + 1) —xy = xy + X — xy = x, but it is not. No automatic cancellation
occurs. It performs the simplification only when either

‘>> expand (x*(y+1) — xx*y)

or

‘>> simplify (xx(y+1) — x*y)

is explicitly called.
There is a difference between expand and simplify, for example,

‘>> expand(cos(x)"2+sin(x)"2)

returns the original expression without any further simplification, and

‘>> simplify (cos(x)"2+sin(x)"2)

returns 1, which is preferred. Without considering when and which one exe-
cutes, we apply these two commands whenever we perform some algebraic
manipulation so that they have their simplest form before the next symbolic
operation.
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In line 24, the symbolic 6 X 6 zero-matrix to store the covariance calculation
result is declared using the sym() command. From line 26, define o'i2 = E(r];) for
i=u,v and j = x,y,z using ‘==" notation, where the noise characteristics of the
sensor for each body axis are assumed to be equal to each other. ‘eqn2’ defines
62 = E(v2). These definitions are later used in symbolic calculations to substitute
v; for 0';.

Program 2.18 continues Program 2.17. Define eqn_1 equal to the first column
and the first low element of the inside the integration of wdwg and apply expand
to simplify the expression. As it is a polynomial, no further simplification occurs by
applying the simplify command. No harm to be done, of course, by calling the sim-
plification command apart from the additional computation done in the computer
giving the same result. In line 7, all v; isreplaced by 0'; using the equations defined
in Program 2.17, where ‘rhs(eqn2)’ means the right-hand side of ‘eqn2’, which is
equal to 62, and ‘lhs(eqn2)’ means the left-hand side of ‘eqn2’. subs command
substitutes one symbol by another one. For example, the following lines

>> syms X y x2 y2 real;
>> eqnl = x"2==x2

>> eqn2 = X2 4+ y"2 + X*y + X*X*y

>> subs(eqn2,{lhs(eqnl)},{rhs(eqnl)})

replace x? in ‘eqnl’ with x,, and the answer becomes x, + y + Xy + X,).

% (continue from Program 2.17)
syms qll real;

% symbolic calculation of the inside integral

eqn_l=qll==expand(cov_wd(1,1));

PPT_11 = subs(eqn_1,{rhs(eqn2),rhs(eqn3),rhs(eqn4),rhs(eqn5),rhs(
eqné6) ,rhs(eqn7)},{lhs(eqn2),lhs(eqn3),lhs(eqn4),lhs(eqn5),lhs(
eqn6) ,lhs(eqn7)});

PPT_11 = subs(rhs(PPT_11) ,{nvl,nv2,nv3,nul,nu2,nu3},{0,0,0,0,0,0});

% integral from t_k to t_k + Delta t
eqn_l=qll==expand(int (PPT_11,Dt,[0 Dt]));

% ignore higher order terms
Q_cov(1,1) = subs(rhs(eqn_1) ,{Dt"9,Dt"8,Dt"7,Dt"6,Dt"5,Dt
~4},{0,0,0,0,0,0});

Program 2.18 (MATLAB) Process noise covariance Q derivation using symbolic
manipulations: Substitutions and Integration

Multiple substitutions are performed with additional symbols to be replaced
provided as in line 7, Program 2.18. In the two lines of the substitutions, the expec-
tations are applied by replacing ’1i2j and n; with aiz and 0, respectively. In line 11,

81



82

2 Attitude Estimation and Control

the symbolic integration by ‘Dt’, which is equal to At, is performed. As ¢, =0,
Ly = Aty, At = At — t, and d(At) = —dt, the integration term in (2.76) becomes

=ty At=0
W, = / M Gw (tdt = e Gw, (AL, — Ab) [-d(AD)]

t=t;, At=Aty,

At=At,
= / "M Gw (AL, — ADd(AL)

Ar=0

Finally, the result is stored in the symbolic matrix defined earlier.
The same procedure is repeated for the rest of the eight elements of the covari-

ance matrix. We obtain the following result:

. AL AL AR
O'UAtk + T(Tu 13 —7()'“13 - ?Gu[mx]
E(w,w)) = (2.80)
A AL .
—TO'MI3 - Tau[a)x] O'uAtkI3

Introducing the assumption that the angular velocity, ||®||, is small enough such
that A3 [@x] is negligible compared to the other terms, then the covariance matrix
becomes

Ati Ati
O'gA[k + Tﬁi I3 —70'513
E(w,w)) = (2.81)
Ati s R
_761,113 UuAtkI3

In the covariance matrix, (2.81), the process noise in each direction of the body
frame is completely decoupled as the angular velocity is slow, while one in (2.80)
has the coupling terms through [@X]. For At, and ||@|| being sufficiently small,
where the higher order terms are all negligible, the covariance simply becomes
65Atkl3 0,

0; o 5Atkl3]
Now, each axis is decoupled, and the effect of 57, on 6 disappeared.

The Python program obtaining the first-row and the first-column element
of (2.80) is shown in Program 2.19. sympy is the mathematical symbolic calcula-
tion module. We import the five specific functions. symbols are the function to
define symbols, Matrix is to define symbolic matrices, simplify and expand are
the same roles as in MATLAB symbolic toolbox, and integrate is the symbolic
function integrator. Unlike the MATLAB program, line 23 in 2.17, the Python
program, line 24 in 2.19, is not expanded and simplified. We only expand and
simplify the first-row and the first-column element individually in line 28. As we
observed, the expansion and the simplification for the whole matrix takes a longer
computation time compared to the MATLAB commands, and it is not required to
apply the operations for the whole elements. The same applies to the MATLAB
operations to prevent long computation time for a single line, which requires a

E(w,w)) ~ [ (2.82)
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large memory to complete the operations. The substitution is not an independent
function in sympy but a method in the symbolic equation. ‘cov_wd_11" defined
in line 28 has the substitution method. ‘cov_wd_11.sub()’ in line 29 performs the
substitution. Finally, integrate at line 32 integrates ‘cov_wd_11" by ‘Dt’ from 0 to
‘Dt’ indicated by the tuple, ‘(Dt,0,Dt)’.

from sympy import symbols, Matrix, simplify, expand, integrate

wl, w2, w3, Dt, nvl, nv2, nv3, nul, nu2, nu3 = symbols(’wl w2 w3 Dt
nvl nv2 nv3 nul nu2 nu3’)

sgm2_u, sgm2_v = symbols(’sgm2_u sgm2_v’) # these are variance, i.e
sigma—squared

wx = Matrix([[ 0, —-w3, w2], [w3, 0, —-wl], [-w2, w1, O]])
nv = Matrix ([[nvl],[nv2],[nv3]])

nu = Matrix ([[nul],[nu2],[nu3]])

wc = Matrix([nv,nu])

# F & G Matrices

F
G

Matrix ([[ —wx,—Matrix.eye(3) ],[ Matrix.zeros(3,6)]])
Matrix ([[ — Matrix.eye(3), Matrix.zeros(3)],[ Matrix.zeros(3),
Matrix.eye(3)]])

# eMFt}
Phi = Matrix.eye(6) + F+Dt + (1/2)#(Fx#2)*(Dtx%2) + (1/6) +(Fx%3)x(
Dt*%3) + (1/24)*(Fx*4)*(Dtx%4)

# wd before integral
wd = Phi@wc

# E(wd wd"T)
wd_wd_T = wd@wd. transpose ()
Q_cov = Matrix.zeros(6)

# Q_11: integrate from 0 to Dt

cov_wd_11 = simplify (expand(wd_wd_T[0,0]))

cov_wd_11 = cov_wd_11.subs([[nul=**2,sgm2_u],[nu2**2,sgm2_u],[nu3
*%2,8gm2_u],[nvlxx2,sgm2_v],[nv2**2,sgm2_v],[nv3x%2,sgm2_v]])

cov_wd_11 = cov_wd_11.subs([[nul,0],[nu2,0],[nu3**2,0],[nvl,0],[nv2
,0],[nv3,0]])

cov_wd_11 integrate (cov_wd_11,(Dt,0,Dt))

cov_wd_11 simplify (expand(cov_wd_11))

cov_wd_11 cov_wd_11.subs ([[Dt**4,0],[Dt*x5,0],[Dt*x*6,0],[Dt
xx7,0],[Dt*+8,0],[Dt*x%9,0]])

cov_wd_11 = expand(cov_wd_11)

Q_cov[0,0] = cov_wd_11

Program 2.19 (Python) Process noise covariance Q derivation using symbolic
manipulations: Define variables and Integration
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2.2.4.4 State Transition Matrix, ®
The state transition matrices, @, and ®,, in (2.78) have the closed-form expres-
sions. Using the following identity:

[ox]* = ~[l®*[@x],
we show that the higher order terms satisfy the following equations:
[ox]* = —[|&|*[&x]?
[OX]° = ~llol*[@x]’ = [|&]|*[ox]
[ox]° = ||o]I*[@x]?

[&x]" = |o]I*[ox]* = —|l®||°[@x]

We replace the terms in @, or @, with the above equations and collect the terms

for [@x] and [@x]?, respectively. They are the Taylor series expansions of sin

and cos functions. Hence, the transition matrices are written as (Markley and

Crassidis, 2014)

sin(||®@||Af)
lloll

1 — cos(]|@]||At)

ol (2.83a)

@, = I, — [&x] [ + [ox]? [

®, = —LAL+ [0 [1 —cos(||@]|AD) | [ox]? [||a)||At - sm(||a)||At)]

lloll? llol?
(2.83b)

We carefully construct the transition matrix that performs the divisions by the power
of the angular velocity magnitude, i.e. ||®||P, for p = 1,2, 3. These should be used
only for ||@|| greater than e, which is a small positive number, for example, 0.0001,
and the following transition matrices are used for ||®|| <,

@, = I, — [@x]At (2.84a)

®, = —LAt (2.84b)
Or, for At sufficiently small for any feasible magnitudes of the angular velocity,
we use the simpler forms of the transition matrix above all the time.

2.2.4.5 Vector Measurements
Once in a while, a set of the vector measurements from optical sensors, e.g. star
sensors, arrive as follows:

tit0] [Carlatoirk] [V

B0 | = | CorlaIrg [ 4 | V2(5) (2.85)

] [Carlalry]| vt
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where the n-vector measurements, i'}'s,, are obtained from the sensor at time ¢, r;'3 is
the direction vector towards the identified object, e.g. a star, stored in a database,
and the direction cosine matrix, Cpyp, in terms of the quaternion is given in (2.37).
q(t,) is the current true quaternion that is unknown.

The discrete non-linear measurement equation is given by

z(t,) = h[qt)] + v(g) (2.86)
where
£t V() Carla(t)lry

z2(t) = (00| vty = V& |, hiq)] = | CerlaIg

Fy(t) V(%) Cprla(t)lry
and the covariance of the vector measurement noise, Ry, is assumed to be known as
R, = E [V(t)v' (1))]

which is uncorrelated with the noises in the gyroscopes.

Unlike the measurement equation for linear Kalman filter, (2.52), the matrix H is
not available, but the non-linear function h(-) is given. The corresponding H in the
non-linear measurement is obtained by the linearization procedures. Consider the
following i-th vector measurement,

z,(t) = F5(t,) = Cpplq(t)Iry + V(%)

for i=1,2,...,n. The direction cosine matrix is written using the current esti-
mated quaternion as follows:
Cprla(t)] = CpploqlCprlq(ty)] (2.87)

where B is the estimated attitude, and Cy is the direction cosine matrix between
the estimated and actual attitudes, whose quaternion is given by 6q = [(SqlT3 5q,17.

Apply the small attitude error assumption, (2.71), to the direction cosine matrix
using the definition in (2.37)

Cppléql = I, — 2[6q,53X] = I; — [6aX] (2.88)
where the higher order terms are neglected. Substitute (2.88) into (2.87)
Crla(t)] = Cipla(t)] — [6ax]Cpgla(ty)]
Multiply both sides by r;, and it becomes
Carla(tIry — Cpld@(t)Iry = —[6ax] { Corl@(t)Iry §
Let a = Cpgld(t;)]r%, then

—[bax]a = [ax]sa = [(Capl@(t)]ry)x] e
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Define Az; as follows:
Az(ty) = Cyg [q(tp)] T, — Cog [@(8)] T, = [(Corl@tIrp)x] sa,
fori=1,2,...,n. Therefore,
Az, (t,) [(Cprla(t)lrh)x] 0,

Az, = | A% | - | [(Corla@Irp)x] 0 bt _ H AX, (2.89)
: : 1|58
Az, (4) [(Cprl@tIrp)x| 05

and the expression for H, is established.

2.2.4.6 Summary
The linearized state-space form, (2.79), and the linearized measurement equation,
(2.89), are obtained as follows:

Ax, = PAX + W,
Az, = H Ax;

where © is given by (2.83) and (2.84), H, is given by (2.89), and Q = E[wdwg] is
given by (2.80).

2.2.4.7 Kalman Filter Update
When the vector measurements are available, update the Kalman gain, K, and
the estimation error covariance matrix, P, = E [AxkAxlf], as follows:

_ _ -1
K, =P H/ (H P H +Ry) (2.902)
P = (I, — K,Hy) P, (2.90b)
Ax, =K, [z, —h (a4 )] (2.90¢)
In the standard EKF, the following state update equation is used
X, =X + Ax,, (2.91)

which is the case for the bias estimation update as follows:
At A— ~—
Br =By + AB =By + [0; L] Ax, (2.92)

And the angular velocity is updated by (2.69).

The update equation, (2.91), is not, however, used for updating the quaternion.
As the quaternion is attitude information, it does have little physical meaning in
simple quaternion summation or subtraction. For the current quaternion esti-
mate, §,, and the error quaternion between the true and the current quaternions,
éqy, then, q, + 6q, does not have any clear physical interpretation to correct the
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error in the current quaternion estimate. Instead, acknowledge that the error
quaternion itself is an attitude, hence, the update should be done such that
rotating the current estimated quaternion with the amount of attitude indicated
by the current error quaternion estimated. This is done by the quaternion algebra
as follows that corresponds to the direction cosine matrix multiplication in (2.87)
(Wie, 2008):

e lq;akﬂsﬂq;s(rk)x]

q, =q, + - ] oq,5(t) (2.93)
—q15(8)

where

8q3(t) = 2 6o =2 [I; 03] Ax,

2.2.4.8 Kalman Filter Propagation
The quaternion is propagated as follows:

Ab, sin(A6,/2) | sin(A6,/2) |
COS — Iy — ———(—— |0 A~ n Y
2 [l |l [l |l .
. q, (2.94)
sin(A6,/2) Ab,
—— cos —
[l I 2

which is the analytic solution of the quaternion kinematic equation with the con-
stant angular velocity assumption, where A6, = ||@,||At. In addition, the bias is
propagated by

qk+1 =

e At
ﬁk+1 = ﬁk (2.95)
Finally, the error covariance, P, is propagated by
P, =® Pl +Q (2.96)

A summary of the quaternion and bias estimation Kalman filter is given in
Algorithm 2.5.

We must be careful in the implementation of (2.94) for the sinusoidal terms.
The sinusoidal terms divided by the magnitude of the angular velocity diverge to
infinity when the magnitude is equal to zero or close to zero. To avoid this issue,
robustly implement the sinusoidal terms considering the possibility to be divided
by zero. For example,

sin(|| @y || At/2) .
sin(A0,/2) | T for ||@|l > €

— = [l oIl
@]l A
At/2 for [[& ]l < &

where ¢ is a small positive number to be chosen appropriately, and the small angle
approximation, i.e. sin @ = 6 for 6 ~ 0, is used.
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Algorithm 2.5 Extended Kalman filter for quaternion estimation

1: Initialize
q;. Bo+ =0, &) =a, Pj =E(AXO Axg)

where, typically, the bias is set to zero, and the angular velocity is set to the
gyro measurement.

2: fork=1,2,...do

3 Correct the gyro measurement using (2.69): &(t;) = @(t;) — fi(tk)

4 Prediction: from ¢, _, to £,

5 Propagate the quaternion using (2.94), 4,

6: Propagate the bias using (2.95), B;

7 Propagate the error covariance using (2.96), P,

8 Update: when the measurement, z,, is available at f;,

9 Update K, P;, and Ax, using (2.90)

10: Update the bias using (2.92), §;

11: Update the quaternion using (2.93), q;

12: Substitute: when no measurement, z,, is available at f,
9 =9, B =B, Py =P,

13: end for

2.3 Attitude Dynamics and Control

2.3.1 Dynamics Equation of Motion

The angular velocity, , in the kinematic equation, (2.5), evolves governed by the
attitude dynamic equation of motion from Newton’s second law (N2L) of motion
as follows:

b=-I"ox(o)+]" )M, (2.97)
i

where J is the moment of inertia of vehicle and M is the i-th external torque,
which could also be the torque from attitude actuators. The moment of inertia is
defined by

_Jn —J, i3
J=-Jn Jn Iy

__J13 -y Jss
[/, > +22dm  —[ xydm —/ xz dm
=| —fywdm [ X+22dm [ yzdm (2.98)

| -/, xxdm  —[ yzdm [ x*+y*dm
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where x,y, and z are the coordinates of dm in the body frame. J is symmetric
and positive definite, i.e. all eigenvalues are strictly greater than zero. The positive
definiteness of J corresponds to the positiveness of mass. The definitions for the
off-diagonal terms, Jij for i # j, do not include the minus signs. It is also common
to define the off-diagonal terms including the minus signs. Hence, the off-diagonal
term definitions must be checked when the moment of inertia matrix is provided by
or to others.

Unlike the mass in translational motions, however, the moment of inertia is
a matrix. It has an evident difference compared to the mass. The direction of
the vector multiplied by the mass remains the same, but the direction of the
vector multiplied by the moment of inertia generally changes. For the trans-
lational velocity, v, the linear momentum, mv, remains the same direction as
the direction of v. For the rotational velocity, @, the direction of the angular
momentum (or the moment of momentum), Jw, is, in general, different from the
direction of the angular velocity vector. Only for some special cases, for example,
J is a sphere and its moment of inertia is equal to al,, where « is a positive
constant, and the direction of Jo = aw is the same as the angular velocity vector
direction.

Another property of the inertia matrix is

Ji <Jjj + T (2.99)

where (i,j, k) is (1,2,3), (2,1,3), or (3,1,2). The summation of any two diagonal
terms must be greater than the other term. The following proves that for
(i.j. k) =(2,1,3)

Ju+]33=/y2+z2 dm+'/x2+y2 dm
m m

=/x2+z2dm+2/y2dm=122+2/y2dm>122 (2.100)
m m m

and a similar way proves for the other two cases.

The N2L of motion applies to the rotational motion exactly the same as the
law to translational motion as indicated by the equivalency between them in
Table 2.1, where h is the angular momentum or the moment of momentum and
M is torque or moment. While N2L takes the derivative by time in the inertial
coordinates, the angular momentum, h, is written in the body coordinate, i.e. J
is in the body coordinates as it is a property of satellite, and o is expressed in the
body frame. The transport theorem applies to take the time derivative of a vector
expressed in the body frame relative to the inertial frame as follows (Schaub and
Junkins, 2018):

dON _d()P
Tdt T de

+ g X ()8 (2.101)
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Table 2.1 Translational and rotational motions.

Property Translation Rotation

15 -02 -1.2

Mass m = 2[kg] J=[-02 205 03 [[kgm?]
-1.2 0.3 13

Velocity V= [2 -2.5 3]T[m/s] »= [_0_3 5 3]T[rad/s]

Momentum p=mv h=Jo

Force F M

N2L F =dp/dt M = dh/dt

where d(-)V /dt or d(-)B/dt indicates that the time derivative is in the inertia frame
or the body frame, respectively, and wj is the angular velocity of B with respect to
N expressed in the body frame. Most of the confusion in the rotational dynamics
occurs in distinguishing the following differences:

e avector, X, expressed in N or B: X, or Xg
e a vector differentiated by time in N or B

All the following four combinations are possible:

d(XN)N d(XN)B d(XB)N or d(XB)B
dt 7 odr T odt dt
For example, a vector x could be expressed in B, and we want to calculate the
derivative in the inertial frame, i.e. d(xg)" /dt.

The time derivative in N2L must be in the inertial frame, i.e. d(-)V/dt, while
the vector to be differentiated could be expressed in the inertial frame or the body
frame. The derivative of the angular momentum expressed in the body frame must
be in the inertial frame as follows:

d(hp)"
dt
To obtain the derivative expressed in the body frame, apply the transport theorem
to the derivative of the angular momentum, h,
dhy)  d(hy)®
d — dt

(2.102)

+ g X (hp)® (2.103)
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In many engineering mechanics books, this derivative relationship is written in a
compressed form as

%=h+(oxh (2.104)
where the confusion originates. We avoid using this notation.

Applying Newton’s law, the following equation of motion is obtained:

dthpN  dlJe)s)"

. dr
As it is clear that all vectors in the leftmost and the rightmost sides are in the
body frame including @ and its derivative, we drop the superscript, B, indicating
the body frame expressions, and Euler’s rigid-body rotational dynamic equation of
motion is given by

M; =

o X (Jo) =Joog + oz X (Jog) (2.105)

Jo=-w0oXxX(Jw)+M (2.106)

where M is from the environment or actuators.

The equation of motion given in (2.106) is solved with the quaternion kinemat-
ics, (2.5). We modify MATLAB Program 2.1 and Python Program 2.2 to include
the rotational dynamics equation of motion. The angular velocity, e, is obtained
by solving (2.106). The moment of inertia matrix is given by

0.005 —0.001 0.004
J=|-0.001 0.006 -0.002| [kg m?], (2.107)
0.004 —0.002 0.004

which are the approximate values for a quadcopter unmanned aerial vehicle
(UAV) in Lee (2012). Let the initial angular velocity be zero and the initial quater-
nion equal to [0,0,0,1]7. Assume that the torque, M, in the body coordinates is
given by

0.00001 + 0.0005 sin 2t
M(t) = [ —0.00002 + 0.0001 cos 0.1t | [Nm] (2.108)
—0.0001

where t is in seconds.

2.3.1.1 MATLAB

The MATLAB program is given in 2.20. The differential equation includes dq/dt
and dw/dt. In line 18, the initial condition includes q(0) and @(0). In line 20, the
max step size option is set to 0.01, which restricts the integration time interval
smaller than 0.01. It would prevent sparse time resolution that might occur in
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some cases. The two functions implemented, dq/dt and de/dt, are separate, and
they merge into one set of differential equations in dqdt_dwdt function, which is
passed to ode45. The time histories of the quaternion and the angular velocity are
shown in Figure 2.21.

clear;

init_time = 0; % [s]
final_time = 10.0; % [s]
time_interval = [init_time final_time];

J_inertia = [0.005 —0.001 0.004;
-0.001 0.006 -0.002;
0.004 -0.002 0.004];
% vehicle moment of inertia [kg m 2]
J_inv = inv(J_inertia);

J_inv_J_inertia = [J_inertia; J_inv];

q0 = [0 0 0 1]’; % initial quaternion
w0 = [0 0 0]’; % initial angular velocity

state_0 = [q0; wO0]; % states including q0 and omega0
ode_options = odeset(’RelTol’,1e—-6,  AbsTol’,1e-9, ’MaxStep’, 0.01);
[tout,state_out] = ode45(@(time,state) dqdt_dwdt(time, state ,
J_inv_J_inertia),
time_interval , state_0, ode_options);
qout = state_out(:,1:4);
wout = state_out(:,5:7);

% : (plot commands are left as an exercise)

function dstate_dt = dqdt_dwdt(time,state ,J_inv_J_inertia)

g_current = state(1:4);
q_current = q_current(:)/norm(q_current);

w_current = state(5:7);
w_current = w_current(:);

J_inertia = J_inv_J_inertia(1:3,:);
inv_J = J_inv_J_inertia(4:6,:);

M_torque = [ 0.000014+0.0005xsin(2xtime) ;
—0.00002+0.0001%cos(0.1xtime);
—-0.0001]; % [Nm]

dqdt = dqdt_attitude_kinematics(q_current,w_current);




47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

70
71
72
73

2.3 Attitude Dynamics and Control

dwdt = dwdt_attitude_dynamics(w_current, J_inertia, inv_J,
M_torque);
dstate_dt = [dqdt(:); dwdt(:) ];
end
function dqdt = dqdt_attitude_kinematics(q_true,w_true)

q_true = q_true(:);

w_true = w_true(:);

wx =] 0 —w_true(3) w_true(2);
w_true(3) 0 —w_true(1);
—w_true(2) w_true(1) 0];

Omega = | —WX w_true;

—w_true’ 0];
dqdt = 0.5%xOmegaxq_true;
end

function dwdt = dwdt_attitude_dynamics(w_true, J_inertia,
inv_J_inertia, M_torque)
w_true = w_true(:);
Jw = J_inertiaxw_true;
Jw_dot = —cross(w_true,Jw) + M_torque(:);

dwdt = inv_J_ inertiaxJw_dot;
end

Program 2.20 (MATLAB) Simulate rotational dynamics of quadcopter UAV
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Figure 2.21 Attitude dynamics and kinematics solutions.
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2 Attitude Estimation and Control

2.3.1.2 Python

While function definitions in MATLAB m-scripts must appear at the end of the
scripts with no restrictions in the order of appearance, a Python function definition
in Python scripts must appear before the function is used. In line 68 of Program
2.21, the relative tolerance, the absolute tolerance, and the maximum integration
step size are set using rtol, atol, and max_step, respectively. ‘J_inertia’ and ‘J_inv’
for J and J~! are stacked vertically using the numpy vstack command to make the
6 X 3 matrix, which is passed to the ODE solver using args argument in line 69.

import numpy as np
from numpy import linspace
from scipy.integrate import solve_ivp

init_time = 0 # [s]

final_time = 10.0 # [s]

num_data = 200

tout = linspace(init_time, final time , num_data)

J_inertia = np.array([[0.005, —0.001, 0.004],
[-0.001, 0.006, —0.002],
[0.004, —0.002, 0.004]])

J_inv = np.linalg.inv(J_inertia)

J_inv_J_inertia = np.vstack((J_inertia ,J_inv))

q0 np.array([0,0,0,1])
w0 = np.array([0,0,0])

state_0 = np.hstack ((q0,w0))

def dqdt_attitude_kinematics(q_true, w_true):
quat=q_true

wx=np.array ([[0, —w_true[2], w_true[1]],
[w_true[2], 0, -w_true[0]],
[-w_true[1], w_true[O], 0]])

Omega_13 = np. hstack((—wx,np.resize(w_true,(3,1))))
Omega_4 = np.hstack((—w_true,0))

Omega = np.vstack ((Omega_13, Omega_4))

dqdt = 0.5%(Omega@quat)

return dqdt
def dwdt_attitude_dynamics(w_true,J_inertia ,inv_J_inertia, M_torque
):

Jw = J_inertia@w_true
Jw_dot = —np.cross(w_true,Jw) + M_torque
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2.3 Attitude Dynamics and Control

dwdt = inv_J_inertia@Jw_dot

return dwdt

def dqdt_dwdt(time,state ,J_inv_J_inertia):

q_current = state [0:4]

q_current = q_current/np.linalg.norm(q_current)
w_current = state [4::]

J_inertia = J_inv_J_inertia[0:3,:]

J_inv = J_inv_J_inertia [3::,:]

M_torque = np.array([0.00001+0.0005*np.sin(2*time),
—0.00002+0.0001*np.cos(0.75«time),

—-0.0001])
dqdt = dqdt_attitude_kinematics(q_current, w_current)
dwdt = dwdt_attitude_dynamics(w_current, J_inertia, J_inv,
M_torque)

dstate_dt = np.hstack ((dqdt,dwdt))
return dstate_dt

sol = solve_ivp(dqdt_dwdt, (init_time , final_time), state_O,
t_eval=tout,
r_tol=le—-6, atol=1le-9, max_step=0.01,
args=(J_inv_J_inertia ,))

qout = sol.y[0:4,:]
wout = sol.y[4::,:]
#  :(plot commands are left as an exercise)

Program 2.21 (Python) Simulate rotational dynamics of quadcopter UAV

2.3.2 Actuator and Control Algorithm

Quadcopters have been widely used for many purposes typically equipped with
four identical motors driving four propellers as shown in Figure 2.22. From the
free-body diagram in Figure 2.22, the torques in x; and y; directions are given by
Beard (2008)

M,=L(F,—F,) =L AF,, (2.109a)
M, =L(F; - F,) =L AF, (2.109b)

where L is the length from the centre of the body frame to the centre of the pro-
peller, F; and F, are the forces generated by the propellers in the forward and
the backward of the quadcopter, respectively, and F, and F, are the forces in the
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Back
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Gravitational of'mass
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Figure 2.22 Quadcopter UAV with the four actuators, where the body frame and the
reference frame are indicated by B and R, respectively, and the positive direction of z, is
the same as z; so that they are aligned in the primary stabilized attitude.

left-hand side and the right-hand side of the quadcopter, respectively. The torque
in zy is produced by the reaction torque by the motor torque as follows:

My=t+1,—1, -7, = At (2.110)

where 7,, 7,, 77, and 7, are the motor torque acting on the body of the quad-
copter, whose direction is the opposite to the rotational direction of each propeller.
The rotational directions of the front and the back propellers are the opposite
of zg. The directions of the left and the right propellers are in the same direction
as z. The desired moment, M;, M,, and M,, the desired force differences, AF,,
and Abe, and the desired torque difference, Az, are to be determined by the con-
trol algo