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Preface

This book is a slightly extended elaboration of a course on commutative ring
theory and plane algebraic curves that I gave several times at the Univer-
sity of Regensburg to students with a basic knowledge of algebra. I thank
Richard Belshoff for translating the German lecture notes into English and
for preparing the numerous figures of the present text.

As in my book Introduction to Commutative Algebra and Algebraic Geom-
etry, this book follows the philosophy that the best way to introduce commu-
tative algebra is to simultaneously present applications in algebraic geometry.
This occurs here on a substantially more elementary level than in my earlier
book, for we never leave plane geometry, except in occasional notes without
proof, as for instance that the abstract Riemann surface of a plane curve is
“actually” a smooth curve in a higher-dimensional space. In contrast to other
presentations of curve theory, here the algebraic viewpoint stays strongly in
the foreground. This is completely different from, for instance, the book of
Brieskorn—Knorrer [BK], where the geometric—topological-analytic aspects
are particularly stressed, and where there is more emphasis on the history
of the subject. Since these things are explained there in great detail, and with
many beautiful pictures, I felt relieved of the obligation to go into the topolog-
ical and analytical connections. In the lectures I recommended to the students
that they read the appropriate sections of Brieskorn—-Knérrer [BK]. The book
by G. Fischer [F] can also serve this purpose.

We will study algebraic curves over an algebraically closed field K. It is
not at all clear a priori, but rather to be regarded as a miracle, that there
is a close correspondence between the details of the theory of curves over C
and that of curves over an arbitrary algebraically closed field. The parallel
between curves over fields of prime characteristic and over fields of charac-
teristic 0 ends somewhat earlier. In the last few decades algebraic curves of
prime characteristic made an entrance into coding theory and cryptography,
and thus into applied mathematics.

The following are a few ways in which this course differs from other in-
troductions to the theory of plane algebraic curves known to me: Filtered
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algebras, the associated graded rings, and Rees rings will be used to a great
extent, in order to deduce basic facts about intersection theory of plane curves.
There will be modern proofs for many classical theorems on this subject. The
techniques which we apply are nowadays also standard tools of computer al-
gebra.

Also, a presentation of algebraic residue theory in the affine plane will be
given, and its applications to intersection theory will be considered. Many of
the theorems proved here about the intersection of two plane curves carry over
with relatively minor changes to the case of the intersection of n hypersurfaces
in n-dimensional space, or equivalently, to the solution sets of n algebraic
equations in n unknowns.

The treatment of the Riemann—Roch theorem and its applications is based
on ideas of proofs given by F.K. Schmidt in 1936. His methods of proof are
an especially good fit with the presentation given here, which is formulated
in the language of filtrations and associated graded rings.

The book contains an introduction to the algebraic classification of plane
curve singularities, a subject on which many publications have appeared in
recent years and to which references are given. The lectures had to end at some
point, and so resolution of singularities was not treated. For this subject I refer
to Brieskorn—Knérrer or Fulton [Fu]. Nevertheless I hope that the reader will
also get an idea of the problems and some of the methods of higher-dimensional
algebraic geometry.

The present work is organized so that the algebraic facts that are used
and that go beyond a standard course in algebra are collected together in
Appendices A-L, which account for about one-third of the text and are re-
ferred to as needed. A list of keywords in the section “Algebraic Foundations”
should make clear what parts of algebra are deemed to be well-known to the
reader. We always strive to give complete and detailed proofs based on these
foundations

My former students Markus Niibler, Lutz Pinkofsky, Ulrich Probst, Wolf-
gang Rauscher and Alfons Schamberger have written diploma theses in which
they have generalized parts of the book. They have contributed to greater
clarity and better readability of the text. To them, and to those who have
attended my lectures, I owe thanks for their critical comments. My colleague
Rolf Waldi who has used the German lecture notes in his seminars deserves
thanks for suggesting several improvements.

Regensburg
December 2004 Ernst Kunz



Conventions and Notation

(a)
(b)

By a ring we shall always mean an associative, commutative ring with
identity.

For a ring R, let Spec R be the set of all prime ideals p # R of R (the
Spectrum of R). The set of all maximal (minimal) prime ideals will be
denoted by Max R (respectively Min R).

A ring homomorphism p : R — S shall always map the identity of R to
the identity of S. We also say that S/R is an algebra over R given by p.
Every ring is a Z-algebra.

For an algebra S over a field K we denote by dimg S the dimension of S
as a K-vector space.

For a polynomial f in a polynomial algebra R[X7,..., X,], we let deg f
stand for the total degree of f and degy, f the degree in X;.

If K is a field, K(X;,...,X,) denotes the field of rational functions in
the variables X1,..., X, over K (the quotient field of K[X;,..., X,]).
The minimal elements in the set of all prime ideals containing an ideal I
are called the minimal prime divisors of I.
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Affine Algebraic Curves

This section uses only a few concepts and facts from algebra. It assumes a certain
famaliarity with polynomial rings K[ X1, ..., X,] over a field, in particular that K[X]
is a principal ideal domain, and that K[X1, ..., X,] is a unique factorization domain
in general. Also, ideals and quotient rings will be used. Finally, one must know that
an algebraically closed field has infinitely many elements.

We will study algebraic curves over an arbitrary algebraically closed field K.
Even if one is only interested in curves over C, the investigation of the Z-
rational points of curves by “reduction mod p” leads into the theory of curves
over fields with prime characteristic p. Such curves also appear in algebraic
coding theory (Pretzel [P], Stichtenoth [St]) and cryptography (Koblitz [K],
Washington [W]).

A?(K) := K? denotes the affine plane over K, and K[X,Y] the polynomial
algebra in the variables X and Y over K. For f € K[X,Y], we call

V(f) = {(z.y) € A*(K) | f(x,y) =0}

the zero set of f. We set D(f) := A2(K) \ V(f) for the set of points where f
does not vanish.

Definition 1.1. A subset I' C A%(K) is called a (plane) affine algebraic curve
(for short: curve) if there exists a nonconstant polynomial f € K[X,Y] such
that I' = V(f). We write I" : f = 0 for this curve and call f = 0 an equation
for I.

If Ko C K is a subring and I" = V(f) for a nonconstant polynomial
f € Ko[X,Y], we say that I" is defined over K and call Iy := I'N K¢ the set
of Kg-rational points of I.

Examples 1.2.

(a) The zero sets of linear polynomials aX + bY + ¢ = 0 with (a,b) # (0,0)
are called lines. If Ky C K is a subfield and a,b,c € Ky, then the line
g:aX +bY 4 ¢ = 0 certainly possesses Ky-rational points. Through two
different points of A%(Kj) there is exactly one line (defined over Kj).

(b) If I,..., I}, are algebraic curves with equations f; = 0 (i = 1,...,h),
then I := Ulhzlf 3 is also an algebraic curve. It is given by the equation
H?:l fi = 0. In particular, the union of finitely many lines is an algebraic
curve (see Figure 1.1).
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Fig. 1.1. The union of finitely many lines is an algebraic curve.

(c) Let I' = V(f) with a nonconstant f € K[Y] (so f does not depend on X).
The decomposition of f into linear factors

f=c

(2

(Y — a;)

d
=1

(ce K* =K\ {0}, a,...

,adEK)

shows that I" is the union of lines g; : Y — a; = 0 parallel to the X-axis.
(d) The zero sets of quadric polynomials

f=aX?*+bXY +cY?+dX +eY +g

(a,b,...g € K; (a,b,¢) #(0,0,0))

are called quadrics. In case K = C, Ky = R we get the conic sections,

whose R-rational points are shown in Figures 1.2 through 1.5.

Defined

Fig. 1.2. Ellipse: 5—22 + 3;—22 =1,
(a7b € R+)

N

Fig. 1.3. Hyperbola: );—22 - };—22
(a;b€Ry)

=1,

Fig. 1.4. Parabola: Y = aX?,
(a €Ry)

Fig. 1.5. Line pair: X2 -Y? =0
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as sections of a cone with a plane, they were thoroughly studied in an-
cient Greek mathematics. Many centuries later, they became important
in Kepler’s laws of planetary motion and in Newton’s mechanics. Unlike
the R-rational points, questions about the Q-rational points of quadrics
have, in general, nontrivial answers (cf. Exercises 2—4).

(e) The zero sets of polynomials of degree 3 are called cubics. The R-rational
points of some prominent cubics are sketched in Figures 1.6 through 1.9.
Cubic curves will be discussed in 7.17 and in Chapter 10.

Fig. 1.6. Neil’s semicubical parabola: Fig. 1.7. Folium of Descartes:
X -Y?=0 X+ X?-v?=0

N
\J

Fig. 1.9. Elliptic curve in Weierstrafl
Fig. 1.8. Cissoid of Diocles: normal form (el < ez < ez real):
Y2(1-X)-X3=0 Y2 =4(X —e1)(X — e2)(X — e3)

(f) Some curves with equations of higher degrees are sketched in Figures 1.10
through 1.15. For the origin of these curves and the others indicated above,
one can consult the book by Brieskorn-Knorrer [BK]. See also Xah Lee’s
“Visual Dictionary of Special Plane Curves” http://xahlee.org, and the
“Famous Curves Index” at the MacTutor History of Mathematics archive
http://www-history.mcs.st-and.ac.uk/history.

(¢) The Fermat curve F,, (n > 3) is given by the equation X" +Y" = 1. It
is connected with some of the most spectacular successes of curve theory
in recent years. Fermat’s last theorem (1621) asserted that the only Q-
rational points on this curve are the obvious ones: (1,0) and (0,1) in
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A

Fig. 1.10. Lemniscate: Fig. 1.11. Conchoid of Nichomedes:
X21-X%)-Y?2=0 (XP4+YH) (X -1)2-X?=0

C A
N

Fig. 1.13. Union of two circles:
Fig. 1.12. Cardioid: (X2 —4)24+(Y2-9)242(X2+4)(Y?—

(X?4+Y?+4Y)? —16(X*+Y?) =0 || 9) =0

Fig. 1.14. Three-leaf rose: Fig. 1.15. Four-leaf rose:
(X2 +Y?)24+3X°Y —Y® =0 (X2 +Y?)? —4X?Y2 =0

case n is odd; and (£1,0), (0,%£1) in case n is even. G. Faltings [Fa]
in 1983 showed that there are only finitely many Q-rational points on
F,,, a special case of Mordell’s conjecture proved by him. In 1986 G. Frey
observed that Fermat’s last theorem should follow from a conjecture about
elliptic curves (the Shimura—Taniyama theorem), for which Andrew Wiles
(see [Wi], [TW]) gave a proof in 1995, hence also proving Fermat’s last
theorem. These works are far beyond the scope of the present text. The
reader interested in the history of the problem and its solution may enjoy
Simon Singh’s bestselling book Fermat’s last theorem [Si].

Having seen some of the multifaceted aspects of algebraic curves, we turn
now to the general theory of these curves. The examples X2 4+ Y2 = 0 and
X? +Y? 41 = 0 show that the set of R-rational points of a curve can be
finite, or even empty. For points with coordinates in an algebraically closed
field, however, this cannot happen.
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Theorem 1.3. Every algebraic curve I' C A%(K) consists of infinitely many
points, and also A2(K) \ I is infinite.

Proof. Let I' = V(f) with f = ap + a1 X + --- + a,XP, where a; € K[Y]
(t=0,...,p) and a, # 0. If p = 0, we are in the situation of Example 1.2
(c) above, and since an algebraically closed field has infinitely many elements,
there is nothing more to be shown. Therefore, let p > 0. Since a, has only
finitely many zeros in K, there are infinitely many y € K with a,(y) # 0.
Then

F(X,y) = aoy) + ar(y) X + -+ + ap(y) X”

is a nonconstant polynomial in K[X]. If z € K is a zero of this polynomial,
then (z,y) € I'; therefore, I' contains infinitely many points. If € K is not
a zero, then (x,y) € D(f), and therefore there are also infinitely many points
in A2(K)\ I

An important theme in curve theory is the investigation of the intersection
of two algebraic curves. Our first instance of this is furnished by the following
theorem. It assumes a familiarity with unique factorization domains.

Theorem 1.4. Let f and g be nonconstant relatively prime polynomials in
K[X,Y]. Then

(a) V(f) N V(g) is finite. In other words, the system of equations
f(XﬂY):Oﬂ g(XaY):O

has only finitely many solutions in A?(K).
(b) The K-algebra K[X,Y]/(f,g) is finite-dimensional.

For the proof we will use

Lemma 1.5. Let R be a UFD with quotient field K. If f,g € R[X] are rela-
tively prime, then they are also relatively prime in K[X], and there exists an
element d € R\ {0} such that

d=af +bg
for some polynomials a,b € R[X].

Proof. Suppose that f = ah, g = Sh for polynomials «, 3, h € K[X], where h
is not a constant polynomial. Since any denominators that appear in h may
be brought over to « and 3, we may assume that h € R[X]. We then write

a=YaX, B=305X (a4, Bj € K).

Let 6 € R\ {0} be the least common denominator for the o; and ;. Then we
have

of = ¢h,  dg=1h
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with ¢ := da € R[X], ¢ := 68 € R[X]. A prime element of R that divides
0 cannot simultaneously divide ¢ and ), since & was chosen to be the least
common denominator. It follows that every prime factor of § must divide
h. Consequently, § is a divisor of h, and there are equations f = ¢h; and
g = ¥h; for some nonconstant polynomial h; € R[X]. This is a contradiction,
and therefore f and g are also relatively prime in K[X].

In K[X] we then have an equation

1=Af+Bg (A BeK[X]).

Multiplying through by a common denominator for all the coefficients of A
and B, we get an equation d = af 4 bg with a,b € R[X], and d # 0.

Proor or 1.4:
(a) By Lemma 1.5 we have equations

(1) dy = a1 f +big, dy = as f + bag,

with d; € K[X]\ {0}, d2 € K[Y]\ {0}, and a;,b; € K[X,Y] (s = 1,2). If
(x,y) € V(f) N V(g), then z is a zero of dy and y is a zero of da. Therefore,
there can be only finitely many (z,y) € V(f) NV (g).

(b) Suppose the polynomial dj, in (1) has degree my (k = 1,2). Divid-
ing a polynomial F' € K[X,Y] by d; using the division algorithm gives us
an equation F' = Gdy + Ry, where G, R; € K[X,Y] and degy R; < mj.
Similarly, we have Ry = Hds + Ra, where H, Ry € K[X,Y], degy Ra < my,
and degy Ro < ma. It follows that F' = Ry mod(f, g). Let &, 1 be the residue
classes of X,Y in A := K[X,Y]/(f,g). Then {&'7 |0 <i<m1,0 <5< ma}
is a set of generators for A as a K-vector space.

Using Theorem 1.4 one sees, for example, that a line g intersects an alge-
braic curve I' in finitely many points or else is completely contained in I'; for
if ' = V(f), then the linear polynomial g is either a factor of f, or f and ¢
are relatively prime. (In this simple case there is, of course, a direct proof that
does not use Theorem 1.4.) The sine curve cannot be the real part of an alge-
braic curve in A?(C) because there are infinitely many points of intersection
with the X-axis.

Next we will investigate the question of which polynomials can define a
given algebraic curve I'. Let f = 0 be an equation for I'. We decompose f
into a product of powers of irreducible polynomials:

f=cfit--- f" (ce K*, f; € K|X,Y] irreducible, «a; € N;).
Here f; and f; are not associates if ¢ # j.

Definition 1.6. J(I') := {g € K[X,Y] | g(x,y) = 0 for all (x,y) € I'} is
called the vanishing ideal of I
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Theorem 1.7. J(I') is the principal ideal generated by f1--- fn.

Proof. 1t is clear that I' = V(f1--- fa) = V(f1) U--- U V(fx) and therefore
fi- fned(). I ge J(I), it follows that I" C V(g). Suppose f;, for some
J € {1,...,h}, were not a divisor of g. Then the set V(f;) = V(f;) N V(g)
would be finite by 1.4. But this cannot happen by 1.3. Therefore f1--- fp is a
divisor of g and J(I") = (f1 -+ fn)-

Definition 1.8. Given J(I') = (f) with f € K[X,Y], we call f a min-
imal polynomial for I'. Its degree is called the degree of I', and KI[I'] :=
K[X,Y]/(f) is called the (affine) coordinate ring of I".

The minimal polynomial is uniquely determined by I' up to a constant
factor from K*, so the degree of I' is well-defined. Theorem 1.7 shows us how
to get a minimal polynomial for I" given any equation f = 0 for I". Conversely,
it is also clear which polynomials define I'.

We call a polynomial in K[X,Y] reduced if it does not contain the square
of an irreducible polynomial as a factor.

From 1.7 we infer the following.

Corollary 1.9. The algebraic curves I’ C A%(K) are in one-to-one correspon-
dence with the principal ideals of K[X,Y] generated by nonconstant reduced
polynomials.

In the following let I' € A?(K) be a fixed algebraic curve.

Definition 1.10. I is called irreducible if whenever I' = I'1 UI5 for algebraic
curves I; (i =1,2), then ' =13 or ' = I5.

Theorem 1.11. Let f be a minimal polynomial for I'. Then I is irreducible
if and only if f is an irreducible polynomial.

Proof. Let I' be irreducible and suppose f = fif2 for some polynomials f; €
K[X,Y] (i =1,2). Then I = V(f1) UV(f2). If f1 and fo were not constant,
then we would have V(f1) = I" or V(f2) = I'. But then it would follow that
f1 € (f) or fa € (f), and this cannot happen, since the f; are proper factors
of f. Therefore, f is an irreducible polynomial.

Conversely, suppose f is irreducible and let I" = I} Ul be a decomposition
of I' into curves I; (i = 1,2). If f; is a minimal polynomial for I3, then
feJgrsy) = (fi), ie., fis divisible by f1 (and by f3). Since f is irreducible,
we must have that f is an associate of f; for some ¢, and therefore I' = I;.
Hence I is irreducible.

Among the examples above one finds many irreducible algebraic curves.
One can check, using appropriate irreducibility tests, that their defining poly-
nomials are irreducible.
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Corollary 1.12. The following statements are equivalent:

(a) I is an irreducible curve.
(b) J(I') is a prime ideal in K[X,Y].
(¢) K[I'] is an integral domain.

The irreducible curves I' C A?(K) are in one-to-one correspondence with the
principal ideals # (0), (1) in K[X,Y] that are simultaneously prime ideals.

Theorem 1.13. Every algebraic curve I' has a unique (up to order) repre-

sentation
I'=I1yU---uUly,

where the I; are irreducible curves (i = 1,...,h) corresponding to the decom-
position of a minimal polynomial of I' into irreducible factors.

The proof of the uniqueness starts with an arbitrary representation I" =
IU-- Ul If f, respectively f;, is a minimal polynomial of I, respectively I
(t=1,...,h), then (f) = (f1--- fn), because f and fi - -- f}, are reduced poly-
nomials with the same zero set. The f; are therefore precisely the irreducible
factors of f, and as a result, the I'; are uniquely determined by I.

We call the I the irreducible components of I'. Theorem 1.4 (a) can now be
reformulated to say: Two algebraic curves that have no irreducible components
in common intersect in finitely many points.

The previous observations allow us to make the following statements about
the prime ideals of K[X,Y].

Theorem 1.14.

(a) The mazimal ideals of K[X,Y] are in one-to-one correspondence with
the points of A%2(K): Given a point P = (a,b) € A%(K), then Mp :=
(X —a,Y —b) € Max K[X,Y], and every mazimal ideal is of this form
for a uniquely determined point P € A%(K).

(b) The nonmaximal prime ideals (# (0), (1)) of K[X,Y] are in one-to-one
correspondence with the irreducible curves of A?(K): These are exactly the
principal ideals (f) generated by irreducible polynomials.

Proof. The K-homomorphism K[X,Y] — K, where X — a and Y — b is
onto and has kernel M p. Since K[X,Y]/Mp = K is a field, Mp is a maximal
ideal.

Now let p € Spec K[X, Y], p # (0). Then p contains a nonconstant polyno-
mial and therefore also contains an irreducible polynomial f. If p = (f), then
p is not maximal, for p C Mp for all P € V(f) and V(f) contains infinitely
many points P by 1.3.

On the other hand, if p is not generated by f, then p contains a polynomial
g that is not divisible by f. As in the proof of 1.4 we have two equations of
the form (1). Since d; € K[X] decomposes into linear factors, p contains a
polynomial X — a for some a € K. Similarly, p contains a polynomial ¥ — b
(b € K), and it follows that p = (X —a,Y — ).
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If I" is an algebraic curve, then the maximal ideals of K[X,Y] that con-
tain J(I') are precisely the 9Mp for which P € I'. The other elements of
Spec K[X,Y] that contain an arbitrary I' are the J(I3), where the I are
the irreducible components of I". The coordinate ring K[I'] of I' “knows” the
points of I" and the irreducible components of I

Corollary 1.15.

(a) Max K[I'| = {Mp/J(I") | P € I'}.
(b) Spec K[I'|\ Max K[I'| = {J(L3)/ T (") }i=1,....h-

We will see even closer relationships between algebraic curves in A?(K)
and ideals in K[X,Y] as we learn more about algebraic curves.

Definition 1.16. The divisor group D of A?(K) is the free abelian group on
the set of all irreducible curves in A%(K). Its elements are called divisors on
A%(K).

A divisor D is therefore a (formal) linear combination

D= Z npl (np € Z, mnp #0 for only finitely many I"),
I irred.

deg D :=> nprdeg I is called the degree of the divisor, and D is called effec-
tive if np > 0 for all I'. For such a D we call

Supp(D) := U r

nr>0

the support of D. This is an algebraic curve, except when D = 0 is the zero
divisor, i.e., np = 0 for all I".

One can think of a divisor as an algebraic curve whose irreducible com-
ponents have certain positive or negative multiplicities (weights) attached.
For example, it is sometimes appropriate to say that the equation X2 =
represents the Y-axis “counted twice.”

IfD= Z?:l n;[; is effective, and f; is a minimal polynomial for I, then
we call fi" --- f;"" a polynomial for D,

JD) = (fi" ")
the ideal (vanishing ideal) of D, and
K[D] = K[X,Y]/J (D)

the coordinate ring of D. These concepts generalize the earlier ones introduced
for curves.

It is clear that the effective divisors of A?(K) are in one-to-one correspon-
dence with the principal ideals # (0) in K[X, Y], and the ideal (1) corresponds
to the zero divisor. The maximal ideals of K[D] are in one-to-one correspon-
dence with the points of Supp(D), and the nonmaximal prime ideals # (0), (1)
are in one-to-one correspondence with the components I" of D with np > 0.
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1 Affine Algebraic Curves

Exercises

1.

Let K be an algebraically closed field and Ky C K a subfield. Let I' C
A%(K) be an algebraic curve of degree d and let L be a line that intersects
I' in exactly d points. Assume that I" and L have minimal polynomials
in Ko[X,Y]. Show that if d — 1 of the intersection points are K-rational,
then all of the intersection points are Ky-rational.

Let K be an algebraically closed field of characteristic # 2 and let Ky C K
be a subfield. Show that the Ky-rational points of the curve I : X2 +Y?2 =
1 are (0,1) and

2
(%%) with t € Ko, t>+1#0.
(Consider all lines through (0,—1) that are defined over Ky and their
points of intersection with I".)

(Diophantus of Alexandria ~ 250 AD.) A triple (a,b,c) € Z?3 is called
“Pythagorean” if a® 4+ b?> = 2. Show, using Exercise 2, that for A, u,v €
Z, the triple A(2uv,u?® — v* u? + v?) is Pythagorean, and for every
Pythagorean triple (a, b, ¢), either (a,b,c) or (b, a,c) can be represented in
this way.

The curve in A?(K) with equation X2+ Y? = 3 has no Q-rational points.
Convince yourself that the curves in 1.2(e) and 1.2(f) really do appear as
indicated in the sketches. Also check which of those curves are irreducible.
Sketch the following curves.

(@) 4 X2+ (Y +1)? - 1P+ (Y?*-X?) (Y +1)=0

(b) (X2 +Y?)° —16X2Y3(X2-Y?)?2=0



2

Projective Algebraic Curves

Besides facts from linear algebra we will use the concept of a homogeneous
polynomial; see the beginning of Appendix A. Specifically, Lemma A.8 and Theorem
A.4 will play a role.

In studying algebraic curves one has to distinguish between local and global
properties. Beautiful global theorems can be obtained by completing affine
curves to projective curves by adding “points at infinity.” Here we will discuss
these “compactifications.” A certain familiarity with the geometry of the pro-
jective plane will be useful. The historical development of projective geometry
is sketched out in Brieskorn—Knérrer [BK]. The modern access to projective
geometry comes at the end of a long historical process.

The projective plane P2(K) over a field K is the set of all lines in K3
through the origin. The points P € P?(K) will therefore be given by triples
(wo, 1, 22), With (zo, 21, 22) € K3, (20, 71,72) # (0,0,0), where (xq, x1,12) =
(Yo, y1,ye) if and only if (yo, y1,y2) = Mg, x1,22) for some A € K*. The triple
(20,21, 22) is called a system of homogeneous coordinates for P = (xq, x1, T2).
Observe that there is no point (0,0,0) in P?(K). Two points P = (zg, 1, T2)
and Q = (yo, y1, y2) are distinct if and only if (xg,x1,22) and (yo,y1,y2) are
linearly independent over K.

Generalizing P2(K), one can define n-dimensional projective space P™(K)
as the set of all lines in K"*! through the origin. The points of P"(K) are
the “homogeneous (n + 1)-tuples” (zo,...,x,) with (zo,...,xs) # (0,...,0).
As a special case we have the projective line P1(K) given by

PYK) = {{zo,21) | (wo,21) € K*\ (0,0)}.

Still more generally, given any K-vector space V', there is an associated pro-
jective space P(V') defined as the set of all 1-dimensional subspaces of V.

In the following let K again be an algebraically closed field, and let
KXo, X1, X2] be the polynomial algebra over K in the variables X, X7, Xs.
If F e K[Xo, X1, Xs] is a homogeneous polynomial and P = (g, z1,22) is a
point of P?(K), we will call P a zero of F if F(xg,z1,22) = 0. If deg F = d,
then F(AXo, A\X1,AX2) = M F(Xo, X1, X2) for any A € K, and therefore
the condition F(zg,z1,22) = 0 does not depend on the particular choice of
homogeneous coordinates for P. So we can then write F'(P) = 0. The set
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V. (F)i= {P € P(K) | F(P) =0}
is called the zero set of F in P?(K).

Definition 2.1. A subset I' C P?(K) is called a projective algebraic curve if
there exists a homogeneous polynomial F' € K[Xg, X7, X2] with deg F' > 0
such that I' = V(F). A polynomial of least degree of this kind is called a
minimal polynomial for I', and its degree is called the degree of I' (deg I').

We shall see in 2.10 that the minimal polynomial is unique up to multipli-
cation by a constant A € K*.

If Ko C K is a subring and I" has a minimal polynomial F with F' €
Ky[Xo, Yy, Zp], then we say that I' is defined over Ky. The points P € I" that
can be written as P = (g, x1,z2) with x; € Kj are called the Ky-rational
points of I'.

Example 2.2. Curves of degree 1 in P?(K) are called projective lines. These
are the solution sets of homogeneous linear equations

aoXo + a1X1 + a2X2 =0 (ao,al,aQ) % (0,0,0)

A line uniquely determines its equation up to a constant factor A € K*.
Furthermore, through any two points P = (xg,x1,z2) and Q = (yo,y1,y2)
with P # @ there is exactly one line g through P and @, for the system of
equations

apxo + a1 + agxe = O,

aoYo + a1y1 + axy2 = 0,

has a unique solution (ag, a1, as) # (0,0,0) up to a constant factor. The line
is then

g= {<)\($0,I1,I2) +/’L(y07ylvy2)> | )\,,LL € K not both = 0}7

which we abbreviate as ¢ = AP + u@. Also note that three points P; =
(Xoiy T14, ;) (i = 1,2,3) lie on a line whenever (xo;,214,22;) are linearly
dependent over K.

Two projective lines always intersect, and the point of intersection is
unique if the lines are different. This is clear, because a system of equations

apXo + a1 X1 +ax Xy =0,
boXo + 01 X1+ 062X =0,

always has a nontrivial solution (zg,z1,22) that is unique up to a constant
factor if the coefficient matrix has rank 2.
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A mapping ¢ : P?(K) — P?(K) is called a (projective) coordinate trans-
formation if there is a matrix A € GL(3,K) such that for each point
<.Z‘0,JI1,.Z’2> € PQ(K),

C(<.Z'0,.’I,‘1,J,‘2>) = <(l‘0,$1,.’L‘2)A>.

The matrix A is uniquely determined by ¢ up to a factor A € K*: First of
all, it is clear that AA defines the same coordinate transformation as A. If
B € GL(3, K) is another matrix that defines ¢, then BA~! is the matrix of
a linear transformation that is an automorphism of K3 that maps all lines
through the origin to themselves; it follows that B = AA for some A € K*.

One applies coordinate transformations to bring a configuration of points
and curves into a clearer position. Let I' = V4 (F) be a curve, where F' is
a homogeneous polynomial, and let ¢ be a coordinate transformation with
matrix A. Then

o(I) = Vi (FA),

where (in the above notation)
FA(Xo, X1,X2) = F((Xo, X1, X2)A™H).

Thus F4 is homogeneous with deg F4 = deg F'. A coordinate transformation
maps a projective curve to a projective curve of the same degree, and we tend
to identify two curves that differ only by a coordinate transformation.

After this summary of facts, which we assume to be known, we come to
the “passage from affine to projective.”

We have an injection given by

it A*(K) - PX(K), i(z,y) = (1),

from the affine to the projective plane. We identify A?(K) with its image
under i. Then A%(K) is the complement of the line Xy = 0 in P?(K). This
line is called the line at infinity of P2(K); the points of this line are called
points at infinity, and the points of A%(K) are called points at finite distance.
For P = (1,z,y) € P?(K) we call (z,y) the affine coordinates of P.

Given a polynomial f € K[X,Y] with deg f = d, we can define by

a X1 Xy
1 Xo, X1, Xo) i= X0f | =, =
( ) f( 0, 1, 2) Of <X0’X0>
a homogeneous polynomial f € K[Xo, X1, X5] with deg f = d. It is called the
homogenization of f.

Definition 2.3. Let I' C A?(K) be an algebraic curve with minimal polyno-
mial f € K[X,Y] and let f be the homogenization of f. Then the projective
algebraic curve I' = V (F) is called the projective closure of f.
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The curve I’ depends only on the curve I' and not on the choice of a
minimal polynomial for I'. By 1.8 this polynomial is uniquely determined by
I' up to a factor A € K*, and it is obvious that X} = )\f.

We can give the following description for f: If f is of degree d and

(2) f=fo+fi+-+ fa,

where the f; are homogeneous polynomials of degree i (so in particular fg4 # 0),
then

)
f=Xfo(X1, Xa) + X§ (X1, Xo) + -+ Xofa1(X1, Xa) + fa(X1, Xo).

It follows that
Lemma 2.4. I'=1NA%*K).

The points of I’ \ I" are called the points at infinity of I'. The next lemma
shows how to calculate them.

Lemma 2.5. Every affine curve I' of degree d has at least one and at most d
points at infinity. These are the points (0, a,b), where (a,b) runs over all the
zeros of fq, where I = V(f) and f is written as in (2).

Proof. I'\ I consists of the solutions (zo, 1, 22) to the equation f = 0 with
xo = 0. By (3) the second assertion of the lemma is satisfied. A homogeneous
polynomial f; of degree d decomposes into d homogeneous linear factors by
A 4. The first assertion of the lemma follows from this.

Examples 2.6. (a) For an affine line
g:aX +bY +¢=0, (a,b) # (0,0),
the projective closure is given by
g:cXo+aX; +0Xs=0.

The point at infinity on g is (0, b, —a). Two affine lines are then parallel if and
only if they meet at infinity, i.e., their points at infinity coincide.

(b) The ellipse f—; + }b/—; =1 (a,b € R;) has two points at infinity, (0, a, +-ib),
which, however, are not R-rational. The hyperbola f—; - };—; =1 (a,b €Ry)
has two points at infinity, (0, a, £b), which are both R-rational. The parabola
Y = aX? (a € R,) has exactly one point at infinity, namely (0,0,1). All
circles (X —a)? + (Y —b)?2 = 72 (a,b,r € R) have the same points (0, 1, +i)
at infinity.
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If h:apXg+ a1 X1 4+ a2 Xs = 0 is a projective line different from the line
at infinity hoo : Xo = 0, then (ay,az2) # (0,0), and h = G, where g is given by
the equation a1 X + a2Y 4 ag = 0. Consequently, there is a bijection given by
g +— ¢ from the set of affine lines to the set of projective lines # h,. There is
a similar result for arbitrary algebraic curves, as we will now see.

For a homogeneous polynomial F' € K[Xg, X1, X5] we call the polynomial
fin K[X,Y] given by f(X,Y) = F(1,X,Y) the dehomogenization of F (with
respect to Xp). If Xy is not a factor of F', then

deg f = deg F
and .
F= f7
as one sees immediately from equation (3).

Theorem 2.7. Let A be a projective algebraic curve with minimal polynomial
F and let I := AN A?(K). Then

(a) If A is not the line at infinity, then I' is an affine algebraic curve.
(b) If A does not contain the line at infinity, then the dehomogenization f of
F' is a minimal polynomial of I' and

A= ﬁ, its projective closure.

Proof. (a) By the hypotheses on A, f is not constant and I' = V(f) is an
affine curve.
(b) We notice first of all that for polynomials f1, fo € K[X,Y], the formula

(4) fifs=hfs

holds, as one easily sees by the definition (1) of homogenization.

Let f=cfi" --- f,'" be a decomposition of f into irreducible factors (c €
K*, a; € Ny, f; irreducible, f; o f; for i # j). Because X is not a factor of
F

)

F=cfi" o f, "
by the above formula (4), and because F' is a minimal polynomial of A, we
must have oy = -+ = ap, = 1. Also, A = I' by definition of I".

Corollary 2.8. The affine algebraic curves are in one-to-one correspondence
with the projective algebraic curves that do not contain the line hoo at infinity.
Other than hs, the only other projective curves are of the form I'Uheo, where
I' is an affine curve.

Corollary 2.9. Every projective curve A consists of infinitely many points,
and also P2(K)\ A is infinite.
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This follows immediately from the corresponding result for affine curves
(1.3).

Under a projective coordinate transformation, the line at infinity Xo = 0 is
in general sent to some other line, and conversely, the line at infinity in the new
coordinate system came from some other line. By an appropriate choice of a
coordinate system, any line can be the line at infinity. More specifically: given
four points P; € P*(K) (i = 0,1,2,3), no three of which lie on a line, there
is a unique coordinate transformation ¢ of P?(K) such that c¢(P) = (1,0,0),
c(Py) = (0,1,0), ¢(P2) = (0,0,1), and ¢(Ps) = (1,1,1). If g is a projective
line and P # @ are points not on g, then one can always find a projective
coordinate transformation that maps ¢ to the line at infinity, maps P to
the origin (0,0) in the affine plane, and maps @ to an arbitrary given point
(a,b) # (0,0). We will make frequent use of these facts.

Corollary 2.10. The minimal polynomial of a projective curve A is uniquely
determined by A up to a constant factor # 0.

Proof. If F is a minimal polynomial of A and c¢ is a coordinate transformation
with matrix A, then F'4 is a minimal polynomial of ¢(I"). We can assume that
¢(I") does not contain the line at infinity (in the new coordinate system). Then,
by 2.7, F4 is the homogenization of the minimal polynomial of the affine part
of ¢(I'). This is unique up to a constant factor # 0, and therefore so are F'4
and F.

Definition 2.11. The wvanishing ideal of a projective curve A is the ideal
J+(A) C K[Xo, X1, X3] generated by all homogeneous polynomials that van-
ish at all points of A.

J+(A4) is therefore a homogeneous ideal (A.7).

Theorem 2.12. J, (A) is the principal ideal generated by any minimal poly-
nomial of A.

Proof. We can assume that A does not contain the line at infinity. Let F'
be a minimal polynomial for A and let G € J4(A) be homogeneous. Write
G = X§{'H, where H is not divisible by X. Then h := H(1,X,Y) is contained
in the vanishing ideal of I" := ANAZ?(K). This is generated by f := F(1, X,Y);
hence h = fg for some g € K[X,Y]. By (4) we have H = h = fg = Fg, and
so G € (F).

As in the affine case we call a curve A C P?(K) irreducible provided that

whenever A = Ay U Ay for projective curves A; (i = 1,2), then A = Ay or
A=A,

Corollary 2.13. The following are equivalent:

(a) A is irreducible.
(b) The minimal polynomial of A is an irreducible polynomial.
(c) T4+ (4) is a (homogeneous) prime ideal.
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Proof. (a) = (b). Let F be a minimal polynomial of A and suppose that
F = P F; for some F; € K[Xo,X1,Xz2] (i = 1,2). These polynomials are
homogeneous by A.3, and we have A =V, (Fy) U V4 (Fz). Hence without loss
of generality A = V;(F1). Then F; is divisible by F', and it follows that Fj
must be constant. Therefore, F' is irreducible.

(b) = (c) is clear.

(c) = (a). Let A = A;UA,, where the curves A; have minimal polynomials
F; (i =1,2). For F := F1F; we have F' € J,(A). Therefore F} € J;(A) or
Fy € J+(A), because J4(A) is a prime ideal. Then, however, A C V(F) =
A, for an i € {1,2}, and therefore A = A;.

Corollary 2.14. (a) (Decomposition into irreducible components) Every pro-
Jjective algebraic curve has a unique (up to order) representation

A=A U---UAy,

where the A; (i = 1,...,h) are irreducible curves. These are in one-to-
one correspondence with the irreducible factors of a minimal polynomial
for A.

(b) If " is an affine curve with irreducible decomposition
I'=Iu---Uly,

then R . .
I'=nu---Uly,

and the T are the irreducible components of I.

This follows by 1.13 and by the previous observation about the affine and
projective minimal polynomials.

In 1.14 the prime ideals of K[X,Y] were described. We now do the same
for the homogeneous prime ideals in K[X, X7, Xs].

Theorem 2.15. K[X, X1, Xa]| has the following homogeneous prime ideals
and no others:

(a) The zero ideal.

(b) The principal ideals (F) generated by irreducible homogeneous polynomials
F #£ 0. These are in one-to-one correspondence with the irreducible curves
in P?(K).

(¢) The ideals pp := (aX1 —bXo, aXo—cXo,bXo—cX1), where P = {a,b,c) €
P2(K). These prime ideals are in one-to-one correspondence with the
points of P?(K).

(d) The homogeneous maximal ideal (Xo, X1, X2).
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Proof. Let p be a homogeneous prime ideal in K[Xg, X1, X2]. If p # (0), then p
contains an irreducible homogeneous polynomial F' # 0. If p # (F), then there
is a homogeneous polynomial G in p that is not divisible by F'. According to 1.5
the ideal (F, G) contains, and therefore p contains, a homogeneous polynomial
d1 # 0 in which X5 does not appear, and a homogeneous polynomial do # 0 in
which X7 does not appear. Now d; and dy decompose into homogeneous linear
factors by A.4, and so p must contain linear polynomials of the form aX; —
bXo # 0, a’ X2 — V' X # 0. One sees easily that an ideal of the form pp (P €
P?(K)) is then also contained in p. Such a prime ideal is already generated by
two homogeneous linear polynomials, and it follows that K[X, X1, Xo|/pp =
K|[T], a polynomial ring in one variable. The only homogeneous prime ideals in
this ring are (0) and (7'). The preimages of these prime ideals in K[X¢, X1, X3]
are pp and (Xo, X1, X2). Hence we must have p = pp or p = (X, X1, X2).

As in the affine case, the divisor group of P?(K) is defined as the free
abelian group on the set of irreducible projective curves A. For a divisor
D =3 "naA, the degree of D is defined by

deg D := ZnA deg A.

D is called effective if na > 0 for all A. For an effective divisor D we call the
A with na > 0 the components of D, and

Supp(D) := U A

na>0

is called the support of D. If a divisor is given in the form D = Z?Zl n;4; and
if F; is a minimal polynomial of A; (i = 1,...,h), then we assign to D the
polynomial F' := H?Zl F["". Conversely, since the factors of a homogeneous
polynomial are themselves homogeneous (A.3), every homogeneous polyno-
mial F' # 0 determines, by decomposition into irreducible factors, a unique
effective divisor, which for simplicity we also denote by F. We can choose to
think of F' as either a homogeneous polynomial # 0 in K|[Xy, X1, X2], or as
the associated divisor in P?(K). From now on, effective divisors in P?(K) will
be called “curves in P2(K).” These are the curves we considered earlier, whose
irreducible components where furnished with “weights” from N. If A is a curve
with decomposition into irreducible components A = Ay U---U A4y, it will be
identified with the effective divisor Ay + --- + Ap. Divisors of this kind will
be called “reduced curves” in the future. These correspond to the reduced
homogeneous polynomials # 0 in K[Xo, x1, z2]. The curve A is defined over
a subfield Ky C K if an appropriate associated polynomial can be chosen in
Ko[Xo, X7, Xo).

If the line at infinity is not a component of the curve A = 2?21 n;4; (and
this can always be arranged by choosing an appropriate coordinate system),

then we call I' := Z?Zl n;; with I; .= A;NA%(K) the affine curve belonging
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to I'. It corresponds to the dehomogenization of the polynomial associated
with A.

Exercises

1. Determine the points at infinity for the curves in 1.2(e) and 1.2(f).

2. A projective quadric is a curve Q (i.e., an effective divisor) in P?(K) of
degree 2. Show that if char K # 2, then in an appropriate coordinate
system, () has one of the following equations:
(a) X¢+ X?+ X3 =0 (nonsingular quadric)
(b) X2+ X% = 0 (pair of lines)
(c) X2 =0 (a double line)

3. Show that if char K # 2 and i := v/—1, then

a:PHK) — PY(K), a({u,v)) = Quv,u® —v%i(u® +v?)),

gives a bijection of the projective line P*(K) with the nonsingular quadric
(cf. Exercises 2 and 3 in Chapter 1).
4. Let ¢ : P2(K) — P?(K) be the coordinate transformation that sends the
points
<17 0; 0>7 <Oa 17 0>a <713 0, 1>7 <07 17 1>

to the points
(1,0,0), (0,1,0), (0,0,1), (1,1,1).

(a) Determine the equation of the curve
X2Xoy — XoX7 4 XoX3 —2X0X1 Xy — X7 X0 —2X, X5 =0

in the new coordinate system.
(b) Is the curve irreducible?
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The Coordinate Ring of an Algebraic Curve
and the Intersections of Two Curves

From now on, we assume that the reader is familiar with the material in Appendices
A and B. Above all, we will use the methods contained in Appendix B repeatedly.
We will also apply the elementary Lemmas D.5 and I.4.

Let F be an algebraic curve in P?(K), i.e., F' is an effective divisor according
to our convention in Chapter 2. At the same time, F' denotes a homogeneous
polynomial in K[Xo, X7, X2| that defines the curve. Instead of Supp(F') we
also write Vy (F'):

Supp(F) = V. (F) = {P € P(K) | F(P) = 0}.

Definition 3.1. The residue class ring K[F] := K[Xo, X1, X5]/(F) is called
the projective coordinate ring of F'.

Since F' is homogeneous, K[F] is a graded K-algebra (A.7). A coordi-
nate transformation on P?(K) with a matrix A defines a K-automorphism of
K[Xo, X1, X2] given by

(XOaXlaXQ) = (X07X1aX2) : Ail-

Under this automorphism, F becomes F4, which corresponds to a curve in
the new coordinate system, and it induces a K-isomorphism

K[Xo, X1, X5]/(F) = K[Xo, X1, Xa]/(F4).

The coordinate ring is therefore independent—up to K-isomorphism—of the
choice of coordinates.

We can, and will, choose the coordinates such that Xy does not divide
F. The curve f in A?(K) = P?(K) \ V4+(Xo) corresponding to F is then the
dehomogenization f of F, i.e., f is the polynomial in K[X,Y] with

FX,Y)=F(1,X,Y).

We have already introduced the affine coordinate ring K[f] = K[X,Y]/(f)
in Chapter 1. A point P = (a,b) € A?(K) belongs to Supp(f) = V(f) if and
only if f € Mp = (X —a,Y —b). In this case we denote by mp := Mp/(f)
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the image of Mp in K[f]. Then mp € Max K[f], and every maximal ideal of
K|[f] is of this form for a uniquely determined P € Supp(f).

If ¢ is another curve and ) is the residue class of the polynomial ¢ in K[f],
then there is a one-to-one correspondence between the maximal ideals m of
K[f] with ¢ € m and the points of V(f) N V(g). The question, “How many
points of intersection do the curves have?” (or equivalently, “How many solu-
tions does the system of equations f = 0, g = 0 have?”) can be reformulated
as, “How many maximal ideals are there in K[f] that contain ¢?”

We now endow K[X,Y] with its degree filtration G, and K[f] with the
corresponding residue class filtration F induced by G (see Appendix B).
According to B.4(a), K[Xo, X7, X2] can be interpreted as the Rees algebra
Rg K[X,Y], and the homogenization of a polynomial from K[X,Y] in the
sense of Appendix B is the usual one. Since F' is the homogenization f* of f,
it follows from B.8 and B.12 that:

Remark 3.2. KI[F|= Rz K[f].
Proof.
K[F] = K[Xo, X1, X5]/(F) = Rg K[X,Y]/(f")
~ Re(K[X,Y]/(f)) = Rr K[f).
One can deduce the following immediately from B.5.

Remark 3.3. The image ¢ of Xy in K[F] is not a zerodivisor, K[z¢] is a
polynomial algebra, and there are K-isomorphisms

K[f] = K[F]/(xo — 1),
gry K[f] = K[F]/(x0).

If f, is the homogeneous component of largest degree of f (therefore the
leading form Lgf using the degree filtration), then B.8 and B.12 also yield

Remark 3.4. gr-K[f]= K[X,Y]/(fp).

Il

Since f, describes the points at infinity of f, gr K[f] has something to
do with the points at infinity. By A.12(a) we know the Hilbert function of
grr K[f]. We have:

Remark 3.5.

k+1 for0<k <p,

dimpg Fy/Fr—1 = {p for p < k.

Now let two curves F, G in P?(K) be given, and assume that they have
no common components.

Definition 3.6. K[F NG| := K[Xo, X1, X2]/(F,G) is called the projective
coordinate ring of the intersection of F' and G.
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If ¥ denotes the image of G in K[F], and & the image of F' in K[G], then
by the Noether isomorphism theorem,

K[F NGl = K[F]/() = K[G]/(®),

where @ is not a zerodivisor on K[G] and ¥ is not a zerodivisor on K [F].
Now let f and g be two affine curves with deg f =: p, degg =: ¢, and
assume that they have no common components.

Definition 3.7. K[f Ng] := K[X,Y]/(f,g) is called the affine coordinate
ring of the intersection of f and g¢.

We have K[f Ng] = K[f]/(¢) = K|[g]/(¢), where 9 denotes the image of
g in K[f] and ¢ the image of f in K|[g]. Since f and g are relatively prime, ¢
and ¢ are not zerodivisors in their respective rings.

From what was said above, the points of V(f) N V(g) are in one-to-one
correspondence with the maximal ideals of K[fNg|. Also, K[f Ng] is a finite-
dimensional K-algebra by 1.4. How big is its dimension? If f and g do not
have any points at infinity in common, the observations about Rees algebras
and associated graded algebras in Appendix B give us the answer immediately,
which we will now show.

We will denote by F the residue class filtration induced on K[f N g] by
the degree filtration G of K[X,Y]. Let f, = Lgf and g, = Lgg be the homo-
geneous components of largest degree of f and g.

By 2.5, to say that f and g have no points at infinity in common is equiv-
alent to saying that f, and g, are relatively prime. In concrete cases one
can decide using the Euclidean algorithm whether this condition is satisfied,
without being forced to calculate the points at infinity explicitly (Exercise 4).
That f, and g, are relatively prime is equivalent to the statement that f, is
not a zerodivisor modulo g4, and g, is not a zerodivisor modulo f,,.

Let F and G be the projective curves associated with f and g, that is,
the homogenizations of f and g in K[Xg, X1, X3]. We have deg F = p and
deg G = q. Again, B.5, B.8, and B.12 are applicable. We get the following.

Theorem 3.8. Suppose f and g have no points at infinity in common. Then

(a) K[FNG] = Ry K[f N g,
(b) The image zo of Xo in K[FNG| is not a zerodivisor, K[xo] is a polynomial
algebra, and we have

K[fngl= K[FNG]/(zo—1),
grr K[f Ng] = K[FNG]/(x0) = K[X,Y]/(fp, 94)-

By A.12(b), dimg K[FNG]/(fp,94) = p-q. Therefore, B.6 gives the answer
to the above question:
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Theorem 3.9. If f and g have no points at infinity in common, then

(a) dimg K[f Ngl=p-q.
(b) K[FNG] is a free K[xo]-module of rank p - q.

Now let F and G be two arbitrary curves in P?(K) with deg F' = p > 0,
deg G = ¢ > 0, and with no common components (as polynomials they are
relatively prime). Then V4 (F) N V4 (G) consists of only finitely many affine
points (by 1.4), and since one of the curves does not contain the line at
infinity, V4 (F) N V4 (G) also contains only finitely many points at infinity. We
can choose the coordinate system so that all the points in V4 (F)N V4 (G) are
points at finite distance. Then V4 (F) NV (G) = V(f) N V(g), where f and ¢
are the affine curves associated with F' and GG, and we are in the situation of
Theorems 3.8 and 3.9. We then get the following.

Corollary 3.10. Assume that F' and G have no common components. Then
the intersection V4 (F) NV, (G) contains at least one and at most p-q points.

Proof. Since K[fNg] is not the zero-algebra, it has at least one maximal ideal.
This corresponds to a point in V(f) N V(g). From the elementary lemma D.5
and 3.9(a) it follows that K[f N g] has at most p - ¢ maximal ideals. Hence
V(f) N V(g) contains at most p - ¢ points.

The statement of the corollary is a weak form of Bézout’s theorem, which
we will discuss in detail later (See 5.7). In the projective plane not only do
two lines always intersect, but also any two curves of positive degree always
intersect. The corollary could also be formulated in this way: A system of
equations

F(Xo,X1,X5) =0, G(Xo,X1,X2) =0,

with relatively prime homogeneous polynomials F' and G of degrees p and ¢
has at least one and at most p - ¢ solutions in P?(K).

For the remainder of this section we assume, as in 3.8 and 3.9, that f and g
have no points at infinity in common. We strive now to find a few more precise
statements about the structure of the projective coordinate ring K[FNG] and
the affine coordinate ring K[f N g]. These follow from theorems in Appendix
B, and they also allow later geometric applications.

Let B := gry K[f Ng]. By A.12(b), we know the Hilbert function of B
exactly. If By, := grh K[f Ng] is the homogeneous component of degree k and
if, without loss of generality, p < ¢, then by A.12(b) and 3.8(b),

k41, it0<k<p,
— & _)p ifp<k<yq,
xolk) = dime B =3 0y g k-1, ifg<k<prq-1,
0, ifp+qg—1<k.

An application of B.6 then gives
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Theorem 3.11. (a) As a K[zo]-module, K[F N G| has a basis {s1,...,Sp.q}
of homogeneous elements s; (i =1,...,p-q), where

0=degs; <degsy <---<degspg=p+qg—2
and
deg s; + degsp.q—i =p+q—2
fori=1,...,p-q. For each k € {0,...,p+q— 2} there are exactly xp(k)
basis elements in {s1,...,Sp.q} of degree k.
(b) K[f Ng] has a K-basis {51,...,5p.q}, where

0=ordr5; <ordrsy <---<ordgspqg=p+q—2,

ordr §; +ordrSpg—i =p+q—2 (i=1,...,p-q),

and where for each k € {1,...,p+ q — 2}, exactly xp(k) basis elements
have order k. Furthermore,

Fi = Fpyq—2 foreachk>p+q—2.

The degree (p + g — 2) component of B is especially interesting. It is 1-
dimensional, and we will find a basis for it. To do that, we will write

fp =c1X +c12Y,

gq = 21X + c22Y,
with homogeneous ¢;; € K[X,Y]. Then det(c;;) is homogeneous of degree
p+ q — 2 and the image A of this determinant in B is in any case contained
in Bptg—2. One can check easily (I1.4) that A depends only on f, and g,, and
not on any particular choice of the c¢;;. We can view A as a generalization of
the Jacobian determinant of f, and g, with respect to X, Y.
Examples 3.12.

(a) Decompose f;, and g, into homogeneous linear factors (A.4):

p
f;
fp = H(aiX + b1Y) = m . (aiX + biY),
i=1 ’ ’
- g
9q = H(CjX +dJY) = m . (CjX + d]Y)
j=1 J J

Then A is the image of

fo - 94
(aid- — bZC) .
J J (aiX + sz)(C]X + d]Y)

in B, and this does not depend on 7 and j.
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(b) By the Euler relation (Appendix A, formula (A2)), we have

Ofp Ofp
=P x4 Py
ph=ax Xtey Y

_agq 994
ng_aX X+5Y Y.

Denote the image of the Jacobian determinant % in B by j, so that

j=p-q-A
If the characteristic of K does not divide p - ¢, then
1
A= —-j.
p-q
Now let By := @k>0Bx be the homogeneous maximal ideal of B.

Definition 3.13. §(B) :={z € B | B4 - z = 0} is called the socle of B.

One can check that &(B) is a homogeneous ideal of B, and Bpiq—2 C
S(B), because By - Bpyq—2 =0, since By, =0 for k > p+q — 2.

Theorem 3.14. We have &(B) = Bpyq—2 = K - A. In particular, (B) is a
1-dimensional K-vector space and A # 0. If the characteristic of K does not
divide p - q, then the Jacobian determinant j is nonzero and &(B) = K - j.

Proof. Tt remains to show that every homogeneous element 1 € G(B) is con-
tained in (A). This follows from 1.5, but we give here a simpler, more direct
proof. Let H € K[X,Y] be a homogeneous preimage for 7. As in 3.12(a),
write f, =@ L1, g4 = ¥ - Ly, with homogeneous linear factors L; = aX 4 bY,
Ly = ¢X + dY, and homogeneous polynomials ¢, ¥ € K[X,Y]. Then

A= (ad—bc) ¢ -1,

where ¢ and v are the images of ¢ and ¥ in B. Since f, and g, are relatively
prime, ad — be # 0.

By the hypothesis on 7, we have (X,Y) - H C (fp,gq), and therefore we
have equations

LiH = Ri®L; + RoWLo,
LoH = S1®Ly + SoW Lo,
with homogeneous R;, S; € K[X,Y] (i = 1,2). Since L; is not a divisor of &,
and Lo is not a divisor of @, we get
H=R®+RyWL, (Ry:=L;'Ry),
H=S{0L1+ 5% (S} =Ly'5),
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and therefore
& (R — S{L1) =" -(S2 — R3Ls).
Since @ and ¥ are relatively prime, it follows that
Ry~ S/Ly=T W
for some homogeneous T' € K[X,Y], and
H=T-9-¥+S7 f+R5gq
Hence n € (¢ - ) = (A).
Corollary 3.15. Let d € K[f Ng] be an element with Lyd = A. Then
Kifngl=K-d& Fpiq-3.

If Char K does not divide p - q, this statement is true if one replaces d by the
image J of the Jacobian determinant % in K[fNgl.
The formula for K[fNg] follows from 3.14 and B.6. For the last statement,

observe that LzJ is the image of % in B.

Exercises
1. Let K be a field. Give a basis for the K-algebra

K[X,Y]/(f,9),

where f = X4 — Y4+ X, g= X2Y3 — X +1.
2. Determine the solutions in P?(C) for the following systems of equations,
and illustrate the situation with a sketch.

(a)
X+ X5 -X3=0,
(X?+X3)? - AX3X{X23=0 (Ae€C).

X1 X5(X7 — X3)
(X1 +2X2)((X1 + Xo)? — X2) =

0,

3. Let F and G be reduced curves in P?(K), all of whose components are
lines. For P € P%(K), let mp(F) = m if exactly m components of F'
contain the point P. Give a rule for the number of intersection points of
F and G involving mp(F) and mp(G).

4. How many points at infinity do the curves f and g have in common, where

f=X5—-X3Y? 4+ X?Y3 —2XY* - 2Y5 + XY
g=X"+ X3 - X?Y? —2XVY3 -2y + Y*?
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Rational Functions on Algebraic Curves

Besides the coordinate ring, the ring of rational functions on an algebraic curve is
another invariant that can be used to study and to classify algebraic curves. This
section uses Appendiz C on rings of quotients and Appendiz D on the Chinese
remainder theorem.

The field of rational functions on P?(K) is the set of all quotients

g € K(Xo, X1, Xs),

where ¢, ¥ € K[Xy, X1, Xo] are relatively prime, homogeneous of the same
degree, and ¥ # 0. It is clear that these fractions form a subfield of
K(Xo, X1, X3). For a point P = (9,21, 72) € P?(K) with (P) # 0,

90, ¥1,22)
w<$07 X1, .'172)

is independent of the choice of homogeneous coordinates for P. Thus % gives
in fact a function

¢(P)

P2 — — —

PPE @) K (Pe )

that vanishes on V; (¢). We call r a rational function on the projective plane,
whose domain of definition, Def(r), is P2(K)\ V4 (¢)). We call 4 the pole divisor
and ¢ the zero divisor of r. The difference ¢ — 1 in the divisor group D of
P?(K) is called the principal divisor belonging to r. The principal divisors of
rational functions on P?(K) form a subgroup H of D. The residue class group
C1(P?) = D/H is called the divisor class group of P?(K). Using the degree of
a divisor, it is easy to show that

CI(P?) = (Z, +).

We shall write R(PP?) for the field of rational functions on P?(K). The field
K is embedded into R(P?) as the field of constant functions. Recall that for
% € R(P?) we assume ¢ and 1) to be relatively prime.

For P € P*(K), we denote by Op C R(P?) the subring of all rational
functions whose domain of definition contains P. That is,
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Op = {% € R(P?) | ¢(P) 750}.

We call Op the local ring of P on P?(K). In the language of appendix C, the
ring Op is the homogeneous localization of K[Xg, X1, Xs] at

pp = ({¢ € K[Xo,X1,X2] | ¢ is homogeneous and ¢ (P) = 0}),
the prime ideal corresponding to P:
(1) Op = K[Xo, X1, X2](pp)-

The maximal ideal of Op is

mpz{geop |¢(P):0}.

Let a coordinate transformation ¢ : P?(K) — P2(K) be given by a matrix
A. We will use the notation introduced in Chapter 2. From ¢ we get a K-
automorphism

VRE) - RE) (22D,
I
which one can describe as follows: Every rational function r on P?(K) will
be mapped to r o ¢! by 4. In particular, v induces, for each P € P%(K), a
K-isomorphism
7P :Op — Ogpy -

We come now to the “affine description” of the field R(P?) and the ring

Op.

Lemma 4.1. Dehomogenization gives a K-isomorphism

p:R(]P’Q)iK(X,Y) <$r—> 8‘;(();)))

If P = (a,b) is a point at finite distance and Mp = (X —a,Y —b) its mazimal
ideal in K[X,Y], then p induces a K-isomorphism

Op — K[X, Yo,
onto the localization of K[X,Y] with respect to Mp.

Proof. The mapping p is well-defined and is a K-homomorphism by the rules
for calculating with fractions. Since p is obviously injective, it needs only to
be shown that p is surjective. For f, g € K[X,Y], g # 0, let ¢ and ¥ be the
homogenizations of f and g in K[Xg, X1, Xs]. If deg ¢ < deg1), then

Xdegw—degzb . ¢ f
P <O—> =
(G g
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(o \_i
Xgeg ¢—degy ¥ g'

Since % € Op, we have 9(1,a,b) # 0, hence ¢(1, X,Y) & Mp. Therefore
it is clear that Op is mapped onto K[X,Y]sm, by p.

and otherwise,

The elements of K (X,Y) can, in an obvious way, be thought of as functions
on A%(K), and p assigns to each rational function on P?(K) its restriction to
A%(K). We call

R(A?) = K(X,Y)

the field of rational functions on A%(K). For P € A*(K),
/P = K[Xa Y]WP

is the subring of all functions from R(A?) that are defined at P.

From a different point of view one can interpret a rational function r = % €
R(P?) as a function from P?(K)\ (V4 (¢)NV4 (1)) to P (K) in which each point
P eP?(K)\ (Vi(¢) N V(1)) is assigned to the point (1)(P), p(P)) € PH(K).
We denote this mapping also by r. Since ¢ and 1 are relatively prime by
hypothesis, Vi (¢) N V4 (¥) is finite by 3.10, and therefore r is not defined
only on a finite set, the set of indeterminate points of r. Furthermore, r is
either constant or surjective, for if deg¢ = deg® > 0, and (a,b) € P}(K)
with a # 0 and b # 0 is given, then the equation a¢ — by = 0 has a solution
P &V,(¢)NVL(¥) by 2.9 and 3.10, and it follows that {(a,b) = (¥(P), ¢(P)).
It is also clear that (1,0) and (0, 1) belong to the image of .

Let F be a curve in P2(K) of positive degree. Then

Op := {% € R(P?) | F and v are relatively prime}

is a subring of R(PP?), and

IF::{geOF |¢e(F)}

is an ideal of O . The ring O consists of precisely the rational functions that
are defined on V4 (F) up to a finite set of exceptions, and Ip consists of the
functions that vanish on V, (F).

Definition 4.2. The residue class ring R(F) := Op /Ir is called the ring of
rational functions on F.
Each residue class % + Ir defines a function Vi (F) \ V4(¢) — K by

restricting % to V4 (F). Different representatives of the residue class agree
with the function on the intersection of the domains of definition, and therefore
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each residue class defines a function on the union of the domains of definition,
the “rational function associated with the residue class.” Different residue
classes can yield the same function. However, this does not occur for reduced
curves, as the following lemma shows.

We call a subset F* of V. (F) dense in V;(F) if F* contains infinitely
many points from each irreducible component of F'. The domain of definition
of a function in R(F') has finite complement in V4 (F), so in particular it is
dense in V; (F).

Lemma 4.3. Let F be reduced. If r, ¥ € R(P?) agree on a dense subset of
Vi (F), then

7|V, (F)nDef(r)nDet(7) = TV, (F)NDef(r)nDef(7) -

-

Proof. Let r = ,9, = e By hypothesis, (;512 — <Z~5¢ vanishes on a dense subset
of V4 (F). By 3.10, every irreducible factor of F' must then be a divisor of
¢ — ¢1p. Because F' is reduced, F itself must divide ¢ — ¢, and therefore

there exists a homogeneous A € K[Xg, X1, X2] such that

Using this lemma, one can identify, for a reduced curve, an element of R(F’)
with the function defined by it. Similarly, one can consider such a function as
a mapping to P!(K), which is defined at all but finitely many points of V, (F).
If a function r € R(F') is represented by % and ¢(P) # 0, ¥(P) = 0, then
r(P) is the point at infinity (0, 1) of P1(K). The “poles” of r will be mapped
to the point at infinity of the projective line, and only these poles will be
mapped to the point at infinity. On the other hand, if P is an indeterminate
point of £, then r does not assign any function value in P!(K), but changing
to another representative of the rational function may yield a function value.

The following theorem gives an affine description of the ring of rational
functions of a curve F'.

Theorem 4.4. Suppose X is not a component of F', and f is the affine curve
associated with F'; suppose K|[f] is its coordinate ring, and Q(K|f]) is the full
ring of quotients of K[f]. Then there is a K-isomorphism

R(F) = Q(K[f]).

¢

Proof. Dehomogenization il $(1.X.Y)

$(1L,X,Y)
to the ring of all quotients % € K(X,Y) such that ¢, v € K[X,Y] and
ged(f, ¢) = 1. This is the localization of K[X,Y] at the set NV of all elements
¥ of nonzerodivisors mod (f). The above isomorphism maps the ideal I to

the principal ideal (f), and hence there is an induced K-isomorphism

defines a K-isomorphism from Op
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R(F) = Op /Ir — K[X,Y]n/(f)-

On account of the permutability of localization and quotient rings (C.8), there
is also a K-isomorphism

KIX,Yln/(f) = (KIX,Y)/(f))y = Elf]x
where N is the set of all nonzerodivisors of K[f]. This proves the theorem.

Again one can assign to an element of Q(K[f]) a function on V(f), namely
the restriction of the corresponding function from V, (F') to V(f). We therefore
call R(f) := Q(K][f]) the ring of rational functions of f. If f is reduced, one
can even identify the elements of R(f) with their associated functions.

Since K[f] is a subring of R(f), the elements of the affine coordinate
ring K[f] are in particular assigned to functions on V(f) that are defined
on all of V(f). As an example, the residue classes  and y of X and Y in
K|[f] are the “coordinate functions” that assign to each point P € V(f) its
X-coordinate, respectively its Y-coordinate. In contrast, the coordinate ring
K|[F] of a projective curve F is not a ring of functions on V4 (F).

Let f=c-f{" - W (c € K*, a; € Ny) be the decomposition of f into
irreducible factors f;, and let f; be the residue class of f; in K[f] (i =1,...,h).
Then the principal ideals ( ﬁ) are all the minimal prime ideals of K| f} (1.15)
and we have N = K|f] \UZ (fi). Thus K[f]y is by C.9 a ring with only
finitely many prime ideals p; = (f;)K|[f]y, and by the Chinese remainder
theorem (D.3) it follows that Q(K[f]) = K|[f]y is the direct product of its
localizations at these prime ideals. We have (K[f]y)p, = K[f](f,) by C.8. But
then, however,

K[fl(7) = KX, Y]/ (HE[X, Y5,
= KX Y] /(F2)KTX, Y] = QUTE),

and hence there is a K-isomorphism

QK[f]) = QK] x - x Q(K[f"]).

Therefore, in the projective case we have the following.

i

Theorem 4.5. If F' = cFy*" --- F}'" is the decomposition of F' into irreducible
factors, then there is a K-isomorphism

R(F) = R(F™M) x - x R(FS™).

If F' is reduced, that is, if a; = --- = ap = 1, it is not hard to see that
the above isomorphism assigns to each r € R(F') the system (r|p,,...,7|r,)
of restrictions to the irreducible components of F.
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Corollary 4.6. The curve F is irreducible if and only if R(F) is a field.
This field is then K-isomorphic to Q(K|[f]). If x and y denote the residue
classes of X and Y in K[f], then R(F) = K(z,y). In this case x (without
loss of generality) is transcendental over K, and R(F') is a separable algebraic
extension of K(x).

Proof. We need to establish only the last statement. We cannot have both z
and y algebraic over K, for otherwise, f must divide the minimal polynomials
for x and y over K. These are polynomials in which only X, respectively only
Y, appears. Then f must be a constant, a contradiction.

Both partial derivatives % and % cannot vanish, for otherwise, f would
be a polynomial in X? and YP, where p := CharK > 0. Since K is alge-
braically closed, f would be a pth power, hence certainly not irreducible. So
we can, without loss of generality, let g—{i # 0. Then « is transcendental over

K, and y is separable algebraic over K(z).

Let L be an extension field of K. If there is an element x € L that is
transcendental over K, and L is finite algebraic over K(z), we call L/K an
algebraic function field of one variable. By the corollary, the function fields
R(F') of irreducible curves are such fields. A theorem from field theory says
that every algebraic function field of one variable over an algebraically closed
field K is of the form L = K(x,y), where z is transcendental over K and y is
algebraic over K (a generalization of the theorem of the primitive element).

Theorem 4.7. Every algebraic function field L/K is K-isomorphic to the
field R(F) of rational functions of a suitably chosen irreducible algebraic curve

F in P*(K).

Proof. Write L = K(z,y) as indicated and consider the minimal polynomial
¢ € K(x)[Y] of y over K (z). Multiplying ¢ by a common denominator for the
coefficients from K (x), we get an irreducible polynomial f € K[X,Y], and we
have L = Q(K[X,Y]/(f)). The homogenization of f gives the desired curve
F.

In the situation of the theorem, one calls F' a plane projective model for
the function field L/K. One studies these field extensions as they arise as the
function fields of projective algebraic curves. Conversely, these function fields
lead to a classification of irreducible curves.

Definition 4.8.

(a) Two curves F and G in P?(K) are called birationally equivalent if there
is a K-isomorphism R(F) = R(G).

(b) An irreducible curve F is called rational if there is a K-isomorphism
R(F) = K(T) with the quotient field K(T') of the polynomial ring K[T7.
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These concepts extend analogously to affine curves. Of course, curves that
arise through coordinate transformations are birationally equivalent, but bi-
rational equivalence is a weaker condition than projective equivalence. Later,
we will give a more geometrical interpretation of birational equivalence.

One tries to classify curves up to birational equivalence, which for irre-
ducible curves is equivalent with the classification of algebraic function fields
of one variable up to isomorphism. Since projective lines are certainly ratio-
nal, a curve is rational if and only if it is birationally equivalent to a line. We
will later show that this is the case if and only if the curve has a “rational
parametrization.” (See 8.5.)

Example 4.9. Irreducible quadrics are rational (Char K # 2). We can as-
sume after a coordinate transformation that we are dealing with the quadric
Q = X? + X3 — X2. This is given affinely as ¢ := X?+Y?2 — 1. In Chapter 1,
Exercise 2, it was shown that the points of ¢ are (1,0) and those given by

2t t*-1
— te K, t*4+1#0).
(t2+1,t2+1) (te K, t°+1+#0)
It follows immediately by substitution that ¢ is contained in the kernel of the
K-homomorphism

2T T? -1
and because ¢ is irreducible, we must then have ker o« = (¢). We then get an
injective K-homomorphism Klg] = K[X,Y]/(¢) — K(T'), and therefore also
a K-homomorphism R(Q) = Q(K|g]) — K(T). Since

a(Y)+1<T21 1) T°4+1

= T
a(X) T2 +1

2T ’

the homomorphism is also surjective and is therefore an isomorphism.

Exercises

1. Suppose an irreducible affine algebraic curve is given by an equation
frtr1+fn =0, where f; € K[X,Y]is homogeneous of degree i (i = n,n+1;
n € N). Show that the curve is rational. (This shows the rationality of
some of the curves in Figures 1.6-1.15).

2. Let f be the lemniscate with equation

(X2+YH2=a(X?-Y?) (a€ K"

and let z,y € K[f] be the associated coordinate functions. Prove the
rationality of f by showing that R(f) = K (t) with ¢t := %
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Intersection Multiplicity and Intersection
Cycle of Two Curves

Two projective curves of degrees p and q that have no common components intersect
in at least one and at most pq points (3.10).

Jy
X

2 - 2 intersection points 1 -6 intersection points

vl

When the number of intersection points is less than that mazximum number pq, it is
because certain intersection points “coincide,” or that the curves intersect in some
points “to a higher order”:

[
W

ﬁé
\q’?
We will see in this chapter that one can assign a “multiplicity” to the intersection
points of two curves in such a way that when one counts the points “with

multiplicity,” the number of intersection points is exactly pq. But to do that requires
some preparations.

Let Op be the local ring of a point P in P?(K) and let mp be its maximal
ideal. For a curve F in P?(K) we call

I(F)p = {gEOP |¢€(F)}

the ideal of F' in Op. For curves Fi, ..., F,, in P?(K) we set
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Orn.np,.p:=0p /[(I(F1)p+- -+ I(Fn)p).

If PZVy(F1)N---NV4(F,,), then this is the zero ring, because at least one of
the ideals I(F})p equals Op. Conversely, if P € V. (Fi)N--- NV (Fp), then
Op,n..nr,,.p 7 0. The set of points of V4 (F1) N--- N Vi(F,,) together with
the local rings O p,n...nF,,,p is called the intersection scheme FyN---NFy, of
the curves Fy,..., Fy,, and Opn...nF,,, p is called the local Ting of the point
P on the intersection scheme. In particular, this also defines the local ring
Op.p of a point P on a curve F. For P € V,(F1)N--- NV (F,) we think
of the local ring as being “attached” at the point P. The intersection scheme
contains much more information about the behavior of the intersections than
just the set of intersection points.

Now let P = (a,b) be a point at finite distance, and let f; be the affine
curve belonging to Fj. If Mp = (X — a,Y — b) is the maximal ideal corre-
sponding to P, then by 4.1 there is a K-isomorphism

Op =5 O = K[X,Y]m,.

This isomorphism will map I(F})p to the principal ideal in O generated by
f;. Setting
K[fin---0 fm] = K[XY]/(f1,- .-, fm)

and denoting the image of Mp in K[f1N---N f] by Mp, we get the following
due to the commutativity of rings of quotients and residue class rings (C.8).

Theorem 5.1. There is a K-isomorphism
Ormnnp,,p = K[f1 0N fls,

Let F be the curve obtained from F)j by omitting the irreducible compo-
nents that do not contain P. If f7 is the dehomogenization of F', then

fi Op = f; Op,

because the factors left out of f; become units in O. By 5.1 we have the
following.

Corollary 5.2.
Orn.nF,,P = OFpn.nFs P

Hence we get the following finiteness theorem.

Theorem 5.3. Let m > 2 and suppose two of the curves from {Fy,..., F,}
do not have irreducible components in common containing P. Then

dlmK OFlm...mFmJD < 0.
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Proof. We can assume that F; and F5 do not have irreducible components
in common containing P. Since Op n...AF,,,p iS a homomorphic image of
OFnF,,p, it is enough to show that dimg Op, A, p < 00. By 5.2 we can as-
sume that F} and F» have no components in common at all. Then, however,
K[f1N fo] is a finite-dimensional K-algebra by 1.4(b). By the Chinese remain-
der theorem D.4, we have that K[f1 N fg]ﬁp is a direct factor of K[f1 N fa].
Therefore, we also have that Or,nr, p = K[f1 N folgy,, is finite-dimensional
over K.

The remark below follows immediately from the definition of O g n...AF,, P-

ms

Remark 5.4. (a) dimg Op,n...nF,, p = 0 if and only if
PZVi(F)Nn--NVy(Fn).
(b) dimg Op,n...nF,,,p = 1 if and only if
mp=I(Fi)p+- -+ I(Fn)p.
Definition 5.5. For two curves Fy, Fy in P?(K) we call
pp(F1, Fy) == dimg Op,np,. P

the intersection multiplicity of Fy and Fy at the point P. If up(Fy, F2) = p, we
say that P is a p-fold point of F1 N Fy. The intersection multiplicity pp(f1, f2)
of two affine curves fi, fa is defined analogously.

This definition is somewhat abstract, but we will see by and by that this
concept does possess the geometric properties that we want. A major advan-
tage of the definition lies in the fact that it is very easy to see the independence
of the choice of coordinates. A coordinate transformation ¢ : P?(K) — P?(K)
given by a matrix A induces a K-isomorphism

A
or o (23)

with the property that for each curve F the ideal I(F)p is mapped to
I(c(F))e(py- Therefore, Op, n..aF,, . p and Og(p)n...ac(F,n),o(P) are K-isomorphic,
and so in particular, they have the same dimension.

By 5.4(a) we have pup(Fy, Fz) = 0 precisely when P & Vi (Fy) NV (F»).
Furthermore, up(F1, F2) = 1 precisely when

mp = I(Fl)p+I(F2)p.

We will see later (see 7.6 and 7.7) that this condition is satisfied if and only
if F1 and F5 intersect “transversally” at P:
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By 5.3, we have up(Fi, Fp) < oo if F; and Fy do not have a common
irreducible component containing P. On the other hand, if they do possess
such a common component F, then I(Fy)p + I(F2)p C I(F)p, and Opnr,, P
has Op p as a homomorphic image. This is an integral domain with quotient
field R(F'), and so it cannot be finite-dimensional as a K-algebra. Therefore,
Mp(Fl,Fg) = Q.

To study global questions about the intersections of two projective curves
it is convenient to introduce the following concept.

Definition 5.6. A cycle Z in P?(K) is an element of the free abelian group
on the set of all points of P?(K):

Z = Z mp - P (mp € Z, mp # 0 for only finitely many P).
PEP2(K)

We define deg Z := > mp, the degree of Z. For curves Fy, Fy in P?(K) that

have no common components, we call

o« = Z pp(F1, Fy) - P
PEP2(K)

the intersection cycle of Fy and F5.

Here the notation F; x F5 has nothing to do with the product of the two
homogeneous polynomials. The intersection cycle describes the intersection of
Fy and F» by indicating the points of Vi (F1) NV, (F2) and their associated
intersection multiplicities. It contains less information than the intersection
scheme F N Fy, but more than V, (F}) NV (F,). We have now arrived at the
main theorem of this chapter, whose proof is quite easy by the above.

Bézout’s Theorem 5.7. For two curves Fy and F in P?(K) with no com-
mon component we have

deg(Fy x F») = deg F - deg Fy.

Two curves Fy, Fy in P?(K) always intersect in deg Fy - deg Fy points if Fy
and Fy have no common component and their intersection points are counted
with the appropriate intersection multiplicities.

Proof. We can assume that

V+(F1) n V+(F2) = {Pl, .. .,PT}
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has only points at finite distance. If f; and fo are the corresponding affine
curves, then by 3.9(a) we have dimg K[f1 N f2] = p-q. Moreover, Max K[f; N
fo] ={Mp,,...,Mp,}. Therefore, by the Chinese remainder theorem,

(1) K[finfo] = K[f1 0 falgg, % x K[f10 falsg,,

and hence

-
degFy -degFy =p-q= Z/,Lpi(Fl,Fg) = deg(Fy * F3).

i=1

Next we show the additivity of intersection multiplicities and intersection
cycles.

Theorem 5.8. Let F', G, and H be curves in P?(K). Denote by F + G the
sum of the divisors F' and G, i.e., the curve corresponding to F'-G. If F+ G
and H have no common component containing P, then

MP(F+GﬂH):NP(F7H)+MP(G,H)'

Proof. By 5.2 we can assume that F' + G and H have no components in com-
mon at all. Let P = (a,b) be an affine point and let f, g, h be the affine
curves corresponding to F, G, H. Then f g is a polynomial in K[X,Y] corre-
sponding to the divisor F'+ G. We denote the residue class of f, respectively
g, in K[h] = K[X,Y]/(h) by ¢ and #. Since f - g and h are relatively prime,
¢ and 1 are not zero divisors in K[h] and also ¢ - 1 is not a zero divisor.
We will denote by mp the maximal ideal in K[h] corresponding to P and
set R := K[h]m,. Because of the commutativity of the formation of rings of
quotients and residue classes (C.8), there are K-isomorphisms

Op/I(F+G)p+I1(H)p 2 R/(¢-1),
Op/I(F)p+I(H)p = R/(¢), Op/I(G)p+I(H)p=R/(1).

The statement of the theorem then follows from the definition of intersection
multiplicity and by the following lemma.

Lemma 5.9. Let R be a K-algebra and let ¢, 1 € R. If ¢ is a nonzerodivisor
on R and if dimg R/(¢ - ) < oo, then

dimye R/(6- ) = dimg R (6) + dimg B ().
Proof. We have (¢ - 1) C (¢) C R and hence
dimg R/(¢ - ) = dimg R/(¢) + dimg (¢) /(¢ - ).

Since ¢ is a nonzerodivisor on R, multiplication by ¢ yields a K-isomorphism
R = (¢), under which (1)) is mapped to (¢ - 1)). Therefore,

dimg (¢)/(¢ - ¥) = dimg R/(4).
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Corollary 5.10. Suppose F' + G and H have no common components. Then
(F+G)xH=F*H+Gx*H.

Theorem 5.8 implies in particular that up(F, H) > 1 if a multiple compo-
nent containing P appears in F' (or in G).

Corollary 5.11. Under the assumptions of Bézout’s theorem, suppose that
Vi(F1) N Vi (F2) is a set of points at finite distance, and let f1, fo be the
affine curves corresponding to Fy, Fy. Then the following are equivalent:

(a) V4 (F1) NV (Fy) consists of p := deg Fy - deg Fy distinct points.
(b) Fy and F5 are reduced curves and K[f10 fa] is a direct product of p copies

of the field K :
p

K[f1N fa] :HK-

i=1

Proof. By Bézout’s theorem, we have (a) precisely when pup(Fy, Fp) = 1 for
all P € V(F1) NV (Fy), ie., when Op nr, p = K. By the above remark, Fy
and Fy are reduced. Since Vi (F1) NV (Fa) = Vi (f1) NV (f2), it follows from
(1) that condition (a) holds if and only if K[f1 N fo] =[], K.

It will later turn out that the conclusions of the corollary occur exactly
when F} and F5 are reduced curves that “intersect transversally everywhere,”
as was suggested by the figures at the beginning of this chapter.

Many theorems about algebraic curves deal with the interpolation problem:
An algebraic curve of a certain degree is to pass through some given points in
the plane, where the behavior of the curve at the points (maybe its direction)
is prescribed. We consider here the case in which the given points are just the
intersection points of two curves F} and Fb without common components.

Definition 5.12. Let G be another curve. We say that Fy N F5 is a subscheme
of G if

(2) dimg Opnmna,p = pp(Fi, F2)
for all pOiIltS Pe V+(F1) n V+(F2)

Condition (2) is equivalent to the condition that for all P € V,(Fy) N
Vi (F2)7

(3) I(G)p - I(Fl)p +I(F2)P, and thus OFlﬂFg,P = OFlﬂFgﬂG,P-

If pp(Fy, Fp) = 1, this is the same as saying that P € V, (G), and therefore
that G “goes through” P.

Lemma 5.13. Suppose V. (F1) NV (Fy) consists of points at finite distance,
and f1, f2, and g are the polynomials in K[X,Y] corresponding to Fy, Fs,
and G. Then Fy N Fy is a subscheme of G if and only if g € (f1, f2).
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Proof. Let 1 be the image of g in K[f1 N fz]. Condition (3) is then equivalent
to saying that the image of ¢ in K[fi1 N fo]m, vanishes, where mp is the
maximal ideal in K[f; N fa] corresponding to P. By the Chinese remainder
theorem (1) it follows that (3) holds for all P € V, (Fy) N V4 (F3) if and only

lf’l/) =0,1e, g€ (flaf?)'

Fundamental Theorem of Max Noether 5.14. The following are equiv-
alent:

(a) F1 N Fy is a subscheme of G.

(b) G e (Fl,Fg).

(¢) There are homogeneous polynomials A, B € K[X, X1, Xo] with deg A =
deg G — deg F1 and deg B = deg G — deg F» such that

G=A-I'+B-F>.

Proof. We can assume that we are in the situation of the lemma. If G €
(F1, Fy), then by dehomogenization, g € (f1, f2). Now suppose conversely
that this condition is satisfied. Write g = af1 +bfs with a,b € K[X,Y]. Then
this yields by homogenization an equation of the form

X{G=A-F+B-F,

where v € N and A, B € K[Xy, X1, Xs] are homogeneous polynomials. By
3.8(b) Xo is not a zerodivisor modulo (Fy, Fz). Therefore, it follows that
G € (F1, F3). Hence by Lemma 5.13, statements (a) and (c¢) of the theorem
are equivalent. Now (b) = (c) follows, because the polynomials Fy, F5, and
G are homogeneous, and (c¢) = (b) is trivial.

Corollary 5.15. Suppose G and Fy have no common components. If Fy N Fy
is a subscheme of G, then there is a curve H satisfying deg H = deg G—deg F»
and such that

G*Fl = H*Fl +F2*F1.

Proof. Choose an equation as in 5.14(c) and set H := B. We may assume
that we are in the situation of Lemma 5.13 and denote by a and h the deho-
mogenizations of A and H. Then

pp(G, Fr) = dimg Op /(g, f1) = dimg Op /(afi + hfz, f1)
= dimg O%p /(hf2, f1) = pp(H + Fo, Fi) = pp(H, F1) + pp(Fa, F1)

for all P € P?(K), and the statement follows.
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Examples 5.16.

(a) In the situation of 5.14, suppose V. (F1 )NV (F») consists of deg F} -deg F
different points. The curve G passes through all of these points if and only
if G e (F1, F).

(b) Suppose F} N Fy is a subscheme of a curve G and Z := V. (F1) NV (G)
consists of deg F; - deg G different points. Then there is a curve H with
deg H = deg G—deg F» that passes through the points of Z not in V4 (F1)N
Vi (F2).

(¢c) Suppose two cubic curves intersect in exactly 9 points, and 6 of these lie
on a quadric. Then the remaining 3 intersection points lie on a line.

(d) Pascal’s theorem (~ 1639) Suppose the two cubic curves in (c) are each
the union of three different lines. Then we have the situation shown in the
following figure:

It follows that the three points not lying on the quadric lie on a line.
Usually, Pascal’s theorem is formulated by saying that if one chooses 6
points on a quadric so that there is a hexagon inscribed in the quadric,
as in the figure, then the opposite sides meet in collinear points. In the
special case that the quadric is the union of two lines, Pascal’s theorem
was known in ancient times (Pappus’s theorem). See the following figure.
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More effort is needed in order to get the following theorem. Our method
of proof rests on the results about filtered algebras.

Cayley—Bacharach Theorem 5.17. Suppose two curves Fy, Fy in P?(K)
have no common components. Let deg Fy =: p, deg F> =: q, and let G be
another curve with degG =:h <p+q—2. If

(4) > dimg Opnpnep > (p—1)(¢—1) +h+1,
PeVy(F1)NV4 (F2)

then F1 N Fs is a subscheme of G.

Proof. We will use a result from Chapter 3 on the structure of the coordinate
ring of the intersections of two curves. As usual, we assume that there are
no points at infinity in Vi (F1) N V4 (F>), and that fi, f2, and g are the
polynomials in K[X,Y] corresponding to Fy, Fs, and G. We set

A= K[fiN f2] = K[X,Y]/(f1, f2)

and
B:=gry; A= K[X,Y|/(Lrf1,Lrf2),

where F denotes both the degree filtration on K[X,Y] and the induced fil-
tration on the ring K[f1 N fa].

Let v be the image of g in A. By 5.13, we must show that y vanishes,
under the assumptions of the theorem. Suppose it were the case that vy # 0.
Then also 4° := Lzy # 0, and this is a homogeneous element of B of degree
<p+gq-—2.

By 3.14, Bpyq—2 is the socle of B. If { and 7 are the images of X and Y in
B, then (&,7)-° # 0, since ¥ € Bp4q—2. There is thus an element a1 € By with
a1-v% # 0. By induction we get the following: Fori = 0, ...,p4+q¢—2—h, there
are elements o; € B; (ag = 1) with a; - ¥° # 0. Since these elements have
different degrees, they are linearly independent over K. Hence, dimg(y) >
p+q—1—handdimgA/(v)<p-¢—(p+g—1-h)=@p-1)(¢-1)+h

We now apply the Chinese remainder theorem (1), and considering the
images of 7 in the local rings K[f1 N fa]g,, we see that the hypothesis (4) of
the theorem says that dimg A/(vy) > (p—1)(¢— 1)+ h+ 1. This contradiction
shows that we must have v = 0.

Examples 5.18. (a) Under the hypotheses of 5.17 suppose V4 (F1) N Vi (F»)
consists of p- ¢ different points and V4 (G) contains (p —1)(¢—1)+h+1
of these. Then V4 (G) contains all p - ¢ points of Vi (F1) N V4 (Fz).

We recall how we can understand these statements as theorems about
systems of algebraic equations: Suppose we are given a system of equations

F1(Xo,X1,X2) =0,
(5) F5(Xo,X1,X32) =0,
G(Xo,Xl,Xg) =0.
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Let Fy, F5, and G be homogeneous of degrees p, ¢, and h < p+ q — 2.
Suppose the system F} = F» = 0 has exactly p - ¢ different solutions P; in
P?(K), and (p—1)(q—1)+h+1 of these are also solutions of the equation
G = 0. Then all the P; are solutions of (5).

(b) Let p = ¢ = h = n > 3. Then the condition h < p + ¢ — 2 is satisfied. If

Vi (F1) NV (Fy) consists of n? different points and if (n —1)2 +n+1 =
n(n — 1) + 2 of these are contained in V. (G), then all n? points are
contained in V4 (G).

(¢) If two cubic curves intersect in 9 different points and another cubic curve

contains 8 of these intersection points, then it contains all nine. This is
the special case of (b) in which n = 3. One can also deduce 5.16(c) and
Pascal’s theorem from this.

Exercises

1.

Let A be an algebra over a field K with the following properties:

(a) A is a noetherian ring.

(b) A has exactly one prime ideal m (and is therefore local).

(¢) The composite map K — A — A/m is bijective.

Show that dimg A < co. (Use the fact that m is finitely generated and by
C.12 consists of nilpotent elements of A.)

. Let K be an algebraically closed field. A 0-dimensional subscheme of

A?(K)is a system Z = (Py,...,P; Ay, ..., A), where Py,..., P are dis-
tinct points in A%2(K) and Ay, ..., A; are K-algebras with the properties
(a)—(c) of Exercise 1, and where the maximal ideal of each A; is generated
by (at most) two elements. We call

A=A x---x A

the affine algebra of Z. Also, we call 25:1 dimg A; - P; the cycle of Z and
dimg A the degree of Z.
(a) Show that there is a K-isomorphism

A~ K[X,Y]/I,

where T is an ideal of the polynomial ring K[X,Y].

(b) Conversely, assign a 0-dimensional subscheme of A2(K) to each finite-
dimensional K-algebra of the form K[X,Y]/I.

Let F,G € R[Xj, X1, X2] be homogeneous polynomials. For a point P =

(xg,21,12) € P?(C), denote by P := (To,Z1,T2) the complex conjugate

point of P (Z; is the conjugate of the complex number z;).

(a) Show that pp(F,G) = up(F,G).

(b) Conclude that if F' and G have odd degree, then the system of equa-
tions

F(Xo,X1,X2) =0, G(Xo, X1,X2) =0,

has a solution in P?(R).
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4. A theorem of Newton (1704): An affine curve f of degree d will intersect a
line g in d points Py, ..., P4, where these points can coincide if the inter-
section multiplicity is > 1. Suppose d does not divide the characteristic of
K. The centroid of f N g is then the point P := 52;1:1 P;, where the
sum is constructed using the vector addition of K?2. Show that if a band
of parallel lines passes through g, then all the centroids P9 lie on a line
(referred to by Newton as a “diameter” of f). (Hint: One can assume that
gis given by Y = 0. Write f = ¢po X%+ ¢ XL+ + 64 (¢: € K[Y)).
Consider ¢y and, most importantly, ¢;.)

5. A theorem of Maclaurin (1748): Under the hypotheses of Exercise 4,
suppose (0,0) & Supp(f). Let g be a line through (0,0) and P; = (z;,y;)
(¢=1,...,d). The harmonic center of f N g is the point

—1 —1

d d
HO = (29 y®@)) with £ ::d<zx:1> oy :=d<2y;1>
i=1 i=1

if g is not the X-axis or the Y-axis (otherwise, H¥) = (d(3 > 2; ")~1,0),
respectively H9) = (0,d(> y;')~!)). Show that if g runs over all lines
through the origin that intersect f in d affine points, then the points H (9)
lie on a line. (Hint: For this theorem consider ¢4_1 and ¢4.)

6. Determine pup(f,g) if

f — <X2 +Y2)3 —4X2Y2,
g = (X2 +Y2)3 o X2Y2,

and if P = (0,0).

7. Prove the converse of Pascal’s theorem: Suppose the intersection points
of the 3 pairs of opposite sides of a hexagon lie on a line. Then the vertices
of the hexagon lie on a quadric.






6

Regular and Singular Points of Algebraic
Curves. Tangents

A point on an algebraic curve is either “simple” or “singular.” At a simple point the
curve is “smooth.” In general, a point on a curve is assigned a “multiplicity” that
indicates how many times it has to be counted as a point of the curve. The “tangents”
of a curve will also be explained. One can decide whether a point is simple or singular
with the help of the local ring at the point. The facts from Appendix E on Noetherian
rings and discrete valuation rings will play a role in this chapter. Toward the end,
some theorems from Appendiz F on integral ring extensions will also be needed.

Definition 6.1. For a curve F in P?(K) and a point P € P?(K) we call
mp(F) := Min{pp(F,G) | G is a line through P}
the multiplicity of P on F (or the multiplicity of F' at P).

In the following, F will always be a curve in P?(K). By 5.4(a) it is clear
that mp(F') = 0 if and only if P ¢ V,(F). Since there is always a line G
through P that is not a component of F, we have pup(F,G) < oo and hence
mp(F) < cc.

Definition 6.2. Let P € V. (F) and let G be a line through P. If
up(F,G) > mp(F),
we call G a tangent to F at P.

Observe that the concepts “multiplicity” and “tangent” by their very def-
inition are independent of the choice of coordinates. The following theorem
gives a practical way to explicitly determine the multiplicity and the tan-
gents. We suppose that P = (0,0) is the affine origin and f is the affine
curve corresponding to F'. Denote by Lf the leading form of f for the (X,Y)-
adic filtration of K[X,Y], i.e., the homogeneous component of lowest degree
with respect to the standard grading of the polynomial ring. In the following
let deg L f be the degree of Lf with respect to this grading, and not, as in
Appendix B, the negative of this degree.
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Theorem 6.3. Under these hypotheses we have

(a) mp(F) = deg L.
(b) Ifdeg Lf =:m >0 and Lf = H;ﬁ;l(an —b;Y) is the decomposition of
Lf into linear factors, then the lines

tjlan—ij:O
are all the tangents to F' at P.

Proof. Statement (a) is trivial for deg Lf = 0. We can therefore assume that
m >0 and P € V,(F). We will show that for a line G through P,

=m, if G & {t1,...,tm},
1) MP(F’G){>m, if G € {tr,.. . tm},

and then the theorem follows.

Let G be given by the equation aX — bY = 0, where without loss of
generality b # 0. Then the equation can be put in the form Y = aX. With
Mp = (X,Y), we then have

/Lp(F, G) = dimK K[X, Y]g;np/(f,y - aX) = dimK K[X]()Q/(f(X, aX))
by 5.1, and we have
F(X,aX) = X" fm(1,0) + X" fria(1,0) + -+ X fa(1,a),

where f = f, + -+ fa (d > m) is the decomposition of f into homogeneous
components. In particular, Lf = f,,. Here K[X]x) is a discrete valuation
ring whose maximal ideal is generated by X. Denote by v the corresponding
discrete valuation, and write

f(X,aX) = X" [fn(l,a) + X frny1(La) + -+ +Xd_mfd(1’a)]'

Then we see that

=m, in case f,(1,a) # 0,
> m, otherwise,

@ V(F(X.aX) {

because the expression in the square brackets [ ] is a unit in K[X](x) if and
only if f,(1,a) # 0. The second case of (2) occurs precisely when ¥ — a X is
a divisor of Lf, that is, when G € {t1,...,t}. By E.13, however, we have

dimg K[X](x)/(f(X,aX)) = v(f(X,aX)).
This shows that (1) holds, and the proof is complete.

Corollary 6.4. At a point of multiplicity m > 0 on an algebraic curve there
1s at least one and there are at most m tangents.
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Corollary 6.5. Let F' = [['_, /', where the F; are irreducible curves and
n; €Ny fori=1,...,t. Then for every point P € P?(K),

mp(F) = Zn -mp(Fy).

Proof. We can assume that P = (0,0) and that the line at infinity is not
a component of F. The affine polynomial f of F then has a factorization
f = Hle fi'*, where f; is an irreducible polynomial corresponding to Fj.
Because Lf = szl(Lfi)”i, the result follows from 6.3(a).

Under the assumptions of 6.3, one can consider L f as an affine curve whose
irreducible components are lines through P. This is called the tangent cone
of F' at P = (0,0). By translation, the tangent cone is defined at any point
of F. If we decompose Lf into a product of powers of linear factors that are
pairwise not associates

P
Lf=c [J(@X -b:Y)"  (c€K*, (ai,bi)€ K?),
i=1
then the a; X —b;Y define the distinct tangents at P, and v; gives the multiplic-
ity with which the tangent should be counted. There are always m tangents at
a point of multiplicity m when these tangents are counted with multiplicity.

Examples.

Folium of Descartes: Four-leaf rose:

F=X’4+X’-Y?=0, P=(0,0) F=(X?+Y?%?-4X°Y* P =(0,0)

mp(F) =2, tangents: Y = £ X mp(F) =4, tangents: X =0,Y =0
(counted simply) (counted doubly)

Definition 6.6. A point P € V(F) is called a simple (or regular) point of
F if mp(F) = 1. In this case one says that F' is smooth (or regular) at P. If
mp(F) > 1, then P is called a multiple (singular) point or a singularity of F.
A curve that has no singularities is called smooth (nonsingular). The set of
all singular points is denoted by Sing(F'), and Reg(F') denotes the set of all
simple points of F'.
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By 6.4 a curve has a uniquely determined tangent at a simple point.

Corollary 6.7.

(a) A simple point of F' does not lie on two distinct components of F and also
does not lie on a multiple component of F.
(b) Every smooth projective curve is irreducible.

Proof. (a) follows immediately from the formula in 6.5. A smooth curve can
not have a multiple component by (a). If it had two distinct components,
these components would have to intersect (Bézout), and each intersection
point would be singular. Hence we have (b).

The following theorem will enable us to calculate singularities.

Jacobian Criterion 6.8. For P = (xg,z1,22) € V. (F), write 2L =

ox;
aaX (xo,21,22) for i =0,1,2. Then P € Sing(F) if and only if

OF OF _OF

oo Om  om

Proof. Without loss of generality we can take x¢o = 1. Consider the Taylor
series of F' at (1,x1,x2):

oF OF oF
(3) F = F(l 171,1’2)+— (X()* ) (Xl I1)+— (X27I2)+"'.
8 8951 ox T2
Dehomogenizing F' with respect to Xg, and setting X = X; — 21, Y =
X5 — x9, we get an affine polynomial corresponding to F' in a coordinate
system with P = (0,0). Since F (1,21, 22) = 0, it has the form

oF OF

X+ Y 4.

6$1 + 8:52 + ’
where the dots denote polynomials of degree > 1. By 6.3 we have mp(F) > 1
if and only if g = (0. But by the Euler relation

= BCD
oF oF oF
14— — -2 = (d -F(1 =0
om0 T o Mt e, ™ (deg f) - F(1,z1,22) = 0,
this is equivalent to 2= = 2 — 9F _

axo dx1 Oxa

Corollary 6.9. A reduced algebraic curve has only finitely many singularities.

Proof. Let F' be a reduced curve with irreducible components F; (i = 1,...,1t).
For P € P?(K) we have

F)=> mp(F,
i=1
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by 6.5, and it follows that

(4) Sing(F U Sing(F;) U U Vi (F;) NVL(F;)).
i#£]

Therefore, we must show only the finiteness of Sing(F;), since V. (F;)NVy (F;)
(for i # j) is finite by Bézout.

So suppose F' is irreducible of degree d > 0. It cannot be the case that all
of the partial derivatives gTF vanish (i = 0, 1,2); otherwise, F' would be of

the form F' = HP, for some polynomlal H, where p > 0 is the characterlstlc of

K; then F would not be irreducible. If some a—F # 0, then deg =d—
Since F and 2 3% Xo are relatively prime, the system of equations F' = 0, 8‘3—;) =0

has at most d(d — 1) solutions by Bézout. By the Jacobian criterion, Sing(F')
is therefore finite.

Example. The curves F,, := X7 + X7 — X§ (n € N ) are smooth if n is not
divisible by the characteristic of K. The partial derivatives of F}, then vanish
only for Xg = X; = X5 = 0; hence they vanish at no point in the projective
plane. In particular, F}, is irreducible. Conversely, if Char K is a divisor of n,
then all points of F;, are singular.

The following theorem shows that the tangents introduced here are for
curves defined over R a generalization of the tangents studied in analysis.

Theorem 6.10 (Tangents at regular points).

(a) Let P = (x,y) be a regular point of an affine curve f. Then the tangent
line to f at P is given by the equation

of of

Y x-ay+Y . v-y =0
5 :c)+8y (Y —y) =0,
where% —g};(ac y) and af = g{i(:ﬂ Y).

(b) Let P = (xg,x1,22) be a regular point of a projective curve F. Then the
tangent to F' at P is given by
of af af
- X — - X — X9 =0.
8:50 ot ox 1 1t ox X9 2T
Proof. (a) follows from the descrlptlon of tangents 1n 6.3(b), since the trans-
lation that maps (z,y) to (0,0) sends L (X -2 + (Y —y) to the leading
form of the polynomial describing the afﬁne curve.
(b) We may suppose without loss of generality that zo # 0 and let
f(X)Y):=F(1,X,Y). In affine coordinates the tangent is given by

of ﬁ-(Y—y)zO withm::x—, Y= —

8:17-(X_w>+3y To xo’
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according to (a), and therefore is given projectively by

of . o v, (91,.,9F N x.
(5) I X1+5‘y Xo <8xx+8yy) Xo =0.

of _ or zy z2\ 9f _ OF T1 Tz ;
Now 31 = 7x; (1, oL, xo), 5y = 7% (1, oL, zo), and by the Euler relation we

have

N (1 21 £z> o OF <1 il Ez) 2

ox 8y y 8X1 7.’1)07 i) i) 8X2 7.1‘0’ i) Zo

__OF () om
B aXO ’ .’BO’ X0 '

Observing that the partial derivatives are homogeneous of degree deg F' — 1,

we get the equations for the tangents that we want by multiplying through
by acgegF_l.

Next we want to characterize the regular points P using the local rings
OF p. In the future we will always denote the maximal ideal of Op p by mg p.
If P = (a,b) is an affine point and f the polynomial in K[X,Y] corresponding
to F', then

Orpr = K[fls,,

where K|[f] = K[X,Y]/(f) and Mp is the image of the maximal ideal Mp C
K[X,Y]. By 1.15 and C.10 we know the prime ideals of Op p: besides the
maximal ideal mp p, the ring O p has only finitely many minimal prime
ideals, which are in one-to-one correspondence with the components of F' that
pass through P. In particular, Op p is a one-dimensional local ring (E.10(b)).
Since Mp = (X — a,Y — b), it follows that mp is also generated by two
elements, and so we have edim Op p = 2 or 1.

Regularity Criterion 6.11. For P € V. (F) the following are equivalent:

(a) P is a regular point of F.
(b) OFr,p is a discrete valuation ring.
(C) edimOF’p =1.

Proof. (a) = (b). We can assume that P = (0,0), and then we have to
show that K[flg, is a discrete valuation ring. Let f = cf{" - fi" be a
decomposition of f into irreducible polynomials (¢ € K*, n; > 0). Since P is
a regular point of F', we have f;(P) = 0 for exactly one ¢ € {1,...,h}, and
moreover, for this ¢ we have n; = 1 (by 6.7(a)). Therefore,

(f) 'K[Xay]imp = (fz) 'K[va]imp'

Because mp(F) = 1, we have degLf = degLf; = 1. We can choose the
coordinate system so that Lf; =Y i.e., the tangent to F' at P is the X-axis.
Then f; is of the form
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(6) fi:¢1'X_¢2'Ya ¢1a ¢2€K[X7Y]> (bl(0,0):O, ¢2(070)7é0

If £, n are the residue classes of X|Y in K| f]ﬁp, then the maximal ideal
m = mp p of this ring will be generated by £ and 7, because X and Y generate
the ideal Mp. Since the image of ¢2 in K[f]gy, is a unit, from (6) we get an
equation 7 = r - { in K[flg;, (for some r € K[f]gz,), and therefore m is a
principal ideal. Since OF p is a 1-dimensional local ring, hence not a field,
we have ¢ # 0 and therefore edim Op p = 1. We have shown that Op p is a
discrete valuation ring.

The proof of (b) = (c) is trivial. To prove that (c) implies (a) it is enough
to show that edim Op p = 2 whenever P is a singularity of F. In this case
deg Lf > 2, and therefore f € (X2, XY,Y?) = 9M%. It follows that

m/m? 2 (X, Y)K[X,Y]m, /(X% XY, Y*)K[X,Y]m,.

It is easy to see that the ideal (X,Y)K[X,Y]sm, is not a principal ideal. By
Nakayama’s lemma (E.1), m/m? is then a K-vector space of dimension 2, and
a second application of the lemma shows that m is also not a principal ideal.

If F is an irreducible curve, its function field R(F) contains all of the
local rings Op p, where P € V. (F'). For if P is a point at finite distance (an
affine point), f the polynomial in K[X,Y] corresponding to F, and K|[f] =
K[X,Y]/(f) = K[z,y], then R(F) = K(z,y) and Op p is by 5.1 a localization
of Kx,y], so it is certainly a subring of K (z,y). It consists just of the rational
functions r € R(F) for which P € Def(r). If P is a smooth point of F, then
Op,p is a discrete valuation ring with field of fractions R(F) and K C Op p.

In general, we call a discrete valuation ring R with Q(R) = R(F) and
K C R a discrete valuation ring of R(F)/K. The set X(F') of all discrete
valuation rings of R(F')/K is called the abstract Riemann surface of R(F)/K.
Theorem 6.11 shows that Op p belongs to X(F) if and only if P is a regular
point of F. We now want to investigate more precisely the behavior with
respect to F of the abstract Riemann surface of R(F)/K.

Theorem 6.12. Let F' be irreducible. Then

(a) To each R € X(F) there is exactly one P € V4 (F) such that Opp C R
and mpp = m N Opp, where m is the maximal ideal of R. There is
therefore a natural mapping

T X(F) > Vi(F) (R P).

(b) The mapping 7 is surjective. For P € Reg(F), the set 7~1(P) consists
of only one “point” R, namely R = Op p. For P € Sing(F), n~1(P) is
finite.

Proof. (a) We write R(F) = K(z,y), where K|x,y] is the affine coordinate
ring of F' with respect to the line at infinity Xy = 0. If we choose instead
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X1 = 0 as the line at infinity, then K[, ¥] is the corresponding coordinate
ring, and for X3 = 0 we get the ring K[%, %}

Now let vg : R(F) — ZUoo be the valuation belonging to R. If vg(x) > 0
and vg(y) > 0, then K[z,y] C R and m N K|z, y] is a prime ideal of K|z, y].
It cannot be the zero ideal, for in that case we would have K(z,y) C R.
Therefore, m N K[z,y] = mp is the maximal ideal of some P € V. (F), and
we have

>
Y

Opp =K[z,ylmp, CR, mNOpp=mpp.

In case vg(xz) > 0 > vg(y), then K[%, %} C R. On the other hand, if
vg(z) < vr(y) < 0, then K[L %] C R. In each case, one finds as above a
point P € V, (F) with Opp C Rand mpp =mN Op p.

Suppose there were another such point P’ € V (F'). By a suitable choice of
coordinates, both P and P’ lie in the affine plane complementary to Xy = 0.
Then mpr = K[z,y] Nm = mp and hence P’ = P. This shows the existence
of the mapping 7.

(b) For P € Reg(F) we have Op p € X(F). Since a discrete valuation
ring is a maximal subring of its field of fractions (E.14), there is only one
R € X(F) with Opp C R, namely R = Op p. Hence 7~ (P) consists of
exactly one point in this case.

We still have to consider the singular points of F. Let P € Sing(F’). By
a suitable choice of coordinate system, we may assume that P = (0,0), that
the polynomial f € K[X,Y] corresponding to F is monic as a polynomial in
Y, and that g—{; # 0 (4.6). Then K[f] = K][xz,y] is integral over K[z] and
is a finite K[zr]-module. If S is the integral closure of K[z] in R(F), then
K[f] € S. Also, R(F) is separable algebraic over K (z). By F.7 it follows that
S is finitely generated as a K[z]-module. Then S is also finitely generated as
a K[f]-module.

Let 6F,p be the integral closure of Op p in R(F). Since Op p is a lo-
calization of K[z,y], the ring Op p is the localization of S at the same set
of denominators (F.11(a)), and in particular, Op p is a finitely generated
Op, p-module. By F.10(b) respectively F.10(a) it has at least one and at most
finitely many maximal ideals 9, and by F.10(b) these all lie over mg p, i.e.,
MNOpp =mpp forall M e Max(@p,p). Furthermore, by F.10(b) respec-
tively F.10(a) and F.8, (Or p)om is a discrete valuation ring, and hence an
element of X(F'). This shows that the mapping 7 is surjective.

Finally, let R € X(F) be an arbitrary element with 7(R) = P, and let m
be the maximal ideal of R. We will prove that 5F7p C R. For z € 61:‘713, we
must show that vg(z) > 0, where vg denotes the valuation belonging to R.
Let

a2 4 a, =0

be an equation of integral dependence for z over O p. From a; € O p C R,
it follows that vg(a;) >0 (i =1,...,n). If vg(z) < 0, then we would have

vr(2") = Min{vg(z"), vr(a;z""%) | i=1,...,n},
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and by Rule (¢’) in Appendix E, we would have oo = vg(0) = n - vg(z), a
contradiction.

Since Opp C @RP C R, we have that 9 := m N 6}7‘713 is one of the
maximal ideals of @Fﬁp lying over mp p, and (6F’P){m = R, since (5F’p)§)ﬁ
is itself a discrete valuation ring, as we have already shown. Thus, R is the
localization of O p at one of the finitely many maximal ideals of this ring;
i.e., 7 1(P) is finite.

Corollary 6.13. If F is smooth, then w: X — V. (F) is bijective.

Remark. It can be shown that in general, X(F') is the set of all local rings
of a smooth curve C in a higher-dimensional projective space, and F' appears
as a plane curve under a suitable mapping of C' to the plane. If, under this
mapping, several points of C' have the same image, then the outcome of this
is a singularity.

The proof of 6.12 has shown that the R € X(F") are exactly the localizations
of the rings Op p (P € V4 (F)) at their maximal ideals. It is therefore clear
that each R € X(F) has K as its residue field up to isomorphism. If vg is
the valuation associated with R, and r € R(F) is a rational function, then we
call vr(r) the order of r at the zero R. If vr(r) > 0, then we call R a zero of
order vr(r) of r; when vgr(r) < 0, then we call R a pole of order —vgr(r) of
r. If R = Op,p for a regular point P of F, then we also write vp for vg and
speak of the order of 7 at the point P.

To each r € R(F') one can assign a function on X(F) as follows: If vg(r) >
0, let 7(R) be the image of r under the canonical epimorphism R — K. For
R = Op p this amounts to the value of the function at the zero P, as we
have explained. Looking at the » € R(F) as functions on X(F') has several
advantages: r has an order at each point of X(F). Therefore, R € X(F) is a
pole of r precisely when R is a zero of r~1. Also, vg(r-s) = vg(r) + vg(s) for
all r,s € R(F).

Theorem 6.14. A nonzero rational function r € R(F') has only finitely many
zeros and poles on X(F).

Proof. Let f be the affine curve belonging to F. We first consider the case
r € K[f]. Then r belongs to the local rings Op p for every point P of F at
finite distance, and r has no poles at the points of 77 1(P). Let g € K[X,Y]
be a polynomial representing r. Since r # 0, g is not divisible by f. The affine
curves ¢ and f intersect in only finitely many points; i.e., 7 € mp p for only
finitely many points P € V(f); i.e., r has only finitely many zeros at finite
distance. Since F' has only finitely many points at infinity, each of which has
only finitely many m-preimages R € X(F), altogether r has only finitely many
zeros and poles.

An arbitrary function in R(F) is of the form Z, where r,s € K|[f] and
s # 0. It is then clear that any nonzero such function has only finitely many
zeros and poles.



60 6 Regular and Singular Points of Algebraic Curves. Tangents

As in the case of the projective plane, we define the divisor group of X(F)
(also called the divisor group of R(F')/K) to be the free abelian group on
the set of points of X(£). The degree of a divisor D = } pc () nr - R is the
integer ) ey () nr- Theorem 6.14 shows that to each function r € R(F)\{0}
there is a principal divisor

()= 3 uel) R

ReX(F)

since we have vr(r) # 0 only for finitely many R € X(F). The principal
divisors form a subgroup of the divisor group. Its residue class group is called
the divisor class group, and it is an important invariant of X(F') (or of the
function field R(F')/ K or of the curve F'). This divisor class group is in no way
as simple as the divisor class group of the projective plane described at the
beginning of Chapter 4. Birationally equivalent curves (see 4.8(a)) in P?(K)
obviously have isomorphic divisor class groups.

Exercises

1. Determine the real and complex singularities of the projective closures of
the curves in 1.2(e) and 1.2(f). Also calculate the multiplicities and the
tangents at the singular points. Do this also for the limagon (snail) of
Pascal (X% +Y?+4+2Y)? — (X2+Y?) =0.

2. Let Op,p be the local ring of a regular point P of an algebraic curve F.
Show that there exists an injective K-algebra homomorphism from O p
to the algebra K[[t]] of all formal power series in one variable ¢ over K.
(Use the fact that O F.p is a discrete valuation ring and “expand” the
elements of Op p using a prime element of the power series ring.)

3. Let f = f1--- fn be areduced affine curve. Show that f has no singularities
if and only if the canonical homomorphism

K[fl = K[fi] x -+ x K[f]

is bijective and the K[f;] are integrally closed in their field of fractions.
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More on Intersection Theory. Applications

In the last section we introduced the multiplicity of a point on an algebraic curve.
Using multiplicities we can make more precise statements about the nature of the
intersections of two curves than was possible so far. We will also present some
further applications of Bézout’s theorem.

First we shall give a description of intersection multiplicity by means of valu-
ations. Let F' be a curve in P?(K) and P a point of F such that the local ring
Op,p is an integral domain. This is the same as saying that P lies on only one
irreducible component of F. Let Ry, ..., R, € X(F) be the discrete valuation
rings that lie over Op p (i.e., for which 7(R;) = P using the mapping 7 of
6.12). Furthermore, let v, be the valuation belonging to R; (i = 1,...,h).
The R; are precisely the localizations of the integral closures @p, pof Oppin
R(F) at their maximal ideals.

Lemma 7.1. The K-vector space 6F,P/Op,p is finite-dimensional.

Proof. Opp is finitely generated as an O p-module, and both rings have the
- .

same quotient field. Hence there are elements w; = 3 (i = 1,...,n) in Orp
with a;,b € Op p, b# 0, such that

n
Ofpp= g OF,p - wi.

i=1

Then b@p,p C OF,p C 6}7‘,]3.

If b is a unit in Op p, then 6F7p = Op,p, and there is nothing more to
show. If b is not a unit of O p, then 5F’p/b5F’p is a K-algebra with only
finitely many prime ideals, namely the images of the maximal ideals of 5F’ p.
By D.3,

OF,P/bOF,P = Rl/(b) X - X Rh/(b),

and the R;/(b) are finite-dimensional K-algebras (E.13). Then 5F,p/b5F7p,
and hence also Op p/Op p is a finite-dimensional K-vector space.

Under the hypotheses of 7.1, let G be a curve that has no component that
contains the point P in common with F. Let I(G)p C Op be the principal
ideal belonging to G (Chapter 5).
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Theorem 7.2. Suppose the image of I(G)p in O p is generated by . Then

pp(F.G) = vr, (7).

Proof. We have up(F,G) = dimg Op p /() by the definition of intersection
multiplicity. Consider the diagram

vYOpp—— Orp
'Y@F,PC—> 5F,P
Using 7.1 we get
. [@] Or Orp . vOp.p
dim g +d mg —— —d myg —— +dimg ———.
OFP (7) () YOF,p

Since v is not a zero divisor of OF.p, the K-vector spaces O p/Op p and
~Or p/vOF p are isomorphic, and so

pp(F,G) = dimg Orp/ (7).
As in the proof of 7.1 we have

Orp/(7) = Ri/(y) X -+ X R/ (7),

and then from E.13,

lelKOFp/ ZdlmK R/ Zsz

Theorem 7.3. Let F' be an irreducible curve and r € R(F) \ {0}. Then the
principal divisor of r on X(F') is of degree 0. In other words: The function r
has exactly as many zeros as poles when these are counted with their respective
orders. If a € K and r # a, then r has also as many a-places as poles.

Proof. Represent r by a rational function % on P%(K). Suppose deg®d =
degV¥ =: q, deg F' =: p, and @, ¥ are as always relatively prime. Now, F is
not a divisor of ¥ and also not a divisor of @, since r # 0. Therefore, one can
choose the line at infinity in such a way that &(P) # 0 and ¥(P) # 0 for
every point P of F' at infinity. If P is any of these points, then r is a unit in
OF.p. L
Let ¢,¢, f € K[X,Y] be the dehomogenizations of &, ¥, F, and ¢, the

canonical images of ¢,v in K[f]. Then r = ¢ and by 7.2 and Bézout’s

<

theorem we have for the degree of the divisor (r
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deg(r) = deg(d) —deg(@) = 3 ve@) — 3 ve(®)

ReXx(F) REX(F)
= > wp(F®) - > pp(F¥)=p-q—p-g=0.
PEV,(F) PEV,(F)

Since the a-places of r are the zeros of r — a and since r — a has the same
poles as r, the statement about a-places has been shown.

In particular, a rational function r that has no pole on X(F) must be a
constant function.

The next theorem describes the relationship between intersection multi-
plicity and multiplicity.

Theorem 7.4. For two curves F, G in P?(K) and a point P € P*(K) we
always have

pp(F,G) > mp(F) -mp(G).

Equality holds precisely when F and G have no tangent lines in common at
the point P.

np(F,G) =8 pr(F,G) > 8

Proof. We may assume without loss of generality that P = (0,0) and that F
and G have no common component that contains P. Let f and g be the affine
curves corresponding to F' and G. Denote by 9 := (X,Y) the maximal ideal
of K[X,Y] belonging to P and let F be the M-adic filtration on K[X,Y].
Then by 6.3(b) (after a change of sign),

mp(F)=degLrf, mp(G)=degLrg.

Set m := mp(F) and n := mp(G). Using 5.1 and the definition of intersection
multiplicity it follows that
= dimg K[X, Y]/ — dimg (f, g, M"H") /ommtn

m+n+1
2

(1)

) ~ dimg((F, g, ) ),
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The K-linear mapping

a: K[X,Y] x K[X,Y] — (f, g, 90m+") /am+n,
(a,b) — af +bg+ M,

is surjective. Also, a(a,b) = 0 if a € M™ and b € IM™. Hence there is an
induced surjection

a: K[X,Y]/M" x K[X,Y]/IM™ — (f, g, 007" fonm e,
and we get

dimg ((f, g, ™) /M) < dimg K[X, Y]/ + dimg K[X, Y]/9™

_(n+1 " m+1
N 2 2 '
By (1) this implies that

p(F.G) > (m+;z+1) B <n42r1> B <m;1) —men,

and the first part of the theorem has been proved.

If Lyf and Lrg have a nonconstant common factor; hence F' and G have
a common tangent at P. Then there are homogeneous polynomials a,b €
K[X,Y] with dega =n—1,degb=m — 1, such that a- Lrf +b- Lrg = 0.
Therefore, (a,b) € ker o, and it follows that @ is not injective. It must therefore
be the case that pup(F,G) > mp(F) - mp(G).

On the other hand, if Lz f and Lzg are relatively prime, then gr-(f, g) =
(Lzf, Lrg) according to B.12. We also denote by F the filtration on the local
ring K[X,Y]on with respect to its maximal ideal. It is easy to see (C.14) that

gry K[X, Y] & grye K[X,Y] 2 K[X,Y]

in a natural way, and that Lxzf, Lrg are also the leading forms of f and
g as elements of K[X,Y]o. By B.6 the vector spaces K[X,Y]om/(f,g) and
gr=K[X,Y]on/(f,9)) have the same K-dimension, where F denotes the in-
duced residue class ring filtration. By B.8,

grr K[X,Y]m/(f,9) = grz K[X,Y]m/ gr£(f, 9),
and it follows that
pp(F,G) = dimg (KX, Y]m/(f, 9)) = dimg (K[X,Y]/(Lrf, Lrg).

From equation (4) in Appendix A we see that the last dimension is m - n, and
therefore pup(F,G) = mp(F) - mp(G).
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Corollary 7.5. If F' and G have no components in common, then

deg F - deg G > Z mp(F) - mp(G).
PeP2(K)

Equality holds if and only if F' and G have no tangent lines in common at
every point of intersection.

Definition 7.6. We say that F' and G intersect transversally at P if P is a
regular point of F' and of G, and if the tangents to F' and G at P are different.

Corollary 7.7. Two curves F and G intersect transversally at P if and only
if up(F,G) =1. If P is a point at finite distance, and f and g are the affine

curves corresponding to F and G, then F' and G intersect transversally at P

if and only if the Jacobian determinant aa(()];’g,)) does not vanish at the point

P.

Proof. The first statement follows immediately from Theorem 7.4. The non-
vanishing of the Jacobian determinant at the point P is equivalent to saying
that the leading forms Lrf and Lzg are of degree 1 and are linearly inde-
pendent, i.e., that mp(F) = mp(G) = 1 and that the tangents to F' and G
at P are different.

Corollary 7.8. Suppose F' and G have no components in common. Then
Vi (F) NV(G) consists of deg F - deg G distinct points if and only if F and
G intersect transversally at all their points of intersection.

Our goal now is to give a sharpening of Bézout’s theorem that will allow
us to give a more precise count of the number of singularities of a reduced
algebraic curve.

Theorem 7.9. Let F be an irreducible curve in P2(K) of degree d, and let
Sing(F) ={P1,...,Ps}. Then

Zmp,. (F)- (mp,(F)—1) <d(d—1).

Proof. We may assume that the points P; are at finite distance. Let f €
K[X,Y] be the dehomogenization of F. Since f is irreducible, both partial
derivatives of f cannot vanish, for otherwise, K would be a field of character-
istic p > 0 and f Would be a pth power

Suppose then a_X # 0. Then also 35~ 7é 0 and hence deg =d-—1.

Furthermore, F' and 6F have no components in common. By Bezout and 7.4
we have

oF oF
degF.deg&—X1 Z/},p( ) Zmp <8X1>
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Let P = (0,0). Then mp(F) =deg Lxf and mP(é?—)?l
oF

deg 5% = d — 1, we have mp(aaTFl) > mp(F) — 1, and it follows that

) = deg L;%. Because

oF
deg P deg 5= = > mp(F) - (mp(F) - 1),
P

Since only the singularities of F' contribute to the sum, the theorem is proved.
Corollary 7.10. A reduced curve of degree d has at most (g) singularities.

Proof. For irreducible curves F this follows immediately from 7.9, since
mp(F) > 2 for each P € Sing(F). Suppose F; and Fy are two reduced curves
with no common components for which the statement has already been shown,
and let F' := F} - F5.

Denote by s the number of singularities of F', let d; := deg F; (i = 1,2),
and let d := deg F' = dj + dz. Using equation (4) of the proof of 6.9 we get

s < @1) + <d;> +dydy = B d2)22_ (di+da) _ (;l)

Now for an arbitrary reduced curve, the statement of the corollary follows by
factoring and induction.

Examples 7.11.

(a) A reduced quadric has at most one singularity: In fact, for the line pair,
the point of intersection is the singularity.
(b) A reduced cubic can have 3 singularities of multiplicity 2,

or one singularity of multiplicity 3.

For irreducible curves the estimate of the number of singularities can be
sharpened. To do this we need a few preparations. We begin with a funda-
mental concept.
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Definition 7.12. A set L of curves of degree d in P?(K) is called a linear
system of degree d if there is a subspace V of the K-vector space of all homo-
geneous polynomials of degree d in K[Xg, X1, Xa] such that L consists of all
curves F' with FF € V'\ {0}. If dimV =: 6 + 1, then we set dim L := 0.

That the dimension of L has been chosen to be 1 less than the dimension of
V' can be explained by the fact that two polynomials that differ by a non-zero
constant factor define the same curve. In fact, L = P?(V) is the projective
space associated with V.

Remark 7.13. For Pi,..., P, € P}(K), let L be the linear system of all
curves of degree d with {Py,..., Ps} C Supp(F’). Then

d+2
dimLz( ;r >sl.

Proof. We have dimg K|[Xo, X1, Xo]a = (df). A homogeneous polynomial
F of degree d has therefore (d'zﬂ) coefficients in K. The requirement that
{Pi1,...,P;} C Supp(F) gives rise to s linear conditions on the coefficients.

At least (dgz) — s linearly independent polynomials satisfy these conditions.

Through 2 points there passes a line, through 5 points a quadric, through
9 points a cubic, etc.

d |1 2 3 4

(" -1]2 5 9 14

We will now consider, in addition to the points Py, ..., Ps € P?(K) on the
curve F' of degree d, given integers mq,...,ms > 1 for which

mpZ(F)Zmz (i:l,...,s).
Let F = Zl/g+u1+u2:d o Xo° X1 X5? and let P = (1,a,b). Then mp(F) >
m if and only if the leading form of the polynomial
FLX4a,Y+b) = Y (X +a)" (Y +b)? = b, X1YH
vo+vitva=d

(with respect to the standard grading) has degree > m; i.e., we must have
by, = 0 for py + p2 < m. The by, ,, are linear combinations of the a,,, .,
with coefficients in K. The requirement mp(F) > m gives rise to (" 1) linear
conditions on the coefficients of F'. The next theorem now follows.

Theorem 7.14. The curves F of degree d with mp,(F) > m; (i =1,...,s)
form a linear system L with

d+2 u m; + 1
i > - —1.
dlmL_( d ) Z( 5 )

=1
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We now come to the announced sharpening of 7.10 for irreducible curves.

Theorem 7.15. Let F' be an irreducible curve of degree d and let Sing(F) =

{Py,...,P,}. Then )
(3)-£1)

i=1

Proof. By 7.9 we certainly have (d;rl) > (‘21) >3 (mPiZ(F)). By 7.14 the
linear system of all curves G of degree d — 1 with mp,(G) > mp,(F) — 1
(i=1,...,s) is nonempty, and one can even find a curve G that additionally
passes through

d+1 u mp, (F)
_ i 1
() -2 ("
prescribed simple points of F.

Since F' is irreducible and deg G = deg F' — 1, the curves F’ and G have no
common component. Thus it follows from Bézout’s theorem and 7.4 that

dd-1) > ima ()omn(F) -1+ (5 1) - ; (") -
SO

(d; 1) . ; (mP;(F))'

Corollary 7.16. An irreducible curve of degree d has at most (dgl) singular-
ities.

and we get

For example, an irreducible cubic has at most one singularity with multi-
plicity 2. At that singular point, it can have two distinct tangents (folium of
Descartes) or a double tangent (Neil’s semicubical parabola). An irreducible
curve of degree 4 (a quartic) can have up to 3 singularities of multiplicity 2,
or one of multiplicity 3.

The following theorem classifies the singular cubics.

Theorem 7.17. In case Char K # 3 every irreducible singular cubic curve in
P2(K) is given, in a suitable coordinate system, by one of the following two
equations:

(a) XOX1X2 + Xig + X23 == O,

(b) XoX37 — X3 =0.
If Char K = 3, the curve is given by one of the equations (a), (b) or by the

equation
(C) X0X22 — X% — X12X2 =0.



7 More on Intersection Theory. Applications 69

Proof. Let F be an irreducible cubic curve with a singularity P. We can
assume P = (0,0) without loss of generality.

(a) If F' has two distinct tangents at P, then without loss of generality
we can take these to be the X-axis and the Y-axis. The affine polynomial
associated with F' then has the form

XY +aX34+bX2%Y +cXY? +4Y3 (a,b,c,d € K).

Here a # 0 and d # 0, for otherwise, F would be reducible. Set a = a?, d = 63
(o, 6 € K), so then the polynomial has the form

XY(1+bX +cY) + (aX)? + (6Y)?,
and the substitution aX — X, Y — Y gives

1 b c
XY | —=+—X+—7Y X3 4Y3,
<a6 * a2 * ad? > rATE

Homogenizing this polynomial, and relabeling the expression in the parenthe-
ses Xg, we get
XoX1Xo + X7 + X3 =0.

(b) If F has a double tangent at P, then the associated affine polynomial,
in a suitable coordinate system, has the form

Y2 +aX3+0X2%Y 4+ cXY? +dY3 (a,b,c,d € K, a #0).

If Char K # 3, then by the substitution X — X — 3ZY, we can assume that
b = 0. Now write the polynomial in the form

Y2 (1+cX +dY)+aX?+bX?Y
and proceed as in (a) to get the equations (b) and (c).

We will deal with nonsingular cubics (elliptic curves) in detail in Chapter
10. The next theorem gives sufficient conditions under which the intersection
scheme of two curves is a subscheme of a further curve, and so complements
Noether’s fundamental theorem 5.14 and the Cayley—Bacharach theorem 5.17.

Theorem 7.18. Let Iy, F», and G be curves in P2(K). Suppose one of the
following conditions is satisfied for a point P € V(F1) N V4 (Fy):

(a) P is a simple point of F1 and up(F1,G) > pp(F1, F2).
(b) Fy and Fy have no tangents in common at P and

mp(G) > mp(Fl) + mp(Fg) —1.

Then
dimg Op,nmna,p = pp(Fi, F2).
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Proof. Under the assumption (a), the ring Op, p is a discrete valuation ring.
Let I = () and J = (n) be the ideals in Op, p associated with F, and G.
Then by 7.2,

ve(n) = pp(F1,G) = pp(F1, F2) = ve(y),

and therefore J C I. It follows that
dimg OFlﬂFzﬁGA’P = dimg Opl’p /I+ J =dimg OFl,P /I = /Lp(Fl,FQ).

Under the assumption (b), we let P = (0, 0) without loss of generality, and
let f1, f2,g be the corresponding affine curves. Denote the maximal ideal of
the local ring O’ by 9, and let Lf1, Lf2, Lg be the leading forms of f1, fa,
g with respect to the 9t-adic filtration of 0. We have groy Op = K[X,Y].
Since F} and F5 have no tangents in common at P, it follows that Lf; and
L f5 are relatively prime polynomials in K[X,Y]. Then by B.12,

gron Op /(f1, f2) = K[X,Y]/(Lf1, L)

If deg Lf1 = mp(F1) =: m, deg Lfa = mp(F3) =: n, then the homogeneous
component of the largest degree in K[X,Y]/(Lf1, Lf2) (the socle, cf. 3.14) is of
degree m+n—2 according to A.12(b). Since, by assumption, deg Lg > m+n—
1, we must have Lg € (Lf1, Lfa), and therefore g € (fi, f2) O +9M™ ", By
induction we get g € 2, ., (f1, f2) O +9, and by the Krull intersection
theorem E.8 it follows that g € (f1, f2) Op. But then dimg O npnc,.p =
dimg Op /(f1, f2,9) = dimg O% /(f1, f2) = pp(F1, Fa).

Corollary 7.19. Let Fy and Fy be curves with no component in common, and
let G be a further curve. For each P € Vi (F1) N V4 (F2) suppose one of the
following conditions is satisfied:

(a) Fy is smooth at P and pup(F1,G) > up(F1, F).
(b) Fy and F5 have no tangent line in common at P and

mp(G) 2 mp(Fl) + ’ITLP(FQ) —1.
Then Fy N Fy is a subscheme of G.

Corollary 7.19, like the Cayley—Bacharach theorem, gives sufficient con-
ditions for the conclusion that F; N Fy is a subscheme of G. Theorem 7.18
itself can sometimes be used to give an easy proof that condition (4) of the
Cayley—Bacharach theorem holds.

We illustrate an application of 7.18 and 7.19 by means of Pascal’s theorem.

Examples 7.20.

(a) Let Fy and F5 each be the union of 3 distinct lines. Suppose F; and F
intersect as in the following figure.
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Here P is a point of multiplicity 2 of F5, and a simple point of Fj. Be-
sides this point, V4 (F1) N V4 (F3) contains 7 other points of intersection
multiplicity 1.

A quadric ) contains the 5 distinct points of intersection other than A,
B, C, and is tangent to Fy at P. Then dimg Op,nrng,p = pp(F1, Fo) =2
by 7.18(a). Let G be the union of  with the line through A and B. Then
the hypotheses of the Cayley—Bacharach theorem 5.17 are satisfied for Fy,
F», G, and it follows that C' € Supp(G); i.e., A, B, C lie on a line.

This “degenerate case” of Pascal’s theorem can be used to construct,
using only a straightedge, a tangent line to a quadric ) through a given
point P.

(b) The situation can even “degenerate” more strongly:

The quadric @ contains the double points Sy, S2, and S3 of F» and is
tangent to F} at these points. Then A, B, C lie on a line.
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Exercises

1. Calculate the intersection multiplicity of the curves
Y2 - X3=0, YP - X%2=0 (B<p<q#3-%

at the origin (use 5.9 and 7.4).

Carry out the above-mentioned tangent construction on a quadric.

3. How can one construct the line segment between two points with a
straightedge that is shorter than the distance between the points? (Pap-
pus’s theorem).

4. Deduce the following theorems in the geometry of circles from 7.18:

(a) Miguel’s theorem: In R? let a triangle {4, B,C} be given, let A’ be
on the line through B and C, let B’ be on the line through A and
C, and let C’ be a point on the line through A and B. Assume that
A, B, C" ¢ {A, B,C}. Cousider the circles through A, B/, C’, through
A’ B, €', and through A’, B’, C. These circles intersect in a point.
c

o

C'

(b) In R?, let 3 circles be given such that each two of them intersect in
2 points. Then the common secant lines of the circles intersect in a
point.

5. Give a proof using elementary geometry for 7.20(b) in the case that the
quadric is a circle.
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Rational Maps. Parametric Representations of
Curves

Rational maps of the projective plane are given by homogeneous polynomials of
the same degree. Above all, we are interested in the characterization of birational
equivalence by rational maps. It will also be shown that a curve is rational precisely
when it has a “parametric representation.” This chapter depends on Chapter 4, but
it also uses parts of Chapter 6.

Definition 8.1. For relatively prime homogeneous polynomials &g, ®1, Py €
K[Xo, X1, X2] of the same degree, denote by & = (®g, P71, P2) the mapping

@ :P*(K)\ [ Ve (®:) = P*(K)
1=0

given by @((zo,z1,72)) = (Po(z0, 1, 72), P1(T0, 1, T2), P2(T0, 1, 72)). It is
called the rational map given by Py, &1, P2. We call Def(P) = P3(K) \
N7_o V1 (®;) the domain of definition and N7V (P;) the set of indeterminate
points of @.

It is clear that @ has only finitely many indeterminate points, since the @;
are relatively prime.

Examples 8.2.

(a) Coordinate transformations of P?(K) are rational maps. If ¢ is a coordinate
transformation and @ is a rational map, then co® and ®oc are also rational
maps. In order to prove the rationality of a mapping, one can choose a
“suitable” coordinate system.

(b) The central projection from a point onto a line. Let G be a line in P?(K)
and P € P?(K)\ G. For each line G’ through P, we associate to G'\ {P}
the point P’ of intersection of G and G’.
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The map P?(K) \ {P} — G C P?(K) given here is rational: In a suitable
coordinate system P = (0,0,1) and G is the line X2 = 0. The central
projection from P onto G will then be given by (xo,x1, z2) — {(xg, z1,0);
ie., itis @ = (X, X1,0). The point P is called the center of the projection.

(¢) Quadratic transformations (Cremona transformations). These are the
maps ¢ = (Py, Py, P2) with relatively prime homogeneous polynomials
®; of degree 2. We will investigate the specific map

o= <X1X27 XOX27 X(]X1>
in some detail. Its indeterminate points are
Py=(1,0,0), P, =1{(0,1,0), P, ={(0,0,1).

The lines X; = 0 are mapped by @ onto P; (i =0,1,2).

For points not in V; (XoX;X52), the map &2 is given by
(zo, 71, 22) <$%$1$2,$0$%$2,$0$1$§>,

and so is equal to the identity. The function @ therefore maps P? \
Vi (X0X1X2) bijectively onto itself.

In a moment we shall use the following notation: If A € K[Xg, X1, X2] is
a homogeneous polynomial and & = (Pg, Py, P2) is a rational map, then we

set
A¢ = A((I)O, @1, @2)

This is also a homogeneous polynomial, and we have
(1) A®(z0, 21, 10) = A(D(x0, 71, 22)) for (xg,x1,20) € Def(P).

We will now show that two reduced curves in P?(K) are birationally equiv-
alent if and only if after finitely many points are removed from the curves,
the remaining points can be mapped bijectively to one another by a ratio-
nal mapping of the plane. Here again we identify reduced curves with their
support V4 (F). As in Chapter 4 we call a subset F* C F dense if it con-
tains infinitely many points from each irreducible component of F'. The dense
subsets of irreducible curves are therefore the infinite subsets.
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Theorem 8.3. For two reduced curves F and G in P%(K), the following are
equivalent:

(a) F and G are birationally equivalent.

(b) There are cofinite subsets F* C F, G* C G and rational maps &, ¥ of
P?(K) with F* C Def(®), G* C Def(¥), such that ®|p+ and ¥|g« are
bijective inverses of each other.

(¢) There are dense subsets F* C F, G* C G and rational maps &, ¥ such
that the conditions given in (b) are satisfied.

Proof. (c) = (a). If A € K[Xy, X1, X>] is a homogeneous polynomial with no
components in common with G, then also F' and A® have no components in
common, because otherwise by (1), A would vanish at infinitely many points
of G* = §(F™*), and therefore must have a component in common with G
(3.10). This shows that there is a K-homomorphism

A A%

defined by @. This map sends I to I, for if A is divisible by G, then by (1)
A? vanishes on F*, hence is divisible by F, because F is reduced. Passing to
the residue class rings, we get a K-homomorphism

" : R(G) — R(F).
Similarly, ¥ induces a K-homomorphism

7 R(F) — R(G).

DP\T
For % € Og¢ the rational functions % and % agree on the dense subset

G* C G. By 4.3 these fractions give the same functions of R(G). This shows
that @* and ¥* are inverse K-isomorphisms, i.e., that F' and G are birationally
equivalent.

(a) = (b). Conversely, suppose two inverse K-isomorphisms

a:R(G) — R(F) and B:R(F)— R(G)

are given. Suppose further, without loss of generality, that X is not a com-
ponent of F or GG. Then K {Xl X } C OrNO¢. Denote by & the composite
of the K-homomorphisms

X, X
K|:12

1l 42 can. « F .
x| = 0e = riG) < R(P)

Then ker(a) = I N K [ﬁ— X—z} = (G (1, % X—)) Write

X; D, D; .
V|l —)=—+1 ith — €0 =1,2).
a<X0) ¢0+ nem 4506 ro (=12
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By getting a least common denominator we can make sure that both fractions
have the same denominator and that ged(®Pg, P1,P2) = 1. Since % € Op
(1 =1,2), we also have ged(Pog, F) = 1.

For the rational map @ := (®g, P, P2), because G(1, g—;,g—i) e Ip, it
follows that G@(P) = G(P(P)) =0 for all P € F with ®&g(P) # 0, hence on
a cofinite subset of F' and therefore on all of F. But it could be that P is an
indeterminate point of @. In any case, #(P) € G for all P € F that are not
indeterminate points of .

If 3 and ¥ = (W, ¥y, ¥,) are defined similarly, then also ¥(Q) € F for all
Q € G that are not indeterminate points of ¥. And it follows from J3( X;

X ) =
Y 4[4 that
i

- (P, ikl
L) =t 41 i =1,2).
In particular, g—é € O¢ and hence ged(®F,G) = 1.
0
Let G* be the set of all points of G that are not indeterminate points
of ¥ and that are not mapped under ¥ to indeterminate points of @. Also,
the second set of exceptions is finite, because ®o(¥(P)) = & (P) = 0 for
only finitely many P € G, since ged(®f,G) = 1. The set F* C F is defined
similarly. Then F* C F and G* C G are cofinite subsets.
v
Because 3 o a = id, the rational functions g; and ?g[‘) agree (i = 1,2). We
0
have then ¢(¥(P)) = P for all P € G*, and it follows that @|p~ and ¥
bijections that are inverse to each other.
Since (b) = (c) is trivial, the theorem is proved.

G* are

An irreducible curve F' in P?(K) is therefore rational if and only if it is
birationally equivalent to the line Xo = 0. We may identify P!(K) with this
line by means of the map

PYK) — P?(K) ((u, vy — (u,v,0)).

If F is rational, then according to Theorem 8.3 there are homogeneous poly-
nomials @, &1, Py € K[U, V] of the same degree such that, except for a finite
number of choices of point P, every point of F' can be represented as

P = (Py(u,v), P1(u,v), P2(u,v))

for a uniquely determined (u,v) € P*(K). Without loss of generality, one can
take the &g, @1, P to be relatively prime, because the representation does not
change at all if one cancels the greatest common divisor. Since F(®q, P1,P2)
vanishes for infinitely many points (u,v) € P1(K), this polynomial in K[U, V]
is therefore the zero polynomial, and thus we have a mapping

(2) ¢:PY(K)—F ({(u, v) — (Pg(u,v), P1(u,v), P2 (u,v)))

that is bijective on cofinite subsets of P1(K) and F.



8 Rational Maps. Parametric Representations of Curves 77

Suppose conversely that arbitrary homogeneous polynomials @, &1, @2 €
K|[U, V] of the same degree are given, suppose they are relatively prime, and
suppose

o :PHK) — P*(K)

is given as in (2). We will show that the image of @ is an irreducible curve in
P2(K), but first we will show only that the image is contained in a uniquely
determined irreducible curve.

Let ¢g, ¢1, ¢p2 € K[T] be the dehomogenizations of @, P1, P with respect
to U, ie., ¢;(T) = &,(1,T) (i = 0,1,2). Without loss of generality we can
assume that the rational functions

ﬂ, 2 € K(T)

b0 $o
are not both constant, for otherwise dehomogenize with respect to V. It is then
clear that the image of @ contains infinitely many points (in affine coordinates)

(i;gg, iigg) (t € K, ¢o(t) #0). The K-homomorphism

¢ KX, Y] K(T) (X~ %, Y2
is not injective, since it is well known that any two elements in K (T) are
algebraically dependent over K, as is in fact easy to show. In addition,
ker(¢*) can not be a maximal ideal, because the % are not both constant.
Therefore, ker(¢*) = (f) for some irreducible polynomial f € K[X,Y]. Let

F € K[Xy, X1, X2] be its homogenization. From f(%, %) = 0 it follows that
F(®¢,9,,92) =0

and hence im® C F. Since the image of @ contains infinitely many points,
there can be only one irreducible curve F' of this kind.

Definition 8.4. We say that F' is given by the parametric representation
X, =o,(U,V) (i=0,1,2).

An arbitrary curve F' has a parametric representation if it can be given by a
parametric representation.

Certainly a line F : agXo + a1 X1 + a2 X2 = 0 (a; € K) has a parametric
representation @ : P*(K) — F, which is moreover bijective. If, say, az # 0,
then it can be given by Xo =U, X; =V, Xy = —é(aoU +aiV).
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Theorem 8.5. An irreducible curve F in P?(K) is rational if and only if it
has a parametric representation.

Proof. By 8.3 it has already been shown that a rational curve has a parametric
representation. To prove the converse, we may regard the curve as given by
a parametric representation X; = @,(U,V) (i = 0,1,2) as above. There is an
injective K-homomorphism of K[f] = K[X,Y]/(f) into K(T') induced by ¢*,
and hence an injection of R(F') = Q(K|[f]) into K (T).

The theorem of Liiroth from field theory (which we assume is known here),
implies that every field extension of K contained in K (T') is generated by one
element. Therefore R(F) = K(T") for some T" € K(T')\ K, and hence F is a
rational curve.

Using valuation-theoretic arguments from Chapter 6 we show

Theorem 8.6. Suppose a curve F is given by a parametric representation
X, =®,(U,V), fori=0,1,2. Then the mapping

o:PY(K)— F, (u, v) — (Po(u,v), P1(u,v), P2(u,v)),
s surjective; i.e., the parametric representation “hits” every point of F'.

The proof requires a few more preparations. The field R(P!) of rational
functions on P! is the set of all quotients ¢ where a,b € K[U,V] are ho-
mogeneous polynomials of the same degree and b # 0. Such a quotient will,
as usual, be considered as a function defined on that part of P! where the

denominator does not vanish. It is clear that

R(PY) = K (%) =K(T) withT:= g

Given a curve F as in the theorem, we identify the embedding R(F) —
K(T) constructed above with the mapping

R(F) — R(P')

that assigns to each rational function 7 € R(F) the composition ro® € R(P!).
This is independent of the choice of coordinates in P?(K) and P!(K).

The discrete valuation rings of K (T')/K correspond one-to-one with the
points (u,v) € P*(K), and are the rings Ry, ) of all rational functions on
R(P!) that are defined at (u,v). Their description as subrings of K(T') is as
follows: If w # 0, then Ry, ,y = K[T]|(yr—v), the localization of K[T] at the
prime ideal (uT' — v). If u = 0, then Ry, ) = K[T~"](7-1). Since P'(K) can
be identified with an arbitrary line ' C P?(K), these statements follow from
6.13; see also Chapter 6, Exercise 1.

We denote the maximal ideal of R, ) by m, .. The proof of 8.6 is based
on a valuation-theoretic description of the parametric representation @.
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Lemma 8.7. To each (u,v) € P1(K) there exists a unique P € F with
OF,P C R(unj)a Mmp p = My ) n OF,P .

Here
P =&((u,v))

is the point corresponding to the “parameter” {u,v).

Proof. To show that P is uniquely determined by (u,v), we appeal to the
corresponding uniqueness theorem in 6.12(a).

To prove the existence of P, by a suitable choice of coordinates, we can
assume that u # 0. With ¢ := % and ¢;(T) := @;(1,T) (i = 0,1,2), we can
further assume that ¢g(¢) # 0. Then by the inclusion R(F) — R(P) = K(T),
the¢afﬁne coordinate ring K[f] = K[X,Y]/(f) = K|[z,y] is identified with

K[%, %] C R{u,w)- The composition of K[z,y] — R,y with the canonical
_ &

epimorphism R, ,y — K maps z to a : %o and y to b := % The kernel of
this map is mp := (z — a,y — b), and hence

OF,P - K[l’, y]mp C R(u,v)a mpep = m(u,v) N OF,P .

Proor oF 8.6:
By 6.12(b), for each P € F there is a discrete valuation ring R’ of R(F)/K
with maximal ideal m’ such that

OF,pCR/, mF,p:m’ﬂOp,p.

We have R(F) = K(T') € K(T) for some T € K(T)\ K. Therefore it is
enough to show that there is a discrete valuation ring R of K(T)/K with
maximal ideal m such that

R CR, m'=mnNR.

Without loss of generality we can assume that R’ = K[T"]p/y. Write in short
form 7' = 5 (f,g € K[T], g # 0). If f is not a constant, then there is an
element a € K with f(a) = 0, g(a) # 0. In this case, R’ C K[T'](r_,) and
m' = (T — a)K[T](p—q) N R'. If f is constant, then g is not constant. In this
case we have R’ C K[T~](p-1y and m’ = (T ") K[T -1y N R

Parametric representations of curves in the affine plane are given by two
rational functions a, § € K(T) that are not both constant. The kernel of the
K-homomorphism

KX, Y] - K(T) (X—aYr—p

is a principal ideal (f) generated by an irreducible polynomial f. Since
f(a,B) = 0, we see that the curve f = 0 contains all points (a(t), 8(t)) for
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which ¢ € K is not a pole of & and 3. In this way f is uniquely determined.
We say that f is given by the (rational) parametrization

X=a), Y=34T)

In contrast to the projective case, given a parameter value ¢t there does
not necessarily correspond a point on the curve, and also not all points on the
curve are necessarily given by the parametric representation. For an example,
see Chapter 1, Exercise 2. However, this is the case if the curve has a polyno-
mial parametric representation (Exercise 1 below). It is clear that an affine
irreducible curve has a parametric representation if and only if its projective
closure has one.

Exercises

1. Suppose a curve f in A?(K) is given by a “polynomial” parametric rep-
resentation

X=ao), Y=p5T) (a, B € K[T)).
Show that the mapping K — V(f) (t — (a(t), 3(t))) is surjective.
2. Show that all irreducible singular cubics are rational. (Theorem 7.17).
3. The reader may already be familiar with the epicycloid and hypocycloid.

For r, p,a € R4 and a variable ¢ € R, the epicycloid is a plane (in general
transcendental) curve with a parametric representation

x = (r+p)cost — acos(HTpt),
y= (r+p)sint — asin(%et).

The hypocycloid is given by

z = (r —p)cost + acos(L1),
y = (r—p)sint — asin(—4t).

Show that if Z is a rational number, then these are rational algebraic
curves (and only then). Which of the curves sketched in Chapter 1 are of
this form?

4. Describe the image of the quadric X& + X7 + X2 = 0 under the quadratic
transformation QZS = <X1X2, XoXQ, XOX1>.

5. Determine the divisor class group of K (T)/K.
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Polars and Hessians of Algebraic Curves

The study of the tangents to an algebraic curve is continued in this chapter. We
are concerned with the question of how many tangents of an algebraic curve can
pass through a given point of the plane. We also investigate the “flex tangents,” the
tangent lines at inflection points.

For a point P € P?(K) and a line G with P € G, let
7p : P2(K)\ {P} — G

be the central projection from P onto G (8.2(b)).
If F is a projective algebraic curve of degree d with P ¢ V (F), then 7p

induces a mapping
mp: Vi (F) — G.

This is surjective, since each line G’ through P intersects the curve F', and
for each Q € G, the set W}Sl(Q) consists of d points P’, when these are
counted with their multiplicity up/(F,G’), where G’ := ¢(@Q, P). One says
that 7p : V4 (F) — G is a “d-fold covering.”

G

0 \

If 75'(Q) contains fewer than d distinct points, then pp/(F,G’") > 1 for at
least one P’ € 15" (Q); i.e., the “projection line” G’ must be tangent to F at
P’ or P’ is a singularity of F'. The question is, for how many points Q € G
does this case occur?
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For P = (xg, z1,x2) we consider the homogeneous polynomial

Do oF OF oF
PR, TR X, T Tax,
of degree deg Dp = deg F' — 1. If F is irreducible with deg F > 1 and the
characteristic of K is either 0 or > deg F', then Dp is nonzero for all P €
P2(K), for otherwise (in a suitable coordinate system), ' would be dependent
on only two variables and so would be reducible.

Definition 9.1. If Dp is nonzero for a point P € P?(K), then we call the
curve associated with Dp the polar of F' with respect to the pole P.

The polar does not depend on the choice of the projective coordinate
system: Let A € GL(3, K) be the matrix of a projective coordinate transfor-
mation and let (yo,y1,y2) = (zo, 21, 22) - A, so that

FA(Yo,Y1,Ys2) = F((Yo,Y1,Y2) - A7)

with indeterminates Yp, Yl, Y. Then by the chain rule (using the shorthand
YA~ = (Yo, Y1,Yz) - A1)

OFA 9FA 9FA\' OF OF OF ¢
=A""'. YA~ YA~ YA~
(5 5 o) (A g 0ra g wa™h)

and therefore

OFA ([ OF OF OF ’
Zyi—f(zg,xl,xg)AA (8X0(YA Do VAT, G- (AT )>

=Dp(YA™Y).
The geometrical significance of polars is given by the following theorem:

Theorem 9.2. For P € P?(K) suppose the polar Dp of F is defined (i.e.,
Dp #0). Then V4 (Dp) N V4 (F) consists of :

(a) the singularities of F,
(b) the points of contact of all the tangent lines to F that pass through P.

If deg F' does not divide the characteristic of K, then we have P € V. (Dp) if
and only if P € V. (F).

Proof. Let Q = (yo,y1,y2) € Vo (F). If Q is a singularity of F, then Q €
V+(Dp) by the Jacobian Criterion 6.8. On the other hand, if @ is a regular

point of F', then
OF OF OF
X X + Xo— =0
"y oy o
is the equation of the tangent to F' at ). This contains the point P if and

only if @ € V4 (Dp).
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The Euler relation

OF OF OF
X X X = (degF) - F
vax, Ve gy, — el
gives the last statement of the theorem.
Pole Pole
Polar
Polar

Corollary 9.3. Let F' be a smooth curve of degree d > 1 and suppose
Char K = 0 or Char K > d. Then for each point P € P?*(K) there are at
most d(d — 1) tangents to F' passing through P.

Proof. F and Dp are relatively prime. By Bézout the set V. (Dp) N Vi (F)
has at most d(d — 1) points.

If P ¢ Vy(F) and np : V4(F) — G is the central projection onto the
line G, then there are at most d(d — 1) points Q € G for which w;l(Q)
contains fewer than d distinct points. The corollary no longer remains valid
if the condition on the characteristic is violated. There can even be infinitely
many tangents to a smooth curve through P (Exercise 1 below).

In the rest of this section we study inflection points (or flexes) and tangent
lines at inflection points (flex tangents).

Definition 9.4. A point P € P%(K) is called a flex or an inflection point of
Fif

(a) P is a simple point of F', and

(b) if G is the tangent to F at P, then pup(F,G) > 2.

A tangent at an inflection point is called a flex tangent.

The definition allows for G to be a component of F. A flex where the
tangent is not a component of F' is called a proper flez.

For example, all points of a line are (improper) flexes. A curve F of degree
2 has no proper flexes, for if a line GG is not a component of F', then by Bézout
> pup(F,G) =2 and therefore up(F,G) < 2 for all P € V. (F). It is clear
that the concept of a flex is independent of the coordinate system.
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In the following we assume that P is a regular point of F', where deg F' > 3.
Let G be the tangent line to F' at P. In order to derive conditions under which
the point P is a flex of F' we will assume that P = (0,0) and that G is given
by the affine equation Y = 0. Also let f be the affine curve associated with
F. Two cases are possible:

(I) P is an improper flex of F. This is the case if and only if Y is a factor of
F.
(IT) G is not a component of F. In this case f can be written in the form

f=X"o(X)+Y - (X, Y),

where p € N, g > 2 and where ¢ is a polynomial in X alone with ¢(0) # 0
and 9 a polynomial with (0, 0) # 0.
In the local ring O we then have that ¢ and v are units. Also

up(F, G) = dimK O/p /(f, Y) = dim[( K[X}(X)(X'U’) =W

Then P is a (proper) flex of F' if and only if x> 2.
The flexes of I' can be determined with the help of the Hessian determi-

nant 52
F
Hy = det <7) .
aXian ,7=0,1,2

We have deg Hrp = 3 - (deg F' — 2). We will see that we can have Hrp = 0.
If, however Hp # 0, then one calls the curve in P?(K) corresponding to Hp
the Hessian curve (or Hessian) of F. This is independent of the choice of
coordinates: If FA(YO, Y7,Y5) is given as in 9.1, an easy calculation using the
chain rule shows that

HFA(}/b,Yl,}/Q) = (det A)2 . HF<<Y033/1a}/2) . A_1)~

62

In the following we write Fx, 1= %, Fx,x; : = IX0X;

Lemma 9.5. We always have

n(n — 1)F (n — 1)FX1 (7’L — 1)FX2
X2 HF— (n—lFXl FXle FXlXQ
(nf 1>FX2 FX1X2 FX2X2

Proof. Multiply the first row of the Hessian determinant by Xy and add to
that X; times the second row and X, times the third row. Using the Euler
formula

2
(n—1)Fx, :ZFXin X5 (1=0,1,2)
=0

yields the determinant
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(n — 1)FX0 (77, — ].)F’X1 (Tl — 1)FX2
Xo| Fxoxy Fx, x, Fx, x,
FX()XQ FX1X2 FX2X2

Now do the analogous operations on the columns of this determinant and use
nk = Z?:o Fx, - X; to get X¢Hp in the form given in the lemma.

Corollary 9.6. For every singular point P of F' we have Hp(P) = 0. Also,
Hp =0 if the characteristic of K divides n — 1.

Next we want to prove the following theorem.

Theorem 9.7. Let F' be a reduced curve of degree n > 3. Let p be the char-
acteristic of K, and assume that either p =0 or p > n. Then

(a) Hr =0 (mod F) if and only if F is a union of lines.

(b) If Hr # 0 (mod F), then the intersection of F with its Hessian curve
consists of the singular points of F and the flexes of F'.

(c) For every regular point P of F whose tangent line G at P is not a com-
ponent of F we have

pp(F,G) = pp(F,Hp) + 2.

Proof. Let P be a regular point of F' and let G be the tangent to F' at P.
To determine whether P is a flex point of F' and whether Hp(P) = 0 we can
assume that P = (0,0) and that G is given by Y = 0. Let f be the affine
curve corresponding to F.

By 9.5, Hp(P) is the value of the determinant

Df (n=1fx (n—1fy
X fxx fxy

)
) fy fxy fry
=n(n—1f(fxxfry — fxy) — (0= D*(fX fry + f¥ fxx — 2fx fy [xv)

at the point (0,0). If P is an improper flex of F' (case I above), then Y is
a divisor of f. In this case f, fx, and fxx all vanish at the point P and
therefore Hp(P) = 0.

Case (IT) above still remains, and now f will be written as it was there. A
calculation with partial derivatives gives

n(n —
=|(n—-1
(n—=1)f

fx =pXF o+ Xt +Y -1y,

fxx = plp— D)X 2o+ 2uXH 1 + XH¢" +Y - hxx,
fr =v+Y ¢y,

fry =20y +Y -Yyy,

fxy =vx +Y -xy.

We consider now the value of the image of Ain Op p = K[X,Y]x v)/(f)
under the associated valuation. Since ¢ and 1 are units, the congruence
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Y - Y(X,Y) = —X*"¢(X) mod (f) shows that the maximal ideal of Op p
is generated by the image of X. Also, the image of Y in Of p has the value p.
We see now that in the above expression for A the image of fZ fxx has value
1 — 2, while the images of the remaining terms have higher values. Therefore
the image of A has value p — 2.

In particular, this shows that A # 0 mod (f). Hence Hr # 0 mod (F),
provided there exists a regular point P of F' whose tangent is not a component
of F. This is the case precisely when F' is not a union of lines.

On the other hand, if F' is such a union, then one can directly calculate
that Hp = 0 mod (F): Without loss of generality suppose that F = X(G,
where G is a product of linear homogeneous polynomials. Then 9.5 shows that

n—1
n—2

2
X2 -Hp = ( ) X§ - Hg mod (F).
By induction we can assume that Hz = 0 mod (G), and therefore Hrp = 0
mod (F).
This proves part (a) of the theorem. The formula

‘up(F, HF) =dimg K[X7 Y](X,Y)/(fa A) =M= 2

shows that statement (c) of the theorem is also correct. Furthermore, the
formula says that P € V. (F) NV (Hp) precisely when p > 2, i.e., when P is
a flex of F. Together with 9.6 this gives the assertion (b) of the theorem.

Example 9.8. If one drops the assumption about the characteristic, then
the theorem is no longer true in general. Suppose Char K = 3 and F :=
XgXy — X3. This curve is irreducible, its singularity (0,0, 1) is the only point
at infinity, and one sees easily that Hp = 0.

The regular points of F' are the points at finite distance. They satisfy the
equation Y = X3. Obviously (0,0) is a flex of F. For an arbitrary point (a, b)
of F' at finite distance,

Y -X3=Y-X3—(b-0a®)=(Y -b)— (X —a)?
and therefore (a, b) is also a flex of F.
In contrast to this we have the following.

Corollary 9.9. Under the assumptions of 9.7 let F' be irreducible and let s
be the number of singularities of F. Then F has at most 3n(n —2) — s flexes.
Proof. By 9.7(a) we have Hr £ 0 (mod F') and by 9.7(c) we have up(F, Hp) <
oo for every regular point of F. In particular, F' is not a divisor of Hp. Ac-
cording to Bézout,

> up(F,Hp) = deg F - deg Hp = 3n(n — 2).
P

Since s terms in the sum come from the singularities of F', the statement
follows.
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Corollary 9.10. Under the assumptions of 9.7 let F' be smooth. Then F has
at least one flex. If { Py, ..., P.} is the set of all flexes of F, and {G1,...,G.}
the set of corresponding flex tangents, then

(s

Z(Mpi (F,G;) —2) =3n(n—2).

i=1

Exercises

1. Let F be a curve in P?(K). A point P € P?(K) is called strange for F if
there are infinitely many tangent lines to F' through P.

(a) Show that if there is a strange point for F', then Char K > 0.
(b) Give an example of a smooth curve with a strange point.

2. Determine the flexes of the curves in 1.2.

3. Let F be the irreducible quadric X3 + X7 + X2 (Char K # 2). For P €
P?(K), let Dp denote the polar of P with respect to F. Show that the
map P — Dp gives a bijection of P?(K) onto the set of all lines of P?(K).
What is the image of a line in P?(K) under this map? Give an elementary
geometric description of the mapping P — Dp.






10

Elliptic Curves

Next to the quadrics these are the most studied curves. They are the object of
an extensive and deep theory with many connections to analysis and arithmetic
(Husemdoller [Hus], Lang [L], Silverman [S1], [S2]). On the role of elliptic curves
in cryptography, see Koblitz [K] and Washington [W]. After choosing a point O, an
elliptic curve may be given a group structure using a geometric construction. We first
concern ourselves with this construction. Finally, we classify elliptic curves up to a
coordinate transformation. This chapter contains only the rudiments of the algebraic
theory of elliptic curves.

Definition 10.1. An elliptic curve in P?(K) is a smooth curve of degree 3.

Theorem 10.2. Suppose Char K # 2 or 3. Every elliptic curve has ezxactly 9
flexes.

Proof. Let Py,..., P, be the flexes of an elliptic curve E and let G1,...,G,
be the corresponding flex tangents. Since deg F = 3, we have up,(E,G;) = 3
forv=1,...,r, and from the formula in 9.10 it follows that r = 9.

Example 10.3. The Fermat curve X§ + X3 + X3 = 0 in P?(C) is elliptic.
The corresponding Hessian curve is given by XoX; X2 = 0. The flexes of the
Fermat curve are

(1,£,0), (1,0,8), (0,1,),
where ¢ runs through the set of solutions of X3 +1 = 0.

Now let E be an elliptic curve and let G be a line in P?(K). By Bézout G
intersects the curve F in three points P, @, R, where two or even all three of
these may coincide. The case P = @ occurs exactly when G is tangent to F
at P, and P = Q = R when G is a flex tangent at P. In any case, we write
GNE = {P,Q, R}, where a point is repeated according to its intersection
multiplicity of G with E.

Now let O € E be an arbitrarily chosen point. For A, B € E, denote by
g(A, B) the line through A and B when A # B, and the tangent line to F at
A when A = B. In addition, let

g(A,ByNE ={A,B,R}

and
g(O,R)NE ={0O,R,S}.

There is then a well-defined operation
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ExFE—E, (A,B) — S,

which we call the addition on E (with respect to O), and which we write as
the sum S = A+ B.

Theorem 10.4. (E,+) is an abelian group with identity element O.

Proof. (a) By definition, O + B = B for all B € E. The commutativity of the
addition is likewise obvious.

(b) Existence of inverses: Let A € E be given and suppose ¢(O,0) N E =
{0, 0, R}. Suppose further that g(A,R)NE = {A,R,B}. Then A+ B=0
by definition of addition, and therefore B = —A.

(c) The verification of associativity is somewhat more complicated. It uses
a special case of the Cayley—Bacharach theorem. Let A, B,C € E be given,
where of course two or all three of the points can coincide.

We define certain lines and intersection points with F one after another
according to the following sketch and description:
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91 :=g(A, B), g1 NE={A, B, R},

hi :g(OaR)v hlmE:{OaR;A+B}a

g2 :=g(C, A+ B), gNE={C,A+ B,R'},
g::g(OvR/)7 ng:{OaRla(A+B)+C}a
hs == g(B, C), hsNE = {B,C,R"},

g3 = g(O, R"), 93N E={0,R",B+C},

hs = g(A, B+C),  hsNE={AB+C X}
We will show that X = R’, and then it follows that
(A+B)+C=A+(B+0).
Consider the cubic curves
INn'=g1+92+9gs, I2:=hi+ha+hs

We then have

Vi (E)NVy(I1)={0,A,B,C,R,R',R" A+ B,B + C},

Vi(E)NVy(I»)={0,A,B,C,R,X,R",A+ B,B + C},

where some of these points may also coincide, and then we count them ac-
cording to their intersection multiplicities. We have to show equality of the
intersection cycles

E x Fl = FEx FQ.

To do that we will use the Cayley-Bacharach theorem (5.17) and Theorem
7.18.
Let S:={0,A,B,C,R,R", A+ B,B+ C}. Then for all P € S we have

pp(E,Iv) = pp(E, I3),

and by 7.18 this number is also equal to dimg Op,nr,nE,p. Furthermore,
ZPGS dimg O, Arne,p > 8, and therefore by Cayley—Bacharach, £ N I is
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a subscheme of Is; i.e., dimg O nrne.p = pp(E,I) for all P € V4 (E) N
Vi(I1). In particular, R € V4 (E) N V4 (I%). Similarly, dimgx O nrnep =
up(E,Ip) for all P € Vi (E)NV, (%), and in particular, X € V, (E)NV4 (I1).
Therefore E « [ = E x I5.

Remarks 10.5.

(a) Suppose the elliptic curve F is defined over a subfield Ky C K, and let
E(Ky) be the set of Ky-rational points of E. If O € E(Kj), then for
A, B € E(Ky), we also have A+ B € E(Kj) and —A € E(Ky) and hence
(E(Kyp),+) is a subgroup of (E,+).

In particular, for an elliptic curve F defined over QQ the set of Q-rational
points of F is a subgroup of (E,+). By a deep theorem of Mordell-Weil
this group is finitely generated (cf. Silverman [S;], Chapter VIII).

(b) Under the assumptions of 10.4, let O* € E be another point and let +*
be the addition defined by means of O* on E. If ¢ is a given coordinate
transformation of P?(K) with ¢(E) = E and ¢(O) = O*, then ¢ induces
a group isomorphism of (E,+) and (E,+*). This is clear, because the
construction of the sum is compatible with coordinate transformations.

However, one cannot map any point of F to any other by a coordinate
transformation with ¢(E) = E; e.g., a flex point cannot be mapped to any
point that is not a flex point. Nevertheless, (F, +) and (F, +*) are always
isomorphic groups (Exercise 3).

Theorem 10.6. Let E be an elliptic curve. For O € E suppose g(O,0)NE =
{0,0,T}. Then for points A, B,C € E the following are equivalent:

(a) There is a line g such that gN E = {A, B,C}.
(b) In (E,+) we have A+ B+C =T.

Proof. Suppose g(A, B) = {A,B,R}. Then T = A+ B + R by definition of
addition. Now we have T'= A 4+ B + C precisely when R = C, i.e., precisely
when g(A, B)NE ={A, B,C}.

Corollary 10.7. If O is a flex of E, then A+ B+ C' is the intersection cycle
of E with a line g if and only if A+ B+C =0 in (E,+).

Corollary 10.8. Suppose O is a flex of E. Then P € E is a flex if and only if
3P = O. The set of flexes forms a subgroup of (E,+) isomorphic to Zs x Zs.

Proof. A point P is a flex of F if and only if 3P is the intersection cycle of E
with a line. By 10.7 this is equivalent to 3P = O in (E, +).

Each flex of E is a torsion point of (E,+) of order 3. Since there are 9
flexes, these form a group isomorphic to Zs X Zs.

Notice that with regard to the 9 flexes, every two of them are collinear
with a third, a situation that cannot be illustrated in R2?. Remember that a
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curve over C may be thought of as a real surface, and a complex line as a real
plane.

We come now to the classification of elliptic curves in the case that
Char K # 2 or 3 (see Husemoller [Hus] for Char K = 2 and 3). If P is a
flex of an elliptic curve E, then the coordinate system can be chosen so that
P ={0,0,1) and X¢ = 0 is the flex tangent to E at P. In such a coordinate
system F has the equation

(1) ang’ + CL1X22 4+ a2 X9+ a3 =0,

where a; € K[Xo, X;1] are homogeneous of degree i (i = 0,...,3). Because
P =(0,0,1) € E, we must have ap = 0. Dehomogenizing with respect to Xa,
we get an affine equation

a1(X,Y) +az(X,Y) +a3(X,Y) = 0.

Because Xy = 0 is the tangent to E at P, we must have a; = ¢X for some
¢ € K*. However, up(F, Xo) = 3, and therefore X must be a divisor of as.
We can take ¢ = 1 without loss of generality. The equation (1) then has the
form

XoX3 + Xo(aXo + BX1) X2 + a3(Xo, X1) =0 (a,B8 € K).

Using the substitution
1
Xo = Xo — E(OéXo +68X1), X1~ X1, Xor~— Xo,

we get the equation
XoX3 +a3(Xo,X1)=0  (degas = 3).

Since Xy is not a divisor of ag, using another substitution this equation can
eventually be written in the form

(2)  XoX7— (X1 —aXo)(X1 —bXo)(X1 —cXo)=0  (a,b,c€K).

Here a, b, ¢ are distinct, for if a = b, say, then (1, a,0) is a singularity of F, as
one sees immediately by taking partial derivatives.

The polar Dp of E with respect to P = (0,0,1) is given by 8‘9)’?2 =
2X0X2 = 0. It consists of the line at infinity Xg = 0 and the affine X-axis. In
addition to the point P, the polar intersects the curve F at the points with

affine coordinates

(a,0), (b,0), (c,0).

By 9.2 these are the points of contact of the tangents to E passing through P
and different from the flex tangent. They are assigned to the flex P in a way
independent of the coordinates. We have therefore shown:
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Theorem 10.9. If P is a flex of an elliptic curve E, then except for the flex

tangent there are exactly three further tangents to E containing the point P.
The points of contact of these tangents are collinear.

Y

Y2=(X—-a)(X-b)(X-c)

a<b<c

Using the substitution
X(/):(bia)X()v Xi:leaX()’ Xé:(\/bfa)il.XQ’

equation (2) becomes

=% 20,1

@);Wwfﬂa}XMﬂfum:ommA:bw

‘We have now shown

Theorem 10.10. Every elliptic curve is given in a suitable coordinate system
by
E\: YooYy — V(Y1 —Yo) (Y1 — \Yy) =0

with A € K\ {0,1}.

The question arises when E) is projectively equivalent to Ej with A €
K\ {0,1}. We observe next:

Lemma 10.11. If A and B are two flex points of E, then there is a coordinate
transformation ¢ of P2(K) with ¢(E) = E and c(A) = B.
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Proof. We may assume that A # B. The points A and B are collinear with
a third flex P. As above, we choose this point to be the point at infinity
P =(0,0,1), and write the equation of F in the form (3). The corresponding
affine equation is then

(4) Y2-X(X-1)(X -\ =0.

The line g(A, B) is parallel to the Y-axis, since it contains P. Under the
substitution Y — —Y, equation (4) remains invariant and the line g(A, B) is
mapped to itself. Also, since flex points are mapped to flex points and A # B,
the points A and B must necessarily be switched by the substitution.

The point P = (0,0,1) is a flex of E\ and F5. If there exists a coordinate
transformation ¢ with ¢(Ey) = Ej, then ¢(P) = P. The points (0,0), (1,0),
and (), 0) of the X-axis are the points of contact of the tangents to E, through
P. Similarly for the points (0,0), (1,0), (A,0) and the curve Ey. Therefore c
must fix the X-axis and map {(0,0), (1,0), (), 0)} to {(0,0), (1,0), (), 0)}.

On the X-axis, ¢ is given by the substitution X — ~(X) with y(X) =
aX +b (a € K*, b € K), where v({0,1,A}) = {0,1,A}, and every such
transformation leads to an equation (4) for E5. One can show easily that such
a v exists if and only if A belongs to the set

My :={ A1 A0 -0 200D (A=A )
‘We have therefore shown:

Theorem 10.12. E) is mapped by a coordinate transformation to E5 if and
only if X € M.

The function j given by

s(AVP=X+1)3

IV =2 e

(A£0,1)

is invariant under the substitutions A — A, A — A7, A — 1 — A, etc. It is
therefore an invariant of the class of curves “projectively equivalent” to Fj,
i.e., curves that can be mapped onto E) by a coordinate transformation. We
set j(E) = j()\) for all elliptic curves E in the class of Ey. (The number 2% is
a “normalization factor,” but we will not go into this any further here.)

Definition 10.13. j(E) is called the j-invariant of the elliptic curve E.

Theorem 10.14. For each a € K there is one and, up to projective equiva-
lence, only one elliptic curve E with j(E) = a.

Proof. For each a € K the degree 6 equation

(5) 25N —A+1)2 —aX’(A—1)2=0
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has a solution Ag # 0, 1, and all elements of M), are also solutions. We have
J(Ex,) = a, and each \j with j(Ey,;) = a solves (5).

If M), consists of 6 different values, then these are all the solutions of
the corresponding equation and we are finished. It is easy to check that My,
contains fewer than 6 elements only in the following cases:

1
M_y =My =M, = {—1,—,2}
3 2

1 1
M, = M, ={p,p~'}, where p:= 3 + 51/_3.

In the first case, a = 2°- 33, and in the second case a = 0. In every case My,
is the set of all solutions of the corresponding equation (5).

We have now solved the classification problem for elliptic curves in the fol-
lowing sense: There is a bijective map j from the set of projective equivalence
classes of elliptic curves onto the field K.

In the complex numbers, elliptic curves can be parametrized by elliptic
functions. This explains their name. Let 2 = Zw1 ® Zws be a “lattice,” i.e.,
w1, ws € C are linearly independent over R. The Weierstrafl p-function of the
lattice §2 is well known to solve the differential equation

P —4(p —e1)(p —e2)(p —e3) =0
with e := (%), e2 1= (%), €3 := p(“23*2). The points (p(z), p'(z)) for
z & (2 thus lie on the affine curve with equation

Eo:Y? —4(X —e1)(X —e2)(X —e3) =0.

One can show that if one assigns the z € {2 to the points at infinity of E,
then one gets a bijection between C/{2 and EQ, the projective completion of
Egq. The group structure of C/{2 corresponds to the group structure of the
elliptic curve Fo with the point at infinity O.

From well-known theorems about elliptic functions it follows using The-
orem 10.12 that every elliptic curve over C is projectively equivalent to a
curve Eq, for a suitably chosen lattice {2 in C: The numbers e;, es, e3 can be
assumed to be arbitrary distinct a, b, ¢ in C when {2 is chosen properly.

Exercises

1. Let F' be an irreducible singular cubic curve. When counted with multi-
plicity, every line intersects F' in 3 points. By analogy with elliptic curves,
one can then try to construct a group structure on F. Consider F'\ Sing F'
and try to carry out the construction. What can you conclude?

2. Let K be a field of characteristic 3 and let E C A%(K) be an elliptic curve.
Show that no point P € A%(K) is a strange point for E (cf. Chapter 9,
Exercise 1).
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3. Under the assumptions of 10.5(b) let g(O,0*)NE = {0, O*, T}. For each
P € E, let a(P) € E be defined by ¢(P,T)NE = {P,T,a(P)}. Show that
a: E — E is an isomorphism from (E,+) onto (E,+%).

4. Let O be the identity element for addition on an elliptic curve F, where
here the addition will be denoted by +. The addition on the divisor group
Div(FE) will be denoted by +. Let Div’(E) be the group of divisors of de-
gree 0, H(E) the group of principal divisors, and C1°(E) := Div®(E)/H(E)
the group of divisor classes of degree 0. Show that:

(a) If P,Q € E, then (P+Q)+ O — P — Q € H(E).
(b) The mapping

(B, +) — CI°(E) (P— (P—-0)+H(E))

is an isomorphism of groups.
5. Show that an elliptic curve defined over R has exactly 3 real flex points.
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Residue Calculus

We assign “residues” to the intersection points of two affine algebraic curves. The
residues depend on a further curve (or more precisely, on a differential form w =
hdXdY). They generalize the intersection multiplicity of two curves in a certain
sense, and they contain more precise information about the intersection behavior.
The elementary and purely algebraic construction of the residue that we present
here is based on Appendiz H and goes back to Scheja and Storch [SS1], [SS2]. Their
work is also the basis of residue theory in higher-dimensional affine spaces, which
can be developed in a similar fashion as here. What we are talking about is sometimes
called Grothendieck residue theory. It was originally introduced in [H], Chapter 3,
89, in great generality. For different approaches, see also [Lii] and [Liz]. Chapters
11 and 12 will not be used in Chapter 13 and later. The reader may go directly from
here to the Riemann—Roch theorem.

Let F and G be two algebraic curves in P?(K) with degF =: p > 0 and
deg G =: ¢ > 0, and with no common components. We assume that the coor-
dinate system has been so chosen so that F' and G have no points in common
on the line at infinity Xy = 0. Let f and ¢ denote the dehomogenizations of
F and G with respect to Xy, so that by 3.8 the projective coordinate ring

S = K[Xo,Xl,XQ]/<F, G)
of FFN G is the Rees algebra of the affine coordinate ring
A:=K[X,Y]/(f.9)

of f N g with respect to the degree filtration F, and the associated graded
algebra of A with respect to F is of the form

B:=gry A= K[X,Y]/(Gf,Gyg),

where Gf and Gg are the degree forms of f and g respectively. By 3.9,
A/K and B/K are finite-dimensional algebras, and S/K[Xo] has a finite ba-
sis consisting of homogeneous elements. Furthermore, A = S/(Xy — 1) and
B = §/XS. The canonical modules (cf. Appendix H) wg/x[x,] and wp/x
are graded. The following connection between the canonical modules and the
canonical traces results from H.5 and H.6:

Theorem 11.1. There is a canonical isomorphism of graded B-modules

wp/K = Ws/K[Xo]/ Xows/K[Xo]
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and a canonical isomorphism of A-modules
wa/k = wS/K[Xo]/(XO - 1)wS/K[Xo]-

Here the canonical trace 05/ K|[Xo] corresponds in WB/K (respectively wA/K) to
the canonical trace o i (respectively o4 /k).

By 3.14 the socle &(B) of B is a K-vector space of dimension 1, and
S(B) = Bp4q—2 is the homogeneous component of B of degree p + g — 2.
Hence H.18 gives us the following result:

Theorem 11.2. The algebras S/K[Xo] and B/ K have homogeneous traces of
degree —(p + q — 2). In particular, there are isomorphisms of graded modules

o~

ws/K[xo] =5, wp/k = B.
The algebra A/K also has a trace:
wA/K =~ A.

Now let F and G be two arbitrary curves in P?(K). Suppose that at a
point P € V(F)NV,(G), the curves F and G do not have a component in
common. Then Opng p is a finite-dimensional algebra over K (5.3).

Corollary 11.3. Opng,p /K has a trace.

Proof. By 5.2 one can assume that F' and G have no components in common at
all. Since Opng,p is independent of the coordinates, one can further assume
that F' and G do not intersect on the line at infinity. Then we are in the
situation as above. Since Opng,p is a direct factor of A and A/K has a trace
(11.2), by H.10 this is also the case for Opng.p /K.

Let f and g be two arbitrary affine curves with no common components
that may now have common points at infinity. Then A := K[X,Y]/(f,g) is
always a finite-dimensional K-algebra and is the direct product of the local
rings at the points of V(f) NV(g). Since these each have a trace over K by
11.3, we get by H.10, via 11.2, also in this somewhat more general situation,
the following corollary.

Corollary 11.4. A/K has a trace.

Under the assumptions of 11.3, we set O := Opng,p. Let m denote the
maximal ideal of O, let R := Rn O = @y m"T " & P, OT* be the
Rees algebra, and let G := gr,, O be the associated graded algebra of O with
respect to the m-adic filtration. If P is a point at finite distance and 91 is
the maximal ideal of K[X,Y] corresponding to P, then O = O /(f,g) with
O = K[X,Y]on. Let m be the multiplicity of F' at P, and let n be the
multiplicity of G at P. Then ordgy f = —m and ordgy g = —n.
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The algebra gr,, O is a finite-dimensional K-algebra, and Ry O has a basis
as a K[T]-module consisting of homogeneous elements. As in 11.1, there are
canonical isomorphisms

1) wo /k Z wr/kr)/(T — Dwr/ k(1)

wa/k = wrykr)/TWr/ K(T)
and the corresponding statements about the canonical traces are valid.

Theorem 11.5. Suppose F' and G do not have a common tangent at P. Then
Rm O/K[T] and gr,, O /K have homogeneous traces of degree m +n — 2.

Proof. Because of the assumption on the tangents, the 9M-leading forms L f
and Lg are relatively prime polynomials in K[X,Y] (cf. 6.3(b)). By B.12,
G = gr, O = K[X,Y]/(Lf,Lg), and the socle 6(G) is a K-vector space
of dimension 1; hence &(G) = G_(4n—2)- The rest of the proof proceeds
analogously to that of 11.2.

Remark. In general, gr,, O /K need not have a trace (Exercise 1).

In the following it is important to specify certain traces. Some preparations
are necessary. In the situation as at the beginning of this chapter we consider
the enveloping algebra (cf. Appendix G)

Se = S®K[X0] S = S®K[X0] K[Xo,Xl,XQ]/<F,G) = S[Xl,XQ}/(F,G)

of S/K[Xy]. The grading of S can be extended to the polynomial algebra
S[X7, Xa], where the indeterminates X7, Xo have degree 1. Then the residue
class algebra S°¢ is also positively graded.

Let z1, x2 be the images of X7, X5 in S; the image of Xy in S will be
denoted by X, again. We then have

S[Xl,XQ]:S[lexl,Xzfda] and (F,G)S[Xl,XQ} C(lexl,nglfg).

Here the X; — z; (i = 1,2) can be considered as variables over S of degree 1.
We write

F=a1(X1—21) + a12(X2 — x2),

2
( ) G:a21(X17x1)+022(X2*x2)7

with homogeneous a;; € S[X1,Xs] (4,5 = 1,2) and set A := det(a;;). This
determinant is homogeneous of degree p + ¢ — 2. Similarly, let

A= Awk A=Ak K[X,Y]/(f,9) = AIX,Y]/(f,9)
and

B°:= Bek B = By K[X,Y]/(Gf,Gg) = BIX,Y]/(Gf,Gg)
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be the enveloping algebras of A/K and B/K. The epimorphisms S — A
(modulo (X — 1)) and S — B (modulo Xj) induce epimorphisms

EZS[Xl,X2]—>A[X,Y] (XlP—>X, X2P—>Y)

and
(SS[Xl,XQ]HB[X,Y] (XlF—>X, XQHY)

Here e(F) = f, e(G) = g, 6(F) = Gf, 6(G) = Gy, so that by ¢ the induced
epimorphism

S[X1’X2]/(F> G) - A[X7 Y]/(f7 g)

can be identified with the canonical epimorphism S¢ — A¢ and
S[X1, Xo]/(F,G) — B[X,Y]/(Gf,Gy)

with S¢ — B°.

We denote the images of X, Y in A by x, y and the images of X, Y in
B by &, n. Applying ¢ to the system of equations (2), we get in A[X,Y] the
system of equations

f=011(X1 — 1) + a12(X2 — z2),

(3) g:Oé21(X17§C1)+0522(X27.T2) (Oéij GA[X,Y])

Similarly, the application of § gives a system of equations in B[X,Y],

Gf =an (X1 — z1) + az2(X2 — 22),

4
@ Gg =a21(X1 — 1) + a22(X2 — x2),

with homogeneous @;; € B[X,Y]. Let ALY be the image of det(a;;) in
S¢ = S[X1, X2]/(F,G). We consider also systems (3) and (4), which do not
necessarily arise as specializations of (2) by means of e respectively 5 and

define Af’g € A€ and AGf G ¢ Be similarly to the way we defined AL

z1 :Dz

Theorem 11.6. AMC s independent of the special choice of the coefficients

T1,T2

a;; in equation (2). Similarly for Afg and AGf Gy, Moreover, AEG s

$1 )
mapped by the canonical epimorphism Se — Ae to Ag:g and by S¢ — B¢
to AGf’Gg.

Proof. By assumption, F' and G are relatively prime in K[Xg, X1, Xs]; i.e., F
is not a zerodivisor mod G and G is not a zerodivisor mod F'. The same holds
also in S[X1,X5] by G.4(b). By 14, ALG  does not depend on the choice
of the coefficients a;; in (2). The proof is similar for A9 and A?f 99 The
remaining statements follow because (3) and (4), as we have shown, can be
considered to be specializations of (2).

Now let I be defined to be the kernel of the map S¢ — S (a ® b+ ab),
and similarly for 74 and I5.
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Theorem 11.7. Annu(I4)=A- Ag:g.

Proof. We apply 1.5 with R = A[X,)Y], a1 = X —z, a0 =Y —y, by = f,
and by = g. Before we start, by using a linear transformation of the variables
X,Y, we make sure that g is a monic polynomial in Y. Then g is also monic
as a polynomial in Y — y. The transformation of the variables has no effect
on the statement of the theorem, since Af;’,g will only be multiplied by the
determinant of the transformation.

As a monic polynomial in Y —y, g is not a zerodivisor of A[X,Y]/(X —x).
Then also X — x is not a zerodivisor of A[X,Y]/(g). Since Y — y is not a
zerodivisor of A[X,Y]/(X — z) & A[Y], the conditions of 1.5 are satisfied.
In A° = A[X,Y]/(f,g) we identify I* with the ideal (X — z,Y — y)/(f,g).
Therefore, by 1.5 we deduce the desired equality Ann . (14) = (Agﬁg).

According to H.20, the element Af 9 corresponds to a trace of A/K that we
will denote by Tf’gy Whatever we say about A/K will also hold in particular
for B/K. Therefore,

Amnp.(I%) = B AZTC9

and a trace Té’}]_Gg of B/K is specified by A?g’cg. Since A??Gg is homoge-
neous of degree p + ¢ — 2, we have
degTGng —(p+q-2).
Finally, it follows from H.23 that

Anng.(I%) = 5. APG

T1,T2"

The trace of S/K[X,] determined by ADY will be denoted by 73’4 For
this trace we also have

Z1,T2

degTFG =—(p+qg—2).

Theorem 11.8. T;”gy is the image of TFG under the canonical epimorphism

Ws/K[Xe] — WA/K, and Té’zcg is the image of Tlgﬁj(’;zz under the canonical
epimorphism ws/k(x, — WB/K -

This follows from H.21.

Theorem 11.9. The following formulas are valid:

o — 6(F7G) 'Tml,xg o — 8(f7g> Txy
S/K[Xo] 8(1'1,.')32) FG > A/K 8($,y) f.97
and
a(Gfa Gg) L&

TP T Thlg ) Teran
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Proof. Let {s1,...,Sm} be a basis of S/K[Xy] and let {s},...,s],} be the
dual basis to this basis with respect to 74’4, Then by H.9,

m m
/ X, / xr1,T
0S/K[Xo] = (E si5i> TFIGQ,M(E 5i®5i> TF1G27
i=1

i=1

where p @ 5S¢ — S is the canonical Surjection By H.20(a) and the definition

of Tlfﬂlé *, we have Aflciz =>", s, ®s; and therefore
_ G T1,T2
US/K[XO} - HJ(AJq,.LQ) F.G -

But (2) shows that the p(a;;) are precisely the partial derivatives

oFr  OF oG oG

oz, 5‘X —(z1,22) and 8—37] = 8—Xj(xl,xg).

Therefore M(Affm) is the corresponding Jacobian determinant aa(g’fz)). The
proofs of the remaining formulas are similar.

The theorem shows in particular that the standard traces are traces if and
only if the corresponding Jacobian determinants are units of S, A, and B
respectively.

We will now describe the action of the trace Té’]ng : B — K more pre-
cisely. In K[X,Y] we have a system of equations

Gf =c1iX + c12Y,

(5) _
Gg = ca1 X + c22Y,

with homogeneous ¢;; € K[X,Y]. By 3.14 the image d?f; 99 of det(ci;) in B
is a generator of the socle &(B) = Bptq—2 of B. Recall that by 3.12(b),

JG1Ga _ 1 0(Gf,Gg)
£,

T pg 9Em)

when the characteristic of K does not divide pq.

Theorem 11.10. Let p:=p+q— 2. Then

Té’}]Gg(Bk) = {0} for k < p,
Gf,G
TGng(d 1.Gay — 1,
Proof. The first formula holds because the trace is homogeneous of degree —p.

To prove the second, we consider the following relations, which come from (5)
and the corresponding equations in B,

Gf = ¢hy(X =€) + (Y =) + (en1 — €)X + (c12 — )Y,
Gg = ci (X = &) + (Y —n) + (ca1 — 1) X + (c22 — ¢1,)Y,
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where the c}; are the images of the c;; in B. The polynomials ¢;; — c; vanish

at the points (£,7), and are therefore linear combinations of X —& and Y —n.
We deduce that there are equations

Gf=cn(X =& +ca(Y —n),

Gg = a1 (X — &) +cn(Y —n),

with homogeneous ¢;; € B[X, Y], where ¢;; = c¢}; mod (X,Y). Therefore
(6) det(c;;) = dg) 9 mod (X,Y)B[X,Y].

Now let {1,b1,...,bpq—1} be a homogeneous basis for B/K with 1 < degb; <
degby < -+ <degbpg—1 =p. Then {1®1,1®b1,...,1®@bpq_1} is a basis for
B¢/B, where B¢ is the B-algebra with respect to B — B¢ (a+— a®1) (G.4).
By (6) there is an equation

pg—1
Gf.Gg _ Gf Gg ’
AT = ddl w1+ Y b e
=1
with homogeneous elements b} of degree < p (i =1,...,pg — 1). Since Té’}iGg

is by definition the trace of Agg’gg, by H.20,

pg—1
&n Gf,Gg —
TG1.Gg (df,n ) 1+ Z TG7.ae(0) - bi = 1.

The coefficients of the b; vanish because of degree considerations, and it follows

that
g, Gf.Gg) _
TG}]GQ (dé,n g) =1
The construction of the trace 7/
that f and ¢ have no points at infinity in common. Therefore 7'}””5’ is defined
whenever f and g have positive degree and are relatively prime. We consider
now the somewhat more general situation where P € V(f) N V(g), where we
require only that f and g have no components with zero P in common. Let
O = 0% /(f,g) O%. Furthermore, let 9 be the maximal ideal in K[X,Y]
belonging to P and let M := K[X,Y]\ 9. Then

: A — K makes no use of the fact

0 =00k 0=08k0%/(f9) O
= 0@k (K[X,Y]m/(f.9)) = OIX, Y] /(. 9).

If © and y are the images of X and Y in O, then in O[X,Y]ys there are
equations

f=an(X —z) +a(Y —y),

(7) g=a(X — ) +anY —y),
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with a;; € O[X,Y]u. It is easy to see that 1.4 can also be applied here: The
image (Af9)p of det(ay;) in O° is independent of the choice of coefficients
a;; in (7). Also,

(8) Amno: (19) = O -(AL9)p,

where 7€ is the kernel of O° — O. By omitting factors in f and g that are
units in O, we can assume that f and ¢ have no components in common.
Then (7) can be considered as a system (3) to be read in O[X,Y]ys. We then
have that the image of A;J;’,g under the canonical homomorphism A¢ — O° is
(A_J;:g)p, and from Annge(I4) = A - A_J;:g, equation (8) follows using G.9.

We denote the trace of O /K corresponding to A,f;;g by (1¢))p, and ask
how this trace is connected with 757

Theorem 11.11. Suppose that f and g have no components in common and
that P € V(f) N V(g). Then (17))p is the restriction of 777 to the direct
factor O of A. In particular, for all a € A,

Tla)= Y (F)eler),

PeV(£)NV(g)
where ap denotes the image of a in the localization at P.

Proof. Write A = O1 x --- x Oy, where the O, are the localizations of A at
its maximal ideals. Then by G.6(f),

h
A =A@k A= H 0; 0k 0;.

ij=1

Under the canonical mapping A® — A, if i # j, O; @k O; is mapped to {0},
since O; and O; mutually annihilate each other in A. On the other hand,
0; ®k O; is mapped as usual onto O;. With the usual notation the following
formulas are valid:

T4 =719 x ... x 19" x HOi@Oj
i#]
and
AnnAe(IA) = Annoi(lol) X oo X Annoz(loh) x {0}.
In particular, Annee (1) is the image of Ann4e(I4) under the projection of

A€ onto the factor of O° corresponding to P.
There is a commutative diagram

wasx — Homu(Annae(I4), A)
1 1

wo /xk — Home (Anne: (19), 0)
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in which the horizontal isomorphisms come from H.19 and the vertical arrows
are given by projection onto the appropriate direct factors. Since the linear
form of Hom 4 (Ann 4« (I4), A) specified by Aa{zg/ — 1 is mapped to (AL9)p
1, it follows that (T;f’gy)p is the restriction of Tf y Y on O. The last statement of

the theorem follows 7similarly as in the proof of the formula in H.3.

As in 11.5 we additionally assume that f and g have no common tangents.
Then G := gr,, O = K[X,Y]/(Lf, Lg), where Lf and Lg are the 9-leading
forms of f respectively g, and these are relatively prime. If £ and 7 represent
the residue classes of X and Y in GG, then the trace

Ti;]Lg G— K

is defined. Observe that here the variables X, Y are of degree —1 and that G
consists of only homogeneous components of degrees < 0.
Completely analogous to 11.10 we have the following:

Theorem 11.12. Let m := mp(f), n:= mp(g), and p :=m+n — 2. Then
the trace TE]? Ly U8 homogeneous of degree p. In particular,

7'Lng(G;C ={0} for k=—-p+1,...,0.
Using notation analogous to that in 11.10 we have furthermore

Lf,L
Tof L (dEh) = 1.

This completely describes TL f Ly By 3. 12(b) we have

gLfte _ 1 O(Lf Lg)

T mn (&)

if the characteristic of K does not divide mn.

Now the question arises as to how TE Y 14 1s related to (Tf 7). The rela-
tionship follows once again correspondingly as in 11.8 using the Rees algebra
R:=RnOof O/K.

The Rees algebra

Q=R K[X,Y]m EBsmk (X, Y] - T~ @@KXYMT’“
keN k=1

of O’ with respect to its maximal ideal can be identified with K[T, X*, Y*]
according to C.14, where M := K[X,Y]\ 9. Then in the polynomial ring
K[T, X*,Y*] we have the degree relations degT =1, deg X* = degY* = —
and the polynomial algebra K[X,Y] is embedded in K [T, X*,Y*] by means
of X =TX*, Y =TY*.

Iff=fm+-+fp g=gn+- -+ gq are the decompositions of f and g
into homogeneous polynomials, then
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f* = fm(X*’Y*) + Tfm-‘rl(X*’Y*) Rl Tp_mfp(X*’Y*)’
g = gn(X5Y") + Tgnir (X7, Y7) + - £ T gy (X7, YT).

Since R = Q/(f*, ¢*), we have
R = Rogm)(Q/(f*.97)) = (R®xmQ)/(1®f",1®g") = RIX",Y"|m/(f*, 97).

Let z* and y* be the images of X* and Y* in R. Then there is a system of
equations

() [f=an(X* —2%) +an(Y” -y,
9" = a1 (X" —2") +axn(Y* —y¥),

with a;; € R[X*,Y*|um, and we define Af ’g* as the image of det(a;;) in R°.
We check that this i 1mage does not depend on the special choice of the a;;.

Since Lf and Lg are relatively prime in K[X,Y] = grgy O, it follows
that ¢* is a nonzerodivisor on Q/(f*), and f* is a nonzerodivisor on Q/(g*)
(B.12). Then, however, g* is also a nonzerodivisor on R ®gr Q/(f*) =
RIX*,Y*|m/(f*), and f* is a nonzerodivisor on R[X™*,Y*]a/(g*) (G.4(b)).
Hence the hypotheses of 1.4 are satisfied and the claim follows.

In formula (9), if one specializes the variable T' to 0, then one gets a system
of equations in G[X*,Y*], as in the construction of TgLf’Lg Therefore, ALf’Lg

9"

z+y+ under the epimorphism R® — G°. By H.23 we have

is the image of A;.

Anng.(I®)=R- Al

T*,y*

and hence a trace T”“y : R — K]|T] is defined. As was the case for the
standard trace (cf. formula (1)), we also have here the following:

Theorem 11.13. Under the canonical epimorphism wr,, o /K[T] — WO /K
the trace Tjgf;’ is mapped onto (T;f;’ )p, and under the canonical epimor-
phism wr,, O /K[T] = Wgr,, © /K Onto TE’JZLQ.

The proof is analogous to that of 11.8.

Now again let A = K[X,Y]/(f,g) = K|z, y] with relatively prlme polyno-
mials f and g. As the notation suggests, the traces Tf’;’ and ( g Y)p depend

on the generators (coordinates) x, y of the algebra A/K and on the ordered
pair of relations {f, g}. The followmg lemma is simple.

Lemma 11.14. Let X, Y € K[X,Y] be given and suppose
X =X +72Y,
Y =v21X + 22,

with vi; € K, det(vij) # 0. For h € K[X,Y], let h be defined by h(X,Y) =
h(’YHX + 'yng,fyle + ’YQQY) Let  and y denote the residue classes of X
andY in A. Then



11 Residue Calculus 109

T = (det(’yw) }”g) oc,

where ¢ : A — A denotes the K -automorphism induced by h — h. Similarly
for the local traces.

We now introduce a new notation and a new name for the trace.

Definition 11.15. For h € K[X,Y] with image h in A, we call

[17) =

the integral of w := hdXdY with respect to f,g. For h € O’ with image h
in O, we call

w x, =
ReSp |:f,g:| = (Tﬁ;)p(h)
the residue of w = hdXdY with respect to f,g at the point P. We set

Resp [f“’g} = 0if P ¢ V(f)NV(g).

Without going further into differential forms, we understand by w =
hdXdY a symbol that is changed under a coordinate transformation X =
")/11X + ")/12Y Y = ’)/21X + ’)/QQY (")’ZJ € K) by the factor det(fyw) dXdY =
det(i;) dXdY.By 11.14, | and Resp are independent of the choice of coordi-
nates. The residue is defined even if f and g have no components in common

at P. The symbol Resp {fwg

] is sometimes called the Grothendieck residue

symbol.
In the following, the basic properties of the integral and the residue will
be described. Obviously,

(10) /[f‘:’g] =0 ifhe(f,9)K[X,Y],

(11) Resp {ff’g] =0 ifhe(f,9)K[X,Y]m

Since the traces are K-linear maps, the integral and residue are also K-linear
functions of w; i.e., for k1, ke € K and differential forms wi,ws,

C A R AR L

and similarly for the residues.
Furthermore, by the formula in 11.11 with w = hdXdY and h € K[X,Y],
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(13) /[ffjg} :zP:ReSP [fb:)g] ’

the sum being extended over all P € A?(K).

We now turn to the question, How do the integral and the residue depend
on the polynomials f and g?

Let P € V(f)NV(g), let ¢,v € K[X,Y], and also let f, g be two poly-
nomials that have no irreducible factor with zero P in common. Suppose
(6,9) O C (f,9) O. Then, for 0" := O% /(¢,1) O, there is a canonical
epimorphism ¢ : O — O with kernel (f,g) O /(¢,9) O, and a canonical
injection of wy /g = Homg (O, K) into wer /i = Homg (O, K), where each
¢ € Homg (O, K) is mapped to the composition £ o €.

If we write, as we have so often,

¢ =ci1f + ci2g,

(14)
Y =caf +cag,

with ¢;; € O'p, then the image (d?’j’)p of det(c;;) in O is independent of the
special choice of coefficients ¢;; in (14). If f is a nonzerodivisor mod (¥ O’),
then 1.5 can be applied, and it follows that (d?;/}) p generates the annihilator

of (f,9) O% /(¢,1) O%. If fis a zerodivisor mod () O'), replace 1 by ¢ + 1.

Then f is a nonzerodivisor mod (¢ + ¢) O and det(c;;) is unchanged. In

any case, (d?’g’

in O induces therefore an O’-linear map O — O, which we also denote by
(d}9)p. If (¢,4) O = (f,g) Op, then of course O’ = O and (d'¥) p is a unit
of O.

Theorem 11.16 (Chain Rule). Let 2/, 3 be the images of X, Y in O'.

Under the canonical injection wo jx — wor /i the trace (T}C’g)p is mapped to

)p generates the above annihilator. Multiplication by (d‘jf;p) P

(d?’;’) P (Tijwy/) p. In other words, there is a commutative diagram

(d7.5)r

Proof. Consider in O'[X, Y]y a system of equations

¢ =a (X —2') +alp (Y - ),

¥ = ay (X —a') +apn(Y —y).
Using the canonical epimorphism O'[X, Y]y — O[X, Y], this is mapped
over to a system
¢=a1(X —z)+ a2y —y),

(15) w = a21(X — ZU) + a22(Y - y)
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On the other hand, we can write in O[X, Y],
f=bn(X —z)+ b2 (Y —y),
9 =021 (X — ) +ba2(Y — ),

substitute in (14), and get a system similar to (15). By 1.4, we have in
Ok O =0[X,Y]|m/(¢,1) an equation

(e® D((ALYL)P) = (1@ (dF)p) - A,
where A is mapped onto (Ag;g)p under the map idp®e : O®Rxg O — Ok O.
If we choose for A a representation A = Y a; @ b} (a; € O, b, € O'), then
(AL P = 3 ai @ (b))
Consider now the canonical commutative diagram

o' QK (04 4;> HomK(wo/ /K> O/)
5®idl l
Ok O —— Homg (wo /x,O")

in which ¢’ is defined as in H.19; and similarly, by ¢(3_ a; ®b;), each £ € wo /i
is mapped to > ¢(a;)b;. We will show that

o ((a2%),) (7)) = (@),

and then by definition of (ijjp the desired equation

zy\ _ (q00) (2
(Tf’9>P N (dfuq)P (T‘Wl’ )P

follows.
But in fact,

& (A% P)(FFDP) = (e @ 1) (ALY )P)(Tf2)P)

)
=> () plai) - (d3Y)p - b
= (59 plai) - (dF3)p - e(b) = (A7) p

where we have used (d?f) P~b’i = (d?j) » -e(b)) and Y (T;fj) - (a;)e(d}) =1
(H.20). The theorem has therefore been proved.
From this we get immediately

Theorem 11.17 (Transformation Formula for Residues). Under the
above assumptions we have for every h € K[X,Y],

h dXdY] _ Resp [det(cij)h dXdY] .

Resp [ f.g 6,1
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Some special cases of this are

(16) Resp [thdY] — Resp [thdY

for every a € K[X,Y], and
f—ag,g f,g] Y [ ]

hf2 dXdY] =R {h dXdy (cancellation rule)

(7 Resp [ fifz, 9 J1,9

if f1f2 and ¢ have no component with zero P in common, and

[hdXdY

hdXdY
= —Res
] Pl fg

g, f

(18) Resp {

Theorem 11.18 (Transformation Formula for Integrals). Let f,g €
K[X,Y] as well as ¢, € K[X,Y] be relatively prime polynomials with
(¢,¢) C (f,g). Consider a system of equations (14) with coefficients c;; €
K[X,Y]. Then for every h € K[X,Y] we have

/{thdY] /|:det(0ij)thdY:|
fr9 b, '
The proof of this last formula is similar to that of 11.16. One can also

appeal to 11.17 and (12), if one considers the following: If P & V(f) N V(g),
P eV(p)NV(¢), then det(ci;) € (¢,¢) O and therefore

ReSp [det(cij)h dXdY:| —0.

¢,

We come now to the main theorem of this chapter. Many classical theorems
about algebraic curves can be derived from it, as we will show in Chapter 12.
We will assume that Gf and Gg are relatively prime. Further, let de; Gy
be as in 11.10 and p := p + ¢ — 2. Observe that every h € KI[X, YT can
be represented modulo (f,g) by a polynomial of degree < p. Therefore it is

possible to calculate the integral by the following theorem.

Theorem 11.19 (Residue Theorem). Let O denote the origin of A?(K).
For h € K[X,Y] let Gh be the residue class of Gh in K[X,Y]/(Gf,Gg). If
degh = p, then there is a unique k € K with Gh = & - dg{]’Gg. With this
notation we have

hdXdy)| _ o [GhdXdY] _ [r degh=p,
fig | T @f,Gg | T10 degh <p.

Proof. Consider the homogenization F', G, and H of f, g, respectively h in
KXo, X1, X2]. The hypotheses of 11.8 are satisfied, and therefore it follows,
if H denotes the residue class of H in S = K[Xo, X1, X2]/(F,G), that
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hdXdY o
/{ f.g ]:Tﬁé“(H)lxozl,

Gh dXdY] .

Reso|: Gf,Gg :TF,G (F)|X0=0.

If deg h < p, and hence also deg H < p, then Tid - (H) € K[Xo] has negative

degree. Therefore 77" (H) = 0, and consequently,

/[thdY} — Res [GthdY} —0
f,9 ©l Gf,Gyg '

On the other hand, if degh = p, then Tﬁ}c’;“ (H) has degree 0, and therefore
is an element of K, and it follows that

hdXdY w12 TR GhdXdY
/{ g :|TF,G (H)Reso[ Gf.Gg }

By 11.10 this residue coincides with «.

There is an analogous theorem for the calculation of residues, in which,
however, one must assume that f and g have no tangent line at P € V(f)NV(g)
in common. We will use the notation in 11.12, in particular m = mp(f),
n = mp(g). Further, let Lh be the residue class of the leading form Lh in
G=K[X,Y]/(Lf, Lg).

Theorem 11.20. Let h € K[X,Y]on. In case ordgn h = —(m +n — 2), there
s a unique K € K withL_h:n~d£{7’Lg. If p=m+n — 2, we have

R hdXdY R LhdXdY | [k ordsmh=—p,

esp 19 —eso Lf,Lg | |10 ordmh< —p.

Proof. Let O be the local ring of f N g at P and m its maximal ideal. In
G = gr,, O we have Gy, = {0} for k < —p, i.e., m**!1 = m?*2 and therefore
m?PTt = {0} by Nakayama. In K[X,Y]sn this means that MPHK[X,Y]on =
(£.9)K[X,Y]o.

If ordgn h < —p, then it follows that h € (f, g)K[X,Y]on and hence by
(1),

f,9 Lf,Lg

If, on the other hand, ordgy h = —p, one can finish using 11.13 and 11.12 as
in the proof of 11.19.

Resp [thdY} ~ Reso {LthdY} -0

Example 11.21. Let P = (0,0), and so MM = (X,Y). If p := pp(f,g9) =
dimg O is the intersection multiplicity of f and g at P, then m* = (0) and
therefore X*, Y* € (f,g) O’p. Set
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X" =cnf+cag,
YH = cor f + c229,

with ¢;; € O'p. Then by 11.17 for h € K[X,Y]on,

Resp [h dXdY} _ Resp [h det(ci;) dXdY} .

frg Xy

Now write
hdet(cij) = > aapX*Y 4+ R

0<a,B<u

with ang € K and a “remainder” R € (X#,Y*) Q5. Then by (12) and (11),

ayp
Resp [thdY] _ Z 4o Resp [X YPdXdY

XK YH } = Op—1,p-1,
[ 0<oTen :
where for the last equation we used Theorems 11.19 and 11.17. The formula
makes clear the analogy to residues of a function of a complex variable (see
also Exercise 3).

Exercises

1. Give an example of the following situation: f and g are algebraic curves
that have no components in common at P € V(f) N V(g). Furthermore,
let O be the local ring of fNg at P and G = gr,,, O the associated graded
ring of O with respect to its maximal ideal m. The algebra G/K has no
trace.

2. Denote by ¢ the Noether different (G.10). Show that
(a) If, under the hypotheses of H.7, the algebra S/R has a trace, then

Y(S/R) is a principal ideal.
(b) Under the assumptions of 11.1 we have

9(S/K[Xo]) = (%)

and under the assumptions of 11.4 we have

a(f,9)
(x,y) > '

3. Let f be an affine algebraic curve with P := (0,0) € V(f) and suppose Y’
is not a divisor of f. For h € K[X,Y] let the “Laurent series” of M(X.0)
be given by -, , a; X", with some y € Z. Show that

I(A/K) = <

= a_1.

[thdY]
Resp 1Y
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X8dXdy
X2Y?2-1,X34+Yv3-1

(X + X2 - Y3)dXdY
XY, X2 Y24 X3

4. Calculate

and

Res,p[ } if P:=(0,0).
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Applications of Residue Theory to Curves

The formulas and theorems in Chapter 11 on residues in the affine plane allow
uniform proofs and generalizations of classical theorems about intersection theory of
plane curves. Maybe B. Segre [Se] was the first who proceeded in a way similar to
ours, but he used another concept of residue, the residue of differentials on a smooth
curve. See also Griffiths—Harris [GH], Chapter V. The theorems presented here have
far-reaching higher-dimensional generalizations ([Hif, [HK], [Kus/, [Kusf, [KW]).
In his thesis [Q] Gerhard Quarg has discovered further global geometric applications
of algebraic residue theory. [Kua] contains an outline of part of this thesis.

Suppose we are given two curves f and g in A?(K) with no common compo-
nents, with deg f =: p, degg =: ¢, and let A := K[X,Y]/(f,9) = K|z, y]. For

the differential form w = 59(()];,2/)) dXdY we also write w = dfdg.

Formulas 12.1. We have
dfdg] .
= (dimg A) - 1
/{f,g (dimge A) - L

Resp {dj:f;g} =up(f.9) 1k,

where pup(f,g) is the intersection multiplicity of f and g at the point P.

and

Proof. By 11.9,
dfdg} @y (5(f,g)) :
=T =0 1) = (dimg A) - 1.
/[f,g 79 \ B, gy) = T = (dimec 4) - L
Denote by O the local ring of P on f N g. We have furthermore

v [94] -0 (33) - (43 )

Since (T;’;J)P is the restriction of T;f’gy, and 0 /i is the restriction of o4/ =

gg’,gg ~77) on O (H.3), it follows that

Resp [d?i}g] =00 /k(1) = (dimg O) - 1x = pp(f.9) - 1k.
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Formula (13) in Chapter 11 yields

dimg A= pp(f,g) (mod x),
P

where x is the characteristic of K. This is of course no surprise, because the
Chinese remainder theorem entered the theory of Chapter 11 several times. If
f and g have no points at infinity in common, then this is Bézout’s theorem
up to congruence mod Y.

If f and g intersect transversally at P, then one has a residue formula,
which is analogous to that about a pole of order 1 in functions of a complex
variable. We set J := % and denote the maximal ideal of P in K[X,Y]
by M. Let O := K[X,Y]m.

Formula 12.2. If f and g intersect transversally at P, then J(P) # 0 and
for each h € K[X,Y]sm we have

Resy [h dXdY] _ h(P)

f.g J(P)

-~ J(P)
Proof. If f and g intersect transversally at P, then J(P) # 0 by 7.7. Further-
more, O := O% /(f,g9) Op = K and therefore 0 ;= idg. By the formula
ook =J(P):(15))p we get

Resy {thdY} oy 1 h(P)

f.g | = rg)ph(P)) = TP oo /K (h(P)) = J(P)
We will now use the residue theorem 11.19 for the first time. From this

theorem, we get the following immediately from 12.2.

Theorem 12.3 (Residue Theorem for Transversal Intersections).
Suppose f and g have no points at infinity in common and intersect transver-
sally at all points of intersection. For h € K[X,Y] denote by Gh the residue
class of Gh in K[X,Y]/(Gf,Gg) and suppose (with the notation of 11.10)

Th=r df19  (neK)
i case degh =p=p+q— 2. Then
(a) If degh < p, then

h(P
Z nP) =0 (Formula of Jacobi [J], 1835).
J(P)
Pev(f)nv(g)
(b) If deg h = p, then

hMP) _
> TE "

Pev(f)nV(g)
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The right side of the formula in (b) depends only on the degree forms G f,
Gg, and Gh. Therefore the left side does not change if other curves with the
same degree forms are substituted for the given curves.

The formula of Jacobi contains the following special case of the Cayley—
Bacharach theorem: Under the assumptions of the theorem, suppose that a
curve h of degree < p passes through pg — 1 points of V(f) N V(g). Then it
goes through all the pq intersection points.

Applications of this theorem, for example Pascal’s theorem, have already
been discussed in 5.16. One can also consider this result as follows: Suppose
the intersection points P, = (a,,b,) of f and g for v = 1,...,pg — 1 have
already been calculated, and the last intersection point P = (z,y) is still
unknown. Suppose p + ¢ > 4; hence p > 2. By the equations in 12.3(a)

|
+ =0,
J(P) 2 J(P,)
T pg—1 }
+ ' =0, and
J(P) Z:: (P,)
pq—1 b
+ —~ =0,
J(P) 2 J(P)

one can successively determine J(P), x, and y. If p > 2, then there are more
equations to consider, and knowing a few intersection points can sometimes be
sufficient to determine the rest. But it is difficult to decide in general whether
two curves f and g intersect transversally at all points of intersection.

To two curves f and g that have no components in common at P € V(f)N
V(g) we assign the invariant

ap(f,g) = Resp | SXIx F ?jjy) axay]

where fx = %, etc. By 11.17, if f or g is multiplied by a nonzero constant,
then ap(f,g) does not change. However, ap(f,g) is not independent of the
coordinates, since fx, fy, etc. are not. But we have

Lemma 12.4. ap(f, g) is invariant under orthogonal coordinate transforma-
tions. By this we mean transformations of the form

(X, )= (X,Y) - A+ (b, b2),

where (b1,b2) € K2 and A € SO(2,K); i.e., A is a 2 X 2 matriz such that
A - At = I the identity matriz, and det A = 1.

Proof. Let (X,Y) = (X', Y')A+ (b1, b2), as given in the lemma. Then by the
chain rule,
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(fxr fyr) = (fx, fy) - AL,
and therefore
fxgx + fyigy = (fx, fr) A" A (g9x,9v)" = fxgx + frgy.

Because det A = 1, we have dXdY = dX'dY’, and the residue defining
ap(f,g) remains invariant under the transformation.

Definition 12.5. We call ap(f, g) the angle between f and g at the point P.

We will see to what extent this designation is justifiable in the following.
We set ap(f,g9) =0 in case P € V(f) N V(g).

Example 12.6. Let f = aX +b0Y, g = cX + dY be two different lines
through P = (0,0); hence ad — be # 0. Then we have

ac + bd
ad — be’

aP(f7g) =
In the reals, if v; := (a,b), v := (¢, d), then
ac+ bd = |v1]| - |ve| - cos ¢,

ad — bc = |v1] - |va| - sin @,
where ¢ is the oriented angle between v; and vs.

V2 V1

It follows that
ap(f,g) = cot .

The intersection angle is additive, as was the intersection multiplicity (5.8).

Lemma 12.7. Let f = f1--- fr and g = g1---gs be factorizations of f and
g. Then for all P € A*(K),

ap(f,9) = _ > ap(fi,g)
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Proof. Tt is enough to treat the case f = f1 - fo, g = g1, and we can assume
that P € V(f) NV(g). Then ap(f,g) =

Resy | 11/2x9x + f2ygv) dXdY f2(fixgx + faygy)dXdY
P fifz, g Jif2,9 '

By the cancellation rule (17) from Chapter 11, the first residue equals ap( f2, g)
and the second equals ap(f1,g).

] + Resp {

If two curves have no tangents in common at an intersection point, then
the intersection angle is given by the angle between the two tangents according
to the following theorem:

Theorem 12.8. Suppose t1,...,t, are the tangents to f at P, and ty,... t,
are the tangents to g at P, counted with their multiplicities (so m = mp(f),
n=mp(g)). If ti #t} for all i and j, then

ap(f,9) = ' Z ap(ti,t;).

J

N )

1,...,n

Proof. Without loss of generality, we can assume that P = O is the origin.
By 12.7 we have

> ao(ti,t)) =ao | [Tt [[#; | = ao(Lf, Lg).
i,

i J
However,

(Lf)x - (Lg)x + (Lf)y - (Lg)y = L(fxgx + fyvgy)

(Lf)x - (Lg)x + (Lf)y - (Lg)y = 0.

In the second case, ordo(fxgx + frgy) < —(m+n —2) if M := (X,Y). In
any case the statement follows from 11.20.

Suppose f and g are real curves and all their tangents at O are real. Then
by 12.8, ao(f,g) is the sum of all the cotangents of oriented angles between
the tangents of f and those of g, assuming that f and g have no tangents in
common at O.

The asymptotes of a curve f of degree p are the lines a; X —b;Y = 0, where
(0,b;,a;) (i = 1,...,p) are the points at infinity of f. These are the lines
through O in the “direction of the points at infinity” of f. The a; X — b;Y are
also the linear factors of Gf. Asymptotes will be counted with multiplicity,
according to how many times the a; X — b;Y appear in Gf.

The following theorem concerns the sum of all the intersection angles of
two curves.
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Theorem 12.9 (Humbert’s Theorem [Hu]). Suppose f and g do not
intersect on the line at infinity. Let {1, ..., £, be the asymptotes of f and let
1.4y be those of g. Then

> - 3 o)

PeV(f)NV(g )

Proof. By Chapter 11 (13) the left side of the equation equals

/ [(fxgx + fygy) dXdY}
f9 ’

and by 12.8 the right side equals

a0(Gf,Gg) = Reso {((Gf x(Go)x + S%LY(GQ)Y) dXdY] |

And (Gf)x(Gg)x + (Gf)y(Gg)y = G(fxgx + frgy) or (Gf)x(Gg)x +
(Gf)y(Gg)y = 0. In the first case, h := fxgx + fygy has degree p = p+q—2,
and the desired formula follows from 11.19. In the second case, deg h < p and
both sides vanish.

Over the reals, Humbert’s theorem has the following interpretation: Let f
and g be real curves that intersect in p-q different real points P; (i = 1,...,pq)
and let ¢; be the oriented angle between f and g at P;. Then Y %, cot¢;
depends only on the (complex) points at infinity of f and g. If g is shifted
in a “paralle]” manner, this changes the individual ¢;, but the sum of the
cotangents of the intersection angles is unchanged.

f

The same is true if g is subjected to a “similarity transformation,” where we
are always assuming that f and g intersect in p- ¢ distinct real points. See the
next figure.
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A\

@

Now we come to another invariant of the intersections of two algebraic
curves.

Definition 12.10. For two curves f and g, that have no points at infinity in

common, we call
Y (fng)=> nr(fig)-P
P

the centroid of f N g. Here the expression on the right is to be interpreted as
a vector sum in K? (and not for example as an intersection cycle 5.6).

In order to interpret the centroid in a physical sense, when all the intersec-
tion points of f and g have real coordinates, one must divide by the number
pq of intersection points. This division is not possible if pq is divisible by the
characteristic of K, and then we have to give up on this interpretation. The
statements that we prove about > (fNg) are valid in arbitrary characteristic,
and nothing essential changes if one divides by pgq, insofar as this is possible.
However, pl—q > (f Ng) is invariant under an arbitrary coordinate transforma-
tion, while > (f N g) is invariant under coordinate transformations that fix
the origin.

Next we have an “integral formula” for the centroid.

Lemma 12.11.

Suna=([I 1))

Proof. For P = (&,n) € A%2(K), by the linearity of residues, we get

5]t 1] 45

Here Resp [d;dgg] =up(f,g) 1k by 12.1, and as there,

Resp [(X fi)]dfdg} =00 k(T —§).
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Since z — £ is a nilpotent element of O, multiplication by z — £ yields
a nilpotent endomorphism of O /K, whose trace of course vanishes. Conse-
quently, in the above formula, the second residue therefore vanishes. Hence
this shows that

<RGSP {Xﬁf;g] ,Resp {Y}i’f;g}) =pp(f,9)- P.

The statement of the lemma then follows from Chapter 11 (13).

The integral formula will be reformulated using the Residue Theorem

11.19. Let » .
f = Zfza g = Zgj

i=0 §=0
be decompositions of f and g into homogeneous polynomials, in particular,
Gf = fp, Gg = gq. In the following J will denote the Jacobian determinant
0(f.9) By the Euler formula,

a(X,Y)"
p—1
Xfx+Yfy=p-f=Y (p=k)fx=p o1+
k=0
(1) 1
Xgx +Ygy =q-9—Y (a—k)gx =q-9— gg1 + ¢,
k=0

where deg ¢ < p—2, degy < ¢—2. We can calculate X - J by multiplying the
first column of J by X and then replace this column by the column formed
by the right side of equations (1). Then we get

X -J=Dymod (f,g), Y- -J=Dymod(f,g),
with

o= fe1 fy
Dy = Y—9ge-1 9y

and therefore by Chapter 11 (10),

o uno= ([P P])

Since deg¢ < p— 1, deg) < ¢ — 1, we have either deg D1 <p+¢q— 2 or

_lfx o= fp
Dz = 9x ¥ —gg—1

) )

GD1 _ ‘fpl (fp)Y )
—9g-1  (99)y

Similarly for Dy. From (2) and Theorem 11.19 we deduce the following for-
mula:
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Lemma 12.12. Y (fng) =

(Reso{(gqlfpy o fp1qu)dXdY]’ReSO[(fplqu - g!Jlpr)dXdY:|) .

f;m 9q fP? 9q

This lemma shows that the centroid of f N g depends only on the degree
forms and the forms of the second-highest degree of f and g. It allows answers
to questions about how the centroid changes when the intersection scheme is
changed.

Next we subject the curves f and g to two independent parallel displace-
ments; i.e., we substitute for f and g the polynomials r, s, where

T(X,Y) = f(X+Oé,Y+ﬁ) :f(XvY>+an(XaY)+ﬁfY(XaY)+ )
and (o, B), (7,8) € K2. It is clear that
Tp = fp,  Tp—1= fp—1+alfp)x +B(fp)v,
Sq¢=9q, Sq-1=gq—1 +7(9g)x +0(g¢)y,
and therefore by 12.12,

S ns) = 3 g) = Reso [fj”g] |

where

o= (@l)x + By rtax + 8ty (e () axay
and where the residue is to be applied to a vector componentwise. If we set
(7,6) = (0,0), and consider instead of (a, ) all multiples A - (a,8) (A €
K), then we see that Y (r Ns) — > (f N g) consists of all multiples of a
vector dependent only on (f,,g4) and (a, ). Therefore this gives the first
generalization of Newton’s theorem (Chapter 5, Exercise 4):

Theorem 12.13. Let (o, 3) € K? be a fized vector and let \ € K. Further-
more, let f* be the curve that arises from f by a parallel displacement by the
vector A - (a, 3). Then the centroids >_(f*Ng) (A € K) lie on a line.
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We now subject f and g to similarity transformations; i.e., we substitute
for f and g the polynomials r, s, where

r(X,Y):= fOX,AY), s(X,Y):=gpX,nY) (A\ueK™*).
Then we have
rp = )‘pfpa rp—l - )\pilfp—la
Sq=pl9q, Sg—1 = Nq_lgq—l,

and by Lemma 12.12 the following formula follows using Chapter 11 (17):

2(rns)=3(fNng) =

o () o] [ )

Setting p = 1 in this gives us a second generalization of Newton’s theorem:

Theorem 12.14. Let A € K* and let f* be the curve given by fNX,Y) =
FOAX,\Y). Then the centroids of >_(f* N g) lie on a line.

The remaining considerations of this chapter refer to the “curvature” of
an algebraic curve. At the intersection points of two curves there is likewise a
“residue theorem” for curvature.

For two curves f and g that intersect transversally at O, we will first
compute

Reso {thdY} _

I g

In the formula that arises, the values fz, fzz, fzy, etc., of the partial derivatives
at the point O will occur.
For the leading forms of f and g at O we have

Lf=f. - X+1, Y,

Lg=g:-X+gy-Y,
where j := fz9y — fygz 0. Weset X' :=Lf, Y’ := Lg and write
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f=X"+a0X?+anXY +apY”?+- -,
g=Y"+byX"” + b1 XY + bV + -,

where a;5, b;; € K. Then we have
f=cuX' +cY’,
g=cnX'+cnY’,
with
ci1 =1+ apX +anY +azX?+ -,
c12 = apY’ +agsY? + -,
o1 = boo X'+ b1, Y' +-- -,
c22 =1+ bpY’ + b03Y/2 + -
Observe that 2a20 = frrer, @11 = fory’, 2a02 = fyry, ete. If we write
f=cuX +ep(Y) 'Y
g2 = (Cng/ + 2021022Y/)X/ + ngy/2’
then the determinant belonging to this system,
A = 611032 — 012(Y/)71(C§1X/ -+ 2021022)//),

is a unit in Of,. By the transformation formula 11.17 we get

hdXdY A~ hdXdY 1 A~ hdX'dY!
Reso = Reso

f, ¢° xr yn |7 jleo { X', y”

To explicitly calculate this residue, A~! and h can be reduced modulo
(X', Y?)Op. In the following, = denotes congruence mod (X', Y’?) 0.
We have

h = h(0)+ hy: - Y,
A=1+ (fx’y’ Jrgy’y’) : Y/»
At =1- (fory + Gyry) - Y,
and
A™th = h(0) + [hyr — h(O)(fary + gyry)]Y "
By 11.20 we get

1
Reso [h dXdY]

1, 92 = E(hy’ - h(o)(fw’y’ + gy’y’))-

Calculating with (X,Y)-coordinates and using the chain rules leads us, with
some patience, to the following formula:
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Reso [h?’X;Y} -5 ’ M B @ { * (88(5:;/%) * 85'({9;:(];)))

S Ay P

- (YL o))

where the Jacobian determinants are to be taken at the point O. From the
Residue Theorem 11.19 the following formula follows with J := fxgy — fygx-

Theorem 12.15 (Formula of B. Segre [Se]). Assume that f and g inter-
sect transversally at every point of intersection and that they have no points at
infinity in common. Let {P1, ..., Py} = V(f)NV(g) and let h be a polynomial
of degree < p+2q— 3. Then

> [, -2 b G (B 555)

8}{ (aiﬂgx) - g(( X )))]p

Consider now, as did Segre, the special case

h:=(g9-9vy — g3)fv.

Then we have degh < p+ 2q — 3, and yet another calculation shows that

Reso [h dXdY}

[ g

1
=3 (fj(g?/gzz = 2929y Gay + gigyy) - gg?;(nyf:E;E —2fufyfuy + fgfyy)) .

Now in the real case we can interpret the formula of B. Segre in the follow-
ing way: Assume that f and g are real and that all the points of intersection
P, (i =1,...,pq) are real. Furthermore, no tangents of f or g at a point P;
should be parallel to the Y-axis, which can always be arranged by a coordi-
nate transformation. Then fy (FP;) # 0 and gy (P;) #0 (i =1,...,pq). Write
P, = (a,b;) (i = 1,...,pq). Then, by the implicit function theorem, in a
neighborhood of a; two C*°-functions ¢; and v; are defined such that

(X, ¢i(X)) = g(X, (X)) =0,

and we have

as well as

fefxx = 2fxfvfxy + % fry
73

(F)
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and similarly for ;. Also,

{ - ] (P) = ¥i(as) — ¢i(ai).

Tygy
By 12.15 we conclude

Corollary 12.16. Under the above assumptions we have

W () = Y () _
2 Wi{ar) — & (ar)?

The first derivatives are the slopes of the curves f and g at the points P;,
and the second obviously have something to do with the curvature. Let k;(f)
be the curvature of f at P;, and «a; the oriented angle between f and a line
through P; parallel to the X-axis. Let x;(¢g) and § be similarly defined. By a
well-known formula we have

¢i(ai) o3

- sin” ;.
¢i(ai)? '

Using 12.16 and a further calculation we get the formula

ki(f) =

29 ki(g) - cos® o — ki(f) - cos® B; B
; sin3(ﬁi — Oéi) =0

In the special case that f is the X-axis we have the following:

Formula of Reiss 12.17. If a curve g of degree q intersects the X -axis in q
distinct points, then
q

=1

sin ﬁz

where k;(g) is the curvature and (B; the angle the curve makes with the X -axis
at each intersection point.

If one specifies ¢ different points on the X-axis and at each point a nonzero
slope, then one can always find an algebraic curve of degree ¢ that intersects
the X-axis at the given points and has the specified slopes. By the formula
of Reiss, however, one cannot also specify a curvature arbitrarily at all the
points: One of the curvatures is always determined by the others and by the
other slopes.

Exercises

1. Carry out the explicit calculations that were suppressed in connection
with 12.15-12.17.
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2. Show that the following identity holds in Q(X7, ..., X,):

Z {O for p <n -2,
HX X) 1 forp=n-1.
k#i

What do you get when p = n?
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The Riemann—Roch Theorem

This theorem deals with the existence of rational functions on algebraic curves or on
the corresponding abstract Riemann surfaces with prescribed orders at the points on
the curves (or on the abstract Riemann surface). Using the methods of Appendiz L we
will derive two versions of the Riemann—Roch theorem, one for the curve itself and
one for its Riemann surface (its function field). The theorem leads to an important
birational invariant of irreducible curves, namely the genus of the associated function
field. An excellent presentation of the corresponding complez-analytic theory is given
by Forster [Fo].

Suppose we are given an irreducible curve F with function field L = R(F).
Further, let X := X(F) be the corresponding abstract Riemann surface, i.e.,
the set of all discrete valuation rings of L/K. We call the elements of X
“points” and denote them in general by P. The discrete valuation ring corre-
sponding to P will be denoted by Vp, and we will let vp denote the discrete
valuation corresponding to Vp. For the regular points P of F' the local ring
Op,p is a discrete valuation ring of L/K, so we will always think of Reg(F')
as part of X. For the singular points of F' there are finitely many points of X
lying over them by the mapping 7 : ¥ — V4 (F) introduced in 6.12.

We already know that a nonconstant function » € L on X has at least
one zero and at least one pole, and that the number of zeros is equal to the
number of poles when these are counted with their orders (7.3). The functions
r € L are hence subject to strong conditions with respect to their orders at
the outset. This considerably limits the possibility of constructing functions
with prescribed orders at the points of X.

Let Div(%X) denote the divisor group on X. Giving a divisor Y ap - P
(ap € Z) means that one can give an order ap # 0 on finitely many points
P € X. Instead of ap we will write vp(D) and call this number the order of
D at the point P. We define the support of D by

Supp D :={P € X | vp(D) # 0}.

For D, D' € Div(X) we write D > D’ in case vp(D) > vp(D') for all
P e X Ifvp(D) > 0 for all P € X, then we call D effective. For a function
r € L* we will denote, as we did earlier, by

(r)=>Y wvp(r)-P

pPecXx

the principal divisor belonging to r. Furthermore, we call
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(r)o = Z vp(r)- P the zero divisor,
l/p(7‘)>0

(Moo = Z vp(r)- P the pole divisor,
vp(r)<0

of r. We will denote the subgroup of Div(X) of all principal divisors by H(X).

If ¢ C P?(K) is another curve, for which F' is not a component, then in
every local ring Op g (Q € V4 (F')) there is a principal ideal corresponding to
¢. The extension ideal of this ideal in Vp (P € X, n(P) = Q) is a principal
ideal (¢p). We define the divisor (¢) of ¢ by

(¢) = vr(pr) P

Since ¢ and F intersect in only finitely many points, vp(vp) # 0 for only
finitely many P € X. From the divisor (¢) we get the intersection cycle ¢ x F'

of the form
oxF=3 | > veler)]-Q
Q \n(P)=Q

because we have > p\_o vp(pp) = 1g(, F) by 7.2. The divisor (¢) is hence
a finer invariant of the intersection ¢NF' than the intersection cycle. Of course,
deg(¢) = deg ¢ - deg F' by Bézout.

Two divisors D, D’ € Div(X) are called linearly equivalent if there exists
an r € L* such that D — D’ = (r). We write D = D’ in this case.

Remark 13.1. The following are equivalent:

(a) D=D'".

(b) D and D’ represent the same divisor class in C1(¥) := Div(X)/H(X).

(c) There are curves ¢, ¢ in P?(K) of the same degree, of which F is not a
component, such that D + (¢) = D' + (¢).

In particular, then (¢) and (¢) are linearly equivalent.

The Riemann—Roch theorem is concerned with the dimension of the K-
vector space introduced in the following definition.

Definition 13.2. For D € Div(X) we call
L(D):={reL|vp(r)>vp(—D) forall PcX}
the vector space of multiples of —D.

It consists of all function r whose orders at all points P of X are no “worse”
than the orders of —D. Evidently,

E(D) _ m m;UP(D)VP,
PeXx
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VP(D) V

where mp = (wp) denotes the maximal ideal of Vp and mj, P =

W;VP(D) . Vp.

Remark 13.3. If D and D’ are linearly equivalent divisors, then £(D) and

L(D") are isomorphic K-vector spaces. That is, if D’ = D + (r) with r € L*,

then £(D’) — L(D) (u — 7ru) is a K-linear mapping with inverse given by
—1

rh

We will give a description of £(D) that will allow us to use the results of
Appendix L. However, before we do this, we should first clarify the problem
of the Riemann—Roch theorem for curves.

We have already explained that Reg(F') embeds in X. A divisor D with
Supp D C Reg(F) will be called an F-divisor, and Div’ (%) will be the group
of all F-divisors. Furthermore, let

2= ﬂ OF,p,

PeSing(F)

where we think of X' := L if Sing(F) = . If Sing(F) # 0, then > C Vg for
all Q € X that lie over a singularity of F. For D € Div (%) define

LE(D):={re X | vp(r) >vp(=D) forall P € Reg(F)}.

The Riemann—-Roch theorem for F' is concerned with the dimension of this
K-vector space. If F is smooth, then of course L' (D) = £(D). In general we
have
EF(D) =N ﬂ m_VP(D) OFp.
PeReg(F)

Two F-divisors D, D' are called linearly equivalent with respect to F (and
we write D =p D’) if there exists a unit r € X' such that D' — D = (r).

Remark 13.4. For D, D’ € Div’ (%) we have

(a) If D’ =f D, then £F(D') = LF(D).
(b )IfD’ <D, thenEF( "y c LF(D).
(0) L7(0) = K.
(d) If deg D < 0, then L£¥(D) = {0}.
Similarly, these statements also apply to the vector spaces L(D).

Proof. One shows (a) as in 13.3. Statement (b) is trivial, and (c) follows
from the fact that every nonconstant function has at least one pole. If L' (D)
contains a function r # 0, then 0 = degr > —deg D and hence deg D > 0.
This shows (d).

We will now establish a few properties of the ring X.
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Lemma 13.5. Suppose A is an integral domain. For pi,...,ps € SpecA,
suppose p; ¢ pj fori #j (i,j=1,...,s) and let N := A\ J;_, p;- Then

Ay, N NAy, = Ay

and Max An = {p14nN,...,psAN}. Furthermore, Ay, is the localization of
Ay atp;Ay (i=1,...,s).

Proof. Let H := A, N---NA,,. It is clear that Ay C H. To see the opposite
inclusion, for z € H consider the ideal J of all a € A such that az € A.
Then J ¢ p; (i =1,...,s) and, as one easily shows, J ¢ |JI_, p;. Therefore
JNN # () and consequently z € Ay. The remaining statements of the lemma
follow from C.9 and Appendix C, Exercise 3.

Since Sing(F) is a finite subset of V, (F'), one can assume that the sin-
gularities are points at finite distance. Then let A := K[f] = K[z, y] be the
coordinate ring of the affine curve f corresponding to F. If py,...,ps are
the maximal ideals of A corresponding to the singularities of F', then by the
lemma,

(1) Y=A,N---NA,, = Ay WhereNZZA\UPi’

i=1
and Max(X) = {p1X,...,ps2}. Also, for P; :=p; X (i =1,...,5),
E‘Bi = A)ﬂi'

Let S be the integral closure of A in L. As was shown in Chapter 6, the
points of X lying over the singularities of F' correspond one-to-one with the
maximal ideals Q of S with QN A € {p1,...,ps}, and the Sq are precisely
the discrete valuation rings belonging to these points. In particular, X' C Sq
for all these 9 € Max(S).

Lemma 13.6. (a) A=XnNS.
(b) r € X is a unit of X' if and only if vo(r) =0 for all Q € X with 7(Q) €
Sing(F).

Proof. (a) Using the notation of (1) we have by F.12

A= () 4, = () 4, and S= [) Sy

pEMax(A) pAN=0 PBeMax(S)

For pN N # () we have A, = Sg for some P € Max(S), since 4, is already a
discrete valuation ring. For p N N = () we have A, C Sq for all Q € Max(S)
such that QN A = p. From this (a) follows immediately.

(b) r € X is a unit of X' if it lies in no maximal ideal p; X (i = 1,...,s)
of Y. This is equivalent to saying that r is a unit in every Sq where QN A €
{plv s >ps}'



13 The Riemann—Roch Theorem 135

The following theorem demands that there be a unit r € X' (a function
r € L) whose order at finitely many points of Reg(F') (of X) is prescribed,
but otherwise allows for complete freedom.

Theorem 13.7. Let Py,..., P, € Reg(F) and let ay,...,a¢ € Z be given.
Then there exists a unit r € X such that

vp,(r) = a; (i=1,...,1).
The theorem holds also for arbitrary points P; € X with an element r € L.

Proof. We can assume that the affine curve f also contains the points
Py, ..., P, Let PB1,...,P: be the maximal ideals of A corresponding to these
points.

It is enough to prove the theorem in the case that all a; > 0. In the general
case, one substitutes 0 for the «; that are negative and then solves the problem
with a unit ;1 € Y. After this, one substitutes 0 for the «; that are positive
and solves the problem for the —«; with a unit ro € Y. Then r := rlrgl is a
solution of the general problem. Hence suppose a;; > 0 (i = 1,...,t). Choose
zEpr--pe- PO TPt 2 £ 0, and consider the decomposition of A/zA
into the direct product of its localizations by the Chinese remainder theorem.
It is then clear that there is an r € A such that

r—1lezA, (=1,...,9),
T—ﬂ'?j €zAp, (j=1,....t),

where 7; is a generator of B; Ay, . Then r is a unit of . Since vp, (2) > o +1,
it follows that vp,(r) = a; (j = 1,...,t).

We shall now give a description of £LF (D), for D € Div’ (%), which will
allow us to use the determination of dim £ (D) as given in Appendix L. Let
A = K|z,y] be given as in (1). By a suitable choice of coordinates, one can
assume that A is a finitely generated K[z]-module, and that L is separable
algebraic over K (z). Let [L : K(z)] = n. As in Appendix L we set

R = K[IE], Roo = K[I_l}($71),

and denote by S (by So) the integral closure of R (of Ry) in L. By L.1, S is
a free R-module (S« is a free Ro-module) of rank n and we have SNS,, = K
by L.2. The abstract Riemann surface X consists of the infinitely many points
that correspond to the localizations of S at its maximal ideals, and the finitely
many points one gets by localizing S, at the maximal ideals of this ring. We
denote the first set by X/, the second by X> (the finite and infinite parts of

Lemma 13.8. To each D € Div'(X) there is a D' € DivF'(X) such that
D' =p D and Supp D’ C Xf. A similar statement holds for an arbitrary
divisor of X using linear equivalence on X.
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This is an immediate consequence of 13.7. For investigating £ (D) (or
L(D)) one can always assume using 13.4(a) that Supp D C X/. Then we have

(2) LE(D) =I5 N See,
where
IE .= {r e X | vp(r) > vp(—D) for all P € Reg(F)N X%/}
and
(3) L(D)=1IpN S,

where
Ip:={reL|vp(r)>vp(—D)foral Pe fff}.

The investigation of the dimensions of £(D) and £ (D) can, on the basis
of (2) and (3), be simultaneously carried through using Appendix L. In the
following we will consider £ (D), yet one needs only to substitute S for A, L
for X, and S\ {0} for N in order to get the statements for £(D) corresponding
to the statements for £ (D).

Theorem 13.9. If an F-divisor D satisfies Supp D C X/, then I is a finitely
generated A-module and I - X = X.

Proof. Tt is immediate from the definition of I5 that it is an A-module. Let
Py, ..., P, be the points of Reg(F) N X/ with vp, (D) < 0, let o := —vp, (D),
and let p; be the maximal ideal of A corresponding to P; (i =1,...,s). Since
pi NN # 0, it follows that ([],_; ps") " N # 0. For an element a in this
intersection we have

vp,(a) > «; (i=1,...,s),
vp(a) >0  for P € Reg(F)N X/,

and a is a unit of X = Ay. Therefore a € I} and I - X = X.

Consider now the points Q1,...Q, € Reg(F) N X/ with 8; := vg,(D) >0
and the corresponding maximal ideals q1,...,q, of A. Let b € ([]\_, qf) NN.
For each r € IE and each point P € Reg(F) N X/ we have vp(rb) > 0.
Furthermore, rb € X and b is a unit of X. From 13.6(a) it follows that rb € A.
Hence b- I is an ideal of A. Since A is Noetherian, the ideal b- I5 is finitely

generated, and so I5 is finitely generated as an A-module.

From L.6 it follows that we now already have the following important facts,
sometimes called the finiteness theorems, namely that

dimg £ (D) < 00 and  dimg £(D) < oo,

a first step toward the Riemann—Roch theorem.



13 The Riemann—Roch Theorem 137

Theorem 13.10. To each finitely generated A-submodule I C X with I-X =
X there is exactly one divisor D with Supp(D) C Reg(F) N X¥ such that
I =1IE. We have

[-Opp=m%"  Opp foral PeReg(F)n XS

Proof. (a) First let I C A be an ideal with - X = X. Then I - A, = 4,
for p € Max(A) with pN N = (. Let I - A, = p®r A, for p € Max(A) with
pNN = 0. Now oy > 0 for only finitely many p, since for z € I'\ {0} there are
only finitely many maximal ideals in A/(z), and I is contained in the inverse
images of at most these maximal ideals.

It follows that

(4) I=]]»",

since the localizations of I and [ p®» agree at each of the maximal ideals of A,
and every ideal of A is the intersection of all its localizations at the maximal
ideals of A (F.12).

Now set ap := ap and D = ) (—ap) - P, where P € Reg(F) is the point
corresponding to p. Since vp(a) > ap for each a € I and P € Reg(F) N x/,
we have I C I5. Conversely, for P € Reg(F) N X/ we also have

(5) m3p Opp =10pp CIfy - Opp =mip - Opp,

where Bp > ap by definition of IE. It follows that ap = Bp for all P €
Reg(F) N X/. Since I contains a unit of ¥ (13.9), all the localizations of I
and I5 coincide, and hence I = I5.

From (5) we get the last statement of the theorem, and hence the fact that
D is given uniquely by 1.

(b) Now if I C X is a finitely generated A-module with I-X = ¥, then
there is an element a € N with al C A. From (a) we have al = I5 for some
F-divisor D. Then I = a7 115 = IE, with D" := > (vp(D) + vp(a)) - P. The
remaining statements of the theorem are also clear in this situation.

Remark 13.11. In case A = S, formula (4) shows that every ideal I # {0}
of S is a product of powers of maximal ideals (S is a “Dedekind ring”).
Furthermore, for py,...,p; € Max(S) the ring

H =S8y, N NSy,

is a principal ideal ring. In fact, by 13.5 the S, are the localizations of H at
its maximal ideals. Let I C H be an ideal, I # {0}, and let IS, = p?j Sy,
(aj € N; j = 1,...,t). Using 13.7 there is an r € L with IS,, = rS,,
(j =1,...,t). In particular, r € ﬂ;zl IS,, = I, and it follows that I = (r).

Since So, has only finitely many maximal ideals, it follows similarly that
Sso 18 a principal ideal ring.
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Theorem 13.12. For two F-divisors D, D' with D > D’ and SuppD U
Supp D’ C %/ we have

dimg I5/1F5 = deg D — deg D'.

Proof. By multiplying I and IZ, by a suitable unit from X, we can assume
that both are ideals in A. Then

15 = 15 =]Ip" (ap =-vp(D), o = —vp(D"),

where the p are the maximal ideals of A with p N N # @ and P is the point
corresponding to p. We need to show that

dimg (H paP/Hpa'v> = Z(a; —ap).
Consider [[p® /[]p® as an ideal in

A/ =TT 4w/ 4.
p

It is the direct product [], p*» Ap/p“; Ap. From E.13 it follows that

dimK(PapAp/Pa;‘Ap) = 04; — Qp,
and therefore the theorem is proved.

As in Appendix L we now consider the filtration F = {F,} of L/ Ry with
Fo = %8s (a € Z). Further, let 0 = 01/k(,) be the canonical trace of
L/K(z). Then

Homg(I5, R) = (I5)* - o

for some finitely generated A-module (I5)*, and in particular,
HOIHR(A,R) = QtA/R + 0,

where €4/ is the Dedekind complementary module of A/R with respect to
o. By L.§,
(F(D) == dimg ((I5)* Nz ~?Cs_/p..) < 00,

and in particular,
(6) g7 = 00(0) = dimp (Ca/g N2 ?Cs_/R,.) < 00
We now set
(F(D) := dimg L5 (D) and x¥(D):=¢"(D) - (£ (D).

By L.9 we have the formula
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(7) xF (D) :n—Zord;cai
i=1
if {a1,...,an} is a standard basis of I5. If D and D’ are two F-divisors as in

13.12, then it follows from L.10 and 13.12 that
®) X" (D) = x"(D') = deg D — deg D".

If D and D’ are two arbitrary F-divisors with support in X/, then there is also
such an F-divisor D" with D > D" and D’ > D", and two applications of
formula (8) show that (8) holds for arbitrary F-divisors D, D’ with Supp D U
Supp D’ C ¥/.

For D' = 0 we have x'(0) = ¢£(0) — g = 1 — g¥. From (8) we therefore
get the Riemann—Roch formula

(9) (F(D) =¢5(D) +deg D+ 1 — g"".

According to its definition, the number g%, and also ¢f'(D), could depend
on the choice of z. Using (8) we will show that g and ¢£'(D) actually do not
depend on the choice of the element x that we used in the definitions of .S,
Seo, and ¥/.

Theorem 13.13.

(a) There is a number ¢ € Z such that £¥(D) = 0 for all D € DivF (%) with
Supp D C X7 and deg D > c.

(b) g¥' depends only on F (and not on x).

(c) For an arbitrary D € DivF' (%), the number ¢¥(D) depends only on F
and D.

Proof. (a) By L.12 we have
(Ip)" = Casr: I,

and Sy is a principal ideal ring by 13.11. Therefore €5_,/p = 2718, for
some z € L*. Hence

tE(D) = dimg (2°2(Ca/p : 15) N Sxc).

There is an element a € A\ {0} with az?2€ 4,z C A, and so 2%2€ 4,5 Ca A
and
1?2(Ca/p : Ih) = (2°2(€ayg) 1 Ih) Ca 'A: I

By 13.10, for each P € Reg(F) N X7 there is a b € I with vp(b) = vp(—D).
Now if 7 € L* is such that 715 C a1 A, then rba € A and hence

vp(r) —vp(D) = —vp(a)

for every P € Xf. Consequently,
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Z vp(r) > deg D — Z vp(a).

Pexf Pexf

Now let ¢ := ) pcxsvp(a) and degD > c. Then ) poys vp(r) > 0, and it
cannot be the case that r € S.,, because deg(r) = 0. Therefore ££(D) = 0.

(b) Let & € L be an element with similar properties as « and let %/ be
the finite part of X with respect to . We will write g% (z) and ¢*'() for
the quantities (6) made from x respectively Z. For a divisor D with Supp D C
X7 nx! we will write ¢£°"(D) and ¢ (D) for the quantity ¢¥' (D) formed from
x respectively Z. By (a), we can find a D such that ¢57(D) = ¢I*(D) = 0.
But then the above formula (9) shows that

gF(J;) =degD+1 —KF(D) = gF(ﬁc)

(c) If D is now an arbitrary F-divisor and z is chosen as above, so that
Supp D C X7, then the following follows from (9):

(F*(D) = ¥ (D) —deg D — 1+ gF.

Since the right side does not depend on x by (b), the claim (c) has been
proved.

Applying the preceding considerations to A = S and X = L we can also
conclude that the number

gL = dimK(Q:S/R N .%'72@500/300)
is independent of x and depends only on L.

Definition 13.14. The number g% is called the genus of F. The number g~
is called the genus of the function field L/K (or of the associated abstract
Riemann surface X).

With a few basic facts about differential modules it can be shown that the
vector spaces
(.«.J(F) = Q:A/RdSC N Q:Soo/Rood:r71 C ‘Qi/K

and
w(X) == Cg/pdx N Cq_ g de™" C O

are independent of x. One calls these the vector spaces of global regular dif-
ferentials of F respectively X. According to the definition the genus is the
dimension of these vector spaces.

By (9) we have proved
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Theorem 13.15.

(a) Riemann—Roch theorem for the function field L/K (or its abstract Rie-
mann surface X) : For each D € Div(X) there exists a number (D) >0
depending only on D such that

{(D) ={,(D)+degD + 1 — g~.

(b) Riemann-Roch Theorem for the curve F : For each D € Div' (%) there
exists a number ££(D) > 0 depending only on D and F such that

(D) =tE(D) +degD +1— g*.
For a divisor D € Div(X) we call
X(D) = (D) — £.(D)
the Euler—Poincaré characteristic of D and for an F-divisor D we call
X"(D) ="(D) - ¢ (D)

the Fuler—Poincaré characteristic of D with respect to F. In the classical
literature £, (D) is called the index (index of speciality) of D. A divisor D is
called special if £,.(D) > 0. Clearly, for nonspecial divisors we have

¢(D) =degD+1—g".

By Theorem 13.13 divisors with sufficiently large degree are nonspecial.
The Riemann—Roch theorem for F is equivalent to the formula (8), and
the Riemann—Roch theorem for L/K (for X) to the corresponding formula

X(D) = x(D') = deg D — deg D'

for D, D’ € Div(X).
To calculate the genus it is sometimes useful to use the following formula,
which follows from (7) with D = 0:

Formula 13.16. If {a1,...,a,} is a standard basis for A over R, then

n
gF = Zord;:ai —n+1.
i=1

Similarly for g” using a standard basis for S over R.

The Riemann—Roch theorem for the function field L/K depends only on
the discrete valuations of L/K and can therefore be recast completely inde-
pendently of the theory of algebraic curves and purely in a valuation-theoretic
framework, where K need not be algebraically closed. In addition to the work
of F. K. Schmidt [Sch], this standpoint is taken for example by Chevalley [C]
and Roquette [R].



142 13 The Riemann—Roch Theorem

Exercises

1. For a divisor D € Div(X) let L(D) be the set of all effective divisors
linearly equivalent to D. Show that
(a) There is a bijective mapping

L(D) — P(L(D)),

where P(L£(D)) is the projective space associated with the vector space
L(D) (Chapter 2).

(b) If D, D’ € Div(¥) and if L(D) = L(D’) # 0, then D = D'.

(¢) If we set dim L(D) := dimg £(D) — 1, then dim L(D) depends only
on the set L(D) and not on the divisor D.

2. Let F be a smooth curve of degree p in P?(K) and for ¢ > 0let L, = K[F],
be the homogeneous component of degree g of the coordinate ring K[F].
For ¢ € L, \ {0} suppose the divisor (¢) of ¢ is defined as

(p) =@« F (intersection cycle)

with a preimage ¢ € K[Xo, X1, Xs|q of ¢. Let D := (go) for a fixed

wo € Ly \ {0}.
(a) Give a vector space isomorphism £(D) — L,.

(b) How large is dimg £(D)?
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The Genus of an Algebraic Curve and of Its
Function Field

Here we mainly give rules for explicitly determining the genus. These originate from
formula 13.16. By a function field we always understand an algebraic function field
of one variable. We say that it is rational if it is generated by one transcendental
element.

The genus g of an irreducible curve F' in P?(K) is not as interesting as the
genus g% of its function field L := R(F), because we have

-1
Theorem 14.1. If deg F = p, then ¢ = (p2 )

Proof. We assume that the coordinates have been chosen so that Sing(F') lies
in the affine plane with respect to the line at infinity Xy = 0. The correspond-
ing affine curve is then given by

XlXQ Xl X2
X,Y)=F(1,X,Y)=F (1,54 22 x=21 v.=22).
ey =rxn) = (L) (=t v =)

We can also assume that f is monic of degree p as a polynomial in Y and that
g—{i # 0. Then for the coordinate ring A = K[f] = K[X,Y]/(f) = Kz, y] we

have
p—1
A= Ry,
i=0

with R = K|[z], and L/K (z) is separable.
We will show that {1,y,...,4? !} is a standard basis of A over R with
respect to the filtration F used in Appendix L and Chapter 13, and that

ordry’ =i (i=0,...,p—1).
To do this we consider the dehomogenization of F' with respect to X1,

1 Xo , Xo —1 ~1
—F (X0, X1,Xo)=F|—,1, — | =F(X ,1,XY)=¢9gU,V
le ( 0y <21, 2) <X1’ 7X1) ( 5 4y ) g( ’ )5

where U:= X 1and V:= XY If

p

F=Y oY (p; € K[X], degep; < p—i),
=0
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then by an easy calculation we have

P
g X L X7Y) = Z%(X) CXTPH(X Y
i=0

Hence g is also monic of degree p as a polynomial in V. Note that because f is
monic with respect to Y, no points at infinity (with respect to Xo) of F with
Xi-coordinate 0 can exist. The coordinate ring A’ = K|[g] of g is identified
with the subalgebra K[z~ 27 1y] of L. We have

p—1
A =P K@y,
i=0
and the points at infinity of f are in one-to-one correspondence with the

maximal ideals of A’ lying over (z7!) - K[z~!]. Hence, with the notation of
Appendix L,

Soo - Rm<$_1y)i?

3
—_

N
I
=)

and {1,y,...,47" '} is a standard basis of A (L.5). Furthermore, ords y* = i
(i=0,...,p—1).
By 13.16 it follows that

p p—1 p—2 p—l
g :izgi—p—l—l:;i:( ) )

For smooth curves F, the genus ¢ is equal to the genus of its associated
function field, and because of this we can derive a few statements about the
genus of an algebraic function field. Recall that a model of a function field
L/K is a curve F' with L = R(F) (4.7).

Corollary 14.2. (a) Smooth rational curves (rational function fields) have
genus 0.

(b) Elliptic curves (elliptic function fields) have genus 1.

(¢) If an algebraic function field L/ K has a smooth plane projective curve of

degree p as a model, then
L_ (p—1
(")

(d) Smooth plane curves of genus 1 are elliptic.

Proof. (a) Every line has genus 0 and hence so does the field of rational
functions over K. Since the smooth rational curves are birationally equivalent
to lines, they also have genus 0.
(b) Elliptic curves are smooth curves of degree 3. By 14.1 they have genus 1.
(c) follows directly from 14.1, and (d) follows from (c).
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This gives a new way to see that smooth quadrics are rational, because
their genus is 0. Smooth curves of degree p > 2 cannot have a rational
parametrization; in particular, this holds for elliptic curves. The example of
the Fermat curves shows that there exist function fields with genus g = (p 51)
(p € N;). In fact, there are function fields of genus g for every g € N, as we
will show in 14.6. If the function fields of two curves have different genera,
then of course the curves cannot be birationally equivalent.

We will show that every function field of genus 0 is rational. To do this,
we will use

Lemma 14.3. Let L/K be a function field and x € L a nonconstant function.
Then for the zero divisor (x)o and the pole divisor (z)s of © on the abstract
Riemann surface of L/ K we have

deg(z)o = deg(r)oo = [L : K(2)].
Proof. Consider R, and S as in Appendix L and use the fact (L.1) that
Soo 18 a free Roo-module of rank [L : K(z)]. We then have
Soc/(@) = JI = (Sedp/(@")(Sec)p:
PeMax(Soo)

and the P € Max(Ss) correspond one-to-one with the poles of z. If P is the
pole corresponding to 3, then

—vp(r) = vp(z™") = dimg (S )3/ (271) (S0 )

and hence

deg(z)oo = — Z vp(z) = dimg (Se/(271)Sa0) = [L : K(z)].
vp(x)<0

Theorem 14.4. For a function field L/ K the following statements are equiv-
alent.

(a) g¥ = 0.
(b) There is a nonconstant function x € L with deg(x)eo = 1.
(¢) L is a rational function field over K.

Proof. (a) = (b). Let X be the abstract Riemann surface of L/K and let
P € X. By the Riemann-Roch theorem (13.15(a)),

dimg L(P) > degP+1=2.

Therefore there is a nonconstant function = in £(P). This function has only
P as a pole, and indeed this pole is of order 1.

(b) = (c). For an « € L as in (b) we have L = K (x) by 14.3.

(c¢) = (a) was already shown in 14.2.
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Corollary 14.5. A curve has a rational parametrization if and only if its
function field has genus 0.

A function field L/K is called hyperelliptic if it has as a model an affine
curve with equation

[f=Y?’~(X—ay) - (X—ap)=0 (p>3,ai,...,a, € K, a; # a; for i # j),
that is, L := Q(K|[f]). We call the projective closure of f a hyperelliptic curve.
Theorem 14.6. Suppose Char K # 2. Then for any such function field

» o
5s—1 ifpis even,

% if p 1s odd.

In particular, there are algebraic function fields with arbitrary genus g € N.

Proof. We have A := K[f] = K[z] ® K|z] -y and L/K(z) is separable, be-
cause Char K # 2. Using the Jacobian criterion one easily sees that f has no
singularities. Therefore A is integrally closed in L. With the earlier notation,
R=K[z] and S= A= R® Ry.

We now determine the integral closure Soo of Roo := K[z7'](;-1). The
minimal polynomial of an element ¢t = a + by (a,b € K(z), b# 0) over K (z)
is

(T — (a+ )T — (a—by)) =T*—2aT + (a* = b*(x —ay) - (x — ap)).

Hence in order that ¢ be integral over R, by F.14, it is necessary and sufficient
that
a€ Ro and a®—b*(x—a1) - (z—ap) € Reo.

The conditions
a € Rs and 2v4(b)—p>0

are equivalent to these, or in other words, to

a € Roo and v (b) >

M_I’B

The last condition is synonymous with

pt+1

b= zEY if p is even,
e =Y ifpisodd,

with some b € So,. We get therefore

Soc = Roo ® Roox_gy if p is even,

Soc = Roo ® Roox_%y if p is odd.
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We see from this that

£ if p is even,

ordry =
% if p is odd.
In particular, {1, y} is a standard basis of S, and by 13.16 we have
-1 if p is even,
”%171 if p is odd,
which is what we wanted to show.

Comparing 14.6 with 14.2(c), we see that not every function field has a
smooth plane projective curve as a model. How is the genus of an irreducible
singular curve F related to that of its function field L := R(F)?

Theorem 14.7. Suppose deg F' =: p and Sing(F') = {P1,..., Ps}. Denote by
OpF.p, the integral closure of Op p, in L. Then we have

s . — 1 s . —
gk = gF 7Zd1mK Orp,/Opp, = <p ) ) —ZdlmKoF,Pi/OF,Pi‘

=1 i=1

Here Op p,/OF, p, is to be understood as the residue class vector space of O p,
modulo OF, p,.

Proof. We consider the situation that underlies Formula 13.16. Let {aq, ..., an}
be a standard basis for A over R, and let {b1,...,b,} be one for S over R,
where S is the integral closure of A in L. By 13.16 it follows that

n n
g — gt = Zord;c a; — Zord;c b;.
i=1 i=1

On the other hand, the last difference is equal to dimg S/A by L.7.
Let p1,...,ps € Max(A) be the prime ideals corresponding to Py, ..., Ps.
Then
Orp =4y, Orp =5, (@E=1,...,9),

where Sy, denotes the localization of S at A\p;. For p € Max(A)\{p1,...,ps}
we have

Ay = Sp.

Since S is a finitely generated A-module, there is an element a € A, a # 0,
with aS C A. We then have

dimg (S/A) = dimg (aS/aA),
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where a5 and aA are ideals in A and hence a.S/aA is an ideal in A/aA. Write

AfaA =] Ap/ad,
p

by the Chinese remainder theorem and identify aS/aA with [[, aS,/aA,.
Then we get

dimg S/A =" dimg(aSy/ady) = dimg(S,/Ay) =Y dimg O,/ OFp, -
p p

i=1
Definition 14.8. For P € V, (F) we call
§(P) = dimK OF’p/ Op,p

the singularity degree of F at the point P. If Sing(F) = {P1,..., Ps}, then we
call

§(F)= Y &P)=) &P)
PeV(F) i=1
the singularity degree of F.
One can calculate the genus of the function field of a curve F' using the

formula in 14.7 if one can succeed in determining the singularity degree of F'.
We will go into this further in Chapter 17.

Corollary 14.9. A rational curve of degree p has singularity degree
p—1
5 |
Exercises

1. Deduce the following from 14.7: An irreducible curve F' of degree p has at
most (p ;1) singularities. If F' has this number of singularities, then F' is
rational. In particular, every singular irreducible cubic is rational.

2. Show that for an irreducible curve F and P € V. (F) we have

8(P) > mp(F) — 1.

3. What is the singularity degree of the projective closure of
(a) the curve Y"+ XY + X =0 (n >2)?
(b) the curve with the parametrization

1 t

= ?
z 1 Y

BTN

4. A hyperelliptic curve of degree p has only one singularity P. Determine
o(P).
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The Canonical Divisor Class

This chapter complements the Riemann—Roch theorem. It will be shown that for
every irreducible projective algebraic curve F, an F-divisor C exists (a “canonical
divisor”) such that ££'(D) = ¢ (C — D) for every D € Div"(%). The corresponding
fact is also valid for the Riemann—Roch theorem on the abstract Riemann surface X
associated with F', and it has important applications.

The Dedekind complementary module occurs in the definition of the genus of
a curve (and of its function field). We want to give a more precise description
of this module in a special situation:

Let R be an integral domain with quotient field Z and let A be an integral
domain of the form

A= R[Y]/(f) = Rlyl,

where f € R[Y] is a monic polynomial of degree p > 0. Suppose the quotient
field L of A is separable over Z and let o be the canonical trace of L/Z.

Theorem 15.1. For the complementary module €4, of A/R with respect to
o we have

Ca/r="(f'(y) " A

Proof. Because of the monic assumption on f we have

p—1
(1) A= Ry
i=0

©) L= 21/() = D 2y

Hence f is the minimal polynomial of y over Z. Let L¢ := L ®z L and
let I be the kernel of the canonical ring homomorphism ¢ : L ®z L — L
(a ® b — ab). By H.20 the traces of L/Z are in one-to-one correspondence
with the generating elements of the L-module Anny. I. We will first describe
this L-module more precisely. By (2),

L*=L®z L= L[Y]/(f),
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and I can be identified with the principal ideal (Y —y)/(f) in L[Y]/(f). Write
f=( —y) o with ¢ € L[Y]. Then Annpe I is identified with the principal
ideal (¢)/(f) in L[Y]/(f). If

f=YP4rmYP 4 pr, (1 €R),
then in L[Y] we have

F=F—f) =P =) +r(YP =P N+ (Y —y)

p—1 p—2
_ (Y o y) . Z yaYPflfa +7 Z yayp72fa et o1,
a=0 a=0

and hence ¢ is equal to the expression in the square brackets. Its image in L¢
is

p—1 p—2
(3) Ai ::Zya@)yp*l*aJrrl Zy“@y”*2*a+~~+7ﬂp,1.
a=0 a=0

Since this element generates the ideal Annye I, by H.20 this element corre-
sponds to a trace T}J € wr,z with the property

p—1 p—2
L=y e Yy (1),
a=0 a=0

From this formula it follows by comparing coefficients with respect to the
basis {1,y,...,y?~'} of L/Z that

; 0 fori=0,...,p—2
Yo\ ’ ) ’
) Tf(y)_{l fori=p— 1.

In particular, 7¢(4) C R.
On the other hand, the formula (3) shows that u(AZJ:) = f'(y), and from
this it follows by H.20(c) that

o=f'(y) -1}

From (4) we therefore get the following general formula for the canonical trace
of L/Z:

v\ [0 fori=0,...,p—2,
(5) ”(f/(y))_{l for i =p— 1.
Let u € L be given. One can write u in the form
1

YRy aii (aiEZ).
f(y); Y
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Then u € €4,/ precisely when

p—1
(6) a(uyﬂﬂ%‘((Z%yi) -yj> ER forj=0,..p—1
=0

If a; € R for i = 0,...,p — 1, then this condition is certainly satisfied. Con-
versely, assume that (6) holds for an arbitrary u € L. Then from (4) we see
that ap—1 € R. Applying the formula (6) for j = 1, it follows that ap_2 € R.
By induction we get a; € R for : =0,...,p — 1. This shows that

Car=(f'(y) " A,
and this concludes the proof.

Now let F' be an irreducible curve in P?(K) of degree p. We assume that the
singularities of F' are at finite distance, and that A = K[X,Y]/(f) = K|z, 3]
is the corresponding affine coordinate ring. We can also assume, as we did
earlier, that f is monic in Y of degree p and L := Q(A) is separable over
K (x). With the notation introduced in Chapter 13, we have for the genus of

(7) 9" =dimg (€4 g N2 ?Cs_/r. )

By 15.1, €4/p = (%)_1 - A with % = g—)i(:c,y). Hence we also have the
formula

g" = dimg (A N x_QgQSm/Rm> .
Ay

Since S is a principal ideal ring (13.11), by 13.6 it is clear that a divisor C
with Supp C C X*° exists such that

0
LrC)y=Anx 28—5 s /R

and for this divisor we have
gF =¢F ().

If D is an F-divisor with Supp F' C %7, then by L.12,

-1
If)* =Car:If = <g—£) (A:IE).

If p € Max(A) corresponds to a singular point of F, then I - A4, = A, (13.9),
and we have

(A I5) - Ay = Ay Ay = Ay,
On the other hand, if p € Max(A) corresponds to a regular point P of F', then
15 - A, =p77r(P) 4, and so
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(A: Ig) cAp = Ay p_”P(D)Ap - pl/p(D)Ap.

Therefore by 13.10,
A 15 =1,
and
(Ip)* na?Cs_sp. =1FHN x”g—z@swmw =L"(C - D).
Hence
(5(D) =¢F(C - D).

The Riemann-Roch theorem for F' can now be completed as follows.

Theorem 15.2. There is an F-divisor C, unique up to linear equivalence with
respect to I, such that for an arbitrary F-divisor D,

(8) (D) =¢"(C — D) +degD +1—g".
Moreover,
(9) (F(C)=4g",  degC=2¢" -2,

and C' is also uniquely determined by these properties up to linear equivalence.

Proof. We have already shown that an F-divisor C exists such that (8) is
true for all D € Div" (%) with Supp D ¢ %/. By 13.8 and 13.4(a) equation
(8) holds for arbitrary F-divisors D. Let C' be chosen such that (8) holds.

Setting D = 0 in (8), we see that (' (C') = g¥". Setting D = C we get that
deg C = 2g7" — 2.

Now suppose C’ is an F-divisor for which (9) is satisfied. Then we have
deg(C — C”) = 0, and from (8), it follows by substituting D = C — C’ that
F(C — ') = 1. For an F-divisor D of degree 0, we can have ¢/ (D) = 1 only
when D is a principal divisor: For r € LI (D), r # 0, we have (r) > —D and
0 = deg(r) > —deg D = 0, hence (r) = —D and D = (r~!). Since (r) is an
F-divisor,  must be a unit of X' (13.6(b)). This shows that C' =p C and the
theorem is proved.

In order to complete the Riemann—Roch heorem for the algebraic function
fields, a simpler way is possible. As in Chapter 13, we choose an element x
in the function field L/K that is transcendental over K such that L/K(zx) is
separable. The symbols R, R, S, So as well as X/ and X are to have their
earlier meaning. In contrast to 15.1, the S-module €5, need not be generated
by one element. However, €5 _ /g = 2718, with an element z € L*, since
Soo 18 a principal ideal ring. Hence we have the formula

(10) 9" = dimg (C€s/p Nz s p.) = dimg (222€5/ 5 N Su).

Here 222¢4 /R 18 a nonzero finitely generated S-module, and by 13.10 there is
a divisor C' with Supp C C X¥ and x2z€S/R = Ic. From (10) we have
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gt =1(0).
If D is an arbitrary divisor with Supp D C X7, then
0.(D) = dimg (I} Nz~ %Cs_/p..) = dimg (z°21} N Suo)
= dimg ((z°2€s/p : Ip) N Seo) = dimg ((Ic : Ip) N Seo).
As above, we have I : Ip = Ic_p and hence
0.(D) =dimg(Ic—p NSx) = £(C — D).
Analagous to 15.2, we now obtain the following.

Theorem 15.3. There is a divisor C € Div(X), unique up to linear equiva-
lence, such that for all divisors D € Div(X),

{(D) = ¢(C — D) +deg D + 1 — g*.

Moreover,
(C)=g",  degC=2g" -2,

and C' is also uniquely determined by these properties up to linear equivalence.

Definition 15.4. (a) An F-divisor C' with ¢F'(C) = g, degC = 2¢" — 2 is
called a canonical divisor of F. The corresponding divisor class in Div (%)
is called the canonical class of F'.

(b) A divisor C' € Div(X) with ¢(C) = gL, degC = 2gL — 2 is called a
canonical divisor of X (or of L/K), and the corresponding divisor class in
Div(X) is called the canonical class of X (of L/K).

We give now some applications of 15.2 and 15.3.

Theorem 15.5 (Riemann’s Theorem). For every F-divisor D such that
deg D > 2g¥ — 2 we have

(¥(D) =deg D + 1 — g¥,
and for every divisor D € Div(X) with deg D > 2g” — 2 we have
¢(D)=degD +1— g".

Proof. If C is a canonical divisor, then deg(C' — D) < 0 by assumption. There-
fore ¢F(C — D) = 0 respectively /(C' — D) = 0. Now apply 15.2 and 15.3.

Corollary 15.6. For every F-divisor D with deg D > 2g¥ and every P €
Reg(F') we have
¢F(D - P)=¢¥(D) - 1.

For every divisor D € Div(X) with deg D > 2g% and every P € X we have
D —P)={D)-1.
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Another application of Riemann’s theorem gives the following.

Theorem 15.7. Every function field L/ K of genus 1 has an elliptic curve as
a model.

Proof. Let P be a point on the abstract Riemann surface X associated with
L/K. Since g* = 1, Riemann’s theorem (15.5) shows that

L(wP)=v forallveN;.

Let {1,z2} be a K-basis of £L(2P). Then vp(z) = —2, because if we had
vp(z) = —1, then we would have L = K(x) by 14.3, hence g = 0. Again by
14.3 we have [L : K(z)] = 2.

Now let {1,z,y} be a K-basis of L(3P). Then vp(y) = —3, for otherwise
we would have £(3P) = L(2P). From [L : K(y)] =3 and [L: K(z)] = 2 it
follows that y ¢ K(z), and so L = K (z,y).

We have 1, z,y, vy, 22, 4%, 2% € L(6P) and £(6 P) = 6. Therefore there must
be a nontrivial relation between these functions. Consequently, the function
field L/ K has an irreducible curve F of degree < 3 as a model. If F' were of
degree < 2, or if F were of degree 3 and singular, then we would have g* = 0
by 14.7. Thus F' must be an elliptic curve.

Now let F again be an arbitrary irreducible curve. For P € Reg(F') one
can consider the functions r € X := ﬂQeSing(F) OF,@ that have a pole only
at the one point P. Similarly, for P € X, one can ask which functions r € L
have a pole only at P. What orders of the pole are then possible?

We discuss the problem for F. The solution for X is similar. By 15.5 we
have

(11) (29" 1) P) =",
and by 15.6 for v > 2¢7,
Fw-P)y=0"((v—1)-P)+1.

For v > QgF there always exists a function r, € X with pole divisor (7,)00 =
v+ P. By (11), besides the constant functions there are still g — 1 linearly
independent functions with P as their only pole and with pole order < 2¢%".
If two functions r, 7’ have the same order at P, then one can always find
k € K with vp(r — kr') > vp(r). From this it follows that there are integers
O< < - <ygr_g < 2g%" such that for every v € {0,v1,.. . Vgr_1} there
exists a function r, with

(ry)eo =v- P,

while if v < 2¢¥ with v ¢ {0,v1,...,v,7_1}, no such function exists. The
functions r, are linearly independent over K, since they have different orders.
If there were other functions, then we would have ¢¥((2¢" — 1)P) > ¢,
contradicting (11). We have therefore shown:
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Theorem 15.8 (Weierstrafl Gap Theorem). For every P € Reg(F) there
are natural numbers £; (i =1,...,g") with

0<b < <lyr <2g"

such that the following is true: For each v € N\ {{1,...,{yr} there exists a
function r, € X with pole divisor

(r)eo =v-P.

Forv e {l1,...,Lyr} there is no such function. Also, the corresponding theo-
rem is true for X and the functions from L.

The integers £y, ..., {,r are called the Weierstrafi gaps of the point P and
HE =N\ {t1,....0,r}

is called the Weierstrafl semigroup of the point P. The Weierstrafl semigroup
H {5 is similarly defined. It is clear that we are dealing with a subsemigroup of
(N, +), since the order of a product of two functions equals the sum of their
orders.

It is an unsolved problem to determine which subsemigroups H C N with
only finitely many gaps (“numerical” semigroups) are Weierstrafl semigroups
HE. By a result of Buchweitz (cf. Exercise 5) there are numerical semigroups
that are not of this form. On the other hand, it is known that large classes
of numerical semigroups do occur as Weierstrafl semigroups. The works of
Eisenbud-Harris [EH] and Waldi [Wa;] contain collections of results of this
kind, and in them are detailed references to the literature of this research
area.

The rest of this chapter is concerned with the canonical class and the genus
of a function field L/K. We will use the notation introduced in connection
with 15.3. For P € Max(S) we have

Sy - Csyp =P ™Sy for some dy € Z,
and similarly, for P8 € Max(S«),

(Soc)p  Cs/re =B ™ (Soc)p  (dyp € Z).

Here dy # 0 for only finitely many B (see 13.10). We show that dg > 0 for
all 3. This follows immediately from

Lemma 15.9. S C €g/g and Soc C &5 /R, -

Proof. By definition, €5,z = {u € L | 0(Su) C R}. In order to show that
S C €g/p, one has only to show that for every u € S the trace o(u) belongs
to R. Since R is integrally closed in its quotient field Z, all the coefficients of
a minimal polynomial of u over Z are contained in R (F.14). Since —o(u) is
the second-highest coefficient of the minimal polynomial, o(u) € R. The same
proof shows that S C €s_/p._-
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If P € X is the point corresponding to B, then set dp := dyp. The effective

divisor
D, := Z dp - P
PcXx

is called the different divisor of L with respect to x, and dp is called the
different exponent at the point P.

For the canonical divisor C' with I = szCS/ r that we considered in
connection with (10) we have

Vp(C) =dp — (QVP(J})-i—Vp(Z)) (PE:{f),
vp(C)=0 (P € X%),

and hence
vp(C + (222)) = dp (Pex)),
vp(C + (222)) =dp + 2vp(z) (P € X™).

Consequently, C' = D, — 2(2)w, and D, — 2(z) is also a canonical divisor.

Theorem 15.10 (Hurwitz Formula). Let D, = Y pcxdp - P be the
different divisor of L with respect to x. Then

1 1
gt = deg Do — [L: K(@)]+1= 3 > dp—[L: K(x)] +1.
Pex
Proof. Since deg(z)oo = [L : K(z)] by 14.3 and D, — 2(x)s is a canonical
divisor, it follows from 15.3 that
2g% —2 =degC = deg D,, — 2[L : K(z)),
and from this the assertion follows.

In particular, the different divisor always has even degree. In order to apply
the formula, more exact knowledge of the different exponents dp is needed.
This will be provided by the Dedekind different theorem.

For P € Max(S) and p := PN R let

(12) pSp =P¥ - Sp  (ep € N4).

If P € ¥/ is the point corresponding to 9, then we set ep = ex. Similarly,
ep is defined for P € X°°. The number ep is called the ramification index of
L/K(z) at the point P.

Theorem 15.11 (Dedekind Different Theorem). The different exponent
dp and the ramification index ep satisfy the following relations:

dp=ep—1, incaseep-lg #0,
dp > ep, m case ep - 1 = 0.

In particular, there are only finitely many ramification points of L/ K (x), i.e.,
points P € X with ep > 1.
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In the special case that K is a field of characteristic 0, the Hurwitz formula
can be written in the following form, according to the different theorem:

(13) P % S (ep—1)— [L: K@) +1.

Pex
The number ),y (ep —1) is called the total ramification number of L/ K (x).
It is necessarily an even number. Formula (13) also holds if Char K is larger
than [L : K(x)], because ep < [L: K(z)] for all P € X by F.13.

To prove the different theorem it is enough to consider a P € Max(S)
and p := P N R. We pass to the completions Rp and Sp of R, with respect
to pRy, and S, with respect to pS,, where S, is the quotient ring of S with
denominator set R\ p. To simplify the notation we write R for R, and S for
Sy and denote pR, by m. The proof makes use of the following five lemmas.

Lemma 15.12. The canonical mapping
a:R® rRS — S
1S a ring tsomorphism.

Proof. Let m = (ay,...,a,). Then

R= R[[X1,7Xn]]/(X1 7&1,...,Xn 7an),
S =8[[X1,....,Xn)]/(X1 —a1,...,Xn —an) (cf. K.15), and « is induced by

R[[X1,. .., Xn]] — S[[X1,.... X,]l.

Since S is a finitely generated R-module, one sees easily that S[[X7, ..., X,]] &
R[[X1,...,X,])] ®r S in a canonical way, and the assertion follows by passing

to the residue class ring modulo (X7 —ay,..., X, — ay).

Lemma 15.13. Let Max(S) = {B1,...,Br}. Then there is a canonical ring
isomorphism o -
S =Sy, x---x Sy,

Proof. Since S is integral over R (15.12), the maximal ideals of S are precisely
the prime ideals of S lying over mR (F.9). They are in one-to-one correspon-
dence with the prime ideals of S/mS = R/mR ®p/m S/mS = S/mS. In other

words, the maximal ideals of S are given by
M =mROS+ROPi=ROmMS+RP;=RP; (i=1,...,h).

Here M; has P, as its preimage in S (i = 1,...,h). By K.11 there exists a
canonical isomorphism .
S = Sop, X -+ x S, s
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and the Spn, are complete local rings (i = 1,...,h). There is a canonical
homomorphism Sy, — Sox,, and the ideal M;Son, = P Son, is generated by
one element t; € ;. Thus the Sgn, are complete discrete valuation rings:

gmi = K[[TtHa

where T; is an indeterminate corresponding to t;. It is also clear that S'gm is
the completion of the discrete valuation ring S, :

Son, = Sq, (i=1,...,h).

By 15.13 the ring S has no nonzero nilpotent elements, but does have
zerodivisors for h > 1. However, it is clear that L := Q(S) is the direct

product of the fields L; := Q(gf_p\) We set Z := K(z) and Z := Q(R).
Lemma 15.14. The canonical homomorphism

B:Z®z;L— L
18 an isomorphism.

Proof. By 15.12 there is a canonical isomorphism R®pr S = S. The elements
z € R\ {0} are therefore nonzerodivisors in S (G.4(b)). Because S is finitely
generated as an R-module, every element of L can be written with a numerator
from S and a denominator from R\ {0}. This shows that 3 is surjective.
Because of dimension considerations, § must be bijective.

In the following we identify L with Z ®, L and S with R®p S. In L we
then have L = Z - L, and § = R- S. If ¢ is the canonical trace of L/Z, then
1®o is the canonical trace of L / Z and the complementary module €4 N with
respect to 1 ® o is defined. According to the identifications, QS/R and €g/p

are contained in L.
Lemma 15.15. €; 5 = 5-Cg/p.

Proof. Let B = {a1,...,an} be a basis of S as an R-module. Then 1 ®

={1®ay,... 1®an} is a basis of S = R®p S as an R-module. If
{aj,...,a’} is the complementary basis to B with respect to o, then obviously
{1®ai,...,1®a*} is the complementary basis to 1® B with respect to 1 ®0c.
Hence

Co/p = @R (1®a’) = R®g (@Raf) = RCs/p = SCq/p.
=1

As shown above, o R
L=1y %X Ly,

and by 15.14 the L; are finite and separable field extensions of A , because
L/Z is such. If o; is the canonical trace of L;/Z, then 1® ¢ = (01,...,0p) by
H.3. Using 15.13, the next result follows easily (cf. H.2):
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X Ce—

Lemma 15.16. ¢ S /RS Sy, /R

s/ =¢
If d is the different exponent corresponding to P € {P1,...,PBxr}, so that
Sp€s/r =P~ ng, then 15.15 and 15.16 show that

(14) Q%/RZSQQS/RZm_dS/%.

Thus the different exponent can also be calculated in the completion. As we
will see, this has the advantage that the formula in 15.1 can be used.
If e is the ramification index at the point B, so pSg = PB°Sy, then also

pSp = PS5y
To prove the Dedekind different theorem, we have to show that d =e —1
if e-1g # 0, and that d > e if e- 1x = 0. Identify R and ng with power

series rings K[[t]] C K[[T]]. Then ¢t = € - T for some unit ¢ € K[[T]]. Hence
K[[T]/tK][T]] is a K-algebra of dimension e, and therefore

Sp=R®&RT® & RT*".
Let f be the minimal polynomial of T" over Z. It is of the form
f=Y4rY "l 4. qr, (meR i=1,...e),

and no r; can be a unit in R. Suppose that this is not the case. Let j be
the largest index for which r; is a unit. Then 7;7¢7 in K|[[T]] would have
smaller order in K|[[T]] than T° and ;7" for i # j, which cannot be, since
T+ >0 T =0.
From Sy = R[Y]/(f), it follows by 15.1 that €= » = (f/(T))™" - Sy
where
(1) = eTe '+ (e — 1)7“1T"572 + e,

If e- 1x # 0, then f/(T) has order e — 1 and it follows that d = e — 1. If
e-1lg =0, then f'(T) has order > e, since all r; have such an order. The
different theorem has therefore been proved.

Differents (ideals defined with the help of differentiation) are well known in
various situations (cf. [Kus], Chapter 10, and Appendix G). Theorem 15.1 is a
special case of an important connection between several concepts of differents
([Kua], 10.17).

Exercises

1. (Reciprocity theorem of Brill-Noether). Let F' be a curve and let D, D’
be F-divisors such that D 4 D’ is a canonical divisor for F. Show that

deg D — 2¢F (D) = deg D' — 2¢F(D').
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2. Let F be a smooth curve of degree p > 3 and let ¢ be a curve of degree
p — 3. Then the divisor (¢) of ¢ is a canonical divisor on X =V (F).

In the following exercises let X be the abstract Riemann surface of a func-
tion field L/K. Let C be a canonical divisor of X. Assume that X has genus
g=>2.

3. Show that £(v-C)=(2v—1)-(g—1) for v > 2.
4. (Weierstraf gaps and canonical class). Show that:
(a) A natural number v > 1 is a Weierstrafl gap of X at the point P € X
if and only if there exists a g, € £(C) with vp(g,) =v —1—vp(C).
(b) Let A:={v+ p | v and pu are Weierstrafl gaps of X at P}. Then for
every A € A there is an f\ € £(2C) with

I/p(f)\) =A—2- 2Vp<C).

(¢) A has at most 3g — 3 = £(2C) elements.

5. (Buchweitz). Let H be a numerical semigroup with g > 2 gaps and let h
be the number of integers 1 + 5, where ¢; and /> are gaps of H. Show
that:

(a) If H is a Weierstraf} semigroup, then h < 3g — 3.
(b) The semigroup with the gaps

1,2,3,4,5,6,7,8,9,10,11,12, 19, 21, 24, 25

is not a Weierstrafl semigroup.
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The Branches of a Curve Singularity

Irreducible polynomials in K[X,Y] can decompose in the power series ring K[[X,Y]].
In the geometry over C, this fact corresponds to the possibility of decomposing curves
into “analytic” branches “in a neighborhood” of a singularity, and thereby allowing
us to analyze them more precisely. Also, a similar theory will be discussed for curves
over an arbitrary algebraically closed field.

The local ring O p of a point P on a curve F in P?(K) has the affine de-
scription (without loss of generality P = (0,0))

(1) Orp = K[X,Y]xy)/(f),

where f € K[X,Y] is a polynomial with homogenization F. The comple-

tion Of p of Op p with respect to its maximal ideal mp p has by K.17 the
presentation

(2) Orp = K[[X,Y]I/(f).

Thus 6;3 is a complete Noetherian local ring (K.7) with maximal ideal
@ =mgp- (51;. The canonical map O p — (5;:7: is injective, because
Or p is mp p-adically separated (Krull intersection theorem).

Let Lf be the leading form of f, considered as a power series in K[[X,Y]].
Unlike the presentation in Appendix B, here we give the leading form the
usual degree > 0.

Lemma 16.1. (a) We have dim@ =1 and edim@ <2.
(b) The following statements are equivalent:

(o) edim@ =1 (i.e., C’TI; is a complete discrete valuation ring).

(B8) deg Lf =1.
(v) P is a regular point of F.

(c) If X is not a factor of Lf and deg Lf =: m, then (7F7\p is a free K[[X]]-
module of rank m.

Proof. We show (c) first. By assumption, f is Y-general of order m (K.18)
and so by the Weierstrafl preparation theorem (K.19),

Orp=K[X]|& K[[X]]-y&--- & K[X]] -y,

where y denotes the residue class of Y in @.
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The assumption that X does not divide the leading form Lf is of course
satisfied by a suitable choice of coordinate system; thus (@ is always a
finitely generated module over a power series ring in one variable. From this,
and from F.10, it follows easily that dim @7\13 = 1. The presentation (2) shows
that edim@ < 2, and edim@ = 1 is equivalent to deg L f = 1. Hence,
statement (b) is clear.

While the completion 61:’\13 for P € Reg(F') already played a role in Chap-
ter 15, these complete rings are now used to study the singular points of F.

Since K[[X,Y]] is a unique factorization domain (K.22), a power series f
in K[[X,Y]] decomposes into a product of powers

(3) f=c-fifi'" (ce K[X,Y]] aunit, a; € Ny)

of (pairwise nonassociate) irreducible power series f; (i = 1,...,h). As we will
see in 16.6, it is possible for an irreducible f in K[X, Y] to properly decompose
in K[[X,Y]].

Lemma 16.2. The ring R = 61:; has exactly h minimal prime ideals,
namely p; :== (fi)/(f) (i = 1,...,h). Here o is the smallest natural num-
ber with p3* Ry, = (0); in particular, the o; are invariants Of@ and so are
also invariants of P.

Proof. R/p; = KI[[X,Y]]/(fi) is of course an integral domain, and hence p;
is a prime ideal of R. Since dim R = 1, it must be a minimal prime ideal.
Every prime ideal of K[[X,Y]] containing f contains one of the factors f;,
and its image in R then contains p;. Therefore the p; (i = 1,...,h) are all the
minimal prime ideals of R.

Because of the permutability of localization and residue class ring con-
struction,

Ry, = K[[X, Y] /[ KX, Y]l (s)) = K[[X, Y]l(50)/ 7 KX Y ),
and the statement about «; follows.

Definition 16.3. The rings
Zi = Opp/pi" = K[X,Y]]/(f) (i=1,...,h)
are called the (analytic) branches of F at the point P.

These are complete Noetherian local rings of Krull dimension 1 and of
embedding dimension < 2. In addition to the maximal ideal, these rings have
only one other prime ideal, namely p;/p;" = (f;)/(f*). As in 16.1 (c) one
sees that each Z; is a finite free module over a power series algebra K[[X]].
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The number m; := degLf;" is an invariant of the branch Z;, since
8lm, Zi = K[X,Y]/(Lf{*), where m; is the maximal ideal of Z;, and m;
gives the place where the Hilbert function of gr,, Z; differs from the Hilbert
function of the polynomial ring for the first time.

We call m; the multiplicity of the branch Z;. It is clear that

h
(4) mp(F) = Z mi.

The branch Z; is called integral if Z; is an integral domain (so a; = 1),
and regular if Z; is a discrete valuation ring. This is the case if and only if
m; = 1, and then there is a canonical K-isomorphism

Z; 2 K[[T3]]
onto a power series ring in one variable T;.

Definition 16.4. The curve F' is called reduced at P (irreducible at P) if no
multiple components of F' pass through P (if F' is reduced at P and only one
component of F' passes through P).

The curve F' is reduced (irreducible) at P if and only if Op p has no
nonzero nilpotent elements (is an integral domain). If F' is irreducible at P,
then for every branch Z; of F' at P, the canonical mapping

Orp — Opp/p¥ = Z;

is injective. If it had a kernel a; # (0), then Op p /a; would be a finite-
dimensional K-algebra; then this would also be the case for its completion.

So (Op,p /a;)" = ai@/@ would be a finite-dimensional K-algebra, and
then Z; would also be a finite-dimensional K-algebra, a contradiction.

Theorem 16.5. If F' is reduced at P, then all the branches of F at P are

integral. For the minimal prime ideals p; (i =1,...,h) of (51;3 we have
h
ﬂ pi = (0)
i=1

Proof. Without loss of generality we can assume that in (1) the polynomial
fin K[X,Y] has a factorization of the form

f=FfIm

with pairwise nonassociate irreducible polynomials f; (i = 1,...,m) that are
all contained in (X, Y"). Then the f; are also pairwise relatively prime as power
series: If i # j, then A = K[X,Y]x,y)/(fi, f;) is a finite-dimensional local
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K-algebra. Then A = A = K|[[X, Y1/(fi, f;)- If f; and f; had a nonunit g
from K[[X,Y]] as a divisor, then B := K[[X,Y]]/(g) would be a homomorphic
image of A. However, this cannot be the case, because B (by the Weierstrafl
preparation theorem) is certainly not finite-dimensional over K.

It is enough to show that if f in K[X,Y] is irreducible, then f has no

multiple factors in K[[X,Y]]. If f is irreducible, then % and % do not
of of

vanish simultaneously. Suppose z3- # 0. The power series f and g3 are then
relatively prime, and the K-algebra K[[X,Y]]/(f, &%) is finite-dimensional.

Suppose it were the case that f = g% ¢ (g,¢ Em}([[X, Y]], g irreducible).
Then because of
9 _, 90, 2 O
oy ~ Jay? T oy

g would also be a divisor of g—{i. As above, this gives a contradiction, since
K[[X,Y]]/(g) is not finite-dimensional over K.
Under the assumptions of the theorem, in equation (3) we must have

a; = =aqp = 1.

Since p; = (f;)/(f), it follows that N/, p; = (0).

The following theorem gives a sufficient condition for the decomposability
of a power series in two variables. It uses a variation of Hensel’s lemma. We
consider the grading on K[X,Y] in which degX =: p > 0 and degy =:
g > 0. For f € K[[X,Y]]\ {0}, let the leading form Lf be the homogeneous
polynomial of smallest degree that occurs in f using the above grading, and
ord f := deg Lf. There is a trivial, but useful, irreducibility criterion: If by
a suitable choice of p and ¢ the leading form L f is an irreducible polynomial,
then f is an irreducible power series. In particular, homogeneous irreducible
polynomials are also irreducible as power series.

The following theorem is a partial converse to this criterion.

Theorem 16.6. For f € K[[X,Y]] \ {0}, suppose Lf has a decomposition
Lf = o1 - p2 with nonconstant relatively prime (homogeneous) polynomials
¢; € K[X,Y] (j = 1,2). Then there are power series f; € K[[X,Y]] with
Lfj=¢; (j=1,2) and

f=1r-fa

Proof. Set G := K[X,Y], aj :=degy; (j=1,2),and a:=ord f =degLf =
a1 + ag. Using the relative primeness of ¢ and o, we will first show that
(5) Gk = Gr—oy 01+ Gy "2 for k> (a1 —p)+ (a2 —q¢) =a—p—q.

If p = g = 1, then this statement follows from the considerations of the Hilbert
function in A.12(b). We can deduce the general case from this as follows: Let
H := KU, V] be the polynomial ring in two variables U and V of degree 1.
Using X +— UP, Y + V7 there is an embedding K[X,Y] < K[U, V], and this
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is homogeneous of degree 0. The monomials Utvi 0<i<p-1,0<j<qg-1)
form a basis of H over G. Let G = G/(¢1,92), H = H/ (1, p2)H and let u,v
be the residue classes of U,V in H. Then {u? |0<i<p—1,0<j<qg—1}
is a (homogeneous) basis of H as a G-module. Let G, be the homogeneous
component of G of largest degree. Then Ep -uP~ 1971 is the homogeneous
component of H of largest degree. By A.12(b) this has degree a; + az — 2. It
follows that

p=a1+a—-2—-(p-—1)—(¢g—1)=(a1—p)+ (e —q)=a—p—gq,

and so we have shown formula (5).
Using this formula a decomposition f = f; - fo will be constructed step by
step. Set

fM = f—Lf=f—¢1ps and a® :=ord fM.

Then oV > a + 1. Suppose, for an i > 1, that we have already found poly-
nomials p; € G with Lp; = ¢, (j = 1,2) such that f .= f — p1ps has order
o) > a 4. The formula (5) can be applied with k = a(?). We can therefore
write

LfD = thoipr + Y192
with 12 € G,() _o,» Y1 € Gu) _q,, and then we have

deg(v192) =20 —a; —ay =20 —a > a +i+ 1.

For .
FE = f— (p1 + 1) (D2 + 2),

we then have

FORD = O — (4hopy + P1pa) — P11
and so ord 1) > o +i 4 1. Furthermore, p; 4, has leading form ¢;, since
degv; > a; (j=1,2).

By continuing with this method, we approximate f more and more closely
by a product of two polynomials with leading forms ¢1, 2. Passing to the
limit, we obtain the desired decomposition f = f; f2 of f as a product of two
power series f; with Lf; = ¢; (j =1,2).

Corollary 16.7. If f is an irreducible power series, then its leading form
Lf is a power of an irreducible homogeneous polynomial. In particular, for

p=q=1,
Lf=(aX—-0bY)" (LeN, a,be K, (a,b) #(0,0)).

In the initial situation let Z;, = K[[X,Y]]/(f{*) be a branch of F at P.
Then
LI = (@X = biY)" (i €Ny, (a,) #(0,0)),
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and t; : a; X — b;Y = 0 is one of the tangents of F at P. We call ¢; the
tangent of the branch Z;. Every branch therefore has a unique tangent, and
every tangent to I’ at P is also a tangent of a certain branch. But different
branches can indeed have the same tangent.

Example 16.8 (Classification of double points). In case mp(F) = 2 we
have deg Lf = 2. Then Lf is either the product of two linearly independent
linear homogeneous polynomials or is the square of a linear homogeneous
polynomial. The following cases are possible:

(a) Normal crossings (nodes, ordinary double points): F has two distinct tan-
gents at P. Then by 16.6, F' also has two branches at P, which more-
over are regular. A specific example of this is the folium of Descartes
X2-Y?2+4+X3 =0 (Char K # 2). Although the polynomial X2 —Y?2+ X3 is
irreducible in K[X,Y], it decomposes in K[[X,Y]], since Lf = X?-Y? =
(X+Y)(X-Y).

(b) Ordinary cusps: F has a (double) tangent at P and only one branch.
A specific example of this kind is Neil’s parabola Y? — X2 = 0. The
polynomial Y2 — X3 is irreducible in K[X,Y]. It is homogeneous if we set
deg X =2, degY = 3. Then it can also not decompose as a power series.

(¢) Tacnodes: F has a (double) tangent at P but two different branches. An
example of this situation is given by

f=Y?-X*?-X*=0, P=(0,00 (CharK #2).

Here Y = 0 is a double tangent. The curve f is irreducible, since %
is not a square in K(X). If we set degX = 1, degY = 2, then Lf =
Y2 - X* = (Y +X?)(Y — X?) and by 16.6, there are two different regular
branches to f at P.

As for algebraic curves, one obtains further invariants for the branches Z
by passing to the integral closure of Z.
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Theorem 16.9. Let Z = K[[X,Y]]/(f) be an integral branch and let Z be
the integral closure of Z in Q(Z). Then Z is finitely generated as a Z-module.
There is also a K-isomorphism

onto a power series ring in one variable T; i.e., Z is a complete discrete
valuation ring.

Proof. By 16.1(c) we may assume without loss of generality that

7= @ KX,

=0

where y denotes the residue class of Y in Z. It is enough to show that Z
is finitely generated as a K[[X]]-module. If L := Q(Z) is separable over
K((X)) :== Q(K[[X]]), then this follows from F.7. In the inseparable case,
we proceed as in L.1. Let Char K =: p > 0 and let Ly, be the separable
closure of K((X)) in L. The integral closure Z of K[[X]] in L is in any
case a finite K [[X]]-module. Furthermore, there is an e € N with LP* C Lgep.

Then Z° C Z, and since K[[X]] is finite over K[[X]?" = K[[X?"]], it is also
the case that Z and Z' are finite over K[[X?°]]. However, Z is isomorphic to

Z" and K[[X]] to K[[X?"]]. Therefore Z is finite over K[[X]].

Since Z is a complete local ring and Z is a finitely generated Z-module, Z
decomposes by K.11 into the direct product of the localizations at its maximal
ideals. But Z is an integral domain, so only one maximal ideal can occur, i.e.,
7 is a local ring. By F.8, then, Z is in fact a (complete) discrete valuation
ring. Since it has K as its residue class field, it is isomorphic to K[[T1]].

In the situation of the theorem, let x, y be the residue classes of X, Y in
Z. Under the injection Z < K[[T]], the elements x and y will be mapped to
power series a, § € K[[T]] and we will have f(a, 3) =0 in K[[T]]. We write

(6) Z = Kl[o, 8],

where K[, f]] denotes the image under the substitution homomorphism
K[X,Y]] - K[[T]] (X — «a, Y — (). We also say that the branch Z is
given by the (analytic) parametric representation (a, [3).
By 16.9 the residue class vector space Z/Z over K is finite-dimensional
(cf. 7.1). We call
5(2) :=dimg Z/Z

the singularity degree of the (integral) branch Z.

Example 16.10. Let p,q € N; be relatively prime natural numbers with
p < q. We consider the affine curve
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f:XP-Y?=0.

In case p = 2, ¢ = 3 this is Neil’s semicubical parabola (Figure 1.6).

First we will show that X? — Y7 is irreducible in K[X,Y]. We endow the
polynomial ring K[X,Y] with the grading where deg X := ¢ and degY := p.
Then f is homogeneous of degree p - ¢q. If f had a proper divisor, then this
divisor would have to be homogeneous (A.3) and of degree < p-q — p.

But all the monomials X*Y7 with i < p—1, j < ¢—1 have distinct degrees
iq + jp, for if

ig+jp=7iq+jp (@' <p-1,5<q-1)

and ¢ > ¢’ then (i —i")q = (j' — j)p, and because p and ¢ are relatively prime,
we must have i = ¢’ and j7 = j’. Hence the homogeneous polynomials of degree
< p-q—p are of the form XY’ (c € K) and they do not divide f.

From the irreducibility of f in K[X,Y], it follows that f is irreducible also
in K[[X,Y]], because f is a homogeneous polynomial.

The kernels of the substitution homomorphisms

K[X,Y] — KT,
K[[X, Y]] — K[[T]],

where X — T9 Y — TP contain f. Since f is irreducible in both rings, f
generates the kernel. Hence we have

K[f] = K[X,Y]/(f) = K[T,T"]

and
Z = K[[X,Y]]/(f) = K[[T?T"]].

So f is a rational curve. It has only one branch at P = (0,0), namely Z. This
branch is integral and has X = 0 as a p-fold tangent. Further, Z := K[[T]] is
the integral closure of Z in Q(Z), and (T'9,T?) is a parametric representation
of Z.

Let H = (p,q) = {ip+jq | i,j € N} be the numerical semigroup generated

by p and ¢q. Then

Z:{Zﬁ;hTheK[[T]] | mheK}.

heH

The singularity degree §6(Z) = dimg Z/Z is thus the number of gaps of
H. 1t is an exercise to show that

5(2) = 50— (g~ 1).

The Jacobian criterion shows that f has at most one singularity at finite
distance at (0,0). Besides that one, f has only one point at infinity with
branch
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Zoo = K[[X, Y]} /(X777 Y,
and this has singularity degree
1
0(Zoc) = 5la—p—1)(¢—1).
If L is the function field of the curve f, then by 14.7,

= ("5 1) -2 - sz
-2~ - Dg—1)~(g—p-1lg—1]=0

in accordance with the fact that f is rational.

In what follows, we call the rings I" := K[[X,Y]]/(f), where f € K[[X,Y]]

is not a unit, (plane) algebroid curves. For example, the rings Op p of (2) are
algebroid curves, and of course also the branches of a curve singularity are
algebroid curves. For an algebroid curve, its branches are defined in exactly
the same way as for a curve singularity. Lemma 16.1 also holds for algebroid
curves: These are complete Noetherian local rings of Krull dimension 1. Using
16.1 one also sees that K[[X,Y]] has, except for the maximal ideal and the
zero ideal, only prime ideals of the form (f), where f is an irreducible power
series.

If I; = K[[X,Y])/(f:) (i =1,2) are two algebroid curves with relatively
prime power series f1, f2, then A := K[[X,Y]]/(f1, f2) is a finite-dimensional
K-algebra, for by the relative primeness of f; and f,, the only prime ideal of
K[[X,Y]] that contains (f1, f2) is (X,Y). The elements of the maximal ideal
of A are nilpotent (C.12), and it follows that dimg A < occ.

Definition 16.11. (I, I%) := dimg K[[X,Y]]/(f1, f2) is called the inter-
section multiplicity of the algebroid curves I'y and I5.

This definition in particular defines the intersection multiplicity of two
branches. If f1, fo € K[X,Y] and P = (0,0), then u(I'1,I%) = pu(f1, f2) is the
intersection multiplicity of the curves f1, fo at P, because

K[Xv Y](X-,Y)/(fl,fQ) = K[[Xv Y]]/(fth)v

since the first ring is already complete as a finite-dimensional local K-algebra.
There are properties for intersection multiplicity of algebroid curves that are
similar to those for algebraic curves, except for Bézout’s theorem, which is of
a global nature. The proofs are analogous to those for algebraic curves, and
we do not include them here.

Rules 16.12.

(a) uw(I1,I%) = 1if and only if Iy and I are regular branches with distinct
tangents.
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(b) Additivity: If It = K[[X,Y]]/(¢1 - ¢2) with nonunits ¢; € K[[X,Y]] and
Fl(l) = KI[[X,Y]]/(p:) (i =1,2), then for an arbitrary branch I,

(T, Io) = (TS, o) + (12, Iy).

(c) Let Z1,...,Z, be the branches of I', and Z], ..., Z. the branches of I%.
Then

For an algebraic curve F', with branches Z1,...,Z, at a point P, the
intersection multiplicities p(Z;, Z;) (¢ # j) are interesting invariants of the
singularity P.

Example 16.13. Ordinary Singularities.
A point P of a curve F is called an ordinary singularity if m := mp(F) > 1
and if I’ also has m distinct tangents at P.

The last condition is equivalent (under the assumptions of (1)) to saying
that the leading form Lf decomposes into m nonassociate linear factors. By
16.6, then, f = f1--- f;, with pairwise nonassociate power series f; of order
1 (i=1,...,m). At an ordinary singularity of multiplicity m the curve thus
has m different branches Z; = K[[X,Y]]/(f;), which are all regular and for
which

WZiZ)=1 (i #)).

We mention that it is not especially difficult to transfer over the formulas
of residue calculus from Chapters 11 and 12, as long as they are of a local
nature, to algebroid curves.

For an irreducible curve F' with function field L := R(F') and with abstract
Riemann surface X, the canonical mapping 7 : ¥ — V. (F) was discussed in
6.12. We will now prove the remarkable fact that for every P € V,(F) the
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points of 7~1(P) are in one-to-one correspondence with the branches of F' at
P.

Let R := Op p and let § := m be the integral closure of R in L. The
points of 7~ (P) are then the discrete valuation rings Sy, (i = 1,...,s), where
Max(S) = {PB1,...,Ps}. On the other hand, if p1,...,p; are the minimal
prime ideals of R, then Z; := R/pl are the branches of F' at P. Therefore
by 16.9 the integral closure Z; of Z in L; := Q(Z;) is a complete discrete
valuation ring (i = 1,...,1).

Theorem 16.14. With the above notation, s = t, and by a suitable renum-
bering, p; is the kernel of the canonical homomorphism R— ng and so ng
can be identified in a canonical way with Z; (i =1,...,s).

Proof. We will first study the ring R®zS. Denote by m := mp p the maximal

ideal of R and let S be the completion of S with respect to mS. We then have,
as in 15.12, a canonical isomorphism

SA'gR@RS.

Here S is integral over the image of Rin S‘, and as in 15.13, there is a canonical
isomorphism

7 52 Sy, X - X S
P .

Hence Q(S) is the direct product of the s fields Q(gm\)

8) Q(S) = Q(Sy,) x -+ x Q(Sg. )

We also write R = K[[X,Y]]/(f), and if f = f1--- f; is the decomposi-
tion of f into irreducible factors f;, so p; = (fi)/(f) (i = 1,...,1), then we
immediately get from this representation that R \ Ule p; is the set of all

nonzerodivisors of R. The Chinese remainder theorem then gives a canonical
decomposition

(9) Q(R) = Rpl/p1RP1 XX Rpt/ptRPt = Q(Zl) XX Q(Zt)
corresponding to the canonical injection
R(—>R/p1 X oo xR/pt.

Since the canonical mappings R — R/p; (i = 1,...,t) are injective, as we
have already remarked in connection with 16.4, the elements of N := R\ {0}
are nonzerodivisors on Zi X - - - X Zy, and so all the more are not zerodivisors on
R. Similarly, from (7) we conclude that the elements of N are not zerodivisors
on S. By G.6 (d) there is a canonical isomorphism

Sn = Ry ®Rry SN-
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Further, Ry = Q(R) = Q(S) = S, because S is finite over R. Therefore
there is a canonical isomorphism R N = ~ g ~ induced by R — S. Even more we
have

Q(R) = Q(9).

Comparing (8) and (9), we see that ¢ = s and that there are induced
isomorphisms Q(Z;) = Q(Scp ) (Wlth a suitable numbering) coming from the
canonical homomorphisms R — Sgp7 (t =1,...,s). Since 55437 is integrally
closed in Q(Sc;;i) and is finite over Z;, we can identlfy Sspi with Z;.

As the theorem shows, this allows us to identify the abstract Riemann
surface X with the set of all branches at points of the curve F', and to identify
the divisor group Div(X) with the free abelian group on the set of all these
branches.

One understands Theorem 16.14 better if one knows the fact that every
plane affine algebraic curve can be obtained from a smooth curve C' in a
higher-dimensional affine space by projection onto the plane. At a given point
of the plane curve there are as many branches at that point as there are points
in C that are preimages of that given point. For each of these, according to
how the projection of C behaves (transversal, tangential), various singularities
arise in the plane.

Theorem 16.14 is a ring-theoretic analog of these facts from higher-
dimensional geometry.

Exercises

1. Let Char K = 0, and suppose Z is an integral branch of multiplicity m.
Show that:
(a) Every unit in K[[T]] has an nth root for each n € N.
(b) Z has a parametric representation of the form (7™, ), where § €
K|[T]] is a power series of order > m.
(Set X =T™, Y = B(T) = > ;2 bT" Then the Newton-Puiseuz
series of Z is defined by Y = >°°° b; X . This is the basis for the
definition of further numerical and geometric invariants of the branch
Z, see [BK], 8.3).
2. Determine the number of branches at the origin for the following curves
from Chapter 1: the cissoid of Diocles, the conchoid of Nichomedes, the
cardioid, and the four-leaf rose.



16 The Branches of a Curve Singularity 173

. What can you say about the nature of the real and complex singularities
of the algebraic curve represented by the olympic emblem

and of its projective closure?

Same question for the astroid (X2 +Y? —1)% +27X2Y2 = 0.







17

Conductor and Value Semigroup of a Curve
Singularity

In this chapter we will relate the invariants of singularities of curves already
introduced, such as “multiplicity,” “tangents,” “singularity degree,” “branches,”
and “intersection multiplicity between the branches,” to the conductor and value
semigroup. This will allow a more precise classification of curve singularities than
was possible up to now. Also, we will be led to other formulas for calculating the
genus of the function field of a curve.

For two rings R, S with R C .S C Q(R) we call
(1) Fsp={2€Q(R)| z-5C R}

the conductor of S/R. It is clear that Fg/p is an S-ideal that lies in R. Also,
Fs/r is even the (uniquely determined) largest ideal of S that lies in R. Since
Q(R) = Q(S), we can consider Fg/p also as the complementary module €g/p
of S/R with respect to the identity as the trace of Q(S)/Q(R).

Remarks 17.1.

(a) The conductor Fg,r equals R precisely when S = R.
(b) If S is finitely generated as an R-module, then Fg,r contains a nonzero-
divisor on R.

Proof. (a) is trivial. For (b), consider a system of generators {si,...,s$,} of
S as an R-module and write s; = =+ (r;,7 € R), where 7 is a nonzerodivisor.
Obviously, r € Fg/g-

Lemma 17.2. If S is finitely generated as an R-module and N C R is mul-
tiplicatively closed, then Fgy /g, is defined and

Fsn/ry = (Fs/R)N-

Proof. Tt is easy to see that Ry C Sy C Q(Ry). Hence Fg, /g, is defined,
and it is clear that (Fg/r)n C Fsy /Ry -

If {s1,...,8,} generates S as an R-module, then Sy =>""" | Ry - . For
2 € Fsy/ry (¥ € R,v € N) we have

r S xIs; .
S 2R =1,...,n).
v 1 v N @ n)



176 17 Conductor and Value Semigroup of a Curve Singularity

Write £% = ™ with r; € R, p € N and choose an element v/ € N with

“w

!
/ / - €T vV ux
Vpxs; =v'vry (i =1,...,n). Then £ = V,ZV,

numerator from Fg, . Hence we also have Fg, /g, C (fS/R)N.

z
v

and we have written £ with a

In the following, again let F' be an irreducible curve in P?(K) and let f be
its affine part. For P € V_ (F), let Op p denote the integral closure of O p in
L := R(F). Furthermore, let S be the integral closure of A := K[f] = K|z, y]
in L, and let X be the abstract Riemann surface of L/K. Also let the map
m: X — V4 (F) be defined as in 6.12.

Definition 17.3.

(a) Fp:= Forr) orp 18 called the conductor of the singularity P.
(b) Fs/a is called the conductor of the affine curve f.

By 17.1(a) we have Fp = Op p precisely when O p = Of p, i.e., when
P € Reg(F). The conductor Fp is therefore interesting only when P is a
singular point. By 17.1(b) the conductors Fp and Fg,4 are nonzero ideals in
Op,p respectively A. If P € V(f) and mp denotes the maximal ideal of A
corresponding to P, then by 17.2,

(2) Fp=(Fsja)mp-

By 13.11, the ring OF p is a principal ideal ring; hence Fp is a principal
Op, p-ideal. If By, ..., B, are the maximal ideals of Op p, then we can write

3) Fp= P,

where ¢; € N are uniquely determined. If P; € X is the point corresponding
to P, then we set cp, = ¢; (i = 1,...,s). Furthermore, set cp = 0 for
P € Reg(F).

Definition 17.4. The divisor Fx/p := ) pcy cp - P is called the conductor
divisor of F, its degree c¢(F) is called the conductor degree of F, and for
P € Sing(F) we call ¢(P) := }__ (g)_pcr the conductor degree of the point
P.

Using the notation of (3) we have
(4) c(P) = Zci =dimg Op p/Fp
i=1

and therefore

(5) deg Fxyp =y dimg Opp/Fp.
PeSing(F)
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We define the conductor degree of the affine curve f by

(6) c(A)== Y ¢(P)=dimg S/Fsa-
PeSing(f)

The connection between conductor degree, singularity degree, and genus
of X will be derived from the following theorem, called Dedekind’s formula
for conductor and complementary module.

Dedekind’s Formula 17.5. Suppose we have rings R C S C T C Q(S) and
every nonzerodivisor of R is also a nonzerodivisor on S; i.e., the inclusion
R C S defines a ring homomorphism Q(R) — Q(S) = Q(T'). Suppose also
that Q(S) is a finitely generated free Q(R)-module and that there exists a
trace o : Q(S) — Q(R). Denote the complementary modules with respect
to this trace by €r,r and €g/. Suppose also that €g/r is generated as an
S-module by a unit of Q(S). Then

Cr/r =Fr/s Cs/r-

Proof. For z € Frg and u € €g/p we have o(zuT) C R because 2T C S.
Therefore ]:T/S . (’:5/3 C Q:T/R-

Write €g/r = ¢+ S for some unit ¢ € Q(S). Every v € &p/p can then be
written in the form v = ¢ - w for some w € Q(S), and for ¢ € T we then have

o(tweS) = o(vtS) C R.

Hence twc € €g/g = ¢+ S. It follows that tw € S and so w € Fr/g. Therefore
v € Frss - €s/r. Thus &r/p C Frys - €sr C €p/R, and hence we have
equality.

Corollary 17.6 (Product formula for conductors). Suppose we have
rings R C S C T C Q(R), and Fg/p is generated as an S-module by a unit
of Q(R). Then

Frir =Frys - Fs/r-

In order to apply the formula to a curve F', we can assume that the sin-
gularities of F' lie at finite distance, that the coordinate ring A of the curve
f is finitely generated as a module over R := KJz|, and that L is separable
over K (x). Because by 15.1 the A-module €4/ is generated by one element
= 0, it follows from 17.5 that

(7) Cs/r = Fs/a-€a/r-

Let X/, X as well as Ry = K[z7!(;-1) and S have their earlier
meanings (see Chapter 13). For P € X7 let % be the corresponding maximal
ideal of S and let kp € Z be the number defined by Sy - €5/ = P77 Sp.
Similarly, let (Seo)gp(z7?Cs_/r..) = B "7 (Sec)p if P € X, Then C :=
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> pex kp - P is a canonical divisor of X, as was shown in the proof of 15.3. If
we set Sp€q/p = ‘13_’\“’&;3 for P € ¥/ and A\p = kp for P € X°°, then the
divisor C’ := 3" Pex Ap - P is linearly equivalent on X to a canonical divisor of
F. This follows from the preparatory remarks to 15.2. Now from (7) we have

Theorem 17.7. Let F' be a curve of degree d.
(a) (Connection between the canonical classes of X and F')
(b) g =g"— 5 c(F)= (") — 5 cF).
Statement (a) is a direct consequence of (7). Passing to the degree of the

divisors, we get 297 — 2 = 2¢g¥ — 2 — ¢(F) by 15.2 and 15.3, and (b) follows.
Comparing with 14.7 and 14.8 we have the following.

Corollary 17.8. ¢(F) =2(F), where §(F) denotes the singularity degree
of F.

The formula in 17.8 also holds locally, and the global formula follows of
course also from the local proof:

Theorem 17.9 (Gorenstein[Go]). For every P € V. (F) we have
c(P) =26(P).

Proof. Consider a maximal chain of ideals (composition series)

(8) Opp=1205L 2 - 2Is=Fp.

That is, we suppose that this chain cannot be properly refined by the insertion
of any further Op p-ideal. We therefore have I;/I;11 = K (j =0,...,0 — 1)
and hence § = dimg Op p /Fp. Dualizing, as in Appendix L, formula (9), we
get a chain of O p-modules

(8") Opp=0pp=1CI|C--- CIj=Fp.

In L.13 it was shown, under the assumptions there, that dualizing an ideal
twice returns us to the original ideal. This fact also holds locally if one localizes
such a ring A at a maximal ideal. The assumption that the complementary
module Cy4 /g is generated by one element is in any case satisfied in our situa-
tion by 15.1 We can therefore apply L.13 here, and get I = I; for j = 0,... 0.
Hence (8') cannot be refined.

Furthermore, Fp = Opp i, Opp = 5;“,13 and therefore Fp = @;;’P =
Op p. From (8) it follows that § = dimgx O p/ Op p = 6(P). Because Fp C
OF,P C 61.7,13, we have

o(P) = dimg Op,p/Fp = dimg Op,p/ Opp +dimg Op,p /Fp = 26 = 25(P).
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Next we want to derive a formula for the conductor degree that will take
into consideration the branches of a curve singularity. To do that we pass to
the completion 61:’\13 of Op p. Asin 16.4 we set R := Op p and S := m.
Let Z1,..., Zs be the branches of F' at P corresponding to the maximal ideals
B, ..., Ps of S. If Z; is the integral closure of Z;, then Z; = K[[T}]] is a power
series ring and

(9) R®RS=Sp, x xSy, 27 x - x Z, 2 K[[T1]] x -+ x K[[T4]]

is the integral closure of Rin Q(R), as Theorem 16.14 and its proof show. We
will denote by Fp the conductor of R ®pr S over R.

Lemma 17.10 (Compatibility of Conductors with Completions).
Fp=Fp Opp.

Proof. Let S = Y. | Rs;, with s; = %o(ri, € Ry i = 1,...,n). Then
RopS = S R- (1®s;) and r € Fp. It is clear that Fp C Fp and hence
Fp- OF,P C .7:—13.

To prove the opposite inclusion observe that

Fp={ueR|ur,€rR(i=1,...,n)}

and similarly, R R .
Fp={z€R|zrerR (i=1,...,n)}.

Since R is a 1-dimensional local ring, we have R/rR = R//E% =~ R/rR, and it
follows that A .
Fp=Fp+rR.

Hence Fp = Fp - R since r € Fp.

If Fp =B --- PS¢ as in (3), then 17.10 in connection with (9) yields the
formula

(10) Fp =I5 T2) - (K[T1)) % -+ x K[[T]):
We want to apply the product formula 17.6 to Fp using the ring extensions
RCZi X XZsC L%+ X L.
As abbreviations we set
R:=Zix---xZy and T:=2, x---x Zg = K[[T1]] x --- x K[[T]].

If the branches Z; are given as in Chapter 16 by Z; = KI[[X,Y]]/(f;) with
irreducible power series f; (i = 1,...,s), then let g; := Hj# f; and denote by
g; the image of g; in Z; (i =1,...,s). We first determine Fr/i
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Lemma 17.11. The conductorfé/é equals (g1, - - -, gs)R. In particular, ]:R/R

is a principal ideal of R generated by a nonzerodivisor.

Proof. Since g; # 0 fori = 1,...,s, the element (g1, ..., Js) is a nonzerodivisor
of R. Also,

©,...,Gis--.,0)-R=1(0,...,GiZi,...,0) C R,
for if h € Z; has preimage h in K[[X,Y]], then (0,... ,Gih, . .. ,0) is the image
of g;h under the canonical homomorphism K[[X,Y]] — Z; x - - - X Zs, since g;
is divisible by all f; with j # 4. Hence (0,...,§;,...,0) € ‘FR/R and therefore

also (g1,...,3s) € Fri
Conversely, suppose (z1,...,2s) € ]:R/R- Then in particular,
©,...,2,...,0) € R.

That is, there is an h € K[[X,Y]] that is divisible by all f; with j # ¢ and
that has image z; in Z;. It follows that z; = g; - 2] (2] € Z;) and therefore
(z1y...,25) € (§1,---,Gs) - R.

Now set d; := dimg Z;/(§;). Because of the additivity of intersection mul-
tiplicities of branches (16.12b) we have

dz:ZH(ZJ,Zz) (2:1775)
J#i
Further, let ¢, be the conductor degree of the branch Z;, i.e.,
C; = dimK?i/]:Z/Zi (i:1,...,s).
With this data we can now obtain the desired formula for the conductor
degree.
Theorem 17.12.
Fp= (T TS (KT x - x K[[TS]).

In particular,

S

(11) (Py=2- S u(z,2)+3 c

1<i<j<s i=1
Proof. 1t is clear that

]:T/R = ‘7:71><~--><73/Z1><~-><Z5 = ‘7:71/Zl><~~~><75/ZS'

Because of 17.11 the product formula for the conductor can be applied using
the ring extension RC R C 1"

Fp=Fpip=Frip Fapp =T TN @0 3s) - T

Since g; has order d; in K[[T;]], we get the first statement of the theorem. The
second follows from 17.10.
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By this theorem, the calculation of the conductor degree of a singularity
is reduced to the calculation of the conductor degrees of its branches and of
the intersection multiplicities between its branches.

Example 17.13. Conductor degree of ordinary singularities.
If P is an ordinary singularity of F' with multiplicity m, then by (11) and
by what was said in 16.13, we have

o(P)=m(m—1), so §(P)= (7).

For a curve of degree d with only ordinary singularities P; (i = 1,...,s), we
have the formula

w0

i=1

One reason this formula is especially significant is because, according to a
theorem of Max Noether, every plane algebraic curve can be transformed
into a birationally equivalent curve with only ordinary singularities using a
sequence of quadratic transformations. This is one of the main theorems in the
theory of plane algebraic curves, for which the reader is referred to Fulton [Fu]
(Chapter 7 and the Appendix). A more precise theorem of Clebsch says that
every algebraic function field has a plane algebraic curve with only normal
crossings as a model. However, in the proof of this theorem, one leaves plane
geometry.

If a curve F' of degree d has only s normal crossings as singularities (i.e.,
mp,(F) = 2 for P; € Sing(F') and F has two distinct tangents at each FP;),
then (12) becomes the simple formula

(13) s (d2 1) .

The conductor divisor Fx,r allows the following generalization of the fun-
damental theorem of Max Noether (5.14 and 7.19):

Theorem 17.14. Let G and H be two curves in P?(K) of which F is not a
component and that have divisors (G) and (H) on X. If

(H) > (G) + Fx/r,
then F NG is a subscheme of H. In particular, H € (F,G).

Proof. For P € V. (F) NV4(G), let (gp) and (hp) be the principal ideals in
Op,p corresponding to (G) and (H). We have to show that (hp) C (gp) for
all these P.

If P € Reg(F), then by assumption vp(hp) > vp(gp), and the result
follows. So let P € Sing(P) and let P,..., P, be the points of X lying over
P. Then fori=1,...,r,
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vp,(hp) = vp,(9p) +vp,(Fx/F).

In the principal ideal ring Op p we therefore have hp € gp - Opp - Fp C
gp - Of p, which was to be shown.

Example 17.15. Suppose F has only ordinary singularities Py, ..., Ps. Then

Feip=>Y, Y, (mp(F)-1)-Q.

i=1 7(Q)=PF;
In this case the condition of Theorem 17.14 is

ve(hp) > ve(gp) for P € Reg(F),
vo(hp) > vo(gp) + mp(F) —1  for P € Sing(F), Q € n~1(P).

We will say now a little more about the calculation of the conductor degree
of branches.
Under the assumptions of 17.12 consider the embedding

Orp = K[[T1]] x -+ x K[[T.]] = T,

An element z € (5;:7: is a nonzerodivisor of (5;:7: if and only if its image
(#1,...,2s) in T has all its components z; # 0. We call the s-tuple

v(z) = (r1(z1),...,vs(2s)) € N?
the value of z. Here v; is the order function on K[[T;]].

Definition 17.16. (a) Hp := {v(z) | z is a nonzerodivisor of (51;:} is called
the value semigroup of F' at P.
(b) For an integral branch Z = K|[[X,Y]]/(f), we call

Hy = {v(z) | z€ Z\{0}}

the value semigroup of Z. Here v denotes the order function on the integral
closure Z of Z.

It is clear that Hp is a subsemigroup of (N*,+), and H is a subsemigroup
of (N, +). The units of O p are precisely the elements with value (0, ...,0).

The zerodivisors of 5;3 are not assigned any value. Since F p is a T-ideal of
the form R
Fp=(T{,...,TS) - T,

obviously
(c1,...,¢5) + N° C Hp.

In particular, the semigroup Hz has only finitely many gaps; i.e., Hz is a
numerical semigroup.
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If z € (7F,\p is a zerodivisor, say z = (0, z2,...,2s) with z; # 0 for ¢ =
2,...,sand v(z;) =v; (i=2,...,8), then (v,1a,...,vs) € Hp for all v > ¢;.

Furthermore, (p1,...,p5) € Hp if p; = >, i(Zi, Z5) (i = 1,...,s). Value
semigroups of (plane) curve singularities and numerical semigroups have been
thoroughly studied by many authors. Here are some names: Barucci, V, Dobbs,
D.E., Fontana, M. [BDF]; Barucci, V., D’Anna, M., Fréberg, R. [BDFry],
[BDFr3]; Bertin, J. and Carbonne, P. [BC]; Campillo, A., Delgado, F., Kiyek,
K. [CDK]; Delgado, F. [De]; Garcia, A. [Ga; Waldi, R. [Wag]. The lists of
references to these papers and the MathSciNet will help the reader to gain
more information about this area of research.

We close this chapter with observations about plane branches Z. If 7+ 17 =
T¢ - K[[T]], then c is the conductor degree of Z. On the other hand, ¢ — 1 is
the largest gap of Hyz, for if there were an element z € Z with v(z) = ¢ — 1,
then all y € Z with v(y) > ¢ — 1 would be contained in Z: If v(y) > ¢, then
y€Fy, CZ, and if v(y) =c—1, then y — Kz € FZ)z for some k € K, and
it follows that y € Z. We would then have T~ € F, . a contradiction.

For a numerical semigroup H we call the smallest number ¢ with c+N C H
the conductor of H. This is in agreement with the above observation. The cal-
culation of the conductor degree of a branch reduces to the calculation of the
conductor of its semigroup. The largest gap ¢ — 1 of a numerical semigroup H
is called the Frobenius number of H. Its computation (the Frobenius problem)
has also given rise to many papers.

Lemma 17.17. If {1,...,{45 are the gaps of a numerical semigroup H with
conductor ¢, then ¢ < 294.

Proof. If h € H with h < ¢, then c—1—h & H, for (c—1—h)+h=c—-1¢ H.
Hence there are at least as many gaps as elements h < ¢, h € H.

Definition 17.18. A numerical semigroup H with conductor c is called sym-
metric if for z€ Z,c—1—2z¢€ H if and only if 2 ¢ H.

0 3 5 6 8 9 10 11

Theorem 17.19 (Apéry). The value semigroup Hy of an integral branch Z
18 symmetric.

Proof. If ¢ is the conductor of Hz, then Fz , =T K[[T]]. For each h € Hz

with h < ¢, there exists an element z, € Z with v(z,) = h. It is then clear

that
J = @ KZh@fZ/Z’
heHz, h<z

and therefore §(Z) = dimg Z/Z is equal to the number & of gaps of Hz. As
in 17.9 one shows that ¢(Z) = 26(Z). Then ¢ = 2§ and Hy is symmetric.
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Characterizations of numerical semigroups that occur as value semigroups
of branches of irreducible plane algebroid curves are given in Angermiiller [An]
and Garcia—Stohr [GSt]. These results are tied to earlier publications of Apéry
[Ap], Azevedo [Az], Abhyankar-Moh [AM], and Moh [Mo]. See also [BDFrq].

We conclude with an example that shows how to determine the value semi-
group and conductor degree of a branch given by a parametric representation.

Example 17.20. Let Z = C[[a, 5]] C C[[T]] with
a=T% p=T+T1".

Since 4- N+ 6-N C Hyz, all even integers > 4 belong to Hz. Furthermore,
62 _ Oé3 — 2T13 + T14

and so 13 € Hyz. It is easy to see that 16 is the conductor of Hz and that Hyz
has the following appearance:

Exercises

1. Sketch the value semigroup of a normal crossing.
2. Determine the number of branches at the origin of the following curves in
A?(C) and sketch their corresponding value semigroups:

Y- Xt 4+ X,
Y4 — X6+ X8,
3. (A generalization of Chapter 15, Exercise 1) Let F' be an irreducible curve
of degree p > 3 and let Fx,r be its conductor divisor. A curve G that is
not a component of I is called adjoint to F'if (G) > Fx,p. Show that
(a) If G is adjoint to F' and degG = p — 3, then C' := (G) — Fx/p is an
effective canonical divisor of X.

(b) If F has only ordinary singularities and X is not rational, then F has
an adjoint curve of degree p — 3.

(¢) If F has only ordinary singularities, then every effective canonical
divisor is of the form (G) — Fx,p for some adjoint curve G of degree
p — 3. (Observe that every nonrational abstract Riemann surface has
an effective canonical divisor.)

4. Let p and ¢ be two relatively prime natural numbers and let H := (p, ¢) be

the numerical semigroup generated by p and ¢q. Determine the Frobenius
number of H. Show that
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(a) The branch given by X? — Y'? has the semigroup H.
(b) H is symmetric (this follows from (a), but one can also easily give a
direct proof).






Part 11

Algebraic Foundations



Algebraic Foundations

The following list of keywords should give an indication of the parts of algebra
that are assumed to be well known, so when these words appear in statements
in the text, it should be clear what is meant.

From linear algebra:

The theory of vector spaces, matrices, and linear transformations.

The theory of determinants.

The concepts of module, free module, and torsion-free module.
Submodules and residue class modules.

Linear maps between modules, and the dual module.

The fundamental theorem for modules over a principal ideal domain (PID).
The Hilbert basis theorem for modules.

From ring theory:

Basic concepts of units, zerodivisors, nilpotent elements, integral domains.
Ring homomorphisms and the homomorphism theorems.

Ideals and residue class rings.

Prime ideals and maximal ideals.

Polynomial rings and power series rings in several variables.

Basic facts about unique factorization domains (UFDs).

The concept of a Noetherian ring and the Hilbert basis theorem for poly-
nomial rings.

By an algebra S/R we mean a triple (R, S, p), where R and S are commu-

tative rings and p: R — S is a ring homomorphism. The map p is called the
structure homomorphism for the algebra.

From field theory:

The theory of finite (field) extensions.
Algebraic and transcendental elements of a field extension.
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e Conjugate elements.
o Algebraically closed fields.
o The field of quotients of an integral domain.

What we still need besides this is collected together in the following Ap-
pendices A-L. To save time and space, many results are not stated in their
most general form, but only in the form that we need. Textbooks on com-
mutative algebra such as [B], [E], [Kui], and [M] will of course give a more
complete presentation.
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Graded Algebras and Modules

This is a short chapter on linear algebra. Let G/K be a given algebra, and let M be
a G-module. Then G and M can be thought of as K-modules, in a natural way.

Definition A.1. A grading of G/K is a family {Gj}rez of K-submodules
G C GG such that:

(a) G = Gx.

keZ
(b) GG, C Gk—i—l for all k,l € Z.

G is called a graded K -algebra if G is furnished with a grading {Gy }rez. The
elements of G}, are called homogeneous of degree k. If g € G is written in the
form g = >,z gk, With g € Gy, then we call gy the homogeneous component
of g of degree k.

Example A.2. Let G = K[Xy,...,X,,] be the polynomial algebra in the
variables X1,...,X,, over a ring K, and let G, for k € Z, be the set of all
homogeneous polynomials of degree k:

§ al’lu»l’leyl e X (am..-vm € K)
vittvm=k

Here G, = {0} for k < 0. It is clear that {G}rez is a grading of G/K.
A homogeneous polynomial F' € G of degree k has the following property:

(1) FOOX1,..., X)) =XF(Xy,...,X,,) forall A€ K.

Conversely, if K is an infinite field and F € G is a polynomial with the
property (1), then F' is homogeneous of degree k. If F' = > . F; is the
decomposition of F' into homogeneous components, then it follows from (1)
applied to F' and to F; that

FOAX1,. ., AXm) = N FP(Xy, .., X)) = MY Fi(Xy,. .0, Xo)
€N

and
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FOAXy,..., \X,,) = ZFi()\Xl,...,)\Xm) = Z)\ZFi(Xl,...,Xm).
ieN iEN
Since A takes on infinitely many values, it follows by comparing coefficients
that F' = Fk.
Another property of a homogeneous polynomial of degree k is given by
FEuler’s formula:

m
OF
2 kF = Xi—.
@) > X
If Q C K, then it is not difficult to show that the homogeneous polynomials
of degree k are characterized by this formula.

Now let G = P, G be an arbitrary graded K-algebra. By A.1(b), Go
is a subring of GG and the G, are Gg-modules. Thus 1 € Gy, for if 1 = ZkeZ Iy
is a decomposition of the identity into homogeneous components (Ix € Gg),
then for every homogeneous g € G, we have g =g -1 = Zkezg - I, and then
by comparison we have g = g-ly. Since this holds for arbitrary g € G, we have
1=1lp.

Lemma A.3. If G is an integral domain, then any divisor of a homogeneous
element of G is again homogeneous.

Proof. Let g € G be homogeneous. Suppose g = ab, where a,b € G. Write
a=ap+apt1+---+a; (a; homogeneous of degree i, p < ¢, ap # 0, aq # 0)
and
b =bpm+bmi1+---+b, (b; homogeneous of degree j, m < n, by, # 0, b, # 0).
Then we have

g = apbpy + -+ + agbn.
Therefore, apb,, # 0 and aqb, # 0, since G is an integral domain. Also,
apby, is the homogeneous component of g of degree p + m, and aqb, is the

homogeneous component of g of degree g + n. Since g is homogeneous, we
must have p = ¢ and m = n. Therefore a = a, and b = by,.

The lemma can be applied in the special case of a polynomial algebra
K[Xy,...,X,,] over an arbitrary integral domain K. If K is a unique factor-
ization domain, then the irreducible factors of a homogeneous polynomial are
themselves homogeneous polynomials in K[X1,...,X,,]. In this regard, we
shall mention the graded version of the fundamental theorem of algebra:

Theorem A.4. Let K be an algebraically closed field and F € K[X,Y] a
homogeneous polynomial of degree d. Then F decomposes into linear factors:

d
F=]JaXx-bY) (ab)eK® (i=1,....d).

=1
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Proof. Let F = Z;—l:o ¢; XY %I (¢; € K). Because K is algebraically closed,

the polynomial f := Z?:o ¢; X7 decomposes into linear factors

f=

i

d
(aiX — bl)
=1

Then F(X,Y) = Y2f(E) =TI, (@i X — b;Y).

Now let G = P, G be a graded K-algebra. Next we define the notion
of a graded G-module.

Definition A.5. A grading on M is a family {M}rez of K-submodules
Mj. € M such that

(a) M = @kez M.
(b) GpM; C My, for all k,1 € Z.

If M is furnished with a grading, we call M a graded module over the graded
ring G.

The concepts “homogeneous element” and “homogeneous component,” in-
troduced above for graded algebras, carry over to graded modules. By A.5(b),
the M}, are Go-modules.

If M = @My, is a graded module over a graded ring G and if M is finitely
generated, then M has a finite set of generators consisting of homogeneous
elements: one simply takes all homogeneous components of elements of a finite
set of generators of M.

Now let U C M be a submodule.

Definition A.6. A submodule U of M is called a graded (or homogeneous)
submodule of M if whenever u € U and u = ), ., u is a decomposition of u
into homogeneous components uy € My, (k € Z), then uy, € U for all k € Z.

In particular, this definition defines a homogeneous ideal in a graded ring,
e.g., in a polynomial ring. A homogeneous submodule U C M is itself a graded
module over G:

U=@U: with Up:=UnM, (k€Z).
keZ
Lemma A.7. For a submodule U C M, the following are equivalent:

(a) U is a homogeneous submodule of M.
(b) U is generated by homogeneous elements of M.
(c) The family {(My +U)/U}kez is a grading of M/U.
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Proof. (a) = (b) The homogeneous elements of U trivially form a generating
system of U.

(b) = (a) Let {x»} be a generating system of U consisting of homogeneous
elements of M, and let degxy =: dy. For u € U, write u = ), gazy with
gx € G and decompose each gy into homogeneous components: gx = >, gx,
with gy, € G;. Then

=X (T X o)

k A itda=k

and uy == ), Ziﬂh:k gx,Zx is homogeneous of degree k. Since uy € U for
all k € Z, this proves (a).

(a) = (c) It is clear that M/U = 3, _,(My + U)/U, so we need to show
only that the sum is direct. For my € My, denote by my the residue class in
M/U. 1f } 2, M = 0 for elements my € My, (k € Z), then }, ., my € U.
Since U is a homogeneous submodule of M, it follows that my € U and g = 0
for all k € Z.

(c) = (a) Each element u € U can be written in the form v = )7, _, u
with up € My, (k € Z). Then in M/U,

0O=u=) uy,
k€eZ

and therefore uy = 0 for all k € Z; hence uy, € U.

If U ¢ M is a homogeneous submodule, we usually tacitly assume that
M /U has the grading given by A.7(c). The canonical epimorphism M — M /U
is “homogeneous of degree 07; i.e., homogeneous elements of M are mapped
to homogeneous elements of the same degree. If I C G is a homogeneous ideal,
then G/I is also a graded K-algebra with the grading {Gi + I/I}rez.

The submodule

IM = {Zxama | 2o € I, Mg GM}

of M is generated by homogeneous elements and is therefore a graded sub-
module; thus M/ITM is a graded G-module. As a special case we have the
residue class module M/gM, whenever g € G is a homogeneous element.

A graded K-algebra G = @, ., Gy is called positively graded if Gy = {0}
for k <0.If M = @, ., My is a graded G-module, we call the grading {M}}
bounded below if there is a ko € Z such that My = {0} for k < ko.

The next lemma will be used quite often.
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Nakayama’s Lemma for Graded Modules A.8. Let G be a graded K-
algebra, I C G an ideal generated by homogeneous elements of positive degree,
M a graded G-module, and U C M a graded submodule. If the grading of
M/U is bounded below and if

M=U+1M,
then M =U.

Proof. N := M/U is a graded G-module with a bounded-below grading, and
we have N = IN. Suppose N # {0}. Let n € N \ {0} be a homogeneous
element of smallest degree. We can write this element in the form

n= 5 TaNa,

where x, € I are homogeneous elements of positive degree and n, € N\ {0}.
However, we must then have deg(n,) < deg(n), which is a contradiction.
Therefore N = {0} and M =U.

Now let G be a positively graded algebra and suppose
G= Go[.’[?l, N 737m]

for some homogeneous elements x; of degree a; € Ny (i = 1,...,m). This sit-

uation occurs with polynomial algebras (A.2) and their residue class algebras.
Each Gy, (k € N) is generated as a Gp-module by elements z7* - - - 2™ with

Yo via; = k. If, furthermore, M is a finitely generated graded G-module,

M =Gmq+ -+ Gmy,

where m; are homogeneous elements of degree d; (i = 1,...,t), then for all
k € Z, My, is generated as a Go-module by the (finitely many) elements

m
1541 12 H j—
it xymm, with dp + g via; = k.
=1

Finally, if Gy = K is a field, then the M} are finite-dimensional K-vector

spaces. The dimensions of these vector spaces play a role in many questions
in algebra, algebraic geometry, and combinatorics.

Definition A.9. Under the assumptions above, the mapping x5 : Z — N
defined by
XJV[(k') = dimg My, (k’ S Z)

is called the Hilbert function of the graded G-module M.
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Example A.10 (The Hilbert function of a polynomial algebra). Let
K be a field and G = K[X3,...,X,,] a polynomial algebra over K in m
variables X1, ..., X,, of degree 1. Then x¢(k) =0 for k£ < 0 and

m+k—1)_(m+k—1

> 0.
m—1 i ) for k>0

xa(k) = (

This is the formula for the number of monomials X" --- X}m of degree k.

Lemma A.11. Under the assumptions of A.9, let g € G be a homogeneous
element of degree d. Suppose that the map py : M — M (m +— gm) is
injective. Then

xXmjgm (k) = xm (k) = xm(k—d) (k€ Z).

Proof. We have p1q(My—q) C My (by A.5(b)), and therefore we have for each
k € Z an exact sequence of K-vector spaces

0— Mp_q4 L, M, — (M/gM)k — 0.
The formula above follows immediately.

Examples A.12. Let K be a field.

(a) For a homogeneous polynomial F € K[X1,...,X,,] of degree d > 0, let
G:=K[Xy,...,X,]/(F). Then

(R for 0 <k <d,

m—1

xa(k) =
("ol = (M) ferd <k
(b) Let F,G € K[X,Y] be homogeneous polynomials with deg F" = p > 0,
degG = ¢q > 0, and let A := K[X,Y]/(F,G). If F and G are relatively
prime and if p < g, then the Hilbert function x4 of A is

k+1 for 0 <k < p,

)b forp <k <g,
Xa(k) = p+g—k—1forg<k<p+g,

0 for k>p+q.

Figure A.1 is a sketch of the “graph” of this function. The proof follows
by two applications of Lemma A.11. For A := K[X,Y] we easily see that

Xao(k) =k+1 (k e N),
and for A! := K[X,Y]/(F), by (a) we have

k+1lfor0<k<p-—1,

Xar (k) = {p for p < k.
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p-1 q-1 ptq-1

Fig. A.1. The graph of the Hilbert function x4 of A = K[X,Y]/(F,G).

Since F' and G are relatively prime, the map consisting of multiplication
by G on A! is a nonzerodivisor on A'. Therefore we can use A.11 and get
the formula above. From this we find in particular that

p+q—2

(3) dimg A= > xa(k) =pqg,
k=0

which one can see easily for example from figure A.1.

Exercises

1. Let K be a field and G = @, , G a positively graded K-algebra. Let
Go = K and G = K|z1,...,z,], where the elements x; are homogeneous
of degree d; € Ny (i =1,...,n). The formal power series

Ha(t) = 3 xa(h)t* € Z[[)
k=0

is called the Hilbert series of G. Show that if ¢ € G is homogeneous of
degree d and is a nonzerodivisor on GG, then

Heyea(t) = (1—t%)Hg(t).

2. The polynomial algebra P = K[X1,...,X,] over a field K may be given
the grading for which deg X; =d; € Ny (i=1,...,n).
(a) Prove that
(1—t")...(1 —t¥)Hp(t) = 1.
(b) Which power series do you get when dy = ---=d,, =17
3. Let I be the kernel of the K-epimorphism « : P — G, where a(X;) =

x; (1t =1,...,n) (G and P as in Exercises 1 and 2). Show that [ is a
homogeneous ideal of P.
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Show that:

(a) With the hypotheses of Exercise 2 let F' € P be homogeneous of degree
k. Then kF =7, diXig’—)i.

(b) If this formula holds for an F' € P and if K is a field of characteristic
0, then F' is homogeneous of degree k.

. Let G = @),c;, Gk be a graded ring and let I C G be a homogeneous

ideal. For homogeneous elements a,b ¢ I, assume that we always have
ab & I. Show that [ is a prime ideal.

. For G as in Exercise 5, let P8 € Spec(G) and let P* be the ideal generated

by all the homogeneous elements of 3. Show that P* € Spec(G). Con-
clude that all the minimal prime ideals of G are homogeneous and that
for each homogeneous ideal I C G the minimal prime divisors of I are
homogeneous.
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Filtered Algebras

We will not attempt here to explain what filtered algebras are good for: that will be
shown with the applications. We will just say that this appendiz is fundamental for
the entire text, and that our friends in computer algebra work with similar methods
in order to do effective calculations in polynomial rings or to give explicit solutions
to systems of algebraic equations (see [KR] for an excellent introduction). For this,
however, it is necessary to replace the Z-grading and Z-filtration by a G-grading
and G-filtration, where G is an ordered abelian group. There are no fundamental
difficulties in transferring over the results of this section into the more general case.

Let S/R be an algebra.
Definition B.1. An (ascending) filtration of S/R is a family F = {F;};cz of
R-submodules F; C S (i € Z) such that

(a) F; C Fiqq foralli € Z,

(b) F; - F; C Fiyy forall i, j € Z,

(C) 1 e Fo,

(d) UieZ]:i =S.

An algebra S/R with a filtration is called a filtered algebra. We write (S/R, F)
for such an algebra. If (., F; = {0}, we call F separated.

If (S/R,F) is a filtered algebra, it follows from B.1(b) and B.1(c) that Fy
is a subring of S and each F; is an Fp-module. If F is separated, one can
define the order of a nonzero element f € .S with respect to F as follows:

ordr f:=Min{i € Z | f € F;}.
Also, we set ordz 0 = —oo. The following formulas follow easily from B.1.

Rules B.2. Let f,g € S.

(a) ordz(f 4+ g) < Max{ords f,ordr g}. If ords f # ordr g, then we have
equality.
(b) ordx=(f - g) < ordz f +ordgg.

Examples B.3.

(a) Degree-filtration. If we consider a graded ring S = €, ., S; as an algebra
over R := Sy, and set
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Fi=PS, (icn),

p<i

then we get a separated filtration F = {F;};cz of S/R. It is called the
degree-filtration. The order of an element f € S\ {0} is, in this case, the
largest degree of any nonzero homogeneous component of f. In particu-
lar, each polynomial algebra S = R[{X)}rec4] in any family {Xx}xea of
indeterminates has a degree filtration.

(b) I-adic filtration. Let S/R be an algebra and I C S an ideal. For k € N
let F_j := I* be the kth power of I, i.e., the ideal of S generated by all
products aj - --ag, where a; € I (i = 1,...,k). For k € N, let Fj, := S.
Then Fj is an R-module for all k£ € Z, and

cIFcrFlc...ct=1c®°=S=8=-...

F = {Fitiez is a filtration of S/R; it is called the I-adic filtration. The
special case of I = S is called the trivial filtration of S/R: then F;, = S
for all ¢ € Z.

If S is a local ring with maximal ideal m, one often uses the m-adic
filtration of S (as a Z-algebra).

In general, I-adic filtrations are not separated. However, the Krull
intersection theorem (E.7) gives conditions under which they are sepa-
rated. A simple but very important example for us is the following: Let
S =k[Xy,...,X,] be a polynomial algebra and let I = (X3,...,X,). In
this case, I* is the ideal generated by all monomials X --- X with
ay + -+ «a, = k, and the [-adic filtration is separated. The order of
a polynomial F' # 0 is the negative of the smallest degree of a nonzero
homogeneous component of F'.

Now let (S/R,F) be an arbitrary filtered algebra. In the ring S[T,T~1] =
@iez ST? of “Laurent polynomials” in the indeterminate T over S one can
consider the subring

R]:S = @fiTi.
i€Z

By the axioms in B.1 this is in fact a subring of S[T,T~!], and a graded
algebra:

RrS=ER%S with R%S:=FT"

i€z

Since 1 € Fy C F1, we have T' € Rz S, and Rr S can even be considered as
an R[T]-algebra. Rz S is called the Rees algebra of (S/R,F).

The associated graded algebra grzS of (S/R,F) will be constructed as
follows: For i € Z, let gr}S = F;/Fi—1 and let

greS = @grécS

€L
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be the direct sum of these R-modules. We define a multiplication on gr- S as
follows: for a + F;_1 € gr’i= S, b+ Fj_1 € gr)z S, set

(@+Fi1) - (0+ Fj1) i=a-b+ Figj.

The result is independent of the choice of representatives a, b for each residue
class. We have defined the product of homogeneous elements of gr .S, and we
can extend this product to arbitrary elements by the distributive law. Then
grr S is a graded R-algebra.

Now let F be separated. For f € S\ {0}, we call

= T e RS
the homogenization of f, and
Lrf:=f+Foaj-1 €8S
the leading form of f. For f =0 we set f* =0 and Lrf =0.

Examples B.4.
(a) Degree filtration. In the situation of example B.3(a),
o S=F/Fia=BS,) P S, =8 (i),
p<i p<i—1
and we get a canonical isomorphism of graded R-algebras
grrS=S.

Under this isomorphism we identify the leading form Lrf = f+ Fora p—1
of an f € S\ {0} with the homogeneous component of f of largest degree,
which we often call the “degree form” of f.

If f=fin+ fon41 + -+ fa is the decomposition of f into homogeneous
components f; € S; (m <d, fm # 0, fa # 0), then the homogenization f*
of f in Rz S has the form

(1) f=fT= (fuT™T" + o+ (far T DT + (faT7).

We now consider the special case in which S = R[X1,..., X,,] is a poly-
nomial algebra. Then F; =0 for ¢ < 0, Fp = R, and

RrS=ReFT®FT*® - C S[T)=R[T, X1,..., X

The homogenization X of X; is the element X = X, T € AT (i =
1,...,n), and one easily sees that

RrS=R[T, X5, ..., X,

n
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(b)
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where {T,X7,..., X} are algebraically independent over R. In other
words, R S is a polynomial algebra over R in T, X7,..., X, and all
these variables have degree 1. For f € R[Xy,...,X,], equation (1) be-

comes
(1/) [ff=5rm :fm<Xik,...,X:;)Td_m+...
o faor (XS X)T + fa(XT LX)

i.e., f* is what one usually understands by the homogenization of a poly-
nomial (only one must write X; instead of X):

X7 X
* * *\ deg(f) 1 n
P XE . X5 =T f(—T,...,T>.

I-adic filtration. In the situation of B.3(b), gr% S = {0} for k > 0, and
gr 7" S =T1"/I"""  forkeN.

Hence oo
gry S =@ I+ /.
k=0
For f € I*\ I¥+1,

ordr f = —k and Lrf = f+IF1 e [k/1k+1,

Since it is sometimes annoying to work with negative orders, we may
consider not only ascending, but also descending, filtrations, where noth-
ing essential is changed. In order to deal with degree filtrations and I-adic
filtrations simultaneously, we will stick with ascending filtrations.

In our present example, the Rees algebra has the form

R;S:@I’“T*k@é&ﬂ.
keN k=1

One calls @), I*T " the “nonextended” Rees algebra of the I-adic fil-
tration. It is more convenient for us to work with the “extended” Rees

algebra Rz S.

In the special case of S = R[Xq,...,X,], a polynomial algebra, and
I = (Xy,...,X,), we have gryS = R[Xq,...,X,] with degX; = —1
(¢=1,...,n). Furthermore,

RS =R[T, X1,..., X, [XaT7Y,.... X, T c ST, T,
and therefore

RS =R[T,X;,....,X]] with X :=XT"' (i=1,...,n).
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Here, {T, X7,..., X} is algebraically independent over R and degT =1
as well as deg X} = —1 ({ = 1,...,n). If one writes f € S in the form
f = fm + -+ fq with homogeneous polynomials f; of degree i, where
m < d and f,, # 0, then ordr f = —m, and Lz f is identified in gry S =
R[X4,...,X,] with f,,. Also

=T = fon (X5 X))+ T (XS X)) 4
e T E(XE, LX),

n

This is a homogeneous polynomial of degree —m using the given grading
on R[T, X{,..., X

The following theorem gives simple but important relationships between
the algebras explained here.

Theorem B.5. Let (S/R, F) be a filtered algebra. Then T is not a zerodivisor
on Rx S. There is a canonical isomorphism of graded R-algebras

RrS/T-ReS —grzS  (NaT +T-ReS— Y(a;+Fi1))
and a canonical isomorphism of R-algebras
RrS/(T—1)RrS—8 (NaT +(T-1)-ReS— Y a).

Proof. Since T is not a zerodivisor in the larger ring S[T, T 1], it is also not
a zerodivisor in Rz S. The mapping a : Rx S — gry S with (> a;T%) =
> (a;+F;—1) is well-defined (since a; € F; for all ¢ € Z) and is an epimorphism
of graded R-algebras. Since o(T - > a;T%) = (> a;T") = Y (a; + F;) = 0,
we have TRz S C ker a. Conversely, if a(>" a;T%) = 0, then a; € F;_; for all
i € Z. It follows that > a;7""1 is already an element of Rz S and therefore
kera CT-RxS. Hence kera =T - Rx S. By the homomorphism theorem, «
induces an isomorphism

RrS/T-RyS — gryS.
The mapping 3: Rx S — S with 3(3>_ a;T%) = 3 a; is an epimorphism of
R-algebras, and (T —1) Y. a;T%) = SO (a; —aix1) T =S a; =Y a1 =

0; hence (T — 1) - RS C ker 8. Now suppose conversely that > a;T" €
ker 8\ {0} is given and let d := max{i | a; # 0}. Then

Sar =3 aT - (Z ai> 7= aT(1-T" ) e (T -1) RsS,
and therefore ker 3 = (T' — 1) - R S. The isomorphism
RrS/(T—1)RxS =8

then follows once again from the homomorphism theorem.
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In other terminology, which will not be explained here, the theorem says
that there is a “deformation” in which gr S is the “fiber at the point 7' = 0”
and S the “fiber at the point "= 1.” One can use the theorem to infer “from
grrS to 5.7 A first example is given by the following corollary, and another
is given in B.10.

Corollary B.6. Under the hypotheses of B.5, let F be separated and let
bi,...,b;m be elements of S such that {Lzby,...,Lzb,} is a set of gener-
ators (a basis) of grz S as an R-module. Then

(a) {by,...,b5} is a set of generators (a basis) of RS as an R[T]-module.
(b) {b1,...,bm} is a set of generators (a basis) of S as an R-module.

Proof. (a) The epimorphism a : RS — gry .S described above maps b} to
Lgb; (i=1,...,m). It follows therefore that

RFS=R[T|- b5+ +R[T] - b, + T - Rz S.

We now consider Rz S as a graded module over the graded ring R[T]. Since
grr S over R has a finite set of generators, the grading of gr- S is bounded
below. Thus we have F;/F;—1 = 0 for small ¢ and therefore F; = F;_; =
Fi—g = --- = 0, since F is separated. Thus the gradings on RS and on
RF S/R[T)b;+- - -+ R[T]b}, are also bounded below, and Nakayama’s Lemma
A.8 applies. It follows that

Ry S = R[T] b} + -+ R[T] - bf,.

It remains to show that {b7,...,b%,} are linearly independent over R[T]
when {Lzby,...,Lzby} is a basis of gryS over R. Suppose there were a
relation
(2) Zpibf =0 (pi € R[T], not all p; = 0).

i=1

Then there would also be such a relation with homogeneous p; € R[T:
pi =T (r; € R,n; + ordz b; independent of 7).

However, T is not a zerodivisor in Rz S. Therefore one can cancel the T’s
in B.3 until one of the coefficients p; is no longer divisible by 7. One goes
now to grr .S, and it follows from (2) that there is a nontrivial relation among
Lzby, ..., Lgby, a contradiction. Therefore {bf,...,b% } is a basis for Rz S
over R[T].

(b) The epimorphism 3 : Rz S — S maps b to b; (i = 1,...,m). Since
ker 8 = (T — 1) Rz S, the statement of (b) follows directly from that of (a).

Now let (S/R,F) be a filtered algebra with a separated filtration and let
I C S be an ideal.
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Definition B.7. The ideal I* C Rz S generated by all f* with f € I is called
the homogenization of I, and the ideal gr-I C gry.S generated by all Lxf
with f € I is called the associated graded ideal of I.

The residue class algebra S := S/I can be given a filtration F = {F; }icz
as follows: -
Fi=(F+1)/I (teZ)

is the image of F; in S. We call F = {F;}icz the residue class filtration
associated with the filtration F of S/R.

Theorem B.8. Let (S/R,F) be a filtered algebra with separated filtration F
and let F be the associated residue class filtration on S := S/I. Then there is
a canonical isomorphism of graded R[T]-algebras

Rz S=RyS/I*

and a canonical isomorphism of graded R-algebras

grzS=gryrS/grpl.

Proof. Denote the residue class of @ € Sin S by a. Themap a: Rr S — Rz S
with (> a;T?) = Y. a;T* is an epimorphism of graded R[T]-algebras and
I* C kera. For a;T" € Rr S (a; € F;), we have a(a;T") = 0 exactly when
a; € I. Therefore ordra; =: k < i and a;T" = a;T""* with af € I*. It
follows that kera = I*, and by the homomorphism theorem « induces an
isomorphism Rr S/I* = Rz S.

The map 3 : grzS — grgS given by (Y a; + Fiz1) = Y a; + Fia
is an epimorphism of graded R-algebras, and it is clear that grr-I C kerg.
Conversely, if 3(a + F;_1) = 0 for some a € F; \ F;_1, then a € F;_; and
therefore a € I + F;_1. Then a + F;_1 is already represented by an element
bel:a+F,_1=b+ fifl, b Q Fi_1. Therefore a + F;_1 = Lzb € gI‘]:I and
ker 8 = gr I. The second isomorphism of the theorem follows at once, again
from the homomorphism theorem.

The following theorems are concerned with the generation of ideals in
filtered algebras.

Theorem B.9. Let (S/R,F) be a filtered algebra with separated filtration
F and let I C S be an ideal. Furthermore, let f1,...,f, be elements of
I with gtz I = (Lrfi,...,Lrfn). If the residue class filtration F of F on
S/(f1,..., [n) is separated, then

I=(f1,.-.\ fn)

Proof. Let g € I\ {0} and let ords g =: a. Then there is a representation

Lrg = Z Lrh; - Lgf;

i=1
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with h; € S, ordg h; +ordz f; =a (i =1,...,n). Then
nghifi el and ord]:(nghifi) <a.
i=1

By induction one shows that

gE n(f17>fn)+fz

i<n
and because F is separated, it follows that g € (f1,..., fa)-

Corollary B.10. Let (S/R,F) be a filtered algebra with separated filtration
F. For each finitely generated ideal I C S, assume that the residue class
filtration of S/I is separated. If gr S is a Noetherian ring, then S is also a
Noetherian ring.

For the next theorem we need a lemma about nonzerodivisors.

Lemma B.11. Let (S/R, F) be a filtered algebra with separated filtration and
for f €S, let Lrf be a nonzerodivisor on grzS. Then f* is a nonzerodivisor
on RS, and f is a nonzerodivisor on S. Also, for every g € S:

(a) ordz(g- f) = ordr g + ords f.
(b) Lr(g-f)=Lrg-Lrf.
) (g- =g -1

Proof. We prove (a) first, and observe that we need to do only the case g # 0.
Ifordr f =:aand ordr g =: b, then Lrf = f + Fo_1, Lrg = g+ Fp_1, and

(3) Lef -Lrg=fg+ Fayp1, f-9€ Fate.

Since Lz f is a nonzerodivisor on gr» S, we have f-g & Foyp—1, and it follows
that ordz(g - f) = ordz g + ords f.

(b) follows immediately from (3), and (c¢) by definition of homogenization
from (a). It is also clear that f* cannot be a zerodivisor on Rz S. If f were a
zerodivisor on S, then by (b), Lz f would also be a zerodivisor on grz S.

Theorem B.12. Let (S/R,F) be a filtered algebra, I = (f1,...,fn) an
ideal of S, and suppose the residue class filtrations on S/(f1,..., fi), for

i =1,...,n — 1, are separated. Also suppose that the image of Lxfi11 in
grre S/ (Lrfr,...,Lrfi), fori=0,...,n—11is a nonzerodivisor in these rings.
Then:

(a’) grfl = (L.'Fflv cee 7L.7:fn)

(b) I* = (ff,---. fn)-

Also, the images of ff , and fi11 are nonzerodivisors in Rz S/(ff,..., f)
respectively S/(f1,...,fi) (i=0,...,n—1).
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Proof. Let S := S/(f1), I := I/(f1) and let f; denote the image of f; in S
(i =2,...,n). Also, let F be the residue class filtration of 7 on S. By Lemma
B.11, grx(f1) = (Lxf1) and (f1)* = (ff). Because Lx f1 is not a zerodivisor
of grz S, f{ respectively fi is not a zerodivisor of R# S respectively S.

By B.8 it follows that

RS =RxrS/(ff) and grzS =grr-S/(Lrfi1).

We identify I* with I*/(f}) and grz I with grzI/(Lzf1) under these isomor-
phisms. Thus f;* corresponds to the residue class of f* modulo (f;) and Lz f;
to the residue class of Lz f; modulo (Lzf1) (i = 2,...,n). By induction,

I_*:(B‘,...,ﬁ;) and gr}:I_:(L}*—fg,...L}*—fn),

where f7,; is not a zerodivisor modulo (f3, ..., f;) and fi41 is not a zerodivi-
sor modulo (fa, ..., f;). The assertions of the theorem then follow immediately.
Exercises

1. Let S := R[[X},...,X,]] be the algebra of formal power series in indeter-
minates Xi,...,X,, over a ring R and I := (X4,...,X,,) the ideal of S
generated by Xi,...,X,. Let F denote the I-adic filtration on S. Show
that F is separated and that

grr = RIXy,...,X,] (a polynomial algebra).

2. In the situation of Exercise 1, describe the Rees algebra RS and the
homogenization f* € Rz S of a power series f € S.
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Rings of Quotients. Localization

The construction of rings of quotients corresponds to the way we extend the integers
to the rational numbers, or more generally to the extension of an integral domain
to its quotient field. Here we also need to look at rings of quotients of graded and
filtered algebras.

A ring of quotients can be constructed for an arbitrary ring R and a multi-
plicatively closed subset S C R. We call S multiplicatively closed if 1 € S and
whenever a, b € S, then also ab € S. The most important special cases are
the following:

Examples C.1. Some examples of multiplicatively closed sets:

(a) The set of all nonzero elements of an integral domain.
(b) The set of all nonzerodivisors of a ring.

(c) For p € Spec(R), the set R\ p.

(d) For f € R, the set {f9, f1, f2,...} of powers of f.

Definition C.2. A ring of quotients of R with respect to the denominator set
S is a pair (Rg, ¢), where Rg is a ring, ¢ : R — Rg is a ring homomorphism,
and the following conditions are satisfied:

(a) For each s € S, ¢(s) is a unit in Rg.

(b) (Universal property of rings of quotients). If ¢ : R — T is any ring
homomorphism such that (s) is a unit in T for each s € S, then there
exists exactly one ring homomorphism h : Rg — T with ¥ = ho ¢:

@

N

T

R

Rs

The pair (Rg, ¢), if it exists, is unique up to isomorphism in the following
sense: If (R%, ¢*) is also a ring of quotients of R with denominator set S, then
there exists an isomorphism h : Rg — Rg with ¢* = ho ¢.

In fact, a homomorphism h of this kind exists by C.2(b), and similarly,
there exists a homomorphism h* : Ry — Rg with ¢ = h* o ¢*. Then ¢ =
h*o(ho@) = (h*oh)o ¢, and because of the uniqueness condition in C.2(b)
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we get h* o h = idgg. By symmetry we also have hoh* = idgz, and therefore
h is an isomorphism.

From now on we will call Rg the ring of quotients of R with respect to S,
and ¢ : R — Rg the canonical mapping into the ring of quotients.

Next we will show the existence of the ring of quotients. Let {Xs}ses be
a family of indeterminates. In the polynomial ring R[{X}] consider the ideal
I generated by all elements of the form

sXs—1 (se€f).

We set Rs := R[{X}]/I and denote by ¢ the composition of the canonical
injection R «— R[{X}] followed by the canonical epimorphism R[{X}] —
R[{X}]/I. The residue class of X, in Rg will be denoted by 1. Then ¢(s)-1 =
1lin Rg;i.e., ¢(s) is a unit in Rg for all s € S.

Given T as in C.2(b), there exists a ring homomorphism

a: R{Xs} -T

with a(r) = ¢(r) for all € R and a(Xs) = ¥(s)~! for all s € S. Now we
have a(sXs—1) = a(s)a(Xs)—1 =¥(s)p(s) "1 —1 =0 (s € S), and therefore
a(I) = 0. By the homomorphism theorem, « induces a ring homomorphism

h:R{X)/I—T.

By the construction of « we have 1) = hog, since for r € R we have (ho¢)(r) =
a(r) = 1(r). Since Rg is generated over R by the elements 1 with s € S, it is
clear that only one h with h o ¢ = 4 can exist: For s € S with image 5 € Rg
we have h(5) - h(1) = h(1) = 1. Therefore h(2) = h(5)~! = (s)~".
We have shown that rings of quotients exist.
For r € R, s € S we write
T 1
Li=g(r)- -
s
To multiply two such fractions:
Lo T2 172

(1) 2

S1  S2 5152.

In fact, ¢(s152)- L+ L = ¢(s1)-P(s2)- L L = 1. Conversely, ¢p(s152)- —— = 1

’ E ’ g = S1 S2 S182
and because ¢(s1s2) is a unit in Rg, it follows that i . é = 51152' Then
11
sros = O(r) - 9re) - 575y =5
In particular, 1 = % = 2 for all s € S, and this is the identity element
for multiplication in Rs. The element I is called the “improper” fraction
associated with r.

Fractions are added according to the following rule:

L T2 T1S2 4 S172

©) + 2

S1 52 5152
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By (1), &t = D82 12 — 5172 and hence

7 os1 s1827 S2 5182
7152 + 8172 1 risy  Sire T1 T
————— = (d(r1)d(s2) + ¢(s1)(r2)) - = + =142
8182 S152 515y | S152 81 59

In particular, 0 = 2 (for all s € ) is the identity element for addition in
Rg. Since we calculate according to the usual “rules for fractions,” and since
Rs = R[{1}], it is clear by formulas (1) and (2) that

(3) Rsz{gweR,ses}.

For the canonical homomorphism ¢ : R — Rg (r +— 7), we have the
following facts:

Theorem C.3. (a) ker¢ = {r € R | there exists an s € S with s -r = 0}.
(b) & is injective if and only if S contains no zerodivisors of R.
(c) ¢ is bijective if and only if S consists entirely of units of R.

Proof. (a) Let J:={re€ R|3se€ S : s-r =0}. This is obviously an ideal
of R, and it is clear that J C ker ¢, because from s -7 = 0 it follows that
@(s) - ¢(r) = 0 and hence ¢(r) = 0, since ¢(s) is a unit in Rg.

Conversely, let r € ker ¢; therefore r € RN ({sXs — 1}). Then there is an
equation

(4) T_Zfz' Si s,_ ) (fleR[{Xs}])

Let fi = fi(Xe,. ., Xe,,) (G =1,...,n; t1,...,tm € 5). Then there exists
(ai1,...,0p,) € NP such that

(5) 0t = gi( Xyt Xy,) - (5 X, — 1),

i=1
Now let R := R/J. We denote by f the image of f € R[{X,}] in R[{X,}]
(under the canonical mapping). From (5) we then get in R[{X;}] the equation

(6) Bt =Y g0 X, En X)) - (BiX, - 1),

The R-homomorphism 3 : R[{Y;}] — R[{X}] with Yy — 35X is injective:
For if

erl...vn(ngsl)vl tee (ansn)vn = 0 (Tvl...vn € R7 Si € S)7

then 7y, .. 0,57 ---5or = 0 for all (vy,...,v,). Hence ry, 4, 87" -+ sim € J.
Then there exists s € S with ss{* -+ s¥* 1y, 4, = 0. Therefore Toy.w, € J,
and hence 7, 4, =0.
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By (6) and the injectivity of 3 we have the following equation in R[{Y}]:

n
0ttt =6V, Y, - (Ya, — 1)
=1

Setting all Ys, equal to 1 gives G, 7 =0, and as in the above argu-

ment we get € J. This proves (a), and (b) follows immediately from (a).

(c) If ¢ is bijective, then S consists only of units, since ¢(s) is a unit
for s € S. Conversely, if S is a set of units of R, then (R,idg) satisfies the
conditions of Definition C.2. By the uniqueness of rings of quotients (up to
isomorphism) pointed out above, ¢ is bijective.

Under the conditions stated in (b), we can regard R as a subring of Rg,
in which 7 € R is identified with the “improper” fraction € Rgs. The state-
ment (c) can also be interpreted as follows: If S already consists entirely of
units, then there is no need to construct any fractions in order to “make” the
elements of S units.

Corollary C.4 (Equality of Fractions). For &+, 22 € Rg, we have T+ = 22
17 82 S1 So
if and only if there exists an s € S such that

S - (827’1 - 817”2) =0.

. .. T __ T2 : —
If S contains no zerodivisors, then T=% if and only if sory — s1ro = 0,

which is the usual equality of fractions.

Proof. First note that ™ = 2 is the same as 3271=51"2 — (), Since —— is a
S1 So S182 8182
unit in Rg, the last equation is equivalent to 22H=51T2 = ¢(s91r; — s179) = 0.

The statement now follows from C.3(a). o

Examples C.5. (a) If R is an integral domain and S := R\ {0}, then Rg is
a field. We will write Rg =: Q(R) and call Q(R) the quotient field of R.
We have

RcQ(R):{gw,seR, 57&0}.

For an arbitrary multiplicatively closed subset S C R with 0 € S, we have
R C Rs C Q(R).

(b) If R is an arbitrary ring and S the set of all nonzerodivisors of R, we also
write Rg =: Q(R) even in this case, but we call Q(R) the full ring of
quotients of R. We always have R C Q(R).

(c)If p € SpecR and S := R\ p, we will write Rg =: R, and call R, the
localization of R at the prime ideal p, or the local ring at p. We will see
soon that R, is in fact a local ring. In general, ¢ : R — R, is not injective.

(d) If f € Rand S = {f° f*, f2,...}, we will write Rg =: Ry. We have

Rf—{%HGR,vEN},
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and ¢ : R — Ry is injective if and only if f is not a zerodivisor on R. A
special case of this kind, where X is an indeterminate, is

1 n
RlX]x = {ﬁZmX" € R v,neN},
a=0

the ring of Laurent polynomials in X over R, which we already met in
Appendix B.

The next theorems give information about the ideals in a ring of quotients.

Theorem C.6. Let I C R be an ideal and S C R a multiplicatively closed
set. Then "
IS::{EERS|x€I, seS}

is an ideal of Rg, and every ideal of Rgs is of this form for some suitable ideal
I of R. Moreover, Is # Rg if and only if INS = (.

Proof. 1t is easy to check that Is is an ideal of Rg. If [s = Rg, then 1 = £
for some xz € I, s € S. Then there exists a t € S with t(x — s) = 0. Then
ts =tx € SN I and hence SN I # (). Conversely, if there exists an s € SN I,
then 1 = 2 € Is and Is = Rs.

If J is an ideal of Rg, then I := ¢~1(J) is an ideal of R and Is C J,
since ¢(I) C J. If £ € J, then ¢ € J and therefore x € I. Hence J C Is and
therefore J = Ig.

For the ideal I's we also write I Rg, since Ig is generated by ¢([).
Corollary C.7. If R is a Noetherian ring, then so is Rg.

Under the conditions of C.6 let S be the image of S in R/I. Of course, S
is multiplicatively closed. For r € R, denote the residue class of  in R/I by
7. According to the universal property C.2(b), there is a ring homomorphism

T T
hiRs— R/Ds  (n(T)=1),
s 5
which is obviously surjective.
The next theorem states the permutability of rings of quotients and residue
class ring constructions.

Theorem C.8. We have kerh = Ig and therefore (by the homomorphism
theorem,)

Rs/Is = (R/1)s (£+ISH g)

Proof. For £ € Rg we have h(%) = 0 if and only if there exists ¢ € S such
that ¢7 = 0. But this is equivalent to £ = € Ig.
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Theorem C.9. Spec Rs = {ps | p € SpecR, pNS =0}.

Proof. For B € Spec Rs we have p := ¢ () € SpecR, pN S = 0, and
B = ps. Conversely, if p € Spec R with p NS = (), we have ps # Rg, and by
C.s,

Rs/ps = (R/p)s-
Since R/p is an integral domain, (R/p)g is also, and therefore pg is a prime
ideal of Rgs.

For p € Spec R such that pN.S = (),

¢ Hps) = p,

so that these prime ideals of R are in one-to-one correspondence with the
elements of Spec(Rg). In fact, if € R and § = ¢(r) € pgs, then 7 = 2 for
some p € p, s € S. Then there exists a t € S with tsr = tp € p. Since ts € .5,
ts € p. Hence r € p.

Corollary C.10. Let p € Spec R. Then R, is a local ring with mazimal ideal
pR,, and R,/pR, = Q(R/p). The elements of Spec R, are in one-to-one

correspondence with the prime ideals of R that are contained in p.

Proof. The last statement of the corollary was just established, and it implies
in particular that R, is a local ring. The formula R,/pR, = Q(R/p) is a
special case of C.8.

We come now to our first application of rings of quotients.

Theorem C.11. For any ring R, ﬂpespecRp is the set of all nilpotent ele-
ments of R.

Proof. Let f € R be nilpotent, i.e, f™ = 0 for some n € N. Then f™ € p for all
p € Spec R and therefore f € ﬂpespeCRp. Conversely, suppose an f € R such
that f € ,cgpec P 1 given, and let S := {f°, f', f*,...}. Since pN S # 0
for all p € Spec R, Rs = Ry is a ring with empty spectrum according to C.9,
and hence is the zero ring. In particular, % = % and there exists n € N with
f"-1=0;i.e., f is nilpotent.

Corollary C.12. If a ring has exactly one prime ideal, then this prime ideal
consists of the nilpotent elements of the ring.

If G = @,c;,Gn is a graded algebra over a ring R and S C G is a
multiplicatively closed set consisting of homogeneous elements of G, then Gg
is a graded R-algebra with homogeneous components

(Gs),, = {E € Gs |  homogeneous, deg z — deg s = n} .
s
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The condition deg x—deg s = n is independent of any particular representation
of the fraction £ # 0, as the rule for equality of fractions shows immediately.
Also, one can easily check that {(Gs)n tnez is a grading of Gg:

Gs =P(Gs)n,  (Gs)p- (Gs)g C (Gs)ptq-

neZ

In particular,
(Gs)g = {E € Gg | © homogeneous, degxz = deg s}
s

is a subring of G's. This subring will be denoted by G g).

If p € Spec R is a homogeneous ideal and S the set of all homogeneous
elements s € G such that s ¢ p, then Gg is a subring of G,. In particular,
G(s)y C Gy. We write G,y for G(g) in this case. It is obvious that G, is itself
a local ring with maximal ideal

m:= {E € Gs | « € p homogeneous, degz = degs} .
S

We call G, the homogeneous localization of G at the prime p.

Now let S/R be an algebra, I C S an ideal, and N C S a multiplicatively
closed subset. We view S with the I-adic and the ring of quotients Sy with
the In-adic filtration. The corresponding Rees algebras will be denoted by
RS and Ry, Sy, and the associated graded algebras by gr; S and gr;, Sy
(cf. B.4(b)). Since S is contained in RS as the homogeneous component of
degree 0, N C R; S. We let N denote the image of N in S/I = gr? S C gr; S.

Theorem C.13. There are canonical isomorphisms of graded R-algebras

Riy Sy = (R1S)n,
grry Sy = (gr; 9)y-

Proof. The canonical homomorphism S — Sy maps I* to (I*)y = (In)*
(for k € N). We get a homomorphism R; S — Ry, Sy of graded R-algebras,
and by the universal property of rings of quotients also a homomorphism
p: (RrS)N — Riy Sy of graded R-algebras. For k € N we will identify
(R;l€ S\n = (I*T=F) Ny = IKTF with R;}f S using p. Similarly for (R]f S)n
(k € N). Therefore p is an isomorphism.

Since gr; S = Ry S/TRrS (B.5), the statement about the associated
graded algebras follows from the permutability of rings of quotients and
residue class rings (C.8).

Example C.14. Let S = K[X,...,X,] be a polynomial algebra over a field
K, 9= (X1,...,X,), and M := S\ M. Then Ron S = K[T, X7, ..., X] is

n

a polynomial algebra (B.4(b)). Thus, by using X; = TX, S = K[X3,...,X,)]

3

can be embedded in K[T, X7, ..., X*]; hence also M C K[T, X;,..., X}]. By
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C.13 the Rees algebra of the local ring Soy with respect to the filtration given
by its maximal ideal 9.Sgy is

RDJZng Son = K[T7 Xfa ) X:;]M
For the associated graded algebra, we have, by B.4(b),
grop S =2 K[X1,..., X,

Since the image M of M in the field S/9 consists entirely of units, we also
have
ETomSon Son = K[Xl, v 7Xn]-

Exercises

Let R be a ring, S C R a multiplicatively closed subset. Let Id(R) denote the
set of all ideals of R. Prove the following statements:

1. If R is a unique factorization domain, so is Rg.
2. If I € Id(R), then

S(I):={r € R | there exists an s € S with sr € I'}
is also an ideal of R. Let Ids(R) := {I € Id(R) | S(I) = I'}. The mapping
Ids(R) — Id(Rs) (I — Ig)

is bijective. For p € Spec R, we have S(p) = p if and only if pN S = 0.
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The Chinese Remainder Theorem

We will derive a more ring-theoretic version of this fundamental theorem of number
theory. For us it plays an essential role in the intersection theory of algebraic curves.

Two proper! ideals I1, I of a ring R are called relatively prime (comaximal)
if 1 +1, =R.

Theorem D.1. Let I1,...,I, (n > 1) be pairwise relatively prime ideals of a
ring R. Then the canonical ring homomorphism

a:R— R/} x---x R/IL,,

re(ri+n,...,r+ 1),
is an epimorphism with ker(a) = (p_; Ik

Proof. The statement about the kernel of « follows immediately from the
definitions of o and the direct product of rings. We show the surjectivity of «
by induction on n.

Let n =2 and let (r1 + 11,72+ I2) € R/I; X R/I> be given. By hypothesis
we have an equation 1 = aq + a2 with ax € I (i = 1,2), and it follows that

ay; =1 mod I, as =1 mod I;.

Set r := roay + r1a2. Then r = r, mod [, and this shows that « is surjective
for n = 2.

Now suppose n > 2 and the theorem has already been proved for fewer
than n pairwise relatively prime ideals. For each (ry + I,...,rn + I,) €
R/Iy x -+ x R/I, there is then an element ' € R with v/ = r mod I, for
k=1,...,n—1. We will show that I; N---N I,_; is relatively prime to I,,.
Since the theorem has already been shown for n = 2, there is an r € R with
r=r" modljN---NI,_1, r =r, mod I,. Then we have r = r, mod I for
k=1,...,n and the theorem is proved in general.

By hypothesis we have equations

1=a)+a3=a+aj (ag € I (k=1,2,3), a4 € I3).

L A proper ideal is one that is not equal to R.
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It follows that
1 =ajas + (az + ah)az + aray € (I N I2) + I3,

and hence I; N Iy and I3 are relatively prime. By induction it follows that
ILiNn---NI,_1 and I,, are also relatively prime.

Corollary D.2 (Chinese Remainder Theorem). If I1,...,1I, are pair-
wise relatively prime and (i, Ir = (0), then

R R/} X -+ X R/I,.

A special case of this is of course the classical Chinese remainder theorem
of elementary number theory:

Z/(py" o) L/ (pTY) X - X L/ (pp™)

if p1,...,pn are distinct prime numbers and «; € Ny (i = 1,...,n). Another
variation is given in the following theorem.

Theorem D.3. Let R be a ring for which Spec(R) = {p1,...,pn} is finite
and consists only of maximal ideals. Then the canonical ring homomorphism

B:R— Ry X - xRy, (Ti—)<££>>

1777771
is an isomorphism. Here, R,, = R/q;, where q; := ker(R — R,,) for i =
1,...,n.
Proof. For each ¢ € {1,...,n} there is a canonical injection R/q; — R,,, and

Ry, has exactly one prime ideal, namely p; R, (C.10). The ideal p; R}, consists
purely of nilpotent elements (C.12), and therefore p;/q; consists purely of
nilpotent elements of R/q;; i.e., for each x € p; there exists p € Ny with
P € q;. From this it follows that p; is the only prime ideal of R that contains
qi: If q; C p; for a j € {1,...,n}, then z* € p; for each x € p; and certain
p € Ni; but then z € p;, p; C p;, and p; = p;, since both ideals are maximal.
Now it follows that q; and qj, for ¢ # j, are relatively prime: None of
the maximal ideals of R contains both ideals. We show furthermore that
MNi—y 9k = (0). For each z € (;_, qx and each k € {1,...,n} there exists an
r € R\ py with r,2 =0 (C.3(a)). With I := (rq,...,r,) we have Iz = 0. But
I ¢ pyfork=1,...,n,and hence I = R. Since 1 € I, we have z = 1z = 0.
It now follows directly from D.2 that

R=R/q1 X -+ X R/qn,

and it remains to show that the canonical injection R/q — R,, is bijective.
But R/qyj is a local ring with maximal ideal py := pr/qr. Because of the
permutability of localization and residue class ring constructions we have (see
C.3(c) and C.8)

R/qx = (R/qk)ﬁk = Ry, /arRy, = Ry, (k=1,...,n).
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Corollary D.4. Let A be a finite-dimensional algebra over a field K. Then
Spec(A) consists of only finitely many elements p1,...,pn, and these are all
maximal ideals of A. Furthermore, we have

A Ay X x Ay, ZA/qr x - x Alqy

with qi = ker(A — A,,) fork=1,...,n, and

dimKA = Zdlm[( APi = Zdlm[( A/ql

=1 i=1

Proof. Tt is enough to prove that Spec(A) consists of only finitely many max-
imal ideals, for then we can apply D.3. The following lemma shows this; in
fact, it shows a little more.

Lemma D.5. If A is a finite-dimensional algebra over a field K, then Spec(A)
consists of at most dimg (A) elements, and these are all mazimal ideals of A.

Proof. Every p € Spec(A) is maximal because A/p is an integral domain that
is finite-dimensional over K; this implies that A/p is a field.
If p1,...pgry1 are distinct, then py N --- N pr & P41, for we can choose
Z; € P \Pr+1 and then 1 - -z € p1N---Npg, but 21 - -z & pry1. It follows
that Spec(A) consists of at most dimg A elements, for otherwise we get a
chain
A2p1 2 (p1Np2) 2 (P1Np2Nps) 2+

of subspaces of A whose length exceeds dim g A, which is impossible.

A version of the Chinese remainder theorem for complete Noetherian rings
will be given in K.11.

Exercises

1. Check that the isomorphisms
R=R/q1 X - X R/qn = Ry, X --- X Ry,

in the proof of D.3 actually give g.
2. How many units, zero divisors, and nilpotents are there in the rings

7.,/(2006) and Z/(2007)?
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Noetherian Local Rings and Discrete Valuation
Rings

Certain local rings are assigned to the points of an algebraic curve and to the
intersection points of two curves. In this appendiz, we bring together the basic facts
about such rings, and we study especially discrete valuation rings.

The following lemma is fundamental for the theory of local rings.

Nakayama’s Lemma E.1. Let R be a ring and suppose I is an ideal of R
contained in the intersection of all the mazximal ideals of R. Let M be an R-
module and U C M a submodule of M. If M /U is finitely generated and if
M=U+1IM, then M =U.

Proof. The module N := M/U is finitely generated and satisfies N = IN.
We will show that N = (0). Suppose this were not the case. Let {ni,...,n;}
be a minimal set of generators for N (¢ > 0). Then there is a relation

t
:Zami (CLiEI,i:1,...,t),
=1

and therefore
(1—a)ns = Z a;n;.

Since a; is in every maximal ideal of R, the element 1 — a; is a unit of R.
Hence n; € (n1,...,n¢—1), in contradiction to the minimality of ¢.

Using Nakayama’s lemma, questions about the generators of modules and
ideals over local rings can be reduced to the corresponding questions for vector
spaces. For a finitely generated module M over a ring R we will denote by
#(M) the number of elements in a smallest set of generators for M. A set
of generators of M is called unshortenable if no proper subset generates the
module M, and minimal if it consists of p(M) elements.

Corollary E.2. Let R be a local ring with mazimal ideal m and residue field
t:= R/m. Let M be a finitely generated R-module and let my,...,my € M.
The following are equivalent:

(a) M ={my,...,my).
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(b) The residue classes of the m; in M/mM are a set of generators of the
t-vector space M/mM.

Proof. We need to show only (b) = (a). Let m; be the residue class of m; (i =
1,...,t). From M/mM = (mq,...,my) it follows that M = (mq,...,my) +
mM, and then from Nakayama’s lemma we have M = (my,..., ms).

From well-known theorems about vector spaces we immediately have the
following facts.

Corollary E.3. Under the assumptions of E.2,

(a) u(M) = dime M/mM.

(b) m1,...,my form a minimal system of generators for M if and only if their
residue classes ma, ..., My are a basis for M /mM as a t-vector space.

(c) If {ma,...,my} is a minimal set of generators for M and if there is a
relation 2521 rim; =0 for somer; € R, thenr, €m (i=1,...,t).

(d) Every set of generators of M contains a minimal set of generators. Every
unshortenable set of generators is minimal.

(e) Elements mq, ..., m, are part of a minimal set of generators for M if and
only if their residue classes in M /mM are linearly independent over t.

These statements can be used in the special case of ideals in Noetherian lo-
cal rings, since these are of course finitely generated R-modules. In particular,
they can be applied to the maximal ideal m of R.

Definition E.4. For a Noetherian local ring R with maximal ideal m, we call
edim R := p(m)
the embedding dimension of R.

By E.3(a) we have edim R = dimg(m/m?). It is trivial to see that edim R =
0 if and only if R is a field.

Connected with Nakayama’s lemma are the Artin—Rees lemma and the
Krull intersection theorem.

Artin-Rees Lemma E.5. Let R be a Noetherian ring, I C R an ideal, M a
finitely generated R-module, and U C M a submodule. There exists a k € N
such that for all n € N we have

I""“MAU =1 (IFM NU).

Proof. Let R} R := @, cyI" be the (nonextended) Rees ring of R with
respect to I (cf. B.4(b)) and let R} M := @, . I"M be the corresponding
graded R} R-module.

Since R is Noetherian and therefore I is finitely generated, R;r R is gen-
erated as an algebra by finitely many elements of degree 1, namely by the
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elements of a finite set of generators for the ideal I. By the Hilbert basis the-
orem for rings, R}" R is then Noetherian. Since M is finitely generated as an
R-module, R;r M is finitely generated as an R;r R-module.

Now we set U, := I"M NU (n € N) and U := @,enUy,. Then U is a
homogeneous submodule of the R} R-module R} M. By the Hilbert basis
theorem for modules, U has a finite set of generators {vy, ..., v}, and the v;
can be chosen to be homogeneous elements of R}”‘ M. Let m; := degwv; and
k := Max{my,...,ms}. We will show that U, = I"Uj, for all n € N, which
is exactly the statement of the lemma.

Obviously, I"Uy, C U,4k. Conversely, if u € Uy, is given, it can be
written in the form u = ZfH p;v; with homogeneous elements p; € I”"’k_mi,
and therefore u € I1"Uy.

Krull Intersection Theorem E.6. Let R be a Noetherian ring, I C R an
ideal, M a finitely generated R-module and M := (), .y I"M. Then we have

M=1-M.

Proof. Use E.5 with U := M. We have
M=T"""MnM=II*MnM)=1I-M.

Corollary E.7. If I is contained in the intersection of all the maximal ideals
of R and if U C M is a submodule, then (), c(I"M +U) = U. In particular,

Muexs 1M = (0).

Proof. Set N := M/U and N := ),y I"N. Then N = IN by E.6 and

N = (0) by Nakayama. Hence NpenU"M +U) =U.

Corollary E.8. Let R be a Noetherian local ring with mazimal ideal m and
let I C m. Then (,cyI" + J = J for every ideal J of R. In particular,
Npeny ™" + J = J.

If R is a ring, we call a system py C p; C --- C p,, of elements p; € Spec R
a chain of prime ideals if p;_1 # p; for i = 1,...,n. The chain of prime ideals
is said to have length n.

Definition E.9. The Krull dimension dim R of a ring R is the supremum of
the lengths of all chains of prime ideals.

Examples E.10.

(a) We have dim R = 0 if and only if Spec R = Max R. Consequently, dim A =
0 for every finite-dimensional algebra over a field K (D.5). For a local ring
we have dim R = 0 if and only if Spec R consists of exactly one element.
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(b) We have dim R = 1 if and only if Spec R consists of only maximal and
minimal prime ideals, and at least one minimal prime ideal is not maximal.
Examples of rings of Krull dimension 1 are Z, K[X], and K[[X]] for a field
K, and also the coordinate rings of affine algebraic curves (1.15). For a
local ring R, dim R = 1 if and only if Spec R consists of only the maximal
ideal m and minimal prime ideals # m. If one localizes Z, K[X], or the
coordinate ring of an affine algebraic curve at a maximal ideal, then one
gets a local ring of dimension 1.

(¢) We have dim K[X,Y] = 2 by 1.14. An example of a ring of infinite Krull
dimension is the polynomial ring in infinitely many variables over a field
K. There are even Noetherian rings of infinite Krull dimension.

Next we examine a special class of Noetherian local rings.

Definition E.11. A Noetherian local ring R with edim R = dimR = 1 is
called a discrete valuation ring.

Examples of this are Z,) (p a prime number), K[X] s (f irreducible),
and K[[X]] (K a field). The next theorem gives specific information on the
structure of discrete valuation rings.

Theorem E.12. If R is a discrete valuation ring with mazimal ideal m = (),
then

(a) R is an integral domain and every r € R\ {0} has a unique representation
r=e-m" (e € R a unit, n € N).

In particular, R is a unique factorization domain and 7 is (up to asso-
ciates) the only prime element of R.

(b) Every ideal I # (0) of R is of the form I = (™) for some n € N uniquely
determined by I. In particular, R is a principal ideal domain.

(c) Spec R consists of m and (0).

Proof. (a) By the Krull intersection theorem E.8 we have

(m"=[)=") = (0).

neN neN

There is therefore an n € N such that r € (7"), r € (7"*1), and hence r can
be written in the form r = € - 7™ for some unit € € R.

The element 7 is not nilpotent, for if it were, then every element of the
maximal ideal m would be nilpotent and m would be the only prime ideal of
R, in contradiction to the assumption that dim R = 1. Suppose s = n - 7™
is another element of R\ {0} (n a unit, m € N); then rs = en - 7"t™ # 0,
and therefore R is an integral domain. Since 7 generates a prime ideal, 7 is a
prime element of R.
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If we also write r = ¢g - ™ with a unit ¢y € R and ng € N, then we must
have ng < n. From € - 7"~ = ¢q, it then follows that n = ng and € = ¢g.
Hence (a) is proved.

(b) Choose an element € - 7™ in I with n minimal (¢ € R a unit). Then
7™ € I. Every other element in I\ {0} is of the form # - 7™ for some unit
n € R and some m > n. It follows that I = (7).

(c) Since R is an integral domain by (a), (0) is a prime ideal of R. The
ideals (™) with n > 1 are not prime ideals. Therefore Spec R consists only of
(0) and m.

If K is the quotient field of a discrete valuation ring R with maximal ideal
m = (), then every element x € K \ {0} can be written uniquely in the form

r=e€-" (e € R a unit, n € Z).

We set vr(x) :=n and call n the value of = with respect to R. Furthermore,
we set vr(0) := 0o. Then vg : K — ZU {00} is a surjective mapping with the
following properties:

(a) vr(z) = oo if and only if z = 0.
(b) vr(z-y) =vr(x) +vr(y) for all z,y € K.
(¢) vr(z+y) > min{vg(x),vr(y)} for all z,y € K.

A mapping v from a field K to Z U {oo} that satisfies these conditions is
called a (nontrivial) discrete valuation on K, and R := {z € K | v(z) > 0}
is called the discrete valuation ring associated with v. (The trivial valuation
maps all of K* to 0 and 0 to co.) If 7 € R is an element with v(7) = 1, it
follows easily from the valuation axioms that every ideal I # (0) of R is of the
form I = (7™) for some n € N. In particular, R is a Noetherian local ring with
maximal ideal m = (7); i.e., a discrete valuation ring according to Definition
E.11.

Given a discrete valuation ring R, it is naturally the discrete valuation ring
associated with vg. In addition to (c), we have for every discrete valuation
ring the following fact:

(") If vg(z) # vr(y) for z,y € R, then vg(z + y) = min{vg(x),vr(y)}.

The following dimension formula will frequently be used.

Theorem E.13. Let R be a discrete valuation ring with mazximal ideal m.
Assume R contains a field k and the composite mapping k — R — R/m is
surjective. Then for every x € R,

dimy R/(z) = vgr(x).

Proof. Let m be a prime element of R and suppose at first x # 0. Then
z = e 1R for some unit € € R. There is a chain of ideals

(z) = (7°7™)) C (zv7)~1) C (7®) C (1) € R = (7°),
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and therefore

vr(z)—1
(1) dimy R/(z) = Z dimy, (%) /(x*F1).

The k-linear mapping
R (r)/(x ), o rr 4 (n),

is surjective and has (m) as its kernel. Therefore, (7%)/(7**!) & R/(m) = k,
and hence dimy(7*)/(7**!) = 1 for all i € N. The proposition then follows
from (1).

From this we also get that dimy R = oo; i.e., the theorem is true for z = 0.

Theorem E.14. Every discrete valuation ring is a maximal subring of its
quotient field.

Proof. Let R be a discrete valuation ring with quotient field K and let v be the
associated valuation. If S is a ring with R C .S C K, R # S, then S contains
an element z with v(z) < 0. Noting that we can multiply by an element r € R
of value —v(z) — 1, we get an element in S of value —1. By taking powers we
get elements of every value in Z. Hence for every x € K \ {0} we can find an
s € S with v(z) = v(s). Then v(£) = 0; hence £ € R and x € S. Therefore
S=K.

Exercises

1. Show that
(a) If K is a field, then the rings

K[X)y) (f € K[X]irreducible) and K[X '|x-1)

are all discrete valuation rings containing K with quotient field K (X).
(b) The rings Z,) (p a prime number) are all discrete valuation rings with
quotient field Q.
2. Let R be a Noetherian local domain with quotient field K. For every
r € K\ {0},let z € Ror 2! € R. Then R is a discrete valuation ring.
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Integral Ring Extensions

Integral ring extensions are analogous to finite field extensions in field theory. Both
theories can be developed simultaneously, and for economical reasons perhaps one
should do so in basic algebra courses. As a reward, one gets a simple proof of Hilbert’s
Nullstellensatz (see F.15 and F.16), a fundamental result of algebraic geometry.

Let S be a ring and R C S a subring.

Theorem F.1. For an element © € S, the following statements are equiva-
lent:

(a) There is a monic polynomial f € R[X] with deg f > 0 such that f(x) = 0.

(b) R[x] is a finitely generated R-module.

(c) There is a subring S’ C S with R[x] C S" such that S’ is finitely generated
as an R-module.

Proof. (a) = (b). Let f = X" +r X" 1 +..-+7r, (r; € R, n > 0). Every
g € R[X] has a remainder of degree < n — 1 when g is divided by f, i.e.,
g=q-f+r (¢r € R[X], degr < n —1). By substituting x for X we get
g(z) € R+ Rr + -+ Rz"~! and therefore

R[] =R+ Rx +---+ Rz" L.

(b) = (c) is trivial. We now show (¢) = (a). Let {w1,...,w,} be a system of
generators for S’ as an R-module. Write

n
7j=1

then 37, (2d;; — pij)w; = 0, and we have det(xd;; — pij)wy = 0 for k =
1,...,n by Cramer’s rule. Since 1 € S’ can be written as a linear combination
of the wy, it follows that det(xd;; — pi;) = 0. Then f(X) := det(Xd;; — pij) €
R[X] is a monic polynomial f of degree n with f(x) = 0 (the characteristic
polynomial of the multiplication map p,. : S" — S).
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Definition F.2.

(a) For x € S, if the equivalent conditions of F.1 are satisfied, we say that x
is integral over R. An equation f(x) =0 as in F.1a) is called an equation
of integral dependence or an integral dependence relation for x over R.

(b) The set R of all elements of S that are integral over R is called the integral
closure of R in S.

(c) S is called an integral extension of R if R = S.

(d) R is called integrally closed in S if R = R.

Examples F.3.

(a) If S is finitely generated as an R-module, then S is integral over R by F.1.
(b) Every unique factorization domain R is integrally closed in its field of
fractions Q(R), and in particular, this is true for Z, for polynomial rings
K[X1,...,X,] over afield K, and for every discrete valuation ring (E.12).
In fact:
Let z € Q(R) be integral over R and let

"+ 4, =0

r

be an equation of integral dependence for . Write z = % in lowest terms

with r;s € R. Then we have
P st T e, s = 0,

and it follows that s is divisor of r. This is possible only if s is a unit of
R. Therefore = € R.

Corollary F.4. If x1,...,2, € S are integral over R, then R[xy,...,%,] is
finitely generated as an R-module and is therefore integral over R.

This follows from F.1 by induction on n.

Corollary F.5 (Transitivity of Integral Extensions). Let RC S C T
be rings. If T is integral over S and S is integral over R, then T is integral
over R.

Proof. For x € T, let 2™ + 512" ! +--- + 5, = 0 be an equation of integral
dependence for z over S. Then R[si,...,$,] is finite over R by F.4, and
R[s1,...,8n,] is finite over R[s1,...,8,] and therefore also finite over R.
Then using F.1 with S = R[s1,. .., sn, 2], it follows that z is integral over R.

Corollary F.6. The integral closure R of R in S is a subring of S that is
integrally closed in S.

Proof. If z,y € R, then R[z,y] is a finitely generated R-module by F.4. There-
fore x =y and z - y are integral over R, and it follows that R is a subring of
S. If z € S is integral over R, then z € R by F.5.
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Whereas the previous results are analogous to the concepts of “algebraic”
and “algebraic closure” in field theory, we come now to some facts that are
specific to ring theory.

Theorem F.7. Let R be a Noetherian integral domain that is integrally closed
in its field of fractions K. Let L be a finite separable field extension of K, and
let S be the integral closure of R in L. Then S is finitely generated as an
R-module, and in particular is a Noetherian ring.

Proof. Choose a primitive element z of L/K. Let f € K[X] be its minimal
polynomial over K. Because K = Q(R), it can be written in the form

r Tn
f:Xn+71Xn_1++7 (T,TiER).
Then rx has minimal polynomial
X" X" e € RIX],

and is likewise a primitive element of L/K. We can therefore assume that
zeSandr=1.

Now let x1,...,x, be the conjugates of x over K, that is, the set of all
zeros of f in an algebraic closure of K. For y € S there is a representation

y=ai+ax+ -+ apx” ! (a; € K),
and the conjugates y; of y over K are given by the equations
(1) Yi = a1 +asz;+ - +apzlt (i=1,...,n).

Along with z and y the z; and y; are integral over R, as one sees by using a
K-automorphism of K(x1,...,x,) sending x to z; (y to y;) and an equation
of integral dependence for = (for y).

Let D be the (Vandermonde) determinant of the system (1),

1 Ty v x?_l

1 XTo .- x;‘il
D= ,

1 Tp " x271

and let D; be the determinant that one gets by replacing the ith column of D
_____ n- By Cramer’s rule, a;,D = D; (i =1,...,n). Hence
CLZ'D2 = DZD

Now, D and D; are integral over R, and D? as well as D;D is invariant
under permutations of z1,...,x,. It follows that D> € K and D - D; € K.
Since R is integrally closed in K, we must in fact have D? € R and D;D € R

(i=1,...,n). From a; € 3z R (i = 1,...,n) it follows that
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yE€ R+ Rz + -+ Ra" 1)

1
2
and hence 1

S c E(R+Rx+~~+Rx”’1).

Since S is a submodule of a finitely generated module over the Noetherian
ring R, the Hilbert basis theorem for modules tells us that S is itself a finitely
generated module over R.

Theorem F.8. Every Noetherian local integral domain of Krull dimension 1
that is integrally closed in its field of fractions is a discrete valuation ring.

Proof. Let R be such a ring, m its maximal ideal, and K := Q(R) its field of
fractions. We must show that m is a principal ideal (E.11).

Let € m\ {0} be an arbitrary element. Since dim R = 1, the residue class
ring R/(z) has only one prime ideal, namely m/(z). By C.12 this is nilpotent.
Hence there is a p € N with m?™! C (), and m” ¢ (z). If p = 0, then we are
done. So let p > 0.

For y € m?\ (z), we have m -y C (), and it follows that

m-2cRr Y¢r
X X

Therefore the R-module m™! := {a € K | m-a C R} is strictly larger than R.
It is clear that m C m-m~! C R, and that m-m~! is an ideal of R. Therefore
there are only two possibilities:

(@) m-m™!=m;

() m-m =R

We show that (a) cannot happen: If (a) were true, then mR[z] C m for each
x € m~1; hence zR[z] C m for 2 € m\ {0}. By the Hilbert basis theorem R[z]
is a finitely generated R-module; i.e., x is integral over R and hence = € R,
since R is supposed to be integrally closed. It would then follow that m = = R,
contrary to what was shown above. Therefore only (b) can occur.

In this case we will prove that m is a principal ideal. Because m-m~! = R,
there is an equation 221 ziy; = 1 with 2; € m, y; € m™'. Here 2;9; € R
(i = 1,...,m). Since R is local, x;y; must be a unit of R for at least one
i €{1,...,m}. For each z € m we then have

2= z(wgyi) (wiy) "t = wi(zys) (iys) "
Here 2y; € R and (z;¥;)~! € R, and we have shown that m = (z;).

Lemma F.9. Let R C S be an integral ring extension and let B € SpecS.
Then B € Max(S) if and only if PN R € Max(R).
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Proof. Set p : =P N R. Then R/p C S/P and S/P is integral over R/p.
If p € Max(R), then R/p is a field, and S/ is also a field. For if y €

S/ )\ {0} and if
Y 4oy e+ pa =0 (pi € R/p)

is an equation of integral dependence for y over R/p, then we may assume that
pn # 0, since S/P is a domain. From y(y" =t + p1y™ 2+ -+ + pn_1) = —pn,
it follows that y has an inverse in S/%.

Now to show the converse, we assume that S/ is a field. For € R/p\ {0}
there is a y € S/P with xy = 1. By multiplying its equation of integral
dependence by x" we get

0= (l‘y)n + $p1<$y)n71 +---+ :Cnpn =1+ x(pl + P2 + -+ Pn$n71>,
and therefore x has an inverse in R/p.

Theorem F.10. Let R C S be two integral domains. Let R be Noetherian
of Krull dimension 1, and let S as an R-module be generated by n elements.
Then:

(a) For each p € Max(R) there is at least one and there are at most n different
P € Max(S) such that PN R =p.
(b) The integral domain S also has Krull dimension 1.

Proof. (a) For p € Max(R), we have that S/pS is an algebra of dimension
< n over the field R/p. By D.5 it has at most n distinct prime ideals, and
therefore there are at most n distinct maximal ideals of S lying over p. Let
N := R\ p. If S/pS were the zero ring, then (S/pS)y = Sn/pSn would also
be the zero ring. However, Sy is a finite module over Ry = R,. By Nakayama
(E.1) it would follow that Sy = (0), in contradiction to the fact that S and
also Sy are integral domains.

Since S/pS # (0), this ring contains at least one maximal ideal, and there-
fore there is also at least one P € Max(S) such that PN R = p.

(b) If P € Spec(S) is not maximal, then by the lemma P N R is not a
maximal ideal of R; hence P N R = (0), since dim R = 1. We must then have
B = (0). For if we had z € P\ {0}, then = would have an equation of integral
dependence

and we would have p,, = —z(z" ' + p1a™ 2 +--- + py_1) € PN R. Therefore
besides the zero ideal, S contains only maximal prime ideals; i.e., dim S = 1.
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Theorem F.11. Let S be an integral domain with field of fractions L and let
N C S be a multiplicatively closed subset. Then:

(a) If S is integrally closed in L, so is Sn.
(b) S is integrally closed in L if and only if Sg is integrally closed in L for
all P € Max(S).

Proof. (a) If x € L is integral over Sy and
(2) z"+p1z"71+~~~+pn:0 (piGSN)

is an equation of integral dependence for z, we can write p; = 2 with s; € S
(i=1,...,n), s € N. Multiplying (2) through by s™, we see that sz is integral
over S. Therefore sx € S and z € Sy.

(b) Suppose Sy is integrally closed in L for each 8 € Max(S). An element
x of L integral over S is also integral over each Sg; therefore

S ﬂ Sgp.
PeMax(S)
The result then follows from the next lemma.
Lemma F.12. For every integral domain S,

S= (] Su

PeMax(S)

I= () Iy

PeMax(S)

and for each ideal I C S,

Proof. Let @ € (Nypenax(s) S and let J := {s € S | sz € S}. Obviously, J
is an ideal of S (sometimes called the “denominator ideal” of z). For each
P € Max(S) there is an s € Sy with sp - s € S. Hence J is not contained
in any maximal ideal of S, and therefore J = S. From 1 € J it follows that
x € S. The proof for ideals is similar.

Theorem F.13. Let R be a discrete valuation ring with mazimal ideal m and
field of fractions K, let L/K be a finite separable field extension of degree n,
and let S be the integral closure of R in L. Then

(a) Sg is a discrete valuation ring (with field of fractions L) for each P €
Max(S). The set Max(S) contains only finitely many elements.

(b) Let Max(S) = {PB1,...,Br}, let mSqp, =P Sy,, and fori=1,... h let
fi = [Sgpl/‘BZngl : R/m] Then

h
n= Z e fi (Degree formula).

i=1
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Proof. (a) By F.11(a) the ring Sy is integrally closed in L; by F.7 the ring S
is a finitely generated R-module, and therefore S¢ is Noetherian, and Sg has
Krull dimension 1 by F.10. Hence Sy is a discrete valuation ring according to
F.8. The maximal spectrum Max(S) is finite by F.9 and F.10(a).

(b) Since R is a principal ideal domain and S is a finitely generated torsion-
free R-module, by the fundamental theorem for modules over a principal ideal
domain, S has a basis over R, necessarily of length n. By the Chinese remain-
der theorem we furthermore have

h
n= dimR/m S/mS = ZdimR/m S‘Bl/‘p?sﬁpl

i=1

In the chain of ideals
P Sy, C ‘13?_15&131- C--- CPidp, C S,

all the quotients ‘33? ngi/‘BgHngi are isomorphic to Sg, /B Sy, , and it follows
that

dimp,m Sq, /P Sp, = €i - [Sqp,/PiSyp, : R/m] =eifi.

Theorem F.14. Let R be an integral domain integrally closed in its field of
fractions K, let L be an extension field of K, and let a € L be integral over
R. Then for the minimal polynomial f of a over K we have

[ € RIX].
Proof. Decompose f into linear factors in the algebraic closure K of K:
f=(X—-a1) (X —ap), a1 =a.

There is a K-isomorphism K (a) = K (a;) sending a to a; (i = 1,...,n). Then
a; is integral over R, along with a. Therefore the coefficients of f are integral
over R. But they lie in K, and R is integrally closed in K. Hence f € R[X].

We shall now give a proof of the Hilbert Nullstellensatz. As ingredients to
the proof we need only the following facts:
(a) K[X] is a unique factorization domain for any field K.
(b) K[X] has infinitely many prime polynomials.
(c) Corollary F.4.

Field-Theoretic Form of Hilbert’s Nullstellensatz F.15. Let L/K be a
field extension and suppose there are elements x1,...,x, € L with L =
Klz1,...,2,] (ring adjunction!). Then L/K is algebraic.

Proof. The proof is by induction on n. We may assume that n > 0, and that
the theorem has already been proved for n — 1 generators. Suppose x1 were
transcendental over K. Since K[z1,...,2,] & K(x1)[xa, ..., zy], it follows by
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the induction hypothesis that L/K (x1) is algebraic. The minimal polynomial

fi for x; over K(x1) (i =2,...,n) can be written in the form
o) O
fi= XM Loyl T (aj(f € Klz1))
u u

with a common denominator v € KJz1]. Using F.4 it follows that L =
Klz1,...,x,] is integral over K|x1, %] Now let p € K[z1] be a prime polyno-
mial that does not divide u, and let

(l)m 48 <1>m_1 bt ’Z_”Z (si € K[z1])

P ut \p

be an equation of integral dependence for zl) over K[z1, 2] in which the co-
efficients have been adjusted so that they all have the same denominator u?.

Multiplying through by p™u! we get
u' +sip+ -+ smp™ =0,

in contradiction to the assumption that p does not divide w. This proves
Theorem F.15.

Corollary F.16 (Hilbert’s Nullstellensatz). Let K be a field and let
K be its algebraic closure. Then every ideal I C K[Xl,...,Xi with I #
K[X1,...,X,] has a zero in K": i.e., there exists (&1,...,&) € K such that

f(&1,...,&) =0 forall fel.

Proof. We can assume without loss of generality that I = 91 is a maxi-
mal ideal. Then the field L := K[Xy,...,X,]/9M is generated over K by
the residue classes x; of the X;. By F.15 we know that L/K is algebraic.
We therefore have an injective K-homomorphism L — K and hence a K-
homomorphism ¢ : K[Xi,...,X,] — K with kernel M. If & = ¢(X;)
(i=1,...,n), then (&,...,&,) is the desired zero of M.

Exercises

1. Show that the polynomial ring K[X] in one variable over a field K is

integral over every subring R C K[X] with K C R, K # R. Also show

that R is a finitely generated algebra over K and R has Krull dimension 1.

Deduce Theorem F.15 from F.16.

3. Show that the maximal ideals of a polynomial ring K[X;,..., X,] over
an algebraically closed field K are in one-to-one correspondence with the
points of K™.

o
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Tensor Products of Algebras

The tensor product of two algebras Si/R and S2/R is an R-algebra that contains
images of S1 and Sz so that these images are true to the original as much as possible.
More precisely,

Definition G.1. A tensor product of algebras S;/R and S3/R is a triple
(T'/R, a1, a2), where T/ R is an algebra, a;: S; — T are R-algebra homomor-
phisms (i = 1,2), and where the following universal property is satisfied: If
(U/R, 1, B2) is an arbitrary triple consisting of an algebra U/R and homomor-
phisms §;: S; — U (i = 1,2), then there is a unique R-algebra homomorphism
h:T—Uwith 8; =hoa; (i=1,2)

S1
/l‘“ B1
R T-t=yu
\T” 2
So

As usual, the tensor product—if it exists—is unique up to canonical isomor-
phism. We then write T = S; ®pg S2 and call «; : S; — T (i = 1,2) the
canonical homomorphisms into the tensor product.

Examples G.2. (a) Let S1 = R[{Xx}rea] and So = R[{Y,}.em] be two
polynomial algebras and let T' = R[{Xx}xea U {Y,}.em] be the polynomial
algebra in the variables Xy, Y, (A € A, p € M). Let o; : S; — T be the
obvious mappings (i = 1,2). Then (T, a1, a2) is a tensor product of S;/R and
Sa/R.

In fact, if §; : S; — U are R-homomorphisms to an R-algebra U, then let
xx = [1(X1), Yu := P2(Y,). By the universal property of polynomial algebras
there is a unique R-homomorphism h : R[{X»}U{Y,}] — U with h(X)) = x,
hY,) =yu (A€ A, p € M), which is all that is needed. We write

(1) R{X3} @r R{Y,}] = R{X} U{Y,}].

In particular,
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(1) R[Xi,...,Xn])®r R[Y1,..., Y] = R[X1,...,. Xm, Y1,..., Y.

(b) Let S1/R and Sa2/R be algebras such that S; ®pg S2 exists, and let
I, C Sk (k = 1,2) be ideals. Let J be the ideal of S1 ® g S2 generated by
ar(Ir) (k = 1,2). Then there exists S1/I; ®g So/I2, and we have S1/I} ®r
Sa/Ir = (S1 ®pR S2)/J, where the canonical homomorphisms @y, : S /I, —
S1/I1 ®g Sa/I5 are induced on the residue class rings by ay, : Sy — S1®g Sa.

In fact, if 3, : Si/Ix — U are two R-homomorphisms to an R-algebra U,
let Bx : Sy — U be its composition with the canonical epimorphism S; —
Sk/I (k= 1,2). There is then a unique homomorphism h : S ®g S; — U
with O = ho ag (kj = 1,2).

Since B(Ix) = 0 (k = 1,2), we have h(J) = 0, and therefore h induces
a homomorphism % : (S} ®g S2)/J — U with 8, = hoay (k = 1,2). There
can be only one such homomorphism: If A’ were another and we denote by
€: 51 ®Rr S2 — (51 ®g S2)/J the canonical epimorphism, then we would have
hoe = h'oe, according to the uniqueness condition in the universal property
of S1 ®p Ss. Since ¢ is an epimorphism, it follows that A’ = h.

We write J =: I Qg So + 51 ®g I5. The assertion just proved can then be
briefly noted by the formula

(2) S1/Ih @r S2/Iz = (51 ®Rr S2)/(I1 ®r S2 + 51 ®r I2).

From G.2(a) and (b) we immediately get the existence of tensor prod-
ucts, since every algebra is a residue class algebra of a polynomial algebra. In
particular, equation (2) is available in general.

Theorem G.3. S; ®r S is generated as a ring by a1(S1) and az(S2):
S1®pr Sy = 041<51) . 052(52).

Proof. Obviously, a1(S1) - aa(S2) satisfies the universal property of S1 ®p Sa.
The inclusion mapping a;(51) - as(S2) < S1 ®pr So is bijective because of the
uniqueness condition in G.1, and then the result follows immediately.

‘We set

a®1:=ay(a) for ae€ S,
1®b:=as(b) for be Sy,

and
a®b:=(a®1)(1xD).

By G.3 an arbitrary element of S; ® g So is of the form

Zak@)bk (ak €5y, bpe Sy, ne N),
k=1
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but this presentation is in general not unique. The elements of S; ®p Sy are
called tensors. Tensors of the form a ® b are called decomposable. In general,
not every tensor is decomposable.

Since a1 and a9 are R—homomorphisms the diagram

/
\

2

S1®r S

\

is commutative. Therefore we have
3) rel=1®@rforallre R, ra®b=a®rbforrec R, ac S, becS,.

Further calculation rules for tensors follow from the fact that o7 and as
are ring homomorphisms:

(a+b)®c =a®c+b®c¢, a®(c+d) =a®c+a®d,
(a®c)(b®d) = ab® cd, a®0=0=0®c,

for a,b € S and ¢,d € Ss. Furthermore, 1 ® 1 = 1 is the identity element for
multiplication.

With «ay as structure homomorphism, S; ® Sy is an Ss-algebra (similarly
also an Sp-algebra). We say that the algebra (S; ® g S2)/S2 comes from S1/R
using the base change R — S3. Frequently, it is an important problem to
investigate how properties of algebras behave under base change.

Theorem G.4. Suppose S1/R has a basis {bx}reca. Then:
(a) {bx ® 1}reca is a basis of (S1 ®r S2)/S52.

(b) If ¢ € Sy is not a zero divisor of Sa, then 1 ® ¢ is not a zero divisor of
S1 ®r Sa.

Proof. (a) In S; there are relations

bAb)\/ = ZTiAle” (7&)\/ S R),
1= prbx (px € R).
To say that S; is commutative is equivalent to saying that rM, = ri\‘:;\ If
one writes out (bxbx )bys and by(bxby) in terms of the basis elements and
equates coefficients, then one gets formulas in the 9 3y that are equivalent to

the validity of the associative property. That Y paby is the identity of Sy is
likewise equivalent to a family of formulas in the p) and 7")\ )\,
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We now construct an algebra T'/.S5 in which the indeterminates X (A € A)
generate the free Sso-module

T:.= @ SQX)\.
AeA

We give T' a multiplication by means of the formula
X,\X,\/ = Z ’I"i\\XX)\H .

(It is enough to define the product for the basis elements.) The formulas in
R, which are equivalent to the associativity and commutativity of S, are
also valid for the images in S3; hence T is an associative and commutative
So-algebra. Also, >y 4 paX) is the unit element 17 of T'.

There are two obvious R-homomorphisms:

B1:S1 =T (Oorabar— > raX, forry € R),

B2: 82 =T (s s-1p for s € Sy),
and therefore an R-homomorphism
h: Sl KRR Sz — T

with h(by ®1) = X (A € A). Using G.3 it is clear that {b) ® 1} is a system of
generators for 51 ® g S2 as an Se-module. Since the images of the by®1in T are
linearly independent over S5, the by ® 1 are themselves linearly independent
over Sy, and therefore {b)\ ® 1} is a basis for S1 ®pg S2/Ss.

(b) Let z(1®c¢) =0 for an z € S1 ®r Sa. Write . = ), by @ s (55 € S2).
Then (1 ®¢) = >, (ba ® 1)(1 ® csx) = 0, and it follows that 1 ® csy = 0
for all A € A. Since Sy — S1 ®p S2 is injective by (a), we have csy = 0 and
therefore sy = 0 for all A € A.

Corollary G.5. If {bx}rca is a basis for Si/R and {c,}uem is a basis for
Sa2/R, then {bx ® cu}treanem 5 a basis for (S1 @r S2)/R:

(@ Rbk) : (GB RC“) -Drorea)

Proof. Consider the ring homomorphisms
R— S — S1®rSs.

Since {c, }uenr is a basis for So/R, and {bx®1} ¢ 4 is a basis for (S1®rS2)/ 52,
it follows that {(bx ® 1)(1 ® ¢u)}aea,uenm is a basis for (S1 ®g S2)/R.

Of the many possible formulas for the tensor product, we choose to give
only the following.
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Formulas G.6.

(a) For an algebra S/R and a polynomial algebra R[{X)}] we have, in a
canonical way,

Ser R{X)} = S{XA},

where s®3 7y, b, X3! X" is identified with » (sry, ., ) X3 - X3

In fact, S[{X}] has the universal property for S®pgr R[{Xx}]. Asa spec1a1
case we have

S@rRR=S=R®rS (s@r=sr=rQs),
and in particular,
RerR=R (a®b=ab).
(b) For an algebra S/R and an ideal I C R we have

S@r (R/I) = S/IS.

In fact, by G.2(b) we have S®p (R/I) =S®r R/S®@rI=S5/IS.

(¢) Permutability of tensor products and localization. Let S;/R be two alge-
bras, and let N, C Sy be two multiplicatively closed subsets (k = 1,2).
Then we have, in a canonical way,

T T
Sin, ®r San, = (51 ®r S2) N @N, <E ® % — a@Z) '

Here N1 ® Ny := {a®b€51 Qr Sy | aENl,bENQ}.

Proof. There is an R-homomorphism

X
a: (S1)n, @r (S2)N, — (51 @R S2)N 0N, <§ ® % > Z®Z)

induced by (Si)n, — (S1®rS2)N, 9N, Accordingly, from Sy, — (Sk)n, —
(S1)n, ®r (S2)n, there is an induced R-homomorphism S; ®p Sz —

(S1)n, ®r (S2)n, (r®y — § ® ¥). Here the elements of Ny ® Ny are
mapped to units, and so there is an induced R-homomorphism

®
B: (S1®r S2)NieN, — (S1)N, @R (S2) N, (f@)f — % ® %) .

It is clear that o and (3 are inverses of each other.

(d) If N C R is multiplicatively closed, then canonically

(S1)N @Ry (S2)n = (51 ®Rr S2)N

where the N on the right side of the formula is to be understood as the
set {a X 1}a€N = {1 X a}aeN.
The proof is similar to that of (c).
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e) In addition to S;/R, suppose two other algebras S!/R are given and sup-
K3
pose v;: S; — S! are R-homomorphisms (i = 1,2). Then there is a canon-
ical R-homomorphism

S1®r S — S]®rS; (a®b y1(a) ®72(D)).
This will be denoted by 71 ® ~s.

Proof. The homomorphism S; 2 S} — S} ®r S, maps a € S; to y1(a)®1,
and the corresponding homomorphism Sy 3 S, — S} @ S, maps b € Sy
to 1 ® v2(b). By the universal property of S; ®g Sz we get the desired
homomorphism S; ®pg Sy — S| @g S immediately.

(f) Permutability of tensor products and direct products. Let S’/R be an
R-algebra. Then there is a canonical isomorphism of R-algebras

(S1x52)@RS" = (S10rS) X (S20rS")  ((s1,82)®8 — (51®5, 52®5")).

Proof. The canonical projections py : S1 X S — Sk (k = 1,2) furnish by
(e) an R-epimorphism

pr ®idg: (S % S2) @ S — Sy @R S’
and therefore an R-homomorphism
o (Sl XSQ)@RS/ — (Sl@RS/)X<SQ®RS/) ((81,82)®S/ — (81®S/,82®8/)).

The image of o contains the elements of the form (s;®s’,0) and (0, s2®5’)
with s, € S (k = 1,2), s’ € S’. From this we see that « is surjective.
The kernel of p; is the principal ideal in S; x Sy generated by (0, 1), so
the kernel I of p; ® idgs is generated by (0,1) ® 1. Similarly, we have
I, = ((1,0) ® 1)(S1 x S2) ®g S’. Furthermore, kera = I1 N Iz. But this
intersection is 0, for if ((0,1)® 1) -z = ((1,0) ® 1) - y with x,y € (S1 x
S2) ®g S, multiplication of this equation by (1,0) ® 1 immediately gives
us that ((1,0) ® 1) - y = 0. It follows that « is an isomorphism.

For an algebra S/R we call S¢:= S ®pr S the enveloping algebra of S/R.
This is the entry point for the construction of several invariants of an algebra.

Consider the diagram
P
o

Se-%>g

|

S
with a1(a) =a® 1, az(b) = 1 ® b. By the universal property of S ®p S there
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is an induced surjective R-homomorphism called the canonical multiplication
map
pw: S®rS—S with ple®b)=a-b (a,bes).

The kernel I of this map is called the diagonal of S°.

Theorem G.7. We have
I={a®1—-1®a}lqees).
If S is generated as an R-algebra by 1 ...,x, € S, then
I={z;®1-1®x;}i=1,..n)

Proof. Let I' .= ({a®1—1® a}qes). Clearly, I’ C I and there is an epimor-
phism

S®rS > SorS/IT %S SepS/TS.
For a,be Swehave a®b= (a®1)(1®b) = —(a®1)(b®@1—-1®b)+ (ab®1).
It follows that the mapping S % S ®r S — S ®p S/I' is surjective. The
composition of this map with p’ is the identity. Therefore p’ must be bijective,

and hence I’ = I.
The second assertion of the theorem follows easily from the formula

ab®1-10ab=0b21)(a®1-1®a)+(1®a)(b1-11®0).

Example G.8.If S = R[X3,...,X,] is a polynomial algebra, then S¢ =
R[X1,...,Xn, X],...,X]] is a polynomial algebra by (1’) “with double vari-
ables.” Here we identify X; ®1 with X; and 1® X; with X/. Using p : S¢ — S,
every polynomial in S¢ will have each X replaced by X;. The diagonal
I := ker p is the ideal generated by X7 — X1,..., X,, — X,

Now (in general) let
Annge(I) :=={x € S| z-1=0}

be the annihilator of the ideal I. The ring S can be considered as an S-module
in two ways, namely by

S§—5° (a—a®l) and S—5° (a—1®a).

Similarly, I and Annge(I) are S-modules in two ways. However, on Annge (1)
these two S-module structures coincide, since

(a®1—1®a)-Annge(I) =0

by definition of the annihilator. We can therefore consider Annge.(I) as an
S-module in a unique way.
Let N C S be a multiplicatively closed subset. By G.6(c),
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(SN)E = SJEV®N’
and by G.7 the kernel of the mapping
SN ®r SN — SN

is IN®N-

Rule G.9. If the diagonal I is a finitely generated ideal of S¢, then
AHHSIEV (IN®N) = Annse (I)N®N~

Considering Annge, (INgn) as an Sy-module, this module is generated by the
image of the canonical homomorphism Annge(I) — Annge(I)von-

In fact, the construction of the annihilator of a finitely generated ideal
commutes with the formation of fractions, as one can easily show.

Remarks G.10.

(a) 9(S/R) := pu(Annge (1)) is an ideal of S. It is called the (Noether) different
of the algebra S/R.

(b) 24, = I/I? can, like I, be considered as an S-module in two ways.
Since, however,

(a®1—1®a)-ITCI* forallacs,

the two structures on 2§ /i coincide. The S-module 2% s is called the
module of (Kdhler) differentials of the algebra S/R.

In the exercises we will learn properties of the different and the module of
differentials. A systematic treatment of these invariants of an algebra can be
found in [Kus]. The construction of £2§ /r 18 the basis of “algebraic differential
calculus.”

Exercises

1. Let S;/R be algebras (i = 1,2, 3). Show that there are R-algebra isomor-
phisms
S1®r Sy — S2®pS1 (a®b—bRa)

and
(S1 ®r S2) ®r S3 — 51 g (S2®@r S3) (a®@b)@cra® (b®c)).

2. Let S/R be an algebra of the form S = R[X]/(f) with a monic polynomial
f € R[X]. Let = denote the residue class of X in S and f’ the (formal)
derivative of f. Show that the Noether different of the algebra satisfies

9(S/R) = (f'(x)).
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3. Let Qé/R = I/I? be the module of differentials of an algebra S/R, where
I is the kernel of S® — S (a ® b — ab). Show that
(a) The mapping d : S — Q}q/R defned by dr = z®1 = 1@ 2 + I?
for € S is a derivation of S/R; i.e., d is R-linear and satisfies the
product rule d(zy) = zdy + ydx (z,y € S).
(b) 2% /r 18 generated as an S-module by the differentials dz (z € 5).
4. Let S = R[X1,...,X,] be a polynomial algebra. Show that
(a) The differentials dX7,...,dX,, form a basis for Qé/R as an S-module.
(b) For the mapping d defined in Exercise 3 and for every f € S we have

af = e dXx;.
=1

(In particular, if S = R[X], then df = f/(X)dX.)
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Traces

In field theory the concept of the trace map for finite field extensions is well
known. Here we generalize this concept to algebras that have a finite basis. This
generalization is of central importance for “higher-dimensional residue theory”
(Chapters 11-12) and plays a role in the proof of the Riemann—Roch theorem
(Chapter 13).

Let S/R be an algebra. The R-module
wg/g = Hompg (S, R)

of all R-linear forms ¢: S — R is an S-module in the following way: For s € .S
and £ € wg g set
(s)(z) = £(sx) for all x € S.

Then s¢ € Hompg(S, R) and wg/r is an S-module by S x wg/rp — ws/r
(s,0) — sb. It is called the canonical module (or dualizing module) of the
algebra S/R.

If, for example, S/R is a finite field extension, then Hompg (S, R) is an S-
vector space. As an R-vector space Hompg(S, R) has the same dimension as
S; hence necessarily Hompg(S, R) is an S-vector space of dimension 1:

(1) ws/r = 8.

In the following let S be a free R-module with basis B = {s1,...,$m}. The
linear forms s} € wg/r with

si(sj) =0y  (i,j=1,...,m).

form a basis of wg/r as an R-module, the dual basis B* of B.

One special element of wg/p is the canonical trace (or standard trace)
os/r: S — R, which is defined as follows: For x € S, let 0g/r() be the trace
of the homothety

fg: S — S (s — xs).

In other words, if one uses the basis B to describe p, by an m x m matrix A
with coefficients in R, then og/r(7) is the sum of the elements on the main
diagonal of A. It is well known that this sum does not depend on the choice
of the basis.
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Rule H.1.

m

_ *

0‘5/3— S5 S
i=1

Proof. Let SiSk = Y poy pkag (Jk=1,...,m pﬁk € R). Then og/gr(sk) =
St Pl by the definition of trace. But on the other hand we also have

(z ) ) = 3 st = 30t (z p) S

i=1 i=1 =1
Now let
5251><~'~><Sh
be a direct product of algebras S;/R (i = 1,...,h) each of which has a finite
basis. Then
Ws,/R Xoee sth/R
becomes an S-module when one defines the scalar multiplication of x =
(w1,...,2p) € S1 x -+ xSy and £ = (l,...,0p) € Wg,/p X~ X Wg, /R
by
Tl = (:Elél, ey a?hfh).
Conversely, given £ € wg/p = Hompg(S, R), let £;: S; — R be the compo-
sition of the inclusion S; < S with £.

Rule H.2. : wg/p — wg, /g X -~ Xwg, /g (£ ({1,...,Lp) ) is an isomor-
phism of S-modules.

Proof. Tt is clear that 1 is S-linear. For ({1, ...,4,) € wg, /g XX Wg, /g CON-
sider the R-linear mapping ¢: S — R defined by ¢(z1,...,2,) = Z?Zl 4i(x);
then (¢1,...,€y) — £ is the inverse map of 1.

Rule H.3. With 1 as in H.2, we have ¢/(0s/r) = (0s,/R - - -, 05, /r). In other
words, for © = (z1,...,2p) € S1 X -+- X S, = S we have

h
os/r(T) = Z os,/R(Ti)-
i=1

Proof. Choose for each R-module S; a basis B; and the corresponding dual
basis B of wg, /r. Then B := Ul | B; is a basis of S and B* := U Bf can
be identified by 1 ~! with the dual basis of B in wg /r- The result then follows
easily from H.1.

Example H.4. Let S = R x --- X R be a finite direct product of copies of
the ring R. Then for each x = (x1,...,2n) € S

h
os/r(z) = sz
i=1
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Let a be an ideal of R. We set
R:=R/a, S :=5/a8,

and denote the residue class of elements of R and S with a bar. Then B :=
{31,...,3m} is a basis of § as an R-module. Each linear form ¢ € Homg(S, R)
maps aS to a and therefore induces a linear form ¢ € Homz(S, R):

UZ)=4L(x) forall xze€S.

The dual basis B* of B thereby is mapped to the dual basis {s},...,55,} of
B.

Theorem H.5. The S-linear mapping
arwsp —wyE  (al) =10)

induces an isomorphism of S-modules

~

Ws/R ws/r/MWs/R-

Proof. Tt is clear that « is S-linear. The above statement on dual bases shows
that « is surjective. Also, awg/ g is contained in the kernel of av. If S st €
ws/r and the image Y7 | 7557 is 0, then 75 = 0 (i = 1,...,m), and therefore
Yo risk € awg/g. Since kera = awg/g, the result follows from the first
isomorphism theorem.

Rule H.6. For the standard traces we obtain og;5 = a(os/r). In other
words, og,5(T) = og/r(z) for allz € S.

Proof. This follows immediately from H.1.
We sometimes use the word “trace” in another sense:

Definition H.7. The algebra S/R has a trace o if there exists an element
0 € wg/g With
wg/r=295"0.

Observe that og/p is in general not a trace in this sense: If S/R is a finite
field extension, it is well known that og/r # 0 if and only if S/R is separable.
Also, we have wg/r = S by (1), and hence og/r is a trace exactly in the
separable case. Specific traces will be constructed in Chapter 11. See also
[KK] for a related theory.
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Rules H.8. Let ¢ be a trace of S/R.

(a)If s-0 =0 for an s € S, then s = 0. Therefore wg/p = S -0 = S ie.,
wg/p is a free S-module with basis {o}.

(b) 0’ € wg/p is a trace of S/R if and only if there exists a unit ¢ € S with
o' =¢-0.

Proof. We need to prove only (a). For each € S we have 0 = (so)(z) =
o(sx) = (xo)(s). Therefore £(s) = 0 for each { € wg/r. If we write s =
Yoimyrisi (i € R), then we get rj = s5(3 risi) = s5(s) =0 (j = 1,...,m)
and therefore s = 0.

Rule H.9. If ¢ is a trace of S/R, there exists a dual basis {s{,...,s],} of
S/R to the basis B with respect to o; i.e., there are elements s} ...,s,, € S
with

0’(5153):5” (Z,jil,,m)

Also,
Os/R = (Z sp‘é) - 0.
i=1

Proof. Write s = s} -0 (s; € S, j = 1,...,m) for the elements of the dual

J
basis B*. Then

o(sis}) = sj(si) = 0ij (i,j=1,...,m).

Being the images of the s; under the isomorphism wg,z = S, the 5] form a
basis of S/R. By H.1,

m m
/
OS/R = g $iS; = E s:8; | - o
i=1 i=1

We now turn to the question of the existence of a trace.

Rule H.10. Under the assumptions of H.2 let

o= (01,...,0n) €EWg, /g X -+ X Wg, /R = WS/R

be given. Then o is a trace of S/R if and only if o; is a trace of S;/R for
i = 1,...,h. In particular, S/R has a trace if and only if each S;/R has a
trace (i =1,...,h).

This can be seen immediately from the description of the isomorphism
in H.2.

Rule H.11. Under the assumptions of H.5 suppose a is contained in the in-
tersection of all the maximal ideals of R. Then o € wg/r is a trace of S/R if
and only if 7 := a(0) is a trace of S/R. In particular, S/R has a trace if and
only if S/R has a trace.
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This follows from H.5 and Nakayama’s Lemma E.1.

We now assume that R = ®rczRr and S = @pez Sy are graded rings and
that the structure homomorphism p: R — S is homogeneous (i.e., p(Rg) C Sk
for all k € Z). Also suppose S is an R-module with a basis B = {s1,..., sm},
where s; is homogeneous of degree d; (i =1,...,m). Then Sy, = @ Ri—4, i
for all k € Z (a direct sum of Rp-modules).

A linear form £ € wg/ g is called homogeneous of degree d if £(Sy) C Ri1a
for all £ € Z. This condition is equivalent to saying that degf(s;) = d; +d
(¢ =1,...,m). For instance, the dual basis B* = {s},...,s%,} of the basis B
consists of homogeneous linear forms with

(2) degs; = —degs; (i=1,...,m).

If we write £ = >, r;s7 (r; € R), then £ is homogeneous of degree d if and
only if 7; is homogeneous of degree d; +d (i = 1,...,m). Denoting by (wgs/r)d
the Rg-module of all homogeneous linear forms ¢: S — R of degree d, it is

clear that
WS/R = @(WS/R)d
deZ

and that
Sk (ws/r)a C (Ws/R)k4a (K, d €Z).

Hence wg/ R is a graded module over the graded ring S.
Rule H.12. o5/ is homogeneous of degree 0.

In fact, og/r = ;v sis; by H.1, and deg(s;s;*) = 0 (i = 1,...,m) by
(2).

If S/R has a trace o, it is called homogeneous if it is a homogeneous
element of wg/R.

Now let R be positively graded. Then the grading of wg,/r is bounded
below. For a homogeneous ideal a C R,

R=R/a and S=5/aS

are graded rings. Nakayama’s lemma for graded modules (A.8) then gives the
following result analogous to H.11:

Rule H.13. Let 0 € wg/r be a homogeneous linear form. Then o is a trace
of S/R if and only if the induced linear form & € wg, 5 is a trace of S/R.
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In the following let R = K be a field, which is considered as a graded ring
with the trivial grading R = Ry. Let S = G be a finite-dimensional, positively
graded K-algebra with Gy = K:

P
G=PGr G, #{0}.
k=0

We assume that G is generated as a K-algebra by G. Then the ideal G is
also generated by G;. Further, it is clear that G/K has a homogeneous basis.
Therefore the above can be used in this situation.

Lemma H.14. If G/K has a trace, then G/K has a homogeneous trace.

Proof. Let o be a trace of G/K and let 0 = > 04 be the decomposition of o
into homogeneous linear forms o4 of degree d. Write o4 = a4 - 0 with ag € G
(d € Z). Tt follows from 0 = > 04 = (D_aq) - o that > ag = 1. It cannot
be the case that all ag € G4, so some as € G4. Write a5 = k- (1 — u) with
k € K*, u € G,. Since uP™! = 0, we have that as is a unit of G:

oo

li(lfu)w-i*l'Zui:l.

i=0
It follows that o5 = as - o is a homogeneous trace of G/K (H.8b).
Lemma H.15. Assume that the socle of G,
S6(GQ):={reG| Gy z={0}},

is a 1-dimensional K -vector space. Then 6(G) = G, and fori=0,...,p the
multiplication

Gi X Gp_i — Gp,
(a,b) — ab,

s a nondegenerate bilinear form.

Proof. Because G, C 6(G), the first assertion is clear. For each a € G; \ {0}
we must find b € Gp—; such that a-b # 0. In case i = p we can take b = 1. Now
let k < p and suppose the statement has already been proved for ¢ = k + 1.

We then have a ¢ &(G); hence a- Gy # {0}. Therefore there is an o’ € G
with aa’ € Ggy41 \ {0}. By the induction hypothesis there exists b’ € Gp_k_1
such that aa’b’ # 0. Now set b := a'b’.

The existence of traces can be shown in many cases by means of the
following theorem:
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Theorem H.16.

(a) G/K has a (homogeneous) trace if and only if dimg &(G) = 1.
(b) In this case, a homogeneous element o € wg/k is a trace if and only if
o(6(@Q)) # {0}. We then have dego = —p.

Proof. A homogeneous linear form ¢: G — K of degree —i maps Gy, to {0}
for k # i; therefore (wg /K )—i can be identified with Homg (G, K), and hence

dimK(wg/K)_i =dimg G; (i=0,...,p).
Now let o be a homogeneous trace of G/K, dego = —d. Then

(wa/k)-i=Ga—i-0o (i=0,...,p).

Then we must necessarily have d = p and dimg G, = dimg(wg/x)—p =
dimg Gp = 1. Furthermore, 0(Gp) # {0} and hence also 0(&(G)) # {0}. On
the other hand, o(Gy) = 0 for k < p.

Now let g € &(G) be homogeneous of degree < p. Then (go)(G4) =
o(g-G4) = {0(0)} = {0}. Also, (go)(Go) = o(gGo) = 0, since degg < p.
Now from go = 0 it follows that g = 0.

We have proved that &(G) = G, is 1-dimensional, and we have also shown
that 0(&(G)) # {0} for each homogeneous trace o of G/K.

Now let 0 € wg,k be an arbitrary homogeneous element with o(&(G)) #
{0}, where dimg &(G) = 1 by assumption. In order to show that o is a
homogeneous trace, it is sufficient to show that

dimg Gro =dimg G, for k=0,...,p.

To do this it is enough to show that if g € Gy \ {0}, then go # 0. By Lemma
H.15 choose an element h € G, with gh # 0. Then gh € &(G) and it follows
that (go)(h) = o(gh) # 0. Therefore go # 0.

Now let (A/K,F) be a filtered algebra, where K is a field. The corre-
sponding Rees algebra will be denoted by A*, and we let G = gr- A be the
associated graded algebra. We assume that

Go=K and dimg G < oo.

Also suppose that G is generated as a K-algebra by G; and that F is sepa-
rated.
According to B.5 and H.5 we have

Remark H.17.

wa/k = waskir)/Twax k()
wask = wae /(T — Dwas k()
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Corollary H.18. If dimg 6(G) = 1, then A*/K|[T) has a homogeneous trace
and A/K has a trace.

Proof. By H.16, G/K has a homogeneous trace ¢°. If o* € wa+/K[T] 18 &
homogeneous preimage of o, then it is a trace of A*/K[T] by H.13. Because
A= A*/(T — 1), the image o of 0™ in wy/x is a trace of A/K.

We now return to the case where S/R is an arbitrary algebra with a basis
B ={s1,...,8m}, and let S¢ = S ®r S be the enveloping algebra of S/R. As
in Appendix G, let p: S¢ — S (a® b+ a-b) be the canonical multiplication
map and I = ker i the diagonal of S¢. We will see that the S-module Annge (1)
is very closely related to wg/r, and we will get a bijection between the traces
of S/R and the generators of Annge(I).

There is a homomorphism of R-modules

¢2 S@R S — HOHlR(ws/R,S),

where s; ® s; (i,j = 1,...,m) is assigned to the R-linear mapping wg/p —
S, which sends each ¢ € wg g to £(s;)s;. One can easily check that for an
arbitrary element > a; ® b; € S ®g S and each £ € wg/r we have

3) o (X @b) (0) = 3 tao)b:

Therefore ¢ is independent of the choice of the basis B. If B* = {s7,...,s5}
is the dual basis of B, then ¢(s; ® s;)(s}) = dis; (4,4, k =1,...,m). From
this one sees that ¢ is bijective.

Observe that Homgs(wg/g, S) C Hompg(wg/g, S) in a natural way.

Theorem H.19. ¢ induces a canonical isomorphism of S-modules
¢: Annge(I) — Homg(wg/r,S)

described by formula (8). If S/R has a trace, then Annge(I) is free of rank 1,
and by dualizing ¢ we get a canonical isomorphism

¥: wg/p — Homg(Anng.(I),S).

Proof. Forxz = > a;®b; € Annge(I) and s € S we have Y sa;®@b; =Y a;®sb;
and therefore

o(x)(st) = Zf(sai)bi = ZZ(ai)sbi = sZZ(ai)bi = s¢(x)(0)

for each ¢ € wg/p. Hence ¢(z): wg/p — S is an S-linear mapping. Further-
more, ¢(sx) = s¢(z), and so ¢ is S-linear.

Conversely, if for ¢ = Y a; ® b; € S @r S the mapping ¢(x) is S-linear
and we set x1 := ) sa; ® b, x2 := ) a; @ sb;, then for each £ € wg/r

P(@1)(0) = ¢(x)(s) = s¢()(£) = p(22) (L),
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from which it follows that z; = x2, and so ¢ € Annge(I). If S/R has a
trace, then along with wg g, Anng.(I) is a free S-module of rank 1. Passing

to the dual modules, we get from ¢ a canonical isomorphism ¥: wg/r =
Homg(Annge (1), .S).

Corollary H.20. Suppose S/R has a trace. Then ¢ induces a bijection be-

tween the set of all traces of S/R and the set of all generators of the S-

module Annge(I): Each trace o € wg/pr is mapped to the unique element

A, =30 st ®@s; € Annge (1) such that Y., o(s;)s; = 1. Furthermore:

(a) A, generates the S-module Annge(I), and {s!,...,s.,} is the dual basis
of B with respect to o; i.e.,

O‘(S;Sj)zéij (i,j:l,...,m).

(b) If >°i% a;i @ s; generates the S-module Annge(I) and if 0 € wg/g is a
linear form with
suml™ o(a;)s; = 1, then o is a trace of S/R and A, = Y " a; ® s;;
hence {a1,...,am} is the dual basis of B with respect to o.

(c) For each trace o of S/R,

os/r = p(4As) - 0.

Proof. By H.19 we know that Anng. (), as well as wg/p, is a free S-module
of rank 1. The isomorphism ¢ maps basis elements of wg,r to basis elements
of Homg(Annge. (1), S). These are in one-to-one correspondence with the basis
elements of Annge.(I). To each trace o we associate the preimage A, under
¢~! of the linear form wg,;p — S given by ¢ — 1; ie., if Ay, = 3" s/ ®s;
(s; € S), then ¢(Ay)(0) =30 o(s))s; = 1.

(a) We have s; = s; - ¢(As)(0) = ¢(As)(sj0) = Y iv, o(shs;)si, and it
follows that o(s}s;) = d;j.

(b) Set x := > a; ® s;. Then {¢(x)} is a basis of Homg(ws/g,S).
Because ¢(z)(0) = 37", o(a;)s; = 1 and wg/g = S, it must also be the case
that {0} is a basis of wg /g and x = A,.

(c) Let {s},...,s.,} be the dual basis to B with respect to o. By H.9,

Os/R = (sté) o= (Zs; ®si> o=u(4y,)-o.

Now let R and S be graded rings, as in the discussion after H.11, and
let B be a homogeneous basis. An element x € S€ is called homogeneous of
degree d if it can be written in the form z = > a; ® b;, where a;,b; € S are
homogeneous and dega; + degb; = d for all 7. It is clear that this gives a
grading on S¢ and that Annge(I) is a homogeneous ideal of S¢, hence also a
graded S-module. Since wg, g is a graded S-module, Homg(wg, g, S) is also a
graded S-module, and one sees immediately that the canonical isomorphism
¢ : Annge(I) = Homg(wg,r,S) is homogeneous of degree 0. In the situation
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of H.20 there is a one-to-one correspondence between the homogeneous traces
of wg/r and the homogeneous generators of Annge (7).

We now study the behavior of Annge under base change. Let R'/R be an
algebra, S’ := R'®grS, and S'¢ := S'®@p/S’. Then 1®B := {1®s1,...,1®s,}
is a basis of S'/R' (G.4). Set IS := ker(S¢ — S) and IS := ker(5’¢ — §').
We have canonical homomorphisms

A:S@rS— S @p S (a®@b— (1®a)®(1®0D))
and
& Wg/R — Ws'/R,

where a(l)(r' ® ) = l(x) - ' for | € wg/p, 7" € R and z € S. If B* :=
{s1,...,sy,} is the basis of wg/p that is dual to B, then 1 ® B* is dual to
1 ® B. Hence « is injective and wg/ /g is generated as an S’-module by im c.
Therefore, if o is a trace of S/R, then «(o) is a trace of S’/R’.

By G.7 we have

IS = ({Si ®1-1® Si}izl,...,nL)a
F={1es)01e1)-(101)& (1®s)}iz1,..m),

and hence IS = IS 5. From this we see that A induces an S-linear mapping
v: Annge(I°) — Annge(I9).

We denote by g the composition of the canonical homomorphisms

-1 / /
Homg(wg/ g, S) R Annge(I°) 2 Anng. (I%) 2, Hom's(wg/rr» S'),
where ¢ and ¢ are the bijections from H.19.

We first consider the case in which S/R has a trace.

Lemma H.21. Let A € Annge(I°) be the element corresponding to a trace
o of S/R and let A" := y(A). Then A" generates the S’-module Annge (I°").
If o’ is the trace corresponding to A, then o' = a(o).

Proof. With the dual basis {s],...,s],} of B with respect to o we have A =

r m

> s;@s; by H.20, hence A" = Y7 | (1@s)) @ (1©s;). Since {1©s],..., 1], }
i=1

is obviously the dual basis of 1 ® B with respect to the trace a(c), it follows
again from H.20 that A’ is the element corresponding to «(co). Hence A’
generates Anng/ (I°) and ¢’ = a(0).

We now treat the special case where R’ = R/a is a residue class algebra
of R, with S’ = S/aS and wg//p = wg/r/awg/r via o (H.5).
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Lemma H.22. In this case the above mapping
B: Homg(wg/g, S) — Homg (wgr/p, S')
is given by reduction modulo a.

Proof. We denote residue classes modulo a with a bar. For Y a; ® b; €
Annge (I®), the corresponding element under o is Y. a@; ® b; € Anngre (Isl).
This element corresponds to the linear form in Homg (wg /g, S’) given by
¢/ — > 0'(a;)b;. Choose £ € wg/p with £ = ¢’. Then

Z£/<Ez)gz = ZZ<EZ)E = Zf(az)bz
Since ¢(>" a; ® b;) is given by £ — > £(a;)b;, the result follows.

Lemma H.23. Under the assumptions of H.22 let o’ be a trace of S’/R’ and
A’ € Anngre (I9) the element corresponding to o'. Assume that either a is in
the intersection of all the maximal ideals of R, or that R and S are positively

graded rings, a is a homogeneous ideal, and A’ is a homogeneous element.
Then

(a) a: Annge(I°) — Anng.(I5") is surjective.

(b) If A € Anng(I°) is a (homogeneous) element with a(A) = A', then A
generates the S-module Annge(I°) and the trace o of S/R correspond-
ing to A is a (homogeneous) preimage of o' wunder the epimorphism
QlWg/R — Ws' /R -

Proof. In H.22 it was shown that in the commutative diagram

Annge(I%) —=— Anng. (I5")

| J

Homs(wS/R, S) —ﬁ> HOmS/ (WS’/R’a Sl)
the mapping 3 is given by reduction mod a. Since wg//p = §’, it follows that
ws/r = S by H.11 respectively H.13. In particular, 3 is surjective and therefore
so is a. From Nakayama’s Lemma it follows that Anng.(I°) is generated as
an S-module by A.
Write A = > st @ 5. Then A" = Y 5, ®@75;, and o(s}s;) = 8,

o'(8/5;) = 6i; (i, = 1,...,m). By these equations ¢ and ¢’ are uniquely
determined, for if 1 = Y"7" | r;s} (r; € R), then o(s;) = o(Y_ris}s;) = r; and
0'(5)=7; (j =1,...,m). It follows that ¢’ is in fact the reduction of ¢ mod

a.
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Exercises
1. For S’/R’ and « as in H.21 show that
US//R’ = a(Us/R).

2. Let L/K be a finite separable field extension of degree n and let K be the
algebraic closure of K. Show that
(a) K @k L is a direct product of n copies of the K-algebra K. The
canonical homomorphism I — K ®x L sends each z € L to the
n-tuple (z1,...,x,) of conjugates of z.
(b) For each z € L we have o /i (x) = > 1 ;.
3. Let A be a finite-dimensional algebra over a field K and = € A a nilpotent
element. Show that o4,k (x) = 0.
4. Let A/K be as in Exercise 3. Additionally let A be a local ring with
maximal ideal m. The socle of A is defined as

S(A) = {z e A|m z={0}}.

Show that
(a) 6(A) is an ideal of A, G(A) # {0}.
(b) If A/K has a trace o, then o(&(A)) # {0}.



I

Ideal Quotients

At the end of Appendix H it was shown that in order for a trace to ewist, certain
annihilator ideals must be principal ideals. Here we give conditions under which this
is the case (see 1.5).

Let I and J be two ideals of a ring R.

Definition I.1. The ideal quotient I : J is defined as
I:J:={x€R|zJCI}

It is clear that I : J is an ideal of R with I C I : J.

Lemma 1.2. Let a be an ideal of R with a C I N J. The images of ideals of
R in R := R/a will be denoted with a bar. Then in R,

T:J=T:J.

Proof. Let T be the residue class of z € R. From z-J C I it follows that
xJ C I. Therefore T € I : J. Conversely, if x € I : J, then of coursez € I : J.

Corollary 1.3. Let I C J and a=1. Then I :J = (0) : J = Anng(J).

This can be used as follows: Instead of calculating an annihilator in a
residue class ring, it is sometimes advisable to determine an ideal quotient in
the original ring.

Now let

J = (al,aQ), I = (bl,bz), (ai,bi € R),

and I C J. We write

(1)

b1 = ri1a1 + r12a9,
by = 72101 + 2202,

with r;; € R and set A := det(r;;). By Cramer’s rule, a;A € (by,b2) and
therefore
Ael:J

Lemma I.4. Suppose by is a nonzerodivisor on R/(b2) and by is a nonzero-
divisor on R/(b1). Then the image of A in R/(b1,bs) is independent of the
choice of the coefficients r;; in equation (1).
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Proof. Write by = 141a1 + rhyas (1, € R) and apply Cramer’s rule to the
system of equations

by = r11a1 + ri2a2,

0= (’I“Ql — rél)al + (7“22 — 7“/22)0,2.

With A’ := det (r/n T,12> we get
T21 T'22
(a1,az2) - (A — A" C (by),
and so in particular,
bo(A — A") C (b1) C (by, b2).
Therefore, because by is not a zerodivisor mod (by),

A— A" e (by) C (b1, ba).

By symmetry it follows that the choice of any other representation of by does
not change the image of A in R/(by, ba).

Theorem 1.5. Suppose the following conditions are satisfied for the elements
ai,as,b1,be € R given above:

(a) a1 and by are nonzerodivisors on R/(ba).
(b) az is a nonzerodivisor on R/(a1).

Then
<b17 b2) : (a/la a?) - (Aa bla b2)
If R:= R/(b1,bs) and J := J/(b1,bs), then
Anng(J) = (4),
where A is the image of A in R.

Proof. In the following, all calculations will be done in R := R/(by). We
denote the residue class in R of an element of R with a bar. By (1) we have
an equation

(2) To1a1 + To2a2 = 0,

and using Cramer’s rule it also follows from (1) that
(3) 1A = b1To0.

By 1.2 it suffices to prove the formula

(ngl) = (bl) : (61,62).
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Multiplication by @; is injective in R; therefore it is enough to prove the
equation

(4) a1 (1) : (@1,a2)) = @B, @1b1) 2 (biFao, @1b1).

—~
=

We first show that
(5) (To2,a1) = (@1) : (@1, a2).

In fact, by (2) it is clear that (F22,@1) C (@1) : (@1,a2). Suppose conversely
that for an x € R the condition

Tas € (a1)

is satisfied. Then one has an equation in R

xaz = ci1a1 + caby = cra1 + cara1a1 + cara2as.
Since ag is a nonzerodivisor on R/(ay), we have

T € (Ta2,a1).
Therefore (5) has been proved, and by multiplication by b; we get
(51722,5151) =b - ((@1) : (a1,a2)).

Instead of (4) we now see that we have to prove the equation
(6) @ ((b1) ¢ (@1,@2)) = by - (@) = (@1,@2)).

_ For z € R with Za; € (b1) (i =1,2) there is a y € R with @7 = b1. From
ybﬁi =a1za; € (Elb_) (Z = 1, 2) it follows that @ € (61) : (51,62)7 since b1 is

a nonzerodivisor on R, and therefore
Elf € 51 . ((61) . (61,62)).

That is, the left side of equation (6) is contained in the right side. _

Now let y € R with ya; € (a1) (¢ = 1,2) be given. Then b1ya; € (a1by)
g =1,2), so in particular, 5?@ € (5151) and therefore b;7 E_(El). If one writes
b1y = @7 and uses a17a; € (@1b1), then one sees that T € (by) : (a1,az), since
@ is a nonzerodivisor on R, and hence

Ely eay - ((bl) : (61,52)).

The observations we have gone through here generalize to ideals with n
generators, (see, e.g., [Kus], Appendix E).
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Complete Rings. Completion

We restrict ourselves to I-adic filtered rings. The theory is developed in more
generality in, e.g., Bourbaki [B], Greco-Salmon [GS], and Matsumura [M]. The
completion of a filtered ring corresponds to the passage from the rationals to the real
numbers or—in number theory—jfrom the integers to the p-adic numbers. Completion
of local rings is an important tool for studying singularities of algebraic curves.

Let R be aring, I C R an ideal, and (a,)nen & sequence of elements a,, € R.
Definition K.1.

(a) The sequence (ap)nen converges to a € R (or has the limit a) if for each
¢ € N there exists an ng € N such that a,, —a € I¢ for all n > ng. One
then writes a = lim,,—. o @y, .

(b) A sequence that converges to 0 will be called a zero sequence.

(c) The infinite series )y an converges to a € R if the sequence of partial

sums (ZZ:O an)ken converges to a. One then writes a = > ap.
(d) The sequence (an)nen is called a Cauchy sequence if for each € € N there
exists ng € N such that a,, — a,, € I¢ for all m,n > nyg.

Remarks K.2.

(a) If the I-adic filtration on R is separated, then the limit of a convergent
sequence is unique: If @ = lim,_,oc a, = @, then a — a’ € (_x I = (0),
therefore a’ = a.

(b) Convergent sequences are Cauchy sequences.

(c) Every subsequence of a Cauchy sequence (of a sequence converging to
a € R) is a Cauchy sequence (a sequence converging to a).

(d) A sequence (ay,) is a Cauchy sequence if and only if (¢p4+1 — ap)nen is a
Z€ro sequence.

(e) If (ay,) is a Cauchy sequence, then we can assume by passing to a subse-
quence that

eeN

Gpt1 — G €17 for all n € N.

(f) If >, cy @n is convergent, then (ay,) is a zero sequence.

() If a =>a, and b = Y b, are convergent series in R, then > (a, + by)
converges to a + b and the Cauchy product series >, (3°,, ,—, @ - bo)
converges to ab.

Many other rules from analysis can be transferred over to our situation
here. A few are even simpler here than there.
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Definition K.3. A ring R is called I-complete (or I-adically complete) if
every Cauchy sequence (with respect to I) converges to a limit in R.

Rules K.4.

(a) In a complete ring an infinite series ) a,, converges if and only if (a,) is
a zero sequence. (This is of course not the case in analysis.)

For if (a,) is a zero sequence, then to each £ € N there is an ng € N such
that a, € I¢ for all n > ng. Then also Z?ln a; € I for m > n > ng; i.e.,

(31 @i)nen is a Cauchy sequence. Since R is complete, Y, - an exists.

(b) R is I-complete if and only if for every zero sequence (a,,) in R, the infinite
series > a, converges.

If this is the case and if (b,,) is an arbitrary Cauchy sequence, then (b, 41—
by) is a zero sequence. The kth partial sum of the series a = ZneN(an —

by) is Zizo(b7l+1 —bn) = bit+1 — bp. Therefore (by,) converges to a + by.

(c) Let k € N. If R is I-complete and (a,) is a Cauchy sequence with a,, € I*
for almost all n € N, then also lim,,_o an € I* (I k is closed with respect
to taking limits).

In fact, if a := lim,_ oo an, then a —a,, € I* for large n. Since also a,, € I*
for large n, it follows that a € I*.

(d) Let J C R be another ideal. Suppose there are numbers p,o € N with
JP C I, I° C J. Then R is I-complete if and only if R is J-complete.

One sees easily that (a,) is a Cauchy sequence with respect to I if and
only if it is a Cauchy sequence with respect to J. A similar statement
holds for limits.

(e) Let R be I-complete and a C R an ideal. Then R := R/ais complete with
respect to I := (I 4+ a)/a.

One can show easily that every zero sequence (@,,) in R arises from a zero
sequence (ay) in R. If a =) ay, then the residue class @ of a in R is the
limit of )\ @n. Now use (b).

One of the most important properties of complete rings is the following
version of Nakayama’s lemma.

Theorem K.5. Let R be I-complete and let M be an R-module such that
MNken I*M = (0). Let xy,...,2, € M be elements with the property that
M =Rx1+---+ Rz, + IM. Then M = Rxy + ---+ Rx,. In other words, if
M is an I-adically separated R-module and the residue class module M/IM
is finitely generated, then M is finitely generated.
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Proof. Every m € M has a representation

n

(1) m= Zrﬁo)xi +m/ (r§°) €R, m'elIM).

(3

Write m’ = > sgmy, (sg € I, my € M) and choose for each my, a representa-
tion (1). Then there is a new representation for m given by

n
m= Z(TEO) + r(l))wi +m” (rl(l) el, m" eI*M).

A
i=1

By induction, for every k € N there is a representation

n k
m:Z ngj) x; +mFtD (T(j) e I/, mF+D) ¢ [F1Ar),

i
i=1 \ j=0

Set r; :== 3 ien ng) (i =1,...,n). This series converges by K.4(a), because its
)
S

i

terms form a zero sequence and R is complete. Furthermore, Z;’ik o’
I*+1 by K.4(c). Hence for all k € N,

n

" zn:nxi SLAREEDD i r9 ) @y € IFHML

i=1 i=1 \j=h+1
and from () I**1M = (0) it follows that m = Y"1 | riz;.

Example K.6. The ring R = P[[X}, ..., X,]] of all formal power series in the
indeterminates X1, ..., X, over a ring P is complete and separated with re-
spect to I = (X71,...,X,). In the following we shall write X* := X' ... Xon
for a = (ay,...,a,) € N,

If (fi) is a zero sequence in R, then limy_,o (ords fx) = —oo, and if f =
Yoa P xe (a&k) € P), then

is well-defined, since in ), a&k) for each a only a finite number of nonzero
summands appear. It is then clear that f = 3", fr. From K.4(b) it follows
that R is I-complete. That the [-adic filtration is separated is in any case
clear.
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Hilbert Basis Theorem for Power Series Rings K.7.
If P is a Noetherian ring, then P[[X1,...,X,]] is also Noetherian.

Proof. Set R := P[[X1,...,X,]] and T = (X1,...,X,). It is clear that
gry R & P[Xy,...,X,] with degX; = —1 (i = 1,...,n). By the Hilbert
basis theorem for polynomial rings, every ideal in gr; R is finitely generated.
In particular, this holds for gr; a if a is an ideal of R.

For any such ideal suppose

grla:(LIfl,...,Llfm) with f1,~--,fm€a.

We will show that
a= (f17~~-7fm)~

If f € ais an arbitrary element, then

Lif=) Q§O)Llfja

j=1
where g; 0 ¢ P[X4,...,X,] is homogeneous and deg g§0) = ords f — ordy fj.
We have f(V) .= f — Zg§0)fj € a and ord; f) < ord; f. Now write

Lif®M=>" 9V Lrf;,
=1

where gj(-l) € P[Xy,...,X,] is homogeneous, deggj(-l) = ord; fM — ord; f;,
and we get

£ 0 Zg Z( +9") fi e,

Jj=1

with ord; ) < ord; V) < ord; f. By induction we construct a zero sequence
(f®)ren with

FR — Z (Zg] ) c€a and ord; f¥) < (ord; f) —

7=1 \:=0

where also (g§i))ieN is a zero sequence in P[[X71,...,X,]]. It follows that

f:Zgjfj with g; ::Zg§i) (Gj=1,...,m).
j=1 =0

We show next that complete rings are frequently homomorphic images of
power series rings.
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Theorem K.8. Let R be I-complete and p : P — R a ring homomorphism.
Furthermore, let x1,...,x, € I and (,cy I* = (0).

(a) There exists a unique P-algebra homomorphism (called a substitution
homomorphism)

€P[[X1,,Xn]]*>R with E(Xl):ZL'Z (k:].,,’fl)

(b)Y If T = (x1,...,2y,) and if the composition of p with the canonical epi-
morphism R — R/I is bijective, then € is surjective. In this case if P is
Noetherian, then R is also Noetherian.

Proof. (a) For an arbitrary power series > aq X* € P[[X1, ..., X,]], the series
ZHZM:”P(GQ)IEO‘ converges in R, since its terms form a zero sequence.
Using K.2(g) it is easy to show that the assignment > ao X — > p(aq)z®
gives a P-homomorphism & with £(Xj) = zj. On the basis of continuity there
can be only one such ¢.

(b) Consider R as a module over P[[X1,...,X,]] andset J := (X1,..., X,).
By assumption, € induces a bijection of P = P[[Xq,...,X,]]/J onto R/I;
ie., R/JR is generated as a P[[Xy,...,X,]]-module by the image of the
unit element of R. The hypotheses of K.5 are fulfilled (K.6). Hence R as a
P[[Xy,...,X,]]-module is generated by 1; i.e., ¢ is surjective. The last state-
ment of (b) follows from K.7.

Corollary K.9. Let R be a Noetherian local ring with mazimal ideal m =
(X1,...,xpn). Suppose R contains a field K that is mapped bijectively under
R — R/m onto R/m. If R is m-complete, then there exists a unique K-
epimorphism

K[[X1,7Xn]]—>R (XZP—>.'L‘Z)

Proof. By the Krull intersection theorem (E.8) we know that (\m* = (0), and
then K.8 can be applied.

Corollary K.10. Under the assumptions of K.9 let R be a complete discrete
valuation ring and m = (t). Then there exists a unique K -isomorphism

K[T]] =>R (T +1).

Proof. By K.9 there is a unique K-epimorphism ¢ : K[[T]] — R with ¢(T) = t.
If kere # (0), then T™ € kere for some n € N, and then ¢" = 0, a contradic-
tion. Therefore ¢ is bijective.

We identify the rings R and K[[T]] in the situation of K.10 and denote by
v the discrete valuation belonging to R, so for every r € R\ {0} the value
v(r) is precisely the order of the power series in K[[T]] represented by r.

In the following, when we speak of complete local rings, we will always
mean that they are complete with respect to their maximal ideals, and fur-
thermore that they are separated.

We have the following version of the Chinese remainder theorem.
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Theorem K.11. Let R be a complete Noetherian local ring with mazimal
ideal m and let S be an R-algebra that is finitely generated as an R-module.
Suppose My, ..., My are the mazimal ideals of S. Then the canonical ring
homomorphism

a:S — Sop, X - X Sop,,

is an isomorphism. Furthermore, S is mS-complete and the Son, are complete
Noetherian local rings (i =1,...,h).

Proof. Consider Son, X --- X Son, as an R-module. Since the 21, have m in R
as preimage (F.9) and Sy, is Noetherian, [, ¢y m*(San, x - - - x Son,, ) = (0) by
the Krull intersection theorem. Set S := S/mS, M, := M;/mS (i =1,...,h).
Then S is a finitely generated R/m-algebra and S has only the prime ideals 9t;
(¢ =1,...,h). By the Chinese remainder theorem (D.3) there are canonical
isomorphisms

SgSﬁl X~'~X§ﬁh g»S‘g)jnl/l'nSg);nl ><'~~><ngh/mngh
gngl X oeee XS{mh/m(ngl X - X ngh)

Choose elements z1,...x, € S whose images in gﬁl X oee X gﬁh generate
this ring as an R-module. By K.5 we have

S, X <o+ X S, = R-az1) + -+ R-azy,).

Hence « is surjective.

Furthermore, kera = ﬂ?zl ker a; where o; : S — Sop, is the canonical
homomorphism. Of course, kero; = {s € S | I ¢t € S\ M, such that ts = 0}.
For each s € kera we therefore have Ann(s) ¢ 9; for i = 1,...,h, ie,
Ann(s) = S, and hence s = 0. This shows that « is a bijection.

Now let (ay) be a zero sequence of S with respect to I = mS and let
{s1,...,8m} be a system of generators of S as an R-module. We can write
each a, in the form

ap = r%n)sl + -+ rﬁ,’f)sm,

where the (r§") )

er(-n) exists in R, it is clear that ) a, converges to >
K.4(b), then, S is mS-complete.

Since Son, is a homomorphic image of S, by K.4(e), each Soy, is an mSyy, -
complete ring. Also, there exists a p; € N such that 97" Son, C mSay, (C.12),
and by K.4(d), it follows that each Sy, is also complete with respect to its
maximal ideal 9;Son, .

nen for j = 1,...,m are zero sequences in R. Since r; :=

m

j=1 TjS5 in S. By

Now let R again be an arbitrary ring with an I-adic filtration and let
a C R be an ideal. The closure a of a is the set of all limits of convergent
sequences (ay)ken With ai € a for all £ € N.
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Theorem K.12. (a) We always have

a= ﬂ(a—i—lk) and a=Ta.
keN

(b) If R is Noetherian as well as complete and separated with respect to I,
then @ = a for every ideal a C R.

Proof. (a) Let a = limy_.oc ax, where a € a for all k& € N. By passing to
a subsequence we can assume a — ap € I* for all ¥ € N and hence a €

Nienla+15).

Conversely, let a € ey (a + I¥) be given. Then for each k € N there is a
representation a = ay, + by, with ai € a, by, € I*. Hence (br) is a zero sequence,
and therefore a = limy_,~ ax exists. This proves the first formula of (a), and
the second follows immediately.

(b) Let a = (f1,..., fm) and let @ € @, s0 a = limg_,o ay, (ar € a). We can
assume that a — ay, € I* for all k € N and thus

ap41 —ap €anl (k € N).
By Artin—Rees (E.5) there exists a ko € N such that
anr®th = 1k (an1*) for all k€ N.

Write .
a, = r"f 0 €R),
j=1

and for ¢t > ko,
at — Q1 = Zr§t_k°)fj (r§t_k°) € Jtko=1),
j=1

Then

m t—ko
as = Z (Z r§s)> i
7j=1 s=0

and with r; := Y07 TJ(-S) we see that a = >0 7; f.

Now that we have learned some good properties of complete rings, we will
try to embed an arbitrary ring with an I-adic filtration into a complete ring in
order to take advantage of these properties. We now assume that the ideal I
of R is finitely generated. Without this assumption the theory of completions
leaves the category of I-adic filtered rings.
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Definition K.13. A (separated) completion of (R,I) is a pair (R, i), where
i: R — R is a homomorphism to a ring R such that

(a) RisI -complete and separated with respect to an ideal I containing I R.

(b)If j : R — S is any homomorphism to a ring S that is complete and
separated with respect to an ideal J containing IS, then there is exactly
one ring homomorphism h : R — S with h(I) C J and j = h o i:

R I

.

R h h

N

S J

If (I:{,z) exists, then as with all objects that are defined by a universal
property, it is unique up to isomorphism. We then also call R the completion
of (R,I) and i : R — R the canonical homomorphism into the completion.

Under the assumption that I = (ay,...,a,) has a finite system of genera-
tors, the completion always exists. By K.6 the ring R[[X1,..., X,]] of formal
power series in X7,..., X, over R is complete and separated with respect to
M:=(X1,...,Xp). Let a= (X7 —a1,..., X, — ay,) and let

= ﬂ (a + 9mk)
keN

be the closure of a (K.12(a)). Then

R := R[[Xy,...,X,]]/a
is complete with respect to
[:=(Mm+a)/a

by K.4(e). Also, it is clear that the I-adic filtration of R is separated, for if
2 € \ken I* and y € R[[X1,. .., X,]] is a preimage of z, then y = @+ 9M* for
all k € N; hence y € @ = a and therefore z = 0.

Let i : R — R be the composition of the canonical injection R —
R[[X1,...,Xy,]] with the canonical epimorphism

R[[Xi,...,X,]] — R[[X4,...,X,]|/3.

Since X\ — ay € @, we see that i(ay) is equal to the residue class z of X}, in

R (k=1,...,n). Therefore
I=(i(ar),...,i(ay)) = IR.

Thus it has been shown that condition (a) of definition K.13 is satisfied.
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Now let j : R — S be given as in K.13(b). By the universal property of
power series rings (K.8(a)), j can be extended to a ring homomorphism

H:R[X4i,...,X,)] = S with H(Xz)=j(ar) (k=1,...,n).

Since a; and X have the same image in S, a C ker H, and since S is sepa-
rated with respect to J, we even have a C ker H. Thus there is an induced
homomorphism

h:R[[X1,...,Xn]]/a—S.

By the construction of A it is clear that j = h o4 and h(I) C J.
There can be only one such homomorphism h. If an arbitrary homomor-

phism is composed with the canonical epimorphism R[[X1,...,X,]] — R,
then we get a homomorphism H : R[[X1,...,X,]] — S that agrees with j
on R and maps X} onto j(ag) (k=1,...,n). Under these requirements H is

uniquely determined, and hence also the map h induced by H.

Remark K.14. The following formulas follow from the existence proof of the
completion:

R=R[[X1,.... X/ ()(X1—a1,...,Xn = an) + (X1,..., Xn)")
keN

and X .
I=1IR.
Applying K.7 and K.12(b) yields the following.
Theorem K.15. If R is Noetherian, then
R=R[X1,....X,]l/(X1 —a1,..., X, —ay)
and R is also Noetherian.

We are interested in the completion of a residue class ring of R. Under
the assumptions of K.13 let a C R be an ideal, let R/a be the completion of

R/a with respect to (I +a)/a, and j : R/a — R/a the canonical map into the
completion. By K.13(b) there is a commutative diagram

R——R/a
1)
R—>R/a

Theorem K.16 (Permutability of Completion and Residue Classes).
If R is Noetherian, then h induces an isomorphism

R/aR =5 R/a.
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Proof. Let I = (a1,...,a,) and let @, € R/a be the residue class of ay
(k=1,...,n). Using K.15 we see that

R/a= (R/a)[[X1,..., X))/ (X1 — @1, ..., Xy — )
=~ R[[X1,...,Xn)l/aR[ X1, ..., X)) + (X1 —ay,..., X, — an)
=~ R/aR.

Examples K.17.

(a) If R = P[Xy1,...,X,] is a polynomial ring over a ring P and I =
(X1,...,X,), then the I-adic completion of R is

R = P[[Xy1,..., Xy,

and i : R — R is the canonical injection of the polynomial ring into the
power series ring.

Indeed, the conditions of definition K.13 are satisfied for i by K.8(a).

(b) Now let P = K{[uq,...,un,]] itself be a power series ring over a field K,
and let m = (u1,...,un) be its maximal ideal. In P[X7,..., X,], then,
M := (m, Xq,...,X,) is a maximal ideal. By the universal property of
localizations, there is a canonical injection

i P[X1,..., Xplo — P[X1,..., Xa]l.

One easily determines that P[[X1,..., X,]] = K[[u1, .-, tm, X1, .., Xy]]
is the completion of the local ring P[Xy,..., X,]om with respect to its
maximal ideal.

In general, from K.16 it follows for a local ring of the form

R:P[Xl,...,Xn]m/(fl,...,ft) (fz EP[Xl,...7Xn])

that .
R="P[[X1,....Xu]l/(f1,.... f) - P[[X41,..., X,]].

We will now concern ourselves with a few properties of the ring R =
K[[X1,...,X,]] of formal power series over a field K (n > 0). Clearly R is a
local integral domain with maximal ideal m = (X4,...,X,,); i.e., the units of
R are precisely those power series whose constant term does not vanish. By
K.6, R is separated and complete with respect to m. By K.7, R is Noetherian,
and hence every finitely generated R-algebra is also Noetherian; in particular,
every residue class ring of R is Noetherian. We now come to the main point,
that R is a unique factorization domain. This will be shown with the help of
the Weierstrafl preparation theorem.

Definition K.18. A power series f € K[[X1,...,X,]] is called X,,-general of
order m if £(0,...,0,X,) =>07 ya, X" with a, € K, ag # 0.
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Expressed differently, X™ occurs in f with a coefficient # 0, but no X¢
with ¢ < m occurs in f with a nonzero coefficient.

Theorem K.19 (Weierstrafl Preparation Theorem).

Let the power series [ € K[[X1,...,X,]] be X,-general of order m, set
S = K[[X1,..., Xn]]/(f), and let x,, be the residue class of X, in S. Then
{1, p,...,2" "1} is a basis of S as a K[[Xi,...,Xn_1]]-module. In other

words, for each g € K[[X1,...,X,]] there are uniquely determined series
g€ K[[Xy1,.... X)), r € K[[X1,..., Xpn_1]][Xn] with degx < m such that

g=q-f+r

Proof. If f is a unit (m = 0), then there is nothing to show. So let f be a
nonunit. Then there is a K-homomorphism (K.8(a))

K[[X1,...., X0 1,Y] = K[[X1,.... X]] (Xi— X, Y f).

Letn:=(Xy,...,Xn-1,Y) be the maximal ideal of P := K[[X1,..., X1, Y]]
and set R := K[[X1,...,X,]]. Then we have
R/nR = K([X,]/(0.. .0, X)) = K[[X.]l/(XD).

n

The images of the elements 1, X,,,..., X~ ! in R/nR thus form a K-basis of
R/nR. Since R is separated with respect to its maximal ideal, (), ¢y n*R =0,
and therefore K.5 is applicable. It follows that {1, X,,,..., X" '} is a gener-

ating system of R as a P-module. Then also {1, x,,...,2z™ 1} is a generating
system of S = R/(f) as a module over P/(Y) = K[[X1,...,Xn-1]]-
We will show by induction on n that {1,z,,...,2™ 1} is even a basis of

S/K[[X1,...,Xn-1]]. For n = 1 there is nothing to show, so let n > 1 and
suppose the claim has already been shown for n — 1 variables.
Consider a relation

m—1

Z pirt =0 (pi € K[[X1,..., X0 1]]).

Since S/X15 = K[[Xa2,..., X,]]/(f(0,Xs,...,X,)) and since f(0, Xa,...,X,)
is X,,-general of order m, by the induction hypothesis applied to the above
relation it must be that all the p; are divisible by X. In R there is an equation

m—1
Y piXi=q-f (g€R),
=0

and X is a prime element of R. Since f is not divisible by Xj, it must be
that ¢ is. Write p; = X10; (i =0,...,m — 1). Then we have
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Again, all of the o; must be divisible by X;. By induction it follows that
pi € Nien XFR=(0) (i =0,...,m —1).

Thus the first part of the preparation theorem has been proved. The exis-
tence of a representation g = ¢ f+r and the uniqueness of r follow immediately.
But then ¢ is also unique, because R is an integral domain.

Corollary K.20. For each f as in the theorem there is a uniquely determined
monic polynomial f € K[[X1,..., Xn_1]|[Xn] of the form

F=XI+Y aiX) (€ (X1,..., X,1))

=0

and a unit e € K[[X1,...,X,]] such that

f=ef
Proof. In S = R/(f) there is an equation
Z a2l (e K[[X1,..., Xn1]]).
=0

Set f:= X7+ 3" a; X:. Then f = q- f for some g € K[[X1,...,X,]]. In

this equation we set X; = --- = X,,_1 = 0. Then by comparing coefficients
with respect to X,,, we see that all the a; lie in (X3,...X,,_1) and that ¢
has a nonzero constant term, so ¢ is a unit. Using ¢ := q 1, we have [ =

e - f. The uniqueness of f is clear, because {1, n,..., 11 is a basis of

S/K([[X1,..., Xn-1]]-

’ﬂ

The polynomial f is called the Weierstrafs polynomial of the power series
f.- If f and g are X,-general power series with Weierstrafl polynomials f
respectively g, then f - g is the WeierstraB polynomial of f - g. This follows
from the uniqueness statement in K.20.

Lemma K.21. Let fi,... fr € K[[X1,...,Xn]] \ {0} be given. Then there is
a K-automorphism o of K[[X1,...,X,]| such that a(f1),...,a(f.) are X,-
general.

Proof. We content ourselves to prove this only in the case where K is infinite.
The automorphism « can then be given by a substitution

Xj'_)Xj+ijn (j=1,...,n—1), Xn'_)Xn

with suitably chosen p; € K. Let L(f;) be the leading form of f; with respect
to the (X1,..., X, ) filtration, let d; := deg L(f;), and set X := [[;_; L(f:).
By suitable choice of p;, the above substitution in A leads to a polynomial in
X, of degree 22:1 d;. Then all the L(f;) have degree d; in X,,, and the f; are
Xp-general of order d; (i =1,...,r).
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Theorem K.22. K[[X1,...,X,]] is a unique factorization domain.

Proof. Since R := K|[[X1,...,X,]] is Noetherian, it is enough to show that
every irreducible element f € R generates a prime ideal. By K.21 we can
assume that f is X,-general of some order, say m. If f is the Weierstrafl
polynomial of f, then

R/(f) = K[[Xy, .., Xoa]l[Xa]/(f),

and it suffices to show that f € K[[X1,..., X, 1]][Xn] generates a prime
ideal.

Suppose we have already shown that K[[Xy,...,X,_1]] is a unique fac-
torization domain. Then so is P := K[[X1,..., X,,1]][Xx], and it is enough
to show that f is irreducible in this ring.

If f were reducible, then there would be monic polynomials in X,,, say
g,h € P with degy g <m, degy_ h < m, such that f: g-h. Then f =¢egh
for some unit € € R. If g and h are both nonunits, then this contradicts the
irreducibility of f. If, say, h is a unit in R, then we get a contradiction to the
uniqueness of the Weierstra$$ polynomial. In every case f must therefore be
irreducible in P.

Exercises

Assume that the assumptions of K.13 are satisfied.

1. Show that i(R) is “dense” in R; i.e., every element z € R is the limit of a
Cauchy sequence (i(ry))reny with elements 1, € R. Every € R can also
be written as an infinite series

T = ZZ(Tk)

keN

with a zero sequence (rg)ren from R.
2. Show that the homomorphism

R/I* = R/T*  (keN)

induced by i : R — Ris an isomorphism. Conclude that

ker(i) = () I*.

keN

If R is I-adically separated, then i : R — Ris injective.
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Tools for a Proof of the Riemann—Roch
Theorem

This appendiz contains a few facts from linear algebra that occur in the proof
of the Riemann—Roch theorem as given by F.K. Schmidt in [Sch]. The ideas of
F.K. Schmidt will be formulated here in the language of Appendices B and H. The
actual proof of the Riemann—Roch theorem is then rather short, and it also results
instantly in a proof of the “singular case” (cf. Chapter 13).

Let K be an arbitrary field and L/ K an algebraic function field of one variable.
This means that there is an « € L that is transcendental over K, while L is
finite algebraic over K(z). In the following we assume that K is algebraically
closed in L, and fix a transcendental x of L/ K. Set n := [L : K(z)], R := K|x]
and Ro := K[x7"](;-1), the localization of the polynomial ring K[z~'] with
respect to its maximal ideal (z71).

The ring R is a discrete valuation ring of K(x) (E.11). If v is the
corresponding discrete valuation, then for 5 € K(z) (f € K[z], g € K[z]\{0})
we have the formula:

(1) Voo (g) = degyg — deg f,

as one easily sees. We denote by S, the integral closure of R, in L.
Remark L.1. S is a free R-module of rank n.

If L/K (z) is separable, then from F.7 it follows that S is finitely gener-
ated as an R.,-module. The remark is valid in the general case, but we will
show this only when K is a perfect field, the only case that really interests us.

Let p := Char K. Hence K = K? = KP' =... , and let L’ be the separable
closure of K (x) in L, S’ the integral closure of R in L’. Then S’ is finitely
generated as an Ro.-module (F.7). Furthermore, there is an e € N such that
LP" C L'. Hence SE, C 8. Then Ry, = K[z7P"](,—pey C S&. Clearly Ry is
finitely generated over K [:c_pe](rpe). Then S’ is also finitely generated over
K[x_pe](rpe), and so, of course, is S as well. But via Frobenius, Su./Roo is
isomorphic to SZ° /RP.. Tt follows that S, is finitely generated over Re..

Because S is a torsion-free R..-module, by the fundamental theorem for
modules over principal ideal domains, it is even free. Each element of L can
be written as a fraction with a numerator from S,, and a denominator from
R Hence every Roo-basis of So, is also a K(x)-basis of L, and S, has the
same rank over R, as L does over K (), namely n.
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We consider now also an extension ring A of R = K[x] with Q(A) = L,
where A is a finitely generated R-module. Now, A can (but we don’t need
this here) be the integral closure of R in L, since this is finitely generated as
an R-module, as one can show by similar arguments to those that led to L.1.
Just as S is free over R, it is also true that A is a free R-module of rank
n. Furthermore, we have:

Remark L.2. ANS, =K.

Proof. Let y € AN Sy and let f € K(z)[T] be the minimal polynomial of y
over K(x). Since y is integral over R and R is integrally closed in K(z), all
the coefficients of f are contained in R by F.14. For the same reason all the
coefficients of f are contained in R, hence in Ry, N R = K. Therefore y is
algebraic over K and so y € K, since K is algebraically closed in L.

After these preparations we now come to the main point. For a € Z let
Fo = %Su. Since 27! € S, we have F, = %S = ax 1zo0t1S, =
27 1 Foi1 C Far1. One sees immediately that F := {F,}acz is a separated
filtration of the R..-algebra L (B.1). For the associated graded ring we have

2)  grpLl=EP Fo/Fa1=ED 2S00/ Soo = Suc/(a™ [T, T7"].

a€Z Q€L

That is, gr L is the ring of Laurent polynomials in T over Sy, /(z~1), where
T corresponds to the leading form Lrz = 2+ So of z and T~ to the leading
form Lrx—! =271 + 2725, of 27 1. Recall that for ¢ € L*,

(3) ordra=Min{a €Z | a € Fo}
and
Lra=a+ Forda_1 € Soo/(z™1) - Terde,

If we write @ = 2°™® . b with b € S, then
(4) Lra="5- T4

where b is the residue class of b in Soo /(7).

The restriction of F to Ry is the mo-adic filtration of R, if ms, denotes
the maximal ideal of Ry, and we can identify ords on R., with —v, since
we have

R, a >0,

FoNRo =% NRoo = RoomRoo{x“Roc, o <0.

On the other hand the restriction of F to R is the degree filtration G of the
polynomial ring R = K|[x], for by (1),

FoaNK[z] = 2%Se N K[z] = 2 K[z (,-1) N K2]
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is the K-vector space G, of polynomials of degree < a. In
grr L= Soo /(@ )1, T

we identify grr Roo with K[T7!] and grr R with K[T7].

Now we counsider a finitely generated A-module I C L, I # {0}. Then I is
also a free R-module of rank n, because I contains a submodule isomorphic
to A. A fundamental idea of F.K. Schmidt is to construct an R-basis of I that
can be transformed in a simple way to a basis of S, over Ro..

Set Fj:=FsN1I (B €Z)and

grel:= @fé/fé_l,
BEL
where grr I is to be viewed at first as a graded K-vector space. Because
Go - Fg = (Fa N K[a]) - (Fs N 1) C Fass N1 = Fopp,

it is clear that gr I is a graded module over the graded ring grg K[z] = K[T].
The canonical mapping

FsN [/.7:5_1 Nnl— .7:5/.7:5_1
is injective. Therefore gr - I can be considered as a K[T]-submodule of gr - L.
Lemma L.3. The grading on grr I is bounded below.

Proof. Since I is a finitely generated A-module and Q(A) = L, there is an
f € L\{0} with fI C A. Because ANFy = ANSeo = K (L.2) and ANF_; =
(0), it follows that ordz(a) > 0 for every a € A. Hence for x € I (B.2b),

0 <ordr(fz) <ordg(f)+ ordz(z)
and therefore ordz(z) > —ordz(f).

Let gr’ I be the homogeneous component of smallest degree of gry1I.
There are then elements aq,...,a,, € I with ordra; = a9 (1 = 1,...,11)
such that {Lrai,...,Lra, } is a K-basis of gry° I. Write a; = 2*°b; with
b; € Soo, and then by formula (4) we have Lra; = b;- T € (Soo/(z™1)) - T

(i=1,...,11), where b; is the residue class of b; in S, /(z71).
Choose elements ay, 41, ..,a,, € I such that {Lray-T,...,Lra,, -T} is
extended by Lray,, +1,...,Lra,, to a K-basis of gr%“Jr1 I. As above, write

Lra; = E STt p € S (5 = v1 + 1,...,12). It is then clear that
{b1,...,b,,} are K-linearly independent elements of S../(z1).

By iterating this method one finds elements aq,...,a, € I such that the
leading forms Lgra; (i = 1,...,m) are a system of generators of the K[T-
module grr I. Here

L]:ai = Bi . Tord @i
with b; = a2~ 9% € S, where b; denotes the residue class of b; in
Soo/(x™1) (i = 1,...,m). Furthermore, {b1,...,b,} is K-linearly indepen-
dent, hence m < n.
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Theorem L.4. (a) We have m = n and {a1,...,a,} is an R-basis of I.
(b) {ayz=°rdar . g,z ") s an R -basis of S

Proof. (a) For a € I\ {0}, the leading form Lra can be written in the form
Lra =", kT" - Lra; (k; € K,p; +ordra; = ordga for i = 1,...,m).

Then
ordr (a — Z /iix“iai) < ordra.
i=1

Since the orders of the elements of I are bounded below (L.3), it follows by
induction that a € K[z]ai + - - - + K[z]ap, (cf. B.9). Therefore {a1,...,an} is
a generating system for the R-module I. Since [ is free of rank n over R and
m < n, we must have m =n, and {a1,...,a,} is an R-basisof I.

(b) Since dimg Soo/(z7!) = n, it follows from (a) that {b1,...,b,} is a
K-basis of Sy, /(z7!). Because b; = a;z~°"9% (i = 1,...,n), it follows using
Nakayama’s lemma that {ajz~ 9% ... a,27 4%} is an R..-basis of Sy,

Definition L.5. An R-basis {ai,...,a,} of I is called a standard basis of
I if there are integers aq,...,ay € Z such that {a1z7*,... a,x” %} is an
R .-basis of S

The existence of a standard basis was shown by L.4. If a basis as in L.5
is given, then a; € %S, but a; & % ~1S,, because a;x=% ¢ (r71)S.
Hence o; = ordra; (i=1,...,n).

Theorem L.6. (a) I NS is a finite-dimensional vector space over K.
(b) If {a1,...,an} is a standard basis of I, then

dimg (I NSx) = Z (—ordra; +1).
ordr a; <0

Proof. First of all, we have

IﬁSw:éK[:ﬁ]aiﬂéw—mdaiK[ (w Ha; = @g—orda,' Q.
i=1 i=1

Since G, = 0 for a < 0 and dimg G, = a+ 1 for a > 0, we get the desired
dimension formula.

Now let A’ be another extension ring of R in L with Q(A’) = L and let A’
be finitely generated as an R-module. Further, let I’ # {0} be a finitely gen-
erated A’-module with I’ C L. Then I’ also has a standard basis {a}, ..., a],}.

If I c I’ and {ay,...,a,} is a standard basis of I, then there are equations
n

(5) ai:Zpija; (i=1,...,n; pij €R).

The determinant of this transformation A := det(p;;) is a polynomial in

R = K|[z]. Let deg A be the degree of this polynomial.
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Theorem L.7.

dimg I'/1T = Zord}- a; — Zord}- a; = deg A.

i=1 i=1
Proof. Let a; :=ordra; and o} :=ordral (i =1,...,n). Then

{a127 ", .. apz™®} and {dja™®1,...,a,x "%}

are two Roo-bases of S (L.4). From (5) we obtain

n

i = 3 (@) (aa).

j=1

Let 6 := Y1 (a} — ;). Then 2° - A is the determinant of this system and so
is a unit in Ro,. That is, we have

n n

Voo (2P A) = Z(ai —a)) +ve(A) = Z(ai —a}) —deg A =0,

and therefore .

Z(ai —a}) = deg A.
i=1
By the fundamental theorem for modules over a principal ideal domain,
there is a basis {c1,...,¢,} of the R-module I’ and there are polynomi-
als e1,...,e, € R such that {eici,...,e,c,} is an R-basis of I. Then
I'/T=R/(e1)®---® R/(ey), and it follows that dimg I'/T =" dege; =

deg ], e;. The determinant of the transformation from {a},...,al} to
{c1,...,¢n} is a unit of R, hence an element of K*. The same is true for
the determinant of the transformation from {ejci,...,encn} to {a1,...,an}.

From this it follows that deg A = deg [[ e; = dimg I'/1.

Following F.K. Schmidt, we now dualize with respect to a trace o of
L/K(z) in the sense of Appendix H. So let

Wi/ K(z) = Homg () (L, K(x)) = L - o,

with a fixed chosen trace o. If L/K (x) is separable, we can of course choose
the canonical trace oy, k(s), and then we have a canonical duality.

If A and I are given as above, then I and also Hompg(I, R) are finitely
generated A-modules that are free as R-modules. The canonical mapping
Hompg(I, R) — Hompg () (L, K (7)) is injective. We identify Hompg(I, R) with
its image in L - 0. Then

Hompg(I,R) =I" -0,
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where I* C L is a finitely generated A-module with I* # {0}. For example,
we have
HomR(A,R) = QA/R e

with a finitely generated A-module €,,r. This is called the (Dedekind) com-
plementary module of A/ R (with respect to o). Similarly, Homp__ (Sec, Reo) =
Cs../Rr.. 0 with a finitely generated Sw-module €g_/r__, which is called the
complementary module of S /Rs. In general, we have

(6) I"={z€e€L|o(za) € Rforallac I},

and in particular,

(7) Cap={2z€L|o(za) € Rforall ac A}
as well as
(8) Cs. /R =12 € L | 0(2b) € Ry forallbe S}

Let B = {a1,...,a,} be astandard basis of I. The elements a,’ of the dual
basis of B in Hompg(I, R) can be written in the form a) = af - o (af € I*),
and then B* := {af,...,a’} is an R-basis of I'*, the dual basis of B with
respect to o (H.9). For these we have

o(aiaj) = d; (i,j=1,...,n).

From

orda; | xordaja*) _ :Cord ajfordai(su = .
i) = = 0ij

o(a;x™ ij

we see that an Roc-basis of €g /g, is given by {b7,...,b;} with b :=

2o 4% g% (j =1,...,n), the dual to the basis {b1,...,bn} of Sec/Roo (b; :=

a; " ord ai).

Theorem L.8. dimg(I*Nz™*Cs,_/r.) = Poraya,>1(0rdFa; —1).
Proof. We have
I = P K(ala;
i=1

and

.’E_2€SOO/ROO = @ xord ai_2K[$_1]($—1)af.
=1

As in the proof of L.6, the formula in the statement of the theorem follows
immediately.

Setting x(I) := dimg (I N Se) — dimg (I* Nz™2Cs__ /.. ), from L.6 and
L.8 we get the following
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Corollary L.9. x(I)=n—>"_, ordra;.
Furthermore, from this corollary and theorem L.7 we obtain
Corollary L.10. Under the assumptions of L.7 we have
x(I') = x(I) = dimg (I'/1).

This is already in essence the Riemann-Roch theorem; we need only to
interpret this formula in the language of divisors and functions.
Let {ai,...,a,} be a standard basis of A, so that by L.9 we have

X(A) = dimg (AN So) — dimg (€q/p N x_2¢Sw/Rm) =n— Zord; a;.
i=1

Since AN S, = K (L.2), we have
Corollary L.11. dimg(C4/r N :U_QQSOO/ROO) =>"  ordra;, —n+1.

Hint. This formula has an interpretation in terms of differentials, which,
however, we will not use. In case L/K (x) is separable and o is the canonical
trace, we can consider the intersection €4/ rdr N T3¢ /R..dz inside the
module of differentials Qi/K (G.10). Because z~2dx = —dx~!, we get using
L.11 the formula

de™!) = Zord}-ai —n+ 1.

=1

dimp (€4 [odr N Es_ /K [z-1]

(@=1)

The mysterious factor =2 from the earlier formula does not appear here. The
vector space €4, k[,dx N @SOO/K[rl](rl)dx’l is called the vector space of

“global regular differentials” with respect to A.
There is also the following formula for the “dual module” I* of I.

Theorem L.12. We have I* = €4/p :p I :={f € L | f-I C €4/} and
(I*)* = 1I.

Proof. By definition of I* and €4, (cf. (6) and (7)),
I"={z€eL|o(zb) e Rforallbe I}

and
Ca/p={uc L |o(ua) € Rforalla c A}.

For z € €4/ :r I and an arbitrary b € I we have o(zb) € 0(Ca/p) C R.
Hence €4/ : I C I*. Conversely, if z € I* and b € I, then o(zba) € R for an
arbitrary a € A, since ba € I. It follows that zb € €4/r and I* C €4 p i1 I

Using the above notation, B is the dual basis to the R-basis B* of I*, i.e.,
I=(I*)".
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In addition to I*, one frequently considers also
9) I''={zeL|z2ICA}=A: I

This is also a finitely generated A-module # {0}. For z € L*, we have the
formula

(10) (z-I) =z"1-T.

If €4/R is generated as an A-module by an element z, then by L.12,

(11) I"=Cup:I=(2-A): 1=zl

and as a result we have by the second statement of L.12,

Corollary L.13. If €4/ is generated as an A-module by one element, then

('Y = 1.
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of an ideal, 205
Humbert’s theorem, 122
Hurwitz formula, 156
hyperbola, 4
hyperelliptic function field (curve), 146
hypocycloid, 80

I-adic filtration, 200
I-complete, 262
ideal quotient, 257
indeterminate point
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of a rational function, 33

of a rational map, 73
index of a divisor, 141
inflection point, 83
integral, 109

at a point, 163
integral closure (dependence), 228
integrally closed, 228
interpolation problem, 44
intersection

cycle, 42

multiplicity, 41, 169

scheme, 40

transversal, 41, 65
irreducibility criterion, 164
irreducible

at a point, 163

component, 10, 19

curve, 9, 18

j-invariant, 95
Jacobian criterion, 54

Krull dimension, 223
Krull intersection theorem, 223

Liiroth’s theorem, 78
lattice, 96
Laurent polynomial, 200
leading form, 201
lemma of Artin—Rees, 222
lemma of Nakayama, 221

in the graded case, 195
lemniscate, 6
length of a prime ideal chain, 223
limagon of Pascal, 60
limit, 261
line at infinity, 15
linear system, 67
linearly equivalent, 132, 133
local ring

at p, 212

of a point in P?, 32

of a point on a curve (on an

intersection scheme), 40

localization, 212

Maclaurin’s theorem, 49
Miguel’s theorem, 72
minimal polynomial
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of a projective curve, 14

of an affine curve, 9
minimal set of generators, 221
model of an algebraic function field, 36
module of (Kéahler) differentials, 242
Mordell-Weil theorem, 92
multiplicatively closed, 209
multiplicity

of a branch, 163

of a point on a curve, 51

of asymptotes, 121

of tangents, 53

Nakayama’s lemma, 221, 262
in the graded case, 195

Neil’s parabola, 5

Newton’s theorem on diameters, 49,

125, 126

Newton—Puiseux series, 172

node, 166

Noether different, 114, 242

nonsingular curve, 53

normal crossing, 166

numerical semigroup, 155

olympic emblem, 173
order
of a divisor at a point, 131
of a zero (pole), 59
with respect to a filtration, 199
ordinary
double point, 166
singularity, 170
orthogonal coordinate transformation,
119

Pappus’s theorem, 46
parabola, 4
parametric representation, 77
analytic (of a branch), 167
of affine curves, 79
polynomial, 80
Pascal’s theorem, 46, 71
permutability
of completion and residue classes, 269
of quotient with residue class rings,
213
of tensor and direct products, 240

of tensor products and localization,
239
point
u-fold, 41
at finite distance, 15
at infinity, 15, 16
multiple (singular), 53
rational, 3, 14
regular (simple), 53
strange, 87
polar curve, 82
pole, 59, 82
divisor, 31, 132
of a rational function, 59
order, 59
positively graded, 194
principal divisor, 31, 60
problem of Frobenius, 183
product formula for conductors, 177
projective
closure, 15
coordinate transformation, 15
curve (line), 14
equivalence, 95
plane (n-space), 13
quadric (nonsingular), 21
proper flex, 83
Pythagorean triple, 12

quadratic transformation, 74

ramification index (point), 156
rational curve, 36
rational function

on P?, 31

on a projective curve, 33

on an affine curve, 35
rational function field, 143
rational map, 73
rational points

of affine curves, 3

of projective curves, 14
reciprocity theorem of Brill-Noether,

159

reduced

at a point, 163

curve, 20

polynomial, 9
Rees algebra, 200



nonextended, 202
regular curve (point), 53
regularity criterion, 56
relatively prime ideals, 217
residue (symbol), 109
residue class filtration, 205
residue theorem, 112

for transversal intersections, 118
Riemann’s theorem, 153
Riemann—Roch theorem, 141, 152, 153
ring of rational functions, 33

semigroup
numerical, 155
symmetric, 183
separated filtration, 199
simple point, 53
singularity, 53
degree, 148
degree of an integral branch, 167
smooth curve, 53
socle, 28
special divisor, 141
standard
basis, 278
trace, 245
straightedge construction, 71, 72
strange point, 87
subscheme, 44
substitution homomorphism, 265
support of a divisor, 11, 20, 131

tacnode, 166
tangent, 51
of a branch, 166
tangent cone, 53
tensor, 237
product of algebras, 235
product of homomorphisms, 240
theorem of
Bézout, 26, 42
Brill-Noether, 159
Cayley—-Bacharach, 47
Humbert, 122

Index 293

Liiroth, 78

Maclaurin, 49

Max Noether, 45
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Mordell-Weil, 92

Newton, 49, 125, 126

Pappus, 46

Pascal, 46, 71

Riemann, 153

Riemann—Roch, 141, 152, 153
total ramification number, 157
trace, 247
transformation formula for residues

(integrals), 112

transitivity of integral extensions, 228
transversal intersection, 41, 65
trivial filtration, 200

valuation, 225
valuation ring, 224
value semigroup of a singularity (a
branch), 182
vanishing ideal of
a divisor, 11
a projective curve, 18
an affine curve, 8
vector space of multiples of a divisor,
132

Weierstrafl
p-function, 96
gap (gap theorem), 155
polynomial, 272
preparation theorem, 271
semigroup, 155

Xr-general, 270

Z€ero
divisor, 11, 31, 132
of a homogeneous polynomial, 13
sequence, 261
set, 3, 14

zero-dimensional subscheme of A%, 48



