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Preface

The Sumerians and Babylonians (2000–700 BCE) and the Greeks (700 BCE–150
CE) made periodic measurements of the locations of the sun and the known planets.
They concluded that these bodies travel in circles with the earth as their center,
with small retrograde deviations. Their tables and simple astronomical instruments
were used to guide travelers on camels over the silk roads of Asia and captains
of ships on the high seas. These methods were codified in the great Almagest of
Ptolemy (100–170 CE). This book was used for navigation for well over a thousand
years. Copernicus (1473–1543) re-did the calculations based on circular orbits with
the sun as center. Tycho Brahe (1542–1601) improved the observations, resulting
in Kepler’s three laws. They imply that the orbits around the sun are ellipses
which are not circles. Mathematicians introduced elliptic analogs of the circular
functions. It turned out that the elliptic analogues of the arcsine and arccosine are
doubly periodic functions of a complex variable. This led to a unified theory of
algebraic curves and Riemann surfaces, incorporating algebra, analysis, geometry,
and topology. The purpose of this book is to make the unity of mathematics apparent
to undergraduates. It is intended to serve as a textbook for a capstone course in
undergraduate mathematics. This book originates in a semester-long such course
taught by Prof. Nerode at Cornell University.

The book consists of three parts. The first deals with algebraic curves. It focuses
on the projective plane, tangents, and intersection multiplicities and culminates in a
proof of the associativity of the “chord-and-tangent” group operation on nonsingular
cubic curves. It can be used on its own for a short course. The second works toward
Riemann surfaces; it takes time to build the required tools from topology, calculus,
and complex analysis. The third ties together the first two parts, explaining how
complex curves can be given the structure of a Riemann surface. It ends with the
isomorphism theorem for complex tori and elliptic curves, and with the use of
analytic parameterisations of curves to redefine intersection multiplicities.

The book’s style and content are a mixture of modern and older mathematics. We
live in the modern mathematical world: at our disposal are set theory and logic. The
arguments we give conform to modern standards of rigor. And we allow a certain
level of abstraction: for example, we give axiomatic definitions of groups and rings;
we define path homotopy and simple connectedness. We do, however, try to keep
this kind of abstraction to a minimum, and overall, to give the reader some of the
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flavor of mid-nineteenth-century mathematics, prior to the abstract turn championed
by Dedekind in the 1870s. We define and study algebraic curves without introducing
the notion of an ideal in a ring. We do not give an axiomatic definition of topological
spaces: rather, we restrict ourselves to topological subspaces of manifolds. Most
prominently, we make heavy use of Kronecker’s elimination theory, which uses
purely computational methods to define, for example, intersection multiplicities of
curves.

We attempt to be self-contained. We review the required background material in
some detail. We expect, however, that a reader will have already studied some linear
algebra, groups, and some multivariable calculus, and so these topics are discussed
a bit more briefly.

Greenberg would like to thank Moshe Zadka and Alex Usvyatsov, for their
support during the writing of an early version of the book; and his colleagues
Joe Miller, Denis Hirschfeldt, Dan Turetsky, Rod Downey, and Rob Goldblatt, for
their support over the years. We would like to thank VUW students Lennox Leary,
Giovanna Le Gros, Jim Paterson, Tim Caldwell, Jayden Mudge, Eli Gadsby, and
Antonia King, who have worked through various iterations of the book.
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Wellington, New Zealand Noam Greenberg
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1Introduction

An algebraic curve is the collection of points satisfying a polynomial equation in
two variables, for example, the circle x2 + y2 = 1, or the parabola y = x2. A
Riemann surface is an object that locally looks like the complex plane, and on which
one can perform complex differentiation. Examples are the Riemann sphere, or a
complex torus. In this book we will present the theory of both algebraic curves and
Riemann surfaces, and then show that these two concepts are in fact connected.
Our presentation culminates in the theory of elliptic functions, and the isomorphism
theorem for elliptic curves which, roughly, says that complex tori are the same as
nonsingular cubic curves.

1.1 The Theory of the Circle

Elliptic functions and curves are in some sense a cubic analogue of the trigono-
metric (circular) functions and conic curves. As an illustration of the development
presented in this book, we consider the conic case first, by examining the circle.

1.1.1 Pythagorean Triples

One motivation for what follows is the problem of finding all Pythagorean triples:
integers a, b, c satisfying a2+b2 = c2. In other words, finding the triples of integers
that form the lengths of right triangles. We rephrase the problem by replacing the
triple (a, b, c) by the pair (a/c, b/c); the task is then to find all points on the unit
circle that have rational coordinates. In this book we denote the unit circle by S.

Here is an approach to solving this problem. Fixing the rational point (0, 1) on
the unit circle, for any point (t, 0) on the x-axis we draw the line 	t that passes
through the points (0, 1) and (t, 0). The line 	t intersects S at another point, which
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2 1 Introduction

Fig. 1.1 The rational
parameterisation of the unit
circle

we name ϕ(t), whose coordinates can be computed to be

(
2t

t2 + 1
,
t2 − 1

t2 + 1

)

.

See Fig. 1.1.
The function ϕ, from the real line R to the unit circle S, is injective, and its range

is S \ {(0, 1)}. Moreover, the two coordinate functions of which ϕ is comprised are
rational functions of t , that is, quotients of polynomials. So if t is a rational number,
then ϕ(t) is a rational point on S. Further examination allows us to use ϕ to obtain
a full solution of the problem of finding Pythagorean triples; see Exercise 4.82.

We note that our technique has a flaw: the original point (0, 1) is not obtained
as ϕ(t) for any t . The family of lines 	t which we used to parameterise the circle
is missing one line passing through (0, 1), namely the line y = 1, the tangent to
the circle at the point (0, 1). The fact that the line y = 1 does not intersect the
x-axis indicates that there is a “missing point” on the x-axis: we would like to let
(0, 1) = ϕ(∞). This missing point lies on the projective line. Our study of algebraic
curves will make extensive use of tangents, and we shall see that the projective plane
is the correct arena for algebraic curves.

1.1.2 The Circular Functions

The number 2π is the circumference of the unit circle. We can measure π , as
Archimedes did, by approximating the circle by regular n-gons inscribed in the
circle. More generally, if θ is the length of the arc on the unit circle from (1, 0)

to a point (x, y) on the circle, then the coordinates of the point satisfy x = cos θ and
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y = sin θ . This is usually taken as the definition of the circular functions sin and cos
(often not mentioning that the size of an angle is defined to be that arc-length). The
definition is rarely presented in this way, but this approach in fact first defines the
functions arcsin and arccos, and then defines sin and cos as the inverses of these.
That is, given x between −1 and 1, we define arccos x to be the length of the arc
from (x, y) to (1, 0), where y � 0 is chosen so that (x, y) lies on the unit circle
(that is, y = √

1− x2). Using calculus, we can express this value in terms of an
arc-length integral:

arccos x =
∫ 1

x

dt√
1− t2

.

Historically, this was the way that elliptic functions were discovered. These are
“higher degree” analogues of the circular functions sin and cos. They were first
defined as the inverses of elliptic integrals such as

∫
dt/

√
1− t4, some of which

arise as arc-lengths of curves other than the circle, in particular, of ellipses, whence
the name. Elliptic functions have addition formulas, similar to the familiar formulas
for sin(θ+ρ) and cos(θ+ρ). They are also periodic, similar to the fact that cos(θ+
2π) = cos(θ), and the same for sin. One of Abel and Jacobi’s main contributions
was the revelation that the elliptic functions should be extended to the complex
plane, where they are doubly periodic, meaning there is a two-dimensional lattice
of periods (see Fig. 8.2).

Our historical survey (Chap. 16) provides further details of this development,
including the method of deriving the addition formulas for sin and cos using
the original definition of cos as the inverse of

∫
dt/

√
1− t2. The more modern

approach to elliptic functions was developed by Weierstrass and Riemann. They
define elliptic functions directly as analytic functions, the sums of converging power
series. This is the approach we present in this book. We now briefly present an
analogous development of the circular functions and the number π . We will return
to this argument later in the book once we have developed the necessary machinery;
see p. 299.

Define, for all t ∈ R,

eit = 1+ it + (it)2

2! + (it)3

3! + (it)4

4! + · · ·

(where i is the imaginary root of −1). By the Weierstrass M-test, this series
converges for all t and gives a function f : R → C satisfying f ′ = if , where
by the derivative of g + ih we mean g′ + ih′. This is done by differentiating term
by term and comparing power series. Indeed, this map is the unique solution for
f ′ = if and f (0) = 1.

Now fixing s ∈ R and differentiating t �→ ei(s+t ), we see that this function
satisfies the same differential equation, and so equals eis · eit . That is, we obtain the
addition formula ei(t+s) = eit · eis , justifying the exponential notation.
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Define, for t ∈ R, cos t to be the real part of eit and sin t to be the imaginary part
of eit . That is,

eit = cos t + i sin t .

Separating the real and imaginary parts gives power series representations for sin
and cos, yielding sin′ = cos, cos′ = − sin, sin(−x) = − sin x and cos(−x) = cos x.
That is, e−it = eit is the complex conjugate of eit . The addition theorem shows that
for all t ,

|eit |2 = eit · eit = eit e−it = ei(t−t ) = 1,

that is, the range of t �→ eit is contained in the unit circle. This gives the
trigonometric formula cos2 t+ sin2t = 1. The addition formula for eit also gives the
addition formulas for sin and cos.

The power series representation of the cosine function starts with cos t = 1 −
t2/2! + t4/4! − · · · . When we plug in t = 2 we get cos 2 = 1 − 2 + 2/3 − · · · ,
where the rest is an alternating series. It follows that cos 2 < 0. Since cos 0 = 1, by
the intermediate value theorem, there is a number ρ ∈ (0, 2) such that cos(ρ) = 0.
A similar use of the Taylor series shows that sin ρ > 0, and so sin ρ = 1, that is,
eiρ = i. Hence e4iρ = i4 = 1. The addition formula shows that 4ρ is a period of
eit , and so of both sin and cos: for all t , ei(t+4ρ) = eit . We define π to be 2ρ. Euler’s
formula eiπ = i2 = −1 follows from this definition.

The fact that |(eit )′| = |eit | = 1 for all t shows that t �→ (cos t, sin t) is an
arc-length parameterisation of the circle, and this proves that indeed, 2π is the
circumference of the unit circle. So the two ways of defining π are equivalent.

The Isomorphism Theorem for the Circle
As with the rational parameterisation of the unit circle discussed above, the
development we just presented has several ingredients (such as analytic functions)
that are used in this book. Overall, we obtain an isomorphism theorem for the circle.
The map t �→ eit induces a bijection t + 2πZ �→ eit between the quotient R/2πZ

and the unit circle S which is an isomorphism of manifolds and abelian groups.
In the relevant chapters of the book, we shall, of course, provide precise

definitions of these notions. Informally, the map t + 2πZ �→ eit preserves addition
and proximity. We can add points in the quotient group R/2πZ; this is induced
by usual addition of real numbers. We can also “add” points on the unit circle, by
regarding them as complex numbers and using complex multiplication (rather than
addition). The addition formula above shows that t+2πZ �→ eit translates addition
in R/2πZ to complex multiplication in S, that is, it is a group isomorphism.

The real line is not only a group, but also has topological and differential
structure. We can measure the distance between points, and have a notion of
closeness based on open intervals; this gives rise to the notions of continuous and
differentiable functions. The unit circle locally resembles the real line. Informally,
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we say that when magnified, small portions of the circle look like a line (the
curvature becomes small). Slightly less informally, we can assign local coordinates
to points on the circle. One way to do this is to project onto lines (often, tangent
lines). For example, near the point (0, 1), the unit circle is close to the tangent y = 1.
The projection (x, y) �→ (x, 1) from the circle near (0, 1) to this line indicates that
we can assign the coordinate x to points (x, y) on the unit circle close to (0, 1). In
fact, we can do this for all such points satisfying y > 0, and we obtain a bijection
between part of the unit circle and the open interval (−1, 1). Based on this, we can
now define continuous and differentiable functions on that part of the unit circle, by
imagining that it is the interval (−1, 1).

By using other lines, we can cover the entire unit circle by “patches” that each
look like an open interval. For example, near the point (1, 0) we use the line x = 1
and assign the coordinate y to a point (x, y). The same point can be an element
of more than one patch, and so be assigned two different coordinates: for example,
if both x and y are positive, the point (x, y) can be assigned either x or y as a
coordinate, depending on whether we use the projection to the line y = 1 or the
line x = 1. This could lead to ambiguity as to what we mean by a continuous or
differentiable function on the unit circle. What we ensure is that the translation
between coordinates is itself differentiable. For example, the translation from x

to y on the unit circle is the map x �→ √
1− x2, which is indeed differentiable.

So in fact, it makes no difference which coordinate we choose in order to define
differentiability.

A similar process of assigning coordinates locally can also be performed on the
quotient R/2πZ. If I = (a, b) is a small open interval (say of length |I | = b− a <

2π) then the restriction to I of the quotient function x �→ x + 2πZ is injective,
and so can be used to assign coordinates to its image in R/2πZ. The translations
between different coordinate patches are now maps of the form x �→ x + 2πk

for some integer k, which are differentiable. Thus, like the unit circle, the quotient
R/2πZ acquires the structure of a differentiable 1-manifold. Having done this, we
can verify that the function t + 2πZ �→ eit is not only a group isomorphism, but
is also continuous and in fact differentiable in both directions, that is, it gives an
isomorphism of differentiable manifolds.

1.1.3 The Theory of the Donut, in a Nutshell

The situation for the donut is similar. Instead of the circle, we consider an algebraic
curve defined by a polynomial of degree 3; this is called a cubic curve. We also
assume that the curve is nonsingular, which roughly, means that it is smooth. As
is true of the unit circle, we can then show that there is a way to add points on the
curve (in what is known as the chord-and-tangent method). A little like the rational
parameterisation of the unit circle, this method uses the fact that typically, a line will
intersect a cubic curve at three points; this gives us a method of taking two points
on the curve and obtaining a third. For this method to work, we need to extend the
curve to the projective plane (we add “points at infinity”).
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As with the unit circle, by using projections onto lines, we can locally assign
coordinates to points on the curve, and so consider the curve as a differentiable
manifold. The new ingredient however is the use of complex numbers rather than
real numbers. We allow complex numbers to be the coordinates of points on the
curve (we look at pairs of complex numbers satisfying the polynomial equation).
This means that “lines” look like C rather than R, and the coordinates that we give
points are complex numbers rather than real numbers. So topologically, we get a
two-dimensional surface. Indeed we get a Riemann surface, one on which we can
perform complex differentiation.

We can understand the topological isomorphism of the quotient R/2πZ with
the circle as taking the closed interval [0, 2π] and “gluing” its two end-points; the
quotient process identifies all other closed intervals [2πk, 2π(k + 1)] with [0, 2π].
Intuitively, we obtain a circle by taking a piece of string and connecting its two end-
points. A donut shape (which in mathematics is called a torus) is obtained by taking
a square and gluing opposite sides to each other. This can be more easily envisioned
by first identifying two sides to obtain a cylinder, and then the resulting circles to
obtain the donut shape; see Fig. 1.2. This process of gluing also allows us to view
the torus as the topological product of two circles; see Exercise 8.111.

To obtain a group operation on the torus, we view it as the quotient of the complex
plane by a two-dimensional lattice �, for example the collection of all points n+ im

where n,m ∈ Z are integers; for a more general picture see Fig. 8.2. Then C can be
viewed as tiled by parallelograms, and in the quotient C/�, these parallelograms
are first identified with each other, and then opposite sides are glued—hence,

Fig. 1.2 A cylinder is obtained by gluing two opposite sides of a square; the torus is then obtained
by gluing the resulting opposite circles
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topologically,C/� is a torus. The lattice � is a subgroup of the additive group of the
complex numbers, and so the quotient C/� is a group. Also, we can use restrictions
of the quotient map z �→ z + � to small open balls, to assign local coordinates
to points on the torus. The translations between coordinate patches are shifts by
elements of the lattice �, and so the resulting structure is a Riemann surface.

Fixing a two-dimensional lattice � in the complex plane, Weierstrass used power
series (like our definition of the map t �→ eit ) to define a complex differentiable
function ℘ which has � as its set of periods (just as 2πZ is the set of periods of
t �→ eit ). Such a function is called elliptic. It induces a well-defined function on
the torus C/�, which is (complex) differentiable in the sense of Riemann surfaces.
The function ℘ satisfies a certain differential equation which means that we can
use it and its derivative to parameterise a complex, nonsingular cubic curve, often
denoted by E� . Because the curve is parameterised by an elliptic function, it is
called an elliptic curve.

Analogously to the circle, Poincaré and Weil observed that this parameterisation
induces an isomorphism between the torus C/� and the curve E� , which is
both a group isomorphism and an isomorphism of Riemann surfaces. This is the
isomorphism theorem. While the modern formulation was given by Weil, its origins
go back to Abel’s work on elliptic functions and their addition formulas.

1.2 Overview of the Book

1.2.1 Part I: Algebraic Curves

The first part of the book lays out the theory of algebraic curves over algebraically
closed fields, studies their tangents and intersections, and culminates in the group
structure of a nonsingular cubic curve.

Affine and Projective Curves
An algebraic curve is the collection of points (x, y) satisfying a polynomial equation
f (x, y) = 0. For example, the polynomial f (x, y) = x2 + y2 − 1 defines the unit
circle.

Our first task will be to connect divisibility of polynomials and containment
between the curves that they define. If f and g are polynomials and f divides g

(there is some h such that g = fh) then for all a and b, if f (a, b) = 0 then
g(a, b) = 0, so the curve f = 0 is contained in the curve g = 0. The converse
of this fact, called Study’s Lemma, requires certain assumptions and a tweaking
of the definitions. We must, for example, work over an algebraically closed field
(such as the complex numbers). Otherwise, we have many polynomials defining the
empty curve. We also need to consider curves with repeated components, which
leads us to the concept of a multiset: a set in which some elements can occur more
than once. To properly define algebraic curves as multisets, we break polynomials
up into irreducible factors (factors that cannot be further presented as nontrivial
products of other polynomials). If f = f1f2 · · · fk is an irreducible factorisation of
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a polynomial f , then we will define the curve f = 0 to be the multiset sum of the
curves f1 = 0, f2 = 0, . . . , fk = 0. If a point belongs to more than one component
fi = 0, then it belongs to the curve f = 0 more than once. Unique factorisation
in polynomial rings (Theorem 2.24) shows that this definition is unambiguous.
Multisets, unique factorisation, and other algebraic tools are discussed in Chap. 2;
in Chap. 3 we define algebraic curves and prove Study’s lemma. A key tool from
elimination theory, called the resultant, is introduced in that chapter as well, and is
used in the proof of Study’s lemma.

Projective geometry is in some ways simpler than usual Euclidean (or affine)
geometry: for example, in the projective plane, any two distinct lines intersect at
exactly one point. To achieve that, extra points “at infinity” are added to the affine
plane, where previously parallel lines can intersect. For example, all vertical lines
x = a intersect at the “vertical point at infinity”, and in general, each new point
at infinity corresponds to a direction of lines in the affine plane. In turn, we will
see that other curves also have some “missing points” at infinity which should be
added to the curve. For example, to get the projective closure of the affine parabola
y = x2 we add the vertical point at infinity; to the hyperbola xy = 1 we add both
the vertical and the horizontal points at infinity. We discuss projective geometry in
Chap. 4.

Intersections of Curves
The degree of an algebraic curve is the degree of the polynomial which defines
the curve. Bézout’s Theorem says that two projective curves of degrees n and m

respectively, with no common component, intersect in nm many points. This
generalises the fact that any two distinct lines in the projective plane intersect at
a unique point, as lines are the curves of degree 1. One of the consequences of
Bézout’s theorem is that a line intersects a cubic curve (a curve of degree 3) at 3
points. This allows us to define the chord-and-tangent group operation on an elliptic
curve.

A few caveats should be noted. We need to work in the projective plane: the
case of parallel lines is the simplest explanation why. We also need to work over an
algebraically closed field; this was already necessary for Study’s lemma. The third
point to note is that we need to count the intersections correctly. Some points of
intersection may coincide, so we need to count them more than once. An example is
the curves y = x2 and y = −x2, intersecting at the origin. If we perturb the curves
only a little, we see that we get two points of intersection near the origin, and so we
say that the curves intersect twice at the origin.

A special case is the intersection of curves with lines. Here we are drawn to
consider the tangents to a curve: the tangent to a curve at a point will intersect the
curve more than once at that point. We need to pay attention to singular points on
a curve, where a unique tangent is undefined, since all first-order partial derivatives
vanish at that point. It turns out that we can identify multiple tangents at singular
points (for example, the origin is singular on the “nodal” cubic curve (Fig. 3.3) and
the tangents there are y = x and y = −x). The number of such tangents is the
order of a point on a curve. Theorem 5.34 will give us a connection between orders
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of points and intersection multiplicities with lines: (a) The order of a point p on
a curve C is the least intersection multiplicity with C at p of any line passing
through p; (b) A line passing through p is a tangent to C at p if and only if the
multiplicity of intersection of that line with C at p is strictly greater than the order
of p on C.

Although this idea is intuitive, it is not easy to properly define intersection
multiplicities. In Chap. 5 we consider only the intersection of lines with curves,
using parameterisations of lines. Such parameterisations are harder to come by in
the general case, so in Chap. 6 we use elimination theory instead. In Chap. 15, armed
with analytic tools (in particular, Riemann surfaces for multi-valued functions), we
use parameterisations for the general case.

Elliptic Curves
An elliptic curve is a projective cubic curve that has no singular points. (As
mentioned above, this terminology is justified by several steps: elliptic integrals
measure the arc-length of curves, such as ellipses; elliptic functions are the inverses
of elliptic integrals; elliptic curves are parameterised by elliptic functions. Ellipses
are not elliptic curves, as they are conic, not cubic). In Chap. 7 we show that
the chord-and-tangent rule makes an elliptic curve an abelian group. By Bézout’s
theorem, every line intersects an elliptic curve C at three points (multiplicities
counted). The group operation on the curve is characterised by the requirement that
three collinear points on the curve add up to 0. The main challenge we will face
is proving associativity of this operation (Theorem 7.19); the technical difficulties
arise from tangent lines and repeated intersections.

We will also consider normal forms for elliptic curves, for which the identity
element is usually the vertical point at infinity; these normal forms will crop up
again in the third part of the book, when we consider the isomorphism theorem for
complex tori.

1.2.2 Part II: Riemann Surfaces

Riemann surfaces are connected surfaces on which we can locally assign coordi-
nates in a way that allows us to perform complex analysis. We define and study them
in Chap. 12. In Chaps. 8–11 we build up the required tools, encompassing topology,
and real and complex analysis.

Three Kinds of Surfaces
A surface is a mathematical object that locally looks like an open disc in the two-
dimensional plane. As discussed above, this means that we can cover it by “patches”,
each of which is equipped with a bijection between that patch and an open subset
of R2. These bijections are called charts. Each chart assigns local coordinates to the
points in the patch (its domain). Then we can use these coordinates to define what it
means for a function on the surface to be continuous, or differentiable.
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The catch is that the same point may be covered by different patches, and so
may be assigned different coordinates by different charts. So it is conceivable that
a function may be differentiable according to one system of coordinates, but not
according to the other. To avoid this problem, we need to examine the transition
function which tells us how to translate from one system of coordinates to the other.
Two charts are compatible if the transition function is nice, and “nice” depends on
the context.

First, in Chap. 8, we consider only topology: we only require the transition
functions to be continuous. This allows us to define what it means for a function on
the surface to be continuous, but more complicated notions are not yet available: it
is possible, for example, that a function on the surface is differentiable according to
one set of coordinates but not another. In Chap. 9 we make the extra requirement that
transition functions be continuously differentiable. This precludes the problem just
described, and so enables us to discuss differentiability of functions on our surfaces.
Finally, in Chap. 12, we require the transition functions to be analytic, and this
allows us to perform complex analysis on our surfaces. We call these holomorphic
surfaces.

Riemann surfaces are holomorphic surfaces which are connected: roughly, we
cannot neatly break them up into pieces without “tearing”. This notion is studied in
Chap. 9, along with the important class of simply connected spaces: spaces without
“holes”, such as the plane and the sphere, but not the punctured plane or the torus.

Analytic Functions
A function is analytic if it is the sum of a power series: f (x) =∑

anxn. This is the
sum of infinitely many functions, but in some sense, analytic functions are close to
polynomials. For example: a polynomial has only finitely many roots. An analytic
function may have infinitely many zeros, but they must be isolated from each other,
so on a bounded closed disc, for example, an analytic function can have only finitely
many zeros. Analytic functions are rigid, in the sense that their local behaviour—
their values on some small region—determine the entire function. Other functions,
even if they are infinitely differentiable, do not behave so rigidly.

Derivatives of complex-valued functions of a complex variable are defined in the
same way as the familiar derivative, except that in the ratio (f (z + h) − f (z))/h

we use the arithmetic of complex numbers, and the limit as h → 0 is taken over
all complex numbers h close to 0. The amazing fact about complex differentiation
is that every complex differentiable function is analytic. Thus, for example, the
derivative of a complex differentiable function is itself differentiable! This yields
a beautiful theory, with results such as a the open mapping theorem, stating that
analytic functions map open sets to open sets.

Real Analysis, Complex Analysis, and Path Integrals
The principal tool used to show that every (continuously) complex-differentiable
function is analytic (Theorem 11.67) is Cauchy’s Integral Formula, which states
that the value of a complex differentiable function at a point p is determined by its
values along a path that goes around p, via an integration process of the function
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along that path. Thus, complex analysis relies heavily on the concept of the path
integral (also called a line integral).

The complex plane C is naturally identified with the real plane R
2, and so we

think of functions f : C → C also as vector fields f : R2 → R
2. Seen in this

light, the complex derivative is a special case of the multi-variable real derivative;
the precise relationship is given by the Cauchy-Riemann Equations. Similarly, the
complex path integral can be expressed as the combination of real path integrals (see
Proposition 11.13). We thus review real differential calculus in Chap. 9, and devote
Chap. 10 to studying real path integrals and vector fields. Throughout, though, we
observe other connections between topology and analysis. For example, the purely
topological concept of the winding number of a path around a point (how many
times it goes around the point), introduced in Chap. 9, can be characterised using
either real (Proposition 10.32) or complex (Proposition 11.21) path integrals. In
Chap. 11 we bring everything together and present the basics of complex analysis.

Finally, Riemann Surfaces
In Chap. 12 we define Riemann surfaces. We first concentrate on the Riemann
sphere, which is obtained by adding a “pole” to the complex plane. Equivalently, this
is the “point at infinity” which is added to the complex affine line; in other words,
the Riemann sphere is identified with the projective line over the complex numbers.
A complex-differentiable map between Riemann surfaces is called holomorphic,
and a holomorphic map to the Riemann sphere is called meromorphic. Thus, a
meromorphic function is like an analytic function, except that we also allow an
“infinite value”; so a function such as z �→ 1/z can be considered defined at 0 as
well.

Studying meromorphic functions also yields results about analytic functions
(functions to C); the calculus of residues, counting zeros and poles (points mapped
to ∞) of meromorphic functions, results in the open mapping theorem mentioned
above.

In addition, in Chap. 12, we investigate compact Riemann surfaces. We examine
the Riemann surfaces for the logarithm and the nth roots; these allow us to deal
properly with multi-valued functions, and are used in Chap. 15 to parameterise
curves near singular points. We also introduce meromorphic differentials on Rie-
mann surfaces. These generalise differential forms that are used in Chap. 10 for
integration along paths, and are used to invert the isomorphism theorem in Chap. 14.

1.2.3 Part III: Curves and Surfaces

The third part of the book ties the first two together. In Chap. 13 we show that
nonsingular curves in the complex plane are Riemann surfaces. The main tool used
is the analytic implicit function theorem. We also review intersection multiplicities
of lines with curves; we see that over the complex numbers, we can recover our
original intuition that intersection multiplicity is determined by perturbing the line
a little.
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In Chap. 14 we prove the isomorphism theorem for complex tori and elliptic
curves. We start with elliptic functions, which we define and analyse in general,
and then proceed to our main example: Weierstrass’s function ℘. We verify that ℘

and its derivative parameterise an elliptic curve, and show that the induced map
is an isomorphism between a complex torus and the curve, which preserves both
algebraic and analytic structure. We then prove the inversion theorem (also known
as the uniformisation theorem for elliptic curves), showing the reverse: every elliptic
curve is obtained in this way.

As mentioned, in Chap. 15 we return to intersection multiplicities using param-
eterisations of curves. We pass between formal power series and the analytic
functions that they define, except that at singular points, we need to choose nth roots
as well; this brings into play fractional power series, and the Riemann surfaces for
roots. Our study allows us to isolate separate places of a curve near a singular point,
and to show that these have implicit definitions.

Finally, in Chap. 16, we provide a brief history of elliptic functions, and illustrate
their historical development by looking once again at the circular functions.

1.3 Preliminaries, and Some Notation

We will strive to keep notation standard, and to point out divergence from common
practice. We assume basic set theory. For example, we use A ∩ B to denote the
intersection of two sets A and B, A ∪ B is their union, A \ B is the set-theoretic
difference (the elements of A which are not in B). If A is a collection of sets, then⋃A is the union of all the sets in A; similarly we use

⋂A. The domain of a
function f , denoted dom f , is the collection of all possible inputs for f : those x

for which f (x) is defined. The range (or image) of f , denoted by rangef , is the
collection of all the outputs of f . A function is onto a set Y (surjective) if Y =
rangef . The pointwise image of a set Y under a function f , denoted by f [Y ], is
the collection of all outputs of f on inputs from Y : f [Y ] = {f (x) : x ∈ Y }. We do
not assume that Y ⊆ dom f (see Remark 8.7). The pointwise pullback of a set Y

under a function f , denoted by f−1[Y ], is the collection of all pre-images by f of
the outputs in Y : f−1[Y ] = {x : f (x) ∈ Y }. We let f�X denote the restriction of f

to a set X; so f [X] is the range of f �X. The composition of two functions f and g

is denoted by g ◦ f ; we apply f first, that is, (g ◦ f )(x) = g(f (x)). We do not
assume that range f ⊆ dom g (again, see Remark 8.7), although in many instances
this will be the case.

We assume the reader is familiar with notions such as a function being 1–1
(injective); bijections between sets; and equivalence relations and their equivalence
classes. A set is countable if it is finite, or there is a bijection between it and the set
N of natural numbers. The set Z of integers (positive and negative whole numbers,
and 0) is countable, as is the set Q of rational numbers (fractions of integers). On the
other hand the set R of real numbers andC of complex numbers are uncountable (not
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countable). We assume some familiarity with basic operations on complex numbers
(addition, multiplication, conjugation, inverses). We assume basic combinatorics,
for example, that

(
n
k

) = n!/(k!(n − k)!), where
(
n
k

)
is the number of k-element

subsets of an n-element set.
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Algebraic Curves



2Algebra

In this chapter we discuss the algebraic tools that we will need. Some of the
presentation—for example, of abelian groups, or Gauss’s lemma—will be fairly
standard, and so at times we give only sketches of proofs, with references to other
texts. In contrast, we expect that notions such as rings of formal power series may
be new to the reader, so we present them in greater detail. When discussing unique
factorisation, we introduce the notion of a multiset, which will be useful throughout
the book. We also develop linear algebra and the determinant over integral domains
which may fail to be fields.

2.1 Polynomials and Power Series

Throughout this book, we attempt to be as concrete as possible. For example, we
will not define general vector spaces over a field F , rather, we will just deal with
subspaces of Fn. However, we need to start somewhere. Informally speaking, an
integral domain is a generalisation of number systems such as the integers, rationals
or real numbers: objects that can be added and multiplied. More formally, an integral
domain consists of a set R equipped with two binary operations ·R and +R, one
unary operation −R, and two distinct designated elements 0R and 1R, provided that
it satisfies the following conditions:

Associativity: for all a, b and c in R, a+R(b+Rc) = (a+Rb)+Rc and a·R(b·Rc) =
(a ·R b) ·R c.

Commutativity: for all a and b in R, a +R b = b +R a and a ·R b = b ·R a.
Distributivity: for all a, b and c in R, a ·R (b +R c) = (a ·R b)+R (a ·R c).
Identity elements: for all a ∈ R, a +R 0R = a and a ·R 1R = a.
Additive inverses: for all a ∈ R, a +R (−R a) = 0R.
No zero divisors: for all a, b ∈ R, if a ·R b = 0R then a = 0R or b = 0R.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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If we omit the last condition (no zero divisors), then we get the notion of a
commutative ring with unity. We will not really use more general kinds of rings
(non-commutative rings, or rings without a multiplicative identity element) so we
will just call them rings. The standard examples are number systems such as Z, Q, R
and C (equipped with the usual addition, multiplication, negation, and 0 and 1). The
latter three are also fields: they are integral domains satisfying the extra property of
having multiplicative inverses for nonzero elements:

Multiplicative Inverses: for all a ∈ R, if a �= 0R then there is some b ∈ R such
that a ·R b = 1R.

Another standard example is Z/(n) (for n � 2), the ring of integers modulo n,
equipped with addition, negation and multiplication mod n. Here is another:

Exercise 2.1 Let R = Z
2 = Z×Z be the collection of all ordered pairs of integers.

For (a, b), (c, d) ∈ R, let

• (a, b)+R (c, d) = (a + c, b + d) and −R(a, b) = (−a,−b); and
• (a, b) ·R (c, d) = (ac+ 2bd, bc+ ad).

Also let 0R = (0, 0) and 1R = (1, 0). (a) Show that (R; +R,−R, ·R, 0R, 1R) is a ring.
(b) Show that there is some (a, b) ∈ R such that (a, b) ·R (a, b) = (2, 0). (c) Show
that R is an integral domain. (Hint:

√
2 is irrational.) «

There are many ways of manufacturing rings and integral domains from existing
ones. The two main ones we will use are forming rings of polynomials and formal
power series. The former may be familiar: a (formal) polynomial with coefficients
from a ring R is an object of the form

a0 + a1x + a2x
2 + · · · + adxd

where a0, a1, . . . , ad are elements of R. We usually think of them as functions (and
we will get to that later this chapter), but right now we just think of them as formal
objects, and what interests us right now is that we can add and multiply them: for
example, f = x2 + 2x + 1 and g = x3 − 3x are both polynomials with coefficients
in Z; f + g = x3 + x2 − x + 1 and fg = x5 + 2x4 − 2x3 − 6x2 − 3x. Formal
power series are similar, except that we allow “infinite sums”.

Suppose that (R; +R, ·R,−R, 0R, 1R) is a ring. Let x be what we call an indeter-
minate or a variable. A formal power series in x with coefficients in R is an object
of the form

a0 + a1x + a2x
2 + a3x

3 + · · · ,

(usually abbreviated as
∑

k∈N akxk), where a0, a1, a2, . . . is an infinite sequence of
elements of R; these are the coefficients of the formal power series. Two formal
power series

∑
akxk and

∑
bkxk are equal when a0 = b0, a1 = b1, a2 = b2,. . . .

The collection of all formal power series with coefficients in R is denoted by Rvxw.



2.1 Polynomials and Power Series 19

On this collection we define a ring structure. Let α =∑
akxk and β =∑

bkxk be
two formal power series. We define:

α +Rvxw β = (a0 +R b0)+ (a1 +R b1)x + (a2 +R b2)x
2 + · · · ,

−Rvxw α = (−R a0)+ (−R a1)x + (−R a2)x
2 + · · · ,

α ·Rvxw β = (a0 ·R b0) +
((a0 ·R b1)+R (a1 ·R b0)) x +
((a0 ·R b2)+R (a1 ·R b1)+R (a2 ·R b0)) x2 + · · · ,

0Rvxw = 0R + 0Rx + 0Rx2 + · · · , and

1Rvxw = 1R + 0Rx + 0Rx2 + 0Rx3 + · · ·

In particular, formal power series are multiplied like polynomials, by distributing
the product and “collecting terms”; the point is that for each k there are only finitely
many pairs i and j such that xixj = xk .

Exercise 2.2 Show that in Zvxw, (1− x) · (1+ x + x2 + x3 + · · · ) = 1. «

2.1.1 The Category of Rings

By identifying a ∈ R with the “constant” series a+0Rx+0Rx2+· · · we think of R

as a subring of Rvxw. We need to define this formally.
A ring S is a subring of a ring R if S ⊆ R and the ring structure on S is the

one inherited from the ring structure on R. Namely, 0S = 0R, 1S = 1R, and for
all a, b ∈ S, a +S b = a +R b, a ·S b = a ·R b and −Sa = −Ra. For example, the
integers Z form a subring of the rationals Q, which form a subring of the reals R:
3+ 5 = 8 whether we think of these numbers as integers, rationals or reals.

A subring of an integral domain is an integral domain, but a subring of a field is
not necessarily a field. If R is a ring, S ⊆ R, 0R, 1R ∈ S and S is closed under the
operations of R—for all a, b ∈ S, a +R b ∈ S, a ·R b ∈ S and −Ra ∈ S—then S,
equipped with the restrictions to S of the operations of R, is a ring, and is therefore
a subring of R.

Exercise 2.3 Let ρ be a complex number such that ρ2 ∈ Z (for example, ρ = i,
ρ = √

2 or ρ = i
√

2). Let Z[ρ] = {a + ρb : a, b ∈ Z}. (a) Show that Z[ρ] is a
subring of C. (b) Show that Z[ρ] is minimal in the following sense: if S is a subring
of C such that ρ ∈ S, then Z[ρ] ⊆ S.1 «

1 An element of Z[i] is called a Gaussian integer.
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Let R and S be rings. A ring homomorphism from R to S is a function ψ : R → S

such that:

• ψ(0R) = 0S and ψ(1R) = 1S; and
• for all a, b ∈ R, ψ(a +R b) = ψ(a) +S ψ(b), ψ(a ·R b) = ψ(a) ·S ψ(b), and

ψ(−R a) = −S ψ(a).

Ring homomorphisms are the structure-preserving functions. An example is the
map m �→ m (mod n), which is a ring homomorphism from Z to Z/(n). The
composition of ring homomorphisms is a ring homomorphism. The image of a ring
homomorphism is a subring of the range.

Remark 2.4 The definitions we gave of subrings and ring homomorphisms are
somewhat non-standard, in that they require that 1S = 1R (for subrings) and that
ψ(1R) = 1S (for homomorphisms). These conditions are often dropped, giving
examples such as the even integers being a subring of Z (a ring without unity),
or the map m �→ 2m being a ring homomorphism from Z to Z. On the other hand,
the conditions ψ(0R) = 0S and ψ(−R a) = −S ψ(a) follow from the other ones. «

An isomorphism is a homomorphism which is also a bijection: one-to-one
(injective) and onto (surjective). Two rings R and S are isomorphic if there is an
isomorphism between them. We write R ∼= S. Two rings being isomorphic means
that they “are the same” ring, except that the elements are labelled differently. The
inverse of an isomorphism is an isomorphism, and the composition of isomorphisms
is an isomorphism. This implies that being isomorphic is an equivalence relation.

Exercise 2.5 Let R be the ring from Exercise 2.1, and define ψ : R → R by letting
ψ(a, b) = a + b

√
2. Show that ψ is an isomorphism from R to the subring Z[√2]

(Exercise 2.3) of R. «

An embedding of R into S is an isomorphism from R to a subring of S.
Equivalently, it is a one-to-one homomorphism from R to S. A homomorphism
ψ : R → S is an embedding if and only if for all nonzero a ∈ R, ψ(a) �= 0S .

Proposition 2.6 The map a �→ (a + 0Rx + 0Rx2 + · · · ) is an embedding of R

into Rvxw.

Proof For preservation of multiplication, note that for all k > 0, the coefficient
of xk in the product of a + 0Rx + 0Rx2 + · · · and b + 0Rx + 0Rx2 + · · · is a · 0+
0 · 0+ · · · + 0 · 0+ 0 · b = 0R. ��

We identify R with its image under this embedding, which means that we
consider R as a subring of Rvxw. We also identify the variable x with the formal
power series 0 + 1 · x + 0 · x2 + 0 · x3 + · · · . This is justified because according
to our definition of multiplying formal power series, x · x = 0 + 0 · x + 1 · x2 +
0 · x3+ 0 · x4+ · · · , and so can be rightfully named x2, as defined above. Similarly
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x3 = 0+ 0 · x + 0 · x2 + 1 · x3 + 0 · x4 + 0 · x5 + · · · . We call formal power series
of the form axk monomials.

Proposition 2.7 If R is an integral domain then so is Rvxw.

Proof Let α = ∑
akxk and β = ∑

bkxk be nonzero elements of Rvxw. This
means that there are m and n such that am �= 0R and bn �= 0R. Choose least
such m and n. The coefficient of xm+n in αβ is am ·R bn, which is nonzero, and so
α ·Rvxw β �= 0. ��

Simplifying Notation
If no confusion will ensue, we drop the subscript R from the operations and
designated elements of R, so we write a+b instead of a+Rb, ab instead of a ·R b and
so on, even if +R and ·R are not the usual operations of addition and multiplication
on numbers.

We let a − b abbreviate a + (−b).
We drop parentheses and let ·R take precedence over +R; so for a, b and c in R,

a + bc means a +R (b ·R c), not (a +R b) ·R c.
For a ∈ R we let a0 = 1R, a1 = a, and in general, for n � 1, an = a · an−1 be

the result of multiplying (in the ring R) n many a’s.

Derived Properties
Properties shared by all rings are derived from the axioms from p. 17. We list some.

Lemma 2.8 Let R be a ring, and let a, b, c ∈ R. (a) If a + b = 0 then b = −a.
(b) −(−a) = a. (c) If a + b = a + c then b = c. (d) a · 0 = 0. (e) (−a)b =
a · (−b) = −(ab). (f) a(b− c) = ab − ac.

Proof Most are easy and are left as an exercise. For (d), note that a ·0 = a ·(0+0) =
a · 0+ a · 0, and subtract. ��

2.1.2 Back to Formal Power Series

Infinite Sums
We have defined formal power series to be expressions of the form a0 + a1x +
a2x2 + . . . , and explained how to add, subtract and multiply these objects. This
doesn’t quite explain the notation: is this really an infinite sum of monomials?

Infinite sums, in general, cannot be defined, since it is not clear how to add
infinitely many elements of the ring R. Under some circumstances, though, we can.
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Suppose, for example, that

α0 = a0,0 + a0,1x + a0,2x
2 + a0,3x

3 + a0,4x
4 + · · · ,

α1 = a1,1x + a1,2x
2 + a1,3x

3 + a1,4x
4 + · · · ,

α2 = a2,2x
2 + a2,3x

3 + a2,4x
4 + · · · ,

is an infinite sequence of formal power series, with the first m coefficients of αm

being 0. Then we can define

∑
αm = a0,0+

(a0,1 + a1,1) x+
(a0,2 + a1,2 + a2,2) x2 + · · · ;

in general, we can define
∑

m αm if for every k, for all but finitely many m, the
coefficient of xk in αm is 0R. In particular, if αm = amxm, then

∑
αm = a0+ a1x+

a2x2 + · · · , so this gives the infinite sum notation some formal sense.

Several Variables
Let x = (x1, . . . , xn) be a tuple of distinct indeterminate variables. A formal power
series in x with coefficients in a ring R is an object of the form

∑

(k1,k2,...,kn)∈Nn

ak1,...,knx
k1
1 x

k2
2 · · · xkn

n

where ak1,...,kn ∈ R. For example, with two variables x and y, elements of Rvx, yw
are of the form

a0,0 + a1,0x + a2,0x
2 + a3,0x

3 + · · ·
+ a0,1y + a1,1xy + a2,1x

2y + a3,1x
3y + · · ·

+ a0,2y
2 + a1,2xy2 + a2,2x

2y2 + a3,2x
3y2+ · · ·

...

For brevity we write, for k = (k1, . . . , kn) ∈ N
n, akx

k for akx
k1
1 x

k2
2 · · · xkn

n . As
expected, two formal power series

∑
akx

k and
∑

bkx
k are equal when ak = bk

for all k ∈ N
n.

Addition and multiplication of formal power series with several variables works
as one would expect:

∑
akx

k +
∑

bkx
k =

∑
(ak + bk)x

k;
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negation is similar. Powers are additive in multiplication. Using the notation
(k1, . . . , kn)+ (m1, . . . ,mn) = (k1 +m1, . . . , kn +mn), in brief

(∑
akx

k
)
·
(∑

bkxk
)
=

∑

k∈Nn

∑

i+j=k

(aibj )xk,

Noting that for each k there are only finitely many pairs of tuples (i, j) such that
i + j = k.

As with one variable, we obtain a ring Rvxw and an embedding of R into Rvxw
mapping a ∈ R to the “constant” formal power series a (with zero coefficient
for xk for k �= 0). We similarly refer to the elements x1, x2, etc. A monomial is
a power series of the form axi , that is, the product of a constant with finitely many
indeterminates.

If R is an integral domain then so is Rvxw. This can also be seen by induction on
the number of variables, using the fact that

Rvx, yw ∼= Rvxwvyw

—via the map
∑

ak,mxkym �→∑
m

(∑
k ak,mxk

)
ym—and similarly for more vari-

ables.

2.1.3 More on Polynomials

We can now identify polynomials as a special kind of power series: those which
are the sum of finitely many monomials, that is, those which have only finitely
many nonzero coefficients. The collection of polynomials in x with coefficients
from R is denoted by R[x]. This is a subring of Rvxw, as the sum and product of
polynomials is a polynomial. The embedding of R into Rvxw is actually into R[x]
(every constant power series is a polynomial); as above, we identify a ∈ R with the
constant polynomial a, so we consider R as a subring of R[x]. If R is an integral
domain then so is R[x] (recall that a subring of an integral domain is an integral
domain). The isomorphism between Rvx, yw and Rvxwvyw restricts to a bijection
between R[x, y] and R[x][y], so the two rings are isomorphic by this map.2

The Degree of a Polynomial
The degree of a monomial ax

k1
1 x

k2
2 · · · xkn

n is k1 + k2 + · · · + kn. The degree of a
nonzero polynomial f is the maximum of the degrees of the monomials appearing
in f . It is denoted by deg f . Note that this only makes sense for polynomials; other
formal power series will have monomials of unbounded degrees.

2 Note that Rvxw[y] is a proper subring of R[y]vxw; the latter allows unbounded powers of y as the
coefficients of powers of x vary.
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The zero polynomial has degree −∞. The nonzero polynomials of degree 0 are
the nonzero constant polynomials, i.e., the elements of R \ {0}. A polynomial of
degree 1 is called linear. There are more such names; quadratic for degree 2, cubic
for degree 3, quartic for degree 4, quintic for degree 5, and so on.

In one variable, the degree of a nonzero polynomial f = ∑
akxk is the greatest

number d such that ad �= 0. The coefficient ad is called the leading coefficient of f .
By considering leading coefficients we observe:

Proposition 2.9 Suppose that R is an integral domain. Let f, g ∈ R[x].
(a) deg(f + g) � max{deg f, deg g}. If deg f �= deg g then deg(f + g) =

max{deg f, deg g}.
(b) deg(fg) = deg f + deg g. ��

In the latter equality, we agree that −∞+ d = −∞ for all d ∈ N.
For polynomials of several variables, we can measure the degree of a polynomial

relative to only some of the variables present; for a polynomial f and a tuple z

of indeterminates, we write degz f for the degree of f where z are considered
variables; other indeterminates may appear in the coefficients. For example, let
f = x2y3+x4. Then degx,y f = 5, degx f = 4 and degy f = 3.3 For the analogue
of Proposition 2.9 for more than one variable see p. 75.

Polynomial Substitution
As discussed above, in general rings R, it is not clear how to sum an infinite series
of elements. Thus, formal power series are just that—formal objects; they do not
define functions on R. Even when infinite sums are sometimes defined, like in R,
some power series define functions on all of R, some on an interval, some only
converge at 0. This will be discussed at length in the second part of the book.

Polynomials, however, do define functions: if f = a0+ a1x + . . . adxd , then the
function determined by f maps b ∈ R to a0 + a1b + · · · + adbd , where addition
and multiplication is computed, of course, in R. We can generalise this to more
than one variable. If R is a ring, x = (x1, . . . , xn) is a tuple of indeterminates, and
f = ∑

akx
k is a polynomial in R[x], then f defines a function from Rn to R

(which we also denote by f ) by mapping b ∈ Rn to f (b) =∑
k∈Nn akbk . This is a

finite sum since f is a polynomial.
If f = a is a constant (an element of R), then f (b) = a for all b ∈ Rn, i.e.,

f defines a constant function. If f = xi then f (b1, b2, . . . , bn) = bi (this is a
projection function). We note that the function defined by f depends not only on f

but also on the ordering we imposed on the variables. For example, the polynomial
f = y−x2 defines the function (a, b) �→ b−a2 if the variables are ordered as (x, y),
but defines the function (a, b) �→ a − b2 if they are ordered as (y, x); this, even

3 The point is that R[x, y] ∼= R[x][y] ∼= R[y][x], but degrees in these rings are computed
differently.
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though R[x, y] and R[y, x] are isomorphic, and we really have been considering
them as the same ring.

Remark 2.10 Note that like formal power series, we treat polynomials as formal
objects which we add and multiply; they are not identical to the functions that they
define. In fact, if R is finite, then there are only finitely many functions from R

to R, but R[x] is infinite; many polynomials define the same function from R to R.
However, in the cases that we will eventually deal with, R will be an infinite integral
domain, and in this case, we will show that two distinct polynomials in R[x] must
define different functions (see Proposition 2.18). For a concrete counter-example
when R is finite, see Exercise 2.71. «

For a fixed b ∈ Rn, the map f �→ f (b) is a ring homomorphism from R[x] to R.
If S is a subring of R then S[x] is a subring of R[x] and so the restriction of this
map to S[x] is a ring homomorphism from S[x] to R. In fact:

Proposition 2.11 If S is a subring of R and b ∈ Rn, then f �→ f (b) is the unique
ring homomorphism from S[x] to R which is the identity on S and maps each xi

to bi . ��

Remark 2.12 We can substitute polynomials into other polynomials. Let f ∈ R[x];
let y = (y1, y2, . . . , ym) be another sequence of variables (not necessarily disjoint
from x). We can substitute an n-tuple g = (g1, g2, . . . , gn) of polynomials in R[y]
into f , obtaining the polynomial f (g) ∈ R[y]. Substitution is transitive: for b ∈
Rm, f (g)(b) = f (g(b)) (where as expected g(b) = (g1(b), . . . , gn(b))). Formally,
this can be proved using Proposition 2.11: fixing g and b, both functions f �→
(f (g))(b) and f �→ f (g(b)) are homomorphisms from R[x] to R extending the
identity on R and mapping each xi to gi(b). «

2.2 Unique Factorisation

We turn to the study of factorisation, mainly in polynomial rings.

2.2.1 Divisibility in Integral Domains

Let R be an integral domain. For nonzero a, b ∈ R, we say that a divides b in R

(and write a�b) if b = ac for some c ∈ R. The ring matters: 2 does not divide 5 in
the integers Z but as elements of the rationals Q, 2 does divide 5. Indeed in a field
divisibility is not interesting: all nonzero elements divide each other.

The divisibility relation is reflexive and transitive (it is a pre partial ordering).
This implies that the relation “a divides b and b divides a” is an equivalence relation
on R. This equivalence relation is called association and is denoted simply by a ∼ b
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(or∼R, when more than one ring is considered). In the integers, each integer n is an
associate of itself and of −n.

Another way to characterise association is by considering units. A unit of R is an
element which has a multiplicative inverse in R. In other words, an element which
divides 1. The collection of units of R is denoted by R∗. For example Z∗ = {−1, 1}.
The collection of units contains 1 and is closed under taking products. R is a field
exactly when R∗ = R \ {0}. R∗ itself is an association class—an equivalence class
of the association relation. This follows from the fact that 1 divides every element
of R.

Exercise 2.13 By Exercise 2.2, 1− x and 1+ x + x2 + x3 + · · · are units of Zvxw.
Generalise this as follows. Let R be an integral domain. Show that a formal power
series a0 + a1x + a2x2 + · · · in Rvxw is a unit if and only if a0 has a multiplicative
inverse in R. «

The following fact is simple and useful.

Exercise 2.14 Two elements a and b of R are associates if and only if there is some
unit u ∈ R∗ such that a = bu. «

Remark 2.15 The divisibility relation induces a partial ordering (transitive, reflex-
ive, antisymmetric) on the collection of association classes: the class [a]∼ of a

divides the class [b]∼ of b if a divides b; this does not depend on the representatives
chosen. «

Divisibility in R[x]
Again we assume that R is an integral domain. If f, g ∈ R[x] and f divides g

(in R[x]), then deg f � deg g; this follows from Proposition 2.9(2). Hence if f ∼ g

then deg f = deg g. It follows that all units of R[x] are constants, and in fact,
(R[x])∗ = R∗; for a, b ∈ R, a divides b in R if and only if a divides b in R[x]. Two
polynomials f = a0 + a1x + · · · adxd and g = b0 + b1x + · · · bexe are associates
if and only if deg f = deg g and there is some constant unit λ ∈ R∗ such that
b0 = λa0, b1 = λa1, . . .

Again let f = a0 + a1x + · · · adxd and g = b0 + b1x + · · · bexe in R[x] (with
ad, be �= 0). Suppose that d � e. If be divides ad , say ad = bec, then we can subtract
cxd−eg from f to obtain another polynomial f1 of degree strictly smaller than f .
We replace f by f1 (but keep g) and do the same, and obtain a sequence f2,f3,. . . .
Either we get stuck at some point because the leading coefficient of g does not divide
the leading coefficient of some fi ; or we obtain a polynomial fi of degree smaller
than e = deg g. In the latter case, we note that all the polynomials we subtracted
were multiples of g; rearranging, we can write f = qg + r with deg r < deg g. We
call q the quotient and r the remainder obtained by dividing f by g. Note that these,
if exist, are unique: if q0g + r0 = f = q1g + r1 then subtracting, g � (r0 − r1) and
as deg(r0 − r1) < deg g it must be that r0 = r1, whence q0 = q1 as well. Thus, g

divides f if and only if r = 0. This process of long division is guaranteed to succeed
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if be, the leading coefficient of g, divides all the nonzero elements of R, i.e., if it is
a unit. There are two special cases:

• When R is a field (so every nonzero b ∈ R is a unit);
• be = 1.

In the second case we call g a monic polynomial.
Let f ∈ R[x]. An element a ∈ R is a root of f if f (a) = 0 (recall that each

formal polynomial defines a function R → R by substitution). For any a ∈ R,
dividing f by the monic polynomial x − a we obtain a quotient q and remainder r;
since deg r < deg(x − a) = 1 we see that r ∈ R is a constant. We substitute a

into the equation f = (x − a)q + r (formally, this uses Proposition 2.11). Since r

is a constant, r(a) = r and we get r = r(a) = f (a) − (a − a)q(a) = f (a). We
conclude:

Theorem 2.16 An element a of an integral domain R is a root of f ∈ R[x] if and
only if x − a divides f in R[x]. The number of roots of any nonzero polynomial
f ∈ R[x] is at most deg f .

The last part follows by induction on deg f : if a is a root of f , then f = (x−a)g

for some g ∈ R[x]; if b is another root of f , then it must be a root of g (using the
fact that R is an integral domain). And deg g = deg f − 1 (Proposition 2.9).

Exercise 2.17 Show that if R is an infinite integral domain then distinct
polynomials in R[x] define distinct functions from R to R. (Contrast with
Exercise 2.71.) «

In more than one variable, polynomial equations f (x1, . . . , xn) = 0 can have
infinitely many solutions, so certainly an analogue of Theorem 2.16 for polynomials
in several variables is false. The following is a weaker statement, however it entails
Exercise 2.17 in several variables: if x is an n-tuple of variables and R is an infinite
integral domain, then distinct polynomials in R[x] define distinct functions from Rn

to R.

Proposition 2.18 Let R be an infinite integral domain, and let x be an n-tuple of
variables. For every nonzero polynomial f ∈ R[x] there is some tuple b ∈ Rn such
that f (b) �= 0.

Proof We prove the proposition by induction on n. For n = 1 it follows
immediately from Theorem 2.16, using the fact that R is infinite. Let n > 1, and
suppose that the proposition holds for n− 1. Let f ∈ R[x] be nonzero. Identifying
R[x] with R[x1, . . . , xn−1][xn] we write f = f0 + f1 · xn + · · · + fd · xd

n , where
f0, f1, . . . , fd ∈ R[x1, . . . , xn−1] and d = degxn

f (so fd �= 0). By induction,
there is some tuple a ∈ Rn−1 such that fd(a) �= 0.
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The polynomial f (a, xn) = f0(a) + f1(a) · xn + · · · + fd(a) · xd
n in R[xn]

is nonzero, as fd(a) �= 0. By the case n = 1, there is some b ∈ R such that
f (a, b) �= 0, which completes the proof. ��

An inspection of the proof of Proposition 2.18 shows that as the set of potential
inputs, we do not need to take all of R. The same proof shows:

Proposition 2.19 Let R be an integral domain, and let S ⊆ R be infinite. Let x be
an n-tuple of variables. For every nonzero polynomial f ∈ R[x] there is some tuple
b ∈ Sn such that f (b) �= 0. ��

2.2.2 Unique Factorisation Domains

A nonzero element a of an integral domain R is irreducible if it is not a unit, but it
is not the product of two non-units. That is, if a = bc, then at least one of b or c are
units. In other words, a is irreducible if whenever b � a then b is a unit or b ∼ a.
Irreducibility is invariant under association: if a ∼ b then a is irreducible if and only
if b is.4 In Z the irreducible elements are the prime numbers p and their additive
inverses−p. Non-unit elements which are not irreducible are called reducible.

Exercise 2.20 Let F be a field. Show that every linear polynomial f ∈ F [x] is
irreducible. On the other hand, show that 2x is reducible in Z[x]. «

Exercise 2.21 Let F be a field. The order of a formal power series f = ∑
anxn,

denoted by ord(f ), is the least k such that ak �= 0; in other words, it is the greatest k

such that xk divides f . We let ord(0) = ∞. By Exercise 2.13, f is a unit of F vxw if
and only if ord(f ) = 0.

(a) Show that for f, g ∈ F vxw we have ord(fg) = ord(f )+ ord(g) and ord(f +
g) � min{ord(f ), ord(g)}, with equality whenever ord(f ) �= ord(g).5 (b) Show that
two formal power series f, g ∈ F vxw are associates if and only if ord(f ) = ord(g).
(c) Show that up to association, x is the unique irreducible element of F vxw.6 «

As indicated in the overview chapter, we will be interested in factoring polyno-
mials into irreducible components, and will want to ensure that this can be done
in essentially only one way. This is analogous to the integers: the fundamental
theorem of arithmetic says that every nonzero natural number is the product of
prime numbers, and that this prime decomposition is unique. Unique in what sense?
12 = 2 · 2 · 3 = 2 · 3 · 2, so there is not a unique sequence of prime numbers whose

4 In the language of partial ordering, a is irreducible if [a]∼ is minimal above R∗.
5 We state that ∞ > n for all n and that ∞+ n = ∞+∞ = ∞ for all n.
6 We say that F vxw is a local ring.
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product is 12; the decomposition is unique up to permutation. In other words, there
is a unique multiset of primes whose product is 12.

Multisets
As mentioned in the introduction, a multiset is like a set, except that we allow
elements to appear more than once. In contrast with sequences, the order of
appearance doesn’t matter. There is no agreed notation for multisets. In this book
we will use square brackets: [2, 2, 3] is the multiset in which 2 appears twice and
3 appears once. So [2, 2, 3] = [2, 3, 2] but [2, 2, 3] �= [2, 3] (whereas for sets,
{2, 2, 3} = {2, 3}). For a multiset A and an element a of A, we let ma(A), the
multiplicity of a in A, be the number of times a appears in A. We will only allow
finite multiplicities. ma(A) = 0 means that a does not appear in A. Every set is a
multiset; in a set, all multiplicities are 1 (for elements) or 0 (for non-elements).

The underlying set �A	 of a multiset A is the collection of elements that appear
in A, with multiplicities forgotten. Formally, �A	 = {a : ma(A) > 0}.

The size of a multiset is the sum of the multiplicities of all of its elements. For
example, the size of the multiset [2, 2, 3] is 3. If A and B are multisets, then we
say that A is a subset of B, and write A ⊆ B, if for all a, ma(A) � ma(B).7 This
definition agrees with the familiar notion when A and B are sets. If A and B are
multisets and A ⊆ B then �A	 ⊆ �B	. Two multisets A and B are equal if and only
if A ⊆ B and B ⊆ A. If A is a multiset and B is a set, we say that A is a multiset of
elements of B if �A	 ⊆ B.

If A and B are multisets, then the sum (or disjoint union) of A and B, denoted by
A + B, is the multiset defined by letting ma(A + B) = ma(A)+ ma(B) for all a.
This can be generalised to taking the sum

∑ C of a finite multiset C of multisets.
If R is a ring and A is a finite multiset of elements of R, then we can write∑
A for the sum of all elements of A and

∏
A for the product of all elements

of A. For example in Z,
∑[2, 2, 3] = 7 and

∏[2, 2, 3] = 12. This is well-defined
because addition and multiplication are both associative and commutative. (In non-
commutative rings, we cannot take products of multisets, only of sequences.) We let∑

∅ = 0R and
∏

∅ = 1R.

Unique Factorisation
In Z, we would like to call a multiset such as [2, 2, 3] an irreducible factorisation
of 12. Even though we are now using multisets, this is not quite unique: [−2, 2,−3]
is also an irreducible factorisation of 12. Thus, irreducible factorisations are unique,
but only up to association.

Therefore, we define, for an integral domain R, an irreducible factorisation (or
decomposition) of an element a ∈ R to be a (finite) multiset A of irreducible
elements of R satisfying

∏
A ∼ a (rather than requiring

∏
A = a). This makes the

definition invariant under association. (It also ensures that units other than 1 have
irreducible factorisations, namely the empty set.) Let A and B be finite multisets of

7 We should really be saying “submultiset” (or perhaps “multisubset”?) but that’s a bit awkward.
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elements of R. We write A =∼ B if there is a bijection f : A → B such that for all
a ∈ A, a ∼ f (a). In other words, if we can list the elements of A as [a1, a2, . . . , an]
and of B as [b1, b2, . . . , bn] such that a1 ∼ b1, a2 ∼ b2, . . . , an ∼ bn. If A =∼ B

then
∏

A ∼∏
B. Irreducible decompositions in Z are unique in that if A and B are

two irreducible factorisations of a ∈ Z, then A =∼ B. Another way to say this is:
if A and B are finite multisets of irreducible elements of Z, and

∏
A ∼ ∏

B, then
A =∼ B.

Definition 2.22 An integral domain R is a unique factorisation domain if:

(i) Every nonzero a ∈ R has an irreducible factorisation; and
(ii) If A and B are finite multisets of irreducible elements of R, and

∏
A ∼ ∏

B,
then A =∼ B.

Thus the fundamental theorem of arithmetic is the statement that Z is a unique
factorisation domain.

Just like equality of multisets up to association, we can define a subset relation
up to association: if A and B are finite multisets of nonzero elements of R, then we
write A ⊆∼ B if there is an injective f : A → B such that for all a ∈ A, a ∼ f (a).
That is, if we can arrange A = [a1, a2, . . . , am] and B = [b1, b2, . . . , bn] (with
m � n) so that a1 ∼ b1, a2 ∼ b2, . . . , am ∼ bm. If A ⊆∼ B then

∏
A divides

∏
B.

Exercise 2.23 If R is a unique factorisation domain, A and B are finite multisets of
irreducible elements of R, and

∏
A�∏B, then A ⊆∼ B. «

2.2.3 Unique Factorisation in Polynomial Rings

Our main goal is the following:

Theorem 2.24 Let F be a field, and let x be a tuple of variables. The ring F [x] is
a unique factorisation domain.

One Variable
We first examine the case of a single variable.

Proposition 2.25 If F is a field, then F [x] is a unique factorisation domain.

Let us sketch the proof, starting with existence. By induction on the degree of
a polynomial f ∈ F [x] we show that f is the product of irreducible polynomials.
If f is irreducible then this is immediate. If not, then f = gh where neither g

nor h are units. Since all nonzero constants are units, we have deg g, deg h > 0.
Since deg f = deg g + deg h we must have deg g, deg h < deg f . By induction,
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both g and h have irreducible decompositions; taking the disjoint union, we get an
irreducible decomposition for f .

For uniqueness, we use the following lemma. In an integral domain R, an
element a is called prime if for all nonzero b, c ∈ R, if a � bc then a � b or a � c. A
prime element is always irreducible.

Lemma 2.26 Let R be an integral domain in which every irreducible element is
prime. Then R satisfies part (ii) of Definition 2.22 (the uniqueness part).

Proof We show that if A, B are finite multisets of irreducible elements of R and∏
A � ∏

B, then A ⊆∼ B. This is done by induction on the size of A. Let B =
[b1, . . . , bn]. If A has a unique element a, then a � b1 · · · bn implies a � bi for
some i, as a is prime. Since bi is irreducible and a is not a unit, we have a ∼ bi .
If A has more than one element, write A = A′ +A′′ for two nonempty subsets of A.
Since

∏
A′ �∏B, by induction, there is some B ′ ⊆ B such that A′ =∼ B ′. Write

B = B ′+B ′′. After dividing by
∏

A′, we see that
∏

A′′ �∏B ′′; by induction again,
we have A′′ ⊆∼ B ′′. ��

So to prove Proposition 2.25, it remains to show that every irreducible g ∈ F [x]
is prime. Let g be irreducible, and suppose that g �fh for some f, h ∈ F [x]. Since
we can divide with remainder in F [x], we apply the Euclidean algorithm. Starting
with f0 = f and f1 = g, divide f0 by f1 and obtain a quotient q1 and remainder f2.
Next, divide f1 by f2 and obtain a quotient q2 and remainder f3. Keep going until
we get fn+1 = 0. This must happen since deg f1 > deg f2 > · · · . Now by reverse
induction on i � n, using the equation fi−1 = qifi + fi+1, we see that fn � fi .
Hence fn divides both f0 = f and f1 = g. Since g is irreducible, fn is a unit or
fn ∼ g. In the latter case g �f and we’re done.

Suppose that fn is a unit. By induction on i = 2, . . . , n, we see that fi is a linear
combination of f and g: there are αi, βi ∈ F [x] such that fi = αif +βig. Since fn

is a unit, we can divide by it, and obtain α, β ∈ F [x] such that αf + βg = 1. Then
h = h(αf + βg) = αf h + βgh. Since g �fh (and certainly g �βgh), g divides h.
This concludes the proof of Proposition 2.25.

Exercise 2.27 Show that if R is a unique factorisation domain, then every irre-
ducible element of R is prime. «

Remark 2.28 Most textbooks take a wider approach. One usually defines the notion
of a Euclidean domain, which is an integral domain in which one can divide with
remainder (with respect to some Euclidean norm, a measure of size that tells us
that the remainder is “smaller” than the element we divide by; in Z we can take the
absolute value, in F [x] we take the degree). One then shows that every Euclidean
domain is a unique factorisation domain, often by using the intermediate notion of
a principal ideal domain, integral domains in which every ideal is generated by
a single element; every Euclidean domain is an principal ideal domain, and every
principal ideal domain is a unique factorisation domain. The arguments are mostly
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an abstraction of the argument above. One of the related notions is that of a greatest
common divisor, showing that it exists and is a linear combination of the elements
involved.

Unique factorisation is used well beyond polynomial rings; a standard example
is subrings of the algebraic numbers, for example Z[i], Z[√2], Z[√−2] and others.
For more, see [Rot00, Sect. 3.5] and [Art91, Chap. 11]. «

Interlude: Algebraically Closed Fields
A field F is algebraically closed if every nonconstant polynomial f ∈ F [x] has a
root in F . For example, the fields Q and R are not algebraically closed, because the
nonconstant polynomial x2 + 1 has no root in Q or in R.

A field F is algebraically closed if and only if the irreducible polynomials
in F [x] are precisely the linear ones. In one direction, if all polynomials of degree
� 2 are reducible, then every nonconstant polynomial is the product of linear
polynomials; each of these have roots. In the other direction, if F is algebraically
closed, f ∈ F [x] and deg f � 2, then as f has a root a, we know that x − a

divides f (Theorem 2.16) and so f is reducible.
By counting degrees (Proposition 2.9), we see that if F is algebraically closed,

the size of the irreducible factorisation of a nonzero polynomial f ∈ F [x] is
precisely deg f . Of course some linear factors may appear more than once. It makes
sense to think about the collection of roots of a nonzero polynomial f ∈ F [x]
as a multiset: the multiplicity of the root a is the multiplicity of the polynomial
x−a in the irreducible factorisation of f . In other words, the largest number k such
that (x − a)k divides f . For example, in C[x], the polynomial x3 − 2ix2 − x is
factored as (x − i)2x, and so the multiset of roots is [i, i, 0]. Thus, if we count
with multiplicities, if F is algebraically closed, then every nonzero f ∈ F [x]
has precisely deg f many roots. In Chap. 3 we generalise this idea to solutions of
polynomial equations with more than one variable.

Proposition 2.29 Every algebraically closed field is infinite.

Proof Let F be a finite field. Let

f = 1+
∏

a∈F

(x − a).

Then f ∈ F [x] has no root in F . ��

The following is known as the fundamental theorem of algebra.

Theorem 2.30 The field C of complex numbers is algebraically closed.

We will give a proof of the fundamental theorem of algebra using analytical
methods in Chap. 11, see p. 304.
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Gauss’s Lemmas
We return to Theorem 2.24. This is proved by induction on the number of variables,
using:

Proposition 2.31 If R is a unique factorisation domain then so is R[x].

We give a sketch of the proof, as the argument appears in many texts; see, for
example, [Rot00, Sect. 6.2], [Art91, Sect. 11.3], or [Sti94, Sect. 4.6] for R = Z.

Fix a unique factorisation domain R. The first step is to decompose polynomials
in R[x] into a constant part and a primitive part. A polynomial f ∈ R[x] is called
primitive if every a ∈ R dividing f must be a unit. Note that a ∈ R divides a
polynomial f if and only if it divides all of its coefficients.

Lemma 2.32 Every g ∈ R[x] is the product af where a ∈ R and f ∈ R[x] is
primitive.

The idea is to let a be the greatest common divisor of the coefficients of g. That
this exists follows from the fact that R is a unique factorisation domain: we let a be
the product of all elements ck where c ∈ R is irreducible and k is greatest such that
ck divides all nonzero coefficients of g. Note that c ∈ R is irreducible in R if and
only if it is irreducible in R[x].

We can then quickly dispense with existence: Every g ∈ R[x] has an irreducible
factorisation. We write g = af where f is primitive; since R is a unique
factorisation domain, a is the product of irreducible elements of R (and hence
of R[x]). And since f is primitive, every polynomial dividing f is primitive as well,
and if f = hk where h, k ∈ R[x] are not units, then k, h /∈ R, i.e., deg k, deg h > 0,
whence deg k, deg h < deg f . So just as for F [x], we can prove by induction on the
degree of a primitive polynomial f that it is the product of irreducible polynomials.

Remark 2.33 The decomposition of a polynomial into a constant and a primitive
part is unique up to association. Suppose that a, b ∈ R, f, g ∈ R[x] are primitive,
and af ∼ bg. Then a divides bg; so it divides every coefficient of bg. Since g is
primitive, b is the greatest common divisor of the coefficients of bg; and so a must
divide b. By symmetry a ∼ b, and so f ∼ g. «

Uniqueness is more difficult. The argument relies on three lemmas, each named
after Gauss. The main one is:

Lemma 2.34

(a) The product of two primitive polynomials is primitive.
(b) Every irreducible p ∈ R is prime in R[x].

Sketch of proof The same argument gives both parts. Let f, g ∈ R[x] and suppose
that fg is not primitive; since R is a unique factorisation domain, there is some
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irreducible p ∈ R which divides fg; we show that p divides f or p divides g. The
“real proof” is to work in (R/(p))[x], where R/(p) is the quotient ring, which is
an integral domain because p is prime in R (Exercise 2.27); so (R/(p))[x] is an
integral domain as well. We haven’t defined quotient rings so we sketch a direct
argument. Let f = ∑

aixi and g = ∑
bixi . Suppose, for a contradiction, that p

divides neither f nor g. Then there are k � deg f and m � deg g such that p ffl ak

and p ffl bm; choose minimal such. The coefficient ck+m of xk+m in fg is the sum∑
i+j=k+m aibj ; for any pair (i, j) �= (k,m) such that i + j = k + m, we have

i < k or j < m, whence p divides aibj ; but since p is prime in R, it does not divide
akbm, and so does not divide ck+m, and so does not divide fg. ��

The next two lemmas relate divisibility in R[x] to divisibility in F [x], where F

is the field of fractions of R. For any integral domain R, we can mimic the creation
of the rationals Q from the integers Z to obtain a field F ⊇ R which is minimal with
respect to containing R; every element of F is of the form a/b for some a, b ∈ R.
The idea is to start with all pairs (a, b) ∈ R2 (with b �= 0), and identify two pairs
(a, b) and (c, d) if they should represent the same fraction: namely, if in R we
have ad = bc. This is an equivalence relation on the set of pairs (a, b). We let F

be the collection of equivalence classes. On F we define addition, subtraction and
multiplication the way that fractions ought to behave: letting, temporarily, [a, b]
denote the equivalence class of the pair (a, b), we define [a, b] · [c, d] = [ac, bd]
and [a, b] + [c, d] = [ad + bc, bd]. We need to check that these operations are
well-defined on equivalence classes (do not depend on the choice of pairs (a, b) and
(c, d) in the classes); that these operations, together with declaring that 0F = [0, 1]
and 1F = [1, 1], make F into a field; and that a �→ [a, 1] is an embedding of R

into F . These are technical but not difficult. Note that the fact that R doesn’t have
zero divisors is used in the very definition of our operations: for example, letting
[a, b] · [c, d] = [ac, bd] assumes that bd �= 0. For more details, see for example
[Rot00, Theorem 3.16].

Example 2.35 The fraction field of F [x] is denoted by F(x), the field of formal
rational functions with coefficients in F . A formal rational function f/g defines
a partial function Fn → F , which is defined on the points a ∈ Fn for which
g(a) �= 0. «

Exercise 2.36 A formal Laurent series with coefficients in a ring R is an object
of the form amxm + am+1xm+1 + · · · where m is an integer: that is, we allow
negative exponents, but only finitely many of them. We let R((x)) denote the
collection of formal Laurent series with coefficients from R. (a) Define addition
and multiplication of formal Laurent series; show that with these operations, R((x))

is an integral domain, and that Rvxw is a subring of R((x)). (b) Show that if F is
a field then F((x)) is a field, which is isomorphic to the field of fractions of F vxw.
(c) Define the order ord(f ) of a formal Laurent series f = ∑

anxn to be the least
k ∈ Z such that ak �= 0. Show that Exercise 2.21(a) holds for f, g ∈ F((x)) as
well. «
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Armed with the field of fractions F of our unique factorisation domain R, let
f, g ∈ R[x]. If g � f in R[x], then certainly g � f in F [x], as R[x] ⊆ F [x]. The
converse is false. For example, if a ∈ R \ R∗, then for any f ∈ R[x], af ffl f in
R[x] but af �f in F [x], as a ∈ F ∗. The failure is because af is not primitive.

Lemma 2.37 Let f, g ∈ R[x], and suppose that f is primitive. If f � g in F [x]
then f �g in R[x].

Sketch of proof Write g = fh with h ∈ F [x]. The coefficients of h are fractions
of elements of R; by clearing denominators, we find a ∈ R such that ah ∈ R[x].
So ahf = ag. Write ah = bh̄ with b ∈ R and h̄ ∈ R[x] primitive. Similarly write
ag = cḡ with ḡ primitive. So b(h̄f ) = cḡ. By Lemma 2.34, h̄f is primitive. By
Remark 2.33, h̄f ∼ ḡ. ��

Lemma 2.38 If f ∈ R[x] is nonconstant and irreducible in R[x], then it is
irreducible in F [x].

Sketch of proof Say f is reducible in F [x]. Let g be a proper divisor of f in F [x];
since F is a field, 0 < deg g < deg f . As above, there is some primitive ḡ ∈ R[x]
such that g ∼ ḡ in F [x]. Then ḡ � f in F [x] and so in R[x] as well; since deg ḡ =
deg g < f , this division is proper, so f is reducible in R[x]. ��

Proof of Proposition 2.31 It remains to prove uniqueness of factorisations; by
Lemma 2.26, it suffices to show that every irreducible f ∈ R[x] is prime in R[x]
as well. Part (b) of Lemma 2.34 takes care of the constants. Suppose that f is
nonconstant and irreducible in R[x]. Then it is primitive. Suppose that f � gh

in R[x]. Since f is irreducible in F [x] (Lemma 2.38) and F [x] is a unique
factorisation domain (Proposition 2.25), f is prime in F [x] (Exercise 2.27), so f

divides either g or h in F [x]. Since f is primitive, it divides either g or h in R[x] as
well (Lemma 2.37). ��

2.3 Groups

There is nothing nonstandard about how we would present groups, and so we only
give a brief survey. The material appears in hundreds of texts; see for example
[Rot00, Chap. 2], [Sti94, Chap. 7], and [Art91, Chap. 2].

2.3.1 The Category of Groups

The initial development of the theory of groups is similar to that of rings. Fundamen-
tally, though, these are different kinds of objects, groups morally being collections
of symmetries or operations, whereas rings are generalisations of number systems.
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A group is a set G, equipped with a binary operation ·G, a unary operation a �→
(a)−1

G and a designated element 1G, which satisfy the following properties:

Associativity: for all a, b and c in G, a ·G (b ·G c) = (a ·G b) ·G c.
Identity element: for all a ∈ G, a ·G 1G = 1G ·G a = a.
Inverses: for all a ∈ G, a ·G (a)−1

G = (a)−1
G ·G a = 1G.

As is immediately checked from the definitions, if (R; +R, ·R,−R, 0R, 1R) is a
ring, then (R; +R,−R, 0R) is a group (this is the additive group of R). Hence, for
example, (Z; +,−, 0), (Q; +,−, 0), (R; +,−, 0), (C; +,−, 0) are groups. On the
other hand retaining multiplication rather than addition does not result in a group; 0R

never has a multiplicative inverse. On the other hand, (R∗; ·R, 1R) is a group, the
multiplicative group of units; the point is that the multiplicative inverse of a unit
is a unit. So for example Z

∗ = {1,−1} with multiplication is a group, and so is
C
∗ = C \ {0}.
All the groups mentioned so far have the property that their binary operation ·G

is commutative as well, a property that is not required in the definition of a group.
Groups with this property are called abelian. We briefly mention the standard
example of a non-abelian group.

Example 2.39 Recall that a permutation of a set X is a bijection (one-to-one and
onto function) from X to itself. The collection of all permutations of X is denoted
by SX . Equipped with function composition this is a group (in particular, the
composition of two permutations is a permutation). The identity element is the
identity function idX. We write Sn for S{1,2,...,n}. «

Notation 2.40 We use notational conventions similar to the ones we used for
integral domains. We often drop the subscript G and write a · b or even just ab

instead of a ·G b; we write 1 instead of 1G, and a−1 instead of (a)−1
G . We write G

instead of (G; ·G, ( )−1
G , 1G). In light of associativity, we write abc instead of a(bc)

or (ab)c.
We write an for

n times︷ ︸︸ ︷
a · a · · · a and also let a−n = (a−1)n.

We will use additive notation for abelian groups: we write+ for ·G,−a for a−1, 0
for 1G and na for an. «

As with rings (see Lemma 2.8), we use the group axioms to derive properties that
are shared by all groups. Here is a short list.

Lemma 2.41 Let G be a group and let a, b ∈ G. (a) If ba = 1 or ab = 1, then b =
a−1. (b) (a−1)−1 = a. (c) If ab = ac then b = c; similarly if ba = ca. (d) (ab)−1 =
b−1a−1. 8 (e) a2 = a if and only if a = 1G. ��

8 For an illustration for why (ab)−1 is not a−1b−1, let a stand for the operation “wind down the
car window” and let b denote the operation “stick your head out”.
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Subgroups
A group H is a subgroup of a group G if H ⊆ G, 1H = 1G and for all a, b ∈ H ,
a ·H b = a ·G b and (a)−1

H = (a)−1
G . Actually, the other requirements follow just

from a ·H b = a ·G b. As with rings, closure under the operations is a necessary and
sufficient condition for a subset of G to be the domain of a subgroup of G: if G is a
group, H ⊆ G, 1G ∈ H , and for all a, b ∈ H , a ·G b ∈ H and (a)−1

G ∈ H , then the
restriction to H of the operations of G makes H a subgroup of G. A subgroup of an
abelian group is abelian.

Example 2.42 The unit circle S is a subgroup of C∗. «

A concept which we encountered in passing in the context of rings (see e.g.
Exercise 2.3) is that of a generated substructure. Let G be a group, and let A be a
subset of G. There is a subgroup H of G with the following two properties: (i) A ⊆
H ; (ii) if K is a subgroup of G and A ⊆ K , then H ⊆ K . In other words, H is
the ⊆-least subgroup of G which contains all the elements of A. The uniqueness of
such H follows immediately from its definition. To show such a subgroup always
exists, we construct it either from above or from below. From above, we take the
intersection of all subgroups of G which are supersets of H , and show that this
intersection is a subgroup. From below, we start with A and “throw in” the necessary
elements to construct a subgroup: the generated subgroup is the collection of finite
products a1a2 · · · an where each ai is either in A or the inverse of an element of A

(the empty product gives us 1G). The subgroup of G generated by A is denoted
by 〈A〉G.

For an example see Example 2.55 below.

Group Homomorphisms
A group homomorphism from a group G to a group H is a function ψ : G → H

such that ψ(1G) = 1H and for all a, b ∈ G, ψ(a ·G b) = ψ(a) ·H ψ(b)

and ψ((a)−1
G ) = (ψ(a))−1

H . When it is clear if we are using rings or groups we
just write “homomorphism”. As for subgroups, the other conditions follow from
ψ(a ·G b) = ψ(a) ·H ψ(b), so this is the definition you usually see.

As with ring homomorphisms, a composition of two group homomorphisms is a
group homomorphisms. If ψ : G → H is a group homomorphism then the image
of ψ is a subgroup of H and the preimage ψ−1[K] of a subgroup K of H is a
subgroup of G.

Example 2.43 The example from the introduction: let f : R → C by letting
f (t) = eit . Then f (0) = 1 and for all s, t ∈ R, f (t + s) = f (t)f (s). Thus f is a
homomorphism from the additive group of the reals (R; +, 0) to the multiplicative
group of non-zero complex numbers (C∗; ·, 1). The range of f is the unit circle S.«

Example 2.44 Let G be a group and let a ∈ G. The map n �→ an is a group
homomorphism from the integers (Z; +) to G (the proof is actually not that short—
try it). The range of this homomorphism is the subgroup of G generated by a. «
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Example 2.45 If G and H are groups, then G × H is a group, with pointwise
operations: (a, b) ·(c, d) = (a ·G c, b ·Gd) and similarly for the identity and inverses.
This is the direct product of G and H . «

The kernel of a group homomorphism ψ : G → H is

ker ψ = {a ∈ G : ψ(a) = 1H }.

The kernel of ψ is a subgroup of G. For example, the kernel of the homomorphism
of Example 2.43 is the subgroup (2πZ; +), which is a subgroup of (R; +). A
homomorphism is one-to-one if and only if its kernel is trivial (the subgroup {1G}).
A one-to-one homomorphism is called an embedding.

A homomorphism is an isomorphism if it is one-to-one and onto. An embedding
is an isomorphism between its domain and its range. Groups G and H are
isomorphic if there is an isomorphism between them. We write G ∼= H . Since
the composition of isomorphisms is an isomorphism, the inverse of an isomorphism
is an isomorphism, and the identity map is an isomorphism, being isomorphic is an
equivalence relation on groups.

Exercise 2.46 Let ρ be an irrational complex number such that ρ2 ∈ Z, for
example ρ = i or ρ = √

2. Let G = (Z[ρ]; +,−, 0) be the additive group of
the ring Z[ρ] (Exercise 2.3). Show that G is isomorphic to the group Z× Z.9 «

2.3.2 Quotient Groups

The quotient of a group G by a subgroup H is the group you get once you imagine
that all the elements of H are the same as the identity of G. An example is the
construction of Z/(n), the integers modulo n. In some instances this cannot be
done. The general theory involves the notion of a normal subgroup. All difficulties
disappear if we assume that G is abelian, and so here we only develop the theory of
quotients of abelian groups.

Let H be a subgroup of an abelian group G. We say that a, b ∈ H are equivalent
modulo H if a − b ∈ H . This is an equivalence relation on G. The equivalence
class of a ∈ G is a + H = {a + h : h ∈ H }, called the H -coset of a. Thus, the
cosets form a partition of G and they all have the same size (the map h �→ a + h is
a bijection between H and a+H ). One consequence is Lagrange’s theorem, which
does not actually require the group G to be abelian:

Theorem 2.47 IfG is a finite group andH is a subgroup ofG then |H | divides |G|.

9 Note that the ring Z[ρ] is not isomorphic to the ring Z× Z.
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Fig. 2.1 The diagram
commutes: ψ ◦ π = ψ

Equivalence modulo H is not only an equivalence relation, it is a congruence
relation: if a+H = b+H then (−a)+H = (−b)+H ; if in addition, c+H = d+H

then (a + c) + H = (b + d) + H . Thus we can define addition and negation on
the collection of cosets, which is denoted by G/H . These operations make G/H a
group.

The quotient map is the map π : G → G/H defined by π(a) = a + H . The
kernel of this map is H . There is duality between quotients and surjective (onto)
homomorphisms. Suppose that ψ : G → K is a homomorphism from an abelian
group G onto a group K . Let H = ker ψ . Then K is isomorphic to G/H ; in fact,
the map ψ mapping a + H �→ ψ(a) is the unique isomorphism ψ : G/H → K

such that ψ ◦ π = ψ . See Fig. 2.1.

Exercise 2.48 The homomorphism t �→ eit from R onto the unit circle S

(Example 2.43) shows that as a subgroup of (C∗; ·), the unit circle is isomorphic
to the quotient R/2πZ. «

2.3.3 Cyclic Groups

A group G is called cyclic if it is generated by a single element: G = 〈a〉G for some
a ∈ G. The group (Z; +) is cyclic: Z = 〈1〉

Z
. It is the only infinite cyclic group

(up to isomorphism). For each natural number n � 1, there is a unique cyclic group
of size n, denoted by Cn. It can be realised as the quotient group Z/nZ, which is
generated by the coset 1 + nZ. All cyclic groups are isomorphic to either Z or Cn

for some n; they are all abelian. Every subgroup of Z is of the form nZ for some n,
thus, they are all cyclic.

Example 2.49 For n � 1 let ωn = e2πi/n. (ωn)
n = 1 but (ωn)

k �= 1 for all positive
k < n. Hence the subgroup of the unit circle S generated by ωn is isomorphic to Cn.
The elements of this subgroup are precisely the complex numbers α satisfying αn =
1. (That there are no others follows from Theorem 2.16.) They are called the nth
roots of unity. «

The order of an element a of a group G is the size of the (cyclic) subgroup 〈a〉G
of G generated by a. If the order m = oG(a) of a is finite, then 〈a〉G =
{a0, a1, a2, . . . , am−1}; and for all n ∈ Z, an = 1G if and only if m divides n.
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If G is finite then the order of an element a ∈ G, which by definition is the size
of a subgroup of G, must divide |G| by Lagrange’s theorem (Theorem 2.47). Thus:

Proposition 2.50 If G is finite and n = |G|, then for all a ∈ G, an = 1G.

The Characteristic of a Ring
We end with an application to integral domains. Let R be a ring. If there is some m

such that

m1R = 1R + 1R + · · · + 1R︸ ︷︷ ︸
m times

= 0R

then the least such m is called the characteristic of R, denoted by char(R). If there
is no such m then we say that the characteristic of R is 0. If the characteristic is
positive, then it equals the order of 1R in the additive group of R. If R is an integral
domain of positive characteristic, then its characteristic must be a prime number: if
char(R) = kn for k, n � 2, then k1R and n1R are nonzero in R, but their product is
0R. In particular, the characteristic of a field is either 0 or a prime number.

2.3.4 The Symmetric Group

There is a lot to say about the symmetric groups Sn (Example 2.39). However, we
will only really use them to develop the determinant function later in this chapter,
so we review briefly. Fixing n, the cycle (a1 a2 a3 . . . ak) is the permutation σ ∈ Sn

which maps a1 to a2, a2 to a3, . . . , ak−1 to ak and ak back to a1; all other elements
of {1, 2, . . . , n} are mapped to themselves. A transposition is a cycle of length 2.

Every permutation σ ∈ Sn is the product (composition) of transpositions. This is
because σ ∈ Sn is the product of disjoint cycles (every number is moved by at most
one of the cycles), and every cycle is the product of transpositions. In fact:

Exercise 2.51 Show that every transposition in Sn (and thus every permutation
in Sn) is the product of transpositions of the form (k k + 1) for some k < n. «

The set of disjoint cycles making up a permutation is unique, but there are many
ways to write a permutation as the product of transpositions. However the parity of
the number of transpositions is fixed: every permutation is the product of an even
number of transpositions, or of an odd number of transpositions, but never both.

This uses the sign homomorphism. For a permutation σ ∈ Sn, let C(σ) be the
number of pairs (i, j) with i < j but σ(i) > σ(j). The sign sgn(σ ) is (−1)C(σ).
That is, sgn(σ ) = 1 if σ reverses the ordering of an even number of pairs, and −1
otherwise. The sign of a transposition (k k + 1) is −1; by counting, in fact, we can
show that the sign of any transposition is −1.
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The sign is a group homomorphism from Sn to Z
∗ = {1,−1} (equipped with

multiplication). That is, for σ, τ ∈ Sn, sgn(στ) = sgn(σ ) sgn(τ ). One way to see
this is the following exercise.

Exercise 2.52 For f ∈ Z[x1, . . . , xn] and σ ∈ Sn let σf = f
(
xσ(1), xσ(2), . . . ,

xσ(n)

)
. (a) Show that for σ, τ ∈ Sn, (στ)f = σ(τf ). (b) Show that f �→ σf is

a permutation of Z[x], and that it is a ring homomorphism (Proposition 2.11, with
S = Z and R = Z[x]). (c) Let P =∏

i<j�n(xj − xi). Show that for every σ ∈ Sn,
σP = sgn(σ ) · P . (d) Show that σ �→ sgn σ is a group homomorphism from Sn to
Z
∗. «

It follows that for all σ ∈ Sn, sgn(σ ) = sgn(σ−1).

2.4 Linear Algebra Over Integral Domains

We quickly review familiar elements of linear algebra: matrix multiplication, linear
maps, independence, and so on. The twist is that we will sometimes need to work
over an integral domain which is not necessarily a field, so we will need to keep
track of where we use invertibility. For example, we can have nonsingular matrices
which are not invertible.

We will only need spaces of the form Rn and their subspaces, so we do not give
an axiomatic definition of an abstract vector space.

Remark 2.53 The analogue of vector spaces over integral domains is a module.
Every finite-dimensional vector space over a field is isomorphic to Fn for some n,
but if R is not a field then there will be many finitely-generated modules not
isomorphic to any Rn. For example, the Z-modules are precisely the abelian groups.
As we will only use Rn and its subspaces, we will use our own terminology: linear
spaces. «

2.4.1 Matrices, Linear Spaces, and Linear Maps

Let R be an integral domain. We let Mn×m(R) be the collection of n× m-matrices
(n rows, m columns) with entries from R. If n = m we write Mn(R). We let Rn =
M1×n(R) be the collection of rows of length n, and Rn = Mn×1(R) be the collection
of columns of height n. R is identified with R1 and with R1.

We fix some notation: the entry of a matrix A at the ith row and j th column is
usually denoted by ai,j . We denote rows by u and columns by v̄. The ith row of a
matrix A is denoted by ai , the j th column by āj . A row whose entries are all 0R is
denoted by 0, similarly for columns. We let ēi and ei denote the unit columns and
rows (with 1R at position i, and 0R elsewhere).
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Operations on matrices: addition, multiplication, multiplication by a scalar—
follow standard definitions, but using the operations of R. For example for a row v

and column ū both of the same length n, we let vū = v · ū = (v1 ·R u1) +R (v2 ·R
u2)+R · · · +R (vn ·R un). Each Mn×m(R) is an abelian group using matrix addition.
Matrix multiplication is associative (this is a short calculation); with addition and
multiplication of matrices, Mn(R) is a non-commutative ring. The multiplicative
identity is of course the matrix In which has 1R along the main diagonal and 0R

elsewhere.

Remark 2.54 In a non-commutative ring, a multiplicative inverse of an element a

is an element b satisfying ab = ba = 1. Like commutative rings, the collection of
units together with multiplication is a group (but of course it may be non-abelian).
In the ring of matrices Mn(R), unit elements are called invertible matrices. The
group of invertible matrices is called the general linear group, and is denoted by
GLn(R). «

Example 2.55 We name three elements of GL2(C) (Remark 2.54): i = (
i 0
0 −i

)
,

j = (
0 1−1 0

)
, and k = (

0 i
i 0

)
. Let Q = 〈i, j,k〉GL2(C) be the subgroup of GL2(C)

which is generated by the elements i, j and k. This group is called the quaternion
group. By listing the elements of Q, show that it contains eight elements. Show
that Q is non-abelian. «

Linear Spaces
Here is our non-standard definition:

Definition 2.56 A linear R-space is a subgroup U of some Rn which is closed
under scalar multiplication: for all λ ∈ R and ū ∈ U , λū ∈ U . A linear R-space W

is a subspace of a linear R-space U if W ⊆ U .

For a set a ⊆ U we write 〈a〉 for the span of a, or the linear subspace generated
by a, to be the collection of linear combinations of elements of a, i.e., all columns
of the form

∑
i�k λi ūi where ū1, . . . , ūk ∈ a and λ1, . . . , λk ∈ R. Like generated

subgroups, this is the ⊆-least linear space which contains a as a subset. We agree
that 0̄ is the result of adding up the empty set of columns, so the trivial subspace {0̄}
is the span of the empty set.

Example 2.57 For a nonzero ā ∈ R
n, the space 〈ā〉 is the line in R

n passing through
ā and the origin 0̄. «
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Linear Maps
Let U and V be linear R-spaces. A function T : U → V is linear if it preserves
addition and scalar multiplication: T (ū+ v̄) = T (ū)+T (v̄) and T (λū) = λT (ū) for
all ū, v̄ ∈ U and λ ∈ R. Equivalently, T is linear if it preserves linear combinations:
T (

∑
λi ūi) = ∑

λiT (ūi). Preservation of addition means that a linear map is a
group homomorphism from the subgroup U of Rn to the subgroup V of Rm. The
kernel of a linear map T : U → V (which is the collection of all ū which T maps to
0̄) is a linear subspace of U .

For a matrix A ∈ Mn×m(R) we define TA : Rm → Rn by letting TA(ū) = Aū.
The map TA is linear, and every linear map from Rm to Rn is TA for some matrix A;
distinct matrices give rise to distinct linear maps. This is because linear maps are
determined by their values on the unit columns ēi . Namely, TA(ēi) = āi (the ith
column of A). The range of TA is the subspace of Rn spanned by the columns of A: a
linear combination

∑
i λi āi of the columns of A is precisely the image TA(λ̄) = Aλ̄

of the column of scalars λ̄ ∈ Rm.

Example 2.58 Let θ be an angle, and let Aθ =
(

cos θ − sin θ
sin θ cos θ

) ∈ M2(R). The map
TAθ : R2 → R

2 is the counter-clockwise rotation of the plane by θ radians. «

Invertible and Nonsingular Matrices
Matrix multiplication corresponds to composition: TAB = TA ◦ TB ; this follows
from the associativity of matrix multiplication. TIn is the identity map on Rn. As a
result, we see that:

• A matrix A ∈ Mn(R) is invertible if and only if TA is 1–1 and onto, that is, if and
only if TA is a linear automorphism of Rn.

On the other hand, we define:

• A matrix A ∈ Mn(R) is nonsingular if TA is 1–1.

Thus, every invertible matrix is nonsingular. These notions are not equivalent: for
example, when R = Z, the 1× 1 matrix (2) defines the map n �→ 2n from Z to Z,
which is 1–1 but not onto. However, if R is a field, then a matrix is nonsingular if and
only if it is invertible. This can be seen by analysing the process of Gauss-Jordan
elimination; for details, see, for example, [Art91, Sect. 1.2] or [Str76, Sect. 1.6].
This process, in general, only works over fields, because it involves dividing rows
by scalars to make certain entries 1.

Gaussian elimination shows that over a field, a matrix is either singular, because
it can be transformed by row operations to a matrix with a zero row; or it is the
product of elementarymatrices (the results of applying row operations to the identity
matrix), and each of these is invertible. The analysis, by the way, shows that if
AB = In then A is invertible and B = A−1; that is, there is no need to verify that
BA = In as well.

Note that since each linear map is a group homomorphism, a matrix A is
nonsingular if and only if the kernel of TA is the trivial space {0̄}.
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2.4.2 Dimension and Complements

The material here is standard, as we restrict ourselves to working over a field F . See
[Art91, Sects. 3.3 and 4.2] or [Str76, Sect. 2.3].

Recall that a collection of columns a = {ā1, . . . ām} is linearly independent if
the only way to obtain 0̄ as a linear combination

∑
λi āi is by the trivial linear

combination λ1 = λ2 = · · · = λm = 0. As we noted, linear combinations of a
collection of the columns ā1, . . . ām are nothing other than elements of the range
of TA, where A = (ā1, . . . , ām) is the matrix whose columns are the elements of a.
Hence, a = {ā1, . . . ām} is linearly independent if and only if the kernel of TA is
trivial, if and only if A is nonsingular. That is, if and only if every element of the
span 〈a〉 ⊆ Fn can be uniquely written as a linear combination of the columns in a.
The size of a linearly independent subset of Fn is at most n. A subset of a linearly
independent set is linearly independent.

A basis of a linear F -space U is a linearly independent set a ⊆ U which spans U .
All bases of a linear F -space have the same size.

Proposition 2.59 Let U be a linear F -space and let a ⊂ U be linearly indepen-
dent. There is some basis of U which contains a. In particular (since the empty set
is linearly independent), every linear F -space has a basis.

We can thus define the dimension of U to be the size of any basis of U ; we write
dim U . The dimension of Fn is n. If U is a proper subspace of W then dim U <

dim W , since a basis for U is not a basis for W but can be extended to a basis for W .
Two linear spaces over F of the same dimension are isomorphic. In fact:

Proposition 2.60 Let {ā1, . . . , ām} be a basis of a linear space U ⊆ Fn. Let
b̄1, . . . , b̄m be a sequence of columns in some Fk (not necessarily distinct). Then
there is a unique linear map T : U → Fk such that T (āi) = b̄i for all i � m.

Note that Proposition 2.59 fails when we don’t work over fields; {2} ⊂ Z is a
linearly independent subset of Z, but does not extend to a basis.

Let U and V be subspaces of a linear F -space W . The subspace generated by
U ∪V is U +V = {u+ v : u ∈ U & v ∈ V }. If U ∩V = {0̄} then dim(U +V ) =
dim U + dim V . We conclude:

Proposition 2.61 If U and V are subspaces of a linear F -space W , and dim U +
dim V > dim W , then U ∩ V �= {0̄}.

If U + V = W and U ∩ V = {0̄} then we write W = U ⊕ V and we say that V

is a linear complement of U in W (and vice-versa). Proposition 2.59 implies that
every U ⊆ W has a complement in W .

Suppose that T : U → V is linear, and let Q ⊆ U be a linear complement of
the kernel ker T of T . The restriction T �Q of T to Q is 1–1 (as Q ∩ ker T = {0̄}).
The range T [Q] of this restriction is the range of T ; so if T is onto V then T �Q is
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onto V as well, in which case dim Q = dim V . We obtain the dimension formula
for linear maps:

Theorem 2.62 Let U and V be linear F -spaces, and let T : U → V be a linear
map which is onto V . Then dim U = dim V + dim(ker T ).

Corollary 2.63 Let U and V be a linear F -spaces. The following are equivalent
for W ⊆ U :

(1) W = ker T for some linear T : U → V which is onto V ;
(2) W is a linear subspace of U and dim W = dim U − dim V .

Proof (1)⇒(2) follows from Theorem 2.62. For (2)⇒(1), by Proposition 2.59, let Q
be a linear complement of W in U . Since dim Q = dim V , by Proposition 2.60 we
can define a linear map T from U to V which restricts to an isomorphism from Q

to V and maps all of W to 0; then W = ker T . ��

2.4.3 The Determinant

Back to working over an integral domain R which may fail to be a field, the
development of the determinant is fairly standard; see for example [Art91, Sects. 1.3
and 1.5] or [Str76, Chap. 4]. However, we cannot apply arguments which rely on
Gauss-Jordan elimination. We give a brief sketch.

Define a volume function to be a function V defined on Mn(R) satisfying the
following: (a) if A,B and C have the same columns except for the ith one, and
c̄i = āi+ b̄i then V (C) = V (A)+V (B); (b) if D is obtained from A by multiplying
a column by a scalar λ ∈ R, then V (D) = λV (A); (c) If A has two adjacent
columns which are equal, then V (A) = 0. The idea is that |V (A)| is the volume
of the n-dimensional “parallelogram” determined by the columns of A; the sign
depends on orientation. The first two properties together are the multilinear property
of V .

We first show that every volume function is determined by V (In). Let V be a
volume function. Observe that if B is obtained from A by exchanging two adjacent
columns, then V (B) = −V (A). As the collection of transpositions (k k + 1)

(for k < n) generates all of Sn (Exercise 2.51), and the sign of a transposition
is −1, we conclude that for all σ ∈ Sn, if we permute the columns by σ , that
is, replace A = (ā1, ā2, . . . , ān) by σA = (āσ (1), āσ (2), . . . , āσ (n)), then we get
V (σA) = sgn(σ )V (A). Similarly, we observe that if A has two identical columns
then V (A) = 0.10 We can now obtain the “closed form” of the determinant.

10 If the characteristic of R is 2, then this cannot be deduced from V (A) = −V (A). For a
general proof, we permute A to get a matrix σA with two adjacent identical columns; then
V (A) = sgn(σ )V (σA) = sgn(σ ) · 0 = 0.
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Repeatedly using multilinearity,

V (A) =
∑

f : {1,2,...,n}→{1,2,...,n}

∏

i�n

af (i),i · V
(
ēf (1), ēf (2), . . . , ēf (n)

)

(for the first step, note that ā1 = ∑
aj,1ēj , and so V (A) = ∑

aj,1V (Aj,1), where
the first column of Aj,1 is ēj and the other columns are the same as A; now
keep going, one column at a time.) If f : {1, 2, . . . , n} → {1, 2, . . . , n} is not a
permutation then it is not one-to-one. In this case V is applied to a matrix with
two equal columns and so evaluates to 0. Hence we can discard the terms in the
above sum contributed by functions which are not permutations. When f = σ is a
permutation then V evaluates to sgn(σ ) · V (In), yielding

V (A) = V (In)
∑

σ∈Sn

sgn(σ )
∏

i�n

aσ(i),i .

The right hand side only depends on V (In).
We can then prove existence: by induction on n, we prove the existence of a

volume function A �→ det(A) on Mn(R) satisfying det(In) = 1. If this has already
been done for n− 1, then for any i � n, the column i expansion:

A �→ (−1)1+ia1,i det(A1,i)+ (−1)2+ia2,i det(A2,i)+ · · · + (−1)n+ian,i det(An,i),

where Aj,i is the (j, i)-minor of A, obtained from A by erasing the j th row and ith
column—is a volume function on Mn(R), mapping In to 1. We can conclude that
expansion along any column will yield the same result, which we call det(A). For
any volume function V , V (A) = V (In) · det(A).

Armed with these results, and with the closed form, we can derive familiar
properties of the determinant.

Proposition 2.64 For all A,B ∈ Mn(R), det(BA) = det(B) det(A).

To see this, let V (A) = det(BA), and show that this is a volume function; it
maps In to det(B). Note that this gives us another geometric interpretation of the
determinant: Since the columns of BA are TB(ā1), . . . , TB(ān), det(B) is the ratio
by which TB changes the volumes of objects.

Proposition 2.65 For any A ∈ Mn(R), det A = det At.

Here At is the transpose, obtained by reflecting across the main diagonal. To
see this we can use the closed form, using the fact that sgn(σ ) = sgn(σ−1) and that
σ �→ σ−1 is a permutation of Sn. Proposition 2.65 also implies that we can use row
expansions to calculate determinants.
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Proposition 2.66 If A contains a zero row or column, then det(A) = 0.

For columns, it suffices to apply the second multilinearity condition and multiply
the zero column by zero. For rows, take the transpose.

The Effect of RowOperations
We can now deduce the well-known effects on the determinant by row operations.
We have already observed that exchanging two columns multiplies the determinant
by −1; by taking the transpose, this applies to rows as well. We argue similarly for
multiplying rows by a scalar. Finally, for the operation of adding the multiple of one
row to the other, we again use the multilinearity of the determinant: If C is obtained
from A by adding the multiple of one row to another, then C = A + B, where B

has the same rows as A, except for one, and one row of B is the scalar multiple of
another; so det(B) = 0 and det(C) = det(A)+ det(B) = det(A).

Polynomial Substitution
Using the closed form (or by induction), the determinant is a polynomial in the
entries of a matrix: there is a polynomial f ∈ R[x1,1, x1,2, . . . , xn,n] such that
det A = f (a1,1, a1,2, . . . , an,n).

Let y = (y1, . . . , ym) be a tuple of variables, and let G ∈ Mn(R[y]) be a
square matrix whose entries gi,j are polynomials in R[y]; det(G) ∈ R[y]. For
a ∈ Rm we let G(a) be the matrix in Mn(R) whose entries are gi,j (a). The
determinant commutes with substitution: det(G(a)) = (det G)(a). To see this,
let f be the polynomial which defines the determinant (it is the same polynomial
over R and over R[y]). Then det G = f (g1,1, g1,2, . . . , gn,n) and det(G(a)) =
f (g1,1(a), g1,2(a), . . . , gn,n(a)). The desired equality follows from the fact that
polynomial substitution is translated to composition of the defined functions, see
p. 24.

2.4.4 Detecting Singularity

Over a field, we know that A ∈ Mn(F) is singular if and only if it is not invertible if
and only if det(A) = 0. This can be deduced by using Gaussian elimination: we first
analyse how row operations affect the determinant; in particular, they never change
0 to nonzero or the other way. If A is singular, then by row operations it can be
transformed to a matrix with a zero row, and so det(A) = 0. If not, then it is the
product of elementary matrices, all of which have nonzero determinant; we then use
the multiplicative property.

Over a general integral domain R we cannot argue thus. But Cramer’s method
does work. Suppose that A ∈ Mn(R) is invertible (A ∈ GLn(R)). Then
1 = det(In) = det(AA−1) = det A · det A−1. Thus, det A is a unit of R.
The multiplicative property of the determinant shows that the restriction of the
determinant function to GLn(R) is a group homomorphism from GLn(R) to R∗.
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For A ∈ Mn(R) let ci,j = (−1)i+j det Ai,j , and let Adj(A) = Ct (called the
adjugate of A). The entry at (i, i) of the matrix A · Adj(A) is

∑
j�n ai,j ci,j which

equals det A by considering row expansion. For k �= i, the entry of A · Adj(A)

at (i, k) is
∑

j�n ai,j ck,j = ∑
j�n(−1)j+kai,j det Ak,j . This is the row expansion

of the determinant which is obtained from A by replacing the kth row by the ith
row of A. Of course such a matrix has two equal rows, and so the value in this
case is 0. That is, A · Adj(A) = (det A) · In. Similarly, by considering column
expansions, we see that Adj(A) · A = (det A)In. Thus, if det A is a unit of R,
then 1

det A Adj(A) = A−1 and A is invertible. That is:

Proposition 2.67 A matrix A ∈ Mn(R) is invertible if and only if det A ∈ R∗.

If R = F is a field then F ∗ = F \ {0} and a square matrix is invertible if and
only if it is nonsingular, so we derive the fact that a matrix A ∈ Mn(F) is singular if
and only if det A = 0. By considering the field of fractions we can extend this fact
to integral domains as well.

Theorem 2.68 Let R be an integral domain. A matrix A ∈ Mn(R) is singular if
and only if det A = 0.

Proof Let F = Frac(R) be the field of fractions of R (see p. 34).
Certainly Mn(R) ⊆ Mn(F). The theorem follows from the fact that A is singular as
an element of Mn(R) if and only if it is singular in Mn(F). That is, TA : Rn → Rn

is injective if and only if the extension of this map to TA : Fn → Fn is injective.
In the nontrivial direction, suppose that A is singular in Mn(F); there is a nonzero
column b̄ ∈ Fn in the kernel of TA. The entries of b̄ are fractions of elements of R;
multiplying by the denominators we get some nonzero α ∈ R such that α · b̄ ∈ Rn.
Since R is an integral domain, αb̄ is nonzero, and TA(αb̄) = αTA(b̄) = 0. ��

Using the transpose, we see:

Corollary 2.69 A square matrix A ∈ Mn(R) is singular if and only if there is a
nonzero row α ∈ Rn such that αA = 0. ��

2.5 Further Exercises

Rings, Integral Domains, Polynomials
2.70 Let X be a nonempty set. Recall that P(X), the power set of X, is the
collection of all subsets of X. For A,B ⊆ X, define A · B = A ∩ B and
A + B = (A ∪ B) \ (A ∩ B). Show that P(X), together with the operations +
and · and the designated elements ∅ and X, is a ring.
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2.71 Let p be a prime number. Use the binomial formula to show that for all a, b ∈
Z/(p), (a + b)p = ap + bp. Conclude that for all a ∈ Z/(p), ap = a. Conclude
that the two polynomials x and xp (which are distinct polynomials in (Z/(p))[x])
define the same function from Z/(p) to itself.

2.72 For (a, b, c), (a′, b′, c′) ∈ Z
3, let

• (a, b, c)+ (a′, b′, c′) = (a+ a′, b+ b′, c+ c′), and −(a, b, c) = (−a,−b,−c);
and

• (a, b, c) ·∗ (a′, b′, c′) = (aa′ + bc′ + cb′, ab′ + ba′ + cc′, ac′ + bb′ + ca′).

(a) Show that R = (
Z

3; +,−, ·∗, (0, 0, 0), (1, 0, 0)
)

is a ring. (b) Show that there
are three distinct elements α ∈ Z

3 such that in R, α3 = 1R. (c) Show that R is not
an integral domain.

2.73 Show that every finite integral domain is a field.

2.74 (a) Find a multiplicative inverse for 1+ x in Zvxw.
(b) Similarly for 1+2x+3x2+4x3+· · · (Hint: the latter is the formal derivative

of 1+ x + x2 + x3 + · · · .)

2.75 Let R be the collection of polynomials f ∈ Q[x] whose constant coefficient
is an integer (so polynomials such as 3

2x and 1 + 5
4x3 + 17

8 x7, but not 1
2 + x).

For shorthand, we write R = Z + xQ[x], as its elements are the polynomials of
the form n + xf for f ∈ Q[x]. (a) Show that R is a subring of Q[x]. (b) Show
that R∗ = Z

∗ = {1,−1}. (c) Show that every irreducible element of R is either
an irreducible element of Z, or is of the form 1 + xf or −1 + xf for some f ∈
Q[x]. (d) Conclude that x has no irreducible factorisation in R. (For a more extreme
example, see Exercise 15.9.)

2.76 Let R = Z/(8). Find a polynomial f ∈ R[x] of degree 2 which has more than
two roots in R. (Hence, the condition that R be an integral domain is necessary for
Theorem 2.16.)

2.77 Let R = Z[√−6] (see Exercise 2.3). For z = a + b
√−6 ∈ R let N(z) =

a2 + 6b2. (a) Show that for all w, z ∈ R, N(zw) = N(z)N(w). (b) Show that
for all z ∈ R∗, N(z) = 1, and so that R∗ = {1,−1}. (c) Show that for all z ∈ R,
N(z) �= 2, 5. (d) Show that 2, 5, 2+√−6 and 2−√−6 are irreducible in R, and that
no two are associates. (e) Show that in R, [2, 5] and [2 +√−6, 2 −√−6] are two
irreducible factorisations of 10 which are not associates. Hence R is not a unique
factorisation domain. (f) Nonetheless, using N , show that every nonzero a ∈ R has
some irreducible factorisation.

2.78 Let A be a set of prime numbers. Let Q(A) be the collection of all rational
numbers of the form a/b, where a, b are integers, b �= 0, and for all p ∈ A, p does
not divide b.
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Show that Q(A) is a subring of Q. Classify the units of Q(A). Show that Q(A)

is a unique factorisation domain. Show that Q({2,3}) has two association classes of
irreducible elements.

Groups
2.79 Let α = e2πiθ be an element of the unit circle S. Show that the order of α in
the group S is finite if and only if θ is rational.

2.80 Let R = Z[√2] (see Exercise 2.3); let G = R∗. (a) Show that 1 + √2 is a
unit of Z[√2]. (b) Conclude that Z[√2] contains infinitely many units. (c) Show
that 1 + √2 is the smallest element of G greater than 1. (As in Exercise 2.77, let
N(a + b

√
2) = a2 − 2b2; show that N(zw) = N(z)N(w) for z,w ∈ R.) (d) Show

that G ∼= Z × C2. (e) Use this to classify all solutions to Pell’s equation x2 =
2y2 + 1.11

2.81 Which elements of (Z× Z)/〈(2, 4)〉
Z×Z have finite order?

2.82 Show that if σ1, σ2, . . . , σk are pairwise disjoint cycles in Sn, with σi

of length mi , then the order of σ1σ2 . . . σk is the least common multiple of
{m1,m2, . . . ,mk}.

Let σ ∈ S6 be the permutation mapping 1 to 3, 2 to 1, 3 to 4, 4 to 5, 5 to 6, and 6
to 2. Calculate σ 100.

2.83 Let V be the subgroup of S4 generated by {(1, 2)(3, 4), (1, 3)(2, 4)}.12 Show
that V is isomorphic to C2 × C2.

Linear Algebra
2.84 For a square matrix A ∈ Mn(R), we let the trace of A be tr(A) = ∑

i�n ai,i ,
the sum of the elements on the main diagonal of A. Show that if A ∈ Mn×m(R) and
B ∈ Mm×n(R), then tr(AB) = tr(BA). Use this to show that if n �= m then Rn

and Rm are not linearly isomorphic.13

2.85 Let U and V be linear subspaces of Rn. Show that if U∪V is a linear subspace
of Rn then either U ⊆ V or V ⊆ U .

11 This can be used to find rational approximations of
√

2.
12 V is called the Klein Viergruppe.
13 Dedicated to Ken Pledger.
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2.86 Let F be a finite field; let q = |F |. (a) Show that F 2 is the union of q+1 many
1-dimensional linear subspaces. (b) Show though that for any linear F -space V , for
all n � q , if V1, V2, . . . , Vn are subspaces of V such that

⋃
j�n Vj is also a subspace

of V , then there is some i � n such that Vj ⊆ Vi for all j � n.

2.87 Let n be an even number. Show that there is a linear map T : Fn → Fn such
that for all u ∈ Fn, T (T (u)) = −u.

Is there a linear map T : R → R such that for all u ∈ R, T (T (u)) = −u? What
about C?

2.88 Suppose that the characteristic of F is not 2. Let U be a linear F -space. Show
that the following are equivalent for a nonempty subset H of U :

(1) there is some ū ∈ U and some linear subspace V of U such that H = ū+ V =
{ū+ v̄ : v̄ ∈ V };

(2) there is some linear F -space W , some w̄ ∈ W , and a linear map T : U → W

such that H = T −1{w̄};
(3) for all ū, v̄ ∈ H and all c ∈ F , cū+ (1− c)v̄ ∈ H .

A subset of a linear F -space U satisfying these conditions is called an affine
subspace of U . The dimension of the affine subspace ū+ V is defined to be dim V .
A 1-dimensional affine subspace is called a line. A 2-dimensional affine subspace is
called a plane. Show that every two elements of F 2 lie on a line, and that any three
elements of F 3 lie on a plane.

2.89 Let U be a linear F -space. A linear map T : U → U is called a projection
if T ◦ T = T . Give an example of a projection T : R2 → R

2 whose range is a
1-dimensional subspace of R2. Show that if T is a projection, then the range of T is
a linear complement of ker T in U .

Determinants
2.90 Let A,B ∈ Mn(R). Show that if AB = In then BA = In.

2.91 Is

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5
7 8 11 2 1
0 3 1 4 −1
−2 5 7 7 1
0 1 0 2 4

⎞

⎟
⎟
⎟
⎟
⎟
⎠
= 3

4
?
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2.92 Let f = a0 + a1x + · · · + adxd be a polynomial in R[x]. Show that

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 a2 . . . ad

−x 1
−x 1

. . .
. . .

−x 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
= f.

2.93 Let x0, x1, x2, . . . , xn be variables. The Vandermonde matrix of dimension
n+ 1 is

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 x0 (x0)
2 · · · (x0)

n

1 x1 (x1)
2 · · · (x1)

n

1 x2 (x2)
2 · · · (x2)

n

...
...

...
...

1 xn (xn)
2 · · · (xn)

n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(a) Show that det(A) is a polynomial, all of whose monomials have degree n(n +
1)/2.

(b) Show that for all 0 � i �= j � n, xj − xi divides det(A). (Hint: consider
Z[x0, . . . , x̂i , . . . , xn][xi] and substitute xj for xi .)

(c) Show that det(A) ∼∏
0�i<j�n(xj − xi).

(d) In fact, by considering the product of the diagonal, show that det(A) =∏
i<j�n(xj − xi).

(e) Let R be an integral domain, let a0, a1 . . . , an ∈ R, and let f =∑
i�n bixi be

a polynomial in R[x] of degree � n. Observe that

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 a0 (a0)
2 · · · (a0)

n

1 a1 (a1)
2 · · · (a1)

n

1 a2 (a2)
2 · · · (a2)

n

...
...

...
...

1 an (an)
2 · · · (an)

n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

b2
...

bn

⎞

⎟
⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f (a0)

f (a1)

f (a2)
...

f (an)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Use this to show that if R is an integral domain then any f ∈ R[x] has at most
deg f many roots in R.

2.94 Let R be the collection of matrices in M2(Z) of the form
(

a 2b
b a

)
. Show that R

is a commutative subring of M2(Z); show that it is isomorphic to the ring Z[√2].
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2.95 Let R be the collection of matrices in M2(Z[i]) of the form

(
z w

−w̄ z̄

)

;

Here z̄ denotes usual complex conjugation.
(a) Show that M is a (noncommutative) subring of M2(Z[i]).
(b) Show that the group of quaternions Q (Example 2.55) is a subset of R.
(c) Show that for all M ∈ R there is a unique quadruple of integers (a, b, c, d)

such that M = aI2 + bi+ cj+ dk.
(d) Show that det(aI2 + bi+ cj+ dk) = a2 + b2 + c2 + d2.
(a) Conclude that if m and n are natural numbers, and both n and m are sums of

four square integers, then nm is also the sum of four square integers.14

14 Hence, the four square theorem—which states that every natural number is the sum of four
squares—follows from the fact that every prime number is the sum of four squares.
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We are interested in curves in the plane which are defined by polynomial equations.
Lines, circles, parabolas, ellipses and hyperbolas are such curves, but so are more
complicated curves such as the cardioid (Fig. 3.1).

Every algebraic curve in R
2 is defined by an equation f (x, y) = 0, where f

is a polynomial in R[x, y]. In this chapter we start our systematic study of such
curves. Our first main goal is obtaining a correspondence between curves and the
polynomials that define them. In an ideal world each curve would be defined by a
unique polynomial. This is not so, for three separate reasons. Let f ∈ R[x, y] be a
polynomial.

(1) The polynomial (x2 + 1)f defines the same curve as f does.
(2) The polynomial f 2 defines the same curve as f does.
(3) If λ ∈ R is nonzero, then the polynomial λf defines the same curve as f does.

These three obstructions are dealt with as follows. (1) follows from the fact that R is
not algebraically closed. We will thus change the field with which we work. Usually
we will use the complex field instead. We will take polynomials f ∈ C[x, y] and
study the subsets of C

2 that they define by the equation f (x, y) = 0. Because
of the analogy with the real case we call these sets curves. However C2 has four
real dimensions and the subsets defined by polynomials usually will have two real
dimensions, so they are actually surfaces. In this part of the book we do not use
the topological or analytic structure of the complex numbers, and so rather than
restricting ourselves to the complex field we work with any algebraically closed
field.

(2) is not solved by passing to an algebraically closed field. In order to separate
between the curve defined by f and the curve defined by f 2 we expand our notion
of curve. We define our curves to be multisets of points (see p. 29). If f defines the
curve C then we will let the curve defined by f 2 be C + C: two copies of C. To
give a proper definition we will use the fact that F [x, y] is a unique factorisation
domain. For an irreducible polynomial f we use the original definition: the curve
f = 0, which below we denote by V

A2(f ), will be the set of all points (a, b) for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Nerode, N. Greenberg, Algebraic Curves and Riemann Surfaces
for Undergraduates, https://doi.org/10.1007/978-3-031-11616-2_3

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11616-2_3&domain=pdf

 443 4621 a 443 4621 a
 
https://doi.org/10.1007/978-3-031-11616-2_3


56 3 Affine Space

Fig. 3.1 The cardioid is the
trace left by a point on one
circle, as that circle rolls
along another circle. Its
defining equation is
(x2 + y2−2x)2 = 4(x2 + y2)

which f (a, b) = 0. If f is reducible then we let [f1, f2, . . . , fm] be an irreducible
decomposition of f , and define the curve f = 0 to be the multiset sum of the curves
f1 = 0, f2 = 0, . . . , fm = 0. The uniqueness of irreducible factorisation will imply
that this is well-defined.

The irreducible decomposition of f is unique only up to association, which
brings us to (3). Here the problem cannot be overcome by changing the field or
even the notion of curve; we just have to accept that a curve is not defined by a
unique polynomial, but rather by an association class of polynomials. Recall that
F [x, y]∗ = F ∗ = F \ {0}, so two polynomials f and g are associates if and only
if f = λg for some nonzero scalar λ.

While our goal is studying curves, we will need to consider solutions to
polynomial equations of more than two variables. These will be used, for example,
in defining projective curves. Hence we will define the algebraic hypersurfaces of
n-dimensional space, which generalise curves to higher dimensions. Our main goal
in this chapter is Study’s Lemma, which guarantees the uniqueness (up to scalar
multiples) of a polynomial defining a given hypersurface.

Along the way, we introduce an important algebraic tool in elimination theory:
the resultant, which tells us whether two polynomials have a nonconstant common
factor. Beyond this chapter, the resultant will play a major role when we consider,
in Chap. 6, how curves intersect each other.

3.1 Definition of Hypersurfaces

Fix a field K. For a positive natural number n � 1 we let An(K) = K
n. This is

called n-dimensional affine space over K. The affine plane is the case n = 2. Let
x = (x1, x2, . . . , xn).

Definition 3.1 For an irreducible polynomial f ∈ K[x], we let

VAn(K)(f ) = {
a ∈ A

n(K) : f (a) = 0
}
.

When K is fixed we write An for An(K), and so also write VAn(f ). Informally we
write “the hypersurface f = 0” when we mean VAn(f ), or even “the hypersurface
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f = g” when we mean VAn(f − g). We also say that the polynomial f defines the
hypersurface VAn(f ).

Example 3.2 In two dimensions we use the variables x, y rather than x1, x2.
VA2(R)(x) is the y-axis, and VA2(R)(y) is the x-axis. The polynomial x2 + y2 − 1
is irreducible in R

2 (as it is not the product of linear polynomials); so Definition 3.1
applies, and VA2(R)(x

2 + y2 − 1) is the unit circle.
In three dimensions we use the variables x, y, z. For example, VA3(R)(x) is the

yz-plane. «

Now we want to define the hypersurface defined by any given polynomial in
K[x], not necessarily irreducible. For the following lemma, recall that for f, g ∈
K[x], if f is irreducible and g ∼ f then g is irreducible. Since (K[x])∗ = K

∗ =
K \ {0} (see p. 26), f ∼ g if and only if g = λf for some nonzero constant λ ∈ K.
Since K is an integral domain, in this case, for all a ∈ K

n, f (a) = 0 if and only if
g(a) = 0. Hence:

Lemma 3.3 If f ∈ K[x] is irreducible and g ∼ f then VAn(f ) = VAn(g).

If [f1, . . . , fm] and [g1, . . . , gk] are two irreducible factorisations of a polyno-
mial f then m = k and after rearranging, fi ∼ gi for i = 1, . . . ,m (Theorem 2.24).
Thus, Lemma 3.3 implies that the following definition makes sense (does not depend
on the choice of irreducible factorisation):

Definition 3.4 Let f ∈ K[x] be nonzero. We let

VAn(f ) = VAn(f1)+ VAn(f2)+ · · · + VAn(fm),

where [f1, f2, . . . , fm] is an irreducible factorisation of f .

If f is a nonzero constant, then the empty multiset is an irreducible factorisation
of f , so we get VAn(f ) = ∅. If f is the constant 0, then we define VAn(f ) = A

n.
If f is irreducible then [f ] is an irreducible factorisation of f , so Definition 3.4
agrees with Example 3.2 for irreducible polynomials.

If f ∼ g then f and g have the same irreducible factorisations, so Lemma 3.3
holds for all polynomials. Indeed, if f divides g, [f1, . . . , fk] is an irreducible
factorisation of f , and [g1, . . . , gm] is an irreducible factorisation of g, then
k � m and after rearranging, fi ∼ gi for i � k (in the notation of Sect. 2.2,
[f1, . . . , fk] ⊆∼ [g1, . . . , gm]). It follows that VAn(f ) ⊆ VAn(g), in the sense of
multisets. The converse of this fact, known as Study’s Lemma, only holds if K is
algebraically closed. It is a special case of Hilbert’s Nullstellensatz.
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Example 3.5 V
A2(R)(x

2y) is the union of the x-axis and two copies of the y-axis,
because [x, x, y] is an irreducible factorisation of x2y. Thus the origin o = (0, 0)

appears 3 times on V
A2(R)(x

2y). «

Since K is an integral domain, if [f1, . . . , fm] is an irreducible factorisation of f

then f (a) = 0 if and only if fi(a) = 0 for some i � m. It follows that

�VAn(f )	 = {
a ∈ A

n : f (a) = 0
} ;

recall that �C	, the underlying set of a multiset C, is the collection of all elements
of C with multiplicities forgotten.

A multiset of points of An of the form VAn(f ) for some nonzero polynomial f ∈
K[x] is called an algebraic hypersurface ofAn. For n = 3, an algebraic hypersurface
ofA3 is called an algebraic surface ofA3. For n = 2, an algebraic hypersurface of A2

is called an algebraic curve of A2.

Exercise 3.6 Show that a multiset of elements of A1 is an algebraic hypersurface of
A

1 if and only if it is finite. «

In this terminology, Proposition 2.18 says that if K is infinite, then no algebraic
hypersurface contains all of An; Proposition 2.19 says that no algebraic hypersurface
contains Sn where S ⊆ K is infinite.

3.2 The Resultant

The resultant is used to test whether two polynomials have a common factor. In this
section, fix a unique factorisation domain R, and let x be a variable (not already
in R). Below, by a nonconstant polynomial we mean an element of R[x] \ R (even
if R itself is a ring of polynomials).

3.2.1 The Sylvester Matrix

Let f ∈ R[x] be nonconstant, and let d � deg f . Write f = a0+ a1x + · · ·+ adxd

(if d > deg f then ad = 0). Fix e � 1. Given a polynomial k = c0 + c1x +
· · · + ce−1xe−1 in R[x] of degree less than e, we write its coefficients in a row
(c0, c1, . . . , ce−1) of length e. The product hf has degree less than d + e, and so we
write its coefficients in a row of length d+e. The map taking the row (c0, . . . , ce−1)

to the row of coefficients of hf is linear, and is given by multiplying (on the right)
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by the e × (d + e)-matrix

Md,e(f ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 · · · ad

a0 a1 · · · ad

a0 a1 · · · ad

. . .
. . .

a0 a1 · · · ad

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 3.7 Show that the transpose Md,e(f )
t

is nonsingular. «

Now given two polynomials f = a0 + a1x + · · · + adxd and g = b0 + b1x +
· · · bexe of degrees at most d and e, we consider the map taking two polynomials
k, h ∈ R[x] with deg k < e and deg h < d and producing the coefficients of the
linear combination kf+hg. In terms of rows of coefficients, we write the coefficients
of k and h sequentially in a row of length d + e, and we obtain a row of coefficients
of length d+e as well. It is linear, and is given by stacking the two matrices Md,e(f )

and Me,d(g) on top of one another:

Definition 3.8 Let f, g ∈ R[x] be nonconstant; let d � deg f , e � deg g. The
d, e-Sylvester matrix of f and g is

Md,e(f, g) =
(

Md,e(f )

Me,d(g)

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 · · · ad

a0 a1 · · · ad

a0 a1 · · · ad

. . .
. . .

a0 a1 · · · ad

b0 b1 · · · be

. . .
. . .

b0 b1 · · · be

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where f = ∑
aixi and g = ∑

bixi . If d = deg f and e = deg g then we write
M(f, g) for Md,e(f, g).

Note that Md,e(f, g) is square (of size (d+e)×(d+e)), and that the main diagonal
of Md,e(f, g) contains e many a0’s and d many be’s.

Lemma 3.9 Let f and g be nonconstant polynomials in R[x], and let d � deg f

and e � deg g. The matrix Md,e(f, g) is singular if and only if there are nonzero
polynomials h and k in R[x] such that deg h < d , deg k < e and kf = hg.



60 3 Affine Space

Proof M = Md,e(f, g) is nonsingular if and only if γM = 0 implies γ = 0
(Corollary 2.69). If α and β are the rows of coefficients of polynomials k and h as
above, then (α,−β)M is the row of coefficients of kf − hg, so (α,−β) ·M = 0 if
and only if kf = hg.

This shows that M is singular if and only if there are polynomials h and k

(with deg h < d , deg k < e), at least one of which is nonzero, such that kf = hg.
However R[x] is an integral domain, and f and g are nonzero, so one of k or h

being nonzero implies that the other is nonzero as well. ��

Lemma 3.10 Let f and g be nonconstant polynomials in R[x]. The polynomials f

and g have a nonconstant common factor if and only if there are nonzero
polynomials h and k in R[x] such that deg h < deg f , deg k < deg g and kf = hg.

Proof If p ∈ R[x] is a nonconstant common factor of f and g then h = f/p

and k = g/p are as required. The other direction uses the fact that R[x] is a
unique factorisation domain (Proposition 2.31). Suppose that deg h < deg f and f

divides hg. The irreducible nonconstant factors of f appear in hg, and they cannot
all appear in h as deg h < deg f ; and so one of them is also a factor of g. ��

3.2.2 The Resultant, Common Roots, and More Variables

The Sylvester matrix is square, and so has a determinant.

Definition 3.11 Let f, g ∈ R[x] be nonconstant and let d � deg f , e � deg g. The
d, e-resultant of f and g, denoted by resd,e(f, g), is the determinant of the Sylvester
matrix Md,e(f, g).

If d = deg f and e = deg g then we write res(f, g) for resd,e(f, g); res(f, g) is
known as the resultant of f and g.

Note that since the entries of Md,e(f, g) are elements of R, so is resd,e(f, g).
The fact that the Sylvester matrix is singular if and only if its determinant is zero
(Theorem 2.68), together with Lemmas 3.9 and 3.10 shows:

Theorem 3.12 Nonconstant polynomials f and g in R[x] have a nonconstant
common factor p ∈ R[x] if and only if res(f, g) = 0. ��

An important special case is when f and g are polynomials (in one variable)
over an algebraically closed field K. In this case the irreducible polynomials are
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the linear ones, and two polynomials f and g ∈ K[x] have a common nonconstant
factor if and only if they have a common root.

AddingMore Variables

If R is itself a polynomial ring S[y] for some unique factorisation domain S, then
we may need to mention the fact that when calculating Md,e(f, g) and resd,e(f, g)

we are doing so with respect to the variable x. This we do by writing M
d,e
x (f, g)

and resd,e
x (f, g). We drop the subscript when the variable is clear from the context.

Example 3.13 Let f = x − y2 and g = x3y be elements of Z[x, y]. Then

My(f, g) = M
2,1
y (f, g) =

(
x 0 −1
0 x3 0
0 0 x3

)

, so resy(f, g) = x7 (which is indeed

an element of Z[x]), and Mx(f, g) = M
1,3
x (f, g) =

⎛

⎝
−y2 1 0 0

0 −y2 1 0
0 0 −y2 1
0 0 0 y

⎞

⎠ , and so

resx(f, g) = −y7.
To illustrate what happens if we pick dimensions greater than the degrees, check

that res2,2
y (f, g) = −x7 and that res2,3

x (f, g) = −y8.
We note though that if d > deg f and e > deg g then resd,e(f, g) = 0, as the

last column of the Sylvester matrix is zero. «

Exercise 3.14 Let f, g ∈ R[x], and let d > deg f and e > deg g. The fact that
resd,e(f, g) = 0 implies that there are polynomials k and h in R[x] such that
deg h < d , deg k < e and kf = hg. Find such polynomials. «

Suppose that f, g ∈ R[y, x]. Fix d � degx f and e � degx g. For any
a ∈ R, f (a, x) and g(a, x) are polynomials in R[x], with deg f (a, x) �
d and deg g(a, x) � e. The entries of M

d,e
x (f, g) are polynomials in R[y].

The matrix Md,e(f (a, x), g(a, y)) is obtained from the matrix M
d,e
x (f, g) by

substituting a into each of the entries of Md,e(f ), and so, after taking the deter-
minant, resd,e(f (a, x), g(a, x)) is the result of substituting a into the polynomial
resd,e

x (f, g) (see the discussion on p. 47).
However, it is possible that d = degx f , e = degx g, but d > deg f (a, x) or e >

deg g(a, x), or both. For example, take R = Z, f = 3yx2+(y3+3)x+(y5+7y), and
a = 0; then degx f = 2 but deg f (a, x) = 1. In this case we say that the leading
coefficient of f vanishes when we substitute a for y in f . In this case, we will
have Mx(f, g) = M

d,e
x (f, g), but M(f (a, x), g(a, x)) �= Md,e(f (a, x), g(a, x)),

becase the last two matrices have different sizes; and it will be impossible to derive
any connection between the resultants resx(f, g) and res(f (a, x), g(a, x)).
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We can replace y by an m-tuple of variables y. The following lemma says that
when the leading coefficients of f and g do not vanish, the resultant “commutes”
with substitution:

Lemma 3.15 Let f, g ∈ R[y, x] be nonconstant in x and let a ∈ Rm. If
deg f (a, x) = degx f and deg g(a, x) = degx g then

res(f, g)(a) = resx(f (a, x), g(a, x)). ��

Proposition 3.16 Let f, g ∈ R[y, x] be nonconstant in x. Let a ∈ Rm. The
following are equivalent:

(1) Either f (a, x) and g(a, x) have a nonconstant common factor in R[x], or both
degx f (a, x) < degx f and degx g(a, x) < degx g.

(2) (resx(f, g))(a) = 0.

Proof Let r = resx(f, g). Let d = degx f and e = degx g. There are three cases.
If degx f (a, x) = d and degx g(a, x) = e then res(f (a, x), g(a, x)) = r(a); in this
case the equivalence is by Theorem 3.12. If degx f (a, x) < d and degx g(a, x) <

e then as observed above, r(a) = resd,e
x (f (a, x), g(a, x)) = 0 (the last column

of M
d,e
x (f, g)(a) is zero).

Finally, suppose, without loss of generality, that degx g(a, x) = e but that
degx f (a, x) < d . While res(f (a, x), g(a, x)) may not be the same as r(a),
still r(a) = resd,e(f (a, x), g(a, x)). Lemma 3.9 says that r(a) = 0 if and only
if there are polynomials k, h ∈ R[x] such that deg h < d , deg k < e and
k(x)f (a, x) = h(x)g(a, x). An examination of the proof of Lemma 3.10 shows
in fact that g(a, x) dividing k(x)f (a, x) with deg k < e = deg g(a, x) is equivalent
to f (a, x) and g(a, x) having a nonconstant common factor in R[x]. ��

3.2.3 The Resultant is a Linear Combination

The last fact we need (for now) about the resultant res(f, g) is the fact that it is a
linear combination of f and g over R[x].

Proposition 3.17 Let f, g ∈ R[x] be nonconstant. There are polynomials h, k ∈
R[x] such that res(f, g) = kf + hg.

In fact, we get such polynomials with deg k < deg g and deg h < deg f .
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Proof Let d = deg f and e = deg g. Let ū0, ū1, . . . , ūd+e−1 be the columns of the
Sylvester matrix M(f, g) = Md,e(f, g) (so the entries of these columns are in R).

Let w̄ be the column

w̄ = ū0 + xū1 + · · · + xd+e−1ūd+e−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f

xf

x2f
...

xe−1f

g

xg
...

xd−1g

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let A = (w̄, ū1, ū2, . . . , ūd+e−1) be the matrix obtained from M(f, g) by
replacing the first column by w̄. By the multi-linearity of the determinant function,

det(A) = det(w̄, ū1, ū2, . . . , ūd+e−1) =
d+e−1∑

j=0

xj det(ūj , ū1, ū2, . . . , ūd+e−1).

For j > 0, the matrix (ūj , ū1, ū2, . . . , ūd+e−1) contains two repeated columns,
and so its determinant is zero; so det A = det(ū0, . . . , ūd+e−1) = res(f, g). Now,
develop det A along its first column w̄:

res(f, g) = det A =
d+e∑

j=1

(−1)j+1wj det(Aj,1) =

e−1∑

i=0

(−1)i det(Ai+1,1)x
if +

d−1∑

i=0

(−1)i+e det(Ai+e+1,1)x
ig

so we let k =∑e−1
i=0 (−1)i det(Ai+1,1)x

i and h =∑d−1
i=0 (−1)i+e det(Ai+e+1,1)x

i.

The bound on the degree of k and h follows from the observation that every entry
of Aj,1 (for j � d + e) is in R, so det Aj,1 is also in R. ��
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3.3 Study’s Lemma

Study’s Lemma Suppose that K is algebraically closed. Let f, g ∈ K[x1, x2, . . . ,

xn] be nonzero polynomials. Then

f divides g ⇐⇒ VAn(K)(f ) ⊆ VAn(K)(g).

Study’s lemma implies that if K is algebraically closed, then f ∼ g if and only
if VAn(f ) = VAn(g). In particular, Study’s lemma implies that if f is a nonconstant
polynomial, then VAn(K)(f ) �= ∅. This is a good exercise to begin with:

Exercise 3.18 Show directly that if K is algebraically closed, then for any noncon-
stant polynomial f ∈ K[x1, . . . , xn], the hypersurface VAn(f ) is nonempty. «

For the rest of this section, we assume that the field K is algebraically closed.
Before we prove Study’s lemma, we present a couple of consequences.

To begin with, let C be a a hypersurface of An. If f and g are two polynomials
defining C, then f ∼ g. This implies that f is irreducible if and only if g is
irreducible. We can therefore define:

Definition 3.19 An algebraic hypersurface is irreducible if the polynomials defin-
ing it are irreducible.

Similarly, f ∼ g implies deg f = deg g, and so when K is algebraically closed,
hypersurfaces have a well-defined notion of degree:

Definition 3.20 The degree of a hypersurface C of An, denoted by deg C, is the
degree of the polynomials defining C.

A conic curve is a curve defined by a polynomial of degree 2 (also known as a
quadratic curve), a cubic curve is a curve defined by a polynomial of degree 3, a
quartic by a polynomial of degree 4 and so on.

Uniqueness of the polynomial defining a hypersurface, together with unique
factorisation in K[x], allows us to identify the irreducible components of a
hypersurface in A

n. If C is a hypersurface in A
n, then the irreducible components

of C are the irreducible hypersurfaces D such that D ⊆ C. Study’s lemma tells us
that the irreducible components of VAn(f ) are the hypersurfaces VAn(g) where g is
an irreducible factor of f .

Proposition 3.21 Let f and g be nonzero polynomials in K[x]. Then �VAn(f )	 ⊆
�VAn(g)	 if and only if every irreducible factor of f also divides g.
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Proof Suppose that every irreducible factor of f divides g. Let a ∈ K
n. If f (a) = 0

then h(a) = 0 for some irreducible h � f . Since h divides g as well, we have
g(a) = 0. Hence �VAn(f )	 ⊆ �VAn(g)	.

In the other direction, suppose that �VAn(f )	 ⊆ �VAn(g)	. Let h be an irreducible
factor of f . Then VAn(h) is a set, and so is a subset of �VAn(f )	, and so is a subset of
�VAn(g)	, which in turn is a subset of the multiset VAn(g). That is, VAn(h) ⊆ VAn(g).
By Study’s lemma, h divides g. ��

The following result allows us to find the irreducible components of a hypersur-
face using its underlying set.

Proposition 3.22 Let C be a hypersurface ofAn, and let A1, . . . , Ak be irreducible
hypersurfaces of An such that �C	 = ⋃

i�k Ai. Then the irreducible components
of C are A1, . . . , Ak .

Proof Choose g deifning C; for i � k, choose fi defining Ai , and let f = f1 ·
f2 · · · fk . Then �C	 =

⌊∑
i�k Ai

⌋
= �VAn(f )	. Proposition 3.21 says that f and g

have the same irreducible factors, namely f1, . . . , fk . ��

3.3.1 Proof of Study’s Lemma

We observed earlier that the left-to-right direction of Study’s lemma holds for
any field K, not necessarily algebraically closed. We let f, g ∈ K[x] be nonzero
polynomials such that VAn(f ) ⊆ VAn(g), and show that f divides g.

First, we argue that we may assume that f is irreducible. Suppose that Study’s
lemma is known to hold when the first polynomial is irreducible. Then we can prove
the full Study’s lemma by induction on the number of irreducible factors of f . Let f

be any polynomial, and suppose that VAn(f ) ⊆ VAn(g). Let p be an irreducible
factor of f . Then VAn(p) ⊆ VAn(g), and so by assumption, p divides g. Then we
can “peel off” p from both sides: VAn(f ) = VAn(p) + VAn(f/p), and VAn(g) =
VAn(p)+VAn(g/p); we conclude that VAn(f/p) ⊆ VAn(g/p). Since f/p has fewer
irreducible factors than f , by induction, f/p divides g/p, and so overall we get
f �g.

Assuming now that f is irreducible, VAn(f ) is a set (all the elements of VAn(f )

have multiplicity 1), so the assumption is that for all a ∈ K
n, if f (a) = 0 then

g(a) = 0.
If f is constant then it is a unit so it certainly divides g. Otherwise, degxi

f > 0
for some i � n. For notational simplicity, we assume i = n. We use the following
lemma:

Lemma 3.23 Let f, g ∈ K[x1, . . . , xn]. If degxn
f > 0, degxn

g = 0 and VAn(f ) ⊆
VAn(g), then g = 0.
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Note that under the hypotheses of the lemma, we have g ∈ K[x1, . . . , xn−1],
but we are still considering VAn(g), as g is also an element of K[x1, . . . , xn]; but
since xn does not appear in g, we have VAn(g) = VAn−1(g) × K. Thus, the lemma
says that no hypersurface of An can be contained in a cylinder D ×K in A

n defined
by a hypersurface D of An−1, unless it is a cylinder itself.

Proof We prove the contrapositive. Suppose that g �= 0. Let d = degxn
f , and write

f = f0 + f1xn + · · · + fdxd
n , with f0, f1, . . . , fd ∈ K[x1, . . . , xn−1]; so fd �= 0.

Since K[x1, . . . , xn−1] is an integral domain, gfd �= 0. By Proposition 2.18 there
is some a ∈ K

n−1 such that (gfd)(a) �= 0; so g(a) �= 0 and fd(a) �= 0. The
latter shows that degxn

f (a, xn) = d > 0; since K is algebraically closed, there is
some b ∈ K such that f (a, b) = 0, so (a, b) ∈ VAn(f ). But g(a) �= 0 means that
(a, b) /∈ VAn(g). Hence VAn(f ) � VAn(g). ��

We conclude that degxn
g > 0. Let r = resxn(f, g) (which is defined since

degxn
f, degxn

g > 0); it is an element of K[x1, . . . , xn−1]. Let a ∈ VAn(f ).
By assumption, g(a) = 0 as well. Since r is a linear combination of f and g

(Proposition 3.17), r(a) = 0. So VAn(f ) ⊆ VAn(r). As degxn
r = 0, Lemma 3.23

ensures that r = 0. Hence f and g have a common divisor h such that degxn
h > 0

(Theorem 3.12). Since f is irreducible and h is not a unit, we must have h ∼ f , and
so f divides g.

This completes the proof of Study’s Lemma.

3.4 Affine Lines and Rational Parameterisations

Algebraic plane curves are defined implicitly, as the set of points which satisfy an
equation. We can also determine curves parametrically, by “listing” their points.
For example, the unit circle is both given by the equation x2 + y2 = 1 and as the
collection of points (sin t, cos t) for t ∈ R. The simplest example is that of lines.

3.4.1 Affine Lines

In Exercise 2.88 we defined the notion of an affine subspace of An—these are the
subsets of An of the form a+U , where U is a linear subspace of Kn. The dimension
of the subspace a +U is defined to be the dimension of U . Similarly, an affine map
from A

n to A
m is a map of the form p �→ T (p) + b where T : An → A

m is linear
and b ∈ A

m.

Exercise 3.24 Show that the following are equivalent for W ⊆ A
n: (i) W is the zero

set {p ∈ A
n : f (p) = 0} of some affine map f : An → A

m which is onto A
m; (ii) W

is an affine subspace of An of dimension n−m. (See Corollary 2.63). «
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Affine maps from A
n to A

1 are precisely the maps defined by linear polynomials
f ∈ K[x1, . . . , xn] (polynomials which are constant or have degree 1): the function
defined by f = a1x1 + a2x2 + · · · + anxn + b is the affine map T + b, where T

is the linear map given by the row matrix
(
a1 a2 · · · an

)
. The affine map defined

by a linear polynomial f is onto A
1 if and only f is nonconstant. Note that all

polynomials of degree 1 are irreducible. Thus, Exercise 3.24 says that the affine
hyperplanes of A

n—the affine subspaces of dimension n − 1—are precisely the
algebraic hypersurfaces of An of degree 1.

A line in A
n is an affine subspace of dimension 1. Lines in A

2 are the hyperplanes
of A2. We thus get:

Proposition 3.25 The lines of A2 are the algebraic curves of degree 1.

Exercise 3.26 Show that if p and q are distinct points in A
n then there is a unique

line which passes through p and q. «

Definition 3.27 A linear parameterisation in A
n is an injective affine map from A

1

to A
n.

The images of injective affine maps from A
m to A

n are precisely the m-
dimensional affine subspaces of An, and so lines are the images of linear param-
eterisations. A parameterisation of a line 	 is a parameterisation whose range is 	. A
linear parameterisation ψ : A1 → A

n is defined by a tuple of linear polynomials in
one variable: ψ(a) = (ψ1(a), . . . , ψn(a)) where ψi ∈ K[t] is linear. In particular,
linear parameterisations of lines in A

2 are of the form ψ(a) = (ψx(a), ψy(a)) with
ψx,ψy ∈ K[t] linear and at least one of ψx and ψy nonconstant.

Example 3.28 If a, b are distinct points in A
2 then ψ(t) = (1 − t)a + tb is the

unique parameterisation of the line passing through a and b satisfying ψ(0) = a

and ψ(1) = b. «

3.4.2 Rational Parameterisations

To parameterise more complicated curves, we need more complicated functions.
We now consider parameterisations by rational functions. Recall that the field of
fractions of K[x] (denoted by K(x)) is called the field of formal rational functions
in x (with coefficients in K); see Example 2.35. A formal rational function h =
f/g ∈ K(x1, . . . , xn) defines a partial function on A

n, a �→ f (a)/g(a). Note
that the values of the function do not depend on the presentation of h as a ratio
of polynomials, but the domain of the function, namely A

n \ VAn(g)—does; for that
reason we usually ask that f and g do not have a common factor, so that h is given
in simplest terms.
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A rational map from A
m to A

n is a map of the form a �→ (h1(a), . . . , hn(a)),
where hi ∈ K(x1, . . . , xm). To parameterise a curve, we take rational maps from A

1.
Since such maps will not be defined on every input, we sometimes must omit some
“bad points”. We thus define:

Definition 3.29 A rational parameterisation of a curve C in A
2 is a rational map

ψ : A1 → A
2 such that for some finite Q ⊂ A

1 and finite P ⊂ C, the restriction
ψ�

A1\Q is a bijection between A
1 \Q and C \ P .

A curve C is rational if it has a rational parameterisation.

The standard example is the graph of a function: if C is the curve y = f (x), with
f ∈ K[x], then a �→ (a, f (a)) is a rational parameterisation of C. Another example
is the rational parameterisation of the unit circle given in Chap. 1 (see Fig. 1.1): here
ψ(a) = (2a/(a2+ 1), (a2− 1)/(a2+ 1)) is a bijection between A

1(R) and the unit
circle excluding one point. If we replace R by C, we again get an “almost bijection”;
the parameterisation though is undefined at i and −i.

Which curves are rational? The answer relies on the topological notion of the
genus of a curve, which we will not discuss. A rational curve with no repeated
components must be irreducible: see Exercise 6.49.

Assuming that a given curve C is rational, how do we find a parameterisation?
Sometimes, the technique used for the unit circle can be applied. We find a point
q ∈ C such that every line through q (or at least all but finitely many) intersects C in
one other point. We then associate with every a ∈ K some line 	a passing through q;
and we let ψ(a) be the other point of intersection of the line 	a with C. For example,
we can choose q to be the origin o, and let 	a be the line y = ax; see Exercises 3.47
and 3.48 below.

The opposite question is how to find an implicit definition of a curve which is
given as the range of a parameterisation. Such a definition always exists.

Proposition 3.30 If ψ : A1 → A
2 is a rational map, then the range of ψ is

contained in an algebraic curve. If K is algebraically closed, then we can choose
the curve to contain at most one point outside the range of ψ .

Proof Write ψ = (ψx,ψy); let gx, hx, gy, hy ∈ K[t] such that ψx = gx/hx , ψy =
gy/hy , and gx and hx have no nonconstant common factor, and similarly gy and hy .
Define the polynomials p(x, y, t) = xhx(t)−gx(t) and q(x, y, t) = yhy(t)−gy(t);
even though y does not appear in p and x does not appear in q , we think of both
as polynomials in K[x, y][t] so we take r = rest (p, q), which is a polynomial
in K[x, y]. However, any common factor of p and q must be in K[t]. Viewing p as
a polynomial in K[t][x] we see that such a common factor must divide both gx(t)

and hx(t); since gx and hx were chosen to have no nonconstant common factor, p

and q have no nonconstant common factor. By Theorem 3.12, r �= 0, so r defines a
curve in A

2.
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If (b, c) = ψ(a) then p(b, c, a) = q(b, c, a) = 0; by Proposition 3.16, r(b, c) =
0. Hence the range of ψ is contained in the curve VA2(r). In the other direction, let
(b, c) ∈ VA2(r). Proposition 3.16 gives us two possibilities: either p(b, c, t) and
q(b, c, t) have a nonconstant common component, or degt p(b, c, t) < degt p and
degt q(b, c, t) < degt q . Viewed as polynomials in K[x, y][t], the coefficients of p

and q are linear; this means that the second possibility happens for precisely one
point (b, c). This point may or may not be in the range of ψ . If K is algebraically
closed, then when p(b, c, t) and q(b, c, t) have a common component, they have a
common root a, i.e., bhx(a) = gx(a) and chy(a) = gy(a). Since gx and hx don’t
have a common root, we cannot have hx(a) = 0, and similarly, hy(a) �= 0; so
(b, c) = ψ(a). Hence, if K is algebraically closed, the range of ψ is the underlying
set of the curve r = 0, possibly missing one point. ��

For examples, see Exercise 3.43. For more on rational parameterisations, see, for
example, [Gib98, Chap. 8, Sect. 14.3].

3.5 Further Exercises

In the following exercises, unless otherwise stated, let K be any field. We write A
n

for An(K).

Lines
3.31 Let 	 = V

A2(Z/(5)) (2x + 3y + 1). List the elements of 	. Find elements ū and

v̄ of (Z/(5))2 such that 	 is the 1-dimensional affine subspace 〈ū〉(Z/(5))2 + v̄.

3.32 For each a ∈ Z/(3), let Ca = VA2(Z/(3))

(
x2 + y2 + a

)
. (a) List the elements

of �Ca	. (b) Show that the polynomial x2 + y2 + a is irreducible. (c) Show that the
plane A2(Z/(3)) contains exactly twelve lines.

3.33 Let 	 ⊂ A
2 be a line, and let p ∈ A

2 \ 	. Show that there is a unique line 	′
which passes through p such that 	∩	′ is empty (we say that 	 and 	′ are parallel).1

Irreducible Polynomials
3.34 Suppose that K is algebraically closed. Let C be a conic or cubic curve in
A

2(K) (recall that this means a curve of degree 2 or 3). Show that C is irreducible if
and only if it does not contain a line.

1 This, of course, is Euclid’s fifth postulate.



70 3 Affine Space

3.35 (a) Let f ∈ C[x] be a polynomial of odd degree. Show that y2 − f is
irreducible. (Hint: if not, factor f in C[x][y] as a product of linear terms, and
compare coefficients.) (b) Let f and g be polynomials in C[x] with no common
nonconstant factor. Show that yf + g is irreducible. (c) Let f ∈ C[x]. Show that
y3 + f is reducible if and only if there is some g ∈ C[x] such that f = g3. [Bix06,
Examples 1.6, 1.8, and 1.9]

Resultants, Curves and Study’s Lemma
3.36 Let R be a subring of an integral domain S. Let f, g ∈ R[x]. Show that f and g

have a nonconstant common factor in R[x] if and only if they have a nonconstant
common factor in S[x].

3.37 Let f = x2+ 3x + 1 and g = x2− 4x + 1 be polynomials in C[x]. Do f and
g have a common root in C? Find res(f, g).

3.38 Let C = {(r cos θ, r sin θ) : r = sin(3θ)}. Show that C is the underlying
set of an algebraic curve of A2(R). (Hint: use the familiar identities r2 = x2 + y2,
x = r cos θ and y = r sin θ , as well as the identity sin 3θ = 3 sin θ − 4 sin3 θ .)

3.39 The purpose of this exercise is to give a simplified argument for the main case
of Study’s lemma, for n = 2. Suppose that K is algebraically closed, that f, g ∈
K[x, y], that f is irreducible, that degy f, degy g > 0, and that V

A2(f ) ⊆ V
A2(g).

Show that for all but finitely many a ∈ K, resy(f, g)(a) = resy(f (a, y), g(a, y)).
Also show that if degy f (a, y) > 0, then f (a, y) and g(a, y) have a common root
in K. Conclude that resy(f, g) has infinitely many roots in K. Hence resy(f, g) = 0;
conclude that f divides g.

3.40 Let f and g be nonzero polynomials in K[x, y]which have no common factor.
Proposition 3.17 shows that there are polynomials h, k ∈ K[x, y] such that hf +
kg ∈ K[x] \ {0}. We give a proof of this fact which does not use Proposition 3.17.

Let F = K(x) be the field of formal rational functions (Example 2.35). Show
that f and g have no nonconstant common factor in F [y]. Conclude that there are
elements α, β ∈ F [y] such that αf +βg = 1 (consult the proof of Proposition 2.25).
Use this to show that there are elements h, k ∈ K[x, y] such that hf + kg ∈ K[x] \
{0}.

3.41 Suppose that K is algebraically closed. Let C be an algebraic hypersurface
of An which has no repeated components. Show that C is irreducible if and only if
there are no distinct hypersurfaces C1, C2 of An such that �C	 = �C1	 ∪ �C2	.
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Fig. 3.2 The cuspidal cubic
y2 = x3

3.42 Suppose that K is algebraically closed. Show that if n � 2, then every
nonempty hypersurface of An contains infinitely many points. In particular, every
curve in A

2(C) contains infinitely many points.

Parameterisations
3.43 For the following three rational parameterisations from R to R

2 find the
curve which is parameterised and decide whether the parameterisation is a bijection
between R and the curve. (i) (t2 + t3, t3 + t4); (ii) (1 + t, t + t3); (iii) (t2/(1 +
t2), t3/(1+ t2)). [Gib98, Example 14.3.1]

3.44 Find a rational parameterisation of the circle x2+y2 = 5 in A
2(Q). (Note that

over Q, this circle does not intersect the axes; you need to find a rational point on
this circle.)

3.45 Let f and g be polynomials in K[t], which define a polynomial parameteri-
sation a �→ (f (a), g(a)) of a curve in A

2. Show that the degree of that curve is at
most max{deg f, deg g}.

Important Curves
3.46 For n � 1, let Cn = VA2(Q)(x

n + yn − 1). Show that Cn � {(0,±1), (±1, 0)}
if and only if there are nonzero integers a, b and c such that an + bn = cn. 2

3.47 Show that the curve y2 = x3 (Fig. 3.2), called the cuspidal cubic curve, is
irreducible. Find a rational parameterisation of this curve. (Hint: try the family of
lines through the origin.)

2 Of course, Fermat’s last theorem, proved by Wiles and Taylor, states that if n � 3, then there is
no such triple of integers.
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Fig. 3.3 The nodal cubic
y2 = x3 + x2

Fig. 3.4 The folium of
Descartes y3 + x3 = 3xy

3.48 Show that the curve y2 = x2 + x3 (Fig. 3.3), called the nodal cubic curve, is
irreducible. Find a rational parameterisation of this curve.

3.49 Find a rational parameterisation of the Folium of Descartes, the curve
x3 + y3 = 3xy in A

2(R) (Fig. 3.4).
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A need to extend the affine plane comes from a consideration of intersections of
curves. The simplest case is that of lines. We want any two distinct lines to intersect
at a single point. In the affine plane, we have parallel lines. So we add “points at
infinity”: one for each direction of lines in the affine plane. For example, all vertical
lines x = a intersect at the “vertical point at infinity”. But note that there is only
one vertical point at infinity, not two, as distinct lines should not intersect at more
than one point. Adding the vertical point at infinity causes the vertical lines to “wrap
around” from −∞ to ∞. We can thus envision the projective plane as the result of
adding to the affine plane a circle around the plane, at “infinite distance”, except that
opposite points on that circle are identified.

Topologically, the plane R
2 is identical to the open unit disc. So the real

projective plane can be envisioned as the result of taking the closed unit disc
and gluing opposite points on the unit circle. This is the same as taking the unit
sphere S2 in 3-dimensional space, and gluing all opposite points: first glue together
the open northern and southern hemispheres, to obtain the open unit disc; then glue
opposite points on the equator as we did with the unit circle. Opposite points on the
unit sphere are the points of intersection with the sphere of lines passing through
the origin. And so, yet another construction of the projective plane is by taking
the collection of all lines in 3-dimensional space passing through the origin, and
squeezing each such line to a single point.

This definition gives rise to homogeneous coordinates for points on the projective
plane: we give a point in the projective plane all the coordinates of nonzero points
on the line which was squeezed to obtain that point. So a point in 2-dimensional
projective plane has three coordinates, but they are not unique: multiplying the
coordinates by the same scalar results in the same point. The projective point
(2 : 2 : 1) is the same point as the projective point (4 : 4 : 2). The old affine plane
is now identified as a subset of the projective plane by the identification (x, y) �→
(1 : x : y); see Fig. 4.2. The line at infinity consists of the points (0 : x : y).
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Homogeneous coordinates allow us to define projective curves (and in general,
projective hypersurfaces in higher dimensional projective spaces). However, we
cannot take zero sets of just any polynomial. For example, if we’re going to use
a polynomial f to define a zero-set in the projective plane, it had better be the
case that f (2, 2, 1) = 0 if and only if f (4, 4, 2) = 0. Otherwise there would be
ambiguity as to whether the point (2 : 2 : 1) = (4 : 4 : 2) lies on the curve f = 0 or
not. The polynomials for which this is never a problem are the homogeneous ones:
polynomials in which every monomial has the same degree.

The process of homogenisation of a polynomial gives the projective closure of
an affine curve. Consider, for example, the parabola y = x2. In homogeneous
coordinates, a point (a, a2) = (1 : a : a2) on the parabola is the same as (e : ea : ea2)

for any nonzero e. So the projective points (w : x : y) with w �= 0 which lie on the
parabola are precisely those which satisfy wy = x2. Algebraically, what we did is
multiply each monomial of y − x2 by the appropriate power of w so that we get a
homogeneous equation. Having done that, we can also set w = 0 to get the points
at infinity. In the case of the parabola, this forces x = 0. Since there is no projective
point (0 : 0 : 0) (the point (0, 0, 0) does not determine a line through the origin), and
all the points (0 : 0 : b) for b �= 0 are actually the same point (0 : 0 : 1), we get a single
point at infinity which lies on the projective closure of the parabola. That point, by
the way, is the vertical point at infinity: the homogenisation of an equation x = a of
a vertical line is x = aw; now set w = 0 to see that (0 : 0 : 1) is the point at infinity
on the line x = aw.

In this chapter we start with the investigation of homogeneous polynomials; we
define projective space, and then show how to identify affine space as a subset of
projective space. After verifying that Study’s lemma holds for projective curves, we
also discuss changes of coordinates, which are used to simplify equations of curves.
These will be useful, for example, in classifying conic curves. We prove a Four Point
Lemma, which guarantees the existence of many changes of coordinates. We also
consider products of projective spaces, which will be used in the subsequent two
chapters. And finally, we introduce the idea of duality between points and lines in
the projective space. The duality principle allows us to deduce theorems from their
duals; an example is Desargues’ Theorem.

4.1 Homogeneous Polynomials

In this section let R be an integral domain and let x = (x1, . . . , xn) be an n-tuple
of variables. A polynomial f ∈ R[x] is homogeneous if every monomial which
appears in f has the same degree (namely deg f ).

Like degree, the notion of homogeneity depends on the choice of variables. For
example, the polynomial 3x2yz+x3+y2xz4 is not x, y, z-homogeneous but is x, y-
homogeneous (when we think of it as a polynomial with coefficients from Z[z]).
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Factoring Homogeneous Polynomials
By grouping together all monomials of a given degree, every polynomial f ∈ R[x]
can be written uniquely as the sum of homogeneous polynomials

f = f(0) + f(1) + · · · + f(d)

with f(i) homogeneous of degree i. A linear combination of homogeneous polyno-
mials of the same degree d is also homogeneous of degree d , or is 0. In particular,
if f ∼ g then f is homogeneous if and only if g is. If f is homogeneous of
degree d and g is homogeneous of degree e, then fg is homogeneous of degree
d + e. In fact, if f = ∑

f(i) and g = ∑
g(i) (with f(i), g(i) homogeneous of

degree i) then (fg)(k) = ∑
i+j=k f(i)g(j). This shows that the degree formula

for products (Proposition 2.9) extends to polynomials in more than one variable:
deg fg = deg f + deg g. We conclude that if R is a field, f and g are nonconstant,
and f is a proper divisor of g, then deg f < deg g.

The following proposition will be used to define projective hypersurfaces as
multisets.

Proposition 4.1 A factor of a homogeneous polynomial is homogeneous.

Proof Let f, g ∈ R[x], and suppose that f is not homogeneous. Write f = f(b) +
f(b+1)+· · ·+f(d) where f(i) is homogeneous of degree i, and f(b), f(d) are nonzero
(and b < d). Similarly let g = g(c) + · · · + g(e) where c � e. Then (fg)(b+c) =
f(b)g(c) and (fg)(d+e) = f(d)g(e), which are both nonzero, and b+c < d+e, so fg

is not homogeneous. ��

A Characterisation of Homogeneity

Proposition 4.2 Suppose that R is infinite. The following are equivalent for a
polynomial f ∈ R[x] and a natural number d:

(1) f is the zero polynomial, or is homogeneous of degree d .
(2) f (tx1, . . . , txn) = tdf (as elements of the ring R[x, t]).
(3) For all a ∈ Rn and all λ ∈ R, f (λa) = λdf (a).

Proof The equivalence of (2) and (3) follows from Proposition 2.18: the polynomial
f (tx1, . . . , txn) − tdf is the zero polynomial if and only if it evaluates to 0 on all
tuples (a, λ) ∈ Rn+1.

For any monic monomial xm = x
m1
1 · · · xmn

n of degree d = m1 + · · · + mn,
(tx)m = tdxm, and the property extends to taking linear combinations; this shows
that (1) implies (2).

Let f ∈ R[x]; as above write f = f(0) + f(1) + · · · + f(e) with each f(i)

homogeneous of degree i. We just observed that for all i, f(i)(tx) = t if(i); so
f (tx) =∑

i�e t if(i). If (2) holds then tdf =∑
i�e t if(i). This holds in R[x, t] =
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R[x][t], and so the coefficients of each t i on both sides must be equal, which means
that f = f(d) and f(i) = 0 for i �= d; so f is homogeneous of degree d if f(d) �= 0,
otherwise f = 0.

Note that for the equivalence of (1) and (2), we didn’t need R to be infinite. ��

4.2 Projective Space

Let K be a field, and let n � 1.

Definition 4.3 Projective space Pn(K) is the collection of all 1-dimensional linear
subspaces of Kn+1.

Note! the elements of Pn(K) (which we call points) are subsets of Kn+1. The
projective plane is the case n = 2.

Every nonzero tuple a ∈ K
n+1 is an element of exactly one 1-dimensional linear

subspace of Kn+1, namely the linear subspace 〈a〉 it generates; two nonzero tuples a

and b generate the same 1-dimensional subspace if and only if they are nonzero
scalar multiples of each other.

Definition 4.4 The projection map πn : Kn+1 \ {0} → P
n(K) is defined by letting

πn(a) = 〈a〉.

The map πn is onto P
n(K); if |K| > 2 then πn is not one-to-one.

Notation 4.5 If a = (a0, a1, . . . , an) is a nonzero element of K
n+1, then we

also denote πn(a) by (a0 : a1 : · · · : an). We call the tuple a a presentation of
the point πn(a). Summing up, projective space P

n(K) is the collection of points
(a0 : a1 : · · · : an), where a0, a1, . . . , an ∈ K are not all zero, and the point
(a0 : a1 : · · · : an) equals the point (b0 : b1 : · · · : bn) if and only if there is some
nonzero scalar λ ∈ K such that b0 = λa0, b1 = λa1, . . . , bn = λan. «

We again fix K, and write P
n for P

n(K). As in the affine case, irreducible
algebraic hypersurfaces of Pn will be defined to be the zero sets of polynomials.
Because of the ambiguity of presentation of points in projective space, polynomials
do not define functions on P

n, and some do not have invariant zero sets: there are
polynomials f ∈ K[x] and nonzero a, b ∈ K

n+1 such that πn(a) = πn(b), but
such that f (a) = 0 and f (b) �= 0. By Proposition 4.2, this does not happen if f is
homogeneous.
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Definition 4.6 Let f ∈ K[x0, . . . , xn] be an irreducible homogeneous polynomial.
The projective hypersurface defined by f is

VPn(f ) = {
(a0 : a1 : · · · : an) ∈ P

n : f (a0, a1, . . . , an) = 0
}
.

We write VPn(K)(f ) when we need to clarify which field we are working with. Note
that VPn(f ) is the image πn[VAn+1(f )].

To extend to reducible homogeneous polynomials, we again use irreducible
factorisations. For this we use the fact that factors of homogeneous polynomials are
homogeneous (Proposition 4.1); this ensures that if f is homogeneous, then VPn(h)

is defined for each irreducible factor h of f . Thus, if f ∈ K[x0, x1, . . . , xn] and
[f1, . . . , fm] is an irreducible factorisation of f , then we define

VPn(f ) = VPn(f1)+ VPn(f2)+ · · · + VPn(fm).

This does not depend on the choice of irreducible factorisation, because as in the
affine case, if g ∼ h are irreducible and homogeneous then VPn(g) = VPn(h). If f

is a nonzero constant then VPn(f ) = ∅. We let VPn(0) = P
n.

A multiset of points of P
n is an algebraic hypersurface of P

n if it is VPn(f )

for some nonzero homogeneous polynomial f . For any homogeneous polynomial
f ∈ K[x0, . . . , xn], the underlying set of the hypersurface defined by f is

�VPn(f )	 = {
(a0 : a1 : · · · : an) ∈ P

n : f (a0, a1, . . . , an) = 0
}
.

If K is infinite then no hypersurface is the entire projective space:

Proposition 4.7 If K is infinite then for any nonzero homogeneous f ∈
K[x0, . . . , xn], �VPn(f )	 �= P

n.

Proof Since K is infinite, so is K \ {0}. Proposition 2.19 says that there is some a ∈
(K \ {0})n+1 with f (a) �= 0. Then a �= 0, so πn(a) is defined; and πn(a) /∈ VPn(f ).

��

As in the affine case, we see that if g is homogeneous and f divides g then
VPn(f ) ⊆ VPn(g). Study’s Lemma holds in the projective context as well. We show
this in two steps.

Lemma 4.8 Suppose that K is algebraically closed. Let f ∈ K[x0, . . . , xn] be
nonzero and homogeneous. Then VPn(f ) �= ∅ if and only if f is nonconstant.

Proof If f is a nonzero constant then VPn(f ) = ∅. Suppose that deg f > 0.
There is some i � n such that degxi

f > 0; for notational convenience we assume
i = 0. Let d = degx0

f . Write f = ∑
k�d fkx

k
0 , with fk ∈ K[x1, . . . , xn]

and fd �= 0. Since fd �= 0, as in the proof of Proposition 4.7, there is some
nonzero tuple a ∈ K

n \ {0} such that fd(a) �= 0 (an algebraically closed field is
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infinite, Proposition 2.29). So the polynomial f (x0, a) has degree d > 0. Since K

is algebraically closed, there is some b ∈ K such that f (b, a) = 0. The tuple (b, a)

is not the zero tuple, so πn(b, a) ∈ VPn(f ). ��

Projective Study’s Lemma Suppose that K is an algebraically closed field. Let
f, g ∈ K[x0, x1, . . . , xn] be nonzero homogeneous polynomials. Then

f divides g ⇐⇒ VPn(f ) ⊆ VPn(g).

Proof We first argue as we did for the first part of the proof of Study’s lemma to
see that it is sufficient to show that if VPn(f ) ⊆ VPn(g) and f is irreducible, then f

divides g. The conclusion f � g will be obtained from Study’s lemma, once we
show that VAn+1(f ) ⊆ VAn+1(g). As f is irreducible, VAn+1(f ) = ⌊

VAn+1(f )
⌋
, and

so what we need to show is that for all a ∈ A
n+1, if f (a) = 0, then g(a) = 0.

Since f and g are homogeneous, the fact that VPn(f ) ⊆ VPn(g) ensures that for
all nonzero a ∈ A

n+1, if f (a) = 0 then g(a) = 0. The inclusion is proved once
we show that g(0) = 0. The point is that if h is nonzero and homogeneous then
h(0) = 0 if and only if deg h > 0. Since we assume that f is irreducible, it is
nonconstant, and so VPn(f ) is nonempty (here we use Lemma 4.8); whence VPn(g)

is nonempty, from which we conclude that g is nonconstant. ��

The fact that Study’s lemma holds in the projective context allows us to draw the
same conclusions as we did in the affine case. We call a projective hypersurface C

irreducible if the polynomials defining C are irreducible, and we let deg C be the
degree of the polynomials defining C.

We can again let, for a hypersurface C in P
n, the irreducible components of C

be the irreducible hypersurfaces D contained in C; the irreducible components of
VPn(f ) are the hypersurfaces VPn(g) where g is an irreducible factor of f . The
proofs of Propositions 3.21 and 3.22 carry over to the projective case with no
change, using the projective version of Study’s lemma.

Notation 4.9 When n = 2 we rename the variables (x0, x1, x2) as (w, x, y). When
n = 1 we rename the variables (x0, x1) as (w, x). «

4.3 Projective Lines andMaps

The simplest irreducible hypersurfaces are hyperplanes. These are a special kind of
projective subspaces.

Definition 4.10 A projective subspace of Pn is a subset of Pn of the form πn[W ],
where W is a linear subspace of Kn+1.

When it is clear that we are dealing with projective subspaces of Pn, we refer
to them simply as subspaces. If W �= U are distinct linear subspaces of Kn+1 then
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πn[W ] �= πn[U ], and so we can unambiguously define the dimension of a projective
subspace πn[W ] to be dim W − 1.

The 0-dimensional subspaces of P
n are the points in P

n. A 1-dimensional
subspace of P

n is called a line, and a 2-dimensional subspace is called a plane.
Because the only (n + 1)-dimensional subspace of Kn+1 is K

n+1 itself, the only
n-dimensional subspace of Pn is Pn itself. An (n − 1)-dimensional subspace of Pn

is called a hyperplane of Pn. The hyperplanes of P2 are the lines of P2.
Homogeneous linear polynomials in K[x0, . . . , xn] are irreducible, so all alge-

braic hypersurfaces of Pn of degree 1 are irreducible. Homogeneous linear polyno-
mials do not have constant terms, and so are of the form a0x0 + a1x1 + · · · + anxn,
with not all ai zero. The functions from K

n+1 to K defined by homogeneous
linear polynomials are precisely the linear maps from K

n+1 onto K (compare
with Sect. 3.4). By Corollary 2.63, the zero sets VAn+1(f ) of linear homogeneous
polynomials f are precisely the n-dimensional linear subspaces of An+1. Taking the
image under πn, we get:

Proposition 4.11 The algebraic hypersurfaces of Pn of degree 1 are precisely the
hyperplanes of Pn.

Hence, the lines in P
2 are the subsets of P

2 defined by homogeneous linear
polynomials in K[w, x, y], that is, by polynomials of the form ew + ax + by with
(e, a, b) ∈ K

3 \ {0}.

Theorem 4.12 Every two distinct points in Pn lie on a unique line.

This can be extended to subspaces of a higher dimension, see Exercise 4.60.

Proof Let p, q ∈ P
n be distinct points, which recall, technically, are both 1-

dimensional subspaces of Kn+1. If W is a linear subspace of Kn+1 then p ∈ πn[W ]
if and only if p ⊆ W (as subspaces of Kn+1).

There is a unique 2-dimensional linear subspace of Kn+1 which contains both
1-dimensional subspaces p and q , namely the subspace W generated by their union
(or by any two nonzero elements one from p and one from q). Then πn[W ] is the
unique line passing through both p and q . ��

We denote the unique line that passes through points p and q in P
n by p q.

Exercise 4.13 Let p = (pw :px :py) and q = (qw : qx : qy) be distinct points in P
2.

Show that the equation of the line p q is given by

det

⎛

⎝
w x y

pw px py

qw qx qy

⎞

⎠ = 0.

«
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The following theorem shows that the projective plane P2 satisfies at least one of
the properties which motivated its definition.

Theorem 4.14 Any two distinct lines in P
2 intersect in a unique point.

Proof Let 	1 and 	2 be distinct lines in P
2. Let W1 and W2 be the 2-dimensional

subspaces of K3 such that 	1 = π2[W1] and 	2 = π2[W2]. Let p = W1 ∩ W2.
p is a linear subspace of K

3; since it is the intersection of two distinct 2-
dimensional subspaces ofK3, its dimension is at most 1; however two 2-dimensional
subspaces of K3 cannot have trivial intersection as 2 + 2 > 3 (Proposition 2.61).
Hence dim p = 1; p is the unique 1-dimensional subspace of K3 which is a subset
of both W1 and W2, and so p is the unique point in 	1 ∩ 	2. ��

4.3.1 Projective Maps

Let T : Kn+1 → K
m+1 be an injective linear transformation. Then T maps k-

dimensional subspaces of Kn+1 to k-dimensional subspaces of Km+1. In particular,
it maps lines through 0 to lines through 0, and so induces an injective map T̄ : Pn →
P

m; see Fig. 4.1.
A projective map is a map of the form T̄ for some injective linear T . The image

of a projective map from P
n to P

m is an n-dimensional projective subspace of Pm.
We usually use the notation ψ to denote a linear map which induces a projective
map ψ , and call ψ a linear presentation of ψ .

Exercise 4.15 A projective map ψ will have many linear presentations, but like
points, they are all nonzero constant multiples of each other. Let ψ and ϕ be linear
presentations of projective maps ψ, ϕ : Pn → P

m. Show that ψ = ϕ if and only if
ϕ = λψ for some nonzero λ ∈ K.

(Hint: suppose that ψ = ϕ. For each nonzero p ∈ K
n+1 there is a unique nonzero

λ(p) ∈ K such that ϕ(p) = λ(p)ψ(p). We need to show that λ(p) is constant. To
show that λ(p) = λ(q) for nonzero p and q , consider two cases, depending on

Fig. 4.1 A projective map
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whether p and q are linearly independent or not. If yes, consider λ(p), λ(q), and
λ(p + q).) «

Suppose that ψ is a linear presentation of ψ . We write ψ = (ψ0,ψ1, . . . ψm);
each ψ i is a linear map from K

n+1 to K, and so is defined by a linear homogeneous
polynomial ψi ∈ K[t0, t1, . . . , tn]; it is nonzero since ψ is injective. Informally, we
write ψ = (ψ0 :ψ1 : · · · :ψm).

Definition 4.16 A projective linear parameterisation is a projective map ψ : P1 →
P

m.

The images of projective linear parameterisations are projective lines; if 	 is
the range of a projective linear parameterisation ψ then we say that ψ is a
parameterisation of 	. Compare with Definition 3.27. We usually use the variables
s, t for the polynomials defining a linear presentation a parameterisation. A triple
ψ = (ψw,ψx,ψy) of linear homogeneous polynomials in K[s, t] is a linear
presentation of a projective linear parameterisation if and only if the polynomials
are not all scalar multiples of each other.

Example 4.17 Let p and q be parameterisations of distinct points p and q in P
n.

Then ψp,q(s, t) = (sp + tq) is a linear presentation of a parameterisation ψp,q of
the line p q. Every projective linear presentation of p q is of this form.

Note that ψp,q is not determined by p and q , as we can choose presentations
of p and q which differ by different constant multiples. That is, unlike the affine
case (Example 3.28), there are many linear parameterisations of p q which map
(1 : 0) to p and (0 : 1) to q . «

4.4 Embedding Affine Space into Projective Space

In this section we see how we can view projective space as an extension of affine
space. Let

H∞ = VPn(x0)

and let

U = P
n \H∞ = {

(a0 : a1 : . . . : an) ∈ P
n : a0 �= 0

}
.

Define a map ρ : An → P
n by mapping

ρ(a1, . . . , an) = (1 : a1 : a2 : · · · : an).
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The map ρ is a bijection between A
n and U : if a0 �= 0 then

(a0 : a1 : a2 : · · · : an) =
(

1 : a1

a0
: a2

a0
: · · · : an

a0

)

so ρ is onto U . If ρ(a) = ρ(b) then (1, b) = λ(1, a) for some nonzero λ ∈ K; but
then λ = 1 so b = a.

The map ρ preserves algebraic hypersurfaces. To see this, we need the notions of
homogenisation and dehomogenisation of polynomials.

Definition 4.18 Let R be a unique factorisation domain; let y = (y1, . . . , yn) be a
sequence of variables, and let x be another variable.

For f ∈ R[y, x] we let f 
x be the result of substituting 1 for x in f :

f 
x = f (y, 1).

For f ∈ R[y], write f as the sum of homogeneous polynomials f(d) + f(d−1) +
· · · + f(1) + f(0) where d = deg f . We let

f �x = f(d) + xf(d−1) + x2f(d−2) + · · · + xdf(0).

Exercise 4.19 Let f ∈ R[y] and let d = deg f . Show that in the field of formal
rational functions R(y, x) (Example 2.35),

f �x = xdf
(y1

x
, · · · ,

yn

x

)
.

«

Proposition 4.20

(a) The map g �→ g
x is a ring homomorphism fromR[y, x] toR[y]. The map f �→
f �x from R[y] to R[y, x] is not a homomorphism, but preserves multiplication:
(fg)�x = f �xg�x .

(b) For all f ∈ R[y], f �x is x, y-homogeneous of degree deg f .
(c) For all f ∈ R[y], (f �x)
x = f . If g ∈ R[y, x] is homogeneous and not divisible

by x, then (g
x )�x = g. The range of the map f �→ f �x is the collection of
homogeneous polynomials in R[y, x] which are not divisible by x.

(d) For all f ∈ R[y], the nonconstant factors of f �x are precisely the polynomials
h�x where h is a nonconstant factor of f . A polynomial f ∈ R[y] is irreducible
if and only if f �x is irreducible.

Proof Most of these are straightforward and we omit many details. For substitution
being a ring homomorphism, see Proposition 2.11. For a quick proof that f �→ f �x
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is multiplicative, use Exercise 4.19; for f, g ∈ R[y],
(fg)�x = xdeg(fg)(fg)

( y1
x

, . . . ,
yn

x

) =
xdeg f f

( y1
x

, . . . ,
yn

x

)
xdeg gg

( y1
x

, . . . ,
yn

x

) = f �x · g�x.

The main point really is (b); the polynomial f �x is defined to be the sum
of homogeneous polynomials, all of degree deg f . For (c), let g ∈ R[y, x] be
homogeneous of degree d; write g = gd + gd−1x + · · · + g1x

d−1 + g0x
d ,

where gi ∈ R[y]. Since g is homogeneous, each gi is homogeneous of degree i.
g
x = ∑

i gi , so (g
x )(i) = gi . If x does not divide g then gd �= 0, and this shows
that deg g
x = d , from which we conclude that (g
x )�x = g.

We prove (d). Let f ∈ R[y], and let h be a divisor of f �x . By Proposition 4.1,
h is homogeneous; since x does not divide f �x , it does not divide h either. By (c),
h = (h
x)�x . Since g �→ g
x is a ring homomorphism, h
x divides (f �x)
x = f .
On the other hand, if g divides f then (a) ensures that g�x divides f �x . Thus, the
divisors of f �x are precisely the polynomials of the form g�x for divisors g of f .

For a constant a ∈ R we have a�x = a. Since the units of R[y] and of R[y, x]
coincide with the units of R, we see that g �→ g�x maps units to units and nonunits
to nonunits. It follows that g ∈ R[y] is irreducible if and only if g�x is irreducible.
The map g �→ g�x preserves degrees, so the nonconstant factors of f are mapped to
the nonconstant factors of f �x . ��

Remark 4.21 Even though f �→ f �x is not a homomorphism it will be useful to
see how it treats addition. Let f, g ∈ R[y]; let d = deg f and e = deg g. If d > e

then (f +g)�x = f �x+xd−eg�x . If d = e then there may be cancellations; possibly
c = deg(f + g) < d . In this case xd−c(f + g)�x = f �x + g�x . «

We return to working over a field K. Fixing variables x0, x1, . . . , xn, we write f 


for f 
x0 and f � for f �x0 . When K is algebraically closed, we extend this notation
to algebraic hypersurfaces: For an algebraic hypersurface C in P

n, we let C
 =
VAn(g
), where g defines C; Projective Study’s Lemma implies that this does not
depend on the choice of g. Similarly, for an algebraic hypersurface D in A

n, we let
D� = VPn(f �), where f defines D.1 In what follows, we use the notation C
 and D�

even when K is not algebraically closed. This is for clarity of presentation; when K

is not algebraically closed, we should replace hypersurfaces by polynomials.
Let C be an irreducible algebraic hypersurface in P

n, other than H∞. Then x0
does not divide g defining C. By Proposition 4.20, C
 is irreducible. Then by
definition of g
 and ρ,

ρ[C
] = C ∩U.

1 Algebraic geometry does not use well temperament: C� �= D
.
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Now let C be any algebraic hypersurface in P
n. Let C′ be the result of removing

from C any copies of H∞ that it may contain. Then C �U= C′ �U . Here recall
that by D �U we mean that we remove from D the points that are not in U , but
other points retain their multiplicity. Also, C
 = C′
. (In terms of polynomials, if g

defines C and C contains e many copies of H∞, then g = xe
0g
′, where g′ defines C′,

and x0 does not divide g′; g
 = g′
).
Let D1, D2, . . . , Dm be the irreducible components of C′. Then by Proposi-

tion 4.20, D


1, D



2,. . . , D



m are the irreducible components of C
 = C′
. From

ρ[D

i ] = Di ∩ U we get

ρ[C
] = ρ[D

1] + · · · + ρ[D


m] = (D1 ∩ U)+ · · · + (Dm ∩ U) = C�U

(here we extend ρ to multisets of elements of An, and agree that multiplicities are
preserved).

This allows us to identify A
n with U using the map ρ. Having performed this

identification, ρ[C
] = C�U is reformulated as

C
 = C�An .

Thus the restriction to A
n of an algebraic hypersurface of P

n is an algebraic
hypersurface of A

n. In the other direction, Proposition 4.20 implies that for any
algebraic hypersurface D of An, (D�)
 = D, and so

D = D��An .

We call D� the projective closure (or projective completion) of D. It is obtained by
adding to D points from H∞. Summing up:

Proposition 4.22 The algebraic hypersurfaces of An are precisely the restrictions
to An of the algebraic hypersurfaces of Pn. ��

The hyperplace H∞ is called the hyperplane at infinity, so we say that D� is
obtained from D by adding points at infinity.

Example 4.23 As discussed in the introduction to this chapter, the projective closure
of the parabola y = x2 is the projective curve wy = x2, and the extra point at infinity
is (0 : 0 : 1). «

Exercise 4.24 Suppose that K is algebraically closed. Let D be an algebraic
hypersurface in A

n. Show that D� is the unique algebraic hypersurface C in P
n

such that D = C�An and H∞ is not a component of C. «
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Fig. 4.2 Affine plane embedded into projective plane. Each line through the origin is a point of P2.
Those lines which are not on the xy plane are points in A

2, which we identify with the plane w = 1.
The lines through the origin on the xy plane are the points at infinity

Exercise 4.25 Show that the map (a1 : a2 : · · · : an) �→ (0 : a1 : a2 : · · · : an) is a
projective map which is a bijection between P

n−1 and the hyperplane H∞ of Pn.
Show that the images in H∞ of algebraic hypersurfaces of Pn−1 are precisely the
restrictions to H∞ of the algebraic hypersurfaces of Pn which do not contain H∞. «

Vertical and Horizontal Projective Lines
Primarily we are interested in the plane: n = 2. We can visualise the embedding
of the affine plane into the projective plane as in Fig. 4.2. As mentioned above
(Notation 4.9), in this case we name (x0, x1, x2) by (w, x, y). A point (a, b) ∈ A

2

is identified with the point (1 : a : b) ∈ P
2. Instead of H∞ we write 	∞ for VP2(w).

This is the line at infinity.
Let 	 be a projective line ew + ax + by = 0 in P

2. Then 	 does not contain the
line at infinity if and only if 	 does not equal the line at infinity, that is, if and only if
a �= 0 or b �= 0. In this case, 	∩A

2 is the affine line e+ax+by = 0 (see Sect. 3.4).
Let L be an affine line e+ ax + by = 0, and let 	 = L� be its projective closure,

given by the equation ew + ax + by = 0. Then 	 ∩ 	∞ is the singleton containing
the point (0 : b : −a). This point corresponds to the direction of the line L; L’s slope
is −a/b if L is not vertical (b �= 0). The projective closures of all the affine lines
which are parallel to L all intersect at this point.

A projective line is horizontal if it is defined by the equation ew = by. If L is
an affine line then its projective closure 	 = L� is horizontal if and only if L is.
However, we can choose b = 0 as well, so the line at infinity 	∞ is horizontal as
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well. A projective line 	 is horizontal if and only if the horizontal point at infinity
(0 : 1 : 0) lies on 	.

Similarly, a projective line is vertical if it is defined by ew = ax. The vertical
projective lines are the projective closures of the affine vertical lines x = a, and
the line at infinity (which is thus both horizontal and vertical). A projective line 	 is
vertical if and only if the vertical point at infinity (0 : 0 : 1) lies on 	.

At least in the real case, as mentioned in the introduction to this chapter, the
identification between points on the line at infinity and directions of lines in the
affine plane A

2 gives us a way to conceptualise the projective plane P
2. The points

of P2 at “infinite distance” from the origin form some kind of circle of infinite radius,
except that opposite points are identified.

Affine Cover and the Riemann Sphere
The choice of the variable x0 makes notation easy but is not essential. We could
have chosen any variable xi and then identify A

n with Ui = P
n \ VPn(xi) by the

map a �→ (a1 : a2 : · · · : ai−1 : 1 : ai : · · · : an). Under this choice, Hi = VPn(xi)

plays the role of the hyperplane at infinity, and the projective closure of VAn(f )

under this identification is VPn(f �xi ). So we get n+1 ways of embeddingAn into P
n.

Projective space is covered by these n+ 1 copies of An, that is, Pn =⋃
i�n Ui .

The simplest example is n = 1. In this case

H0 = P
1 \ U0 = VP1(x0) = {(0 : 1)}

and

H1 = P
1 \ U1 = VP1(x1) = {(1 : 0)} .

The point (0 : 1) is the “point at infinity” under the identification of the affine line A1

with U0 by ρ0(a) = (1 : a), and the point (1 : 0) is the “point at infinity” under
the identification of the affine line A

1 with U1 by ρ1(a) = (a : 1). The standard
identification, though, for both P

1 and P
2, will be using ρ0.

In the case K = R, P1(R) is topologically equivalent to the unit circle: it is
obtained by adding a single point to both “ends” of the real line A

1(R). In the
case K = C, P1(C) turns out to be topologically equivalent to the unit sphere in R

3,
and so is called the Riemann sphere. It is obtained by taking the complex affine
line A

1(C) = C, which is topologically identical to the real plane R
2, and adding a

point to the entire “boundary” of the plane. See Exercises 8.55 and 8.56. P1(C) is
quite different from P

2(R), which is not embeddable into R
3.

Algebraic Subsets of the Projective Line
Let C be an algebraic hypersurface of P1. Then C is the sum of C�A1 and a number
of copies of the point at infinity (0 : 1). Since C �A1 is an algebraic hypersurface
of A1, it is finite (Exercise 3.6), and so C is finite as well. When K is algebraically
closed, we get a complete understanding of the hypersurfaces of P1.



4.5 Changes of Coordinates 87

Proposition 4.26 Suppose that K is algebraically closed.

(a) A homogeneous polynomial in K[w, x] is irreducible if and only if it is linear.
(b) An algebraic hypersurface C of P

1 contains precisely deg C many points
(counted with multiplicities).

Proof Every linear polynomial is irreducible. Let f ∈ K[w, x] be homogeneous
and irreducible; either f ∼ w, or w does not divide f . In the latter case f = (f 
)�

so f 
 ∈ K[x] is irreducible, and is linear; and deg f = deg f 
.
For (2), let f ∈ K[w, x] be homogeneous; by (1) (and Proposition 4.1), f

is the product of deg f many linear polynomials. For each homogeneous linear
polynomial ew − ax, the projective hypersurface ew = ax contains precisely one
point (a : e). ��

If f ∈ K[w, x] is homogeneous, then we call a point in VP1(f ) a root of f .

Exercise 4.27 Let C be a curve in P
2 which does not contain the line at infinity.

Show that C intersects the line at infinity 	∞ in at most deg C many points (see
Exercise 4.25). In particular, this intersection is finite. «

4.5 Changes of Coordinates

A projective map ψ : Pn → P
m is injective and its range is an n-dimensional

subspace of Pm; so is onto P
m if and only if n = m, in which case ψ−1 is also

a projective map.

Definition 4.28 A change of coordinates of Pn is a projective map from P
n to itself.

4.5.1 Change of Variable

Let α be a linear presentation of a change of coordinates α of Pn; in other words, it
is an invertible linear map from K

n+1 to itself. Recall that for a linear presentation
of a projective map ψ = (ψ0,ψ1, . . . ,ψn) we let ψi be the homogeneous linear
polynomial which defines the coordinate map ψ i .

We let α̂ = α−1 so that we can write (α̂0, α̂1, . . . , α̂n) for the linear polynomials
defining the coordinate maps of α−1. We now define a map α∗ : K[x] → K[x] by
letting

α∗(f (x0, x1, . . . , xn)) = f
(
α̂0, α̂1, . . . , α̂n

)
.



88 4 Projective Space

By Proposition 2.11, this is a ring homomorphism. Let A be the matrix such that
α = TA. Since α̂i is the polynomial which defines multiplication by the ith row
of A−1, α∗ is the unique ring homomorphism from K[x] to itself such that

⎛

⎜
⎜
⎜
⎝

α∗(x0)

α∗(x1)
...

α∗(xn)

⎞

⎟
⎟
⎟
⎠
= A−1

⎛

⎜
⎜
⎜
⎝

x0

x1
...

xn

⎞

⎟
⎟
⎟
⎠

.

Example 4.29 Let α : P2 → P
2 be the change of coordinates α(e : a : b) = (b : a −

b : e), which maps the origin (1 : 0 : 0) to the vertical point at infinity, fixes the
horizontal point at infinity, and maps the vertical point at infinity to (1 : − 1 : 0)

(which under our identification of A2 with a subset of P2 by (a, b) = (1 : a : b) is the
point (−1, 0) on the x-axis).

A linear presentation of α is α(e, a, b) = (b, a − b, e); its inverse is the map
α−1(e, a, b) = (b, a + e, e), and so α∗(f (w, x, y)) = f (y,w + x,w). «

Let α = TA and β = TB be invertible linear maps from K
n+1 → K

n+1. Write
Â = A−1 so the entries of A−1 are âi,j for i, j = 0, 1 . . . , n; so α̂i = ∑

j âi,j xj .
Since β∗ is a ring homomorphism, for each i � n,

β∗(α∗(xi)) =
∑

j

âi,jβ
∗(xj ),

so

⎛

⎜
⎜
⎜
⎝

β∗(α∗(x0))

β∗(α∗(x1))
...

β∗(α∗(xn))

⎞

⎟
⎟
⎟
⎠
= A−1

⎛

⎜
⎜
⎜
⎝

β∗(x0)

β∗(x1)
...

β∗(xn)

⎞

⎟
⎟
⎟
⎠
= A−1B−1

⎛

⎜
⎜
⎜
⎝

x0

x1
...

xn

⎞

⎟
⎟
⎟
⎠

.

Since TA−1B−1 = (β ◦ α)−1, β∗ ◦ α∗ and (β ◦ α)∗ agree on x0, x1, . . . , xn; by
Proposition 2.11, β∗ ◦ α∗ = (β ◦ α)∗.

In particular, if β = α−1 then (α∗)−1 = (α−1)∗, which implies that α∗ is a ring
automorphism of K[x], namely, an invertible homomorphism.

Proposition 4.30 Let α be a linear presentation of a change of coordinates α of
P

n; let f ∈ K[x].
(a) deg α∗(f ) = deg f .
(b) f is homogeneous if and only if α∗(f ) is homogeneous.
(c) The function on Kn+1 defined by α∗(f ) is f ◦ α−1.
(d) If f is homogeneous then α [VPn(f )] = VPn (α∗(f )).
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Thus, if C is a hypersurface of Pn and α is a change of coordinates of Pn then
α[C] is a hypersurface of Pn, of the same degree as C.

Proof Since α∗ is a ring homomorphism, we have

α∗(xm0
0 x

m1
1 · · · xmn

n ) = α∗(x0)
m0 · α∗(x1)

m1 · · ·α∗(xn)
mn;

each α∗(xi) is homogeneous and linear, so α∗(xm) is homogeneous of degree∑
mi = deg(xm). Extending linearly we obtain (a) and (b) (for (b) also consider

the inverse of α∗).
By definition, the tuple of polynomials (α∗(x0), . . . ,α

∗(xn)) defines the function
α−1 on K

n+1; (c) follows from the fact that polynomial substitution defines
composition (Remark 2.12).

If f ∈ K[x] is homogeneous and a nonzero p ∈ K
n+1 is a presentation

of a point p ∈ P
n then p ∈ VPn(α∗(f )) if and only if (f ◦ α−1)(p) = 0

if and only if α−1(p) ∈ VAn+1(f ) if and only if α−1(p) ∈ VPn(f ). This
shows that (d) holds for irreducible homogeneous polynomials in K[x]. This
is extended to all homogeneous polynomials by taking sums of the irreducible
components, noting that if [f1, . . . , fm] is an irreducible decomposition of f then
[α∗(f1), . . . ,α

∗(fm)] is an irreducible decomposition of α∗(f ), using the fact
that α∗ is a ring automorphism of K[x]. ��

We call α∗ a change of variable for Pn.

Example 4.31 Let α be the change of coordinates from Example 4.29. It maps the
x-axis y = 0 to the line at infinity w = 0 (it sends the point (e : a : 0) to (0 : a : e),
and indeed α∗(y) = w. «

Exercise 4.32 Let α(e, a, b) = (e + b, a, e − b). (a) Compute α∗. (b) Show that
α∗ maps x2 + y2 − w2 to x2 − wy. (c) Conclude that α maps S� (the projective
closure of the unit circle) to the projective closure P� of the parabola P given by
y = x2.2 «

Remark 4.33 The origin of the terminology “change of coordinates” and “change
of variable” is an alternative understanding of the nature of projective space. An
abstract vector space V over K does not have a canonical basis. If dim V =
n + 1 then every linear isomorphism between V and K

n+1 gives a way to assign
coordinates to the elements of V . We can define P(V ) to be the set of 1-dimensional
subspaces of V . Any choice of (affine) coordinates for V then gives a choice of
projective coordinates for P(V ). We can define algebraic hypersurfaces of P(V ) by

2 Note that if K = R, then S� = S, but if K = C then S� contains two points at infinity. What
this shows is that S� and P � are geometrically the same, even though S and P are not. Taking the
projective closure added the “missing points” that were required to get the isomorphism.
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using any system of coordinates. Proposition 4.30 shows that a different choice of
coordinates doesn’t change the hypersurfaces; it changes the equations that define
them. The change of coordinates α tells us how to translate from one coordinate
system to another. The change of variable α∗ tells us how the equations defining
a hypersurface change with the coordinates. The variables x0, . . . , xn are replaced
by “new variables” x̂0 = α∗(x0), . . . , x̂n = α∗(xn), and the equation defining the
hypersurface changes from f (x) = 0 to f (x̂) = 0.

While we don’t use abstract spaces like P(V ) in this book, this is a useful point
of view. We will use changes of coordinates to simplify calculations. Suppose that
we want to show that a hypersurface C of P

n has some property, call it P . We
will usually show that the property P is invariant under changes of coordinates: the
hypersurface C has the property P if and only if α[C] has the property P (we also
say that P is a “geometric” property). We find a change of coordinates α such that
the equation defining α[C] is relatively simple. This will help us verify that α[C]
has the property P , from which we conclude that C has the property as well.

In the alternative view the hypersurface C didn’t move: we just found a way
to give new coordinates that would simplify the equation defining C. This view
will be implicit in our proofs: instead of mentioning α and working with α[C], we
will usually say “after changing coordinates, the equation for C is. . . ” For this to
work, of course, we need to: (i) show that the property P is invariant under changes
of coordinates; and (ii) show that there is some change of coordinates making the
equation nice; this is the role of the Four Point Lemma. «

4.5.2 Four Point Lemma

We say that points in a set X ⊆ P
2 are collinear if X is contained in a line of P2.

Theorem 4.12 says that any two points in P
2 are collinear, but it is easy to find three

points in P
2 which are not collinear.

Definition 4.34 Points in a set X ⊆ P
2 are said to lie in general position if no three

distinct points in X are collinear.

Four Point Lemma If p1, p2, p3, p4 and q1, q2, q3, q4 are two quadruples of
points in P

2, both of which lie in general position, then there is a change of
coordinates of P2 which maps each pi to qi .

The condition is necessary since any change of coordinates maps lines to lines,
and so collinear points to collinear points.

Proof Consider first a simpler task. Suppose that we only had three non-collinear
points p1, p2 and p3 which we wanted to map to three non-collinear points q1, q2
and q3. For i = 1, 2, 3 let pi be a presentation of pi and qi be a presentation of qi .
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The fact that p1, p2 and p3 are not collinear means that dim 〈p1,p2,p3〉 = 3. For
otherwise, W = 〈p1,p2,p3〉 has dimension � 2, which would imply that p1, p2
and p3 all lie on the line π2[W ] (if dim W = 1 then p1, p2 and p3 are the same
point). Thus {p1,p2,p3} is a basis of K

3. Similarly, {q1, q2, q3} is also a basis
of K3. We can then define the unique linear map α : K3 → K

3 such that α(pi) = qi

(Proposition 2.60), and this map is invertible since {q1, q2, q3} is a basis of K
3.

Hence the induced change of coordinates α maps pi to qi for i = 1, 2, 3.
We can manage a fourth point. Let pi, qi (i = 1, 2, 3, 4) be as in the hypothesis,

and again choose presentations pi and qi . Because {p1,p2,p3} is a basis of K3, p4
is a linear combination of the elements of this basis: there are scalars λ1, λ2, λ3 ∈ K

such that p4 = λ1p1+λ2p2+λ3p3. Similarly, there are scalars μ1, μ2 and μ3 ∈ K

such that q4 = μ1q1 + μ2q2 + μ3q3.
The main point is that none of λ1, λ2 or λ3 can be 0. Suppose, for example, that

λ3 = 0. Then p4 ∈ 〈p1,p2〉, and this means that p4 lies on the line p1 p2, contrary
to hypothesis. Similarly, all of μ1, μ2 and μ3 are nonzero.

For i = 1, 2, 3, let pi
′ = λipi and let qi

′ = μiqi . Then pi
′ is another

presentation of pi , and similarly for qi . Also, {p1
′,p2

′,p3
′} and {q1′, q2′, q3′} are

bases of K3. We now take a linear map α : K3 → K
3 such that α(pi

′) = qi
′ for

i = 1, 2, 3. As above, α is invertible, and so induces a change of coordinates α

of P2; α maps p1 to q1, p2 to q2 and p3 to q3. For i = 4, p4 = p1
′ + p2

′ + p3
′ and

q4 = q1
′ + q2

′ + q3
′, so α(p4) = α(p1

′ + p2
′ + p3

′) = q1
′ + q2

′ + q3
′ = q4, so

α(p4) = q4. ��

In the proof of the four point lemma we showed the simpler

Three Point Lemma If p1, p2 and p3 are not collinear and neither are q1, q2
and q3, then there is a change of coordinates of P2 which maps each pi to qi . ��

For fewer points the argument is even simpler. If p1 and p2 is any pair of distinct
points in P

2 and so are q1 and q2, then there is a change of coordinates which
maps p1 to q1 and p2 to q2. If we don’t want to run through the argument again, we
can simply pick p3 /∈ p1 p2 and q3 /∈ q1 q2 and use the three point lemma.

Remark 4.35 Let 	 and 	′ be two lines in P
2. There is a change of coordinates α

of P
2 such that α[	] = 	′. For let p1 and p2 be two distinct points on 	, and

let q1 and q2 be two distinct points on 	′. As discussed above, there is a change
of coordinates α of P2 which maps p1 to q1 and p2 to q2. Projective maps map
lines to lines (for changes of coordinates this also follows from Proposition 4.30).
Since q1 and q2 are elements of α[	], this line must equal q1 q2 = 	′, the unique line
which passes through q1 and q2 (Theorem 4.12). «

Exercise 4.36 Let C be a curve in P
2 and let 	 be a line. Use Exercise 4.27 and

Remark 4.35 to show that C and 	 intersect in at most deg C many points. «
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Exercise 4.37 Generalise the three and four point lemmas to P
n for n � 3. «

4.6 Spaces of Curves

For d � 1, we let Gd be the collection of all curves of P2 of degree d . That is,

Gd =
{
V
P2(f ) : f ∈ K[w, x, y] is homogeneous and deg f = d

}
.

The space of curves has the structure of a projective space by using the coefficients
of a polynomial f to be homogeneous coordinates of the hypersurface VP2(f ). We
fix a list m0,m1, . . .mk of the monic monomials (monomials with coefficient 1) in
K[w, x, y] of degree d:

(m0, . . . ,mk) = (wd,wd−1x,wd−2x2, . . . , wxd−1, xd,wd−2xy, . . . , yd);

the particular order in which we place these monomials is not important.

Exercise 4.38 Show that k + 1 = 1 + 2 + 3 + · · · + (d + 1) and so
k = d(d + 3)/2. «

If a = (a0 : a1 : . . . : ak) ∈ P
k then we let

ιd(a) = VP2 (a0m0 + a1m1 + · · · + akmk) .

The map is well-defined because VP2 (a0m0 + a1m1 + · · · + akmk) equals
VP2 (λa0m0 + λa1m1 + · · · + λakmk) when λ �= 0. If K is algebraically closed
then Projective Study’s Lemma shows that ιd is a bijection between P

k and Gd .
In this case we use the map ιd to give a geometric structure to Gd . For example,
a change of coordinates of Gd is a map of the form ιd ◦ α ◦ (ιd)−1, where α is a
change of coordinates of Pk; an m-dimensional subspace of Gd is a subset of Gd of
the form ιd [U ]where U is an m-dimensional subspace of Pk and so on. In particular
we will use 1-dimensional subspaces:

Definition 4.39 Let d � 1. A linear family of curves of degree d is the image
under ιd of a line in P

k .

Let C = ιd(p) and D = ιd (q) be distinct curves of degree d . Assuming that ιd
is a bijection between P

k and Gd , the linear family ιd [p q] is denoted by C D.
If f defining C and g defining D are “presentations” of C and D then the map
(e : a) �→ VP2(ef + ag) is a linear parameterisation of the linear family C D (see
Example 4.17).
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4.6.1 The Dual Plane

The most prominent space of curves is G1, the space of lines in P
2. In this case we

have k = 2, and even if K is not algebraically closed, ι1 is a bijection between P
2

and G1. The space G1 is commonly denoted by P̌
2, and is called the dual projective

plane. The duality is in that the bijection ι1 : P2 → P̌
2 maps points to lines, and

implicitly, lines to points, as we now show.
We write ι instead of ι1. For definiteness, let us assume that for the definition of ι

we use the list of monomials w, x, y; so ι(e : a : b) = VP2(ew + ax + by).

Proposition 4.40 The following are equivalent for a subset X of P̌2:

(1) X is a linear family of lines.
(2) X is the collection of all lines in P2 which pass through a fixed point p.

More precisely, for every q ∈ P
2, ι[ι(q)] is the collection of all lines in P

2 which
pass through q .

A linear family of lines is sometimes also called a pencil of lines.

Proof The main point is that for p, q ∈ P
2, p ∈ ι(q) if and only if q ∈ ι(p). For

if p = (pw, px, py) ∈ K
3 \ {0} is a presentation of p and q = (qw, qx, qy) is a

presentation of q , then p ∈ ι(q) if and only if p ∈ VP2(qww + qxx + qyy) if and
only if qwpw + qxpx + qypy = 0; the last condition is symmetric in p and q .

Let 	 be a line in P
2; let q = ι−1(	). Then

ι[	] = {ι(p) : p ∈ ι(q)} = {ι(p) : q ∈ ι(p)} ,

that is, ι[	] is the collection of all lines which pass through q . ��

Example 4.41 A line is horizontal if and only if it passes through the horizontal
point at infinity (0 : 1 : 0); the family of horizontal lines is the image under ι of the
x-axis. «

Exercise 4.42 Show that the changes of coordinates of P̌2 are the maps of the form
	 �→ α[	], where α is a change of coordinates of P2. «

Principle of Duality
Proposition 4.40 implies the principle of duality. Suppose that P is a statement about
lines and points in P

2. The dual of P is obtained from P by exchanging the roles of
points and lines. The principle of duality says that if P is true then so is its dual. The
simplest example is: the dual of the statement “every two points lie on a unique line”
(Theorem 4.12) is “every two lines intersect at a unique point” (Theorem 4.14).

Exercise 4.43 Here is an application of the principle of duality. Suppose that K is
infinite. Use Propositions 4.7 and 4.40 to show that if X ⊂ P

2 is finite then there is
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some line which doesn’t pass through any point in X. Interpret this as a statement
about linear subspaces of K3 and prove this statement directly. «

4.6.2 Desargues’ Theorem

A triangle in P
2 is formalised as an ordered triple of points which are not collinear

(they are the vertices of the triangle). Let abc and a′b′c′ be two triangles which do
not share a vertex. The triangles are perspective through the point v if v lies on the
lines a a′, b b′ and c c′. The point v is called the centre of the perspectivity; in this
case we say that they are centrally perspective (or perspective through a point). The
triangles are perspective through a line 	 if the intersections of the corresponding
sides: a b∩ a′ b′, a c∩ a′ c′, b c∩ b′ c′ all lie on 	. The line 	 is called the axis of the
perspectivity and so we say that the triangles are axially perspective (or perspective
through a line). See Fig. 4.3.

Note that if any of the lines above coincide then the triangles are trivially both
centrally and axially perspective, so we only consider pairs of triangles for which
the lines are distinct.

Proposition 4.44 If two triangles are perspective through a point then they are
perspective through a line.

Proof Say that the triangles abc and a′b′c′ are perspective through the point v. No
three of the points {a, b, c, v} are collinear. By the Four Point Lemma, after a change

Fig. 4.3 Desargues’ theorem
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of coordinates we assume that a = o = (1 : 0 : 0) is the origin, b = (0 : 1 : 0) is the
horizontal point at infinity, c = (0 : 0 : 1) is the vertical point at infinity, and that
v = (1 : 1 : 1). Thus the line a b is the x-axis (defined by y = 0); the line a c is the
y-axis (defined by x = 0); and the line b c is the line at infinity (w = 0).

The line a v is defined by y = x; since a′ ∈ a v and is distinct from a and from v

we can write a′ = (α : 1 : 1) for some α �= 0, 1. The line b v is given by y = w, and
so we can write b′ = (1 :β : 1); and similarly c′ = (1 : 1 : γ ).

The line a′ b′ is parameterised as (αs + t : s + βt : s + t) for (s : t) ∈ P
2 (see

Example 4.17), and it intersects the line y = 0 when s = −t , which gives the point
(α−1 : 1−β : 0); similarly, the line a c and a′ c′ intersect at (1−α : 0 : γ −1); and b c

and b′ c′ intersect at (0 :β−1 : 1−γ ). The vectors (α−1, 1−β, 0), (1−α, 0, γ −1)

and (0, β − 1, 1 − γ ) are linearly dependent (their sum is the zero vector) and so
span a subspace of K3 of dimension 2; this implies that the three intersection points
are collinear. ��

The dual of Proposition 4.44 is its converse. Thus, the converse follows from
Propositions 4.40 and 4.44. Together we get:

Desargues’ Theorem Two triangles in P
2 are perspective through a point if and

only if they are perspective through a line.

Exercise 4.45 Verify the assertion made before the statement of Desargues’ theo-
rem. «

Remark 4.46 Pappus’ theorem is the following: let 	 and 	′ be two distinct lines;
let a, b, c ∈ 	 be distinct and a′, b′, c′ ∈ 	′ be distinct, with none of the points being
the point of intersection of 	 and 	′. Then the three points of intersection a b′ ∩ a′ b,
a c′ ∩ a′ c and b c′ ∩ b′ c are collinear. See Fig. 7.5.

A proof in P
2 can be given in a similar way to the proof we just gave for

Desargues’ theorem. For a different proof see Exercise 7.55. «

4.7 Products of Projective Spaces

Intuitively speaking, we see that An+k can be thought of as the product An × A
k .

In particular, if C is a hypersurface of An+k and a ∈ A
n, then the section C �a=

[b ∈ A
k : (a, b) ∈ C] is a hypersurface of A

k . This resembles the product of
topological spaces or of measure spaces. It is less clear what kind of “space” would
be the product of two projective spaces. Pn×P

k is not Pn+k , or a subset of Pn+k+1:
the map

(a0 : · · · : an), (b0 : · · · : bk) �→ (a0 : · · · : an : b0 : · · · : bk)
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is not well-defined. For example, in P
2 × P

1, the pair ((1 : 2 : 4), (1 : 0)) equals the
pair ((2 : 4 : 8), (1 : 0)), but in P

4, the point (1 : 2 : 4 : 1 : 0) does not equal the point
(2 : 4 : 8 : 1 : 0).

Like P
n, we first conceive of Pn × P

k as the image of a subset of affine space.
Combining the maps πn : Kn+1 \ {0} → P

n and πk : Kk+1 \ {0} → P
k , we obtain

the map

πn,k = πn × πk :
(
K

n+1 \ {0}
)
×
(
K

k+1 \ {0}
)
→ P

n × P
k,

by letting πn,k(a, b) = (πn(a), πk(b)).
The polynomials in K[x0, . . . , xn, y0, . . . , yk] which can define hypersurfaces of

P
n × P

k are the x, y-bihomogeneous ones.

Definition 4.47 Let x and y be disjoint tuples of variables, and let R be a unique
factorisation domain. A polynomial f ∈ R[x, y] is x, y-bihomogeneous if it is both
x-homogeneous and y-homogeneous.

Every monomial in R[x, y] is of the form axmym′
. The x-degree of this

monomial is m1 +m2 + · · · +mn, and the y-degree is m′
1 +m′

2 + · · · +m′
k (here x

is an n-tuple of variables and y is a k-tuple of variables). If f ∈ R[x, y] is x, y-
bihomogeneous then not only is it x, y-homogeneous (of degree degx f + degy f ),
but in fact both degx m and degy m are constant for all monomials m which appear
in f .

We let degx,y f = (degx f, degy f ); this is the bidegree of f . If f is x, y-
bihomogeneous, then for all a ∈ Rn, f (a, y) is y-homogeneous (of degree degy f ,
or is the zero polynomial), and for all b ∈ Rk , f (x, b) is x-homogeneous (of degree
degx f , or is the zero polynomial).

Returning to P
n × P

k, we let x = (x0, . . . , xn) and y = (y0, . . . , yk). If
f ∈ K[x, y] is x, y-bihomogeneous of bidegree (d, e) then Proposition 4.2
applied separately to x and y shows that for all a ∈ K

n+1, b ∈ K
k+1, and

λ,μ ∈ K, f (λa, μb) = λdμef (a, b). It follows that if a, a′ ∈ K
n+1 \ {0} and

b, b′ ∈ K
k+1 \ {0}, and πn,k(a, b) = πn,k(a

′, b′), then f (a, b) = 0 if and only if
f (a′, b′) = 0. We can thus let, for irreducible bihomogeneous f ∈ K[x, y],

VPn×Pk (f ) =
{
πn,k(a, b) : a ∈ K

n+1 \ {0} & b ∈ K
k+1 \ {0} & f (a, b) = 0

}
.

If f ∈ K[x, y] is bihomogeneous, then every divisor of f is also bihomoge-
neous; this follows immediately from Proposition 4.1, applying it once for x and
once for y. Hence, an irreducible factorisation of a bihomogeneous polynomial con-
sists of bihomogeneous polynomials, and so we can define, for any bihomogeneous
polynomial f ∈ K[x, y],

VPn×Pk (f ) = VPn×Pk (f1)+ · · · + VPn×Pk (fm),
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where [f1, . . . , fm] is any irreducible factorisation of f . As usual, this does not
depend on the choice of factorisation.

Further analysis of the hypersurfaces of Pn × P
k follows similarly to Sect. 4.2.

For bihomogeneous f ∈ K[x, y] and a ∈ K
n+1 \ {0}, b ∈ K

k+1 \ {0}, πn,k(a, b) ∈
VPn×Pk (f ) if and only if f (a, b) = 0. We get an analogue of Proposition 4.7 with a
similar proof:

Proposition 4.48 Let f ∈ K[x, y] be bihomogeneous and nonzero. Then⌊
VPn×Pk (f )

⌋ �= P
n × P

k .

Proof Let S = K \ {0}; it is infinite, so (Proposition 2.19) there is some (a, b) ∈
Sn+k such that f (a, b) �= 0. Then a ∈ K

n+1 \ {0} and b ∈ K
k+1 \ {0}, and

(πn(a), πk(b)) /∈ VPn×Pk (f ). ��

We now show that Study’s Lemma applies for P
n × P

k as well. We need an
analogue of Lemma 4.8.

Lemma 4.49 Suppose that K is algebraically closed. Let f ∈ K[x, y] be bihomo-
geneous and nonzero. Then degy f = 0 if and only if there is some hypersurface C

of Pn such that C �= P
n and VPn×Pk (f ) ⊆ C × P

k .

Proof In one direction, if degy f = 0, that is, if f ∈ K[x], then V
Pn×Pk (f ) =

VPn(f )× P
k , and because f is nonzero, C �= P

n (Proposition 4.7).
In the other direction, suppose that f /∈ K[x], that is, that degy f > 0. Let

h ∈ K[x] be x-homogeneous and nonzero (but possibly a constant). Write f =∑
m∈Nk fmym, with fm ∈ K[x]. Since f �= 0, find some m ∈ N

k such that fm �= 0.
Since fmh �= 0, Proposition 2.19 gives us a nonzero a ∈ A

n+1 such that (fmh)(a) �=
0. Hence p = πn(a) is not in VPn(h), and fm(a) �= 0. The latter implies that f (a, y)

is y-homogeneous of degree degy f , which is greater than zero. Then Lemma 4.8
tells us that there is some nonzero b ∈ A

k+1 such that f (a, b) = 0. Let q = πk(b).
Then (p, q) ∈ VPn×Pk (f ), and so VPn×Pk (f ) � VPn(h)× P

k . ��

This is the corresponding version of Study’s lemma:

Proposition 4.50 Let f, g ∈ K[x, y] be nonzero and bihomogeneous. If f divides
g then V

Pn×Pk (f ) ⊆ V
Pn×Pk (g). If, in addition, K is algebraically closed, and

V
Pn×Pk (f ) ⊆ V

Pn×Pk (g), then f divides g.

Proof One direction is immediate. Suppose then that K is algebraically closed, and
that VPn×Pk (f ) ⊆ VPn×Pk (g). As in the affine and projective case, we may assume
that f is irreducible.

We first dispose of degenerate cases. Suppose that g ∈ K[x], that is, that
degy g = 0. Then VPn×Pk (g) = VPn(g) × P

k . Lemma 4.49 then tells us that f ∈
K[x] as well, so VPn×Pk (f ) = VPn(f ) × P

k . We conclude that VPn(f ) ⊆ VPn(g),
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and then conclude that f divides g by appealing to the projective version of Study’s
lemma.

Of course, if degx g = 0 then the argument is identical. So we assume that
degx g > 0 and degy g > 0. This implies that for all a ∈ A

n+1 and all
b ∈ A

k+1, g(a, 0) = 0 and g(0, b) = 0. This, on top of the assumption that
VPn×Pk (f ) ⊆ VPn×Pk (g), tells us that for all a ∈ A

n+1 and b ∈ A
k+1, if f (a, b) = 0

then g(a, b) = 0. Since f is irreducible, this tells us that V
A(n+1)+(k+1)(f ) ⊆

V
A(n+1)+(k+1)(g). Then f �g is a consequence of the original Study’s lemma. ��

As in the affine case and the projective case, if K is algebraically closed then all
polynomials defining a hypersurface C of Pn×P

k are associates (scalar multiples of
each other), and so we can define the notion of an irreducible hypersurface and the
bidegree of a hypersurface in P

n × P
k. Identical definitions describe the irreducible

components of a hypersurface in P
n×P

k, and the same argument gives the analogue
of Proposition 3.22:

Proposition 4.51 Suppose that K is algebraically closed. Let C be a hypersurface
in P

n × P
k, and let A1, . . . , Am be irreducible hypersurfaces in P

n × P
k such that

�C	 =⋃
i�m Ai. Then the irreducible components of C are A1, . . . , Am. ��

Changes of coordinates of Pn and of Pk can be joined to changes of coordinates
of Pn × P

k . Let α be a linear presentation of a change of coordinates α of Pn, and
let β be a linear presentation of a change of coordinates β of Pk. We call α × β,
defined by (p, q) �→ (α(p), β(q)), a change of coordinates of P

n × P
k; it is a

permutation of the point of Pn × P
k . The associated change of variable (α × β)∗

(a ring automorphism of K[x, y]) has the same definition as above (induced by the
invertible linear map α×β fromA

(n+1)+(k+1) to itself). Namely, for all f ∈ K[x, y],

(α × β)∗(f ) = f
(
α∗(x0), . . . ,α

∗(xn),β
∗(y0), . . . ,β

∗(yk)
)
.

The arguments involved in proving Proposition 4.30 yield:

Proposition 4.52 Let f ∈ K[x, y] be x, y-bihomogeneous. Then (α × β)∗(f ) is
also x, y-bihomogeneous, of bidegree degx,y f , and

(α × β)
[
VPn×Pk (f )

] = VPn×Pk ((α × β)∗(f )).

Remark 4.53 Even though the naive attempt above to realise Pn×P
k as a subset of

P
n+k+1 (mapping the pair (πn(a), πk(b)) to πn+k(a, b)) does not work, there is a

way to realise Pn ×P
k as the subset of a projective space, of higher dimension. The

Segre embedding is the mapping

(a0 : a1 : · · · : an), (b0 : b1 : · : bk) �→ (a0b0 : a0b1 : · · · : aibj : · · · : anbk)
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(we take all pairs aibj ). The image is usually not an algebraic hypersurface but it is
an algebraic variety, defined as the common set of zeros of a number of polynomials,
in this case zi,j zk,l = zi,lzk,j . «

4.8 Further Exercises

Homogeneous Polynomials and First Definitions
4.54 Suppose thatK is finite; let q = |K|. Show that |Pn(K)| = 1+q+q2+· · ·+qn.

4.55 Suppose that polynomials f and g in K[x] are homogeneous and nonzero,
with deg f = deg g + 1. Suppose that f and g have no common factor. Show that
f + g is irreducible.

4.56 Find irreducible factorisations for the following polynomials in C[x, y]:
(i) x2 + xy + y2; (ii) x3 + y3; (iii) x3 + x2y + xy2 + y3; (iv) x4 + x2y2 + y4.

4.57 Suppose that K is algebraically closed. Let f ∈ K[x1, . . . , xn] and suppose
that for all λ ∈ K

∗ and all a ∈ K
n, f (a) = 0 if and only if f (λa) = 0. Show that f

is homogeneous.

Lines and Subspaces
4.58 Find the point of intersection of the following lines in P

2(R): (i) x+ 2y = 6w

and 3x + 4y = 15w; (ii) 2x + 3y = 6w and x = y + 3w; (iii) 3x + y = 2w and
6x + 2y + 5w = 0.

4.59 For the following pairs of points in P
2(R), find an equation for the line passing

through them: (i) (3 : 4 : −1) and (1 : 2 : 5); (ii) (0 : 4 : 5) and (0 : 1 : −3); (iii) (2 : 3 : 5)

and (0 : 4 : 1).

4.60 Let n � 1. (a) Show that the intersection of n many hyperplanes in P
n is

nonempty. Give an example though of two lines in P
3(R) whose intersection is

empty. (b) Let k � n. Show that if p0, . . . , pk are (k+ 1)-many points in P
n, which

do not all lie on any (k − 1)-dimensional subspace of Pn, then there is a unique
k-dimensional subspace of Pn containing all the points p0, . . . , pk .
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Cubic Curves
4.61 (a) Let C be the nodal cubic curve of Exercise 3.48. Show that the map
(e : a) �→ (e3 : ea2 − e3 : a3 − e2a) is well-defined map from P

1 to the projective
closure C� of C, and that this map extends a rational parameterisation of C. (b) Find
a similar parameterisation for the projective closure of the cuspidal cubic curve of
Exercise 3.47, and for the folium of Descartes (Exercise 3.49). (c) What happens
when we work over C instead of R?

4.62 Let K = C. Let Q0 = VP3(wy−x2), Q1 = VP3(wz−xy), and Q2 = VP3(xz−
y2). Let D = Q0 ∩ Q1 ∩ Q2. (a) Show that the map (e : a) �→ (e3 : e2a : ea2 : a3)

from P
1 to P

3 is well-defined, and is a bijection between P
1 and D. (b) Show that for

distinct i, j ∈ {0, 1, 2}, Qi∩Qj is the union of D with a line in P
3. (c) Show that no

four distinct points on D lie on a hyperplane of P3. (Hint: consider the Vandermonde
determinant, Exercise 2.93. The curve D is called a twisted cubic.)

4.63 Recall that a 2-dimensional subspace in P
n is called a (projective) plane.

(a) Show that a line in P
3 and a plane in P

3 not containing that line intersect at
a single point. (b) Let p = (0 : 0 : 1 : 0), and let H = VP3(y). For q ∈ P

3 \ {p}, let ψ

be the point of intersection of the line p q with H .3 Let D be the twisted cubic curve
given in Exercise 4.62. Let μ be a projective map which is a bijection between P

2

and H , and let E = μ−1ψ[D]. Show that E is an algebraic curve of P2.

Changes of Coordinates
4.64 Let α∗ be the change of variable of C[w, x, y] defined by α∗(f (w, x, y)) =
f (x − 3y + w, 2x, 4x − y). (a) Compute the change of coordinates induced by α.
(b) Find α[VP2(y − 3x − 2w)] and α[VP2(x2 − y2 − w2)].

4.65 For the four points p0, p1, p2, p3 ∈ P
2(R) below, find a change of coordinates

of P
2(R) which maps p0 to (1 : 0 : 0), p1 to (0 : 1 : 0), p2 to (0 : 0 : 1), and p3

to (1 : 1 : 1): (i) (0 : 2 : 1), (1 : 2 : − 1), (0 : 1 : 0), (1 : 3 : 2); (ii) (1 : 1 : 0), (1 : 2 : 0) ,
(0 : 1 : 1), (0 : 1 : − 1); (iii) (3 : 0 : 5), (0 : 1 : 2), (1 : 0 : 1), (3 : 1 : 4).

4.66 Find a change of coordinates of P2(R) which maps the x-axis to the line y +
x = 0, the y-axis to the (projective closure of the) line y = −1, the line at infinity
to the x-axis, and the point (1, 1, 1) to the vertical point at infinity.

4.67 (a) Show that if p1, p2 and p3 are distinct points in P
1, and so are q1, q2

and q3, then there is a unique change of coordinates of P1 which maps pi to qi .
(b) Let p1, p2, p3, p4 and q1, q2, q3, q4 be two quadruples of points in P

2, both of

3 The map ψ is called the projection from the point p onto H .
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which lie in general position. Show that there is a unique change of coordinates of
P

2 which maps each pi to qi . (c) Generalise this to n � 3.

4.68 (a) Let p1, p2 and p3 be distinct collinear points in P
2 and let q1, q2 and q3

also be distinct collinear points in P
2. Show that there is a change of coordinates

of P2 mapping each pi to qi . (b) Let p1, p2 and p3 be three distinct points in P
2

which lie on a line 	. Let α be a change of coordinates of P2 which fixes each of p1,
p2 and p3. Show that α(p) = p for all p ∈ 	.

4.69 Let C be the curve w2y+wy2 = wx2+2wxy+x2y+2xy2 in P
2(R). (a) Let α

be the change of coordinates of P2 which maps (1 : 0 : 0) to itself, (0 : 1 : 0) to itself,
(−1 : 0 : 1) to (0 : 0 : 1), and (0 : 1 : 1) to (1 : 1 : 1). Find the polynomial defining α[C].
(b) What are the irreducible components of C? [Wal50, Example 1.3], [Kun05,
Chap. 2, Example 2]

4.70 For A ∈ GLn+1(K) let αA be the change of coordinates of Pn induced by
α = TA. Show that A �→ αA is a group homomorphism from GLn+1(K) to the
group of permutations S(Pn); its image is the subgroup consisting of the changes of
coordinates of Pn. What is the kernel of this map?4

4.71 (a) Show that the affine subspaces of A
n are the restrictions to A

n of the
projective subspaces of Pn (see Sect. 3.4). (b) An affine change of coordinates is
a bijective affine map β : An → A

n. Show that a map from A
n to itself is an

affine change of coordinates if and only if it is the restriction to A
n of a change

of coordinates of Pn which maps the hyperplane at infinity H∞ to itself.

4.72 Show that there is no affine change of coordinates of A
2(R) that maps the

parabola y = x2 to the unit circle.

Spaces of Curves
4.73 Show the dual of the four point lemma: if 	1, 	2, 	3 and 	4 are distinct lines
in P

2, no three of which intersect at a single point p, and 	′1, 	′2, 	′3 and 	′4 are lines
with the same property, then there is a change of coordinates α of P2 such that for
each i = 1, 2, 3, 4, α[	i] = 	′i .

4.74 Suppose that K is algebraically closed. Show that for any p ∈ P
2, the

collection of curves of degree d which pass through p is a hyperplane of Gd .

4 The quotient of GLn+1(K) by this kernel, which is isomorphic to the group of changes of
coordinates of Pn, is called the projective general linear group PGLn(K). Projective general linear
groups play a role in the classification of finite simple groups.
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Conclude that every five points in P
2 lie on a conic curve (a curve of degree 2),

and that every nine points in P
2 lie on a cubic curve.

Möbius Maps and the Cross-Ratio
4.75 A fractional linear map is the restriction to A

1(K) of a change of coordinates
of P1(K).5 Show that the fractional linear maps are the functions of the form

z �→ az+ b

cz+ d
,

where ad �= bc.6

4.76 Let p2, p3 and p4 be distinct points in P
1. By Exercise 4.67, there is a unique

change of coordinates α of P1 which maps p2 to (1 : 1), p3 to (1 : 0) and p4 to (0 : 1).
For any point p1 ∈ P

1, we let the cross-ratio of p1, p2, p3 and p4, often denoted by
(p1, p2;p3, p4) be the point α(p1).

(a) Show that for any p1 ∈ P
1 and any change of coordinates β of P

1,
(β(p1), β(p2); β(p3), β(p4)) = (p1, p2;p3, p4). (b) Show that if p1, p2, p3
and p4 are four distinct points in P

1, and q1, q2, q3 and q4 are also four distinct
points in P

1, then there is a change of coordinates α of P1 mapping each pi to qi , if
and only if (p1, p2;p3, p4) = (q1, q2; q3, q4). (c) Extend part (b) to more points: if
p1, . . . , pn and q1, . . . , qn are tuples of distinct points in P

1 (with n � 4), then there
is a change of coordinates α of P1 mapping each pi to qi if and only if for all k =
4, . . . , n, (p1, p2;p3, pk) = (q1, q2; q3, qk). (d) Show that an injective function
α : P1 → P

1 is a change of coordinates of P1 if and only if for any four distinct
points p1, . . . , p4 ∈ P

1 we have (p1, p2;p3, p4) = (α(p1), α(p2); α(p3), α(p4)) .

(e) We identify distinct numbers a1, a2, a3 and a4 in K with points in P
1 in the

usual way and so speak of (a1, a2; a3, a4) as a number in K. (So technically,
(a1, a2; a3, a4) = ρ−1 (ρ(a1), ρ(a2); ρ(a3), ρ(a4)) where recall ρ(a) = (1 : a).
Note that indeed (ρ(a1), ρ(a2); ρ(a3), ρ(a4)) ∈ A

2.) Show that

(a1, a2; a3, a4) = a3 − a1

a3 − a2
· a4 − a2

a4 − a1
.

(This explains the name “cross-ratio”.) (f) Conclude that fractional linear maps
(Exercise 4.75) preserve the cross-ratio of quadruples of complex numbers.7

5 Note that if α is a change of coordinates of P1 and p∞ = (0 : 1) is the standard point at infinity,
then the fractional linear map α�A1 is not defined everywhere; it is defined on A

1 \ {α−1(p∞)}.
6 When K = C, fractional linear maps are also called Möbius transformations.
7 It can be shown that Möbius transformations map circles and lines to circles and lines, and that
four points in A

1(C) lie on a circle or a line if and only if their cross ratio is real.
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4.77 Let a1, a2, a3, a4 be distinct numbers in K. Let r = (a1, a2; a3, a4) be the
cross-ratio of a1, a2, a3 and a4 (Exercise 4.76).

Show that for all σ ∈ S4,

(
aσ(1), aσ(2); aσ(3), aσ(4)

) ∈ {r, 1/r, 1− r, 1/(1− r), (r − 1)/r, r/(r − 1)},

and that (aσ(1), aσ(2); aσ(3), aσ(4)) = r if and only if σ is an element of the Klein
Viergruppe (Exercise 2.83).

Conic Curves
4.78 Show that there is a change of coordinates of P2(R) which maps the projective
closure of the parabola y = x2 to the projective closure of the hyperbola xy = 1.

4.79 Let f ∈ C[w, x, y] be a homogeneous quadratic polynomial (polynomial of
degree 2). Let C = VP2(f ). (a) Recall that a square matrix A ∈ Mn(C) is symmetric
if A equals its transpose At. Show that there is a symmetric matrix A ∈ M3(C) such
that

f = (w, x, y)A

⎛

⎝
w

x

y

⎞

⎠ .

(b) Show that if C is irreducible then there is a change of coordinates P
2 which

maps C to the curve w2 + x2 + y2 = 0. (Use the fact that every symmetric matrix
is diagonalisable; this was not covered in Chap. 2.) Thus, in P

2(C) there is only one
irreducible conic curve up to a change of coordinates.8 (b) What happens in P

2(R)?

4.80 Let α be a change of coordinates of P2, mapping a point p to a point q . We let

C =
⋃
{	 ∩ α[	] : p ∈ 	} .

(a) Show that 	 �→ α[	] is a bijection between the linear family of lines passing
through p and the linear family of lines passing through q . (b) Show that p, q ∈ C.
(c) Suppose that p = (0 : 0 : 1) and q = (0 : 1 : 0). Show that there is a fractional
linear transformation g such that for a ∈ K and 	 the line x = a, 	 ∩ α[	] is the
point (a, g(a)). (d) Conclude that for any α, p and q as above, C is contained in a
conic curve.9

8 For an alternative proof see Exercise 5.60.
9 This is Jakob Steiner’s theorem.
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4.81 We use Steiner’s theorem from Exercise 4.80 to give an alternative proof of
the fact that five points in lie on a conic curve (Exercise 4.74). Let p, q, a, b and c

be points in P
2. (a) Show that if the points do not lie in general position, then they

lie on a reducible conic. (b) Assume that the points lie in general position. Let α be
a change of coordinates which maps p to q , a to a, b to b, and c to c. Show that the
conic curve derived by Steiner’s theorem for α, p and q passes through p, q, a, b

and c.

4.82 Let K ∈ {R,C,Q}. Let C be the projective closure of the unit circle
x2 + y2 = 1 in A

2(K). (a) Show that the map a �→ (a2 + 1 : 2a :a2 − 1)

extends to a bijection between P
1(K) to C (see Fig. 1.1). (b) Show that the complex

solutions for the Pythagorean equation w2 = x2 + y2 are the triples of the form(
b2 + c2, 2bc, b2 − c2

)
for b, c ∈ C. (c) Show that the real solutions for the

Pythagorean equation are the triples of the form
(±(b2 + c2), 2bc, b2 − c2

)
for

b, c ∈ R. (d) Show that the integer solutions for the Pythagorean equation are the
triples of the form

(
(b2 + c2)d, 2bcd, (b2 − c2)d

)

where b, c, d ∈ Z, b and c are relatively prime, and not both odd; and the triples of
the form

(
(b2 + c2)d/2, bcd, (b2 − c2)d/2

)
,

where b, c, d ∈ Z, b and c are relatively prime and both are odd.

Desargues’ Theorem
4.83 The statement of Desargues’ theorem makes sense in 3-dimensional space.
Show that it holds in P

3. (Separate to two cases, depending on whether the two
triangles are coplanar or not.)
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In this chapter we investigate how curves intersect with lines; recall that one of
the uses of this is showing that in general, a cubic curve intersects a line in three
points, and so any two points on the curve determine a third—this gives us a
method of generating new solutions to an equation, given some solutions. The first
section of this chapter is less formal, motivating our definitions by looking at the
affine case first. Later, we make formal definitions of higher-order tangents, and
multiplicity of intersection of a line with a curve. We then show that these notions
are geometric, meaning that they are invariant under changes of coordinates. Finally,
we show how each of these notions can be defined using the other (Theorem 5.34
and Proposition 5.36).

5.1 Introduction: Affine Tangents and Intersections with Lines

Suppose that a pair of differentiable functions ψx,ψy : R → R are used to
parameterise a curve which is also given implicitly by an equation f = 0. Let t0 ∈
R, and let p = (ψx(t0), ψy(t0)) be the point on the curve which corresponds to
“time” t0. If (ψ ′

x(t0), ψ
′
y(t0)) �= (0, 0) then the tangent to the curve at the point p

is the line passing through p whose direction is the vector (ψ ′
x(t0), ψ

′
y(t0)); this of

course generalises the case that the curve is the graph of ψy (so ψx(t) = t and
f = y − ψy(x)). Implicitly differentiating the equation f (ψx,ψy) = 0 using the
chain rule, and plugging in t = t0 we get

∂f

∂x
(p) · ψ ′

x(t0) + ∂f

∂y
(p) · ψ ′

y(t0) = 0. (5.1)
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If p = (a, b) then the equation of the tangent is ψ ′
y(t0)(x − a) = ψ ′

x(t0)(y − b);
using Eq. (5.1) we see that a scalar multiple of that equation is the equation

∂f

∂x
(p) · (x − a) + ∂f

∂y
(p) · (y − b) = 0 (5.2)

(using the fact that at least one of ψ ′
x(t0) and ψ ′

y(t0) is nonzero). Thus, even if a
curve f = 0 is only given implicitly and without a parameterisation, we define the
tangent to the curve at a point p = (a, b) to be given by Eq. (5.2). Of course, this
can be done only if at least one of ∂f

∂x
(p) or ∂f

∂y
(p) is nonzero. If both are zero then

the point p is called singular on the curve. Examples of singular points are cusps
(such as in Fig. 3.2) or self-crossings (as in Fig. 3.3), but sometimes are harder to
detect graphically, for example the origin on the curve y4 = x3.

Now suppose that we are given an algebraic curve VA2(K)(f ) over a field K which
is not necessarily R (for example Q, but possibly even finite fields such as Z/(p)).
In these cases there is no apparent sense to the expression ∂f

∂x
because we can’t take

limits. We use formal differentiation by simply defining the derivative of
∑

k akxk

to be
∑

k kakxk−1. We use the notation Dxf rather than ∂f
∂x

. Partial derivatives are
computed by treating other variables as constant. We give the details in Sect. 5.2
below. Using formal differentiation, we mimic Eq. (5.2) and define the tangent to a
curve f = 0 to be the line defined by the equation

Dxf (p) · (x − a) + Dyf (p) · (y − b) = 0. (5.3)

For simplicity now suppose that p = o = (0, 0) is the origin; the following can
be generalised to all points in A

2 by translation. Write f = f(m)+f(m+1)+· · ·+f(d)

where d = deg f , f(k) is homogeneous of degree k, and m is the least such that f(m)

is nonzero. This number m is called the order of the origin on the curve, denoted
by oo(f ). The origin o lies on the curve f = 0 if and only if f(0) = 0, that is,
if and only if its order is greater than zero. Using Taylor’s formula we see that
f(k) = ∑

i+j=k
1

i!j ! (Dxiyj
f )(o) · xiyj . So m is the least such that some mth-

order partial derivative of f is nonzero. In particular, o is a singular point on the
curve f = 0 if and only if m > 1. If o is nonsingular then f(1) is the equation
of the tangent to f at o. Suppose that o is singular but also assume that K is
algebraically closed. Since f(m) is homogeneous (in two variables), it is the product
of m linear polynomials (Proposition 4.26). These can be considered as the higher
order tangents to the curve at o. See for example Fig. 5.1.

5.1.1 Intersection Multiplicities

If a line intersects a curve at some point, then sometimes a small perturbation of the
line will result in more points of intersection. The two main examples are when the
line is tangent to a curve (Fig. 5.2), and when the point is singular (Fig. 5.3); Fig. 5.4



5.1 Introduction: Affine Tangents and Intersections with Lines 107

Fig. 5.1 The quadrifolium (x2 + y2)3 = 4x2y2. The lowest order term is 4x2y2; the curve has
four tangents at the origin, two copies of the x-axis and two copies of the y-axis

� �

Fig. 5.2 The line 	 intersects the parabola y = x2 at the origin. Perturbing the line a bit gives two
points of intersection

� �

Fig. 5.3 The line 	 intersects the nodal cubic curve y2 = x3 + x2 at the singular point o.
Perturbing the line a bit gives two points of intersection

illustrates both cases at once. Roughly, if when moving the line a bit, we get k points
of intersection, we say that the multiplicity of intersection is k, or less formally, that
the line intersects the curve k times at that point.

Let f ∈ K[x, y] define a curve and let 	 be a line. Let ψ = (ψx,ψy)

be a linear parameterisation of 	 (Definition 3.27). The roots of the polynomial
fψ = f (ψx,ψy) ∈ K[t] give the parameters which correspond to the points of
intersection of the line 	 with the curve f = 0. In the cases K = R or K = C

we can make small perturbations to the line 	 by making small changes to the
coefficients of the linear polynomials ψx and ψy . This results in small changes to
the coefficients of the intersection polynomial fψ , which in turn results in small
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� �

Fig. 5.4 The line 	 intersects the same nodal cubic curve y2 = x3 + x2 at the singular point o.
Perturbing the line a bit gives three points of intersection

changes to the roots of these polynomials (this is actually not that easy to show;
see Proposition 12.29). If near a point λ, the intersection polynomials close to fψ

have k distinct roots, all converging to λ as the corresponding lines converge to 	,
then λ will be a k-fold root of fψ : (t−λ)k will divide fψ but (t−λ)k+1 will not. We
will then define the intersection multiplicity ip(f, 	) of 	 and the curve f = 0 at a
point p = ψ(λ) to be the number of times (t−λ) divides fψ . As with tangents, this
definition does not rely on continuity considerations and can be made over any field.
It needs to be shown though that the intersection number ip(f, 	) does not depend
on the parameterisation ψ we chose for 	. Another case to be noted is when 	 is a
component of the curve f = 0; this happens if and only if fψ is the zero polynomial.
In that case we define ip(f, 	) = ∞.

Exercise 5.1 Show that deg fψ � deg f . Conclude that any line, which is not
a component of the curve f = 0, intersects that curve in at most deg f many
points. «

Again for simplicity of computation, we consider the origin point o = (0, 0).
An affine line 	 passing through the origin is given by an equation ay = bx, and a
linear parameterisation of that line is ψ(t) = (at, bt); so the intersection polynomial
is fψ = f (at, bt). Again write f = f(m)+f(m+1)+· · ·+f(d) where m is the order
of the origin on the curve f = 0. Then fψ = f(m)(at, bt) + · · · + f(d)(at, bt).
Each f(k)(at, bt) is homogeneous of degree k. This shows that the multiplicity
io(f, 	) is at least the order oo(f ) of the origin on the curve. Further, the multiplicity
io(f, 	) is strictly greater than the order m = oo(f ) if and only if (f(m))ψ =
f(m)(at, bt) = 0, i.e., if and only if 	 is a component of the curve VA2(f(m)). But
that curve is the sum of the higher-order tangents to the curve at o, so io(f, 	) > m if
and only if 	 is one of these tangents. Put together, this gives us a characterisation of
order and tangency in terms of multiplicity of intersection, which in fact works for
all points p. Namely: the order of p on the curve f = 0 is the smallest intersection
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number ip(f, 	), as 	 varies over all the lines that pass through p. A line 	 passing
through p is a tangent to the curve at p if and only if ip(f, 	) > op(f ).

5.1.2 Homogeneous Coordinates

Since our main aim is to work in the projective plane, we need to translate the
notions of tangents, order, and intersection multiplicity to homogeneous coordi-
nates. For this we use an important identity named after Euler:

Euler’s Relation Let f ∈ R[x1, . . . , xn] be homogeneous of degree d . Then

x1D
x1f + x2D

x2f + · · · + xnD
xnf = d · f.

We prove Euler’s relation on p. 111 below.
Let p = (a, b) be a point in the affine plane, again identified with the subset

of P2 by choosing the line at infinity to be w = 0. So p = (1, a, b) is a presentation
of p. Suppose that p lies on the projective curve f = 0. A calculation shows that
Dxf (p) = Dxf 
(a, b) and the same holds for y. Since p lies on the curve, f (p) =
0, so Euler’s relation says that Dwf (p) = −a ·Dxf (p)− b ·Dyf (p). This shows
that the projective closure of the tangent to the curve at p is neatly given by the
equation

w ·Dwf (p)+ x ·Dxf (p)+ y ·Dyf (p) = 0, (5.4)

and that p is singular if and only if all three partial derivatives vanish at p. Similar
equations hold for higher tangents if p is singular on the curve.1

It is not difficult to see that the equation for the tangent to a curve C at a
nonsingular point p does not depend on the presentation p of p and also does not
depend on the choice of polynomial f defining C (both vary only up to a nonzero
scalar multiple). In this sense it is a geometric rather than merely an algebraic
construct. However, for the notions of singularity and tangency to be genuinely
geometric we also require that they remain invariant under changes of coordinates
of the projective plane (see Sect. 4.5). This is motivated by considering changes of
coordinates as relabelling of points rather than permutations of points.

Exercise 5.2 Let C be a curve in P
2(R), and let p ∈ C. Let α be a change

of coordinates of P
2(R). Show that p is singular on C if and only if α(p) is

singular on α[C]. Suppose that p is nonsingular on C; let 	 be the tangent to C

at p. Show that α[	] is the tangent to α[C] at α(p). (Hint: use the chain rule and

1 Note how the equation of the line only depends on the partial derivatives of f at p; it does
not involve the coordinates of p. In the affine case, calculations are much simpler at the origin.
Projective space does not have such a “preferred point”.



110 5 Tangents

Proposition 4.30(c). Below we will extend this argument to other fields by using a
formal version of the chain rule.) «

Exercise 5.3 Show that the tangent to a line 	 at any point p ∈ 	 is 	 itself. «

5.2 Formal Partial Derivatives

We begin our formal treatment of tangency and intersection with lines by reviewing
facts about formal partial derivatives. In this section let R be an integral domain.
For a polynomial f = a0 + a1x + · · · + adxd in R[x] we let Dxf = a1 + 2a2x +
3a3x2 + · · · + d · adxd−1. For now, we do not assume that Z is a subring of R, in
other words, the characteristic of R could be positive (see p. 40). In the expression
k ·ak, the first k stands for k1R = 1R+1R+· · ·+1R (k times), so k ·ak is an element
of R and so Dxf ∈ R[x]. Positive characteristic can lead to unexpected behaviour.
For example over R = Z/(p), Dxxp = 0 even though the polynomial xp is not
constant.

If f is a polynomial in several variables x = x1, . . . , xn with coefficients
in R, then a partial derivative Dxi is defined by considering f as a polynomial
in R[x1, . . . , xi−1, xi+1, . . . , xn][xi].

We note that for any monic monomial m ∈ R[x] and any i � n, Dxi m is a
monomial of total degree deg m − 1, or possibly 0 if char(R) > 0. Thus for a
homogeneous polynomial f ∈ R[x], Dxi f is also homogeneous; usually of degree
deg f − 1, except that possibly Dxi f = 0 if char(R) > 0.

5.2.1 Properties of Derivatives

Familiar properties of the derivative hold in the formal setting. For example, for
f, g ∈ R[x], Dx(f + g) = Dxf +Dxg and Dx(fg) = f ·Dxg + g ·Dxf . Since
these are formal derivatives we cannot use manipulations of limits to show these
identities. Rather, we need to calculate coefficients. If f =∑

akxk and g =∑
bkxk

then the coefficient of xk−1 in both Dx(f + g) and Dxf +Dxg is k(ak + bk), and
so these polynomials are equal. For the product, the coefficient of xk−1 in Dx(fg)

is k
∑

i+j=k aibj ; in f ·Dxg is
∑

i+j=k j · aibj ; and in g ·Dxf is
∑

i+j=k i · aibj .

Iterating taking partial derivatives, we write Dxixj f for Dxi (Dxj f ), Dx2
f for

Dx(Dxf ), and so on. The order of differentiation does not matter: for f ∈ R[x, y],
Dxyf = Dyxf . Again this is done by comparing coefficients; if f =∑

am,kxmyk

then the coefficient of xm−1yk−1 in both sides is (mk)am,k.
Taking partial derivatives commutes with substitution: if f ∈ R[x, y] and a ∈

Rn, then (Dyf )(a, y) = Dy(f (a, y)). It is important, of course, that we do not
substitute a value for the variable with respect to which we take the derivative.
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The Chain Rule
Again let x = (x1, . . . , xn). For f ∈ R[x] we let Df be the row
(Dx1f,Dx2f, . . . ,Dxnf ). If f = (f1, . . . , fm) is an m-tuple of polynomials
from R[x] (which we really think of as a column), then we let Df be the

m × n-matrix

⎛

⎝
Df1
Df2

...
Dfm

⎞

⎠. The chain rule then says that for any g ∈ R[y1, . . . , ym],

D(g(f )) = (Dg)(f ) ·Df . Unravelling, this means that for all i � n,

Dxi (g(f )) = Dxi f1 · (Dy1g)(f )+Dxif2 · (Dy2g)(f )+ · · ·+Dxifm · (Dymg)(f ).

We can prove the chain rule essentially by “induction on the complexity of g”.
We prove it holds for any constant g ∈ R (for all f ); we prove it holds for the
variables g = y1, g = y2, . . . , g = ym; and then, assuming that the chain rule holds
for two polynomials g, h ∈ R[y], we show it holds for both g + h and for gh.
Since every polynomial in R[y] can be built up from the variables in y and the
constants by taking sums and products, this will show that the chain rule holds for
all g ∈ R[y].

If g ∈ R is a constant then the chain rule reduces to the equation 0 = 0 + 0 +
· · · + 0. If g = yk then Dyj g = 0 for j �= k, and Dykg = 1, so

∑
j�k Dxi fj ·

(Dyj g)(f ) = Dxi fk , while g(f ) = fk , giving the desired equality.
Now suppose that the chain rule is known to hold for two polynomials g and h

in R[y]. Then we use the sum rule and the product rule to show it holds for g + h

and for gh. For example, for the product,

Dxi ((gh)(f )) = g(f )Dxi (h(f ))+ h(f )Dxi (g(f )) =
g(f )

∑

j�m

Dxifj · (Dyj (h))(f )+ h(f )
∑

j�m

Dxi fj · (Dyj (g))(f ) =
∑

j�m

Dxi fj ·
(
(gDyj h)(f )+ (hDyj g)(f )

) =
∑

j�m

Dxi fj ·Dyj (gh)(f );

the calculation for g + h is easier.

Remark 5.4 The definitions and analysis so far can be done not only for polynomi-
als but also for formal power series (Sect. 2.1). The chain rule works if f is a tuple
of formal power series, but we have proved it only if g is a polynomial. Indeed the
substitution g(f ) may be undefined if g is a formal power series. We take this up in
Chap. 15. «

Euler’s Relation
We can now deduce Euler’s Relation: for homogeneous f ∈ R[x] of degree d ,
d · f = ∑

i�n xiD
xi f . Let t be a new variable. By Proposition 4.2, f (tx) = tdf .
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The chain rule implies that

Dt(f (tx)) =
∑

j�n

Dt (txj ) · (Dxj f )(tx) =
∑

j�n

xj (D
xj f )(tx).

Since t does not appear in f , it is considered a constant when taking a for-
mal derivative with respect to t; so Dt(tdf ) = d · td−1f . Overall we get∑

i�n xi(D
xi f )(tx) = dtd−1f ; substitute t = 1 to get Euler’s relation.

Taylor Expansions
Now we work over a field K. The standard proof of Taylor’s formula holds for
formal differentiation as well. Let f = ∑

akx
k be a polynomial in K[x]. By

induction on k we see that

Dxk
f = k!

0!ak + (k + 1)!
1! ak+1x + (k + 2)!

2! ak+2x
2 + · · · ;

Substituting 0 in Dxk
f we get k!ak = (Dxk

f )(0). In other words,

f =
deg f∑

k=0

(Dxk
f )(0)

k! xk.

We notice though that the last step (showing that ak = (Dxk
f )(0)/k!) involved

dividing by k!, which seems innocuous, except that possibly k! = 0K if char(K) > 0.
Since K is an integral domain, if k < char(K) then k! �= 0K, and so Taylor’s formula
holds provided that either char(K) = 0 or char(K) > deg f .

Exercise 5.5 Let f ∈ K[x] and let a ∈ K. Show that if char(K) = 0 or char(K) >

deg f then

f =
deg f∑

k=0

Dxk
f (a)

k! (x − a)k. «

Exercise 5.6 Let f ∈ K[x, y]. Under the same assumption, show that

f =
∑

i,j

Dxiyj
f (0, 0)

i!j ! xiyj

(the sum taken for pairs (i, j) with i + j � deg f ). Generalise to more variables. «
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5.2.2 The Discriminant

We give an application. Let f ∈ R[x], and suppose that deg f � 2. If char(R) = 0
or char(R) > deg f then deg Dxf = deg f − 1 � 1, in which case resx(f,Dxf )

is defined. We define the discriminant discx(f ) to be this resultant. For now we
assume that these conditions hold.

Proposition 5.7 Suppose that R is a unique factorisation domain. Then f has a
nonconstant repeated factor if and only if discx(f ) = 0.

Proof discx(f ) = 0 if and only if f and Dxf have a nonconstant common factor
(Theorem 3.12). Thus it suffices to show that f and Dxf have a nonconstant
common factor if and only if f has a repeated nonconstant factor. Since R is a
unique factorisation domain we can look for irreducible nonconstant factors on
both sides. Indeed, we see that a nonconstant irreducible polynomial g ∈ R[x]
is common factor of f and Dxf if and only if g2 divides f . Suppose that g is
an irreducible nonconstant factor of f ; let h = f/g. Since Dxf = gDxh + hDxg

and g divides gDxh, it divides Dxf if and only if it divides hDxg. Since deg Dxg <

deg g, g cannot divide Dxg, so g divides Dxf if and only if g divides h. And g

divides h if and only if g2 divides f . ��

Example 5.8 Let K be an algebraically closed field whose characteristic is not 2.
Let f = ax2 + bx + c ∈ K[x]. Then Dxf = 2ax + b, and so

discx(f ) =
∣
∣
∣
∣
∣
∣

c b a

b 2a 0
0 b 2a

∣
∣
∣
∣
∣
∣
= 4a2c − b(2ab− ab) = a(4ac− b2).

Since f is the product of two linear polynomials, corresponding to the two roots of
f , we see that f has a repeated root if and only if b2 = 4ac, as we know from the
quadratic formula. «

Exercise 5.9 Let a, b ∈ K, and let f = x3 + ax + b. Show that discx(f ) =
4a3 + 27b2. «

5.3 Higher Order Tangents

Having given an informal treatment of tangents and singularity in Sect. 5.1, we
directly define higher-order tangents and the order of a point on a curve. For the rest
of the chapter, when dealing with a curve of degree d , we assume that char(K) = 0
or char(K) > d . To keep things simple, we assume that K is algebraically closed.
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We saw that to obtain the higher-order tangents, we had to keep taking all
possible partial derivatives, until we obtain a nonzero equation. We do the same
in homogeneous coordinates, generalising the equation of the tangent in projective
coordinates.

Let C be a curve in P
2, and let p ∈ P

2 be a point. Let f define C, and let p be a
presentation of p. We let

∂0
pf = f (p),

∂1
pf = w ·Dwf (p)+ x ·Dxf (p)+ y ·Dyf (p),

∂2
pf = ww ·Dwwf (p)+wx ·Dwxf (p)+wy ·Dwyf (p)+

xw ·Dxwf (p)+ xx ·Dxxf (p)+ xy ·Dxyf (p)+
yw ·Dywf (p)+ yx ·Dyxf (p)+ yy ·Dyyf (p),

and in general, for k ∈ N, we let

∂k
pf =

∑

v̄

v1v2 · · · vk ·Dv1v2···vkf (p);

the sum is taken over all ordered choices v̄ = (v1, . . . , vk) where each vi is one
of w, x or y.2 By its definition, ∂k

pf is either 0 or a homogeneous polynomial of

degree k. If f ′ = λf and p′ = μp where λ,μ ∈ K
∗, then ∂k

p′f ′ = λμd−k∂k
pf .

This shows that (since K is algebraically closed) we can unambiguously define:

Definition 5.10 	k
pC = V

P2

(
∂k
pf

)
.

This does not depend on the choice of f defining C and presentation p of p. The
curve 	k

pC, defined by the equation ∂k
pf = 0, is the kth-order tangent to C at p.

Remark 5.11 The main usage of K being algebraically closed in this section is for
showing that the higher-order tangent is the sum of lines (Corollary 5.22). Other than
that, we use algebraic closure when passing between a curve and the association
class of the polynomials defining it. Many of the results in this section hold even
if K is not algebraically closed, provided that we distinguish between non-associate
polynomials, even if they define the same curve. In the next section we also use
algebraic closure for counting the number of intersections of a line with a curve
(Theorem 5.27). «

2 Formally, over all functions from {1, 2, . . . , k} → {w, x, y}.
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Let wmxiyj be a monic monomial, and let k = m + i + j . The number of
choices v̄ as above yielding v1v2 · · · vk = wmxiyj is

(
k

m

)

·
(

k −m

i

)

= k!
m!(k −m)! ·

(k −m)!
i!(k −m− i))! =

k!
m!i!j !

(we first choose m many locations for w, and from the rest we choose i many
locations for x). Since the order of differentiation does not matter we see that

∂k
pf = k! ·

∑

m+i+j=k

Dwmxiyj
f (p)

m!i!j ! wmxiyj (5.5)

(the sum is taken over all triples (m, i, j) with m+ i + j = k.)

Lemma 5.12 Let d = deg C. For all p ∈ P
2, 	d

pC = C.

Proof Let h ∈ K[w, x, y] be a monomial of degree d: h = awmxiyj . If m′ +
i ′ + j ′ = d but (m, i, j) �= (m′, i ′, j ′) then Dwm′ xi′yj ′

h = 0, as either m′ > m or
i ′ > i or j ′ > j . On the other hand Dwmxiyj

h = m!i!j !a. This shows that (for any
nonzero p ∈ K

3) ∂d
ph = d! · h. This equality is preserved under addition, and so for

any homogeneous polynomial f ∈ K[w, x, y] of degree d we have ∂d
pf = d! · f .

The lemma follows because we assumed that d! �= 0K. ��

In particular, we conclude that for all p ∈ P
2, 	d

pC �= P
2 (∂d

pf is nonzero). This
makes the following definition meaningful:

Definition 5.13 Let C be a curve in P
2, and let p ∈ P

2. The order of p on C,
denoted by op(C), is the least natural number k � deg C such that 	k

pC �= P
2.

In other words, op(C) is the least k such that some kth-order partial derivative of
f defining C is nonzero at p. We have 	0

pC = P
2 if p ∈ C, and otherwise 	0

pC = ∅.
This shows that op(C) > 0 if and only if p ∈ C. If op(C) � 2 then we say that p is
singular on C. If op(C) = 2 we call p a double point of C, if op(C) = 3 then we
call it a triple point, etc. A singular curve is a curve which has a singular point. A
curve is nonsingular if it is not singular, i.e., if no point p ∈ C is singular on C.

Definition 5.14 We let 	pC = 	k
pC for k = op(C).

So if p ∈ C is nonsingular on C then 	pC, defined by Eq. (5.4), is the tangent
to C at p. We will show that 	pC is the sum of op(C) many lines, each of which we
call a tangent to C at p (as mentioned above, this does use the assumption that K is
algebraically closed).
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Exercise 5.15 Let C be the projective closure of the nodal cubic y2 = x3 + x2

(Exercise 3.48). (a) Show that the origin o = (1 : 0 : 0) is the unique singular point
on C. (b) Show that 	oC is the sum of the two lines y = x and y = −x. (c) Verify
by calculation that 	3

pC = C for all p ∈ P
2. «

The Affine Higher Order Tangent
Let f ∈ K[x, y] be nonzero. Let C = V

P2(f �) be the projective closure of the affine
curve f = 0. We consider higher tangents at the origin o = (1 : 0 : 0) = (0, 0). Let
o = (1, 0, 0). We elaborate upon the calculations we made in Sect. 5.1.

The values of the partial derivatives of f � at o can be copied over from those
of f : for all i, j and m with m+ i + j � d ,

Dwmxiyj
f �(o) = (d − (i + j))!

(d − (m+ i + j))!D
xiyj

f (0, 0). (5.6)

This is proved by induction on m. For m = 0, Dxiyj
f �(o) = Dxiyj

f (0, 0) follows
from definitions: powers of w in f � are treated as constant and then evaluate to 1.
For m > 1, we use Euler’s Relation: since Dwmxiyj

f � is homogeneous, of degree
d − (m+ i + j),

wDwm+1xiyj

f �+xDwmxi+1yj

f �+yDwmxiyj+1
f � = (d−(m+ i+j)) ·Dwmxiyj

f �;

substituting o gives Dwm+1xiyj
f �(o) = (d − (m+ i + j))Dwmxiyj

f �(o).
Write f = f(0) + · · ·f(d) with f(k) homogeneous of degree k. By Exercise 5.6,

f(k) =
∑

i+j=k

Dxiyj
f (0, 0)

i!j ! xiyj .

Let k be the least such that f(k) �= 0. Then whenever i + j < k, Dxiyj
f (0, 0) = 0.

Then Eqs. (5.5) and (5.6) imply:

(a) For all k′ < k, ∂k′
o (f �) = 0;

(b) ∂k
o (f �) = k!f(k).

So oo(C) = k, and 	oC = VP2(f(k)). Now since f(k) ∈ K[x, y] is homogeneous
of degree k, and K is algebracially closed, f(k) is the product of k-many linear
homogeneous polynomials in K[x, y], i.e., polynomials of the form ay − bx where
(a, b) �= (0, 0); these define lines which pass through the origin. We summarise:

Proposition 5.16 Let f ∈ K[x, y] be nonzero, and let C = V
P2(f �).

(a) The order oo(C) of the origin on C is the least k such that f(k) �= 0. This is
the least k such that some kth-order partial derivative Dxiyj

f does not vanish
at (0, 0).
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(b) 	oC = V
P2

(
f(oo(C))

)
, and is the sum of oo(C)-many lines which pass through

the origin. ��

Exercise 5.17 Let f ∈ K[x, y]; let C = VP2(f �); let p = (a, b) ∈ A
2. Show that if

op(C) = 1 then the restriction of 	pC to A
2 is given by Eq. (5.3). «

5.3.1 TheModuli Space of Tangents

We work toward showing that the order of a point on a curve and the higher order
tangent are geometric concepts: they are invariant under changes of coordinates.
We consider the parameterised collection of all tangents. For a curve C in P

2 and
k � deg C we let

	kC =
{
(p, q) ∈ P

2 × P
2 : q ∈ 	k

pC
}

.

This is the underlying set of a hypersurface of P
2 × P

2 (see Sect. 4.7). Fix the
variables u = (u0, u1, u2) and v = (v0, v1, v2) which we will use to define
hypersurfaces of P2 × P

2. Then

∂k(f (u)) =
∑

σ : {1,2,...,k}→{0,1,2}
vσ(1)vσ(2) · · · vσ(k) ·Duσ(1)uσ(2)···uσ(k) (f (u)) (5.7)

is u, v-bihomogeneous (of bidegree (d−k, k)) and defines a hypersurface of P2×P
2

whose underlying set is 	kC; here of course f defines C and f (u) is the substitution
which replaces w by u0, x by u1 and y by u2. For a presentation p of a point p ∈ P

2,

∂k
pf =

(
∂k(f (u))

)
(p, w, x, y).

In general, for g ∈ K[u, v] we let

∂g = v0D
u0g + v1D

u1g + v2D
u2g.

We can define ∂kg in a similar way by replacing f (u) by g in Eq. (5.7); the point
is that this can be done by iterating ∂ for k times, i.e. ∂k+1g = ∂(∂kg). So we can
reason about ∂k inductively in a way which we cannot with ∂k

p. Note that if g is

u, v-bihomogeneous, say of bidegree (d, e), then ∂kg is also bihomogeneous, of
bidegree (d − k, e + k).

As a first application we show the following, which says that the kth-order
tangent at p does indeed pass through p.
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Proposition 5.18 Let C be a curve in P
2, and let p ∈ C. Then for all k � deg C,

p ∈ 	k
pC.

We argue indirectly.

Lemma 5.19 Let g ∈ K[u, v] be bihomogeneous and let p ∈ P
2. If (p, p) ∈

VP2×P2(g) then (p, p) ∈ VP2×P2(∂g).

Proof Let p = (e, a, b) be a presentation of p; so we are assuming that g(p,p) =
0, and need to show that (∂g)(p,p) = 0. Let d = degu g. Euler’s relation applied
with respect to u gives

u0D
u0g + u1D

u1g + u2D
u2g = d · g.

Substituting p for both u and v, we get

e · (Du0g)(p,p)+ a · (Du1g)(p,p)+ b · (Du2g)(p,p) = d · g(p,p) = 0.

The expression on the left equals (∂g)(p,p). ��

Proof of Proposition 5.18 Let f define C. We treat f (u) as a polynomial in
K[u, v] (in which the variables v do not appear). Thus V

P2×P2(f (u)) = C × P
2.

Since p ∈ C, (p, p) ∈ V
P2×P2(f (u)). By induction on k, Lemma 5.19 shows that

(p, p) ∈ V
P2×P2(∂k(f (u))), so (p, p) ∈ 	kC. ��

5.3.2 Invariance of the Higher Order Tangent

Recall (see Sect. 4.7) that if α is a change of coordinates of P
2 then α × α is a

change of coordinates of P2 × P
2; if α∗ is an associated change of variable then

g �→ g (α∗(u0),α
∗(u1),α

∗(u2),α
∗(v0),α

∗(v1),α
∗(v2)) is an associated change

of variable (α × α)∗ of K[u, v], where of course

(
α∗(u0)
α∗(u1)
α∗(u2)

)

= A−1 ·
( u0

u1
u2

)
and(

α∗(v0)
α∗(v1)
α∗(v2)

)

= A−1 ·
(

v0
v1
v2

)
; A is the matrix such that α = TA.

Fix such α. For brevity let ĝ = (α × α)∗(g) for all g ∈ K[u, v].

Lemma 5.20 For all g ∈ K[u, v], ∂̂g = ∂
(
ĝ
)
.

Proof Let B = A−1, so B = (bi,j )i,j∈{0,1,2}. Let i, j ∈ {0, 1, 2}. Since ûj =∑
i bj,iui we have Dui ûj = bj,i . Since v̂j does not mention ui , Dui v̂j = 0. The
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chain rule then implies that

⎛

⎝
Du0 ĝ

Du1 ĝ

Du2 ĝ

⎞

⎠ = Bt ·
⎛

⎝
ˆDu0g
ˆDu1g
ˆDu2g

⎞

⎠

and so

∂(ĝ) = (v0, v1, v2) ·
⎛

⎝
Du0 ĝ

Du1 ĝ

Du2 ĝ

⎞

⎠ = (v0, v1, v2) · Bt ·
⎛

⎝
ˆDu0g
ˆDu1g
ˆDu2g

⎞

⎠ .

Of course (as a 1× 1-matrix) ∂(ĝ) is equal to its transpose and so

∂(ĝ) = ( ˆDu0g, ˆDu1g, ˆDu2g) · B ·
⎛

⎝
v0

v1

v2

⎞

⎠ = ( ˆDu0g, ˆDu1g, ˆDu2g) ·
⎛

⎝
v̂0

v̂1

v̂2

⎞

⎠ = ∂̂g,

using the fact that (α × α)∗ is a ring homomorphism. ��

By induction on k we see that

ˆ∂kg = ∂kĝ.

We use this to show that the higher-order tangents are invariant under changes of
coordinates.

Proposition 5.21 Let C be a curve in P
2, and let p ∈ P

2. Let α be a change of
coordinates of P2. Then for all k � deg C,

	k
α(p)α[C] = α

[
	k
pC

]
,

and so oα(p) (α[C]) = op(C).

Proof Let f define C, and let p be a presentation of p. Let α be linear presentation

of α. Let q = α(p), so q is a presentation of q = α(p). We show that α∗
(
∂k
pf

)
=

∂k
q (α∗(f )) (recall Proposition 4.30).

Again let ĝ = (α × α)∗(g). By definition, α∗(w)(u) = û0, α∗(w)(v) = v̂0,
α∗(x)(u) = û1, and so on. From this we conclude:

(a) ˆf (u) = (α∗(f ))(u): We get the same result if we first replace the variables of f

by u and then apply (α × α)∗, or if we first apply α∗ to f and then substitute u

for (w, x, y).
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(b) For all g ∈ K[u, v], α∗ (g(p, w, x, y)) = ĝ(q, w, x, y); for this recall that α∗
is defined using α−1 rather than α.

Applying (b) to g = ∂k(f (u)),

α∗
(
∂k
pf

)
= α∗

(
∂k(f (u))(p, w, x, y)

)
= ˆ∂k(f (u))(q, w, x, y).

By Lemma 5.20, ˆ∂k(f (u)) = ∂k( ˆf (u)) and so by (a),

ˆ∂k(f (u))(q, w, x, y) = ∂k
(
(α∗(f ))(u)

)
(q, w, x, y) = ∂k

q (α∗(f ))

as required. ��

Corollary 5.22 Let C be a curve in P
2 and let p ∈ P

2. Then 	pC is the sum of
op(C) many lines, each of which passes through p.

Proof After a change of coordinates we may assume that the line at infinity 	∞ is
not a component of C, and that p = o is the origin. Then C is the projective closure
of its restriction to A

2, and the result follows from Proposition 5.16. ��

These lines are called the higher order tangents to C at p. Some tangents can
repeat. A singular point p is called ordinary if 	pC is the sum of op(C) distinct
lines.

Corollary 5.23 Let C and D be curves in P
2 and let p ∈ P

2. Then
op(C +D) = op(C)+ op(D) and 	p(C +D) = 	pC + 	pD.

Proof Again change coordinates so that 	∞ is a component of neither C nor D and
p is the origin. Let f define C and g define D; let k = op(C) and m = op(D).
Then f = f(k) + higher order terms and g = g(m) + higher order terms, and so
fg = f(k)g(m) + higher order terms. Again use Proposition 5.16. ��

As a result, for any curve C and point p ∈ P
2, op(C) � mp(C), the multiplicity

of p on C (the number of irreducible components of C that p lies on). We will use
this to show that a nonsingular curve is irreducible (Theorem 6.5).

5.4 The Intersection of a Line with a Curve

As indicated in Sect. 5.1 we develop the notion of intersection multiplicity with a
line and relate it to the higher-order tangents. We first work in the projective plane.



5.4 The Intersection of a Line with a Curve 121

5.4.1 Definition of Intersection Multiplicity

Let C be a curve in P
2, and let f define C. Let ψ be a projective linear parameter-

isation of a projective line 	 (Definition 4.16); let ψ be a linear presentation of ψ .
Recall that we let ψw,ψx,ψy be the linear homogeneous polynomials in K[s, t]
which define the components of ψ .

Define

fψ = f (ψw,ψx,ψy)

which is a polynomial in K[s, t]. This polynomial is homogeneous, of the same
degree as f , or it is the zero polynomial. For r ∈ P

1, fψ (r) = 0 if and only if the
point ψ(r) lies on C. In other words, the roots of fψ in P

1 correspond by the map ψ

to the points of intersection of C and 	. This shows that fψ = 0 if and only if 	 ⊆ C.
Provided 	 is not a component of C, we want to define the multiplicity of

intersection of C and 	 at a point α(r) to be the multiplicity of r as a root of fψ

(its multiplicity in the multiset VP1(fψ )). This does not depend on the choice of
f defining C; by Exercise 4.15, it also does not depend on the choice of linear
presentation ψ of the parameterisation ψ . However, we also need to ensure that this
does not depend on the choice of parameterisation ψ of 	.

Lemma 5.24 Let ψ and ϕ be two linear parameterisations of a line 	 in P
2; let ψ

and ϕ be linear presentations of ψ and ϕ. Let f ∈ K[w, x, y] be homogeneous.
Then for all p ∈ 	, the multiplicity of ψ−1(p) in VP1(fψ ) is the same as the
multiplicity of ϕ−1(p) in VP1(fϕ).

Proof Let W = rangeψ = rangeϕ be the 2-dimensional subspace of K
3 such

that π2[W ] = 	. Then θ = ϕ−1 ◦ ψ is a linear isomorphism from K
2 to itself;

it is a linear presentation of the change of coordinates θ = ϕ−1 ◦ ψ of P
1. To

prove the lemma, we show that ϕ−1 ◦ ψ maps V
P1(fψ ) to V

P1(fϕ); equivalently,
by Proposition 4.30(d), that θ∗(fψ ) = fϕ . This can be checked “manually”,
but we can also consider functions: fϕ defines the function f ◦ ϕ : K2 → K,
while by Proposition 4.30(c), θ∗(fψ ) defines the same map f ◦ ψ ◦ θ−1 =
f ◦ ψ ◦ ψ−1 ◦ ϕ. Since K is infinite, this shows the equality of the polynomials
(Proposition 2.18). ��

We can therefore define:

Definition 5.25 Let C be a curve in P
2, let 	 be a line which is not a component

of C, and let p ∈ 	. We let ip(C, 	) be the multiplicity of ψ−1(p) in VP1(fψ ), where
f defines C and ψ is a linear parameterisation of 	.
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We extend this definition to lines 	 which are components of C by letting
ip(C, 	) = ∞ for all p ∈ 	. In any case, we see that for all p ∈ 	, p ∈ 	 ∩ C

if and only if ip(C, 	) > 0.

Example 5.26 Let f ∈ K[w, x, y] be homogeneous. The map ψ(s : t) = (0 : s : t)
is a linear parameterisation of the line at infinity w = 0, so the multiplicity of
intersection of the curve f = 0 with the line at infinity 	∞ at a point (0 : a : b) is the
multiplicity of the root (a : b) of the polynomial f (0, x, y). «

Bézout for a Line
We get a special case of Bézout’s theorem. It says that if “counted properly”, i.e.,
with intersection multiplicities, then every line 	 intersects a curve C in exactly
deg C many points (or is a component of C). Here it is essential that we: (i) work in
the projective plane; and (ii) assume that K is algebraically closed.

Theorem 5.27 Let C be a curve in P2, and suppose that a line 	 is not a component
of C. Then

∑

p∈	∩C

ip(C, 	) = deg C.

Proof Let ψ be a presentation of a linear parameterisation of 	; pick f defining C.
The polynomial fψ has degree deg C and so defines a hypersurface of P1 which is
a multiset containing deg C many points (Proposition 4.26). ��

Exercise 5.28 Let C and D be curves in P
2, let 	 be a line, and let p ∈ 	. Show that

ip(C +D, 	) = ip(C, 	)+ ip(D, 	). «

5.4.2 Invariance of Multiplicity of Intersection with a Line

We show that multiplicity of intersection with a line is invariant under changes of
coordinates, and is thus a geometric notion.

Proposition 5.29 Let C be a curve in P2, 	 be a line, and p ∈ 	. Let α be a change
of coordinates of P2. Then iα(p)(α[C], α[	]) = ip(C, 	).

We give two proofs of this proposition.

First proof of Proposition 5.29 Pick f defining C and a presentation ψ of a linear
parameterisation ψ of 	. Let α be a linear presentation of α. Then α ◦ ψ is a
presentation of the linear parameterisation α ◦ ψ of α[	]. To prove the lemma, it
suffices to verify that (α∗(f ))α◦ψ = fψ ; as in the proof of Lemma 5.24, this follows
from the fact that both polynomials define the function f ◦ ψ . ��
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We give another proof of Proposition 5.29, in the spirit of the proof of
Proposition 5.21. This proof will be used in the next chapter.

To set things up we again fix a linear automorphism α of K3. We now introduce
eight new variables: u = (u0, u1, u2), v = (v0, v1, v2), and (s, t). We extend the
theory of products of projective spaces to the product of three spaces: P2×P

2×P
1.

Trihomogeneous polynomials (in u, v, (s, t)) define hypersurfaces of this product.
The map α × α × idK2 is a linear automorphism of K3 ×K

3 ×K
2 which induces a

change of coordinates α × α × idP1 of P2 × P
2 × P

1 and a change of variable (α ×
α × idK2)∗ of K[u, v, s, t]. We abbreviate (α × α × idK2)∗(g) by ĝ.

Let f ∈ K[w, x, y]. In the same way that ∂k uniformises the kth-order tangents,
the general intersection polynomial

fu,v = f (su + tv)

uniformises the intersection polynomials fψ (see Example 4.17).

Lemma 5.30 (α∗(f ))u,v = ˆfu,v .

Proof As in the proof of Proposition 5.21 (where we used α∗(x)(u) = û1 etc.),
α∗(x)(su+ tv) = sû1 + t v̂1 etc., and so

(α∗(f ))u,v = f
(
α∗(w),α∗(x),α∗(y)

)
(su + tv) = f

(
sû+ t v̂

) =
fu,v(û, v̂, s, t) = ˆfu,v . ��

Second proof of Proposition 5.29 Using the notation of the first proof, we again
need to show that (α∗(f ))α◦ψ = fψ . Let p = ψ(1, 0) and let q = ψ(0, 1); so
ψ(s, t) = sp + tq . Now fψ = fu,v(p, q, s, t), and

(α∗(f ))α◦ψ = (α∗(f ))u,v(α(p),α(q), s, t) = ˆfu,v(α(p),α(q), s, t).

Since the tuple of polynomials (û, v̂) defines the map α−1×α−1 on K
6, we see that

for all (a, b) ∈ K
6 and g ∈ K[u, v, s, t],

ĝ(a, b, s, t) = g
(
α−1(a),α−1(b), s, t

)
.

We apply this to g = fu,v and a = α(p), b = α(q). ��

Affine Calculations
Let ψ be an affine linear parameterisation of an affine line 	 in A

2 (Definition 3.27).
Then ψ extends to a projective linear parameterisation ψ� of the projective closure
	� of 	: if ψ = (ψx,ψy) = (axt + bx, ayt + by) then we let ψ�(s : t) =
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(s :ψ�s
x :ψ�s

y ) = (s : axt + bxs : ayt + bys); so ψ�(1 : t) is the point ψ(t) (under
the usual identification of A2 in P

2), while ψ�(0 : 1) is the point of intersection of 	�

with the line at infinity.

Remark 5.31 Note that not every projective linear parameterisation ψ =
(ψw :ψx :ψy) is obtained as this “projective closure” of an affine linear
parameterisation: if ψw(s, t) is not a multiple of s (that is, if ψ(0 : 1) is not on
the line at infinity), then the restriction of ψ to A

1 is not linear but the rational map
(ψ


s
x /ψ


s
w ,ψ


s
y /ψ


s
w ). «

Let f ∈ K[x, y]; let C = VA2(f ); let C� = VP2(f �) be the projective closure
of C. For p ∈ A

2 we write ip(C, 	) for ip(C�, 	�). Now

(
(f �)ψ�

)
s = f �(1, ψx,ψy) = f (ψx,ψy);

so VP1((f �)ψ� ) ∩ A
1 = VA1(fψ), where fψ = f (ψx,ψy). We conclude:

Lemma 5.32 Let 	 be a line in A
2, let C = VA2(f ) be a curve, and let ψ be an

affine parameterisation of 	. Then ip(C, 	) is the multiplicity of ψ−1(p) as a root of
fψ .

This allows us to simplify calculations: for a projective curve D, a projective
line L, and a point p ∈ A

2, we can find ip(D,L) by using the affine equation of
D�

A2 and an affine parameterisation of L�
A2 .

Example 5.33 If 	 is the line ay = bx which passes through the origin, we can use
the affine parameterisation ψ(t) = (at, bt); then io(C, 	) is the multiplicity of 0 as
a root of f (at, bt). «

5.4.3 Tangents and Intersections with Lines

We can now carry out the analysis of tangency and intersection numbers that was
mentioned in Sect. 5.1.

Theorem 5.34 Let C be a curve in P2 and let p ∈ P
2. A line 	 passing through p is

a tangent to C at p if and only if ip(C, 	) > op(C). If not, then ip(C, 	) = op(C).

Proof The concepts of order, kth-order tangents and multiplicity of intersection are
invariant under changes of coordinates (Propositions 5.21 and 5.29). So we may
change coordinates so that p = o is the origin, and the line at infinity is not a
component of C. Pick f ∈ K[x, y] which defines the restriction C �A2 . Then by
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Example 5.33, ip(C, 	) is the multiplicity of 0 as a root of f (at, bt), where 	 is
the line ay = bx. Write f = ∑

k f(k), with f(k) homogeneous of degree k. Then
f (at, bt) = ∑

k�d f(k)(at, bt), and f(k)(at, bt) is homogeneous of degree k. By
Proposition 5.16, op(C) is the least k such that f(k) �= 0, so ip(C, 	) � op(C). This
of course includes the case io(C, 	) =∞, i.e., when 	 is a component of C.

Let m = op(C). By Proposition 5.16, VP2(f(m)) is the sum of the m-many
tangents to C at p, and 	 is one of these tangents if and only if (f(m))ψ =
f(m)(at, bt) = 0. So 	 is a tangent to C at p if and only if ip(C, 	) > m. ��

DefiningMultiplicities Using Tangents
Theorem 5.34 shows how to define order and tangents given intersection multiplicity
with lines. We go the other direction. Let f ∈ K[w, x, y] be homogeneous, defining
a curve C; let p = (p0, p1, p2) be a presentation of a point p ∈ P

2. Let 	 be a line
passing through p; let q = (q0, q1, q2) be a presentation of a point q ∈ 	 other
than p. Use the presentation ψ(s, t) = sp + tq of a parameterisation of 	. By
definition, ip(C, 	) is the multiplicity of the root (1 : 0) of fψ . This is the same as
the multiplicity of 0 as a root of the dehomogenisation (fψ )
s = f (p+ tq). In turn,

this is the least k such that
(
Dtk (f (p + tq))

)
(0) �= 0.

Lemma 5.35 For all k � d ,

(
Dtk (f (p + tq))

)
(0) = (∂k

pf )(q).

Proof Use variables u, v, t as above. For brevity let h = p + tv. For any
g ∈ K[u, v], by the chain rule, Dt(g(h, v)) = (∂g)(h, v), and so by induction,
Dtk (g(h, v)) = (∂kg)(h, v). Note that f (h) = (f (u)) (h, v), and so overall
Dtk (f (h)) = (

∂k (f (u))
)
(h, v). The lemma is obtained by substituting v = q

and t = 0. ��

As a result, we see that ip(C, 	) is the least k such that q /∈ 	k
pC. But q ∈ 	 was

arbitrary. On the other hand, if p ∈ C then p ∈ 	k
pC for all k (Proposition 5.18).

This shows:

Proposition 5.36 Let C be a curve in P
2, let p ∈ C and let 	 be a line passing

through p. Let k = ip(C, 	). Then 	 ⊆ 	k′
p C for all k′ < k, but 	 ∩ 	k

pC = {p}. ��

If 	 is a component of C this means that 	 ⊆ 	k
pC for all k � deg C. Note that

Proposition 5.36 gives us another proof of Theorem 5.34.

Example 5.37

(i) Consider the parabola y = x2. It is nonsingular; the tangent to the parabola at
the origin is the x-axis. The intersection multiplicity of this tangent with the
parabola at the origin is greater than 1 (the order of the origin on the parabola),
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and is at most 2 since the degree of the parabola is 2. This can be verified by
direction computation.

(ii) The origin is an ordinary double point of the cubic curve y2 = x3 + x2

(Exercises 3.48 and 5.15). Ordinary double points are sometimes called nodes,
and so this is called the nodal cubic. The tangents must intersect the curve
thrice at the origin.

(iii) The origin is a double point on the cubic y2 = x3 (Exercise 3.47), but the two
tangents coincide. A non-ordinary double point is sometimes called a cusp,
whence this is the cuspidal cubic. «

5.4.4 Simple Intersections Are the Norm

We show that most lines in a linear family of lines intersect a curve simply.

Proposition 5.38 Let C be a curve in P
2 which has no repeated component. Let L

be the linear family of lines which pass through some point q (see Proposition 4.40).
For all but finitely many lines 	 ∈ L, for all p �= q on 	, ip(C, 	) � 1.

Proof By changing coordinates, we may assume that q = (0 : 0 : 1) is the vertical
point at infinity; so L is the family of vertical lines. The restrictions to A

2 of the lines
in L (other than the line at infinity) are the affine vertical lines x = a for a ∈ K, and
the points on such a line x = a are of course the points (a, b) for b ∈ K.

Let f be the dehomogenisation of a polynomial which defines C. For each a ∈ K,
t �→ (a, t) is a linear parameterisation of the affine line x = a, so by Lemma 5.32,
for all p = (a, b) ∈ A

2, ip(C, x = a) is the multiplicity of b as a root of f (a, t).
(If f (a, t) is the zero polynomial then the projective vertical line x = aw is a
component of C.)

We view f as a polynomial in K[x][y]. Suppose that degy f � 1. Then for all
a ∈ K, deg f (a, t) � 1; for all but finitely many a ∈ K, f (a, t) is not the zero
polynomial. For such a, for all b, the multiplicity of b as a root of f (a, t) is at
most 1.

Suppose then that degy f � 2. Since C has no repeated components, f has no
repeated factor. In particular, it has no repeated factor in K[x, y] \K[x]. Hence, the
discriminant g = discy(f ) is nonzero (Proposition 5.7). For all but finitely many
a ∈ K, degy f (a, y) = degy f and degy Dyf (a, y) = degy Dyf . (Why? write

f = ∑d
i=0 fiyi , with fd �= 0; the polynomial fd has finitely many roots.) Since

(Dyf )(a, y) = Dy(f (a, y)), by Lemma 3.15, for such a, g(a) = discy(f (a, y)).
Since g �= 0, it has finitely many roots. Hence, by Proposition 5.7 again, for all
but finitely many a ∈ K, f (a, y) has no repeated roots, i.e., the multiplicity of any
root b of f (a, t) is at most 1. ��
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Corollary 5.39 Let C be a curve in P2 which has no repeated component; let L be
the linear family of lines which pass through some point q . Let m = oq(C). Then for
all but finitely many lines 	 ∈ L, 	 intersects C at deg C − m many distinct points
other than q .

Proof By Theorem 5.34, for all but finitely many 	 ∈ L, iq(C, 	) = oq(C). The
corollary then follows from Proposition 5.38 and Theorem 5.27. ��

The following shows that the degree of a curve can be recovered by examining
intersections with lines.

Corollary 5.40 Let C be a curve in P
2 which has no repeated components; let L

be the linear family of lines which pass through some point q . Suppose that q /∈ C,
or that q ∈ C and is nonsingular on C. Then all but finitely many lines 	 ∈ L
intersect C at deg C-many distinct points.

Proof If q /∈ C then oq(C) = 0, and the corollary follows directly from
Corollary 5.39. Otherwise, oq(C) = 1; then by Corollary 5.39, for all but finitely
many 	 ∈ L, 	 intersects C in deg C − 1 many distinct points other than q; but of
course, every 	 ∈ L intersects C at q as well. ��

Corollary 5.41 A curve with no repeated components has only finitely many
singular points.

Proof Let C be a curve with no repeated components. Let q be any point not on C.
Let L be the family of lines which pass through q . Let 	1,. . . , 	m be the lines in L
which intersect C at some point p in multiplicity greater than 1. By Theorem 5.34,
if p ∈ C is singular on C, then the line p q is one of the lines 	1,. . . , 	m. Each such
line 	i intersects C in at most finitely many points. ��

For bounds on the number of singular points, see Exercises 6.8 and 6.58.

5.5 Further Exercises

When calculating we assume K = C.

Differentiating Polynomials
5.42 Suppose that F is an algebraically closed field, and suppose that char(F ) = 0
or char(F ) > n. Show that F contains n distinct nth roots of unity, namely
elements a ∈ F such that an = 1F .
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5.43 Let f ∈ K[x1, . . . , xn] and suppose that
∑

xiD
xi f = d · f . Show that f is

homogeneous of degree d (or is 0).

Theory
5.44

(a) Let f ∈ K[w, x, y] be homogeneous, and let k < deg f . Let p ∈ P
2.

Suppose that each kth-order partial derivative of f vanishes at p, i.e. that
p ∈ VP2(Dwixj ym

f ) whenever i + j + m = k. Show that op

(
VP2(f )

)
> k.

(That is: we’re not assuming that for k′ < k, all partial derivatives of order k′
vanish at p, but that follows.)

(b) Let d � 1. Assume that K is algebraically closed. Let p ∈ P
2 and let

k � d . Show that the collection of curves C of degree d such that op(C) �
k is a projective subspace of Gd of co-dimension

(
k+1

2

)
(see Sect. 4.6 and

Exercise 4.74; by a change of coordinates, you may assume that p is the origin).

5.45 Let p = (a, b) be a singular point on an affine curve f = 0. Show that p is an
ordinary double point of the curve if and only if ((Dxyf )(a, b))2 �= (Dx2

f )(a, b) ·
(Dy2

f )(a, b).

5.46 Show directly (without using Corollary 5.23) that if C is a curve and p lies on
more than one component of C (i.e. mp(C) > 1) then p is singular on C.

5.47 Let C be a curve in P
2, let p ∈ C, and suppose that op(C) = deg(C).

Show that C is the sum of deg(C) many lines (not necessarily distinct), all passing
through p.

5.48 Let C be a curve in P
2, and let L be a linear family of lines. Show that only

finitely many lines 	 ∈ L are tangent to C at any point.

Examples
5.49 Is the graph of the sine function {(a, sin a) : a ∈ R} an algebraic curve
of A2(R)?

5.50 Let f ∈ K[x] be nonconstant. Show that the projective closure D of y = f

intersects the line at infinity only at the vertical point at infinity. Show that the order
of that point on D is deg f −1, and that the 	∞ is the only tangent to D at that point.

5.51 Let C be the projective closure of the curve y3 = x3 + 3xy + 1. Find the
points of intersection of C with the line at infinity. Without calculating derivatives,
explain why these points are nonsingular on C. (Recall that K = C, not R.)
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Fig. 5.5 The eight curve
y2 = x2 − x4

5.52 For the following affine curves, find: the order of the curve at the origin; the
tangents to the curve at the origin; and how many times each tangent intersects the
curve at the origin: (i) y = x3 + 2x; (ii) y2 = x3; (iii) (x2 + y2)2 = xy2.

5.53 Give an example of an irreducible curve C in P
2(C) and a point p such that:

(i) p is nonsingular on C and the tangent to C at p intersects C at p five times
(ip(C, 	pC) = 5). (ii) p is a double point on C and C has a single tangent at p (so
	pC consists of two copies of a line) which intersects C at p five times. (iii) p is a
double point on C and C has two tangents at p, one of which intersects C at p four
times and the other seven times.

5.54 Let C be the curve y2 = x2 − x4 (Fig. 5.5). Calculate the intersection multi-
plicities of C at the origin with every line which passes through the origin; use this
to find the order of the origin on C, and the tangents to C at the origin.

5.55 Find the singular points on the projective closures of the following curves and
find the tangents at each singular point:

(i) y3 + x3 + 3xy2 + 3x2y + 2xy = y2 + x2;
(ii) x4 + y4 = x2y2;

(iii) y2 = (5− x2)(4x4 − 20x2 + 25).

[Kir92, Example 2.2],[Gib98, Example 7.3.3],[Ful69, Example 3.2]

5.56 An asymptote of an affine curve C is an affine line, whose projective closure
is tangent to the projective closure of C, at a point which lies on the line at infinity.
(a) Find an asymptote of the folium of Descartes x3 + y3 = 3xy (Exercise 3.49 and
Fig. 3.4). (b) Find asymptotes of the hyperbola xy = 1. (c) Show that the parabola
y − x2 and that the nodal cubic y2 = x3 + x2 do not have asymptotes.
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Conic Curves
5.57 Show that a conic curve is singular if and only if it is reducible.

5.58 Let f = 2aw,xwx + 2aw,ywy + 2ax,yxy + aw,ww2 + ax,xx2 + ay,yy2 be a
homogeneous quadratic polynomial; let C = VP2(f ). Show that C is singular if and
only if the matrix

⎛

⎝
aw,w aw,x aw,y

aw,x ax,x ax,y

aw,y ax,y ay,y

⎞

⎠

is singular. Let p = (e : a : b) be a nonsingular point of C; show that 	pC =
V
P2 (eDwf + aDxf + bDyf ).

5.59 Let C be an irreducible conic curve in P
2. (a) Show that no line is a tangent

to C at more than one point. (b) Show that no three distinct points on C are collinear.

5.60 In this exercise we show that up to changes of coordinates there is only one
irreducible conic curve in P

2. (Compare with Exercise 4.79.) Let C be an irreducible
conic curve in P

2(C). (By Exercise 5.57 C is nonsingular; by Exercise 5.59, distinct
points on C have distinct tangents.) (a) Show that we can change coordinates so that
the vertical point at infinity (0 : 0 : 1) lies on C and the tangent to C at that point is
the line at infinity; and further the origin lies on C and the tangent at that point is
the x-axis. (b) Show that after such a change of coordinates there is some a ∈ C

∗
such that C = VP2(x2 + awy). (c) Show that after another change of coordinates,
C is the projective parabola VP2(x2 − wy). (d) What happens in P

2(R)? In P
2(Q)?

5.61 Let C be an irreducible conic curve in P
2, and let p ∈ P

2. Show that if p /∈ C

then there are exactly two lines which pass through p and are tangent to C at some
point of C. (Hint: change coordinates to w2 + x2 + y2 = 0 and use Exercise 5.58.)

Singular Cubic Curves
5.62 Let C be a cubic curve in P

2. (a) Show that if C is irreducible then C has
at most one singular point (Consider the line passing through two singular points).
(b) How many singular points does C have if it is the sum of a line and an irreducible
conic? How many if it is the sum of three lines?

5.63 In this exercise we show that up to changes of coordinates there are two
singular irreducible cubic curves, the nodal and the cuspidal. Let C be an irreducible
singular cubic curve in P

2. By Exercise 5.62, C has a unique singular point p.
(a) Show that p is a double point. (b) Show that if p is ordinary then C can be
mapped by a change of coordinates to the projective closure of x3 + y3 = 3xy, (the
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folium of Descartes, Fig. 3.4). Hence all projective nodal cubic curves (including
the projective closure of y2 = x3 + x2) are the same up to changes of coordinates.
(Hint: first determine the singular point and its tangents, so that the cubic is given
by an equation ax3 + by3 + cx2y + dy2x + ewxy. Note that a, b, e are all nonzero
since C is irreducible. Then ensure that a = b = 1 and e = −1. Finally change the
variable w to w+ cx+dy.) (c) Show that if p is not ordinary then C can be mapped
to the projective closure of y2 = x3 by a change of coordinates. Hence all projective
cuspidal cubic curves are the same up to changes of coordinates. (d) Explain why a
cuspidal cubic curve cannot be mapped by a change of coordinates to a nodal cubic
curve.

5.64 Let C be the projective curve x3 + y3 +w3 = 3xyw. Find the singular points
of C; find the irreducible components of C.



6Bézout’s Theorem

Bézout’s theorem states that two curves with no common component intersect each
other in the maximal number of points, generalising the case of the intersection of
a curve and a line (Theorem 5.27). The main challenge is to give a definition of the
multiplicity of intersection between two curves.

As with lines, the intuition is that two curves C and D intersect k times at a
point p if when we move the curves just a little bit, we will get k many points
of intersection. When we work over the complex field C, the topological structure
does allow us to perturb curves; Proposition 13.47 and Exercise 13.76 are perhaps
the closest we get to the original idea, at least for lines. Over general fields, the
notion of proximity does not have any meaning, and so we need another approach.

The definition for the intersection with lines (Definition 5.25) uses parameter-
isations of lines. However, most curves do not admit rational parameterisations.
One possible approach is to use more general parameterisations, using analytic,
rather than rational functions. Using these more complicated parameterisations, we
can mimic the definition for lines. Some work goes into showing the existence of
parameterisations. We take this up in Chap. 15.

In this chapter we will use the resultant. Very roughly, the idea is as follows.
Let C = VA2(f ) and D = VA2(g) be curves, and let p ∈ C ∩ D. By a change
of coordinates, we arrange that p is the unique point of intersection of C and D

on some vertical line x = a. The polynomials f (a, y) and g(a, y) have a common
factor, namely y−b where p = (a, b); so the resultant resy(f, g) (with respect to y)
evaluates to 0 at x = a. The multiplicity of intersection is then the multiplicity of
zero of this resultant at x = a, i.e., the number of times (x−a) divides the resultant.

This is a relatively simple definition, but there are some drawbacks. The main
technical drawback is that it is difficult to prove that this definition gives a result
which is invariant under changes of coordinates. We will need to work quite
hard to show this. In fact, what we will do, is give a more elaborate definition
(Definition 6.18) which makes both Bézout’s theorem and geometric invariance
straightforward, and then show that it is equivalent to the original definition
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(Proposition 6.25); and furthermore, both definitions agree with the definition that
we gave in the previous chapter when one of the curves is a line (Proposition 6.27).

The definitions using the resultant are perhaps not very intuitive. Another reason
to believe that the definition we give is a reasonable one, is to show that it is
categorical (Theorem 6.39). Namely: we show that our definition satisfies a list
of properties, which are to be expected of any reasonable definition of intersection
multiplicity; and then show that there can be at most one assignment of numbers to
intersections that satisfies all these properties.

Throughout, we assume that our base field K is algebraically closed, and that the
characteristic of K is either 0 or greater than the degrees of the polynomials we are
dealing with, so that formal derivatives of nonconstant polynomials do not vanish.

6.1 A First Look at the Intersection of Curves

Let f, g ∈ K[w, x, y] be homogeneous. Let (e : a) ∈ P
1. By Theorem 3.12,

resy (f (e, a, y), g(e, a, y)) = 0 if and only if f (e, a, y) and g(e, a, y) have a
common root, if and only if the projective curves f = 0 and g = 0 intersect at
a point which lies on the vertical line ex = aw, other than the vertical point at
infinity (0 : 0 : 1). This is because the line contains the vertical point at infinity and
the points (e : a : b) for b ∈ K.

If degy f = deg f (e, a, y) and degy g = deg g(e, a, y) then

resy (f (e, a, y), g(e, a, y)) = (
resy(f, g)

)
(e, a)

(Lemma 3.15). This certainly happens if the monomial ydeg f appears in f and in g.
We make use of the following:

Remark 6.1 Let f ∈ K[w, x, y] be homogeneous of degree d . If the vertical point
at infinity does not lie on the curve f = 0 then the monomial yd appears in f :
all other monomials contain either w or x and so evaluate to 0 at that point. Hence
degy f = d , and further, for all (e, a) ∈ K

2, deg f (e, a, y) = d . «

Let r = resy(f, g). If the projective curves defined by f and g have no common
component then r is nonzero. We conclude that if neither curve contains the vertical
point at infinity then the two curves intersect on the line ex = aw if and only if
r(e, a) = 0 (of course the curves do not intersect at the vertical point at infinity).

We will shortly see that r is homogeneous. Note that the map taking (e : a) to the
line ex = aw is a bijection between P

2 and the family of vertical lines (it is the map
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(e : a) �→ ι(−a : e : 0), see Sect. 4.6). Thus, the vertical lines on which the curves
intersect correspond to the roots of the polynomial r , i.e. to the points in VP1(r).
The multiplicity of a root of r will correspond to the multiplicity of intersection of
the curves on the corresponding vertical line.

6.1.1 The Resultant of Homogeneous Polynomials Is
Homogeneous

Let R be a unique factorisation domain, and let (x, y) be a tuple of variables.

Proposition 6.2 Let f, g ∈ R[x, y] be nonconstant and x, y-homogeneous of
degrees d and e respectively. Then resd,e

y (f, g) is either 0 or x-homogeneous of
degree de.

Here recall the definition of resd,e
y (f, g) (Definition 3.11), which is defined for

positive d � degy f and e � degy g, not necessarily only d = degy f and
e = degy g. In this case we have d = degx,y f and not degy f , and similarly
e = degx,y g. In fact we may even have degy f = 0 or degy g = 0, but d, e > 0

so this resultant is defined. The conclusion is that degx resd,e
y (f, g) = de (or the

resultant is 0).

Proof Contrary to previous indexation, write f = fd + fd−1y + · · · f0y
d and

g = ge + ge−1y + · · · g0y
e, with fi, gj ∈ R[x]. The point is that because f is

x, y-homogeneous of degree d , for each k � d , fk is x-homogeneous of degree k,
and similarly for gl .

Let r = resd,e
y (f, g); so r ∈ R[x] is the determinant of the Sylvester matrix

M = Md,e
y (f, g) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

fd fd−1 · · · f0

fd fd−1 · · · f0

fd fd−1 · · · f0
. . .

. . .

fd fd−1 · · · f0

ge ge−1 · · · g0
. . .

. . .

ge ge−1 · · · g0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Let t be a new variable. When we substitute tx = (tx1, . . . , txn) for x in every
polynomial in the Sylvester matrix M , by Proposition 4.2 we get

M(tx) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

tdfd td−1fd−1 · · · f0

tdfd td−1fd−1 · · · f0

tdfd td−1fd−1 · · · f0

. . .
. . .

tdfd td−1fd−1 · · · f0

tege te−1ge−1 · · · g0

. . .
. . .

tege te−1ge−1 · · · g0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and the point is that r(tx) = det (M(tx)).
Let N be the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

td+e−1fd td+e−2fd−1 · · · te−1f0

td+e−2fd td+e−3fd−1 · · · te−2f0

td+e−3fd td+e−4fd−1 · · · te−3f0

. . .
. . .

tdfd td−1fd−1 · · · f0

td+e−1ge td+e−2ge−1 · · · td−1g0

. . .
. . .

tege te−1ge−1 · · · g0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

That is, for k = 1, . . . , d + e, the kth column of N is obtained from the kth
column of M by multiplying the column by td+e−k . Multiplying a column by a
constant causes the determinant to be multiplied by the same constant. Hence

det N = tb · det M = tb · r,
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where

b = (d + e − 1)+ (d + e − 2)+ · · · + 0 =
(

d + e

2

)

.

On the other hand, we observe that for k = 1, . . . , e, the kth row of N is
obtained from the kth row of M(tx) by multiplying the row by te−k , and that for
k = 1, . . . , d , the (e + k)th row of N is obtained from the (e + k)th row of M(tx)

by multiplying by td−k . This shows that

det N = ta · det(M(tx)) = ta · r(tx),

where

a = (e − 1)+ (e − 2)+ · · · + 0+ (d − 1)+ (d − 2)+ · · · + 0 =
(

d

2

)

+
(

e

2

)

.

Putting it all together, we get tbr = tar(tx), so r(tx) = tb−a · r . We calculate:

b−a =
(

d + e

2

)

−
(

d

2

)

−
(

e

2

)

= (d + e)(d + e − 1)

2
−d(d − 1)

2
− e(e− 1)

2
= de.

The proposition now follows from Proposition 4.2. ��

Exercise 6.3 Let f, g ∈ R[x, y] be x, y-homogeneous and nonconstant, and let
d � degy f , e � degy f be positive. Show that resd,e

y (f, g) is x-homogeneous,
although its degree is not necessarily de. Note that in contrast with Proposition 6.2
here we are not assuming that degx,y f = d and that degx,y g = e, only that they are
homogeneous of some nonzero degrees; degx,y f may be greater than d or smaller
than d , and similarly for g and e. «

6.1.2 AWeak Version of Bézout’s Theorem

We return to our investigation of the intersection of curves f = 0 and g = 0 in P
2

with no common component, using the resultant r = resy(f, g). We assume that
the vertical point at infinity lies on neither curve. So deg f = degy f and deg g =
degy g and so Proposition 6.2 says that r is w, x-homogeneous of degree deg f ·
deg g (it is nonzero since the curves have no common component, so certainly have
no common component which mentions y). We observed that (e : a) is a root of r if
and only if the vertical line ex = aw contains a point of the intersection of the two
curves. We get a string of corollaries.

Theorem 6.4 Any two curves in P
2 intersect.
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Proof Let the curves be defined by polynomials f and g. We may assume that
they have no common component (or we’re done). The sum of the curves (defined
by fg) is a curve and so avoids some point p (Proposition 4.7). After a change of
coordinates p is the vertical point at infinity.

Let r = resy(f, g). Since r is nonconstant it has a root (e : a); so the curves
intersect on the line ex = aw. ��

Here is an application:

Theorem 6.5 Every nonsingular curve in P2 is irreducible.

Proof Suppose that a curve C is reducible; let D and E be two irreducible
components of C (possibly equal). Take p ∈ D ∩ E (using Theorem 6.4). Then p

is a singular point of C (see Corollary 5.23). ��

Two curves without a common component intersect in only finitely many points.

Proposition 6.6 Let C and D be curves in P
2 with no common component. Then

C ∩D contains at most deg C · deg D many distinct points.

(Note that if both C and D contain repeated components, then C ∩ D, which is
the multiset intersection, can contain some points several times.)

Proof Suppose, for a contradiction, that there are more than deg C · deg D many
distinct points in the intersection of C and D. Let M be a set of deg C · deg D + 1
many points in C ∩D. We claim that after a change of coordinates we can assume
that the vertical point at infinity lies on neither C nor D, and that no two points in M

lie on the same vertical line. It is enough to take a point p which does not lie on C,
on D or on any line which passes through two points in M , and move that point to
the vertical point at infinity. There is such a point because the curve consisting of
the sum of C, D and the finitely many lines which pass through two points of M is
not all of P2.

Having changed coordinates, choose f defining C and g defining D, and let
r = resy(f, g). Then each point of M corresponds to a distinct root of r (note that
every point other than the vertical point at infinity lies on a unique vertical line).
This contradicts deg r = deg f · deg g. ��

Remark 6.7 Let C and D be curves in P
2 with no common component. Then

Proposition 6.6, together with its proof, show that we can change coordinates so
that the vertical point at infinity lies on neither C nor D, and each vertical line
meets C ∩D in at most one point. «
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Exercise 6.8 Let C be a curve with no repeated components; let d = deg C.
Improving on Corollary 5.41, show that C has at most d(d − 1) many singular
points.1 «

A Naïve Definition of Intersection Multiplicity
Again let f = 0 and g = 0 be two curves with no common component, assume that
the vertical point at infinity lies on neither, and let r = resy(f, g). We will define
intersection multiplicities so that in this situation, the multiplicity of a root (e : a)

of r is the sum of the multiplicities of intersection of the curves on the points on the
vertical line ex = aw. In particular, if each vertical line contains at most one point
of intersection, then the multiplicity of intersection at a point equals the multiplicity
of the corresponding root of r . The fact that the degree of r is precisely deg f ·deg g

gives Bézout’s theorem: the number of intersections, with multiplicities counted, is
the maximal number possible given by Proposition 6.6.

We could take this as a definition: the multiplicity of intersection would be
defined to be the multiplicity of the corresponding root of r . Remark 6.7 shows
that we can always put curves in a position which allows such a definition. However
there are many ways in which we can change coordinates to arrive at an acceptable
position; it is not easy to show that the result does not depend on the choice of
coordinate change.

We take a detour: we give another, more complicated definition of multiplicity
of intersection. The advantage of this definition is that it can be made in every
situation (no special conditions on the curves), and we can prove it is invariant under
coordinate changes. Once this is done, we can show that when curves are positioned
correctly, the new definition and the intended one agree.

6.2 The Homogeneous Resultant

We devise an analogue of the resultant that tells when homogeneous polynomials in
two variables have a nonconstant common factor.

Let R be a unique factorisation domain, and let f and g be nonconstant x, y-
homogeneous polynomials in R[x, y]; so d = degx,y f and e = degx,y g are both
positive. We write

f = a0x
d + a1x

d−1y + · · · + ad−1xyd−1 + adyd

and

g = b0x
e + b1x

e−1y + · · · + be−1xye−1 + bey
e,

1 For a better bound see Exercise 6.58.
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and let

Mx,y(f, g) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 · · · ad

a0 a1 · · · ad

a0 a1 · · · ad

. . .
. . .

a0 a1 · · · ad

b0 b1 · · · be

. . .
. . .

b0 b1 · · · be

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and resx,y(f, g) = det Mx,y(f, g). This is called the homogeneous resultant of f

and g. Immediately we get:

Lemma 6.9 resx,y(f, g) = resd,e
y (f 
x, g
x ). ��

It is perfectly possible that both degy f and degx f are smaller than d (we
allow a0 = ad = 0; for example let f = xy). For the homogeneous resultant
we use degx,y f . In some ways this results in a simpler theory. For example, if
z = (z1, . . . , zm) and f ∈ R[z, x, y] is x, y-homogeneous of degree d then for all
a ∈ Rm, f (a, x, y) is either 0 or x, y-homogeneous of degree d . Thus:

Lemma 6.10 If f, g ∈ R[z, x, y] are x, y-homogeneous, a ∈ Rm and f (a, x, y)

and g(a, x, y) are nonzero then resx,y(f (a, x, y), g(a, x, y)) = (
resx,y(f, g)

)
(a).

��

In contrast with substitutions into the usual resultant (Lemma 3.15), we do not
need to worry about leading coefficients vanishing and the degree dropping.

A Symmetry Between the Variables
Starting with the homogeneous Sylvester matrix Mx,y(f, g), exchange the first
column with the last, the second with the second last, etc. We obtain the mirror
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image

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ad ad−1 · · · a0

. .
.

. .
.

ad ad−1 · · · a0

ad ad−1 · · · a0

ad ad−1 · · · a0

be be−1 · · · b0

. .
.

. .
.

be be−1 · · · b0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now a permutation of the rows gives us

My,x(f, g) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ad ad−1 · · · a0

ad ad−1 · · · a0

ad ad−1 · · · a0
. . .

. . .

ad ad−1 · · · a0

be be−1 · · · b0
. . .

. . .

be be−1 · · · b0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Thus resx,y(f, g) = ± resy,x(f, g). Applying Lemma 6.9 we get:

Lemma 6.11 resx,y(f, g) = ± resd,e
x (f 
y, g
y). ��

6.2.1 Main Property of the Homogeneous Resultant

The analogue of Theorem 3.12 is the following.

Theorem 6.12 Let f and g be nonconstant x, y-homogeneous polynomials
in R[x, y]. Then f and g have a nonconstant common factor if and only if
resx,y(f, g) = 0.

Proof Let d = degx,y f and e = degx,y g; as above, write f = ∑
i aixd−iyi and

g =∑
i bixe−iyi .

There are four cases, depending on the values of ad and of be.
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1: ad �= 0 and be �= 0 In this case, we see that degy f 
x = d and degy g
x = e and
so resx,y(f, g) = resy(f


x, g
x ). Thus resx,y(f, g) = 0 if and only if f 
x and g
x

have a nonconstant common factor in R[y]. However, the assumption that ad �= 0
and be �= 0 shows that x divides neither f nor g, and so f = (f 
x)�x and similarly
for g (see Proposition 4.20). The nonconstant common factors of f and g are the
polynomials h�x , where h is a nonconstant common factor of f 
x and g
x (again see
Proposition 4.20). In particular, f and g have a nonconstant common factor if and
only if f 
x and g
x have a nonconstant common factor.

2: ad = 0 and be = 0 In this case, we see that resx,y(f, g) = 0, because the
last column of Mx,y(f, g) is a column of zeros. And we see that the nonconstant
polynomial x is a common factor of f and g.

3: ad = 0 and be �= 0 Let k be the number of times x divides f . So

f = xk ·
(
a0x

d−k + a1x
d−k−1y + · · · + ad−ky

d−k
)

,

and ad−k �= 0. Let h = f/xk , so x does not divide h. The degree of h is d−k. Since

Mx,y(f, g) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 · · · ad−k 0 · · · 0
a0 a1 · · · ad−k 0 · · · 0

. . .
. . .

. . .
. . .

a0 a1 · · · ad−k 0 · · · 0
b0 b1 b2 · · · be

b0 b1 b2 · · · be

b0 b1 b2 · · · be

b0 b1 b2 · · · be

. . .
. . .

b0 b1 b2 · · · be

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Repeatedly developing the determinant along the last columns shows that

resx,y(f, g) = ±(be)
k · resx,y(h, g).

Now with h and g we are back in case (1)—because x divides neither h nor
g—so we conclude that resx,y(f, g) = 0 if and only if h and g have a nonconstant
common factor. The fact that f = xk · h and that x does not divide g shows that h

and g have a nonconstant common factor if and only if f and g have a nonconstant
common factor (this of course uses unique factorisation in R[x, y]).
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4: ad �= 0 and be = 0 This reduces to case (3), because Mx,y(g, f ) is
obtained from Mx,y(f, g) by a sequence of row-exchanges, and so resx,y(g, f ) =
± resx,y(f, g). ��

We obtain a homogeneous analogue of Proposition 3.16.

Proposition 6.13 Let f, g ∈ R[z, x, y] be x, y-homogeneous and let a ∈ Rn. The
following are equivalent:

• Either f (a, x, y) = 0 or g(a, x, y) = 0; or f (a, x, y) and g(a, x, y) have a
nonconstant common factor in R[x, y];

• (resx,y(f, g))(a) = 0.

Proof If f (a, x, y) = 0 then (Mx,y(f, g))(a) contains a zero row and so
(resx,y(f, g))(a) = 0. If f (a, x, y) and g(a, x, y) are both nonzero then the
equivalence follows from Lemma 6.10 and Theorem 6.12. ��

6.3 Multiplicity of Intersection and Bézout’s Theorem

In this section we give a definition of intersection multiplicities. It generalises the
idea of examining the intersection of curves C and D by examining the lines which
intersect C ∩D. Indeed we examine all parameterisations of lines.

6.3.1 Coding Lines in P
2 × P

2

A pair of distinct points (q, r) ∈ P
2×P

2 determines the line q r . If L is a collection
of lines then the corresponding subset of P2 × P

2 is {(q, r) : q �= r & q r ∈ L}.
The pairs in the diagonal

� =
{
(p, p) : p ∈ P

2
}
⊂ P

2 × P
2

do not determine lines. We have to add them though to get a hypersurface. For a
point p ∈ P

2, the linear family of lines which pass through p is coded by

Lp = � ∪ {(q, r) : q �= r & p ∈ q r} .

Since two points are always collinear, another description of Lp is: the collection
of pairs (q, r) such that {p, q, r} are collinear. If p �= s then it is easy to find a line
which passes through p and not through s, and so Lp �= Ls .
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Lemma 6.14 Lp is an irreducible hypersurface of P2 × P
2 of bidegree (1, 1).

Proof Fix a presentation p of p. For presentations q and r of points q and r ,
{p, q, r} are collinear if and only if the dimension of the subspace 〈p, q, r〉 is at

most 2 if and only if the matrix
(

p
q
r

)
is singular if and only if the determinant of

that matrix is 0. Fix tuples of variables u = (u0, u1, u2) and v = (v0, v1, v2) used
for defining hypersurfaces in P

2 × P
2 (see Sect. 4.7). Let

f = det

⎛

⎝
p

u

v

⎞

⎠

Examining the closed form for the determinant (see page 46) we see that f is the
sum of products±pkuivj and so f is a u, v-bihomogeneous polynomial in K[u, v]
of bidegree (1,1); and we have verified that Lp =

⌊
VP2×P2(f )

⌋
. It remains to show

that f is irreducible.
By considering possible degrees, though, we see that if f were reducible then it

would be the product of two bihomogeneous polynomials of bidegrees (1, 0) and
(0, 1). But then Lp would be the union of 	 × P

2 and P
2 × 	′ for lines 	 and 	′.

However Lp does not contain a subset of the form 	×P
2: let 	 be a line. Pick q ∈ 	

distinct from p and r /∈ p q. Then (q, r) ∈ (	× P
2) \ Lp . ��

6.3.2 The Resultant of the General Intersection Polynomials

Let f ∈ K[w, x, y] be homogeneous of degree d . Recall the general intersection
polynomial (Sect. 5.4, page 123)

fu,v = f (su+ tv) ∈ K[u, v, s, t].

It is the sum of monomials of the form

sk · uk · td−k · vd−k,

for some k � d , where of course by uk we actually mean uk where k0 + k1 +
k2 = k, and similarly for vd−k. This shows that fu,v is: s, t-homogeneous; s, v-
homogeneous; t,u-homogeneous; and u, v-homogeneous, all of degree d .

For the rest of the section, fix f, g ∈ K[w, x, y] nonconstant and homogeneous
of degrees d and e. Since fu,v and gu,v are both s, t-homogeneous we can take their
homogeneous resultant

Rf,g = ress,t

(
fu,v, gu,v

)
.
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The aim of this subsection is to show that Rf,g , which is an element of K[u, v], is
u, v-bihomogeneous of bidegree (de, de); and that the irreducible components of
VP2×P2

(
Rf,g

)
are various Lp for p ∈ VP2(f ) ∩ VP2(g). We will then define the

multiplicity of intersection at a point p to be the number of copies of Lp in this
hypersurface. Our presentation follows [vdW45],[SK59, Ch.II].

Bihomogeneity of Rf,g

Lemma 6.15 Either Rf,g = 0 or Rf,g is u, v-bihomogeneous of bidegree (de, de).

Proof Suppose that Rf,g �= 0. We see that fu,v

s is t,u-homogeneous of

degree d , and similarly gu,v

s is t,u-homogeneous of degree e. Because Rf,g =

resd,e
t

(
fu,v


s , gu,v

s
)

(Lemma 6.9), Rf,g is u-homogeneous of degree de (Proposi-
tion 6.2).

The intersection polynomials are s, v-homogeneous; a similar argument using
dehomogenisation with respect to t and using Lemma 6.11, shows that Rf,g is also
v-homogeneous of degree de. ��

The Structure of the Hypersurface Defined by Rf,g

Let q and r be presentations of points q and r in P
2. Let fq,r = fu,v(q, r, s, t) =

f (sq + tr); when q �= r , this is the intersection polynomial fψ , where ψ =
ψq,r(s, t) = sq + tr is the presentation of the parameterisation ψp,q of p q

(Example 4.17). In that case, fq,r = 0 if and only if the line q r is a component
of V

P2(f ). In any case (q = r or not), if both fq,r and gq,r are nonzero, then as they
are homogeneous polynomials in two variables, they have a nonconstant common
component if and only if they have a common root in P

1.

Lemma 6.16

⌊
VP2×P2(Rf,g)

⌋ =
⋃{

Lp : p ∈ VP2(f ) ∩ VP2(g)
}
.

Proof We show: (1) Rf,g(q, q) = 0 for all q; and (2) if q �= r then Rf,g(q, r) = 0
if and only if the line q r intersects VP2(f ) ∩ VP2(g). We use Proposition 6.13.

For (1), we note that s + t is a nonconstant factor of both fq,q and gq,q . For (2)
there are two cases. If (say) fq,r = 0 then q r is a component of the curve f = 0;
the curve g = 0 intersects that line and so the line intersects VP2(f ) ∩ VP2(g); and
we know that Rf,g(q, r) = 0. In the other case suppose that both fq,r and gq,r are
nonzero. We know that p ∈ q r is on both curves f = 0 and g = 0 if and only if
ψ−1

q,r(p) is a root of both fq,r and gq,r . Thus the existence of a common root, which
is equivalent to Rf,g(q, r) = 0, is also equivalent to the condition q r ∩ VP2(f ) ∩
VP2(g) �= 0.

It follows that if p ∈ VP2(f ) ∩ VP2(g) then Lp ⊆ VP2×P2(Rf,g). On the other
hand let (q, r) ∈ VP2×P2(Rf,g); we show that (q, r) ∈ Lp for some p ∈ VP2(f ) ∩
VP2(g). If q �= r then of course (q, r) ∈ Lp for any p ∈ q r ∩ VP2(f ) ∩ VP2(g). If
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q = r then (q, r) ∈ Lp for all p; the union on the right hand side is nonempty since
VP2(f ) ∩ VP2(g) is nonempty (Theorem 6.4).2 ��

If f and g have a common factor then so do fu,v and gu,v , in which case
Rf,g = 0. If f and g do not have a common factor then VP2(f ) ∩ VP2(g) is finite
(Proposition 6.6). For any finite set of points in P

2 we can find a line which does not
pass through any of these points (see Exercise 4.43); it follows that VP2×P2(Rf,g)

does not contain every pair in P
2 × P

2, whence Rf,g �= 0. In this case we see that
the irreducible components of VP2×P2(Rf,g) are precisely the hypersurfaces Lp for
p ∈ VP2(f ) ∩ VP2(g); this follows from Proposition 4.51. To summarise:

Proposition 6.17 Rf,g = 0 if and only if f and g have a common component. If
Rf,g �= 0 then the irreducible components of V

P2×P2(Rf,g) areLp for p ∈ V
P2(f )∩

V
P2(g). ��

6.3.3 Intersection Multiplicity and Bézout’s Theorem

Definition 6.18 Let C and D be curves in P
2 with no common component. Let

f define C and g define D. For p ∈ P
2 let ip(C,D) be the number of times the

hypersurface Lp appears in VP2×P2(Rf,g).

For the definition to be completely rigorous we need to show that it does not
depend on the choice of polynomials f and g defining C and D. But suppose
that f ′ = λf and g′ = μg for nonzero λ,μ ∈ K. Then f ′u,v = λfu,v and
g′u,v = μgu,v and this shows that Ms,t(f

′
u,v, g

′
u,v) is obtained from Ms,t (fu,v, gu,v)

by multiplying the first e rows by λ and the last d rows by μ. So Rf ′,g′ = λeμdRf,g

(as usual d = deg f and e = deg g), whence V
P2×P2(Rf ′,g′) = V

P2×P2(Rf,g).
Proposition 6.17 implies:

Proposition 6.19 Let C and D be curves in P
2 with no common component, and

let p ∈ P
2. Then ip(C,D) > 0 if and only if p ∈ C ∩D. ��

The fact that the bidegree of each Lp is (1,1) and that the bidegree of Rf,g

is (de, de) shows that Rf,g has precisely de many irreducible components. Since
Lp �= Lq if p �= q no component is counted twice. This gives:

2 Alternatively, since the diagonal � is a proper subset of an irreducible hypersurface it is not a
hypersurface of P2×P

2; hence VP2×P2(Rf,g) must be a proper superset of the diagonal. This gives
another proof that the curves f = 0 and g = 0 intersect.
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Bézout’s Theorem If C and D are curves in P2 with no common component then

∑

p∈P2

ip(C,D) = deg C · deg D. ��

We again emphasise that the theorem holds only when K is algebraically closed
and when the curves are projective rather than affine. Bézout’s theorem shows that
the bound given by Proposition 6.6 is always achieved if intersections are “counted
properly”.

The Intersection Multiset
Definition 6.20 Let C and D be curves in P

2 with no common component. We let
C ·D be the multiset of points defined by mp(C ·D) = ip(C,D). That is, C ·D is
the multiset with underlying set C ∩D, in which the multiplicity of each p ∈ C∩D

is ip(C,D).

So Bézout’s theorem states that |C ·D| = deg C · deg D.

6.3.4 Geometric Invariance

We show that multiplicity of intersection is invariant under changes of coordinates.
Let C and D be curves in P

2 which have no common component. If α is a change
of coordinates of P

2, then α[C] and α[D] are curves which have no common
component. We prove:

Proposition 6.21 Let C and D be curves in P2 which have no common component.
Let α be a change of coordinates of P2. Then for all p,

ip(C,D) = iα(p) (α[C], α[D]) .

Fix a change of coordinates α of P2, and let α be a linear presentation of α. As
in Sect. 5.4 we use the extension of α to changes of coordinates of both P

2×P
2 and

P
2×P

2×P
1. The definition of intersection multiplicity shows that Proposition 6.21

follows from the following two lemmas:

Lemma 6.22 For all p ∈ P
2, (α × α)[Lp] = Lα(p).

Lemma 6.23 Let f, g ∈ K[w, x, y] be nonconstant and homogeneous. Then (α ×
α)∗(Rf,g) = Rα∗(f ),α∗(g).

Proof of Lemma 6.22 Since α maps lines to lines, {q, r, p} are collinear if and only
if {α(q), α(r), α(p)} are collinear. ��
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For the proof of Lemma 6.23 we use the notation from Sect. 5.4: for g ∈
K[u, v, s, t] let ĝ = (α × α × idK2)∗(g). Note that if g ∈ K[u, v] then ĝ =
(α × α)∗(g).

Proof of Lemma 6.23 Lemma 5.30 says that (α∗(f ))u,v = ˆfu,v for all f ∈
K[w, x, y]. So it remains to show that for s, t-homogeneous h, k ∈ K[u, v, s, t],

ˆress,t (h, k) = ress,t (ĥ, k̂) (6.1)

Since g �→ ĝ is a ring homomorphism and ŝ = s, t̂ = t , if h = ∑
his

d−i t i then
ĥ = ∑

ĥi s
d−i t i . Thus Ms,t (ĥ, k̂) is obtained from Ms,t (h, k) by applying the map

g �→ ĝ to every entry. The determinant is a polynomial in the entries, so the fact that
g �→ ĝ is a ring homomorphism gives Eq. (6.1). ��

6.4 Coincidence with Earlier Definitions

We show that the definition we gave for multiplicity of intersection agrees with the
attempted definition from Sect. 6.1. We also show that it agrees with the definition
we already gave for the intersection of a curve and a line (Definition 5.25).

6.4.1 Using the Family of Vertical Lines

Let R be a unique factorisation domain. Let f = f (y, z) ∈ R[y, z]. By f (z, y) we
of course mean the polynomial obtained by exchanging y and z: if f (y, z) = y2z

then f (z, y) = z2y.

Remark 6.24 Let f, g ∈ R[y, z] \ R[y], i.e. degz f, degz g > 0, so resz(f, g)

is defined. Exchanging variables, resy(f (z, y), g(z, y)) is defined. As expected,
renaming variables does not really matter:

resy (f (z, y), g(z, y)) = (resz(f (y, z), g(y, z))) (z).

For the entries of Mz(f (y, z), g(y, z)) are simply the entries of My(f (z, y), g(z, y))

but with y instead of z. «

Proposition 6.25 Let C and D be curves in P
2 with no common component.

Suppose that the vertical point at infinity (0 : 0 : 1) lies on neither C nor D. Let
f define C and g define D. Then for all (e : a) ∈ P

1, the multiplicity of the root
(e : a) of resy(f, g) is the sum of ip(C,D) for the points p on the line ex = aw.
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In particular, if there is a unique point p ∈ C ∩D on that line, then ip(C,D) equals
the multiplicity m(e : a)

(
VP1(resy(f, g))

)
.

Proof Let

r = Rf,g(w, x, y, 0, 0, 1);

that is, in Rf,g(u, v) we substitute a presentation of the vertical point at infinity
for v, and substitute the variables (w, x, y) for u. For a presentation p = (e, a, b)

of a point p = (e : a : b) let hp = det
(

p
u
v

)
be a polynomial which defines the

hypersurface Lp (see the proof of Lemma 6.14). When p �= (0 : 0 : 1) (i.e. when
(e, a) �= (0, 0)),

hp(w, x, y, 0, 0, 1) = det

⎛

⎝
e a b

w x y

0 0 1

⎞

⎠ = ex − aw

defines the point (e : a) in P
1. Since Rf,g is the product of h

ip(C,D)
p for p ∈ C ∩D,

r is the product of the resulting ex − aw and we conclude that the multiplicity of
(e : a) in VP1(r) is the sum of ip(C,D) for p ∈ C ∩ D of the form (e : a : b) for
some b ∈ K; since the vertical point at infinity is not in C ∩ D, these are precisely
the points in C ∩D on the line ex = aw. The proposition is proved once we show:

r = resy(f, g). (6.2)

Let d = deg f and e = deg g. The polynomial

fu,v(w, x, y, 0, 0, 1) = f (sw, sx, sy + t)

is nonzero (set s = 0, t = 1 to get f (0, 0, 1) which is nonzero, as the vertical point
at infinity does not lie on C). The same holds for g and so

r = ress,t (f (sw, sx, sy + t), g(sw, sx, sy + t))

(Lemma 6.10 for a = (w, x, y), applying the lemma over the domain R =
K[w, x, y]). Dehomogenising with respect to s, by Lemma 6.9,

r = resd,e
t (f (w, x, y + t), g(w, x, y + t)) .

The assumption on C and D implies that the monomial yd appears in f and ye

appears in g (Remark 6.1) and so in fact r = rest (f (w, x, y + t), g(w, x, y + t)).
Exchanging the variables y and t in f (w, x, y + t) does not change the polynomial
and so (Remark 6.24) r = resy (f (w, x, t + y), g(w, x, t + y)) (y) where on the
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right y is substituted for t . As observed above, r ∈ K[w, x] (it is the product of
polynomials ex − aw), that is, neither y nor t appear in r; this implies that

r = resy (f (w, x, t + y), g(w, x, t + y)) .

Now substitute t = 0 in both sides. On the left we get r . Using the fact that yd

appears in f and ye in g, on the right we get resy(f, g) (Lemma 3.15), which
establishes Eq. (6.2). ��

Remark 6.26 For calculations is it neater to pass to affine coordinates. Suppose
that C and D have no common component and that neither contains the vertical
point at infinity. Then resy(f, g)
 = resy(f 
, g
) (Lemma 3.15 and Remark 6.1).
Thus, if C ∩D intersects the affine line x = a at exactly one point p then ip(C,D)

is the multiplicity of the root a of the polynomial resy

(
f 
, g


)
. «

6.4.2 Intersecting Lines

Proposition 6.27 Let C be a curve in P
2, let 	 be a line and let p ∈ 	.

Definitions 5.25 and 6.18 for ip(C, 	) agree.

Proof If p /∈ C∩	 then we know that both definitions give 0. So we assume that p ∈
C ∩ 	. Both definitions are invariant under coordinate changes (Propositions 5.29
and 6.21) so we change coordinates so that: (1) p is the origin; (2) 	 is the x-axis;
and (3) the vertical point at infinity doesn’t lie on C (pick points q ∈ 	 \ {p} and
r /∈ 	 ∪ C and move p to the origin, q to the horizontal point at infinity and r to
the vertical point at infinity; we use the Three Point Lemma, since {p, q, r} are not
collinear).

Only p lies on both the y-axis and on 	 ∩ C. So by Proposition 6.25 and
Remark 6.26, ip(C, 	) according to Definition 6.18 is the multiplicity of the root
0 of the polynomial resy(f, y), where f is the dehomogenisation of a polynomial
defining C. On the other hand the multiplicity according to Definition 5.25 is the
multiplicity of the root 0 of the polynomial f (t, 0) (Example 5.33).

So we calculate. Write f = a0(x)+a1(x)y+· · ·+ad(x)yd . Then f (t, 0) = a0(t)

and

resy(f, y) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 a2 · · · ad

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= a0(x)

which gives the desired equality. ��
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6.5 Categoricity of Multiplicity of Intersection

In practice, most calculations of multiplicities of intersection don’t use either
definition given in this chapter. Rather, we identify properties of multiplicity
of intersection which help reduce complicated calculations to simpler ones. We
then show that these properties actually determine the multiplicity of intersection
function.

6.5.1 Symmetry

Proposition 6.28 Let C and D be curves with no common component. For all p ∈
P

2, ip(C,D) = ip(D,C).

Proof As observed above, Rf,g = ±Rg,f (by permuting the rows) and so the
proposition follows directly from Definition 6.18. ��

6.5.2 Products

We work toward showing:

Proposition 6.29 LetC,D andE be curves in P2; suppose that no component ofC
is a component of D or of E. Then C · (D+E) = C ·D+C ·E, i.e., for all p ∈ P

2,

ip(C,D + E) = ip(C,D) + ip(C,E).

As a result we see that multiplicity of intersection is determined by its values for
irreducible curves.

Let R be a unique factorisation domain and let y = (y1, . . . , yd), z =
(z1, . . . , ze). Let

f (x, y) = (x − y1)(x − y2) · · · (x − yd)

and

g(x, z) = (x − z1)(x − z2) · · · (x − ze).

Note that both f and g are x, y, z-homogeneous, and degx f = d , degx g = e.
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Lemma 6.30

resx(g, f ) =
∏

i�d,j�e

(yi − zj ).

Proof Let r = resx(g, f ). By Proposition 6.2, r is y, z-homogeneous, of degree de.
Let D = R[y2, y3, . . . , yd, z], so R[x, y, z] = D[x, y1]. We think of both f and

g as elements of D[x, y1], so we write f (x, y1) and g(x, y1) even though y1 doesn’t
appear in g.

Let j � e. We substitute zj for y1 in f and g:

f (x, zj ) = (x − zj )(x − y2)(x − y3) . . . (x − yd)

and g(x, zj ) = g. Both are polynomials in D[x].
Certainly degx f (x, zj ) = d so by Lemma 3.15

r(zj ) = resx(g(x, zj ), f (x, zj )) = resx(g, f (x, zj ))

(note that r(zj ) ∈ D). Now x − zj is nonconstant as an element of D[x], and is a
common factor of f (x, zj ) and g, so r(zj ) = 0 (Theorem 3.12). So y1−zj divides r

in D[y1] (Theorem 2.16).
We picked y1 for notational simplicity; the argument holds for any yi , and so

for all i � d and j � e we have (yi − zj ) � r . Since the polynomials yi − zj are
irreducible and pairwise non-associate, and the number of them is de = deg r , we
see that

r = α
∏

i≤d,j≤e

(yi − zj ),

for some α ∈ R. We show that α = 1.
f (x, 0) = xd , so degx f (x, 0) = d = degx f . Substituting 0 for y in g yields g,

so as above r(0, z) = resx(g, f (x, 0)). But this determinant we can calculate. Write
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g = a0 + a1x + · · · + aexe. We have a0 = (−1)ez1z2 · · · ze, and

resx(g, f (x, 0)) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 · · · ae

a0 a1 · · · ae

a0 a1 · · · ae

. . .
. . .

a0 a1 · · · ae

0 0 · · · 1
. . .

. . .

0 0 · · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= ad
0 .

So

r(0, z) = (−1)dezd
1zd

2 · · · zd
e .

On the other hand

∏

i�d,j�e

(0− zj ) = (−1)dezd
1zd

2 · · · zd
e ,

so α = 1. ��

By substituting elements of R into the polynomials above (Lemma 3.15), we get:

Corollary 6.31 Let R be an integral domain; let b1, . . . , bd , c1, . . . , ce ∈ R. Let
f =∏

i�d (x − bi) and g =∏
j�e(x − cj ) (in R[x]). Then

resx(g, f ) =
∏

i�d,j�e

(bi − cj ). ��

Let f, g ∈ R[x] have degrees d and e, and let α, β ∈ R be nonzero. The Sylvester
matrix Mx(αf, βg) is the result of multiplying the first e rows of Mx(f, g) by α, and
the last d rows by β, and so

resx(αf, βg) = αeβd resx(f, g). (6.3)

This gives:

Lemma 6.32 Let R be an integral domain; let f, g, h ∈ R[x], and assume that all
three are products of linear polynomials in R[x]. Then

resx(f, gh) = resx(f, g) · resx(f, h).
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Proof Write f = α
∏

i�d (x − ai); g = β
∏

j�e(x − bj ); h = γ
∏

l�m(x − cl).
Then by Corollary 6.31 and Eq. (6.3),

resx(f, g) = αeβd
∏

i�d,j�e

(bj − ai);

resx(f, h) = αmγ d
∏

i�d,l�m

(cl − ai); and

resx(f, gh) = αe+m(βγ )d
∏

i�d,j�e,l�m

(bj − ai)(cl − ai),

which gives the required equality. ��

Recall that we are assuming that K is algebraically closed; so Lemma 6.32
implies:

Corollary 6.33 For all nonconstant f, g, h ∈ K[x],

resx(f, gh) = resx(f, g) · resx(f, h).

Now we want to extend Corollary 6.33 by replacing K by other integral domains.
For the “proper” way to do it, see Exercise 6.45; this uses tools that we have not
developed. We will require one particular such domain, namely polynomial rings
K[y]:

Proposition 6.34 Let y = y1, . . . , yn. For all f, g, h ∈ K[y, x] \K[y],

resx(f, gh) = resx(f, g) · resx(f, h).

Proof Let d = degx f , e = degx g and m = degx h. Write f = ∑
fixi ,

g = ∑
gixi , h = ∑

hixi with fi, gi , hi ∈ K[y]. Let a ∈ K
n, and suppose that

fdgehm(a) �= 0; so degx f (a, x) = d , degx g(a, x) = e and degx h(a, x) = m. In
that case, resx(f (a, x), g(a, x)) = resx(f, g)(a), and similarly for the pairs (f, h)

and (f, gh). By Corollary 6.33,

resx(f (a, x), g(a, x)h(a, x)) = resx(f (a, x), g(a, x)) · resx(f (a, x), h(a, x)),

and so

resx(f, gh)(a) = resx(f, g)(a) · resx(f, h)(a).

This holds for all a ∈ K
n\VAn(fdgehm). Let k = resx(f, gh)−resx(f, g) resx(f, h).

So kfdgehm(a) = 0 for all a ∈ K
n. Hence kfdgehm = 0 (Proposition 2.18). Since

fdgehm �= 0 we get k = 0, which completes the proof. ��
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Proof of Proposition 6.29 We have (gh)u,v = gu,vhu,v . By Proposition 6.34 and
Lemma 6.9 we get

Rf,gh = Rf,gRf,h,

so the proposition follows from Definition 6.18. ��

6.5.3 InfiniteMultiplicities

The additivity of multiplicity of intersection allows us to extend the notion to cases
of curves with common components. Let C and D be curves. If p lies on a common
component of C and D then we let ip(C,D) = ∞. Otherwise, let K be the sum of
the common components of C and D; then C \ K and D \ K are curves with no
common component and we let ip(C,D) = ip(C \K,D \K).

We can then define C · D as above using the extended notion of multiplicities.
The multiset C ·D is the sum of (C \K) · (D \K) and infinitely many copies of K .3

It is still the case that �C ·D	 = �C ∩D	.

Exercise 6.35 Show that Proposition 6.29 holds under this extended definition of
multiplicities: for any curves C, D and E, C · (D + E) = C ·D + C · E. «

6.5.4 Shifts

Proposition 6.36 Let R be a unique factorisation domain. Let f, g, h ∈ R[x], and
let d � deg f , e � deg g, deg f + deg h. Then

resd,e
x (f, g) = resd,e

x (f, f h+ g).

Proof The first e rows of Md,e(f, g) equal the first e rows of Md,e(f, f h + g),
namely they consist of the matrix Md,e(f ) (see Sect. 3.2). The last d rows of
Md,e(f, f h+g) are the matrix Me,d(f h+g) which is the sum Me,d(f h)+Me,d(g).
We show that the rows of Me,d(f h) are linear combinations of the rows of Md,e(f ).
This will show that Md,e(f, f h+g) is obtained from Md,e(f, g) by row operations
that do not change the determinant, namely the addition of scalar multiples of some
rows to other rows.

3 This is one of the few occasions in which we allow elements to appear infinitely many times in a
multiset.
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Take for example u0, the first row of Me,d(f h). It is the row of coefficients
of f h of length d+e, and so equals the product b0 ·Md,e(f ), where b0 is the row of
coefficients of h of length e, and so is a linear combination of the rows of Md,e(f ).
The second row of Me,d(f h) is the row of coefficients of xf h of length d + e and
equals b1 · Md,e(f ) where b1 is the row of coefficients of xh of length e, and so
on. The fact that e � deg f + deg h shows that for all j < d , deg(xjh) < e and
so the row bj of coefficients of xjh of length e does not miss any coefficients, and

multiplied by Md,e(f ) gives the (j + 1)st row of Me,d(f h). ��

Applying Lemma 6.9 gives:

Lemma 6.37 If f, g, h ∈ R[x, y] are nonconstant, x, y-homogeneous, deg g =
deg h+ deg f , and f h+ g �= 0, then

resx,y(f, g) = resx,y(f, f h+ g).

In the following lemma and later we write ip(f, g) for ip
(
VP2(f ), VP2(g)

)
.

Proposition 6.38 Let f, g, h ∈ K[w, x, y] be homogeneous, with deg g = deg f +
deg h. Suppose that f h+ g �= 0. Then for all p ∈ P

2,

ip(f, g) = ip(f, f h+ g).

Note that if fh + g �= 0 then it is homogeneous of degree deg g. Also note that
if f and g have no common factor then fh+ g �= 0.

Proof For any point p, p ∈ VP2(f )∩VP2(g) if and only if p ∈ VP2(f )∩VP2(f h+
g): if f (p) = 0 then g(p) = (f h+ g)(p). Further, the common factors of f and g

are the common factors of f and f h+g: if k �f then k �g if and only if k � (fh+g).
Hence for all p, ip(f, g) = ∞ if and only if ip(f, f h+g) = ∞. Otherwise, p does
not belong to any common components. Dividing by the greatest common divisor k

of f and g we now compare ip(f/k, g/k) and ip(f/k, (f/k) · h + (g/k)). Thus
after renaming, we assume that f and g have no common factors.

Now we observe that (f h+g)u,v = fu,vhu,v+gu,v ; so by Lemma 6.37, Rf,g =
Rf,f h+g, whence the result follows from Definition 6.18. ��

6.5.5 Categoricity of Multiplicity of Intersection

Theorem 6.39 Multiplicity of intersection is the unique function (defined on pairs
of curves and points) satisfying:

1. For any change of coordinates α of P2, iα(p)(α[C], α[D]) = ip(C,D).
2. ip(C,D) = ip(D,C).
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3. ip(C,D) > 0 if and only if p ∈ C ∩D; ip(C,D) = ∞ if and only if p lies on a
common component of C and D.

4. If 	 and 	′ are lines and p is their point of intersection then ip(	, 	′) = 1.
5. ip(C,D + E) = ip(C,D) + ip(C,E).
6. If deg g = deg f + deg h and fh+ g �= 0 then ip(f, g) = ip(f, f h+ g).

Proof First we mention that the multiplicity of intersection ip(C,D) which we
defined satisfies all the properties listed. They have all been proved earlier: see
Propositions 6.21, 6.28, 6.19, 5.27 and 6.29 and Theorem 6.38. We need to observe
that the properties hold when we extend to pairs of curves with common components
(and infinite multiplicities); for example see Exercise 6.35.

Now we prove uniqueness. Let jp(C,D) be a function which satisfies all
the properties. Again we write jp(f, g) for jp(V

P2(f ), V
P2(g)). For each triple

(p, f, g) we show that jp(f, g) = ip(f, g). Properties (3) and (5) show that we
may assume that f and g have no common factor. The rest is done in three steps.

I. For any homogeneous f which is not divisible by x, for any p, jp(x, f ) =
ip(x, f ).

This we prove by induction on d = degx f . Suppose (I) has been shown for all f

such that degx f < d .
If d = 0 then f ∈ K[w, y] and so is a product of linear polynomials. For each

linear polynomial g not associate to x we have ip(g, x) = jp(g, x) (properties (3)
and (4)). So in this case the equality follows from (5).

Suppose that d > 0. Let h ∈ K[w, y] be the coefficient of xd in f . Note that h

is homogeneous. Then degx(f − xdh) < d . x does not divide f − xdh and so by
induction, jp(x, f − xdh) = ip(x, f − xdh). However by (6) we have jp(x, f ) =
jp(x, f − xdh) and ip(x, f ) = ip(x, f − xdh).

II. For any line 	 and any curve D which does not contain 	, for any p ∈ P
2,

jp(	,D) = ip(	,D).

Let α be a change of coordinates such that α[	] = VP2(x). Then VP2(x) is not a
component of α[C]; by (1) and (I),

jp(	,D) = jα(p)(α[	], α[D]) = iα(p)(α[	], α[D]) = ip(	,D).

III. For any homogeneous f and g with no common factor, for any p ∈ P
2,

jp(f, g) = ip(f, g).

This is proved by induction on degy f + degy g. If degy f = 0 then f is the
product of linear polynomials and then (II) and (5) yield the result; of course the
case degy g = 0 is the same.

Suppose, then, that d = degy f > 0 and e = degy g > 0. By using (2) and
(5) we may assume that both f and g are irreducible. We may assume that e � d;
otherwise we switch f and g, using property (2). Also, in light of (II), we may
assume that neither f nor g are linear.
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Write f = ∑
i�d fiyi and g = ∑

i�e giyi with fi, gj ∈ K[w, x]. Every fi

and gj is homogeneous and so a product of linear polynomials. Let

h = fdg − ye−dgef.

Then h is homogeneous, and is designed so that degy h < e. Also note that f

does not divide h (it does not divide g, and does not divide fd ). So h �= 0. By
induction, since f and h have no common factor, jp(f, h) = ip(f, h). By (6),
since h �= 0, jp(f, h) = jp(f, fdg), and the same holds for ip. By (5), jp(f, fdg) =
jp(f, fd ) + jp(f, g), and the same holds for ip. Since fd is a product of linear
polynomials, by (II) and (5), jp(f, fd) = ip(f, fd). Now jp(f, g) = ip(f, g)

follows by subtraction. ��

6.6 Affine Calculations

To actually calculate intersection multiplicities we usually use the properties of
multiplicity of intersection listed in Theorem 6.39 rather than apply the definitions.
That this is always possible is indicated by the proof of Theorem 6.39. Many
calculations, though, are simpler than the method described in the proof of that
proposition. In most cases, it is simpler to use affine coordinates.

For affine curves C and D in the plane A
2 and a point (a, b) ∈ A

2 we let
i(a,b)(C,D) equal i(1 : a : b)(C

�,D�) where C� and D� are the projective closures
of C and D. In terms of polynomials, for f, g ∈ K[x, y] we let i(a,b)(f, g) =
i(1 :a : b)(f

�, g�). Note that common factors of f and g correspond to common
factors of f � and g� (Proposition 4.20).

The properties from Theorem 6.39 translate to the affine version as follows.

Proposition 6.40 For nonzero f, g, h ∈ K[x, y] and p ∈ A
2,

1. ip(f, g) = ip(g, f ).
2. ip(f, g) > 0 if and only if f (p) = g(p) = 0; ip(f, g) = ∞ if and only if

h(p) = 0 for some common factor h of f and g.
3. If f and g are linear then ip(f, g) � 1.
4. ip(f, gh) = ip(f, g)+ ip(f, h).
5. If fh+ g �= 0 then ip(f, g) = ip(f, f h+ g).

Proof These are mostly quite immediate, using Proposition 4.20. For (4) use the
fact that (gh)� = g�h�. (5) needs an explanation. Let d = deg(f h) and e =
deg(g). Suppose that d > e. Then (Remark 4.21) (f h+ g)� = (f h)� + wd−eg�

and is certainly nonzero. Since p /∈ 	∞, ip(f �, g�) = ip(f �,wd−eg�) which
by Proposition 6.38 is ip(f �, f �h� + wd−eg�) which equals ip(f, f h + g). If
d < e then (f h+ g)� = we−d (f h)� + g� and then we simply use the equality
ip(f �, g�) = ip(f �, f � · we−dh� + g�). If d = e then we could get a cancellation;
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c = deg(f h + g) may be smaller than d; then wd−c(f h+ g)� = (f h)� + g�

(Remark 4.21 again). In this case ip(f �, (f h+ g)�) = ip(f �,wd−c(f h+ g)�) =
ip(f �, f �h� + g�) = ip(f �, g�) giving the desired equality. ��

Example 6.41 ([Bix06, p.9]) Let K = C. Let f = y − x2 and g = y3 + 2xy + x6;
we calculate io(f, g). We first eliminate y from the second polynomial. Using long
division with respect to y, we see that upon dividing g by f we get the remainder
2x3 + 2x6, that is, g = f h + (2x3 + 2x6) for some h ∈ K[x, y]. By property (5)
of Proposition 6.40, io(f, g) = io(f, 2x3 + 2x6). For the second step we pull out
an x3 factor and use property (4) to see that io(f, g) = io(f, x3) + io(f, 2 + 2x3).
Noting that o /∈ VA2(2+ 2x3), property (2) says that io(f, 2+ 2x3) = 0. Now using
property (4) twice we see that io(f, x3) = 3io(f, x). Finally, by property (5) again
(and (1)), io(f, x) = io(x, y − x2) = io(x, y) which is 1 by property (3).4 Hence
io(f, g) = 3. «

6.7 Multiplicities, Orders and Tangents

We prove two properties of intersection multiplicity which reflect the intuition that
a tangent is a good approximation of a curve.

Theorem 6.42 Let C and D be curves and let p ∈ C ∩D. Then

ip(C,D) � op(C) · op(D).

Equality holds if and only if no line is a tangent to both C and D at p.

Proof If p lies on a common component of C and D then strict inequality certainly
holds, and C and D share a tangent at p. So we assume that C and D have no
common component. After a change of coordinates we suppose that: (1) p is the
origin; (2) the vertical point at infinity doesn’t lie on C or on D; (3) no point on the
y-axis other than the origin lies on both C and D; (4) the y-axis is not a tangent to C

or to D at p; and (5) the x-axis is a tangent to C at p. [To do this, choose a point q

such that p q intersects C ∩D only at p and is not a tangent to C or to D at p, and
move q to the vertical point at infinity. Also choose a point r /∈ p q on a tangent
to C at p, and move r using the Three Point Lemma.]

Let d = deg C and e = deg D. Let f defining C�A2 be the dehomogenisation of
a polynomial defining C; Similarly choose g for D. By Remark 6.26, ip(C,D) is
the multiplicity of the root 0 of resy(f, g).

4 Alternatively, the origin is nonsingular on the parabola y = x2 and the y-axis is not the tangent
to the parabola at the origin, and hence intersects it once there.
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Write f = ∑
fiyi and g = ∑

giyi . Let r = op(C) and s = op(D). Since
the lowest order terms in f have degree r (Proposition 5.16), xr divides f0, xr−1

divides f1, and so on; and the same holds for g. We now manipulate the Sylvester
matrix My(f, g) in a similar way to that of the proof of Proposition 6.2. We multiply
the first row by xs , the second by xs−1, . . . , all the way to the sth row. The rest of
the first e rows of My(f, g) (the rows with the f -coefficients) are left unchanged;
note that s � e. Then we multiply the (e + 1)st row (the first row with the g-
coefficients) by xr , the next by xr−1, and so on; again note that there are d rows
with g-coefficients and r � d . An examination of the resulting matrix shows that
every entry in the first column is divisible by xr+s , every entry of the next is divisible
by xr+s−1, etc, all they way to the (r+ s)th column. We thus divide the first column
by xr+s , the second by xr+s−1, . . . . Call the resulting matrix N . The calculation
performed in the proof of Proposition 6.2 shows that det(N) = resy(f, g)/xrs , and
so xrs divides resy(f, g), so ip(C,D) � rs.

We prove the rest of the theorem for the special case s = r = 1, i.e., when p is
nonsingular on both C and D. For a proof of the general theorem, using resultants,
see [BK86, Prop.6.1.3]. For a proof using analytic parameterisations, see Chap. 15.

Since we chose the tangent to C at p to be the x-axis, we need to show that
ip(f, g) > 1 if and only if the x-axis is the tangent to D at p. Since p ∈ C, f

has no constant term; by Proposition 5.16, it has no x-term, so by grouping the
monomials in which y does not appear, we can write f = yα(x, y) + x2β(x) for
polynomials α and β, where α(0, 0) �= 0. Similarly, since g(p) = 0, we write
g = yγ (x, y)+ xδ(x); the x-axis is the tangent to D at p if and only if δ(0) = 0.

Since α(p) �= 0, we have ip(f, g) = ip(f, αg). Since αg − γf = x(αδ− xγβ),
by Proposition 6.40,

ip(f, αg) = ip(f, αg − γf ) = ip(f, x)+ ip(f, αδ − xγβ).

Since the y-axis is not the tangent to C at p, and p is nonsingular on C, we have
ip(f, x) = 1; so it remains to show that δ(0) = 0 if and only if ip(f, αδ−xγβ) > 0.
Since f (p) = 0, the latter holds if and only if p ∈ V

A2(αδ − xγβ); setting x = 0
and recalling that α(p) �= 0 gives the desired equivalence. ��

The following proposition will be used in the next chapter.

Proposition 6.43 Let C and D be curves in P
2 with no common component.

Suppose that p ∈ C is nonsingular on C. Let 	 be a line which is a component
of neither C nor D. Suppose that ip(D, 	) < ip(C, 	). Then ip(C,D) = ip(D, 	).

Roughly, the proposition says that if 	 is “closer” to C than to D then as far as D

is concerned, 	 is a good approximation for C with respect to counting intersections.

Proof If p /∈ D then ip(D, 	) = ip(C,D) = 0, so we assume that p ∈ D. This
implies that ip(D, 	) � 1 so ip(C, 	) > 1 and so, as p is nonsingular on C, 	 = 	pC



6.8 Further Exercises 161

is the tangent to C at p (Theorem 5.34). We change coordinates so that: (1) p is the
origin; (2) 	 is the x-axis.

Let f and g be polynomials in K[x, y] which define the restrictions of C and D

to A
2. Neither have constant terms, so as in the proof of Theorem 6.42, we group

the monomials in which y does not appear so we write f = yα(x, y)+ xrβ(x) and
g = yγ (x, y)+ xsδ(x) for polynomials α, β, γ and δ; here r and s are chosen to be
the highest power of x dividing all monomials with no y-terms, so β(0), δ(0) �= 0.
Further, t �→ (t, 0) is a linear parameterisation of the x-axis, and f (t, 0) = trβ(t)

and similarly for g; by Lemma 5.32, r = ip(C, 	) and s = ip(D, 	). So we are
assuming that r > s. Also, the assumption that 	 is the tangent to C at p implies
α(p) �= 0.

We need to show that ip(f, g) = s. We manipulate as in the previous proof:

ip(f, g) = ip(f, αg) = ip(f, αg − γf ) = ip(f, xsαδ − xrγβ) =
s · ip(f, x)+ ip(f, αδ − xr−sγβ).

Since x = 0 is not the tangent to C at p and p is nonsingular on C, we have
ip(f, x) = 1; Since r > s, we have (αδ − xr−sγ δ)(p) = α(p)δ(0) �= 0 so
ip(f, αδ − xr−sγβ) = 0. ��

For a proof using parameterisations, see Chap. 15.

Exercise 6.44 Let C and D be curves in P
2 with no common component. Suppose

that p ∈ C is nonsingular on C. Let 	 be a line which is a component of neither C

nor D. Show that if ip(C,D) � ip(C, 	) then ip(D, 	) � ip(C, 	).
Informally, this says that if at p, D approaches C at least as closely as 	

approaches C, then 	 approaches D at least as closely as it approaches C. «

6.8 Further Exercises

When calculating we assume K = C.

6.45 Every integral domain is a subring of an algebraically closed field (one first
takes the field of fractions, then the algebraic closure of that field). Use this to show
the following generalisation of Corollary 6.33 and Proposition 6.34: for any integral
domain R, for any nonconstant f, g, h ∈ R[x], resx(f, gh) = resx(f, g)·resx(f, h).

6.46 Let f = (x − a1)(x − a2) · · · (x − ad) ∈ K[x]. Show that the discriminant
disc(f ) (see Proposition 5.7) equals ±∏

1�i<j�d (aj − ai)
2.
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6.47 Let f ∈ K[x, y] and g ∈ K[x]. Suppose that the curve y = g is not
a component of the curve f = 0. Show that for all λ ∈ K, the intersection
multiplicity ip(f, y − g) between the curves f = 0 and y = g at the point
p = (λ, g(λ)) is the multiplicity of λ as a root of the polynomial f (t, g(t)). (Hint:
divide f by y − g with respect to the variable y (i.e., over the ring K[x]) to get
f = (y − g)h + f (x, g), and use Proposition 6.40(5). This exercise generalises
Definition 5.25: the map λ �→ (λ, g(λ)) is a parameterisation of the curve y = g,
and f (t, g(t)) is the associated “intersection polynomial”. We could similarly use
rational parameterisations (Definition 3.29) to calculate intersection multiplicities;
this follows from the results of Chap. 15.)

6.48 In this exercise we sketch an alternative proof of Proposition 6.43, using the
resultant. Dehomogenising and changing coordinates, let p be the origin, let 	 be the
x-axis, and let f, g ∈ K[x, y]; we assume that p is nonsingular on f = 0 and that
ip(f, 	) > ip(g, 	); we assume that p ∈ V

A2(g) so 	 is the tangent to V
A2(f ) at p.

We assume that the curves have been arranged so that ip(f, g) is the multiplicity
of 0 as a root of the resultant resy(f, g). Let s = ip(g, 	); we need to show that
ip(f, g) = s.

(a) Show that xs divides the first column of the Sylvester matrix My(f, g).
(b) Let N be the matrix obtained by dividing the first column of My(f, g) by xs ,
and let N(0) be the result of substituting 0 for x in every entry of N . Write
f = ∑

fiyi and g = ∑
j gjyj . Let b = (g0/xs)(0). Show that det(N(0)) =

±b · resy((f −f0)/y, (g−g0)/y) (c) Show that p /∈ V
A2((f −f0)/y). (d) Conclude

that det(N(0)) �= 0. (e) Show that ip(f, g) = s.

6.49 The purpose of this exercise is to show that rational curves (Definition 3.29)
are irreducible.

(a) Show that if A and B are irreducible affine curves and A �= B, then A \ B

contains infinitely many points. (See Exercise 3.42). (b) Let h = f/g ∈ K(t) (the
field of formal rational functions). Suppose that there are infinitely many a ∈ K such
that h(a) is defined (i.e. g(a) �= 0) and h(a) = 0. Show that h = 0. (c) Suppose
that ψ = (ψx,ψy) is a rational parameterisation of an affine curve f = 0, which
has no repeated components. Show that there is an irreducible factor h of f such
that h(ψx(a), ψy(a)) = 0 for infinitely many a ∈ K. Conclude that h(ψx,ψy) = 0
in the field of rational functions K(t). (d) Show that all but finitely many points of
f = 0 lie on h = 0; conclude that f ∼ h and so f is irreducible.

Affine Calculations
6.50 For the following pairs (f, g) of polynomials in C[x, y], find the affine
multiplicity of intersection io(f, g) at the origin:

(i) f = y3 + 2x5, g = xy2 + y − 3x3.
(ii) f = y − x3, g = y4 + 6x3y + x8.

(iii) f = y3 − x2, g = y2 − x3.
(iv) f = y3 − x2, g = xy2 − 4y2 − x3.
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(v) f = y3 − x2 − 1, g = y2 − 2xy4 + x5.

For more see [Bix06, Ex.1.1]
6.51 Find the following, by translating the point to the origin:

(i) i(0,2)(x3 + y2 − 4, x3y + y2 − 4).
(ii) i(1,2)(xy − 2, xy2 − 4).

(iii) i(−1,2)(x2 + xy + y − 1, xy2 + 4).

For more see [Bix06, Ex.3.4]

Projective Calculations
6.52 Find:

(i) i(0 : 1 : 2)(2x2 + w2 − xy, y2 + yw − 4x2).
(ii) i(0 : 3 :−1)(3y2 + xy + 2w2, xy2 + 3y3 −w3).

(iii) i(0 : 1 :−1)(y2 + xy − w2, y2 + 2w2 − x2).

For more see [Bix06, Ex.3.5]
6.53 For the following f, g ∈ C[w, x, y], find the points of intersection of
VP2(f ) and VP2(g), and their multiplicities. (Sometimes the resultant computation
is quicker.)

(i) f = y5 − x(y2 − xw)2, g = y4 + y3w − x2w2.
(ii) f = (x2 + y2)2 + 3x2yw − y3w, g = (x2 + y2)3 − 4x2y2w2.

(iii) f = x4 + y4 − y2w2, g = x4 + y4 − 2y3w − 2x2yw − xy2w + y2w2.
(iv) f = y2 − xw, g = y3 − xw2 + x3.
(v) f = (x2 + y2)w + x3 + y3, g = x3 + y3 − 2wxy.

For more see [Gib98, Sec.14.4,14.5], [Wal50, III.3.3], or [Ful69, Ex.5.3]

6.54 For the following f, g ∈ C[x, y], find the points of intersection of the
projective closures of the affine curves f = 0 and g = 0, their multiplicities, and
the tangents at these points to both curves.

(i) f = y − x3, g = y − x5;
(ii) f = y2 − x3, g = y3 − x4;

(iii) f = (x2 + y2)2 − 2y(x2 + y2)− x2, g = x2 + y2 − y.
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Bézout’s Theorem
6.55 Let C and D be two curves which intersect at precisely deg C · deg D distinct
points. Show that C and D have no common component; show that for all p ∈
C ∩D, p is nonsingular on both C and D and that 	pC �= 	pD.

6.56 Show that for each partition of 4, namely, [4], [3, 1], [2, 2], [2, 1, 1] or
[1, 1, 1, 1], there are irreducible conics C and D in P

2(C) which realise that partition
as their intersection pattern: for example, for [3, 1], this means that C and D

intersect at two points p and q , with ip(C,D) = 3 and iq(C,D) = 1.

Applications to Singular Points
6.57 Let C be a curve and let d = deg C. Suppose that some line 	 contains > d/2
many singular points of C. Show that 	 is a component of C.

6.58 Let C be a curve with no repeated components; let d = deg C. Improving on
Exercise 6.8, show that

∑

p∈C

op(C)(op(C)− 1) � d(d − 1).

Conclude that the number of singular points on D is bounded by d(d − 1)/2.

6.59 (a) Let C be an irreducible curve of degree 4 (a quartic) in P
2. Show that C

has at most three singular points. (Hint: suppose that there are four singular points.
Let p be another point on C. Let D be a conic curve which passes through p and
the four singular points (Exercise 4.74). Obtain a contradiction.) (b) Show that the
hypocycloid quartic 3(x2+y2)2+8x(3y2−x2)+6(x2+y2) = 1 has three singular
points.5

6.60 (a) Let C be a cubic curve with exactly one singular point which is a node
(an ordinary double point). Show that C is irreducible. (b) Let C be a quartic curve
with exactly one singular point which is a an ordinary triple point. Show that C is
irreducible. (c) Let C be a quartic curve with three non-collinear singular points.
Assume they are all double points and that they are either all ordinary or all not
ordinary. Show that C is irreducible. (d) Conclude that the polynomial x2y2+ x2+
y2, and that the hypocycloid from the previous exercise, are both irreducible [Gib98,
Ex.14.5.7].

5 For a generalisation to higher degrees, see for example [Fis01, Sec.3.8].
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6.61 Let C be the projective closure of x2y3 + y2 + x2 = 0. Show that C has three
singular points: a triple point, a cusp, and a node. Conclude that C doesn’t have a
component which is a line [Gib98, Ex.12.5.12].

The Nine Associated Points
For the following exercises, we work with the space of cubics G3 (see Sect. 4.6),
which by Exercise 4.38 is isomorphic to P

9 via the map ι3. Recall the notion of
a linear family of curves (Definition 4.39), and more generally, of subspaces of
projective space (Definition 4.10). Since any two distinct points in P

9 determine a
line, any two distinct cubic curves C, C′ in G3 determine a linear family of cubics,
which we denote by C C′.

Our aim in the following exercises is to show that if two cubics C and C′ intersect
in nine distinct points, then any other cubic which passes through eight of these must
also pass through the ninth.

6.62 Show that if C and C′ are two distinct cubic curves, then for all p ∈ C ∩ C′,
for every D ∈ C C′ we have p ∈ D.

For the following exercises, fix two cubics C and C′, and suppose that C · C′ =
C ∩ C′ = {p1, p2, . . . , p9} consists of nine distinct points.

6.63 (a) Show that no line contains four of the points p1, . . . , p9. (Hint: C and C′
do not have a common component.) (b) Show that no conic curve contains seven of
these points. (c) Show that any five of the points p1, . . . , p9 lie on a unique conic
curve. (By Exercise 4.74 there is such a conic.)

Suppose that D is a cubic which does not in the family C C′. By Exercise 4.60,
there is a unique plane P of G3 which contains C, C′ and D. Note that for any
distinct A,B ∈ P , the linear family A B is contained in P .

6.64 Show that for any two points q, r ∈ P
2 and a plane P of G3, there is some

cubic E ∈ P which passes through both q and r .

In the next exercise, we show that if D is a cubic which passes through
p1, . . . , p8, then D ∈ C C′.

6.65 Suppose, for a contradiction, that there is a cubic D that is not in C C′ but
that all of p1, . . . , p8 lie on D. Let P be the plane determined by C,C′ and D.
Observe that for all E ∈ P , p1, . . . p8 ∈ E. (a) Suppose that p1, p2 and p3 lie on
a line 	. Let Q be a conic curve which passes through p4, . . . , p8. Choose a point
q �= p1, p2, p3 on 	 and another point r /∈ 	 ∪ Q. By Exercise 6.64, let E ∈ P

be a cubic which passes through q and r . Show that E = 	 + Q. (b) Conclude
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that no three points from p1, . . . , p8 are collinear. (c) Show that no six points from
p1, . . . , p8 lie on a conic curve. (d) Let 	 = p1 p2, and let Q be a conic passing
through p3, . . . , p7. Choose q, r ∈ 	 other than p1 and p2, and let E ∈ P be a cubic
passing through q and r . Show that E = 	+Q. Obtain a contradiction.

6.66 Conclude that if two cubics C and C′ intersect in nine distinct points, then any
other cubic which passes through eight of these must also pass through the ninth.

6.67 Suppose that two cubic curves intersect in nine distinct points. (a) Suppose
that six of these points lie on a conic curve. Show that the other three are collinear.
(b) Suppose that three of these points are collinear. Show that the other six lie on a
conic curve.
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Let C be a nonsingular cubic curve. Bézout’s theorem says that every line
intersects C at three points (counting multiplicities). If p, q ∈ C then the line p q

intersects the curve at a third point r . We let r = p ∗ q . In this way we can take two
solutions to the cubic equation and manufacture a third. The main aim of this chapter
is to show how to modify this binary operation to define an abelian group structure
on C. This has a variety of applications, including famously to cryptography.

A line 	 intersects the curve C in one of three patterns:

• C ∩ 	 contains three distinct points. So ip(C, 	) = 1 for each p ∈ C ∩ 	. In
particular 	 is not a tangent to C at any point (see Theorem 5.34).

• C ∩ 	 contains two points p and q , with iq(C, 	) = 1 and ip(C, 	) = 2. Thus
	 = 	pC (and p ∗ p = q , q ∗ p = p ∗ q = p).

• C ∩ 	 contains one point p, so ip(C, 	) = 3. Again 	 = 	pC is the tangent to C

at p, and p ∗ p = p. Such a point is called a flex of C.

Our first step is an analysis of the flexes of C. In particular, we show that they
exist. To do that, we use Bézout’s theorem, together with an analysis of the Hessian
matrix of second order partial derivatives and the curve defined by its determinant
(Definition 7.5). We will then choose a flex and declare it to be the identity element
0C of the group; the group operation will then be characterised by declaring that
three collinear points add up to 0C .

In the last part of the chapter, we consider normal forms for elliptic curves.
Of particular importance are Legendre’s normal form (Proposition 7.26), and
Weierstrass’s normal form (Lemma 7.27): every elliptic curve is equivalent (by a
change of coordinates) to one given by an equation y2 = 4x3 − αx − β where
α3 �= 27β2.

In this chapter we assume that K is algebraically closed, and that char(K) is
either 0, or greater than the degree of any curve that we are considering.
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7.1 Flexes

Definition 7.1 Let C be a curve in P
2 and let p ∈ C be nonsingular. The point p is

a flex of C if ip(C, 	pC) � 3.

Another terminology is a point of inflection. See for example Fig. 7.1. For the
terminology consider the following:

Exercise 7.2 Let C be an affine curve defined by the equation y = f (x) for some
f ∈ K[x] of degree > 1. Show that a point (a, b) ∈ C is a flex of C if and only if
(Dx2

f )(a) = 0. (See Exercise 13.64 for a generalisation.) «

Since ip(C, 	) � deg C for any curve C, a conic curve has no flexes. We will see
that nonsingular cubic curves do have flexes.

7.1.1 Flexes and the Second Order Tangent

Recall that 	k
pC is defined for all k � deg C, even if k > op(C) (see Sect. 5.3).

Lemma 7.3 Let C be a curve of degree d � 2, and let p ∈ C. Then 	1
p(	2

pC) =
	1
pC. In particular, p is nonsingular on C if and only if p is nonsingular on 	2

pC.

Proof Let f define C and let p be a presentation of p. We show that ∂1
p(∂2

pf ) is a

constant multiple of ∂1
pf . Consider for example the variable x: a calculation shows

that

Dx
(
∂2
pf

)
= 2wDxwf (p)+ 2xDxxf (p)+ 2yDxyf (p);

�

�

Fig. 7.1 The line 	 intersects the cubic curve y = x3 at the origin. Perturbing the line a bit gives
three points of intersection, witnessing that the origin is a flex of the curve



7.1 Flexes 169

Since Dxf is homogeneous of degree d − 1, by Euler’s Relation we get

Dx
(
∂2
pf

)
(p) = 2(d − 1)Dxf (p).

The same holds for y and w. ��

Proposition 7.4 Let C be a curve of degree at least 2. The following are equivalent
for p ∈ C:

(1) p is a singular point of C, or is a flex of p.
(2) 	2

pC = P
2 or 	2

pC is reducible.

Proof First suppose that p is singular on C. If op(C) = 2 then 	2
pC is the sum

of two lines, and so is reducible (Corollary 5.22). If op(C) � 3 then 	2
pC = P

2

(Definition 5.13). We thus assume that p is nonsingular and show that it is a flex if
and only if (2) holds.

By Proposition 5.36, p is a flex if and only if 	pC ⊂ 	2
pC. If p is a flex and

	2
pC �= P

2 then by Study’s lemma, 	pC is a component of 	2
pC and so 	2

pC is
reducible.

In the other direction, certainly if 	2
pC = P

2 then 	pC ⊂ 	2
pC and so p is

a flex. Suppose that 	2
pC �= P

2 and is reducible. Since 	2
pC is a conic curve, it

is the sum of two lines 	0 and 	1. By Proposition 5.18, p ∈ 	2
pC; without loss

of generality, p ∈ 	0. By Lemma 7.3, p is nonsingular on 	2
pC, and so p /∈ 	1

(Corollary 5.23). Since the tangent to a line 	 at any point of 	 is the line 	 itself,
we see that 	0 = 	p(	2

p(C)) (again Corollary 5.23); by Lemma 7.3 again, 	0 =
	pC and so 	pC is a component of 	2

pC, from which we conclude that p is a flex
of C. ��

7.1.2 The Hessian

We will show the existence of flexes on nonsingular cubic curves using Bézout’s
theorem, by observing that the flexes of C are the points of intersection of C with
another curve, the Hessian curve of C.

Definition 7.5 Let C be a curve in P
2, and let f define C. We let

Hf =
⎛

⎝
Dwwf Dwxf Dwyf

Dxwf Dxxf Dxyf

Dywf Dyxf Dyyf

⎞

⎠ .

We let HC = VP2(det Hf ).



170 7 The Elliptic Group

Let d = deg C. We first note that every entry of Hf is a homogeneous polynomial
of degree d − 2. By its definition, the determinant of Hf is the sum of products
of three entries from Hf , and so det Hf is a homogeneous polynomial of degree
3(d − 2) (or is the zero polynomial); hence VP2(det Hf ) is defined. Furthermore,
for all λ ∈ K

∗, Duv(λf ) = λDuvf for all u, v ∈ {w, x, y}, and so Hλf = λHf ,
whence det Hλf = λ3 det Hf , so det Hλf ∼ det Hf . Thus HC does not depend on
the choice of f defining C. The matrix Hf is called the Hessian matrix of f and
the curve HC is called the Hessian curve of C.

The main property of the Hessian is the following.

Proposition 7.6 Let C be a curve of degree at least 2. Then C ∩HC consists of the
points p ∈ C for which 	2

pC is reducible or 	2
pC = P

2.

With Proposition 7.4 this allows us to conclude:

Corollary 7.7 Let C be a curve of degree at least 2. Then C ∩HC consists of the
singular points of C and the flexes of C. ��

To prove Proposition 7.6 we will change coordinates to make calculations
simpler. In order to do this we need to show that the Hessian is invariant under
changes of coordinates.

Proposition 7.8 Let C be a curve in P2 and let α be a change of coordinates of P2.
ThenHα[C] = α[HC ].

Proof Let f define C. Let A ∈ GL3(K) be a matrix such that α = TA is a
presentation of α. As in Chap. 5 we write ĝ for α∗(g). We need to show that
ˆdet Hf ∼ det H

f̂
.

Since

(
ŵ
x̂
ŷ

)

= A−1 ·
(

w
x
y

)
, the chain rule shows that for all g ∈ K[w, x, y],

(
Dwĝ

Dxĝ

Dyĝ

)

= (A−1)
t ·

( ˆDwg

ˆDxg

ˆDyg

)

(see the proof of Lemma 5.20), whence

( ˆDwg

ˆDxg

ˆDyg

)

=

At ·
(

Dwĝ

Dxĝ

Dyĝ

)

. Let Ĥf be the result of applying α∗ to each entry of Hf . Then

Ĥf = At ·
⎛

⎝
Dw( ˆDwf ) Dw( ˆDxf ) Dw( ˆDyf )

Dx( ˆDwf ) Dx( ˆDxf ) Dx( ˆDyf )

Dy( ˆDwf ) Dy( ˆDxf ) Dy( ˆDyf )

⎞

⎠ .
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Since taking a partial derivative is linear, for any variable u ∈ {w, x, y}
⎛

⎝
Du ˆDwf

Du ˆDxf

Du ˆDyf

⎞

⎠ = At ·
⎛

⎝
DuDwf̂

DuDxf̂

DuDyf̂

⎞

⎠ .

Taking the transpose of the matrix above we see that Ĥf = At ·
(
At ·H

f̂

)t
.

Since Hf is symmetric this equals At · H
f̂
· A. Since α∗ is a ring automorphism,

det Ĥf = ˆdet Hf and so ˆdet Hf = (det A)2 · det H
f̂

, and det A �= 0 as A is
invertible. ��

Proof of Proposition 7.6 Let p ∈ C. Fix f defining C and a presentation p of p.
Note that p ∈ HC if and only if det(Hf (p)) = 0 if and only if Hf (p) is a singular
matrix (recall that det(Hf (p)) = (det Hf )(p)).

In one direction, first suppose that 	2
pC = P

2, i.e. ∂2
pf = 0. This implies that

Hf (p) is the zero matrix, which is singular. Next suppose that 	2
pC is reducible. It is

the sum of two lines 	 and 	′. If 	 �= 	′ then after a change of coordinates we assume
that 	 is the x-axis and 	′ is the y-axis. So ∂2

pf ∼ xy. This means that Hf (p) has
a zero row (in fact only two nonzero entries), so is singular. If 	 = 	′ then after a
change of coordinates we assume that 	 is the x axis, so ∂2

pf ∼ y2. In this case
Hf (p) has only one nonzero entry, and so certainly is singular.

In the other direction suppose that Hf (p) is singular. We claim that we can
change coordinates so that the last column of Hf (p) is the zero column; this would
imply that ∂2

pf ∈ K[w, x] (and is homogeneous of course) and so is either reducible
or zero. To see that such a change of coordinates is possible, let B be an invertible
3 × 3-matrix, let α = TB−1 and let α be the induced change of coordinates. The
proof of Proposition 7.8 shows that Hα∗(f ) = Bt · α∗[Hf ] · B (we use the fact

that (B−1)
t = (Bt)−1). If q = α(p) then α∗[Hf ](q) = Hf (p) (recall that

α∗(g) defines g ◦ α−1) and so Hα∗(f )(q) = Bt · Hf (p) · B. So it remains to
find an invertible matrix B such that the last column of Bt · Hf (p) · B is zero.
But this is easy. Since Hf (p) is singular there is some nonzero column c̄ such that

Hf (p) · c̄ = 0̄. There is an invertible matrix B such that B ·
(

0
0
1

)
= c̄, and then

(
Bt ·Hf (p) · B

)
·
(

0
0
1

)
= 0̄, which implies the required property. ��

7.2 The Group Operation on a Nonsingular Cubic Curve

Definition 7.9 Let C be a nonsingular cubic curve. For p ∈ C let p p be the tangent
	pC. Let p, q ∈ C (possibly p = q). As discussed above, C · p q = [p, q, r] for
some r; we let r = p ∗ q .



172 7 The Elliptic Group

Since p q = q p, p∗q = q∗p. If 	 is any line and C ·	 = [p, q, r] then r = p∗q ,
as 	 = p q; this is immediate if p �= q; if p = q then the assumption implies that
ip(C, 	) > 1 and so 	 = 	pC. If p is a flex of C then C · 	pC = [p,p, p] and so
p ∗ p = p. Altogether, we see that if r = p ∗ q then p ∗ r = q and q ∗ r = p.

Proposition 7.10 Every nonsingular cubic curve has a flex.

Proof Let C be a nonsingular cubic curve. We observed that degHC = 3 ·(3−2) =
3, so is nonempty; hence C ∩HC is nonempty; now use Corollary 7.7. ��

In fact, by Bézout’s theorem, C ·HC contains nine points; we will show that they
are all distinct, so every nonsingular cubic curve has nine flexes; see Exercises 7.35
and 7.36.

Terminology In the literature, the term elliptic curve is defined as either a nonsin-
gular cubic curve, or as a nonsingular cubic curve, together with a choice of a flex.
We will mostly mean the latter.1 «

Definition 7.11 Let (C, 0C) be an elliptic curve. For p, q ∈ C we let p +C q =
(p ∗ q) ∗ 0C .

For brevity we usually write p+ q . Since p ∗ q = q ∗p we have p+ q = q+p.
As discussed above, for any p ∈ C, (p ∗ 0C) ∗ 0C = p and (p ∗ 0C) ∗ p = 0C . The
first means that p + 0C = p. The second, together with the fact that 0C ∗ 0C = 0C ,
implies that ((p ∗ 0C) ∗ p) ∗ 0C = 0C and so p + (p ∗ (0C)) = 0C . We thus let
−p = p ∗ 0C . So p + (−p) = 0C , and −(−p) = (p ∗ 0C) ∗ 0C = p.

Remark 7.12 Let p, q and r be three collinear points on C. Then (p+q)+ r = 0C ,
since r = p ∗ q = −(p + q). «

To show that (C; +, 0C) is an abelian group, it remains to show that the binary
operation+ is associative. This takes a little bit of work.

7.2.1 The Complement Curve

Suppose that C, G and A are curves, and A ·G ⊂ C ·G. Can we find a curve B such
that C ·G is the multiset sum of A ·G and B ·G? The answer is immediate if A is
a component of C (using Proposition 6.29); but interestingly, we can get a positive
answer in other cases too.

1 These definitions are purely algebraic; often in the literature a topological definition is preferred,
using the genus of a curve over the complex numbers.



7.2 The Group Operation on a Nonsingular Cubic Curve 173

We use linear families of curves. Recall that for d � 1, the space Gd of all curves
of degree d in P

2 is bijective with P
k (for k = d(d + 3)/2) via the map ιd (see

Sect. 4.6). A linear family of curves is the image of a line under ιd (Definition 4.39).
If C = VP2(f ) and D = VP2(g) are curves of degree d then C D is the family of
curves VP2(ef + ag) for (e : a) ∈ P

1. If α is a change of coordinates of P2 then the
map C �→ α[C] is a change of coordinates of Gd (see Exercise 4.42 for the case
d = 1). In particular if E ∈ C D then α[E] ∈ α[C] α[D], which can be verified
directly: α∗(ef + ag) = eα∗(f )+ aα∗(g).

The following strengthens Exercise 6.62:

Lemma 7.13 Let C and C′ be curves of the same degree which have no common
component. Let D,D′ ∈ C C′ be distinct. Then D and D′ have no common
component and C · C′ = D ·D′.

Proof Let f define C and g define C′. If E ∈ C C′ is distinct from C then E =
VP2(λf + g) for some λ ∈ K. Then E and C have no common component and
C ·E = C · C′: this follows from Proposition 6.38.

Let D,D′ ∈ C C′ be distinct. If one of D or D′ is either C or C′ then the
observation above suffices. Otherwise, applying this observation twice, we get C ·
C′ = C ·D = D′ ·D, using the fact that C C′ = C D. ��

Proposition 7.14 Let C and G be curves of the same degree with no common
component; let A be an irreducible curve of smaller degree, which is not a
component of G. Suppose that:

(∗) A ·G ⊆ A ·D for every D ∈ C G distinct from C.

Then A ·G ⊂ C ·G, and there is a curve B such that

C ·G = (A ·G)+ (B ·G).

Note that by Bézout’s theorem, since deg D = deg G, if A is not a component
of D then the condition A ·G ⊆ A ·D is in fact equivalent to A ·G = A ·D.

Proof If A is a component of C then B = C \A would do (Proposition 6.29), so we
assume otherwise. By Lemma 7.13, it suffices to show that there is some D ∈ C G

of which A is a component, as we could then take B = D \A and use D ·G = C ·G
(note that D �= G by assumption that A is not a component of G).

We find D ∈ C G of which A is a component. By our assumptions that A is
a component of neither C nor G, since A is irreducible, it follows that A is not a
component of C+G. By Study’s lemma, find p ∈ A, p /∈ C∪G. Now there is some
D ∈ C G which passes through p: this follows from Exercise 4.74; for a direct proof
in our case, take f defining C and g defining G and let D = VP2(g(p)f − f (p)g)

for some presentation p of p. Note that D �= C,G as p /∈ C,G.
Since D �= C, by the assumption (∗), A · G ⊆ A · D. But p ∈ A · D while

p /∈ A ·G, so this containment is proper. However deg G = deg D, so by Bézout’s
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theorem, it must be the case that A and D have a common component. Since A is
irreducible, that component is A itself. ��

Suppose that C and G are curves of the same degree with no common
component, A is an irreducible curve of smaller degree which is not a component
of G, and A ·G ⊂ C ·G. Then for any D ∈ C G, every p ∈ C∩G also lies in D (see
Exercise 6.62), implying �A ∩G	 ⊆ �A ∩D	. So the condition A ·G ⊆ A · D is
really about multiplicities of intersection, and it holds if A∩G contains deg A·deg G

many distinct points. This shows:

Corollary 7.15 Suppose that C and G are curves of the same degree with no
common component. Let A be an irreducible curve of smaller degree which is not
a component of G. Suppose that A ∩ G consists of deg A · deg G many distinct
points, and suppose that A ∩ G ⊆ C ∩ G. Then there is a curve B such that
C ·G = (A ·G)+ (B ·G).

Here is an application.

Example 7.16 (Pascal’s “Mystic” Hexagon) Let p1, p2 . . . , p6 be six distinct
points in P

2 which all lie on an irreducible conic A. Let 	1 = p1 p2, 	2 = p2 p3,
. . . , 	5 = p5 p6, 	6 = p6 p1. No three of the points p1, . . . , p6 are collinear, since
a line cannot intersect an irreducible conic in more than two points. Hence the lines
	1, 	2, . . . , 	6 are all distinct.

The line segments 	i between pi and pi+1 form a hexagon together. Say that 	1
is opposite 	4, 	2 is opposite 	5, and 	3 is opposite 	6. Let q1, q2 and q3 be the points
of intersection of the pairs of opposite points: q1 is the intersection of 	1 with 	4,
etc. Then q1, q2 and q3 are collinear. See Fig. 7.2.

To see this, let G = 	1 + 	3 + 	5 and let C = 	2 + 	4 + 	6. Then G · C consists
of the nine points of intersection 	i ∩ 	j for i even and j odd. Six of these are the
points pi , the set of which is G ∩ A = G · A. The other three points are the points
q1, q2 and q3. The conditions of Corollary 7.15 hold, and so there is a line 	 such
that G · C = (G · A)+ (G · 	), so q1, q2 and q3 lie on the line 	. «

Remark 7.17 Observe that this conclusion for Pascal’s hexagon follows from
Exercise 6.67, once we show that p1, . . . , p6, q1, q2, q3 are all distinct. «

7.2.2 Associativity of the Group Operation

Lemma 7.18 Let G be a nonsingular cubic curve and let L be the sum of three
lines (not necessarily distinct). Let 	 be a line such that (G · 	) ⊂ (G · L). Then
there is a conic curve B such that

G · L = (G · 	)+ (G · B).
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p1

p2

p3

p4

p5

p6

Fig. 7.2 Pascal’s mystic hexagon. “Opposite” sides have the same colours

Proof If 	 is a component of L then we can simply take B = L \ 	. We let L =
	1 + 	2 + 	3 and assume that 	 �= 	i for i = 1, 2, 3. Note that L and G have no
common component as G is irreducible (Theorem 6.5).

Proposition 7.14 says that we will be done once we show that for any D ∈ G L

distinct from L, 	 ·G ⊆ 	 ·D. Let D be such a curve. Let p ∈ 	 ∩G; we show that
ip(G, 	) � ip(D, 	). There are three cases, depending on the value of ip(G, 	).

Case 1: ip(G, 	) = 1 In this case we only need to show that p ∈ D ∩ 	, i.e., that
p ∈ D. By assumption, p ∈ G ·L so p ∈ L. As we observed before Corollary 7.15,
p ∈ D follows from p ∈ G ∩ L and D ∈ G L.

Case 2: ip(G, 	) = 2 In this case 	 is the tangent to G at p but p is not a flex of G.
We need to show that ip(D, 	) � 2.

By assumption, G · 	 ⊆ G · L, so ip(G,L) � 2. We have ip(G,L) =∑
i�3 ip(G, 	i). Since 	i �= 	 for i = 1, 2, 3, no 	i is the tangent to G at p and

so ip(G, 	i) � 1 and of course equals 1 if and only if p ∈ 	i . Hence p belongs
to at least two of the lines 	1, 	2 and 	3, and so p is singular on L. Since D �= L,
for some α ∈ K, D = VP2 (f + αh), where f defines G and h defines L. Let p

be a presentation of p. For u ∈ {w, x, y}, Du(f + αh) = Duf + αDuh; since
Duh(p) = 0, Du(f + αh)(p) = Duf (p); since p is nonsingular on G, it is
nonsingular on D, and further 	pD = 	pG = 	. Hence ip(D, 	) � 2 as required.

Case 3: ip(G, 	) = 3 In this case 	 is the tangent to G at p and p is a flex of G.
We need to show that ip(D, 	) � 3. Again, by assumption, ip(G,L) = 3, which
by the argument of the previous case means that p is the point of intersection of all
three lines 	1, 	2 and 	3. The same argument shows that p is nonsingular on D and
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	pD = 	pG = 	. However, op(L) = 3 so all second derivatives of h are 0 on p as
well; linearity again shows that 	2

pD = 	2
pG. Recall that p is a flex of D if and only

if 	pD ⊂ 	2
pD (and the same holds for G, see Proposition 5.36), and so p being a

flex of G implies that it is a flex of D: ip(D, 	) � 3 as required.
��

We are ready to prove the associativity of the group operation. The reason we
worked so hard is that the proof that (p+q)+r = p+(q+r) works for any possible
constellation of p, q , r (all distinct, two of them equal, all of them equal, all are
different from the identity element 0C , some are equal to 0C ,. . . ); see Exercise 7.32.

Theorem 7.19 Let (C, 0C) be an elliptic curve. The operation + defined above is
associative, and so (C; +, 0C) is an abelian group.

Proof Let p, q, r ∈ C; we need to show that p + (q + r) = (p + q) + r . Let
v = p + q = −(p ∗ q) and u = q + r = −(q ∗ r). We need to show that
p + u = −(p ∗ u) equals v + r = −(v ∗ r); of course this is the same as showing
p ∗ u = v ∗ r .

Let

L = p q + v r + 0C u.

Then

C · L = [p, q,−v, v, r, v ∗ r, u,−u, 0C].

Also,

C · q r = [q, r,−u];

so C · q r ⊂ C · L. By Lemma 7.18 there is a conic curve B such that

C · B = [p,−v, v, v ∗ r, u, 0C].

Let 	 = (−v) v. We claim that B · 	 ⊇ [v,−v, 0C ]; we know that v,−v, 0C ∈
B ∩ 	, but the question is about multiplicities, if some of these points coincide.
Since C · 	 = [v,−v, 0C ] and [v,−v, 0C ] ⊂ C · B, we have is(C,B) � is(C, 	)

for all s ∈ {v,−v, 0C}. As C is nonsingular, Exercise 6.44 now states that for all
s ∈ {v,−v, 0C}, is(B, 	) � is(C, 	) which is what is required to show that B · 	 ⊇
[v,−v, 0C].

By Bézout’s theorem, 	 must be a component of B, and so B is the sum of 	 and
another line 	′; and C · 	′ = [p, v ∗ r, u], from which we conclude that v ∗ r = p ∗u

as required (See Figs. 7.3 and 7.4). ��

Exercise 7.20 Show that for all p, q, r, s ∈ C, ((p ∗ q) ∗ s) ∗ r = p ∗ ((q ∗ r) ∗ s).
«



7.2 The Group Operation on a Nonsingular Cubic Curve 177

Fig. 7.3 The operation+ is associative. L is the sum of the blue lines. The red point is p∗u = r∗v

Fig. 7.4 This curve is not quite cubic; in this case p ∗ u �= r ∗ v
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7.3 Normal Forms for Nonsingular Cubics

Exercise 5.60 shows that every irreducible conic in P
2(C) can be mapped by a

change of coordinates to the projective closure of the parabola y = x2. In a strong
way, this is a normal form for irreducible conics. Another such normal form is
x2 + y2 + w2 = 0 or x2 + y2 = w2 (Exercise 4.79). Every irreducible conic
is nonsingular, so it is possible to have just one irreducible conic (up to changes of
coordinates). This cannot be replicated for cubic curves; in Exercise 5.63 it is shown
that there are two non-equivalent singular, irreducible cubic curves (the nodal curve
and the cuspidal curve).

In this section we present a couple of normal forms for nonsingular cubic curves.
Unlike conics, there are infinitely many pairwise inequivalent nonsingular cubic
curves.

We will show that any nonsingular cubic can be transformed by a change of
coordinates to the projective closure of the curve

y2 = f (x)

where f ∈ K[x] has degree 3. Since K is algebraically closed, f is the product of
three linear polynomials.

Proposition 7.21 Let C be the projective closure of the curve y2 = f , where f ∈
K[x] has degree 3. Then C is nonsingular if and only if the three roots of f in K are
distinct.

Proof Suppose that f = δ(x − α)(x − β)(x − γ ), so

C = VP2

(
y2w − δ(x − αw)(x − βw)(x − γw)

)
.

Suppose that α, β and γ are not all distinct. Without loss of generality α = β. Then
a calculation shows that (1 :α : 0) is a singular point of C.

In the other direction, let p ∈ C be singular on C. Let g be the defining
polynomial of C given above. First we argue that p cannot lie on the line at infinity:
if p = (0 : a : b) then g(0, a, b) = 0 implies a = 0, But then b �= 0 implies
Dwg(0, 0, b) �= 0. Hence, we take p = (1 : a : b).

Now, Dyg(1, a, b) = 0 implies b = 0; and then g(1, a, 0) = 0 implies a ∈
{α, β, γ }. Say a = α. Then Dxg(1, a, 0) = 0 implies (a − β)(a − γ ) = 0; whence
α = β or α = γ . ��

Recall that the Hessian matrix Hf is the 3×3-matrix of second partial derivatives
of f .
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Lemma 7.22 Let f ∈ K[w, x, y] be homogeneous of degree d > 1. Then

y2 det Hf = (d − 1)2 det

⎛

⎝
Dwwf Dwxf Dwf

Dxwf Dxxf Dxf

Dwf Dxf d
d−1f

⎞

⎠ .

Proof We begin by multiplying the first row of Hf by w, the second by x, and the
third by y. Then, we add the first and the second row to the third row, which doesn’t
change the determinant, and apply Euler’s Relation to the polynomials Duf , which
are homogeneous of degree d − 1. We get

wxy det Hf =
∣
∣
∣
∣
∣
∣

wDwwf wDwxf wDwyf

xDxwf xDxxf xDxyf

(d − 1)Dwf (d − 1)Dxf (d − 1)Dyf

∣
∣
∣
∣
∣
∣
,

so factoring out the scalar d − 1 and dividing the first row by w and the second by x

we get

y det Hf = (d − 1)

∣
∣
∣
∣
∣
∣

Dwwf Dwxf Dwyf

Dxwf Dxxf Dxyf

Dwf Dxf Dyf

∣
∣
∣
∣
∣
∣
.

We now repeat the trick, this time multiplying the first column by w, the second
by x, and the third by y; Then we add the first and second columns to the third
column and apply Euler’s relation to Dwf , Dxf and f to get

wxy2 det Hf = (d − 1)

∣
∣
∣
∣
∣
∣

wDwwf xDwxf (d − 1)Dwf

wDxwf xDxxf (d − 1)Dxf

wDwf xDxf d · f

∣
∣
∣
∣
∣
∣
.

The final result is obtained by factoring out d − 1 from the second column, dividing
the first column by w and the second by x. ��

Proposition 7.23 Any nonsingular cubic curve can be mapped by a change of
coordinates to one which is the projective closure of an affine curve y2 = f , where
f ∈ K[x] has degree 3.

Remark 7.24 Suppose that C is the projective closure of y2 = f (x) where f is
cubic. Then the vertical point at infinity (0 : 0 : 1) is the only intersection of C with
the line at infinity. Hence, if C is nonsingular, then the vertical point at infinity is a
flex of C and the tangent at that point is the line at infinity w = 0. «
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Proof of Proposition 7.23 Let C be a nonsingular cubic curve. By Proposition 7.10,
C has a flex. After a change of coordinates, we assume that the vertical point at
infinity (0 : 0 : 1) is a flex of C, and that the tangent to C at that point is the line at
infinity w = 0. Let p = (0, 0, 1). Picking g defining C, we summarise:

• g(p) = 0; since g(p) is the coefficient of y3 in g, we conclude that the
monomial y3 does not appear in g.

• Dxg(p) = 0; looking at the derivative, we see that Dxg(p) is the coefficient of
xy2 in g, and so this monomial does not appear in g.

• Dwg(p) �= 0; so the monomial wy2 does appear in g.

We also know that det Hg(p) = 0 as p is a flex of C. Using Lemma 7.22 we see
that

0 = 12 det Hg(p) = 4 det

⎛

⎝
Dwwg(p) Dwxg(p) Dwg(p)

Dxwg(p) Dxxg(p) 0
Dwg(p) 0 0

⎞

⎠ =

= −4
(
Dwg(p)

)2
Dxxg(p),

and so (recalling that we assume that char(K) �= 2):

• Dxxg(p) = 0. We conclude that the monomial x2y does not appear in g.

Overall, we conclude that every monomial which appears in g and which men-
tions y, also mentions w. In other words,

g = wy(αw + βx + γy)+ h,

where α, β, γ ∈ K with γ �= 0, and h ∈ K[w, x] homogeneous of degree 3.
Now we change coordinates again. First, by rescaling, we may assume that γ =

1: use the change of variable (w, x, y) �→ (γw, x, y/γ ). Now, we are searching
for a change of variable ϕ : K[w, x, y] → K[w, x, y] which would map g to a
polynomial of the form y2w + h̄ for some h̄ ∈ K[w, x]. For simplicity we require
that ϕ(w) = w and ϕ(x) = x. It is easier to find ψ = ϕ−1: so we are looking for a
change of variable ψ which maps w to w, x to x and y2 to y(αw+ βx + y)+ ĥ for
some ĥ ∈ K[w, x]. Writing ψ(y) = aw + bx + cy, we expand (aw + bx + cy)2

to find that c = 1, a = α/2 and b = β/2 are as required. We note that ψ is

indeed a change of variable since it is induced by the invertible matrix

(
1 0 0
0 1 0

α/2 β/2 1

)

.

Hence, after the change of coordinates which induces ϕ = ψ−1, C is defined by the
polynomial wy2 − h̄ for some h̄ ∈ K[w, x]. We note that w does not divide h̄, as C

is irreducible. So f = h̄
 gives the required polynomial. ��

Remark 7.25 In the proof above, we chose any flex p of C and mapped it to
the vertical point at infinity. Then we scaled, and applied a change of variable
(w, x, y) �→ (w, x, y − αw/2− βx/2). The associated change of coordinates fixes
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the vertical point at infinity. We conclude that for any nonsingular cubic curve C,
and every flex p on C, there is a change of coordinates which maps p to the vertical
point at infinity and the curve C to the projective closure of y2 = f (x) for some
cubic f . «

The following is known as Legendre’s normal form.

Proposition 7.26 Any nonsingular cubic curve can be mapped by a change of
coordinates to one which is the projective closure of an affine curve

y2 = x(x − 1)(x − λ)

where λ ∈ K, λ �= 0, 1.

Proof Let C be a nonsingular cubic. By Proposition 7.23 we can change coordinates
so that C is given by the equation y2w = h where h ∈ K[w, x] is a homogeneous
polynomial of degree 3 and w does not divide h. So h = δ(x−αw)(x−βw)(x−γw)

for some α, β, γ, δ ∈ K (with δ �= 0). By Proposition 7.21, α, β and γ are distinct.
We first want to change coordinates so that the roots become 0, 1 and some other

root λ. For this we use a change of variable ψ which maps y to y, w to w and x to
ax − cw for some a, c ∈ K. Assuming a �= 0, ψ maps h to

δ(ax − (c + α)w)(ax − (c + β)w)(ax − (c + γ )w) =

a3δ

(

x − c + α

a
w

)(

x − c + β

a
w

)(

x − c + γ

a
w

)

so we get our desired mapping by choosing c = −α and a = c+ β = β− α, which
is indeed nonzero since β �= α. Again this is a legal change of variable since it is

induced by the invertible matrix

(
1 0 0
α β−α 0
0 0 1

)

. We know that λ = (γ − α)/(β − α)

is distinct from 0 and 1 for otherwise C would be singular. Finally, we get rid of the
(nonzero) constant a3δ. Since K is algebraically closed, a3δ has a square root

√
a3δ

in K. Replace y by
√

a3δ ·y; the associated change of coordinates maps the defining
equation of C to the desired form. ��

Another normal form is one which is associated with Weierstrass. It is given by
the affine equation y2 = 4x3 − αx − β for some α, β ∈ K.

Lemma 7.27 Let C be the projective closure of the curve y2 = 4x3 − αx − β.
Then C is nonsingular if and only if α3 �= 27β2.

Proof By Proposition 7.21, C is nonsingular if and only if the polynomial f =
4x3 − αx − β has three distinct roots in K. Of course f has a repeated root if and
only if some irreducible factor of f appears twice in f ’s irreducible factorisation. By
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Proposition 5.7, this happens if and only if the discriminant disc(f ) = resx(f,Dxf )

is zero. A calculation (see Exercise 5.9) shows that disc(f ) is a constant multiple of
α3 − 27β2. ��

Proposition 7.28 Any nonsingular cubic curve can be mapped by a change of
coordinates to one which is the projective closure of an affine curve

y2 = 4x3 − αx − β

where α, β ∈ K and α3 �= 27β2.

Proof By Proposition 7.23, and by scaling x, we can assume the equation for C is
y2w = x3 + γ x2w + εxw2 + δw3 for some γ, ε, δ ∈ K. A change of variable ψ

which maps w to w, y to y and x to x − aw for some a ∈ K maps the equation
for C to y2w = h̄ where h̄ = (x − aw)3 + γ (x − aw)2w + ε(x − aw)w2 + δw3.
A calculation shows that the coefficient of x2w in h̄ is γ − 3a so we can easily
choose a so that this coefficient is 0. Rescaling y if necessary gives us the desired
equation. ��

7.3.1 Explicit Calculations of the Group Operation

Let the nonsingular cubic curve C be the projective closure of y2 = f (x). By
Remark 7.24 we can choose the vertical point at infinity as the identity element of
the group (C; +, 0C).

Lemma 7.29 For every p = (a, b) ∈ C ∩ A
2, −p = (a,−b).

Here −p is the inverse of p in the group (C; +, 0C).

Proof Let 	 = p 0C . It is the vertical line x = aw, whose restriction to A
2 is the

line x = a. −p = p ∗ o is the third point of intersection of this line with C.
Since b2 = f (a), we also have (−b)2 = f (a), that is, (a,−b) ∈ C. If f (a) �= 0
then 	 ∩ C = {0C, p, (a,−b)} consists of three distinct points. If f (a) = 0 then
−b = b = 0, and then 	 ∩ C = {0C, p}; but 	 is not the tangent to C at 0C (the
tangent is the line at infinity), so 	 · C = [0C, p, p]. ��

Exercise 7.30 Suppose that C is the projective closure of y2 = f (x), where f (x) =
a3x3 + a2x2 + a1x + a0.

(a) Suppose that 	 is a line y = mx + d . Let pi = (xi, yi), for y = 1, 2, 3, be the
three points of intersection of 	 with C (not necessarily distinct). Show that

a3(x1 + x2 + x3) = m2 − a2.
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(Hint: the xi are the roots of f − (mx + d)2; compare coefficients with a3(x −
x1)(x − x2)(x − x3).)

(b) Show that the tangent to p = (x, y) ∈ C is vertical if and only if y = 0.
Calculate rational functions u and v in K(x, y) such that for all p = (x, y) ∈ C

with y �= 0, p + p = (u(x, y), v(x, y)) (Again, addition of points is in the
group (C, 0C)).

(c) Calculate rational functions u and v in K(x, y, z,w) such that for all p = (x, y)

and q = (z,w) in C with p �= −q, q , p + q = (u(x, y, z,w), v(x, y, z,w)).
(d) How do these calculations simplify when C is in Weierstrass normal form? «

For examples and calculations see Exercise 7.43.

Exercise 7.31 Suppose that the coefficients a0, a1, a2, a3 in the exercise above are
all rational. Let C(Q) = C ∩P2(Q) be the collection rational points of C: all points
(e : a : b) ∈ C where e, a and b are rational numbers. Show that C(Q) is a subgroup
of C.2 «

7.4 Further Exercises

7.32 Using the notation of the proof of Theorem 7.19, suppose that the points 0C ,
p, q , r , u, −u, v, −v, v ∗ r are all distinct. Let L = p q + 0C u + r v and M =
0C v+q r+p u. Find L∩C and M∩C; use Exercise 6.66 to show that p∗u = v∗r .

Flexes
7.33 Let f = x2y2 + y2w2 + w2x2. Find the singular points of VP2(C) (f ) (See
Exercise 6.60.) Show that Hf = 24 · (9w2x2y2 − (w2 + x2 + y2)f ). Conclude
that VP2(C)(f ) has no flexes.

7.34 Show that a cuspidal cubic has one flex, and that a nodal cubic has three
collinear flexes. (See Exercise 5.63.)

7.35 Let C = V
P2(f ) be a nonsingular cubic curve. Suppose that the origin is a

flex of C, and that the tangent to C at the origin is the x-axis. (a) Show that there
is a polynomial g ∈ K[w, x, y] such that g(1, 0, 0) �= 0, Dwg(1, 0, 0) �= 0, and
f ∼ x3 + yg. (b) Show that there are polynomials h ∈ K[w, x] and k ∈ K[w, x, y]
such that Hf ∼ yk+xh and h(1, 0) �= 0. (c) Conclude that the origin is nonsingular
on HC and that the tangent to HC at the origin is not the x-axis. (d) Conclude that
io(C,HC) = 1. (e) Conclude that every nonsingular cubic curve has nine distinct
flexes.3

2 A deep theorem of Mordell’s says that the group C(Q) is finitely generated.
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7.36 (a) Suppose that C is the projective closure of y2 = f (x) for some cubic f

and is nonsingular. Show that the vertical point at infinity is nonsingular on HC and
that the tangent to HC at that point is not the line at infinity. (b) Use Remark 7.25 to
give another proof of the fact that a nonsingular cubic curve has nine distinct flexes.

Generalisations
7.37 Let C be a nonsingular cubic curve. Show that Definition 7.11 yields a group
operation+C (with identity element 0C) even if 0C is not a flex of C.4

Let 0C, 0′
C
∈ C; let a = 0C ∗0′

C
. Show that the map p �→ a ∗p is an isomorphism

of the groups (C, 0C) and (C, 0′
C
). (Hint: apply Exercise 7.20, and recall that ∗ is

commutative. For more details see, for example, [Gib98, Lem.17.4].)

7.38 Let C be a nonsingular cubic curve, and let α be a change of coordinates of P2.
Let 0C ∈ C. Show that α yields an isomorphism between the group (C, 0C) and the
group (α[C], α(0C)).

7.39 Suppose that C is an irreducible singular cubic. Show that we can define p ∗ q

for nonsingular p, q ∈ C, and that the result is also nonsingular on C. Conclude
that the definition made in Exercise 7.37 gives a group operation on the collection
of nonsingular points of C.

Let D be the affine curve y = x3. Show that the projective closure of D is a
cuspidal cubic, and D is the collection of nonsingular points of that closure. Show
that t �→ (t, t3) is a parameterisation of D and is a group isomorphism between the
additive group (K,+) and the group on D obtained by choosing 0C to be the origin.
Conclude that the group defined on the nonsingular points of any cuspidal cubic is
isomorphic to (K,+).5

The Order of Group Elements
Let (C, 0C) be an elliptic curve (with 0C a flex of C). Recall that the order oC(p) in
the group C of an element p ∈ C is the size of the cyclic subgroup of C generated
by p (see page 39). This is not to be confused with op(C), which is always 1, as C

is nonsingular.

7.40 Let p ∈ C, p �= 0C . (a) Show that oC(p) = 2 if and only if the tangent to C

at p passes through 0C . (b) Show that oC(p) = 3 if and only if p is a flex of C.

3 For a generalisation see [BK86, Thm.7.3.1], which also gives an alternative proof of Corol-
lary 7.7.
4 If 0C is not a flex then it is not necessarily the case though that −p = p ∗ 0C , and Remark 7.12
may fail.
5 With a little more work, show that the group on the nonsingular points of a nodal cubic curve is
isomorphic to the multiplicative group (K∗, ·).
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7.41 Suppose that C is the projective closure of y2 = f (x) for cubic f and is
nonsingular, and let 0C = (0 : 0 : 1). (a) Find the points p ∈ C which have order 2 in
the group C; show that they are collinear. (b) Conclude that the collection of points
of order 1 or 2 in (C, 0C) form a subgroup of (C, 0C), isomorphic to C2×C2 (recall
that C2 is the cyclic group of size 2). (c) Show that the previous conclusion holds
for any elliptic curve (D, 0D). (Hint: use Exercise 7.37.)

7.42 Let (C, 0C) be an elliptic curve. Show that a point p ∈ C has order 6 in the
group (C, 0C) if and only if p is not a flex, but 	pC passes through a flex of C other
than 0C .

7.43 For each of the following affine equations and points p in A
2(C), show that

the (projective closure of the) equation defines a nonsingular cubic curve C; that
0C = (0 : 0 : 1) is a flex of C, and find the order of p in the group (C, 0C):

(i) y2 = x3 + 4x, p = (2, 4).
(ii) y2 = x3 + 1, p = (2, 3)

(iii) y2 + 7xy = x3 + 16x, p = (2, 2).

For more such calculations see [Bix06, Ex.9.1] and [Gib98, Sec.17.4].

7.44 Let (C, 0C) be an elliptic curve, and let B be a conic curve. Suppose that C

and B intersect at six distinct points p1, p2, . . . , p6. (a) Show that p1 ∗p2, p3 ∗ p4,
and p5 ∗ p6 are collinear. (b) Show that in the group (C, 0C), p1 + p2 + p3 + p4 +
p5 + p6 = 0C .6

The Nine Point Configuration
A nine point configuration is a collection of nine points such that any line passing
through two points from the collection also passes through a third (but no others).

7.45 Show that the points in the affine plane A
2(Z/(3)) over the field of three

elements form a nine point configuration.

7.46 Let C be a nonsingular cubic curve. (a) Let p and q be distinct flexes of C.
Show that p∗q is also a flex of C. (b) Show that the nine flexes of C (Exercises 7.35
and 7.36) form a nine point configuration. (c) Show that the collection of flexes of C

forms a subgroup of (C, 0C) (for any choice of flex 0C of C), which is isomorphic
to C3 × C3.

7.47 Let C be a nonsingular cubic curve. Let p, r , s and t be distinct points on C.
Suppose that r , s and t are collinear. Further, suppose that p lies on the tangents
to C at r , at s and at t . (a) Show that p is a flex of C. (b) Show that if q �= p is a
point on C and p lies on the tangent to C at q , then q is one of r , s and t .

6 In fact, the result holds even when the points are not all distinct. See for example [Bix06, Ex.10.6].
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7.48 (a) Find the unique nine-point configuration in A
2 which contains the points

(1, 1), (1,−1), (−1, 1) and (−1,−1). (Hint: it must also contain the origin.)
(b) Let A and B be nine-point configurations in P

2. Show that there is a change
of coordinates α of P

2 which maps A to B. (c) Show that in P
2(R) there is no

nine-point configuration.

7.49 Let C be a nonsingular cubic curve and let p and q be flexes of C. Show that
there is a change of coordinates of P2 which maps p to q and C to itself. (Hint: use
Remark 7.25 and Exercise 7.46, and note that (x, y) �→ (−x, y) maps y2 = f (x)

to itself.)

7.50 The Hesse normal form of a cubic curve is an equation w3+x3+y3 = 3λwxy

for some λ ∈ K. (a) Show that the cubic defined by the Hesse normal form with
parameter λ is singular if and only if λ3 = −1. (b) Find the flexes of a nonsingular
cubic given in Hesse normal form. (c) Show that any cubic curve which passes
through all the flexes of a cubic in Hesse normal form is already in Hesse normal
form. (d) Show that every nonsingular cubic curve can be transformed to have Hesse
normal form. (Use Exercises 7.46 and 7.48.)

Pascal’s Hexagon
7.51 Following the notation of Example 7.16, let p1, p2, . . . , p6 be six distinct
points in P

2, no three of which are collinear; and let 	1 = p1 p2, 	2 = p1 p2, . . . ,
	6 = p6 p1; and for j = 1, 2, 3 let qj be the point of intersection of 	j and 	j+3.
Prove that p1, p2,. . . , p6 lie on a conic if and only if q1, q2 and q3 are collinear.

7.52 Let C and D be curves of the same degree d . Let p ∈ C ∩ D, and suppose
that p is singular on both C and D. Show that p is singular on every curve E ∈ C D.
(Note Exercise 5.44.)

7.53 Let A be an irreducible conic curve, and let p1, p2, p3 be distinct points on A.
For i = 1, 2, 3, let 	i be the tangent to A at pi , and let ki be the line connecting the
other two points, e.g. k1 = p2 p3. (a) Show that the lines 	1, 	2, 	3, k1, k2, k3 are all
distinct. (b) Let qi be the point of intersection of 	i and ki . Show that the points q1,
q2 and q3 are collinear. (One way to do it is to use Proposition 7.14, Exercise 7.52,
and Theorem 6.42.)

7.54 Let A be an irreducible conic curve, and let r, p1, p2, p3, p4 be five distinct
points on A. Let 	∗ be the tangent to A at r; let 	1 = p1 p2, 	2 = p2 p3, 	3 = p3 p4,
k1 = p4 r and k2 = r p4. Let q1 = 	1 ∩ k1, q2 = 	2 ∩ 	∗, and q3 = 	3 ∩ k2.
(a) Show that q1, q2 and q3 are collinear. (b) Let C be an irreducible conic curve in
A

2(R), and let p ∈ C. Show how to draw the tangent to C at p if all you have is a
straight-edge ruler [Kir92, Ex.3.7].
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Fig. 7.5 Pappus’ theorem

Fig. 7.6 Pappus’ little theorem

7.55 If in Pascal’s hexagon we replace the irreducible conic A by a pair of lines,
and require that the points p1, . . . , p6 avoid the point of intersection of these two
lines, then we obtain Pappus’ hexagon theorem (Remark 4.46); see Fig. 7.5.

(a) Show that Pappus’ theorem can be proved by the same technique as Pascal’s,
using a modification of Proposition 7.14. (The main use of irreducibility of A

was at the end of the proof. Now we can only conclude that one of the lines
comprising A is a component of D. Conclude though that the other line must
be a component of the conic D \A.)

(b) Suppose that the six points a, . . . , c′ lie in A
2, and that a b′ is parallel to a′ b

and that a c′ is parallel to a′ c. Conclude that b c′ and b′ c are also parallel (see
Fig. 7.6).
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8Quasi-Euclidean Spaces

This chapter is about topology. The general definition of a topological space is
quite abstract. We are mostly concerned with surfaces, which are 2-dimensional
manifolds. In general, an n-manifold is an object which locally looks like R

n: a
space on which we can locally assign coordinates from Euclidean space. To study
manifolds, we will also need to consider some of their subsets. And so we give the
somewhat non-standard definition of a quasi-Euclidean space (Definition 8.48): a
subset of a manifold, equipped with its topology (the collection of open sets).

Since we do not define topological spaces axiomatically, our definition of the
topology of manifolds is again somewhat nonstandard. We first review the topology
of Rn. We then define a chart on a set M to be a bijection between a subset of M and
some open set in R

n. Two charts ϕ and ψ are said to be compatible if the associated
transition function ϕ ◦ ψ−1 is a bijection between open subsets of R

n which is
continuous in both directions. An atlas for M is a collection of pairwise compatible
charts whose domains cover the set M . Given an atlas for M , we can define open
neighbourhoods in M in terms of pull-backs of neighbourhoods under charts. This
approach resembles the standard definition of differentiability in manifolds, which
we will discuss in the next chapter.

Having given the definition, we review several topological notions: first and
second countability, the Hausdorff property, and most importantly, compactness.
We characterise compactness in terms of sequential compactness (convergence of
subsequences). Our treatment is fairly standard. We also discuss the completeness
of the real numbers.

Finally, we introduce quotients of Rn by discrete subgroups, one of which is the
torus.
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8.1 Topology ofRn

We quickly review the topology of Rn, mostly in a sequence of exercises.

Let n � 1. For a point a = (a1, . . . , an) ∈ R
n let |a| =

√
a2

1 + · · · + a2
n. For

two points a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ R
n, the Euclidean distance

between a and b is

d(a, b) = |b − a| =
√

(b1 − a1)2 + · · · + (bn − an)2.

A key fact is that Euclidean distance satisfies the triangle inequality: for all a, b, c ∈
R

n, d(a, c) � d(a, b) + d(b, c) (see Exercise 8.118). Also, d(a, b) = d(b, a) and
d(a, b) = 0 if and only if a = b. In modern terminology we say that d is a metric
on R

n.
Let a ∈ R

n and let r > 0 be a real number. The open ball with centre a and
radius r is

B(a, r) = {b ∈ R
n : d(a, b) < r}.

A subset of Rn is open if it is the union of (possibly infinitely many) open balls. A
subset X ⊆ R

n is a neighbourhood of a point a ∈ R
n if there is some r > 0 such

that B(a, r) ⊆ X.

Exercise 8.1 (a) Show that every open ball B is a neighbourhood of every point
in B. (b) Show that if X ⊆ Y ⊆ R

n and X is a neighbourhood of point a ∈ R
n, Y .

(c) Show that a set X ⊆ R
n is a neighbourhood of a point a ∈ X if and only if there

is an open set U ⊆ X such that a ∈ U . (d) Show that a subset U ⊆ R
n is open if

and only if it is a neighbourhood of every point a ∈ U . «

Exercise 8.2 (a) Show that the intersection of finitely many neighbourhoods of a
point a is a neighbourhood of a. (b) Show that the empty set and R

n are open
subsets of Rn. (c) Show that the union of any number (possibly infinite) of open
subsets of Rn is open. (d) Show that the intersection of finitely many open subsets
of Rn is open. (e) Give an example of a countable family of open subsets of R whose
intersection is not open. «

Exercise 8.3 An open ball B(a, r) is rational if the coordinates of its centre are
rational and its radius is rational: a ∈ Q

n and r ∈ Q. Show that every open subset
of Rn is the union of rational open balls. Show that there are only countably many
rational open balls (whereas there are uncountably many open balls). «
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Exercise 8.4 Let a and b be distinct points in R
n. Show that there are neighbour-

hoods X of a and Y of b which are disjoint.1 «

Let n,m � 1 and let U ⊆ R
n be open. A function f : U → R

m is continuous
at a point a ∈ U if for every neighbourhood Y ⊆ R

m of f (a), f−1[Y ] is a
neighbourhood of a.

Exercise 8.5 Let U ⊆ R
n be open. Show that a function f : U → R

m is continuous
at a point a ∈ U if and only if for every ε > 0 there is some δ > 0 such that for
all x ∈ R

n, if d(a, x) < δ then x ∈ U and d(f (a), f (x)) < ε. «

A function f : U → R
m is called continuous if it is continuous at every point

in U .

Exercise 8.6 Let U ⊆ R
n be open. Show that a function f : U → R

m is continuous
if and only if for every open subset V ⊆ R

m, f−1[V ] is open. «

Remark 8.7 Recall that we allow partial compositions of functions. If f and g are
functions, then (g◦f )(x) is defined if f (x) is defined (i.e. x ∈ dom f ) and g(f (x))

is defined (f (x) ∈ dom g). In other words, we define g ◦ f even if the image of f

is not a subset of the domain of g, but this means that the domain of g ◦ f may be
smaller than the domain of f .

Similarly, we allow partial pointwise images of sets by functions: if f is a
function and Y is a set then f [Y ] = {f (x) : x ∈ Y } is defined even if Y is not
a subset of the domain of f ; of course f [Y ] = f [Y ∩ dom f ]. «

Exercise 8.8 Let U ⊆ R
n and V ⊆ R

m be open, and let f : U → R
m and

g : V → R
k be continuous. Show that the domain of g ◦ f is open, and that g ◦ f is

continuous. «

Exercise 8.9 Let U ⊆ R
n be open and let f : U → R

m. We write f =
(f1, . . . , fm) where fi : U → R. Show that f is continuous if and only if each fi is
continuous. «

Exercise 8.10 Let m,n � 1. We identify R
n+m with R

n×R
m. (a) Let U ⊆ R

n and
V ⊆ R

m. Show that U × V ⊆ R
n+m is open if and only if both U and V are open.

(b) Assuming both are open, let n̄, m̄ � 1, and let f : U → R
n̄ and g : V → R

m̄.
Show that the function (f × g) : (U × V ) → R

n̄+m̄, defined by (f × g)(x, y) =
(f (x), g(y)), is continuous if and only if both f and g are continuous. «

Exercise 8.11 (a) Show that addition and multiplication are continuous (as func-
tions from R

2 to R). (b) Show that the function x �→ 1/x is continuous on R \ {0}.

1 While this is an easy exercise, this property will become important when we discuss manifolds.
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(c) Let U ⊆ R be open; let f, g : U → R be continuous. Show that f + g and fg

are continuous. (Make use of Exercise 8.9.) (d) Show that f/g (defined on those
points x ∈ U for which g(x) �= 0) has open domain and is continuous. «

Exercise 8.12 Continuity is sometimes defined in terms of limits; this can be
reversed. Let U ⊆ R

n be open, let a ∈ U , and let f : U \ {a} → R
m be a function.

We say that limx→a f (x) = b if the function f̂ extending f by defining f̂ (a) = b

is continuous at a. Show that limx→a f (x) = b if and only if for every ε > 0 there
is some δ > 0 such that for all x ∈ U \ {a}, if d(a, x) < δ then d(f (x), b) < ε. «

Exercise 8.13 Let A ∈ Mm×n(R); let M = maxi,j |ai,j | be a bound on the absolute
values of the entries of A. (a) Show that for all u ∈ R

n, if for all i, |ui | � ε,
then |Au| � m

√
nMε. (b) Conclude that every linear map from R

n to R
m is

continuous. «

Exercise 8.14 Let n � 1. Show that the absolute value function x �→ |x| from R
n

to R is continuous. «

8.2 Manifolds

Let M be a set, and fix n � 1.

Definition 8.15 A chart for M is a bijection between a subset of M and an open
subset of Rn.

Intuitively we think of a chart ψ : Y → U (where Y ⊆ M and U ⊆ R
n is open)

as an assignment of coordinates to the points in Y . A point y ∈ Y is assigned the
coordinates of the point ψ(y).

Suppose that ψ : Y → U and ϕ : Z → V are two charts for M . Every point y of
the intersection Y∩Z is given two coordinates: one by ψ and one by ϕ. The function
ϕ ◦ψ−1, which is a bijection from ψ[Y ∩ Z] (the image of the set Y ∩ Z under the
function ψ) to ϕ[Y ∩ Z], gives the translation between one set of coordinates and
the other. See Fig. 8.1. This function is called the transition map between the two
charts. (Note that we are using the partial composition, see Remark 8.7.)

Definition 8.16 Two charts ψ and ϕ for M are compatible if the domain and range
of the transition map ϕ ◦ ψ−1 are open subsets of Rn, and both the transition map
and its inverse are continuous.

As discussed in the overview chapter, this notion of compatibility is a topological
one; we will later encounter more stringent conditions for compatibility of charts.
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Fig. 8.1 The transition map between the two charts ψ and ϕ

Definition 8.17 An atlas for a set M is a collection A of charts for M which are
pairwise compatible, such that every point of M lies in the domain of at least one
chart in A.

Examples
If U ⊆ R

n is open then the identity map idU on U is a chart for U , and the atlas
{idU } containing only this identity map is an atlas for U . For all n � 1, An(R)

(as a set) is R
n and so the atlas containing only idAn(R) is an atlas for An(R). The

complex numbers C can be identified with R
2. More precisely, define a bijection

ψ : C → R
2 by letting ψ(a + ib) = (a, b). Then ψ is a chart for C and the atlas

containing only ψ is an atlas for C. Similarly, An(C) is identified with R
2n. And

similarly, the collection of matrices Mn×m(R) has a global chart by identifying it
with R

nm.

Example 8.18 We define an atlas for the unit circle S ⊆ R
2. Consider the following

four charts. The chart ψ+ is defined on {(a, b) ∈ S : a > 0} by letting ψ+(a, b) =
b. The chart ψ− is defined on {(a, b) ∈ S : a < 0} by letting ψ−(a, b) = b. The
chart ϕ+ is defined on {(a, b) ∈ S : b > 0} by letting ϕ+(a, b) = a. Similarly
define ϕ−.

Every point in the unit circle lies in the domain of at least one of these four
charts. Most of them lie in two; but four points in S lie in only one. The range
of each of these charts is the interval (−1, 1) which is an open subset of R. The
charts are 1–1. To check compatibility consider for example ψ+ and ϕ+. Let Z =
dom ψ+∩dom ϕ+. Then ψ+[Z] = ϕ+[Z] = (0, 1) and the transition map ϕ+◦ψ−1+
is the map sending c ∈ (0, 1) to

√
1− c2, which is continuous. (See Exercises 8.73

and 8.120 below.) «
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Example 8.19 Let n � 1. Recall the affine cover of Pn(R): the maps ρ0,ρ1,. . . ,ρn

defined by ρi(a1, a2, . . . , an) = (a1 : a2 : · · · : ai−1 : 1 : ai : · · · : an). They are bijec-
tions between A

n(R) = R
n and the subset Ui = P

n(R) \ VPn(R)(xi) (the collection
of points (a0 : · · · : an) with ai �= 0). The collection {ρ−1

0 , ρ−1
1 , . . . , ρ−1

n } is an atlas
for Pn(R).

To check compatibility, for ease of notation we consider ρ0 and ρn. Let Z = U0∩
Un. Then ρ−1

0 [Z] = R
n \ VAn(R)(xn) (the collection of (a1, . . . , an) with an �= 0)

and ρ−1
n [Z] = R

n \ VAn(R)(x0), both of which are open in R
n. (See Exercise 8.73).

For a = (a1, . . . , an) ∈ ρ−1
0 [Z] we have

ρ0(a) = (1 : a1 : a2 : · · · : an−1 : an) =
(

1

an

: a1

an

: a2

an

: · · · : an−1

an

: 1
)

and so

(ρ−1
n ◦ ρ0)(a1, . . . , an) =

(
1

an

,
a1

an

, . . . ,
an−1

an

)

which is continuous. «

Example 8.20 Let n � 1. The affine cover of Pn(C) gives an atlas for Pn(C). The
analysis is the same as in Example 8.19, except that the transition maps (for example
(a1, . . . , an) �→ (1/an, a1/an, . . . , an−1/an)) are defined on tuples of complex
numbers (and their domains are identified with subsets of R

2n). Showing these
maps are continuous boils down to showing that: (i) The map z �→ 1/z defined
on C \ {0} is continuous when viewed as a map from R

2 \ {(0, 0)} to R
2; this

is the map (a, b) �→ (a/(a2 + b2),−b/(a2 + b2)). (ii) The map (z,w) �→ zw

defined on C
2 is continuous when viewed as a map from R

4 → R
2; this is the map

(a, b, c, d) �→ (ac− bd, ad + bc). «

Example 8.21 We extend the example given in the introduction (see Fig. 1.1) by
one dimension. Let S2 be the unit sphere in R

3 (the collection of p ∈ R
3 such that

|p| = 1). Define two projections on the sphere. Namely let p+ = (0, 0, 1) be the
north pole of the sphere and let p− = (0, 0,−1) be the south pole. For q ∈ S2\{p+}
let σ+(q) be the point of intersection of the line q p+ with the plane z = 0; similarly
define σ−.

Identifying the plane z = 0 in R
3 with the complex plane (via (x, y, 0) �→

x + iy), show that for q ∈ S2 \ {p+,p−}, σ+(q) · σ−(q) = 1, where z denotes
complex conjugation.2 Conclude that {σ+, σ−} is an atlas for S2 (the transition map
is z �→ 1/z). «

2 Recall that the conjugate of a + ib is a − ib.
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Remark 8.22 In general, when specifying a collection of elements, many texts also
assume that these elements are also indexed by some index set: X = {xi : i ∈ I }.
Set-theoretically, this means that on top of specifying the set X (what are its
elements), we also associate with it a function from some set I of “indices” onto X,
often injective (xi �= xj if i �= j ). If the index set I is ordered in some way (for
example if I = N is the set of natural numbers), then this indexing induces an
ordering on the elements of the set X.

While this may be extremely familiar, it is often unnecessary; we will often
just specify the elements of a set. For example, when specifying the atlas
{ϕ+, ϕ−, ψ+, ψ−} for the unit circle in Example 8.18, we didn’t need to number the
four charts in some way. However, sometimes this notation is useful. For example,
if an atlas is given as an indexed collection of charts A = {ψi : i ∈ I }, then we can
use the shorthand ψi,j for the transition function ψj ◦ ψ−1

i from ψi -coordinates to
ψj -coordinates. We will use this later in the book. «

8.2.1 Topology of Pre-manifolds

The local coordinates allow us to put a topological structure on a set with an atlas.

Lemma 8.23 LetA be an atlas on a set M . The following are equivalent for a point
y ∈ M and a subset Y ⊆ M:

(1) There is a chart ψ ∈ A such that y ∈ dom ψ and ψ[Y ] is a neighbourhood
of ψ(y). (We do not assume that Y is a subset of the domain of ψ , see
Remark 8.7.)

(2) For every chartψ ∈ A such that y ∈ dom ψ , ψ[Y ] is a neighbourhood ofψ(y).

Proof (2)⇒(1) follows from the requirement on A that every y ∈ M is in the
domain of at least one chart in A.

Suppose that (1) holds; let ψ witness this. Let ϕ be any chart in A with
y ∈ dom ϕ; let Z = dom ψ ∩ dom ϕ. Since ψ[Z] is open and y ∈ Z, it is a
neighbourhood of ψ(y). It follows that W = ψ[Y ] ∩ ψ[Z] is a neighbourhood
of ψ(y) (Exercise 8.2). Since the transition map ψ ◦ ϕ−1 is continuous at ϕ(y),
the inverse image (ψ ◦ ϕ−1)−1[W ] = ϕ[ψ−1[W ]] of W by this transition map
is a neighbourhood of ϕ(y); and it is a subset of ϕ[Y ], which is therefore also a
neighbourhood of ϕ(y). ��

Definition 8.24 When the conditions of Lemma 8.23 hold, we say that Y is an A-
neighbourhood of y.

As with algebraic objects, the atlas A is often understood but not mentioned, so we
just say “neighbourhood”.
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Lemma 8.25 Let A be an atlas on a set M . The following are equivalent for Y ⊆
M:

(1) Y is the union of sets of the form ψ−1[U ], where ψ ∈ A and U ⊆ range ψ is
open.

(2) Y is an A-neighbourhood of every point y ∈ Y .

Proof (2)⇒(1): For each y ∈ Y choose some ψy ∈ A such that y ∈ dom ψy .
Since ψy [Y ] is a neighbourhood of ψy(y), there is some open Uy ⊆ ψy [Y ] such
that ψy(y) ∈ Uy . Then Y =⋃

y∈Y ψ−1
y [Uy].

(1)⇒(2): Let y ∈ Y . There is some ψ ∈ A and open U ⊆ range ψ such that
ψ−1[U ] ⊆ Y and y ∈ ψ−1[U ]. This means that y ∈ dom ψ , and U ⊆ ψ[Y ]
and ψ(y) ∈ U , so ψ[Y ] is a neighbourhood of ψ(y). It follows that Y is an A-
neighbourhood of y. ��

Definition 8.26 A subset Y of M satisfying the conditions of Lemma 8.25 is called
an A-open subset of M .

Again A is usually understood. The domain dom ψ of any chart ψ is A-open.

Exercise 8.27 Let A be an atlas on a set M . Show that a subset X ⊆ M is an A-
neighbourhood of a point x ∈ X if and only if there is an A-open set V ⊆ X such
that x ∈ V . «

Exercise 8.28 Let A be an atlas on a set M . Show that: the empty set and M are A-
open subsets of M; and that the collection of A-open subsets of M is closed under
taking arbitrary unions and finite intersections. «

8.2.2 Subspaces

Let A be an atlas on a set M , and let X ⊆ M be any subset. We say that a set Z ⊆ X

is A-open in X if Z = U ∩ X for some A-open subset U of M . We also say that
Z ⊆ X is an A-neighbourhood of x in X if there is an A-neighbourhood Y ⊆ M

of x such that Z = Y ∩X.

Exercise 8.29 (a) Show that Z ⊆ X is an A-neighbourhood of x in X if and only
if there is some V ⊆ Z such that x ∈ V and V is A-open in X. (b) Show that a
set Y ⊆ X is A-open in X if and only if it is an A-neighbourhood in X of every
point y ∈ Y . (c) Show that the collection of sets which are A-open in X contains the
empty set, X, and is closed under taking arbitrary unions and finite intersections. «
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Exercise 8.30 Show that if U ⊆ M is A-open, then a subset of U is A-open in U

if and only if it is A-open. «

The situation becomes potentially confusing when X itself has an atlas B. We
then could have two conflicting notions of open subsets of X: those determined by
the atlas B, and those inherited from M (and the atlas A) by taking intersections
with X. In all such cases we will ensure that these two notions coincide.

Definition 8.31 Let A be an atlas on a set M and let B be an atlas on a set X ⊆ M .
We say that (X,B) is a topological subspace of (M,A) if a subset of X is B-open
if and only if it is A-open in X.

Example 8.32 Let B = {ψ+, ψ−, ϕ+, ϕ−} be the atlas for the unit circle S defined
in Example 8.18. Then (S,B) is a topological subspace of R2 (equipped with the
trivial atlas {idR2}). For example, the pull-backs ψ−1+ [U ] by ψ+ of open sets U ⊆
(−1, 1) are the intersections S ∩ U × (0,∞), which are open in S in the subspace
topology. In the other direction, If V is an open subset of R2 and x = (a, b) ∈ V ∩S

then B(x, r) ⊆ V for some r > 0. Say, for example, a > 0; then V ∩ S contains
ψ−1+ [(a − r, a + r)]. Thus, V ∩ S is a B-neighbourhood of x. «

Exercise 8.33 Similarly, show that the unit sphere S2 in R
3 equipped with the atlas

{σ+, σ−} (Example 8.21) is a topological subspace of R3. «

8.2.3 The Hausdorff Property

Definition 8.34 Let A be an atlas on a set M . We say that (M,A) is Hausdorff
if for any distinct y, z ∈ M there are disjoint Y,Z ⊆ M such that Y is an A-
neighbourhood of y and Z is an A-neighbourhood of z.3

Exercise 8.4 says that each R
n (with the trivial atlas) is Hausdorff. In fact, every

example of an atlas discussed so far satisfies the Hausdorff property. (For a different
example see Exercise 8.124).

Exercise 8.35 Let A be an atlas on a set M , and suppose that (M,A) is Hausdorff.
Show that for all X ⊆ M , for all y, z ∈ X, there are Y,Z ⊆ X such that Y is an
A-neighbourhood of y in X and Z is an A-neighbourhood of z in X. «

Example 8.36 The unit circle with the atlas B = {ψ+, ψ−, ϕ+, ϕ−} is Hausdorff.
This follows from Exercise 8.35, the fact that R2 is Hausdorff (Exercise 8.4) and
(S,B) is a topological subspace of R2 (Example 8.32). (Of course, that (S,B) is

3 We say that Y and Z separate y and z.
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Hausdorff can also be verified directly.) Similarly, the unit sphere S2 is Hausdorff
(Exercise 8.33). «

Exercise 8.37 Let A be an atlas on a set M . Let y, z ∈ M and suppose that there is
a chart ψ ∈ A such that y, z ∈ dom ψ . Show that there are A-neighbourhoods Y

of y and Z of z which are disjoint. «

Example 8.38 Let n � 2. Then P
n(R) and P

n(C) (with the affine cover for an atlas)
are Hausdorff. For let p, q ∈ P

n. If there is some i � n such that p, q ∈ Ui then
neighbourhoods separating p and q are given by Exercise 8.37. Otherwise, for all
i � n either pi = 0 or qi = 0 (where p = (p0 : · · · :pn) and q = (q0 : · · · : qn)).
For neatness consider the simplest example n = 1, so p = (1 : 0) and q = (0 : 1).
We then let Vp = {(1 : a) : |a| < 1} and Vq = {(a : 1) : |a| < 1}. Certainly p ∈ Vp

and q ∈ Vq . Vp = ρ0[B(0, 1)] and Vq = ρ1[B(0, 1)] and so are open in P
n (in the

real case B(0, 1) = (−1, 1), in the complex case B(0, 1) = {z ∈ C : |z| < 1} is
the interior of the unit circle). And Vp ∩ Vq = ∅, because if (1 : a) = (b : 1) and
|a| < 1 then |b| > 1. (Verify the Hausdorff condition when n � 2.) «

8.2.4 Topological Countability

Lemma 8.39 Let A be an atlas on a set M and let X ⊆ M . Let x ∈ X. There
is a collection {Un : n ∈ N} of X-open neighbourhoods of x such that every X-
neighbourhood of x is a superset of one of the sets Un, in fact of all but finitely
many.

Note that “all but finitely many” can be obtained from the weaker condition by
replacing Un by

⋂
m�n Um.

Proof Fix a chart ψ for M such that x ∈ dom ψ . For every n > 0 let Un =
X ∩ ψ−1[B(ψ(x), 1/n)]. That every neighbourhood of x contains one (and so all
but finitely many) of the Un follows from Lemma 8.23. ��

Definition 8.40 Let A be an atlas on M and let X ⊆ M . A basis for the topology
on X is a collection U of sets, each A-open in X, such that for any O ⊆ X, A-open
in X, O =⋃ {U ∈ U : U ⊆ O}. (That is: O is the union of all of its subsets which
are in U .)

Exercise 8.41 Let A be an atlas on M and let X ⊆ M . Show that if U is a basis for
the topology on M then {U ∩X : U ∈ U} is a basis for the topology on X. «

The property described in Lemma 8.39 is usually called in the literature the
“first countable” property. The “second countable” property is the existence of a
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countable basis for the topology. Exercise 8.3 says that there is a countable basis for
the topology on R

n.

Proposition 8.42 Let A be an atlas on M . If A is countable then there is a
countable basis for the topology on M .

Proof For each chart ψ ∈ A consider the collection of sets ψ−1[B(q, r)] where
B(q, r) is a rational ball (see Exercise 8.3) contained in the range of ψ . This is
a countable collection. Combining these collections for all charts in A gives a
countable basis for M: every A-open subset of M is the union of pull-backs of
balls by charts (Lemma 8.25), and each open ball is the union of rational open balls
(Exercise 8.3 and Lemma 8.25). (We use the fact that the union of countably many
countable sets is countable; there is a bijection between N

2 and N.) ��

Example 8.43 In particular, if A is finite then M has a countable basis for its
topology. So for example P

n(R) and P
n(C) (Examples 8.19 and 8.20) have a

countable basis for their topology. «

Exercise 8.44 Let A be an atlas on M and let X ⊆ M . A set D ⊆ X is dense in X
if it intersects every nonempty subset of X which is A-open in X. Show that there
is a countable basis for the topology on X if and only if there is a countable subset
of X which is dense in X. «

For an example of an atlas which does not give a countable basis for the topology
see Exercise 8.125.

8.2.5 Manifolds

Definition 8.45 Let n � 1. An n-manifold is a pair (M,A) where A is an atlas
on M (with charts mapping to R

n) such that: (i) (M,A) is Hausdorff; and (ii) there
is a countable basis for the topology on M .

Example 8.46 All the examples we gave so far of atlases give manifolds; in
particular, projective spaces P

n(R) and P
n(C) are manifolds (Examples 8.38

and 8.43), as is the unit circle. «

Example 8.47 Suppose that M = (M,A) and N = (N,B) are manifolds (m
and n-dimensional respectively). (a) Show that for each ψ ∈ A and ϕ ∈ B, the
map ψ × ϕ (to R

m+n) is a chart. (See Exercise 8.10.) (b) Show that A × B =
{ψ × ϕ : ψ ∈ A & ϕ ∈ B} is an atlas on the Cartesian product M × N . (c) Show
that (M×N,A×B) is a manifold. (d) If X ⊆ M and Y ⊆ N are subsets then X×Y

is a subset of M × N . Let U ⊆ X and V ⊆ Y . Show that U × V is (A × B)-open
in X × Y if and only if U is A-open in X and V is B-open in Y . (e) Show that a set
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O ⊆ X × Y is open in X × Y if and only if it is the union of (possibly infinitely
many) sets of the form U × V , where U is A-open in X and V is B-open in Y . «

8.2.6 Spaces and Continuity

Exercise 8.29 says that if X is a subset of a manifold M then the subsets of X which
are open in X satisfy the abstract definition of a topological space. As discussed
above, we do not need the full generality of this definition, so we give the following
definition:

Definition 8.48 A quasi-Euclidean space is a subset X of a manifold M , equipped
with the collection of sets which are open in X.

Remark 8.49 By Definition 8.45 and Exercise 8.41, every quasi-Euclidean space
has a countable basis for its topology. By Exercise 8.35, every quasi-Euclidean space
is Hausdorff. «

The morphisms between spaces are the continuous maps.

Definition 8.50 Let X and Y be quasi-Euclidean spaces. A function f : X → Y is
continuous if for every set U ⊆ Y which is open in Y , f−1[U ] is open in X.

As above we can also generalise the pointwise definition: A function f : X → Y

is continuous at a point a ∈ X if for every U ⊆ Y which is a neighbourhood of f (a)

in Y , f−1[U ] is a neighbourhood of a in X. A function f : X → Y is continuous if
and only if it is continuous at every point a ∈ X.

Exercise 8.51 Show that the projection map πn : An+1(R) → P
n(R) (Defini-

tion 4.4) is continuous. Show that the same holds when R is replaced by C. «

Exercise 8.52 Let X, Y and Z be quasi-Euclidean spaces, and let f : X → Y and
g : X → Z. (a) Show that the pair map (f, g) : X → Y×Z is continuous if and only
if both f and g are continuous. (b) Let h : Y × Z → X be continuous. Show that
for all y∗ ∈ Y and z∗ ∈ Z, the maps z �→ h(y∗, z) (from Z to X) and y �→ h(y, z∗)
(from Y to X) are continuous. (c) Show that the converse does not hold. (d) Show
that if W is another quasi-Euclidean space, f : X → Y and g : W → Z then the
map (f × g) : X × W → Y × Z is continuous if and only if both f and g are
continuous. «

It is not the case that the inverse of a bijective continuous function is always
continuous.

Example 8.53 Let X = [0, 2π) be the subset of R and let S be the unit circle. The
function f (t) = (cos t, sin t) is a bijection between X and S, and is continuous.
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However its inverse is not continuous: the set U = [0, 1) is an open subset of X, but
f [U ] contains (1, 0) and is not a neighbourhood of (1, 0) in S. «

For this reason the notion of sameness in this category requires bicontinuity.

Definition 8.54 A homeomorphism is a bijection f : X → Y between two quasi-
Euclidean spaces such that both f and f−1 are continuous.

We say that X and Y are homeomorphic if there is a homeomorphism between
them.

Exercise 8.55 Show that the unit circle is homeomorphic to P
1(R). (Consider the

embedding of A1 into P
1. But see also Fig. 1.1 of the introduction.) «

Exercise 8.56 Define a function f : S2 → P
1(C) by letting f (p+) = (1 : 0),

f (p−) = (0 : 1), and for q ∈ S2 \ {p+,p−} let f (q) = ρ0(σ+(q)) = ρ1(σ−(q))

(see Example 8.21; verify the equality). Show that f is a homeomorphism from S2

to P
1(C). «

Exercise 8.57 Show that the composition of continuous functions between quasi-
Euclidean spaces is continuous. Show that being homeomorphic is an equivalence
relation on quasi-Euclidean spaces. «

Exercise 8.58 Let M be a manifold and let ψ be a chart for M . Show that ψ is a
homeomorphism between dom ψ and range ψ . «

Exercise 8.59 Let K be either R or C. Let X be a quasi-Euclidean space, and
let f0, f1, . . . , fn : X → K be continuous. Suppose also that for no x ∈ X

do we have f0(x) = f1(x) = · · · = fn(x) = 0. Show that the map x �→
(f0(x) :f1(x) : · · · :fn(x)) is a continuous map from X to P

n(K). «

Exercise 8.60 Show that changes of coordinates of P
n(R) (and of P

n(C)) are
homeomorphisms. «

The following is essentially the standard definition of a manifold: a space already
equipped with a topology is an n-manifold if it is locally homeomorphic to R

n.

Proposition 8.61 Let X be a quasi-Euclidean space. Let n � 1, and suppose that
A is a family of functions satisfying: (i) Every ψ ∈ A is a homeomorphism between
an open subset of X and an open subset of Rn; and (ii) Every point x ∈ X is in
the domain of some ψ ∈ A. Then A is an atlas on X, (X,A) is an n-manifold,
and a subset of X is (X,A)-open if and only if it is open in X. (In other words, the
(X,A)-topology is identical to the original topology on X.)
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Proof To see that two charts ψ, ϕ are compatible, observe that W = dom ψ ∩
dom ϕ is the intersection of two open subsets of X, and so is open; since ψ is a
homeomorphism, ψ[W ], the domain of the transition function ϕ ◦ ψ−1, is open in
R

n; the transition function itself is the composition of two continuous functions, and
so is continuous.

By Remark 8.49, X is Hausdorff and has a countable basis for its topology; so it
remains to check that the (X,A)-topology is identical to the X-topology. We take
a point x ∈ X and a set Y ⊆ X with x ∈ Y , and show that Y is a neighbourhood
of x in X if and only if it is an A-neighbourhood of x. Let ψ : U → V be a chart
in A with x ∈ U . By Lemma 8.23, Y is an A-neighbourhood of x if and only if
ψ[Y ] = ψ[Y ∩ U ] is a neighbourhood of ψ(x) in R

n, equivalently in V (as V is
open in R

n); since ψ is a homeomorphism, this holds if and only if Y ∩ U is a
neighbourhood of x in U . Since U is open in X, Y is a neighbourhood of x in X if
and only if U ∩ Y is a neighbourhood of x in U (Exercise 8.30). ��

Example 8.62 The atlases defined on the unit circle and the unit sphere (Exam-
ples 8.18 and 8.21) satisfy the conditions of Proposition 8.61, yielding the fact
that these are indeed manifolds which are topological subspaces of R

2 and R
3

respectively (Example 8.32 and Exercise 8.33). «

8.3 Compactness

Let X be a quasi-Euclidean space. An open cover of X is a family of open subsets
of X whose union is X, that is, every point in X belongs to at least one open set in
the collection. For example, if A is an atlas on a set M then {dom ψ : ψ ∈ A} is
an open cover of M . A subcover of an open cover O is a subcollection of O which
is also a cover.

Definition 8.63 A quasi-Euclidean space X is compact if every open cover of X

has a finite subcover.

An easy example of a compact space is a finite one. A compact space can be
thought of as “nearly finite”.

Proposition 8.64 Let X and Y be quasi-Euclidean spaces and let f : X → Y be
continuous and onto Y . If X is compact then so is Y .4

Proof If O is an open cover of Y then
{
f−1[O] : O ∈ O}

is an open cover of X;
a finite subcover of the latter gives a finite subcover of O. ��

4 We say that the continuous image of a compact space is compact.
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8.3.1 Closed Sets

Compactness can be rephrased in terms of families of closed sets. A subset Y of a
quasi-Euclidean space X is closed (in X) if its complement X \ Y is an open subset
of X. Both X and ∅ are closed in X; the union of finitely many closed sets is closed,
and the intersection of any number of closed sets is closed.

Exercise 8.65 Show that every finite subset of a quasi-Euclidean space is closed. «

Exercise 8.66 Let X be a quasi-Euclidean space. For each B ⊆ X we let B, the
closure of B, be the intersection of all closed sets F ⊆ X such that B ⊆ F . This is
well-defined since X is closed. The closure B is the smallest closed set containing B

(B is closed, B ⊆ B, and if F is closed and B ⊆ F then B ⊆ F ; compare with the
idea of generated subgroups on page 37). Show that the other Kuratowski closure

axioms hold: (i) ∅ = ∅; (ii) A ∪ B = A ∪ B for all A,B ⊆ X; and (iii) B = B for
all B ⊆ X. «

Exercise 8.67 Let X be a quasi-Euclidean space. Show that a subset D ⊆ X is
dense in X (see Exercise 8.44) if and only if its closure is X. «

We say that a collection F of closed subsets of a space X has the finite
intersection property if the intersection of any finitely many sets from F is
nonempty.

Exercise 8.68 Show that a quasi-Euclidean space is compact if and only if for any
collection F of closed subsets of X which has the finite intersection property, the
intersection

⋂F of all the sets in F is nonempty. «

Below we are concerned with the compactness of subsets of a quasi-Euclidean
space. Compactness is equivalent to “relative” compactness. Suppose that Y ⊆ X.
We call a collection O of open subsets of X a cover of Y if Y ⊆ ⋃O. This
is equivalent to {O ∩ Y : O ∈ O} being a cover of Y consisting of Y -open sets.
Then Y is compact if and only if every cover of Y consisting of X-open sets has a
finite sub-cover.

Exercise 8.69 Show that if X is a compact space and A ⊆ X is closed, then A is
compact. «

Exercise 8.70 Show that the union of finitely many compact subsets of a space X

is compact. «

Proposition 8.71 Let X be a quasi-Euclidean space and suppose that A ⊆ X is
compact. Then A is a closed subset of X.
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Proof We show that X \ A is a neighbourhood of every point it contains. Let x ∈
X\A. By the Hausdorff property of X (Exercise 8.35), for every y ∈ A find disjoint
X-open sets Uy containing x and Vy containing y. The collection

{
Vy : y ∈ A

}
is

an open cover of A. Since A is compact we can find a finite subset Z of A such
that A ⊆ ⋃

y∈Z Vy . Then
⋂

y∈Z Uy is an X-open set containing x and disjoint
from A. ��

Corollary 8.72 Let X and Y be quasi-Euclidean spaces; let f : X → Y be a
continuous bijection. If X is compact then f is a homeomorphism.

Proof We need to show that f−1 is continuous. By taking complements, it suffices
to show that if A ⊆ X is closed in X then f [A] is closed in Y . Let A ⊆ X be closed
in X. By Exercise 8.69, A is compact. By Proposition 8.64, f [A] is compact. By
Proposition 8.71, f [A] is closed in Y . ��

Exercise 8.73 (a) Show that every polynomial f ∈ R[x1, . . . , xn] defines a contin-
uous function from R

n to R. (See Exercise 8.10.) (b) Conclude that every algebraic
hypersurface of A

n(R) is closed. (c) Show that every algebraic hypersurface
of Pn(R) is closed. (d) Show that the same holds when R is replaced by C. «

8.3.2 Sequences and Limits

Let X be a quasi-Euclidean space; let 〈xn〉 be an infinite sequence of points in X;
let x ∈ X. We say that the sequence 〈xn〉 converges to x (and write limn→∞ xn = x)
if every neighbourhood of x contains xn for all but finitely many n. The Hausdorff
property shows that a sequence can converge to at most one point.

Exercise 8.74 Let m � 1. (a) Show that a sequence 〈xn〉 of points in R
m converges

to a point x ∈ R
m if and only if for every ε > 0 there is some N such that for all n �

N , d(xn, x) < ε. (b) Show that if x = (x1, x2, . . . , xm) and xn = (x1,n, . . . , xm,n)

then 〈xn〉 converges to x if and only if for all i � m, the sequence
〈
xi,n

〉
converges

to xi . «

Suppose that X is a subspace of a quasi-Euclidean space Y . Let 〈xn〉 be a
sequence of points from X, and let x ∈ X. On the face of it, the statement “〈xn〉
converges to x” can be interpreted differently in X and in Y by using either X-
neighbourhoods of x or Y -neighbourhoods of x.

Exercise 8.75 Show that in the situation described, 〈xn〉 converges to x in the sense
of X if and only if 〈xn〉 converges to x in the sense of Y . «

It is quite possible though that X is a subspace of Y and that 〈xn〉 is a sequence
of points from X which converges to a point in Y \ X. For example let X = Q,
Y = R and let 〈xn〉 be a sequence of rational approximations of some irrational
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number. The following proposition shows that this happens exactly when X is not
closed in Y .

Proposition 8.76 Let X be a quasi-Euclidean space. A subset A of X is closed
in X if and only if for any sequence 〈an〉 of points from A, if 〈an〉 converges to a
point a ∈ X then a ∈ A.

Proof Let A ⊆ X. Suppose that A is closed, and let 〈an〉 be a sequence of points
from A which converges to a point a ∈ X. The set X \ A contains none of the
points an and so cannot be a neighbourhood of a. Since X \ A is open, it is a
neighbourhood of all of its points, so a /∈ X \A, which means that a ∈ A.

In the other direction suppose that A is not closed in X. So there is a point a ∈
X\A of which X\A is not a neighbourhood; if U ⊆ X is X-open and a ∈ U then U

and A are not disjoint. By Lemma 8.39 fix a family {Un} of open neighbourhoods
of a with the property that every neighbourhood of a contains all but finitely many
of the Un. For each n we choose some point an ∈ A ∩ Un. The property of the
sets Un ensure that the sequence 〈an〉 converges to a. ��

Continuity can be characterised using convergence of sequences.

Exercise 8.77 Let X and Y be quasi-Euclidean spaces. Show that a function
f : X → Y is continuous at a point a ∈ X if and only if for any sequence 〈an〉
of points from X which converges to a, the sequence 〈f (an)〉 converges to f (a).
(Hint: again consider Lemma 8.39.) «

Exercise 8.78 Let 〈xn〉 and 〈yn〉 be two convergent sequences of real numbers.
(a) show that limn(xn + yn) = lim xn + lim yn and limn xnyn = lim xn · lim yn.
(Use Exercise 8.77 and the continuity of addition and multiplication, Exercise 8.11.)
(b) Show that if for all n, xn � yn then lim xn � lim yn. «

A subsequence of a sequence 〈xn〉 of points is a sequence obtained by removing
some elements of the original sequence. Formally, it is a sequence 〈xf (n)〉 where
f : N→ N is strictly increasing.

Proposition 8.79 A quasi-Euclidean space X is compact if and only if every
sequence of points from X has a subsequence which converges to some point in X.

Proof First suppose that 〈xn〉 is a sequence of points from X which has no
converging subsequence. We note that the set of points Z = {xn : n ∈ N} is infinite.
In fact no point can appear infinitely often as some xn; otherwise 〈xn〉 has a constant
subsequence, and that subsequence converges to that constant value.

For each y ∈ X there is some open Vy ⊂ X containing y which contains only
finitely many of the points xn. To see this fix a family {Um} of open neighbourhoods
of y given by Lemma 8.39. Suppose that each Um contains infinitely many points xn.
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Inductively we define a subsequence 〈xf (n)〉 of 〈xn〉 which converges to y: given
xf (n−1) we choose f (n) > f (n− 1) such that xf (n) ∈ Un.

Having chosen the sets Vy as described we see that the collection
{
Vy : y ∈ X

}

is an open cover of X which has no finite subcover: otherwise the set Z is contained
in the union of finitely many sets, each of which contains only finitely many
elements of Z; this would imply that Z is finite.

In the other direction suppose that every sequence of elements of X has a
convergent subsequence. To show that X is compact let O be an open cover of X. We
show that O has a finite subcover in two steps: first we show that O has a countable
subcover W ; then we find a finite subcover of W .

Let U be a countable basis for the topology on X (see Remark 8.49). Let V be the
collection of sets U ∈ U such that U ⊆ O for some O ∈ O. Then V is countable (it
is a subcollection of U). Every set in O is the union of sets from U , and all of these
are in V ; so

⋃O = ⋃V , which shows that V is an open cover of X. Each element
of V is a subset of some element of O; choosing one for each element of V gives us
a countable subcover W of O.5

Let {W1,W2, . . . } be an enumeration of the sets in W , and let Xn =⋃
m�n Wm.

We show that Xn = X for some n. If not then for each n we pick some xn ∈ X \Xn.
By assumption, the sequence 〈xn〉 has a converging subsequence 〈xf (n)〉; let x =
limn→∞ xf (n). Since

⋃W = ⋃
n Xn is all of X, there is some n such that x ∈ Xn.

But then Xn (as an open neighbourhood of x) contains xf (m) for some f (m) > n,
which contradicts Xn ⊆ Xf (m) and xf (m) /∈ Xf (m). This is a contradiction, so for
some n, {Wk : k � n} is an finite subcover of W and so of O. ��

Exercise 8.80 Let X and Y be compact quasi-Euclidean spaces. Show that X × Y

(see Example 8.47) is compact. «

8.3.3 Interlude: Completeness

In the following section we use a basic fact about Euclidean space R
n, namely that

it is complete. There are many equivalent formulations. We mention two.
A sequence of points 〈xm〉 from R

n is called a Cauchy sequence if for all ε > 0
there is some N such that for all k,m � N , d(xk, xm) � ε.

Proposition 8.81 If 〈xm〉 is convergent then it is a Cauchy sequence.

Proof Let y = limm xm. Let ε > 0. There is some N such that for all m � N ,
d(xm, y) < ε. By the triangle inequality, for all m, k � N ,

d(xk, xm) � d(xk, y)+ d(xm, y) < 2ε. ��

5 Note that this argument holds in any quasi-Euclidean space, not necessarily compact.
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Restricted to some subspaces there are Cauchy sequences which do not have
limits. For example, any sequence of rational numbers which converges to an
irrational number is a Cauchy sequence, but does not have a limit in the subspace Q.

Let A ⊆ R be nonempty. An upper bound for A is a real number b such that
b � a for all a ∈ A. Similarly we define lower bounds. A set is bounded from above
if it has an upper bound; similarly we define “bounded from below”. The set A is
bounded if it is bounded both from below and from above. And in general, we say
that a subset of Rn is bounded if it is contained in some open ball B(a, r).

A least upper bound for A is an upper bound b such that b � c for every
upper bound c of A; similarly we define a greatest lower bound. Directly from the
definition we see that a least upper bound, if it exists, is unique, and the same holds
for the greatest lower bound. We write sup A for the least upper bound and inf A for
the greatest lower bound. If A is not bounded from above we write sup A = ∞.

Exercise 8.82 Let A ⊆ R be bounded from above. (a) Show that b = sup A if and
only if b is an upper bound of A, and for all ε > 0 there is some a ∈ A such that
a > b − ε. (b) Give a similar characterisation for inf A. (c) Show that if A ⊂ R is
closed and nonempty, and b = sup A, then b ∈ A. «

The completeness of R says that:

• Every Cauchy sequence of real numbers has a limit.
• Every subset of R which is bounded from above has a least upper bound.

Exercise 8.83 Show that these two statements imply each other. «

Exercise 8.84 (a) Show that every Cauchy sequence of elements of Rn has a limit.
(b) Show that every subset of R which is bounded from below has a greatest lower
bound. «

Exercise 8.85 Show that an open subset of R is the union of a (countable) set of
pairwise disjoint open intervals.6 «

Finally, completeness guarantees the Archimedean property of R:

Proposition 8.86 For every c ∈ R there is some (unique) n ∈ Z such that n � c <

n+ 1.

Proof By replacing c by −c we may assume that c � 0. It suffices to show that
c < m for some natural number m; we can then consider the least such m. If not,

6 Here, as open intervals we also accept rays (a,∞) and (−∞, a), and R itself. This property is
special to R: it is not true that every open subset of R2 is the union of pairwise disjoint open balls,
or open rectangles.
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then N is a bounded subset of R. But N cannot have a least upper bound; if d is an
upper bound for N, then so is d − 1. ��

8.3.4 Compactness in Euclidean Space

The diameter of a subset A of Rn is

sup {d(x, y) : x, y ∈ A} .

The diameter of an open ball B(a, r) in R
n is 2r . The diameter of a set is finite if

and only if it is bounded.

Exercise 8.87 Let A ⊆ R
n be bounded, and let ε > 0. Show that there is a finite

open cover of A consisting of open balls whose diameter is at most ε. «

A sequence 〈ak〉 of points is called bounded if the set {ak : k ∈ N} is bounded.

Exercise 8.88 Let 〈rn〉 be a non-decreasing sequence of real numbers (if n < m then
rn � rm). (a) Show that 〈rn〉 converges if and only if it is bounded, in which case
lim rn = sup{rn : n ∈ N}. (b) Show the result holds for non-increasing sequences,
with sup replaced by inf. «

Proposition 8.89 Every bounded sequence in Rn has a converging subsequence.

Proof Let 〈ak〉 be a bounded sequence; let r be the diameter of the set Z = {ak :
k ∈ N}. We may assume that Z is infinite; otherwise the sequence 〈ak〉 has a
constant subsequence.

Let Z0 = Z. By recursion we define a decreasing sequence of sets Zk (this means
that Zk+1 ⊆ Zk) so that each Zk is infinite and the diameter of Zk is at most r2−k .
Given Zk we appeal to Exercise 8.87 and find a finite collection B of balls, each of
diameter at most r2−(k+1), whose union contains Zk. SinceB is finite there is at least
one B ∈ B such that Zk ∩ B is infinite; we choose such B and let Zk+1 = Zk ∩ B.

Having defined the sequence of sets 〈Zk〉 we inductively choose a subsequence〈
af (k)

〉
of 〈ak〉; given f (k − 1) we find f (k) > f (k − 1) such that af (k) ∈ Zk. The

sequence 〈af (k)〉 is a Cauchy sequence and so has a limit (Exercise 8.84). ��

Exercise 8.90 Show that every compact subset of Rn is bounded. «

The following is known as the Heine-Borel theorem:

Theorem 8.91 A subset of Rn is compact if and only if it is closed and bounded.
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Proof Proposition 8.71 and Exercise 8.90 give one direction. In the other, suppose
that A ⊂ R

n is closed and bounded. Let 〈ak〉 be a sequence of points from A.
The sequence is bounded, and so has a subsequence which converges to some
point a ∈ R

n (Proposition 8.89). Since A is closed, Proposition 8.76 shows that
a ∈ A. ��

Here are a couple of corollaries (both use Proposition 8.64.)

Exercise 8.92 (a) Show that the unit sphere Sn−1 = {a ∈ R
n : |a| = 1} in R

n is
closed and bounded. (You can use Exercise 8.14.) (b) Conclude that for all n � 1,
P

n(R) and P
n(C) are compact (see Exercise 8.51).7 «

Exercise 8.93 Let X be a compact quasi-Euclidean space and let f : X → R

be continuous. Show that f obtains both a maximum and a minimum. (That is,
there are x, y ∈ X such that for all z ∈ X, f (x) � f (z) � f (y). You can use
Exercise 8.82(c).) «

Uniform Continuity
Let A ⊆ R

n and let f : A → R
m. We say that f is uniformly continuous if for

every ε > 0 there is some δ > 0 such that for all a, b ∈ A, if d(a, b) < δ then
d(f (a), f (b)) < ε. If f is uniformly continuous then it is continuous;8 uniform
continuity requires δ to be dependent on ε alone but not on the point at which we
are measuring continuity.

Proposition 8.94 Suppose that K ⊂ R
n is compact. Then any continuous function

f : K → R
m is uniformly continuous.

Proof Fix ε > 0. Let U be the collection of open balls B(a, r) such that for all
b ∈ K ∩ B(a, 2r) we have d(f (b), f (a)) < ε. The continuity of f implies that U
is an open cover of K . Let B(a1, r1), B(a2, r2), . . . , B(ak, rk) be a finite sub-cover.
Let δ = mini�k ri . Let b, c ∈ K and suppose that d(b, c) < δ. Find some i � k such
that b ∈ B(ai , ri ). Then c ∈ B(ai , 2ri ) and so d(f (b), f (c)) � d(f (b), f (ai )) +
d(f (c), f (ai )) < 2ε. ��

Distances from Sets
We defined the distance d(x, y) = |y − x| between two points in R

n; we will need
to extend this to two other notions: the distance between a point and a set, and the
distance between two sets.

For a nonempty set C ⊆ R
n and a point x ∈ R

n we let

d(x, C) = inf {d(x, y) : y ∈ C} .

7 In contrast, An(R) and A
n(C) are not compact.

8 The converse fails, see Exercise 8.132.
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Note that if x ∈ C then d(x, C) = 0. The converse may fail in general. (Consider
for example points in the closure of an open ball.)

Proposition 8.95 Let C ⊆ R
n be nonempty.

(a) The function d(x, C) : Rn → R is continuous.
(b) If C is closed, then for all x ∈ R

n, d(x, C) = 0 if and only if x ∈ C.

Proof For (a), let ε > 0, let x, y ∈ R
n and suppose that d(x, y) � ε. Find z ∈

C such that d(x, z) < d(x, C) + ε (Exercise 8.82). Then d(y, C) � d(y, z) �
d(x, C)+ 2ε. By symmetry, |d(y, C)− d(x, C)| � 2ε.

For (b), suppose that C is closed and that d(x, C) = 0. For every k we can find
some zk ∈ C such that d(x, zk) < 1/k. Then lim zk = x. Proposition 8.76 implies
that x ∈ C. ��

For subsets A and B of Rn define d(A,B) to be

inf {d(x, y) : x ∈ A & y ∈ B} .

Exercise 8.96 Show that d(A,B) = inf {d(a, B) : a ∈ A}. «

Proposition 8.97 Suppose that B is closed, A is compact and that A and B are
disjoint. Then d(A,B) > 0.

Proof By Proposition 8.95, d(a, B) > 0 for all a ∈ A. Since the distance from B

is a continuous function on A and A is compact, this function attains a minimum
(Exercise 8.93). ��

Exercise 8.98 Give an example of two closed subsets F and G of Rn which are
disjoint but such that d(F,G) = 0. «

8.4 Quotients by Discrete Subgroups

We discuss quotients of Rn by discrete subgroups. The torus is one kind of these.

Discrete Sets
Definition 8.99 Let X be a quasi-Euclidean space. A point x ∈ X is isolated if
the singleton {x} is open in X. The space X is called discrete if every point in X is
isolated.

For example, the set of integers (considered as a subspace of R) is discrete.
The definition of being a subspace (Definition 8.31) implies that if X ⊆ M is a
subspace of a manifold then x ∈ X is isolated (in X) if and only if there is some
M-neighbourhood U of x such that U ∩X = {x}.
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Exercise 8.100 Show that every finite quasi-Euclidean space is discrete. «

Proposition 8.101 If a quasi-Euclidean space is discrete and compact then it is
finite.

Proof If X is discrete then {{x} : x ∈ X} is an open cover of X. A finite sub-cover
shows that X is finite. ��

Exercise 8.102 Let X be a quasi-Euclidean space. Show that a set Z ⊂ X is discrete
and closed if and only if there is an open cover of X consisting of sets U , each of
which intersects Z in at most one point. «

Discrete Subgroups of Rn

Let n � 1. We also think of Rn as an abelian group (equipped with addition of
points).

Lemma 8.103 A subgroup G of Rn is discrete if and only if there is some δ > 0
such that for all distinct a, b ∈ G, d(a, b) � δ.

Proof If G is not discrete then let a ∈ G be non-isolated; this means that for all
δ > 0 we can find a group element b ∈ G ∩ B(a, δ) distinct from a.

Suppose that G is discrete. Since 0 = 0R
n is in G and is isolated, there is some

δ > 0 such that G ∩ B(0, δ) = {0}. Let a, b ∈ G and suppose that |b − a| < δ.
Since b − a ∈ G, we must have b = a. ��

Example 8.104 Unlike linear subspaces, there are many kinds of subgroups of Rn;
most are not discrete (for example, Q as a subgroup of R). The canonical example
of a discrete subgroup of Rn is Zn. We can choose δ = 1. «

Lemma 8.103 and Exercise 8.102 (or Proposition 8.76) imply:

Corollary 8.105 Every discrete subgroup of Rn is closed.

Indeed there is a characterisation of discrete subgroups of Rn.

Proposition 8.106 A subgroup of Rn is discrete if and only if it is generated by a
linearly independent subset of Rn.

Proof In one direction, let a ⊂ R
n be linearly independent. Let k = |a|; let G be

the subgroup of Rn generated by a, and let U be the linear subspace of Rn spanned
by a. Let T : Rk → U be a linear isomorphism obtained by mapping the standard
basis of Rk to a. Then T [Zk] = G. By Exercise 8.13, T is a homeomorphism, and
so restricts to a homeomorphism between Z

k and G. Since Zk is discrete, so is G.
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For the other direction, let G ⊂ R
n be a discrete subgroup. Let {u1, . . . ,uk} ⊂ G

be maximal linearly independent; then the linear span of {u1, . . . ,uk} equals the
linear span of G, call it U . Let H be the subgroup generated by u1, . . . ,uk . So H

is a subgroup of G.

Let P =
{∑

i�k λiui : λi ∈ [0, 1]
}

. This is the image of the unit cube in R
k

under a linear map (which is continuous), and so P is compact. Further, for every
a ∈ G there is some x ∈ P ∩G such that a − x ∈ H . Namely, if a = ∑

μiui (as
a ∈ U ) then we choose integers ni such that ni � μi < ni + 1 (Proposition 8.86)
and let x =∑

(μi − ni)ui .
Since G is discrete and closed and P is compact, P ∩G is discrete and compact,

and so is finite (Proposition 8.101). This shows that G/H is a finite group. Let
q = |G/H | be the size of G/H . By Proposition 2.50, for all a ∈ G, qa ∈ H . In
other words, G is a subgroup of the group generated by {(1/q)u1, . . . , (1/q)uk}.

For every g ∈ G write g = ∑
i�k αi(g)ui ; so αi(g) is an integer multiple of

1/q . Let U0 = {0} and for i = 1, . . . , k, let Ui be the linear span of {u1, . . . ,ui}
(so Uk = U ). For each such i we choose some wi ∈ G ∩ Ui such that αi(wi ) > 0,
and is smallest among αi(w) for all w ∈ G ∩ Ui for which αi(w) > 0. Since
wi ∈ Ui \ Ui−1, we see that {w1, . . . ,wk} is linearly independent and so is a basis
for U .

It remains to show that {w1, . . . ,wk} generate G. By induction on i we show
that G ∩ Ui is the subgroup generated by w1, . . . ,wi . Suppose that this has been
shown for i − 1. Let g ∈ G ∩ Ui . Since {w1, . . . ,wi} linearly span Ui , we write
g =∑

j�i λjwj where λ1, . . . , λi ∈ R. We want to show that each λj is an integer.
Let m be the integer such that m � λi < m + 1. Let b = g − mwi . Then

b ∈ G ∩ Ui . We have both b − (λi −m)wi ∈ Ui−1 and wi − αi(wi )ui ∈ Ui−1, so
b − (λi − m)αi(wi )ui ∈ Ui−1; so αi(b) = (λi − m)αi(wi ). This is non-negative
but smaller than αi(wi ). The minimality of αi(wi ) means that αi(b) = 0, i.e., that
λi = m. So b is in G ∩ Ui−1; by induction it is in the subgroup generated by
w1, . . . ,wi−1. So λj for j < i are all integers as well. ��

Quotients by Discrete Subgroups
Let G be a discrete subgroup of Rn; let δ > 0 be given by Lemma 8.103. If the
diameter of a set U ⊂ R

n is smaller than δ, then U intersects every coset of G in at
most one point. For if p, q ∈ R

n are in the same coset of G and |q − p| < δ then as
q − p ∈ G, p = q. In other words, πG�U is one-to-one, where πG : Rn → R

n/G

is the quotient map (see page 38).
We define an atlas on the quotient groupRn/G as follows. We let A = A(Rn,G)

be the collection of all maps ψU = (πG�U)−1, where U ⊂ R
n is an open ball and

the diameter of U is at most δ/2.
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Proposition 8.107 Let G be a discrete subgroup of Rn. Then A = A(Rn,G) is an
atlas on Rn/G, and (Rn/G,A) is a manifold. The quotient map πG : Rn → R

n/G

is continuous.

Proof For brevity write π for πG. Let U and V be open subsets of Rn of diameter
at most δ/2. Let u,u′ ∈ U , v, v′ ∈ V and suppose that π(u) = π(v) and π(u′) =
π(v′). Then v−u and v′−u′ are in G, and since |u− u′| < δ/2 and |v − v′| < δ/2,
|(v − u)− (v′ − u′)| < δ, so v − u = v′ − u′. In other words, there is some a ∈ G

such that for all u ∈ U and v ∈ V , if π(u) = π(v) then v = u + a. (If π[U ]
and π[V ] are disjoint then any a ∈ G would do, vacuously). So the transition map
ψV ◦ ψ−1

U = ψV ◦ (π�U) is the restriction of the map x �→ x + a to the open set
U ∩ (V − a) = {u ∈ U : u+ a ∈ V }, and its range is the open set V ∩ (U + a).
Thus any two charts ψU and ψV are compatible. So A is an atlas on R

n/G.
To show that (Rn/G,A) is a manifold we need to show it has a countable basis

for its topology and that it satisfies the Hausdorff property. For the first we take
rational balls. That is, we let U consists of the sets π[B] where B is a rational
open ball (Exercise 8.3) of diameter at most δ/2; this is a countable basis. For the
Hausdorff property, let A and B be two elements of Rn/G (two cosets of G), and
suppose that these cosets are distinct. Then there is some r > 0 such that d(a, b) � r

for all a ∈ A and b ∈ B. Let U be an open ball of radius smaller than r/2 around
a point a ∈ A, and let V be an open ball of radius smaller than r/2 around a point
b ∈ B. Then π[U ] and π[V ] are disjoint open neighbourhoods of A and B in R

n/G.
Finally, to see that π is continuous, let 〈an〉 be a sequence of points in R

n

converging to a; a tail of this sequence is contained in an open set U of diameter
at most δ/2; since π �U is a homeomorphism it follows that 〈π(an)〉 converges to
π(a). ��

Exercise 8.108 Proposition 8.107 shows that R/2πZ is a manifold. Show that the
map t �→ eit induces a homeomorphism between R/2πZ and the unit circle S. (See
Chap. 1 and Exercise 2.48. You may assume that t �→ eit is continuous.) «

When discussing quotient groups in Chap. 2, we have not mentioned a corre-
spondence between subgroups of the quotient G/H and intermediate subgroups
H ⊆ K ⊆ G (as we will not need it). Another way of stating this correspondence
is that a group homomorphism ψ : G → K induces a group homomorphism
ψ̄ : G/H → K if and only if H ⊆ ker ψ if and only if ψ is H-invariant: if
a +H = b +H then ψ(a) = ψ(b). In other words, if ψ is constant on each coset
of H . In other words, if we can “filter” ψ through the quotient map πH : G → G/H :
we have ψ = ψ̄ ◦ πH for a group homomorphism ψ̄ on G/H .

The following is the topological version of this fact.

Proposition 8.109 Let G be a discrete subgroup of Rn, and let X be a quasi-
Euclidean space. A function f : Rn/G → X is continuous if and only if the function
f ◦ πG : Rn → X is continuous.
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Fig. 8.2 The lattice �

generated by points a and b

Proof If f is continuous then f ◦ πG is the composition of continuous functions
and so is continuous. Suppose that f ◦ πG is continuous. Let ψ = (πG�U)−1 be a
chart for Rn/G. Then (f ◦ πG) ◦ ψ is the composition of continuous functions, so
is continuous; and it is the restriction of f to dom ψ = πG[U ], so f is continuous
on dom ψ . Since the domains of charts cover Rn/G, f is continuous. ��

The Torus
A special case is a torus. Let � be a 2-dimensional discrete subgroup of R2: it is
generated by a pair of linearly independent points (see Fig. 8.2). We call such a
subgroup a lattice in R

2.
We let

T� = R
2/�

be the quotient (quotient group and quotient space); so π� : R2 → T� is the quotient
map.

As in the proof of Proposition 8.106, if � = 〈a, b〉 is the lattice generated by a

and b, then the closed parallelogram determined by a and b is P = Pa,b = {sa+tb :
s, t ∈ [0, 1]}. We know that P is compact, and that π��P is onto T� . Thus:

Proposition 8.110 The torus T� is compact.

Topologically, we can view the quotient as gluing opposite sides of P (see
Fig. 1.2). In this process, the end-points of each side are identified, creating a circle,
and the torus is the product of the resulting two circles:

Exercise 8.111 Extending Exercise 8.108, show that a torus T� is homeomorphic
to the product S × S. «

In our usual picture of the torus as a donut, one of these circles is a cross-section
of the torus; the other becomes a circle “running along” the circumference of the
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torus. Some stretching is necessary to embed the torus into 3-dimensional space.
The product S × S is the “pure” torus for which no stretching is necessary; the
“inner circumference” and “outer circumference” both have the same length; we
need 4 dimensions to realise this.

Remark 8.112 Below, we will identify R
2 with C (and note that the addition

operations are the same). Note that two complex numbers α and β are lin-
early independent over R (when considered as points in R

2) if and only if
β/α /∈ R. «

Topological Groups
A topological group is a group H which is also a quasi-Euclidean space, such that
the group operation is a continuous map from H 2 to H , and the group inverse
function is a continuous map from H to itself.

Exercise 8.113 Show that if G is a discrete subgroup of R
n then R

n/G is a
topological group. «

Two topological groups are topologically isomorphic if there is a group isomor-
phism f : G → H which is also a homeomorphism.

Exercise 8.114 (a) Show that the unit circle S, considered as a subgroup of C, is
a topological group. (b) Extending Exercise 8.108, show that S is topologically
isomorphic to R/2πZ. «

Exercise 8.115 Show that if G and H are topological groups, then so is G×H . «

Exercise 8.116 Extending Exercise 8.111, show that a torus T� and S × S are
topologically isomorphic. «

Exercise 8.117 Let G be a topological group. Show that every open subgroup of G

is also closed. «

8.5 Further Exercises

8.118 For a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ R
n let 〈a, b〉 = a · bt =

a1b1 + · · · + anbn. (a) Prove the Cauchy-Schwarz inequality: |〈a, b〉| � |a| · |b|.
(Hint: consider the sum of squares

∑
i,j�n(aibj − ajbi)

2, which is nonnegative.)
(b) Conclude that |a + b| � |a| + |b|. (c) Derive the triangle inequality for the
Euclidean distance in R

n.
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8.119 Again let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ R
n. (a) Use the hint

in Exercise 8.118 to show that |〈a, b〉| = |a| · |b| if and only if a and b are
linearly dependent over R. (b) Conclude that if a and b are linearly independent
then |a + b| < |a| + |b|.

8.120 (a) Let c > 0 be a real number. Show that if x ∈ R and x2 < c, then there
is some y > x such that y2 < c. Similarly show that if x2 > c then there is some
y < x such that y2 > c. (b) Use the completeness of R to show that every positive
real number has a square root. (c) Show that the square root function is continuous
on [0,∞).

8.121 Define a function f : R → R by letting f (x) = 0 if x is irrational, and
f (x) = 1/m if x is rational and x = n/m in lowest terms. Show that f is continuous
at the irrational numbers and discontinuous at the rational numbers.9

8.122 Show that if q ∈ (−1, 1) then limn qn = 0. (One way to do this: assume that
q > 0. Show that 〈qn〉 is monotone, and so a = limn qn exists; show that qa = a.)

Manifolds and Counter-Examples
8.123 Let n � 1 and let k � n. (a) Show that any k-dimensional subspace
of An(R) is homeomorphic to R

k . (b) Show that a k-dimensional subspace of Pn(R)

(Definition 4.10) is homeomorphic to P
k(R). (c) Show that the same holds when R

is replaced by C.

8.124 Let M ⊂ R
2 be the union of {(x, 0) : x < 0} with {(x, 1) : x � 0} and

{(x,−1) : x � 0}. Define an atlas A on M as follows. It contains two charts: ψ+ is
defined on (x, 0) for x < 0 and (x, 1) for x � 0; in both cases ψ+(x, j) = x. ψ− is
defined on (x, 0) for x < 0 and (x,−1) for x � 0; again we define ψ−(x, j) = x.
(a) Show that A = {ψ+, ψ−} is an atlas on M . (b) Show that (M,A) has a countable
basis for its topology. (c) Show that (M,A) is not a topological subspace of R2.
(d) Show that (M,A) is not Hausdorff.

8.125 Define an atlas A on R
2 as follows. For every x ∈ R, a chart ψx ∈ A is

defined by letting ψx(x, y) = y for all y ∈ R. (a) Show that A is an atlas on R
2.

(b) Show that (R2,A) is Hausdorff. (c) Show that (R2,A) does not have a countable
basis for its topology.

8.126 Let A be an atlas on a set M . Show that (M,A) is Hausdorff if and only if
the diagonal � = {(x, x) : x ∈ M} is an (A × A)-closed subset of M ×M . (See
Example 8.47.)

9 There is no function which is continuous exactly on the rational numbers; see Exercise 13.75.
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8.127 (a) Show that every open ball in R
n is homeomorphic to R

n. (b) Let M be an
n-dimensional manifold. Show that every point in M has a neighbourhood which is
homeomorphic to R

n.

Compactness
8.128 Let E = {0} ∪ {1/n : n ∈ N}. Show directly from the definition
(Definition 8.63) that E is compact (as a subset of R).

8.129 Let A,B be disjoint, compact subsets of a quasi-Euclidean space X. Show
that there are disjoint open subsets U,V of X such that A ⊆ U and B ⊆ V .10

8.130 (a) Show that every sequence of real numbers has a monotone subsequence
(a non-decreasing subsequence, or a non-increasing subsequence). (b) Give an
alternative proof of Proposition 8.89 in the case n = 1. (c) Show that the general
case n > 1 follows from the case n = 1.

8.131 Suppose that A ⊆ R is not compact. Show that there is a continuous and
unbounded function (a function whose image is unbounded) f : A → R.

8.132 (a) Show that the function f : R → R defined by f (x) = x2 is continuous
but not uniformly continuous. (b) Find an example of a bounded function on R

which is continuous but not uniformly continuous.

8.133 Use Exercise 8.111 to give an alternative proof that the torus is compact.

Discrete Sets and Groups
8.134 Give an example of a discrete subset of R which is not closed.

8.135 For which α and β in R is the subgroup 〈α, β〉R discrete?

8.136 Let G be a discrete subgroup of Rn. Show that Rn/G is compact if and only
if G is n-dimensional.

8.137 We sketch a variant of the proof of Proposition 8.106 in the case n = 2. Let
G be a discrete subgroup of R2. (a) Show that there is some a ∈ G such that |a| =
min{|g| : g ∈ G \ {0}}. (b) Picking such a, show that G ∩ Ra = Za. (c) Suppose
that G �= Za. Show that there is some b ∈ G such that |b| = min{|g| : g ∈ G\Ra}.
(d) Picking such b, suppose that G �= 〈a, b〉. Show that there is some w ∈ G\〈a, b〉

10 In topological language, this says that a compact, Hausdorff space is normal.



220 8 Quasi-Euclidean Spaces

such that w = αa + βb with 0 < α, β � 1/2. (e) Use Exercise 8.119 to show that
|w| < |b|, contradicting the choice of b.

Topological Groups
8.138 Let H = Z × {0} considered as a subgroup of R

2. (a) Show that R2/H

is topologically isomorphic to the cylinder S × R. (b) Show that the cylinder is
homeomorphic to R

2 \ {0}. (Hint: consider the map p �→ (|p|,p/|p|).)

8.139 Let n � 2. Show that the determinant function det : Mn(R) → R is
continuous (recall that Mn(R) is identified with R

n2
so is an n2-manifold).

8.140 We consider the general linear group GLn(R) as a subspace of Mn(R), and
so is a quasi-Euclidean space. (a) Show that GLn(R) is an open subset of Mn(R).
(b) Show that GLn(R) is a topological group. (Hint: for the inverse, consider the
adjugate matrix, see page 48.)

8.141 Let On(R) ⊂ GLn(R) be the collection of orthogonal matrices: those such
that AtA = I . Show that On(R) is compact. (Hint: if A is orthogonal then |Ax| =
|x| for all x.)

8.142 Show that C
∗ = C \ {0} with multiplication of complex numbers is a

topological group.

8.143 Let G be a topological group. Show that the closure of a subgroup of G is
also a subgroup of G.



9Connectedness, Smooth and Simple

A quasi-Euclidean space is connected if it does not consist of two or more pieces
which are separated from each other. This resembles the notion of irreducible
algebraic curves. In this chapter we investigate connectedness, and the somewhat
stronger notion of being path-connected, meaning any two points are connected by
a continuous path. A third notion is that of a space being simply connected, which
very roughly, means that it has “no holes”. For example, the plane and a disc are
simply connected, but the punctured plane R

2 \ {0}, the unit circle and the torus
are not. Simply connected Riemann surfaces play an important role in the theory of
elliptic functions.

The formal definition of simple connectedness has to do with deforming paths, a
process formally called path homotopy. In some instances it will be very convenient
to work with smooth paths and homotopies, for example, in the next chapter, in
which we consider integration along paths (which is in turn a necessary tool for
developing complex analysis). Smoothness, for example, ensures that integrals are
well-defined and that paths have finite lengths.

For this purpose we will introduce differentiable manifolds and talk about smooth
functions on manifolds. As hinted previously, what we need is for the transition
functions to be differentiable. In Sect. 9.3 will review the basics of calculus in more
than one dimension, and then we will define differentiable manifolds. The process
of “smoothening” paths and homotopies requires smooth partitions of unity, which
we discuss in Sect. 9.5. This process will allow us, for example, to show that for
verifying that a subset of Rn is simply connected, it suffices to consider only smooth
paths.

Terminology In this book we call a function which is continuously differentiable
at every point smooth. The term is often taken to mean a stronger condition: being
differentiable infinitely many times. For many of the results mentioning smoothness,
we could take either definition, but we will not verify this.
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9.1 Connectedness, Path and Simple

A quasi-Euclidean space X is called connected if we cannot partition it into two
nonempty open sets; equivalently if the only subsets of X which are both closed and
open are the empty set and X itself.

Exercise 9.1 Show that the continuous image of a connected space is connected.
(In other words, if X is a connected quasi-Euclidean space and f : X → Y is
continuous and onto Y , then Y is connected. Compare with Proposition 8.64.) «

Exercise 9.2 Show that if X is a connected space, Y is a discrete space (Defini-
tion 8.99) and f : X → Y is continuous, then f is constant. «

Recall that a closed interval (in the real line) is a subset

[a, b] = {x ∈ R : a � x � b}

of R, where a < b.

Proposition 9.3 Every closed interval is connected.

Proof Let I = [a, b] be a closed interval. Suppose that I = A ∪ B with A and B

nonempty, disjoint and open. Without loss of generality a ∈ A. Let c = inf B be the
greatest lower bound of B (see page 209). Since B is closed, c ∈ B, so c > a. Since
[a, c) ⊆ A and A is closed, c ∈ A, a contradiction. ��

Exercise 9.4 Prove the intermediate value theorem: if I = [a, b] is a closed interval
and f : I → R is continuous then [f (a), f (b)] ⊆ f [I ]. «

Definition 9.5 Let X be a quasi-Euclidean space. A path in X is a continuous
function from a closed interval to X.

There is an important physical intuition here. A path γ : I → X traces the
movement of a body (say a particle) in the space X. The input for γ represents
time. Say I = [a, b]. The movement begins at time t = a (and the particle starts at
the point γ (a)), and the movement concludes at time t = b and at the point γ (b).
Continuity means that the particle cannot jump instantaneously from one point to
another. We say that γ (a) and γ (b) are the end-points of γ ; alternatively that the
path is from γ (a) to γ (b). An important distinction to make is between the path and
its image γ [I ] (we also write γ [a, b]): the image tells us the route the particle took,
but not how quickly it moved (or in which direction).

Definition 9.6 A quasi-Euclidean space X is path-connected if for any two points
x, y ∈ X there is a path in X from x to y.
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Exercise 9.7 Show that the continuous image of a path-connected space is also
path-connected. «

Exercise 9.8 Show that the torus is path-connected. «

Proposition 9.9 Every path-connected quasi-Euclidean space is connected.

Proof Suppose that X is not connected; let A ⊂ X be both closed and open (but
not empty and not all of X). Pick a point a ∈ A and another point b ∈ X \A. There
cannot be a path from a to b. For suppose that γ : I → X is such a path. Let Y be
the image γ [I ] of the path. The closed interval I is connected, so by Exercise 9.1, Y
is connected. But Y is manifestly not connected: Y ∩A is both closed and open in Y ,
and equals neither Y nor the empty set. ��

Concatenation of Paths
Suppose that a < b < c are real numbers and that γ : [a, b] → X and δ : [b, c] →
X are paths in X such that γ (b) = δ(b). Then we can naturally define a path γ ˆδ
from [a, c] → X by “concatenating” γ with δ: travel along γ between time a and
time b, then travel along δ until time c. Formally of course (γ ˆδ)(t) is defined as
γ (t) if t ∈ [a, b] and as δ(t) if t ∈ [b, c]. It is not difficult to formally show that γ ˆδ
is continuous (exercise!).

Actually it is not that important that b, the right end-point of the domain of γ ,
equals the left end-point of the domain of δ. We can move the domains of paths
about, for example by shifting; if γ is a path with domain [a, b] and d is a real
number then we can define γ̃ with domain [a+d, b+d] by letting γ̃ (t) = γ (t−d).
We will consider γ̃ as essentially the same as γ . Thus we can move the domain of γ

so that it ends at the start of the domain of δ.
In general, the notion of a re-parameterisation of a path allows us to not only

shift the domain but also, for example, stretch it; see Exercise 9.108.
There are connected spaces which are not path-connected (see Exercise 9.89 for

an example.) However we do obtain a restricted converse to Proposition 9.9.

Proposition 9.10 A manifold is connected if and only if it is path-connected.

Proof Let M be a connected manifold; we show that it is path-connected. For a, b ∈
M let a ∼ b if there is a path in M from a to b. Concatenation of paths shows that
this relation is an equivalence relation on the points of M . We need to show there is
only one equivalence class.

We show that every equivalence class is open. For let a ∈ M; let ψ be a chart
for M with a ∈ dom ψ; find some small positive ε such that B(ψ(a), ε) ⊆ rangeψ .
For every point c ∈ B(ψ(a), ε), the linear path from ψ(a) to c is contained
in B(ψ(a), ε). Composing with ψ−1 we see that ψ−1[B(ψ(a), ε)] is an open
neighbourhood of a in M which is a subset of the equivalence class of a.
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Let A be a ∼-equivalence class. Then M \ A is the union (possibly empty) of
equivalence classes, hence the union of open sets, and so is open. This shows that A

is both closed and open in M . Since M is connected it follows that A = M , as
required. ��

9.1.1 Homotopy; Simple Connectedness

Two paths are “similar” if we can continuously deform one to another. We formalise
it as follows. If H : [0, 1]×[a, b] → X is a function then for all s ∈ [0, 1]we define
Hs : [a, b] → X by Hs(t) = H(s, t). If H is continuous then for each s, Hs is
continuous, i.e. is a path in X. We think of H as a continuous deformation from H0
to H1: at time s the path H0 has been deformed into Hs .

Definition 9.11 Let X be a quasi-Euclidean space. A path homotopy in X is a
continuous function H : [0, 1] × [a, b] → X such that for all s ∈ [0, 1], Hs(a) =
H0(a) and Hs(b) = H0(b).

That is, not only is H0 deformed into H1, but the deformation fixes the end-
points. We say that H is a path homotopy from H0 to H1. We say that two paths are
homotopic if there is a path homotopy between them. Below, we will usually just
say “homotopy” rather than “path homotopy”; there are other notions of homotopy,
but we will not use them.

Exercise 9.12 Let X be a quasi-Euclidean space and let I be a closed interval. Show
that homotopy is an equivalence relation on the collection of all paths γ : I → X

from some point a to some point b. «

Definition 9.13 A path-connected quasi-Euclidean space X is simply connected if
for every a, b ∈ X, any two paths from a to b (with the same domain) are homotopic.

Simple connectedness is a much stronger property than path-connectedness.
Speaking informally, all “reasonable” spaces are path-connected; spaces which are
not are exotic, or consist of disjoint pieces. However many reasonable spaces are not
simply connected, for example the unit circle, or the torus. Simply connected spaces
are those which have no “holes”, though this intuition may be a bit misleading. For
example, as we will shortly see, a sphere is simply connected.

In the case of the circle, it is intuitively clear that the path which travels once
round the circle is not homotopic to the constant path; we cannot continuously
deform the former to the latter while staying within the circle. We will prove this in
the next section.
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The following exercise shows that for measuring simple connectedness, we can
restrict our attention to loops. A path is called a loop (or sometimes, confusingly,
“closed”) if it starts and ends at the same point (γ (a) = γ (b)). The following
characterisation is usually given as a definition of simple connectedness.

Exercise 9.14 Let X be a path-connected space. Show that X is simply connected
if and only if every loop in X is homotopic to a constant path. «

Example 9.15 A subset E ⊆ R
n is called convex if for all a, b ∈ E, the straight

line segment {(1− s)a + sb : s ∈ [0, 1]} from a to b is a subset of E.
Immediately, a convex subset of R

n is path-connected. In fact every convex
subset of Rn is simply connected. Two paths γ, δ : I → X with the same end-points
are homotopic by the linear homotopy defined by

Hs(t) = (1− s) · γ (t)+ s · δ(t).

(Show that H is indeed continuous.)
For example, an open ball in R

n, and R
n itself, are convex, and so simply

connected. «

Here is another example. Recall that S2, the unit sphere in R
3, is homeomorphic

to the Riemann sphere P1(C) (Exercise 8.56).

Proposition 9.16 The sphere P1(C) is simply connected.

Proof Recall that U0 = P
1(C) \ {(0 : 1)} and U1 = P

1(C) \ {(1 : 0)} are both
homeomorphic to R

2 (via the maps ρ0 and ρ1), and so are simply connected. Also,
U0 ∩ U1 is homeomorphic to the punctured plane R

2 \ {0} (via either map), and so
is path-connected.

Let γ : I → P
1(C) be a loop; we show that it is homotopic to a constant loop.

Let p0 be the start- and end-point of γ . Since changes of coordinates of P1(C) are
homeomorphisms (Exercise 8.60), we may assume that p0 ∈ U0 ∩ U1.

Since γ is continuous, each t ∈ [a, b] has a neighbourhood V in I (which we can
take to be an interval) such that γ [V ] ⊆ U0 or γ [V ] ⊆ U1. Since I is compact, there
is a finite covering of I of such neighbourhoods. Hence, we can break up the domain
I = [a, b] of γ into finite intervals which γ maps into either U0 or U1. That is, we
can find a = t0 < t1 < · · · < tk = b so that for each i = 1, 2, . . . , k, the image
γ [ti−1, ti] is contained in U0 or contained in U1. By taking the unions of successive
sub-intervals, we may assume that for each i = 0, 1, . . . , k, γ (ti) ∈ U0 ∩ U1.

Now for each i, we can find a path ηi (with domain [ti−1, ti ]) in U0 ∩ U1 from
γ (ti−1) to γ (ti). And since both ηi and γ �[ti−1,ti ] are contained in either U0 or U1,
and either is simply connected, the paths ηi and γ �[ti−1,ti ] are homotopic. Letting η

be the concatenation η1ˆη2ˆ · · · ˆηk , and concatenating the homotopies, we see that
γ and η are homotopic in P

1(C). Since η is a path in U0 ∩U1, it is a path in U0, and
so homotopic in U0, and hence in P

1(C), to a constant loop. ��
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Remark 9.17 One could wonder if we worked too hard to prove that the sphere
is simply connected. For let γ be a loop in P

1(C). We can then take any point
p ∈ P

1(C) which is not in the image of γ , and find a homotopy between γ and a
constant loop in P1(C)\{p}, which is homeomorphic to R

2 and so simply connected.
This is a reasonable plan, except that there are some pathological loops whose
image is all of P1(C)! (see the related Exercise 10.53). Thus, an alternative proof of
Proposition 9.16 is to first show that every path in the sphere is homotopic to a path
which does not fill all of the sphere. This can be done using Exercise 8.85. «

9.2 Lifting Maps

Let G be a discrete subgroup of Rn and let X be a quasi-Euclidean space.

Definition 9.18 A lifting of a continuous map f : X → R
n/G is a continuous map

F : X → R
n satisfying πG ◦F = f , where πG : Rn → R

n/G is the quotient map.

A lifting is a “continuous choice of representatives”: since the elements of Rn/G

are cosets of G, a lifting of f is a continuous map which for every x ∈ X, chooses
a point in the coset f (x).

Lemma 9.19 Suppose thatX is connected; suppose that F0 andF1 are both liftings
of a continuous map f : X → R

n/G. Then there is some fixed g ∈ G such that
F1(x)− F0(x) = g for all x ∈ X.

Proof For every x ∈ X, F1(x) − F0(x) ∈ G. The function F1 − F0 is
continuous. Since X is connected and G is discrete, F1 − F0 must be constant
(Exercise 9.2). ��

Proposition 9.20 Every path in R
n/G has a lifting.

Proof Let γ : [a, b] → R
n/G be a path. For every t ∈ [a, b], γ (t) lies in the

domain of some chart for R
n/G. Since [a, b] is compact, we can find a finite

sequence a = t0 < t1 < · · · < tm = b such that for each i = 1, . . . ,m, γ [ti−1, ti ]
lies in the domain of a chart. We define a lifting �(t) for t ∈ [t0, ti ] by induction
on i. We start by choosing any chart ψ1 for Rn/G such that γ [t0, t1] ⊆ dom ψ1, and
let �(t) = ψ1(γ (t)) for every t ∈ [t0, t1].

Now ψ1 is the inverse of πG �U1 for some small open ball U1 in R
n. Also,

γ [t1, t2] ⊆ dom ϕ where ϕ is some chart for Rn/G; ϕ is the inverse of πG�V for
some small open ball V . Let g = ϕ(γ (t1))−ψ1(γ (t1)); then g ∈ G. Let U2 = V−g

and let ψ2 = (πG �U2)
−1. Then ψ2 is a chart for R

n/G, dom ψ2 = dom ϕ (so
γ [t1, t2] ⊆ dom ψ2), and ψ1(γ (t1)) = ψ2(γ (t1)). So we can let �(t) = ψ2(γ (t))

for all t ∈ [t1, t2]; we ensured that � is continuous at t1. This determines �(t2); we
continue this process for m steps. ��
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Suppose that γ : [a, b] → R
n/G is a path. Lemma 9.19 and Proposition 9.20,

together with the ability to add a fixed element of G, show that for every point
p ∈ R

n in the coset γ (a)—any point p satisfying πG(p) = γ (a)—there is a unique
lifting � of γ which starts at p (i.e., �(a) = p).

We extend Proposition 9.20 by one dimension.

Proposition 9.21 If C ⊆ R
2 is a closed rectangle, then any continuous map

f : C → R
n/G has a lifting.

Proof Let C = [c, d]× [a, b]. Let f a(s) = f (s, a) for s ∈ [c, d]; then f a is a path
in R

n/G, and so we can fix a lifting γ of f a . For each s ∈ [c, d], recall that we let
fs(t) = f (s, t); let ηs be the unique lifting of fs starting at γ (s).

The uniqueness of liftings of paths shows that after choosing a starting point
for γ , we must define F(s, t) = ηs(t). But we need to show that this is continuous;
it suffices to show that for each s and t , if s′ is close to s then ηs ′(t) is close to ηs(t).
We go about it in a slightly roundabout way.

Fix s ∈ [c, d]. Every t ∈ [a, b] has a neighbourhood on which ηs = ψ ◦ fs for
some chart ψ; and there is a neighbourhood A of (s, t) in [c, d] × [a, b] such that
f [A] ⊆ dom ψ . By compactness of [a, b], we can obtain a finite sequence a = t0 <

t1 < · · · < tm = b, charts ψ1, ψ2, . . . , ψm and some δ > 0 such that: (i) ηs = ψi◦fs

on [ti−1, ti]; and (ii) for all u ∈ [c, d] with |u − s| < δ and all t ∈ [ti−1, ti ],
f (u, t) ∈ dom ψi . Further note that by the definition of the charts, ψi(fs(ti)) =
ψi+1(fs(ti )) implies that ψi = ψi+1 on some neighbourhood of f (s, ti ) = fs(ti );
so by shrinking δ, we may assume that ψi(f (s′, ti)) = ψi+1(f (s, ti )) whenever
|s′ − s| < δ. Further, we may also assume that γ (s′) = ψ1(f (s′, a)) whenever
|s′ − s| < δ. Thus, the map h(s′, t) = ψi(f (s′, t)) for |s′ − s| < δ and t ∈ [ti−1, ti ]
is continuous. And for each s′ within δ of s, t �→ h(s′, t) is a lifting of fs ′ starting
at γ (s′). Uniqueness of this lifting shows that h(s′, t) = ηs ′(t), i.e., F = h for such
points; since h is continuous, so is F . ��

Remark 9.22 Just like paths, Lemma 9.19 implies that if C is a closed rectangle,
x ∈ C and f : C → R

n/G is continuous and πG(p) = f (x), then there is a unique
lifting F of f satisfying F(x) = p. «

Remark 9.23 Suppose that h : [0, 1] × [a, b] → R
n/G is a path homotopy: the

maps ha(s) = h(s, a) and hb(s) = h(s, b) are constant. Then any lifting H of h is
a homotopy as well: this is because Ha (the map s �→ H(s, a)) is a lifting of ha ;
uniqueness of liftings of paths implies that Ha must be constant, and similarly for
Hb. «

Theorem 9.24 Suppose that X is a simply connected manifold. Then every contin-
uous map f : X → R

n/G has a lifting.
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Proof Let f : X → R
n/G be continuous. Choose some x∗ ∈ X, and then some p ∈

R
n such that πG(p) = f (x∗). Let x ∈ X. Suppose that γ and λ are two paths in X

from x∗ to x. So f ◦ γ and f ◦ λ are two paths in R
n/G from f (x∗) to f (x). Let �

and � be the unique liftings of f ◦ γ and f ◦ λ both starting at p. By assumption,
there is a homotopy h in X from γ to λ; so f ◦ h is a homotopy in R

n/G fromf ◦ γ

to f ◦λ; by Remark 9.22, let H be the unique lifting of f ◦h such that H(0, a) = p

(where γ, λ : [a, b] → X). By Remark 9.23, H is a homotopy in R
n from � to �.

Thus, both � and � end at the same point. We can therefore define F(x) by choosing
any path γ in X from x∗ to x and letting F(x) be the end-point of the lifting of f ◦γ

starting at p.
Certainly πG ◦F = f ; it remains to show that F is continuous. First, we observe

that for all x, y ∈ X, for any path θ : [a, b] → X from x to y, if � is the lifting of
f ◦ θ which starts at F(x), then the end-point of � is F(y). To see this fix a path γ

in X from x∗ to x, and let � be the lifting of γ starting at p. Then �ˆ� is the lifting
of f ◦ (γ ˆθ) starting at p.

Now let x ∈ X and let U be a small open ball in R
n around F(x). Let V be

a neighbourhood of x in X such that f [V ] ⊆ πG[U ], i.e., f [V ] is contained in
the domain of the chart ψ = (πG�U)−1. Since X is a manifold, it is locally path-
connected: since locally X looks like an open subset of Rm, we can shrink V so that
it is homeomorphic to a ball in R

m; so we may assume that V is path-connected.
Let y ∈ V ; fix a path θ in V from x to y. Since f [V ] ⊆ dom ψ , � = ψ ◦f ◦ θ is

the unique lifting of f ◦ θ which starts at F(x); so the end-point F(y) of � is in U .
So F [V ] ⊆ U ; hence F is continuous at x. ��

9.2.1 TheWinding Number

The winding number of a loop in the punctured plane is the number of times it goes
around the puncture. To define it, we make use of the notion of a continuous choice
of argument of a nonzero complex number.

Using the isomorphism t + 2πZ �→ eit from R/2πZ to the unit circle
(Exercise 8.108), we can transfer the notion of a lifting to maps to the unit circle:
a lifting of a continuous map f : X → S is a continuous F : X → R such that
f = eiF .

The punctured plane is R
2 \ {0}, which we identify with C

∗ = C \ {0}. An
argument of a nonzero complex number z ∈ C

∗ is any t ∈ R satisfying z = |z|eit .

Definition 9.25 Let X be a quasi-Euclidean space and let f : X → C
∗ be

continuous. A continuous choice of argument for f is a continuous map F : X → R

such that f = |f |eiF .
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So a continuous choice of argument for f : X → C
∗ is a lifting of the map f/|f |

(observe that f : X → C
∗ is continuous if and only if both maps |f | and f/|f | are

continuous). Hence Proposition 9.20 implies:

Proposition 9.26 There is a continuous choice of argument for every path in C
∗.

Let γ : [a, b] → C
∗ be a loop. If θ is a continuous choice of argument for γ then

θ(b) − θ(a) = 2πm for some m ∈ Z. Lemma 9.19 implies that this value m does
not depend on the choice of θ , so we define:

Definition 9.27 The winding number of a loop γ : [a, b] → C
∗ is the unique m

such that θ(b)− θ(a) = 2πm for any continuous choice of argument θ for γ .

Example 9.28 If γ is a constant loop, then a continuous choice of argument for γ is
constant; so the winding number of a constant loop is 0. If γ : [0, 2π] → S is given
by γ (t) = eit , then the identity map on [0, 2π] is a continuous choice of argument
for γ ; so the winding number of γ is 1. «

Proposition 9.29 Let γ1, γ2 : [a, b] → C
∗ be two loops with the same end-point.

Then γ1 and γ2 are homotopic in C
∗ if and only if they have the same winding

number.

Proof In one direction, suppose that γ1 and γ2 are homotopic, say via some
homotopy H : [0, 1] × [a, b] → C

∗. Then H/|H | is a homotopy between γ1/|γ1|
and γ2/|γ2|. Proposition 9.21 and Remark 9.23 imply that there is a continuous
choice of argument � : [0, 1] × [a, b] → R for H with the maps s �→ �(s, a) and
s �→ �(s, b) constant; this shows that γ1 and γ2 have the same winding number.

In the other direction, suppose that γ1 and γ2 have the same winding number m;
let θ1 and θ2 be continuous choices of argument for γ1 and γ2, which by shifting
we may assume both start at the same point t0; then they both end at the same point
t0 + 2πm. For i = 1, 2, the paths �i = (|γi |, θi) (from [a, b] to R

+ × R) are
continuous with the same start and end-points. Since R

+ × R is simply connected
(it is a convex subset of R2), there is a homotopy G in R

+×R from �1 to �2. Write
G = (Gr,Gt ). Then the map GreiGt is a homotopy between γ1 and γ2. ��

If U ⊆ C
∗ then a continuous choice of argument on U is a continuous choice of

argument for the identity function on U : a map θ : U → R with z = |z|eiθ(z) for
all z ∈ U . Theorem 9.24 implies:

Proposition 9.30 If U ⊂ C
∗ is open and simply connected then there is a

continuous choice of argument on U .
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Example 9.31 Fix t0 ∈ R. Let U = C \ {reit0 : r � 0
}

be the result of removing
the infinite ray in direction t0 from the plane. For each z ∈ U we can choose the
unique argument t ∈ (t0, t0 + 2π). «

Proposition 9.32 The following are equivalent for an open and connected U ⊆
C
∗:

(1) There is a continuous choice of argument on U .
(2) The winding number of any loop in U is 0.

Proof First, suppose that α is a continuous choice of argument on U . Let
γ : [a, b] → U be a loop. Then α ◦ γ is a continuous choice of argument for γ , and
α(γ (a)) = α(γ (b)).

In the other direction, suppose that the winding number of any loop in U is 0.
The argument is similar to that of Theorem 9.24. Fix z∗ ∈ U ; for any z ∈ U , let
α(z) = θ(b)− θ(a) where θ is a continuous choice of argument for some path in U

from z∗ to z; the assumption implies that the value α(z) does not depend on the
choice of the path. We observe that for any z,w ∈ U , α(w) − α(z) = θ(b)− θ(a),
where θ : [a, b] → R is any continuous choice of argument along any path in U

from z to w.
To see that α is continuous, let z ∈ U ; let V ⊆ U be a simply connected open

neighbourhood of z (say a small disc). By Proposition 9.30, let β be a continuous
choice of argument on V ; by shifting, we may assume that β(z) = α(z). Then
β = α on V : for any w ∈ V , for any path γ in V from z to w, β ◦ γ is a continuous
choice of argument for γ , and so α(w) − α(z) = β(w)− β(z). ��

Since there are loops with winding number �= 0, we conclude:

• There is no continuous choice of argument on all of C∗.
With Proposition 9.30 we conclude:

• The punctured plane is not simply connected.

9.3 Differentiability: A Reminder

We quickly recall some basic facts about differentiability of multi-variable func-
tions. For more details see for example [Spi65], [Die69, Ch.8] or [Mun91, Ch.2].
Let U ⊆ R

n be open, let a ∈ U , and let f : U → R
m be a function. Another

function g : U → R
m is tangent to f at a if limx→a(f (x) − g(x))/|x − a| = 0

(using the notion of a limit of a function, see Exercise 8.12). This implies that
f (a) = g(a); so unravelling, this says that for all ε > 0 there is some δ > 0
such that for all x ∈ U , if |x−a| < δ then |f (x)−g(x)| < ε|x−a|. Tangency at a
point is an equivalence relation; if f and g are tangent at a, and g and h are tangent
at a, then f and h are tangent at a. Among all possible tangents we seek a translate
of a linear map: a function g(a + h) = g(a)+ T (h) where T : Rn → R

m is linear.
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Exercise 9.33 Suppose that T and S are linear maps from R
n to R

m. Show that if
the functions g(a + h) = b+ T (h) and f (a + h) = b+ S(h) are tangent at a then
S = T . «

Thus there is at most one translate of a linear map which is tangent to f at a. If there
is such a translate f (a) + T (h) then we say that f is differentiable at a and write
Df (a) for the matrix A such that T = TA is multiplication by A. Unravelling again
we see that Df (a) = A if and only if for all ε > 0 there is some δ > 0 such that for
all h ∈ R

n, if |h| < δ then

|(f (a + h)− f (a))− Ah| < ε|h|.

Exercise 9.34 Prove: if f is differentiable at a then it is continuous at a. «

If f is differentiable at every point of U then we get a function Df : U →
Mm×n(R). We say that f is continuously differentiable at a point a ∈ U if f is
differentiable at all points in a neighbourhood of a and the function Df (defined
at least on that neighbourhood) is continuous at a. We say that f is smooth if it is
differentiable on U and the function Df is continuous on U .1

Exercise 9.35 (a) Show that a constant function is differentiable at every point and
its derivative is the zero matrix. (b) Let T = TA : Rn → R

m be a linear map. Show
that T is differentiable at every point and that DT = A at every point. «

Exercise 9.36 Show that the function 1/x (defined on R \ {0}) is smooth. «

If f : U → R
m then f =

(
f1
...

fm

)

, where fi : U → R. Recall that for matrix

multiplication, Rm is the space of columns, not rows. However we will sometimes
abuse notation and write elements of Rm as rows.

Exercise 9.37 Show that a function f : U → R
m is differentiable at a if and only

if each fi is differentiable at a; in that case

Df (a) =
⎛

⎜
⎝

Df1(a)
...

Dfm(a)

⎞

⎟
⎠ .

«

1 Recall that this is nonstandard terminology, see page 221.
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Notation 9.38 When m = 1, Df is a row of length n. When n = 1, Df is a column
of height m, so in this case both f and Df map into R

m.
The notation f ′ and ḟ is often used for Df . We will use the notation ḟ for the

case n = 1. We will use the notation f ′ to denote complex differentiation (from
Chap. 11 onwards).

When m = 1, a common notation for Df is also ∇f , in which case Df is called
the gradient of f . «

The Operator Norm
We will use the notion of the operator norm of a linear map. Let T : Rn → R

m be
linear. By Exercise 8.13, T is continuous; by Exercise 8.14, the map x �→ |T (x)|
is continuous. The closed unit ball B(0, 1) in R

n is compact (Theorem 8.91); by
Exercise 8.93, we can define:

Definition 9.39 For a matrix A ∈ Mm×n(R) we let

‖A‖ = max {|Ax| : |x| � 1} .

Linearity gives:

Proposition 9.40 For all x ∈ R
n, |Ax| � ‖A‖ · |x|.

Exercise 9.41 Show that: (a) If ‖A‖ = 0 then A is the zero matrix. (b) For A,B ∈
Mm×n(R), ‖A + B‖ � ‖A‖ + ‖B‖. (c) For A ∈ Mm×n(R) and c ∈ R, ‖cA‖ =
|c| · ‖A‖. (d) For A ∈ Mm×n(R) and B ∈ Mk×m(R), ‖BA‖ � ‖B‖ · ‖A‖. (e) The
map A �→ ‖A‖ is continuous. (Hint: use Exercise 8.13.) «

Note that in (d) we can have inequality; for a simple example, consider nonzero
matrices A and B such that BA = 0.

The Chain Rule
Proposition 9.42 Let U ⊆ R

n, V ⊆ R
m, f : U → V , g : V → R

k , and a ∈ U .
Suppose that f is differentiable at a and that g is differentiable at f (a). Then g ◦ f

is differentiable at a and D(g ◦ f )(a) = Dg(f (a)) ·Df (a).

This can be intuitively explained: if a translate of the linear map T is tangent to f

at a, and a translate of S is tangent to g at f (a), then the translate of S ◦T is tangent
to g ◦ f at a.
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Sketch of Proof Let b = f (a), Let h be small, let k = f (a + h) − f (a); let q =
g(f (a+h))−g(f (a)). Let A = Df (a) and let B = Dg(b). Then |q−Bk| � ε|k|;
and |k−Ah| � ε|h|. By Proposition 9.40, |Ah| � ‖A‖ · |h|, so |k| � (‖A‖+ε)|h|.
Assuming ε � 1,

|q − Bk| � ε|k| � ε(‖A‖ + 1)|h|.

Again by Proposition 9.40,

|Bk − BAh| = |B(k − Ah)| � ‖B‖ · |k − Ah| � ‖B‖ · ε|h|,

so overall |q − BAh| � (‖A‖ + ‖B‖ + 1)ε|h|. ��

Exercise 9.43 Show that the composition of two smooth functions is smooth. «

Exercise 9.44 Let f, g : U → R
m and let c ∈ R. Show that D(f + g) = Df +Dg

and D(cf ) = c · Df . (In detail, if a ∈ U and f and g are differentiable at a then
f + g is differentiable at a and D(f + g)(a) = Df (a) + Dg(a). You can use
the chain rule, together with Exercise 9.37 and Exercise 9.35 applied to function
(x, y) �→ x + y.) «

9.3.1 Mean Value Inequalities

The following is related to the mean value theorem. It says that if the speed of a car
is bounded by M , then the distance it travels is bounded by M×the time it travels.
In this section we avoid using the mean value theorem, in favour of arguments that
we consider more intuitive. See, for example, [Tuc97] for more details.

Proposition 9.45 Let γ : [a, b] → R
n be continuous, and differentiable on the

open interval (a, b). Let M � 0 and suppose that |γ̇ (t)| � M for all t ∈ (a, b).
Then |γ (b)− γ (a)| � M · (b − a).

Proof We prove the lemma under the assumption that |γ̇ (t)| < M for all t ∈ (a, b).
Then, replacing M by M+ε, we could conclude that |γ (b)−γ (a)| � (M+ε)·(b−a)

for all ε > 0, giving the desired result.
Also, we may assume that γ also has one-sided derivatives at a and b, also

bounded by M—because we can replace [a, b] by [a + ε, b − ε] and then use
continuity of γ .

The two assumptions imply that for every t ∈ [a, b] there is some δ > 0 such
that for all s ∈ [a, b], if |s − t| < δ then |γ (s)− γ (t)| � M · |s − t|. It follows that
if s, r ∈ [a, b], s � t � r and |r − s| < δ then |γ (r)− γ (s)| � M · (r − s).

Suppose that |γ (b) − γ (a)| > M · (b − a). Inductively we define a shrinking
sequence of closed subintervals Ik , starting with I0 = [a, b]. Given Ik = [ak, bk]
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such that |γ (bk) − γ (ak)| > M · (bk − ak), let z be the midpoint of Ik . Either
|γ (bk) − γ (z)| > M · (bk − z) or |γ (z) − γ (ak)| > M · (z − ak); we choose
Ik+1 = [ak, z] or Ik+1 = [z, bk] accordingly.

By completeness of R, z∗ = limk ak = limk bk exists. Fixing δ as above for z∗,
for large enough k, |bk − ak| < δ (and ak � z∗ � bk) giving a contradiction. ��

For R-valued functions we get a lower bound as well:

Exercise 9.46 Let f : [a, b] → R be continuous, and differentiable on (a, b). Let
M ∈ R, and suppose that ḟ (t) > M for all t ∈ (a, b). Show that f (b)− f (a) >

M · (b − a). (Use the technique of Proposition 9.45.) «

Corollary 9.47 Let f : [a, b] → R be continuous and differentiable on (a, b). (a) If
ḟ > 0 on (a, b) then f is (strictly) increasing: if x < y then f (x) < f (y). (b) If
ḟ � 0 on (a, b) then f is nondecreasing: if x < y then f (x) � f (y). (c) If ḟ = 0
on (a, b) then f is constant.

Sketch of Proof (a) is Exercise 9.46 with M = 0. For (b), for every α > 0, apply
Exercise 9.46 to the function f (t) + αt . (c) follows from Proposition 9.45 with
M = 0 (alternatively, from (b), applied to f and −f ). ��

We can extend Proposition 9.45 to functions of more variables:

Proposition 9.48 Suppose that U ⊆ R
n is open and that K ⊆ U is convex (see

Example 9.15); suppose that f : U → R
m is differentiable and that ‖Df ‖ � M

on K . Then for all a, b ∈ K , |f (b)− f (a)| � M|b − a|.

Proof Let γ : [0, 1] → U be defined by γ (t) = (1 − t)a + tb. By the chain rule,
|D(f ◦ γ )| � M|b− a| on (0, 1). Now apply Proposition 9.45. ��

The following proposition gives a “uniform modulus of differentiability”.

Proposition 9.49 Let U ⊆ R
n be open, f : U → R

m be smooth, and K ⊆ U be
compact and convex. Then for every ε > 0 there is some δ > 0 such that for all
a, b ∈ K , if |b − a| < δ then

|(f (b)− f (a))−Df (a) · (b − a)| � ε · |b − a|.

Proof This uses the fact that Df is uniformly continuous on K (Proposition 8.94).
Given ε > 0, find δ > 0 such that ‖Df (b) − Df (a))‖ < ε whenever b, a ∈ K

and |b − a| < δ. Fix a ∈ K . Then K ∩ B(a, δ) is convex (it is the intersection of
two convex sets). We apply Proposition 9.48 on that convex set with the function
x �→ f (x)− (Df (a))x. ��
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Exercise 9.50 Let U ⊆ R be open and let f : U → R be smooth. Define G : U2 →
R by letting

G(x, y) =
{

f (y)−f (x)
y−x

, if x �= y; and

ḟ (x), if x = y.

Show that G is continuous. «

9.3.2 Partial Derivatives

Let f : U → R where U ⊆ R
n. Let a ∈ U . For i � n we let Dif (a) be the

derivative of the function t �→ f (a1, . . . , ai−1, t, ai+1, . . . , an), if it exists. This is
of course the partial derivative in direction xi . When n = 2 we write Dxf for D1

and Dy for D2. (More familiar notation is ∂f/∂xi , and sometimes fxi .)

Exercise 9.51 Suppose that f : U → R is differentiable at a. Show that Df (a) =
(D1f (a),D2f (a), . . . ,Dnf (a)). «

Proposition 9.52 Let U ⊆ R
n, let f : U → R and let a ∈ U . Suppose that for

each i � n, Dif is defined in an open neighbourhood of a and that each Dif is
continuous at a. Then f is differentiable at a.

Sketch of Proof Let b be close to a. Let c0 = a, c1 = (b1, a2, . . . , an),
c2 = (b1, b2, a3, . . . , an), and so on, until cn = b. Then f (b) − f (a) =∑

i�n (f (ci )− f (ci−1)). By Proposition 9.49 (applied on some small closed ball
around a, which is convex and compact),

|(f (ci )− f (ci−1))− (bi − ai) ·Dif (ci−1)| < ε · |bi − ai | � ε · |b − a|.

But |Dif (ci−1)−Dif (a)| < ε, so

|(f (ci )− f (ci−1))− (bi − ai) ·Dif (a)| < 2ε · |b − a|. ��

Exercise 9.53 Let f, g : U → R. Show that D(fg) = fDg + gDf . (Like
Exercise 9.44, but use Proposition 9.52 to calculate the derivative of the function
(x, y) �→ xy.) «

Remark 9.54 Exercises 9.35, 9.44 and 9.53 imply that the function defined by
a polynomial f ∈ R[x1, . . . , xn] is smooth. In the first part of the book, we
used the notation Dxi f for formal differentiation of polynomials over any integral
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domain. For polynomials in R[x1, . . . , xn], the polynomial Dxi f defines the partial
derivative Dif of the function defined by the polynomial f . «

Proposition 9.55 Suppose that U ⊆ R
n is open, f : U → R is differentiable,

c ∈ U and f (c) is a minimum value of f . Then Df (c) = 0.

The same of course holds for a maximum value.

Sketch of Proof The case n = 1 follows from the definition of the derivative: say
f : (a, b) → R is differentiable, c ∈ (a, b), and that ḟ (c) �= 0. Without loss of
generality, suppose that q = ḟ (c) > 0. Find some δ > 0 such that |(f (c + h) −
f (c)) − qh| � q|h|/2 when |h| < δ; then for 0 < h < δ we have f (c − h) <

f (c) < f (c + h).
For the case n > 1, for each i = 1, . . . , n, apply the case n = 1 to the function

x �→ (c1, . . . , ci−1, x, ci+1, . . . , cn) to get Dif (c) = 0. ��

9.3.3 Inverse Functions

Inverse Function Theorem Let U ⊆ R
n be open, let f : U → R

n be smooth, let
a ∈ U and suppose that Df (a) is invertible. Then there is an open neighbourhood
V ⊆ U of a such that f [V ] is open, the restriction f �V is a homeomorphism
between V and f [V ], and its inverse g = (f �V )−1 is differentiable at f (a), with
Dg(f (a)) = Df (a)−1.

Note that the value of the derivative of the inverse can be deduced from the chain
rule, once we know the inverse is indeed differentiable; but the value is revealed
naturally during the proof.

Sketch of Proof of the Inverse Function Theorem First, we claim that there is a
neighbourhood O of a on which f is 1–1, indeed, there is some α > 0 such that
|f (x1) − f (x2)| � α|x1 − x2| for all x1, x2 ∈ O . To see this, let A = Df (a)

and α = 1/(2‖A−1‖). Let O be a small open ball around a (and so convex); by
Exercise 9.41(e) and the continuous differentiability of f , ‖Df (x) − A‖ � α for
all x ∈ O . Applying Proposition 9.48 to the function x �→ f (x) − Ax, for all
x1, x2 ∈ O ,

|f (x1)− f (x2)− A(x1 − x2)| � α|x1 − x2|;

but by definition of α, |A(x1 − x2)| � 2α|x1 − x2|.
Let ε be small; let C = {x : |x − a| = ε} be the boundary of B(a, ε) ⊂ O .

Since f is injective on B(a, ε), f (a) /∈ f [C]. Let r be the distance d(f (a), f [C]).
Since f [C] is compact (Proposition 8.64), it is closed (Proposition 8.71); by
Proposition 8.95, r > 0. Let W = B(f (a), r/2). Let y0 ∈ W . Then there is
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some x0 ∈ B(a, ε) (note: in the open ball) such that f (x0) = y0. Why? Consider
g(x) = |f (x)−y0|2. Note that y �→ |y|2 is the polynomial

∑
y2
i ; it is smooth, and

its derivative at a point y is 2yt (note that y is a column and the derivative is a row).
By the chain rule,

Dg(x) = 2(f (x)− y0)
t ·Df (x).

Since B(a, ε) is compact, g has a minimum on that closed ball, at some x0
(Exercise 8.93). Since |y0 − f (a)| < r/2, |y0 − y| > r/2 for all y on the
boundary f [C], so g(a) < g(x) for all x ∈ C; hence x0 is in the open ball B(a, ε).
Thus by Proposition 9.55, Dg(x0) = 0. Since ε is small and the determinant is
continuous, Df (x0) is invertible; it follows that f (x0) = y0 as required. So we let
V = f−1[W ] ∩ B(a, ε).

Observe that |f (x1) − f (x2)| � α|x1 − x2| shows that the inverse g of f �V is
continuous on W . We need to show that g is differentiable at f (a). Let η > 0 (ε is
already used). Let k be small; let h = a − g(f (a)+ k). Since g is continuous, h is
small as well, so |k − Ah| < η|h|. We bound |h− A−1k| by a constant multiple of
η|k|. Well, as |k| � α|h|,

|h− A−1k| = |A−1Ah− A−1k| � ‖A−1‖ · |Ah− k| <
‖A−1‖ · η|h| < (‖A−1‖/α) · η|k|. ��

Exercise 9.56 Show that under the hypotheses of the inverse function theorem,
we can ensure that g = (f �V )−1 is smooth on f [V ]. (Hint: the determi-
nant is continuous, so Df is invertible on an open set; and matrix inversion is
continuous.) «

Exercise 9.57 Let U ⊆ R
n be open. Show that if f : U → R

n is smooth, 1–1, and
Df (a) is invertible for all a ∈ U , then f [U ] is open and f is a homeomorphism
from U to f [U ], with smooth inverse. «

Remark 9.58 The hypothesis that Df (a) is invertible is not necessary for f to be a
homeomorphism: the function x �→ x3 is a homeomorphism from R to R but has
derivative 0 at 0. In Chap. 11 we will see that in the complex context, this cannot
happen. «

Remark 9.59 When n = 1, some of the consequences of the inverse function
theorem follow from Corollary 9.47. Indeed, suppose that f : [a, b] → R is
continuous, differentiable on (a, b), and that ḟ > 0 on (a, b) (we do not need
to assume that ḟ is continuous on (a, b)). Since f is strictly increasing, it is one-
to-one; since [a, b] is compact, f is a homeomorphism onto its image [f (a), f (b)]
(Corollary 8.72 and Exercise 9.4). So f−1 is well-defined and continuous. We can
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then show that f−1 is differentiable on (f (a), f (b)), using a simple version of part
of the proof of the inverse function theorem. «

9.3.4 Second Derivatives

Suppose that f : U → R is smooth. Then the full derivative Df is a function from U

to R
n (where again we confuse rows and columns). If in turn the function Df is

smooth then we call f “twice smooth”. Applying Proposition 9.52 twice shows
that f is twice smooth if and only if for all i and j , the second partial derivative
Dij f = Di(Djf ) is defined and continuous on U , in which case DDf is the
Hessian matrix (Djif )i,j�n.

Proposition 9.60 Let U ⊆ R
n be open and let f : U → R be twice smooth. Then

the Hessian matrix Djif (a) is symmetric at every a ∈ U .

In fact the proof works under the weaker assumption that f is smooth, and twice
differentiable at a. For an alternative proof see Exercise 10.47.

Sketch of Proof We assume n = 2, the general case is identical. So we need to
show that Dxyf = Dyxf at every point a ∈ U . For simplicity of notation assume
a = 0 = (0, 0).

Let h ∈ R. The proof relies on the fact that

(f (h, h)− f (h, 0))− (f (0, h)− f (0, 0)) = (f (h, h)− f (0, h))− (f (h, 0)− f (0, 0)) .

Call this quantity s(h); we show that Dyxf (0) = limh→0 s(h)/h2. By the
symmetry above the proof will also show that Dxyf (0) equals the same limit.

Let ε > 0 and let h be small; we need to show that

|s(h)− h2 ·Dyxf (0)| � ε|h|2.

Fixing h, for t ∈ [0, h] define g(t) = f (t, h)− f (t, 0); so s(h) = g(h)− g(0). For
p = (p1, p2) ∈ R

2 close to 0,

|(Df (p)−Df (0))−DDf (0) · p| � ε|p|;

taking only the first coordinate we get

|(Dxf (p)−Dxf (0)
)− (

p1 ·Dxxf (0)+ p2 ·Dyxf (0)
)| � ε|p|.

applying this to p = (t, h) and p = (t, 0) we get

|(Dxf (t, 0)−Dxf (0)− t ·Dxxf (0)
)| � ε|t| � ε|h|
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and

|(Dxf (t, h)−Dxf (0)− t ·Dxxf (0)− h ·Dyxf (0)
)| � ε|(t, h)| � √

2ε|h|;

putting these together and noticing that ġ(t) = Dxf (t, h)−Dxf (t, 0) we get

|(ġ(t)− h ·Dyxf (0)
)| � (1+√2)ε|h|.

We will apply this to t = 0; but also to observe that for all t ∈ [0, h],

|ġ(t)− ġ(0)| � 2(1+√2)ε|h|.

Applying Proposition 9.45 to the function g(t)− ġ(0) · t we see that

|s(h)− h · ġ(0)| � 2(1+√2)ε|h|2;

Together with |h·ġ(0)−h2·Dyxf (0)| � (1+√2)ε|h|2 we get the desired inequality.
��

9.4 Differentiable Manifolds

When is a function between two manifolds differentiable? In a manifold, small
neighbourhoods look like R

n, and so we could apply usual differentiability.
However, we need to make sure that the choice of local coordinates does not affect
the result. This invites the concept of a differentiable manifold.

Definition 9.61 A manifold (M,A) is differentiable if every transition function is
smooth.

Note that the inverse of a transition function is also a transition function, so the
definition implies that both a transition function and its inverse are smooth.

Example 9.62 Every manifold we met in the previous chapter is differentiable.
For example, transition maps for the unit circle were

√
1− x2 (with 0 not in

the domain); for projective space, functions such as (ρ−1
n ◦ ρ0)(a1, . . . , an) =(

1
an

, a1
an

, . . . ,
an−1
an

)
, and so on. «

Let M and N be manifolds and let f : M → N be a continuous function. A
coordinate representation of f is a function of the form ϕ ◦ f ◦ ψ−1, where ϕ

is a chart for N and ψ is a chart for M . In other words, we use ϕ and ψ to
choose coordinates on a patch of the domain and a patch of the range; and then
use these coordinates to describe f . This coordinate representation is defined on the
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Fig. 9.1 Giving f coordinates

set {ψ(p) : p ∈ dom ψ & f (p) ∈ dom ϕ} = ψ[dom ψ ∩ f−1[dom ϕ]]; this set is
open since f is assumed to be continuous. See Fig. 9.1.

Proposition 9.63 Let M and N be differentiable manifolds. The following are
equivalent for a continuous function f : M → N:

(1) Every coordinate representation of f�U is smooth.
(2) For every point a ∈ M there is a chart ψ for M and a chart ϕ for N such that

a ∈ dom ψ , f (a) ∈ dom ϕ, and the coordinate representation ϕ ◦ f ◦ ψ−1 is
smooth.

Proof (1)⇒(2): immediate, since M and N are manifolds: for every point a there
are charts ψ for M and ϕ for N such that a ∈ dom ψ and f (a) ∈ dom ϕ.

(2)⇒(1): Let g = ϕ ◦ f ◦ ψ−1 be some coordinate representation of f . To
show that g is smooth it suffices to show that for all c ∈ dom g there is an open
neighbourhood V ⊆ dom g of c such that g is smooth on V (formally, the restriction
g�V of g to V is smooth). Fix some point c ∈ dom g; let a = ψ−1(c). By (2), let
η and μ be charts for M and N such that a ∈ dom η, f (a) ∈ dom μ, and the
coordinate representation h = μ ◦ f ◦ η is smooth. Then on an open neighbourhood
of c, g equals the composition

(
ϕ ◦ μ−1

)
◦ h ◦

(
η ◦ ψ−1

)
.

This is the composition of h with two transition functions, which are assumed to be
smooth, and so is smooth (Exercise 9.43). ��

We call a function satisfying the conditions of Proposition 9.63 smooth. Crite-
rion (2) implies that a function f : M → N is smooth if and only if there is an open
cover O of M such that for all O ∈ O, f�O : O → N is smooth (recall that an open
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cover of M is a collection O of open subsets of M such that M = ⋃O. Also note
that an open subset of a manifold is a manifold.)

Exercise 9.64 Most maps between manifolds, that we have encountered, are
smooth. For example, show that the following maps are smooth: (a) the quotient
map πG : Rn → R

n/G (where G is a discrete subgroup of Rn). (b) The projection
function πN : An+1(R) \ {0} → P

n(R). (c) The isomorphism between S×S and T�

(Exercise 8.111). (d) The homeomorphism between S and P
1(R) (Exercise 8.55).

(e) The homeomorphism between the sphere S2 and the projective complex line
P

1(C) (Exercise 8.56). «

9.5 Partitions of Unity

Partitions of unity are used to glue together locally defined functions. This will allow
us to smoothen continuous maps.

Let M be a differentiable manifold, and let f : M → R
k . We let supp(f ), the

support of f , be the closure of the set {x ∈ M : f (x) �= 0} (see Exercise 8.66).
Suppose that F is a collection of functions from M to R

k; and suppose that for
all x ∈ M , f (x) = 0 for all but finitely many f ∈ F . This holds if x ∈ supp(f ) for
only finitely many functions f ∈ F . Then the sum

∑
f∈F f (x) is well-defined for

every x ∈ M , and so gives a function
∑F from M to R

k .
For differentiability, we need this to happen on neighbourhoods. We say that

a collection G of subsets of M is locally finite if there is an open cover O
of M such that every O ∈ O intersects only finitely many sets from G. We say
that a collection F of functions from M to R

k is locally finite if the collection
{supp(f ) : f ∈ F} is locally finite.

Lemma 9.65 Suppose that F is locally finite and that every f ∈ F is smooth. Then
the sum

∑F : M → R
k is smooth.

Proof Let a ∈ M . By shrinking, we can find a neighbourhood U of a and a chart ψ

for M such that U ⊆ dom ψ , and U intersects supp(f ) for only finitely many
f ∈ F . By Proposition 9.63(1), for each such f , the coordinate representation
f ◦ (ψ �U)−1 is a smooth map from ψ[U ] to R

k . It follows that their sum is a
smooth map from ψ[U ] to R

k . That sum is
∑F ◦ (ψ�U)−1, which is a coordinate

representation of
∑F�U . By Proposition 9.63(2),

∑F is smooth. ��

A partition of unity for a manifold M is a locally finite collection F of smooth
functions from M to [0, 1] such that

∑F is the constant function 1. This notion is
useful if we prescribe small neighbourhoods containing the supports of the functions
in F . Let W be an open cover of M . We say that a collection G of subsets of M is
subordinate to W if for every G ∈ G there is some W ∈ W such that G ⊆ W (the
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closure of G is a subset of W ). A family F of functions is subordinate to W if the
collection {supp(f ) : f ∈ F} is subordinate to W .

Theorem 9.66 Let M be a differentiable manifold and let W be an open cover
of M . There is a partition of unity for M which is subordinate to W .

Before we prove Theorem 9.66, we give an example of how partitions of
unity may be useful. In general, continuous differentiability is meaningful only for
functions defined on open subsets of a manifold. The following lemma allows us to
extend the terminology to closed subsets.

Proposition 9.67 Let M be a differentiable manifold; let A ⊂ M be closed, and let
f : A → R

k be a function. Suppose that every x ∈ A has an M-neighbourhood on
which f can be extended to a smooth function. Then f can be extended to a smooth
function on M .

Proof We define an open cover U of M such that for every U ∈ U there is a smooth
function fU : U → R

k such that fU agrees with f on U ∩ A. By assumption, for
every x ∈ A we can find a neighbourhood of x with this property. Since A is closed,
we add the set M \A to U and let fM\A be any smooth function, say a constant one.

Let F be a partition of unity subordinate to U . For every function θ ∈ F there is
some Uθ ∈ U such that supp(θ) ⊆ Uθ . For each such θ we define gθ : M → R

k by
letting, for x ∈ M ,

gθ (x) =
{

θ(x) · fUθ (x), if x ∈ Uθ ; and

0, otherwise.

Each function gθ is smooth. Here we use the fact that the support is closed. On Uθ ,
gθ is the product of a smooth scalar function and a smooth vector function, and so
is smooth; on the open set M \ supp(θ), the function gθ is the constant 0, and so is
smooth.

The collection of functions {gθ : θ ∈ F} is locally finite because supp(gθ ) ⊆
supp(θ) (use the fact that A ⊆ B implies A ⊆ B). Thus we let g = ∑

θ∈F gθ ; by
Lemma 9.65, g is smooth. It remains to show that g extends f . Suppose that x ∈ A.
Then for all θ ∈ F , gθ (x) = θ(x) · f (x). Since

∑F = 1,

g(x) =
∑

θ∈F
θ(x) · f (x) = f (x). ��

If the conditions of the proposition hold for a closed set A ⊆ M and a function
f : A → R

k then we say that f is smooth on A.
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Exercise 9.68 Let I = [a, b] be a closed interval and let f : [a, b] → R
k be a

function. Show that f is smooth on I if and only if f �(a,b) is smooth, and the
one-sided derivatives limh→0+(f (a + h) − f (a))/h and limh→0−(f (b + h) −
f (b))/h exist and equal the one-sided limits limx→a+ ḟ (x) and limx→b− ḟ (x)

respectively. «

Exercise 9.69 Improve Proposition 9.67 as follows: suppose that in addition to A

and f we are given an open set U ⊇ A. Show that f can be extended to a smooth
function h : M → R

k such that supp(h) ⊆ U . «

9.5.1 Proof of Theorem 9.66

We construct a partition of unity in a number of steps. We first show that every
manifold is the union of countably many compact subsets.

Lemma 9.70 LetM be a manifold. There is an open cover {Un : n ∈ N} ofM such
that for every n, Un is compact and Un ⊆ Un+1.

Proof Let V be a countable basis for the topology of M . By removing some sets, we
may assume that for every V ∈ V there is some chart ψV such that V ⊆ dom ψV :
for every open set U and every a ∈ U , for any chart ψ such that a ∈ dom ψ , there
is some V ∈ V such that a ∈ V and V ⊆ U ∩ dom ψ .

Let W be the collection of sets ψ−1
V [B(a, r/2)], where V ∈ V , a and r are

rational, and B(a, r) ⊆ rangeψV . Then W is a countable open cover of M and for
every W ∈ W , W is compact: as (ψV )−1 is a homeomorphism, it maps the closed
ball B(a, r/2), which is compact by Theorem 8.91, to W .

Now define the sequence U0, U1, . . . recursively. Fix an enumeration W0, W1,
W2, . . . of the sets in W . Let U0 = W0. By induction, suppose that we have
defined Un and that Un is compact. Then there are finitely many elements of W
which cover Un; the closure of their union is compact (Exercise 8.66 and 8.70). We
let Un+1 be their union, together with Wn+1. ��

Lemma 9.71 Let M be a manifold. For any open cover W of M there is a locally
finite open coverO of M , subordinate toW , such that the closure of each O ∈ O is
compact.2

Proof Fix a sequence U0, U1, . . . given by Lemma 9.70; we define an open coverO
by recursion. For notational convenience let U−1 = ∅. At step n � 0 we observe that
Un+1 \ Un is compact (Exercise 8.69). For each x ∈ Un+1 \ Un we find some open
neighbourhood Ox of x which is (a) disjoint from Un−1 (which can be done since

2 In the language of topology, this says that M is paracompact.
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Un−1 is closed, Proposition 8.71); and (b) the closure Ox is compact and a subset
of some set in W . This can be done by choosing Ox to be the inverse image by
some chart of a small open ball. We add a finite subcover of

{
Ox : x ∈ Un+1 \ Un

}

to O. We note that every point in M is in Un+1 \ Un for some n; so O is indeed
an open cover of M . By choice of the sets Ox , O is subordinate to W . For each n,
only finitely many sets in O intersect Un, so the sets Un witness that O is locally
finite. ��

Having secured a locally finite cover we turn to functions. We start by fixing, for
all r > 0, a smooth function hr : R → R such that hr(x) > 0 for all x < r and
hr(x) = 0 for all x � r; for example hr(x) = (x − r)2 for all x � r , hr(x) = 0
otherwise.

Lemma 9.72 Let M be a differentiable manifold. Suppose that K ⊆ O ⊆ M ,
that K is compact and that O is open. Then there is a smooth function f : M →
[0,∞) such that f > 0 on K and supp(f ) ⊆ O .

Proof For each x ∈ K we can find a smooth function fx : M → [0,∞) such that
fx > 0 on a neighbourhood of x and supp(f ) ⊆ O . To see this, let ψ be a chart
for M such that x ∈ dom ψ . Find a real number r > 0 such that the pullback by ψ−1

of the closed ball B(ψ(x), r) is contained in O ∩ dom ψ . Define fx by letting, for
y ∈ M ,

fx(y) =
{

hr(d(ψ(y), ψ(x))), if y ∈ dom ψ; and

0, otherwise.

where recall that d(a, b) denotes the Euclidean distance between the points a and b;
see Exercise 9.99.

By the compactness of K , we can find finitely many points x1, x2, . . . , xk ∈ K ,
and neighbourhoods Ui of xi such that K ⊆ ⋃

i Ui and fxi > 0 on Ui ; we let
f =∑

i�k fxi . ��

We are now ready to prove Theorem 9.66. We are given a differentiable
manifold M and an open cover W of M . We apply Lemma 9.71 twice: first we apply
it to W , and get a locally finite open coverO of M subordinate to W ; and then apply
it to O, and get an open cover U of M subordinate to O. Take some U ∈ U ; there is
some O ∈ O such that U ⊆ O . By Lemma 9.72 let fU : M → [0,∞) be smooth
such that fU > 0 on U and supp(fU ) ⊆ O . Since O is locally finite, so is the
family {fU : U ∈ U}; let g be the sum of this family. Because U is an open cover
of M , fU is strictly positive on U , and every fU ′ is non-negative, we see that g is
strictly positive, and fU � g for all U ; the desired partition of unity is the collection
{fU/g : U ∈ U}. ��
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Remark 9.73 We mentioned above that often the notion of smoothness used is infi-
nite differentiability (C∞ functions) rather than mere continuous differentiability.
One can then require partitions of unity to be C∞ functions. The only extra difficulty
is in getting the functions hr to be infinitely differentiable; one usually uses variants
of the function e−1/x . «

9.6 Differentiable Connectedness

Paths and the notions of connectedness are more useful when they are differentiable.
We will use partitions of unity to smoothen continuous paths and homotopies. For
example, we will see that an open subset of Rn is path-connected if and only if any
two points can be connected by a smooth path.

The following lemma says that continuous functions on a differentiable manifold
can be closely approximated by smooth ones. Recall the discussion around Propo-
sition 9.67 about continuous differentiability on a closed set.

Lemma 9.74 Let M be a differentiable manifold, let F ⊆ M be closed, and let
f : F → R

k be continuous. Let ε > 0. Then there is a smooth function g : M → R
k

such that for all x ∈ F , d(f (x), g(x)) < ε. Further, if A ⊆ F is closed and the
restriction f�A is smooth then we can find such g which agrees with f on A.

Proof Let W be the collection of open sets U such that for all a, b ∈ U ∩ F ,
d(f (a), f (b)) < ε. The continuity of f implies that W is an open cover of M .
Let F be a partition of unity for M which is subordinate to W . For θ ∈ F fix some
Uθ ∈W such that supp(θ) ⊆ Uθ ; and pick some aθ ∈ Uθ ∩F , unless Uθ is disjoint
from F . For θ ∈ F and x ∈ M let

gθ (x) =
{

θ(x) · f (aθ), if Uθ ∩ F �= ∅;
0, if Uθ ∩ F = ∅.

Let g = ∑
θ∈F gθ . By Lemma 9.65, g is smooth. Let x ∈ F ; let G be the (finite)

collection of θ ∈ F such that x ∈ supp(θ). So
∑

θ∈G θ(x) = 1. For all θ ∈ G, aθ is
defined, and so

|gθ (x)− θ(x) · f (x)| = θ(x) · |f (aθ )− f (x)| < θ(x) · ε.

Since f (x) =∑
θ∈G θ(x) · f (x),

d(g(x), f (x)) �
∑

θ∈G
|gθ (x)− θ(x) · f (x)| <

∑

θ∈G
θ(x) · ε = ε

as required.
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Now suppose that f is smooth on A. By Proposition 9.67 let h : M → R
k be

a smooth extension of f �A to M . We modify the construction as follows. We let
the sets in W be open sets U satisfying that both d(f (x), f (y)) < ε for all x, y ∈
U ∩ F , and d(h(x), h(y)) < ε for all x, y ∈ U . Again let F be a partition of unity
subordinate to W ; define Uθ as above, and choose aθ ∈ Uθ ∩F when possible. Now
let, for θ ∈ F and x ∈ M ,

gθ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

θ(x) · h(x), if Uθ ∩ A �= ∅;
θ(x) · f (aθ ), if Uθ ∩ A = ∅ but Uθ ∩ F �= ∅,
0, if Uθ ∩ F = ∅.

Let g = ∑
θ∈F gθ . Again let x ∈ M , and let G be the finite set of θ ∈ F such that

x ∈ supp(θ). If x ∈ A then for all θ ∈ G, Uθ ∩ A �= ∅ so gθ (x) = θ(x) · h(x)

whence g(x) = h(x) = f (x). If x ∈ F \A then for all θ ∈ G, aθ is defined, but it is
possible that for some θ ∈ G, Uθ ∩A �= ∅. But for such θ , f and h are close: fixing
z ∈ Uθ ∩A, we have

d(f (x), h(x)) � d(f (x), f (z))+ d(h(z), h(x)) < 2ε

seeing as f (z) = h(z). So in both cases we have |gθ (x)− θ(x) · f (x)| � 2θ(x)ε.
��

We now discuss differentiable connectedness. To reiterate, a path γ : I → R
n is

smooth if it can be extended to a smooth function on R (and see Exercise 9.68). We
can similarly work with smooth homotopies.

Proposition 9.75 Let U ⊆ R
n be open, and let a, b ∈ U . If there is a path in U

from a to b then there is a smooth path in U from a to b.

Proof Let I = [a, b] be a closed interval and let γ : I → U be a path. The
image E = γ [I ] of the path is compact (Proposition 8.64); by Proposition 8.97,
the distance d(E,Rn \U) between E and the complement of U is positive. In other
words, there is some ε > 0 such that for all a ∈ R

n, if d(a, E) < ε then a ∈ U .
Apply Lemma 9.74 with M = R, F = I , f = γ , A = {a, b} and ε: we can

extend γ �{a}, which is a function defined on a single point, to a smooth function in
a neighbourhood of a, for example a constant one; and similarly for γ �{b}. Let γ̂

be the restriction to [a, b] of the function given by the lemma. It is a smooth path
from γ (a) to γ (b). The image of γ̂ is contained in U : for all t ∈ [a, b], d(γ̂ (t), E) �
d(γ̂ (t), γ (t)) < ε and so γ̂ (t) ∈ U . ��

This gives us an extension of Proposition 9.10: if U ⊆ R
n is open and connected

then it is differentiably path-connected: every two points are connected by a smooth
path. From now on we call an open and connected subset of Rn a region.
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Porism 9.76 The proof of Proposition 9.75 shows that for any path γ : [a, b] → U

there is a smooth path γ̂ : [a, b] → U with the same end-points such that for all t ∈
[a, b], d(γ (t), γ̂ (t)) < ε, where ε is sufficiently small so that B(γ (t), ε) ⊆ U for
all t ∈ [a, b]. This implies that γ is homotopic in U to γ̂ by the linear homotopy
γs(t) = (1 − s)γ (t) + sγ̂ (t). So: every path in U is homotopic (in U ) to a smooth
one. «

Corollary 9.77 Let U ⊆ R
n be a region, and let f : U → R

k be differentiable
such that Df = 0 (the zero matrix) on U . Then f is constant.

Note that in contrast with Proposition 9.48, here we do not assume that U is
convex.

Proof Let a, b ∈ U . By Proposition 9.75 let γ : [a, b] → U be a smooth path from
a to b. Let g = f ◦ γ . Then ġ = 0 on [a, b] (chain rule). By Proposition 9.45, g is
constant, which means that f (b) = f (a). ��

Proposition 9.78 Let U ⊆ R
n be open, and let γ, δ : I → U be two smooth paths

with the same start and end points. If there is a homotopy in U between γ and δ

then there is a smooth homotopy in U between γ and δ.

Proof This is an extension of the argument for Proposition 9.75. Again let I =
[a, b] and let H : [0, 1] × I → U be a homotopy between γ and δ. Again let E

be the range of H , and let ε = d(E,Rn \ U), which is positive since [0, 1] × I is
compact.

The proof is complete once we apply Lemma 9.74 with M = R
2, F = [0, 1]×I ,

f = H , ε, and A being the boundary of F : the points (x, y) with x = 0, or x = 1,
or y = a, or y = b. We just need to observe that H is smooth on A; we use
Proposition 9.67.

Consider, for example, a small open neighbourhood V of the corner (0, a). Map
(x, y) in V to g(x, y) = γ̃ (y), where γ̃ is a smooth extension of γ to R. Then g

agrees with H on A ∩ V , and is smooth. A similar argument works near any point
of A. ��

Corollary 9.79 Let U be a region in R
n (open and connected). Then U is simply

connected if and only if any two smooth paths in U with the same domain and end-
points are homotopic in U by a smooth homotopy.

Proof One direction is Proposition 9.78. In the other direction suppose that any
two smooth paths in U (with the same domain and end-points) are homotopic in U .
Let γ and δ be two paths in U with the same domain I and same end-points a

and b. By porism 9.76 there are smooth paths γ̂ and δ̂ in U from a to b (with
domain I ) such that γ and γ̂ are homotopic in U , and δ and δ̂ are homotopic in U .
The assumption implies that γ̂ and δ̂ are homotopic in U . Combining these three
homotopies together (Exercise 9.12) we see that γ and δ are homotopic in U . ��
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9.6.1 Piecewise Smooth Paths

Smooth paths are much nicer than general paths (they cannot be space-filling, for
example). On the other hand the concatenation of two smooth paths may fail to be
smooth; the derivatives at the meeting point may disagree. So it is useful to consider
the class of paths which are obtained as concatenations of finitely many smooth
paths.

Definition 9.80 A path γ : [a, b] → M is piecewise smooth if there are points
a = c0 < c1 < · · · < ck = b such that for all i < k, the restriction γ �[ci ,ci+1] is
smooth.

In other words, if there is a partition of [a, b] into finitely many closed intervals
I1, I2, . . . , Ik such that γ is smooth on each sub-interval Ij .

Just as we like homotopic smooth paths to be homotopic by a smooth homotopy,
we want homotopic piecewise smooth paths to be homotopic by a piecewise smooth
homotopy. The definition is as expected: a homotopy H : [0, 1] × I → M is
piecewise smooth if we can partition the rectangle [0, 1] × I into finitely many
closed sub-rectangles, on each of which, H is smooth. That is, if there are points
0 = t0 < t1 < · · · < tk = 1 and a = s0 < s1 < · · · < sm = b (where
I = [a, b]) such that for each i = 1, . . . , k and j = 1, . . . ,m, the restriction of H

to [ti−1, ti ] × [sj−1, sj ] is smooth.

Remark 9.81 If H is a piecewise smooth homotopy from γ to δ then all the sections
of H , both horizontal and vertical, are piecewise smooth paths. That is, for all s, the
path Hs defined by Hs(t) = H(s, t) is piecewise smooth, and for all t , the path Ht

defined by Ht(s) = H(s, t) is piecewise smooth as well. «

We have an analogue of Proposition 9.78:

Proposition 9.82 Let U ⊆ R
n be open, and let γ, δ : I → U be two piecewise

smooth paths with the same start and end points. If there is a homotopy in U

between γ and δ then there is a piecewise smooth homotopy in U between γ and δ.

Proof Let γ and δ be piecewise smooth paths in U which are homotopic in U . Let
γ̂ and δ̂ be smooth paths in U homotopic to γ and δ respectively (porism 9.76).
Then by concatenating homotopies, we see that γ̂ and δ̂ are homotopic in U .
By Proposition 9.78, there is a smooth homotopy between them. Recall that the
homotopy between γ and γ̂ given by porism 9.76 is linear in the first variable:
H(s, t) = (1− s)γ (t)+ sγ̂ (t). If J ⊆ I is a closed sub-interval of I on which γ̂ is
smooth, then (as γ is also smooth on J ), H is smooth on [0, 1]×J (consider the two
partial derivatives). Hence H is piecewise smooth. Similarly, δ and δ̂ are homotopic
by a piecewise smooth homotopy. We can concatenate these two piecewise smooth
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homotopies with the smooth homotopy from γ̂ and δ̂ in between, and obtain a
piecewise smooth homotopy from γ to δ. ��

Similarly, Corollary 9.79 extends to piecewise smooth paths.

Proposition 9.83 Let U be a region in R
n. Then U is simply connected if and only

if any two piecewise smooth paths in U with the same domain and end-points are
homotopic in U by a piecewise smooth homotopy.

Proof The second direction follows the proof of Corollary 9.79: the assumption
implies that any two smooth paths are homotopic (by a piecewise smooth homo-
topy), and we use the fact that any path in U is homotopic with a smooth one. The
first direction is given by Proposition 9.82. ��

9.7 Further Exercises

Topological Connectedness
9.84 Let X and Y be quasi-Euclidean spaces. (a) Show that if X and Y are
connected, then so is X × Y . (b) Show that if X and Y are path-connected, then
so is X × Y .

9.85 (a) Show that no two of (0, 1), (0, 1] and [0, 1] are homeomorphic. (Hint: the
difficulty is that perhaps there is a homeomorphism which does not preserve order.
But consider what happens to connectedness if we remove a point or two.) (b) Show
that if n > 1 then R

n and R are not homeomorphic. (c) Show that R3 and R
2 are

not homeomorphic.

9.86 Let X be a quasi-Euclidean space, and let Y ⊆ X be connected. Show that Y

(the closure of Y in X) is connected.

9.87 Use the Intermediate Value Theorem (Exercise 9.4) to prove that every positive
x ∈ R has a square root.

9.88 Show that every continuous function f : [0, 1] → [0, 1] has a fixed point: a
point x ∈ [0, 1] such that f (x) = x.

9.89 Let S = {(x, sin(1/x)) : x > 0} be the graph of the function sin(1/x)

restricted to x > 0. (a) Show that S is path connected. (b) Show that S (the closure
of S in R

2) is S ∪ ({0} × [−1, 1]). (c) Show that S is connected but not path-
connected.
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9.90 Let X be a quasi-Euclidean space. For x, y, write x ∼ y if there is a connected
set Y ⊆ X such that x, y ∈ Y . (a) Show that ∼ is an equivalence relation. (b) Show
that for all x ∈ X, the ∼-equivalence class of x (called the connected component
of x) is the largest connected set Y ⊆ X such that x ∈ Y . (c) Show that every
connected component of X is closed.

9.91 Consider the rational numbersQ as a quasi-Euclidean space (a subspace of R).
Show that the connected components of Q are the singletons.

9.92 Show that the orthogonal group On(R) (see Exercise 8.141) is disconnected.
(Hint: consider the determinant.)

9.93 Let G be a topological group which is a manifold. Show that the connected
component (Exercise 9.90) of the identity 1G is a subgroup of G.

Topological Partitions of Unity
A topological partition of unity for a manifold M is defined just like a partition
of unity (Sect. 9.5), except that the maps are required to be continuous rather than
smooth (which may not make sense if M is not differentiable).

9.94 Show that every manifold has a topological partition of unity, subordinate to
any given open cover.

9.95 Let M be a compact n-manifold. (a) Show that there are: an open cover
{U1, U2, . . . , Uk} of M; for i = 1, . . . , k, a homeomorphism fi from Ui to
an open subset of R

n; and a continuous function ψi : M → [0, 1] such that
supp(ψi) ⊆ Ui and

∑
i�k ψi > 0. (b) For i � k define Fi : M → R

n by letting
Fi(x) = ψi(x)Fi(x) if x ∈ Ui , and fi(x) = 0 otherwise. Show that fi is continuous.
(c) Define F : M → R

k+nk by letting

F(x) = (ψ1(x), ψ2(x), . . . , ψk(x), F1(x), F2(x), . . . , Fk(x)) .

Show that F is a homeomorphism between M and a subset of Rk+nk .3

9.96 Let M be a manifold, and let A ⊆ M be closed. Show that there is a continuous
function f : M → R such that A = f−1{0} is the zero-set of f . (If M is
differentiable then f can be chosen smooth. Hint: if M is an open subset of Rn

then we can let f be the distance from A. In general, use a partition of unity.)

3 We say that every compact manifold is embeddable in a finite-dimensional Euclidean space R
m.

In fact this is true for every manifold, but that is harder to prove.
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Multivariable Differential Calculus
9.97 Let A ∈ Mm×n(R), and let M = max{|ai,j | : i � m, j � n}. Show that
‖A‖ � √

mnM . (Hint: use Exercise 8.118. Note that Exercise 8.13 gives the larger
bound m

√
nM .)

9.98 Show that the positive square root function x �→ √
x is continuous on [0,∞)

and smooth on (0,∞).

9.99 Let a ∈ R
n. Show that the function x �→ d(x, a) is smooth on R

n \ {a}.

9.100 Define f : R→ R by letting f (x) = x2 sin(1/x) for x �= 0, f (0) = 0. Show
that f is differentiable at every point, but that ḟ is not continuous.

9.101 Let U ⊆ R
n be open, let f : U → R be a function, and suppose that for all

i � n, Dif exists at every point of U and is bounded on U (but not necessarily
continuous). Show that f is continuous.

9.102 Let d, n � 1, and let f : Rn → R be differentiable function such that for all
t ∈ R and x ∈ R

n, f (tx) = tdf (x). Show that Euler’s relation holds:

x1D
1f + x2D

2f + · · · + xnD
nf = d · f.

(Compare of course with the algebraic Euler’s Relation.)

Differentiable Manifolds
9.103 Let Q be the boundary of the unit square (that is, ([0, 1]× {0, 1})∪ ({0, 1}×
[0, 1])). Show that there is an atlas on Q which makes it a differentiable manifold
which is a topological subspace of the plane R2.

A diffeomorphism between two differentiable manifolds M and N is a bijec-
tion f : M → N which is smooth and such that f−1 is smooth.

9.104 Let T be the result of rotating the circle {(0, 2+ cos t, sin t) : t ∈ [0, 2π]}
(with centre (0, 2, 0) and contained in the yz-plane) around the axis y = 0. (a) Show
that there is an atlas which makes T a smooth manifold, which is a topological
subspace of R3. (b) Show that T , the torus T� and the torus S×S are diffeomorphic.

9.105 Let h(t) = t3. (a) Show that h is a chart forR. (b) Show that h is topologically
compatible with idR, but that (R, {h, idR}) is not a differentiable manifold (that
is, h and idR are not differentiably compatible). (c) Nonetheless, show that the
differentiable manifolds (R, h) and (R, idR) are diffeomorphic.
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9.106 Let M be a differentiable manifold. Show that every path in M is homotopic
to a piecewise smooth path in M .4

A differentiable group is a group which is a differentiable manifold for which the
group operation and inverse are both smooth.5

9.107 Show that (C∗, ·) is a differentiable group.

Paths, Homotopies, the Fundamental Group
9.108 A re-parameterisation of a path γ : I → X is any path of the form γ ◦ ϕ,
where ϕ : J → I is a strictly increasing bijection from a closed interval J to I .
(a) Show that such a map ϕ is a homeomorphism from J to I . (b) Show that the
relation “θ is a re-parameterisation of γ ” is an equivalence relation on paths.6

9.109 Suppose that γ is a smooth path in R
n/G. Show that any lifting of γ to R

n

is smooth.

9.110 A space X is contractible if there is a continuous function F : X×[0, 1] → X

such that F(−, 0) is the identity on X and F(−, 1) is constant. Show that every
contractible space is simply connected.

9.111 A set X ⊆ R
n is star-like if there is a point p ∈ X such that for every q ∈ X,

the line segment between p and q is in X. (So every convex set is star-like, but not
vice-versa.) Show that every star-like subset of Rn is contractible (and hence simply
connected).

9.112 Let G be a discrete subgroup of R
n; let U ⊆ R

n/G be open. (a) Show
that if U is simply connected, then there is a “global chart” on U : a continuous
ψ : U → R

n such that πG ◦ ψ is the identity on U . (b) Show that if ψ is a global
chart on U , then it is a homeomorphism with an open subset of Rn.

9.113 Let U ⊂ C
∗ be open and connected. Suppose that α is a continuous choice

of argument on U . Show that the map z �→ (|z|, α(z)) is a homeomorphism from U

to an open subset of R
+ × R. (Hint: C∗ is homeomorphic to R

+ × S by z �→
(|z|, z/|z|).)

4 With a little extra work, one can also obtain a smooth path.
5 If the manifold and the group operations are C∞ then it is called a Lie group.
6 The physical interpretation is that the particle travelling along γ does so at a possibly different
speed than one travelling along θ , but both trace the same curve in X. The assumption that ϕ is
strictly increasing implies that the direction of travel is the same in both cases. Re-parameterisation
allows us to treat paths with different domains as essentially the same.
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9.114 Let X be a path-connected space, and let x0 ∈ X. Let Gx0 be the collection
of all homotopy equivalence classes of loops γ : [0, 1] → X which start and end
at x0 (Exercise 9.12). (a) Show that concatenation of loops induces a well-defined
binary operation on Gx0 . (b) Show that this operation makes Gx0 a group. (c) Show
that for any x0, x1 ∈ X, Gx0

∼= Gx1 . The isomorphism type of the groups Gx0 is
called the fundamental group of X, denoted by π1(X). (d) Show that π1(X) is trivial
if and only if X is simply connected. (e) Show that if X and Y are homeomorphic
then π1(X) ∼= π1(Y ). (In particular, X is simply connected if and only if Y is.)

9.115 (a) Show that the fundamental group π1(C
∗) of the punctured plane is

isomorphic to the infinite cyclic group (Z; +). (b) Show that for any discrete
subgroup G of Rn, π1(R

n/G) ∼= G . (In particular, π1(S) ∼= Z, so the unit circle is
not simply connected.)

9.116 (a) Show that for path-connected spaces X and Y , π1(X × Y ) ∼= π1(X) ×
π1(Y ). (b) Use this to show that the fundamental group of the torus is isomorphic
to Z

2.



10Path Integrals

The central piece of machinery that makes complex analysis work is Cauchy’s
Integral Formula, which says that values of analytic functions are determined by
integrating the functions along loops. Such integration is also a key component in
the calculus of residues. In this chapter we develop the theory of integration along
paths.

In most texts, a path integral such as
∫
γ f ds is defined to be

∫
I f (γ (t))|γ̇ (t)| dt ,

i.e., is translated back to the usual Riemann integral. Often, not much motivation
is given for this definition. We will give a definition using Riemann sums, which
does not assume that γ is smooth. We will see that the objects that are really being
integrated are not functions but differential forms.

We then investigate integration of vector fields, in particular, over simply con-
nected domains. One of the applications will give us an alternative characterisation
of the winding number for piecewise smooth loops.

10.1 Integrating Forms Along Paths

There are two main examples of path integrals. The first,
∫
γ

f ds measures the area
below the graph of a function f defined on the image of γ . If we set f to be the
constant function 1, we get the length of the curve. The other,

∫
γ

F · dr , integrates
not a function but a vector field F . The physical intuition is that F is a force field,
and the integral measures the work done by the force on a particle moving along the
path.

There is a framework that includes both of these path integrals, in which we
integrate generalised differential forms. Informally speaking, the tangent bundle of
an n-manifold M is the result of attaching in a continuous fashion a copy of Rn to
each point of M . The vectors in the copy of Rn attached to a point p are thought of
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as tangents to M at p.1 We do not need this generality; we will only consider trivial
bundles, of the form E ×R

n, where E is a subset of Rn.
A vector field on M is a continuous choice of a tangent vector at every point.

Dually, a differential 1-form is a continuous choice of a linear operator on each
tangent space (a “covector”). In the trivial setting, it is a continuous map from E×Rn

to R such that for every point p ∈ E, the restriction of the map to the tangent space
{p} × R

n is linear.
For our development (originally done by Weierstrass, see [Ces58]), we relax

the condition that the map on each tangent space be linear; we only require that
it respects multiplication by non-negative scalars (so that we include the function
taking a vector to its norm). We call these generalised forms. When the form is
linear (as will be the case when we deal with vector fields, and later in the book
with meromorphic forms on Riemann surfaces), we will usually just call them forms.
There is a wider theory which includes differential k-forms for k > 1 as well, which
can be used to integrate on parameterised manifolds, rather than just paths. See for
example [Mun91, Spi65].

Generalised Forms
If E ⊆ R

n then as discussed, the “tangent bundle” is E × R
n; but we think of pairs

(p, "v) ∈ E × R
n as a pair consisting of a point p and a vector "v.

Definition 10.1 Let E ⊆ R
n. A generalised form on E is a continuous function

ω : E × R
n → R which respects non-negative scalar multiplication on the second

coordinate: for all p ∈ E, scalar a � 0 and "v ∈ R
n, ω(p, a"v) = a · ω(p, "v).

If ω is a generalised form on E, p ∈ E and "v ∈ R
n then we write ωp("v) for

ω(p, "v). In other words, the form defines, in a continuous way, maps ωp from the
tangent space at p to R, and these maps are each required to preserve multiplication
by non-negative scalars. Note that a form is not required to be differentiable, only
continuous (and so we do not assume that E is open).

Example 10.2 As mentioned above, we will work with two important examples.
The second one is that of forms F · dr defined by vector fields on E. In this section
our guiding example will be the generalised form ds, defined by letting

dsp("v) = |"v|

for all p ∈ E and "v ∈ R
n. (Verify it indeed satisfies Definition 10.1.) «

1 This makes more sense if we think of the manifold embedded in R
m for some m > n.
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Example 10.3 If ω is a generalised form on E and f : E → R is continuous then
the generalised form fω is defined by letting (f ω)p = f (p) · ωp. (Verify that this
is a generalised form). The main example in this section is f ds. Also, if ω and η

are generalised forms then so is ω + η. «

Definition of the Integral

Our next task is to explain how to integrate a generalised form on E along a path.
This is defined using Riemann sums, generalising the familiar definition for one
dimension. Let K = [a, b] be a closed interval.

A tagged partition of K is a sequence of points a = x0 � r1 � x1 � r2 � x2 �
· · · � xk−1 � rk � xk = b, such that xi−1 < xi for all i = 1, . . . , k. If P is a
tagged partition then a P -interval is one of the sub-intervals [x0, x1], [x1, x2], . . . ,
[xk−1, xk]. So we think of a tagged partition as a partition of [a, b] to finitely many
closed intervals, and a choice of one point (a “tag”) rj in each interval [xj−1, xj ].
We use the following notation: for a P -interval I = [xj−1, xj ], we let rI be the
P -tag rj .

For a tagged partition P , let D(P) (the mesh size of P ) be the length of the
longest P -interval.

We define a notion of limit for functions on tagged partitions. Suppose that 〈bP 〉
is a function which associates with every tagged partition P of K a real number bP .
Let a ∈ R. We say that

lim
D(P)→0

bP = a

if the values bP approach a as P becomes finer (has smaller mesh size). Formally:
if for all ε > 0 there is some δ > 0 such that for every tagged partition P of K , if
D(P) < δ then |bP −a| < ε. (Ensure that the usage of the equality sign is justified:
there is at most one number a satisfying this definition.)

We fix: a path γ : K → R
n where K = [a, b] is a closed interval, and a

generalised form ω defined at least on the image γ [K].
Suppose that I = [s, t] ⊆ [a, b] is a subinterval. We let |I | = t − s (the length

of the interval). We let �Iγ be the vector γ (t) − γ (s). Let P be a tagged partition
of K . The partial sum for P is

SP = SP (ω, γ ) =
∑{

ωγ (rI )(�I γ ) : I is a P -interval
}
.

That is, for each P -interval I , we evaluate the form ω at the tagged point γ (rI ) on
the vector �Iγ , and add up the results for all the P -intervals. We define

∫

γ

ω = lim
D(P)→0

SP (ω, γ )
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(if the limit exists; otherwise the integral is undefined). The reader should keep the
example ω = f ds in mind; in that case the partial sum is defined by adding up, for
each P -interval I , the product of f (γ (rI )) and |�Iγ |. What we are approximating
is the area underneath the graph of f above the image of the path. If f = 1 we are
approximating the length of the path.

Properties of the Integral

Exercise 10.4 Suppose that γ is a constant path. Show that for any generalised
form ω,

∫
γ ω = 0. «

Exercise 10.5 Let f : γ [K] → R be continuous. Show that

∣
∣
∣
∣

∫

γ

f ds

∣
∣
∣
∣ �

∫

γ

|f | ds

(provided they both exist). «

Exercise 10.6 Show that the integral is a linear operator: (a) suppose that
∫
γ

ω

exists. Then for all a ∈ R,
∫
γ

aω exists and equals a
∫
γ

ω. (b) suppose that both
∫
γ ω and

∫
γ η exist. Then

∫
γ (ω + η) exists and equals

∫
γ ω + ∫

γ η. «

Concatenation of Paths
Proposition 10.7 Let γ and θ be two paths in R

n which we can concatenate (the
end of γ is the beginning of θ ). Let ω be a form defined (at least) on the images
of γ and θ . Suppose that both

∫
γ

ω and
∫
θ
ω are defined. Then

∫
γ ˆθ ω is defined and

∫
γ ˆθ ω = ∫

γ ω + ∫
θ ω.

Proof Suppose that dom γ = [a, b] and dom θ = [b, c]; let K = [a, c]. For brevity
let ζ = γ ˆθ . We show:

(*) for all ε > 0 there is some δ > 0 such that if I ⊆ K is a sub-interval, r ∈ I

and |I | < δ, then |ωζ(r)(�Iζ )| < ε.

To see this, consider the Cartesian product ζ [K] × B("0, 1) of the image of ζ with
the closed unit ball in R

n. It is compact, and so ω is uniformly continuous on that
set (Proposition 8.94). In particular, for every ε > 0 there is some η > 0 such
that for all p ∈ ζ [K], for all "v, "w ∈ R

n, if |"v|, | "w| � 1 and | "w − "v| < η then
|ωp("v)− ωp( "w)| < ε. Since ωp("0) = 0 for all p, this means that for all p ∈ ζ [K],
for all "v with |"v| < η, we have |ωp("v)| < ε.

Next we use the uniform continuity of ζ to see that there is some δ > 0 such that
for all s, t ∈ K , if |t − s| < δ then |ζ(t)− ζ(s)| < η. That is, if I ⊆ K and |I | < δ

then |�Iζ | < η. Now (*) follows.



10.1 Integrating Forms Along Paths 259

Given ε > 0 find δ given by (*). Let P be a tagged partition of K with D(P) < δ.
We want to show that SP (ω, ζ ) is close to

∫
γ

ω+∫
θ
ω. If b is one of the end-points xj

of P , that is, if every P -interval is a subset of [a, b] or of [b, c], then SP (ω, ζ )

is the sum of two partial sum; informally writing, SP (ω, ζ ) = SP�[a,b] (ω, γ ) +
SP�[b,c](ω, θ). By shrinking δ we may assume that SP�[a,b](ω, γ ) is ε-close to

∫
γ

ω,

and similarly for SP�[b,c](ω, θ) and
∫
θ ω. The difficulty is when b is not one of the

points of P , in which case one P -interval encompasses parts of both [a, b] and
[b, c]. In this case we use (*) above to argue that the contribution of this P -interval
is negligible.

In detail, let P̃ be the tagged partition of K obtained from P by breaking the “bad
P -interval” at b (we add b as one of the points xj ; the tags could be anything). By
the argument above, we can ensure that SP̃ = SP̃ (ω, ζ ) is within 2ε of

∫
γ ω+ ∫

θ ω.
So it suffices to show that SP̃ is close to SP = SP (ω, ζ ). The difference is in the
contribution of the P -interval containing b, which in P̃ is broken into two. But by (*)
above, the contribution of each of these three intervals is at most ε, so |SP̃ − SP | <
3ε. ��

10.1.1 The Length of a Path

As mentioned above, to measure the length of the image of a path we add up the
lengths of the straight segments determined by the γ -images of the end-points of
sub-intervals. In other words, we define the length of γ to be

	(γ ) =
∫

γ

ds.

Exercise 10.8 Let γ : K → R
n be a path. Show that

	(γ ) = sup {SP (ds, γ ) : P is a tagged partition of K} .

(Hint: show that if Q refines P , that is, if each P -interval is the union of Q-intervals,
then SP (ds, γ ) � SQ(ds, γ ).) «

Proposition 10.9 Let γ : K → R
n be a path and let f : γ [K] → R be continuous.

If
∫
γ f ds exists then

∣
∣
∣
∣

∫

γ

f ds

∣
∣
∣
∣ � 	(γ ) · max

p∈γ [K] |f (p)|.

The maximum is obtained because γ [K] is compact; see Exercise 8.93.

Proof Let M = maxp∈γ [K] |f (p)|. By Exercise 10.5 we may assume that f � 0
on γ [K]. Let P be a tagged partition of K; then by Exercise 10.8,

0 � SP (f ds, γ ) � M · SP (ds, γ ) � M · 	(γ )
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So the result is obtained by taking the limit defining
∫
γ f ds. ��

In fact, if 	(γ ) is finite then
∫
γ

f ds exists; see Exercise 10.57.

10.2 Integrating Along Smooth Paths

Suppose that γ : K → R
n is a smooth path. For all r ∈ K , the derivative vector

γ̇ (r) = Dγ (r) is the tangent to γ at γ (r).

Lemma 10.10 Suppose that γ is smooth; let ω be a generalised form on γ [K].
Then for every ε > 0 there is some δ > 0 such that for any subinterval I ⊆ K such
that |I | < δ, for any r ∈ I , and any point t ∈ K such that d(t, I ) < δ,

∣
∣ωγ (r)(�I γ )− |I | · ωγ (t)(γ̇ (t))

∣
∣ < |I | · ε.

This means: If I is really small, and t is close to I , then the contribution
ωγ (r)(�Iγ ) of I to a partial sum is close to the value of ω on γ̇ (t) at γ (t), multiplied
by the length of I .

Before we prove the lemma we show how we will use it.

Theorem 10.11 If γ : K → R
n is smooth then

∫
γ

ω exists for any generalised
form ω on γ [K].

Proof We first make some simplifications. We claim that it suffices to show:

A. For every ε > 0 there is some δ > 0 such that if P and Q are two tagged
partitions of K such that D(P),D(Q) < δ, then |SP − SQ| < ε.

The reason for this is the completeness of R (see page 208). For each n choose
some tagged partition Pn such that D(Pn) < 1/n. (A) implies that the sequence〈
SPn

〉
is a Cauchy sequence; so it has some limit a. (A) again then implies that

a = limD(P)→0 SP .
As in Exercise 10.8, we say that Q refinesP if every P -interval is the union of Q-

intervals. If Q refines P then D(Q) � D(P). Any two partitions have a common
refinement. This implies that it suffices to show:

B. For every ε > 0 there is some δ > 0 such that if P and Q are two tagged
partitions of K such that D(P) < δ and Q refines P , then |SP − SQ| < ε.

To prove (B) we use Lemma 10.10. Given ε > 0 let δ be given by the lemma.
Let P be a tagged partition such that D(P) < δ and let Q be a refinement of P . To
avoid confusion, we use the following notation: for a P -interval J , we let tJ be the
P -tag for J ; for a Q-interval I , let rI be the Q-tag for I .

Let J be a P -interval; let I(J ) be the collection of Q-intervals which are
subintervals of J . For any Q-interval I ⊆ J , by Lemma 10.10,
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∣
∣
∣ωγ (rI )(�Iγ )− |I | · ωγ (tJ )(γ̇ (tJ ))

∣
∣
∣ < ε · |I |;

adding up all Q-intervals I ⊆ J we get

∣
∣
∣
∑

I∈I(J )

ωγ (rI )(�I γ )− |J | · ωγ (tJ )(γ̇ (tJ ))

∣
∣
∣ < ε · |J |.

On the other hand, using the lemma for J we get

∣
∣
∣ωγ (tJ )(�J γ )− |J | · ωγ (tJ )(γ̇ (tJ ))

∣
∣
∣ < ε · |J |,

so overall
∣
∣
∣ωγ (tJ )(�J γ )−

∑

I∈I(J )

ωγ (rI )(�Iγ )

∣
∣
∣ < 2ε · |J |.

Now adding up for all P -intervals J gives us |SP − SQ| < 2ε|K|. ��

Proof of Lemma 10.10 Let ε > 0.
Since the function s �→ |γ̇ (s)| is continuous on K , it is bounded by some M > 0

(Exercise 8.93). The Cartesian product γ [K] × B("0,M + 1) is compact. Since ω

is continuous, it is uniformly continuous on that set (Proposition 8.94). So there is
some η > 0 such that for all s1, s2 ∈ K and all "v1, "v2 ∈ R

n such that |"v1|, |"v2| �
M+1, if |γ (s2)−γ (s1)| < η and |"v2−"v1| < 2η then |ωγ (s2)("v2)−ωγ (s1)("v1)| < ε.
We may assume that η � 1/2.

Using the compactness of K and smoothness of γ , and Proposition 9.49, we see
that there is some δ > 0 such that if I ⊆ K , r ∈ I and |I | < 2δ, then: (a) |�Iγ | < η;
(b) |�I γ̇ | < η; and (c) |�Iγ − |I | · γ̇ (r)| < |I | · η.

Let I ⊆ K and r ∈ I ; suppose that |I | < δ and d(t, I ) < δ. Then |γ̇ (t)−γ̇ (r)| <
η, and |�Iγ/|I | − γ̇ (r)| < η, so |�Iγ/|I | − γ̇ (t)| < 2η. Since |γ̇ (t)| � M and
2η � 1 we have |�Iγ/|I || � M + 1. Since |γ (r)− γ (t)| < η we conclude that

∣
∣ωγ (r)(�I γ /|I |)− ωγ (t)(γ̇ (t))

∣
∣ < ε.

Since ωγ (r) respects multiplication by the non-negative scalar |I |, multiplying
throughout by |I | yields the desired inequality. ��

Recalling Definition 9.80, now Proposition 10.7 implies:

Corollary 10.12 If γ : K → R
n is piecewise smooth then

∫
γ ω exists for any

generalised form ω on γ [K].
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10.2.1 Linear Forms

A generalised form ω is linear if for every p, ωp : Rn → R is a linear map. As
discussed above, henceforth we will often call linear forms simply forms. Among
the linear forms, the most basic ones are the forms dxi (for i = 1, 2, . . . , n), which
return the ith component of the vector: if "v = (v1, v2, . . . , vn) then for all p,
(dxi)p("v) = vi . The integral

∫
γ

f dxi is similar to
∫

f ds, except that only the
component of change of γ (t) along the ith axis is considered, and the contributions
can be either positive or negative. When n = 1, we write dx for dx1. When n = 2,
we write dx and dy for dx1 and dx2. For an interval [a, b] and a continuous function
f : [a, b] → R we define

∫ b

a

f dt =
∫

γ

f dx

where γ : [a, b] → [a, b] is the identity path γ (t) = t . Unravelling the definitions,
we observe that this is the familiar notion of the Riemann integral. The path γ is
smooth, and so the integral exists by Theorem 10.11.

Exercise 10.13 Let γ : [a, b] → R
n be a path and let ω be a linear form defined

on the image of γ . Suppose that
∫
γ ω exists. Let −γ : [−b,−a] → R

n be the path

defined by −γ (t) = γ (−t). Show that
∫
−γ ω = − ∫

γ ω. «

Remark 10.14 If a < b then we also define
∫ a

b f dt = ∫
γ f dx where this time γ is

the path which travels from b to a in constant speed 1. Then Exercise 10.13 implies
that

∫ a

b
f dt = − ∫ b

a
f dt . «

Remark 10.15 If a < b then
∫ b

a f dt = ∫
γ f ds for γ (t) = t . In fact if γ is non-

decreasing then
∫
γ

f ds = ∫
γ

f dx; this is because dsp(r) = r = dxp(r) for all

r � 0. On the other hand,
∫ a

b f dt does not equal
∫
γ f ds for γ travelling from b

to a as above, rather, it equals − ∫
γ

f ds. «

Exercise 10.16 Show that if f : [a, b] → R is continuous and m � f (t) � M for
all t ∈ [a, b] then m(b − a) �

∫ b

a
f dt � M(b − a). «

10.2.2 Relating the General and Familiar Integrals

If γ is smooth then integrating along γ can be reduced to the usual straight integral,
by evaluating the (generalised) form at every point on the tangent to the curve at that
point.
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Proposition 10.17 If γ is smooth then for any generalised form ω on its image,

∫

γ

ω =
∫ b

a

ωγ (t)(γ̇ (t)) dt.

(On the right hand side ω does not play the role of the “differential”, rather we are
integrating the function ωγ (t)(γ̇ (t)) : [a, b] → R.)

Proof Let ε > 0; let δ > 0 be given by Lemma 10.10. Let P be a tagged partition
of K such that D(P) < δ; let I be a P -interval. So

∣
∣
∣ωγ (rI )(�I γ )− |I | · ωγ (rI )(γ̇ (rI ))

∣
∣
∣ < |I | · ε.

Adding up for all P -intervals we get that the difference between SP (ω, γ ) and the
partial sum given by P for the integral on the right hand side is bounded by ε · |K|.
Taking the limit we obtain equality. ��

In particular, if γ : [a, b] → R
n is smooth then Proposition 10.17 says that

	(γ ) =
∫ b

a

|γ̇ (t)| dt.

Example 10.18 Define γ : [0, 2π] → S by defining γ (t) = (cos t, sin t). Then
γ̇ (t) = (− sin t, cos t) so |γ̇ (t)| = 1. Hence the length of the path (which is the
circumference of the unit circle) is

∫ 2π

0 dt = 2π . «

Proposition 10.17 also implies that for j = 1, 2, . . . , n, when γ is smooth then

∫

γ

f dxj =
∫ b

a

f (γ (t)) ·Djγ (t) dt.

The Fundamental Theorem of Calculus
This has two parts.

Theorem 10.19 If f : [a, b] → R is continuous then g(x) = ∫ x

a f dt is smooth
and ġ = f .

(Again note that by smooth we mean C1 (continuously differentiable), not C∞.)

Sketch of Proof For h > 0, by Proposition 10.7,

g(x + h)− g(x) =
∫ x+h

x

f dt;
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we need to show that

(
1

h

∫ x+h

x

f dt

)

− f (x) = 1

h

∫ x+h

x

(f (t)− f (x)) dt → 0

as h → 0. However by Exercise 10.16

1

h

∣
∣
∣
∣

∫ x+h

x

(f (t)− f (x)) dt

∣
∣
∣
∣ �

1

h

∫ x+h

x

|f (t)− f (x)| dt � max
t∈[x,x+h] |f (t)− f (x)|,

which approaches 0 as f is continuous at x. When h < 0 we apply the same
argument but need to be careful with the signs. ��

Exercise 10.20 Let γ : [a, b] → R
n be smooth and let f : γ [a, b] → R be

continuous. Define g : [a, b] → R by letting g(t) = ∫
γ�[a,t] f ds. Show that g is

smooth and that

ġ(t) = f (γ (t)) · |γ̇ (t)|. «

The second part is the following:

Theorem 10.21 Let g : [a, b] → R be smooth. Then

∫ b

a

ġ dt = g(b)− g(a).

Proof We consider g as a smooth path from [a, b] to R. For any sub-interval
[c, d] ⊆ [a, b], we have

dxg(c)(�[c,d]g) = g(d)− g(c)

as dxp is the identity on R at every point p. This shows that for any tagged
partition P of [a, b], SP (dx, g) equals g(b) − g(a) (it is a telescopic sum); and
so

∫
g
dx = g(b)− g(a).

On the other hand, Proposition 10.17 implies that
∫
g dx = ∫ b

a ġ dt . ��

Below we give a generalisation (Proposition 10.29).

Derivative of an Integral Depending on a Parameter
Below we will need to apply Leibniz’s integral rule about “differentiating under the
integral sign”. Here we quickly recall this rule. In the following let [a, b]×[c, d] be



10.2 Integrating Along Smooth Paths 265

a closed rectangle in R
2. When we integrate sections, we use the standard notation∫ b

a f (x, y) dx (for fixed y ∈ [c, d]), rather than using dt .

Lemma 10.22 Let f : [a, b]×[c, d] → R be continuous. Then the function g(y) =∫ b

a
f (x, y) dx is continuous on [c, d].

Proof Since [a, b] × [c, d] is compact, f is uniformly continuous (Proposi-
tion 8.94). Given ε > 0 find δ > 0 such that for all p, q ∈ [a, b] × [c, d], if
|q − p| < δ then |f (q) − f (p)| < ε. If y1, y2 ∈ [c, d] and |y2 − y1| < δ then by
the linearity of the integral (Exercise 10.6) and by Exercise 10.5,

∣
∣g(y2)− g(y1)

∣
∣ =

∣
∣
∣
∣

∫ b

a

f (x, y2) dx −
∫ b

a

f (x, y1) dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ b

a

(f (x, y2)− f (x, y1)) dx

∣
∣
∣
∣ �

∫ b

a

∣
∣f (x, y2)− f (x, y1)

∣
∣ dx � ε · (b − a),

since |f (x, y2)− f (x, y1)| < ε for all x ∈ [a, b]; we use Proposition 10.9. ��

Proposition 10.23 Let f : [a, b]×[c, d] → R be smooth. Then the function g(y) =∫ b

a f (x, y) dx is smooth on [c, d] and ġ(y) = ∫ b

a Dyf (x, y) dx.

Proof It suffices to show that g is differentiable on [c, d] and ġ(y) =∫ b

a
Dyf (x, y) dx; smoothness then follows from Lemma 10.22 since Dyf is

assumed to be continuous on [a, b] × [c, d].
Let ε > 0 and let y ∈ [c, d]. Given h small, by the linearity of the integral and

Exercise 10.5,

∣
∣
∣g(y + h)− g(y)− h ·

∫ b

a

Dyf (x, y) dx

∣
∣
∣ =

∣
∣
∣
∣

∫ b

a

(
f (x, y + h)− f (x, y)− h ·Dyf (x, y)

)
dx

∣
∣
∣
∣ �

∫ b

a

∣
∣f (x, y + h)− f (x, y)− h ·Dyf (x, y)

∣
∣ dx � ε|h| · (b − a),

once we show that for small h,

∣
∣f (x, y + h)− f (x, y)− h ·Dyf (x, y)

∣
∣ � ε|h|

for all x ∈ [a, b], which follows from Proposition 9.49. ��
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10.3 Integrating Vector Fields

A vector field on a set E ⊆ R
n is a continuous function F : E → R

n.2 The form
associated with a vector field F is the form F · dr defined by

(F · dr)p("v) = F(p) · "v.

Here we use physics notation: the dot product "v · "w of two vectors "v, "w ∈ R
n is∑

i�n vi ·wi , where "v = (v1, . . . , vn) and "w = (w1, . . . , wn). 3

Exercise 10.24 Show that a generalised form ω on E is linear if and only if it is
F · dr for some (unique) vector field F on E. «

Proposition 10.17 implies that if γ : [a, b] → E is smooth then

∫

γ

F · dr =
∫ b

a

F (γ (t)) · γ̇ (t) dt.

In other words, we are integrating the signed length of the projection of F(γ (t))

onto the tangent to γ at γ (t); the length is positive if the angle between F(γ (t))

and γ̇ (t) is smaller than a right angle, 0 if F(γ (t)) and γ̇ (t) are perpendicular, and
negative otherwise.4

Note that for i = 1, 2, . . . , n, dxi = F · dr for the constant vector field F

mapping every point to the ith unit vector "ei . If F is a vector field then we write
F = (F1, F2, . . . , Fn) where Fi : E → R is the function giving the ith component
of F ; then F · dr =∑

i Fi dxi .

Lemma 10.25 Let γ : K → R
n be a path and let F be a vector field on γ [K]. Then

∣
∣
∣
∣

∫

γ

F · dr

∣
∣
∣
∣ � 	(γ ) · max

p∈γ [K] |F(p)|

(provided the integral exists).

Proof This is of course similar to the proof of Proposition 10.9. The added
ingredient is the Cauchy-Schwarz inequality (see Exercise 8.118). Let M =
maxp∈γ [K] |F(p)|. Let I ⊆ K be an interval; let r ∈ I ; let p = γ (r). Then by

2 In terms of the tangent bundle, this is a continuous choice of one tangent vector at each point.
3 Other notation and terminology (the inner product) was used in Exercise 8.118; of course "v · "w =
"v "wt, if we’re thinking of tangent vectors as rows.
4 In physical terms, F is a force field;

∫
F · dr is the work done as a particle is travelling through

the field.



10.3 Integrating Vector Fields 267

said inequality,

|F(p) ·�Iγ | � |F(p)| · |�Iγ | � M · |�Iγ |.

So for any tagged partition P of K , |SP (F · dr, γ )| � M · SP (ds, γ ), which
in the limit gives the desired inequality. (If we assume that γ is smooth then
we can use Proposition 10.17 and Cauchy-Schwarz to reduce the lemma to
Proposition 10.9.) ��

10.3.1 Conservative Vector Fields

For the rest of this chapter, unless otherwise specified, by “path” we mean
“piecewise smooth path”, and appeal to Corollary 10.12.

Definition 10.26 Let U ⊆ R
n be a region (open and connected). A vector field F

on U is conservative if for any two points a, b ∈ U and any two paths γ and δ in U

from a to b,
∫
γ

F · dr = ∫
δ
F · dr .

That is, the work done by the field does not depend on the path taken from a to b.

Exercise 10.27 Recall that a loop is a path whose start point is also its end-point.
Show that a vector field F on U is conservative if and only if for any loop γ in U ,∫
γ F · dr = 0. «

The term “conservative” again is from physics. The idea is that the force
field F has an underlying potential energy and that this energy is conserved. In
mathematical terms this says that F is a gradient field:

Proposition 10.28 Let U ⊆ R
n be a region. A vector field F on U is conservative

if and only if there is a smooth function f : U → R such that F = Df .

(Here again Df is the full derivative of f , which in this context is often called
the gradient of f and is often denoted by ∇f . The function f is called a potential
of F .) To prove Proposition 10.28 we use the following generalisation of the second
part of the fundamental theorem of calculus.

Proposition 10.29 Let U ⊆ R
n be a region and let f : U → R be smooth. Then

for any path γ : [a, b] → U ,

∫

γ

Df · dr = f (γ (b))− f (γ (a)).
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Proof By breaking up into a finite sum, we may assume that γ is smooth. Let g =
f ◦γ and let F = Df . By the chain rule, ġ = γ̇ ·(F ◦γ ) =∑

j�n Djγ ·(Fj ◦γ ). By

the second part of the fundamental theorem of calculus (Theorem 10.21),
∫ b

a ġ dt =
g(b)− g(a) = f (γ (b))− f (γ (a)); and

∫

γ

F · dr =
∑

j�n

∫

γ

Fj dxj =
∑

j�n

∫ b

a

Fj (γ (t)) ·Djγ (t) dt =
∫ b

a

ġ dt. ��

Proof of Proposition 10.28 One direction is covered by Proposition 10.29: if F =
Df for some smooth f : U → R then for any two points a, b ∈ U , for any path γ

in U from a to b,
∫
γ F ·dr = f (b)−f (a), which manifestly does not depend on γ .

For the other direction, suppose that F is conservative. Fix some point p ∈ U .
For any point q ∈ U let f (q) = ∫

γ F · dr where γ is any (piecewise smooth) path
in U from p to q (recall that since U is connected and open, it is path-connected
and in fact there is a smooth path in U from p to q, see Propositions 9.10 and 9.75).

We need to show that f is differentiable at every point of U and that Df = F ;
we show that Djf = Fj for all j � n and appeal to Proposition 9.52, recalling
that F is continuous. For simplicity of notation let j = 1. Fix q ∈ U ; for t ∈ R let
t = (t, 0, 0, . . . , 0). Let h ∈ R. Then f (q + h)− f (q) is

∫
γ F · dr where γ is any

path from q to q + h; for example we take the obvious linear path γ : [0, h] → R
n

given by γ (t) = q + t ; for small enough h, the image of this path is contained
in U . Now γ̇ = (1, 0, . . . , 0) at every t and so

∫
γ

F · dr = ∫ h

0 F1(γ (t)) dt . Let

g(x) = ∫ x

0 F1(q + t) dt . Then by the first part of the fundamental theorem of
calculus (Theorem 10.19), as F1 is continuous,

D1f (q) = lim
h→0

1

h
(f (q + h)− f (q)) = lim

h→0

1

h

∫ h

0
F1(q + t) dt = ġ(0) = F1(q).

��

Example 10.30 Define a vector field G on the punctured plane R
2 \ {0} by letting

G(p) = p/|p|2, that is,

G(x, y) =
(

x

x2 + y2 ,
y

x2 + y2

)

.

Then G = Dg, where g(x, y) = 1/2 · ln(x2 + y2). Hence G is conservative. «
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10.3.2 TheWinding Number Revisited

Now define a vector field Fwind on R
2 \ {0} by letting

Fwind(x, y) =
( −y

x2 + y2
,

x

x2 + y2

)

.

We will shortly observe that Fwind is not conservative (as an hors-d’œuvre, consider
γ (t) = (cos t, sin t) on [0, 2π], and check that Fwind(γ (t)) · γ̇ (t) = 1 for all t , so∫
γ

Fwind · dr = 2π .) Locally, however, we can find a potential function for Fwind.

Let p0 ∈ R
2 \ {0}; let r0 = |p0| and choose some argument t0 for p. Writing

in real variables, the map (r, t) �→ reit is the map (r, t) �→ (r cos t, r sin t)—the
translation from polar to Cartesian coordinates. This is a smooth function on R

+×R

and the determinant of its derivative is r(cos2 t + sin2 t) = r �= 0. Hence, by
the Inverse Function Theorem, there are open neighbourhoods V of (r0, t0) and U

of p0 between which this map is a homeomorphism, with a smooth inverse. The
inverse is the map p �→ (|p|, α(p)) for some continuous choice of argument
α on U (Definition 9.25). Computing the inverse of the derivative of (r, t) �→
(r cos t, r sin t), we get Dα = Fwind. With the uniqueness of liftings (Lemma 9.19)
we conclude:

Proposition 10.31 For any open U ⊆ R
2 \ {0}, any continuous choice of

argument α on U is smooth, and Dα = Fwind on U .

In fact, the vector field Fwind can be used to compute the winding number of
loops in the punctured plane (Definition 9.27), at least when they are piecewise
smooth.

Proposition 10.32 If γ is a loop in R
2 \ {0} then

∫

γ

Fwind · dr = 2πm

where m is the winding number of γ .

Proof We prove the slightly more general statement: for any (piecewise smooth)
path γ : [a, b] → R

2 \ {0} and any continuous choice of argument θ for γ ,

∫

γ

Fwind · dr = θ(b)− θ(a).

Let θ be such a choice of argument. Every point in R
2 \ {0} has a simply connected

open neighbourhood in the punctured plane (say a small disc). By compactness
of [a, b], there is a partition {a = t0 < t1 < · · · < tk = b} of [a, b] such that
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for all i = 1, . . . , k, γ [ti−1, ti ] ⊂ Ui where Ui ⊂ R
2 \ {0} is simply connected.

By Proposition 9.30, for each i there is a continuous choice of argument αi on Ui .
By shifting, we may assume that αi(γ (ti)) = θ(ti); then by Lemma 9.19, θ(t) =
αi(γ (t)) for all t ∈ [ti−1, ti ]. Since Dαi = Fwind on Ui , by Proposition 10.29,

∫

γ �[ti−1,ti ]
Fwind · dr = αi(γ (ti+1))− αi(γ (ti )) = θ(ti+1)− θ(ti);

we now sum up for all i � k. ��

10.4 Symmetric Vector Fields

We find a criterion for conservativity which is easier to verify. We restrict our
discussion to two dimensions, because this is what we will use when we consider
complex functions. Fix a region U ⊆ R

2 and let F : U → R
2 be a smooth vector

field; we write F = (Fx, Fy). Suppose that F is conservative; so F = Df for some
smooth f : U → R. Since f is twice smooth,

DyFx = Dyxf = Dxyf = DxFy

(Proposition 9.60). We call a smooth vector field F symmetric if DyFx = DxFy ,
that is, if DF is a symmetric matrix at every point. So every smooth conservative
vector field is symmetric. In general the converse does not hold; the vector
field Fwind used to define the winding number is symmetric.

Our aim now is to prove the following theorem. In more abstract terminology, it
says that the first de Rahm cohomology group of a simply connected region in R

2

is trivial.

Theorem 10.33 Suppose that F is a symmetric vector field defined on a simply
connected region. Then F is conservative.

Remark 10.34 Let U ⊆ R
2 \ {0} be a region. By Proposition 10.32, Fwind is

conservative on U if and only if every loop in U has winding number 0. Thus,
Theorem 10.33 generalises the fact that if U is simply connected then every loop
in U has winding number 0 (Propositions 9.30 and 9.32). «

The proof of Theorem 10.33 passes through the concept of local conservation.
A vector field F : U → R

n is locally conservative if every point p ∈ U has a
neighbourhood V ⊆ U such that the restriction F �V of F to V is conservative.
As mentioned, the vector field Fwind above is locally conservative. This is not an
accident:
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Proposition 10.35 Every symmetric vector field is locally conservative.

The proof of Theorem 10.33 is then completed by the following, which is not
restricted to two dimensions:

Proposition 10.36 If U ⊆ R
n is a simply connected region and F : U → R

n is a
locally conservative vector field then F is conservative.

Proof of Proposition 10.35 Let U ⊆ R
2 and let F : U → R

2 be symmetric.
Given p = (px, py) ∈ U let V be an open rectangle such that p ∈ V and
V ⊆ U . We show that F �V is conservative by showing it is a gradient field
(Proposition 10.28). For a point q ∈ V we let γq be the path from p to q which
is travelled in constant speed first parallel to the x-axis and then parallel to the y-
axis: the concatenation of γ : [px, qx ] → R

2 defined by γ (t) = (t, py) and
δ : [py, qy] → R

2 defined by δ(t) = (qx, t).5 The path γq is piecewise smooth.
We define f (q) = ∫

γq
F · dr. This works out to be

f (q) =
∫ qx

px

Fx(t, py) dt +
∫ qy

py

Fy(qx, t) dt.

Fixing qx and varying qy , the first integral is constant and by the fundamental
theorem of calculus (Theorem 10.19)

Dyf (q) = Dy

(∫ y

py

Fy(qx, t) dt

)

(qy) = Fy(q).

Similarly,

Dx

(∫ x

px

Fx(t, py) dt

)

(qx) = Fx(qx, py).

By Leibniz’s integration rule (Proposition 10.23), as we keep qy constant and
vary qx ,

Dx

(∫ qy

py

Fy(x, t) dt

)

(qx) =
∫ qy

py

DxFy(qx, t) dt =
∫ qy

py

DyFx(qx, t) dt = Fx(q)− Fx(qx, py),

5 We follow the convention that if b < a then [a, b] denotes [b, a] but the path starts at time a and
ends at time b nonetheless.
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the last equality following from the second part of the fundamental theorem of
calculus (Theorem 10.21); here of course we finally use the symmetry of F . So
overall Dxf (q) = Fx(qx, py)+Fx(q)−Fx(qx, py) = Fx(q). To sum up, Dxf and
Dyf exist at every point in the rectangle and equal Fx and Fy respectively. Since F

is continuous, Proposition 9.52 says that f is differentiable on the rectangle and that
Df = F , whence F�V is conservative. ��

Proposition 10.36 follows from the following, recalling that piecewise smooth
homotopies characterise simple connectedness (Proposition 9.83).

Lemma 10.37 Let U ⊆ R
n be a region, let F : U → R

n be a locally conservative
vector field, and let H : [0, 1]× [a, b] → U be a piecewise smooth homotopy. Then∫
H0

F · dr = ∫
H1

F · dr .

Proof We will show that every u ∈ [0, 1] has a neighbourhood O ⊆ [0, 1] such
that the value

∫
Hs

F · dr is constant for s ∈ O . By compactness of [0, 1] we can
cover [0, 1] by finitely many open intervals on which

∫
Hs

F · dr is constant; this
implies that

∫
Hs

F · dr is constant on [0, 1]. Note that each Hs is piecewise smooth
as H is piecewise smooth. Hence the integrals are all defined.

Fix u ∈ [0, 1]. For all c ∈ [a, b], H(u, c) has a neighbourhood in U on which F

is conservative. Since [a, b] is compact we can find a partition a = t0 < t1 < · · · <
tk = b of [a, b] such that F is conservative on a neighbourhood Ui of Hu[Ii ], where
Ii = [ti−1, ti ]. For every i, since Hu[Ii] is compact, there is a positive distance from
Hu[Ii ] to the complement of Ui ; since H is uniformly continuous, there is some
δi > 0 such that Hs[Ii] ⊆ Ui for every s with |s − u| < δi . Let δ = min{δi : i =
1, . . . , k}.

Now take some s such that |s−u| < δ. We show that
∫
Hu

F ·dr = ∫
Hs

F ·dr . This
is done by breaking the integrals up and presenting their difference as a telescopic
sum of zeros. For i � k we let ζi be the image under H of the loop which runs at a
constant speed along the boundary of the rectangle [u, s] × [ti−1, ti ] and starts and
ends at (u, ti−1). That is,

ζi =
(
Hu�[ti−1,ti ]

) ˆ (Hti�[u,s]
) ˆ (−Hs�[ti−1,ti ]

) ˆ (−Hti−1�[u,s]
)
,

where we recall that Hd(t) = H(t, d) and for any path ξ , −ξ denotes the reverse
path travelled from the end-point of ξ to the start point of ξ . See Fig. 10.1. The
path ζi is piecewise smooth; here we use the piecewise smoothness of H . Further,
the range of ζi is contained in Ui , on which F is conservative; so

∫
ζi

F · dr = 0. On
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Fig. 10.1 Locally conservative vector fields and homotopies

the other hand, the additivity of the integral implies that

0 =
k∑

i=1

∫

ζi

F · dr =
(∫

Hu

F · dr −
∫

Hs

F · dr

)

−
(∫

Hb�[u,s]
F · dr −

∫

Ha�[u,s]
F · dr

)

.

However, Since Ha and Hb are constant (the homotopy fixes end-points),∫
Hb�[u,s] F · dr = ∫

Ha�[u,s] F · dr = 0. This gives the desired equality. ��

Remark 10.38 Theorem 10.33 gives a somewhat roundabout proof of the fact that
the punctured plane is not simply connected, one which avoids lifting homotopies
(Proposition 9.21): Fwind is symmetric but not conservative on the punctured
plane. «

10.4.1 Missing a Point

So far the symmetric vector fields we discussed were smooth. It will turn out that
we need to relax that condition and prove:
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Proposition 10.39 Suppose that U ⊆ R
2 is a region, that F : U → R

2 is a vector
field, that p ∈ U and that F�U\{p} is symmetric. Then F is locally conservative.

Thus, F is required to be defined and continuous at p, but not even required to be
differentiable at p, and the derivative DF , or the four associated partial derivatives,
are not required to have a limit at p.

Remark 10.40 Note that there is a single step of the proof of Proposition 10.35
that doesn’t go through when we do not assume that F is symmetric at p:
where we used Leibniz’s differentiation under the integral sign to show that

Dx
(∫ qy

py
Fy(x, t) dt

)
(qx) =

∫ qy

py
DxFy(qx, t) dt . Indeed, it is not clear what the

second integral means, as the function DxFy(qx, y) may be unbounded on the
interval (py, qy). More sophisticated machinery from measure theory, namely
Lebesgue’s dominated convergence theorem, can be used to overcome this problem,
but we do not take that route. «

In the rest of the section we give a proof of Proposition 10.39. Fix U , F and p as
described. Let C ⊆ U be an open rectangle; we show that F�C is conservative. We
assume that p ∈ C (otherwise we quote Proposition 10.36).

Our first step is the following.

I. Let S ⊂ C be a rectangle one of whose corners is p; and let γ be the path which
follows the boundary of S (say starting and ending at p and travelling at constant
speed.) Then

∫
γ

F · dr = 0.

For small h let γh be the path following the boundary of the square whose
opposite corners are p and p + (h, h). Now F �C\{p} is symmetric and there is a
simply connected (in fact, convex) region V ⊂ C \ {p} such that S \ {p} ⊂ V . By
Theorem 10.33, F �V is conservative, and this implies that

∫
γ

F · dr = ∫
γh

F · dr

(see Fig. 10.2). And this holds for all h > 0.
However by Lemma 10.25,

∣
∣
∣
∣

∫

γh

F · dr

∣
∣
∣
∣ � M · 4h

Fig. 10.2 The integral along
the marked path is 0

p
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where M bounds |F | on the closed rectangle S; recall that we are still assuming
that F is continuous everywhere. Hence this integral is 0.

II. Let S ⊂ C be any rectangle and let γ be the loop which travels along the
boundary of S. Then

∫
γ

F · dr = 0.

If p /∈ S (not on the boundary or the interior of the rectangle) then this follows
from the fact that F �V is conservative on a simply connected V containing S.
Otherwise this follows from (I) by breaking S up into two or four rectangles, see
Fig. 10.3.

Now for a point q ∈ C let fq : C → R be defined as in the proof of
Proposition 10.35, with the starting point being q. Namely, for q and r in the
rectangle C let γq→r be the path which travels (in constant speed) first parallel
to the x-axis from q to (rx, qy), and then parallel to the y-axis to r . Then let
fq(r) = ∫

γq→r
F · dr .

III. For all q ∈ C, fq − fp is constant on C.

Let r ∈ C. We claim that fp(r) = fp(q)+fq (r). For consider the “extra” points
rp = (rx, py), rq = (rx, qy) and qp = (qx, py). Then

fp(r)− (fp(q)+ fq(r)) =
∫

γ

F · dr,

where γ is the loop around the rectangle whose vertices are qp, rp, rq and q, and
so by (II) is 0. See Fig. 10.4

p

Fig. 10.3 The integral along the boundary of the big rectangle is the sum of the integrals of along
the boundaries of the four smaller ones

p

q

r

p

q

r

Fig. 10.4 fp(r) = fp(q)+ fq(r)
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The penultimate step is:

IV. For all q ∈ C, Dfq (q) = F(q).

This follows from the fundamental theorem of calculus:

fq(x, qy) =
∫ x

qx

Fx(t, qy) dt

and the derivative of the latter (with respect to x) at qx is Fx(q). The same argument
holds for y.

Finally, from (III) and (IV), we conclude that Dfp = F on C; (III) says that
Dfp = Dfq for all q ∈ C. So F �C is a gradient field, and so conservative. This
concludes the proof of Proposition 10.39.

10.5 Further Exercises

10.41 Let g : [a, b] → R be smooth. Show that the length of the graph of g is

∫ b

a

√
1+ ġ(t)2dt.

10.42 Let f, g : (a, b) → R be continuous, let c ∈ (a, b) and suppose that ḟ = g

on (a, b) \ {c}. Show that ḟ (c) = g(c).

10.43 Let U ⊆ R
n and V ⊆ R

m be open, and suppose that F : U → V is smooth.
Suppose that ω is a generalised form on V . We define the generalised form F ∗ω
on U , the pull-back of ω by F , by letting

(F ∗ω)p("v) = ωF(p)((DF(p))"v).

Let γ be a smooth path in U . Show that

∫

γ

F ∗ω =
∫

F◦γ
ω.

10.44 Suppose that γ is a path inRn and that ω is a form on the image of γ . Suppose
that

∫
γ

ω exists. Show that for any re-parameterisation θ of γ (see Exercise 9.108),
∫
θ ω exists and equals

∫
γ ω. (Hint: the translation from γ to θ is uniformly

continuous.)

10.45 Let γ : [a, b] → R
n be a smooth path. Suppose that γ̇ (s) �= "0 for all t ∈

[a, b]. Define ϕ : [a, b] → [0, 	(γ )] by letting ϕ(s) = 	(γ�[a,s]). (a) Show that ϕ is
smooth and ϕ̇(s) = |γ̇ (s)| for all s ∈ [a, b]. (b) Show that ϕ is strictly increasing.
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(c) Let θ = γ ◦ ϕ−1. Show that |θ̇ | = 1 on [0, 	(γ )]. (d) Show that for all t ∈
[0, 	(γ )], 	(θ�[0,t ]) = t .6

Fubini’s Theorem
10.46 Let f : [a, b] × [c, d] → R be continuous. (a) For tagged partitions P

of [a, b] and Q of [c, d] define SP×Q(f ) to be the sum of products of the form
f (p)|A| where A is a P × Q-rectangle (the product of a P -interval and of a Q-
interval), |A| is the area of the rectangle and p is the point in A tagged by P and Q.
Show that the limit of SP×Q(f ) exists as D(P),D(Q) → 0. (b) Show that the limit

equals both
∫ b

a

∫ d

c
f dy dx and

∫ d

c

∫ b

a
f dx dy, and so these two iterated integrals

are equal.7

10.47 Use Fubini’s theorem to prove Proposition 9.60: if g is twice smooth then
Dxyg = Dyxg. (Hint: use the fundamental theorem of calculus to show that∫ b

a

∫ d

c
DyDxg dy dx equals (g(b, d)−g(b, c))−(g(a, d)−g(a, c)); use the fact that

(g(b, d)−g(b, c))−(g(a, d)−g(a, c)) = (g(b, d)−g(a, d))−(g(b, c)−g(a, c));
and the fact that if h is continuous and h �= 0 then

∫
h dxdy �= 0 on some small

rectangle.)

10.48 Use Fubini’s theorem to prove Leibniz’s integral rule (Proposition 10.23).
(Hint: g(t)− g(c) = ∫ b

a

∫ t

c Dyf dydx.)

Vector Fields
10.49 (a) Let F(x, y) = (y, x). Show that F is symmetric. (b) Find a potential
function for F . (c) Do the same for G(x, y) = (x, y).

10.50 (Turetsky) Let U ⊆ R
2 be simply connected. Let f : U → R be smooth,

and let G : U → R
2 be a smooth vector field. Suppose that for all p ∈ U , Df (p)

and G(p) are parallel; and that G is conservative. Show that the vector field f · G
(mapping each p ∈ U to f (p) ·G(p)) is conservative.

6 The path θ is called the path-length re-parameterisation of γ .
7 This is Fubini’s theorem for continuous functions.
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10.51 Suppose that γ is a smooth and injective path in R
n, and that γ̇ �= "0 at every

point. Show that

∫

γ

F · dr =
∫

γ

(

F · γ̇

|γ̇ |
)

ds.

(Here F · γ̇
|γ̇ | is a function from the image of γ to R, and is well-defined since γ is

injective.)

10.52 Let f : Rn → R be differentiable, and suppose that f (0) = 0. Show that
there are functions g1, g2, . . . , gn : Rn → R such that for all x ∈ R

n,

f (x) = x1g1(x)+ x2g2(x)+ · · · + xngn(x).

(This uses Exercise 9.102. For a hint see [Spi65, p.34].)

Plane-Filling and Rectifiable Paths
10.53 The purpose of this exercise is to construct a “plane-filling curve”. For each n

we define a division of the unit square [0, 1]2 into 4n many squares An
1, A

n
2, . . . , An

4n .
Each square An

k is split into 4 equal sub-squares An+1
4k−3, An+1

4k−2, An+1
4k−1 and An

4k.
Here are the first few steps, omitting the superscripts n = 1, 2, 3:

we follow the pattern
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and its reflections and rotations, for example:

(a) Show that for each k < 4n, An
k and An

k+1 have a common edge.

For n � 1 and k = 1, 2, . . . , 4n let In
k = [(k − 1)4−n, k4−n].

(b) Show that there is a (unique) function f : [0, 1] → [0, 1]2 satisfying, for all
n � 1 and k � 4n, f [In

k ] ⊆ An
k .

(c) Show that f is continuous.
(d) Show that f is onto [0, 1]2.
(e) Show that f is not injective.
(f) Find distinct s, t ∈ [0, 1] such that f (s) = f (t).

A set A ⊆ R
n is Lebesgue null if for all ε > 0 there is a sequence U1, U2, . . . of

open balls such that A ⊆⋃
n Un and the sum

∑
n v(Un) of the volumes of the balls

Un is smaller than ε. Observe that a union of countably many Lebesgue null sets is
Lebesgue null.

10.54 Let n � 1; show that the n-dimensional unit hypercube [0, 1]n is not
Lebesgue null.

10.55 let n > 1 and let γ : I → R
n be a path, and suppose that 	(γ ) < ∞. Show

that the image of γ is Lebesgue null. (Hence, any plane-filling curve has to have
infinite length. One way to do this is, given ε > 0, to construct a piecewise linear
path η such that every point in γ [I ] is ε-close to η[I ].)

10.56 (a) Let M be a differentiable manifold, and let γ be a piecewise smooth path
in M . Show that the image of γ is not all of M .8 (b) Give an alternative proof
that the sphere is simply connected (Proposition 9.16). (Use Exercise 9.106 and see
Remark 9.17.)

10.57 Let γ : I → R
n be a path such that 	(γ ) < ∞ (but not necessarily smooth

or piecewise smooth).

8 While there is no obviously good notion of the length of a curve in M—for that we need to define
an appropriate form on M—we can use charts to show that γ cannot fill any open set in M .
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(a) Show that for every continuous function f : γ [I ] → R,
∫
γ f ds exists.

(b) Show that for every vector field F : γ [I ] → R
n,
∫
γ

F · dr exists.9

10.58 Define γ : [0, 1] → R
2 by letting γ (0) = 0 and for t > 0, γ (t) =

(t, t sin(1/t)). Show that 	(γ ) = ∞.

9 In fact, for every form ω on γ [I ], ∫
γ

ω exists. This is a bit harder to prove. The hypothesis
	(γ ) < ∞ is quite strong; it implies that γ is differentiable outside a Lebesgue null set, and that
γ̇ , while perhaps not continuous, is integrable. such a curve is called rectifiable.



11Complex Differentiation

If a complex function is differentiable on an open set then it is analytic. This
remarkable fact makes complex analysis very different from real analysis. In this
chapter we finally develop the basics of complex analysis and analytic functions. In
the next chapter, this will allow us to define Riemann surfaces: those surfaces on
which we can perform complex differentiation.

Our development of the complex derivative and integral, up to Cauchy’s Integral
Formula, emphasises the link between complex and real differentiation: a function
f : C → C is complex differentiable if and only if the corresponding function
f : R2 → R

2 is real differentiable, and the Cauchy-Riemann Equations hold. We
later turn to power series and analytic functions, and finally connect the two strands
together in Theorem 11.67.

Our work in this chapter will allow us to settle two debts: first, to carry out the
development from the introductory chapter of the function t �→ eit ; and second, to
give a proof of the fundamental theorem of algebra.

Throughout, we continue to assume that all paths are piecewise smooth, so that
path integrals exist.

11.1 Complex Derivatives and Integrals

We have identified the complex numbers with the plane R
2, and so we identify

functions f : C → C with maps f : R2 → R
2. For such f we write fx and fy for

the real and imaginary part of f , so f = fx + ify =
(

fx

fy

)
.
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The key to complex differentiation is the following observation:

Lemma 11.1 Let c ∈ C. Considered as a map R
2 → R

2, the function z �→ cz is
linear, defined by the matrix

Mc =
(

cx −cy

cy cx

)

.

Exercise 11.2 Verify that multiplying by i is the rotation of R
2 by 90◦ and in

general, multiplying by eiθ is the rotation by θ radians. «

Exercise 11.3 Show that for c, d ∈ C we have Mc+d = Mc + Md and Mcd =
McMd .1 «

Exercise 11.4 Let c, d ∈ C. (a) Show that Mc̄ = Mc
t (where c̄ is the complex

conjugate cx − icy of c). (b) Show that det Mc = |c|2. (c) Show that |cd| = |c| · |d|.
(d) Show that if c �= 0 then Mc−1 = (Mc)

−1 = 1
|c|2 Mc

t. (e) Show that ‖Mc‖ = |c|.
(See Definition 9.39.) «

Lemma 11.1 implies:

Proposition 11.5 Let U ⊆ C be open, let w ∈ U , and let g : U → C be a function.
Let c ∈ C. The following are equivalent:

(1) The corresponding function g : U → R
2 is differentiable at w, and

Dg(w) = Mc.

(2) For all ε > 0 there is some δ > 0 such that for all z ∈ C, if |z − w| < δ then
|(g(z)− g(w))− (z−w)c| < |z−w|ε. In other words,

c = lim
z→w

g(z)− g(w)

z−w
,

where the ratio is taken as the ratio of two complex numbers.

When these conditions hold then we say that g is complex differentiable at w, and
write g′(w) = c. The 2× 2 matrices A which are Mc for some c ∈ C are precisely
those satisfying a1,1 = a2,2 and a1,2 = −a2,1; so Proposition 11.5 gives the:

1 Thus, c �→ Mc is an embedding of C into the matrix ring M2(R).
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Cauchy-Riemann Equations A function g : U → C is complex differentiable atw
if and only if the corresponding function g : U → R

2 is real differentiable at w, and
at w,

Dxgx = Dygy & Dygx = −Dxgy,

in which case g′ = Dxgx − iDygx = Dygy + iDxgy .

Example 11.6 The function z �→ z̄ is not complex differentiable at any point, as the
full derivative of the corresponding vector field is

(
1 0
0 −1

)
at every point. «

Proposition 11.7 Let f and g be defined on a neighbourhood of w and differen-
tiable at w. Then:

(a) f + g is differentiable at w and (f + g)′(w) = f ′(w)+ g′(w).
(b) fg is differentiable at w and (fg)′(w) = (fg′ + f ′g)(w).
(c) If f is constant on a neighbourhood of w then f ′(w) = 0.
(d) The chain rule holds: if h is differentiable at f (w) then h ◦ f is differentiable

at w and (h ◦ f )′(w) = h′(f (w)) · f ′(w).
(e) If f (z) = z on a neighbourhood of w then f ′(w) = 1.
(f) If f (z) = 1/z on a neighbourhood of w then f ′(w) = −1/w2.
(g) f is continuous at w.

Proof The proofs for real functions carry over to the complex case. However, we
can also use facts about real differentiability to deduce these properties using the
characterisation above of complex differentiation. For example, (a) follows from
Exercise 9.44 together with the fact that Mc + Md = Mc+d (Exercise 11.3). (c)
follows from Exercise 9.35; (d) follows from the chain rule (Proposition 9.42), using
the fact that McMd = Mcd ; (e) follows from Exercise 9.35 as well, using the fact
that M1 is the identity matrix; (g) follows from Exercise 9.34.

(f) is a calculation; if f (z) = 1/z = (x/(x2 + y2),−y/(x2 + y2)) then Df =
1

(x2+y2)2

(
y2−x2 −2xy

2xy y2−x2

)
which is M−1/z2 .

(b) is more elaborate but follows from Exercise 9.53. As a vector field, fg =(
fxgx−fygy

fxgy+fygx

)
. Applying the product rule and recalling that at w, Df = Mf ′ , gives,

at w,

D((fg)x) = (fxDgx+gxDfx)− (fyDgy+gyDfy) = (fx,−fy)Mg′ + (gx,−gy)Mf ′ ;

together with a similar calculation for D((fg)y ) we get D(fg) = Mf Mg′ +
MgMf ′ = Mfg′+f ′g at w as required. ��
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Proposition 11.8 Suppose that f : U → C is differentiable, that U is connected,
and that f ′ = 0 on U . Then f is constant.

Proof Follows from Corollary 9.77, since M0 is the zero matrix. ��

Proposition 9.48 and Exercise 11.4(e) imply:

Proposition 11.9 Suppose that f : U → C is complex differentiable and that U is
convex. Suppose that |f ′| � M on U . Then for all a �= b ∈ U , |f (b) − f (a)| �
M|b − a|.

If U ⊆ C is open, then a function f : U → C is continuously (complex)
differentiable on U if it is complex differentiable at every point of U and the
derivative function f ′ : U → C is continuous.2

Exercise 11.10 Let U ⊆ C be open and let f : U → C be continuously
differentiable. Define G : U2 → C by letting

G(z,w) =
{

f (w)−f (z)
w−z

, if z �= w; and

f ′(z), if z = w.

Show that G is continuous. (Compare with Exercise 9.50.) «

Finally, the real inverse function theorem (for n = 2), together with (Mc)
−1 =

Mc−1 and det(Mc) = |c|2, which is nonzero if c �= 0, gives a complex inverse
function theorem:

Theorem 11.11 Let f : U → C be continuously differentiable, let a ∈ U , and
suppose that f ′(a) �= 0. Then there are neighbourhoodsV ⊆ U of a andW of f (a)

such that f �V is a homeomorphism between V and W , and the inverse g of f �V is
differentiable at f (a), and g′(f (a)) = 1/f ′(a).

Example 11.12 Let a ∈ C be nonzero. There are two complex square roots of a;
let b be one of them. Of course b �= 0. The function z �→ z2 is continuously
differentiable and its derivative is nonzero at b. So there is a neighbourhood U of b

and V of a such that z �→ z2 is a homeomorphism from U to V ; and on V there is
a continuously differentiable function which maps a to b and each w ∈ V to one of
the square roots of w. Such a choice of a square root, or an nth root for any n � 2,
cannot be done on a neighbourhood of 0; see Example 12.36.3 «

2 We do not use the term smooth here, to distinguish between the complex and real derivative.
3 The construction of a continuously differentiable square root can be done directly by a continuous
choice of argument; see Exercise 11.87. We will “resolve” the multi-valued nature of the square
root using Riemann surfaces in Chap. 12.
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11.1.1 Complex Integrals

We introduce two kinds of complex integrals. First, given a continuous function
f : [a, b] → C we can again write f = fx + ify and then we just define

∫ b

a

f dt =
∫ b

a

fx dt + i

∫ b

a

fy dt.

Next, we consider path integrals of complex functions. A complex (linear) form
on U ⊆ C is a continuous map ω : U × C → C such that for all a ∈ U , the
function ωa(v) = ω(a, v) is linear as a map from C to C; which of course means
that ωa(v) = f (a) · v for all v ∈ C, where f is continuous. We let dz be the form
defined by dza(v) = v; so every complex form is f dz for some continuous f .

Now for a path γ in U we can define
∫
γ ω exactly as is done at page 257: Fix

some f : U → C and a path γ : K → U . For a tagged partition P of K we let

SP (f dz, γ ) =
∑{

f (γ (rI )) ·�Iγ : I is a P -interval
};

recall that rI is the P -tag for the interval I . Here �Iγ (which is a vector in R
2) is

treated as a complex number, and the product f (γ (rI )) ·�Iγ is the product of two
complex numbers. If the limit exists we let

∫

γ

f dz = lim
D(P)→0

SP (f dz, γ ).

Let I = [c, d] ⊆ K be a subinterval. Let �x = (�Iγ )x = γx(d)− γx(c) where
γ = γx + iγy ; similarly define �y . Let r ∈ I . Again identifying with functions
to R

2,

f (γ (r)) ·�Iγ = Mf (γ (r)) ·
(

�x

�y

)

=
(

fx(γ (r))�x − fy(γ (r))�y

fy(γ (r))�x + fx(γ (r))�y

)

,

which shows that

SP (f dz, γ ) = SP (fx dx − fy dy, γ )+ i · SP (fy dx + fx dy, γ ).

If γ is piecewise smooth (as we are assuming now), real integrals along γ exist.
Recalling our notation fx dx − fy dy = (fx,−fy) · dr and similarly for the
imaginary part, we conclude:

Proposition 11.13 For any path γ in U and continuous f : U → C, the integral∫
γ f dz exists, and

∫

γ

f dz =
∫

γ

(fx,−fy) · dr + i

∫

γ

(fy, fx) · dr.
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Exercise 11.14 Let f : U → C be continuous and let γ : K → U be path. Show
that

∣
∣
∣
∣

∫

γ

f dz

∣
∣
∣
∣ �

∫

γ

|f | ds

(Use the identity |zw| = |z| · |w| and the triangle inequality.) Conclude that

∣
∣
∣
∣

∫

γ

f dz

∣
∣
∣
∣ � 	(γ ) · max

w∈γ [K]{|f (w)|} «

Exercise 11.15 Show that the complex path integral is linear:
∫
γ (cf + g)dz =

c
∫
γ

f dz+ ∫
γ

g dz (where c ∈ C). «

When γ : K → C is smooth we identify γ̇ (t) with the corresponding complex
number, which is γ̇x + iγ̇y . Recall that when γ : [a, b] → C is smooth and F is

a vector field then
∫
γ

F · dr = ∫ b

a
F (γ (t)) · γ̇ (t) dt where here the multiplication

is the dot product of vectors. Again letting f : U → C be continuous, when γ is
smooth we have

∫

γ

f dz =
∫

γ

(fx,−fy) · dr + i

∫

γ

(fy, fx) · dr =
∫ b

a

(
(fx(γ (t)) · γ̇x(t))− fy(γ (t)) · γ̇y(t)

)
dt +

i

∫ b

a

(
(fy(γ (t)) · γ̇x(t))+ fx(γ (t)) · γ̇y(t)

)
dt =

∫ b

a

f (γ (t)) · γ̇ (t) dt

where in the last integral the multiplication is that of complex numbers, and the
integral of the function f (γ (t)) · γ̇ (t) : [a, b] → C is the first kind of complex
integral (integral of a function of a real variable) mentioned above.

11.2 Cauchy’s Integral Formula

Fix a region (open and connected) U ⊆ C. A primitive of a continuous function
f : U → C is a continuously differentiable g : U → C such that g′ = f .
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Lemma 11.16 Let f : U → C be continuous. The following are equivalent.

(1) Both vector fields (fx,−fy) and (fy, fx) on U are conservative.
(2) For every loop γ in U ,

∫
γ f dz = 0. (Recall that we assume that all paths are

piecewise smooth, so the integral always exists.)
(3) f has a primitive on U .

Proof The equivalence of (1) and (2) follows from Proposition 11.13. The equiv-
alence of (1) and (3) follows from the Cauchy-Riemann Equations. A function
g : U → C is a primitive of f if and only if Dg = Mf on U , in other words,
if and only if Dgx = (fx,−fy) and Dgy = (fy, fx)—if and only if gx and gy

show that both vector fields (fx,−fy) and (fy, fx) are gradient fields, equivalently
conservative (Proposition 10.28). ��

If g is continuously differentiable, then Proposition 11.13 implies that

∫

γ

g′ dz =
∫

γ

Dgx · dr + i

∫

γ

Dgy · dr.

Then by Proposition 10.29 we have following analogue of the second part of the
fundamental theorem of calculus:

Lemma 11.17 Suppose that g : U → C is continuously differentiable. Then for
any path γ : [a, b] → U ,

∫

γ

g′ dz = g(γ (b))− g(γ (a)).

The following lemma says that this is a characterisation of primitives:

Lemma 11.18 Let f, h : U → C be continuous and suppose that for any path
γ : [a, b] → U ,

∫

γ

f dz = h(γ (b))− h(γ (a)).

Then h is a primitive of f on U .

Proof The assumption implies that
∫
γ f dz = 0 for loops in U , hence there is some

g : U → C such that g′ = f . Fix some point w ∈ U . Given z ∈ U , since we assume
that U is connected, let γ : [a, b] → U be a path from w to z (which we may take
to be smooth by Proposition 9.75). Then h(z) − h(w) = ∫

γ f dz = g(z) − g(w).
This implies that g − h is constant on U , whence h′ = g′ = f . ��
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Continuously Differentiable Functions and Primitives

Let f : U → C be continuously differentiable. The Cauchy-Riemann Equations
imply that the vector fields (fx,−fy) and (fy, fx) are symmetric on U . Theo-
rem 10.33 (together with Lemma 11.16) then implies:

Proposition 11.19 Suppose that f : U → C is continuously differentiable and that
U is simply connected. Then f has a primitive on U .

In fact, we can omit one point, so we get the following extension of Proposi-
tion 11.19:

Lemma 11.20 Suppose that U is simply connected, that p ∈ U , that f : U → C is
continuous and that f �U\{p} is continuously differentiable. Then f has a primitive
on U .

Proof Again we need to show that the vector fields (fx,−fy) and (fy, fx) are con-
servative (on U ). As before, the Cauchy-Riemann Equations imply that both vector
fields are symmetric on U \ {p}. The result then follows from Propositions 10.39
and 10.36. ��

11.2.1 Winding Numbers in the Complex Plane

Recall that the winding number of a piecewise smooth loop around the origin can be
characterised using integration of the vector field Fwind (Proposition 10.32). We
can also use complex integration:

Proposition 11.21 Let γ be a loop in C \ {0}. If the winding number of γ is m then

∫

γ

dz

z
= 2πim.

Proof Let G be the vector field from Example 10.30. Let f (z) = z−1 = z̄/|z|2;
so fx = x/(x2 + y2) and fy = −y/(x2 + y2). That is, (fx,−fy) = G and
(fy, fx) = Fwind. Then by Proposition 11.13,

∫

γ

dz

z
=
∫

γ

G · dr + i

∫

γ

Fwind · dr;

The proposition follows from Proposition 10.32 and the fact that G is conservative.
��
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The winding number of a loop in C\{0} is its winding number around the origin;
by shifting, for every point p ∈ C and loop in C \ {p} we can define the winding
number of γ around p, which we denote by wndγ (p). Proposition 11.21 implies
that

wndγ (p) = 1

2πi

∫

γ

dz

z− p
.

Using this notation, Proposition 9.29 says that two loops γ and η in C\{p} (with
the same domain and end-point) are homotopic in C \ {p} if and only if wndγ (p) =
wndη(p). And Propositions 9.30 and 9.32 together show:

Proposition 11.22 Suppose that W ⊆ C is simply connected and that γ is a loop
in W . Then wndγ (p) = 0 for all p /∈ W .

Corollary 11.23 For any loop γ , wndγ = 0 outside a bounded subset of C.

Proof Since γ [I ] is compact, for sufficiently large R we have γ [I ] ⊂ B(0, R), and
B(0, R) is simply connected. ��

Another corollary is:

Proposition 11.24 For any loop γ : I → C, the function p �→ wndγ (p) is
continuous on C \ γ [I ].

Proof By shifting, we assume that 0 /∈ γ [I ] and show that p �→ wndγ (p) is
continuous at 0. Let r = d(0, γ [I ]) = min{|z| : z ∈ γ [I ]}, which is positive
(as γ [I ] is closed). We show that p �→ wndγ (p) is constant on B(0, r). Suppose
that |p| < r . Let η(t) = γ (t)−p. By definition, wndγ (p) = wndη(0). So we show
that wndη(0) = wndγ (0).

To see this, we observe that for all z ∈ γ [I ], |p/z| < 1 and so (z − p)/z =
1 − (p/z) is in U = B(1, 1). Now U ⊂ C

∗ is simply connected, so there is a
continuous choice of argument α on U (Proposition 9.30). Let θ be a continuous
choice of argument for γ . Then t �→ θ(t)+ α(η(t)/γ (t)) is a continuous choice of
argument for η, and this establishes wndη(0) = wndγ (0). (For an alternative proof
see Exercise 11.78.) ��

Since wndγ (p) is always an integer, this means that wndγ (p) is constant on
connected open sets.

Definition 11.25 Let p ∈ C. A loop γ in C \ {p} is a contour around p if
wndγ (p) = 1.
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Example 11.26 A parameterised circle with centre p is a loop γ : [0, 2π] → C

given by γ (t) = p + reit (for some fixed r > 0). A parameterised circle with
centre p is a contour around p. «

More is true:

Proposition 11.27 Let γ be a parameterised circle. Then γ is a contour around
every point in its interior, but wndγ (p) = 0 if p lies outside the circle.

Proof Let q be the circle’s centre and r its radius. The interior of the circle B(q, r)

and its exterior C \ B(q, r) = {p : d(p, q) > r} are both connected, and so wndγ

is constant on both. We know that wndγ (q) = 1, so wndγ = 1 on B(q, r); on the
other hand, {p : d(p, q) > r} is unbounded, and so wndγ = 0 on that set. ��

The Integral Formula
We are now ready to prove Cauchy’s integral formula, which says that the value of
a continuously differentiable function at some point is the average of its values on a
contour around that point.

Cauchy’s Integral Formula Let U ⊆ C be simply connected, let p ∈ U , let γ be
a contour in U around p, and let f : U → C be continuously differentiable. Then

f (p) = 1

2πi

∫

γ

f (z)

z− p
dz.

Proof Define g : U → C by letting

g(z) =
{

f (z)−f (p)
z−p

, if z �= p, and

f ′(p) if z = p.

Proposition 11.5 implies that g is continuous at p; and g is continuously differen-
tiable on U\{p}. Lemma 11.20 says that g has a primitive on U , so by Lemma 11.16,∫
γ

g dz = 0. But since p is not in the range of γ ,

0 =
∫

γ

g dz =
∫

γ

f (z)

z− p
dz− f (p)

∫

γ

dz

z− p
.

The integral formula now follows since γ is a contour around p. ��



11.3 Uniform Convergence and Power Series 291

11.3 Uniform Convergence and Power Series

Analytic functions are those which are locally the sum of power series. The theory
that we present in this section is pretty standard. It is often part of a real analysis
course; all we need to observe is that the same arguments work for complex numbers
as well.

11.3.1 Absolute Convergence

The topology of C allows us to not only take the limits of sequences but sometimes
add up infinitely many numbers. Let 〈zn〉 be an infinite sequence of complex
numbers. We say that

∑
n zn = w if the sequence of partial sums z1, z1 + z2, z1 +

z2+z3, . . . converges to w. If
∑

zn = w for some w then we say that the sum
∑

zn

converges.
Analogously to sequences, completeness is utilised via the notion of Cauchy

series. A series
∑

zn is a Cauchy series if the sequence of partial sums
〈∑n

j=1 zj

〉

is a Cauchy sequence. This unwraps to the condition: for all ε > 0 there is some N

such that for all m � n � N , |zn + zn+1 + · · · + zm| < ε.4 Completeness of the
complex numbers (Exercise 8.84 for n = 2) implies that a series converges if and
only if it is a Cauchy series.

Exercise 11.28 (a) Show that if |z| < 1 then the geometric series
∑

zn converges.
(Hint: consider the division of polynomials (1− xn)/(1− x). Use Exercise 8.122.)
(b) Show that

∑
1/n2 converges. (Hint: 1/n2 � 1/(n− 1)− 1/n.) «

Proposition 11.29 If
∑

zn converges then limn→∞ zn = 0.

Proof If for some ε, for infinitely many n we have |zn| � ε, then
∑

zn is
not a Cauchy series, as witnessed by m = n; a convergent series is Cauchy
(Proposition 8.81). ��

Exercise 11.30 Show that the harmonic series
∑

n 1/n does not converge, giving
a counterexample to the converse of Proposition 11.29. (One way to do this is to
consider the sum of 1/n for n ranging from 2m + 1 to 2m+1.) «

Definition 11.31 A series
∑

zn converges absolutely if the series
∑|zn| converges.

Proposition 11.32 If
∑

zn converges absolutely then it converges, and
∣
∣∑ zn

∣
∣ �∑|zn|.

4 Informally, we sometimes write limn,m→∞
∑m

j=n zj = 0.
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Proof Let m � n. The triangle inequality implies that |zn + zn+1 + · · · + zm| �
|zn|+|zn+1|+· · ·+|zm|. This shows that if

∑|zn| is a Cauchy series, then so is
∑

zn,
and so it converges. The inequality follows from applying the triangle inequality to
the partial sums, once we observe that

∣
∣∑ zn

∣
∣ = limn→∞

∣
∣∑

j�n zj

∣
∣ (the absolute

value function is continuous). ��

Rearrangements
Recall (Example 2.39) that SN is the group of all permutations of the natural
numbers. A rearrangement of a sequence 〈zn〉 is a sequence 〈zσ(n)〉 for some
σ ∈ SN. For sequences this is not too interesting:

Exercise 11.33 Let 〈xn〉 be a sequence of points in a quasi-Euclidean space X,
converging to some point y ∈ X. Show that for all σ ∈ SN, limn xσ(n) = y. «

A rearrangement of the series
∑

zn is
∑

zσ(n) for some σ ∈ SN. Unlike
sequences, a rearrangement of a convergent series could fail to converge, or
converge to a different sum (see Exercise 11.101). This is precluded by absolute
convergence.

Proposition 11.34 Suppose that a series
∑

zn converges absolutely. Then any
rearrangement of

∑
zn converges, to the same sum.

Proof Let σ ∈ SN; let α = ∑
n zn. To show that

∑
zσ(n) = α, given ε > 0, we

first choose N sufficiently large such that
∑

n>N |zn| < ε. Now suppose that M

is sufficiently large so that {σ(1), σ (2), . . . , σ (M)} contains all of {1, 2, . . . , N}
(in other words, M � max{σ−1(1), σ−1(2), . . . , σ−1(N)}). Then

∣
∣∑

n�M zσ(n) −∑
n�N zn

∣
∣ is |zk1+zk2+· · ·+zkl |, where k1, k2, · · · > N ; by the triangle inequality,

this is bounded by |zk1 | + · · · + |zkl |, which in turn is bounded by
∑

n>N |zn| < ε.
On the other hand,

∣
∣α −∑

n�N zn

∣
∣ < ε, so altogether,

∣
∣α −∑

n�M zσ(n)

∣
∣ < 2ε.

��

11.3.2 Uniform Convergence

Let U ⊆ C; let 〈fn〉 be a sequence of functions, each fn : U → C. For each z ∈ U ,
〈fn(z)〉 is a sequence of complex numbers, and we can ask if it converges or not.
We say that lim fn = f pointwise if for all z ∈ U , f (z) = limn→∞ fn(z). The rate
of convergence of 〈fn(z)〉 as z varies could vary as well. Uniform convergence, a
strengthening of pointwise convergence, says that it doesn’t.

Definition 11.35 A sequence 〈fn〉 of functions from U to C converges to f

uniformly if for all ε > 0 there is some N such that for all n > N , for all z ∈ U ,
|f (z)− fn(z)| < ε.
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In other words, if for all but finitely many n, the number supz∈U |f (z) − fn(z)| is
finite, and the sequence of these numbers tends to 0.

Exercise 11.36 Give an example of functions f, fn : [0, 1] → R such that 〈fn〉
converges to f pointwise but not uniformly. «

These notions apply to series by considering the sequence of partial sums. In
other words,

∑
fn = f pointwise if for all z ∈ U , f (z) = ∑

n fn(z); if and only
if the sequence

〈∑
m�n fm

〉
converges pointwise to f . And f =∑

fn uniformly if
f = limn

∑
m�n fm uniformly.

The completeness of C implies that the sequence 〈fn〉 has a limit if and only if
for all z ∈ U , 〈fn(z)〉 is a Cauchy sequence. However, we say that 〈fn〉 is a Cauchy
sequence of functions if this is true uniformly; that is, if for all ε > 0 there is some N

such that for all n,m > N , for all z ∈ U , |fn(z)− fm(z)| < ε.

Proposition 11.37 A sequence 〈fn〉 of functions is Cauchy if and only if it
converges uniformly to some f : U → C.

Proof Suppose that f = lim fn uniformly. The argument proving Proposition 8.81
shows that 〈fn〉 is a Cauchy sequence of functions; ε depends on N but not on z.
In the other direction, let 〈fn〉 be a Cauchy sequence of functions. For all z ∈ U ,
〈fn(z)〉 is a Cauchy sequence of complex numbers, and so has a limit, which we
call f (z). Let ε > 0. If for all n,m � N , for all z ∈ U , |fn(z)− fm(z)| � ε, then,
taking the limit as m →∞, for all n � N , for all z ∈ U , |f (z)− fn(z)| � ε. ��

The notion applies to series as well; a series
∑

fn is Cauchy if the sequence of
partial sums is Cauchy, which amounts to: for all ε > 0 there is some N such that
for all m � n > N , for all z ∈ U ,

∣
∣∑m

j=n fj (z)
∣
∣ < ε.

Exercise 11.38 Give an example of a sequence of continuous functions
fn : [0, 1] → R which converges pointwise to a discontinuous function
f : [0, 1] → R. «

Uniform convergence, on the other hand, preserves continuity.

Proposition 11.39 Let 〈fn〉 be a sequence of continuous functions which converges
uniformly to a function f . Then f is continuous.

Proof Let z ∈ U ; let ε > 0. Find some n such that for all w ∈ U , |f (w)−fn(w)| �
ε. Since fn is continuous, find some open neighbourhood W ⊆ U of z such that for
all w ∈ W , |fn(w)−fn(z)| � ε. Then, using the triangle inequality, for all w ∈ W ,
|f (w)− f (z)| � 3ε. ��
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Since the sum of finitely many continuous functions is continuous (Exer-
cise 8.11), we see that Proposition 11.39 applies to series as well: if f = ∑

fn

uniformly, and each fn is continuous, then so is f .
We say that

∑
fn converges absolutely if the series

∑|fn| converges (that is, if
for all z ∈ U ,

∑
fn(z) converges absolutely). Putting the adverbs together, we say

that
∑

fn converges absolutely uniformly if the series
∑|fn| converges uniformly.

Exercise 11.40 Let fn : (−1, 0) → R be defined by fn(x) = xn/n. Show that∑
fn converges absolutely, and uniformly, but not absolutely uniformly. (The last

part will be easier later; you might consider ln(1− x).) «

Proposition 11.41 If
∑

fn converges absolutely uniformly, then
∑

fn converges
both absolutely and uniformly.

Proof Absolute convergence of
∑

fn is immediate. For uniform convergence, note
that

∑|fn| is a Cauchy series of functions, and so
∑

fn is a Cauchy series of
functions. ��

The following will help show that power series have a radius of convergence.

Weierstrass M-Test Let
∑

Mn be a convergent series of positive real numbers.
Let 〈fn〉 be a sequence of functions from U to C, and suppose that for all n,
supz∈U |fn(z)| � Mn. Then

∑
fn converges absolutely uniformly.

Proof
∑

Mn is a Cauchy series of real numbers; it follows that
∑|fn| is a Cauchy

series of functions. ��

Convergence on Compact Sets
Let 〈fn〉 be a sequence of functions defined on U , and let A ⊆ U . It is sometimes
possible that 〈fn〉 converges to f pointwise but not uniformly; but that 〈fn�A〉
converges to f�A uniformly. We say that 〈fn〉 converges uniformly on A.

Exercise 11.42 Let U ⊆ C be open, and let 〈fn〉 be a sequence of functions defined
on U which converges to some function f : U → C. Show that the following are
equivalent:

(1) fn converges locally uniformly to f : there is an open cover O of U such that
〈fn〉 converges uniformly to f on each O ∈ O;

(2) for every compact subset D ⊂ U , 〈fn〉 converges uniformly to f on D. «
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Proposition 11.39 implies its strengthening:

Proposition 11.43 Let 〈fn〉 be a sequence of continuous functions which converges
locally uniformly to a function f . Then f is continuous.

Proof Let O be an open cover of U such that fn → f uniformly on each O ∈ O.
Then for each O ∈ O, f �O is continuous; this implies that f is continuous at each
z ∈ U , and hence is continuous. ��

11.3.3 Power Series

Let 〈cn〉n�0 be a sequence of complex numbers, and let a be a complex number. The
power series with coefficients 〈cn〉 and centre a is the series of functions

∑
cn(z −

a)n. This series will converge for some z ∈ C (for example for z = a), but may not
converge for all. The domain of the sum is the collection of complex numbers z for
which the series converges.

Lemma 11.44 Let
∑

cn(z − a)n be a power series, and suppose that the series
converges on some number b �= a. Let r = |b − a|. Then the series

∑
cn(z − a)n

converges on B(a, r); in fact, for all s < r , this power series converges absolutely
uniformly on B(a, s).

Proof The sum
∑

cn(b − a)n converges and so the sequence 〈cn(b − a)n〉 tends
to 0 (Proposition 11.29) and so is bounded, say by some M > 0; this means that
|cn|rn � M for all n. Let s < r . Then for all z ∈ B(a, s),

|cn(z− a)n| � |cn|sn = |cn|rn
( s

r

)n

� M
( s

r

)n

.

Since s/r < 1, the series 〈M(s/r)n〉 is a convergent geometric series (Exer-
cise 11.28). The result then follows from the Weierstrass M-Test. ��

Let R = sup
{
r � 0 : ∑ cn(z− a)n converges on B(a, r)

}
, and let f be the

sum of the series
∑

cn(z− a)n. Lemma 11.44 says that

B(a,R) ⊆ dom f ⊆ B(a, r)

and that the series converges absolutely uniformly on B(a, r) for all r < R.
The number R is called the radius of convergence of the series. Of course if
R = ∞ then dom f = C; R = 0 means that dom f = {a}. The restriction
of f to B(a,R) is continuous, because

∑
cn(z − a)n converges locally uniformly

on B(a,R) (Proposition 11.43).
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On the boundary, the series may converge on some, all, or none of the points;
see Exercises 11.102 and 11.103. It may even converge and be discontinuous on the
boundary.

The root test is used to calculate the radius of convergence. It uses the notion of
the limit superior of a sequence.

Exercise 11.45 Let 〈rn〉 be a sequence of real numbers, bounded from above. Let
sn = supk�n rk . (a) Show that the sequence 〈sn〉 is non-increasing.

Since the sequence 〈sn〉 is also bounded from below, we know it has a limit
(Exercise 8.88), which we denote by lim supn rn. If 〈rn〉 is unbounded from above
then we write lim supn rn =∞.

(b) Show that lim supn rn is the greatest number s such that for all ε > 0, for all
but finitely many n, s � rn − ε. (c) Show that lim supn rn is the greatest number s

such that there is a subsequence of 〈rn〉 which converges to s. (d) Show that if
lim an = a > 0 then lim supn(anrn) = a · lim supn rn. «

Proposition 11.46 LetR be the radius of convergence of the power series
∑

cn(z−
a)n. Then 1/R = lim supn

n
√|cn|.

The root test also holds in the extreme cases R = 0 or R = ∞, if 1/0 is
understood as ∞ and 1/∞ as 0.

Proof Let α = lim supn
n
√|cn|, and let b ∈ C. We need to show that if |b−a| < 1/α

then
∑

cn(b− a)n converges, and that if |b− a| > 1/α then
∑

cn(b− a)n does not
converge.

First suppose that |b − a| < 1/α, that is, that α < 1/|b − a|. By (b) of
Exercise 11.45, for all but finitely many n, n

√|cn| is bounded below 1/|b − a|;
this implies that there is some q < 1 such that for all but finitely many n,
n
√|cn| � q/|b− a|. So for all but finitely many n, |cn(b− a)n| � qn. It follows that∑

cn(b − a)n converges absolutely.
If 1/|b − a| < α then there are infinitely many n such that 1/|b − a| < n

√|cn|,
which we simplify to |cn(b − a)n| > 1. Then

∑
cn(b − a)n does not converge by

Proposition 11.29. ��

11.4 Analytic Functions

Definition 11.47 Let U ⊆ C be open. A function f : U → C is analytic if locally
it is the sum of a power series: for every a ∈ dom f there is a power series

∑
cn(z−

a)n which converges to f on some open disc containing a.

Exercise 11.48 Let
∑

cn(z−a)n be a power series with radius of convergence R >

0. Show that the sum of the series is analytic on B(a,R). (Hint: use Exercise 11.85
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below; if b ∈ B(a,R), show that
∑∞

n=0
∑n

k=0 cn

(
n
k

)
(b − a)n−k(z − b)k converges

absolutely for z sufficiently close to b.) «

Analytic functions are rigid compared to merely smooth functions. In some ways
they resemble polynomials. Here is an example.

If f : U → C then we say that a zero z of f is isolated if it is isolated in the set
of zeros of f . That is, if there is some neighbourhood of z in which z is the only
zero of f (see Definition 8.99).

Lemma 11.49 Let f : U → C be analytic. If some zero a of f is not isolated then
f = 0 on a neighbourhood of a.

Proof Let a be a zero of f . Let V ⊆ U be an open neighbourhood of a on which
f = ∑

cn(z − a)n. Since f (a) = c0 we have c0 = 0. If ck = 0 for all k then
f = 0 on V . Otherwise, let k be the least such that ck �= 0. Then f = (z −
a)k

∑
n�k cn(z − a)n−k . Define g(z) = ∑

n�k cn(z − a)n−k; it converges on V .

For z �= a in V , (z − a)k �= 0; and g(a) �= 0. Since g is continuous (see after
Lemma 11.44), there is a neighbourhood of a on which g �= 0. Also (z− a)k �= 0 if
z �= a. It follows that a is an isolated zero of f . ��

We get a generalisation of the fact that polynomials have finitely many roots:

Proposition 11.50 Let U ⊆ C be a region (open and connected) and let f : U →
C be analytic. If the set of zeros of f is not discrete then f = 0.

Proof Let V ⊆ U be the collection of non-isolated zeros of f . Lemma 11.49
implies that V is open. But V is also closed in U . Suppose that w ∈ U \ V . If
f (w) �= 0 then continuity of f implies that f �= 0 on a neighbourhood of w, and
this neighbourhood is disjoint from V . Otherwise w is an isolated zero of f , which
again means that it has a neighbourhood disjoint from V . ��

By considering f − g, we see that if f, g : U → C are analytic and U is
connected, then the points on which f equals g are isolated, or f = g.

Example 11.51 Unlike polynomials, analytic functions may have infinitely many
zeros; for example take the function ez − 1 (see Exercise 11.60 below). «

11.4.1 Differentiating Power Series

Exercise 11.14 implies the following (again recall that we are only considering
piecewise smooth paths):
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Proposition 11.52 Let γ be a path in C, and let 〈fn〉 be a sequence of continuous
functions which converges uniformly on the image of γ . Then

lim
n

∫

γ

fn dz =
∫

γ

(
lim
n

fn

)
dz.

Proposition 11.53 Let U ⊆ C be a region and let fn : U → C be continuously
differentiable. Suppose that fn converge pointwise to f and that f ′n converge locally
uniformly to g. Then g = f ′.

Note that g is continuous (Proposition 11.43) and so f is continuously differen-
tiable.

Proof Let γ be a path in U . The image of γ is compact. By Exercise 11.42, f ′n →
g uniformly on the image of γ . By Proposition 11.52,

∫
γ

f ′n dz → ∫
γ

g dz. As

mentioned, g is continuous. By Lemma 11.17,
∫
γ f ′n dz = fn(γ (b)) − fn(γ (a))

(where [a, b] = dom γ ). Taking limits (as fn → f ),
∫
γ g dz = f (γ (b))−f (γ (a)).

By Lemma 11.18, g = f ′. ��

Proposition 11.54 Let R be the radius of convergence of a power series
∑

cn(z−
a)n. Then on B(a,R) the sum f of the series is continuously differentiable, and
f ′ =∑

ncn(z− a)n−1 on B(a,R).

In fact, the radius of convergence of
∑

ncn(z−a)n−1 is precisely R. As a result,
we see that if f is analytic then it is continuously differentiable and f ′ is analytic.

To prove Proposition 11.54 we require the following.

Exercise 11.55 Show that limn
n
√

n = 1. (There are several ways. Here’s one: first
show that for n � 3, (n + 1)n < nn+1, using the binomial formula for (n + 1)n.
Conclude that n+1

√
n+ 1 < n

√
n. Since n

√
n > 1, Exercise 8.88 implies the sequence〈

n
√

n
〉

has a limit α � 1. Next show that for all q > 1, for all but finitely many n,
qn > n; this is because

∑
(1/q)n converges (Exercise 11.28) but the harmonic series

does not (Exercise 11.30). Conclude that α cannot be greater than 1, so must equal
1.) «

Exercise 11.56 Show that if q > 1 then lim qn/n = ∞. «

Proof of Proposition 11.54 For all n, n
√|ncn| = n

√
n · n

√|cn|; by Exercises 11.45
and 11.55, lim supn

n
√

n|cn| = limn
n
√

n lim supn
n
√|cn| = lim supn

n
√|cn|, so the

radius of convergence of the series
∑

ncn(z − a)n is R. However, for all z,∑
ncn(z− a)n = (z− a)

∑
ncn(z− a)n−1, which shows that the series

∑
ncn(z−

a)n−1 converges if and only if the series
∑

ncn(z− a)n converges; so the radius of
convergence of

∑
ncn(z− a)n−1 is R as well.
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We know that on B(a,R),
∑

ncn(z − a)n−1 is locally uniformly convergent
(Lemma 11.44); the result now follows from Proposition 11.53. ��

A function f : U → C is infinitely differentiable if it is continuously differen-
tiable, f ′ is continuously differentiable, f ′′ is continuously differentiable, . . .

Corollary 11.57 An analytic function is infinitely differentiable.

The following is Taylor’s formula.

Proposition 11.58 Let a ∈ C; suppose that f = ∑
cn(z − a)n on some open

neighbourhood of a. Then n!cn = f (n)(a), where f (n) is the nth derivative of f .

In particular, this shows that a local power series representation is unique: if∑
cn(z− a)n =∑

dn(z− a)n on some open neighbourhood of a, then cn = dn for
all n.

Proof Differentiating k times (Proposition 11.54), we get that

f (k)(z) =
∑

n�k

n!
(n− k)! · cn(z − a)n−k

on a neighbourhood of a; we evaluate at z = a. ��

Exercise 11.59 Let f =∑
cnz

n around 0. Show that if f (−z) = −f (z) around 0
(f is odd) then cn = 0 for all even n. Reach a similar conclusion about even
functions (f (−z) = f (z)). Show that if f is even then f ′ is odd, and vice-versa. «

11.4.2 The Exponential and Trigonometric Functions

We finally have all the tools necessary to carry out the argument sketched in Chap. 1;
however, we extend the exponential function to all of C.

Define, for all z ∈ C,

exp z = 1+ z

1! +
z2

2! +
z3

3! + · · ·

Exercise 11.60 An entire function is an analytic function whose domain is all of C.
(a) Show that exp is entire. (b) Show that exp′ = exp. (c) Show that if f is an entire
function and f ′ = f then f = c · exp for some constant c ∈ C. (d) Conclude that
for all z,w ∈ C, exp(z+ w) = exp z · exp w. «
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Let e = exp(1).

Exercise 11.61 (a) Show that for all n ∈ Z, exp(n) = en. (b) Show that for all
n � 1, exp(1/n) = n

√
e. «

In light of this, we usually write ez for exp z.

Exercise 11.62 (a) Show that if t ∈ R then et ∈ R. (b) Show that the real
exponential function t �→ et (for t ∈ R) is increasing and maps R onto (0,∞).
(Hint: for t � 0, f (t) > t; use the intermediate value theorem and e−t = 1/et .)
(c) Define ln to be the inverse of the real exponential. Show that ln is smooth, and
that its derivative is 1/t . «

Define E(z) to be the even part of ez, namely E(z) = 1+z2/2!+z4/4!+· · · , and
O(z) = ez −E(z) to be the odd part of ez, that is, O(z) = z+ z3/3! + z5/5! + · · · .
(See Exercise 11.59). Then, define cos z = E(iz) and sin z = O(iz)/i. So eiz =
cos z + i sin z.

Exercise 11.63 (a) Show that both cos and sin are entire, that sin′ = cos and that
cos′ = − sin. (b) Show that |eit | = 1 for all t ∈ R. (c) Show that cos 2 < 0.
(Consider the first three terms of the power series, and note that it is alternating.)
(d) Follow the rest of the argument from Sect. 1.1 to define π , and verify that the
circumference of the unit circle is 2π . (e) Show that 2πi is a period of exp: for all
z ∈ C, exp(z + 2πi) = exp z. (f) Show that the range of exp is C \ {0}. (g) Prove
the addition formulas for cos(z+w) and sin(z+ w). «

Exercise 11.64 Let U ⊆ C \ {0} be simply connected; let α be a continuous choice
of argument on U (Proposition 9.30). Show that the map lnα(z) = ln |z| + iα(z) is
continuously differentiable on U . «

Example 11.65 Following Example 9.31, for any ρ ∈ R, for z ∈ C\{reiρ : r � 0},
let αρ(z) be the unique argument of z in the interval (t, t + 2π); then lnρ(z) =
ln |z| + iαρ(z) is called a branch of the complex logarithm. «

For more on complex logarithms and exponentiation see Exercise 11.87 and
some following exercises. A more conceptual understanding of the multi-valued
nature of the complex logarithm is given by the Riemann surface for the logarithm,
which we discuss in Chap. 12.

Remark 11.66 The course of this book regarding the exponential function has been
a bit topsy-turvey. We have started with an informal development in Chap. 1, and
then have sporadically used the function t �→ eit ; only now have we given a
more formal treatment. A careful inspection though will show that this function
has been mostly used in examples, and discussions of the winding number. The
formal development of the complex exponential function only relied on results in
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this section did not rely on facts deduced using the winding number, and so our
development is not, well, (logically) circular. «

11.4.3 Continuously Differentiable Functions Are Analytic

The following is the stark difference between real and complex analysis: continuous
differentiability implies infinite differentiability, and more.

Theorem 11.67 A function f : U → C is continuously differentiable if and only if
it is analytic.

Proof The easy direction follows from Corollary 11.57. In the main direction,
suppose that f is continuously differentiable.

Given a ∈ U , let γ be a parameterised circle with centre a and radius r ,
sufficiently small so that B(a, r) ⊂ U . Let b ∈ B(a, r); let z be a point on the
circle. Since |z − a| = r > |b − a|, the geometric series

∑
(b − a)n/(z − a)n

converges (Exercise 11.28), indeed

∑

n�0

(b − a)n

(z− a)n
= 1

1− b−a
z−a

= z− a

z− b
,

whence

1

z− b
=
∑

n�0

(b − a)n

(z− a)n+1 .

Since γ is also a contour around b (Proposition 11.27), by Cauchy’s Integral
Formula,

f (b) = 1

2πi

∫

γ

f (z)

z− b
dz =

∫

γ

⎛

⎝
∑

n�0

f (z)(b − a)n

2πi(z− a)n+1

⎞

⎠ dz

Let M = max {|f (z)|/2πr : z ∈ range γ }; then for all z in the image of γ ,
|gn(z)| � Mqn where q = |b − a|/|z− a| and

gn(z) = f (z)(b − a)n

2πi(z− a)n+1 .
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The Weierstrass M-Test implies that the series
∑

gn converges uniformly on the
image of γ ; Proposition 11.52 then implies that we can exchange summation and
integration and get

f (b) =
∫

γ

∑

n�0

gn(z) dz =
∑

n�0

∫

γ

gn(z) dz.

Let

cn =
∫

γ

gn(z)

(b − a)n
dz =

∫

γ

f (z)

2πi(z− a)n+1 dz,

and note that cn does not depend on b. Then f (b) = ∑
n�0 cn(b − a)n, giving a

power series representation for f on B(a, r). ��

Remark 11.68 Theorem 11.67 and Proposition 11.54 together give us an indirect
proof of Exercise 11.48, that the sum of a power series is analytic. «

Remark 11.69 More is true: the assumption of continuous differentiability can be
dropped in Theorem 11.67. That is, if a function f : U → C (with U ⊆ C open)
is (complex) differentiable at every point of U , then it is analytic. This is not too
difficult to prove, but requires a different argument, and we will not need it. «

In the proof of Theorem 11.67, we could take any radius r , as long as f

was defined on the image of γ . Together with the uniqueness of power series
representations (Proposition 11.58) we obtain:

Corollary 11.70 Let f : U → C be analytic, let a ∈ U , and suppose that f =∑
cn(z − a)n on some neighbourhood of a. Let r > 0 and suppose that B(a, r) ⊆

dom f . Then the radius of convergence of the series
∑

cn(z− a)n is at least r , and
f =∑

cn(z− a)n on B(a, r).

Finally, equating Taylor’s formula (Proposition 11.58) with the expression we
got for cn in the proof of Theorem 11.67, we obtain a generalisation of Cauchy’s
Integral Formula.

Proposition 11.71 Let U be simply connected, f : U → C be analytic, a ∈ U , and
let γ be a contour in U around a. Then

f (n)(a) = n!
2πi

∫

γ

f (z)

(z− a)n+1
dz.

Proof As mentioned, the proof of Theorem 11.67 gives the proposition in the case
that γ is a parameterised circle around a with B(a, r) ⊂ U . For other loops γ ,
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by Proposition 11.24, we can fix small r such that γ is a contour around every
b ∈ B(a, r), and repeat the proof.5 ��

11.5 Morera, Weierstrass, Liouville

Here are some corollaries.

Theorem 11.72 (Morera’s Theorem) Let U ⊆ C be simply connected and let
f : U → C be continuous. Then f is analytic if and only if it has a primitive on U .

Proof One direction follows from Proposition 11.19 and the equivalence between
analytic and continuously differentiable functions (Theorem 11.67). In the other
direction suppose that f has a primitive g on U . Then g is continuously differen-
tiable, hence analytic, and so f = g′ is analytic (Corollary 11.57). ��

And we can miss a point. We obtain the following proposition by combining
Morera’s theorem and Lemma 11.20:

Proposition 11.73 Let U be open, a ∈ U , and suppose that f : U → C is
continuous on U and analytic on U \ {a}. Then f is actually analytic on all of U .

Since being continuously differentiable is a local property, we can extend this to
more than one “missing” point, as long as they are separated from each other:

Corollary 11.74 Let U be open and let f : U → C be continuous. Suppose that
F ⊂ U is discrete and closed in U , and that f�U\F is analytic. Then f is analytic.

Proof The assumption means that there is an open cover O of U such that each
O ∈ O intersects F in at most one point (Exercise 8.102). By Proposition 11.73, f

is analytic on every O ∈ O. ��

11.5.1 Liouville’s Theorem

The following is known as Cauchy’s estimate.

5 One could try to use Proposition 9.29 and Lemma 10.37, but for this, we need to know that
if U ⊆ C is open and simply connected, and a ∈ U , then any two paths in U \ {a} with the same
winding number are homotopic in U \ {a}, rather than merely in C \ {a}. This is true, but requires
some more tools.
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Lemma 11.75 Suppose that f = ∑
cn(z − a)n on B(a,R) and that |f | � M on

B(a,R). Then for all n, |cn| � M/Rn.

Proof Let r < R. By Proposition 11.71 and Taylor’s formula Proposition 11.58, for
all n,

cn = 1

2πi

∫

γ

f (z)

(z− a)n+1 dz,

where γ is the parameterised circle of radius r around a. By Exercise 11.14,

|cn| � 1

2π

∫

γ

|f (z)|
rn+1 ds � 1

2π
	(γ )

M

rn+1 =
M

rn
;

now let r → R. ��

Recall (Exercise 11.60) that an analytic function is called entire if its domain is
all of C. It is called bounded if its range is a bounded subset of C. That is, if for
some M , |f (z)| � M for all z ∈ dom f .

Theorem 11.76 (Liouville’s Theorem) A bounded entire function is constant.

Proof Suppose that |f (z)| � M for all z ∈ C. Since f is entire, Corollary 11.70
says that there is a power series

∑
cnz

n with radius of convergence∞ whose sum
equals f everywhere. Lemma 11.75 says that for all n, |cn| � M/Rn for all R > 0.
If n � 1 this means that cn = 0. ��

We settle an old debt: the fundamental theorem of algebra (Theorem 2.30), which
says that the field C is algebraically closed.

Proof of the Fundamental Theorem of Algebra Let f ∈ C[x] be a polynomial
with no root; we show it is constant. The function f : C → C determined by f

is analytic and entire (it is a very simple power series!). Since f has no root, 1/f

is entire (it is analytic by Proposition 11.7). We will show that 1/f is bounded;
Liouville’s Theorem 11.76 will then imply that 1/f , and so f , is constant.

Say f (z) = adzd + · · · + a0 (with ad �= 0). Roughly, the reason that 1/f is
bounded, is that when |z| is large, the term |adzd | dominates the rest of |f (z)|, so
|f (z)| grows like |zd |. More formally, for z �= 0 we can write

f (z) = zd ·
(

ad + ad−1

z
+ ad−2

z2 + · · · + a0

zd

)

;

for brevity let g(z) = ad−1/z + ad−2/z2 + · · · + a0/zd . If N = d ·
max{|a0|, |a1|, . . . , |ad−1|} then for all z such that |z| > 1, |g(z)| � N/|z|. So
if we let R = max{1, 2N/|ad |} then |g(z)| � |ad |/2 whenever |z| > R; so
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|f (z)| � |zd | · |ad |/2 for such z, giving |1/f | � 2/(Rd |ad |) outside B(0, R). On
the other hand, since 1/f is continuous and B(0, R) is compact, on that closed disc,
1/f obtains a maximum. Together, this shows that 1/f is indeed bounded. ��

Weierstrass’s Theorem
In contrast with real valued functions (see Exercise 11.100), complex derivatives
and uniform limits play nice.

Theorem 11.77 (Weierstrass’s Theorem) Let U ⊆ C be open, and suppose that
fn : U → C is a sequence of analytic functions which converge, locally uniformly,
to some f : U → C. Then f is analytic and

〈
f ′n
〉
converges, locally uniformly, to f ′.

Proof By Proposition 11.53 it suffices to show that the sequence
〈
f ′n
〉

converges
locally uniformly to some function. Let a ∈ U ; by assumption, there is an open
neighbourhood V ⊆ U of a on which the fn’s converge uniformly. Let r > 0 such
that B(a, 2r) ⊂ V , and let γ be the parameterised circle with centre a and radius 2r .
Let b ∈ B(a, r).

Let ε > 0; choose some sufficiently large N so that |fn − fm| < ε on V for all
n,m � N . Then as γ is a contour around b, by Proposition 11.71, for such n and m,
since |z− b| � r for all z in the image of γ ,

|f ′n(b)− f ′m(b)| � 1

2π

∫

γ

|fn(z)− fm(z)|
r2 ds � 4πr

2π

ε

r2 =
2ε

r
,

so the sequence 〈f ′n〉 is Cauchy on B(a, r). ��

11.6 Further Exercises

11.78 We give an alternative proof of Proposition 11.24. Define the loop η as in
the proof of that proposition; we need to show that wndη(0) = wndγ (0). Let z0 be
the start and end-point of γ . Let μ be the loop which travels along the straight line
segment from z0 to z0−p, then along η, and then back from z0−p to z0, again along
the straight line segment. (a) Show that γ and μ are homotopic in C

∗. (b) Show that
wndμ(0) = wndη(0). (c) Conclude that wndη(0) = wndγ (0).
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The Cauchy-Riemann Equations
11.79 Let f : C → C be R-linear (linear as a map from R

2 to R
2). Show that f is

analytic if and only if f (z) = az for some a ∈ C.

11.80 At which points z ∈ C is the function z �→ |z|2 complex differentiable? (For
more see [Rem91, Ex.1.4.2].)

11.81 Let U ⊆ C be a region, and let f : U → C be complex differentiable.
Suppose that αf + βf̄ = 0 for some constant α, β ∈ C, not both 0. Show that f

is constant. (Hint: if β �= 0 then f̄ is complex differentiable. See also [Rem91,
Ex.1.3.1].)

Harmonic Functions
Let U ⊆ C be open. A twice-smooth function u : U → R is harmonic if it satisfies
Laplace’s equation Dxxu+Dyyu = 0, that is, if the vector field Fu = (−Dyu,Dxu)

is symmetric.

11.82 Let U ⊆ C be open. Show that if f = u + iv is analytic on U then both u

and v are harmonic.

A harmonic conjugate of a harmonic function u is a function v : C → R such
that f = u+ iv is analytic.

11.83 Let U ⊆ R
2 be simply connected. (a) Show that if u : U → R is harmonic

then it has a harmonic conjugate on U . (b) Show that the harmonic conjugate of u is
unique up to an additive constant. (c) Show that u(x, y) = 3x2y + 2x2 − y3 − 2y2

is harmonic on C, and find its harmonic conjugate.

11.84 Let u(z) = ln|z| be defined on C\ {0}. (a) Show that u is harmonic. (b) Show
that u does not have a harmonic conjugate on all of C \ {0}.6

Double Summation
Let

〈
an,m

〉
n,m∈N be an infinite array of complex numbers. We say that

∑
n,m an,m = c

if for all ε > 0 there is some N such that for all n,m � N , |c −∑
k�n,l�m ak,l| <

ε. If there is such c it is unique, and we say that
∑

an,m converges. We say that∑
n,m an,m converges absolutely if

∑ |an,m| converges.

6 Thus, the assumption in Exercise 11.83 that U is simply connected is necessary.
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11.85 Suppose that
∑

an,m converges absolutely. Show that for all n,
∑

m an,m

converges absolutely, and similarly for
∑

n an,m; and that
∑

n

∑
m an,m and∑

m

∑
n an,m converge absolutely and

∑

n

∑

m

an,m =
∑

n,m

an,m =
∑

m

∑

n

an,m.

Also show that for any bijection k �→ (nk,mk) from N to N
2,
∑

k ank,mk converges
absolutely to

∑
an,m.

11.86 Show that if
∑

n an and
∑

n bn both converge absolutely, then
∑

n,m anbm

converges absolutely to (
∑

n an) · (∑n bn).

The Exponential and Trigonometric Functions
The principal branch of the complex logarithm is ln−π , often denoted by Log. That
is, Log z = ln r + iθ where θ ∈ (−π, π) is an argument of z. It is defined for all
complex numbers except for the negative real numbers (and 0).

For z,w ∈ C with Log z defined, we let

zw = exp(w Log z).

11.87 Show that: (a) z1 = z; (b) zw1+w2 = zw1zw2 ; (c) Log′(z) = 1/z.

11.88 For all complex α ∈ C and n ∈ N, let

(
α

n

)

= α(α − 1)(α − 2) · · · (α − (n− 1))

n! .

Show that (1+ z)α =∑(
α
n

)
zn, with radius of convergence 1 when α /∈ N.

11.89 In real analysis, the function f (x) = e−1/x2 (extended with f (0) = 0) is the
standard example of an infinitely differentiable function which is not analytic. Why
is f (z) = e−1/z2 not analytic on C?

11.90 At what points is the function z �→ sin(z̄) complex differentiable?
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Contour Integrals, Cauchy’s Integral Formula, and Liouville’s Theorem
11.91 Let γ : [0, 2π] → C be the parameterised circle of radius 2 and centre i.
Calculate

∫
γ

z̄ dz.

11.92 Let γ be a path in C \ {0} from 1 to a point w = reiθ . Show that
∫
γ

dz/z =
ln r + i(θ + 2πk) for some k ∈ Z.

11.93 Let f : U → C be analytic, and suppose that γ is a path in U from a

to b which avoids all z for which f (z) is a nonpositive real number. Show that∫
γ (f ′/f )dz = Log f (b)− Log f (a)+ 2πik for some k ∈ Z.

11.94 [PC] (a) Let γ be the parameterised circle of radius 1/2 around 0. Calculate∫
γ 2 dz/(z2−1). (b) Let γ be the parameterised circle of radius 5 around 0. Calculate
∫
γ

sin z dz/(z+ 1)7.

11.95 Let f be an entire function. (a) Suppose that there is a polynomial p ∈ R[x]
(with real coefficients) such that for all z, |f (z)| � p(|z|). Show that f is a
polynomial. (b) Suppose that |f (z)| � ln(|z|+ 1) for all z. Show that f is constant.

11.96

(a) Show that the function

f (z) = z

(z− 1)(z− 2)(z− 3)

has a primitive on {z ∈ C : |z| > 4}.
(b) Does the function

f (z) = z2

(z− 1)(z− 2)(z− 3)

have a primitive on {z ∈ C : |z| > 4}?

11.97 Let f be a nonconstant entire function. Show that f [C] is dense in C.7

7 Recall that this means that every open subset of C contains a point in the image of f .



11.6 Further Exercises 309

Convergence, Power Series, Weierstrass’s Theorem
11.98 Find the power series expansion of f (z) = 1/(3− z) centred at the point 4i,
and calculate the radius of convergence.

11.99 Let Fn be the nth Fibonacci number (F1 = F0 = 1, Fn+2 = Fn+1 + Fn); let
f (z) =∑

Fnz
n. Let R be the radius of convergence of this power series. (a) Show

that f (z) = 1/(1 − z − z2) for all z ∈ B(a,R). (b) Show that 1/R = (1 +√5)/2
(the “golden ratio”). (c) Conclude that (1+√5)/2 = limn

n
√

Fn.

11.100 For x ∈ R let fn(x) = sin(n2x)/n. Show that 〈fn〉 converges (locally
uniformly) to a smooth function on R, but that

〈
f ′n
〉

does not. (Contrast with
Proposition 11.53. Why does 〈fn〉 not contradict Weierstrass’s 11.77? After all,
each fn can be extended to an entire function on C.)

11.101 Suppose that rn are real numbers and
∑

rn converges but not absolutely.
Show that for all p ∈ R there is some permutation σ of N such that

∑
rσ(n) = p.

(Hint: the sum of the positive rn’s is ∞, and of the negative rn’s is −∞. Add the
next positive elements until we exceed p; then add negative elements until we pass
below p; repeat.)

The Lévy-Steinitz rearrangement theorem implies that if a series
∑

zn of complex
numbers converges but not absolutely, then the collection of sums of rearrangements
of
∑

zn is either a line in C or all of C; it is harder to prove.

11.102 (a) Show that
∑

nzn has radius of convergence 1, but converges for no z on
the unit circle. (b) Show that

∑
zn/n2 has radius of convergence 1, and converges

for all z on the unit circle.

11.103

(a) Let a0, . . . , an and b0, . . . , bn+1 be complex numbers. Show that

n∑

k=0

ak(bk+1 − bk)+
n∑

k=1

bk(ak − ak−1) = anbn+1 − a0b0.

(b) Show that if z ∈ S but z �= 1, then for any n, |∑n
k=0 zn| � 2/|1− z|.

(c) Let 〈an〉 be a non-increasing sequence of non-negative real numbers, converg-
ing to 0. Show that

∑
anzn converges for all z on the unit circle, expect possibly

for z = 1. (Apply this to
∑

zn/n.)
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A Riemann surface is a connected 2-dimensional manifold on which we can do
complex analysis, at least locally. In this chapter we finally define this notion
formally and study its basic properties.

Having defined Riemann surfaces, we first study meromorphic functions, which
are holomorphic (read: locally analytic) functions to the Riemann sphere P

1(C).
On the complex plane, this is an extension of the notion of analytic functions. A
meromorphic function is allowed to include the point at infinity as a value, which
means that meromorphic functions are allowed to have singularities, called poles.
In turn, this notion can be used to learn new facts about analytic functions: the open
mapping theorem says that all analytic functions are open.

The subject of Riemann surfaces is extensive, and we have space for only a few
morsels. The rest of this chapter is a kind of potpourri of topics which we will use
in the third part of the book. We study compact Riemann surfaces, and show that
a holomorphic function from the Riemann sphere to a complex torus is constant;
this will be used in the proof of the isomorphism theorem, using the identification
of a line in P

2(C) with the Riemann sphere. We introduce the Riemann surface
for the logarithm, and surfaces for the nth root functions. These allow us to define
uni-valued versions of these functions, and will be used in Chap. 15, when giving
a new interpretation of intersection numbers of curves. The process of analytic
continuation, extending holomorphic functions to larger domains, will be used in
the same chapter. Finally, we study differential forms on Riemann surfaces; we will
use them to prove the inversion theorem, which says that every elliptic curve is a
complex torus.
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12.1 Holomorphic Surfaces

The following definitions mimic Definition 9.61 and Proposition 9.63: a manifold is
differentiable if all transition maps are smooth, and a map between differentiable
manifolds is smooth if all (equivalently, a cover of) coordinate representations
are smooth. Since we did not discuss multivariable complex analysis, we restrict
ourselves to one complex dimension.

Definition 12.1 A holomorphic surface is a 2-manifold X for which every transi-
tion function (thought of as a function from a subset of C to C) is analytic.

A Riemann surface is a connected holomorphic surface.

Recall that a coordinate representation of a function f : X → Y (where X and Y

are manifolds) is a map of the form ϕ ◦ f ◦ψ−1 where ϕ is a chart for Y and ψ is a
chart for X.

Proposition 12.2 Let X and Y be holomorphic surfaces. The following are equiv-
alent for a continuous function f : X → Y :

(1) Every coordinate representation of f is analytic.
(2) For every point p ∈ X there is a chart ψ for X and a chart ϕ for Y such that

p ∈ dom ψ , f (p) ∈ dom ϕ, and the coordinate representation ϕ ◦ f ◦ ψ−1 is
analytic.

The proof of Proposition 12.2 is identical to the proof of Proposition 9.63;
we just need to know that the composition of analytic functions is analytic
(Proposition 11.7). We call a function satisfying the conditions of Proposition 12.2
holomorphic. The composition of holomorphic maps is holomorphic.

Example 12.3 Every open subset U of C is a holomorphic surface (with the identity
map being the only chart). A function f : U → C is holomorphic if and only if it is
analytic. «

Example 12.4 The transition map between the two charts for the Riemann
sphere P

1(C) is z �→ 1/z (Example 9.62); hence the Riemann sphere is a
holomorphic surface (indeed a Riemann surface). «

Example 12.5 The other main example is a torus. We use the notation of Sect. 8.4.
Let � be a lattice in C (a 2-dimensional discrete subgroup), and recall that T� =
C/� and π� : C→ T� is the quotient map. We showed (Proposition 8.107) that T�

is a 2-manifold; the charts are functions of the form (π��U)−1, where U ⊂ C is
a small open ball. We have observed (see the proof of Proposition 8.107) that a
transition map (π��U)−1 ◦ (π��V ) is the restriction to an open subset of V of the
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map z �→ z + a where a is some element of �. This map is analytic and so T� is a
Riemann surface.1 «

Exercise 12.6 Show that the quotient map π� : C→ T� is holomorphic. «

Exercise 12.7 Show that every change of coordinates ofP1(C) is holomorphic. (See
Exercise 4.75.) «

Isomorphism of holomorphic surfaces is called a biholomorphism. Two holomor-
phic surfaces X and Y are biholomorphic if there is a function f : X → Y which
is holomorphic, one to one, and onto, and such that f−1 is holomorphic; compare
to Definition 8.54. However, we will later see that unlike the continuous case and
the smooth case (see Example 8.53), in the analytic category the extra requirement
on f−1 comes for free; see Proposition 12.37.

Remark 12.8 Up until now we talked about the torus. This is because for any two
lattices � and �′, T� and T�′ are homeomorphic, indeed diffeomorphic—we saw
that they are both diffeomorphic to S×S. However, it is not the case that T� and T�′
are always biholomorphic, indeed there are infinitely many (in fact uncountably
many) pairwise non-biholomorphic complex tori.2 «

Holomorphic functions inherit rigidity properties of analytic ones. Here are two
examples.

Proposition 12.9 If X is a Riemann surface, Y is a holomorphic surface,
f, g : X → Y are holomorphic maps and {x ∈ X : f (x) = g(x)} is not discrete,
then f = g.

Proof Suppose that f (x) = g(x) and that x is not isolated in the set of points on
which f = g. Let ψ be a chart for X such that x ∈ dom ψ and let ϕ be a chart for Y

such that f (x) ∈ dom ϕ. Then f̃ = ϕ ◦f ◦ψ−1 and g̃ = ϕ ◦g ◦ψ−1 are coordinate
representations of f and g, hence are analytic, and ψ(x) is a non-isolated zero of
g̃ − f̃ . By Lemma 11.49, f̃ = g̃ on a neighbourhood of ψ(x), which implies that
f = g on a neighbourhood of x. Now we repeat the argument of Proposition 11.50:
the set of non-isolated points of {x : f (x) = g(x)} is both closed and open; we are
assuming that X is connected. ��

1 Functions on the torus are those induced by doubly periodic functions on C, and will be studied
in Sect. 14.1.
2 This is because any linear map taking � to �′ may fail the Cauchy-Riemann equations, and so
fail to be analytic. For more see Exercise 14.42.
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Recall that if f : X → Y and y ∈ Y , then we let f−1[y] denote the collection of
all x ∈ X which f maps to y. By considering a constant function g we get:

Corollary 12.10 Suppose thatX is a Riemann surface, Y is a holomorphic surface,
and f : X → Y is holomorphic. If for some y ∈ Y , f−1[y] is not discrete, then f is
constant.

The second example is:

Proposition 12.11 Let f : X → Y be a continuous map between holomorphic
surfaces; suppose that F ⊂ X is closed and discrete, and that f �X\F is
holomorphic. Then f is holomorphic.

Proof Apply Corollary 11.74 to coordinate representations. ��

12.1.1 Meromorphic Functions

We have already made use (in the proof of Lemma 11.49) of the following fact: if f

is analytic on an open neighbourhood of a ∈ C then either f is constant 0 on a
neighbourhood of a, or there is some m � 0 and some analytic function g, defined
on an open neighbourhood W of a, such that f = (z − a)mg on W and g(a) �= 0.
In fact, Taylor’s formula shows that m is the least such that f (m)(a) �= 0. We can
extend this definition to negative orders.

Remark 12.12 In this section, we will assume, without repeatedly stating it, that the
domains of functions we consider are open and connected. Thus, if f is analytic and
nonconstant, then it is nonconstant on every open subset of the domain. «

A punctured neighbourhood of a point a is a set of the form U \ {a}, where U is
a neighbourhood of a.

Definition 12.13 Let f , defined on a punctured neighbourhood of a, be analytic
and not constant 0. Let m ∈ Z. We say that the order of f at a is m ∈ Z if there is a
neighbourhood W of a and an analytic function g : W → C such that g(a) �= 0 and
f = (z − a)mg on W \ {a}. We write orda(f ) = m.

Note that there is at most one such m; if (z−a)m1g1 = (z−a)m2g2 on a punctured
neighbourhood of a, with m2 > m1 and g1, g2 analytic, then by continuity, we
will necessarily have g1(a) = 0. It is possible that a function f , analytic and
nonconstant, does not have any order at a. We then call a an essential singularity
of f ; see Exercises 12.93 and 12.94.



12.1 Holomorphic Surfaces 315

Remark 12.14 In Definition 12.13, by shrinking W , we may assume that g �= 0
on W . Thus, if f has some order at a, then there is a punctured neighbourhood of a

on which f is nonzero, i.e., 1/f is defined on a punctured neighbourhood of f . By
considering 1/g, we see that orda(1/f ) = − orda(f ). «

Proposition 12.15 Let U be a neighbourhood of a, and suppose that f : U \{a} →
C is analytic and not constant 0. Then orda(f ) � 0 if and only f can be extended
to an analytic function on U .

Proof One direction follows from the proof of Lemma 11.49 mentioned above. In
the other direction, if f is analytic on a punctured neighbourhood U \ {a} of a

and orda(f ) � 0, then limz→a f (z) exists, and so by Proposition 11.73, f can be
extended to an analytic function on U . ��

We can do a little better:

Proposition 12.16 Suppose that f is analytic and bounded on a punctured neigh-
bourhood U \ {a} of a. Then f can be extended to an analytic function on U .

Proof We may assume that f is nonconstant. The function (z − a) · f is analytic
on U \ {a} and limz→a(z− a)f (z) = 0, so (z− a)f can be extended to an analytic
function on U . The value of this extension at a is 0, so has order > 0 at a; we can
therefore divide by z− a and still get an analytic function. ��

It follows that if orda(f ) < 0 then f is unbounded on any punctured
neighbourhood of a. In this situation we would still like to extend f to a, by
letting f (a) = “∞”. The notion of Riemann surfaces will allow us to make this
meaningful. For ∞ we take the point (0 : 1) ∈ P

1(C), the “point at infinity” (under
the identification of z ∈ C with (1 : z)); we denote this point by p∞.

Definition 12.17 Let X be a Riemann surface. A meromorphic function on X is a
holomorphic function f : X → P

1(C) which is not constant p∞.

The identification of z ∈ C with ρ0(z) = (1 : z) allows us to consider any function
to C also as a function to P

1(C). The inverse of ρ0 is a chart for P1(C). Thus, a
function f : U → C is analytic if and only if it is holomorphic when thought of as
a function to P

1(C). The new ingredient is that with meromorphic functions we are
allowed to take the value p∞.

Lemma 12.18 LetU be a neighbourhood of a, and suppose that f : U \{a} → C is
analytic. Then orda(f ) < 0 if and only if extending f to U by defining f (a) = p∞
gives a meromorphic function on U .
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Proof By Remark 12.14, orda(f ) < 0 if and only if orda(1/f ) > 0; by
Proposition 12.15, this is equivalent to 1/f being extendible to an analytic function
on U , by mapping a to 0. Consider the chart ψ(z : 1) = z for the Riemann sphere
(i.e. ψ = (ρ1)

−1); then ψ ◦ f = 1/f (defined wherever f �= 0). Extending 1/f by
sending a to 0 is equivalent to extending f by mapping a to p∞. ��

Corollary 12.19 Suppose that U ⊆ C is a region, and that Z ⊂ U is discrete and
closed in U . Suppose that f : U \ Z → C is analytic and not constant 0. Then f

can be extended to a meromorphic function f : U → P
1(C) if and only if f has an

order at every a ∈ Z.

Proof Working with an open cover, we may assume that Z contains a single point a;
we then apply Proposition 12.15 and Lemma 12.18. ��

If orda(f ) = m > 0, then (after extending if necessary), f (a) = 0, and we say
that a is a zero of f . We sometimes think of p∞ as the “north pole” of the sphere,
and so if orda(f ) = m < 0 then we say that a is a pole of order −m of f . Thus a is
a zero of order m of f if and only if it is a pole of order m of 1/f .

Remark 12.20 If f is a polynomial, then orda(f ) is the multiplicity of a as a root
of f . We will extend this terminology and think of the order orda(f ) as some kind
of “multiplicity” of zero of f ; except that we now consider poles as well, and so
allow negative multiplicities. A multiset that allows negative multiplicities is called
a divisor. «

TheMeromorphic Conjugate
Let α(a : b) = (b : a); this is a change of coordinates of the Riemann sphere,
and so is a bi-holomorphism from P

1(C) to itself (Exercise 12.7). Under the
identification of z with (1 : z), this maps z �= 0 to 1/z and exchanges 0 and p∞. Since
the composition of holomorphic functions is holomorphic, for any meromorphic
f : X → P

1(C) which is not constant 0, we call α ◦ f the meromorphic conjugate
of f , and write 1/f instead of α ◦ f . Since α ◦ α is the identity, 1/(1/f ) = f .

Suppose that U ⊆ C is a region. Suppose that f and g are meromorphic on U .
Let Z be the collection of poles of f and of g. By Corollary 12.10, Z is discrete and
closed in U . The functions f + g, f · g and f ′ are defined on U \ Z, and are either
constant 0, or have an order at every a ∈ Z:

Exercise 12.21 Suppose that f and g are meromorphic on V and analytic on V \{a}.
Show that: (a) If fg is not constant 0, then orda(fg) = orda(f ) + orda(g). (b) If
f +g is not constant 0, then orda(f +g) = min{orda(f ), orda(g)}, except possibly
when orda(f ) = orda(g) and the “leading coefficients cancel out”, in which case
orda(f + g) could be any m � orda(f ). (c) If f ′ is not constant 0, then orda(f

′) =
orda(f )− 1, except when orda(f ) = 0, in which case orda(f

′) could be any non-
negative number. «
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We thus can extend f + g, fg and f ′ to meromorphic functions on U .

Exercise 12.22 Let U be a region. Show that the collection of meromorphic
functions on U , equipped with these operations of addition and multiplication, is
a field. «

12.2 The OpenMapping Theorem

Our aim now is to show that if a is a zero of order m of f , then around a, f behaves
like z �→ zm. A main consequence is the open mapping theorem. We also get a
strengthening of the inverse function theorem.

12.2.1 The Calculus of Residues

If f is analytic on U \ {a} (where U is an open neighbourhood of a), orda(f ) = m,
and B(a, r) ⊂ U , then on B(a, r) \ {a},

f (z) = cm(z− a)m + cm+1(z− a)m+1 + . . .

with cm �= 0; this is called a Laurent series expansion of f around a. Note that m is
the order of the formal Laurent series

∑
cnxn (see Exercise 2.36).

If m � −1, then the coefficient c−1 is called the residue of f at a, and we denote
it by rsda(f ). If m � 0 then the residue is 0.

Remark 12.23 The usual notation for the residue is resa(f ), but we already used
this for the resultant. «

For the following lemma, recall that for a loop γ , wndγ (p) denotes the winding
number of γ around p, and that γ is a contour around p if wndγ (p) = 1.

Lemma 12.24 Suppose that W is simply connected, f is meromorphic on W , and
γ is a loop in W . Then γ is a contour around only finitely many poles of f .

Proof Let

Q = range γ ∪ {
p : wndγ (p) �= 0

}
.

Then Q is bounded (Corollary 11.23) and closed (Proposition 11.24), and so
compact. It is contained in W (Proposition 11.22). The set Z of poles of f is
closed in W . And so Z ∩ Q is a closed subset of Q, and so is compact. Now Z

is discrete (Corollary 12.10) so Z ∩ Q is discrete and compact, whence it is finite
(Proposition 8.101). ��
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Proposition 12.25 Let W be simply connected. Suppose that f is meromorphic
on W . Suppose that γ is a loop in W which is a contour around every pole of f .
Then

∫

γ

f dz = 2πi
∑

p∈P

rsdp(f )

(where P is the set of poles of f ).

Proof For each p ∈ P let
∑

n�ordp(f ) cn(p)(z−p)n be the Laurent expansion of f

around p; let

gp =
−1∑

n=ordp(f )

cn(p)(z − p)n

be the principal part of f around p. For k �= −1, the function (z − p)k has a
primitive on W \ {p}, namely (z− p)k+1/(k + 1). By Lemma 11.16,

∫

γ

ck(p)(z − p)k dz = 0.

On the other hand, by Proposition 11.21,

∫

γ

c−1(p)(z − p)−1 dz = c−1(p) · 2πi = rsdp(f ) · 2πi.

Let g =∑
p∈P gp, which is well-defined since P is finite (Lemma 12.24). Now

ordp(f − g) � 0 for each p ∈ P , so f − g can be extended to an analytic
function on W . As W is simply connected,

∫
γ
(f − g) dz = 0 (Lemma 11.16 and

Proposition 11.19), whence

∫

γ

f dz =
∫

γ

g dz =
∑

p∈P

∫

γ

gp dz = 2πi
∑

p∈P

rsdp(f ). ��

Remark 12.26 If f is meromorphic on U and γ is a parameterised circle in U

which avoids the poles of f then as the distance between the image of γ and the set
of poles of f is positive, we can let W be the interior of a circle of slightly larger
radius; then the poles of f in W are in the interior of γ . «
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Lemma 12.27 Let f be meromorphic on U and not constant 0. For every a ∈ U ,

orda(f ) = rsda

(
f ′

f

)

.

Indeed, if orda(f ) �= 0 then orda(f
′/f ) = −1; otherwise orda(f

′/f ) = 0.

(By Definition 12.21, f ′/f is indeed meromorphic on U .)

Proof Let m = orda(f ). Let g be analytic on a neighbourhood W of a such that
g �= 0 on W and f = (z− a)mg on W . Then on W \ {a},

f ′ = m(z− a)m−1g + (z − a)mg′,

and so on W \ {a},
f ′

f
= m

z− a
+ g′

g
.

Since g �= 0 on W and analytic on W , g′/g is analytic on W , and so the previous
equation gives us the Laurent expansion of f ′/f around a; we see that rsda(f

′/f ) =
m. ��

Recall that if f is meromorphic on U (and not constant 0) then we consider the
collection of zeros and poles of f as a divisor, with multiplicity given by order. The
size of a finite divisor is the sum of the multiplicities of its elements. The following
corollary, which follows directly from Proposition 12.25 and Lemma 12.27, shows
that

∫
γ

f ′/f dz gives the size of the divisor restricted to the interior of γ .

Corollary 12.28 Let W be simply connected, let f be meromorphic on W and not
constant 0, and let γ be a loop in W which is a contour around all the zeros and
poles of f . Then

∫

γ

f ′

f
dz = 2πi

∑

a∈W

orda(f ).

(As discussed above, this sum is finite since f has only finitely many poles and
zeros around which γ is a contour.)

12.2.2 The Continuity of Roots of Polynomials

We give an application. We know that the coefficients of a polynomial vary
continuously with its roots: if the roots of a polynomial f ∈ C[x] of degree d
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are c1, c2, . . . , cd (repetitions allowed), then f = a(x− c1)(x− c2) · · · (x− cd) for
some constant a, so the coefficients of f can be expressed as continuous functions
of the roots. The following proposition says that the roots of polynomials vary
continuously with their coefficients.

Proposition 12.29 Let p = adxd + ad−1xd−1 + · · · + a1x + a0 ∈ C[x] be a
nonzero polynomial, and let c ∈ C be a root of p of multiplicity k. Then for every
neighbourhood U of c in C there is a neighbourhood Û ⊆ U of c and some δ > 0
such that for every b = (bd, bd−1, . . . , b0) ∈ B(a, δ), the polynomial bdxd + · · · +
b1x + b0 has precisely k roots in Û (counting multiplicities).

Proof Given a neighbourhood U of c, let ε be sufficiently small so that B(c, ε) ⊆
U , and c is the only root of p in B(c, ε). Let γ be the parameterised circle around c

of radius ε; so |p(z)| > 0 for all z in the range of γ , whence by compactness, there
is some η > 0 such that |p(z)| � 2η for all z ∈ rangeγ .

For b = (bd, . . . , b0) ∈ C
d+1, let pb be the polynomial bdxd + · · · + b0 in

C[x]. For w ∈ C
d+1 and z ∈ C let T (w, z) = pw(z). The map T : Cd+2 → C is

continuous. The set B(a, 1)× rangeγ is compact, and so T is uniformly continuous
on that set. It follows that there is some δ > 0 such that for all b ∈ B(a, δ), |pb(z)| >
η for all z ∈ rangeγ . What is important for us is that pb(z) �= 0, so we can make
the following definition: for all b ∈ B(a, δ), let

N(b) = 1

2πi

∫

γ

p′
b

pb

dz.

By Corollary 12.28, N(b) is the number of zeros of pb in Û = B(c, ε), multiplicities
counted (note that pb has no poles as it is a polynomial.) In particular, N(a) = k.
We argue however that b �→ N(b) is continuous on B(a, δ). This follows from the
uniform continuity of (w, z) �→ (p′w/pw)(z) on B(a, δ) × range γ , and then using
Exercise 11.14. However the range of N is discrete, and B(a, δ) is connected, and
so N(b) is constant on B(a, δ). ��

For more, see Exercises 12.121–12.125.

12.2.3 OpenMappings and Inverse Functions

Suppose that f is analytic and that a ∈ dom f . Let m � 1. Let U ⊆ dom f be an
open neighbourhood of a. We say that f is m-to-1 on U around a if:

(i) f [U ] is open;
(ii) a is the unique f -preimage of f (a) in U (that is, a is the only point in U

which f maps to f (a)); and
(iii) every b ∈ f [U ] other than f (a) has precisely m many f -preimages in U .
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We say that f is m-to-1 arbitrarily close to a if for every neighbourhood Û of a

there is an open neighbourhood U ⊆ Û of a such that f is m-to-1 on U around a.

Example 12.30 The standard example is the function zm, which is m-to-1 around 0
on B(0, r) for each r > 0. «

Remark 12.31 Suppose that f is m-to-1 arbitrarily close to a. Let Û be a neigh-
bourhood of a and let V̂ be a neighbourhood of f (a). Then there is an open
neighbourhood U ⊆ Û of a such that f [U ] ⊆ V̂ and f is m-to-1 on U around a.
For we can replace Û by Û ∩ f−1[V̂ ]. «

Proposition 12.32 Let f be analytic and nonconstant on a neighbourhood of a.
Suppose that a is a zero of order m of f . Then f is m-to-1 arbitrarily close to a.

Proof We know that the set of zeros of f is discrete (Proposition 11.50). If f ′ is
constant then as f is nonconstant, f ′ �= 0 near a (Proposition 11.8). Otherwise, we
know that the set of zeros of f ′ on a neighbourhood of a is discrete.

Thus, if r is small then B(a, r) ⊂ dom f and f and f ′ have no zeros in
B(a, r) other than a. Fix such small r . Let γ be the parameterised circle of
radius r centred at a. Let δ = min{|f (z)| : z ∈ range γ }, which is positive; let
M = max

{|f ′(z)| : z ∈ range γ
}
, which is finite.

We will pick some small ε � δ/2. Let b ∈ B(0, ε). Then for all z ∈ rangeγ , as
|f (z)− b| � δ/2,

|f ′(z)| ·
∣
∣
∣
∣

1

f (z)
− 1

f (z)− b

∣
∣
∣
∣ = |f ′(z)| |b|

|f (z)| · |f (z)− b| � M
2ε

δ2 ,

and so
∣
∣
∣
∣

∫

γ

f ′

f
dz−

∫

γ

f ′

f − b
dz

∣
∣
∣
∣ � 2πr ·M 2ε

δ2 .

So we pick ε small enough so that

∣
∣
∣
∣

∫

γ

f ′

f
dz−

∫

γ

f ′

f − b
dz

∣
∣
∣
∣ < 2π. (12.1)

By Corollary 12.28 (and Remark 12.26),

∫

γ

f ′

f
dz = 2πi ·m.
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and similarly, as f ′ = (f − b)′,
∫

γ

f ′

f − b
dz = 2πi · k,

where k is the number of zeros of f − b in B(a, r), with multiplicities (orders)
counted. But since f ′(w) �= 0 for all w ∈ B(a, r) other than possibly a, if b �= 0
then ordw(f − b) = 1 for every zero w of f − b in B(a, r). By Eq. 12.1, k = m. So
every b ∈ B(0, ε) has precisely m many f -preimages in B(a, r). We can therefore
let U = B(a, r) ∩ f−1[B(0, ε)]; f is m-to-1 on U around a (note that f [U ] =
B(0, ε) is open). And r can be chosen as small as we like. ��

Open Mapping Theorem A nonconstant analytic function is open: for all open
U ⊆ dom f , f [U ] is open.

Proof It suffices to show that for all a ∈ dom f and every open neighbourhood
W ⊆ dom f of a, f [W ] is a neighbourhood of f (a). But this follows from
Proposition 12.32, applied to the function f − f (a). ��

We can also conclude that the “bad example” from real analysis (see Remark
9.58) cannot happen in the complex context. If f is analytic and f ′(a) = 0 then
for m = orda(f − f (a)), which is greater than 1, f is m-to-1 on arbitrarily small
neighbourhoods of a. Hence:

Lemma 12.33 Suppose that f : U → C is analytic and 1–1. Then f ′(a) �= 0 for
all a ∈ U .

Together with the complex inverse function theorem (Theorem 11.11) we get a
strong form of the inverse function theorem (see Exercise 9.57):

Theorem 12.34 (Analytic Inverse Function Theorem) Let f be analytic and 1–
1 on U . Then f−1 is analytic, and for all b ∈ f [U ], (f−1)′(b) = 1/f ′(f−1(b)).

Remark 12.35 In fact, with our new tools we can deduce part of Theorem 11.11
without appealing to the full real Inverse Function Theorem. Let f be analytic, let
a ∈ dom f , and suppose that f ′(a) �= 0. Proposition 12.32 implies that there is
a neighbourhood U ⊆ dom f of a on which f is 1-to-1. Since f �U is open and
continuous, it is a homeomorphism between U and an open set V ⊆ C. We then
just need to check that the inverse is differentiable, which is not too difficult. «

Example 12.36 Continuing Example 11.12, the derivative of z �→ z3 at 0 is 0, and
so unlike the real case, we cannot continuously choose a complex cube root on any
neighbourhood of 0. «
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Consequences for Riemann Surfaces
As promised, a holomorphic bijection is a biholomorphism:

Proposition 12.37 Let X and Y be holomorphic surfaces, and let f : X → Y be
holomorphic, one to one and onto. Then f−1 is holomorphic.

Proof Let ψ be a chart for X and ϕ be a chart for Y . The map ϕ ◦ f ◦ ψ−1 is
analytic and one-to-one from an open subset U of the range of ψ to the range of ϕ.
The analytic inverse function theorem, 12.34, tells us that (ϕ◦f ◦ψ−1)−1 is analytic;
this is a coordinate representation of f−1. ��

Exercise 12.38 Show that the unit sphere is a Riemann surface (Example 8.21),
which is biholomorphic with P

1(C) (see Exercise 8.56). «

The open mapping theorem extends to Riemann surfaces:

Proposition 12.39 A nonconstant holomorphic map between Riemann surfaces is
open.

Proof Let f : X → Y be holomorphic and nonconstant. Let U ⊆ X be open; let
y ∈ f [U ]; we show that f [U ] is a neighbourhood of y. Let x be an f -preimage
of y in U . Let ψ be a chart for X and ϕ be a chart for Y such that x ∈ dom ψ

and y ∈ dom ϕ. The coordinate representation g = ϕ ◦ f ◦ ψ−1 is analytic; by
Corollary 12.10, it is nonconstant, so the Open Mapping Theorem tells us that g is
open; so ϕ ◦ f [U ∩ dom ψ] is an open subset of C; whence f [U ∩ dom ψ] is an
open (in Y ) subset of f [U ] containing y. ��

Remark 12.40 Suppose that f is a meromorphic function on a Riemann surface X.
Let p ∈ X, and let ψ and ϕ be two charts for X such that p ∈ dom ψ ∩ dom ϕ.
The transition function ψ ◦ ϕ−1 is 1–1 and analytic, and so (ψ ◦ ϕ−1)′ is nonzero
at every point. It follows that the order ordϕ(p)(f ◦ ϕ−1) equals ordψ(p)(f ◦ ψ−1),
and so the common value is unambiguously denoted by ordp(f ). «

We also extend our analysis that led to the open mapping theorem. Just like
analytic maps, we say that f : X → Y is m-to-1 arbitrarily close to p ∈ X if every
open neighbourhood Û of p contains an open neighbourhood U ⊆ Û of p such
that p is the only f -preimage of f (p) in U , and every y ∈ f [U ] other than f (p)

has precisely m-many f -preimages in U . (We already know that f [U ] is open.) By
applying Proposition 12.32 to coordinate representations, we get:

Proposition 12.41 If f : X → Y is a nonconstant holomorphic map between
Riemann surfaces then for every p ∈ X there is some (unique) m � 1 such that f

is m-to-1 arbitrarily close to p.
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We call this number m the valency (or multiplicity) of f at p (sometimes it is
called the multiplicity of p with respect to f ). The collection of points with valency
greater than one is discrete.

Example 12.42 If f is meromorphic on X and p is either a zero or a pole of order m

of f , then the valency of f at p is m. «

12.3 Compact Riemann Surfaces

We survey a number of consequences of the open mapping theorem for compact
Riemann surfaces, in particular for a complex torus T� .

Proposition 12.43 Let X and Y be Riemann surfaces, f : X → Y holomorphic
and nonconstant, and suppose that X is compact. Then f is onto Y (and so Y is
compact).

Proof Since f is continuous, f [X] is compact (Proposition 8.64). Since Y is
Hausdorff, f [X] is a closed subset of Y (Proposition 8.71). By Proposition 12.39,
f [X] is also an open subset of Y . Since Y is connected and f [X] is nonempty, we
must have f [X] = Y . ��

As a result:

Corollary 12.44 If X is a compact Riemann surface, then every holomorphic
function f : X → C is constant.

Functions to the Torus
Recall the notion of a lifting of a map to a quotient space R

n/G, such as the torus
(Definition 9.18). We fix a torus T = T� and quotient map π = π� : C→ T . Recall
that liftings of smooth maps are smooth (see for example Exercise 9.109); the same
holds in the holomorphic category:

Lemma 12.45 Let X be a Riemann surface, and let f : X → T be holomorphic.
Then any lifting of f to a map from X to C is holomorphic.

Proof Let F be a lifting of f . Let x ∈ X; let ψ be a chart for X with x ∈ dom ψ .
Let V be a neighbourhood of F(x) sufficiently small so that (π �V )−1 is a chart
for T . Since F is continuous, by shrinking, we may assume that F [dom ψ] ⊆ V .
Then F ◦ψ−1 = (π�V )−1 ◦f ◦ψ−1 is a coordinate representation of both F and f ;
by assumption on f , it is analytic. ��
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Corollary 12.46 If X is a simply connected and compact Riemann surface, then
any holomorphic f : X → T is constant.

Proof Let f : X → T be holomorphic. By Theorem 9.24, there is a (continuous)
lifting F : X → C of f . By Lemma 12.45, F is holomorphic. By Corollary 12.44,
F is constant. Since f = π ◦ F , f is constant as well. ��

In Chap. 14, we will apply this to the Riemann sphere, which is both compact
(Theorem 8.91) and simply connected (Proposition 9.16).

Degrees of Maps
Let X and Y be Riemann surfaces, f : X → Y be holomorphic and nonconstant,
and suppose that X is compact. For every q ∈ Y , f−1[q] is a discrete subset
(Corollary 12.10) which is closed in X, and so is compact, whence it is finite. Let
degq (f ) be the sum of the valencies of p with respect to f for all p ∈ f−1[q].

Lemma 12.47 For all q, q ′ ∈ Y , degq(f ) = degq ′(f ).

Proof We show that the map q �→ degq (f ) is locally constant: every q ∈ Y has
a neighbourhood U on which this map is constant; connectedness of Y gives the
desired result. Fix q ∈ Y . Let p1, p2, . . . , pk list the points which f maps to q . For
each i = 1, . . . , k, find some open neighbourhood Vi of pi such that the sets Vi are
pairwise disjoint and f is mi-to-1 on Vi around pi , where mi is the valency of pi

with respect to f .
Let Q = X \⋃i�k Vi ; so Q is a closed, hence compact, subset of X, and so the

image f [Q] is a closed subset of Y , which does not contain q . Let W = Y \ f [Q];
so W is an open neighbourhood of q , and f−1[W ] ⊆ ⋃

i�k Vi . Since each f [Vi]
is open, by shrinking W we may assume that W ⊆ f [Vi] for each i. Then for each
i = 1, . . . , k, each q ′ ∈ W has mi many f -preimages in Vi . These are all the f -
preimages of q ′, are all distinct, and each has valency 1 (recall that the collection of
points of valency > 1 is discrete). Hence degq ′(f ) =∑

i mi = degq(f ). ��

Definition 12.48 Suppose that X,Y are compact Riemann surfaces and f : X → Y

is holomorphic and nonconstant. We denote the common value degq(f ) by deg(f ),
and call it the degree of the map f .

Corollary 12.49 IfX is compact then a nonconstant meromorphic function f on X

has the same number of poles and zeros (counted with their orders).

Proof Both are the degree of the map. ��

Remark 12.50 If f : X → Y is a holomorphic nonconstant map between compact
Riemann surfaces, then f has degree 1 if and only if it is a biholomorphism. «
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12.4 Riemann Surfaces for the Logarithm and Roots

Our inability to continuously define an argument function on C \ {0} leaves us with
an inability to define an analytic logarithm function or an nth root function on the
same domain. Riemann surfaces help.

12.4.1 The Logarithm

We start with the logarithm function. The idea is simple: since there are “Z-many”
choices for a logarithm (equivalently, an argument), we create a new surface on
which every nonzero complex number has “Z-many” copies. On that surface we
can define a uni-valued logarithm function.

Define

� = {(z, t) ∈ C× R : z �= 0 and t is an argument of z} ,

where recall that t is an argument of z if z = |z|eit . The “covering map” of � onto
C \ {0} is the projection onto the first coordinate: we let π�(z, t) = z. We think
of the points (z, t) ∈ � as distinct “copies” of z, each giving its own choice of
argument. See Fig. 12.1.

Suppose that U ⊆ C \ {0} is open and that θ : U → R is a continuous choice
of argument on U . Define ψθ : U → � by letting ψθ (z) = (z, θ(z)). Then ψθ is
1–1 and its inverse is the restriction of π� to the range of ψθ (technically, the range
of ψθ is the graph of θ ). We let ψ−1

θ be a chart for �, and let A� be the collection
of all such charts.

Fig. 12.1 The Riemann surface for the logarithm. Detail
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Proposition 12.51 (�,A�) is a holomorphic surface, and a topological subspace
of C×R.

Proof Let θ : U → R be a continuous choice of argument on an open U ; let z0 ∈ U ;
let t0 = θ(z0). Since θ is continuous, there is some ε > 0 such that B(z0, ε) ⊆ U

and for all z ∈ B(z0, ε), |θ(z)− t0| < π . Suppose that (z, t) ∈ �, |z− z0| < ε and
|t − t0| < π . Then |t − θ(z)| < 2π , and since both are arguments of z, it follows
that t = θ(z). Since B(0, ε) × (t0 − π, t0 + π) is an open subset of C× R, we see
that the range of ψθ is an open subset of � (when � is equipped with the subspace
topology). Further, since θ is continuous (and π� is continuous), we see that ψθ is
a homeomorphism from U to its range.

Let (z0, t0) ∈ �. Let δ < |z0| be positive; by Proposition 9.30 there is a
continuous choice of argument θ : B(z0, δ) → R, and we can ensure that θ(z0) = t0;
so (z0, t0) ∈ range ψθ . Therefore, by Proposition 8.61, A� is an atlas for �, and
(�,A�) is a 2-manifold which is a topological subspace of C×R.

To show that � is a holomorphic surface, it remains to observe that every
transition function is the identity on an open set, and so is analytic. ��

Exercise 12.52 Verify directly from definition that the transition function between
two charts in A� is defined on an open set. «

Exercise 12.53 Show that π� : � → C is holomorphic. «

Proposition 12.54 The function z �→ (ez,#z) is a biholomorphism from C to �.

(Here #(a + ib) = b is the imaginary part of z = a + ib).

Proof The main thing to note is that this map is indeed a bijection betweenC and �.
It is continuous by Proposition 12.51, since it is continuous as a map from C to
C×R. A coordinate representation of this map is z �→ ez (restricted to an open set),
which is of course analytic. By Proposition 12.37, it is a biholomorphism. ��

Let us spell out the inverse of z �→ (ez,#z): it is a “global logarithm” on �.

Proposition 12.55 The map (z, t) �→ ln |z| + it from � to C is holomorphic.

Remark 12.56 The surface � illustrates that to check that a map is holomorphic,
we first need to verify that it is continuous. For example, suppose that θ is a
discontinuous choice of argument on some open set U (say θ(z) is the unique
argument of z in the interval [0, 2π), where U = C \ {0}). The map z �→
(z, θ(z)) from U to � is discontinuous and so cannot be holomorphic. However
any coordinate representation of this map is the identity. So where’s the problem?
The issue is that the domain of the coordinate representation will not be an open set,
and so it is not an analytic function. «
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Since C is simply connected, Proposition 12.54 gives:

Corollary 12.57 � is simply connected.

In particular, it is connected, and so is a Riemann surface.

12.4.2 The Surface for the nth Root

Let n � 1. The global logarithm allows us to define a global nth root. For (z, t) ∈ �

define

rtn(z, t) = n
√|z|eit/n.

The point of course is that (rtn(z, t))n = z.

Proposition 12.58 The map rtn : � → C is holomorphic.

Proof It is the composition of three holomorphic functions:

(z, t) �→ ln |z| + it �→ 1

n
(ln |z| + it) �→ exp(ln |z|/n+ it/n). ��

Remark 12.59 We can use the global nth root to define local ones: suppose that
U ⊂ C

∗ is simply connected. Let ψ be a chart for � whose range is U . Then
rtn ◦ψ−1 is an injective analytic function on U whose inverse is the map z �→ zn.
Compare with Example 11.12. «

The Riemann surface for the nth root is a quotient of �, obtained by identifying
each (z, t) ∈ � with (z, t + 2πn): we collapse the Z-many copies of z to just n

many. See Fig. 12.2. More formally, consider the quotient of C × R by the cyclic
subgroup generated by (0, 2πn). This quotient is isomorphic to C × R/2πnZ; we
let �/n be the image of � under this quotient map:

�/n = {(z, t + 2πnZ) : (z, t) ∈ �} .

The charts for C×R/2πnZ are of the form (z, t + 2πnZ) �→ (z, t), defined for
(z, t) ∈ U × I where U ⊆ C is open and I ⊂ R is an open interval of length < πn

(so that t �→ t+2πnZ is 1–1 on I ). We let the charts for �/n be compositions α◦β

where β is a chart for C×R/2πnZ and α is a chart for �. In other words, they are
the inverses of maps z �→ (z, θ(z) + 2πnZ) from U to �/n, where U ⊆ C \ {0}
is sufficiently small so that the range of θ (a continuous choice of argument on U )
is contained in a short interval I . The transition map between two such charts α ◦ β

and α̃ ◦ β̃ is the same as the transition map between α and α̃, and so two such
charts are compatible, and we get an atlas on �/n. The fact that the quotient map
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Fig. 12.2 The Riemann surface for the nth root

(z, t) �→ (z, t+2πnZ) is locally a homeomorphism between open subsets of C×R

and of C × R/2πnZ, implies that equipped with this atlas, �/n is a topological
subspace of C×R/2πnZ, and is a Riemann surface.

Let pn : � → �/n be the quotient map (z, t) �→ (z, t + 2πnZ). Then pn

is the restriction to � of the quotient map from C × R to C × R/2πnZ, which
is continuous (Proposition 8.107); as � is a topological subspace of C × R, and
�/n is a topological subspace of C× R/2πnZ, the map pn is continuous on �. A
coordinate representation of pn is the identity, so pn is holomorphic.

The following is a holomorphic analogue of Proposition 8.109:

Lemma 12.60 Let Y be a holomorphic surface. A function f : �/n → Y is
holomorphic if and only if the composition f ◦ pn : � → Y is holomorphic.

Proof The proof of Proposition 8.109 shows that f is continuous if and only if
f ◦ pn is continuous. The equivalence now follows since f and f ◦ pn have the
same coordinate representations. ��

Here is one example:

Exercise 12.61 Show that π�/n : �/n → C defined by (z, t + 2πnZ) �→ z is
holomorphic. «

The intended example though is the map rtn, which induces a well-defined
function on �/n. To avoid excessive notation, we also let rtn : �/n → C be the
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induced holomorphic function on �/n. It is a bijection between �/n and C \ {0},
and so Proposition 12.37 implies:

Proposition 12.62 rtn is a biholomorphism between �/n and C \ {0}.

Let pwrn : C \ {0} → �/n denote the inverse of rtn; it maps z = reit to
(zn, nt + 2πnZ). We can imagine this map as “wrapping” the punctured complex
plane around itself n times, again see Fig. 12.2.

The Shift on�

Let sh : � → � be the map

(z, t) �→ (z, t + 2π).

This is an “upwards shift” of �; each “sheet” covering C \ {0} is mapped to the
sheet above it. It is 1–1 and continuous (it is the restriction of a continuous map on
C×R), and its coordinate representations are the identity, so it is a biholomorphism
between � and itself. For each k ∈ Z, let shk denote the iteration of this shift k

times, that is, the map (z, t) �→ (z, t + 2πk).
For each n � 1, the shift induces a map �/n → �/n.

Exercise 12.63 Verify that the induced map sh : �/n → �/n is continuous. «

The coordinate representations of the induced shift are also the identity, and so
the induced shift is a biholomorphism from �/n to itself; the kth iteration of the
induced map is the map induced by shk , so we also denote it as shk : �/n → �/n.
Note that shn : �/n → �/n is the identity.

Exercise 12.64 Observe that a function f : � → X induces a well-defined function
from �/n → X if and only if it is invariant under shn, that is, if f ◦ shn = f . «

Exercise 12.65 Let ωn = e2πi/n be the primitive nth root of unity. Verify that
(rtn ◦ sh)(q) = ωn · rtn(q) for all q ∈ �. «

12.5 Analytic Continuation

We will later find ourselves in the situation where we have a holomorphic function
f : U → Y where U is an open and connected subset of a Riemann surface X, and
will want to extend it to a holomorphic function from X to Y . To do this we will use
the process of analytic continuation.

Definition 12.66 Suppose that X and Y are holomorphic surfaces, U ⊆ X is open,
f : U → Y is holomorphic, and let γ : [a, b] → X be a path with γ (a) ∈ U .
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An analytic continuation of f along γ is a continuous function g : [a, b] → Y

such that there is a partition a = t0 < t1 < · · · < tk = b of [a, b], and for
i = 1, 2, . . . , k an open Ui ⊆ X and a holomorphic fi : Ui → Y , such that:
(i) γ [ti−1, ti] ⊂ Ui ; (ii) g = fi ◦ γ on [ti−1, ti ]; (iii) for i < k, fi = fi+1 on
some neighbourhood of γ (ti ); and (iv) U1 ⊆ U and f1 = f on U1.

For an equivalent definition see Exercise 12.112.

Example 12.67 Even if γ is a loop, the function we get to at the end of the process
may not be the same as the one we started with. The standard example is the
logarithm. Let γ : [0, 2π] → S be the usual parameterisation of the unit circle; start
with Log(reit ) = ln r + it where r > 0 and t ∈ (−π, π) (this is the “principal
branch” of the complex logarithm, see page 307). Then t �→ it is an analytic
continuation of Log along γ , and note that the value at t = 2π is 2πi, which is
not Log(γ (2π)) = Log(1) = 0. «

Lemma 12.68 Let X and Y be holomorphic surfaces, let U ⊆ X be open, f : U →
Y be holomorphic, and let γ : [a, b] → X be a path with γ (a) ∈ U . Then f has at
most one analytic continuation along γ .

Proof Suppose that g and h are two analytic continuations of f along γ . By taking
a common refinement, we may assume that g and h are witnessed by the same
partition: there is a partition a = t0 < t1 < · · · < tk = b of [a, b], and for i =
1, 2, . . . , k open sets Ui, Vi ⊆ X and holomorphic gi : Ui → Y and hi : Vi → Y

with g = gi ◦ γ on [ti−1, ti ] and h = hi ◦ γ on [ti−1, ti ], gi = gi+1 and hi = hi+1
on a neighbourhood of γ (ti), and g1 = f on U1 and h1 = f on V1. Further, each
γ [ti−1, ti] has a connected open neighbourhood⊆ Ui ∩ Vi , so we may assume that
Vi = Ui and is connected.

Now by induction on i we show that gi = hi ; this is known for i = 1 since
gi = f = hi on U1. Assuming that gi = hi and i < k, we know that gi+1 = gi and
hi+1 = hi on a neighbourhood of γ (ti), and so gi+1 = hi+1 on a neighbourhood
of γ (ti); since Ui+1 is connected, we have gi+1 = hi+1 (Proposition 12.9). ��

The following is analogous to Lemma 10.37.

Lemma 12.69 Suppose that H : [0, 1] × [a, b] → X is a path homotopy in a
holomorphic surface X. Suppose that f : U → X is a holomorphic function defined
on an open neighbourhood of H0(a). Suppose that for all t ∈ [0, 1], there is an
analytic continuation gt of f along Ht . Then g0(b) = g1(b).

Proof The proof has some resemblance to that of Proposition 9.21. Let u ∈ [0, 1];
we show that u has an open neighbourhood in [0, 1] on which t �→ gt (b) is constant.
The result then follows from the compactness of [0, 1].

Let a = s0 < s1 < · · · < sk = b be a partition of [a, b] and U1, . . . , Uk

and f1, . . . , fk witness that gu is an analytic continuation of f along Hu. For each
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i = 1, . . . , k, H−1[Ui] is open and {(u, s) : s ∈ [si−1, si ]} is compact, so there
is some δ > 0 such that for all i � k, for all t ∈ (u − δ, u + δ), for all s ∈
[si−1, si ] we have Ht(s) ∈ Ui , and further we may assume that for i < k, Ht(si)

lies in a neighbourhood of Hu(si) on which fi = fi+1. For such t , s �→ fi(Ht(s))

(for s ∈ [si−1, si ]) is an analytic continuation of f along Ht , and so equals gt by
Lemma 12.68. Hence gt (b) = fk(Ht(b)) = fk(Hu(b)) is constant for t ∈ (u −
δ, u+ δ) as required. ��

Our goal is:

Monodromy Theorem Let X and Y be Riemann surfaces, with X simply con-
nected. Let U ⊆ X be open and connected, and suppose that f : U → Y is
holomorphic. Suppose that along any path γ in X starting at some point in U , there
is an analytic continuation of f along γ . Then there is a (unique) holomorphic
function from X to Y extending f .

Proof Uniqueness is by Proposition 12.9. Existence is similar to the proof of
Theorem 9.24. Fix some a ∈ U , and define h : X → Y by letting, for b ∈ X, h(b)

be the end value of some analytic continuation along some path γ in X from a to b.
Since X is simply connected, Lemma 12.69 implies that this does not depend on the
choice of path. To show that h is holomorphic, fix some b0 ∈ X and some path γ0
from a to b0; let g0 be the unique analytic continuation of f along γ0. Let h0 be a
holomorphic function defined on a connected open neighbourhood V of b0 such that
g0 = h0 ◦ γ0 on some tail of γ0. For any b ∈ V , let γb be the result of concatenating
to γ0 a path in V from b0 to b. We then let gb be an extension of g0 along γb by
following h0 on the path from b0 to b. Then gb is an analytic continuation of f along
γb, and so h(b) = h0(b), i.e., h = h0 on V ; so h is holomorphic on V . ��

12.6 Differential Forms on Surfaces

How can we differentiate and integrate functions on surfaces? The key to this is
remembering that fundamentally, the objects that are integrated are not functions
but forms, and so instead of derivatives we should look for differentials. So how to
define forms on a surface? The “proper” way to do it would be to define the tangent
bundle, but that would take us too far afield. A low-tech solution is to declare a
form on a surface by choosing for each chart a form on the image of the chart, in a
pairwise coherent way.

Suppose that U,V ⊆ C are open, that ω is a complex linear form on V (see
page 285), and that f : U → V is analytic. We define (compare with Exercise 10.43)
a form f ∗ω on U by letting (f ∗ω)a(v) = ωf (a)(f

′(a)·v) (the product is the product
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of complex numbers). Now ω = g dz for some continuous g : V → C; we observe
that

f ∗(g dz) = g(f ) · f ′ dz. (12.2)

Exercise 12.70 Show that if f : U → V and h : V → W are analytic, and ω is a
form on W , then (h ◦ f )∗ω = f ∗(h∗ω). Also show that id∗ ω = ω where id is the
identity function on W ; conclude that if f is a bijection then (f−1)∗f ∗ω = ω. «

Definition 12.71 Let X be a holomorphic surface. A form on X is a collection of
pairs ω = {(ωi, ψi) : i ∈ I } where:

(i) each ψi is a chart for X, and {dom ψi : i ∈ I } is an open cover of X;
(ii) each ωi is a complex form on range ψi ;

(iii) for any i, j ∈ I ,

ωi�domψi,j= (ψi,j )
∗ωj .

where ψi,j = ψj ◦ψ−1
i is the transition function from ψi - to ψj -coordinates.

If ω = {(ωi, ψi)} is a form on X then we often write ωi = gi dz where gi is
continuous. Thus, Eq. 12.2 gives

gi = (gj ◦ψi,j ) · (ψi,j )
′ (12.3)

on dom ψi,j , for all i and j . The form is called holomorphic if each gi is analytic.
Holomorphic forms are very useful, but we will need to generalise this a bit, using
meromorphic functions.

Definition 12.72 Let X be a holomorphic surface. A meromorphic form on X is a
collection of pairs ω = {(gi, ψi) : i ∈ I } where

1. each ψi is a chart for X, and {dom ψi : i ∈ I } is an open cover of X;
2. each gi is a meromorphic function on rangeψi ; and
3. for any i, j ∈ I ,

gi = (gj ◦ ψi,j ) · (ψi,j )
′.

on dom ψi,j .

Here recall that we defined the product of meromorphic functions; see page 317. In
this case, since each ψi,j is an analytic bijection, we know that (ψi,j )

′ is nonzero
everywhere, so a ∈ dom ψi,j is a pole of gi if and only if ψi,j (a) is a pole of gj ;
and similarly for zeros.

We say that a meromorphic form ω = {(gi, ψi )} is not constant 0 if for each i,
gi is not constant 0. In this case, the order orda(gi) of gi at a is defined for all a ∈
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dom gi = range ψi ; by Exercise 12.21, the fact that (ψi,j )′ is nonzero everywhere
implies:

Lemma 12.73 Let ω = {(gi, ψi) : i ∈ I } be a meromorphic form on X and not
constant 0; let p ∈ X. Then for every i, j ∈ I such that p ∈ dom ψi ∩ dom ψj ,

ordψi(p)(gi) = ordψj (p)(gj ).

As in Remark 12.40, we thus unambiguously define ordp(ω), the order of ω at p,
to be this common value ordψi(p)(gi). If ordp(ω) < 0 then we say that p is a pole
of ω, and if ordp(ω) > 0 we say that p is a zero of ω.

Exercise 12.74 (a) Show that the collection of poles of a meromorphic form ω on X

is a discrete and closed subset of X. (b) Show that if ω is not constant 0, then the set
of zeros of ω is discrete and closed as well. (c) Show that if X is a Riemann surface
then a meromorphic form ω on X is constant 0 if and only if every p ∈ X is a zero
of ω.3 «

If each gi is analytic, then we can identify ω = {(gi, ψi)} with the form
{(gi dz,ψi)}, so we think of meromorphic forms as a generalisation of holomorphic
forms.

Remark 12.75 Strictly speaking, of course, a meromorphic form on X may not be
a form on X, since gi dz is not defined on the poles of gi . However, removing the
poles leaves us with a holomorphic form.

In greater detail, if ω = {(gi, ψi) : i ∈ I } is a meromorphic form on X, and
U ⊆ X is open, we let ω�U denote the form {(gi�ψi [U ], ψi�U) : i ∈ I }. This is a
meromorphic form on U . If Z is the set of poles of ω, then ω�X\Z is a holomorphic
form on X \ Z. «

12.6.1 Pull-Backs of Meromorphic Forms

Even though it is imprecise, if U ⊆ C is nonempty and g is meromorphic on U , then
it is convenient to denote by g dz the meromorphic form on U which consists of the
unique pair (g, idU). If f : U → V is analytic and g is meromorphic on V then
(g ◦f ) ·f ′ is meromorphic on U and as above, we let f ∗(g dz) = (g ◦f ) ·f ′ dz; so

3 Note that if ω is not constant 0, then we cannot conclude that we have a form 1/ω on X defined
by taking pairs (1/gi , ψi); the coherence condition 1/gi = ((1/gj ) ◦ψi,j ) · (ψi,j )

′ will fail, as we
can have (ψi,j )

′ �= 1. A meromorphic form does not give a well-defined function on X; only the
zeros and poles are unambiguous.
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condition (iii) of Definition 12.72 becomes gi dz = (ψi,j )∗gj dz on dom ψi,j , just
as in Definition 12.71.

Using this notation, we can extend the pull-back operation to meromorphic forms
on surfaces. Suppose that f : X → Y is a holomorphic map between holomorphic
surfaces, and that ω = {(ωi, ψi) : i ∈ I } is a meromorphic form on Y (where ωi =
gi dz, with gi a meromorphic function on the range of ψi ). Then we define a form
f ∗ω on X by pulling back coordinate representations. We fix a holomorphic atlas
A = {

ϕj : j ∈ J
}

on X. By breaking up their domains, if necessary, we assume
that for every j ∈ J , dom ϕj is sufficiently small so that f [dom ϕj ] ⊆ dom ψi(j)

for some i(j) ∈ I . Then for each j ∈ J , we let

ηj =
(
ψi(j) ◦ f ◦ ϕ−1

j

)∗
ωi(j)

be the pull-back meromorphic form on range ϕj using the coordinate representation
of f using ϕj - and ψi(j)-coordinates; we then let

f ∗ω = {
(ηj , ϕj ) : j ∈ J

}
.

Exercise 12.76 (a) Show that f ∗ω is a meromorphic form on X. (b) Show that if
h : Z → X is holomorphic then (f ◦ h)∗ω = h∗(f ∗ω). (c) Let p ∈ X; let n be
the valency of f at p (see Proposition 12.41), and let k = ordf (p)(ω). Show that
ordp(f ∗ω) = nk+n−1. (In particular, if f is a biholomorphism, then ordp(f ∗ω) =
ordf (p)(ω).) «

Exercise 12.77 Show that if ω = (ωi, ψi) is a meromorphic form on X, then for
all i, (ψ−1

i )∗ω = ωi . «

Equivalence of Forms
For a meromorphic form ω = {(ωi, ψi) : i ∈ I } on a surface X, temporarily let
Aω = {ψi : i ∈ I }, which is an atlas on X (with analytic transition functions). If
η = {

(ηj , ϕj ) : j ∈ J
}

is another meromorphic form on X with Aω �= Aη, then
strictly speaking, the forms ω and η cannot be identical. However, we do think of
them as the same if for all (i, j) ∈ I × J , ωi = (ϕj ◦ ψ−1

i )∗ηj . That is, if the
collection of all pairs (ωi, ψi) together with all pairs (ηj , ϕj ) (technically speaking,
the union ω ∪ η) is a form on X.

12.6.2 Quotients of Forms

Recall that if ω is a form on U ⊆ C and h : U → C is a continuous function, then
we define the form hω on U by letting (hω)a(v) = h(a)ωa(v). If ω = g dz then
hω = (hg) dz. Since products of meromorphic functions are well-defined, we can
extend this to meromorphic forms on U .
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Exercise 12.78 Show that if f : U → V is analytic, ω = g dz is a meromorphic
form on V , and h is a meromorphic function on V , then

f ∗(hω) = (h ◦ f ) · f ∗ω. «

If ω = {(ωi, ψi ) : i ∈ I } is a meromorphic form on X and h is a meromorphic
function on X (a holomorphic function to P

1(C)), then for i ∈ I let hi = h ◦ ψ−1
i

be the representation of h using ψi -coordinates; we define

hω = {(hiωi, ψi) : i ∈ I } ;

Exercise 12.78 implies that this is a meromorphic form on X.

Exercise 12.79 Show that if f : X → Y is holomorphic, ω is a meromorphic form
on Y , and h is a meromorphic function on Y , then f ∗(hω) = (h ◦ f )f ∗ω. «

Recall (Remark 12.40) that we can define the order ordp(h) of h at a point p ∈ X.
Then Exercise 12.21(a) implies:

Proposition 12.80 For every p ∈ X, ordp(hω) = ordp(ω)+ ordp(h).

And we can divide forms.

Proposition 12.81 Suppose that ω and η are meromorphic forms on X, with ω not
constant 0. Then there is a meromorphic function h on X such that η = hω.

We write h = η/ω.

Proof As discussed above, we can take a common refinement and pass to equiv-
alent forms, so we assume that ω and η are defined using the same atlas:
ω = {(ωi, ψi) : i ∈ I } and η = {(ηi , ψi) : i ∈ I }. Say ωi = gi dz and
ηi = fi dz. For each i ∈ I we define hi : dom ψi → C by letting hi(p) =
(fi(ψi(p)))/(gi(ψi(p))), which is meromorphic since gi is not identically zero;
a coordinate representation of hi is fi/gi . However for i, j ∈ I , the compatibility
of ωi and ωj , and of ηi and ηj shows that hi = hj on dom ψi ∩ dom ψj . So we can
unambiguously define h as required. ��

Now Proposition 12.80 implies that if both η and ω are holomorphic (they have
no poles), and ω has no zeros as well, then h is in fact holomorphic. We say that ω
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is non-vanishing holomorphic if it is holomorphic and has no zeros. That is, if
ordp(ω) = 0 for all p ∈ X. With Corollary 12.44, we get:

Corollary 12.82 If X is a compact Riemann surface and ω is a non-vanishing
holomorphic form on X, then every holomorphic form on X is a constant multiple
of ω.

The Differential of a Meromorphic Function
Let X be a holomorphic surface and let g be a meromorphic function on X. Let
A = {ψi : i ∈ I } be a holomorphic atlas on X. We define

dg =
{
((g ◦ ψ−1

i )′ dz,ψi) : i ∈ I
}

.

Exercise 12.83 Show that dg is a meromorphic form on X. «

Example 12.84 If U ⊆ C and g is meromorphic on U , then dg = g′ dz. «

Exercise 12.85 Show that if f : X → Y is holomorphic and g is meromorphic
on Y , then f ∗(dg) = d(g ◦ f ). «

We can calculate orders of zeros and poles:

Proposition 12.86 For all p ∈ X:

1. If ordp(g) �= 0 then ordp(dg) = ordp(g)− 1.
2. If ordp(g) � 0 then ordp(dg) = m− 1, where m is the valency of g at p.

See Exercise 12.21(c).

Example 12.87 Let g = id
P1(C) be the identity function on P

1(C). It is a

meromorphic function on P
1(C). The coordinate representations of g are ρ−1

0
and ρ−1

1 , which using our identification of C with ρ0[C], translate to the functions
z �→ z and z �→ 1/z. Hence dg is the form consisting of the two pairs (dz, ρ0) and
((−1/z2) dz, ρ1). We observe then that dg has no zeros, and has a pole of order 2
at p∞. Since dg is not constant 0, Proposition 12.81 implies that every meromorphic
form on the Riemann sphere is f dg for some meromorphic function f on the
sphere.4 «

Exercise 12.88 Fix a complex torus T = T� . Define a form ω on T by taking
all pairs (dz,ψ) where ψ is a chart for T . (a) Verify that ω is a non-vanishing
holomorphic form on T . (b) Conclude that every meromorphic form on T is fω for

4 The form dg extends the form dz on C, and so is often also referred to as dz.
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some meromorphic function f on T . (c) If π = π� is the quotient map, show that
dz = π∗ω. «

12.6.3 Integration of Holomorphic Forms

For the rest of the section, we restrict ourselves to piecewise smooth paths in a
holomorphic surface X (recall that X is a differentiable 2-manifold, so we have
defined the notion of smoothness of maps to and from X; see Proposition 9.63).
Suppose that ω = {(ωi, ψi) : i ∈ I } is a holomorphic form on X, and that
γ : [a, b] → X is a path in X.

Suppose that i, j ∈ I and that the range γ [a, b] is contained in dom ψi∩dom ψj .
Then because ωi = (ψi,j )∗ωj on dom ψi,j ,

∫

ψi◦γ
ωi =

∫

ψj ◦γ
ωj .

[Why? by considering concatenations, we may assume that γ is smooth. If ωi =
gi dz then

∫
ψi◦γ ωi =

∫ b

a (gi ◦ ψi ◦ γ )(t) · (ψi ◦ γ )′(t) dt; now use the chain rule.
Compare with Exercise 10.43.]

Now dropping this assumption, suppose instead that a = t0 < t1 < · · · < tk = b

is a partition of [a, b] and that for every j = 1, . . . , k, the image γ [tj−1, tj ] is
contained in the domain of one of the charts ψi for some i = i(j). Then we can
define

∫

γ

ω =
k∑

j=1

∫

ψi(j)◦γ �[tj−1,tj ]
ωi(j),

and the point is that such partitions exist, and that the value of the integral does not
depend on the choice of partition or the charts ψi(j). If X is an open subset of C,
then this integral is the same as the usual integral we already defined.

Exercise 12.89 Show that if f, g : X → C are holomorphic and γ : [a, b] → X is
smooth, then

∫

γ

f dg =
∫ b

a

(f ◦ γ ) · (g ◦ γ )′(t) dt. «



12.7 Further Exercises 339

Exercise 12.90 Show that if g : X → C is holomorphic and γ : [a, b] → X is a
path in X then

∫

γ

dg = g(γ (b))− g(γ (a)). «

In practice, ω will be meromorphic rather than holomorphic, and then we just
require that γ does not pass through any pole of γ ; this reduces to the holomorphic
case by Remark 12.75.

Exercise 12.91 Show that if f : X → Y is holomorphic, ω is a meromorphic form
on Y and γ is a path in X avoiding the poles of f ∗ω, then

∫

γ

f ∗ω =
∫

f ◦γ
ω. «

Exercise 12.92 Let ω be a holomorphic form on X. Show that if γ and δ are
homotopic in X, then

∫
γ

ω = ∫
δ
ω. (Hint: follow the argument of Lemma 10.37.

We can require that each ζi (and its “interior”) lies in the domain of a chart.) «

12.7 Further Exercises

For more problems, a good source is [VLA65].

Essential Singularities
12.93 Show that 0 is an essential singularity of the function z �→ e1/z (see
page 314).

12.94 Let f be analytic, defined on a punctured neighbourhood of a, and suppose
that a is an essential singularity of f . Show that the image of f is dense in C. (This
is known as the Casorati-Weierstrass theorem. Hint: argue by contradiction; if f

avoids a neighbourhood of a point b ∈ C, then 1/(f − b) is bounded. Picard’s
Great theorem extends the Casorati-Weierstrass theorem; it says that the image of f

is all of C, except possibly one point.)

12.95 Let U be an open neighbourhood of 0; let f : U \ {0} → C be analytic.
(a) For a > 0 let γa be the parameterised circle of radius a around 0; for b > a > 0
let δa,b be the path travelling from a to b along the real line in constant unit speed.
Show that the concatenation γb − δa,b − γa + δa,b is homotopic to a constant loop
in U \ {0}. (b) Let w ∈ U \ {0}; let 0 < r < |w| < R such that B(0, R) ⊂ U . Show
that 2πi ·f (w) = ∫

γR
f (z)/(z−w) dz−∫

γr
f (z)/(z−w) dz. (c) Show that f has a

bi-infinite Laurent expansion around 0: if B(0, R) ⊆ U then f (z) = ∑∞
n=−∞ cnz

n
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on B(0, R) \ {0}. (d) Show that 0 is an essential singularity of f if and only if for
infinitely many n � 0, c−n �= 0.

Calculus of Residues
12.96 Find the poles and the residues of f (z) = 1/sin2z.

12.97 Let γ be the parameterized unit circle.

(a) Suppose that f : [0, 2π] → R is continuous and f (0) = f (2π). Let f̂ (eit ) =
f (t). Show that

∫ 2π

0
f (t) dt =

∫

γ

f̂ (z)

iz
dz.

(b) Let f (t) = 1/(2+ cos t). Show that f̂ (z) = 2z/(z2 + 4z+ 1). (Hint: 2 cos t =
eit + e−it .)

(c) Find
∫ 2π

0 dt/(2+ cos t). (Hint: find rsd√3−2(1/(z2 + 4z+ 1)).)

12.98 Let f (z) = (1 + z2)−2. For r > 1 let γr : [0, π] → C be γr(t) = reit

be the parameterized semi-circle. (a) Show that limr→∞
∫
γr

f (z) dz = 0. (Hint:

f (z) behaves like 1/z4 when |z| is large.) (b) Calculate rsdi(f ). (c) For r > 1, find∫ r

−r
f (x) dx + ∫

γr
f (z) dz. (d) Calculate

∫∞
−∞ f (x) dx = limr→∞

∫ r

−r
f (x) dx.

12.99 Suppose that fn : U → C are analytic and converge locally uniformly to
f : U → C. Suppose further that all zeros of each fn are real. Show that all zeros
of f are real.

Open Mapping and Inverse Function Theorems
12.100 (a) Prove the maximum modulus principle: if f : U → C is analytic,
and B(a, r) ⊂ U , then max

{|f (z)| : z ∈ B(a, r)
}

is obtained on the boundary
B(a, r) \ B(a, r). (Hint: the image of B(a, r) is open.) (b) Conclude that if
f : U → C is analytic on a region U , and |f | attains a minimum on U , then that
minimum is 0. (c) Use this to give an alternative proof of the fundamental theorem
of algebra 2.30.

12.101 Let U = B(0, 1) be the interior of the unit circle. Let A,B ⊂ U be finite;
let f : (U \A) → (U \B) be an analytic bijection. Show that A and B have the same
number of points, and that f can be extended to an analytic bijection f̂ : U → U

mapping A to B. (Hint: f is bounded around every a ∈ A.)
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Holomorphic Surfaces and Meromorphic Functions
12.102 [PC] Find the Laurent series expansion of f (z) = (z+4)/(z2(z2+3z+2))

around 0. (Hint: partial fractions.)

12.103 Let X be a Riemann surface. Show that if f : X → C is a nonconstant
holomorphic map then |f | does not have a maximum.

12.104 (a) Viewing C as a subset of P
1(C) via ρ0, show that every polynomial

function f : C → C can be extended to a holomorphic function from P
1(C) to

itself. (b) Show that the degree of the resulting holomorphic map (also named f )
is the degree of the polynomial, and equals the valency of f at p∞. (c) Show that
every meromorphic function on P

1(C) is defined by a rational function (the ratio
of two polynomial functions). (Hint: show that removing finitely many principal
parts results in a holomorphic map from P

1(C) to C.) (d) Conclude that every
biholomorphism of P1(C) with itself is a change of coordinates of P1(C).

12.105 Show that every biholomorphism f : C → C is affine, i.e. of the form
z �→ az + b for some a, b ∈ C, a �= 0. (Use the Casorati-Weierstrass theorem
(Exercise 12.94) to show that f can be extended to the Riemann sphere.)

12.106 Let f (z) = (z− 1)3/(z2 + 1). Compute the degree of the extension of f to
a meromorphic function on P

1(C).

12.107 Let f : X → Y be holomorphic and let m be the valency of f at p ∈ X.
Show that there are charts ψ compatible with X and ϕ compatible with Y such that
the coordinate representation ϕ ◦ f ◦ ψ−1 is the restriction of z �→ zm to rangeψ .
(Hint: if g�V is never zero and V is small then g has an mth root on V .)

12.108 Show that if f is meromorphic on C and has a unique simple pole b (a pole
of order 1), then f is of the form z �→ a + c/(z− b) for some a, c ∈ C.

12.109 Use Proposition 12.43 to give another proof of the fundamental theorem of
algebra. (Extend a polynomial function f : C→ C to a function from the Riemann
sphere to itself, see Exercise 12.104).

12.110 Use Proposition 12.43 to give another proof of Liouville’s Theorem 11.76.
(Hint: use Proposition 12.16).

Analytic Continuation
12.111 Let f (z) = ∑

n z2n . (a) Show that the radius of convergence of this power
series is 1. (b) Suppose that g is an analytic function on a connected domain
extending f . Show that g(z) = z + g(z2), g(z) = z + z2 + g(z4), g(z) =
z + z2 + z4 + g(z8), and so on. (c) Show that if w ∈ S is an nth root on unity
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for some n � 1 (i.e., wn = 1), then g(w) is undefined. (d) Conclude that g = f .
That is, f cannot be extended to any analytic function on a larger domain.5

In the following exercises, we give an alternative definition of analytic continua-
tion, which is perhaps a little more “conceptual”. The price to pay is a restriction on
the paths we can take. Call a path γ : [a, b] → X prompt if it is not constant on any
sub-interval of [a, b].6

12.112 Let X and Y be holomorphic surfaces, U ⊆ X be open, f : U → Y be
holomorphic, and γ : [a, b] → X be a prompt path with γ (a) ∈ U . Show that
g : [a, b] → Y is an analytic continuation of f along γ if and only if for every
s ∈ [a, b] there is some open Vs ⊆ X and holomorphic hs : Vs → Y such that
γ (s) ∈ Vs , and g = hs ◦γ on some neighbourhood of s in [a, b]; and such that Va ⊆
U and ha = f on Va . (In the harder direction, observe that for any subinterval I

of [a, b], since γ is not constant on I , γ [I ] is not discrete (it is a connected set that
contains more than one point).)

12.113 Suppose that γ : [a, b] → X is constant on [a, c] (where a < c < b),
so is not prompt. Suppose that h : X → Y is a holomorphic function satisfying
h(γ (a)) = f (γ (a)). Show that there is a function g satisfying the condition of
Exercise 12.112 satisfying g(b) = h(γ (b)). (That is, if γ is not prompt, then the
condition of Exercise 12.112 is too weak, in that it allows “continuations” g that
have nothing to do with f , other than that they agree with f on the starting point.).

12.114 Give a proof of Lemma 12.68 using the characterisation of Exercise 12.112,
assuming that γ is prompt. (Let r = inf {s ∈ [a, b] : g(s) �= h(s)}.)

12.115 The following exercise allows us to use the definition of Exercise 12.112
and the proof from Exercise 12.114 to prove the Monodromy Theorem. Let M be a
manifold. Show that: (a) If M is connected, then any two points in M are connected
by a prompt path. (b) If M is simply connected, then any two prompt paths with
the same end-points are homotopic by a homotopy H for which every intermediate
path Ht is prompt. (One way to do (a) is to take a path γ in M , break it up into a finite
concatenation of paths γ�J , each of which has an image γ [J ] which is contained in
the domain of chart ψ for M , indeed such that ψ[γ [J ]] is contained in an open ball
within the range of ψ; we then replace γ �J by the pull-back by ψ of a linear path
between the end-points of ψ ◦ γ�J . Similar massaging gives (b).)

5 We say that the unit circle is the natural boundary of f .
6 This is not standard terminology. The path is “prompt” because it doesn’t take any rests on the
way from γ (a) to γ (b). Promptness is implied by a common definition of smoothness of a path,
which requires γ̇ �= "0 at every point.
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Meromorphic Forms
12.116 Let α : P1(C) → P

1(C) be the map (a : b) �→ (b : a). Find the zeros and
poles, and their orders, of dα. Do the same for the form α dα.
12.117 Show that the only holomorphic form on P

1(C) is the constant 0 form.
(Hint: such a form is f dg where g is the identity on the sphere, see Example 12.87.)

12.118 Define a form ω on the Riemann surface � to be the collection of pairs
(dz,ψ), where ψ is a chart for �. (a) Show that ω is a non-vanishing holomorphic
form on �. (b) Let f : C→ � be the biholomorphism z �→ (ez,#z). What is f ∗ω?
(c) What is (f−1)∗dz? (d) Do the same for �/n and the biholomorphism pwrn.

12.119 Let ω be the form on a complex torus T = T� defined in Exercise 12.88.
(a) Let α be one of the generators of Γ ; let γ : [0, 1] → C be the path t �→ tα.
Calculate

∫
π◦γ ω. (b) Let U ⊆ T be open and suppose that (π ◦ γ )[0, 1] ⊂ U .

Show that there is no holomorphic function g : U → C such that ω = dg on U .

12.120 (a) Show that if ω is a meromorphic form on a holomorphic surface X, then
the residue of ω at a point p ∈ X is well-defined. (That is, if ωi = fi dz then the
residue of fi at ψi(p) is the same for all i with p ∈ dom ψi . To do this, consider
1/(2πi)

∫
γ

ω for a suitable γ .) (b) Show that if f is meromorphic on X and p ∈ X,
then the residue of df/f at p is ordp(f ).

Continuity of Roots
We give two purely topological proofs of Proposition 12.29, not relying on the
calculus of residues (or any complex analysis). The proofs use the symmetric power
of a quasi-Euclidean space, which is a topological space not immediately seen to be
quasi-Euclidean; and so goes a little beyond the tools developed in this book.

12.121 For a quasi-Euclidean space X and n � 2, we let SPn(X) be the collection
of all multisets of points of X of size n. Let μ : Xn → SPn(X) be the “order-
forgetting” map: μ(x1, x2, . . . , xn) = [x1, x2, . . . , xn].7 We put the quotient
topology on SPn(X): a set U ⊆ SPn(X) is open if μ−1[U ] is an open subset of
Xn.

Show that for any space Y , a function f : SPn(X) → Y is continuous if and only
if f ◦ μ : Xn → Y is continuous. (Compare with Proposition 8.109).

12.122 Suppose that d is a metric on X inducing the topology on X. Define the
following: for a = [a1, . . . , an], b = [b1, . . . , bn] ∈ SPn(X),

7 SPn(X) is the quotient Xn/Sn where the symmetric group Sn acts on Xn by permuting
coordinates.
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d ′(a, b) = min
σ∈Sn

max
i�n

d(ai, bσ(i)).

Show that d ′ is a metric on SPn(X) inducing the topology defined above.

For the following, for d � 1 let Pd be the collection of monic polynomials
f ∈ C[x] of degree d . Using the bijection (ad−1, . . . , a0) �→ xd + ad−1xd−1 +
· · · + a1x + a0, we consider Pd as a topological space homeomorphic to C

d .

12.123 Define the following map σ : SPd(C) → Pd by letting σ([a1, . . . , an]) =
(x − a1)(x − a2) · · · (x − an). (a) Show that σ is a continuous bijection. (b) Show
that Proposition 12.29 would follow from σ−1 being continuous.

12.124

(a) Show that for a bounded set Q ⊆ Pd , (μ ◦ σ)−1[Q] is bounded. (Hint: show
that there is some R such that for all f ∈ Q and z ∈ C, |z| > R implies
|f (z)| � |z|d/2.)

(b) Conclude that for every open ball B in Pd , σ−1[B] is contained in a compact
set.

(c) Conclude that σ is a homeomorphism. (For every compact K , σ �K is a
homeomorphism.)

12.125 We give another proof of the continuity of σ−1, due to Cucker and Gonzalez
Corbalan [CGC89].

Let Hd be the collection of homogeneous polynomials f ∈ C[w, x] of
degree d . Just like Pd , we topologically identify Hd with C

d+1 \ {0} by mapping
(ad, ad−1, . . . , a0) to adxd + ad−1x

d−1w + · · · + a0w
d . If we define f ∼ g when

f = λg for some nonzero λ ∈ C, we obtain an identification of Hd/ ∼ with
P

d(C). For f ∈ Hd we let [f ] = [f ]∼ be the ∼-equivalence class of f , and we let
[Hd] = Hd/ ∼.

(a) Show that f �→ [f �] is a topological embedding of Pd into [Hd]. We thus
identify Pd with the image of this embedding.

(b) Show that the identification C ⊂ P
1(C) extends to an identification of SPd (C)

as a subspace of SPd(P1(C)).
(c) Show that if X is compact, so is SPd (X).
(d) Define τ : Hd → SPd(P1(C)) to be the map f �→ VP1(f ). Show that the map τ

induces a bijection [τ ] from [Hd] to SPd(P1(C)).
(e) Show that under the previous identifications, [τ ]−1 �SPd(C) is σ of Exer-

cise 12.123.
(f) Show that [τ ]−1 is continuous. Conclude that as SPd (P1(C)) is compact, τ is a

homeomorphism; conclude that σ is a homeomorphism as well.
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The main result of this chapter is the construction of an atlas which makes a
given nonsingular curve in P

2(C) a Riemann surface (Proposition 13.18). The main
tool used is the analytic implicit function theorem (Theorem 13.5). The idea is as
follows. Working in affine coordinates, let D be a curve defined by an equation
f (x, y) = 0; and let p ∈ D. Suppose that p is nonsingular on D, and further, that
the tangent to D at p is not vertical. Then the implicit function theorem says that on
a neighbourhood of p, we can express a solution y to the equation f (x, y) = 0
as an analytic function of x. We will then let the projection (x, y) �→ x be a
chart for D on a neighbourhood of p. Since the inverse of this chart is the pair
z �→ (z, g(z)) with g analytic, the transition functions will be analytic, so we will
get a holomorphic surface.

After defining the holomorphic structure of a curve, we revisit intersection
numbers of lines and complex curves. We show that we can recover the original
intuition for intersection multiplicity: a line 	 intersects a curve D at a point p

with multiplicity m if lines close to 	 intersect D close to p at m points (see
Proposition 13.47 and Exercise 13.76). To make sense of this, we copy over the
topological and holomorphic structures from P

2(C) to the dual projective plane
P̌

2(C).
For much more on Riemann surfaces and algebraic curves, see, for example,

[Mir95].

13.1 The Implicit Function Theorem

Multivariable complex analysis is a fascinating subject. Many of the results from
Chap. 11 generalise to higher dimensions. For example, functions f : Cn → C

m

are continuously differentiable if and only if they are analytic, that is, the sum of a
multi-variable power series; Cauchy’s integral formula generalises as well. A decent
treatment of this area is beyond the scope of this book; see, for example, [Gun90,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Sha92]. Here, we do the bare minimum in order to obtain the implicit function
theorem.

The key, as in our development of single-variable complex analysis, is to
view functions as multivariable real functions. We identify C

n with R
2n via

(z1, z2, . . . , zn) �→ (x1, y1, x2, y2, . . . , xn, yn), where zi = xi + iyi . If U ⊆ C
n,

then a function f : U → C
m is identified with the corresponding function from

U ⊆ R
2n → R

2m. For a linear function TA : Cn → C
m (where A ∈ Mm×n(C)),

the corresponding map from R
2n to R

2m is real-linear, defined by the matrix
MA ∈ M2m×2n(R), obtained by replacing each entry ai,j in A by the 2 × 2-
matrix Mai,j from Lemma 11.1.

Definition 13.1 Let U ⊆ C
n be open and let a ∈ U . A function f : U → C

m is
differentiable at a if there is some A ∈ Mm×n(C) such that for all ε > 0 there is
δ > 0 such that for all h ∈ C

n, if |h| < δ then |(f (a + h)− f (a))− Ah| < ε|h|.

To differentiate from the real notation, we write A = f ′(a). Note that |z| is
the same if we think of z as an element of R

2n or C
n. Hence f : U → C

m is
differentiable at a, with derivative A = f ′(a), if and only if it is differentiable
at a when we think of it as a map from U to R

2m, with derivative Df (a) = MA.
So f is complex-differentiable at a if and only if it is real-differentiable, and
the Cauchy-Riemann Equations hold for each of the 2× 2-sub-matrices of Df (a):
if f = (f1, . . . , fm) with fj : U → C, and we write fj = fj,x + ifj,y , and the
real variables are (x1, y1, . . . , xn, yn), then the equations are Dxi fj,x = Dyi fj,y

and Dyi fj,x = −Dxifj,y (at a) for all j � m and i � n.
We can therefore lift theorems from the real realm to the complex one. For

example, if U ⊆ C
n and f = (f1, f2, . . . , fm) : U → C

m, then U is differentiable
at a point a if and only if each fj is differentiable at a. We can similarly define
partial derivatives: if f : U → C and i � n then Dzi f is the partial derivative in the
ith complex direction; Proposition 9.52 implies that f is continuously differentiable
on U if and only if each Dzi f is defined and continuous on U .

If A ∈ Mm×n(C) and B ∈ Mk×m(C) then MBA = MBMA, and so the real chain
rule (Proposition 9.42) implies the complex one:

Proposition 13.2 Let U ⊆ C
n, V ⊆ C

m, f : U → V , g : V → C
k , and a ∈ U .

Suppose that f is differentiable at a and that g is differentiable at f (a). Then g ◦ f

is differentiable at a and (g ◦ f )′(a) = g′(f (a)) · f ′(a).

Exercise 13.3 Show that every rational function on C
n is continuously differen-

tiable. That is, if f, g ∈ C[z1, . . . , zn], then the rational function defined by f/g on
C

n \ VAn(C)(g) is continuously differentiable, with derivative (f ′g − fg′)/g2. «
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A matrix A ∈ Mn(C) is invertible if and only if the corresponding real matrix MA

is invertible. Hence the real Inverse Function Theorem implies the complex one:

Theorem 13.4 (Multivariable Complex Inverse Function Theorem) Let U ⊆
C

n be open, let f : U → C
n be continuously differentiable, let a ∈ U and suppose

that f ′(a) is invertible. Then there is an open neighbourhood V ⊆ U of a such that
f [V ] is open, the restriction f �V is a homeomorphism between V and f [V ], and
its inverse g = (f�V )−1 is differentiable at f (a), with g′(f (a)) = (f ′(a))−1.

As in the real context, the implicit function theorem is a consequence of the
inverse function theorem. To simplify notation, we only state the case that we will
be using, which is for an implicit definition in two variables. Let W ⊆ C

2 and
let f : W → C; we write (z,w) for the (complex) variables of f , and so write
f ′ = (Dzf,Dwf ).

Theorem 13.5 Let W ⊆ C
2 be open; let f : W → C be continuously differen-

tiable, let (a, b) ∈ W and suppose that f (a, b) = 0 but Dwf (a, b) �= 0. Then there
are open neighbourhoods U ⊆ C of a and V ⊆ C of b and an analytic function
g : U → V such that for all z ∈ U , g(z) is the uniquew ∈ V such that f (z,w) = 0.

Proof Let F(z,w) = (z, f (z,w)). Then F is continuously differentiable on W .
Noting that

F ′ =
(

1 0
Dzf Dwf

)

,

we see that F ′(a, b) is invertible. By Theorem 13.4, and since Dwf is continuous,
by shrinking W we may assume that F is 1–1 on W , F [W ] is open, and Dwf �= 0
on W . The inverse G of F is differentiable on F [W ]; write G = (Gz,Gw) (where
Gz(z,w) = z on F [W ]). Since both W and F [W ] are open and F(a, b) = (a, 0),
we can find open neighbourhoods U of a and V of b such that: (i) U ×V ⊆ W ; and
(ii) U × {0} ⊂ F [W ] (that is, (z, 0) ∈ F [W ] for all z ∈ U ).

For z ∈ U let g(z) = Gw(z, 0). Since Gw is continuously differentiable, by the
chain rule, so is g, and so g is analytic; by definition of F , f (z, g(z)) = 0 for all
z ∈ U . And since F is 1–1 on W , for all z ∈ U there is at most one w ∈ V with
f (z,w) = 0, so g(z) is the unique such w. ��

Remark 13.6 Since G′(F (p)) = (F ′(p))−1, a calculation shows that g′(z) =
−Dzf (z, g(z))/Dwf (z, g(z)). This can also be deduced by the chain rule; see
Proposition 13.12 below. «

For a completely different proof of the implicit function theorem, see Exer-
cise 15.108.
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13.2 Nonsingular Curves Are Riemann Surfaces

Armed with the implicit function theorem, we now see how nonsingular complex
algebraic curves are Riemann surfaces.

13.2.1 Vertical Parameterisations

Let D be an irreducible algebraic curve in P
2(C). Since P

2(C) is a manifold
(Example 8.20), we can take the subspace topology for D: an open subset of D

is one of the form U ∩D, where U is an open subset of P2(C). We can extend this
to reducible curves if we ignore repeated points, that is, if we take the underlying
set of the curve, so that we get a subset of P2(C). Since we are only interested in the
underlying set, from now on, we ignore curves which have repeated components.

Exercise 13.7 Show that every algebraic curve in P
2(C) is compact. «

We will work in affine coordinates; recall that (a, b) ∈ A
2(C) is identified via ρ0

with (1 : a : b) ∈ P
2(C). The map ρ0 is a homeomorphism between A

2(C) and its
range U0; its inverse is a chart for P2(C).

Notation 13.8 Let D be a curve in P
2. We let D∗ denote the collection of

nonsingular points of D. «

Like D, we consider D∗ as a topological subspace of P2, and so can talk about
neighbourhoods of points in D∗ and continuous functions to and from D∗. Since we
are assuming that D has no repeated components, D \D∗ is finite (Corollary 5.41).
Hence, D∗ is an open subset of D. So a neighbourhood of a point in D∗ is also a
neighbourhood of that point in D.

Definition 13.9 A vertical parameterisation of D is a homeomorphism of the form
η(z) = (z, ηy(z)) from an open subset of C to an open subset of D∗ ∩ A

2(C),
where ηy is analytic.1

Example 13.10 Let D be the complex unit circle x2+y2 = w2. There is an analytic
square root defined on a neighbourhood of 1 (see Remark 12.59), so we can get a
vertical parameterisation z �→ (z,

√
1− z2) of D. The two choices of square root

will give two vertical parameterisations, one mapping 0 to (0, 1) and the other to
(0,−1). «

1 To be precise, we should say “local analytic vertical parameterisation”, local since it is
parameterising only part of the curve; but this is a bit of a mouthful.
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Let f be a polynomial which defines D∩A2 (a dehomogenisation of a polynomial
defining D), and let p = (a, b) be a point on D. If p is nonsingular on D then the
affine tangent to D at p is given by Dxf (p) · (x − a) + Dyf (p) · (y − b) = 0
(Eq. (5.3) on page 106, see Exercise 5.17); in particular, the tangent is not vertical if
and only if Dyf (p) �= 0.

Remark 13.11 In the previous section, we used Dzf and Dwf to denote partial
derivatives of f : C2 → C; this was to avoid confusion with the real partial
derivatives Dxi f and Dyi f . Henceforth, we do not need to consider the real
derivatives, and so we return to the notation Dxf and Dyf for f ∈ C[x, y]; as
a function on C

2, of course, these are Dzf and Dwf . «

Proposition 13.12 Suppose that η : U → V is a vertical parameterisation of D.
Then for all p = η(a) ∈ V , the tangent to D at p is not vertical, and its slope
is η′y(a).

Proof Again let f be a polynomial which defines D∩A2. By definition, each p ∈ V

is nonsingular on D. Say p = η(a). By the chain rule (Lemma 13.2), as f ◦ η = 0,
Dxf (p)+ η′y(a) ·Dyf (p) = 0; since (Dxf (p),Dyf (p)) �= (0, 0), we must have
Dyf (p) �= 0.

By the equation for the affine tangent (Eq. 5.3) mentioned, we get that the slope
of the tangent to D at p is −Dxf (p)/Dyf (p) = η′y(a). ��

A neighbourhood of p = (a, b) on D is one which contains (O × W) ∩ D,
where O is a neighbourhood of a and W is a neighbourhood of b in C. We can thus
restate the implicit function theorem:

Proposition 13.13 If D is a curve in P
2(C), p ∈ D∗ ∩ A

2 and the tangent to D

at p is not vertical, then there is a vertical parameterisation η : U → V of D with
p ∈ V .

Example 13.14 Let o = (0, 0) be the origin; suppose that η is a vertical parameter-
isation of D with η(0) = o. Let f define D ∩ A

2. There is a power series
∑

cnz
n

which defines ηy on a neighbourhood of 0. Since f (z, ηy(z)) = 0, the uniqueness
of formal power series (Proposition 11.58) allows us to compute the coefficients cn

recursively.
For example, let f (x, y) = y2 − y − x. Since ηy(0) = 0, we have c0 = 0. We

substitute and get

f (z, ηy(z)) = −(1+c1)z+(c2
1−c2)z

2+(2c1c2−c3)z
3+(2c1c3+c2

2−c4)z
4+· · · ;

equating all coefficients to 0, we recursively find that c1 = −1, c2 = 1, c3 = −2,
c4 = 5, . . . «
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The uniqueness part of the implicit function theorem means:

Proposition 13.15 Let η1 and η2 be two vertical parameterisations of a curve D.
Let a ∈ dom η1 ∩ dom η2, and suppose that η1(a) = η2(a). Then η1 = η2 on a
neighbourhood of a.

Exercise 13.16 Let D be a curve in P
2(C); let p = (a0, b0) ∈ D∗∩A2, and suppose

that the tangent to D at p is not vertical. Suppose that η = (ηx, ηy) : U → D∩A2 is
continuous, where U is a neighbourhood of a0 in C; and suppose that for all a ∈ U ,
ηx(a) = a, and that η(a0) = p. Show that restricted to some open neighbourhood
of a0, η is a vertical parameterisation of D. (Thus, in Definition 13.9, it is enough to
require that ηy be continuous, rather than analytic.) «

13.2.2 An Atlas for the Nonsingular Part of a Curve

Let D be an algebraic curve in P
2(C). We will now define an atlas on D∗ which

makes it a holomorphic surface. The plan is to take the inverse of a vertical
parameterisation of D as a chart for D∗. By definition, every chart will be a local
homeomorphism with C, so the transition functions will be continuous; and we will
check that they are analytic. However, not every point of D∗ is in the domain of such
a chart: we are possibly missing points at infinity, and points at which the tangent is
vertical. So we allow changes of coordinates to put points in the right position.

Definition 13.17 Let D be a curve in P
2(C). We let AD be the collection of maps

of the form η−1 ◦ α, where α is a change of coordinates of P2(C) and η is a vertical
parameterisation of α[D].

Proposition 13.18 LetD be a curve in P2(C). The collectionAD is an atlas forD∗,
and (D∗,AD) is a holomorphic surface, which is a topological subspace of P2(C).

Proof By definition, the range of a vertical parameterisation of a curve C is
contained in C∗, and is a homeomorphism between an open subset of C and an open
subset of C∗. Since changes of coordinates of P2(C) are continuous (Exercise 8.60),
and map nonsingular points to nonsingular points (Proposition 5.21), it follows that
each chart in AD is a homeomorphism between an open subset of D∗ and an open
subset of C.

Any p ∈ D∗ can be moved by a change of coordinates to A
2 with a non-vertical

tangent, and so by Proposition 13.13, every point of D∗ lies in the domain of some
chart in AD . By Proposition 8.61, AD is an atlas for D∗, And (D∗,AD) is a 2-
manifold which is a topological subspace of P2(C).
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It remains to show that the transition maps are analytic. Let ψ = η−1 ◦ α and
ϕ = ζ−1 ◦ β be two charts in AD . There are linear homogeneous polynomials
kw, kx, ky ∈ C[w, x, y] such that

(β ◦ α−1)(e : a : b) = (kw(e, a, b) : kx(e, a, b) : ky(e, a, b))

for every point (e : a : b) ∈ P
2. Let z be in the domain of the transition map ϕ ◦ψ−1.

Then

(
β ◦ ψ−1)(z) = (β ◦ α−1)(1 : z : ηy(z)) =

(
kw(1, z, ηy(z)) : kx(1, z, ηy(z)) : ky(1, z, ηy(z))

)

(recall that ηy is the second coordinate of η); since this is a point in the range of ζ ,
it is in A

2, i.e., kw(1, z, ηy(z)) �= 0, so

(ϕ ◦ ψ−1)(z) = (ζ−1 ◦ β ◦ ψ−1)(z) = kx(1, z, ηy(z))

kw(1, z, ηy(z))

which is an analytic function of z. ��

Exercise 13.19 Let D be a curve in P
2(C), and let α be a change of coordinates of

P
2(C). Show that α�D∗ is a biholomorphism from D∗ to α[D∗]. «

Remark 13.20 Since a vertical parameterisation of D is the inverse of a chart
for D∗, it follows that it is a biholomorphism between an open subset of C and
an open subset of D∗. «

Example 13.21 Proposition 13.18 in particular implies that every line in P
2(C) is

a holomorphic surface. In fact, a line in P
2(C) is biholomorphic with the Riemann

sphere P
1(C) (and so in particular is connected, i.e., is a Riemann surface). By

Exercise 13.19 it suffices to show this for one line, say the x-axis.
The projective linear parameterisation (s : t) �→ (s : t : 0) is a bijection between

P
1(C) and the x-axis (see Example 4.17). This map is a biholomorphism. By

Proposition 12.37, it suffices to show that it is holomorphic. We check two
coordinate representations. The map η(z) = (z, 0) is a vertical parameterisation
of the x-axis. For one coordinate representation we choose the chart (ρ0)

−1

for P1(C) and the chart η−1 for the x-axis; this gives the coordinate representation
z �→ (1 : z : 0) = (z, 0) �→ z, i.e. the identity map on C. The second coordinate
representation is obtained by choosing the chart (ρ1)

−1 for P1(C), and the chart
η−1 ◦ α where α is the change of coordinates α(e : a : b) = (a : e : b), which maps
the x-axis to itself; again the coordinate representation is the identity map. «
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13.2.3 Rational Functions on Curves

Suppose that f, g ∈ C[w, x, y] are homogeneous of the same degree. Then f and g

define a function F : P2(C) \ VP2(g) → C by letting

F(e : a : b) = f (e, a, b)

g(e, a, b)
;

because deg f = deg g, this is well-defined, in that it does not depend on the
choice of particular presentation (e, a, b) of the point (e : a : b). We call F a rational
function. It is defined on all points outside the curve g = 0.

Exercise 13.22 Show that a rational function is continuous. «

Proposition 13.23 Let F = f/g be a rational function, let D be a curve in P
2(C),

and suppose that D and V
P2(g) have no common component. Then F�D∗ extends to

a meromorphic function on D∗.

Proof Let ψ be a chart for D∗, let U = rangeψ . There are analytic functions
hw, hx and hy on U such that ψ−1(z) = (hw(z) :hx(z) :hy(z)) for all z ∈ U . Thus,
the coordinate representation of F using the chart ψ is the map

z �→ f (hw(z), hx(z), hy(z))

g(hw(z), hx(z), hy(z))
.

This is the quotient of two analytic functions. Further, since D ∩ V
P2(g) is finite,

g(hw, hx, hy) is not constant zero on U , and so this quotient is meromorphic on U .
��

Example 13.24 The simplest example are the coordinate maps, for example the map
x/w taking (e : a : b) to a/e, defined on A

2(C); in affine coordinates, this is the
projection (a, b) �→ a. «

Remark 13.25 By taking differentials (see Exercise 12.83) this gives us a way of
defining meromorphic differentials on algebraic curves. «

Exercise 13.26 Let D be a curve in P
2. Let X be a holomorphic surface, and let

ψ = (ψx,ψy) : X → D∗ ∩ A
2 be a continuous map. Show that ψ is holomorphic

(as a map to D∗) if and only if both ψx and ψy are analytic. «

Exercise 13.27 Let D be a nonsingular cubic curve given by y2 = f (see
Proposition 7.23). (a) Show that the restriction of the rational function x/w to D is
a meromorphic function of degree 2. What are the zeros, the poles and their orders?
(b) Show that the restriction of the rational function y/w to D is a meromorphic
function of degree 3. What are the zeros, the poles and their orders? «
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13.2.4 Lifting Paths to Curves

Toward showing that (some) algebraic curves are connected, we set up machinery
that will also serve us in Chap. 15. Let D be an algebraic curve in P

2(C). Recall
that op(D) is the order of p on D (Definition 5.13), and that (0 : 0 : 1) is the vertical
point at infinity.

Definition 13.28 We say that a ∈ C is a ramification point of D if the affine line
x = a intersects D in fewer than deg D − o(0 :0 : 1)(D)-many distinct points.

We let R = R(D) be the collection of ramification points of D. Since we are
assuming that D has no repeated components, Corollary 5.39 implies:

Proposition 13.29 D has only finitely many ramification points.

Let a ∈ K. By Theorem 5.34, i(0 : 0 : 1)(D, x = aw) � o(0 : 0 : 1)(D) (the projective
line x = wa intersects D at the vertical point at infinity with multiplicity at least the
order of that point on D). Hence by Theorem 5.27, if a is not a ramification point
of D, then i(0 : 0 : 1)(D, x = aw) = o(0 : 0 : 1)(D) and for every p ∈ D ∩ (x = a)

(a point on D which lies on the affine line x = a), ip(D, x = a) = 1. Now
Theorem 5.34 implies:

Proposition 13.30 If a is not a ramification point of D, and p ∈ D ∩ (x = a),
then p is nonsingular on D, and the tangent to D at p is not vertical.

Exercise 13.31 Find the ramification points of the projective closures of the follow-
ing conic curves: (i) y = x2; (ii) x = y2; (iii) xy = 1; (iv) x2 + y2 = 1. «

By Proposition 13.13, for every a /∈ R and every p ∈ D ∩ (x = a), there is a
vertical parameterisation η of D on a neighbourhood of a satisfying η(a) = p. By
intersecting the domains of these parameterisations and shrinking their ranges, we
obtain the following.

Lemma 13.32 We can choose, for every a ∈ C \ R, an open disc Ua centered
at a, disjoint from R, and for every p ∈ D ∩ (x = a), a vertical parameterisation
ηp : Ua → Vp of D satisfying ηp(a) = p; further, we may assume that if p,p′ ∈
D ∩ (x = a) are distinct, then Vp and Vp′ are disjoint.

Having fixed such a collection of parameterisations ηp, we observe the following.

Lemma 13.33 Suppose that a, a′ ∈ C \R, and that Ua ∩Ua′ �= ∅. Then for every
p ∈ D∩ (x = a) there is a unique p′ ∈ D∩ (x = a′) such that ηp and ηp′ agree on
Ua ∩ Ua′ . The map p �→ p′ is a bijection between D ∩ (x = a) and D ∩ (x = a′).
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Proof Let â ∈ Ua . For p ∈ D ∩ (x = a) let p̂ = ηp(â) (recall that the range
of ηp is contained in D ∩ A

2). By Proposition 13.15, ηp̂ = ηp on a neighbourhood
of â. If p1, p2 ∈ D ∩ (x = a) are distinct, then since Vp1 and Vp2 are disjoint, we
must have p̂1 �= p̂2. By the definition of ramification points, the number of points
in D ∩ (x = a) and D ∩ (x = â) is the same. Hence the map p �→ p̂ is a bijection
between D ∩ (x = a) and D ∩ (x = â).

As Ua ∩ Ua′ �= ∅, choose â ∈ Ua ∩ Ua′ , and apply this argument for both p

and p′. Combining bijections, we get a bijection p �→ p′ between D ∩ (x = a) and
D ∩ (x = a′), with ηp = ηp′ on a neighbourhood of â. Since Ua ∩Ua′ is connected
(it is the intersection of two discs), we have ηp = ηp′ on Ua ∩ Ua′ . ��

Recall the notion of analytic continuation (Definition 12.66). By Remark 13.20,
a vertical parameterisation is holomorphic (as a map to D∗), and so we can speak of
analytic continuations of vertical parameterisations.

Proposition 13.34 If γ is a path in C \ R starting at some a, and η is a vertical
parameterisation of D with a ∈ dom η, then there is an analytic continuation of η

along γ .

Proof This is similar to the argument of Proposition 9.20. Let p = η(a); then
by Lemma 13.15, η = ηp on a neighbourhood of a. Say γ : I → C \ R. By
compactness of I , we obtain a partition t0 < t1 < · · · < tk of I such that for
all i = 1, . . . , k, there is some ai ∈ C \ R such that γ [ti−1, ti ] ⊂ Uai ; we may
take a1 = a. We recursively choose points pi ∈ D ∩ (x = ai). We start with
p1 = p. If pi was already chosen (and i < k), then since γ (ti) ∈ Uai ∩ Uai+1 ,
by Lemma 13.33 there is a unique pi+1 ∈ D ∩ (x = ai+1) such that ηpi+1 = ηpi

on Uai ∩ Uai+1 (and hence on a neighbourhood of γ (ti)). This partition, along with
the functions ηp1, ηp2 , . . . , ηpk , show that ξ(t) = ηpi (γ (t)) for t ∈ [ti−1, ti ] is an
analytic continuation of ηp along γ . ��

Let γ : I → C be a path. A lifting of γ to D is a path ξ : I → D such that
for all t ∈ I , ξ(t) lies on the projective line x = γ (t)w. If ξ maps into A

2, this
means that γ is the projection of ξ onto the first coordinate; but in general, we
also allow the vertical point at infinity to be a value of ξ (if it lies on D). The
analytic continuation η constructed in the proof of Proposition 13.34 is a lifting
of γ to D, starting at p, with image entirely within A

2. (This is not a coincidence;
see Exercise 13.66.) As a result we get:

Corollary 13.35 If γ is a path in C \R starting at some a, and p ∈ D ∩ (x = a),
then there is a lifting of γ to a path in D ∩ A

2 which starts at p.

To prove the connectedness of curves, we need to consider bad end-points.
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Proposition 13.36 Let γ be a path in C which avoids all ramification points of D,
except for its end-point. Let p ∈ D ∩ (x = a), where γ starts at a. Then γ has a
lifting to a path in D starting at p.

Alas, to prove this proposition, we need a result which fits better in the next
section, so we postpone the proof until a little later; see page 361.

Algebraic Curves Are Connected
To show that nonsingular algebraic curves are Riemann surfaces, it remains to show
that they are connected. This is true; in fact, every algebraic curve in P

2(C), whether
singular or not, is connected. This is not so easy to prove (see for example [Ken11,
Thm.4.2] or [Gri89, Thm.II.2.11]). We will present a special case, which makes the
proof easier. This case includes nonsingular cubics.

Theorem 13.37 Let D be a nonsingular curve in P2(C). Suppose that there is some
line 	 which intersects D in a single point. Then D is connected.

Proof Let 	 be a line which intersects D at a unique point p∗. We show that for
any point q ∈ D, there is a path in D from q to p∗; this will show that D is
path-connected. Fix a point q ∈ D. By assumption, q is nonsingular on D. By
Corollary 5.40, there is a line L passing through q , which does not pass through p∗,
and which intersects D at deg D-many distinct points. The point of intersection 	∩L

is not p∗, so is not on D. We change coordinates by moving 	 ∩ L to the vertical
point at infinity. After this change of coordinates, L, of course, is a vertical line
x = aw, and a is not a ramification point of (the new) D. Also, 	 was moved to
a vertical line x = a∗w. Since the set of ramification points is finite, we can find
a path in C from a to a∗, which avoids all ramification points of D other than the
end-point a∗. By Proposition 13.36, there is a lifting ξ of γ to D starting at q . The
end-point of ξ is some point in D ∩ (x = a∗w); but by assumption, p∗ is the only
point in D ∩ (x = a∗w), so ξ is a path from q to p∗. ��

Corollary 13.38 Every nonsingular cubic curve in P2(C) is connected.

Proof A nonsingular cubic curve has flexes (Proposition 7.10), and the tangent to
the curve at a flex p intersects the curve only at p. ��

Remark 13.39 The proof of Theorem 13.37 indicates why it is harder to prove the
general statement. If x = a∗ intersects D in more than one point, then we have
no control over what point above a∗ the path η reaches. The missing part of the
proof, then, is showing that if p,p′ are two points in D ∩ (x = a∗), where a∗ is a
ramification point of D, then there is a path in D from p to p′. «
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13.3 Intersections with Lines, Revisited

Recall that the original idea behind the multiplicity of intersection of a curve and a
line at some point is that ip(D, 	) = m if when we “move the line 	 a little”, then
“near p”, the line and the curve intersect (simply) in m distinct points. Working
over C, rather than a general field, allows us to formalise this intuition.

Recall (see Sect. 4.6) that P̌2, the dual projective plane, is the collection of lines
in P

2. We used the bijection ι : P2 → P̌
2, taking (e : a : b) to the line ew+ax+by =

0, to give P̌
2 the structure of a projective plane; for example, the curves of P̌2 were

the images under ι of curves in P
2, in particular, a linear family of lines L is the

image under ι of a line in P
2; see Proposition 4.40. Now that we have a topological

structure on P
2(C) and a holomorphic structure on curves in P

2(C), we can use ι in
exactly the same way to obtain such structures in the dual plane. So:

• P̌
2(C) is a smooth 4-manifold; a chart for P̌2(C) is a map of the form ϕ ◦ ι−1,

where ϕ is a chart for P2(C).
• Every linear family of lines L in P̌

2(C) is a Riemann surface, biholomorphic
with the Riemann sphere (see Example 13.21); a chart for L is a map of the form
ψ ◦ ι−1, where ψ is a chart for the line 	 satisfying ι[	] = L.

We can thus speak of open neighbourhoods of lines in P̌
2(C); and of holomorphic

functions to and from linear families of lines.

Remark 13.40 A change of coordinates α̌ of P̌
2(C) is a homeomorphism from

P̌
2(C) to itself (Exercise 8.60); for any linear family of lines L, the restriction

of α̌ to L is a biholomorphism from L to α̌[L] (Exercise 13.19). Note that by
Exercise 4.42, changes of coordinates of P̌2 are maps of the form 	 �→ α[	], where α

is a change of coordinates of P2. «

Example 13.41 The x-axis y = 0 is ι(0 : 0 : 1). Using the chart (ρ2)
−1 for P2(C)

(taking (e : a : 1) to (e, a)), we see that a neighbourhood of the x-axis in P̌
2(C) is

one which contains the collection of lines ax + bw + y = 0 for all |a|, |b| < ε (for
some ε > 0). Exchanging (a, b) with (−a,−b), the restrictions of these lines to A

2

are the lines y = ax + b, where |a|, |b| < ε. That is, the lines close to the x-axis
are the lines whose slope is close to 0, and which intersect the y-axis close to the
origin. «

Example 13.42 Let L be the family of vertical lines: the line at infinity, together
with the projective closures of the lines x = a for all a ∈ C. It is the image under ι of
the x-axis. One chart for the x-axis (considered as a Riemann surface) is (1 : a : 0) �→
a. As in Example 13.41, replacing a by −a, we see that one chart for the family of
vertical lines is the map taking the line x = a to a. Thus, a neighbourhood of a line
x = a0 in L contains a collection of lines x = a where |a − a0| < ε, for some
ε > 0. «
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Exercise 13.43 Show that another chart for the family of vertical lines is the map
taking the line at infinity to 0, and lines x = a (for a �= 0) to 1/a. Conclude that a
neighbourhood of the line at infinity 	∞ in the family of vertical lines is one which
contains 	∞, and all lines x = a for |a| > M , for some M > 0. «

Exercise 13.44 What are charts for the family of lines which pass through the
origin? What are neighbourhoods of the x-axis in this family of lines? Of the y-
axis? «

For disjoint sets U,V ⊂ P
2, let UV = {p q : p ∈ U & q ∈ V } be the collection

of all lines passing through a point from U and a point from V .

Exercise 13.45 Let L be a line in P
2(C) and let p, q ∈ L be distinct points. Show

that a set O ⊆ P̌
2(C) is a neighbourhood of L if and only if there are disjoint

neighbourhoods Up and Uq of p and q in P
2(C) such that UpUq ⊆ O . (To simplify

calculations, by Remark 13.40, we may change coordinates so that L is the x-axis,
p is the origin and q = (1, 0). Note that you need to show two things: (a) UpUq is
open, for any choice of disjoint open Up and Uq ; and (b) If O is a neighbourhood
of L, then UpUq ⊆ O for sufficiently small Up and Uq . ) «

13.3.1 Continuous IntersectionMultiplicities

Proposition 13.46 Let D be an algebraic curve in P2(C), letL be a line, let p ∈ L,
and let m = ip(D,L) be the multiplicity of intersection of D and L at p.

For every neighbourhood Û of p in D there is an open neighbourhood U ⊆ Û

of p in D and a neighbourhoodO of L in P̌2(C) such that for every 	 ∈ O ,

m =
∑

r∈U

ir(D, 	).

That is, all lines 	 close to L intersect D close to p in m points, multiplicities
counted.

Proof By Proposition 5.29, Exercise 8.60, and Remark 13.40, we may change
coordinates so that p is the origin, L is the x-axis, and 	∞ is not a component
of D.

Fix a polynomial f ∈ C[x, y] which defines D ∩ A
2. For each a and b, let

ψa,b(t) = (t, at + b) be the affine linear parameterisation of the line y = ax + b

(Definition 3.27). Let fa,b = fψa,b = f (t, at + b) be the resulting intersection
polynomial; Lemma 5.32 says that for a point q = (λ, aλ + b), the intersection
multiplicity iq(D, y = ax + b) at q of the curve D and the line y = ax + b, is the
multiplicity of λ as a root of fa,b. In particular, m is the multiplicity of 0 as a root
of f0,0.
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Since D is a topological subspace of P2(C), there is some open neighbourhood V̂

of the origin in A
2(C) such that Û = V̂ ∩D.

The map (λ, a, b) �→ (λ, aλ+ b) is continuous, so there is some ε > 0 such that
(λ, aλ+ b) ∈ V̂ whenever |λ|, |a|, |b| < ε.

The map taking (a, b) to the coefficients of fa,b is continuous. So by Propo-
sition 12.29, there is a neighbourhood W ⊆ B(0, ε) of 0 in C and some δ > 0
such that whenever |a|, |b| < δ, the polynomial fa,b has m roots in W , counting
multiplicities. We may choose δ � ε. We let O be the collection of lines y = ax+b

for |a|, |b| < δ; by Example 13.41, this is a neighbourhood of the x-axis in P̌
2(C).

Let

V = {(λ, aλ+ b) : λ ∈ W & |a|, |b| < δ} .

So V ⊆ V̂ , so U = V ∩ D ⊆ Û , and U is as required, once we observe that V

is an open subset of A2. Abstractly, this follows from checking the rank of the full
derivative of (λ, a, b) �→ (λ, aλ+b). More concretely, fixing a0, the map (λ, b) �→
(λ, a0λ+b) is obviously a homeomorphism fromC

2 to itself (it is an injective affine
map), and this shows that (λ, a, b) �→ (λ, aλ + b) is an open map (maps open sets
to open sets). ��

To characterise intersection multiplicity using topology, we would like to say
that m = ip(D,L) if a “generic line” 	 close to L intersects D close to p in m

distinct points. The question is, what do we mean by a generic line? Unfortunately,
the statement is not true if by “generic” we mean “all but finitely many”, as any open
neighbourhood of L may contain tangents at points close to p; or p may be singular
on D. There is a way to make the original intuition precise; see Exercise 13.76.
Also see Exercise 15.116, when L is not a tangent to D at p. The following is an
approximation.

Proposition 13.47 Let D be a curve in P
2(C), let L be a line, and let p ∈ D ∩

L. Let L be a linear family of lines which contains L, but which isn’t the family
of lines passing through p. Then there is a neighbourhood O of L in L and an
open neighbourhood U of p in D such that every line 	 ∈ O \ {L} intersects U in
ip(D,L)-many distinct points.

Proof Let q be the point such that L is the family of lines passing through q . Let
Û be a neighbourhood of p in D such that q /∈ Û . By Proposition 13.46, find
neighbourhoods U ⊂ Û of p in D and Ô of L in P̌

2 such that every 	 ∈ Ô

intersects U in ip(D,L) many points, multiplicities counted. Let O = Ô ∩ L,
which is an open neighbourhood of L in L. By Lemma 5.38, since q /∈ U , for all
but finitely many 	 ∈ L, for all r ∈ U , ir (D, 	) � 1. By shrinking O we may avoid
the finitely many exceptions, except for L itself. ��
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In another application, Proposition 13.46 allows us to settle a debt: the proof of
Proposition 13.36. We need a lemma.

Lemma 13.48 Let D be a curve in P
2, and let L be a line. Let p1, . . . , pk be

the points of intersection of D and L. Let V1, . . . , Vk be open neighbourhoods of
p1, . . . , pk in D. Then there is a neighbourhood O of L in P̌

2 such that for all
	 ∈ O , 	 ∩D ⊆⋃

j Vj .

Proof For j = 1, . . . , k, let mj = ipj (D,L). By Theorem 5.27,
∑

j mj = deg D.
By Proposition 13.46 we can find neighbourhoods Uj ⊆ Vj of pj in D and a
neighbourhood O of L in P̌

2 such that every 	 ∈ O meets each Vj in mj points
(counted with multiplicities). By Proposition 13.46 again, all points of intersection
of 	 ∈ O with D must be in

⋃
j Uj . ��

Proof of Proposition 13.36 We are given a path γ in C, say with domain [0, 1],
from a = γ (0) to b = γ (1), so that γ (t) is not a ramification point of D, for all
t �= 1. We define a lifting ξ of γ to D, starting at p.

We break [0, 1) into countably many consecutive closed intervals: let In = [1−
1/n, 1−1/(n+1)]; let an = γ (1−1/n). Recursively, we define ξ�In . We start with
p1 = p. Then, given pn = ξ(1 − 1/n) ∈ D ∩ (x = an), we use Corollary 13.35 to
define ξ�In , starting at pn; we then let pn+1 be the end-point of ξ�In , and note that
pn+1 ∈ A

2.
This process defines ξ�[0,1). It remains to show that ξ reaches a limit at 1: there is

some q ∈ D∩ (x = bw) such that q = limt→1 ξ(t), that is, every neighbourhood V

of q in D contains ξ(t) for all t ∈ (1− ε, 1) for some ε > 0.
List D ∩ (x = bw) as q1, q2, . . . , qk . Suppose that V1, V2, . . . , Vk are pairwise

disjoint neighbourhoods of q1, . . . , qk in D. By Lemma 13.48, after intersecting
with the family of vertical lines, and by Example 13.42, there is some open
neighbourhood W ⊆ C of b such that for all c ∈ W , D ∩ (x = cw) ⊆ ⋃

j Vj .
Since γ is continuous, there is some ε > 0 such that γ [1 − ε, 1] ⊆ W . Thus,
ξ [1−ε, 1) ⊆⋃

j Vj . Since the sets Vj are pairwise disjoint and the interval [1−ε, 1)

is connected, there is some j∗ such that ξ [1− ε, 1) ⊆ Vj∗ .
By taking intersections, we observe that the value j∗ cannot vary with the choice

of pairwise disjoint neighbourhoods Vj . Let q∗ = qj∗ . If V is any neighbourhood
of q∗ in D, then we can choose Vj∗ = V (and choose any Vj for j �= j∗, as long
as they are disjoint from V ); then this analysis shows that a tail of ξ�[0,1) lies in V .
Thus, setting ξ(1) = q∗ makes ξ continuous, and we get the required lifting. ��
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13.3.2 Finding Intersection Points

Suppose that a line L intersects a curve D simply at a point p, that is, ip(D,L) = 1.
Proposition 13.46 implies that lines 	 close to L have a unique point of intersection
with D near p.

Proposition 13.49 If ip(D,L) = 1 then there is an open neighbourhood U of p

in D and an open neighbourhood O of L in P̌
2(C) such that every 	 ∈ O

intersects U in a unique point, and the map taking 	 to this unique intersection
point is a continuous function from O to U .

Proof Let U and O be given by Proposition 13.46 when supplied with D, L and p

(and Û = D). Let 	0 ∈ O , let p0 be the point of intersection of 	0 with U . Let
U0 ⊆ U be a neighbourhood of p0. Applying Proposition 13.46 to D, 	0, p0 and
Û = U0, we obtain a neighbourhood O0 of 	0 such that 	 ∩D ∈ U0 for all 	 ∈ O0.
So the map taking 	 to 	 ∩ U is continuous at 	0. ��

Because we did not properly develop multivariable complex analysis, and so did
not define complex manifolds of higher dimensions, we cannot define what it means
for a function on an open subset of P̌2(C) to be holomorphic. But linear families of
lines are Riemann surfaces, so we can restrict to those.

Let L be a linear family of lines; let D be a curve in P
2(C), let L ∈ L, and let

p ∈ L ∩ D. Suppose that ip(D,L) = 1. Then p ∈ D∗ (it is nonsingular on D).
By intersecting with L, Proposition 13.49 gives us an open neighbourhood U of p

in D and an open neighbourhood O of L in L such that 	 �→ 	 ∩ U is well-defined
and continuous on O . By shrinking U and O , we may assume that U ⊆ D∗. Hence
both U and O are holomorphic surfaces, so we can ask if the map 	 �→ 	 ∩ U is
holomorphic on O .

The family L is the family of lines passing through some point r . There are two
possibilities: either p = r , or not. If p = r then every 	 ∈ L intersects U at p, and
so for 	 ∈ O , p is the unique point of intersection 	 ∩ U ; in other words, the map
	 �→ 	 ∩ U is constant on O . In this case, it is certainly holomorphic.

Suppose then that p �= r . We change coordinates (permitted by Exercise 13.19
and Remark 13.40) so that L is the family of vertical lines and p is the origin.
So L is now the y-axis; since ip(D,L) = 1, L is not the tangent to D at p. By
Proposition 13.13, let η : W → V be a vertical parameterisation of D, where W

is an open neighbourhood of 0 in C, V is an open neighbourhood of p in D, and
η(0) = p. By shrinking, we may assume that V ⊆ U . The map taking c to the line
x = cw is a biholomorphism between W and an open neighbourhood of L in L
(Example 13.42). Composing, by shrinking O (to be the image of W ), we see that
	 �→ 	∩V is a holomorphic bijection between O and V (hence, a biholomorphism).
So we proved:
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Proposition 13.50 Let L be a linear family of lines; let D be a curve in P
2(C),

let L ∈ L, and let p ∈ L ∩ D. Suppose that ip(D,L) = 1. Then there is a
neighbourhood U of p in D∗ and a neighbourhood O of L in L such that for all
	 ∈ O , 	 ∩ U contains a unique point, and the map taking 	 ∈ O to the unique
point 	 ∩ U is holomorphic. This map is either constant, or can be taken to be a
holomorphic bijection between O and U .

13.3.3 Finding Intersecting Lines

We now go the other direction, and consider a function from points to lines. Suppose
that D is a nonsingular curve in P

2(C). Then for each p, q ∈ D, the line p q is well-
defined: when p = q , we take p p = 	pD, the tangent to D at p. Thus (p, q) �→ p q

is a well-defined function from D2 to P̌
2(C). We show that it is continuous. Fixing

a point p, we can also consider the map q �→ p q; this is a function from D to the
linear family L of lines passing through p. We show that it is holomorphic.

Proposition 13.51 Let D be a nonsingular curve in P2(C). The function (p, q) �→
p q from D2 to P̌

2(C) is continuous.

Proof We show that the map (p, q) �→ p q is continuous at every pair (p0, q0)

of D2. There are two kinds of pairs: p0 = q0 and p0 �= q0.
Suppose that p0 �= q0. Let O be a neighbourhood of p0 q0 in P̌

2(C). By
Exercise 13.45, there are disjoint neighbourhoods V of p0 and W of q0 in P

2

such that V W ⊆ O . Since D is a topological subspace of P
2(C), V ∩ D is a

neighbourhood of p0 in D, and W ∩D is a neighbourhood of q0 in D; so V ×W is
a neighbourhood of (p0, q0) in D2. For every pair (p, q) ∈ V ×W , the line p q is
in O . Hence (p, q) �→ p q is continuous at (p0, q0).

Now consider (p0, p0). We change coordinates so that p0 is the origin and p0 p0
is the x-axis. By Example 13.41, it suffices to show that there is a neighbourhood U

of p0 in D such that for p, q ∈ U , the line p q is (the projective closure of) y =
m(p, q)x+b(p, q), and that the functions (p, q) �→ m(p, q) and (p, q) �→ b(p, q)

are both continuous on U2.
Since p0 is nonsingular on D and the tangent p0 p0 to D at p0 is not the y-

axis, by Proposition 13.13 let η : W → U be a vertical parameterisation of D with
η(0) = p0.

For p = η(a) = (a, ηy(a)) and q = η(b) ∈ U , the slope m(p, q) of the
line p q is (ηy(b) − ηy(a))/(b − a) if p �= q , and η′y(a) if p = q , the latter by
Proposition 13.12. By Exercise 11.10, the function (p, q) �→ m(p, q) is continuous
on U2.

The function p = η(a) �→ a is continuous on U , and ηy is continuous, so
(p, q) �→ b(p, q) = ηy(a)−m(p, q)a is also a continuous function on U2. ��
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Proposition 13.52 Let D be a nonsingular algebraic curve in P
2(C), and let p ∈

D. Let L be the linear family of lines passing through p. The map from D to L
taking q ∈ D to the line p q is holomorphic.

Proof Let q0 ∈ D; let 	0 = p q0. Suppose that iq0(D, 	0) = 1. Then q0 �= p.
By Proposition 13.50, there is an open neighbourhood U of q0 in D and an open
neighbourhood O of 	0 in L such that 	 �→ 	 ∩ U is a biholomorphism from O

to U ; we may assume that p /∈ U . The inverse of this biholomorphism is the map
q �→ p q on U . Hence the map q �→ p q is holomorphic on a neighbourhood of q0.

By Proposition 5.38, there are only finitely many q0 ∈ D such that iq0(D, 	0) >

1. By Proposition 13.51, the function q �→ p q is continuous on all of D. Hence the
proposition follows from Proposition 12.11. ��

Exercise 13.53 By finding coordinate representations, argue directly that q �→ p q

is holomorphic on a neighbourhood of q0 when iq0(D, 	0) > 1 (without appealing
to Propositions 5.38 and 12.11). (Note that there are two cases: either q0 = p, or
not.) «

Exercise 13.54 Check that Proposition 13.52 holds even if p /∈ D. «

13.3.4 An Application to Elliptic Curves

In Chap. 7 we showed that if D is a nonsingular cubic curve in P
2 and 0D is a

flex of D, then the elliptic curve (D, 0D) is an abelian group under the operation
p + q = (p ∗ q) ∗ 0D, where p ∗ q is the third point of intersection of the line p q

with D. Over the complex numbers, everything is continuous and holomorphic.
Recall that a topological group is one in which addition and taking inverses is

continuous (see page 217).

Proposition 13.55 An elliptic curve (D, 0D) in P2(C) is a topological group.

Proof Since p + q = (p ∗ q) ∗ 0D and −p = p ∗ 0D, it suffices to show that “star
operation” (p, q) �→ p ∗ q from D2 to D is continuous.

Let (p0, q0) ∈ D2, let 	0 = p0 q0, and let r0 = p0 ∗ q0. We want to show that
(p, q) �→ p ∗ q is continuous at (p0, q0). Let W be a neighbourhood of r0 in D.
Recall that 	0 · D = [p0, q0, r0] is a multiset: some of the points may coincide.
By Proposition 13.46, we can choose, for each point s among p0, q0 and r0, a
neighbourhood Us of s in D, with Ur0 ⊆ W , and a neighbourhood O of 	0 in P̌

2(C),
so that each line 	 ∈ O meets each Us in is(D, 	0) many points (multiplicities
allowed). We can ensure that if s and t are two distinct points among p0, q0 and r0,
then Us and Ut are disjoint.
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By Proposition 13.51, there is a neighbourhood V of (p0, q0) in D2 such that
p q ∈ O for all (p, q) ∈ V ; we may assume that V ⊆ Up0 × Uq0 . Then for all
(p, q) ∈ V we have p ∗ q ∈ W . (This argument is perhaps best understood if
you assume that the points p0, q0 and r0 are all distinct; then Up0 , Uq0 and Ur0

are pairwise disjoint, and each 	 ∈ O meets each one of these sets in exactly one
point. Next, consider the other combinations: p0 = q0 �= r0, or p0 �= q0 = r0, or
p0 = q0 = r0.) ��

Remark 13.56 There are rational functions defining addition on an elliptic curve
(Exercise 7.30). Rational functions are continuous, so one could hope to use this
to prove Proposition 13.55. The issue though is that we used different rational
functions for the two cases q �= p, q = p, and so we do not get a single rational
function defined on an open neighbourhood of (p, p). It is possible to obtain such
rational functions; see, for example, [Sil09, Thm.3.6]; see also [LR85]. «

Restricting to one complex dimension, we can work in the holomorphic category:

Proposition 13.57 Let (D, 0D) be an elliptic curve and let p ∈ D. The map q �→
p + q is a biholomorphism from D to itself.

Proof Since (D, 0D) is a group, the map q �→ p+q is 1–1 and onto; so it suffices to
show that it is holomorphic. As in the proof above, it suffices to show that q �→ q∗p
is holomorphic.

Fix q0 ∈ D. Let 	0 = p q0 and r0 = p ∗ q0. Let L be the family of lines passing
through p.

Suppose first that q0, p and r0 are all distinct. As above we can fix disjoint
neighbourhoods Uq0 , Up and Ur0 of q0, p and r0, and an open neighbourhood O

of 	0 in P̌
2(C), such that each 	 ∈ O intersects each set Uq0 , Up and Ur0 exactly

once. By Proposition 13.50, we can ensure that the map 	 �→ 	∩Ur0 is holomorphic
on O ∩ L. By Proposition 13.52, by shrinking Uq0 , we may ensure that p q ∈ O

for all q ∈ Uq0 , and that the map q �→ p q from Uq0 to O ∩ L is holomorphic.
Then restricted to Uq0 , the map q �→ q ∗ p is the composition of two holomorphic
functions, and so is holomorphic.

By Corollary 5.40, all but finitely many lines 	 ∈ L intersect D at three distinct
points. It follows that there are only finitely many points q0 ∈ D for which p q0
intersects D at fewer than three points. By Proposition 13.55, q �→ p ∗ q is
continuous on all of D. The result then follows from Proposition 12.11. ��

Exercise 13.58 Show that if (D, 0D) is an elliptic curve, then the map p �→ −p is
a biholomorphism from D to itself. «

Remark 13.59 Proposition 13.57 actually implies Proposition 13.55. Indeed, Har-
togs’ theorem says that if f : C2 → C is separately analytic in the two coordinates
(for all a, z �→ f (z, a) is analytic, and z �→ f (a, z) is analytic as well), then f is
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continuously differentiable. Note that the assumption is much weaker than assuming
that Dzf and Dwf are continuous; we are just assuming that for each a, separately,
z �→ Dzf (z, a) is continuous, and the same for Dwf . «

13.4 Further Exercises

The Implicit Function Theorem
13.60 In this exercise, we give a simplified proof of the uniqueness part of the
implicit function theorem (Theorem 13.5) when we replace the complex numbers
by the reals. Let U ⊆ R

2 be open and let f : U → R be smooth; for simplicity
suppose that (0, 0) ∈ U , that f (0, 0) = 0 and Dyf (0, 0) �= 0. (a) Show that there
is some open interval J = (−δ, δ) and some M > 0 such that for all a, b ∈ J ,
either Dyf (a, b) > M or Dyf (a, b) < −M . (b) Conclude that for all a, b, c ∈ J ,
|f (a, c) − f (a, b)| > M · |c − b|. (c) Conclude that for all a ∈ J , the function
b �→ f (a, b) is injective on J .

13.61 In this exercise we give an algebraic proof of the uniqueness part of
Theorem 13.5, when the function f is polynomial. Let f ∈ C[x, y]; suppose
that f (0, 0) = 0 and that Dyf (0, 0) �= 0. Define h ∈ C[x, y, t] by letting
h(x, y, t) = f (x, t) − f (x, y). (a) Show that the polynomial t − y divides h.
(b) Letting g = h/(t − y), show that Dyf = g + (y − t)Dyg; conclude that
Dyf = g(x, y, y), so g(0, 0, 0) �= 0. (c) Fix δ > 0 such that g(z,w, u) �= 0
whenever |z|, |w|, |u| < δ. Let V = U = B(0, δ). Show that for all a ∈ U there is
at most one b ∈ V such that f (a, b) = 0.

Curves as Surfaces
13.62 (a) Let C be the projective closure of the complex parabola y = x2. Show
that the map (e : a) �→ (e2 : ea : a2) (a rational parameterisation of the parabola)
is a biholomorphism between the Riemann sphere P

1(C) and C. (b) Conclude
that every irreducible conic in P

2(C) is biholomorphic with the Riemann sphere
(see Exercise 5.60). (c) Show that the map extending a �→ (a2 + 1 : 2a :a2 − 1)

(Exercise 4.82) is a biholomorphism between the Riemann sphere and the projective
closure of the complex unit circle x2 + y2 = 1.

13.63 Let D be the projective closure of the cuspidal cubic y2 = x3 (see
Exercises 3.47, 4.61 and 5.37 and Example 7.39) in P

2(C). (a) Show that the map
(e : a) → (a3 : e2a : e3) is a homeomorphism from P

1(C) to D. (b) Show that D∗
is biholomorphic with C. (c) What happens with the nodal cubic y2 = x2 + x3

(Exercises 3.48, 4.61 and 5.63)?
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13.64 Generalise Exercise 7.2 as follows. Let f ∈ C[x, y]; suppose that deg f > 1.
Let p be the origin, and suppose that f (p) = 0, that p is nonsingular on the curve
f = 0, and that the tangent to that curve at p is not vertical. (a) Let m be the
slope of the tangent to f = 0 at p. Show that p is a flex of f = 0 if and only
if Dxxf (p) + 2mDxyf (p) + m2Dyyf (p) = 0. (b) Suppose that η is a vertical
parameterisation of f = 0 with η(0) = p. Show that p is a flex of f = 0 if and
only if η′′y(0) = 0.

Lifting Paths to Curves
13.65 Let D be a curve in P

2(C), and suppose that the vertical point at infinity
(0 : 0 : 1) lies on D. Let a ∈ C. (a) Show that if a /∈ R(D) then the line x = aw

is not a tangent to D at (0 : 0 : 1). (b) Show that if x = aw is not a tangent to D at
(0 : 0 : 1) then there is a neighbourhood W of (0 : 0 : 1) in D and a neighbourhood U

of a in C such that for all c ∈ U , the line x = cw intersects W only at (0 : 0 : 1).

13.66 Let D be a curve in P
2(C), and let γ : I → C \R(D) be a path avoiding the

ramification points of D, starting at some a; let p ∈ D ∩ (x = a). (a) Show that
the range of any lifting of γ to D starting at p is within A

2. (b) Let η be a vertical
parameterisation of D, with p ∈ rangeη. Show that a path ξ : I → D is a lifting
of γ to D starting at p if and only if it is an analytic continuation of η along γ .

13.67 Let D be the projective closure of xy = 1. What is the end-point of any
lifting to D of a path γ ending at 0?

13.68 Let D be a nonsingular cubic curve in P
2(C), the projective closure of y2 =

f (x). (a) Show that the ramification points of D are the three roots of f . (b) Let γ

be any path in C. Show that any lifting of γ to a path in D lies within A
2. (Thus, if

γ (t) = a is a root of f , then any lifting ξ of γ must satisfy ξ(t) = (a, 0).)

13.69 Let D be a nonsingular cubic curve in P
2(C), the projective closure of y2 =

f (x). Suppose that γ : [a, b] → P
1(C) is a path satisfying γ (t) ∈ C for t ∈ [a, b)

and γ (b) = p∞ = (0 : 1). Suppose further that γ (t) is not a root of f when a <

t < b. Show that γ has a lifting to D, meaning a path ξ : [a, b] → D satisfying
ξ(t) ∈ D ∩ (x = γ (t)) for t ∈ [a, b) and ξ(b) = (0 : 0 : 1).

13.70 Let D be a curve in P
2(C). Show that if U ⊆ C \R(D) is simply connected,

then there is a vertical parameterisation of D whose domain is all of U .
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Intersections with Lines
13.71 Let D be a curve in P

2(C), and let η : U → V be a vertical parameterisation
of D. Show that for all p = (a, b) ∈ V , orda(ηy) = ip(D, y = b), where recall that
orda(ηy) is the order a as a zero of ηy (Definition 12.13). (Without loss of generality,
p is the origin. Let m = ip(D, y = 0); let f define D ∩ A

2. By Example 5.33,
write f = xmh(x) + yk(x, y) where k(0, 0) �= 0. Now f (x, g(x)) is the zero
formal power series, where g is a power series expansion of ηy around 0; compare
coefficients.)

13.72 Show that O ⊆ P̌
2(C) is a neighbourhood of the line at infinity if and only

if there is some R > 0 such that O contains the line at infinity, and the projective
closures of all the affine lines whose distance from the origin is at least R.

13.73 Let D be a nonsingular curve in P
2(C), let p ∈ D, and let L be the

family of lines which pass through p. What is the degree (Definition 12.48) of the
holomorphic map from D to L taking q ∈ D to the line p q?

13.74 Let D be a curve in P
2(C), let L be a line, and let p ∈ D ∩ L. Let L be the

family of lines which pass through p. Suppose that p is nonsingular on D. Show
that there is a neighbourhood O of L in L and an open neighbourhood U of p in D

such that every line 	 ∈ O \ {L} intersects U in ip(D,L)-many distinct points.2

13.75 The purpose of the next two exercises is to give a topological definition
of multiplicity of intersection with lines, similar to Proposition 13.47 but without
restricting to linear families of lines. To do this we need to consider “dense and
open” as notion of “largeness”.

Recall that a subset Y of a quasi-Euclidean space X is dense in X (Exercise 8.44)
if every open subset of X intersects Y . (a) Show that if M is a manifold and F ⊂ M

is finite then M \ F is dense in M . (b) Prove the Baire category theorem: If M is
a manifold, then the intersection of countably many subsets of M which are both
dense and open, is dense. (Hint: let U1, U2, . . . be a list of dense open subsets of M ,
and let U0 be an open subset of M; we need to show that

⋂
n Un is nonempty. By

shrinking and taking a chart, we may assume that U0 ⊂ R
m. Recursively choose xn

and εn � 2−n such that B(xn, εn) ⊆ Un, and xk ∈ B(xn, εn) for all k � n; then
use completeness of Rm) (c) Show that the rationals Q are not the intersection of
countably many open subsets of R.3

2 That is, the restriction in Proposition 13.47 that L is not the family of lines passing through p can
be removed, if p is nonsingular on D.
3 Let f : R→ R be a function. Then the set of x ∈ R at which f is continuous is the intersection
of countably many open sets. It follows that there is no f : R → R which is continuous precisely
on the rational numbers. Compare with Exercise 8.121.
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13.76 Let D be a curve in P
2(C). (a) Show that the set of lines 	 which intersect D

in deg D many distinct points is dense and open in P̌
2(C). (b) Let L be a line and

let p be a point. Show that ip(D,L) is the unique integer m such that there is some
open neighbourhood U of p in D and an open neighbourhood O of L in P̌

2(C) such
that the set of lines which intersect U at precisely m many points is dense and open
in O .

13.77 This exercise uses the symmetric power of topological spaces introduced in
Exercise 12.121. Let D be a curve in P

2(C) of degree d . Show that the map 	 �→ 	·D
from P̌

2(C) to SPd(D) is continuous. (Recall that 	 ·D is 	∩D with multiplicity of
intersection counted.)



14Elliptic Functions and the Isomorphism
Theorem

Elliptic functions are meromorphic, doubly periodic functions on C. They induce
holomorphic functions from complex tori to the Riemann sphere. In this chapter we
first prove some general facts about elliptic functions. Then we give an example,
namely Weierstrass’s function ℘. We show that using ℘ and its derivative, we
can parameterise a nonsingular cubic curve, and obtain the isomorphism theorem
between complex tori and elliptic curves (Theorem 14.25). Finally, we prove the
inversion theorem (Theorem 14.32), which says that every elliptic curve is obtained
this way.

14.1 Elliptic Functions

Definition 14.1 Let f be a function on C. A period of f is a complex number a

satisfying f (z+ a) = f (z) for all z ∈ C.

For example, 2πi is a period of the exponential function z �→ ez (see
Exercise 11.63)

Proposition 14.2 Let Y be a Riemann surface and let f : C → Y be holomorphic
and nonconstant. Then the set of periods of f is a discrete subgroup of (C,+).

Proof Let G be the set of periods of f . That G is an additive subgroup of C is
immediate from the definition of periods. Suppose that G is not discrete; let a ∈ G

and let 〈an〉 be a sequence of elements of G, distinct from a, converging to a. By
definition, for all n, f (an) = f (0) = f (a). By Corollary 12.10, f is constant. ��

Proposition 8.106 tells us that discrete subgroups of C are either cyclic, or
generated by two elements, linearly independent over R—namely, lattices �. We
call a function f : C → Y doubly periodic if the group of periods of f is of the
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latter kind (not cyclic). For a discrete subgroup � of C we say that a function f is
�-periodic if every element of � is a period of f .

Let f : C→ Y be �-periodic, where � is a 2-dimensional lattice. Then f induces
a well-defined function f̄ : T� → Y on the complex torus T� = C/� by letting
f̄ (a + �) = f (a). This is the unique function f̄ : T� → Y satisfying f = f̄ ◦ π� .

Recall that T� is a Riemann surface (Example 12.5).

Lemma 14.3 Let Y be a holomorphic surface. A function g : T� → Y is
holomorphic if and only if the composition g ◦ π� : C→ Y is holomorphic.

Proof The same as the proof of Lemma 12.60: by Proposition 8.109, g is con-
tinuous if and only if g ◦ π� is continuous; both maps have the same coordinate
representations. ��

It follows that if f : C → Y is holomorphic and �-periodic, then the induced
map f̄ : T� → Y is holomorphic.

Definition 14.4 An elliptic function is a nonconstant, doubly periodic meromorphic
function on C.

Thus, an elliptic function is precisely a composition f ◦ π� , where f is
meromorphic and nonconstant on T� .

Proposition 14.5 Every elliptic function is onto P1(C).

In particular, every elliptic function has both zeros and poles.

Proof Let g : C → P
1(C) be elliptic; let ḡ : T� → P

1(C) be the induced
holomorphic map. Since T� is compact, Proposition 12.43 says that ḡ is onto P

1(C).
��

We define the degree of an elliptic function to be the degree of the induced
holomorphic map ḡ : T� → P

1(C) (Definition 12.48).

Corollary 14.6 The degree of any elliptic function is at least 2.

Proof A holomorphic map of degree 1 between compact Riemann surfaces is a
biholomorphism (Remark 12.50); by Corollary 12.46, since the sphere is simply
connected (Proposition 9.16) and compact, the torus and the Riemann sphere are
not biholomorphic.1 ��

1 In fact, they are not even homeomorphic, as can be seen by examining the fundamental group,
see Exercise 9.116.
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Exercise 14.7 Let G be a cyclic subgroup of C. (a) Show that the manifold
C/G (Proposition 8.107) is a non-compact Riemann surface (see Exercise 8.136).
(b) Show that a function g : C/G → Y is holomorphic if and only if g ◦ πG is
holomorphic. (c) Show that C/G is biholomorphic with C

∗ = C \ {0}. «

14.1.1 TheWeierstrass Function ℘

Throughout, we fix a 2-dimensional lattice �, and let T = T� and π = π� .
Weierstrass gave an example of an elliptic, �-periodic function ℘ = ℘� . Let α

and β be a pair of generators for �.

Lemma 14.8 The sum

∑

u∈�\{0}

1

|u|3

is finite.

Proof As usual identifying C with R
2, let Q be the unique linear transformation

from C to C mapping 1 to α and i to β. Since α and β are linearly independent, Q

is invertible. By Proposition 9.40 (applied to Q−1), we get a constant c > 0 such
that for all u ∈ C, c|u| � |Q(u)|. Note that Q�Z[i] is a bijection between Z[i] (the
lattice generated by 1 and i) and �.

For k ∈ N, let

A(k) = {n+ im ∈ Z[i] : max {|n|, |m|} = k} ;

so {A(k) : k � 0} is a partition of Z[i]. For all k � 1, |A(k)| = 8k.
We have

∑

u∈�\{0}

1

|u|3 =
∑

k�1

∑

z∈A(k)

1

|Q(z)|3 . (14.1)

For k � 1 and z ∈ A(k), we have |z| � k, so |Q(z)| � ck. Hence

∑

z∈A(k)

1

|Q(z)|3 � 8

c3k2
.

As the series
∑

k 1/k2 converges (Exercise 11.28), the result now follows from
Eq. (14.1). ��
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For u ∈ � \ {0} and z ∈ C \ {u}, let

gu(z) = 1

(z− u)2 −
1

u2 ;

for z ∈ C \ {0}, let

g0(z) = 1

z2 .

Lemma 14.9 For all R > 0 there is some finite � ⊂ � such that

∑

u∈�\�
gu

converges absolutely uniformly on B(0, R).

Proof Given R > 0, let � = � ∩ B(0, 2R); � is finite (Proposition 8.101). Let
z ∈ B(0, R) and let u ∈ � \�.

∣
∣
∣
∣

1

(z− u)2
− 1

u2

∣
∣
∣
∣ =

|2zu− z2|
|u|2|z− u|2 =

|z||2u− z|
|u|2|z− u|2 .

We have |z| < R and |u| > 2R, so |u| > 2|z|; so

|2u− z| � 2|u| + |z| � 2.5 · |u|;

on the other hand,

|z− u| � |u| − |z| � |u|/2,

so overall
∣
∣
∣
∣

1

(z− u)2 −
1

u2

∣
∣
∣
∣ �

R · 2.5 · |u|
|u|2|u/2|2 = 10R

|u|3 .

The result follows now from Lemma 14.8 (and the Weierstrass M-Test). ��

Definition of ℘

Define

℘ = ℘� =
∑

u∈�

gu = 1

z2 +
∑

u∈�\{0}

(
1

(z− u)2 −
1

u2

)

.
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For every u ∈ �, the function gu is analytic on C\{u}. Weierstrass’s Theorem 11.77
and Lemma 14.9 imply that ℘ is well-defined and analytic on C \ �, and that ℘ ′,
which is also analytic on C \ �, is given by the sum

℘ ′ =
∑

u∈�

g′u = −2
∑

u∈�

1

(z− u)3 .

Let u ∈ �. Let U be a bounded open neighbourhood of u such that � ∩U = {u}.
For w ∈ � \ {u}, gw is analytic on U ; by Lemma 14.9,

∑

w∈�\{u}
gw

converges to an analytic function. Hence

℘ = gu +
∑

w∈�\{u}
gw

gives a Laurent expansion of ℘ on U \ {u}. This shows that ℘ is meromorphic on C,
and that each u ∈ � is a pole of order 2 of ℘. In particular, we see that ℘ is not
constant.

Differentiating, we see that ℘ ′ is a meromorphic function and that every u ∈ �

is a pole of order 3 of ℘ ′ (see Exercise 12.21).

℘ Is an Elliptic Function
Lemma 14.10 For all z ∈ C \ �, ℘(z) = ℘(−z).

Proof Let z ∈ C \ �. For u ∈ � \ {0},

gu(−z) = 1

(−z− u)2 −
1

u2 =
1

(z+ u)2 −
1

(−u)2 = g−u(z),

and similarly, g0(−z) = g0(z). Since u �→ −u is a permutation of �, we have

℘(−z) =
∑

u∈�

gu(−z) =
∑

u∈�

g−u(z) =
∑

u∈�

gu(z) = ℘(z). ��

Remark 14.11 The proof of Lemma 14.10 relies on Proposition 11.34; in fact the
very definition of ℘ relies on it, since to apply Theorem 11.77 we need to order �

in some way; Proposition 11.34 implies that the order does not matter. This will be
used in the proof of Proposition 14.12 below as well. «
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Proposition 14.12 ℘ ′ is elliptic; every u ∈ � is a period of ℘ ′.

Proof Let u ∈ � and let z ∈ C \ �. For any w ∈ �,

g′w(z+ u) = −2

(z+ u−w)3
= g′w−u(z).

Since w �→ w − u is a permutation of �,

℘ ′(z+ u) =
∑

w∈�

g′w(z+ u) =
∑

w∈�

g′w−u(z) =
∑

w∈�

g′w(z) = ℘ ′(z).

Also ℘ ′ is meromorphic on C and every u ∈ � is a pole of ℘ ′, so thought of as a
function to P

1(C), ℘ ′ is �-periodic. ��

Proposition 14.13 ℘ is elliptic; every u ∈ � is a period of ℘.

Proof By Proposition 14.2, it suffices to show that α and β (the chosen generators
of �) are periods of ℘. So let u = α or u = β.

Consider the analytic functions ℘(z) and ℘(z+ u), both defined on C \ �. The
difference of their derivatives is 0; since C \ � is connected, it follows that ℘(z +
u) − ℘(z) is a constant function c on C \ � (Proposition 11.8). It remains to show
that c = 0.

By our choice of u, u/2 /∈ �. So ℘(u/2) − ℘(−u/2) = c. By Lemma 14.10,
℘(u/2) = ℘(−u/2). Hence c = 0 as required. ��

Let ℘̄ be the induced holomorphic function on T . Since all points in � are
identified in T , ℘̄ has a single pole, which we observed has order 2. Hence the
degree of ℘ is 2. By Corollary 14.6, this is the smallest degree possible for an
elliptic function.

Inverse Images of Points
Proposition 14.5 says that the image of ℘ is all of P1(C). In fact, since the degree
of ℘ is 2, every point ofP1(C) has exactly 2 pre-images by ℘̄, multiplicities counted.

Let c ∈ C, identified with (1 : c) ∈ P
1(C); let w ∈ C such that ℘(w) = c.

By Lemma 14.10, ℘(−w) = c. Hence, if w + � �= −w + �, i.e., if 2w /∈ �,
then w + � and −w + � are the only ℘̄-preimages of c, each necessarily with
valency (multiplicity) 1. On the other hand, suppose 2w ∈ � (but w /∈ �). There are
exactly three such points modulo �, which are α/2, β/2 and (α+β)/2. (To see this,
observe that every z ∈ C is equivalent modulo � to sα + tβ where s, t ∈ [0, 1); if
2sα+2tβ ∈ � then we must have both s and t either 0 or 1/2.) Since ℘ is even, ℘ ′ is
odd (Exercise 11.59), and so for each such point w, ℘ ′(w) = −℘ ′(−w) = −℘ ′(w),
so ℘ ′(w) = 0. This means that each of these points w has valency greater than
one—necessarily 2; and that for each such w, w + � is the unique ℘̄-preimage of
c = ℘(w). To summarise:
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Proposition 14.14 For every w + � ∈ T , the ℘̄-preimages of c = ℘(w) are
precisely w + � and −w + �.

Note that the function ℘ depends only on �, and not on the choice of generators α

and β; it follows that the collection of three cosets {α/2+�, β/2+�, (α+β)/2+�}
also does not depend on α and β, only on �.

14.1.2 The Differential Equation for℘

Let

h0 =
∑

u∈�\{0}
gu.

We recall that h0 is analytic in some open neighbourhood U of 0, and that

℘(z) = 1

z2 + h0

on U \ {0}. Since both ℘ and 1/z2 are even functions, so is h0 (also, an inspection
of the proof of Lemma 14.10 gives direct verification of this fact, as u �→ −u is a
permutation of � \ {0}). Hence on U we may assume that h0 is given by a sum of a
power series in which only even powers of z appear (see Exercise 11.59). Also, for
all u ∈ � \ {0}, gu(0) = 0. Hence h0(0) = 0. We can thus write:

℘(z) = 1

z2 + λz2 + μz4 + · · ·

for z ∈ U \ {0}, where . . . denotes higher order terms (and in fact, these terms start
with z6).

Differentiating, we get

℘ ′(z) = −2

z3 + 2λz+ 4μz3 + · · · ;

taking powers, we get

(℘ ′(z))2 = 4

z6 −
8λ

z2 − 16μ+ · · · ,

and

℘3(z) = 1

z6 +
3λ

z2 + 3μ+ · · · .
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Hence on U \ {0},

(℘ ′(z))2 − 4℘3(z) = −20λ

z2 − 28μ+ . . . .

Let

k(z) = (℘ ′(z))2 − 4℘3(z)+ 20λ℘ (z)+ 28μ.

It follows that k is analytic on U and satisfies k(0) = 0.
Now k is analytic on C \�; as ℘ and ℘ ′ are �-periodic, and k is a polynomial in

℘ and ℘ ′, k is also �-periodic. This means that k has limit 0 at every u ∈ �; so k

can be extended to an entire function on C (an analytic function defined on all of C;
in other words, it is a meromorphic function with no poles). As this entire function
is also �-periodic, it is constant (Proposition 14.5). As k(0) = 0, we see that k = 0.
In other words, for all z ∈ C \ �,

(℘ ′(z))2 = 4℘3(z)− 20λ℘ (z)− 28μ. (14.2)

Now we calculate the coefficients λ and μ. By Taylor’s theorem, we have

λ = h
(2)
0 (0)

2!
and

μ = h
(4)
0 (0)

4! .

Differentiating the sum

h0 =
∑

u∈�\{0}
gu,

we get by induction on k � 1,

h
(k)
0 (z) = (−1)k(k + 1)!

∑

u∈�\{0}

1

(z − u)k+2 .

Hence

λ = 3!
2!

∑

u∈�\{0}

1

u4
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and

μ = 5!
4!

∑

u∈�\{0}

1

u6
.

(These are called the Eisenstein series for these coefficients.) Let

γ2 = γ2(�) = 20λ = 60
∑

u∈�\{0}

1

u4

and

γ3 = γ3(�) = 28μ = 140
∑

u∈�\{0}

1

u6 ;

then

(℘ ′)2 = 4℘3 − γ2℘ − γ3. (14.3)

14.2 The CurveE
 and the Isomorphism Theorem

Recall that (T ,+) is the quotient group (C,+)/(�,+). The points of order 2 in the
group (T ,+) are the cosets w + � with w /∈ � but 2w ∈ �; above, we observed
that these are precisely the points α/2 + �, β/2 + � and (α + β)/2+ �. Together
with � = 0 + �, these form a subgroup of (T ,+) isomorphic to C2 × C2. (Recall
that C2 is the cyclic group of 2 elements.)

Proposition 14.14 implies:

Lemma 14.15 The values ℘(α/2), ℘(β/2) and ℘(α/2+ β/2) are distinct.

Let γ2 and γ3 be the associated coefficients defined from �. We let

f = f� = 4x3 − γ2x − γ3.

Thus (℘ ′)2 = f (℘).

Lemma 14.16 The roots of f in C are ℘(α/2), ℘(β/2) and ℘(α/2+ β/2).

Proof Let w ∈ C \ �, and suppose that w + � has order 2 in (T ,+). We show that
f (℘ (w)) = 0. Let c = ℘(w). As noticed in the proof of Proposition 14.14, w is a
zero of order 2 of ℘ − c: ℘ ′(w) = 0, and so f (c) = (℘ ′)2(w) = 0. ��
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We let E = E� be the projective closure of the affine complex curve defined
by the equation y2 = f� . This is a cubic curve. Since the three roots of f in C

are distinct, Proposition 7.21 tells us that E is non-singular. By Remark 7.24, E

intersects the line at infinity only at the vertical point at infinity (0 : 0 : 1), which is a
flex of E (with the tangent being the line at infinity). As we did in Chap. 7, we fix the
point (0 : 0 : 1) to be the identity element 0E of the elliptic curve (E, 0E), equipped
with the chord-and-tangent group structure.

Recall that being �-periodic, ℘ and ℘ ′ induce maps on T . Define ϕ : T → P
2(C)

by letting

ϕ(z+ �) =
{

(℘ (z), ℘ ′(z)), if z /∈ �;
(0 : 0 : 1) otherwise,

(as usual we are identifying A
2 with the subset of P2 via ρ0).

Proposition 14.17 ϕ is a bijection between T and E.

Proof The range of ϕ is contained in E: we checked that (0 : 0 : 1) ∈ E; for z /∈ �,
we verified that (℘ ′(z))2 = f (℘ (z)).

Next, we show that ϕ is onto E. Certainly the vertical point at infinity is in the
range of ϕ. All other points in E are in A

2; if (a, b) ∈ E then the other intersection
in A

2 of E with the line x = a is (a,−b) (the points of course coincide if b = 0,
i.e., if a is a root of f ). Fix some a ∈ C. By Proposition 14.14, pick w in C\� such
that ℘(w) = ℘(−w) = a. Let b = ℘ ′(w), so−b = ℘ ′(−w); so (a, b) = ϕ(w+�)

and (a,−b) = ϕ(−w + �). The same analysis shows that ϕ is 1–1. ��

Proposition 14.18 ϕ : T → E is continuous.

Proof By Proposition 8.109, it suffices to check that the map ϕ ◦ π is continuous
on C. If w /∈ �, then on a neighbourhood of w, the map ϕ ◦ π is the map z �→
(℘ (z), ℘ ′(z)); both ℘ and ℘ ′ are continuous, so this is a continuous map to A

2(C).
Since E is a topological subspace of P2(C), we see that ϕ ◦ π is continuous at w as
a map to E.

So we need to check that ϕ ◦ π is continuous at w ∈ �; since this map is �-
periodic, it suffices to show that it is continuous at 0. Let U be a neighbourhood of 0
of small diameter. For all z ∈ U \ {0},

℘(z) = 1

z2 h1
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and

℘ ′(z) = 1

z3 h2,

where h1 and h2 are analytic on U and h1, h2 �= 0 on U . So for z ∈ U \ {0},

(ϕ ◦ π)(z) = (1 :℘(z) :℘ ′(z)) = (z3 : zh1 : h2).

However for z = 0 we have (z3 : zh1 : h2) = (0 : 0 : 1) (as h2(0) �= 0). Since
the functions z3, zh1 and h2 are all continuous on U , by Exercise 8.59, ϕ ◦ π is
continuous on U . (In greater detail, ρ2 ◦ ϕ ◦π is the function z �→ (z3/h2, zh1/h2)

which is continuous on U , and ρ2 is a homeomorphism.) ��

Proposition 14.19 ϕ : T → E is holomorphic.

Proof Let w ∈ C, and suppose that 2w /∈ �. Then p = (a, b) = (℘ (w),℘ ′(w)) =
ϕ(w + �) is in A

2, and the tangent to E at that point is not vertical (the tangent
is vertical at points p ∈ E of order 2 in (E,+), where the x-coordinate is a
root of f ). So there is a chart ψ for E on a neighbourhood W of p which is the
projection onto the first coordinate (ψ(a, b) = a; ψ is the inverse of a vertical
parameterisation of E). Let U be an open neighbourhood of w of small diameter
(and disjoint from �), so that π�U is the inverse of a chart for T (see Sect. 8.4), and
ϕ[π[U ]] ⊆ W (as ϕ is continuous at w + �). Then the coordinate representation
ψ ◦ ϕ ◦ (π�U) of ϕ is the restriction of ℘ to U , which is of course analytic.

The result now follows from Propositions 14.18 and 12.11. ��

Proposition 12.37 now implies:

Corollary 14.20 ϕ is a biholomorphism between T and E.

14.2.1 The Isomorphism Theorem

The isomorphism theorem states that the biholomorphism ϕ from T to E is also a
group isomorphism between the quotient group (T ,+) and the group structure on E

from Chap. 7, which is characterised by p + q + r = 0E = (0 : 0 : 1) if and only if
p, q and r are collinear.

To prove this, we define a function μ from the dual plane P̌2(C) to T . For a line
	, we let μ(	) be the sum, in the group (T ,+), of the preimages by ϕ of three points
of intersection of 	 with E. That is, if 	 ·E = [q1, q2, q3] then

μ(	) = ϕ−1(q1)+ ϕ−1(q2)+ ϕ−1(q3),

where again the sum is taken in the quotient group T = C/�.
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Lemma 14.21 μ (	∞) = �.

(Recall that � = π�(0) is the identity element of the group T .)

Proof We know that E · 	∞ = [0E, 0E, 0E], and that ϕ(�) = 0E, so

μ (	∞) = � + � + � = �. ��

Lemma 14.22 The function μ is continuous.

Proof Let L be a line; we show that μ is continuous at L. Let E ·L = [p1, p2, p3].
Let W be an open neighbourhood of μ(L) in T . Since ϕ−1 is continuous, and
addition in T is continuous (Exercise 8.113), there are open neighbourhoods V1, V2
and V3 of p1, p2 and p3 in E such that for all qi ∈ Vi ,

∑
i�3 ϕ−1(qi) ∈ W . If

pi = pj then we may take Vi = Vj ; otherwise we can require that Vi and Vj are
disjoint. Applying Proposition 13.46 for each Vi we obtain open neighbourhoods
Ui ⊆ Vi of pi in E and an open neighbourhood O of L in P̌

2(C) such that
every 	 ∈ O intersects Ui exactly ipi (E,L) many times (again we require that
if i = j then Ui = Uj ). Then for 	 ∈ O , μ(	) ∈ W .2 ��

Toward showing that μ is holomorphic on every linear family of lines, we need:

Lemma 14.23 If X is a holomorphic surface, and f, g : X → T are holomorphic,
then so is f + g (where the sum is taken in the group T ).

Proof Since T is a topological group, f + g is continuous. A coordinate represen-
tation of f + g is the sum of coordinate representations of f and of g, and so is the
sum of analytic functions, which is therefore analytic. ��

Recall that a linear family of lines L is a Riemann surface (see Sect. 13.3).

Lemma 14.24 For any linear family of lines L, the function μ�L is holomorphic.

Proof By Corollary 5.40, Lemma 14.22, and Proposition 12.11, it suffices to show
that for any L ∈ L which intersects E in three distinct points, μ�L is holomorphic
on a neighbourhood of L.

2 Using Exercise 13.77, this proof essentially says that μ is continuous since it is the composition
of continuous maps P̌

2(C) → SP3(E) → SP3(T ) → T , the last induced by addition (which is
well-defined on SP3(T ) by associativity and commutativity).
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Suppose that L ∈ L intersects E in three distinct points. We apply Proposi-
tion 13.50. Let O be a neighbourhood of L in L, and let U1, U2 and U3 be three
disjoint open subsets of E and let g1, g2 and g3 be holomorphic functions from O

to Ui such that for i = 1, 2, 3, for each 	 ∈ O , gi(	) is the unique point of
intersection of 	 with Ui . Then on O , μ =∑

i�3 ϕ−1 ◦ gi , the sum taken in T . But

each ϕ−1 ◦ gi is holomorphic; so by Lemma 14.23, their sum in T is holomorphic
as well. ��

Since L is biholomorphic with P
1(C) (Example 13.21), Corollary 12.46 implies

that μ �L is constant. But any two lines in P̌
2 are elements of a linear family of

lines (as any two points in P
2 determine a line). This implies that μ is constant.

Lemma 14.21 implies that this constant value is � = π(0).

Theorem 14.25 (Abel-Poincaré-Weil) ϕ is a group isomorphism between T

and E.

Proof Essentially, this follows from the fact that the group structure of E is
characterised by the fact that three points add to the identity element if and only if
they are collinear. We give the details showing that ϕ−1 is a group homomorphism.

Let 0E = (0 : 0 : 1) be the identity element of E; we know that ϕ−1(0E) = �.
We first show that for all p ∈ E, ϕ−1(−p) = −ϕ−1(p). Since 0E p · E =

[0E, p,−p] and μ(0E p) = �, we see that in T , � + ϕ−1(p)+ ϕ−1(−p) = �.
Now let p, q ∈ E. Since p q · E = [p, q,−(p + q)] and μ(p q) = �, in T

ϕ−1(p) + ϕ−1(q) − ϕ−1(p + q) = �, which shows that ϕ−1(p) + ϕ−1(q) =
ϕ−1(p + q). ��

14.3 Inversion

We have seen that every complex torus is isomorphic to an elliptic curve by an
isomorphism which is both algebraic and holomorphic. We now work toward the
reverse: every elliptic curve is isomorphic to a complex torus. This is known as the
inversion (or uniformisation) theorem for elliptic curves.

14.3.1 A Non-vanishing Form on a Nonsingular Cubic

Let E be a nonsingular cubic curve. Recall (Proposition 13.23) that rational
functions extend to meromorphic functions on the curve. We are interested in
particular in two such functions, namely x/w and w/y. In affine coordinates, these
are the functions (x, y) �→ x and (x, y) �→ 1/y. We take the differential of the first
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(see page 337) and multiply by the second (see page 335) to obtain the meromorphic
form

w

y
d
( x

w

)

on E, which we denote, using affine coordinates, by dx/y. Suppose that E is given
by y2 = f (x) (see Proposition 7.23), and recall that since E is nonsingular, f has
three distinct roots (Proposition 7.21).

Proposition 14.26 dx/y is a non-vanishing holomorphic form on E.

Proof Recall (see page 337) that this means that the form dx/y has no zeros and
no poles.

We now give a solution for Exercise 13.27. There are three kinds of points: (i) the
vertical point at infinity (0 : 0 : 1); (ii) the three points of intersection of E with the x-
axis, namely the points (a, 0) where a is one of the three distinct roots of f ; (iii) all
other points.

If f (a) �= 0 then there are two distinct points mapped to a by x/w, namely (a, b)

and (a,−b) where b2 = f (a). Hence x/w, as a meromorphic function on E, has
degree 2 (all but finitely many points have valency 1). The vertical point at infinity
is the only pole of x/w, and so is a pole of order 2. If f (a) = 0 then (a, 0) is the
unique point in E mapped to a by x/w, and so has valency 2. By Proposition 12.86,
ord(0 : 0 : 1)(dx) = −3 (where dx of course abbreviates d(x/w)), ord(a,0)(dx) = 1
where f (a) = 0, and ordp(dx) = 0 at all other points.

Similarly, for all but finitely many b ∈ C, the polynomial f (x) − b2 has three
distinct roots, and so three distinct points are mapped to 1/b by w/y; hence the
degree of this meromorphic map is 3. The map w/y has three distinct poles, at
(a, 0) where f (a) = 0, and so each pole has order 1. The vertical point at infinity is
the only zero of w/y, and so is a zero of order 3.

Adding up (using Proposition 12.80), we see that ordp(dx/y) = 0 for every
point p ∈ E. ��

Note that since dx/y has no poles, we can integrate it along any path in E.

14.3.2 Working After the Fact

Let us consider the problem backwards. Suppose that we already know that E =
E� . How can we recover the lattice � by just looking at E? The answer is to
integrate the form dx/y, as we now explain.

Recall (Exercise 12.88) that we defined a holomorphic form ω on the torus T =
T� satisfying π∗ω = dz, where π = π� is the quotient map. Let ϕ : T → E� be
the isomorphism defined in the previous section. Recall (see page 334) that we can
pull back meromorphic forms by holomorphic functions.
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Lemma 14.27 ω = ϕ∗(dx/y).

Proof As above, let ℘̄ and ℘̄ ′ denote the induced functions on T . Recall that ϕ =
(℘̄, ℘̄ ′) on T \ {�}. We conclude that (x/w) ◦ ϕ is the function ℘̄, and (w/y) ◦ ϕ is
the function 1/℘̄ ′. By Exercises 12.79 and 12.85,

ϕ∗(dx/y) = ((w/y) ◦ ϕ) · ϕ∗(dx) = ((w/y) ◦ ϕ) · d((x/w) ◦ ϕ
) = d℘̄/℘̄ ′.

On the other hand,

π∗(d℘̄/℘̄ ′) = ℘ ′dz/℘ ′ = dz.

Thus, the “coordinate representations” of ϕ∗(dx/y) are (dz,ψ) for charts ψ for T ,
the same as for ω. ��

This means that integration of dx/y along paths in E can be translated to
integration of ω along paths in T . In the following, assume all paths are piecewise
smooth.

Lemma 14.28 � is the collection of values
∫
γ ω, where γ is a loop in T .

Proof Given q ∈ �, consider the path ξ(t) = tq , from [0, 1] to C. Then π ◦ ξ is a
loop in T (it travels from π(0) = � to π(q) = �), and by Exercise 12.91,

∫

π◦ξ
ω =

∫

ξ

dz = ξ(1)− ξ(0) = q.

Hence q is obtained as the value of an integral
∫
γ ω for some loop γ in T .

On the other hand, let γ : [a, b] → T be any loop in T . By Proposition 9.20,
let ξ be a lifting of γ to a path in C; by Exercise 9.109, ξ is piecewise smooth. By
Exercise 12.91,

∫

γ

ω =
∫

ξ

dz = ξ(b)− ξ(a).

Since π(ξ(b)) = γ (b) = γ (a) = π(ξ(a)), we have ξ(b)− ξ(a) ∈ �. ��

By Exercise 12.91 again, we obtain:

Proposition 14.29 � is the collection of values
∫
γ dx/y, where γ is a loop in E.

Thus, we can recover � by integrating the form dx/y in E. In fact, integration
also allows us to recover the isomorphism between T and E (see Exercise 14.51),
which in turn allows us to interpret the isomorphism theorem as an addition formula
for elliptic integrals.
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Now it would make sense to try to prove the inversion theorem by first changing
coordinates so that E is given in Weierstrass normal form (Proposition 7.28), then
defining � as the set of values as described in Proposition 14.29, and then showing
that E = E� . This is possible, but it turns out that to show that the resulting � is
a lattice, it is first necessary to show that E is homeomorphic to the torus (so that
the fundamental group is Z × Z). This proof is presented in many texts; see, for
example, [Kir92, Ex.6.13] or [KJK+06, Thm.5.1.2], or more extensively, [Kna92,
Ch.VI]. Another proof of the inversion theorem uses the j -invariant, which is related
to the theory of modular forms; see, for example, [Lan87, Sec.3.3].

We will present a different proof (see, for example, [KJK+06, Thm.5.2.1]). This
proof uses the group structure on E.

14.3.3 Invariance of the Non-vanishing Holomorphic Form

For the proof of the inversion theorem, we need an invariance property of the non-
vanishing holomorphic form. Let (E, 0E) be an elliptic curve. For each q ∈ E,
by Proposition 13.57, the map p �→ p + q is holomorphic on E. Hence, for any
meromorphic form ω on E, we can pull back and obtain the form (p �→ p + q)∗ω.
For ease of notation, let addq be the map p �→ p + q .

Lemma 14.30 Let (E, 0E) be an elliptic curve, with E given by y2 = f (x) and
0E = (0 : 0 : 1). Then for all q ∈ E, add∗q(dx/y) = dx/y.

Proof By Corollary 12.82 and Proposition 14.26, for all q ∈ E there is some λ(q) ∈
C such that add∗q(dx/y) = λ(q)(dx/y). Since add0E is the identity on E, λ(0E) =
1. The proposition then follows from Corollary 12.44 (and Exercise 13.7), once we
show that λ : E → C is holomorphic.

Let q0 ∈ E ∩ A
2. Choose any p0 ∈ E ∩ A

2, distinct from q0 and −q0, such
that the tangent to E at p0 is not vertical. Choose some vertical parameterisation
η : U → V of E with p0 ∈ V . By shrinking, choose some neighbourhood W of q0
in E so that p �= q,−q for all p ∈ V and q ∈ W (this uses Proposition 13.55).

The key to the proof is that the group operation of E is algebraic: by Exer-
cise 7.30, there are rational functions X and Y (in four variables) such that for all
p = (px, py) ∈ U and q = (qx, qy) ∈ V ,

(qx, qy)+ (px, py) = (X(qx, qy, px, py), Y (qx, qy, px, py)).



14.3 Inversion 387

For any q ∈ W , restricted to V , add∗q(dx/y) = d(X(qx, qy, px, py))/Y (qx, qy,

px, py) (where by the differential we mean that q is kept constant and p varies).
Combining with the chart η−1, we get the coordinate representation

η∗(add∗q(dx/y)) = d(X(qx, qy, z, ηy(z)))

Y (qx, qy, z, ηy(z))
=

(X(qx, qy, z, ηy(z)))′

Y (qx, qy, z, ηy(z))
dz.

Similarly we have η∗(dx/y) = (1/ηy) dz. By Exercise 12.79,

λ(q) = η∗(add∗q(dx/y))

η∗(dx/y)
.

By Exercise 13.3 and the chain rule (Proposition 13.2), (X(qx, qy, z, ηy(z)))′ is
a rational function of qx , qy , z, ηy(z) and η′y(z). Combining, there is a rational
function R such that for any z ∈ U ,

λ(q) = R(qx, qy, z, ηy(z), η′y(z)),

and note that this does not depend on z, only on q . Hence, fixing some z0 ∈ U , we
see that on W , λ(q) is a rational function of q , and so is holomorphic on W .

It remains to show that λ is holomorphic on a neighbourhood of 0E. Before we do
so, we observe that as any holomorphic form on E is a constant multiple of dx/y,
we have shown that for any holomorphic form ω on E, the map q �→ (add∗qω)/ω is

holomorphic on E ∩ A
2.

Now, we change coordinates. Since there is more than one flex on E (Exer-
cise 7.35 or Exercise 7.36), by Proposition 7.23 and Remark 7.25 there is a change
of coordinates β of P2(C) so that β[E] is given by y2 = f̃ (x) but β(0E) ∈ A

2. The
change of coordinates β translates addq to addβ(q): β �E is a group isomorphism
from (E, 0E) to (β[E], β(0E)) (Exercise 7.38), so the map addβ(q), computed in
(β[E], β(0E)), is the map β ◦ addq ◦ β−1, where addq is computed in (E, 0E).
Further, the restriction of β to E is a biholomorphism between E and β[E] (Exer-
cise 13.19). By Exercise 12.79, λ(q) = (addβ(q))

∗((β−1)∗(dx/y))/(β−1)∗(dx/y)

for all q . As observed, the map p �→ (addp)∗((β−1)∗(dx/y))/(β−1)∗(dx/y) is
holomorphic on β[E] ∩ A

2. The map λ is the composition of this map with β, and
so is holomorphic on E \ {β−1(0E)}, whence it is holomorphic on a neighbourhood
of 0E. ��

Exercise 14.31 Let (E, 0E) be an elliptic curve. (a) Show that there is a non-
vanishing holomorphic form ω on E. (b) Show that any such form is invariant under
addition in E. (Use Remark 7.25.) «
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14.3.4 Proof of the Inversion Theorem

We can finally prove:

Theorem 14.32 Every elliptic curve is isomorphic to a complex torus.

Proof Let (E, 0E) be an elliptic curve. By Exercise 14.31, let ω be a non-vanishing,
invariant form on (E, 0E). The proof has three steps.

I. There are open neighbourhoods U ⊆ V of 0 in C and a biholomorphism h

from V to an open neighbourhood of 0E in E, such that for all z,w ∈ U ,
z + w ∈ V and h(z + w) = h(z) + h(w), where the former addition is in C

and the latter in (E, 0E).

Let ψ be a chart for E whose domain contains 0E. Let f dz = (ψ−1)∗ω (in
other words f dz is the local representation of ω using ψ-coordinates). Since ω is
holomorphic, f is analytic on rangeψ . By shrinking, we may assume that range ψ

is simply connected. Hence (Proposition 11.19), f has a primitive g on rangeψ; i.e.,
f dz = dg. Since ω is non-vanishing, f does not have a zero; by Theorem 11.11,
let W be an open neighbourhood of 0E in E such that g ◦ ψ is a biholomorphism
from W to an open set V . Let G = g ◦ ψ �W . By adding a constant to g, we may
assume that G(0E) = 0.

Since addition on E is continuous (Proposition 13.55), let O ⊆ W be an open
neighbourhood of 0E in E such that for all p, q ∈ O , p + q ∈ W ; let U = G[O].
We will let h = G−1, once we show that G(p+q) = G(p)+G(q) for all p, q ∈ O .

To see that G preserves addition on O , let q ∈ O . Translating ω = add∗qω by

the chart ψ , we get dg = add
∗
q dg, where addq = ψ ◦ addq ◦ ψ−1 is the coordinate

representation of addq using ψ . By Exercise 12.85, add
∗
q(dg) = d(g ◦ addq); which

means g′ = (g ◦ addq)′, whence g ◦ addq − g is constant c(q). Pulling back by ψ ,
we get G ◦ addq = c(q) + G. Evaluating at 0E (and using G(0E) = 0), we get
c(q) = G(q). That is, for all p ∈ O , G(p + q) = (G ◦ addq)(p) = G(q)+G(p),
as required.

II. There is a holomorphic group homomorphism H : (C,+) → (E, 0E).

We will get H by extending h to all of C. To avoid confusion, for n ∈ N and
p ∈ E let [n]p = p+p+· · ·+p (n times), addition performed in E. For simplicity,
replace U by an open ball B(0, r) ⊆ U ; this allows us to assume that for all z ∈ C

and n ∈ N, if z/n ∈ U then for all k � n, z/k ∈ U as well. Since h preserves
addition, for all z ∈ C, if z/n, z/m ∈ U then

[n]h(z/n) = [m]h(z/m).

[Why? by replacing m by a common multiple, we may assume that n divides m.
Apply additivity of h to get h(z/n) = [m/n]h(z/m); then multiply by n in the
group (E, 0E).]
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On the other hand, for all z, for all sufficiently large n, we have z/n ∈ U . Thus,
we can define H : C → E by letting H(z) = [n]h(z/n) for some (any) n ∈ N

such that z/n ∈ U . For a fixed n, the map z �→ z/n is analytic, and the map p �→
[n]p is holomorphic (Proposition 13.57). This implies that the map H restricted
to n · U is holomorphic; hence H is holomorphic. Further, for all z,w ∈ C, if
z/m,w/m, (z+w)/m ∈ U , then

H(z+ w) = [m]h((z+w)/m) = [m](h(z/m)+ h(w/m)) = H(z)+H(w),

i.e., H is indeed a group homomorphism.

III. The kernel � of H is a lattice in C, and the induced map on the quotient
H̄ : C/� → E is a holomorphic group isomorphism.

Since H is a group homomorphism, the range of H is a subgroup of (E, 0E).
Since H extends h, it is not constant. Since H is holomorphic and nonconstant, the
range of H is open (Proposition 12.39). However, an open subgroup of a topological
group is also closed (Exercise 8.117). Since E is connected (Corollary 13.38), H is
onto E.

Let � be the kernel of H ; it is a subgroup of C. Since H is holomorphic and
nonconstant, � is discrete (Corollary 12.10), and so is generated by R-linearly
independent points (Proposition 8.106). Now the induced map on the quotient
H̄ : C/� → E is a bijection. It is holomorphic (Lemma 14.3 and Exercise 14.7).
Since E ∼= C/� is compact, � is not cyclic (Exercise 14.7), i.e., it is a 2-dimensional
lattice. This completes the proof. ��

14.4 Further Exercises

14.33 Let r > 2 be a real number. Show that

sr =
∑

u∈�\{0}

1

ur
.

converges absolutely, and that sr = 0 if r is an odd natural number.

Singly Periodic Functions
14.34 (a) Let N > 0. Show that

∑

n∈Z,|n|>N

(
1

z− n
+ 1

n

)
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converges absolutely uniformly on B(0, N). (b) Show that

1

z
+

∑

n∈Z\{0}

(
1

z− n
+ 1

n

)

converges locally uniformly on C \ Z, and so its sum f is analytic on C \ Z.
Calculate f ′. (As above we use Proposition 11.34.) (c) Show that f is meromorphic
onC. (d) Show that f ′ and f areZ-periodic. (e) Show that the induced meromorphic
function on C/Z has one simple pole (pole of order 1), but is not a biholomorphism
with P

1(C).

14.35 Let f : C→ C be analytic and suppose that 2πi is a period of f . Show that

f (z) =
∞∑

n=−∞
cne

nz

converges absolutely and locally uniformly, where

cn = 1

2πi

∫ 2πi

0
f (z)e−nz,

(the integration taking place along any path in C from 0 to 2πi). (Hint: Exer-
cise 12.95). This series expansion is the Fourier series of f . (Compare with
Exercise 12.97.)

14.36 What are the Fourier series of sin iz and cos iz? (See [Rem91, Sec.3.12.4] for
more complicated examples.)

Elliptic Functions
14.37 Use Liouville’s theorem to directly show that no elliptic function is entire (it
must have poles).

14.38 Let � be a lattice in C. (a) Show that the collection of �-periodic meromor-
phic functions is a subfield of the field of meromorphic functions (Exercise 12.22).
(b) Show that if f is �-periodic then so is f ′.

14.39 Let f be an elliptic function with group of periods �, generated by α and
β. For q ∈ C let γq be the loop which circumnavigates the boundary of the
parallelogram determined by q , q + α, q + β and q + α + β. (a) Show that there
is some q ∈ C such that the image of γq does not contain any pole of f . (b) Show
that for such q ,

∫
γq

f dz = 0. (c) Applying this to f ′/f , show that the sum of the
orders of all zeros and poles of f in the interior of γq is 0. (d) Using the fact that f

is not entire (Exercise 14.37), conclude that f does have a zero. (e) By applying this
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to f − c for any c ∈ C, conclude that the range of f is C, and that the sum of the
orders of zeros of f − c in the interior of γq is independent of c. (f) Conclude that
the induced f̄ : T� → P

1(C) has a well-defined degree (that is, give an alternative
proof of Lemma 12.47 for f̄ ).

14.40 (a) Show that every elliptic function f (with group of periods �) has a
primitive onC\�. (b) The primitive g may fail to be �-periodic (see Exercise 14.45).
Show, however, that it is quasi-periodic: there is a linear map h : C → C such that
for all z ∈ C \ � and u ∈ �, g(z+ u) = g(z)+ h(u).

14.41 Let f be a nonconstant meromorphic function on T = T� . Show that

∑

x∈T

ordx(f ) · x = 0,

with addition taken in the group (T ,+). (Hint: one way to do this is integrate the
(non-elliptic) function zf ′/f around a parallelogram as in Exercise 14.39; evaluate
the integral using Exercise 11.93.) Use this to give another proof that an elliptic
function cannot have degree 1.

14.42 Let � and �′ be two lattices in C. Show that T� and T�′ are biholomorphic if
and only if �′ = λ� for some λ ∈ C \ {0}. (There are at least two ways to do this.
The first is to show, via liftings, that a biholomorphism from T� to T�′ is induced by
a biholomorphism from C to itself, and then use Exercise 12.105. Another is to use
Lemma 14.28 and Corollary 12.82 (and Exercise 12.91).)

14.43 Let � be a lattice in C. Define �(�) = γ2(�)3−27γ3(�)2 (which is nonzero
by Lemma 7.27) and J (�) = γ2(�)3/�(�). (a) Show that if T� and T�′ are
biholomorphic, then J (�) = J (�′). (b) Show that if J (�) = J (�′) then there
is some μ ∈ C such that γ2(�

′) = μ2γ2(�) and γ3(�
′) = μ3γ3(�). (Show that

(γ2(�
′)/γ2(�))3 = (γ3(�

′)/γ3(�))2, and then consider the cases γi(�) = 0 or
not.) (c) Show that if J (�) = J (�′) then there is a change of coordinates of P2(C)

mapping E� to E�′ . (d) Conclude that E� and E�′ are biholomorphic if and only if
one can be mapped to another using a change of coordinates.3

The Weierstrass Function and the Isomorphism Theorem
In the following exercises, fix a lattice � and the associated ℘ = ℘�. Fix
generators α and β of �.

3 It is possible to show that the J -invariant is onto C. In particular, if E is given by Weierstrass
normal form y2 = 4x3 − ax − b then there is some lattice � satisfying J (�) = a3/(a3 − 27b2).
From this we can conclude that there is a lattice � such γ2(�) = a and γ3(�) = b, i.e., such that
E = E� . It then follows that any two elliptic curves are holomorphically isomorphic if and only if
they differ by a change of coordinates. See, for example, [Lan87, Sec.3.3].
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14.44 (a) What is the order of the zeros of ℘ ′? (b) By counting orders of zeros and
poles, show that

(℘ − ℘(α/2))(℘ − ℘(β/2))(℘ − ℘(α/2+ β/2))

(℘ ′)2

is constant.4

14.45 Show that the primitive of the Weierstrass function ℘ (Exercise 14.40) is not
�-periodic.5

14.46 Let f be an elliptic function with group of periods �. Suppose that f is even.
Let a be a zero of f and let b be a pole of f . Define g according to the following
cases:

• If a, b /∈ �, g(z) = f (z)(℘ (z)− ℘(b))/(℘ (z)− ℘(a)).
• If a ∈ �, b /∈ �, g(z) = f (z)(℘ (z)− ℘(b)).
• If a /∈ �, b ∈ �, g(z) = f (z)/(℘ (z)− ℘(a)).

(a) Show that g is either constant or elliptic, of degree smaller than the degree of f .
(b) Show that there is a rational function R such that f = R(℘). (c) Show that
the field of �-periodic meromorphic functions (Exercise 14.38) is generated by ℘

and ℘ ′.

14.47 (a) Show that for all z1, z2 ∈ C \ � such that z1 + � �= z2 + �,−z2 + �,

℘(z1 + z2) = 1

4

(
℘ ′(z1)− ℘ ′(z2)

℘ (z1)− ℘(z2)

)2

− ℘(z1)− ℘(z2). (14.4)

(b) Show that if z /∈ � and ℘ ′(z) �= 0 then

℘(2z) = 1

4

(
℘ ′′(z)
℘ ′(z)

)2

− 2℘(z). (14.5)

(Use Exercise 7.30 and the isomorphism theorem.)

4 This is an alternative way to present the argument for the differential equation for ℘.
5 The primitive of ℘ is called the Weierstrass ζ -function, not to be confused with the more famous
Riemann ζ -function.
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14.48 Let z, w and u be distinct and nonzero modulo �. Show that z+ w + u ∈ �

if and only if

det

⎛

⎝
1 ℘(z) ℘ ′(z)
1 ℘(w) ℘ ′(w)

1 ℘(u) ℘ ′(u)

⎞

⎠ = 0.

(Use Exercise 4.13 and the isomorphism theorem.)

14.49 In this exercise we show another derivation of Eq. (14.4) avoiding the
isomorphism theorem. Let y = ax + b be an affine line which intersects E� in
three distinct points (℘ (zi), ℘

′(zi)) for i = 1, 2, 3. (a) Show that the function
℘ ′ − (a℘ + b) is �-periodic, of degree 3. (b) Use Exercise 14.41 to show that
z1 + z2 + z3 ∈ �. (c) Use this to derive Eq. (14.4) (use continuity considerations
when the line is a tangent to E�).6

14.50 Let (E, 0E) be an elliptic curve. Show that for all n � 2, the collection of
points p ∈ E whose order in the group (E, 0E) divides n, is a subgroup of (E, 0E)

isomorphic to Cn × Cn.

Elliptic Integrals
14.51 Let � be a lattice in C; let ϕ : T� → E� be as in the proof of the isomorphism
theorem. (a) Show that for all p ∈ E� , ϕ−1(p) = ∫

γ dx/y+�, where γ is any path
in E from 0E to p. (b) Conclude that if p, q, r ∈ E� are collinear then

∫ p

0E

dx/y +
∫ q

0E

dx/y +
∫ r

0E

dx/y ∈ �,

where
∫ p

0E
dx/y denotes the integral of dx/y along a path in E� from 0E to p.7

14.52 Let E be a nonsingular cubic curve defined by y2 = f (x), and let ξ be a
(piecewise smooth) path in E. Show that if ξ is a lifting of a path γ , which avoids
the roots of f , then

∫

ξ

dx

y
=
∫

γ

dz√
f (z)

,

6 This can be used to give another proof that ϕ is a group isomorphism; see, for example, [Lan87,
Sec.1.3] or [Was08, Thm.9.10].
7 This is a presentation of the isomorphism theorem as an addition formula for integrals.
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where by
√

f (z) we mean the continuous choice of a square root on the image of
f ◦ γ which determines the lifting ξ .8

14.53 Again let E be a nonsingular cubic curve defined by y2 = f (x). Let a ∈ C.
Let γ : [0, 1] → P

1(C) be a path from a to p∞ with γ (t) ∈ C and not a root of f for
t ∈ (0, 1), and let ξ be a lifting of γ to a path in E from p to 0E (see Exercise 13.69).
Show that

∫

ξ

dx

y
=
∫

γ

dz√
f (z)

= lim
t→1

∫

γ�[0,t]

dz√
f (z)

,

where by
∫
γ

dz/
√

f (z) we mean the integral in P
1(C) using the form on P

1(C)

extending dz (see Example 12.87). We denote this integral by
∫∞
a

dz/
√

f (z).
Conclude that if E = E� then for all z /∈ �,

z =
∫ ℘(z)

∞
dz

√
4z3 − γ2z− γ3

modulo �.9

8 See Exercise 13.68. Such an integral is called an elliptic integral, since the arc-length of an ellipse
can be expressed as such an integral.
9 That is, the elliptic function ℘ can be defined as the inverse of the elliptic integral

∫
dz/

√
f (z).

As we shall mention in Chap. 16, it was Abel and Jacobi’s fundamental insight that the inverses
of such elliptic integrals can be extended to the complex numbers and become doubly periodic
functions.
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Our very first definition of the intersection multiplicity of a line with a curve
(Definition 5.25) relied on a parameterisation of the line: in affine coordinates, we
let t �→ α(t) be a parameterisation of the line; we then define the intersection
multiplicity of the line with the curve f = 0 at a point p = α(λ) to be the
multiplicity of the root λ of the polynomial f (α(t)). In this chapter we show how we
can extend this idea to intersections between any two curves. The issue, of course,
is that most curves will not have rational parameterisations.

When we deal with nonsingular points, the implicit function theorem gives us
vertical analytic parameterisations of curves, and the results of this chapter show
that we could similarly use such parameterisations to compute intersection multi-
plicities. Say f ∈ C[x, y] defines the affine part of a curve D, and η(z) = (z, ηy(z))

is a vertical parameterisation of a curve C. Let p = η(a). The composition
f ◦ η = f (z, ηy(z)) is analytic and so has an order at a (Definition 12.13); we
will see that this order equals ip(C,D).

At singular points, we cannot have vertical parameterisations, but we will show
that there will always be analytic parameterisations ψ = (ψx,ψy) of the curve close
to a point. But such parameterisations will sometimes not cover all of the curve near
the point. Rather, we will show that the curve near a singular point p can consist
of several separate branches, each with their own analytic parameterisations. The
standard example are the two branches of the nodal cubic y2 = x3 + x2 at the
origin, where the curve intersects itself.

We will show how to define these branches (more precisely, their “germs” at
the singular point, which are called places). We will show how to give implicit
definitions of each place separately, using convergent power series. We use parame-
terisations and these implicit definitions to define intersection multiplicity between
places. We then finally show that intersections of curves reduce to counting the
intersections of their various places, and adding up the results. This will allow
us to give much more intuitive proofs of some of our results about intersection
multiplicity from Chap. 6.
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15.1 Fractional Power Series and Their Holomorphic Functions

In Chap. 2 we introduced the ring of formal power series Cvxw. In Chap. 11 we
discussed the sums of power series. We now consider the relationship between these.
We then extend this to power series which allow fractional exponents.

15.1.1 Formal and Informal Power Series

One obvious difference between formal power series and analytic functions is that
formal power series in Cvxw have no convergence criteria. In other words, many
power series in that ring do not define analytic functions because their radius of
convergence is 0. For f ∈ Cvxw let R(f ) be the radius of convergence of f . For
all f ∈ Cvxw such that R(f ) > 0 we let f be the analytic function on B(0, R(f ))

defined by f . The following lemma says that the map f �→ f is injective, and
preserves the ring operations of Cvxw.

Proposition 15.1 Let f, g ∈ Cvxw, and suppose that R(f ),R(g) > 0. Let R =
min{R(f ),R(g)}.
1. If there is a neighbourhood of 0 on which f = g then f = g.
2. If s = f +g is the formal sum of f and g in Cvxw then R(s) � R and s = f+g

on B(0, R).
3. If p = fg is the formal product of f and g in Cvxw then R(p) � R and p = fg

on B(0, R).

Proof (a) follows from Proposition 11.58. (b) follows from Exercise 8.78.
For a direct proof of (c) see Exercise 15.102. We give a “reverse” proof.

We know that fg is defined on B(0, R) and analytic there (Proposition 11.7 and
Theorem 11.67). By Corollary 11.70, there is a power series h with R(h) � R and
h = fg on B(0, R); we just need to show that h = fg. Iterating the product rule
for derivatives, by induction on n we see that (fg)(n) = ∑

k�n

(
n
k

)
f(k)g(n−k) (where

f(0) = f); this uses
(
n+1
k+1

) = (
n

k+1

) + (
n
k

)
. Letting f = ∑

anxn, g = ∑
bnxn,

h =∑
cnxn and fg =∑

dnxn, by Proposition 11.58, for all n,

cn = (fg)(n)(0)

n! =
∑

k�n

(
n
k

)

n! f
(k)(0)g(n−k)(0) =

∑

k�n

f(k)(0)

k!
g(n−k)(0)

(n− k)! =
∑

k�n

akbn−k = dn

as required. ��



15.1 Fractional Power Series and Their Holomorphic Functions 397

Germs
Proposition 15.1 implies that the collection of f ∈ Cvxw with R(f ) > 0 is a subring
of Cvxw, the ring of convergent power series. We would like the map f �→ f
to be a ring isomorphism between the ring of convergent power series and a ring
of analytic functions (with pointwise addition and multiplication). However, the
definition of this ring is a little awkward, since different convergent power series
have different convergence radii: the domains of the functions f vary. And it is
possible, for example, that h = f + g but R(h) > R(f ),R(g), in which case
we cannot get all the values of h by adding the values of f and g.

A solution to this problem is the notion of a germ of an analytic function. Let
ϕ,ψ be two analytic functions which are defined on open neighbourhoods of 0. We
say that ϕ and ψ are essentially equal if ϕ = ψ on some neighbourhood of 0. This
is an equivalence relation on analytic functions defined at 0, and the equivalence
classes are called germs of analytic functions at 0. The idea is that the germ tells us
what happens arbitrarily close to 0.

Germs of analytic functions can be added and multiplied. Let ϕ0, ϕ1, ψ0, ψ1 be
analytic functions defined at 0; suppose that ϕ0 and ϕ1 are essentially equal, and so
are ψ0 and ψ1. Then ϕ0+ψ0 and ϕ1+ψ1 are both defined on open neighbourhoods
of 0, and are essentially equal. So if ϕ and ψ are germs of analytic functions
at 0, then we can define their sum ϕ + ψ to be the germ of ϕ0 + ψ0, where ϕ0
and ψ0 are analytic functions whose germs are ϕ and ψ; the germ does not depend
on the choice of representatives ϕ0 and ψ0. We can similarly define the product
ϕψ . These operations make the collection of germs into a ring; indeed, it is an
integral domain, as a nonzero germ only contains functions which are nonzero on
a punctured neighbourhood of 0 (Proposition 11.50). Now Proposition 15.1 says
that the map taking a convergent f ∈ Cvxw to the germ of f is a ring isomorphism
between the ring of convergent formal power series and the ring of germs.

The idea of germs of functions, measuring the “local behaviour” at a point,
can be extended to other contexts, for example, germs of smooth functions on
neighbourhoods of 0 in R. For analytic functions, this concept is somewhat less
crucial, because of their rigidity: essentially equal analytic functions are actually
equal on any connected neighbourhood of 0 on which they are both defined; this
is not so for merely smooth functions. Later in this chapter we will revisit the idea
of germs, when considering parameterisations of curves and their branches. For the
time being, we will not need them.

15.1.2 Substitutions into Power Series

The fact that Cvxw is a ring means that we can substitute power series in
polynomials: if g ∈ C[y] and f is a tuple of power series in Cvxw then g(f ) is
well-defined. Proposition 15.1 shows:
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Proposition 15.2 If g ∈ C[y1, . . . , ym] is a polynomial and f1, . . . , fm ∈ Cvxw
then for R = mini�m R(fi ), letting h = g(f1, . . . , fm) and assuming that R > 0,
we have that R(h) � R and h = g(f1, . . . , fm) on B(0, R).

In general, it is meaningless to substitute power series into power series.
However, it is possible to do when constant terms are missing. Let f ∈ Cvxw and
suppose that x � f , that is, that the constant coefficient of f is 0; in the notation
of Exercise 2.21, ord(f ) > 0. For all n, xn � f n (i.e., ord(f n) � n), so we can
add

∑
cnf

n for any choice of coefficients cn; the coefficient of xm in this sum is
determined by

∑
n�m cnf n. For any g =∑

cnxn ∈ Cvxw we let g(f ) = ∑
cnf n.

This agrees with previous notation when g is a polynomial.

Exercise 15.3 Let f, g ∈ Cvxw, and suppose that ord(g) > 0. (a) Show that
ord(f (g)) = ord(f ) · ord(g). (b) Let h ∈ Cvxw, and suppose that ord(h) > 0.
Show that (f (g))(h) = f (g(h)). (c) Fix g ∈ Cvxw with ord(g) > 0. Show that
f �→ f (g) is a ring homomorphism from Cvxw to itself. «

Exercise 15.4 Recall (Exercise 2.2) that
∑

n�0 xn = 1/(1−x) in Cvxw. Generalise
this to show that for all g ∈ Cvxw, if ord(g) > 0 then

∑
n�0 gn = 1/(1− g). «

In more than one variable this works in a similar way. If g ∈ Cvy1, . . . , ymw,
f1, . . . , fm ∈ Cvxw and ord(fi) > 0 for each i, then g(f1, . . . , fn) is well-defined.

Remark 15.5 Substitutions of formal power series, and the results mentioned so far,
are valid over any integral domain R, not only C. «

Proposition 15.6 Let f, g ∈ Cvxw, and suppose that ord(f ) > 0. Let h = g(f ).
Suppose that R(f ),R(g) > 0. Then R(h) > 0, and h = g ◦ f on a neighbourhood
of 0.

We will not use Proposition 15.6 below, so we relegate the proof to Exer-
cise 15.104. We will use a special case, which is easy: when f = at (for nonzero
a ∈ C).

15.1.3 Fractional Power Series

A fractional power series is like a formal power series, except that we allow non-
negative rational numbers as exponents of the variables. We want to multiply such
series just like formal power series; this means that we have to restrict which such
formal objects we allow. For example, if we allowed a series such as g =∑

q�0 xq

(we take all rational q � 0, each xq with coefficient 1) then it is not clear what
the coefficient of any xq for q > 0 should be in the “series” g2: there are infinitely
many pairs of rationals r, s � 0 such that r + s = q , so summing the coefficients
over all such pairs (r, s) is impossible.
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This is no longer a problem if we require a constant denominator for all fractions
admitting nonzero coefficients: for example, if

f = 1+ x
1/2 + x + x

3/2 + x2 + x
5/2 + · · ·

and

g = 1+ x
1/3 + x

2/3 + x + x
4/3 + · · ·

then we can unambiguously let

fg = 1+ x
1/3 + x

1/2 + x
2/3 + x

5/6 + 2x + x
7/6 + 2x

4/3 + 2x
3/2 + · · ·

which is a series of the correct form since all denominators divide 6; the same holds
for f + g. In other words, we allow series of the form g(x1/n), the result of substi-
tuting the “variable” x1/n into a formal power series g. For an integral domain R,
we let Rvvxww denote the ring of fractional power series (in indeterminate x) with
coefficients from R.

Exercise 15.7 Do all this more formally. That is: let R be an integral domain. Define
a fractional power series with coefficients from R to be a formal object

∑
q�0 aqx

q ,
for rational numbers q � 0, where aq ∈ R, such that for some n � 1, aq = 0 if
q �= k/n for some integer k � 0. Define addition and multiplication of fractional
power series, and show that Rvvxww, equipped with these operations, is an integral
domain; show that Rvxw is a subring of Rvvxww. «

We let Rvx1/nw be the collection of fractional power series f ∈ Rvvxww of the form
g(x1/n) for a power series g. It is a subring of Rvvxww; Rvx1/nw ⊆ Rvx1/mw if and only
if n divides m, and Rvvxww =⋃

n Rvx1/nw.

Exercise 15.8 (a) Show that Rvx1/nw ∩ Rvx1/mw = Rvx1/gcd(n,m)w (where gcd(n,m)

is the greatest common divisor of n and m). (b) Conclude that for f ∈ Rvvxww, if n

is the least such that f ∈ Rvx1/nw, then for all m, f ∈ Rvx1/mw if and only if n

divides m. «

Exercise 15.9 For nonzero f = ∑
aqxq ∈ Rvvxww let ord(f ) = q for the least q

such that aq �= 0 (note that there is such a least q); as usual, let the order of the zero
series be ∞. (a) Show that Exercise 2.21(a) holds for Rvvxww as well. (b) What are
the units of Rvvxww? (c) Suppose that F is a field. Describe the association classes of
F vvxww. (d) Show that in F vvxww there are no irreducible elements. «
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15.1.4 The Holomorphic Function Defined by a Fractional Power
Series

Like formal power series, fractional power series also define functions—but to
make them uni-valued, we need a choice of an nth root of the input. The Riemann
surfaces � and �/n (see Sect. 12.4) allow us to do so, via the uni-valued root
function rtn.

Recalling that π� : � → C \ {0} is the projection map (z, t) �→ z, for r > 0 we
let

B∗�(0, r) = {q ∈ � : 0 < |π�(q)| < r} ;

a punctured neighbourhood of 0 in � is a subset of � containing B∗�(0, r) for some
r > 0. We use the starred notation to indicate that � does not contain a “copy” of 0.
Now for f = g(x1/n) ∈ Cvx1/nw (where g ∈ Cvxw) we let R(f ) = R(g)n and

f = g ◦ rtn,

defined on B∗�(0, R(f )). The following exercise shows that this does not depend on
the choice of n:

Exercise 15.10 Suppose that n divides m. Let f ∈ Cvx1/nw; so f = g(x1/n) =
h(x1/m) (where h(x) = g(xm/n)). Show that R(f ) = R(g)n = R(h)m and that
g ◦ rtn = h ◦ rtm on B∗�(0, R(f )). «

Since g is analytic and rtn is holomorphic (Proposition 12.58), f is holomorphic
on B∗�(0, R(f )). Proposition 15.1 implies its extension to fractional power series;
the map f �→ f is injective on the collection of f ∈ Cvvxww with R(f ) > 0,
and preserves addition and multiplication, and hence substitution into polynomials
(Proposition 15.2):

Proposition 15.11

(a) Let f, g ∈ Cvvxww, and suppose that R(f ),R(g) > 0. If there is a punctured
neighbourhood of 0 in � on which f = g, then f = g.

(b) If g ∈ C[y1, . . . , ym] is a polynomial, f1, . . . , fm ∈ Cvvxww, and R =
mini�m R(fi ) > 0, then for h = g(f1, . . . , fm) we have R(h) � R and
h = g(f1, . . . , fm) on B∗�(0, R).

Example 15.12 The series x defines the function π� on �, as rt1 = π� . More
generally, every convergent g ∈ Cvxw defines the function g ◦π� on B∗�(0, R(g)).«
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The Induced Function on the Root Surface
The nth root function rtn is invariant under the nth iteration shn of the shift map on �

(see page 330), and so for any f ∈ Cvx1/nw, the map f is also invariant under shn, that
is, f = f◦shn. By Lemma 12.60, f induces a holomorphic function on B∗�/n(0, R(f ))

(where as expected, B∗�/n(0, r) = {
q ∈ �/n : 0 < |π�/n(q)| < r

}
is the image of

B∗�(0, r) under the quotient map (z, t) �→ (z, t +2πnZ) from � to �/n; recall that
π�/n is the induced projection map (z, t + 2πnZ) �→ z). We denote this function
also by f, and note that in this sense as well, if f = g(x1/n) then f = g ◦ rtn, where
we now take rtn : �/n → C \ {0} to be the induced nth root function on �/n.

Every analytic function is defined by a power series; indeed, by Corollary 11.70,
if ψ : B(0, r) → C is analytic, then there is some g ∈ Cvxw such that R(g) � r

and ψ = g on B(0, r). When considering holomorphic functions on punctured
neighbourhoods of 0 in �/n, we need to be mindful that they are not defined “at
zero” and so may have poles, or even essential singularities there, in which case
we would need negative exponents in a fractional Laurent series defining these
functions. We do have the following:

Proposition 15.13 Let n � 1 and r > 0; suppose that ψ : B∗�/n(0, r) → C is
holomorphic and bounded. Then there is a fractional power series f ∈ Cvx1/nw
such that R(f ) � r and ψ = f on B∗�/n(0, r).

Proof Let ϕ = ψ ◦ pwrn, where recall that pwrn : C \ {0} → �/n is the inverse of
rtn. Then ϕ is defined on the punctured neighbourhood B∗(0, n

√
r), and is analytic

and bounded there. By Proposition 12.16, ϕ can be extended to an analytic function
on B(0, n

√
r); by Corollary 11.70, there is some g ∈ Cvxw such that this extension

of ϕ equals g on its domain. Then f = g(x1/n) is as required. ��

Remark 15.14 Note that a restricted converse holds: if f ∈ Cvvxww, R(f ) > 0 and
r < R(f ), then f is bounded on B∗�(0, r), as g is continuous on the closed disc
B(0, n

√
r) (where f = g(x1/n)). «

Remark 15.15 We can add a “zero point” to �/n, and extend the bijections rtn
and pwrn to match 0 with 0; this results in a Riemann surface, biholomorphic with C.
We didn’t do this, since the resulting surface is not a topological subspace of C ×
R/2πnZ. We could similarly attach a zero point in the middle of �, but this is a
topological space which is not a 2-manifold (and not a subspace of C×R). «

The Shift of a Fractional Power Series
If f ∈ Cvvxww and R(f ) > 0 then f◦ sh is holomorphic on �, and has the same range
as f, so is defined by a fractional power series. We will now identify this series. For
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n � 1, let ωn = e2πi/n be the “primitive” nth root of unity. For f = ∑
k akx

k/n ∈
Cvx1/nw let

sh(f ) =
∑

k

akω
k
nx

k/n.

That is, if g = ∑
k akxk and f = g(x1/n), then sh(f ) = h(x1/n), where h =

g(ωnx) is the result of substituting the formal power series ωnx into g (see page 397;
note that ord(ωnx) = 1). The following exercise implies that this is a well-defined
operation on f ∈ Cvvxww:

Exercise 15.16 Suppose that n divides m. Let f ∈ Cvx1/nw; say f = g(x1/n) =
ḡ(x1/m). Let h = g(ωnx) and h̄ = ḡ(ωmx). Show that h(x1/n) = h̄(x1/m). «

Note that sh(f ) itself is not the result of any substitution f (ax), indeed, it is not
clear what such a substitution should mean.

Exercise 15.17 Show that sh : Cvvxww → Cvvxww is a ring homomorphism. «

Proposition 15.18 For all f ∈ Cvvxww, f = sh(f ) if and only if f ∈ Cvxw.

Proof If f ∈ Cvxw then sh(f ) = f since ω1 = 1. Suppose that sh(f ) = f , and
say f ∈ Cvx1/nw. Write f = ∑

akx
k/n; so sh(f ) = ∑

akωk
nx

k/n, so ak = ωk
nak for

all k. If n does not divide k then ωk
n �= 1, so ak = 0. ��

As promised:

Proposition 15.19 If f ∈ Cvvxww and R(f ) > 0, then sh(f ) defines the map f ◦ sh.

Proof Say f = g(x1/n) with g ∈ Cvxw. By Exercise 12.65, for all q ∈
B∗�(0, R(f )), (f ◦ sh)(q) = g(ωn · rtn(q)). Let h = g(ωnx); then h is the map
z �→ g(ωnz) (this is the easy case of Proposition 15.6 mentioned above). By
Proposition 15.11, f ◦ sh is defined by h(x1/n). ��

15.2 Parameterisations of a Curve

In this section we fix a curve D in P
2(C). As in Chap. 13, we are really thinking of

the underlying set of D, so we assume that D has no repeated components. Recall
that D∗ denotes the collection of nonsingular points of D, which is a holomorphic
surface (Proposition 13.18).
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Definition 15.20 A parameterisation of D is an injective continuous map ψ : U →
D where U ⊆ C is an open neighbourhood of 0, such that the restriction of ψ to
U∗ = U \ {0} is a holomorphic function to D∗.

We call the point ψ(0) the centre of the parameterisation ψ .

Thus, the centre of a parameterisation is allowed to be singular on D (and this will
be the interesting case). The restriction that all other points are nonsingular is easy
to achieve, since there are only finitely many singular points on D (Corollary 5.41);
so if ψ : U → D is continuous and injective, there is a neighbourhood V ⊆ U of 0
such that ψ[V ∗] ⊆ D∗.

If the range of ψ is contained in D ∩ A
2, then we write ψ = (ψx,ψy).

Lemma 15.21 Letψ : U → D∩A2 be continuous and injective, withψ[U∗] ⊆ D∗.
Then ψ is a parameterisation of D if and only if both ψx and ψy are analytic.

Proof By Exercise 13.26, ψ�U∗ is holomorphic if and only if both ψx�U∗ and ψy�U∗
are holomorphic. In that case, since ψ is continuous at 0, by Proposition 11.73, ψx

and ψy are analytic on U . ��

Example 15.22 An affine or projective linear parameterisation (Definitions 3.27
and 4.16) is a parameterisation. A rational parameterisation of an affine curve (Def-
inition 3.29) can usually be restricted to a parameterisation as in Definition 15.20,
provided that it is defined at 0 (finitely many points may need to be removed). A
vertical parameterisation of a curve (Definition 13.9) is a parameterisation, provided
that it is defined at 0. «

Changes of coordinates are injective, continuous (Exercise 8.60), map nonsin-
gular points to nonsingular points (Proposition 5.21) and are holomorphic on D∗
(Exercise 13.19). This implies:

Proposition 15.23 Ifψ is a parameterisation ofD and α is a change of coordinates
of P2(C) then α ◦ ψ is a parameterisation of α[D].

Proposition 15.24 Let ψ be a parameterisation of a curve D. There is a neigh-
bourhood U ⊆ dom ψ of 0 and three analytic functions ψw,ψx,ψy : U → C such
that ψ = (ψw :ψx :ψy) on U .

Proof By choosing one of the affine covers ρ0, ρ1 or ρ2, we may assume that
ψ(0) ∈ A

2; apply Lemma 15.21. ��

We call such a triple ψ = (ψw,ψx,ψy) an analytic presentation of ψ .

Remark 15.25 If ψ and ϕ are two analytic presentations of ψ , then ϕ = h · ψ
on some neighbourhood of 0, where h is analytic and h(0) �= 0: for example, if
ψw(0) �= 0, take h = ϕw/ψw . (Compare with Exercise 4.15.) «
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15.2.1 n-Fold Parameterisations

Definition 15.26 An n-fold parameterisation of D is a parameterisation η : U →
D ∩ A

2 such that ηx(z) = zn for all z ∈ U .

We refer to n as the valency of the parameterisation. The centre of an n-fold
parameterisation must lie on the affine line x = 0.

Example 15.27 A vertical parameterisation of D is a 1-fold parameterisation of D

(provided it is defined at 0). «

Example 15.28 (a) the map z �→ (z2, z) is a 2-fold parameterisation of the
“sideways parabola” y2 = x. (b) the map z �→ (z2, z3) is a 2-fold parameterisation
of the cuspidal cubic y2 = x3 (verify that it is injective). «

Example 15.29 Let D be the nodal cubic y2 = x3 + x2. We write y =
±x
√

x + 1. There is an analytic choice of square root on a neighbourhood of 1
(see Remark 12.59), so we get two 1-fold parameterisations of D: the maps z �→
(z, z

√
z+ 1) and z �→ (z,−z

√
z+ 1). «

15.2.2 Fractional Parameterisations

Definition 15.30 A fractional parameterisation of D is a holomorphic injective
function ζ from a punctured open neighbourhood W∗ of 0 in �/n (for some n � 1)
to D∗ ∩ A

2, such that for all q ∈ W∗, the point ζ(q) lies on the line x = π�/n(q).
We refer to n as the valency of ζ .

The map rtn is a biholomorphism between �/n and C
∗. It maps punctured

neighbourhoods of 0 in �/n to punctured neighbourhoods of 0 in C, and vice-versa;
and for all q ∈ �/n, (rtn(q))n = π�/n(q). Thus:

Proposition 15.31 If η is an n-fold parameterisation ofD, then η◦rtn is a fractional
parameterisation of D.

A partial converse holds:

Proposition 15.32 If ζ is a fractional parameterisation of D, of valency n, then
ζ ◦ pwrn can be extended to a parameterisation of D.
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The centre of a fractional parameterisation ζ is defined to be the centre of the
continuous extension of ζ ◦ pwrn. Continuity shows that the centre of ζ must lie on
the projective line x = 0w.1

Proof We need to show that there is some q ∈ D ∩ (x = 0w) such that extending
η = ζ ◦pwrn by mapping 0 to q makes a continuous function. The idea is the same as
in the proof of Proposition 13.36. Let q1, . . . , qk list D∩(x = 0w). By Lemma 13.48
(and Example 13.42), if we choose pairwise disjoint neighbourhoods Vj of qj in D,
for small enough ε > 0, for all |a| < ε, D ∩ (x = aw) ⊂ ⋃

j Vj . Hence
ζ [B∗�/n(0, ε)] ⊆⋃

j Vj .
For all ε > 0, the punctured neighbourhood B∗�/n(0, ε) is connected: it is the

image of the connected set B∗(0, n
√

ε) under the homeomorphism pwrn. Hence, for
any choice of neighbourhoods Vj , there is some j∗ � k such that ζ [B∗�/n, (0, ε)] ⊆
Vj∗ ; and as in the proof of Proposition 13.36, we get the same j∗ no matter the
choice of neighbourhoods Vj . Hence setting η(0) = qj∗ works. ��

Let ζ : W∗ → D be a fractional parameterisation of D of valency n; let η : U →
D be the continuous extension of ζ ◦ pwrn. Then for all z ∈ U∗, ηx(z) = zn. If the
centre of ζ is in A

2, then η is an n-fold parameterisation of D.

Example 15.33 Let D be the hyperbola xy = w2. Then z �→ (z, 1/z) (defined
on C

∗) is a fractional parameterisation of D of valency 1 (recall that �/1 = C
∗).

However the continuous extension of ζ = ζ ◦ pwr1 has a centre the vertical point at
infinity, so is not a 1-fold parameterisation. «

Proposition 15.34 Let W∗ = B∗�(0, r) for some r > 0. Suppose that θ : W∗ →
D∗ ∩ A

2 is holomorphic, and that θ(q) lies on the line x = π�(q) for all q ∈ W∗.
Then θ induces a fractional parameterisation of D.

To prove Proposition 15.34, we will need the following lemma. Recall that shk is
the kth iteration of the shift map on �.

Lemma 15.35 Let W∗ = B∗�(0, r) for some r > 0. Suppose that θ1 and θ2 are
holomorphic maps from W∗ to D∗ ∩A

2 satisfying θ1(q), θ2(q) ∈ D ∩ (x = π�(q))

for all q ∈ W∗. Let q0 ∈ W∗ and k ∈ Z, and suppose that θ2(q0) = θ1(shk(q0)).
Then θ2 = θ1 ◦ shk .

Proof Let ϕ be a chart for � with q0 ∈ dom ϕ; we assume dom ϕ ⊂ W∗. Both
θ2 ◦ ϕ−1 and θ1 ◦ shk ◦ϕ−1 are vertical parameterisations of D defined on the
range of ϕ, and they agree on π�(q0); so they agree on a neighbourhood of π�(q0)

1 As above, we use x = a to denote the vertical affine line and x = aw to denote its projective
closure. This notation for a = 0 is ambiguous, so we sometimes write x = 0w to emphasise that
we mean the projective line, including the vertical point at infinity.
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(Proposition 13.15). So θ2 and θ1 ◦ shk agree on a neighbourhood of q0. Since they
are both holomorphic, and W∗ is connected (see Proposition 15.36 shortly), they
agree on all of W∗ (Proposition 12.9). ��

Proof of Proposition 15.34 Fix any a ∈ π�[W∗] = B∗(0, r). Since D∩ (x = a) is
finite, there are distinct q1, q2 ∈ W∗ such that π�(q1) = π�(q2) = a and θ(q1) =
θ(q2). Let n � 1 such that q2 = shn(q1). Apply Lemma 15.35 with θ2 = θ1 = θ

and q1 to conclude that θ = θ ◦ shn.
We take n minimal such that θ = θ ◦ shn. By Lemma 12.60 (and Exercise 12.64),

θ induces a holomorphic map ζ on V ∗ = B∗�/n(0, r). The map ζ maps each q ∈ V ∗
to a point on the line x = π�/n(q). It remains to check that ζ is injective. Suppose
that ζ(q2) = ζ(q1) for some points q1, q2 ∈ V ∗. Then π�/n(q1) = π�/n(q2),
and so there is some k such that q2 = shk(q1). Considering the pull-back to �,
by Lemma 15.35, θ = θ ◦ shk; by minimality of n, we must have n dividing k, so
q2 = q1. ��

15.2.3 Existence of Parameterisations

Our next step is to show the existence of parameterisations. We will use analytic
continuation, so we will need:

Proposition 15.36 For all r > 0, B∗�(0, r) is simply connected.

Proof B∗�(0, r) is the image of the open half-plane {a + ib ∈ C : a < ln r} under
the homeomorphism z �→ (ez,#z) (Proposition 12.54), and the half-open plane is
simply connected (it is convex; see Example 9.15). ��

Recall the notion of a ramification point of a curve (Definition 13.28). By
Proposition 13.29, for some r > 0, B∗(0, r) contains no ramification points of D.

Proposition 15.37 Suppose that B∗(0, r) contains no ramification points of D.
Then for every a ∈ B∗(0, r), for every p ∈ D ∩ (x = a), there is a fractional
parameterisation ζ : B∗�/n(0, r) → D with p ∈ range ζ .

Proof Let W∗ = B∗�(0, r). Fix a0 ∈ B∗(0, r) and p0 ∈ D ∩ (x = a0) (again, note
that this is the affine line x = a0, i.e., p0 ∈ A

2). By Proposition 15.34, it suffices to
show that there is a holomorphic map θ : W∗ → D∗ ∩ A

2 with p0 ∈ range θ and
θ(q) ∈ D ∩ (x = π�(q)) for all q ∈ W∗.

We start with some chart ϕ for � whose range contains a0; we suppose that
dom ϕ ⊆ W∗. Since the range of ϕ avoids the ramification points of D, by shrinking
dom ϕ if necessary, let g : rangeϕ → D∗ be a vertical parameterisation of D with
g(a0) = p0 (Proposition 13.13).
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Let γ be a path in W∗, starting at some point in dom ϕ. Then π� ◦ γ is a path
in B∗(0, r), and so avoids all ramification points of D. It starts in rangeϕ = dom g,
and so by Proposition 13.34, there is an analytic continuation of g along π� ◦ γ ;
this is also an analytic continuation of g ◦ π� along γ . By Proposition 15.36, we
can apply the Monodromy Theorem (with X = W∗, Y = D∗ ∩ A

2, U = dom ϕ

and f = g ◦ π�), and we obtain a holomorphic map θ : W∗ → D∗ ∩ A
2 extending

g ◦ π� . In particular, p0 ∈ range θ .
We need to show that θ(q) lies on the line x = π�(q) for all q ∈ W∗. Let Q =

{q ∈ W∗ : θ(q) lies on the line x = π�(q)}. Then dom ϕ ⊆ Q, as g(a) lies on
x = a for all a ∈ rangeϕ. Further, q ∈ Q if and only if (P ◦ θ)(q) = π�(q), where
P(x, y) = x is the projection from A

2 onto the first coordinate. The restriction
of P to D∗ ∩ A

2 is holomorphic (Example 13.24). Also, π� is holomorphic
(Exercise 12.53). Hence Q is the set of points on which two holomorphic functions
agree; since it contains a nonempty open set, and W∗ is connected, we must have
Q = W∗ (Proposition 12.9). ��

Corollary 15.38 Every point q ∈ D ∩ (x = 0) ∩ A
2 is the centre of a fractional

parameterisation of D.

Proof Let q1, . . . , qk be the points on D ∩ (x = 0w) (this includes the vertical
point at infinity, if it is on D). Choose pairwise disjoint neighbourhoods Vj of qj

in D. Let mj = iqj (D, x = 0w). By Proposition 13.46, For small enough s, for all
a ∈ B∗(0, s), for all j , (x = aw) ∩ Vj contains mj points (multiplicities counted);
in particular, this intersection is nonempty. Let j such that qj ∈ A

2; we assume that
Vj ⊂ B(0, s)×C. Choose any p ∈ Vj other than qj . By Proposition 15.37, let ζ be
a fractional parameterisation with p ∈ range ζ . By connectedness, ζ [B∗�/n(0, s)] ⊆
Vj . By continuity, the centre of ζ must be qj .

For an alternative proof see Exercise 15.112. ��

Corollary 15.39 Every point p ∈ D is the centre of some parameterisation of D.

Proof By Proposition 15.23, we may change coordinates so that p ∈ A
2 and lies on

x = 0; then apply Corollary 15.38. ��

15.3 Branches and Places

Definition 15.40 Let ψ1 and ψ2 be parameterisations of curves in P
2.

(a) We say that ψ1 and ψ2 are essentially equal if ψ2 = ψ1 on a neighbourhood
of 0.

(b) We say that ψ1 and ψ2 are equivalent if there is an injective analytic function h

mapping 0 to 0 such that ψ2 = ψ1 ◦ h on a neighbourhood of 0.
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The analytic inverse function theorem (Theorem 12.34) implies that equivalence
of parameterisations is indeed an equivalence relation. Two essentially equal
parameterisations are equivalent. Two equivalent parameterisations have the same
centre.

Definition 15.41

(a) A germ of parameterisations is an equivalence class of parameterisations under
essential equality.

(b) A place is an equivalence class of parameterisations under parameterisation
equivalence.

The centre of a place is the centre of the parameterisations of the place.

These notion are invariant under changes of coordinates:

Proposition 15.42 Let ψ1 and ψ2 be parameterisations, and let α be a change of
coordinates of P2. Then:

(a) ψ1 and ψ2 are essentially equal if and only if α ◦ ψ1 and α ◦ ψ2 are essentially
equal; and

(b) ψ1 and ψ2 are equivalent if and only if α ◦ ψ1 and α ◦ ψ2 are equivalent.

Note that these notions apply to parameterisations of any curve, not a fixed
curve D. However, any place determines an irreducible curve.

Proposition 15.43 If ψ1 and ψ2 are equivalent parameterisations, then there is
a unique irreducible curve D such that both ψ1 and ψ2 are essentially equal to
parameterisations of D.

Proof For uniqueness, suppose that ψ1 and ψ2 are essentially equal to parameteri-
sations of irreducible curves D1 and D2, and are equivalent, witnessed by injective
h : U2 → U1. Let B = ψ1[U1] = ψ2[U2]. By shrinking U1 and U2, we get
B ⊆ D1 ∩ D2. Since the ψi are injective, B is infinite; so D1 ∩ D2 is infinite,
whence D1 = D2 (Proposition 6.6).

For existence, let ψ be a parameterisation of a curve D. Let f be a polynomial
defining D, and let ψ be an analytic presentation of ψ (Proposition 15.24). Write
f = f1 · · · fm, where fi are irreducible. The product of the analytic functions fi ◦ψ
is the analytic function f ◦ ψ , which is constant zero; hence one of the functions
fi ◦ ψ is constant 0. Then ψ is a parameterisation of the irreducible component
fi = 0 of D. ��

We say that a place P is a place of a curve D if every parameterisation ψ of P

is essentially equal to a parameterisation of D. Note that if P is a place of D and D

is a component of E then P is also a place of E. If P is a place, and α is a change
of coordinates, we let α[P ] denote the place with parameterisations α ◦ψ , where ψ

are parameterisations of P . If P is a place of D then α[P ] is a place of α[D].
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15.3.1 Central Places

Definition 15.44 A central place is a place whose centre lies on the affine line
x = 0, but is not a place of the line x = 0.

Proposition 15.45 Every central place is parameterised by some n-fold parame-
terisation.

Proof This is essentially Exercise 12.107. Let ψ be a parameterisation of a central
place. By Lemma 15.21, ψx is analytic; let n = ord0(ψx) be the order of ψx at 0
(Definition 12.13). Since P is not a place of x = 0, ψx is nonconstant; hence n �= ∞
(where∞ is the order of the constant 0 function). Also ψx(0) = 0 so n > 0.

Write ψx = zng where g is analytic and g(0) �= 0. Choose an analytic nth
root on a neighbourhood of g(0); composing with g, we get an analytic ḡ such that
g = (ḡ)n on a neighbourhood of 0. Since ḡ(0) �= 0, the map z �→ zḡ has an analytic
inverse h. Then ψ ◦ h is an n-fold parameterisation, equivalent to ψ . ��

Lemma 15.46 Let n � 1. Two n-fold parameterisations η and η̃ are equivalent if
and only if on some neighbourhood of 0, η̃(z) = η(ωz) for some nth root of unity
ω ∈ C.

Note that since the x-coordinate map is z �→ zn for both η and η̃, and (ωz)n = zn,
we have η̃(z) = η(ωz) if and only if η̃y(z) = ηy(ωz).

Proof The map z �→ ωz is analytic and 1-1 (and maps 0 to 0), so one direction
is immediate. For the other direction, suppose that η̃ and η are equivalent n-fold
parameterisations, say η̃ = η ◦ h on a neighbourhood of 0, with h analytic and
injective. Since h(0) = 0, write h(z) = z · ω(z) with ω analytic. Looking at the
x-coordinate, we get zn = (h(z))n, so (ω(z))n = 1 on a punctured neighbourhood
of 0. There are only n-many nth roots of unity, and ω(z) is continuous, so it is
constant on a neighbourhood of 0. ��

Remark 15.47 If n �= m then an n-fold parameterisation and an m-fold parame-
terisation cannot be equivalent. Say η and η̃ are n- and m-fold parameterisations;
suppose that η̃ = η ◦ h with h analytic and injective. Then on a punctured
neighbourhood of 0 we have h(z)n = zm; since ord0(h(z))n = n and ord0 zm = m

we get n = m. «

Let P be a central place of a curve D. By Proposition 15.45, P has an n-fold
parameterisation for some n; by Remark 15.47, this n is determined by the place, so
we can refer to n as the valency of the place.
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Each place consists of infinitely many germs of parameterisations. But a central
place has only finitely many germs of n-fold parameterisations:

Proposition 15.48 A central place of valency n has n-many germs of n-fold
parameterisations.

Proof Let P be a central place of valency n; let η be an n-fold parameterisation
of P . There are n many nth roots of unity in C, namely ωk

n for k = 0, . . . , n − 1.
Let ηk(z) = η(ωk

nz). For distinct k, k′ ∈ {0, . . . , n − 1}, the maps z �→ ωk
nz and

z �→ ωk′
n z disagree on every nonzero z; since η is injective, it follows that the ηk

are pairwise not essentially equal. By Lemma 15.46, these give all of the germs of
n-fold parameterisations of P . ��

Example 15.49 (a) The 2-fold parameterisation z �→ (z2, z) of y2 = x (Exam-
ple 15.28) is equivalent to z �→ (z2,−z). Similarly, the 2-fold parameterisation
z �→ (z2, z3) of y2 = x3 is equivalent to z �→ (z2,−z3). (b) Two 1-fold
parameterisations are equivalent if and only if they are essentially equal. Thus, the
two parameterisations of y2 = x3 + x2 given in Example 15.29 are not equivalent.
«

We say that two fractional parameterisations ζ and ζ̃ (of valencies n and ñ) are
equivalent if the continuous extensions of ζ ◦ pwrn and ζ̃ ◦ pwr̃n are equivalent.

Lemma 15.50 Two fractional parameterisations ζ and ζ̃ are equivalent if and only
if they have the same valency, and ζ̃ = ζ ◦ shk for some k.

Proof If ζ and ζ̃ have centres in A
2 then this is implied by Lemma 15.46,

Remark 15.47, and Exercise 12.65; but the argument holds even if the centre of
η = ζ ◦ pwrn and η̃ = ζ̃ ◦ pwr̃n is the vertical point at infinity. ��

Exercise 15.51 Give a direct proof of Lemma 15.50. «

15.3.2 Branches of a Curve

In the following definition, we consider the range of a parameterisation as a
topological subspace of P2(C).

Definition 15.52

(a) A parameterisation is tidy if it is a homeomorphism between its domain and its
range.

(b) A branch is the range of a tidy parameterisation.
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The centre of the branch B = rangeψ is the centre of ψ . The definition thus is
not quite precise, because by shifting, we could have two (tidy) parameterisations
with different centres but the same range; so a formal definition would be that
a branch is the pair (rangeψ,ψ(0)). We will continue to be imprecise with our
notation.

The restriction to tidy parameterisations is immaterial:

Lemma 15.53 Every parameterisation is essentially equal to a tidy one.

Proof Let ψ : U → D be a parameterisation of D. There is some open disc V

such that 0 ∈ V and V ⊂ U . Since V is compact and ψ is injective, ψ �V is a
homeomorphism from V to ψ[V ]; so ψ�V is a homeomorphism from V to ψ[V ].

��

Like parameterisations, we are only interested in what happens close to the
centre, so we define:

Definition 15.54 Two branches B1 and B2 with the same centre c are essentially
equal if there is a neighbourhood W of c in P

2 such that B1 ∩ W = B2 ∩ W . An
equivalence class of branches under essential equality is called a germ of branches.

Proposition 15.55 If ψ1 and ψ2 are equivalent tidy parameterisations then
rangeψ1 and rangeψ2 are essentially equal.

Thus, every place determines a germ of branches.

Proof First, we observe that if ψ : U → D is a tidy parameterisation and V ⊆
U is an open neighbourhood of 0, then ψ[V ] is essentially equal to ψ[U ]: as ψ

is a homeomorphism from U to ψ[U ], ψ[V ] is an open subset of ψ[U ] (and it
contains the centre ψ(0)); by definition of the subspace topology, there is an open
neighbourhood W of the centre in P

2 such that ψ[V ] = W ∩ψ[U ], so ψ[V ]∩W =
ψ[U ] ∩ W . Thus, two essentially equal parameterisations parameterise essentially
equal branches.

To extend this to equivalent parameterisations, let U1 and U2 be open neighbour-
hoods of 0 and let h : U2 → U1 be an analytic bijection such that ψ2 = ψ1 ◦ h

on U2. Then ψ2[U2] = ψ1[U1]. ��

Example 15.56 Really, untidy parameterisations are an anomaly; they are parame-
terisations which are defined on domains which are too large, so they allow another
part of the curve to “curl” back and approach the centre. For example, let D be the
nodal cubic y2 = x3 + x2; let ψ(z) = (z2 + 2z, z3 + 3z2 + 2z) be a shift of the
rational parameterisation of D discussed in Exercise 4.61 (shifted so that the centre
is at 0). Then ψ(0) = ψ(−2) = o. But ψ �B(0,2) is injective, so strictly speaking,
it is a parameterisation of D; but it is not tidy, since using it we can approach the
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origin in two ways, by getting close to 0 or to −2. And indeed ψ[B(0, 2)] is not
essentially equal to say ψ[B(0, 1)]. «

We say that two branches A and B are essentially disjoint if they have different
centres; or if they have the same centre c, but there is an open neighbourhood W

of c in P
2 such that A ∩ B ∩ W = {c}. This notion is well-defined for germs of

branches: if A1 and A2 are essentially equal, and so are B1 and B2, then A1 and B1
are essentially disjoint if and only if A2 and B2 are essentially disjoint. Two branches
which are essentially equal are not essentially disjoint.

Theorem 15.57

(a) Distinct germs of branches are essentially disjoint.
(b) Two distinct places determine distinct germs of branches.

We thus often identify a place and the germ of branches it determines, and refer
to the germ as a place as well.

Proof Let ψ1 and ψ2 be tidy parameterisations. Suppose that B1 = rangeψ1 and
B2 = rangeψ2 are not essentially disjoint; we need to show that ψ1 and ψ2 are
equivalent.

Since B1 and B2 are not essentially disjoint, they have the same centre c. By
Proposition 15.43, let Di be the unique irreducible curve parameterised by ψi .
If D1 �= D2 then there is an open neighbourhood W of c in P

2 such that
D1 ∩ D2 ∩ W = {c}; this would make B1 and B2 essentially disjoint. Hence
D1 = D2, call it D.

Change coordinates so that the centre c lies on the affine line x = 0 (say the
origin), and D is not the y-axis x = 0; so the places of ψ1 and ψ2 are central. By
Proposition 15.45, let η1 be an n1-fold parameterisation equivalent to ψ1, and η2
be an n2-fold parameterisation equivalent to ψ2. Considering rtn1 and rtn2 as maps
on � (rather than �/ni ), let θ1 = η1 ◦ rtn1 and θ2 = η2 ◦ rtn2 . Fix some sufficiently
small r > 0 such that B∗�(0, r) ⊆ dom θ1, dom θ2.

Since B1 and B2 are not essentially disjoint, we can find two points q1, q2 ∈
B∗�(0, r) such that θ1(q1) = θ2(q2). Since θi(qi) lies on the line x = π�(qi), we
must have π�(q1) = π�(q2). So there is some k ∈ Z such that q2 = shk(q1).
By Lemma 15.35, θ2 = θ1 ◦ shk on B∗�(0, r). Since θ1 = θ1 ◦ shn1 , this shows that
θ2 = θ2◦shn1 . Since η2 is injective, n2 is the least n such that θ2 = θ2◦shn; hence n2
divides n1. By symmetry, n2 = n1. By Lemma 15.50, η1 and η2 are equivalent. ��

15.4 Puiseux Expansions and Factorisation into Places

We show that places of a curve have implicit definitions; a curve can be presented
as the sum of some of its places. We start by counting germs of n-fold parameteri-
sations of a curve.
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Proposition 15.58 Suppose that the vertical point at infinity (0 : 0 : 1) does not lie
on D. Then there are precisely deg D-many germs of n-fold parameterisations of D
(for all n).

In particular, there are only finitely many central places of D, indeed at most
deg D-many.

Proof Let r > 0 be sufficiently small so that B∗(0, r) contains no ramification
points of D. Further, by Theorem 15.57, by shrinking r , ensure that if A and B are
central branches of D (branches of central places) which are not essentially equal,
then A ∩ B ∩ (B∗(0, r)× C) = ∅. (In fact, the proof of Theorem 15.57 shows that
we do not need to shrink r to achieve that.)

Choose any a ∈ B∗(0, r). Since a is not a ramification point of D, and the
vertical point at infinity does not lie on D, the affine line x = a intersects D at
deg D-many distinct points. By Proposition 15.37, each one of these points lies on
a branch of D with centre on x = 0; by assumption on r , this branch is unique up
to essential equality. If the branch has valency n, then it contains n of the points
on x = a; and by Proposition 15.48, is parameterised by precisely n-many germs
of n-fold parameterisations. Adding up, we see that the number of germs of n-fold
parameterisations (for all n) is the same as the number of points on D ∩ (x = a),
i.e., deg D. ��

Corollary 15.59 For any curve D and any p ∈ D, there are finitely many places
of D with centre p.

Proof Change coordinates so that (0 : 0 : 1) /∈ D and p lies on x = 0. After the
change, since x = 0 is not a component of D, every place of D with centre on
x = 0 is central. Apply Proposition 15.58 and Proposition 15.45. ��

15.4.1 Puiseux Expansions

In this section, again fix a curve D with no repeated components.
Let ζ be a fractional parameterisation of D, whose centre is in A

2. Write ζ =
(π�, ζy). By Exercise 13.26, ζy is holomorphic. By assumption, ζy is bounded on a
punctured neighbourhood of 0 in �/n. Hence, by Proposition 15.13, ζy = gζ (on a
punctured neighbourhood of 0 in �/n) for some g = gζ ∈ Cvx1/nw.

Definition 15.60 A Puiseux expansion of D is a fractional power series g = gζ ∈
Cvvxww for some fractional parameterisation ζ of D (with centre in A

2).

Thus, if h ∈ Cvxw defines the second coordinate of an n-fold parameterisation
z �→ (zn, h(z)) of D, then g = h(x1/n) is a Puiseux expansion of D. Now
Proposition 15.11 (and Example 15.12) imply:
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Proposition 15.61 If g is a Puiseux expansion of D and f is a polynomial in
C[x, y] defining D ∩A

2, then f (x, g) = 0 (in the ring Cvvxww).

Example 15.62 (a) g = x1/2 is a Puiseux expansion of y2 = x. (b) g = x3/2 is a
Puiseux expansion of y2 = x3 (Example 15.28). (c) One of the analytic square roots
around 1 is given by

√
z+ 1 = 1+ z/2− z2/8+ z3/16− · · · (see Exercise 11.88).

Hence a Puiseux expansion of y2 = x3+ x2 is x+ x2/2− x3/8+ x4/16− · · · (see
Example 15.29). «

By Proposition 15.11, two fractional parameterisations are defined by the same
Puiseux expansion if and only if they are essentially equal. With Proposition 15.58,
this gives:

Proposition 15.63 If (0 : 0 : 1) /∈ D, then D has precisely deg D-many Puiseux
expansions.

15.4.2 The Implicit Definition of a Place

Let P be a central place of D, of valency n. A Puiseux expansion of P is a
Puiseux expansion which corresponds to an n-fold parameterisation of P . By
Proposition 15.48, let g1, g2, . . . , gn be the (distinct) Puiseux expansions of P . We
let

fP = (y − g1)(y − g2) · · · (y − gn);

it is an element of the polynomial ring Cvvxww[y].

Proposition 15.64 fP ∈ Cvxw[y].

That is, the coefficients of fP (thought of as a polynomial in y) are formal power
series with integer exponents; they have no proper fraction exponents, even though
the gi ’s may have proper fraction exponents.

Proof The map sh : Cvvxww → Cvvxww is a ring homomorphism (Exercise 15.17);
we extend it to a ring homomorphism sh : Cvvxww[y] → Cvvxww[y], by mapping∑

hj yj → ∑
sh(hj )yj (check that this indeed respects sums and products of

polynomials). Then

sh(fP ) = (y − sh(g1))(y − sh(g2)) · · · (y − sh(gn)).

But {sh(g1), sh(g2), . . . , sh(gn)} = {g1, g2, . . . , gn}, as by Proposition 15.19 and
Lemma 15.50, they both equal {sh1(gi), sh2(gi), . . . , shn(gi)} (for any gi). Here of
course shk denotes the kth iteration of the map g �→ sh(g) defined on Cvvxww; note



15.4 Puiseux Expansions and Factorisation into Places 415

that shn(gi) = gi for all i. Therefore, fP = sh(fP ). Write fP =∑
j�n fj yj ; so by

our definition of the extension of sh to a map on polynomials, we have sh(fj ) = fj

for each j . The result then follows from Proposition 15.18. ��

Each Puiseux expansion gi of P is convergent: R(gi) > 0 (in fact, the root test
shows that all gi have the same radius of convergence). Fix some RP > 0 and
fractional parameterisations ζi : B∗�/n(0, RP ) → D with gi = gζi . Let ηi be the
corresponding n-fold parameterisations (the continuous extensions of ζi ◦ pwrn); let
B = rangeηi (which does not depend on i)

Each coefficient fj of fP is obtained from the gi’s by addition and multiplication,
and so by Proposition 15.11, R(fj ) � RP for each j . The functions fj are defined
on B∗�(0, RP ) and induces functions on B∗(0, RP ), also denoted fj ; we extend these
continuously at 0.

For a ∈ B(0, RP ) and b ∈ C, let

fP (a, b) =
∑

j�n

fj (a)bj ;

this is the function on B(0, RP )×C defined by fP . Its zero set is B:

Lemma 15.65 B = {(a, b) ∈ B(0, RP )×C : fP (a, b) = 0}.

Proof Let a ∈ B∗(0, RP ). Let q be any point in �/n above a (π�/n(q) = a); Let
b ∈ C. By definition, fP (a, b) = ∏

i�n(b − ζi,y(q)), and so fP (a, b) = 0 if and
only if (a, b) ∈ range ζi for some i � n. For a = 0 use continuity, as both fP and
ηi are continuous. ��

Combining with a change of coordinates we conclude that for any place P of D

(whether central or not), there is a complex continuously differentiable f , defined on
a neighbourhood of the centre of P in P

2, such that f = 0 defines a branch whose
place is P . Note though that f depends on the choice of change of coordinates
which moves P to a central place.

A Factorisation of the Defining Polynomial
Every polynomial in C[x, y] can be considered also as an element of Cvvxww[y].
Suppose that (0 : 0 : 1) /∈ D; let d = deg D. Then the monomial yd appears in the
polynomials defining D (Remark 6.1), as well as their dehomogenisations (which
define D ∩ A

2). Fix fD defining D ∩ A
2 for which the coefficient of yd is 1.

Theorem 15.66 Suppose that (0 : 0 : 1) /∈ D. If P1, P2, . . . , Pm are the central
places of D, then fD = fP1fP2 · · · fPm .

So even if D is irreducible, we can present it, in some sense, as the sum of its
central places.
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Proof By Proposition 15.63, let g1, g2, . . . , gd be the Puiseux expansions of D. The
main point is that Cvvxww is an integral domain, and by Proposition 15.61, each gi

is a root of the polynomial fD , viewed as a polynomial in y with coefficients from
Cvvxww: fD(x, gi) = 0. So by Theorem 2.16, each y−gi divides fD in the polynomial
ring Cvvxww[y]; repeatedly dividing, since fD has d = degy fD many distinct roots,
we get f ∼∏

i�d (y−gi). Since we chose fD to be monic (viewed as a polynomial
in y), comparing coefficients we get

fD = (y − g1)(y − g2) · · · (y − gd);

now group the gi ’s into their places to get the polynomials fPi . ��

Example 15.67 Theorem 15.66 holds for some curves which contain the vertical
point at infinity (but we may get fewer than deg D-many germs of n-fold parame-
terisations); see Exercise 15.110.

For example, the cuspidal cubic y2 = x3 has a single place at the origin, of
valency 2; the two Puiseux expansions are x3/2 and −x3/2, and fP = fD = (y −
x3/2)(y + x3/2). The nodal cubic y2 = x3 + x2 has two places at the origin, of
valency 1; the Puiseux expansions are the formal power series g1 and g2 defining the
analytic functions z

√
z+ 1 and−z

√
z+ 1; and fD = fP1fP2 = (y−g1)(y−g2).«

Remark on Newton Polygons
We presented the theory developed by Victor Puiseux in the mid-nineteenth century.
However, a lot earlier, Newton gave a purely algebraic treatment. Seen from a
modern point of view, Newton showed that if K is an algebraically closed field of
characteristic 0, then the fraction field of Kvvxww (the field of fractional Laurent series
with coefficients from K) is algebraically closed. This implies that not only curves
defined by polynomials in K[x, y] have Puiseux expansions, but in fact curves
in Kvvxww[y] have such expansions as well (but they may need negative fractional
exponents).

Newton’s method does not show that the resulting Puiseux expansions are
convergent (R(g) > 0), so does not show how to define branches of curves
and does not provide for their implicit definitions. However, his method of
“Newton polygons” gives us an algorithm for calculating the coefficients of
Puiseux expansions (compare with Exercise 13.14). For details, see, for example,
[Wal50, BK86, Bix06, Kir92].

15.5 Intersection Multiplicities Using Places

Recall that the general idea is to use parameterisations to define intersection
multiplicity, generalising Definition 5.25 (and Exercise 6.47): we substitute a
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parameterisation of a curve into the polynomial defining another curve, and define
the order of zero to be the intersection number. We can do this for places of curves.

Let P be a central place; let ψ be a parameterisation of a place Q. If the centre
of Q lies on the affine line x = 0, then ψ(0) ∈ dom fP , and the composition fP ◦ψ

is analytic on a neighbourhood of 0.

Lemma 15.68 Letψ1 andψ2 be two parameterisations ofQ. Then ord0(fP ◦ψ1) =
ord0(fP ◦ ψ2).

Proof Take h witnessing that ψ1 and ψ2 are equivalent: ψ2 = ψ1 ◦ h on a
neighbourhood of 0, and ord0(h) = 1. Then fP ◦ ψ2 = (fP ◦ ψ1) ◦ h, so
ord0(fP ◦ ψ2) = ord0(fP ◦ ψ1) · ord0(h). ��

We therefore define:

Definition 15.69 Let P be a central place, and let Q be a place whose centre lies
on the affine line x = 0. We let i(P,Q) be the order ord0(fP ◦ ψ), where ψ is any
parameterisation of Q.

We omitted a subscript from the notation i(P,Q); the point is understood to be
the centre of the places:

Proposition 15.70 i(P,Q) > 0 if and only if P and Q have the same centre.

Proof Let ψ be a parameterisation of Q. Since the centre ψ(0) of Q lies on x = 0,
by Lemma 15.65 it equals the centre of P if and only if fP (ψ(0)) = 0, i.e., if and
only if ord0(fP ◦ ψ) > 0. ��

Therefore, if Q is a place whose centre does not lie on x = 0, then we define
i(P,Q) = 0. Thus, i(P,Q) is defined for any central place P and any place Q.

Proposition 15.71 i(P,Q) = ∞ if and only if P = Q.

Proof Let ψ be a parameterisation of Q. Then i(P,Q) = ∞ if and only if fP ◦ ψ

is the zero function on a neighbourhood of 0, which by Lemma 15.65 holds if and
only if ψ[U ] ⊆ B where B is a branch of the place P and U is a small open
neighbourhood of 0. If ψ[U ] ⊆ B then ψ[U ] and B are not essentially disjoint. By
Theorem 15.57, ψ[U ] ⊆ B if and only if P = Q. ��

We give an algebraic characterisation of the intersection number of two central
places. Recall that we extended orders of power series to fractional power series
(see Exercise 15.9).

Lemma 15.72 Let P and Q be central places. Let n be the valency of Q. Then
i(P,Q) = n · ord(fP (x, g)), where g is any Puiseux expansion of Q.



418 15 Puiseux Theory

Proof Let g = gζ be a Puiseux expansion of Q; let η = ζ ◦ pwrn. Then η is
defined by the pair of (xn, g(xn)) of formal power series. So i(P,Q) is the order
of the formal power series fP (xn, g(xn)), which is the result of substituting xn into
the fractional power series fP (x, g). For any fractional power series h, we have
ord h(xn) = n · ord h. ��

Let P and Q be central places, of valencies m and n, respectively. Let g1, . . . , gn

be the Puiseux expansions of Q, and h1, . . . , hm be the Puiseux expansions of P .
Applying Lemma 15.72 for each i, and summing over all i � n, we get

n · i(P,Q) = n ·
∑

i�n

ord(fP (x, gi)).

By Exercise 15.9,
∑

i�n ord(fP (x, gi)) is the order of the series

∏

i�n

fP (x, gi) =
∏

i�n,j�m

(gi − hj ).

So dividing by n, we obtain:

Lemma 15.73 If P andQ are central places, then the intersection number i(P,Q)

equals the order of the fractional power series

∏

i�n,j�m

(gi − hj ),

where g1, . . . , gn are the Puiseux expansions of Q, and h1, . . . , hm are the Puiseux
expansions of P .

We immediately get symmetry:

Proposition 15.74 For any central places Q and P , i(P,Q) = i(Q,P ).

Also note that Lemma 15.73 gives another proof of Proposition 15.71 if Q is
central: i(P,Q) = ∞ if and only if gi = hj for some i and j , i.e., if and only if P

and Q share a parameterisation.

15.5.1 Intersections of Curves and Places

We define the intersection multiplicity of a curve and a place. Let D be a curve,
and let Q be a place. Let f define D, and let ψ be an analytic presentation of a
parameterisation ψ of Q (Proposition 15.24). Then f ◦ ψ is an analytic function
(note that f does not define a function on P

2, so f ◦ ψ is meaningless.)
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By Remark 15.25, the order ord0 f ◦ψ does not depend on the choice of analytic
presentation ψ of ψ . The argument of Lemma 15.68 shows that it also does not
depend on the choice of parameterisation ψ of Q. And it certainly does not depend
on the choice of f defining D. Hence we define:

Definition 15.75 Let D be a curve, and let Q be a place. Let f define D. We
define i(D,Q) to be the order ord0(f ◦ ψ), where ψ is an analytic presentation
of a parameterisation of Q.

The following is immediate from the definition and our earlier analysis of
branches:

Proposition 15.76 i(D,Q) > 0 if and only if the centre of Q lies on D; i(D,Q) =
∞ if and only if Q is a place of D.

As usual, we like working in affine coordinates:

Lemma 15.77 If the centre of Q is in A
2, and g defines D ∩ A

2, then i(D,Q) =
ord0 g ◦ ψ , for any parameterisation ψ of Q.

Proof g = f 
 where f defines D; by definition, i(D,Q) = ord0 f (1, ψx,ψy) =
ord0 g(ψx,ψy). ��

The reason to use projective coordinates to begin with, is to deal with changes of
coordinates. Recall that for a place Q and change of coordinates α, we let α[Q] be
the place of the parameterisations α ◦ ψ , where ψ are parameterisations of Q.

Proposition 15.78 Let D be a curve and Q be a place. For any change of
coordinates α, i(α[D], α[Q]) = i(D,Q).

Proof Let α be a linear presentation of α. The curve α[D] is defined by the
polynomial α∗(f ), which defines the function f ◦ α−1 on C

3 (Proposition 4.30);
On the other hand, if ψ is an analytic presentation of a parameterisation of Q, then
α ◦ ψ is an analytic presentation of a parameterisation of α[Q]. ��

Remark 15.79 We would like to define the intersection number i(P,Q) of any two
places, even when neither is central (and we would like it to be invariant under
changes of coordinates). The missing ingredient is Study’s lemma: for each place P

we would like to choose fP defining P near its centre, and we want to choose them
in a way invariant under changes of coordinates. Since P is not an algebraic curve
(rather, it is analytic), Study’s lemma does not apply, and the choice of fP is difficult.
A judicious choice of a class of possible fP ’s, which results in a well-defined and
invariant notion of multiplicity numbers, can be done using tools of multivariable
complex analysis, in particular, the Weierstrass preparation theorem. «
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Proposition 15.80 Suppose that (0 : 0 : 1) /∈ D, and that Q is a place whose centre
lies on the affine line x = 0. Then i(D,Q) = ∑

P i(P,Q), where P ranges over
the places of D which share a centre with Q.

Proof Let P1, . . . , Pk be the places of D with the same centre as Q (they are
all central); and let R1, . . . , Rm be the central places of D with other centres. By
Theorem 15.66, fD = fP1 · · · fPkfR1 · · ·fRm . Composing with a parameterisation
of Q, we see that by Lemma 15.77, i(D,Q) = i(P1,Q) + · · · + i(Pk,Q) +
i(R1,Q)+· · ·+ i(Rm,Q). By Proposition 15.70, i(R1,Q) = · · · = i(Rm,Q) = 0.

��

Example 15.81 Let Q1 be the place of parameterisation z �→ (z, z+ z2/2− z3/8+
· · · ) of the nodal cubic, and let D be the folium of Descartes, given by f = x3 +
y3 − 3xy. Then

f (z, z+z2/2−z3/8+· · · ) = z3+(z+z2/2−z3/8−· · · )3−3z(z+z2/2−z3/8−· · · ).

The lowest order term is −3z2, so i(D,Q1) = 2. «

15.5.2 Intersections of Curves

We can finally relate our work to intersection multiplicity of curves, as defined
in Chap. 6. Recall that we can take the resultant resy(f, g) of polynomials in any
polynomial ring R[y], in our case, R = Cvxw; we get a resultant in Cvxw.

Lemma 15.82 Let P and Q be central places. Then i(P,Q) = ord(resy(fP , fQ)).

Proof By Corollary 6.31,

resy(fP , fQ) =
∏

i�n,j�m

(gi − hj ),

where g1, . . . , gn are the Puiseux expansions of Q and h1, . . . , hm are the Puiseux
expansions of P ; apply Lemma 15.73. ��

Lemma 15.83 Let D be a curve, Q be a central place, and suppose that (0 : 0 : 1) /∈
D. Then i(D,Q) = ord(resy(fD, fQ)).

Proof Let P1, . . . , Pm be the central places of D, so fD = fP1 · · · fPm . By
Lemma 6.32, resy(fD, fQ) = resy(fP1 , fQ) · · · resy(fPm, fQ); now apply Propo-
sition 15.80 and 15.82 and Lemma 15.70. ��
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Lemma 15.84 Let D and E be curves. Suppose that (0 : 0 : 1) /∈ D,E and suppose
that p ∈ A

2 is the unique point on D∩E∩(x = 0). Then ip(D,E) =∑
Q i(D,Q),

where Q ranges over the places of E at p.

Proof If p lies on a common component of D and E, then ip(D,E) = ∞ and D

and E share a place Q at p, whence i(D,Q) = ∞ (Proposition 15.76). As before,
since (0 : 0 : 1) /∈ E, any place of E with centre on x = 0 is central.

Suppose then that D and E do not share a common component. Since p is the
unique point on D∩E∩(x = 0), if q is the common centre of central places P of D

and Q of E, then q = p. So by Proposition 15.76, it suffices to show that ip(D,E)

is the sum of i(D,Q) where Q ranges over all central places of E, regardless of
centre.

Let Q1, . . . ,Qn be the central places of E. By Lemma 15.83, i(D,Qj ) is the
order of resy(fD, fQj ). By Theorem 15.66 and Lemma 6.32,

∏
j resy(fD, fQj ) =

resy(fD, fE). By Remark 6.26, ip(D,E) is the order of resy(fD, fE) (as this is a
polynomial, this is the multiplicity of 0 as its root). ��

Corollary 15.85 For any two curves D and E, for any point p, ip(D,E) =∑
Q ip(D,Q), where Q ranges over the places of E at p.

Note that this implies
∑

Q i(D,Q) =∑
P i(P,E).

Proof Change coordinates so that the hypotheses of Lemma 15.84 hold; this is
permitted by Propositions 15.78 and 6.21. ��

Example 15.86 Continuing Example 15.81, the other place Q2 of the nodal cubic
at the origin (call it E) has parameterisation z �→ (z,−z − z2/2 + z3/8 + · · · ). A
similar calculation shows that i(D,Q2) = 2 as well. Hence io(D,E) = i(D,Q1)+
i(D,Q2) = 4. An argument using Proposition 6.40 will give the same result (try
it!). «

Example 15.87 We compute io(y3 + 2xy + x6, y − x2), which we first did in
Example 6.41. The curve y = x2 has a single place Q at the origin, with
parameterisation z �→ (z, z2), which we plug into the defining polynomial y3 +
2xy + x6, and get 2z3 + 2z6; so the multiplicity of intersection is 3. «

Reducing to places on both sides, we get:

Corollary 15.88 Let D and E be curves. Suppose that (0 : 0 : 1) /∈ D ∩ E, and let
p ∈ A

2 ∩ (x = 0). Then ip(D,E) = ∑
P,Q i(P,Q), where P ranges over the

places of D at p and Q ranges over the places of E at p.

Proof Combine Corollary 15.85 with Proposition 15.80. ��
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15.5.3 Orders and Tangents of Places

Definition 15.89 Let P be a place; let ψ = (ψw,ψx,ψy) be an analytic pre-
sentation of a parameterisation of P (Proposition 15.24). Let (pw, px, py) =
(ψw,ψx,ψy)(0) (a presentation of the centre of P ). We let the order of the place P ,
denoted by o(P ), be min{ord0(ψw − pw), ord0(ψx − px), ord0(ψy − py)}.

Remark 15.25 and the definition of equivalence of parameterisations imply
that this is a good definition: the value o(P ) does not depend on the choice of
parameterisation ψ of P or of analytic presentation ψ of ψ . By definition, the order
cannot be 0; since not all components can be constant, the order is finite.

We get geometric invariance:

Proposition 15.90 If P is a place and α is a change of coordinates, then o(α[P ]) =
o(P ).

Proof Let ψ be an analytic presentation of a parameterisation of P , and let α

be a linear presentation of α. Then ϕ = α ◦ ψ is an analytic presentation of a
parameterisation of α[P ]. Let p = ψ(0) and q = α(p) = ϕ(0). Since α is linear,
α ◦ (ψ − p) = ϕ − q. So every component of ϕ − q is a linear combination of
the components of ψ − p. Linear combinations cannot introduce lower-order terms
(they can only increase the order if there is some cancellation of lowest-order terms).
This shows that o(α[P ]) � o(P ). Since α is invertible, we get equality. ��

And in affine:

Lemma 15.91 If P is an affine place (its centre p = (px, py) is in A2), and ψ is a
parameterisation of P , then o(P ) = min{ord0(ψx − px), ord0(ψy − py)}.

Proof Choose ψ = (1, ψx,ψy); then ord0(ψw − 1) = ∞. ��

Proposition 15.92 Let P be a place, with centre p, and let k = o(P ). There is a
unique line 	 passing through p such that i(	, P ) > k. For all other lines 	 passing
through p, we have i(	, P ) = k.

Proof By Propositions 15.78 and 15.90, we may change coordinates, so that the
centre of P is the origin. The lines through the origin are defined by ay − bx for
(a : b) ∈ P

1. Let ψ be a parameterisation of P . If 	 is the line ay = bx then
i(	, P ) = ord0(aψy − bψx). There is precisely one choice of (a : b) which would
make the lowest-order term in aψy − bψx vanish: if ord0 ψx = ord0 ψy then we
choose nonzero a, b that would cause cancellation of the lowest-order terms; if
ord0 ψx < ord0 ψy then we choose b = 0, similarly in the other case. All other
choices give ord0(aψy − bψx) = min{ord0(ψx), ord0(ψy)} = o(P ). ��



15.5 Intersection Multiplicities Using Places 423

Definition 15.93 The tangent of a place P is the unique line 	 satisfying i(	, P ) >

o(P ). We write 	(P ) for the tangent of P .

Every line 	 passing through the origin has a unique place Q	 with centre o,
given by a parameterisation ψ	(z) = (az, bz) (where 	 is the line ay = bx).

Lemma 15.94 For any line 	 passing through the origin and any central place P

at the origin, i(	, P ) = i(P,Q	).

Proof If 	 is not vertical then Q	 is central and (0 : 0 : 1) /∈ 	; in this case the result
follows from Propositions 15.74 and 15.80. Suppose that 	 is the y-axis x = 0w.
Let η be an n-fold parameterisation of P . Then i(	, P ) = n (the order of ηx = zn),
and ord0(fP ◦ ψ	) is the order of the formal power series fP (0, y) = yn. ��

Let P be a central place, with centre the origin. Then fP ∈ Cvx, yw has no
constant term. Write fP =∑

k>0 fP,k , where each fP,k ∈ C[x, y] is homogeneous
of degree k.

Proposition 15.95 Let P be a central place with centre the origin. Then o(P ) is
the least k such that fP,k �= 0, and VP2(fP,o(P )) consists of o(P )-many copies of
	(P ).

Proof By Lemma 15.94, i(ay = bx, P ) = ord0(fP (az, bz)) = ord(fP (at, bt)).
Now fP (at, bt) = ∑

k>0 fP,k(at, bt). For each k, if fP,k �= 0 then the curve
VA2(fP,k) is the sum of k-many lines through the origin (repetitions allowed), and
fP,k(at, bt) = 0 if and only if ay = bx is one of these lines. For k < o(P ),
since i(	, P ) > k for all 	, fP,k(at, bt) = 0 for any (a : b), so fP,k = 0. And
fP,o(P )(at, bt) = 0 if and only if i(ay = bx, P ) > o(P ) if and only if ay = bx is
the tangent 	(P ). ��

Proposition 15.96 Let D be a curve and let p ∈ D.

(a) op(D) =∑
P o(P ), where P ranges over the places of D at p.

(b) A line is tangent to D at p if and only if it is tangent to some place P of D at p;
in fact, 	pD is the multiset sum of o(P ) copies of 	(P ), for all places P of D

at p.

Proof By changing coordinates, we assume that (0 : 0 : 1) /∈ D, and that p is the
origin. By Theorem 15.66, fD = fP1 · · · fPmfR1 · · · fRn , where the Pi ’s are the
central places of D at the origin, and the Rj ’s are the other central places of D. Each
fRj has nonzero constant term. Using the notation above, the least k with fD,k �= 0
is a constant multiple of fP1,o(P1) · · · fPm,o(Pm). The proposition then follows from
Proposition 15.95 and Proposition 5.16. ��
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Example 15.97 The two places of the nodal cubic y2 = x3 + x2 at the origin both
have order 1, and their tangents are y = x and y = −x; the sum of these are the
tangents to the cubic at the origin, and the order of the origin on the cubic is 2. «

Exercise 15.98 Use Proposition 15.96 to give a proof of Theorem 5.34 for curves
in P

2(C) with no repeated components. «

We call a place P singular if o(P ) > 1, nonsingular otherwise.

Corollary 15.99 A point p is nonsingular on D if and only if D has a single,
nonsingular place at p.

15.5.4 Some Nifty Consequences

We can now give more transparent proofs of some of the results of Chap. 6,
for complex curves with no repeated components. The original proofs relied on
manipulations of matrices and resultants. For example, the symmetry property
ip(D,E) = ip(E,D) follows from Proposition 15.74 and Corollary 15.88; and the
additivity property Proposition 6.29, ip(C,D +E) = ip(C,D)+ ip(C,E) follows
from Corollary 15.88 and Proposition 15.43, as the places of D + E are the places
of D together with the places of E. This is not that surprising, as the proofs of both
Proposition 6.29 and Corollary 15.88 both rely on Lemma 6.30; but this still gives
us some insight as to what’s really going on. We give three deeper applications.

Intersections with Shifted Curves
One of the more mysterious properties of intersection multiplicity is the invariance
under shifting curves. In affine coordinates, this is Proposition 6.40(5): ip(f, g) =
ip(f, f h+ g). We give another proof.

Proof of Proposition 6.40(5) By Corollary 15.85, it suffices to show that for every
place P of the curve f = 0, we have i(g, P ) = i(f h + g, P ). Let ψ be
a parameterisation of P . Then i(g, P ) = ord0(g ◦ ψ) and i(f h + g, P ) =
ord0((f h + g) ◦ ψ). Since P is a place of f = 0, f ◦ ψ is the zero function,
so g ◦ ψ = (f h+ g) ◦ ψ . ��

Intersection Multiplicity, Orders, and Shared Tangents
We give another proof of Proposition 6.43.

Proof of Proposition 6.43 As in Chap. 6, we may assume that p ∈ D, so
ip(C, 	) > 1. We change coordinates so that p is the origin and 	 is the line
y = 0. Since p is nonsingular on C, there is a single place P of C with centre at p,
and o(P ) = 1 (Corollary 15.99). By Corollary 15.85, ip(C, 	) = i(	, P ). Let ψ
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be a parameterisation of P . Then i(	, P ) = ord0(ψy), whence ord0(ψy) > 1; so
1 = o(P ) = ord0(ψx).

Let k = ip(D, 	); let f define D ∩ A
2. Since f (0, 0) = 0, write f = xku(x)+

yv(x, y), where u and v are polynomials and u(0) �= 0. We need to show that k =
ip(C,D) and the assumption is that k < ip(C, 	), i.e., that k < ord0(ψy). Since P is
the unique place of C with centre P , by Corollary 15.85, ip(C,D) = i(D, P ), i.e.,
ip(C,D) = ord0(f (ψx,ψy)). However f (ψx,ψy) = ψk

x u(ψx) + ψyv(ψx,ψy);
since u(0) �= 0, ord0(ψy) > k and ord0(ψx) = 1, the order of f (ψx,ψy) is k. ��

In Chap. 6, we stated Theorem 6.42, but did not give a full proof. We can now
provide one.

Proposition 15.100 Let P and Q be central places with the same centre. Then
i(P,Q) � o(P ) · o(Q); equality holds if and only if P and Q do not share a
tangent.

Proof For notational simplicity, suppose that the common centre is the origin; for
the general case we only need to add a constant to the y-values everywhere (note
that we cannot rely on changes of coordinates when considering the intersection of
two places).

Let ψ be a parameterisation of Q. For all k, ord0(fP,k(ψx,ψy)) � k · o(Q),
so i(P,Q) = ord0(fP ◦ ψ) � o(P ) · o(Q). Equality holds if and only if
ord0(fP,o(P )(ψx,ψy)) = o(P ) · o(Q). If 	(P ) is the line ay = bx then fP,o(P ) =
(ay − bx)o(P ), so i(P,Q) > o(P ) · o(Q) if and only if o(Q) < ord0(aψy − bψx).
But ord0(aψy − bψx) = i(	(P ),Q) and i(	,Q) > o(Q) if and only if 	 = 	(Q).

��

Proof of Theorem 6.42 Let C and D be curves. We may assume they have no
repeated components. Let p ∈ C ∩ D. We want to show that ip(C,D) � op(C) ·
op(D) and equality holds if and only if C and D have no shared tangent at p.

After a change of coordinates we assume that (0 : 0 : 1) /∈ C,D and that p is
the origin. Let P1, . . . , Pm be the places of C at p; let Q1, . . . ,Qn be the places
of D at p; all are central. By Proposition 15.96, op(C) ·op(D) =∑

i,j o(Pi)o(Qj ),
and C and D share a tangent at p if and only if 	(Pi) = 	(Qj ) for some pair i

and j . By Corollary 15.88, ip(C,D) = ∑
i,j i(Pi,Qj ). The result then follows

from Proposition 15.100. ��

Example 15.101 Let E be the nodal cubic y2 = x3+x2, and let D be the folium of
Descartes y3 + x3 = 3xy. The origin has order 2 on both curves; the tangents to E

at the origin are y = x and y = −x, while the tangents to D at the origin are y = 0
and x = 0. So they don’t share a tangent at the origin; Theorem 6.42 implies that
io(E,D) = 4. Compare with Example 15.86. «
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15.6 Further Exercises

Formal and Informal Power Series
15.102 In this exercise we give a “direct” proof of Proposition 15.1(c). Let f =∑

anxn and g = ∑
bnxn be formal power series in Cvxw, and suppose that

R(f ),R(g) > 0. Let R = min{R(f ),R(g)}. Let p = fg. (a) Let cn =∑
i+j=n|aibj |. Use Proposition 11.46 to show that for all s > 1/R there is

some M such that for all but finitely many n, cn � (M + n)sn. Conclude that
the radius of convergence of

∑
cnz

n is at least R. Conclude that R(p) � R.
(b) Let fm = ∑

k�m akxk be the degree m part of f , and similarly define gm

and pm. Show that ord(fmgm − pm) � m + 1. (c) Let z ∈ B(0, R). Show that
|fmgm(z)−pm(z)| � ∑

n>m cn|z|n. (Show that for n > m, |dn− em,n| � cn, where
p =∑

dnxn and fmgm =∑
em,nxn.) (d) Using fm(z) �→ f(z) (and similarly for g

and p), show that p(z) = fg(z).

15.103 We give yet another proof of Proposition 15.1(c). (a) Suppose that
∑

an and∑
bn both converge absolutely. Let cn =∑

i�n aibn−i . Show that
∑

cn converges
absolutely to

∑
n,m anbm (see Exercises 11.85 and 11.86.) (b) Let dn = (

∑
i�n ai) ·

(
∑

i�n bi). Show that 〈dn〉 converges absolutely to
∑

n,m anbm. (c) Use this to prove
Proposition 15.1(c).

15.104 In this exercise we give a proof of Proposition 15.6. Let f, g ∈ Cvxw;
suppose that R(f ),R(g) > 0. Suppose that ord(f ) > 0; let h = g(f ). Write
f =∑

aixi , g =∑
cixi , and h =∑

dixi . For k � 1 write f k =∑
bk,ixi . Also,

let f̂ = ∑|ai |xi and write (f̂ )k = ∑
b̂k,ixi . (a) Show that there is some positive

R � R(f ) such that f̂[B(0, R)] ⊆ B(0, R(g)). (b) Show that |bk,n| � b̂k,n for all k

and n. (c) Let z ∈ B(0, R). Show that
∑

n,k ckbk,nz
n converges absolutely. (d) Let

ϕ = g◦f. Show that ϕ(z) =∑∞
k=0

∑k
n=0 ckbk,n zn for all z ∈ B(0, R). (e) Conclude

that ϕ = h on B(0, R).

15.105 Let F be a field; let g ∈ F vxw, and suppose that ord(g) = 1. (a) Show that
there is a (unique) h ∈ F vxw with ord(h) > 0 such that g(h) = x. (b) Conclude that
the map f �→ f (g) is a ring automorphism of F vxw.

15.106 (a) Show that the formal chain rule holds for substitution into power series:
if R is an integral domain, h ∈ Rvy1, y2, . . . , ymw, g1, g2, . . . , gm ∈ Rvxw and
ord(gi) > 0 for i � m, then Dx(h(g)) = ∑

i�k Dyi h(g)Dxgi (see Remark 5.4).
(b) Use this to prove the multivariable complex chain rule (Proposition 13.2) when
n = k = 1.
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Vertical Parameterisations and the Implicit Function Theorem
15.107 (a) Let f (x, y) = 2x − x2 + y − xy + y2. Let g(x) = a1x + a2x2 + · · ·
satisfy f (x, g) = 0 in the ring Cvxw. Find a1, a2, a3 and a4. (b) Generalise this to
show that if h ∈ Cvx, yw has a zero constant term and a term linear in y, then there
is a unique g ∈ Cvxw with ord(g) > 0 and h(x, g) = 0.2

In the following exercise we give an alternative proof of the implicit function
theorem, without relying on the inverse function theorem. For more details, see,
for example, [Gri89, Ex.9.4]. Since we have not explored the connection between
multivariable power series and the multivariable analytic functions that they define,
we restrict ourselves to a polynomial implicit equation. The uniqueness of the
implicit function theorem for this case was proved in Exercise 13.61, so we prove
existence.

15.108 Let f =∑
ai,j xiyj ∈ C[x, y]. Suppose that f (0, 0) = 0 and Dyf (0, 0) �=

0. Without loss of generality, assume that a0,1 = 1. Let h = a1,0x − y − f ; write
h =∑

âi,j xiyj .

(a) Let g = ∑
bnxn ∈ Cvxw satisfy f (x, g) = 0 (Exercise 15.107). So

h(x, g) = g. Show that there are polynomials Pn ∈ N[ti,j ]i,j�n such that
cn = Pn(âi,j )i,j�n. The point is that the coefficients of the Pn are nonnegative.

(b) Let M = max{|âi,j |}. For ease of notation, suppose that M = 1 (the argument
is the same in the general case). Let H = ci,j xiyj ∈ Cvx, yw where c0,0 =
c0,1 = 0 and ci,j = 1 for all other (i, j). Show that

H = 1

(1− x)(1− y)
− y − 1

in Cvx, yw. Thus, we define H(a, b) for a, b ∈ B(0, 1). (In the general case, we
replace H by MH .)

(c) Show that there is an analytic function ψ , defined on a neighbourhood of 0,
such that ψ(0) = 0 and H(z,ψ(z)) = 0 on a neighbourhood of 0. (Hint: let
F(x, y) = (1− x)(1− y)(2y+ 1)− 1. Find the discriminant of F with respect
to y, and show that it is nonzero on a neighbourhood of 0. Define ψ using the
quadratic formula and an analytic choice of the square root.)

(d) Let
∑

dnxn be the formal power series defining ψ around 0. Show that
|cn| � dn for all n. (Use the polynomials Pn to compute both cn and dn, and
use |âi,j | � ci,j ). Conclude that R(g) > 0, and so g satisfies f (z, g(z)) = 0 on
a neighbourhood of 0.

2 Note that with this method we can compute the coefficients of a power series defining a vertical
parameterisation of f = 0.
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Fractional Parameterisations
15.109 Let D be a curve in P

2, and suppose that (0 : 0 : 1) ∈ D. Show that there
is a fractional parameterisation of D whose centre is (0 : 0 : 1) if and only if the
line x = 0w is a tangent to D at (0 : 0 : 1). (Hint: in one direction you can use
Exercise 13.65. In the other, let P be a place of D at (0 : 0 : 1) whose tangent is
x = 0w, and consider a parameterisation of P .)

15.110 Let D be the projective closure of yk = f (x, y), where degy f < k (but
note that possibly deg f > k). (a) Show that (0 : 0 : 1) ∈ D if and only if deg f > k,
in which case the only tangent to D at (0 : 0 : 1) is 	∞. (b) Show that D has k-
many germs of n-fold parameterisations. (c) Show that fD = fP1 · · · fPk , where
P1, . . . , Pk are the central places of D.

15.111 In this exercise we give an alternative proof of Proposition 15.32 in the
case that (0 : 0 : 1) /∈ D. Assuming this, let ζ be a fractional parameterisation of D.
(a) Show that ζ is bounded on a punctured neighbourhood of 0 in �/n. (Let f (x, y)

be a polynomial defining D ∩A
2. Consider f as a polynomial in y with coefficients

in C[x]; we may assume that yd (for d = deg D) appears in f . The coefficients of
f (a, y) are bounded for a ∈ B(0, r). Hence if |b| is large, the term bd dominates the
other terms in f (a, b) (see the proof of the fundamental theorem of algebra, page
304). So for sufficiently large M , for all a ∈ B(0, r), for all b such that (a, b) ∈ D,
we have |b| < M .) (b) Use Proposition 12.16 to prove Proposition 15.32.

15.112 We give an alternative proof of Corollary 15.39, using Theorem 15.66
(which, note, uses Propositions 15.37 and 15.58 but not Corollary 15.38).

By changing coordinates, we may assume that (0 : 0 : 1) /∈ D and p = (0, b) for
some b. Show that fP (0, b) = 0 for some central place P of D; conclude that p is
the centre of P .

15.113 Let D be a curve; let ζ : W∗ → D be a continuous function, where W∗ is
a punctured neighbourhood of 0 in �/n. Suppose that for all q ∈ W∗, ζ(q) lies on
the line x = π�(q). Show that ζ is holomorphic on a punctured neighbourhood V ∗
of 0 in �/n (and thus ζ�V ∗ is a fractional parameterisation of D).

An Application to Intersection with Lines
15.114 Let ψ be an affine parameterisation of a curve D. Let λ ∈ dom ψ and
suppose that ψ ′(λ) = (ψ ′

x, ψ ′
y)(λ) �= (0, 0). Suppose also that p = ψ(λ) is

nonsingular on D. Show that the tangent to D at p is parallel to the vector ψ ′(λ).3

3 Compare to the original motivation for defining tangents, at the very beginning of Chap. 5.
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15.115 Let P be a place of a curve D, with centre p. Suppose that B is a branch
of P , sufficiently small so that every q ∈ B other than p is nonsingular on D. For
such q let 	q(P ) = 	q(D); let 	p(D) = 	(P ). Show that the map q �→ 	q(P ) is
continuous on a neighbourhood of p in B (as a map to P̌

2). (Use Exercise 15.114.
You may change coordinates (explain why!) so that p is the origin and 	(P ) is
the x-axis, so that ord0 ψy > ord0 ψx for a parameterisation ψ of P . Show that
ψ ′

y/ψ ′
x → 0 at 0.)

15.116 Let D be a curve in P
2, let p ∈ D, and let L be a line which passes through p

but is not a tangent to D at p. (a) Show that there is a neighbourhood U of p in D

and a neighbourhood O of L in P̌
2 such that for all 	 ∈ O and q ∈ U , 	 is not a

tangent to D at q . (Hint: by changing coordinates suppose that p is the origin and L

is the x-axis. Use Example 13.41 and Exercise 15.114; consider each place at the
origin separately.) (b) Conclude that there is a neighbourhood U of p in D and a
neighbourhood O of L in P̌

2 such that for all 	 ∈ O , either 	 ∩ U = {p}, or 	 ∩ U

consists of op(D) many distinct points.

Some Examples
We give some examples in which Theorem 6.42 cannot be used to compute
intersection multiplicities, as the curves have shared tangents. Observe that this is
reflected in cancellation of lowest-order terms.

15.117 Let D be the cardioid (Fig. 3.1) and let E be the cuspidal cubic y2 = x3.
(a) Compute oo(D) · oo(E). (b) Let P be the unique place of E at the origin o.
Compute i(D, P ) and hence io(D,E).

15.118 Let D be the eight curve (Fig. 5.5) and let E be the nodal cubic y2 = x3+x2.
(a) Compute oo(D) · oo(E). (b) Let Q1 and Q2 be the two places of E at the origin;
compute i(D,Q1) and i(D,Q2), and so io(D,E). (c) Find parameterisations for
the two places P1 and P2 of D at the origin. Compute i(E, P1) and i(E, P2) and so
io(D,E).

15.119 Let D be the folium of Descartes (Fig. 3.4).

(a) Find parameterisations of the two places of D at the origin. (See Exercise 3.49;
try both y = tx and x = ty.)

(b) Use these to compute the intersection of D at the origin with the cuspidal cubic
y2 = x3, and with the quadrifolium (Fig. 5.1).
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Miscellaneous Exercises
15.120 Let the origin o be nonsingular on a curve D, and suppose that the x-axis is
the tangent to D at o. Let P be the place of D at o, and let ψ be a parameterisation
of P . What is the valency of P ? What is fP ?
15.121 Let C, D and E be three curves, and let p be a point, which is nonsingular
on each of these curves. Show that two of ip(C,D), ip(C,E) and ip(D,E) are
equal, and less than or equal to the third.

15.122 A polynomial f = ∑
ci,j xiyj ∈ C[x, y] is quasi-homogeneous of

degree d if there are natural numbers p, q > 0 such that pi + qj = d whenever
ci,j �= 0. (This holds if and only if f (tpx, tqy) = tdf (x, y).) The pair (p, q) is
the pair of weights of f . (a) Show that if f is quasi-homogeneous with weights
(p, q) then the curve f = 0 has an p-fold parameterisation z �→ (zp, czq) for some
constant c ∈ C. (b) Find a Puiseux expansion for the curve y4 = x6 − 2x3y2.4

4 This is the first step in the Newton polygon method for computing Puiseux expansions.
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The theory of elliptic functions and curves led to a profound unification of much of
nineteenth century mathematics. It was the first arena in which topology, geometry,
number theory, analysis, and algebra met in a significant and mutually revealing
way. This book was an exposition for undergraduates of that mid-nineteenth century
synthesis. To grasp elliptic function theory is to grasp the unity of mathematics.

16.1 A History of Circles and Ellipses

The Sumerians (3000–2000 BCE) developed base 60 arithmetic. They had efficient
algorithms for both the four rational fundamental operations and for the extraction of
square roots. The Babylonian star catalogues (1200 BCE) were tables exhibiting the
periodicities of heavenly events such as the rising and setting of the sun, the waxing
and waning of the moon, the four seasons. These tables correlated heavenly events
with earthly events such as plantings, harvests, festivals, the crowning and death
of kings, elections, battles, athletic and religious ceremonies. Time was measured
in hours of the day, day of the lunar month, sidereal year, but had different values
in different localities. This locality was hardly helpful to travelers on the seas and
along caravan routes: simple instruments for measuring time and space, such as the
theodolite, astrolabe, water clock, and gnomon, were developed to help remedy this.

The Babylonians (1894–539 BCE) developed the Zodiac. Their celestial sphere
had earth at its center and all the fixed stars mounted on the boundary of the very
distant celestial sphere. The axis of rotation of the celestial sphere was a straight
line through the center of the earth perpendicular to the equatorial plane terminating
at the north polestar. The celestial sphere appears to rotate around the earth once a
day. The ecliptic plane was defined as the plane of the apparent circular path of the
sun on the celestial sphere over the course of the year. The Zodiac is a circular band
on the celestial sphere extending about eight degrees north and south of the ecliptic.
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The Zodiac contained the orbits of the known planets, the moon, and the sun. The
orbits appear as circles on the celestial sphere.

The late Babylonian Zodiac (Seleucid Empire, 312–63 BCE) and early Greek
Zodiac (Eudoxus, 395–340 BCE) was divided into twelve sectors, or signs, each
sign identified by a constellation in the Zodiac band: Aries, Taurus, Gemini, Cancer,
Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius and Pisces. The Greeks,
unlike predecessors, tried to design the sectors of the zodiac to be of equal length so
that dates of entry of the sun into Cancer, Libra, Capricorn, and Aries were the dates
of the summer solstice, autumnal equinox, winter solstice, and vernal equinox.

No geometric model of the motions of the sun and planets on the celestial sphere
seems to have survived from the period before the Greece of Pythagoras (570–495
BCE) and Plato (424–348 BCE). Perhaps one never previously existed. The Greeks
of classical Greece modelled the planets and the sun as rotating at uniform but
distinct velocities, with their circles of rotation situated in different planes passing
through or near the center of the earth. This was the geocentric world-view. By 300
BCE, the Babylonian astronomical tables had been acquired by the Greeks. In his
Phaenomena, Euclid (c. 300 BCE) used his ruler and compass geometry in three
dimensions to write formulas for calculating the length of day anywhere on earth.

The modern definition of angle as a real number was absent in Greek theoretical
astronomy because the Greeks did not have our conception of a real number.
The only numbers, or in Euclid’s terms the only points, were those that can be
constructed by ruler and compass from a chosen unit line segment. So angles had to
be represented in terms of the points and figures that could be constructed by ruler
and compass.

Suppose that a regular n-gon can be inscribed in a circle by ruler and compass. It
will meet the circle in n evenly spaced points. Connect the center to each of these n

points. The regular n-gon is then divided into n congruent triangles. The bounding
circle is divided into into n congruent arcs, the area of the circle into n congruent
sectors. A chord is by definition the length of any of the n sides of the inscribed
n-gon. In our modern notation, if θ is the central angle of one of the n congruent
triangles, then the length of the chord is 2r sin θ/2. Euclid and predecessors measured
angles in fractions of a half chord.

In the generation after Euclid, Apollonius of Perga (262–190 BCE) defined
a conic section to be the intersection of a right circular cone and a plane, and
classified them as hyperbolas, parabolas, and ellipses. This is a three dimensional
space definition not possible in Euclid’s ruler and compass geometry. There
was no apparent practical reason to develop conic sections. Apollonius wrote an
astronomical treatise that did not survive, but he seems not to have considered
elliptical orbits of planets as a possibility even though the hypothesis of circular
uniform velocity orbits for planets was marred by observational anomalies such as
retrograde motion. A retrograde motion is one in which to the earthbound observer
a planet seems to reverse course for a short time and then proceed forward as before.

Ptolemy of Alexandria (100–170 CE) was the greatest and most influential
ancient astronomer. Just as all geometries before Euclid disappeared, so also did
all astronomical works before Ptolemy’s masterwork, the Almagest. This work
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develops a three dimensional model of the circular motions of the sun and planets.
The orbits of the planets are identified with circular rotations of constant velocities
around axes through the center of the earth. He shows how to use epicycles to model
the anomaly of retrograde motion, but expresses no confidence that they represent
anything physical.

The Almagest is a deductive mathematical text. Some form of three dimen-
sional “trigonometry” is indispensable in astronomical computation. Euclid in his
Phaenomena used his geometry to pass from equatorial coordinates to ecliptic
coordinates. Ptolemy gives strict Euclidean ruler and compass constructions for
changes of coordinate systems such as this. He computes tables of chords and
proves theorems in three dimensional geometry by a myriad of rotation and ruler
and compass constructions. He cites Euclid, Apollonius, Hipparchus of Nicea (190–
120 BCE), and Menelaus of Alexandria (70–140 CE) as his predecessors and gives
them full credit for their work. He makes direct comparison of actual and predicted
observations.

To a modern eye, using ruler and compass proofs may seem incongruous. But
Babylonian sexagesimal arithmetic happened to provide the algorithms for his table
of chords and for his many astronomical calculations. Ptolemy used chords of a
regular polygon to approximate arclength of the corresponding arc on the circle in
the manner of Euclid and Archimedes (287–212 BCE). He bounded errors made
by this approximation by introducing both the inscribed and circumscribed regular
n-gons, with arclength caught in between. The numerical evaluations for these
constructions only require rational operations and extraction of positive square
roots.

Someone may know who first put Euclid’s ratios on the line as real numbers
or who defined angle by radian measure. We do not. Perhaps Aryabhatta
(476–550 CE) in India. Notations for trigonometric functions of arclength,
sin x, cos x, tan x, sec x, were used by Abu al-Wafa’ Buzjani (940–998 CE). The
Almagest the latter wrote has survived and was widely disseminated in the Arab
world. He also used negative numbers. He compiled tables of sines, cosines, and
tangents.

Astronomy based on chords of the circle and sexagesimal arithmetic survived
through Copernicus (1473–1543). His De revolutionibus orbium coelestium is, like
Ptolemy, based on circular orbits. He just changed the center of the coordinate
systems from the earth to the sun, and recomputed motions in that coordinate
system. Our use of the term “coordinate system” here is an anachronism. Descartes
(1596–1650) had not yet introduced coordinate geometry. Arclength of curves,
generally the rectification of curves by finding formulas for the length of segments of
curves, became a serious object of study only after the introduction of the differential
triangle of Barrow (1630–1677).

Here is an intriguing question. In high school you are taught that a circle in
a plane is the set of all points P on that plane equidistant from a fixed point C

in that plane. This formal definition of circle goes back at least to Pythagoras.
Similarly, an ellipse in a plane is defined as the set of all points P on that plane
such that the sum of the distances of P to two fixed points F1, F2 in that plane is
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constant. These two points are called its foci. Many ancient philosophers felt that
circles were perfect while other closed curves such as ellipses were not. Why did
the circle occupy a special place in Greek geometry when a device as simple as a
string with a peg at each end can be used to construct an ellipse? Possibly the circle
was so regarded because all fixed stars in the night sky seem to rotate in circles
around the earth. Possibly because using a model based on circles, and using the
gnomon and the astrolabe as measuring instruments, they could construct tables and
tools for navigation on land and sea. Possibly because the measurements they could
make could not distinguish between a circular and an elliptical orbit. The deviation
(eccentricity) of the actual orbits of the planets from perfect circular orbits is quite
small.

Here is another intriguing question. Why did Euclid’s Elements survive transmis-
sion through many cultures, republished almost as many times as the Bible? Was it
because of a respect for mathematics or for learning? Perhaps not. The Almagest
survived because it is a guide to how to do useful astronomy. But the Almagest is
probably not comprehensible without reading Euclid first. Is it possible that Euclid
was transmitted for the most part as a “pony” for Ptolemy?

Galileo (1564–1642) and Huygens (1629–1695) reintroduced Archimedes’
methodology that physics is based on experiments. Galileo’s Two New Sciences
defined, with precision but without calculus, the concepts of velocity and
acceleration and resolution of forces into vertical and horizontal components. He
deduced that a fired cannon ball follows a parabolic path using a characterisation of
parabolas due to Apollonius. Tycho Brahe (1546–1601) made observations of orbits
precise enough so that Johannes Kepler (1571–1630) could formulate his three laws
for planetary motion.

Newton (1642–1717) deduced the inverse square law of universal gravitational
attraction between two bodies from these three laws. The role of the ellipse in
Newton’s masterwork Principia Mathematica, which replaced the role that the
circular functions played in the Ptolemaic-Copernican theory of the motion of
celestial bodies, motivated mathematicians to introduce elliptical analogues of the
chords and trigonometric functions. The crucial astronomical need was to compute
the deviations from perfect elliptical orbits which are due to the gravitational forces
of all the other planets and the sun. The last part of Newton’s master work was
devoted to precisely that problem for three bodies such as the sun, moon, and
earth. It is valuable to have explicit and computationaly feasible formulas about
elliptic arclength for use in astronomy. Expanding the integral for arclength of a
segment of an ellipse in a power series or a quotient of infinite products is not
enough. No way was found to express this arclength integral in terms of the standard
rational, exponential, and trigonometric functions. That is, the integration rules of
freshman calculus do not give you a formula for arclength of a segment of an ellipse.
This is no different from the situation with the ordinary trigonometric functions.
The sine and cosine were introduced precisely because these circular functions are
periodic, while rational functions, logarithms, and exponentials are not periodic and
no composition of them even allowing inverses is periodic either. We also had to
introduce logarithms and exponentials because the integrals defining them either
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decrease or increase more rapidly than rational and trigonometric functions and
their compositions, even allowing inverses. That is why these useful functions have
all entered our basic toolbox. So why is it that we cannot express elliptic arclength
in terms of rational functions, circular functions, logarithms and exponentials, their
inverses, and compositions of these functions? We will answer that shortly.

Interlude: The Circular Functions

We will describe the way that arclength and the corresponding trigonometry on
the ellipse were developed by presenting a fable, an “alternate world” history of
the sin function. Suppose, like Ptolemy, that we had never heard of the trigonometric
functions. Also suppose that algebra and calculus had both already been invented
along with the formula for arclength of a curve y = g(t) from 0 to x:

∫ x

0

√
1+ (g′)2 dt.

Then the arc length from (0, 1) to (x, y) on the unit circle x2+y2 = 1 is the integral

f (x) =
∫ x

0

dt√
1− t2

.

Then f maps [−1, 1] onto an interval [−a, a], and we define π = 2a to be the
circumference of half a circle. We then define sin x on [−π/2, π/2] to be the
inverse f−1.

Ptolemy constructed his tables using Babylonian sexagesimal arithmetic plus the
ruler and compass equivalents of trigonometric addition formulas, one of which is

sin(θ + η) = sin θ cos η + sin η cos θ. (16.1)

Let us show how to derive this addition formula in our alternate world. Let z ∈
[−1, 1], and suppose that we define y to be a function of x, so that f (x)+ f (y) =
f (z). That is,

∫ x

0

dt√
1− t2

+
∫ y(x)

0

dt√
1− t2

=
∫ z

0

dt√
1− t2

. (16.2)

Differentiating with respect to the variable x, we get

1√
1− x2

+ y ′ 1
√

1− y2
= 0. (16.3)
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Let h(x) = x
√

1− y2 + y
√

1− x2. Then

h′(x) =
√

1− y2 − y ′ xy
√

1− y2
− xy√

1− x2
+ y ′

√
1− x2.

The second and third together are the left hand side of Eq. (16.3), multiplied by−xy;
the first and the fourth together are the left hand side of Eq. (16.3) multiplied by√

1− x2
√

1− y2. It follows that h′(x) = 0. We conclude that h(x) is a constant c.
Substituting x = 0 we get c = y(0). However from Eq. (16.2) and the injectivity
of f on [−1, 1] we get y(0) = z. That is, we conclude that

f (x)+ f (y) = f

(

x

√
1− y2 + y

√
1− x2

)

.

Inverting, and using cos θ =
√

1− sin2 θ , we get the addition formula for the sine,
Eq. (16.1). The algebraic relation z = x

√
1− y2 + y

√
1− x2 is built up from the

rational operations and positive square roots, and so by Descartes can be executed
as a ruler and compass construction. So there is a ruler and compass construction
for adding two arcs of the circle, allowing Ptolemy of our fable to build tables for
sine and cosine.

Inverting Elliptic Integrals

This fable gives the flavor of what actually happened when attention turned to the
ellipse. A remarkable algebraic relation between upper limits of integrals for the
arclength of the lemniscate r2 = cos 2θ was discovered by Count Fagnano in 1714.
He used the integral formula for arc length to prove that, like for the circle in Euclid,
the circumference of the lemniscate could be cut by ruler and compass into 2m,
3×2m, and 5×2m equal parts. When Fagnano’s result was finally published in 1750,
Euler (1707–1783) immediately investigated the general equation relating any two
arcs in that curve. Unlike the circle,where the upper limits are quadratically related,
for the lemniscate the algebraic relation between the upper limits is given by a fourth
degree algebraic relation.

Cardano (1501–1576) solved fourth degree equations using both quadratic and
cubic radicals and so goes beyond ruler and compass constructions. This example
fits into Abel’s later investigation of those division problems for elliptic integrals
which can be solved by radicals.

Euler established several such algebraic relations for other curves. Arclength for
the lemniscate and ellipse can both be expressed as integrals of the form φ(x) =∫ x

c R(x,
√

P(x))dx, where R is a rational function and P is a polynomial of degree
three or four with distinct roots. This more general class of integrals became named
the elliptic integrals.
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Following Euler, Legendre (1752–1833) spent much of his career investigating
elliptic integrals regarded as a function of their upper limits. Legendre entered the
scene with his Memoire sur les integrations par d’arcs d’ellipse (1788), establishing
a theorem on divisions of the ellipse identical with that for the lemniscate. His
Memoire sur les Transcendantes elliptiques (1792) introduced the definition of
elliptic integrals we still use.

Legendre’s book includes applications to the rotation of solids, the motion of
a body attracted to two fixed bodies, the attraction of a homogeneous ellipsoid,
motions under central forces, surface area of ellipsoids. He succeeded in giving very
complete tables of values of his elliptic trigonometric functions for use in astronomy
and applied mathematics. Legendre computed tables of values of elliptic integrals,
solved their differential equations, and investigated those parts of mechanics in
which such integrals arise. Legendre, like his predecessors, considered elliptic
integrals solely as real valued functions of a real variable.

Complex numbers had been used formally by the Italian algebraists such as
Tartaglia (1499–1557) and Cardano for solving second, third, and fourth degree
algebraic equations. Euler used formal expansions in complex power series to
“prove” eiθ = cos θ+i sin θ . Then, a little before 1800, an interpretation of complex
numbers as points on the Euclidean plane with real and imaginary axis was offered
by Wessel (1745–1818) and Argand (1768–1822). The theory of functions of a
complex variable was then developed over many years primarily by Cauchy (1789–
1857).

But Legendre failed to discover the role of complex numbers in elliptic integrals.
He was both surprised and gratified when around 1826 the young mathematicians
Abel (1802–1829) and Jacobi (1804–1851) first inverted the elliptic integrals
(mirroring the passage from arcsin to sin in the fictional development above) and
then extended the resulting elliptic functions to the complex numbers. Neither
Abel’s nor Jacobi’s treatment of this extension bears rigorous scrutiny. Rather, our
admiration for this work is based on their plowing ahead anyway based on intuition
and the algebra of infinite series and products in the tradition of Euler.

In his Disquisitiones Mathematicae (1801) Gauss (1777–1855) constructed the
first new regular n-gon constructible by ruler and compass since Euclid. This was the
17-gon. More generally he proved that a regular n-gon is constructible by ruler and
compass if and only if n is a product of a power of 2 and prime factors of the form
22n + 1. Complex numbers and Euler’s formula for roots of unity are fundamental
to his proof.

Gauss added a suggestive remark about his proof methods:
“Not only can they be applied to the theory of circular functions, but also many

other transcendental functions, e.g., those which depend on the integral
∫

dt√
1−t4

.”

In his unpublished notebooks he developed the necessary formal theory of
functions of a complex variable.

In 1826 Abel visited Paris and heard about Cauchy’s theory of functions of a
complex variable. He followed this hint of Gauss about division of the arclength
of the lemniscate

∫ y

0
dx√
1−x4

. In Recherches sur les fonctions elliptique (1827)
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he completed Count Fagnano’s investigation and proved that the lemniscate can
be divided into n equal parts by ruler and compass for precisely the same n as
determined by Gauss for the circle.

The most fundamental discovery by Abel and Jacobi was that, just as the ordinary
trigonometric functions are periodic functions over the complex numbers with all
periods real multiples of a fixed real period, the elliptic functions are doubly periodic
functions over the complex numbers with two complex periods with a non-real ratio,
such that every period is an integral linear combination of these two periods. This
is the reason that the elliptic integral could not be expressed using compositions of
rational operations, roots, logs, exponentials, sin, cos, etc. These functions do not
have two independent complex periods.

Jacobi (1804–1851) had a much longer career than Abel, and went deeply into
applied mathematics. He demonstrated that equations of motion are integrable
for the pendulum and for planetary motion in a central gravitational field using
elliptic functions. He developed the theory of theta functions. He used methods
evolved from elliptic functions to prove many new theorems in number theory,
such as the number of representations of an integer as the sum of four squares. His
book Fundamenta nova theoriae functionum ellipticarum (1829) established elliptic
function theory and its generalizations as a principal subject of study for the rest of
the nineteenth century.

The blurry issue left open by both of these brilliant mathematicians was that the
functions being inverted are two valued due to the square root in the denominator
of the integrand. The foundations of elliptic function theory were made firm by
the introduction of path integration, Riemann surfaces, and analytic continuation
by Cauchy (1789–1857), Weierstrass (1815–1897), Riemann (1826–1866), and
Puiseux (1820–1883). In analytic continuation, complex power series convergent
in the interior of a circle of convergence were pasted together if they coincided
as functions on a common sub-circle so that double valued square roots in the
complex numbers became single valued on the resulting pasted-together Riemann
surface. Some would say that this construction of a Riemann surface was only made
completely rigorous by Hermann Weyl (1885–1955) in his 1913 book Die Idee der
Riemannschen Fläche [Wey97]. It is well worth reading to this day.

Further Reading
For a brief history of both elliptic functions and curves, see [RB12]. An account of
the rise of complex analysis in the nineteenth century, including elliptic functions,
is given in [BG13]. For a short account of ancient astronomy and the remarkable
Antikythera astronomical calculator, see [Jon17].
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A
Abelian, see Group
Abel, Niels Henrik, 3, 7, 383, 394, 437
Absolute convergence, see Convergence
Abu al-Wafa’ Buzjani, 433
Addition

on an elliptic curve, 172, 182
of formal power series, 18, 22
of germs, 397
on a torus, 382, 391

Addition formula, 3, 300, 392, 393, 435
Additive group of a ring, 36
Affine, see Change of coordinates; Curve;

Hyperplane; Hypersurface; Line;
Plane; Space; Subspace; Tangent

Affine cover, 86, 196
Affine map, 66, 101
Algebraically closed, see Field
Algebraic curve, see Curve
Analytic continuation, 330–332, 341–342, 356,

407
Analytic function, 10, 296–299, 301–303, 305,

315, 320–322, 396–397
See also Differentiable; Holomorphic

Analytic presentation, see Presentation
Apollonius of Perga, 432
Archimedean property, 209
Archimedes, 2, 433, 434
Argument, 228

continuous choice of, 228–230, 252,
269–270, 300, 326–327

Aryabhatta, 433
Association, 25–26, 28–30, 56, 57
Associativity, 17, 36, 43

of elliptic curve addition, 174–176, 183
Asymptote, 129
Atlas, 194–197, 201, 203, 215, 326, 352
Automorphism

linear, 43
ring, 88, 426

B
Baire category theorem, 368
Barrow, Isaac, 433
Basis

of a linear space, 44, 91, 213–214
for a topology, 200–202, 208, 215, 219, 243

Bézout’s theorem, 8, 146, 167, 172, 173, 176
for a line, 122, 355, 361
weak version, 137–139, 408

Bidegree, 96, 98, 144, 145
Biholomorphism, 313, 323, 325, 327, 330, 341,

353, 365, 381, 391
Bihomogeneous, see Polynomial
Bounded

function, 304–305, 315, 401
sequence, 210
set, 209–210, 289, (see also Least upper

bound)
Branch of a curve, 410–413

See also Essentially disjoint branches;
Essentially equal; Germ

C
Calculus of residues, see Residue
Cardano, Gerolamo, 436
Cardioid, 56, 429
Cauchy, Augustin-Louis, 437
Cauchy-Riemann equations, 11, 283, 287, 288,

313
Cauchy-Schwarz inequality, 218, 266
Cauchy sequence, 208–209, 260

of functions, 293
Cauchy series, 291–292, 294

of functions, 293, 294
Cauchy’s estimate, 303
Cauchy’s integral formula, 10, 290, 301, 302,

304, 305
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Centre
of a branch, place or parameterisation, 403,

407, 408, 411, 417, 428
of a fractional parameterisation, 405, 407,

428
of an open ball, 192
of a perspectivity, 94

Chain rule, 111, 232–233, 283, 348, 426
Change of coordinates, 87–92, 100–102,

179–182, 184, 203, 313, 341, 353,
391

affine, 101
of dual plane, 93, 358
of product of projective spaces, 98
of a space of curves, 92
See also Geometric invariance; Four point

lemma
Change of variable, 87–90, 98
Characteristic, 40, 110, 134
Chart, 9, 194, 196, 203, 214, 252, 326, 328, 352

See also Compatible charts
Closed

set, 205–207, 210, 212, 213, 242–243, 245,
324

subgroup, 213, 217, 389
See also Compact; Interval

Closure
projective, 8, 84, 85, 89, 104, 116, 123, 129
topological, 205, 220, 241, 243, 249

Collinear points, 90–91, 94, 95, 143, 172, 174,
383, 393

See also General position
Common, see Component; Factor; Root
Commutativity, 17, 36, 172

See also Group
Compact, 204–205, 207–208, 211, 213, 219

curve, 350
manifold, 250
Riemann surface, 324–325, 337, 383
subset, 205–206, 210–211, 243, 294
torus, 216

Compatible charts, 10, 194–196, 215
See also Atlas; Transition map

Complement curve, 172–174
Completeness, 208–210, 234, 260, 291

See also Cauchy sequence; Cauchy series;
Least upper bound

Component, 108, 122, 128, 173, 176, 408
common, 138, 146, 155, 157
irreducible, 64–65, 78, 98, 146, 408
repeated, 126, 350, 402
See also Connected component; Factor

Composition, 36, 43, 88, 193, 203, 233, 312,
398

See also Substitution
Concatenation, 223, 248, 253, 258
Conic curve, 64, 69, 101, 103–104, 130, 168,

174, 186, 366
Conjugate

complex, 4, 282, 283
harmonic, 306
meromorphic, 316

Connected, 222–223, 226, 249–250
component, 249–250
curve, 357, 389
manifold, 223
subset of C, 284, 297
surface, 10, 312, 313, 324
See also Path-connected; Simply connected

Conservative, see Vector field
Continuity, 202–204

and analytic functions, 303
of derivatives and slopes, 235, 284
of differentiable functions, 231, 283
of intersection multiplicity, 359–360
of intersection points, 362, 369
of linear maps, 194
of partial derivatives, 235, 268, 272
at a point, 193
in R

n, 193–194
of roots, 319, 343–344, 360
sequential, 207
of tangent on a branch, 428
uniform, 211, 219, 261
of uniform limit, 293
of winding number, 289
See also Differentiable; Homeomorphism

Contour, 289–290, 317
See also Winding number

Contractible, 252
Convergence

absolute, 291–292, 294, 306
absolute uniform, 294–295, 374
of geometric series, 291, 295, 296, 301
local uniform, 294–295, 298, 299, 305
of
∑

1/n2, 291, 373
pointwise, 292, 298
radius, 295–296, 302, 396, 398, 400, 415,

(see also Root test)
sequence, 206–210
uniform, 292–295, 298
See also Limit

Convex, 225, 234, 284, 406
Coordinate representation, 239–240, 312, 327
Copernicus, Nikolaus, 433
Coset, 38–39, 215, 226

See also Group
Cosine, 4, 300, 435
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Countable, 12, 192, 200–202, 208, 219, 243,
368

Cover, see Affine cover; Open
Cross-ratio, 102–103
Cubic curve, 5, 64, 69, 101, 164–166

cuspidal, 71, 100, 126, 130, 183, 184, 366,
404, 410, 414, 416, 429

E� , 7, 379–386, 391, 393, 394
nodal, 72, 100, 107, 116, 126, 130, 183,

184, 366, 404, 410, 414, 416, 420,
421, 424, 425, 429

nonsingular, 167, 171–172, 174–176,
178–186, 354, 357, 367, 383–384,
386–389, 393, (see also Elliptic
curve)

singular, 100, 130–131, 184
twisted, 100
See also Polynomial

Curve, 1, 7, 55–56, 58, 105–110, 114–129,
133–135, 137–139, 146–151,
155–165, 168–171, 350–357, 359–
364, 367–369, 402–407, 412–416,
418–421, 423–425, 428–430

affine, 58, 70, 71, 124, 158, 162–163
irreducible, 138, 162, 408
nonsingular, 115, 138, 357, 363
nonsingular part, 350, 352–353, 402
rational, 67–69, 71, 162
See also Conic curve; Cubic curve; Elliptic

curve; Parameterisation; Quartic
curve; Singular

Cusp, 106, 126, 165
See also Cubic curve

Cycle, 40, 50

D
Decomposition, see Factorisation
Degree

of a curve, 8, 67, 92, 108, 122, 127, 138,
146, 413, 414

of an elliptic function, 372, 391
of Hessian, 170
of a holomorphic map, 325
of a hypersurface, 64, 78, 79, 87
of a polynomial, 23–24, 26–27, 30, 32, 70,

74, 75, 135
of ℘, 376

Dehomogenisation, 82–84, 150
Dense set, 201, 205, 308, 339, 368
Derivative

complex, 282–284, 298, 302, 305, 348
of exponential, 299
formal, 106, 110–113, 426

full, 231, 232, 236
of ℘, 375
of power series, 298
partial, 235
second, 238–239
See also Differentiable

Desargues’ theorem, 95, 104
Descartes, René, 433
Determinant, 45–48, 51–52, 60, 169, 220
Diameter, 210, 215
Diffeomorphism, 251
Differentiable, 231

complex, 282–284
continuously, 284, 287–288, 290, 298–299,

301–302, 348–349
manifold, 239–241
real, 231–233, 235
See also Derivative; Smooth

Differential, see Form; Meromorphic
Differentiating under the integral sign,

264–265, 271
Dimension

of an affine subspace, 51, 66, 67
of a linear space, 44–45
of a projective subspace, 79
of the space of curves, 92

Dimension formula, 45
Direct product

of groups, 38
of manifolds, 201

Discrete, 212–213, 222
set, 297, 303, 313, 314, 316, 324
subgroup, 213–216, 219–220, 226–228,

253, 371
Discriminant, 113, 126, 161, 182
Distributivity, 17
Divisibility, see Division
Division, 25–28, 38, 39

of meromorphic forms, 336
of polynomials, 26–27, 33–35, 64, 70, 75,

78, 97, 152, 416
Divisor, see Factor; Greatest common divisor
Dot product, 266
Double point, 115, 126, 128, 130, 164
Doubly periodic function, see Periodic function
Duality principle, 93, 95
Dual projective plane, 93–94, 358–359

E
Eight curve, 129, 429
Eisenstein series, 379
Elliptic



444 Index

curve, 1, 7, 9, 12, 172, 176, 182–185,
364–365, 380–383, 386–389, 391,
393, (see also Addition; Cubic
curve)

function, 1, 3, 7, 12, 372–373, 376, 390–
392, 437–438, (see also Periodic
function; Weierstrass ℘-function)

integral, 3, 393–394, 436–438
Embedding

affine space into projective space, 81–85
of groups, 38
of rings, 20

Entire function, 299, 304, 378, 390
Equivalence

of meromorphic forms, 335
of parameterisations, 407, 409–412, 417,

(see also Place)
Essentially disjoint branches, 412–413, 417
Essentially equal

branches, 411–412
germs, 397
parameterisations, 407, 411, 414

Essential singularity, 314, 339
Euclid, 69, 432
Euclidean algorithm, 31
Euclidean distance, 192

between a point and a set, 211
between two sets, 212

Euler, Leonhard, 436
Euler’s relation, 109, 111, 251
Exponential function, 3–4, 299–301

F
Factor, 75

common, 60–62, 70, 113, 141–143, 158
irreducible, 64–65, 77, 78
nonconstant, 82
repeated, 113
See also Irreducible factorisation; Unique

factorisation
Factorisation, see Irreducible
Fagnano, Giulio Carlo, 436
Fibonacci sequence, 309
Field, 18, 30, 43

algebraically closed, 32, 55, 64, 87, 114,
122, 304, 416

of fractions, 34
of �-periodic functions, 390, 392
of meromorphic functions, 317
See also Vector field

Finite intersection property, 205
Flex, 168–170, 172, 179, 180, 183–186, 357,

366, 387

Folium of Descartes, 72, 100, 129, 130, 425,
429

Form
complex, 285, 332
ds, 256
dx/y, 384–387, 393–394
F · dr , 266
generalised, 256
holomorphic, 333, 334, 337–339, 384
linear, 262, 266
meromorphic, 333–338
non-vanishing, 337, 384, 388
on surface, 333

Fourier series, 390
Four point lemma, 90–91, 101
Fractional linear map, 102
Fractional parameterisation, see

Parameterisation
Fractional power series, see Power series
Fubini’s theorem, 277
Fundamental group, 252
Fundamental theorem

of algebra, 32, 304
of arithmetic, 30
of calculus, 263, 267

G
Galileo Galilei, 434
Gauss, Carl Friedrich, 437
Generalised form, see Form
General linear group, 42, 220
General position, 90

See also Collinear points
Geometric invariance

of germs of parameterisations, 408
of Hessian, 170
of higher-order tangent, 119
of hypersurfaces and degrees, 89
of intersection multiplicity of curves, 147
of intersection of a curve and a line, 122
of intersection of a curve and a place, 419
of order of a place, 422
of parameterisations, 403
of places, 408

Geometric series, 291, 295, 296, 298, 301
Germ

of an analytic function, 397
of branches, 411–412
of parameterisations, 408, 410, 412–413

Global
chart, 195
logarithm, 327
nth root, 328–330, 400–401, 404
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Gradient, 232
Gradient field, 267
Greatest common divisor, 32, 33, 399
Greatest lower bound, 209, 212, 222

See also Least upper bound
Group, 36, 50

abelian, 36
cyclic, 39, 373
homomorphism, 37
isomorphism, 38, 184, 383
topological, 217, 220, 250, 364
See also Fundamental group; General

linear group; Quotient; Subgroup;
Symmetric group

H
Harmonic

function, 306
series, 291, 298
See also Conjugate

Hausdorff property, 193, 199–200, 202, 218,
219, 324

Heine-Borel theorem, 210
Hesse normal form, 186
Hessian, 169–171, 179, 238–239
Holomorphic

map, 312–314, 323–325, 327–329, 363,
364, 372, 381, 382, 400–401

surface, 312–314, 327, 352, (see also
Riemann surface)

See also Form; Biholomorphism
Homeomorphism, 203, 206, 236, 237, 284, 410
Homogeneous, see Polynomial; Resultant
Homogeneous coordinates, 76
Homogenisation, 82–84
Homomorphism, see Group; Ring
Homotopy, 224, 227, 229, 272–273, 331, 339

piecewise smooth, 248–249
smooth, 247

Horizontal
line, 85, 93
point at infinity, 86, 93

Hyperbola, 103, 129, 367, 405
Hyperplane

affine, 67
at infinity, 84
projective, 79, 99

Hypersurface
affine, 56–58, 64–66, 84
irreducible, 56, 64, 70, 71, 77, 78, 96, 98,

144
in P

n × P
k , 96, 98, 117, 144, 145

projective, 77–78, 84, 87

bir
irreducible, 64–65

Hypocycloid, 164

I
Identity element, 17, 36
Implicit function theorem, 349, 427
Inflection point, see Flex
Integral, 257

along smooth path, 260, 262
complex, 285–286
and limits, 298
of meromorphic form, 338
Riemann integral, 262
See also Cauchy’s integral formula;

Differentiating under the integral
sign; Elliptic; Fundamental theorem
of calculus

Integral domain, 17–18, 25–28, 40, 57, 60, 416
Intermediate value theorem, 222, 249
Intersection multiplicity

additive property, 151, 424
categoricity, 157
of complex lines and curves, 359–360, 368
of a curve and a place, 418–421
of a line and a curve, 107–109, 121–124,

150, 161, 429
and order of point, 159, 425
of places, 417–418, 420, 421, 425
shift property, 156, 424
symmetry property, 151, 418, 424
of two curves, 146–148, 421
using vertical lines, 139, 148
See also Tangent

Intersection multiset, 147
Intersection polynomial, 121, 145

general, 123, 144
Interval

closed, 222, 243
open, 209, 233
P -interval, 257
See also Tagged partition

Invariance
of holomorphic form on cubic, 386
See also Geometric invariance

Inverse element, 36
additive, 17
multiplicative, 18

Inverse function theorem, 236–238, 284, 322,
349, 408

Inversion theorem, 388
Irreducible

element, 28–29
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factorisation, 29–33, 49, 57–58, 77, 97
See also Curve; Component; Factor;

Hypersurface; Polynomial
Isolated point, 212
Isomorphism, see Group; Ring
Isomorphism theorem, 7, 383

J
Jacobi, Carl Gustav Jacob, 3, 394, 437

K
Kernel, 38, 43, 45, 66
Klein Viergruppe, 50, 103

L
Lagrange’s theorem, 38, 214
Lattice, 6, 216, 371, 373, 384, 389
Laurent series, 317, 319, 375

formal, 34
Leading coefficient, 24
Least upper bound, 209, 259, 294–296

See also Greatest lower bound
Lebesgue null, 279
Legendre, Adrien-Marie, 437
Legendre normal form, 181
Leibnitz integral rule, see Differentiating under

the integral sign
Length of path, 259

See also Rectifiable path
Lifting, 226–228

to a curve, 356–357, 367, 393
and integration, 298
of a map to a torus, 324, 385
of a map to the unit circle, 228
smooth, 252

Limit, 194, 206, 209, 257, 282, 285, 291
superior, 296
See also Convergence

Line
affine, 66–67, 69
at infinity, 85, 179, 380
projective, 79–81, 99, 353
segment, 225
See also Bézout’s theorem; Dual projective

plane; Duality principle; Horizontal;
Intersection multiplicity; Tangent;
Vertical

Linear
combination, 31, 42, 62, 66
complement, 44
independence, 44, 213

map, 43, 194, 231, 232, 282
polynomial, 24, 28, 32, 67, 79, 87
See also Automorphism; Form;

Parameterisation; Presentation;
Space; Subspace

Linear family
of curves, 92, 165, 173–174
of lines, 93, 126–127, 148, 358, 363, 364,

382
Line integral, see Integral
Liouville’s theorem, 304, 341, 390
Locally finite, 241–244
Logarithm

branch, 300, 307
Riemann surface, 326–328, 400
See also Global

Loop, 225
See also Winding number

M
Manifold, 201, 203, 218, 223

differentiable, 5, 239–241, 251–252
Matrix

identity, 42
invertible, 42
minor, 46
nonsingular, 43, 60
symmetric, 103, 238
See also Sylvester matrix; Vandermonde

matrix
Maximum modulus principle, 340
Mean value inequality, 233–235
Meromorphic

differential, 337, 354, 383
function, 315–319, 325, 341, 354
See also Conjugate; Form

Mesh size, 257
Möbius transformation, 102
Monodromy theorem, 332, 407
Monomial, 21, 23, 74
Mordell, Louis Joel, 183
Morera’s theorem, 303
m-to-1 arbitrarily close to a point, 321, 323
Multilinear property, 45
Multiplicative group of units, 36
Multiplicity

in multiset, 29
of a root, 32, 121, 124, 135, 150, 316, 320,

359
See also Intersection multiplicity; Valency

Multiset, 29, 32, 56, 147, 423
See also Symmetric power
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N
Neighbourhood, 192–193, 197–200, 350,

358–359
See also Punctured; Open

Newton, Isaac, 416, 434
Nine associated points, 165–166
Nine point configuration, 185–186
Node, 126, 164, 165

See also Cubic curve
Nonsingular, see Cubic curve; Curve; Matrix;

Singular
Normal form, 178–183, 186, 386

O
Open

ball, 192
cover, 204, 205, 210, 213, 240–243, 250,

294, 333
map, 323, 389
set, 192, 198
See also Neighbourhood

Open mapping theorem, 322, 323
Operator norm, 232, 251
Order

of analytic / meromorphic function,
314–316, 319, 321, 323, 334,
416–425, (see also Pole; Zero)

of formal Laurent series, 34
of formal power series, 28, 398
of fractional power series, 399, 417–418
of group element, 39, 184–185
of meromorphic form, 334–337
of a place, 422–424
of point on curve, 106, 115–117, 119–120,

159, 423
Ordinary point, 120, 126, 128, 164
Origin, 58, 116, 423

P
Pappus’ theorem, 95, 186
Parabola, 84, 107, 125, 129, 130, 366, 404, 410,

414
Parameterisation, 66, 402–408, 416–425

fractional, 404–407, 413–414, 428
linear, 67, 81, 108, 121, 124, 403
n-fold, 404, 409–410, 412–414
rational, 68, 71, 403
tidy, 410–412
of unit circle, 2
vertical, 350, 403–405
See also Presentation

Parameterised circle, 290

Partial sum, 257, 285
Partition, see Tagged partition; Refinement
Partition of unity, 241–245

topological, 250
Pascal’s mystic hexagon, 174, 186
Path, 222, 226

length, 259
piecewise smooth, 248
smooth, 246–247
See also Homotopy; Loop; Path-connected

Path-connected, 222–223, 249, 253
differentiably, 246–247
locally, 228
manifold, 223

Path integral, see Integral
Pencil, see Linear family
Period, 300, 371

See also Periodic function
Periodic function, 372, 389–390

doubly periodic, 3, 371–372, 390, 394, 438,
(see also Elliptic)

See also Quasi-periodic function
Permutation, 36, 40–41, 46, 292, 375, 376

See also Symmetric group
Perspectivity, 94
Piecewise smooth, see Homotopy; Path
Place, 408–413, 415–425

central, 409–410, 413–425
singular, 424

Plane
affine, 56, 67, 85
projective, 76, 79, 85
See also Dual projective plane;

Hyperplane; Punctured; Space
Plane-filling curve, 278–279
Poincaré, Jules Henri, 7, 383
Point, see Double point; Flex; Isolated point;

Ordinary point; Ramification point;
Singular; Triple point

Point at infinity, 86, 315
See also Horizontal; Vertical

Pole, 316–318, 372
of meromorphic form, 334
See also Order

Polynomial, 18
bihomogeneous, 96, 144, 145
cubic, 24, 113, 178–179
homogeneous, 74–76, 82, 87, 88, 99,

135–137, 139
irreducible, 28, 32, 87
monic, 27, 416
quadratic, 24
quasi-homogeneous, 430
trihomogeneous, 123
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See also Degree; Division; Linear;
Primitive polynomial; Root;
Substitution

Potential function, 267
Power series, 295–299, 309, 426

convergent, 397, 400, 415
formal, 18–19, 21–23, 396–398, 414
fractional, 398–402, 413–418
See also Convergence radius; Order

Presentation
of a parameterisation, 403, 419
of a point, 76, 90–91
of a projective map, 80–81, 88, 121

Primitive function, 286–288, 303, 388, 391,
392

Primitive polynomial, 33–35
Principle of duality, see Duality principle
Product rule, 235, 283, 396
Projection, 51, 100, 347, 407

from � or �/n, 326, 327, 329, 400, 401
to P

n, 76, 202
Projective, see Closure; Hyperplane;

Hypersurface; Line; Plane; Space;
Subspace

Projective map, 80, 85, 87
Ptolemy of Alexandria, 432
Puiseux expansion, 413–418
Puiseux, Victor, 416
Pullback (of form), 276, 332, 334–337, 339,

385, 386
Punctured

neighbourhood, 314–315, 400, 401, 404,
405

plane, 225, 228, 230, 253, 269
Pythagorean triple, 1, 104

Q
Quadratic, see Conic curve; Polynomial
Quadrifolium, 107, 429
Quartic curve, 64, 164, 183
Quasi-Euclidean space, 202–203
Quasi-homogeneous, see Polynomial
Quasi-periodic function, 391
Quaternions, 42, 53
Quotient, 26, 31

group, 38–39, 379, 381, 389
of meromorphic forms, 336
of Rn by a discrete subgroup, 214–216,

226–228, 253
See also Division; Quotient map

Quotient map, 39
from � to �/n, 328, 329, 401
to R

n/G, 215, 226

to torus, 216, 313, 324, 372, 384

R
Radius of convergence, see Convergence
Ramification point, 355–357, 406, 413
Rational, see Curve; Parameterisation
Rational function, 2, 67, 183, 341, 348, 386

on a curve, 354, 383
formal, 34, 67

Rearrangement, 292, 309
Rectifiable curve, 280
Refinement (of partition), 260
Region, 246, 297

See also Open; Connected
Remainder, 26, 31
Re-parameterisation (of a path), 252, 276–277
Representation, see Coordinate representation
Residue, 317–319, 340, 343
Resultant, 60–63, 66, 68, 148–150, 420

of general intersection polynomial, 144
homogeneous, 139–144
of homogeneous polynomials, 135–137
multiplicative property, 154
shift property, 155

Riemann sphere, 11, 86, 203, 225, 312, 337,
353, 358, 366, 383

Riemann surface, 1, 6, 10, 11, 312–314, 323,
328, 357, 373, 438

See also Compact; Logarithm; Root;
Simply connected; Torus

Ring, 18
homomorphism, 20
isomorphism, 20

Root
analytic choice of, 284, 350, 367, 394, 404,

409, 427
common, 61, 134
of homogeneous polynomial, 87, 137
of a polynomial, 27, 32, 52, 178, 304, 320,

379, 416
Riemann surface, 328–330, 401, 404
square, 218, 249, 251
test, 296, 426
of unity, 39, 127, 330, 402, 409, 410
See also Continuity; Global; Multiplicity

S
Segre embedding, 98
Sequence, 206–208

See also Bounded; Cauchy sequence;
Convergence; Subsequence

Sequential compactness, 207
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Series, 291–294
See also Cauchy series; Eisenstein series;

Fourier series; Geometric series;
Harmonic series; Laurent series;
Power series

Shift
of fractional power series, 402, 414
map, 330, 401, 402, 405, 410

Shift property, see Intersection multiplicity
Sign (of permutation), 40
Simply connected, 224–227, 252–253

punctured plane, 230
Riemann surface, 325, 328, 332, 383, 406
smoothly, 247, 249
sphere, 225
subset of C, 229, 252, 288–290, 303, 306,

318
subset of Rn, 270, 271

Sine, 4, 300, 435
Singular, see Cubic curve; Curve; Matrix;

Place; Singular point
Singular point, 106, 115, 127, 128, 139, 164,

170, 424
Smooth, 221, 231, 234, 239–241, 245–246, 263

on a closed set, 242–243
twice, 238–239
See also Differentiable; Lifting;

Homotopy; Path
Space

affine, 56
of curves, 92, 101, 165
linear, 42–45
projective, 76
See also Quasi-Euclidean space

Span, 42
Sphere, 196, 203, 225, 241, 323

See also Riemann sphere
Square root, see Root
Star-like, 252
Steiner, Jakob, 103
Study’s lemma, 64, 70

for products of projective spaces, 97
projective, 78

Subgroup, 37
generated, 37
See also Closed; Discrete; Quotient

Subordinate, 241
Subring, 19
Subsequence, 207
Subspace

affine, 51, 66
linear, 42, 44–45, 50, 66, 76, 79
projective, 78–79, 99, 128
topological, 198–199, 327, 329, 350, 352

Substitution
and determinant, 47
and formal derivative, 110
polynomial, 24–25, 82
of power series, 397–398
in resultant, 61–62, 143

Support, 241
Surface, see Connected; Holomorphic;

Riemann surface
Sylvester matrix, 59–60

homogeneous, 140
Symmetric group, 36, 40–41, 292
Symmetric power, 343, 369
Symmetric, see Matrix; Vector field

T
Tagged partition, 257–259, 285
Tangent, 109, 115

affine, 105–106, 116–117
and elliptic curve addition, 167, 171
to a function on R

n, 230
higher order, 106, 114–120, 169, 423
and intersection multiplicity, 108, 124–126,

159–161, 425
moduli space of, 117–120
to path in R

n, 105, 260
of a place, 423
and ramification points, 355
and vertical parameterisation, 351
See also Continuity; Flex; Intersection

multiplicity
Taylor expansion, 106, 112, 299
Three point lemma, 91
Topological, see Group; Quasi-Euclidean

space; Subspace
Torus, 6, 12, 216–217, 223, 251, 253, 312, 313,

324–325, 372, 379–386, 388–389,
391

See also Addition; Elliptic; Quotient map
Trace (of a matrix), 50
Transition map, 10, 194, 239, 312, 333

See also Compatible charts
Transpose, 46
Transposition, 40
Triangle inequality, 192
Triple point, 115, 165

U
Underlying set, 29, 58, 64–65, 77, 98, 145
Unique factorisation, 30–35, 55, 57, 64, 77
Unit, 26, 48, 50, 57, 83

See also Multiplicative group of units
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Unit circle, 1–5, 37, 57, 68, 195, 199, 215, 217,
228, 263, 435

Unit column, 43, 266
Unity, see Partition of unity; Root

V
Valency

of a branch, 413
of a fractional parameterisation, 404, 410
of a holomorphic function, 324, 335, 337,

376
of a parameterisation, 404
of a place, 409

Vandermonde matrix, 52, 100
Vector field, 266–276, 286

conservative, 267–268, 287, 288
gradient field, 267, 287
locally conservative, 270–276
symmetric, 270–272, 274, 288, 306
for winding number, 269

Vertical
line, 86, 134, 138, 148, 355, 358

point at infinity, 86, 134, 138, 148, 179
See also Parameterisation

W
Weierstrass, Karl Theodor Wilhelm, 7, 256
Weierstrass M-test, 294, 295
Weierstrass ℘ function, 373–379, 391–394
Weierstrass ζ -function, 392
Weierstrass’s theorem, 305, 309, 375
Weil, André, 7, 383
Winding number, 229–230, 269, 289

complex integration, 288
vector field, 269

Z
Zero

of analytic or meromorphic function, 297,
316, 321, 372

of meromorphic form, 334, 337
See also Order

Zero divisor, 17
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