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Preface

This book is a slightly extended elaboration of a course on commutative ring
theory and plane algebraic curves that I gave several times at the Univer-
sity of Regensburg to students with a basic knowledge of algebra. I thank
Richard Belshoff for translating the German lecture notes into English and
for preparing the numerous figures of the present text.

As in my book Introduction to Commutative Algebra and Algebraic Geom-
etry, this book follows the philosophy that the best way to introduce commu-
tative algebra is to simultaneously present applications in algebraic geometry.
This occurs here on a substantially more elementary level than in my earlier
book, for we never leave plane geometry, except in occasional notes without
proof, as for instance that the abstract Riemann surface of a plane curve is
“actually” a smooth curve in a higher-dimensional space. In contrast to other
presentations of curve theory, here the algebraic viewpoint stays strongly in
the foreground. This is completely different from, for instance, the book of
Brieskorn–Knörrer [BK], where the geometric–topological–analytic aspects
are particularly stressed, and where there is more emphasis on the history
of the subject. Since these things are explained there in great detail, and with
many beautiful pictures, I felt relieved of the obligation to go into the topolog-
ical and analytical connections. In the lectures I recommended to the students
that they read the appropriate sections of Brieskorn–Knörrer [BK]. The book
by G. Fischer [F] can also serve this purpose.

We will study algebraic curves over an algebraically closed field K. It is
not at all clear a priori, but rather to be regarded as a miracle, that there
is a close correspondence between the details of the theory of curves over C
and that of curves over an arbitrary algebraically closed field. The parallel
between curves over fields of prime characteristic and over fields of charac-
teristic 0 ends somewhat earlier. In the last few decades algebraic curves of
prime characteristic made an entrance into coding theory and cryptography,
and thus into applied mathematics.

The following are a few ways in which this course differs from other in-
troductions to the theory of plane algebraic curves known to me: Filtered
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algebras, the associated graded rings, and Rees rings will be used to a great
extent, in order to deduce basic facts about intersection theory of plane curves.
There will be modern proofs for many classical theorems on this subject. The
techniques which we apply are nowadays also standard tools of computer al-
gebra.

Also, a presentation of algebraic residue theory in the affine plane will be
given, and its applications to intersection theory will be considered. Many of
the theorems proved here about the intersection of two plane curves carry over
with relatively minor changes to the case of the intersection of n hypersurfaces
in n-dimensional space, or equivalently, to the solution sets of n algebraic
equations in n unknowns.

The treatment of the Riemann–Roch theorem and its applications is based
on ideas of proofs given by F.K. Schmidt in 1936. His methods of proof are
an especially good fit with the presentation given here, which is formulated
in the language of filtrations and associated graded rings.

The book contains an introduction to the algebraic classification of plane
curve singularities, a subject on which many publications have appeared in
recent years and to which references are given. The lectures had to end at some
point, and so resolution of singularities was not treated. For this subject I refer
to Brieskorn–Knörrer or Fulton [Fu]. Nevertheless I hope that the reader will
also get an idea of the problems and some of the methods of higher-dimensional
algebraic geometry.

The present work is organized so that the algebraic facts that are used
and that go beyond a standard course in algebra are collected together in
Appendices A–L, which account for about one-third of the text and are re-
ferred to as needed. A list of keywords in the section “Algebraic Foundations”
should make clear what parts of algebra are deemed to be well-known to the
reader. We always strive to give complete and detailed proofs based on these
foundations

My former students Markus Nübler, Lutz Pinkofsky, Ulrich Probst, Wolf-
gang Rauscher and Alfons Schamberger have written diploma theses in which
they have generalized parts of the book. They have contributed to greater
clarity and better readability of the text. To them, and to those who have
attended my lectures, I owe thanks for their critical comments. My colleague
Rolf Waldi who has used the German lecture notes in his seminars deserves
thanks for suggesting several improvements.

Regensburg
December 2004 Ernst Kunz



Conventions and Notation

(a) By a ring we shall always mean an associative, commutative ring with
identity.

(b) For a ring R, let SpecR be the set of all prime ideals p �= R of R (the
Spectrum of R). The set of all maximal (minimal) prime ideals will be
denoted by MaxR (respectively MinR).

(c) A ring homomorphism ρ : R → S shall always map the identity of R to
the identity of S. We also say that S/R is an algebra over R given by ρ.
Every ring is a Z-algebra.

(d) For an algebra S over a field K we denote by dimK S the dimension of S
as a K-vector space.

(e) For a polynomial f in a polynomial algebra R[X1, . . . , Xn], we let deg f
stand for the total degree of f and degXi

f the degree in Xi.
(f) If K is a field, K(X1, . . . , Xn) denotes the field of rational functions in

the variables X1, . . . , Xn over K (the quotient field of K[X1, . . . , Xn]).
(g) The minimal elements in the set of all prime ideals containing an ideal I

are called the minimal prime divisors of I.
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1

Affine Algebraic Curves

This section uses only a few concepts and facts from algebra. It assumes a certain
familiarity with polynomial rings K[X1, . . . , Xn] over a field, in particular that K[X]
is a principal ideal domain, and that K[X1, . . . , Xn] is a unique factorization domain
in general. Also, ideals and quotient rings will be used. Finally, one must know that
an algebraically closed field has infinitely many elements.

We will study algebraic curves over an arbitrary algebraically closed field K.
Even if one is only interested in curves over C, the investigation of the Z-
rational points of curves by “reduction mod p” leads into the theory of curves
over fields with prime characteristic p. Such curves also appear in algebraic
coding theory (Pretzel [P], Stichtenoth [St]) and cryptography (Koblitz [K],
Washington [W]).

A2(K) := K2 denotes the affine plane overK, andK[X,Y ] the polynomial
algebra in the variables X and Y over K. For f ∈ K[X,Y ], we call

V(f) := {(x, y) ∈ A2(K) | f(x, y) = 0}

the zero set of f . We set D(f) := A2(K) \ V(f) for the set of points where f
does not vanish.

Definition 1.1. A subset Γ ⊂ A2(K) is called a (plane) affine algebraic curve
(for short: curve) if there exists a nonconstant polynomial f ∈ K[X,Y ] such
that Γ = V(f). We write Γ : f = 0 for this curve and call f = 0 an equation
for Γ .

If K0 ⊂ K is a subring and Γ = V(f) for a nonconstant polynomial
f ∈ K0[X,Y ], we say that Γ is defined over K0 and call Γ0 := Γ ∩K2

0 the set
of K0-rational points of Γ .

Examples 1.2.

(a) The zero sets of linear polynomials aX + bY + c = 0 with (a, b) �= (0, 0)
are called lines. If K0 ⊂ K is a subfield and a, b, c ∈ K0, then the line
g : aX + bY + c = 0 certainly possesses K0-rational points. Through two
different points of A2(K0) there is exactly one line (defined over K0).

(b) If Γ1, . . . , Γh are algebraic curves with equations fi = 0 (i = 1, . . . , h),
then Γ := ∪h

i=1Γi is also an algebraic curve. It is given by the equation∏h
i=1 fi = 0. In particular, the union of finitely many lines is an algebraic

curve (see Figure 1.1).
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Fig. 1.1. The union of finitely many lines is an algebraic curve.

(c) Let Γ = V(f) with a nonconstant f ∈ K[Y ] (so f does not depend on X).
The decomposition of f into linear factors

f = c ·
d∏

i=1

(Y − ai) (c ∈ K∗ := K \ {0}, a1, . . . , ad ∈ K)

shows that Γ is the union of lines gi : Y − ai = 0 parallel to the X-axis.
(d) The zero sets of quadric polynomials

f = aX2+bXY +cY 2+dX+eY +g (a, b, . . . g ∈ K; (a, b, c) �= (0, 0, 0))

are called quadrics. In case K = C, K0 = R we get the conic sections,
whose R-rational points are shown in Figures 1.2 through 1.5. Defined

Fig. 1.2. Ellipse: X
2

a2 + Y
2

b2
= 1,

(a, b ∈ R+)
Fig. 1.3. Hyperbola: X

2

a2 − Y
2

b2
= 1,

(a, b ∈ R+)

Fig. 1.4. Parabola: Y = aX2,
(a ∈ R+)

Fig. 1.5. Line pair: X2 − Y 2 = 0



1 Affine Algebraic Curves 5

as sections of a cone with a plane, they were thoroughly studied in an-
cient Greek mathematics. Many centuries later, they became important
in Kepler’s laws of planetary motion and in Newton’s mechanics. Unlike
the R-rational points, questions about the Q-rational points of quadrics
have, in general, nontrivial answers (cf. Exercises 2–4).

(e) The zero sets of polynomials of degree 3 are called cubics. The R-rational
points of some prominent cubics are sketched in Figures 1.6 through 1.9.
Cubic curves will be discussed in 7.17 and in Chapter 10.

Fig. 1.6. Neil’s semicubical parabola:
X3 − Y 2 = 0

Fig. 1.7. Folium of Descartes:
X3 + X2 − Y 2 = 0

Fig. 1.8. Cissoid of Diocles:
Y 2(1 − X) − X3 = 0

Fig. 1.9. Elliptic curve in Weierstraß
normal form (e1 < e2 < e3 real):
Y 2 = 4(X − e1)(X − e2)(X − e3)

(f) Some curves with equations of higher degrees are sketched in Figures 1.10
through 1.15. For the origin of these curves and the others indicated above,
one can consult the book by Brieskorn–Knörrer [BK]. See also Xah Lee’s
“Visual Dictionary of Special Plane Curves” http://xahlee.org, and the
“Famous Curves Index” at the MacTutor History of Mathematics archive
http://www-history.mcs.st-and.ac.uk/history.

(g) The Fermat curve Fn (n ≥ 3) is given by the equation Xn + Y n = 1. It
is connected with some of the most spectacular successes of curve theory
in recent years. Fermat’s last theorem (1621) asserted that the only Q-
rational points on this curve are the obvious ones: (1, 0) and (0, 1) in
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Fig. 1.10. Lemniscate:
X2(1 − X2) − Y 2 = 0

Fig. 1.11. Conchoid of Nichomedes:
(X2 + Y 2)(X − 1)2 − X2 = 0

Fig. 1.12. Cardioid:
(X2 + Y 2 + 4Y )2 − 16(X2 + Y 2) = 0

Fig. 1.13. Union of two circles:
(X2−4)2+(Y 2−9)2+2(X2+4)(Y 2−

9) = 0

Fig. 1.14. Three-leaf rose:
(X2 + Y 2)2 + 3X2Y − Y 3 = 0

Fig. 1.15. Four-leaf rose:
(X2 + Y 2)3 − 4X2Y 2 = 0

case n is odd; and (±1, 0), (0,±1) in case n is even. G. Faltings [Fa]
in 1983 showed that there are only finitely many Q-rational points on
Fn, a special case of Mordell’s conjecture proved by him. In 1986 G. Frey
observed that Fermat’s last theorem should follow from a conjecture about
elliptic curves (the Shimura–Taniyama theorem), for which Andrew Wiles
(see [Wi], [TW]) gave a proof in 1995, hence also proving Fermat’s last
theorem. These works are far beyond the scope of the present text. The
reader interested in the history of the problem and its solution may enjoy
Simon Singh’s bestselling book Fermat’s last theorem [Si].

Having seen some of the multifaceted aspects of algebraic curves, we turn
now to the general theory of these curves. The examples X2 + Y 2 = 0 and
X2 + Y 2 + 1 = 0 show that the set of R-rational points of a curve can be
finite, or even empty. For points with coordinates in an algebraically closed
field, however, this cannot happen.
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Theorem 1.3. Every algebraic curve Γ ⊂ A2(K) consists of infinitely many
points, and also A2(K) \ Γ is infinite.

Proof. Let Γ = V(f) with f = a0 + a1X + · · · + apX
p, where ai ∈ K[Y ]

(i = 0, . . . , p) and ap �= 0. If p = 0, we are in the situation of Example 1.2
(c) above, and since an algebraically closed field has infinitely many elements,
there is nothing more to be shown. Therefore, let p > 0. Since ap has only
finitely many zeros in K, there are infinitely many y ∈ K with ap(y) �= 0.
Then

f(X, y) = a0(y) + a1(y)X + · · · + ap(y)X
p

is a nonconstant polynomial in K[X ]. If x ∈ K is a zero of this polynomial,
then (x, y) ∈ Γ ; therefore, Γ contains infinitely many points. If x ∈ K is not
a zero, then (x, y) ∈ D(f), and therefore there are also infinitely many points
in A2(K) \ Γ .

An important theme in curve theory is the investigation of the intersection
of two algebraic curves. Our first instance of this is furnished by the following
theorem. It assumes a familiarity with unique factorization domains.

Theorem 1.4. Let f and g be nonconstant relatively prime polynomials in
K[X,Y ]. Then

(a) V(f) ∩ V(g) is finite. In other words, the system of equations

f(X,Y ) = 0, g(X,Y ) = 0

has only finitely many solutions in A2(K).
(b) The K-algebra K[X,Y ]/(f, g) is finite-dimensional.

For the proof we will use

Lemma 1.5. Let R be a UFD with quotient field K. If f, g ∈ R[X ] are rela-
tively prime, then they are also relatively prime in K[X ], and there exists an
element d ∈ R \ {0} such that

d = af + bg

for some polynomials a, b ∈ R[X ].

Proof. Suppose that f = αh, g = βh for polynomials α, β, h ∈ K[X ], where h
is not a constant polynomial. Since any denominators that appear in h may
be brought over to α and β, we may assume that h ∈ R[X ]. We then write

α =
∑
αiX

i, β =
∑
βjX

j (αi, βj ∈ K).

Let δ ∈ R \ {0} be the least common denominator for the αi and βj . Then we
have

δf = φh, δg = ψh
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with φ := δα ∈ R[X ], ψ := δβ ∈ R[X ]. A prime element of R that divides
δ cannot simultaneously divide φ and ψ, since δ was chosen to be the least
common denominator. It follows that every prime factor of δ must divide
h. Consequently, δ is a divisor of h, and there are equations f = φh1 and
g = ψh1 for some nonconstant polynomial h1 ∈ R[X ]. This is a contradiction,
and therefore f and g are also relatively prime in K[X ].

In K[X ] we then have an equation

1 = Af +Bg (A,B ∈ K[X ]).

Multiplying through by a common denominator for all the coefficients of A
and B, we get an equation d = af + bg with a, b ∈ R[X ], and d �= 0.

Proof of 1.4:

(a) By Lemma 1.5 we have equations

(1) d1 = a1f + b1g, d2 = a2f + b2g,

with d1 ∈ K[X ] \ {0}, d2 ∈ K[Y ] \ {0}, and ai, bi ∈ K[X,Y ] (i = 1, 2). If
(x, y) ∈ V(f) ∩ V(g), then x is a zero of d1 and y is a zero of d2. Therefore,
there can be only finitely many (x, y) ∈ V(f) ∩ V (g).

(b) Suppose the polynomial dk in (1) has degree mk (k = 1, 2). Divid-
ing a polynomial F ∈ K[X,Y ] by d1 using the division algorithm gives us
an equation F = Gd1 + R1, where G,R1 ∈ K[X,Y ] and degX R1 < m1.
Similarly, we have R1 = Hd2 + R2, where H,R2 ∈ K[X,Y ], degX R2 < m1,
and degY R2 < m2. It follows that F ≡ R2 mod(f, g). Let ξ, η be the residue
classes of X,Y in A := K[X,Y ]/(f, g). Then {ξiηj | 0 ≤ i < m1, 0 ≤ j < m2}
is a set of generators for A as a K-vector space.

Using Theorem 1.4 one sees, for example, that a line g intersects an alge-
braic curve Γ in finitely many points or else is completely contained in Γ ; for
if Γ = V(f), then the linear polynomial g is either a factor of f , or f and g
are relatively prime. (In this simple case there is, of course, a direct proof that
does not use Theorem 1.4.) The sine curve cannot be the real part of an alge-
braic curve in A2(C) because there are infinitely many points of intersection
with the X-axis.

Next we will investigate the question of which polynomials can define a
given algebraic curve Γ . Let f = 0 be an equation for Γ . We decompose f
into a product of powers of irreducible polynomials:

f = cfα1
1 · · · fαh

h (c ∈ K∗, fi ∈ K[X,Y ] irreducible, αi ∈ N+).

Here fi and fj are not associates if i �= j.

Definition 1.6. J (Γ ) := {g ∈ K[X,Y ] | g(x, y) = 0 for all (x, y) ∈ Γ} is
called the vanishing ideal of Γ .
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Theorem 1.7. J (Γ ) is the principal ideal generated by f1 · · · fh.

Proof. It is clear that Γ = V(f1 · · · fh) = V(f1) ∪ · · · ∪ V(fh) and therefore
f1 · · · fh ∈ J (Γ ). If g ∈ J (Γ ), it follows that Γ ⊂ V(g). Suppose fj , for some
j ∈ {1, . . . , h}, were not a divisor of g. Then the set V(fj) = V(fj) ∩ V(g)
would be finite by 1.4. But this cannot happen by 1.3. Therefore f1 · · · fh is a
divisor of g and J (Γ ) = (f1 · · · fh).

Definition 1.8. Given J (Γ ) = (f) with f ∈ K[X,Y ], we call f a min-
imal polynomial for Γ . Its degree is called the degree of Γ , and K[Γ ] :=
K[X,Y ]/(f) is called the (affine) coordinate ring of Γ .

The minimal polynomial is uniquely determined by Γ up to a constant
factor from K∗, so the degree of Γ is well-defined. Theorem 1.7 shows us how
to get a minimal polynomial for Γ given any equation f = 0 for Γ . Conversely,
it is also clear which polynomials define Γ .

We call a polynomial in K[X,Y ] reduced if it does not contain the square
of an irreducible polynomial as a factor.

From 1.7 we infer the following.

Corollary 1.9. The algebraic curves Γ ⊂ A2(K) are in one-to-one correspon-
dence with the principal ideals of K[X,Y ] generated by nonconstant reduced
polynomials.

In the following let Γ ⊂ A2(K) be a fixed algebraic curve.

Definition 1.10. Γ is called irreducible if whenever Γ = Γ1∪Γ2 for algebraic
curves Γi (i = 1, 2), then Γ = Γ1 or Γ = Γ2.

Theorem 1.11. Let f be a minimal polynomial for Γ . Then Γ is irreducible
if and only if f is an irreducible polynomial.

Proof. Let Γ be irreducible and suppose f = f1f2 for some polynomials fi ∈
K[X,Y ] (i = 1, 2). Then Γ = V(f1) ∪ V(f2). If f1 and f2 were not constant,
then we would have V(f1) = Γ or V(f2) = Γ . But then it would follow that
f1 ∈ (f) or f2 ∈ (f), and this cannot happen, since the fi are proper factors
of f . Therefore, f is an irreducible polynomial.

Conversely, suppose f is irreducible and let Γ = Γ1∪Γ2 be a decomposition
of Γ into curves Γi (i = 1, 2). If fi is a minimal polynomial for Γi, then
f ∈ J (Γi) = (fi), i.e., f is divisible by f1 (and by f2). Since f is irreducible,
we must have that f is an associate of fi for some i, and therefore Γ = Γi.
Hence Γ is irreducible.

Among the examples above one finds many irreducible algebraic curves.
One can check, using appropriate irreducibility tests, that their defining poly-
nomials are irreducible.



10 1 Affine Algebraic Curves

Corollary 1.12. The following statements are equivalent:

(a) Γ is an irreducible curve.
(b) J (Γ ) is a prime ideal in K[X,Y ].
(c) K[Γ ] is an integral domain.

The irreducible curves Γ ⊂ A2(K) are in one-to-one correspondence with the
principal ideals �= (0), (1) in K[X,Y ] that are simultaneously prime ideals.

Theorem 1.13. Every algebraic curve Γ has a unique (up to order) repre-
sentation

Γ = Γ1 ∪ · · · ∪ Γh,

where the Γi are irreducible curves (i = 1, . . . , h) corresponding to the decom-
position of a minimal polynomial of Γ into irreducible factors.

The proof of the uniqueness starts with an arbitrary representation Γ =
Γ1∪· · ·∪Γh. If f , respectively fi, is a minimal polynomial of Γ , respectively Γi

(i = 1, . . . , h), then (f) = (f1 · · · fh), because f and f1 · · · fh are reduced poly-
nomials with the same zero set. The fi are therefore precisely the irreducible
factors of f , and as a result, the Γi are uniquely determined by Γ .

We call the Γi the irreducible components of Γ . Theorem 1.4 (a) can now be
reformulated to say: Two algebraic curves that have no irreducible components
in common intersect in finitely many points.

The previous observations allow us to make the following statements about
the prime ideals of K[X,Y ].

Theorem 1.14.

(a) The maximal ideals of K[X,Y ] are in one-to-one correspondence with
the points of A2(K): Given a point P = (a, b) ∈ A2(K), then MP :=
(X − a, Y − b) ∈ MaxK[X,Y ], and every maximal ideal is of this form
for a uniquely determined point P ∈ A2(K).

(b) The nonmaximal prime ideals (�= (0), (1)) of K[X,Y ] are in one-to-one
correspondence with the irreducible curves of A2(K): These are exactly the
principal ideals (f) generated by irreducible polynomials.

Proof. The K-homomorphism K[X,Y ] → K, where X �→ a and Y �→ b is
onto and has kernel MP . Since K[X,Y ]/MP

∼= K is a field, MP is a maximal
ideal.

Now let p ∈ SpecK[X,Y ], p �= (0). Then p contains a nonconstant polyno-
mial and therefore also contains an irreducible polynomial f . If p = (f), then
p is not maximal, for p ⊂ MP for all P ∈ V(f) and V(f) contains infinitely
many points P by 1.3.

On the other hand, if p is not generated by f , then p contains a polynomial
g that is not divisible by f . As in the proof of 1.4 we have two equations of
the form (1). Since d1 ∈ K[X ] decomposes into linear factors, p contains a
polynomial X − a for some a ∈ K. Similarly, p contains a polynomial Y − b
(b ∈ K), and it follows that p = (X − a, Y − b).
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If Γ is an algebraic curve, then the maximal ideals of K[X,Y ] that con-
tain J (Γ ) are precisely the MP for which P ∈ Γ . The other elements of
SpecK[X,Y ] that contain an arbitrary Γ are the J (Γi), where the Γi are
the irreducible components of Γ . The coordinate ring K[Γ ] of Γ “knows” the
points of Γ and the irreducible components of Γ :

Corollary 1.15.

(a) MaxK[Γ ] = {MP /J (Γ ) | P ∈ Γ}.
(b) SpecK[Γ ] \ MaxK[Γ ] = {J (Γi)/J (Γ )}i=1,...,h.

We will see even closer relationships between algebraic curves in A2(K)
and ideals in K[X,Y ] as we learn more about algebraic curves.

Definition 1.16. The divisor group D of A2(K) is the free abelian group on
the set of all irreducible curves in A2(K). Its elements are called divisors on
A2(K).

A divisor D is therefore a (formal) linear combination

D =
∑

Γ irred.

nΓΓ (nΓ ∈ Z, nΓ �= 0 for only finitely many Γ ),

degD :=
∑
nΓ degΓ is called the degree of the divisor, and D is called effec-

tive if nΓ ≥ 0 for all Γ . For such a D we call

Supp(D) :=
⋃

nΓ >0

Γ

the support of D. This is an algebraic curve, except when D = 0 is the zero
divisor, i.e., nΓ = 0 for all Γ .

One can think of a divisor as an algebraic curve whose irreducible com-
ponents have certain positive or negative multiplicities (weights) attached.
For example, it is sometimes appropriate to say that the equation X2 = 0
represents the Y -axis “counted twice.”

If D =
∑h

i=1 niΓi is effective, and fi is a minimal polynomial for Γi, then
we call fn1

1 · · · fnh

h a polynomial for D,

J (D) := (fn1
1 · · · fnh

h )

the ideal (vanishing ideal) of D, and

K[D] := K[X,Y ]/J (D)

the coordinate ring ofD. These concepts generalize the earlier ones introduced
for curves.

It is clear that the effective divisors of A2(K) are in one-to-one correspon-
dence with the principal ideals �= (0) inK[X,Y ], and the ideal (1) corresponds
to the zero divisor. The maximal ideals of K[D] are in one-to-one correspon-
dence with the points of Supp(D), and the nonmaximal prime ideals �= (0), (1)
are in one-to-one correspondence with the components Γ of D with nΓ > 0.
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Exercises

1. Let K be an algebraically closed field and K0 ⊂ K a subfield. Let Γ ⊂
A2(K) be an algebraic curve of degree d and let L be a line that intersects
Γ in exactly d points. Assume that Γ and L have minimal polynomials
in K0[X,Y ]. Show that if d− 1 of the intersection points are K0-rational,
then all of the intersection points are K0-rational.

2. LetK be an algebraically closed field of characteristic �= 2 and let K0 ⊂ K
be a subfield. Show that theK0-rational points of the curve Γ : X2+Y 2 =
1 are (0, 1) and

(
2t

t2 + 1
,
t2 − 1

t2 + 1

)
with t ∈ K0, t2 + 1 �= 0.

(Consider all lines through (0,−1) that are defined over K0 and their
points of intersection with Γ .)

3. (Diophantus of Alexandria ∼ 250 AD.) A triple (a, b, c) ∈ Z3 is called
“Pythagorean” if a2 + b2 = c2. Show, using Exercise 2, that for λ, u, v ∈
Z, the triple λ(2uv, u2 − v2, u2 + v2) is Pythagorean, and for every
Pythagorean triple (a, b, c), either (a, b, c) or (b, a, c) can be represented in
this way.

4. The curve in A2(K) with equation X2 +Y 2 = 3 has no Q-rational points.
5. Convince yourself that the curves in 1.2(e) and 1.2(f) really do appear as

indicated in the sketches. Also check which of those curves are irreducible.
6. Sketch the following curves.

(a) 4[X2 + (Y + 1)2 − 1]2 + (Y 2 −X2)(Y + 1) = 0
(b) (X2 + Y 2)5 − 16X2Y 2(X2 − Y 2)2 = 0
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Projective Algebraic Curves

Besides facts from linear algebra we will use the concept of a homogeneous
polynomial; see the beginning of Appendix A. Specifically, Lemma A.3 and Theorem
A.4 will play a role.

In studying algebraic curves one has to distinguish between local and global
properties. Beautiful global theorems can be obtained by completing affine
curves to projective curves by adding “points at infinity.” Here we will discuss
these “compactifications.” A certain familiarity with the geometry of the pro-
jective plane will be useful. The historical development of projective geometry
is sketched out in Brieskorn–Knörrer [BK]. The modern access to projective
geometry comes at the end of a long historical process.

The projective plane P2(K) over a field K is the set of all lines in K3

through the origin. The points P ∈ P2(K) will therefore be given by triples
〈x0, x1, x2〉, with (x0, x1, x2) ∈ K3, (x0, x1, x2) �= (0, 0, 0), where 〈x0, x1, x2〉 =
〈y0, y1, y2〉 if and only if (y0, y1, y2) = λ(x0, x1, x2) for some λ ∈ K∗. The triple
(x0, x1, x2) is called a system of homogeneous coordinates for P = 〈x0, x1, x2〉.
Observe that there is no point 〈0, 0, 0〉 in P2(K). Two points P = 〈x0, x1, x2〉
and Q = 〈y0, y1, y2〉 are distinct if and only if (x0, x1, x2) and (y0, y1, y2) are
linearly independent over K.

Generalizing P2(K), one can define n-dimensional projective space Pn(K)
as the set of all lines in Kn+1 through the origin. The points of Pn(K) are
the “homogeneous (n+ 1)-tuples” 〈x0, . . . , xn〉 with (x0, . . . , xn) �= (0, . . . , 0).
As a special case we have the projective line P1(K) given by

P1(K) = {〈x0, x1〉 | (x0, x1) ∈ K2 \ (0, 0)}.

Still more generally, given any K-vector space V , there is an associated pro-
jective space P(V ) defined as the set of all 1-dimensional subspaces of V .

In the following let K again be an algebraically closed field, and let
K[X0, X1, X2] be the polynomial algebra over K in the variables X0, X1, X2.
If F ∈ K[X0, X1, X2] is a homogeneous polynomial and P = 〈x0, x1, x2〉 is a
point of P2(K), we will call P a zero of F if F (x0, x1, x2) = 0. If degF = d,
then F (λX0, λX1, λX2) = λdF (X0, X1, X2) for any λ ∈ K, and therefore
the condition F (x0, x1, x2) = 0 does not depend on the particular choice of
homogeneous coordinates for P . So we can then write F (P ) = 0. The set
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V+(F ) := {P ∈ P2(K) | F (P ) = 0}

is called the zero set of F in P2(K).

Definition 2.1. A subset Γ ⊂ P2(K) is called a projective algebraic curve if
there exists a homogeneous polynomial F ∈ K[X0, X1, X2] with degF > 0
such that Γ = V+(F ). A polynomial of least degree of this kind is called a
minimal polynomial for Γ , and its degree is called the degree of Γ (degΓ ).

We shall see in 2.10 that the minimal polynomial is unique up to multipli-
cation by a constant λ ∈ K∗.

If K0 ⊂ K is a subring and Γ has a minimal polynomial F with F ∈
K0[X0, Y0, Z0], then we say that Γ is defined over K0. The points P ∈ Γ that
can be written as P = 〈x0, x1, x2〉 with xi ∈ K0 are called the K0-rational
points of Γ .

Example 2.2. Curves of degree 1 in P2(K) are called projective lines. These
are the solution sets of homogeneous linear equations

a0X0 + a1X1 + a2X2 = 0 (a0, a1, a2) �= (0, 0, 0).

A line uniquely determines its equation up to a constant factor λ ∈ K∗.
Furthermore, through any two points P = 〈x0, x1, x2〉 and Q = 〈y0, y1, y2〉
with P �= Q there is exactly one line g through P and Q, for the system of
equations

a0x0 + a1x1 + a2x2 = 0,

a0y0 + a1y1 + a2y2 = 0,

has a unique solution (a0, a1, a2) �= (0, 0, 0) up to a constant factor. The line
is then

g = {〈λ(x0, x1, x2) + μ(y0, y1, y2)〉 | λ, μ ∈ K not both = 0},

which we abbreviate as g = λP + μQ. Also note that three points Pi =
〈x0i, x1i, x2i〉 (i = 1, 2, 3) lie on a line whenever (x0i, x1i, x2i) are linearly
dependent over K.

Two projective lines always intersect, and the point of intersection is
unique if the lines are different. This is clear, because a system of equations

a0X0 + a1X1 + a2X2 = 0,

b0X0 + b1X1 + b2X2 = 0,

always has a nontrivial solution (x0, x1, x2) that is unique up to a constant
factor if the coefficient matrix has rank 2.
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A mapping c : P2(K) → P2(K) is called a (projective) coordinate trans-
formation if there is a matrix A ∈ GL(3,K) such that for each point
〈x0, x1, x2〉 ∈ P2(K),

c(〈x0, x1, x2〉) = 〈(x0, x1, x2)A〉.

The matrix A is uniquely determined by c up to a factor λ ∈ K∗: First of
all, it is clear that λA defines the same coordinate transformation as A. If
B ∈ GL(3,K) is another matrix that defines c, then BA−1 is the matrix of
a linear transformation that is an automorphism of K3 that maps all lines
through the origin to themselves; it follows that B = λA for some λ ∈ K∗.

One applies coordinate transformations to bring a configuration of points
and curves into a clearer position. Let Γ = V+(F ) be a curve, where F is
a homogeneous polynomial, and let c be a coordinate transformation with
matrix A. Then

c(Γ ) = V+(FA),

where (in the above notation)

FA(X0, X1, X2) = F ((X0, X1, X2)A
−1).

Thus FA is homogeneous with degFA = degF . A coordinate transformation
maps a projective curve to a projective curve of the same degree, and we tend
to identify two curves that differ only by a coordinate transformation.

After this summary of facts, which we assume to be known, we come to
the “passage from affine to projective.”

We have an injection given by

i : A2(K) → P2(K), i(x, y) = 〈1, x, y〉,

from the affine to the projective plane. We identify A2(K) with its image
under i. Then A2(K) is the complement of the line X0 = 0 in P2(K). This
line is called the line at infinity of P2(K); the points of this line are called
points at infinity, and the points of A2(K) are called points at finite distance.
For P = 〈1, x, y〉 ∈ P2(K) we call (x, y) the affine coordinates of P .

Given a polynomial f ∈ K[X,Y ] with deg f = d, we can define by

(1) f̂(X0, X1, X2) := Xd
0f

(
X1

X0
,
X2

X0

)

a homogeneous polynomial f̂ ∈ K[X0, X1, X2] with deg f̂ = d. It is called the
homogenization of f .

Definition 2.3. Let Γ ⊂ A2(K) be an algebraic curve with minimal polyno-

mial f ∈ K[X,Y ] and let f̂ be the homogenization of f . Then the projective
algebraic curve Γ̂ = V+(F ) is called the projective closure of f .
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The curve Γ̂ depends only on the curve Γ and not on the choice of a
minimal polynomial for Γ . By 1.8 this polynomial is uniquely determined by

Γ up to a factor λ ∈ K∗, and it is obvious that λ̂f = λf̂ .
We can give the following description for f̂ : If f is of degree d and

(2) f = f0 + f1 + · · · + fd,

where the fi are homogeneous polynomials of degree i (so in particular fd �= 0),
then
(3)

f̂ = Xd
0f0(X1, X2) +Xd−1

0 f1(X1, X2) + · · · +X0fd−1(X1, X2) + fd(X1, X2).

It follows that

Lemma 2.4. Γ = Γ̂ ∩ A2(K).

The points of Γ̂ \Γ are called the points at infinity of Γ . The next lemma
shows how to calculate them.

Lemma 2.5. Every affine curve Γ of degree d has at least one and at most d
points at infinity. These are the points 〈0, a, b〉, where (a, b) runs over all the
zeros of fd, where Γ = V(f) and f is written as in (2).

Proof. Γ̂ \ Γ consists of the solutions 〈x0, x1, x2〉 to the equation f̂ = 0 with
x0 = 0. By (3) the second assertion of the lemma is satisfied. A homogeneous
polynomial fd of degree d decomposes into d homogeneous linear factors by
A.4. The first assertion of the lemma follows from this.

Examples 2.6. (a) For an affine line

g : aX + bY + c = 0, (a, b) �= (0, 0),

the projective closure is given by

ĝ : cX0 + aX1 + bX2 = 0.

The point at infinity on g is 〈0, b,−a〉. Two affine lines are then parallel if and
only if they meet at infinity, i.e., their points at infinity coincide.

(b) The ellipse X2

a2 + Y 2

b2 = 1 (a, b ∈ R+) has two points at infinity, 〈0, a,±ib〉,
which, however, are not R-rational. The hyperbola X2

a2 − Y 2

b2 = 1 (a, b ∈ R+)
has two points at infinity, 〈0, a,±b〉, which are both R-rational. The parabola
Y = aX2 (a ∈ R+) has exactly one point at infinity, namely 〈0, 0, 1〉. All
circles (X − a)2 + (Y − b)2 = r2 (a, b, r ∈ R) have the same points 〈0, 1,±i〉
at infinity.
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If h : a0X0 + a1X1 + a2X2 = 0 is a projective line different from the line
at infinity h∞ : X0 = 0, then (a1, a2) �= (0, 0), and h = ĝ, where g is given by
the equation a1X + a2Y + a0 = 0. Consequently, there is a bijection given by
g �→ ĝ from the set of affine lines to the set of projective lines �= h∞. There is
a similar result for arbitrary algebraic curves, as we will now see.

For a homogeneous polynomial F ∈ K[X0, X1, X2] we call the polynomial
f in K[X,Y ] given by f(X,Y ) = F (1, X, Y ) the dehomogenization of F (with
respect to X0). If X0 is not a factor of F , then

deg f = degF

and
F = f̂ ,

as one sees immediately from equation (3).

Theorem 2.7. Let Δ be a projective algebraic curve with minimal polynomial
F and let Γ := Δ ∩ A2(K). Then

(a) If Δ is not the line at infinity, then Γ is an affine algebraic curve.
(b) If Δ does not contain the line at infinity, then the dehomogenization f of

F is a minimal polynomial of Γ and

Δ = Γ̂ , its projective closure.

Proof. (a) By the hypotheses on Δ, f is not constant and Γ = V(f) is an
affine curve.

(b) We notice first of all that for polynomials f1, f2 ∈ K[X,Y ], the formula

(4) f̂1f2 = f̂1f̂2

holds, as one easily sees by the definition (1) of homogenization.
Let f = cfα1

1 · · · fαh

h be a decomposition of f into irreducible factors (c ∈
K∗, αi ∈ N+, fi irreducible, fi �∼ fj for i �= j). Because X0 is not a factor of
F ,

F = cf̂1
α1 · · · f̂h

αh

by the above formula (4), and because F is a minimal polynomial of Δ, we
must have α1 = · · · = αh = 1. Also, Δ = Γ̂ by definition of Γ̂ .

Corollary 2.8. The affine algebraic curves are in one-to-one correspondence
with the projective algebraic curves that do not contain the line h∞ at infinity.
Other than h∞, the only other projective curves are of the form Γ̂ ∪h∞, where
Γ is an affine curve.

Corollary 2.9. Every projective curve Δ consists of infinitely many points,
and also P2(K) \Δ is infinite.
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This follows immediately from the corresponding result for affine curves
(1.3).

Under a projective coordinate transformation, the line at infinity X0 = 0 is
in general sent to some other line, and conversely, the line at infinity in the new
coordinate system came from some other line. By an appropriate choice of a
coordinate system, any line can be the line at infinity. More specifically: given
four points Pi ∈ P2(K) (i = 0, 1, 2, 3), no three of which lie on a line, there
is a unique coordinate transformation c of P2(K) such that c(P0) = 〈1, 0, 0〉,
c(P1) = 〈0, 1, 0〉, c(P2) = 〈0, 0, 1〉, and c(P3) = 〈1, 1, 1〉. If g is a projective
line and P �= Q are points not on g, then one can always find a projective
coordinate transformation that maps g to the line at infinity, maps P to
the origin (0, 0) in the affine plane, and maps Q to an arbitrary given point
(a, b) �= (0, 0). We will make frequent use of these facts.

Corollary 2.10. The minimal polynomial of a projective curve Δ is uniquely
determined by Δ up to a constant factor �= 0.

Proof. If F is a minimal polynomial of Δ and c is a coordinate transformation
with matrix A, then FA is a minimal polynomial of c(Γ ). We can assume that
c(Γ ) does not contain the line at infinity (in the new coordinate system). Then,
by 2.7, FA is the homogenization of the minimal polynomial of the affine part
of c(Γ ). This is unique up to a constant factor �= 0, and therefore so are FA

and F .

Definition 2.11. The vanishing ideal of a projective curve Δ is the ideal
J+(Δ) ⊂ K[X0, X1, X2] generated by all homogeneous polynomials that van-
ish at all points of Δ.

J+(Δ) is therefore a homogeneous ideal (A.7).

Theorem 2.12. J+(Δ) is the principal ideal generated by any minimal poly-
nomial of Δ.

Proof. We can assume that Δ does not contain the line at infinity. Let F
be a minimal polynomial for Δ and let G ∈ J+(Δ) be homogeneous. Write
G = Xα

0 H , where H is not divisible by X0. Then h := H(1, X, Y ) is contained
in the vanishing ideal of Γ := Δ∩A2(K). This is generated by f := F (1, X, Y );

hence h = fg for some g ∈ K[X,Y ]. By (4) we have H = ĥ = f̂ ĝ = F ĝ, and
so G ∈ (F ).

As in the affine case we call a curve Δ ⊂ P2(K) irreducible provided that
whenever Δ = Δ1 ∪ Δ2 for projective curves Δi (i = 1, 2), then Δ = Δ1 or
Δ = Δ2.

Corollary 2.13. The following are equivalent:

(a) Δ is irreducible.
(b) The minimal polynomial of Δ is an irreducible polynomial.
(c) J+(Δ) is a (homogeneous) prime ideal.
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Proof. (a) ⇒ (b). Let F be a minimal polynomial of Δ and suppose that
F = F1F2 for some Fi ∈ K[X0, X1, X2] (i = 1, 2). These polynomials are
homogeneous by A.3, and we have Δ = V+(F1)∪V+(F2). Hence without loss
of generality Δ = V+(F1). Then F1 is divisible by F , and it follows that F2

must be constant. Therefore, F is irreducible.
(b) ⇒ (c) is clear.
(c) ⇒ (a). LetΔ = Δ1∪Δ2, where the curvesΔi have minimal polynomials

Fi (i = 1, 2). For F := F1F2 we have F ∈ J+(Δ). Therefore F1 ∈ J+(Δ) or
F2 ∈ J+(Δ), because J+(Δ) is a prime ideal. Then, however, Δ ⊂ V+(F ) =
Δi for an i ∈ {1, 2}, and therefore Δ = Δi.

Corollary 2.14. (a) (Decomposition into irreducible components) Every pro-
jective algebraic curve has a unique (up to order) representation

Δ = Δ1 ∪ · · · ∪Δh,

where the Δi (i = 1, . . . , h) are irreducible curves. These are in one-to-
one correspondence with the irreducible factors of a minimal polynomial
for Δ.

(b) If Γ is an affine curve with irreducible decomposition

Γ = Γ1 ∪ · · · ∪ Γh,

then
Γ̂ = Γ̂1 ∪ · · · ∪ Γ̂h,

and the Γ̂i are the irreducible components of Γ̂ .

This follows by 1.13 and by the previous observation about the affine and
projective minimal polynomials.

In 1.14 the prime ideals of K[X,Y ] were described. We now do the same
for the homogeneous prime ideals in K[X0, X1, X2].

Theorem 2.15. K[X0, X1, X2] has the following homogeneous prime ideals
and no others:

(a) The zero ideal.
(b) The principal ideals (F ) generated by irreducible homogeneous polynomials

F �= 0. These are in one-to-one correspondence with the irreducible curves
in P2(K).

(c) The ideals pP := (aX1−bX0, aX2−cX0, bX2−cX1), where P = 〈a, b, c〉 ∈
P2(K). These prime ideals are in one-to-one correspondence with the
points of P2(K).

(d) The homogeneous maximal ideal (X0, X1, X2).
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Proof. Let p be a homogeneous prime ideal inK[X0, X1, X2]. If p �= (0), then p

contains an irreducible homogeneous polynomial F �= 0. If p �= (F ), then there
is a homogeneous polynomialG in p that is not divisible by F . According to 1.5
the ideal (F,G) contains, and therefore p contains, a homogeneous polynomial
d1 �= 0 in which X2 does not appear, and a homogeneous polynomial d2 �= 0 in
which X1 does not appear. Now d1 and d2 decompose into homogeneous linear
factors by A.4, and so p must contain linear polynomials of the form aX1 −
bX0 �= 0, a′X2 − b′X0 �= 0. One sees easily that an ideal of the form pP (P ∈
P2(K)) is then also contained in p. Such a prime ideal is already generated by
two homogeneous linear polynomials, and it follows that K[X0, X1, X2]/pP

∼=
K[T ], a polynomial ring in one variable. The only homogeneous prime ideals in
this ring are (0) and (T ). The preimages of these prime ideals inK[X0, X1, X2]
are pP and (X0, X1, X2). Hence we must have p = pP or p = (X0, X1, X2).

As in the affine case, the divisor group of P2(K) is defined as the free
abelian group on the set of irreducible projective curves Δ. For a divisor
D =

∑
nΔΔ, the degree of D is defined by

degD :=
∑

nΔ degΔ.

D is called effective if nΔ ≥ 0 for all Δ. For an effective divisor D we call the
Δ with nΔ > 0 the components of D, and

Supp(D) :=
⋃

n∆>0

Δ

is called the support of D. If a divisor is given in the form D =
∑h

i=1 niΔi and
if Fi is a minimal polynomial of Δi (i = 1, . . . , h), then we assign to D the

polynomial F :=
∏h

i=1 F
ni

i . Conversely, since the factors of a homogeneous
polynomial are themselves homogeneous (A.3), every homogeneous polyno-
mial F �= 0 determines, by decomposition into irreducible factors, a unique
effective divisor, which for simplicity we also denote by F . We can choose to
think of F as either a homogeneous polynomial �= 0 in K[X0, X1, X2], or as
the associated divisor in P2(K). From now on, effective divisors in P2(K) will
be called “curves in P2(K).” These are the curves we considered earlier, whose
irreducible components where furnished with “weights” from N. IfΔ is a curve
with decomposition into irreducible components Δ = Δ1 ∪ · · · ∪Δh, it will be
identified with the effective divisor Δ1 + · · · +Δh. Divisors of this kind will
be called “reduced curves” in the future. These correspond to the reduced
homogeneous polynomials �= 0 in K[X0, x1, x2]. The curve Δ is defined over
a subfield K0 ⊂ K if an appropriate associated polynomial can be chosen in
K0[X0, X1, X2].

If the line at infinity is not a component of the curve Δ =
∑h

i=1 niΔi (and
this can always be arranged by choosing an appropriate coordinate system),

then we call Γ :=
∑h

i=1 niΓi with Γi := Δi ∩A2(K) the affine curve belonging
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to Γ . It corresponds to the dehomogenization of the polynomial associated
with Δ.

Exercises

1. Determine the points at infinity for the curves in 1.2(e) and 1.2(f).
2. A projective quadric is a curve Q (i.e., an effective divisor) in P2(K) of

degree 2. Show that if char K �= 2, then in an appropriate coordinate
system, Q has one of the following equations:
(a) X2

0 +X2
1 +X2

2 = 0 (nonsingular quadric)
(b) X2

0 +X2
1 = 0 (pair of lines)

(c) X2
0 = 0 (a double line)

3. Show that if char K �= 2 and i :=
√
−1, then

α : P1(K) → P2(K), α(〈u, v〉) = 〈2uv, u2 − v2, i(u2 + v2)〉,

gives a bijection of the projective line P1(K) with the nonsingular quadric
(cf. Exercises 2 and 3 in Chapter 1).

4. Let c : P2(K) → P2(K) be the coordinate transformation that sends the
points

〈1, 0, 0〉, 〈0, 1, 0〉, 〈−1, 0, 1〉, 〈0, 1, 1〉
to the points

〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉.
(a) Determine the equation of the curve

X2
0X2 −X0X

2
1 +X0X

2
2 − 2X0X1X2 −X2

1X2 − 2X1X
2
2 = 0

in the new coordinate system.
(b) Is the curve irreducible?
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The Coordinate Ring of an Algebraic Curve

and the Intersections of Two Curves

From now on, we assume that the reader is familiar with the material in Appendices
A and B. Above all, we will use the methods contained in Appendix B repeatedly.
We will also apply the elementary Lemmas D.5 and I.4.

Let F be an algebraic curve in P2(K), i.e., F is an effective divisor according
to our convention in Chapter 2. At the same time, F denotes a homogeneous
polynomial in K[X0, X1, X2] that defines the curve. Instead of Supp(F ) we
also write V+(F ):

Supp(F ) = V+(F ) = {P ∈ P2(K) | F (P ) = 0}.

Definition 3.1. The residue class ring K[F ] := K[X0, X1, X2]/(F ) is called
the projective coordinate ring of F .

Since F is homogeneous, K[F ] is a graded K-algebra (A.7). A coordi-
nate transformation on P2(K) with a matrix A defines a K-automorphism of
K[X0, X1, X2] given by

(X0, X1, X2) �→ (X0, X1, X2) · A−1.

Under this automorphism, F becomes FA, which corresponds to a curve in
the new coordinate system, and it induces a K-isomorphism

K[X0, X1, X2]/(F ) ∼= K[X0, X1, X2]/(F
A).

The coordinate ring is therefore independent—up to K-isomorphism—of the
choice of coordinates.

We can, and will, choose the coordinates such that X0 does not divide
F . The curve f in A2(K) = P2(K) \ V+(X0) corresponding to F is then the
dehomogenization f of F , i.e., f is the polynomial in K[X,Y ] with

f(X,Y ) = F (1, X, Y ).

We have already introduced the affine coordinate ringK[f ] = K[X,Y ]/(f)
in Chapter 1. A point P = (a, b) ∈ A2(K) belongs to Supp(f) = V(f) if and
only if f ∈ MP = (X − a, Y − b). In this case we denote by mP := MP /(f)
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the image of MP in K[f ]. Then mP ∈ MaxK[f ], and every maximal ideal of
K[f ] is of this form for a uniquely determined P ∈ Supp(f).

If g is another curve and ψ is the residue class of the polynomial g in K[f ],
then there is a one-to-one correspondence between the maximal ideals m of
K[f ] with g ∈ m and the points of V(f) ∩ V(g). The question, “How many
points of intersection do the curves have?” (or equivalently, “How many solu-
tions does the system of equations f = 0, g = 0 have?”) can be reformulated
as, “How many maximal ideals are there in K[f ] that contain ψ?”

We now endow K[X,Y ] with its degree filtration G, and K[f ] with the
corresponding residue class filtration F induced by G (see Appendix B).
According to B.4(a), K[X0, X1, X2] can be interpreted as the Rees algebra
RG K[X,Y ], and the homogenization of a polynomial from K[X,Y ] in the
sense of Appendix B is the usual one. Since F is the homogenization f ∗ of f ,
it follows from B.8 and B.12 that:

Remark 3.2. K[F ] ∼= RF K[f ].

Proof.

K[F ] = K[X0, X1, X2]/(F ) = RGK[X,Y ]/(f∗)
∼= RF(K[X,Y ]/(f)) = RF K[f ].

One can deduce the following immediately from B.5.

Remark 3.3. The image x0 of X0 in K[F ] is not a zerodivisor, K[x0] is a
polynomial algebra, and there are K-isomorphisms

K[f ] ∼= K[F ]/(x0 − 1),

grF K[f ] ∼= K[F ]/(x0).

If fp is the homogeneous component of largest degree of f (therefore the
leading form LGf using the degree filtration), then B.8 and B.12 also yield

Remark 3.4. grF K[f ] ∼= K[X,Y ]/(fp).

Since fp describes the points at infinity of f , grF K[f ] has something to
do with the points at infinity. By A.12(a) we know the Hilbert function of
grF K[f ]. We have:

Remark 3.5.

dimK Fk/Fk−1 =

{
k + 1 for 0 ≤ k < p,
p for p ≤ k.

Now let two curves F , G in P2(K) be given, and assume that they have
no common components.

Definition 3.6. K[F ∩ G] := K[X0, X1, X2]/(F,G) is called the projective
coordinate ring of the intersection of F and G.
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If Ψ denotes the image of G in K[F ], and Φ the image of F in K[G], then
by the Noether isomorphism theorem,

K[F ∩G] ∼= K[F ]/(Ψ) ∼= K[G]/(Φ),

where Φ is not a zerodivisor on K[G] and Ψ is not a zerodivisor on K[F ].
Now let f and g be two affine curves with deg f =: p, deg g =: q, and

assume that they have no common components.

Definition 3.7. K[f ∩ g] := K[X,Y ]/(f, g) is called the affine coordinate
ring of the intersection of f and g.

We have K[f ∩ g] ∼= K[f ]/(ψ) ∼= K[g]/(φ), where ψ denotes the image of
g in K[f ] and φ the image of f in K[g]. Since f and g are relatively prime, φ
and ψ are not zerodivisors in their respective rings.

From what was said above, the points of V(f) ∩ V(g) are in one-to-one
correspondence with the maximal ideals of K[f ∩ g]. Also, K[f ∩ g] is a finite-
dimensional K-algebra by 1.4. How big is its dimension? If f and g do not
have any points at infinity in common, the observations about Rees algebras
and associated graded algebras in Appendix B give us the answer immediately,
which we will now show.

We will denote by F the residue class filtration induced on K[f ∩ g] by
the degree filtration G of K[X,Y ]. Let fp = LGf and gq = LGg be the homo-
geneous components of largest degree of f and g.

By 2.5, to say that f and g have no points at infinity in common is equiv-
alent to saying that fp and gp are relatively prime. In concrete cases one
can decide using the Euclidean algorithm whether this condition is satisfied,
without being forced to calculate the points at infinity explicitly (Exercise 4).
That fp and gq are relatively prime is equivalent to the statement that fp is
not a zerodivisor modulo gq, and gq is not a zerodivisor modulo fp.

Let F and G be the projective curves associated with f and g, that is,
the homogenizations of f and g in K[X0, X1, X2]. We have degF = p and
degG = q. Again, B.5, B.8, and B.12 are applicable. We get the following.

Theorem 3.8. Suppose f and g have no points at infinity in common. Then

(a) K[F ∩G] ∼= RF K[f ∩ g].
(b) The image x0 of X0 in K[F∩G] is not a zerodivisor, K[x0] is a polynomial

algebra, and we have

K[f ∩ g] ∼= K[F ∩G]/(x0 − 1),

grF K[f ∩ g] ∼= K[F ∩G]/(x0) ∼= K[X,Y ]/(fp, gq).

By A.12(b), dimK K[F∩G]/(fp, gq) = p·q. Therefore, B.6 gives the answer
to the above question:
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Theorem 3.9. If f and g have no points at infinity in common, then

(a) dimK K[f ∩ g] = p · q.
(b) K[F ∩G] is a free K[x0]-module of rank p · q.

Now let F and G be two arbitrary curves in P2(K) with degF = p > 0,
degG = q > 0, and with no common components (as polynomials they are
relatively prime). Then V+(F ) ∩ V+(G) consists of only finitely many affine
points (by 1.4), and since one of the curves does not contain the line at
infinity, V+(F )∩V+(G) also contains only finitely many points at infinity. We
can choose the coordinate system so that all the points in V+(F )∩V+(G) are
points at finite distance. Then V+(F ) ∩ V+(G) = V(f) ∩ V(g), where f and g
are the affine curves associated with F and G, and we are in the situation of
Theorems 3.8 and 3.9. We then get the following.

Corollary 3.10. Assume that F and G have no common components. Then
the intersection V+(F )∩V+(G) contains at least one and at most p · q points.

Proof. Since K[f∩g] is not the zero-algebra, it has at least one maximal ideal.
This corresponds to a point in V(f) ∩ V(g). From the elementary lemma D.5
and 3.9(a) it follows that K[f ∩ g] has at most p · q maximal ideals. Hence
V(f) ∩ V(g) contains at most p · q points.

The statement of the corollary is a weak form of Bézout’s theorem, which
we will discuss in detail later (See 5.7). In the projective plane not only do
two lines always intersect, but also any two curves of positive degree always
intersect. The corollary could also be formulated in this way: A system of
equations

F (X0, X1, X2) = 0, G(X0, X1, X2) = 0,

with relatively prime homogeneous polynomials F and G of degrees p and q
has at least one and at most p · q solutions in P2(K).

For the remainder of this section we assume, as in 3.8 and 3.9, that f and g
have no points at infinity in common. We strive now to find a few more precise
statements about the structure of the projective coordinate ring K[F ∩G] and
the affine coordinate ring K[f ∩ g]. These follow from theorems in Appendix
B, and they also allow later geometric applications.

Let B := grF K[f ∩ g]. By A.12(b), we know the Hilbert function of B
exactly. If Bk := grk

F K[f ∩ g] is the homogeneous component of degree k and
if, without loss of generality, p ≤ q, then by A.12(b) and 3.8(b),

χB(k) = dimK Bk =

⎧
⎪⎪⎨
⎪⎪⎩

k + 1, if 0 ≤ k < p,
p, if p ≤ k < q,
p+ q − k − 1, if q ≤ k < p+ q − 1,
0, if p+ q − 1 ≤ k.

An application of B.6 then gives
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Theorem 3.11. (a) As a K[x0]-module, K[F ∩ G] has a basis {s1, . . . , sp·q}
of homogeneous elements si (i = 1, . . . , p · q), where

0 = deg s1 ≤ deg s2 ≤ · · · ≤ deg sp·q = p+ q − 2

and
deg si + deg sp·q−i = p+ q − 2

for i = 1, . . . , p · q. For each k ∈ {0, . . . , p+ q− 2} there are exactly χB(k)
basis elements in {s1, . . . , sp·q} of degree k.

(b) K[f ∩ g] has a K-basis {s̄1, . . . , s̄p·q}, where

0 = ordF s̄1 ≤ ordF s̄2 ≤ · · · ≤ ordF s̄p·q = p+ q − 2,

ordF s̄i + ordF s̄p·q−i = p+ q − 2 (i = 1, . . . , p · q),

and where for each k ∈ {1, . . . , p + q − 2}, exactly χB(k) basis elements
have order k. Furthermore,

Fk = Fp+q−2 for each k ≥ p+ q − 2.

The degree (p + q − 2) component of B is especially interesting. It is 1-
dimensional, and we will find a basis for it. To do that, we will write

fp = c11X + c12Y,

gq = c21X + c22Y,

with homogeneous cij ∈ K[X,Y ]. Then det(cij) is homogeneous of degree
p+ q − 2 and the image Δ of this determinant in B is in any case contained
in Bp+q−2. One can check easily (I.4) that Δ depends only on fp and gq, and
not on any particular choice of the cij . We can view Δ as a generalization of
the Jacobian determinant of fp and gq with respect to X , Y .

Examples 3.12.

(a) Decompose fp and gq into homogeneous linear factors (A.4):

fp =

p∏

i=1

(aiX + biY ) =
fp

aiX + biY
· (aiX + biY ),

gq =

q∏

j=1

(cjX + djY ) =
gq

cjX + djY
· (cjX + djY ).

Then Δ is the image of

(aidj − bicj) ·
fp · gq

(aiX + biY )(cjX + djY )

in B, and this does not depend on i and j.
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(b) By the Euler relation (Appendix A, formula (A2)), we have

p · fp =
∂fp

∂X
·X +

∂fp

∂Y
· Y,

q · gq =
∂gq
∂X

·X +
∂gq
∂Y

· Y.

Denote the image of the Jacobian determinant
∂(fp,gq)
∂(X,Y ) in B by j, so that

j = p · q ·Δ.

If the characteristic of K does not divide p · q, then

Δ =
1

p · q · j.

Now let B+ := ⊕k>0Bk be the homogeneous maximal ideal of B.

Definition 3.13. S(B) := {z ∈ B | B+ · z = 0} is called the socle of B.

One can check that S(B) is a homogeneous ideal of B, and Bp+q−2 ⊂
S(B), because B+ · Bp+q−2 = 0, since Bk = 0 for k > p+ q − 2.

Theorem 3.14. We have S(B) = Bp+q−2 = K ·Δ. In particular, S(B) is a
1-dimensional K-vector space and Δ �= 0. If the characteristic of K does not
divide p · q, then the Jacobian determinant j is nonzero and S(B) = K · j.

Proof. It remains to show that every homogeneous element η ∈ S(B) is con-
tained in (Δ). This follows from I.5, but we give here a simpler, more direct
proof. Let H ∈ K[X,Y ] be a homogeneous preimage for η. As in 3.12(a),
write fp = Φ ·L1, gq = Ψ ·L2, with homogeneous linear factors L1 = aX+ bY ,
L2 = cX + dY , and homogeneous polynomials Φ, Ψ ∈ K[X,Y ]. Then

Δ = (ad− bc) · φ · ψ,

where φ and ψ are the images of Φ and Ψ in B. Since fp and gq are relatively
prime, ad− bc �= 0.

By the hypothesis on η, we have (X,Y ) · H ⊂ (fp, gq), and therefore we
have equations

L1H = R1ΦL1 +R2ΨL2,

L2H = S1ΦL1 + S2ΨL2,

with homogeneous Ri, Si ∈ K[X,Y ] (i = 1, 2). Since L1 is not a divisor of Ψ ,
and L2 is not a divisor of Φ, we get

H = R1Φ+R∗
2ΨL2 (R∗

2 := L−1
1 R2),

H = S∗
1ΦL1 + S2Ψ (S∗

1 := L−1
2 S1),
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and therefore
Φ · (R1 − S∗

1L1) = Ψ · (S2 −R∗
2L2).

Since Φ and Ψ are relatively prime, it follows that

R1 − S∗
1L1 = T · Ψ

for some homogeneous T ∈ K[X,Y ], and

H = T · Φ · Ψ + S∗
1 · fp +R∗

2 · gq.
Hence η ∈ (φ · ψ) = (Δ).

Corollary 3.15. Let d ∈ K[f ∩ g] be an element with LFd = Δ. Then

K[f ∩ g] = K · d⊕Fp+q−3.

If CharK does not divide p · q, this statement is true if one replaces d by the

image J of the Jacobian determinant
∂(fp,gq)
∂(X,Y ) in K[f ∩ g].

The formula for K[f∩g] follows from 3.14 and B.6. For the last statement,

observe that LFJ is the image of
∂(fp,gq)
∂(X,Y ) in B.

Exercises

1. Let K be a field. Give a basis for the K-algebra

K[X,Y ]/(f, g),

where f = X4 − Y 4 +X , g = X2Y 3 −X + 1.
2. Determine the solutions in P2(C) for the following systems of equations,

and illustrate the situation with a sketch.
(a)

X2
1 +X2

2 −X2
0 = 0,

(X2
1 +X2

2 )3 − λX2
0X

2
1X

2
2 = 0 (λ ∈ C).

(b)

X1X2(X
2
1 −X2

2 ) = 0,

(X1 + 2X2)((X1 +X2)
2 −X2

0 ) = 0.

3. Let F and G be reduced curves in P2(K), all of whose components are
lines. For P ∈ P2(K), let mP (F ) = m if exactly m components of F
contain the point P . Give a rule for the number of intersection points of
F and G involving mP (F ) and mP (G).

4. How many points at infinity do the curves f and g have in common, where

f = X5 −X3Y 2 +X2Y 3 − 2XY 4 − 2Y 5 +XY

g = X4 +X3Y −X2Y 2 − 2XY 3 − 2Y 4 + Y 2?
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Rational Functions on Algebraic Curves

Besides the coordinate ring, the ring of rational functions on an algebraic curve is
another invariant that can be used to study and to classify algebraic curves. This
section uses Appendix C on rings of quotients and Appendix D on the Chinese
remainder theorem.

The field of rational functions on P2(K) is the set of all quotients

φ

ψ
∈ K(X0, X1, X2),

where φ, ψ ∈ K[X0, X1, X2] are relatively prime, homogeneous of the same
degree, and ψ �= 0. It is clear that these fractions form a subfield of
K(X0, X1, X2). For a point P = 〈x0, x1, x2〉 ∈ P2(K) with ψ(P ) �= 0,

φ(x0, x1, x2)

ψ(x0, x1, x2)

is independent of the choice of homogeneous coordinates for P . Thus φ
ψ gives

in fact a function

r : P2(K) \ V+(ψ) → K

(
P �→ φ(P )

ψ(P )

)

that vanishes on V+(φ). We call r a rational function on the projective plane,
whose domain of definition, Def(r), is P2(K)\V+(ψ). We call ψ the pole divisor
and φ the zero divisor of r. The difference φ − ψ in the divisor group D of
P2(K) is called the principal divisor belonging to r. The principal divisors of
rational functions on P2(K) form a subgroup H of D. The residue class group
Cl(P2) = D/H is called the divisor class group of P2(K). Using the degree of
a divisor, it is easy to show that

Cl(P2) ∼= (Z,+).

We shall write R(P2) for the field of rational functions on P2(K). The field
K is embedded into R(P2) as the field of constant functions. Recall that for
φ
ψ ∈ R(P2) we assume φ and ψ to be relatively prime.

For P ∈ P2(K), we denote by OP ⊂ R(P2) the subring of all rational
functions whose domain of definition contains P . That is,
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OP =

{
φ

ψ
∈ R(P2) | ψ(P ) �= 0

}
.

We call OP the local ring of P on P2(K). In the language of appendix C, the
ring OP is the homogeneous localization of K[X0, X1, X2] at

pP := ({ψ ∈ K[X0, X1, X2] | ψ is homogeneous and ψ(P ) = 0}),

the prime ideal corresponding to P :

(1) OP = K[X0, X1, X2](pP ).

The maximal ideal of OP is

mP =

{
φ

ψ
∈ OP | φ(P ) = 0

}
.

Let a coordinate transformation c : P2(K) → P2(K) be given by a matrix
A. We will use the notation introduced in Chapter 2. From c we get a K-
automorphism

γ : R(P2) → R(P2)

(
φ

ψ
�→ φA

ψA

)
,

which one can describe as follows: Every rational function r on P2(K) will
be mapped to r ◦ c−1 by γ. In particular, γ induces, for each P ∈ P2(K), a
K-isomorphism

γP : OP → Oc(P ) .

We come now to the “affine description” of the field R(P2) and the ring
OP .

Lemma 4.1. Dehomogenization gives a K-isomorphism

ρ : R(P2)
∼=−→ K(X,Y )

(
φ

ψ
�→ φ(1, X, Y )

ψ(1, X, Y )

)
.

If P = (a, b) is a point at finite distance and MP = (X−a, Y −b) its maximal
ideal in K[X,Y ], then ρ induces a K-isomorphism

OP

∼=−→ K[X,Y ]MP

onto the localization of K[X,Y ] with respect to MP .

Proof. The mapping ρ is well-defined and is a K-homomorphism by the rules
for calculating with fractions. Since ρ is obviously injective, it needs only to
be shown that ρ is surjective. For f , g ∈ K[X,Y ], g �= 0, let φ and ψ be the
homogenizations of f and g in K[X0, X1, X2]. If deg φ ≤ degψ, then

ρ

(
Xdeg ψ−deg φ

0 · φ
ψ

)
=
f

g
,
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and otherwise,

ρ

(
φ

Xdeg φ−deg ψ
0 · ψ

)
=
f

g
.

Since φ
ψ ∈ OP , we have ψ(1, a, b) �= 0, hence ψ(1, X, Y ) �∈ MP . Therefore

it is clear that OP is mapped onto K[X,Y ]MP
by ρ.

The elements ofK(X,Y ) can, in an obvious way, be thought of as functions
on A2(K), and ρ assigns to each rational function on P2(K) its restriction to
A2(K). We call

R(A2) = K(X,Y )

the field of rational functions on A2(K). For P ∈ A2(K),

O′
P := K[X,Y ]MP

is the subring of all functions from R(A2) that are defined at P .
From a different point of view one can interpret a rational function r = φ

ψ ∈
R(P2) as a function from P2(K)\(V+(φ)∩V+(ψ)) to P1(K) in which each point
P ∈ P2(K) \ (V+(φ) ∩ V+(ψ)) is assigned to the point 〈ψ(P ), φ(P )〉 ∈ P1(K).
We denote this mapping also by r. Since φ and ψ are relatively prime by
hypothesis, V+(φ) ∩ V+(ψ) is finite by 3.10, and therefore r is not defined
only on a finite set, the set of indeterminate points of r. Furthermore, r is
either constant or surjective, for if degφ = degψ > 0, and 〈a, b〉 ∈ P1(K)
with a �= 0 and b �= 0 is given, then the equation aφ − bψ = 0 has a solution
P �∈ V+(φ)∩V+(ψ) by 2.9 and 3.10, and it follows that 〈a, b〉 = 〈ψ(P ), φ(P )〉.
It is also clear that 〈1, 0〉 and 〈0, 1〉 belong to the image of r.

Let F be a curve in P2(K) of positive degree. Then

OF :=

{
φ

ψ
∈ R(P2) | F and ψ are relatively prime

}

is a subring of R(P2), and

IF :=

{
φ

ψ
∈ OF | φ ∈ (F )

}

is an ideal of OF . The ring OF consists of precisely the rational functions that
are defined on V+(F ) up to a finite set of exceptions, and IF consists of the
functions that vanish on V+(F ).

Definition 4.2. The residue class ring R(F ) := OF /IF is called the ring of
rational functions on F .

Each residue class φ
ψ + IF defines a function V+(F ) \ V+(ψ) → K by

restricting φ
ψ to V+(F ). Different representatives of the residue class agree

with the function on the intersection of the domains of definition, and therefore
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each residue class defines a function on the union of the domains of definition,
the “rational function associated with the residue class.” Different residue
classes can yield the same function. However, this does not occur for reduced
curves, as the following lemma shows.

We call a subset F ∗ of V+(F ) dense in V+(F ) if F ∗ contains infinitely
many points from each irreducible component of F . The domain of definition
of a function in R(F ) has finite complement in V+(F ), so in particular it is
dense in V+(F ).

Lemma 4.3. Let F be reduced. If r, r̄ ∈ R(P2) agree on a dense subset of
V+(F ), then

r|V+(F )∩Def(r)∩Def(r̄) = r̄|V+(F )∩Def(r)∩Def(r̄).

Proof. Let r = φ
ψ , r̃ = φ̃

ψ̃
. By hypothesis, φψ̃− φ̃ψ vanishes on a dense subset

of V+(F ). By 3.10, every irreducible factor of F must then be a divisor of
φψ̃ − φ̃ψ. Because F is reduced, F itself must divide φψ̃ − φ̃ψ, and therefore
there exists a homogeneous A ∈ K[X0, X1, X2] such that

φ

ψ
− φ̃

ψ̃
=
AF

ψψ̃
∈ IF .

Using this lemma, one can identify, for a reduced curve, an element of R(F )
with the function defined by it. Similarly, one can consider such a function as
a mapping to P1(K), which is defined at all but finitely many points of V+(F ).
If a function r ∈ R(F ) is represented by φ

ψ and φ(P ) �= 0, ψ(P ) = 0, then

r(P ) is the point at infinity 〈0, 1〉 of P1(K). The “poles” of r will be mapped
to the point at infinity of the projective line, and only these poles will be
mapped to the point at infinity. On the other hand, if P is an indeterminate
point of φ

ψ , then r does not assign any function value in P1(K), but changing
to another representative of the rational function may yield a function value.

The following theorem gives an affine description of the ring of rational
functions of a curve F .

Theorem 4.4. Suppose X0 is not a component of F , and f is the affine curve
associated with F ; suppose K[f ] is its coordinate ring, and Q(K[f ]) is the full
ring of quotients of K[f ]. Then there is a K-isomorphism

R(F ) ∼= Q(K[f ]).

Proof. Dehomogenization φ
ψ �→ φ(1,X,Y )

ψ(1,X,Y ) defines a K-isomorphism from OF

to the ring of all quotients φ
ψ ∈ K(X,Y ) such that φ, ψ ∈ K[X,Y ] and

gcd(f, φ) = 1. This is the localization of K[X,Y ] at the set N of all elements
ψ of nonzerodivisors mod (f). The above isomorphism maps the ideal IF to
the principal ideal (f), and hence there is an induced K-isomorphism
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R(F ) = OF /IF
∼=−→ K[X,Y ]N/(f).

On account of the permutability of localization and quotient rings (C.8), there
is also a K-isomorphism

K[X,Y ]N/(f)
∼=−→ (K[X,Y ]/(f))N̄ = K[f ]N̄ ,

where N̄ is the set of all nonzerodivisors of K[f ]. This proves the theorem.

Again one can assign to an element of Q(K[f ]) a function on V(f), namely
the restriction of the corresponding function from V+(F ) to V(f). We therefore
call R(f) := Q(K[f ]) the ring of rational functions of f . If f is reduced, one
can even identify the elements of R(f) with their associated functions.

Since K[f ] is a subring of R(f), the elements of the affine coordinate
ring K[f ] are in particular assigned to functions on V(f) that are defined
on all of V(f). As an example, the residue classes x and y of X and Y in
K[f ] are the “coordinate functions” that assign to each point P ∈ V(f) its
X-coordinate, respectively its Y -coordinate. In contrast, the coordinate ring
K[F ] of a projective curve F is not a ring of functions on V+(F ).

Let f = c · fα1
1 · · · · · fαh

h (c ∈ K∗, αi ∈ N+) be the decomposition of f into
irreducible factors fi, and let f̄i be the residue class of fi inK[f ] (i = 1, . . . , h).
Then the principal ideals (f̄i) are all the minimal prime ideals of K[f ] (1.15)

and we have N̄ = K[f ] \ ⋃h
i=1(f̄i). Thus K[f ]N̄ is by C.9 a ring with only

finitely many prime ideals pi = (f̄i)K[f ]N̄ , and by the Chinese remainder
theorem (D.3) it follows that Q(K[f ]) = K[f ]N̄ is the direct product of its
localizations at these prime ideals. We have (K[f ]N̄ )pi

∼= K[f ](f̄i) by C.8. But
then, however,

K[f ](f̄i)
∼= K[X,Y ](fi)/(f)K[X,Y ](fi)

= K[X,Y ](fi)/(f
αi

i )K[X,Y ](fi)
∼= Q(K[fαi

i ]),

and hence there is a K-isomorphism

Q(K[f ]) ∼= Q(K[fα1
1 ]) × · · · ×Q(K[fαh

h ]).

Therefore, in the projective case we have the following.

Theorem 4.5. If F = cFα1
1 · · ·Fαh

h is the decomposition of F into irreducible
factors, then there is a K-isomorphism

R(F ) ∼= R(Fα1
1 ) × · · · × R(Fαh

h ).

If F is reduced, that is, if α1 = · · · = αh = 1, it is not hard to see that
the above isomorphism assigns to each r ∈ R(F ) the system (r|F1 , . . . , r|Fh

)
of restrictions to the irreducible components of F .
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Corollary 4.6. The curve F is irreducible if and only if R(F ) is a field.
This field is then K-isomorphic to Q(K[f ]). If x and y denote the residue
classes of X and Y in K[f ], then R(F ) ∼= K(x, y). In this case x (without
loss of generality) is transcendental over K, and R(F ) is a separable algebraic
extension of K(x).

Proof. We need to establish only the last statement. We cannot have both x
and y algebraic over K, for otherwise, f must divide the minimal polynomials
for x and y over K. These are polynomials in which only X , respectively only
Y , appears. Then f must be a constant, a contradiction.

Both partial derivatives ∂f
∂X and ∂f

∂Y cannot vanish, for otherwise, f would
be a polynomial in Xp and Y p, where p := CharK > 0. Since K is alge-
braically closed, f would be a pth power, hence certainly not irreducible. So
we can, without loss of generality, let ∂f

∂Y �= 0. Then x is transcendental over
K, and y is separable algebraic over K(x).

Let L be an extension field of K. If there is an element x ∈ L that is
transcendental over K, and L is finite algebraic over K(x), we call L/K an
algebraic function field of one variable. By the corollary, the function fields
R(F ) of irreducible curves are such fields. A theorem from field theory says
that every algebraic function field of one variable over an algebraically closed
field K is of the form L = K(x, y), where x is transcendental over K and y is
algebraic over K (a generalization of the theorem of the primitive element).

Theorem 4.7. Every algebraic function field L/K is K-isomorphic to the
field R(F ) of rational functions of a suitably chosen irreducible algebraic curve
F in P2(K).

Proof. Write L = K(x, y) as indicated and consider the minimal polynomial
φ ∈ K(x)[Y ] of y over K(x). Multiplying φ by a common denominator for the
coefficients from K(x), we get an irreducible polynomial f ∈ K[X,Y ], and we
have L ∼= Q(K[X,Y ]/(f)). The homogenization of f gives the desired curve
F .

In the situation of the theorem, one calls F a plane projective model for
the function field L/K. One studies these field extensions as they arise as the
function fields of projective algebraic curves. Conversely, these function fields
lead to a classification of irreducible curves.

Definition 4.8.

(a) Two curves F and G in P2(K) are called birationally equivalent if there
is a K-isomorphism R(F ) ∼= R(G).

(b) An irreducible curve F is called rational if there is a K-isomorphism
R(F ) ∼= K(T ) with the quotient field K(T ) of the polynomial ring K[T ].
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These concepts extend analogously to affine curves. Of course, curves that
arise through coordinate transformations are birationally equivalent, but bi-
rational equivalence is a weaker condition than projective equivalence. Later,
we will give a more geometrical interpretation of birational equivalence.

One tries to classify curves up to birational equivalence, which for irre-
ducible curves is equivalent with the classification of algebraic function fields
of one variable up to isomorphism. Since projective lines are certainly ratio-
nal, a curve is rational if and only if it is birationally equivalent to a line. We
will later show that this is the case if and only if the curve has a “rational
parametrization.” (See 8.5.)

Example 4.9. Irreducible quadrics are rational (Char K �= 2). We can as-
sume after a coordinate transformation that we are dealing with the quadric
Q = X2

1 +X2
2 −X2

0 . This is given affinely as q := X2 + Y 2 − 1. In Chapter 1,
Exercise 2, it was shown that the points of q are (1, 0) and those given by

(
2t

t2 + 1
,
t2 − 1

t2 + 1

)
(t ∈ K, t2 + 1 �= 0).

It follows immediately by substitution that q is contained in the kernel of the
K-homomorphism

α : K[X,Y ] → K(T )

(
α(X) =

2T

T 2 + 1
, α(Y ) =

T 2 − 1

T 2 + 1

)
,

and because q is irreducible, we must then have kerα = (q). We then get an
injective K-homomorphism K[q] = K[X,Y ]/(q) →֒ K(T ), and therefore also
a K-homomorphism R(Q) = Q(K[q]) →֒ K(T ). Since

α(Y ) + 1

α(X)
=

(
T 2 − 1

T 2 + 1
+ 1

)
T 2 + 1

2T
= T,

the homomorphism is also surjective and is therefore an isomorphism.

Exercises

1. Suppose an irreducible affine algebraic curve is given by an equation
fn+1+fn = 0, where fi ∈ K[X,Y ] is homogeneous of degree i (i = n, n+1;
n ∈ N). Show that the curve is rational. (This shows the rationality of
some of the curves in Figures 1.6–1.15).

2. Let f be the lemniscate with equation

(X2 + Y 2)2 = α(X2 − Y 2) (α ∈ K∗)

and let x, y ∈ K[f ] be the associated coordinate functions. Prove the

rationality of f by showing that R(f) = K(t) with t := x2+y2

x−y .





5

Intersection Multiplicity and Intersection

Cycle of Two Curves

Two projective curves of degrees p and q that have no common components intersect
in at least one and at most pq points (3.10).

2 · 2 intersection points 1 · 6 intersection points

When the number of intersection points is less than that maximum number pq, it is
because certain intersection points “coincide,” or that the curves intersect in some
points “to a higher order”:

1

1

2

1

1

2

We will see in this chapter that one can assign a “multiplicity” to the intersection
points of two curves in such a way that when one counts the points “with
multiplicity,” the number of intersection points is exactly pq. But to do that requires
some preparations.

Let OP be the local ring of a point P in P2(K) and let mP be its maximal
ideal. For a curve F in P2(K) we call

I(F )P :=

{
φ

ψ
∈ OP | φ ∈ (F )

}

the ideal of F in OP . For curves F1, . . . , Fm in P2(K) we set
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OF1∩···∩Fm,P := OP /(I(F1)P + · · · + I(Fm)P ).

If P �∈ V+(F1)∩· · ·∩V+(Fm), then this is the zero ring, because at least one of
the ideals I(Fj)P equals OP . Conversely, if P ∈ V+(F1) ∩ · · · ∩ V+(Fm), then
OF1∩···∩Fm,P �= 0. The set of points of V+(F1) ∩ · · · ∩ V+(Fm) together with
the local rings OF1∩···∩Fm,P is called the intersection scheme F1 ∩ · · · ∩Fm of
the curves F1, . . . , Fm, and OF1∩···∩Fm,P is called the local ring of the point
P on the intersection scheme. In particular, this also defines the local ring
OF,P of a point P on a curve F . For P ∈ V+(F1) ∩ · · · ∩ V+(Fm) we think
of the local ring as being “attached” at the point P . The intersection scheme
contains much more information about the behavior of the intersections than
just the set of intersection points.

Now let P = (a, b) be a point at finite distance, and let fj be the affine
curve belonging to Fj . If MP = (X − a, Y − b) is the maximal ideal corre-
sponding to P , then by 4.1 there is a K-isomorphism

OP
∼−→ O′

P := K[X,Y ]MP
.

This isomorphism will map I(Fj)P to the principal ideal in O′
P generated by

fj . Setting
K[f1 ∩ · · · ∩ fm] := K[X,Y ]/(f1, . . . , fm)

and denoting the image of MP in K[f1∩· · ·∩fm] by MP , we get the following
due to the commutativity of rings of quotients and residue class rings (C.8).

Theorem 5.1. There is a K-isomorphism

OF1∩···∩Fm,P
∼= K[f1 ∩ · · · ∩ fm]MP

.

Let F ∗
j be the curve obtained from Fj by omitting the irreducible compo-

nents that do not contain P . If f∗j is the dehomogenization of F ∗
j , then

fj O′
P = f∗j O′

P ,

because the factors left out of fj become units in O′
P . By 5.1 we have the

following.

Corollary 5.2.
OF1∩···∩Fm,P

∼= OF∗

1 ∩···∩F∗
m,P .

Hence we get the following finiteness theorem.

Theorem 5.3. Let m ≥ 2 and suppose two of the curves from {F1, . . . , Fm}
do not have irreducible components in common containing P . Then

dimK OF1∩···∩Fm,P <∞.



5 Intersection Multiplicity and Intersection Cycle of Two Curves 41

Proof. We can assume that F1 and F2 do not have irreducible components
in common containing P . Since OF1∩···∩Fm,P is a homomorphic image of
OF1∩F2,P , it is enough to show that dimK OF1∩F2,P < ∞. By 5.2 we can as-
sume that F1 and F2 have no components in common at all. Then, however,
K[f1∩f2] is a finite-dimensional K-algebra by 1.4(b). By the Chinese remain-
der theorem D.4, we have that K[f1 ∩ f2]MP

is a direct factor of K[f1 ∩ f2].
Therefore, we also have that OF1∩F2,P

∼= K[f1 ∩ f2]MP
is finite-dimensional

over K.

The remark below follows immediately from the definition of OF1∩···∩Fm,P .

Remark 5.4. (a) dimK OF1∩···∩Fm,P = 0 if and only if

P �∈ V+(F1) ∩ · · · ∩ V+(Fm).

(b) dimK OF1∩···∩Fm,P = 1 if and only if

mP = I(F1)P + · · · + I(Fm)P .

Definition 5.5. For two curves F1, F2 in P2(K) we call

μP (F1, F2) := dimK OF1∩F2,P

the intersection multiplicity of F1 and F2 at the point P . If μP (F1, F2) = μ, we
say that P is a μ-fold point of F1∩F2. The intersection multiplicity μP (f1, f2)
of two affine curves f1, f2 is defined analogously.

This definition is somewhat abstract, but we will see by and by that this
concept does possess the geometric properties that we want. A major advan-
tage of the definition lies in the fact that it is very easy to see the independence
of the choice of coordinates. A coordinate transformation c : P2(K) → P2(K)
given by a matrix A induces a K-isomorphism

OP
∼−→ Oc(P )

(
φ

ψ
�→ φA

ψA

)

with the property that for each curve F the ideal I(F )P is mapped to
I(c(F ))c(P ). Therefore, OF1∩···∩Fm,P and Oc(F1)∩···∩c(Fm),c(P ) areK-isomorphic,
and so in particular, they have the same dimension.

By 5.4(a) we have μP (F1, F2) = 0 precisely when P �∈ V+(F1) ∩ V+(F2).
Furthermore, μP (F1, F2) = 1 precisely when

mP = I(F1)P + I(F2)P .

We will see later (see 7.6 and 7.7) that this condition is satisfied if and only
if F1 and F2 intersect “transversally” at P :
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P

By 5.3, we have μP (F1, F2) < ∞ if F1 and F2 do not have a common
irreducible component containing P . On the other hand, if they do possess
such a common component F , then I(F1)P + I(F2)P ⊂ I(F )P , and OF1∩F2,P

has OF,P as a homomorphic image. This is an integral domain with quotient
field R(F ), and so it cannot be finite-dimensional as a K-algebra. Therefore,
μP (F1, F2) = ∞.

To study global questions about the intersections of two projective curves
it is convenient to introduce the following concept.

Definition 5.6. A cycle Z in P2(K) is an element of the free abelian group
on the set of all points of P2(K):

Z =
∑

P∈P2(K)

mP · P (mP ∈ Z, mP �= 0 for only finitely many P ).

We define degZ :=
∑
mP , the degree of Z. For curves F1, F2 in P2(K) that

have no common components, we call

F1 ⋆ F2 =
∑

P∈P2(K)

μP (F1, F2) · P

the intersection cycle of F1 and F2.

Here the notation F1 ⋆ F2 has nothing to do with the product of the two
homogeneous polynomials. The intersection cycle describes the intersection of
F1 and F2 by indicating the points of V+(F1) ∩ V+(F2) and their associated
intersection multiplicities. It contains less information than the intersection
scheme F1 ∩F2, but more than V+(F1)∩V+(F2). We have now arrived at the
main theorem of this chapter, whose proof is quite easy by the above.

Bézout’s Theorem 5.7. For two curves F1 and F2 in P2(K) with no com-
mon component we have

deg(F1 ⋆ F2) = degF1 · degF2.

Two curves F1, F2 in P2(K) always intersect in degF1 · degF2 points if F1

and F2 have no common component and their intersection points are counted
with the appropriate intersection multiplicities.

Proof. We can assume that

V+(F1) ∩ V+(F2) = {P1, . . . , Pr}



5 Intersection Multiplicity and Intersection Cycle of Two Curves 43

has only points at finite distance. If f1 and f2 are the corresponding affine
curves, then by 3.9(a) we have dimK K[f1∩ f2] = p · q. Moreover, MaxK[f1∩
f2] = {MP1 , . . . ,MPr

}. Therefore, by the Chinese remainder theorem,

(1) K[f1 ∩ f2] = K[f1 ∩ f2]MP1
× · · · ×K[f1 ∩ f2]MPr

,

and hence

degF1 · degF2 = p · q =

r∑

i=1

μPi
(F1, F2) = deg(F1 ⋆ F2).

Next we show the additivity of intersection multiplicities and intersection
cycles.

Theorem 5.8. Let F , G, and H be curves in P2(K). Denote by F + G the
sum of the divisors F and G, i.e., the curve corresponding to F ·G. If F +G
and H have no common component containing P , then

μP (F +G,H) = μP (F,H) + μP (G,H).

Proof. By 5.2 we can assume that F +G and H have no components in com-
mon at all. Let P = (a, b) be an affine point and let f , g, h be the affine
curves corresponding to F , G, H . Then f ·g is a polynomial in K[X,Y ] corre-
sponding to the divisor F +G. We denote the residue class of f , respectively
g, in K[h] = K[X,Y ]/(h) by φ and ψ. Since f · g and h are relatively prime,
φ and ψ are not zero divisors in K[h] and also φ · ψ is not a zero divisor.
We will denote by mP the maximal ideal in K[h] corresponding to P and
set R := K[h]mP

. Because of the commutativity of the formation of rings of
quotients and residue classes (C.8), there are K-isomorphisms

OP /I(F +G)P + I(H)P
∼= R/(φ · ψ),

OP /I(F )P + I(H)P
∼= R/(φ), OP /I(G)P + I(H)P

∼= R/(ψ).

The statement of the theorem then follows from the definition of intersection
multiplicity and by the following lemma.

Lemma 5.9. Let R be a K-algebra and let φ, ψ ∈ R. If φ is a nonzerodivisor
on R and if dimK R/(φ · ψ) <∞, then

dimK R/(φ · ψ) = dimK R/(φ) + dimK R/(ψ).

Proof. We have (φ · ψ) ⊂ (φ) ⊂ R and hence

dimK R/(φ · ψ) = dimK R/(φ) + dimK(φ)/(φ · ψ).

Since φ is a nonzerodivisor on R, multiplication by φ yields a K-isomorphism
R

∼−→ (φ), under which (ψ) is mapped to (φ · ψ). Therefore,

dimK(φ)/(φ · ψ) = dimK R/(ψ).
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Corollary 5.10. Suppose F +G and H have no common components. Then

(F +G) ⋆ H = F ⋆H +G ⋆ H.

Theorem 5.8 implies in particular that μP (F,H) > 1 if a multiple compo-
nent containing P appears in F (or in G).

Corollary 5.11. Under the assumptions of Bézout’s theorem, suppose that
V+(F1) ∩ V+(F2) is a set of points at finite distance, and let f1, f2 be the
affine curves corresponding to F1, F2. Then the following are equivalent:

(a) V+(F1) ∩ V+(F2) consists of ρ := degF1 · degF2 distinct points.
(b) F1 and F2 are reduced curves and K[f1∩f2] is a direct product of ρ copies

of the field K:

K[f1 ∩ f2] =

ρ∏

i=1

K.

Proof. By Bézout’s theorem, we have (a) precisely when μP (F1, F2) = 1 for
all P ∈ V+(F1)∩ V+(F2), i.e., when OF1∩F2,P

∼= K. By the above remark, F1

and F2 are reduced. Since V+(F1)∩V+(F2) = V+(f1)∩V+(f2), it follows from
(1) that condition (a) holds if and only if K[f1 ∩ f2] =

∏ρ
i=1K.

It will later turn out that the conclusions of the corollary occur exactly
when F1 and F2 are reduced curves that “intersect transversally everywhere,”
as was suggested by the figures at the beginning of this chapter.

Many theorems about algebraic curves deal with the interpolation problem:
An algebraic curve of a certain degree is to pass through some given points in
the plane, where the behavior of the curve at the points (maybe its direction)
is prescribed. We consider here the case in which the given points are just the
intersection points of two curves F1 and F2 without common components.

Definition 5.12. Let G be another curve. We say that F1∩F2 is a subscheme
of G if

(2) dimK OF1∩F2∩G,P = μP (F1, F2)

for all points P ∈ V+(F1) ∩ V+(F2).

Condition (2) is equivalent to the condition that for all P ∈ V+(F1) ∩
V+(F2),

(3) I(G)P ⊂ I(F1)P + I(F2)P , and thus OF1∩F2,P = OF1∩F2∩G,P .

If μP (F1, F2) = 1, this is the same as saying that P ∈ V+(G), and therefore
that G “goes through” P .

Lemma 5.13. Suppose V+(F1) ∩ V+(F2) consists of points at finite distance,
and f1, f2, and g are the polynomials in K[X,Y ] corresponding to F1, F2,
and G. Then F1 ∩ F2 is a subscheme of G if and only if g ∈ (f1, f2).
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Proof. Let ψ be the image of g in K[f1∩ f2]. Condition (3) is then equivalent
to saying that the image of ψ in K[f1 ∩ f2]mP

vanishes, where mP is the
maximal ideal in K[f1 ∩ f2] corresponding to P . By the Chinese remainder
theorem (1) it follows that (3) holds for all P ∈ V+(F1) ∩ V+(F2) if and only
if ψ = 0, i.e., g ∈ (f1, f2).

Fundamental Theorem of Max Noether 5.14. The following are equiv-
alent:

(a) F1 ∩ F2 is a subscheme of G.
(b) G ∈ (F1, F2).
(c) There are homogeneous polynomials A,B ∈ K[X0, X1, X2] with degA =

degG− degF1 and degB = degG− degF2 such that

G = A · F1 +B · F2.

Proof. We can assume that we are in the situation of the lemma. If G ∈
(F1, F2), then by dehomogenization, g ∈ (f1, f2). Now suppose conversely
that this condition is satisfied. Write g = af1 + bf2 with a, b ∈ K[X,Y ]. Then
this yields by homogenization an equation of the form

Xν
0G = A · F1 +B · F2,

where ν ∈ N and A,B ∈ K[X0, X1, X2] are homogeneous polynomials. By
3.8(b) X0 is not a zerodivisor modulo (F1, F2). Therefore, it follows that
G ∈ (F1, F2). Hence by Lemma 5.13, statements (a) and (c) of the theorem
are equivalent. Now (b) ⇒ (c) follows, because the polynomials F1, F2, and
G are homogeneous, and (c) ⇒ (b) is trivial.

Corollary 5.15. Suppose G and F1 have no common components. If F1 ∩F2

is a subscheme of G, then there is a curve H satisfying degH = degG−degF2

and such that
G ⋆ F1 = H ⋆ F1 + F2 ⋆ F1.

Proof. Choose an equation as in 5.14(c) and set H := B. We may assume
that we are in the situation of Lemma 5.13 and denote by a and h the deho-
mogenizations of A and H . Then

μP (G,F1) = dimK O′
P /(g, f1) = dimK O′

P /(af1 + hf2, f1)

= dimK O′
P /(hf2, f1) = μP (H + F2, F1) = μP (H,F1) + μP (F2, F1)

for all P ∈ P2(K), and the statement follows.



46 5 Intersection Multiplicity and Intersection Cycle of Two Curves

Examples 5.16.

(a) In the situation of 5.14, suppose V+(F1)∩V+(F2) consists of degF1 ·degF2

different points. The curve G passes through all of these points if and only
if G ∈ (F1, F2).

(b) Suppose F1 ∩ F2 is a subscheme of a curve G and Z := V+(F1) ∩ V+(G)
consists of degF1 · degG different points. Then there is a curve H with
degH = degG−degF2 that passes through the points of Z not in V+(F1)∩
V+(F2).

(c) Suppose two cubic curves intersect in exactly 9 points, and 6 of these lie
on a quadric. Then the remaining 3 intersection points lie on a line.

(d) Pascal’s theorem (∼ 1639) Suppose the two cubic curves in (c) are each
the union of three different lines. Then we have the situation shown in the
following figure:

It follows that the three points not lying on the quadric lie on a line.
Usually, Pascal’s theorem is formulated by saying that if one chooses 6

points on a quadric so that there is a hexagon inscribed in the quadric,
as in the figure, then the opposite sides meet in collinear points. In the
special case that the quadric is the union of two lines, Pascal’s theorem
was known in ancient times (Pappus’s theorem). See the following figure.
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More effort is needed in order to get the following theorem. Our method
of proof rests on the results about filtered algebras.

Cayley–Bacharach Theorem 5.17. Suppose two curves F1, F2 in P2(K)
have no common components. Let degF1 =: p, degF2 =: q, and let G be
another curve with degG =: h < p+ q − 2. If

(4)
∑

P∈V+(F1)∩V+(F2)

dimK OF1∩F2∩G,P ≥ (p− 1)(q − 1) + h+ 1,

then F1 ∩ F2 is a subscheme of G.

Proof. We will use a result from Chapter 3 on the structure of the coordinate
ring of the intersections of two curves. As usual, we assume that there are
no points at infinity in V+(F1) ∩ V+(F2), and that f1, f2, and g are the
polynomials in K[X,Y ] corresponding to F1, F2, and G. We set

A := K[f1 ∩ f2] = K[X,Y ]/(f1, f2)

and
B := grF A = K[X,Y ]/(LFf1, LFf2),

where F denotes both the degree filtration on K[X,Y ] and the induced fil-
tration on the ring K[f1 ∩ f2].

Let γ be the image of g in A. By 5.13, we must show that γ vanishes,
under the assumptions of the theorem. Suppose it were the case that γ �= 0.
Then also γ0 := LFγ �= 0, and this is a homogeneous element of B of degree
< p+ q − 2.

By 3.14, Bp+q−2 is the socle of B. If ξ and η are the images of X and Y in
B, then (ξ, η)·γ0 �= 0, since γ �∈ Bp+q−2. There is thus an element α1 ∈ B1 with
α1 ·γ0 �= 0. By induction we get the following: For i = 0, . . . , p+q−2−h, there
are elements αi ∈ Bi (α0 = 1) with αi · γ0 �= 0. Since these elements have
different degrees, they are linearly independent over K. Hence, dimK(γ) ≥
p+ q − 1 − h and dimK A/(γ) ≤ p · q − (p+ q − 1 − h) = (p− 1)(q − 1) + h.

We now apply the Chinese remainder theorem (1), and considering the
images of γ in the local rings K[f1 ∩ f2]MP

, we see that the hypothesis (4) of
the theorem says that dimK A/(γ) ≥ (p−1)(q−1)+h+1. This contradiction
shows that we must have γ = 0.

Examples 5.18. (a) Under the hypotheses of 5.17 suppose V+(F1)∩V+(F2)
consists of p · q different points and V+(G) contains (p− 1)(q− 1) + h+ 1
of these. Then V+(G) contains all p · q points of V+(F1) ∩ V+(F2).
We recall how we can understand these statements as theorems about
systems of algebraic equations: Suppose we are given a system of equations

F1(X0, X1, X2) = 0,

F2(X0, X1, X2) = 0,

G(X0, X1, X2) = 0.

(5)
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Let F1, F2, and G be homogeneous of degrees p, q, and h < p + q − 2.
Suppose the system F1 = F2 = 0 has exactly p · q different solutions Pi in
P2(K), and (p−1)(q−1)+h+1 of these are also solutions of the equation
G = 0. Then all the Pi are solutions of (5).

(b) Let p = q = h = n ≥ 3. Then the condition h < p+ q − 2 is satisfied. If
V+(F1) ∩ V+(F2) consists of n2 different points and if (n− 1)2 + n+ 1 =
n(n − 1) + 2 of these are contained in V+(G), then all n2 points are
contained in V+(G).

(c) If two cubic curves intersect in 9 different points and another cubic curve
contains 8 of these intersection points, then it contains all nine. This is
the special case of (b) in which n = 3. One can also deduce 5.16(c) and
Pascal’s theorem from this.

Exercises

1. Let A be an algebra over a field K with the following properties:
(a) A is a noetherian ring.
(b) A has exactly one prime ideal m (and is therefore local).
(c) The composite map K → A ։ A/m is bijective.
Show that dimK A <∞. (Use the fact that m is finitely generated and by
C.12 consists of nilpotent elements of A.)

2. Let K be an algebraically closed field. A 0-dimensional subscheme of
A2(K) is a system Z = (P1, . . . , Pt;A1, . . . , At), where P1, . . . , Pt are dis-
tinct points in A2(K) and A1, . . . , At are K-algebras with the properties
(a)–(c) of Exercise 1, and where the maximal ideal of each Ai is generated
by (at most) two elements. We call

A := A1 × · · · ×At

the affine algebra of Z. Also, we call
∑t

i=1 dimK Ai ·Pi the cycle of Z and
dimK A the degree of Z.
(a) Show that there is a K-isomorphism

A ∼= K[X,Y ]/I,

where I is an ideal of the polynomial ring K[X,Y ].
(b) Conversely, assign a 0-dimensional subscheme of A2(K) to each finite-

dimensional K-algebra of the form K[X,Y ]/I.
3. Let F,G ∈ R[X0, X1, X2] be homogeneous polynomials. For a point P =

〈x0, x1, x2〉 ∈ P2(C), denote by P := 〈x0, x1, x2〉 the complex conjugate
point of P (xi is the conjugate of the complex number xi).
(a) Show that μP (F,G) = μP (F,G).
(b) Conclude that if F and G have odd degree, then the system of equa-

tions
F (X0, X1, X2) = 0, G(X0, X1, X2) = 0,

has a solution in P2(R).
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4. A theorem of Newton (1704): An affine curve f of degree d will intersect a
line g in d points P1, . . . , Pd, where these points can coincide if the inter-
section multiplicity is > 1. Suppose d does not divide the characteristic of
K. The centroid of f ∩ g is then the point P (g) := 1

d

∑d
i=1 Pi, where the

sum is constructed using the vector addition of K2. Show that if a band
of parallel lines passes through g, then all the centroids P (g) lie on a line
(referred to by Newton as a “diameter” of f). (Hint: One can assume that
g is given by Y = 0. Write f = φ0X

d +φ1X
d−1 + · · ·+φd (φi ∈ K[Y ]).

Consider φ0 and, most importantly, φ1.)
5. A theorem of Maclaurin (1748): Under the hypotheses of Exercise 4,

suppose (0, 0) �∈ Supp(f). Let g be a line through (0, 0) and Pi = (xi, yi)
(i = 1, . . . , d). The harmonic center of f ∩ g is the point

H(g) = (x(g), y(g)) with x(g) := d

(
d∑

i=1

x−1
i

)−1

, y(g) := d

(
d∑

i=1

y−1
i

)−1

if g is not the X-axis or the Y -axis (otherwise, H (g) = (d(
∑
x−1

i )−1, 0),
respectively H(g) = (0, d(

∑
y−1

i )−1)). Show that if g runs over all lines
through the origin that intersect f in d affine points, then the points H (g)

lie on a line. (Hint: For this theorem consider φd−1 and φd.)
6. Determine μP (f, g) if

f = (X2 + Y 2)3 − 4X2Y 2,

g = (X2 + Y 2)3 −X2Y 2,

and if P = (0, 0).

7. Prove the converse of Pascal’s theorem: Suppose the intersection points
of the 3 pairs of opposite sides of a hexagon lie on a line. Then the vertices
of the hexagon lie on a quadric.
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Regular and Singular Points of Algebraic

Curves. Tangents

A point on an algebraic curve is either “simple” or “singular.” At a simple point the
curve is “smooth.” In general, a point on a curve is assigned a “multiplicity” that
indicates how many times it has to be counted as a point of the curve. The “tangents”
of a curve will also be explained. One can decide whether a point is simple or singular
with the help of the local ring at the point. The facts from Appendix E on Noetherian
rings and discrete valuation rings will play a role in this chapter. Toward the end,
some theorems from Appendix F on integral ring extensions will also be needed.

Definition 6.1. For a curve F in P2(K) and a point P ∈ P2(K) we call

mP (F ) := Min{μP (F,G) | G is a line through P}

the multiplicity of P on F (or the multiplicity of F at P ).

In the following, F will always be a curve in P2(K). By 5.4(a) it is clear
that mP (F ) = 0 if and only if P �∈ V+(F ). Since there is always a line G
through P that is not a component of F , we have μP (F,G) < ∞ and hence
mP (F ) <∞.

Definition 6.2. Let P ∈ V+(F ) and let G be a line through P . If

μP (F,G) > mP (F ),

we call G a tangent to F at P .

Observe that the concepts “multiplicity” and “tangent” by their very def-
inition are independent of the choice of coordinates. The following theorem
gives a practical way to explicitly determine the multiplicity and the tan-
gents. We suppose that P = (0, 0) is the affine origin and f is the affine
curve corresponding to F . Denote by Lf the leading form of f for the (X,Y )-
adic filtration of K[X,Y ], i.e., the homogeneous component of lowest degree
with respect to the standard grading of the polynomial ring. In the following
let degLf be the degree of Lf with respect to this grading, and not, as in
Appendix B, the negative of this degree.
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Theorem 6.3. Under these hypotheses we have

(a) mP (F ) = degLf .
(b) If degLf =: m > 0 and Lf =

∏m
j=1(ajX − bjY ) is the decomposition of

Lf into linear factors, then the lines

tj : ajX − bjY = 0

are all the tangents to F at P .

Proof. Statement (a) is trivial for degLf = 0. We can therefore assume that
m > 0 and P ∈ V+(F ). We will show that for a line G through P ,

(1) μP (F,G)

{
= m, if G �∈ {t1, . . . , tm},
> m, if G ∈ {t1, . . . , tm},

and then the theorem follows.
Let G be given by the equation aX − bY = 0, where without loss of

generality b �= 0. Then the equation can be put in the form Y = aX . With
MP := (X,Y ), we then have

μP (F,G) = dimK K[X,Y ]MP
/(f, Y − aX) = dimK K[X ](X)/(f(X, aX))

by 5.1, and we have

f(X, aX) = Xmfm(1, a) +Xm+1fm+1(1, a) + · · · +Xdfd(1, a),

where f = fm + · · ·+ fd (d ≥ m) is the decomposition of f into homogeneous
components. In particular, Lf = fm. Here K[X ](X) is a discrete valuation
ring whose maximal ideal is generated by X . Denote by ν the corresponding
discrete valuation, and write

f(X, aX) = Xm · [fm(1, a) +Xfm+1(1, a) + · · · +Xd−mfd(1, a)].

Then we see that

(2) ν(F (X, aX))

{
= m, in case fm(1, a) �= 0,
> m, otherwise,

because the expression in the square brackets [ ] is a unit in K[X ](X) if and
only if fm(1, a) �= 0. The second case of (2) occurs precisely when Y − aX is
a divisor of Lf , that is, when G ∈ {t1, . . . , tm}. By E.13, however, we have

dimK K[X ](X)/(f(X, aX)) = ν(f(X, aX)).

This shows that (1) holds, and the proof is complete.

Corollary 6.4. At a point of multiplicity m > 0 on an algebraic curve there
is at least one and there are at most m tangents.
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Corollary 6.5. Let F =
∏t

i=1 F
ni

i , where the Fi are irreducible curves and
ni ∈ N+ for i = 1, . . . , t. Then for every point P ∈ P2(K),

mP (F ) =
t∑

i=1

ni ·mP (Fi).

Proof. We can assume that P = (0, 0) and that the line at infinity is not
a component of F . The affine polynomial f of F then has a factorization
f =

∏t
i=1 f

ni

i , where fi is an irreducible polynomial corresponding to Fi.

Because Lf =
∏t

i=1(Lfi)
ni , the result follows from 6.3(a).

Under the assumptions of 6.3, one can consider Lf as an affine curve whose
irreducible components are lines through P . This is called the tangent cone
of F at P = (0, 0). By translation, the tangent cone is defined at any point
of F . If we decompose Lf into a product of powers of linear factors that are
pairwise not associates

Lf = c ·
ρ∏

i=1

(aiX − biY )νi (c ∈ K∗, (ai, bi) ∈ K2),

then the aiX−biY define the distinct tangents at P , and νi gives the multiplic-
ity with which the tangent should be counted. There are alwaysm tangents at
a point of multiplicity m when these tangents are counted with multiplicity.

Examples.

Folium of Descartes:

F = X3 + X2
− Y 2 = 0, P = (0, 0)

mP (F ) = 2, tangents: Y = ±X
(counted simply)

Four-leaf rose:

F = (X2 + Y 2)3 − 4X2Y 2, P = (0, 0)

mP (F ) = 4, tangents: X = 0, Y = 0
(counted doubly)

Definition 6.6. A point P ∈ V+(F ) is called a simple (or regular) point of
F if mP (F ) = 1. In this case one says that F is smooth (or regular) at P . If
mP (F ) > 1, then P is called a multiple (singular) point or a singularity of F .
A curve that has no singularities is called smooth (nonsingular). The set of
all singular points is denoted by Sing(F ), and Reg(F ) denotes the set of all
simple points of F .
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By 6.4 a curve has a uniquely determined tangent at a simple point.

Corollary 6.7.

(a) A simple point of F does not lie on two distinct components of F and also
does not lie on a multiple component of F .

(b) Every smooth projective curve is irreducible.

Proof. (a) follows immediately from the formula in 6.5. A smooth curve can
not have a multiple component by (a). If it had two distinct components,
these components would have to intersect (Bézout), and each intersection
point would be singular. Hence we have (b).

The following theorem will enable us to calculate singularities.

Jacobian Criterion 6.8. For P = 〈x0, x1, x2〉 ∈ V+(F ), write ∂F
∂xi

:=
∂F
∂Xi

(x0, x1, x2) for i = 0, 1, 2. Then P ∈ Sing(F ) if and only if

∂F

∂x0
=
∂F

∂x1
=
∂F

∂x2
= 0.

Proof. Without loss of generality we can take x0 = 1. Consider the Taylor
series of F at (1, x1, x2):

(3) F = F (1, x1, x2)+
∂F

∂x0
·(X0−1)+

∂F

∂x1
·(X1−x1)+

∂F

∂x2
·(X2−x2)+ · · · .

Dehomogenizing F with respect to X0, and setting X := X1 − x1, Y :=
X2 − x2, we get an affine polynomial corresponding to F in a coordinate
system with P = (0, 0). Since F (1, x1, x2) = 0, it has the form

∂F

∂x1
·X +

∂F

∂x2
· Y + · · · ,

where the dots denote polynomials of degree > 1. By 6.3 we have mP (F ) > 1
if and only if ∂F

∂x1
= ∂F

∂x2
= 0. But by the Euler relation

∂F

∂x0
· 1 +

∂F

∂x1
· x1 +

∂F

∂x2
· x2 = (deg f) · F (1, x1, x2) = 0,

this is equivalent to ∂F
∂x0

= ∂F
∂x1

= ∂F
∂x2

= 0.

Corollary 6.9. A reduced algebraic curve has only finitely many singularities.

Proof. Let F be a reduced curve with irreducible components Fi (i = 1, . . . , t).
For P ∈ P2(K) we have

mP (F ) =

t∑

i=1

mP (Fi)
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by 6.5, and it follows that

(4) Sing(F ) =

t⋃

i=1

Sing(Fi) ∪
⋃

i�=j

(V+(Fi) ∩ V+(Fj)).

Therefore, we must show only the finiteness of Sing(Fi), since V+(Fi)∩V+(Fj)
(for i �= j) is finite by Bézout.

So suppose F is irreducible of degree d > 0. It cannot be the case that all
of the partial derivatives ∂F

∂Xi
vanish (i = 0, 1, 2); otherwise, F would be of

the form F = Hp, for some polynomial H , where p > 0 is the characteristic of
K; then F would not be irreducible. If some ∂F

∂X0
�= 0, then deg ∂F

∂X0
= d− 1.

Since F and ∂F
∂X0

are relatively prime, the system of equations F = 0, ∂F
∂X0

= 0
has at most d(d− 1) solutions by Bézout. By the Jacobian criterion, Sing(F )
is therefore finite.

Example. The curves Fn := Xn
1 +Xn

2 −Xn
0 (n ∈ N+) are smooth if n is not

divisible by the characteristic of K. The partial derivatives of Fn then vanish
only for X0 = X1 = X2 = 0; hence they vanish at no point in the projective
plane. In particular, Fn is irreducible. Conversely, if CharK is a divisor of n,
then all points of Fn are singular.

The following theorem shows that the tangents introduced here are for
curves defined over R a generalization of the tangents studied in analysis.

Theorem 6.10 (Tangents at regular points).

(a) Let P = (x, y) be a regular point of an affine curve f . Then the tangent
line to f at P is given by the equation

∂f

∂x
· (X − x) +

∂f

∂y
· (Y − y) = 0,

where ∂f
∂x := ∂f

∂X (x, y) and ∂f
∂y := ∂f

∂Y (x, y).

(b) Let P = 〈x0, x1, x2〉 be a regular point of a projective curve F . Then the
tangent to F at P is given by

∂f

∂x0
·X0 +

∂f

∂x1
·X1 +

∂f

∂x2
·X2 = 0.

Proof. (a) follows from the description of tangents in 6.3(b), since the trans-
lation that maps (x, y) to (0, 0) sends ∂f

∂x · (X−x)+ ∂f
∂y · (Y −y) to the leading

form of the polynomial describing the affine curve.
(b) We may suppose without loss of generality that x0 �= 0 and let

f(X,Y ) := F (1, X, Y ). In affine coordinates the tangent is given by

∂f

∂x
· (X − x) +

∂f

∂y
· (Y − y) = 0 with x :=

x1

x0
, y :=

x2

x0
,
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according to (a), and therefore is given projectively by

(5)
∂f

∂x
·X1 +

∂f

∂y
·X2 −

(
∂f

∂x
x+

∂f

∂y
y

)
·X0 = 0.

Now ∂f
∂x = ∂F

∂X1
(1, x1

x0
, x2

x0
), ∂f

∂y = ∂F
∂X2

(1, x1

x0
, x2

x0
), and by the Euler relation we

have

∂f

∂x
· x+

∂f

∂y
· y =

∂F

∂X1

(
1,
x1

x0
,
x2

x0

)
· x1

x0
+
∂F

∂X2

(
1,
x1

x0
,
x2

x0

)
· x2

x0

= − ∂F

∂X0

(
1,
x1

x0
,
x2

x0

)
.

Observing that the partial derivatives are homogeneous of degree degF − 1,
we get the equations for the tangents that we want by multiplying through
by xdeg F−1

0 .

Next we want to characterize the regular points P using the local rings
OF,P . In the future we will always denote the maximal ideal of OF,P by mF,P .
If P = (a, b) is an affine point and f the polynomial in K[X,Y ] corresponding
to F , then

OF,P
∼= K[f ]MP

,

where K[f ] = K[X,Y ]/(f) and MP is the image of the maximal ideal MP ⊂
K[X,Y ]. By 1.15 and C.10 we know the prime ideals of OF,P : besides the
maximal ideal mF,P , the ring OF,P has only finitely many minimal prime
ideals, which are in one-to-one correspondence with the components of F that
pass through P . In particular, OF,P is a one-dimensional local ring (E.10(b)).
Since MP = (X − a, Y − b), it follows that mP is also generated by two
elements, and so we have edimOF,P = 2 or 1.

Regularity Criterion 6.11. For P ∈ V+(F ) the following are equivalent:

(a) P is a regular point of F .
(b) OF,P is a discrete valuation ring.
(c) edimOF,P = 1.

Proof. (a) ⇒ (b). We can assume that P = (0, 0), and then we have to
show that K[f ]MP

is a discrete valuation ring. Let f = cfn1
1 · · · fnh

h be a
decomposition of f into irreducible polynomials (c ∈ K∗, ni > 0). Since P is
a regular point of F , we have fi(P ) = 0 for exactly one i ∈ {1, . . . , h}, and
moreover, for this i we have ni = 1 (by 6.7(a)). Therefore,

(f) ·K[X,Y ]MP
= (fi) ·K[X,Y ]MP

.

Because mP (F ) = 1, we have degLf = degLfi = 1. We can choose the
coordinate system so that Lfi = Y ; i.e., the tangent to F at P is the X-axis.
Then fi is of the form
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(6) fi = φ1 ·X − φ2 · Y, φ1, φ2 ∈ K[X,Y ], φ1(0, 0) = 0, φ2(0, 0) �= 0.

If ξ, η are the residue classes of X,Y in K[f ]MP
, then the maximal ideal

m = mF,P of this ring will be generated by ξ and η, because X and Y generate
the ideal MP . Since the image of φ2 in K[f ]MP

is a unit, from (6) we get an
equation η = r · ξ in K[f ]MP

(for some r ∈ K[f ]MP
), and therefore m is a

principal ideal. Since OF,P is a 1-dimensional local ring, hence not a field,
we have ξ �= 0 and therefore edimOF,P = 1. We have shown that OF,P is a
discrete valuation ring.

The proof of (b) ⇒ (c) is trivial. To prove that (c) implies (a) it is enough
to show that edimOF,P = 2 whenever P is a singularity of F . In this case
degLf ≥ 2, and therefore f ∈ (X2, XY, Y 2) = M2

P . It follows that

m/m2 ∼= (X,Y )K[X,Y ]MP
/(X2, XY, Y 2)K[X,Y ]MP

.

It is easy to see that the ideal (X,Y )K[X,Y ]MP
is not a principal ideal. By

Nakayama’s lemma (E.1), m/m2 is then a K-vector space of dimension 2, and
a second application of the lemma shows that m is also not a principal ideal.

If F is an irreducible curve, its function field R(F ) contains all of the
local rings OF,P , where P ∈ V+(F ). For if P is a point at finite distance (an
affine point), f the polynomial in K[X,Y ] corresponding to F , and K[f ] =
K[X,Y ]/(f) = K[x, y], then R(F ) = K(x, y) and OF,P is by 5.1 a localization
of K[x, y], so it is certainly a subring of K(x, y). It consists just of the rational
functions r ∈ R(F ) for which P ∈ Def(r). If P is a smooth point of F , then
OF,P is a discrete valuation ring with field of fractions R(F ) and K ⊂ OF,P .

In general, we call a discrete valuation ring R with Q(R) = R(F ) and
K ⊂ R a discrete valuation ring of R(F )/K. The set X(F ) of all discrete
valuation rings of R(F )/K is called the abstract Riemann surface of R(F )/K.
Theorem 6.11 shows that OF,P belongs to X(F ) if and only if P is a regular
point of F . We now want to investigate more precisely the behavior with
respect to F of the abstract Riemann surface of R(F )/K.

Theorem 6.12. Let F be irreducible. Then

(a) To each R ∈ X(F ) there is exactly one P ∈ V+(F ) such that OF,P ⊂ R
and mF,P = m ∩ OF,P , where m is the maximal ideal of R. There is
therefore a natural mapping

π : X(F ) → V+(F ) (R �→ P ).

(b) The mapping π is surjective. For P ∈ Reg(F ), the set π−1(P ) consists
of only one “point” R, namely R = OF,P . For P ∈ Sing(F ), π−1(P ) is
finite.

Proof. (a) We write R(F ) = K(x, y), where K[x, y] is the affine coordinate
ring of F with respect to the line at infinity X0 = 0. If we choose instead
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X1 = 0 as the line at infinity, then K[ 1
x ,

y
x ] is the corresponding coordinate

ring, and for X2 = 0 we get the ring K[x
y ,

1
y ].

Now let vR : R(F ) → Z∪∞ be the valuation belonging to R. If vR(x) ≥ 0
and vR(y) ≥ 0, then K[x, y] ⊂ R and m ∩K[x, y] is a prime ideal of K[x, y].
It cannot be the zero ideal, for in that case we would have K(x, y) ⊂ R.
Therefore, m ∩K[x, y] = mP is the maximal ideal of some P ∈ V+(F ), and
we have

OF,P = K[x, y]mP
⊂ R, m ∩ OF,P = mF,P .

In case vR(x) ≥ 0 > vR(y), then K[x
y ,

1
y ] ⊂ R. On the other hand, if

vR(x) ≤ vR(y) < 0, then K[ 1
x ,

y
x ] ⊂ R. In each case, one finds as above a

point P ∈ V+(F ) with OF,P ⊂ R and mF,P = m ∩OF,P .
Suppose there were another such point P ′ ∈ V+(F ). By a suitable choice of

coordinates, both P and P ′ lie in the affine plane complementary to X0 = 0.
Then mP ′ = K[x, y] ∩ m = mP and hence P ′ = P . This shows the existence
of the mapping π.

(b) For P ∈ Reg(F ) we have OF,P ∈ X(F ). Since a discrete valuation
ring is a maximal subring of its field of fractions (E.14), there is only one
R ∈ X(F ) with OF,P ⊂ R, namely R = OF,P . Hence π−1(P ) consists of
exactly one point in this case.

We still have to consider the singular points of F . Let P ∈ Sing(F ). By
a suitable choice of coordinate system, we may assume that P = (0, 0), that
the polynomial f ∈ K[X,Y ] corresponding to F is monic as a polynomial in
Y , and that ∂f

∂Y �= 0 (4.6). Then K[f ] = K[x, y] is integral over K[x] and
is a finite K[x]-module. If S is the integral closure of K[x] in R(F ), then
K[f ] ⊂ S. Also, R(F ) is separable algebraic over K(x). By F.7 it follows that
S is finitely generated as a K[x]-module. Then S is also finitely generated as
a K[f ]-module.

Let OF,P be the integral closure of OF,P in R(F ). Since OF,P is a lo-
calization of K[x, y], the ring OF,P is the localization of S at the same set
of denominators (F.11(a)), and in particular, OF,P is a finitely generated
OF,P -module. By F.10(b) respectively F.10(a) it has at least one and at most
finitely many maximal ideals M, and by F.10(b) these all lie over mF,P , i.e.,
M ∩ OF,P = mF,P for all M ∈ Max(OF,P ). Furthermore, by F.10(b) respec-
tively F.10(a) and F.8, (OF,P )M is a discrete valuation ring, and hence an
element of X(F ). This shows that the mapping π is surjective.

Finally, let R ∈ X(F ) be an arbitrary element with π(R) = P , and let m

be the maximal ideal of R. We will prove that OF,P ⊂ R. For z ∈ OF,P , we
must show that vR(z) ≥ 0, where vR denotes the valuation belonging to R.
Let

zn + a1z
n−1 + · · · + an = 0

be an equation of integral dependence for z over OF,P . From ai ∈ OF,P ⊂ R,
it follows that vR(ai) ≥ 0 (i = 1, . . . , n). If vR(z) < 0, then we would have

vR(zn) = Min{vR(zn), vR(aiz
n−i) | i = 1, . . . , n},
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and by Rule (c′) in Appendix E, we would have ∞ = vR(0) = n · vR(z), a
contradiction.

Since OF,P ⊂ OF,P ⊂ R, we have that M := m ∩ OF,P is one of the
maximal ideals of OF,P lying over mF,P , and (OF,P )M = R, since (OF,P )M

is itself a discrete valuation ring, as we have already shown. Thus, R is the
localization of OF,P at one of the finitely many maximal ideals of this ring;
i.e., π−1(P ) is finite.

Corollary 6.13. If F is smooth, then π : X → V+(F ) is bijective.

Remark. It can be shown that in general, X(F ) is the set of all local rings
of a smooth curve C in a higher-dimensional projective space, and F appears
as a plane curve under a suitable mapping of C to the plane. If, under this
mapping, several points of C have the same image, then the outcome of this
is a singularity.

The proof of 6.12 has shown that theR ∈ X(F ) are exactly the localizations
of the rings OF,P (P ∈ V+(F )) at their maximal ideals. It is therefore clear
that each R ∈ X(F ) has K as its residue field up to isomorphism. If vR is
the valuation associated with R, and r ∈ R(F ) is a rational function, then we
call vR(r) the order of r at the zero R. If vR(r) > 0, then we call R a zero of
order vR(r) of r; when vR(r) < 0, then we call R a pole of order −vR(r) of
r. If R = OF,P for a regular point P of F , then we also write vP for vR and
speak of the order of r at the point P .

To each r ∈ R(F ) one can assign a function on X(F ) as follows: If vR(r) ≥
0, let r(R) be the image of r under the canonical epimorphism R → K. For
R = OF,P this amounts to the value of the function at the zero P , as we
have explained. Looking at the r ∈ R(F ) as functions on X(F ) has several
advantages: r has an order at each point of X(F ). Therefore, R ∈ X(F ) is a
pole of r precisely when R is a zero of r−1. Also, vR(r · s) = vR(r) + vR(s) for
all r, s ∈ R(F ).

Theorem 6.14. A nonzero rational function r ∈ R(F ) has only finitely many
zeros and poles on X(F ).

Proof. Let f be the affine curve belonging to F . We first consider the case
r ∈ K[f ]. Then r belongs to the local rings OF,P for every point P of F at
finite distance, and r has no poles at the points of π−1(P ). Let g ∈ K[X,Y ]
be a polynomial representing r. Since r �= 0, g is not divisible by f . The affine
curves g and f intersect in only finitely many points; i.e., r ∈ mF,P for only
finitely many points P ∈ V(f); i.e., r has only finitely many zeros at finite
distance. Since F has only finitely many points at infinity, each of which has
only finitely many π-preimages R ∈ X(F ), altogether r has only finitely many
zeros and poles.

An arbitrary function in R(F ) is of the form r
s , where r, s ∈ K[f ] and

s �= 0. It is then clear that any nonzero such function has only finitely many
zeros and poles.
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As in the case of the projective plane, we define the divisor group of X(F )
(also called the divisor group of R(F )/K) to be the free abelian group on
the set of points of X(F ). The degree of a divisor D =

∑
R∈X(F ) nR ·R is the

integer
∑

R∈X(F ) nR. Theorem 6.14 shows that to each function r ∈ R(F )\{0}
there is a principal divisor

(r) :=
∑

R∈X(F )

vR(r) ·R,

since we have vR(r) �= 0 only for finitely many R ∈ X(F ). The principal
divisors form a subgroup of the divisor group. Its residue class group is called
the divisor class group, and it is an important invariant of X(F ) (or of the
function field R(F )/K or of the curve F ). This divisor class group is in no way
as simple as the divisor class group of the projective plane described at the
beginning of Chapter 4. Birationally equivalent curves (see 4.8(a)) in P2(K)
obviously have isomorphic divisor class groups.

Exercises

1. Determine the real and complex singularities of the projective closures of
the curves in 1.2(e) and 1.2(f). Also calculate the multiplicities and the
tangents at the singular points. Do this also for the limaçon (snail) of
Pascal (X2 + Y 2 + 2Y )2 − (X2 + Y 2) = 0.

2. Let OF,P be the local ring of a regular point P of an algebraic curve F .
Show that there exists an injective K-algebra homomorphism from OF,P

to the algebra K[[t]] of all formal power series in one variable t over K.
(Use the fact that OF,P is a discrete valuation ring and “expand” the
elements of OF,P using a prime element of the power series ring.)

3. Let f = f1 · · · fh be a reduced affine curve. Show that f has no singularities
if and only if the canonical homomorphism

K[f ] → K[f1] × · · · ×K[fh]

is bijective and the K[fi] are integrally closed in their field of fractions.
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More on Intersection Theory. Applications

In the last section we introduced the multiplicity of a point on an algebraic curve.
Using multiplicities we can make more precise statements about the nature of the
intersections of two curves than was possible so far. We will also present some
further applications of Bézout’s theorem.

First we shall give a description of intersection multiplicity by means of valu-
ations. Let F be a curve in P2(K) and P a point of F such that the local ring
OF,P is an integral domain. This is the same as saying that P lies on only one
irreducible component of F . Let R1, . . . , Rh ∈ X(F ) be the discrete valuation
rings that lie over OF,P (i.e., for which π(Ri) = P using the mapping π of
6.12). Furthermore, let νRi

be the valuation belonging to Ri (i = 1, . . . , h).
The Ri are precisely the localizations of the integral closures OF,P of OF,P in
R(F ) at their maximal ideals.

Lemma 7.1. The K-vector space OF,P /OF,P is finite-dimensional.

Proof. OF,P is finitely generated as an OF,P -module, and both rings have the
same quotient field. Hence there are elements ωi = ai

b (i = 1, . . . , n) in OF,P

with ai, b ∈ OF,P , b �= 0, such that

OF,P =

n∑

i=1

OF,P · ωi.

Then bOF,P ⊂ OF,P ⊂ OF,P .
If b is a unit in OF,P , then OF,P = OF,P , and there is nothing more to

show. If b is not a unit of OF,P , then OF,P /bOF,P is a K-algebra with only
finitely many prime ideals, namely the images of the maximal ideals of OF,P .
By D.3,

OF,P /bOF,P
∼= R1/(b) × · · · ×Rh/(b),

and the Ri/(b) are finite-dimensional K-algebras (E.13). Then OF,P /bOF,P ,
and hence also OF,P /OF,P is a finite-dimensional K-vector space.

Under the hypotheses of 7.1, let G be a curve that has no component that
contains the point P in common with F . Let I(G)P ⊂ OP be the principal
ideal belonging to G (Chapter 5).
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Theorem 7.2. Suppose the image of I(G)P in OF,P is generated by γ. Then

μP (F,G) =

h∑

i=1

νRi
(γ).

Proof. We have μP (F,G) = dimK OF,P /(γ) by the definition of intersection
multiplicity. Consider the diagram

γOF,P
� � ��

��

��

OF,P
��

��
γOF,P

� � �� OF,P

Using 7.1 we get

dimK
OF,P

OF,P
+ dimK

OF,P

(γ)
= dimK

OF,P

(γ)
+ dimK

γOF,P

γOF,P
.

Since γ is not a zero divisor of OF,P , the K-vector spaces OF,P /OF,P and
γOF,P /γOF,P are isomorphic, and so

μP (F,G) = dimK OF,P/(γ).

As in the proof of 7.1 we have

OF,P /(γ) ∼= R1/(γ) × · · · ×Rh/(γ),

and then from E.13,

dimK OF,P /(γ) =

h∑

i=1

dimK(Ri/(γ)) =

h∑

i=1

νRi
(γ).

Theorem 7.3. Let F be an irreducible curve and r ∈ R(F ) \ {0}. Then the
principal divisor of r on X(F ) is of degree 0. In other words: The function r
has exactly as many zeros as poles when these are counted with their respective
orders. If a ∈ K and r �= a, then r has also as many a-places as poles.

Proof. Represent r by a rational function Φ
Ψ on P2(K). Suppose degΦ =

deg Ψ =: q, degF =: p, and Φ, Ψ are as always relatively prime. Now, F is
not a divisor of Ψ and also not a divisor of Φ, since r �= 0. Therefore, one can
choose the line at infinity in such a way that Φ(P ) �= 0 and Ψ(P ) �= 0 for
every point P of F at infinity. If P is any of these points, then r is a unit in
OF,P .

Let φ, ψ, f ∈ K[X,Y ] be the dehomogenizations of Φ, Ψ, F , and φ, ψ the

canonical images of φ, ψ in K[f ]. Then r = φ

ψ
, and by 7.2 and Bézout’s

theorem we have for the degree of the divisor (r),
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deg(r) = deg(φ) − deg(ψ) =
∑

R∈X(F )

νR(φ) −
∑

R∈X(F )

νR(ψ)

=
∑

P∈V+(F )

μP (F,Φ) −
∑

P∈V+(F )

μP (F, Ψ) = p · q − p · q = 0.

Since the a-places of r are the zeros of r − a and since r − a has the same
poles as r, the statement about a-places has been shown.

In particular, a rational function r that has no pole on X(F ) must be a
constant function.

The next theorem describes the relationship between intersection multi-
plicity and multiplicity.

Theorem 7.4. For two curves F , G in P2(K) and a point P ∈ P2(K) we
always have

μP (F,G) ≥ mP (F ) ·mP (G).

Equality holds precisely when F and G have no tangent lines in common at
the point P .

μP (F, G) = 8 μP (F, G) > 8

Proof. We may assume without loss of generality that P = (0, 0) and that F
and G have no common component that contains P . Let f and g be the affine
curves corresponding to F and G. Denote by M := (X,Y ) the maximal ideal
of K[X,Y ] belonging to P and let F be the M-adic filtration on K[X,Y ].
Then by 6.3(b) (after a change of sign),

mP (F ) = degLFf, mP (G) = degLFg.

Set m := mP (F ) and n := mP (G). Using 5.1 and the definition of intersection
multiplicity it follows that

μP (F,G) = dimK K[X,Y ]M/(f, g) ≥ dimK K[X,Y ]/(f, g,Mm+n)

= dimK K[X,Y ]/Mm+n − dimK(f, g,Mm+n)/Mm+n

=

(
m+ n+ 1

2

)
− dimK((f, g,Mm+n)/Mm+n).

(1)
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The K-linear mapping

α : K[X,Y ] ×K[X,Y ] → (f, g,Mm+n)/Mm+n,
(a, b) �→ af + bg + Mm+n,

is surjective. Also, α(a, b) = 0 if a ∈ Mn and b ∈ Mm. Hence there is an
induced surjection

α : K[X,Y ]/Mn ×K[X,Y ]/Mm → (f, g,Mm+n)/Mm+n,

and we get

dimK((f, g,Mm+n)/Mm+n) ≤ dimK K[X,Y ]/Mn + dimK K[X,Y ]/Mm

=

(
n+ 1

2

)
+

(
m+ 1

2

)
.

By (1) this implies that

μP (F,G) ≥
(
m+ n+ 1

2

)
−
(
n+ 1

2

)
−
(
m+ 1

2

)
= m · n,

and the first part of the theorem has been proved.
If LFf and LFg have a nonconstant common factor; hence F and G have

a common tangent at P . Then there are homogeneous polynomials a, b ∈
K[X,Y ] with deg a = n− 1, deg b = m− 1, such that a · LFf + b · LFg = 0.
Therefore, (a, b) ∈ kerα, and it follows that α is not injective. It must therefore
be the case that μP (F,G) > mP (F ) ·mP (G).

On the other hand, if LFf and LFg are relatively prime, then grF (f, g) =
(LFf, LFg) according to B.12. We also denote by F the filtration on the local
ring K[X,Y ]M with respect to its maximal ideal. It is easy to see (C.14) that

grF K[X,Y ]M ∼= grF K[X,Y ] ∼= K[X,Y ]

in a natural way, and that LFf, LFg are also the leading forms of f and
g as elements of K[X,Y ]M. By B.6 the vector spaces K[X,Y ]M/(f, g) and
grF K[X,Y ]M/(f, g)) have the same K-dimension, where F denotes the in-
duced residue class ring filtration. By B.8,

grF K[X,Y ]M/(f, g) = grF K[X,Y ]M/ grF (f, g),

and it follows that

μP (F,G) = dimK(K[X,Y ]M/(f, g)) = dimK(K[X,Y ]/(LFf, LFg).

From equation (4) in Appendix A we see that the last dimension is m ·n, and
therefore μP (F,G) = mP (F ) ·mP (G).
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Corollary 7.5. If F and G have no components in common, then

degF · degG ≥
∑

P∈P2(K)

mP (F ) ·mP (G).

Equality holds if and only if F and G have no tangent lines in common at
every point of intersection.

Definition 7.6. We say that F and G intersect transversally at P if P is a
regular point of F and of G, and if the tangents to F and G at P are different.

Corollary 7.7. Two curves F and G intersect transversally at P if and only
if μP (F,G) = 1. If P is a point at finite distance, and f and g are the affine
curves corresponding to F and G, then F and G intersect transversally at P

if and only if the Jacobian determinant ∂(f,g)
∂(X,Y ) does not vanish at the point

P .

Proof. The first statement follows immediately from Theorem 7.4. The non-
vanishing of the Jacobian determinant at the point P is equivalent to saying
that the leading forms LFf and LFg are of degree 1 and are linearly inde-
pendent, i.e., that mP (F ) = mP (G) = 1 and that the tangents to F and G
at P are different.

Corollary 7.8. Suppose F and G have no components in common. Then
V+(F ) ∩ V+(G) consists of degF · degG distinct points if and only if F and
G intersect transversally at all their points of intersection.

Our goal now is to give a sharpening of Bézout’s theorem that will allow
us to give a more precise count of the number of singularities of a reduced
algebraic curve.

Theorem 7.9. Let F be an irreducible curve in P2(K) of degree d, and let
Sing(F ) = {P1, . . . , Ps}. Then

s∑

i=1

mPi
(F ) · (mPi

(F ) − 1) ≤ d(d − 1).

Proof. We may assume that the points Pi are at finite distance. Let f ∈
K[X,Y ] be the dehomogenization of F . Since f is irreducible, both partial
derivatives of f cannot vanish, for otherwise, K would be a field of character-
istic p > 0 and f would be a pth power.

Suppose then ∂f
∂X �= 0. Then also ∂F

∂X1
�= 0 and hence deg ∂F

∂X1
= d − 1.

Furthermore, F and ∂F
∂X1

have no components in common. By Bézout and 7.4
we have

degF · deg
∂F

∂X1
= d(d− 1) =

∑

P

μP

(
F,
∂F

∂X1

)
≥
∑

P

mP (F ) ·mP

(
∂F

∂X1

)
.
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Let P = (0, 0). Then mP (F ) = degLFf and mP ( ∂F
∂X1

) = degLF
∂f
∂X . Because

deg ∂F
∂X1

= d− 1, we have mP ( ∂F
∂X1

) ≥ mP (F ) − 1, and it follows that

degF · deg
∂F

∂X1
≥
∑

P

mP (F ) · (mP (F ) − 1).

Since only the singularities of F contribute to the sum, the theorem is proved.

Corollary 7.10. A reduced curve of degree d has at most
(
d
2

)
singularities.

Proof. For irreducible curves F this follows immediately from 7.9, since
mP (F ) ≥ 2 for each P ∈ Sing(F ). Suppose F1 and F2 are two reduced curves
with no common components for which the statement has already been shown,
and let F := F1 · F2.

Denote by s the number of singularities of F , let di := degFi (i = 1, 2),
and let d := degF = d1 + d2. Using equation (4) of the proof of 6.9 we get

s ≤
(
d1
2

)
+

(
d2
2

)
+ d1d2 =

(d1 + d2)
2 − (d1 + d2)

2
=

(
d

2

)
.

Now for an arbitrary reduced curve, the statement of the corollary follows by
factoring and induction.

Examples 7.11.

(a) A reduced quadric has at most one singularity: In fact, for the line pair,
the point of intersection is the singularity.

(b) A reduced cubic can have 3 singularities of multiplicity 2,

or one singularity of multiplicity 3.

For irreducible curves the estimate of the number of singularities can be
sharpened. To do this we need a few preparations. We begin with a funda-
mental concept.
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Definition 7.12. A set L of curves of degree d in P2(K) is called a linear
system of degree d if there is a subspace V of the K-vector space of all homo-
geneous polynomials of degree d in K[X0, X1, X2] such that L consists of all
curves F with F ∈ V \ {0}. If dimV =: δ + 1, then we set dimL := δ.

That the dimension of L has been chosen to be 1 less than the dimension of
V can be explained by the fact that two polynomials that differ by a non-zero
constant factor define the same curve. In fact, L = P2(V ) is the projective
space associated with V .

Remark 7.13. For P1, . . . , Ps ∈ P2(K), let L be the linear system of all
curves of degree d with {P1, . . . , Ps} ⊂ Supp(F ). Then

dimL ≥
(
d+ 2

2

)
− s− 1.

Proof. We have dimK K[X0, X1, X2]d =
(
d+2
2

)
. A homogeneous polynomial

F of degree d has therefore
(
d+2
2

)
coefficients in K. The requirement that

{P1, . . . , Ps} ⊂ Supp(F ) gives rise to s linear conditions on the coefficients.
At least

(
d+2
2

)
− s linearly independent polynomials satisfy these conditions.

Through 2 points there passes a line, through 5 points a quadric, through
9 points a cubic, etc.

d 1 2 3 4 · · ·(
d+2

d

)
− 1 2 5 9 14 · · ·

We will now consider, in addition to the points P1, . . . , Ps ∈ P2(K) on the
curve F of degree d, given integers m1, . . . ,ms ≥ 1 for which

mPi
(F ) ≥ mi (i = 1, . . . , s).

Let F =
∑

ν0+ν1+ν2=d aν0ν1ν2X
ν0
0 X

ν1
1 X

ν2
2 and let P = 〈1, a, b〉. ThenmP (F ) ≥

m if and only if the leading form of the polynomial

F (1, X+a, Y + b) =
∑

ν0+ν1+ν2=d

aν0ν1ν2(X+a)ν1(Y + b)ν2 =
∑

bμ1μ2X
μ1Y μ2

(with respect to the standard grading) has degree ≥ m; i.e., we must have
bμ1μ2 = 0 for μ1 + μ2 < m. The bμ1μ2 are linear combinations of the aν0ν1ν2

with coefficients in K. The requirementmP (F ) ≥ m gives rise to
(

m+1
2

)
linear

conditions on the coefficients of F . The next theorem now follows.

Theorem 7.14. The curves F of degree d with mPi
(F ) ≥ mi (i = 1, . . . , s)

form a linear system L with

dimL ≥
(
d+ 2

d

)
−

s∑

i=1

(
mi + 1

2

)
− 1.
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We now come to the announced sharpening of 7.10 for irreducible curves.

Theorem 7.15. Let F be an irreducible curve of degree d and let Sing(F ) =
{P1, . . . , Ps}. Then (

d− 1

2

)
≥

s∑

i=1

(
mPi

(F )

2

)
.

Proof. By 7.9 we certainly have
(
d+1
2

)
>
(
d
2

)
≥ ∑s

i=1

(mPi
(F )

2

)
. By 7.14 the

linear system of all curves G of degree d − 1 with mPi
(G) ≥ mPi

(F ) − 1
(i = 1, . . . , s) is nonempty, and one can even find a curve G that additionally
passes through (

d+ 1

2

)
−

s∑

i=1

(
mPi

(F )

2

)
− 1

prescribed simple points of F .
Since F is irreducible and degG = degF − 1, the curves F and G have no

common component. Thus it follows from Bézout’s theorem and 7.4 that

d(d− 1) ≥
s∑

i=1

mPi
(F )(mPi

(F ) − 1) +

(
d+ 1

2

)
−

s∑

i=1

(
mPi

(F )

2

)
− 1

=

s∑

i=1

(
mPi

(F )

2

)
+

(
d+ 1

2

)
− 1,

and we get (
d− 1

2

)
≥

s∑

i=1

(
mPi

(F )

2

)
.

Corollary 7.16. An irreducible curve of degree d has at most
(
d−1
2

)
singular-

ities.

For example, an irreducible cubic has at most one singularity with multi-
plicity 2. At that singular point, it can have two distinct tangents (folium of
Descartes) or a double tangent (Neil’s semicubical parabola). An irreducible
curve of degree 4 (a quartic) can have up to 3 singularities of multiplicity 2,
or one of multiplicity 3.

The following theorem classifies the singular cubics.

Theorem 7.17. In case CharK �= 3 every irreducible singular cubic curve in
P2(K) is given, in a suitable coordinate system, by one of the following two
equations:

(a) X0X1X2 +X3
1 +X3

2 = 0,
(b) X0X

2
2 −X3

1 = 0.

If CharK = 3, the curve is given by one of the equations (a), (b) or by the
equation

(c) X0X
2
2 −X3

1 −X2
1X2 = 0.
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Proof. Let F be an irreducible cubic curve with a singularity P . We can
assume P = (0, 0) without loss of generality.

(a) If F has two distinct tangents at P , then without loss of generality
we can take these to be the X-axis and the Y -axis. The affine polynomial
associated with F then has the form

XY + aX3 + bX2Y + cXY 2 + dY 3 (a, b, c, d ∈ K).

Here a �= 0 and d �= 0, for otherwise, F would be reducible. Set a = α3, d = δ3

(α, δ ∈ K), so then the polynomial has the form

XY (1 + bX + cY ) + (αX)3 + (δY )3,

and the substitution αX �→ X , δY �→ Y gives

X · Y ·
(

1

αδ
+

b

α2δ
X +

c

αδ2
Y

)
+X3 + Y 3.

Homogenizing this polynomial, and relabeling the expression in the parenthe-
ses X0, we get

X0X1X2 +X3
1 +X3

2 = 0.

(b) If F has a double tangent at P , then the associated affine polynomial,
in a suitable coordinate system, has the form

Y 2 + aX3 + bX2Y + cXY 2 + dY 3 (a, b, c, d ∈ K, a �= 0).

If CharK �= 3, then by the substitution X �→ X − b
3aY , we can assume that

b = 0. Now write the polynomial in the form

Y 2 · (1 + cX + dY ) + aX3 + bX2Y

and proceed as in (a) to get the equations (b) and (c).

We will deal with nonsingular cubics (elliptic curves) in detail in Chapter
10. The next theorem gives sufficient conditions under which the intersection
scheme of two curves is a subscheme of a further curve, and so complements
Noether’s fundamental theorem 5.14 and the Cayley–Bacharach theorem 5.17.

Theorem 7.18. Let F1, F2, and G be curves in P2(K). Suppose one of the
following conditions is satisfied for a point P ∈ V+(F1) ∩ V+(F2):

(a) P is a simple point of F1 and μP (F1, G) ≥ μP (F1, F2).
(b) F1 and F2 have no tangents in common at P and

mP (G) ≥ mP (F1) +mP (F2) − 1.

Then
dimK OF1∩F2∩G,P = μP (F1, F2).



70 7 More on Intersection Theory. Applications

Proof. Under the assumption (a), the ring OF1,P is a discrete valuation ring.
Let I = (γ) and J = (η) be the ideals in OF1,P associated with F2 and G.
Then by 7.2,

νP (η) = μP (F1, G) ≥ μP (F1, F2) = νP (γ),

and therefore J ⊂ I. It follows that

dimK OF1∩F2∩G,P = dimK OF1,P /I + J = dimK OF1,P /I = μP (F1, F2).

Under the assumption (b), we let P = (0, 0) without loss of generality, and
let f1, f2, g be the corresponding affine curves. Denote the maximal ideal of
the local ring O′

P by M, and let Lf1, Lf2, Lg be the leading forms of f1, f2,
g with respect to the M-adic filtration of O′

P . We have grM O′
P

∼= K[X,Y ].
Since F1 and F2 have no tangents in common at P , it follows that Lf1 and
Lf2 are relatively prime polynomials in K[X,Y ]. Then by B.12,

grM O′
P /(f1, f2)

∼= K[X,Y ]/(Lf1, Lf2).

If degLf1 = mP (F1) =: m, degLf2 = mP (F2) =: n, then the homogeneous
component of the largest degree inK[X,Y ]/(Lf1, Lf2) (the socle, cf. 3.14) is of
degreem+n−2 according to A.12(b). Since, by assumption, degLg ≥ m+n−
1, we must have Lg ∈ (Lf1, Lf2), and therefore g ∈ (f1, f2)O′

P +Mm+n. By
induction we get g ∈ ⋂∞

i=m+n(f1, f2)O′
P +Mi, and by the Krull intersection

theorem E.8 it follows that g ∈ (f1, f2)O′
P . But then dimK OF1∩F2∩G,P =

dimK O′
P /(f1, f2, g) = dimK O′

P /(f1, f2) = μP (F1, F2).

Corollary 7.19. Let F1 and F2 be curves with no component in common, and
let G be a further curve. For each P ∈ V+(F1) ∩ V+(F2) suppose one of the
following conditions is satisfied:

(a) F1 is smooth at P and μP (F1, G) ≥ μP (F1, F2).
(b) F1 and F2 have no tangent line in common at P and

mP (G) ≥ mP (F1) +mP (F2) − 1.

Then F1 ∩ F2 is a subscheme of G.

Corollary 7.19, like the Cayley–Bacharach theorem, gives sufficient con-
ditions for the conclusion that F1 ∩ F2 is a subscheme of G. Theorem 7.18
itself can sometimes be used to give an easy proof that condition (4) of the
Cayley–Bacharach theorem holds.

We illustrate an application of 7.18 and 7.19 by means of Pascal’s theorem.

Examples 7.20.

(a) Let F1 and F2 each be the union of 3 distinct lines. Suppose F1 and F2

intersect as in the following figure.
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P

A
B

C

F1

F2

Here P is a point of multiplicity 2 of F2, and a simple point of F1. Be-
sides this point, V+(F1) ∩ V+(F2) contains 7 other points of intersection
multiplicity 1.

A quadric Q contains the 5 distinct points of intersection other than A,
B, C, and is tangent to F1 at P . Then dimK OF1∩F2∩Q,P = μP (F1, F2) = 2
by 7.18(a). Let G be the union of Q with the line through A and B. Then
the hypotheses of the Cayley–Bacharach theorem 5.17 are satisfied for F1,
F2, G, and it follows that C ∈ Supp(G); i.e., A, B, C lie on a line.

This “degenerate case” of Pascal’s theorem can be used to construct,
using only a straightedge, a tangent line to a quadric Q through a given
point P .

(b) The situation can even “degenerate” more strongly:

S1

S2

S3

A

B

C

The quadric Q contains the double points S1, S2, and S3 of F2 and is
tangent to F1 at these points. Then A, B, C lie on a line.
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Exercises

1. Calculate the intersection multiplicity of the curves

Y 2 −X3 = 0, Y p −X2 = 0 (3 ≤ p ≤ q �= 3 · p
2 )

at the origin (use 5.9 and 7.4).
2. Carry out the above-mentioned tangent construction on a quadric.
3. How can one construct the line segment between two points with a

straightedge that is shorter than the distance between the points? (Pap-
pus’s theorem).

4. Deduce the following theorems in the geometry of circles from 7.18:
(a) Miguel’s theorem: In R2 let a triangle {A,B,C} be given, let A′ be

on the line through B and C, let B′ be on the line through A and
C, and let C ′ be a point on the line through A and B. Assume that
A′, B′, C′ �∈ {A,B,C}. Consider the circles throughA, B′, C′, through
A′, B, C′, and through A′, B′, C. These circles intersect in a point.

(b) In R2, let 3 circles be given such that each two of them intersect in
2 points. Then the common secant lines of the circles intersect in a
point.

5. Give a proof using elementary geometry for 7.20(b) in the case that the
quadric is a circle.
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Rational Maps. Parametric Representations of

Curves

Rational maps of the projective plane are given by homogeneous polynomials of
the same degree. Above all, we are interested in the characterization of birational
equivalence by rational maps. It will also be shown that a curve is rational precisely
when it has a “parametric representation.” This chapter depends on Chapter 4, but
it also uses parts of Chapter 6.

Definition 8.1. For relatively prime homogeneous polynomials Φ0, Φ1, Φ2 ∈
K[X0, X1, X2] of the same degree, denote by Φ = 〈Φ0, Φ1, Φ2〉 the mapping

Φ : P2(K) \
2⋂

i=0

V+(Φi) → P2(K)

given by Φ(〈x0, x1, x2〉) = 〈Φ0(x0, x1, x2), Φ1(x0, x1, x2), Φ2(x0, x1, x2)〉. It is
called the rational map given by Φ0, Φ1, Φ2. We call Def(Φ) := P2(K) \
∩2

i=0V+(Φi) the domain of definition and ∩2
i=0V+(Φi) the set of indeterminate

points of Φ.

It is clear that Φ has only finitely many indeterminate points, since the Φi

are relatively prime.

Examples 8.2.

(a) Coordinate transformations of P2(K) are rational maps. If c is a coordinate
transformation and Φ is a rational map, then c◦Φ and Φ◦c are also rational
maps. In order to prove the rationality of a mapping, one can choose a
“suitable” coordinate system.

(b) The central projection from a point onto a line. Let G be a line in P2(K)
and P ∈ P2(K) \G. For each line G′ through P , we associate to G′ \ {P}
the point P ′ of intersection of G and G′.
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The map P2(K) \ {P} → G ⊂ P2(K) given here is rational: In a suitable
coordinate system P = 〈0, 0, 1〉 and G is the line X2 = 0. The central
projection from P onto G will then be given by 〈x0, x1, x2〉 �→ 〈x0, x1, 0〉;
i.e., it is Φ = 〈X0, X1, 0〉. The point P is called the center of the projection.

(c) Quadratic transformations (Cremona transformations). These are the
maps Φ = 〈Φ0, Φ1, Φ2〉 with relatively prime homogeneous polynomials
Φi of degree 2. We will investigate the specific map

Φ = 〈X1X2, X0X2, X0X1〉

in some detail. Its indeterminate points are

P0 = 〈1, 0, 0〉, P1 = 〈0, 1, 0〉, P2 = 〈0, 0, 1〉.

The lines Xi = 0 are mapped by Φ onto Pi (i = 0, 1, 2).

P0

P2

X  =02

X  =01 X  =00

P1

For points not in V+(X0X1X2), the map Φ2 is given by

〈x0, x1, x2〉 �→ 〈x2
0x1x2, x0x

2
1x2, x0x1x

2
2〉,

and so is equal to the identity. The function Φ therefore maps P2 \
V+(X0X1X2) bijectively onto itself.

In a moment we shall use the following notation: If A ∈ K[X0, X1, X2] is
a homogeneous polynomial and Φ = 〈Φ0, Φ1, Φ2〉 is a rational map, then we
set

AΦ := A(Φ0, Φ1, Φ2).

This is also a homogeneous polynomial, and we have

(1) AΦ(x0, x1, x2) = A(Φ(x0, x1, x2)) for 〈x0, x1, x2〉 ∈ Def(Φ).

We will now show that two reduced curves in P2(K) are birationally equiv-
alent if and only if after finitely many points are removed from the curves,
the remaining points can be mapped bijectively to one another by a ratio-
nal mapping of the plane. Here again we identify reduced curves with their
support V+(F ). As in Chapter 4 we call a subset F ∗ ⊂ F dense if it con-
tains infinitely many points from each irreducible component of F . The dense
subsets of irreducible curves are therefore the infinite subsets.



8 Rational Maps. Parametric Representations of Curves 75

Theorem 8.3. For two reduced curves F and G in P2(K), the following are
equivalent:

(a) F and G are birationally equivalent.
(b) There are cofinite subsets F ∗ ⊂ F , G∗ ⊂ G and rational maps Φ, Ψ of

P2(K) with F ∗ ⊂ Def(Φ), G∗ ⊂ Def(Ψ), such that Φ|F∗ and Ψ |G∗ are
bijective inverses of each other.

(c) There are dense subsets F ∗ ⊂ F , G∗ ⊂ G and rational maps Φ, Ψ such
that the conditions given in (b) are satisfied.

Proof. (c) ⇒ (a). If A ∈ K[X0, X1, X2] is a homogeneous polynomial with no
components in common with G, then also F and AΦ have no components in
common, because otherwise by (1), A would vanish at infinitely many points
of G∗ = Φ(F ∗), and therefore must have a component in common with G
(3.10). This shows that there is a K-homomorphism

OG −→ OF

(
A

B
�→ AΦ

BΦ

)

defined by Φ. This map sends IG to IF , for if A is divisible by G, then by (1)
AΦ vanishes on F ∗, hence is divisible by F , because F is reduced. Passing to
the residue class rings, we get a K-homomorphism

Φ∗ : R(G) −→ R(F ).

Similarly, Ψ induces a K-homomorphism

Ψ∗ : R(F ) −→ R(G).

For A
B ∈ OG the rational functions A

B and (AΦ)Ψ

(BΦ)Ψ agree on the dense subset

G∗ ⊂ G. By 4.3 these fractions give the same functions of R(G). This shows
that Φ∗ and Ψ∗ are inverseK-isomorphisms, i.e., that F andG are birationally
equivalent.

(a) ⇒ (b). Conversely, suppose two inverse K-isomorphisms

α : R(G) → R(F ) and β : R(F ) → R(G)

are given. Suppose further, without loss of generality, that X0 is not a com-

ponent of F or G. Then K
[

X1

X0
, X2

X0

]
⊂ OF ∩OG. Denote by α̃ the composite

of the K-homomorphisms

K

[
X1

X0
,
X2

X0

]
→֒ OG

can.−→ R(G)
α−→ R(F ).

Then ker(α̃) = IG ∩K
[

X1

X0
, X2

X0

]
=
(
G
(
1, X1

X0
, X2

X0

))
. Write

α̃

(
Xi

X0

)
=
Φi

Φ0
+ IF with

Φi

Φ0
∈ OF (i = 1, 2).
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By getting a least common denominator we can make sure that both fractions
have the same denominator and that gcd(Φ0, Φ1, Φ2) = 1. Since Φi

Φ0
∈ OF

(i = 1, 2), we also have gcd(Φ0, F ) = 1.
For the rational map Φ := (Φ0, Φ1, Φ2), because G(1, Φ1

Φ0
, Φ2

Φ0
) ∈ IF , it

follows that GΦ(P ) = G(Φ(P )) = 0 for all P ∈ F with Φ0(P ) �= 0, hence on
a cofinite subset of F and therefore on all of F . But it could be that P is an
indeterminate point of Φ. In any case, Φ(P ) ∈ G for all P ∈ F that are not
indeterminate points of Φ.

If β̃ and Ψ = (Ψ0, Ψ1, Ψ2) are defined similarly, then also Ψ(Q) ∈ F for all
Q ∈ G that are not indeterminate points of Ψ . And it follows from β̃( Xi

X0
) =

Ψi

Ψ0
+ IG that

β̃

(
Φi

Φ0

)
=
ΦΨ

i

ΦΨ
0

+ IG (i = 1, 2).

In particular,
ΦΨ

i

ΦΨ
0
∈ OG and hence gcd(ΦΨ

0 , G) = 1.

Let G∗ be the set of all points of G that are not indeterminate points
of Ψ and that are not mapped under Ψ to indeterminate points of Φ. Also,
the second set of exceptions is finite, because Φ0(Ψ(P )) = ΦΨ

0 (P ) = 0 for
only finitely many P ∈ G, since gcd(ΦΨ

0 , G) = 1. The set F ∗ ⊂ F is defined
similarly. Then F ∗ ⊂ F and G∗ ⊂ G are cofinite subsets.

Because β ◦ α = id, the rational functions
ΦΨ

i

ΦΨ
0

and Xi

X0
agree (i = 1, 2). We

have then Φ(Ψ(P )) = P for all P ∈ G∗, and it follows that Φ|F∗ and Ψ |G∗ are
bijections that are inverse to each other.

Since (b) ⇒ (c) is trivial, the theorem is proved.

An irreducible curve F in P2(K) is therefore rational if and only if it is
birationally equivalent to the line X2 = 0. We may identify P1(K) with this
line by means of the map

P1(K) → P2(K) (〈u, v〉 �→ 〈u, v, 0〉).

If F is rational, then according to Theorem 8.3 there are homogeneous poly-
nomials Φ0, Φ1, Φ2 ∈ K[U, V ] of the same degree such that, except for a finite
number of choices of point P , every point of F can be represented as

P = 〈Φ0(u, v), Φ1(u, v), Φ2(u, v)〉

for a uniquely determined 〈u, v〉 ∈ P1(K). Without loss of generality, one can
take the Φ0, Φ1, Φ2 to be relatively prime, because the representation does not
change at all if one cancels the greatest common divisor. Since F (Φ0, Φ1, Φ2)
vanishes for infinitely many points 〈u, v〉 ∈ P1(K), this polynomial in K[U, V ]
is therefore the zero polynomial, and thus we have a mapping

(2) Φ : P1(K) → F (〈u, v〉 �→ 〈Φ0(u, v), Φ1(u, v), Φ2(u, v)〉)

that is bijective on cofinite subsets of P1(K) and F .
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Suppose conversely that arbitrary homogeneous polynomials Φ0, Φ1, Φ2 ∈
K[U, V ] of the same degree are given, suppose they are relatively prime, and
suppose

Φ : P1(K) → P2(K)

is given as in (2). We will show that the image of Φ is an irreducible curve in
P2(K), but first we will show only that the image is contained in a uniquely
determined irreducible curve.

Let φ0, φ1, φ2 ∈ K[T ] be the dehomogenizations of Φ0, Φ1, Φ2 with respect
to U , i.e., φi(T ) = Φi(1, T ) (i = 0, 1, 2). Without loss of generality we can
assume that the rational functions

φ1

φ0
,
φ2

φ0
∈ K(T )

are not both constant, for otherwise dehomogenize with respect to V . It is then
clear that the image of Φ contains infinitely many points (in affine coordinates)

(φ1(t)
φ0(t) ,

φ2(t)
φ0(t) ) (t ∈ K, φ0(t) �= 0). The K-homomorphism

φ∗ : K[X,Y ] → K(T ) ( X �→ φ1

φ0
, Y �→ φ2

φ0
)

is not injective, since it is well known that any two elements in K(T ) are
algebraically dependent over K, as is in fact easy to show. In addition,
ker(φ∗) can not be a maximal ideal, because the φi

φ0
are not both constant.

Therefore, ker(φ∗) = (f) for some irreducible polynomial f ∈ K[X,Y ]. Let
F ∈ K[X0, X1, X2] be its homogenization. From f(φ1

φ0
, φ2

φ0
) = 0 it follows that

F (Φ0, Φ1, Φ2) = 0

and hence imΦ ⊂ F . Since the image of Φ contains infinitely many points,
there can be only one irreducible curve F of this kind.

Definition 8.4. We say that F is given by the parametric representation

Xi = Φi(U, V ) (i = 0, 1, 2).

An arbitrary curve F has a parametric representation if it can be given by a
parametric representation.

Certainly a line F : a0X0 + a1X1 + a2X2 = 0 (ai ∈ K) has a parametric
representation Φ : P1(K) → F , which is moreover bijective. If, say, a2 �= 0,
then it can be given by X0 = U , X1 = V , X2 = − 1

a2
(a0U + a1V ).
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Theorem 8.5. An irreducible curve F in P2(K) is rational if and only if it
has a parametric representation.

Proof. By 8.3 it has already been shown that a rational curve has a parametric
representation. To prove the converse, we may regard the curve as given by
a parametric representation Xi = Φi(U, V ) (i = 0, 1, 2) as above. There is an
injective K-homomorphism of K[f ] = K[X,Y ]/(f) into K(T ) induced by φ∗,
and hence an injection of R(F ) = Q(K[f ]) into K(T ).

The theorem of Lüroth from field theory (which we assume is known here),
implies that every field extension of K contained in K(T ) is generated by one
element. Therefore R(F ) = K(T ′) for some T ′ ∈ K(T ) \K, and hence F is a
rational curve.

Using valuation-theoretic arguments from Chapter 6 we show

Theorem 8.6. Suppose a curve F is given by a parametric representation
Xi = Φi(U, V ), for i = 0, 1, 2. Then the mapping

Φ : P1(K) → F, 〈u, v〉 �→ 〈Φ0(u, v), Φ1(u, v), Φ2(u, v)〉,

is surjective; i.e., the parametric representation “hits” every point of F .

The proof requires a few more preparations. The field R(P1) of rational
functions on P1 is the set of all quotients a

b where a, b ∈ K[U, V ] are ho-
mogeneous polynomials of the same degree and b �= 0. Such a quotient will,
as usual, be considered as a function defined on that part of P1 where the
denominator does not vanish. It is clear that

R(P1) = K

(
V

U

)
= K(T ) with T :=

V

U
.

Given a curve F as in the theorem, we identify the embedding R(F ) →֒
K(T ) constructed above with the mapping

R(F ) →֒ R(P1)

that assigns to each rational function r ∈ R(F ) the composition r◦Φ ∈ R(P1).
This is independent of the choice of coordinates in P2(K) and P1(K).

The discrete valuation rings of K(T )/K correspond one-to-one with the
points 〈u, v〉 ∈ P1(K), and are the rings R〈u,v〉 of all rational functions on
R(P1) that are defined at 〈u, v〉. Their description as subrings of K(T ) is as
follows: If u �= 0, then R〈u,v〉 = K[T ](uT−v), the localization of K[T ] at the
prime ideal (uT − v). If u = 0, then R〈u,v〉 = K[T−1](T−1). Since P1(K) can
be identified with an arbitrary line F ⊂ P2(K), these statements follow from
6.13; see also Chapter 6, Exercise 1.

We denote the maximal ideal of R〈u,v〉 by m〈u,v〉. The proof of 8.6 is based
on a valuation-theoretic description of the parametric representation Φ.
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Lemma 8.7. To each 〈u, v〉 ∈ P1(K) there exists a unique P ∈ F with

OF,P ⊂ R〈u,v〉, mF,P = m〈u,v〉 ∩OF,P .

Here
P = Φ(〈u, v〉)

is the point corresponding to the “parameter” 〈u, v〉.

Proof. To show that P is uniquely determined by 〈u, v〉, we appeal to the
corresponding uniqueness theorem in 6.12(a).

To prove the existence of P , by a suitable choice of coordinates, we can
assume that u �= 0. With t := v

u and φi(T ) := Φi(1, T ) (i = 0, 1, 2), we can
further assume that φ0(t) �= 0. Then by the inclusion R(F ) →֒ R(P1) = K(T ),
the affine coordinate ring K[f ] = K[X,Y ]/(f) = K[x, y] is identified with
K[φ1

φ0
, φ2

φ0
] ⊂ R〈u,v〉. The composition of K[x, y] → R〈u,v〉 with the canonical

epimorphism R〈u,v〉 → K maps x to a := φ1

φ0
and y to b := φ2

φ0
. The kernel of

this map is mP := (x− a, y − b), and hence

OF,P ⊂ K[x, y]mP
⊂ R〈u,v〉, mF,P = m〈u,v〉 ∩ OF,P .

Proof of 8.6:

By 6.12(b), for each P ∈ F there is a discrete valuation ring R′ of R(F )/K
with maximal ideal m′ such that

OF,P ⊂ R′, mF,P = m′ ∩ OF,P .

We have R(F ) = K(T ′) ⊂ K(T ) for some T ′ ∈ K(T ) \ K. Therefore it is
enough to show that there is a discrete valuation ring R of K(T )/K with
maximal ideal m such that

R′ ⊂ R, m′ = m ∩R′.

Without loss of generality we can assume that R′ = K[T ′](T ′). Write in short

form T ′ = f
g (f, g ∈ K[T ], g �= 0). If f is not a constant, then there is an

element a ∈ K with f(a) = 0, g(a) �= 0. In this case, R′ ⊂ K[T ](T−a) and
m′ = (T − a)K[T ](T−a) ∩ R′. If f is constant, then g is not constant. In this
case we have R′ ⊂ K[T−1](T−1) and m′ = (T−1)K[T−1](T−1) ∩R′.

Parametric representations of curves in the affine plane are given by two
rational functions α, β ∈ K(T ) that are not both constant. The kernel of the
K-homomorphism

K[X,Y ] → K(T ) (X �→ α, Y �→ β)

is a principal ideal (f) generated by an irreducible polynomial f . Since
f(α, β) = 0, we see that the curve f = 0 contains all points (α(t), β(t)) for
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which t ∈ K is not a pole of α and β. In this way f is uniquely determined.
We say that f is given by the (rational) parametrization

X = α(T ), Y = β(T ).

In contrast to the projective case, given a parameter value t there does
not necessarily correspond a point on the curve, and also not all points on the
curve are necessarily given by the parametric representation. For an example,
see Chapter 1, Exercise 2. However, this is the case if the curve has a polyno-
mial parametric representation (Exercise 1 below). It is clear that an affine
irreducible curve has a parametric representation if and only if its projective
closure has one.

Exercises

1. Suppose a curve f in A2(K) is given by a “polynomial” parametric rep-
resentation

X = α(T ), Y = β(T ) (α, β ∈ K[T ]).

Show that the mapping K → V(f) (t→ (α(t), β(t))) is surjective.
2. Show that all irreducible singular cubics are rational. (Theorem 7.17).
3. The reader may already be familiar with the epicycloid and hypocycloid.

For r, ρ, a ∈ R+ and a variable t ∈ R, the epicycloid is a plane (in general
transcendental) curve with a parametric representation

x = (r + ρ) cos t− a cos( r+ρ
ρ t),

y = (r + ρ) sin t− a sin( r+ρ
ρ t).

The hypocycloid is given by

x = (r − ρ) cos t+ a cos( r−ρ
ρ t),

y = (r − ρ) sin t− a sin( r−ρ
ρ t).

Show that if r
ρ is a rational number, then these are rational algebraic

curves (and only then). Which of the curves sketched in Chapter 1 are of
this form?

4. Describe the image of the quadric X2
0 +X2

1 +X2
2 = 0 under the quadratic

transformation φ = 〈X1X2, X0X2, X0X1〉.
5. Determine the divisor class group of K(T )/K.
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Polars and Hessians of Algebraic Curves

The study of the tangents to an algebraic curve is continued in this chapter. We
are concerned with the question of how many tangents of an algebraic curve can
pass through a given point of the plane. We also investigate the “flex tangents,” the
tangent lines at inflection points.

For a point P ∈ P2(K) and a line G with P �∈ G, let

πP : P2(K) \ {P} → G

be the central projection from P onto G (8.2(b)).
If F is a projective algebraic curve of degree d with P �∈ V+(F ), then πP

induces a mapping
πP : V+(F ) → G.

This is surjective, since each line G′ through P intersects the curve F , and
for each Q ∈ G, the set π−1

P (Q) consists of d points P ′, when these are
counted with their multiplicity μP ′(F,G′), where G′ := g(Q,P ). One says
that πP : V+(F ) → G is a “d-fold covering.”

If π−1
P (Q) contains fewer than d distinct points, then μP ′(F,G′) > 1 for at

least one P ′ ∈ π−1
P (Q); i.e., the “projection line” G′ must be tangent to F at

P ′, or P ′ is a singularity of F . The question is, for how many points Q ∈ G
does this case occur?
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For P = 〈x0, x1, x2〉 we consider the homogeneous polynomial

DP := x0
∂F

∂X0
+ x1

∂F

∂X1
+ x2

∂F

∂X2

of degree degDP = degF − 1. If F is irreducible with degF > 1 and the
characteristic of K is either 0 or > degF , then DP is nonzero for all P ∈
P2(K), for otherwise (in a suitable coordinate system), F would be dependent
on only two variables and so would be reducible.

Definition 9.1. If DP is nonzero for a point P ∈ P2(K), then we call the
curve associated with DP the polar of F with respect to the pole P .

The polar does not depend on the choice of the projective coordinate
system: Let A ∈ GL(3,K) be the matrix of a projective coordinate transfor-
mation and let (y0, y1, y2) = (x0, x1, x2) ·A, so that

FA(Y0, Y1, Y2) = F ((Y0, Y1, Y2) ·A−1)

with indeterminates Y0, Y1, Y2. Then by the chain rule (using the shorthand
Y A−1 = (Y0, Y1, Y2) ·A−1):

(
∂FA

∂Y0
,
∂FA

∂Y1
,
∂FA

∂Y2

)t

= A−1 ·
(
∂F

∂X0
(Y A−1),

∂F

∂X1
(Y A−1),

∂F

∂X2
(Y A−1)

)t

,

and therefore

2∑

i=0

yi
∂FA

∂Yi
= (x0, x1, x2)AA

−1

(
∂F

∂X0
(Y A−1),

∂F

∂X1
(Y A−1),

∂F

∂X2
(Y A−1)

)t

= DP (Y A−1).

The geometrical significance of polars is given by the following theorem:

Theorem 9.2. For P ∈ P2(K) suppose the polar DP of F is defined (i.e.,
DP �= 0). Then V+(DP ) ∩ V+(F ) consists of :

(a) the singularities of F ,
(b) the points of contact of all the tangent lines to F that pass through P .

If degF does not divide the characteristic of K, then we have P ∈ V+(DP ) if
and only if P ∈ V+(F ).

Proof. Let Q = 〈y0, y1, y2〉 ∈ V+(F ). If Q is a singularity of F , then Q ∈
V+(DP ) by the Jacobian Criterion 6.8. On the other hand, if Q is a regular
point of F , then

X0
∂F

∂y0
+X1

∂F

∂y1
+X2

∂F

∂y2
= 0

is the equation of the tangent to F at Q. This contains the point P if and
only if Q ∈ V+(DP ).
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The Euler relation

X0
∂F

∂X0
+X1

∂F

∂X1
+X2

∂F

∂X2
= (degF ) · F

gives the last statement of the theorem.

Pole

Polar

Polar

Pole

Corollary 9.3. Let F be a smooth curve of degree d > 1 and suppose
CharK = 0 or CharK > d. Then for each point P ∈ P2(K) there are at
most d(d− 1) tangents to F passing through P .

Proof. F and DP are relatively prime. By Bézout the set V+(DP ) ∩ V+(F )
has at most d(d− 1) points.

If P �∈ V+(F ) and πP : V+(F ) → G is the central projection onto the
line G, then there are at most d(d − 1) points Q ∈ G for which π−1

P (Q)
contains fewer than d distinct points. The corollary no longer remains valid
if the condition on the characteristic is violated. There can even be infinitely
many tangents to a smooth curve through P (Exercise 1 below).

In the rest of this section we study inflection points (or flexes) and tangent
lines at inflection points (flex tangents).

Definition 9.4. A point P ∈ P2(K) is called a flex or an inflection point of
F if

(a) P is a simple point of F , and
(b) if G is the tangent to F at P , then μP (F,G) > 2.

A tangent at an inflection point is called a flex tangent.

The definition allows for G to be a component of F . A flex where the
tangent is not a component of F is called a proper flex.

For example, all points of a line are (improper) flexes. A curve F of degree
2 has no proper flexes, for if a line G is not a component of F , then by Bézout∑

P μP (F,G) = 2 and therefore μP (F,G) ≤ 2 for all P ∈ V+(F ). It is clear
that the concept of a flex is independent of the coordinate system.
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In the following we assume that P is a regular point of F , where degF ≥ 3.
Let G be the tangent line to F at P . In order to derive conditions under which
the point P is a flex of F we will assume that P = (0, 0) and that G is given
by the affine equation Y = 0. Also let f be the affine curve associated with
F . Two cases are possible:
(I) P is an improper flex of F . This is the case if and only if Y is a factor of
F .
(II) G is not a component of F . In this case f can be written in the form

f = Xμ · φ(X) + Y · ψ(X,Y ),

where μ ∈ N, μ ≥ 2 and where φ is a polynomial in X alone with φ(0) �= 0
and ψ a polynomial with ψ(0, 0) �= 0.

In the local ring O′
P we then have that φ and ψ are units. Also

μP (F,G) = dimK O′
P /(f, Y ) = dimK K[X ](X)(X

μ) = μ.

Then P is a (proper) flex of F if and only if μ > 2.
The flexes of F can be determined with the help of the Hessian determi-

nant

HF := det

(
∂2F

∂Xi∂Xj

)

i,j=0,1,2

.

We have degHF = 3 · (degF − 2). We will see that we can have HF = 0.
If, however HF �= 0, then one calls the curve in P2(K) corresponding to HF

the Hessian curve (or Hessian) of F . This is independent of the choice of
coordinates: If FA(Y0, Y1, Y2) is given as in 9.1, an easy calculation using the
chain rule shows that

HF A(Y0, Y1, Y2) = (detA)2 ·HF ((Y0, Y1, Y2) · A−1).

In the following we write FXi
:= ∂F

∂Xi
, FXiXj

:= ∂2F
∂Xi∂Xj

.

Lemma 9.5. We always have

X2
0 ·HF =

∣∣∣∣∣∣

n(n− 1)F (n− 1)FX1 (n− 1)FX2

(n− 1)FX1 FX1X1 FX1X2

(n− 1)FX2 FX1X2 FX2X2

∣∣∣∣∣∣
.

Proof. Multiply the first row of the Hessian determinant by X0 and add to
that X1 times the second row and X2 times the third row. Using the Euler
formula

(n− 1)FXi
=

2∑

j=0

FXiXj
·Xj (i = 0, 1, 2)

yields the determinant
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X0 ·

∣∣∣∣∣∣

(n− 1)FX0 (n− 1)FX1 (n− 1)FX2

FX0X1 FX1X1 FX1X2

FX0X2 FX1X2 FX2X2

∣∣∣∣∣∣
.

Now do the analogous operations on the columns of this determinant and use
nF =

∑2
i=0 FXi

·Xi to get X2
0HF in the form given in the lemma.

Corollary 9.6. For every singular point P of F we have HF (P ) = 0. Also,
HF = 0 if the characteristic of K divides n− 1.

Next we want to prove the following theorem.

Theorem 9.7. Let F be a reduced curve of degree n ≥ 3. Let p be the char-
acteristic of K, and assume that either p = 0 or p > n. Then

(a) HF ≡ 0 (mod F ) if and only if F is a union of lines.
(b) If HF �≡ 0 (mod F ), then the intersection of F with its Hessian curve

consists of the singular points of F and the flexes of F .
(c) For every regular point P of F whose tangent line G at P is not a com-

ponent of F we have

μP (F,G) = μP (F,HF ) + 2.

Proof. Let P be a regular point of F and let G be the tangent to F at P .
To determine whether P is a flex point of F and whether HF (P ) = 0 we can
assume that P = (0, 0) and that G is given by Y = 0. Let f be the affine
curve corresponding to F .

By 9.5, HF (P ) is the value of the determinant

Δ :=

∣∣∣∣∣∣

n(n− 1)f (n− 1)fX (n− 1)fY

(n− 1)fX fXX fXY

(n− 1)fY fXY fY Y

∣∣∣∣∣∣
= n(n− 1)f(fXXfY Y − f2

XY ) − (n− 1)2(f2
XfY Y + f2

Y fXX − 2fXfY fXY )

at the point (0, 0). If P is an improper flex of F (case I above), then Y is
a divisor of f . In this case f , fX , and fXX all vanish at the point P and
therefore HF (P ) = 0.

Case (II) above still remains, and now f will be written as it was there. A
calculation with partial derivatives gives

fX = μXμ−1φ+Xμφ′ + Y · ψX ,

fXX = μ(μ− 1)Xμ−2φ+ 2μXμ−1φ′ +Xμφ′′ + Y · ψXX ,

fY = ψ + Y · ψY ,

fY Y = 2ψY + Y · ψY Y ,

fXY = ψX + Y · ψXY .

We consider now the value of the image of Δ in OF,P
∼= K[X,Y ](X,Y )/(f)

under the associated valuation. Since φ and ψ are units, the congruence
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Y · ψ(X,Y ) ≡ −Xμφ(X) mod (f) shows that the maximal ideal of OF,P

is generated by the image of X . Also, the image of Y in OF,P has the value μ.
We see now that in the above expression for Δ the image of f 2

Y fXX has value
μ− 2, while the images of the remaining terms have higher values. Therefore
the image of Δ has value μ− 2.

In particular, this shows that Δ �≡ 0 mod (f). Hence HF �≡ 0 mod (F ),
provided there exists a regular point P of F whose tangent is not a component
of F . This is the case precisely when F is not a union of lines.

On the other hand, if F is such a union, then one can directly calculate
that HF ≡ 0 mod (F ): Without loss of generality suppose that F = X0G,
where G is a product of linear homogeneous polynomials. Then 9.5 shows that

X2
0 ·HF ≡

(
n− 1

n− 2

)2

X5
0 ·HG mod (F ).

By induction we can assume that HG ≡ 0 mod (G), and therefore HF ≡ 0
mod (F ).

This proves part (a) of the theorem. The formula

μP (F,HF ) = dimK K[X,Y ](X,Y )/(f,Δ) = μ− 2

shows that statement (c) of the theorem is also correct. Furthermore, the
formula says that P ∈ V+(F )∩V+(HF ) precisely when μ > 2, i.e., when P is
a flex of F . Together with 9.6 this gives the assertion (b) of the theorem.

Example 9.8. If one drops the assumption about the characteristic, then
the theorem is no longer true in general. Suppose CharK = 3 and F :=
X2

0X2 −X3
1 . This curve is irreducible, its singularity 〈0, 0, 1〉 is the only point

at infinity, and one sees easily that HF = 0.
The regular points of F are the points at finite distance. They satisfy the

equation Y = X3. Obviously (0, 0) is a flex of F . For an arbitrary point (a, b)
of F at finite distance,

Y −X3 = Y −X3 − (b− a3) = (Y − b) − (X − a)3

and therefore (a, b) is also a flex of F .

In contrast to this we have the following.

Corollary 9.9. Under the assumptions of 9.7 let F be irreducible and let s
be the number of singularities of F . Then F has at most 3n(n− 2)− s flexes.

Proof. By 9.7(a) we haveHF �≡ 0 (mod F ) and by 9.7(c) we have μP (F,HF ) <
∞ for every regular point of F . In particular, F is not a divisor of HF . Ac-
cording to Bézout,

∑

P

μP (F,HF ) = degF · degHF = 3n(n− 2).

Since s terms in the sum come from the singularities of F , the statement
follows.
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Corollary 9.10. Under the assumptions of 9.7 let F be smooth. Then F has
at least one flex. If {P1, . . . , Pr} is the set of all flexes of F , and {G1, . . . , Gr}
the set of corresponding flex tangents, then

r∑

i=1

(μPi
(F,Gi) − 2) = 3n(n− 2).

Exercises

1. Let F be a curve in P2(K). A point P ∈ P2(K) is called strange for F if
there are infinitely many tangent lines to F through P .
(a) Show that if there is a strange point for F , then CharK > 0.
(b) Give an example of a smooth curve with a strange point.

2. Determine the flexes of the curves in 1.2.
3. Let F be the irreducible quadric X2

0 +X2
1 +X2

2 (CharK �= 2). For P ∈
P2(K), let DP denote the polar of P with respect to F . Show that the
map P �→ DP gives a bijection of P2(K) onto the set of all lines of P2(K).
What is the image of a line in P2(K) under this map? Give an elementary
geometric description of the mapping P �→ DP .
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Elliptic Curves

Next to the quadrics these are the most studied curves. They are the object of
an extensive and deep theory with many connections to analysis and arithmetic
(Husemöller [Hus], Lang [L], Silverman [S1], [S2]). On the role of elliptic curves
in cryptography, see Koblitz [K] and Washington [W]. After choosing a point O, an
elliptic curve may be given a group structure using a geometric construction. We first
concern ourselves with this construction. Finally, we classify elliptic curves up to a
coordinate transformation. This chapter contains only the rudiments of the algebraic
theory of elliptic curves.

Definition 10.1. An elliptic curve in P2(K) is a smooth curve of degree 3.

Theorem 10.2. Suppose CharK �= 2 or 3. Every elliptic curve has exactly 9
flexes.

Proof. Let P1, . . . , Pr be the flexes of an elliptic curve E and let G1, . . . , Gr

be the corresponding flex tangents. Since degE = 3, we have μPi
(E,Gi) = 3

for i = 1, . . . , r, and from the formula in 9.10 it follows that r = 9.

Example 10.3. The Fermat curve X3
0 + X3

1 + X3
2 = 0 in P2(C) is elliptic.

The corresponding Hessian curve is given by X0X1X2 = 0. The flexes of the
Fermat curve are

〈1, ξ, 0〉, 〈1, 0, ξ〉, 〈0, 1, ξ〉,
where ξ runs through the set of solutions of X3 + 1 = 0.

Now let E be an elliptic curve and let G be a line in P2(K). By Bézout G
intersects the curve E in three points P , Q, R, where two or even all three of
these may coincide. The case P = Q occurs exactly when G is tangent to E
at P , and P = Q = R when G is a flex tangent at P . In any case, we write
G ∩ E = {P,Q,R}, where a point is repeated according to its intersection
multiplicity of G with E.

Now let O ∈ E be an arbitrarily chosen point. For A, B ∈ E, denote by
g(A,B) the line through A and B when A �= B, and the tangent line to E at
A when A = B. In addition, let

g(A,B) ∩E = {A,B,R}

and
g(O,R) ∩ E = {O,R, S}.

There is then a well-defined operation
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E ×E → E, (A,B) �→ S,

which we call the addition on E (with respect to O), and which we write as
the sum S = A+B.

O

A

R

B

S=A+B

Theorem 10.4. (E,+) is an abelian group with identity element O.

Proof. (a) By definition, O+B = B for all B ∈ E. The commutativity of the
addition is likewise obvious.

(b) Existence of inverses: Let A ∈ E be given and suppose g(O,O) ∩ E =
{O,O,R}. Suppose further that g(A,R) ∩ E = {A,R,B}. Then A + B = O
by definition of addition, and therefore B = −A.

(c) The verification of associativity is somewhat more complicated. It uses
a special case of the Cayley–Bacharach theorem. Let A,B,C ∈ E be given,
where of course two or all three of the points can coincide.

We define certain lines and intersection points with E one after another
according to the following sketch and description:
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R ’=X?

A
B

R

g1

O

h1

A+B g2

g

R’’

B+C

h3

(A+B)+C

g3

h2

C

g1 := g(A,B), g1 ∩ E = {A,B,R},
h1 := g(O,R), h1 ∩ E = {O,R,A+B},
g2 := g(C,A+B), g2 ∩ E = {C,A+B,R′},
g := g(O,R′), g ∩ E = {O,R′, (A+B) + C},
h2 := g(B,C), h2 ∩ E = {B,C,R′′},
g3 := g(O,R′′), g3 ∩ E = {O,R′′, B + C},
h3 := g(A,B + C), h3 ∩ E = {A,B + C,X}.

We will show that X = R′, and then it follows that

(A+B) + C = A+ (B + C).

Consider the cubic curves

Γ1 := g1 + g2 + g3, Γ2 := h1 + h2 + h3.

We then have

V+(E) ∩ V+(Γ1) = {O,A,B,C,R,R′, R′′, A+B,B + C},

V+(E) ∩ V+(Γ2) = {O,A,B,C,R,X,R′′, A+B,B + C},
where some of these points may also coincide, and then we count them ac-
cording to their intersection multiplicities. We have to show equality of the
intersection cycles

E ∗ Γ1 = E ∗ Γ2.

To do that we will use the Cayley–Bacharach theorem (5.17) and Theorem
7.18.

Let S := {O,A,B,C,R,R′′, A+B,B + C}. Then for all P ∈ S we have

μP (E, Γ1) = μP (E, Γ2),

and by 7.18 this number is also equal to dimK OΓ1∩Γ2∩E,P . Furthermore,∑
P∈S dimK OΓ1∩Γ2∩E,P ≥ 8, and therefore by Cayley–Bacharach, E ∩ Γ1 is



92 10 Elliptic Curves

a subscheme of Γ2; i.e., dimK OΓ1∩Γ2∩E,P = μP (E, Γ1) for all P ∈ V+(E) ∩
V+(Γ1). In particular, R′ ∈ V+(E) ∩ V+(Γ2). Similarly, dimK OΓ1∩Γ2∩E,P =
μP (E, Γ2) for all P ∈ V+(E)∩V+(Γ2), and in particular,X ∈ V+(E)∩V+(Γ1).
Therefore E ∗ Γ1 = E ∗ Γ2.

Remarks 10.5.

(a) Suppose the elliptic curve E is defined over a subfield K0 ⊂ K, and let
E(K0) be the set of K0-rational points of E. If O ∈ E(K0), then for
A,B ∈ E(K0), we also have A+B ∈ E(K0) and −A ∈ E(K0) and hence
(E(K0),+) is a subgroup of (E,+).

In particular, for an elliptic curve E defined over Q the set of Q-rational
points of E is a subgroup of (E,+). By a deep theorem of Mordell–Weil
this group is finitely generated (cf. Silverman [S1], Chapter VIII).

(b) Under the assumptions of 10.4, let O∗ ∈ E be another point and let +∗

be the addition defined by means of O∗ on E. If c is a given coordinate
transformation of P2(K) with c(E) = E and c(O) = O∗, then c induces
a group isomorphism of (E,+) and (E,+∗). This is clear, because the
construction of the sum is compatible with coordinate transformations.

However, one cannot map any point of E to any other by a coordinate
transformation with c(E) = E; e.g., a flex point cannot be mapped to any
point that is not a flex point. Nevertheless, (E,+) and (E,+∗) are always
isomorphic groups (Exercise 3).

Theorem 10.6. Let E be an elliptic curve. For O ∈ E suppose g(O,O)∩E =
{O,O, T}. Then for points A,B,C ∈ E the following are equivalent:

(a) There is a line g such that g ∩ E = {A,B,C}.
(b) In (E,+) we have A+B + C = T .

Proof. Suppose g(A,B) = {A,B,R}. Then T = A + B + R by definition of
addition. Now we have T = A+ B + C precisely when R = C, i.e., precisely
when g(A,B) ∩ E = {A,B,C}.

Corollary 10.7. If O is a flex of E, then A+B+C is the intersection cycle
of E with a line g if and only if A+B + C = O in (E,+).

Corollary 10.8. Suppose O is a flex of E. Then P ∈ E is a flex if and only if
3P = O. The set of flexes forms a subgroup of (E,+) isomorphic to Z3 ×Z3.

Proof. A point P is a flex of E if and only if 3P is the intersection cycle of E
with a line. By 10.7 this is equivalent to 3P = O in (E,+).

Each flex of E is a torsion point of (E,+) of order 3. Since there are 9
flexes, these form a group isomorphic to Z3 × Z3.

Notice that with regard to the 9 flexes, every two of them are collinear
with a third, a situation that cannot be illustrated in R2. Remember that a
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curve over C may be thought of as a real surface, and a complex line as a real
plane.

We come now to the classification of elliptic curves in the case that
CharK �= 2 or 3 (see Husemöller [Hus] for CharK = 2 and 3). If P is a
flex of an elliptic curve E, then the coordinate system can be chosen so that
P = 〈0, 0, 1〉 and X0 = 0 is the flex tangent to E at P . In such a coordinate
system E has the equation

(1) a0X
3
2 + a1X

2
2 + a2X2 + a3 = 0,

where ai ∈ K[X0, X1] are homogeneous of degree i (i = 0, . . . , 3). Because
P = 〈0, 0, 1〉 ∈ E, we must have a0 = 0. Dehomogenizing with respect to X2,
we get an affine equation

a1(X,Y ) + a2(X,Y ) + a3(X,Y ) = 0.

Because X0 = 0 is the tangent to E at P , we must have a1 = cX for some
c ∈ K∗. However, μP (E,X0) = 3, and therefore X must be a divisor of a2.
We can take c = 1 without loss of generality. The equation (1) then has the
form

X0X
2
2 +X0(αX0 + βX1)X2 + a3(X0, X1) = 0 (α, β ∈ K).

Using the substitution

X2 �→ X2 −
1

2
(αX0 + βX1), X1 �→ X1, X0 �→ X0,

we get the equation

X0X
2
2 + a3(X0, X1) = 0 (deg a3 = 3).

Since X0 is not a divisor of a3, using another substitution this equation can
eventually be written in the form

(2) X0X
2
2 − (X1 − aX0)(X1 − bX0)(X1 − cX0) = 0 (a, b, c ∈ K).

Here a, b, c are distinct, for if a = b, say, then 〈1, a, 0〉 is a singularity of E, as
one sees immediately by taking partial derivatives.

The polar DP of E with respect to P = 〈0, 0, 1〉 is given by ∂E
∂X2

=
2X0X2 = 0. It consists of the line at infinity X0 = 0 and the affine X-axis. In
addition to the point P , the polar intersects the curve E at the points with
affine coordinates

(a, 0), (b, 0), (c, 0).

By 9.2 these are the points of contact of the tangents to E passing through P
and different from the flex tangent. They are assigned to the flex P in a way
independent of the coordinates. We have therefore shown:
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Theorem 10.9. If P is a flex of an elliptic curve E, then except for the flex
tangent there are exactly three further tangents to E containing the point P .
The points of contact of these tangents are collinear.

X

Y

P P P

a b c

Y2=(X−a)(X−b)(X−c)

a<b<c

Using the substitution

X ′
0 = (b− a)X0, X ′

1 = X1 − aX0, X ′
2 = (

√
b− a)−1 ·X2,

equation (2) becomes

(3) X ′
0X

′2
2 −X ′

1(X
′
1 −X ′

0)(X
′
1 − λX ′

0) = 0 with λ :=
c− a
b− a �= 0, 1.

We have now shown

Theorem 10.10. Every elliptic curve is given in a suitable coordinate system
by

Eλ : Y0Y
2
2 − Y1(Y1 − Y0)(Y1 − λY0) = 0

with λ ∈ K \ {0, 1}.

The question arises when Eλ is projectively equivalent to Eλ̄ with λ̄ ∈
K \ {0, 1}. We observe next:

Lemma 10.11. If A and B are two flex points of E, then there is a coordinate
transformation c of P2(K) with c(E) = E and c(A) = B.
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Proof. We may assume that A �= B. The points A and B are collinear with
a third flex P . As above, we choose this point to be the point at infinity
P = 〈0, 0, 1〉, and write the equation of E in the form (3). The corresponding
affine equation is then

(4) Y 2 −X(X − 1)(X − λ) = 0.

The line g(A,B) is parallel to the Y -axis, since it contains P . Under the
substitution Y �→ −Y , equation (4) remains invariant and the line g(A,B) is
mapped to itself. Also, since flex points are mapped to flex points and A �= B,
the points A and B must necessarily be switched by the substitution.

The point P = 〈0, 0, 1〉 is a flex of Eλ and Eλ̄. If there exists a coordinate
transformation c with c(Eλ) = Eλ̄, then c(P ) = P . The points (0, 0), (1, 0),
and (λ, 0) of theX-axis are the points of contact of the tangents to Eλ through
P . Similarly for the points (0, 0), (1, 0), (λ̄, 0) and the curve Eλ̄. Therefore c
must fix the X-axis and map {(0, 0), (1, 0), (λ̄, 0)} to {(0, 0), (1, 0), (λ, 0)}.

On the X-axis, c is given by the substitution X �→ γ(X) with γ(X) =
aX + b (a ∈ K∗, b ∈ K), where γ({0, 1, λ}) = {0, 1, λ̄}, and every such
transformation leads to an equation (4) for Eλ̄. One can show easily that such
a γ exists if and only if λ̄ belongs to the set

Mλ := {λ, λ−1, 1 − λ, (1 − λ)−1, λ(λ − 1)−1, (λ− 1)λ−1}.

We have therefore shown:

Theorem 10.12. Eλ is mapped by a coordinate transformation to Eλ̄ if and
only if λ̄ ∈Mλ.

The function j given by

j(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
(λ �= 0, 1)

is invariant under the substitutions λ �→ λ, λ �→ λ−1, λ �→ 1 − λ, etc. It is
therefore an invariant of the class of curves “projectively equivalent” to Eλ,
i.e., curves that can be mapped onto Eλ by a coordinate transformation. We
set j(E) = j(λ) for all elliptic curves E in the class of Eλ. (The number 28 is
a “normalization factor,” but we will not go into this any further here.)

Definition 10.13. j(E) is called the j-invariant of the elliptic curve E.

Theorem 10.14. For each a ∈ K there is one and, up to projective equiva-
lence, only one elliptic curve E with j(E) = a.

Proof. For each a ∈ K the degree 6 equation

(5) 28(λ2 − λ+ 1)3 − aλ2(λ− 1)2 = 0
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has a solution λ0 �= 0, 1, and all elements of Mλ0 are also solutions. We have
j(Eλ0) = a, and each λ′0 with j(Eλ′

0
) = a solves (5).

If Mλ0 consists of 6 different values, then these are all the solutions of
the corresponding equation and we are finished. It is easy to check that Mλ0

contains fewer than 6 elements only in the following cases:

M−1 = M 1
2

= M2 =

{
−1,

1

2
, 2

}

Mρ = Mρ−1 = {ρ, ρ−1}, where ρ :=
1

2
+

1

2

√
−3.

In the first case, a = 26 · 33, and in the second case a = 0. In every case Mλ0

is the set of all solutions of the corresponding equation (5).

We have now solved the classification problem for elliptic curves in the fol-
lowing sense: There is a bijective map j from the set of projective equivalence
classes of elliptic curves onto the field K.

In the complex numbers, elliptic curves can be parametrized by elliptic
functions. This explains their name. Let Ω = Zω1 ⊕ Zω2 be a “lattice,” i.e.,
ω1, ω2 ∈ C are linearly independent over R. The Weierstraß ℘-function of the
lattice Ω is well known to solve the differential equation

℘′2 − 4(℘− e1)(℘− e2)(℘− e3) = 0

with e1 := ℘(ω1

2 ), e2 := ℘(ω2

2 ), e3 := ℘(ω1+ω2

2 ). The points (℘(z), ℘′(z)) for
z �∈ Ω thus lie on the affine curve with equation

EΩ : Y 2 − 4(X − e1)(X − e2)(X − e3) = 0.

One can show that if one assigns the z ∈ Ω to the points at infinity of Eλ,
then one gets a bijection between C/Ω and ÊΩ, the projective completion of
EΩ. The group structure of C/Ω corresponds to the group structure of the
elliptic curve ÊΩ with the point at infinity O.

From well-known theorems about elliptic functions it follows using The-
orem 10.12 that every elliptic curve over C is projectively equivalent to a
curve ÊΩ for a suitably chosen lattice Ω in C: The numbers e1, e2, e3 can be
assumed to be arbitrary distinct a, b, c in C when Ω is chosen properly.

Exercises

1. Let F be an irreducible singular cubic curve. When counted with multi-
plicity, every line intersects F in 3 points. By analogy with elliptic curves,
one can then try to construct a group structure on F . Consider F \SingF
and try to carry out the construction. What can you conclude?

2. Let K be a field of characteristic 3 and let E ⊂ A2(K) be an elliptic curve.
Show that no point P ∈ A2(K) is a strange point for E (cf. Chapter 9,
Exercise 1).
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3. Under the assumptions of 10.5(b) let g(O,O∗)∩E = {O,O∗, T}. For each
P ∈ E, let α(P ) ∈ E be defined by g(P, T )∩E = {P, T, α(P )}. Show that
α : E → E is an isomorphism from (E,+) onto (E,+∗).

4. Let O be the identity element for addition on an elliptic curve E, where
here the addition will be denoted by +̃. The addition on the divisor group
Div(E) will be denoted by +. Let Div0(E) be the group of divisors of de-
gree 0, H(E) the group of principal divisors, and Cl0(E) := Div0(E)/H(E)
the group of divisor classes of degree 0. Show that:
(a) If P,Q ∈ E, then (P +̃Q) +O − P −Q ∈ H(E).
(b) The mapping

(E,+) → Cl0(E) (P �→ (P −O) + H(E))

is an isomorphism of groups.
5. Show that an elliptic curve defined over R has exactly 3 real flex points.
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Residue Calculus

We assign “residues” to the intersection points of two affine algebraic curves. The
residues depend on a further curve (or more precisely, on a differential form ω =
h dXdY ). They generalize the intersection multiplicity of two curves in a certain
sense, and they contain more precise information about the intersection behavior.
The elementary and purely algebraic construction of the residue that we present
here is based on Appendix H and goes back to Scheja and Storch [SS1], [SS2]. Their
work is also the basis of residue theory in higher-dimensional affine spaces, which
can be developed in a similar fashion as here. What we are talking about is sometimes
called Grothendieck residue theory. It was originally introduced in [H], Chapter 3,
§9, in great generality. For different approaches, see also [Li1] and [Li2]. Chapters
11 and 12 will not be used in Chapter 13 and later. The reader may go directly from
here to the Riemann–Roch theorem.

Let F and G be two algebraic curves in P2(K) with degF =: p > 0 and
degG =: q > 0, and with no common components. We assume that the coor-
dinate system has been so chosen so that F and G have no points in common
on the line at infinity X0 = 0. Let f and g denote the dehomogenizations of
F and G with respect to X0, so that by 3.8 the projective coordinate ring

S := K[X0, X1, X2]/(F,G)

of F ∩G is the Rees algebra of the affine coordinate ring

A := K[X,Y ]/(f, g)

of f ∩ g with respect to the degree filtration F , and the associated graded
algebra of A with respect to F is of the form

B := grF A = K[X,Y ]/(Gf,Gg),

where Gf and Gg are the degree forms of f and g respectively. By 3.9,
A/K and B/K are finite-dimensional algebras, and S/K[X0] has a finite ba-
sis consisting of homogeneous elements. Furthermore, A ∼= S/(X0 − 1) and
B ∼= S/X0S. The canonical modules (cf. Appendix H) ωS/K[X0] and ωB/K

are graded. The following connection between the canonical modules and the
canonical traces results from H.5 and H.6:

Theorem 11.1. There is a canonical isomorphism of graded B-modules

ωB/K
∼= ωS/K[X0]/X0ωS/K[X0]
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and a canonical isomorphism of A-modules

ωA/K
∼= ωS/K[X0]/(X0 − 1)ωS/K[X0].

Here the canonical trace σS/K[X0] corresponds in ωB/K (respectively ωA/K) to
the canonical trace σB/K (respectively σA/K).

By 3.14 the socle S(B) of B is a K-vector space of dimension 1, and
S(B) = Bp+q−2 is the homogeneous component of B of degree p + q − 2.
Hence H.18 gives us the following result:

Theorem 11.2. The algebras S/K[X0] and B/K have homogeneous traces of
degree −(p+ q − 2). In particular, there are isomorphisms of graded modules

ωS/K[X0]
∼= S, ωB/K

∼= B.

The algebra A/K also has a trace:

ωA/K
∼= A.

Now let F and G be two arbitrary curves in P2(K). Suppose that at a
point P ∈ V+(F ) ∩ V+(G), the curves F and G do not have a component in
common. Then OF∩G,P is a finite-dimensional algebra over K (5.3).

Corollary 11.3. OF∩G,P /K has a trace.

Proof. By 5.2 one can assume that F andG have no components in common at
all. Since OF∩G,P is independent of the coordinates, one can further assume
that F and G do not intersect on the line at infinity. Then we are in the
situation as above. Since OF∩G,P is a direct factor of A and A/K has a trace
(11.2), by H.10 this is also the case for OF∩G,P /K.

Let f and g be two arbitrary affine curves with no common components
that may now have common points at infinity. Then A := K[X,Y ]/(f, g) is
always a finite-dimensional K-algebra and is the direct product of the local
rings at the points of V(f) ∩ V(g). Since these each have a trace over K by
11.3, we get by H.10, via 11.2, also in this somewhat more general situation,
the following corollary.

Corollary 11.4. A/K has a trace.

Under the assumptions of 11.3, we set O := OF∩G,P . Let m denote the
maximal ideal of O, let R := Rm O =

⊕
k∈N

mkT−k ⊕⊕∞
k=1 O T k be the

Rees algebra, and let G := grm O be the associated graded algebra of O with
respect to the m-adic filtration. If P is a point at finite distance and M is
the maximal ideal of K[X,Y ] corresponding to P , then O ∼= O′

P /(f, g) with
O′

P = K[X,Y ]M. Let m be the multiplicity of F at P , and let n be the
multiplicity of G at P . Then ordM f = −m and ordM g = −n.
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The algebra grm O is a finite-dimensionalK-algebra, and Rm O has a basis
as a K[T ]-module consisting of homogeneous elements. As in 11.1, there are
canonical isomorphisms

ωO /K
∼= ωR/K[T ]/(T − 1)ωR/K[T ],

ωG/K
∼= ωR/K[T ]/TωR/K[T ],

(1)

and the corresponding statements about the canonical traces are valid.

Theorem 11.5. Suppose F and G do not have a common tangent at P . Then
Rm O /K[T ] and grm O /K have homogeneous traces of degree m+ n− 2.

Proof. Because of the assumption on the tangents, the M-leading forms Lf
and Lg are relatively prime polynomials in K[X,Y ] (cf. 6.3(b)). By B.12,
G = grm O ∼= K[X,Y ]/(Lf, Lg), and the socle S(G) is a K-vector space
of dimension 1; hence S(G) = G−(m+n−2). The rest of the proof proceeds
analogously to that of 11.2.

Remark. In general, grm O /K need not have a trace (Exercise 1).

In the following it is important to specify certain traces. Some preparations
are necessary. In the situation as at the beginning of this chapter we consider
the enveloping algebra (cf. Appendix G)

Se := S ⊗K[X0] S = S ⊗K[X0] K[X0, X1, X2]/(F,G) = S[X1, X2]/(F,G)

of S/K[X0]. The grading of S can be extended to the polynomial algebra
S[X1, X2], where the indeterminates X1, X2 have degree 1. Then the residue
class algebra Se is also positively graded.

Let x1, x2 be the images of X1, X2 in S; the image of X0 in S will be
denoted by X0 again. We then have

S[X1, X2] = S[X1−x1, X2−x2] and (F,G)S[X1, X2] ⊂ (X1−x1, X2−x2).

Here the Xi − xi (i = 1, 2) can be considered as variables over S of degree 1.
We write

F = a11(X1 − x1) + a12(X2 − x2),

G = a21(X1 − x1) + a22(X2 − x2),
(2)

with homogeneous aij ∈ S[X1, X2] (i, j = 1, 2) and set Δ := det(aij). This
determinant is homogeneous of degree p+ q − 2. Similarly, let

Ae := A⊗K A = A⊗K K[X,Y ]/(f, g) = A[X,Y ]/(f, g)

and

Be := B ⊗K B = B ⊗K K[X,Y ]/(Gf,Gg) = B[X,Y ]/(Gf,Gg)
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be the enveloping algebras of A/K and B/K. The epimorphisms S → A
(modulo (X0 − 1)) and S → B (modulo X0) induce epimorphisms

ε : S[X1, X2] → A[X,Y ] (X1 �→ X, X2 �→ Y )

and
δ : S[X1, X2] → B[X,Y ] (X1 �→ X, X2 �→ Y ).

Here ε(F ) = f , ε(G) = g, δ(F ) = Gf , δ(G) = Gg, so that by ε the induced
epimorphism

S[X1, X2]/(F,G) → A[X,Y ]/(f, g)

can be identified with the canonical epimorphism Se → Ae and

S[X1, X2]/(F,G) → B[X,Y ]/(Gf,Gg)

with Se → Be.
We denote the images of X , Y in A by x, y and the images of X , Y in

B by ξ, η. Applying ε to the system of equations (2), we get in A[X,Y ] the
system of equations

f = α11(X1 − x1) + α12(X2 − x2),

g = α21(X1 − x1) + α22(X2 − x2) (αij ∈ A[X,Y ]).
(3)

Similarly, the application of δ gives a system of equations in B[X,Y ],

Gf = a11(X1 − x1) + a12(X2 − x2),

Gg = a21(X1 − x1) + a22(X2 − x2),
(4)

with homogeneous aij ∈ B[X,Y ]. Let ΔF,G
x1,x2

be the image of det(aij) in
Se = S[X1, X2]/(F,G). We consider also systems (3) and (4), which do not
necessarily arise as specializations of (2) by means of ε respectively δ, and

define Δf,g
x,y ∈ Ae and ΔGf,Gg

ξ,η ∈ Be similarly to the way we defined ΔF,G
x1,x2

.

Theorem 11.6. ΔF,G
x1,x2

is independent of the special choice of the coefficients

aij in equation (2). Similarly for Δf,g
x,y and ΔGf,Gg

ξ,η . Moreover, ΔF,G
x1,x2

is

mapped by the canonical epimorphism Se → Ae to Δf,g
x,y and by Se → Be

to ΔGf,Gg
ξ,η .

Proof. By assumption, F and G are relatively prime in K[X0, X1, X2]; i.e., F
is not a zerodivisor mod G and G is not a zerodivisor mod F . The same holds
also in S[X1, X2] by G.4(b). By I.4, ΔF,G

x1,x2
does not depend on the choice

of the coefficients aij in (2). The proof is similar for Δf,g
x,y and ΔGf,Gg

ξ,η . The
remaining statements follow because (3) and (4), as we have shown, can be
considered to be specializations of (2).

Now let IS be defined to be the kernel of the map Se → S (a ⊗ b �→ ab),
and similarly for IA and IB .
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Theorem 11.7. AnnAe(IA) = A ·Δf,g
x,y.

Proof. We apply I.5 with R = A[X,Y ], a1 = X − x, a2 = Y − y, b1 = f ,
and b2 = g. Before we start, by using a linear transformation of the variables
X,Y , we make sure that g is a monic polynomial in Y . Then g is also monic
as a polynomial in Y − y. The transformation of the variables has no effect
on the statement of the theorem, since Δf,g

x,y will only be multiplied by the
determinant of the transformation.

As a monic polynomial in Y −y, g is not a zerodivisor of A[X,Y ]/(X−x).
Then also X − x is not a zerodivisor of A[X,Y ]/(g). Since Y − y is not a
zerodivisor of A[X,Y ]/(X − x) ∼= A[Y ], the conditions of I.5 are satisfied.
In Ae = A[X,Y ]/(f, g) we identify IA with the ideal (X − x, Y − y)/(f, g).
Therefore, by I.5 we deduce the desired equality AnnAe(IA) = (Δf,g

x,y).

According to H.20, the elementΔf,g
x,y corresponds to a trace of A/K that we

will denote by τx,y
f,g . Whatever we say about A/K will also hold in particular

for B/K. Therefore,

AnnBe(IB) = B ·ΔGf,Gg
ξ,η

and a trace τ ξ,η
Gf,Gg of B/K is specified by ΔGf,Gg

ξ,η . Since ΔGf,Gg
ξ,η is homoge-

neous of degree p+ q − 2, we have

deg τξ,η
Gf,Gg = −(p+ q − 2).

Finally, it follows from H.23 that

AnnSe(IS) = S ·ΔF,G
x1,x2

.

The trace of S/K[X0] determined by ΔF,G
x1,x2

will be denoted by τx1,x2

F,G . For
this trace we also have

deg τx1,x2

F,G = −(p+ q − 2).

Theorem 11.8. τx,y
f,g is the image of τx1,x2

F,G under the canonical epimorphism

ωS/K[X0] → ωA/K , and τξ,η
Gf,Gg is the image of τx1,x2

F,G under the canonical
epimorphism ωS/K[X0] → ωB/K .

This follows from H.21.

Theorem 11.9. The following formulas are valid:

σS/K[X0] =
∂(F,G)

∂(x1, x2)
· τx1,x2

F,G , σA/K =
∂(f, g)

∂(x, y)
· τx,y

f,g ,

and

σB/K =
∂(Gf,Gg)

∂(ξ, η)
· τξ,η

Gf,Gg .
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Proof. Let {s1, . . . , sm} be a basis of S/K[X0] and let {s′1, . . . , s′m} be the
dual basis to this basis with respect to τx1,x2

F,G . Then by H.9,

σS/K[X0] =

(
m∑

i=1

s′isi

)
· τx1,x2

F,G = μ

(
m∑

i=1

s′i ⊗ si
)

· τx1,x2

F,G ,

where μ : Se → S is the canonical surjection. By H.20(a) and the definition
of τx1,x2

F,G , we have ΔF,G
x1,x2

=
∑m

i=1 s
′
i ⊗ si and therefore

σS/K[X0] = μ(ΔF,G
x1,x2

) · τx1,x2

F,G .

But (2) shows that the μ(aij) are precisely the partial derivatives

∂F

∂xi
=
∂F

∂Xi
(x1, x2) and

∂G

∂xj
=
∂G

∂Xj
(x1, x2).

Therefore μ(ΔF,g
x1,x2

) is the corresponding Jacobian determinant ∂(F,G)
∂(x1,x2)

. The

proofs of the remaining formulas are similar.

The theorem shows in particular that the standard traces are traces if and
only if the corresponding Jacobian determinants are units of S, A, and B
respectively.

We will now describe the action of the trace τ ξ,η
Gf,Gg : B → K more pre-

cisely. In K[X,Y ] we have a system of equations

Gf = c11X + c12Y,

Gg = c21X + c22Y,
(5)

with homogeneous cij ∈ K[X,Y ]. By 3.14 the image dGf,Gg
ξ,η of det(cij) in B

is a generator of the socle S(B) = Bp+q−2 of B. Recall that by 3.12(b),

dGf,Gg
ξ,η =

1

pq
· ∂(Gf,Gg)
∂(ξ, η)

when the characteristic of K does not divide pq.

Theorem 11.10. Let ρ := p+ q − 2. Then

τξ,η
Gf,Gg(Bk) = {0} for k < ρ,

τξ,η
Gf,Gg(d

Gf,Gg
ξ,η ) = 1.

Proof. The first formula holds because the trace is homogeneous of degree −ρ.
To prove the second, we consider the following relations, which come from (5)
and the corresponding equations in B,

Gf = c′11(X − ξ) + c′12(Y − η) + (c11 − c′11)X + (c12 − c′12)Y,
Gg = c′21(X − ξ) + c′22(Y − η) + (c21 − c′21)X + (c22 − c′22)Y,
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where the c′ij are the images of the cij in B. The polynomials cij − c′ij vanish
at the points (ξ, η), and are therefore linear combinations of X− ξ and Y −η.
We deduce that there are equations

Gf = c̃11(X − ξ) + c̃12(Y − η),
Gg = c̃21(X − ξ) + c̃22(Y − η),

with homogeneous c̃ij ∈ B[X,Y ], where c̃ij ≡ c′ij mod (X,Y ). Therefore

(6) det(c̃ij) ≡ dGf,Gg
ξ,η mod (X,Y )B[X,Y ].

Now let {1, b1, . . . , bpq−1} be a homogeneous basis for B/K with 1 ≤ deg b1 ≤
deg b2 ≤ · · · ≤ deg bpq−1 = ρ. Then {1⊗ 1, 1⊗ b1, . . . , 1⊗ bpq−1} is a basis for
Be/B, where Be is the B-algebra with respect to B → Be (a �→ a⊗ 1) (G.4).
By (6) there is an equation

ΔGf,Gg
ξ,η = dGf,Gg

ξ,η ⊗ 1 +

pq−1∑

i=1

b′i ⊗ bi

with homogeneous elements b′i of degree < ρ (i = 1, . . . , pq − 1). Since τ ξ,η
Gf,Gg

is by definition the trace of ΔGf,Gg
ξ,η , by H.20,

τξ,η
Gf,Gg

(
dGf,Gg

ξ,η

)
· 1 +

pq−1∑

i=1

τξ,η
Gf,Gg(b

′
i) · bi = 1.

The coefficients of the bi vanish because of degree considerations, and it follows
that

τξ,η
Gf,Gg

(
dGf,Gg

ξ,η

)
= 1.

The construction of the trace τx,y
f,g : A → K makes no use of the fact

that f and g have no points at infinity in common. Therefore τx,y
f,g is defined

whenever f and g have positive degree and are relatively prime. We consider
now the somewhat more general situation where P ∈ V(f) ∩ V(g), where we
require only that f and g have no components with zero P in common. Let
O = O′

P /(f, g)O′
P . Furthermore, let M be the maximal ideal in K[X,Y ]

belonging to P and let M := K[X,Y ] \ M. Then

Oe := O⊗K O = O⊗K O′
P /(f, g)O′

P

= O⊗K(K[X,Y ]M/(f, g)) = O[X,Y ]M/(f, g).

If x and y are the images of X and Y in O, then in O[X,Y ]M there are
equations

f = α11(X − x) + α12(Y − y),
g = α21(X − x) + α22(Y − y),(7)
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with αij ∈ O[X,Y ]M . It is easy to see that I.4 can also be applied here: The
image (Δf,g

x,y)P of det(αij) in Oe is independent of the choice of coefficients
αij in (7). Also,

(8) AnnOe(IO) = O ·(Δf,g
x,y)P ,

where IO is the kernel of Oe → O. By omitting factors in f and g that are
units in O, we can assume that f and g have no components in common.
Then (7) can be considered as a system (3) to be read in O[X,Y ]M . We then
have that the image of Δf,g

x,y under the canonical homomorphism Ae → Oe is

(Δf,g
x,y)P , and from AnnAe(IA) = A ·Δf,g

x,y, equation (8) follows using G.9.

We denote the trace of O /K corresponding to Δf,g
x,y by (τx,y

f,g )P , and ask

how this trace is connected with τx,y
f,g .

Theorem 11.11. Suppose that f and g have no components in common and
that P ∈ V(f) ∩ V(g). Then (τx,y

f,g )P is the restriction of τx,y
f,g to the direct

factor O of A. In particular, for all a ∈ A,

τx,y
f,g (a) =

∑

P∈V(f)∩V(g)

(τx,y
f,g )P (aP ),

where aP denotes the image of a in the localization at P .

Proof. Write A = O1 × · · · × Oh, where the Oi are the localizations of A at
its maximal ideals. Then by G.6(f),

Ae = A⊗K A =

h∏

i,j=1

Oi ⊗K Oj .

Under the canonical mapping Ae → A, if i �= j, Oi ⊗K Oj is mapped to {0},
since Oi and Oj mutually annihilate each other in A. On the other hand,
Oi ⊗K Oi is mapped as usual onto Oi. With the usual notation the following
formulas are valid:

IA = IO1 × · · · × IOh ×
∏

i�=j

Oi ⊗Oj

and
AnnAe(IA) = AnnOe

1
(IO1) × · · · × AnnOe

h
(IOh) × {0}.

In particular, AnnOe(IO) is the image of AnnAe(IA) under the projection of
Ae onto the factor of Oe corresponding to P .

There is a commutative diagram

ωA/K
∼−→ HomA(AnnAe(IA), A)

↓ ↓
ωO /K

∼−→ HomO(AnnOe(IO),O)
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in which the horizontal isomorphisms come from H.19 and the vertical arrows
are given by projection onto the appropriate direct factors. Since the linear
form of HomA(AnnAe(IA), A) specified by Δf,g

x,y �→ 1 is mapped to (Δf,g
x,y)P �→

1, it follows that (τx,y
f,g )P is the restriction of τx,y

f,g on O. The last statement of
the theorem follows similarly as in the proof of the formula in H.3.

As in 11.5 we additionally assume that f and g have no common tangents.
Then G := grm O = K[X,Y ]/(Lf, Lg), where Lf and Lg are the M-leading
forms of f respectively g, and these are relatively prime. If ξ and η represent
the residue classes of X and Y in G, then the trace

τξ,η
Lf,Lg : G −→ K

is defined. Observe that here the variables X,Y are of degree −1 and that G
consists of only homogeneous components of degrees ≤ 0.

Completely analogous to 11.10 we have the following:

Theorem 11.12. Let m := mP (f), n := mP (g), and ρ := m + n − 2. Then

the trace τ ξ,η
Lf,Lg is homogeneous of degree ρ. In particular,

τξ,η
Lf,Lg(Gk) = {0} for k = −ρ+ 1, . . . , 0.

Using notation analogous to that in 11.10 we have furthermore

τξ,η
Lf,Lg(d

Lf,Lg
ξ,η ) = 1.

This completely describes τ ξ,η
Lf,Lg. By 3.12(b) we have

dLf,Lg
ξ,η =

1

mn
· ∂(Lf, Lg)
∂(ξ, η)

if the characteristic of K does not divide mn.
Now the question arises as to how τ ξ,η

Lf,Lg is related to (τ ξ,η
f,g )P . The rela-

tionship follows once again correspondingly as in 11.8 using the Rees algebra
R := Rm O of O /K.

The Rees algebra

Q := RMK[X,Y ]M =
⊕

k∈N

MkK[X,Y ]M · T−k ⊕
∞⊕

k=1

K[X,Y ]MT
k

of O′
P with respect to its maximal ideal can be identified with K[T,X∗, Y ∗]M

according to C.14, where M := K[X,Y ] \ M. Then in the polynomial ring
K[T,X∗, Y ∗] we have the degree relations degT = 1, degX∗ = deg Y ∗ = −1,
and the polynomial algebra K[X,Y ] is embedded in K[T,X∗, Y ∗] by means
of X = TX∗, Y = TY ∗.

If f = fm + · · · + fp, g = gn + · · · + gq are the decompositions of f and g
into homogeneous polynomials, then
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f∗ = fm(X∗, Y ∗) + Tfm+1(X
∗, Y ∗) + · · · + T p−mfp(X

∗, Y ∗),

g∗ = gn(X∗, Y ∗) + Tgn+1(X
∗, Y ∗) + · · · + T q−ngq(X

∗, Y ∗).

Since R = Q/(f∗, g∗), we have

Re = R⊗K[T ](Q/(f
∗, g∗)) = (R⊗K[T ]Q)/(1⊗f∗, 1⊗g∗) = R[X∗, Y ∗]M/(f

∗, g∗).

Let x∗ and y∗ be the images of X∗ and Y ∗ in R. Then there is a system of
equations

f∗ = a11(X
∗ − x∗) + a12(Y

∗ − y∗),
g∗ = a21(X

∗ − x∗) + a22(Y
∗ − y∗),(9)

with aij ∈ R[X∗, Y ∗]M , and we define Δf∗,g∗

x∗,y∗ as the image of det(aij) in Re.
We check that this image does not depend on the special choice of the aij .

Since Lf and Lg are relatively prime in K[X,Y ] = grM O′
P , it follows

that g∗ is a nonzerodivisor on Q/(f ∗), and f∗ is a nonzerodivisor on Q/(g∗)
(B.12). Then, however, g∗ is also a nonzerodivisor on R ⊗K[T ] Q/(f

∗) =
R[X∗, Y ∗]M/(f

∗), and f∗ is a nonzerodivisor on R[X∗, Y ∗]M/(g
∗) (G.4(b)).

Hence the hypotheses of I.4 are satisfied and the claim follows.
In formula (9), if one specializes the variable T to 0, then one gets a system

of equations in G[X∗, Y ∗], as in the construction of τLf,Lg
ξ,η . Therefore, ΔLf,Lg

ξ,η

is the image of Δf∗,g∗

x∗,y∗ under the epimorphism Re → Ge. By H.23 we have

AnnRe(IR) = R ·Δf∗,g∗

x∗,y∗ ,

and hence a trace τx∗,y∗

f∗,g∗ : R → K[T ] is defined. As was the case for the
standard trace (cf. formula (1)), we also have here the following:

Theorem 11.13. Under the canonical epimorphism ωRM O /K[T ] → ωO /K

the trace τx∗,y∗

f∗,g∗ is mapped onto (τx∗,y∗

f∗,g∗ )P , and under the canonical epimor-

phism ωRM O /K[T ] → ωgrm O /K onto τξ,η
Lf,Lg.

The proof is analogous to that of 11.8.
Now again let A = K[X,Y ]/(f, g) = K[x, y] with relatively prime polyno-

mials f and g. As the notation suggests, the traces τx,y
f,g and (τx,y

f,g )P depend
on the generators (coordinates) x, y of the algebra A/K and on the ordered
pair of relations {f, g}. The following lemma is simple.

Lemma 11.14. Let X̃, Ỹ ∈ K[X,Y ] be given and suppose

X = γ11X̃ + γ12Ỹ ,

Y = γ21X̃ + γ22Ỹ ,

with γij ∈ K, det(γij) �= 0. For h ∈ K[X,Y ], let h̃ be defined by h̃(X̃, Ỹ ) =

h(γ11X̃ + γ12Ỹ , γ21X̃ + γ22Ỹ ). Let x̃ and ỹ denote the residue classes of X̃
and Ỹ in A. Then
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τx,y
f,g =

(
det(γij) · τ x̃,ỹ

f̃ ,g̃

)
◦ c,

where c : A → A denotes the K-automorphism induced by h �→ h̃. Similarly
for the local traces.

We now introduce a new notation and a new name for the trace.

Definition 11.15. For h ∈ K[X,Y ] with image h̄ in A, we call

∫ [
ω
f, g

]
:= τx,y

f,g (h̄)

the integral of ω := h dXdY with respect to f, g. For h ∈ O′
P with image h̄

in O, we call

ResP

[
ω
f, g

]
:= (τx,y

f,g )P (h̄)

the residue of ω = h dXdY with respect to f, g at the point P . We set

ResP

[
ω
f, g

]
= 0 if P �∈ V(f) ∩ V(g).

Without going further into differential forms, we understand by ω =
h dXdY a symbol that is changed under a coordinate transformation X =
γ11X̃ + γ12Ỹ , Y = γ21X̃ + γ22Ỹ (γij ∈ K) by the factor det(γij): dXdY =

det(γij) dX̃dỸ . By 11.14,
∫

and ResP are independent of the choice of coordi-
nates. The residue is defined even if f and g have no components in common

at P . The symbol ResP

[
ω
f, g

]
is sometimes called the Grothendieck residue

symbol.
In the following, the basic properties of the integral and the residue will

be described. Obviously,

(10)

∫ [
ω
f, g

]
= 0 if h ∈ (f, g)K[X,Y ],

(11) ResP

[
ω
f, g

]
= 0 if h ∈ (f, g)K[X,Y ]M.

Since the traces are K-linear maps, the integral and residue are also K-linear
functions of ω; i.e., for κ1, κ2 ∈ K and differential forms ω1, ω2,

(12)

∫ [
κ1ω1 + κ2ω2

f, g

]
= κ1

∫ [
ω1

f, g

]
+ κ2

∫ [
ω2

f, g

]
,

and similarly for the residues.
Furthermore, by the formula in 11.11 with ω = h dXdY and h ∈ K[X,Y ],
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(13)

∫ [
ω
f, g

]
=
∑

P

ResP

[
ω
f, g

]
,

the sum being extended over all P ∈ A2(K).
We now turn to the question, How do the integral and the residue depend

on the polynomials f and g?
Let P ∈ V(f) ∩ V(g), let φ, ψ ∈ K[X,Y ], and also let f , g be two poly-

nomials that have no irreducible factor with zero P in common. Suppose
(φ, ψ)O′

P ⊂ (f, g)O′
P . Then, for O′ := O′

P /(φ, ψ)O′
P , there is a canonical

epimorphism ε : O′ → O with kernel (f, g)O′
P /(φ, ψ)O′

P , and a canonical
injection of ωO /K = HomK(O,K) into ωO′ /K = HomK(O′,K), where each
ℓ ∈ HomK(O,K) is mapped to the composition ℓ ◦ ε.

If we write, as we have so often,

φ = c11f + c12g,

ψ = c21f + c22g,
(14)

with cij ∈ O′
P , then the image (dφ,ψ

f,g )P of det(cij) in O′ is independent of the

special choice of coefficients cij in (14). If f is a nonzerodivisor mod (ψO′
P ),

then I.5 can be applied, and it follows that (dφ,ψ
f,g )P generates the annihilator

of (f, g)O′
P /(φ, ψ)O′

P . If f is a zerodivisor mod (ψO′
P ), replace ψ by φ+ψ.

Then f is a nonzerodivisor mod (φ + ψ)O′
P and det(cij) is unchanged. In

any case, (dφ,ψ
f,g )P generates the above annihilator. Multiplication by (dφ,ψ

f,g )P

in O′
P induces therefore an O′-linear map O → O′, which we also denote by

(dφ,ψ
f,g )P . If (φ, ψ)O′

P = (f, g)O′
P , then of course O′ = O and (dφ,ψ

f,g )P is a unit
of O.

Theorem 11.16 (Chain Rule). Let x′, y′ be the images of X, Y in O′.
Under the canonical injection ωO /K → ωO′ /K the trace (τx,y

f,g )P is mapped to

(dφ,ψ
f,g )P · (τx′,y′

φ,ψ )P . In other words, there is a commutative diagram

O

(τx,y

f,g
)P ���

��
��

��
�

(dφ,ψ

f,g
)P

�� O′

(τx′,y′

φ,ψ
)P����

��
��

��

K

Proof. Consider in O′[X,Y ]M a system of equations

φ = a′11(X − x′) + a′12(Y − y′),
ψ = a′21(X − x′) + a′22(Y − y′).

Using the canonical epimorphism O′[X,Y ]M → O[X,Y ]M , this is mapped
over to a system

φ = a11(X − x) + a12(Y − y),
ψ = a21(X − x) + a22(Y − y).(15)
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On the other hand, we can write in O[X,Y ]M ,

f = b11(X − x) + b12(Y − y),
g = b21(X − x) + b22(Y − y),

substitute in (14), and get a system similar to (15). By I.4, we have in
O⊗K O′ = O[X,Y ]M/(φ, ψ) an equation

(ε⊗ 1)((Δφ,ψ
x′,y′)P ) = (1 ⊗ (dφ,ψ

f,g )P ) ·Δ,

whereΔ is mapped onto (Δf,g
x,y)P under the map idO⊗ε : O⊗K O′ → O⊗K O.

If we choose for Δ a representation Δ =
∑
ai ⊗ b′i (ai ∈ O, b′i ∈ O′), then

(Δf,g
x,y)P =

∑
ai ⊗ ε(b′i).

Consider now the canonical commutative diagram

O′ ⊗K O′

ε⊗id
��

∼

φ′

�� HomK(ωO′ /K ,O′)

��
O⊗K O′ ∼

φ
�� HomK(ωO /K ,O′)

in which φ′ is defined as in H.19; and similarly, by φ(
∑
ai⊗b′i), each ℓ ∈ ωO /K

is mapped to
∑
ℓ(ai)b

′
i. We will show that

φ′
((
Δφ,ψ

x′,y′

)
P

)((
τx,y
f,g

)
P

)
=
(
dφ,ψ

f,g

)
P
,

and then by definition of
(
τx′,y′

φ,ψ

)
P

the desired equation

(
τx,y
f,g

)
P

=
(
dφ,ψ

f,g

)
P
·
(
τx′,y′

φ,ψ

)
P

follows.
But in fact,

φ′((Δφ,ψ
x′,y′)P )((τx,y

f,g )P ) = φ((ε⊗ id)((Δφ,ψ
x′,y′)P )((τx,y

f,g )P )

= φ(1 ⊗ (dφ,ψ
f,g )P )(

∑
ai ⊗ b′i))((τx,y

f,g )P )

=
∑

(τx,y
f,g )P (ai) · (dφ,ψ

f,g )P · b′i
=
∑

(τx,y
f,g )P (ai) · (dφ,ψ

f,g )P · ε(b′i) = (dφ,ψ
f,g )P

where we have used
(
dφ,ψ

f,g

)
P
·b′i =

(
dφ,ψ

f,g

)
P
·ε(b′i) and

∑(
τx,y
f,g

)
P

(ai)ε(b
′
i) = 1

(H.20). The theorem has therefore been proved.

From this we get immediately

Theorem 11.17 (Transformation Formula for Residues). Under the
above assumptions we have for every h ∈ K[X,Y ],

ResP

[
h dXdY
f, g

]
= ResP

[
det(cij)h dXdY

φ, ψ

]
.
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Some special cases of this are

(16) ResP

[
h dXdY
f − ag, g

]
= ResP

[
h dXdY
f, g

]
for every a ∈ K[X,Y ], and

(17) ResP

[
hf2 dXdY
f1f2, g

]
= ResP

[
h dXdY
f1, g

]
(cancellation rule)

if f1f2 and g have no component with zero P in common, and

(18) ResP

[
h dXdY
g, f

]
= −ResP

[
h dXdY
f, g

]
.

Theorem 11.18 (Transformation Formula for Integrals). Let f, g ∈
K[X,Y ] as well as φ, ψ ∈ K[X,Y ] be relatively prime polynomials with
(φ, ψ) ⊂ (f, g). Consider a system of equations (14) with coefficients cij ∈
K[X,Y ]. Then for every h ∈ K[X,Y ] we have

∫ [
h dXdY
f, g

]
=

∫ [
det(cij)h dXdY

φ, ψ

]
.

The proof of this last formula is similar to that of 11.16. One can also
appeal to 11.17 and (12), if one considers the following: If P �∈ V(f) ∩ V(g),
P ∈ V(φ) ∩ V(ψ), then det(cij) ∈ (φ, ψ)O′

P and therefore

ResP

[
det(cij)h dXdY

φ, ψ

]
= 0.

We come now to the main theorem of this chapter. Many classical theorems
about algebraic curves can be derived from it, as we will show in Chapter 12.
We will assume that Gf and Gg are relatively prime. Further, let dGf,Gg

ξ,η

be as in 11.10 and ρ := p + q − 2. Observe that every h ∈ K[X,Y ] can
be represented modulo (f, g) by a polynomial of degree ≤ ρ. Therefore it is
possible to calculate the integral by the following theorem.

Theorem 11.19 (Residue Theorem). Let O denote the origin of A2(K).
For h ∈ K[X,Y ] let Gh be the residue class of Gh in K[X,Y ]/(Gf,Gg). If

deg h = ρ, then there is a unique κ ∈ K with Gh = κ · dGf,Gg
ξ,η . With this

notation we have
∫ [

h dXdY
f, g

]
= ResO

[
GhdXdY
Gf,Gg

]
=

{
κ deg h = ρ,
0 deg h < ρ.

Proof. Consider the homogenization F , G, and H of f , g, respectively h in
K[X0, X1, X2]. The hypotheses of 11.8 are satisfied, and therefore it follows,
if H denotes the residue class of H in S = K[X0, X1, X2]/(F,G), that
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∫ [
h dXdY
f, g

]
= τx1,x2

F,G (H)|X0=1,

ResO

[
GhdXdY
Gf,Gg

]
= τx1,x2

F,G (H)|X0=0.

If deg h < ρ, and hence also degH < ρ, then τx1,x2

F,G (H) ∈ K[X0] has negative

degree. Therefore τx1,x2

F,G (H) = 0, and consequently,

∫ [
h dXdY
f, g

]
= ResO

[
GhdXdY
Gf,Gg

]
= 0.

On the other hand, if degh = ρ, then τx1,x2

F,G (H) has degree 0, and therefore
is an element of K, and it follows that

∫ [
h dXdY
f, g

]
= τx1,x2

F,G (H) = ResO

[
GhdXdY
Gf,Gg

]
.

By 11.10 this residue coincides with κ.

There is an analogous theorem for the calculation of residues, in which,
however, one must assume that f and g have no tangent line at P ∈ V(f)∩V(g)
in common. We will use the notation in 11.12, in particular m = mP (f),
n = mP (g). Further, let Lh be the residue class of the leading form Lh in
G = K[X,Y ]/(Lf, Lg).

Theorem 11.20. Let h ∈ K[X,Y ]M. In case ordM h = −(m+ n− 2), there

is a unique κ ∈ K with Lh = κ · dLf,Lg
ξ,η . If ρ = m+ n− 2, we have

ResP

[
h dXdY
f, g

]
= ResO

[
LhdXdY
Lf, Lg

]
=

{
κ ordM h = −ρ,
0 ordM h < −ρ.

Proof. Let O be the local ring of f ∩ g at P and m its maximal ideal. In
G = grm O we have Gk = {0} for k < −ρ, i.e., mρ+1 = mρ+2, and therefore
mρ+1 = {0} by Nakayama. In K[X,Y ]M this means that Mρ+1K[X,Y ]M =
(f, g)K[X,Y ]M.

If ordM h < −ρ, then it follows that h ∈ (f, g)K[X,Y ]M and hence by
(11),

ResP

[
h dXdY
f, g

]
= ResO

[
LhdXdY
Lf, Lg

]
= 0.

If, on the other hand, ordM h = −ρ, one can finish using 11.13 and 11.12 as
in the proof of 11.19.

Example 11.21. Let P = (0, 0), and so M = (X,Y ). If μ := μP (f, g) =
dimK O is the intersection multiplicity of f and g at P , then mμ = (0) and
therefore Xμ, Y μ ∈ (f, g)O′

P . Set
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Xμ = c11f + c12g,

Y μ = c21f + c22g,

with cij ∈ O′
P . Then by 11.17 for h ∈ K[X,Y ]M,

ResP

[
h dXdY
f, g

]
= ResP

[
h det(cij) dXdY

Xμ, Y μ

]
.

Now write
h det(cij) =

∑

0≤α,β<μ

aαβX
αY β +R

with aαβ ∈ K and a “remainder” R ∈ (Xμ, Y μ)O′
P . Then by (12) and (11),

ResP

[
h dXdY
f, g

]
=

∑

0≤α,β<μ

aαβ ResP

[
XαY β dXdY
Xμ, Y μ

]
= aμ−1,μ−1,

where for the last equation we used Theorems 11.19 and 11.17. The formula
makes clear the analogy to residues of a function of a complex variable (see
also Exercise 3).

Exercises

1. Give an example of the following situation: f and g are algebraic curves
that have no components in common at P ∈ V(f) ∩ V(g). Furthermore,
let O be the local ring of f ∩ g at P and G = grm O the associated graded
ring of O with respect to its maximal ideal m. The algebra G/K has no
trace.

2. Denote by ϑ the Noether different (G.10). Show that
(a) If, under the hypotheses of H.7, the algebra S/R has a trace, then

ϑ(S/R) is a principal ideal.
(b) Under the assumptions of 11.1 we have

ϑ(S/K[X0]) =

(
∂(F,G)

∂(x1, x2)

)

and under the assumptions of 11.4 we have

ϑ(A/K) =

(
∂(f, g)

∂(x, y)

)
.

3. Let f be an affine algebraic curve with P := (0, 0) ∈ V(f) and suppose Y

is not a divisor of f . For h ∈ K[X,Y ] let the “Laurent series” of h(X,0)
f(X,0)

be given by
∑

i≥μ aiX
i, with some μ ∈ Z. Show that

ResP

[
h dXdY
f, Y

]
= a−1.
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4. Calculate ∫ [
X6 dXdY

X2Y 2 − 1, X3 + Y 3 − 1

]

and

ResP

[
(X +X2 − Y 3) dXdY
XY,X2 − Y 2 +X3

]
if P := (0, 0).
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Applications of Residue Theory to Curves

The formulas and theorems in Chapter 11 on residues in the affine plane allow
uniform proofs and generalizations of classical theorems about intersection theory of
plane curves. Maybe B. Segre [Se] was the first who proceeded in a way similar to
ours, but he used another concept of residue, the residue of differentials on a smooth
curve. See also Griffiths–Harris [GH], Chapter V. The theorems presented here have
far-reaching higher-dimensional generalizations ([Hü], [HK], [Ku3], [Ku4], [KW]).
In his thesis [Q] Gerhard Quarg has discovered further global geometric applications
of algebraic residue theory. [Ku4] contains an outline of part of this thesis.

Suppose we are given two curves f and g in A2(K) with no common compo-
nents, with deg f =: p, deg g =: q, and let A := K[X,Y ]/(f, g) = K[x, y]. For

the differential form ω = ∂(f,g)
∂(X,Y ) dXdY we also write ω = dfdg.

Formulas 12.1. We have
∫ [

dfdg
f, g

]
= (dimK A) · 1K

and

ResP

[
dfdg
f, g

]
= μP (f, g) · 1K ,

where μP (f, g) is the intersection multiplicity of f and g at the point P .

Proof. By 11.9,

∫ [
dfdg
f, g

]
= τx,y

f,g

(
∂(f, g)

∂(x, y)

)
= σA/K(1) = (dimK A) · 1K .

Denote by O the local ring of P on f ∩ g. We have furthermore

ResP

[
dfdg
f, g

]
= (τx,y

f,g )P

(
∂(f, g)

∂(x, y)

)
=

(
∂(f, g)

∂(x, y)
· (τx,y

f,g )P

)
(1).

Since (τx,y
f,g )P is the restriction of τx,y

f,g , and σO /K is the restriction of σA/K =
∂(f,g)
∂(x,y) · τ

x,y
f,g on O (H.3), it follows that

ResP

[
dfdg
f, g

]
= σO /K(1) = (dimK O) · 1K = μP (f, g) · 1K .
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Formula (13) in Chapter 11 yields

dimK A ≡
∑

P

μP (f, g) (mod χ),

where χ is the characteristic of K. This is of course no surprise, because the
Chinese remainder theorem entered the theory of Chapter 11 several times. If
f and g have no points at infinity in common, then this is Bézout’s theorem
up to congruence mod χ.

If f and g intersect transversally at P , then one has a residue formula,
which is analogous to that about a pole of order 1 in functions of a complex

variable. We set J := ∂(f,g)
∂(X,Y ) and denote the maximal ideal of P in K[X,Y ]

by M. Let O′
P := K[X,Y ]M.

Formula 12.2. If f and g intersect transversally at P , then J(P ) �= 0 and
for each h ∈ K[X,Y ]M we have

ResP

[
h dXdY
f, g

]
=
h(P )

J(P )
.

Proof. If f and g intersect transversally at P , then J(P ) �= 0 by 7.7. Further-
more, O := O′

P /(f, g)O′
P

∼= K and therefore σO /K = idK . By the formula
σO /K = J(P ) · (τx,y

f,g )P we get

ResP

[
h dXdY
f, g

]
= (τx,y

f,g )P (h(P )) =
1

J(P )
· σO /K(h(P )) =

h(P )

J(P )
.

We will now use the residue theorem 11.19 for the first time. From this
theorem, we get the following immediately from 12.2.

Theorem 12.3 (Residue Theorem for Transversal Intersections).
Suppose f and g have no points at infinity in common and intersect transver-
sally at all points of intersection. For h ∈ K[X,Y ] denote by Gh the residue
class of Gh in K[X,Y ]/(Gf,Gg) and suppose (with the notation of 11.10)

Gh = κ · dGf,Gg
ξ,η (κ ∈ K)

in case deg h = ρ = p+ q − 2. Then

(a) If deg h < ρ, then

∑

P∈V(f)∩V(g)

h(P )

J(P )
= 0 (Formula of Jacobi [J], 1835).

(b) If deg h = ρ, then
∑

P∈V(f)∩V(g)

h(P )

J(P )
= κ.
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The right side of the formula in (b) depends only on the degree forms Gf ,
Gg, and Gh. Therefore the left side does not change if other curves with the
same degree forms are substituted for the given curves.

The formula of Jacobi contains the following special case of the Cayley–
Bacharach theorem: Under the assumptions of the theorem, suppose that a
curve h of degree < ρ passes through pq − 1 points of V(f) ∩ V(g). Then it
goes through all the pq intersection points.

Applications of this theorem, for example Pascal’s theorem, have already
been discussed in 5.16. One can also consider this result as follows: Suppose
the intersection points Pν = (aν , bν) of f and g for ν = 1, . . . , pq − 1 have
already been calculated, and the last intersection point P = (x, y) is still
unknown. Suppose p+ q ≥ 4; hence ρ ≥ 2. By the equations in 12.3(a)

1

J(P )
+

pq−1∑

i=1

1

J(Pi)
= 0,

x

J(P )
+

pq−1∑

i=1

ai

J(Pi)
= 0, and

y

J(P )
+

pq−1∑

i=1

bi
J(Pi)

= 0,

one can successively determine J(P ), x, and y. If ρ > 2, then there are more
equations to consider, and knowing a few intersection points can sometimes be
sufficient to determine the rest. But it is difficult to decide in general whether
two curves f and g intersect transversally at all points of intersection.

To two curves f and g that have no components in common at P ∈ V(f)∩
V(g) we assign the invariant

aP (f, g) := ResP

[
(fXgX + fY gY ) dXdY

f, g

]
,

where fX = ∂f
∂X , etc. By 11.17, if f or g is multiplied by a nonzero constant,

then aP (f, g) does not change. However, aP (f, g) is not independent of the
coordinates, since fX , fY , etc. are not. But we have

Lemma 12.4. aP (f, g) is invariant under orthogonal coordinate transforma-
tions. By this we mean transformations of the form

(X,Y ) �→ (X,Y ) ·A+ (b1, b2),

where (b1, b2) ∈ K2 and A ∈ SO(2,K); i.e., A is a 2 × 2 matrix such that
A ·At = I the identity matrix, and detA = 1.

Proof. Let (X,Y ) = (X ′, Y ′)A+ (b1, b2), as given in the lemma. Then by the
chain rule,
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(fX′ , fY ′) = (fX , fY ) · At,

and therefore

fX′gX′ + fY ′gY ′ = (fX , fY ) · At ·A · (gX , gY )t = fXgX + fY gY .

Because detA = 1, we have dXdY = dX ′dY ′, and the residue defining
aP (f, g) remains invariant under the transformation.

Definition 12.5. We call aP (f, g) the angle between f and g at the point P .

We will see to what extent this designation is justifiable in the following.
We set aP (f, g) = 0 in case P �∈ V(f) ∩ V(g).

Example 12.6. Let f = aX + bY , g = cX + dY be two different lines
through P = (0, 0); hence ad− bc �= 0. Then we have

aP (f, g) =
ac+ bd

ad− bc .

In the reals, if v1 := (a, b), v2 := (c, d), then

ac+ bd = |v1| · |v2| · cosφ,

ad− bc = |v1| · |v2| · sinφ,
where φ is the oriented angle between v1 and v2.

v v12

g

φ

φ

f

It follows that
aP (f, g) = cotφ.

The intersection angle is additive, as was the intersection multiplicity (5.8).

Lemma 12.7. Let f = f1 · · · fr and g = g1 · · · gs be factorizations of f and
g. Then for all P ∈ A2(K),

aP (f, g) =
∑

i=1,...,r
j=1,...,s

aP (fi, gj).
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Proof. It is enough to treat the case f = f1 · f2, g = g1, and we can assume
that P ∈ V(f) ∩ V(g). Then aP (f, g) =

ResP

[
f1(f2XgX + f2Y gY ) dXdY

f1f2, g

]
+ ResP

[
f2(f1XgX + f2Y gY ) dXdY

f1f2, g

]
.

By the cancellation rule (17) from Chapter 11, the first residue equals aP (f2, g)
and the second equals aP (f1, g).

If two curves have no tangents in common at an intersection point, then
the intersection angle is given by the angle between the two tangents according
to the following theorem:

Theorem 12.8. Suppose t1, . . . , tm are the tangents to f at P , and t′1, . . . , t
′
n

are the tangents to g at P , counted with their multiplicities (so m = mP (f),
n = mP (g)). If ti �= t′j for all i and j, then

aP (f, g) =
∑

i=1,...,m
j=1,...,n

aP (ti, tj).

Proof. Without loss of generality, we can assume that P = O is the origin.
By 12.7 we have

∑

i,j

aO(ti, t
′
j) = aO

⎛
⎝∏

i

ti,
∏

j

t′j

⎞
⎠ = aO(Lf, Lg).

However,

(Lf)X · (Lg)X + (Lf)Y · (Lg)Y = L(fXgX + fY gY )

or
(Lf)X · (Lg)X + (Lf)Y · (Lg)Y = 0.

In the second case, ordM(fXgX + fY gY ) < −(m+ n− 2) if M := (X,Y ). In
any case the statement follows from 11.20.

Suppose f and g are real curves and all their tangents at O are real. Then
by 12.8, aO(f, g) is the sum of all the cotangents of oriented angles between
the tangents of f and those of g, assuming that f and g have no tangents in
common at O.

The asymptotes of a curve f of degree p are the lines aiX−biY = 0, where
〈0, bi, ai〉 (i = 1, . . . , p) are the points at infinity of f . These are the lines
through O in the “direction of the points at infinity” of f . The aiX − biY are
also the linear factors of Gf . Asymptotes will be counted with multiplicity,
according to how many times the aiX − biY appear in Gf .

The following theorem concerns the sum of all the intersection angles of
two curves.
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Theorem 12.9 (Humbert’s Theorem [Hu]). Suppose f and g do not
intersect on the line at infinity. Let ℓ1, . . . , ℓp be the asymptotes of f and let
ℓ′1, . . . , ℓ

′
q be those of g. Then

∑

P∈V(f)∩V(g)

aP (f, g) =
∑

i=1,...,p
j=1,...,q

aO(ℓi, ℓ
′
j).

Proof. By Chapter 11 (13) the left side of the equation equals

∫ [
(fXgX + fY gY ) dXdY

f, g

]
,

and by 12.8 the right side equals

aO(Gf,Gg) = ResO

[
((Gf)X(Gg)X + (Gf)Y (Gg)Y ) dXdY

Gf,Gg

]
.

And (Gf)X(Gg)X + (Gf)Y (Gg)Y = G(fXgX + fY gY ) or (Gf)X(Gg)X +
(Gf)Y (Gg)Y = 0. In the first case, h := fXgX +fY gY has degree ρ = p+q−2,
and the desired formula follows from 11.19. In the second case, deg h < ρ and
both sides vanish.

Over the reals, Humbert’s theorem has the following interpretation: Let f
and g be real curves that intersect in p·q different real points Pi (i = 1, . . . , pq)
and let φi be the oriented angle between f and g at Pi. Then

∑pq
i=1 cotφi

depends only on the (complex) points at infinity of f and g. If g is shifted
in a “parallel” manner, this changes the individual φi, but the sum of the
cotangents of the intersection angles is unchanged.

f

The same is true if g is subjected to a “similarity transformation,” where we
are always assuming that f and g intersect in p ·q distinct real points. See the
next figure.
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f

Now we come to another invariant of the intersections of two algebraic
curves.

Definition 12.10. For two curves f and g, that have no points at infinity in
common, we call ∑

(f ∩ g) =
∑

P

μP (f, g) · P

the centroid of f ∩ g. Here the expression on the right is to be interpreted as
a vector sum in K2 (and not for example as an intersection cycle 5.6).

In order to interpret the centroid in a physical sense, when all the intersec-
tion points of f and g have real coordinates, one must divide by the number
pq of intersection points. This division is not possible if pq is divisible by the
characteristic of K, and then we have to give up on this interpretation. The
statements that we prove about

∑
(f ∩g) are valid in arbitrary characteristic,

and nothing essential changes if one divides by pq, insofar as this is possible.
However, 1

pq

∑
(f ∩ g) is invariant under an arbitrary coordinate transforma-

tion, while
∑

(f ∩ g) is invariant under coordinate transformations that fix
the origin.

Next we have an “integral formula” for the centroid.

Lemma 12.11.

∑
(f ∩ g) =

(∫ [
Xdfdg
f, g

]
,

∫ [
Y dfdg
f, g

])
.

Proof. For P = (ξ, η) ∈ A2(K), by the linearity of residues, we get

ResP

[
Xdfdg
f, g

]
= ξ · ResP

[
dfdg
f, g

]
+ ResP

[
(X − ξ)dfdg

f, g

]
.

Here ResP

[
dfdg
f, g

]
= μP (f, g) · 1K by 12.1, and as there,

ResP

[
(X − ξ)dfdg

f, g

]
= σO /K(x− ξ).
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Since x − ξ is a nilpotent element of O, multiplication by x − ξ yields
a nilpotent endomorphism of O /K, whose trace of course vanishes. Conse-
quently, in the above formula, the second residue therefore vanishes. Hence
this shows that

(
ResP

[
Xdfdg
f, g

]
,ResP

[
Y dfdg
f, g

])
= μP (f, g) · P.

The statement of the lemma then follows from Chapter 11 (13).

The integral formula will be reformulated using the Residue Theorem
11.19. Let

f =

p∑

i=0

fi, g =

q∑

j=0

gj

be decompositions of f and g into homogeneous polynomials, in particular,
Gf = fp, Gg = gq. In the following J will denote the Jacobian determinant
∂(f,g)
∂(X,Y ) . By the Euler formula,

XfX + Y fY = p · f −
p−1∑

k=0

(p− k)fk = p · f − fp−1 + φ,

XgX + Y gY = q · g −
q−1∑

k=0

(q − k)gk = q · g − gq−1 + ψ,

(1)

where deg φ ≤ p− 2, degψ ≤ q− 2. We can calculate X ·J by multiplying the
first column of J by X and then replace this column by the column formed
by the right side of equations (1). Then we get

X · J ≡ D1 mod (f, g), Y · J ≡ D2 mod (f, g),

with

D1 :=

∣∣∣∣
φ− fp−1 fY

ψ − gq−1 gY

∣∣∣∣ , D2 :=

∣∣∣∣
fX φ− fp−1

gX ψ − gq−1

∣∣∣∣ ,

and therefore by Chapter 11 (10),

(2)
∑

(f ∩ g) =

(∫ [
D1 dXdY
f, g

]
,

∫ [
D2 dXdY
f, g

])
.

Since degφ < p− 1, degψ < q − 1, we have either degD1 < p+ q − 2 or

GD1 =

∣∣∣∣
−fp−1 (fp)Y

−gq−1 (gq)Y

∣∣∣∣ .

Similarly for D2. From (2) and Theorem 11.19 we deduce the following for-
mula:
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Lemma 12.12.
∑

(f ∩ g) =
(
ResO

[
(gq−1fpY − fp−1gqY ) dXdY

fp, gq

]
,ResO

[
(fp−1gqX − gq−1fpX) dXdY

fp, gq

])
.

This lemma shows that the centroid of f ∩ g depends only on the degree
forms and the forms of the second-highest degree of f and g. It allows answers
to questions about how the centroid changes when the intersection scheme is
changed.

Next we subject the curves f and g to two independent parallel displace-
ments; i.e., we substitute for f and g the polynomials r, s, where

r(X,Y ) := f(X + α, Y + β) = f(X,Y ) + αfX(X,Y ) + βfY (X,Y ) + · · · ,
s(X,Y ) := g(X + γ, Y + δ) = g(X,Y ) + γgX(X,Y ) + δgY (X,Y ) + · · · ,

and (α, β), (γ, δ) ∈ K2. It is clear that

rp := fp, rp−1 = fp−1 + α(fp)X + β(fp)Y ,

sq := gq, sq−1 = gq−1 + γ(gq)X + δ(gq)Y ,

and therefore by 12.12,

∑
(r ∩ s) −

∑
(f ∩ g) = ResO

[
ω
f, g

]
,

where

ω := (α(fp)X + β(fp)Y , γ(gq)X + δ(gq)Y ) ·
(
−(gq)Y , (gq)X

(fp)Y , −(fp)X

)
· dXdY

and where the residue is to be applied to a vector componentwise. If we set
(γ, δ) = (0, 0), and consider instead of (α, β) all multiples λ · (α, β) (λ ∈
K), then we see that

∑
(r ∩ s) − ∑(f ∩ g) consists of all multiples of a

vector dependent only on (fp, gq) and (α, β). Therefore this gives the first
generalization of Newton’s theorem (Chapter 5, Exercise 4):

Theorem 12.13. Let (α, β) ∈ K2 be a fixed vector and let λ ∈ K. Further-
more, let fλ be the curve that arises from f by a parallel displacement by the
vector λ · (α, β). Then the centroids

∑
(fλ ∩ g) (λ ∈ K) lie on a line.
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We now subject f and g to similarity transformations; i.e., we substitute
for f and g the polynomials r, s, where

r(X,Y ) := f(λX, λY ), s(X,Y ) := g(μX, μY ) (λ, μ ∈ K∗).

Then we have

rp = λpfp, rp−1 = λp−1fp−1,

sq = μqgq, sq−1 = μq−1gq−1,

and by Lemma 12.12 the following formula follows using Chapter 11 (17):∑
(r ∩ s) −∑(f ∩ g) =

ResO

[

fp gq

]([(
1

λ
− 1

)
fp−1,

(
1

μ
− 1

)
gq−1

] [
−(gq)Y (gq)X

(fp)Y −(fp)X

]
dXdY

)
.

Setting μ = 1 in this gives us a second generalization of Newton’s theorem:

Theorem 12.14. Let λ ∈ K∗ and let fλ be the curve given by fλ(X,Y ) =
f(λX, λY ). Then the centroids of

∑
(fλ ∩ g) lie on a line.

The remaining considerations of this chapter refer to the “curvature” of
an algebraic curve. At the intersection points of two curves there is likewise a
“residue theorem” for curvature.

For two curves f and g that intersect transversally at O, we will first
compute

ResO

[
h dXdY
f, g2

]
.

In the formula that arises, the values fx, fxx, fxy, etc., of the partial derivatives
at the point O will occur.

For the leading forms of f and g at O we have

Lf = fx ·X + fy · Y,

Lg = gx ·X + gy · Y,
where j := fxgy − fygx �= 0. We set X ′ := Lf , Y ′ := Lg and write
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f = X ′ + a20X
′2 + a11X

′Y ′ + a02Y
′2 + · · · ,

g = Y ′ + b20X
′2 + b11X

′Y ′ + b02Y
′2 + · · · ,

where aij , bij ∈ K. Then we have

f = c11X
′ + c12Y

′,

g = c21X
′ + c22Y

′,

with

c11 = 1 + a20X
′ + a11Y

′ + a30X
′2 + · · · ,

c12 = a02Y
′ + a03Y

′2 + · · · ,
c21 = b20X

′ + b11Y
′ + · · · ,

c22 = 1 + b02Y
′ + b03Y

′2 + · · · .

Observe that 2a20 = fx′x′ , a11 = fx′y′ , 2a02 = fy′y′ , etc. If we write

f = c11X
′ + c12(Y

′)−1Y ′2,

g2 = (c221X
′ + 2c21c22Y

′)X ′ + c222Y
′2,

then the determinant belonging to this system,

Δ := c11c
2
22 − c12(Y ′)−1(c221X

′ + 2c21c22Y
′),

is a unit in O′
O. By the transformation formula 11.17 we get

ResO

[
h dXdY
f, g2

]
= ResO

[
Δ−1h dXdY
X ′, Y ′2

]
=

1

j
ResO

[
Δ−1h dX ′dY ′

X ′, Y ′2

]
.

To explicitly calculate this residue, Δ−1 and h can be reduced modulo
(X ′, Y ′2)O′

O. In the following, ≡ denotes congruence mod (X ′, Y ′2)O′
O.

We have

h ≡ h(0) + hY ′ · Y ′,

Δ ≡ 1 + (fx′y′ + gy′y′) · Y ′,

Δ−1 ≡ 1 − (fx′y′ + gy′y′) · Y ′,

and
Δ−1h ≡ h(0) + [hy′ − h(0)(fx′y′ + gy′y′)]Y ′.

By 11.20 we get

ResO

[
h dXdY
f, g2

]
=

1

j
(hy′ − h(0)(fx′y′ + gy′y′)).

Calculating with (X,Y )-coordinates and using the chain rules leads us, with
some patience, to the following formula:
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ResO

[
h dXdY
f, g2

]
=

1

j2
· ∂(f, h)
∂(x, y)

− h(0)

j3

[
fx

(
∂(fY , g)

∂(x, y)
+
∂(f, gY )

∂(x, y)

)

− fy

(
∂(f, gX)

∂(x, y)
+
∂(fX , g)

∂(x, y)

)]
,

where the Jacobian determinants are to be taken at the point O. From the
Residue Theorem 11.19 the following formula follows with J := fXgY −fY gX .

Theorem 12.15 (Formula of B. Segre [Se]). Assume that f and g inter-
sect transversally at every point of intersection and that they have no points at
infinity in common. Let {P1, . . . , Ppq} = V(f)∩V(g) and let h be a polynomial
of degree ≤ p+ 2q − 3. Then

pq∑

i=1

[
∂(f, g)

∂(X,Y )
· J−2

]

Pi

=

pq∑

i=1

[
hJ−3

(
∂f

∂X

(
∂(fY , g)

∂(X,Y )
+
∂(f, gY )

∂(X,Y )

)

− ∂f

∂Y

(
∂(f, gX)

∂(X,Y )
+
∂(fX , g)

∂(X,Y )

))]

Pi

.

Consider now, as did Segre, the special case

h := (g · gY Y − g2Y )fY .

Then we have deg h ≤ p+ 2q − 3, and yet another calculation shows that

ResO

[
h dXdY
f, g2

]

=
1

j3
(
f3

y (g2ygxx − 2gxgygxy + g2xgyy) − g3y(f2
y fxx − 2fxfyfxy + f2

xfyy)
)
.

Now in the real case we can interpret the formula of B. Segre in the follow-
ing way: Assume that f and g are real and that all the points of intersection
Pi (i = 1, . . . , pq) are real. Furthermore, no tangents of f or g at a point Pi

should be parallel to the Y -axis, which can always be arranged by a coordi-
nate transformation. Then fY (Pi) �= 0 and gY (Pi) �= 0 (i = 1, . . . , pq). Write
Pi = (ai, bi) (i = 1, . . . , pq). Then, by the implicit function theorem, in a
neighborhood of ai two C∞-functions φi and ψi are defined such that

f(X,φi(X)) = g(X,ψi(X)) = 0,

and we have

φ′i(ai) = −fX(Pi)

fY (Pi)
, ψ′

i(ai) = −gX(Pi)

gY (Pi)

as well as

φ′′i (ai) = −
[
f2

Y fXX − 2fXfY fXY + f2
XfY Y

f3
Y

]
(Pi)



12 Applications of Residue Theory to Curves 129

and similarly for ψi. Also,
[
J

fY gY

]
(Pi) = ψ′

i(ai) − φ′i(ai).

By 12.15 we conclude

Corollary 12.16. Under the above assumptions we have

pq∑

i=1

ψ′′
i (ai) − φ′′i (ai)

(ψ′
i(ai) − φ′i(ai))3

= 0.

The first derivatives are the slopes of the curves f and g at the points Pi,
and the second obviously have something to do with the curvature. Let κi(f)
be the curvature of f at Pi, and αi the oriented angle between f and a line
through Pi parallel to the X-axis. Let κi(g) and β be similarly defined. By a
well-known formula we have

κi(f) =
φ′′i (ai)

φ′i(ai)3
· sin3 αi.

Using 12.16 and a further calculation we get the formula

pq∑

i=1

κi(g) · cos3 αi − κi(f) · cos3 βi

sin3(βi − αi)
= 0.

In the special case that f is the X-axis we have the following:

Formula of Reiss 12.17. If a curve g of degree q intersects the X-axis in q
distinct points, then

q∑

i=1

κi(g)

sin3 βi

= 0,

where κi(g) is the curvature and βi the angle the curve makes with the X-axis
at each intersection point.

If one specifies q different points on the X-axis and at each point a nonzero
slope, then one can always find an algebraic curve of degree q that intersects
the X-axis at the given points and has the specified slopes. By the formula
of Reiss, however, one cannot also specify a curvature arbitrarily at all the
points: One of the curvatures is always determined by the others and by the
other slopes.

Exercises

1. Carry out the explicit calculations that were suppressed in connection
with 12.15–12.17.
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2. Show that the following identity holds in Q(X1, . . . , Xn):

n∑

i=1

Xρ
i∏

k �=i

(Xi −Xk)
=

{
0 for ρ ≤ n− 2,
1 for ρ = n− 1.

What do you get when ρ = n?
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The Riemann–Roch Theorem

This theorem deals with the existence of rational functions on algebraic curves or on
the corresponding abstract Riemann surfaces with prescribed orders at the points on
the curves (or on the abstract Riemann surface). Using the methods of Appendix L we
will derive two versions of the Riemann–Roch theorem, one for the curve itself and
one for its Riemann surface (its function field). The theorem leads to an important
birational invariant of irreducible curves, namely the genus of the associated function
field. An excellent presentation of the corresponding complex-analytic theory is given
by Forster [Fo].

Suppose we are given an irreducible curve F with function field L = R(F ).
Further, let X := X(F ) be the corresponding abstract Riemann surface, i.e.,
the set of all discrete valuation rings of L/K. We call the elements of X

“points” and denote them in general by P . The discrete valuation ring corre-
sponding to P will be denoted by VP , and we will let νP denote the discrete
valuation corresponding to VP . For the regular points P of F the local ring
OF,P is a discrete valuation ring of L/K, so we will always think of Reg(F )
as part of X. For the singular points of F there are finitely many points of X

lying over them by the mapping π : X → V+(F ) introduced in 6.12.
We already know that a nonconstant function r ∈ L on X has at least

one zero and at least one pole, and that the number of zeros is equal to the
number of poles when these are counted with their orders (7.3). The functions
r ∈ L are hence subject to strong conditions with respect to their orders at
the outset. This considerably limits the possibility of constructing functions
with prescribed orders at the points of X.

Let Div(X) denote the divisor group on X. Giving a divisor
∑
αP · P

(αP ∈ Z) means that one can give an order αP �= 0 on finitely many points
P ∈ X. Instead of αP we will write νP (D) and call this number the order of
D at the point P . We define the support of D by

SuppD := {P ∈ X | νP (D) �= 0}.

For D, D′ ∈ Div(X) we write D ≥ D′ in case νP (D) ≥ νP (D′) for all
P ∈ X. If νP (D) ≥ 0 for all P ∈ X, then we call D effective. For a function
r ∈ L∗ we will denote, as we did earlier, by

(r) =
∑

P∈X

νP (r) · P

the principal divisor belonging to r. Furthermore, we call
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(r)0 =
∑

νP (r)>0

νP (r) · P the zero divisor,

(r)∞ =
∑

νP (r)<0

νP (r) · P the pole divisor,

of r. We will denote the subgroup of Div(X) of all principal divisors by H(X).
If φ ⊂ P2(K) is another curve, for which F is not a component, then in

every local ring OF,Q (Q ∈ V+(F )) there is a principal ideal corresponding to
φ. The extension ideal of this ideal in VP (P ∈ X, π(P ) = Q) is a principal
ideal (ϕP ). We define the divisor (φ) of φ by

(φ) =
∑

νP (ϕP ) · P.

Since φ and F intersect in only finitely many points, νP (ϕP ) �= 0 for only
finitely many P ∈ X. From the divisor (φ) we get the intersection cycle φ ∗ F
of the form

φ ∗ F =
∑

Q

⎛
⎝ ∑

π(P )=Q

νP (ϕP )

⎞
⎠ ·Q

because we have
∑

π(P )=Q νP (ϕP ) = μQ(φ, F ) by 7.2. The divisor (φ) is hence
a finer invariant of the intersection φ∩F than the intersection cycle. Of course,
deg(φ) = deg φ · degF by Bézout.

Two divisors D,D′ ∈ Div(X) are called linearly equivalent if there exists
an r ∈ L∗ such that D −D′ = (r). We write D ≡ D′ in this case.

Remark 13.1. The following are equivalent:

(a) D ≡ D′.
(b) D and D′ represent the same divisor class in Cl(X) := Div(X)/H(X).
(c) There are curves φ, ψ in P2(K) of the same degree, of which F is not a

component, such that D + (φ) = D′ + (ψ).

In particular, then (φ) and (ψ) are linearly equivalent.

The Riemann–Roch theorem is concerned with the dimension of the K-
vector space introduced in the following definition.

Definition 13.2. For D ∈ Div(X) we call

L(D) := {r ∈ L | νP (r) ≥ νP (−D) for all P ∈ X}

the vector space of multiples of −D.

It consists of all function r whose orders at all points P of X are no “worse”
than the orders of −D. Evidently,

L(D) =
⋂

P∈X

m
−νP (D)
P VP ,
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where mP = (πP ) denotes the maximal ideal of VP and m
−νP (D)
P VP =

π
−νP (D)
P · VP .

Remark 13.3. If D and D′ are linearly equivalent divisors, then L(D) and
L(D′) are isomorphic K-vector spaces. That is, if D′ = D + (r) with r ∈ L∗,
then L(D′) → L(D) (u �→ ru) is a K-linear mapping with inverse given by
r−1.

We will give a description of L(D) that will allow us to use the results of
Appendix L. However, before we do this, we should first clarify the problem
of the Riemann–Roch theorem for curves.

We have already explained that Reg(F ) embeds in X. A divisor D with
SuppD ⊂ Reg(F ) will be called an F -divisor, and DivF (X) will be the group
of all F -divisors. Furthermore, let

Σ :=
⋂

P∈Sing(F )

OF,P ,

where we think of Σ := L if Sing(F ) = ∅. If Sing(F ) �= ∅, then
∑ ⊂ VQ for

all Q ∈ X that lie over a singularity of F . For D ∈ DivF (X) define

LF (D) := {r ∈ Σ | νP (r) ≥ νP (−D) for all P ∈ Reg(F )}.

The Riemann–Roch theorem for F is concerned with the dimension of this
K-vector space. If F is smooth, then of course LF (D) = L(D). In general we
have

LF (D) = Σ ∩
⋂

P∈Reg(F )

m
−νP (D)
F,P OF,P .

Two F -divisors D, D′ are called linearly equivalent with respect to F (and
we write D ≡F D

′) if there exists a unit r ∈ Σ such that D′ −D = (r).

Remark 13.4. For D,D′ ∈ DivF (X) we have

(a) If D′ ≡F D, then LF (D′) ∼= LF (D).
(b) If D′ ≤ D, then LF (D′) ⊂ LF (D).
(c) LF (O) = K.
(d) If degD < 0, then LF (D) = {0}.

Similarly, these statements also apply to the vector spaces L(D).

Proof. One shows (a) as in 13.3. Statement (b) is trivial, and (c) follows
from the fact that every nonconstant function has at least one pole. If LF (D)
contains a function r �= 0, then 0 = deg r ≥ − degD and hence degD ≥ 0.
This shows (d).

We will now establish a few properties of the ring Σ.
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Lemma 13.5. Suppose A is an integral domain. For p1, . . . , ps ∈ SpecA,
suppose pi �⊂ pj for i �= j (i, j = 1, . . . , s) and let N := A \⋃s

i=1 pi. Then

Ap1 ∩ · · · ∩Aps
= AN

and MaxAN = {p1AN , . . . , psAN}. Furthermore, Api
is the localization of

AN at piAN (i = 1, . . . , s).

Proof. Let H := Ap1 ∩ · · · ∩Aps
. It is clear that AN ⊂ H . To see the opposite

inclusion, for z ∈ H consider the ideal J of all a ∈ A such that az ∈ A.
Then J �⊂ pi (i = 1, . . . , s) and, as one easily shows, J �⊂ ⋃s

i=1 pi. Therefore
J ∩N �= ∅ and consequently z ∈ AN . The remaining statements of the lemma
follow from C.9 and Appendix C, Exercise 3.

Since Sing(F ) is a finite subset of V+(F ), one can assume that the sin-
gularities are points at finite distance. Then let A := K[f ] = K[x, y] be the
coordinate ring of the affine curve f corresponding to F . If p1, . . . , ps are
the maximal ideals of A corresponding to the singularities of F , then by the
lemma,

(1) Σ = Ap1 ∩ · · · ∩Aps
= AN where N := A \

s⋃

i=1

pi,

and Max(Σ) = {p1Σ, . . . , psΣ}. Also, for Pi := piΣ (i = 1, . . . , s),

ΣPi
= Api

.

Let S be the integral closure of A in L. As was shown in Chapter 6, the
points of X lying over the singularities of F correspond one-to-one with the
maximal ideals Q of S with Q ∩ A ∈ {p1, . . . , ps}, and the SQ are precisely
the discrete valuation rings belonging to these points. In particular, Σ ⊂ SQ

for all these Q ∈ Max(S).

Lemma 13.6. (a) A = Σ ∩ S.
(b) r ∈ Σ is a unit of Σ if and only if νQ(r) = 0 for all Q ∈ X with π(Q) ∈

Sing(F ).

Proof. (a) Using the notation of (1) we have by F.12

A =
⋂

p∈Max(A)

Ap, Σ =
⋂

p∩N=∅

Ap, and S =
⋂

P∈Max(S)

SP.

For p ∩N �= ∅ we have Ap = SP for some P ∈ Max(S), since Ap is already a
discrete valuation ring. For p ∩N = ∅ we have Ap ⊂ SQ for all Q ∈ Max(S)
such that Q ∩A = p. From this (a) follows immediately.

(b) r ∈ Σ is a unit of Σ if it lies in no maximal ideal piΣ (i = 1, . . . , s)
of Σ. This is equivalent to saying that r is a unit in every SQ where Q∩A ∈
{p1, . . . , ps}.
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The following theorem demands that there be a unit r ∈ Σ (a function
r ∈ L) whose order at finitely many points of Reg(F ) (of X) is prescribed,
but otherwise allows for complete freedom.

Theorem 13.7. Let P1, . . . , Pt ∈ Reg(F ) and let α1, . . . , αt ∈ Z be given.
Then there exists a unit r ∈ Σ such that

νPi
(r) = αi (i = 1, . . . , t).

The theorem holds also for arbitrary points Pi ∈ X with an element r ∈ L.

Proof. We can assume that the affine curve f also contains the points
P1, . . . , Pt. Let P1, . . . ,Pt be the maximal ideals of A corresponding to these
points.

It is enough to prove the theorem in the case that all αi ≥ 0. In the general
case, one substitutes 0 for the αi that are negative and then solves the problem
with a unit r1 ∈ Σ. After this, one substitutes 0 for the αi that are positive
and solves the problem for the −αi with a unit r2 ∈ Σ. Then r := r1r

−1
2 is a

solution of the general problem. Hence suppose αi ≥ 0 (i = 1, . . . , t). Choose
z ∈ p1 · · · ps ·Pα1+1

1 · · ·Pαt+1
t , z �= 0, and consider the decomposition of A/zA

into the direct product of its localizations by the Chinese remainder theorem.
It is then clear that there is an r ∈ A such that

r − 1 ∈ zApi
(i = 1, . . . , s),

r − παj

j ∈ zAPj
(j = 1, . . . , t),

where πj is a generator of PjAPj
. Then r is a unit of Σ. Since νPj

(z) ≥ αj +1,
it follows that νPj

(r) = αj (j = 1, . . . , t).

We shall now give a description of LF (D), for D ∈ DivF (X), which will
allow us to use the determination of dimLF (D) as given in Appendix L. Let
A = K[x, y] be given as in (1). By a suitable choice of coordinates, one can
assume that A is a finitely generated K[x]-module, and that L is separable
algebraic over K(x). Let [L : K(x)] = n. As in Appendix L we set

R := K[x], R∞ := K[x−1](x−1),

and denote by S (by S∞) the integral closure of R (of R∞) in L. By L.1, S is
a free R-module (S∞ is a free R∞-module) of rank n and we have S∩S∞ = K
by L.2. The abstract Riemann surface X consists of the infinitely many points
that correspond to the localizations of S at its maximal ideals, and the finitely
many points one gets by localizing S∞ at the maximal ideals of this ring. We
denote the first set by Xf , the second by X∞ (the finite and infinite parts of
X).

Lemma 13.8. To each D ∈ DivF (X) there is a D′ ∈ DivF (X) such that
D′ ≡F D and SuppD′ ⊂ Xf . A similar statement holds for an arbitrary
divisor of X using linear equivalence on X.
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This is an immediate consequence of 13.7. For investigating LF (D) (or
L(D)) one can always assume using 13.4(a) that SuppD ⊂ Xf . Then we have

(2) LF (D) = IF
D ∩ S∞,

where

IF
D := {r ∈ Σ | νP (r) ≥ νP (−D) for all P ∈ Reg(F ) ∩ Xf}

and

(3) L(D) = ID ∩ S∞,

where
ID := {r ∈ L | νP (r) ≥ νP (−D) for all P ∈ Xf}.

The investigation of the dimensions of L(D) and LF (D) can, on the basis
of (2) and (3), be simultaneously carried through using Appendix L. In the
following we will consider LF (D), yet one needs only to substitute S for A, L
for Σ, and S\{0} for N in order to get the statements for L(D) corresponding
to the statements for LF (D).

Theorem 13.9. If an F -divisor D satisfies SuppD ⊂ Xf , then IF
D is a finitely

generated A-module and IF
D ·Σ = Σ.

Proof. It is immediate from the definition of IF
D that it is an A-module. Let

P1, . . . , Ps be the points of Reg(F ) ∩ Xf with νPi
(D) < 0, let αi := −νPi

(D),
and let pi be the maximal ideal of A corresponding to Pi (i = 1, . . . , s). Since
pi ∩ N �= ∅, it follows that (

∏s
i=1 pαi

i ) ∩ N �= ∅. For an element a in this
intersection we have

νPi
(a) ≥ αi (i = 1, . . . , s),

νP (a) ≥ 0 for P ∈ Reg(F ) ∩ Xf ,

and a is a unit of Σ = AN . Therefore a ∈ IF
D and IF

D ·Σ = Σ.
Consider now the points Q1, . . . Qr ∈ Reg(F ) ∩ Xf with βi := νQi

(D) > 0

and the corresponding maximal ideals q1, . . . , qr of A. Let b ∈ (
∏r

i=1 q
βi

i )∩N .
For each r ∈ IF

D and each point P ∈ Reg(F ) ∩ Xf we have νP (rb) ≥ 0.
Furthermore, rb ∈ Σ and b is a unit of Σ. From 13.6(a) it follows that rb ∈ A.
Hence b · IF

D is an ideal of A. Since A is Noetherian, the ideal b · IF
D is finitely

generated, and so IF
D is finitely generated as an A-module.

From L.6 it follows that we now already have the following important facts,
sometimes called the finiteness theorems, namely that

dimK LF (D) <∞ and dimK L(D) <∞,

a first step toward the Riemann–Roch theorem.
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Theorem 13.10. To each finitely generated A-submodule I ⊂ Σ with I ·Σ =
Σ there is exactly one divisor D with Supp(D) ⊂ Reg(F ) ∩ Xf such that
I = IF

D . We have

I · OF,P = m
−νP (D)
F,P · OF,P for all P ∈ Reg(F ) ∩ Xf .

Proof. (a) First let I ⊂ A be an ideal with I · Σ = Σ. Then I · Ap = Ap

for p ∈ Max(A) with p ∩ N = ∅. Let I · Ap = pαpAp for p ∈ Max(A) with
p∩N = ∅. Now αp > 0 for only finitely many p, since for z ∈ I \{0} there are
only finitely many maximal ideals in A/(z), and I is contained in the inverse
images of at most these maximal ideals.

It follows that

(4) I =
∏

pαp ,

since the localizations of I and
∏

pαp agree at each of the maximal ideals of A,
and every ideal of A is the intersection of all its localizations at the maximal
ideals of A (F.12).

Now set αP := αp and D =
∑

(−αP ) · P , where P ∈ Reg(F ) is the point
corresponding to p. Since νP (a) ≥ αP for each a ∈ I and P ∈ Reg(F ) ∩ Xf ,
we have I ⊂ IF

D . Conversely, for P ∈ Reg(F ) ∩ Xf we also have

(5) mαP

F,P OF,P = I OF,P ⊂ IF
D · OF,P = m

βP

F,P · OF,P ,

where βP ≥ αP by definition of IF
D . It follows that αP = βP for all P ∈

Reg(F ) ∩ Xf . Since IF
D contains a unit of Σ (13.9), all the localizations of I

and IF
D coincide, and hence I = IF

D .
From (5) we get the last statement of the theorem, and hence the fact that

D is given uniquely by I.
(b) Now if I ⊂ Σ is a finitely generated A-module with I · Σ = Σ, then

there is an element a ∈ N with aI ⊂ A. From (a) we have aI = IF
D for some

F -divisor D. Then I = a−1IF
D = IF

D′ with D′ :=
∑

(νP (D) + νP (a)) · P . The
remaining statements of the theorem are also clear in this situation.

Remark 13.11. In case A = S, formula (4) shows that every ideal I �= {0}
of S is a product of powers of maximal ideals (S is a “Dedekind ring”).
Furthermore, for p1, . . . , pt ∈ Max(S) the ring

H := Sp1 ∩ · · · ∩ Spt

is a principal ideal ring. In fact, by 13.5 the Spi
are the localizations of H at

its maximal ideals. Let I ⊂ H be an ideal, I �= {0}, and let ISpj
= p

αj

j Spj

(αj ∈ N; j = 1, . . . , t). Using 13.7 there is an r ∈ L with ISpj
= rSpj

(j = 1, . . . , t). In particular, r ∈ ⋂t
j=1 ISpj

= I, and it follows that I = (r).
Since S∞ has only finitely many maximal ideals, it follows similarly that

S∞ is a principal ideal ring.
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Theorem 13.12. For two F -divisors D, D′ with D ≥ D′ and SuppD ∪
SuppD′ ⊂ Xf we have

dimK I
F
D/I

F
D′ = degD − degD′.

Proof. By multiplying IF
D and IF

D′ by a suitable unit from Σ, we can assume
that both are ideals in A. Then

IF
D =

∏
pαp , IF

D′ =
∏

pα′

p (αp = −νP (D), α′
p = −νP (D′)),

where the p are the maximal ideals of A with p ∩ N �= ∅ and P is the point
corresponding to p. We need to show that

dimK

(∏
pαp/

∏
pα′

p

)
=
∑

(α′
p − αp).

Consider
∏

pαp/
∏

pα′

p as an ideal in

A/
∏

pα′

p =
∏

p

Ap/p
α′

pAp.

It is the direct product
∏

p pαpAp/p
α′

pAp. From E.13 it follows that

dimK(pαpAp/p
α′

pAp) = α′
p − αp,

and therefore the theorem is proved.

As in Appendix L we now consider the filtration F = {Fα} of L/R∞ with
Fα = xαS∞ (α ∈ Z). Further, let σ = σL/K(x) be the canonical trace of
L/K(x). Then

HomR(IF
D , R) = (IF

D)∗ · σ
for some finitely generated A-module (IF

D)∗, and in particular,

HomR(A,R) = CA/R · σ,

where CA/R is the Dedekind complementary module of A/R with respect to
σ. By L.8,

ℓF∗ (D) := dimK((IF
D)∗ ∩ x−2CS∞/R∞

) <∞,
and in particular,

(6) gF := ℓF∗ (0) = dimK(CA/R ∩ x−2CS∞/R∞
) <∞.

We now set

ℓF (D) := dimK LF (D) and χF (D) := ℓF (D) − ℓF∗ (D).

By L.9 we have the formula
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(7) χF (D) = n−
n∑

i=1

ordF ai

if {a1, . . . , an} is a standard basis of IF
D . If D and D′ are two F -divisors as in

13.12, then it follows from L.10 and 13.12 that

(8) χF (D) − χF (D′) = degD − degD′.

If D and D′ are two arbitrary F -divisors with support in Xf , then there is also
such an F -divisor D′′ with D ≥ D′′ and D′ ≥ D′′, and two applications of
formula (8) show that (8) holds for arbitrary F -divisors D, D′ with SuppD∪
SuppD′ ⊂ Xf .

For D′ = 0 we have χF (0) = ℓF (0) − gF = 1 − gF . From (8) we therefore
get the Riemann–Roch formula

(9) ℓF (D) = ℓF∗ (D) + degD + 1 − gF .

According to its definition, the number gF , and also ℓF∗ (D), could depend
on the choice of x. Using (8) we will show that gF and ℓF∗ (D) actually do not
depend on the choice of the element x that we used in the definitions of S,
S∞, and Xf .

Theorem 13.13.

(a) There is a number c ∈ Z such that ℓF∗ (D) = 0 for all D ∈ DivF (X) with
SuppD ⊂ Xf and degD > c.

(b) gF depends only on F (and not on x).
(c) For an arbitrary D ∈ DivF (X), the number ℓF∗ (D) depends only on F

and D.

Proof. (a) By L.12 we have

(IF
D)∗ = CA/R : IF

D ,

and S∞ is a principal ideal ring by 13.11. Therefore CS∞/R∞
= z−1S∞ for

some z ∈ L∗. Hence

ℓF∗ (D) = dimK(x2z(CA/R : IF
D) ∩ S∞).

There is an element a ∈ A\{0} with ax2zCA/R ⊂ A, and so x2zCA/R ⊂ a−1A
and

x2z(CA/R : IF
D) = (x2z(CA/R) : IF

D) ⊂ a−1A : IF
D .

By 13.10, for each P ∈ Reg(F ) ∩ Xf there is a b ∈ IF
D with νP (b) = νP (−D).

Now if r ∈ L∗ is such that rIF
D ⊂ a−1A, then rba ∈ A and hence

νP (r) − νP (D) ≥ −νP (a)

for every P ∈ Xf . Consequently,



140 13 The Riemann–Roch Theorem

∑

P∈Xf

νP (r) ≥ degD −
∑

P∈Xf

νP (a).

Now let c :=
∑

P∈Xf νP (a) and degD > c. Then
∑

P∈Xf νP (r) > 0, and it
cannot be the case that r ∈ S∞, because deg(r) = 0. Therefore ℓF∗ (D) = 0.

(b) Let x̃ ∈ L be an element with similar properties as x and let X̃f be
the finite part of X with respect to x̃. We will write gF (x) and gF (x̃) for
the quantities (6) made from x respectively x̃. For a divisor D with SuppD ⊂
Xf ∩X̃f we will write ℓF,x

∗ (D) and ℓF,x̃
∗ (D) for the quantity ℓF∗ (D) formed from

x respectively x̃. By (a), we can find a D such that ℓF,x̃
∗ (D) = ℓF,x

∗ (D) = 0.
But then the above formula (9) shows that

gF (x) = degD + 1 − ℓF (D) = gF (x̃).

(c) If D is now an arbitrary F -divisor and x is chosen as above, so that
SuppD ⊂ Xf , then the following follows from (9):

ℓF,x
∗ (D) = ℓF (D) − degD − 1 + gF .

Since the right side does not depend on x by (b), the claim (c) has been
proved.

Applying the preceding considerations to A = S and Σ = L we can also
conclude that the number

gL := dimK(CS/R ∩ x−2CS∞/R∞
)

is independent of x and depends only on L.

Definition 13.14. The number gF is called the genus of F . The number gL

is called the genus of the function field L/K (or of the associated abstract
Riemann surface X).

With a few basic facts about differential modules it can be shown that the
vector spaces

ω(F ) := CA/Rdx ∩ CS∞/R∞
dx−1 ⊂ Ω1

L/K

and
ω(X) := CS/Rdx ∩ CS∞/R∞

dx−1 ⊂ Ω1
L/K

are independent of x. One calls these the vector spaces of global regular dif-
ferentials of F respectively X. According to the definition the genus is the
dimension of these vector spaces.

By (9) we have proved
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Theorem 13.15.

(a) Riemann–Roch theorem for the function field L/K (or its abstract Rie-
mann surface X) : For each D ∈ Div(X) there exists a number ℓ∗(D) ≥ 0
depending only on D such that

ℓ(D) = ℓ∗(D) + degD + 1 − gL.

(b) Riemann–Roch Theorem for the curve F : For each D ∈ DivF (X) there
exists a number ℓF∗ (D) ≥ 0 depending only on D and F such that

ℓF (D) = ℓF∗ (D) + degD + 1 − gF .

For a divisor D ∈ Div(X) we call

χ(D) = ℓ(D) − ℓ∗(D)

the Euler–Poincaré characteristic of D and for an F -divisor D we call

χF (D) = ℓF (D) − ℓF∗ (D)

the Euler–Poincaré characteristic of D with respect to F . In the classical
literature ℓ∗(D) is called the index (index of speciality) of D. A divisor D is
called special if ℓ∗(D) > 0. Clearly, for nonspecial divisors we have

ℓ(D) = degD + 1 − gL.

By Theorem 13.13 divisors with sufficiently large degree are nonspecial.
The Riemann–Roch theorem for F is equivalent to the formula (8), and

the Riemann–Roch theorem for L/K (for X) to the corresponding formula

χ(D) − χ(D′) = degD − degD′

for D, D′ ∈ Div(X).
To calculate the genus it is sometimes useful to use the following formula,

which follows from (7) with D = 0:

Formula 13.16. If {a1, . . . , an} is a standard basis for A over R, then

gF =

n∑

i=1

ordF ai − n+ 1.

Similarly for gL using a standard basis for S over R.

The Riemann–Roch theorem for the function field L/K depends only on
the discrete valuations of L/K and can therefore be recast completely inde-
pendently of the theory of algebraic curves and purely in a valuation-theoretic
framework, where K need not be algebraically closed. In addition to the work
of F. K. Schmidt [Sch], this standpoint is taken for example by Chevalley [C]
and Roquette [R].
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Exercises

1. For a divisor D ∈ Div(X) let L(D) be the set of all effective divisors
linearly equivalent to D. Show that
(a) There is a bijective mapping

L(D) → P(L(D)),

where P(L(D)) is the projective space associated with the vector space
L(D) (Chapter 2).

(b) If D,D′ ∈ Div(X) and if L(D) = L(D′) �= ∅, then D ≡ D′.
(c) If we set dimL(D) := dimK L(D) − 1, then dimL(D) depends only

on the set L(D) and not on the divisor D.
2. Let F be a smooth curve of degree p in P2(K) and for q > 0 let Lq = K[F ]q

be the homogeneous component of degree q of the coordinate ring K[F ].
For ϕ ∈ Lq \ {0} suppose the divisor (ϕ) of ϕ is defined as

(ϕ) = φ ∗ F (intersection cycle)

with a preimage φ ∈ K[X0, X1, X2]q of ϕ. Let D := (ϕ0) for a fixed
ϕ0 ∈ Lq \ {0}.
(a) Give a vector space isomorphism L(D) → Lq.
(b) How large is dimK L(D)?
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The Genus of an Algebraic Curve and of Its

Function Field

Here we mainly give rules for explicitly determining the genus. These originate from
formula 13.16. By a function field we always understand an algebraic function field
of one variable. We say that it is rational if it is generated by one transcendental
element.

The genus gF of an irreducible curve F in P2(K) is not as interesting as the
genus gL of its function field L := R(F ), because we have

Theorem 14.1. If degF = p, then gF =
(
p−1
2

)
.

Proof. We assume that the coordinates have been chosen so that Sing(F ) lies
in the affine plane with respect to the line at infinity X0 = 0. The correspond-
ing affine curve is then given by

f(X,Y ) = F (1, X, Y ) = F

(
1,
X1

X0
,
X2

X0

) (
X :=

X1

X0
, Y :=

X2

X0

)
.

We can also assume that f is monic of degree p as a polynomial in Y and that
∂f
∂Y �= 0. Then for the coordinate ring A = K[f ] = K[X,Y ]/(f) = K[x, y] we
have

A =

p−1⊕

i=0

Ryi,

with R = K[x], and L/K(x) is separable.
We will show that {1, y, . . . , yp−1} is a standard basis of A over R with

respect to the filtration F used in Appendix L and Chapter 13, and that

ordF y
i = i (i = 0, . . . , p− 1).

To do this we consider the dehomogenization of F with respect to X1,

1

Xp
1

F (X0, X1, X2) = F

(
X0

X1
, 1,
X2

X1

)
= F (X−1, 1, X−1Y ) = g(U, V ),

where U := X−1 and V := X−1Y . If

f =

p∑

i=0

ϕiY
i (ϕi ∈ K[X ], degϕi ≤ p− i),
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then by an easy calculation we have

g(X−1, X−1Y ) =

p∑

i=0

ϕi(X) ·X−p+i(X−1Y )i.

Hence g is also monic of degree p as a polynomial in V . Note that because f is
monic with respect to Y , no points at infinity (with respect to X0) of F with
X1-coordinate 0 can exist. The coordinate ring A′ = K[g] of g is identified
with the subalgebra K[x−1, x−1y] of L. We have

A′ =

p−1⊕

i=0

K[x−1](x−1y)i,

and the points at infinity of f are in one-to-one correspondence with the
maximal ideals of A′ lying over (x−1) · K[x−1]. Hence, with the notation of
Appendix L,

S∞ =

p−1⊕

i=0

R∞(x−1y)i,

and {1, y, . . . , yp−1} is a standard basis of A (L.5). Furthermore, ordF y
i = i

(i = 0, . . . , p− 1).
By 13.16 it follows that

gF =

p−1∑

i=0

i− p+ 1 =

p−2∑

i=0

i =

(
p− 1

2

)
.

For smooth curves F , the genus gF is equal to the genus of its associated
function field, and because of this we can derive a few statements about the
genus of an algebraic function field. Recall that a model of a function field
L/K is a curve F with L = R(F ) (4.7).

Corollary 14.2. (a) Smooth rational curves (rational function fields) have
genus 0.

(b) Elliptic curves (elliptic function fields) have genus 1.
(c) If an algebraic function field L/K has a smooth plane projective curve of

degree p as a model, then

gL =

(
p− 1

2

)
.

(d) Smooth plane curves of genus 1 are elliptic.

Proof. (a) Every line has genus 0 and hence so does the field of rational
functions over K. Since the smooth rational curves are birationally equivalent
to lines, they also have genus 0.

(b) Elliptic curves are smooth curves of degree 3. By 14.1 they have genus 1.
(c) follows directly from 14.1, and (d) follows from (c).
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This gives a new way to see that smooth quadrics are rational, because
their genus is 0. Smooth curves of degree p > 2 cannot have a rational
parametrization; in particular, this holds for elliptic curves. The example of
the Fermat curves shows that there exist function fields with genus g =

(
p−1
2

)

(p ∈ N+). In fact, there are function fields of genus g for every g ∈ N, as we
will show in 14.6. If the function fields of two curves have different genera,
then of course the curves cannot be birationally equivalent.

We will show that every function field of genus 0 is rational. To do this,
we will use

Lemma 14.3. Let L/K be a function field and x ∈ L a nonconstant function.
Then for the zero divisor (x)0 and the pole divisor (x)∞ of x on the abstract
Riemann surface of L/K we have

deg(x)0 = deg(x)∞ = [L : K(x)].

Proof. Consider R∞ and S∞ as in Appendix L and use the fact (L.1) that
S∞ is a free R∞-module of rank [L : K(x)]. We then have

S∞/(x
−1) =

∏

P∈Max(S∞)

(S∞)P/(x
−1)(S∞)P,

and the P ∈ Max(S∞) correspond one-to-one with the poles of x. If P is the
pole corresponding to P, then

−νP (x) = νP (x−1) = dimK(S∞)P/(x
−1)(S∞)P

and hence

deg(x)∞ = −
∑

νP (x)<0

νP (x) = dimK(S∞/(x
−1)S∞) = [L : K(x)].

Theorem 14.4. For a function field L/K the following statements are equiv-
alent.

(a) gL = 0.
(b) There is a nonconstant function x ∈ L with deg(x)∞ = 1.
(c) L is a rational function field over K.

Proof. (a) ⇒ (b). Let X be the abstract Riemann surface of L/K and let
P ∈ X. By the Riemann–Roch theorem (13.15(a)),

dimK L(P ) ≥ degP + 1 = 2.

Therefore there is a nonconstant function x in L(P ). This function has only
P as a pole, and indeed this pole is of order 1.

(b) ⇒ (c). For an x ∈ L as in (b) we have L = K(x) by 14.3.
(c) ⇒ (a) was already shown in 14.2.
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Corollary 14.5. A curve has a rational parametrization if and only if its
function field has genus 0.

A function field L/K is called hyperelliptic if it has as a model an affine
curve with equation

f := Y 2−(X−a1) · · · (X−ap) = 0 (p ≥ 3, a1, . . . , ap ∈ K, ai �= aj for i �= j),

that is, L := Q(K[f ]). We call the projective closure of f a hyperelliptic curve.

Theorem 14.6. Suppose CharK �= 2. Then for any such function field

gL =

⎧
⎨
⎩

p
2 − 1 if p is even,

p−1
2 if p is odd.

In particular, there are algebraic function fields with arbitrary genus g ∈ N.

Proof. We have A := K[f ] = K[x] ⊕ K[x] · y and L/K(x) is separable, be-
cause CharK �= 2. Using the Jacobian criterion one easily sees that f has no
singularities. Therefore A is integrally closed in L. With the earlier notation,
R = K[x] and S = A = R⊕Ry.

We now determine the integral closure S∞ of R∞ := K[x−1](x−1). The
minimal polynomial of an element t = a+ by (a, b ∈ K(x), b �= 0) over K(x)
is

(T − (a+ by))(T − (a− by)) = T 2 − 2aT + (a2 − b2(x− a1) · · · (x− ap)).

Hence in order that t be integral over R∞ by F.14, it is necessary and sufficient
that

a ∈ R∞ and a2 − b2(x − a1) · · · (x− ap) ∈ R∞.

The conditions
a ∈ R∞ and 2ν∞(b) − p ≥ 0

are equivalent to these, or in other words, to

a ∈ R∞ and ν∞(b) ≥ p

2
.

The last condition is synonymous with

b =

{
x−

p
2 b′ if p is even,

x−
p+1
2 b′ if p is odd,

with some b′ ∈ S∞. We get therefore

S∞ = R∞ ⊕R∞x
− p

2 y if p is even,

S∞ = R∞ ⊕R∞x
− p+1

2 y if p is odd.
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We see from this that

ordF y =

⎧
⎨
⎩

p
2 if p is even,

p+1
2 if p is odd.

In particular, {1, y} is a standard basis of S, and by 13.16 we have

gL =

⎧
⎨
⎩

p
2 − 1 if p is even,

p+1
2 − 1 if p is odd,

which is what we wanted to show.

Comparing 14.6 with 14.2(c), we see that not every function field has a
smooth plane projective curve as a model. How is the genus of an irreducible
singular curve F related to that of its function field L := R(F )?

Theorem 14.7. Suppose degF =: p and Sing(F ) = {P1, . . . , Ps}. Denote by
OF,Pi

the integral closure of OF,Pi
in L. Then we have

gL = gF −
s∑

i=1

dimK OF,Pi
/OF,Pi

=

(
p− 1

2

)
−

s∑

i=1

dimK OF,Pi
/OF,Pi

.

Here OF,Pi
/OF,Pi

is to be understood as the residue class vector space of OF,Pi

modulo OF,Pi
.

Proof. We consider the situation that underlies Formula 13.16. Let {a1, . . . , an}
be a standard basis for A over R, and let {b1, . . . , bn} be one for S over R,
where S is the integral closure of A in L. By 13.16 it follows that

gF − gL =

n∑

i=1

ordF ai −
n∑

i=1

ordF bi.

On the other hand, the last difference is equal to dimK S/A by L.7.
Let p1, . . . , ps ∈ Max(A) be the prime ideals corresponding to P1, . . . , Ps.

Then
OF,Pi

= Api
, OF,Pi

= Spi
(i = 1, . . . , s),

where Spi
denotes the localization of S at A\pi. For p ∈ Max(A)\{p1, . . . , ps}

we have
Ap = Sp.

Since S is a finitely generated A-module, there is an element a ∈ A, a �= 0,
with aS ⊂ A. We then have

dimK(S/A) = dimK(aS/aA),
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where aS and aA are ideals in A and hence aS/aA is an ideal in A/aA. Write

A/aA =
∏

p

Ap/aAp

by the Chinese remainder theorem and identify aS/aA with
∏

p aSp/aAp.
Then we get

dimK S/A =
∑

p

dimK(aSp/aAp) =
∑

p

dimK(Sp/Ap) =

s∑

i=1

dimK OF,Pi
/OF,Pi

.

Definition 14.8. For P ∈ V+(F ) we call

δ(P ) := dimK OF,P /OF,P

the singularity degree of F at the point P . If Sing(F ) = {P1, . . . , Ps}, then we
call

δ(F ) :=
∑

P∈V+(F )

δ(P ) =

s∑

i=1

δ(Pi)

the singularity degree of F .

One can calculate the genus of the function field of a curve F using the
formula in 14.7 if one can succeed in determining the singularity degree of F .
We will go into this further in Chapter 17.

Corollary 14.9. A rational curve of degree p has singularity degree
(
p− 1

2

)
.

Exercises

1. Deduce the following from 14.7: An irreducible curve F of degree p has at
most

(
p−1
2

)
singularities. If F has this number of singularities, then F is

rational. In particular, every singular irreducible cubic is rational.
2. Show that for an irreducible curve F and P ∈ V+(F ) we have

δ(P ) ≥ mP (F ) − 1.

3. What is the singularity degree of the projective closure of
(a) the curve Y n +XY +X = 0 (n ≥ 2)?
(b) the curve with the parametrization

x =
1

1 + tn
, y =

t

1 + tn
?

4. A hyperelliptic curve of degree p has only one singularity P . Determine
δ(P ).
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The Canonical Divisor Class

This chapter complements the Riemann–Roch theorem. It will be shown that for
every irreducible projective algebraic curve F , an F -divisor C exists (a “canonical
divisor”) such that ℓF

∗
(D) = ℓF (C − D) for every D ∈ DivF (X). The corresponding

fact is also valid for the Riemann–Roch theorem on the abstract Riemann surface X

associated with F , and it has important applications.

The Dedekind complementary module occurs in the definition of the genus of
a curve (and of its function field). We want to give a more precise description
of this module in a special situation:

Let R be an integral domain with quotient field Z and let A be an integral
domain of the form

A = R[Y ]/(f) = R[y],

where f ∈ R[Y ] is a monic polynomial of degree p > 0. Suppose the quotient
field L of A is separable over Z and let σ be the canonical trace of L/Z.

Theorem 15.1. For the complementary module CA/R of A/R with respect to
σ we have

CA/R = (f ′(y))−1 · A.

Proof. Because of the monic assumption on f we have

(1) A =

p−1⊕

i=0

Ryi

and

(2) L = Z[Y ]/(f) =

p−1⊕

i=0

Zyi.

Hence f is the minimal polynomial of y over Z. Let Le := L ⊗Z L and
let I be the kernel of the canonical ring homomorphism μ : L ⊗Z L → L
(a ⊗ b �→ ab). By H.20 the traces of L/Z are in one-to-one correspondence
with the generating elements of the L-module AnnLe I. We will first describe
this L-module more precisely. By (2),

Le = L⊗Z L ∼= L[Y ]/(f),
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and I can be identified with the principal ideal (Y −y)/(f) in L[Y ]/(f). Write
f = (Y − y) · ϕ with ϕ ∈ L[Y ]. Then AnnLe I is identified with the principal
ideal (ϕ)/(f) in L[Y ]/(f). If

f = Y p + r1Y
p−1 + · · · + rp (ri ∈ R),

then in L[Y ] we have

f = f − f(y) = (Y p − yp) + r1(Y
p−1 − yp−1) + · · · + rp−1(Y − y)

= (Y − y) ·
[

p−1∑

α=0

yαY p−1−α + r1

p−2∑

α=0

yαY p−2−α + · · · + rp−1

]
,

and hence ϕ is equal to the expression in the square brackets. Its image in Le

is

(3) Δf
y :=

p−1∑

α=0

yα ⊗ yp−1−α + r1

p−2∑

α=0

yα ⊗ yp−2−α + · · · + rp−1.

Since this element generates the ideal AnnLe I, by H.20 this element corre-
sponds to a trace τy

f ∈ ωL/Z with the property

1 =

p−1∑

α=0

τy
f (yα)yp−1−α + r1 ·

p−2∑

α=0

τy
f (yα)yp−2−α + · · · + rp−1τ

y
f (1).

From this formula it follows by comparing coefficients with respect to the
basis {1, y, . . . , yp−1} of L/Z that

(4) τy
f (yi) =

{
0 for i = 0, . . . , p− 2,
1 for i = p− 1.

In particular, τy
f (A) ⊂ R.

On the other hand, the formula (3) shows that μ(Δf
y ) = f ′(y), and from

this it follows by H.20(c) that

σ = f ′(y) · τy
f .

From (4) we therefore get the following general formula for the canonical trace
of L/Z:

(5) σ

(
yi

f ′(y)

)
=

{
0 for i = 0, . . . , p− 2,
1 for i = p− 1.

Let u ∈ L be given. One can write u in the form

u =
1

f ′(y)

p−1∑

i=0

aiy
i (ai ∈ Z).
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Then u ∈ CA/R precisely when

(6) σ(uyj) = τy
f

((
p−1∑

i=0

aiy
i

)
· yj

)
∈ R for j = 0, . . . , p− 1.

If ai ∈ R for i = 0, . . . , p − 1, then this condition is certainly satisfied. Con-
versely, assume that (6) holds for an arbitrary u ∈ L. Then from (4) we see
that ap−1 ∈ R. Applying the formula (6) for j = 1, it follows that ap−2 ∈ R.
By induction we get ai ∈ R for i = 0, . . . , p− 1. This shows that

CA/R = (f ′(y))−1 · A,

and this concludes the proof.

Now let F be an irreducible curve in P2(K) of degree p. We assume that the
singularities of F are at finite distance, and that A = K[X,Y ]/(f) = K[x, y]
is the corresponding affine coordinate ring. We can also assume, as we did
earlier, that f is monic in Y of degree p and L := Q(A) is separable over
K(x). With the notation introduced in Chapter 13, we have for the genus of
F ,

(7) gF = dimK(CA/R ∩ x−2CS∞/R∞
).

By 15.1, CA/R = (∂f
∂y )−1 · A with ∂f

∂y := ∂f
∂Y (x, y). Hence we also have the

formula

gF = dimK

(
A ∩ x−2 ∂f

∂y
CS∞/R∞

)
.

Since S∞ is a principal ideal ring (13.11), by 13.6 it is clear that a divisor C
with SuppC ⊂ X∞ exists such that

LF (C) = A ∩ x−2 ∂f

∂y
· CS∞/R∞

,

and for this divisor we have

gF = ℓF (C).

If D is an F -divisor with SuppF ⊂ Xf , then by L.12,

(IF
D)∗ = CA/R : IF

D =

(
∂f

∂y

)−1

(A : IF
D).

If p ∈ Max(A) corresponds to a singular point of F , then IF
D ·Ap = Ap (13.9),

and we have
(A : IF

D) · Ap = Ap : Ap = Ap.

On the other hand, if p ∈ Max(A) corresponds to a regular point P of F , then
IF
D ·Ap = p−νP (D)Ap, and so
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(A : IF
D) · Ap = Ap : p−νP (D)Ap = pνP (D)Ap.

Therefore by 13.10,
A : IF

D = IF
−D

and

(IF
D)∗ ∩ x−2CS∞/R∞

∼= IF
−D ∩ x−2 ∂f

∂y
CS∞/R∞

= LF (C −D).

Hence
ℓF∗ (D) = ℓF (C −D).

The Riemann–Roch theorem for F can now be completed as follows.

Theorem 15.2. There is an F -divisor C, unique up to linear equivalence with
respect to F , such that for an arbitrary F -divisor D,

(8) ℓF (D) = ℓF (C −D) + degD + 1 − gF .

Moreover,

(9) ℓF (C) = gF , degC = 2gF − 2,

and C is also uniquely determined by these properties up to linear equivalence.

Proof. We have already shown that an F -divisor C exists such that (8) is
true for all D ∈ DivF (X) with SuppD ⊂ Xf . By 13.8 and 13.4(a) equation
(8) holds for arbitrary F -divisors D. Let C be chosen such that (8) holds.

Setting D = 0 in (8), we see that ℓF (C) = gF . Setting D = C we get that
degC = 2gF − 2.

Now suppose C ′ is an F -divisor for which (9) is satisfied. Then we have
deg(C − C ′) = 0, and from (8), it follows by substituting D = C − C ′ that
ℓF (C −C ′) = 1. For an F -divisor D of degree 0, we can have ℓF (D) = 1 only
when D is a principal divisor: For r ∈ LF (D), r �= 0, we have (r) ≥ −D and
0 = deg(r) ≥ − degD = 0, hence (r) = −D and D = (r−1). Since (r) is an
F -divisor, r must be a unit of Σ (13.6(b)). This shows that C ′ ≡F C and the
theorem is proved.

In order to complete the Riemann–Roch heorem for the algebraic function
fields, a simpler way is possible. As in Chapter 13, we choose an element x
in the function field L/K that is transcendental over K such that L/K(x) is
separable. The symbols R, R∞, S, S∞ as well as Xf and X∞ are to have their
earlier meaning. In contrast to 15.1, the S-module CS/R need not be generated
by one element. However, CS∞/R∞

= z−1S∞ with an element z ∈ L∗, since
S∞ is a principal ideal ring. Hence we have the formula

(10) gL = dimK(CS/R ∩ x−2CS∞/R∞
) = dimK(x2zCS/R ∩ S∞).

Here x2zCS/R is a nonzero finitely generated S-module, and by 13.10 there is

a divisor C with SuppC ⊂ Xf and x2zCS/R = IC . From (10) we have
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gL = ℓ(C).

If D is an arbitrary divisor with SuppD ⊂ Xf , then

ℓ∗(D) = dimK(I∗D ∩ x−2CS∞/R∞
) = dimK(x2zI∗D ∩ S∞)

= dimK((x2zCS/R : ID) ∩ S∞) = dimK((IC : ID) ∩ S∞).

As above, we have IC : ID = IC−D and hence

ℓ∗(D) = dimK(IC−D ∩ S∞) = ℓ(C −D).

Analagous to 15.2, we now obtain the following.

Theorem 15.3. There is a divisor C ∈ Div(X), unique up to linear equiva-
lence, such that for all divisors D ∈ Div(X),

ℓ(D) = ℓ(C −D) + degD + 1 − gL.

Moreover,
ℓ(C) = gL, degC = 2gL − 2,

and C is also uniquely determined by these properties up to linear equivalence.

Definition 15.4. (a) An F -divisor C with ℓF (C) = gF , degC = 2gF − 2 is
called a canonical divisor of F . The corresponding divisor class in DivF (X)
is called the canonical class of F .

(b) A divisor C ∈ Div(X) with ℓ(C) = gL, degC = 2gL − 2 is called a
canonical divisor of X (or of L/K), and the corresponding divisor class in
Div(X) is called the canonical class of X (of L/K).

We give now some applications of 15.2 and 15.3.

Theorem 15.5 (Riemann’s Theorem). For every F -divisor D such that
degD > 2gF − 2 we have

ℓF (D) = degD + 1 − gF ,

and for every divisor D ∈ Div(X) with degD > 2gL − 2 we have

ℓ(D) = degD + 1 − gL.

Proof. If C is a canonical divisor, then deg(C−D) < 0 by assumption. There-
fore ℓF (C −D) = 0 respectively ℓ(C −D) = 0. Now apply 15.2 and 15.3.

Corollary 15.6. For every F -divisor D with degD ≥ 2gF and every P ∈
Reg(F ) we have

ℓF (D − P ) = ℓF (D) − 1.

For every divisor D ∈ Div(X) with degD ≥ 2gL and every P ∈ X we have

ℓ(D − P ) = ℓ(D) − 1.
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Another application of Riemann’s theorem gives the following.

Theorem 15.7. Every function field L/K of genus 1 has an elliptic curve as
a model.

Proof. Let P be a point on the abstract Riemann surface X associated with
L/K. Since gL = 1, Riemann’s theorem (15.5) shows that

ℓ(νP ) = ν for all ν ∈ N+.

Let {1, x} be a K-basis of L(2P ). Then νP (x) = −2, because if we had
νP (x) = −1, then we would have L = K(x) by 14.3, hence gL = 0. Again by
14.3 we have [L : K(x)] = 2.

Now let {1, x, y} be a K-basis of L(3P ). Then νP (y) = −3, for otherwise
we would have L(3P ) = L(2P ). From [L : K(y)] = 3 and [L : K(x)] = 2 it
follows that y �∈ K(x), and so L = K(x, y).

We have 1, x, y, xy, x2, y2, x3 ∈ L(6P ) and ℓ(6P ) = 6. Therefore there must
be a nontrivial relation between these functions. Consequently, the function
field L/K has an irreducible curve F of degree ≤ 3 as a model. If F were of
degree ≤ 2, or if F were of degree 3 and singular, then we would have gL = 0
by 14.7. Thus F must be an elliptic curve.

Now let F again be an arbitrary irreducible curve. For P ∈ Reg(F ) one
can consider the functions r ∈ Σ :=

⋂
Q∈Sing(F ) OF,Q that have a pole only

at the one point P . Similarly, for P ∈ X, one can ask which functions r ∈ L
have a pole only at P . What orders of the pole are then possible?

We discuss the problem for F . The solution for X is similar. By 15.5 we
have

(11) ℓF ((2gF − 1) · P ) = gF ,

and by 15.6 for ν ≥ 2gF ,

ℓF (ν · P ) = ℓF ((ν − 1) · P ) + 1.

For ν ≥ 2gF there always exists a function rν ∈ Σ with pole divisor (rν)∞ =
ν · P . By (11), besides the constant functions there are still gF − 1 linearly
independent functions with P as their only pole and with pole order < 2gF .
If two functions r, r′ have the same order at P , then one can always find
κ ∈ K with νP (r − κr′) > νP (r). From this it follows that there are integers
0 < ν1 < · · · < νgF −1 < 2gF such that for every ν ∈ {0, ν1, . . . , νgF −1} there
exists a function rν with

(rν)∞ = ν · P,
while if ν < 2gF with ν �∈ {0, ν1, . . . , νgF −1}, no such function exists. The
functions rν are linearly independent over K, since they have different orders.
If there were other functions, then we would have ℓF ((2gF − 1)P ) > gF ,
contradicting (11). We have therefore shown:



15 The Canonical Divisor Class 155

Theorem 15.8 (Weierstraß Gap Theorem). For every P ∈ Reg(F ) there
are natural numbers ℓi (i = 1, . . . , gF ) with

0 < ℓ1 < · · · < ℓgF < 2gF

such that the following is true: For each ν ∈ N \ {ℓ1, . . . , ℓgF } there exists a
function rν ∈ Σ with pole divisor

(rν)∞ = ν · P.

For ν ∈ {ℓ1, . . . , ℓgF } there is no such function. Also, the corresponding theo-
rem is true for X and the functions from L.

The integers ℓ1, . . . , ℓgF are called the Weierstraß gaps of the point P and

HF
P := N \ {ℓ1, . . . , ℓgF }

is called the Weierstraß semigroup of the point P . The Weierstraß semigroup
HL

P is similarly defined. It is clear that we are dealing with a subsemigroup of
(N,+), since the order of a product of two functions equals the sum of their
orders.

It is an unsolved problem to determine which subsemigroups H ⊂ N with
only finitely many gaps (“numerical” semigroups) are Weierstraß semigroups
HL

P . By a result of Buchweitz (cf. Exercise 5) there are numerical semigroups
that are not of this form. On the other hand, it is known that large classes
of numerical semigroups do occur as Weierstraß semigroups. The works of
Eisenbud–Harris [EH] and Waldi [Wa1] contain collections of results of this
kind, and in them are detailed references to the literature of this research
area.

The rest of this chapter is concerned with the canonical class and the genus
of a function field L/K. We will use the notation introduced in connection
with 15.3. For P ∈ Max(S) we have

SP · CS/R = P−dPSP for some dP ∈ Z,

and similarly, for P ∈ Max(S∞),

(S∞)P · CS∞/R∞
= P−dP(S∞)P (dP ∈ Z).

Here dP �= 0 for only finitely many P (see 13.10). We show that dP ≥ 0 for
all P. This follows immediately from

Lemma 15.9. S ⊂ CS/R and S∞ ⊂ CS∞/R∞
.

Proof. By definition, CS/R = {u ∈ L | σ(Su) ⊂ R}. In order to show that
S ⊂ CS/R, one has only to show that for every u ∈ S the trace σ(u) belongs
to R. Since R is integrally closed in its quotient field Z, all the coefficients of
a minimal polynomial of u over Z are contained in R (F.14). Since −σ(u) is
the second-highest coefficient of the minimal polynomial, σ(u) ∈ R. The same
proof shows that S∞ ⊂ CS∞/R∞

.
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If P ∈ X is the point corresponding to P, then set dP := dP. The effective
divisor

Dx :=
∑

P∈X

dP · P

is called the different divisor of L with respect to x, and dP is called the
different exponent at the point P .

For the canonical divisor C with IC = x2zCS/R that we considered in
connection with (10) we have

νP (C) = dP − (2νP (x) + νP (z)) (P ∈ Xf ),
νP (C) = 0 (P ∈ X∞),

and hence
νP (C + (x2z)) = dP (P ∈ Xf ),
νP (C + (x2z)) = dP + 2νP (x) (P ∈ X∞).

Consequently, C ≡ Dx − 2(x)∞, and Dx − 2(x)∞ is also a canonical divisor.

Theorem 15.10 (Hurwitz Formula). Let Dx =
∑

P∈X dP · P be the
different divisor of L with respect to x. Then

gL =
1

2
degDx − [L : K(x)] + 1 =

1

2

∑

P∈X

dP − [L : K(x)] + 1.

Proof. Since deg(x)∞ = [L : K(x)] by 14.3 and Dx − 2(x)∞ is a canonical
divisor, it follows from 15.3 that

2gL − 2 = degC = degDx − 2[L : K(x)],

and from this the assertion follows.

In particular, the different divisor always has even degree. In order to apply
the formula, more exact knowledge of the different exponents dP is needed.
This will be provided by the Dedekind different theorem.

For P ∈ Max(S) and p := P ∩R let

(12) pSP = PeP · SP (eP ∈ N+).

If P ∈ Xf is the point corresponding to P, then we set eP = eP. Similarly,
eP is defined for P ∈ X∞. The number eP is called the ramification index of
L/K(x) at the point P .

Theorem 15.11 (Dedekind Different Theorem). The different exponent
dP and the ramification index eP satisfy the following relations:

dP = eP − 1, in case eP · 1K �= 0,
dP ≥ eP , in case eP · 1K = 0.

In particular, there are only finitely many ramification points of L/K(x), i.e.,
points P ∈ X with eP > 1.
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In the special case that K is a field of characteristic 0, the Hurwitz formula
can be written in the following form, according to the different theorem:

(13) gL =
1

2

∑

P∈X

(eP − 1) − [L : K(x)] + 1.

The number
∑

P∈X(eP −1) is called the total ramification number of L/K(x).
It is necessarily an even number. Formula (13) also holds if CharK is larger
than [L : K(x)], because eP ≤ [L : K(x)] for all P ∈ X by F.13.

To prove the different theorem it is enough to consider a P ∈ Max(S)
and p := P ∩ R. We pass to the completions R̂p and Ŝp of Rp with respect
to pRp, and Sp with respect to pSp, where Sp is the quotient ring of S with
denominator set R \ p. To simplify the notation we write R for Rp and S for
Sp and denote pRp by m. The proof makes use of the following five lemmas.

Lemma 15.12. The canonical mapping

α : R̂⊗R S −→ Ŝ

is a ring isomorphism.

Proof. Let m = (a1, . . . , an). Then

R̂ = R[[X1, . . . , Xn]]/(X1 − a1, . . . , Xn − an),

Ŝ = S[[X1, . . . , Xn]]/(X1 − a1, . . . , Xn − an) (cf. K.15), and α is induced by

R[[X1, . . . , Xn]] −→ S[[X1, . . . , Xn]].

Since S is a finitely generatedR-module, one sees easily that S[[X1, . . . , Xn]] ∼=
R[[X1, . . . , Xn]]⊗R S in a canonical way, and the assertion follows by passing
to the residue class ring modulo (X1 − a1, . . . , Xn − an).

Lemma 15.13. Let Max(S) = {P1, . . . ,Ph}. Then there is a canonical ring
isomorphism

Ŝ ∼= ŜP1 × · · · × ŜPh
.

Proof. Since Ŝ is integral over R̂ (15.12), the maximal ideals of Ŝ are precisely
the prime ideals of Ŝ lying over mR̂ (F.9). They are in one-to-one correspon-
dence with the prime ideals of Ŝ/mŜ ∼= R̂/mR̂⊗R/m S/mS ∼= S/mS. In other

words, the maximal ideals of Ŝ are given by

Mi := mR̂⊗ S + R̂⊗ Pi = R̂ ⊗ mS + R̂ ⊗ Pi = R̂⊗ Pi (i = 1, . . . , h).

Here Mi has Pi as its preimage in S (i = 1, . . . , h). By K.11 there exists a
canonical isomorphism

Ŝ ∼= ŜM1 × · · · × ŜMh
,
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and the ŜMi
are complete local rings (i = 1, . . . , h). There is a canonical

homomorphism SPi
→ ŜMi

, and the ideal MiŜMi
= PiŜMi

is generated by

one element ti ∈ Pi. Thus the ŜMi
are complete discrete valuation rings:

ŜMi
= K[[Ti]],

where Ti is an indeterminate corresponding to ti. It is also clear that ŜMi
is

the completion of the discrete valuation ring SPi
:

ŜMi
= ŜPi

(i = 1, . . . , h).

By 15.13 the ring Ŝ has no nonzero nilpotent elements, but does have
zerodivisors for h > 1. However, it is clear that L̂ := Q(Ŝ) is the direct

product of the fields L̂i := Q(ŜPi
). We set Z := K(x) and Ẑ := Q(R̂).

Lemma 15.14. The canonical homomorphism

β : Ẑ ⊗Z L −→ L̂

is an isomorphism.

Proof. By 15.12 there is a canonical isomorphism R̂⊗R S ∼= Ŝ. The elements
x ∈ R̂ \ {0} are therefore nonzerodivisors in Ŝ (G.4(b)). Because Ŝ is finitely
generated as anR-module, every element of L̂ can be written with a numerator
from Ŝ and a denominator from R̂ \ {0}. This shows that β is surjective.
Because of dimension considerations, β must be bijective.

In the following we identify L̂ with Ẑ ⊗Z L and Ŝ with R̂ ⊗R S. In L̂ we
then have L̂ = Ẑ · L, and Ŝ = R̂ · S. If σ is the canonical trace of L/Z, then
1⊗σ is the canonical trace of L̂/Ẑ and the complementary module CŜ/R̂ with
respect to 1 ⊗ σ is defined. According to the identifications, CŜ/R̂ and CS/R

are contained in L̂.

Lemma 15.15. CŜ/R̂
∼= Ŝ · CS/R.

Proof. Let B = {a1, . . . , an} be a basis of S as an R-module. Then 1 ⊗
B := {1 ⊗ a1, . . . , 1 ⊗ an} is a basis of Ŝ = R̂ ⊗R S as an R̂-module. If
{a∗1, . . . , a∗n} is the complementary basis to B with respect to σ, then obviously
{1⊗a∗1, . . . , 1⊗a∗n} is the complementary basis to 1⊗B with respect to 1⊗σ.
Hence

CŜ/R̂ =

n⊕

i=1

R̂(1 ⊗ a∗i ) = R̂⊗R

(
n⊕

i=1

Ra∗i

)
= R̂CS/R = ŜCS/R.

As shown above,
L̂ = L̂1 × · · · × L̂h,

and by 15.14 the L̂i are finite and separable field extensions of Ẑ, because
L/Z is such. If σi is the canonical trace of L̂i/Ẑ, then 1⊗σ = (σ1, . . . , σh) by
H.3. Using 15.13, the next result follows easily (cf. H.2):
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Lemma 15.16. CŜ/R̂ = C dSP1
/R̂

× · · · × C dSPh
/R̂
.

If d is the different exponent corresponding to P ∈ {P1, . . . ,Ph}, so that
SPCS/R = P−dSP, then 15.15 and 15.16 show that

(14) C cSP/R̂
= ŜPCS/R = P−dŜP.

Thus the different exponent can also be calculated in the completion. As we
will see, this has the advantage that the formula in 15.1 can be used.

If e is the ramification index at the point P, so pSP = PeSP, then also

pŜP = PeŜP.

To prove the Dedekind different theorem, we have to show that d = e− 1
if e · 1K �= 0, and that d ≥ e if e · 1K = 0. Identify R̂ and ŜP with power
series rings K[[t]] ⊂ K[[T ]]. Then t = ε · T e for some unit ε ∈ K[[T ]]. Hence
K[[T ]]/tK[[T ]] is a K-algebra of dimension e, and therefore

ŜP = R̂⊕ R̂T ⊕ · · · ⊕ R̂T e−1.

Let f be the minimal polynomial of T over Ẑ. It is of the form

f = Y e + r1Y
e−1 + · · · + re (ri ∈ R̂, i = 1, . . . , e),

and no ri can be a unit in R̂. Suppose that this is not the case. Let j be
the largest index for which rj is a unit. Then rjT

e−j in K[[T ]] would have
smaller order in K[[T ]] than T e and riT

e−i for i �= j, which cannot be, since
T e +

∑e
i=1 riT

e−i = 0.

From ŜP = R̂[Y ]/(f), it follows by 15.1 that C cSP/R̂ = (f ′(T ))−1 · ŜP

where
f ′(T ) = eT e−1 + (e− 1)r1T

e−2 + · · · + re−1.

If e · 1K �= 0, then f ′(T ) has order e − 1 and it follows that d = e − 1. If
e · 1K = 0, then f ′(T ) has order ≥ e, since all ri have such an order. The
different theorem has therefore been proved.

Differents (ideals defined with the help of differentiation) are well known in
various situations (cf. [Ku2], Chapter 10, and Appendix G). Theorem 15.1 is a
special case of an important connection between several concepts of differents
([Ku2], 10.17).

Exercises

1. (Reciprocity theorem of Brill–Noether). Let F be a curve and let D, D′

be F -divisors such that D +D′ is a canonical divisor for F . Show that

degD − 2ℓF (D) = degD′ − 2ℓF (D′).
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2. Let F be a smooth curve of degree p > 3 and let φ be a curve of degree
p− 3. Then the divisor (φ) of φ is a canonical divisor on X = V+(F ).

In the following exercises let X be the abstract Riemann surface of a func-
tion field L/K. Let C be a canonical divisor of X. Assume that X has genus
g ≥ 2.

3. Show that ℓ(ν · C) = (2ν − 1) · (g − 1) for ν ≥ 2.
4. (Weierstraß gaps and canonical class). Show that:

(a) A natural number ν ≥ 1 is a Weierstraß gap of X at the point P ∈ X

if and only if there exists a gν ∈ L(C) with νP (gν) = ν − 1 − νP (C).
(b) Let Λ := {ν + μ | ν and μ are Weierstraß gaps of X at P}. Then for

every λ ∈ Λ there is an fλ ∈ L(2C) with

νP (fλ) = λ− 2 − 2νP (C).

(c) Λ has at most 3g − 3 = ℓ(2C) elements.
5. (Buchweitz). Let H be a numerical semigroup with g ≥ 2 gaps and let h

be the number of integers ℓ1 + ℓ2, where ℓ1 and ℓ2 are gaps of H . Show
that:
(a) If H is a Weierstraß semigroup, then h ≤ 3g − 3.
(b) The semigroup with the gaps

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 21, 24, 25

is not a Weierstraß semigroup.
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The Branches of a Curve Singularity

Irreducible polynomials in K[X,Y] can decompose in the power series ring K[[X,Y]].
In the geometry over C, this fact corresponds to the possibility of decomposing curves
into “analytic” branches “in a neighborhood” of a singularity, and thereby allowing
us to analyze them more precisely. Also, a similar theory will be discussed for curves
over an arbitrary algebraically closed field.

The local ring OF,P of a point P on a curve F in P2(K) has the affine de-
scription (without loss of generality P = (0, 0))

(1) OF,P
∼= K[X,Y ](X,Y )/(f),

where f ∈ K[X,Y ] is a polynomial with homogenization F . The comple-

tion ÔF,P of OF,P with respect to its maximal ideal mF,P has by K.17 the
presentation

(2) ÔF,P
∼= K[[X,Y ]]/(f).

Thus ÔF,P is a complete Noetherian local ring (K.7) with maximal ideal

m̂F,P = mF,P · ÔF,P . The canonical map OF,P → ÔF,P is injective, because
OF,P is mF,P -adically separated (Krull intersection theorem).

Let Lf be the leading form of f , considered as a power series in K[[X,Y ]].
Unlike the presentation in Appendix B, here we give the leading form the
usual degree ≥ 0.

Lemma 16.1. (a) We have dim ÔF,P = 1 and edim ÔF,P ≤ 2.
(b) The following statements are equivalent:

(α) edim ÔF,P = 1 (i.e., ÔF,P is a complete discrete valuation ring).
(β) degLf = 1.
(γ) P is a regular point of F .

(c) If X is not a factor of Lf and degLf =: m, then ÔF,P is a free K[[X ]]-
module of rank m.

Proof. We show (c) first. By assumption, f is Y -general of order m (K.18)
and so by the Weierstraß preparation theorem (K.19),

ÔF,P = K[[X ]]⊕K[[X ]] · y ⊕ · · · ⊕K[[X ]] · ym−1,

where y denotes the residue class of Y in ÔF,P .
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The assumption that X does not divide the leading form Lf is of course

satisfied by a suitable choice of coordinate system; thus ÔF,P is always a
finitely generated module over a power series ring in one variable. From this,

and from F.10, it follows easily that dim ÔF,P = 1. The presentation (2) shows

that edim ÔF,P ≤ 2, and edim ÔF,P = 1 is equivalent to degLf = 1. Hence,
statement (b) is clear.

While the completion ÔF,P for P ∈ Reg(F ) already played a role in Chap-
ter 15, these complete rings are now used to study the singular points of F .

Since K[[X,Y ]] is a unique factorization domain (K.22), a power series f
in K[[X,Y ]] decomposes into a product of powers

(3) f = c · fα1
1 · · · fαh

h (c ∈ K[[X,Y ]] a unit, αi ∈ N+)

of (pairwise nonassociate) irreducible power series fi (i = 1, . . . , h). As we will
see in 16.6, it is possible for an irreducible f inK[X,Y ] to properly decompose
in K[[X,Y ]].

Lemma 16.2. The ring R := ÔF,P has exactly h minimal prime ideals,
namely pi := (fi)/(f) (i = 1, . . . , h). Here αi is the smallest natural num-

ber with pαi

i Rpi
= (0); in particular, the αi are invariants of ÔF,P and so are

also invariants of P .

Proof. R/pi
∼= K[[X,Y ]]/(fi) is of course an integral domain, and hence pi

is a prime ideal of R. Since dimR = 1, it must be a minimal prime ideal.
Every prime ideal of K[[X,Y ]] containing f contains one of the factors fi,
and its image in R then contains pi. Therefore the pi (i = 1, . . . , h) are all the
minimal prime ideals of R.

Because of the permutability of localization and residue class ring con-
struction,

Rpi
= K[[X,Y ]](fi)/fK[[X,Y ]](fi) = K[[X,Y ]](fi)/f

αi

i K[[X,Y ]](fi),

and the statement about αi follows.

Definition 16.3. The rings

Zi := ÔF,P /p
αi

i
∼= K[[X,Y ]]/(fαi

i ) (i = 1, . . . , h)

are called the (analytic) branches of F at the point P .

These are complete Noetherian local rings of Krull dimension 1 and of
embedding dimension ≤ 2. In addition to the maximal ideal, these rings have
only one other prime ideal, namely pi/p

αi

i = (fi)/(f
αi

i ). As in 16.1 (c) one
sees that each Zi is a finite free module over a power series algebra K[[X ]].



16 The Branches of a Curve Singularity 163

The number mi := degLfαi

i is an invariant of the branch Zi, since
grmi

Zi
∼= K[X,Y ]/(Lfαi

i ), where mi is the maximal ideal of Zi, and mi

gives the place where the Hilbert function of grmi
Zi differs from the Hilbert

function of the polynomial ring for the first time.
We call mi the multiplicity of the branch Zi. It is clear that

(4) mP (F ) =

h∑

i=1

mi.

The branch Zi is called integral if Zi is an integral domain (so αi = 1),
and regular if Zi is a discrete valuation ring. This is the case if and only if
mi = 1, and then there is a canonical K-isomorphism

Zi
∼= K[[Ti]]

onto a power series ring in one variable Ti.

Definition 16.4. The curve F is called reduced at P (irreducible at P ) if no
multiple components of F pass through P (if F is reduced at P and only one
component of F passes through P ).

The curve F is reduced (irreducible) at P if and only if OF,P has no
nonzero nilpotent elements (is an integral domain). If F is irreducible at P ,
then for every branch Zi of F at P , the canonical mapping

OF,P −→ ÔF,P /p
αi

i = Zi

is injective. If it had a kernel ai �= (0), then OF,P /ai would be a finite-
dimensional K-algebra; then this would also be the case for its completion.

So (OF,P /ai)
∧ = aiÔF,P /ÔF,P would be a finite-dimensional K-algebra, and

then Zi would also be a finite-dimensional K-algebra, a contradiction.

Theorem 16.5. If F is reduced at P , then all the branches of F at P are

integral. For the minimal prime ideals pi (i = 1, . . . , h) of ÔF,P we have

h⋂

i=1

pi = (0).

Proof. Without loss of generality we can assume that in (1) the polynomial
f in K[X,Y ] has a factorization of the form

f = f1 · · · fm

with pairwise nonassociate irreducible polynomials fi (i = 1, . . . ,m) that are
all contained in (X,Y ). Then the fi are also pairwise relatively prime as power
series: If i �= j, then A = K[X,Y ](X,Y )/(fi, fj) is a finite-dimensional local
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K-algebra. Then A = Â = K[[X,Y ]]/(fi, fj). If fi and fj had a nonunit g
fromK[[X,Y ]] as a divisor, then B := K[[X,Y ]]/(g) would be a homomorphic
image of A. However, this cannot be the case, because B (by the Weierstraß
preparation theorem) is certainly not finite-dimensional over K.

It is enough to show that if f in K[X,Y ] is irreducible, then f has no
multiple factors in K[[X,Y ]]. If f is irreducible, then ∂f

∂X and ∂f
∂Y do not

vanish simultaneously. Suppose ∂f
∂Y �= 0. The power series f and ∂f

∂Y are then

relatively prime, and the K-algebra K[[X,Y ]]/(f, ∂f
∂Y ) is finite-dimensional.

Suppose it were the case that f = g2 · ϕ (g, ϕ ∈ K[[X,Y ]], g irreducible).
Then because of

∂f

∂Y
= 2g

∂g

∂Y
ϕ+ g2 · ∂ϕ

∂Y
,

g would also be a divisor of ∂f
∂Y . As above, this gives a contradiction, since

K[[X,Y ]]/(g) is not finite-dimensional over K.
Under the assumptions of the theorem, in equation (3) we must have

α1 = · · · = αh = 1.

Since pi = (fi)/(f), it follows that
⋂h

i=1 pi = (0).

The following theorem gives a sufficient condition for the decomposability
of a power series in two variables. It uses a variation of Hensel’s lemma. We
consider the grading on K[X,Y ] in which degX =: p > 0 and deg Y =:
q > 0. For f ∈ K[[X,Y ]] \ {0}, let the leading form Lf be the homogeneous
polynomial of smallest degree that occurs in f using the above grading, and
ord f := degLf . There is a trivial, but useful, irreducibility criterion: If by
a suitable choice of p and q the leading form Lf is an irreducible polynomial,
then f is an irreducible power series. In particular, homogeneous irreducible
polynomials are also irreducible as power series.

The following theorem is a partial converse to this criterion.

Theorem 16.6. For f ∈ K[[X,Y ]] \ {0}, suppose Lf has a decomposition
Lf = ϕ1 · ϕ2 with nonconstant relatively prime (homogeneous) polynomials
ϕj ∈ K[X,Y ] (j = 1, 2). Then there are power series fj ∈ K[[X,Y ]] with
Lfj = ϕj (j = 1, 2) and

f = f1 · f2.

Proof. Set G := K[X,Y ], αj := degϕj (j = 1, 2), and α := ord f = degLf =
α1 + α2. Using the relative primeness of ϕ1 and ϕ2, we will first show that

(5) Gk = Gk−α1 · ϕ1 +Gk−α2 · ϕ2 for k > (α1 − p) + (α2 − q) = α− p− q.

If p = q = 1, then this statement follows from the considerations of the Hilbert
function in A.12(b). We can deduce the general case from this as follows: Let
H := K[U, V ] be the polynomial ring in two variables U and V of degree 1.
Using X �→ Up, Y �→ V q there is an embedding K[X,Y ] →֒ K[U, V ], and this
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is homogeneous of degree 0. The monomials U iV j (0 ≤ i ≤ p−1, 0 ≤ j ≤ q−1)
form a basis of H over G. Let G = G/(ϕ1, ϕ2), H = H/(ϕ1, ϕ2)H and let u, v
be the residue classes of U, V in H . Then {uivj | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q− 1}
is a (homogeneous) basis of H as a G-module. Let Gρ be the homogeneous
component of G of largest degree. Then Gρ · up−1vq−1 is the homogeneous
component of H of largest degree. By A.12(b) this has degree α1 + α2 − 2. It
follows that

ρ = α1 + α2 − 2 − (p− 1) − (q − 1) = (α1 − p) + (α2 − q) = α− p− q,

and so we have shown formula (5).
Using this formula a decomposition f = f1 · f2 will be constructed step by

step. Set

f (1) := f − Lf = f − ϕ1ϕ2 and α(1) := ord f (1).

Then α(1) ≥ α + 1. Suppose, for an i ≥ 1, that we have already found poly-
nomials pj ∈ G with Lpj = ϕj (j = 1, 2) such that f (i) := f − p1p2 has order
α(i) ≥ α+ i. The formula (5) can be applied with k = α(i). We can therefore
write

Lf (i) = ψ2ϕ1 + ψ1ϕ2

with ψ2 ∈ Gα(i)−α1
, ψ1 ∈ Gα(i)−α2

, and then we have

deg(ψ1ψ2) = 2α(i) − α1 − α2 = 2α(i) − α ≥ α+ i+ 1.

For
f (i+1) := f − (p1 + ψ1)(p2 + ψ2),

we then have
f (i+1) = f (i) − (ψ2p1 + ψ1p2) − ψ1ψ2

and so ord f (i+1) ≥ α+ i+1. Furthermore, pj +ψj has leading form ϕj , since
degψj > αj (j = 1, 2).

By continuing with this method, we approximate f more and more closely
by a product of two polynomials with leading forms ϕ1, ϕ2. Passing to the
limit, we obtain the desired decomposition f = f1f2 of f as a product of two
power series fj with Lfj = ϕj (j = 1, 2).

Corollary 16.7. If f is an irreducible power series, then its leading form
Lf is a power of an irreducible homogeneous polynomial. In particular, for
p = q = 1,

Lf = (aX − bY )μ (μ ∈ N, a, b ∈ K, (a, b) �= (0, 0)).

In the initial situation let Zi = K[[X,Y ]]/(fαi

i ) be a branch of F at P .
Then

Lf (αi) = (aiX − biY )μi (μi ∈ N+, (a, b) �= (0, 0)),
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and ti : aiX − biY = 0 is one of the tangents of F at P . We call ti the
tangent of the branch Zi. Every branch therefore has a unique tangent, and
every tangent to F at P is also a tangent of a certain branch. But different
branches can indeed have the same tangent.

Example 16.8 (Classification of double points). In case mP (F ) = 2 we
have degLf = 2. Then Lf is either the product of two linearly independent
linear homogeneous polynomials or is the square of a linear homogeneous
polynomial. The following cases are possible:

(a) Normal crossings (nodes, ordinary double points): F has two distinct tan-
gents at P . Then by 16.6, F also has two branches at P , which more-
over are regular. A specific example of this is the folium of Descartes
X2−Y 2+X3 = 0 (CharK �= 2). Although the polynomialX2−Y 2+X3 is
irreducible in K[X,Y ], it decomposes in K[[X,Y ]], since Lf = X2−Y 2 =
(X + Y )(X − Y ).

(b) Ordinary cusps: F has a (double) tangent at P and only one branch.
A specific example of this kind is Neil’s parabola Y 2 − X3 = 0. The
polynomial Y 2−X3 is irreducible in K[X,Y ]. It is homogeneous if we set
degX = 2, degY = 3. Then it can also not decompose as a power series.

(c) Tacnodes : F has a (double) tangent at P but two different branches. An
example of this situation is given by

f = Y 2 −X2Y 2 −X4 = 0, P = (0, 0) (CharK �= 2).

Here Y = 0 is a double tangent. The curve f is irreducible, since X4

1−X2

is not a square in K(X). If we set degX = 1, deg Y = 2, then Lf =
Y 2−X4 = (Y +X2)(Y −X2) and by 16.6, there are two different regular
branches to f at P .

As for algebraic curves, one obtains further invariants for the branches Z
by passing to the integral closure of Z.
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Theorem 16.9. Let Z = K[[X,Y ]]/(f) be an integral branch and let Z be
the integral closure of Z in Q(Z). Then Z is finitely generated as a Z-module.
There is also a K-isomorphism

Z ∼= K[[T ]]

onto a power series ring in one variable T ; i.e., Z is a complete discrete
valuation ring.

Proof. By 16.1(c) we may assume without loss of generality that

Z =

m−1⊕

i=0

K[[X ]]yi,

where y denotes the residue class of Y in Z. It is enough to show that Z
is finitely generated as a K[[X ]]-module. If L := Q(Z) is separable over
K((X)) := Q(K[[X ]]), then this follows from F.7. In the inseparable case,
we proceed as in L.1. Let CharK =: p > 0 and let Lsep be the separable

closure of K((X)) in L. The integral closure Z̃ of K[[X ]] in Lsep is in any
case a finite K[[X ]]-module. Furthermore, there is an e ∈ N with Lpe ⊂ Lsep.

Then Z
pe

⊂ Z̃, and since K[[X ]] is finite over K[[X ]]p
e

= K[[Xpe

]], it is also

the case that Z̃ and Z
pe

are finite over K[[Xpe

]]. However, Z is isomorphic to

Z
pe

and K[[X ]] to K[[Xpe

]]. Therefore Z is finite over K[[X ]].
Since Z is a complete local ring and Z is a finitely generated Z-module, Z

decomposes by K.11 into the direct product of the localizations at its maximal
ideals. But Z is an integral domain, so only one maximal ideal can occur, i.e.,
Z is a local ring. By F.8, then, Z is in fact a (complete) discrete valuation
ring. Since it has K as its residue class field, it is isomorphic to K[[T ]].

In the situation of the theorem, let x, y be the residue classes of X , Y in
Z. Under the injection Z →֒ K[[T ]], the elements x and y will be mapped to
power series α, β ∈ K[[T ]] and we will have f(α, β) = 0 in K[[T ]]. We write

(6) Z = K[[α, β]],

where K[[α, β]] denotes the image under the substitution homomorphism
K[[X,Y ]] → K[[T ]] (X �→ α, Y �→ β). We also say that the branch Z is
given by the (analytic) parametric representation (α, β).

By 16.9 the residue class vector space Z/Z over K is finite-dimensional
(cf. 7.1). We call

δ(Z) := dimK Z/Z

the singularity degree of the (integral) branch Z.

Example 16.10. Let p, q ∈ N+ be relatively prime natural numbers with
p < q. We consider the affine curve
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f : Xp − Y q = 0.

In case p = 2, q = 3 this is Neil’s semicubical parabola (Figure 1.6).
First we will show that Xp − Y q is irreducible in K[X,Y ]. We endow the

polynomial ring K[X,Y ] with the grading where degX := q and degY := p.
Then f is homogeneous of degree p · q. If f had a proper divisor, then this
divisor would have to be homogeneous (A.3) and of degree ≤ p · q − p.

But all the monomials X iY j with i ≤ p−1, j ≤ q−1 have distinct degrees
iq + jp, for if

iq + jp = i′q + j′p (i′ ≤ p− 1, j′ ≤ q − 1)

and i ≥ i′, then (i− i′)q = (j′− j)p, and because p and q are relatively prime,
we must have i = i′ and j = j′. Hence the homogeneous polynomials of degree
≤ p · q − p are of the form cX iY j (c ∈ K) and they do not divide f .

From the irreducibility of f in K[X,Y ], it follows that f is irreducible also
in K[[X,Y ]], because f is a homogeneous polynomial.

The kernels of the substitution homomorphisms

K[X,Y ] −→ K[T ],

K[[X,Y ]] −→ K[[T ]],

where X �→ T q, Y �→ T p, contain f . Since f is irreducible in both rings, f
generates the kernel. Hence we have

K[f ] = K[X,Y ]/(f) ∼= K[T q, T p]

and
Z := K[[X,Y ]]/(f) ∼= K[[T q, T p]].

So f is a rational curve. It has only one branch at P = (0, 0), namely Z. This
branch is integral and has X = 0 as a p-fold tangent. Further, Z := K[[T ]] is
the integral closure of Z in Q(Z), and (T q, T p) is a parametric representation
of Z.

Let H = 〈p, q〉 = {ip+jq | i, j ∈ N} be the numerical semigroup generated
by p and q. Then

Z =

{∑

h∈H

κhT
h ∈ K[[T ]] | κh ∈ K

}
.

The singularity degree δ(Z) = dimK Z/Z is thus the number of gaps of
H . It is an exercise to show that

δ(Z) =
1

2
(p− 1)(q − 1).

The Jacobian criterion shows that f has at most one singularity at finite
distance at (0, 0). Besides that one, f has only one point at infinity with
branch
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Z∞ = K[[X,Y ]]/(Xq−p − Y q),

and this has singularity degree

δ(Z∞) =
1

2
(q − p− 1)(q − 1).

If L is the function field of the curve f , then by 14.7,

gL =

(
q − 1

2

)
− δ(Z) − δ(Z∞)

=
1

2
[(q − 1)(q − 2) − (p− 1)(q − 1) − (q − p− 1)(q − 1)] = 0

in accordance with the fact that f is rational.

In what follows, we call the rings Γ := K[[X,Y ]]/(f), where f ∈ K[[X,Y ]]

is not a unit, (plane) algebroid curves. For example, the rings ÔF,P of (2) are
algebroid curves, and of course also the branches of a curve singularity are
algebroid curves. For an algebroid curve, its branches are defined in exactly
the same way as for a curve singularity. Lemma 16.1 also holds for algebroid
curves: These are complete Noetherian local rings of Krull dimension 1. Using
16.1 one also sees that K[[X,Y ]] has, except for the maximal ideal and the
zero ideal, only prime ideals of the form (f), where f is an irreducible power
series.

If Γi = K[[X,Y ]]/(fi) (i = 1, 2) are two algebroid curves with relatively
prime power series f1, f2, then A := K[[X,Y ]]/(f1, f2) is a finite-dimensional
K-algebra, for by the relative primeness of f1 and f2, the only prime ideal of
K[[X,Y ]] that contains (f1, f2) is (X,Y ). The elements of the maximal ideal
of A are nilpotent (C.12), and it follows that dimK A <∞.

Definition 16.11. μ(Γ1, Γ2) := dimK K[[X,Y ]]/(f1, f2) is called the inter-
section multiplicity of the algebroid curves Γ1 and Γ2.

This definition in particular defines the intersection multiplicity of two
branches. If f1, f2 ∈ K[X,Y ] and P = (0, 0), then μ(Γ1, Γ2) = μ(f1, f2) is the
intersection multiplicity of the curves f1, f2 at P , because

K[X,Y ](X,Y )/(f1, f2) ∼= K[[X,Y ]]/(f1, f2),

since the first ring is already complete as a finite-dimensional local K-algebra.
There are properties for intersection multiplicity of algebroid curves that are
similar to those for algebraic curves, except for Bézout’s theorem, which is of
a global nature. The proofs are analogous to those for algebraic curves, and
we do not include them here.

Rules 16.12.

(a) μ(Γ1, Γ2) = 1 if and only if Γ1 and Γ2 are regular branches with distinct
tangents.
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(b) Additivity: If Γ1 = K[[X,Y ]]/(ϕ1 · ϕ2) with nonunits ϕi ∈ K[[X,Y ]] and

Γ
(i)
1 = K[[X,Y ]]/(ϕi) (i = 1, 2), then for an arbitrary branch Γ2,

μ(Γ1, Γ2) = μ(Γ
(1)
1 , Γ2) + μ(Γ

(2)
1 , Γ2).

(c) Let Z1, . . . , Zr be the branches of Γ1, and Z ′
1, . . . , Z

′
s the branches of Γ2.

Then
μ(Γ1, Γ2) =

∑

i=1,...,r
j=1,...,s

μ(Zi, Z
′
j).

For an algebraic curve F , with branches Z1, . . . , Zr at a point P , the
intersection multiplicities μ(Zi, Zj) (i �= j) are interesting invariants of the
singularity P .

Example 16.13. Ordinary Singularities.
A point P of a curve F is called an ordinary singularity ifm := mP (F ) > 1

and if F also has m distinct tangents at P .

The last condition is equivalent (under the assumptions of (1)) to saying
that the leading form Lf decomposes into m nonassociate linear factors. By
16.6, then, f = f1 · · · fm with pairwise nonassociate power series fi of order
1 (i = 1, . . . ,m). At an ordinary singularity of multiplicity m the curve thus
has m different branches Zi = K[[X,Y ]]/(fi), which are all regular and for
which

μ(Zi, Zj) = 1 (if i �= j).

We mention that it is not especially difficult to transfer over the formulas
of residue calculus from Chapters 11 and 12, as long as they are of a local
nature, to algebroid curves.

For an irreducible curve F with function field L := R(F ) and with abstract
Riemann surface X, the canonical mapping π : X → V+(F ) was discussed in
6.12. We will now prove the remarkable fact that for every P ∈ V+(F ) the
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points of π−1(P ) are in one-to-one correspondence with the branches of F at
P .

Let R := OF,P and let S := OF,P be the integral closure of R in L. The
points of π−1(P ) are then the discrete valuation rings SPi

(i = 1, . . . , s), where
Max(S) = {P1, . . . ,Ps}. On the other hand, if p1, . . . , pt are the minimal
prime ideals of R̂, then Zi := R̂/pi are the branches of F at P . Therefore
by 16.9 the integral closure Z i of Z in Li := Q(Zi) is a complete discrete
valuation ring (i = 1, . . . , t).

Theorem 16.14. With the above notation, s = t, and by a suitable renum-
bering, pi is the kernel of the canonical homomorphism R̂→ ŜPi

, and so ŜPi

can be identified in a canonical way with Zi (i = 1, . . . , s).

Proof. We will first study the ring R̂⊗RS. Denote by m := mF,P the maximal

ideal of R and let Ŝ be the completion of S with respect to mS. We then have,
as in 15.12, a canonical isomorphism

Ŝ ∼= R̂⊗R S.

Here Ŝ is integral over the image of R̂ in Ŝ, and as in 15.13, there is a canonical
isomorphism

(7) Ŝ ∼= ŜP1 × · · · × ŜPs
.

Hence Q(Ŝ) is the direct product of the s fields Q(ŜPi
):

(8) Q(Ŝ) ∼= Q(ŜP1) × · · · ×Q(ŜPs
).

We also write R̂ = K[[X,Y ]]/(f), and if f = f1 · · · ft is the decomposi-
tion of f into irreducible factors fi, so pi = (fi)/(f) (i = 1, . . . , t), then we
immediately get from this representation that R̂ \ ⋃t

i=1 pi is the set of all

nonzerodivisors of R̂. The Chinese remainder theorem then gives a canonical
decomposition

(9) Q(R̂) = R̂p1/p1R̂p1 × · · · × R̂pt
/ptR̂pt

∼= Q(Z1) × · · · ×Q(Zt)

corresponding to the canonical injection

R̂ →֒ R̂/p1 × · · · × R̂/pt.

Since the canonical mappings R→ R̂/pi (i = 1, . . . , t) are injective, as we
have already remarked in connection with 16.4, the elements of N := R \ {0}
are nonzerodivisors on Z1×· · ·×Zt, and so all the more are not zerodivisors on
R̂. Similarly, from (7) we conclude that the elements of N are not zerodivisors
on Ŝ. By G.6 (d) there is a canonical isomorphism

ŜN
∼= R̂N ⊗RN

SN .
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Further, RN = Q(R) = Q(S) = SN , because S is finite over R. Therefore
there is a canonical isomorphism R̂N

∼= ŜN induced by R̂→ Ŝ. Even more we
have

Q(R̂) ∼= Q(Ŝ).

Comparing (8) and (9), we see that t = s and that there are induced

isomorphisms Q(Zi) ∼= Q(ŜPi
) (with a suitable numbering) coming from the

canonical homomorphisms R̂ → ŜPi
(i = 1, . . . , s). Since ŜPi

is integrally

closed in Q(ŜPi
) and is finite over Zi, we can identify ŜPi

with Zi.

As the theorem shows, this allows us to identify the abstract Riemann
surface X with the set of all branches at points of the curve F , and to identify
the divisor group Div(X) with the free abelian group on the set of all these
branches.

One understands Theorem 16.14 better if one knows the fact that every
plane affine algebraic curve can be obtained from a smooth curve C in a
higher-dimensional affine space by projection onto the plane. At a given point
of the plane curve there are as many branches at that point as there are points
in C that are preimages of that given point. For each of these, according to
how the projection of C behaves (transversal, tangential), various singularities
arise in the plane.

Theorem 16.14 is a ring-theoretic analog of these facts from higher-
dimensional geometry.

Exercises

1. Let CharK = 0, and suppose Z is an integral branch of multiplicity m.
Show that:
(a) Every unit in K[[T ]] has an nth root for each n ∈ N.
(b) Z has a parametric representation of the form (Tm, β), where β ∈

K[[T ]] is a power series of order > m.
(Set X = Tm, Y = β(T ) =

∑∞
i=0 biT

i. Then the Newton–Puiseux

series of Z is defined by Y =
∑∞

i=0 biX
i

m . This is the basis for the
definition of further numerical and geometric invariants of the branch
Z, see [BK], 8.3).

2. Determine the number of branches at the origin for the following curves
from Chapter 1: the cissoid of Diocles, the conchoid of Nichomedes, the
cardioid, and the four-leaf rose.
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3. What can you say about the nature of the real and complex singularities
of the algebraic curve represented by the olympic emblem

and of its projective closure?

Same question for the astroid (X2 + Y 2 − 1)3 + 27X2Y 2 = 0.





17

Conductor and Value Semigroup of a Curve

Singularity

In this chapter we will relate the invariants of singularities of curves already
introduced, such as “multiplicity,” “tangents,” “singularity degree,” “branches,”
and “intersection multiplicity between the branches,” to the conductor and value
semigroup. This will allow a more precise classification of curve singularities than
was possible up to now. Also, we will be led to other formulas for calculating the
genus of the function field of a curve.

For two rings R, S with R ⊂ S ⊂ Q(R) we call

(1) FS/R := {z ∈ Q(R) | z · S ⊂ R}

the conductor of S/R. It is clear that FS/R is an S-ideal that lies in R. Also,
FS/R is even the (uniquely determined) largest ideal of S that lies in R. Since
Q(R) = Q(S), we can consider FS/R also as the complementary module CS/R

of S/R with respect to the identity as the trace of Q(S)/Q(R).

Remarks 17.1.

(a) The conductor FS/R equals R precisely when S = R.
(b) If S is finitely generated as an R-module, then FS/R contains a nonzero-

divisor on R.

Proof. (a) is trivial. For (b), consider a system of generators {s1, . . . , sn} of
S as an R-module and write si = ri

r (ri, r ∈ R), where r is a nonzerodivisor.
Obviously, r ∈ FS/R.

Lemma 17.2. If S is finitely generated as an R-module and N ⊂ R is mul-
tiplicatively closed, then FSN /RN

is defined and

FSN /RN
= (FS/R)N .

Proof. It is easy to see that RN ⊂ SN ⊂ Q(RN ). Hence FSN /RN
is defined,

and it is clear that (FS/R)N ⊂ FSN /RN
.

If {s1, . . . , sn} generates S as an R-module, then SN =
∑n

i=1RN · si

1 . For
x
ν ∈ FSN /RN

(x ∈ R, ν ∈ N) we have

x

ν
· si

1
=
xsi
ν

∈ RN (i = 1, . . . , n).
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Write xsi

ν = ri

μ with ri ∈ R, μ ∈ N and choose an element ν ′ ∈ N with

ν′μxsi = ν′νri (i = 1, . . . , n). Then x
ν = ν′μx

ν′μν , and we have written x
ν with a

numerator from FS/R. Hence we also have FSN /RN
⊂ (FS/R)N .

In the following, again let F be an irreducible curve in P2(K) and let f be
its affine part. For P ∈ V+(F ), let OF,P denote the integral closure of OF,P in
L := R(F ). Furthermore, let S be the integral closure of A := K[f ] = K[x, y]
in L, and let X be the abstract Riemann surface of L/K. Also let the map
π : X → V+(F ) be defined as in 6.12.

Definition 17.3.

(a) FP := FOF,P /OF,P
is called the conductor of the singularity P .

(b) FS/A is called the conductor of the affine curve f .

By 17.1(a) we have FP = OF,P precisely when OF,P = OF,P , i.e., when
P ∈ Reg(F ). The conductor FP is therefore interesting only when P is a
singular point. By 17.1(b) the conductors FP and FS/A are nonzero ideals in
OF,P respectively A. If P ∈ V(f) and mP denotes the maximal ideal of A
corresponding to P , then by 17.2,

(2) FP = (FS/A)mP
.

By 13.11, the ring OF,P is a principal ideal ring; hence FP is a principal
OF,P -ideal. If P1, . . . ,Ps are the maximal ideals of OF,P , then we can write

(3) FP = Pc1
1 · · ·Pcs

s ,

where ci ∈ N are uniquely determined. If Pi ∈ X is the point corresponding
to Pi, then we set cPi

= ci (i = 1, . . . , s). Furthermore, set cP = 0 for
P ∈ Reg(F ).

Definition 17.4. The divisor FX/F :=
∑

P∈X cP · P is called the conductor
divisor of F , its degree c(F ) is called the conductor degree of F , and for
P ∈ Sing(F ) we call c(P ) :=

∑
π(R)=P cR the conductor degree of the point

P .

Using the notation of (3) we have

(4) c(P ) =
s∑

i=1

ci = dimK OF,P /FP

and therefore

(5) degFX/F =
∑

P∈Sing(F )

dimK OF,P /FP .



17 Conductor and Value Semigroup of a Curve Singularity 177

We define the conductor degree of the affine curve f by

(6) c(A) :=
∑

P∈Sing(f)

c(P ) = dimK S/FS/A.

The connection between conductor degree, singularity degree, and genus
of X will be derived from the following theorem, called Dedekind’s formula
for conductor and complementary module.

Dedekind’s Formula 17.5. Suppose we have rings R ⊂ S ⊂ T ⊂ Q(S) and
every nonzerodivisor of R is also a nonzerodivisor on S; i.e., the inclusion
R ⊂ S defines a ring homomorphism Q(R) → Q(S) = Q(T ). Suppose also
that Q(S) is a finitely generated free Q(R)-module and that there exists a
trace σ : Q(S) → Q(R). Denote the complementary modules with respect
to this trace by CT/R and CS/R. Suppose also that CS/R is generated as an
S-module by a unit of Q(S). Then

CT/R = FT/S · CS/R.

Proof. For z ∈ FT/S and u ∈ CS/R we have σ(zuT ) ⊂ R because zT ⊂ S.
Therefore FT/S · CS/R ⊂ CT/R.

Write CS/R = c · S for some unit c ∈ Q(S). Every v ∈ CT/R can then be
written in the form v = c · w for some w ∈ Q(S), and for t ∈ T we then have

σ(twcS) = σ(vtS) ⊂ R.

Hence twc ∈ CS/R = c · S. It follows that tw ∈ S and so w ∈ FT/S . Therefore
v ∈ FT/S · CS/R. Thus CT/R ⊂ FT/S · CS/R ⊂ CT/R, and hence we have
equality.

Corollary 17.6 (Product formula for conductors). Suppose we have
rings R ⊂ S ⊂ T ⊂ Q(R), and FS/R is generated as an S-module by a unit
of Q(R). Then

FT/R = FT/S · FS/R.

In order to apply the formula to a curve F , we can assume that the sin-
gularities of F lie at finite distance, that the coordinate ring A of the curve
f is finitely generated as a module over R := K[x], and that L is separable
over K(x). Because by 15.1 the A-module CA/R is generated by one element
�= 0, it follows from 17.5 that

(7) CS/R = FS/A · CA/R.

Let Xf , X∞ as well as R∞ := K[x−1](x−1) and S∞ have their earlier

meanings (see Chapter 13). For P ∈ Xf let P be the corresponding maximal
ideal of S and let κP ∈ Z be the number defined by SP · CS/R = P−κPSP.
Similarly, let (S∞)P(x−2CS∞/R∞

) = P−κP (S∞)P if P ∈ X∞. Then C :=



178 17 Conductor and Value Semigroup of a Curve Singularity

∑
P∈X κP ·P is a canonical divisor of X, as was shown in the proof of 15.3. If

we set SPCA/R = P−λP SP for P ∈ Xf and λP = κP for P ∈ X∞, then the
divisor C ′ :=

∑
P∈X λP ·P is linearly equivalent on X to a canonical divisor of

F . This follows from the preparatory remarks to 15.2. Now from (7) we have

Theorem 17.7. Let F be a curve of degree d.

(a) (Connection between the canonical classes of X and F )

C = C ′ −FX/F .

(b) gL = gF − 1
2 · c(F ) =

(
d−1
2

)
− 1

2 · c(F ).

Statement (a) is a direct consequence of (7). Passing to the degree of the
divisors, we get 2gL − 2 = 2gF − 2 − c(F ) by 15.2 and 15.3, and (b) follows.

Comparing with 14.7 and 14.8 we have the following.

Corollary 17.8. c(F ) = 2δ(F ), where δ(F ) denotes the singularity degree
of F .

The formula in 17.8 also holds locally, and the global formula follows of
course also from the local proof:

Theorem 17.9 (Gorenstein[Go]). For every P ∈ V+(F ) we have

c(P ) = 2δ(P ).

Proof. Consider a maximal chain of ideals (composition series)

(8) OF,P = I0 � I1 � · · · � Iδ = FP .

That is, we suppose that this chain cannot be properly refined by the insertion
of any further OF,P -ideal. We therefore have Ij/Ij+1

∼= K (j = 0, . . . , δ − 1)
and hence δ = dimK OF,P /FP . Dualizing, as in Appendix L, formula (9), we
get a chain of OF,P -modules

(8′) OF,P = O′
F,P = I ′0 ⊂ I ′1 ⊂ · · · ⊂ I ′δ = F ′

P .

In L.13 it was shown, under the assumptions there, that dualizing an ideal
twice returns us to the original ideal. This fact also holds locally if one localizes
such a ring A at a maximal ideal. The assumption that the complementary
module CA/R is generated by one element is in any case satisfied in our situa-
tion by 15.1 We can therefore apply L.13 here, and get I ′′j = Ij for j = 0, . . . , δ.
Hence (8′) cannot be refined.

Furthermore, FP = OF,P :L OF,P = O′
F,P and therefore F ′

P = O′′
F,P =

OF,P . From (8) it follows that δ = dimK OF,P /OF,P = δ(P ). Because FP ⊂
OF,P ⊂ OF,P , we have

c(P ) = dimK OF,P /FP = dimK OF,P/OF,P + dimK OF,P /FP = 2δ = 2δ(P ).
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Next we want to derive a formula for the conductor degree that will take
into consideration the branches of a curve singularity. To do that we pass to

the completion ÔF,P of OF,P . As in 16.4 we set R := OF,P and S := OF,P .
Let Z1, . . . , Zs be the branches of F at P corresponding to the maximal ideals
P1, . . . ,Ps of S. If Zi is the integral closure of Zi, then Zi

∼= K[[Ti]] is a power
series ring and

(9) R̂⊗R S ∼= ŜP1 × · · · × ŜPs
∼= Z1 × · · · × Zs

∼= K[[T1]] × · · · ×K[[Ts]]

is the integral closure of R̂ in Q(R̂), as Theorem 16.14 and its proof show. We
will denote by F̂P the conductor of R̂⊗R S over R̂.

Lemma 17.10 (Compatibility of Conductors with Completions).

F̂P = FP · ÔF,P .

Proof. Let S =
∑n

i=1Rsi, with si = ri

r (ri, r ∈ R; i = 1, . . . , n). Then

R̂ ⊗R S =
∑n

i=1 R̂ · (1 ⊗ si) and r ∈ FP . It is clear that FP ⊂ F̂P and hence

FP · ÔF,P ⊂ F̂P .
To prove the opposite inclusion observe that

FP = {u ∈ R | uri ∈ rR (i = 1, . . . , n)}

and similarly,
F̂P = {z ∈ R̂ | zri ∈ rR̂ (i = 1, . . . , n)}.

Since R is a 1-dimensional local ring, we have R̂/rR̂ ∼= R̂/rR ∼= R/rR, and it
follows that

F̂P = FP + rR̂.

Hence F̂P = FP · R̂, since r ∈ FP .

If FP = Pc1
1 · · ·Pcs

s as in (3), then 17.10 in connection with (9) yields the
formula

(10) F̂P = (T c1
1 , . . . , T

cs
s ) · (K[[T1]] × · · · ×K[[Ts]]).

We want to apply the product formula 17.6 to FP using the ring extensions

R̂ ⊂ Z1 × · · · × Zs ⊂ Z1 × · · · × Zs.

As abbreviations we set

R̃ := Z1 × · · · × Zs and T := Z1 × · · · × Zs = K[[T1]] × · · · ×K[[Ts]].

If the branches Zi are given as in Chapter 16 by Zi = K[[X,Y ]]/(fi) with
irreducible power series fi (i = 1, . . . , s), then let gi :=

∏
j �=i fj and denote by

g̃i the image of gi in Zi (i = 1, . . . , s). We first determine FR̃/R̂:
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Lemma 17.11. The conductor FR̃/R̂ equals (g̃1, . . . , g̃s)R̃. In particular, FR̃/R̂

is a principal ideal of R̃ generated by a nonzerodivisor.

Proof. Since g̃i �= 0 for i = 1, . . . , s, the element (g̃1, . . . , g̃s) is a nonzerodivisor
of R̃. Also,

(0, . . . , g̃i, . . . , 0) · R̃ = (0, . . . , g̃iZi, . . . , 0) ⊂ R̂,
for if h̃ ∈ Zi has preimage h in K[[X,Y ]], then (0, . . . , g̃ih̃, . . . , 0) is the image
of gih under the canonical homomorphismK[[X,Y ]] → Z1×· · ·×Zs, since gi
is divisible by all fj with j �= i. Hence (0, . . . , g̃i, . . . , 0) ∈ FR̃/R̂ and therefore

also (g̃1, . . . , g̃s) ∈ FR̃/R̂.

Conversely, suppose (z1, . . . , zs) ∈ FR̃/R̂. Then in particular,

(0, . . . , zi, . . . , 0) ∈ R̂.
That is, there is an h ∈ K[[X,Y ]] that is divisible by all fj with j �= i and
that has image zi in Zi. It follows that zi = g̃i · z′i (z′i ∈ Zi) and therefore
(z1, . . . , zs) ∈ (g̃1, . . . , g̃s) · R̃.

Now set di := dimK Zi/(g̃i). Because of the additivity of intersection mul-
tiplicities of branches (16.12b) we have

di =
∑

j �=i

μ(Zj , Zi) (i = 1, . . . , s).

Further, let c′i be the conductor degree of the branch Zi, i.e.,

c′i := dimK Zi/FZi/Zi
(i = 1, . . . , s).

With this data we can now obtain the desired formula for the conductor
degree.

Theorem 17.12.

F̂P = (T
c′1+d1

1 , . . . , T
c′s+ds
s ) · (K[[T1]] × · · · ×K[[Ts]]).

In particular,

(11) c(P ) = 2 ·
∑

1≤i<j≤s

μ(Zi, Zj) +
s∑

i=1

c′i,

Proof. It is clear that

FT/R̃ = FZ1×···×Zs/Z1×···×Zs
= FZ1/Z1×···×Zs/Zs

.

Because of 17.11 the product formula for the conductor can be applied using
the ring extension R̂ ⊂ R̃ ⊂ T :

F̂P = FT/R̂ = FT/R̃ · FR̃/R̂ = (T
c′1
1 , . . . , T

c′s
s )(g̃1, . . . , g̃s) · T.

Since g̃i has order di in K[[Ti]], we get the first statement of the theorem. The
second follows from 17.10.



17 Conductor and Value Semigroup of a Curve Singularity 181

By this theorem, the calculation of the conductor degree of a singularity
is reduced to the calculation of the conductor degrees of its branches and of
the intersection multiplicities between its branches.

Example 17.13. Conductor degree of ordinary singularities.
If P is an ordinary singularity of F with multiplicity m, then by (11) and

by what was said in 16.13, we have

c(P ) = m(m− 1), so δ(P ) =
(
m
2

)
.

For a curve of degree d with only ordinary singularities Pi (i = 1, . . . , s), we
have the formula

(12) gL =

(
d− 1

2

)
−

s∑

i=1

(
mPi

(F )

2

)
.

One reason this formula is especially significant is because, according to a
theorem of Max Noether, every plane algebraic curve can be transformed
into a birationally equivalent curve with only ordinary singularities using a
sequence of quadratic transformations. This is one of the main theorems in the
theory of plane algebraic curves, for which the reader is referred to Fulton [Fu]
(Chapter 7 and the Appendix). A more precise theorem of Clebsch says that
every algebraic function field has a plane algebraic curve with only normal
crossings as a model. However, in the proof of this theorem, one leaves plane
geometry.

If a curve F of degree d has only s normal crossings as singularities (i.e.,
mPi

(F ) = 2 for Pi ∈ Sing(F ) and F has two distinct tangents at each Pi),
then (12) becomes the simple formula

(13) gL =

(
d− 1

2

)
− s.

The conductor divisor FX/F allows the following generalization of the fun-
damental theorem of Max Noether (5.14 and 7.19):

Theorem 17.14. Let G and H be two curves in P2(K) of which F is not a
component and that have divisors (G) and (H) on X. If

(H) ≥ (G) + FX/F ,

then F ∩G is a subscheme of H. In particular, H ∈ (F,G).

Proof. For P ∈ V+(F ) ∩ V+(G), let (gP ) and (hP ) be the principal ideals in
OF,P corresponding to (G) and (H). We have to show that (hP ) ⊂ (gP ) for
all these P .

If P ∈ Reg(F ), then by assumption νP (hP ) ≥ νP (gP ), and the result
follows. So let P ∈ Sing(P ) and let P1, . . . , Pr be the points of X lying over
P . Then for i = 1, . . . , r,
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νPi
(hP ) ≥ νPi

(gP ) + νPi
(FX/F ).

In the principal ideal ring OF,P we therefore have hP ∈ gP · OF,P · FP ⊂
gP · OF,P , which was to be shown.

Example 17.15. Suppose F has only ordinary singularities P1, . . . , Ps. Then

FX/F =
s∑

i=1

∑

π(Q)=Pi

(mPi
(F ) − 1) ·Q.

In this case the condition of Theorem 17.14 is

νP (hP ) ≥ νP (gP ) for P ∈ Reg(F ),
νQ(hP ) ≥ νQ(gP ) +mP (F ) − 1 for P ∈ Sing(F ), Q ∈ π−1(P ).

We will say now a little more about the calculation of the conductor degree
of branches.

Under the assumptions of 17.12 consider the embedding

ÔF,P →֒ K[[T1]] × · · · ×K[[Ts]] =: T.

An element z ∈ ÔF,P is a nonzerodivisor of ÔF,P if and only if its image
(z1, . . . , zs) in T has all its components zi �= 0. We call the s-tuple

ν(z) := (ν1(z1), . . . , νs(zs)) ∈ Ns

the value of z. Here νi is the order function on K[[Ti]].

Definition 17.16. (a) HP := {ν(z) | z is a nonzerodivisor of ÔF,P } is called
the value semigroup of F at P .

(b) For an integral branch Z = K[[X,Y ]]/(f), we call

HZ := {ν(z) | z ∈ Z \ {0}}

the value semigroup of Z. Here ν denotes the order function on the integral
closure Z of Z.

It is clear that HP is a subsemigroup of (Ns,+), and HZ is a subsemigroup

of (N,+). The units of ÔF,P are precisely the elements with value (0, . . . , 0).

The zerodivisors of ÔF,P are not assigned any value. Since F̂P is a T -ideal of
the form

F̂P = (T c1
1 , . . . , T

cs
s ) · T,

obviously
(c1, . . . , cs) + Ns ⊂ HP .

In particular, the semigroup HZ has only finitely many gaps; i.e., HZ is a
numerical semigroup.
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If z ∈ ÔF,P is a zerodivisor, say z = (0, z2, . . . , zs) with zi �= 0 for i =
2, . . . , s and ν(zi) = νi (i = 2, . . . , s), then (ν, ν2, . . . , νs) ∈ HP for all ν ≥ c1.
Furthermore, (μ1, . . . , μs) ∈ HP if μi =

∑
j �=i μ(Zi, Zj) (i = 1, . . . , s). Value

semigroups of (plane) curve singularities and numerical semigroups have been
thoroughly studied by many authors. Here are some names: Barucci, V, Dobbs,
D.E., Fontana, M. [BDF]; Barucci, V., D’Anna, M., Fröberg, R. [BDFr1],
[BDFr2]; Bertin, J. and Carbonne, P. [BC]; Campillo, A., Delgado, F., Kiyek,
K. [CDK]; Delgado, F. [De]; Garcia, A. [Ga]; Waldi, R. [Wa2]. The lists of
references to these papers and the MathSciNet will help the reader to gain
more information about this area of research.

We close this chapter with observations about plane branches Z. If FZ/Z =

T c ·K[[T ]], then c is the conductor degree of Z. On the other hand, c− 1 is
the largest gap of HZ , for if there were an element z ∈ Z with ν(z) = c − 1,
then all y ∈ Z with ν(y) ≥ c− 1 would be contained in Z: If ν(y) ≥ c, then
y ∈ FZ/Z ⊂ Z, and if ν(y) = c− 1, then y − κz ∈ FZ/Z for some κ ∈ K, and

it follows that y ∈ Z. We would then have T c−1 ∈ FZ/Z , a contradiction.
For a numerical semigroupH we call the smallest number c with c+N ⊂ H

the conductor of H . This is in agreement with the above observation. The cal-
culation of the conductor degree of a branch reduces to the calculation of the
conductor of its semigroup. The largest gap c−1 of a numerical semigroup H
is called the Frobenius number of H . Its computation (the Frobenius problem)
has also given rise to many papers.

Lemma 17.17. If ℓ1, . . . , ℓδ are the gaps of a numerical semigroup H with
conductor c, then c ≤ 2δ.

Proof. If h ∈ H with h < c, then c−1−h �∈ H , for (c−1−h)+h = c−1 �∈ H .
Hence there are at least as many gaps as elements h ≤ c, h ∈ H .

Definition 17.18. A numerical semigroup H with conductor c is called sym-
metric if for z ∈ Z, c− 1 − z ∈ H if and only if z �∈ H .

3 119 108650

Theorem 17.19 (Apéry). The value semigroup HZ of an integral branch Z
is symmetric.

Proof. If c is the conductor of HZ , then FZ/Z = T c ·K[[T ]]. For each h ∈ HZ

with h < c, there exists an element zh ∈ Z with ν(zh) = h. It is then clear
that

Z =
⊕

h∈HZ , h<z

Kzh ⊕FZ/Z ,

and therefore δ(Z) = dimK Z/Z is equal to the number δ of gaps of HZ . As
in 17.9 one shows that c(Z) = 2δ(Z). Then c = 2δ and HZ is symmetric.



184 17 Conductor and Value Semigroup of a Curve Singularity

Characterizations of numerical semigroups that occur as value semigroups
of branches of irreducible plane algebroid curves are given in Angermüller [An]
and Garcia–Stöhr [GSt]. These results are tied to earlier publications of Apéry
[Ap], Azevedo [Az], Abhyankar–Moh [AM], and Moh [Mo]. See also [BDFr1].

We conclude with an example that shows how to determine the value semi-
group and conductor degree of a branch given by a parametric representation.

Example 17.20. Let Z = C[[α, β]] ⊂ C[[T ]] with

α = T 4, β = T 6 + T 7.

Since 4 · N + 6 · N ⊂ HZ , all even integers ≥ 4 belong to HZ . Furthermore,

β2 − α3 = 2T 13 + T 14,

and so 13 ∈ HZ . It is easy to see that 16 is the conductor of HZ and that HZ

has the following appearance:

10860 12 13 14 15 164

HZ = 〈4, 6, 13〉.

Exercises

1. Sketch the value semigroup of a normal crossing.
2. Determine the number of branches at the origin of the following curves in

A2(C) and sketch their corresponding value semigroups:

Y 2 −X4 +X5,

Y 4 −X6 +X8,

3. (A generalization of Chapter 15, Exercise 1) Let F be an irreducible curve
of degree p > 3 and let FX/F be its conductor divisor. A curve G that is
not a component of F is called adjoint to F if (G) ≥ FX/F . Show that
(a) If G is adjoint to F and degG = p− 3, then C := (G) − FX/F is an

effective canonical divisor of X.
(b) If F has only ordinary singularities and X is not rational, then F has

an adjoint curve of degree p− 3.
(c) If F has only ordinary singularities, then every effective canonical

divisor is of the form (G) − FX/F for some adjoint curve G of degree
p− 3. (Observe that every nonrational abstract Riemann surface has
an effective canonical divisor.)

4. Let p and q be two relatively prime natural numbers and let H := 〈p, q〉 be
the numerical semigroup generated by p and q. Determine the Frobenius
number of H . Show that
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(a) The branch given by Xp − Y q has the semigroup H .
(b) H is symmetric (this follows from (a), but one can also easily give a

direct proof).





Part II

Algebraic Foundations



Algebraic Foundations

The following list of keywords should give an indication of the parts of algebra
that are assumed to be well known, so when these words appear in statements
in the text, it should be clear what is meant.

From linear algebra:

• The theory of vector spaces, matrices, and linear transformations.
• The theory of determinants.
• The concepts of module, free module, and torsion-free module.
• Submodules and residue class modules.
• Linear maps between modules, and the dual module.
• The fundamental theorem for modules over a principal ideal domain (PID).
• The Hilbert basis theorem for modules.

From ring theory:

• Basic concepts of units, zerodivisors, nilpotent elements, integral domains.
• Ring homomorphisms and the homomorphism theorems.
• Ideals and residue class rings.
• Prime ideals and maximal ideals.
• Polynomial rings and power series rings in several variables.
• Basic facts about unique factorization domains (UFDs).
• The concept of a Noetherian ring and the Hilbert basis theorem for poly-

nomial rings.

By an algebra S/R we mean a triple (R,S, ρ), where R and S are commu-
tative rings and ρ : R→ S is a ring homomorphism. The map ρ is called the
structure homomorphism for the algebra.

From field theory:

• The theory of finite (field) extensions.
• Algebraic and transcendental elements of a field extension.
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• Conjugate elements.
• Algebraically closed fields.
• The field of quotients of an integral domain.

What we still need besides this is collected together in the following Ap-
pendices A–L. To save time and space, many results are not stated in their
most general form, but only in the form that we need. Textbooks on com-
mutative algebra such as [B], [E], [Ku1], and [M] will of course give a more
complete presentation.



A

Graded Algebras and Modules

This is a short chapter on linear algebra. Let G/K be a given algebra, and let M be
a G-module. Then G and M can be thought of as K-modules, in a natural way.

Definition A.1. A grading of G/K is a family {Gk}k∈Z of K-submodules
Gk ⊂ G such that:

(a) G =
⊕

k∈Z

Gk.

(b) GkGl ⊂ Gk+l for all k, l ∈ Z.

G is called a graded K-algebra if G is furnished with a grading {Gk}k∈Z. The
elements of Gk are called homogeneous of degree k. If g ∈ G is written in the
form g =

∑
k∈Z

gk, with gk ∈ Gk, then we call gk the homogeneous component
of g of degree k.

Example A.2. Let G = K[X1, . . . , Xm] be the polynomial algebra in the
variables X1, . . . , Xm over a ring K, and let Gk, for k ∈ Z, be the set of all
homogeneous polynomials of degree k:

∑

ν1+···+νm=k

aν1...νm
Xν1

1 · · ·Xνm
m (aν1...νm

∈ K)

Here Gk = {0} for k < 0. It is clear that {Gk}k∈Z is a grading of G/K.
A homogeneous polynomial F ∈ G of degree k has the following property:

(1) F (λX1, . . . , λXm) = λkF (X1, . . . , Xm) for all λ ∈ K.

Conversely, if K is an infinite field and F ∈ G is a polynomial with the
property (1), then F is homogeneous of degree k. If F =

∑
i∈N
Fi is the

decomposition of F into homogeneous components, then it follows from (1)
applied to F and to Fi that

F (λX1, . . . , λXm) = λkF (X1, . . . , Xm) = λk
∑

i∈N

Fi(X1, . . . , Xm)

and
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F (λX1, . . . , λXm) =
∑

i∈N

Fi(λX1, . . . , λXm) =
∑

i∈N

λiFi(X1, . . . , Xm).

Since λ takes on infinitely many values, it follows by comparing coefficients
that F = Fk.

Another property of a homogeneous polynomial of degree k is given by
Euler’s formula:

(2) kF =

m∑

i=1

Xi
∂F

∂Xi
.

If Q ⊂ K, then it is not difficult to show that the homogeneous polynomials
of degree k are characterized by this formula.

Now let G =
⊕

k∈Z
Gk be an arbitrary graded K-algebra. By A.1(b), G0

is a subring of G and the Gk are G0-modules. Thus 1 ∈ G0, for if 1 =
∑

k∈Z
lk

is a decomposition of the identity into homogeneous components (lk ∈ Gk),
then for every homogeneous g ∈ G, we have g = g · 1 =

∑
k∈Z

g · lk, and then
by comparison we have g = g · l0. Since this holds for arbitrary g ∈ G, we have
1 = l0.

Lemma A.3. If G is an integral domain, then any divisor of a homogeneous
element of G is again homogeneous.

Proof. Let g ∈ G be homogeneous. Suppose g = ab, where a, b ∈ G. Write

a = ap +ap+1 + · · ·+aq (ai homogeneous of degree i, p ≤ q, ap �= 0, aq �= 0)

and

b = bm+bm+1+· · ·+bn (bj homogeneous of degree j, m ≤ n, bm �= 0, bn �= 0).

Then we have
g = apbm + · · · + aqbn.

Therefore, apbm �= 0 and aqbn �= 0, since G is an integral domain. Also,
apbm is the homogeneous component of g of degree p + m, and aqbn is the
homogeneous component of g of degree q + n. Since g is homogeneous, we
must have p = q and m = n. Therefore a = ap and b = bm.

The lemma can be applied in the special case of a polynomial algebra
K[X1, . . . , Xm] over an arbitrary integral domain K. If K is a unique factor-
ization domain, then the irreducible factors of a homogeneous polynomial are
themselves homogeneous polynomials in K[X1, . . . , Xm]. In this regard, we
shall mention the graded version of the fundamental theorem of algebra:

Theorem A.4. Let K be an algebraically closed field and F ∈ K[X,Y ] a
homogeneous polynomial of degree d. Then F decomposes into linear factors:

F =

d∏

i=1

(aiX − biY ) (ai, bi) ∈ K2 (i = 1, . . . , d).
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Proof. Let F =
∑d

j=0 cjX
jY d−j (cj ∈ K). Because K is algebraically closed,

the polynomial f :=
∑d

j=0 cjX
j decomposes into linear factors

f =

d∏

i=1

(aiX − bi).

Then F (X,Y ) = Y df(X
Y ) =

∏d
i=1(aiX − biY ).

Now let G =
⊕

k∈Z
Gk be a graded K-algebra. Next we define the notion

of a graded G-module.

Definition A.5. A grading on M is a family {Mk}k∈Z of K-submodules
Mk ⊂M such that

(a) M =
⊕

k∈Z
Mk.

(b) GkMl ⊂Mk+l for all k, l ∈ Z.

If M is furnished with a grading, we call M a graded module over the graded
ring G.

The concepts “homogeneous element” and “homogeneous component,” in-
troduced above for graded algebras, carry over to graded modules. By A.5(b),
the Mk are G0-modules.

If M = ⊕Mk is a graded module over a graded ring G and if M is finitely
generated, then M has a finite set of generators consisting of homogeneous
elements: one simply takes all homogeneous components of elements of a finite
set of generators of M .

Now let U ⊂M be a submodule.

Definition A.6. A submodule U of M is called a graded (or homogeneous)
submodule of M if whenever u ∈ U and u =

∑
k∈Z

uk is a decomposition of u
into homogeneous components uk ∈Mk (k ∈ Z), then uk ∈ U for all k ∈ Z.

In particular, this definition defines a homogeneous ideal in a graded ring,
e.g., in a polynomial ring. A homogeneous submodule U ⊂M is itself a graded
module over G:

U =
⊕

k∈Z

Uk with Uk := U ∩Mk (k ∈ Z).

Lemma A.7. For a submodule U ⊂M , the following are equivalent:

(a) U is a homogeneous submodule of M .
(b) U is generated by homogeneous elements of M .
(c) The family {(Mk + U)/U}k∈Z is a grading of M/U .
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Proof. (a) ⇒ (b) The homogeneous elements of U trivially form a generating
system of U .

(b) ⇒ (a) Let {xλ} be a generating system of U consisting of homogeneous
elements of M , and let deg xλ =: dλ. For u ∈ U , write u =

∑
λ gλxλ with

gλ ∈ G and decompose each gλ into homogeneous components: gλ =
∑

i gλi

with gλi
∈ Gi. Then

u =
∑

k

(∑

λ

∑

i+dλ=k

gλi
xλ

)

and uk :=
∑

λ

∑
i+dλ=k gλi

xλ is homogeneous of degree k. Since uk ∈ U for
all k ∈ Z, this proves (a).

(a) ⇒ (c) It is clear that M/U =
∑

k∈Z
(Mk + U)/U , so we need to show

only that the sum is direct. For mk ∈ Mk, denote by mk the residue class in
M/U . If

∑
k∈Z

mk = 0 for elements mk ∈ Mk (k ∈ Z), then
∑

k∈Z
mk ∈ U .

Since U is a homogeneous submodule ofM , it follows thatmk ∈ U andmk = 0
for all k ∈ Z.

(c) ⇒ (a) Each element u ∈ U can be written in the form u =
∑

k∈Z
uk

with uk ∈Mk (k ∈ Z). Then in M/U ,

0 = u =
∑

k∈Z

uk,

and therefore uk = 0 for all k ∈ Z; hence uk ∈ U .

If U ⊂ M is a homogeneous submodule, we usually tacitly assume that
M/U has the grading given by A.7(c). The canonical epimorphismM →M/U
is “homogeneous of degree 0”; i.e., homogeneous elements of M are mapped
to homogeneous elements of the same degree. If I ⊂ G is a homogeneous ideal,
then G/I is also a graded K-algebra with the grading {Gk + I/I}k∈Z.

The submodule

IM :=

{∑

α

xαmα | xα ∈ I,mα ∈M
}

of M is generated by homogeneous elements and is therefore a graded sub-
module; thus M/IM is a graded G-module. As a special case we have the
residue class module M/gM , whenever g ∈ G is a homogeneous element.

A graded K-algebra G =
⊕

k∈Z
Gk is called positively graded if Gk = {0}

for k < 0. If M =
⊕

k∈Z
Mk is a graded G-module, we call the grading {Mk}

bounded below if there is a k0 ∈ Z such that Mk = {0} for k < k0.
The next lemma will be used quite often.
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Nakayama’s Lemma for Graded Modules A.8. Let G be a graded K-
algebra, I ⊂ G an ideal generated by homogeneous elements of positive degree,
M a graded G-module, and U ⊂ M a graded submodule. If the grading of
M/U is bounded below and if

M = U + IM,

then M = U .

Proof. N := M/U is a graded G-module with a bounded-below grading, and
we have N = IN . Suppose N �= {0}. Let n ∈ N \ {0} be a homogeneous
element of smallest degree. We can write this element in the form

n =
∑

xαnα,

where xα ∈ I are homogeneous elements of positive degree and nα ∈ N \ {0}.
However, we must then have deg(nα) < deg(n), which is a contradiction.
Therefore N = {0} and M = U .

Now let G be a positively graded algebra and suppose

G = G0[x1, . . . , xm]

for some homogeneous elements xi of degree αi ∈ N+ (i = 1, . . . ,m). This sit-
uation occurs with polynomial algebras (A.2) and their residue class algebras.

Each Gk (k ∈ N) is generated as a G0-module by elements xν1
1 · · ·xνm

m with∑m
i=1 νiαi = k. If, furthermore, M is a finitely generated graded G-module,

M = Gm1 + · · · +Gmt,

where mi are homogeneous elements of degree di (i = 1, . . . , t), then for all
k ∈ Z, Mk is generated as a G0-module by the (finitely many) elements

xν1
1 · · ·xνm

m mi with di +

m∑

j=1

νjαj = k.

Finally, if G0 = K is a field, then the Mk are finite-dimensional K-vector
spaces. The dimensions of these vector spaces play a role in many questions
in algebra, algebraic geometry, and combinatorics.

Definition A.9. Under the assumptions above, the mapping χM : Z → N
defined by

χM (k) := dimK Mk (k ∈ Z)

is called the Hilbert function of the graded G-module M .
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Example A.10 (The Hilbert function of a polynomial algebra). Let
K be a field and G = K[X1, . . . , Xm] a polynomial algebra over K in m
variables X1, . . . , Xm of degree 1. Then χG(k) = 0 for k < 0 and

χG(k) =

(
m+ k − 1

m− 1

)
=

(
m+ k − 1

k

)
for k ≥ 0.

This is the formula for the number of monomials Xν1
1 · · ·Xνm

m of degree k.

Lemma A.11. Under the assumptions of A.9, let g ∈ G be a homogeneous
element of degree d. Suppose that the map μg : M → M (m �→ gm) is
injective. Then

χM/gM (k) = χM (k) − χM (k − d) (k ∈ Z).

Proof. We have μg(Mk−d) ⊂Mk (by A.5(b)), and therefore we have for each
k ∈ Z an exact sequence of K-vector spaces

0 →Mk−d
μg−→Mk → (M/gM)k → 0.

The formula above follows immediately.

Examples A.12. Let K be a field.

(a) For a homogeneous polynomial F ∈ K[X1, . . . , Xm] of degree d > 0, let
G := K[X1, . . . , Xm]/(F ). Then

χG(k) =

⎧
⎨
⎩

(
m+k−1

m−1

)
for 0 ≤ k < d,

(
m+k−1

m−1

)
−
(
m+k−d−1

m−1

)
for d ≤ k.

(b) Let F,G ∈ K[X,Y ] be homogeneous polynomials with degF = p > 0,
degG = q > 0, and let A := K[X,Y ]/(F,G). If F and G are relatively
prime and if p ≤ q, then the Hilbert function χA of A is

χA(k) =

⎧
⎪⎪⎨
⎪⎪⎩

k + 1 for 0 ≤ k < p,
p for p ≤ k < q,
p+ q − k − 1 for q ≤ k < p+ q,
0 for k ≥ p+ q.

Figure A.1 is a sketch of the “graph” of this function. The proof follows
by two applications of Lemma A.11. For A0 := K[X,Y ] we easily see that

χA0(k) = k + 1 (k ∈ N),

and for A1 := K[X,Y ]/(F ), by (a) we have

χA1(k) =

{
k + 1 for 0 ≤ k ≤ p− 1,
p for p ≤ k.
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p

p−1 q−1 p+q−10

1

k

Fig. A.1. The graph of the Hilbert function χA of A = K[X, Y ]/(F, G).

Since F and G are relatively prime, the map consisting of multiplication
by G on A1 is a nonzerodivisor on A1. Therefore we can use A.11 and get
the formula above. From this we find in particular that

(3) dimK A =

p+q−2∑

k=0

χA(k) = pq,

which one can see easily for example from figure A.1.

Exercises

1. Let K be a field and G =
⊕

k≥0Gk a positively graded K-algebra. Let
G0 = K and G = K[x1, . . . , xn], where the elements xi are homogeneous
of degree di ∈ N+ (i = 1, . . . , n). The formal power series

HG(t) =

∞∑

k=0

χG(k)tk ∈ Z[[t]]

is called the Hilbert series of G. Show that if g ∈ G is homogeneous of
degree d and is a nonzerodivisor on G, then

HG/gG(t) = (1 − td)HG(t).

2. The polynomial algebra P = K[X1, . . . , Xn] over a field K may be given
the grading for which degXi = di ∈ N+ (i = 1, . . . , n).
(a) Prove that

(1 − td1) · · · (1 − tdn)HP (t) = 1.

(b) Which power series do you get when d1 = · · · = dn = 1?
3. Let I be the kernel of the K-epimorphism α : P → G, where α(Xi) =
xi (i = 1, . . . , n) (G and P as in Exercises 1 and 2). Show that I is a
homogeneous ideal of P .
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4. Show that:
(a) With the hypotheses of Exercise 2 let F ∈ P be homogeneous of degree

k. Then kF =
∑n

i=1 diXi
∂F
∂Xi

.
(b) If this formula holds for an F ∈ P and if K is a field of characteristic

0, then F is homogeneous of degree k.
5. Let G =

⊕
k∈Z

Gk be a graded ring and let I ⊂ G be a homogeneous
ideal. For homogeneous elements a, b �∈ I, assume that we always have
ab �∈ I. Show that I is a prime ideal.

6. For G as in Exercise 5, let P ∈ Spec(G) and let P∗ be the ideal generated
by all the homogeneous elements of P. Show that P∗ ∈ Spec(G). Con-
clude that all the minimal prime ideals of G are homogeneous and that
for each homogeneous ideal I ⊂ G the minimal prime divisors of I are
homogeneous.



B

Filtered Algebras

We will not attempt here to explain what filtered algebras are good for: that will be
shown with the applications. We will just say that this appendix is fundamental for
the entire text, and that our friends in computer algebra work with similar methods
in order to do effective calculations in polynomial rings or to give explicit solutions
to systems of algebraic equations (see [KR] for an excellent introduction). For this,
however, it is necessary to replace the Z-grading and Z-filtration by a G-grading
and G-filtration, where G is an ordered abelian group. There are no fundamental
difficulties in transferring over the results of this section into the more general case.

Let S/R be an algebra.

Definition B.1. An (ascending) filtration of S/R is a family F = {Fi}i∈Z of
R-submodules Fi ⊂ S (i ∈ Z) such that

(a) Fi ⊂ Fi+1 for all i ∈ Z,
(b) Fi · Fj ⊂ Fi+j for all i, j ∈ Z,
(c) 1 ∈ F0,
(d)
⋃

i∈Z
Fi = S.

An algebra S/R with a filtration is called a filtered algebra. We write (S/R,F)
for such an algebra. If

⋂
i∈Z

Fi = {0}, we call F separated.

If (S/R,F) is a filtered algebra, it follows from B.1(b) and B.1(c) that F0

is a subring of S and each Fi is an F0-module. If F is separated, one can
define the order of a nonzero element f ∈ S with respect to F as follows:

ordF f := Min{i ∈ Z | f ∈ Fi}.

Also, we set ordF 0 = −∞. The following formulas follow easily from B.1.

Rules B.2. Let f, g ∈ S.

(a) ordF (f + g) ≤ Max{ordF f, ordF g}. If ordF f �= ordF g, then we have
equality.

(b) ordF (f · g) ≤ ordF f + ordF g.

Examples B.3.

(a) Degree-filtration. If we consider a graded ring S =
⊕

i∈Z
Si as an algebra

over R := S0, and set
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Fi =
⊕

ρ≤i

Sρ (i ∈ Z),

then we get a separated filtration F = {Fi}i∈Z of S/R. It is called the
degree-filtration. The order of an element f ∈ S \ {0} is, in this case, the
largest degree of any nonzero homogeneous component of f . In particu-
lar, each polynomial algebra S = R[{Xλ}λ∈Λ] in any family {Xλ}λ∈Λ of
indeterminates has a degree filtration.

(b) I-adic filtration. Let S/R be an algebra and I ⊂ S an ideal. For k ∈ N+

let F−k := Ik be the kth power of I, i.e., the ideal of S generated by all
products a1 · · ·ak, where ai ∈ I (i = 1, . . . , k). For k ∈ N, let Fk := S.
Then Fk is an R-module for all k ∈ Z, and

· · · ⊂ Ik ⊂ Ik−1 ⊂ · · · ⊂ I1 = I ⊂ I0 = S = S = · · · .

F = {Fi}i∈Z is a filtration of S/R; it is called the I-adic filtration. The
special case of I = S is called the trivial filtration of S/R: then Fi = S
for all i ∈ Z.

If S is a local ring with maximal ideal m, one often uses the m-adic
filtration of S (as a Z-algebra).

In general, I-adic filtrations are not separated. However, the Krull
intersection theorem (E.7) gives conditions under which they are sepa-
rated. A simple but very important example for us is the following: Let
S = k[X1, . . . , Xn] be a polynomial algebra and let I = (X1, . . . , Xn). In
this case, Ik is the ideal generated by all monomials Xα1

1 · · ·Xαn
n with

α1 + · · · + αn = k, and the I-adic filtration is separated. The order of
a polynomial F �= 0 is the negative of the smallest degree of a nonzero
homogeneous component of F .

Now let (S/R,F) be an arbitrary filtered algebra. In the ring S[T, T−1] =⊕
i∈Z
ST i of “Laurent polynomials” in the indeterminate T over S one can

consider the subring

RFS :=
⊕

i∈Z

FiT
i.

By the axioms in B.1 this is in fact a subring of S[T, T−1], and a graded
algebra:

RF S =
⊕

i∈Z

Ri
F S with Ri

F S := FiT
i.

Since 1 ∈ F0 ⊂ F1, we have T ∈ RF S, and RF S can even be considered as
an R[T ]-algebra. RF S is called the Rees algebra of (S/R,F).

The associated graded algebra grF S of (S/R,F) will be constructed as
follows: For i ∈ Z, let gri

F S := Fi/Fi−1 and let

grF S :=
⊕

i∈Z

gri
F S
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be the direct sum of these R-modules. We define a multiplication on grF S as
follows: for a+ Fi−1 ∈ gri

F S, b+ Fj−1 ∈ grj
F S, set

(a+ Fi−1) · (b+ Fj−1) := a · b+ Fi+j−1.

The result is independent of the choice of representatives a, b for each residue
class. We have defined the product of homogeneous elements of grF S, and we
can extend this product to arbitrary elements by the distributive law. Then
grF S is a graded R-algebra.

Now let F be separated. For f ∈ S \ {0}, we call

f∗ := f · T ordF f ∈ RF S

the homogenization of f , and

LFf := f + Ford f−1 ∈ grF S

the leading form of f . For f = 0 we set f ∗ = 0 and LFf = 0.

Examples B.4.

(a) Degree filtration. In the situation of example B.3(a),

gri
F S = Fi/Fi−1 =

⊕

ρ≤i

Sρ/
⊕

ρ≤i−1

Sρ
∼= Si (i ∈ Z),

and we get a canonical isomorphism of graded R-algebras

grF S
∼= S.

Under this isomorphism we identify the leading form LFf = f +Ford f−1

of an f ∈ S \{0} with the homogeneous component of f of largest degree,
which we often call the “degree form” of f .
If f = fm + fm+1 + · · · + fd is the decomposition of f into homogeneous
components fi ∈ Si (m ≤ d, fm �= 0, fd �= 0), then the homogenization f ∗

of f in RF S has the form

(1) f∗ = fT d = (fmT
m)T d−m + · · · + (fd−1T

d−1)T + (fdT
d).

We now consider the special case in which S = R[X1, . . . , Xn] is a poly-
nomial algebra. Then Fi = 0 for i < 0, F0 = R, and

RF S = R⊕F1T ⊕ F2T
2 ⊕ · · · ⊂ S[T ] = R[T,X1, . . . , Xn].

The homogenization X∗
i of Xi is the element X∗

i = XiT ∈ F1T (i =
1, . . . , n), and one easily sees that

RF S = R[T,X∗
1 , . . . , X

∗
n],
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where {T,X∗
1 , . . . , X

∗
n} are algebraically independent over R. In other

words, RF S is a polynomial algebra over R in T,X∗
1 , . . . , X

∗
n, and all

these variables have degree 1. For f ∈ R[X1, . . . , Xn], equation (1) be-
comes

f∗ = fT−m =fm(X∗
1 , . . . , X

∗
n)T d−m + · · ·

· · · + fd−1(X
∗
1 , . . . X

∗
n)T + fd(X

∗
1 , . . .X

∗
n);

(1′)

i.e., f∗ is what one usually understands by the homogenization of a poly-
nomial (only one must write Xi instead of X∗

i ):

f∗(T,X∗
1 , . . . , X

∗
n) = T deg(f)f

(
X∗

1

T
, . . . ,

X∗
n

T

)
.

(b) I-adic filtration. In the situation of B.3(b), grk
F S = {0} for k > 0, and

gr−k
F S = Ik/Ik+1 for k ∈ N.

Hence

grF S =

∞⊕

k=0

Ik/Ik+1.

For f ∈ Ik \ Ik+1,

ordF f = −k and LFf = f + Ik+1 ∈ Ik/Ik+1.

Since it is sometimes annoying to work with negative orders, we may
consider not only ascending, but also descending, filtrations, where noth-
ing essential is changed. In order to deal with degree filtrations and I-adic
filtrations simultaneously, we will stick with ascending filtrations.

In our present example, the Rees algebra has the form

RF S =
⊕

k∈N

IkT−k ⊕
∞⊕

k=1

S · T k.

One calls
⊕

k∈N
IkT−k the “nonextended” Rees algebra of the I-adic fil-

tration. It is more convenient for us to work with the “extended” Rees
algebra RF S.

In the special case of S = R[X1, . . . , Xn], a polynomial algebra, and
I = (X1, . . . , Xn), we have grF S

∼= R[X1, . . . , Xn] with degXi = −1
(i = 1, . . . , n). Furthermore,

RF S = R[T,X1, . . . , Xn][X1T
−1, . . . , XnT

−1] ⊂ S[T, T−1],

and therefore

RF S = R[T,X∗
1 , . . . , X

∗
n] with X∗

i := XiT
−1 (i = 1, . . . , n).
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Here, {T,X∗
1 , . . . , X

∗
n} is algebraically independent over R and degT = 1

as well as degX∗
i = −1 (i = 1, . . . , n). If one writes f ∈ S in the form

f = fm + · · · + fd with homogeneous polynomials fi of degree i, where
m ≤ d and fm �= 0, then ordF f = −m, and LFf is identified in grF S =
R[X1, . . . , Xn] with fm. Also

f∗ = fT−m = fm(X∗
1 , . . . , X

∗
n) + Tfm−1(X

∗
1 , . . . , X

∗
n) + · · ·

· · · + T d−mfd(X
∗
1 , . . . , X

∗
n).

This is a homogeneous polynomial of degree −m using the given grading
on R[T,X∗

1 , . . . , X
∗
n].

The following theorem gives simple but important relationships between
the algebras explained here.

Theorem B.5. Let (S/R,F) be a filtered algebra. Then T is not a zerodivisor
on RF S. There is a canonical isomorphism of graded R-algebras

RF S/T · RF S
∼=−→ grF S

(∑
aiT

i + T · RF S �→∑(ai + Fi−1)
)

and a canonical isomorphism of R-algebras

RF S/(T − 1) · RF S
∼=−→ S (

∑
aiT

i + (T − 1) · RF S �→∑ ai).

Proof. Since T is not a zerodivisor in the larger ring S[T, T−1], it is also not
a zerodivisor in RF S. The mapping α : RF S → grF S with α(

∑
aiT

i) =∑
(ai+Fi−1) is well-defined (since ai ∈ Fi for all i ∈ Z) and is an epimorphism

of graded R-algebras. Since α(T ·∑ aiT
i) = α(

∑
aiT

i+1) =
∑

(ai + Fi) = 0,
we have T ·RF S ⊂ kerα. Conversely, if α(

∑
aiT

i) = 0, then ai ∈ Fi−1 for all
i ∈ Z. It follows that

∑
aiT

i−1 is already an element of RF S and therefore
kerα ⊂ T · RF S. Hence kerα = T ·RF S. By the homomorphism theorem, α
induces an isomorphism

RF S/T · RF S
∼=−→ grF S.

The mapping β : RF S → S with β(
∑
aiT

i) =
∑
ai is an epimorphism of

R-algebras, and β((T −1)
∑
aiT

i) = β(
∑

(ai−ai+1)T
i+1) =

∑
ai−
∑
ai+1 =

0; hence (T − 1) · RF S ⊂ kerβ. Now suppose conversely that
∑
aiT

i ∈
kerβ \ {0} is given and let d := max{i | ai �= 0}. Then

∑
aiT

i =
∑

aiT
i −
(∑

ai

)
T d =

∑
aiT

i(1 − T d−i) ∈ (T − 1) · RF S,

and therefore kerβ = (T − 1) · RF S. The isomorphism

RF S/(T − 1)RF S
∼=−→ S

then follows once again from the homomorphism theorem.
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In other terminology, which will not be explained here, the theorem says
that there is a “deformation” in which grF S is the “fiber at the point T = 0”
and S the “fiber at the point T = 1.” One can use the theorem to infer “from
grF S to S.” A first example is given by the following corollary, and another
is given in B.10.

Corollary B.6. Under the hypotheses of B.5, let F be separated and let
b1, . . . , bm be elements of S such that {LFb1, . . . , LFbm} is a set of gener-
ators (a basis) of grF S as an R-module. Then

(a) {b∗1, . . . , b∗m} is a set of generators (a basis) of RF S as an R[T ]-module.
(b) {b1, . . . , bm} is a set of generators (a basis) of S as an R-module.

Proof. (a) The epimorphism α : RF S → grF S described above maps b∗i to
LFbi (i = 1, . . . ,m). It follows therefore that

RF S = R[T ] · b∗1 + · · · +R[T ] · b∗m + T · RF S.

We now consider RF S as a graded module over the graded ring R[T ]. Since
grF S over R has a finite set of generators, the grading of grF S is bounded
below. Thus we have Fi/Fi−1 = 0 for small i and therefore Fi = Fi−1 =
Fi−2 = · · · = 0, since F is separated. Thus the gradings on RF S and on
RF S/R[T ]b∗1+ · · ·+R[T ]b∗m are also bounded below, and Nakayama’s Lemma
A.8 applies. It follows that

RF S = R[T ] · b∗1 + · · · +R[T ] · b∗m.

It remains to show that {b∗1, . . . , b∗m} are linearly independent over R[T ]
when {LFb1, . . . , LFbm} is a basis of grF S over R. Suppose there were a
relation

(2)
m∑

i=1

ρib
∗
i = 0 (ρi ∈ R[T ], not all ρi = 0).

Then there would also be such a relation with homogeneous ρi ∈ R[T ]:

ρi = riT
ni (ri ∈ R, ni + ordF bi independent of i).

However, T is not a zerodivisor in RF S. Therefore one can cancel the T ’s
in B.3 until one of the coefficients ρi is no longer divisible by T . One goes
now to grF S, and it follows from (2) that there is a nontrivial relation among
LFb1, . . . , LFbm, a contradiction. Therefore {b∗1, . . . , b∗m} is a basis for RF S
over R[T ].

(b) The epimorphism β : RF S → S maps b∗i to bi (i = 1, . . . ,m). Since
kerβ = (T − 1)RF S, the statement of (b) follows directly from that of (a).

Now let (S/R,F) be a filtered algebra with a separated filtration and let
I ⊂ S be an ideal.
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Definition B.7. The ideal I∗ ⊂ RF S generated by all f∗ with f ∈ I is called
the homogenization of I, and the ideal grF I ⊂ grF S generated by all LFf
with f ∈ I is called the associated graded ideal of I.

The residue class algebra S̄ := S/I can be given a filtration F̄ = {F̄i}i∈Z

as follows:
F̄i := (Fi + I)/I (i ∈ Z)

is the image of Fi in S̄. We call F̄ = {F̄i}i∈Z the residue class filtration
associated with the filtration F of S/R.

Theorem B.8. Let (S/R,F) be a filtered algebra with separated filtration F
and let F̄ be the associated residue class filtration on S̄ := S/I. Then there is
a canonical isomorphism of graded R[T ]-algebras

RF̄ S̄
∼= RF S/I

∗

and a canonical isomorphism of graded R-algebras

grF̄ S̄
∼= grF S/ grF I.

Proof. Denote the residue class of a ∈ S in S̄ by ā. The map α : RF S → RF̄ S̄
with α(

∑
aiT

i) =
∑
āiT

i is an epimorphism of graded R[T ]-algebras and
I∗ ⊂ kerα. For aiT

i ∈ RF S (ai ∈ Fi), we have α(aiT
i) = 0 exactly when

ai ∈ I. Therefore ordF ai =: k ≤ i and aiT
i = a∗iT

i−k with a∗i ∈ I∗. It
follows that kerα = I∗, and by the homomorphism theorem α induces an
isomorphism RF S/I

∗ ∼= RF̄ S̄.
The map β : grF S → grF̄ S̄ given by β(

∑
ai + Fi−1) =

∑
āi + F̄i−1

is an epimorphism of graded R-algebras, and it is clear that grF I ⊂ kerβ.
Conversely, if β(a + Fi−1) = 0 for some a ∈ Fi \ Fi−1, then ā ∈ F̄i−1 and
therefore a ∈ I + Fi−1. Then a + Fi−1 is already represented by an element
b ∈ I: a+ Fi−1 = b+ Fi−1, b �∈ Fi−1. Therefore a+ Fi−1 = LFb ∈ grF I and
kerβ = grF I. The second isomorphism of the theorem follows at once, again
from the homomorphism theorem.

The following theorems are concerned with the generation of ideals in
filtered algebras.

Theorem B.9. Let (S/R,F) be a filtered algebra with separated filtration
F and let I ⊂ S be an ideal. Furthermore, let f1, . . . , fn be elements of
I with grF I = (LFf1, . . . , LFfn). If the residue class filtration F̄ of F on
S/(f1, . . . , fn) is separated, then

I = (f1, . . . , fn).

Proof. Let g ∈ I \ {0} and let ordF g =: a. Then there is a representation

LFg =

n∑

i=1

LFhi · LFfi
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with hi ∈ S, ordF hi + ordF fi = a (i = 1, . . . , n). Then

g −
n∑

i=1

hifi ∈ I and ordF (g −
∑

hifi) < a.

By induction one shows that

g ∈
⋂

i≤n

(f1, . . . , fn) + Fi,

and because F̄ is separated, it follows that g ∈ (f1, . . . , fn).

Corollary B.10. Let (S/R,F) be a filtered algebra with separated filtration
F . For each finitely generated ideal I ⊂ S, assume that the residue class
filtration of S/I is separated. If grF S is a Noetherian ring, then S is also a
Noetherian ring.

For the next theorem we need a lemma about nonzerodivisors.

Lemma B.11. Let (S/R,F) be a filtered algebra with separated filtration and
for f ∈ S, let LFf be a nonzerodivisor on grF S. Then f∗ is a nonzerodivisor
on RF S, and f is a nonzerodivisor on S. Also, for every g ∈ S:

(a) ordF (g · f) = ordF g + ordF f .
(b) LF(g · f) = LFg · LFf .
(c) (g · f)∗ = g∗ · f∗.

Proof. We prove (a) first, and observe that we need to do only the case g �= 0.
If ordF f =: a and ordF g =: b, then LFf = f + Fa−1, LFg = g + Fb−1, and

(3) LFf · LFg = fg + Fa+b−1, f · g ∈ Fa+b.

Since LFf is a nonzerodivisor on grF S, we have f ·g �∈ Fa+b−1, and it follows
that ordF (g · f) = ordF g + ordF f .

(b) follows immediately from (3), and (c) by definition of homogenization
from (a). It is also clear that f ∗ cannot be a zerodivisor on RF S. If f were a
zerodivisor on S, then by (b), LFf would also be a zerodivisor on grF S.

Theorem B.12. Let (S/R,F) be a filtered algebra, I = (f1, . . . , fn) an
ideal of S, and suppose the residue class filtrations on S/(f1, . . . , fi), for
i = 1, . . . , n − 1, are separated. Also suppose that the image of LFfi+1 in
grF S/(LFf1, . . . , LFfi), for i = 0, . . . , n−1 is a nonzerodivisor in these rings.
Then:

(a) grF I = (LFf1, . . . , LFfn).
(b) I∗ = (f∗1 , . . . , f

∗
n).

Also, the images of f∗i+1 and fi+1 are nonzerodivisors in RF S/(f
∗
1 , . . . , f

∗
i )

respectively S/(f1, . . . , fi) (i = 0, . . . , n− 1).
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Proof. Let S̄ := S/(f1), Ī := I/(f1) and let f̄i denote the image of fi in S̄
(i = 2, . . . , n). Also, let F̄ be the residue class filtration of F on S̄. By Lemma
B.11, grF(f1) = (LFf1) and (f1)

∗ = (f∗1 ). Because LFf1 is not a zerodivisor
of grF S, f∗1 respectively f1 is not a zerodivisor of RF S respectively S.

By B.8 it follows that

RF̄ S̄
∼= RF S/(f

∗
1 ) and grF̄ S̄

∼= grF S/(LFf1).

We identify Ī∗ with I∗/(f∗1 ) and grF̄ Ī with grF I/(LFf1) under these isomor-
phisms. Thus f̄∗i corresponds to the residue class of f ∗i modulo (f∗1 ) and LF̄ f̄i

to the residue class of LFfi modulo (LFf1) (i = 2, . . . , n). By induction,

Ī∗ = (f̄∗2 , . . . , f̄
∗
n) and grF̄ Ī = (LF̄ f̄2, . . . LF̄ f̄n),

where f̄∗i+1 is not a zerodivisor modulo (f̄∗2 , . . . , f̄
∗
i ) and f̄i+1 is not a zerodivi-

sor modulo (f̄2, . . . , f̄i). The assertions of the theorem then follow immediately.

Exercises

1. Let S := R[[X1, . . . , Xn]] be the algebra of formal power series in indeter-
minates X1, . . . , Xn over a ring R and I := (X1, . . . , Xn) the ideal of S
generated by X1, . . . , Xn. Let F denote the I-adic filtration on S. Show
that F is separated and that

grF
∼= R[X1, . . . , Xn] (a polynomial algebra).

2. In the situation of Exercise 1, describe the Rees algebra RF S and the
homogenization f∗ ∈ RF S of a power series f ∈ S.



C

Rings of Quotients. Localization

The construction of rings of quotients corresponds to the way we extend the integers
to the rational numbers, or more generally to the extension of an integral domain
to its quotient field. Here we also need to look at rings of quotients of graded and
filtered algebras.

A ring of quotients can be constructed for an arbitrary ring R and a multi-
plicatively closed subset S ⊂ R. We call S multiplicatively closed if 1 ∈ S and
whenever a, b ∈ S, then also ab ∈ S. The most important special cases are
the following:

Examples C.1. Some examples of multiplicatively closed sets:

(a) The set of all nonzero elements of an integral domain.
(b) The set of all nonzerodivisors of a ring.
(c) For p ∈ Spec(R), the set R \ p.
(d) For f ∈ R, the set {f 0, f1, f2, . . .} of powers of f .

Definition C.2. A ring of quotients of R with respect to the denominator set
S is a pair (RS , φ), where RS is a ring, φ : R→ RS is a ring homomorphism,
and the following conditions are satisfied:

(a) For each s ∈ S, φ(s) is a unit in RS .
(b) (Universal property of rings of quotients). If ψ : R → T is any ring

homomorphism such that ψ(s) is a unit in T for each s ∈ S, then there
exists exactly one ring homomorphism h : RS → T with ψ = h ◦ φ:

R
φ ��

ψ ���
��

��
��

�
RS

h����
��

��
��

T

The pair (RS , φ), if it exists, is unique up to isomorphism in the following
sense: If (R∗

S , φ
∗) is also a ring of quotients of R with denominator set S, then

there exists an isomorphism h : RS → R∗
S with φ∗ = h ◦ φ.

In fact, a homomorphism h of this kind exists by C.2(b), and similarly,
there exists a homomorphism h∗ : R∗

S → RS with φ = h∗ ◦ φ∗. Then φ =
h∗ ◦ (h ◦ φ) = (h∗ ◦ h) ◦ φ, and because of the uniqueness condition in C.2(b)
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we get h∗ ◦ h = idRS
. By symmetry we also have h ◦ h∗ = idR∗

S
, and therefore

h is an isomorphism.
From now on we will call RS the ring of quotients of R with respect to S,

and φ : R→ RS the canonical mapping into the ring of quotients.
Next we will show the existence of the ring of quotients. Let {Xs}s∈S be

a family of indeterminates. In the polynomial ring R[{Xs}] consider the ideal
I generated by all elements of the form

sXs − 1 (s ∈ S).

We set RS := R[{Xs}]/I and denote by φ the composition of the canonical
injection R →֒ R[{Xs}] followed by the canonical epimorphism R[{Xs}] →
R[{Xs}]/I. The residue class of Xs in RS will be denoted by 1

s . Then φ(s)· 1
s =

1 in RS ; i.e., φ(s) is a unit in RS for all s ∈ S.
Given T as in C.2(b), there exists a ring homomorphism

α : R[{Xs}] → T

with α(r) = ψ(r) for all r ∈ R and α(Xs) = ψ(s)−1 for all s ∈ S. Now we
have α(sXs−1) = α(s)α(Xs)−1 = ψ(s)ψ(s)−1−1 = 0 (s ∈ S), and therefore
α(I) = 0. By the homomorphism theorem, α induces a ring homomorphism

h : R[{Xs}]/I → T.

By the construction of α we have ψ = h◦φ, since for r ∈ R we have (h◦φ)(r) =
α(r) = ψ(r). Since RS is generated over R by the elements 1

s with s ∈ S, it is
clear that only one h with h ◦ φ = ψ can exist: For s ∈ S with image s̄ ∈ RS

we have h(s̄) · h( 1
s ) = h(1) = 1. Therefore h( 1

s ) = h(s̄)−1 = ψ(s)−1.
We have shown that rings of quotients exist.
For r ∈ R, s ∈ S we write

r

s
:= φ(r) · 1

s
.

To multiply two such fractions:

(1)
r1
s1

· r2
s2

=
r1r2
s1s2

.

In fact, φ(s1s2)· 1
s1
· 1

s2
= φ(s1)·φ(s2)· 1

s1
· 1

s2
= 1. Conversely, φ(s1s2)· 1

s1s2
= 1

and because φ(s1s2) is a unit in RS , it follows that 1
s1

· 1
s2

= 1
s1s2

. Then
r1r2

s1s2
= φ(r1) · φ(r2) · 1

s1
· 1

s2
= r1

s1
· r2

s2
.

In particular, 1 = 1
1 = s

s for all s ∈ S, and this is the identity element
for multiplication in RS . The element r

1 is called the “improper” fraction
associated with r.

Fractions are added according to the following rule:

(2)
r1
s1

+
r2
s2

=
r1s2 + s1r2
s1s2

.
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By (1), r1

s1
= r1s2

s1s2
, r2

s2
= s1r2

s1s2
, and hence

r1s2 + s1r2
s1s2

= (φ(r1)φ(s2) + φ(s1)φ(r2)) ·
1

s1s2
=
r1s2
s1s2

+
s1r2
s1s2

=
r1
s1

+
r2
s2
.

In particular, 0 = 0
s (for all s ∈ S) is the identity element for addition in

RS . Since we calculate according to the usual “rules for fractions,” and since
RS = R[{ 1

s}], it is clear by formulas (1) and (2) that

(3) RS =
{r
s
| r ∈ R, s ∈ S

}
.

For the canonical homomorphism φ : R → RS (r �→ r
1 ), we have the

following facts:

Theorem C.3. (a) kerφ = {r ∈ R | there exists an s ∈ S with s · r = 0}.
(b) φ is injective if and only if S contains no zerodivisors of R.
(c) φ is bijective if and only if S consists entirely of units of R.

Proof. (a) Let J := {r ∈ R | ∃s ∈ S : s · r = 0}. This is obviously an ideal
of R, and it is clear that J ⊂ kerφ, because from s · r = 0 it follows that
φ(s) · φ(r) = 0 and hence φ(r) = 0, since φ(s) is a unit in RS .

Conversely, let r ∈ kerφ; therefore r ∈ R ∩ ({sXs − 1}). Then there is an
equation

(4) r =

n∑

i=1

fi · (siXsi
− 1) (fi ∈ R[{Xs}]).

Let fi = fi(Xt1 , . . . , Xtm
) (i = 1, . . . , n; t1, . . . , tm ∈ S). Then there exists

(α1, . . . , αm) ∈ Nm
+ such that

(5) tα1
1 · · · tαm

m r =
n∑

i=1

gi(t1Xt1 , . . . , tmXtm
) · (siXsi

− 1).

Now let R̄ := R/J . We denote by f̄ the image of f ∈ R[{Xs}] in R̄[{Xs}]
(under the canonical mapping). From (5) we then get in R̄[{Xs}] the equation

(6) t
α1

1 · · · tαm

m r̄ =

n∑

i=1

gi(t1Xt1 , . . . , tmXtm
) · (siXsi

− 1).

The R̄-homomorphism β : R̄[{Ys}] → R̄[{Xs}] with Ys �→ s̄Xs is injective:
For if

∑
rv1...vn

(s̄1Xs1)
v1 · · · (s̄nXsn

)vn = 0 (rv1...vn
∈ R, si ∈ S),

then r̄v1...vn
s̄v1
1 · · · s̄vn

n = 0 for all (v1, . . . , vn). Hence rv1...vn
sv1
1 · · · svn

n ∈ J .
Then there exists s ∈ S with ssv1

1 · · · svn
n rv1...vn

= 0. Therefore rv1...vn
∈ J ,

and hence r̄v1...vn
= 0.
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By (6) and the injectivity of β we have the following equation in R̄[{Ys}]:

t
α1

1 · · · tαm

m r̄ =
n∑

i=1

ḡi(Yt1 , . . . , Ytm
) · (Ysi

− 1).

Setting all Ysi
equal to 1 gives t̄1

α1 · · · ¯tm
αm r̄ = 0, and as in the above argu-

ment we get r ∈ J . This proves (a), and (b) follows immediately from (a).
(c) If φ is bijective, then S consists only of units, since φ(s) is a unit

for s ∈ S. Conversely, if S is a set of units of R, then (R, idR) satisfies the
conditions of Definition C.2. By the uniqueness of rings of quotients (up to
isomorphism) pointed out above, φ is bijective.

Under the conditions stated in (b), we can regard R as a subring of RS ,
in which r ∈ R is identified with the “improper” fraction r

1 ∈ RS . The state-
ment (c) can also be interpreted as follows: If S already consists entirely of
units, then there is no need to construct any fractions in order to “make” the
elements of S units.

Corollary C.4 (Equality of Fractions). For r1

s1
, r2

s2
∈ RS, we have r1

s1
= r2

s2

if and only if there exists an s ∈ S such that

s · (s2r1 − s1r2) = 0.

If S contains no zerodivisors, then r1

s1
= r2

s2
if and only if s2r1 − s1r2 = 0,

which is the usual equality of fractions.

Proof. First note that r1

s1
= r2

s2
is the same as s2r1−s1r2

s1s2
= 0. Since 1

s1s2
is a

unit in RS , the last equation is equivalent to s2r1−s1r2

s1s2
= φ(s2r1 − s1r2) = 0.

The statement now follows from C.3(a).

Examples C.5. (a) If R is an integral domain and S := R \ {0}, then RS is
a field. We will write RS =: Q(R) and call Q(R) the quotient field of R.
We have

R ⊂ Q(R) =
{r
s
| r, s ∈ R, s �= 0

}
.

For an arbitrary multiplicatively closed subset S ⊂ R with 0 �∈ S, we have
R ⊂ RS ⊂ Q(R).

(b) If R is an arbitrary ring and S the set of all nonzerodivisors of R, we also
write RS =: Q(R) even in this case, but we call Q(R) the full ring of
quotients of R. We always have R ⊂ Q(R).

(c) If p ∈ SpecR and S := R \ p, we will write RS =: Rp and call Rp the
localization of R at the prime ideal p, or the local ring at p. We will see
soon that Rp is in fact a local ring. In general, φ : R→ Rp is not injective.

(d) If f ∈ R and S = {f0, f1, f2, . . .}, we will write RS =: Rf . We have

Rf =

{
r

fv
| r ∈ R, v ∈ N

}
,
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and φ : R → Rf is injective if and only if f is not a zerodivisor on R. A
special case of this kind, where X is an indeterminate, is

R[X ]X =

{
1

Xv

n∑

α=0

rαX
α | rα ∈ R, v, n ∈ N

}
,

the ring of Laurent polynomials in X over R, which we already met in
Appendix B.

The next theorems give information about the ideals in a ring of quotients.

Theorem C.6. Let I ⊂ R be an ideal and S ⊂ R a multiplicatively closed
set. Then

IS :=
{x
s
∈ RS | x ∈ I, s ∈ S

}

is an ideal of RS, and every ideal of RS is of this form for some suitable ideal
I of R. Moreover, IS �= RS if and only if I ∩ S = ∅.

Proof. It is easy to check that IS is an ideal of RS . If IS = RS , then 1 = x
s

for some x ∈ I, s ∈ S. Then there exists a t ∈ S with t(x − s) = 0. Then
ts = tx ∈ S ∩ I and hence S ∩ I �= ∅. Conversely, if there exists an s ∈ S ∩ I,
then 1 = s

s ∈ IS and IS = RS .
If J is an ideal of RS , then I := φ−1(J) is an ideal of R and IS ⊂ J ,

since φ(I) ⊂ J . If x
s ∈ J , then x

1 ∈ J and therefore x ∈ I. Hence J ⊂ IS and
therefore J = IS .

For the ideal IS we also write IRS , since IS is generated by φ(I).

Corollary C.7. If R is a Noetherian ring, then so is RS.

Under the conditions of C.6 let S̄ be the image of S in R/I. Of course, S̄
is multiplicatively closed. For r ∈ R, denote the residue class of r in R/I by
r̄. According to the universal property C.2(b), there is a ring homomorphism

h : RS → (R/I)S̄

(
h
(r
s

)
=
r̄

s̄

)
,

which is obviously surjective.
The next theorem states the permutability of rings of quotients and residue

class ring constructions.

Theorem C.8. We have kerh = IS and therefore (by the homomorphism
theorem)

RS/IS ∼= (R/I)S̄

(r
s

+ IS �→ r̄

s̄

)
.

Proof. For r
s ∈ RS we have h( r

s) = 0 if and only if there exists t ∈ S such
that t̄r̄ = 0. But this is equivalent to r

s = rt
st ∈ IS .
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Theorem C.9. SpecRS = {pS | p ∈ SpecR, p ∩ S = ∅}.

Proof. For P ∈ SpecRS we have p := φ−1(P) ∈ SpecR, p ∩ S = ∅, and
P = pS . Conversely, if p ∈ SpecR with p ∩ S = ∅, we have pS �= RS , and by
C.8,

RS/pS
∼= (R/p)S̄ .

Since R/p is an integral domain, (R/p)S̄ is also, and therefore pS is a prime
ideal of RS .

For p ∈ SpecR such that p ∩ S = ∅,

φ−1(pS) = p,

so that these prime ideals of R are in one-to-one correspondence with the
elements of Spec(RS). In fact, if r ∈ R and r

1 = φ(r) ∈ pS , then r
1 = p

s for
some p ∈ p, s ∈ S. Then there exists a t ∈ S with tsr = tp ∈ p. Since ts ∈ S,
ts �∈ p. Hence r ∈ p.

Corollary C.10. Let p ∈ SpecR. Then Rp is a local ring with maximal ideal
pRp, and Rp/pRp

∼= Q(R/p). The elements of SpecRp are in one-to-one
correspondence with the prime ideals of R that are contained in p.

Proof. The last statement of the corollary was just established, and it implies
in particular that Rp is a local ring. The formula Rp/pRp

∼= Q(R/p) is a
special case of C.8.

We come now to our first application of rings of quotients.

Theorem C.11. For any ring R,
⋂

p∈SpecR p is the set of all nilpotent ele-
ments of R.

Proof. Let f ∈ R be nilpotent, i.e, fn = 0 for some n ∈ N. Then fn ∈ p for all
p ∈ SpecR and therefore f ∈ ⋂p∈SpecR p. Conversely, suppose an f ∈ R such

that f ∈ ⋂p∈SpecR p is given, and let S := {f 0, f1, f2, . . .}. Since p ∩ S �= ∅
for all p ∈ SpecR, RS = Rf is a ring with empty spectrum according to C.9,
and hence is the zero ring. In particular, 1

1 = 0
1 and there exists n ∈ N with

fn · 1 = 0; i.e., f is nilpotent.

Corollary C.12. If a ring has exactly one prime ideal, then this prime ideal
consists of the nilpotent elements of the ring.

If G =
⊕

n∈Z
Gn is a graded algebra over a ring R and S ⊂ G is a

multiplicatively closed set consisting of homogeneous elements of G, then GS

is a graded R-algebra with homogeneous components

(GS)n :=
{x
s
∈ GS | x homogeneous, deg x− deg s = n

}
.
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The condition degx−deg s = n is independent of any particular representation
of the fraction x

s �= 0, as the rule for equality of fractions shows immediately.
Also, one can easily check that {(GS)n}n∈Z is a grading of GS :

GS =
⊕

n∈Z

(GS)n, (GS)p · (GS)q ⊂ (GS)p+q.

In particular,

(GS)0 :=
{x
s
∈ GS | x homogeneous, deg x = deg s

}

is a subring of GS . This subring will be denoted by G(S).
If p ∈ SpecR is a homogeneous ideal and S the set of all homogeneous

elements s ∈ G such that s �∈ p, then GS is a subring of Gp. In particular,
G(S) ⊂ Gp. We write G(p) for G(S) in this case. It is obvious that G(p) is itself
a local ring with maximal ideal

m :=
{x
s
∈ GS | x ∈ p homogeneous, deg x = deg s

}
.

We call G(p) the homogeneous localization of G at the prime p.
Now let S/R be an algebra, I ⊂ S an ideal, and N ⊂ S a multiplicatively

closed subset. We view S with the I-adic and the ring of quotients SN with
the IN -adic filtration. The corresponding Rees algebras will be denoted by
RI S and RIN

SN , and the associated graded algebras by grI S and grIN
SN

(cf. B.4(b)). Since S is contained in RI S as the homogeneous component of
degree 0, N ⊂ RI S. We let N̄ denote the image of N in S/I = gr0I S ⊂ grI S.

Theorem C.13. There are canonical isomorphisms of graded R-algebras

RIN
SN

∼= (RI S)N ,

grIN
SN

∼= (grI S)N̄ .

Proof. The canonical homomorphism S → SN maps Ik to (Ik)N = (IN )k

(for k ∈ N). We get a homomorphism RI S → RIN
SN of graded R-algebras,

and by the universal property of rings of quotients also a homomorphism
ρ : (RI S)N → RIN

SN of graded R-algebras. For k ∈ N we will identify
(R−k

I S)N = (IkT−k)N = Ik
NT

−k with R−k
IN
SN using ρ. Similarly for (Rk

I S)N

(k ∈ N). Therefore ρ is an isomorphism.
Since grI S

∼= RI S/T RI S (B.5), the statement about the associated
graded algebras follows from the permutability of rings of quotients and
residue class rings (C.8).

Example C.14. Let S = K[X1, . . . , Xn] be a polynomial algebra over a field
K, M := (X1, . . . , Xn), and M := S \ M. Then RM S = K[T,X∗

1 , . . . , X
∗
n] is

a polynomial algebra (B.4(b)). Thus, by using Xi = TX∗
i , S = K[X1, . . . , Xn]

can be embedded in K[T,X∗
1 , . . . , X

∗
n]; hence also M ⊂ K[T,X∗

1 , . . . , X
∗
n]. By
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C.13 the Rees algebra of the local ring SM with respect to the filtration given
by its maximal ideal MSM is

RMSM
SM

∼= K[T,X∗
1 , . . . , X

∗
n]M .

For the associated graded algebra, we have, by B.4(b),

grM S ∼= K[X1, . . . , Xn].

Since the image M̄ of M in the field S/M consists entirely of units, we also
have

grMSM
SM

∼= K[X1, . . . , Xn].

Exercises

Let R be a ring, S ⊂ R a multiplicatively closed subset. Let Id(R) denote the
set of all ideals of R. Prove the following statements:

1. If R is a unique factorization domain, so is RS .
2. If I ∈ Id(R), then

S(I) := {r ∈ R | there exists an s ∈ S with sr ∈ I}

is also an ideal of R. Let IdS(R) := {I ∈ Id(R) | S(I) = I}. The mapping

IdS(R) → Id(RS) (I → IS)

is bijective. For p ∈ SpecR, we have S(p) = p if and only if p ∩ S = ∅.
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The Chinese Remainder Theorem

We will derive a more ring-theoretic version of this fundamental theorem of number
theory. For us it plays an essential role in the intersection theory of algebraic curves.

Two proper1 ideals I1, I2 of a ring R are called relatively prime (comaximal)
if I1 + I2 = R.

Theorem D.1. Let I1, . . . , In (n > 1) be pairwise relatively prime ideals of a
ring R. Then the canonical ring homomorphism

α : R→ R/I1 × · · · ×R/In,

r �→ (r1 + I1, . . . , rn + In),

is an epimorphism with ker(α) =
⋂n

k=1 Ik.

Proof. The statement about the kernel of α follows immediately from the
definitions of α and the direct product of rings. We show the surjectivity of α
by induction on n.

Let n = 2 and let (r1 + I1, r2 + I2) ∈ R/I1 ×R/I2 be given. By hypothesis
we have an equation 1 = a1 + a2 with ak ∈ Ik (i = 1, 2), and it follows that

a1 ≡ 1 mod I2, a2 ≡ 1 mod I1.

Set r := r2a1 + r1a2. Then r ≡ rk mod Ik, and this shows that α is surjective
for n = 2.

Now suppose n > 2 and the theorem has already been proved for fewer
than n pairwise relatively prime ideals. For each (r1 + I1, . . . , rn + In) ∈
R/I1 × · · · × R/In there is then an element r′ ∈ R with r′ ≡ rk mod Ik for
k = 1, . . . , n− 1. We will show that I1 ∩ · · · ∩ In−1 is relatively prime to In.
Since the theorem has already been shown for n = 2, there is an r ∈ R with
r ≡ r′ mod I1 ∩ · · · ∩ In−1, r ≡ rn mod In. Then we have r ≡ rk mod Ik for
k = 1, . . . , n and the theorem is proved in general.

By hypothesis we have equations

1 = a1 + a3 = a2 + a′3 (ak ∈ Ik (k = 1, 2, 3), a′3 ∈ I3).
1 A proper ideal is one that is not equal to R.
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It follows that

1 = a1a2 + (a2 + a′3)a3 + a1a
′
3 ∈ (I1 ∩ I2) + I3,

and hence I1 ∩ I2 and I3 are relatively prime. By induction it follows that
I1 ∩ · · · ∩ In−1 and In are also relatively prime.

Corollary D.2 (Chinese Remainder Theorem). If I1, . . . , In are pair-
wise relatively prime and

⋂n
k=1 Ik = (0), then

R ∼= R/I1 × · · · ×R/In.
A special case of this is of course the classical Chinese remainder theorem

of elementary number theory:

Z/(pα1
1 · · · pαn

n ) ∼= Z/(pα1
1 ) × · · · × Z/(pαn

n )

if p1, . . . , pn are distinct prime numbers and αi ∈ N+ (i = 1, . . . , n). Another
variation is given in the following theorem.

Theorem D.3. Let R be a ring for which Spec(R) = {p1, . . . , pn} is finite
and consists only of maximal ideals. Then the canonical ring homomorphism

β : R→ Rp1 × · · · ×Rpn

(
r �→

(r
1
, . . . ,

r

1

))

is an isomorphism. Here, Rpi
∼= R/qi, where qi := ker(R → Rpi

) for i =
1, . . . , n.

Proof. For each i ∈ {1, . . . , n} there is a canonical injection R/qi →֒ Rpi
, and

Rpi
has exactly one prime ideal, namely piRpi

(C.10). The ideal piRpi
consists

purely of nilpotent elements (C.12), and therefore pi/qi consists purely of
nilpotent elements of R/qi; i.e., for each x ∈ pi there exists ρ ∈ N+ with
xρ ∈ qi. From this it follows that pi is the only prime ideal of R that contains
qi: If qi ⊂ pj for a j ∈ {1, . . . , n}, then xρ ∈ pj for each x ∈ pi and certain
ρ ∈ N+; but then x ∈ pj, pi ⊂ pj , and pi = pj, since both ideals are maximal.

Now it follows that qi and qj , for i �= j, are relatively prime: None of
the maximal ideals of R contains both ideals. We show furthermore that⋂n

k=1 qk = (0). For each x ∈ ⋂n
k=1 qk and each k ∈ {1, . . . , n} there exists an

rk ∈ R\pk with rkx = 0 (C.3(a)). With I := (r1, . . . , rn) we have Ix = 0. But
I �⊂ pk for k = 1, . . . , n, and hence I = R. Since 1 ∈ I, we have x = 1x = 0.

It now follows directly from D.2 that

R ∼= R/q1 × · · · ×R/qn,

and it remains to show that the canonical injection R/qk →֒ Rpk
is bijective.

But R/qk is a local ring with maximal ideal p̄k := pk/qk. Because of the
permutability of localization and residue class ring constructions we have (see
C.3(c) and C.8)

R/qk
∼= (R/qk)p̄k

∼= Rpk
/qkRpk

∼= Rpk
(k = 1, . . . , n).
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Corollary D.4. Let A be a finite-dimensional algebra over a field K. Then
Spec(A) consists of only finitely many elements p1, . . . , pn, and these are all
maximal ideals of A. Furthermore, we have

A ∼= Ap1 × · · · ×Apn
∼= A/q1 × · · · ×A/qn

with qk = ker(A→ Apk
) for k = 1, . . . , n, and

dimK A =

n∑

i=1

dimK Api
=

n∑

i=1

dimK A/qi.

Proof. It is enough to prove that Spec(A) consists of only finitely many max-
imal ideals, for then we can apply D.3. The following lemma shows this; in
fact, it shows a little more.

Lemma D.5. If A is a finite-dimensional algebra over a field K, then Spec(A)
consists of at most dimK(A) elements, and these are all maximal ideals of A.

Proof. Every p ∈ Spec(A) is maximal because A/p is an integral domain that
is finite-dimensional over K; this implies that A/p is a field.

If p1, . . . pk+1 are distinct, then p1 ∩ · · · ∩ pk �⊂ pk+1, for we can choose
xi ∈ pi \pk+1 and then x1 · · ·xk ∈ p1∩· · ·∩pk, but x1 · · ·xk �∈ pk+1. It follows
that Spec(A) consists of at most dimK A elements, for otherwise we get a
chain

A � p1 � (p1 ∩ p2) � (p1 ∩ p2 ∩ p3) � · · ·
of subspaces of A whose length exceeds dimK A, which is impossible.

A version of the Chinese remainder theorem for complete Noetherian rings
will be given in K.11.

Exercises

1. Check that the isomorphisms

R ∼= R/q1 × · · · ×R/qn
∼= Rp1 × · · · ×Rpn

in the proof of D.3 actually give β.
2. How many units, zero divisors, and nilpotents are there in the rings

Z/(2006) and Z/(2007)?



E

Noetherian Local Rings and Discrete Valuation

Rings

Certain local rings are assigned to the points of an algebraic curve and to the
intersection points of two curves. In this appendix, we bring together the basic facts
about such rings, and we study especially discrete valuation rings.

The following lemma is fundamental for the theory of local rings.

Nakayama’s Lemma E.1. Let R be a ring and suppose I is an ideal of R
contained in the intersection of all the maximal ideals of R. Let M be an R-
module and U ⊂ M a submodule of M . If M/U is finitely generated and if
M = U + IM , then M = U .

Proof. The module N := M/U is finitely generated and satisfies N = IN .
We will show that N = 〈0〉. Suppose this were not the case. Let {n1, . . . , nt}
be a minimal set of generators for N (t > 0). Then there is a relation

nt =

t∑

i=1

aini (ai ∈ I, i = 1, . . . , t),

and therefore

(1 − at)nt =

t−1∑

i=1

aini.

Since at is in every maximal ideal of R, the element 1 − at is a unit of R.
Hence nt ∈ 〈n1, . . . , nt−1〉, in contradiction to the minimality of t.

Using Nakayama’s lemma, questions about the generators of modules and
ideals over local rings can be reduced to the corresponding questions for vector
spaces. For a finitely generated module M over a ring R we will denote by
μ(M) the number of elements in a smallest set of generators for M . A set
of generators of M is called unshortenable if no proper subset generates the
module M , and minimal if it consists of μ(M) elements.

Corollary E.2. Let R be a local ring with maximal ideal m and residue field
k := R/m. Let M be a finitely generated R-module and let m1, . . . ,mt ∈ M .
The following are equivalent:

(a) M = 〈m1, . . . ,mt〉.
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(b) The residue classes of the mi in M/mM are a set of generators of the
k-vector space M/mM .

Proof. We need to show only (b) ⇒ (a). Let m̄i be the residue class of mi (i =
1, . . . , t). From M/mM = 〈m̄1, . . . , m̄t〉 it follows that M = 〈m1, . . . ,mt〉 +
mM , and then from Nakayama’s lemma we have M = 〈m1, . . . ,mt〉.

From well-known theorems about vector spaces we immediately have the
following facts.

Corollary E.3. Under the assumptions of E.2,

(a) μ(M) = dimkM/mM .
(b) m1, . . . ,mt form a minimal system of generators for M if and only if their

residue classes m̄1, . . . , m̄t are a basis for M/mM as a k-vector space.
(c) If {m1, . . . ,mt} is a minimal set of generators for M and if there is a

relation
∑t

i=1 rimi = 0 for some ri ∈ R, then ri ∈ m (i = 1, . . . , t).
(d) Every set of generators of M contains a minimal set of generators. Every

unshortenable set of generators is minimal.
(e) Elements m1, . . . ,mr are part of a minimal set of generators for M if and

only if their residue classes in M/mM are linearly independent over k.

These statements can be used in the special case of ideals in Noetherian lo-
cal rings, since these are of course finitely generated R-modules. In particular,
they can be applied to the maximal ideal m of R.

Definition E.4. For a Noetherian local ring R with maximal ideal m, we call

edimR := μ(m)

the embedding dimension of R.

By E.3(a) we have edimR = dimk(m/m
2). It is trivial to see that edimR =

0 if and only if R is a field.
Connected with Nakayama’s lemma are the Artin–Rees lemma and the

Krull intersection theorem.

Artin-Rees Lemma E.5. Let R be a Noetherian ring, I ⊂ R an ideal, M a
finitely generated R-module, and U ⊂ M a submodule. There exists a k ∈ N
such that for all n ∈ N we have

In+kM ∩ U = In · (IkM ∩ U).

Proof. Let R+
I R :=

⊕
n∈N

In be the (nonextended) Rees ring of R with

respect to I (cf. B.4(b)) and let R+
I M :=

⊕
n∈N

InM be the corresponding

graded R+
I R-module.

Since R is Noetherian and therefore I is finitely generated, R+
I R is gen-

erated as an algebra by finitely many elements of degree 1, namely by the
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elements of a finite set of generators for the ideal I. By the Hilbert basis the-
orem for rings, R+

I R is then Noetherian. Since M is finitely generated as an
R-module, R+

I M is finitely generated as an R+
I R-module.

Now we set Un := InM ∩ U (n ∈ N) and Ū := ⊕n∈NUn. Then Ū is a
homogeneous submodule of the R+

I R-module R+
I M . By the Hilbert basis

theorem for modules, Ū has a finite set of generators {v1, . . . , vs}, and the vi
can be chosen to be homogeneous elements of R+

I M . Let mi := deg vi and
k := Max{m1, . . . ,ms}. We will show that Un+k = InUk for all n ∈ N, which
is exactly the statement of the lemma.

Obviously, InUk ⊂ Un+k. Conversely, if u ∈ Un+k is given, it can be
written in the form u =

∑s
i+1 ρivi with homogeneous elements ρi ∈ In+k−mi ,

and therefore u ∈ InUk.

Krull Intersection Theorem E.6. Let R be a Noetherian ring, I ⊂ R an
ideal, M a finitely generated R-module and M̃ :=

⋂
n∈N

InM . Then we have

M̃ = I · M̃.

Proof. Use E.5 with U := M̃ . We have

M̃ = Ik+1M ∩ M̃ = I(IkM ∩ M̃) = I · M̃.

Corollary E.7. If I is contained in the intersection of all the maximal ideals
of R and if U ⊂M is a submodule, then

⋂
n∈N

(InM +U) = U . In particular,⋂
n∈N

InM = 〈0〉.

Proof. Set N := M/U and Ñ :=
⋂

n∈N
InN . Then Ñ = IÑ by E.6 and

Ñ = 〈0〉 by Nakayama. Hence
⋂

n∈N
(InM + U) = U .

Corollary E.8. Let R be a Noetherian local ring with maximal ideal m and
let I ⊂ m. Then

⋂
n∈N

In + J = J for every ideal J of R. In particular,⋂
n∈N

mn + J = J .

If R is a ring, we call a system p0 ⊂ p1 ⊂ · · · ⊂ pn of elements pi ∈ SpecR
a chain of prime ideals if pi−1 �= pi for i = 1, . . . , n. The chain of prime ideals
is said to have length n.

Definition E.9. The Krull dimension dimR of a ring R is the supremum of
the lengths of all chains of prime ideals.

Examples E.10.

(a) We have dimR = 0 if and only if SpecR = MaxR. Consequently, dimA =
0 for every finite-dimensional algebra over a field K (D.5). For a local ring
we have dimR = 0 if and only if SpecR consists of exactly one element.
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(b) We have dimR = 1 if and only if SpecR consists of only maximal and
minimal prime ideals, and at least one minimal prime ideal is not maximal.
Examples of rings of Krull dimension 1 are Z, K[X ], and K[[X ]] for a field
K, and also the coordinate rings of affine algebraic curves (1.15). For a
local ring R, dimR = 1 if and only if SpecR consists of only the maximal
ideal m and minimal prime ideals �= m. If one localizes Z, K[X ], or the
coordinate ring of an affine algebraic curve at a maximal ideal, then one
gets a local ring of dimension 1.

(c) We have dimK[X,Y ] = 2 by 1.14. An example of a ring of infinite Krull
dimension is the polynomial ring in infinitely many variables over a field
K. There are even Noetherian rings of infinite Krull dimension.

Next we examine a special class of Noetherian local rings.

Definition E.11. A Noetherian local ring R with edimR = dimR = 1 is
called a discrete valuation ring.

Examples of this are Z(p) (p a prime number), K[X ](f) (f irreducible),
and K[[X ]] (K a field). The next theorem gives specific information on the
structure of discrete valuation rings.

Theorem E.12. If R is a discrete valuation ring with maximal ideal m = (π),
then

(a) R is an integral domain and every r ∈ R\{0} has a unique representation

r = ǫ · πn (ǫ ∈ R a unit, n ∈ N).

In particular, R is a unique factorization domain and π is (up to asso-
ciates) the only prime element of R.

(b) Every ideal I �= (0) of R is of the form I = (πn) for some n ∈ N uniquely
determined by I. In particular, R is a principal ideal domain.

(c) SpecR consists of m and (0).

Proof. (a) By the Krull intersection theorem E.8 we have

⋂

n∈N

mn =
⋂

n∈N

(πn) = (0).

There is therefore an n ∈ N such that r ∈ (πn), r �∈ (πn+1), and hence r can
be written in the form r = ǫ · πn for some unit ǫ ∈ R.

The element π is not nilpotent, for if it were, then every element of the
maximal ideal m would be nilpotent and m would be the only prime ideal of
R, in contradiction to the assumption that dimR = 1. Suppose s = η · πm

is another element of R \ {0} (η a unit, m ∈ N); then rs = ǫη · πn+m �= 0,
and therefore R is an integral domain. Since π generates a prime ideal, π is a
prime element of R.
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If we also write r = ǫ0 · πn0 with a unit ǫ0 ∈ R and n0 ∈ N, then we must
have n0 ≤ n. From ǫ · πn−n0 = ǫ0, it then follows that n = n0 and ǫ = ǫ0.
Hence (a) is proved.

(b) Choose an element ǫ · πn in I with n minimal (ǫ ∈ R a unit). Then
πn ∈ I. Every other element in I \ {0} is of the form η · πm for some unit
η ∈ R and some m ≥ n. It follows that I = (πn).

(c) Since R is an integral domain by (a), (0) is a prime ideal of R. The
ideals (πn) with n > 1 are not prime ideals. Therefore SpecR consists only of
(0) and m.

If K is the quotient field of a discrete valuation ring R with maximal ideal
m = (π), then every element x ∈ K \ {0} can be written uniquely in the form

x = ǫ · πn (ǫ ∈ R a unit, n ∈ Z).

We set vR(x) := n and call n the value of x with respect to R. Furthermore,
we set vR(0) := ∞. Then vR : K → Z∪ {∞} is a surjective mapping with the
following properties:

(a) vR(x) = ∞ if and only if x = 0.
(b) vR(x · y) = vR(x) + vR(y) for all x, y ∈ K.
(c) vR(x+ y) ≥ min{vR(x), vR(y)} for all x, y ∈ K.

A mapping v from a field K to Z ∪ {∞} that satisfies these conditions is
called a (nontrivial) discrete valuation on K, and R := {x ∈ K | v(x) ≥ 0}
is called the discrete valuation ring associated with v. (The trivial valuation
maps all of K∗ to 0 and 0 to ∞.) If π ∈ R is an element with v(π) = 1, it
follows easily from the valuation axioms that every ideal I �= (0) of R is of the
form I = (πn) for some n ∈ N. In particular, R is a Noetherian local ring with
maximal ideal m = (π); i.e., a discrete valuation ring according to Definition
E.11.

Given a discrete valuation ring R, it is naturally the discrete valuation ring
associated with vR. In addition to (c), we have for every discrete valuation
ring the following fact:
(c′) If vR(x) �= vR(y) for x, y ∈ R, then vR(x + y) = min{vR(x), vR(y)}.

The following dimension formula will frequently be used.

Theorem E.13. Let R be a discrete valuation ring with maximal ideal m.
Assume R contains a field k and the composite mapping k →֒ R → R/m is
surjective. Then for every x ∈ R,

dimkR/(x) = vR(x).

Proof. Let π be a prime element of R and suppose at first x �= 0. Then
x = ǫ · πvR(x) for some unit ǫ ∈ R. There is a chain of ideals

(x) = (πvR(x)) ⊂ (πvR(x)−1) ⊂ (π2) ⊂ (π) ⊂ R = (π0),
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and therefore

(1) dimk R/(x) =

vR(x)−1∑

i=0

dimk(πi)/(πi+1).

The k-linear mapping

R→ (πi)/(πi+1), r �→ rπi + (πi+1),

is surjective and has (π) as its kernel. Therefore, (πi)/(πi+1) ∼= R/(π) ∼= k,
and hence dimk(πi)/(πi+1) = 1 for all i ∈ N. The proposition then follows
from (1).

From this we also get that dimkR = ∞; i.e., the theorem is true for x = 0.

Theorem E.14. Every discrete valuation ring is a maximal subring of its
quotient field.

Proof. Let R be a discrete valuation ring with quotient fieldK and let v be the
associated valuation. If S is a ring with R ⊂ S ⊂ K, R �= S, then S contains
an element x with v(x) < 0. Noting that we can multiply by an element r ∈ R
of value −v(x) − 1, we get an element in S of value −1. By taking powers we
get elements of every value in Z. Hence for every x ∈ K \ {0} we can find an
s ∈ S with v(x) = v(s). Then v(x

s ) = 0; hence x
s ∈ R and x ∈ S. Therefore

S = K.

Exercises

1. Show that
(a) If K is a field, then the rings

K[X ](f) (f ∈ K[X ] irreducible) and K[X−1](X−1)

are all discrete valuation rings containingK with quotient field K(X).
(b) The rings Z(p) (p a prime number) are all discrete valuation rings with

quotient field Q.
2. Let R be a Noetherian local domain with quotient field K. For every
x ∈ K \ {0}, let x ∈ R or x−1 ∈ R. Then R is a discrete valuation ring.
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Integral Ring Extensions

Integral ring extensions are analogous to finite field extensions in field theory. Both
theories can be developed simultaneously, and for economical reasons perhaps one
should do so in basic algebra courses. As a reward, one gets a simple proof of Hilbert’s
Nullstellensatz (see F.15 and F.16), a fundamental result of algebraic geometry.

Let S be a ring and R ⊂ S a subring.

Theorem F.1. For an element x ∈ S, the following statements are equiva-
lent:

(a) There is a monic polynomial f ∈ R[X ] with deg f > 0 such that f(x) = 0.
(b) R[x] is a finitely generated R-module.
(c) There is a subring S ′ ⊂ S with R[x] ⊂ S′ such that S′ is finitely generated

as an R-module.

Proof. (a) ⇒ (b). Let f = Xn + r1X
n−1 + · · · + rn (ri ∈ R, n > 0). Every

g ∈ R[X ] has a remainder of degree ≤ n − 1 when g is divided by f , i.e.,
g = q · f + r (q, r ∈ R[X ], deg r ≤ n − 1). By substituting x for X we get
g(x) ∈ R+Rx+ · · · +Rxn−1 and therefore

R[x] = R+Rx+ · · · +Rxn−1.

(b) ⇒ (c) is trivial. We now show (c) ⇒ (a). Let {w1, . . . , wn} be a system of
generators for S′ as an R-module. Write

xwi =

n∑

j=1

ρijwj (i = 1, . . . , n; ρij ∈ R).

then
∑n

j=1(xδij − ρij)wj = 0, and we have det(xδij − ρij)wk = 0 for k =
1, . . . , n by Cramer’s rule. Since 1 ∈ S ′ can be written as a linear combination
of the wk, it follows that det(xδij − ρij) = 0. Then f(X) := det(Xδij − ρij) ∈
R[X ] is a monic polynomial f of degree n with f(x) = 0 (the characteristic
polynomial of the multiplication map μx : S′ → S′).
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Definition F.2.

(a) For x ∈ S, if the equivalent conditions of F.1 are satisfied, we say that x
is integral over R. An equation f(x) = 0 as in F.1a) is called an equation
of integral dependence or an integral dependence relation for x over R.

(b) The set R of all elements of S that are integral over R is called the integral
closure of R in S.

(c) S is called an integral extension of R if R = S.
(d) R is called integrally closed in S if R = R.

Examples F.3.

(a) If S is finitely generated as an R-module, then S is integral over R by F.1.
(b) Every unique factorization domain R is integrally closed in its field of

fractions Q(R), and in particular, this is true for Z, for polynomial rings
K[X1, . . . , Xn] over a field K, and for every discrete valuation ring (E.12).
In fact:
Let x ∈ Q(R) be integral over R and let

xn + r1x
n−1 + · · · + rn = 0

be an equation of integral dependence for x. Write x = r
s in lowest terms

with r, s ∈ R. Then we have

rn + r1sr
n−1 + · · · + rnsn = 0,

and it follows that s is divisor of r. This is possible only if s is a unit of
R. Therefore x ∈ R.

Corollary F.4. If x1, . . . , xn ∈ S are integral over R, then R[x1, . . . , xn] is
finitely generated as an R-module and is therefore integral over R.

This follows from F.1 by induction on n.

Corollary F.5 (Transitivity of Integral Extensions). Let R ⊂ S ⊂ T
be rings. If T is integral over S and S is integral over R, then T is integral
over R.

Proof. For x ∈ T , let xn + s1x
n−1 + · · · + sn = 0 be an equation of integral

dependence for x over S. Then R[s1, . . . , sn] is finite over R by F.4, and
R[s1, . . . , sn, x] is finite over R[s1, . . . , sn] and therefore also finite over R.
Then using F.1 with S′ = R[s1, . . . , sn, x], it follows that x is integral over R.

Corollary F.6. The integral closure R of R in S is a subring of S that is
integrally closed in S.

Proof. If x, y ∈ R, then R[x, y] is a finitely generated R-module by F.4. There-
fore x± y and x · y are integral over R, and it follows that R is a subring of
S. If z ∈ S is integral over R, then z ∈ R by F.5.



F Integral Ring Extensions 229

Whereas the previous results are analogous to the concepts of “algebraic”
and “algebraic closure” in field theory, we come now to some facts that are
specific to ring theory.

Theorem F.7. Let R be a Noetherian integral domain that is integrally closed
in its field of fractions K. Let L be a finite separable field extension of K, and
let S be the integral closure of R in L. Then S is finitely generated as an
R-module, and in particular is a Noetherian ring.

Proof. Choose a primitive element x of L/K. Let f ∈ K[X ] be its minimal
polynomial over K. Because K = Q(R), it can be written in the form

f = Xn +
r1
r
Xn−1 + · · · + rn

r
(r, ri ∈ R).

Then rx has minimal polynomial

Xn + r1X
n−1 + · · · + rnrn−1 ∈ R[X ],

and is likewise a primitive element of L/K. We can therefore assume that
x ∈ S and r = 1.

Now let x1, . . . , xn be the conjugates of x over K, that is, the set of all
zeros of f in an algebraic closure of K. For y ∈ S there is a representation

y = a1 + a2x+ · · · + anx
n−1 (ai ∈ K),

and the conjugates yi of y over K are given by the equations

(1) yi = a1 + a2xi + · · · + anx
n−1
i (i = 1, . . . , n).

Along with x and y the xi and yi are integral over R, as one sees by using a
K-automorphism of K(x1, . . . , xn) sending x to xi (y to yi) and an equation
of integral dependence for x (for y).

Let D be the (Vandermonde) determinant of the system (1),

D :=

∣∣∣∣∣∣∣∣∣

1 x1 · · · xn−1
1

1 x2 · · · xn−1
2

...
...

...
1 xn · · · xn−1

n

∣∣∣∣∣∣∣∣∣
,

and let Di be the determinant that one gets by replacing the ith column of D
by the column (yi)i=1,...,n. By Cramer’s rule, aiD = Di (i = 1, . . . , n). Hence
aiD

2 = DiD.
Now, D and Di are integral over R, and D2 as well as DiD is invariant

under permutations of x1, . . . , xn. It follows that D2 ∈ K and D · Di ∈ K.
Since R is integrally closed in K, we must in fact have D2 ∈ R and DiD ∈ R
(i = 1, . . . , n). From ai ∈ 1

D2R (i = 1, . . . , n) it follows that



230 F Integral Ring Extensions

y ∈ 1

D2
(R+Rx+ · · · +Rxn−1)

and hence

S ⊂ 1

D2
(R+Rx+ · · · +Rxn−1).

Since S is a submodule of a finitely generated module over the Noetherian
ring R, the Hilbert basis theorem for modules tells us that S is itself a finitely
generated module over R.

Theorem F.8. Every Noetherian local integral domain of Krull dimension 1
that is integrally closed in its field of fractions is a discrete valuation ring.

Proof. Let R be such a ring, m its maximal ideal, and K := Q(R) its field of
fractions. We must show that m is a principal ideal (E.11).

Let x ∈ m\{0} be an arbitrary element. Since dimR = 1, the residue class
ring R/(x) has only one prime ideal, namely m/(x). By C.12 this is nilpotent.
Hence there is a ρ ∈ N with mρ+1 ⊂ (x), and mρ �⊂ (x). If ρ = 0, then we are
done. So let ρ > 0.

For y ∈ mρ \ (x), we have m · y ⊂ (x), and it follows that

m · y
x
⊂ R, y

x
�∈ R.

Therefore the R-module m−1 := {a ∈ K | m ·a ⊂ R} is strictly larger than R.
It is clear that m ⊂ m ·m−1 ⊂ R, and that m ·m−1 is an ideal of R. Therefore
there are only two possibilities:

(a) m · m−1 = m;

(b) m · m−1 = R.

We show that (a) cannot happen: If (a) were true, then mR[x] ⊂ m for each
x ∈ m−1; hence zR[x] ⊂ m for z ∈ m \ {0}. By the Hilbert basis theorem R[x]
is a finitely generated R-module; i.e., x is integral over R and hence x ∈ R,
since R is supposed to be integrally closed. It would then follow that m−1 = R,
contrary to what was shown above. Therefore only (b) can occur.

In this case we will prove that m is a principal ideal. Because m ·m−1 = R,
there is an equation

∑m
i=1 xiyi = 1 with xi ∈ m, yi ∈ m−1. Here xiyi ∈ R

(i = 1, . . . ,m). Since R is local, xiyi must be a unit of R for at least one
i ∈ {1, . . . ,m}. For each z ∈ m we then have

z = z(xiyi)(xiyi)
−1 = xi(zyi)(xiyi)

−1.

Here zyi ∈ R and (xiyi)
−1 ∈ R, and we have shown that m = (xi).

Lemma F.9. Let R ⊂ S be an integral ring extension and let P ∈ SpecS.
Then P ∈ Max(S) if and only if P ∩R ∈ Max(R).
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Proof. Set p := P ∩R. Then R/p ⊂ S/P and S/P is integral over R/p.
If p ∈ Max(R), then R/p is a field, and S/P is also a field. For if y ∈

S/P \ {0} and if

yn + ρ1y
n−1 + · · · + ρn = 0 (ρi ∈ R/p)

is an equation of integral dependence for y over R/p, then we may assume that
ρn �= 0, since S/P is a domain. From y(yn−1 + ρ1y

n−2 + · · · + ρn−1) = −ρn,
it follows that y has an inverse in S/P.

Now to show the converse, we assume that S/P is a field. For x ∈ R/p\{0}
there is a y ∈ S/P with xy = 1. By multiplying its equation of integral
dependence by xn we get

0 = (xy)n + xρ1(xy)
n−1 + · · · + xnρn = 1 + x(ρ1 + ρ2x+ · · · + ρnx

n−1),

and therefore x has an inverse in R/p.

Theorem F.10. Let R ⊂ S be two integral domains. Let R be Noetherian
of Krull dimension 1, and let S as an R-module be generated by n elements.
Then:

(a) For each p ∈ Max(R) there is at least one and there are at most n different
P ∈ Max(S) such that P ∩R = p.

(b) The integral domain S also has Krull dimension 1.

Proof. (a) For p ∈ Max(R), we have that S/pS is an algebra of dimension
≤ n over the field R/p. By D.5 it has at most n distinct prime ideals, and
therefore there are at most n distinct maximal ideals of S lying over p. Let
N := R \ p. If S/pS were the zero ring, then (S/pS)N = SN/pSN would also
be the zero ring. However, SN is a finite module over RN = Rp. By Nakayama
(E.1) it would follow that SN = (0), in contradiction to the fact that S and
also SN are integral domains.

Since S/pS �= (0), this ring contains at least one maximal ideal, and there-
fore there is also at least one P ∈ Max(S) such that P ∩R = p.

(b) If P ∈ Spec(S) is not maximal, then by the lemma P ∩ R is not a
maximal ideal of R; hence P ∩R = (0), since dimR = 1. We must then have
P = (0). For if we had x ∈ P \ {0}, then x would have an equation of integral
dependence

xn + ρ1x
n−1 + · · · + ρn = 0 (ρi ∈ R, ρn �= 0),

and we would have ρn = −x(xn−1 + ρ1x
n−2 + · · ·+ ρn−1) ∈ P∩R. Therefore

besides the zero ideal, S contains only maximal prime ideals; i.e., dimS = 1.
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Theorem F.11. Let S be an integral domain with field of fractions L and let
N ⊂ S be a multiplicatively closed subset. Then:

(a) If S is integrally closed in L, so is SN .
(b) S is integrally closed in L if and only if SP is integrally closed in L for

all P ∈ Max(S).

Proof. (a) If x ∈ L is integral over SN and

(2) xn + ρ1x
n−1 + · · · + ρn = 0 (ρi ∈ SN )

is an equation of integral dependence for x, we can write ρi = si

s with si ∈ S
(i = 1, . . . , n), s ∈ N . Multiplying (2) through by sn, we see that sx is integral
over S. Therefore sx ∈ S and x ∈ SN .

(b) Suppose SP is integrally closed in L for each P ∈ Max(S). An element
x of L integral over S is also integral over each SP; therefore

x ∈
⋂

P∈Max(S)

SP.

The result then follows from the next lemma.

Lemma F.12. For every integral domain S,

S =
⋂

P∈Max(S)

SP,

and for each ideal I ⊂ S,

I =
⋂

P∈Max(S)

IP.

Proof. Let x ∈ ⋂P∈Max(S) SP and let J := {s ∈ S | sx ∈ S}. Obviously, J

is an ideal of S (sometimes called the “denominator ideal” of x). For each
P ∈ Max(S) there is an sP ∈ SP with sP · s ∈ S. Hence J is not contained
in any maximal ideal of S, and therefore J = S. From 1 ∈ J it follows that
x ∈ S. The proof for ideals is similar.

Theorem F.13. Let R be a discrete valuation ring with maximal ideal m and
field of fractions K, let L/K be a finite separable field extension of degree n,
and let S be the integral closure of R in L. Then

(a) SP is a discrete valuation ring (with field of fractions L) for each P ∈
Max(S). The set Max(S) contains only finitely many elements.

(b) Let Max(S) = {P1, . . . ,Ph}, let mSPi
= Pei

i SPi
, and for i = 1, . . . , h let

fi := [SPi
/PiSPi

: R/m]. Then

n =
h∑

i=1

eifi (Degree formula).
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Proof. (a) By F.11(a) the ring SP is integrally closed in L; by F.7 the ring S
is a finitely generated R-module, and therefore SP is Noetherian, and SP has
Krull dimension 1 by F.10. Hence SP is a discrete valuation ring according to
F.8. The maximal spectrum Max(S) is finite by F.9 and F.10(a).

(b) Since R is a principal ideal domain and S is a finitely generated torsion-
free R-module, by the fundamental theorem for modules over a principal ideal
domain, S has a basis over R, necessarily of length n. By the Chinese remain-
der theorem we furthermore have

n = dimR/m S/mS =
h∑

i=1

dimR/m SPi
/Pei

i SPi
.

In the chain of ideals

Pei

i SPi
⊂ Pei−1

i SPi
⊂ · · · ⊂ PiSPi

⊂ SPi

all the quotients Pj
iSPi

/Pj+1
i SPi

are isomorphic to SPi
/PiSPi

, and it follows
that

dimR/m SPi
/Pei

i SPi
= ei · [SPi

/PiSPi
: R/m] = eifi.

Theorem F.14. Let R be an integral domain integrally closed in its field of
fractions K, let L be an extension field of K, and let a ∈ L be integral over
R. Then for the minimal polynomial f of a over K we have

f ∈ R[X ].

Proof. Decompose f into linear factors in the algebraic closure K of K:

f = (X − a1) · · · (X − an), a1 = a.

There is a K-isomorphism K(a)
∼→ K(ai) sending a to ai (i = 1, . . . , n). Then

ai is integral over R, along with a. Therefore the coefficients of f are integral
over R. But they lie in K, and R is integrally closed in K. Hence f ∈ R[X ].

We shall now give a proof of the Hilbert Nullstellensatz. As ingredients to
the proof we need only the following facts:
(a) K[X ] is a unique factorization domain for any field K.
(b) K[X ] has infinitely many prime polynomials.
(c) Corollary F.4.

Field-Theoretic Form of Hilbert’s Nullstellensatz F.15. Let L/K be a
field extension and suppose there are elements x1, . . . , xn ∈ L with L =
K[x1, . . . , xn] (ring adjunction!). Then L/K is algebraic.

Proof. The proof is by induction on n. We may assume that n > 0, and that
the theorem has already been proved for n − 1 generators. Suppose x1 were
transcendental over K. Since K[x1, . . . , xn] ∼= K(x1)[x2, . . . , xn], it follows by
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the induction hypothesis that L/K(x1) is algebraic. The minimal polynomial
fi for xi over K(x1) (i = 2, . . . , n) can be written in the form

fi = Xni +
a
(i)
1

u
Xni−1 + · · · + a

(i)
ni

u
(a

(i)
j ∈ K[x1])

with a common denominator u ∈ K[x1]. Using F.4 it follows that L =
K[x1, . . . , xn] is integral over K[x1,

1
u ]. Now let p ∈ K[x1] be a prime polyno-

mial that does not divide u, and let

(
1

p

)m

+
s1
ut

(
1

p

)m−1

+ · · · + sm
ut

(si ∈ K[x1])

be an equation of integral dependence for 1
p over K[x1,

1
u ] in which the co-

efficients have been adjusted so that they all have the same denominator ut.
Multiplying through by pmut we get

ut + s1p+ · · · + smpm = 0,

in contradiction to the assumption that p does not divide u. This proves
Theorem F.15.

Corollary F.16 (Hilbert’s Nullstellensatz). Let K be a field and let
K be its algebraic closure. Then every ideal I ⊂ K[X1, . . . , Xn] with I �=
K[X1, . . . , Xn] has a zero in K

n
; i.e., there exists (ξ1, . . . , ξn) ∈ Kn

such that
f(ξ1, . . . , ξn) = 0 for all f ∈ I.

Proof. We can assume without loss of generality that I = M is a maxi-
mal ideal. Then the field L := K[X1, . . . , Xn]/M is generated over K by
the residue classes xi of the Xi. By F.15 we know that L/K is algebraic.
We therefore have an injective K-homomorphism L → K and hence a K-
homomorphism φ : K[X1, . . . , Xn] → K with kernel M. If ξi := φ(Xi)
(i = 1, . . . , n), then (ξ1, . . . , ξn) is the desired zero of M.

Exercises

1. Show that the polynomial ring K[X ] in one variable over a field K is
integral over every subring R ⊂ K[X ] with K ⊂ R, K �= R. Also show
that R is a finitely generated algebra overK and R has Krull dimension 1.

2. Deduce Theorem F.15 from F.16.
3. Show that the maximal ideals of a polynomial ring K[X1, . . . , Xn] over

an algebraically closed field K are in one-to-one correspondence with the
points of Kn.
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Tensor Products of Algebras

The tensor product of two algebras S1/R and S2/R is an R-algebra that contains
images of S1 and S2 so that these images are true to the original as much as possible.
More precisely,

Definition G.1. A tensor product of algebras S1/R and S2/R is a triple
(T/R, α1, α2), where T/R is an algebra, αi : Si → T are R-algebra homomor-
phisms (i = 1, 2), and where the following universal property is satisfied: If
(U/R, β1, β2) is an arbitrary triple consisting of an algebraU/R and homomor-
phisms βi : Si → U (i = 1, 2), then there is a unique R-algebra homomorphism
h : T → U with βi = h ◦ αi (i = 1, 2)

S1

α1

��

β1

���
��

��
��

R

���������

���
��

��
��

T
h ����� U

S2

α2

��

β2

���������

As usual, the tensor product—if it exists—is unique up to canonical isomor-
phism. We then write T = S1 ⊗R S2 and call αi : Si → T (i = 1, 2) the
canonical homomorphisms into the tensor product.

Examples G.2. (a) Let S1 = R[{Xλ}λ∈Λ] and S2 = R[{Yμ}μ∈M ] be two
polynomial algebras and let T = R[{Xλ}λ∈Λ ∪ {Yμ}μ∈M ] be the polynomial
algebra in the variables Xλ, Yμ (λ ∈ Λ, μ ∈ M). Let αi : Si → T be the
obvious mappings (i = 1, 2). Then (T, α1, α2) is a tensor product of S1/R and
S2/R.

In fact, if βi : Si → U are R-homomorphisms to an R-algebra U , then let
xλ := β1(Xλ), yμ := β2(Yμ). By the universal property of polynomial algebras
there is a unique R-homomorphism h : R[{Xλ}∪{Yμ}] → U with h(Xλ) = xλ,
h(Yμ) = yμ (λ ∈ Λ, μ ∈M), which is all that is needed. We write

(1) R[{Xλ}] ⊗R R[{Yμ}] = R[{Xλ} ∪ {Yμ}].

In particular,
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(1′) R[X1, . . . , Xm] ⊗R R[Y1, . . . , Yn] = R[X1, . . . , Xm, Y1, . . . , Yn].

(b) Let S1/R and S2/R be algebras such that S1 ⊗R S2 exists, and let
Ik ⊂ Sk (k = 1, 2) be ideals. Let J be the ideal of S1 ⊗R S2 generated by
αk(Ik) (k = 1, 2). Then there exists S1/I1 ⊗R S2/I2, and we have S1/I1 ⊗R

S2/I2 = (S1 ⊗R S2)/J , where the canonical homomorphisms αk : Sk/Ik →
S1/I1 ⊗R S2/I2 are induced on the residue class rings by αk : Sk → S1 ⊗R S2.

In fact, if βk : Sk/Ik → U are two R-homomorphisms to an R-algebra U ,
let βk : Sk → U be its composition with the canonical epimorphism Sk →
Sk/Ik (k = 1, 2). There is then a unique homomorphism h : S1 ⊗R S2 → U
with βk = h ◦ αk (k = 1, 2).

Since βk(Ik) = 0 (k = 1, 2), we have h(J) = 0, and therefore h induces
a homomorphism h : (S1 ⊗R S2)/J → U with βk = h ◦ αk (k = 1, 2). There
can be only one such homomorphism: If h′ were another and we denote by
ε : S1 ⊗R S2 → (S1 ⊗R S2)/J the canonical epimorphism, then we would have
h ◦ ε = h′ ◦ ε, according to the uniqueness condition in the universal property
of S1 ⊗R S2. Since ε is an epimorphism, it follows that h′ = h.

We write J =: I1 ⊗R S2 +S1 ⊗R I2. The assertion just proved can then be
briefly noted by the formula

(2) S1/I1 ⊗R S2/I2 = (S1 ⊗R S2)/(I1 ⊗R S2 + S1 ⊗R I2).

From G.2(a) and (b) we immediately get the existence of tensor prod-
ucts, since every algebra is a residue class algebra of a polynomial algebra. In
particular, equation (2) is available in general.

Theorem G.3. S1 ⊗R S2 is generated as a ring by α1(S1) and α2(S2):

S1 ⊗R S2 = α1(S1) · α2(S2).

Proof. Obviously, α1(S1) ·α2(S2) satisfies the universal property of S1 ⊗R S2.
The inclusion mapping α1(S1) ·α2(S2) →֒ S1 ⊗R S2 is bijective because of the
uniqueness condition in G.1, and then the result follows immediately.

We set

a⊗ 1 := α1(a) for a ∈ S1,

1 ⊗ b := α2(b) for b ∈ S2,

and
a⊗ b := (a⊗ 1)(1 ⊗ b).

By G.3 an arbitrary element of S1 ⊗R S2 is of the form

n∑

k=1

ak ⊗ bk (ak ∈ S1, bk ∈ S2, n ∈ N),
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but this presentation is in general not unique. The elements of S1 ⊗R S2 are
called tensors. Tensors of the form a⊗ b are called decomposable. In general,
not every tensor is decomposable.

Since α1 and α2 are R-homomorphisms, the diagram

S1

α1

		���������

R



��������

���
��

��
��

�
S1 ⊗R S2

S2

α2

�����������

is commutative. Therefore we have

(3) r ⊗ 1 = 1 ⊗ r for all r ∈ R, ra⊗ b = a⊗ rb for r ∈ R, a ∈ S1, b ∈ S2.

Further calculation rules for tensors follow from the fact that α1 and α2

are ring homomorphisms:

(a+ b) ⊗ c = a⊗ c+ b⊗ c, a⊗ (c+ d) = a⊗ c+ a⊗ d,
(a⊗ c)(b⊗ d) = ab⊗ cd, a⊗ 0 = 0 = 0 ⊗ c,

for a, b ∈ S1 and c, d ∈ S2. Furthermore, 1 ⊗ 1 = 1 is the identity element for
multiplication.

With α2 as structure homomorphism, S1 ⊗ S2 is an S2-algebra (similarly
also an S1-algebra). We say that the algebra (S1 ⊗R S2)/S2 comes from S1/R
using the base change R → S2. Frequently, it is an important problem to
investigate how properties of algebras behave under base change.

Theorem G.4. Suppose S1/R has a basis {bλ}λ∈Λ. Then:

(a) {bλ ⊗ 1}λ∈Λ is a basis of (S1 ⊗R S2)/S2.
(b) If c ∈ S2 is not a zero divisor of S2, then 1 ⊗ c is not a zero divisor of

S1 ⊗R S2.

Proof. (a) In S1 there are relations

bλbλ′ =
∑

rλ
′′

λλ′bλ′′ (rλ
′′

λλ′ ∈ R),

1 =
∑

ρλbλ (ρλ ∈ R).

To say that S1 is commutative is equivalent to saying that rλ′′

λλ′ = rλ
′′

λ′λ. If
one writes out (bλbλ′)bλ′′ and bλ(bλ′bλ′′) in terms of the basis elements and
equates coefficients, then one gets formulas in the rλ′′

λλ′ that are equivalent to
the validity of the associative property. That

∑
ρλbλ is the identity of S1 is

likewise equivalent to a family of formulas in the ρλ and rλ
′′

λλ′ .
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We now construct an algebra T/S2 in which the indeterminatesXλ (λ ∈ Λ)
generate the free S2-module

T :=
⊕

λ∈Λ

S2Xλ.

We give T a multiplication by means of the formula

XλXλ′ :=
∑

rλ
′′

λλ′Xλ′′ .

(It is enough to define the product for the basis elements.) The formulas in
R, which are equivalent to the associativity and commutativity of S1, are
also valid for the images in S2; hence T is an associative and commutative
S2-algebra. Also,

∑
λ∈Λ ρλXλ is the unit element 1T of T .

There are two obvious R-homomorphisms:

β1 : S1 → T (
∑
rλbλ �→∑ rλXλ for rλ ∈ R),

β2 : S2 → T (s �→ s · 1T for s ∈ S2),

and therefore an R-homomorphism

h : S1 ⊗R S2 → T

with h(bλ ⊗1) = Xλ (λ ∈ Λ). Using G.3 it is clear that {bλ⊗1} is a system of
generators for S1⊗RS2 as an S2-module. Since the images of the bλ⊗1 in T are
linearly independent over S2, the bλ ⊗ 1 are themselves linearly independent
over S2, and therefore {bλ ⊗ 1} is a basis for S1 ⊗R S2/S2.

(b) Let x(1⊗ c) = 0 for an x ∈ S1 ⊗R S2. Write x =
∑

λ bλ ⊗ sλ (sλ ∈ S2).
Then x(1 ⊗ c) =

∑
λ(bλ ⊗ 1)(1 ⊗ csλ) = 0, and it follows that 1 ⊗ csλ = 0

for all λ ∈ Λ. Since S2 → S1 ⊗R S2 is injective by (a), we have csλ = 0 and
therefore sλ = 0 for all λ ∈ Λ.

Corollary G.5. If {bλ}λ∈Λ is a basis for S1/R and {cμ}μ∈M is a basis for
S2/R, then {bλ ⊗ cμ}λ∈Λ,μ∈M is a basis for (S1 ⊗R S2)/R:

(⊕

λ

Rbλ

)
⊗
(⊕

μ

Rcμ

)
=
⊕

λ,μ

R(bλ ⊗ cμ).

Proof. Consider the ring homomorphisms

R→ S2 → S1 ⊗R S2.

Since {cμ}μ∈M is a basis for S2/R, and {bλ⊗1}λ∈Λ is a basis for (S1⊗RS2)/S2,
it follows that {(bλ ⊗ 1)(1 ⊗ cμ)}λ∈Λ,μ∈M is a basis for (S1 ⊗R S2)/R.

Of the many possible formulas for the tensor product, we choose to give
only the following.
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Formulas G.6.

(a) For an algebra S/R and a polynomial algebra R[{Xλ}] we have, in a
canonical way,

S ⊗R R[{Xλ}] = S[{Xλ}],
where s⊗∑ rν1...νn

Xν1

λ1
· · ·Xνn

λn
is identified with

∑
(srν1...νn

)Xν1

λ1
· · ·Xνn

λn
.

In fact, S[{Xλ}] has the universal property for S⊗RR[{Xλ}]. As a special
case we have

S ⊗R R = S = R ⊗R S (s⊗ r = sr = r ⊗ s),

and in particular,
R⊗R R = R (a⊗ b = ab).

(b) For an algebra S/R and an ideal I ⊂ R we have

S ⊗R (R/I) = S/IS.

In fact, by G.2(b) we have S ⊗R (R/I) = S ⊗R R/S ⊗R I = S/IS.
(c) Permutability of tensor products and localization. Let Sk/R be two alge-

bras, and let Nk ⊂ Sk be two multiplicatively closed subsets (k = 1, 2).
Then we have, in a canonical way,

S1N1
⊗R S2N2

= (S1 ⊗R S2)N1⊗N2

(
x

a
⊗ y

b
=
x⊗ y
a⊗ b

)
.

Here N1 ⊗N2 := {a⊗ b ∈ S1 ⊗R S2 | a ∈ N1, b ∈ N2}.
Proof. There is an R-homomorphism

α : (S1)N1 ⊗R (S2)N2 → (S1 ⊗R S2)N1⊗N2

(
x

a
⊗ y

b
�→ x⊗ y
a⊗ b

)

induced by (Sk)Nk
→ (S1⊗RS2)N1⊗N2 . Accordingly, from Sk → (Sk)Nk

→
(S1)N1 ⊗R (S2)N2 there is an induced R-homomorphism S1 ⊗R S2 →
(S1)N1 ⊗R (S2)N2 (x ⊗ y �→ x

1 ⊗ y
1 ). Here the elements of N1 ⊗ N2 are

mapped to units, and so there is an induced R-homomorphism

β : (S1 ⊗R S2)N1⊗N2 → (S1)N1 ⊗R (S2)N2

(
x⊗ y
1 ⊗ 1

�→ x

1
⊗ y

1

)
.

It is clear that α and β are inverses of each other.

(d) If N ⊂ R is multiplicatively closed, then canonically

(S1)N ⊗RN
(S2)N = (S1 ⊗R S2)N ,

where the N on the right side of the formula is to be understood as the
set {a⊗ 1}a∈N = {1 ⊗ a}a∈N .

The proof is similar to that of (c).
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(e) In addition to Si/R, suppose two other algebras S ′
i/R are given and sup-

pose γi : Si → S′
i are R-homomorphisms (i = 1, 2). Then there is a canon-

ical R-homomorphism

S1 ⊗R S2 → S′
1 ⊗R S

′
2 (a⊗ b �→ γ1(a) ⊗ γ2(b)).

This will be denoted by γ1 ⊗ γ2.

Proof. The homomorphism S1
γ1→ S′

1 → S′
1⊗RS

′
2 maps a ∈ S1 to γ1(a)⊗1,

and the corresponding homomorphism S2
γ2→ S′

2 → S′
1 ⊗R S

′
2 maps b ∈ S2

to 1 ⊗ γ2(b). By the universal property of S1 ⊗R S2 we get the desired
homomorphism S1 ⊗R S2 → S′

1 ⊗R S
′
2 immediately.

(f) Permutability of tensor products and direct products. Let S ′/R be an
R-algebra. Then there is a canonical isomorphism of R-algebras

(S1×S2)⊗RS
′ ∼→ (S1⊗RS

′)×(S2⊗RS
′) ((s1, s2)⊗s′ �→ (s1⊗s′, s2⊗s′)).

Proof. The canonical projections pk : S1 × S2 → Sk (k = 1, 2) furnish by
(e) an R-epimorphism

pk ⊗ idS′ : (S1 × S2) ⊗R S
′ → Sk ⊗R S

′

and therefore an R-homomorphism

α : (S1×S2)⊗RS
′ → (S1⊗RS

′)×(S2⊗RS
′) ((s1, s2)⊗s′ �→ (s1⊗s′, s2⊗s′)).

The image of α contains the elements of the form (s1⊗s′, 0) and (0, s2⊗s′)
with sk ∈ Sk (k = 1, 2), s′ ∈ S′. From this we see that α is surjective.
The kernel of p1 is the principal ideal in S1 × S2 generated by (0, 1), so
the kernel I1 of p1 ⊗ idS′ is generated by (0, 1) ⊗ 1. Similarly, we have
I2 = ((1, 0) ⊗ 1)(S1 × S2) ⊗R S

′. Furthermore, kerα = I1 ∩ I2. But this
intersection is 0, for if ((0, 1) ⊗ 1) · x = ((1, 0) ⊗ 1) · y with x, y ∈ (S1 ×
S2) ⊗R S

′, multiplication of this equation by (1, 0)⊗ 1 immediately gives
us that ((1, 0) ⊗ 1) · y = 0. It follows that α is an isomorphism.

For an algebra S/R we call Se := S ⊗R S the enveloping algebra of S/R.
This is the entry point for the construction of several invariants of an algebra.
Consider the diagram

S

α1

��

id

��	
		

		
		

	

Se
μ ����� S

S

α2

��

id

����������

with α1(a) = a⊗ 1, α2(b) = 1 ⊗ b. By the universal property of S ⊗R S there



G Tensor Products of Algebras 241

is an induced surjective R-homomorphism called the canonical multiplication
map

μ : S ⊗R S → S with μ(a⊗ b) = a · b (a, b ∈ S).

The kernel I of this map is called the diagonal of Se.

Theorem G.7. We have

I = ({a⊗ 1 − 1 ⊗ a}a∈S).

If S is generated as an R-algebra by x1 . . . , xn ∈ S, then

I = ({xi ⊗ 1 − 1 ⊗ xi}i=1,...,n).

Proof. Let I ′ := ({a⊗ 1− 1⊗ a}a∈S). Clearly, I ′ ⊂ I and there is an epimor-
phism

S ⊗R S ։ S ⊗R S/I
′ μ′

։ S ⊗R S/I ∼= S.

For a, b ∈ S we have a⊗ b = (a⊗1)(1⊗ b) = −(a⊗1)(b⊗1−1⊗ b)+ (ab⊗1).

It follows that the mapping S
α1−→ S ⊗R S → S ⊗R S/I

′ is surjective. The
composition of this map with μ′ is the identity. Therefore μ′ must be bijective,
and hence I ′ = I.

The second assertion of the theorem follows easily from the formula

ab⊗ 1 − 1 ⊗ ab = (b⊗ 1)(a⊗ 1 − 1 ⊗ a) + (1 ⊗ a)(b⊗ 1 − 1 ⊗ b).

Example G.8. If S = R[X1, . . . , Xn] is a polynomial algebra, then Se =
R[X1, . . . , Xn, X

′
1, . . . , X

′
n] is a polynomial algebra by (1′) “with double vari-

ables.” Here we identify Xi⊗1 with Xi and 1⊗Xi with X ′
i. Using μ : Se → S,

every polynomial in Se will have each X ′
i replaced by Xi. The diagonal

I := kerμ is the ideal generated by X1 −X ′
1, . . . , Xn −X ′

n.

Now (in general) let

AnnSe(I) := {x ∈ Se | x · I = 0}

be the annihilator of the ideal I. The ring Se can be considered as an S-module
in two ways, namely by

S → Se (a→ a⊗ 1) and S → Se (a→ 1 ⊗ a).

Similarly, I and AnnSe(I) are S-modules in two ways. However, on AnnSe(I)
these two S-module structures coincide, since

(a⊗ 1 − 1 ⊗ a) · AnnSe(I) = 0

by definition of the annihilator. We can therefore consider AnnSe(I) as an
S-module in a unique way.

Let N ⊂ S be a multiplicatively closed subset. By G.6(c),
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(SN )e = Se
N⊗N ,

and by G.7 the kernel of the mapping

μ : SN ⊗R SN → SN

is IN⊗N .

Rule G.9. If the diagonal I is a finitely generated ideal of Se, then

AnnSe
N

(IN⊗N ) = AnnSe(I)N⊗N .

Considering AnnSe
N

(IN⊗N ) as an SN -module, this module is generated by the
image of the canonical homomorphism AnnSe(I) → AnnSe(I)N⊗N .

In fact, the construction of the annihilator of a finitely generated ideal
commutes with the formation of fractions, as one can easily show.

Remarks G.10.

(a) ϑ(S/R) := μ(AnnSe(I)) is an ideal of S. It is called the (Noether) different
of the algebra S/R.

(b) Ω1
S/R := I/I2 can, like I, be considered as an S-module in two ways.

Since, however,

(a⊗ 1 − 1 ⊗ a) · I ⊂ I2 for all a ∈ S,

the two structures on Ω1
S/R coincide. The S-module Ω1

S/R is called the

module of (Kähler) differentials of the algebra S/R.

In the exercises we will learn properties of the different and the module of
differentials. A systematic treatment of these invariants of an algebra can be
found in [Ku2]. The construction of Ω1

S/R is the basis of “algebraic differential
calculus.”

Exercises

1. Let Si/R be algebras (i = 1, 2, 3). Show that there are R-algebra isomor-
phisms

S1 ⊗R S2
∼−→ S2 ⊗R S1 (a⊗ b �→ b⊗ a)

and

(S1 ⊗R S2) ⊗R S3
∼−→ S1 ⊗R (S2 ⊗R S3) ((a⊗ b) ⊗ c �→ a⊗ (b⊗ c)).

2. Let S/R be an algebra of the form S = R[X ]/(f) with a monic polynomial
f ∈ R[X ]. Let x denote the residue class of X in S and f ′ the (formal)
derivative of f . Show that the Noether different of the algebra satisfies

ϑ(S/R) = (f ′(x)).
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3. Let Ω1
S/R = I/I2 be the module of differentials of an algebra S/R, where

I is the kernel of Se → S (a⊗ b �→ ab). Show that
(a) The mapping d : S → Ω1

S/R defined by dx = x ⊗ 1 = 1 ⊗ x + I2

for x ∈ S is a derivation of S/R; i.e., d is R-linear and satisfies the
product rule d(xy) = xdy + ydx (x, y ∈ S).

(b) Ω1
S/R is generated as an S-module by the differentials dx (x ∈ S).

4. Let S = R[X1, . . . , Xn] be a polynomial algebra. Show that
(a) The differentials dX1, . . . , dXn form a basis for Ω1

S/R as an S-module.

(b) For the mapping d defined in Exercise 3 and for every f ∈ S we have

df =
n∑

i=1

∂f

∂Xi
dXi.

(In particular, if S = R[X ], then df = f ′(X) dX .)



H

Traces

In field theory the concept of the trace map for finite field extensions is well
known. Here we generalize this concept to algebras that have a finite basis. This
generalization is of central importance for “higher-dimensional residue theory”
(Chapters 11–12 ) and plays a role in the proof of the Riemann–Roch theorem
(Chapter 13 ).

Let S/R be an algebra. The R-module

ωS/R := HomR(S,R)

of all R-linear forms ℓ : S → R is an S-module in the following way: For s ∈ S
and ℓ ∈ ωS/R set

(sℓ)(x) = ℓ(sx) for all x ∈ S.

Then sℓ ∈ HomR(S,R) and ωS/R is an S-module by S × ωS/R → ωS/R

(s, ℓ) �→ sℓ. It is called the canonical module (or dualizing module) of the
algebra S/R.

If, for example, S/R is a finite field extension, then HomR(S,R) is an S-
vector space. As an R-vector space HomR(S,R) has the same dimension as
S; hence necessarily HomR(S,R) is an S-vector space of dimension 1:

(1) ωS/R
∼= S.

In the following let S be a free R-module with basis B = {s1, . . . , sm}. The
linear forms s∗i ∈ ωS/R with

s∗i (sj) = δij (i, j = 1, . . . ,m).

form a basis of ωS/R as an R-module, the dual basis B∗ of B.
One special element of ωS/R is the canonical trace (or standard trace)

σS/R : S → R, which is defined as follows: For x ∈ S, let σS/R(x) be the trace
of the homothety

μx : S −→ S (s �→ xs).

In other words, if one uses the basis B to describe μx by an m×m matrix A
with coefficients in R, then σS/R(x) is the sum of the elements on the main
diagonal of A. It is well known that this sum does not depend on the choice
of the basis.
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Rule H.1.

σS/R =

m∑

i=1

si · s∗i .

Proof. Let sjsk =
∑m

ℓ=1 ρ
ℓ
jksℓ (j, k = 1, . . . ,m; ρℓ

jk ∈ R). Then σS/R(sk) =∑m
i=1 ρ

i
ik by the definition of trace. But on the other hand we also have

(
m∑

i=1

sis
∗
i

)
(sk) =

m∑

i=1

s∗i (sisk) =

m∑

i=1

s∗i

(
m∑

ℓ=1

ρℓ
iksℓ

)
=

m∑

i=1

ρi
ik.

Now let
S = S1 × · · · × Sh

be a direct product of algebras Si/R (i = 1, . . . , h) each of which has a finite
basis. Then

ωS1/R × · · · × ωSh/R

becomes an S-module when one defines the scalar multiplication of x =
(x1, . . . , xh) ∈ S1 × · · · × Sh and ℓ = (ℓ1, . . . , ℓh) ∈ ωS1/R × · · · × ωSh/R

by
x · ℓ = (x1ℓ1, . . . , xhℓh).

Conversely, given ℓ ∈ ωS/R = HomR(S,R), let ℓi : Si → R be the compo-
sition of the inclusion Si →֒ S with ℓ.

Rule H.2. ψ : ωS/R −→ ωS1/R ×· · ·×ωSh/R ( ℓ �→ (ℓ1, . . . , ℓh) ) is an isomor-
phism of S-modules.

Proof. It is clear that ψ is S-linear. For (ℓ1, . . . , ℓh) ∈ ωS1/R×· · ·×ωSh/R con-

sider the R-linear mapping ℓ : S → R defined by ℓ(x1, . . . , xh) =
∑h

i=1 ℓi(xi);
then (ℓ1, . . . , ℓh) �→ ℓ is the inverse map of ψ.

Rule H.3. With ψ as in H.2, we have ψ(σS/R) = (σS1/R, . . . , σSh/R). In other
words, for x = (x1, . . . , xh) ∈ S1 × · · · × Sh = S we have

σS/R(x) =

h∑

i=1

σSi/R(xi).

Proof. Choose for each R-module Si a basis Bi and the corresponding dual
basis B∗

i of ωSi/R. Then B := ∪h
i=1Bi is a basis of S and B∗ := ∪h

i=1B
∗
i can

be identified by ψ−1 with the dual basis of B in ωS/R. The result then follows
easily from H.1.

Example H.4. Let S = R × · · · × R be a finite direct product of copies of
the ring R. Then for each x = (x1, . . . , xh) ∈ S

σS/R(x) =

h∑

i=1

xi.
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Let a be an ideal of R. We set

R := R/a, S := S/aS,

and denote the residue class of elements of R and S with a bar. Then B :=
{s1, . . . , sm} is a basis of S as an R-module. Each linear form ℓ ∈ HomR(S,R)
maps aS to a and therefore induces a linear form ℓ ∈ HomR(S,R):

ℓ(x) = ℓ(x) for all x ∈ S.

The dual basis B∗ of B thereby is mapped to the dual basis {s∗1, . . . , s∗m} of
B.

Theorem H.5. The S-linear mapping

α : ωS/R −→ ωS/R (α(ℓ) = ℓ)

induces an isomorphism of S-modules

ωS/R
∼= ωS/R/aωS/R.

Proof. It is clear that α is S-linear. The above statement on dual bases shows
that α is surjective. Also, aωS/R is contained in the kernel of α. If

∑m
i=1 ris

∗
i ∈

ωS/R and the image
∑m

i=1 ris
∗
i is 0, then ri = 0 (i = 1, . . . ,m), and therefore∑m

i=1 ris
∗
i ∈ aωS/R. Since kerα = aωS/R, the result follows from the first

isomorphism theorem.

Rule H.6. For the standard traces we obtain σS/R = α(σS/R). In other

words, σS/R(x) = σS/R(x) for all x ∈ S.

Proof. This follows immediately from H.1.

We sometimes use the word “trace” in another sense:

Definition H.7. The algebra S/R has a trace σ if there exists an element
σ ∈ ωS/R with

ωS/R = S · σ.

Observe that σS/R is in general not a trace in this sense: If S/R is a finite
field extension, it is well known that σS/R �= 0 if and only if S/R is separable.
Also, we have ωS/R

∼= S by (1), and hence σS/R is a trace exactly in the
separable case. Specific traces will be constructed in Chapter 11. See also
[KK] for a related theory.
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Rules H.8. Let σ be a trace of S/R.

(a) If s · σ = 0 for an s ∈ S, then s = 0. Therefore ωS/R = S · σ ∼= S; i.e.,
ωS/R is a free S-module with basis {σ}.

(b) σ′ ∈ ωS/R is a trace of S/R if and only if there exists a unit ε ∈ S with
σ′ = ε · σ.

Proof. We need to prove only (a). For each x ∈ S we have 0 = (sσ)(x) =
σ(sx) = (xσ)(s). Therefore ℓ(s) = 0 for each ℓ ∈ ωS/R. If we write s =∑m

i=1 risi (ri ∈ R), then we get rj = s∗j (
∑
risi) = s∗j (s) = 0 (j = 1, . . . ,m)

and therefore s = 0.

Rule H.9. If σ is a trace of S/R, there exists a dual basis {s′1, . . . , s′m} of
S/R to the basis B with respect to σ; i.e., there are elements s′1 . . . , s

′
m ∈ S

with
σ(sis

′
j) = δij (i, j = 1, . . . ,m).

Also,

σS/R =

(
m∑

i=1

sis
′
i

)
· σ.

Proof. Write s∗j = s′j · σ (s′j ∈ S, j = 1, . . . ,m) for the elements of the dual
basis B∗. Then

σ(sis
′
j) = s∗j (si) = δij (i, j = 1, . . . ,m).

Being the images of the s∗i under the isomorphism ωS/R
∼= S, the s′i form a

basis of S/R. By H.1,

σS/R =
m∑

i=1

sis
∗
i =

(
m∑

i=1

sis
′
i

)
· σ.

We now turn to the question of the existence of a trace.

Rule H.10. Under the assumptions of H.2 let

σ = (σ1, . . . , σh) ∈ ωS1/R × · · · × ωSh/R = ωS/R

be given. Then σ is a trace of S/R if and only if σi is a trace of Si/R for
i = 1, . . . , h. In particular, S/R has a trace if and only if each Si/R has a
trace (i = 1, . . . , h).

This can be seen immediately from the description of the isomorphism ψ
in H.2.

Rule H.11. Under the assumptions of H.5 suppose a is contained in the in-
tersection of all the maximal ideals of R. Then σ ∈ ωS/R is a trace of S/R if

and only if σ := α(σ) is a trace of S/R. In particular, S/R has a trace if and
only if S/R has a trace.
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This follows from H.5 and Nakayama’s Lemma E.1.

We now assume that R = ⊕k∈ZRk and S = ⊕k∈ZSk are graded rings and
that the structure homomorphism ρ : R→ S is homogeneous (i.e., ρ(Rk) ⊂ Sk

for all k ∈ Z). Also suppose S is an R-module with a basis B = {s1, . . . , sm},
where si is homogeneous of degree di (i = 1, . . . ,m). Then Sk = ⊕m

i=1Rk−di
si

for all k ∈ Z (a direct sum of R0-modules).
A linear form ℓ ∈ ωS/R is called homogeneous of degree d if ℓ(Sk) ⊂ Rk+d

for all k ∈ Z. This condition is equivalent to saying that deg ℓ(si) = di + d
(i = 1, . . . ,m). For instance, the dual basis B∗ = {s∗1, . . . , s∗m} of the basis B
consists of homogeneous linear forms with

(2) deg s∗i = − deg si (i = 1, . . . ,m).

If we write ℓ =
∑m

i=1 ris
∗
i (ri ∈ R), then ℓ is homogeneous of degree d if and

only if ri is homogeneous of degree di +d (i = 1, . . . ,m). Denoting by (ωS/R)d

the R0-module of all homogeneous linear forms ℓ : S → R of degree d, it is
clear that

ωS/R =
⊕

d∈Z

(ωS/R)d

and that
Sk · (ωS/R)d ⊂ (ωS/R)k+d (k, d ∈ Z).

Hence ωS/R is a graded module over the graded ring S.

Rule H.12. σS/R is homogeneous of degree 0.

In fact, σS/R =
∑m

i=1 sis
∗
i by H.1, and deg(sisi∗) = 0 (i = 1, . . . ,m) by

(2).

If S/R has a trace σ, it is called homogeneous if it is a homogeneous
element of ωS/R.

Now let R be positively graded. Then the grading of ωS/R is bounded
below. For a homogeneous ideal a ⊂ R,

R = R/a and S = S/aS

are graded rings. Nakayama’s lemma for graded modules (A.8) then gives the
following result analogous to H.11:

Rule H.13. Let σ ∈ ωS/R be a homogeneous linear form. Then σ is a trace

of S/R if and only if the induced linear form σ ∈ ωS/R is a trace of S/R.
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In the following let R = K be a field, which is considered as a graded ring
with the trivial grading R = R0. Let S = G be a finite-dimensional, positively
graded K-algebra with G0 = K:

G =

p⊕

k=0

Gk, Gp �= {0}.

We assume that G is generated as a K-algebra by G1. Then the ideal G+ is
also generated by G1. Further, it is clear that G/K has a homogeneous basis.
Therefore the above can be used in this situation.

Lemma H.14. If G/K has a trace, then G/K has a homogeneous trace.

Proof. Let σ be a trace of G/K and let σ =
∑
σd be the decomposition of σ

into homogeneous linear forms σd of degree d. Write σd = ad · σ with ad ∈ G
(d ∈ Z). It follows from σ =

∑
σd = (

∑
ad) · σ that

∑
ad = 1. It cannot

be the case that all ad ∈ G+, so some aδ �∈ G+. Write aδ = κ · (1 − u) with
κ ∈ K∗, u ∈ G+. Since up+1 = 0, we have that aδ is a unit of G:

κ(1 − u) · κ−1 ·
∞∑

i=0

ui = 1.

It follows that σδ = aδ · σ is a homogeneous trace of G/K (H.8b).

Lemma H.15. Assume that the socle of G,

S(G) := {x ∈ G | G+ · x = {0}},

is a 1-dimensional K-vector space. Then S(G) = Gp, and for i = 0, . . . , p the
multiplication

Gi ×Gp−i −→ Gp,

(a, b) �→ ab,

is a nondegenerate bilinear form.

Proof. Because Gp ⊂ S(G), the first assertion is clear. For each a ∈ Gi \ {0}
we must find b ∈ Gp−i such that a ·b �= 0. In case i = p we can take b = 1. Now
let k < p and suppose the statement has already been proved for i = k + 1.

We then have a �∈ S(G); hence a ·G1 �= {0}. Therefore there is an a′ ∈ G1

with aa′ ∈ Gk+1 \ {0}. By the induction hypothesis there exists b′ ∈ Gp−k−1

such that aa′b′ �= 0. Now set b := a′b′.

The existence of traces can be shown in many cases by means of the
following theorem:
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Theorem H.16.

(a) G/K has a (homogeneous) trace if and only if dimK S(G) = 1.
(b) In this case, a homogeneous element σ ∈ ωG/K is a trace if and only if

σ(S(G)) �= {0}. We then have deg σ = −p.

Proof. A homogeneous linear form ℓ : G → K of degree −i maps Gk to {0}
for k �= i; therefore (ωG/K)−i can be identified with HomK(Gi,K), and hence

dimK(ωG/K)−i = dimK Gi (i = 0, . . . , p).

Now let σ be a homogeneous trace of G/K, deg σ = −d. Then

(ωG/K)−i = Gd−i · σ (i = 0, . . . , p).

Then we must necessarily have d = p and dimK Gp = dimK(ωG/K)−p =
dimK G0 = 1. Furthermore, σ(Gp) �= {0} and hence also σ(S(G)) �= {0}. On
the other hand, σ(Gk) = 0 for k < p.

Now let g ∈ S(G) be homogeneous of degree < p. Then (gσ)(G+) =
σ(g · G+) = {σ(0)} = {0}. Also, (gσ)(G0) = σ(gG0) = 0, since deg g < p.
Now from gσ = 0 it follows that g = 0.

We have proved that S(G) = Gp is 1-dimensional, and we have also shown
that σ(S(G)) �= {0} for each homogeneous trace σ of G/K.

Now let σ ∈ ωG/K be an arbitrary homogeneous element with σ(S(G)) �=
{0}, where dimK S(G) = 1 by assumption. In order to show that σ is a
homogeneous trace, it is sufficient to show that

dimK Gkσ = dimK Gk for k = 0, . . . , p.

To do this it is enough to show that if g ∈ Gk \ {0}, then gσ �= 0. By Lemma
H.15 choose an element h ∈ Gp−k with gh �= 0. Then gh ∈ S(G) and it follows
that (gσ)(h) = σ(gh) �= 0. Therefore gσ �= 0.

Now let (A/K,F) be a filtered algebra, where K is a field. The corre-
sponding Rees algebra will be denoted by A∗, and we let G = grF A be the
associated graded algebra. We assume that

G0 = K and dimK G <∞.

Also suppose that G is generated as a K-algebra by G1 and that F is sepa-
rated.

According to B.5 and H.5 we have

Remark H.17.

ωG/K
∼= ωA∗/K[T ]/TωA∗/K[T ],

ωA/K
∼= ωA∗/K[T ]/(T − 1)ωA∗/K[T ].
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Corollary H.18. If dimK S(G) = 1, then A∗/K[T ] has a homogeneous trace
and A/K has a trace.

Proof. By H.16, G/K has a homogeneous trace σ0. If σ∗ ∈ ωA∗/K[T ] is a
homogeneous preimage of σ0, then it is a trace of A∗/K[T ] by H.13. Because
A = A∗/(T − 1), the image σ of σ∗ in ωA/K is a trace of A/K.

We now return to the case where S/R is an arbitrary algebra with a basis
B = {s1, . . . , sm}, and let Se = S ⊗R S be the enveloping algebra of S/R. As
in Appendix G, let μ : Se → S (a⊗ b �→ a · b) be the canonical multiplication
map and I = kerμ the diagonal of Se. We will see that the S-module AnnSe(I)
is very closely related to ωS/R, and we will get a bijection between the traces
of S/R and the generators of AnnSe(I).

There is a homomorphism of R-modules

φ : S ⊗R S −→ HomR(ωS/R, S),

where si ⊗ sj (i, j = 1, . . . ,m) is assigned to the R-linear mapping ωS/R →
S, which sends each ℓ ∈ ωS/R to ℓ(si)sj . One can easily check that for an
arbitrary element

∑
ai ⊗ bi ∈ S ⊗R S and each ℓ ∈ ωS/R we have

(3) φ
(∑

ai ⊗ bi
)

(ℓ) =
∑

ℓ(ai)bi.

Therefore φ is independent of the choice of the basis B. If B∗ = {s∗1, . . . , s∗m}
is the dual basis of B, then φ(si ⊗ sj)(s∗k) = δiksj (i, j, k = 1, . . . ,m). From
this one sees that φ is bijective.

Observe that HomS(ωS/R, S) ⊂ HomR(ωS/R, S) in a natural way.

Theorem H.19. φ induces a canonical isomorphism of S-modules

φ : AnnSe(I)
∼−→ HomS(ωS/R, S)

described by formula (3). If S/R has a trace, then AnnSe(I) is free of rank 1,
and by dualizing φ we get a canonical isomorphism

ψ : ωS/R
∼−→ HomS(AnnSe(I), S).

Proof. For x =
∑
ai⊗bi ∈ AnnSe(I) and s ∈ S we have

∑
sai⊗bi =

∑
ai⊗sbi

and therefore

φ(x)(sℓ) =
∑

ℓ(sai)bi =
∑

ℓ(ai)sbi = s
∑

ℓ(ai)bi = sφ(x)(ℓ)

for each ℓ ∈ ωS/R. Hence φ(x) : ωS/R → S is an S-linear mapping. Further-
more, φ(sx) = sφ(x), and so φ is S-linear.

Conversely, if for x =
∑
ai ⊗ bi ∈ S ⊗R S the mapping φ(x) is S-linear

and we set x1 :=
∑
sai ⊗ bi, x2 :=

∑
ai ⊗ sbi, then for each ℓ ∈ ωS/R

φ(x1)(ℓ) = φ(x)(sℓ) = sφ(x)(ℓ) = φ(x2)(ℓ),



H Traces 253

from which it follows that x1 = x2, and so x ∈ AnnSe(I). If S/R has a
trace, then along with ωS/R, AnnSe(I) is a free S-module of rank 1. Passing

to the dual modules, we get from φ a canonical isomorphism ψ : ωS/R
∼−→

HomS(AnnSe(I), S).

Corollary H.20. Suppose S/R has a trace. Then φ induces a bijection be-
tween the set of all traces of S/R and the set of all generators of the S-
module AnnSe(I): Each trace σ ∈ ωS/R is mapped to the unique element
Δσ =

∑m
i=1 s

′
i ⊗ si ∈ AnnSe(I) such that

∑m
i=1 σ(s

′
i)si = 1. Furthermore:

(a) Δσ generates the S-module AnnSe(I), and {s′1, . . . , s′m} is the dual basis
of B with respect to σ; i.e.,

σ(s′isj) = δij (i, j = 1, . . . ,m).

(b) If
∑m

i=1 ai ⊗ si generates the S-module AnnSe(I) and if σ ∈ ωS/R is a
linear form with
summ

i=1σ(ai)si = 1, then σ is a trace of S/R and Δσ =
∑m

i=1 ai ⊗ si;
hence {a1, . . . , am} is the dual basis of B with respect to σ.

(c) For each trace σ of S/R,

σS/R = μ(Δσ) · σ.

Proof. By H.19 we know that AnnSe(I), as well as ωS/R, is a free S-module
of rank 1. The isomorphism ψ maps basis elements of ωS/R to basis elements
of HomS(AnnSe(I), S). These are in one-to-one correspondence with the basis
elements of AnnSe(I). To each trace σ we associate the preimage Δσ under
φ−1 of the linear form ωS/R → S given by σ �→ 1; i.e., if Δσ =

∑m
i=1 s

′
i ⊗ si

(s′i ∈ S), then φ(Δσ)(σ) =
∑m

i=1 σ(s
′
i)si = 1.

(a) We have sj = sj · φ(Δσ)(σ) = φ(Δσ)(sjσ) =
∑m

i=1 σ(s
′
isj)si, and it

follows that σ(s′isj) = δij .
(b) Set x :=

∑m
i=1 ai ⊗ si. Then {φ(x)} is a basis of HomS(ωS/R, S).

Because φ(x)(σ) =
∑m

i=1 σ(ai)si = 1 and ωS/R
∼= S, it must also be the case

that {σ} is a basis of ωS/R and x = Δσ.
(c) Let {s′1, . . . , s′m} be the dual basis to B with respect to σ. By H.9,

σS/R =
(∑

sis
′
i

)
· σ = μ

(∑
s′i ⊗ si

)
σ = μ(Δσ) · σ.

Now let R and S be graded rings, as in the discussion after H.11, and
let B be a homogeneous basis. An element x ∈ Se is called homogeneous of
degree d if it can be written in the form x =

∑
ai ⊗ bi, where ai, bi ∈ S are

homogeneous and deg ai + deg bi = d for all i. It is clear that this gives a
grading on Se and that AnnSe(I) is a homogeneous ideal of Se, hence also a
graded S-module. Since ωS/R is a graded S-module, HomS(ωS/R, S) is also a
graded S-module, and one sees immediately that the canonical isomorphism
φ : AnnSe(I)

∼→ HomS(ωS/R, S) is homogeneous of degree 0. In the situation
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of H.20 there is a one-to-one correspondence between the homogeneous traces
of ωS/R and the homogeneous generators of AnnSe(I).

We now study the behavior of AnnSe under base change. Let R′/R be an
algebra, S′ := R′⊗RS, and S′e := S′⊗R′S′. Then 1⊗B := {1⊗s1, . . . , 1⊗sm}
is a basis of S′/R′ (G.4). Set IS := ker(Se → S) and IS′

:= ker(S′e → S′).
We have canonical homomorphisms

A : S ⊗R S → S′ ⊗R′ S′ (a⊗ b �→ (1 ⊗ a) ⊗ (1 ⊗ b))

and
α : ωS/R → ωS′/R′ ,

where α(l)(r′ ⊗ x) = l(x) · r′ for l ∈ ωS/R, r′ ∈ R′ and x ∈ S. If B∗ :=
{s∗1, . . . , s∗m} is the basis of ωS/R that is dual to B, then 1 ⊗ B∗ is dual to
1 ⊗B. Hence α is injective and ωS′/R′ is generated as an S ′-module by imα.
Therefore, if σ is a trace of S/R, then α(σ) is a trace of S ′/R′.

By G.7 we have

IS = ({si ⊗ 1 − 1 ⊗ si}i=1,...,m),

IS′

= ({(1 ⊗ si) ⊗ (1 ⊗ 1) − (1 ⊗ 1) ⊗ (1 ⊗ si)}i=1,...,m),

and hence IS′

= IS ·S′e. From this we see that A induces an S-linear mapping

γ : AnnSe(IS) → AnnS′e(IS′

).

We denote by β the composition of the canonical homomorphisms

HomS(ωS/R, S)
φ−1

→ AnnSe(IS)
γ→ AnnS′e(IS′

)
φ′

→ Hom′
S(ωS′/R′ , S′),

where φ and φ′ are the bijections from H.19.

We first consider the case in which S/R has a trace.

Lemma H.21. Let Δ ∈ AnnSe(IS) be the element corresponding to a trace
σ of S/R and let Δ′ := γ(Δ). Then Δ′ generates the S′-module AnnS′e(IS′

).
If σ′ is the trace corresponding to Δ′, then σ′ = α(σ).

Proof. With the dual basis {s′1, . . . , s′m} of B with respect to σ we have Δ =
m∑

i=1

s′i⊗si by H.20, hence Δ′ =
∑m

i=1(1⊗s′i)⊗(1⊗si). Since {1⊗s′1, . . . , 1⊗s′m}

is obviously the dual basis of 1 ⊗B with respect to the trace α(σ), it follows
again from H.20 that Δ′ is the element corresponding to α(σ). Hence Δ′

generates AnnS′(IS′

) and σ′ = α(σ).

We now treat the special case where R′ = R/a is a residue class algebra
of R, with S′ = S/aS and ωS′/R′

∼= ωS/R/aωS/R via α (H.5).
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Lemma H.22. In this case the above mapping

β : HomS(ωS/R, S) → HomS′(ωS′/R′ , S′)

is given by reduction modulo a.

Proof. We denote residue classes modulo a with a bar. For
∑
ai ⊗ bi ∈

AnnSe(IS), the corresponding element under α is
∑
ai ⊗ bi ∈ AnnS′e(IS′

).
This element corresponds to the linear form in HomS′(ωS′/R′ , S′) given by

ℓ′ �→∑ ℓ′(ai)bi. Choose ℓ ∈ ωS/R with ℓ = ℓ′. Then

∑
ℓ′(ai)bi =

∑
ℓ(ai)bi =

∑
ℓ(ai)bi.

Since φ(
∑
ai ⊗ bi) is given by ℓ �→∑ ℓ(ai)bi, the result follows.

Lemma H.23. Under the assumptions of H.22 let σ′ be a trace of S′/R′ and
Δ′ ∈ AnnS′e(IS′

) the element corresponding to σ′. Assume that either a is in
the intersection of all the maximal ideals of R, or that R and S are positively
graded rings, a is a homogeneous ideal, and Δ′ is a homogeneous element.
Then

(a) α : AnnSe(IS) → AnnS′e(IS′

) is surjective.
(b) If Δ ∈ AnnSe(IS) is a (homogeneous) element with α(Δ) = Δ′, then Δ

generates the S-module AnnSe(IS) and the trace σ of S/R correspond-
ing to Δ is a (homogeneous) preimage of σ′ under the epimorphism
α : ωS/R → ωS′/R′ .

Proof. In H.22 it was shown that in the commutative diagram

AnnSe(IS)

φ

��

α �� AnnS′e(IS′

)

φ′

��
HomS(ωS/R, S)

β �� HomS′(ωS′/R′ , S′)

the mapping β is given by reduction mod a. Since ωS′/R′
∼= S′, it follows that

ωS/R
∼= S by H.11 respectively H.13. In particular, β is surjective and therefore

so is α. From Nakayama’s Lemma it follows that AnnSe(IS) is generated as
an S-module by Δ.

Write Δ =
∑m

i=1 s
′
i ⊗ si. Then Δ′ =

∑m
i=1 s

′
i ⊗ si, and σ(s′isj) = δij ,

σ′(s′isj) = δij (i, j = 1, . . . ,m). By these equations σ and σ′ are uniquely
determined, for if 1 =

∑m
i=1 ris

′
i (ri ∈ R), then σ(sj) = σ(

∑
ris

′
isj) = rj and

σ′(sj) = rj (j = 1, . . . ,m). It follows that σ′ is in fact the reduction of σ mod
a.
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Exercises

1. For S′/R′ and α as in H.21 show that

σS′/R′ = α(σS/R).

2. Let L/K be a finite separable field extension of degree n and let K be the
algebraic closure of K. Show that
(a) K ⊗K L is a direct product of n copies of the K-algebra K. The

canonical homomorphism L → K ⊗K L sends each x ∈ L to the
n-tuple (x1, . . . , xn) of conjugates of x.

(b) For each x ∈ L we have σL/K(x) =
∑n

i=1 xi.
3. Let A be a finite-dimensional algebra over a field K and x ∈ A a nilpotent

element. Show that σA/K(x) = 0.
4. Let A/K be as in Exercise 3. Additionally let A be a local ring with

maximal ideal m. The socle of A is defined as

S(A) := {x ∈ A | m · x = {0}}.

Show that
(a) S(A) is an ideal of A, S(A) �= {0}.
(b) If A/K has a trace σ, then σ(S(A)) �= {0}.
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Ideal Quotients

At the end of Appendix H it was shown that in order for a trace to exist, certain
annihilator ideals must be principal ideals. Here we give conditions under which this
is the case (see I.5).

Let I and J be two ideals of a ring R.

Definition I.1. The ideal quotient I : J is defined as

I : J := {x ∈ R | xJ ⊂ I}.

It is clear that I : J is an ideal of R with I ⊂ I : J .

Lemma I.2. Let a be an ideal of R with a ⊂ I ∩ J . The images of ideals of
R in R := R/a will be denoted with a bar. Then in R,

I : J = I : J.

Proof. Let x be the residue class of x ∈ R. From x · J ⊂ I it follows that
xJ ⊂ I. Therefore x ∈ I : J . Conversely, if x ∈ I : J , then of course x ∈ I : J .

Corollary I.3. Let I ⊂ J and a = I. Then I : J = (0) : J = AnnR(J).

This can be used as follows: Instead of calculating an annihilator in a
residue class ring, it is sometimes advisable to determine an ideal quotient in
the original ring.

Now let
J = (a1, a2), I = (b1, b2), (ai, bi ∈ R),

and I ⊂ J . We write

(1)
b1 = r11a1 + r12a2,
b2 = r21a1 + r22a2,

with rij ∈ R and set Δ := det(rij). By Cramer’s rule, aiΔ ∈ (b1, b2) and
therefore

Δ ∈ I : J.

Lemma I.4. Suppose b1 is a nonzerodivisor on R/(b2) and b2 is a nonzero-
divisor on R/(b1). Then the image of Δ in R/(b1, b2) is independent of the
choice of the coefficients rij in equation (1).
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Proof. Write b2 = r′21a1 + r′22a2 (r′2i ∈ R) and apply Cramer’s rule to the
system of equations

b1 = r11a1 + r12a2,

0 = (r21 − r′21)a1 + (r22 − r′22)a2.

With Δ′ := det

(
r11 r12
r′21 r

′
22

)
we get

(a1, a2) · (Δ−Δ′) ⊂ (b1),

and so in particular,

b2(Δ−Δ′) ⊂ (b1) ⊂ (b1, b2).

Therefore, because b2 is not a zerodivisor mod (b1),

Δ−Δ′ ∈ (b1) ⊂ (b1, b2).

By symmetry it follows that the choice of any other representation of b1 does
not change the image of Δ in R/(b1, b2).

Theorem I.5. Suppose the following conditions are satisfied for the elements
a1, a2, b1, b2 ∈ R given above:

(a) a1 and b1 are nonzerodivisors on R/(b2).
(b) a2 is a nonzerodivisor on R/(a1).

Then
(b1, b2) : (a1, a2) = (Δ, b1, b2).

If R̃ := R/(b1, b2) and J̃ := J/(b1, b2), then

Ann eR(J̃) = (Δ̃),

where Δ̃ is the image of Δ in R̃.

Proof. In the following, all calculations will be done in R := R/(b2). We
denote the residue class in R of an element of R with a bar. By (1) we have
an equation

(2) r21a1 + r22a2 = 0,

and using Cramer’s rule it also follows from (1) that

(3) a1Δ = b1r22.

By I.2 it suffices to prove the formula

(Δ, b1) = (b1) : (a1, a2).
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Multiplication by a1 is injective in R; therefore it is enough to prove the
equation

(4) a1 · ((b1) : (a1, a2)) = (a1Δ, a1b1)
(3)
= (b1r22, a1b1).

We first show that

(5) (r22, a1) = (a1) : (a1, a2).

In fact, by (2) it is clear that (r22, a1) ⊂ (a1) : (a1, a2). Suppose conversely
that for an x ∈ R the condition

xa2 ∈ (a1)

is satisfied. Then one has an equation in R

xa2 = c1a1 + c2b2 = c1a1 + c2r21a1 + c2r22a2.

Since a2 is a nonzerodivisor on R/(a1), we have

x ∈ (r22, a1).

Therefore (5) has been proved, and by multiplication by b1 we get

(b1r22, a1b1) = b1 · ((a1) : (a1, a2)).

Instead of (4) we now see that we have to prove the equation

(6) a1 · ((b1) : (a1, a2)) = b1 · ((a1) : (a1, a2)).

For x ∈ R with xai ∈ (b1) (i = 1, 2) there is a y ∈ R with a1x = yb1. From
yb1ai = a1xai ∈ (a1b1) (i = 1, 2) it follows that y ∈ (a1) : (a1, a2), since b1 is
a nonzerodivisor on R, and therefore

a1x ∈ b1 · ((a1) : (a1, a2)).

That is, the left side of equation (6) is contained in the right side.
Now let y ∈ R with yai ∈ (a1) (i = 1, 2) be given. Then b1yai ∈ (a1b1)

(i = 1, 2), so in particular, b
2

1y ∈ (a1b1) and therefore b1y ∈ (a1). If one writes
b1y = a1x and uses a1xai ∈ (a1b1), then one sees that x ∈ (b1) : (a1, a2), since
a1 is a nonzerodivisor on R, and hence

b1y ∈ a1 · ((b1) : (a1, a2)).

The observations we have gone through here generalize to ideals with n
generators, (see, e.g., [Ku2], Appendix E).
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Complete Rings. Completion

We restrict ourselves to I-adic filtered rings. The theory is developed in more
generality in, e.g., Bourbaki [B], Greco-Salmon [GS], and Matsumura [M]. The
completion of a filtered ring corresponds to the passage from the rationals to the real
numbers or—in number theory—from the integers to the p-adic numbers. Completion
of local rings is an important tool for studying singularities of algebraic curves.

Let R be a ring, I ⊂ R an ideal, and (an)n∈N a sequence of elements an ∈ R.

Definition K.1.

(a) The sequence (an)n∈N converges to a ∈ R (or has the limit a) if for each
ε ∈ N there exists an n0 ∈ N such that an − a ∈ Iε for all n ≥ n0. One
then writes a = limn→∞ an.

(b) A sequence that converges to 0 will be called a zero sequence.
(c) The infinite series

∑
n∈N

an converges to a ∈ R if the sequence of partial

sums (
∑k

n=0 an)k∈N converges to a. One then writes a =
∑
an.

(d) The sequence (an)n∈N is called a Cauchy sequence if for each ε ∈ N there
exists n0 ∈ N such that am − an ∈ Iε for all m,n ≥ n0.

Remarks K.2.

(a) If the I-adic filtration on R is separated, then the limit of a convergent
sequence is unique: If a = limn→∞ an = a′, then a− a′ ∈ ⋂ε∈N

Iε = (0),
therefore a′ = a.

(b) Convergent sequences are Cauchy sequences.
(c) Every subsequence of a Cauchy sequence (of a sequence converging to
a ∈ R) is a Cauchy sequence (a sequence converging to a).

(d) A sequence (an) is a Cauchy sequence if and only if (an+1 − an)n∈N is a
zero sequence.

(e) If (an) is a Cauchy sequence, then we can assume by passing to a subse-
quence that

an+1 − an ∈ In for all n ∈ N.

(f) If
∑

n∈N
an is convergent, then (an) is a zero sequence.

(g) If a =
∑
an and b =

∑
bn are convergent series in R, then

∑
(an + bn)

converges to a + b and the Cauchy product series
∑

n(
∑

ρ+σ=n aρ · bσ)
converges to ab.

Many other rules from analysis can be transferred over to our situation
here. A few are even simpler here than there.
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Definition K.3. A ring R is called I-complete (or I-adically complete) if
every Cauchy sequence (with respect to I) converges to a limit in R.

Rules K.4.

(a) In a complete ring an infinite series
∑
an converges if and only if (an) is

a zero sequence. (This is of course not the case in analysis.)

For if (an) is a zero sequence, then to each ε ∈ N there is an n0 ∈ N such
that an ∈ Iε for all n ≥ n0. Then also

∑m
i=n ai ∈ Iε for m ≥ n ≥ n0; i.e.,

(
∑n

i=0 ai)n∈N is a Cauchy sequence. Since R is complete,
∑

n∈N
an exists.

(b) R is I-complete if and only if for every zero sequence (an) in R, the infinite
series

∑
an converges.

If this is the case and if (bn) is an arbitrary Cauchy sequence, then (bn+1−
bn) is a zero sequence. The kth partial sum of the series a =

∑
n∈N

(bn+1−
bn) is

∑k
n=0(bn+1 − bn) = bk+1 − b0. Therefore (bn) converges to a+ b0.

(c) Let k ∈ N. If R is I-complete and (an) is a Cauchy sequence with an ∈ Ik

for almost all n ∈ N, then also limn→∞ an ∈ Ik (Ik is closed with respect
to taking limits).

In fact, if a := limn→∞ an, then a−an ∈ Ik for large n. Since also an ∈ Ik

for large n, it follows that a ∈ Ik.

(d) Let J ⊂ R be another ideal. Suppose there are numbers ρ, σ ∈ N with
Jρ ⊂ I, Iσ ⊂ J . Then R is I-complete if and only if R is J-complete.

One sees easily that (an) is a Cauchy sequence with respect to I if and
only if it is a Cauchy sequence with respect to J . A similar statement
holds for limits.

(e) Let R be I-complete and a ⊂ R an ideal. Then R := R/a is complete with
respect to I := (I + a)/a.

One can show easily that every zero sequence (an) in R arises from a zero
sequence (an) in R. If a =

∑
an, then the residue class a of a in R is the

limit of
∑

n∈N
an. Now use (b).

One of the most important properties of complete rings is the following
version of Nakayama’s lemma.

Theorem K.5. Let R be I-complete and let M be an R-module such that⋂
k∈N

IkM = (0). Let x1, . . . , xn ∈ M be elements with the property that
M = Rx1 + · · ·+Rxn + IM . Then M = Rx1 + · · ·+Rxn. In other words, if
M is an I-adically separated R-module and the residue class module M/IM
is finitely generated, then M is finitely generated.
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Proof. Every m ∈M has a representation

(1) m =

n∑

i=1

r
(0)
i xi +m′ (r

(0)
i ∈ R, m′ ∈ IM).

Write m′ =
∑
skmk (sk ∈ I, mk ∈M) and choose for each mk a representa-

tion (1). Then there is a new representation for m given by

m =

n∑

i=1

(r
(0)
i + r

(1)
i )xi +m′′ (r

(1)
i ∈ I, m′′ ∈ I2M).

By induction, for every k ∈ N there is a representation

m =

n∑

i=1

⎛
⎝

k∑

j=0

r
(j)
i

⎞
⎠ xi +m(k+1) (r

(j)
i ∈ Ij , m(k+1) ∈ Ik+1M).

Set ri :=
∑

j∈N
r
(j)
i (i = 1, . . . , n). This series converges by K.4(a), because its

terms form a zero sequence and R is complete. Furthermore,
∑∞

j=k+1 r
(j)
i ∈

Ik+1 by K.4(c). Hence for all k ∈ N,

m−
n∑

i=1

rixi = m(k+1) −
n∑

i=1

⎛
⎝

∞∑

j=k+1

r
(j)
i

⎞
⎠ xi ∈ Ik+1M.

and from
⋂
Ik+1M = (0) it follows that m =

∑n
i=1 rixi.

Example K.6. The ring R = P [[X1, . . . , Xn]] of all formal power series in the
indeterminates X1, . . . , Xn over a ring P is complete and separated with re-
spect to I = (X1, . . . , Xn). In the following we shall write Xα := Xα1

1 · · ·Xαn
n

for α = (α1, . . . , αn) ∈ Nn.
If (fk) is a zero sequence in R, then limk→∞(ordI fk) = −∞, and if fk =∑

α a
(k)
α Xα (a

(k)
α ∈ P ), then

f :=
∑

α

(∑

k

a(k)
α

)
Xα

is well-defined, since in
∑

k a
(k)
α for each α only a finite number of nonzero

summands appear. It is then clear that f =
∑

k∈N
fk. From K.4(b) it follows

that R is I-complete. That the I-adic filtration is separated is in any case
clear.
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Hilbert Basis Theorem for Power Series Rings K.7.
If P is a Noetherian ring, then P [[X1, . . . , Xn]] is also Noetherian.

Proof. Set R := P [[X1, . . . , Xn]] and I := (X1, . . . , Xn). It is clear that
grI R

∼= P [X1, . . . , Xn] with degXi = −1 (i = 1, . . . , n). By the Hilbert
basis theorem for polynomial rings, every ideal in grI R is finitely generated.
In particular, this holds for grI a if a is an ideal of R.

For any such ideal suppose

grI a = (LIf1, . . . , LIfm) with f1, . . . , fm ∈ a.

We will show that
a = (f1, . . . , fm).

If f ∈ a is an arbitrary element, then

LIf =
m∑

j=1

g
(0)
j LIfj ,

where g
(0)
j ∈ P [X1, . . . , Xn] is homogeneous and deg g

(0)
j = ordI f − ordI fj .

We have f (1) := f −∑ g(0)j fj ∈ a and ordI f
(1) < ordI f . Now write

LIf
(1) =

m∑

j=1

g
(1)
j LIfj ,

where g
(1)
j ∈ P [X1, . . . , Xn] is homogeneous, deg g

(1)
j = ordI f

(1) − ordI fj ,
and we get

f (2) := f (1) −
m∑

j=1

g
(1)
j fj = f −

m∑

j=1

(
g
(0)
j + g

(1)
j

)
fj ∈ a,

with ordI f
(2) < ordI f

(1) < ordI f . By induction we construct a zero sequence
(f (k))k∈N with

f (k) = f −
m∑

j=1

(
k−1∑

i=0

g
(i)
j

)
fj ∈ a and ordI f

(k) ≤ (ordI f) − k,

where also (g
(i)
j )i∈N is a zero sequence in P [[X1, . . . , Xn]]. It follows that

f =

m∑

j=1

gjfj with gj :=

∞∑

i=0

g
(i)
j (j = 1, . . . ,m).

We show next that complete rings are frequently homomorphic images of
power series rings.
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Theorem K.8. Let R be I-complete and ρ : P → R a ring homomorphism.
Furthermore, let x1, . . . , xn ∈ I and

⋂
k∈N

Ik = (0).

(a) There exists a unique P -algebra homomorphism (called a substitution
homomorphism)

ε : P [[X1, . . . , Xn]] → R with ε(Xi) = xi (k = 1, . . . , n).

(b) If I = (x1, . . . , xn) and if the composition of ρ with the canonical epi-
morphism R → R/I is bijective, then ε is surjective. In this case if P is
Noetherian, then R is also Noetherian.

Proof. (a) For an arbitrary power series
∑
aαX

α ∈ P [[X1, . . . , Xn]], the series∑
n

∑
|α|=n ρ(aα)xα converges in R, since its terms form a zero sequence.

Using K.2(g) it is easy to show that the assignment
∑
aαX

α �→ ∑ ρ(aα)xα

gives a P -homomorphism ε with ε(Xk) = xk. On the basis of continuity there
can be only one such ε.

(b) ConsiderR as a module over P [[X1, . . . , Xn]] and set J := (X1, . . . , Xn).
By assumption, ε induces a bijection of P = P [[X1, . . . , Xn]]/J onto R/I;
i.e., R/JR is generated as a P [[X1, . . . , Xn]]-module by the image of the
unit element of R. The hypotheses of K.5 are fulfilled (K.6). Hence R as a
P [[X1, . . . , Xn]]-module is generated by 1; i.e., ε is surjective. The last state-
ment of (b) follows from K.7.

Corollary K.9. Let R be a Noetherian local ring with maximal ideal m =
(x1, . . . , xn). Suppose R contains a field K that is mapped bijectively under
R → R/m onto R/m. If R is m-complete, then there exists a unique K-
epimorphism

K[[X1, . . . , Xn]] → R (Xi �→ xi).

Proof. By the Krull intersection theorem (E.8) we know that
⋂

mk = (0), and
then K.8 can be applied.

Corollary K.10. Under the assumptions of K.9 let R be a complete discrete
valuation ring and m = (t). Then there exists a unique K-isomorphism

K[[T ]]
∼−→ R (T �→ t).

Proof. By K.9 there is a uniqueK-epimorphism ε : K[[T ]] → R with ε(T ) = t.
If ker ε �= (0), then T n ∈ ker ε for some n ∈ N, and then tn = 0, a contradic-
tion. Therefore ε is bijective.

We identify the rings R and K[[T ]] in the situation of K.10 and denote by
ν the discrete valuation belonging to R, so for every r ∈ R \ {0} the value
ν(r) is precisely the order of the power series in K[[T ]] represented by r.

In the following, when we speak of complete local rings, we will always
mean that they are complete with respect to their maximal ideals, and fur-
thermore that they are separated.

We have the following version of the Chinese remainder theorem.
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Theorem K.11. Let R be a complete Noetherian local ring with maximal
ideal m and let S be an R-algebra that is finitely generated as an R-module.
Suppose M1, . . . ,Mh are the maximal ideals of S. Then the canonical ring
homomorphism

α : S → SM1 × · · · × SMh

is an isomorphism. Furthermore, S is mS-complete and the SMi
are complete

Noetherian local rings (i = 1, . . . , h).

Proof. Consider SM1 × · · · ×SMh
as an R-module. Since the Mi have m in R

as preimage (F.9) and SMi
is Noetherian,

⋂
k∈N

mk(SM1 ×· · ·×SMh
) = (0) by

the Krull intersection theorem. Set S := S/mS, Mi := Mi/mS (i = 1, . . . , h).
Then S is a finitely generatedR/m-algebra and S has only the prime ideals Mi

(i = 1, . . . , h). By the Chinese remainder theorem (D.3) there are canonical
isomorphisms

S ∼= SM1
× · · · × SMh

∼= SM1/mSM1 × · · · × SMh
/mSMh

∼= SM1 × · · · × SMh
/m(SM1 × · · · × SMh

).

Choose elements x1, . . . xn ∈ S whose images in SM1
× · · · × SMh

generate
this ring as an R-module. By K.5 we have

SM1 × · · · × SMh
= R · α(x1) + · · · +R · α(xn).

Hence α is surjective.
Furthermore, kerα =

⋂h
i=1 kerαi where αi : S → SMi

is the canonical
homomorphism. Of course, kerαi = {s ∈ S | ∃ t ∈ S \ Mi such that ts = 0}.
For each s ∈ kerα we therefore have Ann(s) �⊂ Mi for i = 1, . . . , h, i.e.,
Ann(s) = S, and hence s = 0. This shows that α is a bijection.

Now let (an) be a zero sequence of S with respect to I = mS and let
{s1, . . . , sm} be a system of generators of S as an R-module. We can write
each an in the form

an = r
(n)
1 s1 + · · · + r(n)

m sm,

where the (r
(n)
j )n∈N for j = 1, . . . ,m are zero sequences in R. Since rj :=

∑
r
(n)
j exists in R, it is clear that

∑
an converges to

∑m
j=1 rjsj in S. By

K.4(b), then, S is mS-complete.
Since SMi

is a homomorphic image of S, by K.4(e), each SMi
is an mSMi

-
complete ring. Also, there exists a ρi ∈ N such that M

ρi

i SMi
⊂ mSMi

(C.12),
and by K.4(d), it follows that each SMi

is also complete with respect to its
maximal ideal MiSMi

.

Now let R again be an arbitrary ring with an I-adic filtration and let
a ⊂ R be an ideal. The closure a of a is the set of all limits of convergent
sequences (ak)k∈N with ak ∈ a for all k ∈ N.
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Theorem K.12. (a) We always have

a =
⋂

k∈N

(a + Ik) and a = a.

(b) If R is Noetherian as well as complete and separated with respect to I,
then a = a for every ideal a ⊂ R.

Proof. (a) Let a = limk→∞ ak, where ak ∈ a for all k ∈ N. By passing to
a subsequence we can assume a − ak ∈ Ik for all k ∈ N and hence a ∈⋂

k∈N
(a + Ik).

Conversely, let a ∈ ⋂k∈N
(a + Ik) be given. Then for each k ∈ N there is a

representation a = ak +bk with ak ∈ a, bk ∈ Ik. Hence (bk) is a zero sequence,
and therefore a = limk→∞ ak exists. This proves the first formula of (a), and
the second follows immediately.

(b) Let a = (f1, . . . , fm) and let a ∈ a, so a = limk→∞ ak (ak ∈ a). We can
assume that a− ak ∈ Ik for all k ∈ N and thus

ak+1 − ak ∈ a ∩ I (k ∈ N).

By Artin–Rees (E.5) there exists a k0 ∈ N such that

a ∩ Ik+k0 = Ik · (a ∩ Ik0) for all k ∈ N.

Write

ak0 =

m∑

j=1

r
(0)
j fj (r

(0)
j ∈ R),

and for t > k0,

at − at−1 =
m∑

j=1

r
(t−k0)
j fj (r

(t−k0)
j ∈ It−k0−1).

Then

at =

m∑

j=1

(
t−k0∑

s=0

r
(s)
j

)
fj,

and with rj :=
∑∞

s=0 r
(s)
j we see that a =

∑m
j=1 rjfj .

Now that we have learned some good properties of complete rings, we will
try to embed an arbitrary ring with an I-adic filtration into a complete ring in
order to take advantage of these properties. We now assume that the ideal I
of R is finitely generated. Without this assumption the theory of completions
leaves the category of I-adic filtered rings.
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Definition K.13. A (separated) completion of (R, I) is a pair (R̂, i), where
i : R→ R̂ is a homomorphism to a ring R̂ such that

(a) R̂ is Î-complete and separated with respect to an ideal Î containing IR̂.
(b) If j : R → S is any homomorphism to a ring S that is complete and

separated with respect to an ideal J containing IS, then there is exactly
one ring homomorphism h : R̂→ S with h(Î) ⊂ J and j = h ◦ i:

R̂

h

��

Î

h

��

R

i













j ���
��

��
��

S J

If (R̂, i) exists, then as with all objects that are defined by a universal
property, it is unique up to isomorphism. We then also call R̂ the completion
of (R, I) and i : R→ R̂ the canonical homomorphism into the completion.

Under the assumption that I = (a1, . . . , an) has a finite system of genera-
tors, the completion always exists. By K.6 the ring R[[X1, . . . , Xn]] of formal
power series in X1, . . . , Xn over R is complete and separated with respect to
M := (X1, . . . , Xn). Let a = (X1 − a1, . . . , Xn − an) and let

a =
⋂

k∈N

(a + Mk)

be the closure of a (K.12(a)). Then

R̂ := R[[X1, . . . , Xn]]/a

is complete with respect to

Î := (M + a)/a

by K.4(e). Also, it is clear that the Î-adic filtration of R̂ is separated, for if
z ∈ ⋂k∈N

Îk and y ∈ R[[X1, . . . , Xn]] is a preimage of z, then y = a + Mk for

all k ∈ N; hence y ∈ a = a and therefore z = 0.
Let i : R → R̂ be the composition of the canonical injection R →

R[[X1, . . . , Xn]] with the canonical epimorphism

R[[X1, . . . , Xn]] → R[[X1, . . . , Xn]]/a.

Since Xk − ak ∈ a, we see that i(ak) is equal to the residue class xk of Xk in
R̂ (k = 1, . . . , n). Therefore

Î = (i(a1), . . . , i(an)) = IR̂.

Thus it has been shown that condition (a) of definition K.13 is satisfied.
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Now let j : R → S be given as in K.13(b). By the universal property of
power series rings (K.8(a)), j can be extended to a ring homomorphism

H : R[[X1, . . . , Xn]] → S with H(Xk) = j(ak) (k = 1, . . . , n).

Since ak and Xk have the same image in S, a ⊂ kerH , and since S is sepa-
rated with respect to J , we even have a ⊂ kerH . Thus there is an induced
homomorphism

h : R[[X1, . . . , Xn]]/a → S.

By the construction of h it is clear that j = h ◦ i and h(Î) ⊂ J .
There can be only one such homomorphism h. If an arbitrary homomor-

phism is composed with the canonical epimorphism R[[X1, . . . , Xn]] → R̂,
then we get a homomorphism H : R[[X1, . . . , Xn]] → S that agrees with j
on R and maps Xk onto j(ak) (k = 1, . . . , n). Under these requirements H is
uniquely determined, and hence also the map h induced by H .

Remark K.14. The following formulas follow from the existence proof of the
completion:

R̂ = R[[X1, . . . , Xn]]/
⋂

k∈N

((X1 − a1, . . . , Xn − an) + (X1, . . . , Xn)k)

and
Î = IR̂.

Applying K.7 and K.12(b) yields the following.

Theorem K.15. If R is Noetherian, then

R̂ = R[[X1, . . . , Xn]]/(X1 − a1, . . . , Xn − an)

and R̂ is also Noetherian.

We are interested in the completion of a residue class ring of R. Under

the assumptions of K.13 let a ⊂ R be an ideal, let R̂/a be the completion of

R/a with respect to (I + a)/a, and j : R/a → R̂/a the canonical map into the
completion. By K.13(b) there is a commutative diagram

R ��

i

��

R/a

j

��

R̂ h
�� R̂/a

Theorem K.16 (Permutability of Completion and Residue Classes).
If R is Noetherian, then h induces an isomorphism

R̂/aR̂
∼−→ R̂/a.
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Proof. Let I = (a1, . . . , an) and let ak ∈ R/a be the residue class of ak

(k = 1, . . . , n). Using K.15 we see that

R̂/a ∼= (R/a)[[X1, . . . , Xn]]/(X1 − a1, . . . , Xn − an)
∼= R[[X1, . . . , Xn]]/aR[[X1, . . . , Xn]] + (X1 − a1, . . . , Xn − an)
∼= R̂/aR̂.

Examples K.17.

(a) If R = P [X1, . . . , Xn] is a polynomial ring over a ring P and I =
(X1, . . . , Xn), then the I-adic completion of R is

R̂ = P [[X1, . . . , Xn]],

and i : R → R̂ is the canonical injection of the polynomial ring into the
power series ring.

Indeed, the conditions of definition K.13 are satisfied for i by K.8(a).

(b) Now let P = K[[u1, . . . , um]] itself be a power series ring over a field K,
and let m = (u1, . . . , um) be its maximal ideal. In P [X1, . . . , Xn], then,
M := (m, X1, . . . , Xn) is a maximal ideal. By the universal property of
localizations, there is a canonical injection

i : P [X1, . . . , Xn]M → P [[X1, . . . , Xn]].

One easily determines that P [[X1, . . . , Xn]] = K[[u1, . . . , um, X1, . . . , Xn]]
is the completion of the local ring P [X1, . . . , Xn]M with respect to its
maximal ideal.

In general, from K.16 it follows for a local ring of the form

R = P [X1, . . . , Xn]M/(f1, . . . , ft) (fi ∈ P [X1, . . . , Xn])

that
R̂ = P [[X1, . . . , Xn]]/(f1, . . . , ft) · P [[X1, . . . , Xn]].

We will now concern ourselves with a few properties of the ring R =
K[[X1, . . . , Xn]] of formal power series over a field K (n > 0). Clearly R is a
local integral domain with maximal ideal m = (X1, . . . , Xn); i.e., the units of
R are precisely those power series whose constant term does not vanish. By
K.6, R is separated and complete with respect to m. By K.7, R is Noetherian,
and hence every finitely generated R-algebra is also Noetherian; in particular,
every residue class ring of R is Noetherian. We now come to the main point,
that R is a unique factorization domain. This will be shown with the help of
the Weierstraß preparation theorem.

Definition K.18. A power series f ∈ K[[X1, . . . , Xn]] is called Xn-general of
order m if f(0, . . . , 0, Xn) =

∑∞
ν=0 aνX

m+ν
n with aν ∈ K, a0 �= 0.
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Expressed differently, Xm
n occurs in f with a coefficient �= 0, but no X i

n

with i < m occurs in f with a nonzero coefficient.

Theorem K.19 (Weierstraß Preparation Theorem).
Let the power series f ∈ K[[X1, . . . , Xn]] be Xn-general of order m, set
S := K[[X1, . . . , Xn]]/(f), and let xn be the residue class of Xn in S. Then
{1, xn, . . . , x

m−1
n } is a basis of S as a K[[X1, . . . , Xn−1]]-module. In other

words, for each g ∈ K[[X1, . . . , Xn]] there are uniquely determined series
q ∈ K[[X1, . . . , Xn]], r ∈ K[[X1, . . . , Xn−1]][Xn] with degXn

r < m such that

g = q · f + r.

Proof. If f is a unit (m = 0), then there is nothing to show. So let f be a
nonunit. Then there is a K-homomorphism (K.8(a))

K[[X1, . . . , Xn−1, Y ]] → K[[X1, . . . , Xn]] (Xi �→ Xi, Y �→ f).

Let n := (X1, . . . , Xn−1, Y ) be the maximal ideal of P := K[[X1, . . . , Xn−1, Y ]]
and set R := K[[X1, . . . , Xn]]. Then we have

R/nR ∼= K[[Xn]]/(f(0, . . . , 0, Xn)) = K[[Xn]]/(Xm
n ).

The images of the elements 1, Xn, . . . , X
m−1
n in R/nR thus form a K-basis of

R/nR. Since R is separated with respect to its maximal ideal,
⋂

k∈N
nkR = 0,

and therefore K.5 is applicable. It follows that {1, Xn, . . . , X
m−1
n } is a gener-

ating system of R as a P -module. Then also {1, xn, . . . , x
m−1
n } is a generating

system of S = R/(f) as a module over P/(Y ) = K[[X1, . . . , Xn−1]].
We will show by induction on n that {1, xn, . . . , x

m−1
n } is even a basis of

S/K[[X1, . . . , Xn−1]]. For n = 1 there is nothing to show, so let n > 1 and
suppose the claim has already been shown for n− 1 variables.

Consider a relation

m−1∑

i=0

ρix
i
n = 0 (ρi ∈ K[[X1, . . . , Xn−1]]).

Since S/X1S ∼= K[[X2, . . . , Xn]]/(f(0, X2, . . . , Xn)) and since f(0, X2, . . . , Xn)
is Xn-general of order m, by the induction hypothesis applied to the above
relation it must be that all the ρi are divisible byX1. In R there is an equation

m−1∑

i=0

ρiX
i
n = q · f (q ∈ R),

and X1 is a prime element of R. Since f is not divisible by X1, it must be
that q is. Write ρi = X1σi (i = 0, . . . ,m− 1). Then we have

m−1∑

i=0

σix
i
n = 0.
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Again, all of the σi must be divisible by X1. By induction it follows that
ρi ∈

⋂
k∈N

Xk
1R = (0) (i = 0, . . . ,m− 1).

Thus the first part of the preparation theorem has been proved. The exis-
tence of a representation g = qf+r and the uniqueness of r follow immediately.
But then q is also unique, because R is an integral domain.

Corollary K.20. For each f as in the theorem there is a uniquely determined
monic polynomial f̃ ∈ K[[X1, . . . , Xn−1]][Xn] of the form

f̃ = Xm
n +

m−1∑

i=0

αiX
i
n (αi ∈ (X1, . . . , Xn−1))

and a unit ε ∈ K[[X1, . . . , Xn]] such that

f = ε · f̃ .

Proof. In S = R/(f) there is an equation

xm
n = −

m−1∑

i=0

αix
i
n (αi ∈ K[[X1, . . . , Xn−1]]).

Set f̃ := Xm
n +

∑m−1
i=0 αiX

i
n. Then f̃ = q · f for some q ∈ K[[X1, . . . , Xn]]. In

this equation we set X1 = · · · = Xn−1 = 0. Then by comparing coefficients
with respect to Xn, we see that all the αi lie in (X1, . . . Xn−1) and that q
has a nonzero constant term, so q is a unit. Using ε := q−1, we have f =
ε · f̃ . The uniqueness of f̃ is clear, because {1, xn, . . . , x

m−1
n } is a basis of

S/K[[X1, . . . , Xn−1]].

The polynomial f̃ is called the Weierstraß polynomial of the power series
f . If f and g are Xn-general power series with Weierstraß polynomials f̃
respectively g̃, then f̃ · g̃ is the Weierstraß polynomial of f · g. This follows
from the uniqueness statement in K.20.

Lemma K.21. Let f1, . . . fr ∈ K[[X1, . . . , Xn]] \ {0} be given. Then there is
a K-automorphism α of K[[X1, . . . , Xn]] such that α(f1), . . . , α(fr) are Xn-
general.

Proof. We content ourselves to prove this only in the case where K is infinite.
The automorphism α can then be given by a substitution

Xj �→ Xj + ρjXn (j = 1, . . . , n− 1), Xn �→ Xn

with suitably chosen ρj ∈ K. Let L(fi) be the leading form of fi with respect
to the (X1, . . . , Xn)-filtration, let di := degL(fi), and set λ :=

∏r
i=1 L(fi).

By suitable choice of ρj , the above substitution in λ leads to a polynomial in
Xn of degree

∑r
i=1 di. Then all the L(fi) have degree di in Xn, and the fi are

Xn-general of order di (i = 1, . . . , r).
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Theorem K.22. K[[X1, . . . , Xn]] is a unique factorization domain.

Proof. Since R := K[[X1, . . . , Xn]] is Noetherian, it is enough to show that
every irreducible element f ∈ R generates a prime ideal. By K.21 we can
assume that f is Xn-general of some order, say m. If f̃ is the Weierstraß
polynomial of f , then

R/(f) ∼= K[[X1, . . . , Xn−1]][Xn]/(f̃),

and it suffices to show that f̃ ∈ K[[X1, . . . , Xn−1]][Xn] generates a prime
ideal.

Suppose we have already shown that K[[X1, . . . , Xn−1]] is a unique fac-
torization domain. Then so is P := K[[X1, . . . , Xn−1]][Xn], and it is enough
to show that f̃ is irreducible in this ring.

If f̃ were reducible, then there would be monic polynomials in Xn, say
g, h ∈ P with degXn

g < m, degXn
h < m, such that f̃ = g · h. Then f = εgh

for some unit ε ∈ R. If g and h are both nonunits, then this contradicts the
irreducibility of f . If, say, h is a unit in R, then we get a contradiction to the
uniqueness of the Weierstraß polynomial. In every case f̃ must therefore be
irreducible in P .

Exercises

Assume that the assumptions of K.13 are satisfied.

1. Show that i(R) is “dense” in R̂; i.e., every element x ∈ R̂ is the limit of a
Cauchy sequence (i(rk))k∈N with elements rk ∈ R. Every x ∈ R̂ can also
be written as an infinite series

x =
∑

k∈N

i(rk)

with a zero sequence (rk)k∈N from R.
2. Show that the homomorphism

R/Ik → R̂/Îk (k ∈ N)

induced by i : R→ R̂ is an isomorphism. Conclude that

ker(i) =
⋂

k∈N

Ik.

If R is I-adically separated, then i : R→ R̂ is injective.



L

Tools for a Proof of the Riemann–Roch

Theorem

This appendix contains a few facts from linear algebra that occur in the proof
of the Riemann–Roch theorem as given by F.K. Schmidt in [Sch]. The ideas of
F.K. Schmidt will be formulated here in the language of Appendices B and H. The
actual proof of the Riemann–Roch theorem is then rather short, and it also results
instantly in a proof of the “singular case” (cf. Chapter 13 ).

LetK be an arbitrary field and L/K an algebraic function field of one variable.
This means that there is an x ∈ L that is transcendental over K, while L is
finite algebraic over K(x). In the following we assume that K is algebraically
closed in L, and fix a transcendental x of L/K. Set n := [L : K(x)], R := K[x]
and R∞ := K[x−1](x−1), the localization of the polynomial ring K[x−1] with
respect to its maximal ideal (x−1).

The ring R∞ is a discrete valuation ring of K(x) (E.11). If ν∞ is the
corresponding discrete valuation, then for f

g ∈ K(x) (f ∈ K[x], g ∈ K[x]\{0})
we have the formula:

(1) ν∞

(
f

g

)
= deg g − deg f,

as one easily sees. We denote by S∞ the integral closure of R∞ in L.

Remark L.1. S∞ is a free R∞-module of rank n.

If L/K(x) is separable, then from F.7 it follows that S∞ is finitely gener-
ated as an R∞-module. The remark is valid in the general case, but we will
show this only when K is a perfect field, the only case that really interests us.

Let p := CharK. Hence K = Kp = Kp2

= · · · , and let L′ be the separable
closure of K(x) in L, S′ the integral closure of R∞ in L′. Then S′ is finitely
generated as an R∞-module (F.7). Furthermore, there is an e ∈ N such that
Lpe ⊂ L′. Hence Spe

∞ ⊂ S′. Then Rpe

∞ = K[x−pe

](x−pe) ⊂ Spe

∞ . Clearly R∞ is

finitely generated over K[x−pe

](x−pe ). Then S′ is also finitely generated over

K[x−pe

](x−pe), and so, of course, is Spe

∞ as well. But via Frobenius, S∞/R∞ is

isomorphic to Spe

∞/R
pe

∞. It follows that S∞ is finitely generated over R∞.
Because S∞ is a torsion-free R∞-module, by the fundamental theorem for

modules over principal ideal domains, it is even free. Each element of L can
be written as a fraction with a numerator from S∞ and a denominator from
R∞. Hence every R∞-basis of S∞ is also a K(x)-basis of L, and S∞ has the
same rank over R∞ as L does over K(x), namely n.
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We consider now also an extension ring A of R = K[x] with Q(A) = L,
where A is a finitely generated R-module. Now, A can (but we don’t need
this here) be the integral closure of R in L, since this is finitely generated as
an R-module, as one can show by similar arguments to those that led to L.1.
Just as S∞ is free over R∞, it is also true that A is a free R-module of rank
n. Furthermore, we have:

Remark L.2. A ∩ S∞ = K.

Proof. Let y ∈ A ∩ S∞ and let f ∈ K(x)[T ] be the minimal polynomial of y
over K(x). Since y is integral over R and R is integrally closed in K(x), all
the coefficients of f are contained in R by F.14. For the same reason all the
coefficients of f are contained in R∞, hence in R∞ ∩ R = K. Therefore y is
algebraic over K and so y ∈ K, since K is algebraically closed in L.

After these preparations we now come to the main point. For α ∈ Z let
Fα := xαS∞. Since x−1 ∈ S∞, we have Fα = xαS∞ = x−1xα+1S∞ =
x−1Fα+1 ⊂ Fα+1. One sees immediately that F := {Fα}α∈Z is a separated
filtration of the R∞-algebra L (B.1). For the associated graded ring we have

(2) grF L =
⊕

α∈Z

Fα/Fα−1 =
⊕

α∈Z

xαS∞/x
α−1S∞ = S∞/(x

−1)[T, T−1].

That is, grF L is the ring of Laurent polynomials in T over S∞/(x
−1), where

T corresponds to the leading form LFx = x+S∞ of x and T−1 to the leading
form LFx

−1 = x−1 + x−2S∞ of x−1. Recall that for a ∈ L∗,

(3) ordF a = Min{α ∈ Z | a ∈ Fα}

and
LFa = a+ Ford a−1 ∈ S∞/(x−1) · T ord a.

If we write a = xord a · b with b ∈ S∞, then

(4) LFa = b · T ord a,

where b is the residue class of b in S∞/(x
−1).

The restriction of F to R∞ is the m∞-adic filtration of R∞, if m∞ denotes
the maximal ideal of R∞, and we can identify ordF on R∞ with −ν∞, since
we have

Fα ∩R∞ = xαS∞ ∩R∞ = xαR∞ ∩R∞ =

{
R∞, α ≥ 0,
xαR∞, α < 0.

On the other hand the restriction of F to R is the degree filtration G of the
polynomial ring R = K[x], for by (1),

Fα ∩K[x] = xαS∞ ∩K[x] = xαK[x−1](x−1) ∩K[x]
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is the K-vector space Gα of polynomials of degree ≤ α. In

grF L = S∞/(x
−1)[T, T−1]

we identify grF R∞ with K[T−1] and grF R with K[T ].
Now we consider a finitely generated A-module I ⊂ L, I �= {0}. Then I is

also a free R-module of rank n, because I contains a submodule isomorphic
to A. A fundamental idea of F.K. Schmidt is to construct an R-basis of I that
can be transformed in a simple way to a basis of S∞ over R∞.

Set F ′
β := Fβ ∩ I (β ∈ Z) and

grF I :=
⊕

β∈Z

F ′
β/F ′

β−1,

where grF I is to be viewed at first as a graded K-vector space. Because

Gα · F ′
β = (Fα ∩K[x]) · (Fβ ∩ I) ⊂ Fα+β ∩ I = F ′

α+β,

it is clear that grF I is a graded module over the graded ring grGK[x] = K[T ].
The canonical mapping

Fβ ∩ I/Fβ−1 ∩ I → Fβ/Fβ−1

is injective. Therefore grF I can be considered as a K[T ]-submodule of grF L.

Lemma L.3. The grading on grF I is bounded below.

Proof. Since I is a finitely generated A-module and Q(A) = L, there is an
f ∈ L\{0} with fI ⊂ A. Because A∩F0 = A∩S∞ = K (L.2) and A∩F−1 =
(0), it follows that ordF(a) ≥ 0 for every a ∈ A. Hence for x ∈ I (B.2b),

0 ≤ ordF(fz) ≤ ordF(f) + ordF(z)

and therefore ordF (z) ≥ − ordF (f).

Let grα0

F I be the homogeneous component of smallest degree of grF I.
There are then elements a1, . . . , aν1 ∈ I with ordF ai = α0 (i = 1, . . . , ν1)
such that {LFa1, . . . , LFaν1} is a K-basis of grα0

F I. Write ai = xα0bi with
bi ∈ S∞, and then by formula (4) we have LFai = bi ·Tα0 ∈ (S∞/(x

−1)) ·Tα0

(i = 1, . . . , ν1), where bi is the residue class of bi in S∞/(x
−1).

Choose elements aν1+1, . . . , aν2 ∈ I such that {LFa1 · T, . . . , LFaν1 · T } is
extended by LFaν1+1, . . . , LFaν2 to a K-basis of grα0+1

F I. As above, write
LFaj = bj · Tα0+1, bj ∈ S∞ (j = ν1 + 1, . . . , ν2). It is then clear that
{b1, . . . , bν2} are K-linearly independent elements of S∞/(x

−1).
By iterating this method one finds elements a1, . . . , am ∈ I such that the

leading forms LFai (i = 1, . . . ,m) are a system of generators of the K[T ]-
module grF I. Here

LFai = bi · T ord ai

with bi := aix
− ord ai ∈ S∞, where bi denotes the residue class of bi in

S∞/(x
−1) (i = 1, . . . ,m). Furthermore, {b1, . . . , bm} is K-linearly indepen-

dent, hence m ≤ n.
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Theorem L.4. (a) We have m = n and {a1, . . . , an} is an R-basis of I.
(b) {a1x

− ord a1 , . . . , anx
− ord an} is an R∞-basis of S∞.

Proof. (a) For a ∈ I \ {0}, the leading form LFa can be written in the form
LFa =

∑m
i=1 κiT

μi · LFai (κi ∈ K,μi + ordF ai = ordF a for i = 1, . . . ,m).
Then

ordF

(
a−

m∑

i=1

κix
μiai

)
< ordF a.

Since the orders of the elements of I are bounded below (L.3), it follows by
induction that a ∈ K[x]a1 + · · ·+K[x]am (cf. B.9). Therefore {a1, . . . , am} is
a generating system for the R-module I. Since I is free of rank n over R and
m ≤ n, we must have m = n, and {a1, . . . , an} is an R-basis of I.

(b) Since dimK S∞/(x
−1) = n, it follows from (a) that {b1, . . . , bn} is a

K-basis of S∞/(x
−1). Because bi = aix

− ord ai (i = 1, . . . , n), it follows using
Nakayama’s lemma that {a1x

− ord a1 , . . . , anx
− ord an} is an R∞-basis of S∞.

Definition L.5. An R-basis {a1, . . . , an} of I is called a standard basis of
I if there are integers α1, . . . , αn ∈ Z such that {a1x

−α1 , . . . , anx
−αn} is an

R∞-basis of S∞.

The existence of a standard basis was shown by L.4. If a basis as in L.5
is given, then ai ∈ xαiS∞, but ai �∈ xαi−1S∞, because aix

−αi �∈ (x−1)S∞.
Hence αi = ordF ai (i = 1, . . . , n).

Theorem L.6. (a) I ∩ S∞ is a finite-dimensional vector space over K.
(b) If {a1, . . . , an} is a standard basis of I, then

dimK(I ∩ S∞) =
∑

ordF ai≤0

(− ordF ai + 1).

Proof. First of all, we have

I ∩ S∞ =
n⊕

i=1

K[x]ai ∩
n⊕

i=1

x− ord aiK[x−1](x−1)ai =
n⊕

i=1

G− ord ai
· ai.

Since Gα = 0 for α < 0 and dimK Gα = α + 1 for α ≥ 0, we get the desired
dimension formula.

Now let A′ be another extension ring of R in L with Q(A′) = L and let A′

be finitely generated as an R-module. Further, let I ′ �= {0} be a finitely gen-
erated A′-module with I ′ ⊂ L. Then I ′ also has a standard basis {a′1, . . . , a′n}.
If I ⊂ I ′ and {a1, . . . , an} is a standard basis of I, then there are equations

(5) ai =

n∑

j=1

ρija
′
j (i = 1, . . . , n; ρij ∈ R).

The determinant of this transformation Δ := det(ρij) is a polynomial in
R = K[x]. Let degΔ be the degree of this polynomial.
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Theorem L.7.

dimK I
′/I =

n∑

i=1

ordF ai −
n∑

i=1

ordF a
′
i = degΔ.

Proof. Let αi := ordF ai and α′
i := ordF a

′
i (i = 1, . . . , n). Then

{a1x
−α1 , . . . , anx

−αn} and {a′1x−α′

1 , . . . , a′nx
−α′

n}

are two R∞-bases of S∞ (L.4). From (5) we obtain

aix
−αi =

n∑

j=1

(xα′

j−αiρij)(a
′
jx

−α′

j ).

Let δ :=
∑n

i=1(α
′
i −αi). Then xδ ·Δ is the determinant of this system and so

is a unit in R∞. That is, we have

ν∞(xδΔ) =
n∑

i=1

(αi − α′
i) + ν∞(Δ) =

n∑

i=1

(αi − α′
i) − degΔ = 0,

and therefore
n∑

i=1

(αi − α′
i) = degΔ.

By the fundamental theorem for modules over a principal ideal domain,
there is a basis {c1, . . . , cn} of the R-module I ′ and there are polynomi-
als e1, . . . , en ∈ R such that {e1c1, . . . , encn} is an R-basis of I. Then
I ′/I ∼= R/(e1) ⊕ · · · ⊕R/(en), and it follows that dimK I

′/I =
∑n

i=1 deg ei =
deg
∏n

i=1 ei. The determinant of the transformation from {a′1, . . . , a′n} to
{c1, . . . , cn} is a unit of R, hence an element of K∗. The same is true for
the determinant of the transformation from {e1c1, . . . , encn} to {a1, . . . , an}.
From this it follows that degΔ = deg

∏
ei = dimK I

′/I.

Following F.K. Schmidt, we now dualize with respect to a trace σ of
L/K(x) in the sense of Appendix H. So let

ωL/K(x) = HomK(x)(L,K(x)) = L · σ,

with a fixed chosen trace σ. If L/K(x) is separable, we can of course choose
the canonical trace σL/K(x), and then we have a canonical duality.

If A and I are given as above, then I and also HomR(I, R) are finitely
generated A-modules that are free as R-modules. The canonical mapping
HomR(I, R) → HomK(x)(L,K(x)) is injective. We identify HomR(I, R) with
its image in L · σ. Then

HomR(I, R) = I∗ · σ,
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where I∗ ⊂ L is a finitely generated A-module with I∗ �= {0}. For example,
we have

HomR(A,R) = CA/R · σ
with a finitely generated A-module CA/R. This is called the (Dedekind) com-
plementary module of A/R (with respect to σ). Similarly, HomR∞

(S∞, R∞) =
CS∞/R∞

·σ with a finitely generated S∞-module CS∞/R∞
, which is called the

complementary module of S∞/R∞. In general, we have

(6) I∗ = {z ∈ L | σ(za) ∈ R for all a ∈ I},

and in particular,

(7) CA/R = {z ∈ L | σ(za) ∈ R for all a ∈ A}

as well as

(8) CS∞/R∞
= {z ∈ L | σ(zb) ∈ R∞ for all b ∈ S∞}.

Let B = {a1, . . . , an} be a standard basis of I. The elements a∨i of the dual
basis of B in HomR(I, R) can be written in the form a∨i = a∗i · σ (a∗i ∈ I∗),
and then B∗ := {a∗1, . . . , a∗n} is an R-basis of I∗, the dual basis of B with
respect to σ (H.9). For these we have

σ(aia
∗
j ) = δij (i, j = 1, . . . , n).

From
σ(aix

− ord ai · xord aja∗j ) = xord aj−ord aiδij = δij

we see that an R∞-basis of CS∞/R∞
is given by {b∗1, . . . , b∗n} with b∗j :=

xord aja∗j (j = 1, . . . , n), the dual to the basis {b1, . . . , bn} of S∞/R∞ (bi :=

aix
− ord ai).

Theorem L.8. dimK(I∗ ∩ x−2CS∞/R∞
) =
∑

ordF ai≥1(ordF ai − 1).

Proof. We have

I∗ =

n⊕

i=1

K[x]a∗i

and

x−2CS∞/R∞
=

n⊕

i=1

xord ai−2K[x−1](x−1)a
∗
i .

As in the proof of L.6, the formula in the statement of the theorem follows
immediately.

Setting χ(I) := dimK(I ∩ S∞) − dimK(I∗ ∩ x−2CS∞/R∞
), from L.6 and

L.8 we get the following
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Corollary L.9. χ(I) = n−∑n
i=1 ordF ai.

Furthermore, from this corollary and theorem L.7 we obtain

Corollary L.10. Under the assumptions of L.7 we have

χ(I ′) − χ(I) = dimK(I ′/I).

This is already in essence the Riemann–Roch theorem; we need only to
interpret this formula in the language of divisors and functions.

Let {a1, . . . , an} be a standard basis of A, so that by L.9 we have

χ(A) = dimK(A ∩ S∞) − dimK(CA/R ∩ x−2CS∞/R∞
) = n−

n∑

i=1

ordF ai.

Since A ∩ S∞ = K (L.2), we have

Corollary L.11. dimK(CA/R ∩ x−2CS∞/R∞
) =
∑n

i=1 ordF ai − n+ 1.

Hint. This formula has an interpretation in terms of differentials, which,
however, we will not use. In case L/K(x) is separable and σ is the canonical
trace, we can consider the intersection CA/Rdx ∩ x−2CS∞/R∞

dx inside the
module of differentials Ω1

L/K (G.10). Because x−2dx = −dx−1, we get using
L.11 the formula

dimK(CA/K[x]dx ∩ CS∞/K[x−1](x−1)
dx−1) =

n∑

i=1

ordF ai − n+ 1.

The mysterious factor x−2 from the earlier formula does not appear here. The
vector space CA/K[x]dx ∩ CS∞/K[x−1](x−1)

dx−1 is called the vector space of

“global regular differentials” with respect to A.
There is also the following formula for the “dual module” I∗ of I.

Theorem L.12. We have I∗ = CA/R :L I := {f ∈ L | f · I ⊂ CA/R} and
(I∗)∗ = I.

Proof. By definition of I∗ and CA/R (cf. (6) and (7)),

I∗ = {z ∈ L | σ(zb) ∈ R for all b ∈ I}

and
CA/R = {u ∈ L | σ(ua) ∈ R for all a ∈ A}.

For z ∈ CA/R :L I and an arbitrary b ∈ I we have σ(zb) ∈ σ(CA/R) ⊂ R.
Hence CA/R :L I ⊂ I∗. Conversely, if z ∈ I∗ and b ∈ I, then σ(zba) ∈ R for an
arbitrary a ∈ A, since ba ∈ I. It follows that zb ∈ CA/R and I∗ ⊂ CA/R :L I.

Using the above notation, B is the dual basis to the R-basis B∗ of I∗, i.e.,
I = (I∗)∗.
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In addition to I∗, one frequently considers also

(9) I ′ := {z ∈ L | zI ⊂ A} =: A :L I.

This is also a finitely generated A-module �= {0}. For z ∈ L∗, we have the
formula

(10) (z · I)′ = z−1 · I ′.

If CA/R is generated as an A-module by an element z, then by L.12,

(11) I∗ = CA/R : I = (z · A) : I = zI ′,

and as a result we have by the second statement of L.12,

Corollary L.13. If CA/R is generated as an A-module by one element, then

(I ′)′ = I.
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[HK] Hübl, R. and E. Kunz, On the intersection of algebraic curves and hyper-

surfaces. Math. Z. 227 (1998), 263–278.
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algebroid curve, 169
angle between curves, 120
Artin–Rees lemma, 222
ascending filtration, 199
associated graded

algebra, 200
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astroid, 173
asymptote, 121

Bézout’s theorem, 26, 42
base change, 237
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bounded below grading, 194
branch, 162
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divisor (class), 153
module, 245
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product, 261

sequence, 261

Cayley–Bacharach theorem, 47
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central projection, 73
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rule for traces, 110

Chinese remainder theorem, 218, 265
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of irreducible curves (birational), 36
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complete, 262
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homogeneous, 191

irreducible (of a curve), 10, 19
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conductor, 175
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conductor divisor (degree), 176

conic sections, 4
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Cremona transformation, 74
criterion
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cubics, 5
curvature, 129
curve

adjoint, 184
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reduced, 20
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into irreducible components, 10, 19

Dedekind complementary module, 149,
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Dedekind different theorem, 156
Dedekind’s formula for conductor and

complementary modules, 177
defined over, 3, 14
degree

-filtration, 199
form, 201
formula for valuations, 232
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dehomogenization, 17
denominator

ideal, 232
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dense subset of a curve, 34
derivation, 243
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different divisor (exponent), 156
differential, 242
differential form, 109
dimension
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discrete valuation ring, 224
divisor, 11, 20, 60, 131

canonical, 153
effective, 11, 20
principal, 60
special, 141

divisor (class) group
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on an abstract Riemann surface, 60

domain of definition of a rational map,
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double point, 166
dual basis, 245

with respect to a trace, 248
dualizing module, 245

effective divisor, 11, 20
ellipse, 4
elliptic curve, 5, 89
embedding dimension, 222
enveloping algebra, 240
epicycloid, 80
equality of fractions, 212
equation of integral dependence, 228
Euler’s formula, 192
Euler–Poincaré characteristic, 141

F-divisor, 133
Fermat curves, 5
field of rational functions
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filtered algebra, 199
filtration

separated, 199
trivial, 200

flex, 83
flex tangent, 83
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formula
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of Euler, 192
of Hurwitz, 156
of Jacobi, 118
of Reiss, 129

four-leaf rose, 6
Frobenius (number) problem, 183
full ring of quotients, 212
function field of an irreducible curve, 36
fundamental theorem

of algebra (graded), 192
of Max Noether, 45
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global regular differentials, 140, 281
graded
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ring, 191
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Grothendieck residue symbol, 109

harmonic center, 49
Hensel’s lemma, 164
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Hilbert

basis theorem for power series rings,
264

function, 195
Nullstellensatz, 233, 234
series, 197
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component (element), 191
coordinates, 13
homomorphism, 194
ideal, 18, 193
linear form (trace), 249
localization, 215

homogenization, 15, 201
of an ideal, 205

Humbert’s theorem, 122
Hurwitz formula, 156
hyperbola, 4
hyperelliptic function field (curve), 146
hypocycloid, 80

I-adic filtration, 200
I-complete, 262
ideal quotient, 257
indeterminate point

of a rational function, 33
of a rational map, 73

index of a divisor, 141
inflection point, 83
integral, 109

at a point, 163
integral closure (dependence), 228
integrally closed, 228
interpolation problem, 44
intersection

cycle, 42
multiplicity, 41, 169
scheme, 40
transversal, 41, 65

irreducibility criterion, 164
irreducible

at a point, 163
component, 10, 19
curve, 9, 18

j-invariant, 95
Jacobian criterion, 54

Krull dimension, 223
Krull intersection theorem, 223

Lüroth’s theorem, 78
lattice, 96
Laurent polynomial, 200
leading form, 201
lemma of Artin–Rees, 222
lemma of Nakayama, 221

in the graded case, 195
lemniscate, 6
length of a prime ideal chain, 223
limaçon of Pascal, 60
limit, 261
line at infinity, 15
linear system, 67
linearly equivalent, 132, 133
local ring

at p, 212
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2, 32
of a point on a curve (on an

intersection scheme), 40
localization, 212

Maclaurin’s theorem, 49
Miguel’s theorem, 72
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of an affine curve, 9
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model of an algebraic function field, 36
module of (Kähler) differentials, 242
Mordell–Weil theorem, 92
multiplicatively closed, 209
multiplicity

of a branch, 163
of a point on a curve, 51
of asymptotes, 121
of tangents, 53

Nakayama’s lemma, 221, 262
in the graded case, 195

Neil’s parabola, 5
Newton’s theorem on diameters, 49,

125, 126
Newton–Puiseux series, 172
node, 166
Noether different, 114, 242
nonsingular curve, 53
normal crossing, 166
numerical semigroup, 155

olympic emblem, 173
order

of a divisor at a point, 131
of a zero (pole), 59
with respect to a filtration, 199

ordinary
double point, 166
singularity, 170

orthogonal coordinate transformation,
119

Pappus’s theorem, 46
parabola, 4
parametric representation, 77

analytic (of a branch), 167
of affine curves, 79
polynomial, 80

Pascal’s theorem, 46, 71
permutability

of completion and residue classes, 269
of quotient with residue class rings,

213
of tensor and direct products, 240

of tensor products and localization,
239

point
μ-fold, 41
at finite distance, 15
at infinity, 15, 16
multiple (singular), 53
rational, 3, 14
regular (simple), 53
strange, 87

polar curve, 82
pole, 59, 82

divisor, 31, 132
of a rational function, 59
order, 59

positively graded, 194
principal divisor, 31, 60
problem of Frobenius, 183
product formula for conductors, 177
projective

closure, 15
coordinate transformation, 15
curve (line), 14
equivalence, 95
plane (n-space), 13
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proper flex, 83
Pythagorean triple, 12

quadratic transformation, 74
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rational curve, 36
rational function
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on a projective curve, 33
on an affine curve, 35

rational function field, 143
rational map, 73
rational points
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reciprocity theorem of Brill–Noether,
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curve, 20
polynomial, 9

Rees algebra, 200
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regularity criterion, 56
relatively prime ideals, 217
residue (symbol), 109
residue class filtration, 205
residue theorem, 112

for transversal intersections, 118
Riemann’s theorem, 153
Riemann–Roch theorem, 141, 152, 153
ring of rational functions, 33

semigroup
numerical, 155
symmetric, 183

separated filtration, 199
simple point, 53
singularity, 53

degree, 148
degree of an integral branch, 167

smooth curve, 53
socle, 28
special divisor, 141
standard

basis, 278
trace, 245

straightedge construction, 71, 72
strange point, 87
subscheme, 44
substitution homomorphism, 265
support of a divisor, 11, 20, 131

tacnode, 166
tangent, 51

of a branch, 166
tangent cone, 53
tensor, 237

product of algebras, 235
product of homomorphisms, 240

theorem of
Bézout, 26, 42
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Cayley–Bacharach, 47
Humbert, 122

Lüroth, 78
Maclaurin, 49
Max Noether, 45
Miguel, 72
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Newton, 49, 125, 126
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Riemann, 153
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trace, 247
transformation formula for residues
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transversal intersection, 41, 65
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valuation, 225
valuation ring, 224
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vanishing ideal of

a divisor, 11
a projective curve, 18
an affine curve, 8

vector space of multiples of a divisor,
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Weierstraß
℘-function, 96
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polynomial, 272
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sequence, 261
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