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PREFACE

This book was written as a friendly introduction to plane algebraic curves.

IT’S FOR. . .

e Mathematicians who never took a course on algebraic curves, or took
one years ago and have forgotten most of it.

e Students who are curious about algebraic curves and would like an
easy-to-read account of what it is and what its major highlights are.

e Anyone taking an elementary course on algebraic curves. This book
can serve as a useful companion, supplying perspective and concrete
examples to flesh out abstract concepts.

e Outsiders who have heard that algebraic geometry is useful in attack-
ing an increasingly wide range of applied problems and want an entry
point that doesn’t require an extensive mathematical background.

WHAT THIS BOOK IS, AND WHAT IT ISN’T.

e What it is. This book emphasizes geometry and intuition, and the
presentation is kept concrete. Learning about plane algebraic curves
provides a foundation for going on to higher dimensional algebraic ge-
ometry. We work mainly over the complex numbers, where results are
beautifully unified and consistent. You’ll find an abundance of pictures
and examples to help develop your intuition, so basic to understand-
ing and asking fruitful questions. The book covers the highlights of
the elementary theory which for some could be an end in itself, and for
others an invitation to investigate further, including algebraic geometry
and more general methods.

VIl



VIII PREFACE

e What it isn’t. This is not a “Theorem, Proof, Corollary” book. Proofs,
when given, are mostly sketched, some in more detail, but typically
with less. We often include references to texts that provide further dis-
cussion.

WHAT ARE THE PREREQUISITES FOR THIS BOOK?

e The rudiments of coffee cup and donut topology.

e Some basic complex analysis, including Cauchy-Riemann equations,
complex-analytic functions, meromorphic functions, and Laurent ex-
pansions.

e The definitions of field, field isomorphism, algebraic extension of a
field, integral domain, ideal and prime ideal.

WHY SHOULD | BE INTERESTED,IN ALGEBRAIC CURVES?

Since about 1990, algebraic curves and algebraic geometry have undergone
explosive growth. Computer algebra software has made getting around in
algebraic geometry much easier. Algebraic curves and geometry are now
being applied to areas such as cryptography, complexity and coding theory,
robotics, biological networks, and coupled dynamical systems. Algebraic
curves were used in Andrew Wiles’ proof of Fermat’s Last Theorem, and
to understand string theory, you need to know some algebraic geometry.
There are other areas on the horizon for which the concepts and tools of
algebraic curves and geometry hold tantalizing promise. This introduction
to algebraic curves will be appropriate for a wide segment of scientists and
engineers wanting an entrance to this burgeoning subject.

A BIT OF PERSPECTIVE.

This book follows the traditional approach of working over the complex
numbers, an approach that played a large role in setting up the subject and
remains a natural way to enter it. In the early part of the 20th century, this
found grand expressions in works on algebraic functions by Appell and
Goursat, as well as by Hensel and Landsberg. Dover reprints of [Bliss] and
[Coolidge] give a good perspective of a slightly later period. We’ve taken
the somewhat more contemporary approach found in [Walker] or [Fulton],
but for concreteness, we do almost everything over the complex numbers.
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THE BOOK’S STORY LINE . . .

o In Chapter 1 we visit a gallery of algebraic curves in the real plane. The
examples show the surprisingly wide range of possible behavior, and a
section on Designer Curves further drives home the point by providing
principles for creating an even broader array of user-defined curves.
The apparent jungle of possibilities leads to a basic question: Where
are the nice theorems?

e A fundamental truth emerges in Chapter 2: to get nice theorems, al-
gebraic curves must be given enough living space. For example, im-
portant things can happen at infinity, and points at infinity are beyond
the reach of the real plane. We use a squeezing formula to shrink the
entire plane down to a disk, allowing us to view everything in it. This
picture leads to adjoining points at infinity, and in one stroke all sorts of
exceptions then melt away. We enhance the reader’s intuition through
pictures showing what some everyday curves look like after squeezing
them into a disk.

e Chapter 3 continues the quest originating from Chapter 1: Where are
the nice theorems? Once again, the answer lies in giving algebraic
curves additional living space—in this case we expand from the real
numbers to the complex. Working over them, together with points
added at infinity, we arrive at one of the major highlights of the book,
Bézout’s theorem. This is one of the most underappreciated theorems
in mathematics, and it represents an outstandingly beautiful general-
ization of the Fundamental Theorem of Algebra. Our proof uses the
resultant—a double-edged sword which itself is one of the most un-
derappreciated tools in mathematics. We use one edge in Chapter 1,
and the other in Chapter 3.

o Chapter 4 continues our quest. In Chapter 1 we met curves that are
connected, and others that are not. There are curves of pure dimen-
sion, and others that aren’t. From what seems like a nearly hopeless
situation, Chapters 2 and 3 lay a foundation for establishing one of
the most important and satisfying topological properties of algebraic
curves: a curve defined by an irreducible polynomial in its complex
numbers-based habitat is always topologically connected, and is a real
2-manifold with finitely many points identified to finitely many points.
We even know the surface must be orientable. In a sense that we’ll
make precise, “most” algebraic curves are both irreducible and require
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no point identifications, so topologically nearly every algebraic curve
is an orientable 2-manifold like a sphere, donut, the surface of a bagel
with two holes in it, and so on. We derive a remarkably simple formula
for its genus in terms of the defining polynomial’s degree.

Chapter 5 trains a magnifying glass on some of the results seen so
far. The prettiest and simplest of them statistically hold for 100% of
algebraic curves, but nonetheless there exist curves—many with very
simple defining polynomials—that bend, twist and contort so much
that in order to fit in the plane, they must have self intersections and/or
kinks. Such points are rare (accounting for their name “singularities”),
but rare or not, questions arise:

— What do curves look like around singularities?

— Are some singularities easily understood, while others are more
complicated?

— How is their number and type related to the amount of twisting
and contorting of the curve?

— For a curve with singularities, what happens to Bézout’s theorem?

— For a curve with singularities, what happens to that remarkably
simple genus formula?

— Can you transform a curve with singularities into a curve without
singularities?

Chapter 5 provides answers. In fact, the answer to the last question is
“yes,” and the actual theorem once again highlights algebraic curves’
need for enough living space: in transforming a curve with singularities
to one without, we may need to grant the curve an extra dimension,
allowing it to live in a complex three-dimensional world instead of in
just two.

In Chapter 6, a large cluster of seemingly disparate facts about curves,
discovered over several generations of mathematicians, are gathered
into a commutative diagram. Earlier generations — the ancient Greeks
— carried out the first exhaustive study of any subject in mathematics:
algebraic curves of degree 2. They were known then and are known
today as conics. The simplest curves after conics are those curves of
degree 3 that have no singular points, and this means each is topologi-
cally a torus. By focusing on such a specific genre of curve, many more
detailed results ensue. Their study turns out to be deep and rewarding,
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and the story is still incomplete. An appropriate commutative diagram
pulls together many of their basic properties and links up the three con-
cepts of irreducible curve, its function field, and its Riemann surface.
Each of the three determines the other two up to an appropriate no-
tion of equivalence. Finally, in concluding the book, we shake hands
with an important idea: transporting elementary complex-variable the-
ory from a nonsingular curve of genus O (this corresponds to the typical
first “one complex variable” course) to a compact Riemann surface of
any genus. This represents a surprising change in flavor of the study.
A good number of pictures are provided to enhance intuition.

MANY THANKS TO . . .

Don Albers, who suggested writing this book.

Underwood Dudley, whose keen writing sense tightened up the expo-
sition throughout.

Dolciani editorial board members Jeremy Case, Rosalie Dance, Tevian
Dray, Thomas Halverson, Patricia Humphrey, Michael McAsey, Michael
Mossinghoff, Jonathan Rogness, and Thomas Sibley, who critiqued the
final draft.

Basil Gordon, whose many suggestions, both mathematical and expo-
sitional, greatly improved the book.

Richard Scott, who provided helpful feedback on early outlines of the
book.

Ivan Soprunov, who read the entire manuscript and checked the exam-
ples for correctness.

Beverly Ruedi, whose technical expertise has been an inspiration to
me. It was Bev who led me to computer drawing software, and I was
able to create all the illustrations in this book using either Adobe Illus-
trator or importing plots from Maple and then applying Illustrator.

Carol Baxter, who skillfully led this opus through to publication.

Cleveland, Ohio Keith Kendig
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CHAPTER 1

A GALLERY OF ALGEBRAIC
CURVES

A great way to learn new mathematics is to work with examples. That’s
how we start. This chapter consists mostly of examples of algebraic curves
in the real plane. A plane algebraic curve is defined to be the locus, or set of
zeros, of a polynomial in two Cartesian variables with real coefficients. This
may sound pretty special, but a surprisingly large number of familiar curves
are exactly of this type. For example, many polar coordinate curves — lem-
niscates, limagons, all sorts of roses, folia, conchoids—are algebraic, as are
many curves defined parametrically, such as Lissajous figures and the large
assortment of curves obtained by rolling a circle of rational radius around a
unit circle. Nearly all the curves the ancient Greeks knew are algebraic. So
are many curves mechanically traced out by linkages.

We begin this chapter with very simple algebraic curves, those defined
by first and second degree polynomials. We then turn to curves of higher
degree.

1.1 CURVES OF DEGREE ONE AND TwO

Definition 1.1. The degree of a monomial x™ y" is m + n. The degree of a
polynomial p(x, y) is the largest degree of its terms. The degree of a plane
algebraic curve C is the degree of the lowest-degree polynomial defining

C.

Notation. In this book, we denote the set of all solutions of p(x, y) = 0 by
C(p(x,y)) or by just C(p).
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DEGREE ONE

The general form of a polynomial of degree one is Ax + By + C, where
not both A and B are zero. Its zero set is a line, and conversely any line in
R is the zero set of a polynomial of degree one.

Geometrically, two distinct points in the plane determine a unique line.
This has an algebraic translation: in Ax + By + C = 0, not both 4 and
B are zero, so assume that A # 0. Dividing by it gives x + fy + y = 0.
Substituting into it the coordinates of two points in the plane produces two
linear equations in the 8 and y. If the points are distinct, the equations are
linearly independent and therefore uniquely determine values for 8 and y,
thus defining a line in the plane.

DEGREE TwO

The general form of a polynomial of degree two is
Ax*+ Bxy + Cy* + Dx+ Ey + F

where not all of A, B and C are zero. Its zero set is a conic that can be
non-degenerate, degenerate, or the empty set, and any conic in R? is the
zero set of some degree-two polynomial. The non-degenerate conics are el-
lipses (including circles), parabolas and hyperbolas, while degenerate ones
include the empty set (defined by x2 + 1 = 0, for example), two crossing
lines (example: xy = 0) or parallel lines (as in x2 — 1 = 0) or two copies
of the same line (example: x> = 0). We call two coincident copies of the
same line a double line.

As with a line, a certain number of points uniquely determine a conic.
To see what this number is, replay the algebraic argument above: divide

Ax*>+ Bxy +Cy> + Dx + Ey+F =0
by one of A, B and C to get, for example,
x2 4 Bxy + yy* +8x + ey + ¢. (1.1

If five distinct points in the plane are chosen so that no more than three are
collinear, then substituting them into (1.1) gives a linearly independent sys-
tem of five equations that uniquely determines § through ¢, and therefore
a conic. If three points are collinear, the conic is degenerate since it must
contain a line. (An appreciation for how five points determine a conic can be
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gained by experimenting with the five-points conic routine in the geometry
software package Cabri.)

If in the general degree-two polynomial the linear terms are absent and
F = —1, then the conic is defined by

Ax? + Bxy + Cy* =1,

and is symmetric about the origin. The discriminant B2 —4AC then indeed
discriminates, telling us that in the real plane the conic is either empty or

an ellipse if B%2 —44C <0;
two parallel lines if B2 —4AC =0;
a hyperbola if B2 —4AC > 0.

What effect does adding the linear part Dx + Ey have on the conic
Ax? + Bxy + Cy? = 1? If the discriminant is nonzero, then this will
shift the conic, and uniformly magnify it (zoom in) if it’s an ellipse, or
zoom in or out if it’s a hyperbola. It does not change the shape of either
conic. If the discriminant is zero, then Ax2 + Bxy + Cy? = 1 defines two
parallel lines, and adding Dx + Ey can change them into a parabola. An
exampleis A = E = 1 and B = C = D = 0. For details, see Chapter 9
of [Kendig 1].

Most calculus and pre-calculus books choose equations to make the
conics “nice,” and this usually leaves misleading impressions. As we swim
around in the sea of all conic sections, what do we actually encounter? We
can mimic such a tour by taking a series of snapshots as we move about, a
photo corresponding to randomly selecting real values for A4, ..., F. Divid-
ing an equation through by a nonzero number doesn’t change the zero set,
so without loss of generality, we can assume their values are in the inter-
val (—1, 1). Random choices mean none of A4, ..., F are ever exactly zero.
Here are some things we will and won’t see:

e We never see a parabola.
e We never encounter a non-empty degenerate conic.

e We never see a conic having principal axes parallel to the x- and y-
axes, as in the standard forms of an ellipse or hyperbola.

e Often we see what appears to be a parabola, but by zooming out far
enough, we will see that either the curve closes up to form an ellipse or we
encounter another branch, showing that the curve is a hyperbola.
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e Inthe case of Ax?+ Bxy +Cy? = 1, we can look at B2 —4AC =0
as defining a surface within the cube (—1, 1) x (=1, 1) x (—1, 1). We never
land on this surface, which is the boundary between points (4, B, C) in the
cube corresponding to hyperbolas on one side and ellipses or the empty set
on the other. The cube is divided into three pieces:

i. The part where B2 — 4AC > 0, corresponding to hyperbolas;

ii. The part where B2 — 4AC < 0 and both 4 and C are positive,
corresponding to ellipses;

iii. The part where B> — 4AC < 0 and both 4 and C are negative,
corresponding to the empty set.

By finding the volumes of these pieces, we can find the probability that
randomly picking a point from the cube produces an ellipse. The cube is
divided into eight unit cubes, one in each octant, and only two of these eight
contribute volume corresponding to ellipses. Writing the boundary surface
as z2 = 4xy and using symmetry leads to a probability of

5 1l ,2
= 1- .
8/2=0/=%( 4x)dxdz

This turns out to be (only!)

31—61In2

~ 18.6397% .
T 8.6397%

The probability of getting the empty set is the same, ~ 18.6397% , and the
probability of a hyperbola is approximately

100% — 37.279% = 62.721% .

For further reading, [Kendig 1] is an accessible account of many ideas
in this book for second-degree curves — that is, conics.

1.2 CURVES OF DEGREE THREE AND HIGHER

DEGREE THREE

The subtlety and complexity of curves having degree n increase rapidly
with n. Curves of degree one fall into just one class: lines. Curves of degree
two can be put into four main classes: ellipses, parabolas, hyperbolas, and
degenerate cases. (In the complex setting, the degenerate cases are two lines,
either different or coincident.) But by degree three, categorizing becomes so
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nontrivial that to this day there is no one classification considered “best” or
most natural. There exist useful classifications based on various criteria,
one being Newton’s analytic classification. He massages the general two-
variable cubic

Ax® + Bx?y + Cxy* + Dy} + Ex> + Fxy + Gy> + Hx + Jy + K

into one of four special forms in which either y, y2, xy or xy? + ay is set
equal to the pure one-variable cubic ax?® 4+ bx? + cx + d. There are 78
cases in all; Newton found 72 of them. (See [B-K], section 2.5 for a nice
discussion.)

The statistical game we played for curves of degree two can be run for
curves of degree three. By randomly choosing real values for 4, ..., K in
the general two-variable cubic, we encounter certain shapes of real cubics
again and again, while others appear less frequently or very rarely. The six

7/

. >°
N\ N ~

FIGURE 1.1.

snapshots of cubic curves in Figure 1.1 suggest a few possible shapes. They
are arranged from most to least frequently encountered, going from top left
to bottom right. By far the most common is the shape at the top left, show-
ing a single bump. Sometimes it’s more S-shaped, as in the next picture.
Together, these account for about 70% of randomly chosen curves. The next
two are variants of each other, each consisting of three separate branches,
and will be seen about 20% of the time. A bump with an island occurs per-
haps 5% of the time, and the last, three branches plus an island arises rarely,
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less than 1% of the time. These percentages are very approximate. There
are other shapes that occur even more rarely.

Since we have ten coefficients 4, . .., K, dividing through by any one of
A, ..., D leaves nine degrees of freedom. However, it is possible to select
nine distinct points that do not uniquely determine a cubic:

Example 1.1. Figure 1.2 shows nine points, with two different cubics pass-
ing through them: the graph of y = 3x(x — 1)(x + 1) and the graph of
x=3y(y =D+ D.

FIGURE 1.2.

HIGHER DEGREES

We have seen that the number of degrees of freedom for a curve of degree
nis

2 = 3 — 1 for degree 1

5 = 6 — 1 for degree 2

9 = 10 — 1 for degree 3.

The numbers 3, 6 and 10 are called triangular because in the following
arrangement of polynomial forms of increasing degree, the number of terms
of degree < n is like triangle areas, starting at the top: 1, 3, 6, 10, ... :

A
Ax + By
Ax? 4+ Bxy + Cy?
Ax® + Bx%y + Cxy? + Dy3

The number of degrees of freedom enjoyed by a curve of degree n is one
less than the number of terms in its general equation. Remembering that the

sum of the first m natural numbers 1 +2 + 3+ ---+m is M, we see
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that the number of degrees of freedom in a curve of degree n is

n+Dn+2) 1_n2+3n

2 2
The first few of these numbers are 2, 5, 9, 14, 20,27, 35,44, 54,65, ....

1.3 SiX BAsic CuBICS

There are certain cubics that play a special role in studying algebraic curves,
since they illustrate a variety of basic concepts. The graph of y = p(x),
where p(x) is a typical cubic in x, can be pushed up and down to five
essentially different positions that reflect the nature of its roots — all real,
not all real, repeated or distinct. In the left column of Figure 1.3 we get all
five positions by starting the graph low and pushing it upward. Any graph
of y = p(x) in the left column corresponds to the graph of y? = p(x)
in the right. Replacing y by y? makes all the curves in the right column
symmetric with respect to the x-axis.

The same process can be applied to p(x) = x>, in which the polynomial
in x has three equal roots. This yields our sixth basic cubic, y?> = x3, and
is an example of a cusp curve, depicted in Figure 1.4.

3

1.4 SOME CURVES IN POLAR COORDINATES

RECTANGULAR VERSUS POLAR COORDINATES

Draw circles of latitude and semi-circles of longitude on a sphere. In a small
neighborhood around a point on the equator, the latitudes and longitudes
closely approximate the horizontal and vertical lines of a rectangular co-
ordinate system. But at the opposite extremes, at the north or south pole,
the latitudes and longitudes look like the circles and rays of a polar coordi-
nate system. In this sense, rectangular and polar coordinates are opposites
of each other. This behavior extends to many familiar curves in rectangular
versus polar coordinates, as we’ll discover in a moment.

ALGEBRAIC VERSUS NOT ALGEBRAIC

Many plane curves may be algebraic, yet are not presented as the zero set
of a polynomial p(x, y) in rectangular coordinates. For example, the curve
might be given by an equation in polar coordinates, or by a pair of para-
metric equations, or traced out by some mechanical linkage or as the path
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FIGURE 1.4.

of a point on one curve as it rolls along another one. If such a “roulette” is
algebraic, then by definition it is the zero set of some polynomial p(x, y).
It just may not be obvious what that polynomial is.

There’s also an abundance of non-algebraic curves, such as graphs of
trigonometric functions, so the question arises: is there an easy way to tell
algebraic curves from non-algebraic ones? Here’s a partial test: if there is
a line in the plane intersecting the curve in infinitely many discrete points,
then the curve is not algebraic. For example, the graph 