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Preface to the revised edition

The main change in the revised edition is the new Chapter �
 on tight
closure� This theory was created by Mel Hochster and Craig Huneke
about ten years ago and is still strongly expanding� We treat the basic
ideas� F�regular rings� and F�rational rings� including Smith�s theorem by
which F�rationality implies pseudo�rationality� Among the numerous ap�
plications of tight closure we have selected the Brian�con�Skoda theorem
and the theorem of Hochster and Huneke saying that equicharacteristic
direct summands of regular rings are Cohen�Macaulay� To cover these
applications� Section ���� which develops the technique of reduction to
characteristic p� had to be rewritten� The title of Part III� no longer
appropriate� has been changed�

Another noteworthy addition are the theorems of Gotzmann in the
new Section ���� We believe that Chapter � now treats all the basic
theorems on Hilbert functions� Moreover� this chapter has been slightly
reorganized�

The new Section ��� contains a proof of Hochster�s formula for the
Betti numbers of a Stanley�Reisner ring since the free resolutions of
such rings have recently received much attention� In the �rst edition the
formula was used without proof�

We are grateful to all the readers of the �rst edition who have
suggested corrections and improvements� Our special thanks go to
L� Avramov� A� Conca� S� Iyengar� R� Y� Sharp� B� Ulrich� and K��i�
Watanabe�

Osnabr�uck and Essen�
October �	

Winfried Bruns

J�urgen Herzog
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Preface to the �rst edition

The notion of a Cohen�Macaulay ring marks the cross�roads of two
powerful lines of research in present�day commutative algebra� While
its main development belongs to the homological theory of commutative
rings� it �nds surprising and fruitful applications in the realm of alge�
braic combinatorics� Consequently this book is an introduction to the
homological and combinatorial aspects of commutative algebra�

We have tried to keep the text self�contained� However� it has not
proved possible� and would perhaps not have been appropriate� to develop
commutative ring theory from scratch� Instead we assume the reader has
acquired some �uency in the language of rings� ideals� and modules by
working through an introductory text like Atiyah and Macdonald ����
or Sharp ������ Nevertheless� to ease the access for the non�expert� the
essentials of dimension theory have been collected in an appendix�

As exempli�ed by Matsumura�s standard textbook ��	
�� it is natural
to have the notions of grade and depth follow dimension theory� and so
Chapter � opens with the introduction of regular sequences on which their
de�nition is based� From the very beginning we stress their connection
with homological and linear algebra� and in particular with the Koszul
complex�

Chapter � introduces Cohen�Macaulay rings and modules� our main
subjects� Next we study regular local rings� They form the most special
class of Cohen�Macaulay rings� their theory culminates in the Auslander�
Buchsbaum�Serre and Auslander�Buchsbaum�Nagata theorems� Unlike
the Cohen�Macaulay property in general� regularity has a very clear
geometric interpretation� it is the algebraic counterpart of the notion
of a non�singular point� Similarly the third class of rings introduced in
Chapter �� that of complete intersections� is of geometric signi�cance�

In Chapter � a new homological aspect determines the development
of the theory� namely the existence of injective resolutions� It leads us to
the study of Gorenstein rings which in several respects are distinguished
by their duality properties� When a Cohen�Macaulay local ring is not
Gorenstein� then �almost always� it has at least a canonical module
which� so to speak� acts as its natural partner in duality theorems� a
decisive fact for many combinatorial applications� We then introduce
local cohomology and prove Grothendieck�s vanishing and local duality
theorems�

xii



Preface to the �rst edition xiii

Chapter � contains the combinatorial theory of commutative rings
which mainly consists in the study of the Hilbert function of a graded
module and the numerical invariants derived from it� A central point is
Macaulay�s theorem describing all possible Hilbert functions of homoge�
neous rings by a numerical condition� The intimate connection between
homological and combinatorial data is displayed by several theorems�
among them Stanley�s characterization of Gorenstein domains� In the
second part of this chapter the method of associated rings and modules
is developed and used for assigning numerical invariants to modules over
local rings�

Chapters ��� form the �rst part of the book� We consider this
material as basic� The second part consists of Chapters ��	 each of
which is devoted to a special class of rings�

Chapter � contains the theory of Stanley�Reisner rings of simplicial
complexes� Its main goal is the proof of Stanley�s upper bound theorem
for simplicial spheres� The transformation of this topological notion
into an algebraic condition is through Hochster�s theorem which relates
simplicial homology and local cohomology� Furthermore we study the
Gorenstein property for simplicial complexes and their canonicalmodules�

In Chapter � we investigate normal semigroup rings� The combina�
torial object represented by a normal semigroup ring is the set of lattice
points within a convex cone� According to a theorem of Hochster� nor�
mal semigroup rings are Cohen�Macaulay� Again the crucial point is
the interplay between cellular homology on the geometric side and local
cohomology on the algebraic� The fact that the ring of invariants of a
linear torus action on a polynomial ring is a normal semigroup ring leads
us naturally to the study of invariant rings� in particular those of �nite
groups� The chapter closes with the Hochster�Roberts theorem by which
a ring of invariants of a linearly reductive group is Cohen�Macaulay�

Chapter 	 is devoted to determinantal rings� They are discussed in
the framework of Hodge algebras and algebras with straightening laws�
We establish the straightening laws of Hodge and of Doubilet� Rota�
and Stein� prove that determinantal rings are Cohen�Macaulay� compute
their canonical module� and determine the Gorenstein rings among them�
In view of the extensive treatment available in ����� we have restricted
this chapter to the absolutely essential�

The third part of the book is constituted by Chapters � and �
They owe their existence to the fact that a Noetherian local ring is in
general not Cohen�Macaulay� But Hochster has shown that such a ring
possesses a �not necessarily �nite� Cohen�Macaulay module� at least
when it contains a �eld� The construction of these �big� Cohen�Macaulay
modules in Chapter � is a paradigm of characteristic p methods in
commutative algebra� and we hope that it will prepare the reader for
the more recent developments in this area which are centered around the



xiv Preface to the �rst edition

notion of tight closure introduced by Hochster and Huneke ��
��
In Chapter  we deduce the consequences of the existence of big

Cohen�Macaulay modules� for example the intersection theorems of
Peskine and Szpiro and Roberts� the Evans�Gri�th syzygy theorem� and
bounds for the Bass numbers of a module�

Chapters � and  are completely independent of Chapters ��	� and
the reader who is only interested in the homological theory may proceed
from the end of Section ��� directly to Chapter ��

It is only to be expected that the basic notions of homological algebra
are ubiquitous in our book� But most of the time we will only use the long
exact sequences for Ext and Tor� and the behaviour of these functors
under �at extensions� Where we go beyond that� we have inserted a
reference to Rotman ������ One may regard it as paradoxical that we
freely use the Ext functors while Chapter � contains a complete treatment
of injective modules� However� their theory has several peculiar aspects so
that we thought such a treatment would be welcomed by many readers�

The book contains numerous exercises� Some of them will be used
in the main text� For these we have provided hints or even references
to the literature� unless their solutions are completely straightforward� A
reference of type A�n points to a result in the appendix�

Parts of this book were planned while we were guests of the Mathema�
tisches Forschungsinstitut Oberwolfach� We thank the Forschungsinstitut
for its generous hospitality�

We are grateful to all our friends� colleagues� and students� among
them L� Avramov� C� Bae�tica� M� Barile� A� Conca� H��B� Foxby�
C� Huneke� D� Popescu� P� Schenzel� and W� Vasconcelos who helped
us by providing valuable information and by pointing out mistakes in
preliminary versions� Our sincere thanks go to H� Matsumura and R�
Sharp for their support in the early stages of this project�

We are deeply indebted to our friend Udo Vetter for reading a large
part of the manuscript and for his unfailing criticism�

Vechta and Essen�
February ��

Winfried Bruns

J�urgen Herzog



Part I

Basic concepts

�





� Regular sequences and depth

After dimension� depth is the most fundamental numerical invariant of a
Noetherian local ring R or a �nite R�moduleM� While depth is de�ned in
terms of regular sequences� it can be measured by the �non��vanishing of
certain Ext modules� This connection opens commutative algebra to the
application of homological methods� Depth is connected with projective
dimension and several notions of linear algebra over Noetherian rings�

Equally important is the description of depth �and its global relative
grade� in terms of the Koszul complex which� in a sense� holds an
intermediate position between arithmetic and homological algebra�

This introductory chapter also contains a section on graded rings and
modules� These allow a decomposition of their elements into homoge�
neous components and therefore have a more accessible structure than
rings and modules in general�

��� Regular sequences

Let M be a module over a ring R� We say that x � R is an M�regular

element if xz � 
 for z � M implies z � 
� in other words� if x is not
a zero�divisor on M� Regular sequences are composed of successively
regular elements�

De�nition ������ A sequence x � x�� � � � � xn of elements of R is called an
M�regular sequence or simply an M�sequence if the following conditions
are satis�ed� �i� xi is anM��x�� � � � � xi���M�regular element for i � �� � � � � n�
and �ii� M�xM �� 
�

In this situation we shall sometimes say thatM is an x�regular module�
A regular sequence is an R�sequence�

A weak M�sequence is only required to satisfy condition �i��

Very often R will be a local ring with maximal ideal m � and M �� 

a �nite R�module� If x � m � then condition �ii� is satis�ed automatically
because of Nakayama�s lemma�

The classical example of a regular sequence is the sequence X�� � � � � Xn

of indeterminates in a polynomial ring R � S�X�� � � � � Xn�� Conversely
we shall see below that an M�sequence behaves to some extent like a
sequence of indeterminates� this will be made precise in ������

The next proposition contains a condition under which a regular
sequence stays regular when the module or the ring is extended�

�



� �� Regular sequences and depth

Proposition ������ Let R be a ring� M an R�module� and x � R a weak

M�sequence� Suppose � � R � S is a ring homomorphism� and N an R��at
S�module� Then x � R and ��x� � S are weak �M �R N��sequences� If
x�M �R N� �� M �R N� then x and ��x� are �M �R N��sequences�

Proof� Multiplication by xi is the same operation on M �N as multipli�
cation by ��xi�� so it su�ces to consider x� The homothety x� � M �M
is injective� and x� � N is injective too� because N is �at� Now x� � N
is just multiplication by x� on M � N� So x� is an �M � N��regular ele�
ment� Next we have �M � N��x��M �N� �� �M�x�M��N� an inductive
argument will therefore complete the proof�

The most important special cases of ����� are given in the following

corollary� In its part �b� we use �M to denote the m �adic completion of a
module M over a local ring �R� m � k� �by this notation we indicate that
R has maximal ideal m and residue class �eld k � R�m ��

Corollary ������ Let R be a Noetherian ring� M a �nite R�module� and x
an M�sequence�

�a� Suppose that a prime ideal p � SuppM contains x� Then x �as a

sequence in Rp � is an Mp �sequence�

�b� Suppose that R is local with maximal ideal m � Then x �as a sequence

in �R� is an �M�sequence�

Proof� Both the extensions R � Rp and R � �R are �at� �a� By hypothesis
Mp �� 
� and Nakayama�s lemma implies Mp �� p Mp � A fortiori we have

xMp �� Mp � �b� It su�ces to note that �M � M � �R is a �nite �R�module�

The interplay between regular sequences and homological invariants
is a major theme of this book� and numerous arguments will be based
on the next proposition�

Proposition ����	� Let R be a ring� M an R�module� and x a weak M�

sequence� Then an exact sequence

N�

��

�� N�

��

�� N�

��

��M �� 


of R�modules induces an exact sequence

N��xN� �� N��xN� �� N��xN� ��M�xM �� 
�

Proof� By induction it is enough to consider the case in which x consists
of a single M�regular element x� We obtain the induced sequence if we
tensor the original one by R��x�� Since tensor product is a right exact
functor� we only need to verify exactness at N��xN�� Let � denote residue
classes modulo x� If �����y� � 
� then ���y� � xz for some z � N� and



���� Regular sequences �

x���z� � 
� By hypothesis we have ���z� � 
� hence there is y� � N�

with z � ���y��� It follows that ���y � xy�� � 
� So y � xy� � ���N��� and
�y � ���� �N�� as desired�

If we want to preserve the exactness of a longer sequence� then we
need a stronger hypothesis�

Proposition ������ Let R be a ring and

N
�
� � � � �� Nm

�m

�� Nm�� �� � � � �� N�

��

�� N�� �� 


an exact complex of R�modules� If x is weakly Ni�regular for all i� then
N

�
� R��x� is exact again�

Proof� Once more one uses induction on the length of the sequence x� So
it is enough to treat the case x � x� Since x is regular on Ni� it is regular
on Im�i�� too� Therefore we can apply ����� to each exact sequence
Ni��� Ni�� � Ni�� � Im�i��� 
�

Easy examples show that a permutation of a regular sequence need
not be a regular sequence� see ������� Nevertheless there are natural
conditions under which regular sequences can be permuted�

Let x�� x� be an M�sequence� and denote the kernel of the multiplica�
tion by x� onM by K � Suppose that z � K � Then we must have z � x�M�
z � x�z

�� and x��x�z�� � 
� whence x�z
� � 
 and z� � K � too� This shows

K � x�K so that K � 
 if Nakayama�s lemma is applicable� Somewhat
surprisingly� x� is always regular on M�x�M� the reader may check this
easily�

Proposition ������ Let R be a Noetherian local ring� M a �nite R�module�
and x � x�� � � � � xn an M�sequence� Then every permutation of x is an

M�sequence�

Proof� Every permutation is a product of transpositions of adjacent
elements� Therefore it is enough to show that x�� � � � � xi��� xi� � � � � xn is
an M�sequence� The hypothesis of the proposition is satis�ed for �M �
M��x�� � � � � xi���M and the �M�sequence xi� � � � � xn� So it su�ces to treat
the case i � � and to show that x�� x� is an M�sequence� In view of the
discussion above we only need to appeal to Nakayama�s lemma�

Quasi�regular sequences� Let R be a ring� M an R�module� and X �
X�� � � � � Xn be indeterminates over R� Then we write M�X � for M �
R�X � and call its elements polynomials with coe�cients in M� If x �
x�� � � � � xn is a sequence of elements of R� then the substitution Xi �� xi
induces an R�algebra homomorphism R�X �� R and also an R�module
homomorphism M�X �� M� We write F�x� for the image of F �M�X �
under this map� �Since the monomials form a basis of the free R�module
R�X �� we may speak of the coe�cients and the degree of an element of
M�X ���



� �� Regular sequences and depth

Theorem ����� �Rees�� Let R be a ring� M an R�module� x � x�� � � � � xn
an M�sequence� and I � �x�� � � � � xn�� Let X � X�� � � � � Xn be indeterminates

over R� If F �M�X � is homogeneous of �total� degree d and F�x� � Id��M�

then the coe�cients of F are in IM�

Proof� We use induction on n� The case n � � is easy� Let n � � and
suppose that the theorem holds for regular sequences of length at most
n� �� We must �rst prove an auxiliary result which is an interesting fact
in itself� let J � �x�� � � � � xn���� then xn is regular on M�JjM for all j 	 ��

In fact� suppose that xny � JjM for some j � �� Arguing by induction
we have y � Jj��M� so y � G�x�� � � � � xn��� where G �M�X�� � � � � Xn��� is
homogeneous of degree j��� Set G� � xnG� Then the theorem applied to
G� � M�X�� � � � � Xn��� yields that the coe�cients of G

� are in JM� Since
xn is regular modulo JM� it follows that the coe�cients of G are in JM
too� and therefore y � JjM�

The proof of the theorem for sequences of length n requires induction
on d � The case d � 
 is trivial� Assume that d � 
� First we reduce to the
case in which F�x� � 
� Since F�x� � Id��M� one has F�x� � G�x� with G
homogeneous of degree d��� Then G �

Pn
i��XiGi with Gi homogeneous

of degree d � Set G�
i � xiGi and G� �

Pn
i��G

�
i� So F � G� is homogeneous

of degree d � and �F � G���x� � 
� Furthermore� F � G� has coe�cients in
IM if and only if this holds for F �

Thus assume that F�x� � 
� Then we write F � G � XnH with
G � M�X�� � � � � Xn���� The auxiliary claim above implies that H�x� �
JdM � IdM� By induction on d the coe�cients of H are in IM�
On the other hand H�x� � H ��x�� � � � � xn��� with H � � M�X�� � � � � Xn���
homogeneous of degree d � As

�G� xnH
���x�� � � � � xn��� � F�x� � 
�

it follows by induction on n that G� xnH
� has coe�cients in JM� Since

xnH
� has its coe�cients in IM� the coe�cients of G must be in IM

too�

Let I be an ideal in R� One de�nes the associated graded ring of R
with respect to I by

grI�R� �
�M
i��

I i�I i���

The multiplication in grI�R� is induced by the multiplication I
i
Ij � I i�j�

and grI�R� is a graded ring with �grI�R��� � R�I � If M is an R�module�
one similarly constructs the associated graded module

grI�M� �
�M
i��

I iM�I i��M�
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It is straightforward to verify that grI�M� is a graded grI�R��module�
�Graded rings and modules will be discussed in Section ���� The
reader not familiar with the basic terminology may wish to consult
����� Let I be generated by x�� � � � � xn� Then one has a natural surjection
R�X � � R�X�� � � � � Xn� � grI�R� which is induced by the natural homo�
morphism R � R�I and the substitution Xi �� �xi � I�I�� Similarly
there is an epimorphism � � M�X � � grI�M�� One �rst de�nes � on
the homogeneous components by assigning to a homogeneous polyno�
mial F � M�X � of degree d the residue class of F�x� in IdM�Id��M�
then � is extended additively� As the reader may check� � is an epi�
morphism of graded R�X ��modules� Obviously IM�X � � Ker�� via the
identi�cation M�X ��IM�X � �� �M�IM��X �� we therefore get an induced
epimorphism � � �M�IM��X �� grI�M�� The kernel of � is generated by
the homogeneous polynomials F � M�X � of degree d � d � N� such that
F�x� � Id��M� So we obtain as a reformulation of ����	

Theorem ������ Let R be a ring� M an R�module� x � x�� � � � � xn an

M�sequence� and I � �x�� Then the map �M�IM��X�� � � � � Xn� � grI�M�
induced by the substitution Xi �� �xi � I�I� is an isomorphism�

This theorem says very precisely to what extent a regular sequence
resembles a sequence of indeterminates� the residue classes �xi � I�I�

operate on grI�M� exactly like indeterminates� Since a regular sequence
may lose regularity under a permutation� whereas ����� is independent
of the order in which x is given� it is not possible to reverse ������ see
however ������� Later on it will be useful to have a name for sequences
x satisfying the conclusion of ������ we call them M�quasi�regular if� in
addition� xM ��M�

Exercises

������ Let � � U � M � N � � be an exact sequence of R�modules� and x

a sequence which is weakly U�regular and �weakly� N�regular� Prove that x is
�weakly� M�regular too�

������� �a� Let x�� � � � � xi� � � � � xn and x� � � � � � x
�
i� � � � � xn be �weakly� M�regular� Show

that x�� � � � � xix
�
i� � � � � xn is �weakly� M�regular� �Hint� In the essential case i � �

one 	nds an exact sequence as in ����
 with M�x�x
�
�M as the middle term��

�b� Prove that xe�� � � � � � x
en
n is �weakly� M�regular for all ei � ��

������� Prove that the converse of ����� holds if� in the situation of ������ N is
faithfully �at over R�

������� �a� Prove that if x is a weak M�sequence� then TorR� �M�R��x�� � ��

�b� Prove that if� in addition� x is a weak R�sequence� then TorRi �M�R��x�� � �
for all i � ��

������� Let R � KX� Y �Z �� k a 	eld� Show that X� Y �� � X�� Z �� � X� is an
R�sequence� but Y �� �X�� Z ��� X�� X is not�
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������� Prove that x�� � � � � xn is M�quasi�regular if and only if �x�� � � � � �xn � I�I� is a
grI �M��regular sequence where I � �x� � � � � � xn��

������� Suppose that x is M�quasi�regular� and let I � �x�� � � � � xn�� Prove
�a� if x�z � I iM for z �M� then z � I i��M�
�b� x�� � � � � xn is �M�x�M��quasi�regular�
�c� if R is Noetherian local and M is 	nite� then x is an M�sequence�

��� Grade and depth

Let R be a Noetherian ring and M an R�module� If x � x�� � � � � xn is an
M�sequence� then the sequence �x�� � �x�� x�� � � � � � �x�� � � � � xn� ascends
strictly for obvious reasons� Therefore an M�sequence can be extended
to a maximal such sequence� an M�sequence x �contained in an ideal I�
is maximal �in I�� if x�� � � � � xn�� is not an M�sequence for any xn�� � R
�xn�� � I�� We will prove that all maximalM�sequences in an ideal I with
IM �� M have the same length if M is �nite� This allows us to introduce
the fundamental notions of grade and depth�

In connection with regular sequences� �nite modules over Noetherian
rings are distinguished for two reasons� �rst� every zero�divisor of M
is contained in an associated prime ideal� and� second� the number of
these prime ideals is �nite� Both facts together imply the following
proposition that is �among the most useful in the theory of commutative
rings� �Kaplansky ������ p� ����

Proposition ������ Let R be a Noetherian ring� and M a �nite R�module�
If an ideal I � R consists of zero�divisors of M� then I � p for some

p � AssM�

Proof� If I �� p for all p � AssM� then there exists a � I with a �� p for
all p � AssM� This follows immediately from ������

The following lemma� which we have just used in its simplest form� is
the standard argument of �prime avoidance��

Lemma ������ Let R be a ring� p �� � � � � p m prime ideals� M an R�module� and
x�� � � � � xn � M� Set N �

Pn
i��Rxi� If Np j

�� p jMp j
for j � �� � � � � m� then

there exist a�� � � � � an � R such that x��
Pn

i�� aixi �� p jMp j
for j � �� � � � � m�

Proof�We use induction onm� and so suppose that there are a��� � � � � a
�
n � R

for which x�� � x� �
Pn

i�� a
�
ixi �� p jMp j

for j � �� � � � � m � �� Moreover�
it is no restriction to assume that the p i are pairwise distinct and that

p m is a minimal member of p �� � � � � p m� So there exists r � �
Tm��

j�� p j� n p m�

Put x�i � rxi for i � �� � � � � n and N� �
Pn

i��Rx
�
i� Since r �� p m we have

N�
p m
� Np m

� On the other hand� as r � p j for j � �� � � � � m� �� it follows

that x�� � x�i �� p jMp j
for i � �� � � � � n and j � �� � � � � m � �� If x�� �� p mMp m

�

then x�� is the element desired� otherwise x�� � x�i �� p mMp m
for some

i � f�� � � � � ng� and we choose x�� � x�i�
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Note that if M � R and N � I � R� then the condition Np j
�� p jMp j

simpli�es to I �� p j �

Suppose that an ideal I is contained in p � AssM� By de�nition�
there exists z �M with p � Ann z� Hence the assignment � �� z induces
a monomorphism �� � R�p � M� and thus a non�zero homomorphism
� � R�I �M� This simple observation allows us to describe in homolog�
ical terms that a certain ideal consists of zero�divisors�

Proposition ������ Let R be a ring� and M�N R�modules� Set I � AnnN�

�a� If I contains an M�regular element� then HomR�N�M� � 
�
�b� Conversely� if R is Noetherian� and M� N are �nite� HomR�N�M� � 

implies that I contains an M�regular element�

Proof� �a� is evident� �b� Assume that I consists of zero�divisors of M�
and apply ����� to �nd a p � AssM such that I � p � By hypothesis�
p � SuppN� so Np �k�p � �� 
 by Nakayama�s lemma� and since Np �k�p �
is just a direct sum of copies of k�p �� one has an epimorphism Np � k�p ��
�By k�p � we denote the residue class �eld Rp �p Rp of Rp �� Note that
p Rp � AssMp � Hence the observation above yields a non�zero �� �
HomRp

�Np �Mp �� Since HomRp
�Np �Mp � �� HomR�N�M�p � it follows that

HomR�N�M� �� 
� �See ������ Theorem ���� for the isomorphism just
applied��

Lemma ����	� Let R be a ring� M� N be R�modules� and x � x�� � � � � xn a
weak M�sequence in AnnN� Then

HomR�N�M�xM� �� ExtnR�N�M��

Proof� We use induction on n� starting from the vacuous case n � 
�
Let n 	 �� and set x� � x�� � � � � xn��� Then the induction hypothesis
implies that Extn��

R �N�M� �� HomR�N�M�x�M�� As xn is �M�x�M��

regular� Extn��
R �N�M� � 
 by ������ Therefore the exact sequence


 �� M
x�

�� M ��M�x�M �� 


yields an exact sequence


 �� Extn��
R �N�M�xM�

�
�� ExtnR�N�M�

�
�� ExtnR�N�M��

The map � is multiplication by x� inherited from M� but multiplication
by x� on N also induces �� see ������ Theorem 	���� Since x� � AnnN�
one has � � 
� Hence � is an isomorphism� and a second application of
the induction hypothesis yields the assertion�

Let R be Noetherian� I an ideal� M a �nite R�module with M �� IM�
and x � x�� � � � � xn a maximal M�sequence in I � From ����� and �����
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we have� since I contains an �M��x�� � � � � xi���M��regular element for
i � �� � � � � n�

Exti��
R �R�I�M� �� HomR

�
R�I�M��x�� � � � � xi���M

�
� 
�

On the other hand� since IM �� M and x is a maximal M�sequence in I �
then I must consist of zero�divisors of M�xM� whence

ExtnR�R�I�M� �� HomR�R�I�M�xM� �� 
�

We have therefore proved

Theorem ����� �Rees�� Let R be a Noetherian ring� M a �nite R�module�
and I an ideal such that IM �� M� Then all maximal M�sequences in I
have the same length n given by

n � minfi � ExtiR�R�I�M� �� 
g�

De�nition ������ Let R be a Noetherian ring� M a �nite R�module� and
I an ideal such that IM �� M� Then the common length of the maximal
M�sequences in I is called the grade of I on M� denoted by

grade�I�M��

We complement this de�nition by setting grade�I�M� � � if IM � M�
This is consistent with ������

grade�I�M� � � � ExtiR�R�I�M� � 
 for all i�

For� if IM � M� then SuppM � SuppR�I � � by Nakayama�s lemma�
hence

SuppExtiR�R�I�M� � SuppM � SuppR�I � �����

conversely� if ExtiR�R�I�M� � 
 for all i� then ����� gives IM � M�
The inclusion in ��� results from the natural isomorphism

ExtiRp
�Np �Mp � �� ExtiR�N�M�p

which holds if R is Noetherian� N a �nite R�module� M an arbitrary
R�module� and p � SpecR� see ������ Theorem ��
�

A special situation will occur so often that it merits a special notation�

De�nition ������ Let �R� m � k� be a Noetherian local ring� and M a �nite
R�module� Then the grade of m on M is called the depth of M� denoted

depthM�

Because of its importance we repeat the most often used special case
of ������
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Theorem ������ Let �R� m � k� be a Noetherian local ring� and M a �nite

non�zero R�module� Then depthM � minfi � ExtiR�k�M� �� 
g�

Some formulas for grade� We now study the behaviour of grade�I�M�
along exact sequences�

Proposition ������ Let R be a Noetherian ring� I � R an ideal� and


� U �M � N � 
 an exact sequence of �nite R�modules� Then

grade�I�M� 	 minfgrade�I� U�� grade�I� N�g�

grade�I� U� 	 minfgrade�I�M�� grade�I� N� � �g�

grade�I� N� 	 minfgrade�I� U�� �� grade�I�M�g�

Proof� The given exact sequence induces a long exact sequence

� � � � Exti��
R �R�I�N��ExtiR�R�I�U�� ExtiR�R�I�M�

� ExtiR�R�I�N�� Exti��
R �R�I�U�� � � �

One observes that ExtiR�R�I�M� � 
 if ExtiR�R�I�U� and ExtiR�R�I�N�
both vanish� Therefore the �rst inequality follows from ����� and our
discussion of the case grade�I� � � �� Completely analogous arguments
show the second and the third inequality�

The next proposition collects some formulas which are useful in the
computation of grades� �In the sequel V �I� denotes the set of prime ideals
containing I ��

Proposition �����
� Let R be a Noetherian ring� I� J ideals of R� and M a

�nite R�module� Then

�a� grade�I�M� � inffdepthMp � p � V �I�g�

�b� grade�I�M� � grade�Rad I�M��

�c� grade�I � J�M� � minfgrade�I�M�� grade�J�M�g�

�d� if x � x�� � � � � xn is an M�sequence in I � then grade�I��x�� M�xM� �
grade�I�M�xM� � grade�I�M� � n�

�e� if N is a �nite R�module with SuppN � V �I�� then

grade�I�M� � inffi � ExtiR�N�M� �� 
g�

Proof� �a� It is evident from the de�nition that grade�I�M� � grade�p �M�
for p � V �I�� and it follows from ����� that grade�p �M� � depthMp �
Furthermore� if grade�I�M� � �� then SuppM � V �I� � � so that
depthMp � � for all p � V �I�� Thus suppose IM �� M and choose
a maximalM�sequence x in I � By ����� there exists p � Ass�M�xM� with
I � p � Since p Rp � Ass�M�xM�p and �M�xM�p

�� Mp �xMp � the ideal
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p Rp consists of zero�divisors of Mp �xMp � and x �as a sequence in Rp � is
a maximal Mp �sequence�

�b� and �c� follow easily from �a��
�d� Set �R � R��x�� �I � I��x�� and �M � M�xM� Elementary argu�

ments show that IM � M � I �M � �M � �I �M � �M� Furthermore
y�� � � � � yn � I form an �M�sequence if and only if �y�� � � � � �yn � �I form such
a sequence� This proves the �rst equation� The second equation results
from ������

�e� The hypothesis entails that RadAnnN � Rad I � By �b� we may
therefore assume that I � AnnN� Now one repeats the proof of �����
�and the discussion of the case IM � M� with R�I replaced by N�

The name �grade� was originally used by Rees ��
�� for a di erent�
though related invariant�

De�nition ������� Let R be a Noetherian ring and M �� 
 a �nite R�
module� Then the grade of M is given by

gradeM � minfi � ExtiR�M�R� �� 
g�

For systematic reasons the grade of the zero�module is in�nity�

It follows directly from �����
�e� that gradeM � grade�AnnM�R�� It
is customary to set

grade I � gradeR�I � grade�I� R��

for an ideal I � R� and we follow this convention� �Of course� grade I
has two di erent meanings now� but we will never use it to denote the
grade of the module I ��

Depth and dimension� Let �R� m � be Noetherian local and M a �nite R�
module� All the minimal elements of SuppM belong to AssM� Therefore�
if x � m is an M�regular element� then x �� p for all minimal elements of
SuppM� and induction yields dimM�xM � dimM � n if x � x�� � � � � xn
is an M�sequence� �Note that dimM�xM 	 dimM � n is automatic� see
A���� We have proved�

Proposition ������� Let �R� m � be a Noetherian local ring and M �� 
 a

�nite R�module� Then every M�sequence is part of a system of parameters

of M� In particular depthM � dimM�

The inequality in ������ can be somewhat re�ned�

Proposition ������� With the notation of ������ one has depthM �
dimR�p for all p � AssM�

Proof� We use induction on depthM� There is nothing to prove for
depthM � 
� If depthM � 
� then there exists an M�regular x � m � For
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p � AssM we choose z � M such that Rz is maximal among the cyclic
submodules of M annihilated by p � If z � xM� then z � xy with y � M�
and p y � 
 since x is M�regular� moreover� Rz is a proper submodule of
Ry� contrary to the choice of z� Therefore p consists of zero�divisors of
M�xM� and is contained in some q � Ass�M�xM�� As x �� p � we have
p �� Supp�M�xM�� and thus p �� q � Now depth�M�xM� � depthM � �
by �����
� whence� by induction�

dimR�p � dimR�q 	 depth�M�xM� � depthM � ��

A global variant of ������ says that height bounds grade�

Proposition �����	� Let R be a Noetherian ring and I � R an ideal� Then

grade I � height I �

Proof� Since grade I � inffdepthRp � p � V �I�g by �����
� and height I �
inffdimRp � p � V �I�g� the assertion follows from �������

Depth� type� and �at extensions� Finallywe investigate how depth behaves
under �at local extensions� As a by�product we obtain a result on the
behaviour of the type of a module under such extensions� This is an
invariant which re�nes the information given by the depth�

De�nition ������� Let �R� m � k� be a Noetherian local ring� and M a �nite
non�zero R�module of depth t� The number r�M� � dimk Ext

t
R�k�M� is

called the type of M�

Proposition ������� Let � � �R� m � k� � �S� n � l� be a homomorphism of

Noetherian local rings� Suppose M is a �nite R�module� and N is a �nite

S�module which is �at over R� Then
�a� depthS M �R N � depthR M � depthS N�m N�

�b� rS �M �R N� � rR�M� � rS �N�m N��

The proof of the proposition is by reduction to the case of depth 
�
We collect the essential arguments in a lemma�

Lemma ������� Under the hypotheses of ������ the following hold	

�a� dimlHomS �l�M � N� � dimkHomR�k�M� � dimlHomS �l� N�m N��

�b� if y is an �N�m N��sequence in S � then y is an �M�R N��sequence� and
N�yN is �at over R�

Proof� �a� Set T � S�m S � There is a natural isomorphism

HomS

�
l�HomS �T �M � N�

�
�� HomS �l�M �N�����

since the modules on both sides can be identi�ed with the submodule
U � fz � M � N � n z � 
g of M � N� As N is �at over R� we have a
natural isomorphism

HomS �T �M � N� � HomS �k � S�M �N� �� HomR�k�M� � N�
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�see ������ ���� and ������ Now HomR�k�M� �� ks for some s 	 
� and
so HomR�k�M� � N �� �N�m N�s � In conjunction with ���� this yields the
equation asserted�

�b� One has a natural isomorphism �M�N��J�M�N� ��M��N�JN�
for an arbitrary ideal J � S � Therefore we may use induction on the
length n of y� and only the case n � �� y � y needs justi�cation�

By Krull�s intersection theorem one has
T�

i�� m i�M�N� � 
� Suppose
that yz � 
 for some z � M � N� If z �� 
� then there exists i such
that z � m i�M � N� n m i���M � N�� and y would be a zero�divisor on
m i�M �N��m i���M � N�� However� consider the embedding m iM �M�
Since N is �at� the induced map m iM�N �M�N is also injective� and
its image is m i�M � N�� The same reasoning for m i�� and �atness again
then yield an isomorphism

m i�M � N�
�

m i���M �N� �� �m iM�m i��M� �N �� kt �N �� �N�m N�t

for some t 	 
� Since y is regular on N�m N� it must be regular on

m i�M � N��m i���M � N��
In order to test �atness of N�yN it su�ces to consider exact sequences


 �� M� ��M� ��M� �� 


of �nite R�modules ������� Theorem ������ By hypothesis


 ��M� �N ��M� �N ��M� �N �� 


is also exact� As has been shown previously� y is regular on M��N� and
�M��N��y�M� �N� ��M��N�yN� Therefore ����� yields the exactness
of


 ��M� � N�yN ��M� � N�yN �� M� � N�yN �� 
�

Proof of ������� Let x � x�� � � � � xm be a maximal M�sequence� and
y � y�� � � � � yn a maximal �N�m N��sequence� First� ��x� � ��x��� � � � � ��xm�
is an �M � N��sequence� see ������ Second� by �����	� y is an � �M � N��
sequence where �M � M�xM� Since �M � N �� �M � N����x��M � N�� it
follows that ��x�� y is an M �N�sequence�

Set N� � N�yN� Then N��m N� �� �N�m N��y�N�m N�� and

�M �N�
�
���x�� y��M � N� �� �M � N� �

An application of ����� therefore gives the isomorphisms

HomR�k� �M� �� ExtmR�k�M�� HomS �l� N
��m N�� �� ExtnS�l� N�m N��

HomS �l� �M � N�� �� Extm�nS �l�M �N��

Part �a� of �����	 implies that diml Ext
m�n
S �l�M � N� has the dimension

required for �b�� and in particular is non�zero� Together with the fact that
��x�� y is an �M �N��sequence this proves depth�M �N� � m� n�



���� Grade and depth ��

The type of a module of depth 
 is the dimension of its socle�

De�nition ������� Let M be a module over a local ring �R� m � k�� Then

SocM � �
 � m �M �� HomR�k�M�

is called the socle of M�

For ease of reference we formulate the following lemma which was
already veri�ed in the proof of �������

Lemma ������� Let �R� m � k� be a Noetherian local ring� M a �nite R�
module and x a maximal M�sequence� Then r�M� � dimk Soc�M�xM��

Exercises

������� Let k be a 	eld and R � kX��Y �� Deduce that X� Y and � � XY are
maximal R�sequences� �This example shows that the condition IM �� M in �����
is relevant��

������� Let R be a Noetherian ring� I � R an ideal� I � �x� � � � � � xn�� and M a
	nite R�module with IM �� M� Set g � grade�I�M�� Prove
�a� I can be generated by elements y� � � � � � yn such that yi� � � � � � yih form an M�
sequence for all i�� � � � � ih with � � i� � � � � � ih � n� h � g�
�b� if y�� � � � � yn satis	es �a�� then� in fact� every permutation of yi� � � � � � yih is an
M�sequence�
Hint� It is possible to choose yi � xi �

P
j ��i ajxj � Use the discussion above �����

for �b��

������� Let R be a Noetherian ring� I � R an ideal� and M a 	nite R�module with
IM �� M� Set �R � R�AnnM�
�a� Prove that grade�I�M� � height I �R�
�b� Give an example where grade�I�M� � height I �
�c� Show that if I � �x� � � � � � xn�� then grade�I�M� � n�

������� Let R be a Noetherian local ring� and I � R an ideal� Show grade I �
depthR � dimR�I � �Hint� Use ��������

������� Let R be a Noetherian ring� M a 	nite R�module� and I an ideal of R� Show
that grade�I�M� � � if and only if the natural homomorphismM � HomR�I�M�
is an isomorphism�

������� Let � � �R� m � � �S� n � be a homomorphism of local rings� and N an
R��at S �module such that N�m N has 	nite length over S � Show that for every
	nite length R�module M� �S �M � N� � �R�M� � �S �N�m N�� �The symbol �
denotes length�� Hint� use induction on ��M��

������� Let � � �R� m � � �S� n � be a homomorphism of Noetherian local rings�
and M an S �module which is 	nite as an R�module�
�a� Suppose p � AssS M� and let x �M with AnnS x � p � Prove that � induces an
embedding R��p 	 R� � S�p 
� Sx which makes S�p a 	nite R��p 	 R��module�
Conclude that p 	 R �� m � if p �� n �
�b� Show that depthR M � depthS M�
�c� Suppose in addition that � is surjective� Prove rR �M� � rS �M��
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�����	� Let R be a Noetherian ring� M a 	nite R�module� and N an arbitrary
R�module� Deduce that AssHomR�M�N� � SuppM 	 AssN�

��� Depth and projective dimension

Let R be a ring� and M an R�module� M has an augmented projective
resolution

P
�
� � � � �� Pn

�n

�� Pn�� �� � � � �� P�

��

�� P�

��

��M �� 
�

�By de�nition a projective resolution is non�augmented� i�e�M is replaced
by 
� for the most part it is clear from the context whether one uses a non�
augmented resolution or an augmented one� so that one need not mention
the attribute �augmented� explicitly�� Set M� � M and Mi � Ker�i�� for
i 	 �� The modules Mi depend obviously on P�� However� M determines
Mi up to projective equivalence ������� Theorem ���� and therefore it is
justi�ed to call Mi the i�th syzygy of M� The projective dimension of M�
abbreviated proj dimM� is in�nity if none of the modulesMi is projective�
Otherwise proj dimM is the least integer n for which Mn is projective�
replacing Pn by Mn one gets a projective resolution of M of length n�


 ��Mn �� Pn�� �� � � � �� P� ��M �� 
�

For a �nite module M over a Noetherian local ring �R� m � k� there is
a very natural condition which� if satis�ed by P�� determines P� uniquely�
It is a consequence of Nakayama�s lemma that x�� � � � � xm � M form a
minimal system of generators of M if and only if the residue classes
�x�� � � � � �xm � M�m M �� M � k are a k�basis of M � k� Therefore m �
dimkM � k� and

��M� � dimkM � k

is the minimal number of generators of M� Set �� � ��M�� We choose a
minimal system x�� � � � � x�� of generators ofM and specify an epimorphism

�� � R�� � M by ���ei� � xi where e�� � � � � e�� is the canonical basis of

R�� � Next we set �� � ��Ker��� and de�ne similarly an epimorphism
R�� � Ker��� Proceeding in this manner we construct a minimal free

resolution

F
�
� � � � �� R�n

�n

�� R�n�� �� � � � �� R��
��

�� R��
��

�� M �� 
�

It is left as an exercise for the reader to prove that F
�
is determined by

M up to an isomorphism of complexes� The number �i�M� � �i is called
the i�th Betti number of M�

Proposition ������ Let �R� m � k� be a Noetherian local ring� M a �nite

R�module� and

F� � � � � �� Fn
�n

�� Fn�� �� � � � �� F�

��

�� F� �� 




��
� Depth and projective dimension �	

a free resolution of M� Then the following are equivalent	

�a� F
�
is minimal�

�b� �i�Fi� � m Fi�� for all i 	 ��
�c� rankFi � dimk Tor

R
i �M� k� for all i 	 
�

�d� rankFi � dimk Ext
i
R�M� k� for all i 	 
�

Proof� The equivalence of �a� and �b� follows easily from Nakayama�s
lemma� Since TorRi �M� k� � Hi�F�

� k�� �c� holds if and only if �i � k � 

for all i 	 
� The latter condition is evidently equivalent to �b�� To relate
�b� to �d� one uses that ExtiR�M� k� � H i�HomR�F�

� k��

Corollary ������ Let �R� m � k� be a Noetherian local ring� and M a �nite

R�module� Then �i�M� � dimk Tor
R
i �M� k� for all i and

proj dimM � supfi � TorRi �M� k� �� 
g�

The following theorem� the �Auslander�Buchsbaum formula�� is not
only of theoretical importance� but also an e ective instrument for the
computation of the depth of a module�

Theorem ����� �Auslander�Buchsbaum�� Let �R� m � be a Noetherian local

ring� and M �� 
 a �nite R�module� If proj dimM � �� then

proj dimM � depthM � depthR�

The proof is by induction on depthR� We isolate the main arguments
in two lemmas� the �rst of which� in view of a later application� is more
general than needed presently�

Lemma ����	� Let �R� m � k� be a local ring� and � � F � G a homomorphism

of �nite R�modules� Suppose that F is free� and let M be an R�module with
m � AssM� Suppose that ��M is injective� Then

�a� �� k is injective�

�b� if G is a free R�module� then � is injective� and ��F� is a free direct

summand of G�

Proof� Since m � AssM� there exists an embedding 	 � k � M� As F is
a free R�module� the map F � 	 is also injective� Furthermore we have a
commutative diagram

F � k
F��

����� F �M

��k

��y ��y��M
G� k ����� G�M

If ��M is injective� then �� k is injective too� This proves �a��
For �b� one notes that its conclusion is equivalent to the injectivity of

�� k� This is an easy consequence of Nakayama�s lemma�
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Lemma ������ Let �R� m � be a Noetherian local ring� and M a �nite R�
module� If x � m is R�regular and M�regular� then

proj dimR M � proj dimR��x� M�xM�

Proof� Choose an augmented minimal free resolution F� of M� Then
F� � R��x� is exact by ������ and therefore it is a minimal free resolution
of M�xM over R��x�� Now apply ������

Proof of ������ Let depthR � 
 �rst� By hypothesis M has a �minimal�
free resolution

F� � 
 �� Fn
�n

�� Fn�� �� � � � �� F� �� F� �� M �� 


with n � proj dimM� Since depthR � 
� the maximal ideal m is in
AssR� If n 	 �� i�e� if �n is really present� then� as shown in ������
�n maps Fn isomorphically onto a free direct summand of Fn��� in
contradiction to proj dimM � n� Therefore n � 
� and furthermore
depthM � depthR � 
 since M is a free R�module�

Let now depthR � 
� Suppose �rst that depthM � 
� Then ����
yields depthM� � � for a �rst syzygy M� of M� Since proj dimM� �
proj dimM � �� it is enough to prove the desired formula for M�� Thus
we may assume depthM � 
� Then m �� AssR and m �� AssM� So
m contains an element x which is both R�regular and M�regular� The
formulas for the passage from M to M�xM in �����
 and ����� yield

depthR��x�R��x� � depthR � �� depthR��x�M�xM � depthR M � ��

proj dimR��x� M�xM � proj dimM�

Therefore induction completes the proof�

Exercises

������ Let R be a Noetherian local ring� M a 	nite R�module� and x an M�sequence
of length n� Show proj dim�M�xM� � proj dimM � n�

����	� Let R be a Noetherian local ring� and N an n�th syzygy of a 	nite R�module
in a 	nite free resolution� Prove that depthN � min�n�depthR��

��	 Some linear algebra

In this section we collect several notions and results which may be
classi�ed as �linear algebra�� torsion�free and re�exive modules� the rank
of a module� the acyclicity criterion of Buchsbaum and Eisenbud� and
perfect modules�
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Torsion�free and re�exive modules� Let R be a ring� and M an R�module�
If the natural map M �M �Q� where Q is the total ring of fractions of
R� is injective� then M is torsion�free� it is a torsion module if M �Q � 
�
The dual of M is the module HomR�M�R�� which we usually denote
by M�� the bidual then is M��� and analogous conventions apply to
homomorphisms� The bilinear map M 
M� � R� �x� �� �� ��x�� induces
a natural homomorphism h � M � M��� We say that M is torsionless

if h is injective� and that M is re�exive if h is bijective� Some relations
between the notions just introduced are given in the exercises� Here we
note a useful criterion�

Proposition ��	��� Let R be a Noetherian ring� and M a �nite R�module�
Then	

�a� M is torsionless if and only if

�i� Mp is torsionless for all p � AssR� and
�ii� depthMp 	 � for p � SpecR with depthRp 	 ��

�b� M is re�exive if and only if

�i� Mp is re�exive for all p with depthRp � �� and
�ii� depthMp 	 � for p � SpecR with depthRp 	 ��

Proof� Consider the natural map h � M � M�� and set U � Ker h�
C � Cokerh� Note that the construction of h commutes with localization
in the situation considered� Therefore the necessity of conditions �i� in
�a� and �b� is obvious� Next Exercise ����� implies

depthM��
p 	 min��� depthRp �

for all p � SpecR� That �b��ii� is necessary for re�exivity follows directly
from this inequality� If M is torsionless� then Mp is isomorphic to
a submodule of M��

p � and we get depthMp 	 min��� depthRp � for all
p � SpecR� So �a��ii� is necessary for M to be torsionless�

As to the su�ciency of �a��i� and �ii�� note that Up � 
 for all
p � AssR by �i�� and� by �ii�� depthUp 	 � if depthRp 	 �� It follows
that AssU � �� hence U � 
�

For the su�ciency of �b��i� and �ii� we may now use that �a� gives us
an exact sequence 
�M � M��� C � 
� If depthRp � �� then Cp � 

by �i�� If depthRp 	 �� then depthMp 	 � by �ii�� and depthM��

p 	 �
by the inequality above� Therefore depthCp 	 �� and it follows that
AssC � ��

Rank� The dimension of a �nite dimensional vector space over a �eld
is given either by the minimal number of generators or by the max�
imal number of linearly independent elements� The second aspect of
�dimension� is generalized in the notion of �rank��



�
 �� Regular sequences and depth

De�nition ��	��� Let R be a ring� M an R�module� and Q be the total
ring of fractions of R� Then M has rank r if M � Q is a free Q�module
of rank r� If � � M � N is a homomorphism of R�modules� then � has
rank r if Im� has rank r�

Proposition ��	��� Let R be a Noetherian ring� and M an R�module with

a �nite free presentation F�

�
�� F� �� M �� 
� Then the following are

equivalent	

�a� M has rank r�
�b�M has a free submodule N of rank r such thatM�N is a torsion module�

�c� for all prime ideals p � AssR the Rp �module Mp is free of rank r�
�d� rank� � rankF� � r�

Proof� �a�  �b�� A free basis x�� � � � � xr of M � Q can be formed from
elements xi � M �multiply by a suitable common denominator�� Now
take N �

P
Rxi�

�b� �a�� This is trivial�
�a� �c�� Mp is a localization of M �Q�
�c�  �a�� Q is a semi�local ring� Its localizations with respect to its

maximal ideals are just the localizations of R with respect to the maximal
elements of AssR� By hypothesisM is therefore a projective module over
Q� and moreover the localizations with respect to the maximal ideals of
Q have the same rank r� Such a module is free� see Lemma ����� below�

�c�� �d�� In view of the equivalence of �a� and �c� we can replace
�d� by the condition that �Im��p is free and rank�Im��p � rankF� � r
for all p � AssR� Now consider the exact sequence


 �� �Im��p �� �F��p ��Mp �� 
�

If Mp is free� then �Im��p must be free� Since p � AssR� the converse is
also true� see ������

Lemma ��	�	� Let R be a semi�local ring� and M a �nite projective R�
module� Then M is free if the localizations Mm have the same rank r for

all maximal ideals m of R�

Proof� We use induction on r� The case r � 
 is trivial� Suppose that
r � 
� Then ����� �with N � M and p �� � � � � p m denoting the maximal
ideals of R� yields an element x �M such that x �� m Mm for all maximal
ideals of M� Thus x is a member of a minimal system of generators
of Mm � Since every such system is a basis of the free module Mm � one
concludes that �M�Rx�m is free of rank r��� By the induction hypothesis
M�Rx is free of rank r��� Therefore M �� Rx�M�Rx� In particular Rx
is a projective R�module� But Rx is also free� the natural epimorphism
� � R � Rx yields an isomorphism �m � Rm � �Rx�m for every maximal
ideal m � Since �Ker��m � Ker�m it follows that Ker� � 
�
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Rank is additive along exact sequences�

Proposition ��	��� Let R be a Noetherian ring� and 
� U �M � N � 

an exact sequence of �nite R�modules� If two of U� M� N have a rank� then

so does the third� and rankM � rankU � rankN�

Proof� In view of ����� we may assume that R is local and of depth 
�
Then two of U� M� N are free� If U and N are free� then so is M� Thus
M is always free �after the reduction to depth 
�� and the result follows
from the equivalence of ������a� and �d��

Corollary ��	��� Let R be a Noetherian ring� and M an R�module with

a �nite free resolution F� � 
 � Fs � Fs�� � � � � � F� � F�� Then

rankM �
Ps

j������
j rankFj �

Proof� Observe ����� and use induction on s�

Corollary ��	��� Let R be a Noetherian ring� and I �� 
 an ideal with a

�nite free resolution� Then I contains an R�regular element�

Proof� By ����� I has a rank� and that rank I � rankR�I � rankR � �
follows immediately from ������ Since I is torsion�free and non�zero�
the only possibility is rank I � �� whence rankR�I � 
� Thus R�I is
annihilated by an R�regular element�

Ideals of minors and Fitting invariants� Let U be an m
n matrix over R
where m� n 	 
� For t � �� � � � �min�m� n� we then denote by It�U� the ideal
generated by the t�minors of U �the determinants of t 
 t submatrices��
For systematic reasons one sets It�U� � R for t � 
 and It�U� � 
 for
t � min�m� n�� If � � F � G is a homomorphism of �nite free R�modules�
then � is given by a matrix U with respect to bases of F and G� It
is an elementary exercise to verify that the ideals It�U� only depend on
�� Therefore we may put It��� � It�U�� It is just as easy to show that
It��� is already determined by the submodule Im� of G� As proved by
Fitting in ���� these ideals are even invariants of Coker� �when counted
properly�� and therefore called the Fitting invariants of Coker�� let

F�

�
�� F� ��M �� 
 and G�

�
�� G� ��M �� 


be �nite free presentations of the R�module M� and n � rankF�� p �
rankG�� then In�u��� � Ip�u��� for all u 	 
� �The proof is left as an
exercise for the reader�� This justi�es the term u�th Fitting invariant of M
for In�u����

It is an important property of the ideals It��� that their formation
commutes with ring extensions� if S is an R�algebra� then It�� � S� �
It���S � �Simply consider � as given by a matrix��
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The ideals It��� determine the minimal number ��Mp � of generators
of a localization in the same way that they control the vector space
dimension of M if R is a �eld�

Lemma ��	��� Let R be a ring� M an R�module with a �nite free presenta�

tion F�

�
�� F� ��M �� 
� and p a prime ideal� Then the following are

equivalent	

�a� It��� �� p �

�b� �Im��p contains a �free� direct summand of �F��p of rank t�
�c� ��Mp � � rankF� � t�

Proof� It is no restriction to assume that R � Rp � Nakayama�s lemma
entails that ��M� � ��M�p M�� Similarly it implies that Im� contains a
�free� direct summand of F� of rank t if and only if there are elements
x�� � � � � xt � Im� which are linearly independent modulo p F�� �Note that
every direct summand of a �nite free module over a local ring is free itself
� again an application of Nakayama�s lemma�� After these observations
we may replace R by the �eld R�p � For vector spaces over �elds the
equivalence of �a�� �b� and �c� is an elementary fact�

Lemma ��	��� With the notation of ������ the following are equivalent	

�a� It��� �� p and It�����p � 
�
�b� �Im��p is a free direct summand of �F��p of rank t�
�c� Mp is free and rankMp � rankF� � t�

Proof�We may assume that R � Rp � Then each of �b� and �c� is equivalent
to the split exactness of the sequence 
� Im�� F� �M � 
�

If �a� holds� then� with respect to suitable bases of F� and F�� the
matrix of � has the form �

idt 


 


�
where idt is the t 
 t identity matrix� This implies �b�� The converse is
seen similarly�

Let M be a �nite module over a Noetherian ring R� Then M is a
projective module �of rank r� if and only if Mp is a free Rp �module �of
rank r� for all p � SpecR� Combining this fact with ���� we obtain the
global version of �����

Proposition ��	��
� Let R be a Noetherian ring� and M a �nite R�module

with a �nite free presentation F�

�
�� F� ��M �� 
� Then the following

are equivalent	

�a� Ir��� � R and Ir����� � 
�
�b� M is projective and rankM � rankF� � r�

The rank of a homomorphism � � F � G is determined by the ideal
It���� just as in elementary linear algebra�
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Proposition ��	���� Let R be a Noetherian ring� and let � � F � G be a

homomorphism of �nite free R�modules� Then rank� � r if and only if

grade Ir��� 	 � and Ir����� � 
�

The easy proof is left as an exercise for the reader�

The Buchsbaum�Eisenbud acyclicity criterion� Let R be a ring� A complex

G
�
� � � � �� Gm

�m

�� Gm�� �� � � � �� G�

��

�� G� �� 


of R�modules is called acyclic if Hi�G�
� � 
 for all i � 
� and split acyclic

if it is acyclic and �i���Gi��� is a direct summand of Gi for i 	 
�
Let R be a Noetherian ring� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� We want to develop a criterion for
F� to be acyclic� This criterion will involve ideals generated by certain
minors of the homomorphisms �i� A �rst relation between the ideals
It��� and the acyclicity of complexes is given in the next proposition�

Proposition ��	���� Let R be a ring� M an R�module�

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


be a complex of �nite free R�modules� and p � R be a prime ideal� Set

ri �
Ps

j�i����
j�i rankFj for i � �� � � � � s� Then the following are equivalent	

�a� F� � Rp is split acyclic�

�b� Iri��i� �� p for i � �� � � � � s�

Furthermore� It��i�p � 
 for all i � �� � � � � s and t � ri� if one of these

conditions holds�

If p � AssM� then �a� and �b� are equivalent to
�c� F� �Mp is acyclic�

Proof� We may suppose that R � Rp �
�a�  �b�� If F� is split acyclic� then F� � R�p is a �split� acyclic

complex of vector spaces over R�p � so we can refer to elementary linear
algebra�

�b�  �a�� We again use induction� and may assume that Coker��

is a free R�module of rank r�� According to ������ Im�� contains a free
direct summand U of F� of rank r�� So we get an induced epimorphism
Coker�� � U of free R�modules� both of which have rank r�� Such a
map must be an isomorphism� One easily concludes that Im�� � U�
Hence F� is split acyclic�

That It��i� � 
 for t � ri� follows most easily from �a� in conjunction
with �����
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�c�  �a�� Let F �
�
be the truncation 
 � Fs � � � � � F� � 
� Then

F �
�
�M is acyclic� arguing inductively� we may therefore suppose that

F �
�
is split acyclic� Then F �� � Coker�� is free� and the induced map

F �� �M � F� �M is injective by hypothesis� By virtue of ������ F �� is
mapped isomorphically onto a free direct summand of F��

�a� �c�� This is evident�

We have completed our preparations for the following important and
extremely useful acyclicity criterion�

Theorem ��	��� �Buchsbaum�Eisenbud�� Let R be a Noetherian ring� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� Set ri �
Ps

j�i����
j�i rankFj � Then the

following are equivalent	

�a� F� is acyclic�

�b� grade Iri��i� 	 i for i � �� � � � � s�

Before we prove the theorem the reader should note that ri �
rank�i 	 
 when F� is acyclic� this is just a restatement of ������ Con�
versely� it is not necessary to require that ri 	 
 for the implication
�b� �a�� if ri � 
� then ri�� � rankFi� and Iri����i��� � 
 in contradic�
tion with �b�� In the situation of ������ we call ri the expected rank of

�i�

Proof� �a�  �b�� By what has just been said and ������� we see that
grade Iri��i� 	 � for i � �� � � � � s� In particular there is an R�regular
element x contained in the product of the ideals Iri��i�� If x is a unit� then
Iri��i� � R for all i� and we are done� Otherwise we use induction� Let �
denote residue classes modulo x� It follows immediately from ����� that
the induced complex 
 � �Fs � �Fs�� � � � � � �F� � �F� � 
 is acyclic�
Furthermore Iri��i�� � Iri���i�� and grade Iri���i� 	 i�� by induction� Then
grade Iri��i� 	 i for i � �� � � � � s�

The reader may have noticed that this implication follows imme�
diately from the Auslander�Buchsbaum formula ������ In view of the
generalization ���� an independent proof is useful� however�

�b�  �a�� Using induction again we may assume that F �
�
� 
 �

Fs � Fs�� � � � � � F� � F� � 
 is acyclic� We set Mi � Coker�i��

for i � �� � � � � s� and show by descending induction that depth�Mi�p 	
minfi� depthRp g for all p � SpecR and i � �� � � � � s�

As Ms � Fs� this is trivial for i � s� Let i � s and consider the exact
sequence


 �� Mi�� �� Fi ��Mi �� 
�

If depthRp 	 i� �� then depth�Mi���p 	 i� �� and we get depth�Mi�p 	 i
from ����� If depthRp � i� then Iri����i��� �� p by hypothesis� on the
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other hand rankMi�� � rank�i�� � ri��� and therefore It��i��� � 
 for
t � ri��� So ���� yields that �Mi�p is free� hence depth�Mi�p � depthRp �

We still have to show that the induced map ��� � M� � F� is injective�
Let N � Ker���� In order to get N � 
� we derive that AssN � ��
If depthRp 	 �� then depth�M��p 	 � as seen above� therefore p ��
AssM� � AssN� If depthRp � 
� then Iri��i� �� p for i � �� � � � � s� and
F

�
� Rp is even split acyclic by ������� It follows that Np � 
 since

Np
�� H��F�

� Rp ��

Often one only needs the following consequence of �������

Corollary ��	��	� Let R be a Noetherian ring� and F
�
be a complex as in

������� If F� � Rp is acyclic for all prime ideals p with depthRp � s� then
F� is acyclic�

Proof� Let p be a prime ideal with depthRp � i � s� The implication
�a�  �b� of the theorem applied to F� � Rp yields grade Iri��i�p 	 i�
which is only possible if Iri��i� �� p � This shows grade Iri��i� 	 i� and the
acyclicity of F� follows from the implication �b�  �a� of the theorem�

Theorem ������ is the most important case of the acyclicity criterion
of Buchsbaum and Eisenbud� Its general form will be discussed in
Chapter �

Perfect modules� Let R be a Noetherian ring� and M a �nite R�module�
Since one can compute ExtiR�M�R� from a projective resolution of M�
one obviously has gradeM � proj dimM� Modules for which equality is
attained have especially good properties�

De�nition ��	���� Let R be a Noetherian ring� A non�zero �nite R�module
M is perfect if proj dimM � gradeM� An ideal I is called perfect if R�I
is a perfect module�

Perfect modules are �grade unmixed��

Proposition ��	���� Let R be a Noetherian ring� and M a perfect R�module�
For a prime ideal p � SuppM the following are equivalent	

�a� p � AssM�

�b� depthRp � gradeM�

Furthermore grade p � gradeM for all prime ideals p � AssM�

Proof� For all �nite R�modules M and p � SuppM one has the inequal�
ities

gradeM � gradeMp � proj dimMp � proj dimM�

and moreover proj dimMp � depthMp � depthRp by the Auslander�
Buchsbaum formula ������ If M is perfect� then the inequalities become
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equations� and depthMp � 
 if and only if depthRp � gradeM� This
shows the equivalence of �a� and �b��

If p � AssM� then p � AnnM� and so grade p 	 gradeM� For perfect
M the converse results from �b� and the inequality grade p � depthRp �

It follows easily from ����� that an ideal generated by a regular
sequence in a Noetherian ring R is perfect� Some more examples are
described in the following celebrated theorem�

Theorem ��	��� �Hilbert�Burch�� Let R be a Noetherian ring� and I an

ideal with a free resolution

F� � 
 �� Rn
�
�� Rn�� �� I �� 
�

Then there exists an R�regular element a such that I � aIn���� If I is

projective� then I � �a�� and if proj dim I � �� then In��� is perfect of

grade ��
Conversely� if � � Rn � Rn�� is an R�linear map with grade In��� 	 ��

then I � In��� has the free resolution F
�
�

Proof� First we prove the converse part� Let � � Rn � Rn�� be a map
with grade In��� 	 �� Then � is given by an �n � �� 
 n matrix U�
Let 
i denote the i�minor of U with the i�th row deleted� and consider
the homomorphism � � Rn�� � R which sends ei to ����i
i� Laplace
expansion shows that we have a complex


 �� Rn
�
�� Rn�� �

�� I �� 
�

which in fact is exact by �������
Suppose now that an ideal I with free resolution F� is given� Then

������ yields grade In��� 	 �� and we can apply the �rst part of the proof
to obtain I �� Coker� �� In���� equivalently� there exists an injective
linear map � � In��� � R with I � Im �� According to ������� � is just
multiplication by some a � R� Because of ����	 �or ������� a cannot be a
zero�divisor�

If I is projective� then In��� � R by �����
� and thus I � �a�� If
proj dim I � �� then proj dim�R�In���� � proj dimR�I � �� and R�In���
is perfect of grade ��

Exercises

�����
� Let R be a ring� and M a 	nite torsion�free module� Prove that if M has
a rank� then M is isomorphic to a submodule of a 	nite free R�module of the
same rank�

������� Let R be a Noetherian ring� I an ideal� and M� N 	nite modules� Prove
grade�I�HomR�M�N�� � min��� grade�I�N���
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������� Let R be a Noetherian ring� and M a 	nite R�module� Prove

�a� if M is torsionless� then it is torsion�free�

�b� M is torsionless if and only if it is a submodule of a 	nite free module�

�c� if M is re�exive� then it is a second syzygy� i�e� there is an exact sequence
��M � F� � F� with Fi 	nite and free�

������� Let R be a Noetherian ring� and M a 	nite R�module� Suppose � � G� F
is a homomorphism of 	nite free R�modules with M � Coker�� Then D�M� �
Coker�� is the transpose of M� �It is unique up to projective equivalence�� Show
that Ker h � Ext�R�D�M�� R� and Coker h � Ext�R�D�M�� R� where h � M �M�� is
the natural homomorphism�

������� Let R be a Noetherian ring� and M a 	nite R�module such that M� has
	nite projective dimension� Prove

�a� if depthMp � min��� depthRp � for all p � SpecR� then M is torsionless�

�b� if depthMp � min��� depthRp � for all p � SpecR� then M is re�exive�

Hint� proj dimM� � �� proj dimD�M� � ��

������� Let R be a Noetherian ring� and M a 	nite R�module� Show that M has
a rank if and only if M� has a rank �and both ranks coincide�� Hint� It is enough
to consider the case R � Rp � depthRp � �� Apply �������

������� Let R be a Noetherian local ring� and � � Ls � Ls�� � � � � � L� �
L� � � a complex of 	nite R�modules� Suppose that the following hold for i � ��
�i� depthLi � i� and �ii� depthHi�L�� � � or Hi�L�� � �� Show that L� is acyclic�
�This is Peskine and Szpiro�s �lemme d�acyclicit�e� �
����

Hint� Set Ci � Coker�Li�� � Li�� and show by descending induction that
depthCi � i and Hi�L�� � � for i � ��

������� Let R be a Noetherian ring� I an ideal of 	nite projective dimension� and
M a 	nite R�I�module� Prove the following inequality of Avramov and Foxby
�
��

gradeR�I M � gradeR R�I � gradeR M � gradeR�I M � proj dimR R�I�

if I is perfect� then equality is attained� �Use the Auslander�Buchsbaum formula��

������� Let R be a Noetherian ring� andM a perfect R�module of grade n� Suppose
P

�
is a projective resolution of M of length n and set M� � ExtnR�M�R�� Prove

�a� P �
�

is acyclic and resolves M��

�b� M� is perfect of grade n� and M�� � M�

�c� AssM� � AssM�

�����	� Let R be a Noetherian ring� x an R�sequence of length n� and I � �x��
Show that R�Im is perfect of grade n for all m � �� �Theorem ����� is useful��

��� Graded rings and modules

In this section we investigate rings and modules which� like a polyno�
mial ring� admit a decomposition of their elements into homogeneous
components�
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De�nition ������ A graded ring is a ring R together with a decomposition
R �

L
i�Z Ri �as a Z�module� such that RiRj � Ri�j for all i� j � Z�

A graded R�module is an R�module M together with a decomposition
M �

L
i�ZMi �as a Z�module� such that RiMj � Mi�j for all i� j � Z�

One calls Mi the i�th homogeneous �or graded� component of M�

The elements x � Mi are called homogeneous �of degree i�� those of
Ri are also called i�forms� According to this de�nition the zero element is
homogeneous of arbitrary degree� The degree of x is denoted by deg x�
An arbitrary element x � M has a unique presentation x �

P
i xi as a

sum of homogeneous elements xi � Mi� The elements xi are called the
homogeneous components of x�

Note that R� is a ring with � � R�� that all summands Mi are R��
modules� and that M �

L
i�ZMi is a direct sum decomposition of M as

an R��module�

De�nition ������ Let R be a graded ring� The category of graded R�modules�
denoted M��R�� has as objects the graded R�modules� A morphism

� � M � N inM��R� is an R�module homomorphism satisfying ��Mi� �
Ni for all i � Z� An R�module homomorphism which is a morphism in
M��R� will be called homogeneous�

Let M be a graded R�module and N a submodule of M� N is called
a graded submodule if it is a graded module such that the inclusion map
is a morphism inM��R�� This is equivalent to the condition Ni � N �Mi

for all i � Z� In other words� N is a graded submodule of M if and only
if N is generated by the homogeneous elements of M which belong to N�
In particular� if x � N� then all homogeneous components of x belong to
N� Furthermore� M�N is graded in a natural way� If � is a morphism in
M��R�� then Ker� and Im� are graded�

A �not necessarily commutative� R�algebra A is graded if� in addition
to the de�nition� AiAj � Ai�j�

The graded submodules of R are called graded ideals� Let I be an
arbitrary ideal of R� Then the graded ideal I� is de�ned to be the ideal
generated by all homogeneous elements a � I � It is clear that I� is the
largest graded ideal contained in I � and that R�I� inherits a natural
structure as a graded ring�

Examples ������ �a� Let S be a ring� and R � S�X�� � � � � Xn� a polynomial
ring over S � Then for every choice of integers d�� � � � � dn there exists a
unique grading on R such that degXi � di and deg a � 
 for all a � S�
the m�th graded component is the S�module generated by all monomials
Xe�

� � � �X
en
n such that

P
eidi � m� If one chooses di � � for all i� then one

obtains the grading of the polynomial ring corresponding to the total
degree of a monomial� Unless indicated otherwise we will always consider
R to be graded in this way�
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�b� Every ring R has the trivial grading given by R� � R and Ri � 

for i �� 
� A typical example of a graded module over R is a complex

C
�
� � � �

�
�� Cn

�
�� Cn��

�
�� � � �

of R�modules� Such a complex may be equivalently described as a graded
module C

�
�
L�

i���Ci together with an R�endomorphism  such that

� � 
 and �Ci� � Ci�� for all i� �In the terminology to be introduced
below�  is a homogeneous endomorphism of degree ����

The most important graded rings arise in algebraic geometry as
the coordinate rings of projective varieties� They have the form R �
k�X�� � � � � Xn��I where k is a �eld and I is an ideal generated by homo�
geneous polynomials �in the usual sense�� Then R is generated as a
k�algebra by elements of degree �� namely the residue classes of the
indeterminates� Graded rings R which as R��algebras are generated by
��forms will be called homogeneous R��algebras� More generally� if R is a
graded R��algebra generated by elements of positive degree� then we say
that R is a positively graded R��algebra�

We want to clarify which graded rings are Noetherian� Let us �rst
consider positively graded rings�

Proposition ����	� Let R be a positively graded R��algebra� and x�� � � � � xn
homogeneous elements of positive degree� Then the following are equivalent	

�a� x�� � � � � xn generate the ideal m �
L�

i��Ri�

�b� x�� � � � � xn generate R as an R��algebra�

In particular R is Noetherian if and only if R� is Noetherian and R is a

�nitely generated R��algebra�

Proof� For the implication �a� �b� it is enough to write every homoge�
neous element y � R as a polynomial in x�� � � � � xn with coe�cients in R��
and this is very easy by induction on deg y� The rest is evident�

The last assertion of ����� holds for graded rings in general�

Theorem ������ Let R be a graded ring� Then the following are equivalent	

�a� every graded ideal of R is �nitely generated�

�b� R is a Noetherian ring�

�c� R� is Noetherian� and R is a �nitely generated R��algebra�

�d� R� is Noetherian� and both S� �
L�

i��Ri and S� �
L�

i��R�i are �nitely
generated R��algebras�

Proof� The implications �d� �c� �b� �a� are obvious� For �a� �d�
we �rst note that R� is a direct summand of R as an R��module� It follows
that IR � R� � I for every ideal I of R�� and thus �a� implies that R�

is Noetherian� �Extend an ascending chain of ideals of R� to R� and
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contract the extension back to R��� A similar argument shows that Ri is
a �nite R��module for every i � Z�

Let m �
L�

i��Ri� We claim that m is a �nitely generated ideal of
S�� By hypothesis m R has a �nite system of generators x�� � � � � xm� which
may certainly be chosen to be homogeneous of positive degrees di� Let
d be the maximum of d�� � � � � dm� Then a homogeneous element y � m

with deg y 	 d can be written as a linear combination of x�� � � � � xm
with coe�cients from S�� Thus x�� � � � � xm together with a �nite set of
homogeneous elements spanning R�� � � � � Rd�� over R� generate m as an
ideal of S�� According to ������ S� is a �nitely generated R��algebra� and
the claim for S� follows by symmetry�

Very often we shall derive properties of a graded ring or module from
its localizations with respect to graded prime ideals� The following lemma
is basic for such arguments�

Lemma ������ Let R be a graded ring�

�a� For every prime ideal p the ideal p � is a prime ideal�

�b� Let M be a graded R�module�

�i� If p � SuppM� then p � � SuppM�

�ii� If p � AssM� then p is graded� furthermore p is the annihilator of

a homogeneous element�

Proof� �a� Let a� b � R such that ab � p �� We write a �
P

i ai� ai � Ri�
and b �

P
j bj � bj � Rj � Assume that a �� p � and b �� p �� Then there

exist integers p� q such that ap �� p �� but ai � p � for i � p� and bq �� p ��
but bj � p � for j � q� The �p � q��th homogeneous component of ab isP

i�j�p�qaibj � Thus
P

i�j�p�qaibj � p �� since p � is graded� All summands

of this sum� except possibly apbq � belong to p �� and so it follows that
apbq � p � as well� Since p � � p � and since p is a prime ideal we conclude
that ap � p or bq � p � But ap and bq are homogeneous� and so ap � p � or
bq � p �� a contradiction�

�b� For �i� assume p � �� SuppM� then Mp � � 
� Let x � M be a
homogeneous element� Then there exists an element a � R n p � such that
ax � 
� It follows that aix � 
 for all homogeneous components ai of a�
Since a � R n p �� there exists an integer i such that ai �� p �� Since ai is
homogeneous� we even have ai �� p � Hence x�� � 
 in Mp � This holds
true for all homogeneous elements of M� Thus we conclude that Mp � 
�
a contradiction�

For �ii� we choose an element x � M with p � Annx� Let x �
xm � � � �� xn be its decomposition as a sum of homogeneous elements xi
of degree i� Similarly we decompose an element a � ap � � � � � aq of p �
Since ax � 
� we have equations

P
i�j�raixj � 
 for r � m�p� � � � � n�q� It

follows that apxm � 
� and� by induction� aipxm�i�� � 
 for all i 	 �� Thus
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an�m��
p annihilates x� As p is a prime ideal� we have ap � p � Iterating this
procedure we see that each homogeneous component of a belongs to p �

In order to prove the second assertion in �ii� one can now use the fact
that p is generated by homogeneous elements� It follows easily that p

annihilates all the homogeneous components of x� Set a i � Ann xi� then�
as just seen� p � a i� On the other hand

Tn
i�m a i � p � Since p is a prime

ideal� there exists j with a j � p � and therefore a j � p �

Let p be a prime ideal of R� and let S be the set of homogeneous
elements of R not belonging to p � The set S is multiplicatively closed�
and we put M�p � � MS for any graded R�module M� For x�a � M�p ��
x homogeneous� we set deg x�a � deg x � deg a� We further de�ne a
grading on M�p � by setting

�M�p ��i � fx�a �M�p � � x homogeneous� deg x�a � ig�

It is easy to see that R�p � is a graded ring and that M�p � is a graded R�p ��
module� M�p � is called the homogeneous localization of M� The extension
ideal p �R�p � is a graded prime ideal in R�p �� and the factor ring R�p ��p �R�p �

has the property that every non�zero homogeneous element is invertible�

Lemma ������ Let R be a graded ring� The following conditions are equiv�

alent	

�a� every non�zero homogeneous element is invertible�

�b� R� � k is a �eld� and either R � k or R � k�t� t��� for some homoge�
neous element t � R of positive degree which is transcendental over k�

Proof� �a� �b�� R� � k is a �eld� If R � R�� then R is a �eld� Otherwise
R �� R�� and there exist non�zero homogeneous elements of positive
degree� Let t be an element of least positive degree� say deg t � d � As t
is invertible there exists a homomorphism � � k�T �T��� � R of graded
rings where � maps k identically to R� and where ��T � � t� �The grading
on k�T �T��� is of course de�ned by setting degT � d ��

We claim that � is an isomorphism� Let f � Ker�� f �
P

i�Z aiT
i�

ai � k� then 
 � ��f� �
P

i�Z ait
i� and so ait

i � 
 for all i� As t is

invertible� we get ai � �aiti� � t�i � 
 for all i� which implies that f � 
�
Hence � is injective� In order to show that � is surjective� we pick a
non�zero homogeneous element a � R of degree i� If i � 
� then a � Im��
Thus we may assume that i �� 
� Write i � jd � r with 
 � r � d � The
element at�j has degree r� As d was the least positive degree� we conclude
that r � 
� Thus a � btj for some b � R�� and hence a � ��bT j� � Im��

�b� �a� is trivial�

The following theorem contains the dimension theory of graded rings
and modules�
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Theorem ������ Let R be a Noetherian graded ring� M a �nite graded

R�module and p � SuppM�

�a� If p is graded� then there exists a chain p � � � � � � p d � p � d � dimMp �

of graded prime ideals p i � SuppM�

�b� If p is not graded� then dimMp � dimMp � � ��

Proof� A very special case of �b� is the following� if p is not graded�
then height p �p � � �� In order to prove this equation we may replace
R by R�p � and assume that p � � 
� Then p does not contain a non�
zero homogeneous element� Therefore it is harmless to invert all these
elements� This yields the homogeneous localization R���� Since p R���

is a non�zero prime ideal� R��� has the form k�t� t��� by ����	� whence
height p � height p R��� � ��

Now let p � SuppM be an arbitrary prime ideal� and d � dimMp �
Both claims will be proved once we show that there exists a chain
p � � � � � � p d � p of prime ideals in SuppM such that p �� � � � � p d�� are
graded� Note that in the case of �b� it follows that p d�� � p �� and
therefore p d�� � p � since there is no prime ideal properly between p and
p d���

Let p � � � � � � p d � p be a chain of prime ideals in SuppM� Then p �

is minimal in SuppM� and therefore graded by ������ In the case d � �
we are already done� Arguing inductively we may therefore suppose that
p �� � � � � p d�� are graded�

If p is not graded� we replace p d�� by p �� which is properly contained
in p � and properly contains p d�� because height p �p � � �� as was proved
above�

If p is graded� then it contains a homogeneous element a �� p d���
and we replace p d�� by a minimal prime q of p d�� � �a� contained in p �
Since height p �q � �� it is impossible for q to equal p � furthermore q is a
minimal element of SuppR��p d��� �a��� and thus graded by ������

Our next goal is an equation similar to ����� for the depth of a
graded module� We shall need the result that the ordinary Ext�groups
ExtiR�M�N� of graded R�modules admit a natural grading� provided R is
Noetherian and M is �nite�

If M is a graded R�module and i is an integer� then M�i� denotes the
graded R�module with grading given by M�i�n � Mi�n�

The category M��R� has enough projectives� In fact� each module
M � M��R� is a homomorphic image �inM��R�� of a module of the formL

R�i�� So every graded module has a graded free resolution� When we
speak of a natural grading of modules appearing as the values of derived
functors� then it is of course important that the standard argument of
homological algebra ������� Theorem ������ which guarantees that derived
functors are well de�ned� can be made �graded�� ThatM��R� has enough
injectives will be shown in ������
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It is not hard to see that the tensor product M � N of graded R�
modules is a graded R�module� its homogeneous component �M � N�n
is generated �as a Z�module� by the products x � y with x � M� y � N
homogeneous such that deg x � deg y � n� see ������ Together with the
fact that each graded module has a graded free resolution this implies
that the modules TorRi �M�N� admit a natural grading�

Let M� N be graded R�modules� In general� the set of morphisms
� � M � N in M��R� is not a submodule of HomR�M�N�� Thus for
the construction of a reasonable graded Ext functor one must consider
a larger class of maps� An R�module homomorphism � � M � N is
called homogeneous of degree i if ��Mn� � Nn�i for all i� �A homogeneous
homomorphism whose degree is not explicitly speci�ed has degree 
��
Note that � may be considered as a morphism � � M��i�� N inM��R��
Denote by Homi�M�N� the group of homogeneous homomorphisms of
degree i� The Z�submodules Homi�M�N� of HomR�M�N� form a direct
sum� and it is obvious that �HomR�M�N� �

L
i�ZHomi�M�N� is a graded

R�submodule of HomR�M�N�� In general �HomR�M�N� �� HomR�M�N��
but equality holds if M is �nite� see Exercise ������

For any N � M��R� we de�ne �ExtiR�M�N� as the i�th right derived
functor of �HomR� � N� in M��R�� Thus� if P� is a projective resolution
of M inM��R�� then

�Ext
i
R�M�N� �� H i��HomR�P�� N��

for all i 	 
� It is immediate from this de�nition and the above remarks
that �ExtiR�M�N� � ExtiR�M�N� for Noetherian R and �nite M� Nev�

ertheless we shall use the notation �ExtiR�M�N� to emphasize that these
modules are graded�

Theorem ������ Let R be a Noetherian graded ring� M a �nite graded

R�module� and p � SuppM a non�graded prime ideal� Then

depthMp � depthMp � � � and r�Mp � � r�Mp � ��

Proof� In order to compute the depths and types of Mp and Mp � we may
consider both modules as modules over the homogeneous localizationR�p �

of R with respect to p � Thus we may assume that R�p � �� k�t� t��� where
k is a �eld and t is an element of positive degree which is transcendental
over k� It follows that p � aR � p � for some a � R n p �� Hence we have
an exact sequence


 �� R�p �
a
�� R�p � �� R�p �� 
�

which yields the long exact sequence

� � � �� �Ext
i
R�R�p ��M�

a
�� �Ext

i
R�R�p ��M� �� Exti��

R �R�p �M� �� � � �
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The �ExtiR�R�p ��M� are graded R�p ��� k�t� t�����modules� Since every
graded k�t� t����module is free �Exercise �����
� and a �� p �� the map

�Ext
i
R�R�p ��M�

a
�� �Ext

i
R�R�p ��M�

is injective� Therefore

Exti��
R �R�p �M� �� �Ext

i
R�R�p ��M�

�
a � �Ext

i
R�R�p ��M��

The equation p � aR � p � implies that Exti��
R �R�p �M� is a free �R�p ��

module of the same rank as the free �R�p ���module �ExtiR�R�p ��M��
Hence

dimk�p � Ext
i��
Rp
�k�p ��Mp � � rankR�p Ext

i��
R �R�p �M��

� rankR�p �

�Ext
i
R�R�p ��M� � dimk�p ��

�Ext
i
Rp �
�k�p ���Mp � ��

This equation in particular entails the assertion of the theorem�

What makes the proof of ���� more di�cult than one might expect
at �rst sight is illustrated by the following example� Let k be a �eld
and S � k�X� Y � be graded such that degX � 
 and degY � �� The
residue class ring R � S��XY � is graded� and �x� y� is a graded maximal
ideal of grade �� Nevertheless every homogeneous element of �x� y� is a
zero�divisor� in fact contained in a minimal prime ideal� However� as we
shall see in ������� under suitable hypotheses there exist homogeneous
regular sequences� First we prove a graded version of prime avoidance�

Lemma �����
� Let R be a graded ring and I an ideal generated by elements
of positive degree� Let p �� � � � � p n be prime ideals such that I �� p i for i �
�� � � � � n� Then there exists a homogeneous element x � I � x �� p � � � � � � p n�

Proof� Let S �
L�

j��Rj � Since I is generated by elements of positive
degree� one has I � S �� p i � S for i � �� � � � � n� Therefore we may assume
that R is positively graded� Furthermore it is harmless to replace p i by
p �i for all i�

Using induction on n� we may suppose that p n is a minimal element of
fp �� � � � � p ng and that there is a homogeneous x

� � I with x� �� p ��� � �� p n���
If x� �� p n� then we are done� Otherwise there exists a homogeneous

r � �
Tn��

i�� p i� n p n� We choose a homogeneous y � I n p n� Then deg x
� � 


and deg ry � 
 so that �x��u��ry�v is homogeneous for suitable exponents
u� v� Furthermore� �x��u � �ry�v �� p � � � � � � p n�

Proposition ������� Let R be a Noetherian graded ring� and let I be

an ideal in R generated by homogeneous elements of positive degree� Set

h � height I and g � grade�I�M� where M is a �nite R�module� Then there
exist sequences x � x�� � � � � xh and y � y�� � � � � yg of homogeneous elements

of I such that height�x�� � � � � xi� � i for i � �� � � � � h and y is an M�sequence�
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Proof� It is enough to �nd x� and y� because we may use induction on
n after having replaced all objects by their reductions modulo x� or y��
But the choice of x� or y� only requires the avoidance of �nitely many
prime ideals none of which contains I �

Often one needs a stronger version of �������

Proposition ������� In addition to the hypotheses of ������ assume that R�

is a local ring with an in�nite residue class �eld and that I is generated by

elements of degree �� Then the sequences x � x�� � � � � xh and y � y�� � � � � yg
can be composed of elements of degree ��

Proof� We choose a system z�� � � � � zn of degree � elements generating I � If
heightI � 
 and p is a minimal prime ideal of R� then I� �� p � Therefore
I� � p is a proper R��submodule of I�� As k� is in�nite� it is impossible
for I� to be the union of the �nitely many proper submodules obtained
in this manner� �Modulo the maximal ideal m � of R� this turns into an
elementary fact of linear algebra�� So I� has an element x� which is not
in any minimal prime ideal of R� In order to construct x�� � � � � xh one
proceeds by induction� The construction of y is similar�

�Local rings� In the following de�nition we introduce the graded coun�
terparts of local rings�

De�nition ������� Let R be a graded ring� A graded ideal m of R is called
�maximal� if every graded ideal that properly contains m equals R� The
ring R is called �local� if it has a unique �maximal ideal m � A �local ring
with �maximal ideal m will be denoted by �R� m ��

Let �R� m � be a �local ring� All non�zero homogeneous elements of
the graded ring R�m are invertible� and so R�m is either a �eld� or else
R�m �� k�t� t���� where k is a �eld and t is a homogeneous element of
positive degree which is transcendental over k� see ����	� In the �rst case m

is a maximal ideal� and in the second m is a prime ideal with dimR�m � ��
Note that R� is a local ring with maximal ideal m � � m �R�� and that all
homogeneous elements a � R n m are units� We de�ne the �dimension of
R as the height of m and denote it by �dimR� According to ������ �dimR
equals the supremum of all numbers h for which there exists a chain of
graded prime ideals p � � p � � � � � � p h in R� If x�� � � � � xn� n � �dimR� are
homogeneous elements such that �x�� � � � � xn� is m �primary� then x�� � � � � xn
is called a homogeneous system of parameters�

Examples �����	� �a� Let p be a graded prime ideal� Then R�p � is a �local
ring�

�b� Let R be a positively graded ring for which R� is a local ring
with maximal ideal m �� Then R is a �local ring with �maximal ideal
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m � m � �
L

n��Rn� In particular a positively graded algebra over a �eld
is �local�

�c� Let �S� n � be a local ring and t an indeterminate over S � Then
R � S�t� t��� is in a natural way a �local ring with �maximal ideal
n S�t� t���� and one has dimS � �dimR � dimR � ��

With respect to its �nite graded modules M� a �local ring �R� m �
behaves like a local ring� as we shall now see�

Let g�� � � � � gn be a homogeneous minimal system of generators of
M� Let F� �

Ln
i��R�� deg gi�� the i�th summand being generated by an

element ei satisfying deg ei � deg gi� The R�module F� is free of rank n�
and the assignment ei �� gi induces a surjective morphism �� of graded
modules� Of course Ker�� is a graded submodule of F�� Suppose that
Ker�� �� m F�� Then there exists a homogeneous element u � Ker���
u �� m F�� and one of the coe�cients ai in u �

P
aiei is not in m � call it

aj � But all the ai are homogeneous� and so aj is a unit by hypothesis on
�R� m �� It follows that the given system of generators is not minimal� which
is a contradiction� Localizing with respect to m we see that n � ��Mm ��
In particular all homogeneous minimal systems of generators have the
same number of elements� Furthermore� iterating the construction of F�

and ��� one obtains an �augmented� free resolution of M which for the
reasons given is called a minimal graded free resolution of M� It is easy
to show that such a resolution is unique up to an isomorphism inM��

Proposition ������� Let �R� m � be a Noetherian �local ring� M a �nite graded

R�module� and I a graded ideal� Then

�a� every minimal homogeneous system of generators of M has exactly

��Mm � elements�
�b� if F� is a minimal graded free resolution of M� then F��Rm is a minimal

free resolution of Mm �

�c� the functor � Rm is faithfully exact on the categoryM��

�d� M is projective if and only if it is free�

�e� one has

proj dimM � proj dimMm � grade�m �M� � depthMm �

gradeM � gradeMm � grade�I�M� � grade�Im �Mm ��

Proof� �a� and �b� were shown above� and �a� implies that � Rm is
faithful� which proves �c� because localization is always exact� Part �d�
follows from �b� since the �rst Betti number ���Mm � � 
 ifM is projective�
and therefore F� � 
 in a minimal graded free resolution of M� The �rst
equation in �e� is also a consequence of �b�� whereas the remaining
ones result from �c� and the fact that the modules ExtiR�R�I�M� and

ExtiR�M�R� are graded� �One must of course use the description of grade
by �������
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It is customary to collect the terms with the same �shift� in each free
module of a graded free resolution and to write it in the form

� � � ��
M
j

R��j��ij �� � � � ��
M
j

R��j���j ��M �� 
�

Though a minimal graded free resolution is uniquely determined� this is
not true for the numbers �ij if one only requires that �R� m � is �local� We
need a slightly stronger hypothesis which is satis�ed for example by all
positively graded algebras over local rings�

Proposition ������� Let �R� m � be a Noetherian �local ring such that m is

a maximal ideal of R �in the ordinary sense�� Then for every �nite graded

R�module M the numbers �ij in a minimal graded free resolution of M are

uniquely determined by M�

Proof� Let F �
L

j R��j�
�j � Then �j � dimR�m �F � R�m �j since one has

R��j�� R�m �� R�m ��j��

In the situation of ������ not only is the cardinality of a minimal
homogeneous system of generators unique� but also their degrees are
�xed �up to a permutation��

Graded Noether normalization� The existence of Noether normalizations
of a�ne algebras is stated in A���� Here we want to prove its graded
variant�

Theorem ������� Let k be a �eld and R a positively graded a�ne k�algebra�
Set n � dimR�
�a� The following are equivalent for homogeneous elements x�� � � � � xn	

�i� x�� � � � � xn is a homogeneous system of parameters�

�ii� R is an integral extension of k�x� � � � � � xn��
�iii� R is a �nite k�x�� � � � � xn��module�

�b� There exist homogeneous elements x�� � � � � xn satisfying one� and there�

fore all� of the conditions in �a�� Moreover� such elements are algebraically

independent over k�
�c� If R is a homogeneous k�algebra and k is in�nite� then such x�� � � � � xn
can be chosen to be of degree ��

Proof� We set S � k�x�� � � � � xn� and I � �x�� � � � � xn��
The existence of x�� � � � � xn as claimed in �b� or �c� follows immediately

from ������ and ������ if one observes that the �maximal ideal m of R
has height n� The algebraic independence of x�� � � � � xn results from �a��ii�
in conjunction with A�� because dimS � n if and only if x�� � � � � xn are
algebraically independent�

The equivalence of �a��ii� and �iii� is a general fact� R is a �nitely
generated S�algebra� That �a��ii�  �i� follows from A�� which entails
that dimR�I � dim�S�I � S� � 
� Thus I is m �primary�
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There remains the proof of �a��i� �iii�� We choose a system y�� � � � � ym
of homogeneous elements of positive degree generating R over k� If �i�
holds� then I is m �primary� and there exists an e such that z � ye�� � � � y

em
m �

I whenever deg z 	 e �deg is the degree in R�� Let M be the S�submodule
of R generated by those monomials z with deg z � e� We claim that
R � M� In fact� every r � R is a k�linear combination of monomials
ye�� � � � y

em
m � and thus it is enough that s � ye�� � � � y

em
m � M for all ei � N�

If deg s � e� then s � M for trivial reasons� So assume deg s 	 e� Then
s � I � and s �

Pn
i�� fixi with elements fi � R� Since s and the xi are

homogeneous of positive degree� the fi can be chosen homogeneous of
degree � deg s� Now write fi as a k�linear combination of monomials in
y�� � � � � ym� and apply an inductive argument�

Dehomogenization� In concluding we want to study the relation between
a graded ring R and a residue class ring A � R��x � �� where x is
a non�nilpotent homogeneous element of degree �� One calls A the
dehomogenization of R with respect to x� The relationship between R
and A is much closer than between a ring and a residue class ring in
general� A typical example for R and A arises in algebraic geometry�
R is the homogeneous coordinate ring of a projective variety� and A is
the coordinate ring of the a�ne open subvariety complementary to the
hyperplane given by the vanishing of x�

Let � � R � A be the natural homomorphism� and S � Rx� Then �
factors in a natural way through a homomorphism � � S � A� Since x is
homogeneous� the grading of R induces a grading on S �

Proposition ������� �a� The homomorphism S��X�X��� � S which is the

identity on S� and sends X to x is an isomorphism�

�b� The restriction of � to S� is an isomorphism S� �� A�

Proof� �a� This is a general fact� if T is a graded ring which has a unit
x of degree �� then T �� T��X�X����

�b� The kernel of � is the ideal �x � ��S � and therefore � induces an
isomorphism A �� S��x � ��S �� S��

It follows easily that several properties transfer from R to A� For
example� it is immediate that if R is reduced or an integral domain� then
so is A� Also see Exercises ������� ������� and �������

Exercises

������� Let R be a graded ring� All the modules in this problem are supposed to
be graded�

�a� Prove that
L

Mi has a unique grading for which the natural embeddings
Mj �

L
Mi are morphisms in M� � that is�

L
Mi is the direct sum in M� �
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�b� The direct product
Q
Mi lacks this property of the direct sum� nevertheless�

prove there exists a direct product in M�� let �
Q
Mi be the submodule of

Q
Mi

generated by the elements �xi� such that all the xi are homogeneous of degree n�
n � Z�
�c� What can be said about direct and inverse limits in M��
�d� Prove that the tensor product M � N is a graded R�module with �M � N�u
generated over Z by the tensor products x � y of homogeneous elements with
degx � deg y � u� �Choose a presentation G � F � M � � in M� with
F �

L
R��i� and G �

L
R��j ���

�e� Show the functor �HomR� � N� is left exact� and one has �HomR�
L

Mi� N� 
�
�
Q

�HomR�Mi� N��
�f� Verify that �HomR�M�N� � HomR�M�N� if M is 	nite� In general� however�
�HomR�M�N� is a proper submodule of HomR�M�N��
�g� Prove �HomR�M��i�� N��j�� 
� �HomR�M�N��i � j��

������� Let R � kt� t��� be a graded ring where R� � k is a 	eld� and t � R is
a homogeneous element of positive degree which is transcendental over k� Show
that every graded R�module is free�

������� Let k be a 	eld� S � kX� � X� � Y�� Y�� the polynomial ring with the grading
determined by degXi � � and degYi � �� and R � S��X�Y� � X�Y��� Prove that
the grade of the ideal I � �x�� x�� y� � y�� in R is �� but I does not even contain a
homogeneous R�sequence of length ��

������� Let k be a 	eld� We consider the polynomial ring R � kX� � � � � � Xn� as a
graded k�algebra with degXi � ai for i � �� � � � � n� Show that R is �local if and
only if all ai are positive or all ai are negative�

������� Let �R� m � be a Noetherian �local ring� and M a 	nite graded R�module�
Show that every permutation of a homogeneous M�sequence is an M�sequence�

������� Prove the following variants of Nakayama�s lemma�
�a� Let �R� m � be a � local ring� M a 	nite graded R�module� and N a graded
submodule� If M � N � m M� then M � N�
�b� Let R be a graded ring for which �R� � m �� is local� Suppose that M is a graded
R�module such that Mi is 	nite over R� for all i� If one has M � N � m �M for a
graded submodule N of M� then M � N�

������� Let R be a Noetherian positively graded ring� and M a 	nite graded
R�module� Prove dimM � supfdimMp � p � SuppM gradedg� Hint� consider an
ideal m which is maximal among the graded members of SuppM and use ������

������� Let R be a graded ring� x a non�nilpotent element of degree �� A �
R��x���� and � � R � A the natural homomorphism� As in ������ we set S � Rx�
and identify A and S� �
�a� One has ��I� � IS 	A for every homogeneous ideal I � R and J � ��JS 	R�
for every ideal J of A� �One calls ��I� the dehomogenization of I � and JS 	 R the
homogenization of J ��
�b� The homomorphism � induces a bijective correspondence between the set of
homogeneous ideals of R modulo which x is regular and the set of all ideals of
A�
�c� This correspondence preserves inclusions and intersections� and the properties
of being a prime� primary� or radical ideal�
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��� The Koszul complex

We introduce the Koszul complex K��x� of a sequence x � x�� � � � � xn
of elements of a ring R� Under suitable hypotheses one can determine
grade�I�M� from the homology ofK

�
�x��M where I is the ideal generated

by x� This fact and its �universal� properties make the Koszul complex an
indispensable tool�

Moreover� the Koszul complex is the paradigm of a complex with
an algebra structure� In order to emphasize this fact we introduce more
generally the Koszul complex of a linear form� A review of exterior
algebra has been included for the reader�s convenience�

Review of exterior algebra� The following is an excerpt from Bourbaki
����� Ch� III� which we recommend as a source for exterior algebra�
We hope that the details included will enable the reader to carry out
the calculations on which the theory is based� When one has to check
whether a map is well de�ned� it is usually the best strategy to exploit
the universal properties of the objects under consideration�

Let R be a ring� andM an R�module� We consider R as a graded ring
by giving it the trivial grading� Let M�i denote the i�th tensor power of
M� i�e� the tensor product M � � � � �M of i factors M for i � 
� and R
for i � 
� The tensor powers form a graded R�moduleN

M �
�M
i��

M�i�

The assignment

��x�� � � � � xm�� �y�� � � � � yn�� ��� x� � � � � � xm � y� � � � � � yn

induces an R�bilinear map M�m 
 M�n � M��m�n�� and its additive
extension to

N
M


N
M gives

N
M the structure of a graded associative

R�algebra� Henceforth �R�algebra� always means �associative R�algebra��
�Obviously

N
M is not commutative in general�� The tensor algebra is

characterized by a universal property� given an R�linear map � � M � A
where A is an R�algebra� there exists a unique R�algebra homomorphism
� �
N

M � A extending �� here we identify M and M���
The exterior algebra

V
M is the residue class algebra�

M � �
N

M��J

where J is the two�sided ideal generated by the elements x � x� x � M�
Since J is generated by homogeneous elements�

V
M inherits the structure

of a graded R�algebra� The product in
V
M is denoted x � y� In generalV

M is not commutative� it is however alternating� one has

x � y � �����degx��degy�y � x for homogeneous x� y �
�

M� and

x � x � 
 for homogeneous x� deg x odd�
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Let x�� � � � � xn be elements of M� and � a permutation of f�� � � � � ng� Then

x���� � � � � � x��n� � ����x� � � � � � xn�

here ���� is the sign of �� Furthermore x� � � � � � xn � 
 if xi � xj for
some indices i �� j� For a subset I of f�� � � � � ng we set

xI � xi� � � � � � xim when I � fi�� � � � � img with i� � � � � � im�

For subsets J � K � f�� � � � � ng with J � K � � let ��J�K� � ����i where
i is the number of elements �j� k� � J 
 K with j � k� if J � K �� �� let
��J�K� � 
� Then

xJ � xK � ��J�K�xJ�K �

Useful identities satis�ed by � are given in Exercise ������� It is clear
that the notation xI can be extended to the more general case in which
�xg�g�G is a family of elements of M indexed by a linearly ordered set G
and I is a �nite subset of G�

The i�th graded component of
V
M is denoted by

ViM and is called
the i�th exterior power of M� From the de�nition of

V
M it follows easily

that one has natural isomorphisms
V�M �� R�

V� M �� M� so we may

identify R and
V� M� M and

V� M�

Let �xg�g�G be a system of generators of M� Then
Vj M is generated

by the exterior products xI with I � G and jIj � j� In particular� if M is

generated by x�� � � � � xn� then
ViM � 
 for all i � n�

The exterior algebra is characterized by a universal property which it
inherits from that of the tensor algebra� given an R�linear map � � M � E
from M to an R�algebra E such that ��x�� � 
 for all x �M� there exists
a unique R�algebra homomorphism � �

V
M � E extending �� It follows

immediately that for every R�linear map � � M � N there exists a unique
R�algebra homomorphism

V
� for which the diagram

M
�

����� N

nat

��y ��ynatV
M

V
�

�����
V
N

commutes�
V
� is homogeneous of degree 
� and one has�

��x� � � � � � xn� � ��x�� � � � � � ��xn�

for all x�� � � � � xn � M� If � is surjective� then
V
� is also surjective� and

Ker
V
� is the ideal generated by Ker�� �This is neither obvious nor

indeed true in general� for example� if � is injective�
V

� need not be

injective�� The map
ViM �

ViN induced by
V

� is denoted by
Vi ��

Suppose that � is surjective� then
Vi � is also surjective� and from the
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description of Ker
V

� just mentioned �and the alternating property ofV
M� it follows easily that the sequence

i���
M �Ker� ��

i�
M

Vi �
���

i�
N �� 


is exact where the map on the left hand side is induced by the exterior

multiplication
Vi��M 
Ker��

ViM�

The exterior powers
ViM are also characterized by a universal prop�

erty� for every alternating i�linear map � � Mi � N� N an R�module�

there exists a unique R�linear map � �
ViM � N such that

��x�� � � � � xi� � ��x� � � � � � xi�

for all x�� � � � � xi �M�
An important property of the exterior algebra is that it commutes

with base extensions� if R � S is a homomorphism of commutative
rings� then one has a natural isomorphism

�
�

M��R S ��
�
�M �R S�

of graded S�algebras�
Let M�� M� be R�modules� On �

V
M�� � �

V
M�� one de�nes a

multiplication by setting

�x� y��x� � y�� � �����degy��degx
���x � x��� �y � y��

for all homogeneous elements x� x� �M�� y� y
� �M�� It is straightforward

to verify that �
V
M��� �

V
M�� is an alternating graded R�algebra under

this multiplication� Its degree � component is �M� � R� � �R �M�� ��
M��M�� By the universal property of the exterior algebra the natural map
M� �M� � �

V
M�� � �

V
M�� extends to an R�algebra homomorphism

� �
V
�M� �M��� �

V
M��� �

V
M���

One gets an inverse � � �
V
M�� � �

V
M�� �

V
�M� � M�� to � by

setting
� �x� y� � ���x� ����y�

where�i �
V

Mi �
V
�M��M�� is the extension of the natural embedding

Mi �M��M�� The compositions � �� and � �� are the identities on
�
V
M��� �

V
M�� and

V
�M� �M��� Therefore we have an isomorphism

�
�

M��� �
�

M�� ��
�
�M� �M��

of alternating graded R�algebras�
In what follows� the most important case for M is that of a �nite free

R�module F � Suppose e�� � � � � en is a basis of F � The elements

eI � I � f�� � � � � ng� jIj � i�
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form a basis of
Vi F� this non�trivial fact amounts to the existence of

determinants� In particular
Vi F is free of rank

�
n
i

�
� A multiplication

table of
V
F with respect to this basis in given by

eI � eJ � ��I� J�eI�J �

Suppose R is a graded ring� and M �
L

i�ZMi is a graded R�module�
Then one can endow

V
M with a unique grading such that M �

V
M

has the given grading� and
V
M is a graded algebra over R� We restrict

ourselves to the case M � F �
Ln

i��R��ai�� Let e�� � � � � en be the basis of
F corresponding to this decomposition� Then one assigns to eI the degreeP

i�I ai� and veri�es easily that the induced grading on
V
F makes

V
F a

graded �in fact� a bigraded� R�algebra�

Basic properties of the Koszul complex� Let R be a ring� L an R�module�
and f � L� R an R�linear map� The assignment

�x�� � � � � xn� ��
nX
i��

����i��f�xi�x� � � � � � bxi � � � � � xn

de�nes an alternating n�linear map Ln �
Vn��L� �By bxi we indicate that

xi is to be omitted from the exterior product�� By the universal property of

the n�th exterior power there exists an R�linear map d�n�
f �

VnL�
Vn��L

with

d�n�
f �x� � � � � � xn� �

nX
i��

����i��f�xi�x� � � � � � bxi � � � � � xn

for all x�� � � � � xn � L� The collection of the maps d�n�
f de�nes a graded

R�homomorphism

df �
�

L�
�

L

of degree ��� By a straightforward calculation one veri�es the following
identities�

df � df � 
 and df�x � y� � df�x� � y � ����degxx � df�y�

for all homogeneous x �
V
L� To say that df � df � 
 is to say that

� � � ��
n�
L

df
��

n���
L �� � � � ��

��
L

df
�� L

f
�� R �� 


is a complex� The second equation expresses that df is an antiderivation

�of degree ����
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De�nition ������ The complex above is the Koszul complex of f� denoted
by K

�
�f�� More generally� if M is an R�module� then K

�
�f�M� is the

complex K
�
�f� �R M� called the Koszul complex of f with coe�cients in

M� its di erential is denoted by df�M �

Proposition ������ Let R be a ring� L an R�module� and f � L � R an

R�linear map�
�a� The Koszul complex K

�
�f� carries the structure of an associative graded

alternating algebra� namely that of
V
L�

�b� Its di�erential df is an antiderivation of degree ���
�c� For every R�module M the complex K

�
�f�M� is a K

�
�f��module in a

natural way�

�d� One has df�M�x � y� � df�x� � y�����deg xx � df�M�y� for all homogeneous
elements x of K��f� and all elements y � K��f�M��

Proof� �a� and �b� are part of the discussion preceding the proposition�
�c� is obvious� if A is an R�algebra� then A�R M is an A�module for

every R�module M�
�d� It is enough to verify the equation for elements y � w � z with

w � K��f�� z � M� Then df�M�x � w� z� � df�M��x�w�� z� � df�x�w�� z�
and the rest follows from the fact that df is an antiderivation�

For a subset S of K��f� and a subset U of K��f�M� let S �U denote the
R�submodule of K��f�M� generated by the products s � u� s � S � u � U�

Set

Z��f� � Ker df � Z��f�M� �Ker df�M �

B��f� � Im df� B��f�M� � Im df�M �

De�nition ������ The homology H��f� � Z��f��B��f� is the Koszul homo�
logy of f� For every R�module M the homology Z��f�M��B��f�M� is
denoted by H��f�M� and called theKoszul homology of f with coe�cients

in M�

From ������d� one easily derives the following relations�

Z
�
�f� � Z

�
�f�M� � Z

�
�f�M�� Z

�
�f� � B

�
�f�M� � B

�
�f�M��

B
�
�f� � Z

�
�f�M� � B

�
�f�M��

We have a natural isomorphism K��f� �� K��f� R�� So the �rst relation
entails that Z

�
�f� is a graded R�subalgebra of K

�
�f�� and the second and

third show that B
�
�f� is a two�sided ideal in Z

�
�f��

Proposition ����	� Let R be a ring� L an R�module� and f � L � R an

R�linear map�
�a� The Koszul homology H��f� carries the structure of an associative

graded alternating R�algebra�
�b� For every R�module M the homology H��f�M� is an H��f��module in a

natural way�
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Proof� �a� That H
�
�f� is an R�algebra follows from the discussion pre�

ceding the proposition� The asserted properties are inherited by quotients
of graded R�subalgebras of K

�
�f� modulo graded ideals�

�b� The �rst of the relations above shows that Z
�
�f�M� is a Z

�
�f��

module� the second says that B
�
�f�M� is a Z

�
�f��submodule� and the

third implies that Z
�
�f�M��B

�
�f�M� is annihilated by B

�
�f��

It results immediately from ����� that H��f�M� is an R�I�module
where I � Im f� This will be stated in ����� where it follows from a
somewhat stronger statement�

It is useful also to introduce the Koszul cohomology �with coe�cients

in M�� we set

K��f� � HomR�K��f�� R�� K��f�M� �HomR�K��f��M��

H��f� � H��K��f��� H��f�M� �H��K��f�M���

Let I � Im f � R� then� by construction� H��f� � R�I and H��f�M� �
M�IM�

Proposition ������ Let R be a ring� L an R�module� and f � L � R an

R�linear map� Set I � Im f�
�a� For every a � I multiplication by a on K��f�� K��f�M�� K��f�� K��f�M�
is null�homotopic�

�b� In particular I annihilates H��f�� H��f�M�� H��f�� H��f�M��
�c� If I � R� then the complexes K��f�� K��f�M�� K��f�� K��f�M� are

null�homotopic� In particular their �co�homology vanishes�

Proof� We choose x � L with a � f�x�� Let �a denote the multiplication
by a on K

�
�f�� and �x the left multiplication by x on K

�
�f�� Then

�a � df � �x � �x � df as is easily veri�ed�
Thus multiplication by a is null�homotopic on K

�
�f�� Of course �a�M

and HomR��a�M� are the multiplications by a on K
�
�f�M� and K��f�M��

and the rest of �a� follows immediately� Part �b� is a general fact� if � is a
null�homotopic complex homomorphism� then the map induced by � on
homology is zero� For �c� we choose a � �� and apply �a� and �b��

Let L� and L� be R�modules� and f� � L� � R� f� � L� � R be R�
linear maps� Then f� and f� induce a linear form f � L� � L� � R by
f�x� � x�� � f��x�� � f��x���

Proposition ������With the notation just introduced� one has an isomorphism

of complexes K��f���R K��f�� �� K��f��

Proof� The graded R�algebras underlying K��f�� � K��f�� and K��f��
namely �

V
L�� � �

V
L�� and

V
L� are isomorphic� as noted above� We

may identify them� The di erential df is an antiderivation on
V
L which

on the degree � graded component L � L� � L� coincides with df� � df� �
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An antiderivation on the exterior algebra
V

L is uniquely determined
by its values on L� Therefore it is enough to check that df� � df� is
an antiderivation too� The straightforward veri�cation of this fact is
left as an exercise for the reader� One has of course to remember the
de�nition of tensor product of complexes� the n�th graded component of

K
�
�f��� K

�
�f�� is

Ln
i��

Vi L� �
Vn�iL�� and

df� � df��x� y� � df��x�� y � ����ix� df��y�

for x� y �
Vi L� �

Vn�iL��

The Koszul complex �commutes� with ring extensions� and so does
Koszul homology if the extension is �at�

Proposition ������ Let R be a ring� L an R�module� and f � L � R an

R�linear map� Suppose � � R � S is a ring homomorphism�

�a� Then one has a natural isomorphism K��f��R S �� K��f � S��
�b� Moreover� if � is �at� then H

�
�f�M�� S �� H

�
�f � S�M � S� for every

R�module M�

Proof� There is a natural isomorphism �
V
L�� S ��

V
�L� S�� and df � S

and df�S are antiderivations which coincide in degree �� So we can use
the same argument as in the previous demonstration� This proves �a�� and
�b� follows immediately since H��C� � S� � H��C�� � S for an arbitrary
complex C� over R if S is R��at�

Suppose L and L� are R�modules with linear forms f � L � R and
f� � L� � R� Every R�homomorphism � � L� L� extends to a homomor�
phism

V
� �
V
L�

V
L� of R�algebras� as discussed above� If f � f� ���

then
V

� is a homomorphism of Koszul complexes�

Proposition ������ With the notation just introduced� if f � f� � �� thenV
� � K��f�� K��f�� is a complex homomorphism�

The Koszul complex of a sequence� Let L be a �nite free R�module with
basis e�� � � � � en� Then a linear form f on L is uniquely determined by the
values xi � f�ei�� i � �� � � � � n� Conversely� given a sequence x � x�� � � � � xn�
there exists a linear form f on L with f�ei� � xi� We set

K��x� � K��f��

and the rest of the notation is to be modi�ed accordingly� Henceforth
we shall only consider Koszul complexes K��x�� Since f is just the �direct
sum� of the linear forms fi � R � R� fi��� � xi� ����� specializes to the
isomorphism

K��x� �� K��x��� K��xn� �� K��x��� � � � � K��xn�
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where x� � x�� � � � � xn��� Furthermore one should note that� by ������ K�
�x�

is essentially invariant under a permutation of x�

We set I � �x�� Let F
�
be a free resolution of R�I � As H��x� � R�I �

there exists a complex homomorphism � � K
�
�x�� F

�
lifting the identity

on R�I� note that � is unique up to homotopy�

Proposition ������ Let R be a ring� x � x�� � � � � xn a sequence in R� and
I � �x�� For all i there exist natural homomorphisms

Hi�x�M�� TorRi �R�I�M� and ExtiR�R�I�M�� H i�x�M��

Proof� The map � introduced above yields complex homomorphisms
��M � K��f�M�� F��M and HomR���M� � HomR�F��M�� K��f�M��

Let L be a �nite free R�module with basis e�� � � � � en� Then e��� � ��en is
a basis of

VnL� and there exists a unique R�isomorphism �n �
Vn L� R

with �n�e� � � � � � en� � �� �An isomorphism
Vn L �� R is usually called

an orientation on L�� We de�ne �i �
ViL� �

Vn�iL�� by setting

��i�x���y� � �n�x � y� for x �
i�
L� y �

n�i�
L�

�This causes no ambiguity for i � n if we identify R and R� under the
natural isomorphism�� It follows immediately that

��i�eI���eJ� �

�

 for I � J �� ��
��I� J� for I � J � ��

In this formula I and J are multi�indices as introduced above� It shows
that �i is an isomorphism� If we denote the dual basis of �eI � by �e

�
I �� the

formula says that

�i�eI� � ��I� �I�e��I

where �I � f�� � � � � ng n I � Thus �i is an isomorphism� We consider the
diagram

K
�
�x� � 
 ��

n�
L

d
��

n���
L

d
�� � � �

d
�� L

d
�� R �� 
��y	n

��y	n��

��y	�

��y	�

K��x� � 
 �� R
d�

�� L�
d�

�� � � �
d�

�� �
n���

L��
d�

�� �
n�
L�� �� 


with d � dx and d� � �dx���
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Proposition �����
� Let x � x�� � � � � xn be a sequence in a ring R�
�a� With the notation just introduced� one has �i�� �di � ����i��d�n�i����i

for all i�
�b� The complexes K��x� and K��x� � �K��x��� are isomorphic �we say that

K
�
�x� is self�dual��

�c� More generally� for every R�module M the complexes K��x�M� and

K��x�M� are isomorphic� and
�d� Hi�x�M� �� Hn�i�x�M� for i � 
� � � � � n�

Proof� The veri�cation of �a� is left as an exercise for the reader �������
is helpful�� We observed above that �i is an isomorphism so that the
maps �i � ����i�i������i de�ne an isomorphism K��x� �� K��x� � �K��x����

For �c� we note that there is a natural homomorphism N� �M �
HomR�N�M� for all R�modules N� M� If N is �nite and free� this
homomorphism is an isomorphism� and it induces an isomorphism
K��x� � M �� HomR�K��x��M�� Now one uses �b�� Part �d� is a triv�
ial consequence of �c��

The reader may have noticed that for a formally correct formulation
of �����
�b� one would �rst have to convert the cochain complex K��x�
into a chain complex C� �by setting Ci � K�i�x�� and then state that
K��x� �� C���n�� A similar manipulation would be necessary for �c��

The Koszul complex is an exact functor�

Proposition ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and

� U �M � N � 
 an exact sequence of R�modules� Then the induced

sequence


 �� K��x� U� �� K��x�M� �� K��x� N� �� 


is an exact sequence of complexes� In particular one has a long exact

sequence

� � � �� Hi�x� U� �� Hi�x�M� �� Hi�x� N� �� Hi���x� U� �� � � �

of homology modules�

Proof� The components of K
�
�x� are free� hence �at R�modules�

In place of an R�moduleM one can more generally consider a complex
C

�
� and then de�ne the Koszul homology of C

�
to be the homology of

K��x�� C� etc� We consider this construction only for the special case in
which x � x�

Proposition ������� Let R be a ring� and x � R�
�a� For every complex C� of R�modules one has an exact sequence


 �� C� �� C� �K��x� �� C����� �� 
�
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�b� The induced long exact sequence of homology is

� � � �� Hi�C�
� �� Hi�C�

� K
�
�x�� �� Hi���C�

�
�x
�� Hi���C�

� �� � � �

�c� Moreover� if x is C
�
�regular� then there is an isomorphism

H
�
�C

�
� K

�
�x�� �� H

�
�C

�
�xC

�
��

�According to our convention for graded modules C
�
���� is just the

complex C
�
with all degrees increased by ���

Proof� The complexK
�
�x� is simply 
 �� R

x
�� R �� 
� The i�th graded

component of K
�
�x�� C

�
is therefore �R � Ci�� �R � Ci��� � Ci � Ci���

So we have in each degree an exact sequence


 �� Ci

�
�� Ci � Ci��

�
�� Ci�� �� 
�

where 	 and � are the natural embedding and projection� If  is the
di erential of C�� then the di erential d � Ci�Ci�� � Ci���Ci�� is given
by the matrix �

 ����i��x

 

�
according to the de�nition of tensor products of complexes� Now �a� is
obvious�

For �b� one looks up the de�nition of connecting homomorphism� It
is de�ned by the following chain of assignments starting from z � Ci��

with �z� � 
�

z
���

��� �
� z�
d
��� �����i��xz� 
�

���

��� ����i��xz�

So the connecting homomorphism Hi�C������ � Hi���C�� � Hi���C�� is
multiplication by ����i��x�

�c� The natural maps Ci � Ci�� � Ci � Ci�xCi constitute a complex
homomorphism C��K��x�� C��xC�� We claim that the associated map
of homology is an isomorphism� In fact� let z � Ci such that �z� �
xCi��� Then there exists z� � Ci�� with �z� � xz�� and d�z� ����iz�� �
�
� ����i�z���� Next one has x�z�� � ��z�� � 
� so �z�� � 
 since
multiplication by x is injective on C� � �z� ����iz�� is a cycle mapped to the
cycle �z � Ci�xCi� That the map of homology is injective can be veri�ed
similarly�

Corollary ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and M
an R�module�
�a� Set x� � x�� � � � � xn��� Then one has an exact sequence

� � �
�xn
��� Hi�x

��M�� Hi�x�M�� Hi���x
��M�

�xn
��� Hi���x

��M�� � � �

�b� Let p � n� x� � x�� � � � � xp� and x�� � xp��� � � � � xn� If x� is weakly

M�regular� then one has an isomorphism H��x�M� �� H��x���M�x�M��
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Proof� Part �a� is a special case of �������b� when we take C
�
� K

�
�x��M�

and use the isomorphisms

K
�
�x��M�� K

�
�xn� �� K

�
�x���M � K

�
�xn� �� K

�
�x�M��

For part �b� it is enough to do the case p � � from which the general
case follows by induction� Next we may permute x to the sequence
x�� � � � � xn� x�� and then the assertion follows from �������c��

It is an immediate consequence of ������ that Hi�x�M� � 
 for i �
n� p� �� � � � � n if �the �rst� p elements of x�� � � � � xn form an M�sequence�
As we shall see in ������� there is a somewhat stronger vanishing theorem�

Corollary �����	� Let R be a ring� x a sequence in R� and M an R�module�
�a� If x is an M�sequence� then K��x�M� is acyclic�
�b� If x is an R�sequence� then K��x� is a free resolution of R��x��

Remark ������� Let R be a graded ring and x � x�� � � � � xn a sequence
of homogeneous elements� Then x induces a linear form of degree 
 on
F �

Ln
i��R�� deg xi�� The Koszul complex K��x� is a graded complex

with a di erential of degree 
 if we give
V

F the grading discussed above�
In particular one has

Vn F �� R��
Pn

i�� deg xi��

The Koszul complex and grade� The main importance of the Koszul
complex stems from the fact that H��x�M� measures grade�I�M� if M is
a �nite module over a Noetherian ring R and I � �x�� This will be made
precise in �����	� The �niteness assumption just stated will be necessary
to establish the existence of an M�sequence in I from the vanishing of
certain homology modules Hi�x�M�� The converse holds without such an
assumption�

Theorem ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and M
an R�module� If I � �x� contains a weak M�sequence y � y�� � � � � ym� then

Hn���i�x�M� � 
 for i � �� � � � � m� and

Hn�m�x�M� �� HomR�R�I�M�yM� �� ExtmR�R�I�M��

Proof� The last isomorphism is given by Lemma ������ The remaining
claims are proved by induction on m� For m � 
 we must show that

Hn�x�M� �� HomR�R�I�M��

In fact� by �����
 one has Hn�x�M� �� H��x�M�� and the latter is naturally
isomorphic with HomR�R�I�M�� as follows from the exactness of Rn �
R � R�I � 
 and the left exactness of HomR� �M�� Explicitly� if we
identify

Vn Rn �M and R �M �� M via an orientation �n of R
n� then

Hn�x�M� is just the submodule fy �M � Iy � 
g �� HomR�R�I�M� of M�
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Let m 	 �� Then we set �M � M�y�M� The exact sequence


 ��M
y�
��M �� �M �� 


induces an exact sequence

� � � �� Hi�x�M�
y�
�� Hi�x�M� �� Hi�x� �M� �� Hi���x�M�

y�
�� � � � �

see ������� Since� by ������ y� annihilates Hi�x�M� for all i� this exact
sequence breaks up into exact sequences


 �� Hi�x�M� �� Hi�x� �M� �� Hi���x�M� �� 
�

It only remains to apply the induction hypothesis�

Theorem ������� Let R be a Noetherian ring� and M a �nite R�module�
Suppose I is an ideal in R generated by x � x�� � � � � xn�
�a� All the modules Hi�x�M�� i � 
� � � � � n� vanish if and only if M � IM�

�b� Suppose that Hi�x�M� �� 
 for some i� and let

h � maxfi � Hi�x�M� �� 
g�

Then every maximal M�sequence in I has length g � n�h� in other words�

grade�I�M� � n� h�

Proof� �a� The implication �� is trivial� M � IM � H��x�M� ��
M�IM � 
� For the converse choose a prime ideal p � By ����	 and
the �atness of localization one has �Hi�x�M��p

�� Hi�x�Mp � where x is
considered a sequence in Rp on the right hand side� If I �� p � then
Hi�x�Mp � � 
 by ������ If I � p � then Mp � 
 by Nakayama�s lemma�
and again we have Hi�x�Mp � � 
�

�b� We give two proofs� �A third proof for the caseM � R is indicated
in Exercise �����
��

�i� By part �a� we have M �� IM� Let y be a maximal M�sequence in
I� then y has length g � grade�I�M�� It follows immediately from ������
and ����� that Hi�x�M� � 
 for i � n � g � �� � � � � n and Hn�g�x�M� ��
ExtgR�R�I�M� �� 
�

�ii� Let y be a maximal M�sequence in I � and suppose that y has
length g� Then Hi�x�M� � 
 for i � n � g � �� � � � � n by ������� and
furthermore Hn�g�x�M� �� HomR�R�I�M�yM�� Since I consists of zero�
divisors of M�yM� this module is non�zero� see ������

The second proof just given is independent of the �homological�
Lemma ������ and shows again that all maximal M�sequences in I have
the same length� Therefore one could build the theory of grade upon
�����	�

Corollary ������ can be reversed for local rings� We need the following
lemma�
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Lemma ������� Let �R� m � be a Noetherian local ring� M a �nite R�module�
and x � x�� � � � � xn a sequence in m � Set x� � x�� � � � � xn��� If Hi�x�M� � 
�
then Hi�x��M� � 
�

Proof� By ����� we have K
�
�x� �� K

�
�x�� � K

�
�xn�� So ������ gives us an

exact sequence

Hi�x
��M�

�xn
��� Hi�x

��M� �� Hi�x�M��

These modules are �nite� If Hi�x�M� � 
� then multiplication by xn
on Hi�x��M� is surjective� whence Hi�x��M� � 
 by Nakayama�s lemma�

Corollary ������� Let �R� m � be a Noetherian local ring� M �� 
 a �nite R�
module� and I � m an ideal generated by x � x�� � � � � xn� Then the following
are equivalent	

�a� grade�I�M� � n�
�b� Hi�x�M� � 
 for i � 
�
�c� H��x�M� � 
�
�d� x is an M�sequence�

Proof� The equivalence of �a� and �b� follows from �����	� and �b� �c�
and �d�  �a� are trivial� The proof of �c�  �d� is an easy induction
based on ������ and �������

We saw in ����� that under the hypotheses of ����� every permutation
of an M�sequence is again an M�sequence� Since� by ������ the Koszul
complexes of x and every permutation of x are isomorphic� ����� yields
another proof of ������

Remark �����
� For an arbitrary ring R and an arbitrary module M it
follows from H��x�M� � 
 that x is M�quasi�regular� provided xM �� M�
see ����� Ch� X� x� Th�eor!eme ��

The Koszul complex as an invariant� Let R be a Noetherian local ring�
I an ideal� and x � x�� � � � � xn and y � y�� � � � � yn minimal systems of
generators of I � Then any n
 n matrix A � �apq� such that

xi �
nX

j��

ajiyj � i � �� � � � � n�

is invertible since the residue classes of x and y are bases of I�m I
over R�m � If f and f� are the linear forms on Rn de�ned by x and y

respectively� then there exists an R�automorphism � of Rn �de�ned by A�
such that f � f� � �� and it follows from ����� that the Koszul complexes
K��x� and K��y� are isomorphic� This obviously fails if x and y have
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di erent lengths� Nevertheless the Koszul complexes K
�
�x� and K

�
�y� are

closely related� The following proposition shows how to compare each of
them to K

�
�x� y��

Proposition ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and
x� � x�� � � � � xn� xn��� � � � � xm with xn��� � � � � xm � �x�� Then

K
�
�x�� �� K

�
�x��

�
Rm�n

as graded R�algebras� here
V

Rm�n is considered a complex with zero dif�

ferential� In particular� for every R�module M one has

H��x
��M� �� H��x�M��

�
Rm�n�

Proof� Since
V
Rk�� ��

V
Rk �

V
R it su�ces to treat the case m � n� ��

Write xn�� �
Pn

j�� ajxj � Let f be the linear form on Rn�� de�ned by x�

and f� the linear form de�ned by x�� � x� 
� The assignment ei �� ei for
i � �� � � � � n and en�� ��

Pn
j�� ajej � en�� induces an automorphism � of

Rn�� such that f � f� � �� As above one concludes that K��x�� �� K��x����
in other words� there is no restriction in assuming that xn�� � 
�

In the special situation we have reached� the �rst claim is a trivial
consequence of ������ The second claim is easily veri�ed�

Corollary ������� Let R be a ring� I a �nitely generated ideal� and M an R�
module� Suppose x � x�� � � � � xm and y � y�� � � � � yn are systems of generators
of I � and let g � N� Then Hi�x�M� � 
 for i � m� g��� � � � � m if and only

if Hj �y�M� � 
 for j � n� g � �� � � � � n�

The corollary follows easily from ������� Note that for a �nite module
M over a Noetherian ring R it just restates part of �����	� However�
when we de�ne the grade of a �nitely generated ideal with respect to an
arbitrary module in Chapter � ������ will be an essential result�

Exercises

������� Let I � J � I� � I� � I� be 	nite subsets of N� Suppose I � fi� � � � � � ipg�
J � fip��� � � � � ip�qg� the elements given in ascending order�

�a� Suppose I 	 J � � and let � be the permutation of I � J given by ��jk� � ik
where I � J � fj� � � � � � jp�qg is given in ascending order� Prove 	�I� J� � 	��� �
����pq	�J� I��

�b� Deduce that 	�I� � I��	�I� � I� � I�� � 	�I� � I� � I��	�I� � I���

������� Let R be a local ring� and M a 	nite R�module�

�a� Show 
�
Vi

M� �
�
��M�
i

�
for all i �N�

�b� Let � � i � 
�M�� Prove that M is free if and only if
Vi

M is free�
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������� �a� Let R be a ring� and M an R�module of rank r� Prove rank
ViM �

�
r
i

�
for all i �N�
�b� Show the analogue for a homomorphism � � F � G of 	nite free modules
over a Noetherian ring�
Hint for �b�� One may assume that R is local and of depth �� Then Im� is a free
direct summand of G�

������� Let R be a Noetherian local ring� F a 	nite free R�module� U � F a

submodule of rank r and � the natural embedding� Show that
Vj � is injective if

and only if
Vj U is torsion�free� In particular

Vj U is non�zero� but
Vj � is not

injective for rankU � j � 
�U��

�����	� Let R be a ring� and M an R�module� For f� � � � � � fp � M� let ��f�� � � � � fp�
be the restriction of df� � � � � � dfp to

Vp M� Show that � induces an R�linear map

� �
Vp�M�� � �

VpM�� � Prove that � is an isomorphism� if M is 	nite and free�

�����
� Let L� be an R�module� x � L�� and  the right multiplication by x onV
L�� Prove

eK��x� � � ��� R
�

��� L�
�
���

��
L�

�
��� � � �

is a complex�

Suppose that L� � �Rn�� and f � L�� Then the complexes eK��f� and K��f�
are isomorphic� �Since K��f� 
� K��f� by ������� one can introduce the Koszul

complex via eK��f� if one is satis	ed with having it only for linear forms on 	nite
free modules��

������� Let R be a Noetherian ring� x � �x�� � � � � xn� an element of Rn� M � Rn�Rx�
and I the ideal generated by x�� � � � � xn� Prove that grade I � k if and only if

� ��� R
�
��� Rn

�
���

��
Rn

�
��� � � �

�
���

k�
Rn ��� �

is a free resolution of
Vk M� �The map  is right multiplication by x as in �������

one always has
Vk M 
� �

Vk Rn���
Vk�� Rn���

������� Let x � x�� � � � � xn be a sequence in R� and denote by �i the di�erentialVi Rn �
Vi�� Rn in the Koszul complex of x� Let ri �

�
n��
i��

�
be the expected rank

of �i�
�a� Show that Rad Iri��i� � Rad�x��
�b� Derive ������ for M � R from the Buchsbaum�Eisenbud acyclicity criterion�

������� Let R be a Noetherian ring� and M �� � a 	nite R�module� Let I be an
ideal� x � x� � � � � � xn a system of generators of I � and g � grade�I�M�� Show
Hi�x�M� � � for i � n� g � �� � � � � n� and Hi�x� M� �� � for i � �� � � � � n � g� �This
property is called the rigidity of the Koszul complex�� Hint� Reduce to the local
case and use ������ for an inductive argument�

������� Let �R� m � be a Noetherian local ring� I � m an ideal� x � m � and M a
	nite R�module� Prove grade�I � �x�� M� � grade�I�M� � ��

������� Let �R� m � be a �local ring� and p �� m be a prime ideal such that p � � m �
Choose a � p with p � m � �a� �see the proof of ����
�� Then a is R�regular
�why��� If F� is a graded minimal free resolution of R�m � show that �F��K��a��p

is a minimal free resolution of Rp �p Rp �
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Notes

After the foundations of homological algebra had been laid by Cartan and
Eilenberg ��	�� it invaded commutative ring theory through the epochal
work of Auslander and Buchsbaum ��	�� ����� ���� Rees ��
��� and Serre
������ These works cover the contents of Sections �������� and much more�
to be developed in Chapters ���� Previously commutative algebra had
been ideal theory �under which title Krull �in German� and Northcott
published in�uential monographs�� now modules were considered the
objects that give structure to a ring� An intermediate position was taken
by Gr�obner�s rather �modern� treatise ������ but it introduced modules
only as �Vektormoduln�� i�e� submodules of free modules over polynomial
rings�

Proposition������ and several theorems in Chapters � and � resemble a
very successful method in topology� namely to relate the properties of the
total space of a �bration to those of the base and the �bre� The algebraic
analogue of this principle was studied systematically by Grothendieck
����� �which� by the way� contains various results on regular sequences
not reproduced by us��

Torsion�freeness� re�exivity� and their �higher� analogues are treated
in the monograph ���� of Auslander and Bridger� see Bruns and Vetter
���� for a compact presentation� The de�nition of rank is taken from
Scheja and Storch ������

The very useful acyclicity criterion of Buchsbaum and Eisenbud ap�
peared in ����� It is closely related to Peskine and Szpiro�s equally
important �lemme d�acyclicit�e� ��	� which we reproduced in Exercise
�������

The notion of perfect ideal or module appeared in Rees ��
��� It is an
abstract version of Gr�obner�s ����� which in turn goes back to Macaulay
������ A special form of the Hilbert�Burch theorem was proved by
Hilbert ��	�� �and had been previously conjectured by Meyer ��	���
whereas Burch ���� provided the �rst �modern� version� The theorem has
been re�proved several times� we have essentially reproduced the version
of Buchsbaum and Eisenbud ���� who generalized the theorem to a
factorization theorem for the ideals Iri��i� appearing in their acyclicity
criterion�

Because of their importance for algebraic geometry� graded rings have
been a standard topic in commutative algebra� Their enumerative theory
will be developed in Chapter �� Rees ��
�� ascribes Theorem ����� to
Samuel� Theorem ����� is due to Matijevic ���	�� and ���� was given
by Matijevic and Roberts ������ �The proof of ���� has been drawn
from Fossum and Foxby ��
� and Goto and Watanabe ������� These
theorems are part of a programme aiming at characterizations of graded
rings which only use localizations with respect to graded prime ideals�
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We shall reproduce the pertinent results in the exercises of Chapters �
and ��

The Koszul complex ���
� appeared for the �rst time in Hilbert ��	���
after having proved his syzygy theorem �see ������� Hilbert determined the
free resolution of the k�X�� � � � � Xn��module k� That the Koszul complex
is an utterly useful construction even when it is not acyclic seems to
have been recognized by Auslander and Buchsbaum ��� and Serre
������ Auslander and Buchsbaum established the main results of Section
��� whereas Serre found the connection with multiplicity theory� see
Chapter ��
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In this chapter we introduce the class of Cohen�Macaulay rings and two
subclasses� the regular rings and the complete intersections� The de�nition
of Cohen�Macaulay ring is su�ciently general to allow a wealth of
examples in algebraic geometry� invariant theory� and combinatorics� On
the other hand it is su�ciently strict to admit a rich theory� in the
words of Hochster� �life is really worth living� in a Cohen�Macaulay ring
������� p� ��	�� The notion of Cohen�Macaulay ring is a workhorse of
commutative algebra�

Regular local rings are abstract versions of polynomial or power series
rings over a �eld� The fascination of their theory stems from a unique
interplay of homological algebra and arithmetic� Complete intersections
arise as residue class rings of regular rings modulo regular sequences� and�
in a sense� are the best singular rings� Their exploration is dominated by
methods related to the Koszul complex�

��� Cohen�Macaulay rings and modules

Let R be a Noetherian local ring� andM a �nite module� If the �algebraic�
invariant depthM equals the �geometric� invariant dimM� then M is
called a Cohen�Macaulay module�

De�nition ������ Let R be a Noetherian local ring� A �nite R�module
M �� 
 is a Cohen�Macaulay module if depthM � dimM� If R itself
is a Cohen�Macaulay module� then it is called a Cohen�Macaulay ring�
A maximal Cohen�Macaulay module is a Cohen�Macaulay module M
such that dimM � dimR�

In general� if R is an arbitrary Noetherian ring� then M is a Cohen�

Macaulay module if Mm is a Cohen�Macaulay module for all maximal
ideals m � SuppM� �So we consider the zero module to be Cohen�
Macaulay�� However� for M to be a maximal Cohen�Macaulay module
we require that Mm is such an Rm �module for each maximal ideal m of
R� As in the local case� R is a Cohen�Macaulay ring if it is a Cohen�
Macaulay module�

If I is an ideal contained in AnnM� then it is irrelevant for the
Cohen�Macaulay property whether we consider M as an R�module or

�	
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an R�I�module� In particular� if R is local and M a Cohen�Macaulay
module� then M is a maximal Cohen�Macaulay module over R�AnnM�

The next theorem exhibits the fact that for a Cohen�Macaulaymodule
the grade of an arbitrary ideal is given by its �codimension��

Theorem ������ Let �R� m � be a Noetherian local ring� and M �� 
 a

Cohen�Macaulay R�module� Then

�a� dimR�p � depthM for all p � AssM�

�b� grade�I�M� � dimM � dimM�IM for all ideals I � m �

�c� x � x�� � � � � xr is an M�sequence if and only if dimM�xM � dimM� r�

�d� x is an M�sequence if and only if it is part of a system of parameters

of M�

Proof� �a� We saw depthM � dimR�p in ������� and dimR�p � dimM
holds since AssM � SuppM�

�b� If grade�I�M� � 
� then there exists p � AssM with I � p �
therefore dimM�IM � dimM follows from �a�� If grade�I�M� � 
�
then we choose x � I regular on M� One has grade�I�M�xM� �
grade�I�M���� depthM�xM � depthM��� and dimM�xM � dimM��
so that induction completes the argument�

�c� It su�ces now to quote ������
�d� This is just a reformulation of �c��

The Cohen�Macaulay property is stable under specialization and
localization�

Theorem ������ Let R be a Noetherian ring� and M a �nite R�module�
�a� Suppose x is an M�sequence� If M is a Cohen�Macaulay module� then

M�xM is Cohen�Macaulay �over R or R��x��� The converse holds if R is

local�

�b� Suppose that M is Cohen�Macaulay� Then for every multiplicatively

closed set S in R the localized module MS is also Cohen�Macaulay� In

particular� Mp is Cohen�Macaulay for every p � SpecR� If Mp �� 
�
then depthMp � grade�p �M�� if in addition R is local� then dimM �
dimMp � dimM�p M�

Proof� �a� By the de�nition of Cohen�Macaulay module one may ev�
idently assume that R is local� Let n be the length of x� Then
dimM�xM � dimM � n by ������ and depthM�xM � depthM � n
by �����
�

�b� Let q be a maximal ideal of RS � The ideal q is the extension of
a prime ideal p in R� and so �RS �q

�� Rp � Let m be a maximal ideal of
R containing p � Then Rp is a localization of the Cohen�Macaulay local
ring Rm � So we may again assume that R is local�

There is nothing to prove if Mp � 
� When Mp �� 
� we use induction
on depthMp � If depthMp � 
� then p � AssM� and p is a minimal
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prime of SuppM by ������ therefore dimMp � 
� The same argument
shows that p cannot be contained in any q � AssM if depthMp � 
�
So p contains an M�regular element x� and the induction hypothesis
applies to M�xM� It follows easily that Mp is Cohen�Macaulay and
that depthMp � grade�p �M�� The second equation results from that and
������

Corollary ����	� Let R be a Cohen�Macaulay ring� and I �� R an ideal�

Then grade I � height I � and if R is local� height I � dimR�I � dimR�

Proof� One has heightI � minfdimRp � p � V �I�g and furthermore
grade I � minfdepthRp � p � V �I�g� Theorem ����� yields dimRp �
depthRp for all p � SpecR� This proves the �rst equation� and the
second follows from that and ������

Let k be a �eld� We shall see in the next section that every �nite
module over a polynomial ring k�X�� � � � � Xn� or a power series ring
k��X�� � � � � Xn�� has �nite projective dimension� Furthermore these rings
are Cohen�Macaulay as will be shown below� This explains why the
following theorem is a very e ective Cohen�Macaulay criterion�

Theorem ������ Let R be a Cohen�Macaulay ring� and M a �nite R�module
of �nite projective dimension�

�a� If M is perfect� then it is a Cohen�Macaulay module�

�b� The converse holds when R is local�

Proof� Let M be perfect and p � SuppM� Then Mp is a perfect module
as shown in the proof of ������� So we may assume that R is local� The
Auslander�Buchsbaum formula gives proj dimM � dimR�depthM� and
����� yields gradeM � dimR � dimM� Thus depthM � dimM if and
only if proj dimM � gradeM�

One says that an ideal I is unmixed if I has no embedded prime
divisors or� in modern language� if the associated prime ideals of R�I are
the minimal prime ideals of I � Macaulay showed in ��� that an ideal
I � �x�� � � � � xn� of height n in a polynomial ring over a �eld is unmixed�
and for regular local rings this was proved by Cohen in ���� �An n�
generated ideal of height n is said to be of the principal class�� These facts
and the following theorem explain the nomenclature �Cohen�Macaulay��

Theorem ������ A Noetherian ring R is Cohen�Macaulay if and only if

every ideal I generated by height I elements is unmixed�

Proof� ��� Suppose I � �x�� x � x�� � � � � xn� and let p � q � AssR�I � p � q �
Then there is a maximal ideal m with q � m � and p Rm � q Rm � Ass�Rm �Im ��
If height I � n� then dim�Rm �Im � � dimRm � n� and x is an Rm �sequence
by ������ Therefore Rm �Im is Cohen�Macaulay� whence p Rm � q Rm

�again by ������� and so p � q �
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���� Let J � R be an arbitrary ideal� say heightJ � n� Then
there exist x�� � � � � xn � J with height�x�� � � � � xi� � i for all i � 
� � � � � n
�see A���� It is impossible for xi�� to be contained in a minimal prime
ideal of �x�� � � � � xi�� By hypothesis it therefore is an �R��x�� � � � � xi���
regular element� So x�� � � � � xn is an R�sequence� We have shown that
gradeJ � heightJ for every proper ideal J of R� Then R is certainly
Cohen�Macaulay�

Flat extensions of Cohen�Macaulay rings and modules� The behaviour of
depth under �at local extensions was studied in Section ���� That makes
it easy to prove an analogous theorem for the Cohen�Macaulay property�

Theorem ������ Let � � �R� m �� �S� n � be a homomorphism of Noetherian

local rings� Suppose M is a �nite R�module and N is an R��at �nite S�
module� Then M �R N is a Cohen�Macaulay S�module if and only if M is

Cohen�Macaulay over R and N�m N is Cohen�Macaulay over S �

In fact� according to ������ we have depthS M � N � depthR M �
depthS N�m N� Since depth is bounded above by dimension� the theorem
follows from the analogous equation for dimension� see A����

Corollary ������ Let �R� m � be a Noetherian local ring� M a �nite R�

module� and �M its m �adic completion�

�a� Then dimR M � dim 	R
�M and depthR M � depth 	R

�M�

�b� M is Cohen�Macaulay if and only if �M is Cohen�Macaulay�

Proof� The extension R � �R is local and �at� and �M � M�R
�R since M

is �nite�

One can of course use more direct arguments in order to prove the
previous corollary� Similarly there is a more �elementary� approach to the
following theorem� see for example ������

Theorem ������ Let R be a Noetherian ring� M a �nite R�module� and S �
R�X�� � � � � Xn� or S � R��X�� � � � � Xn��� Then M � S is a Cohen�Macaulay

S�module if and only if M is a Cohen�Macaulay module�

Proof� Since the indeterminates can be adjoined successively� we may
assume n � �� X � X�� The �only if� part is easy� in both cases X is
�M � S��regular� and R �� S��X�� M �� �M � S��X�M � S�� �That X
is �M � S��regular is evident for S � R�X�� the reader should �nd a
justi�cation for S � R��X����

Conversely� let m be a maximal ideal of S � and set p � m � R� As
outlined below A��� the �bre Sm �p Sm is a discrete valuation ring� and
thus Cohen�Macaulay� Now we invoke ����	 and complete the proof�
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For polynomial extensions the proof of ���� shows that a stronger
local version of ���� is valid� for q � SpecR�X�� � � � � Xn� the localization
R�X�� � � � � Xn�q is Cohen�Macaulay if and only if Rp is Cohen�Macaulay
for p � q �R� Similarly� there is a local version of the following theorem�

Theorem �����
� Let k be a �eld� R a Noetherian k�algebra� and K an

extension �eld of k� Suppose that R is a �nitely generated k�algebra� or
that K is �nitely generated as an extension �eld of k� Then R is a Cohen�

Macaulay ring if and only if R �k K is�

Proof� If R is a �nitely generated k�algebra� then R �k K is a �nitely
generated K�algebra� and therefore Noetherian� Suppose that K is a
�nitely generated extension �eld� Then K is a �nite algebraic extension
of a �nite purely transcendental extension K � of k� Since K � is the �eld of
fractions of a polynomial ring k�T�� � � � � Tn�� we �nd again that R �k K

�

is Noetherian� whence R �k K � �R �k K
���K � K is also Noetherian�

Evidently R�K is a faithfully �at R�algebra� Therefore� given a prime
ideal p of R� there exists q � SpecR�K such that p � R� q � The �bre of
the extension Rp � �R�K�q is a localization of k�p ��K � In conjunction
with ����	 this argument reduces the theorem to the assertion that L�kK
is Cohen�Macaulay for extension �elds L and K of k� provided one of
them is �nitely generated� This follows from the next proposition�

Proposition ������� Let k be a �eld� R a k�algebra� and K a �nitely gener�

ated extension �eld of k� Then R �k K is isomorphic to a ring

R�X�� � � � � Xn�S��f�� � � � � fm�

where S is a multiplicatively closed subset of R�X�� � � � � Xn�� and f�� � � � � fm
is a R�X�� � � � � Xn�S �sequence�

Proof� The extension k � K decomposes into a series of cyclic extensions
k � K� � � � � � Kt � K � We use induction on t� Suppose that T �
R �k Ki � R�X�� � � � � Xn�S��f�� � � � � fm��

If Ki�� � Ki�Y ���g� with a monic irreducible polynomial g� then

R �k Ki��
�� T �Ki

Ki��
�� T �Y ���g��

Since T is a �at Ki�algebra� g is not a zero�divisor of

T �Y � � R�X�� � � � � Xm� Y �S��f�� � � � � fm��

If Ki�� � Ki�Y �� then R �k Ki�� � R�X�� � � � � Xn� Y �S ���f�� � � � � fm� where
S � is generated by the image of S and the image of Ki�Y � n f
g�

Chain conditions in Cohen�Macaulay rings� Cohen�Macaulay rings were
introduced as those rings for which depth equals dimension� Corollary
����� and the next theorem show that dimension theory itself is simpler
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for Cohen�Macaulay rings than for general Noetherian rings� One says
a Noetherian ring R is catenary if every saturated chain joining prime
ideals p and q � p � q � has �maximal� length height q �p � R is universally
catenary if all the polynomial rings R�X�� � � � � Xn� are catenary� It is easy
to see that R is universally catenary if and only if every �nitely generated
R�algebra is �universally� catenary�

Theorem ������� A Cohen�Macaulay ring R is universally catenary�

Proof� �Universally� may be dropped because of ����� So let p � q be
prime ideals of R� The localization Rq is Cohen�Macaulay� and �����
applied to Rq yields

height q � dimRq � height p Rq � dim�Rq �p Rq � � height p � height q �p �

It is an easy exercise to show that R is catenary if this equation holds for
all prime ideals p � q �

Corollary ������� A Noetherian complete local ring R is universally cate�

nary�

Proof� Cohen�s structure theorem �see A���� tells us that R is a residue
class ring of a formal power series ring A � k��X�� � � � � Xn�� where k is a
�eld or a discrete valuation ring� By ����� A is Cohen�Macaulay and
therefore universally catenary� R inherits this property as a residue class
ring of A�

Remark �����	� For the sake of clarity ����� and ������ were kept more
special than necessary� If R has a Cohen�Macaulay module M with
SuppM � SpecR� then we need only replace grade I by grade�I�M� in
����� to obtain an equally valid result� It follows that a local Noetherian
domain which has a maximal Cohen�Macaulay module is universally
catenary� One of Nagata�s famous counter�examples is a non�catenary
such domain ������� Example �� p� �
���

However� to be universally catenary is not the only necessary condition
for R to have a Cohen�Macaulay module M with SuppM � SpecR�
it must also satisfy Grothendieck�s condition �CMU�� This condition
requires that for every prime ideal p of R the spectrum of R�p contains
a non�empty open subset U such that �R�p �q is Cohen�Macaulay for all
q � U� see ������ IV� ����� A local ring violating �CMU� was constructed
by Ferrand and Raynaud ��
���

A Noetherian complete local ring is universally catenary since it is a
residue class ring of a Cohen�Macaulay ring� and for the same reason
it satis�es �CMU�� It is an open question whether every Noetherian
complete local ring has a maximal Cohen�Macaulay module�

We shall see in Chapter  that the existence of maximal Cohen�
Macaulay modules implies a wealth of homological theorems� Fortu�
nately� it will not be essential that these Cohen�Macaulay modules M
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are really �nite� we �only� need every system of parameters of the ring to
be an M�sequence� In Chapter � such modules will be shown to exist for
local rings containing a �eld�

For a prime ideal p in a Cohen�Macaulay local ring R the residue
class ring R�p is not Cohen�Macaulay in general� it is however unmixed
in the sense of Nagata ������

Theorem ������� Let R be a Cohen�Macaulay local ring� and p a prime

ideal� Then dim �R�q � dimR�p for all q � Ass� �R�p �R�� In particular p �R
is an unmixed ideal�

Proof� If q � R �� p � then q would contain an � �R�p �R��regular element�

Therefore q � R � p � and we have a �at local ring extension Rp � �Rq �

Applying ������ and since �Rq and Rp are Cohen�Macaulay we get

dim �Rq � depth �Rq � depthRp � depth� �Rq �p �Rq � � dimRp �

In view of ����� this equation is equivalent to the theorem�

Serre�s condition �Sn�� Sometimes one only needs a ring or a module
to be Cohen�Macaulay in low �codimension�� A �nite module over a
Noetherian ring R satis�es Serre�s condition �Sn� if

depthMp 	 min�n� dimMp �

for all p � SpecR� The theorems of this section need some modi�cation
when Cohen�Macaulay is replaced by �Sn�� As an example we treat the
�Sn� analogue of ����	�

Proposition ������� Let � � R � S be a �at homomorphism of Noetherian

rings�

�a� Let q � Spec S and p � q � R� If Sq satis�es �Sn�� then so does Rp �

�b� Suppose R and all the �bres k�p ��S with p � SpecR satisfy �Sn�� Then
S satis�es �Sn��

Proof� �a� Replacing R by Rp and S by Sq we may assume that � is a �at
homomorphism of local rings� For p � SpecR we now choose a minimal
prime q of p S � Then dim�Sq �p Sq � � 
� and according to ������ we have

depthRp � depth Sq 	 min�n� dimSq � � min�n� dimRp ��

�b� For q � Spec S and p � R � q one similarly deduces

depthSq � depthRp � depth�Sq �p Sq �

	 min�n� dimRp � � min�n� dim�Sq �p Sq ��

	 min�n� dimRp � dim�Sq �p Sq ��

� min�n� dimSq ��
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Exercises

�����	� Let k be a 	eld� and R � kX� � � � � � Xn�� If p is a prime ideal in R with
height p � f�� �� n� �� ng� show that R�p is Cohen�Macaulay�

�����
� Let k be a 	eld� Show
�a� the subalgebra S � kU� � U�V �UV � � V �� of kU� V � is not Cohen�Macaulay�
�b� for each m with � � m � n � � there exists a prime ideal of height m in
R � kX� � � � � � Xn� for which R�p is not Cohen�Macaulay�

������� Let k be a 	eld� and S the subalgebra of kX� � � � � � Xn� generated by the
monomials of degrees � and �� Show S is an n�dimensional domain� the maximal
ideal �X� � � � � � Xn� 	 S has height n and grade ��

������� Prove �a� a one dimensional reduced Noetherian ring is Cohen�Macaulay�
�b� a one dimensional Noetherian local ring has a maximal Cohen�Macaulay
module�

������� Characterize �Sn� by an unmixedness property�

������� Prove that a module M satis	es �Sn� if and only if Mp is Cohen�Macaulay
for all prime ideals p with depthMp � n�

������� Let R � S be a faithfully �at homomorphism of Noetherian rings� Show
the following are equivalent�
�a� S is Cohen�Macaulay�
�b� R and all the 	bres Sq �p Sq are Cohen�Macaulay where q � SpecS and
p � q 	 R�
Hint� use A����

������� Prove the analogues of ������b�� ����
� and ������ for �Sn�� For the passages

from R to �R and to RX� � � � � � Xn�� assume that R is a residue class ring of a
Cohen�Macaulay ring�

������� Prove the converse of ������a� under the hypothesis that SuppM is con�
nected� �The crucial point is to show that the function p �� proj dimMp is locally
constant on SuppM if M is locally perfect��

������� Let R be a Cohen�Macaulay local ring of dimension d and M a 	nite
R�module� Deduce that the d�th syzygy of M in an arbitrary 	nite free resolution
is either � or a maximal Cohen�Macaulay module�

�����	� Let R be a Noetherian graded ring� and M a 	nite graded R�module�
Show�
�a� For p � SpecR the localization Mp is Cohen�Macaulay if and only if Mp � is�
�This follows easily from the results of Section �����
�b� The following are equivalent�

�i� M is Cohen�Macaulay�
�ii� Mp is Cohen�Macaulay for all graded prime ideals p �
�iii� M�p � is Cohen�Macaulay for all graded prime ideals p �

�c� Suppose in addition that �R� m � is � local� Then M is Cohen�Macaulay if and
only if Mm is�

�����
� Let �R� m � be a Noetherian �local ring� and x � m a homogeneous
R�regular element� Then R is Cohen�Macaulay if and only if so is R��x��
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������� Let the Noetherian ring R be a free Z�module such that R � K is
Cohen�Macaulay for some 	eld K of characteristic p � �� Show that R � L is
Cohen�Macaulay for every 	eld L of characteristic ��
Hint� reduce the problem to the case in which K � Z��p�� L � Q and use R�Zp �
p � �p�� as a �bridge��
This is the 	rst and easiest example of reduction to characteristic p�

��� Regular rings and normal rings

The most distinguished of all Noetherian local rings are those whose
maximal ideal can be generated by a system of parameters�

De�nition ������ A Noetherian local ring �R� m � is regular if it has a
system of parameters generating m � such a system of parameters is called
a regular system of parameters�

Evidently� when dimR � 
� then R is regular if and only if it is a �eld�
and when dimR � �� R is regular if and only if it is a discrete valuation
ring� Other examples of regular local rings are k��X�� � � � � Xn�� where k is
a �eld� and k�X�� � � � � Xn�m � m � �X�� � � � � Xn��

We may rephrase the de�nition above as follows� R is regular if and
only if ��m � � dimR� In fact� ��m � 	 dimR by Krull�s principal ideal
theorem� and a system of generators of m has dimR elements exactly
when it is a system of parameters�

Proposition ������ A Noetherian local ring �R� m � is regular if and only if

its m �adic completion �R is regular�

Proof� The maximal ideal of �R is m �R� and we have natural isomor�

phisms R�m �� �R�m �R� m �m � �� �m �R���m �R��� Therefore ��m � � ��m �R��

Furthermore dimR � dim �R� and by de�nition R is regular if and only if
dimR � ��m ��

It is easily proved that regular local rings are integral domains�

Proposition ������ Let �R� m � be a regular local ring� Then R is an integral

domain�

Proof� We use induction on dimR� When dimR � 
� R is a �eld� So
suppose dimR � 
� and let p �� � � � � p m be the minimal prime ideals of R�
There exists an element x � m which is not contained in any of the ideals
m �� p �� � � � � p m� �This follows easily from ����� withM � N � m �� Since x is
part of a minimal system of generators of m � it is part of a regular system
of parameters� and thus R��x� is regular �use that dimR��x� � dimR����
As dimR��x� � dimR we may assume that R��x� is a domain� Thus �x�
is a prime ideal� and therefore contains a minimal prime ideal of R� say
p �� Every y � p � has the form y � xz� and since x �� p �� z is an element
of p �� It follows that p � � xp �� which� by Nakayama�s lemma� implies
p � � 
� as required�
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Using the previous proposition� one can say precisely which residue
class rings of a regular local ring are also regular�

Proposition ����	� Let R be a regular local ring� and I � R an ideal� Then

R�I is regular if and only if I is generated by a subset of a regular system

of parameters�

Proof� The �if� part is trivial� So suppose that R�I is regular� Then
��m �I� � dimR�I� set m � dimR � dimR�I � By Nakayama�s lemma
I contains elements x�� � � � � xm which are part of a minimal system of
generators of m � Then R��x�� � � � � xm� is regular of dimension dimR �
m � dimR�I � Since I and �x�� � � � � xm� are prime ideals� one must have
I � �x�� � � � � xm��

The next proposition gives useful characterizations of regularity�

Proposition ������ Let �R� m � k� be a Noetherian local ring� and x�� � � � � xn a
minimal system of generators of m � Then the following are equivalent	

�a� R is regular�

�b� x�� � � � � xn is an R�sequence�
�c� the substitution Xi �� �xi � m �m � yields an isomorphism k�X�� � � � � Xn� ��
grm �R��

Proof� �a�  �b�� Since x�� � � � � xn is a minimal system of generators of
m � it is a regular system of parameters� and R��x�� � � � � xi� is also regular
for each i� Therefore R��x�� � � � � xi� is a domain� and xi�� is regular on
R��x�� � � � � xi��

�b� �a�� An R�sequence is part of a system of parameters by �������
�b�� �c�� This follows from ����� and its converse �������

Corollary ������ A regular local ring is Cohen�Macaulay�

The Auslander�Buchsbaum�Serre theorem� Whereas the characterizations
of regular local rings in ����� are rather close to the de�nition� this can
hardly be said of the following theorem� Together with ����� below�
it is considered to be the most important achievement of the use of
homological algebra in the theory of commutative rings�

Theorem ����� �Auslander�Buchsbaum�Serre�� Let �R� m � k� be a Noe�

therian local ring� Then the following are equivalent	

�a� R is regular�

�b� proj dimM � � for every �nite R�module M�

�c� proj dim k � ��

Proof� �a�  �b�� Let d � dimR� and N a d�th syzygy module of M�
Since R is Cohen�Macaulay� N is a maximal Cohen�Macaulay module
or 
 by Exercise ������� If N � 
� we are done� otherwise every regular
system of parameters x is a �maximal� N�sequence� Lemma ����� gives
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proj dimR N � proj dimR��x��N�xN� � proj dimk�N�m N� � 
� So N is
free� and proj dimM � d �

�b� �c�� This is trivial�
�c� �a�� This is a special case of the following theorem�

Theorem ����� �Ferrand� Vasconcelos�� Let �R� m � be a Noetherian local

ring� and I �� 
 a proper ideal with proj dim I � �� If I�I� is a free

R�I�module� then I is generated by a regular sequence�

Proof� Since I has a �nite free resolution� it contains an R�regular element
x by ����	� It is no restriction to assume x �� m I� if x � m I � then we
choose some y � I n m I� Ry � Rx is not contained in any p � AssR�
and by ����� there is a � R for which y � ax has the same property� This
proves the theorem when ��I� � �� and when ��I� � �� we use induction�
passing from R to R��x� and from I to I��x��

Of course� we must �rst verify that proj dimR��x� I��x� � �� Since

x �� m I � the residue class of x in I�I� is part of a basis �x� �x�� � � � � �xm of
this free module� Set J � �x�� � � � � xm�� we claim� J � �x� � xI � In fact� if
z � ax � a�x� � � � � � amxm� then a � I because �x� �x�� � � � � �xm are linearly
independent modulo I � Therefore we get a composition of maps

I��x� � �J � �x����x� �� J�J � �x� �� I�xI �� I��x��

in which the residue class of xi is sent to itself� and which therefore is the
identity on I��x�� So I��x� is a direct summand of I�xI� as x is I�regular�
the latter has �nite projective dimension over R��x� by ������

Finally we need that �I��I� is a free R�I�module where �I � I��x�� But
this is a very easy consequence of the linear independence of x� x�� � � � � xm
modulo I �

The proof of ����	 can be varied� the Koszul complex of a regular
system of parameters resolves k by ����� and ������� whence �a�  �c��
Moreover� the implication �c� �b� follows from ������ proj dim k � � 
TorRi �M� k� � 
 for i � 
� and this in turn gives proj dimM � �� While
this reasoning uses a truly homological argument� namely the fact that
Tor can be computed from a free resolution of either module� the proof
above merely exploits the existence of minimal free resolutions� Serre�s
original argument for �c� �a� will be indicated in Exercise �������

Corollary ������ Let R be a regular local ring� and p a prime ideal in R�
Then Rp is regular�

Proof� By ����	�a�  �b� we have proj dimR�p � �� It follows that
proj dimRp

�R�p �p � proj dimRp
�Rp �p Rp � � �� whence Rp is regular by

����	�c� �a��

Over a regular local ring the Cohen�Macaulay property is equivalent
to perfection �see Section ��� for this notion��
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Corollary �����
� A �nite module M over a regular local ring is Cohen�

Macaulay if and only if it is perfect�

The corollary is an immediate consequence of ����� and ����	�
Let �R� m � be a Noetherian local ring� By ������ R is Cohen�Macaulay

if and only if its m �adic completion �R is Cohen�Macaulay� Furthermore�
if R contains a �eld or is a domain� then it is a �nite module over a
regular local subring �see A����� Thus the following proposition may
almost be considered a new description of the Cohen�Macaulay property
for rings�

Proposition ������� Let R be a Noetherian local ring and S a regular local

subring such that R is a �nite S�module� Then R is Cohen�Macaulay if

and only if it is a free S�module�

Proof� By ����	 one has proj dimS R � �� therefore R is S�free if and
only if depthS R � dimS � Choose a �regular� system of parameters x
in S � Then x is also a system of parameters of R� and therefore R is
Cohen�Macaulay � x is an R�sequence � depthS R � dim S � �One
could also use Exercise ��������

Flat extensions of regular rings� The behaviour of regularity under �at
local extensions is described by the following theorem�

Theorem ������� Let � � �R� m � k� � �S� n � l� be a �at homomorphism of

Noetherian local rings�

�a� If S is regular� then so is R�
�b� If R and S�m S are regular� then so is S �

Proof� �a� Let F� be a minimal free resolution of the R�module k� Then
F�� S is a free resolution of k� S �� S�m S because of �atness� and even
a minimal one since ��m � � n � Thus proj dimR k � proj dimS S�m S � ��
and R is regular by ����	�

�b� Let m � dimR� n � dimS�m S � and choose minimal systems of
generators x�� � � � � xm of m and y�� � � � � yn of n �m S � Then ��x��� � � � � ��xm��
y�� � � � � yn generate n � and S must be regular because dimS � dimR �
dimS�m S� see A����

An easy example shows that S�m S need not be regular in the situation
of �������a�� Let k be a �eld� and choose S � k��X� Y ����Y � X�� and
R � k��y�� � S � Then R and S are regular� and S is a free R�module
generated by � and x� but S�yS �� k��X����X�� is not regular� �The reader
should imagine the geometry of this example��

In order to formulate a theorem relating the regularity of R and
that of R�X�� � � � � Xn� we must �rst agree on calling a Noetherian ring
R regular if its localizations Rm with respect to maximal ideals m are
regular�
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Theorem ������� A Noetherian ring R is regular if and only if R�X�� � � � � Xn�
is regular� The same holds for R and R��X�� � � � � Xn���

Proof� We may assume that n � � and set X � X�� Suppose that R�X� is
regular� and� given a maximal ideal m of R� choose n � �m � X� � R�X��
Then X �� n �� equivalently X �� �n R�X�n �

�� and it follows immediately
from the de�nition of regularity that Rm is regular� The same argument
shows that regularity descends from R��X�� to R� Of course� what has just
been shown can also be derived from �������a�� and the reader is invited
to use �������b� in proving that regularity ascends from R to R�X� and
R��X��� �Compare the proof of ������

In particular� a polynomial ring k�X�� � � � � Xn� over a �eld k is regular�

Corollary �����	� Let k be a �eld� and R � k�X�� � � � � Xn��
�a� �Hilbert�s syzygy theorem� Every �nite graded R�module M has a �nite

graded free resolution of length � n�
�b� Moreover� proj dimM � n for every �nite R�module M�

�c� In fact� every �nite R�module has a �nite free resolution of length � n�

Proof� �a� Set m � �X�� � � � � Xn� and consider a minimal graded free
resolution F� of M� Such a resolution exists� and furthermore F� � Rm is
a minimal free resolution of Mm � see ������� Now Rm is a regular local
ring� Therefore F� � Rm has length at most n� and the same holds true
for F��

�b� Consider an arbitrary maximal ideal n of R� Then dimRn �
dimR � n� and Rn is a regular local ring� Hence proj dimRn

Mn � n�
Taking the supremum over all maximal ideals� we get proj dimM � n�
�In fact� let N be the n�th syzygy of M in a resolution by �nite projective
R�modules� Then Nn is a �nite free Rn �module for all n � and therefore N
is projective��

�c� By the theorem of Quillen and Suslin ������� Theorem ���� every
�nite projective R�module is free�

In �������a� and ������ below it is not essential that degXi � � for
all i� One may replace the standard grading of R by any grading which
makes R a �local ring� for example by a grading such that degXi � 
 for
all i�

Corollary ������� Let k be a �eld� R � k�X�� � � � � Xn�� m � �X�� � � � � Xn��
and M a �nite graded R�module� Then the following are equivalent	

�a� M is Cohen�Macaulay�

�a�� M is perfect�

�b� Mm is Cohen�Macaulay�

�b�� Mm is perfect�

Proof� The implications �a��  �a�  �b�  �b�� follow from ����� and
�����
� The remaining implication �b�� �a�� is an immediate consequence
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of the equations proj dimM � proj dimMm and gradeM � gradeMm

proved in �������

Remark ������� Let R be a Noetherian k�algebra where k is a �eld� and
K an extension �eld of k� If R is �nitely generated as a k�algebra or K is
a �nitely generated extension �eld� then R �k K is a Noetherian ring as
shown in the proof of �����
� Since R �k K is a �at R�algebra� it follows
readily from ������ that R is regular if R �k K is regular� We saw in the
proof of �����
 that the �bres of the extension R � R �k K are of the
form �L�k K�p where L is an extension �eld of k and p � Spec�L�k K��
If L�kK is regular for every extension �eld L of k �provided one of K�L
is �nitely generated�� then one obtains from ������ that R �k K is regular
if R is regular�

The �elds K satisfying the condition just formulated are the separable
extensions of k� We refer the reader to ��	
�� x�� for a discussion of
separability� and to ������ IV� ��	���� for the theorem concerning the
regularity of L�k K �

Factoriality of regular local rings� Our next goal is to show that a regular
local ring is a factorial domain �a UFD in other terminology�� We need
two elementary lemmas whose proofs are left as an exercise for the reader�

Lemma ������� A Noetherian domain R is factorial if and only if every

prime ideal p of height � is principal�

Lemma ������� Let R be a Noetherian domain and � a prime element in R�
Then R is factorial if and only if R� is factorial�

Theorem ������ �Auslander�Buchsbaum�Nagata�� A regular local ring R
is factorial�

Proof� We use induction on dimR� If dimR � 
� then R is a �eld� and
there is nothing to prove� So suppose dimR � 
� and choose � � m n m ��
Since R���� is again a regular local ring� � is a prime element� According
to the previous lemma� it is enough to show that S � R� is factorial�

Let p be a prime ideal of S with height p � �� Every localization Sq

is a localization of R with respect to a prime ideal �� m � and therefore
a regular local ring by ����� By induction Sq is factorial� If p �� q � then
p Sq

�� Sq for trivial reasons� and if p � q � then also p Sq
�� Sq as follows

from �����	 in conjunction with the factoriality of Sq � This implies that p

is a projective S�module of rank ��
Of course p is of the form P S with a prime ideal P of R� The

R�module P has a �nite free resolution F�� whence p � P � has an
augmented resolution

G� � 
 �� Gs

�s

�� Gs�� �� � � � �� G�

��

�� G� �� p �� 
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by �nite free S�modules� However� p is a projective S�module� and its
syzygy modules with respect to G

�
are likewise projective� In particular

Im�s�� � Gs
�� Gs��� If s � �� we can modify the tail of G

�
to obtain the

free resolution

G
�
� 
 �� Im�s���Gs �� Gs���Gs �� � � � �� G�

��

�� G� �� p �� 
�

Therefore� by induction on the length of G
�
� p in fact has a free resolution


 �� Sn
�
�� Sn�� �� p �� 
�

The Hilbert�Burch theorem �����	 yields that p � aIn��� with some a � S �
and furthermore that p � aS since p is projective� So p is a principal
ideal�

A ring is normal if all its localizations are integrally closed domains� a
Noetherian ring is normal if and only if it is the direct product of �nitely
many integrally closed domains �see ��	
� for a detailed discussion of
normality��

Corollary �����
� A regular local ring is a normal domain� A regular ring

is the direct product of regular domains�

In fact� every factorial ring R is a normal domain� �One proves this
just as for the special case R � Z�� The �classical� proof of the corollary
uses ����� and the fact that a Noetherian local ring is a normal domain
if grm �R� is a normal domain� see ����� There is even a third proof� as
we shall see now�

Serre�s normality criterion� A Noetherian ring R satis�es Serre�s condition
�Rn� if Rp is a regular local ring for all prime ideals p in R with dimRp � n�
�Note the similarity with �Sn�� contrary to �Sn� however� �Rn� says nothing
about localizations Rp with dimRp � n��

We leave it as an exercise for the reader to prove that the behaviour
of �Rn� under �at local extensions is the same as that of �Sn��

Proposition ������� Let � � R � S be a �at homomorphism of Noetherian

rings�

�a� Let q � Spec S and p � q � R� If Sq satis�es �Rn�� then so does Rp �

�b� If R and all �bres k�p �� S � p � SpecR� satisfy �Rn�� then so does S �

It is easy to see that a Noetherian ring R is reduced if and only if it
satis�es �R�� and �S��� Serre characterized normality in a similar way�

Theorem ������ �Serre�� A Noetherian ring R is normal if and only if it

satis�es �R�� and �S���

We refer the reader to Serre ������ IV��� or ��	
�� x��� for a proof of
������� The following corollary is an evident consequence of ������� �������
and �������
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Corollary ������� Let � � R � S be a �at homomorphism of Noetherian

rings�

�a� Let q � Spec S and p � q � R� If Sq is normal� then so is Rp �

�b� If R and all the �bres k�p �� S � p � SpecR� are normal� then so is S �

Suppose that �R� m � and �S� n � are local� and that � is �at and local�
Then� for S to be normal� it is not su�cient to have R and S�m S normal�
there are normal local domains whose completions are not even domains�
see ������ p� �
� Example 	�

Exercises

������� Let R be a Noetherian graded ring� Show�
�a� For p � SpecR the localization Rp is regular if and only if Rp � is�
�b� The following are equivalent�

�i� R is regular�
�ii� Rp is regular for all graded prime ideals p �
�iii� R�p � is regular for all graded prime ideals p �

�c� Suppose moreover that �R� m � is �local� Then R is regular if and only if Rm is�
Hint� Use �������

������� Let R be a positively graded k�algebra over a 	eld k� Prove the following
are equivalent�
�a� R is regular�
�b� Rm is regular where m is the �maximal ideal�
�c� there exist homogeneous elements x�� � � � � xn of positive degree for which the
assignment Xi �� xi induces an isomorphism kX� � � � � � Xn� 
� R�
Hint� For the non�trivial implication �b� � �c� choose a minimal homogeneous
system of generators x�� � � � � xn of m � then apply ������ and ������ The rest is a
simple dimension argument�

������� In the situation of ������ characterize the Cohen�Macaulay R�modules by
a property they have as S �modules�

�����	� Let R be a Noetherian ring over which every 	nite module has a 	nite
free resolution� Show R is a factorial domain�

�����
� Let R be a regular local ring� and I an ideal of height �� Prove that the
following are equivalent�
�a� R�I is Cohen�Macaulay�
�b� height p � � for all prime ideals p � AssR�I�
�c� I is a principal ideal�
Hint� For �b� � �c� one uses primary decomposition and the factoriality of R�

������� Prove that a Noetherian ring R satis	es �Ri� and �Si��� if and only if Rp is
regular for every prime ideal p such that depthRp � i�

������� �a� Show a Noetherian normal ring of dimension � is Cohen�Macaulay�
�b� A Cohen�Macaulay ring is normal if and only if it satis	es �R���

������� �a� Let R be a Noetherian complete local domain� Then R is a 	nite module
over a regular local ring S contained in R� see A���� Set M � HomS �R� S �� then
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M is an R�module in a natural way� Show that depthR M � depthS M �
min�dimR� ���
�b� Prove that every Noetherian complete local ring of dimension � has a maximal
Cohen�Macaulay module�

������� Let R be a Noetherian complete local domain� It is known that the integral
closure of R in its 	eld of fractions is a 	nite R�module ������ ������ or ���� Ch�
IX� x��� Use this to give a fresh proof of the fact that a Noetherian complete
local ring of dimension � has a maximal Cohen�Macaulay module�

������� Let R be a Noetherian ring� and x � R an R�regular element�
�a� Assume that Rx ful	lls �Rn� and �Sn���� and that �Rn�� � and �Sn� hold for
R��x�� Show that R satis	es �Rn� and �Sn����
�b� Assume Rx is a normal domain� and R��x� is reduced� Show that R is a
normal domain�

������� Let R be a Noetherian graded ring� and A its dehomogenization with
respect to an element of degree � �see �������� Show that if R is a normal domain�
then so is A�

������� We keep the notation of ������� Let p be a graded prime ideal of R with
x �� p � and q � SpecA its dehomogenization �see �������� Show that Rp is a �at
local extension of Aq � and determine its 	bre� Compare Rp and Sq with respect to
the following quantities and properties� dimension� depth� type� being reduced�
an integral domain� Cohen�Macaulay� normal� regular�

��� Complete intersections

We observed that the homological relationship between a local ring S
and a residue class ring R � S�I is particularly strong if I is generated
by an S�sequence� In this section we investigate such residue class rings
of regular local rings� Slightly more generally we de�ne�

De�nition ������ A Noetherian local ring R is a complete intersection �ring�

if its completion �R is a residue class ring of a regular local ring S with
respect to an ideal generated by an S�sequence�

Note that �R is always a residue class ring of a regular local ring �see
A����� It follows immediately from ������ ������ and ����� that a complete
intersection is Cohen�Macaulay�

The nomenclature �complete intersection� comes from algebraic ge�
ometry� Suppose R is the coordinate ring of an a�ne variety over
an algebraically closed �eld k� Then R has the form R � S�I where
S is a polynomial ring over k� and R is called a complete intersec�
tion if I is generated by the least possible number of elements� namely
codimV � height I � Then V is the intersection of codimV hypersurfaces�
and I is generated by an S�sequence�

Let �S� n � be a regular local ring� and �R� m � a residue class ring�
R � S�I � Suppose that I �� n �� Then there exists x � I � x �� n �� and we
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obtain a representation R � S ��I � with S � � S��x�� I � � I��x�� The ring
S � is regular again� and I is generated by a regular sequence if and only
if I � is� the element x is part of a minimal system of generators of I � and
I can be generated by an S�sequence if and only if every minimal system
of generators is an S�sequence� see ������ Iterating this procedure we
eventually obtain a minimal presentation R � S ���I �� in which S �� is regular
and I �� � �n ����� It follows that ��m � � ��n ��� � dimS ��� For an arbitrary
local ring �R� m � the number ��m � is called the embedding dimension of
R�

emb dimR � ��m ��

�This terminology is again to be illustrated by the geometric analogue��
The discussion above shows that we may freely assume that I � n � when
it is only to be veri�ed whether I is generated by an S�sequence or
otherwise�

Nevertheless our de�nition has two �aws� �rst� it does not use intrinsic
characteristics of R� second� it is not clear whether for an arbitrary

presentation �R � S�I with S regular local� the ideal I is generated by an
S�sequence if R is a complete intersection� The intrinsic characteristics
we are seeking are hidden in a Koszul complex� Let us �x some standard
notation which we shall use frequently throughout this section� �R� m � k�
is a Noetherian local ring� and x � x�� � � � � xn is a minimal system of
generators of m � If present� �S� n � k� is a regular local ring such that
R � S�I with I � n �� the ideal I is minimally generated by a � a�� � � � � am�
and y � y� � � � � yn is a regular system of parameters such that xi is the
residue class of yi� Furthermore we write ai �

P
ajiyj with aji � n

�necessarily��
Let � � Sm � Sn be given by the matrix �aji�� and g � Sn � S and

h � Sm � S be the linear forms de�ned by y and a respectively� Then
h � g � �� and �

� � K��a�� K��y�

is a complex homomorphism� see ������ By ����	� K��y�� R is just K��x��
and K��a� � R has zero di erential� forgetting it� we write

V
Rm for

K��a�� R� So we have a complex homomorphism�
�� R �

�
Rm � K

�
�x��

Since
V

Rm has zero di erential� this yields a map
V
Rm � H��x�� and

�nally� as m H��x� � 
� a map

� �
�

km � H��x��

As � is induced by
V

�� it is a homomorphism of graded k�algebras�
Sometimes it will be necessary to use the canonical bases f�� � � � � fn of

Sn� e�� � � � � em of Sm� and the elements ui � ��ei� � Sn� By the choice of ��
da�ei� � ai � dy�ui�� Finally� � denotes residue classes mod I �
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Theorem ������ With the notation just introduced�

�a� �� � km � H��x� is an isomorphism of k�vector spaces�
�b� ��I� � dimkH��x��

�c� ���k� �
�embdimR

�

�
� dimkH��x��

�Here ���k� is the second Betti number of k as an R�module� see
Section �����

Proof� We constructed � such that it maps the canonical basis of km to
the homology classes of u�� � � � � um� A minimal free resolution of k starts
as

Rn x

�� R �� 
�

and therefore ���k� � ��Z��x��� So it is enough for �a�� �b�� and �c� to
prove that

dx��fp � �fq�� � � p � q � n� and �ui� i � �� � � � � m�

form a minimal system of generators of Z��x��
Suppose that �b � Z��x�� b � Sn� Then dy�b� � I �

dy�b� � c�a� � � � � � cmam � c�dy�u�� � � � � � cmdy�um��

Since K��y� is acyclic� b �
P

ciui is a linear combination of the elements
dy�fp � fq�� That is� the elements considered generate Z��x��

Now assume that
P
��pqdx��fp��fq��

P ��i�ui � 
� We have to show that

all the coe�cients ��pq� ��i are in m � Lifting the equation to Sn givesX
�pqdy�fp � fq� �

X
�iui � ISn�

and applying dy yields
P

�iai � n I � So �i � n by the choice of a� As

I � n � one obtains
P

�pqdy�fp � fq� � n �Sn� Looking at the components
of the elements dy�fp � fq� � Sn and since y is a minimal system of
generators of n � one sees that �pq � n for all p� q�

The Koszul complexes with respect to di erent minimal systems of
generators of m are isomorphic R�algebras� see the discussion before
������� In particular H

�
�x� is essentially independent of x� this justi�es

the notation
H��R� � H��x��

and we call H��R� the Koszul algebra of R� The number

���R� � dimk H��R�

is the �rst deviation of R� It follows immediately from ����� and �����
that R is regular if and only if ���R� � 
� So ���R� may be considered a
measure of how far R deviates from regularity�

The following theorem contains the desired intrinsic characterization
of complete intersections�
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Theorem ������ Let �R� m � k� be a Noetherian local ring�

�a� One has ���R� � ��� �R��
�b� The following are equivalent	

�i� R is a complete intersection�

�ii� ���R� � embdimR � dimR�

�iii� ���k� �
�
���k�
�

�
� ���k� � dimR�

�c� Suppose that R � S�I with S regular and local� Then R is a complete

intersection if and only if I is generated by an S�sequence�

Proof� �a� Choose a minimal system x of generators of m � We write �x

for x considered as a sequence in �R� Then H
�
� �R� �� H

�
� �x� �� H

�
�x�� �R ��

H��R�� �R by ����	� Since H��R� has �nite length� one has H��R�� �R ��
H��R��

�b� Because of �a� and the de�nition of complete intersection we may
assume that R is complete and has a minimal presentationR � S�I � If R is
a complete intersection� then there is such a presentation with I generated
by an S�sequence� hence ���R� � ��I� � dimS � dimR� Conversely� if
���R� � embdimR � dimR� then ��I� � dimS � dimR in an arbitrary
minimal presentation� and so I is generated by an S�sequence� see ������

The equivalence of �ii� and �iii� follows immediately from ������
�c� is proved along the same lines as �b��

Permanence properties of complete intersections� As we did for the Cohen�
Macaulay property and regularity we want to discuss how complete
intersections behave under certain standard ring extensions�

Theorem ����	� Let �R� m � k� be a Noetherian local ring�

�a� Suppose x is an R�sequence� Then

���R��x��� �embdimR��x�� dimR��x�� � ���R�� �embdimR � dimR��

in particular R is a complete intersection if and only if R��x� is a complete

intersection�

�b� Suppose R is a residue class ring of a regular local ring� Then if R is

a complete intersection� so is Rp for every p � SpecR�

Proof� Using induction we only need to prove �a� in the case in which x �
x � R� Suppose �rst that x �� m �� Then embdimR��x� � embdimR � �
and dimR��x� � dimR � �� furthermore H��R� �� H��R��x�� as k�vector
spaces by �������b�� So ���R� � ���R��x��� Now suppose that x � m ��
Then embdimR��x� � embdimR and dimR��x� � dimR � �� moreover
we have an exact sequence


 �� H��R� �� H��R��x�� �� H��R� �� k �� 


as in the proof of ������� Thus ���R��x�� � ���R� � ��
The proof of �b� is very easy� it uses ����� and basic properties of

regular sequences�
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Remark ������ Having studied an �abstract� characterization of complete
intersections� the reader may expect an �abstract� version of ������b� with�
out any restrictions� In fact� such an assertion holds for arbitrary complete
intersections as was proved by Avramov ����� Actually Avramov proved
a stronger result� namely the analogue of ����	� suppose �R� m � � �S� n �
is a �at homomorphism of Noetherian local rings� then S is a complete
intersection if and only if R and S�m S are complete intersections� It is
not di�cult to deduce the localization property from the theorem on �at

extensions� there is �by faithful �atness� a prime ideal q � �R such that

p � q � R� the extension Rp � �Rq is local and �at� and �Rq is a complete
intersection by ������b��

In ����� Avramov gave quantitatively precise results concerning �at
extensions �and localizations�� let 
�R� � ���R� � �embdimR � dimR�
be the complete intersection defect of R� then� in the situation of a �at
extension� 
�S� � 
�R� � 
�S�m S�� �Limitation of space prevents us
including a proof�� Using Avramov�s theorem one can also remove the
undesirable restrictions in ����� and ����	 below�

In the following we say that a Noetherian ring is a locally complete

intersection if all its localizations are complete intersections�

Theorem ������ Let R be a Noetherian ring which is a residue class ring

of a regular ring S � Then R is a locally complete intersection if and only if

R�X�� � � � � Xn� is a locally complete intersection� The same holds for R and

R��X�� � � � � Xn���

The proof follows the pattern of that of ����� one notes that
S�X�� � � � � Xn� and S��X�� � � � � Xn�� are regular rings by ������� and replaces
����	 by Exercise �����
�

As with the Cohen�Macaulay property� the argument outlined really
proves the stronger local version of ������ Rp is a complete intersection
if and only if R�X�� � � � � Xn�q is a complete intersection for p � SpecR�
q � SpecR�X�� � � � � Xn� with R � q � p � A similar remark applies to the
following theorem and its proof�

Theorem ������ Let k be a �eld� R a Noetherian k�algebra� and K an

extension �eld of k� Suppose that R is a �ring of fractions of a� �nitely
generated k�algebra or K is �nitely generated as an extension �eld� More�

over� suppose that R is a residue class ring of a regular ring� Then R is

a locally complete intersection if and only if R �k K is a locally complete

intersection�

Proof� We saw in �����
 that R�kK is a Noetherian ring� Given a prime
ideal q in R �k K � we set p � R � q � conversely� by faithful �atness�
for every p � SpecR there exists q � SpecR � K such that p � R � q �
Furthermore the extension R � �R � K�q factors through Rp � K� so
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we may replace R by Rp � By hypothesis� R � S�I with a regular local
k�algebra S �

Let R be a complete intersection� Then I is generated by a regular
sequence g�� � � � � gr� Because of faithful �atness g�� � � � � gr is also a regular
sequence in S � K � So it su�ces that S � K is a locally complete
intersection� and this is immediate from ������ �in conjunction with
��������

As to the converse� we only do the more di�cult case in which K is
a �nitely generated �eld extension� By ������ again� one has

K �� �k�X�� � � � � Xn��T��h�� � � � � hm�

where h�� � � � � hm is a regular sequence in �k�X�� � � � � Xn��T and T is a
multiplicatively closed set� Therefore h�� � � � � hm is a regular sequence
in the faithfully �at extension R � �k�X�� � � � � Xn��T �� �R�X�� � � � � Xn��T ��
here T � is the image of the natural map k�X�� � � � � Xn� � R�X�� � � � � Xn��
Moreover� �R � K�q has the form R�X�� � � � � Xn�Q ��h�� � � � � hm�Q with Q �
SpecR�X�� � � � � Xn� such that Q � R � p and T � � Q � �� By ������
R�X�� � � � � Xn�Q is a complete intersection� So we can apply the local
version of ������

The Koszul algebra of a complete intersection� Above we constructed an
algebra homomorphism � �

V
km � H��R�� m � ���R�� starting from a

minimal presentation R � S�I � and we saw that �� � km � H��R� is an
isomorphism� Such a homomorphism is always present� In fact� H��R�
is an alternating graded k�algebra� therefore� by the universal property
of the exterior algebra� there exists a unique algebra homomorphism
�� �
V

H��R� � H��R� extending the identity on H��R�� Moreover� alge�
bra homomorphisms �� �� �

V
H��R� � H��R� such that �� and ��� are

isomorphisms� only di er by the automorphism
V
�����

��
� � of

V
H��R��

So we may replace the �abstract� homomorphism �� by the �concrete� �
whenever we have a minimal presentation�

The situation under consideration can be generalized as follows� S
is a ring� I and n are ideals generated by sequences a � a�� � � � � am and
y � y�� � � � � yn� and we have I � n � Then� as above ������ there is a
homomorphism

� � H
�
�a� S�n � �

�
�S�n �m � H

�
�y� S�I��

Choose S�free resolutions F� of S�I and G� of S�n � Then there exist
complex homomorphisms K��a� � F� and K��y� � G�� These in turn
induce maps

� � H��a� S�n � �� H��F� � S�n � �� TorS
�
�S�I� S�n ��

� � H��y� S�I� �� H��S�I � G�� �� TorS
�
�S�I� S�n ��
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Hence there exist two maps from H
�
�a� S�n � ��

V
�S�n �m to TorS

�
�S�I� S�n ��

namely � and � � �� It is crucial that these maps are essentially equal
� of course� we must use the proper identi�cation of H

�
�F

�
� S�n � and

H
�
�S�I � G

�
�� To this end one forms the double complex F

�
� G

�
and

considers S�I and S�n as complexes concentrated in degree 
� Then one
has complex homomorphisms K��a�� F� � S�I and K��y�� G� � S�n �
Taking tensor products yields a commutative diagram

K
�
�a�� S�n



����� K

�
�a�� K

�
�y�

�
����� S�I � K

�
�y���y ��y ��y

F� � S�n ����� F� �G� ����� S�I � G�

By a fundamental theorem of homological algebra ������� Theorem ������
the bottom row induces an isomorphism

H��F� � S�n �
��
�� H��F� � G��

��
�� H��S�I �G���

It is this identi�cation we need�

Lemma ������ With the notation introduced� �s � ����s�s � �s�

Proof� Let e�� � � � � em be a basis of Sm and choose elements ui � Sn with
dy�ui� � da�ei�� One has �s��ei� � � � � ��eis� � �ui� � � � � � �uis � Thus it is enough
to show that �s��ei� � � � � � �eis� � ����s�s��ui� � � � � � �uis��

Let z � K��a� � K��y� be a cycle� Then the commutativity of the
diagram above implies that z� ��z�� and ��z� are all mapped to the same
homology class� So it su�ces to exhibit a cycle z with ��z� � �ei� � � � � ��eis
and ��z� � ����s��ui� � � � � � �uis��

Simply take z � �ei� � �� �� ui�� � � � �eis � �� �� uis�� In order to see
that it is a cycle� one uses the de�nition of the di erential of K��a��K��y�
and the fact that a product of cycles is again a cycle�

Theorem ������ Let S be a ring� and a � a�� � � � � am and y � y�� � � � � yn be S�
sequences such that I � �a� � n � �y�� Then H��y� S�I� �� TorS

�
�S�I� S�n �

is �isomorphic with� the exterior algebra
V
�S�n �m�

Proof� The isomorphism H
�
�y� S�I� �� TorS

�
�S�I� S�n � results from the

fact that K
�
�y� is a free resolution of S�n � see ������� So� with the

notation above� � is an isomorphism� Similarly � is an isomorphism�
hence �� being an algebra homomorphism� is an isomorphism of graded
algebras� �In order to remove the sign in ����� one would have to replace
� by

V
�������

Corollary �����
� �a� With the hypotheses of ���� suppose that m � n�
Write ai �

P
ajiyj � i � �� � � � � n� Then I � n � I � S�� � � det�aji��

�b� In particular� suppose that y is a regular system of parameters in a

regular local ring S � Then Soc�S�I� � ��S�I��



�
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Proof� �a� That �I � n ��I �� HomS �S�n � S�I� and Hn�y� S�I� can be iden�
ti�ed was shown in the proof of ������� Now let f�� � � � � fn be a basis
of Sn with dy�fi� � yi� and set ui �

Pn
j��ajifj � Then if e�� � � � � en is a

basis of Sn with da�ei� � ai� one has dy�ui� � ai � da�ei�� The theorem

implies that Hn�y� S�I� is generated by �u� � � � � � �un � ��f� � � � � � �fn� So
�u� � � � � � �un is mapped to the residue class of � in S�I by the homo�
morphism which sends f�� � � � � fn to � �and thus gives the identi�cation
�I � n ��I � Hn�y� S�I���

�b� By de�nition� Soc�S�I� � �I � n ��I �

We have completed our preparations for the following beautiful char�
acterization of complete intersections�

Theorem ������ �Tate� Assmus�� Let �R� m � k� be a Noetherian local ring�

Then the following are equivalent	

�a� R is a complete intersection�

�b� H��R� is �isomorphic to� the exterior algebra of H��R��
�c� H��R� is generated by H��R��
�d� H��R� � H��R�

��

Here H��R�� is the k�vector space generated by the products w � z
with w� z � H��R��

Proof� It was observed in the proof of ����� that H��R� is invariant under
completion� So we may assume that R is complete and has a minimal
presentation R � S�I �

The implication �a� �b� is a special case of ����� and �b� �c� �d�
is trivial�

For �d� �a� we note �rst that the map � above is an isomorphism�
Next� �d� says that �� � K��a� � S�n � H��y� S�I� �� TorS� �R� S�n � is
surjective� So �� is surjective� Choose F� as a minimal free resolution of
S�I � Then we have a commutative diagramV� Sm ����� Sm ����� S ����� 
��y� ��y�� ���

F� ����� F� ����� S ����� 


The map �� is just � � k� and � � k being surjective� � is surjective itself�
It follows immediately that H��a� � 
� whence a is an S�sequence by
������

Theorem ����� contains a characterization of complete intersections
in terms of the numerical invariants dimR� emb dimR � ���k�� and ���k��
It is possible to remove the �non�homological� Krull dimension� and to
give a description of complete intersections using ���k�� ���k�� and ���k��
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In order to construct the �rst steps in a free resolution of k� we start with
the Koszul complex

��
Rn �� Rn �� R �� 
�

unless R is regular� H��R� is non�zero� So we add a free direct summand
Rm with m � dimk H��R� � ���R�� and send its generators e�� � � � � em to
cycles u�� � � � � um whose homology classes generate H��R��

Rm �
��
Rn

d�
�� Rn

d�
�� R �� 
�

The kernel of d� contains the Koszul cycles dx�fi � fj � fl� as well as the
elements xiep� fi � up� again� f�� � � � � fn denotes a basis of Rn� In order to
�kill� at least these cycles we form the complex

T� � �R
n � Rm��

��
Rn d�
�� Rm �

��
Rn d�
�� Rn d�

�� R �� 


with

d��fi � fj � fl� � dx�fi � fj � fl��

d��fi � ep� � xiep � fi � up � dx�fi�ep � fi � d��ep��

Part �a� of the following theorem shows that ��H��T��� is an invariant
of R� One writes ���R� � ��H��T��� and calls this number the second

deviation of R�

Theorem ������� Let �R� m � k� be a Noetherian local ring� Then

�a� H��T�� �� H��R��H��R���

�b� R is a complete intersection if and only if ���R� � 
�

�c� ���R� � ���k� �
�
�� �k�
�

�
� ���k�

	
���k� �

�
���k�
�

�

�

Proof� �a� Let K� be the complex

K� �
��
Rn ��

��
Rn �� Rn �� R �� 
�

obtained by truncating the Koszul complex� K� is a subcomplex of T��
The quotient T��K� is isomorphic to

L� � R
n � Rm

d��id
���� Rm �� 


with Rn � Rm in degree �� Consider the exact sequence of homology

H��L��� H��K��� H��T��� H��L��� H��K��� H��T�� � 
�
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The map H��L�
� � H��K�

� is an isomorphism since both vector spaces
have dimension m� Hence we have an exact sequence H��L�

�� H��K�
��

H��T�
�� 
� The kernel of Rn � Rm � Rm is obviously generated by the

elements dx�fi � fj� � eq and up � eq� An analysis of the connecting
homomorphism shows that the class of dx�fi � fj� � eq goes to that of
dx�fi � fj� � uq which is a boundary in the Koszul complex �see the
formulas above ������� the class of up � eq goes to that of up � uq whence

the image of H��L��� H��K�� is H��K����
�b� follows immediately from �a� and �������
�c� The veri�cation is similar to that of ������c�� and therefore left to

the reader�

Remark ������� The equation d��fi � ep� � dx�fi�ep � fi � d��ep� suggests
that d� is a component of an antiderivation of an alternating algebra� In
fact� the choice of d� is part of Tate�s construction of resolutions with
algebra structures �����

Suppose that A� is an alternating graded R�algebra equipped with an
antiderivation of degree�� such that � � 
� and consider the homology
H��A�� � Ker � Im � Let �z � Hp�A�� be a non�zero homology element�
Then one may adjoin a variable to �kill� the cycle z representing �z�

�i� If p is even� let B� be the exterior algebra in a variable of degree p���
i�e� B� � R � Re with R in degree 
 and Re �� R in degree p � �� the
multiplication being de�ned by e� � 
�

�ii� For p odd let B� be the �divided power algebra� over R in a variable
of degree p� �� i�e� B� �

L�
j��Rej with Rej �� R in degree j�p� ��� the

multiplication being de�ned by ejel � ��j � l�"�j" l"�ej�l�

In both cases A��B� is again an alternating algebra� and there is a unique
antiderivation d on A��B� such that djA��� � � d�e� � z in case �i�� and
d�ej� � zej�� for all j in case �ii�� moreover� one has d� � 
� It follows
easily that Hq�A��B�� �� Hq�A�� for q � p and Hp�A��B�� �� Hp�A���R�z�

In order to resolve the residue class �eld k of a local ring �R� m � k�
one starts with the R�algebra T ���

�
� R� Let ���R� � embdimR � ��m ��

and successively adjoin ���R� variables of degree � �to kill the zero�cycles��
The resulting algebra T ���

�
is the Koszul complex of a minimal system

of generators of m � Next one adjoins ���R� variables of degree � to kill
���R� cycles generating H��T ���

�
�� The algebra T ���

�
thus constructed has

H��T ���
�
� � 
� It is a theorem of Tate ���� that in the case of a complete

intersection the complex T ���
�

is a minimal free resolution of k� However�
if R is not a complete intersection� then one has to adjoin ���R� variables
of degree � etc� A famous theorem of Gulliksen ����� and Schoeller ���
�
says that the resolution of k obtained in this way is always minimal�

For a comprehensive study of resolutions with an algebra structure
we refer the reader to Gulliksen and Levin ���	��
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As above� let �R� m � k� be a Noetherian local ring� We saw in ������
that surjectivity of the natural homomorphism � �

V
H��R� � H

�
�R� is

already su�cient for R to be a complete intersection� This is also true
for injectivity� at least when R contains a �eld�

Theorem �����	� Let �R� m � k� be a Noetherian local ring containing a �eld�

Then

�a� H��R�j � 
 for j � embdimR � dimR�

�b� in particular� R is a complete intersection if �and only if� the natural

map � �
V

H��R�� H
�
�R� is injective�

Proof� It is harmless to complete R so that we may assume that R has
a minimal presentation R � S�I as above� In order to prove �a� we
must anticipate Corollary ����� it says that� with the notation of ������
�j � 
 for j � embdimR � dimR� Since� in the present circumstances�
�j is an isomorphism� one has �j � 
 for j � embdimR � dimR� As

H��R�
j � �j�

Vj H��R��� one has H��R�
j � 
� This proves �a�� and �b� is

an obvious consequence of �a��

The restriction to local rings containing a �eld is forced upon us since
there does not yet exist a proof of ���� without this restriction� However�
one always has H��R�j � 
 for j � embdimR � dimR � � so that the
gap in ������ is as small as it could be� see ���	�

The reader may have noticed that ������ is trivial for Cohen�Macaulay
rings R� if j � embdimR � depthR� then even Hj �R� � 
 by �����	� On
the other hand� for Cohen�Macaulay R the non�vanishing of H��R�p for
p � embdimR � dimR conveys the strongest possible information� R is
a complete intersection� More generally� we have the following theorem�

Theorem ������� Let �R� m � k� be a Noetherian local ring� Then R is a

complete intersection if �and only if� H��R�p �� 
 for p � embdimR �
depthR�

Proof� By virtue of ������ the hypothesis H��R�p �� 
 for p � embdimR�
depthR forces R to be Cohen�Macaulay if it contains a �eld� Because of
this restriction we give a proof not using �������

First we reduce to the case depthR � 
� So suppose that depthR � 
�
Then there exists an x � m n m � which is not a zero�divisor� and ������
furnishes us with an isomorphism � � H��R� �� H��R��� R� � R��x�� It is not
di�cult to verify that � is a k�algebra isomorphism� after all� � is induced
by
V
�� � being the composition Rn � Rn�� � �R��n�� �see the proof of

�������� Furthermore embdimR� � depthR� � embdimR � depthR� and
R is a complete intersection if and only if this holds for R��

It remains to show that R is a zero dimensional complete intersection
if H��R�n �� 
 for n � embdimR� The complex K��R� has length n� so



�� �� Cohen�Macaulay rings

Bn���R� � 
� and therefore

H��R�
n � �Z��R�

n � Bn���R��
�
Bn���R� � Z��R�

n�

Consider an exact sequence Rm �
V� Rn

d�
�� Rn �� m �� 
 as above�

Choose elements v�� � � � � vn � Im d� � Z��R�� vi �
P

vjifj where f�� � � � � fn is
a basis of Rn� Then v� � � � � � vn � det�vji�f�� � � � � fn� whence H��R�n �� 

is equivalent to In�d�� �� 
� It remains to apply the next theorem�

Theorem ������ �Wiebe�� Let �R� m � k� be a Noetherian local ring� and

Rr
�
�� Rn � m � 
 a presentation of its maximal ideal� If In��� �� 
�

then R is a complete intersection of dimension zero �and conversely��

Proof� The ideal In��� is the zeroth Fitting ideal of m � which is an
invariant of m � Therefore it is enough to consider a special presentation�
Moreover� we may assume that R is complete� Then R � S�I where �S� n �
is a regular local ring and I � n �� Let y � y�� � � � � yn be a regular system
of parameters of S � and a � a�� � � � � am a minimal system of generators of
I � Write ai �

P
ajiyj �

The converse of the theorem is part of Corollary �����
� it implies
the following claim which is crucial in what follows� Let b � b�� � � � � bn be
a maximal S�sequence� and J � an ideal properly containing J � �b�� then
det�bji� � J � where the bji are chosen such that bi �

P
bjiyj � In fact�

det�bji�S�J is the socle of S�J � Since it has dimension � over k� it is
contained in every non�zero ideal of S�J �

Let f�� � � � � fn be a basis of Sn� and e�� � � � � em a basis of Sm� De�ne

� � Sm �
V� Sn � Sn by the Koszul map

V� Sn � Sn with respect to y

and ��ei� �
P

ajifj � We saw in ����� that Coker� � S�I �� m � So the
theorem claims that In��� � I unless S�I is a zero dimensional complete
intersection�

Choose an n 
 n submatrix U of �a matrix of� �� If U involves a
column corresponding to one of the elements fi � fj � then detU � I �
since� on the level of R� we are taking the exterior product of n cycles
at least one of which is a boundary� �detU��f� � � � � � �fn � Bn���R� � 
�
Therefore it is enough to consider submatrices U of �aji�� For simplicity
of notation one may assume U consists of the �rst n columns�

If a�� � � � � an is a regular sequence� then I contains J � �a�� � � � � an�
properly since S�I is not a complete intersection� So detU � I by the
claim above�

If a�� � � � � an is not a regular sequence� then dimS�J � 
� and it is
certainly enough to show that detU � J � that is� we may assume that
I � �a�� � � � � an��

We will show that detU � I� n p for all p �N� Then detU � I follows
from Krull�s intersection theorem� Fix p � N� According to Exercise
�����	 one �nds elements a��i � n p�� such that a�i � ai� a��i � i � �� � � � � n� is a
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regular sequence� Write a�i �
P

a�jiyj� then aji � a�ji � n p follows from the
quasi�regularity of the regular sequence y� in other words� from the fact
that the associated graded ring grn �S� is a polynomial ring �see �������
Therefore

detU � det�a�ji� � n p�

The ideal I � n p properly contains �a��� � � � � a
�
n� � I � n p��� Once more the

auxiliary claim above is applied� and it yields det�a�ji� � I � n p�

Exercises

�����	� Let �R� m � be a Noetherian local ring of depth t� and a�� � � � � at � m � Then�
given p � N� show there exist a��� � � � � a

�
t � m p such that a� � a��� � � � � at � a�t is an

R�sequence�

�����
� Let S be a regular local ring of dimension �� and y�� � � � � y� a regular system
of parameters� Let I � �y�y�� y�y�� y�y� � y�y�� and R � S�I �
�a� Construct a minimal free resolution of R�
�b� Prove depthR � � and dimR � ��
�c� Show that the vector space H��R�� has dimension �� the maximal value for an
ideal generated by � elements� but R is not a complete intersection�

������� Prove all the claims in the second paragraph of �������

������� Let � � �S� � n �� � �S� � n �� be a �at local homomorphism of regular rings�
and I � S� an ideal� Verify S��I is a complete intersection if and only if S��IS�
is a complete intersection�

������� Let R be a Noetherian graded ring� Show�
�a� For p � SpecR the localization Rp is a complete intersection if and only if
Rp � is�
�b� The following are equivalent�

�i� R is locally a complete intersection�
�ii� Rp is a complete intersection for all graded prime ideals p �
�iii� R�p � is locally a complete intersection for all graded prime ideals p �

�c� Suppose in addition that �R� m � is �local� Then R is locally a complete
intersection if and only if Rm is a complete intersection�
Hint� �������

������� Extend ����� and ������ to the following theorem which Serre ���� used
to prove ������c� � �a�� let �R� m � k� be a Noetherian local ring� and x a minimal
system of generators of m � then the natural map K

�
�x� k� � TorR

�
�k� k� �see ����
�

is injective�

Notes

The origins of the theory of Cohen�Macaulay rings are the unmixed�
ness theorems of Macaulay ����� and Cohen �	�� and the notion of
perfect ideals� which also goes back to Macaulay and was clari�ed by



�� �� Cohen�Macaulay rings

Gr�obner ������ The present shape of the theory was formed by Auslan�
der and Buchsbaum ����� Nagata ������ and Rees ��
��� It seems that
Cohen�Macaulay modules made their �rst appearance in Auslander and
Buchsbaum ����

The characterization �����	 of graded Cohen�Macaulay rings is es�
sentially due to Hochster and Ratli ��

� and Matijevic and Roberts
������

By analogy to the desingularization� one can try to �Macaulayfy� a
Noetherian scheme� Special results in this direction were obtained by
Brodmann ���� and Faltings ��

�� Recently Kawasaki ����� has proved
a general theorem on the existence of �Macaulay�cations��

Of all the notions generalizing Cohen�Macaulay rings and modules�
the concept of Buchsbaum ring or module is the most important� see
St�uckrad and Vogel ����� and Schenzel �����

The �classical� theory of regular local rings� to be found in Zariski
and Samuel ��	�� Vol� II� was developed by Krull ������ Chevalley
����� Cohen �	��� and Zariski ����� It depends in an essential way on
power series methods� and is therefore mainly restricted to local rings
containing a �eld� The problems it could not solve were �i� the regularity
of a localization of a regular local ring R �even if R contains a �eld�� and
�ii� the factoriality of such rings �because of the Cohen structure theorem
this is easy if R contains a �eld��

The breakthrough was the theorem ����	 of Auslander and Buchsbaum
��	�� ���� and Serre ����� which not only solved the localization problem�
�this resounding triumph of the new homological method marked a
turning point of the subject of commutative Noetherian rings� �Kaplansky
���
�� p� ���� Theorem ����� was independently given by Ferrand ��
��
and Vasconcelos ��	�� it generalizes Kaplansky�s proof of �������c� �a�
�see ��	
�� x���

The problem of factoriality was solved by Auslander and Buchsbaum
��
�� using results of Zariski and Nagata who reduced the theorem to
the case of Krull dimension �� See Nagata ������ p� ��	 for a minute
history� The proof we have reproduced is due to Kaplansky �except for
the application of the Hilbert�Burch theorem�� That regular local rings
are factorial can be expressed by saying that every ideal I has a greatest
common divisor� there is a regular element a and an ideal J of grade
	 � such that I � aJ � MacRae ����� proved this fact for every ideal
with a �nite free resolution� Another �related� generalization is that every
module with a �nite free resolution over a normal domain has divisor
class zero� see ��	�� Ch� VII� x�� The most concrete and computationally
e ective result is the factorization theorem of Buchsbaum and Eisenbud
�����

The notion of complete intersection is classical in algebraic geometry�
An abstract de�nition in terms of local algebra was given by Scheja



Notes �	

������ together with ������ Our de�nition is that of Grothendieck ������
Avramov�s contributions ����� ���� have been described in ������ they
ultimately justi�ed the abstract notion of complete intersection�

The program of Tate�s seminal paper ���� has been outlined in Re�
mark ������� Assmus ���� used Tate�s method to give the description ������
of complete intersections in terms of their Koszul algebras� There are
several papers devoted to the characterization of complete intersections
by the vanishing of a deviation �i �which we de�ned only for i � �� ��� the
question was �nally settled by Halperin ����� who showed that �i � 
 for
all i if R is not a complete intersection� Wiebe�s theorem ������ appeared
in ����� see Kunz ������ Hilfssatz �� for a related result�

A driving force in this area of research was the problem �posed by
Serre ������ of whether the Poincar�e series

P
�i�k�t

i of a Noetherian local
ring �R� m � k� is a rational function of t� After several special cases had
been solved positively� the general question was answered negatively by
Anick ���

In several theorems we studied the behaviour of ring�theoretic prop�
erties under �at extensions R � S � Avramov� Foxby� and Halperin ����
investigated the more general situation in which S is supposed of �nite
�at dimension over R� As we have seen� another �homologically nice�
type of extension is that of passing to a residue class modulo a regular
sequence� Avramov and Foxby have essentially completed a program
which aims at the uni�cation of these types of extensions by introducing
a suitable notion of �bre� see ��	�� ����� ���� ��
��



� The canonical module� Gorenstein rings

The concept of a canonical module is of fundamental importance in the
study of Cohen�Macaulay local rings� The purpose of this chapter is
to introduce the canonical module and derive its basic properties� By
de�nition it is a maximal Cohen�Macaulay module of type � and of
�nite injective dimension�

In the �rst two sections we investigate the injective dimension of
a module� and prove Matlis duality which plays a central role in
Grothendieck�s local duality theorem� Actually the canonical module
has its origin in this theory� Here the canonical module is introduced
independently of local cohomology which is an important notion in itself
and will be treated later in this chapter�

A ring which is its own canonical module is called a Gorenstein ring�
Next to regular rings and complete intersections� Gorenstein rings are
in many ways the �nicest� rings� Distinguished by the fact that they are
of �nite injective dimension� they have various symmetry properties� as
re�ected in their free resolution� their Koszul homology� and their Hilbert
function� The last aspect will be discussed in the next chapter�

Gorenstein rings of embedding dimension at most two are complete
intersections� The �rst non�trivial Gorenstein rings occur in embedding
dimension three� and they are classi�ed by the Buchsbaum�Eisenbud
structure theorem�

In the �nal section the canonical module of a graded ring is intro�
duced�

��� Finite modules of �nite injective dimension

In this section we study injective resolutions of �nite modules� We shall
see that the injective dimension of a �nite module M over a Noetherian
local ring R either is in�nite or equals the depth of R� and is bounded
below by the dimension of M� Thus� quite contrary to the behaviour
of projective dimension� the injective dimension� if it is �nite� does not
depend on the module� We introduce Gorenstein rings and show that
Gorenstein rings are Cohen�Macaulay rings�

De�nition ������ Let R be a ring� An R�module I is injective if the functor
HomR� � I� is exact�

��
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Notice that HomR� � I� is always left exact� Thus the R�module I is
injective if and only if HomR� � I� is right exact as well�

We now list some useful characterizations of injective modules�

Proposition ������ Let R be a ring and I an R�module� The following

conditions are equivalent	

�a� I is injective�

�b� given a monomorphism � � N �M of R�modules� and a homomorphism

� � N � I � there exists a homomorphism � � M � I such that � � � � ��
�c� given R�modules N � M� and a homomorphism � � N � I � there exists
a homomorphism � � M � I such that �jN � �� in other words� � � N � I
can be extended to a homomorphism � � M � I�
�d� for all ideals J � R� every homomorphism J � I can be extended to R�
that is� Ext�R�R�J� I� � 
�
�e� let M be an R�module with I �M� then I is a direct summand of M�

�f� Ext�R�M� I� � 
 for all R�modules M�

�g� ExtiR�M� I� � 
 for all R�modules M and all i � 
�

Proof� The ExtiR� � I� are the right derived functors of HomR� � I�� The
equivalence of �a�� �f� and �g� follows therefore from the general properties
of right derived functors� For details we refer to ������ Section ��

�a�  �b�� The monomorphism � � N � M induces the homomor�
phism

Hom��� I� � HomR�M� I� �� HomR�N� I��

where Hom��� I���� � � � � for all � � HomR�M� I�� By assumption�
Hom��� I� is an epimorphism� and so � � HomR�N� I� is of the form � ��
for some � � HomR�M� I�� Similarly one proves �b� �a��

The implications �b�� �c� and �c� �d� are clear�
�d�  �c�� We consider the set of all pairs �U���� where U is a

submodule of M with N � U� and where � extends �� We order this set
partially� �U�� ��� � �U�� ��� if and only if U� � U� and �� � ��jU� � By
Zorn�s lemma there exists a maximal element �U� � ��� in this set� Suppose
U� �� M� then we may choose x � M n U� � Set W � U� � Rx� then
W�U� �� R�J for some ideal J in R� Applying the functor HomR� � I� to
the exact sequence


 �� U� ��W �� R�J �� 
�

we obtain the exact sequence

HomR�W� I� �� HomR�U
� � I� �� Ext�R�R�J� I��

Since by assumption Ext�R�R�J� I� � 
� it follows from the exact sequence
that any homomorphism from U� to I can be extended to a homomor�
phism W � I � contradicting the maximality of �U� � ���� Thus we have
shown that U� � M�
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�c�  �e�� There exists a homomorphism � � M � I with �jI � idI �
Therefore� M � I �Ker ��

�e� �b�� Given a monomorphism � � N �M and a homomorphism
� � N � I � we want to �nd � � M � I such that � � � ��� In order to do
this� we construct a commutative diagram

N
�

����� M




��y ��y�
I

�
����� W

where � is injective� In fact� we may choose W � �M � I��C with
C � f���x�����x�� � x � Ng� � and � are the natural homomorphisms
arising from this situation� �This diagram is called the pushout of � and
���

Since � is injective by construction� it is split injective by our assump�
tion �e�� This means that there exists a homomorphism � � W � I with
� � � � idI � The homomorphism � � M � I � � � � � �� is the desired
extension of ��

Corollary ������ Let R be a Noetherian ring�

�a� If I is an injective R�module and S is a multiplicatively closed set of R�
then IS is an injective RS �module�

�b� If �I���� is a family of injective R�modules� then the direct sum

I �
M
��

I�

is an injective R�module�

Proof� �a� Let J be an ideal of R� Since R is Noetherian one has

Ext�RS
�RS�JRS � IS � �� Ext�R�R�J� I�S � 
�

Since every ideal of RS is extended from R� ����� yields that IS is an
injective RS �module�

�b� By ����� it is enough to show that for an ideal J of R� any homo�
morphism � � J �

L
�� I� extends to R� Since J is �nitely generated

there exists a �nite subset f��� � � � � �ng of � such that Im� �
Ln

i�� I�i �
We denote by �j the j�th component of �� Since I�i is injective we can
extend ��i � J � I�i to a homomorphism �i � R � I�i � It is clear that
� � R �

L
�� I� with ��a� �

Pn
i���i�a�� a � R� extends � to all of R�

Remark ����	� It is a simple exercise to see that for an arbitrary ring
R any direct product of injective modules is injective� It is however
essential to require that R is Noetherian �as we have done in ������ to
obtain a similar result for direct sums� In fact� this property characterizes
Noetherian rings� see ������ Theorem ���
�
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An R�module M is divisible if for every regular element r � R� and
every element m �M� there exists an element m� �M such that m � rm��

Condition ������d� has the following consequence�

Corollary ������ Let R be a ring and I an R�module�
�a� If I is injective� then I is divisible�

�b� If R is a principal domain and I is divisible� then I is injective�

Proof� The property that I is divisible is equivalent to the property
that every homomorphism � � �r� � I � r regular� can be extended to R�
Therefore �a� and �b� follow from ������d��

For later applications we note the following result about change of
rings�

Lemma ������ Let � � R � S be a ring homomorphism� and let I be an

injective R�module� Then HomR�S� I� �equipped with the natural S�module
structure� is an injective S�module�

Proof� Let M be an S�module� There is a natural isomorphism

HomS �M�HomR�S� I�� �� HomR�M� I�

of S�modules� Indeed� to � � HomS�M�HomR�S� I�� one assigns �� �
HomR�M� I� where ���x� � ��x���� for all x � M� Thus the exactness of
the functor HomR� � I� on the category of S�modules �considered as R�
modules via �� implies the exactness of the functor HomS� �HomR�S� I���
This means that HomR�S� I� is an injective S�module�

De�nition ������ Let R be a ring and M an R�module� A complex

I� � 
 �� I� �� I� �� I� �� � � �

with injective modules I i is an injective resolution of M if H��I�� �� M
and H i�I�� � 
 for i � 
�

While it is obvious that every module has a projective resolution� it
is less obvious that it has an injective resolution� It is however clear that
an injective resolution can be constructed by resorting to the following
result�

Theorem ������ Let R be a ring� Every R�module can be embedded into an

injective R�module�

Proof� The Z�module Q is divisible� and hence injective� Therefore any
free Z�module F can be embedded into an injective Z�module I � We just
take su�ciently many copies of Q� If G is an arbitrary Z�module� then
G �� F�U� and we can embed G into I�U� It is immediate that I�U
is again divisible� and hence injective� Thus the theorem is proved for
Z�modules�
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Now let R be an arbitrary ring� and let M be an R�module� The map
� � M � HomZ�R�M� with ��x��a� � ax for all x �M and all a � R is an
R�module monomorphism� By our considerations above� the R�module
M can be embedded as a Z�module into an injective Z�module I � This
inclusion induces a monomorphism

� � HomZ�R�M� �� HomZ�R� I��

By ������ the R�module J � HomZ�R� I� is injective� and thus ��� � M � J
is the desired embedding�

Injective dimension� Let R be a ring and M an R�module� The injective
dimension of M �denoted inj dimM or inj dimR M� is the smallest integer
n for which there exists an injective resolution I� of M with Im � 
 for
m � n� If there is no such n� the injective dimension of M is in�nite�

The following observation is an immediate consequence of ����� and
the exactness of localization�

Proposition ������ Let R be a Noetherian ring� M an R�module and S a

multiplicatively closed set� Then inj dimRS
MS � inj dimR M�

In the next proposition we characterize the injective dimension of a
module homologically�

Proposition �����
� Let R be a ring and M an R�module� The following

conditions are equivalent	

�a� inj dimM � n�
�b� Extn��

R �N�M� � 
 for all R�modules N�

�c� Extn��
R �R�J�M� � 
 for all ideals J of R�

Proof� �a� �b� follows from the fact that Extn��
R �N�M� can be computed

from an injective resolution of M�
�b� �c� is trivial�
�c� �a�� Let


 ��M �� I� �� I� �� � � � �� In�� �� C �� 


be an exact sequence� where the modules Ij are injective� From the fact
that ExtiR�R�J� I� � 
 for i � 
 if I is an injective R�module� the above
exact sequence yields the isomorphism

Ext�R�R�J� C��� Extn��
R �R�J�M��

and so Ext�R�R�J� C� � 
 for all ideals J of R� This is condition �d� of
������ and so C is injective�

Proposition �����
 can be sharpened if R is Noetherian� We �rst
observe�
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Lemma ������� Let R be a Noetherian ring� M an R�module� N a �nite

R�module and n � 
 an integer� Suppose that ExtnR�R�p �M� � 
 for all

p � SuppN� Then ExtnR�N�M� � 
�

Proof� N has a �nite �ltration whose factors are isomorphic to R�p for
certain p � SuppN� Hence the lemma follows from the �additivity� of the
vanishing of ExtnR� �M��

Corollary ������� Let R be Noetherian and M an R�module� The following
conditions are equivalent	

�a� inj dimM � n�

�b� Extn��
R �R�p �M� � 
 for all p � SpecR�

Lemma ������ has another remarkable consequence�

Proposition ������� Let �R� m � k� be a Noetherian local ring� p a prime ideal

di�erent from m � and M a �nite R�module� If Extn��
R �R�q �M� � 
 for all

prime ideals q � V �p �� q �� p � then ExtnR�R�p �M� � 
�

Proof� We choose an element x � m n p � The element is R�p �regular� and
therefore we get the exact sequence


 �� R�p
x
�� R�p �� R��x� p � �� 


which induces the exact sequence

ExtnR�R�p �M�
x
�� ExtnR�R�p �M� �� Extn��

R �R��x� p ��M��

Since V �x� p � � fq � V �p � � q �� p g� Lemma ������ and our assumption
imply

Extn��
R �R��x� p ��M� � 
�

so that multiplication by x on the �nite R�module ExtnR�R�p �M� is a
surjective homomorphism� The desired result follows from Nakayama�s
lemma�

It is now easy to derive the following useful formula for the injective
dimension of a �nite module�

Proposition �����	� Let �R� m � k� be a Noetherian local ring� and M a �nite

R�module� Then

inj dimM � supfi � ExtiR�k�M� �� 
g�

Proof� We set t � supfi � ExtiR�k�M� �� 
g� It is clear that inj dimM 	 t�
To prove the converse inequality� note that the repeated application of
������ yields ExtiR�R�p �M� � 
 for all p � SpecR and all i � t� According
to ������ this implies inj dimM � t�
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Corollary ������� Let �R� m � k� be a Noetherian local ring and M a �nite

R�module� If x � m is an element which is R� and M�regular� then

inj dimR��x� M�xM � inj dimR M � ��

The proof is an immediate consequence of ������ and the following
result of Rees ��
��� Theorem ����

Lemma ������� Let R be a ring� and let M and N be R�modules� If x is

an R� and M�regular element with x �N � 
� then

Exti��
R �N�M� �� ExtiR��x��N�M�xM�

for all i 	 
�

Proof� We set �R � R��x� and �M � M�xM� and show that the functors

Exti��
R � �M�� i 	 
� from the category of �R�modules into itself are the

right derived functors of Hom�R� � �M�� To see this� we have to verify

��� the functors Exti��
R � �M�� i 	 
� are strongly connected�

��� the functors Ext�R� �M� and Hom�R� � �M� are equivalent�

��� Exti��
R �F�M� � 
 for all i � 
 and every free �R�module F �

�An axiomatic description of the Ext groups as functors in the second
variable is given in ������ Theorem 	���� Similarly the Ext groups can
be described axiomatically as functors in the �rst variable� see ������
Exercise 	��	��

��� is obvious� The exact sequence 
 �� M
x
�� M �� �M �� 


yields the exact sequence

HomR�N�M� �� HomR�N� �M� �� Ext�R�N�M�
x
�� � � �

Since HomR�N�M� � 
� and since x annihilates Ext�R�N�M�� we obtain
the natural isomorphism

Hom�R�N� �M� �� Ext�R�N�M��

This proves ���� Finally� ��� is clear since proj dimR F � � for every free
�R�module F �

We now present the main result of this section�

Theorem ������� Let �R� m � k� be a Noetherian local ring� and let M be a

�nite R�module of �nite injective dimension� Then

dimM � inj dimM � depthR�
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Proof� Let p � � p � � � � � � p d � m be a maximal chain of prime ideals

in SuppM� We show by induction on i that ExtiRp i
�k�p i��Mp i

� �� 
� In

particular� it will follow that ExtdR�k�M� �� 
 for d � dimM� so that
dimM � inj dimM by �������

If i � 
� then p �Rp �
� AssMp �

� and therefore HomRp �
�k�p ���Mp �

� �� 
�

Now suppose i � 
� We set B � Rp i
� then

Exti��
B �B�p i��B�Mp i

�p i��
�� Exti��

Rp i��
�k�p i����Mp i��

� �� 
�

by the induction hypothesis� and so Exti��
B �B�p i��B�Mp i

� �� 
� It follows
from ������ that

ExtiB�k�p i��Mp i
� �� 
�

To prove the equality inj dimM � depthR� we set r � inj dimM and
t � depthR� Let x � x�� � � � � xt be a maximal R�sequence� Then the
Koszul complex K��x� is a minimal free resolution of R��x� by ����� so
that proj dimR��x� � t and furthermore ExttR�R��x��M� is isomorphic
to the t�th Koszul cohomology H t�x�M�� It follows from �����
 that
H t�x�M� �� H��x�M� � M�xM �� 
� This implies r 	 t�

On the other hand� since depthR��x� � 
� there is an embedding
k � R��x� which induces an epimorphism

ExtrR�R��x��M� �� ExtrR�k�M�

since Extr��
R �N�M� � 
 for all R�modulesN� But ExtrR�k�M� �� 
 by �������

and so ExtrR�R��x��M� �� 
� It follows that t � proj dimR R��x� 	 r�

Gorenstein rings� We are now going to introduce an important class of
local rings� As for regular rings� this class can be characterized in terms
of homological algebra�

De�nition ������� A Noetherian local ring R is a Gorenstein ring if
inj dimR R � �� A Noetherian ring is a Gorenstein ring if its localization
at every maximal ideal is a Gorenstein local ring�

The Gorenstein property is stable under standard ring operations� To
begin with we show

Proposition ������� Let R be a Noetherian ring�

�a� Suppose R is Gorenstein� Then for every multiplicatively closed set S in

R the localized ring RS is also Gorenstein� In particular� Rp is Gorenstein

for every p � SpecR�
�b� Suppose x is an R�regular sequence� If R is Gorenstein� then so is

R��x�� The converse holds when R is local�

�c� Suppose R is local� Then R is Gorenstein if and only if its completion
�R is Gorenstein�
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Proof� �a� Let q be a maximal ideal of RS � The ideal q is the extension
of a prime ideal p in R� and so �RS �q

�� Rp � Let m be a maximal ideal
of R containing p � Then Rp is a localization of the Gorenstein local ring
Rm � From ���� the conclusion follows�

�b� Without restriction we may assume that R is local� Thus �b� is an
immediate consequence of �������

�c� Let k be the residue �eld of R� Use that ExtiR�k� R�b�� Exti	R�k�
�R��

In concluding this section we clarify the position of the Gorenstein
rings in the hierarchy of Noetherian local rings�

Proposition �����
� Let �R� m � k� be a Noetherian local ring� Then we have

the following implications	

R is regular R is a complete intersection R is Gorenstein

 R is Cohen�Macaulay�

Proof� The �rst implication is trivial� If R is regular� then its global
homological dimension is �nite �see ����	�� and hence ExtiR�k� R� � 
 for
i � 
� It follows from ������ that R is Gorenstein� In view of ������c�
we may as well assume that R is complete� Now ������b� implies that
a complete intersection is Gorenstein� The last implication follows from
�����	�

All the implications of �����
 are strict� This is clear for the �rst� and
will be shown for the other implications in the next section �see ��������
where we derive a di erent� more easily veri�able� characterization of
Gorenstein rings�

Exercises

������� Let R be a principal ideal domain with 	eld of fractions K � Prove that
�� K � K�R � � is an injective resolution of R�

������� Let k be a 	eld� and let R be a local k�algebra of 	nite k�dimension� Show
that the R�module Homk�R� k� is an indecomposable �see the de	nition before
������ injective R�module�

������� Let R be a Noetherian local ring� If there exists a non�zero 	nite injective
R�module� then deduce R is Artinian�

������� Let �R� m � k� be a Noetherian local ring� M �� � andN �� � 	nite R�modules�
If inj dimN � �� then deduce the following result of Ischebeck �����

depthR � depthM � supfi � ExtiR�M�N� �� �g�

In particular� if R admits a 	nite module of 	nite injective dimension� then show
that the depth of any 	nite R�module does not exceed the depth of R� �Bass�
conjecture claims more� in the above situation R is Cohen�Macaulay� In 
���� a
proof of this conjecture will be given� provided R contains a 	eld��
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������� Let R be a Gorenstein local ring� and M a 	nite R�module� Show
proj dimM � � if and only if inj dimM � �� �Foxby ���� proved the following
remarkable characterization of Gorenstein rings� if a Noetherian local ring
possesses a 	nite module M for which inj dimM � � and proj dimM � �� then
it is Gorenstein��

������� Let �R� m � k� be a Noetherian local ring� If inj dimk � �� show R is
regular�

��� Injective hulls� Matlis duality

We saw in Section ��� that any module M can be embedded into an
injective module� Here we will show that such an embedding can be
chosen minimal� In this case the corresponding injective module is
unique up to isomorphism� and is called the injective hull of M�

We will see that for a Noetherian ring R an injective module can be
uniquely written as a direct sum of indecomposable injective modules�
and the indecomposable injective R�modules are just the injective hulls
of the cyclic R�modules R�p � where p � SpecR� If �R� m � k� is a complete
Noetherian local ring� and E is the injective hull of k� then the func�
tor HomR� � E� establishes an anti�equivalence between the category of
Artinian R�modules and the category of �nite R�modules� This result is
known as the main theorem of Matlis duality�

De�nition ������ Let R be a ring and let N �M be R�modules� M is an
essential extension of N if for any non�zero R�submodule U of M one
has U �N �� 
� An essential extensionM of N is called proper if N �� M�

The following proposition gives a new characterization of injective
modules�

Proposition ������ Let R be a ring� An R�module N is injective if and only

if it has no proper essential extension�

Proof� Let N � M be an extension� If N is injective� then N is a direct
summand of M� Let W be a complement of N in M� Then N �W � 
�
and so� if the extension is essential� W � 
� It follows that N � M�

Conversely� suppose that N has no proper essential extension� Given
a monomorphism � � U � V and a homomorphism � � U � N� we want
to construct � � V � N such that � � � � ��

As in the proof of ����� we consider the pushout diagram

U
�

����� V




��y ��y�
N

�
����� W
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Here � is a monomorphism� since � is a monomorphism� Thus we may
consider N as a submodule of W � Employing Zorn�s lemma one shows
that there exists a maximal submodule D �W such that N �D � 
� and
so N may even be considered as a submodule of W�D� obviously�W�D
is an essential extension of N� It follows that N � W�D� since N has
no proper essential extension� and so W � N � D� Let � � W � N be
the natural projection of W onto the �rst summand� The composition
� � � � V � N is an extension of ��

De�nition ������ Let R be a ring andM an R�module� An injective module
E such that M � E is an essential extension is called an injective hull of
M� Our notation will be E�M� or ER�M��

The next proposition justi�es this name�

Proposition ����	� Let R be a ring and M an R�module�
�a� M admits an injective hull� Moreover� if M � I and I is injective� then

a maximal essential extension of M in I is an injective hull of M�

�b� Let E be an injective hull of M� let I be an injective R�module� and
� � M � I be a monomorphism� Then there exists a monomorphism � � E �
I such that the diagram

M ����� E




��y �
��� �

I

is commutative� where M � E is the inclusion map� In other words� the

injective hulls of M are the �minimal� injective modules in which M can be

embedded�

�c� If E and E� are injective hulls of M� then there exists an isomorphism

� � E � E� such that the diagram

M

�
��

J
J�

E
�

���� E�

commutes� Here M � E and M � E� are the inclusion maps�

Proof� �a� We embed M into an injective R�module I � Consider the set
S of all essential extensions M � N with N � I � Zorn�s lemma applied
to S yields the existence of a maximal essential extension M � E with
E � I � We claim that E has no proper essential extension� and this
together with ����� implies then that E is an injective hull of M� Indeed�
assume that E has a proper essential extension E�� Since I is injective
there exists � � E� � I extending the inclusionE � I � Suppose Ker� � 
�
then Im� � I is an essential extension of M �in I� properly containing
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E� a contradiction� On the other hand� since � extends the inclusion
E � I we have E �Ker� � 
� But this contradicts the essentiality of the
extension E � E��

�b� Since I is injective� � can be extended to a homomorphism
� � E � I � We have �jM � �� and so M �Ker� � Ker � � 
� Thus� since
the extension M � E is essential� we even have Ker� � 
�

�c� By �b� there is a monomorphism � � E � E� such that �jM equals
the inclusion M � E�� Im� is injective and hence a direct summand of
E�� However� since the extension M � E� is essential� � is surjective� and
therefore an isomorphism�

We may apply ����� to construct an injective resolution E��M� of
a module M which for obvious reasons is called the minimal injective

resolution of M� we let E��M� � E�M�� and denote by �� the embed�
ding M � E��M�� Suppose the injective resolution has already been
constructed up to the i�th step�


 �� E��M�
��

�� E��M� �� � � � �� Ei���M�
�i��

��� Ei�M��

We then de�ne Ei���M� � E�Cokeri���� and i is de�ned in the obvious
way�

It is clear that any two minimal injective resolutions of M are iso�
morphic� Moreover� if I� is an arbitrary injective resolution of M� then�
as is readily seen� E��M� is isomorphic to a direct summand of I��

We note a technical result about injective hulls which will be needed
later in this section�

Lemma ������ Let R be a Noetherian ring� S � R a multiplicatively closed

set and M an R�module� Then ER�M�S �� ERS
�MS��

Proof� We show that ER�M�S is an injective hull of the RS �module MS �
We know from ����� that ER�M�S is an injective RS �module� It remains
to be shown that ER�M�S is an essential extension of MS � To simplify
notation we set N � ER�M�� and pick x � NS � x �� 
� We want to prove
that RSx �MS �� 
�

There exists y � N such that RSy � RSx� Thus we may as well assume
that x � N� We consider the set of ideals S � fAnn�tx� � t � Sg� Since
R is Noetherian this set has a maximal element� say Ann�sx�� and since
RSx � RS �sx�� we may replace x by sx� and thus may assume that Ann�x�
is maximal in the set S�

Since N is an essential extension of M� we have Rx �M � Ix �� 
�
where I is an ideal in R� Let I � �a�� � � � � an�� and assume that aix � 
 in
NS for i � �� � � � � n� Then there exists t � S such that t�aix� � 
 in N for
i � �� � � � � n� But Ann�tx� � Ann�x�� by the choice of x� and so Ix � 
�
This is a contradiction� Hence aix �� 
 in NS for some i� and it follows
that RSx �MS �� 
�
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In the next theorem we determine the indecomposable injective R�
modules of a Noetherian ring R� Recall that an R�module M is de�

composable if there exist non�zero submodules M��M� of M such that
M � M� �M�� otherwise it is indecomposable�

Theorem ������ Let R be a Noetherian ring�

�a� For all p � SpecR the module E�R�p � is indecomposable�
�b� Let I �� 
 be an injective R�module and let p � Ass I � Then E�R�p � is
a direct summand of I � In particular� if I is indecomposable� then

I �� E�R�p ��

�c� Let p � q � SpecR� Then E�R�p � �� E�R�q �� p � q �

Proof� �a� Suppose E�R�p � is decomposable� Then there exist non�zero
submodules N�� N� of E�R�p � such that N� � N� � 
� It follows that
�N� �R�p �� �N� �R�p � � �N� �N���R�p � 
� On the other hand� since
R�p � E�R�p � is an essential extension� we have N��R�p �� 
 �� N��R�p �
This contradicts the fact that R�p is a domain�

�b� R�p may be considered as a submodule of I since p � Ass I � It
follows from ����� that there exists an injective hull E�R�p � of R�p such
that E�R�p � � I � As E�R�p � is injective� it is a direct summand of I �
Statement �c� follows from the next lemma�

Lemma ������ Let R be a Noetherian ring� p � SpecR� and M a �nite

R�module� Then
�a� AssM � AssE�M�� in particular one has fp g � AssE�R�p ��
�b� k�p � �� HomRp

�k�p �� E�R�p �p ��

Proof� �a� It is clear that AssM � AssE�M�� Conversely� suppose
q � AssE�M�� Then there exists a submodule U � E�M� which is
isomorphic to R�q � We have U �M �� 
 since the extension M � E�M�
is essential� and so q � Ass�U �M� � AssM�

�b� Since E�R�p �p
�� ERp

�k�p ��� we assume that �R� m � k� is local and
p � m is the maximal ideal� The k�vector space HomR�k� E�k�� may be
identi�ed with V � fx � E�k� � m x � 
g� it contains k� If V �� k� then
there exists a non�zero vector subspace W of V with k �W � 
� This�
however� contradicts the essentiality of the extension k � E�k��

The importance of the indecomposable injective R�modules results
from the following�

Theorem ������ Every injective module I over a Noetherian ring R is a

direct sum of indecomposable injective R�modules� and this decomposition

is unique in the following sense	 for any p � SpecR the number of inde�

composable summands in the decomposition of I which are isomorphic to

E�R�p � depends only on I and p �and not on the particular decomposition��
In fact� this number equals dimk�p �HomRp

�k�p �� Ip ��
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Proof� Consider the set S of all subsets of the set of indecomposable
injective submodules of I with the property� if F � S� then the sum of
all modules belonging to F is direct� The set S is partially ordered by
inclusion� By Zorn�s lemma it has a maximal element F�� Let E be the
sum of all the modules in F�� The module E is a direct sum of injective
modules� and hence by ����� is itself injective� Therefore E is a direct
summand of I � and we can write I � E �H � where H is injective since it
is a direct summand of I � Suppose H �� 
� then there exists p � AssH �
and so E�R�p � is a direct summand of H� see ������b�� Thus we may
enlargeF� by E�R�p �� contradicting the maximality of F�� We conclude
that H � 
 and I � E�

Suppose that I �
L

�� I� is the given decomposition� Then

HomRp
�k�p �� Ip � �� HomRp

�k�p ��
M
��

�I��p � ��
M
��

HomRp
�k�p �� �I��p ��

By ����	 we haveM
��

HomRp
�k�p �� �I��p � ��

M
���

HomRp
�k�p �� �I��p ��

where �� � f� � � � I� �� E�R�p �g� If we again use ����	� we �nally get

HomRp
�k�p �� Ip � ��

M
���

HomRp
�k�p �� �I��p � �� k�p �����

Bass numbers� Let R be a Noetherian ring� M a �nite R�module and
p � SpecR� The ��nite� number �i�p �M� � dimk�p �Ext

i
Rp
�k�p ��Mp � is

called the i�th Bass number of M with respect to p �
These numbers have an interpretation in terms of the minimal injective

resolution of M�

Proposition ������ Let R be a Noetherian ring� M a �nite R�module� and
E��M� the minimal injective resolution of M� Then

Ei�M� ��
M

p �SpecR

E�R�p ��i�p �M��

Proof� Let 
 �� M �� E��M�
��

�� E��M�
��

�� � � � be the minimal
injective resolution of M� and let p � SpecR� Since localization is exact�
it follows from ����� that


 ��Mp �� E��M�p

d�

�� E��M�p

d�

�� � � �

is the minimal injective resolution of Mp � here d i is the localization of i�
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The complex HomRp
�k�p �� E��M�p � is isomorphic to the subcomplex

C� of E��M�p � where

C i � fx � Ei�M�p � p Rp � x � 
g�

Let x be a non�zero element of C i� Since the extension Im d i�� � Ei�M�p

is essential� there exists a � Rp with ax � Im d i�� and ax �� 
� Since
p Rp annihilates x� we see that a �� p Rp � Hence a is a unit in Rp � and

x � Im d i��� It follows that d i�x� � 
� and hence d ijC i � 
 for all i�

Consequently we get ExtiRp
�k�p ��Mp � �� HomRp

�k�p �� Ei�M�p �� which by

����� implies the isomorphism asserted�

Among the Bass numbers the type of a module or a local ring is of
particular importance� Let �R� m � k� be a Noetherian local ring and M a
�nite module of depth t� In Chapter � we have already considered the
Bass number r�M� � �t�m �M�� and called it the type of M�

In the next theorem we give a new� extremely useful characterization
of Gorenstein rings�

Theorem �����
� Let �R� m � k� be a Noetherian local ring� The following

conditions are equivalent	

�a� R is a Gorenstein ring�

�b� R is a Cohen�Macaulay ring of type ��

Proof� Let x be a maximal R�sequence� By ������ R is Gorenstein if
and only if R��x� is� Similarly the properties in �b� are stable under
specialization modulo x� see ����� and ������ Thus we may assume
dimR � 
�

�a�  �b�� By �����	� R is an injective R�module� Since R is local� it
is indecomposable as an R�module� and so� since AssR � fm g� we have
that R �� ER�k�� see ������ It follows from ����	 that R is of type ��

�b� �a� follows from statement �e� in ������ below�

We use this new characterization of Gorenstein rings to give examples
of Cohen�Macaulay rings which are not Gorenstein� and of Gorenstein
rings which are not complete intersections�

Examples ������� �a� Let �R� m � k� be an Artinian local ring for which
m � � 
� For instance� R � k�X�� � � � � Xn���X�� � � � � Xn�� is such a ring� It
is easily seen that m � SocR� Hence we have r�R� � embdimR� and
conclude that R is Gorenstein if and only if embdimR � �� When R is
Gorenstein� it is even a complete intersection�

�b� In the following we present a method to produce a large class of
Artinian Gorenstein rings� let k be a �eld� S � k�X�� � � � � Xn� the polyno�
mial ring in n variables over k� m an integer� Sm the m�th homogeneous
part of S � and � � Sm � k a non�trivial k�linear map�
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For every j � N� we de�ne Ij � fa � Sj � ��a � Sm�j� � 
g� It is readily
seen that I �

L
j	� Ij is a graded ideal with Ij � Sj for j � m� Thus we

conclude that R � S�I is an Artinian �graded� local ring�
We claim that R is a Gorenstein ring� To see this� we determine the

socle of R� For any element a � S � we denote by �a its residue class
modulo I � Let j � N with 
 � j � m� and let �a � Rj � �a �� 
� Then by
the de�nition of I � there exists b � Sm�j such that ��a � b� �� 
� and so

�a � �b �� 
� But since �b belongs to the maximal ideal of R� it follows that
�a �� SocR� Therefore� SocR � Rm� As dimk Rm � �� it follows that R is
Gorenstein�

We give an explicit example for this construction� let � � S� � k be
the k�linear map with

��XiXj� � 
� � � i � j � n� ��X�
i � � �� i � �� � � � � n�

For this linear form � we get

I � �X�
� � X�

� � � � � � X
�
� � X�

n � X�X�� X�X�� � � � � Xn��Xn��

Therefore� R � S�I is Gorenstein� and is a complete intersection if and
only if n � ��

Matlis duality� Let �R� m � k� be a Noetherian local ring� We are going
to study the functor which takes the dual M� of an R�module M with
respect to the injective hull E of k� If M is a �nite module� the dual M�

need not be �nite� Indeed� we know from Exercise ������ that R� �� E is
�nite only if R is Artinian� However� the E�dual of a module of �nite
length also has �nite length� as we shall see now�

Proposition ������� Let �R� m � k� be a Noetherian local ring� E the injective

hull of k� and N an R�module of �nite length� For any R�module M we set

M� � HomR�M�E�� Then	
�a� one has

ExtiR�k� E�
��

�
k for i � 
�

 for i � 
�

�b� ��N� � ��N���
�c� the canonical homomorphism N � N�� is an isomorphism�

�d� ��N� � r�N�� and r�N� � ��N���
�e� if R is Artinian� then E is a �nite faithful R�module satisfying

�i� ��E� � ��R��
�ii� the canonical homomorphism R � EndR�E�� a �� �a� where �a�x� �
ax for all x � E� is an isomorphism�

�iii� r�E� � � and ��E� � r�R��
conversely� any �nite faithful R�module of type � is isomorphic to E�



�
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Proof� �a� ExtiR�k� E� � 
 for i � 
� as E is injective� furthermore
HomR�k� E� �� k� see ����	�

�b� We prove the equality asserted by induction on the length of N�
If ��N� � �� then N �� k� and the equality follows from �a�� Now suppose
that ��N� � �� Then there exists a proper submodule U � N� and we
obtain an exact sequence


 �� U �� N ��W �� 


with ��U� � ��N� and ��W � � ��N��
Since E is injective this sequence yields the dual exact sequence


 ��W � �� N� �� U� �� 
�

The induction hypothesis applies to U and W � and the additivity of
length gives the result�

�c� Again we use induction on ��N�� If ��N� � �� then N �� k�
and N�� �� k by �a�� Therefore it su�ces to show that the canonical
homomorphism � � k � HomR�HomR�k� E�� E� is not the zero map� Let
x � E� x �� 
� be a socle element of E� There exists � � HomR�k� E� with
���� � x� Then ������� � x �� 
� and so � �� 
� If ��N� � �� we choose as
before an exact sequence


 �� U �� N ��W �� 


with ��U� � ��N� and ��W � � ��N��
The natural homomorphisms into the bidual modules induce a com�

mutative diagram


 ����� U ����� N ����� W ����� 
��y ��y ��y

 ����� U�� ����� N�� ����� W �� ����� 


where the outer vertical arrows are isomorphisms by our induction hy�
pothesis� The snake lemma ������� Theorem ���� applied to this diagram
implies N � N�� is an isomorphism�

�d� The module �N�m N�� is the kernel of the linear map N� � �m N��

which assigns to every � � N� its restriction to m N� Hence � � �N�m N��

if and only if m ��N� � ��m N� � 
� In other words�

�N�m N�� � f� � N� � m � � � 
g � SocN� �

Thus we get ��N� � dimk N�m N � dimk�N�m N�� � dimk SocN
� � r�N���

The second equality follows from the �rst by �c��
�e� By �b� we have ��E� � ��R�� � ��R� � �� In particular� E is a

�nite R�module� Next it follows from �c� that the canonical homomor�
phism � � R � HomR�HomR�R� E�� E� is an isomorphism� If we identify
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HomR�R� E� with E� then � identi�es with the canonical homomorphism
R � EndR�E�� A module whose endomorphism ring is R is necessarily
faithful� Statement �e��iii� follows from �d��

Finally� let N be a faithful R�module of type �� Then N� is cyclic� and
so N �� HomR�R�I� E� for some ideal I � Here we have used �c� and �d��
But since N is faithful� I � 
 and so N �� E�

Proposition ������ may be viewed as the Matlis duality theorem for
�nite Artinian modules� Now we prove its general form� It will be of
crucial importance for the local duality theorem of Grothendieck� which
we will discuss in Section ����

Let �R� m � k� be a complete local ring� We denote by M�R� the
category of R�modules� by A�R� the full subcategory of Artinian R�
modules and by F�R� the full subcategory of �nite R�modules� Let E
be an injective hull of k� We set T � � � HomR� � E�� The contravariant
functor T �M�R��M�R� is exact� Its restriction to A�R� or F�R� will
again be denoted by T �

Theorem ������ �Matlis�� Let �R� m � k� be a Noetherian complete local ring�

N � A�R� and M � F�R�� Then

�a� T �R� �� E and T �E� �� R�

�b� T �M� � A�R� and T �N� � F�R��

�c� there are natural isomorphisms T �T �N�� �� N and T �T �M�� ��M�

�d� the functor T establishes an anti�equivalence between the categories

A�R� and F�R��

Proof� We proceed in several stages� ��� For all n � N we set En �
fx � E � m nx � 
g� Let x � E� x �� 
� then Ass�Rx� � AssE � fm g� see
����	� Hence there exists an integer n such that m nx � 
� This proves that
E �

S
n	�En � lim

��
En�

��� The natural homomorphism R � EndR�E� � T �E� is an isomor�
phism� by �������e��ii�� the natural homomorphisms �n � R�m n � T �En�
are isomorphisms� and we obtain commutative diagrams such as

R ����� T �E���y ��y
R�m n


n
����� T �En�

in which the only homomorphisms are the natural ones� As R is complete�
the map R � lim

��
R�m n is an isomorphism� Likewise T �E�� lim

��
T �En�

is an isomorphism since by ������ Theorem ���	� and ��� we have
lim
��

T �En� � T �lim
��

En� � T �E�� It follows that the natural homomor�

phism R � T �E� is an isomorphism as well� This proves �a��
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��� E is Artinian� let E � U� � U� � U� � � � � be a descending chain
of submodules of E� This chain induces a sequence of epimorphisms

R � T �E� �� T �U�� �� T �U�� �� � � �

Thus we can write T �Ui� � R�Ii� where �
� � I� � I� � I� � � � � is an
ascending chain of ideals� Since R is Noetherian this chain stabilizes�
and so there exists an integer i� such that T �Ui� � T �Ui��� for i 	 i��
We will show that Ui � Ui�� for i 	 i�� Suppose that Ui �� Ui��� but
T �Ui� � T �Ui���� Let V � Ui�Ui��� then V �� 
� but T �V � � 
� However�
V is a subquotient of E� and so AssV � fm g� see ����	� In other
words� there exists a monomorphism k � V � Applying T � we obtain an
epimorphism 
 � T �V �� T �k� � k� a contradiction�

��� If N is Artinian� then there exists an embedding N � En for some
integer n� SocN is a �nite dimensional k�vector space since N is Artinian�
Moreover� the extension SocN � N is essential� In fact� if x � N� then
Rx is a �nite Artinian module� and therefore Rx � SocN � SocRx �� 
�
Let N � I be an embedding of N into an injective R�module� By ������
an injective hull E�N� can be chosen as a maximal essential extension
of N in I � Since the extension SocN � N is essential� E�N� is likewise
an injective hull of SocN� Suppose SocN �� kn� then it follows that
N � E�SocN� �� En�

The remaining assertions of the theorem now follow easily�

�b� Let N � A�R�� then by ��� there exists an embedding N � En

which by ��� induces an epimorphism Rn � T �N�� therefore T �N� �
F�R�� Conversely� suppose M � F�R�� We choose an epimorphism
Rn � M� This epimorphism yields an embedding T �M� � En� The
module E is Artinian by ���� and so any submodule of En is Artinian� It
follows that T �M� � A�R��

�c� By ��� there exists an integer n and an exact sequence 
 � N �
En �W � 
 which we may complete to a commutative diagram


 ����� N ����� En ����� W ����� 





��y �

��y �

��y

 ����� T �T �N�� ����� T �T �En�� ����� T �T �W �� ����� 


whose vertical maps are just the canonical homomorphisms�

It follows from ��� that � is an isomorphism� Therefore� by the snake
lemma� � is an isomorphism if and only if � is a monomorphism� Let
x � Ker �� then ��x� � 
 for all � � HomR�W�E�� Suppose x �� 
� and
let � � Rx� E be the homomorphism which maps x to a non�zero socle
element of E� Then ��x� �� 
� and since E is injective� � can be extended
to a homomorphism � � W � E� We then have ��x� �� 
� a contradiction�
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Similarly one proves that the natural linear map M � T �T �M�� is an
isomorphism� starting with the exact sequence 
 � U � Rn � M � 

and using the fact that the natural homomorphism R � T �T �R�� is an
isomorphism �which is an immediate consequence of �����

Exercises

������� Let �R� m � k� be a Noetherian local ring� E an injective hull of k� Prove�

�a� The natural homomorphism E � E �R
�R is an isomorphism� In particular� E

is an �R�module�
�b� As an �R�module� E 
� E 	R�k��
�c� For all 	nite R�modules N there exists a natural isomorphism

HomR�N� E� 
� Hom 	R� �N�E��

�If this problem seems to be too di�cult� the reader may consult ����� Theorem
������

������� Let �R� m � be an Artinian local ring� Show the following conditions are
equivalent�
�a� R is a Gorenstein ring�
�b� all 	nite R�modules are re�exive�
�c� I � AnnAnn I for all ideals I of R�
�d� for all non�zero ideals I and J one has I 	 J �� ��

��� The canonical module

So far we have studied �nite modules of �nite injective dimension over
Noetherian local rings� but we have ignored the question as to under what
circumstances such modules actually exist� A Gorenstein ring R admits
plenty of �nite modules of �nite injective dimension� any module of
�nite projective dimension has �nite injective dimension as well� simply
because R itself has �nite injective dimension by de�nition� Also any
Artinian local ring �R� m � k�� Gorenstein or not� admits a �nite injective
module � the injective hull of k� The question becomes more delicate
for non�Gorenstein local rings of positive dimension� One of the main
results of this section will be that any Cohen�Macaulay ring which
is a homomorphic image of a Gorenstein ring has a �nite module of
�nite injective dimension� Moreover� this module can be chosen to be a
maximal Cohen�Macaulay module of type �� It will be shown that such
a module is unique up to isomorphism� It is called the canonical module
of R� For a Gorenstein ring the canonical module is just the ring itself�

We shall study the behaviour of the canonical module under �at
extensions� localizations� and specializations�

De�nition ������ Let �R� m � k� be a Cohen�Macaulay local ring� A maximal
Cohen�Macaulay module C of type � and of �nite injective dimension is
called a canonical module of R�
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It is immediate �see ����� and ������� that C is a canonical module of
R if and only if

dimk Ext
i
R�k� C� � 
id � d � dimR�

Two questions arise� when does a canonical module exist� and is it
uniquely determined up to isomorphism# This question has a simple
answer in the case dimR � 
� by ������ ER�k� is the uniquely determined
canonical module� To prove uniqueness in general� we will need the
following two results�

Lemma ������ Let �R� m � k� be a Noetherian local ring� � � M � N a

homomorphism of �nite R�modules� and x an N�sequence� If �� R��x� is
an isomorphism� then � is an isomorphism�

Proof� The surjectivity of � follows from Nakayama�s lemma� In order
to prove that � is injective� we may assume without loss of generality
that the sequence x consists of one element� say x� Let K � Ker�� since
x is N�regular� the exact sequence


 �� K ��M �� N �� 


induces the exact sequence


 �� K�xK ��M�xM �� N�xN �� 
�

By assumption� K�xK � 
� and hence K � 
� by Nakayama�s lemma�

Proposition ������ Let �R� m � k� be a Cohen�Macaulay local ring of dimen�

sion d � and C a maximal Cohen�Macaulay R�module�

�a� Suppose M is a maximal Cohen�Macaulay R�module with ExtjR�M�C�
� 
 for all j � 
� Then HomR�M�C� is a maximal Cohen�Macaulay

module� and for any R�sequence x we have

HomR�M�C�� R�xR �� HomR�xR�M�xM�C�xC��

�b� Assume in addition that C has �nite injective dimension� and M is a

Cohen�Macaulay R�module of dimension t� Then

�i� ExtjR�M�C� � 
 for j �� d � t�

�ii� Extd�tR �M�C� is a Cohen�Macaulay module of dimension t�

Proof� �a� Let x � m be an R�regular element� Since C is a maximal
Cohen�Macaulay module� the element x is C�regular as well� and one
has the exact sequence


 �� C
x
�� C �� C�xC �� 


which by our assumtion induces the exact sequence


 �� HomR�M�C�
x
�� HomR�M�C� �� HomR�M�C�xC� �� 
�
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Therefore�

HomR�xR�M�xM�C�xC� �� HomR�M�C�xC�

�� HomR�M�C��xHomR�M�C�
�� HomR�M�C�� R�xR�

For an arbitrary R�sequence x one proceeds by induction on the
length of the sequence�

�b��i� It follows from �����
�e� that ExtjR�M�C� � 
 for j � d� t� Next

we show by induction on t that ExtjR�M�C� � 
 for any t�dimensional
Cohen�Macaulay module M and all j � d � t� If t � 
� then the claim
follows from �����	� Now suppose that t � 
� and let x � m be an
M�regular element� The exact sequence


 ��M
x
��M ��M�xM �� 


induces the exact sequence

ExtjR�M�C�
x
�� ExtjR�M�C� �� Extj��

R �M�xM�C��

M�xM is a �t� ���dimensional Cohen�Macaulay module� Hence by the

induction hypothesis we have Extj��
R �M�xM�C� � 
 for j � d � t� and

so Nakayama�s lemma implies that ExtjR�M�C� � 
 for j � d � t�
�ii� We proceed by induction on t� The assertion is trivial if t � 
�

Assume now dimM � t � 
� and let x � m be an M�regular element� By
�i�� the exact sequence


 �� M
x
��M ��M�xM �� 


yields the exact sequence


 �� Extd�tR �M�C�
x
�� Extd�tR �M�C� �� Extd��t���

R �M�xM�C� �� 
�

Thus x is regular on Extd�tR �M�C�� and so it follows from our induction

hypothesis that Extd�tR �M�C� is Cohen�Macaulay�

We are now ready to prove the uniqueness of the canonical module�

Theorem ����	� Let �R� m � k� be a Cohen�Macaulay local ring� and let C
and C � be canonical modules of R� Then
�a� C�xC �� ER��x��k� for any maximal R�sequence x�

�b� the canonical modules C and C � are isomorphic�

�c� HomR�C�C �� �� R� and any generator � of Hom�C�C �� is an isomor�

phism�

�d� the canonical homomorphism R � EndR�C� is an isomorphism�
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Proof� �a� By ������� C�xC is an injective R��x��module of type �� Since
Spec�R��x�� � fm ��x�g� ����� yields the assertion�

�b� and �c�� It follows from �a� that

C�xC �� ER��x��k� �� C ��xC ��

Now ����� and ������ imply that

HomR�C�C �� �R R��x� �� HomR��x��C�xC�C ��xC �� �� R��x��

and so HomR�C�C �� is cyclic by Nakayama�s lemma� Let � be a generator
of this module� Then the natural inclusion R� � HomR�C�C �� induces
the above isomorphism modulo x� By ������ HomR�C�C �� is a maximal
Cohen�Macaulay module� Thus ����� implies that R�� HomR�C�C �� is
an isomorphism� In particular it follows that R� is a maximal Cohen�
Macaulay module� We may therefore apply ����� once again to conclude
that R � R� is an isomorphism� too�

Next we show that � � C � C � is an isomorphism� Indeed� �� R��x�
can be identi�ed with a generator of End�ER��x��k��� It follows therefore
from �������e��ii� that ��R��x� is an isomorphism� Since C � is a maximal
Cohen�Macaulay module� ����� implies that � is an isomorphism� It is
clear that any other isomorphism C � C � is a generator of HomR�C�C ���
too�

�d� is proved similarly�

In view of this result we may talk of the canonical module of R
provided it exists� From now on we will denote the canonical module of
R by �R �

The next theorem lists some useful and often applied change of ring
formulas for the canonical module�

Theorem ������ Let �R� m � k� be a Cohen�Macaulay local ring with canon�

ical module �R � Then

�a� �R�x�R
�� �R�xR for all R�sequences x� that is� the canonical module

specializes�

�b� ��R�p
�� �Rp

for all p � SpecR� that is� the canonical module localizes�

�c� ��R�b�� � 	R �

Proof� �a� First notice that x is an �R�sequence� too� The �R�xR��module
�R�x�R has �nite injective dimension� see ������� Since r��R�x�R� �
r��R� � �� the module �R�x�R is the canonical module of R�xR� by
de�nition�

�b� The Rp �module ��R�p has �nite injective dimension �see ������ and
is again a maximal Cohen�Macaulay module� It remains to be shown
that r���R�p � � �� Let x be a sequence of elements of R whose image in
Rp is a maximal Rp �sequence� Then by �������

M � ��R�p �x��R�p
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is an injective module over the Artinian local ring A � Rp �xRp � It follows
from ����	 and ����� that

M �� EA�k�p ��r � r � r�M��

From ������ we get

HomA�M�M� �� Ar� ����

On the other hand� from ������a� we obtain

HomA�M�M� �� HomR�xR��R�x�R � �R�x�R�p���
�� HomR�xR��R�xR � �R�xR�p

�� �R�xR�p � A�

For the last isomorphism we used the fact that the endomorphism ring
of the canonical module of S � R�xR is isomorphic to S� see ������ A
comparison of ��� and ��� yields r � �� as desired�

�c� The �bre of R � �R is k� so that by �atness� ExtiR�k� �R�b ��
Exti	R�k� ��R�b� for all i� This implies the assertion�
Existence of the canonical module� Our next goal is to clarify for which
Cohen�Macaulay local rings the canonical module exists�

Theorem ������ Let �R� m � k� be a Cohen�Macaulay local ring� The fol�

lowing conditions are equivalent	

�a� R admits a canonical module�

�b� R is the homomorphic image of a Gorenstein local ring�

One direction of the proof resorts to the principle of idealization due
to Nagata� let R be a ring and M an R�module� We construct a ring
extension R � R �M of R� called the trivial extension of R by M� As an
R�module� R �M is just the direct sum of R and M� The multiplication
is de�ned by

�a� x��b� y� � �ab� ay� bx�

for all a� b � R and x� y �M�
Some basic facts on trivial extensions are the subject of Exercise

������� Here we will only use that R �M is a ring� and if M is �nite and
R is a Noetherian �or Artinian� local ring with maximal ideal m � then so
is R �M with maximal ideal m �M � f�a� x� � R �M � a � m g�

Proof of ������ �a�  �b�� The ring R is a homomorphic image of the
trivial extension R � �R � We will show that R � �R is a Gorenstein ring�
Let x be an R�regular sequence of maximal length� It is easy to see that
x is a maximal �R ��R��sequence as well� and that

�R ��R��x�R ��R� �� �R�xR� � ��R�x�R��
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By ������ �R�x�R
�� ER�xR�k�� Bearing in mind the characterization �����


of Gorenstein rings� we may assume that R is Artinian� and it remains to
be shown that the type of the Artinian local ring R� � R � ER�k� is ��

Let �a� x� � SocR�� then �b� 
��a� x� � �ba� bx� � �
� 
� for all b � m �
This implies that a � SocR and x � SocER�k��

Assume that a �� 
� The exact sequence

R
a
�� R �� R��a� �� 


induces the exact sequence 
 �� ER��a��k� �� ER�k�
a
�� ER�k� �see

�������
As

��ER��a��k�� � ��R��a�� � ��R� � ��ER�k��

�see �������� multiplication by a on ER�k� cannot be the zero map� There�
fore there exists y � ER�k� with ay �� 
� and so �
� y��a� x� � �
� ay� �� �
� 
��
a contradiction�

Our conclusion is that Soc�R � ER�k�� �� SocER�k�� and therefore by
������� r�R � E�k�� � ��

For the proof of ������b�  �a� we note the following more general
result�

Theorem ������ Let �R� m � be a Cohen�Macaulay local ring�

�a� The following conditions are equivalent	

�i� R is Gorenstein�

�ii� �R exists and is isomorphic to R�
�b� Let � � �R� m � � �S� n � be a local homomorphism of Cohen�Macaulay

local rings such that S is a �nite R�module� If �R exists� then �S exists

and

�S
�� ExttR�S� �R�� t � dimR � dimS�

Proof� �a��i�� �ii� follows from ������ and �����
�
�b� By virtue of ������b�� and since dim S � dim�R�Ker��� there

exists an R�sequence x � x�� � � � � xt with xi � Ker�� t � dimR � dim S �
Set �R � R��x�R� as �R��x��R

�� ��R �see ������� we have ExttR�S� �R� ��
Hom�R�S� ��R�� by ������� Thus we may assume from the beginning that
dimR � dimS �

Let d � dimR� and y � y�� � � � � yd an R�sequence� Then y is �R�
regular and HomR�S� �R��regular as well� since both modules are Cohen�
Macaulay modules of dimension d� see ������ It follows from ������a�
that

HomR�S� �R��R R� �� HomR� �S �� �R���

where R� � R��y�R� and S � � S��y�S � In view of Exercise ������ it
su�ces to show that HomR��S �� �R� � is the canonical module of S �� Since
�R�

�� ER��k�� ����� implies that HomR� �S �� ER��k�� is an injective S ��module�
and so HomR� �S �� ER��k�� �� ES ��k�r for some r � 
� By �������b� and �e��i�
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we get ��ES ��k�� � ��S �� � ��HomR� �S �� ER��k��� � r ��ES ��k��� therefore
r � ��

A noteworthy case of ����	 is the following� let k be a �eld� and R an
Artinian local k�algebra� Then Homk�R� k� is the canonical module of R�

A Noetherian complete local ring is a homomorphic image of a
regular local ring� see A���� Regular local rings are Gorenstein �see
�����
�� and so ����� implies

Corollary ������ A complete Cohen�Macaulay local ring admits a canonical

module�

Corollary ������ Let �R� m � k� be a regular local ring and I � m an ideal

of height g such that S � R�I is Cohen�Macaulay� Let

F� � 
 �� Fg �� Fg�� �� � � � �� F� �� 


be the minimal free R�resolution of S � and let G
�
� HomR�F�

� R� be the

dual complex

G� � 
 �� Gg �� Gg�� �� � � � �� G� �� 
�

where Gi � F�g�i for i � 
� � � � � g� Then G� is a minimal free R�resolution of
�S �

Proof� Note that g is indeed the length of the minimal free resolution of
S� see �����
� One has ExtiR�S� R� �� H i�F�

�
� for all i 	 
� The corollary

follows therefore from ������b� and ����	�

Further properties of the canonical module� In the next theorem some
useful characterizations of the canonical module will be given�

Theorem �����
� Let �R� m � k� be a Cohen�Macaulay local ring of dimen�

sion d � and let C be a �nite R�module� Then the following conditions are

equivalent	

�a� C is the canonical module of R�
�b� �i�p � C� � 
ih for all i 	 
 and all p � SpecR� where h � height p �

�c� for all integers t � 
� �� � � � � d � and all Cohen�Macaulay R�modules M
of dimension t one has

�i� Extd�tR �M�C� is a Cohen�Macaulay R�module of dimension t�

�ii� ExtiR�M�C� � 
 for all i �� d � t�

�iii� there exists an isomorphism M � Extd�tR �Extd�tR �M�C�� C� which
in the case d � t is just the natural homomorphism from M into the

bidual of M with respect to C�
�d� for all maximal Cohen�Macaulay R�modules M one has

�i� HomR�M�C� is a maximal Cohen�Macaulay R�module�
�ii� ExtiR�M�C� � 
 for i � 
�
�iii� the natural homomorphism M � HomR�HomR�M�C�� C� is an

isomorphism�
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Proof� �a� � �b�� The canonical module localizes� see ������ therefore
�a� implies �b�� Choosing p � m � we obtain �a� from �b��

�a�  �c�� �i� and �ii� have already been shown in ������ From the
Rees lemma ������ and �i� one deduces that

Extd�tR �Extd�tR �M�C�� C� �� HomR�xR�HomR�xR�M�C�xC�� C�xC�

for an R�sequence x of length d � t which is contained in AnnR M�
Replacing R by R�xR� we may as well assume that t � d � Since by ������
HomR�M�C� � R�yR �� HomR�yR �M�yM�C�yC� for any R�sequence y�
we may �nally assume that dimR � 
� In this case however C �� ER�k��
and the assertion follows from �������

�d� is a special case of �c��
�d�  �a�� If we choose M � R� then it follows from �i� that C is a

maximal Cohen�Macaulay module�
According to Exercise ������� for all i 	 d the i�th syzygy module of

the residue class �eld k of R is 
 or a maximal Cohen�Macaulay module�
Therefore �ii� implies that ExtiR�k� C� � 
 for i � d � and hence we have
inj dimC � �� see �������

It remains to be shown that r�C� � �� By ������a�� the conditions in
�d� are stable under reduction modulo R�sequences� Thus� since the type
of C is also stable under reduction modulo R�sequences� we may restrict
ourselves to the case where R is Artinian� Then the module C is necessarily
injective� and so it must be isomorphic to ER�k�

r � r � r�C�� Now it follows

from ������ that Rr� �� HomR�HomR�R�C�� C�� Consequently condition
�iii� implies r�C� � ��

We complement the previous theorem with some extra information
about the Exti� � �R�� Observe the analogy of the statements with �������
The canonical module takes the position of the injective hull when one
deals with arbitrary Cohen�Macaulay local rings rather than Artinian
local rings�

Proposition ������� Let R be a Cohen�Macaulay local ring of dimension

d with canonical module �R � and M a Cohen�Macaulay R�module of di�

mension t� Then

�a� ��M� � r�Extd�tR �M��R���

�b� r�M� � ��Extd�tR �M��R���
�c� �R is a faithful R�module� and

�i� r��R� � �� ���R� � r�R��
�ii� End��R� � R�

Proof� There exists an �R�sequence x of length d � t in AnnM� and we
get

Extd�tR �M��R� �� HomR�xR�M��R�xR��
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So we may assume that dimR � dimM� By ������ we may further assume
that dimR � 
� Since the canonical module of an Artinian local ring
is the injective hull of the residue class �eld� all assertions follow from
�������

The previous proposition has an interesting application�

Corollary ������� Let R be a Cohen�Macaulay local ring� M a Cohen�

Macaulay R�module and p � SuppM� Then r�Mp � � r�M��

Proof� Pick q � Ass� �R�p �R�� then dim �R�q � dimR�p � see ������� There�

fore we obtain a �at local homomorphism Rp � �Rq whose �bre is of

dimension zero� From ������ it follows that r�Mp � � r� �Mq �� Since R � �R

is �at with �bre k� ������ once again applied gives r�M� � r� �M�� We
may therefore assume that R is complete� By A���� R is the epimorphic
image of complete regular local S � and by Exercise �������c� we have
rS�M� � rR�M�� Thus we may assume that R is regular� In particular R is
Gorenstein� Hence� by ����	� R has a canonical module and is isomorphic
to R� and so ������ yields

r�Mp � � ��Extd�tRp
�Mp � Rp �� � ��Extd�tR �M�R�p �

� ��Extd�tR �M�R�� � r�M��

where d � dimR and t � dimM� Here we have used that� by ������

d � t � dimR � dimM � dimR � dimR�p � �dimM � dimM�p M�

� dimRp � dimMp �

The canonical module and �at extensions� We will show that the canonical
module behaves well under �at ring extensions� For the proof we need

Proposition ������� Let �R� m � be a Cohen�Macaulay local ring� and C a

�nite R�module� The following conditions are equivalent	

�a� C is the canonical module of R�
�b� C is a faithful maximal Cohen�Macaulay R�module of type ��

Proof� �a� �b�� The canonical module is a maximal Cohen�Macaulay
module of type �� by de�nition� and faithful by �������

�b�  �a�� Note �rst that C has one of the properties in �a� or

�b� if and only if the completion �C has this property� For instance�
the property of being faithful means that the canonical homomorphism

� � R � HomR�C�C� is injective� Since R � �R is faithfully �at� � is
injective if and only if its completion is injective� The reader should
check the other properties�

We may now assume that R is complete� Then� by ������ R has a
canonical module �R � By �������b�� HomR�C��R� is a cyclic module� say
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R�I � so that by �����
�d��iii� we have C �� HomR�R�I� �R�� It follows that
I annihilates C � Since we assume that C is faithful� we get I � 
� and
hence C �� HomR�R��R� �� �R �

Theorem �����	� Let �R� m � be a Cohen�Macaulay local ring� and �R� m ��
�S� n � a �at homomorphism of local rings�

�a� If �R exists and S�m S is Gorenstein� then �S � �R � S �
�b� If C is a �nite R�module� and S a Cohen�Macaulay ring with canonical

module �S � C � S � then S�m S is Gorenstein and C �� �R �

Proof� A �at local homomorphism is faithfully �at� Thus we see as in
the proof of the previous proposition that a �nite R�moduleM is faithful
if and only if M �R S is a faithful S�module� By ������� we have

r��R � S� � r�S�m S�r��R� � ��

hence �a� follows from �������
Part �b� is proved similarly� by ������� � � r�S�m S�r�C� and C is

a maximal Cohen�Macaulay module� It follows that r�S�m S� � � and
r�C� � �� Therefore S�m S is Gorenstein �see �����
�� and in view of
������� C is the canonical module of R�

Corollary ������� Let � � �R� m � � �S� n � be a �at homomorphism of

Noetherian local rings� Then S is Gorenstein if and only if R and S�m S
are Gorenstein�

The canonical module for non�local rings� We saw in ����� that the canon�
ical module localizes� This suggests the following

De�nition ������� Let R be a Cohen�Macaulay ring� A �nite R�module
�R is a canonical module of R if ��R�m is a canonical module of Rm for
all maximal ideals m of R�

Remark ������� In contrast to the local case� a canonical module is in
general not unique �up to isomorphism�� Indeed� let R be a Cohen�
Macaulay ring �not necessarily local�� and let �R and ��

R be canonical
modules of R� We set I � HomR��R � �

�
R�� Localizing at a prime ideal

and using ����� and ����� we see that Ip
�� Rp for all p � SpecR�

We de�ne an R�module homomorphism � � I��R � ��
R by ����x� �

��x� for all � � I and all x � �R � Then � is an isomorphism since it is
locally an isomorphism�

Conversely� suppose �R is a canonical module of R and I is a locally
free R�module of rank�� Then I � �R is locally isomorphic to �R � and
so is a canonical module of R� Thus a canonical module of a Cohen�
Macaulay ring is only unique up to a tensor product with a locally free
module of rank ��
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Proposition ������� Let R be a Cohen�Macaulay ring and �R a canonical

module of R�
�a� The following conditions are equivalent	

�i� �R has a rank�

�ii� rank�R � ��
�iii� R is generically Gorenstein� i�e� Rp is Gorenstein for all minimal

prime ideals p of R�
�b� If the equivalent conditions of �a� hold� then �R can be identi�ed with

an ideal in R� For any such identi�cation� �R is an ideal of height � or

equals R� In the �rst case� the ring R��R is Gorenstein�

Proof� �a��i� �ii�� Let p � SpecR be a minimal prime ideal� Then �Rp

��
��R�p is a free Rp �module� and Rp is Artinian� The canonical module of
an Artinian local ring is the injective hull E of the residue class �eld� and
so the free Rp �module ��R�p has rank� since E is indecomposable� see
������ The implications �ii� �iii� and �iii� �i� are clear in view of ����	�

�b� The canonical module �R is torsion�free since all R�regular el�
ements are �R�regular as well� According to Exercise ������� �R is
isomorphic to a submodule of R� Therefore it may be identi�ed with an
ideal in R which we again denote by �R �

If dimR � 
� then necessarily �R � R� We may therefore assume
that dimR � 
� and that �R is a proper ideal of R� Then �R must
contain an R�regular element since rank�R � �� Let p be a prime ideal
containing �R � Using the fact that �RRp is a maximal Cohen�Macaulay
Rp �module we then get dimRp �� 	 dim�Rp ��RRp � 	 depth�Rp ��RRp � 	
depthRp �� � dimRp ��� This shows that height�R � �� and that R��R

is Cohen�Macaulay�
Finally we prove that R��R is Gorenstein� To show this� we may

assume that R is local� Applying the functor HomR� � �R� to the exact
sequence


 �� �R �� R �� R��R �� 
�

and using ������d� we obtain the exact sequence


 �� �R �� R �� Ext�R�R��R � �R� �� Ext�R�R��R� � 
�

This implies R��R
�� Ext�R�R��R� �R�� Thus the conclusion follows from

����	�

Corollary ������� Let R be a Cohen�Macaulay normal domain with canon�

ical module �R � Then �R is isomorphic to a divisorial ideal� In particular�

if R is factorial� then R is Gorenstein�

Proof� By ������� �R is an ideal� It satis�es the Serre condition �S���
and moreover� ��R�p

�� �Rp

�� Rp for all prime ideals of height �� This
follows from ����	 since� by normality� Rp is regular for all prime ideals
of height �� Thus we have shown that �R is a re�exive ideal� see ������
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A re�exive ideal is divisorial� �We refer to Fossum ��
�� for the theory
of divisorial ideals�� In a factorial ring all divisorial ideals are principal�
and so �R is principal and R is Gorenstein� see ����	�

In concluding these considerations we show that formula �������a� for
the canonical module under �at extensions has a non�local counterpart�

Proposition �����
� Let � � R � S be a �at homomorphism of Noetherian

rings whose �bres S �R k�p � are Gorenstein for all p � SpecR for which

there exists a maximal ideal q in S with p � q � R� If �R is a canonical

module of R� then �R �R S is a canonical module of S �

Proof� Let q be a maximal ideal of S � p � q � R� then Rp � Sq is
a �at local homomorphism whose �bre is a localization of S �R k�p ��
and thus is Gorenstein� It follows from �������a� that �Rp

�Rp
Sq is a

canonical module of Sq � Since ��R �R S�q
�� �Rp

�Rp
Sq � the proposition

is proved�

Corollary ������� Let R be a Cohen�Macaulay ring with canonical module

�R � and let S be either the polynomial ring R�X�� � � � � Xn� or the formal

power series ring R��X�� � � � � Xn��� Then �R �R S is a canonical module of

S � In particular� if R is Gorenstein� then so is S �

Proof� We may assume that n � �� The result then follows from �����

since in both cases the �bres considered there are regular rings� see the
proof of A����

Exercises

������� Let R be a ring� M an R�module� and R �M the trivial extension of R by
M� �The de	nition of R �M is given after Theorem ������� Prove�
�a� R �M is a ring�
�b� R can be identi	ed with the subring R � � � f�a� x� � R �M � x � �g�
�c� � �M � f�a� x� � R �M � a � �g is an ideal in R �M with �� �M�� � �� As
R�modules� M and � �M are isomorphic�
�d� If �R� m � is local� then R �M is local with maximal ideal m �M � f�a� x� �
R �M � a � m g�
�e� The natural inclusion R � R �M composed with the natural epimorphism
R �M � �R �M���� �M� is an isomorphism�
�e� If R is Noetherian and M is a 	nite R�module� then R �M is Noetherian and
dimR � dimR �M�

������� Let R be a Cohen�Macaulay local ring� C a maximal Cohen�Macaulay
R�module� and x an R�sequence� If C�xC is the canonical module of R��x�� show
that C is the canonical module of R�

������� Let �R� m � be a Gorenstein local ring and I � R an ideal of grade g
such that S � R�I is a Cohen�Macaulay ring� Let x � x� � � � � � xn be a system of
generators of I � Show that �S


� Hn�g �x��
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������� Let �R� m � be a Gorenstein local ring� I � R a perfect ideal of grade g�
and let

� ��� Fg

�g
��� � � �

��
��� F� ��� �

be a minimal free R�resolution of S � R�I � Prove�

�a� The dual complex � ��� F�
�

���
��� � � �

��g
��� F�

g ��� � is acyclic� and Coker ��g 
�
�S �
�b� HomS ��S � S � 
� Ker�Fg � S � Fg�� � S � 
� TorRg �S� S ��

�c� S is Gorenstein if and only if TorRg �S� S � 
� S � �If you 	nd this problem too
di�cult� consult ������ or ��
�� Section �����
�d� Suppose g � �� then 
�I� � r�S � � �� In particular� if R is regular and S is
Gorenstein� then S is a complete intersection

������� Let �R� m � k� be a Gorenstein local ring of dimension d � and M a 	nite
module of 	nite projective dimension� Show that

TorRi �k�M� 
� Extd�iR �k�M� for all i�

�����	� Let �R� m � be a Cohen�Macaulay local ring with canonical module �R �
Suppose for all 	nite R�modules M there exist an integer n and an epimorphism
�n

R �M� Prove R is a Gorenstein ring�

�����
� Let �R� m � be a Cohen�Macaulay local ring with canonical module �R �
�a� Suppose M is a maximal Cohen�Macaulay R�module of 	nite injective
dimension� Show M is isomorphic to a direct sum of 	nitely many copies
of �R �
�b� Let M be a 	nite R�module� Show inj dimM � � if and only if M has a
	nite �R�resolution� that is� there exists an exact sequence

� ��� �
rp
R

�p

��� � � �
��
��� �

r�
R ��� M ��� ��

Hint� For all 	nite R�modules M there exists an exact sequence � � Y �
X � M � � where X is a maximal Cohen�Macaulay R�module� and Y a
module of 	nite injective dimension� see ���� Such an exact sequence is called a
Cohen�Macaulay approximation�
�c� The �R�resolution is minimal if Im�i � m �

ri��
R for i � �� � � � � p� Show that a

module M of 	nite injective dimension even has a minimal �R�resolution� and
that ri � 
d�i�m �M� for all i when the resolution is minimal�

������� Let �R� m � be a Cohen�Macaulay local ring of dimension �� A subset
I of the total ring Q of fractions of R is called a fractionary ideal if there exist
R�regular elements x� y such that y � xI � R� The inverse of a fractionary ideal
I is the set I�� � fa � Q � aI � Rg� We denote by F the set of fractionary ideals
of R� Show�
�a� If I � F � then I�� � F and I � �I�� ��� �
�b� If I � R is a fractionary ideal� then ��R�I� � �� R � I�� and ��I���R� � ��
�c� The following conditions are equivalent�

�i� R is a Gorenstein ring�
�ii� I � �I�� ��� for all I � F�
�iii� ��R�I� � ��I���R� for all I � F� I � R�
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������� Let R � S be a faithfully �at homomorphism of Noetherian rings� and
C a 	nite R�module� Show the following are equivalent�

�a� C � S is a canonical module of S �

�b� C is a canonical module of R� and for every prime ideal q � Spec S the 	bre
Sq �p Sq � p � q 	 R� is Gorenstein�

������� Let k be a 	eld� and R a k�algebra which is Cohen�Macaulay and admits
a canonical module� Let K be a 	eld� and suppose that either R is a 	nitely
generated k�algebra or K is a 	nitely generated extension 	eld of k� Show that
�R �k K is a canonical module of R �k K �
Hint� apply �������

��	 Gorenstein ideals of grade �� Poincar�e duality

The Hilbert�Burch theorem �����	 identi�es perfect ideals of grade � as
the ideals of maximal minors of certain matrices� For Gorenstein ideals
of grade � there exists a similar �structure theorem� due to Buchsbaum
and Eisenbud �����

Let R be a Noetherian local ring� An ideal I � R is a Gorenstein

ideal �of grade g� if I is perfect and ExtgR�R�I� R�
�� R�I � Note that if R

is Gorenstein and I is perfect� then I is Gorenstein if and only if R�I is
Gorenstein� This follows from ����	�b��

To describe the structure theorem we recall a few facts from linear
algebra� let R be a commutative ring� and F a �nite free R�module� An
R�module homomorphism � � F � F� is said to be alternating if with
respect to some �and therefore with respect to any� basis of F and the
corresponding dual basis F�� the matrix of � is skew�symmetric and all
its diagonal elements are 
�

Suppose now that � is alternating� choose a basis of F and the basis
dual to this� and identify � with the corresponding matrix �aij�� If rankF
is odd� then det� � 
� and if rankF is even� there exists an element
pf��� � R� called the Pfa�an of �� which is a polynomial function of the
entries of �� such that det��� � pf����� For more details about Pfa�ans
we refer the reader to ����� Ch� IX� x�� no� �� We set pf��� � 
 if rankF
is odd� Just like determinants� Pfa�ans can be developed along a row�
Denote by �ij the matrix obtained from � by deleting the i�th and j�th
rows and columns of �� then for all i�

pf��� �
nX

j��

����i�j����i� j�aij pf��ij�

���i� j� is the sign of j� i�� From now on we assume that the rank of F is
odd� and consider the matrix � derived from � by repeating the i�th row
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and column as indicated in the following picture

� �

�BBB�

 ai� � � � ain
�ai�
��� �

�ain

CCCA �

Expansion with respect to the �rst row of � yields the equations


 � � pf��� �
nX

j��

����jaij pf��j�

for i � �� � � � � n� where �j is the matrix obtained from � by deleting
the j�th row and column� In other words� if we let � � R � F be the
linear map de�ned by �p�� � � � � pn� �with respect to the given basis� where
pj � ����j pf��j�� j � �� � � � � n� are the submaximal Pfa�ans of �� then
we obtain the complex

F���� � 
 �� R
�
�� F

�
�� F�

��

�� R �� 
�

Theorem ��	�� �Buchsbaum�Eisenbud�� Let �R� m � be a Noetherian local

ring�

�a� Suppose n 	 � is an integer� F a free R�module of rank n� and � � F �
F� an alternating map of rank n�� whose image is contained in m F�� Then
n is odd� Moreover� if Pf��� denotes the ideal generated by the submaximal

Pfa�ans of �� then gradePf��� � �� If grade Pf��� � �� then F���� is
acyclic and Pf��� is a Gorenstein ideal�

�b� Conversely� let I be a Gorenstein ideal of grade �� Then there exist a

free module F of odd rank and an alternating homomorphism � � F � F�

such that F���� is a minimal free R�resolution of R�I � In particular� any

Gorenstein ideal of grade � is minimally generated by an odd number of

Pfa�ans�

Part �a� of the theorem is a consequence of the Buchsbaum�Eisenbud
acyclicity criterion ������ and the following simple observation relating
the ideal of �n� ���minors of � to the ideal of submaximal Pfa�ans�

Lemma ��	��� Let �R� m � be a Noetherian ring� F a free R�module of rank
n� and � � F � F� an alternating map of rank n � �� Then RadPf��� �
Rad In������ and n is odd�

Proof� For all i� j � �� � � � � n� we denote by �ij the matrix which is
obtained from � by deleting the i�th row and j�th column� Then
In����� is generated by the elements det��ij�� and since pf��i�

� � det��ii�
it follows right away that a power of Pf��� is contained in In������

Conversely� we consider the matrix of
Vn��� with entries det��ij��
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i� j � �� � � � � n� It follows from Exercise ������ that rank
Vn��� � �

since� by assumption� rank� � n � �� Now ������ implies that all ��

minors of
Vn��� are zero� Therefore� since � is skew�symmetric� we

have � det��ij�
� � det��ij� det��ji� � det��ii� det��jj� � pf��i�

� pf��j�
� for

all i� j � �� � � � � n� This implies that a power of In����� is contained in
Pf����

Finally� since In����� �� 
� we conclude that Pf��� �� 
� This is only
possible if n is odd�

For the proof of part �b� of ����� a little excursion to resolutions with
algebra structures is needed� Let R be a commutative ring� and let

P� � � � � �� P�
d
�� P�

d
�� P� � R �� 


be an acyclic complex of projective modules� We may consider P� as a
graded module equipped with an endomorphism d � P� � P� of degree
�� satisfying d � d � 
� The question is whether there can be de�ned an
associative multiplication on P� satisfying the following rules�

�a� PpPq � Pp�q for all p� q 	 
�

�b� � � P� acts as the unit element� i�e� �a � a� � a for all a � P��

�c� ab � �����dega��degb�ba for all homogeneous elements a� b � P
�
�

�d� aa � 
 for all homogeneous elements a � P� of odd degree�

�e� d�ab� � �da�b� ����deg aa�db� for all homogeneous elements a� b � P��

An example of a complex admitting such a multiplication is the
Koszul complex� Unfortunately not all �nite projective resolutions can
be given an algebra structure with these properties� Avramov ���� found
obstructions for this� and gave explicit examples of �nite projective res�
olutions which fail to have such a structure� Nevertheless� if we do not
insist on the associativity of the multiplication� we surprisingly have

Theorem ��	�� �Buchsbaum�Eisenbud�� Any projective resolution P� with

P� � R admits a �possibly non�associative� multiplication satisfying the

conditions �a���e��

Proof� We form the tensor product P
�
� P

�
of complexes� and de�ne the

second symmetric power S��P�� of P� to be

S��P�� � �P� � P���U

where U is the graded submodule of P� � P� which is generated by the
elements a� b� �����dega��degb�b� a with homogeneous a� b � P�� and the
elements a�a with homogeneous a � P� of odd degree� Let d again denote
the di erential of P� � P�� then d�U� � U� This implies that d induces
a di erential on S��P��� so that S��P�� inherits a complex structure� We




��� Gorenstein ideals of grade 
� Poincar�e duality ���

claim �and this is crucial for the proof� that the homogeneous components
S��P�

�k of this complex are all projective modules� Indeed� we have

S��P�
�k �� �

M
i�j�k
i�j

Pi � Pj�� Tk

where

Tk
��

���

 if k is odd�V� Pk�� if k is of the form �n� ��
S��Pk��� if k is of the form �n�

Thus S��P�
� is a complex of projective R�modules which coincides with

P� in degrees 
 and �� Therefore there exists a complex homomorphism
� � S��P�� � P� extending the identity in degrees 
 and �� and we may
assume that � is chosen such that its restriction to R � Pk is just the
natural homomorphism to Pk�

For all homogeneous elements a� b � P� we denote by ab the image

of a � b under the composition of the maps P� � P� �� S��P��
�
�� P��

and extend this multiplication by linearity to all other elements of P�� It
is clear that it has all the desired properties�

Suppose now we are given a Noetherian local ring R and a Gorenstein
ideal I � R of grade g� Let

F
�
� 
 �� Fg �� � � � �� F� �� F� �� 


be the minimal free resolution of R�I � The dual complex F�
�
is a minimal

free resolution of ExtgR�R�I� R�
�� R�I � and hence must be isomorphic

to F�� Such an isomorphism is unique up to homotopy� and we are
now choosing one which is derived from the multiplicative structure
on F� as given by ������ Observe that the multiplication de�nes maps
Fi � Fg�i � Fg �� R which in turn induce R�module homomorphisms
si � Fi � F�g�i�

For i � 
� � � � � g we let

ti �

�
si if i � 
� � mod ��
�si if i � �� � mod ��

Proposition ��	�	� t� � F� � F�
�
is an isomorphism of complexes� In particu�

lar� si � Fi � F�g�i is an isomorphism for i � 
� � � � � g�

Proof� We denote by d the di erential of F�� Let a � Fi and b � Fg���i�
Then ab � 
� and therefore 
 � d�ab� � d�a�b � ����iad�b�� or d�a�b �
����i��ad�b�� It follows that

si���d�a���b� � d�a�b � ����i��ad�b� � ����i��si�a��d�b��

� ����i��d��si�a���b��
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Thus si�� � d � ����i��d� � si which implies that t
�
is a homomorphism

of complexes� The induced homomorphism H��t�� � R�I � R�I must be
an isomorphism since t� � s� is an isomorphism� Since t

�
extends H��t��

it must be an isomorphism as well�

We are now ready to prove ������b�� let

F
�
� 
 �� F�

�
�� F�

�
�� F�

�
�� R �� 


be the minimal free resolution of R�I equipped with a multiplication
as in ������ Let e�� � � � � en be a basis of F�� Then� as we have just seen�
s��e��� � � � � s��en� is a basis of F�� � and we may choose basis elements
f�� � � � � fn of F� such that f�i � s��ei� for i � �� � � � � n� Then eifj � 
ijg
for all i� j � �� � � � � n where g is a basis element of F� and 
ij denotes
the Kronecker symbol� Let ��ei� �

Pn
j��aijfj� we claim that �aij� is

skew�symmetric� and all its diagonal elements are 
� To see this� notice
that ej��ei� � aijg� Therefore�

aij��g� � ��ej��ei�� � ��ej���ei��

The claim follows since � is injective� and since ��ei���ej� � ���ej���ei�
and ��ei���ei� � 
 according to the multiplication rules�

Now let ��g� �
Pn

i�� aiei� since F�

�� F�
�
� � is isomorphic to the

transpose of �� and we conclude that I � �a�� � � � � an�� On the other
hand� rank� � n � � and grade Pf��� � grade In������ by ������ Now
grade In����� 	 � since F

�
becomes split exact after localizations at prime

ideals of height � �� Thus part �a� of Theorem ����� implies that F
�
���

is acyclic� In particular it follows that Ker� is generated by
Pn

i�� piei
where� up to signs� the pi are the submaximal Pfa�ans of �� Thus we
have Pf��� � I � as desired�

Poincar�e duality� Buchsbaum and Eisenbud ���� remark that the mul�
tiplication de�ned on F� induces a multiplication on Tor��k� R�I� giving
it the structure of an associative graded alternating algebra� They fur�
ther point out that in view of ������ Tor

�
�k� R�I� is a Poincar�e algebra

if I is a Gorenstein ideal� Recall that an associative graded alternating
algebra A �

Lg
i��Ai is a Poincar�e algebra if for all i � 
� � � � � g the A��

homomorphisms Ai � HomA� �Ag�i� Ag�� a �� �a with �a�b� � ab� are
isomorphisms�

Notice that if R is regular� then there is a natural isomorphismbetween
Tor��k� R�I� and the Koszul homology H��R�I� � H��x� R�I� where x is a
minimal set of generators of the maximal ideal of R� see ����� It can be
shown that this is an isomorphism of algebras� In particular� the Koszul
homology H��R� of a Gorenstein ring is a Poincar�e algebra� This is one
direction of the theorem of Avramov and Golod ���� which asserts that a
Gorenstein ring is characterized by its Koszul homology� Their theorem
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complements the result ������ of Tate and Assmus according to which
the Koszul algebra of a complete intersection is an exterior algebra� We
will present their proof which is independent of the above considerations�

Theorem ��	�� �Avramov�Golod�� Let �R� m � k� be a Noetherian local ring�
and let n � embdimR� depthR� The following conditions are equivalent	

�a� R is a Gorenstein ring�

�b� H
�
�R� is a Poincar�e algebra�

�c� the k�linear map Hn���R�� Homk�H��R�� Hn�R�� induced by the mult�

iplication on H
�
�R� is a monomorphism�

We begin with a few preliminary remarks� Suppose t � depthR � 
�
By ����� �choose M � R and N � m �� there exists an R�regular element
y� � m n m �� Hence by induction on t we may construct an R�sequence y �
y�� � � � � yt such that y is part of a minimal system of generators of m � By
������� one has H��R� �� H��R�yR� as graded k�vector spaces� Inspecting
this isomorphism we see that it is actually a k�algebra isomorphism� On
the other hand� R is Gorenstein if and only if R�yR is too� Thus we may
assume that depthR � 
�

Let x � x�� � � � � xn be a minimal system of generators of m � and
K� � K��x� the Koszul complex of this sequence� then� by de�nition�
H��R� � H��K��� Note that K� is a Poincar�e algebra� let e�� � � � � en be an R�
basis of K�� then� in the terminology of Section ���� the eI � I � f�� � � � � ng�
jIj � i� form an R�basis of Ki � and we have eI �eJ � ��I� J�e��� � ��en for
J � f�� � � � � ng� jJj � n� i� Here ��I� J� � �� if I � J � �� and 
 otherwise�
This clearly proves that the maps �i � Ki � HomR�Kn�i� Kn�� �i�a� � �a

with �a�b� � a � b� are isomorphisms as asserted�
We denote by d� the di erential of K�� Then d� and its dual anticom�

mute with ��� In other words� we have

�i�� � di � ����i��Hom�dn�i��� Kn� ��i

for all i � 
� � � � � n� This equation is stated in �����
� the only di erence
being that there Kn is identi�ed with R� It follows that the isomorphisms
�i induce isomorphisms e�i � Hi�R�� Hn�i�R� where we identify Hn�i�R�
with Hn�i��K����� and where �K��� � HomR�K�� Kn��

Consider the diagram

Hi�R�
�i

����� Homk�Hn�i�R�� Hn�R��

$	i

��y ��y�i
Hn�i�R�

�i
����� HomR�Hn�i�R�� Kn�

Here the upper map �i is induced by the multiplication on H��R�� We
have just seen that e�i is an isomorphism� The lower map �i is the natural
homomorphism which assigns to a homology class ��� � an �n� i��cycle in
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�K
�
��� the �well de�ned� homomorphism �i���� � HomR�Hn�i�R�� Kn� with

�i������a� � ��a�� a � Kn�i a cycle� Next note that Hn�R� � SocKn � Kn�
We de�ne �i to be Hom�Hn�i�R�� 	� where 	 � SocKn � Kn is the natural
inclusion� It is clear that �i is an isomorphism� In fact� since Hn�i�R� is
annihilated by m � any homomorphism Hn�i�R� � Kn necessarily maps
Hn�i�R� into SocKn�

We leave it to the reader to check the commutativity of the diagram�
In conclusion we have that �i is a mono�� epi�� or isomorphism if and
only if �i is too� We will determine the kernel and cokernel of �i�

Lemma ��	��� Let B
�
denote the boundaries of K

�
� Then for any i we have

a long exact sequence


 �� Ext�R�Ki���Bi��� Kn� �� H i�R�
�n�i

��� HomR�Hi�R�� Kn�

�� Ext�R�Bi��� Kn� �� � � �

Proof� The short exact sequence 
 � Hi�R� � Ki�Bi � Bi�� � 
 gives
rise to the long exact sequence


 �� HomR�Bi��� Kn� �� HomR�Ki�Bi� Kn�
�i
�� HomR�Hi�R�� Kn�

�� Ext�R�Bi��� Kn� �� � � �

It is immediate to see that Im �n�i � Im �i� so that the sequence

H i�R�
�n�i

��� HomR�Hi�R�� Kn� �� Ext�R�Bi��� Kn� �� � � �

is exact�
The module U of i�cycles of �K��� whose homology classes belong to

Ker �n�i is the module of homomorphisms � � �Ki�
� for which �jZi

� 

�Zi cycles in Ki�� Therefore U is isomorphic to HomR�Bi��� Kn�� Under
this identi�cation Ker �n�i equals U�V where V is the module of homo�
morphisms � � Bi�� � Kn which can be extended to Ki��� This means
that Ker �n�i �� Ext�R�Ki���Bi��� Kn��

In order to complete the proof of ����� we need the following

Lemma ��	��� Let �R� m � k� be a Noetherian local ring of depth 
� If

Ext�R�k� R� � 
� then R is Gorenstein�

Proof� The hypothesis implies that the functor HomR� � R� is exact on
the category of R�modules of �nite length� This yields ��HomR�M�R��
� ��M� ��HomR�k� R�� for any R�module of �nite length M�

Now assume dimR � 
� Then ��R�m n�� and so ��HomR�R�m n� R���
tends to in�nity with n� On the other hand� HomR�R�m n� R� �� 
 � m n�
Since 
 � m � 
 � m � � � � � is an ascending chain of ideals� and since R
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is Noetherian� this chain stabilizes� Consequently� ��HomR�R�m n� R�� is
bounded� a contradiction�

Thus R is a zero dimensional ring for which HomR� � R� is an exact
functor� Hence R is an injective R�module� and so R is Gorenstein by
de�nition�

End of the proof of ������ We have already accomplished the reduction
to the case depthR � 
�

�a�  �b�� Since R is Gorenstein and Kn
�� R� all Ext groups in the

exact sequence ����� vanish� and so �i is an isomorphism for all i�
�b� �c� is trivial�
�c� �a�� By assumption �n�� is injective� and this implies that �n��

is injective� Thus it follows from ����� that Ext�R�K��B�� R� � 
� Now
����	 completes the proof since K��B� � k�

Corollary ��	��� Let R be a Gorenstein local ring which is not a complete

intersection� Then H��R�
n�� � 
 for n � embdimR � dimR�

Proof� Suppose the vector subspaceH��R�n�� ofHn���R� is not zero� Then
H��R�n �� 
 since �� � H��R�� Homk�Hn���R�� Hn�R�� is an isomorphism�
This contradicts �������

Exercises

������ Let k be a 	eld and I � kX� � X� � X��� the ideal generated by the polynomials
X�

� �X
�
� � X

�
� �X

�
� � X�X� � X�X� � X�X� � By ������ it is a Gorenstein ideal of grade ��

Compute its free resolution �as a kX� � X� � X����module��

������� Let �R� m � k� be a Cohen�Macaulay local ring with canonical module
�R� and x a minimal set of generators of m � We denote by H��M� the Koszul
homology of an R�module M with respect to x� Recall that H��M� is an H��R��
module� Let n � embdimR � dimR� Show that for all i� � � i � n� the
k�linear map Hi�R� � Homk�Hn�i ��R�� Hn��R�� which is induced by the scalar
multiplication of H��R� on H���R � is an isomorphism�

��� Local cohomology� The local duality theorem

The canonical module was introduced by Grothendieck in connection
with the local duality theorem which relates local cohomology with certain
Ext functors� We will describe this approach to the canonical module
in this section� First local cohomology functors will be introduced� and
it will be shown that the depth and the dimension of a module can be
expressed in terms of their vanishing and non�vanishing� We end with
the local duality theorem�

Let �R� m � k� be a Noetherian local ring and M an R�module� Denote
by �m �M� the submodule of M consisting of all elements of M with
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support in fm g� That is�

�m �M� � fx �M � m kx � 
 for some k 	 
g�

LetF � �Ik�k	� be a family of ideals of R such that Ij � Ik for all j � k�
Then F de�nes a topology on R� see ��	
�� Section �� F gives the
m �adic topology on R if and only if for each Ik there is a j � N such
that m j � Ik� and for each m i there is an l � N such that Il � m i�

It is clear that for any such family one has

�m �M� � fx �M � Ikx � 
 for some k 	 
g�

Let x � x�� � � � � xn be a sequence of elements in R generating an m �primary
ideal� We set

xk � xk�� � � � � x
k
n for all k 	 
�

The family �xk� gives the m �adic topology on R� and so

�m �M� � fy �M � �xk�y � 
 for some k 	 
g�

Noting that HomR�R�I�M� � fx � M � Ix � 
g for any ideal I of R� we
obtain natural isomorphisms

�m �M� �� lim
��

HomR�R�m k �M� �� lim
��

HomR�R��x
k��M��

Proposition ������ �m � � is a left exact additive functor�

Proof� The additivity of �m � � is trivial� We show that �m � � is left exact�
If


 ��M�


��M�

�
��M�

is exact� then we have a sequence 
 �� �m �M��

�

�� �m �M��
� �

�� �m �M���
where �� � �m ��� � �j�m �M�� and �� � �m ��� � �j�m �M���

It is obvious that �� is injective� Let x � Ker ��� then ��x� � 
� and
so there exists y �M� such that x � ��y�� Since x � �m �M��� there exists
an integer k 	 
 such that m kx � 
� It follows that m k��y� � ��m ky� � 
�
But � is injective� and so y � �m �M�� and ���y� � x�

De�nition ������ The local cohomology functors� denoted by H i
m � �� are

the right derived functors of �m � �� In other words� if I� is an injective
resolution of the R�module M� then H i

m �M� �� H i��m �I
��� for all i 	 
�

Remarks ������ �a� Let M be an R�module� then H�
m �M� �� �m �M� and

H i
m �M� � 
 for i � 
�

�b� If I is an injective R�module� then H i
m �I� � 
 for all i � 
�

�c� For any R�module M and all i 	 
 one has

H i
m �M� �� lim

��
ExtiR�R�m k�M� �� lim

��
ExtiR�R��x

k��M��
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where x is a sequence in R generating an m �primary ideal�
�d� A short exact sequence of R�modules


 ��M� ��M� ��M� �� 


gives rise to a long exact sequence


 �� �m �M�� �� �m �M�� �� �m �M�� �� H�
m �M�� �� � � �

�� H i��
m �M�� �� H i

m �M�� �� H i
m �M�� �� � � �

Only �c� needs some explanation� lim
��

is an exact functor� see ������

Theorem ����� Therefore if I� is an injective resolution of M� then

H i
m �M� �� H i�lim

��
HomR�R�m k � I��� �� lim

��
H i�HomR�R�m k � I���

�� lim
��

ExtiR�R�m k�M��

Note that

�m �E�R�p �� �

�
E�k� if p � m �

 otherwise�

see ����	 and part ��� of the proof of ������� Using the structure of the
minimal injective resolution E��M� of M given in ����� we conclude that
�m �E

��M�� is a complex of the form


 �� E�k����m �M� �� E�k����m �M� �� � � � �� E�k��i�m �M� �� � � �

This entails

Proposition ����	� Let �R� m � k� be a Noetherian local ring and M a �nite

R�module�
�a� The modules H i

m �M� are Artinian�
�b� One has H i

m �M� � 
 if and only if i � depthM�

�c� If R is Gorenstein� then

H i
m �R� ��

n
E�k� for i � dimR�

 otherwise�

�d� Let �N denote the m �adic completion of an R�module N� Then

H i
m �M� �� H i

m �M��R
�R �� H i

	m � �M� for all i 	 
�

Proof� �a�� �b� and �c� follow from the structure of �m �E
��M�� and the

fact that depthM � inffi � �i�m �M� �� 
g�
�d� As H i

m �M� is Artinian� it is the direct limit of submodules Uj of

�nite length� For each Uj one has Uj �R
�R �� Uj � and so

H i
m �M� �� lim

��
�Uj �R

�R� �� �lim
��

Uj��R
�R �� H i

m �M��R
�R�

Using the R��atness of �R� we get

H i
m �M��R

�R �� lim
��

ExtiR�R�m j �M� �R
�R �� lim

��
Exti	R�

�R� �m
j � �M�

�� H i
	m � �M��
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Local cohomology and the Koszul complex� Our next goal is to construct
a more explicit complex whose cohomology gives us H�

m �M�� Let x �
x�� � � � � xn be a system of parameters of R� For all l 	 
 we get a
commutative diagram

K��xl���
��l�

�

����� K��xl���y ��y
K��xl��� K��xl�

with ��l�
� �ei� � xiei for i � �� � � � � n� �In both Koszul complexes we denote

the natural basis of K�
�� Rn by e�� � � � � en��

Let �
�l�
i �

Vi �
�l�
� � then ��l�

�
� K��xl��� �� K��xl� is a complex homo�

morphism� see ������ We denote by

��

l � K
��xl� �� K��xl���

the dual complex homomorphism� This can be done for each l� and so
we obtain a direct system of complexes� Thus we may form the complex

lim
��

K��xl��

On the other hand� one de�nes a complex

C� � 
 �� C� �� C� �� � � � �� Cn �� 
�

Ct �
M

�
i��i������it
n

Rxi�xi� ���xit
�

where the di erentiation dt � Ct � Ct�� is given on the component

Rxi� ���xit
�� Rxj� ���xjt��

to be the homomorphism ����s�� �nat� Rxi� ���xit
� �Rxi� ���xit

�xjs if fi�� � � � � itg

� fj�� � � � � bjs� � � � � jt��g and 
 otherwise�

The complex C� is called the modi�ed �Cech complex� In the usual
%Cech complex� C� is replaced by 
 and the homological degree is shifted
by ��

Proposition ������ lim
��

K��xl� �� C��

Proof� For all l 	 
 we de�ne a complex homomorphism

��

l � K
��xl� �� C� by �t

l ��ej� � � � � � ejt�
�� �

�

�xj�xj� � � � xjt�
l
�

here �ej� � � � � � ejt�
� is an element of the basis of �

Vt Rn�� which is dual

to the standard basis of
Vt Rn� A straightforward calculation shows
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�i� ��

l is indeed a complex homomorphism�
�ii� ��

l � ��

l�� � �
�

l for all l 	 
� and therefore the family ���

l � induces a

complex homomorphism �� � lim
��

K��xl� �� C��

�iii� �� is an isomorphism�
Note that for �iii� one essentially has to verify that Rxi� ���xit

is the limit of

the direct system �Fi�i	� in which Fi � R for all i and the map Fi � Fi��

is just multiplication by xi� � � � xit �

The importance of these complexes results from

Theorem ������ Let M be an R�module� Then

H i
m �M� �� H i�M �R C�� �� lim

��
H i�xl �M� for all i 	 
�

Proof� The second isomorphism follows from the fact that lim
��

is an exact

functor� and hence commutes with cohomology� In order to prove the
�rst isomorphism� we show that the functors H i� � C�� are the right
derived functors of �m � ��

IdentifyingM � Rxi with Mxi we have

H��M �R C�� � Ker�M ��
nM

j��

Mxj ��

The kernel consists of all m � M for which there exist integers lj �

j � �� � � � � n� such that x
lj
j m � 
� and this set is obviously equal to �m �M��

Since C� is a complex of �at R�modules� the exact sequence of R�
modules


 ��M� ��M� ��M� �� 


yields the exact sequence


 ��M� �R C� ��M� �R C� ��M� �R C� �� 
�

from which we obtain the long exact sequence


 �� H��M� �R C�� �� H��M� �R C�� �� H��M� �R C��

�� H��M� �R C�� �� H��M� �R C�� �� � � �

It remains to show that H i�I �R C�� � 
 for i � 
 and any injective
R�module I � Of course we may assume that I is indecomposable�

Let I � E�k� and a � E�k�� Then for j � �� � � � � n there exist integers

lj � 
 such that x
lj
j a � 
� and so E�k� � C i � 
 for i � 
�

Next assume I � E�R�p �� p �� m � then there exists j � f�� � � � � ng
such that xj �� p � We claim that multiplication by xj on E�R�p � is an
isomorphism� It is certainly a monomorphism since AssE�R�p � � fp g �see
����	� and since xj �� p � The submodule xjE�R�p � of E�R�p � is an injective
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module since xjE�R�p � �� E�R�p �� and hence is a direct summand of
E�R�p �� But E�R�p � is indecomposable� and so xjE�R�p � � E�R�p �� We
can then de�ne a homotopy �� of the complex E�R�p ��R C��

�l � E�R�p ��R C l �� E�R�p ��R C l��

is de�ned on the component E�R�p �xi� ���xil �� E�R�p �xj� ���xjl��
to be

����s�� � nat� if fj�� � � � � jl��g � fi�� � � � � bis � � � � � ilg and is � j� and 
 oth�
erwise� It is easily veri�ed that �� is a contracting homotopy� that is� the
identity and the zero�map of the complex are homotopic via �� � This
implies that E�R�p ��R C� is exact�

Grothendieck�s theorems� We are now in the position to prove the follow�
ing important vanishing theorem�

Theorem ����� �Grothendieck�� Let �R� m � k� be a Noetherian local ring

and M a �nite R�module of depth t and dimension d � Then
�a� H i

m �M� � 
 for i � t and i � d �

�b� Ht
m �M� �� 
 and Hd

m �M� �� 
�

Proof� We �rst note the following rule which will be used several times
in the proof of �a� and �b��

Let � � �R� m � k� � �R�� m �� k�� be a local ring homomorphism such
that m R� is an m ��primary ideal� Then for any R��module M one has

H i
m �M� �� H i

m ��M� for all i 	 
����

Of course� on the left hand side of this formula M is considered as an
R�module�

In fact� if m � �x� with x � x�� � � � � xn and if x� � ��x��� � � � � ��xn��
then C� �R M �� C �� �R� M� where C� and C �� are the complexes of �����
de�ned with respect to x and x�� The isomorphism ��� follows from ������

�a� We only need to prove that H i
m �M� � 
 for i � d � The other part

of statement �a� has already been shown in ������
Let R � R� � R�AnnM be the canonical epimorphism� Then M is

an R��module with dimM � dimR�� Using ��� we may therefore assume
that dimR � dimM � d � Let x � x�� � � � � xd be a system of parameters of
R� and let C� be the complex ����� de�ned with respect to x� Then C i � 

for i � d � and so H i

m �M� �� H i�M �R C�� � 
 for i � d� see ������
�b� We proceed by induction on t in order to show that H t

m �M� �� 
�
If t � 
� then 
 �� SocM � H�

m �M�� Now suppose t � 
� then there exists
an M�regular element x � m � The exact sequence


 �� M
x
��M ��M�xM �� 


yields the exact sequence 
 � Ht��
m �M� �� Ht��

m �M�xM� �� Ht
m �M��

By our induction hypothesis we have Ht��
m �M�xM� �� 
� this implies

H t
m �M� �� 
�
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Finally we show that Hd
m �M� �� 
� Using ����� and the fact that

dim �M � dimM for the m �adic completion �M ofM� we may assume that
R is complete�

Let p � SuppM with dimM � dimR�p � Then dimM�p M � dimM
� d � and we get an exact sequence of R�modules


 �� U �� M ��M�p M �� 
�

inducing the exact sequence Hd
m �M� �� Hd

m �M�p M� �� Hd��
m �U�� Ac�

cording to �a� we have Hd��
m �U� � 
� and so� if Hd

m �M�p M� �� 
� then
Hd

m �M� �� 
� As M�p M is an R�p �module we may as well assume� by ����
that R is a domain and dimR � dimM�

Any complete Noetherian domain has a Noether normalization� there
exists a regular local subring �S� n � such that R is a �nite S�module� see
A���� In particular� the extension ideal n R is m �primary� Again using ���
we may replace R by S � and so may assume that R itself is regular� Let
K be the fraction �eld of R� and let � � M � K �R M be the canonical
homomorphism� We set U � Ker � and N � Im �� Then we obtain the
exact sequence


 �� U ��M �� N �� 
����

and� as a consequence of Exercise ������� an exact sequence


 �� N �� Rs ��W �� 
����

where s � rankM � rankN and consequently dimW � dimR � d �
As dimW � d � ��� yields the exact sequence

Hd
m �N� �� Hd

m �R
s� �� Hd

m �W � � 
�

We have Hd
m �R

s� �� Hd
m �R�

s �� E�k�s �see ������ and so Hd
m �N� �� 
� Finally�

from the exact sequence ��� it follows that Hd
m �M� �� 
�

The next theorem is known as the local duality theorem�

Theorem ����� �Grothendieck�� Let �R� m � k� be a Cohen�Macaulay com�

plete local ring of dimension d � Then for all �nite R�modules M and all

integers i there exist natural isomorphisms

H i
m �M� �� HomR�Ext

d�i
R �M��R�� E�k��� and

ExtiR�M��R� �� HomR�H
d�i

m �M�� E�k���

Proof� The �rst isomorphisms result from the second by Matlis duality
������� For the proof of the second isomorphisms note that both sides
vanish for i � 
� see ����	� For i 	 
 we set T i� � � HomR�H

d�i
m � �� E�k���

It is clear that T �� � is a contravariant left exact functor which maps



��� 
� The canonical module� Gorenstein rings

direct sums to direct products� Hence there exists an R�module C such
that

T �� � �� HomR� � C��

see ������ Theorem ����� It follows that C �� T ��R�� As Hd
m �R� is an

Artinianmodule� Matlis duality ������ implies that C is a �nite R�module�
In order to conclude the proof we will show that the functors T i� �

are the right derived functors of T �� �� and that C �� �R �
Remark ����� implies immediately that the functors T i� � are strongly

connected �see ������ p� ����� Thus the T i� � are the right derived functors
of T �� �� once we have shown that T i�F� � 
 for every free R�module F
and all i 	 ��

The functors T i� � map direct sums to direct products� and so it
su�ces to show that T i�R� � 
 for i 	 �� or equivalently that H i

m �R� � 

for i � d � This however follows from ����	 since R is Cohen�Macaulay�

Summing up we have

HomR�H
i

m �M�� E�k�� �� Extd�iR �M�C����

for all i and all R�modules M� Now ����	 yields

H i
m �k�

��

�
k for i � 
�

 for i � 
�

and therefore ExtiR�k� C�
��

�
k for i � d �

 for i �� d �

by ���� Thus it follows from the remark after ����� that C �� �R �

Grothendieck�s duality theorem has the following often applied vari�
ant�

Corollary ������ Let �R� m � k� be a Cohen�Macaulay local ring of dimension

d which is the homomorphic image of a Gorenstein local ring� Then R has

a canonical module� and for all �nite R�modules M and all integers i there
exist natural isomorphisms

H i
m �M� �� HomR�Ext

d�i
R �M��R�� E�k���

Proof� For the proof we apply ������ ������ and Exercise ������� Then

H i
m �M� �� H i

	m � �M� �� Hom 	R�Ext
d�i
	R
� �M�� 	R�� E�k��

�� HomR�Ext
d�i
R �M��R�� E�k���

Remark �����
� Let �R� m � k� be a complete local ring� The proof of
����� shows that the functor HomR�Hd

m � �� E�k�� is representable� even if
R is not a Cohen�Macaulay ring� In other words� there exist a unique
R�module KR �in the proof of ����� this module was denoted by C� and
a canonical isomorphism

HomR�H
d

m �M�� E�k�� �� HomR�M�KR �
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for all R�modules M�
Of course� KR

�� �R if R is Cohen�Macaulay� Even in the more
general situation when the ring is not Cohen�Macaulay� the module
KR is often called the canonical module of R� Its properties have been
investigated by Aoyama ��
�� Schenzel ���� has introduced the canonical
module KM of an R�module M�

The local duality theorem combined with ����	 allows us to generalize
�����
�d��

Corollary ������� Let �R� m � k� be a Cohen�Macaulay local ring of dimen�

sion n with canonical module �R � and M a �nite R�module of depth t and
dimension d � Then
�a� ExtiR�M��R� � 
 for i � n� d and i � n� t�

�b� ExtiR�M��R� �� 
 for i � n� d and i � n� t�

�c� dimExtiR�M��R� � n� i for all i 	 
�

Proof� We have ExtiR�M��R�b�� Exti	R�
�M�� 	R� for all i 	 
� since ��R�b��

� 	R �see ������� Under completion depth and dimension of a module are
preserved� We may therefore assume that R is complete� and so �a� and
�b� follow from ����	 and ������

To prove �c�� we choose p � SuppExtiR�M��R� such that

dimExtiR�M��R� � dimR�p � dimR � dimRp �

�The last equality holds since R is Cohen�Macaulay� see ������� By the
choice of p we have


 �� ExtiR�M��R�p
�� ExtiRp

�Mp � �Rp
��

and so �a� yields i � dimRp � n� dimExtiR�M��R��

Exercises

������� Let �R� m � be a Noetherian local ring� and M a 	nite R�module� Prove�
�a� If 
i���m � M� � � and 
i�m � M� �� �� then H i

m
�M� �� ��

�b� Suppose inj dimM � �� then 
i�m � M� �� � for all i � dimM�

������� Find a Noetherian local ring �R� m � of dimension d and depth t with
�a� H i

m
�R� �� � for i � t� � � � � d �

�b� H i
m
�R� � � for i �� t and i �� d �

������� Let �S� n � k� be a complete Cohen�Macaulay local ring� �R� m � k� a residue
class ring of S � and M a 	nite R�module� Show that

HomR�H
i

m
�M�� ER�k�� 
� HomS �H

i
n
�M�� ES �k���

and derive the following version of the local duality theorem� for all integers i
there exist natural isomorphisms

HomR�H
i

m
�M�� ER�k�� 
� Extd�iS �M��S �� d � dimS�

Hint� See the 	rst step in the proof of ������ and use ������
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������� Let �R� m � k� be a regular local ring of dimension d � �� Let E be a 	nite
R�module which is locally free on the punctured spectrum of R� That is� Ep is
free for all p � SpecR� p �� m � Show

�a� ��H i
m
�E�� � � for all i � d �

�b� the R�dual E� of E is again locally free on the punctured spectrum of R� and
H i

m
�E�� � � for i � �� ��

�c� H i��
m

�E�� 
� HomR�H
d�i

m
�E�� E�k�� for i � �� � � � � d � ��

��� The canonical module of a graded ring

For a graded ring R we de�ne the canonical module in the category of
graded R�modules and establish the graded version of the local duality
theorem� Under certain restrictive assumptions on R the degrees of the
generators in a minimal set of generators of the canonical module are
uniquely determined� and one de�nes the a�invariant of R to be the
smallest of these degrees� multiplied by ���

We adopt the assumptions and notation of Section ���� Thus R will be
a Noetherian graded ring� andM��R� the category of graded R�modules�
M��R� is an Abelian category which has direct sums and direct products�
see ������ Likewise limits and colimits exist in M��R�� As we have
already mentioned in Section ���� M��R� has enough projectives� Our
next concern will be to show thatM��R� has enough injectives as well�

�Injective modules� A graded R�module M is called �injective if it is an
injective object inM��R�� One sees easily that this is the case if and only
if the functor

�HomR� �M� �M��R� ��M��R�

is exact�
A �injective module M need not be injective �in the category M�R��

see ������� Just as in the category of all R�modules� one calls an extension
N � M of graded R�modules �essential if for any graded submodule

 �� U � M one has U � N �� 
� If� in addition� N �� M� the extension
is called a proper �essential extension� Similarly as in the non�graded case
�see ������ one shows

Proposition ������ A graded module is �injective if and only if it has no

proper �essential extension�

We now prove that any graded R�module has a �injective hull� In
analogy to the de�nition in the non�graded case� E is called a �injective

hull of M if it is �injective and a �essential extension of M�

Theorem ������ Any graded R�module M admits a �injective hull� and any

two �injective hulls of M are isomorphic�
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Proof� We embed M into a �not necessarily graded� injective R�module
I � According to ����� this is possible� Similarly as in the proof of ����� we
consider the set S � fN � M � N � I� M � N is �essentialg� We de�ne
a partial order � on S by setting N� � N� if N� is a graded submodule
of N�� Zorn�s lemma applied to this set yields a maximal �essential
extension M � E with E � I � Suppose E is not �injective� then E has a
proper �essential extension E � E� by ������ As I is injective� there exists
an R�module homomorphism � � E� � I �not necessarily homogeneous��
extending the inclusion E � I � We claim that � is injective� In fact�
assume that there is a non�zero element x � Ker�� say x � xr � � � �� xs�
with xi homogeneous of degree i� r � s� and xr �� 
� We show by induction
on s� r that there exists a homogeneous element a � R such that ax � E
and ax �� 
� Since �jE is injective� this gives a contradiction�

If s � r � 
� x is homogeneous� and the assertion follows since the
extension E � E� is �essential� Now suppose that s� r � 
� We choose a
homogeneous element a � R such that axr � E n f
g� Let

x� � x� xr � xr��� � � � � xs�

If ax� � 
� then ax � axr � E n f
g and we are done� Otherwise ax� �� 
�
and by our induction hypothesis we may choose a homogeneous element
b � R such that bax� � E and bax� �� 
� Then bax � bax�� baxr � E� and
bax �� 
�

Next let eE � Im�� As � is injective we may give eE a natural graded

structure �eEi � ��Ei� for all i � Z�� Then E � eE is a proper �essential

extension with eE � I � contradicting the maximality of E�

The uniqueness of the �injective hull is proved as in the non�graded
case�

We denote the �injective hull of a graded R�module M by �E�M� or
�ER�M� �

The preceding theorem implies in particular that any graded R�module
N has a �injective resolution� That is� there exists a complex

I� � 
 �� I� �� I� �� I� �� � � �

with �injective modules I i such that H��I�� �� N and H i�I�� � 
 for i � 
�
Given such a �injective resolution I� of N we have

�Ext
i
R�M�N� �� H i��HomR�M� I���

for all i 	 
 and all graded R�modules M�

We omit the proofs of the following two results which have their
analogues in ������ ����	� ������ and ����� and which can be proved along
the same lines as in the corresponding local case�
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Theorem ������ Let R be a Noetherian graded ring� Then

�a� Ass �E�M� � AssM for all M � M��R��
�b� E �M��R� is a �indecomposable �injective module if and only if

E �� �E�R�p ��n�

for some graded prime ideal p � R and some integer n � Z�
�c� every �injective module can be decomposed into a direct sum of �inde�

composable �injective modules� and this decomposition is unique up to homo�

geneous isomorphism�

Proposition ����	� Let R be a Noetherian graded ring� and M a graded

R�module� Consider the minimal �injective resolution


 ��M �� �E��M�
d�

�� �E��M�
d�

�� � � �

of M �which is obtained recursively by setting �Ei�M� � �E�Im d i����� Then�
for every graded prime ideal p of R and for every integer i 	 
� the
Bass number �i�p �M� equals the number of graded R�modules of the form
�E�R�p ��n�� n � Z� that appear in �Ei�M� as direct summands�

For anyM �M��R� we denote by �inj dimM the �injective dimension�

Theorem ������ Let R be a Noetherian graded ring and M �M��R�� Then
�a� inj dimM � �inj dimM � ��
�b� if M is �injective� then inj dimM � � if and only if p ��AssM for

some non�graded prime ideal p of R�

For the proof of ����� we will use

Proposition ������ Let M � M��R� and p a non�graded prime ideal in R�
Then ���p �M� � 
� and �i���p �M� � �i�p ��M� for every integer i 	 
�

The proof of this proposition is already given in ����� where we
actually prove more than is stated in that theorem itself�

Proof of ������ �a� We may assume that �inj dimM � t � �� Let
p � SpecR� we want to prove that �i�p �M� � 
 for i 	 t � �� This is
certainly true when p is a graded prime ideal� see ������ Now suppose
that p is not a graded prime ideal� Then �i���p �M� � �i�p ��M� by �����
and �i�p ��M� � 
 for i 	 t� �� hence the assertion follows�

�b� inj dimM � � happens if and only if ���p �M� �� 
 for some non�
graded prime ideal p of R� But ���p �M� � ���p ��M�� and so ���p �M� �� 

if and only if p ��AssM�

Corollary ������ Let R be a Noetherian graded ring and m a graded maximal

ideal of R� Then
�E�R�m � �� E�R�m ��

Proof� By ����� we have Ass �E�R�m � � fm g� and so ����� implies that
�E�R�m � is injective as an object inM�R�� Since ���m � �E�R�m �� � � �see
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������� we conclude that �E�R�m � is indecomposable inM�R�� and hence
by ����� it must be isomorphic to E�R�m ��

The �canonical module of a graded ring� Recall from ��� that a graded
ring is a �local ring if it has a unique �maximal ideal� that is� a graded
ideal m which is not properly contained in any graded ideal �� R�

De�nition ������ Let �R� m � be a Cohen�Macaulay �local ring of �dimen�
sion d � A �nite graded R�module C is a �canonical module of R if there
exist homogeneous isomorphisms

�ExtiR�R�m � C� ��

�

 for i �� d �
R�m for i � d �

For a �nite graded R�module M it may happen that there exists
a homogeneous isomorphism M �� M�i� with i �� 
� To avoid this
phenomenon� one has to require that R has no homogeneous units of
positive degree� For a �local ring �R� m � this is the case if and only if m

is maximal �in the usual sense�� see �������

Proposition ������ Let �R� m � be a Cohen�Macaulay �local ring� and C be

a �canonical module of R� Then
�a� C is a canonical module of R�
�b� C is uniquely determined up to homogeneous isomorphism� provided m

is maximal�

Proof� �a� We need to show that Cp is a canonical module of Rp for all
p � SpecR� First� let p � SpecR be a graded prime ideal� then p � m �
The de�nition of the �canonical module implies that Cm is a canonical
module of Rm � and so Cp is a canonical module of Rp � see ������ Now let
p � SpecR be a non�graded prime ideal� Then �i���p � C� � �i�p �� C�� by
������ and the assertion follows again�

�b� Let C � be another �canonical module� Remark �����	 implies that
�HomR�C�C �� is a projective module of rank �� and hence� as a graded
module� is free �see �������� Therefore� �HomR�C�C �� �� R�i� for some
i � Z� This implies �HomR�C�C ���i�� �� R� Let � � �HomR�C�C ���i��
be an element corresponding to � under this identi�cation� Then� since
�HomR�C�C ���i�� � HomR�C�C �� by Exercise ������f�� it follows from
�a� and ������c� that � is locally an isomorphism� But then � is a
homogeneous isomorphism� and we have

R�m �� �Ext
d
R�R�m � C� �� �Ext

d
R�R�m � C ���i��

�� �Ext
d
R�R�m � C ����i� �� �R�m ���i��

Therefore i � 
� and C �� C ��

Example �����
� Let R � k�X�� � � � � Xn� be a polynomial ring over a �eld�
and assign to the indeterminates the degree degXi � ai � 
 for i � �� � � � � n�
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The �maximal ideal of R is m � �X�� � � � � Xn�� and the Koszul complex of
X�� � � � � Xn yields a homogeneous free resolution of R�m whose last term

is R��
Pn

i��ai�� From this one concludes that �Exti�R�m � R� � 
 for i �� n�
and �Extn�R�m � R� � �R�m ��

Pn
i��ai�� In other words� the �canonical

module of R is R��
Pn

i��ai��

Proposition ������� Let �R� m � be a Cohen�Macaulay �local ring with
�canonical module �R � The following conditions are equivalent	

�a� R is a Gorenstein ring�

�b� �R
�� R�a� for some integer a � Z�

Proof� R is Gorenstein if and only if �R is locally free� By �������d� this
is the case if and only if �R

�� R�a� for some a � Z�

The number a occurring in ������ is a numerical invariant of the
Gorenstein �local ring �R� m �� provided m is maximal� In the case of a
positively graded algebra over a �eld it will be given a special name� see
�������

Let �R� m � be a Cohen�Macaulay �local ring with �canonical module
�R � The �canonical module is a graded module� and by ������� every
minimal system of homogeneous generators of �R has exactly ����R�m �
elements� In analogy to the local case we de�ne this number to be the
type of R� and denote it by r�R��

In view of ������ it is clear that R is Gorenstein if and only if r�R� � ��
For the sake of completeness we list a few change of rings properties

of the �canonical module� While part �a� of the next proposition follows
easily from the results proved so far� it is best to use the change of rings
spectral sequence

�Ext
p
S �k�

�ExtqR�S� �R�� �
p

�Ext
n
R�k� �R�

for �b� �see ������ ������� the reduction we used for the corresponding
local result ����	 is only possible if homogeneous systems of parameters
are available�

Proposition ������� Let �R� m � be a Cohen�Macaulay �local ring with
�canonical module �R �

�a� If p is a graded prime ideal of R� then �R�p �
�� ��R��p � up to a shift�

�b� Let � � �R� m � � �S� n � be a ring homomorphism of Cohen�Macaulay
�local rings satisfying

�i� ��Ri� � Si for all i � Z�
�ii� ��m � � n �

�iii� S is a �nite graded R�module�
Then �S

�� �ExttR�S� �R�� where t � �dimR � �dim S �

Example �����
 and ������ imply that any Cohen�Macaulay positively
graded algebra over a �eld admits a �canonical module� Following Goto
and Watanabe ����� we de�ne�
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De�nition ������� Let k be a �eld� and R a Cohen�Macaulay positively
graded k�algebra� Then

a�R� � �minfi � ��R�i �� 
g

is called the a�invariant of R�

As a consequence of ������ we have

Corollary �����	� Let R be a Cohen�Macaulay �local ring with �canon�

ical module �R � and let x � x�� � � � � xn be an R�sequence of homogeneous

elements with deg xi � ai for i � �� � � � � n� Then

�R�xR
�� ��R�x�R��

nX
i��

ai��

In particular� if k be a �eld� and R a Cohen�Macaulay positively graded

k�algebra� then a�R�xR� � a�R� �
Pn

i�� ai�

Proof� The Koszul complex K��x�R� is a graded free R�resolution of
R�xR� and Kn�x�R� �� R��

Pn
i�� ai�� From ������ we obtain

�R�xR
�� �Ext

n
R�R�xR��R� �� Hn�x� �R� �� ��R�x�R��

nX
i��

ai��

Examples ������� �a� A graded polynomial ring R � k�X�� � � � � Xn� over a
�eld k with degXi � ai � 
 has the a�invariant a�R� � �

Pn
i�� deg ai�

�b� Let k be a �eld� and R � S a homomorphism of Cohen�Macaulay
positively graded rings with �maximal ideals m and n � respectively� Sup�
pose the homomorphism satis�es the conditions of �������b�� and suppose
further that S has a �nite free homogeneous R�resolution


 �� Ft �� Ft�� �� � � � �� F� �� S �� 
�

where t � dimR � dimS � Write Ft �
L

i�Z R��ai�� then a�S� � a�R� �
maxfai � i � Zg� This is proved exactly as in the special case �������

Local Duality� Our �nal objective is to derive the graded version of the
local duality theorem� We begin with Matlis duality�

Let �R� m � be a Noetherian �local ring� then R� is local with maximal
ideal m �� We consider R� as a graded ring by de�ning �R��i � 
 for
i �� 
� Similarly any R��module may be considered a graded R��module
concentrated in degree 
� Moreover� if M is a graded R�module� it may
be viewed as a graded R��module as well� Thus we can de�ne

M� � �HomR� �M�ER� �R��m ����

A priori� M� is a graded R��module whose grading is given by

�M��i � HomR� �M�i� ER� �R��m ���
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for all i � Z� But it is obvious that M� has a natural structure as a
graded R�module�

The Noetherian �local ring �R� m � is said to be �complete if �R�� m �� is
complete� If �R� m � is �complete and M is a �nite graded R�module� then
all homogeneous components Mi of M are complete R��modules �since
they are �nite R��modules��

Proposition ������� Let �R� m � be a Noetherian �complete �local ring� Then

�a� the additive contravariant functor � �� � M��R� ��M��R� is exact�
�b� M� �� �HomR�M�R�� for all graded R�modules M�

�c� one has R� �� �ER�R�m ��

Proof� �a� is obvious�
�b� We de�ne � � �HomR�M� �HomR� �R� E���

�HomR� �M�E� by set�
ting �����x� � ��x���� for all � � �Hom�M� �HomR� �R� E�� and all x � M�
It is readily seen that � is an isomorphism�

�c� It follows from �a� and �b� that �HomR� � R�� is an exact functor�
and so R� is �injective� R� is �indecomposable since R�� �� R� Note
further that �R�m �� �� R�m � This is clear in the case where R�m �� k
is a �eld� and it is easy to see in the case R�m �� k�t� t���� since then
all homogeneous components of k�t� t��� are isomorphic to k� Therefore
the canonical epimorphism R � R�m yields a monomorphism R�m ��
�R�m �� �� R�� and the assertion follows from ������

M � M��R� is called �Artinian if every descending chain of graded
submodules terminates� The homogeneous socle of a graded R�moduleM
is de�ned to be �SocM � �HomR�R�m �M�� It is an R�m �module and
can be viewed as a graded submodule of M� As an R�m �module it is free
�see Exercise �����
�� and so �SocM ��

L
i�I �R�m ��ai�� If M is Artinian�

then �SocM can have only �nitely many summands �R�m ��ai�� Hence we
may write

�SocM ��

nM
i��

�R�m ��ai��

As in the proof of ������ we conclude that M is �Artinian if and only if
there exist an integer n 	 
 and integers a�� � � � � an such that

M �
nM
i��

R��ai���	�

Let A��R� denote the full subcategory of M��R� consisting of all
�Artinian R�modules and F��R� the full subcategory of all �nite graded
R�modules�

Theorem ������ �Matlis duality for graded modules�� Let �R� m � be a

Noetherian �complete �local ring� and let M � F��R� and N � A��R��
Then
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�a� M� � A��R� and N� � F��R��
�b� M�� ��M and N�� �� N�

�c� the functor � �� � F��R� �� A��R� establishes an anti�equivalence of

categories�

Proof� Using �	� one proves the theorem in the same way as ������� For
example� in order to show �b� we set E � ER��R��m ��� Then we have

�M���i � HomR� �HomR� �Mi� E�� E� ��Mi

by Matlis duality� see �������

Now let �R� m � be a Noetherian �local ring� ForM �M��R� we de�ne

�H i
m �M� � �lim

��
�Ext

i
R�R�m k�M��

it is called the i�th �local cohomology functor� �H�
m � � is left exact and the

functors �H i
m � �� i 	 
� are the right derived functors of �H�

m � ��

Remark ������� Assume in addition that the �maximal ideal m of R
is maximal� Since for all i and j� and all M � M��R�� we have
�ExtiR�R�m j �M� �� ExtiR�R�m j �M� �� ExtiRm

�Rm �m jRm �Mm �� we see that

in this case �H i
m �M� �� H i

Rm
�Mm ��

Theorem ������ �The local duality theorem for graded modules�� Let

�R� m � be a Cohen�Macaulay �complete �local ring of �dimension d � Then
�a� R has a �canonical module �R � and �R

�� ��Hd
m �R��

��

�b� for all �nite graded R�modules M and all integers i there exist natural
homogeneous isomorphisms

��H i
m �M��� �� �Ext

d�i
R �M��R��

The proof follows as in the non�graded case� see ������
Let R be a positively graded k�algebra� Then it follows from ������a�

that

a�R� � maxfi � �Hd
m �R�i �� 
g�

If in addition dimR � 
� then a�R� � maxfi � Ri �� 
g�

Exercises

������� Let R be a Noetherian graded ring�
�a� For p � SpecR show that Rp is Gorenstein if and only if Rp � is Gorenstein�
�b� Show the following conditions are equivalent�

�i� R is a Gorenstein ring�
�ii� Rp is a Gorenstein ring for all graded prime ideals p � SpecR�
�iii� R�p � is a Gorenstein ring for all graded prime ideals p � SpecR�
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�c� Let �R� m � be �local ring� Deduce that R is Gorenstein if and only if Rm is
Gorenstein�

������� The purpose of this exercise is to re�prove a few results of Goto and
Watanabe�

Let R be a graded ring� d a positive integer� The ring R�d� �
L

i�ZRid is
called the d�th Veronese subring of R� It is a graded subring of R with grading
�R�d��i � Rid for all i � Z� For j � �� � � � � d�� we consider the graded R�d��modules
Mj �

L
i�Z Rid�j with grading �Mj �i � Rid�j for all i � Z� We assume that R is

Noetherian� and for �d� and �e� that it is a positively graded algebra over a 	eld�
Show�
�a� R �

Ld��
j�� Mj �as R�d��module�� In particular� R�d� is a direct summand of R�

R�d� is Noetherian� and the Mj are 	nite R�d��modules� �Hint� Compare the proof
of �������
�b� R is Cohen�Macaulay if and only if all Mj are maximal Cohen�Macaulay
R�d��modules�
�c� If R is Cohen�Macaulay� then �R�d�


�
L

i�Z��R�id �
�d� If R is Gorenstein and a�R� � bd � j� � � j � d � �� then �R�d�


� Mj�b��

�e� If R is Gorenstein and a�R� � � mod d � then R�d� is Gorenstein� Is a�R� �
� mod d if R and R�d� are Gorenstein�

������� Let k be a 	eld� We consider R � kX� � � � � � Xn� as a graded k�algebra with
degXi � ai � � for i � �� � � � � n� Determine all Veronese subrings of R which are
Gorenstein�

������� Let R be a homogeneous k�algebra� k a 	eld� Express a�R�d�� in terms of
a�R� and d �

Notes

Grothendieck introduced the canonical module �often called dualizing
module� and proved the local duality theorem� A comprehensive presen�
tation of this theory including local cohomology is given in ������ Equally
fundamental is the famous paper of Bass ��	�� The interested reader can
�nd some more historical background there�

We were guided by the books of Kaplansky ����� and Matsumura
��	
� in Sections ��� and ���� In Sections ��� and ��� we follow partly
the lecture notes of Herzog and Kunz ����� Part of Section ��� has been
in�uenced by the notes of P� Roberts ������ In particular the description

of the modi�ed %Cech complex has been taken from this source� In Section
��� we follow to a large extent the papers ����� by Goto and Watanabe
and ��
� by Fossum and Foxby�

The main result �����	 of Section ��� is due to Bass ��	�� The charac�
terization �����
 of Gorenstein rings in terms of the type was �rst proved
by Bass ����� Bass ��	� gives a list of other equivalent conditions for the
Gorenstein property� In ����� Foxby proves the following conjecture of
Vasconcelos� which is a remarkable characterization of Gorenstein rings�
Suppose �R� m � k� is a Noetherian local ring of dimension d containing a



Notes ���

�eld� then R is a Gorenstein ring if �d�m � R� � �� �We will give a proof of
this result in ������ The main theorem of Matlis duality and the structure
theorem for injective modules are proved by Matlis in ����� and can also
be found in the more general framework of Abelian categories in Gabriel
������

Theorem �����
 which characterizes the canonical module is taken
from ����� However in the proof given here we do not use local
cohomology� Theorem ����� on the existence of the canonical module
is independently due to Foxby ����� and Reiten ��
	�� and ����� is a
theorem of Murthy ������ It says that every factorial Cohen�Macaulay
ring with a canonical module is Gorenstein� In ��	�� Ulrich proves a
certain converse of Murthy�s theorem� any Gorenstein ring which is
a factor ring of a regular local ring and which is locally a complete
intersection in codimension one can be realized as a specialization of a
Cohen�Macaulay factorial domain�

For a while it had been open whether or not there exist non�Cohen�
Macaulay factorial local rings� Such examples were found by Bertin ����
�see ����	� and also by Fossum and Gri�th ������ in characteristic p and
by Freitag and Kiehl ����� in characteristic 
�

There are two remarkable extensions of the theory of the canonical
module in its basic form as presented here� Sharp introduced Gorenstein
modules in ���	� as those �nite modules G whose Cousin complex pro�
vides a �minimal� injective resolution for G� A Gorenstein module shares
many properties with the canonical module� It is a Cohen�Macaulay
module of �nite injective dimension whose type and rank� however� may
be bigger than one� We refer the reader to the papers on Cousin com�
plexes and Gorenstein modules ������ ���	�� ������ and ����� by Sharp�
and the article ����� by Foxby� It is shown in ���� that for a Noetherian
local ring admitting a canonical module �R � any Gorenstein module is a
direct sum of copies of �R � However there exist Cohen�Macaulay local
rings not admitting a canonical module� A �rst example of a one dimen�
sional ring with this property was given by Ferrand and Raynaud ��
���
and an example of a factorial Cohen�Macaulay ring without a canonical
module is due to Ogoma ����� In ���� Weston gives an example of a
ring with a Gorenstein module of rank �� admitting no canonical module�

The second extension of the basic concept gives a duality theory even
for non�Cohen�Macaulay rings� In this theory the canonical module has
to be replaced by the so�called dualizing complex� and duality is obtained
in the derived category� We refer the reader to the book of Hartshorne
������ A more elementary account of the theory can be found in Sharp
���
��

As a consequence of the structure theorem ����� for Gorenstein ideals
of grade three� these ideals have an odd number of generators� This had
been observed before by J� Watanabe ������ He uses linkage arguments
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in his proof� Linkage had already been considered in ��� by Ap�ery
���� and by Gaeta ����� in ���� It has become popular as a result of
the paper of Peskine and Szpiro ����� Linkage provides a technique to
construct large and interesting classes of perfect ideals or of Gorenstein
ideals whose structure is well understood� Of particular interest are the
ideals in the linkage class of a complete intersection� called licci ideals�
The simplest examples are the so�called Northcott ideals ����� and the
Gorenstein ideals de�ned in ������ More important is the fact that perfect
ideals of grade two ���� and Gorenstein ideals of grade three ����� are
in the linkage class of a complete intersection� They are in a sense the
archetypes of licci ideals as shown by Huneke and Ulrich ���
�� For
further study of linkage theory we refer the reader to the papers of
Huneke ���
�� ������ Huneke and Ulrich ����� ������ ������ Kustin and
Miller ������ ������ ������ and Ulrich ��	��� ��	���

The height � monomial Gorenstein ideals have been completely clas�
si�ed by Bruns and Herzog �����

There have been attempts to obtain structure theorems for non�
Gorenstein ideals of grade � or even for ideals of grade higher than
�� The next case of interest is Gorenstein ideals of grade �� As a �rst
approach to the problem one may try to classify the Tor�algebras of these
ideals I � i�e� TorR�k� R�I� when I is an ideal in the local ring R with
residue class �eld k� For ideals I such that proj dimR�I � � this has been
done by Weyman ���� in characteristic 
 and by Avramov� Kustin� and
Miller ���� in all characteristics� The next case of interest is Gorenstein
ideals of grade �� At the moment a general structure theorem for these
ideals seems to be out of range� Kustin and Miller ����� succeeded in
classifying their Tor�algebras�

A remarkable result� valid for ideals of arbitrary grade� is due to Kunz
������ if I is a Gorenstein ideal� then ��I� �� grade I � ��

Duality theory is a classical and fundamental topic in algebraic ge�
ometry� and has also several algebraic aspects we have not even touched
upon� We must content ourselves with a list of keywords and references�
Riemann�Roch theorem� Serre duality� modules of regular di erentials�
residue symbols� trace maps� see Hartshorne ������ ������ Kunz ���	��
Kunz and Waldi ���
�� Lipman ����� Scheja and Storch ������ ������ and
Serre ������
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The Hilbert function H�M� n� measures the dimension of the n�th homo�
geneous piece of a graded module M� In the �rst section of this chapter
we study the Hilbert function of modules over homogeneous rings� prove
that it is a polynomial for large values of n� and introduce the Hilbert
series and multiplicity of a graded module� The next section is devoted
to the proof of Macaulay�s theorem which describes the possible Hilbert
functions� The third section complements these results by Gotzmann�s
regularity and persistence theorem�

The Hilbert function behaves quite regular� even for graded� non�
homogeneous rings� Such rings will be considered in the fourth section�
where we will also investigate the Hilbert function of the canonical
module�

The passage to the associated graded ring with respect to a �ltration
allows us to extend some concepts for graded rings like �Hilbert function�
or �multiplicity� to non�graded rings� and leads to the Hilbert�Samuel
function and the multiplicity of a �nite module with respect to an ideal
of de�nition� We shall study basic properties of �ltrations and their
associated Rees rings and modules� and sketch the theory of reduction
ideals� Finally we prove Serre�s theorem which interprets multiplicity as
the Euler characteristic of a certain Koszul homology�

	�� Hilbert functions over homogeneous rings

We begin by studying numerical properties of �nite graded modules over
a graded ring R� Our standard assumption in this section will be that R�

is an Artinian local ring� and that R is �nitely generated over R�� Notice
that for each �nite graded R�module M� the homogeneous components
Mn of M are �nite R��modules� and hence have �nite length�

De�nition 	����� LetM be a graded R�module whose graded components
Mn have �nite length for all n� The numerical function H�M� � � Z� Z

with H�M� n� � ��Mn� for all n � Z is the Hilbert function� and HM �t� �P
n�ZH�M� n�tn is the Hilbert series of M�

For the rest of this section we will assume that R is generated over R�

by elements of degree �� that is� R � R��R��� Recall that such a ring is
said to be homogeneous�

��	
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We say that a numerical function F � Z� Z is of polynomial type �of
degree d� if there exists a polynomial P �X� � Q�X� �of degree d� such
that F�n� � P �n� for all n � 
� By convention the zero polynomial has
degree ���

We de�ne the di�erence operator � on the set of numerical functions
by setting ��F��n� � F�n � ��� F�n� for all n � Z� Notice that � maps
polynomial functions to polynomial functions� lowering the degree of
non�zero polynomials by �� The d times iterated ��operator will be
denoted by �d � We further set ��F � F �

Lemma 	����� Let F � Z � Z be a numerical function� and d 	 
 an

integer� The following conditions are equivalent	

�a� �dF�n� � c� c �� 
� for all n� 
�
�b� F is of polynomial type of degree d �

Proof� �b�  �a� is easy� We prove the other implication by induction
on d � The assertion is trivial for d � 
� Now assume that d � 
� and
�dF�n� � �d���F�n����F�n�� � c� c �� 
� for all n� 
� By the induction
hypothesis it then follows that there exist an integer n� and a polynomial
P �X� � Q�X� of degree d � � such that F�n � �� � F�n� � P �n� for all
n 	 n�� Then F�n � �� � F�n�� �

Pn
k�n�

P �k�� and this last sum is a

polynomial function in n of degree d �

After these preparations we can state the main result of this section
as follows�

Theorem 	���� �Hilbert�� Let M be a �nite graded R�module of dimension
d � Then H�M� n� is of polynomial type of degree d � ��

Proof� We prove the theorem by induction on the dimension d of M�
First note that there is a chain 
 � N� � N� � � � � � Nn � M of graded
submodules of M such that for each i we have Ni���Ni

�� �R�p i��ai�
where p i is a graded prime ideal� Indeed� we may assume that M �� 
�
Choose p � � Ass�M�� The prime ideal p � is graded� see ������ There
exists a graded submodule N� �M with N�

�� �R�p ���a��� If N� �� M we
choose p � � Ass�M�N��� Then there exists a graded submodule N� �M
with N��N�

�� �R�p ���a��� If N� �� M� we may proceed in the same way�
But M is Noetherian� and so this process terminates eventually�

Now� since the Hilbert function is additive on short exact sequences� it
follows that H�M� n� �

P
iH��R�p i��ai�� n�� Notice that d is the supremum

of the numbers dimR�p i� Hence the theorem will follow once we have
shown it for M � R�p � p a graded prime ideal� �Here� of course� one has
to observe that the polynomials describing Hilbert functions are zero or
have positive leading coe�cients since their values are non�negative for
n � 
� As a consequence� the degree of the sum of such polynomials is
the maximum of their degrees��
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If dimR�p � 
� then p is the unique graded maximal ideal m � �L
n��Rn of R� where m � is the maximal ideal of R�� It follows that

H�R�p � n� � 
 for n � 
�
If dimR�p � 
� we may choose a homogeneous element x � R�p �

x �� 
� of degree �� Here we use the fact that R is homogeneous� The
exact sequence


 �� �R�p �����
x
�� R�p �� R��x� p � �� 


gives the equation

�H�R�p � n� � H�R�p � n� ��� H�R�p � n� � H�R��x� p �� n� ���

As dimR��x� p � � d��� our induction hypothesis implies that �H�R�p � n�
is of polynomial type of degree d � �� Hence if d � �� then ����� implies
that �d��H�R�p � n� � �d����H�R�p � n�� is a non�zero constant function
for large n� and if d � �� then �d��H�R�p � n� � H�R�p � n� � H�R�p � 
� �Pn

i��H�R��p � x�� i� is constant for large n since H�R��p � x�� i� � 
 for
i � 
� Again this constant is not zero since H�R�p � 
� �� 
� Now ������
�a� �b� yields the assertion�

Hilbert�s original proof �see ��	��� makes use of his syzygy theorem
������� This approach will be described in �������

The next lemma clari�es which polynomials in Q�X� have integer
values�

Lemma 	���	� Let P �X� � Q�X� be a polynomial of degree d � �� Then
the following conditions are equivalent	

�a� P �n� � Z for all n � Z�
�b� there exist integers a�� � � � � ad�� such that

P �X� �
d��X
i��

ai

�
X � i

i

�
�

Proof� �b� �a� is trivial� For the converse observe that the polynomials�
X�i
i

�
� i � N� form a Q�basis of Q�X�� Therefore P �X� �

Pd��
i�� ai

�
X�i
i

�
with ai � Q� The identity

�
X�i��

i

�
�
�
X�i
i

�
�
�
X�i
i��

�
immediately implies

that ai � �iP ��i� �� � Z for i � 
� � � � � d � ��

De�nition 	����� Let M be a �nite graded R�module of dimension d �
The unique polynomial PM�X� � Q�X� for which H�M� n� � PM�n� for
all n� 
 is called the Hilbert polynomial of M� We write

PM�X� �
d��X
i��

����d���ied���i

�
X � i

i

�
�
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Then the multiplicity of M is de�ned to be

e�M� �

�
e� if d � 
�
��M� if d � 
�

Remark 	����� The higher iterated Hilbert functions Hi�M� n�� i � N� of a
�nite graded R�module M are de�ned recursively as follows�

H��M� n� � H�M� n�� and Hi�M� n� �
X
j
n

Hi���M� j�

for i � 
� Occasionally the functionsHi�M� � are called the sum transforms

of H�M� ��
It follows from ����� and ����� that Hi�M� n� is of polynomial type of

degree d � i � �� where d � dimM� In particular� for all n � 
 there is

a representation H��M� n� �
Pd

i�� ai
�
n�i
i

�
with ai � Z� and it is easy to

see that ad � e�M�� Another formula for the multiplicity will be given in
�����

Theorem ����� together with the next lemma yields a structural result
about Hilbert series�

Lemma 	����� Let H�t� �
P

ant
n be a formal Laurent series with integer

coe�cients� and ai � 
 for i � 
� Further� let d � 
 be an integer� Then

the following conditions are equivalent	

�a� there exists a polynomial P �X� � Q�X� of degree d � � such that

P �n� � an for large n�
�b� H�t� � Q�t����� t�d where Q�t� � Z�t� t��� and Q��� �� 
�

Proof� Assume �a�� and set F�n� � an for all n � Z� Then

��� t�dH�t� �
X
n

�dF�n � d�tn�

and it follows from ����� that �� � t�dH�t� � Z�t� t��� � We set Q�t� �P
n�

dF�n� d�tn� Suppose Q��� � 
� then


 �
X
n

�dF�n � d� �
X
n

��d��F�n � �� d�� �d��F�n� d�� � �d��F�m�

for large m� This contradicts ������ and thus proves the implication
�a� �b�� The converse is proved similarly�

Corollary 	����� Let M �� 
 be a �nite graded R�module of dimension d �
Then there exists a unique QM�t� � Z�t� t

��� with QM��� �� 
 such that

HM�t� �
QM�t�

��� t�d
�

Moreover� if QM�t� �
P

i hit
i� then minfi � hi �� 
g is the least number such

that Mi �� 
�
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Proof� The �rst part of the assertion is clear for d � 
� and for d � 
 it
follows from ����� and ����	� In order to prove the second part multiply
both sides of HM�t� � QM�t����� t�d by ��� t�d and compare coe�cients�

In the next proposition we show how one can recover the coe�cients
ei of the Hilbert polynomial of a module M from QM � We will denote by
P �i� the i�th formal derivative of an element P � Z�t� t����

Proposition 	����� Under the assumptions of ����� the following formulas

hold	

ei �
Q

�i�
M���

i"

for i � 
� � � � � d � �� Moreover� e�M� � QM����

Proof� We write

HM�t��
d��X
i��

����i

i"

Q�i�
M���

��� t�d�i
�

D�t�

��� t�d

where D�t� � QM�t��
Pd��

i��
����i

i
 Q�i�
M������t�

i is the remainder of the Taylor

expansion of QM�t� up to degree d � �� The element D�t� � Z�t� t��� is
divisible by ���t�d since D�j���� � 
 for j � 
� � � � � d��� It follows that the

coe�cients of HM�t� and
Pd��

i�� �
����i

i
 Q�i�
M������� t�d�i� coincide for large

n� Hence
d��X
i��

����i

i"

Q
�i�
M���

��� t�d�i
�
X
n	�

PM�n�t
n�

since the coe�cients of both series are polynomial functions in n which
are equal for large n �and hence must be equal for all n�� Expanding
the left hand side of the equation as a power series� and comparing

coe�cients we get ei � Q�i�
M����i"�

Finally� by what we have just proved� we have e�M� � e� � QM��� if
d � 
� and� if d � 
� e�M� � ��M� �

P
nH�M� n� � HM��� � QM���� since

in this case HM�t� � QM�t��

Corollary 	����
� Assume that in addition to the assumptions of ����� the

module M is Cohen�Macaulay� Let QM�t� �
P

hit
i� Then hi 	 
 for all i�

Moreover� ei 	 
 for all i if Mj � 
 for all j � 
�

Proof� Without loss of generality we may assume that the residue class
�eld of R� is in�nite� Otherwise we resort to a standard trick� we replace
R by R� � R �R� R��Y � and M by M� � M �R� R��Y � where Y is
an indeterminate over R�� and where R��Y � is the local ring R��Y �S �
S being the multiplicatively closed set of polynomials P �Y � � R��Y �
which have at least one unit among their coe�cients� The natural ring
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homomorphism R� � R��Y � is local and �at� and its �bre is the residue
class �eld of R��Y �� namely the �eld k�Y � of rational functions over
k � R��m �� If we assign the degree 
 to the elements of R��Y �� then
both R� and M� are naturally graded� and because of �atness� M� is a
Cohen�Macaulay R��module of dimension d with HM ��t� � HM�t�� see
����	 and ������� Moreover� R�

� � R��Y �� and hence has an in�nite residue
class �eld�

In view of ���� it su�ces to show that hi 	 
 for all i� We prove the
assertion by induction on d � If d � 
� then QM�t� � HM�t� �see ������� and
so all coe�cients of QM�t� are non�negative�

Suppose now that d � 
� The unique homogeneous maximal ideal
M � m � �

L
n��Rn of R does not belong to AssM� and the ideal

I �
L

n��Rn� generated by the elements of R�� is M �primary� Thus� since
R�M is in�nite there exists an element a � R� which is M�regular� see
������� Let N � M�aM� then N is a Cohen�Macaulay graded R�module
of dimension d � �� and the exact sequence


 ��M����
a
��M �� N �� 


gives the equation �� � t�HM�t� � HN�t�� It follows that QM�t� � QN�t��
which by our induction hypothesis yields the conclusion�

Remark 	������ The arguments in the previous proof show the following
notable result� suppose M is a �nite graded R�module� and x is an
M�sequence of elements of degree �� then QM�t� � QM��x�M�t��

Hilbert�s theorem tells us that the Hilbert function of a �nite graded
module is a polynomial function for large n� We will determine from
which integer n onwards this happens�

Proposition 	������ Let M �� 
 be a �nite graded R�module of dimension

d � and QM�t� �
Pb

i�a hit
i with hb �� 
� Then H�M� b � d� �� PM�b� d� and

H�M� i� � PM�i� for all i 	 b� d � ��

Proof� For i � a� � � � � b we set Hi�t� � hit
i���� t�d and Pi�n� � hi

�
n�i�d��
d��

�
�

Then Hi�t� �
P�

n�iPi�n�t
n� but since Pi�n� � 
 for n � i� �d � ��� � � � � i� �

we even have Hi�t� �
P�

n�i��d���Pi�n�t
n� Furthermore PM�n� �

Pb
i�aPi�n�

for all n � Z� For n 	 b � d � � one has H�M� n� �
Pb

i�aPi�n�� whereas

H�M� b � d� �
Pb��

i�a Pi�b � d� and Pb�b � d� �� 
� Thus H�M� b � d� ��
PM�b� d��

In Section ��� we will give a homological interpretation of the di er�
ence between the Hilbert function and the Hilbert polynomial�

Hilbert series and free resolutions� The Hilbert series of a graded module
can be expressed in terms of its graded resolution�
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Lemma 	������ Let M be a �nite graded R�module of �nite projective

dimension� and let


 ��
M
j

R��j��pj �� � � � ��
M
j

R��j���j ��M �� 


be a graded free resolution of M� Then

HM�t� � SM�t�HR�t�

where SM�t� �
P

i�j����
i�ijt

j � In particular� if R � k�X� � � � � � Xn� is the

polynomial ring over the �eld k� then

HM�t� �
SM�t�

��� t�n
�

Proof� For the proof we simply note that the Hilbert function is additive
on short exact sequences� so that HM�t� �

P
i����

i�ijHR��j��t�� Taking

into account that HR��j��t� � tjHR�t�� we obtain the required formula�
If R � k�X�� � � � � Xn� is the polynomial ring� then H�R� i� equals the

number of monomials in degree i� One easily proves by induction on

n that this number is
�
n�i��
n��

�
� whence HR�t� �

P
i

�
n�i��
n��

�
ti � ���� � t�n�

Corollary 	����	� Let R � k�X�� � � � � Xn� be a polynomial ring over a �eld

k� and let M be a �nite graded R�module of dimension d � Then

�a� SM�t� � ��� t�n�dQM�t��

�b� n� d � inffi � S �i�
M ��� �� 
g�

�c� S �n�d�i�
M ��� � ����n�d

�
n�d�i

i

�
ei�

Proof� �a� and �b� are immediate while �c� follows from �a� and �����

We conclude this section with an application to a special class of
graded rings� Let R � k�X�� � � � � Xn� be a polynomial ring over a �eld k�
I � R a graded ideal� We say that R�I has a pure resolution of type
�d�� � � � � dp� if its minimal resolution has the form


 �� R��dp�
�p �� � � � �� R��d��

�� �� R �� R�I �� 
�

Note that d� � d� � � � � � dp�

Theorem 	������ Suppose R�I is Cohen�Macaulay and has a pure resolution

of type �d�� � � � � dp�� Then

�a� �i � ����i��
Y
j �i

dj
�dj � di�

� �b� e�R�I� �
�

p"

pY
i��

di�
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Proof� As R�I is Cohen�Macaulay� the Auslander�Buchsbaum formula
����� �in conjunction with ������� implies that p � dimR � dimR�I�
therefore� with �� � �� d� � 
� we have

SR�I�t� �

pX
i��

����i�it
di and S �j�

R�I��� � 


for j � 
� � � � � p� �� see ������� We obtain the following system of linear
equations�

pX
i��

����i�i � ���

pX
i��

����i�idi�di � �� � � � �di � j � �� � 
 for j � �� � � � � p� ��

Upon applying elementary row operations� which do not a ect the solu�
tion of this system of linear equations with coe�cient matrix

�di"��di � j�"� j�������p��
i�������p

�

we are led to the Vandermonde matrix whose determinant is
Q

i�j�di�dj��

Now Cramer�s rule gives the stated solutions for the �i�
�b� According to ������ we have

e�R�I� � ����p
S �p�
R�I ���

p"
�

pX
i��

����p�i�i

�
di
p

�
�

Thus �a� implies that

e�R�I� �
�

p"

pY
i��

di

pX
i��

Qp��
j���di � j�Q
j �i�di � dj�

�

It remains to show that the sum in this expression equals �� We introduce
the rational complex function

f�z� �

Qp��
j���z � j�Qp
j���z � dj�

�

This function has simple poles at worst in the points d�� � � � � dp� and the
residues in these points are

Resdi f�z� �

Qp��
j���di � j�Q
j �i�di � dj�

�
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The sum of all residues of a rational function at all points including �
is zero� and Res� f�z� � �Res� f���z��z�� Therefore

pX
i��

�
p��Y
j��

�di � j�
Y
j �i

�di � dj�
��

�
�

pX
i��

Resdi f�z�

� Res�
f���z�

z�
� Res�

�
�

z

p��Y
j��

��� jz�

pY
j��

��� djz�
��

�
� ��

Exercises

������� Let k be a 	eld� and M a 	nite graded module over the polynomial ring
R � kX� � � � � � Xn� with minimal graded resolution

� ���
M
j

R��j��pj ��� � � � ���
M
j

R��j���j ��� M ��� ��

We say that two modules have numerically the same resolution if their graded
Betti numbers �ij are the same� Show�
�a� The homogeneous rings kX� Y ���X� � Y �� and kX� Y ���X� � XY � Y �� have
the same Hilbert series� but their minimal graded free kX� Y ��resolutions are
numerically di�erent�
�b� The homogeneous rings kX� Y ���X� � Y �� and kX� Y ���XY � X� � Y �� have
numerically the same graded kX� Y ��resolution� but are not isomorphic when
k � R�

�����	� Let k be a 	eld� and let R � kX� � � � � � Xn��I be a homogeneous Cohen�
Macaulay ring� The ring R has an m�linear resolution if it has a pure resolution
of type �m�m� �� � � � � m� p� ��� p � n� dimR�
�a� Suppose R has an m�linear resolution� What are the ranks of the free modules
in the free resolution of R� and what is the multiplicity of R�
�b� Suppose dimR � �� prove R has an m�linear resolution if and only if
I � �X� � � � � � Xn�

m�
Hint� relate the last shifts in the resolution of R with the degrees of the socle
elements of R�
�c� Prove the homogeneous Cohen�Macaulay ring R � kX� � � � � � Xn��I has an

m�linear resolution if and only if Ij � � for j � m� and dimk Im �
�
m�g��

m

�
� where

g � height I �
Hint� reduce to dimension zero�

�����
� Let k be a 	eld� and let R � kX� � � � � � Xn��I be a homogeneous Gorenstein
ring of dimension �� Assume that all generators of I have the same degree c�
�a� Show a�R� � �c � ��
�b� Show a�R� � �c � � if and only if R has a pure resolution of type �c� c � ��
� � � � c� n� �� �c� n� ��� In this case R is called an extremal Gorenstein ring� This
class of Gorenstein rings was 	rst considered by Schenzel �����
�c� Compute the Betti numbers �i�R� of an extremal Gorenstein ring R in a
minimal graded free kX� � � � � � Xn��resolution of R�
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	�� Macaulay�s theorem on Hilbert functions

This section is devoted to a theorem of Macaulay describing exactly
those numerical functions which occur as the Hilbert function H�R� n� of
a homogeneous k�algebra R� k a �eld� Macaulay�s theorem says that for
each n there is an upper bound for H�R� n � �� in terms of H�R� n�� and
this bound is sharp in the sense that any numerical function satisfying it
can indeed be realized as the Hilbert function of a suitable homogeneous
k�algebra� One part of the proof of Macaulay�s theorem will be based on
a theorem of Green which relates the Hilbert function of a homogeneous
ring R with the Hilbert function of the factor ring R�hR by a general
linear form h�

Let R �
L

n	�Rn be a homogeneous k�algebra� where R� � k is a
�eld� We will show that R has a k�basis consisting of monomials in a
basis x�� � � � � xm of R�� We are going to de�ne this basis of monomials on
the level of the polynomial ring� So let

� � k�X�� � � � � Xm� �� R

be the surjective k�algebra homomorphism with ��Xi� � xi�

De�nition 	����� A non�empty set M of monomials in the indetermi�
nates X�� � � � � Xm is called an order ideal of monomials if the following
holds� whenever m � M and a monomial m� divides m� then m� � M �
Equivalently� if Xa�

� � � �X
am
m � M and 
 � bi � ai for i � �� � � � � m� then

Xb�
� � � �X

bm
m � M �

Remarks 	����� �a� In Chapter  we introduce the order ideal of an
element in a module� This notion has nothing to do with the order ideal
of monomials� and they should not be confused�

�b� Of course an order ideal of monomials M is not a k�basis of
an ideal� let alone an ideal� Quite the contrary� if we let C M be the
complement of M in the set of all monomials� then C M is a k�basis of
the ideal generated by the monomials m � C M �

Theorem 	���� �Macaulay�� Let R be a homogeneous k�algebra� k a �eld�

Further let x�� � � � � xm be a k�basis of R�� and � � k�X�� � � � � Xm� � R the

k�algebra homomorphism with ��Xi� � xi for i � �� � � � � m� Then there exists
an order ideal M of monomials such that ��M � is a k�basis of R�

Proof� Let S denote the set of all monomials in the indeterminates
X�� � � � � Xm� We de�ne a total order� the so�called reverse degree�lexico�

graphical order� on S� if u � Xa�
� � � �X

am
m and v � Xb�

� � � �X
bm
m � then u � v

if the last non�zero component of �b� � a�� � � � � bm � am�
P

bi �
P

ai� is
positive� �The usage of the term �reverse degree�lexicographical� is not
coherent in the literature��
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It is clear that �S� �� is an ordered semigroup� i�e� u � v  mu � mv
for all u� v� m � S� Moreover� any descending chain v� � v� � � � � of
elements of S must stop after a �nite number of steps� Equivalently�
every non�empty set of elements in S has a minimal element � a fact
that will be used later�

Now we de�ne recursively a sequence of monomials u�� u�� � � � accord�
ing to the following rule� We set u� � �� assume u�� � � � � ui have been
de�ned� then we let ui�� be the least element in the reverse degree�
lexicographical order such that ��u��� � � � � ��ui�� ��ui��� are linearly inde�
pendent over k� If such ui�� does not exist� the sequence terminates
with ui�

We claim that M � fu�� u�� � � �g is the required order ideal of monomi�
als� By construction ��M � is a k�basis of R� Assume M is not an order
ideal of monomials� Then there exist ui� � M and u � S n M such that
ui� � u � Xj for some Xj � As u �� M � we can write ��u� �

P
�i��ui� with

ui � M � ui � u� and �i � k� Then ��ui� � �
P

�i��uiXj�� and uiXj � ui� � for
all i in the sum� a contradiction�

We saw in the proof that our k�basis ��u��� ��u��� � � � of R has a
remarkable property� let u � S� and write ��u� �

P
�i �� �i��ui�� Then

ui � u for all i� and if u �� M � these inequalities are strict�
The previous theorem and ������b� immediately imply

Corollary 	���	� Let J be the ideal which is generated by the monomials

in C M � Then the homogeneous k�algebra R and k�X�� � � � � Xm��J have the

same Hilbert function� In particular� all Hilbert functions of homogeneous

rings arise as Hilbert functions of homogeneous rings whose de�ning ideal

is generated by monomials�

The set of monomials C M associated with R can be described di er�
ently� Let I � Ker �� and set

L�I� � fL�f� � f � Ig� and I� � L�I�R

where L�f� denotes the leading monomial of f� that is� the monomial
occurring in f which is maximal in the reverse degree�lexicographical
order� Then L�I� � C M � Indeed� let v � L�I�� and choose f � I �
f �

Pn
i���ivi with monomials vi such that v � L�f� � vn� Assume

vn �� C M � then vn � M � and so


 �� ��vn� � �
n��X
i��

���
n �i��vi��

Each ��vi� is a linear combination
P

�ij��uj�� �ij � k� uj � M � uj � vi � vn�
Replacing the ��vi� in the above equation by their linear combinations
gives a representation as a non�trivial linear combination of elements in
��M �� This contradicts ������
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Conversely� suppose v � C M � Then ��v� �
P

�i��ui� with ui � M �
ui � v� Hence� if we set f � v �

P
�iui� then ��f� � 
 and L�f� � v�

The ideal I� is �nitely generated� Therefore there exist polynomials
f�� � � � � fn � I such that I� � �L�f��� � � � � L�fn��� Any such subset of I is
called a Gr�obner or standard basis of I �

Note that any Gr�obner basis of I generates I� let f � I� then
L�f� �

P
giL�fi� for some gi � k�X� � � � � � Xm�� and it follows that either

f � �
P

gifi� or L�f � �
P

gifi� � L�f� for a suitable � � k� In the �rst
case� f is an element of �f�� � � � � fn�� In the second case we apply the same
procedure to f� � f � �

P
gifi to obtain an element f�� which is either

zero� in which case f � �f�� � � � � fn�� or which has L�f��� � L�f��� Since any
descending sequence of elements in S terminates� we eventually arrive at
the required conclusion�

We should warn the reader that the converse is not true� Consider
for example the ideal I � �f�� f�� with f� � X�X� �X�

� � f� � X�X�� Then
X�X

�
� � X�f� � X�f� is an element of I� � but not of �L�f��� L�f��� �

�X�
� � X�X���
Even though a Gr�obner basis of an ideal I is not simply given by the

leading forms of a system of generators of I � there does exist an algorithm
to compute a Gr�obner basis � the so�called Buchberger algorithm� This�
and the fact that most explicit calculations in commutative algebra are
performed using Gr�obner bases� explain their importance� Buchberger�s
algorithm has been implemented in various computer algebra programs�

Macaulay representations and lexsegment ideals� Let S � k�X�� � � � � Xm�
denote the polynomial ring over a �eld k� The problem of determining
the Hilbert function of a homogeneous factor ring R of S boils down to
the following question� given a subspace V � Sd � what can be said about
the k�dimension of the subspace S�V in Sd��#

We will give the answer in a special but important case� Let u � Sd
be a monomial� We de�ne the sets

Lu � fv � Sd � v � ug and Ru � fv � Sd � v 	 ug

of the monomials of degree d which are �left� and �right� of u� Note
that RX� � fX�� � � � � Xng� Monomial sets of the form Ru � Sd are called
lexsegments �of degree d�� The next lemma says that a lexsegment of
degree d spans a lexsegment of degree d � ��

Lemma 	����� RX�Ru � RX�u�

Proof� Let v � Ru� then Xiv 	 X�v 	 X�u� Conversely� let v � RX�u� We
may assume that X� does not divide v� then v � X�u� Let u � Xa�

� � � �X
am
m �

v � Xb�
� � � �X

bm
m � and i be the largest integer such that bi � ai� If there

exists j � i with bj � 
� then X��
j v � Ru� otherwise� X��

i v � Ru� In both

cases it follows that v � RX�Ru�
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The setsLu admit a natural decomposition� let i be the largest integer
such that Xi divides u� Then we can write

Lu �L�
u �L

��
uXi�

where Xi does not divide any element inL�
u� It is clear that this union is

disjoint� that L�
u consists of all monomials of degree d in the variables

X�� � � � � Xi��� and that L��
u �LX��

i u�

An example illustrates this decomposition� Let S � k�X�� � � � � X�� and
u � X�

�X�� Then

Lu � fX
�
� � X

�
�X�� X�X

�
� � X

�
� � X

�
�X�� X�X�X�g�

L�
u � fX

�
� � X

�
�X�� X�X

�
� � X

�
�g�

L��
u � fX

�
� � X�X�g �LX�

�
�

It is convenient to denote the set of all monomials of degree d in the
variables X�� � � � � Xi by �X�� � � � � Xi�d � We may again decompose L��

u � etc�
Thus if we write

u � Xj���Xj��� � � �Xj�d�

with � � j��� � j��� � � � � � j�d�� then

Lu � �X�� � � � � Xj�d����d �LX��
j�d�u

Xj�d�

� �X�� � � � � xj�d����d � �X�� � � � � Xj�d������d��Xj�d�

�LX��
j�d���X

��
j�d�u

Xj�d���Xj�d�

� � � � �

and we end up with the disjoint union

Lu �
d�
i��

�X�� � � � � Xj�i����iXj�i��� � � �Xj�d��

called the natural decomposition of Lu�
It follows that

jLuj �
dX
i��

�
k�i�

i

�
with k�i� � j�i� � i � �� Note that k�d� � k�d � �� � � � � � k��� 	 
� Here

and in the sequel we use that
�
k
l

�
� 
 for 
 � k � l�

The above considerations show that any non�negative integer has
such a binomial sum expansion� We prove this directly�

Lemma 	����� Let d be a positive integer� Any a � N can be written

uniquely in the form

a �

�
k�d�

d

�
�

�
k�d � ��

d � �

�
� � � ��

�
k���

�

�
�

where k�d� � k�d � �� � � � � � k��� 	 
�
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Proof� In order to prove the existence� we choose k�d� maximal such

that
�
k�d�
d

�
� a� If a �

�
k�d�
d

�
� then a �

Pd
i��

�
k�i�
i

�
with k�i� � i � � for

i � �� � � � � d � �� Now assume that a� � a �
�
k�d�
d

�
� 
� By the induction

hypothesis we may assume that a� �
Pd��

i��

�
k�i�
i

�
with k�d��� � k�d��� �

� � � � k��� 	 
� It remains to show that k�d� � k�d���� since
�
k�d���

d

�
� a�

it follows that�
k�d�

d � �

�
�

�
k�d� � �

d

�
�

�
k�d�

d

�
� a� 	

�
k�d � ��

d � �

�
�

Hence k�d� � k�d � ���
The uniqueness follows by induction on a� once we have shown the

following� if a �
Pd

i��

�
k�i�
i

�
with k�d� � k�d � �� � � � � � k��� 	 
� then

k�d� is the largest integer with
�
k�d�
d

�
� a� Again we prove this statement

by induction on a� For a � � the assertion is trivial� Now assume that

a � �� and
�
k�d���

d

�
� a� Then

d��X
i��

�
k�i�

i

�
	

�
k�d� � �

d

�
�

�
k�d�

d

�
�

�
k�d�

d � �

�
	

�
k�d � �� � �

d � �

�
�

and this contradicts the induction hypothesis�

Following Green ����� we refer to the sum ����� as the d�th Macaulay

representation of a� and call k�d�� � � � � k��� the d�th Macaulay coe�cients

of a�
Note that for all i � d the coe�cient k�i� is determined by the property

of being the maximal integer j such that�
j

i

�
� a�

�
k�d�

d

�
� � � � �

�
k�i � ��

i� �

�
�

The d�th Macaulay coe�cients have the following nice property�

Lemma 	����� Let k�d�� � � � � k���� respectively k��d�� � � � � k����� be the d�th
Macaulay coe�cients of a� respectively a�� Then a � a� if and only if

�k�d�� � � � � k���� � �k��d�� � � � � k�����

in the lexicographical order�

Proof� We prove both implications by induction on d � For d � �
the assertion is trivial� We now assume that d � �� If k�d� � k��d��
then k�d � ��� � � � � k��� �respectively k��d � ��� � � � � k����� are the �d � ���th

Macaulay coe�cients of a�
�
k�d�
d

�
�respectively a� �

�
k��d�
d

�
�� and we may

apply the induction hypothesis� If k�d� �� k��d�� then k�d� � k��d� if
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and only if a � a�� This follows from the characterization of the d�th
Macaulay coe�cients preceding this lemma�

Skipping the summands which are zero in the d�th Macaulay repre�
sentation of a we get the following unique sum expansion�

a �

�
k�d�

d

�
�

�
k�d � ��

d � �

�
� � � � �

�
k�j�

j

�
where k�d� � k�d � �� � � � � � k�j� 	 j 	 �� We de�ne

ahdi �

�
k�d� � �

d � �

�
�

�
k�d � �� � �

d

�
� � � � �

�
k��� � �

�

�
�

�
k�d� � �

d � �

�
�

�
k�d � �� � �

d

�
� � � � �

�
k�j� � �

j � �

�
�

and set 
hdi � 
�

Proposition 	����� Let u be a monomial of degree d in the polynomial ring

S � Then jLX�uj � jLujhdi�

Proof� Let Lu �
Sd

i���X�� � � � � Xj�i����iXj�i��� � � �Xj�d� be the canonical
decomposition of Lu� We claim that

d�
i��

�X�� � � � � Xj�i����i��Xj�i��� � � �Xj�d�

is the canonical decomposition of LX�u� Indeed� the canonical decom�
position of Lu is completely determined by the sequence j���� � � � � j�d�
attached to u� Let l���� � � � � l�d��� be the corresponding sequence for X�u�
Then l��� � �� and l�i� � j�i��� for i � �� � � � � d��� This proves the claim
and the proposition�

Let S � k�X�� � � � � Xm� be a polynomial ring over a �eld� and u � S
a monomial� An ideal which in each degree is spanned by a lexsegment
will be called a lexsegment ideal� In view of ����� and ����� we obtain

Corollary 	����� Let I � S be a lexsegment ideal� and set R � S�I � Then

H�R� n � �� � H�R� n�hni for all n�

Equality holds for a given n if and only if In�� � �X�� � � � � Xm�In�

Macaulay�s theorem� We now come to the main result of this section� It
will follow that the growth of the Hilbert function of a homogeneous
ring de�ned by a lexsegment ideal is� in a sense� the maximum possible�
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Theorem 	����
 �Macaulay�� Let k be a �eld� and let h � N � N be a

numerical function� The following conditions are equivalent	

�a� there exists a homogeneous k�algebra R with Hilbert function H�R� n�
� h�n� for all n 	 
�

�b� there exists a homogeneous k�algebra R with monomial relations and

with Hilbert function H�R� n� � h�n� for all n 	 
�

�c� one has h�
� � �� and h�n� �� � h�n�hni for all n 	 ��

�d� let m � h���� and for each n 	 
 let Mn be the �rst h�n� monomials in
the variables X�� � � � � Xm of degree n in the reverse degree�lexicographical

order� set M �
S

n	�Mn� then M is an order ideal of monomials�

The following example demonstrates the e ectiveness of Macaulay�s
theorem� let us check that � � �t� �t� � �t� is not the Hilbert series of a
homogeneous ring� In fact� condition �c� is violated since � �

��
�

�
�
��
�

�
�

and �h�i �
��
�

�
�
��
�

�
� 	 � �� Instead we also could apply �d�� and

get M� � fX�� X�� X�g� M� � fX�
� � X�X�� X�

� � X�X�� X�X�g� M� �
fX�

� � X
�
�X�� X�X

�
� � X

�
� � X

�
�X�� X�X�X�� X

�
�X�� X�X

�
�g� Thus we see that

X�X
�
� �M�� but X��

� �X�X
�
�� �� M�� ThereforeM is not an order ideal of

monomials�
Most parts of the theorem have already been shown� the equivalence

of �a� and �b� is the content of ������ and the implication �d�  �b�
is trivial� For the proof of �c�  �d� we assume that h��� � m� Then

condition �c� implies that h�n� �
�
n�m��

n

�
� Suppose that h�n� �� �

�
n�m
n��

�
�

then h�n� �
�
n�m��

n

�
� and so Mi � �X�� � � � � Xm�i for i � n and i � n � ��

Therefore� if u � Mn��� and Xi divides u� then trivially X��
i u � Mn�

Now we suppose that h�n � �� �
�
n�m
n��

�
� then there exist a monomial

un�� such that Mn�� � Lun�� � If� as before� Mn � �X�� � � � � Xm�n� there
is nothing to show� Otherwise� there exists a monomial un such that
Mn �Lun � Condition �c� and ����� imply that RX�Run � Run�� � Therefore�

if u � Mn��� and Xi divides u� then X��
i u � Mn� In other words�

M �
S

n	�Mn is an order ideal of monomials�
For the most di�cult implication �a�  �c� we present the elegant

proof of Green ������ This needs some preparations�
If a positive integer a has d�th Macaulay coe�cients k�d�� � � � � k����

then let

ahdi �

�
k�d� � �

d

�
�

�
k�d � ��� �

d � �

�
� � � � �

�
k���� �

�

�
�

�
k�d� � �

d

�
� � � ��

�
k�j� � �

j

�
�

where j � minfi � k�i� 	 ig�
Note that ahdi has d�th Macaulay coe�cients k�d���� � � � � k�j���� j �

�� j � �� � � � � 
�
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Lemma 	������ �a� If a � a�� then ahdi � a�hdi�

�b� If k�j� �� j for j � minfi � k�i� 	 ig� then �a� ��hdi � ahdi �

Proof� �a� follows from the observation preceding this lemma and ����	�
For �b� let k�d�� k�d � ��� � � � � k��� be the d�th Macaulay coe�cients of a�
and k��d�� k��d � ��� � � � � k���� the d�th Macaulay coe�cients of a� �� then

k��d� � k�d� by ����	� If k��d� � k�d�� we set a� � a �
�
k�d�
d

�
� Convince

yourself that a� � � � 
� Then it follows that a� �respectively a� � �� has
�d � ���th Macaulay coe�cients k�d � ��� k�d � ��� � � � � k��� �respectively
k��d � ��� k��d � ��� � � � � k������ Moreover� a� satis�es the hypothesis of
�b�� Therefore� if we argue by induction on d � we may assume that
�a� � ��hd��i � a�hd��i� Hence the required inequality in the case in

which k��d� � k�d� follows from the equalities ahdi � a�hd��i �
�
k�d���

d

�
and

�a� ��hdi � �a� � ��hd��i �
�
k�d���

d

�
�

Now suppose that k��d� � k�d�� Our assumption implies that the
d�th Macaulay coe�cient of ahdi is k�d�� �� and that the d�th Macaulay
coe�cient of �a � ��hdi is less than or equal to k��d� � �� Therefore the

conclusion follows from ����	�

Theorem ������� interesting in its own right� is the key to the still
unproved implication �a� �c� of �����
�

Let R be a homogeneous k�algebra� k an in�nite �eld� The a�ne
k�space R� is irreducible� and so any non�empty �Zariski�� open subset is
dense in R�� This suggests the following terminology� a property P holds
for a general linear form of R� if there exists a non�empty open subset U
of R� such that P holds for all h � U�

Theorem 	����� �Green�� Let R be a homogeneous k�algebra� k an in�nite

�eld� and let n 	 � be an integer� Then

H�R�hR� n� � H�R� n�hni

for a general linear form h�

Proof� Let s � supfdimk hRn�� � h � R�g� then dimk hRn�� � s for a
general linear form� Indeed� let U � R� be the subset of elements h � R�

such that dimk hRn�� � s� It is obvious that U �� �� In order to see that
U is open� we choose a basis a�� � � � � am of R� and bases of Rn�� and
Rn� Then the multiplication map h � Rn�� � Rn� h �

Pm
i�� xiai� can be

described by a matrix of linear forms in x�� � � � � xm� Replacing the xi by
indeterminates yields a matrix A of linear polynomials with coe�cients
in k� and it is clear that U is the complement of V �Is�A�� in R��

Let h � U� and set S � R�hR� We claim that H�S� n� � H�R� n�hni� and
prove it by induction on minfn� dimk R�g� If either n � � or dimk R� � ��
then the assertion is trivial� Now assume that n � � and dimk R� � �� Let
V � S� be the subset of linear forms g for which dimk gSn�� is maximal�
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and denote by � the canonical epimorphism R � S � We consider the
open subset

W � �U n kh� � ����V �

of R�� The set W is non�empty since R� is irreducible and both ����V �
and U n kh are non�empty� In fact� assume that U � kh� Then� since
U is a dense and kh is a closed subset in R� it follows that R� � kh�
contradicting the assumption dimk R� � �� Now we choose h� �W � and
get

H�S� n� � dimk�Sn�h
�Sn��� � dimk h

�Sn���

By our choice of h�� the induction hypothesis yields the inequality

dimk�Sn�h
�Sn��� � H�S� n�hni�

To obtain an upper bound for the second summand note �rst that

dimk h
�Sn�� � dimk�h

�Rn���h�h
�Rn���� � dimk�hRn���h

��hRn�����

The last equality holds true since the di erence of both sides equals
dimk�Rn�hRn���� dimk�Rn�h

�Rn���� and this di erence is zero since both
h and h� belong to U�

Let W � � R� be the �non�empty� open set of linear forms l for
which l�hRn��� has maximal dimension� Then� if we actually choose
h� � W � W �� noting that hRn�� may be viewed as the �n � ���th
homogeneous component of P � R��Annh�� we may apply our induction
hypothesis to conclude that dimk h

�Sn�� � �H�R� n� � H�S� n��hn��i� The
rest of the proof is a purely numerical argument� What we need is this�
given integers 
 � b � a such that

b � bhni � �a� b�hn��i�

then b � ahni�

Assume this fails� and write b �
�
k�n�
n

�
� � � � �

�
k�j�
j

�
with k�n� �

� � � � k�j� 	 j � 
� Then a �
�
k�n���

n

�
� � � � �

�
k�j���

j

�
� and so a � b ��

k�n�
n��

�
� � � � �

�
k�j�
j��

�
�

We distinguish two cases� If j � �� then a�b �
�
k�n�
n��

�
� � � ��

�
k���
�

�
� and

hence �a�b�hn��i �
�
k�n���
n��

�
�� � ��

�
k�����

�

�
� and bhni �

�
k�n���

n

�
�� � ��

�
k�����

�

�
�

Thus our hypothesis implies b �
�
k�n�
n

�
� � � � �

�
k���
�

�
�
�
k�����

�

�
� b� a

contradiction�
If j � �� then �a� b�hn��i �

�
k�n���
n��

�
� � � � �

�
k�j���
j��

�
� and this together

with our assumption again yields a contradiction�

In order to complete the proof of Macaulay�s theorem another nu�
merical result is needed�
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Lemma 	������ Let a� a�� and d be positive integers�

�a� If a � a�� then ahdi � a�hdi�
�b� Let k�d�� � � � � k��� be the d�th Macaulay coe�cients of a� and j �
minfi � k�i� 	 ig� Then

�a� ��hdi �

�
ahdi � k��� � � if j � ��
ahdi � � if j � ��

Proof� Claim �a� follows from ����	� and �b� is immediate for j � ��
Now assume that j � �� and let i be the maximal integer such that
k�i� � k��� � i� �� Then

a �

�
k�d�

d

�
� � � � �

�
k�i � ��

i � �

�
�

iX
r��

�
k��� � r � �

r

�
�

�
k�d�

d

�
� � � � �

�
k�i � ��

i � �

�
�

�
k��� � i

i

�
� ��

and hence

a� � �

�
k�d�

d

�
� � � � �

�
k�i � ��

i � �

�
�

�
k��� � i

i

�
is the d�th Macaulay expansion of a� � since k�i � �� � k��� � i�

Now we get

ahdi �

�
k�d� � �

d � �

�
� � � � �

�
k�i � �� � �

i � �

�
�

iX
r��

�
k��� � r

r � �

�

�

�
k�d� � �

d � �

�
� � � � �

�
k�i � �� � �

i � �

�
�

i��X
r��

�
k��� � r � �

r

�
�

�
k�d� � �

d � �

�
� � � � �

�
k�i � �� � �

i � �

�
�

�
k��� � i � �

i� �

�
� k���� ��

and so

�a� ��hdi �

�
k�d� � �

d � �

�
� � � ��

�
k�i � �� � �

i � �

�
�

�
k��� � i � �

i� �

�
� ahdi � k��� � ��

as asserted�

Proof of �����
� �a� �c�� We may assume that k is in�nite� if necessary
replace R by l �k R where l is an in�nite extension �eld of k�

Let g be a linear form� and set S � R�gR� The exact sequence


 �� gRn �� Rn�� �� Sn�� �� 
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yields the inequality H�R� n � �� � H�R� n� � H�S� n � ��� Set a � H�R� n�
and b � H�R� n � ��� For a general linear form g the inequality and
������ give b � a� bhn��i� Let k�n���� � � � � k��� be the �n����th Macaulay
coe�cients of b� Then

bhn��i �

�
k�n � ��� �

n� �

�
� � � � �

�
k���� �

�

�
�

and so

a 	

�
k�n � ��� �

n

�
� � � � �

�
k��� � �

�

�
�

�
k��� � �




�
�

Let� as before� j � minfi � k�i� 	 ig� If j � �� then k��� � 
� and

ahni 	

�
k�n � ��

n� �

�
� � � � �

�
k���

�

�
� b�

If j � �� then

ahni 	

�
k�n � ��

n� �

�
� � � � �

�
k���

�

�
�

�
k���

�

�
� k����

by ������� But k��� � k���� and hence ahni � b�

Corollary 	����	� Let R be a homogeneous k�algebra� k a �eld� Then

H�R� n� �� � H�R� n�hni for n� 
�

Proof� Write R � S�I � S � k�X�� � � � � Xm�� According to �����
�d� there
exists an order ideal of monomialsM �

S
n	�Mn in S such thatH�R� n� �

H�S�J� n� for all n� where J is the ideal generated by all the monomials
not in M� Moreover� the choice of M was such that Mn consists of all
monomials of degree n if In � 
 and Mn � Lun for a suitable monomial
un otherwise� Since J is �nitely generated� there exists an integer r such
that Run�� � RX�Run for all n 	 r� Thus the assertion follows from
������

If we combine ������ with Macaulay�s theorem� we obtain the fol�
lowing characterization of the Hilbert series of Cohen�Macaulay homo�
geneous algebras�

Proposition 	������ Let k be a �eld� and h�� � � � � hs a �nite sequence of

positive integers� The following conditions are equivalent	

�a� there exist an integer d � and a Cohen�Macaulay �reduced� homogeneous
k�algebra R of dimension d �whose de�ning ideal is generated by squarefree
monomials� such that

HR�t� �

Ps
i��hit

i

��� t�d
�

�b� h� � �� and 
 � hi�� � h
hii
i for all i � �� � � � � s� ��



���� Macaulay�s theorem on Hilbert functions ��	

Proof� �a�  �b�� By ������ there exists an R�sequence x � x�� � � � � xd of
degree � elements� According to ����� we have

HR�t� �
QR�t�

��� t�d
� QR�t� �

sX
i��

hit
i�

Let �R � R�xR� then H�R�t� � �� � t�dHR�t� � QR�t�� It follows that
H��R� n� � hn for all n 	 
� Therefore �����
 yields the assertion�

�b�  �a�� By �����
 there exists a homogeneous k�algebra R �
k�X�� � � � � Xm��I � where I is generated by monomials� such that HR�t� �Ps

i��hit
i� The k�algebra R is Cohen�Macaulay� simply because R is of

dimension zero� In order to get a reduced such k�algebra with the required
Hilbert series we consider a certain �deformation� of R as described in
the next lemma�

Lemma 	������ Let R � k�X�� � � � � Xm��I be a homogeneous k�algebra�
where k is a �eld and I is generated by monomials� Then there exist

a reduced homogeneous k�algebra S whose de�ning ideal is generated by

squarefree monomials� and an S�sequence y of elements of degree � such

that R �� S�yS �

Proof� Assume I � �u�� � � � � un�� ui � Xai�
� � � �Xaim

m for i � �� � � � � n� If all
exponents aij are at most �� then I is a radical ideal� see Exercise �����	�
Suppose now that at least one aij � �� say ai� � � for some i� We
introduce a new indeterminate Y � and set

vk � Y ak���X�X
ak�
� � � �Xakm

m

if ak� � �� and vk � uk otherwise� The vi satisfy the following conditions�
�i� if Y divides vi� then X� divides vi�
�ii� the indeterminate X� occurs in each vi with multiplicity at most ��

We claim that Y � X� is regular modulo the ideal J � �v�� � � � � vn��
Indeed� assume the contrary is true� Then there exists an associated prime
ideal p of k�X�� � � � � Xm� Y ��J with Y � X� � p � By Exercise ������� p is
generated by a set of variables� and so X�� Y � p � It follows that there
exists w � k�X�� � � � � Xm� Y �� w �� J � with X�w � J and Yw � J � As J is
generated by monomials� we may assume that w is a monomial� Then
there exist integers i� j and monomials u�� u� such that X�w � viu� and
Yw � vju�� As Y divides vj � it follows from �i� that X� does also� and
so X� divides w� But then the multiplicity of X� in vi is at least �� a
contradiction�

If all variables in the vi occur with multiplicity one� then J is a radical
ideal� Otherwise we repeat this construction� and eventually reach the
goal� since at each step we lower the multiplicities of the variables in the
generators�
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Exercises

�����	� Let R be a homogeneous k�algebra� k a 	eld�
�a� Establish from ������ that there exist integers a� � a� � � � � � aj � � such
that

PR�n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � ��

�
n� aj � �j � ��

aj

�
�

�b� Determine the dimension and the multiplicity of R in terms of the integers
a�� � � � � aj �

�����
� Let k be a 	eld� S � kX� � � � � � Xm�� and

u � Xa�
� X

a�
� � � �X

am
m � Xj���Xj��� � � �Xj�d� � j��� � j��� � � � � � j�d��

a monomial of degree d � Set R � S�I � where I is the lexsegment ideal generated
by Ru� Then deduce
�a� dimR � j�d� � �� and
�b� e�R� � ai where i � maxfj � aj �� �g� provided dimR � ��

	�� Gotzmann�s regularity and persistence theorem

Gotzmann�s ����� regularity and persistence theorems give some deeper
insight into the nature of the Hilbert polynomial and the Hilbert function�

As before let S � k�X� � � � � � Xm� be the polynomial ring in m variables
de�ned over a �eld k� I � S a graded ideal� and R � S�I � The regularity
theorem is a statement about the regularity of the ideal sheafI associated
with I in projective space� Note that di erent ideals may yield the same
ideal sheaf� The ideal I � Ker�S � R��H�

m �R�� is called the saturation of

I� the sheafs associated with ideals I and J coincide if and only if I � J �
We will formulate Gotzmann�s theorems in the language of commu�

tative algebra� So we de�ne the �Castelnuovo�Mumford� regularity of a
�nite graded S�module M� rather than that of a sheaf� It is the number

regM � maxfi � j � �H i
m �M�j �� 
g�

Let q be an integer� ThenM is called q�regular if q 	 reg�M�� equivalently�
if �H i

m �M�j�i � 
 for all i and all j � q�
Before we set out for Gotzmann�s theorems� we include an interesting

description of regularity in terms of graded Betti numbers� It shows
that reg�M� measures the �complexity� of the minimal graded free reso�
lution of M� Therefore regularity plays an important r �ole in algorithmic
commutative algebra� Denoting by M	q the truncated graded R�moduleL

j	qMj � one has

Theorem 	���� �Eisenbud�Goto�� The following conditions are equivalent	

�a� M is q�regular�

�b� �TorSi �M� k�j�i � 
 for all i and all j � q�
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�c� M	q admits a linear S�resolution� i�e�� a graded resolution of the form


 �� S��q � l�cl �� � � � �� S��q � ��c� �� S��q�c� �� M	q �� 
�

Proof� �b�� �c�� By de�nition� the moduleM	q has a linear resolution
if and only if

�Tor
S
i �M	q � k�r � Hi�x�M	q�r � 
 for all i� r� r �� i � q�

Here H
�
�x�M� is the Koszul homology ofM with respect to the sequence

x � X�� � � � � Xm�
Since �M	q�j � 
 for j � q� we always have Hi�x�M	q�r � 
 for

r � i � q� while for r � i� q

Hi�x�M	q�r � Hi�x�M�r �
�Tor

S
i �M� k�r �

Thus the desired result follows�
�a�  �c�� We may assume q � 
 and M � M	�� Then it is

immediate that �H�
m �M� is concentrated in degree 
� This implies M �

�H�
m �M��M��H�

m �M�� The �rst summand is a direct summand of copies
of k� Hence M is 
�regular if and only if M��H�

m �M� is 
�regular� In
other words� we may assume that depthM � 
� We may further assume
that k is in�nite� Then there exists an element y � S of degree � which is
M�regular� From the cohomology exact sequence associated with


 ��M����
y
��M ��M�yM �� 


it follows that M�yM is 
�regular� By induction on the dimension on
M� we may suppose that M�yM has a linear S�yS�resolution� But if F�

is a minimal graded free S�resolution� then F��yF� is a minimal graded
S�yS�resolution of M�yM� This implies that F� is a linear S�resolution
of M�

�c� �a�� Again one may assume q � 
 and M � M	�� Then M has
a linear resolution

� � � �� S����c� �� S����c� �� S c� ��M �� 
�

Computing �ExtiS �M� S� from this resolution we see that �ExtiS �M� S�j � 

for j � �i� By duality �see ������ there exists an isomorphism of graded
R�modules

�H i
m �M� �� Homk

�
�Extm�iS �M� S��m��� k

�
�

Therefore �H i
m �M�j�i � 
 for all j � 
� as desired�

The regularity theorem says that the regularity of the saturation of
an ideal I can be read o the Hilbert polynomial of S�I �
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Theorem 	���� �Gotzmann��Write the Hilbert polynomial PR�n� of R � S�I
in the unique form

PR�n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � � �

�
n� as � �s� ��

as

�
with a� 	 a� 	 � � � 	 as 	 
� as described in �����	� Then the saturation I
of I is s�regular�

Proof� We prove the theorem by induction on the dimension of S � For
m � � the assertion is trivial� Now let m � �� and choose be a general
linear form h� Since PR�n� � PS�I�n� we may assume that I � I � We may

further assume that I �� S � Then depthR � 
� and h is R�regular� Hence
we get an exact sequence


 �� R����
h
�� R �� R�hR �� 


yielding the equation

PR�hR�n� � PR�n�� PR�n� ������

Set eR � R�hR� eS � S�hS� then eR � eS�J for some ideal J � eS � Further�
more P$R�n� � P$S�J�n�� Suppose that

P$S�J�n� �

�
n� b�
b�

�
�

�
n� b� � �

b�

�
� � � � �

�
n� br � �r � ��

br

�
����

then J is r�regular by the induction hypothesis�
��� and ��� imply

PR�n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � � �

�
n� ar � �r � ��

ar

�
� c�

where c is a constant and ai � bi � � for all i�

We claim that c 	 
� and that I is s�regular for s � r � c� These two
claims complete the proof� Indeed� we may set ar�� � � � � � ar�c � 
�

In order to derive the �rst claim� assume that c � 
� For n � 
 we
then have

H�R� n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � � �

�
n� ar � �r � ��

ar

�
����

The right hand side b of this inequality satis�es the equation

b �

�
n� a�

n

�
�

�
n� a� � �

n� �

�
� � � ��

�
n� ar � �r � ��

n� �r � ��

�
�
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so that

bhni �

�
n� b�

n

�
�

�
n� b� � �

n� �

�
� � � � �

�
n� br � �r � ��

n� �r � ��

�
�

�
n� b�
b�

�
�

�
n� b� � �

b�

�
� � � � �

�
n� br � �r � ��

br

�
�

Observing that n � ar � �r � �� � n � �r � ��� one deduces from ��� �see
������� that H�R� n�hni � bhni� Therefore by Green�s theorem�

H�eR� n� � �n� b�
b�

�
�

�
n� b� � �

b�

�
� � � � �

�
n� br � �r � ��

br

�
�

This contradicts ����
For the proof of the second claim note �rst that �H i

m �J� �
�H i

m �J�

for i � �� Therefore and since J is r�regular we deduce from the local
cohomology sequence associated with


 �� I����
h
�� I �� J �� 


that H i
m �I�j�i � 
 for all i � � and j � r �and thus for j � s��

It remains to be shown that �H�
m �I�j�� � 
 for j � s� Suppose this is

not the case� and let j be the largest number with �H�
m �I�j�� �� 
� Then

by ������b� below�

H�R� j � ��� PR�j � �� � ��H�
m �R�j�� � 


since �H�
m �R� � 
 and �H i��

m �R�j�� � �H i
m �I�j�� � 
 for i � �� as we have

already seen� By our choice of j we have �H�
m �R�j�� � 
� so that

H�R� j � �� � PR�j � ��� but H�R� j � �� � PR�j � ���

If j � s� �� then j � � � s� �� and

PR�s� �� �

�
s� � � a�

s� �

�
� � � � �

�
� � as��

�

�
� ��

whence

H�R� j � �� � H�R� s� �� �

�
s� � � a�

s� �

�
� � � ��

�
� � as��

�

�
�

Thus Macaulay�s theorem implies

H�R� j � �� � H�R� j � ��hj��i �

�
s � a�

s

�
� � � ��

�
� � as��

�

�
� PR�s�� �as � �� � PR�s� � PR�j � ���

which is a contradiction�
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If j � s � �� then PR�j � ��hj��i � PR�j � �� �see �������� We apply
Macaulay�s theorem again� and get

H�R� j � �� � H�R� j � ��hj��i � PR�j � ���

leading to the same contradiction�

By ������ we have H�R� n � �� � H�R� n�hni for all large n� But could
it happen that H�R� n � �� � H�R� n�hni� and H�R� r � �� � H�R� r�hri for
some r and n with r � n# The following persistence theorem answers this
question�

Theorem 	���� �Gotzmann�� Suppose that H�R� n��� � H�R� n�hni for some
n and that I is generated by elements of degree � n� Then H�R� r � �� �
H�R� r�hri for all r 	 n�

Proof� We prove the theorem by induction on m � dimS � If m � �� I is
principal� and the assertion is trivial� Now let us assume that m � �� Let

H�R� n� �

�
k�n�

n

�
� � � � �

�
k���

�

�
be the n�th Macaulay expansion of H�R� n�� Macaulay�s theorem implies

H�R� r� �

�
r � n� k�n�

r

�
� � � � �

�
r � n� k���

r � n� �

�
���

for all r 	 n� and it remains to be shown that equality holds�
Let h be a general linear form� Then

�H�R� n�hni�
hni 	 H�R�hR� n�hni 	 H�R�hR� n� �����

	 H�R� n� ���H�R� n� � �H�R� n�hni�
hni�

The �rst inequality is Green�s theorem� the second is Macaulay�s� the
third follows from the exact sequence

R����
h
�� R �� R�hR �� 
�

and the last equality results from the hypothesis that H�R� n � �� �
H�R� n�hni�

Since the �rst and last term in this chain of inequalities coincide�
we must have equality everywhere� In particular� H�R�hR� n � �� �

H�R�hR� n�hni� Since the de�ning ideal of R�hR is again generated by
elements of degree � n� the induction hypothesis applies and yields
H�R�hR� r� �� � H�R�hR� r�hri for all r 	 n�

One also deduces from ��� that

H�R�hR� n� �� � �H�R� n�hni�
hni �

�
k�n�

n� �

�
� � � � �

�
k���

�

�
�
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Therefore

PR�hR�r� �

�
r � �k�n�� n� ��

k�n�� n� �

�
� � � � �

�
r � �k���� ��� �n� ��

k���� �

�
for all r�

Hence the saturation J of the de�ning ideal of R�hR is n�regular by

the regularity theorem� Let I again denote the saturation of I and set
R � S�I � It follows just as in the proof of the regularity theorem that

PR�r� �

�
r � �k�n�� n�

k�n� � n

�
� � � � �

�
r � �k���� ��� �n� ��

k���� �

�
� c���

with c 	 
�
Suppose c � 
� since PR�n� � PR�n�� the inequality ��� then implies

PR�r� �

�
r � n� k�n�

r

�
� � � � �

�
r � n� k���

r � n� �

�
� c

	 H�R� r� � c � H�R� r�

for all r 	 n� This is a contradiction�
Now ��� and Gotzmann�s regularity theorem entail that I is n�regular�

whence H�R� r� � PR�r� for all r 	 n�
Thus for all r 	 n we obtain the following string of inequalities�

H�R� r� � H�R� r� � PR�r� � PR�r� � H�R� r��

Hence equality holds everywhere� and this proves the theorem�

Exercise

������ Let S � kX� � � � � � Xm� be a polynomial ring over a 	eld k� and let n � � be
an integer� A subspace V of the k�vector space Sn is called a Gotzmann space if
the ideal I generated by V satis	es H�S�I� n� �� � H�S�I� n�hni�
�a� According to ����
� lexsegments span Gotzmann spaces� Give an example of
a set of monomials which is not a lexsegment �even after a permutation of the
variables�� but spans a Gotzmann space�
�b� Let I be the ideal generated by a Gotzmann space V � Sn � It can be shown
that the ideal I has a linear resolution� Compute the Betti numbers of I �
�c� Suppose that dimR�I � �� Show I is generated by a Gotzmann space if and
only if I � m n for some n � � where m � �X� � � � � � Xm��

	�	 Hilbert functions over graded rings

In this section we consider positively graded k�algebras� that is� graded k�
algebras of the form R �

L
i	� Ri where R� � k and R is �nitely generated

over k� For simplicity we will assume that k is a �eld� In contrast to a
homogeneous k�algebra the generators of a positively graded k�algebra
may be of arbitrarily high degree�

In analogy with ����� we have
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Proposition 	�	��� Let R be a positively graded k�algebra� k a �eld� and

M �� 
 a �nite graded R�module of dimension d � Then there exist positive

integers a�� � � � � ad � and Q�t� � Z�t� t��� such that

HM�t� �
Q�t�Qd

i����� tai�
with Q��� � 
�

Proof� We prove the assertion by induction on the dimension d of M� If
d � 
� then dimk M � �� and so Mn � 
 for n � 
� Therefore HM �t� �
Z�t� t���� and we set Q�t� � HM�t�� It is clear that Q��� � dimkM � 
�

Now assume that d � 
� and let U � �H�
m �M�� where m �

L
i��Ri

is the unique graded maximal ideal of R� Note that U is a graded
submodule of M with dimk U � �� and that m �� Ass�M�U�� We may
assume that k is in�nite �see the proof of �����
�� Then� according to
������� there exists a homogeneous �M�U��regular element x � m � say of
degree a�� The exact sequence


 �� �
 � x�M��a�� ��M��a��
x
��M ��M�xM �� 
�

where �
 � x�M � fu �M � xu � 
g� gives rise to the equation

HM�t���� ta�� � HM�xM�t�� P �t��

where P �t� is the Hilbert series of �
 � x�M��a��� The series P �t� actually
belongs to Z�t� t��� since �
 � x�M � U� and U is of �nite length� By
the induction hypothesis there exist �Q�t� � Z�t� t���� and positive integers
a�� � � � � ad such that

HM�xM�t� �
�Q�t�Qd

i����� tai�
� �Q��� � 
�

Set Q�t� � �Q�t� � P �t�
Qd

i���� � tai�� then� as required� we have HM�t� �

Q�t��
Qd

i����� tai� with Q��� � 
�

Remarks 	�	��� �a� Proposition ����� is analogously valid in the case where
R� is an Artinian local ring�
�b� It can easily be veri�ed that the integers a�� � � � � ad found in the proof
of ����� are the degrees of elements generating a Noether normalization
of R�AnnM� �Also see Exercise ��������

A function P � Z� C is called a quasi�polynomial �of period g� if there
exist a positive integer g and polynomials Pi� i � 
� � � � � g � �� such that
for all n � Z one has P �n� � Pi�n� where n � mg � i with 
 � i � g � ��

In the following theorem we consider the graded components of the
modules �H i

m �M�� Note that they are �nite dimensional k�vector spaces
�why#��
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Theorem 	�	�� �Serre�� Let R be a positively graded k�algebra� k a �eld� and
M �� 
 a �nite graded R�module of dimension d � and denote the �maximal

ideal of R by m � Then

�a� there exists a uniquely determined quasi�polynomial PM with H�M� n� �
PM�n� for all n� 
�

�b� H�M� n� � PM�n� �
Pd

i������
i dimk

�H i
m �M�n for all n � Z�

�c� one has

degHM�t� � maxfn � H�M� n� �� PM�n�g

� maxfn �
dX
i��

����i dimk
�H i

m �M�n �� 
g�

�Here degHM�t� denotes the degree of the rational function HM�t���

Proof� �a� follows from Exercise �����
 or Exercise �������

�b� holds when d � 
� since then PM � 
 and M � �H�
m �M� whereas

�H i
m �M� � 
 for i � 
� Next one notes that both sides of the equation

change by the same amount� namely dimk
�H�

m �M�n� if one replaces M by
M��H�

m �M�� As in the proof of ����� we may thus assume that �H�
m �M� � 


and that m contains a homogeneous M�regular element x of degree e�
Then we have an exact sequence


 ��M��e�
x
�� M �� M�xM �� 
�

Set H �
M�t� �

P
n�Z�H�M� n�� PM�n��tn and

H ��
M�t� �

X
n�Z

�
dX
i��

����i dimk
�H i

m �M�n�t
n�

As HM�xM�t� � ���te�HM�t�� it follows that PM�xM�n� � PM�n��PM�n�e�
for all n � 
� and� hence� PM�xM�n� � PM�n�� PM�n � e� for all n � Z�
Therefore H �

M�xM�t� � ��� te�H �
M�t�� The long exact sequence of graded

local cohomology derived from the exact sequence above easily yields that
likewise H ��

M�xM�t� � ��� te�H ��
M�t�� By induction� H

�
M�xM�t� � H ��

M�xM�t��

so H �
M�t� � H ��

M �t� as well�

�c� follows immediately from �b� and Exercise �����
�

The previous theorem generalizes Hilbert�s theorem ������ and conse�
quently PM is termed the Hilbert quasi�polynomial of M�

Suppose that M � R in ����� and that R is Cohen�Macaulay� Then
degHR�t� equals maxfn �

�Hd
m �R�n �� 
g� and thus is the a�invariant of

R introduced in Section ���� see the remark following ������ This fact
motivates the following extension of the notion of a�invariant�
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De�nition 	�	�	� Let R be a positively graded k�algebra where k is a
�eld� Then the degree of the Hilbert function of R is denoted by a�R�
and called the a�invariant of R�

Observe that a�R� � 
 if and only if H�R� n� � PR�n� for all n 	 
�
That this condition has structural implications� is exhibited by a theorem
of Flenner ��
	� and Watanabe ����� if k is an algebraically closed �eld
of characteristic 
� and R is a normal Cohen�Macaulay positively graded
k�algebra with negative a�invariant� then R has rational singularities�
provided Rp has rational singularities for all prime ideals p di erent from
the �maximal ideal of R� In Chapter �
 we will again encounter the
condition a�R� � 
�

The Hilbert function of the canonical module� Stanley�s theorem ����� an�
alyzes how the Gorenstein property of a positively graded k�algebra is
re�ected by its Hilbert series� It will be deduced from the next result
which asserts that the �canonical module of a Cohen�Macaulay posi�
tively graded k�algebra is determined by its Hilbert series� provided R is
a domain� Occasionally one can use this fact to identify the �canonical
module� see for example �����

The automorphism � � Z�t� t��� � Z�t� t���� ��t� � t��� can be ex�
tended to all rational functions F�t�� and we set F�t��� � ��F�t���

Theorem 	�	��� Let k be a �eld� R a d�dimensional Cohen�Macaulay

positively graded k�algebra� M a Cohen�Macaulay graded R�module of di�

mension n� and M� � �Extd�nR �M��R�� Then
�a� HM ��t� � ����nHM�t����
�b� if R is a domain� dimM � d � and HM�t� � tqH	R

�t� for some q� then
M�q� �� �R �

Proof� �a� We set

VM�t� �
X
i�Z

dimk�
�Hn

m �M��i�t
i�

By the graded local duality theorem ����� one has VM�t� � HM ��t��
Furthermore HM�t� � VM�t��� if dimM � 
�

Let a � R be an M�regular homogeneous element of degree g� Then
the exact sequence


 ��M��g�
a
��M ��M�aM �� 


induces an exact sequence


 �� �Hn��
m �M�aM� �� �Hn

m �M��g�� �� �Hn
m �M� �� 
�

Since �Hn
m �M��g�� �� �Hn

m �M���g�� one obtains VM�aM�t� � �t�g���VM�t��
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By ������ there exists a maximal M�sequence x of homogeneous
elements� Set bi � deg xi� An iterated application of the previous
argument then yields

HM�t� �
HM�xM�t�Qn
i����� tbi�

�
VM�xM�t

���Qn
i����� tbi�

� ����nVM�t
��� � ����nHM ��t����

�b� We may assume q � 
� Then HM ��t� � H	�

R
�t� � HR�t�� It follows

that there exists an element x �M� of degree 
� x �� 
� Let � � R �M� be
the homogeneous R�module homomorphism mapping � to x� Since R is
a domain and M� a Cohen�Macaulay R�module of maximal dimension�
the homomorphism � is injective� But since R and M� have the same
Hilbert series� � must actually be an isomorphism� and it follows that
M ��M�� �� R� �� �R �

Corollary 	�	�� �Stanley�� With the notation and hypothesis of ����� suppose

that R has the Hilbert series HR�t� �
Ps

i��hit
i�
Qd

j����� taj��

�a� Then H	R
�t� � ����dHR�t���� equivalently�

H	R
�t� �

t
P
aj�s
Ps

i��hs�it
iQd

j����� taj �
�

�b� If R is Gorenstein� then HR�t� � ����dta�R�HR�t����

�c� Suppose R is a domain� and HR�t� � ����dtqHR �t��� for some integer

q� Then R is Gorenstein�

Proof� �a� follows immediately from ������ and according to ������ we
have �R � R�a�R��� This implies �b�� With R � M� �c� results from
������b��

Remarks 	�	��� �a� Assume the positively graded k�algebra R is Goren�

stein� and write HR�t� � QR�t��
Qd

i�����tai�� Then the functional equation

������b� for HR�t� is equivalent to the equation QR�t� � tdegQRQR�t���� that
is� to the symmetry of the polynomial QR�t��

�b� Consider the homogeneous k�algebra R � k�X� Y ���X�� XY � Y ���
Then HR�t� � � � �t � t�� but R is not Gorenstein� Applying �������
we derive from R a reduced non�Gorenstein Cohen�Macaulay ring S
satisfying HS �t� � ����dtqHS �t���� Thus for ������c� it is essential to
require that R be a domain�

On the other hand� suppose the Hilbert series of the positively graded
k�algebra R satis�es ������b�� but R is not necessarily a domain� Instead
suppose there exist a positively graded algebra S which is a Cohen�
Macaulay domain� and a homogeneous S�sequence x such that S�xS �� R�
Since QS�t� is symmetric if and only if QR�t� is� we conclude that R is
Gorenstein�
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In particular it follows that the above Artinian algebra cannot be
the residue class ring of a homogeneous domain S by a homogeneous
S�sequence�

Stanley observed that the following result on numerical semigroup
rings� due to Herzog and Kunz ���
�� can be derived easily from the
previous corollary� A numerical semigroup is a subsemigroup S of the
additive semigroup N such that 
 � S and N n S is �nite� The last
condition is equivalent to the requirement that the greatest common
divisor of all the elements of S is �� If S is a numerical semigroup� then
there exist integers 
 � a� � � � � � an such that S is the set of linear
combinations

z�a� � z�a� � � � � � znan with zi �N�

Any such set of integers is called a set of generators of S � and we write
S � ha�� � � � � ani� It is clear that a minimal set of generators of S is
uniquely determined�

The conductor c � c�S� of S is de�ned by c � maxfa �N � a�� �� Sg�
For example� S � h�� 	i has the conductor c�S� � ���

If k is a �eld� k�S� denotes the k�subalgebra of the polynomial
ring k�X� generated by all monomials Xa� a � S � Note that k�S� �
k�Xa� � � � � � Xan� if S � ha�� � � � � ani� Thus� if we set degX � �� then k�S� is
a positively graded k�algebra with k�basis Xa� a � S � Moreover� k�S� is
Cohen�Macaulay since it is a one dimensional domain�

Theorem 	�	��� Let S be a numerical semigroup with conductor c� The

following conditions are equivalent	

�a� k�S� is Gorenstein�
�b� the semigroup S is symmetric� that is� for all i with 
 � i � c � � one

has i � S if and only if c� i � � �� S �

Proof� Write R � k�S�� Then

HR�t� �
X
j�S

tj � ����� t��
X

i�NnS

ti�

and so
�HR �t

��� � t���� t� �
X

i�NnS

t�i�

Suppose HR�t� � �trHR�t���� then necessarily r � c � �� and

����� t��
X

i�NnS

ti � tc���� t� �
X
i�NnS

tc���i�

Hence HR �t� � �tc��HR�t
��� if and only if S is symmetric� and the

assertion follows from ������
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A homogeneous Cohen�Macaulay k�algebra R is called a level ring if
all elements in a minimal set of generators of �R have the same degree�
When R is Artinian� then ���R� � dimk

�SocR� and therefore R is a
level ring if and only if the homogeneous socle of R equals Rs where
s � maxfi � Ri �� 
g�

Recall that a Cohen�Macaulay ring R is generically Gorenstein if Rp

is Gorenstein for all minimal prime ideals p of R�

Theorem 	�	�� �Stanley�� Let R be a homogeneous Cohen�Macaulay k�
algebra� Suppose that R is a domain� or generically Gorenstein and a level

ring� Let HR�t� �
Ps

i�� hit
i���� t�d� then

jX
i��

hi �

jX
i��

hs�i for all j � 
� � � � � s�

Proof� Note that the least degree of a homogeneous non�zero element of
�R is b � �a�R�� Our assumptions guarantee the existence of a homo�
geneous element x � �R of degree b such that Rx �� R��b�� This is
clear if R is a domain� Next assume that R is generically Gorenstein and
a level ring� Then the natural homomorphism � � �R � ��R��� �which
is homogeneous� is a monomorphism� see ������ Let G � ��R�� be a
homogeneous epimorphism� where G is free� Then the dual homomor�
phism ��R��� � F � G� is a monomorphism which� composed with ��
yields a homogeneous monomorphism � � �R � F � We identify �R with
its image in F � Suppose that the k�vector space ��R�b is contained inS

p �Ass R p F � Then� since ��R�b� p F is a subspace of ��R�b� and as we may

assume that k is in�nite �the reader should check this�� it follows that
��R�b � p F for some p � AssR� However the elements of ��R�b generate
the canonical module� and so �R � p F � This is impossible� because it
would imply that p Fp contains a free Rp �module of rank �� Now we
choose x � ��R�b n

S
p �Ass R p F� then Rx �� R��b��

Thus� in any case� there exists an exact sequence of graded R�modules


 �� R
�
�� �R�b� �� N �� 
�

where ���� � x is a non�zero homogeneous element of degree b in �R �
Let HR�t� �

Ps
i��hit

i���� t�d � d � dimR� be the Hilbert series of R�
By ������ the exact sequence implies that

HN�t� � ��� t��d
sX
i��

�hs�i � hi�t
i�

The module N has rank 
 since rank�R � �� and so dimN � d � On
the other hand� the exact sequence shows that depthN 	 d � �� and thus
we conclude that N is a graded Cohen�Macaulay module of dimension
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d � �� Therefore HN�t� �
Pr

i�� ait
i���� t�d�� with ai 	 
 for i � �� � � � � r�

see �����
� It follows that

sX
i��

�hs�i � hi�t
i � ��� t�

rX
i��

ait
i�

Thus we obtain the following set of equations�

hs � h� � a�� hs�� � h� � a� � a�� � � � � h� � hs � as � as���

Here we have set ai � 
 for i � r� Adding up the �rst j � � equations
gives

jX
i��

hs�i �

jX
i��

hi � aj 	 
�

as asserted�

Consider the sequence ��� �� �� ��� Proposition ������ implies that this
is the h�sequence of a Cohen�Macaulay reduced homogeneous k�algebra
R� But ���� implies that such an R is not a domain�

Exercises

������� Let F�t� � Q�t��
Qd

i���� � tai � �
P�

i�a fit
i with Q�t� � Zt� t��� and positive

integers a�� � � � � ad � Let
P�

n�a fnt
n be the Laurent expansion of F at �� Show

�a� there exists a unique quasi�polynomial P with P �n� � fn for n� ��

�b� maxfn � fn �� P �n�g � degF �

Hint� For �b� one argues similarly as in the proof of �������

������� Let R be a Noetherian positively graded k�algebra over a 	eld k� generated
by homogeneous elements x� � � � � � xm of degrees e� � � � � � em� Let e be the least
common multiple of e� � � � � � em and de	ne S to be the k�subalgebra generated by
the degree e homogeneous elements of R� A 	nite graded R�module obviously
decomposes into the direct sum of its S �submodules Mi �

L
j�ZMje�i� i �

�� � � � � e � ��

�a� Show that the Mi are 	nite S �modules�

�b� By considering S as a homogeneous k�algebra in the appropriate way� deduce
that the Hilbert function H�M� n� is a quasi�polynomial of period e for n� ��

������� Let R be a Noetherian positively graded k�algebra over a 	eld k and
M �� � a 	nite R�module� Furthermore let S be a graded Noether normalization
of R�AnnM generated by elements of degrees a� � � � � � ad � d � dimM�

�a� Derive ����� from Hilbert�s syzygy theorem ������ by computing the polyno�

mial Q�t� � Zt� t��� with HM �t� � Q�t��
Qd

i���� � tai �� moreover� show Q��� �
rankS M � ��

�b� Prove that the coe�cients of Q�t� are non�negative if M is a Cohen�Macaulay
module�
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������� �a� Let R be a Noetherian positively graded k�algebra of dimension ��
where k is an algebraically closed 	eld� If H�R� n� � � for some n� show R is not
a domain�

�b� Find an example of a ��dimensional homogeneous R�algebra R which is a
domain� and for which H�R� n� � � for all n � ��

������� Let k be a 	eld� and P �t� a formal power series with integer coe�cients�
Demonstrate the following conditions are equivalent�

�a� there exists a d�dimensional homogeneous k�algebra which is a complete
intersection� and which has the Hilbert series P �t��

�b� there exist an integer n� n � d � and integers ai � �� i � �� � � � � n� such that
P �t� � ��� t��d

Qn
i���� � t � t� � � � �� tai ��

������� Let k be a 	eld� In this exercise we want to specify the associated prime
ideals of an ideal I � R � kX� � � � � � Xn� which is generated by monomials in the
variablesX� � � � � � Xn � We order the monomials in the reverse degree�lexicographical
order� and denote by L�a� the leading monomial of a� see the proof of ����� and
the discussion following ������

�a� Let a � R� and write a �
P

i �ivi with �i � k and vi monomials for all i� Then
L�a� � I if a � I � Conclude from this that a � I if and only if vi � I for all i with
�i �� ��

�b� Let a � R be a monomial� Show the ideal J � fb � R � ba � Ig is generated
by monomials�

�c� Prove that an ideal generated by monomials is a prime ideal if and only if it
is generated by a subset of fX� � � � � � Xng�

�d� Prove that the associated prime ideals of R�I are all generated by subsets of
fX� � � � � � Xng

�e� Show an ideal I generated by monomials is a primary ideal if and only if it
satis	es the following condition� for every variable Xi which divides a monomial
m � I such that m�Xi �� I � some power of Xi belongs to I �

������� �a� Let k be a 	eld� and I�� I�� I� � kX� � � � � � Xn� ideals generated by
monomials� Show I� 	 �I� � I�� � �I� 	 I�� � �I� 	 I���

�b� Let v�� � � � � vm � kX� � � � � � Xn� monomials in X� � � � � � Xn � Suppose v� � ab is
the product of monomials a and b with greatest common divisor �� then show
�ab� v�� � � � � vm� � �a� v�� � � � � vm� 	 �b� v� � � � � � vm��

�c� Describe an algorithm to determine the primary components of an ideal
generated by monomials�

�����	� Let k be a 	eld� and I � kX� � � � � � Xn� an ideal generated by squarefree
monomials� Demonstrate that kX� � � � � � Xn��I is reduced�

�����
� Let k be a 	eld and I � R � kX� � � � � � Xn� the ideal generated by the
monomials XiXj � � � i � j � n� Determine AssR�I �

������� Let k be a 	eld� I � kX� � � � � � Xn� an ideal generated by monomials� and
R � kX� � � � � � Xn��I � Show

�a� Show that a ��dimensional Gorenstein ring is a complete intersection� �This
is also true in dimension �� see Bruns and Herzog �����

�b� Give a ��dimensional Gorenstein example that is not a complete intersection�
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������� Prove the graded version of ������� let R be a graded ring� and M and N
graded R�modules� if x � R is a homogeneous element of degree a which is R�

and M�regular and annihilates N� then �Exti��
R �N�M���a� 
� �ExtiR��x��N�M�xM��

������� Let k be a 	eld� and let R be a homogeneous Gorenstein k�algebra of
dimension d � Prove �e� � �a�R� � d�e� �

	�� Filtered rings

In this section we introduce the extended Rees ring and associated graded
ring of a �ltered ring� We will compute their dimensions� and show that
a �ltered ring inherits many good properties from its associated graded
ring� The results will be used in the next section where we consider
the Hilbert�Samuel function� and in Chapter 	 for the study of graded
Hodge algebras�

De�nition 	����� Let R be a ring� A �ltration F on R is a descending
chain R � I� � I� � I� � � � � of ideals such that IiIj � Ii�j for all i and j�
A �ltered ring is a pair �R� F� where R is ring and F is a �ltration on R�

The most common �ltration is the one given by the powers of an
ideal I � called the I�adic �ltration�

Let R be a �ltered ring with �ltration F � �Ii�i	�� We de�ne the
extended Rees ring of R with respect to F by

R�F� �
M
i�Z

Iit
i�

Here Ii � R for i � 
� and R�F� is viewed as a graded subring of R�t� t����
Moreover� we de�ne the associated graded ring of R with respect to F by

grF�R� �
�M
i��

Ii�Ii���

It is a graded ring with multiplication induced by the multiplication map
Ii 
 Ij � Ii�j�

Given an R�moduleM� R�F�M� �
L

i�Z IiMti �respectively grF�M� �L�
i�� IiM�Ii��M� is in a natural way a graded module over R�F� �re�

spectively grF�R��� In the case where F is the I�adic �ltration we denote
by R�I� the extended Rees ring� and in accordance with Section ��� by
grI�R� the associated graded ring� Further we write R�I�M� for R�F�M�
and grI�M� for grF�M��

We will also encounter the Rees ring R��F� �
L�

i�� Iit
i and the

graded R��F��modules R��F�M� �
L�

i�� IiMti� The notations in the
case of I�adic �ltrations are to be modi�ed accordingly�

The following observation� whose proof is left to the reader� is of
crucial importance in the study of the extended Rees ring�
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Lemma 	����� Let R be a �ltered ring with �ltration F � Then
�a� the element t�� � R�t� t��� belongs to R�F� and is R�F��regular�
�b� R�F��t��R�F� �� grF�R��

�c� R�F�t��
�� R�t� t����

We call F Noetherian if R�F� is Noetherian� For example� I�adic
�ltrations on a Noetherian ring are Noetherian� It is clear that if R is
Noetherian and R�F� is �nitely generated over R� then F is Noetherian�
But the converse is true as well�

Proposition 	����� Let R be a �ltered ring with �ltration F � �Ii�i	�� The
following conditions are equivalent	

�a� F is Noetherian�

�b� R is Noetherian� and R�F� is �nitely generated over R�
�c� R is Noetherian� and R��F� is �nitely generated over R�
�d� R is Noetherian� and there exist positive integers j���� � � � � j�n� and xi �
Ij�i�� i � �� � � � � n� such that Ik �

Pn
i�� xiIk�j�i� for all k � 
�

Proof� The equivalence of the statements �a�� �b� and �c� follows from
������

�c�  �d�� Let R��F� � R�a�� � � � � an�� We may assume that a�� � � � � an
are homogeneous elements of positive degree� Then ai � xit

j�i� for some
j�i� � 
 and xi � Ij�i�� i � �� � � � � n� These xi satisfy the conditions in �d��

�d� �a� is proved similarly�

Note that if R�I� is Noetherian and grF�R� is �nitely generated over
R�I�� it does not follow in general that F is Noetherian� For example� let
�R� m � be a local ring and let F � �Ii�i	� with Ii � m for all i � 
� Then
grF�R� � R�m � but R�F� is not Noetherian� Thus we have to pose an
extra condition on F� the �ltration F � �Ii�i	� is separated if

T
i	� Ii � 
�

and F is strongly separated if
T

i	��I � Ii� � I for all ideals I � R� By
Krull�s intersection theorem� I�adic �ltrations on local rings are strongly
separated� provided I �� R�

Recall that the �ltration F � �Ii�i	� de�nes a topology on R whose
base is given by the sets a � Ii� a � R and i 	 
� see ����� With this
topologyR is a Hausdor space if and only if F is separated� The closure
of an ideal I is given by

T
i	��I � Ii�� hence F is strongly separated if and

only if all ideals of R are closed subsets�

Let us denote by �M the completion of an R�module M with respect

to F �see ����� ���� Then �R is complete with respect to the �ltration
�F � ��Ii�i	�� and �Ii is the closure of Ii �R in �R� If the �ltration is separated�

then the canonical homomorphism R � �R is injective� and �Ii � R � Ii�

see ����� Theorem �� p� �
� Further� if grF�R� is Noetherian� then �R is

Noetherian and for all ideals I � R� I �R is the closure of I in �R ������
Theorem �� and Corollary �� p� �����
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Proposition 	���	� If F is Noetherian� then R is Noetherian and grF�R� is
�nitely generated over R�I�� Conversely� if F is strongly separated� R�I� is
Noetherian� and grF�R� is �nitely generated over R�I�� then F is Noetherian�

Proof� The �rst part of the assertion is obvious in view of ������ For
the converse we show that R is Noetherian� and that R�F� is �nitely
generated over R� Then� by ������ F is Noetherian�

Let I � R be an ideal of R� and a � I �R � R� Since I �R is the

closure of I in �R� there exist� for all i 	 
� elements ai � I such that

ai�a � �Ii�R � Ii �R�R � Ii� Therefore a �
T

i	��I�Ii� � I � Thus we have

I �R � R � I � and this proves that R is Noetherian since �R is Noetherian�

In order to prove that R�F� is �nitely generated we may assume
that grF�R� � R�I���x�� � � � � �xn� where the �xi are homogeneous of pos�
itive degree� say �xi � xi � Ij�i���� xi � Ij�i� for i � �� � � � � n� Let A �

R�t��� x�t
j���� � � � � xnt

j�n��� then A is a graded subalgebra of R�F�� and we
claim that indeed A � R�F�� let k � 
 and x � Ikt

k� then x � a� � b�t
k

with a� � Ak and b� � Ik��� by the de�nition of A� For the same reason
we have b�tk�� � a�� b�t

k�� with a� � Ak�� and b� � Ik��� It follows that
x � a� � a�t

�� � b�t
k � and hence x � Ak � Ik��t

k � By induction on j one
shows that x � Ak � Ik�jt

k for all j 	 �� Thus x �
T

j	��Ak � Ik�jt
k� � Ak

since F is strongly separated�

In the next theorem we compare the dimension of a module M with
the dimension of R�F�M� and grF�M� where F is a �ltration on R� For
the proof we will have to identify the minimal prime ideals of R�F��

Let p � SpecR� then p � � p R�t� t��� � R�F� is a prime ideal of R�F�
and p � � R � p � It is clear that p � belongs to the set �D�t��� of graded
prime ideals of R�F� which do not contain t���

Lemma 	����� Let F be a Noetherian �ltration�

�a� The map � � SpecR � �D�t���� p �� p �� is an inclusion preserving

bijection�

�b� height p � height p � for all p � SpecR�

�c� � induces a bijection between the minimal prime ideals of R and R�F��

Proof� �a� It is clear that � is injective and inclusion preserving� Let
P � �D�t���� then P R�F�t�� � P R�t� t��� is a graded prime ideal of
R�t� t���� and hence of the form p R�t� t��� for some p � SpecR� It follows
that P � P R�F�t�� �R�F� � p R�t� t��� �R�F� � p ��

�b� Obviously we have height p � 	 height p � Suppose height p � � h�
By ������ there exists a strictly descending chain of graded prime ideals
p � � P � � P � � � � � � P h� Since all P i �

�D�t���� there exist p i � SpecR
with p �i � P i� Then p � p � � p � � � � � � p h is a strictly descending chain
of prime ideals in R� thus height p 	 h�
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�c� Let P be a minimal prime ideal of R�F�� Then t�� �� P since t�� is
R�F��regular� According to ������ P is graded� and so belongs to �D�t����
The rest follows from �a� and �b��

Theorem 	����� Let R be a �ltered ring with Noetherian �ltration F �
�Ii�i	�� and M a �nite R�module� Then R�F�M� is a �nite R�F��module�
and

�a� dimR�F�M� � dimM � ��
�b� dimgrF�M� � supfdimMm � m � Supp�M�I�M�� m maximalg� In par�
ticular� dimgrF�M� � dimM� and dimgrF�M� � dimM if I� is contained
in all maximal ideals of R�

Proof� �a� It is clear that R�F�M� is a �nite R�F��module� Let J �
AnnM� and set R� � R�J and F � � �IiR

��i	�� Then M is an R��module
and R�F�M� �� R�F ��M�� Thus we may as well assume that M is a
faithful R�module� But then R�F�M� is a faithful R�F��module� too� so
that dimR�F�M� � dimR�F�� Therefore it su�ces to prove the assertion
for M � R�

Let P � SpecR�F�� and set p � P � R� We choose a minimal prime
ideal Q � P such that height�P �Q � � height P � By ������ there exists q �
SpecR such that Q � q �� Thus we obtain the �nitely generated extensions
R�q � R�F��q � � R�t� t����q R�t� t��� of integral domains� and it follows
that the transcendence degree of the fraction �eldQ�R�F��q �� over Q�R�q �
is one� Thus A�� yields height P � height�P �q �� � height�p �q � � � �
height p � �� In particular we conclude that dimR�F� � dimR � ��

Conversely� dimR�F� 	 dimR�F�t�� � dimR�t� t��� � dimR � �� The
reader may check the last equality�

�b� As for �a� we may reduce the assertion to the case in which
M is faithful� Then R�F�M� is a faithful R�F��module� and therefore
grF�M� �� R�F�M��t��R�F�M� is a faithful grF�R��module� Thus we may
assume M � R�

According to Exercise ������� the dimension of grF�R� is the supremum
of all numbers dimgrF�R�N where the supremum is taken over all graded
maximal ideals N � Spec grF�R�� Let N be such an ideal and M its
preimage in R�F�� Then M is a graded maximal ideal� and �hence�
contains t��� Let m � M � R� As R�F��M is a graded ring and a �eld� it
is isomorphic with its degree zero homogeneous component R�m � Thus

M �
M
i��

Rti � m �
M
i��

Iit
i�

In particular m is a maximal ideal� and Ii � �Iit
i�t�i � m for i � 
� Now

the decomposition of M shows that M � �m �� t���� Since m � M � R� we
have� as in �a�� that height m � height m � � height M � height m � �� so
that height N � height M � � � height m �
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Conversely� let m � I� be a maximal ideal of R� ThenR�F���m �� t��� ��
R�m � whence M � �m �� t��� is a maximal ideal of R�F� with m � M �R�
As above� it follows that height N � height m for the graded maximal
ideal N � M ��t��� of grF�R��

The next series of results demonstrate that �good� properties of grF�R�
descend to R�

Theorem 	����� Let R be a �ltered ring with Noetherian �ltration F �
�Ii�i	��

�a� If grF�R� is Cohen�Macaulay� then so is Rp for all p � V �I���

�b� If grF�R� is Gorenstein� then so is Rp for all p � V �I���

Proof� �a� Let p � V �I��� The �ltration F � �Ii�i	� on R induces the
�ltration F � � �IiRp �i	� on Rp � and we have Rp �R grF�R�

�� grF ��Rp �� Thus
we may as well assume that �R� m � is local� I� � m � and p � m � Then
R�F� is �local� and t�� belongs to the unique graded maximal ideal of
R�F�� Therefore R�F� is Cohen�Macaulay by ������a�� �b� and Exercise
������� Applying ������c� we see that R�t� t��� is Cohen�Macaulay� Since
the extension R � R�t� t��� is faithfully �at� R is Cohen�Macaulay� see
�������

�b� is proved in a similar manner�

Theorem 	����� Let R be a �ltered ring with separated �ltration F � If

grF�R� is reduced or a domain� then so is R�

The proof� whose details we leave to the reader� follows easily from
�����
�

We close this section by showing that� under mild hypotheses� nor�
mality of the associated graded ring implies normality of the ring itself�
Let R be a Noetherian domain with fraction �eld K � Recall that x � K
is completely integral over R if there exists an element a �� 
 in R such
that axn � R for all n 	 
� Note that R is normal �integrally closed
in K� if and only if R is completely integrally closed� i�e� every element
x � K which is completely integral over R is an element of R� Indeed�
suppose x � K � x � c�d � is integral over R� Then there exists an equation
xm � a�x

m�� � � � � � am��x � am � 
 with ai � R� and it is clear that
dmxn � R for all n 	 
� Conversely� if x � K such that axn � R for some
a � R� a �� 
� and all n 	 
� then R�x� � a��R� Since a��R is a �nite
R�module this implies that x is integral over R� see ��	
�� Theorem ���

We introduce a notation which is useful in the proof of the following
theorem� Let R be a �ltered ring with separated �ltration F � �Ii�i	��
For each non�zero g � R there exists a unique integer i 	 
 such that
g � Ii nIi��� We set g� � g�Ii�� and call it the initial form of g in grF�R��
of course� 
� � 
�
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Theorem 	����� Let R be a �ltered ring with Noetherian �ltration F �
�Ii�i	� satisfying

T
i	��aR � Ii� � aR for all a � R� If grF�R� is a normal

domain� then so is R�

Proof� The assumptions imply that F is separated� Hence by ������ R is a
domain� Let K be the �eld of fractions of R� and x � c�d an element in
K which is completely integral over R� We want to show that c � Rd � It
su�ces to prove that c � Rd�Ii for all i 	 
� since Rd �

T
i	��Rd�Ii� by

assumption� We prove this by induction on i� the case i � 
 being trivial�
Suppose c � Rd � Ii� then c � ud � w� u � R� w � Ii� As x is completely
integral over R there exists a � R� a �� 
� such that a�x� u�n � R for all
n 	 
� and this implies a�w�d�n � R for all n 	 
� In other words� there
exist elements wn � R such that awn � wnd

n for all n 	 
�

We have �gh�� � g�h� for all g� h � R since grF�R� is a domain�
see Exercise �����
� Applied to the above equation we obtain a��w��n �
w�
n�d

��n� This means that w��d� is completely integral over grF�R�� By
assumption� grF�R� is an integrally closed domain� Therefore� w��d� �
grF�R�� or equivalently� w

� � v�d� for some v � R� Since w � Ii� the
last equation yields w � vd � Ii��� But then c � �u� v�d � �w � vd�� as
desired�

Exercises

������� Let R be a 	ltered ring with separated 	ltration� Show�

�a� a�b� � �ab�� or a�b� � ��

�b� a�b� � �ab�� if grF �R� is a domain�

������� Let R be a 	ltered ring with Noetherian 	ltration F � �Ii�i�� � Prove

�a� dimR � dimR��F� � dimR � ��

�b� dimR��F� � dimR � ��� I� ��
T
fp � AssR � dimR�p � dimRg�

������� Let R be a 	ltered ring with 	ltration F � �Ii�i�� � The s�th Veronese

subring R�s�
� �F� of R��F� is again a Rees ring which is de	ned by the 	ltration

F �s� � �Isi�i�� � Show the following conditions are equivalent if R is Noetherian�

�a� R��F� is a 	nitely generated R�algebra�

�b� R�s�
� �F� is a 	nitely generated R�algebra for all s � ��

�c� there exists an integer s � � such that R�s�
� �F� is a 	nitely generated R�algebra�

�d� there exists an integer s � � such that Ii�s � IiIs for all i � s�

�e� there exists an integer s � � such that Iis � �Ii�
s �

Hints� for the proof of �c� � �a� consider the ideals Mj �
L

i�� Iis�jt
is of R�s�

� �F��
j � �� � � � � s� �� and for �a� � �d� use that R��F� � RI�t� � � � � Irt

r� for some r � ��
then choose s � �r � ��r � �The implication �a� � �d� is due to Rees ������

������� Let k be a 	eld� R � kX
 � X� � X�� � and m the ideal in R generated by
X
 � X� and X�� � Show R is Gorenstein� but gr

m
�R� is not even Cohen�Macaulay�
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	�� The Hilbert�Samuel function and reduction ideals

Let �R� m � be a Noetherian local ring� and M �� 
 a �nite R�module� In
order to de�ne the multiplicity of M one passes to the associated graded
module grm �M�� and de�nes

e�M� � e�grm �M���

To be more �exible we may as well consider an ideal I � m such that
m nM � IM for some n� Any such ideal is called an ideal of de�nition

of M�
The associated graded ring grI�R� is a homogeneous algebra� and

grI�M� is a graded grI�R��module�

De�nition 	����� The �rst iterated Hilbert function

�IM�n� � H��grI �M�� n� �
nX
i��

H�grI�M�� i�

�
nX
i��

��I iM�I i��M� � ��M�In��M�

is called the Hilbert�Samuel function of M� and e�I�M� � e�grI �M�� the
multiplicity of M with respect to I �

As an immediate consequence of ����� we obtain

Proposition 	����� Let �R� m � be a Noetherian local ring� M �� 
 a �nite

R�module of dimension d � and I an ideal of de�nition of M� Then

�a� the Hilbert�Samuel function �IM�n� is of polynomial type of degree d �

�b� e�I�M� � limn���d"�nd� ��M�In��M��

Proof� By ������ we have dimM � dimgrI�M�� Thus �a� follows from
������

�b� For large n we have �IM�n� � �e�I�M��d"�nd�terms in lower powers
of n� This yields the desired result�

The polynomial �I
M�X� � Q�X� with �I

M�n� � �IM�n� for n � 
 is
called the Hilbert�Samuel polynomial of M with respect to I � When
I � m � we simply write �M�X� instead of �I

M�X�� �Note that �M�X� is
not the Hilbert polynomial of grm �M���

Examples 	����� �a� Let �R� m � k� be a regular local ring of dimension d �
Then the homogeneous k�algebra grm �R� is isomorphic to the polynomial

ring k�X�� � � � � Xd�� see ������ Thus �R�X� �
�
X�d
d

�
and e�R� � ��

�b� Let �R� m � k� be a regular local ring� I � R a proper ideal� and
S � R�I � We denote by n the maximal ideal of S � The canonical
epimorphism � � R � S induces a surjective homomorphism of graded
k�algebras gr��� � grm �R� � grn �S�� Indeed� let a � R� a �� 
� and
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a� � a� m j�� in grm �R� its initial form� see the de�nition above ����� It
is clear that the homogeneous elements of grm �R� are just the initial forms
of elements of R� For a � m j n m j�� we de�ne grm ����a

�� � ��a� � n j���
Let I� be the ideal generated by the elements a�� a � I � Then

I� � Ker�grm ���� because if a
� � a � m j�� � I� � then ��a� � n j��� Hence

there exists b � m j�� such that ��b� � ��a�� It follows that c � a� b � I �
and c� � a�� The converse inclusion is obvious�

We conclude that grn �S� � k�X�� � � � � Xd��I�� Thus �S�X� and e�S�
may be computed once I� and its graded resolution are known� see
�������

Assume I � �a�� � � � � am�� then �a��� � � � � a
�
m� � I� with equality if m � ��

In general� however� we have �a��� � � � � a
�
m� �� I� �Exercise ��������

Computing e�I�M� may be a painful and often impossible task� We
will show that an arbitrary ideal of de�nition of M may be replaced by
an ideal J which is generated by a system of parameters of M such that
e�J�M� � e�I�M�� provided the residue class �eld k of R is in�nite�

De�nition 	���	� Let R be a Noetherian ring� I a proper ideal� and M
a �nite R�module� An ideal J � I is called a reduction ideal of I with

respect to M if JInM � In��M for some �or equivalently all� n� 
�

The de�nition of a reduction ideal almost immediately yields

Lemma 	����� Let �R� m � be a Noetherian local ring� M a �nite R�module�
I an ideal of de�nition of M� and J a reduction ideal of I with respect to

M� Then J is an ideal of de�nition of M� and e�J�M� � e�I�M��

Proof� For large n we have In��M � JInM � JM� and this shows that J
is an ideal of de�nition of M� Moreover� we get the inequalities

��M�Im�n��M� 	 ��M�JmM� 	 ��M�ImM�

for all m 	 �� Thus ����� implies the assertion�

In the framework of Rees rings and Rees modules� reduction ideals
can be characterized as follows�

Proposition 	����� Let R be a Noetherian ring� J � I proper ideals of R�
and M a �nite R�module� The following conditions are equivalent	

�a� J is a reduction ideal of I with respect to M�

�b� R��I�M� is a �nite R��J��module�

Proof� �a�  �b�� Suppose In��M � JInM� then R��I�M� is generated
over R��J� by the elements of degree � n� and hence is �nitely generated�

�b� �a�� We may choose a homogeneous set of generators x�� � � � � xr
of R��I�M�� Let n be the maximal degree of the elements xi� and let
x � In��M� There exist elements ai � Jbi � bi � n � � � deg xi� such that
x �

Pr
i�� aixi� Since aixi � JbiIn���biM � JInM� it follows that x � JInM�

Thus we have In��M � JInM� The converse inclusion is trivial�
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In terms of Rees rings we now introduce an invariant which gives a
lower bound for the number of generators of a reduction�

De�nition 	����� Let �R� m � be a Noetherian local ring� I a proper ideal
of R� and M a �nite R�module� The number

��I�M� � dim
�
R��I�M��m R��I�M�

�
� dim

�
grI �M��m grI�M�

�
is the analytic spread of I with respect to M� We set ��I� � ��I� R� and
call it the analytic spread of I �

Proposition 	����� Under the hypothesis of ����	 we have ��J� 	 ��I�M�
for any reduction ideal J of I with respect to M� Suppose in addition that

R�m is in�nite� Then there exists a reduction ideal J of I with respect to

M such that ��J� � ��I�M��

Proof� The module R��I�M��m R��I�M� is �nite over R��J��m R��J� �L
i	� J

i�m J i which in turn is a factor ring of k�X�� � � � � Xm�� where m �

dimk J�m J � ��J�� Therefore dim
�
R��I�M��m R��I�M�

�
� m� This

proves the �rst part of the proposition�
Now let A � R��I��a � where a is the annihilator of the R��I��module

R��I�M��m R��I�M�� The ideal a is graded and contains m R��I�� Con�
sequently A is a homogeneous R�m �algebra� and dimA � ��I�M�� Since
R�m is in�nite� the Noether normalization theorem says that there exist
elements y�� � � � � yd � A of degree �� d � ��I�M�� such that A is a
�nite B�module� where B � k�y�� � � � � yd�� see �����	� It follows that
R��I�M��m R��I�M� is a �nite graded B�module�

For each yi we choose zi � I such that zi is mapped to yi under the
canonical map I � R��I��a � Let J � �z�� � � � � zd�� then ��J� � ��I�M��
and R��I�M��m R��I�M� is a �nite

�
R��J��m R��J�

�
�module� Now the

graded version ������ of Nakayama�s lemma implies that R��I�M� is a
�nite �R��J���module� and this completes the proof� see ������

Remark 	����� Let �R� m � k� be a Noetherian local ring� and I a proper
ideal of R� Northcott and Rees ���� call an ideal J a minimal reduction

of I if J is a reduction ideal of I � and J itself does not have any proper
reductions� and they prove that minimal reductions exist � a fact which
we will not use explicitly here� In the case where k is in�nite one has
the following result� let J be a reduction of I � and suppose that J is
minimally generated by x�� � � � � xn� Then J is a minimal reduction of I if
and only if the elements x�� � � � � xn are analytically independent in I and
n � ��I��

Recall that x�� � � � � xn are analytically independent in I if whenever
f�X�� � � � � Xn� is a homogeneous polynomial of degree m in R�X�� � � � � Xn�
�m arbitrary� such that f�x�� � � � � xn� � Im m � then all the coe�cients of f
are in m �
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It is clear from this description and the proof of ����� that the ideal J
constructed there is a minimal reduction of I when M � R�

Corollary 	����
� Let �R� m � be a Noetherian local ring with in�nite residue

class �eld� M a �nite R�module� and I an ideal of de�nition of M� Then

there exists a system of parameters x of M such that �x� is a reduction

ideal of I with respect to M� In particular e�I�M� � e��x��M��

Proof� We show that dim
�
R��I�M��m R��I�M�

�
� dimM� This� in

view of ����� and ������ implies the assertion� Note that ��InM�m InM�
� ��InM�� and ��InM�In��M� � ��InM� ��M�IM�� Indeed� let y�� � � � � ym�
m � ��InM�� be a system of generators of InM� We may write yj � ajxj
with aj � In� xj � M� Thus there exists an epimorphism

L
Rxj � InM

which yields an epimorphism
L

R�xj � InM�In��M where �xj denotes
the residue class of xj modulo IM� Since R�xj � M�IM� the desired
inequality follows� We therefore obtain the inequalities

H
�
R��I�M��m R��I�M�� n

�
� H�grI�M�� n�

� ��M�IM� H
�
R��I�M��m R��I�M�� n

�
�

By ����� and ������ the Hilbert function H�grI�M�� n� is a polynomial of
degree dimM � � for large n� and so is H

�
R��I�M��m R��I�M�� n

�
by

the above inequalities� Hence� if we again apply ������ the conclusion
follows�

Exercises

������� Let R be a Noetherian ring� I a proper ideal of R� M a 	nite R�module�
M� a submodule� and M�� a factor module of M� If J is a reduction ideal of I
with respect to M� show it is a reduction ideal of I with respect to M� and M���
too� �Hint� Use �������

������� �a� Let �R� m � k� be a regular local ring� and f an element in m whose
initial form f� has degree a� see ������ Set S � R��f� and prove that gr

m
�S � 
�

kX� � � � � � Xd ���f
��� and e�S � � a�

�b� Let I � �X� � XY � Z �� � kX� Y �Z ��� Show the ideal I� of initial forms of I
is not generated by the initial forms X� and XY of the generators of I �

������� Let �R� m � be a Noetherian local ring and I a proper ideal of R� Show
that the analytic spread of an ideal has the following properties�
�a� ��IRp � � ��I� for all p � SpecR�
�b� if I is m �primary� then ��I� � dimR�
�c� height I � ��I� � dimR�

������� Let �R� m � k� be a d�dimensional Cohen�Macaulay local ring� Prove�
�a� If k is in	nite� then there exists an R�sequence x � x�� � � � � xd such that
e�R� � ��R��x���
Hint� Proceed by induction on d� choose x� such that its initial form in gr

m
�R�

is an element of degree � whose annihilator has 	nite length�
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�b� e�R� � embdimR�dimR��� if equality holds� then R is said to have minimal
multiplicity�
�c� If k is in	nite� then R has minimal multiplicity if and only if there exists an
R�sequence x such that m � � �x�m �

������� Let �R� m � k� be a one dimensional local ring� Prove�
�a� If k is in	nite� there exists an element x such that m n�� � xm n for all n� ��
any such element is called super�cial�
�b� If x is a super	cial element� then x �� m ��
�c� e�R� � 
�m n� for large n�

������� Let �R� m � k� be a one dimensional Cohen�Macaulay local ring� and x a
super	cial element of R�
�a� Suppose I is an ideal of height � in R� Show that ��I�xI� � e�R��
�b� Prove that 
�I� � e�R� for all ideals of height � of R�

�����	� Let �R� m � k� be a Noetherian local ring� Suppose there exists an integer n
such that 
�I� � n for all ideals I of R� Show that dimR � ��

�����
� Let R � kt��� k a 	eld� Let f��t�� � � � � fn�t� � R� We denote by
kf��t�� � � � � fn�t��� the subring

A � fF�f��t�� � � � � fn�t�� � F � kX� � � � � � Xn��g

of R� Suppose the integral closure of A is R� prove e�A� is the minimum of the
initial degrees of the fi�t�� Hint� use the fact that R is a 	nite A�module� see
����� x���

	�� The multiplicity symbol

In the previous section we saw that the computation of the multiplicity
e�I�M� of a �nite module M with respect to an ideal of de�nition I can
be reduced to the case when I is generated by a system of parameters of
M� The advantage of this reduction will become apparent when we show
that the multiplicity of a module M with respect to an ideal generated
by a system of parameters x can be expressed in terms of the Koszul
homologyH

�
�x�M�� We approach this goal by introducing the multiplicity

symbol e�x�M�� due to Northcott�
Let �R� m � be a Noetherian local ring� and M a �nite R�module� A

sequence of elements x � x�� � � � � xn in m is a multiplicity system of M if
��M��x�M� is �nite� equivalently� if �x� is an ideal of de�nition of M�

Lemma 	����� Let �R� m � be a Noetherian local ring� x a sequence of el�

ements in R� and 
 � M� � M � M�� � 
 an exact sequence of �nite

R�modules� The sequence x is a multiplicity system of M if and only if it

is a multiplicity system of M� and M���

Proof� The exactness of M���x�M� � M��x�M � M����x�M�� � 
 im�
plies that

��M����x�M��� � ��M��x�M� � ��M����x�M��� � ��M���x�M���
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It therefore remains to show that ��M���x�M�� � � if ��M��x�M� is�
According to the Artin�Rees lemma ���	
�� Theorem ���� there exists
an integer m such that �x�mM � M� � �x�M�� and this implies that
��M���x�M�� � ��M���x�mM �M�� � ��M��x�mM��

Corollary 	����� Let �R� m � be a Noetherian local ring� M a �nite R�module�
and x � x�� � � � � xn a multiplicity system of M� Then x� � x�� � � � � xn is a

multiplicity system of M�x�M and �
 � x��M �

Proof� Note that x�M�x�M� � x��M�x�M�� and x�
 � x��M � x��
 � x��M �

This corollary allows an inductive de�nition of the multiplicity symbol�

De�nition 	����� Let �R� m � be a Noetherian local ring� M a �nite R�
module� and x � x�� � � � � xn a multiplicity system of M� If n � 
� then
��M� � �� and we set e�x�M� � ��M�� if n � 
� we set e�x�M� �
e�x��M�x�M� � e�x�� �
 � x��M�� x

� � x�� � � � � xn� We call e�x�M� the
multiplicity symbol�

At �rst glance it seems as if the multiplicity symbol depends on the
order of the elements of x� That this is not the case will follow from the
next theorem�

Note that the homology H��x�M� of the Koszul complex of a multi�
plicity system x of M has �nite length as follows from ������ Hence we
may consider the Euler characteristic

��x�M� �
X
i

����i ��Hi�x�M��

of the Koszul homology�

Theorem 	���	 �Auslander�Buchsbaum�� Let �R� m � be a Noetherian local

ring� M a �nite R�module� and x a multiplicity system of M� Then

e�x�M� � ��x�M��

The proof of the theorem is based on

Lemma 	����� Let �R� m � be a Noetherian local ring� and x � x�� � � � � xn a

sequence of elements in m � Whenever the Euler characteristic is de�ned it

has the following properties	

�a� ��x� � is additive on short exact sequences� that is� for any short exact

sequence 
�M� �M �M�� � 
 for which x is a multiplicity system of

M� one has

��x�M� � ��x�M�� � ��x�M����

�b� if x�M � 
� then ��x�M� � 
�
�c� if x� is M�regular� then ��x�M� � ��x�� � � � � xn�M�x�M��
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Proof� �a� By the additivity of length� the alternating sum of the lengths
of the homology modules in the long exact sequence

� � � �� Hi�x�M
�� �� Hi�x�M� �� Hi�x�M

��� �� � � �

is zero� This yields the desired result�
�b� Let x� � x�� � � � � xn� If x�M � 
� then

Hi�x�M� � Hi�
� x
��M� �� Hi�x

��M�� Hi���x
��M��

for all i� see ������� Thus

��x�M� �
X
i

����i
�
��Hi�x

��M�� � ��Hi���x
��M�

�
� 
�

�c� If x� is an M�regular element� then Hi�x�M� �� Hi�x��M�x�M� by
������� This implies the assertion�

Proof of ��	��� Let x � x�� � � � � xn and x
� � x�� � � � � xn� We show that

��x�M� � ��x��M�x�M�� ��x�� �
 � x��M���	�

The ascending chain 
 � �
 � x��M � �
 � x���M � � � � of submodules
of M stabilizes since M is Noetherian� Let a be an integer such that
�
 � xa��M � �
 � xa��

� �M � We leave it to the reader to verify that x� is
regular on N � M��
 � xa��M � and that x� is a multiplicity system of
�
 � xa��M �

Consider the following commutative diagram with exact rows and
columns�


 
��y ��y
�
 � x��M �
 � x��M 
��y ��y ��y


 ����� �
 � xa��M ����� M ����� N ����� 


x�

��y x�

��y x�

��y

 ����� �
 � xa��M ����� M ����� N ����� 
��y ��y ��y

 ����� C ����� M�x�M ����� N�x�N ����� 
��y ��y ��y
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From ��	���a� it follows that ��x�� N�x�N� � ��x��M�x�M�� ��x�� C�� and
��x�� C� � ��x�� �
 � x��M�� and thus

��x�� N�x�N� � ��x��M�x�M�� ��x�� �
 � x��M�����

Now we apply ��	���a� and �c� to see that

��x�� N�x�N� � ��x� N� � ��x�M�� ��x� �
 � xa��M����

Finally� by induction on i� it follows from ��	���a� and �b�� and the exact
sequences


 �� �
 � xi��
� �M �� �
 � xi��M �� �
 � xi��M��
 � xi��

� �M �� 


that ��x� �
 � xi��M� � 
 for all i� This� together with ��� and ��� completes
the proof�

If the sequence x generates the ideal �x� minimally� then the Koszul
homology H��x�M� depends only on the ideal �x�� By ��	��� the same
holds for the multiplicity symbol� Much more is true�

Theorem 	���� �Serre�� Let �R� m � be a Noetherian local ring� M a �nite R�
module� x � x�� � � � � xn a multiplicity system of M� and I the ideal generated

by x� Then

��x�M� �
n
e�I�M� if x is a system of parameters of M�


 otherwise�

Taking into account ��	�� we see that for any system of parameters x
of M the numbers e�x�M�� e��x��M� and ��x�M� are all the same�

Proof of ��	��� Let K� � K��x�M� be the Koszul complex� and for each
integer m let K �m�

�
be the subcomplex


 �� ImKn �� Im��Kn�� �� � � � �� Im�nK� �� 


of K�� We �rst claim that K�m�
�

is exact for all m� 
� for a �xed integer
i its i�cycles are Zi�K�m�

�
� � Zi�K�� � Im�n�iKi� By the Artin�Rees lemma

���	
�� Theorem ���� we have

Zi�K�� � Im�n�iKi � I �
�
Zi�K�� � Im�n�i��Ki

�
for all m � 
� We may pick m� large enough for this equality to hold
simultaneously for all i and all m 	 m��

Now let m 	 m�� and z � Zi�K �m�
�
�� then z �

Pn
i�� xizi with zi �

Zi�K�� � Im�n�i��Ki � Let e�� � � � � en be a basis of K��x� R� with dx�ei� � xi
for i � �� � � � � n� where dx denotes the di erential of K��x� R�� Then
w �

Pn
i�� ei�zi � Im�n�i��Ki�� and dx�M�w� � z� Thus K�m�

�
is indeed exact�

It follows from this� the exact sequence of complexes


 �� K�m�
�
�� K

� �� K��K
�m�
�
�� 
�
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and the exactness of K�m�
�
� that H

�
�K

�
� �� H

�
�K

�
�K �m�

�
�� hence ��x�M� �Pn

i������
i ��Hi�K�

�K �m�
�
��� However� since Ki�K

�m�
i is of �nite length for

all i � its length is actually
�
n
i

�
��M�Im�n�iM� � we have

nX
i��

����i ��Hi�K�
�K�m�

�
�� �

nX
i��

����i ��Ki�K
�m�
i ��

and thus for m� 
�

��x�M� �
nX
i��

����i
�
n

i

�
�IM�m� n� i� �� � �n�IM�m� ��

�

�
e�I�M� if dimM � n�

 if dimM � n�

see ������ and use that the application of � decreases the degree of a
polynomial function by ��

Let �R� m � be a Noetherian local ring� and I an ideal of de�nition of
R� We �x an integer q� and denote byKq�R� the full subcategory of the
category M�R� of �nite R�modules whose dimension is at most q� We
de�ne

eq�I�M� �

�
e�I�M� if dimM � q�

 if dimM � q�

Corollary 	����� The �modi�ed� multiplicity eq�I�M� is an additive function

on the category Kq�R�� that is� eq�I�M� � eq�I�M�� � eq�I�M��� for all

exact sequences 
 ��M� ��M ��M�� �� 
 in Kq�R��

Proof� Without loss of generality we may assume that R�m is in�nite�
For otherwise we may extend the residue class �eld of R� see the proof
of �����
�

We may further assume that the module M in the above exact se�
quence has dimension q� By �����
 there exists a system of parameters
x � x�� � � � � xq of M such that �x� is a reduction ideal of I with respect
to M� Now �����
 and ��	�� imply that eq�I�M� � ��x�M�� According
to Exercise ������ the ideal �x� is a reduction ideal of I with respect
to M� and M�� as well� Hence we also have eq�I�M�� � ��x�M�� and
eq�I�M

��� � ��x�M���� Thus the result follows from ��	���

Corollary 	����� Let �R� m � be a Noetherian local ring� I an ideal of de�ni�

tion of R� and M a �nite R�module of dimension � q� Then

eq�I�M� �
X

p

��Mp �eq�I� R�p ��

where the sum is taken over all prime ideals p with dimR�p � q�
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Proof� The module M has a �ltration 
 � M� � M� � � � � � Mr�� �
Mr � M such that Mi�Mi��

�� R�p i for i � �� � � � � r� Of course�
dimR�p i � q for all i� Thus by the previous corollary we have
eq�I�M� �

Pr
i�� eq�I� R�p i�� Only those summands contribute to the

sum for which dimR�p i � q� Fix a prime ideal p with dimR�p � q�
Then the number of integers i for which p � p i equals the length of
Mp � as can be easily seen by localization at p � This proves the formula
asserted�

As an important special case of the previous result we have

Corollary 	����� Let �R� m � be a Noetherian local ring� M a �nite module

of positive rank� and I an m �primary ideal of R� Then

e�I�M� � e�I� R� rankM�

In particular� e�M� � e�R� rankM�

Proof� Let r � rankM� By virtue of ����� we have Mp
�� Rr

p for all prime

ideals p of R with dimR�p � d � In particularM has maximal dimension�
and so e�I�M� � ed �I�M�� d � dimR� Therefore ��	�� yields

e�I�M� �
X

p

��Mp �e�I� R�p � �
X

p

r ��Rp �e�I� R�p � � e�I� R� rankM�

Here the sums are taken over the prime ideals p with dimR�p � d �

Partial Euler characteristics� One remarkable consequence of ��	�� is the
following� let �R� m � be a Noetherian local ring�M a �nite R�module� and
x a multiplicity system of M� Then ��x�M� �

P
i����

i ��Hi�x�M�� 	 
�
One de�nes for all j 	 
 the partial Euler characteristics

�j�x�M� �
X
i	j

����i�j ��Hi�x�M��

of M with respect to x� Surprisingly� all the partial Euler characteristics
are non�negative� as shown by Serre ������� Appendice II�� We only prove
the result for �� �see however Remark ��	�����

Theorem 	����
 �Serre�� Let �R� m � be a Noetherian local ring� M a �nite

R�module� and x a multiplicity system of M�

�a� ���x�M� 	 
� or equivalently� ��M�xM� 	 ��x�M��
�b� Assume in addition that x is a system of parameters of M� Then the

following conditions are equivalent	

�i� ���x�M� � 
�
�ii� H��x�M� � 
�
�iii� Hi�x�M� � 
 for i 	 ��
�iv� x is an M�sequence�

�v� M is Cohen�Macaulay�
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Proof� Let x � x�� � � � � xn� We prove �a� by induction on n� if n � �� then
���x��M� � ��H��x��M��� and the assertion is trivial� Now let n � �� and
set x� � x�� � � � � xn� Notice that ��x�M� � ��M�xM�� ���x�M�� whence

���x�M� � ���x
��M�x�M� � ��x�� �
 � x��M����
�

in view of equation �	� above� By induction ���x��M�x�M� 	 
� and since
��x�� �
 � x��M� 	 
� the assertion follows�

�b� The equivalence of the statements �ii���v� was shown in ����� and
������ and �iii� �i� is obvious� We now prove the implication �i� �v��
Suppose that ���x�M� � 
� then ��
� implies

���x
��M�x�M� � 
 and ��x�� �
 � x��M� � 
�

By induction we may assume that M�x�M is a Cohen�Macaulay module
of dimension n � �� It remains to show that �
 � x��M � 
� Set M� �
M��
 � x��M� then the snake lemma applied to the commutative diagram


 ����� �
 � x��M ����� M ����� M� ����� 


x�

��y x�

��y x�

��y

 ����� �
 � x��M ����� M ����� M� ����� 


yields the exact sequence


 �� �
 � x��M
�
�� �
 � x��M �� �
 � x��M�

�� �
 � x��M
�
��M�x�M ��M��x�M� �� 
�

It is clear that � is an isomorphism� We claim that � � 
� In�
deed� it follows from ��	�� and ��	�� that dim�
 � x��M � n � � since
��x�� �
 � x��M� � 
� On the other hand� dimR�p � n � � for all
p � Ass�M�x�M� since M�x�M is Cohen�Macaulay� see ������ Therefore
Hom��
 � x��M �M�x�M� � 
 by ������

We obtain the isomorphisms

M�x�M ��M��x�M� and �
 � x��M �� �
 � x��M� �

It follows from �	� that

���x�M� � ��M�xM�� ��x��M�x�M� � ��x�� �
 � x��M��

and hence the analogous equation for M� and the isomorphisms give us
���x�M�� � ���x�M� � 
�

Repeating these arguments we obtain a sequence of modules Mn�
de�ned recursively by Mn � Mn����
 � x��Mn�� with

Mn�x�Mn
��Mn���x�Mn�� and �
 � x��Mn

�� �
 � x��Mn�� �
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Consider the composition M � M� � � � � �Mn�� �Mn of the canon�
ical epimorphisms� A simple inductive argument shows its kernel is
�
 � xn��M � Since M is Noetherian there exists an integer m such that

�
 � xm� �M � �
 � xm��
� �M � and so the canonical epimorphism Mm �Mm��

must be an isomorphism� therefore �
 � x��Mm
� 
� But then� as required�

�
 � x��M �� �
 � x��M�
�� � � � �� �
 � x��Mm

� 
�

Combining ��	� and ��	��
 we obtain the following Cohen�Macaulay
criterion for modules�

Corollary 	������ Let �R� m � be a Noetherian local ring� M a �nite R�
module of positive rank� and I an ideal generated by a system of parameters

of R�
�a� ��M�IM� 	 e�I� R� rankM�

�b� M is Cohen�Macaulay if and only if ��M�IM� � e�I� R� rankM�

�c� Suppose R is Cohen�Macaulay� then M is Cohen�Macaulay if and only

if ��M�IM� � ��R�I� rankM�

Remark 	������ The positivity of the partial Euler characteristics can be
easily proved in an important special case� Let �R� m � k� be a Noetherian
local ring containing a �eld� M a �nite R�module� and x a multiplicity
system of M� Then �j�x�M� 	 
 for all j 	 
� and if �j�x�M� � 
 for
some j� then Hi�x�M� � 
 for all i 	 j�

For the proof we may assume that R is complete since homology

commutes with completion� so that H��x� �M� �� H��x�M�b�� H��x�M��
The last isomorphism is valid since H��x�M� has �nite length�

Now� as we assume that R is complete and contains a �eld� the ring R
even contains its residue class �eld� see A��
� Let A � k��X�� � � � � Xn��� and
de�ne a ring homomorphism � � A � R by ��Xi� � xi for i � �� � � � � n�
We may view M as an A�module via �� It is then clear that M is a �nite
A�module� and that H��X�� � � � � Xn�M� �� H��x�M�� In other words� we
may assume that x is an R�sequence �replace R by A��

We prove the assertions by induction on j� For j � 
 and j � � we
know the result from ��	�� and ��	��
� Now we let j � �� and consider an
exact sequence


 �� U �� F ��M �� 


where F is a �nite free R�module� Then� owing to ������ and the
assumption that x is R�regular� it follows that Hi�x�M� �� Hi���x� U� for
all i � �� Therefore �j�x�M� � �j���x� U�� and the proof is complete by
our induction hypothesis�

Exercises

��	���� �a� Let �R� m � be a Noetherian reduced local ring� Verify e�R� �
P

p
e�R�p �

where the sum is taken over all prime ideals p with dimR�p � dimR�
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�b� Let k be a 	eld� Compute the multiplicity of

kX� � � � � � Xn����X�X� � X�X� � � � � � Xn��Xn � XnX���

Hint� apply �������

��	���� Let �R� m � be a Noetherian local ring of dimension d � M a maximal
Cohen�Macaulay R�module� x a system of parameters of R� and n an integer
such that m n � �x�� Show that ��M�xM� � nd e�M��

��	���� �a� Let k be a 	eld� and assume that R � kX� � � � � � Xn���I is a domain of
dimension d with quotient 	eld L� Let y � y� � � � � � yd be a system of parameters
of R� The subring A � ky� � � � � � yd �� of R is regular and R is a 	nite A�module�
see A���� We denote by K the quotient 	eld of A�
�a� Show that L � K� � ��R��y��� Equality holds if and only if R is Cohen�
Macaulay�
�b� Formulate and prove a similar statement for graded k�algebras�

��	���� In this exercise we want to use the criterion ������ in a concrete situation�
�a� Let k be a 	eld� and k�X� � � � � � Xn� the rational function 	eld in n variables
over k� For a vector v � �a� � � � � � an� in Zn we set Xv � X

a�
� � � �X

an
n � If v�� � � � � vn are

vectors in Zn � show that

k�X� � � � � � Xn� � k�Xv� � � � � � Xvn �� � jdet�v�� � � � � vn�j�

Hint� use the theory of elementary divisors�
�b� Let m�� � � � � mr be monomials in X�� � � � � Xn � and consider the subring R �
km�� � � � � mr� of the polynomial ring kX� � � � � � Xn�� �Such a ring is called an a�ne
semigroup ring and will be studied more systematically in Chapter ��� Assume
that

�i� Q�R� � k�X� � � � � � Xn��
�ii� there are monomials w�� � � � � wn � R such that ��R��w�� � � � � wn�R� � ��

Let wi � Xvi for i � �� � � � � n� prove that R is a Cohen�Macaulay ring if and only
if jdet�v�� � � � � vn�j equals the number of all monomials in R not belonging to the
ideal of monomials �w� � � � � � wn��
�c� Apply this criterion to show that the ring kX�Y � X�Y � XY �XY �� XY �� is
Cohen�Macaulay� but that kX� � X�Y � XY �XY �� Y �� is not�

��	��	� Let �A� m � be a regular local ring� I � m an ideal and R � A�I � The
R�module I�I� is called the cotangent module of R�
�a� Suppose R is Cohen�Macaulay and generically a complete intersection� that
is� Rp is a complete intersection for all minimal prime ideals p � SpecR� Prove
that rank I�I� � height I �
�b� Let B be a local ring� and J � B a proper ideal� The pair �J� B� is called an
embedded deformation of �I� A� if there exists a B�sequence x such that A 
� B�xB�
I � JA� and x is a B�J�sequence too�

Suppose dimA�I � � and embdimA�I � n� If �I� A� has an embedded
deformation �J� B� such that B�J is generically a complete intersection� show
��I�I�� � n ��A�I��
�c� Let k be a 	eld� and I � kX� � � � � � Xn� an ideal generated by monomials
containing a power of each indeterminate� Show the number of monomials not
contained in I� is greater than or equal to n� � times the number of monomials
not contained in I � Equality holds if I is generated by powers of the Xi �
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Notes

In his famous paper � �Uber die Theorie der algebraischen Formen� ��	��
published a century ago� Hilbert proved that a graded module over a
polynomial ring has a �nite graded free resolution� and concluded from
this fact that the function �which we now call the Hilbert function� is of
polynomial type� The in�uence of this paper on commutative algebra has
been tremendous� Till today both free resolutions and Hilbert functions
have fascinated mathematicians� and many problems still remain open�

For many applications it is more convenient to consider the so�called
Hilbert series of a graded module� This point of view is stressed in
Section ���� Stanley calls the ��nite� coe�cient vector of the numerator
of this rational function the h�vector of the module� Its signi�cance
became apparent in Stanley�s work on combinatorics� An introduction
to this aspect of commutative algebra is given in Stanley�s monograph
����� which is well�known as the �green book�� Certainly Stanley�s work
initiated a new interest in Hilbert functions� other important motivations
come from algebraic geometry�

Graded free resolutions determine the Hilbert function� but the con�
verse is not true� except when the module has a pure resolution� This is
the content of ������ which is taken from Herzog and K�uhl ����� and
Huneke and Miller ���	��

Section ��� is based on the paper ���	� in which Stanley states
Macaulay�s theorem on Hilbert functions in the form presented in this
book� We also took ������ and ����� from this article� The latter result
is Stanley�s beautiful theorem characterizing graded Gorenstein domains
by their Hilbert function� �A generalization of ����� has recently been
proved by Avramov� Buchweitz� and Sally ����� Theorem ���� appears in
an article of Stanley ����� with the hypothesis that R be a domain� Our
slightly more general version was given by Hibi ��	
��

Macaulay�s article �Some properties of enumeration in the theory of
modular systems� ����� appeared in ��	� and has become a source of
inspiration in commutative algebra and combinatorics� see for instance
Sperner ������ Whipple ����� Clements and Lindstr�om �	
�� Elias and
Iarrobino ���� Stanley ���	�� Hibi ���	�� and Green ������

In the �rst part of his paper Macaulay shows that the Hilbert function
of a homogeneous ring arises as the Hilbert function of a polynomial
ring modulo an ideal which is de�ned by monomials� For his proof
Macaulay ordered the monomials� and thereby introduced implicitly
�and possibly for the �rst time� what nowadays is called a Gr�obner basis�
Buchberger ���� was the �rst to describe an algorithm computing the
Gr�obner basis of an ideal� Robbiano ��
�� is an �early� survey of this
topic� Meanwhile e ective computation has become an important area
of research in commutative algebra� and we recommend especially the
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books of Eisenbud ��� and Vasconcelos ����� for a detailed account�
The importance of the Castelnuovo�Mumford regularity has been brie�y
indicated by Theorem ������ which is due to Eisenbud and Goto ����
More information is provided by the survey of Bayer and Mumford ����
and by Eisenbud�s book ����

Macaulay�s main result in ����� however is the inequalityH�R� n��� �
H�R� n�hni which characterizes the Hilbert functions of homogeneous
k�algebras� As a note preceding it Macaulay writes� �This proof of the
theorem which has been assumed earlier is given only to place it on
record� It is too long and complicated to provide any but the most
tedious reading�� We present Green�s proof ����� of Macaulay�s theorem
which is less computational than the original� The proofs of Gotzmann�s
theorems ����� have also been drawn from Green ������

Theorems of Gotzmann type for exterior algebras have recently been
proved by Aramova� Herzog� and Hibi �����

The lexsegment ideals that appear in the proof of Macaulay�s theorem
have a remarkable �extremal� property� if J is the lexsegment ideal with
the same Hilbert function as a given ideal I � then each graded Betti
number �ij�I� is bounded above by �ij�J�� This was shown independently
by Bigatti ���� and Hulett ��
	� in characteristic 
 and by Pardue in
positive characteristic ����� �Macaulay�s theorem states this inequality
for i � 
"� See Valla ��		� for a related result�

In his article ���
�� Samuel laid the foundation of modern multiplicity
theory� He was the �rst to apply Hilbert�s theory to the associated graded
ring of an m �primary ideal I in a Noetherian local ring �R� m �� This led to
the so�called Hilbert�Samuel function� and provided the de�nition of the
multiplicity of R with respect to I � In this context the notion of reduction
ideals� invented and investigated by Northcott and Rees in ����� plays
an important role� Our Proposition ������ though formulated for modules�
is taken from this paper� In a special case ����� says that the multiplicity
of a module with respect to an ideal equals the multiplicity of the module
with respect to a suitable system of parameters� This had already been
observed by Samuel in ���
�� More information on reduction ideals and
related questions can be found in Sally�s book �����

As a measure of the complexity of an ideal I may serve the analytic
deviation ��I�� height I � Ideals of analytic deviation zero are called equi�

multiple� The interested reader may consult the monograph by Herrmann�
Ikeda� and Orbanz ������ Ideals with small analytic deviation have been
studied by Huckaba and Huneke ��
��� ��
��� and Vasconcelos ������

The question of when the Rees ring or the associated graded ring of
an ideal is Cohen�Macaulay has been of central interest in commutative
algebra� The problem is well understood for ideals generated by d�
sequences� This notion� introduced by Huneke� generalizes the notion of
a regular sequence considerably� but still guarantees that the Rees ring
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of an ideal I generated by a d�sequence is isomorphic to the symmetric
algebra of I� see Huneke ��
� and Valla ��	��� The reader who wants
more information on d�sequences is referred to the articles by Huneke
������ and Herzog� Simis� and Vasconcelos ������ ������

Other approaches to the Rees ring and associated graded ring of
an ideal can be found in the papers by Bruns� Simis� and Trung ��
��
Eisenbud and Huneke ���� Goto and Shimoda ������ Huneke ������
Ikeda ������ ������ Trung and Ikeda ������ Valla ��	�� and Vasconcelos
������ A comprehensive account of the recent developments in this area
is given in Vasconcelos� monograph ������

Most important is Serre�s theorem ��	�� which relates the multiplicity
to the Euler characteristic of the Koszul complex� Serre proved this result
in the mid��fties� The notes ����� by Gabriel of Serre�s course at the
Coll!ege de France were published ���� Auslander and Buchsbaum� in
their classic paper ���� proved a version of Serre�s theorem for arbitrary
Noetherian rings� and gave an axiomatic description of the multiplicity�
In Section ��	 we follow this axiomatic approach� and introduce the
multiplicity symbol� This terminology stems from Northcott who� in his
book ����� systematically developed multiplicity theory from the formal
properties of this symbol�

Corollary ��	��� is taken from ���� In our presentation it is a
consequence of the fact that the �rst truncated Euler characteristic �� of
the Koszul complex is non�negative� Serre ����� proves this not just for
the �rst but also for the higher truncated Euler characteristics� We only
show the non�negativity of �� �see ��	��
�� following Lichtenbaum ������
In writing this part of the section we consulted the article ����� of Simis
and Vasconcelos�

The Koszul homology can be interpreted as a Tor of modules� and
this leads to a far reaching generalization� the intersection multiplicity of
modules introduced by Serre ������ see Remark �����
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� Stanley�Reisner rings

This chapter is an introduction to �combinatorial commutative algebra�� a
fascinating new branch of commutative algebra created by Hochster and
Stanley in the mid�seventies� The combinatorial objects considered are
simplicial complexes to which one assigns algebraic objects� the Stanley�
Reisner rings� We study how the face numbers of a simplicial complex are
related to the Hilbert series of the corresponding Stanley�Reisner ring�
This is the basis of all further investigations which culminate in Stanley�s
proof of the upper bound theorem for simplicial spheres� It turns out that
most of the important algebraic notions introduced in the earlier chapters�
such as �Cohen�Macaulay�� �Gorenstein�� �local cohomology�� and �Hilbert
series�� are the proper concepts in solving purely combinatorial problems�
Other applications of commutative algebra to combinatorics will be given
in the next chapter�

��� Simplicial complexes

The present section is devoted to introducing the Stanley�Reisner ring
associated with a simplicial complex� and studying its Hilbert series� The
most important invariant of a simplicial complex� its f�vector� can be
easily transformed into the h�vector� an invariant encoded by the Hilbert
function of the associated Stanley�Reisner ring� It is of interest to know
when a Stanley�Reisner ring is Cohen�Macaulay� because then the results
about Hilbert functions of Chapter � may be employed to get information
about the f�vector� In concluding this section we show that the Stanley�
Reisner ring of a shellable simplicial complex is Cohen�Macaulay� and
study systems of parameters of such a ring�

De�nition ������ Let V � fv�� � � � � vng be a �nite set� A ��nite� simplicial
complex � on V is a collection of subsets of V such that F � � whenever
F � G for some G � �� and such that fvig � � for i � �� � � � � n�

The elements of � are called faces� and the dimension� dimF � of a face
F is the number jFj � �� The dimension of the simplicial complex � is
dim� � maxfdimF � F � �g�

Note that the empty set � is a face �of dimension ��� of any non�
empty simplicial complex� Faces of dimension 
 and � are called vertices

�
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and edges� respectively� The maximal faces under inclusion are called the
facets of the simplicial complex�

Given an arbitrary collection fF�� � � � � Fmg of subsets of V there is
a �unique� smallest simplicial complex� denoted by hF�� � � � � Fmi� which
contains all Fi� This simplicial complex is said to be generated by
F�� � � � � Fm� It consists of all subsets G � V which are contained in some
Fi� A simplicial complex generated by one face is called a simplex�

Each simplicial complex has a geometric realization as a certain subset
�composed of simplices� of a �nite dimensional a�ne space� This explains
the geometric terminology introduced above� Geometric realizations will
be discussed in the next section� As an example consider the octahedron
with vertex set fv�� � � � � vg �Figure ����� Its facets are the sets fv�� v�� v�g�
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Figure ���

fv�� v�� v�g� fv�� v�� vg� fv�� v�� vg� fv�� v�� v�g� fv�� v�� v�g� fv�� v�� vg� and
fv�� v�� vg�

An important class of simplicial complexes arises from �nite sets with
partial order �� called posets for short� The order complex ���� of a
poset � is the set of chains of � � Recall that a subset C of � is a chain

if any two elements of C are comparable� Obviously� ���� is a simplicial
complex�

For example� if we order the elements of the set fv�� � � � � v�g according
to Figure ���� then the order complex of the corresponding poset has the
facets fv�� v�� v�� v�g and fv�� v�� v�� v�g�

Stanley�Reisner rings and f�vectors� Now let � be an arbitrary simplicial
complex of dimension d � � 	 
 on a vertex set V � We denote by fi the
number of i�dimensional faces of �� We have f� � jV j� and f�� � � since
� � �� The d�tuple

f��� � �f�� f�� � � � � fd���
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is called the f�vector of �� For example� the octahedron has the f�vector
��� ��� ��� while the above order complex has the f�vector ��� � 	� ���

The possible f�vectors of simplicial complexes have been determined
by Kruskal ����� and Katona ������ Given two integers a� d � 
� let

a �

�
k�d�

d

�
�

�
k�d � ��

d � �

�
� � � � �

�
k�j�

j

�
�

k�d� � k�d � �� � � � � � k�j� 	 j 	 �� be the unique d�th Macaulay
representation of a� see ����� and the de�nition following ����	� We set

a�d� �

�
k�d�

d � �

�
�

�
k�d � ��

d

�
� � � � �

�
k�j�

j � �

�
�

Then �f�� f�� � � � � fd��� � Z
d is the f�vector of some �d � ���dimensional

simplicial complex if and only if


 � fi�� � f�i���
i � 
 � i � d � ��

However� if we consider more restricted classes of simplicial complexes�
for instance those simplicial complexes whose geometric realization is a
sphere� new constraints appear� this will be the topic of the next sections�
It turns out that the Stanley�Reisner rings are the appropriate tool to
attack these problems�

De�nition ������ Let � be a simplicial complex on the vertex set V �
fv�� � � � � vng� and k a ring� The Stanley�Reisner ring �or face ring� of the
complex � �with respect to k� is the homogeneous k�algebra

k��� � k�X�� � � � � Xn��I��

where I� is the ideal generated by all monomials Xi�Xi� � � �Xis such that
fvi� � vi� � � � � � visg �� ��

The choice of the letter k in the de�nition indicates that� with a few
exceptions� we usually have in mind a �eld for the coe�cient ring of a
Stanley�Reisner ring�
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Note that I� is generated by squarefree monomials� On the other
hand� if I � �X�� � � � � Xn�� is any ideal which is generated by squarefree
monomials� then k�X�� � � � � Xn��I �� k��� for some simplicial complex ��

The correspondence between simplicial complexes and squarefree
ideals is inclusion reversing� if � and �� are simplicial complexes on
the same vertex set� then � � �� � I�� � I��

Throughout this chapter we will assume� unless otherwise stated� that
V � fv�� � � � � vng is the vertex set of the simplicial complex ��

Example ������ Let P � fv�� � � � � vng be a poset� and � the order complex
of P � Then I� is generated by all monomials XiXj for which vi and vj
are incomparable� In the above example� I� � �X�X���

The dimension of a Stanley�Reisner ring can be easily determined�

Theorem ����	� Let � be a simplicial complex� and k a �eld� Then

I� �
�
F

P F �

where the intersection is taken over all facets F of �� and P F denotes the

�prime� ideal generated by all Xi such that vi �� F � In particular�

dim k��� � dim�� ��

Proof� By Exercise �����	� k��� is reduced� and hence I� is the intersection
of its minimal prime ideals� by Exercise ������� all these ideals are
generated by subsets of fX�� � � � � Xng� Let P � �Xi� � � � � � Xis�� notice that
I� � P if and only if fv�� � � � � vng n fvi� � � � � � visg is a face of �� and that P

is a minimal prime ideal of I� if and only if fv�� � � � � vng n fvi� � � � � � visg is a
facet�

A simplicial complex � is pure if all its facets are of the same
dimension� namely dim�� and � is called a Cohen�Macaulay complex

over k if k��� is a Cohen�Macaulay ring� We say that � is a Cohen�

Macaulay complex if � is Cohen�Macaulay over some �eld� According
to Exercise ������� � is a Cohen�Macaulay complex over every Cohen�
Macaulay ring k if and only if Z��� is Cohen�Macaulay�

As a consequence of ����� and the previous theorem we obtain

Corollary ������ A Cohen�Macaulay complex is pure�

We are going to relate the f�vector of a simplicial complex to the
Hilbert series of k���� To this end we introduce a Zn�grading or �ne

grading on k����
More generally� let �G��� be an Abelian group� A G�graded ring is

a ring R together with a decomposition R �
L

a�G Ra �as a Z�module�
such that RaRb � Ra�b for all a� b � G�
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Similarly one de�nes a G�graded R�module� the category of G�graded
R�modules� G�graded ideals etc� simply by mimicking the corresponding
de�nitions for graded rings and modules with G � Z� see Section ���� If
M is a G�graded R�module� then x �M is homogeneous �of degree a � G�
if x �Ma� and we set deg x � a�

Example ������ The polynomial ring R � k�X�� � � � � Xn� has a natural
Zn�grading� for a � �a�� � � � � an� � Zn� ai 	 
 for i � �� � � � � n� we let
Ra � fcXa � c � kg be the a�th homogeneous component of R� and set
Ra � 
 if ai � 
 for some i� Here� Xa � Xa�

� � � �X
an
n for a � �a�� � � � � an��

Note that the Zn�graded ideals in R are just the ideals generated by
monomials� and the Zn�graded prime ideals are just the �nitely many
ideals which are generated by subsets of fX�� � � � � Xng�

Let I � R be an ideal generated by monomials� Since I is Zn�
graded� the factor ring R�I inherits the natural Zn�grading given by
�R�I�a � Ra�Ia for all a � Z

n� In particular� Stanley�Reisner rings are
Zn�graded in this way�

Now let R be an arbitrary Zn�graded ring� and M a Zn�graded R�
module� Each homogeneous component Ma of M is an R��module� Just
as for Z�graded modules we de�ne the Hilbert function H�M� � � Zn � Z

by H�M� a� � ��Ma�� provided all homogeneous components of M have
�nite length� and call HM�t� �

P
a�Zn H�M� a�ta the Hilbert series of M�

Here t � �t�� � � � � tn� where the ti are indeterminates� and ta � ta�� � � � t
an
n for

a � �a�� � � � � an��
For example� the Zn�graded polynomial ring R � k�X�� � � � � Xn� has

the Hilbert series

HR�t� �
X
a�Nn

ta �
nY
i��

��� ti�
���

Let us return to Stanley�Reisner rings� Given a simplicial complex ��
we denote by xi the residue classes of the indeterminates Xi in k���� then
k��� � k�x� � � � � � xn��

We de�ne the support of an element a � Zn to be the set supp a �
fvi � ai � 
g� If xa and xb are non�zero monomials �with non�negative ex�
ponents� in x�� � � � � xn� then xa � xb if and only if a � b� Therefore� without
ambiguity� we may set supp xa � supp a for any non�zero monomial�

Note that xa �� 
 if and only if supp a � �� and that the non�zero
monomials xa form a k�basis of k���� Therefore�

Hk����t� �
X
a�Nn

supp a��

ta �
X
F��

X
a�Nn

supp a�F

ta�

If F � �� then
P

supp a�F t
a � �� and if F �� �� then

P
supp a�F t

a �Q
vi�F

ti���� ti�� Thus� if we understand that the product over an empty
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index set is �� we get

Hk����t� �
X
F��

Y
vi�F

ti
�� ti

����

We are actually interested in the Hilbert series of k��� as a homoge�
neous Z�graded algebra� Note that for all i � Z we have

k���i �
M

a�Zn � jaj�i

k���a�

where jaj � a� � � � � � an for a � �a�� � � � � an�� �This relation explains the
alternative terminology ��ne grading� for �Zn�grading���

It follows that the Hilbert series of k��� with respect to the Z�grading
is obtained from ��� by replacing all ti by t� Thus we have shown

Theorem ������ Let � be a simplicial complex with f�vector �f�� � � � � fd����
Then

Hk����t� �
d��X
i���

fit
i��

��� t�i��
�

From the Hilbert series of k��� we can read o its Hilbert function�

H�k���� n� �

�
� if n � 
�Pd��

i�� fi
�
n��
i

�
if n � 
�

We note the following interesting fact� H�k���� n� is a polynomial function
for n � 
� and hence coincides with the Hilbert polynomial for all n 	 


except possibly for n � 
� Evaluating
Pd��

i�� fi
�
n��
i

�
at n � 
 gives

���� �
d��X
i��

����ifi�

the so�called Euler characteristic of �� Thus the Hilbert function and
the Hilbert polynomial of � agree for all n 	 
 if and only if ���� � ��
The geometric signi�cance of the Euler characteristic will become clear
in �����	�

Two other conclusions can be drawn from ����	� First� we recover that
dim k��� � d since the degree of the Hilbert polynomial Pk����t� is d � ��
secondly� we see that the multiplicity of k��� equals fd��� the number of
�d � ���dimensional facets of ��

The h�vector� Recall from ����� that a homogeneous k�algebra R of
dimension d has a Hilbert series of the form HR�t� � QR�t����� t�d where
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QR�t� is a polynomial with integer coe�cients� Let � be a simplicial
complex� and write

Hk����t� �
h� � h�t� � � �

��� t�d
�

The �nite sequence of integers h��� � �h�� h�� � � �� is called the h�vector of
��

A comparison with ����	 yields

Lemma ������ The f�vector and h�vector of a �d����dimensional simplicial
complex � are related by

X
i

hit
i �

dX
i��

fi��t
i��� t�d�i�

In particular� the h�vector has length at most d � and for j � 
� � � � � d �

hj �

jX
i��

����j�i
�
d � i

j � i

�
fi�� and fj�� �

jX
i��

�
d � i

j � i

�
hi�

Proof� Comparing the coe�cients in the polynomial identity gives the
formula for the hj in terms of the fi� In order to prove the inverse relation
replace t by s���� s�� Then the above polynomial identity transforms into

dX
i��

his
i�� � s�d�i �

dX
i��

fi��s
i

from which one obtains the last set of equations�

The octahedron has f�vector ��� ��� ��� Applying ����� we see that its
h�vector is ��� �� �� ���

We single out some special cases of the above equations�

Corollary ������ With the assumptions of ����� one has

h� � �� h� � f� � d� hd � ����d�������� �� and

dX
i��

hi � fd���

Since the f�vector and h�vector of a simplicial complex determine
each other� bounds for the h�vector implicitly contain certain constraints
for the f�vector� We treat an important case�

Theorem �����
� Let � be a �d����dimensional Cohen�Macaulay complex

with n vertices and h�vector �h�� � � � � hd�� Then


 � hi �

�
n� d � i� �

i

�
� 
 � i � d�
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Proof� Let R � k���� where k is a �eld for which k��� is Cohen�Macaulay�
We may assume that k is in�nite� Then� since R is Cohen�Macaulay� there
exists an R�sequence x of elements of degree � such that �R � dimR�xR
is of dimension 
� see ������� Now it follows from ������ that hi � H��R� i�
for all i� This implies already that hi 	 
 for all i�

Notice that �R is generated over k by n � d elements of degree ��
Therefore� the Hilbert function of �R is bounded by the Hilbert function
of a polynomial ring in just as many variables� This yields the second
inequality�

To illustrate the theorem consider the simplicial complex � in Figure
��� with facets F� � fv�� v�� v�g and F� � fv�� v�� v�g� We have f��� �

�
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Figure ���

��� �� ��� and so h��� � ��� ������ It follows that � is not a Cohen�
Macaulay complex�

Shellable simplicial complexes� The previous theorem will be of real use
only when we are able to exhibit interesting classes of Cohen�Macaulay
complexes� Such a class is given in the following de�nition�

De�nition ������� A pure simplicial complex � is called shellable if one
of the following equivalent conditions is satis�ed� the facets of � can be
given a linear order F�� � � � � Fm in such a way that
�a� hFii�hF�� � � � � Fi��i is generated by a non�empty set of maximal proper
faces of hFii for all i� � � i � m� or
�b� the set fF � F � hF�� � � � � Fii� F �� hF�� � � � � Fi��ig has a unique minimal
element for all i� � � i � m� or
�c� for all i� j� � � j � i � m� there exist some v � Fi n Fj and some
k � f�� �� � � � � i� �g with Fi n Fk � fvg�

A linear order of the facets satisfying the equivalent conditions �a��
�b�� and �c� is called a shelling of ��

Let us check that these conditions are indeed equivalent�
�a�  �b�� We may assume that Fi � fv�� � � � � vmg� and that hFii �
hF�� � � � � Fi��i is generated by the faces fv�� � � � � vj��� vj��� � � � � vmg� � �
j � r � m� The unique minimal element in the set Si � fF � F �
hF�� � � � � Fii� F �� hF�� � � � � Fi��ig is fv�� � � � � vrg�
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�b�  �c�� Let G be the unique minimal element in Si � Since G �� Fj �
there exists v � G nFj � Then v � Fi nFj � and it follows from the de�nition
of G that there exists a k� � � k � i� �� such that Fi n Fk � fvg�
�c�  �a�� Let F � hFii � hF�� � � � � Fi��i� Then F � Fj for some j � i�
Let v � Fi n Fj as in �c�� Then Fi n fvg is a maximal proper face of hFii
belonging to hFii � hF�� � � � � Fi��i and containing F � This proves �a��

In Figure ��� the �rst simplicial complex is shellable� the second is not�
Shellable simplicial complexes arise naturally in geometry� see Section
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Figure ���

���� Other interesting classes arise from order complexes of certain posets�
Here we discuss one important case� For this we need to introduce some
more terminology� a ��nite� poset is said to be bounded if it has a least

and a greatest element� denoted �
 and ��� The poset is pure if all maximal
chains have the same length� and graded if it is bounded and pure� In
this case all unre�nable chains between two comparable elements have
the same length �Exercise ��������

Let � be a poset� and v � � � The rank of v� rank v� is de�ned to be
the maximal length of all chains descending from v� The length of � is
the maximal rank of an element of � � Let u� v � �� we say that v covers
u� written u � v� if u � v� and if there is no w � � such that u � w � v�

The poset � is locally upper semimodular if whenever v� and v� cover
u� and v�� v� � v for some v � � � then there is t � � � t � v� which covers
each of v� and v�� see Figure ����
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Theorem ������ �Bj�orner�� The order complex of a bounded� locally upper

semimodular poset is shellable�
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Proof� In a �rst step we shall prove that for every graded poset �����
the set M of maximal chains can be given a linear order � such that

for any two chains m�m� � M � m � �
 � x� � x� � � � � � xn � �� and

m� � �
 � y� � y� � � � � � yn � �� with xi � yi for i � 
� �� � � � � e� and
xe�� �� ye�� the following conditions are satis�ed�
�i� If fy�� y�� � � � � ye��g is contained in a maximal chain m�� and if m� �� m�
then m�� �� m�
�ii� If m� n fxeg is contained in some maximal chain m�� with m�� �� m
but m n fxeg is contained in no maximal chain m��� with m��� �� m� then
m� �� m�

In a second step we shall see that such a linear order is a shelling
of the order complex ����� provided � satis�es the hypothesis of the
theorem�

First we prove by induction on the length n of � the existence of a
linear order on M satisfying �i� and �ii�� The assertion being trivial for
n � �� we may assume that n 	 �� We denote by � � the subposet of �
consisting of the elements x � � with rankx �� n � �� �The order �� of
� � is induced by the order � of � � that is� for all x� y � � �� x �� y if and
only x � y�� Since � � is graded of length n� �� the induction hypothesis
implies that there exists a linear order �� of the set of maximal chains M �

of � � satisfying �i� and �ii�� Let m�
�� m

�
�� � � � � m

�
s be the elements of M � in

their linear order� For m�
i � �
 � x� � x� � � � � � xn�� � �� we de�ne the set

Ai � fz � � � xn�� � z � ��g� and the set Bi of all z � Ai for which there
is an element y � � such that xn�� � y � z and �m�

i nfxn��g��fyg �
� m�

i�
Finally we let Ci � Ai n Bi� Now we order the elements of Ai linearly
in such a way that all elements of Bi are less than all elements of Ci�
We label the elements of Ai� zi�� zi�� � � � � ziai � ai � jAij� according to their
order� and set mij � m�

i � fzijg for i � �� �� � � � � s and j � �� �� � � � � ai� The
lexicographic order of the indices determines a linear order � of the set
M � fmij � � � i � s� � � j � aig of maximal chains of � �

We claim that � satis�es �i� and �ii�� Indeed� let m�m� � M � m � �
 �

x� � x� � � � � � xn � �� and m� � �
 � y� � y� � � � � � yn � �� with xi � yi
for i � 
� �� � � � � e� and xe�� �� ye��� We distinguish two cases�

In the �rst case suppose e � � � n � �� then m� � mij and m � mik

for some i� j� k with � � i � s and � � j� k � ai� Condition �i� is trivially
satis�ed since necessarily m�� � m�� The hypothesis of condition �ii� implies
yn�� � Bi and xn�� � Ci� Therefore� j � k� and hence m� �� m�

In the second case we assume that e�� � n� �� If fy�� y�� � � � � ye��g �
m�� � M � then fy�� y�� � � � � ye��g � �m�� n fzg� � M � where z � m��� rank z �

n��� Suppose now that m� �� m� then �m� n fyn��g� ���

�mn fxn��g�� and

thus� by the induction hypothesis� �m�� n fzg� ���

�m n fxn��g�� But then
m�� �� m� and this proves condition �i�� In a similar manner one checks
condition �ii��
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Now suppose that � is a bounded� locally upper semimodular poset�
By ������� � is pure and hence graded� Therefore� as we have just seen�
the set M of maximal chains of � admits a linear order � satisfying
the conditions �i� and �ii�� In order to prove that this is a shelling of

����� we consider m�m� � M � m � �
 � x� � x� � � � � � xn � �� and

m� � �
 � y� � y� � � � � � yn � �� with m� �� m� Let d be the greatest
integer such that xi � yi for i � d � and let g be the least integer for which
yd�� � xg �

Since � is locally upper semimodular there exists an element zd��

which covers both yd�� and xd�� and such that zd�� � xg� If g � d � ��
we �nd again an element zd�� which covers zd�� and xd�� and such that
zd�� � xg� This process ends with zg � xg � Setting zd�� � yd�� we obtain
Figure ���� By the choice of g we have ye �� xe and ze �� xe for all e�
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xd � yd

xd��

xd��

xg��

xg��

xg

zd�� � yd��

zd��

zg��

zg��

Figure ���

d � � � e � g � �� It remains to show that for some e in this range there
is a maximal chain m�� with m�� �� m such that m n fxeg � m���

For i � d��� d ��� � � � � g� � we let mi be the maximal chain �
 � x� �

x� � � � � � xi�� � zi � zi�� � � � � � zg�� � xg � xg�� � � � � � xn � ���

As we assume that m� �� m� property �i� of � implies that md�� �
� m�

Now� either m n fxd��g � m�� for some maximal chain m�� �� m as we
want� or� otherwise� property �ii� of � implies that md�� �� m� Again�
if m n fxd��g � m�� for some maximal chain m�� �� m the proof is
completed� otherwise md�� �

� m� Continuing this argument we conclude
that either m n fxeg is contained in some earlier maximal chain for some
e� or mg�� �� m� In the latter case however� m n fxg��g � mg�� with
mg�� �

� m�

After this purely combinatorial result we return to algebra�

Theorem ������� A shellable simplicial complex is Cohen�Macaulay over

every �eld�
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Proof� The proof is based on the following simple observation� let I�
and I� be two ideals of a ring R� Then there exists an exact sequence of
R�modules


 �� R��I� � I��


�� R�I� � R�I�

�
�� R��I� � I�� �� 
���

with ��a�I��I�� � �a�I���a�I��� and ��a�I�� b�I�� � �a�b��I��I��
Suppose moreover that R is a polynomial ring over a �eld� that I� and
I� are graded ideals such that R�I� and R�I� are d�dimensional Cohen�
Macaulay rings� and that R��I� � I�� is a �d � ���dimensional Cohen�
Macaulay ring� then R��I��I�� is a d�dimensional Cohen�Macaulay ring�
The proof of these statements is left to the reader�

Let � be a shellable complex of dimension d � � �on the vertex set
fv�� � � � � vng�� and F�� � � � � Fm a shelling of �� By ������ we have I� �

Tm
i�� P Fi

where P Fi
is the ideal generated by all Xj such that vj �� Fi� Set

�j � hF�� � � � � Fji� � � j � m� then k��j� �� k�X�� � � � � Xn��
Tj

i�� P Fi
� In

fact� we may suppose that fv�� � � � � vrg� r � n� is the vertex set of hF�� � � � � Fji�
For all i � j� let p Fi

be the ideal in k�X�� � � � � Xr� generated by all Xs�
s � r� such that Xs � P Fi

� Then P Fi
� p Fi

� �Xr��� � � � � Xn� for all i � j�
and it follows from ������ that

j�
i��

P Fi
� �

j�
i��

p Fi
� � �Xr��� � � � � Xn��

Therefore� k��j� �� k�X�� � � � � Xr��
Tj

i�� p Fi

�� k�X�� � � � � Xn��
Tj

i�� P Fi
�

We show by induction on j that �j is Cohen�Macaulay� If j � �� then
k���� is a polynomial ring� and there is nothing to prove� Now suppose

that j � �� The sequence ��� with I� �
Tj��

i�� P Fi
and I� � P Fj

yields the
exact sequence


 �� k��j� �� k��j���� k�Fj � �� k�hFj i � �j��� �� 
����

It follows easily from De�nition �������a� and ����� that k�hFji � �j���
is isomorphic to a residue class ring of a polynomial ring in d variables
modulo a single equation� and therefore is a Cohen�Macaulay ring of
dimension d � �� By our induction hypothesis k��j��� is a d�dimensional
Cohen�Macaulay ring� Finally� since k�Fj � is a d�dimensional polynomial
ring �� is pure�� it follows from the general properties of the sequence ���
that k��j� is Cohen�Macaulay�

From the exact sequence ��� we easily derive a combinatorial interpre�
tation of the h�vector of a shellable simplicial complex� due to McMullen
and Walkup ��	���

Corollary �����	� Let � be a �d � ���dimensional shellable simplicial com�
plex with shelling F�� � � � � Fm� For j � �� � � � � m� let rj be the number of facets
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of hFji � hF�� � � � � Fj��i� and set r� � 
� Then

hi � jfj � rj � igj for i � 
� � � � � d�

In particular� up to their order� the numbers rj do not depend on the par�

ticular shelling�

Proof� Set �j � hF�� � � � � Fji� and write Hk��j��t� � Qj�t����� t�d � Then it
follows from the sequence ��� that

Qj�t�

��� t�d
�

Qj���t�

��� t�d
�

�

��� t�d
�

Pj�t�

��� t�d��
�

where Pj�t���� � t�d�� is the Hilbert series of hFji � �j��� According
to Exercise ����� one has Pj�t� � � � t � � � � � trj�� � therefore� Qj�t� �
Qj���t� � trj � As Q��t� � �� it follows that Qm�t� �

Pm
j�� t

rj � This implies

the assertion since the coe�cient vector of Qm�t� is just the h�vector of ��

Analyzing the proof of ������ we see that we did not use all the
properties of shellability� It su�ces to require that � is constructible which
means that � can be obtained by the following recursive procedure� �i�
any simplex is constructible� �ii� if �� and ��� are constructible of the
same dimension d � and if ������ is constructible of dimension d��� then
�� � ��� is constructible�

It is clear that the following implicationshold for simplicial complexes�

shellable constructible Cohen�Macaulay�

Nevertheless the h�vectors of all these types of complexes are charac�
terized by the same condition� For the next theorem recall the de�nition
of ahni given before ������

Theorem ������ �Stanley�� Let s � �h�� � � � � hd� be a sequence of integers�

The following conditions are equivalent	

�a� h� � � and 
 � hi�� � h
hii
i for all i� � � i � d � ��

�b� s is the h�vector of a shellable complex�

�c� s is the h�vector of a constructible complex�

�d� s is the h�vector of a Cohen�Macaulay complex�

Proof� The implications �b�  �c�  �d� are obvious� while �d� �
�a� follows from ������� Following ��� we indicate the proof of the
implication �a� �b�� which is a purely combinatorial result� A full proof
can be found in ����� Given a vector s satisfying �a�� let n � h� � d and
V � f�� �� � � � � ng� Let F be the collection of all subsets of V with d
elements� and Fi the set of those members F of F such that d � � � i
is the smallest element of V not in F � The elements of F are ordered in
such a way that F � G if the largest element in their symmetric di erence
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lies in G� For each i� 
 � i � d � choose the �rst hi members of Fi�
The resulting collection C consists of the facets of the required shellable
complex� and the given order on F induces the shelling order�

Systems of parameters� Let � be a simplicial complex� Given two faces
G � F � the set of faces �G� F� � fH � G � H � Fg is called the interval

between G and F � Now assume � is shellable with shelling F�� � � � � Fm � By
de�nition� there is a unique minimal element Gi � hFiinhF�� � � � � Fi��i� and
it is clear that � is the disjoint union of the intervals �Gi� Fi�� i � �� � � � � m�
In the following we use that k�F� is a residue class ring of k��� in a
natural way�

Theorem ������� Let k be a �eld� � a �d����dimensional simplicial complex�
and y � y�� � � � � yd a sequence of elements of degree � in k����
�a� The following conditions are equivalent	

�i� y is a homogeneous system of parameters of k����
�ii� for all facets F of �� the k����module k�F���y�k�F� is isomorphic

to k�
�b� Suppose the equivalent conditions in �a� hold� Then the images of the

monomials xF �
Q

vi�F
xi in S � k�����y�� F � �� form a system of gener�

ators of the ��nite� k�vector space S �
�c� �Kind�Kleinschmidt� Assume in addition that � is shellable with de�

composition � �
Sm

i���Gi� Fi�� as described above� If y is a homogeneous

system of parameters of k��� and S � k�����y�� then the images of the

monomials xGi in S form a k�basis of S � In particular� k��� is a free

k�y�� � � � � yd��module with basis xG� � xG� � � � � � xGm �

Proof� �a��i� �ii�� Since k�F� is a homomorphic image of k��� it follows
that k�F��yk�F� has �nite length� Note k�F� is a polynomial ring and
y a sequence of elements of degree �� Therefore k�F��yk�F� is also a
polynomial ring� If it has �nite length� it must be isomorphic to k�

�ii�  �i�� Let � � k�X�� � � � � Xn� �
L

F�k�X�� � � � � Xn��P F� �
L

F k�F�
be the homomorphism which on each component is the canonical epi�
morphism� The direct sum is taken over all facets of �� Since Ker� �T

F P F � I� � we obtain an induced homomorphism k��� �
L

F k�F� of
�nite k����modules which actually is a monomorphism� As we did for
local rings �see ��	��� one shows that k�����y� has �nite length if the
module �

L
F k�F���y�

L
F k�F�� has �nite length� But this follows from

assumption �ii��
�b� Let F be a facet of �� Since P Fk��� is the annihilator of x

F in
k��� it follows that xFS is a �k�F��yk�F���module� Therefore� by �a��ii��
xix

F � 
 in S for all i � �� � � � � n which clearly implies that the elements
xF

�

� F � � �� form a system of generators of the k�vector space S �
�c� First note that S is generated as an algebra over k by the monomials

xGi � i � 
� � � � � m� This follows from �b� simply because any other monomial
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xF is a multiple of some xGi �
Set �j � hF�� � � � � Fji� then k��j� is a residue class ring of k��� of the

same dimension� Therefore y is a homogeneous system of parameters
of k��j�� too� We set Sj � k��j���y�� and show by induction on j that

Sj �
Lj

i�� kx
Gi � For j � m this is the desired assertion�

Since �� � hF�i it follows from �a��ii� that S� �� k� Since G� � �� we
have � � xG� which is a basis of S�� Now suppose j � �� then we have

Sj�� �
Lj��

i�� kx
Gi by the induction hypothesis� Further we know that

Sj��xGj � � Sj�� since Sj is generated as a k�algebra by the monomials xGi �
i � j� Note that k��j� is Cohen�Macaulay� Thus y is a k��j ��sequence�
and so Remark ������ implies that dimk Sj �

P
i hi��j�� By ����� this sum

equals the number of facets of �j � which is j� But this is only possible if

Sj �
Lj

i�� kx
Gi �

It remains to show that k��� is a free k�y� � � � � � yd��module with basis
xG� � � � � � xGm� from Nakayama�s lemma for graded modules �see ������� it
follows that xG� � � � � � xGm is a minimal set of generators of the k�y�� � � � � yd��
module k���� Let n be the graded maximal ideal of k�y�� � � � � yd�� Then
k���n is a maximal Cohen�Macaulaymodule over k�y� � � � � � yd�n � Hence by
������� k���n is free over k�y�� � � � � yd�n � But then k��� is a free k�y�� � � � � yd��
module� see ������� In particular� xG� � � � � � xGm is a basis of k��� over
k�y�� � � � � yd��

Exercises

�����	� Let k be a 	eld� and I � kX� � � � � � Xn� an ideal generated by squarefree
monomials of degree �� Does there exist a poset � such that kX� � � � � � Xn��I 
�
k�� with � � ��� ��

�����
� �a� Show that in a graded poset all unre	nable chains between two
comparable elements have the same length�
�b� Show that a bounded� locally upper semimodular poset is pure�

������� Let � be a simplicial complex which is generated by m maximal proper
faces Fi of the simplex with vertex set fv� � � � � � vng� say Fi � fv�� � � � � vng n fvig� Show
�a� k�� � kX� � � � � � Xn���X� � � �Xm��
�b� h��� is the vector ��� �� � � � � �� with m components�

������� Let � and � be simplicial complexes on disjoint vertex sets V and W �
respectively� The join � � � is the simplicial complex on the vertex set V �W
with faces F � G where F � � and G � �� Compute h�� � �� in terms of h�� �
and h����
Hint� 	rst show that k� � �� 
� k� � �k k�� �as graded k�algebras��

������� Let � and � be simplicial complexes� Prove that � and � are Cohen�
Macaulay if and only if their join � � � is Cohen�Macaulay�

������� Let � be a �d � ���dimensional simplicial complex� For r� � � r � d � ��
one de	nes the r�skeleton of � to be �r � fF � � � dimF � rg� Compute h��d���
in terms of h����
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������� Let � be a simplicial complex with r�skeleton �r� Show�

�a� depth k�� � maxfr � �r is Cohen�Macaulay over kg� �� Hint� Use induction
on the number of faces�

�b� If � is Cohen�Macaulay� then �r is Cohen�Macaulay�

������� Prove all skeletons of a shellable complex are shellable�

������� Let � be a simplicial complex� Show�

�a� The following conditions are equivalent�

�i� Z�� is Cohen�Macaulay�
�ii� k�� is Cohen�Macaulay for all 	elds k�
�iii� R�� is Cohen�Macaulay for all Cohen�Macaulay rings R�

�The Cohen�Macaulay property of k�� may well depend upon k� see Reisner�s
example at the end of Section �����

Hint� It is crucial that R�� is a free R�module for an arbitrary ring R� For
�i� � �ii� one uses ������� for �ii� � �iii� note that �ii� applies to k�p � � R���
p � SpecR� so that ������ becomes applicable�

�b� The following conditions are equivalent�

�i� Q�� is Cohen�Macaulay�
�ii� there exist prime numbers p� � � � � � pn such that k�� is Cohen�Macaulay
for any 	eld k whose characteristic is di�erent from pi� i � �� � � � � n�
�iii� there exists a prime number p such that k�� is Cohen�Macaulay for any
	eld k whose characteristic is p�

Hint� �����
�

������� Let � be a simplicial complex� � is called disconnected if the vertex set V
of � is a disjoint union V � V� � V� such that no face of � has vertices in both
V� and V�� Otherwise � is connected� Show�

�a� If dim� � �� then � is Cohen�Macaulay�

�b� depth k�� � � if � is disconnected� In particular� all Cohen�Macaulay
complexes of positive dimension are connected�
Hint� let �i� i � �� �� be the subcomplex of � consisting of all faces of �
whose vertices belong to Vi� and represent k�� as the kernel of a suitable map
k��� � k��� � k�

�c� Suppose dim� � �� The following conditions are equivalent� �i� � is connected�
�ii� � is shellable� �iii� � is Cohen�Macaulay�

�����	� Let � be a �d����dimensional simplicial complex with h�vector h�� � � � � hd �
We de	ne the a�invariant a��� of � to be a�k��� where k is an arbitrary 	eld�
Show�

�a� a��� � ��

�b� The following conditions are equivalent� �i� a��� � �� �ii� ���� � ��

If moreover � is shellable with shelling F�� � � � � Fm� then �i� and �ii� are equivalent
to �iii� There exists an integer i � m such that hF�� � � � � Fi��i 	 hFii consists of all
maximal proper faces of hFii�

�����
� Let k be a 	nite 	eld� Find a simplicial complex � for which k�� does
not have a homogeneous system of parameters consisting of linear forms�
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��� Polytopes

We brie�y discuss combinatorial properties of polytopes� and give an
outline of McMullen�s proof of the upper bound theorem for polytopes�
Stanley�s far�reaching generalization to simplicial spheres will be proved
in the next sections� The topic as well as the methods employed in this
section are non�algebraic� Therefore most of the statements will be given
without proof� Though many of them seem obvious from our geometric
intuition� they need a rigorous proof� We refer the interested reader to
the standard work on polytopes by Gr�unbaum ������ and to the excellent
monograph ��	�� by McMullen and Shephard of which large parts of
this section are an abstract� Another very good reference is the recent
book by Ziegler ����

We consider Rd as a d�dimensional Euclidean space whose points are
d�tuples x � � �� � � � �  d� of real numbers� and whose scalar product is
given by

hx� yi �
dX
i��

 i!i� x � � �� � � � �  d�� y � �!�� � � � � !d��

A subset K of Rd is convex if for any two points x�� x� � K the
line segment with end points x� and x�� that is� the set of points x �
��� ��x� � �x�� � � R� 
 � � � �� belongs to K � The intersection of any
non�empty family of convex sets is again convex� This allows us to de�ne
the convex hull� convX � of a subset X � Rd to be the intersection of all
convex sets K � Rd which contain X � The convex hull of X can also be
described as the set of all convex combinations of �nite subsets of X � that
is� as the set of linear combinations

��x� � � � � � �rxr with xi � X� �i 	 
�
rX
i��

�i � ��

De�nition ������ A polytope is the convex hull of a �nite set of points in
Rd �

There is an alternative description of a polytope as the intersection
of a �nite number of �closed� half�spaces� let a � Rd � a �� 
� and � � R�
the set

H � fx � Rd � ha� xi � �g

is a hyperplane with normal vector a� The set of points lying on one side
of a hyperplane �including the hyperplane� is a closed half�space� Thus
H determines two half�spaces

H� � fx � Rd � ha� xi 	 �g and H� � fx � Rd � ha� xi � �g�

De�nition ������ A polyhedral set or polyhedron is the intersection of a
�nite number of closed half�spaces�
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Obviously polyhedra are convex sets� but of course need not be
bounded�

Theorem ������ A subset of Rd is a polytope if and only if it is a bounded

polyhedron�

Let P be a polyhedron� and H a hyperplane� Then H is called a
supporting hyperplane if H � P �� � and P is contained in one of the
closed half�spaces determined by H � If H is a supporting hyperplane of
P � then H � P is called a face of P �

It is convenient to consider the empty set and P as faces� the improper
faces� All the other faces of P are called proper faces� The faces of a
polyhedron �polytope� are again polyhedra �polytopes��

The dimension� dimP � of a polyhedron P is the dimension of its a�ne
hull� a d�polyhedron is a polyhedron of dimension d � Recall that for an
arbitrary set X � Rd there is a smallest �under inclusion� a�ne space A
containing X � namely just the intersection of all a�ne subspaces of Rd

containing X � This a�ne space A is called the a�ne hull� denoted by
a X � A j�face is a face whose dimension as a polyhedron is j� and we
set dim� � ��� If dimP � t� faces of dimension 
� �� t� �� t� � are called
vertices� edges� subfacets and facets� respectively�

In the following theorem we collect a few facts about the facial
structure of a polyhedron�

Theorem ����	� Let P be a polyhedron�

�a� P has only a �nite number of faces�

�b� Let F be a face of P and F � a face of F � Then F � is a face of P �
�c� Any proper face of P is a face of some facet of P �
�d� The set of faces of P � ordered by inclusion� is a lattice�

The lattice in ������d�� denoted by F�P �� is called the face lattice

or boundary complex of P � Two polyhedra are called combinatorially

equivalent if their face lattices are isomorphic� An invariant under com�
binatorial equivalence is the f�vector �f�� f�� � � � � fd��� of a d�polyhedron
P � Here fj � fj�P � is the number of j�faces of P �

Simplicial polytopes� Let A � Rd be a k�dimensional a�ne subspace of
Rd � We pick x � A� then there exists a linear subspace U of Rd �not
depending on x� such that A � x� U� The vector space U is called the
associated linear space of A� Let u�� � � � � uk be a basis of U� Then each
element y � A has a �unique� presentation

y � x� ��u� � � � � � �kuk

with �i � R� Set x� � x� �� � �� �
P

i �i�� xi � x � ui and �i � �i for
i � �� � � � � k� Then

y � ��x� � ��x� � � � � � �kxk and �� � � � �� �k � �����
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This suggests de�ning y to be a�nely dependent on x�� � � � � xk if there
exists an equation as in ���� It is clear that the set of elements which
are a�nely dependent on x�� � � � � xk is just the a�ne hull of fx�� � � � � xkg�
The elements x�� � � � � xk are called a�nely independent if each element
y � a fx�� � � � � xkg has a unique presentation as in ���� or equivalently� if
the elements x� � x�� x� � x�� � � � � xk � x� form a basis of the associated
linear space of a fx�� � � � � xkg�

De�nition ������ A d�simplex is the convex hull of d � � a�nely inde�
pendent points� A polytope is called simplicial if all its proper faces are
simplices�

Let P be a simplex de�ned by d�� a�nely independent points x�� x��
� � � � xd � and let X be a subset of fx�� x�� � � � � xdg consisting of d points�
For the following argument we may assume that P � Rd � Then a X is
a hyperplane which supports P � and thus convX � P � a X is a facet
of P � Since any subset of a set of a�nely independent points is again
a�nely independent it follows that convX is a �d � ���simplex� Thus
induction on the dimension yields

Proposition ������ Every j�face of a d�simplex P is a j�simplex� and every

j � � vertices of P are the vertices of a j�face of P �

Corollary ������ Let P be a simplicial polytope with vertex set V � and let

��P � be the collection of subsets of V consisting of the empty set and the

vertices of the proper faces of P � Then ��P � is a simplicial complex�

We call ��P � the vertex scheme of P � It is clear that not every
simplicial complex is the vertex scheme of some simplicial polytope P �
Nevertheless� to any simplicial complex � we may associate a geometric
object whose construction is in a sense inverse to the one given in ����	�
Let X be an arbitrary subset in Rd � We de�ne the relative interior of
X � denoted relintX � as the interior of X relative to a X � For example�
it is not di�cult to see that the relative interior of the convex hull of
fx�� � � � � xrg� xi � Rd � is the set of points

��x� � � � � � �rxr � �i � 
�
rX
i��

�i � ��

De�nition ������ Let � be a simplicial complex on the vertex set V �
Suppose the map � � V � Rd satis�es the following conditions�

�a� � is injective�

�b� the elements of ��F� are a�nely independent for all F � ��

�c� relint�conv��F�� � relint�conv��G�� � � for all F�G � �� F �� G�
Then

S
F�� relint�conv��F�� is called a geometric realization of ��
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Giving a geometric realization of � its natural topology as a subspace
of Rd � we note that any two geometric realizations of � are homeomor�
phic� and we denote the underlying topological space by j�j�

A geometric realization always exists� Indeed� if V � fv�� � � � � vng is
the vertex set of �� and x�� � � � � xn are a�nely independent elements in
Rd � then � � V � Rd with ��vi� � xi for i � �� � � � � n de�nes a geometric
realization of ��

Cyclic polytopes� Consider the algebraic curve M � Rd � de�ned para�
metrically by

x��� � ��� ��� � � � � �d�� � � R�

M is called the moment curve� It is a curve of degree d which implies that
a hyperplane not containingM intersects it in at most d points�

De�nition ������ Let n 	 d � � be an integer� A cyclic polytope� denoted
C�n� d�� is the convex hull of any n distinct points on M�

The notation C�n� d� is justi�ed since� as we shall see in a moment� its
face lattice depends only on n and d � We �rst observe

Proposition �����
� Any d�� distinct points on M are a�nely independent�

In particular� C�n� d� is a simplicial d�polytope�

Proof� Let ��� � � � � �d be the distinct parameters of these points� We
need to show that the vectors x���� � x����� � � � � x��d� � x���� are linearly
independent� or� equivalently� that the corresponding matrix with these
row vectors is non�singular� Clearly� this is the case if and only if the
Vandermonde matrix

A �

�BB�
� �� ��� � � � �d�
� �� ��� � � � �d�
���

���
� �d ��d � � � �dd

CCA
is non�singular� The determinant of A is known to be

Q
�
i�j
d��i � �j��

and this expression is non�zero since the �i are pairwise distinct�

Next we determine the vertex scheme ��C�n� d�� which encodes the
combinatorial properties of C�n� d�� Let C�n� d� be the convex hull of
the points xi � x��i�� �� � �� � � � � � �n� n 	 d � �� A subset X of
V � fx�� � � � � xng will be called an end set if there exists an integer i�
� � i � n� such that either X � fx�� � � � � xig or X � fxi� � � � � xng� The set
X will be called contiguous if there exist integers � � i � j � n such that
X � fxi� � � � � xjg� and an odd �even� contiguous set if it is contiguous and
jXj is odd �even�� It is clear that any proper subset W � V has a unique
decomposition

W � Y� �X� �X� � � � � �Xt � Y��
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where the Xi are contiguous� and Y� and Y� are end sets or empty� The
set W is of type �r� s� if jW j � r� and if there are exactly s odd contiguous
subsets Xi of W �

Theorem ������� Let j be an integer with 
 � j � d � �� A subset W � V
is a j�face of C�n� d� if and only if W is of type �j � �� s� for some s with

 � s � d � j � ��

Proof�We �rst show the assertion for j � d��� Since C�n� d� is simplicial�
any �d � ���face has d vertices� Thus we have to show that if W � V
is of type �d� s�� then convW is a facet if and only if s � 
� By �����
�
the points of W are a�nely independent� and hence de�ne a hyperplane
H � Rd � It is clear that W � H �M� But actually�W � H �M since M
is a curve of degree d � and it follows that the points of W divide M into
d � � arcs lying alternately on each side of H � Now convW is a facet of
C�n� d� if and only if H supports C�n� d�� or in other words� if and only if
all points of V nW lie on one side of H � Obviously this happens exactly
when every two points of V nW are separated by an even number of
points of W � that is� when s � 
�

Let us now treat the general case� and assume that jW j � j � ��
Suppose that W has at most d � j� � odd contiguous subsets� Then it is
possible to �nd a subset T of d � j� � points of M such that V �T � ��
and W � T has only even contiguous subsets� Since jW � T j � d it
follows from the �rst part of the proof that conv�W � T � is a facet of
C�n � d � j � �� d� supported by the hyperplane H � a �W � T �� As
W � H � V we conclude that convW � H � C�n� d� is a face of C�n� d��

Conversely� if convW is a j�face of C�n� d�� then there exists some
facet convW � of C�n� d� with W � W �� Since W � has no odd contiguous
subsets� W can have at most d � j � � odd contiguous subsets�

Corollary ������� The combinatorial type of a cyclic polytope C�n� d� de�
pends only upon n and d � and not on the particular vertex set V �M�

A polytope P has the highest possible number of j�faces when every
subset of j � � elements of the vertex set of P is the set of vertices of a
proper face of P � In this case we say that P is �j � ���neighbourly�

Corollary ������� C�n� d� is �d����neighbourly�

The upper bound theorem� In ��	 Motzkin ��	�� made the following
conjecture� Let P be a d�polytope with n vertices� then fj�P � � fj�C�n� d��
for all j� � � j � d � This conjecture was proved in �	
 by McMullen
��	��� We indicate the ideas of his proof� given a d�polytope P with
n vertices� one applies in a �rst step a process� known as �pulling the
vertices�� with the e ect of transforming P into a simplicial polytope
with the same number of vertices as P � and at least as many faces of
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higher dimension� Thus one may assume from the beginning that P is a
simplicial polytope�

Just as for simplicial complexes one de�nes the h�vector �h�� � � � � hd� of

P by the equation
Pd

i��hit
i �
Pd

i��fi��t
i�� � t�d�i� f�� � �� Then owing

to the fact that C�n� d� is �d����neighbourly we have

�a� hi�C�n� d�� �
�
n�d�i��

i

�
for all i� 
 � i � �d����

Moreover� the existence of a line shelling of P �see below� yields

�b� 
 � hi�P � �
�
n�d�i��

i

�
� and

�c� hi�P � � hd�i�P � for all i� 
 � i � d �

The identities in �c� are the famous Dehn�Sommerville equations�
Now �a�� �b� and �c� imply hi�P � � hi�C�n� d�� for all i� 
 � i � d �

Finally� since the fj�P � are non�negative linear combinations of the hi�P �
�see ������� the proof of the upper bound theorem is completed�

Shellings� A shelling of the boundary complex of a d�polytope P �or
simply a shelling of P � is an order of its facets F�� � � � � Fm such that

Fi �
Sj��

i�� Fi is homeomorphic to a �d � ���dimensional ball or sphere for
all j� � � j � m�

Theorem �����	 �Bruggesser�Mani�� Every polytope is shellable�

We give a sketch of the proof� Present P as an intersection of
closed half�spaces� One may assume without loss of generality that
P � fx � Rd � hai� xi � �g� 
 � i � m� where ai is a normal vector for the
face Fi� Choose a vector c such that hai� ci �� 
� and order the faces in such
a way that ha�� ci � ha�� ci � � � � � ham� ci� Then F� � � � � Fm is a shelling of
P � Such a shelling is called a line shelling of P � It can be imagined as
follows� moving along the line L in direction c starting from the origin�
one lists the facets of P as they become �visible�� �This happens exactly
when one meets the corresponding supporting hyperplane�� Coming back
from the opposite side one lists the remaining facets in the order they
�disappear��

Corollary ������� Let F�� � � � � Fm be a line shelling of the polytope P � Then
Fm� Fm��� � � � � F� is a line shelling of P � too�

Proof� Let F�� � � � � Fm be the line shelling induced by c� Then Fm� � � � � F� is
the line shelling induced by �c�

Suppose now that P is a simplicial polytope� Then the h�vector of
P and the h�vector of the vertex scheme ��P � coincide� Furthermore� it
is clear that a shelling of P induces a shelling of ��P � �in the sense of
Section ����� Thus we may apply ������ to compute the h�vector from a
line shelling of P � In particular� it follows from ������ that hi 	 
 for all i�
Moreover� in view of ������� we obtain the Dehn�Sommerville equations�
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Theorem ������ �Sommerville�� Let �h�� � � � � hd� be the h�vector of a sim�

plicial polytope� Then hi � hd�i for 
 � i � d �

These formulas imply in particular that hd � �� Thus ���� yields

Corollary ������� Let P be a simplicial d�polytope with f�vector �f�� � � � �
fd���� Then

d��X
i��

����ifi � �� ����d �

This formula is valid not only for simplicial polytopes� but more
generally for all polytopes� and is known as the Euler relation�

For the proof of the inequalities hi �
�
n�d�i��

i

�
one again uses line

shellings� We refer the reader to McMullen�s original paper ��	�� or ��	���

Exercise

�����
� Let ��n� d� denote the boundary complex of the cyclic polytope C�n� d��

�a� Show that the cyclic permutation xi �� xi��mod n induces an automorphism of
��n� d� for d even�

�b� Show that the substitution X� �� X�Xn��� Xi �� Xi for i � �� � � � � n� maps the
monomial generators of I��n�d� � d even� to those of I��n���d��� �

��� Local cohomology of Stanley�Reisner rings

We will compute the local cohomology of a Stanley�Reisner ring k���

in terms of the modi�ed %Cech complex C� introduced in Section ���� It
is not surprising that C�� just like k���� is equipped with a �ne grading�
This allows us to decompose the local cohomology groups of k���� As
it turns out� their homogeneous pieces can be interpreted as the reduced
simplicial homology of certain subcomplexes of �� This basic result of
Hochster is the main content of this section� As a corollary one obtains
Reisner�s Cohen�Macaulay criterion for simplicial complexes�

For the reader�s convenience we recall the notion of reduced simplicial
homology� Let � be a simplicial complex with vertex set V � An orientation
on � is a linear order on V � A simplicial complex together with an
orientation is an oriented simplicial complex�

Suppose � is an oriented simplicial complex of dimension d � ��
and F � � an i�face� We write F � �v�� � � � � vi� if F � fv�� � � � � vig and
v� � v� � � � � � vi � and F � � � if F � �� Having introduced this notation�
we de�ne the augmented oriented chain complex of ��

eC��� � 
 �� Cd��
�
�� Cd�� �� � � � �� C�

�
�� C�� �� 
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by setting

Ci �
M
F��

dimF�i

ZF and F �
iX

j��

����jFj

for all F � �� here Fj � �v�� � � � � �vj � � � � � vi� for F � �v�� � � � � vi�� A straight�
forward computation shows that  �  � 
� Let G be an Abelian group�
We set eH i���G� � Hi�eC����G�� i � ��� � � � � d � ��

and call eH i���G� the i�th reduced simplicial homology of � with values in

G� It follows from the next lemma that a reference to the orientation is
super�uous�

Lemma ������ De�ne eC���� in the same way as eC���� but with respect to a

di�erent orientation of �� Then there exists an isomorphism of complexeseC��� �� eC�����
Proof� Let � and � be the di erent linear orders on the vertex set of
V � Given F � fv�� � � � � vig� v� � v� � � � � � vi� there exists a permutation
� � �F of the vertices of F such that v���� � v���� � � � � � v��i�� We leave

it to the reader to verify that � � eC���� eC��� with ��F� � ���F�F is the
desired isomorphism�

The i�th reduced simplicial cohomology of � with values in G is de�ned
to be eH i���G� � H i�HomZ�eC���� G��� i � ��� � � � � d � ��

We set eH i��� � eH i���Z� and eH i��� � eH i���Z� for all i� The simplicial

complex � is called acyclic if eH ���� � 
� In this case� eC��� is split exact�
and so eH ����G� � 
 and eH ����G� � 
 for all Abelian groups G� Examples
of acyclic simplicial complexes are the cones� the cone cn��� of � is the
join �see �����
� of a point � � fv�g with �� The reader is referred to
Exercise �����
 for further details�

The cone construction can be iterated� We set cnj��� � cn�cnj������
for all j � �� It is immediate that cnj��� is the join of � with a j�simplex�
and it follows that eH

�
�j�simplex � �� � 
����

If G � k is a �eld� then the reduced simplicial homology and cohomology
groups are k�vector spaces� and there are canonical isomorphismseH i��� k� �� Homk�eH i��� k�� k�� eH i��� k� �� Homk�eH i��� k�� k�

for all i� see Exercise ������� In particular it follows that dim eH i��� k� �

dim eH i��� k� for all i�
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Since Ci � k is a vector space of dimension fi� elementary linear
algebra yields

d��X
i���

����i dim eH i��� k� �
d��X
i���

����ifi�

This sum� denoted by e���� is called the reduced Euler characteristic of ��
A comparison with the Euler characteristic ���� introduced in Section ���
shows that e���� � ����� �� and we can rewrite the Euler relation �����	
as e���� � ����d���

A geometric realization of � in Rn inherits the structure of a topo�
logical space �with the subspace topology�� In Section ��� we denoted this
space by j�j and remarked that it is unique up to homeomorphism� Let
X be a topological space� and � � j�j � X a homeomorphism� The pair
��� �� is called a triangulation of X � Less precisely� we often say in this
situation that � is a triangulation of X �

It is a fundamental theorem in topology �see ���
�� Theorem �����

that the reduced singular homology eH i�X� k� of a topological space X
with triangulation � can be computed by means of the reduced simplicial
homology of ��

Theorem ������ Let X be a topological space with triangulation �� TheneH i�X� k� �� eH i��� k� for all i�

Examples ������ �a� Let � be the d�simplex with vertices V � fv�� � � � �
vdg� Then j�j is homeomorphic to the d�dimensional closed ball Bd �
whose reduced singular homology is trivial since Bd is contractible to a

point� Thus ����� implies that eH ���� k� � 
� That the reduced simplicial
homology of � is trivial can be seen directly� one immediately identi�eseC�� k with the Koszul complex K��f� associated with f � kd�� � k where
f maps the canonical basis elements of kd�� to �� It follows from ������b�
that this Koszul complex is exact�

�b� Consider the subcomplex � � � obtained from � by deleting the
face F � fv�� � � � � vdg� then j� j is homeomorphic to the �d����dimensional

sphere Sd��� It is clear that the quotient U
�
� eC����eC�� � has Ui � 
 for

i �� d and Ud
�� Z � �v�� � � � � vd�� Therefore

eH i�S
d��� k� �� eH i�� � k� ��

�
k if i � d � ��

 if i �� d � ��

�c� Let � be the vertex scheme of a simplicial �d � ���polytope P �
Then j�j is homeomorphic to the �d � ���sphere� Therefore� by �b��

e���� � d��X
i���

����i dim eH i�S
d��� k� � ����d���
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Thus we have recovered the Euler relation�

The following notions will be crucial in the analysis of the local
cohomology of a Stanley�Reisner ring�

De�nition ����	� Let � be a simplicial complex� and F a subset of the
vertex set of �� The star of F is the set st� F � fG � � � F �G � �g� and
the link of F is the set lk� F � fG � F � G � �� F �G � �g�

To simplify notation we occasionally omit the index � in st� or lk� �
It is clear that stF is a subcomplex of �� lkF a subcomplex of stF � and
that stF � lkF � � if F �� ��

In Figure ��	 let v be the vertex in the centre of the hexagon� Then st v
is the full simplicial complex� while lk v is the subcomplex constituting
the boundary of the hexagon�

�

�

�

�

�

� �
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Figure ���

Lemma ������ Let F be a face of the simplicial complex �� and G � lkF �
Then

�a� F � lkG and lkstG F � hGi � lklkG F�
�b� lkstG F is acyclic� if G �� ��

Proof� Statement �a� is trivial� and �b� follows from equation ����

Local cohomology� Let � be a simplicial complex� k a �eld� and R �
k�X�� � � � � Xn��I� the Stanley�Reisner ring of �� Let m be the maximal
ideal generated by the residue classes xi of the indeterminates Xi� Note
that �R� m � is a �local ring� and hence by �����	� R is Cohen�Macaulay
if and only if Rm is Cohen�Macaulay� Thus� in order to determine when
� is Cohen�Macaulay� we are led to compute the local cohomology
H�

m Rm
�Rm � of Rm � To simplify notation we will write H

�

m �R� for H
�

m Rm
�Rm ��

Let x � x�� � � � � xn� as in Section ��� we consider the complex lim
��

K��xk�

which is isomorphic to

C� � 
 �� C� �� C� �� � � � �� Cn �� 
�

Ct �
M

�
i��i������it
n

Rxi�xi� ���xit
�
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and whose di erential is composed of the maps

����s�� nat� Rxi� ���xit
�� Rxj� ���xjt��

if fi�� � � � � itg � fj�� � � � � bjs� � � � � jt��g� and 
 otherwise� It follows from �����
that H i

m �R�
�� H i�C�

m �
�� H i�C��m � We claim that SuppH i�C�� � fm g for

all i� This �nally implies

H i
m �R�

�� H i�C��

for all i� Indeed� C�

xj
is exact for j � �� � � � � n because the identity and

the zero�map of C�

xj are homotopic via ��� where �k � Ck � Ck�� is

de�ned on the component �Rxi� ���xik
�xj � �Rxj� ���xjk��

�xj to be ����s�� id if

fi�� � � � � ikg � fj�� � � � � jk��� jg and is � j� and 
 otherwise�
Next note that C� is a Zn�graded complex� recall from Section ���

that R itself is Zn�graded� Let a � Zn� a � �a�� � � � � an�� then Ra
�� k if

a � Nn and fvi � ai � 
g � �� and Ra � 
 otherwise� The components of
C i are of the form Rx for some element x � R which is homogeneous in
the �ne grading of R� One de�nes a Zn�grading on Rx by setting

�Rx�a � f
r

xm
� r homogeneous� deg r �m deg x � ag�

Of course the terms �homogeneous� and �deg� refer to the �ne grading
of R�

We extend this grading on the components to C i� Then it is clear
that C� becomes a Zn�graded complex� and we may equip the homology
of C� with the induced Zn�graded structure� In other words� the local
cohomology modules H i

m �R� are in a natural way Z
n�graded modules�

As R is a homogeneous k�algebra �in the sense of Section ����� we
may as well consider the graded local cohomology modules �H i

m �R� of R
introduced in Section ���� Then

�H i
m �R�j

��
M

a�Zn � jaj�j

H i
m �R�a

for all i and j� see Exercise �������
Given x � xi� � � � xir � i� � � � � � ir � we set F � fvi� � � � � � virg� In order

to analyze when �Rx�a �� 
 for a � Zn we introduce some more notation�
and put

Ga � fvi � ai � 
g and Ha � fvi � ai � 
g�

Lemma ������ �a� dimk�Rx�a � � for all a � Zn�

�b� �Rx�a �� k if and only if F � Ga and F �Ha � ��

Proof� �a� Let ri�xni � i � �� �� be non�zero elements in �Rx�a� Then xn�r�
and xn�r� are homogeneous of the same degree� and hence are linearly
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dependent over k� We may assume that "�xn�r�� � xn�r� for some " � k�
then "�r��xn�� � r��x

n� �
�b� We have �Rx�a �� 
 if and only if there exist a monomial v in R

and an integer l such that

�i� xmv �� 
 for all m �N� and �ii� deg v�xl � a�

Condition �i� is equivalent to �i�� v�xl �� 
�
Now �i� implies F � supp v � �� and �ii� implies F � Ga and Ha �

supp v� In particular� F �Ha � ��
Conversely� suppose F � Ga and F � Ha � �� Set v �

Q
ai�� x

ai
i �

w �
Q

ai�� x
�ai
i � Since F � Ga there exists an integer l such that xl � wu

where u is a monomial �with non�negative exponents� in the xi� Since
F �Ha � �� we have vu�xl �� 
� and it follows that deg vu�xl � a�

Let a � Zn� as a consequence of the lemma we see that �C i�a has a
basis

fbF � F � Ga� F �Ha � �� jFj � ig�

Restricting the di erentiation of C� to the a�th graded piece we obtain
a complex �C��a of �nite dimensional vector spaces with di erentiation
 � �C i�a � �C i���a given by �bF� �

P
������F�F

��bF � where the sum is
taken over all F � such that F � � F � F � � Ha � � and jF �j � i � �� and
where ��F� F �� � s for F � � �v�� � � � � vi� and F � �v�� � � � � �vs � � � � � vi��

Lemma ������ For all a � Zn there exists an isomorphism of complexes

�� � �C��a � HomZ�eC�lkstHa
Ga���j � ��� k�� j � jGaj�

Proof� The assignment F �� F � � F nGa establishes a bijection between
the set

B � fF � � � F � Ga� F �Ha � �� jFj � ig

and the set B� � fF � � � � F � � lkstHa
Ga� jF �j � i � jg� Therefore it is

clear that

�i � �C i�a � HomZ�eC�lkstHa
Ga�i�j��� k�� bF �� �FnGa

is an isomorphism of vector spaces� Here �F � is de�ned by

�F ��F ��� �
n
� if F � � F ���

 otherwise�

By ������ we have the possibility of adjusting the orientation of � suitably�
We choose it in such a way that the elements in Ga are latest in the linear
order of the vertex set of �� Furthermore we give the subcomplex lkstHa

Ga

the induced orientation� With this standardization� �� becomes a complex
homomorphism�
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We are ready to prove the main result of this section�

Theorem ����� �Hochster�� Let � be a simplicial complex� and k a �eld�

Then the Hilbert series of the local cohomology modules of k��� with re�

spect to the �ne grading is given by

HH i
m �k�����t� �

X
F��

dimk
eH i�jFj���lkF� k�

Y
vj�F

t��
j

�� t��
j

�

Proof� By the previous lemma we have

H i
m �k����a

�� eH i�jGaj���lkstHa
Ga� k��

and therefore dimkH
i

m �k����a � dimk
eH i�jGaj���lkstHa

Ga� k�� see Exercise
�������

If Ha �� �� then� by ������ lkstHa
Ga is acyclic� and if Ha � �� then

stHa � �� and so lkstHa
Ga � lkGa�

Let Zn
� � fa � Zn � ai � 
 for i � �� � � � � ng� then Ha � � if and only if

a � Zn
�� and it follows that

HH i
m
�k�����t� �

X
F��

X
a�Zn

� � Ga�F

dimk
eH i�jFj���lkF� k�t

a

�
X
F��

dimk
eH i�jFj���lkF� k�

Y
vj�F

t��
j

�� t��
j

�

Hochster�s theorem yields an important Cohen�Macaulay criterion
for simplicial complexes�

Corollary ����� �Reisner�� Let � be a simplicial complex� and k a �eld�

The following conditions are equivalent	

�a� � is Cohen�Macaulay over k�

�b� eH i�lkF� k� � 
 for all F � � and all i � dim lkF �

Proof� Let dim� � d ��� Then � is Cohen�Macaulay over k if and only
if H i�C�� � 
 for i � d � The latter is equivalent toeH i�jFj���lkF� k� � 
 for all F � � and all i � d����

�a� �b�� If � is Cohen�Macaulay over k� then � is pure �see �������

and so dim lkF � d � jFj � �� Therefore ��� implies eH i�lkF� k� � 
 for
i � dim lkF �

�b�  �a�� Let F � � and G � lkF � Then lklkF G � lk�G � F��
Therefore� by induction on the dimension of the simplicial complex we
may assume that all proper links of � are Cohen�Macaulay over k�

In particular� the links of the vertices are pure� Now since eH���� k� �eH��lk�� k� � 
 if dim� 	 �� we conclude that � itself is pure� Then
obviously �b� implies ����
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As a �rst application we consider an example of Reisner� let � be a
triangulation of the real projective plane P�� Figure ��� indicates such a
triangulation� For reasons of readability the triangles in the �gure have

�

�

�

� �

�

�

� �������������������������������������������������������������������������������������������������������������������������������������������������������
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Figure ���

not been shadowed� Also note that edges with the same vertices have to
be identi�ed according to their orientations�

Let k be a �eld� If � is Cohen�Macaulay over k� then ���� implieseH i��� k� � 
 for i � �� Since P� is connected� we have eH��P�� k� � 
� But

eH��P
�� k� �

�
k if char k � ��

 otherwise�

see ���
�� Theorem �
�� and Theorem ����� In particular� � is not Cohen�
Macaulay over a �eld k of characteristic �� On the other hand� it follows
from Exercise ������ that � is Cohen�Macaulay over k if char k �� ��

Exercises

������� �a� Let � � � be the join of the simplicial complexes � and �� Show thateC�� � �� 
� eC�� � � eC���
�b� Let � � fv�g be the simplicial complex consisting of one point� and form the
cone cn��� � � � �� Show there exists an exact sequence

� ��� eC��� ��� eC�cn���� ��� eC������� ��� �

where eC��� � eC�cn���� � eC�� � � eC��� is the natural complex homomorphism
a �� �� a�
�c� Prove that the connecting homomorphisms in the associated long exact homo�

logy sequence are isomorphisms� and conclude that eH��cn���� � �� �This conclu�
sion can also be drawn directly from ������ with x � ���

������� Let � be a simplicial complex� and k a 	eld� Show there exist natural
isomorphisms

eH i��� k� 
� Homk�eH i��� k�� k�� eH i��� k� 
� Homk�eH i��� k�� k��
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������� Let � be a simplicial complex� and k a 	eld�

�a� Consider k�� as a homogeneous k�algebra� and give the modules C i the
structure of Z�graded k���modules by setting �C i�j �

L
a�Zn � jaj�j �C

i�a � Show C�

is a complex of Z�graded modules�

�b� Give H i�C�� the induced Z�graded structure� and deduce �H i
m
�k��� 
� H i�C��

as graded k���modules�

�c� Conclude from �a� that �H i
m
�k���j 
�

L
a�Zn �jaj�j H

i�C��a for all i and j�

������� Use Reisner�s criterion to give an alternative proof of the equivalence
�i� �� �iii� of Exercise �������c��

������� Let � be a simplicial complex of dimension �� Show that � is Cohen�
Macaulay over k if and only if the following conditions are satis	ed�

�a� � is connected�

�b� eH���� k� � ��

�c� each point of j�j has arbitrarily small connected punctured neighborhoods�
Hint� �c� is equivalent to the condition that the links of the vertices of � be
connected�

������� Let � be a simplicial complex of dimension d � �� k a 	eld� and m the
graded maximal ideal of k���

�a� Show the following conditions are equivalent�

�i� � is pure and k��p is Cohen�Macaulay for all prime ideals p �� m �
�ii� H i

m
�k��� has 	nite length for all i � d�

�iii� H i
m
�k���a � � for all a �� � and i � d�

�iv� eH i�lk F� k� � � for all F � �� F �� � and all i � dimlkF�

�v� H i
m
�k��� 
� eH i����� k� for all i � d �

�b� �Reisner� Show the following conditions are equivalent�

�i� � is Cohen�Macaulay�

�ii� eH i��� k� � � for all i � d � �� and the links of all vertices of � are
Cohen�Macaulay�

Hint� �a��i� is equivalent to the condition that k��xi be Cohen�Macaulay for all

i � �� � � � � n� Further� observe that k��xi

� kxi� x

��
i �lkfxig��

��	 The upper bound theorem

This section is devoted to the proof of the upper bound theorem for sim�
plicial spheres� that is� simplicial complexes whose geometric realization
is topologically a sphere� It follows from a result of Kalai ���� that there
are many more simplicial spheres than polytopes� Therefore� the upper
bound theorem for simplicial spheres properly generalizes McMullen�s
theorem for polytopes whose proof we sketched in Section ����

The upper bound theorem for simplicial spheres was conjectured by
Klee in ��� and proved by Stanley ����� in �	��

The proof is carried out in three steps� �rst we show that Euler com�
plexes satisfy the Dehn�Sommerville equations� secondly we prove the
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upper bound theorem for Cohen�Macaulay Euler complexes� and �nally
we show that simplicial spheres are Cohen�Macaulay Euler complexes�

De�nition ��	��� The simplicial complex � is an Euler complex if � is
pure� and e��lkF� � ����dim lkF for all F � ��

Theorem ��	�� �Dehn� Sommerville� Klee�� Let � be an Euler complex of

dimension d � � with h�vector �h�� � � � � hd�� Then hi � hd�i for i � 
� � � � � d �

The proof will easily follow from

Lemma ��	��� Let � be a simplicial complex on V � fv�� � � � � vng� Then

Hk����t
��
� � � � � � t��

n � �
X
F��

����dimFe��lkF�Y
vi�F

ti
�� ti

�

Proof� We have Hk����t� �
P

F��

Q
vi�F

ti��� � ti�� see Section ���� The

substitution ti �� t��
i transforms ti���� ti� into ���� ti���� ti��� It follows

that
Q

vi�F
ti���� ti� is transformed into

����dimF��
Y
vi�F

�� �
ti

�� ti
� � ����dimF��

X
G�F

Y
vi�G

ti
�� ti

�

so that

Hk����t
��
� � � � � � t��

n � �
X
F��

����dimF��
X
G�F

Y
vi�G

ti
�� ti

�
X
G��

	X
F��
G�F

����dimF��

Y
vi�G

ti
�� ti

�

Since
P

F��� G�F����
dimF�� �

P
F�lkG����

dimF�dimG � ����dimGe��lkG��
the assertion follows�

Proof of ������ If � is an Euler complex of dimension d � �� thene��lkF� � ����dim lkF � ����d�dimF � The latter equality holds since � is
pure� Now ����� yields

Hk����t�� � � � � tn� � ����dHk����t
��
� � � � � � t��

n ��

Replacing the ti by t we obtain the identity Hk����t� � ����dHk����t��� for
the Hilbert function of k���� It is clear that this yields the desired result�
see also ����	�a��

Let � be an Euler complex� and k a �eld� It follows from Reisner�s
criterion ���� that � is Cohen�Macaulay over k if and only if for all
F � �

eH i�lkF� k� ��
n
k if i � dim lkF �

 otherwise�

�	�
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In view of the results in the previous sections it is now an easy matter
to show that the upper bound theorem holds for any simplicial complex
whose faces satisfy condition �	�� In other words we have

Theorem ��	�	� Let � be an Euler complex of dimension d � � with n
vertices which is Cohen�Macaulay over a �eld k� Then fi��� � fi�C�n� d��
for i � �� � � � � d � ��

Proof� Just as in the proof of the upper bound theorem for polytopes it

su�ces to show �a� hi��� �
�
n�d�i��

i

�
for i � 
� � � � � d � and �b� � satis�es

the Dehn�Sommerville equations� But �a� follows from �����
� and �b�
from ������

The �nal step in the proof of the upper bound theorem for simplicial
spheres is to show that the faces of a simplicial complex satisfy �	� if the
geometric realization is homeomorphic to a sphere�

In the next lemma which is a reformulation of ���
�� Lemma ���� we
refer to the notation used in ������ and denote� as usual� by H��X� Y � k�
the relative singular homology of the pair �X� Y � where X is a topological
space and Y a subspace of X �

Lemma ��	��� Let � be a simplicial complex on the vertex set V � and k be a

�eld� Suppose that X is a geometric realization of � given by � � V � Rd �

that F � � is a face of dimension j� and that p � relint�conv���F���� If
lkF �� �� then

Hi�X�X n fpg� k� �� eH i�j���lkF� k� for all i�

and if lkF � �� then

Hi�X�X n fpg� k� ��
n
k for i � j�

 otherwise�

As a consequence of this lemma and Reisner�s criterion we see that
the Cohen�Macaulay property of � only depends on the topology of j�j�

Corollary ��	�� �Munkres� Stanley�� Let � be a �d � ���dimensional sim�
plicial complex� X � j�j� and k a �eld� The following conditions are equiv�

alent	

�a� � is Cohen�Macaulay over k�
�b� for all p � X and all i � dimX one haseH i�X� k� � Hi�X�X n fpg� k� � 
�

Moreover� if the equivalent conditions are satis�ed� then � is an Euler

complex if and only ifeHd���X� k� �� Hd���X�X n fpg� k� �� k for all p � X�



��
 � Stanley�Reisner rings

Proof� We only prove the implication �b� �a�� the converse implication
is proved similarly� We have lkF � � if and only if F is a facet� Thus
assumption �b� and ����� imply that all facets have dimension d � �� that
is� � is pure�

Now suppose that lkF �� �� Since � is pure we have dim lkF �
d � � � dimF � d � � � j� Therefore� by ����� and assumption �b�� if

F �� � and i � dim lkF � then eH i�lkF� k� �� Hi�j���X�X n fpg� k� � 
 since
i � j � � � d � �� Finally� if F � �� then lkF � �� and �b� implies

that eH i�lkF� k� �� eH i�X� k� � 
 for i � dim lkF � By Reisner�s criterion it
follows that � is Cohen�Macaulay over k�

The supplement concerning the Euler property is obvious�

Corollary ��	�� �The upper bound theorem for simplicial spheres�� Let
� be a simplicial complex with n vertices and j�j �� Sd��� Then fi��� �
fi�C�n� d�� for i � �� � � � � d � ��

Proof� The assertion is clear in view of ����� and ������

Exercises

����
� �a� Give an example of a simplicial complex which does not satisfy the
Dehn�Sommerville equations�
�b� Give an example of a simplicial complex � which for some i fails the condition
hi �

�
n�d�i��

i

�
� d � � � dim�� n � f�����

������ Let k be a 	eld� and � a Cohen�Macaulay complex over k� � is called
level over k if k�� is a level ring� that is� if all generators in a minimal set of
generators of the �canonical module �k�� have the same degree� The type of �
over k� denoted by rk���� is the type of k��� Let s � maxfi � hi��� �� �g� Show
that hs � rk���� and that equality holds if and only if � is level over k�

��� Betti numbers of Stanley�Reisner rings

Let k be a �eld� and � a simplicial complex on a vertex set V with
jV j � n� We write k��� �� R�I� with R � k�X�� � � � � Xn�� Since k��� is a
Zn�graded R�module� it has a minimal Zn�graded resolution

F� � 
 �� Fp
�p

�� Fp�� �� � � � �� F�

��

�� F� �� 
�

where Fi �
L�i

j��R��aij� for i � 
� � � � � p with certain aij �N
n� and where

the maps �i are homogeneous of degree 
� see ������ where a similar
result has been established for Z�graded resolutions� Minimality of the
resolution means that �i�Fi� � �X�� � � � � Xn�Fi�� for all i� The numbers
�ia � jfj � aij � agj� a � Zn� are called the �ne Betti numbers of k���� It is
easily seen that the minimal Zn�graded resolution is uniquely determined
up to isomorphism�



�� Betti numbers of Stanley�Reisner rings ���

In order to compute the shifts aij in the resolution F�
� we consider the

k�vector spaces Ti � TorRi �k� k���� and notice that Ti
�� Fi��X�� � � � � Xn�Fi

as a Zn�graded vector space� Obviously� �ia � dimk�Ti�a �
Let W � V � we set �W � fF � � � F � W g� and call �W the

restriction of � to W � It is clear that �W is again a simplicial complex�
The following theorem gives a combinatorial interpretation of the �ne

Betti numbers of k����

Theorem ����� �Hochster�� Let HTi
�t� �

P
a�Zn �iat

a be the �ne Hilbert

series of the module Ti � TorRi �k� k����� Then

HTi
�t� �

X
W�V

�
dimk

eH jW j�i����W � k�
� Y
vj�W

tj �

We say that a � Zn is squarefree if each of its entries is either 
 or ��
One remarkable consequence of Hochster�s theorem is

Corollary ������ The shifts in the minimal Zn�graded R�resolution of k���
are squarefree�

For the proof of ����� we shall need Alexander duality� It involves the
dual complex of � which is given by

�� � fG � � � �G �� �g�

Here �G denotes the complement of G in V � and � the simplex on the
vertex set V � It is easy to see that �� is again a simplicial complex� and

that ��� � ��
Let � � � be a simplicial subcomplex of �� then eC�� � is a subcomplexeC���� and we may form the quotient complex eC����eC�� �� For an Abelian

group G we set

eH i��� � �G� � Hi

�eC����eC�� �� G
�

and eH i��� � �G� � Hi

�
HomZ�eC����eC�� �� G���

These groups are called the reduced relative simplicial homology and
cohomology of the pair ��� � � �with values in G�� The following lemma is
the relative version of Alexander duality�

Lemma ������ Let k be a �eld� and let � � � � � be simplicial complexes�

where � is the simplex on the vertex set V � jV j � n� Then

eH i��� � � k� �� eHn���i� �� � ��� k� �� eHn���i� �� � ��� k��

for all i� In particular� one has eH i��� k� �� eHn���i���� k� �� eHn���i���� k��
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Proof� Let e�� � � � � en be a basis of the free Z�module L � Zn� The exterior

products eF �
V

j�F ej � F � V � jFj � j� are a basis of
Vj L� and

V
L

together with the di erential

j �

j�
L�

j���
L� ei� � � � � � eij ��

jX
k��

����k��ei� � � � � eik�� � eik�� � � � � eij

is an exact complex� in fact� it is just the Koszul complex K���� of the

linear form � � L� Z with ��ei� � � for all i� Evidently eC������� may be
identi�ed with the subcomplex of

V
L spanned by the basis elements eF �

F � ��
In �����
 we have exhibited an isomorphism � � K����� K����� which is

induced by the multiplication on
V
L and the orientation �n �

Vn L� Z�

�n�e��� � ��en� � �� The restriction of � to eC������� yields an isomorphismeC����eC�� � �� HomZ�eC����eC�� ��Z�� Upon tensoring with k one gets the
�rst of our isomorphisms whereas the second holds because we are taking
coe�cients in a �eld�

In the special case in which � is the empty set one has eH i��� k� ��eHn���i��� ��� k�� On the other hand� eHn���i��� ��� k� �� eHn���i���� k�� as
follows from the long exact cohomology sequence

eH j����� k� �� eH j������ k� �� eH j��� ��� k� �� eH j��� k�

and the fact that eH ���� k� � 
�

Proof of ������ The Koszul complex K��x�R� of the sequence x �
X�� � � � � Xn is a minimal graded free resolution of the R�module k � R��x�
�see �������� Thus for each i 	 
� and each a � Zn

Hi�x� k����a �� TorRi �k� k����a �

We will compute the graded components of TorRi �k� k���� by means of
these isomorphisms�

With a subset F � f�� � � � � ng we associate the vector ��F� �
P

i�F ei�
where ei is the i�th canonical unit vector in Zn� Now it is straightforward
to verify that Ki�x� I��a is a k�vector space with basis

xbeF � b� ��F� � a� jFj � i� and supp�b� �� ��

�As above� eF �
V

j�F ej �� Thus� if �a is the simplicial complex consisting

of those faces F � �� F � suppa� for which supp�a n ��F�� �� �� then the
map

�i � eC i����a� �� Ki�x� I��a� F �� xa���F�eF �

is an isomorphism of vector spaces�



��� Gorenstein complexes ���

One easily checks that �
�
is a chain map� so that we actually have an

isomorphism of complexes �
�
� eC

�
��a����� �� K

�
�x� I��a� Therefore the

exact sequence of complexes


 �� K
�
�x� I�� �� K

�
�x� R� �� K

�
�x� k���� �� 


yields the isomorphisms

TorRi �k� k����a
�� Hi�x� k����a �� Hi���x� I��a �� eH i����a� k�

for i � 
� The case i � 
 is trivial� dimk
eH jW j����W � k� �� 
 if and only if

W � � and� equivalently� �W � �� furthermore dimk
eH������ k� � ��

Suppose �rst that a � �a�� � � � � an� is not squarefree� We pick j such that
aj 	 �� and consider the element a�r� � �a�� � � � � aj � r� � � � � an�� Then �a �

�a�r� for all r 	 
� Hence it follows that TorRi �k� k����a � TorRi �k� k����a�r�
for all r 	 
� This is only possible if TorRi �k� k����a � 
� because otherwise
there would exist in�nitely many shifts in the �nite resolution F� of k����

Now we assume that a is squarefree� Let W � supp a� then F � �a if
and only if W n F �� �W � Therefore� �a � �W with respect to the vertex
set W � and the assertion follows from Alexander duality�

Exercises

������ Let k be 	eld� and � a simplicial complex with n vertices�

�a� Show that the Betti numbers �ia of k�� are independent of k for i � �� �� �� n���
and n�

Hint� Use Alexander duality and the fact that eH i�� � k� does not depend on k for
i � �����

�b� Prove that all Betti numbers of k�� are independent of k if n � ��

�c� Give an example of a simplicial complex � with � vertices for which the Betti
numbers of k�� depend on k�

������ Let k be 	eld� and � a simplicial complex on a vertex set V with n elements�

�a� Let F be a face of the dual simplicial complex ��� and set W � V n F � Show
that eH i���lk�� F� k� 
� eH jW j�i�� ��W � k��

�b� Use �a� and ����� to prove the following theorem of Eagon and Reiner ����
the Stanley�Reisner ring k�� has an m�linear resolution �see ������� if and only
if �� is Cohen�Macaulay over k� Determine m�

��� Gorenstein complexes

Let � be a simplicial complex on the vertex set V � and k a �eld� The
complex � is called Gorenstein over k if k��� is Gorenstein� Our main
concern in this section is to characterize the Gorenstein complexes�
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We de�ne core� to be �coreV where coreV � fv � V � st v �� �g�
Notice that � � �core�� � �VncoreV � Therefore�

k��� �� k�core��� k��VncoreV � �� k�core���Xi � vi � V n coreV ��

It follows that � is Gorenstein if and only if core� is Gorenstein�

Theorem ������ Let � be a simplicial complex� � � core�� and k a �eld�

The following conditions are equivalent	

�a� � is Gorenstein over k�
�b� for all F � � one has

eH i�lk� F� k� ��

�
k if i � dim lk� F �

 if i � dim lk� F�

�c� for X � j� j and p � X one has

eH i�X� k� �� Hi�X�X n fpg� k� ��

�
k if i � dimX �


 if i � dimX �

Proof� The equivalence of �b� and �c� follows from ������ and that of �a�
and �b� from the next theorem�

Theorem ������ Let � be a simplicial complex with � � core�� Then �
is Gorenstein over k if and only if � is an Euler complex which is Cohen�

Macaulay over k�

For the proof of ����� we need the following two lemmas�

Lemma ������ Let � be a simplicial complex� and k a �eld� Let M be

a Zn�graded k����module whose �ne Hilbert series coincides with that of

k���� Suppose M is indecomposable� Then k��� and M are isomorphic as

Zn�graded modules�

Proof� We set R � k���� There exists a non�zero Zn�graded homomor�
phism � � R �M of degree 
� We want to show that � is an isomorphism�
Consider the exact sequence


 �� K �� R
�
��M

�
�� N �� 
�

whereK � Ker� andN � Coker�� Since R andM have the same Hilbert
series �with respect to the �ne grading�� this is true for K and N as well�
We choose homogeneous generators x�� � � � � xn of M with ���� � x��
and such that ��x��� � � � � ��xn� form a minimal system of generators of N�
Consider the sets A � fa � Zn � �Rx��a �� 
g� B � fa � Zn � Ka �� 
g and
C � fa � Zn � Na �� 
g� Then A � B � �� B � C � and A � B � D where
D � fa � Zn � Ra �� 
g � fa � Nn � supp a � �g� see Section ��� for the
last equality and the de�nition of supp�
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We want to show thatM � Rx���Rx��� � ��Rxn�� As� by assumption�
M is indecomposable� the assertion of the lemma will follow�

Suppose Rx���Rx�� � � ��Rxn� �� 
� Then there exists a homogeneous
element y � Rx� � �Rx�� � � ��Rxn�� y �� 
� It follows that a � deg y � A�
On the other hand� there exist a homogeneous element r � R and some
xi� i 	 �� such that y � rxi� Therefore� a � deg r � deg xi� Note that
deg xi � C � B� Hence there exists a homogeneous element z � K � z �� 
�
with deg z � deg xi� Consider w � rz� since supp�deg r� � supp�deg z� �
supp�deg r� � supp�deg xi� � supp a � �� it follows that w �� 
� Therefore�
a � degw � B� a contradiction�

Lemma ����	� Let � be a �d � ���dimensional Gorenstein complex over a

�eld k with � � core�� Then hd��� � ��

Proof� It is enough to show that hd��� �� 
� We write k��� �� R�I��
R � k�X�� � � � � Xn�� and consider the minimal Zn�graded resolution

F� � 
 �� Fp
�p

�� Fp�� �� � � � �� F�

��

�� F� �� 
�

where Fi �
L�i

j��R��aij� for i � 
� � � � � p with certain aij �Nn�

It is obvious that �F��m is a minimal Rm �resolution of the Gorenstein
ring k���m where m � �X�� � � � � Xn�� It follows from ����� that p � n � d �
and ���� implies that Fn�d � R��a� for some squarefree a �Nn�

Notice that F� is also a minimal Z�graded resolution� simply replace
the shifts aij by jaij j� where jbj denotes the sum of the components of a
vector b� Thus we may apply �������a�� and conclude that jaj � �n � d�
is the largest integer s for which hs��� �� 
� The assertion of the lemma
follows once we have shown that jaj 	 n�

We claim that a � ��� � � � � �� �which implies jaj � n�� Indeed� Hochster�s
theorem ����� shows that 
 or � are the only possible entries of a� By
����� the R�dual �F��� of F� �suitably shifted� is a minimal free resolution
of k���� Thus� if an entry of a was zero� then the corresponding variable
would not divide any of the generators of I�� a contradiction to our
hypothesis that � � core��

Proof of ������ According to Exercise ����� the �canonical module �k���

has a natural Zn�grading�
Suppose that � is an Euler complex which is Cohen�Macaulay over k�

Then the formula given in Exercise ����� implies that k��� and �k��� have
the same Hilbert series with respect to the �ne grading� By ������ this
implies that �k���

�� k��� which in turn implies that k��� is Gorenstein�
see �������

Conversely� suppose that � is Gorenstein over k� Then� just as in
������� one sees that �k���

�� k����c�� c � �c�� � � � � cn� � Z
n� where jcj is the

a�invariant of k���� As we assume that � � core�� it follows from �����



��� � Stanley�Reisner rings

that jcj � 
� Since by Exercise ������ ci � 
 for i � 
� � � � � n� this implies
c � 
� Therefore� again by Exercise ������X

F��

dimk
eHdim lkF�lkF� k�

Y
vi�F

ti
�� ti

�
X
F��

Y
vi�F

ti
�� ti

�

Comparing coe�cients we see that dimk
eHdim lkF�lkF� k� � � for all F � ��

This together with the fact that � is Cohen�Macaulay over k implies that
� is an Euler complex�

Corollary ������ Simplicial spheres are Gorenstein over every �eld�

Exercises

������ Let k be a 	eld� and � a �d � ���dimensional Cohen�Macaulay complex
over k� According to �����
� the �canonical module �k�� of k�� is isomorphic

to �Homk�
�Hd

m
�k���� k�� Conclude that �k�� has a natural Zn�grading� and show

that

H	k��	
�t� �

X
F��

dimk
eHdimlkF �lkF� k�

Y
Xi�F

ti
�� ti

� ����dHk���t
��
� � � � � � t��

n ��

Hint� ����� and ������

����	� Let k be a 	eld� and � be a �d ����dimensional Cohen�Macaulay complex
over k� Prove the following conditions are equivalent�
�a� � is an Euler complex�
�b� Hk���t� � � � � � tn� � ����dHk���t��

� � � � � � t��
n ��

�c� �k��

� k�� as a Zn�graded k���module�

����
� With the assumptions of ����� show the following conditions are equivalent�
�a� � is Gorenstein over k�
�b� taHk���t� � � � � � tn� � ����dHk���t��

� � � � � � t��
n ��

Suppose the equivalent conditions hold� Show ta is a squarefree monomial in
t� � � � � � tn of degree jV n coreV j� Conclude that a�k��� � �jV n coreV j�

������ Determine all ��dimensional Gorenstein complexes�

������� Let k be a 	eld and � a Gorenstein complex over k of even dimension d
such that � � core�� Show � is d���neighbourly if and only if k�� is an extreme
Gorenstein ring�

��� The canonical module of a Stanley�Reisner ring

Let k be a �eld� and � a Cohen�Macaulay complex over k� In the
previous section we have already considered the �canonical module �k���

of k���� By Exercise ������ it has a natural �ne grading with Hilbert series

H	k��	�t� �
X
F��

dimk
eHdim lkF�lkF� k�

Y
vi�F

ti
�� ti

����



��� The canonical module of a Stanley�Reisner ring ��	

In ������ we de�ned the canonical module of a non�local ring R to be
a �nite module which is locally isomorphic to the canonical modules of
the corresponding local rings� and observed in �����	 that a canonical
module� if it exists� is only unique up to tensor products with locally
free R�modules of rank �� Hochster ������� Theorem ���� showed that all
locally free k����modules of rank � are actually free� Hence for k��� we
do not have to distinguish between the canonical and �canonical module�
The reader may recover the proof of Hochster�s theorem in Exercise ��	��
where we indicate the steps�

As k��� is reduced� it follows from ������ that �k��� can be identi�ed
with an ideal I of k���� Unfortunately we cannot expect that I be Zn�
graded �n the number of vertices of ��� simply because it may happen that
dimk��k����a � � for some a � Zn� Indeed� consider the ��dimensional
simplex in Figure ��� By ���� the �ne Hilbert series of its canonical

�

�

�

�
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�������������
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Figure ��


module is

�
t�

�� t�
�

�X
i��

t�ti
��� t����� ti�

�

Thus for a � ��� 
� 
� 
� we have dimk��k����a � ��

Theorem ������ Let � be a �d � ���dimensional Cohen�Macaulay complex

over a �eld k� Then the following conditions are equivalent	

�a� � is not an Euler complex� and there exists an embedding �k��� � k���
of Zn�graded k����modules�
�b� there exists a �d � ���dimensional subcomplex � of � which is Euler

and Cohen�Macaulay over k such that for all F � �

eHdim lkF�lkF� k� ��

�

 if F � ��
k if F �� ��

If the equivalent conditions hold� then as a Zn�graded k����module� �k���

is isomorphic to the ideal J in k��� which is generated by the monomials

xF �
Q

vi�F
xi� F � � n ��

Proof� �a� �b�� Let I be the Zn�graded ideal in k��� which is isomorphic
to the image of �k��� � k���� As we assume that � is not an Euler
complex� Exercise ����	 implies that I �� k���� Further note that if xa � I �
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then
Q

ai�� xi � I � This can be deduced from the Hilbert series of �k����

see ����� Thus if we set � � fsupp u � u �� Ig� then

k�����k���
�� k����I �� k����

It follows that � is a �d����dimensional Cohen�Macaulay complex over
k� Since Hk����t� � Hk����t� � H	k��	�t� we conclude from Exercise �����
that

Hk����t
��
� � � � � � t��

n � � ����dH	k��	�t�� ����dHk����t�

� ����d���Hk����t�� H	k��	�t�� � ����d��Hk����t��

By ����	� this implies that � is an Euler complex�
Once again applying ���� we obtainX
F��

dimk
eHdim lkF�lkF� k�

Y
vi�F

ti
�� ti

� H	k��	�t� � Hk����t��Hk����t�

�
X

F��n�

Y
vi�F

ti
�� ti

�

A comparison of the coe�cients on both sides yields the assertion con�
cerning the links of the faces of �� Moreover it follows that I equals the
ideal J described in the theorem since both ideals have the same Hilbert
series�

�b�  �a�� First observe that � is not an Euler complex� since the
links of the faces which belong to � are acyclic�

In order to obtain the desired embedding of the canonical module we
add a vertex w� form the cone cn��� � fwg��� and let � � cn������ Then
dim� � dim� � d � �� k�� � � k�X�� � � � � Xn� Y ��I� �Y corresponding to
the vertex w�� and k�� ���y� �� k��� where y denotes the residue of Y
modulo I� �

We will show that � is an Euler complex which is Cohen�Macaulay
over k� In particular � will be Gorenstein� Then ������ implies

�k���
�� Homk�� ��k���� k�� �� �� Ann�y� � Jk�� � � J�

Since these isomorphisms are obviouslyZn�graded� the desired conclusion
follows�

It remains to be shown that the links of the faces F � � are homology
spheres� that is� satisfy condition �	� of Section ���� We distinguish several
cases�

�i� F � � n �� then lk� F � lk� F � and �	� is satis�ed by assumption�
�ii� F � �� then lk� F � cn�lk� F� � lk� F � Since cn�lk� F� � lk� F �

lk� F � the Mayer�Vietoris sequence ����
�� Theorem ����� applied to this
situation yields the long exact sequence

� � � �� eH i�lk� F� k� �� eH i�cn�lk� F�� k� � eH i�lk� F� k�

�� eH i�lk� F� k� �� eH i���lk� F� k� �� � � � �
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provided lk� F �� �� Note that eH
�
�lk� F� k� � 
 by assumption� andeH

�
�cn�lk� F�� k� � 
 by Exercise �����
� so that

eH i���lk� F� k� �� eH i�lk� F� k� for all i�

As � is an Euler complex which is Cohen�Macaulay over k� it follows
that lk� F is a homology sphere�

If lk� F � �� then lk� F � fwg � lk� F � Note that F is a facet of �� so
that dim lk� F � 
� Hence assumption �b� implies that lk� F consists of
one vertex� Therefore lk� F � fw� vg where v is a vertex of �� and thus it
is a sphere�

�iii� w � F� then F � fwg �G where G � �� and lk� F � lk� G� Again
we derive the desired conclusion�

Let � be a simplicial complex whose geometric realization X � j�j is
a manifold with boundary X � Then X � j�j where � is the subcomplex
of � which is characterized by the property that its facets are faces of
precisely one facet of � ����
�� x�� and Exercise ���

As an application of ��	�� we obtain

Theorem ����� �Hochster�� Let k be a �eld� and � a �d � ���dimensional
Cohen�Macaulay complex over k whose geometric realization X � j�j is a
manifold with a non�empty boundary X � Further let � be the subcomplex

of � with X � j�j� and J the ideal in k��� generated by the monomials

xF � F � � n �� Then the following conditions are equivalent	

�a� �k���
�� J as a Zn�graded k����module�

�b� � is a Gorenstein complex over k�

�c� � is an Euler complex which is Cohen�Macaulay over k�

Proof� �a�  �b�� Suppose J is the canonical module of k���� Then
�������b� in conjunction with �����
�c� shows that k��� �� k����J is Goren�
stein�

�b� �c�� By ������ it su�ces to show that � � core�� Suppose this
is not the case� Then there exists a vertex v � � such that st v � �� and
so � � fvg � � for some subcomplex � of �� But then �X� � j�j �
j� j �� �� a contradiction since the boundary of a manifold is a manifold
without boundary�

�c� �a�� We have to check the conditions ��	���b� for the links of the
faces of �� Let � � �� Rn be the map de�ning the geometric realization
of ��

Suppose F � �� F �� �� and p � relint�conv��F��� If lkF �� �� then
����� yields

eHdim lkF�lkF� k� �� Hd���X�X n fpg� k� ��

�

 if p � X �
k if p �� X �
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The �rst case happens when F � �� the second when F �� �� If lkF � ��

then F �� � and again eHdim lkF�lkF� k� � eH����� k� �� k�
Now suppose F � �� Then lkF � �� and we need to show thateHd���X� k� �� 
� or equivalently� that any �d � ���cycle z �

P
aFF of the

chain complex eC��� is trivial� As z is a cycle we haveX
F�F �

dimF�d��

�aF � 


for all F � � � with dimF � � d � �� Now since X is a manifold with
boundary� each �d � ���face F � � � is a face of precisely one facet of �
when F � � �� and of precisely two facets of � when F � �� �� Hence �i�
aF � 
 if F contains a facet F � � �� and �ii� aF� � aF� � 
 if F � �� �
and F� and F� are the facets of � containing F � � Since by assumption
� �� �� we conclude from �i� that aF � 
 for at least one facet of ��
Now let G � � be any other facet� Notice that � is connected since it
is Cohen�Macaulay of positive dimension� see Exercise ������� Therefore
we can �nd a chain of faces

F � F� � F� � F� � � � � � F�m�� � F�m � G

with alternating inclusions where dimF�i � d � � and dimF�i�� � d � �
for i � 
� � � � � m� Thus it follows from �ii� and by induction on i that
aF�i � 
 for i � 
� � � � � m� in particular� aG � 
�

A Zn�graded embedding of �k���� Though the canonical module of a
Stanley�Reisner ring k��� cannot always be identi�ed with a Zn�graded
ideal� it may be realized as a kernel of a certain Zn�graded homomor�
phism� In order to derive such a presentation we �rst observe that the
homology of the complex C� is concentrated in �negative degrees�� see
Theorem ������ To be precise� we have H��C�

a� � 
 if some component ai
of a is positive� Thus if we set

Di �
M
a�Zn

�

C i
a

where Zn
� � fa � Zn � ai � 
 for i � �� � � � � ng� then

H��D�� �� H��C�� �� H�

m �k�����

and these are isomorphisms of Z�graded modules� Write k��� � k�X��I�
with k�X� � k�X�� � � � � Xn�� Then by virtue of the local duality theorem
for graded modules we obtain the isomorphisms

H i�D��� �� �Ext
n�i
k�X��k���� k�X��� i 	 
�

where H i�D��� �� �Homk�H
i�D��� k� �� Hi�

�Homk�D
�� k���
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Let us more closely inspect the complex G
�
� �Homk�D

�� k�� Re�
call that C t is a direct sum of modules Rxi� ���xit

where R � k����

Let F � fvi� � � � � � vitg� X � Xi� � � �Xit and x � xi� � � � xit� then Rx
��

k�Xi� X
��
i � vi � F��Xi � vi �� F���I��X where �I��X is an ideal generated by

certain squarefree monomials in the variables Xi for which vi �� F � It is
clear that � � �I��X if and only if F �� �� Thus we see thatM

a�Zn
�

�Rx�a ��

�

 if F �� ��
k�X��

i � vi � F� if F � ��

so that �Homk�
L

a�Zn
�

�Rx�a� k� �� k�Xi � vi � F� �� k�X�� � � � � Xn��P F if

F � �� By de�nition� Gt is a direct sum of such modules� Thus we have

Theorem ������ Let � be a �d � ���dimensional simplicial complex� and k
a �eld� For each i � 
� � � � � d let Gi be the direct sum of the k����modules
k�X�� � � � � Xn��P F where F � � and jFj � i� Consider the complex

G� � 
 �� Gd �� Gd�� �� � � � �� G� �� G� � k �� 


of k����modules whose di�erentiation is composed of the maps

����j�� nat � k�X� � � � � � Xn��P F �� k�X�� � � � � Xn��P F �

if F � fvi� � � � � � virg and F � � fvi� � � � � �bvij � � � � � virg� and zero otherwise� Then

for i � 
� � � � � d �
Hi�G�� �� Extn�ik�X��k���� k�X���

In particular� if � is Cohen�Macaulay� then one obtains the exact sequence

of Zn�graded k����modules


 �� �k��� �� Gd �� Gd�� �� � � � �� G� �� G� �� 
�

As a consequence of ��	�� we derive a result of Gr�abe ���	��

Corollary ����	� Let k be a �eld� and � a �d � ���dimensional simplicial
complex which is Cohen�Macaulay over k� Then there is a Z�graded em�

bedding

�k�����d� �� k����

Proof� Let � � k�X�� � � � � Xn� � Gd �
L

jFj�d�k�X�� � � � � Xn��P F� be the

homomorphism which on each component is just the canonical epi�
morphism� Then Ker � �

T
jFj�d P F � and so � induces an isomorphism

��� k���� Im ��
Let x �

P
jFj�d x

F� then x is homogeneous of degree d � Moreover� x is

Gd�regular and xGd � Im �� To see this� note that if a � �aF� � Gd � then
xa � �xFaF�� From this it follows immediately that x is indeed Gd�regular�
and it also follows that ���xF� � xeF for all facets F � Here eF denotes the
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element of Gd whose projection to k�X�� � � � � Xn��P F � is � if F � F � � and 

otherwise� Since these elements generate Gd � the element x multiplies Gd

into the submodule Im �� as asserted�
In conclusion we have

�k�����d� �� x�k��� � xGd � Im � �� k����

We illustrate ��	�� by means of the simplicial complex � illustrated in
Figure ��� Theorem ��	�� yields the exact sequence


 �� �k��� ��
�M
i��

k�X�� Xi� ��
�M
i��

k�Xi� �� k �� 
�

and it is readily seen that �k��� is generated by the elements �X���X�� 
�

and �X�� 
��X�� in
L�

i�� k�X�� Xi�� Then �
P

jFj��x
F��k��� has the genera�

tors �X�
�X���X

�
�X�� 
� and �X�

�X�� 
��X
�
�X��� Thus we see that the ideal

in k��� corresponding to x�k��� via ��
�� is generated by x��x� � x��x� and

x��x� � x��x��

Doubly Cohen�Macaulay complexes� Let k be a �eld� In Exercise ����
we noticed that the type rk��� of a Cohen�Macaulay complex � over
k is at least hs� the last non�vanishing component of the h�vector of ��
Unfortunately� we may have rk��� � hs� see Exercise ��	��
� By ����
equality holds exactly when � is level over k� The situation is particularly
simple when � is level and s � d � dim� � �� Then ���� implies that
rk��� � ����d��e����� and this number is reasonably accessible�
De�nition ������ Let k be a �eld� A simplicial complex � on the vertex
set V is doubly Cohen�Macaulay over k if � is Cohen�Macaulay over k�
and for all v � V the subcomplex �Vnfvg is Cohen�Macaulay over k of
the same dimension as ��

Concluding this chapter we present two results of Baclawski ���� on
doubly Cohen�Macaulay complexes�

Theorem ����� �Baclawski�� Let k be a �eld� and � a �d � ���dimensional
doubly Cohen�Macaulay complex over k� Then � is level and

rk��� � ����d��e�����
Proof� We make use of Hochster�s formula ����� which gives the Hilbert
series of TorRi �k� k���� where R � k�X�� � � � � Xn�� Note � is Cohen�

Macaulay over k if and only if TorRi �k� k���� � 
 for i � n � d � Thus we
have the following result�

� is Cohen�Macaulay over k �eH j��W � k� � 
 for all W � V and j � jW j � �n� d� � ��
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We claim that TorRn�d�k� k����a � 
 for a �� ��� � � � � ��� Suppose this is
not the case� Then from ����� we deduce that there exists a proper

subset W of V such that eH j��W � k� �� 
 for j � jW j � �n � d� � ��
Choose i such that W � V � � V n fvig� then ��V ��W � �W � Since by
assumption �V � is Cohen�Macaulay it follows from ��� �applied to �V ��
that jW j � �n� d�� � � j 	 jW j � �n� �� d� � �� a contradiction�

We leave it to the reader to complete the proof� Simply observe that
the degrees of the non�zero components of TorRn�d�k� k���� determine the

degrees of the generators of �k���� and that hd � dimk Tor
R
n�d�k� k����a for

a � ��� � � � � ���

We may view eC���� k as a graded k�vector subspace of k��� simply

by identifying the elements F � � with xF for all F � �� Then eHd����� k�
is identi�ed with a k�vector subspace of k����

Corollary ����� �Baclawski�� If � is doubly Cohen�Macaulay over k� then
as a Z�graded module� �k�����d� is isomorphic to the ideal generated byeHd����� k��

Proof� We view �k��� as a submodule of Gd � By Exercise ��	�� �k��� is
generated by elements of degree 
� that is� by elements of Ker��Gd�� �
�Gd������ Let x �

P
jFj�d x

F be as in the proof of ��	��� Then x�k��� is

the ideal in k��� which is generated by Ker��xGd�d � �xGd���d�� and this
yields the desired conclusion since �xGd�d � �xGd���d can be identi�ed
with Cd������ k � Cd������ k�

Exercises

��	�
� Let k be a 	eld� � a simplicial complex� and P a 	nite k���module of
rank � which is locally free� Show P is free� The proof can be accomplished in
the following steps�

�a� Let R be a Noetherian ring� P a 	nite module� and I�� I� two ideals in R
such that P�IjP is a free �R�Ij ��module of rank � for j � �� �� Assume that the
group of units of R��I� 	 I�� is mapped surjectively onto that of R��I� � I��� Show
P��I� 	 I��P is a free R��I� 	 I���module of rank ��

�b� Use �a� and induction on the number of facets of �� To start the induction
observe that a 	nite� locally free kX� � � � � � Xn��module of rank � is actually free�
Indeed such a module is isomorphic to a projective ideal� and since kX� � � � � � Xn�
is factorial� projective ideals are principal� see ����� Theorem �����

��	��� Let k be a 	eld� and � a �d � ���dimensional doubly Cohen�Macaulay
complex over k� Show Ker�Gd � Gd�� � is generated by elements of degree � in
Gd �

��	���� Show a ��dimensional simplicial complex � on V satis	es r��� � e���� if
and only if for all v � V the subcomplex �Vnfvg is connected� �Reference to a 	eld
k is not needed in dimension �� Why��
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��	���� Give an example of a Cohen�Macaulay complex whose type depends on
the 	eld k�

��	���� Prove the converse of ������ if � is a Cohen�Macaulay complex and k a
	eld such that rk��� � ����d��e����� then � is doubly Cohen�Macaulay�

��	���� Characterize the ��dimensional simplicial complexes � for which there
exists a Zn�graded embedding �k�� � k���

Notes

Simplicial complexes have been considered in topology since Poincar�e
��

� who computed homology groups of topological spaces via triangu�
lations�

Another motivation comes from polytope theory where simplicial
complexes appear as boundary complexes of simplicial polytopes� The
question of how the number of the faces in various dimensions are related
to each other has attracted combinatorialists and geometers since Euler
who discovered the familiar equation f� � f� � f� � � for ��polytopes in
�	���

A new technique in studying simplicial complexes was introduced
by Stanley ������ His proof of the upper bound theorem for simplicial
spheres depends heavily on methods from commutative algebra whose
foundations were laid by Hochster ����� and Reisner ��
��� Naturally
our exposition concentrates on the algebraic aspects of the theory� It is
very much in�uenced by Stanley�s monograph ����� and the lectures by
McMullen and Stanley held at the DMV�Seminar in Blaubeuren� July
��� The reader interested in a general� up�to�date survey on convex
polytopes is referred to the excellent article ��� by Bayer and Lee� Hibi�s
book ���� o ers an attractive introduction to algebraic combinatorics�

The results of Kruskal�Katona mentioned in Section ��� can be
understood as a theorem on Hilbert functions of residue class rings of an
exterior algebra� see Aramova� Herzog� and Hibi ���� for this approach�

Hochster�s formula ����� appeared in ������ Our treatment is taken
from Bruns and Herzog ��� where a more general result for monomial
ideals of semigroup rings has been given�

There are other notable results in the direction of Baclawski�s theorem�
For example� Miyazaki ��	�� proved that the barycentric subdivision of
a level complex is again level� and Hibi ����� showed that the proper
skeletons of a Cohen�Macaulay complex are all level�

There are several aspects in the algebraic theory of simplicial com�
plexes not considered in this book or only discussed in passing� for
instance� a careful account of order complexes of posets� or Schenzel�s
characterization of Buchsbaum complexes� see ��	��� ����� and ������
It should be mentioned that the statements �i���v� in Exercise �������a�
are all equivalent to the Buchsbaum property� Fr�oberg and Hoa ���
�
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investigated Segre products of Stanley�Reisner rings� For an excellent
and up�to�date overview see Stanley ������

A thorough study of order complexes of posets can be found in
Bj�orner�s paper ����� Theorem ������ on the shellability of bounded�
semimodular posets is taken from ����� Garsia�s paper ����� is another
source of information on this topic� In ����� Hibi classi�es those order
complexes of distributive lattices which are Gorenstein�

In the notes of Chapter � we have mentioned the problem as to
whether the Poincar�e series of a local ring is a rational function� For
a positively graded ring R over a �eld k one de�nes its Poincar�e series
with respect to a minimal free graded resolution of k� Fr�oberg ����
showed that if R is de�ned by monomial relations of degree �� then k
has a linear resolution over R� in particular the Poincar�e series of R is
rational� Backelin ���� proved the rationality of the Poincar�e series for
graded algebras de�ned by monomial relations of arbitrary degree�

Another important result left out is the g�theorem whose existing
proof goes beyond the scope of this book� A vector h � �h�� � � � � hd� �
Nd�� satis�es the g�condition if h� � �� hi � hd�i for all i� and if
�h�� h� � h�� � � � � h�d��� � h�d������ is the h�vector of a homogeneous k�
algebra� According to �����
� the latter condition is satis�ed if and only
if h� � h� � � � � � h�d���� and hi��� hi � �hi � hi���hii for all i � d��� ��
The name g�condition stems from the fact that one commonly denotes
by gi the di erences hi � hi���

It was conjectured by McMullen in �	� that �h�� � � � � hd� � Nd�� is
the h�vector of a simplicial polytope if and only if it satis�es the g�
condition� The �su�ciency� was proved by Billera and Lee ����� while
the �necessity� was shown by Stanley ���� who exhibited a homogeneous
system of parameters #�� � � � � #d of k��� such that deg#i � � and A �
k�����#�� � � � � #d� has a Lefschetz element� that is� an element � � A� for
which multiplication by � induces linear maps Ai�� � Ai of maximal
rank�
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This chapter opens with the study of a�ne semigroup rings� i�e� sub�
algebras of Laurent polynomial rings generated by a �nite number of
monomials� We relate the structure of such a ring R to that of the semi�
group C formed by the exponent vectors of the monomials in R� and to
the cone D spanned by C � From the face lattice of D we then construct
a complex for the local cohomology of R�

The connection between R and D is strongest if R is normal� this is
the case if and only if R contains all monomials which correspond to
the integral points in D� By a theorem of Hochster normal semigroup
rings are Cohen�Macaulay� Moreover� we shall determine their canonical
modules and� as a combinatorial application� derive the reciprocity laws
of Ehrhart and Stanley�

We are led to the second topic of this chapter by the fact that rings
of invariants of torus actions are normal semigroup rings� We also treat
�nite groups� covering Watanabe�s characterization of Gorenstein invari�
ants and the famous Shephard�Todd theorem on invariants of re�ection
groups� The discussion of invariant theory culminates in the Hochster�
Roberts theorem which warrants the Cohen�Macaulay property for rings
of invariants of all linearly reductive groups�

��� A�ne semigroup rings

An a�ne semigroup C is a �nitely generated semigroup which for some
n is isomorphic to a subsemigroup of Zn containing 
� Let k be a �eld�
We write k�C� for the vector space k�C�� and denote the basis element
of k�C� which corresponds to c � C by Xc� This �monomial� notation
is suggested by the fact that k�C� carries a natural multiplication whose
table is given by XcXc� � Xc�c� �we use � to denote the semigroup
operation�� For example� k�Zn� is isomorphic to the Laurent polynomial
ring k�X�� X

��
� � � � � � Xn� X

��
n � if we let Xi correspond to the i�th element of

the canonical basis of Zn� similarly k�Nn� is isomorphic to k�X�� � � � � Xn��
The rings k�C� where k is a �eld and C is an a�ne semigroup are called
a�ne semigroup rings�

There is a �smallest� group G containing C � characterized by the fact
that every homomorphism from C to a group factors in a unique way
through G� We write ZC for G� for if C � Zn� then G is just the

���
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Z�submodule of Zn generated by C � Since an a�ne semigroup can be
embedded into Zn for some n� we see that ZC �� Zd for some d � N
which we call the rank of C � We set QC � Q�ZZC and RC � R�ZZC �
In the following we will consider ZC as a subgroup of QC and QC as
a Q�vector subspace of RC where the inclusions are the map z �� �� z
and the one induced by the embedding Q� R�

An embedding C $� Zn of semigroups induces an embedding k�C� $�
k�Zn� of k�algebras� Therefore k�C� is a domain� it is Noetherian since
C is �nitely generated� Obviously k�C� and k�ZC� have the same �eld of
fractions if we regard k�C� as a subalgebra of k�ZC� in a natural way� It
follows that ZC �� Zd where d � dim k�C�� so dim k�C� � rankC �

The ring k�C� is a k�subalgebra of k�ZC�� it is in fact a graded subring
of the ZC�graded ring k�ZC� �see Section ��� for this notion�� and without
further speci�cation the attributes �graded� and �homogeneous� always
refer to the ZC�graduation of k�C�� The graded ideals of k�C� are those
generated by homogeneous elements� Each homogeneous component of
k�C� is a one dimensional k�vector space� and therefore the graded ideals
correspond to certain subsets of C which will be identi�ed below� In
order to switch from the ring k�C� to the semigroup C we introduce the
operator

log I � fc � Xc � Ig for a subset I � k�C��

It is clear that log establishes a bijection between the set of graded vector
subspaces of k�C� and the set of subsets of C �

In a semigroup C we may de�ne ideals� and even radical� prime� or
primary ideals� S � C is an ideal if c � s � S for all c � C � s � S �so �
is an ideal�� The radical of an ideal S is Rad S � fs � ms � S for some
m � Ng� Rad S is itself an ideal� and S is a radical ideal if S � Rad S �
An ideal S �� C is prime if c � c� � S implies c � S or c� � S � and it is
primary if c � c� � S � c �� S implies c� � Rad S � It is easy to check that
the radical of a primary ideal is prime� The following proposition whose
proof is left for the reader �Exercise ����� establishes the correspondence
of the ideal theory of C and that of the graded ideals of k�C��

Proposition ������ Let C be an a�ne semigroup� and I � I � � k�C� graded
k�vector subspaces� Then
�a� I � I � � log I � log I �� log�I� � I�� � log I� � log I�� log I� � I� �
log I� � log I��
�b� I is a �radical� prime� primary� ideal if and only if log I is a �radical�
prime� primary� ideal� furthermore logRad I � Rad log I �
�c� the minimal prime overideals of I are graded�

Normal semigroup rings� An a�ne semigroup C is called normal if it
satis�es the following condition� if mz � C for some z � ZC and m �N�
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m � 
� then z � C � One sees immediately that C must be normal if
k�C� is a normal domain� Xz is an element of the �eld of fractions of
k�C�� and if �Xz�m � k�C� and k�C� is normal� then Xz � k�C�� That the
converse is also true will be shown below� First we explore the geometric
signi�cance of normal semigroups�

A non�empty subset D of an R�vector space V is called a cone if it
is closed under linear combinations with non�negative coe�cients in R�
For S � V the set

R�S � f
nX
i��

aivi � ai � R�� vi � S� n �Ng

is obviously the smallest cone containing S� it is the cone generated by S �
Finitely generated cones can be characterized in complete analogy with
convex polytopes� a subset D of a �nite dimensional R�vector space V
is a �nitely generated cone if and only if there exist �nitely many vector
half�spaces

H�
i � fv � V � hai� vi 	 
g� ai � V � ai �� 
� i � �� � � � � m�

such that D � H�
� � � � � �H�

m �
In the following it will be necessary to consider rational polytopes

and cones� Let V be an R�vector space of �nite dimension� and U a
Q�vector subspace of V such that dimQU � dimR V � A polytope P � V
is rational �with respect to U� if its vertices lie in U� and a cone is rational
if it is generated by a subset of U� We choose a scalar product which has
an orthonormal basis in U� and de�ne a rational half�space to be a set

H� � fv � V � ha� vi 	 �g

with a � U� a �� 
 and � � Q� Of course� the notion of rationality makes
sense only with respect to a �xed Q�subspace U �and� for a half�space�
is independent of the choice of the scalar product� provided it has an
orthonormal basis in U�� If V � Rn� then it is tacitly understood that
U � Qn� and when V � RC for an a�ne semigroup C � U � QC �

We need some results about rational polytopes and cones�
�i� A subset P � V is a rational polytope if and only if it is bounded and
the intersection of �nitely many rational half�spaces�
�ii� A subset D � V is a �nitely generated rational cone if and only if it
is the intersection of �nitely many rational vector half�spaces�
�iii� Let v�� � � � � vm � U� Then u � U � convfv�� � � � � vmg if and only if there
exist r�� � � � � rm � Q� with

Pm
i�� ri � � such that u �

Pm
i�� rivi� in other

words
U � convfv�� � � � � vmg � convQfv�� � � � � vmg�

�iv� Let v�� � � � � vm � U� Then u � U �R�fv�� � � � � vmg if and only if there
exist r�� � � � � rm � Q� such that u �

Pm
i�� rivi� in other words

U �R�fv�� � � � � vmg � Q�fv�� � � � � vmg�
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It is a good exercise for the reader to prove �i���iv�� An essential argument
is that a linear system of equations with rational coe�cients is soluble
over Q if and only if it has a solution over R�

Proposition ����� �Gordan�s lemma�� �a� If C is a normal semigroup� then

C � ZC �R�C �within RC��
�b� Let G be a �nitely generated subgroup of Qn and D a �nitely generated

rational cone in Rn� Then C � G �D is a normal semigroup�

Proof� �a� It follows from �iv� above that ZC �R�C � ZC �Q�C � and
that C � ZC �Q�C is �almost� the de�nition of a normal semigroup�

�b� The essential point to prove is that G � D is a �nitely generated
rational semigroup� the rest is again elementary�

We claim that D �RC is a �nitely generated rational cone in RC �
In fact� let D �

T
H�
i be given as the intersection of �nitely many

rational half�spaces of Rn� Then D�RC �
T
�H�

i �RC�� and because of
QC � RC �Qn� each H�

i �RC is a rational half�space of RC or equal
to RC �

Replacing G by ZC and Rn by RC we may now assume that G � Zn�
By hypothesis there exist q�� � � � � qv � Q

n with D � f
Pv

i��aiqi � ai � R�
ai 	 
g� Multiplying by a suitable common denominator we may assume
that q�� � � � � qv � Zn�

Choose c � C � Then c �
Pv

i�� aiqi with ai � Q�� and therefore

c �
vX
i��

a�iqi �
vX
i��

a��i qi

with a�i � N and a��i � Q� 
 � a��i � �� Since C � Zn � D� we have c�� �Pv
i��a

��
i qi � C � But c�� lies in the bounded set B � f

Pv
i�� a

��
i qi � 
 � a��i � �g

so that Zn � B is �nite� The �nite set �B � Zn� � fq�� � � � � qvg generates
C �

The invertible elements in a semigroup C form a group C�� the largest
group contained in C � If C� � 
� we say that C is positive� If C is normal�
then C splits into a direct sum of C� and a positive normal semigroup�

Proposition ������ Let C be a normal semigroup� and C� the group of its

invertible elements�

�a� Then C �� C� � C � with a positive normal semigroup C �� Furthermore

C�
�� Zu for some u 	 
�

�b� One has k�C� �� k�C���k k�C
�� �� k�Zu��k k�C

�� for every �eld k�

Proof� It follows immediately from the normality of C that the group
ZC�C� is torsion�free� Therefore C� is a direct summand of ZC � and
hence of C itself� The rest of �a� is quite obvious� Part �b� is a special
case of the general fact that k�C� � C�� �� k�C���k k�C���
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With the notation of the previous proposition� all essential ring�
theoretic properties are shared by k�C� and k�C ��� the ring k�C� arises
from k�C �� by a polynomial extension followed by the inversion of the
indeterminates� and is a free� thus faithfully �at� k�C ���module�

Theorem ����	� Let C be an a�ne semigroup� and k a �eld� Then the

following are equivalent	

�a� C is a normal semigroup�

�b� k�C� is normal�

Proof� The implication �b� �a� has already been observed�
For �a�  �b� we note that C is the intersection of �nitely many

rational half�spaces H�
i � fq � RC � hai� qi 	 
g of RC with ZC � ai �

QC� see ������ Set Ci � ZC � H�
i � One has �Ci�� � fz � Ci � hai� zi � 
g�

It follows that �Ci�� �� Zd�� where d � rankC � Thus the semigroup C �
i in

the splitting Ci � �Ci�� � C �
i has rank��

Since Ci is normal� C
�
i is also normal� Being a normal subsemigroup of

Z� and not a group� C �
i is isomorphic toN� Therefore k�Ci� �� k�Zd���N�

is even regular� As k�C� is the intersection of the normal rings k�Ci�� it is
normal itself�

In order to use the results on Z�graded rings and modules for a�ne
semigroup rings we say that a decomposition

k�C� �
M
i�N

k�C�i

of the k�vector space k�C� is an admissible grading if k�C� is a positively
graded k�algebra with respect to this decomposition� and furthermore
each component k�C�i is a direct sum of �nitely many ZC�graded com�
ponents� It follows that Xc is homogeneous for each c � C � and that the
�maximal ideal m of k�C� is generated by the monomials Xc� c �� 
� Thus
k�C� has an admissible grading only if C is positive� That the converse is
also true� will be very important in the following�

Proposition ������ Let C be a positive a�ne semigroup� Then C is isomor�

phic with a subsemigroup of Nm for some m� In particular k�C� is isomor�
phic with a graded k�subalgebra of k�X�� � � � � Xm�� and has an admissible

grading�

Proof� We choose a scalar product that has a Z�basis of ZC as an
orthonormal basis� The cone R�C is the intersection of half�spaces

H�
i � fv � RC � hai� vi 	 
g� ai � QC� ai �� 
� i � �� � � � � m�

Multiplying by a suitable common denominator we may assume that
ai � ZC � Then hai� ci � Z for all c � ZC � and � � ZC � Zm� ��c� �
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�ha�� ci� � � � � ham� ci� is a group homomorphism with ��C� � Nm� The ker�
nel of � is the intersection of the hyperplanes Hi � fv � RC � hai� vi � 
g�
therefore the group Ker� � ZC is contained in C � Since C is positive�
�jC is injective� The rest is obvious�

The graded prime ideals of an a�ne semigroup ring� The results of Sections
��� and ��� depend crucially on the fact that one can determine the graded
prime ideals of k�C� from the geometry of the cone R�C � Let us �rst
show that the set of non�zero graded radical ideals in k�C� has a unique
minimal element� For an a�ne semigroup C we set

relintC � C � relintR�C�

Lemma ������ Let C be an a�ne semigroup� Then the ideal generated by

the elements Xc� c � relintC is a radical ideal� and is contained in every

non�zero graded radical ideal of k�C��

Proof� In view of ����� we may equivalently prove that relintC is the
smallest non�empty radical ideal of C �

Set I � relintC � It is obvious that I is a radical ideal of C � Let
J � C be an arbitrary non�empty radical ideal� c � I � and s � J � We
must show that c � J � for which there is only something to prove if c �� s�
As c � relintR�C � the intersection of relintR�C with the line L through
s and c is a neighbourhood of c in L� Since L is rational� there exist
rational points on both sides of c in L arbitrarily close to c� So there
exists t � L� �relintR�C��QC such that c lies in the line segment �s� t��
Therefore we have an equation

c � �s� ��� ��t with � � Q� 
 � � � ��

Multiplication with a suitable common denominator yields an equation

mc � ns� t� with m� n � N n f
g

and t� � C � It follows that c � J because J is a radical ideal and s � J �

We shall see in Theorem ����� that the ideal considered in ����� is the
canonical module of k�C� if C is a normal semigroup�

Let C be an a�ne semigroup� and suppose that F is a face of R�C �
The set C n F is immediately seen to be a prime ideal of C � By �����
it follows that the ideal P �F� of k�C� generated by the elements Xc�
c � C nF � is a graded prime ideal of k�C�� In fact� all homogeneous prime
ideals can be represented in this way�

Theorem ������ Let C be an a�ne semigroup� and k a �eld� Then the

assignment F �� P �F� is a bijection between the set of non�empty faces of

R�C and the set of graded prime ideals of k�C��
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Proof� In view of ����� we may equivalently show that the assignment
F �� ��F� � C n F is a bijection between the set of non�empty faces of
R�C and the set of prime ideals of C �

It is easy to see that � is injective� in fact� F � R��C � F� �
R��C n��F�� for every face F of R�C �

Surjectivity of� is proved by induction on rankC � the case rankC � 

being trivial� Let rankC � 
 and P � C be a prime ideal� If P � �� then
P � ��R�C�� So suppose P �� �� By ����� we have P � relintC � As
relintC � ��F�� � � � � ���Fm� where F�� � � � � Fm are the maximal proper
faces of R�C � it follows that P � ��Fi� for at least one i� say P � ��F���

The intersection C � F� is an a�ne semigroup with rankC � F� �
rankC � As P � F� is a prime ideal in C � F�� there exists a face G of
R�F� with P � F� � �C � F�� nG� Being a face of a face of R�F�� G is a
face of R�C � and elementary set theory shows that P � ��G��

In the next section the homogeneous localizations k�C��p � will play
a crucial role� Since we shall argue rather geometrically� it is more
suggestive to denote them by

k�C�F

where F is the face of R�C with p � P �F�� This notation is also justi�ed
by the fact that k�C�F is the ring of fractions of k�C� with respect to the
multiplicatively closed set fXc � c � C � Fg�

Finally we want to relate the faces of the cone R�C to those of a
suitably chosen polytope� For simplicity we restrict ourselves to the case
in which C is positive� More generally� let

D � fx � Rn � hai� xi 	 
 for i � �� � � � � mg

be a cone in Rn given as the intersection of vector half�spaces de�ned by
ai � Rn� i � �� � � � � m� Let us say that D is positive if 
 is the only element
v � D with �v � D�

This is the case if and only if a�� � � � � am generateRn� Set b � a��� � ��am
and de�ne

T � fx � D � hb� xi � �g�

It follows easily that T is bounded� Being the intersection of �nitely many
a�ne half�spaces� it is a convex polytope� We say that the hyperplane
fx � hb� xi � �g is transversal to D� and call T a cross�section of D� Cross�
sections are introduced because their combinatorial structure will lead
us to a complex by which one can compute the local cohomology of an
a�ne semigroup ring�

A non�empty face of D is given by D itself or by H � D where H
is a supporting hyperplane of D� Since D is a cone� H must contain 
�
Therefore there is a unique minimal non�empty face of D� namely f
g�
and we choose F�D� to be the set of non�empty faces of D�
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Proposition ������ Let D be a positive cone� and T a cross�section of D�
Then the assignment F �� F � T induces an isomorphism F�D� �� F�T �
of partially ordered sets� Its inverse is given by G �� R�G�

The proof is easy and left as an exercise for the reader�

At several places below we will have to use the correspondence
between the faces of R�C and those of a cross�section T of R�C � as
given by ������ In order to avoid cumbersome notation we agree on
denoting corresponding faces by corresponding capital and small letters�
So� if F is a face of R�C � then f � �R�C� � T �

Exercises

������ Prove Proposition ������

Hint� For the implication ��� in �b� and for �c� one uses that ZC 
� Zd �
d � rankC � can be given a linear order under which it becomes an ordered
group� �For example one may choose the reverse degree�lexicographical order
introduced in Section ����� Then the homogeneous components of an element are
linearly ordered� and one argues similarly as in the proof of Lemma ������

������� Let S � T be a�ne semigroups� S � T � One says that S is a full

subsemigroup of T if S � T 	ZS � Show

�a� a full subsemigroup of a normal semigroup is again normal�

�b� a positive a�ne semigroup is normal if and only if it is isomorphic to a full
subsemigroup of Nn for some n � ��

�c� if S is full in T � then kS � is a direct kS ��summand of kT ��

������� Let C be an a�ne semigroup� Then kC� is regular if and only if C is of
the form Zu �Nv �

Hint� The implication ��� is easy� For the implication ��� one uses ����� and
������� noting that a minimal set of generators of the �maximal ideal of kC� can
be chosen of the form Xc� � � � � � Xcv �

������� Let C be an a�ne semigroup� and F a face of R�C � Show

�a� the composition kC 	 F� � kC� � kC��P �F� of natural maps is an
isomorphism of a�ne semigroup rings�

�b� if C is normal� then kC 	 F� is also normal�

�c� kC�F is an a�ne semigroup ring�

������� Let D � Rn be a positive cone� and z � Rn� Show that z �� �D if and
only if there exists a hyperplane H which is transversal to D and contains z�

��� Local cohomology of a�ne semigroup rings

In this section we shall de�ne a complex by which we can compute
the local cohomology of an a�ne semigroup ring� it is based on a
construction of algebraic topology� namely the oriented augmented chain
complex associated with a �nite regular cell complex�
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Cell complexes� Regular cell complexes generalize the simplicial com�
plexes of Chapter �� Massey ����� gives an introduction to the theory of
cell complexes which is very well suited for our purpose� We introduce the
chain complex associated with a cell complex axiomatically� borrowing
the existence and uniqueness theorems from algebraic topology�

A �nite regular cell complex is a non�empty topological space X
together with a �nite set � of subsets of X such that the following
conditions are satis�ed�

�i� X �
S

e�� e�

�ii� the subsets e � � are pairwise disjoint�

�iii� for each e � � � e �� � there exists a homeomorphism from a closed
i�dimensional ball Bi � fx � Ri � kxk � �g onto the closure �e of e which
maps the open ball Ui � fx � Ri � kxk � �g onto e�

�iv� � � � �

By the invariance of dimension the number i in �iii� is uniquely
determined by e� and e is called an open i�cell� � is a �����cell� By � i

we denote the set of the i�cells in � � The dimension of � is given by
dim� � maxfi � � i �� �g� It is �nite since � is �nite� One sets j� j � X �

Finite regular cell complexes are special cases of a more general
topological structure� namely that of a CW�complex� Since all our CW�
complexes are �nite and regular� we shall simply call them cell complexes�

A cell e� is a face of the cell e �� e� if e� � �e� and a subset � of � is a
subcomplex if for each e � � all the faces of e are contained in ��

The classical examples of cell complexes are convex polytopes P
together with their decomposition P �

S
f�F�P � relintf� For them the

following property� which follows from �i���iv�� is an elementary theorem�
�v� if e � � i and e� � � i�� is a face of e� then there exist exactly two cells
e�� e� � � i�� such that ej is a face of e and e� is a face of ej �

Each simplicial complex � may be identi�ed with a cell complex�
namely the cell complex it de�nes in a natural way on a geometric
realization and whose open cells correspond to the faces of �� It is
convenient to denote this cell complex simply by �� and an open cell
by the corresponding face of �� Let fv�� � � � � vng be the vertex set of
�� For e � �i and e� � �i�� we set ��e� e�� � 
 if e� is not a face
of e� and ��e� e�� � ����k�� if e corresponds to fvi� � � � � � vimg and e� to
fvi� � � � � �bvik � � � � � vimg� i� � � � � � im � Then the augmented oriented chain
complex of �� which has been introduced in Chapter �� is a complex of
free Z�modules Ci��� �

L
c��i Ze whose di erential is given by �e� �P

e���i�� ��e� e��e�� The crucial point in constructing a similar complex for
an arbitrary cell complex is to �nd a suitable function ��

Let us say that � is an incidence function on � if the following
conditions are satis�ed�
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�a� to each pair �e� e�� such that e � � i and e� � � i�� for some i 	 
� �
assigns a number ��e� e�� � f
���g�

�b� ��e� e�� �� 
� e� is a face of e�

�c� ��e� �� � � for all 
�cells e�

�d� if e � � i and e� � � i�� is aface of e� then

��e� e����e�� e
�� � ��e� e����e�� e

�� � 


where e� and e� are those �i� ���cells such that ej is a face of e and e� is
a face of ej �see �v� above��

Lemma ������ Let � be a cell complex� Then there exists an incidence

function on � �

For a proof see Lemma IV�	�� in ����� where the incidence numbers
��e� e�� appear as topological data determined by orientations of the cells�
Figure ��� indicates two incidence functions on the solid rectangle and
how they are induced by orientations�
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Figure ���

Let 
 � � � f��g be a function with 
��� � � and 
�e� � � for all

�cells e� Then the function

���e� e�� � 
�e����e� e��
�e�

is also an incidence function� On the other hand� all pairs �� �� of incidence
functions di er only by a �sign� 
�

Theorem ������ Let � be a cell complex with incidence functions � and

��� Then there exists 
 � � � f��g such that 
��� � � and ���e� e�� �

�e����e� e��
�e� for all e � � i� e� � � i��� i � 
� � � � � dim� �

This is Theorem IV�	�� of ����� �in a di erent formulation�� Its proof
shows that incidence functions can be constructed in a completely naive
manner� �i� One starts with � � on which there is no choice according
to property �c� of incidence functions� �ii� If one has constructed an
incidence function �i on � � � � � � � � i� then there exists an incidence
function �i�� on � � � � � � � � i�� whose restriction to � � � � � � � � i is just
�i� The reader is advised to construct incidence functions for some three
dimensional polytopes�
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Let � be a cell complex of dimension d � �� and � an incidence
function on � �as in Chapter � it is convenient to denote dimension
by d � ��� We de�ne the augmented oriented chain complex of � by the
complex

eC�� � � 
 �� Cd��
�
�� Cd�� �� � � � �� C�

�
�� C�� �� 


where we set

Ci �
M
e�� i

Ze and �e� �
X

e��� i��

��e� e��e� for e � � i�

i � 
� � � � � d � �� That � � 
 follows from the de�nition of an incidence

function and property �v� of cell complexes� The notation eC�� � is

justi�ed since the dependence of eC�� � on � is inessential� Theorem �����
guarantees that we obtain an isomorphic complex upon replacing � by
another incidence function ��� �The isomorphism is given by e �� 
�e�e��

For simplicity of notation we set eH i�� � � Hi�eC�� ���
The fundamental importance of eC�� � in algebraic topology relies on

the fact that it computes reduced singular homology �

Theorem ������ Let � be a cell complex� Then eH i�� � � eH i�j� j� for all

i 	 
 �and eH���� � � 
��

Theorem IV���� of ����� states that Hi�C�� �� �� Hi�j� j� for the non�

augmented complex C�� � which arises from eC�� � if we replace eC�� by


� It follows easily that eH��� � �� eH��j� j� as well�
We use ����� via the following corollary�

Corollary ����	� Let � be a cell complex such that j� j is homeomorphic to

a closed ball Bn� Then eH i�� � � 
 for all i 	 ���

Local cohomology� Let C be a positive a�ne semigroup� and k a �eld�
The ideal m in R � k�C� generated by the elements Xc� c � C n f
g� is
maximal� For an R�moduleM we denote by H i

m �M� the i�th right derived
functor of

�m �M� � fx �M � m ix � 
 for i� 
g�

As in ����� one has a natural isomorphism

H i
m �M� �� lim

��
ExtiR�R�m j �M� for all i 	 
�

The natural map ExtiR�R�m j �M�� ExtiRm
�Rm ��m Rm �j �Mm � is an isomor�

phism� Therefore H i
m �M� �� H i

m Rm
�Mm �� and we are justi�ed in calling

H i
m �M� a local cohomologymodule� We now want to construct a complex
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�computing� H i
m �M� which resembles the combinatorial structure of C as

closely as possible�
Suppose for the moment thatC � Nn so that R � k�C� �� k�X�� � � � � Xn�

and m � �X�� � � � � Xn�� As we saw in ������ the modi�ed %Cech complex

C� � 
 �� C� �� C� �� � � � �� Cn �� 


with
Ct �

M
Rxi� ���xit

computes H�

m �M� in the sense thatH i
m �M� �� H i�M�C�� for all i 	 
� The

components of Ct are of the form RF where F is a face of Rn
� � R�N

n�
and the di erential is composed of maps

� � nat� Rxi� ���xit
�� Rxi� ���xitxj

whose signs � are just the values of an incidence function on the pair
�convfei� � � � � � eit � ejg� convfei� � � � � � eitg� of faces of the simplex spanned by
the canonical basis e�� � � � � en of Rn� This simplex is a cross�section of the
cone Rn

��
It is easy to generalize this construction� Let C be a positive a�ne

semigroup of rank d � R � k�C�� T a cross�section of the cone R�C � and
F � F�T � its face lattice� �We remind the reader of our convention of
denoting corresponding faces of R�C and T by F and f respectively��
Let

Lt �
M

f�Ft��

RF � t � 
� � � � � d�

and de�ne  � Lt�� � Lt by specifying its component

f��f � RF � � RF to be

�

 if F � �� F �
��f� f�� nat if F � � F�

here � is an incidence function on F� It is clear that

L� � 
 �� L� �
�� L� �� � � � �� Ld�� �

�� Ld �� 


is a complex�

Theorem ������ Let C be a positive a�ne semigroup� and k a �eld� Let m

be the maximal ideal generated by the elements Xc� c � C n f
g� Then for

every k�C��module M� and all i 	 
�

H i
m �M� �� H i�L� �M��

Proof� We follow the pattern of the proof of ������ Let I be the ideal gen�
erated by the elements Xc� c �� 
 for which there exists a one dimensional
face F of R�C with c � F � In order to show H��L� �M� � H�

m �M� for
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all k�C��modules M� we must verify that Rad I � m � Let c�� � � � � cm � C
be a minimal set of generators of Q�C � Then each one dimensional face
F of R�C contains exactly one of the ci � and it is enough to show that
RadJ � m where J is the ideal generated by Xc� � � � � � Xcm � Let c � C �
c �� 
� There exist q�� � � � � qm � Q� with c � q�c� � � � � � qmcm� Multipli�
cation by a common denominator yields rc � s�c� � � � � � smcm with r�
si �N� Since si �� 
 for at least one i� it follows that �Xc�r � J �

Now let 
 � M� � M� � M� � 
 be an exact sequence of k�C��
modules� Since all the summands of L� are �at k�C��modules� this yields
an exact sequence


� L� �M� � L� �M� � L� �M� � 
�

As desired we have a long exact sequence

� � � � H i�L��M��� H i�L��M��� H i�L��M��� H i���L��M��� � � �

Finally we must show that H i�L��M� � 
 for all i ifM is an injective
k�C��module� It su�ces to consider the indecomposable modules E�R�p �
where p is a prime ideal of R � k�C�� Then� as shown in the proof of
������ there are only two possibilities for an element x of R� either every
element of E�R�p � is annihilated by some power of x� namely if x � p �
or multiplication by x is bijective on E�R�p �� So

E�R�p � � RF �

�

 if F � p �� ��
E�R�p � if F � p � ��

Set P � log p � Then P is a prime ideal in the semigroup C � and by ����	
there is a face G of R�C with P � C nG� Thus

E�R�p �� RF �

�

 if F �� G�
E�R�p � if F � G�

Let G � F�g� denote the face lattice of the face g � G � T of a
cross�section T of R�C � It follows that

Lt � E�R�p � �
M
f�Gt��

E�R�p �

for all t 	 
� Of course G is a subcomplex of F � F�T �� and the
restriction of an incidence function on F to G is an incidence function
on G� Therefore we have

L� � E�R�p � �� HomZ
�eC�G������ E�R�p �

�
�

�This statement is the heart of the proof� the reader should verify it
carefully�� Since g is a convex polytope� it is homeomorphic to a closed

ball� So eC�G� is an exact complex� see ������ Since eC�G� is a complex

of free Z�modules� exactness is preserved in HomZ�eC�G������ E�R�p ���
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Corollary ������ Let C be a positive a�ne semigroup of rank d � and k
be a �eld� Then k�C� is Cohen�Macaulay if and only if H i�L�� � 
 for

i � 
� � � � � d � ��

Proof� Set R � k�C�� and note that d � dimRm �why#�� If R is Cohen�
Macaulay� then Rm is Cohen�Macaulay� Thus it follows from ����	 that
H i�L�� � 
 for i � 
� � � � � d � �� Conversely� ����	 also implies that Rm is
Cohen�Macaulay if H i�L�� � 
 for i � 
� � � � � d � �� By virtue of �����
R is a �local ring with �maximal ideal m � Now �����	 yields that R is
Cohen�Macaulay�

Exercises

����	� We will see in the next section that a normal semigroup ring is Cohen�
Macaulay� This exercise presents an example �due to Hochster ����� of an a�ne
semigroup ring showing that Serre�s condition �S�� alone is not su�cient for the
Cohen�Macaulay property� Let k be a 	eld� and Y� � Y�� Z� � Z� be indeterminates
over k� Prove�
�a� The semigroup C generated by the monomials xij � YiZj � i� j � �� �� is normal�
S � kC� is a normal domain of dimension ��
�b� The substitution Xij �� xij induces an isomorphism

kX�� � X�� � X�� � X�����X��X�� �X��X��� 
� S �

S is a Cohen�Macaulay ring�
�c� The subsemigroup C � of C generated by all monomials f with degY�

f � �
and degY�

f � � is 	nitely generated�

�d� The elements x�
�� � x

�
�� � x

�
�� � x�

�� form a homogeneous system of parameters of
R � kC ��� but not an R�sequence�
�e� The ideals generated by x�

�� and x�
�� in R are unmixed� �Hint� Use that the

associated primes of a ZC ��graded module are ZC ��graded� this follows as in
�������
�f� Rx��

�� � x
��
�� � � S x��

�� � x
��
�� ��

�g� R satis	es Serre�s condition �S� �� but is not Cohen�Macaulay�

����
� One says that an n�dimensional positive cone D is simplicial if it is generated
by n elements� and a positive a�ne semigroup C is simplicial if the cone R�C is
simplicial� Let k be a 	eld�
�a� Let C be an arbitrary positive a�ne semigroup� Prove that Xc� � � � � � Xcn with
c� � � � � cn � C form an kC��sequence if and only if Xci � Xcj is an kC��sequence
for all i �� j� equivalently� ci � s � cj � t for s� t � C implies s � ci � C �
�b� Show that C is simplicial if and only if kC� has a homogeneous system of
parameters Xc� � � � � � Xcn with c� � � � � cn � C �
�c� Let C be simplicial� Deduce from �a� and �b� that kC� is Cohen�Macaulay if
and only if it satis	es Serre�s condition �S� �� and that this property is independent
of k �Goto� Watanabe� and Suzuki ������
�d� Formulate a Gorenstein criterion for kC� with C simplicial� using the socle
of kC���Xc� � � � � � Xcn �� and show that this property is also independent of k�
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��� Normal semigroup rings

In this section we want to show that a normal semigroup ring is a
Cohen�Macaulay ring and to determine its canonical module�

The complex L� constructed in the previous section is ZC�graded in
a natural way� and in order to compute its cohomology we analyze its
graded components just as in the proof of ������ Given z � ZC � the main
point is to determine those faces F of C for which �RF�z �� 
� As we shall
see� this is the case if and only if the face F is not �visible� from z�

Let P be a polyhedron in a R�vector space V � Let x� y � V � We
say that y is visible from x if y �� x and the line segment �x� y� does not
contain a point y� � P � y� �� y� A subset S � V is visible if each v � S is
visible�

Proposition ������ Let P be a polytope in Rn with face lattice F� and

x � Rn a point outside P � Set S � fF � F � F visible from xg� Then S is

a subcomplex of F� its underlying space S �
S

F�S F is the set of points

y � P which are visible from x� and is homeomorphic to a closed ball�

Proof� Let y � P be visible from x� There exists a �unique� face F with
y � relintF � and one concludes easily �for example by ����� below� that
the whole of F is visible from x� Therefore S � fy � P � y visible from xg�
and it follows easily that S is homeomorphic to a closed ball� That S is
a subcomplex is obvious�

Let P be a polyhedron in an R�vector space V � dimV � �� Suppose
that P is given as the intersection of �nitely many half�spaces

H�
i � fx � V � hai� xi 	 �ig� i � �� � � � � m�

We set

x� � fi � hai� xi � �ig� x� � fi � hai� xi � �ig� x� � fi � hai� xi � �ig�

Lemma ������ With the notation introduced� a point y � P is visible from

x � V n P if and only if y� � x� �� ��

The elementary proof is left for the reader� Figure ��� illustrates the
following lemma� Let C � N� � R�� and F be the positive X�axis� G
the positive Y �axis� Then k�C�F � k�X� Y �X���� and �k�C�F�z �� 
 for
z �� C exactly when z is in the second quadrant �including the negative
X�axis�� Thus �k�C�F�z �� 
 if and only if F is not visible from z� Similar
arguments work for the faces f
g� G� and C �

Lemma ������ Let C be a normal semigroup� k a �eld� and R � k�C�� Let F
be a face of R�C and z � ZC � Then �RF�z �� 
 �and therefore �RF�z �� k�
if and only if F is not visible from z�
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C

F

G

Figure ���

Proof� Suppose �rst that F is not visible from z� Then there exists
c � C � F which is not visible from z� We have c� � z� �note that
c� � ��� and it follows that �mc� z�� � � for m� 
� whence mc� z � C �
�Of course z�� c� etc� are de�ned with respect to a representation of R�C
as an intersection of vector half�spaces�� That mc � z � C is equivalent
with �Xc�mXz � R so that Xz � RF �

Conversely suppose that �RF�z �� 
� Then there exists c � C � F with
XcXz � R� Consequently c � z � C � and �c � z�� � �� which is only
possible if c is not visible from z�

Now we can compute the local cohomology of normal semigroup
rings� In the sequel �C is the a�ne semigroup f�c � c � Cg�

Theorem ����	� Let C be a positive normal semigroup of rank d � k a �eld�

and z � ZC �

�a� If z � relint��C�� then �L��z is isomorphic to 
 � k � 
 with k in

degree d � Consequently H i�L��z � 
 for i �� d � and Hd �L��z �� k �� �L��z �

�b� Suppose that z �� relint��C�� Let T be a cross�section of R�C with

face lattice F� and S � fF � T � F � F�R�C� visible from zg � Then

�i� �L��z �� HomZ
�
�eC�F�

�eC�S������� k
�
�

�ii� eH i�F� � eH i�S� � 
 for all i�

�iii� �H i�L���z � 
 for all i�

Proof� �a� For z � relint��C� one has z � RF if and only if F � R�C �

�b��i� The complex eC�F� consists of direct summands Zf� f � F�

As S is a cell subcomplex of F� eC�S� is a chain subcomplex of eC�F��

and we obtain eC�F��eC�S� if we replace all the direct summands Zf

with f � S by 
� The complex HomZ��eC�F��eC�S������� k� is therefore
isomorphic to the complex

D� � 
 �� D� �
�� � � �

�
�� Dd � 




�	� �� Semigroup rings and invariant theory

with
Dt �

M
f�Ft��nS

kf� and ��f���� �
X

��f� f��f��

According to ������ �L��z is given by D��
�ii� Note that the combinatorial structures ofF andS do not depend

on the chosen cross�section T � �This follows from ������� Therefore we

may vary T � Furthermore it was observed above that eH i�F� � 
 for all i�

If z � C � then S � �� and eC�S� is the zero complex� So suppose that
z �� C in the following�

If z �� �C � then� by virtue of ������� there exists a hyperplane E
through z which is transversal to R�C � Choose T � E �R�C � Then S
is the set of faces of T which are visible from z� and we invoke ����� in

conjunction with ����� to conclude that eH i�S� � 
 for all i�
If z � �C � then there exists a point z� � RC n ��C� with �z��� � z��

�By hypothesis z �� relint��C�� consider a su�ciently small neighbour�
hood of z�� Because of ����� we may replace z by z� in de�ning S and
argue as in the case z �� �C �

�iii� We have a long exact sequence

� � � �� eH i�S� �� eH i�F� �� eH i�eC�F��eC�S�� �� eH i���S� �� � � �

Thus it follows from �ii� that eC�F��eC�S� is exact� As it is a complex of
free Z�modules� the dual �of a shifted copy� with respect to an arbitrary
Z�module is also exact�

The previous theorem allows us not only to show that normal semi�
group rings are Cohen�Macaulay� but also to determine their canonical
modules�

Theorem ������ Let C be a normal semigroup� and k a �eld� Then

�a� �Hochster� k�C� is a Cohen�Macaulay ring�

�b� �Danilov� Stanley� the ideal I generated by the monomials Xc with

c � relintC is the canonical module of k�C��

Proof� �a� We write k�C� in the form k�C� �� k�C�� � k�C �� as in ������
then k�C� �� k�C ���X�� X

��
� � � � � � Xu� X

��
u � for some u 	 
� In view of ����

it is therefore enough to show that k�C �� is Cohen�Macaulay� But this
follows immediately from ����� and ������ the latter of which in particular
says that H i�L�� � 
 for i � 
� � � � � d � ��

�b� Suppose �rst that C is positive� As Ld � k�ZC�� we have an exact
sequence


 �� U �� k�ZC� �� Hd �L�� �� 
���

of ZC�graded k�C��modules� The functor �Homk� � k� in the category of
ZC�graded k�C��modules assigns each module the k�vector spaceM

z�ZC

Homk�M�z� k��
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which is a ZC�graded k�C��module in a natural way� Applying this
functor to the exact sequence above we obtain an exact sequence


 �� �Homk�H
d �L��� k� �� k�ZC� �� U� �� 
�

It follows from ����� that �Homk�Hd�L��� k� consists exactly of those
graded components k�ZC�z with z � relintC � Therefore

I �� �Homk�H
d �L��� k� as ZC�graded modules�

As in the proof of ����� we use that k�C� has an admissible grading�
Thus it is a �local Z�graded ring whose �maximal ideal m is generated
by the monomials Xc� c � C � c �� 
� Furthermore each Z�homogeneous
component of k�C� is the direct sum of �nitely many ZC�graded compo�
nents� The same holds for Hd �L��� As Homk commutes with �nite direct
sums� we conclude that

I �� �Homk�H
d�L��� k� as Z�graded modules�

In Section ��� we de�ned the �local cohomology functors �H i
m � � in the

category of Z�graded k�C��modules� If M is a Z�graded k�C��module�
then L� �M is a complex of Z�graded modules� and virtually the same
arguments as in the proof of ����� show that �H i

m �M� �� H i�L��M� for all
i� Finally we deduce from ����� and ���� that I is the canonical module
of k�C��

The general case of �b� in which C is not necessarily positive follows
as in �a� if we use ������ to compute a canonical module of a polynomial
extension�

Corollary ������ Suppose� in addition to the hypothesis of ������ that C is

positive� Then I is the �unique� �canonical module of k�C� with respect to

an arbitrary admissible grading�

Remark ������ The formulation �the canonical module� of ����� needs
justi�cation beyond ������ First� if we had developed the theory of Zn�
graded rings to the same extent as that of Z�graded rings� it would be
immediate that I is the unique ZC�graded canonical module of k�C� �up
to an isomorphism of ZC�graded modules�� Second� and even more� a
canonical module of k�C� is unique in the category of all k�C��modules�
We brie�y indicate the argument� it exploits the theory of class groups
�Fossum ��
���� and will be explained in detail in Section 	�� where it
is more essential� With our usual notation� the extension k�C �� � k�C�
induces an isomorphism of class groups Cl�k�C ��� �� Cl�k�C��� Because of
this isomorphism a canonical module � of k�C� is of the form �� � k�C�
for some k�C ���module �� � The extension k�C �� � k�C� is faithfully �at�
Applying �����
 one concludes that �� is a canonical module of k�C ���
Thus it is enough to consider positive semigroups C � For those one has
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an isomorphism Cl�k�C�� �� Cl�k�C�m � ���
��� �
���� Finally one uses that
the canonical module of a local ring is unique�

The preceding argument amounts to the fact that a projective rank �
module over k�C� is free� This was shown for arbitrary projective k�C��
modules by Gubeladze ������

Corollary ������ Let C be a normal semigroup� and k a �eld� Then k�C� is
Gorenstein if and only if there exists c � relintC with relintC � c� C �

Proof� If relintC � c� C � then the ideal I of ����� is principal� and k�C�
is Gorenstein by ����	� For the converse implication we decompose C in
the form C � C� � C � where C� is a group and C � is positive� If k�C�
is Gorenstein� then k�C �� is Gorenstein� the extension k�C �� � k�C� is
faithfully �at� and the Gorenstein property descends from k�C �� to k�C�
by �����
� For k�C �� we can apply ������ �with respect to an admissible
grading�� and thus I �� k�C ��� It follows that I is generated by an element
Xc� Therefore relintC � � c�C � � and it is easy to verify that relintC � c�C
as well�

Combinatorial applications� Let S be a system of homogeneous linear
Diophantine equations in n variables� It follows directly from ����� that
the set C of solutions c � Nn of S is a positive normal semigroup� This
fact enables us to apply results on Hilbert functions to the combinatorial
object C �

The set C can be represented by the power series

C�t� �
X
c�C

tc

in n variables t � t�� � � � � tn� Obviously C�t� is the Zn�graded Hilbert
series of k�C� if we consider the Zn�grading on k�C� it inherits from
k�Nn� � k�X�� � � � � Xn�� As we have not developed the theory of Zn�graded
modules to the necessary extent� we restrict ourselves to considering the
specialization

c�t� �
X
c�C

tjcj�

It is the Hilbert series of k�C� for the Z�grading induced by the total
degree of a monomial� Under this grading k�C� is a positively graded
k�algebra�

Let C� be the set of strictly positive integral solutions of S� i�e�
solutions c � Nn with ci � 
 for i � �� � � � � n� It may of course happen that
C� � �� but otherwise we have C� � relintC �Exercise �������� Therefore�
and by ������ the power series

c��t� �
X
c�C�

tjcj
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is the Hilbert series of the �canonical module � of k�C�� Hence �����
immediately yields the following reciprocity law �

Theorem ����� �Stanley�� With the notation introduced� suppose that C� is

non�empty� Then

c��t� � ����dc�t���� d � rankC�

Of all the results of Section ��� only ����� has been applied to k�C��
We could extend ���� by furthermore considering the Hilbert function
H�k�C�� m� � jfc � C � jcj � mgj� Below� such an extension is carried out
for the Ehrhart function of a rational polytope�

Remark �����
� In ������ Theorem ������� Stanley proves the ��ne� version

C��t� � ����dC�t���

of the previous theorem by combinatorial methods� In order to obtain
it by ring�theoretic arguments one needs the Zn�graded variant of �����
which was also given by Stanley� see ���	�� Theorem ���� �Exercise �����
is the Zn�graded variant of ����� for Stanley�Reisner rings��

Conversely� the computation of the canonical module of a normal
semigroup ring in ���	� uses the �ne reciprocity law� similarly as in �����
one shows that the ideal generated by the monomials Xc� c � C�� is the
canonical module of k�C� once the equation C��t� � ����dC�t��� has
been established�

Let P � Rn be a polytope of dimension d � Since P is bounded� we
may de�ne its Ehrhart function by

E�P �m� � jfz � Zn �
z

m
� P gj� m �N� m � 
� and E�P � 
� � ��

and its Ehrhart series by

EP �t� �
X
m�N

E�P �m�tm�

It is clear that E�P �m� � jfz � Zn � z � mP gj where mP � fmp � p � P g�
Similarly as above we set

E��P �m� � jfz � Zn �
z

m
� relintP gj for m � 
� E��P � 
� � 
�

and
E�
P �t� �

X
m�N

E��P �m�tm�

Note that E��P �m� � jfz � Zn � z � relintmP gj for m � 
�
We de�ne the cone D � Rn�� by D � R�f�p� �� � p � P g� Then

C � D�Zn�� is a subsemigroup of Zn��� Therefore one may consider the



�	� �� Semigroup rings and invariant theory

k�algebra k�C�� Suppose P is a rational polytope� then D is a rational
cone� and C is a positive normal semigroup� Let us �x a grading on k�C�
by assigning to c � �c�� � � � � cd��� the degree cd��� For this grading the
Hilbert functions of k�C� and of the ideal I generated by the monomials
Xc� c � relintC � are given by

H�k�C�� m� � E�P �m� and H�I� m� � E��P �m��

The grading under consideration is admissible for k�C�� and therefore
we may apply the theory of Chapter � to k�C�� Part �b� of the following
theorem is Ehrhart�s remarkable reciprocity law for rational polytopes�

Theorem ������ �Ehrhart�� Let P � Rn be a d�dimensional rational poly�
tope� d � 
� Then

�a� EP �t� is a rational function� and there exists a quasi�polynomial q with

E�P �m� � q�m� for all m 	 
�

�b� E�
P �t� � ����d��EP �t

���� equivalently

E��P �m� � ����dE�P ��m� for all m 	 �

where E�P ��m� � q��m� is the natural extension of E�P � ��

Proof� �a� Since EP �t� is the Hilbert series of a positively graded Noe�
therian k�algebra� it is a rational function� According to ����� we must
show for the second statement in �a� that EP �t� has negative degree� or�
equivalently� that the a�invariant of k�C� is negative� By ����� the ring
k�C� is Cohen�Macaulay� and by ����� its �canonical module is generated
by the elements Xc� c � relintC � These have positive degrees under the
grading of k�C�� and hence a�k�C�� � 
�

�b� By what has just been said� E�
P �t� is the Hilbert series of the

�canonical module of k�C�� Furthermore� dim k�C� � d � �� Thus the
�rst equation is a special case of ������ The second equation results fromP

m	� E�P ��m�tm � �EP �t���� The reader may prove this identity as an
exercise� or look up ������ ������

The quasi�polynomialq in ������ is called the Ehrhart quasi�polynomial
of P �

Suppose that P is even an integral polytope� that is� a polytope whose
vertex set V is contained in Zn� Then� in addition to k�C�� we may also
consider its subalgebra

k�V � � k�X�v��� � v � V ��

Obviously k�V � is a homogeneous k�algebra� Let c � C� then there exist
qv � Q� such that c �

P
v�V qvv� If we multiply this equation by a suitable

common denominator e and interpret the result in terms of monomials�
then we see that �Xc�e � k�V �� Thus k�C� is integral over k�V �� Since it is
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also a �nitely generated k�V ��algebra� it is even a �nite k�V ��module� In
particular� by Hilbert�s theorem ������ the Ehrhart quasi�polynomial of P
is a polynomial and therefore called the Ehrhart polynomial� Furthermore
k�C� has a well de�ned multiplicity� In concluding this section we want
to illuminate the beautiful relation between the volume volP of an n�
dimensional integral polytope P � Rn and the multiplicity of k�C��

Theorem ������� Let P � Rn be an n�dimensional integral polytope� and
let k�C� the normal semigroup ring constructed above� Then

e�k�C�� � n" volP �

Proof� Elementary arguments of measure theory show that the volume
of P is

volP � lim
m��

E�P �m�

mn
�

Being the Hilbert polynomial of a �n � ���dimensional k�V ��module�
E�P �m� has degree n� Thus its leading coe�cient is given by volP � On
the other hand� it is also given by e�k�C���n"�

The restriction to n�dimensional polytopes P � Rn is only for sim�
plicity� see ������ Section ���� for the general case� Using the fact that
the volume of P is the leading coe�cient of its Ehrhart polynomial one
can derive classical formulas for volP � Exercise �����	 presents the cases
n � � and n � ��

Exercises

������� Let C be a positive normal semigroup� For each i � �� � � � � d let Gi be the
direct sum of the residue class rings kC��P �F� where F is an i�dimensional face
of R�C � De	ne the map kC��P �F� � kC��P �F �� to be ��f� f�� nat if F � � F �
dimF � � dimF � �� or � otherwise� Show that the induced sequence

� ��� I
nat
��� kC� � Gd ��� Gd�� ��� � � � ��� G� ��� G� � k ��� �

is exact �of course I is de	ned as in ������� Hint� The proof is similar to that of
������

������� Let C be the semigroup of solutions c �Nn of a system of homogeneous
linear Diophantine equations� and C� � fc � C � ci � � for all ig� Show that if
C� �� � then C� � relint C �

������� Let P be an integral polytope of dimension n� and de	ne the semigroup
C and the grading of kC� as above� It is customary to call �h�� � � � � hn� the
h�vector of P where hi is the i�th coe�cient of the �Laurent� polynomial Q�t� in
the numerator of the Ehrhart series of kC�� it follows from ������ that hi � � for
i � n� Prove the following inequalities due to Stanley ���� and Hibi �����
�a� hi � � for all i�

�b�
Pj

i�� hi �
Pj

i�� hs�i for all j � �� � � � � s where s � maxfi � hi �� �g�
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�c�
Pn

i�n�j hi �
Pj��

i�� hi for all j � �� � � � � n�

Hint� For �b� and �c� study �again� the proof of ����
� For R � kC� we also have
an exact sequence �� � � R � R��� ��

������� With P � C � and kC� as in ������� set L � f�p� ��� p � P 	Zng and let kP �
be the k�algebra generated by the elements Xw � w � L�

�a� Show the following are equivalent�

�i� kC� � kP ��
�ii� kC� is homogeneous�
�iii� kP � is normal and ZL � Zn���

�b� Discuss the conditions of �a��iii� for the polytopes P� � P� � R� spanned by ���
v� � �� v� � ��� �� ��� v� � ��� �� ��� and v� � ��� �� ��� and ��� v� � �� v� � ��� �� ���
v� � ��� �� ��� and v� � ��� �� ���

�����	� Prove that the volume of an n�dimensional integral polytope P in Rn is

volP �
�

�
�E�P � �� � E��P � �� � �� for n � �� and

volP �
�

�
�E�P � �� � �E�P � ��� E��P � �� � �� for n � ��

Hint� The coe�cients of a polynomial can be determined by interpolation�

��	 Invariants of tori and �nite groups

In the followingwe use some elementary notions and results from the the�
ory of linear algebraic groups for which we refer the reader to Humphreys
��
��� Kraft ������ or Mumford and Fogarty ��	��

Let k be an algebraically closed �eld� and V a k�vector space of
�nite dimension� Each � � GL�V � yields a k�algebra automorphism ��
of the symmetric algebra R � S�V �� In concrete terms� if e�� � � � � en is a
basis of V � then S�V � �� k�X�� � � � � Xn�� the isomorphism being induced by
the linear map which sends ei to Xi� i � �� � � � � n� If we identify V and
kX�� � � �� kXn via this map� then �� is just the k�algebra automorphism
of R � k�X�� � � � � Xn� given by the substitution Xi �� ��Xi�� �From a
categorical point of view it would be better to consider the action of
GL�V � on S�V ��� the ring of polynomial functions on V ��

Suppose that G is a linear algebraic group over k� such a group is
always isomorphic to a Zariski closed subgroup of GL�W � where W is a
suitable �nite dimensional k�vector space� A morphism � � G � GL�V �
�in the category of algebraic groups� is called a representation of G� It
assigns the automorphism ���g� of R to each g � G� so that we say that
G acts linearly on R� It is the classical problem of �algebraic� invariant
theory to determine the structure of the ring of invariants

RG � ff � R � g�f� � f for all g � Gg�
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where we have set g�f� � ���g��f� for simplicity of notation� If f is

homogeneous of total degree d � then so is g�f�� Therefore RG is a
positively graded k�algebra inheriting its grading from R�

A character of G is a representation � � G� GL�k�� To each character
� we associate the set

R� � ff � R � g�f� � ��g�f for all g � Gg

of semi�invariants of weight �� It is easily veri�ed that R� is a graded
RG�submodule of R� Especially important in the following is the inverse
determinant character g �� det���g� � det��g��� associated with ��

The ring RG of invariants only depends on ��G� � GL�V �� thus
we shall often simplify the situation by directly considering a subgroup
of GL�V �� Furthermore� for concrete groups the requirement that k be
algebraically closed can sometimes be relaxed�

More generally� one may always form the ring RG when R is a ring
and G is a subgroup of AutR� Clearly RG inherits all properties of R
which descend to subrings� and is a normal domain along with R�

Proposition ��	��� Let R be a normal domain� and G a subgroup of AutR�
Then RG is a normal domain�

Proof� It is easy to see that RG is the intersection of its �eld of fractions
Q�RG� with R �within Q�R���

Invariants of diagonalizable groups� Let k be an algebraically closed
�eld� For each m �N the group GL�k�m is called a torus� it is isomorphic
to the group of m
m diagonal matrices of rank m over k� Slightly more
generally we want to consider diagonalizable groups over k� i�e� direct
products

D � T 
H

where T is a torus and H is a �nite Abelian group whose order is not
divisible by char k� Since k contains a primitive q�th root of unity for
each q not divisible by char k� H may be written in the form

H � h'�i 
 � � � 
 h'wi

where h'ji is the cyclic subgroup of GL�k� generated by a root of unity 'j �
Thus we may write each element in D in the form �d�� � � � � dm� '

s�
� � � � � � '

sw
w �

with sj � N�
Suppose now that we are given a representation of D� that is� a

homomorphism � � D � GL�V �� Then � can be diagonalized� there
exists a basis e�� � � � � en of V such that each ei is an eigenvector of ��d�
for every d � D� Thus the vector subspace kei �� k is stable under the
action of D� and therefore � induces a character �i of D� �i associates
to each element d � D its eigenvalue with respect to ei� It is su�cient to
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determine the characters of the direct factors GL�k� and h'ji of D� One
sees easily that in both cases the characters are the powers a �� as� s � Z�
Thus there exist t�i� � � � � tmi � Z and u�i� � � � � uwi �N� i � �� � � � � n� such that

��d�� � � � � dm� '
s�
� � � � � � '

sw
w ��ei� � dt�i� � � � d

tmi
m 's�u�i� � � � 'swuwiw ei

for i � �� � � � � n�

Theorem ��	��� Let k be an algebraically closed �eld� and D a diagonaliz�

able group over k acting linearly on a polynomial ring R � k�X�� � � � � Xn��
Then

�a� �Hochster� the ring RD of invariants is a graded Cohen�Macaulay ring�

�b� �Danilov� Stanley� Rdet��

��n� is the �canonical module of RD� provided

Rdet��

�� 
�

Proof� We may assume right away that D acts diagonally as just de�
scribed� It follows that each monomial Xa�

� � � �X
an
n is mapped to a

multiple of itself by every d � D� Therefore f � R is invariant if and only
if all its monomials are invariant� so that RD � k�C� for some semigroup
C � Nn� Extending the formula for the action of D to monomials� we
see that Xa�

� � � �X
an
n is an invariant if and only if �a�� � � � � an� satis�es the

system
tj�a� � � � � � tjnan � 
� j � �� � � � � m�

of homogeneous linear equations with integral coe�cients� and simulta�
neously the system

sj�uj�a� � � � �� ujnan� � 
 mod �ord 'j�� j � �� � � � � w�

of homogeneous congruences �of course ord 'j denotes the order of the
root of unity 'j��

It follows easily that C is the intersection of Rn
� with a �nitely

generated group G � Qn� Therefore C is normal� and part �a� is an
immediate consequence of ������a��

Similarly� part �b� can be derived rather quickly from ������b�� Set

S � RD� M � Rdet��

� and P � X� � � �Xn� Then d�P � � det�d�P for all
d � D� Hence� for every f � R� f �M if and only if Pf � S � Obviously
M is an S�module generated by monomials �even as a k�vector space��
and therefore a graded S�module�

Let I be the ideal generated by the monomials Xc�
� � � �X

cn
n with

�c�� � � � � cn� � relintC � We know from ����� in conjunction with ����	
that I is the graded canonical module of S �up to an isomorphism of
graded modules�� Evidently it is enough to show that PM � I and
P��I �M� provided M �� 
�

The representation C � Rn
� �G readily yields that

f�c�� � � � � cn� � C � ci � 
 for all ig � relintC�
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Therefore PM � I � Conversely� suppose M �� 
� and let Xb�
� � � �X

bn
n � M�

Then PXb�
� � � �X

bn
n � S � and so C contains an element �c�� � � � � cn� with

ci � 
 for all i� Hence C is not contained in a coordinate hyperplane� and
consequently no relative interior point of C lies in such a hyperplane� It
follows that P��I � k�X�� � � � � Xn�� and thus P��I �M�

The preceding proof shows that the degenerate case Rdet��

� 
 oc�
curs precisely when� after diagonalization� RG is contained in one of the

subrings k�X�� � � � � �Xi� � � � � Xn�� Furthermore� the condition that k be alge�
braically closed is dispensable once the action of D is a priori diagonal�
If k is in�nite� then the proof of ����� remains valid without modi�cation�
if k is �nite� then one must set T � fidg and m � 
� This generalization
can also be extended to the following corollary�

Corollary ��	��� Under the hypothesis of ����� suppose additionally that

detd � � for all d � D� Then RD is a Gorenstein ring�

The proof of ����� suggests that ����� is just a special case of ������
however� Exercise ������ shows that these theorems are actually equiva�
lent�

Finite groups� Theorem ����� in particular covers the case in which a
�nite Abelian group G acts linearly on a polynomial ring k�X�� � � � � Xn��
provided the order jGj of G is invertible in k� With the same proviso� we
now want to treat the case of an arbitrary �nite group� It is convenient
to restrict oneself to subgroups G of GL�V ��

More generally let us �rst consider a ring R and a �nite group G of
automorphisms of R such that jGj is invertible in R� Let S be the ring
RG of invariants� and set

��r� � jGj��
X
g�G

g�r�

for every r � R� It is straightforward to verify that � is an S�linear map
from R to S with �jS � idS � A map satisfying these conditions is called
a Reynolds operator �for the pair �R� S��� The existence of a Reynolds
operator is obviously equivalent to the fact that S is a direct summand
of R as an S�module�

Proposition ��	�	� Let R be a ring� S a subring of R� and suppose that there
exists a Reynolds operator for �R� S�� Then the following hold	

�a� for every ideal I of S one has IR � S � I�
�b� if R is Noetherian� then so is S�
�c� if x is an R�sequence in S � then it is also an S�sequence�

Proof� �a� For s�� � � � � sn � S � r�� � � � � rn � R with r �
P

siri � S one has
r � ��r� �

P
si��ri��
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�b� If I� � I� � � � � is an ascending sequence of ideals in S � then the
sequence I�R � I�R � � � � is stationary in R� Therefore� and by �a�� the
sequence I� � I� � � � � is also stationary�

�c� This follows easily from �a��

In the case of a group action considered above� each r � R is a
solution of the equation Y

g�G

�X � g�r�� � 
�

The left hand side is a monic polynomial in X whose coe�cients are
elementary symmetric functions in the elements g�r�� g � G� Therefore all
the coe�cients belong to the ring S of invariants� and we see that R is
integral over S �

Theorem ��	�� �Hochster�Eagon�� Suppose R is a Cohen�Macaulay ring

and S is a subring such that there exists a Reynolds operator �� and R is

integral over S � Then� if R is Cohen�Macaulay� so is S �

Proof� We must show that the localizations Sn of S with respect to its
maximal ideals n are Cohen�Macaulay� Given a maximal ideal n of S �
we replace S by Sn and R by R � Sn � Therefore we may assume that S
is a local ring with maximal ideal n � Since R is integral over S � it is a
semi�local ring� �This follows easily from A����

We argue by induction on the length of a maximal R�sequence in n �
Suppose �rst that n consists entirely of zero�divisors of R� Then each
s � n is contained in one of the associated prime ideals p �� � � � � p m of
R� So n �

S
p i � S � and there exists a j with n � p j � S � As R is

Cohen�Macaulay� all the p i are minimal prime ideals of R� On the other
hand� since R is integral over S � p j is also a maximal ideal of R�

If p j is the only maximal ideal of R� then it follows immediately that
dimS � dimR � 
 so that S is Cohen�Macaulay as desired� Otherwise
the zero ideal of R can be written q � r where q is p j�primary and r �� p j �
As q � r � R� the Chinese remainder theorem implies that R splits into
the direct product of subrings R�� R�� If we can replace R by one of
them� then we can �nish the case under consideration by induction on
the number of maximal ideals of R�

Let �� and �� be the projections of R onto R� and R�� and 	 the
embedding of S into R� Then both �����	 and �����	 are endomorphisms
of the S�module S � Hence there exist s� and s� such that � � �i � 	 is
multiplication by si� It follows that

� � � � 	��� � � � ��� � ��� � 	��� � s� � s�

so that at least one of s� and s� is a unit in S � say s�� Then �� � 	 is an
embedding of S into R�� and one easily checks that all the hypotheses
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pass on to the pair �R�� S�� This �nishes the case in which n consists
entirely of zero�divisors of R�

Now suppose that s � n is R�regular� Then ����� implies that S�sS is
in a natural way a subring of R�sR� and it is again easily veri�ed that
the remaining hypotheses hold for the subring S�sS of R�sR� As R�sR
is Cohen�Macaulay� we conclude that S�sS and� hence� S are Cohen�
Macaulay�

Corollary ��	��� Let R be a Cohen�Macaulay ring� and G a �nite group

of automorphisms of R whose order is invertible in R� Then the ring RG of

invariants is Cohen�Macaulay�

Remark ��	��� In our derivation of ����� we have used that jGj is invertible
in R in order to show that RG is Noetherian� However� for this property
of RG the hypothesis on jGj is quite inessential� if R is a �nitely generated
algebra over a Noetherian ring k such that G acts trivially on k� then�
by a famous theorem of E� Noether� RG is a �nitely generated k�algebra�
We saw above that R is integral over RG� Therefore R is already integral
over the k�subalgebra A generated by the coe�cients of the equations
fi�x� � 
� fi � k�T �� which establish that the �nitely many generators xi
of R are integral over RG� It follows that R and� hence� RG are �nite
A�modules�

On the other hand� that jGj is invertible in R is essential for the
Cohen�Macaulay property of RG� In fact� if k is a �eld of characteristic ��
then k�X�� � � � � X��G is a non�Cohen�Macaulay factorial domain for the
group G of cyclic permutations of X�� � � � � X�� see Bertin �����

Similarly to ����� one can determine the canonical module of RG from
invariant theoretic data if G acts linearly on a polynomial ring R� Let V
be again a vector space of �nite dimension over a �eld k which we now
assume to be of characteristic 
 �see Remark ������ for the more general
case in which jGj is not divisible by char k�� As above we extend the action
of G to the symmetric algebra R � S�V � which we may identify with the
polynomial ring k�X�� � � � � Xn�� n � dimV � whenever it is appropriate�

Let S � RG� Since the action of G can be restricted to the graded
components Ri of R� S is a positively graded k�algebra� Being a �nitely
generated integral extension of S � R is a �nite graded S�module� and in
fact a maximal Cohen�Macaulay S�module� according to �����	 there
exists a homogeneous system of parameters x in S� it follows that
heightxR � n� and thus x is an R�sequence� �In conjunction with �����
this observation yields a quick proof of the previous corollary in the
special case under consideration��

It is customary to call the Hilbert series of S the Molien series of G�

MG�t� � HS �t� �
�X
i��

dimSit
i�
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We also need the Molien series and the Reynolds operator for the semi�
invariants of G� For a character � of G we set

M��t� � HM�
�t� �

�X
i��

dimR
�
i t
i and ���r� � jGj��

X
g�G

��g���g�r��

It is easy to check that ���R� � R� and ���r� � r for r � R�� The operator
�� is a k�endomorphism of the graded k�vector space R� Let ��i denote

its restriction to Ri� then ��i � ���i �
�� and therefore

dimR�
i � dimIm ��i � Tr ��i � jGj��

X
g�G

��g���TrgjRi
�

Here Tr denotes the trace� and we use its linearity� Combining the
formulas yields

M��t� � jGj��
X
g�G

��g���
�X
i��

�TrgjRi
�ti�

Theorem ��	�� �Molien�s formula�� Let k be a �eld of characteristic 
�
V a �nite dimensional k�vector space� and G a �nite subgroup of GL�V ��
Then the Molien series of a character � of G is given by

M��t� � jGj��
X
g�G

��g���

det�id�tg�
�

Proof� We need to show that

�

det�id�tg�
�

�X
i��

�TrgjRi
�ti

for each g � G� In fact� this equation holds for an arbitrary element
g � GL�V �� In order to prove it we may extend k to an algebraically
closed �eld� Then� for a suitable basis X�� � � � � Xn of V � g is given by
an upper triangular matrix whose diagonal entries are the eigenvalues
��� � � � � �n of g �as an element of GL�V ���

The monomials of total degree i in X�� � � � � Xn form a basis of the
vector space Ri� If these monomials are ordered lexicographically� then
gjRi

is again represented by an upper triangular matrix whose diagonal
entry corresponding to the monomial X a � Xa�

� � � �X
an
n is �a � �a�� � � � �

an
n �

Therefore

TrgjRi
�
X
jaj�i

�a�
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and the expansion of the product of the geometric series ���� � �jt��
j � �� � � � � n� gives us

�X
i��

�TrgjRi
�ti �

�X
i��

X
jaj�i

�ati �
nY
j��

�

�� �jt
�

Using that ���
� � � � � � ���

n are the eigenvalues of g��� we �nally get

nY
j��

�

�� �jt
�

nY
j��

���
j

���
j � t

�
detg��

det�g�� � t id�
�

�

det�id�gt�
�

We can now easily prove the analogues of ����� and ����� for linear
actions of �nite groups�

Theorem ��	�� �Watanabe�� Let k be a �eld of characteristic 
� V a k�
vector space of dimension n� R � S�V �� and G a �nite subgroup of GL�V ��

�a� Then Rdet��

��n� is the �canonical module of RG�

�b� In particular RG is Gorenstein if G � SL�V ��

Proof� Set S � RG and � � det��� Since �� is an S�linear map from R
onto N � R�� we see that N is a direct S�summand of R� It was observed
above that R is a maximal Cohen�Macaulay module over S� therefore N
is also a maximal Cohen�Macaulay S�module� Furthermore

M��t� � jGj
��
X
g�G

det g

det�id�tg�
� jGj��

X
g�G

�

det�g�� � t id�

� jGj��
X
g�G

�

det�g � t id�
� jGj��

X
g�G

����nt�n

det�id�t��g�

� ����nt�nMG�t
����

As the Molien series are Hilbert series� we may apply ����� to conclude
that N��n� is the �canonical module of S � This proves �a��

If G � SL�V �� then� by �a�� S is isomorphic to the �canonical module
of S � As a �canonical module is canonical� S is Gorenstein�

Very easy examples show that �����b� cannot be reversed� The
obstruction is the presence of pseudo�re�exions in G� g � GL�V � is
called a pseudo�re�exion if it has �nite order and its eigenspace for the
eigenvalue � has dimension dimV � �� �Thus the remaining eigenvalue is
the determinant��

Theorem ��	��
� With the notation of ���� the following hold�

�a� �Stanley� RG is Gorenstein if and only ifX
g�G

�

det�id�tg�
� t�m

X
g�G

detg

det�id�tg�

where m is the number of pseudo�re�exions in G�
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�b� �Watanabe� Suppose G contains no pseudo�re�exions� Then RG is

Gorenstein if and only if G � SL�V ��

Proof� �a� If we apply ����� to the Molien series of RG� then it follows
easily that RG is Gorenstein if and only if the equation in �a� holds for
some m � Z� It remains to determine m� To this end we expand both
sides in a Laurent series at t � �� Let n � dimV � and � denote the set of
pseudo�re�exions in G�

The pole order of �� det�id�tg� at t � � is the multiplicity of � as
an eigenvalue of g� Thus the only summand with a pole of order n is
�� det�id�t id� � ���� � t�n� and those with a pole of order n � � are
exactly the summands

�

det�id�t��
�

�

��� t�n��

�

�� det �
� � � � � � � ��

where � � � denotes terms of higher order in ��� t�� Thus the left hand side
is

�

��� t�n
�

�

��� t�n��

X
���

�

�� det �
� � � �

whereas the right hand side is

�� � m��� t� � � � ��
	 �

��� t�n
�

�

��� t�n��

X
���

det �

�� det �
� � � �



so that a comparison of coe�cients yields m � j�j as required�

�b� Evaluating the formula in �a� for t � 
 gives jGj �
P

g�G det g�
Since the eigenvalues of the elements of G are roots of unity� we must
have det g � � for all g � G� �Note that the elements of k which are
algebraic over k may be considered complex numbers��

Remark ��	���� Theorems ���� and �����
 were proved byWatanabe ���	��
����� under the weaker assumption that jGj is not divisible by char k� His
proofs use divisorial methods� Hini%c ��	�� extended Watanabe�s results
to invariant subrings of Gorenstein rings�

Finite groups generated by pseudo�re�exions� That the pseudo�re�exions
in a �nite group G � GL�V � play a special role has already been
demonstrated by �����
� However� the most ostensive indication of this
fact is the celebrated theorem which characterizes the regular ones among
the rings of invariants of �nite groups�

Theorem ��	��� �Shephard�Todd� Chevalley� Serre�� Let k be a �eld of

characteristic 
� V a k�vector space of dimension n� R � S�V �� and G a

�nite subgroup of GL�V �� Then the following are equivalent	

�a� G is generated by pseudo�re�exions�
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�b� R is a free RG�module�

�c� the k�algebra RG is generated by �necessarily n� algebraically indepen�

dent elements�

That �c� is equivalent with the regularity of RG follows from Exercise
������� which also shows that the algebraically independent elements
can be chosen homogeneous� their number is n� as dimRG � dimR �
dimV � n�

The remainder of this section is devoted to a proof of ������� The
next lemma covers the equivalence �b�� �c��

Lemma ��	���� Let R be a positively graded� �nitely generated algebra

over an arbitrary �eld k� and S a graded k�subalgebra such that R is a

�nite S�module�
�a� Then S is a �nitely generated k�algebra�
�b� If R is Cohen�Macaulay and S is generated by algebraically indepen�

dent elements over k� then R is a free S�module� Moreover� it has a basis

of homogeneous elements�

�c� If R is generated by algebraically independent elements over k and a

free S�module� then S is generated by algebraically independent elements�

Proof� �a� This is a special case of E� Noether�s theorem proved in ����	�
�b� By hypothesis S is a regular ring� a minimal homogeneous system

x�� � � � � xn of generators of its
�maximal ideal is algebraically independent�

and furthermore generates S as a k�algebra �see Exercise �������� Since R
is a �nite S�module� x�� � � � � xn is also a homogeneous system of parameters
of R� and thus an R�sequence by hypothesis on R� Consequently R is a
maximal Cohen�Macaulay S�module� It follows from ������ that R is a
projective S�module� and then ������ implies that R is a free S�module�
and that every minimal homogeneous system of generators of R over S
is a basis�

�c� Let m and n be the �maximal ideals of R and S � The hypothesis
implies that Rm is a regular local ring and a �at local extension of Sn �
Thus Sn is regular according to ������� Again we apply ������ to conclude
that S is generated by algebraically independent elements�

We now show that �a� �b� in ������� For R to be a free S�module�
S � RG� it is su�cient that M � TorS� �R� S�n � � 
� In fact this implies
that Rn is a free Sn �module� whence R is free over S by ������� The module
M is the kernel of the homomorphism � � R �S n � R �S S induced by
the embedding n � S � Given a minimal homogeneous system x�� � � � � xm
of generators of n � M consists of all the elements

P
yi � xi� yi � R withP

yixi � 
�
Evidently M is a graded submodule of the graded S�module R � n

with deg a�b � deg a�deg b for homogeneous elements a � R� b � n � We
assume that M �� 
� In order to derive a contradiction choose a non�zero
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homogeneous element
P

yi � xi of minimal degree in M� Replacing yi
by a suitable homogeneous component� we may suppose that each yi is
itself homogeneous�

We claim that
P

yi � xi �
P

g�yi� � xi for all g � G� Since G is
generated by pseudo�re�exions� it is enough to show this for a pseudo�
re�exion �� We choose a basis X�� � � � � Xn of V such that ��Xi� � Xi for
i � �� � � � � n and ��X�� � 'X� where ' is a root of unity� For each monomial
f in X�� � � � � Xn it follows easily that X� divides ��f� � f� Therefore X�

divides ��f� � f for every element f of R� Let ��yi� � yi � X�y
�
i for

i � �� � � � � n� Then
P

y�ixi � 
 so that
P

y�i�xi �M� From the assumption
on
P

yi�xi we conclude
P

y�i�xi � 
 and� hence�
P

yi�xi �
P

��yi��xi �

The Reynolds operator �� viewed as an S�endomorphism of R� induces
an S�linear map �� � � � id� R � n � R � n � By what has just been
proved� ���

P
yi � xi� �

P
yi � xi� On the other hand Im � � S so that ��

factors as

R � n
���

�� S � n
�
�� R � n

where 	 is induced by the embedding S � R� It is immediate that
����M� is mapped to the kernel TorS��S� S�n � � 
 of the natural map
S � n � S � S � S � Thus ���

P
yi � xi� � 
� and therefore

P
yi � xi � 
�

which is the required contradiction�

It remains to prove the implication �c�  �a� for which we use a
combinatorial argument based on the following lemma�

Lemma ��	��	� Let k be a �eld of characteristic 
� V a k�vector space

of �nite dimension� R � S�V �� and G a �nite subgroup of GL�V �� Let

x�� � � � � xn� n � dimV � be a homogeneous system of parameters of RG�

�a� Then x�� � � � � xn are algebraically independent over k� and RG is a free

k�x�� � � � � xn��module� it has a basis of homogeneous elements h�� � � � � hm�

�b� Let di � deg xi� i � �� � � � � n� and ej � deg hj � j � �� � � � � m� and let �
denote the set of pseudo�re�exions in G� Then

mjGj � d� � � � dn� and mj�j� ��e� � � � � � em� � m�d� � � � � � dn � n��

Proof� �a� According to �����	 RG is a �nite k�x�� � � � � xn��module� Thus we
have dim k�x�� � � � � xn� � n so that x�� � � � � xn are algebraically independent
over k� One now applies �������

�b� The Hilbert series of k�x�� � � � � xn� is ��
Qn

i���� � tdi�� Thus the

Hilbert series of the k�x�� � � � � xn��module R
G �

L
hik�x� � � � � � xn� is

MG�t� �
te� � � � �� temQn

i����� tdi�
�

�

��� t�n
f�t�
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where f�t� � �te� � � � � � tem��
Qn

i��

Pdi��
j�� tj does not have a pole at t � ��

Expansion in a Laurent series at t � � yields

MG�t� �
�

��� t�n
�
f���� f������� t� � � � �

�
with f��� � m��d� � � � dn� and

f���� �
e� � � � � � em � �m���

Pn
i���di � ��

d� � � � dn
�

As we saw in the proof of �����
� we also have

MG�t� � jGj��
	 �

��� t�n
�

�

��� t�n��

X
���

�

�� det �
� � � �



�

Observe thatX
���

�

�� det �
�
�

�

	X
���

�

�� det �
�
X
���

�

�� det ���



�
�

�

X
���

� �
�

�
j�j�

Comparing coe�cients in the Laurent expansions gives the required
formulas�

We now complete the proof of ������ with the implication �c�  �a��
Let H be the subgroup of G generated by the pseudo�re�exions in
G� Using the implication �a�  �c�� we see that RH is generated by
algebraically independent homogeneous elements y�� � � � � yn� Since RG is�
by hypothesis� also generated by algebraically independent homogeneous
elements x�� � � � � xn� we have an inclusion k�x� � � � � � xn� � k�y�� � � � � yn�� We
want to show that there exists a permutation � of f�� � � � � ng such that
deg xi 	 deg y��i� for all i�

To this end we de�ne Pi to be the smallest subset of f�� � � � � ng such
that xi � k�yj � j � Pi�� For each subset I of f�� � � � � ng the set

S
i�I Pi must

have at least jIj elements since the xi� i � I � are algebraically independent�
Thus the marriage theorem of elementary combinatorics guarantees an
injective map � with ��i� � Pi for all i� By de�nition of Pi we have
deg xi 	 deg y��i��

Arranging y�� � � � � yn in the order prescribed by � we may assume
that di � deg xi 	 zi � deg yi for all i� Lemma ������ applied to RG �
k�x�� � � � � xn� yields

j�j � d� � � � � � dn � n�

since we have m � �� h� � �� and d� � 
� But ������ also applies to
RH � k�y�� � � � � yn�� and since H contains all the pseudo�re�exions of G�
we similarly obtain

j�j � z� � � � � � zn � n�

Summing up� we must have di � zi for all i� Therefore jGj � jHj by the
�rst equation in ������� and G � H �
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Remarks ��	���� �a� The equivalence of �b� and �c� in ������ is independent
of any assumption on the characteristic of k or the order of G� as is clearly
exhibited by ������� Furthermore� the proof of the implication �a�  �a�
only uses that jGj is not divisible by char k� It is due to Serre ������ as
well as a proof of �c�  �a� �based on rami�cation theory� which does
not require any assumption on k or G� see also Bourbaki ���� Ch� �� For
�c�  �a� we have reproduced the original argument of Shephard and
Todd ����� which exploits the fact that char k � 
 in an essential way�

�b� Within the hierarchy �regular� complete intersection� Gorenstein�
Cohen�Macaulay�� the property of being a complete intersection is the
most di�cult for rings of invariants of linear actions of �nite groups�
A necessary condition for RG to be a complete intersection was given
by Kac and Watanabe ������ if RG is a complete intersection� then G is
generated by elements g with rank�g� id� � �� The proof uses geometric
methods� Exercise ������ presents an example showing that this condition
is not su�cient for RG to be a complete intersection� See Gordeev ����
and Nakajima and Watanabe ���	� for a classi�cation of the groups G
for which RG is a complete intersection� Nakajima ����� has classi�ed
the hypersurface rings RG�

Exercises

������� Let S � T be a�ne semigroups� S � T � One says that S is an expanded

subsemigroup of T if S � T 	QS �in QT �� Prove�

�a� An expanded subsemigroup is a full subsemigroup�

�b� The following are equivalent for a subsemigroup S of Nn�

�i� S is expanded�
�ii� there exists a vector subspace U of Qn with S � U 	 Qn�
�iii� there exists a homogeneous system of linear equations with integral
coe�cients such that S is the set of its non�negative solutions�
�iv� kS � is the ring of invariants of a linear torus action on kX� � � � � � Xn��

�c� Every positive normal semigroup C is isomorphic to an expanded subsemi�
group of Nn for some n � ��

Hint for �c� �communicated by Hochster�� By ������ we may assume that C is a

full subsemigroup of Nm for some m � �� thus C � Nm 	ZC � Set �C � Nm 	QC �

Then Z �C�ZC is a torsion group� so that there exist a basis e� � � � � � er of Z �C and
positive integers qi for which q�e� � � � � � qrer is a basis of ZC � Extend e� � � � � � er to
a basis of Qm� and let �i� i � �� � � � � r� be the linear form on Qm which assigns
each vector its i�th coordinate with respect to this basis� Note that �i�a� � Z for

all a � Z �C� Then C is the set of elements of c � Nm satisfying �i� a system of
homogeneous linear equations with rational coe�cients whose set of solutions is
QC � and secondly the congruence conditions �i�c� � �modqi� Adding positive
integral multiples of qi to the coe�cients of �i �with respect to the dual canonical
basis of Qm�� we may replace the �i by linear forms which are non�negative
on Nm� Then �i�c� � �modqi if and only if the linear equation �i�c� � yiqi
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has a non�negative integral solution yi�c�� Consider the map C � Nm � Nr �
c �� �c� y��c�� � � � � yr�c���

�����	� Let k be an in	nite 	eld� and R � Y� � Y�� Z�� Z��� Suppose that GL��� k� �
k n f�g acts on R by the substitutions Yi �� aYi� Zi �� a��Zi�
�a� Show that S � RG is generated by the elements xij � YiZj � i� j � �� ��
In Exercise ����� we have seen that S 
� kX�� � X�� � X�� � X�����X��X�� � X��X����
the isomorphism being induced by the substitution Xij �� xij �
�b� Let p � �x�� � x��� and q � �x�� � x���� Show �i� p and q are prime ideals in S and
maximal Cohen�Macaulay S �modules� �ii� p j and q j are not Cohen�Macaulay
for j � �� ������� is helpful for �ii�� use a system of parameters consisting of
��forms� Or use the Hilbert�Burch theorem��
�c� The characters of GL��� k� are given by the maps a �� aj � j � Z� Compute
the semi�invariants for each of the characters� and 	nd out which of them are
Cohen�Macaulay S �modules�

�����
� Let V be a 	nite dimensional vector space over a 	eld k� R � S �V �� and
G a 	nite subgroup of GL�V � such that jGj is invertible in k� Show that for each
character � of G the RG�module M
 is a direct RG�summand of R and a rank �
maximal Cohen�Macaulay RG�module�

������� Let G be the cyclic subgroup of GL���C� generated by the matrix�
� ��
� �

�

and R � S �C�� � CX� � X��� Compute the Molien series of G� and show that
RG is a complete intersection� �In order to determine the generators of RG one
should draw as much information as possible from the Molien series��

������� Show that the subgroup of GL���C� generated by the matrices�
� ��
� ��

�
and

�
� �
� �

�

is isomorphic to S�� the permutation group of three letters� Prove that RG �with
R � S �C�� � CX� � X��� is generated by algebraically independent elements x�� x��
and determine their degrees�

������� �a� Let k be a 	eld and S a graded k�algebra generated by elements
x�� � � � � xn of positive degrees d�� � � � � dn� If S is a complete intersection� then
there exist positive integers e� � � � � � er with r � n � dimS such that HS �t� �Qr

i���� � tei ��
Qn

j����� tdj ��
�b� Embed the group G of the previous problem into GL���C� by sending each

matrix A � G to the matrix
�
A �
� A

�
� and let R � S �C�� � CX� � � � � � X��� Show

that RG is not a complete intersection� Is RG Gorenstein�

������� Let k be a 	eld� R � kX� � � � � � Xn�� and 	�� � � � � 	n be the elementary
symmetric polynomials in X� � � � � � Xn �
�a� Show that height�	� � � � � � 	n�R � n�
�b� Let G be the subgroup of GL�n� k� formed by the permutation matrices�
Noting that G is generated by pseudo�re�exions� give a fast proof of the main
theorem on symmetric functions in the case in which char k � ��
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��� Invariants of linearly reductive groups

Let k be an algebraically closed �eld� A linear algebraic group G over
k is called linearly reductive if for every �nite dimensional representation
G� GL�V � the k�vector space V splits into the direct sum of irreducible
G�subspaces U� Here U is a G�subspace if g�u� � U for all g � G and
u � U� it is irreducible if it has no G�subspaces other than f
g and U�

The main objective of this section is the proof of the following
fundamental result�

Theorem ����� �Hochster�Roberts�� Let k be an algebraically closed �eld

and G be a linearly reductive group over k acting linearly on a polynomial

ring R � k�X�� � � � � Xn�� Then the ring RG is Cohen�Macaulay�

The most classical examples of linearly reductive groups are �nite
groupsG whose order is not divisible by char k� this is Maschke�s theorem�
The tori GL��� k�m are linearly reductive independently of char k� as
follows easily from the fact that a torus action can be diagonalized� Thus
the results of the previous section about the Cohen�Macaulay property
of rings of invariants of tori or �nite groups are special cases of ������

In characteristic 
 the groups GL�n� k� and SL�n� k� are linearly re�
ductive� and so are the orthogonal and symplectic groups� However� in
characteristic p � 
 there exist only a few linearly reductive groups so
that ����� has its main applications in characteristic 
�

Let G � GL�V � be a �nite dimensional representation of a linearly
reductive group G� Then the set VG of invariants is the maximal trivial
G�subspace of V where trivial means for a G�subspace U that g�u� � u
for all g � G and u � U� Let W be the sum of all non�trivial irreducible
G�subspaces of V � Then W is in fact a direct sum W� � � � � �Wt of non�
trivial irreducible subspacesWi� and it follows easily that VG�W � WG

� �
� � � �WG

t � 
� Thus V � VG �W � and W is the unique complementary
G�subspace of VG� as every irreducible subspace U with U � VG � 
 is
contained in W � The projection � � V � VG with kernel W satis�es the
condition ��g�v�� � ��v� for all g � G and v � V � It is called the Reynolds
operator�

As in the previous section let now R � k�X�� � � � � Xn� be a polynomial
ring over k whose space of ��forms is identi�ed with V � Then G acts
linearly on the graded components Ri of R for each of which we have
a Reynolds operator �i� The direct sum of the �i is a surjective map
� � R � RG which is easily seen to be RG�linear� In fact� the RG�linearity
of � is equivalent to rKer � � Ker � for all r � RG� It is enough to show
that rU � Ker � for a homogeneous element r � RG of degree i and
a non�trivial G�subspace U � Rj � As multiplication by an invariant is
G�linear� rU is either 
 or G�isomorphic to U� Therefore rU � Ker �i�j�
In the general context of linearly reductive groups we have thus recovered
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the existence of a Reynolds operator R � RG which was �rst encountered
above ����� and which is the crucial fact in the proof of ������

By ����� the existence of a Reynolds operator R � RG implies that
IR � RG � I for every ideal I of RG� and furthermore that RG is a
Noetherian k�algebra� Being positively graded� it is even �nitely generated
over k� So ����� follows from the more general� purely ring�theoretic

Theorem ������ Let k be a �eld� and R � k�X�� � � � � Xn�� Suppose S is a

�nitely generated graded k�subalgebra of R such that IR � S � I for all

ideals I of S � Then S is Cohen�Macaulay�

Remarks ������ �a� The original Hochster�Roberts theorem ��
�� is more
general than stated in ������ It says� let G be a linearly reductive group

over a �eld k acting rationally on a regular Noetherian k�algebra R� then
RG is Cohen�Macaulay�

�b� Let S � R be rings� S is called a pure subring �or R a pure

extension of S� if for every S�module M the natural homomorphism
M � M �S S � M �S R is injective� The reader may prove that S is a
pure subring of R if one of the following conditions holds� �i� there exists
a Reynolds operator R � S� �ii� R is faithfully �at over S� �iii� R�S is
�at over S � Thus� under the conditions of ������ RG is a pure subring of
R� The choice M � S�I yields that IR � S � I for every ideal I of S if
S is a pure subring of R� See ��	
�� x	 or Hochster and Roberts ��
���
Section � for a discussion of purity�

Using the notion just introduced we can formulate the following
even more general theorem of Hochster and Huneke ��	�� let R be

a regular ring� and S a pure subring of R containing a �eld� then S is

Cohen�Macaulay� We will prove this theorem under the slightly weaker
hypothesis that S is a direct S�summand of R� see �
����� The case in
which R contains a �eld of characteristic p � 
 was already given by
Hochster and Roberts ��
��� and the case in which R and S are �nitely
generated algebras over a �eld was established by Kempf ������

�c� An important variant of the theorem of Hochster and Roberts is
due to Boutot ��
�� Let R be a �nitely generated algebra over an alge�

braically closed �eld of characteristic 
� and S a pure subring of R� if R
has rational singularities� then so has S � It is remarkable that Boutot�s
theorem �for which there is also an analytic version� weakens the hypoth�
esis of the Hochster�Roberts theorem while strengthening its conclusion�
For the notion of rational singularity we refer the reader to ����� and
�����

�d� The hypotheses of the theorems presented in �b� and �c� cannot
be weakened essentially� In particular it is not true that RG is Cohen�
Macaulay whenever a linearly reductive group G acts linearly on a
Cohen�Macaulay ring R� See ����	 for a simple counterexample�
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�e� By �����
 a positive normal semigroup ring S � k�C� can be
embedded as a graded subring into a polynomial ring R over k such
that there exists a Reynolds operator R � S � In conjunction with
����� this argument is the fastest and most elementary proof of the
Cohen�Macaulay property of normal semigroup rings� especially if one
uses the simple reduction to characteristic p indicated in Exercise ������
Nevertheless the proof given in ��� retains is value since it gave us insight
into the combinatorial structure of S � and� above all� allowed us to
compute the canonical module�

The following proof of ����� has been drawn from Knop ����� Its
characteristic p part is an argument from tight closure theory� which we
will study systematically in Chapter �
�

The �rst step is the reduction of ����� to Theorem ����� below� The
k�algebra S is positively graded� By �����	 it has a homogeneous system
of parameters f�� � � � � fs� Suppose that gr��fr�� � g�f�� � � ��grfr for some
r� 
 � r � s � �� If we can show that gr�� � �f�� � � � � fr�� then f�� � � � � fs
is an S�sequence� and the theorem is proved� Suppose on the contrary
that gr�� �� �f�� � � � � fr�� As �f�� � � � � fr�R � S � �f�� � � � � fr� by hypothesis�
one even has gr�� �� �f�� � � � � fr�R� The elements f�� � � � � fs are algebraically
independent over k� Moreover� S is a �nite k�f�� � � � � fs��module� Therefore
it is enough to prove the following theorem�

Theorem ����	� Let k be a �eld� and f�� � � � � fs algebraically independent

homogeneous elements of positive degree in R � k�X�� � � � � Xn�� Suppose

that S is a module��nite graded k�f� � � � � � fs��algebra such that there ex�

ists a homogeneous homomorphism � � S � R of k�f� � � � � � fs��algebras� If
gr��fr�� � g�f�� � � �� grfr with g�� � � � � gr�� � S for some r� 
 � r � s� ��
then ��gr��� � �f�� � � � � fr�R�

Proof� Without restriction we may assume that the gi are homogene�
ous elements of S � Let r�� � � � � rm be a system of generators of S as a
k�f�� � � � � fs��module� Suppose A is a �nitely generated Z�subalgebra of R
containing all the elements of k which appear as coe�cients in

�i� ��gi� as a polynomial in X�� � � � � Xn� i � �� � � � � r � ��

�ii� the polynomials piju � k�Y� � � � � � Ys� with rirj �
Pm

u��piju�f�� � � � � fs�ru�
and

�iii� the analogous representations gi �
Pm

u�� qiu�f�� � � � � fs�ru�

Let B � A�f�� � � � � fs�� C � A�X�� � � � � Xn�� and T � B�r�� � � � � rm� � S � Then

A�f�� � � � � fs� � C� ��T � � C� gi � T � T � Br� � � � �Brm�

Thus� if we replace k by the �nitely generated Z�subalgebra A� then all the
assumptions of the theorem �except that on k� remain valid� It is enough
to show ��gr��� � �f�� � � � � fr�C for one such A� As ��gr���� f�� � � � � fr are
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homogeneous this is equivalent to the solubility of a system S of linear
equations with coe�cients in A� �The system S arises from comparing
coe�cients in C � A�X�� � � � � Xn���

If S has a solution over the �eld of fractions of A� then we enlarge
A by adjoining the reciprocals of the �nitely many denominators of a
solution� and obtain a solution in the new A�

So suppose that S is insoluble over the �eld of fractions of A� Then
there is a non�zero element d � A such that the reduction of S modulo a
maximal ideal m of A does not have a solution whenever d �� m � �Simply
take d as a suitable subdeterminant of the matrix ofS including the right
hand side�� Adjoining d�� � k to A� we may assume that the reduction
of S modulo any maximal ideal m of A is insoluble�

We want to pass to such a reduction� It may happen however that
the induced map B�m B � C�m C is not injective� Therefore an extra
condition must �rst be satis�ed� In fact� by the theorem on generic
�atness� which we will prove below� there exists t � B such that Ct is a
free Bt�algebra� As A and B are �nitely generated Z�algebras� they are
Hilbert rings� This implies that ��� there exists a maximal ideal n of B
with t �� n � ��� m � n � A is a maximal ideal of A� and furthermore ���
A�m is a �nite �eld� see A��	� A���� One has a commutative diagram

B�m B
�

����� C�m C

�

��y ��y
Bt�m Bt

�
����� Ct�m Ct

Since m B is a prime ideal with t �� m B� " is injective� Next � is injective
because the extension Bt � Ct is faithfully �at� and so 	 is injective as
desired�

One now replaces all objects by their residue classes modulo m � Since
the �eld A�m is �nite� the theorem has been reduced to the case in which
k is a �nite �eld" Let p be its characteristic�

The �nite k�f�� � � � � fs��module S has a rank �just because k�f�� � � � � fs�
is a domain�� Let F be a free submodule of S such that rankF � rank S �
There exists a non�zero element c � k�f�� � � � � fs� such that cS � F � We set
q � pe� and take the q�th power of the equation gr��fr�� � g�f��� � ��grfr
and multiply by c to obtain

�cgqr���f
q
r�� �

rX
i��

�cgqi �f
q
i �

The elements cgqi � i � �� � � � � r � � are in the free k�f�� � � � � fs��module
F � Then an elementary argument yields hiq � F with cgqi � hiqf

q
r�� for

i � �� � � � � r� By substituting these expressions into the previous equation
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and applying � � S � k�X�� � � � � Xn� one has

cfqr����gr���
q �

rX
i��

fqi f
q
r����hiq�� hence c��gr���

q �
rX
i��

fqi ��hiq��

Let M be the set of monomials � � X��

� � � �X
�n
� with �i � q for

i � �� � � � � n� Taking q�th powers in k is bijective since k is �nite� Therefore
every element h � k�X�� � � � � Xn� has a necessarily unique representation
h �

P
��M�h��

q�� in particular

��hiq� �
X
��M

�hiq��
q��

Thus
rX
i��

fqi ��hiq� �
X
��M

� rX
i��

hiq�fi
�q
� �

X
��M

�hq��
q�

with hq� � �f�� � � � � fr�R�
The crucial point is that c does not depend on q� We choose q so

large that c �
P

��M c��� with c�� � k� Let c�� � �c��q � ThenX
��M

�c���gr����
q� �

X
��M

�hq��
q��

Since c �� 
 there exists � with c� �� 
� and so

��gr��� �
�

c�
hq� � �f�� � � � � fr�R�

A remarkable feature of the preceding proof is that a theorem which
has its main applications in characteristic 
 has been reduced to its
characteristic p case� Such a reduction will also be fundamental for the
results of Chapters �� � and �
�

Remark ������ In view of ����� and ���� it is tempting to conjecture that

Rdet��

� if non�zero� is the canonical module of RG under the hypothesis
of ������ Then� in particular� RG would be a Gorenstein ring if detg � �
for all g � G� This was however disproved by Knop ������ in fact� every
ring of invariants RG can be written in the form �R��G

�

where det g� � �
for all g� � G�� see Exercise ������ On the other hand� Knop showed that

over an algebraically closed �eld of characteristic zero Rdet��

is indeed
the canonical module of RG if the action of G on the vector space V �of
��forms of R� satis�es a mild non�degeneracy condition� the proof uses
methods of geometric invariant theory beyond the scope of this book�
Knop also proved estimates for the a�invariant a�RG�� in particular one
always has a�RG� � � dimRG �compare this with ����� and ������
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However� for one class of groups the ring of invariants is always
Gorenstein in characteristic 
� if G is semisimple and connected �for
example G � SL�n� k��� then RG is factorial� and therefore Gorenstein by
����� and ������ In fact� let f � �� � � � �m be the prime decomposition of
an invariant f� Then the action of an element g � G permutes the prime
ideals R�i� Since fg � G � g�R�i� � R�ig is a non�empty Zariski closed
subset of the connected variety G� this set equals G� So g��i� � �i�g��i
with �i�g� � k n f
g� �i is a character of G� But a semisimple group has
no non�trivial characters� Thus g��i� � �i for all g � G� and therefore f
has a prime decomposition in RG�

Generic �atness� In the proof of ����� we used the following theorem on
�generic �atness��

Theorem ������ Let R be a Noetherian domain� S a �nitely generated R�
algebra� and M a �nite S�module� Then there exists f � R such thatM�Rf

is a free �in particular �at� Rf�module�

Proof� There is nothing to prove forM � 
� So suppose thatM �� 
� Then
there exists in M a chain 
 � M� �M� � � � � � Mm � M of submodules
such that Mi���Mi

�� S�p i for some prime ideal p i of S � �One only needs
that AssN �� � for an S�module N �� 
�� It is enough to prove that the
theorem holds for each quotient Mi���Mi� since N � U � N�U if U is a
submodule of N for which N�U is free� That is to say� we may suppose
that M � S � and� furthermore� that S is a domain�

If the natural homomorphism R � S is not injective� we simply take
f from its kernel� Thus R may be considered as a subring of S � Let Q
be the �eld of fractions of R� Then S �Q � SRnf�g is a domain contained
in the �eld of fractions of S � It is a �nitely generated Q�algebra� and
therefore has �nite Krull dimension� say d � We go by induction on d �

By the Noether normalization theorem A��� the Q�algebra S � Q
contains y�� � � � � yd such that S�Q is integral over Q�y�� � � � � yd�� moreover�
y�� � � � � yd are algebraically independent over Q� Multiplying by a suitable
common denominator� we may assume that yi � S for all i� Let z be
an element of S � As z is integral over Q�y�� � � � � yd�� it is easy to �nd
g � R such that z is already integral over Rg�y�� � � � � yd�� Since R is a
�nitely generated R�algebra� one therefore has that Sg is integral over
Rg�y�� � � � � yd� for some element g � R� In view of what is to be proved
we may replace R by Rg and S by S � Rg�

Thus we have reached a situation in which S is a �nite module
over the ring T � R�f�� � � � � fd� � S which in turn is isomorphic to a
polynomial ring over R� and therefore a free R�module� Let F be a free
T �submodule of S such that S�T is a torsion module� Then F is a free
R�module� It remains to show that the theorem holds for S�T as a �nite
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T �module� As above� S�T has a �nite �ltration with successive quotients
of type T�p where p � SpecT � Since S�T is a torsion module� p �� 
�
Therefore T�p � Q� if non�zero� is a proper residue class ring of T � Q�
and so has dimension � dimT � Q � d � Thus we may repeatedly apply
the induction hypothesis in order to complete the proof�

Exercises

����	� Let k be an in	nite 	eld� and let R � kY� � Y�� Z� � Z����Y �
� �Y �

� �� Obviously
R is a Cohen�Macaulay ring� and reduced if char k �� �� Let G � GL��� k� act on
kY�� Y�� Z� � Z�� by the substitutions Yi �� aYi� Zi �� a��Zi� a � k� a �� �� Prove�
�a� The action of G induces an action of G on R� and RG is the k�subalgebra
generated by the products yizj � i� j � �� �� �Small letters denote residue classes in
R��
�b� The substitution Xij �� YiZj induces a surjective k�algebra homomorphism
kX�� � X�� � X�� � X�� � � RG� Its kernel is generated by the elements X��X���X��X�� �
X�

�� � X�
�� � X��X�� �X��X�� � X

�
�� � X�

�� �
�c� RG is not Cohen�Macaulay�
By increasing the number of variables Yi �and the degree of the equation de	ning
R� one can even produce examples of factorial hypersurface rings R such that RG

is not Cohen�Macaulay� �A hypersurface ring is a residue class ring of a regular
ring with respect to a principal ideal��

����
� Suppose G be a subgroup of GL�V � where V is a 	nite dimensional vector
space over an in	nite 	eld k� Set V � � k��k��V and let G� � SL��� k��SL��� k��G
act on V � by

�f� h� g��u� w� v� �
�
�det g�f�u�� �det g���h�w�� g�v�

�
�

Then obviously det g� � � for all g� � G�� Let R � S �V � and R� � S �V ��� Show
RG 
� �R��G

�

�

Notes

Hochster ��	�� proved the Cohen�Macaulay property of normal semi�
group rings using the shellability of convex polytopes �see Section ��� for
the notion of shellability�� A purely algebraic proof was provided by Goto
and Watanabe ������ they computed local cohomology from a complex
similar to L�� Such complexes� or their graded k�duals �which are dual�
izing complexes� have been constructed by several authors� See Trung
and Hoa ��	�� or Sch�afer and Schenzel ������ these articles give Cohen�
Macaulay criteria for general a�ne semigroup rings� For a general a�ne
semigroup C the Cohen�Macaulay and the Gorenstein property of k�C�
may depend on the �eld k� see ��	�� and Hoa ��	��� Gilmer ����� treats
semigroup rings from a more general point of view�

Our approach is close to that of Ishida ���	�� from Danilov �	�� we
borrowed the idea of proving the vanishing of certain cohomology groups
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by a topological argument� See also Stanley ���
� and ����� where the
method is also applied to certain modules over normal semigroup rings�
namely those which in the invariant�theoretic situation arise as semi�
invariants� �See �����	 for a non�Cohen�Macaulay such module�� More
recently the Cohen�Macaulay property of modules of semi�invariants
was investigated by Van den Bergh ��	��� The complete intersection
normal semigroup rings were classi�ed by Nakajima ������

Stanley computed the canonical module of a normal semigroup ring
by a combinatorial argument outlined in �����
� whereas Danilov �	��
applied di erentials� Local cohomology as in ����� was used by Goto and
Watanabe�

For the theory of Ehrhart polynomials and related combinatorial
functions we refer the reader to Ehrhart ���� Stanley ������ and to Hibi�s
survey ����� where numerous references are given� See also Danilov �	���

Normal semigroup rings� or rather their spectra� are the most special
cases of toric varieties which connect combinatorics and algebraic geom�
etry� We must con�ne ourselves to a list of references� Kempf� Knudsen�
Mumford� and Saint�Donat ������ Danilov �	��� Oda ����� and Ewald
��� The recent book by Sturmfels ����� treats the combinatorial aspects
of Gr�obner bases for the de�ning ideals of semigroup rings�

The invariant theory of �nite groups is a classical subject whose
literature we cannot cover adequately� instead we refer the reader to
Springer ������ Stanley ������ Benson ��
�� and Smith ������ While �����
is due to Hochster and Eagon ����� the Cohen�Macaulay property of
rings of invariants of �nite groups seems to have been realized by several
authors� The characterization of Gorenstein invariants is the work of
Watanabe as pointed out in ������� Stanley gave the combinatorial proof
reproduced by us� The determination of the canonical module is only
implicit in Watanabe�s papers� according to Stanley ����� it was made
explicit by Eisenbud�

References for the Hochster�Roberts theorem� its variants and exten�
sions have been indicated in ������ Hochster ���	� contains an extensive
discussion of the problem of determining the canonical module of a ring
of invariants� As pointed out in ������ this problem was satisfactorily
solved by Knop ������

The example in ����	 is a simpli�cation of that of Hochster and Eagon
����� p� �
��� It is a very special instance of the Segre product of graded
rings� The Cohen�Macaulay property of Segre products was explored by
Chow ��� and Goto and Watanabe ������

Hochster ����� is a survey of the invariant theory of commutative
rings�

The theorem of generic �atness is due to Grothendieck ������ IV����
A more re�ned version was given by Hochster and Roberts ��
��� see
also ��	
�� x���



	 Determinantal rings

Determinantal rings occur in algebraic geometry as coordinate rings of
classical algebraic varieties� From the algebraic point of view they are
graded algebras with straightening law which themselves form a subclass
of the class of graded Hodge algebras� The special feature of such an
algebra is that it is free over the ground ring with a monomial basis
whose multiplication table is compatible with a partial order on the
algebra generators�

The results on �ltered rings in Section ��� will be applied to �trivialize�
a graded Hodge algebra� by repeatedly passing to a suitable associated
graded ring one eventually gets a discrete Hodge algebra� which is noth�
ing but the residue class ring of a polynomial ring modulo an ideal
generated by monomials� A discrete algebra with straightening law may
be considered the Stanley�Reisner ring of the order complex of a certain
poset� and as an application we will thus obtain a Cohen�Macaulay
criterion�

The remaining sections of the chapter are devoted to the most impor�
tant examples of algebras with straightening law� the determinantal rings�
It will be shown that these rings are normal Cohen�Macaulay domains�
The class group and the canonical module will be identi�ed� and we will
characterize the Gorenstein determinantal rings�

��� Graded Hodge algebras

In this section we introduce graded Hodge algebras and study their basic
properties�

Let A be a ring� H a �nite subset of A� and c � NH � c � �c��� An
element u �

Q
��H  c� is called a monomial on H with exponent c� Its

support is the set supp u � f � H � c� �� 
g� Let u and u� be monomials
on H with exponents c and c�� respectively� We say u divides u� or u is a

factor of u� if c� � c � NH � Finally� if � � NH is a semigroup ideal� we
call c � � a generator of � if c� c� ��NH for all c� � �� c� �� c�

De�nition ������ Let A be a B�algebra� H � A a �nite subset with partial
order �� and � �NH a semigroup ideal� A is a graded Hodge algebra on

H over B governed by � if the following conditions hold�
�H�� A �

L
i	�Ai is a graded B algebra with A� � B� and H consists of

elements of positive degree and generates A over B�

�





���� Graded Hodge algebras �
�

�H�� The monomials on H with exponent in NH n � are linearly inde�
pendent over B� They are called standard monomials�
�H�� �Straightening law� If v is a monomial on H whose exponent is a
generator of �� then v has a presentation

v �
X

buu� bu � B� bu �� 
� u a standard monomial�

such that for each  � H which divides v there exists for every u a factor
'u with 'u �  �

The right hand side of a straightening relation may of course be
the empty sum� i�e� equal to zero� If this happens for all straightening
relations� the graded Hodge algebra is called discrete� In this case
A �� B�X� �  � H��I where I is generated by the monomials

Q
��H X

c�
� �

c � �c��� c � �� In particular� Stanley�Reisner rings are discrete Hodge
algebras�

The graded Hodge algebra A is called a graded algebra with straight�

ening law �on H over B�� abbreviated graded ASL� if � is generated by
the exponents of monomials  ( where  and ( are incomparable elements
in H � It follows that a monomial u is standard if and only if all factors
of u are comparable with each other� and for all incomparable  � ( � H
we have a straightening relation

 ( �
X

buu� bu � B� bu �� 
� u a standard monomial�

satisfying the condition� every u contains a factor ' � H such that ' �  �
' � (� In fact� by �H�� there exist factors 'u and '�u of u such that 'u �  
and '�u � (� Since all factors of u are comparable with each other we may
choose for ' the minimum of 'u and '�u�

ASLs are the most important graded Hodge algebras� Signi�cant
examples will be treated in the next sections�

Proposition ������ Let A be a graded Hodge algebra on H over B governed

by �� Then the standard monomials form a B�basis of A�

Proof� Let  � H� we de�ne dim to be the maximal length of chains
 �  � �  � � � � � in H � and de�ne the weight of a monomial u �

Q
��H  c�

to be
P

��H c��d���
dim� � where d is the maximum of the numbers

P
��H c�

of generators c � �c�� of ��
It su�ces to show that all non�standard monomials are linear com�

binations of standard monomials� Let v� be a monomial with exponent
c� � �� and let c be a generator of � such that c� � c � NH � Then
v �

Q
��H  c� divides v�� and so v� � vw where w is a monomial on H �

Applying the straightening law for v� we obtain the equation v� �
P

buuw�
bu � B� bu �� 
� u standard� We claim that all monomials on the right
hand side of this equation are of strictly greater weight than v� � In
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fact� if � � maxfdim � c� �� 
g� then for any u in the straighten�
ing equation for v there exists a factor  u with � � dim u� so that
weightv �

P
��H c��d � ��
 � �d � ��
�� � �d � ��dim �u � weightu� Since

the weight of a product of monomials is the sum of the weights of the
factors� the claim follows�

On the other hand� the monomials on the right hand side of the
equation for v� have the same degree as v� � Therefore descending induction
concludes the proof�

The previous proposition guarantees that every element of A has a
unique presentation as a B�linear combination of standard monomials�
which we call its standard representation�

Proposition ������ Let A be a graded Hodge algebra on H over B governed

by �� and T��  � H � a set of indeterminates over B� For each monomial

u �  � � � � �  n on H we set Tu � T�� � � �T�n � Then the kernel of the B�
algebra epimorphism

� � B�T� �  � H� �� A� T� ��  �

is generated by the elements Tv�
P

buTu corresponding to the straightening

relations�

Proof� Let I be the ideal in B�T� �  � H� generated by the elements
Tv �

P
buTu corresponding to the straightening relations� It is clear that

I � Ker�� Conversely� let f � Ker�� then the proof of 	���� shows
that there exists g � I such that f � g �

P
buTu� u standard� It follows

that 
 � ��f � g� �
P

buu� According to �H�� all bu � 
� and hence
f � I �

Among the graded Hodge algebras on H over B governed by ��
the discrete Hodge algebra is in a sense the simplest� Its ring�theoretic
properties are determined only by the ground ring B and the combi�
natorial properties of H and �� Surprisingly this is true in part for a
general graded Hodge algebra as well� The set IndA of elements  � H
which appear as factors in the monomials on the right�hand side of the
straightening relations is called the indiscrete part of A� It serves as a
measure of how much A di ers from a discrete Hodge algebra�

The following theorem allows the stepwise approach from a general
graded Hodge algebra to a discrete one by forming suitable associated
graded rings� The results of ��� permit us to control ring�theoretic
properties of the algebras involved in this operation�

Suppose IndA �� �� choose a minimal element  � � IndA� and set
I � � ��� We will �rst prove a re�nement of 	�����

Lemma ����	� The ideal Ij has a B�basis consisting of all standard mon�

omials u �
Q

��H  c� such that c�� 	 j�
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Proof� Certainly the elements  j�u� u a standard monomial� generate Ij

as a B�module� We claim that  j�u either is a standard monomial or is
zero� This� in view of 	����� will prove the lemma�

Suppose  j�u is not standard� then it is a multiple of a monomial v
whose exponent is a generator of �� Since u is standard� the element  �
is a factor of v� and thus for each monomial on the right hand side of
the straightening relation for v there exists a factor less than  �� Since  �
is a minimal element among such factors� the straightening relation must

be trivial� It follows that  j�u � 
�

For an element a � A we de�ne ord a as the supremum of integers j
for which a � Ij � and call a� � a� Iord a�� the initial form of a in grI�A��
We have ord � � �� and ord � 
 for all  � H �  ��  ��

Let a� b � A� then ord ab 	 ord a�ord b� and �ab�� � a�b� if ord ab �
orda � ord b� By induction one proves a similar formula for more than
just two factors� Thus� if u �

Q
��H  c� is a standard monomial in A� it

follows from the previous lemma that u� �
Q

��H � 
��c� � In conclusion we

see that grI�A� is generated over B by the elements  ��  � H � and that
grI�A� is a free B�module with basis fu

� � u is a standard monomial of Ag�
Moreover� grI�A� may be viewed as a positively graded B�algebra� if� for
all j 	 
� the set of homogeneous elements of degree j of grI�A� is de�ned
to be fa� � a � A is homogeneous of degree jg�

Now it is easy to give grI�A� the structure of a graded Hodge algebra�
we let H� � f � �  � Hg� The map H � H� �  ��  �� induces a bijection

� � NH � NH�

� and we set �� � ����� The partial order de�ned on H�

will of course be given by  � � !� �  � !�

Theorem ������ grI�A� is a graded Hodge algebra on H� over B governed

by ��� and IndgrI�A� � f 
� �  � IndAg n f ��g�

Proof� It remains to check �H��� let d � �d��� be a generator of �
� � and

w �
Q

���H� � ��d�� � Then c � �c��� c� � d�� for all  � H � is a generator

of �� and for v �
Q

��H  c� we have the straightening relation v �
P

buu�
We want to de�ne the straightening relation for w� There are two

cases to consider� In the �rst case�  � is a factor of v� Then v �  �v
� where

v� is a standard monomial� and it follows that v � 
 as we saw in the proof
of 	����� Therefore w � 
 is the desired straightening relation in this case�
In the second case�  � is not a factor of v� Then w �

P
ord u��buu

� is the
straightening relation for w� In particular it follows that  �� �� Ind grI�A��

Let A �respectively A�� be a graded Hodge algebra on H �respectively
H �� over B governed by � �respectively ���� We say that A and A� are

Hodge algebras with the same data� if there is an isomorphism H � H � of
posets for which the corresponding map NH � NH �

induces a bijection
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� � ��� We have just seen that A and grI�A� are graded Hodge algebras
with the same data� the only di erence being that the indiscrete part
has become smaller� Thus after �nitely many such steps we arrive at a
discrete Hodge algebra with the same data as A�

Corollary ������ Let A be a graded Hodge algebra on H over the Noetherian

ring B governed by �� and let A� be the discrete Hodge algebra over B
with the same data� Then	

�a� dimA � dimA��

�b� A is reduced� Cohen�Macaulay� or Gorenstein if A� is too�

Proof� A basic observation for �a� and �b� is that both A and A� are free
and� hence� faithfully �at B�algebras� In conjunction with A��� it implies

dimA � max�dimBp � dimA� k�p ��

where p ranges over SpecB� It is clear that A� k�p � is a Hodge algebra
over k�p � with the same data as A� therefore A� � k�p � �� �A � k�p ����
Thus it is enough to consider the case in which B � k is a �eld� Next we
may replace A� by grI�A�� Both these rings are positively graded so that
dimA � dimAm and dimA� � dimAm � where m and m � are the �maximal
ideals� Furthermore I is generated by homogeneous elements of positive
degrees� Therefore ����� yields the desired equality of dimensions�

We show �b� for the Cohen�Macaulay property� The Cohen�Macaulay
property of A� implies that of B and that of A�� k�p � for all prime ideals
p of B �see ����	�� Let P be a prime ideal of A and set p � B � P � Then

depthAP � depthBp � depthAP � k�p �

� dimBp � depth�A� k�p ��q

where q is the image of P in A � k�p � �see �������� It follows that
AP is Cohen�Macaulay if depth�A � k�p ��q � dim�A� k�p ��q � Thus the
isomorphism A� � k�p � �� �A � k�p ��� reduces the contention once more
to the case in which B � k is a �eld�

It is enough to derive the Cohen�Macaulay property of A from that
of grI �A�� Let m be the �maximal ideal of A� Since I � m � ����	 implies
that Am is Cohen�Macaulay� and then A is� too� by Exercise �����	�

For the Gorenstein property one argues similarly� using ������� ����	�
and Exercise �����
� The assertion about A being reduced follows imme�
diately from ������

In case A is an ASL on H over B� the discrete ASL with these data
is the Stanley�Reisner ring of the order complex ��H� �see Section ����
over B� Thus we may use the results of Chapter � in order to conclude
that certain ASLs are Cohen�Macaulay� In the following corollary we
extend the poset H by adding absolutely minimal and maximal elements
�
 and ���
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Corollary ������ Let A be an ASL on H over B� If B is Cohen�Macaulay

and H � f�
� ��g is a locally upper semimodular poset� then A is Cohen�

Macaulay �

Proof� By virtue of ������ and ������ the discrete ASL A�
� on H � f�
� ��g

is Cohen�Macaulay� provided B is a �eld� Since A�
� is obviously a

polynomial ring over the discrete ASL A� on H � it follows that A� is
Cohen�Macaulay� According to Exercise ������� A� is Cohen�Macaulay
for every Cohen�Macaulay ring B� Now one applies 	�����

There is a simple proof of 	���	 which avoids the combinatorially
di�cult theorem ������� see �
� or ����� �������

Exercises

	���
� Let A be a graded Hodge algebra on H over a ring B governed by ��

�a� Let H � be a subset of H such that the ideal H �A is generated as a B�module
by the standard monomials it contains� Show that A�H �A is in a natural way a
Hodge algebra on H nH � governed by �� where H nH � is considered as a subposet
of H and �� consists of all elements of � which are exponents of monomials on
H nH ��

�b� Show that �a� in particular applies if H � is an ideal in H � �An ideal in H � is a
subset satisfying the following condition� h� � h � H � � h� � H ���

�c� Let H � and H �� be ideals in H � Then H �A 	H ��A is the ideal of A generated
by H � 	H ���

�d� Specialize �a�� �b�� and �c� to the case of an ASL A�

	����� With the notation of ����� assume that � is generated by squarefree
monomials� Show that A is reduced if �and only if� B is reduced� In particular a
graded ASL over a reduced ring B is reduced�

	������ Let A be a graded ASL on the poset H over a Noetherian ring B� Show
that dimA � dimB � rankH � ��

Hint� First prove the formula for a 	eld B� Next deduce dimA � maxfdimBp �
dimk�p ��A � p � SpecBg from A��� and the fact that A is a free B�module� and
note that k�p � � A is an ASL on H over the 	eld k�p ��

	������ �Hibi� Let k be a 	eld� C a positive a�ne semigroup generated by
c�� � � � � cn � and A � kC�� We order fc� � � � � � cng by setting c� � � � � � cn � and
let � be the set of exponents �a� � � � � � an� such that there exists �b� � � � � � bn�
which is lexicographically greater than �a� � � � � � an� and satis	es the condition
�Xc� �a� � � � �Xcn �an � �Xc� �b� � � � �Xcn �bn �

�a� Show kC� is a graded Hodge algebra over k with these data�

�b� Let C be the subsemigroup of N� generated by ��� ��� ��� ��� ��� ��� and ��� ���
Determine the sets � for the orders �i� ��� �� � ��� �� � ��� �� � ��� �� and �ii�
��� �� � ��� �� � ��� �� � ��� ��� and show that the discrete Hodge algebra A� is
Gorenstein in case �i�� and not even Cohen�Macaulay in case �ii��
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��� Straightening laws on posets of minors

The most important examples of ASLs are rings related to matrices and
determinants� and the prototype of such a ring is

Rr�� � Rr���X� � B�X��Ir���X�

where B�X� is the polynomial ring in the entries of an m 
 n matrix of
indeterminates Xij over some ring B of coe�cients� and Ir���X� denotes
the ideal generated by the �r � ���minors of X � We always suppose that

 � r � min�m� n�� the trivial cases r � 
 and r � min�m� n� being included
for reasons of systematics�

What makes the analysis of Rr�� di�cult is the fact that the generators
of Ir���X� are very complicated expressions in terms of the Xij � Therefore
one enlarges the set of generators of the B�algebra B�X� by considering
each minor as a generator� Of course� apart from trivial cases� we lose
the algebraic independence of the generating set� but only to the extent
that B�X� is an ASL on the set of minors of X �

The minor corresponding to the submatrix of X with rows a�� � � � � au
and columns b�� � � � � bu is denoted by

�a� � � � au j b� � � � bu��

The set � consists of those minors �a� � � � au j b� � � � bu� which satisfy the
condition a� � � � � � au� b� � � � � � bu� It is partially ordered by the rule

�a� � � � au j b� � � � bu� � �c� � � � cv j d� � � � dv�

� u 	 v and ai � ci� bi � di� i � �� � � � � v�

It is easy to see that � is a distributive lattice under this partial order�
Rather than proving directly that B�X� is a graded ASL on � we take

a detour which leads to a substantial simpli�cation of the combinatorial
details� and introduces another interesting and important class of rings�
We suppose that m � n� Then the maximal minors of X are the m�minors�
An m�minor of X is simply denoted by

�a� � � � am�

where a�� � � � am are the column indices of the submatrix whose determi�
nant is taken� The subset of � consisting of all m�minors in � is called
� � Obviously � is a sublattice of �� We write

G�X��

or� if appropriate� GB�X� for the B�subalgebra of B�X� generated by � �
The letter G has been chosen since �over a �eld B� G�X� is the coordinate
ring of the Grassmannian of m�dimensional vector subspaces of Bn�
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Theorem ����� �Hodge�� Let B be a ring� and X an m 
 n matrix of

indeterminates over B with m � n� Then G�X� is a graded ASL on � �

Condition �H�� is evidently satis�ed� and the validity of �H�� is stated
in the following lemma�

Lemma ������ The standard monomials in � are linearly independent�

Proof� For � � �a� � � � am� let U� be the following m 
 n matrix whose
entries Uij are indeterminates over B��BBBBB�


 � � � 
 U�a� � � � U�a��� U�a� � � � U�a��� � � � U�am � � � U�n


 � � � 
 U�a� � � � U�a���


 � � � 
 � � �
���

���
���

���
���

���
���

���

 � � � 
 
 � � � 
 
 � � � 
 � � � Umam � � � Umn

CCCCCA �

The substitutionwhich maps Xij to the corresponding entry of U� induces
a B�algebra homomorphism �� � G�X�� G�U�� where G�U�� denotes the
B�subalgebra of B�Uij � j 	 ai� generated by the maximal minors of U� �
Observe that for 
 	 � the matrix U� has indeterminate entries where
U� has non�zero entries� Therefore the analogous substitution yields a
B�algebra homomorphism ��� � G�U��� G�U�� with �� � ��� � ���

The matrix U� is chosen in such a way that the submatrix of its
columns �� � � � � ai � � has rank i � � for i � �� � � � � m � � �where we let
am�� � n� ��� The reader may carefully check that this implies ����� � 

for all � �	 �� So the application of �� to a linear combination of standard
monomials strips o all terms which contain a factor � �	 ��

The lemma follows immediately from the following claim �with � �
�� � � �m��� let ���� be the set of standard monomials all of whose factors
are 	 ��� then �������� is a linearly independent subset of G�U���

We prove this claim by descending induction over the poset � � LetP
u�U bu���u� � 
 be a linear combination with U � ����� U �� �� and

bu �� 
 for all u � U� The element ����� is a product of indeterminates�
and therefore G�U���regular� Thus� cancelling ����� if necessary� we
may suppose that � does not occur as a factor of at least one of the
standard monomials in the sum� say u�� Let �� be the smallest factor
of u�� Then �� � �� and 
 �

P
u�U bu��������u�� �

P
u��U � bu�����u�� where

U� � U ������� Since u� � U� � we obtain a contradiction to the induction
hypothesis�

Next we want to show that every product �
 of �incomparable�
minors �� 
 � � can be written as a linear combination of standard
monomials� This �straightening� will be performed by iterated applications
of the Pl�ucker relations given in the following lemma� �We use ��i� � � � is�
to denote the sign of the permutation of f�� � � � � sg represented by the
sequence i�� � � � � is��
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Lemma ������ For every m 
 n�matrix� m � n� with elements in a ring A
and all indices a�� � � � � ap� bq� � � � � bm� c�� � � � � cs � f�� � � � � ng such that s �
m� p� q � � � m and t � m� p � 
 one hasX

i������it
it�������is

fi� ���� �isg�f������sg

��i� � � � is��a� � � � apci� � � � cit��cit�� � � � cisbq � � � bm� � 
�

Proof� It su�ces to prove the lemma for a matrix X of indeterminates
over Z� Next we may replace Z by Q� and �nally the ring Q�X� by its
�eld of fractions Q�X�� We consider the Q�X��vector space V generated
by the columns of X � Let S be the group of permutations of f�� � � � � sg�
and let Xj denote the j�th column of X � We de�ne � � V s � Q�X� by

��y�� � � � � ys� �X
��S

���� det�Xa� � � � � � Xap � y����� � � � � y��t�� det�y��t���� � � � � y��s�� Xbq � � � � � Xbm��

It is straightforward to check that � is a multilinear form on V s � When
two of the vectors yi coincide� every term in the expansion of � which
does not vanish anyway is cancelled by a term of the opposite sign� Thus
� is alternating� Since s � dimV � m� one has � � 
�

Let us �x a subset fi�� � � � � itg� i� � � � � � it� of f�� � � � � sg� Then� for all
� such that ��f�� � � � � tg� � fi�� � � � � itg� the summand corresponding to � in
the expansion of � equals

��i� � � � is� det�Xa� � � � � � Xap � yi� � � � � � yit� det�yit�� � � � � � yis � Xbq � � � � � Xbm�

where it��� � � � � is are chosen as above� Therefore each of these terms
appears with multiplicity t" �s� t�" in the expansion of �� and cancelling
this factor we obtain the desired formula�

Let us �straighten� the product �� � ���� � ��� For the data p � ��
a� � �� q � �� b� � �� �c�� � � � � c�� � ��� �� �� �� one has the following Pl�ucker
relation�

�� � ���� � �� � �� � ���� � ��� �� � ���� � ��

� �� � ���� � ��� �� � ���� � �� � �� � ���� � �� � 
�

When solved for �� � ���� � ��� it is not yet a linear combination of
standard monomials� However� �� � ���� � �� is the �worst� term� for
it incomparability occurs already in the second position� whereas in the
remaining terms at least positions � and � are ordered� Using the Pl�ucker
relations

�� � ���� � ��� �� � ���� � �� � �� � ���� � ��� �� � ���� � �� � 
�

�� � ���� � �� � �� � ���� � �� � �� � ���� � ��� �� � ���� � �� � 
�
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one �nally gets

�� � ���� � �� � ���� � ���� � ��� �� � ���� � �� � �� � ���� � ���

We now describe how to apply the Pl�ucker relations in general�

Lemma ����	� Let �a� � � � am�� �b� � � � bm� be elements of � such that ai � bi
for i � �� � � � � p and ap�� � bp��� We put q � p� �� s � m� �� �c�� � � � � cs� �
�ap��� � � � � am� b�� � � � � bp���� Then� in the Pl�ucker relation 	���� with these

data� all the non�zero terms �d� � � � dm��e� � � � em� �� �a� � � � am��b� � � � bm� have
the following properties �after their column indices have been arranged in

ascending order�	

�a� �d� � � � dm� � �a� � � � am�� �b� d� � e�� � � � � dp�� � ep���

Proof� Since b� � � � � � bp�� � ap�� � � � � � am� �d� � � � dm� arises
from �a� � � � am� by a replacement of some of the ai by smaller in�
dices� This implies �a� and di � ei for i � �� � � � � p� Furthermore dp�� �
fa�� � � � � ap� b�� � � � � bp��g� so dp�� � bp��� and ep�� � fap��� � � � � am� bp��� � � � �
bmg� so bp�� � ep���

By induction on p it follows immediately from 	���� that a product
�
� �� 
 � � � is a B�linear combination of standard monomials ��� � � ��
such that � � �� This however does not yet imply �H��� �In general
the straightening procedure based on 	���� produces intermediate results
violating �H���� In order to see that �H�� is indeed satis�ed we must
also straighten the product in the order 
�� The standard monomials
�� obtained now satisfy � � 
� By linear independence of the standard
monomials� both representations of �
 � 
� coincide� and �H�� follows�
This completes the proof of 	�����

Before we turn to the discussion of the polynomial ring B�X�� we
state a useful corollary of 	�����

Corollary ������ �a� Let T� � � � � � be a set of indeterminates over B�
Then the kernel of the surjective homomorphism B�T� � � � � �� G�X� is
generated by the elements representing the Pl�ucker relations�

�b� One has GB�X� � GZ�X�� B�
�c� Suppose B is a Noetherian ring� Then dimG�X� � dimB�m�n�m����

Proof� By 	����� GB�X� is the residue class ring of B�T� � � � � � modulo
the ideal generated by the elements representing the straightening rela�
tions� As seen above� the straightening relations are linear combinations
of the Pl�ucker relations� This proves �a�� and �b� is a simple consequence
of �a� if one notes that the Pl�ucker relations are de�ned over Z�

By virtue of 	����
 one has dimG�X� � dimB�rank���� Each cover
of �a� � � � am� � � is obtained by replacing one of the indices ai by ai�� �of
course� this is only feasible if ai�� � ai���� Furthermore rank�� � � �m� � 
�
Therefore rank�a� � � � am� �

Pm
i�� ai � i �

Pm
i��ai � m�m � ����� This

immediately yields rank� � rank�n� m� � � � �n� � m�n� m��
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As before let X be a matrix of indeterminates� and � the poset of its
minors� the condition m � n is no longer required� We extend X by m
columns of further indeterminates� obtaining

X � �

�B� X�� � � � X�n X��n�� � � � X��n�m

���
���

���
���

Xm� � � � Xmn Xm�n�� � � � Xm�n�m

CA �

Then B�X �� is mapped onto B�X� by substituting for each entry of X �

the corresponding entry of the matrix�BBBBBB�

X�� � � � X�n 
 � � � � � � 
 �
��� � �

�
� �
�



���

���
��� � �

�
� �
�

� �
� ���


 � �
�

� �
� ���

Xm� � � � Xmn � 
 � � � � � � 


CCCCCCA �

Let � � G�X ��� B�X� be the induced homomorphism� Then

���b� � � � bm�� � ��a� � � � at j b� � � � bt����

where t � maxfi � bi � ng and a�� � � � � at have been chosen such that

fa�� � � � at� n�m� �� bm� � � � � n� m� �� bt��g � f�� � � � � mg�

Equation ��� shows that � is surjective� and furthermore sets up a bijective
correspondence between the set � � of m�minors of X � and ��f��g� Note
that the maximal element e� � �n � � � � � n � m� of � � is mapped to ���
and that the restriction of � to � � n fe�g is an isomorphism of posets� �We
leave the veri�cation of this fact to the reader� the details can also be
found in ����� ������

Lemma ������ The kernel of � � G�X ��� B�X� is generated by e�� ��

Proof�Note that G�X ��� B�X�� and � are obtained from the corresponding
objects over Z by taking tensor products of the latter with B� �This is
non�trivial only for G�X �� for which it has been stated in 	������ Therefore
it is su�cient to consider the case B � Z� Then G�X �� is an integral
domain� and it follows from the properties of dehomogenization �see
������� that e�� � generates a prime ideal p of height �� By virtue of 	����
one has

dimG�X �� � dimZ� mn� � � dimZ�X� � ��

As p � Ker�� we in fact have p � Ker��

Theorem ����� �Doubilet�Rota�Stein�� Let B be a ring� and X an m
 n
matrix of indeterminates� Then B�X� is a graded ASL on the poset � of

minors of X �
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Proof� From our previous arguments it is obvious that � maps the
standard monomials in � � n fe�g to standard monomials in �� Since � is
surjective and G�X �� is a graded ASL on � �� the standard monomials in
� generate B�X� as a B�module�

The smallest factor of a standard monomial on the right hand side of
a straightening relation in an arbitrary ASL is never a maximal element of
the underlying poset� Therefore the validity of �H�� cannot be destroyed
by a substitution which takes such an element to an element of B�

It only remains to observe the linear independence of the standard
monomials in �� or� equivalently� that there is no non�trivial relationX

auu � �e�� ��
X

bvv

where u and v represent pairwise distinct standard monomials in G�X ���
and none of the u contains e� as a factor�

Exercises

	���
� Let u � �� � � � �r be a product of minors of X� The content of u is the vector
of length m � n which for each row and each column lists the multiplicity with
which the row or column appears in u� Let v be a standard monomial in the
standard representation of u� Show that v has the same content as u� and has at
most r factors�

	����� Let m � n� and X be an m � n matrix of indeterminates over a ring B�
Let � � r� � � � � � rs � m be integers� and consider the subposet � �r� � � � � � rs� of
� formed by all minors which are of the form � � � � ri j a� � � � ari� for some i� Show
that B� �r� � � � � � rs�� is a graded ASL on � �r� � � � � � rs�� �Note that this class of rings
generalizes G�X���
�For a 	eld B � k� k� �r� � � � � � rs�� is the multihomogeneous coordinate ring of the
variety of �ags � � U� � � � � � Ur � kn of linear subspaces such that dimUi � ri��

	������ Let H be a 	nite poset with partial order � � and H� the poset with
the reverse partial order �� h � h� �� h� � h� A graded ASL R on H is
called symmetric if it is also an ASL on H� �with respect to the same embedding
H � R��
�a� Show that G�X� is a symmetric ASL�
�b� Show that the graded ASLs B� �r� � � � � � rs�� of the previous exercise are
symmetric�

��� Properties of determinantal rings

In this section we shall assume that the ground ring B is a �eld� and
therefore replace the letter B by k throughout� The transfer of the results
to more general ground rings is indicated in Exercise 	�����

As in the previous section let X be an m
 n matrix of indeterminates
over k� The determinantal ring Rr�� is the residue class ring of k�X� with
respect to the ideal generated by the �r � ���minors of X � In view of the
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ASL structure of k�X� it is useful to extend this system of generators by
including all t�minors with t 	 r��� The enlarged system of generators is
an ideal in the poset � of all minors of X � By Exercise 	����� Rr�� inherits
the ASL property of k�X�� its underlying poset is the coideal �r�� of �
which consists of the u�minors of X with u � r � �� �A coideal is the
complement of an ideal�� Evidently �r�� has a single minimal element�
namely �� � � � r j � � � � r��

More generally� for 
 � � we want to investigate the residue class
rings R� of k�X� modulo the ideal I� generated by all minors � �	 
� As
in the special case 
 � �� � � � r j � � � � r� above� R� is an ASL on the coideal
�� � f' � � � ' 	 
g� In a distributive lattice a coideal with a single
minimal element is again a distributive lattice� and it follows directly from
	���	 and 	��� that R� is a reduced Cohen�Macaulay ring� Moreover we
can easily compute its dimension�

Similarly we may consider the residue class rings G� of G�X�� These
are the residue class rings of G�X� with respect to the ideal J� generated
by all � � � � � �	 �� The corresponding coideal in � is denoted �� �

Theorem ������ Let k be a �eld� and X an m
 n matrix of indeterminates

over k�
�a� �Hochster� Laksov� Musili� Suppose m � n� and let � � �a� � � � am� � � �

Then G� is a normal Cohen�Macaulay domain of dimension

m�n� m� �
m�m� ��

�
�

mX
i��

ai � ��

�b� Let 
 � �a� � � � ar j b� � � � br� � �� Then R� is a normal Cohen�Macaulay

domain of dimension

�m� n� ��r �
rX
i��

�ai � bi��

�c� �Hochster�Eagon� In particular� Rr�� is a normal Cohen�Macaulay

domain of dimension �m� n� r�r�

Proof� The Cohen�Macaulay property of R� and G� follows from the
fact that the posets �� and �� are distributive lattices� as explained above�
In order to compute their dimensions one must determine the ranks of
the posets �� and ��� see 	����
�

Since all maximal chains in a distributive lattice have the same length�
one has

rank�� � rank� � �rank � � ���

Both rank� and rank � were computed in the proof of 	�����
For the computation of dimR� and for the proof of normality it is

convenient to relate R� to a ring of type G�� in the same way as B�X�
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was related to G�X �� for the proof of 	���	� We choose

�� � �b� � � � br �n�m� ��� a�� � � � �n� m� ��� a�m�r�

with fa��� � � � � a
�
m�rg being the complement of fa�� � � � � arg in f�� � � � � mg�

Then � � G�X �� � B�X� as de�ned before 	���� maps �� to �
 and the
generators of J�� to a generating set of I� � It follows from 	���� that the
induced homomorphism �� � G�� � R� is surjective� and that its kernel is
generated by e�� � where the maximal element e� of � � is considered as
an element of G�� � Now an easy computation yields the dimension of R� �

As we just saw� R� is a dehomogenization of a ring of type �� �
and therefore it is su�cient to prove that G� is a normal domain �see
Exercise �������� Note �rst that G� is indeed a domain� the surjective
homomorphism �� � G�X� � G�U�� constructed in the proof of 	����
induces a homomorphism ��� � G� � G�U��� and ��� maps the standard
basis of G� onto a linearly independent subset of G�U�� as was shown
there� So G� is isomorphic to the integral domain G�U���

To prove normality we apply the criterion in Exercise ������ with
x � �� being the single minimal element of �� � � is evidently ���regular�
moreover� G����� is an ASL on �� n f�g� and therefore reduced� Finally

	���� shows that G������ is a normal domain�

Theorem 	�����c� entails the classical formula

height Ir���X� � �m� r��n� r��

Thus Ir���X� has maximal height� by a theorem of Eagon and Northcott
one has height Ir���x� � �m � r��n � r� for an arbitrary m 
 n matrix x
over a Noetherian ring S � provided Ir���x� �� S� see ����� ����� or ��	
��
x���

Lemma ������ With the notation of 	���� let

� �
�
�d� � � � dm� � �� � ai �� �d� � � � dm� for at most one index i

�
�

Then

G���
��� � k��� �����

and the elements of � are algebraically independent over k� In particular

G���
��� is a regular domain�

Proof� We show that �e� � � � em� � k��� ���� for all �e� � � � em� � �� by
induction on the number w of indices i such that ei �� �a� � � � am�� For
w � 
 and w � �� �e� � � � em� � � by de�nition� Let w � � and choose an
index j such that ej �� �a� � � � am�� We use the Pl�ucker relation 	����� the
data of 	���� corresponding to the present ones in the following manner�
p � 
� q � �� s � m � �� �b�� � � � � bm� � �e�� � � � � ej��� ej��� � � � � em�� and
�c�� � � � � cs� � �a�� � � � � am� ej�� In this relation all the terms di erent from

�a� � � � am��ej e� � � � ej�� ej�� � � � em� � ����j���a� � � � am��e� � � � em�
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and non�zero in G� have the form 
� such that 
 � � and � has only w��
indices not occurring in �� Solving for �a� � � � am��e� � � � em� and dividing by
�� one gets �e� � � � em� � k��� �����

For the proof of the algebraic independence of � we �rst note that
dimG������ � dimG� � This follows easily from A��� if one uses that G� is
an a�ne domain over k as was demonstrated in the proof of 	����� Now
it is enough to verify that j� j � dimG� � a combinatorial exercise which
we leave for the reader�

Lemma 	���� enables one to compute the singular locus of the rings
G�� and� again by dehomogenization� that of R�� see ����� ��B� We con�ne
ourselves to the rings Rr��� for which there is a simpler approach�

Suppose that x � �xij� is an m 
 n matrix over a ring R such that
x�� is a unit� Then we may transform x by elementary row and column
operations into the matrix�BB�

x�� 
 � � � 


 y�� � � � y��n��

���
���

���

 ym���� � � � ym���n��

CCA � yij � xi���j��� x��j��xi����x
��
�� �

and clearly Ir���x� � Ir�y�� The equation yij � xi��j��� x�j��xi����x
��
�� �

read as a substitution of indeterminates� suggests the following elementary
lemma�

Lemma ������ Let X � �Xij� and Y � �Yij� be matrices of indeterminates
over a ring B of sizes m
 n and �m � �� 
 �n � ��� Then the substitution

Yij �� Xi��j��� X�j��Xi����X
��
�� yields an isomorphism

B�Y �X��� � � � � Xm�� X��� � � � � X�n� X
��
�� �

�� B�X�X��
�� �

which for every t � 
 maps the extension of It���Y � to the extension of

It�X�� In particular it induces an isomorphism

Rt���Y ��X��� � � � � Xm�� X��� � � � � X�n� X
��
�� �

�� Rt�X��x
��
�� ����

where x�� denotes the residue class of X�� in Rt�X��

Proposition ����	� For a prime ideal p � SpecRr�� the localization is regular

if and only if p �� Ir�X��Ir���X��

Proof� We use induction on r� starting from the trivial case r � 
 �note
that I��X� � k�X��� Suppose now that r � 
� If p is the maximal ideal
of R � Rr�� generated by the xij � then Rp is evidently non�regular and p

contains Ir�X��Ir���X�� Otherwise p does not contain one of the residue
classes xij � and by symmetry we may assume that x�� �� p � Then Rp

is a localization of R�x��
�� �� and contracting the extension of p via the

isomorphism ��� to S � Rr�Y � we obtain a prime ideal q � Spec S � As the
extension from S to R�x��

�� � is an adjunction of indeterminates followed
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by the inversion of one of them� Rp is regular if and only if Sq is regular�
Furthermore p � Ir�X��Ir���X� if and only if q � Ir���Y ��Ir�Y ��

The rings Rr�� satisfy Serre�s condition �R�� since

height�Ir�X��Ir���X�� � height Ir�X�� height Ir���X�

� m� n� �r � � 	 ��

By Serre�s normality criterion this argument� together with the Cohen�
Macaulay property� proves independently of 	���� that Rr�� is a normal
domain� �In fact� all the rings R� and G� satisfy �R��� see ����� ��������
The example m � n � �� r � � shows that �R�� fails in general�

Finally we want to determine which of the rings Rr�� are Gorenstein�
The easiest way to solve this problem is to determine the canonical
module� or rather the divisor class it represents �see ������ the canonical
module of Rr�� is unique by �vi� below�� In the following we use
elementary facts from the theory of class groups of Noetherian normal
domains R� see ��	�� Ch� 	� or ��
���

�i� The elements of Cl�R� are the isomorphism classes �I� of fractionary
divisorial ideals of R� a fractionary ideal is divisorial if and only if it is a
re�exive R�module� and p � SpecR is divisorial if and only if height p � ��
One has �I� � 
 if and only if I is principal� In particular� R is factorial
if and only if Cl�R� � 
�

�ii� The addition in Cl�R� is given by �I� � �J� � ��IJ���� where �

denotes the R�dual HomR� � R��
�iii� ��Gauss� lemma�� The extension �I� �� �IR�T �� yields an isomor�

phism of class groups Cl�R� �� Cl�R�T �� �here T denotes an indeterminate
over R��

�iv� �Nagata�s theorem� If S � R is multiplicatively closed� then the
assignment �I� �� �IRS � maps Cl�R� surjectively onto Cl�RS�� the kernel
of this map is generated by the classes �p � of the divisorial prime ideals
p with p � S �� ��

�v� An ideal I � R is divisorial if and only if I �
Tr

i�� p
�ei�
i with

divisorial prime ideals p i� one then has �I� �
Pr

i�� ei�p i� �p �e� is the e�th
symbolic power R � p eRp ��

�vi� If R is a positively graded k�algebra with �maximal ideal m �
then one has a natural isomorphism Cl�R� �� Cl�Rm �� It follows that the
canonical module of R is unique �up to isomorphism� since this holds for
Rm �

Theorem ������ Suppose that 
 � r � min�m� n�� and let p be the ideal of

Rr�� generated by the r�minors of the �rst r rows of the residue class x of

X � and q the corresponding ideal for the �rst r columns� Then
�a� p and q are prime ideals of height ��
�b� Cl�Rr��� is isomorphic to Z� and is generated by �p � � ��q ��
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Proof� �a� follows from the isomorphism Rr���p �� R�� � � �� � � � r�� r�� j
� � � � r�� together with 	���� and the analogous isomorphism for Rr���q �

�b� Let 
 � �� � � � r j � � � � r�� and � � fxij � i � r or j � rg� We

claim that � is algebraically independent over k and that Rr���
��� �
k��� 
���� In fact� one sees that xuv � k��� 
��� by expanding the
minor �� � � � r u j � � � � r v� along row u �or column v�� in Rr�� one has
�� � � � r u j � � � � r v� � 
� The algebraic independence of � follows as in the
proof of 	����� By �iii� and �iv� above� Cl�k��� 
���� � 
 so that� again by
�iv�� Cl�Rr��� is generated by the classes of those divisorial prime ideals
which contain 
�

The systems of generators of p and q speci�ed in the theorem are
ideals in the poset �r�� and their intersection is exactly f
g� In conjunction
with Exercise 	���� this shows �
� � p � q � We conclude that �p � � ��q �
and that �p � generates Cl�Rr����

It remains to be shown that u�p � �� 
 for all u � 
� Suppose that
u�p � � 
� or� equivalently� that p �u� is a principal ideal �a�� a � R� Since
p �u� contains 
u� the extension p �u�k��� 
��� equals k��� 
���� Hence a is
a unit in k��� 
���� In k�� � the element 
 is the determinant of a matrix
of indeterminates� and therefore a prime element according to 	����� Thus
a � e
v with e � k and v 	 
� In the case where u � 
 we would have
v � 
� and p and q would be minimal prime ideals of p �u��

It is now easy to reduce the computation of the canonical class of
Rr�� to the case r � �� fortunately R� is a normal semigroup ring� and
we can draw on the results of Chapter �� The hypothesis 
 � r � n � m
in the following theorem has been inserted in order to exclude the trivial
cases r � 
 or r � min�m� n�� The condition n � m is no restriction since
we may replace X by its transpose if necessary�

Theorem ������ With the notation of 	���� suppose that 
 � r � n � m�
Then

�a� p �m�n� is the canonical module of Rr���

�b� �Svanes� Rr�� is Gorenstein if and only if m � n�

Proof� The canonical module of Rr�� is uniquely determined as was
observed above� In particular �a� implies �b��

In proving �a� we �rst suppose that r 	 �� The isomorphism ��� in
	����� and �iii� and �iv� above induce a homomorphism

Cl�Rr���� Cl�Rr���x
��
�� �� �� Cl�Rr�Y ��X��� � � � � Xm�� X��� � � � � X�n� X

��
�� ��

�� Cl�Rr�Y ��

which maps the generator �p � of Cl�Rr��� to the analogous generator �p ��
of Cl�Rr�Y ��� in particular it is an isomorphism�

We set S � Rr���x��
�� �� and identify Rr�� and Rr�Y � with subrings of

S � Let � be the canonical module of Rr��� Since the formation of the
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canonical module commutes with localization� � �Rr�� S is a canonical
module of S � Let �� be a divisorial ideal of Rr�Y � which under the above
isomorphism has the same class as �� Then � �Rr�� S

�� �� �Rr�Y � S �
As the extension Rr�Y � � S is faithfully �at� �����
 implies that �� is a
canonical module of Rr�Y ��

Summing up� we conclude that u�p � is the class of the canonical
module of Rr�� if and only if u�p �� is the class of the canonical module
of Rr�Y �� An iteration of the argument reduces �a� to the case r � ��

Suppose that r � �� Let U�� � � � � Um and V�� � � � � Vn be indeterminates
over k� The ��minors of the matrix x � �UiVj� vanish so that the
substitution Xij �� xij � UiVj induces a surjective homomorphism from
R� onto the normal semigroup ring k�C� generated by the monomials xij �
An easy calculation of dim k�C� yields that we may in fact identify R�

and k�C�� Let I be the ideal generated by relintC in k�C�� By virtue of
����� I is the canonical module of k�C��

Let p i be the prime ideal generated by the entries in the i�th row of
x � �xij�� and q j the corresponding ideal for the j�th column� Then the
ideals p i and q j are exactly the height � ZC�graded prime ideals� In fact�
the ZC�graded prime ideals are those prime ideals which are generated
by some of the elements xij � and thus are the prime ideals generated by all
the xij in the union of a set of columns and a set of rows� It follows from
����� and ����� �or direct arguments� that I � p � � � � � � p m � q � � � � � � q n�
Therefore

�I� �
mX
i��

�p i� �
nX

j��

�q j� � m�p � � n�q � � �m� n��p ��

Remarks ������ �a� One can show that the symbolic and ordinary powers
of the prime ideals p and q in 	���� coincide so that p m�n is the canonical
module of Rr��� �The case r � � is indicated in Exercise 	����� Fur�
thermore 	���� and 	���� can be extended to all the rings R� and G�� see
�����

�b� With the notation of 	���� and its proof� I is the �canonical module
of R�� But it is impossible to preserve the grading under the divisorial
arguments by which we computed the canonical module of Rr�� from that
of R�� In Bruns and Herzog ��	� it has been shown that the a�invariant
of Rr�� is �rm� As p m�n is generated by elements of degree �m � n�r� it
follows that p m�n��rn� is the �canonical module of Rr���

�c� Let X be a symmetric n 
 n matrix of indeterminates� more
precisely� the entries Xij of X with i � j are algebraically independent�
and Xij � Xji for i � j� The residue class rings Sr�� � k�X��Ir���X� are
as well understood as the rings Rr�� constructed from �generic� m 
 n
matrices� In particular Sr�� is a normal Cohen�Macaulay domain of
dimension r�r � ���� � �n � r�r �Kutz ������� its divisor class group is
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Z����� and it is Gorenstein if and only if r � � � n mod� �Goto ���
��
������� see Exercise 	����
� There is also a �standard monomial� approach
to the structure of Sr��� in which �doset algebras� replace ASLs �see
De Concini� Eisenbud� and Procesi �	����

�d� Let X be a alternating n
nmatrix of indeterminates� this of course
means that the entries Xij of X with i � j are algebraically independent�
Xii � 
� and Xij � �Xji for i � j� The residue class ring Pr�� of k�X�
with respect to the ideal Pfr���X�� r even� is a normal Cohen�Macaulay
domain of dimension r�r � ���� � �n� r�r �Kleppe and Laksov ���	��� it
is factorial �Avramov ������ and therefore Gorenstein by ������ The rings
Pr�� carry a �natural� ASL structure �	���

Exercises

	���
� Let R be a 	nitely generated faithfully �at Z�algebra� and let P be one
of the properties �Cohen�Macaulay�� �Gorenstein�� �reduced�� �normal�� �integral
domain�� �Sn�� �Rn��
�a� Show that the following are equivalent� �i� R � k has P for every 	eld k� �ii�
R � B has P for every Noetherian ring B which satis	es P�
�b� Suppose that K�k L has P whenever K and L are extension 	elds of k one of
which is 	nitely generated �for which of the listed properties is this true��� Show
that �a��ii� already follows from the fact that R has P�
Hint� Exercise ������ is a similar problem�

	����� With the notation of ����� assume r � �� Show p �i� � p i for all i� Hint� ������

	������ With the notation of ������c� let p be the ideal generated by the r�minors
of the 	rst r rows of X� and � � � � � � r j � � � � r�� We use the fact that Sr�� is a
normal Cohen�Macaulay domain� and that p is a prime ideal in Sr��� Show
�a� p � � ���� p ��� � ���� and Cl�Sr��� � Z�����
�b� the canonical module of Sr�� is Sr�� if r � � � n mod�� and p otherwise�
�c� Sr�� is Gorenstein if and only if r � � � n mod��
Hint� S� can be considered as the second Veronese subring of a polynomial ring
kY�� � � � � Yn�� or as a normal semigroup ring�

	������ Let X be an m � n matrix of indeterminates over a 	eld k with m � n�
Show that �� � � � � m� is a prime element in G�X�� and deduce G�X� is factorial�

Notes

The notion of an algebra with straightening law is due to Eisenbud �
��
It was generalized to that of a �not necessarily graded� Hodge algebra
in De Concini� Eisenbud� and Procesi �	��� This monograph contains
all the theory developed in Section 	�� as well as numerous examples
of Hodge algebras� A signi�cant class of non�ASL Hodge algebras
are the coordinate rings of the varieties of complexes �De Concini and
Strickland �	���� That the notion of a graded Hodge algebra is very
general is illustrated by a theorem of Hibi ������ every positively graded



Notes ��

a�ne algebra over a �eld is a Hodge algebra� A non�graded Hodge
algebra may behave pathologically as was shown by Trung ��	
��

The term �Hodge algebra� re�ects the fact that the �rst standard
monomial theory was created by Hodge ��
�� as a method for estab�
lishing the �postulation formula� for the Grassmannian and its Schubert
subvarieties� In algebraic language this amounts to the computation of
the Hilbert function of the rings G�X� and G� � and therefore is �only� a
matter of counting the standard monomials of a �xed degree� See also
Hodge and Pedoe ��
��� More recent accounts are due to Laksov �����
and Musili ������ whom we follow in proving the linear independence of
the standard monomials� The straightening law on the polynomial ring is
due to Doubilet� Rota� and Stein �		�� We follow De Concini� Eisenbud�
and Procesi �	�� in deriving it from that of G�X��

For a detailed account of the history of determinantal ideals we refer
the reader to Bruns and Vetter ����� ��E� It begins with Macaulay �����
who proved �in a special case� that the ideals Ir���X� are unmixed for
r�� � min�m� n�� In the in�uential paper ���� Eagon and Northcott con�
structed a �nite free resolution of these ideals and proved their perfection
�which �over a �eld of coe�cients� is equivalent to the Cohen�Macaulay
property of the rings Rr��� see �������� This resolution� the so�called
Eagon�Northcott complex� has served as a model for several related con�
structions� In this connection one should mention the theory of generic
perfection which was also developed by Eagon and Northcott ��	�� also
see ����� Section �� Its main result is that a �generic� acyclic complex
remains acyclic under extensions of the ring of coe�cients�

The Cohen�Macaulay property of the rings Rr�� and their normality
for general r are due to Hochster and Eagon ����� They used an inductive
scheme based on a �principal radical system�� That the rings G� are Cohen�
Macaulay seems to have been realized independently by Hochster ��		��
Laksov ������ and Musili ������ The Gorenstein determinantal rings
were determined by Svanes ���	� whereas the divisor class group and the
canonical module were computed by Bruns ����� �����

A driving force in the investigation of determinantal ideals was their
relation to invariant theory� the rings Rr�� and G�X� appear as ring of
invariants of �natural� linear group actions� In order to prove this fact
�in arbitrary characteristic� De Concini and Procesi �	�� established the
straightening laws on which the ASL structures are built� also see �����

The Rees and associated graded rings of k�X� with respect to the
ideals Ir���X� are ASLs in a natural way and Cohen�Macaulay when
r�� � min�m� n�� see Bruns� Simis� and Trung ��
�� For r�� � min�m� n�
the Cohen�Macaulay property holds at least in characteristic zero� but
fails in general �����

The Hilbert function of Rr�� and the numerical invariants derived
from it are the subject of a monograph by Abhyankar �	�� See Herzog
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and Trung ����� for an approach using Gr�obner bases�
The homological properties of Rr�� discussed in this chapter were

proved by inductive methods� It would be much more satisfactory to
derive them from a minimal free resolution of Rr�� over k�X�� As pointed
out above� in the case r � � � min�m� n� the Eagon�Northcott complex
is such a resolution� and for r � � � min�m� n� � � a suitable complex
was constructed by Akin� Buchsbaum� and Weyman ���� Both these
complexes are characteristic�free� they are de�ned over Z and specialize
to a minimal free resolution under base change from Z to an arbitrary
�eld� Recently Hashimoto ����� showed that such a resolution also exists
for r�� � min�m� n���� In characteristic zero Lascoux ���	� described a
minimal resolution of Rr�� for arbitrary r� However� the construction of
such resolutions seems to be exceedingly di�cult in positive characteristics
as is indicated by a result of Hashimoto ������ for � � r�� � min�m� n���
the Betti numbers of Rr�� depend on the characteristic of k�

The theory of determinantal rings has many aspects not considered
in this chapter� For these� as well as for an extensive bibliography� we
refer the reader to �����



Part III

Characteristic p methods

���






 Big Cohen�Macaulay modules

In this chapter we prove Hochster�s theorem on the existence of big
Cohen�Macaulay modules M for Noetherian local rings R containing a
�eld� An R�module is called a big Cohen�Macaulay module if there is a
system of parameters x for which M is x�regular� Note that one does
not require M to be �nite� thus the attribute �big�� The importance of big
Cohen�Macaulay modules stems from the fact that one can deduce many
fundamental homological theorems from their existence �as we shall see
in Chapter ��

Their construction is a paradigm for the application of characteristic
p methods� one �rst shows that big Cohen�Macaulay modules exist in
characteristic p� then the result is transferred to characteristic zero via
a rather abstract principle� It asserts that certain �generic� systems of
equations are soluble over some local ring of characteristic p if there is a
solution in characteristic zero�

Rings of characteristic p are endowed with a canonical endomor�
phism� the Frobenius homomorphism a �� ap� Its homological power
seems to have �rst been realized by Peskine and Szpiro� They also intro�
duced M� Artin�s approximation theorem to commutative algebra� The
approximation theorem guarantees the descent from complete� �analytic�
local rings to �algebraic� ones�

��� The annihilators of local cohomology

Let �R� m � be a Noetherian local ring and let

a i � AnnR H
i

m �R�

be the annihilator of the i�th local cohomology� This notation is kept
throughout the section� As we shall see� the products a � � � � a j anni�
hilate the homology of certain complexes� and furthermore a � � � � a n��

annihilates the ideals �x�� � � � � xj� � xj�� modulo �x�� � � � � xj� for all systems
x�� � � � � xn of parameters and j � 
� � � � � n � �� This will be important in
the construction of big Cohen�Macaulay modules in characteristic p�

Theorem ������ Let R be a Noetherian local ring of dimension n which is

a residue class ring of a Gorenstein local ring S � dimS � d � Then the

following hold for i � 
� � � � � n	

���
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�a� a i � AnnR Ext
d�i
S �R� S��

�b� dimR�a i � i�

�c� a � � � � a n�� contains a non�nilpotent element�

�d� for p � SpecR� dimR�p � i� one has p � AssR�a i � p � AssR�

Proof� �a� We want to show �rst that both R and S can be replaced

by their completions �R and �S for the proof of �a�� Of course one has
�R �� R �S

�S � and the formation of local cohomology commutes with
completion� by ������

H i
m �R�

�� H i
m �R��R

�R �� H i
	m � �R��

The same holds for Ext since �S is a �at S�module and R has a resolu�
tion by �nite free S�modules� Finally� for every R�module N� one has

AnnR N � R � �Ann 	R�N �R
�R�� because �R is faithfully �at� So we may

assume that S and R are complete�
We saw in the proof of ����	 that H i

m �R�
�� H i

n �R� for all i �as an S�
or R�module�� n denoting the maximal ideal of S � Let E be the injective
hull of S�n over S � and � the functor HomS � � E�� Since H i

n �R� � H i
n �R�

��

we have

AnnR H
i

n �R� � AnnR H
i

n �R�
� � AnnR H

i
n �R�

�� � AnnR H
i

n �R��

and so the local duality theorem ������ applied to the S�module R� yields

AnnR H
i

n �R� � AnnR H
i

n �R�
� � AnnR Ext

d�i
S �R� S��

�b� This inequality is �������c��
�c� By �b� one has dim�R��a � � � � a n���� � n � �� Therefore a � � � � a n��

is not contained in any minimal prime ideal p with dimR�p � n�
�d� Consider the preimage q of p in S � Since dim Sq � d � i� one has

depthRp � depthRq � 
 if and only if Extd�iS �R� S�p � Extd�iS �R� S�q �� 
�

Consequently p � AssR if and only if p � SuppExtd�iS �R� S�� Because of
�a� and �b� the latter is equivalent to p � AssR�a i for prime ideals p such
that dimR�p � i�

A very important property of the ideals a i is expressed by the following
theorem�

Theorem ������ Let R be a Noetherian local ring� and

F� � 
 �� Fm �� Fm�� �� � � � �� F� �� 


a complex of �nitely generated free R�modules such that all the homology

modules Hi�F�� have �nite length� Then a � � � � a m�i annihilates Hi�F�� for
i � 
� � � � � m�
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Proof� First we construct an object which connects the local cohomology
of R and the homology of F

�
� Let x�� � � � � xn be a system of parameters�

and let K
�
denote the complex


 �� Kn �� � � � �� K� �� K� �� 
�

Kj �
M

�
i������in�j
n

Rxi� ���xin�j
�

Then H i
m �R� � Hn�i�K�

� �see ����� where we write C i for Kn�i�� Now we
form the tensor product K

�
�R F�

� a �rst quadrant bicomplex� The crucial
point is that the homology of the associated total complex T

�
can be

computed from two spectral sequences�
First we consider the spectral sequence whose E�

pq�term is given by
Hq�Kp �R F��� the homology of the columns of K� �R F� �see ������

Theorem ����� where the E��terms are described�� This spectral sequence
converges to the homology of the total complex� The modules Kp are �at
R�modules� thus

Hq�Kp �R F�� � Kp �R Hq�F���

Being an R�module of �nite length� Hq�F�� is annihilated by a power of
each of the elements xi� Hence

Hq�Kp � F�� �

�

 for p � n�
Hq�F�� for p � n�

Since the E��terms are concentrated in a single column� it follows imme�
diately that

E�
p�q � E�

p�q �

�

 for p � n�
Hq�F�� for p � n�

and therefore Hi�n�T�� � Hi�F�� for all i�
Secondly� one determines the homology of the total complex by �rst

computing the homology of its rows�

E�
p�q � Hq�K� � Fp� � Hn�q

m �Fp� � �Hn�q
m �R��r � r � rankFp�

By the de�nition of the ideals a i one has a n�qE
�
p�q � 
� Since all the terms

Er
p�q are subquotients of E

�
p�q � they are equally annihilated by a n�q �

a n�qE
�
p�q � 
�

This spectral sequence also converges to the total homology of T
�
�������

Theorem ������ For every t one therefore has a �ltration


 � U�� � U� � � � � � Uu � Ht�T��

where Up�Up�� � E�
p�t�p� Observe that E

�
p�t�p � 
 for p � m or t� p � n�

Thus the �ltration is already given by


 � Ut�n�� � Ut�n � � � � � Um � Ht�T���
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and Ht�T�
� is annihilated by a n��t��t�n�� � � � a n��t�m� � a � � � � a n�t�m� Taking

into account that Hi�F�
� � Hi�n�T�

� we get the desired result�

As a consequence we derive another �annihilation theorem� whose
second part is crucial in the construction of big Cohen�Macaulaymodules
in characteristic p�

Corollary ������ Let R be a Noetherian local ring of dimension n� Then�
given a sequence x � x�� � � � � xm � R such that codim�x�� � � � � xm� � m� the
following hold	

�a� a � � � � a n�i annihilates the Koszul homology Hi�x�� i � 
� � � � � m�
�b� a � � � � a n�� annihilates ��x�� � � � � xm��� � xm���x�� � � � � xm����

Proof� �a� The sequence x can be extended to a system of parameters
x�� � � � � xn �recall that codim I � dimR � dimR�I�� We start a descending
induction at m � n for which the assertion is obviously a special case of
������

Suppose now that m � n and put x� � x�� � � � � xm� xtm��� t 	 �� By
������ we have an exact sequence

Hi�x�
�xtm��

���� Hi�x�
�
�� Hi�x

���

By induction the submodule Im� �� Hi�x��xtm��Hi�x� of Hi�x�� is annihi�

lated by a � � � � a n�i� Since
T
xtm��Hi�x� � 
� we are done�

�b� We use another segment of the long exact sequence of Koszul
homology� now relating x and x�� � x�� � � � � xm�� �

H��x�
�
�� H��x

���
xm
�� H��x

����

Since a � � � � a n��H��x� � 
� we also have a � � � � a n���Im�� � 
� Im�
consists of exactly those elements inH��x��� � R��x�� � � � � xm��� annihilated
by xm� that is Im� � ��x�� � � � � xm��� � xm���x�� � � � � xm����

The preceding corollary is completely vacuous if R happens to be a
Cohen�Macaulay ring� but in connection with ����� it shows that certain
local rings� among them the complete ones� preserve a faint trace of the
Cohen�Macaulay property� the modules

��x�� � � � � xj��� � xj���x�� � � � � xj����

which are zero for R Cohen�Macaulay� cannot be arbitrarily �big��

Corollary ����	� Let R be a Noetherian local ring which is a residue class

ring of a Gorenstein local ring S � Then there exists a non�nilpotent element

c � R such that c � ��x�� � � � � xj� � xj�����x�� � � � � xj� � 
 for all systems of

parameters x�� � � � � xn and all j � 
� � � � � n� ��

Proof� According to ����� there exists a non�nilpotent c � a � � � � a n��� By
����� such a c satis�es our needs�
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Remark ������ Parts �b� of ����� and ����� are not true for arbitrary Noethe�
rian local rings� One of the most used counterexamples of commutative
algebra �constructed by Nagata ������ Example �� p� �
�� works here�

too� let R be a ��dimensional local domain such that its completion �R

has an associated prime ideal p with dim �R�p � �� Put a � � AnnR H
�

m �R�

and b � � Ann 	R H
�
	m �
�R�� Since H�

m �R�
�� H�

	m �
�R� as R�modules� a � � b � �R�

Of course ����� applies to �R� and by its third part� p � Ass �R�b �� So
a � � p � R � 
 and dimR�a � � �� �Note that a regular element of R

stays regular in �R��
Let x � x� y be a system of parameters of R and put xt � xt� yt� Then

H�
m �R� is the direct limit of the Koszul cohomology modules H

��xt�� By
�����
 one has H��xt� �� H��x

t�� Consider the long exact sequence �which
appeared already in the proof of �������

H��y
t� �� H��x

t� �� H��y
t�

xt

�� H��y
t��

R is a domain� so H��y
t� � 
� and H��x

t� � �yt � xt���yt�� An element c
annihilating all the modules �yt � xt���yt� must annihilate H�

m �R�� hence
c � 
 as seen above�

Exercises


����� Let M be an arbitrary module over a Noetherian local ring �R� m �� and
a i�M� � AnnH i

m
�M�� Let F� be a complex of 	nite free R�modules with homology

of 	nite length as in ������ Prove that a ��M� � � � a m�i�M� annihilates Hi�F� �M�
for i � �� � � � � m�


���	� With R and M as in ����� assume that H i
m
�M� � � for i � �� � � � � n � �

where n � dimR� and M�m M �� �� Let x be a system of parameters of R� Show
Hi�x�M� � � for i � �� � � � � n� and that x is M�quasi�regular� �See ��������

��� The Frobenius functor

Let R be a ring of characteristic p� i�e� a ring with a monomorphism
Z�pZ �� R where p is a prime number� The Frobenius homomorphism

is the map F � R �� R� F�a� � ap� Via F one may consider R as an R�
algebra in a non�trivial way� The crucial point in the construction of the
Frobenius functor is to work simultaneously with two essentially di erent
module structures of R itself� This is an unusual idea in commutative
algebra and has to be kept �rmly in mind� Let RF denote the �R�R��
bimodule with additive group R and left and right scalar multiplication
given by

a � r � b � arF�b� � arbp� a� b � R� r � RF �

�The standard associative laws are obviously satis�ed��
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Let M be a left R�module� Then we take the tensor product RF �R M
with RF as a right R�module� i�e�

a� bx � a � b� x � abp � x� a � RF � b � R� x �M�

The left R�module structure of RF endows RF �R M with a like structure
such that c�a � x� � ca � x� �This tensor product is merely biadditive�
bilinearity is lost because in general a � r �� r � a for a � R� r � RF �� The
Frobenius functorF acts on a left R�module M by assigning to it the left
R�module RF �R M� For an R�linear map � � M � N one consequently
considersF��� to be the R�linear map idRF �R�� The following properties
of F are just the fundamental ones of tensor products�

Proposition ������ Let R be a ring of characteristic p� ThenF is a covariant�

additive� and right exact functor from the category of left R�modules to

itself�

We want to compute some speci�c values of F� First we see that
F�R� � RF �R R � RF as a left R�module� so F�R� � R� then additivity
implies F�Rn� � Rn� For a cyclic R�module R�I one gets F�R�I� �
RF �R R�I � RF��RF � I�� Now r � a � rap for r � RF � a � I � and
RF � I turns out to be the ideal I�p� generated by the p�th powers of the

elements of I � Hence RF��RF � I� � R�I�p� with its ordinary left scalar
multiplication�

Proposition ������ Let R be a ring of characteristic p� Then

�a� F�Rn� � Rn for all n �as left R�modules�� and if e�� � � � � en is a basis of

Rn� �� e�� � � � � �� en is a basis of F�Rn��

�b� F�R�I� � R�I�p� for all ideals I of R�

More generally� we denote by I�q�� q � pe� the ideal generated by the
q�th power of the elements of I� I �q� is called the q�th Frobenius power of
I �

The Frobenius functor owes its power to its non�linearity� again
something remarkable� It is straightforward to verify the following�

Proposition ������ Let R be a ring of characteristic p� M and N be R�
modules� and � � M � N an R�linear map� Then

�a� F�a�� � apF��� for all a � R�

�b� if ��x� �
P

aiyi for x � M� ai � R� yi � N� then F����� � x� �P
api ��� yi��

�c� the map M � F�M�� x �� � � x� is not R�linear in general	 instead

one has �ax� �� ap��� x��

We can now give a concrete description of F in terms of �generators
and relations��
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Proposition ����	� Let R be a ring of characteristic p and M an R�module

with a presentation Rm
�
�� Rn ��M �� 
�

�a� Then F�M� has the presentation Rm
F���
��� Rn ��F�M� �� 
�

�b� furthermore� if � is given by a matrix �aij�� then F��� is given by the

matrix �apij��

Part �a� follows from the right exactness of F and the fact that F
leaves Rn untouched� Part �b� follows from ������

We conclude the list of basic properties of the Frobenius functor with
its behaviour under localization�

Proposition ������ Let R be a ring of characteristic p� The Frobenius functor
commutes with rings of fractions	 RS �R F�M� �F�RS �R M� for all R�
modules M� and analogously for R�linear maps�

Proof� We have RS �R F�M� � RS �R RF �R M and

F�RS �R M� � RF
S �RS

RS �R M � RF
S �R M�

As left RS�modules� RS �R RF �� RS �R R �� RS and RF
S are naturally

isomorphic� this isomorphism is also an isomorphism of right R�modules�

We cannot resist trying the strength of the Frobenius functor by prov�
ing the �new intersection theorem� in characteristic p� �This nomenclature
will be explained in Chapter �� The elegant argument� including ������ is
due to Roberts�

Theorem ������ Let �R� m � be a Noetherian local ring of characteristic p�
and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules such that each homology Hi�F�� has

�nite length� If s � dimR� the complex F� is exact�

Proof� Note that it is enough to cover the case of a complete ring R� if

R is not complete� we simply tensor all our objects by �R� a faithfully �at
extension of the same dimension�

Assume that F
�
is not exact� If H��F�

� � 
� the map �� is a split
epimorphism� and F

�
decomposes into the direct sum of two shorter

complexes of the same type� So we may suppose H��F�
� �� 
� Furthermore�

if ���F�� �� m F�� F� splits o an isomorphism ��� � F
�
� � F �� of direct

summands of F� and F�� This leaves the essential case ���F�� � m F��
Apply the Frobenius functor F to F�� The modules appearing in

F�F�� are the same as in F�� Furthermore F�F�� has �nite length
homology� by hypothesis F� � Rp is split exact for all prime ideals p �
SpecR� p �� m � Since the Frobenius functor commutes with localization�
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this also holds for F�F
�
�� Something has changed however� namely we

have F�����F�� � m pF� by ������b��
Now one iterates this procedure� all the complexes Fe�F��� e 	 
�

have �nite length homology� andFe�����F�� � m peF�� On the other hand
H��Fe�F��� is annihilated by the ideal a � � � � a s where a i � AnnH i

m �R��
see ������ This forces a � � � � a s to be contained in

T
m pe � 
� contradicting

����� for s � dimR since R� a complete local ring� is a residue class ring
of a Gorenstein ring�

A crucial point in the preceding proof is that for a �nite free complex
F

�
the Frobenius functorF preserves the property of having �nite length

homology� It also preserves acyclicity�

Theorem ����� �Peskine�Szpiro�� Let R be a Noetherian ring of character�

istic p� and F� � 
 �� Fs
�s

�� � � �
��

�� F� a complex of �nite free R�modules�
Then F� is acyclic if and only if F�F�� is acyclic�

Proof� Set rj �
Ps

i�j����
i�j rankFi� By the acyclicity criterion ������ it

depends only on the grades of the ideals Iri��i� whether F� is acyclic or
not� it is acyclic if and only if grade Iri��i� 	 i for i � �� � � � � s�

By virtue of ����� and ������ �rst F�Fj� � Fj � and next Iri�F��i�� �

Iri��i�
�p�� The two ideals have the same radical� hence the same grade�

The following corollary will play an important r �ole in Chapter �
�

Corollary ����� �Kunz�� Let R be a regular ring of characteristic p� Then
RF is a �at R�algebra� equivalently� F is an exact functor�

Proof� Since �atness is a local property and F commutes with localiza�
tion� we may assume that R is a regular local ring� By a standard �atness
criterion �for example� see ��	
�� 	��� it is enough that TorR� �R

F � R�I� � 

for every ideal I of R� This follows from ����	� the �nite free resolution
of R�I stays acyclic when tensored with RF �

The assertion of ����� is usually called the �atness of the Frobenius�
Kunz ����� also showed the converse of ������ see Exercise ������ for the
case in which R is Cohen�Macaulay�

Exercises


����� Let R be a Noetherian ring� M a 	nite R�module of 	nite projective
dimension with 	nite free resolution F�� and e � � an integer� Prove that Fe�F��
is acyclic� and proj dimFe�M� � proj dimM�


������ Let R be a regular local ring of characteristic p� Show ��Fe�M�� �
pedimR ��M� for every 	nite length module M� �Use induction on ��M���
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������ Herzog ���� proved that ����
 characterizes modules of 	nite projective
dimension� then it follows immediately from ����� that the exactness of F
characterizes the regular ones among the Noetherian local rings� For simplicity
we restrict ourselves to Cohen�Macaulay rings� So suppose R is a Cohen�
Macaulay local ring of characteristic p�
�a� Let F

�
be a minimal free resolution of a 	nite R�module M and x a maximal

R�sequence� If Fe�F
�
� is acyclic for all e � �� show TorRi �R��x��F

e�M�� 
�
�R��x��bi�M� for i � � and e� ��
�b� Conclude that proj dimM � ��

��� Modi�cations and non�degeneracy

In this section we show that for a system of parameters x � x�� � � � � xn
of a Noetherian local ring of characteristic p there exists an x�regular
R�module� The conditions to satisfy are� �i� xs�� is a regular element of
M��x�� � � � � xs�M� s � 
� � � � � n � �� �ii� M �� xM� Since the trivial choice
M � 
 satis�es �i�� we see that �i� is completely useless without �ii�� and
we need results from the preceding sections in order to show that the
construction below does not degenerate by violating condition �ii��

Suppose M is an R�module such that xs�� is not �M��x�� � � � � xs�M��
regular� Then there exists a y � M� y �� �x�� � � � � xs�M� for which xs��y �
�x�� � � � � xs�M� Equivalent to y �� �x�� � � � � xs�M is the non�existence of
a solution z�� � � � � zs � M of the equation y � x�z� � � � � � xszs � The
deus ex machina by which algebraists force equations to be soluble is to
extend the given object by some �free� variables and to introduce the as
yet insoluble equation as a relation on them� In our case we pass to
M� � �M�Rs��Rw� where w � y� �x�e�� � � ��xses�� and e�� � � � � es a basis
of Rs� The element y�� the image of y under the natural map M � M� �
no longer keeps xs�� from being regular on M���x�� � � � � xs�M�� It is quite
obvious that a well organized iteration of this construction in the limit

yields a module fM satisfying condition �i� of x�regularity�

It is however equally obvious that we may lose condition �ii� for fM �
One attempt to control �ii�� successful in characteristic p� is to keep track
of a �xed element f � M on its way to the limit and to make sure that
f �� xMi for all approximationsMi�

For a pair �M� f�� f � M� let M� be constructed as above� and f� be
the image of f under the natural mapM �M�� Then �M�� f�� is called an
x�modi�cation of �M� f� �of type s�� More generally� if there is a sequence

�M� f� � �M�� f�� �� �M�� f�� �� � � � �� �Mr � fr� � �N� g��

with �Mi��� fi��� an x�modi�cation of �Mi� fi� �of type si���� then �N� g�
is an x�modi�cation of �M� f� �of type �s�� � � � � sr��� As soon as x is �xed�
we may simply speak of a modi�cation� If g �� xN� then �N� g� is non�
degenerate�
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Proposition ������ Let R be a Noetherian ring� and x � x�� � � � � xn � R�
Then the following are equivalent	

�a� there exists an x�regular R�module M�

�b� every x�modi�cation �N� g� of �R� �� is non�degenerate�

Proof� We start with the more important implication �b�  �a�� Our
goal is to construct a direct system of modules �Mi� �ij�� i � N� starting
from M� � R such that M � lim

��
Mi is x�regular� Each �Mi� ��i����

will be a modi�cation of �R� ��� Therefore our hypothesis �b� forces
lim
��

��i��� �� xM�

Suppose thatM�� � � � �Mj �together with the natural maps in a sequence
of modi�cations� have been determined� Now choose �rst i� then s�
minimal such that there exists a y � Mi with xs���ij�y� � �x�� � � � � xs�Mj

while �ij�y� �� �x�� � � � � xs�Mj � Then put Mj�� � �Mj � Rs��Rw� w �
y � �x�e� � � � � � xses� as above� the maps �i�j�� being the natural ones�
Let us say that step j � � has index �i� s��

We claim that for each pair �i� s� there are only �nitely many steps of
index �i� s�� For� if the sequence j � �� � � � of steps of index �i� s� does not
stop� one �nds a non�stationary ascending chain of submodules of Mi by
taking the preimages of �x�� � � � � xs�Mj��� �x�� � � � � xs�Mj��� � � � in Mi� But R
is Noetherian� and all the modules Mi are �nite�

If there is an equation xs��y � x�z�� � � ��xszs for elements y� z�� � � � � zs
of the limitM� it has to hold in an approximationMi as well� According
to the claim� �ij�y� � �x�� � � � � xs�Mj for j � i� hence y � �x�� � � � � xs�M�

The validity of the implication �a�  �b� is forced by our choice of
a free direct summand in the construction of a modi�cation� Let f �M
be any element �� xM� Trivially there is a homomorphism R � M�
� �� f� So it is enough to show that if �N� � g�� is a type s modi�cation
of �N� g� and there is a map � � N � M� ��g� � f� then this map can be
extended to �� � N� � M� ���g�� � f� Suppose that N� � �N � Rs��Rw�
w � y � �x�e� � � � � � xses�� Since xs����y� � �x�� � � � � xs�M and M is x�
regular� there are elements e��� � � � � e

�
s �M such that ��y� � x�e

�
��� � ��xse

�
s�

Thus take �� to be the map induced by � and the assignment ei �� e�i�

Of course� the implication �a� �b� of the preceding proposition does
not help in the construction of a big Cohen�Macaulay module� However�
the idea in its proof� namely to compare a sequence of modi�cations to
some �universal� object� is very useful�

Lemma ������ Let R be a Noetherian local ring which is a residue class

ring of a Gorenstein ring� Then there exists a non�nilpotent element c � R
such that for every system of parameters x and every sequence �R� �� �
�M�� f�� � � � � � �Mr� fr� of x�modi�cations one has a commutative dia�
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gram

�M�� f�� ��� �M�� f�� ��� � � � ��� �Mr��� fr��� ��� �Mr � fr���y��

��y��

��y�r��

��y�r

�R� ��
c

��� �R� c�
c

��� � � �
c

��� �R� cr���
c

��� �R� cr�

the commutativity including �i�fi� � ci� i � 
� � � � � r�

Proof� Take c as in ������ i�e� non�nilpotent and

c � ��x�� � � � � xs� � xs�����x�� � � � � xs� � 


for every system of parameters x and s � 
� � � � � dimR � ��
Naturally �� � id� Suppose �i has been chosen� If

Mi�� � �Mi � Rs��Rw�

w � y � �x�e� � � � � � xses��

xs��y � x�z� � � � � � xszs� zj �Mi�

then �i�y� � �x�� � � � � xs� � xs��� and there are elements e��� � � � � e
�
s � R for

which c�i�y� � x�e
�
� � � � � � xse

�
s � The homomorphism �� � Mi � Rs � R�

���g� � c�i�g� for g � Mi� ���ei� � e�i� factors through Mi��� yielding the
desired map �i���

Suppose R has characteristic p� and let F denote the Frobenius
functor� Given an R�module M and f � M� we write F�f� for � � f �
F�M� � RF � M� We want to investigate how modi�cations behave
under F� With the standard meanings of y� zi � w�M� we have

xps��F�y� � xp�F�z�� � � � �� xpsF�zs��

F�w� �F�y�� �xp�F�e�� � � � �� xpsF�es���

F�M�� � �F�M��F�Rs���RF�w��

and F�e��� � � � �F�es� form a basis of F�Rs� �� Rs� see ����� � ������ This
shows that if �M� � f�� is an x�modi�cation of �M� f�� then �F�M���F�f���
is an xp�modi�cation of �F�M��F�f���

All the arguments necessary to prove the existence of big Cohen�
Macaulay modules in characteristic p have now been collected� Let R
be a Noetherian local ring of characteristic p� Note that a system of

parameters x of R is a system of parameters of �R� and every x�regular �R�
module is also an x�regular R�module� Therefore we may assume that R is
complete� According to ����� the existence of a degenerate x�modi�cation
�N� g� of �R� �� must be excluded� Suppose �N� g� is degenerate and of
type �s�� � � � � sr�� Let us now iterate the application of the Frobenius
functor to the given data� After the e�th iteration we have reached an xp

e

�
modi�cation �N�e�� g�e�� of �R� ��� Since �N� g� is degenerate� i�e� g � xN�
�N�e�� g�e�� is degenerate� too� i�e� g�e� � xp

e

N�e�� Since R is complete� �����
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can be invoked� there exists a homomorphism �r � N�e� � R such that
cr � �r�g�e��� However� g�e� � xp

e

N�e�� so cr � �xp
e

� for all e� SinceT
�xp

e

� � 
� c must be nilpotent � a contradiction�

Theorem ������ Let R be a Noetherian local ring of characteristic p � 
�
and x a system of parameters� Then there exists an x�regular module M�

In particular R has a big Cohen�Macaulay module�

An equational criterion for degeneracy of modi�cations� In the coming
section we want to derive the existence of big Cohen�Macaulay modules
in characteristic zero from their existence in characteristic p� The key
argument will be Hochster�s �niteness theorem which guarantees the
solubility of certain systems of polynomial equations over some local
ring of characteristic p provided there is a solution in characteristic zero�
The following proposition gives a su�ciently detailed description of the
equations to be used� Combined with ����� it is a criterion for the existence
of x�regular modules� in particular the existence of big Cohen�Macaulay
modules�

Proposition ����	� Let n � Z� n 	 �� and let s�� � � � � sr � Z with 
 �
s�� � � � � sr � n � �� Then there exists a set S�s�� � � � � sr� of polynomials

p � Z�X�� � � � � Xn� Y�� � � � � Ym�� m determined by s�� � � � � sr � such that for every
ring R and every sequence x � x�� � � � � xn � R the following are equivalent	

�a� there is a degenerate x�modi�cation �N� g� of �R� �� of type �s�� � � � � sr��

�b� there exist y�� � � � � ym � R such that p�x�� � � � � xn� y�� � � � � ym� � 
 for all

p � S�s�� � � � � sr��

Proof� Consider a sequence

�R� �� � �M�� f�� �� � � � �� �Mr� fr� � �N� g��

�Mi� fi� being a modi�cation of �Mi��� fi��� of type si� Mi is constructed
by adding generators ei�� � � � � e

i
si
and a relation wi � yi� �x�ei�� � � ��xsie

i
si
�

to Mi��� so

N � Mr � �
rM

j��

Fj��
rX

v��

Rwv �

The module M� � R is simply generated by e�� � �� and Fi has the basis
ei�� � � � � e

i
si � Writing yi as a linear combination of the basis elements one

obtains alij � R such that

yi �
i��X
j��

sjX
l��

ajile
j
l �

wi �
i��X
j��

sjX
l��

ajile
j
l � �x�e

i
� � � � � � xsie

i
si��

�������������
i � �� � � � � r����
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The condition xsi��yi � �x�� � � � � xsi�Mi�� can be formulated in
Li��

j��Fj �

xsi��yi �

siX
u��

xug
u
i �

i��X
v��

bviwv

with gui �
Li��

j��Fj � b
v
i � R� Expressing the gui in the given basis ofLi��

j��Fi�� and substituting the right sides of ��� for yi and wi yields

i��X
j��

sjX
l��

xsi��a
j
ile

j
l���

�
siX
u��

i��X
j��

sjX
l��

xuc
uj
il e

j
l �

i��X
v��

	v��X
j��

sjX
l��

bvi a
j
vle

j
l �

svX
l��

bvi xle
v
l



� i � �� � � � � r�

Each of these equations relating elements of the free module
Li��

j��Fi
splits into its components with respect to the elements of the given

basis� Replacing the coe�cients ajil � b
v
i � c

uj
il � xu by algebraically independent

elements Aj
il � B

v
i � C

uj
il � Xu over the ring Z and collecting all the terms in

the components of ��� on one side� one obtains a set S��s�� � � � � sr� of
polynomials over Z which depends only on �s�� � � � � sr��

We have seen that an x�modi�cation of type �s�� � � � � sr� leads to a

solution of the system S��s�� � � � � sr� in which the variables Aj
il � B

v
i � C

uj
il

take values in R whereas x�� � � � � xn are substituted for X�� � � � � Xn� Con�
versely� given such a solution� one de�nes the elements yi and wi by their
representations in ���� The validity of ��� then guarantees that one has
constructed a chain of modi�cations�

Next we write down what it means for �Mr � fr� to be degenerate� The
element fr is just the residue class of e�� � � in Mr � Therefore �Mr � fr� is
degenerate if and only if

e�� � x�
rM

j��

Fj� �
rX

v��

Rwv �

This adds an �r � ���th relation to the system ����

e�� �
nX

u��

rX
j��

sjX
l��

xuc
uj
r���le

j
l �

rX
v��

�
v��X
j��

sjX
l��

bvr��a
j
vle

j
l �

svX
l��

bvr��xle
v
l ��

Accordingly we enlarge our sets of indeterminates and of equations�
In view of what must be proved� there is no need to distinguish the

variables Aj
il � B

v
i � C

uj
il � We order them in some sequence and rename them

Y�� � � � � Ym�
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Exercise


����� Let �R� m � k� be a Noetherian local ring of dimension n� M a big Cohen�
Macaulay module� and y a system of parameters� Prove
�a� H i

m
�M� � � for i � �� � � � � n� � and Hn

m
�M� �� ��

�b� Hi�y� M� � � for i � �� � � � � n and H��y� M� �� ��
�c� y is M�quasi�regular�

�d� ExtiR�k�M� � � for i � �� � � � � n� � and Extnk�k�M� �� ��

�Use �������

��	 Hochster�s �niteness theorem

The following theorem is fundamental for the application of characteris�
tic p methods to �local� rings containing a �eld of characteristic zero� Let
X � X�� � � � � Xn� Y � Y�� � � � � Ym be families of independent indeterminates
over Z� Then we call a subset E of Z�X �Y � simply a system of equations

�over Z�� It has a solution of height n in a Noetherian ring R if there are
families x � x�� � � � � xn� y � y�� � � � � ym in R such that

�i� p�x� y� � 
 for all p � E� �ii� heightxR � n�

Note that condition �ii� implies xR �� R �by de�nition� heightR � ���

Theorem ��	�� �Hochster�� �a� Suppose that the system E of equations has

a solution of height n in a Noetherian ring R containing a �eld� Then E
has a solution x�� y� in a local ring R� of characteristic p � 
 such that x�

is a system of parameters for R��

Moreover� R� can be chosen as a localization of an a�ne domain over

a �nite �eld with respect to a maximal ideal�

�b� If� in addition� R is a regular local ring such that x is a regular system

of parameters� then the ring R� in �a� can be chosen as a regular local ring

with regular system of parameters x��

The theorem suggests the following strategy for proving a statement
S about Noetherian rings containing a �eld�
�i� prove S for local rings of characteristic p � 
�
�ii� show that there exists a family �Ei�i�I of systems of equations with
the property that S holds for R if and only if none of the systems Ei has
a solution of the appropriate height in R�

Both steps �i� and �ii� have been carried out for the statement �If
R is local and x a system of parameters� then there exists an x�regular
R�module�� see ������ ������ and ������ Thus one obtains

Theorem ��	�� �Hochster�� Let R be a Noetherian local ring containing a

�eld� and x a system of parameters for R� Then there exists an x�regular

R�module M� In particular� R has a big Cohen�Macaulay module�
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The proof of ����� falls into three parts� �i� the reduction to its part
�b�� �ii� the reduction to the case in which R is the localization of an
a�ne algebra� and �iii� the �nal step�

Before we set out for the proof of ������ we show that certain conditions
of linear algebra over a regular local ring can be formulated by stating
that the ring elements involved and some auxiliary elements satisfy a
suitable system of equations�

The equational presentation of acyclicity� Some conditions for elements in
a ring R and vectors and matrices formed by them are evidently of an
equational nature� for example� the membership of a vector in a �nite
submodule of a free module of �nite rank �especially that of an element
in a �nite ideal� and the assertion that a sequence of matrices forms a
complex� The crucial fact for regular local rings is that the acyclicity of
a complex can also be cast into equational conditions�

Lemma ��	��� Suppose R is a regular local ring with regular system of

parameters x�� � � � � xn� and let the matrices �p� � � � � �� represent the linear

maps in a �nite free resolution over R� Denote the family of the entries of

all the �i by z � �z�i�jk��

Then there is a set A of polynomials over Z in the indeterminates

X � X�� � � � � Xn� the family of indeterminates Z � �Z �i�
jk � representing the

entries of all the matrices �i� and auxiliary indeterminatesW � W�� � � � �Wu

such that the following holds	

�a� there are w � w�� � � � � wu � R for which x� z�w is a solution of A�

�b� whenever x�� z��w� are specializations of X �Z �W in a regular local ring

R� satisfying the systems of equationsA and such that x� is a regular system

of parameters� then the complex formed by the matrices ��i with entries z�i�jk
�

is acyclic�

Proof� We use the Buchsbaum�Eisenbud acyclicity criterion ������� Let
ri be the �expected� rank of �i� Then grade Iri��i� 	 i� For i � dimR
this is equivalent to the existence of elements aij � �x�� j � �� � � � � n � i�
for which Iri��i� � �ai�� � � � � ai�n�i� contains a power of each of the xl � For
i � dimR� the condition grade Iri��i� 	 i just says � � Iri��i�� Thus the
grade condition of the acyclicity criterion can be interpreted equationally�
In R� we use the converse direction of the acyclicity criterion�

This lemma describes very precisely which indeterminates and equa�
tions between them must be introduced in order to transfer objects of
linear algebra represented by matrices and some of their properties P
from the regular local ring R to another regular local ring R� of the same
dimension via a generic presentation as in ������ Let us simply say that P
has a regular equational presentation� The following corollary lists some
properties with regular equational presentations�
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Corollary ��	�	� Let �R� m � be a regular local ring� U � V submodules of

Rr� v � Rr� W a submodule of Rs� and � � Rr � Rt a linear map� Then the

following properties have regular equational presentations	

�a� U � Ker��
�b� V�U �� Rs�W �

�c� v �� U�

�d� ExtiR�R
r�U� R� �� Rs�W for some �xed i�

�e� dimRr�U � d for some integer d �

Proof� �a� We choose a system u�� � � � � uq of generators of U and de�ne
the linear map � � Rq � Rr by sending the i�th basis vector to ui� Then

the sequence Rq
�
�� Rr

�
�� Rt can be extended to a �nite free resolution

F� of Coker�� By virtue of the previous lemma the acyclicity of F� has a
regular equational presentation� and the acyclicity includes the condition
U � Ker��

�b� The given isomorphism V�U �� Rs�W and the choice of a system
of generators of U as above induce a commutative diagram


 ����� Rq ����� Rq�s
�

����� Rs ����� 


�

��y �

��y �

��y

 ����� U ����� V ����� V�U ����� 


with exact rows and epimorphisms �� �� �� Conversely� given such a
diagram� one has Ker � � ��Ker ��� In other words� a system of generators
of W is obtained by projecting a system of generators of Ker � onto the
last s coordinates� Let T � Ker �� After the speci�cation of matrices for
�� �� � it is su�cient that the conditionT � Ker � has a regular equational
presentation� and this is warranted by �a� since � can also be considered
as a linear map with target Rr �

�c� Set V � U � Rv� then V�U �� 
� and so V�U �� Rs�W with s � 

and W � m Rs� The condition V�U �� Rs�W has a regular equational
presentation by �b�� and the same evidently holds for W � m Rs�

�d� Again we choose an epimorphism � � Rq � U and extend it to
a free resolution F� of Rr�U� Let �j � j � �� � � � � p be the maps in F��

Then ExtiR�R
r�U� R� �� Im��i �Ker�

�
i�� �here

� denotes the R�dual�� Set
M � Im��i and N � Ker��i��� Since the acyclicity of the resolution
and the condition N � Ker��i�� have a regular equational presentation

�for M � Im��i this is trivial�� Ext
i
R�R

r�U� R� �� N�M also has such a
presentation� and an application of �b� concludes the argument�

�e� One has dimR � dimRr�U � gradeRr�U since R is a regular

local ring� However� gradeRr�U � minfi � ExtiR�R
r�U� R� �� 
g� and

the vanishing and non�vanishing of Ext can be captured by equations
according to �d��
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The reduction to the a�ne case� The reader should note that we are free
to extend the set of indeterminates appearing in E and the system E itself�
Moreover� we can also change the family X of distinguished variables
that guarantees the height of the solution� We only have to make sure
that the elements to which the variables X will �nally specialize generate
an ideal of height n�

The very �rst step is a routine matter� we choose a prime ideal
p minimal over �x� such that height p � n� then we complete Rp with

respect to the p Rp �adic topology� and �nally replace R by �Rp � Because of
Cohen�s structure theorem A��� we can write R as a residue class ring of
a regular local ring �containing a �eld�� say R � S�I where I is generated
by elements b � b�� � � � � bs and S has a regular system of parameters
a � a�� � � � � ar � Extend the set of indeterminates by A � A�� � � � � Ar and

B � B� � � � � Bs� and modify the system E to a system eE as follows� each
equation p�X �Y � � 
 is replaced by the equation

p�X �Y � � Cp�B� � � � � � CpsBs

where the Cpj are new indeterminates�

Next we enlarge eE by further equations expressing �i� the condition
that dim S��b�� � � � � bs� � n and �ii� the fact that a power of each ai lies in
the ideal generated by b and preimages of the xj � While the equations
for �ii� simply exist because x is a system of parameters of R� we must
invoke ������e� for �i��

Next suppose part �b� of the theorem has been proved� Then we

can �nd a solution ex� ey to the system eE in a regular local ring eS in
which A specializes to a regular system of parameters ea� We simply set
R� � S ���b��� The original system E is solved by the residue classes x�

and y� in R� of the families ex and ey� Moreover� dimR� � n because of
the extra equations for �i� above� and x� is a system of parameters by the
additional equations for �ii��

The reduction to the a�ne case� For the next reduction step Artin�s ap�
proximation theorem will be crucial� In order to explain it we need the
theory of Henselian local rings� We must content ourselves with a very
brief sketch� referring the reader to Grothendieck ������ IV� x��� Nagata
������ or Raynaud ��
�� for a full treatment� A local ring �R� m � is
Henselian if it has the following property� suppose f � R�X� is a monic
polynomial such that its residue class �f modulo m R�X� has a factor�
ization �f � g�h� with monic polynomials g�� h� � �R�m ��X� for which
�g�� h�� � �R�m ��X�� then there exist monic polynomials f� g � R�X� such
that f � gh and �g � g�� �h � h�� A more abstract characterization is that R
is Henselian if and only if every R�algebra S which is a �nite R�module
is a product of local rings�
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Hensel�s lemma says that a complete local ring is Henselian� Moreover�
for each local ring �R� m � there exists a Henselization �Rh� m h� which� in
a sense� is the smallest Henselian local ring containing R� One has local

embeddings �R� m � � �Rh� m h� � � �R� �m �� and m Rh � m h� The ring Rh is a
direct limit of subrings S each of which is the localization of a module�
�nite extension of R with respect to a maximal ideal lying over m � More
precisely� S has the form �R�X��f��m �X� where f � Xn�cn��X

n��� � � ��c�
is a monic polynomial with c� � m � c� �� m � �It follows that Rh is a �at
extension of R��

We can now formulate �a special case of� Artin�s approximation
theorem �����

Theorem ��	��� Let R be a local ring which is a localization of an a�ne

algebra over a �eld k� Let E be a system of polynomial equations over R

in n variables� If E has a solution x � �Rn� then it has a solution x� � �Rh�n�
Furthermore� given t� the solution x� can be chosen such that it approximates

x to order t� that is� x � x�mod m t �Rn�

We will not need the statement about approximation to order t� it
has only been included for completeness�

Proposition ��	��� Let E � Z�X �Y � be a system of equations with X �
X�� � � � � Xn and Y � Y�� � � � � Ym � Suppose that E has a solution x� y in a

regular local ring R that contains a �eld K and such that x is a regular

system of parameters� Then there exist an algebraically closed �eld L of

like characteristic� an a�ne domain A over L� and a maximal ideal m of A
with Am regular such that E has a solution x�� y� in Am for which x� is a

regular system of parameters of Am �

Proof� We may assume R is complete� By Cohen�s structure theorem
A���� R is just a formal power series ring K��x�� in which the elements
of x are the indeterminates� It is obviously harmless to replace K by an
algebraic closure L�

Next the indeterminates X in the system E are replaced by the
elements of x so that we obtain a system of polynomial equations E�

in the unknowns Y over L�x�� By hypothesis it has a solution in
the completion L��x�� of A� � L�x��x� with respect to its maximal ideal
m � � xA�� Thus the approximation theorem yields a solution in the
Henselization of A�� and therefore in an extension A�� � �A��X���f���m � �X�

where f � Xn � cn��X
n��� � � � � c� is a monic polynomial with c� � m ��

c� �� m �� It is easily veri�ed that dimA�� � n and that the image of x
generates the maximal ideal of A��� It follows that A�� is a regular local
ring for which x is a regular system of parameters� In order to arrive at
an integral domain A we replace A��X���f� by the residue class ring with
respect to its unique minimal prime ideal contained in �m �� X�A��X���f��
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The �nal step� Let L� A� m � x�� and y� be as in ������ We rename x� and
y� by setting x � x�� y � y�� Since L is algebraically closed� the injection
L� A induces an isomorphism L �� A�m by Hilbert�s Nullstellensatz in
its algebraic version� see A���� In other words� A �� L� m as an L�vector
space� This implies that A � L�z�� � � � � zr� where z�� � � � � zr generates the
ideal m � We write A �� L�Z��I � Z � Z�� � � � � Zr being indeterminates over
L� The ideal I is �nitely generated by polynomials f�� � � � � fs� Let C � L
be the �nite set of coe�cients appearing in

��� the polynomials f�� � � � � fs�

��� n � m polynomials expressing x�� � � � � xn and y�� � � � � ym in terms of
z�� � � � � zr �

��� a polynomial g �� m and polynomials hij such that gzi �
P

hijxj for
all i� �The polynomials hij can be found since x generates m Am ��

Let L� be the sub�eld generated by C over the prime �eld of L and
set R� � L��z�� � � � � zr��

The �rst point to be observed is that I � L��Z� is generated by
f�� � � � � fs� since the extension L��Z� � L�Z� is faithfully �at� This
implies R� �� L��Z���f�� � � � � fs�L��Z�� therefore A � L �L� R

�� Obviously
z�� � � � � zr generate a maximal ideal m � of R�� and R��m � �� L�� hence
R� � L�� �z�� � � � � zr�R�� The extension R�

m � � Am is �at� and so dimR�
m � �

dimAm � n by A���� The solution x� y is contained in R�� and m �R�
m � is

generated by x because of ��� above�
Let us �rst treat the case of characteristic 
� after all� the descent

from characteristic 
 to positive characteristic is the main point of ������
�In positive characteristic it only remains to replace L� by a �nite �eld
of the same characteristic�� With the notation just introduced� L� is the
�eld of fractions of the �nitely generated Z�algebra B � Z�C�� and apart
from the fact that the coe�cients no longer form a �eld� almost nothing
is lost if we replace L� by B�

�i� R�� � B�z�� � � � � zr� is a domain containing x� y� This is obvious�

�ii� p � �z�� � � � � zr�R� � R�� is a prime ideal of height n� evidently p is a
prime ideal� and it has the same height as its extension in R�� a ring of
fractions�

�iii� p � �z�� � � � � zr�R�� and R�� � B � p � This is an immediate consequence
of R� � L� � �z�� � � � � zr�R��

�iv� p R��
p is generated by x because C contains all the coe�cients appearing

in ��� above and g �� p �

For the very last step we choose a maximal ideal q of B not containing
the constant coe�cient of the polynomial g appearing in ��� above� This
is possible since Z and� hence� B are Hilbert rings� and for the same
reason B�q is a �nite �eld �see A����� We claim that replacing all the
data by their residue classes mod q gives us the desired solution of E in
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a local ring of characteristic p�
First note that x generates �p since �p is generated by the residue classes

�zi of the zi� and these in turn can be written as linear combinations of
the �xj because the polynomial g of ��� above is non�zero modulo �p �

Second� height �p � n as will now be shown� Let P � q � p � Then
height P � height q �dim�R��

P �q R��
P � by A��� applied to the homomorphism

Bq � R��
P � and therefore

height �p � dim�R��
P �q R��

P � 	 height P � height q �

The ring R��� a residue class ring of a polynomial ring over Z� and thus
of a Cohen�Macaulay ring� is catenary� see ������� Since R�� is also a
domain�

height P � height p � height P �p � height p � height q �

or height �p 	 height p � n� as desired�
In positive characteristic the argument is essentially the same� one

only has to replace Z by the prime �eld of L��

Exercise


���	� Let R be a regular local ring and U� M� N 	nite R�modules� given as
quotients of 	nite free R�modules by submodules� Show that both the acyclicity
and the non�acyclicity of a complex U � M � N have regular equational
presentations� �Describe the maps by matrices��

��� Balanced big Cohen�Macaulay modules

Big Cohen�Macaulay modules M lack many of the properties of �nite
Cohen�Macaulay modules� For example� let R � K��X� Y �� and M �
R � Q� where Q is the �eld of fractions of R��Y �� Then X is obviously
regular on M� and M�XM �� R��X�� Thus M is �X� Y ��regular� but not
�Y �X��regular� However� it is important for the applications in Chapter 
and an interesting fact in itself that every local ring R possessing a
big Cohen�Macaulay module even has a balanced big Cohen�Macaulay
module� i�e� a module M such that every system of parameters is an M�
sequence� More precisely� we want to prove that the m �adic completion
of any big Cohen�Macaulay module is balanced� Our main argument
will be that ����� has a converse for complete modules�

Theorem ������ Let R be a ring� x � x�� � � � � xn a sequence of elements of

R� and M an R�module� Let I � xR� and denote the I�adic completion of

M by �M � Then the following are equivalent	

�a� x is M�quasi�regular�

�b� x is �M�quasi�regular�

�c� x is �M�regular�
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Proof� By de�nition quasi�regularity includes the requirement IM �� M�

Since Ij �M�Ij�� �M is naturally isomorphic with IjM�Ij��M� one has a
commutative diagram

M � �R�I��X�� � � � � Xn� ����� grI M��� ���
�M � �R�I��X�� � � � � Xn� ����� grI �M

Together with the description of quasi�regularity by the conclusion of
����� this diagram immediately yields the equivalence of �a� and �b��

Theorem ����� says that �c� implies �b�� We want to prove the crucial
implication �b� �c� by induction on n� and recall the results of Exercise
������� namely
�i� if x�z � I iM for z � M� then z � I i��M�
�ii� the sequence x�� � � � � xn is �M�x�M��quasi�regular�

Let z �M such that x�z � 
� Then� by �i�� z �
T
Ij �M � 
� and hence x� is

�M�regular� Because of �ii� it remains to prove that �M�x� �M �� � �M�x� �M�b�
There is a natural exact sequence


� �x� �M�� �� �M �� � �M�x� �M�b�� 
�

in which �x� �M�� is the completion of x� �M with respect to its subspace
topology �see ��	
�� Theorem ���� note that the quotient topology on
�M�x� �M is just the I�adic topology�� The subspace topology is given

by the �ltration �x� �M � Ij �M�� Of course x� �M �� �M is complete in its
own I�adic topology� and we are left to verify the following claim of
Artin�Rees type� if x is M�quasi�regular for some R�module M� then
x�M � IjM � Ij��x�M� But this follows immediately from �i��

Since quasi�regularity of a sequence is invariant under permutations

of its elements� one can permute �M�regular sequences�

Corollary ������ With the notation of ����� assume that x � x�� � � � � xn is
�M�regular� Then for every permutation � of f�� � � � � ng the sequence x� �

x����� � � � � x��n� is �M�regular�

Another consequence is the existence of balanced big Cohen�Macau�
lay modules�

Corollary ������ Let �R� m � be a Noetherian local ring� and M a big

Cohen�Macaulay R�module� Then the m �adic completion �M is a balanced

big Cohen�Macaulay module� In particular� if R contains a �eld� it has a

balanced big Cohen�Macaulay module�

Proof� Note that for any system of parameters x the m �adic and �x��adic
topologies on M coincide� Therefore we can apply ����� to the m �adic
completion�
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Suppose that the system of parameters x � x�� � � � � xn is an M�
sequence� and let y � y�� � � � � yn be an arbitrary system of parameters� By
the standard prime avoidance argument there exists an element w � m

not contained in any minimal prime ideal of �x�� � � � � xn��� or �y�� � � � � yn����
Hence x�� � � � � xn��� w and y�� � � � � yn��� w are systems of parameters�

Note that x�� � � � � xn��� w is an M�sequence� a power of xn being a
multiple of w modulo �x�� � � � � xn���� the element w must be regular on
M��x�� � � � � xn���M� Then w� x�� � � � � xn�� is M�quasi�regular and therefore
�M�regular� Furthermore �M�w �M is an �x�� � � � � xn����regular module for
the local ring �R � R�Rw� By induction on n one may assume that

��y�� � � � � �yn��� is � �M�w �M��regular� too� Then w� y�� � � � � yn�� is �M�regular�
and applying the preceding arguments in reverse order we get that y is

an �M�sequence�
Now the second part of the corollary follows immediately from the

existence of big Cohen�Macaulay modules for local rings containing a
�eld� see ������

Remark ����	� A di erent construction of balanced big Cohen�Macaulay
modules was given by Gri�th in ���� and ���
�� Let R be a Noetherian
complete local domain containing a �eld K � As in the proof of ������ R
is a module��nite extension of a formal power series ring K��x�� where x
is an arbitrary system of parameters� By ����� Theorem ���� there exists
an R�module which is a free A�module �with countable basis�� Such a
module is a balanced big Cohen�Macaulay module ����
�� Proposition
�����

Balanced big Cohen�Macaulay modules are much closer to �nite
modules than is apparent from their de�nition� Sharp ����� developed
the theory of grade for balanced big Cohen�Macaulay modules� similar to
that for �nite modules� using Theorem ����� below as a prime avoidance
argument� Unfortunately� however� the property of being a balanced big
Cohen�Macaulay module is not stable under localization� In Chapter 
we shall introduce a general notion of grade that overcomes this obstacle�

Proposition ������ Let R be a Noetherian local ring� and M a balanced big

Cohen�Macaulay module�

�a� One has dimR�p � dimR for all p � AssM�

�b� in particular AssM is �nite�

�c� AssM consists of the minimal prime ideals of AnnM� and so SuppM �
V �AnnM��

Proof� �a� Let q � SpecR with dimR�q � dimR� Then q is not contained
in a prime ideal p such that dimR�p � dimR� hence not contained in the
union of these prime ideals� So there exists x � q with dimR��x� � dimR�
The element x can be extended to a system of parameters� Thus it is
regular on M� and q �� AssM�
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Part �b� follows immediately from �a��
�c� Let AssM � fp �� � � � � p rg� Since AnnM � p i for all i� it remains to

be shown for the �rst assertion in �c� that fj � AnnM for all f �
Tr

i�� p i

and j � 
� Given such an element f� there exists j with fj�� � 
 in Rp i

for all i� It follows that fjMp i
� 
� and so p i �� Ass fM� On the other

hand� Ass fjM � AssM� Therefore Ass fjM � �� which is only possible
if fjM � 
�

The second assertion in �c� follows from the �rst since� over a Noe�
therian ring� every prime ideal q � SuppM contains a p � AssM�

Theorem ������ Let R be a Noetherian local ring� and M a balanced big

Cohen�Macaulay module� Suppose that x � x�� � � � � xr is an M�sequence�

Then AssM�xM is �nite� and dimR�p � dimR�r for all p � AssM�xM�

Proof� Let q be prime ideal such that dimR�q � dimR� Then Rx� �
AnnM �� q � if q � AssM� then x� �� q � if q �� AssM� then AnnM �� q

by ������ As the number of such prime ideals is �nite� Rx� � AnnM is
not contained in their union� By ����� one therefore �nds an element
y � AnnM with x� � y �� q for all q such that dimR�q � dimR� The
following facts are now obvious�
�i� dim�R��x� � y�� � dimR � �� and M��x� � y�M is a balanced big
Cohen�Macaulay module over R��x� � y��
�ii� x� � y� x�� � � � � xr is an M�sequence�
�iii�M�xM ��M��x� � y� x�� � � � � xr�M�

Set �R � R��x�� y� and �M � M��x�� y�M� Because of �i� and �ii� we
can apply an inductive argument to the �M�sequence �x�� � � � � �xr � By �iii� the
associated primes of M�xM are exactly the preimages of the associated
primes of �M���x�� � � � � �xr�M over �R�

Exercises


���	� Prove that each of the conditions �a�� �b�� and �c� of ����� is equivalent to
�M being a �balanced� big Cohen�Macaulay module�


���
� Let R be a Noetherian local ring� and M a balanced big Cohen�Macaulay
module over R� One sets suppM � fp � SpecR � Mp �p Mp �� �g� Show
�a� Mp is a big Cohen�Macaulay module for Rp if and only if p � suppM�
�b� one has height p � dimRp � dimR for every p � suppM�
�For general M one uses ����
�c� to de	ne suppM� see Foxby ������


����� Let R and M be as in ������ Then verify that the following are equivalent
for p � SpecR�
�a� p � suppM�
�b� there exists an M�sequence a� � � � � � ar with p � Ass�M��a� � � � � � ar�M��
�c� there exists i with 
i�p � M� �� ��
�d� there exists i with H i

p Rp
�Mp � �� ��

�e� H i
p Rp

�Mp � � � for i � �� � � � � height p � � and Hh
p Rp

�Mp � �� � for h � height p �
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Hint� �b� � �c�� localize and consider i � r� �c� � �d�� use ������� �d� � �e�� by
hypothesis on M there exists an M�sequence a�� � � � � ah in p � �e� � �a�� this holds
for arbitrary M by ������

Notes

The results in this chapter on the existence of big Cohen�Macaulay
modules are entirely due to Hochster� as well as the method of their
construction� With one exception we have followed closely Hochster�s
original treatment in ��	�� and his in�uential lecture notes ������ The
exception is the existence of �amiable� systems of parameters� for which
Hochster avoids local cohomology� The results ������ ������ and ����� are
due to Schenzel ������ ����� The proof of Roberts� theorem ����� is a
slight variation of his original argument ��
� introduced by Schenzel
����� in order to obtain a somewhat more general result�

There have been suggestions for modifying Hochster�s methods� Bar�
tijn and Strooker ����� constructed a �pre�Cohen�Macaulay� module by
�monomial modi�cations�� and showed that the m �adic completion of such
a module is a balanced big Cohen�Macaulay module� Our proof of the
existence of such modules is a variant of their arguments� whereas the
�rst construction was given by Hochster in ���
� �based on an extension
of the �modi�cation method��� Gri�th�s work was mentioned in ������
There are several articles which deal with the properties of balanced big
Cohen�Macaulay modules� see Duncan �	��� Sharp ������ ������ Zarzuela
���� and the literature quoted in these papers� Theorem ����� and Exer�
cises ����� and ���� have been taken from Sharp ������ who coined the
notion �balanced� in that article�

A very interesting revision of Hochster�s arguments is due to van
den Dries who introduced methods of model theory to our subject� see
Chapter �� of Strooker ������ A completely di erent construction in
characteristic zero was given by Roberts ���
� who derived the existence
of a �Cohen�Macaulay complex� from resolution of singularities and the
Grauert�Riemenschneider vanishing theorem� We refer the reader to
Hochster and Huneke ��	� for a more extensive list of properties that
have a regular equational presentation�

It is still open whether there exist big Cohen�Macaulay modules for
local rings of mixed characteristic� The most intensive attempts towards
their construction can be found in Hochster�s article ���
��

We saw in ������ that one cannot expect a �nite maximal Cohen�
Macaulay module for every local ring� Of course a local ring of dimen�
sion � has such a module� and also a complete local ring of dimension �
������
 and �������� It is an open question whether there exist �nite
maximal Cohen�Macaulay modules for all complete local rings� A very
special positive result in dimensions � � is due to Hartshorne� Peskine�
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and Szpiro� see ���
�� �������
Hochster�s article ���
� also contains a discussion of the question

whether there exist big Cohen�Macaulay algebras� For positive charac�
teristics Hochster and Huneke ���� have answered this question� if R is
excellent� then the integral closure of R�p where p is a prime ideal with
dimR�p � dimR in an algebraic closure of its �eld of fractions is a big
Cohen�Macaulay module for R �see also Remark �
������

The material on the Frobenius functor has been taken from Peskine
and Szpiro�s ingenious thesis ��	�� Theorem ����	 is just the �rst in
their long series of surprising results� many of which will be dealt with
in Chapter � Kunz�s characterization ����� of regular local rings of
characteristic p and Herzog�s converse ���	� of ����	 were mentioned in
������� More recently� the Frobenius functor was investigated by Dutta
�	�� ���� and Seibert ������
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This chapter is devoted to the consequences of the existence of big
Cohen�Macaulay modules for local rings containing a �eld� Among the
theorems covered� the reader will �nd Hochster�s direct summand theorem
for regular local rings� his canonical element theorem� the Peskine�Szpiro
intersection theorem and its extensions� the theorem of Evans and Gri�th
on ranks of syzygy modules� and� �nally� bounds for the Bass numbers
of modules� These bounds entail surprising characterizations of Cohen�
Macaulay and Gorenstein local rings�

There exist derivations of all the theorems in this chapter avoiding big
Cohen�Macaulay modules� most of them will only be outlined brie�y�
They were found in attempts to prove the theorems in mixed characteris�
tic� With the main exception of Roberts� new intersection theorem �whose
proof in mixed characteristic requires methods beyond the scope of this
book� these e orts have not yet succeeded�

��� Grade and acyclicity

The fundamental argument in Sections ����� is that certain �nite free
complexes become exact when tensored with a balanced big Cohen�
Macaulay module� This section contains the acyclicity criterion on which
our treatment is based�

Let R be a Noetherian ring�

F
�
� 
 �� Fs

�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� and M an R�module� We saw in
������ that F� is acyclic if and only if grade Iri��i� 	 i for i � �� � � � � s�
Here ri �

Ps
j�i����

j�i rankFj is the expected rank of �i� Now we want
to develop a more general criterion by which one can decide whether
F

�
�M is acyclic for a given R�module M� As we shall see� the condition

grade Iri��i� 	 i is just to be replaced by grade�Iri��i��M� 	 i� It will be
crucial that we can use the general criterion for a balanced big Cohen�
Macaulay module M� Therefore we must �rst introduce a concept of
grade which does not exclude non��nite modules�

De�nition ������ Let R be a ring� I an ideal generated by x � x�� � � � � xn�
and M an R�module� If all the Koszul homology modules Hi�x�M�

���
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vanish� then we set grade�I�M� � �� otherwise grade�I�M� � n � h
where h � supfi � Hi�x�M� �� 
g�

Note that by ������ grade�I�M� is well de�ned� it does not depend
on the choice of x� Furthermore� �����	 shows that for a �nite module
M over a Noetherian ring R the de�nition of grade is consistent with
that in Chapter �� There is not much point in considering non��nite
ideals I� for completeness let us de�ne grade�I�M� to be the supremum
of grade�I ��M� where I � ranges over the �nitely generated subideals of I �
�This makes sense because grade is monotone with respect to inclusion of
��nite� ideals� see ������ On the other hand� there is no reason to restrict
ourselves to Noetherian rings� as we shall see below�

Proposition ������ Let R be a ring� I a �nite ideal� and M an R�module�
Then

�a� grade�I�M� � 
� HomR�R�I�M� �� 
� fz �M � Iz � 
g �� 
�

�b� if y � y�� � � � � ym is a weak M�sequence in I � then grade�I�M� 	 m� and
grade�I�M�yM� � grade�I��y��M�yM� � grade�I�M� �m�

�c� if R � S is a �at ring homomorphism� then grade�IS�M � S� 	
grade�I�M�� in particular grade�Ip �Mp � 	 grade�I�M� for p � SpecR�

�d� if R � S is faithfully �at� then grade�IS�M � S� � grade�I�M��

�e� if 
� U �M � N � 
 is an exact sequence of R�modules� then

grade�I�M� 	 minfgrade�I� U�� grade�I� N�g�

grade�I� U� 	 minfgrade�I�M�� grade�I� N� � �g�

grade�I� N� 	 minfgrade�I� U� � �� grade�I�M�g�

�f� if J � I is �nite� then grade�J�M� 	 grade�I�M��

�g� if S is a subring of R containing a system of generators x of I � then
grade�xS�M� � grade�I�M��

Proof� �a� By virtue of ������ one has Hn�x�M� � HomR�R�I�M� for
every system of generators x � x�� � � � � xn of I �

�b� The inequality grade�I�M� 	 m follows immediately from �������
Let � denote residue classes modulo �y�� We have an isomorphism

K��x� �R
�M �� K��x� �R

�R ��R
�M �� K���x� ��R

�M� see ����	� This shows
grade�I� �M� � grade��I� �M�� Now we extend y by a sequence z to a system
of generators of I � Then grade��z�� �M� � grade�I�M� � m by ������� and
grade��z�� �M� � grade���z�� �M� � grade��I� �M� follows as above�

�c� and �d� are immediate consequences of ����	�
�e� One argues as in the proof of ����� but uses the exact sequence

������ of Koszul homology rather than that of Ext� �To carry the analogy
one step further� one could work with Koszul cohomology� see �����
��

�f� It is enough to consider the case in which J � I � �y�� Let I � �x�
and compare H��x�M� and H���x� y��M� via �������
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�g� Let xS denote x as a sequence in S � By ����	 one has K�
�xS��SM ��

K
�
�xS ��S R �R M �� K

�
�x��R M�

Part �g� of ���� explains why the computation of grade can always
be reduced to a situation in which R is Noetherian� one simply replaces
R by the Z�subalgebra generated by a system of generators of I �

For inductive proofs one must be able to decrease grade by passing
to residue classes modulo a regular element� In general� one cannot �nd
such an element in an ideal of positive grade� but one need not go very
far� For simplicity we write I�X� for IR�X� and M�X� for M � R�X��

Proposition ������ Let R be a ring� I and J �nite ideals� andM an R�module�
�a� Suppose grade�I�M� 	 �� Then I�X� contains anM�X��regular element�
�b� One has grade�IJ�M� � min�grade�I�M�� grade�J�M���

Proof� �a� We may replace R by a Noetherian subring� Let x�� � � � � xn
generate I � and set y � x� � x�X � � � � � xnX

n��� If y is a zero�divisor�
then it is contained in an associated prime of M�X�� whether M is �nite
or not� But M�X� is a graded module over the graded ring R�X�� so
by ����� y annihilates a non�zero homogeneous element of M�X� which
necessarily has the form Xpz� z �M� z �� 
� It follows that Iz � 
 which
contradicts our hypothesis�

�b� We go by induction on grade�IJ�M�� If grade�IJ�M� � �� then the
assertion follows from �����f�� If grade�IJ�M� � 
� then grade�I�M� � 

or grade�J�M� � 
 by �����a�� In the other case we may �rst adjoin an
indeterminate because of �����d�� Then IJ contains anM�regular element
y by �a�� now one replaces all data by their residue classes modulo y�
and applies the induction hypothesis in conjunction with �����b��

It remains to add a proposition which describes the special properties
of grade over Noetherian rings R� for these it makes sense to introduce
the notation

depthMp � grade�p Rp �Mp ��

Proposition ����	� Let R be a Noetherian ring� I an ideal in R� and M an

R�module� Then
�a� grade�I�M� � 
 if and only if there exists p � AssM with I � p �

�b� p � AssM � depthMp � 
�
�c� grade�I�M� � inffdepthRp � p � V �I�g�

Proof� �a� One has grade�I�M� � 
 exactly when there exists a non�zero
x �M such that Ix � 
� Over a Noetherian ring� I must be contained in
an associated prime ideal of M�

�b� Because of �a�� depthRp � 
 is equivalent with p Rp � AssMp � and
this holds if and only if p � AssM� �One only needs that p is �nite��

�c� One has grade�I�M� � depthMp for all p � V �I�� So �c� is trivial
when grade�I�M� � �� Suppose that in the case of �nite grade we have
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found P � V �I�X�� such that depthM�X�P � grade�I�X��M�X��� and set
p � R � P � Then

depthMp � grade�p Rp �Mp � � grade�p R�X�P �M�X�P � � depthM�X�P �

Together with grade�I�X��M�X�� � grade�I�M� this yields grade�I�M� �
depthRp � and thus the assertion�

In order to �nd P one proceeds by induction� using the fact that I�X�
contains an M�regular element if grade�I�M� � 
� the case of grade zero
is covered by �a� and �b��

Let � � F � G be a homomorphism of �nite free R�modules� and
M �� 
 an R�module� We say the � has rank r with respect to M� if
grade�Ir����M� 	 �� whereas Ir�����M � 
� We write rank���M� � r�
Note that rank���M� may not be de�ned� Furthermore� rank��� R� �
rank� by ������� For systematic reasons one sets rank���M� � 
 when
M is the zero module�

Proposition ������ Let R be a ring� M �� 
 an R�module� and F� � 
� Fs �
Fs�� � � � � � F� � F� � 
 a complex of �nite free R�modules such that

F��M is acyclic� Let �i denote the map Fi � Fi��� Then rank��i�M� is the
expected rank ri of �i for i � �� � � � � s	 rank��i�M� �

Ps
j�i����

j�i rankFj �

Proof� We choose bases of the free modules� and matrices Ai representing
the homomorphisms �i� Let S be the Z�subalgebra generated by the
entries of all these matrices� They de�ne a complex F �

�
of �nite free

S�modules such that F �
�
�S R � F�� Therefore F �

�
�S M � F� �R M is

acyclic� The ring S is Noetherian� For p � AssS M the complex F �
�
� Sp

is split exact by ������ which furthermore implies that Iri�Ai�p � Sp and
Iri���Ai�p � 
�

Since S is Noetherian� one has grade�Iri�Ai��M� 	 � by ����� Let
I � Iri���Ai�� Assume IM �� 
� and choose z �M such that Iz �� 
� Then
Ass Iz �� �� For p � Ass Iz one has �Iz�p �� 
� and hence IMp �� 
� which
is a contradiction� since Ass Iz � AssM� one even has Ip � 
 as seen
above� It follows that rank�Ai�M� � ri�

By the de�nition of rank and ���� it is irrelevant for rank�Ai�M�
whether one considers Ai as a matrix over S or R�

Theorem ����� �Buchsbaum�Eisenbud� Northcott�� Let R be a ring� M
an R�module� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� Let ri be the expected rank of �i� Then

the following are equivalent	

�a� F� �M is acyclic�

�b� grade�Iri��i��M� 	 i for i � �� � � � � s�
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The remark about ri that follows ������ applies here� too� each of �a�
and �b� implies that ri 	 
 for i � �� � � � � s�

Proof� As in the proof of ���� one reduces the theorem to the case in
which R is Noetherian� Then the proof is mutatis mutandis the same as
that of ������� We indicate some of the modi�cations� There is nothing
to prove if M � 
� so assume that M is non�zero�

For �a�  �b� one uses ���� to get grade�Iri��i��M� 	 �� Then
one adjoins an indeterminate� which a ects neither the acyclicity of
the complex nor the grades under consideration� By virtue of ����
one �nds an M�regular element in the intersection of the ideals Iri��i��
and completes the proof of �a�  �b� as in the case of ������� It is
not necessary to pass from R to R��x�� instead one substitutes M�xM
for M in order to apply the induction hypothesis� If xM � M� then
grade��x��M� � grade�Iri��i��M� � � for all i�

For �b�  �a� one sets Mi � Coker�i���M� and replaces depthRp

by depthMp � and Fi by Fi �M� That �Mi�p is free for depthRp � i� must
be modi�ed to ��Mi�p is a direct sum of �nitely many copies of Mp if
depthMp � i��

We introduce a new invariant of a complex and provide a lemma
which is fundamental for the results in Sections ������ �Recall that
codim I � dimR � dimR�I for an ideal I in a local ring R��

De�nition ������ Let �R� m � be a Noetherian local ring�

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� and ri the expected rank of �i� We
de�ne the codimension of F� by

codimF� � inffcodim Iri��i�� i � i � �� � � � � sg�

If F
�
is acyclic� then codimF

�
	 
 by the Buchsbaum�Eisenbud

acyclicity criterion ������ �or ����� since grade I � codim I for all ideals�
Conversely� if codimF

�
	 
� then F

�
need not be acyclic� but F

�
�M is

acyclic for a balanced big Cohen�Macaulay module M�

Lemma ������ Let �R� m � be a Noetherian local ring� and F� a complex of

�nite free R�modules as above� Suppose that codimF
�
	 
� Then F

�
�M

is acyclic for every balanced big Cohen�Macaulay module M�

Proof� In view of ���� it is enough that grade�Iri��i��M� 	 i for i �
�� � � � � s� In fact� if I is an ideal with codim I 	 i� then it contains a
sequence x�� � � � � xi which is part of a system of parameters� as is easily
shown by induction on i� Such a sequence is M�regular�
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In Section �� we shall investigate lower bounds for the numbers ri�
A �rst result in this direction can be recorded already� Let �R� m � be a
local ring� We say that a complex of �nite free R�modules F

�
as in ���	

is minimal of length s if Fs �� 
 and �i�Fi� � m Fi�� for all i� Considering
minimal complexes only is not a severe restriction since every complex
of �nite free modules over a local ring decomposes into a direct sum of
a minimal such complex and a split exact one�

Proposition ������ Let �R� m � k� be a local ring� and F
�
a length s minimal

complex of �nite free R�modules as above� Suppose there exists an R�
module M such that M �� m M and F

�
�M is acyclic� Let ri denote the

expected rank of �i� Then ri 	 � for i � �� � � � � s�

Proof� One has rs � rankFs 	 � by hypothesis� and it follows from
Proposition ���� that ri � rank��i�M� 	 
 for all i� Arguing inductively�
we must only show r� � 
 implies r� � 
�

If r� � rank����M� � 
� then I�����M � 
� and so �� �M � 
�
Therefore we have an exact sequence

F� �M
���M
���� F� �M �� 
�

Consequently F��M� k � F��M� k � 
 is also exact� By hypothesis
M �� m M� equivalently� M � k is a non�zero k�vector space� Thus the
sequence F��k � F��k � 
 must be exact� On the other hand� ���k � 

since ���F�� � m F�� Hence we get F� � 
� and r� � rankF� � r� � 
�

Exercises

������� Let R be a ring� I a 	nitely generated ideal� and M an R�module�
Furthermore let R� be a polynomial ring over R in an in	nite number of
indeterminates� I� � IR�� and M� � M � R�� Prove the following�
�a� If grade�I�M� � �� then every maximal weak M��sequence in I� has length
equal to grade�I�M��
�b� One has grade�I�M� � � if and only if I� contains an in	nite weak M��
sequence�
�c� One has grade�I�M� � inffi � ExtiR��R��I��M�� �� �g�

�d� For Noetherian R one has grade�I�M� � inffi � ExtiR�R�I�M� �� �g�
�e� Suppose that the number of associated prime ideals of M��x�M is 	nite for
every weak M�sequence x� �For example� this holds when M is a balanced big
Cohen�Macaulay module over a Noetherian local ring� see ������� Then one can
drop the subscript � in �a�� �b�� and �c��

������� For a 	nite module M over a Noetherian ring R we have grade�I�M� � �
if IM � M� For non�	nite M this may be false� Find an example�

������� Let �R� m � be a Noetherian local ring� and M an R�module� Prove
�a� if M �� m M� then depthM is 	nite�
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�b� if depthM is 	nite� then depthM � dimR�
�c� depthM � inffi � H i

m
�M� �� �g�

�d� depthM � dimR �� �M is a �balanced� big Cohen�Macaulay module�

������� Sometimes it may be more natural to work with homology modules
rather than the ideals Iri ��i�� Therefore it is worth while reformulating the
crucial condition for acyclicity� One must however use the homology of F�

�
�

HomR�F�
� R�� With the notation of 
����� show the following are equivalent�

�a� grade�Iri ��i��M� � i for i � �� � � � � s�

�b� grade�AnnH i�F�
�
��M� � i for i � �� � � � � s�

������� Generalize the �lemme d�acyclicit�e� ������ to the case of arbitrary R�modules
Li�

������� Let R be a Noetherian local ring and M a balanced big Cohen�Macaulay
module� Prove TorRi �N�M� � � for all 	nite R�modulesN and i � �� In particular�
M is faithfully �at if R is regular�

��� Regular rings as direct summands

Let R and S be Noetherian local rings such that R � S and S is a
�nite R�module� Suppose that R is regular and� for the moment� S is a
Cohen�Macaulay ring� Since every system of parameters of R is a system
of parameters of S � the R�module S � having �nite projective dimension�
must be free� Furthermore the element � � R is part of an R�basis of S �
and it follows that R is a direct summand of S as an R�module� Quite
surprisingly this holds true regardless of the Cohen�Macaulay property
of S � at least when S contains a �eld�

The argument above uses the fact that a system of parameters of R
is an S�sequence� As we shall see� a much weaker property su�ces� It is
given by the following �monomial theorem��

Theorem ������ Let S be a Noetherian local ring containing a �eld� Then for

every system x � x�� � � � � xn of parameters and all t 	 
 one has xt� � � � x
t
n ��

�xt����

Proof� By ����� there exists an x�regular module M� Suppose that
xt� � � � x

t
n � �xt���� Then xt� � � � x

t
nM � xt��M� The associated graded

module gr�x�M is an �R��x��X�� � � � � Xn���module in a natural way� and� a

fortiori� Xt
� � � �X

t
n gr�x� M � �Xt��

� � � � � � Xt��
n � gr�x�M�

On the other hand� since x is an M�sequence� the associated graded
module gr�x� M is isomorphic to M�R��x��X�� � � � � Xn� �see ������� There�
fore

�gr�x�M�
�
�X t��

� � � � � � X t��
n � gr�x� M

��
M

Xe�
� � � �X

en
n �M�xM�

as an R�module where the direct sum is taken over all monomials

Xe�
� � � �X

en
n �� �Xt��

� � � � � � Xt��
n ��

This is a contradiction since Xt
� � � �X

t
n �� �Xt��

� � � � � � Xt��
n ��
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The proof of ���� shows much more than stated in the theorem�
let I�� J� be ideals in Z�X�� � � � � Xn� generated by monomials� and I�� J�
the ideals generated by the corresponding monomials in x�� � � � � xn� then
I� � J� � I� � J��

Suppose that S � R � C as an R�module� Then for every ideal
I � R one has IS � I � IC � hence IS � R � I � Let x � x�� � � � � xn
be a system of parameters of R� If R is regular� then� as the proof
of ���� shows� xt� � � � x

t
n �� �xt���� so xt� � � � x

t
n �� xt��S � for otherwise

xt� � � � x
t
n � �xt���S � R � �xt���� This simple observation proves the easy

part of the following lemma�

Lemma ������ Let �R� m � be a regular local ring and x � x�� � � � � xn a

regular system of parameters� Suppose that S � R is an R�algebra which

is �nite as an R�module� Then R is a direct R�summand of S if and only if

xt� � � � x
t
n �� xt��S for every t 	 
�

Proof� Since the m �adic completion �R is a faithfully �at extension of R�

the same holds true for the extension S � �R of S � Thus xt� � � � x
t
n �� xt��S

implies that xt� � � � x
t
n �� xt��S � �R�

Suppose that the implication still open holds under the additional

assumption that the regular local ring is complete� Then �R is a direct �R�

summand of S � �R and the natural homomorphism �given by restriction
of maps�

��� Hom 	R�S �
�R� �R� �� Hom 	R�

�R� �R�

is surjective� Since S is a �nitely presented R�module� one has a natural
commutative diagram

HomR�S� R�� �R
� � 	R
����� HomR�R� R�� �R��� ���

Hom 	R�S �
�R� �R�

	�
����� Hom 	R�

�R� �R�

where � � HomR�S� R�� HomR�R� R� is again given by restriction� Since

�� �R is surjective� � itself must be surjective� the identity map on R can
be extended to an R�homomorphism S � R� so R is a direct R�summand
of S �

After these preparations we may assume that R is complete� Let Rt �
R��xt�� and St � S�xtS� Rt is a Gorenstein ring of dimension zero� Since
xt��
n � � � xt��

n �� xt� but m xt��
� � � � xt��

n � xt� the residue class of xt��
� � � � xt��

n

generates SocRt� Therefore each of the induced maps �t � Rt � St is
injective� otherwise its kernel would contain SocRt� whence x

t��
� � � � xt��

n �
xtS � contradicting the hypothesis of the lemma� Furthermore Rt is an
injective Rt�module� Thus each of the maps �t splits� there is an Rt�
homomorphism �t � St � Rt such that �t � �t � idRt

�
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The ideals �xt� form a system co�nal with that of the powers of m �
Since R is m �adically complete� one has

HomR�S� R� � HomR�S� lim��
Rt� � lim

��
HomR�S� Rt� � lim

��
HomRt

�St� Rt��

In the latter inverse system the map �ij � HomRi
�Si� Ri� � HomRj

�Sj � Rj�
associates to each homomorphism Si � Ri the induced map Sj � Rj �

We have to �nd homomorphisms �t � St � Rt such that �i� �ij��i� �
�j � and �ii� �t ��t � idRt

� Because of �i� we then obtain a homomorphism
lim
��

�t � � � S � R� which by �ii� satis�es �jR � idR� if ��y� �� y for

some y � R� then �t � �t �� idRt
for every t such that ��y�� y �� �xt��

Let Dt be the set of homomorphisms � � St � Rt for which ���t � idRt
�

Obviously the sets Dt � HomRt
�St� Rt� are non�empty and form an inverse

system� However� since the maps �ij jDi
� Di � Dj may not be surjective�

we cannot immediately conclude that lim
��

Dt �� �� as desired� Instead we

de�ne subsets

Et �
�
i	t

�it�Di��

Then Et � �it�Ei� for all i with i 	 t� and it is enough to show that Et �� �
for some� equivalently all� t�

Every Di is an a�ne subspace of HomRi
�Si� Ri�� that is� it is of the

form �i � Ui with a submodule Ui � Therefore

�tt�Dt� � �t���t�Dt��� � � � � � �it�Di� � � � �

is a decreasing chain of non�empty a�ne subspaces Aj of HomRt
�St� Rt��

Consequently the submodules Mj � f�� � � �� � � Ajg are non�zero and
form a decreasing chain� too� This chain stabilizes in the Artinian module
HomRt

�St� Rt�� and so does the chain of a�ne subspaces Aj �

A consequence of ���� and ���� is the �direct summand theorem� for
regular local rings�

Theorem ����� �Hochster�� Let R be a regular local ring containing a �eld�

and S � R an R�algebra which is a �nite R�module� Then R is a direct

summand of the R�module S �

Proof� As in the proof of the lemma� we may assume that R is complete�
Let p be a prime ideal of S lying over the zero�ideal of R� If R is a direct
R�summand of S�p � then it is a direct R�summand of S� compose a
section of the natural embedding R � S�p with the natural epimorphism
S � S�p � Being an integral domain which is module��nite over a
complete local ring� S�p is local itself ������� ��
����� and we can invoke
���� and �����



��
� Canonical elements in local cohomology modules ��	

Remarks ����	� �a� In characteristic zero a much weaker property than
regularity is su�cient for the direct summand property of R as described
by ����� Let R be a Noetherian normal domain containing a �eld of
characteristic zero� and S a module��nite extension ring� In showing that
R is a direct R�summand of S � it is harmless to replace S by any S�algebra
T �see the proof of ������ So we �rst factor out a prime ideal p of S
lying over the zero�ideal of R� and may assume that S is a domain� Then
we extend the �eld of fractions of S to a �nite normal extension L of the
�eld K of fractions of R� and replace S by the integral closure T of R in
L� Let d � dimK L and Tr� L� K denote the trace map� Then for every
x � K one has ���d� Trx � x� and Try � R for every y � T � since the
trace of an integral element is integral and R is integrally closed in K �
�We refer the reader to ��	�� Chapter II for the �eld theory involved��

As a consequence one obtains a proof of ���� avoiding big Cohen�
Macaulay modules� if x�� � � � � xn is a system of parameters of S � then

there is a regular subring R of �S in which x�� � � � � xn generate the maximal

ideal and over which �S is �nite �see A����� Since the conclusion of ����
is invariant under completion� one obtains ���� in the same way as the
implication �� of �����

�b� In characteristic p the situation is just inverted� there is a direct
proof of ����� Let n be the maximal ideal of S � By ������

Hn
n �S� �� lim

��
Hn�xt� �� 
�

One has Hn�xt� �� S��xt�� and the map S��xt� � S��xt�i� is induced by
the multiplication by xi� � � � x

i
n� Since Hn

n �S� �� 
� this map must be non�

zero for t su�ciently large� Equivalently� xi� � � � x
i
n �� �xt�i� � � � � � xt�in � for t

su�ciently large and i 	 t� On the other hand� if xt� � � � x
t
n � �xt��

� � � � � � xt��
n ��

then one applies the Frobenius homomorphism repeatedly to obtain

xtp
e

� � � � xtp
e

n � �xp
e�tpe

� � � � � � xp
e�tpe

n ��

which is a contradiction for e large�
Via ���� this argument yields an �elementary� proof of ����� For

still another proof of ���� in characteristic p see ��	��� as well as for a
counterexample showing that normality is not su�cient in characteristic
p for R to have the direct summand property�

��� Canonical elements in local cohomology modules

Independently of characteristic� the discussion in �����b� shows that
���� and� hence� ���� are equivalent to the non�vanishing of certain
elements in the local cohomology module Hn

n �S� �notation as in ������
one has xk� � � � x

k
n �� �xk��� for all k if and only if the image of � under
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the map S � S��x� � lim
��

S��xk� � Hn
n �S� is non�zero� As the example

S � K��X�� and x � X or x � X� shows� the element thus obtained
depends heavily on the choice of the system of parameters� for example�
its annihilator varies with x� In the following we shall discuss a theorem
which involves a �canonical element� in a local cohomology module
although local cohomology does not appear explicitly�

Theorem ������ Let �R� m � k� be a Noetherian local ring of dimension n
containing a �eld� Let F� be a free resolution of the residue class �eld k� and
x a system of parameters� If � � K

�
�x� � F

�
is a complex homomorphism

extending the natural epimorphism R��x� � k� then the homomorphism

�n � Kn�x�� Fn is non�zero�

Proof� In order to derive a contradiction we assume that there exists a
complex homomorphism � with �n � 
�

There exists an x�regular moduleM by ������ Since �x� � m i for i large
and M�xM �� 
� we can pick an element y � M such that y �� xM� but
m y � xM� The assignment � �� y then de�nes a homomorphism R�m �
M�xM� This homomorphism can be lifted to a complex homomorphism
� � F� � K�x�M� since the Koszul complex K�x�M� is acyclic� see �������
Composition with � gives a homomorphism � � � � � � K�x�� K�x�M�
with �n � 
�

The complex homomorphism � extends the homomorphism �� � R �
M with ����� � y� As K��x�M� � K��x� � M� one obtains a second
such extension by �� � idK��x����� The complex K��x� is projective and
K��x�M� is acyclic� therefore � and �� di er only by a homotopy �� In
particular ��n � ��n � �n � �n�� � n�


 ����� Kn�x�
�n

����� Kn���x�

�
��� �n

��y
�n �
��� �n��


 ����� Kn�x�M��

We may identifyKn�x� with R� Kn�x�M� � Kn�x��M withM and Kn���x�
with Rn� Then n�R� � xRn� and so y � ��n��� � �n�� � n��� � xM� which
is a contradiction�

Let us �x the data x and F
�
of the theorem� Complex homomorphisms

� and �� both extending the epimorphism R��x�� k di er by a homotopy
��


 ����� Kn�x�
�n

����� Kn���x� ����� � � �

�
���

�n
�n

��y��n �
��� �n��

��y
� � � ����� Fn�� �����

�n��

Fn �����
�n

Fn�� ����� � � �
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As above we identify Kn�x� with R� furthermore we consider N �
Ker�n�� � Im�n as the target of �n� �The module N is the n�th syzygy
of k with respect to the resolution F

�
�� Then

�n � �n���� �n � �
�
n��� � �n � �n�� � n����

This element belongs to xN� since n��� � xKn���x�� So di erent choices
of the complex homomorphism yield the same residue class ��n��n����� �
N�xN� On the other hand� given a complex homomorphism �� we
may freely choose � to de�ne �� by �� � � � � �  � � � �� For the
possible choices of �n��� the elements �n�� � n��� exhaust xFn� note that
n��� � �x�e� � � � � � xnen with respect to a suitable basis of Rn� In sum�
�n �� 
 for every choice of � if and only if �n � �n��� �� xN for a speci�c
choice�

Now consider the systems of parameters xt� t � 
� There is a natural
map K��xt� � K��x�� it sends ei� � � � � � eiu to xt��

i�
� � � xt��

iu
ei� � � � � � eiu �

Composition with � � K��x�� F� gives a complex homomorphism �t with
�tn��� � xt��

� � � � xt��
n �n���� If all the homomorphisms 
 � K��xt�� F� which

lift the epimorphism R��xt� � k have 
n �� 
� then the arguments above
imply

xt��
� � � � xt��

n �n � �n��� �� xtN for all t � 
����

Observe that Hn
m �N� � lim

��
N�xtN� So condition ��� is equivalent to the

following� the image of �n � �n��� under the map N � N�xN � Hn
m �N�

is non�zero�
The module Hn

m �N� can also be represented as lim��
ExtnR�R�m t� N� �see

������� Hence there is a natural homomorphism ExtnR�k� N� � Hn
m �N��

Moreover� the exact sequence 
 � N � Fn�� � � � � � F� � k � 

represents an element ��F�� � ExtnR�k� N� and thus an element !�F�� �
Hn

m �N�� The connection between �extensions� like the previous exact
sequence and Extn is discussed in ������ pp� ����	� or ����� Ch� X� x	� if
one writes

ExtnR�k� N�
�� HomR�N�N��	��HomR�Fn��� N��

where 	 � N � Fn�� is the natural embedding� then ��F
�
� is the residue

class of � idN � The elements ��F
�
� and !�F

�
� may be called �canonical�

since they depend functorially on F
�
� In particular the vanishing of !�F

�
�

is independent of F
�
� Hochster ����� contains a detailed discussion of

these facts and a proof of the following crucial statement� the element
of Hn

m �N� constructed from a complex homomorphism � � K��x�� F� as
above can be identi�ed with !�F��� The conclusion of ���� is therefore
equivalent to !�F�� �� 
� which justi�es the name �canonical element
theorem� for �����

As an application of ���� we prove a generalization of Krull�s prin�
cipal ideal theorem� �Another one will be given in ������ Let M be a
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module over a commutative ring R� and x �M� Then

O�x� � f��x� � � � HomR�M�R�g

is called the order ideal of x�

Every �nitely generated ideal is an order ideal� given x�� � � � � xn � R�
one sets M � Rn and x � �x�� � � � � xn�� Obviously O�x� �

P
Rxi� By Krull�s

principal ideal theorem O�x� has height � n if R is Noetherian� provided
O�x� is a proper ideal� For x �M � Rn this condition is equivalent to the
existence of a maximal ideal m such that x � m M� The following theorem
generalizes Krull�s bound on heightO�x� to arbitrary �nite modules� In
the general version the number n � rankRn must be replaced by

big rankM � maxf��Mp � � p � SpecR minimalg�

If M has a rank� then big rankM � rankM�

Theorem ����� �Eisenbud�Evans�� Let �R� m � k� be a Noetherian local ring

containing a �eld� and M a �nite R�module� Then heightO�x� � big rankM
for all elements x � m M�

Proof� There is a prime ideal p with heightO�x� � height��O�x� � p ��p ��
Let � denote taking residue classes modulo p � Every linear form M � R
induces an �R�linear form �M � �R� therefore O�x�� � O��x�� Suppose the
theorem has been proved for �R and �M � Then

heightO�x� � heightO�x�� � heightO��x� � big rank �M � big rankM�

Furthermore note that �x � �m �M if and only if x � m M�

As these arguments show� it su�ces to treat the case of an integral
domain R� Then big rankM � rankM� Let h � heightO�x� and n �
dimR� There exists a system of parameters x�� � � � � xn with x�� � � � � xh �
O�x�� Replacing M by M � Rn�h and x by x � �xh��� � � � � xn�� we may
assume that O�x� is m �primary�

As usual� � denotes HomR� � R�� Choose �i �M� such that a� � ���x��
� � � � an � �n�x� is a system of parameters� The collection ��� � � � � �n de�nes
a map � � M � Rn through ��z� � ����z�� � � � � �n�z��� Let y � y�� � � � � ym
generate m � Since x � m M� there is a homomorphism � � Rm � M
with ��y�� � � � � ym� � x� Let us put F � �Rn�� and G � �Rm��� and de�ne
f � F � G by f � �� � ��� Then f �writes� a � a�� � � � � an in terms of y� i�e�
f makes the diagram

F
a

����� R��yf ���
G

y

����� R
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commute� By ����� the exterior powers of f yield a complex homomor�
phism


 ���
Vn F ��� � � � ���

V� F ��� F
a

��� R ��� 
��yVn f

��yV� f

��yf ���Vn��G ���
VnG ��� � � � ���

V� G ��� G
y

��� R ��� 


of Koszul complexes� By de�nition f factors through M�� So rankf �
rankM� � rankM� On the other hand�

Vn f �� 
 because there exists a
complex homomorphism � from K��y� to a free resolution F� of k which
extends the identity on k� ���� guarantees that �n �

Vn f �� 
� Therefore
rankf 	 n and� hence� rankM 	 n�

Remarks ������ �a� Bruns ���� gave a more elementary proof of ����
which works for arbitrary local rings�

�b� Formula ��� above shows that the canonical element theorem ����
implies ���� and thus the direct summand theorem ����� Surprisingly
one can conversely derive ���� from ���� if the residue class �eld of
the local ring under consideration has characteristic p � 
� see Hochster
������ �There seems to be no such derivation in characteristic zero��
Furthermore the main homological theorems like ���� and ���� can be
derived from ����� �See ���� and ���	��

�c� It is not di�cult to reduce ���� to characteristic p via ������ see
������ �Such a reduction will be carried out in detail for ������ In
connection with �b� and ���� that yields a proof of ���� which does not
use big Cohen�Macaulay modules�

��	 Intersection theorems

We have already met an intersection theorem in Section ���� the �new
intersection theorem� �for local rings of characteristic p�� We now want to
prove a very powerful generalization and to derive several consequences�
one of which will eventually explain why the results in this section
are called �intersection theorems�� it generalizes a variant of Serre�s
intersection theorem for the spectrum of a regular local ring�

Theorem ��	��� Let �R� m � k� be a Noetherian local ring containing a �eld�

and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules such that codimF� 	 
� Let C �
Coker�� and e � C � e �� m C � Then codim�Ann e� � s�

Proof� We use induction on dim�R��Ann e��� Suppose dim�R��Ann e�� �

 �rst� By ����� there exists a balanced big Cohen�MacaulayR�moduleM�
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Lemma ���� implies that F
�
�M is acyclic� One has depthM � dimR� and

���� yields depth�C�M� 	 dimR�s� note that C�M �� Coker����M��
On the other hand� the natural surjection C�M � C�m C �M�m M

maps e�M onto a module isomorphic toM�m M� In particular� e�M �� 
�
Since dim�R��Ann e�� � 
� one has m p�e �M� � 
 for some p� whence
fm g � Ass�e �M� � AssC �M� Therefore depthC �M � 
� and so
s 	 dimR�

Now suppose that dim�R��Ann e�� � 
� There is nothing to prove if
s � dimR� So we may assume that s � dimR� Let P be the �nite set of
prime ideals p such that �i� Ann e � p and codim p � codim�Ann e�� or
�ii� there exists i with Iri��i� � p and codim p � i� Then m �� P � so we can
choose x � m such that x �� p for any p � P � Let � denote residue classes
modulo x� It is a routine matter to verify that codim �F� 	 
� Furthermore
�e �� �m �C� and dim��R��Ann�e�� � dim�R��Anne��� The inductive hypothesis
yields codim�Ann�e� � s� Since dimR � dim �R � �� we have� as desired�

codim�Ann e� � dimR � dim�R��Ann e��

� dim �R � �� �dim��R��Ann�e�� � �� � s�

The following corollary is usually called the �improved new intersection
theorem��

Corollary ��	�� �Evans�Gri�th�� With the notation of ���� suppose that

F��Rp is acyclic for all p � SpecR� p �� m � If ��Re� � �� then s 	 dimR�

Proof� Assume that s � dimR� In order to apply the theorem one must
show that codim Iri��i� 	 i for i � �� � � � � s�

We even claim that heightIri��i� 	 i� If this is false� then there exist
j and a prime ideal p � Irj ��j� with height p � height Irj ��j� � j� Since
j � s � dimR� one has p �� m � On the other hand� the acyclicity of
F� � Rp implies that grade�Irj ��j��p � grade Irj ��j � Rp � 	 j by virtue of
������� which is a contradiction�

Now that we can apply ����� we get a contradiction to our initial
assumption s � dimR� ��Re� � � is equivalent with codim�Ann e� 	
dimR�

The next level of specialization is the �new intersection theorem� which
for local rings of characteristic p was already proved in ������

Corollary ��	�� �Peskine�Szpiro� Roberts�� With the notation of ����
suppose that F

�
� Rp is exact for all p � SpecR� p �� m � If s � dimR�

then the complex F� is exact�

Proof� The complex F� satis�es the hypothesis of ����� and furthermore
��Re� � � for all e � Coker��� So Coker�� � 
 by Nakayama�s lemma�
The map �� is a split epimorphism� and we obtain a shorter complex
which also satis�es the hypothesis of the corollary� Induction on s yields
the assertion�
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At least once in this chapter we want to give a complete proof of a
theorem by direct reduction to characteristic p via Hochster�s �niteness
theorem ������ Since we have a proof of ���� in characteristic p which is
independent of big Cohen�Macaulay modules� ���� is the best candidate
for such a demonstration�

Second proof of ����� Suppose that ���� is violated for a local ring
containing a �eld of characteristic zero� Arguing as in the proof of ������
we may assume that F� �� 
 and Im�� � m F�� Choose a basis for Fi�
i � 
� � � � � s� Then each homomorphism �i is represented by a matrix

Ai � �a�i�jl �� Since F�
is a complex� one has

Ai��Ai � 
� i � �� � � � � s����

Let x be a system of parameters for R� That Im�� � m F�� can be
expressed by the relation

�a�i�jl �
t � xR���

for some t � 
 and all i� j� l� That F� � Rp is exact for all p �� m � is
described by the following two conditions�

�i� F� � Rp is split acyclic for each p � SpecR� p �� m �

�ii�
Ps

i������
i rankFi � 
�

Let ri be the expected rank of �i� Via ������ condition �i� can be translated
into the non�vanishing of Iri�Ai� modulo p for all prime ideals p �� m �
equivalently

�xR�u � Iri�Ai����

for some u � 
 and all i � �� � � � � s�
It is mechanical to express ��� � ��� in terms of polynomial equations

over Z satis�ed by the entries of the matrices� the elements of x� and
the coe�cients in the linear combinations involved� These equations only
depend on the numerical parameters s� rankFi� t� and u� Conversely�
given a solution to one of the systems of equations thus obtained� one
immediately constructs a counterexample to ����� interpreting the matri�
ces as homomorphisms�

The reader is invited to try similar reductions for ����� ����� and
�����

The next member of the chain of corollaries is the �homological height
theorem�� It belongs to the class of �superheight theorems�� For a proper
ideal I of a Noetherian ring R let us de�ne its superheight as the supre�
mum of heightIS where S is any Noetherian ring to which there exists a
ring homomorphism R � S � with IS �� S � The fundamental superheight
theorem is Krull�s principal ideal theorem� it says that superheightI is
bounded above by the minimal number of generators of I �
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Theorem ��	�	 �Hochster�� Let R be a Noetherian ring containing a �eld�

and M �� 
 a �nite R�module� Then superheightAnnM � proj dimM�

Before proving this theorem one should note that it is a far�reaching
generalization of Krull�s principal ideal theorem for Noetherian rings
containing a �eld k� take R � k�X�� � � � � Xn� and M � k �� R��X�� � � � � Xn��
Then proj dimM � n� and therefore height�x�� � � � � xn� � n for elements
x�� � � � � xn of a K�algebra S with �x�� � � � � xn� �� S � �Simply consider the
extension R � S induced by the substitution Xi � xi��

Proof of ����� The theorem is trivial if proj dimM � �� so assume
it is �nite� and let R � S be a Noetherian extension of R such that
�AnnM�S �� S � Replacing S by a localization Sq for a minimal prime
ideal of �AnnM�S and R by Rq �R � one may assume that R � S is a
local extension� and �AnnM�S is not contained in any prime ideal p of
S di erent from the maximal ideal q of S �

Let F� be a minimal free resolution ofM over R� Then p �R �� AnnM
for every p � Spec S with p �� q � Hence M � Rp �R � 
� and F� � Rp �R

is split exact� Split exactness is preserved under ring extensions� and so
F� � Sp is split exact� F� � S satis�es the hypotheses of ����� whence
proj dimM 	 dimS �

Let k be an algebraically closed �eld� and Y � Z subvarieties of the
a�ne spaceAn�k� �or the projective space Pn�k��� Then a classical theorem
of algebraic geometry asserts that

dimW 	 dimY � dimZ � n

for every irreducible component of Y � Z ������� Prop� 	���� If p � q � r are
the prime ideals de�ning the varieties Y � Z � and W respectively� then this
inequality can be written

height r � height p � height q ����

Note that r is a minimal prime ideal of p � q � Serre showed in ������
Th�eor!eme �� p� V��� that the inequality ��� holds for prime ideals p � q � r of
a regular local ring such that r is a minimal prime ideal of p � q � Suppose
that r � m is the maximal ideal of R� Then r contains all the minimal
prime ideals of any ideal I � R� and we can replace p and q by arbitrary
ideals I and J to obtain the following version of Serre�s theorem� let I� J
be ideals of a regular local ring �R� m � such that I � J is m �primary� then
heightI � heightJ 	 dimR� or� returning to dimensions�

dimR�I � dimR � dimR�J����

The example R � k��X�� X�� Y�� Y�����X�Y� � X�Y��� I � �x�� x��� J �
�y�� y��� shows that the last inequality is false in non�regular local rings�
However� one can hope that in the presence of their characteristic property
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namely �nite projective dimension of �nite modules� one can generalize
the inequality above� reading I and J as the annihilators of modules M
and N� The best possible result to be expected is the direct generalization
of ����

dimN � dimR � dimM�	�

for all modules M�N over a local ring �R� m � such that M has �nite
projective dimension and SuppM � SuppN � fm g� It seems to be
unknown whether �	� holds� but �	� turns into a valid inequality if we
replace its right side by depthR�depthM � proj dimM �the Auslander�
Buchsbaum formula� see ������� It should now be clear why the following
corollary is named the �intersection theorem�� �It is customary in this
context to express the condition SuppM�SuppN � fm g by ��M�N� �
�� which is an equivalent requirement if M�N �� 
��

Theorem ��	�� �Peskine�Szpiro�� Let R be a Noetherian local ring con�

taining a �eld� and M�N �� 
 �nite R�modules such that ��M � N� � ��
Then dimN � proj dimM�

Proof� There is nothing to prove if proj dimM � �� So assume it is
�nite� Neither the condition ��M � N� � �� nor the number dimN� can
change if we replace N by another �nite module with the same support�
In particular we may replace N by S � R�AnnN� Then �AnnM�S is
primary to the maximal ideal of S � and the desired inequality proves to
be a special case of �����

It is easy to generalize ���� to situations in which ��M � N� is not
necessarily �nite� Suppose that dim�M � N� � 
� Then dimN � 
� and
none of the �nitely many minimal prime ideals of M � N or N equals
m � Therefore there exists x � m such that dimN�xN � dimN � � and
dim�M� �N�xN�� � dim�M�N���� Applied inductively� this argument
proves the following corollary�

Corollary ��	��� Let R be a Noetherian local ring containing a �eld� and

M�N �� 
 �nite R�modules� Then dimN � proj dimM � dim�M � N��

One of the reasons for which we have stated the corollary� is that it
explains why ���� is easier to prove than inequality �	� above� ���� is
equivalent to dimR � dimM � depthR � depthM for N � R�

The following theorem� often called �Auslander�s conjecture�� does not
strictly fall under the title of this section� but its proof is short and an
elegant application of the intersection theorem �����

Theorem ��	�� �Peskine�Szpiro�� Let �R� m � be a Noetherian local ring

containing a �eld� and M �� 
 a �nite module of �nite projective dimension�

Then every M�sequence is an R�sequence� in particular every M�regular

element is R�regular�
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Proof� If x � R is regular on M and on R� then proj dimR��x� M�xM �
proj dimM by ������ Thus it is enough to prove the second statement� the
�rst follows by induction�

One has to show that every p � AssR is contained in some q � AssM�
We proceed by induction on dimM� If dimM � 
� then m � AssM� and
certainly p � m � Assume that dimM � 
�

If there is a prime ideal q � SuppM such that m �� q � p � one can
apply the inductive hypothesis to Mq � there exists q � � SpecRq with
q � � AssMq and q � � p Rq � hence q � � R satis�es our needs�

Otherwise V �p � � SuppM � fm g� So dimR�p � proj dimM by
����� On the other hand depthR � dimR�p according to ������� and
furthermore the Auslander�Buchsbaum formula says that proj dimM �
depthM � depthR� Therefore depthM � 
� whence m � AssM�

Remarks ��	��� �a� The new intersection theorem ���� was proved for
all local rings by Roberts ������ Consequently ��������	 and ����
����
 hold without the hypothesis that R contains a �eld� In particular
���� is a true generalization of Krull�s principal ideal theorem �take
R � Z�X�� � � � � Xn���

�b� It is possible to avoid the use of big Cohen�Macaulay modules in
the proof of the improved new intersection theorem ����� In fact� ����
is on a par with the canonical element theorem ����� Hochster �����
derived ���� from ����� and Dutta ���� found the converse� As pointed
out in ����� the canonical element theorem can be proved independently
of the existence of big Cohen�Macaulay modules�

�c� The intersection theorem ���� can be improved to the best con�
ceivable result if M is perfect� see ��	�� p� �� Th�eor!eme ����
�i� gradeM � dimM � dimR�
�ii� if N is a �nite R�module such that l�M � N� � �� then dimM �
dimN � dimR�

Furthermore both �i� and �ii� hold if R �
L�

i��Ri is a graded ring
with R� an Artinian local ring� M is a �nite graded R�module of �nite
projective dimension� and N is a �nite graded R�module� see Peskine and
Szpiro ���� Equation �i�� sometimes called the �codimension conjecture��
was proved by Foxby ����� for modules M of �nite projective dimension
over a large class of equicharacteristic local rings�

�d� Let R be a Noetherian ring� and M�N �nite R�modules such that
proj dimM � � and ��M�N� � �� Then the modules TorRi �M�N� have
�nite length� and only �nitely many are non�zero� Thus one can de�ne
the intersection multiplicity of M and N by

e�M�N� �
�X
i��

����i ��TorRi �M�N���

This notion was introduced by Serre ������ He proved that the following
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hold if �R� m � is an unrami�ed regular local ring �see ��	
� for this
notion��
�i� if dimM � dimN � dimR� then e�M�N� � 
�
�ii� if dimM � dimN � dimR� then e�M�N� � 
�
�Note that dimM�dimN � dimR� as discussed above�� Recently Gabber
����� showed that over an arbitrary regular local ring one has ��M�N� 	

� However� both �i� and �ii� fail if R is allowed to be an arbitrary local
ring� Dutta� Hochster� andMcLaughlin ���� constructed counterexamples
over the hypersurface ring k�X�� X�� Y�� Y����X�Y� � X�Y��� However� �i�
was shown to hold if bothM and N have �nite projective dimension and
R is a complete intersection �Roberts ������ ������ Gillet and Soul�e ������
or dimSingR � � ��������

Exercises

������ A Noetherian local ring �R� m � containing a 	eld is Cohen�Macaulay if �and
only if� there exists an R�module of 	nite length and 	nite projective dimension�
Prove this�

������� Let � � R � S be a surjective homomorphism of Noetherian local rings
containing a 	eld such that proj dimR S � �� Show the following are equivalent�

�i� R is Cohen�Macaulay and S is a perfect R�module �of type ���
�ii� S is Cohen�Macaulay �Gorenstein��

Hint� 
���
 is essential for the di�cult implication �ii� � �i��

������� Prove the assertions on perfect R�modules in 
�����c� for Noetherian local
rings R containing a 	eld�
Hint� It su�ces to prove that gradeM � dimM � dimR which is quite evident�

������� Let R be a Cohen�Macaulay local ring� and x a system of parameters for
R� Show that e�x� N� � e�R��x�� N� for all 	nite R�modules N�

��� Ranks of syzygies

Let R be a local ring� and M a �nite R�module of �nite projective
dimension� Then proj dimM � depthR� the length of a minimal free
resolution is bounded by depthR� Moreover� each of the values s �

� � � � � depthR occurs if we choose M � R��x� with an R�sequence x �
x�� � � � � xs� In this section we shall discuss the possible values for the
Betti numbers of M and the ranks of its syzygy modules� For systematic
reasons and in view of an application to Bass numbers below� it is useful
to consider a larger class of complexes than just minimal free resolutions�
namely minimal complexes of codimension 	 
�

Let M be a module over a commutative ring R� and x � M� The
notion of order ideal� which was introduced in connection with �����
plays an important role in the following� The next lemma describes a
property of x which is controlled by O�x��
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Lemma ������ Let R be a Noetherian ring� M a �nite R�module� x � M�

and p a prime ideal� Then x generates a non�zero free direct summand of

Mp if and only if p �� O�x��

Proof� Since HomRp
�Mp � Rp � is naturally isomorphic to Hom�M�R�p � the

formation of order ideals commutes with localization� We may therefore
assume that �R� p � is a local ring� If M � Rx � N and Rx �� R� then
there obviously exists � � HomR�M�R� such that ��x� � �� Conversely� if
��x� � �� then M � Rx�Ker ��

Suppose now that � � F � G is a map of �nite free modules� Let
e � F � Given a basis g�� � � � � gn of G� there are uniquely determined
elements a�� � � � � an � R such that ��e� � a�g� � � � � � angn� The elements
g��� � � � � g

�
n of the dual basis of HomR�G�R� yield the values g

�
j ���e�� � aj �

Therefore OG���e�� � �a�� � � � � an��

Theorem ������ Let �R� m � be a local ring containing a �eld� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� Then� for j � �� � � � � s and every e � Fj
with e �� m Fj � Im�j��� one has codimO��j�e�� 	 codimF� � j�

Proof� Let t � codimF�� For given j we truncate the complex at Fj���
and adjust the indices by setting F �i � Fi�j�� and t� � t� j� �� Replacing
the given data by those just de�ned� we may assume that j � �� Let
J � O����e��� There is something to prove only if J � m and codimF� 	 
�

We put �R � R�J and �F � F�� �R � From the description of J preceding
the theorem one sees that �����e� � 
� In order to derive a contradiction�
we assume that codim J � t� Note that Iri���i� � �Iri��i� � J��J � Hence

dim��R�Iri���i�� � dim�R�Iri��i�� � dimR � i� t � dim �R � i�

This inequality shows that codim �F
�
	 
� Let M be a balanced big

Cohen�Macaulay module for �R� By virtue of ����� �F� �M is acyclic�
Since �����e� � 
� we have ���� �M���e �M� � 
� Let C � Coker��� and
� � F� � C be the natural epimorphism� Since �F� �M is acyclic� ��� �M
induces an isomorphism �C �M � Im���� �M�� So ����e��M � 
�

On the other hand� the hypothesis e �� m F� � Im�� implies that
����e� �� m �C � Thus the image of ����e��M under the natural epimorphism
�C �M � ��C�m �C� � �M�m M� is isomorphic to M�m M �� 
� This is a
contradiction�

An application of the following corollary was anticipated in the proof
of �������

Corollary ������ Let �R� m � k� be a regular local ring containing a �eld� and

I � m an ideal generated by a sequence x� Then the natural homomorphism

from Hi�x� k� � K��x�� k to TorRi �R�I� k� is zero for i � grade I �
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Proof� The natural homomorphism Hi�x� k� � TorRi �R�I� k� is induced
by a complex homomorphism � from K

�
�x� to a free resolution F

�
of

R�I� see ����� It only depends on I and x� so that we may assume
that F

�
is a minimal free resolution� Since R is regular� F

�
has �nite

length by ����	� That H
�
�x� k� � K

�
�x� � k and TorR

�
�R�I� k� �� F

�
� k�

follows from the minimality of the complexes K
�
�x� and F

�
� Thus the

map H
�
�x� k�� TorR

�
�R�I� k� is just � � k�

The assertion amounts to ��Ki�x�� � m Fi for i � grade I � Let z �
Ki�x�� and  and � denote di erentiation in K

�
�x� and F

�
� If ��z� �� m Fi�

then

gradeO����z��� � codimO�����z��� 	 i

by ����� an acyclic complex has non�negative codimension as observed
above� On the other hand� O�����z��� � O����z��� � I since Im  �
IK��x��

As indicated above� we aim at a bound for the expected ranks ri of
the maps in a free complex F�� Reasoning inductively� we will have to
pass to a complex 
� Fs � Fs�� � � � � � F� � F �� � F �� � 
 in which
rankF �� � rankF� � �� Theorem ���� enables us to �nd F ��� whereas the
following lemma contains the construction of F ���

Lemma ����	� Let R be a Noetherian ring and M a �nite R�module� Then
there is a �nite free R�module F and a homomorphism � � M � F with

the following property	 If p is a prime ideal� and N �Mp is a free direct

Rp �summand of rank r� then �� � Rp ��N� is a free direct Rp �summand of

Fp with rank��� Rp ��N� � r�

Proof� Let � denote the functor HomR� � R�� There is a �nite free R�
module G with an epimorphism � � G � M�� Let h � M � M�� be
the canonical homomorphism� and choose � � �� � h� F � G�� Then
� � M � F has the property that every linear form � � M� can be
extended to F along �� Since R is Noetherian and the modules involved
are �nite� the preceding construction commutes with every localization
of R� Thus assume R � Rp �

Now the hypothesis on N is equivalent to the existence of g�� � � � � gr �
N and ��� � � � � �r � M� such that N � Rg� � � � � � Rgr and �i�gj� � 
ij �
Since the �i can be extended to F � the elements ��g��� � � � � ��gr� generate
a free direct summand of rank r�

As pointed out before ��� every complex of �nite free modules over
a local ring decomposes into a split exact direct summand and a direct
summand which is minimal� For the ranks of the maps in a split exact
complex one can only say that they are non�negative� but for those
of a minimal complex there exists a non�trivial lower bound� �It was
essentially given by Evans and Gri�th in the form of Corollary ������
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Theorem ������ Let �R� m � be a local ring containing a �eld� and

F
�
� 
 �� Fs

�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a length s minimal complex of �nite free R�modules� Let ri denote the

expected rank of �i� If codimF
�
	 
� then ri 	 codimF

�
� i for i �

�� � � � � s � ��

Proof� The same manipulation as in the proof of ���� reduces the
theorem to a statement about r�� Since the theorem makes an assertion
only on r�� � � � � rs��� the complex which remains after the truncation has
length 	 �� there is nothing to prove if s � �� We introduce an auxiliary
variable t� and use induction on t to show that codimF� 	 t implies
r� 	 t� ��

Since codimF� 	 
� Lemma ���� yields acyclicity of F� �M for a
balanced big Cohen�Macaulay module M of R� such a module exists
by ������ Therefore ��� implies ri 	 � for i � �� � � � � s� This inequality
covers the case t � 
� and shows furthermore that F� �� 
� one has
rankF� � r� � r� 	 �� So there exists e � F� with e �� m F�� Since F� is
minimal� e �� m F� � Im���

Let t 	 �� Put F �� � F��Re� and choose ��� as the induced map
F� � F ��� Applying ���� to Coker��� one obtains a homomorphism
Coker��� � F � F ��� Its composition with the natural epimorphism
F �� � Coker��� then yields �

�
� � F

�
� � F ��� For the complex

F �
�
� 
 �� Fs �� Fs�� �� � � � �� F�

���
�� F ��

���
�� F �� �� 


one has r�� � r�� r
�
� � r� � �� In order to show that codimF �

�
	 t� � we

must verify the following inequalities� �i� codim Ir����
�
�� 	 t � �� and �ii�

codim Ir����
�
�� 	 t�

For �i� we choose a prime ideal p with codim p � t� Certainly
Iri��i� �� p for i � �� � � � � s� Therefore F� � Rp is split acyclic by ������� In
particular we have a decomposition

�F��p
�� �Im���p � �Coker���p

with rank�Im���p � r� and rank�Coker���p � r�� Moreover � and this is
the crucial argument � codimO����e�� 	 t � � by ����� Therefore ���e�
generates a free direct summand of �F��p by ����� A fortiori the residue
class �e of e generates a non�zero free direct summand of �Coker���p � So
�Coker����p

�� �Coker���p �Rp �e is free of rank r�� � r� � �� and the exact
sequence


 �� �Im����p �� �F ���p �� �Coker����p �� 


splits� Also this shows that �Im����p is a free direct summand of rank
r� � r�� of �F

�
��p � By ����� we get Ir����

�
�� �� p � Since p is an arbitrary prime

ideal with codim p � t� the inequality �i� has been proved�
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Slightly more than required for �ii� we show that codim�R�Ir����
�
��� 	

t � �� Pick p as before� We saw that �Coker����p is free of rank r���
Since ��� was constructed as prescribed by ����� �Coker����p is mapped
isomorphically onto a free direct summand of F ��� As desired� Ir�� ��

�
�� �� p �

If it should happen that F �
�
is not minimal� then one splits o a

direct summand id� Ru � Ru from F �� � F ��� This does not a ect the
codimension� and even improves the desired inequality r�� 	 t which holds
by induction� �Because of s 	 � the construction of F �

�
does not touch Fs �

so that F �
�
also has length s��

Corollary ����� �Evans�Gri�th�� Let R be a Noetherian local ring con�

taining a �eld� and M �� 
 a module of projective dimension s � �� Then
�a� for i � �� � � � � s� � the i�th syzygy Mi of M has rank 	 i�
�b�

�i�M� 	

�
�i� �� i � 
� � � � � s� ��
s� i � s� ��
�� i � s�

Proof� A minimal free resolution F� of M is acyclic� and thus has
codimension 	 
� as was observed above� Theorem ���� says that for
i � �� � � � � s � � the i�th map �i has expected rank ri 	 i� Since F� is
acyclic� ri � rank�i � rankMi� see ������ This proves �a� from which
�b� follows with �i�M� � ri � ri��� �Note that �s�M� � 
 because of
proj dimM � s��

It is of course not di�cult to give a non�local version of the corollary�
which we leave to the reader�

Remarks ������ �a� Corollary ���� is the best possible result� In fact�
if R is a Noetherian local ring� and M the m�th syzygy module of a
module of �nite projective dimension� then M contains a free submodule
L such that M�L inherits this property and rankM�L � m� see Bruns
����� Similarly one can �nd modules M for all preassigned values of
proj dimM � s � depthR and �i�M�� i � 
� � � � � s� which are consistent
with �����

�b� It is not necessary to use big Cohen�Macaulay modules in the
proof of ����� Ogoma ���� derived it from the improved new intersection
theorem �����

�c� Theorem ���� and its consequences admit conclusions even for
local rings not containing a �eld� Let p � charR�m � Then one passes
from a given complex F� over R to F� � R��p�� and R��p� contains a
�eld� The reader may verify that codimO��j�e�� 	 codimF� � j � � in
����� regardless of whether dimR��p� � dimR� or dimR��p� � dimR���
Similarly the bounds in ����� ����� and �����a� become worse by at
most ��
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��� Bass numbers

Let R be a Noetherian ring� and M a �nite R�module� The Bass numbers

�i�p �M� � dimk�p � Ext
i
Rp
�k�p ��Mp �� p � SpecR�

determine the modules in a minimal injective resolution

I� � 
 �� E��M� �� E��M� �� � � � �� Ei�M� �� � � �

of M� by ���� one has Ei�M� �
L

p �SpecR E�R�p ��i�p �M� for all i 	 
�

In this section we want to derive inequalities satis�ed by the numbers
�i�m �M� when �R� m � is a local ring� since the Bass numbers are local
data by de�nition� such inequalities can be translated into assertions
about the �i�p �M� in general�

Suppose that �R� m � k� is a local ring with m �adic completion � �R� �m � k��

Since ExtiR�k�M� �� ExtiR�k�M� � �R �� Exti	R�k�
�M� for all i 	 
� one

has �i�m �M� � �i� �m � �M�� Therefore it is no restriction to assume R is
complete� For simplicity of notation we set �i � �i�m �M��

By their very de�nition the local cohomology modules ofM are given
as H i

m �M� � H i��m �I
���� see Section ���� It is easy to determine �m �I

��
since a non�zero element of E�R�p � cannot be annihilated by a power of
m if p �� m � see ����	� Thus �m �I

�� is the subcomplex

J� � 
 �� E�k���
��

�� � � �
�i��

��� E�k��i
�i
�� � � �

By Grothendieck�s theorem ����	 we have H i
m �M� �� 
 for i � depthM

and i � dimM� in particular �i �� 
 for these values of i� On the other
hand� �i � 
 for i � depthM�

By assumption R is complete� So Theorem ������ yields

HomR�E�k�� E�k�� � R�

and one obtains a complex of �nite free modules from an application of
the functor HomR�E�k�� � to J��

G� � HomR�E�k�� J
�� � 
 �� R��

��

�� R�� �� � � �
�i��

��� R�i
�i

�� � � �

Moreover there is some information on the maps �i and �i� The endo�
morphisms of E�k� are just given by multiplication by elements of R�
therefore the maps �i can naturally be considered as matrices over R�
and �i is given by the same matrix as �i� Since I� is a minimal injective
resolution� the entries of these matrices are in m �

Also� one obtains a complex of �nite free R�modules if one applies
HomR� � E�k�� to J��

L� � HomR�J
�� E�k�� � � � �

�i
�� R�i

�i��

��� � � �
��
�� R��

��
�� R�� �� 
�
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the matrix representing �i is the transpose of �i� Let � denote the functor
HomR� � R�� As just seen�

�G��� � L
�
� �L

�
�� � G��

The advantage of L
�
over G� is that we know its homology� By the

exactness of HomR� � E�k���

Hi�L�
� �� HomR�H

i�J��� E�k�� �� HomR�H
i

m �M�� E�k���

We claim that dimHi�L�
� � i� for this to hold it is surely su�cient that

dim
�
R��AnnH i

m �M��
�
� i� and the latter inequality has already been

proved in ������
In order to adapt the present notation to that in the previous section

we set
d � dimR� )i � �d�i� �i � �d�i�

and de�ne the complex F� by

F� � 
 �� R�d
�d

�� R�d�� �� � � � �� R��
��

�� R�� �� 
�

We want to show that codimF� 	 
� We consider the truncation

�L�jd � i� ��� R�d�i��
�d�i

��� R�d�i �� � � � �� R��
��
�� R�� �� 
�

Since dimHv�L�� � v� the complex �L�jd � i � ��� Rp is exact� and thus
split exact for prime ideals p satisfying codim p � i��� We dualize to get
that


 �� R�d
�d

�� R�d�� �� � � � �� R�i�� �� 


is split acyclic� Thus ������ gives Iri��i� �� p � and codim Iri��i� 	 i as
desired�

Let t � depthM� As noticed above� R�d�t�j � 
 for j 	 �� R�d�t �� 
�
and F� is a minimal complex of length d � t� Now we have reached our
goal� ���� yields

)i � ri��� ri 	

� �� i � d � t�
d � t� i � d � t� ��
�i� �� i � 
� � � � � d � t� ��

Returning to the previous notation we get part �a� of

Theorem ������ Let R be a Noetherian local ring containing a �eld� dimR �
d � and M a �nite R�module of depth t�
�a� Then

�i�m �M� 	

� �� i � t�
d � t� i � t� ��
��d � i� � �� i � t� �� � � � � d �

�b� If t � dimM � d � then �d�m �M� 	 ��
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Proof� �a� was proved above� In its proof we exploited results on the
vanishing of local cohomology and its non�vanishing at the depth of a
module� Part �b� relies on its non�vanishing at the dimension� as will be
seen now�

Consider the interval R�d��
�d
�� R�d

�d��

��� R�d�� of L
�
� Its homology

at R�d is Hd�L�
� � HomR�H

d
m �M�� E�k��� and the transpose of �d�� is the

map �� in

F
�
� 
 �� R�d �� � � � �� R��

��

�� R�� �� 
�

Suppose that )� � �d � �� Since depthM � d � the arguments that proved
�a� yield that r� 	 � �with respect to F��� hence r� � �� note that r� � )��
Furthermore dim�R�Ir������ � d��� as stated above� This implies ���Rp

is surjective for prime ideals p with dimR�p � dimR� Therefore �d���Rp

is injective� and dimHd�L�� � d �
We choose a Gorenstein ring S with an epimorphism S � R� By the

variant ������ of the local duality theorem

Hd�L�� �� HomR�H
d

m �M�� E�k�� �� Extn�dS �M� S�� n � dimS�

Let q � SuppS M with dimS�q � d � Then Extn�dSq
�Mq � Sq � � 
� since

dimHd�L�� � d� that however contradicts ������ �note that dimMq � 
�
dimSq � n� d��

Two corollaries are immediate� The �rst of them is usually called
�Bass� conjecture�� the second was conjectured by Vasconcelos�

Corollary ����� �Peskine�Szpiro�� Let R be a Noetherian local ring con�

taining a �eld� If R has a �nite module M �� 
 of �nite injective dimension�

then R is a Cohen�Macaulay ring�

In fact� if inj dimM is �nite� then it equals depthR by �����	� The
theorem yields inj dimM 	 dimR� The converse could already have been
proved in Chapter �� Let �R� m � k� be a local Cohen�Macaulay ring� x
a system of parameters� and E the injective hull of k over R� Then
HomR�R��x�� E� has �nite length by ������� The Koszul complex K��x� is
a projective resolution of R��x�� Therefore the acyclic complex K��x� E� �
HomR�K��x�� E� is an injective resolution of K��x� E� �� HomR�R��x�� E��

Corollary ����� �Foxby�� Let R be a Noetherian local ring containing a

�eld� and d � dimR� If �d�m � R� � �� then R is a Cohen�Macaulay ring�

hence Gorenstein�

Remarks ����	� �a� Both the corollaries hold for all local rings�
�i� Roberts ����� gave a characteristic�free proof of ����� It exploits

the properties of dualizing complexes� Kawasaki ����� generalized ����
using the methods of this section� a complete local ring of type n
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satisfying Serre�s condition �Sn��� is Cohen�Macaulay �for n � � one has
additionally to assume that R is unmixed��

�ii� For a large class of local rings� ���� was �rst proved by Peskine
and Szpiro� Their argument rests mainly on the intersection theorem
���� and the following fact which is interesting in itself� let �R� m �
be a Noetherian complete local ring� and M �� 
 a �nite R�module of

�nite injective dimension� then there exists a �nite R�module N such that

proj dimN � depthR � depthM and SuppN � SuppM� Since Roberts
����� proved the intersection theorem for all local rings� ���� holds
without any restriction�

The theorem of Peskine�Szpiro just mentioned can be proved by the
method we used for ����� independently of the hypothesis that R contains
a �eld� �One constructs the complex F� as in the proof of ���� and
chooses N � Coker�d�u�� where d � dimR� u � depthR � inj dimM��
On the other hand� it can also be obtained as a consequence of ���� in
conjunction with Exercise ����� In fact� if R contains a �eld and has a
�nite module of �nite injective dimension� then it is Cohen�Macaulay by
����� Furthermore it has a canonical module since it is complete� and
thus it satis�es the hypothesis of �����

�b� Using ���	�c� one can derive slightly weaker bounds for Bass
numbers over an arbitrary Noetherian local ring�

�c� If R is a Cohen�Macaulay ring� then the complex F� above is
acyclic� and already ��� gives

�i�m �M� 	

�
�� i � depthM and i � dimR�
�� depthM � i � dimR�

This inequality and �����b� were �rst obtained by Foxby ����� for Cohen�
Macaulay rings and local rings containing a �eld�

�d� Whenever �d�m �M� � 
� d � dimR� and inj dimM � �� then
�i�m �M� � 
 for all i 	 dimR� see �������

Exercise

������ Let R be a Cohen�Macaulay local ring with canonical module �� Recall
from Exercise ������ that a 	nite R�module of 	nite injective dimension has
a minimal augmented ��resolution �

�
� � � �rp � � � � � �r� � M � �

with p � dimR � depthM� The following assertions �due to Sharp ��
��
set up a bijective correspondence between 	nite modules M of 	nite injective
dimension and those of 	nite projective dimension that is given by the assignment
M �� HomR���M� and its inverse N �� N ���

�a� Let N be a 	nite R�module of 	nite projective dimension with minimal free
resolution F�� Show that F� � � is a minimal ��resolution of M � N � �� in
particular dimR � depthM � proj dimN and SuppM � SuppN�
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�b� Conversely� let M be a 	nite R�module of 	nite injective dimension with
minimal ��resolution �

�
� Show that HomR��� ��

� is a minimal free resolution of
N � HomR���M��

�c� Using 
�����a� show that 
���� gives the best possible lower bounds for the
Bass numbers of an R�module�

Hint� use 
���� for �a� and �b�� noting that � is a Cohen�Macaulay module with
Supp� � SpecR and that End��� � R�

Notes

The acyclicity criterion ���� is essentially due to Buchsbaum and Eisen�
bud ����� The general version without any �niteness condition on the
ring R or the module M was given by Northcott ��
�� The concept of
grade on which it is based goes back to Hochster ��	�� To us it seemed
most convenient to use Koszul homology in the de�nition of grade�

Section �� is based on Hochster�s article ��	��� We outlined the fact
that essentially all the homological theorems can be derived from the
direct summand theorem ���� or its equivalent� the monomial theorem
����� One of the rare results in mixed characteristic is due to Hochster
and McLaughlin ���� it says that a regular local ring is a direct
summand of a �nite extension domain if the extension of the �elds of
fractions has degree two� As a surprising spin�o of an investigation of
the monomial theorem in mixed characteristic� Roberts ���	� obtained
a counterexample for Hilbert�s fourteenth problem� and furthermore a
prime ideal in a formal power series ring whose symbolic Rees algebra is
not �nitely generated�

The material on the canonical element theorem in Section �� is taken
from Hochster�s comprehensive treatise ������ It seems however that the
idea to compare a Koszul complex for a system of parameters with a free
resolution of the residue class �eld� was �rst used by Eisenbud and Evans
��� in the demonstration of their generalized principal ideal theorem
����� Hochster ����� contains many more results than indicated in ����
and ����� In particular we would like to mention a connection between
canonical elements and canonical modules� The canonical element the�
orem has also been studied by Dutta ����� ����� and Huneke and Koh
������

A �tremendous breakthrough� �Hochster ������ p� ��� was made
by Peskine and Szpiro in ��	�� As mentioned already in Chapter ��
they were the �rst to apply the Frobenius morphism in the context of
homological questions and to reduce such questions from characteristic
zero to characteristic p through Artin approximation� They proved the
intersection theorem ���� in characteristic p and for local rings which can
be obtained as inductive limits of local �etale extensions of localizations
of a�ne algebras over a �eld of characteristic zero� Furthermore� for the
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same class of local rings they were able to deduce Auslander�s conjecture
���	 and Bass� conjecture ���� from the intersection theorem�

An equally fundamental achievement is Hochster�s construction of
big Cohen�Macaulay modules� It enabled him to extend Peskine and
Szpiro�s results to all local rings containing a �eld� and had the side�e ect
of a considerable technical simpli�cation� See ��	��� ��	��� ������

The new intersection theorem is due independently to Peskine and
Szpiro ��� and Roberts ��
�� It seems that Foxby ����� published the
�rst complete proof valid for all equicharacteristic local rings� using big
Cohen�Macaulay modules he gave an even more general theorem than
����� As pointed out above� Roberts ������ ����� proved the new intersec�
tion theorem in full generality� it has been noted which of the theorems
therefore become valid without a restriction on the characteristic� The
improved new intersection theorem ���� is implicitly contained in Evans
and Gri�th �	�� it was explicitly formulated �and given its name� by
Hochster ������ Still another extension of the intersection theorem must
be mentioned� namely Foxby�s version for complexes in ������

In ���� we commented on generalizations of Serre�s theorem for
intersection multiplicities� It should be added here that some positive
results were obtained by Foxby ���	� and Dutta ��
�� �����

The original argument of Evans and Gri�th�s remarkable syzygy
theorem ���� is found in �	�� It requires a weak condition on the
underlying ring� Such conditions were removed by Ogoma ����� as
pointed out in ���	� Our proof of the more general result ���� is a direct
generalization of the argument in ���� This monograph of Evans and
Gri�th contains an extensive discussion of questions related to the syzygy
theorem� its bibliography gives an overview of the pertinent literature�

Successively better inequalities for Bass numbers were obtained by
Foxby ������ Fossum� Foxby� Gri�th� and Reiten ���
�� and again Foxby
������ the last two articles make use of big Cohen�Macaulay modules�
The relationship of injective resolutions to �nite free complexes was
realized by Peskine and Szpiro in their proof of Bass� conjecture �����
Their arguments were extended by Foxby ������ In particular �����b�
and ���� �even a more general version for modules� are due to him� As
pointed out already� Roberts gave a characteristic free version of �����
The investigation of ���� originated from Vasconcelos ���
� who proved
it for certain one dimensional local rings�
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The �nal chapter extends the characteristic p methods by introducing the
tight closure of an ideal� a concept that� via the comparison to a regular
subring or overring� conveys the �atness of the Frobenius to non�regular
rings� It was invented by Hochster and Huneke about ten years ago and
is still in rapid development�

The principal classes of rings whose de�nition is suggested by tight
closure theory consist of the F�regular and F�rational rings� they are char�
acterized by the condition that all ideals or� in the case of F�rationality�
the ideals of the principal class are tightly closed� Under a mild extra
hypothesis F�rationality implies the Cohen�Macaulay property� More
is true� F�rational rings are the characteristic p counterparts of rings
with rational singularities� we will at least indicate this connection � a
full treatment would require methods of algebraic geometry beyond our
scope�

Tight closure theory has many powerful applications� Among them
we have selected the Brian�con�Skoda theorem� whose proof is based on
the relationship of tight closure and integral closure� and the theorem of
Hochster and Huneke that equicharacteristic direct summands of regular
rings are Cohen�Macaulay�

�
�� The tight closure of an ideal

Throughout this section we suppose that all rings are Noetherian and of

prime characteristic p� unless stated otherwise� Recall from Section ���
that I �q�� q � pe� denotes the q�th Frobenius power of an ideal I � that
is� I �q� is the ideal generated by the q�th powers of the elements of I�
equivalently� I�q� is the ideal generated by the image of I under the e�fold
iteration Fe of the Frobenius homomorphism F � R � R� F�a� � ap� We
reserve the letter q for powers of p� for example� we will say �for q � 
�
when we mean �for q � pe with e� 
��

In the following the set R� of elements of R that are not contained in
a minimal prime ideal of R will play an important r �ole� Note that R� is
multiplicatively closed�

De�nition �
����� Let I � R be an ideal� The tight closure I� of I is the
set of all elements x � R for which there exists c � R� with cxq � I�q� for
q� 
� One says I is tightly closed if I � I��

�	�
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In previous chapters I� has denoted the ideal generated by the homo�
geneous elements in I where I is an ideal in a graded ring� Since there
is no danger of confusion� we keep the �traditional� notation for tight
closure�

The next proposition lists some basic properties of tight closure� in
particular it behaves as expected for a closure operation�

Proposition �
����� Let I and J be ideals in R� Then the following hold	

�a� I� is an ideal and I � J  I� � J��
�b� there exists c � R� with c�I���q� � I�q� for q � 
�
�c� I � I� � I���
�d� if I is tightly closed� then so is I � J�
�e� x � I� if and only if the residue class of x lies in ��I � p ��p �� for all

minimal prime ideals p of R�
�f� if R is reduced or heightI � 
� then x � I� implies that there exists

c � R� with cxq � I �q� for all q�

Proof� �a� is obvious�
�b� We choose a system y�� � � � � ym of generators of I�� For each i there

exist ci � R� such that ciy
q
i � I �q� for q � 
� and therefore c�I���q� � I �q�

for c � c� � � � cm and q � 
�
�c� Suppose dxq � �I���q� for q � 
 with d � R�� With c as in �b� one

then has �cd�xq � I �q� for q � 
� Since cd � R�� it follows that x � I��
�d� Note that �I � J��q� � I �q� � J�q�� Thus cxq � �I � J��q� for q � 


implies c�xy�q � I �q� for all y � J and q � 
� Hence xy � I� � I for all
y � J � and therefore x � I � J �

�e� If x � I�� then the residue class �x belongs to ��I � p ��p �� since
R� � p � ��

Conversely� let p �� � � � � p n be the minimal prime ideals of R� and
suppose �x � ��I � p i��p i�

� for all i� Then there exist ci � R n p i with
cix

q � I�q� � p i for q � 
� We may assume that ci � R�� replace ci
by ci � c�i where c�i � p j if and only if ci �� p j � �Such c�i exist since the
intersection of some minimal prime ideals is not contained in the union
of the remaining ones�� In the next step we take d �

P
i cidi where di �� p i�

but di �
Q

j �i p j �

Now pick r � pf so large that �p � � � � p m�
�r� � 
� Then we have

�dici�
rxrq � �I �rq� � p

�r�
i �
Y
j �i

p
�r�
j � I�rq� for all i�

This implies drxq � I�q� for q � 
� Since d � R�� we conclude x � I��
�f� If height I � 
� then R� � I �� �� so that c � R� with cxq � I �q� for

q� 
 can be replaced by car with a � I and r su�ciently large�
Suppose now that R is reduced� Applying the previous argument for

the case of positive height to the residue class rings R�p i� where p �� � � � � p m
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are again the minimal prime ideals of R� we �nd ci � R� such that
cix

q � I�q� � p i for all q 	 
� Now we choose d as in the proof of �e� and
�nd that dxq � I �q� � p � � � � p m � I�q��

Usually the computation of I� is very di�cult� We give two examples�

Examples �
����� �a� Let R� � k�X� Y � Z���X� � Y � � Z�� where k is a
�eld of arbitrary characteristic p � 
� Evidently R� is an integral domain�
a complete intersection� and therefore Cohen�Macaulay� Furthermore�
the ideal generated by the residue classes of the partial derivatives of
X�� Y � � Z� is primary to the maximal ideal m � �x� y� z� �small letters
denote residue classes�� The Jacobian criterion �for example� see ��	
��
��
���� shows that �R��p is a regular local ring for p �� m � Especially� R� is
a normal ring by Serre�s criterion ������� Setting degX � ��� degY � ���
and degZ � � makes R� a positively graded k�algebra with �maximal
ideal m � �All these assertions hold over an arbitrary �eld k��

We claim that x � �y� z��� If p � �� then obviously xq � �y� z��q� for
all q � pe� For p � � one has cxq � �y� z��q� for c � x� In fact� set
u � �q � ����� Then xq�� is a k�linear combination of monomials y�vz�w

with v � w � u� It is an elementary exercise that �v 	 q or 	w 	 q�
�b� Let R� � k�X� Y � Z���X� � Y � � Z��� Then� as in �a�� R� is a

normal complete intersection domain� The graduation is now given by
degX � ��� deg Y � �
� and degZ � �� We claim that x �� �y� z�� if and
only if char k � 	� In this case �y� z� is tightly closed because the only
proper ideal of R��y� z� is generated by the residue class of x�

Evidently S � k�y� z� is isomorphic to the polynomial ring in two
indeterminates over k and R� is a free S�module with basis �� x� Therefore
every element f � R� has a unique presentation of the form f��xf� with
f�� f� � k�y� z��

The case p � � is trivial� So suppose p is an odd prime� As above� set
u � �q������ choose c � R�

� � and let s and t denote the highest exponents
with which y and z respectively appear in c� and c� where c � c� � xc�
with c�� c� � k�y� z�� One has

xq�� � c
X

v�w�u

�
u

v

�
y�vz�w �

Therefore cxq � �yq � zq� only if all the binomial coe�cients
�
u
v

�
for which

�v � s � q and �w � t � q vanish modulo p�
First let p � 	� Then at least one �for p � �
 each� of the following

inequalities has an integral solution�

�i�
�

�

p � �p �

p

�
� �ii�

�

�
p � �p �

�

�
p�

If �i� has a solution �p� then v � pe���p and w � u � v satisfy the
inequalities �v� s � q and �w� t � q for e� 
� q � pe� Since none of the



����� The tight closure of an ideal ���

factors in the �numerator� of
�
u
v

�
� u�u� �� � � � �u� v � ���v" is divisible

by pe� one sees easily that
�
u
v

�
is non�zero modulo p� If �ii� has an integral

solution� the argument is analogous� This shows cxq � �yq � zq� for q � 

is impossible�

Second� for p � 	 neither �i� nor �ii� has an integral solution� Never�
theless� there appears exactly one multiple of 	e�� in the �numerator� as
well as in the �denominator� of

�
u
w

�
�
�
u
v

�
� Therefore it is enough if we

can choose w as an integral multiple of 	e�� in the critical range� and this
is possible since ��� �  � ����

The argument showing that x � �y� z�� for p � � and p � � is left to
the reader�

Though R� and R� have a very similar structure� there is an invariant
distinguishing them� the a�invariantof R� is non�negative� namely a�R�� �
�� whereas a�R�� � �� �see ������ and ������ for the computation of a�
invariants�� Therefore� if k is a �eld of characteristic 
� R� has a rational
singularity by the criterion of Flenner ��
	� and Watanabe ���� whereas
the singularity of R� is non�rational� The connection between rational
singularities and tight closure will be discussed in Section �
��� and we
will see that the di erent behaviour of R� and R� with respect to tight
closure is by no means accidental�

Remark �
���	�While it is usually not di�cult to show that homologically
de�ned invariants commute with localization or� in the case of a local
ring �R� m �� with m �adic completion� tight closure so far has resisted all
e orts to establish these properties for it� It is obvious that �I��p � �Ip ��

and I� �R � �I �R��� but the converse inclusions are only known in special
cases� some of which will be discussed below� The best result available
for localization is due to Aberbach� Hochster� and Huneke ���� under
some mild conditions on R one has �I��p � �Ip �� for ideals I of �nite
phantom projective dimension� this includes all ideals of �nite projective
dimension� The de�nition of �nite phantom projective dimension requires
the introduction of tight closure for submodules U � M �see Hochster
and Huneke ���� and Aberbach �����

The following proposition indicates how elements in the tight closure
of an ideal may arise in a non�trivial way�

Proposition �
����� Let S � R be a module��nite R�algebra� Then one has

�IS�� � R � I� for all ideals I of R�

Proof� Assume �rst that R and S are integral domains� Then there are a
free R�submodule F of S and an element e � R� e �� 
� with eS � F � and
for each element u � F � u �� 
� there exists an R�linear map f � F � R
with f�u� �� 
� Therefore� given c � S�� one can �nd an R�linear map
g � S � R with g�c� �� 
�
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Now pick x � �IS�� � R� Then there is a c � S� with cxq � �IS��q� �
I �q�S for all q � 
� and applying an R�linear map g one gets g�c�xq � I�q��
Choosing g as above� one concludes x � I��

In the general case let p �� � � � � p m be the minimal prime ideals of R�
and pick minimal prime ideals q �� � � � � q m with p i � q i�R� �This is possible
by A���� Let �i � R � R�p i be the natural map and �i the composition
R � R�p i � S�q i� Then

�IS�� � R �
�
i

���
i

�
�IS���q i

�
�
�

���
i �IS�q i�

� � ���
i �IR�p i�

�

where the last inclusion is given by the �rst part of the proof� By virtue
of �
�����e� it follows that �IS�� � R � I��

In the next remark and in Section �
�� we will need the notion of
excellence for rings� A Noetherian ring R is called excellent if it satis�es
the following conditions�

�i� R is universally catenary�

�ii� for all prime ideals p of R� all prime ideals q of Rp � and all �nite �eld

extensions L � k�q � the ring �Rp �b� L is regular ��Rp �b is the p Rp �adic
completion of Rp ��

�iii� for every �nitely generated R�algebra S the singular locus Sing S �
fq � Spec S � Sq non�regularg is closed in Spec S �

Property �ii� is called the geometric regularity of the formal �bres of

all localizations of R� Complete local rings� and in particular �elds are
excellent� Furthermore the localizations of an excellent ring R and the
�nitely generated R�algebras are excellent as well� We refer the reader to
��	
�� x�� or ������ IV�	�� for a systematic development of this concept�

Remarks �
����� �a� Suppose R is a domain and S a module��nite exten�
sion domain� Then the �eld of fractions of S is an algebraic extension
of R and can therefore be embedded into a �xed algebraic closure L of
the �eld of fractions of R� Through this embedding� S is contained in the
integral closure R� of R in L� one calls R� the absolute integral closure

of R� Conversely� R� is the union of module��nite extension domains of
R� Thus �
���� implies IR� � R � I�� It is not known whether equality
holds in general� but Smith ����� has proved that IR��R � I� for ideals
I of the principal class in domains R such that Rp is excellent for all
p � SpecR�

�b� By a remarkable theorem of Hochster and Huneke ����� the ring
R� is a big Cohen�Macaulay algebra for R if R is an excellent local
domain of characteristic p� This allows one to construct big Cohen�
Macaulay algebras for all Noetherian local rings containing a �eld�
moreover� the construction is �functorial� in the best possible way� See
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Hochster and Huneke ��	� for the numerous applications of the existence
and functoriality of big Cohen�Macaulay algebras�

The next theorem gives a crucial property of tight closure� It also
shows that the attribute �tight� is well chosen�

Theorem �
����� Let R be a regular ring� Then

�a� I �q� � J�q� � �I � J��q� for all ideals I and J of R� and
�b� every ideal of R is tightly closed�

Proof� �a� By induction it is enough to show I �p� � J�p� � �I � J��p�� One
has I�p� � IRF where RF is R viewed as an R�algebra via the Frobenius
endomorphism F � For a regular ring R� the R�algebraRF is �at by Kunz�s
theorem ������ and we show more generally that IS � JS � �I � J�S if S
is a �at algebra over R�

The ideal I � J is the annihilator of the R�module �J � I��I � Since S
is �at� one has natural isomorphisms �I � J�� S �� �I � J�S and

��J � I��I�� S �� ��J � I�� S���I � S� �� �J � I�S�IS�

Therefore it is enough to show �AnnR M�S � AnnS �M�S� for a �nite R�
moduleM� This follows by tensoring the exact sequence 
� AnnR M �
R � EndR�M� with S and using the natural isomorphism EndR�M��S ��
EndS �M � S��

�b� Let I be an ideal of R and suppose that cxq � I�q� for x � R�
x �� I � c � R�� and q � 
� Then I � x �� R� and all the conditions remain
true after localization at a prime ideal containing I � x� In order to derive
a contradiction we may therefore assume that R is local with maximal
ideal m �

By �a� one has �I � x��q� � I �q� � xq for all q 	 
� Therefore� if
c � I�q� � xq for q � 
� then c � �I � x��q� � m �q� � m q for q � 
� This
implies c � 
� the desired contradiction�

For several theorems below it will be essential that R is equidimen�
sional� this means dimR�p � dimR � � for all minimal prime ideals p

of R�

Corollary �
����� Suppose R is equidimensional and a �nite module over a

regular domain A� Then IR �R JR � ��I �A J�R�� and IR�JR � ��I�J�R��

for all ideals I and J of A�

Proof� There exist c � A� c �� 
� and a free A�submodule F of R such
that cR � F � Choose x � IR �R JR� Then xqJ�q� � I�q�R for all q�
Multiplication with c yields J�q��cxq� � I �q�F � Since F is a free A�module�
this implies cxq � �J �q� � I�q��F � By �
���	�a� one has �J�q� � I �q��F �
�I � J��q�F � and so cxq � �I � J��q�F � �I � J��q�R� The argument for
IR � JR is similar�
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It remains to show c � R� for which we need the hypothesis that
R is equidimensional� Let p be a minimal prime ideal of R� Then
dimR�p � dimA��p � A� by the corollary A�� of the going�up theorem�
and there exists such a prime ideal p � with p � � A � 
� Especially�
dimA � dimR � dimA��p �A� and� hence� p �A � 
 for allminimal prime
ideals p of R� �Conversely� this fact implies that R is equidimensional��

If� in the situation of �
����� R �and therefore A� is a local ring� then
every system of parameters x� � � � � xd of A is also a system of parameters
of R and an A�sequence� The last condition is equivalent to

�x�� � � � � xj� �A xj�� � �x�� � � � � xj��

Since A is regular� �x�� � � � � xj�
� � �x�� � � � � xj� for j � 
� � � � � d � � by �
���	�

and so

�x�� � � � � xj� �R xj�� � �x�� � � � � xj�
�� j � 
� � � � � d � ��

If R is an equidimensional complete local ring� then we can always �nd a
suitable regular �Noether normalization� A �see A����� Roughly speaking
one may therefore say that R is �Cohen�Macaulay up to tight closure��
This holds for a larger class of local rings�

Theorem �
���� �Hochster�Huneke�� Let R be an equidimensional residue

class ring of a Cohen�Macaulay local ring A� and x� � � � � xd a system of

parameters of R� Then

�x�� � � � � xj� �R xj�� � �x�� � � � � xj�
�� j � 
� � � � � d � ��

Proof� We write R � A�I � Lemma �
����
 below shows that there exists a
system of parameters z�� � � � � zg� y�� � � � � yd in A with g � codim I such that
z�� � � � � zg � I and xi is the residue class of yi� Since A is Cohen�Macaulay�
z�� � � � � zg � y�� � � � � yd is an A�sequence�

Set J � �z�� � � � � zg�� Since R is equidimensional� all the minimal prime
ideals p �� � � � � p m of I have height g� and are therefore minimal prime
ideals of J � Let p m��� � � � � p n be the remaining minimal prime ideals of J �
If we now choose c � �p m�� � � � � � p n�

s n �p � � � � � � p m� for s su�ciently
large� then cIr � J for some r � 
� Furthermore the residue class d of c
in R belongs to R��

Suppose that bxj�� � �x�� � � � � xj� for some b � R� Then we pick a
preimage a of b in A� obtaining a relation ayj��� �a�y� � � � �� ajyj� � I �
For q � pe 	 r this entails

caqyj��� �aq�y
q
� � � � � � aqj y

q
j � � bq�z� � � � �� bqgzg with buv � A�

However z�� � � � � zg� y�� � � � � yd is an A�sequence� and so is z�� � � � � zg � y
q
� � � � � � y

q
d

�see �����
�� Therefore caq � �y�� � � � � yj��q� � I for all q 	 r� and taking
residue classes we get the desired result�
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Lemma �
����
� Let �A� m � be a Noetherian local ring �not necessarily of

characteristic p�� I a proper ideal of A� and x�� � � � � xd a system of parame�

ters of A�I � Then one can �nd representatives y�� � � � � yd of x�� � � � � xd in A
and z�� � � � � zg � I � g � codim I � such that z�� � � � � zg � y�� � � � � yd is a system of

parameters for A�

Proof� Note that g � d � dimA� Suppose we have constructed represen�
tatives y�� � � � � yd of x�� � � � � xd such that codimJ � d for J � �y�� � � � � yd��
Since dimA�J � g and since �I � J��J is m �J�primary� we can then �nd
z�� � � � � zg � I that complement y�� � � � � yd to a system of parameters�

The elements y�� � � � � yd are constructed inductively� Assume that
y�� � � � � yj�� have been found such that codim�y�� � � � � yj��� � j��� Choose
a representative y�j of xj � Then

dimA��y�� � � � � yj��� I� y
�
j� � d � j � g � d � j � � � dimA��y�� � � � � yj����

Thus I � �y�j� is not contained in any of the �nitely many prime ideals

p �� � � � � p m � �y�� � � � � yj��� with dimA�p i � g � d � j � �� Now Lemma
����� �with M � A and N � I � �y�j�� yields a representative yj of xj such

that yj �� p i for i � �� � � � � m�

In the case in which R is a residue class ring of a Gorenstein local
ring� one can give a shorter proof of �
���� using ������ This technique
will be applied in the proof of �
�����

F�regularity� Theorem �
��� shows that rings in which every ideal is
tightly closed have special properties� They deserve a special name�

De�nition �
������ One says R is weakly F�regular if every ideal of R is
tightly closed� If all rings RT of fractions of R are weakly F�regular� then
R is F�regular�

The distinction between weak F�regularity and F�regularity is unde�
sirable but hard to avoid as long as the localization of tight closure has
not been proved� However� it is enough to require F�regularity for the
localizations Rp � p � SpecR�

Proposition �
������ �a� Let I be an ideal primary to a maximal ideal m �

Then �IRm �
� � I�Rm �

�b� If every ideal primary to a maximal ideal is tightly closed� then R is

weakly F�regular�

�c� R is weakly F�regular if and only if Rm is weakly F�regular for all

maximal ideals m �

�d� A weakly F�regular ring is normal�

�d� If R is a weakly F�regular residue class ring of a Cohen�Macaulay

ring� then R is Cohen�Macaulay�
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Proof� �a� We only need to show the inclusion �IRm �� � I�Rm � and it
holds if �IRm �� �R � I�� By virtue of �
���� it is enough that

��IRm �
� � R � p ��p � ��I � p ��p ��

for all minimal prime ideals p of R� If m �� p � equivalently I �� p �
then both sides equal R�p � So suppose p � m � Then the image of
x � �IRm �

��R under the natural map R � Rm �p Rm certainly belongs to
the tight closure of �I � p �Rm �p Rm � This observation reduces �a� to the
case of an integral domain R in which we have R�

m � R � R�� �So far we
have only used that Rm is a localization of R��

Suppose that cxq � I�q�m for x � R� c � R�
m � and q � 
� Then we

can obviously assume c � R� It follows that c � R�� Furthermore

cxq � I�q�m � R � I�q� where for the last equation we have used that I�q� is
m �primary because Rad I�q� � m and m is a maximal ideal�

�b� By Krull�s intersection theorem� every ideal I of R is the intersec�
tion of the ideals I � m n where m is a maximal ideal containing I and
n � N� Furthermore the intersection of tightly closed ideals is tightly
closed�

�c� is an immediate consequence of �a� and �b��
�d� will be proved after �
���	�
�e� We must show that Rm is Cohen�Macaulay for all maximal ideals

m � Part �c� implies that Rm is weakly F�regular� Thus Rm is a normal do�
main by �d� and� therefore� equidimensional� Now the Cohen�Macaulay
property results from �
����

The following proposition yields the most important examples of
F�regular rings�

Proposition �
������ Let S � R be a �weakly� F�regular R�algebra such

that IS � R � I for all ideals I of R� If R� � S�� then R is �weakly�
F�regular�

Proof� The hypothesis ��R�� � S� implies that �I��S � �IS��� whence the
assertion about weak F�regularity is obvious� Furthermore it is inherited
by every localization� as is the condition IS � R � I� if the induced
homomorphism R�I � S�IS is injective� then so is RT�IRT � ST �IST
for all multiplicatively closed subsets T of R� and every ideal of RT has
the form IRT for an ideal I of R�

The hypothesis IS � R � I is satis�ed if R is a direct summand of
S as an R�module or� more generally� if S is pure over R �see ������b�
for the notion of purity�� An immediate corollary is the characteristic p
version of the Hochster�Roberts theorem�

Corollary �
����	� Let the ring R be a direct summand of the regular ring

S � If R is a residue class ring of a Cohen�Macaulay ring� then R is Cohen�

Macaulay�
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Exercises

�������� �a� Let I and J be ideals of R� Show �I	J�� � I�	J�� �I�J�� � �I��J��� �
and �IJ�� � �I�J���� furthermore ���� � Rad����
�b� Let �R � R�Rad���� Prove I� is the preimage of �I �R�� under the natural
homomorphism R� �R�

�������� �a� Let x�� � � � � xn� y� z be elements of R such that the ideals �x� � � � � � xn� y�
and �x� � � � � � xn� z� are tightly closed and grade�x� � � � � � xn� y� � n � �� Show
�x�� � � � � xn� yz� is tightly closed� �Use ��������
�b� Suppose that grade�x� � � � � � xn� � n and �x� � � � � � xn� is tightly closed� Show
�xa�� � � � � � x

an
n � is tightly closed for all integers a� � � � � � an � ��

������	� Find a tight closure proof of the �monomial theorem� 
���� in character�
istic p�

������
� �a� Show that a primary component q of a tightly closed ideal I that
belongs to a minimal prime ideal of I is tightly closed� �Hint� q � I � x for a
suitable x��
�b� Let I be a tightly closed ideal such that the maximal ideal m is a minimal
prime ideal of I � Show Im is tightly closed�
�c� Let I be an ideal all of whose minimal prime ideals are maximal ideals� Show
I is tightly closed if and only if all the localizations Im with respect to maximal
ideals m are tightly closed�

�������� �Smith� Prove the following assertions�
�a� If tight closure commutes with localization in R�p for each minimal prime of
p of R� then tight closure commutes with localization in R�
�b� Let R be a domain that has an F�regular module�	nite extension� Then tight
closure commutes with localization in R�
�c� Tight closure commutes with localization in rings R � kX� � � � � � Xn��I where
I is generated by monomials and binomials� �Hint� the minimal prime ideals of
I are again generated by such elements� and if I is prime� then R is an a�ne
semigroup ring� See Eisenbud and Sturmfels 
�� for the theory of binomial
ideals��

�
�� The Brian�con�Skoda theorem

This section is devoted to the relationship between the tight closure and
the integral closure of an ideal� Our major objective is a proof of the
Brian�con�Skoda theorem for regular rings containing a �eld� It will be
derived from its tight closure variant by reduction to characteristic p�

Integral dependence on an ideal� We �rst discuss the basic notion of
integral dependence on an ideal I and introduce the integral closure of I �

De�nition �
����� Let R be a ring and I � R an ideal� Then x � R is
integrally dependent on I or integral over I if and only if there exists an
equation

xm � a�x
m�� � � � � � am � 
 with ai � I i� i � �� � � � � m�
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The elements x � R that are integral over I form the integral closure
�I of I �

It is evident that I � �I � Rad I � that I� � I�  �I� � �I�� and
that integral dependence is preserved under ring homomorphisms� The
following proposition lists less obvious properties of integral dependence�

Proposition �
����� �a� The following are equivalent	

�i� x � �I�
�ii� there exists m 	 � with xm � I�I � Rx�m���

�iii� there exists m 	 � with �I � Rx�m�k � Ik���I � Rx�m�� for all

k �N�

�iv� there exists a �nite ideal J � R such that xJ � IJ and Ann J
annihilates a power of x�

�b� �I is an integrally closed ideal�

�c� Suppose that R is Noetherian� Then x � �I if and only if the residue

class of x is integral over �I � p ��p for all minimal prime ideals p of R�

Proof� �a� The equivalence of �i� and �ii� is evident� and �ii� results from
�iii� with k � 
� Conversely� xm � I�I � Rx�m�� implies �I � Rx�m �
I�I � Rx�m�� from which �iii� follows by induction on k�

For �i�  �iv� pick x � �I � Then there exists a �nite subideal I � of I
over which x is integral� Therefore we may assume I to be �nite and
choose J � Rxm�� � Ixm��� � � � � Im���

For �iv�  �i� let J be generated by y�� � � � � yn� Then there exists an
n
 n matrix A � �aij� with aij � I such that �xEn � A�y � 
 where y is
the column vector with components yj and En is the n 
 n unit matrix�
It follows that det�xEn � A�J � 
� and so det�xEn � A� � AnnJ � Upon
multiplication by a power of x we obtain an equation showing x � �I �

�b� It is obvious that ax � �I for all x � �I and a � R� Suppose x�� x� � �I �
Again we may assume that I is �nitely generated and we choose J� for x�
and J� for x� as we have chosen J for x above� especially� both J� and J�
contain a power of I � It follows immediately that �x� � x��J�J� � IJ�J��
furthermore Ann J�J� annihilates a power of I and therefore annihilates
�x� � x��n for n� 
�

The argument showing that �I is integrally closed is similar and can
be left to the reader�

�c� The �only if� part is obvious� For the �if� part let p �� � � � � p r be the
minimal prime ideals of R� We lift an integral dependence equation of
the residue class of x with respect to �I � p i��p i to a relation Fi�x� � p i

such that the coe�cients of the powers of x satisfy the requirements of
De�nition �
����� Then F�x� � F��x� � � �Fr�x� � p � � � � p r � and a suitable
power of F�x� vanishes�

For ideals J � I of a Noetherian ring R one has �I � �J if and only if
J is a reduction ideal of I �see Exercise �
����
��
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We note a useful criterion for normality�

Proposition �
����� A Noetherian ring R is normal if and only if it satis�es

the following conditions	

�i� Rp is a �eld for each prime ideal p that is both minimal and maximal�

�ii� the principal ideals �x�� x � R�� are integrally closed�

Proof� The essential observation relating normality and condition �ii� is
the following� let x be a regular element of R and suppose we have an
integral dependence relation

ym � a�xy
m�� � � � � � am��x

m��y � amx
m � 
� ai � R�

Then the element y�x of the total ring of fractions Q of R is integral over
R� Now� if R is integrally closed in Q� it follows that y�x � R and� hence�
y � �x�� Conversely� if f�g �f� g � R� g a regular element� is integral over
R� one sees immediately that f is integral over the ideal �g��

Suppose now that R is normal� Then it is the direct product of �nitely
many integrally closed domains� Therefore it obviously satis�es condition
�i�� Furthermore every element x � R� is a regular element of R so that
the previous observation immediately yields that �x� is integrally closed�

For the converse we �rst split R into a direct product R� 
 � � � 
 Rr

such that SpecRi is irreducible for each of the rings Ri� It su�ces to show
that each Ri is a normal domain� Note that condition �ii� is inherited by
Ri� Furthermore condition �i� implies that Ri is a �eld if Ri has a prime
ideal that is both minimal and maximal� So we can assume that SpecR
is irreducible and R has no such prime ideal�

The �rst �and crucial� step is to show that R is reduced� For each
minimal prime ideal p i� i � �� � � � � s� there is a non�minimal prime ideal
q i � p i� Choose a � �

T
i q i� n �

S
i p i�� The nilradicalN of R is contained in

every integrally closed ideal� and therefore it is contained in
T

j�a
j� since

a � R�� There exists an element c � R such that b � � � ca annihilatesT
j�a

j� �this is the usual argument from which Krull�s intersection theorem

is derived�� A fortiori� bN � 
� The choice of a ensures that b � R� as
well� and� by the same token� we have �� � db�N � 
 for some d � R�
This shows N � 
�

Since R is reduced� the total ring of fractions Q of R is the direct
product of �elds Qi� The idempotents ei representing the unit elements
of Qi satisfy the equation e�i � ei � 
� Write ei � fi�gi with fi � R and
a regular element gi � R� The initial observation yields ei � R� By the
assumption on R this is only possible if Q is a �eld and� hence� R is a
domain� Now we apply the initial observation once more to conclude
that R is integrally closed�

For the connection with tight closure it is important that in a Noethe�
rian ring integral dependence can be characterized by homomorphisms
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to valuation rings� Let K be a �eld� Recall that a proper subring V of K
is a valuation ring of K if x � V or x�� � V for all x � K � It follows that
the set of ideals of V is linearly ordered by inclusion� in particular V is
local and every �nite ideal of V is principal� If V is Noetherian� then
the maximal ideal m V of V is principal� and conversely� a Noetherian
valuation ring V is a regular local ring of dimension � and is termed a
discrete valuation ring�

The following theorem will be crucial� let K be a �eld� A a subring of
K � and p � A a prime ideal of A� then there exists a valuation ring V of
K such that A � V and m V �A � p � Furthermore it is easily proved that
a valuation ring is normal� �See ��	
�� x�
� ��	�� Ch� VI� or ��	�� Vol� II�
Ch� VI for proofs and more information on valuation rings��

Proposition �
���	� �a� Let R be an integral domain with �eld of fractions

K and I an ideal of R� Then �I is the intersection of all ideals IV where V
ranges over the valuation rings of K containing R�
�b� Suppose R is a Noetherian ring� Then there exist a �nite number of

homomorphisms �i from R to discrete valuation rings Vi such that Ker�i

is a minimal prime ideal of R and �I is the intersection of the preimages

����IVi��

Proof� �a� Let J be the intersection of the ideals IV � For �I � J it is
enough that all the ideals IV are integrally closed� As observed above�
IV is a principal ideal of V � Since V is a normal domain� principal ideals
of V are integrally closed �see �
���� � for this implication the Noetherian
property is irrelevant��

For the converse inclusion choose x � J � Let L be the set of all
quotients a�x with a � I and consider the ideal LR�L� in the subring
R�L� of K � If LR�L� were a proper ideal of R�L�� then there would
exist a valuation ring V of K with LR�L� � m V � In particular we would
have a�x � m V for all a � I� this implies x�a �� V � and so x �� IV �
a contradiction� Thus LR�L� � R�L�� and there exists a representation
� � f�a��x� � � � � am�x� where f is a polynomial with coe�cients in R and
a�� � � � � am � I � Multiplication by a su�ciently high power of x yields an
integral dependence relation for x on I �

�b� In view of �
���� we can restrict ourselves to the case of a domain
R� Choose a system of generators x�� � � � � xn of I and let Ri be the integral
closure of R�xj�xi � j � �� � � � � n� in K � We claim that �I �

T
i Rixi� The

inclusion ��� holds because the principal ideal Rixi is integrally closed
in the normal domain Ri� For the converse we use part �a�� Let V be
a valuation ring of K containing R� and pick an index i such that xi
generates IV � Then xj�xi � V for all j and therefore Rixi � IV � It
follows that the intersection

T
i Rixi is contained in every ideal IV where

V ranges over the valuation rings of K �
Though the ring Ri need not be Noetherian� it is a Krull ring �see
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��	
�� x���� A divisorial ideal a of a Krull ring� and especially a principal
ideal� has the primary decomposition a �

T
j�a Rp j

� R� where the p j are

the �nitely many divisorial prime ideals containing a � and furthermore
Rp j

is a discrete valuation ring�

Tight closure and integral closure� After these preparations we can easily
show that tight closure is tighter than integral closure� In the sequel we
shall again assume that R is a Noetherian ring of characteristic p�

Proposition �
����� One has I� � �I for all ideals I of R�

Proof� Let � be a homomorphism from R to a discrete valuation ring V
such that Ker� is a minimal prime ideal of R� Then ��I��V � �IV �� since
��R�� � V �� Moreover� V is a regular local ring and� thus� �IV �� � IV �
So �
���� implies I� � �I �

It is easy to give examples of tightly closed ideals that are not
integrally closed� For example� every ideal in a polynomial ring R over
a �eld is tightly closed� but not every ideal of R is integrally closed if
dimR � � �see Exercise �
�������

The tight closure version of the Brian�con�Skoda theorem is an
�asymptotic� converse of the previous proposition�

Theorem �
���� �Hochster�Huneke�� Let I be an ideal of R generated by

elements f�� � � � � fn�
�a�Then In�w � �Iw���� for all w �N�

�b� If R is regular or just weakly F�regular� then In�w � Iw��� and in

particular In � I �

Proof� We must relate Frobenius powers and ordinary powers of I � This
is possible through the equation

Ik�n�w� � �fk� � � � � � f
k
n�
w��Ik�n����

whose elementary veri�cation is left to the reader�
In view of �
���� and �
���� we may assume that R is an integral

domain� Set J � In�w and pick x � �J � By �
���� there exists m 	 � with
�J � Rx�m�k � Jk���J � Rx�m�� for all k �N� in particular

xmxk � Jk � Ik�n�w� � �fk� � � � � � f
k
n�
w��Ik�n���

for all k �N� Setting c � xm and k � q � pe we obtain

cxq � �f
q
� � � � � � f

q
n�
w��Iq�n��� � �Iw����q��

as desired�
Part �b� results immediately from �a��

The following corollary is crucial for issues of normality�
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Corollary �
����� Let I � �x� be a principal ideal� Then �I � I��

Proof� The inclusion I� � �I is Proposition �
����� and the converse
inclusion is contained in the theorem�

As a consequence of �
���� and �
���� we derive the normality of a
weakly F�regular ring R� which has already been stated in �
������ Since
Rad�
� � �
��� an F�regular ring is reduced� whence it satis�es condition
�i� of �
����� By de�nition it also ful�lls condition �ii� so that normality
follows immediately�

The original Brian�con�Skoda theorem ���	� is essentially the assertion
of �
���� for R � ChX�� � � � � Xdi� the ring of convergent power series in
d indeterminates� It was motivated by the following problem� given
f � �X�� � � � � Xd�� what is the smallest number m such that fm � I �
�X��f� � � � � Xddf�# �Here i is the partial derivative with respect to
Xi�� Answering this question obviously generalizes the well�known rule
uf � X��f � � � � � Xddf for a homogeneous polynomial f of degree u�
The connection with integral closure is given by the fact that f � �I� this
results easily from the criterion �
�����

We derive a generalization of the original Brian�con�Skoda theorem
from �
���� by reduction to characteristic p�

Theorem �
���� �Lipman�Sathaye�� Let R be a regular ring containing a

�eld of arbitrary characteristic and I be an ideal of R generated by elements

f�� � � � � fn� Then In�w � Iw�� for all w �N� and in particular In � I �

Proof� The theorem has already been proved in characteristic p� So
suppose that there exists a counterexample �R� f�� � � � � fn� in characteristic

� Suppose that y � In�w but� y �� Iw��� Then there is a maximal ideal
m of R such that x �� Iw��

m � and since integral closure commutes with
localization �see Exercise �
����
�� we may assume R is local�

For the application of the �regular� variant �b� of Theorem ����� we
must show that our data have a regular equational presentation� That
y � In�w can easily be expressed in terms of a single equation� we
simply choose indeterminates representing y� the generators of I � and the
coe�cients in an integral dependence relation for y on In�w� The di�cult
part of the problem� namely to express the condition y �� Iw��� has
fortunately been solved in Corollary ������ �Observe that the generators
of Iw�� are polynomials in f�� � � � � fn��

It follows that there exists a counterexample to the theorem in which
R is a regular local ring of characteristic p � 
� a contradiction to �
�����

Remarks �
����� �a� If �R� m � is a local ring with an in�nite residue class
�eld� then every ideal I � m has a reduction ideal J � I generated by
at most d � dimR elements� see ������ Since Jw is a reduction of Iw for
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all w � N� one can replace n by the minimum of n and d in �
���� and
�
���� if the hypothesis on R is satis�ed�

�b� Theorem �
���� was proved by Lipman and Sathaye ���
� for
arbitrary regular rings� A variant� valid for an ideal I generated by a
regular sequence in a pseudo�rational ring �see �
����� below�� was given
by Lipman and Teissier ������

�c� Since it seems impossible to derive the mixed characteristic cases
of these theorems from characteristic p results� the tight closure approach
does not supersede the proofs given by Lipman�Sathaye and Lipman�
Teissier� However it o ers a re�nement we have neglected so far� namely
the extra factor Iq�n��� that appears in the proof of �
����� Taking care
of it leads one to the Brian�con�Skoda theorems with coe�cients of
Aberbach and Huneke ����

Exercises

�������� �a� Let I and J be ideals in a ring R and x � R integral over I � y � R
integral over J � Deduce xy is integral over IJ �

�b� Show that x is integral over the ideal I if and only if xt � Rt� is integral
over the Rees algebra R�I� � RIt�� �Thus integral dependence on ideals can be
considered a special case of integral dependence on rings��

�c� Let J � I be ideals and suppose I is 	nitely generated� Prove that �I � �J if
and only if there exists r � N with JIr � I r���

�d� Let T � R be a multiplicatively closed set and S � T��R� Show IS � �IS �

�������� The de	nition of integral dependence can be extended as follows� let
R � S be rings and I � R an ideal� then x � S is integral over I if it satis	es an
equation as in ������� Extend ������ and ������� to this situation�

�������� Let K be an arbitrary 	eld and I � KX� � � � � � Xn� an ideal generated
by monomials� Show that the integral closure of I is the ideal generated by all
monomials whose exponent vector belongs to the convex hull �in Rn or Qn� of
the set of exponent vectors of the monomials in I �

�������� Given a regular local ring of dimension n� 	nd an n�generated ideal I of

R with In�� �� I �

�
�� F�rational rings

Throughout this section we suppose that all rings are Noetherian and of

characteristic p� unless stated otherwise� Recall that in a weakly F�regular
ring every ideal is tightly closed by de�nition� Now we discuss a weaker
condition for a ring R�

De�nition �
����� One says R is F�rational if the ideals of the principal
class� that is� ideals I generated by heightI elements� are tightly closed�
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Note that for an equidimensional� universally catenary local ring
�R� m � an ideal I � �x�� � � � � xi� is of the principal class if and only if
x�� � � � � xi are part of a system of parameters of R�

The name �F�rational� indicates that such rings are the characteristic
p analogues of rings with rational singularities� The results of Smith
���� and Hara ���� discussed at the end of this section justify this
comparison�

In the following we present some basic properties of F�rational rings�
Just as for weakly F�regular rings it results from �
���� and �
���	 that

Proposition �
����� F�rational rings are normal�

The following lemma is essential in the study of F�rational local rings�

Proposition �
����� Let �R� m � be an equidimensional local ring that is a

homomorphic image of a Cohen�Macaulay ring� and �x�� � � � � xd� a system

of parameters of R� Then

�a� �x�� � � � � xi���� � xi � �x�� � � � � xi���� for all i � �� � � � � d�

�b� If �x�� � � � � xd� is tightly closed� then so is �x�� � � � � xi� for all i � �� � � � � d �

Proof� Set Ji � �x�� � � � � xi� and pick r � J�i�� � xi� Then rxi � J�i��� and

hence there exists c � R� such that c�rxi�
q � J

�q�
i�� for q large� see �
�����b��

Thus from �
��� we conclude that crq � J�q�
i�� � x

q
i � J�i��� which yields

r � J�i��� This proves �a��

We derive �b� by descending induction on i� Suppose it is already
known that Ji is tightly closed� Let r � J�i��� then r � J�i � and hence
r � Ji by the induction hypothesis� So r � a � xib with a � Ji�� and
b � R� Then r � a � J�i��� whence b � J�i�� � xi � J�i�� by �a�� This
shows J�i�� � Ji�� � xiJ

�
i��� and the conclusion follows from Nakayama�s

lemma�

Corollary �
���	� An F�rational ring R is Cohen�Macaulay if it is a homo�

morphic image of a Cohen�Macaulay ring�

Proof� Let m be a maximal ideal of R� We choose elements x�� � � � � xd � m �
d � dimRm that generate an ideal I of the principal class� Especially�
x�� � � � � xd form a system of parameters in Rm � By hypothesis I is tightly
closed� As m is a minimal prime ideal of I � we conclude from �
�����
that Im is tightly closed�

Notice that Rm is a domain since it is normal by �
����� Hence
�
�����b� entails that the ideals �x�� � � � � xi�Rm are tightly closed for all i�
Now �
�����a� and �
��� imply that x�� � � � � xd is an Rm �sequence� Thus
Rm is Cohen�Macaulay�

For local rings� F�rationality is easier to control� In fact one has
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Proposition �
����� Let �R� m � be a local ring that is a homomorphic im�

age of a Cohen�Macaulay ring� Then R is F�rational if and only if it is

equidimensional and one ideal generated by a system of parameters is tightly

closed�

Proof� Let x�� � � � � xd be a system of parameters of R generating a tightly
closed ideal� By �
�����b�� R is F�rational if any other system of pa�
rameters y�� � � � � yd of R generates a tightly closed ideal as well� Choose

t � N such that y�� � � � � yd � �xt�� � � � � x
t
d�� and write yi �

Pd
j�� aijx

t
j � Then

�y�� � � � � yn� � �xt�� � � � � x
t
d� � a with a � det�aij�� This follows from �����
�

since� by �
����� R is Cohen�Macaulay� so that every system of parameters
is R�regular� Now Exercise �
������b� tells us that �xt�� � � � � x

t
d� is tightly

closed� Finally �
���� implies that �y�� � � � � yd� is tightly closed� too�

Proposition �
����� Let R be a homomorphic image of a Cohen�Macaulay

ring� Then R is F�rational if and only if Rm is F�rational for every maximal

ideal m of R�

Proof� ���� Let I � R be an ideal of the principal class� Suppose that I
is strictly contained in I�� Then for some maximal ideal m of R we have
again a strict inclusion Im � �I��m � It follows that Im is not tightly closed
as �I��m � �Im ��� This is a contradiction since Im is of the principal class�
and Rm is F�rational�

��� Let m be a maximal ideal of R� As in the proof of �
���� we
conclude that some ideal in Rm generated by a system of parameters is
tightly closed� Hence the assertion results from �
�����

Now we can easily show that for a Gorenstein ring �F�rational� is a
condition as strong as �F�regular��

Proposition �
����� A Gorenstein ring is F�regular if and only if it is F�
rational�

Proof� In view of �
���� and �
������c� we only need to show that an
F�rational Gorenstein local ring is F�regular� In order to apply �
������b��
we choose an ideal I which is primary to the maximal ideal m of R and
show it is tightly closed� There exists an ideal J � I generated by a
system of parameters� Since R is Gorenstein� we have I � J � �J � I��
�This follows immediately from Exercise ������ applied to the Artinian
ring R�J�� The ideal J is tightly closed since R is F�rational� and by
�
�����d�� I is tightly closed as well�

The previous proposition cannot be generalized essentially� there exist
F�rational� but not weakly F�regular rings of dimension �� see Watanabe
��
� or Hochster and Huneke ����� �	����� �	�����

F�rationality has good permanence properties� for example� it localizes
as will easily follow from
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Proposition �
����� Suppose I is an ideal generated by an R�sequence� Then
�IRS�� � I�RS for every multiplicatively closed set S � R�

The proof of the proposition uses

Lemma �
����� Let R be an arbitrary Noetherian ring� I � R an ideal� and

S � R a multiplicatively closed set�

�a� Then there exists an element s � S such that
S

w�S I
m � w � Im � sm for

all m �N�

�b� Suppose in addition that charR � p � 
� and that I is generated by an

R�sequence x�� � � � � xn� Then� with s � S as in part �a�� we have�
w�S

I�q� � w � I�q� � s�n���q for all q�

Proof� �a� It is enough to show the inclusion ���� Let T be the associated
graded ring grI�R�� Since T is Noetherian� there exists s � S such that
AnnT �s� � AnnT �ws� for all w � S � �One chooses an element s for which
Ann�s� is maximal��

Now suppose u � Im � w� u � Ir n Ir��� We may assume that r � m�
since otherwise the assertion is trivial� We claim that usm�r � Im� Indeed�
uw � Im � Ir��� and so uws � Ir��� By the choice of s this implies
us � Ir��� Induction on r concludes the proof of �a��

�b� Again only the inclusion ��� needs proof� Given w � S and q�
�x u � I�q� � w� We shall prove by induction on h � N that the element
dh � sq�hu belongs to I �q� � Iq�h� Once we know this� it follows for
h � qn that s�n���qu � I �q� � Iq�n��� � I�q�� �The last equality holds� since
Iq�n���� I�q���

We start the induction with h � 
� Then I�q� � Iq � Iq � and the
assertion follows from �a��

Now suppose that dh � I�q� � Iq�h for some h � 
� Say�

dh �
X
i

r�ix
q
i �
X
a

rax
a� a � �a�� � � � � an� � N

n�

with
P

i ai � q�h and ai � q for every i� As wu � I�q�� we get an equationX
i

r��i x
q
i �

X
i

wr�ix
q
i �
X
a

wrax
a

with certain r��i � R� This impliesX
i

�wr��i � r�i�x
q
i �
X
a

wrax
a � 
�

Since x�� � � � � xn is R�regular� all the wra are in I � Therefore sra � I for
all a� and we conclude that dh�� � sdh � dh �

P
i sr

�
ix

q
i �

P
a srax

a lies

in I �q� � Iq��h���� Indeed� the �rst sum belongs to I�q�� the second to
Iq��h����
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Proof of �
����� Let u�� � �IRS��� then there exists an element c � R�

such that for all q � 
 one �nds s�q� � S with s�q�cuq � I�q�� It
follows that cuq � I�q� � s�q�� With s � S as in �
����b� we have
s�n���qcuq � c�sn��u�q � I �q�� This implies sn��u � I�� and so u�� � I�RS �
The other inclusion is trivial�

Now we can show

Proposition �
����
� Let R be an F�rational ring that is a homomorphic

image of a Cohen�Macaulay ring� and S a multiplicatively closed set in R�
Then RS is F�rational�

Proof� By �
���� it su�ces to show that Rp is F�rational for every prime
ideal p of R� Since R is Cohen�Macaulay� we have height p � grade�p � R�
�see ������� Therefore there exists an R�sequence x�� � � � � xd � p of length
d � height p � In Rp this sequence forms a system of parameters� By �
����
we only need that �x�� � � � � xd�Rp is tightly closed� But this results from
�
�����

Another easily proved permanence property is given by the following

Proposition �
������ Let �R� m � be a local ring� and let x � m be an R�
regular element� Then R is F�rational� if R�xR is F�rational�

Proof� R�xR is Cohen�Macaulay by �
����� and so is R� In particularR is
equidimensional� We may extend x to a system of parameters x� x�� � � � � xd
of R� According to �
���� it su�ces to show that I � �x� x�� � � � � xd�
is tightly closed� Choose u � I� and c � R� such that cuq � I�q� for
q � 
� We may write c � dxt where d �� xtR for some t� Then
duq � �xq�t� xq�� � � � � x

q
d� for q � 
� Since d �� 
 and since the F�rational

ring R�xR is a domain� the image of u in R�xR is in the tight closure of
�x�� � � � � xd�R�xR� Since this ideal is tightly closed� u � I as desired�

At this point it is useful to resume the discussion of the examples
�
�����

Examples �
������ �a� We have seen that x � �y� z�� for R� � k�X� Y � Z��
�X�� Y � � Z�� where k is a �eld of positive characteristic� Therefore R�

is not F�rational� independently of k� Moreover� no ideal I generated by
a system of homogeneous parameters of R� is tightly closed� Otherwise
Im would be tightly closed in the localization �R��m with respect to
m � �x� y� z�� and it would follow that �R��m is F�rational� Since �R��p is
regular for prime ideals p �� m � the ring R� would have to be F�rational�
too� That R� is not F�rational follows also from the fact that a�R�� 	 
�
see Exercise �
������

�b� We have also seen that �y� z� is tightly closed in R� � k�X� Y � Z��
�X� � Y � � Z�� where k is a �eld of characteristic at least 	� Therefore
�R��m is F�rational� and so is R�� by the same localization argument as in
�a�� Since R� is Gorenstein� it is even F�regular�
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Remarks �
������ �a� Let R be a positively graded ring with �maximal
ideal m � In analogy to the assertions relating the homological properties
of R and Rm �for example� see �����	�� one may ask whether the �weak�
F�regularity or F�rationality of R and that of Rm are equivalent� At least
for F�rationality there is a satisfactory theorem� a homogeneous k�algebra
R over a perfect �eld is F�rational if and only if Rm is F�rational� For
weak F�regularity there is only a weaker result� See Hochster and Huneke
����� ���	� and ������

�b� Again in analogy to the homologically de�ned ring�theoretic prop�
erties� one may ask how �weak� F�regularity and F�rationality behave
under �at ring extensions with �good� �bres� We refer the reader to
Hochster and Huneke ���� and Velez ����� for theorems of this type�
unfortunately they are much harder to prove than their homological
counterparts�

Test elements� The proofs of the next results require test elements� We
brie�y discuss this notion�

De�nition �
����	� An element c � R� is called a test element if for all
ideals I and all x � I� one has cxq � I�q� for all q�

The following is the most general existence theorem for test elements�

Theorem �
����� �Hochster�Huneke�� Let R be a reduced algebra of �nite

type over an excellent local ring �S� n �� Let c � R� be an element such that

Rc is F�regular and Gorenstein� Then some power of c is a test element�

The theorem implies in particular that test elements exist in reduced
excellent local rings� choose an element c � I � R� where I is an ideal
with SingR � V �I��

For the proof of �
����� the reader is referred to ����� ������ We will
show the existence of test elements only in the important special case of
reduced F��nite rings� one calls R F��nite if R� viewed as an R�module
via F � is �nite� For example� every ring which is a localization of an a�ne
algebra over a perfect �eld and every complete local ring with perfect
residue class �eld is F��nite� By a theorem of Kunz ������ F��nite rings
are excellent�

Theorem �
������ Let R be an F��nite reduced ring� and c �� 
 an element

of R such that Rc is regular� Then some power of c is a test element�

Let R be a domain of characteristic p with quotient �eld K� for each
integer e one may then identify R� viewed as an R�module via Fe� with
the ring R��q� q � pe� of the q�th roots of the elements of R in some
algebraic closure of K � The R�algebra structure of R��q is of course given
by the inclusion map R � R��q� The notation R��q is convenient in the
next lemma that will be needed for the proof of �
������
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Lemma �
������ Let R be an F��nite regular domain� and d � R� Then
there exist a power q of p and an R�linear map � � R��q � R such that

��d��q� � ��

Proof� Krull�s intersection theorem implies that for each maximal ideal
m there is a power qm of p with d �� m �qm �� By Kunz�s theorem ������

R
��qm

m is a free Rm �module� Since d��qm �� is part of a basis of R��qm

m � there

exists an Rm �homomorphism �m � R
��qm

m � Rm with �m �d
��qm ��� � �� The

map �m is of the form �m �am where �m � R��qm � R is R�linear and

am � R n m � in particular �m �d��qm � � am �
Since the ideal generated by the elements am is not contained in a

maximal ideal� it is the unit ideal� and hence � is a linear combination
of some elements a� � am � � � � � � ar � am r

� say � �
P

biai� Set �i � �m i
�

qi � qm i
� and q � maxfq�� � � � � qrg� Since d �� m

�qi�
i � a fortiori d �� m

�q�
i �

Running through the argument above once more� we may in fact assume
that qi � q for all i and �i�d

��q� � ai� Now � �
P

bi�i has the desired
property�

Proof of �
������ As Rc is regular� the previous lemma implies that there

exist a power q of p and an Rc�linear map � � R
��q
c � Rc with ���� � ��

One can write � � ��cn where � � R��q � R is R�linear� It follows that
� ��� � cn for some n� and replacing c by cn we may as well assume that
� ��� � c� Restricting � to R��p �which is contained in R��q� yields an
R�linear map � � R��p� R with ���� � c�

We claim that c� is a test element if charR �� �� and that c� is a test
element if charR � �� In fact� let I � R be an ideal of R� and pick
x � I�� Then there exists an element d � R� with dxq � I�q� for all q�
As before� we �nd a power q� of p and an R�linear map � � R��q� � R

such that ��d��q�� � cN for some N� Taking the q��th root of the relation
dxqq

�

� I�qq
��� one obtains d��q�xq � I �q� for all q� Now we apply � and get

cNxq � I�q� for all q�
Let N be the smallest integer with this property and write N � mp� r

with 
 � r � p� Then �cr���pcmxq � I �q�R��p� and multiplication by
�cp�r���p yields cm��xq � I �q�R��p for all q� Applying the linear map �
constructed in the �rst paragraph of the proof we obtain cm��xq � I �q�

for all q� Since N was chosen minimal� m � � 	 N� This implies that
N � �� if p � �� and N � �� if p � ��

Using test elements we can now prove a result about the behaviour
of tight closure under completion�

Proposition �
������ Let �R� m � be an excellent local ring with m �adic com�

pletion �R� and let I be an m �primary ideal of R� Then I� �R � �I �R���

Proof� We denote by Rred the residue class ring of R modulo its nilradical
N � Rad�
�� Choose an element c � R such that �Rred�c is regular �this
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is possible since SingRred is Zariski�closed�� It follows from �
����� that
some power of c is a test element� Replacing c by this power we may
assume that c itself is a test element� Let q� be such that Nq� � 
� Then for
all ideals J in R� c has the property that x � J� if and only if cxq � J�q�

for all q 	 q�� One therefore says that c is a q��weak test element for R�

Since R is excellent� the ring � �Rred�c is also regular �this uses the
regularity of the formal �bres of Rred�� and hence we may assume c is a

q��weak test element for �R as well�

The inclusion I� �R � �I �R�� is obvious since R� � � �R��� For the proof

of the other inclusion we �rst notice that �I �R�� � �I� �R��� so that it su�ces

to show that �I� �R�� � I� �R� We may therefore assume that I is tightly

closed� Since �I �R�� is �m �primary� there is an ideal J � R containing I

with J �R � �I �R��� Suppose I �R is not tightly closed� Then the inclusion

I � J is proper� Hence there exists an element x � ��I �R�� n I �R� � R� For

all q 	 q� we then have cxq � I�q� �R � R � I�q�� This implies x � I� � I � a
contradiction�

Corollary �
������ Let �R� m � be an excellent local ring� Then R is F�

rational if and only if its m �adic completion �R is F�rational�

Proof� Suppose R is F�rational� and let I be an ideal of �R generated by

a system of parameters� Then there exists an ideal J of R with I � J �R
such that J is also generated by a system of parameters� By �
����� and

our assumption� I� � �J �R�� � J� �R � J �R � I �

Conversely� assume that �R is F�rational and I is an ideal of R

generated by a system of parameters� Since �R is a faithfully �at R�

module� I� � �I� �R� � R � �I �R�� � R � �I �R� � R � I �

The Frobenius and local cohomology� We shall see that the Frobenius
homomorphism F � R � R induces a natural action on local cohomology�
This leads to an important characterization of F�rationality in terms of
local cohomology discovered by Smith�

Let x�� � � � � xd be a system of parameters of R� We know from Section
��� that local cohomology may be computed as the homology of the

modi�ed %Cech complex

C� � 
 �� C� �� C� �� � � � �� Cn �� 
�

Ct �
M

�
i��i������it
n

Rxi�xi� ���xit
�

The Frobenius acts naturally on each C i� and it is easy to see that it is
compatible with the di erentiation of C�� This shows that F induces an
action

F � H i
m �R�� H i

m �R� for all i�
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�This map obviously coincides with that induced by the ring homo�
morphism F � R � R�� We will describe the action of F explicitly
on the highest non�vanishing local cohomology module Hd

m �R�� Notice
that an element c � Hd

m �R� is the homology class � axt � of an element

a�xt � Cd � Rx� where x � x� � � � xd �

Lemma �
����
� �a� � axt � � � ax
n

xt�n � for all integers n 	 
�

�b� � axt � � 
 if and only if there exists an integer n 	 
 such that axn �

�xt�n� � � � � � xt�nd ��

�c� if R is Cohen�Macaulay� then � axt � � 
 if and only if a � �xt�� � � � � x
t
d��

�d� F�� axt �� � � a
p

xtp ��

Proof� �a� and �d� are obvious� while �c� follows from �b�� Finally� � axt � � 


if and only if a�xt is a boundary in C�� This is the case exactly when
there exist elements ci � R such that

dX
i��

����i��ci
xsii
xsi

�
a

xt

for some integers si 	 
� We may assume that si � s for all i� Then such
an equation holds if and only if there exists an integer m 	 
 such that

dX
i��

����i��c�ix
t��s�m�
i � axs�m� c�i � cix

m
Y
j �i

xtj �

Thus the assertion follows with n � s � m�

As a �rst application of these concepts we prove a criterion for F�
rationality� due to Fedder and Watanabe ��
��� which can often be used
in concrete situations�

A local ring �R� m � is called F�injective� if F � H i
m �R� � H i

m �R� is
injective for all i � 
� � � � � d � d � dimR� If R is Cohen�Macaulay� this
is only a requirement on Hd

m �R� that� by �
����
�c�� is equivalent to the
following condition� xp � I�p� implies x � I for each ideal I in R generated
by a system of parameters �

Proposition �
������ Let �R� m � be an excellent Cohen�Macaulay local ring�

and let f � m be an R�regular element such that �i� R��f� is F�injective
and �ii� Rf is an F�regular Gorenstein ring� Then R is F�rational�

Proof� Since F�regular rings are normal �see �
������d�� and hence re�
duced� assumption �ii� and �
����� imply that some power of f� say
ft� is a test element for R� Since f is R�regular we can extend f
to a system of parameters f� x�� � � � � xd � In order to prove that R is
F�rational we apply �
���� and show that I � �f� x�� � � � � xd� is tightly
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closed� Indeed� let x � I�� then for all q there exist aiq � R such
that ftxq � a�qf

q � a�qx
q
� � � � � � adqx

q
d � Thus� for q � t we get

ft�xq � a�qf
q�t� � �xq� � � � � � x

q
d�� Since R is Cohen�Macaulay� the sequence

f� x�� � � � � xd is R�regular� Hence xq � �fq�t� xq�� � � � � x
q
d�� Since R��f� is

F�injective� this implies �x � � �x�� � � � � �xd� where�denotes reduction modulo
f� Thus x � �f� x�� � � � � xd�� In other words� I is tightly closed�

A submodule N � Hd
m �R� is called F�stable if F�N� � N� We have the

following characterization of F�rationality�

Theorem �
����� �Smith�� Let �R� m � be an excellent local ring� Then the

following conditions are equivalent	

�a� R is F�rational�
�b� R is Cohen�Macaulay and Hd

m �R� has no proper non�zero F�stable sub�
module�

Proof� �b�  �a�� Assume R is not F�rational� Choose a system of
parameters x�� � � � � xd of R and set I � �x�� � � � � xd�� Then� by �
����� there
exists an element a � I� n I � The element ! � � ax � � Hd

m �R� is non�zero
since R is Cohen�Macaulay� see �
���� and �
����
�c�� Consider the
smallest F�stable submodule N � Hd

m �R� containing !� The non�zero
module N is obviously spanned by the elements Fe�!� � � a

q

xq �� q � pe�

e 	 
� Since a � I�� there exists an element c � R� such that caq � I �q�

for all q �see �
������ This implies cN � 
�
Suppose N � Hd

m �R�� then c annihilates Hd
m �R� and consequently its

Matlis dual� which is the canonical module � 	R of the completion of R�
This is a contradiction� since � 	R is faithful according to �������

�a�  �b�� As R is excellent� the m �adic completion of R is again
F�rational� Since furthermore R and its completion have the same local
cohomology� we may assume that R is complete�

Suppose there is a proper non�zero F�stable submodule N � Hd
m �R��

Taking Matlis duals yields an epimorphism �R �� N� with non�zero
kernel U� Since R is a domain and �R is a module of rank � �see ��������
N� is a torsion module� Hence there exists an element c � R� such that
cN� � 
� Therefore cN � 
�

As N �� 
� one �nds a non�zero ! � � ax � in N� where x � x� � � � xd for a
system of parameters x�� � � � � xd of R� Since N is F�stable� c annihilates all
elements Fe�!�� that is� � ca

q

xq � � 
 for all q� Because R is Cohen�Macaulay�
this implies caq � �x�� � � � � xq� for all q� see �
����
�c�� In other words�
a � �x�� � � � � xd��� Since R is F�rational� a � �x�� � � � � xd�� and so ! � 
� a
contradiction�

Pseudo�rational and rational singularities� A point x on a normal variety
X is said to be a rational singularity� if there exists a desingularization
f � W � X such that �Rif�OW �x � 
 for all i 	 �� �Since this condition
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is local� it su�ces to compute the higher direct image sheaves when X
is a�ne� in which case Rif�OW is the sheaf associated to the module
H i�W�OW ���

The disadvantage of this de�nition is that X may have no desingu�
larization� Therefore Lipman and Teissier ����� introduced the notion of
pseudo�rationality� It coincides with rationality for rings that are local�
izations of a�ne domains over �elds of characteristic zero� furthermore
they showed that regular rings are pseudo�rational�

De�nition �
������ Let �R� m � be a d�dimensional normal Cohen�Macaulay
local ring whose completion is reduced� Then R is pseudo�rational if for
any proper birational map � � W � X � SpecR with W normal and
closed �bre E � ����m �� the canonical map


� � H
d

m �R� �� Hd
E �W�OW �

is injective�

In the de�nition� H i
E �W�OW � denotes cohomology with supports in

E� see Hartshorne ������ Exercise III����� Cohomology with supports is
related to ordinary cohomology via the long exact sequence


 �� H�
E �W�OW � �� H��W�OW � �� H��W n E�OW � �� � � ����

�� H i
E �W�OW � �� H i�W�OW � �� H i�W n E�OW � �� � � �

If X � SpecR and x � fm g� then cohomology with supports is just local
cohomology� H i

x�X�OX� �� H i
m �R� for all i� Furthermore� for a�ne X the

above long exact sequence implies that H i
x�X�OX� �� H i���X n x�OX� for

i 	 � since H i�X�OX� � 
 for i � 
� see ������ Theorem III���	�

The homomorphism 
� is the composition of the maps

Hd
m �R� � Hd���X n x�OX�



�� Hd���W n E�OW �

�
�� Hd

E�W�OW ��

where � is the edge homomorphism E
d����
� � Ed�� of the Leray spectral

sequence �see Godement ������ II����	�

Ep�q
� � Hp�X n x� Rq��OX� Ep�q � Hp�q�W n E�OW ��

and � is a connecting homomorphism in the long exact sequence ����
Since 
� is de�ned naturally� it has good functorial properties�

Suppose R is of characteristic p� then we have a morphism of schemes
F � W � W � the absolute Frobenius morphism� This map is the identity
on the underlying topological space and the p�th power map locally on
sections of OW � F�OW � OW � This morphism of schemes induces a
natural map on cohomology with supports� compatible with 
� � In other
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words� one has a commutative diagram

Hd
m �R� ����� Hd

m �R�

��

��y ��y��
Hd
E �W�OW � ����� Hd

E�W�OW ��

where the top horizontal map is just the Frobenius action on Hd
m �R�

de�ned above� Consequently� the kernel of 
� is an F�stable submodule
of Hd

m �R�� This observation is part of the proof of

Corollary �
����	 �Smith�� Let �R� m � be an excellent local ring of charac�

teristic p� If R is F�rational� then it is pseudo�rational�

Proof� By �
����� it su�ces to show that the kernel of 
� is not all of
Hd

m �R��
We may assume that d 	 �� and prove that codimKer 
� 	 � �which

of course implies Ker 
� �� Hd
m �R��� From the exact sequence ��� we obtain

that Ker � is the image of � � Hd���W�OW �� Hd���W nE�OW �� Since R
is normal and � is birational� � is an isomorphism at primes of height ��
hence Hq�W�OW �p � 
 for q � 
 and all p � X with height p � �� This
implies codimKer � 	 ��

It remains to show that codimKer � 	 �� Pick p � X with height p � s�
then

�Rq��OW �p � Hq�W�OW �p � Hq�����SpecRp ��OW � � 


for q � 
� q 	 s� In fact� by Chow�s Lemma ������� Exercise III����
� we
can assume that � � ����SpecRp �� SpecRp is projective� and is therefore
obtained by blowing up an ideal of Rp � So the maximal dimension of
the closed �bre of � is bounded by s � �� whence the assertion on
the vanishing of �Rq��OW �p follows from the comparison theorem for
projective morphisms ������� Corollary III�������

The vanishing of �Rq��OW �p for q 	 s implies dimSupp�Rq��OW � �
d � q � �� Hence

dimSupp�Rq��OW � � �X n x� � d � q � ��

and so Hp�X n x� Rq��OW � � 
 for p � q � d � �� q � 
� The Leray

spectral sequence now yields Hd���W n E�OW � � Ed����
� � In particular� �

may be identi�ed with the map Ed����
� � Ed����

� which is the composition
of the surjective maps

Ed����
� �� Ed����

� �� Ed����
� �� � � �

where� for each r 	 �� the kernel of dr � Ed����
r � E

d����
r�� is the image of

Ed���r�r��
r � Ed����

r � Since each Ed���r�r��
r is a subquotient of

Ed���r�r��
� � Hd���r�X n x� Rr����OW ��
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and since codimSupp�Rr����OW � 	 �� as observed above� we conclude
codim�Ker dr� 	 � for all r 	 �� Therefore codimKer � 	 ��

The following corollary is the characteristic p analogue of Boutot�s
theorem ��
� that a direct summand of a rational singularity is a rational
singularity�

Corollary �
������ Let �R� m � be an excellent local ring of characteristic p
which is a direct summand of an F�regular overring� Then R is pseudo�

rational�

Proof�We know from �
����� that a direct summand of an F�regular ring
is again F�regular� and hence F�rational� Now we apply �
������

For the sake of completeness we quote without proofs the extension
of the theory to characteristic 
�

De�nition �
������ Let k is a �eld of characteristic 
� and R an a�ne k�
algebra� The ring R is of F�rational type if there exists a �nitely generated
Z�subalgebra A of k and a �nitely generated A�algebra RA� with �at
structure map A� RA such that
�a� �A� RA� �A k is isomorphic to k � R�
�b� the ring RA �A A�m is F�rational for all maximal ideals m in a dense
open subset of SpecA�

A typical situation described in the de�nition is the following� R
is an a�ne k�algebra k�X� � � � � � Xn���f�� � � � � fm� where the polynomials fi
are de�ned over Z� Z�X�� � � � � Xn���f�� � � � � fm� is a free Z�module� and
�Z�p��X�� � � � � Xn����f�� � � � � �fm� is F�rational for all but �nitely many prime
elements p�

Let X be a scheme of �nite type over a �eld of characteristic zero�
One says that a point x � X has F�rational type if x has an open a�ne
neighbourhood de�ned by a ring R of F�rational type� The scheme X
has F�rational type if every point x � X has F�rational type�

The following fundamental theorem relates rational singularities and
F�rational rings�

Theorem �
����� �Smith and Hara�� Let X be a scheme of �nite type over

a �eld of characteristic 
� Then X has F�rational type if and only if X has

rational singularities�

Exercises

������
� Let R be a positively graded k�algebra where k is a 	eld of positive charac�
teristic� Prove that a�R� � � if R is F�rational� �Hint� a�R� � maxfi � �Hm �R� �� �g�
See �
��� ������ and ������ for converse results��

�������� Show that F�rationality implies F�injectivity for Cohen�Macaulay local
rings�
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�������� One says that R is F�pure if R is a pure extension of R via the Frobenius
map F �see ������b� for this notion�� Show that kX� � � � � � Xn��I is F�pure for
every 	eld k of positive characteristic and each ideal I generated by squarefree
monomials� indeed� R is a direct summand of R under F �

�������� �a� Let R be an arbitrary ring and S a pure extension of R� Show that for
every complex C� of R�modules the natural map Hi�C�� � Hi�C� � S � is injective
for all i�

�b� Prove that F�purity implies F�injectivity� �One can show that weak F�regularity
implies F�purity� see Fedder and Watanabe ����� �����

�
�	 Direct summands of regular rings

In this section we return to a subject that has been treated several times
before� namely the Cohen�Macaulay property of direct summands of
regular rings� which we will now prove for rings containing a �eld � the
general case seems to be unknown� The next theorem generalizes ������ in
which we have considered graded direct summands of polynomial rings
k�X�� � � � � Xn�� and �
������ which covers rings of characteristic p�

Theorem �
�	�� �Hochster�Huneke�� Let R be a Noetherian ring containing

a �eld and suppose R is a direct summand of a regular ring S � Then R is

Cohen�Macaulay�

Proof� Already the proof of ����� depended on reduction to characteristic
p and eventually used a tight closure argument� However� not even in the
relatively �harmless� setting of ����� could the direct summand property
be pushed through the reduction� Therefore we will have to prove a
general local analogue of ����� from which we now derive the theorem�

Being Cohen�Macaulay is a local property� Thus� let p be a prime
ideal of R� Then the hypotheses are inherited by the submodule Rp of Sp

so that we may assume R is local with maximal ideal m � Next we pass to

the m �adic completion �R and the m S�adic completion �S of S � It is clear

that �R is a direct summand of �S � Also regularity has survived� Indeed�

one has �S�m �S �� S�m S � and m �S is contained in the Jacobson radical of �S
�see ��	
�� x��� It results from this fact and Nakayama�s lemma that every

maximal ideal of �S is of the form n �S where n is a maximal ideal of S �
Now one uses the natural isomorphism between the n �adic completion S�
of S and the n �S�adic completion S� of �S to conclude that �Sn 	S is a regular
local ring� The isomorphism of S� and S� is not hard to prove� choose
systems of generators a�� � � � � ar and b�� � � � � bs of m S and n respectively�
with X � X�� � � � � Xr and Y � Y�� � � � � Ys one then has

S� �� S��X �Y ����X� � a�� � � � � Xr � ar � Y� � b�� � � � � Ys � b���

S� �� �S��X ����X�� a�� � � � � Xr � ar����Y ����Y� � b�� � � � � Ys � bs�
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by ��	
�� ���� �for the �rst isomorphism we use that a�� � � � � arb�� � � � � bs
also generates n ��

From now on we may assume that R is a residue class ring of a
Cohen�Macaulay ring� Notice that S is the direct product S� 
 � � � 
 Ss
of regular integral domains� Let ei � S be the idempotent representing
� � Si� For the R�homomorphism � � S � R splitting the inclusionR � S
we have � � ��e�� � � � � � ��es�� Since R is local� one of the ��ei� is a unit
in R� It follows easily that the induced map R � Si is split� Hence we
can replace S by the domain Si� especially� R is a domain�

Now choose a system of parameters x�� � � � � xd of R� Then

��x�� � � � � xm��� �R xm�S � �x�� � � � � xm���S� m � �� � � � � d�

by �
���� below� Moreover� IS � R � I for all ideals I of R� and we
conclude immediately that x�� � � � � xd is an R�sequence� as desired�

Remark �
�	��� The theorem holds under the slightly weaker hypothesis
that R is a pure subring of S �see ������b� for this notion�� In fact� purity
implies that IS � R � I for all ideals I of R� furthermore it is stable
under the reduction in the proof of �
���� �see Hochster and Roberts
��
��� Section ��� If one assumes directly that R and S are domains and
R is a residue class ring of a Cohen�Macaulay ring� then it is su�cient
that IS �R � I for all ideals I of R �as was the case for ����� and �
�������

We refer the reader to ����� for a discussion of the predecessors and
variants of �
�����

Theorem �
�	��� Let �R� m � be Noetherian local domain of dimension d that

contains a �eld and is a homomorphic image of a Cohen�Macaulay local

ring� Furthermore let S be a regular domain extending R� Then one has

��x�� � � � � xm��� �R xm�S � �x�� � � � � xm���S for every system of parameters

x�� � � � � xd of R and m � �� � � � � d �

Proof� If the claim should fail� then there exists a maximal ideal n of S
such that ��x�� � � � � xm��� �R xm�Sn �� �x�� � � � � xm���Sn � Evidently p � R � n

must contain x�� � � � � xm� In order to replace R by Rp we must only
show that x�� � � � � xm can be extended to a system of parameters of Rp �
This holds if height�x�� � � � � xm� � m� Indeed� by assumption we have
codim�x�� � � � � xm� � m� and R is a �universally� catenary local domain �see
�������� In such a ring one has height I � codim I for all ideals I �

After this �rst step we can assume S is a regular local domain
extending R� The completion of S �with respect to its maximal ideal� is a
regular local ring extending S � and since it is faithfully �at over S � there
is no harm in supposing that S is even a complete regular local ring�

The homomorphism R � S induces a map �R � �S � S � which however

need not be injective� At least� its kernel q is a prime ideal of �R with
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q � R � 
� Since �R is �at over R� q is a minimal prime ideal of �R and

dim �R�q � dim �R by virtue of Theorem �������
As in Section ��� we use the ideals a i � AnnH i

m �R�� Set a �R� �
a � � � � a d�� and recall from ����� that

a �R� � ��x�� � � � � xm��� �R xm� � �x�� � � � � xm���R�

furthermore� by ������ a �R� �� q � Since the image of a �R� under the map
R � S is non�zero� we can invoke the following lemma and conclude the
proof�

It is necessary to relax the condition that the homomorphism R � S
be injective� Actually we will have to reduce the next lemma to the case
where this map is surjective in order to prove it in characteristic 
� �The
hypothesis �complete� is only included to save us another reduction��

Lemma �
�	�	� Let �R� m � be a complete Noetherian local ring containing

a �eld� �S� n � a complete regular local ring� and � � R � S a ring homo�

morphism such that ��a �R�� �� 
� Then

��x�� � � � � xm��� �R xm�S � �x�� � � � � xm���S

for every system of parameters x�� � � � � xd of R and m � �� � � � � d �

Proof� Let us �rst prove the lemma in characteristic p� Pick d � a �R�
such that c � ��d� �� 
� For y � �x�� � � � � xm��� �R xm and all q � pe

one has yq � �xq� � � � � � x
q
m��� �R xqm� Since x

q
� � � � � � x

q
d is also a system of

parameters� dyq � �xq�� � � � � x
q
m���� Applying �� we immediately see that

��y� � ��x�� � � � � xm���S��� whence ��y� � �x�� � � � � xm���S by �
���	�
The next step is the reduction to the case in which � is surjec�

tive� By Cohen�s structure theorem A��� there are representations
R �� K��Y� � � � � � Yr���I and S �� L��Z�� � � � � Zs�� where K �� R�m and
L �� S�n are coe�cient �elds of R and S � respectively� The map �
induces an inclusion K � L so that we may view K as a sub�eld of L�
We set A � K��Y� � � � � � Yr�� and A� � L��Y�� � � � � Yr���

Evidently� � can only be surjective if K � L� and therefore we must
extend R such that the extension R� has residue class �eld L� Consider
the homomorphism A � S induced by �� It clearly factors through A��
Therefore � factors through R� � A��IA�� Note that R� is �at over R� �rst�
it is easily proved that A� is a �at A�algebra �see Exercise ������� and�
second� if C

�
is an exact sequence of R�modules� then C

�
�R R

� �� C
�
�AA

��
Moreover� m R� is the maximal m � ideal of R�� Especially dimR� � dimR�
and so every system of parameters of R is also a system of parameters
of R��

We can replace R by R� if we have shown that a �R�R� � a �R��� We
set b i � AnnAH

i
m �R�� and de�ne b �i similarly� Then b i is the preimage

of AnnR H
i

m �R�� and the corresponding statement holds for b �i� Therefore



����� Direct summands of regular rings �


it is enough that b iA
� � b �i� By ����� we have b i � AnnAM where M �

Extd�iA �R�A�� The �atness of A� over A implies M � A� �� Extd�iA� �R�� A��
and AnnA�M�A� � AnnA��M � A�� �see the proof of �
���	�� Using �����
once more� we arrive at the desired equality�

From now on we may assume that K � L� R � R�� and A � A�� Next

we extend � to a surjection � � eR � S by choosing eR � R��Z�� � � � � Zs��

and setting ��Zj� � Zj � S � The extension R � eR is faithfully �at�
and every system of parameters of R can be extended by Z�� � � � � Zs to a

system of parameters of eR� Before we can replace R by eR� we need only
to prove that a �R�eR � a �eR�� This however results again from ������ the

reader can easily check that a ieR � ea i�s for all i � 
� � � � � d and ea i � eR for

i � 
� � � � � s� �� set eA � A��Z�� � � � � Zs�� and use that eR � R �A
eA�

We may now replace R by eR and A by eA� After this change of
notation the failure of the lemma can be described as follows� there exist

�i� a regular local ring A with a regular system of parameters a�� � � � � an� a
residue class ring R � A��b�� � � � � bu� of dimension d � and a residue class
ring S � A��a�� � � � � av�� v � n� such that �b�� � � � � bu� � �a�� � � � � av� �in fact�
the kernel of the homomorphism A � S is generated by a subset of a
regular system of parameters��

�ii� elements c�� � � � � cd�� with ci � AnnA Ext
d�i
A �R�A� and c � c� � � � cd�� ��

�a�� � � � � av��

�iii� elements x�� � � � � xd � A whose residue classes form a system of
parameters� a number m� � � m � d � and an element w � A such that
wxm � �x�� � � � � xm��� � �b�� � � � � bu�� but xm �� �x�� � � � � xm��� � �a�� � � � � av��

We want to show that� given such data in characteristic 
� we can
also �nd them in characteristic p� To this end we must show that the
data above have a regular equational presentation� Theorem ����� then
yields a characteristic p counterexample to our contention� the desired
contradiction�

All the relations ��� and ��� can of course be expressed by polynomial
equations� This holds also for the fact that b�� � � � � bu and y�� � � � � yd
generate an ideal whose radical contains �a�� � � � � an�� Furthermore we
have already seen in ����� that the dimension condition in �i� and the
non�membership relations in �ii� and �iii� can be captured by equations�

For given i we write Extd�iA �R�A� as a residue class module As�W �

Then the isomorphism Extd�iA �R�A� �� As�W admits a regular equational
presentation by ������ as does the relation ciA

s � W for trivial reasons�
This �nally shows that all the data given in �i���iii� can be encoded in a
system of polynomial equations over Z�



��
 ��� Tight closure

Notes

The fundamental paper for tight closure is Hochster and Huneke �����
Essentially all of the material of Sections �
�� and �
�� has been taken
from this source� A detailed discussion of the not yet solved localization
and completion problems can be found in Huneke�s lecture notes �����
which we have consulted extensively in writing Chapter �
� Much of the
work that preceded tight closure theory and motivated its creation has
been discussed Chapters � and �

The theorem of Brian�con and Skoda was originally proved by analytic
methods� and the lack of an algebraic proof had been �for algebraists
something of a scandal � perhaps even an insult � and certainly a
challenge� �Lipman and Teissier ������� As pointed out in Section �
��
algebraic proofs of slightly di erent theorems were given by Lipman and
Teissier and Lipman and Sathaye ���
�� the latter work uses di erential
methods� The proof of the tight closure version by Hochster and Huneke
is contained in their article ��
�� which is still very useful as a �rst
overview of our subject� For variants and generalizations of the Brian�con�
Skoda theorem see Aberbach and Huneke ���� ���� and Swanson ������ For
the connection with reduction numbers and Rees algebras see Aberbach�
Huneke� and Trung ����

F�rational �local� rings appeared �rst in Fedder and Watanabe ��
���
Our treatment of their basic properties essentially follows Huneke ������
The connection with local cohomology and the Frobenius action on it
goes back to the work ��
�� of Hochster and Roberts that introduced
F�purity� Special cases of Smith�s theorem ���� that F�rational type
implies rational singularity and its converse by Hara ����� which we
have quoted in �
����	� had been proved in special cases by Fedder ��
���
��
��� ��
�� and Hochster and Huneke ��
�� The proof of �
����� was
suggested to us by Watanabe�

We could only prove the easiest result on the existence of test elements
that in its general version presents the perhaps most intricate aspect of
tight closure� see Hochster and Huneke ����� ����� The existence of
test elements is closely related with the so�called persistence theorem that
under suitable conditions guarantees the relation ��I�� � ���I�S�� for a
ring homomorphism � � R � S� see ����� �������

Some results about the hierarchy of �F�properties� have been indicated
in Section �
��� For more information� especially for examples delimiting
these properties from each other and for the relation to singularity theory�
the reader is referred to Fedder and Watanabe ��
��� Watanabe ��
��
����� and Hara and Watanabe ���
��

Theorem �
���� was stated by Hochster and Huneke ��
�� ��� without
proof� A complete proof appeared in their paper ��	�� It uses the
functoriality of big Cohen�Macaulay algebras� Our derivation of the
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theorem is certainly a variant of the idea behind ��
�� ����
The de�nition of tight closure can be extended from the situation

I � R to that in which U is a submodule of the R�module M� In
particular� this leads one to the notion of phantom homology and phan�
tom acyclicity� see Hochster and Huneke ����� ����� For phantom
acyclic complexes one has a vanishing theorem similar to �
���� where
the ideal quotient is replaced by the homology of a phantom acyclic
complex� It seems however that the strongest such vanishing theorem
��	�� ����� needs big Cohen�Macaulay algebras� One can also derive
a �phantom� version of the �improved new intersection theorem� �����
thus tight closure o ers another approach to the homological theorems
of Chapter � Aberbach has developed �phantom� homological alge�
bra that includes phantom projective dimension� phantom depth and an
Auslander�Buchsbaum formula�

Tight closure can be also de�ned in characteristic 
� see ���� and the
Appendix of ����� by Hochster� So far there seems to be no de�nition of
tight closure in mixed characteristic� Hochster has developed a theory of
solid closure that does not depend on characteristic ������ For �good� rings
of characteristic p � 
 solid closure coincides with tight closure� however�
there exist examples showing that ideals in a regular ring containing a
�eld of characteristic 
 need not be solidly closed�

There are many more aspects and applications of tight closure� We
content ourselves with a list of cues and references� tight closure in graded
rings �Smith ���
��� Hilbert�Kunz functions and multiplicities �Kunz
������ Monsky ��		��� uniform Artin�Rees theorems �O�Carroll �����
Huneke ������� arithmetic Macaulay�cation �Huneke and Smith �����
stronglyF�regular rings �Hochster and Huneke ����� Glassbrenner ���	���
di erentially simple rings �Smith and Van den Bergh ������� Kodaira
vanishing and other vanishing theorems of algebraic geometry �Huneke
and Smith ������ Smith �������



Appendix A summary of dimension theory

Dimension theory is a cornerstone of commutative ring theory� and is
covered by every serious introduction to the subject� For ease of reference
we have collected its main theorems in this appendix� together with the
structure theorems for complete local rings�

Most of the theorems below have the names of their creators associ�
ated with them and should be easily located in the literature� For some
of the results we outline a proof�

Height and dimension� There exist two principal lines of development for
general dimension theory� The �rst and �classical� approach� to which
we shall adhere� starts from the Krull principal ideal theorem ���	��
������ ������ ������ ��	�� whereas the second brings the Hilbert�Samuel
function into play at a very early stage ������ ��	
���

Let R be a commutative ring� and p � SpecR� The height of p is the
supremum of the lengths t of strictly descending chains

p � p � � p � � � � � � p t

of prime ideals� For an arbitrary ideal I one sets

height I � inffheight p � p � SpecR� p � Ig�

The fundamental theorem on height is Krull�s principal ideal theorem�

Theorem A��� Let R be a Noetherian ring� and I � �x�� � � � � xn� a proper

ideal� Then height p � n for every prime ideal p which is minimal among

the prime ideals containing I �

In particular� every proper ideal in a Noetherian ring has �nite height�
In a sense� the following theorem is a converse of the principal ideal
theorem�

Theorem A��� Let R be a Noetherian ring� and I a proper ideal of height

n� Then there exist x�� � � � � xn � I such that height�x�� � � � � xi� � i for i �
�� � � � � n�

The elements xi are chosen successively such that xi is not contained
in any minimal prime overideal of �x�� � � � � xi���� that such a choice is
possible follows from ������

���
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The �Krull� dimension of a ring R is the supremum of the heights of
its prime ideals�

dimR � supfheight p � p � SpecRg�

Because of the correspondence between SpecRp � p � SpecR� and the set
of prime ideals contained in p � one has

dimRp � height p �

A fundamental and very easily proved inequality is

heightI � dimR�I � dimR

for all proper ideals I of R�
The dimension of a Noetherian local ring can be characterized in

several ways�

Theorem A��� Let �R� m � be a Noetherian local ring� and n �N� Then the

following are equivalent	

�a� dimR � n�
�b� height m � n�
�c� n is the in�mum of all m for which there exist x�� � � � � xm � m with

Rad�x�� � � � � xm� � m �

�d� n is the in�mum of all m for which there exist x�� � � � � xm � m such that

R��x�� � � � � xm� is Artinian�

The equivalence of �a� and �b� is trivial� That of �b� and �c� results
from A�� and A��� and for �c�� �d� one uses the fact that a Noetherian
ring is Artinian if and only if all its prime ideals are maximal� in other
words� if it has dimension 
� If dim�R��x�� � � � � xn�� � 
 with n � dimR�
then x�� � � � � xn is a system of parameters of R�

Sometimes it is appropriate to use the codimension of an ideal in a
ring R which is given by

codim I � dimR � dimR�I�

Dimension of modules� The notion of dimension can be transferred to
modules� Let M be an R�module� then dimM is the supremum over the
lengths t of strictly descending chains

p � p � � p � � � � � � p t with p i � SuppM�

In the case of main interest in which M is a �nite module one has
SuppM � fp � SpecR � p � AnnMg so that dimM � dim�R�AnnM��
If �R� m � is local� then a system of parameters for a non�zero �nite
R�module M is a sequence x�� � � � � xn � m � n � dimM� such that
M��x�� � � � � xn�M is Artinian� The following inequality is often useful�
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Proposition A�	� Let �R� m � be a Noetherian local ring� M a �nite R�module�
and x�� � � � � xr � m � Then

dim�M��x�� � � � � xr�M� 	 dimM � r�

equality holding if and only if x�� � � � � xr is part of a system of parameters

of M�

This is easy� One �rst replaces M by R�AnnM so that it is harmless
to assume M � R� Then one chooses y�� � � � � ym � m such that their
residue classes in R��x�� � � � � xr� form a system of parameters� Finally one
applies A���

An important datum of a homomorphism of local rings �R� m � �
�S� n � is its �bre S�m S � For example it relates the dimensions of R and S�

Theorem A��� Let �R� m �� �S� n � be a homomorphism of Noetherian local

rings�

�a� Then dimS � dimR � dim S�m S�
�b� more generally� if M is a �nite R�module and N is a �nite S�module�
then dimS �M �R N� � dimR M � dimS N�m N�

For the proof of �b� set I � AnnM and �R � R�I � Then U �R N ��
U ��R N�IN for every �R�module U� Thus we may replace R by �R� S
by S�IS � and N by N�IN� That is� we may assume SuppM � SpecR�
Next� replacing S by S��AnnN�� we may suppose SuppN � Spec S �
Under these conditions the desired inequality is equivalent with �a�� For
�a� one chooses a system x�� � � � � xn of parameters of R� and uses that
Rad�x�� � � � � xn�S � Rad m S �

Integral extensions� Recall that an extension R � S of commutative rings
is integral if every element x � S satis�es an equation xn � an��x

n�� �
� � �� a� � 
 with coe�cients ai � R� Very often one uses that S is a �nite
R�module if and only if it is an integral extension and �nitely generated
as an R�algebra�

Theorem A��� Let R � S be an integral extension� and p � SpecR�
�a� There exists a prime ideal q � Spec S with p � q � R �one says q lies

over p ��
�b� there are no inclusions between prime ideals lying over p �

�c� in particular� when q lies over p � then p is maximal if and only if q is�

The following theorem comprises the Cohen�Seidenberg going�up and
going�down theorems�

Theorem A��� Let R � S be an integral extension�

�a� If p � � p are prime ideals of R and q � Spec S lies over p � then there

exists a prime ideal q � � q in S lying over p ��
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�b� if� in addition� S is an integral domain and R is integrally closed� then�

given prime ideals p � � p of R and q of S � q lying over p � there exists

q � � Spec S � q � � q � which lies over p ��

Corollary A��� Let R � S be an integral extension of Noetherian rings� and

I a proper ideal of S � Then dim S�I � dimR��I � R��

The �rst step in proving the corollary is to replace S by S�I and R by
R��I�R� so that one may assume I � 
� Then given a strictly descending
chain q � � q � � � � � � q t of prime ideals� the chain of prime ideals R � q i
is also strictly descending by A��� and conversely� given a chain in SpecR�
one constructs a chain of the same length in Spec S using A�	�a��

In general� one says that going�up or going�down holds for a ring
homomorphism R � S if it satis�es mutatis mutandis the conclusions of
A�	�a� or �b� respectively�

Flat extensions� It is an important fact that �atness implies going�down�

Lemma A��� Let R � S be a homomorphism of Noetherian rings� and

suppose there exists an R��at �nite S�module N with SuppN � Spec S �
Then going�down holds�

Going�down can be reformulated as follows� for all prime ideals p �
SpecR and q � Spec S lying over p the natural map Spec Sq � SpecRp is
surjective� Now� given such prime ideals p and q � Nq is even a faithfully
�at Rp �module� and the surjectivity of Spec Sq � SpecRp follows from
the next lemma�

Lemma A��
� Let R � S be a ring homomorphism� If an S�module N
is faithfully �at over R� then the associated map SuppN � SpecR is

surjective�

In fact� let p � SpecR� we set k�p � � Rp �p Rp � Then k�p � �R N �� 
�
and the support of the k�p � �R S�module k�p � �R N contains a prime
ideal Q � If we choose q � S � Q � then q � SuppN� and furthermore
q � R � p � one has q � R � Q � R� and Q � R � p since the map
Spec�k�p ��R S�� SpecR factors through Spec k�p ��

For �at extensions the inequalities in A�� become equations�

Theorem A���� Let �R� m � � �S� n � be a homomorphism of Noetherian

local rings�

�a� If S is a �at R�algebra� then dimS � dimR � dim S�m S�
�b� more generally� if M is a �nite R�module and N is an R��at �nite
S�module� then dimS �M �R N� � dimR M � dimS N�m N�

As we did for A��� the theorem is easily reduced to the case in which
SuppN � Spec S � By virtue of the previous lemma the homomorphism
R � S then satis�es going�down� We choose a prime ideal q of S
which contains m S and has the same height as m S � Then going�down
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immediately implies height q 	 height m � Hence

dimS 	 height m S � dimS�m S 	 height m � dimS�m S�

as desired� The converse inequality is part of A���

Polynomial and power series extensions� The dimension of a polynomial
or power series extension is easily computed�

Theorem A���� Let R be a Noetherian ring� Then

dimR�X� � dimR��X�� � dimR � ��

Let S � R�X� or S � R��X��� Then R �� S��X�� and since height�X� � �
one has dimS 	 dimR � �� For the converse we �rst consider the
polynomial case� Let n be a maximal ideal of R�X�� and set p � R � n �
As S � R�X� is R��at� one may apply A���� and only needs to show
that dim�Sn �p Sn � � �� It is a routine matter to check that Sn �p Sn is
a localization of the polynomial ring �Rp �p Rp ��X� with respect to a
maximal ideal� Since Rp �p Rp is a �eld� Sn �p Sn is a discrete valuation
ring and therefore of dimension �� In the power series case p is always a
maximal�"� ideal of R� and Sn �p Sn is therefore the discrete valuation ring
�R�p ���X���

Corollary A���� Let k be a �eld� Then

dim k�X�� � � � � Xn� � dim k��X�� � � � � Xn�� � n�

A�ne algebras� Let k be a �eld� A �nitely generated k�algebra R is called
an a�ne k�algebra� Excellent sources for the theory of a�ne algebras are
Kunz ���� and Sharp ������ The key result is Noether�s normalization
theorem �

Theorem A��	� Let R be an a�ne algebra over a �eld k� and let I be a

proper ideal of R� Then there exist y�� � � � � yn � R such that

�a� y�� � � � � yn are algebraically independent over k�
�b� R is an integral extension of k�y�� � � � � yn� �and thus a �nite k�y� � � � � � yn��
module��
�c�

I � k�y�� � � � � yn� �
nX

i�d��

yik�y�� � � � � yn� � �yd��� � � � � yn�

for some d � 
 � d � n�

Moreover� if y�� � � � � yn satisfy �a� and �b�� then n � dimR�
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If y�� � � � � yn satisfy �a� and �b�� then k�y�� � � � � yn� is called a Noether

normalization of R� That necessarily n � dimR follows from A�� and A����
That condition �c� can be satis�ed in addition to �a� and �b� is crucial for
dimension theory� The graded variant of Noether normalization �due to
Hilbert� is given in �����	�

An important consequence of Noether normalization is �the abstract
version of� Hilbert�s Nullstellensatz �

Theorem A���� Let k be a �eld� and K an extension �eld of k which is a

�nitely generated k�algebra� Then K is a �nite algebraic extension of k�

In fact� if k�y� � � � � � yn� is a Noether normalization of K � then n �
dimK � 
 and K is an integral extension of k� from which one easily
concludes that it is a �nite algebraic extension�

The following theorem contains the main results of the dimension
theory of a�ne algebras�

Theorem A���� Let R be an a�ne algebra over a �eld k� Suppose that R
is an integral domain� Then

�a� dimR � tr degk Q�R� where tr degk Q�R� is the transcendence degree of
the �eld of fractions of R over k�
�b� height p � dimR � dimR�p for all prime ideals p of R�

For part �a� we choose a Noether normalization k�y�� � � � � yn�� Then
Q�R� is algebraic over Q�k�y�� � � � � yn��� and the latter has transcendence
degree n over k� For part �b� we require in addition that k�y� � � � � � yn�
satis�es A��� for I � p � Then the image of k�X� � � � � � Xd� in R�p is a
Noether normalization for that ring� whence dimR�p � d � On the other
hand� note that going�down holds according to A�	� being a factorial ring
�a UFD in other terminology� k�y� � � � � � yn� is integrally closed� It follows
that height p 	 height p � k�y� � � � � � yn� � n � d � Summing up� we have
height p �dimR�p 	 n � dimR� and the converse inequality is automatic
as noticed above�

Hilbert rings� It is a consequence of Hilbert�s Nullstellensatz that a prime
ideal in an a�ne algebra over a �eld is the intersection of the maximal
ideals in which it is contained� Rings with this property are therefore
called Hilbert rings �Bourbaki prefers the term Jacobson rings�� The
following is the main theorem on Hilbert rings�

Theorem A���� Let R be a Hilbert ring� and S a �nitely generated R�
algebra� Then

�a� S is a Hilbert ring�

�b� m � R is a maximal ideal of R for every maximal ideal m of S �

Corollary A���� Let R be a �nitely generated Z�algebra� and m a maximal

ideal of R� Then m �Z � �p� for some prime number p � Z� and R�m is a

�nite �eld�
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In fact� Z is a Hilbert ring� and R�m is a �nite algebraic extension of
Z��p� by A����

A dimension inequality� For the study of the dimension of Rees rings
and associated graded rings the following theorem �due to Cohen� is
important�

Theorem A���� Let R � S be an extension of integral domains� and suppose

R is Noetherian� Let P � Spec S and p � P � R� Then

dimSP � tr degQ�R�p � Q�S�P � � dimRp � tr degQ�R� Q�S��

We reproduce the proof given in ��	
�� x��� The �rst step is a reduction
to the case in which S is a �nitely generated R�algebra� There is nothing
to prove if the right hand side is in�nite� So suppose it is �nite� and let
m and t be integers with 
 � m � dimSP � 
 � t � tr degQ�R�p � Q�S�P ��
Then there exists a strictly descending chain P � P � � � � � � P m of
prime ideals in S � We choose ai�� � P i n P i��� and furthermore elements
c�� � � � � ct � S whose residue classes in S�P are algebraically independent
over Q�R�p �� Let S � � R�a�� � � � � am� c�� � � � � ct�� and P � � P � S �� then
dimS �

P � 	 m and tr degQ�R�p � Q�S�P �� � t� Thus it is enough to prove the

claim for S � and C ��
In the case in which S is �nitely generated� we use induction on the

number of generators so that only the case S � R�x� remains� Write
S � R�X��Q �

If Q � 
� then S � R�X�� and dimSP � dimRp � dim�SP �p SP � by
A���� As SP �p SP is a localization of Q�R�p ��X�� we have dim�SP �p SP � �
�� tr degQ�R�p � Q�S�P � � tr degQ�R� Q�S�� tr degQ�R�p � Q�S�P ��

In the case Q �� 
 we have tr degQ�R� Q�S� � 
� Since R is a subring of
S � Q � R � 
 so that R�X�Q is a localization of Q�R��X�� and therefore
has dimension �� equivalently height Q � �� Let P � the inverse image of
P in R�X�� and note that Q�R�X��P �� �� Q�S�P � in a natural way� Then

dimSP � dimR�X�P � � height Q

� dimRp � �� tr degQ�R�p � Q�R�X��P ��� �

� dimRp � tr degQ�R�p � Q�S�P ��

Complete local rings� The theory of Noetherian complete local rings� for
which we recommend Matsumura ��	
� or Bourbaki ��	� as a source�
leads to similar results as that of a�ne algebras�

For the relation between the characteristic charR of a local ring �R� m �
and that of its residue �eld R�m one of the following cases holds true�
�i� charR�m � 
� then R contains the �eld Q of rational numbers� in
particular charR � 
� �ii� charR�m � p � 
 and charR � p too� then
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R contains the �eld Z�pZ� �iii� charR�m � p � 
 and charR � 
 �the
typical case in number theory�� �iv� charR�m � p � 
 and charR � pm

for some m � �� In cases �i� and �ii� one says that R is equicharacteristic�
�Note that R does not contain a �eld in cases �iii� and �iv�� and that �iv�
is excluded for a reduced ring��

Theorem A��
� Let �R� m � be a Noetherian complete local ring�

�a� If R is equicharacteristic� then it contains a coe�cient �eld� i�e� a �eld

k which is mapped isomorphically onto R�m by the natural homomorphism

R � R�m �

�b� Otherwise let p � charR�m � Then there exists a discrete valuation

ring �S� pS� and a homomorphism � � S � R which induces an isomorphism

S�pS � R�m and furthermore

�i� is injective� if charR � 
�
�ii� has kernel pmS � if charR � pm�

It is a standard technique to pass from a Noetherian local ring �R� m �

to its completion �R �with respect to the m �adic topology�� Then one is in
a position to apply Cohen�s structure theorem �

Theorem A���� Let �R� m � be a Noetherian complete local ring� Then there

exists a ring R� which is a �eld or a discrete valuation ring such that R is

a residue class ring of a formal power series ring R���X�� � � � � Xn���

In fact� let x�� � � � � xn be a system of generators of m � Then there
exists a uniquely determined homomorphism � � R���X�� � � � � Xn�� � R
with ��Xi� � xi where R� is either a coe�cient �eld of R or� in the case
of unequal characteristic� a discrete valuation ring S according to A��
�
In Section ��� it is shown that R���X�� � � � � Xn�� is a regular local ring� and
often one uses A��� �only� to the extent that a complete local ring is a
residue class ring of a regular local ring�

The analogue of Noether normalization is

Theorem A���� Let �R� m � be a Noetherian complete local ring� and suppose
that R is equicharacteristic or a domain�

�i� In the equicharacteristic case let R� � R be a coe�cient �eld of R� and
y�� � � � � yn a system of parameters�

�ii� otherwise� let p � charR�m and R� � R be a discrete valuation ring

according to A��
� and y�� � � � � yn be elements such that p� y�� � � � � yn is a

system of parameters�

Then R is a �nite R���y�� � � � � yn���module� and R���y�� � � � � yn�� is isomorphic
to the formal power series ring R���Y�� � � � � Yn���

One �rst shows that R is a �nite R���y�� � � � � yn���module� so that
dimR � dimR���y�� � � � � yn��� The substitution Yi �� yi induces a surjec�
tive homomorphism � � R���Y�� � � � � Yn�� � R���y�� � � � � yn�� which is also
injective since dimR���Y�� � � � � Yn�� � dimR���y�� � � � � yn���
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��� �� least� greatest element of a poset� ���
a� � � � am� maximal minor of a matrix� ���
a� � � � au j b� � � � bu� minor of a matrix� ���

ahdi ���
ahdi ���
a�X a�ne hull of the set X� ���
a�R� a�invariant of the graded ring R� ���� ���
A��R� category of Artinian graded R�modules� ���
A�R� category of Artinian R�modules� ���
�i�M� i�th Betti number of the module M� ��
C 	eld of complex numbers
C� ���eC���� eC�� � augmented oriented chain complex of the simplicial complex

�� the cell complex � � ��
� ���
chark characteristic of the 	eld �ring� k
���� Euler characteristic of the simplicial complex �� ���e���� reduced Euler characteristic of �� ���
�j�x� M� j�th partial Euler characteristic of H��x�M�� �
�
�IM�n� Hilbert�Samuel function of M with respect to I � ���
��x�M� Euler characteristic of H��x� M�� �
�
Cl �R� divisor class group of the ring R
C�n� d� cyclic polytope� ���
cn ��� cone over the simplicial complex �� ���
codimF� codimension of the complex F�� ���
codimI codimension of the ideal I � ���
convX convex hull of the set X� ���
core� core of the simplicial complex �� ���
degx degree of the element x� ��
���d �d times iterated� di�erence operator� ���
�� ���
��P � vertex scheme of the polytope P � ���
��� � order complex of the poset � � ���
�r r�skeleton of the simplicial complex �� ���
depthM depth of the module M� ��
det�� inverse determinant character� ��

df di�erential of the Koszul complex of f� ��
df�M di�erential of K��f�M�� ��
dimM Krull dimension of the module M� ���
�dimR �dimension of the graded ring R� ��

��



��
 Notation

dimR Krull dimension of the ring R� ���
E�M� injective hull of the R�module M� 
�
�E�M� �injective hull of the graded module M� ���
embdimR embedding dimension of the local ring R� ��
e�I�M� multiplicity of M with respect to the ideal I � ���
e�M� multiplicity of the �graded� module M� ���� ���
e�x�M� multiplicity symbol� �
�
���R� 	rst deviation of the local ring R� ��
���R� second deviation of the local ring R� ��
�Exti �M�N� i�th graded extension module of M by N� ��
F Frobenius functor� ���
F�D� face lattice of the cone D� ���
F�P � face lattice of the polyhedron P � ���
f��� f�vector of the simplicial complex �� ���
F��R� category of 	nite graded R�modules� ���
F�R� category of 	nite R�modules� ���
� � � join of the simplicial complexes � and �� ���
�� ���
�m �M� submodule of elements of M with support in fm g� ���
G� residue class ring of G�X�� ���
GL �n� k� group of invertible n� n matrices over k
GL�V � group of automorphisms of the vector space V
grade I grade of the ideal I � ��
grade�I�M� grade of the ideal I with respect to the module M� ��
gradeM grade of the module M� ��
grF �R� associated graded ring with respect to 	ltration F � ���
grF �M� ���
grI �M� associated graded module of M with respect to ideal I � �
grI �R� associated graded ring of R with respect to ideal I � �
g� initial form of g� ���
G�X�� GB�X� B�algebra generated by the maximal minors of X� ���
H�� H� closed half�spaces de	ned by the hyperplane H � ���
height I height of the ideal I � ���
H��f� cohomology of the Koszul complex of f� ��
H��f� homology of the Koszul complex of f� ��
H��f�M� cohomology of K��f�M�� ��
H��f�M� homology of K��f�M�� ��eH i���G� i�th reduced simplicial cohomology of � with values in G� ���eH i���G� i�th reduced simplicial homology of � with values in G� ���
Hi�M�n� i�th iterated Hilbert function of the module M� ���
H�M� n� Hilbert function of the graded module M� ���
HM�t� Hilbert series of the graded module M� ���
�H i

m
�M� i�th �local cohomology module of the module M� ���

H i
m
�M� i�th local cohomology module of the module M� ���

H��F�� cohomology of the complex F�

H��F�� homology of the complex F�

H i�F�� i�th cohomology of the complex F�



Notation ���

Hi�F�
� i�th homology of the complex F

�

�HomR �M�N� group of homogeneous homomorphisms � � M � N� ��
H

�
�R� Koszul algebra of the local ring R� ��

Hi�R�j ��
I� divisor class of the ideal I
�I integral closure of the ideal I � ���
I� ���
idM identity map on the set M
�inj dimM �injective dimension of the graded module M� ���
inj dimM injective dimension of the module M� 
�
I q� q�th Frobenius power of I � ���
I� ideal generated by the homogeneous elements in I � ��
I� tight closure of the ideal I � ���
I� ideal generated by leading monomials of the elements of I � ���
It��� ideal generated by the t�minors of �a matrix of� �� ��
It�U� ideal generated by the t�minors of the matrix U� ��
kC� a�ne semigroup ring over C � ���
kC�F ���
k�� Stanley�Reisner ring of the simplicial complex �� ��

K��f� dual of the Koszul complex with respect to f� ��
K��f� Koszul complex of f� ��
K��f�M� dual of K��f� with respect to M� ��
K��f�M� Koszul complex of f with coe�cients in M� ��
K��x� Koszul complex with respect to sequence x� ��
k�p � residue class 	eld of localization with respect to p � 

��I� analytic spread of the ideal I � �
�
��I�M� analytic spread of the ideal I with respect to M� �
�
��M� length of the module M
L�f� leading monomial of f� ���
L�I� set of the leading monomials of the elements of I � ���
lim
��

Mi direct limit of the modules Mi

lim
��

Mi inverse limit of the modules Mi

lk� F link of the face F with respect to �� ���
log ���
Lu ���
M��R� category of graded R�modules� ��
M�� M�� �bi�dual of the module M� �

Mf module of fractions with respect to the powers of f
�M completion of the module M over a local ring
M�i� module with shifted grading� ��
M
�t� Molien series of the character �� ���
MG�t� Molien series of the group G� ���
M�p � homogeneous localization of M with respect to p � ��
MS module of fractions of M with respect to the multiplicatively

closed set S

i�p �M� i�th Bass number of M with respect to p � ���

�M� minimal number of generators of M� ��



��� Notation

N set of non�negative integers
nat natural map
�R canonical module of the ring R� ���
O�x� order ideal of the element x of a module� ���
Pf ��� ideal generated by the submaximal Pfa�ans of �� ���
pf ��� Pfa�an of the matrix �� ���
PM�n� Hilbert polynomial of the graded module M� ��

proj dimM projective dimension of the module M� ��
Q 	eld of rational numbers
Q� set of non�negative rational numbers
QC Q�vector space generated by the a�ne semigroup C � ���
rankM rank of the module M� ��
rank� rank of the homomorphism �� ��
rank ���M� rank of � with respect to the module M� ���
rank v rank of the poset element v� ���
R
 module of semi�invariants of the ring R with respect to the

character �� ��

R� determinantal ring� ���
R 	eld of real numbers
R� set of non�negative real numbers
R�S cone generated by the set S � ���
RC R�vector space generated by the a�ne semigroup C � ���
R��F� Rees ring with respect to the 	ltration F � ���
R��F�M� ���
R�F� extended Rees ring with respect to the 	ltration F � ���
R�F�M� ���
R�I�M� ���
reg�M� regularity of the graded module M� ���
relintC relative interior of the a�ne semigroup C � ���
relintX relative interior of the set X� ���
Rf ring of fractions with respect to the set of powers of f

RG ring of invariants of R under the action of G� ���
�R completion of the local ring R

rk��� type of the simplicial complex � over the 	eld k� ���
R �M trivial extension of the ring R by the module M� ���
�R� m � �local ring R with �maximal ideal m � ��
�R� m � local ring R with maximal ideal m

�R� m � k� local ring R with maximal ideal m and residue class 	eld
k � R�m

r�M� type of the module M� ��
�Rn� Serre�s condition �Rn�� ��
R�p � homogeneous localization of R with respect to p � ��

R��q ring of q�th roots of the elements of R� �
�
Rr��� Rr���X� determinantal ring� ���
RS ring of fractions of R with respect to the multiplicatively closed

set S
Ru ���



Notation ���

RX� � � � � � Xn�� formal power series ring over R
R� set of elements of R not contained in a minimal prime ideal�

���
SingR singular locus of R� ���
SL �n� k� group of n� n matrices over k with determinant �
SL �V � group of automorphisms of V with determinant �
�I
M�n� Hilbert�Samuel polynomial of M with respect to I � ���

�Sn� Serre�s condition �Sn�� ��
SocM socle of the module M� ��
�SocM homogeneous socle of the graded module M� ���
st� F star of the face F with respect to �� ���
suppa support of the element a � Zn � ���
suppu support of the monomial u� ���
suppxa support of the monomial xa� ���
S �V � symmetric algebra of V � ���
tr degk K transcendence degree of K over k
Tr trace of the linear map � ���
u � v v covers u� ���
V �I� set of prime ideals containing I
volP volume of the polytope P � ���ViM i�th exterior power of the module M� ��V
M exterior algebra of the module M� ��V
� extension of � to exterior algebra� ��

xF monomial corresponding to the face F � ���
x� y product of x and y in exterior algebra� ��
hx� yi scalar product of x and y� ���
Z ring of integers
ZC group generated by the a�ne semigroup C � ���



Index

absolute integral closure� ���
acyclic complex� ��

acyclicity criterion� ��� ��� ��� ���
admissible grading� ���
a�ne algebra� �������
a�ne hull� ���
a�ne semigroup� ���

simplicial� ��


a�ne semigroup ring� �������� ���
and regularity� ���
Cohen�Macaulay property of� ��

graded prime ideals of� ���
local cohomology of� ������


a�nely �in�dependent� ���
a�invariant

free resolution and� ���
of a Veronese subring� ���
of a Cohen�Macaulay ring� ���

of a Gorenstein ring� ���
of a positively graded algebra� ���
of a simplicial complex� ���

a�invariant
and F�rationality� ���

Alexander duality� ���
algebra structure on a resolution� ���
algebra with straightening law� see

graded ASL
alternating graded algebra� ��
alternating homomorphism� ���
analytic deviation� ���
analytic spread� �
�

inequalities for� �
�
analytically independent� �
�
antiderivation� ��
Artin�s approximation theorem� ���
�Artinian� ���

ASL� see graded ASL
associated graded module� �� �� ���

associated graded ring� �� ���� ���
dimension of an� ���

augmented oriented chain complex�
��
� ���

Auslander�s conjecture� ���
Auslander�Buchsbaum formula� ��
Auslander�Buchsbaum�Nagata

theorem� ��
Auslander�Buchsbaum�Serre

theorem� ��

Bass number� �������� ���� ����
�������

Bass� conjecture� 
�� ���
Betti number� ��� ��� �������

and characteristic� ���
	ne� ���
graded� ��

bidual� �

big Cohen�Macaulay algebra� ����

���
big Cohen�Macaulay module� ����

���� ���
balanced� �������� ���
completion of� ���

big rank� ���
boundary complex� ���
Boutot�s theorem� �
�
Brian!con�Skoda theorem� �
���
�
Bruggesser�Mani theorem� ���
Buchberger algorithm� ���
Buchsbaum ring� module� ��
Buchsbaum�Eisenbud

acyclicity criterion� ������ ���
structure theorem� ���

canonical element theorem� ��
� ����
���

���



Index ���

canonical module� �������
and 	nite extension� ���
and �at extension� �������� ���
and ground 	eld extension� ���
and polynomial extension� ���
and power series extension� ���
class of� ���
completion of� ���
existence of� ���� ���
free resolution of� ���
is divisorial ideal� ���
localization of� ���
modulo regular sequence� ���� ���
of a graded ring� �������
of a non�Cohen�Macaulay ring�

���
of an Artinian algebra� ���
rank of� ���
uniqueness of� ��


�canonical module� ��
����
existence of� ���� ���
localization of� ���
modulo regular sequence� ���
uniqueness of� ��


catenary� ��
'Cech complex

modi	ed� ���
cell complex� �������
chain� ���
character� ��


inverse determinant� ��

class group� ���

of a localization� ���
of a polynomial extension� ���
of a positively graded algebra� ���

closed half�space� ���
codimension

conjecture� ���
of a complex� ���� ���� ���� ���
of an ideal� ���

coe�cient 	eld� ��

Cohen�s structure theorem� ��

Cohen�Macaulay approximation� ��

Cohen�Macaulay complex� ���� ��
�

���
and base ring� ���
and links� ���

doubly� �������
level� ���� ���
topological characterization of� ��

type of� ���
upper bound for h�vector� ���

Cohen�Macaulay module� ������ ���
�


and completion� ��
and �at extension� ��
and polynomial extension� ��
and power series extension� ��
big� see big Cohen�Macaulay

module
graded� ��
localization of� ��
maximal� ��� ��� ���
modulo regular sequence� ��
multiplicity of� �
�

Cohen�Macaulay ring� ������ ��� 
��
���� ���

see also Cohen�Macaulay module
and F�rationality� �
�
and associated graded ring� ���
and base 	eld extension� ��
and faithfully �at extension� ��
and Reynolds operator� ���
graded� ��
is universally catenary� ��
one dimensional� �
�
unmixedness of ideals in� �


Cohen�Seidenberg theorems� ���
coideal in a poset� ���
�complete� ���
complete intersection� ������ 
�� ��
�

���
and �at extension� ��
and ground 	eld extension� ��
and polynomial extension� ��
and power series extension� ��
graded� ��
localization of� ��� ��
locally� ������ ��
modulo regular sequence� ��

complete intersection defect� ��
complete local ring� ��� ���� ����

������

completely integral� ���



��� Index

completely integrally closed� ���
complex with 	nite length homology�

���� ���� ��
� ���
cone� ���� ���
convex

combination� ���
hull� ���
set� ���

cotangent module� ���
cover� ���
cross�section� ���
cyclic polytope� �������

decomposable module� ���
Dehn�Sommerville equations

for Euler complexes� ���
for polytopes� ���� ��


dehomogenization� ����
� ��
depth� ����� 
�� ���

and dimension� ��
and Ext� ��
and 	nite extension� ��
and �at extension� ��
and projective dimension� �����
of a non�	nite module� ���
of completion� ��

determinantal ring� ���� �������
a�invariant of� ���
canonical module of� ���
Cohen�Macaulay property of� ���
dimension of� ���
Gorenstein property of� ���
normality of� ���
of alternating matrix� ���
of symmetric matrix� ���� ���
Serre condition �R�� for� ���

diagonalizable group� ��

di�erence operator� ���
dimension� ���� ���� ���� �������

and �at extension� �������
and polynomial extension� ���
and power series extension� ���
inequality� ���
of completion� ��

�dimension� ��
direct summand theorem� ���� ���
divisible module� 
�
divisor class group� see class group

divisorial ideal� ���
doset algebra� ���
d�sequence� ���
dual� �


edge� ���
Ehrhart

function� series� ���
quasi�polynomial� ���

embedded deformation� ���
embedding dimension� ��
equicharacteristic local ring� ��

equidimensional� ���
equimultiple ideal� ���
essential extension� 
�

maximal� 
�
proper� 
�

�essential extension� ���
proper� ���

Euler characteristic
and multiplicity� �
�
and multiplicity symbol� �
�
of a simplicial complex� ���� ���

reduced� ���
of the Koszul homology� �
�
partial� �
�

Euler complex� ���
f�vector of� ��


Euler relation� ��

Evans�Gri�th syzygy theorem� ���
excellent ring� ���
expanded subsemigroup� �
�
expected rank� ��� ���� ���� ���
exterior algebra� ������ �
� ��

of free module� ��
of graded module� ��

exterior power� ��� �����

face lattice� ���� ���
face of a cell� ���
face of a simplicial complex� ���

dimension of� ���
face ring� ��

facet of a simplicial complex� ���
factorial ring� ������ ���� ���
F�	nite ring� �
�
	bre� ���
	ltered ring� ���



Index ��	

	ltration� ���
Noetherian� ���� ���
separated� ���
strongly separated� ���

	ne grading� ���
	nite �at dimension� ��
	nite regular cell complex� see cell

complex
F�injective ring� ���
	rst deviation� ��� ��
Fitting invariant� �����

of maximal ideal� ��
�ag variety� ASL property of

coordinate ring of� ���
form� ��

initial� ���
F�pure ring� ���
fractionary ideal� ��

F�rational ring� �
�

and Cohen�Macaulay property� �
�
and completion� ���
and �at extensions� �
�
and localization� �
�� �
�
and pseudo�rationality� ���
Gorenstein� �
�
graded� �
�
is normal� �
�
modulo regular element� �
�� ���

F�rational type� ���
F�regular ring� �������

see also F�rational ring
Frobenius functor� �������

�atness of� ���
Frobenius homomorphism� ���

action on local cohomology�
�������

Frobenius power� ���
F�stable� ���
full subsemigroup� ���
function of polynomial type� ���
f�vector� ��


and h�vector� ���

Gauss� lemma� ���
general linear form� ���
generic �atness� �
�
generically complete intersection� ���
generically Gorenstein� ���� ��


geometric realization� ���

G�graded ring� ���

going�down� ���� ���

going�up� ���� ���

Gordan�s lemma� ��


Gorenstein complex� �������

and Euler complex� ���

simplicial sphere is� ���

topological characterization of� ���

Gorenstein ideal� ���

of grade three� ���

Gorenstein ring� 
��
�� ���� ���� ����
��


and �at extension� ���

and associated graded ring� ���

and faithfully �at extension� ���

de	ned by monomials� ���

extremal� ���

graded� ���

is Cohen�Macaulay� ���

localization of� 
�

modulo regular sequence� 
�

of dimension one� ��


of dimension zero� ���

ring of type � is� ���

type of a local� ���

Gotzmann space� ���

Gotzmann�s theorem

persistence� ���

regularity� ��


Gr#obner basis� ���

grade� ����� ��� ��

and acyclicity� ��� ���

and dimension� ��

and exact sequence� ��

and Ext� ��

and height� ��� �


and Koszul complex� �����

formulas for� ��

of a module� ��� ��� ���

of a non�	nite module� �������

graded algebra� ��

graded ASL� ���

Cohen�Macaulay property of� ���

discrete� ���



��� Index

graded Hodge algebra� ���
Cohen�Macaulay property of� ���
discrete� ���
Gorenstein property of� ���

graded ideal� ��
graded module� ����


category of� ��� ��
depth of� ��� ��
dimension of� ��� �

grade of� ��
projective� ��
projective dimension of� ��
support of� ��
type of� ��

graded ring� ����

Noetherian� �

polynomial ring as� ��
trivial� �


graded submodule� ��
Grassmannian� ���

ASL property of coordinate ring
of� ���

Grothendieck�s condition �CMU�� ��
G�subspace� �
�
g�theorem� ���

height� ���� ���
Henselian local ring� ��

Henselization� ���
Hilbert function� ���

of a positively graded algebra� ���
and f�vector� ���
and graded free resolution� ���
higher iterated� ���
of �k��� ���
of a Zn�graded module� ���
of a Gorenstein complex� ���
of a graded Gorenstein ring� ���
of a homogeneous complete

intersection� ���
of a homogeneous ring� ���
of a one dimensional homogeneous

domain� ���
of an Euler complex� ���
of the �canonical module� ���� ���

Hilbert polynomial� ��

coe�cients of� ���

Hilbert quasi�polynomial� ���

Hilbert ring� ���
Hilbert series� ���

see also Hilbert function
Hilbert�s Nullstellensatz� ���
Hilbert�s syzygy theorem� �

Hilbert�Burch theorem� ��
Hilbert�Samuel function� ���
Hilbert�Samuel polynomial� ���
Hochster�s 	niteness theorem� �������
Hochster�Roberts theorem� �
�� ���
Hodge algebra� see graded Hodge

algebra
homogeneous

algebra� ring� �
� ���
component� ��
element� ��
homomorphism� ��

of degree i� ��
localization� ��
system of parameters� ��� ��

homogeneous socle� ���
homogenization� �

homological height theorem� ���
h�vector� �������

of a homogeneous
Cohen�Macaulay algebra� ���

of a level ring� ��

of an integral polytope� ���

hyperplane� ���
hypersurface ring� �
�

I�adic 	ltration� ���
ideal generated by monomials� ���
ideal in a semigroup� ���

primary� ���
prime� ���
radical� ���
radical of� ���

ideal of de	nition� ���
ideal of minors� �����
ideal of the principal class� �

incidence function� ���
indecomposable module� ���
indiscrete part� ���
injective dimension� 
��
�

and localization� 
�
	nite� 
�� ��
� ���� ���
modulo regular sequence� 
�



Index ��

�injective dimension� ���
injective hull� 
������ ���� ���

localization of� 


�injective hull� ���
injective module� ���
�

decomposition of� ���
direct sum of� 
�
localization of� 
�

�injective module� ������

injective resolution� 
�� 
�

minimal� 

� ���
�injective resolution� ���
integral closure of an ideal� ���

of monomials� �
�
integral dependence on an ideal�

�����
�
and on a ring� �
�
valuative criterion for� �
�

integral extension� �������
integral over an ideal� see integral

dependence on an ideal
integral polytope� ���
intersection multiplicity� ���
intersection theorem� �������

improved new� ���� ���� ���
new� ��
� ���� ���
Peskine�Szpiro� ���
Serre�s� ���� ���

invariant of a group� ���

join� ���

Koszul algebra� ��
and the canonical module� ���
of a complete intersection� �����
of a Gorenstein ring� ���� ���

Koszul cohomology� ��� ���
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