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Preface to the revised edition

The main change in the revised edition is the new Chapter �
 on tight
closure� This theory was created by Mel Hochster and Craig Huneke
about ten years ago and is still strongly expanding� We treat the basic
ideas� F�regular rings� and F�rational rings� including Smith�s theorem by
which F�rationality implies pseudo�rationality� Among the numerous ap�
plications of tight closure we have selected the Brian�con�Skoda theorem
and the theorem of Hochster and Huneke saying that equicharacteristic
direct summands of regular rings are Cohen�Macaulay� To cover these
applications� Section ���� which develops the technique of reduction to
characteristic p� had to be rewritten� The title of Part III� no longer
appropriate� has been changed�

Another noteworthy addition are the theorems of Gotzmann in the
new Section ���� We believe that Chapter � now treats all the basic
theorems on Hilbert functions� Moreover� this chapter has been slightly
reorganized�

The new Section ��� contains a proof of Hochster�s formula for the
Betti numbers of a Stanley�Reisner ring since the free resolutions of
such rings have recently received much attention� In the �rst edition the
formula was used without proof�

We are grateful to all the readers of the �rst edition who have
suggested corrections and improvements� Our special thanks go to
L� Avramov� A� Conca� S� Iyengar� R� Y� Sharp� B� Ulrich� and K��i�
Watanabe�

Osnabr�uck and Essen�
October �	

Winfried Bruns

J�urgen Herzog
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Preface to the �rst edition

The notion of a Cohen�Macaulay ring marks the cross�roads of two
powerful lines of research in present�day commutative algebra� While
its main development belongs to the homological theory of commutative
rings� it �nds surprising and fruitful applications in the realm of alge�
braic combinatorics� Consequently this book is an introduction to the
homological and combinatorial aspects of commutative algebra�

We have tried to keep the text self�contained� However� it has not
proved possible� and would perhaps not have been appropriate� to develop
commutative ring theory from scratch� Instead we assume the reader has
acquired some �uency in the language of rings� ideals� and modules by
working through an introductory text like Atiyah and Macdonald ����
or Sharp ������ Nevertheless� to ease the access for the non�expert� the
essentials of dimension theory have been collected in an appendix�

As exempli�ed by Matsumura�s standard textbook ��	
�� it is natural
to have the notions of grade and depth follow dimension theory� and so
Chapter � opens with the introduction of regular sequences on which their
de�nition is based� From the very beginning we stress their connection
with homological and linear algebra� and in particular with the Koszul
complex�

Chapter � introduces Cohen�Macaulay rings and modules� our main
subjects� Next we study regular local rings� They form the most special
class of Cohen�Macaulay rings� their theory culminates in the Auslander�
Buchsbaum�Serre and Auslander�Buchsbaum�Nagata theorems� Unlike
the Cohen�Macaulay property in general� regularity has a very clear
geometric interpretation� it is the algebraic counterpart of the notion
of a non�singular point� Similarly the third class of rings introduced in
Chapter �� that of complete intersections� is of geometric signi�cance�

In Chapter � a new homological aspect determines the development
of the theory� namely the existence of injective resolutions� It leads us to
the study of Gorenstein rings which in several respects are distinguished
by their duality properties� When a Cohen�Macaulay local ring is not
Gorenstein� then �almost always� it has at least a canonical module
which� so to speak� acts as its natural partner in duality theorems� a
decisive fact for many combinatorial applications� We then introduce
local cohomology and prove Grothendieck�s vanishing and local duality
theorems�

xii



Preface to the �rst edition xiii

Chapter � contains the combinatorial theory of commutative rings
which mainly consists in the study of the Hilbert function of a graded
module and the numerical invariants derived from it� A central point is
Macaulay�s theorem describing all possible Hilbert functions of homoge�
neous rings by a numerical condition� The intimate connection between
homological and combinatorial data is displayed by several theorems�
among them Stanley�s characterization of Gorenstein domains� In the
second part of this chapter the method of associated rings and modules
is developed and used for assigning numerical invariants to modules over
local rings�

Chapters ��� form the �rst part of the book� We consider this
material as basic� The second part consists of Chapters ��	 each of
which is devoted to a special class of rings�

Chapter � contains the theory of Stanley�Reisner rings of simplicial
complexes� Its main goal is the proof of Stanley�s upper bound theorem
for simplicial spheres� The transformation of this topological notion
into an algebraic condition is through Hochster�s theorem which relates
simplicial homology and local cohomology� Furthermore we study the
Gorenstein property for simplicial complexes and their canonicalmodules�

In Chapter � we investigate normal semigroup rings� The combina�
torial object represented by a normal semigroup ring is the set of lattice
points within a convex cone� According to a theorem of Hochster� nor�
mal semigroup rings are Cohen�Macaulay� Again the crucial point is
the interplay between cellular homology on the geometric side and local
cohomology on the algebraic� The fact that the ring of invariants of a
linear torus action on a polynomial ring is a normal semigroup ring leads
us naturally to the study of invariant rings� in particular those of �nite
groups� The chapter closes with the Hochster�Roberts theorem by which
a ring of invariants of a linearly reductive group is Cohen�Macaulay�

Chapter 	 is devoted to determinantal rings� They are discussed in
the framework of Hodge algebras and algebras with straightening laws�
We establish the straightening laws of Hodge and of Doubilet� Rota�
and Stein� prove that determinantal rings are Cohen�Macaulay� compute
their canonical module� and determine the Gorenstein rings among them�
In view of the extensive treatment available in ����� we have restricted
this chapter to the absolutely essential�

The third part of the book is constituted by Chapters � and �
They owe their existence to the fact that a Noetherian local ring is in
general not Cohen�Macaulay� But Hochster has shown that such a ring
possesses a �not necessarily �nite� Cohen�Macaulay module� at least
when it contains a �eld� The construction of these �big� Cohen�Macaulay
modules in Chapter � is a paradigm of characteristic p methods in
commutative algebra� and we hope that it will prepare the reader for
the more recent developments in this area which are centered around the



xiv Preface to the �rst edition

notion of tight closure introduced by Hochster and Huneke ��
��
In Chapter  we deduce the consequences of the existence of big

Cohen�Macaulay modules� for example the intersection theorems of
Peskine and Szpiro and Roberts� the Evans�Gri�th syzygy theorem� and
bounds for the Bass numbers of a module�

Chapters � and  are completely independent of Chapters ��	� and
the reader who is only interested in the homological theory may proceed
from the end of Section ��� directly to Chapter ��

It is only to be expected that the basic notions of homological algebra
are ubiquitous in our book� But most of the time we will only use the long
exact sequences for Ext and Tor� and the behaviour of these functors
under �at extensions� Where we go beyond that� we have inserted a
reference to Rotman ������ One may regard it as paradoxical that we
freely use the Ext functors while Chapter � contains a complete treatment
of injective modules� However� their theory has several peculiar aspects so
that we thought such a treatment would be welcomed by many readers�

The book contains numerous exercises� Some of them will be used
in the main text� For these we have provided hints or even references
to the literature� unless their solutions are completely straightforward� A
reference of type A�n points to a result in the appendix�

Parts of this book were planned while we were guests of the Mathema�
tisches Forschungsinstitut Oberwolfach� We thank the Forschungsinstitut
for its generous hospitality�

We are grateful to all our friends� colleagues� and students� among
them L� Avramov� C� Bae�tica� M� Barile� A� Conca� H��B� Foxby�
C� Huneke� D� Popescu� P� Schenzel� and W� Vasconcelos who helped
us by providing valuable information and by pointing out mistakes in
preliminary versions� Our sincere thanks go to H� Matsumura and R�
Sharp for their support in the early stages of this project�

We are deeply indebted to our friend Udo Vetter for reading a large
part of the manuscript and for his unfailing criticism�

Vechta and Essen�
February ��

Winfried Bruns

J�urgen Herzog



Part I

Basic concepts

�





� Regular sequences and depth

After dimension� depth is the most fundamental numerical invariant of a
Noetherian local ring R or a �nite R�moduleM� While depth is de�ned in
terms of regular sequences� it can be measured by the �non��vanishing of
certain Ext modules� This connection opens commutative algebra to the
application of homological methods� Depth is connected with projective
dimension and several notions of linear algebra over Noetherian rings�

Equally important is the description of depth �and its global relative
grade� in terms of the Koszul complex which� in a sense� holds an
intermediate position between arithmetic and homological algebra�

This introductory chapter also contains a section on graded rings and
modules� These allow a decomposition of their elements into homoge�
neous components and therefore have a more accessible structure than
rings and modules in general�

��� Regular sequences

Let M be a module over a ring R� We say that x � R is an M�regular

element if xz � 
 for z � M implies z � 
� in other words� if x is not
a zero�divisor on M� Regular sequences are composed of successively
regular elements�

De�nition ������ A sequence x � x�� � � � � xn of elements of R is called an
M�regular sequence or simply an M�sequence if the following conditions
are satis�ed� �i� xi is anM��x�� � � � � xi���M�regular element for i � �� � � � � n�
and �ii� M�xM �� 
�

In this situation we shall sometimes say thatM is an x�regular module�
A regular sequence is an R�sequence�

A weak M�sequence is only required to satisfy condition �i��

Very often R will be a local ring with maximal ideal m � and M �� 

a �nite R�module� If x � m � then condition �ii� is satis�ed automatically
because of Nakayama�s lemma�

The classical example of a regular sequence is the sequence X�� � � � � Xn

of indeterminates in a polynomial ring R � S�X�� � � � � Xn�� Conversely
we shall see below that an M�sequence behaves to some extent like a
sequence of indeterminates� this will be made precise in ������

The next proposition contains a condition under which a regular
sequence stays regular when the module or the ring is extended�

�



� �� Regular sequences and depth

Proposition ������ Let R be a ring� M an R�module� and x � R a weak

M�sequence� Suppose � � R � S is a ring homomorphism� and N an R��at
S�module� Then x � R and ��x� � S are weak �M �R N��sequences� If
x�M �R N� �� M �R N� then x and ��x� are �M �R N��sequences�

Proof� Multiplication by xi is the same operation on M �N as multipli�
cation by ��xi�� so it su�ces to consider x� The homothety x� � M �M
is injective� and x� � N is injective too� because N is �at� Now x� � N
is just multiplication by x� on M � N� So x� is an �M � N��regular ele�
ment� Next we have �M � N��x��M �N� �� �M�x�M��N� an inductive
argument will therefore complete the proof�

The most important special cases of ����� are given in the following

corollary� In its part �b� we use �M to denote the m �adic completion of a
module M over a local ring �R� m � k� �by this notation we indicate that
R has maximal ideal m and residue class �eld k � R�m ��

Corollary ������ Let R be a Noetherian ring� M a �nite R�module� and x
an M�sequence�

�a� Suppose that a prime ideal p � SuppM contains x� Then x �as a

sequence in Rp � is an Mp �sequence�

�b� Suppose that R is local with maximal ideal m � Then x �as a sequence

in �R� is an �M�sequence�

Proof� Both the extensions R � Rp and R � �R are �at� �a� By hypothesis
Mp �� 
� and Nakayama�s lemma implies Mp �� p Mp � A fortiori we have

xMp �� Mp � �b� It su�ces to note that �M � M � �R is a �nite �R�module�

The interplay between regular sequences and homological invariants
is a major theme of this book� and numerous arguments will be based
on the next proposition�

Proposition ����	� Let R be a ring� M an R�module� and x a weak M�

sequence� Then an exact sequence

N�

��

�� N�

��

�� N�

��

��M �� 


of R�modules induces an exact sequence

N��xN� �� N��xN� �� N��xN� ��M�xM �� 
�

Proof� By induction it is enough to consider the case in which x consists
of a single M�regular element x� We obtain the induced sequence if we
tensor the original one by R��x�� Since tensor product is a right exact
functor� we only need to verify exactness at N��xN�� Let � denote residue
classes modulo x� If �����y� � 
� then ���y� � xz for some z � N� and



���� Regular sequences �

x���z� � 
� By hypothesis we have ���z� � 
� hence there is y� � N�

with z � ���y��� It follows that ���y � xy�� � 
� So y � xy� � ���N��� and
�y � ���� �N�� as desired�

If we want to preserve the exactness of a longer sequence� then we
need a stronger hypothesis�

Proposition ������ Let R be a ring and

N
�
� � � � �� Nm

�m

�� Nm�� �� � � � �� N�

��

�� N�� �� 


an exact complex of R�modules� If x is weakly Ni�regular for all i� then
N

�
� R��x� is exact again�

Proof� Once more one uses induction on the length of the sequence x� So
it is enough to treat the case x � x� Since x is regular on Ni� it is regular
on Im�i�� too� Therefore we can apply ����� to each exact sequence
Ni��� Ni�� � Ni�� � Im�i��� 
�

Easy examples show that a permutation of a regular sequence need
not be a regular sequence� see ������� Nevertheless there are natural
conditions under which regular sequences can be permuted�

Let x�� x� be an M�sequence� and denote the kernel of the multiplica�
tion by x� onM by K � Suppose that z � K � Then we must have z � x�M�
z � x�z

�� and x��x�z�� � 
� whence x�z
� � 
 and z� � K � too� This shows

K � x�K so that K � 
 if Nakayama�s lemma is applicable� Somewhat
surprisingly� x� is always regular on M�x�M� the reader may check this
easily�

Proposition ������ Let R be a Noetherian local ring� M a �nite R�module�
and x � x�� � � � � xn an M�sequence� Then every permutation of x is an

M�sequence�

Proof� Every permutation is a product of transpositions of adjacent
elements� Therefore it is enough to show that x�� � � � � xi��� xi� � � � � xn is
an M�sequence� The hypothesis of the proposition is satis�ed for �M �
M��x�� � � � � xi���M and the �M�sequence xi� � � � � xn� So it su�ces to treat
the case i � � and to show that x�� x� is an M�sequence� In view of the
discussion above we only need to appeal to Nakayama�s lemma�

Quasi�regular sequences� Let R be a ring� M an R�module� and X �
X�� � � � � Xn be indeterminates over R� Then we write M�X � for M �
R�X � and call its elements polynomials with coe�cients in M� If x �
x�� � � � � xn is a sequence of elements of R� then the substitution Xi �� xi
induces an R�algebra homomorphism R�X �� R and also an R�module
homomorphism M�X �� M� We write F�x� for the image of F �M�X �
under this map� �Since the monomials form a basis of the free R�module
R�X �� we may speak of the coe�cients and the degree of an element of
M�X ���



� �� Regular sequences and depth

Theorem ����� �Rees�� Let R be a ring� M an R�module� x � x�� � � � � xn
an M�sequence� and I � �x�� � � � � xn�� Let X � X�� � � � � Xn be indeterminates

over R� If F �M�X � is homogeneous of �total� degree d and F�x� � Id��M�

then the coe�cients of F are in IM�

Proof� We use induction on n� The case n � � is easy� Let n � � and
suppose that the theorem holds for regular sequences of length at most
n� �� We must �rst prove an auxiliary result which is an interesting fact
in itself� let J � �x�� � � � � xn���� then xn is regular on M�JjM for all j 	 ��

In fact� suppose that xny � JjM for some j � �� Arguing by induction
we have y � Jj��M� so y � G�x�� � � � � xn��� where G �M�X�� � � � � Xn��� is
homogeneous of degree j��� Set G� � xnG� Then the theorem applied to
G� � M�X�� � � � � Xn��� yields that the coe�cients of G

� are in JM� Since
xn is regular modulo JM� it follows that the coe�cients of G are in JM
too� and therefore y � JjM�

The proof of the theorem for sequences of length n requires induction
on d � The case d � 
 is trivial� Assume that d � 
� First we reduce to the
case in which F�x� � 
� Since F�x� � Id��M� one has F�x� � G�x� with G
homogeneous of degree d��� Then G �

Pn
i��XiGi with Gi homogeneous

of degree d � Set G�
i � xiGi and G� �

Pn
i��G

�
i� So F � G� is homogeneous

of degree d � and �F � G���x� � 
� Furthermore� F � G� has coe�cients in
IM if and only if this holds for F �

Thus assume that F�x� � 
� Then we write F � G � XnH with
G � M�X�� � � � � Xn���� The auxiliary claim above implies that H�x� �
JdM � IdM� By induction on d the coe�cients of H are in IM�
On the other hand H�x� � H ��x�� � � � � xn��� with H � � M�X�� � � � � Xn���
homogeneous of degree d � As

�G� xnH
���x�� � � � � xn��� � F�x� � 
�

it follows by induction on n that G� xnH
� has coe�cients in JM� Since

xnH
� has its coe�cients in IM� the coe�cients of G must be in IM

too�

Let I be an ideal in R� One de�nes the associated graded ring of R
with respect to I by

grI�R� �
�M
i��

I i�I i���

The multiplication in grI�R� is induced by the multiplication I
i
Ij � I i�j�

and grI�R� is a graded ring with �grI�R��� � R�I � If M is an R�module�
one similarly constructs the associated graded module

grI�M� �
�M
i��

I iM�I i��M�
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It is straightforward to verify that grI�M� is a graded grI�R��module�
�Graded rings and modules will be discussed in Section ���� The
reader not familiar with the basic terminology may wish to consult
����� Let I be generated by x�� � � � � xn� Then one has a natural surjection
R�X � � R�X�� � � � � Xn� � grI�R� which is induced by the natural homo�
morphism R � R�I and the substitution Xi �� �xi � I�I�� Similarly
there is an epimorphism � � M�X � � grI�M�� One �rst de�nes � on
the homogeneous components by assigning to a homogeneous polyno�
mial F � M�X � of degree d the residue class of F�x� in IdM�Id��M�
then � is extended additively� As the reader may check� � is an epi�
morphism of graded R�X ��modules� Obviously IM�X � � Ker�� via the
identi�cation M�X ��IM�X � �� �M�IM��X �� we therefore get an induced
epimorphism � � �M�IM��X �� grI�M�� The kernel of � is generated by
the homogeneous polynomials F � M�X � of degree d � d � N� such that
F�x� � Id��M� So we obtain as a reformulation of ����	

Theorem ������ Let R be a ring� M an R�module� x � x�� � � � � xn an

M�sequence� and I � �x�� Then the map �M�IM��X�� � � � � Xn� � grI�M�
induced by the substitution Xi �� �xi � I�I� is an isomorphism�

This theorem says very precisely to what extent a regular sequence
resembles a sequence of indeterminates� the residue classes �xi � I�I�

operate on grI�M� exactly like indeterminates� Since a regular sequence
may lose regularity under a permutation� whereas ����� is independent
of the order in which x is given� it is not possible to reverse ������ see
however ������� Later on it will be useful to have a name for sequences
x satisfying the conclusion of ������ we call them M�quasi�regular if� in
addition� xM ��M�

Exercises

������ Let � � U � M � N � � be an exact sequence of R�modules� and x

a sequence which is weakly U�regular and �weakly� N�regular� Prove that x is
�weakly� M�regular too�

������� �a� Let x�� � � � � xi� � � � � xn and x� � � � � � x
�
i� � � � � xn be �weakly� M�regular� Show

that x�� � � � � xix
�
i� � � � � xn is �weakly� M�regular� �Hint� In the essential case i � �

one 	nds an exact sequence as in ����
 with M�x�x
�
�M as the middle term��

�b� Prove that xe�� � � � � � x
en
n is �weakly� M�regular for all ei � ��

������� Prove that the converse of ����� holds if� in the situation of ������ N is
faithfully �at over R�

������� �a� Prove that if x is a weak M�sequence� then TorR� �M�R��x�� � ��

�b� Prove that if� in addition� x is a weak R�sequence� then TorRi �M�R��x�� � �
for all i � ��

������� Let R � KX� Y �Z �� k a 	eld� Show that X� Y �� � X�� Z �� � X� is an
R�sequence� but Y �� �X�� Z ��� X�� X is not�
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������� Prove that x�� � � � � xn is M�quasi�regular if and only if �x�� � � � � �xn � I�I� is a
grI �M��regular sequence where I � �x� � � � � � xn��

������� Suppose that x is M�quasi�regular� and let I � �x�� � � � � xn�� Prove
�a� if x�z � I iM for z �M� then z � I i��M�
�b� x�� � � � � xn is �M�x�M��quasi�regular�
�c� if R is Noetherian local and M is 	nite� then x is an M�sequence�

��� Grade and depth

Let R be a Noetherian ring and M an R�module� If x � x�� � � � � xn is an
M�sequence� then the sequence �x�� � �x�� x�� � � � � � �x�� � � � � xn� ascends
strictly for obvious reasons� Therefore an M�sequence can be extended
to a maximal such sequence� an M�sequence x �contained in an ideal I�
is maximal �in I�� if x�� � � � � xn�� is not an M�sequence for any xn�� � R
�xn�� � I�� We will prove that all maximalM�sequences in an ideal I with
IM �� M have the same length if M is �nite� This allows us to introduce
the fundamental notions of grade and depth�

In connection with regular sequences� �nite modules over Noetherian
rings are distinguished for two reasons� �rst� every zero�divisor of M
is contained in an associated prime ideal� and� second� the number of
these prime ideals is �nite� Both facts together imply the following
proposition that is �among the most useful in the theory of commutative
rings� �Kaplansky ������ p� ����

Proposition ������ Let R be a Noetherian ring� and M a �nite R�module�
If an ideal I � R consists of zero�divisors of M� then I � p for some

p � AssM�

Proof� If I �� p for all p � AssM� then there exists a � I with a �� p for
all p � AssM� This follows immediately from ������

The following lemma� which we have just used in its simplest form� is
the standard argument of �prime avoidance��

Lemma ������ Let R be a ring� p �� � � � � p m prime ideals� M an R�module� and
x�� � � � � xn � M� Set N �

Pn
i��Rxi� If Np j

�� p jMp j
for j � �� � � � � m� then

there exist a�� � � � � an � R such that x��
Pn

i�� aixi �� p jMp j
for j � �� � � � � m�

Proof�We use induction onm� and so suppose that there are a��� � � � � a
�
n � R

for which x�� � x� �
Pn

i�� a
�
ixi �� p jMp j

for j � �� � � � � m � �� Moreover�
it is no restriction to assume that the p i are pairwise distinct and that

p m is a minimal member of p �� � � � � p m� So there exists r � �
Tm��

j�� p j� n p m�

Put x�i � rxi for i � �� � � � � n and N� �
Pn

i��Rx
�
i� Since r �� p m we have

N�
p m
� Np m

� On the other hand� as r � p j for j � �� � � � � m� �� it follows

that x�� � x�i �� p jMp j
for i � �� � � � � n and j � �� � � � � m � �� If x�� �� p mMp m

�

then x�� is the element desired� otherwise x�� � x�i �� p mMp m
for some

i � f�� � � � � ng� and we choose x�� � x�i�
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Note that if M � R and N � I � R� then the condition Np j
�� p jMp j

simpli�es to I �� p j �

Suppose that an ideal I is contained in p � AssM� By de�nition�
there exists z �M with p � Ann z� Hence the assignment � �� z induces
a monomorphism �� � R�p � M� and thus a non�zero homomorphism
� � R�I �M� This simple observation allows us to describe in homolog�
ical terms that a certain ideal consists of zero�divisors�

Proposition ������ Let R be a ring� and M�N R�modules� Set I � AnnN�

�a� If I contains an M�regular element� then HomR�N�M� � 
�
�b� Conversely� if R is Noetherian� and M� N are �nite� HomR�N�M� � 

implies that I contains an M�regular element�

Proof� �a� is evident� �b� Assume that I consists of zero�divisors of M�
and apply ����� to �nd a p � AssM such that I � p � By hypothesis�
p � SuppN� so Np �k�p � �� 
 by Nakayama�s lemma� and since Np �k�p �
is just a direct sum of copies of k�p �� one has an epimorphism Np � k�p ��
�By k�p � we denote the residue class �eld Rp �p Rp of Rp �� Note that
p Rp � AssMp � Hence the observation above yields a non�zero �� �
HomRp

�Np �Mp �� Since HomRp
�Np �Mp � �� HomR�N�M�p � it follows that

HomR�N�M� �� 
� �See ������ Theorem ���� for the isomorphism just
applied��

Lemma ����	� Let R be a ring� M� N be R�modules� and x � x�� � � � � xn a
weak M�sequence in AnnN� Then

HomR�N�M�xM� �� ExtnR�N�M��

Proof� We use induction on n� starting from the vacuous case n � 
�
Let n 	 �� and set x� � x�� � � � � xn��� Then the induction hypothesis
implies that Extn��

R �N�M� �� HomR�N�M�x�M�� As xn is �M�x�M��

regular� Extn��
R �N�M� � 
 by ������ Therefore the exact sequence


 �� M
x�

�� M ��M�x�M �� 


yields an exact sequence


 �� Extn��
R �N�M�xM�

�
�� ExtnR�N�M�

�
�� ExtnR�N�M��

The map � is multiplication by x� inherited from M� but multiplication
by x� on N also induces �� see ������ Theorem 	���� Since x� � AnnN�
one has � � 
� Hence � is an isomorphism� and a second application of
the induction hypothesis yields the assertion�

Let R be Noetherian� I an ideal� M a �nite R�module with M �� IM�
and x � x�� � � � � xn a maximal M�sequence in I � From ����� and �����
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we have� since I contains an �M��x�� � � � � xi���M��regular element for
i � �� � � � � n�

Exti��
R �R�I�M� �� HomR

�
R�I�M��x�� � � � � xi���M

�
� 
�

On the other hand� since IM �� M and x is a maximal M�sequence in I �
then I must consist of zero�divisors of M�xM� whence

ExtnR�R�I�M� �� HomR�R�I�M�xM� �� 
�

We have therefore proved

Theorem ����� �Rees�� Let R be a Noetherian ring� M a �nite R�module�
and I an ideal such that IM �� M� Then all maximal M�sequences in I
have the same length n given by

n � minfi � ExtiR�R�I�M� �� 
g�

De�nition ������ Let R be a Noetherian ring� M a �nite R�module� and
I an ideal such that IM �� M� Then the common length of the maximal
M�sequences in I is called the grade of I on M� denoted by

grade�I�M��

We complement this de�nition by setting grade�I�M� � � if IM � M�
This is consistent with ������

grade�I�M� � � � ExtiR�R�I�M� � 
 for all i�

For� if IM � M� then SuppM � SuppR�I � � by Nakayama�s lemma�
hence

SuppExtiR�R�I�M� � SuppM � SuppR�I � �����

conversely� if ExtiR�R�I�M� � 
 for all i� then ����� gives IM � M�
The inclusion in ��� results from the natural isomorphism

ExtiRp
�Np �Mp � �� ExtiR�N�M�p

which holds if R is Noetherian� N a �nite R�module� M an arbitrary
R�module� and p � SpecR� see ������ Theorem ��
�

A special situation will occur so often that it merits a special notation�

De�nition ������ Let �R� m � k� be a Noetherian local ring� and M a �nite
R�module� Then the grade of m on M is called the depth of M� denoted

depthM�

Because of its importance we repeat the most often used special case
of ������
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Theorem ������ Let �R� m � k� be a Noetherian local ring� and M a �nite

non�zero R�module� Then depthM � minfi � ExtiR�k�M� �� 
g�

Some formulas for grade� We now study the behaviour of grade�I�M�
along exact sequences�

Proposition ������ Let R be a Noetherian ring� I � R an ideal� and


� U �M � N � 
 an exact sequence of �nite R�modules� Then

grade�I�M� 	 minfgrade�I� U�� grade�I� N�g�

grade�I� U� 	 minfgrade�I�M�� grade�I� N� � �g�

grade�I� N� 	 minfgrade�I� U�� �� grade�I�M�g�

Proof� The given exact sequence induces a long exact sequence

� � � � Exti��
R �R�I�N��ExtiR�R�I�U�� ExtiR�R�I�M�

� ExtiR�R�I�N�� Exti��
R �R�I�U�� � � �

One observes that ExtiR�R�I�M� � 
 if ExtiR�R�I�U� and ExtiR�R�I�N�
both vanish� Therefore the �rst inequality follows from ����� and our
discussion of the case grade�I� � � �� Completely analogous arguments
show the second and the third inequality�

The next proposition collects some formulas which are useful in the
computation of grades� �In the sequel V �I� denotes the set of prime ideals
containing I ��

Proposition �����
� Let R be a Noetherian ring� I� J ideals of R� and M a

�nite R�module� Then

�a� grade�I�M� � inffdepthMp � p � V �I�g�

�b� grade�I�M� � grade�Rad I�M��

�c� grade�I � J�M� � minfgrade�I�M�� grade�J�M�g�

�d� if x � x�� � � � � xn is an M�sequence in I � then grade�I��x�� M�xM� �
grade�I�M�xM� � grade�I�M� � n�

�e� if N is a �nite R�module with SuppN � V �I�� then

grade�I�M� � inffi � ExtiR�N�M� �� 
g�

Proof� �a� It is evident from the de�nition that grade�I�M� � grade�p �M�
for p � V �I�� and it follows from ����� that grade�p �M� � depthMp �
Furthermore� if grade�I�M� � �� then SuppM � V �I� � � so that
depthMp � � for all p � V �I�� Thus suppose IM �� M and choose
a maximalM�sequence x in I � By ����� there exists p � Ass�M�xM� with
I � p � Since p Rp � Ass�M�xM�p and �M�xM�p

�� Mp �xMp � the ideal
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p Rp consists of zero�divisors of Mp �xMp � and x �as a sequence in Rp � is
a maximal Mp �sequence�

�b� and �c� follow easily from �a��
�d� Set �R � R��x�� �I � I��x�� and �M � M�xM� Elementary argu�

ments show that IM � M � I �M � �M � �I �M � �M� Furthermore
y�� � � � � yn � I form an �M�sequence if and only if �y�� � � � � �yn � �I form such
a sequence� This proves the �rst equation� The second equation results
from ������

�e� The hypothesis entails that RadAnnN � Rad I � By �b� we may
therefore assume that I � AnnN� Now one repeats the proof of �����
�and the discussion of the case IM � M� with R�I replaced by N�

The name �grade� was originally used by Rees ��
�� for a di erent�
though related invariant�

De�nition ������� Let R be a Noetherian ring and M �� 
 a �nite R�
module� Then the grade of M is given by

gradeM � minfi � ExtiR�M�R� �� 
g�

For systematic reasons the grade of the zero�module is in�nity�

It follows directly from �����
�e� that gradeM � grade�AnnM�R�� It
is customary to set

grade I � gradeR�I � grade�I� R��

for an ideal I � R� and we follow this convention� �Of course� grade I
has two di erent meanings now� but we will never use it to denote the
grade of the module I ��

Depth and dimension� Let �R� m � be Noetherian local and M a �nite R�
module� All the minimal elements of SuppM belong to AssM� Therefore�
if x � m is an M�regular element� then x �� p for all minimal elements of
SuppM� and induction yields dimM�xM � dimM � n if x � x�� � � � � xn
is an M�sequence� �Note that dimM�xM 	 dimM � n is automatic� see
A���� We have proved�

Proposition ������� Let �R� m � be a Noetherian local ring and M �� 
 a

�nite R�module� Then every M�sequence is part of a system of parameters

of M� In particular depthM � dimM�

The inequality in ������ can be somewhat re�ned�

Proposition ������� With the notation of ������ one has depthM �
dimR�p for all p � AssM�

Proof� We use induction on depthM� There is nothing to prove for
depthM � 
� If depthM � 
� then there exists an M�regular x � m � For
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p � AssM we choose z � M such that Rz is maximal among the cyclic
submodules of M annihilated by p � If z � xM� then z � xy with y � M�
and p y � 
 since x is M�regular� moreover� Rz is a proper submodule of
Ry� contrary to the choice of z� Therefore p consists of zero�divisors of
M�xM� and is contained in some q � Ass�M�xM�� As x �� p � we have
p �� Supp�M�xM�� and thus p �� q � Now depth�M�xM� � depthM � �
by �����
� whence� by induction�

dimR�p � dimR�q 	 depth�M�xM� � depthM � ��

A global variant of ������ says that height bounds grade�

Proposition �����	� Let R be a Noetherian ring and I � R an ideal� Then

grade I � height I �

Proof� Since grade I � inffdepthRp � p � V �I�g by �����
� and height I �
inffdimRp � p � V �I�g� the assertion follows from �������

Depth� type� and �at extensions� Finallywe investigate how depth behaves
under �at local extensions� As a by�product we obtain a result on the
behaviour of the type of a module under such extensions� This is an
invariant which re�nes the information given by the depth�

De�nition ������� Let �R� m � k� be a Noetherian local ring� and M a �nite
non�zero R�module of depth t� The number r�M� � dimk Ext

t
R�k�M� is

called the type of M�

Proposition ������� Let � � �R� m � k� � �S� n � l� be a homomorphism of

Noetherian local rings� Suppose M is a �nite R�module� and N is a �nite

S�module which is �at over R� Then
�a� depthS M �R N � depthR M � depthS N�m N�

�b� rS �M �R N� � rR�M� � rS �N�m N��

The proof of the proposition is by reduction to the case of depth 
�
We collect the essential arguments in a lemma�

Lemma ������� Under the hypotheses of ������ the following hold	

�a� dimlHomS �l�M � N� � dimkHomR�k�M� � dimlHomS �l� N�m N��

�b� if y is an �N�m N��sequence in S � then y is an �M�R N��sequence� and
N�yN is �at over R�

Proof� �a� Set T � S�m S � There is a natural isomorphism

HomS

�
l�HomS �T �M � N�

�
�� HomS �l�M �N�����

since the modules on both sides can be identi�ed with the submodule
U � fz � M � N � n z � 
g of M � N� As N is �at over R� we have a
natural isomorphism

HomS �T �M � N� � HomS �k � S�M �N� �� HomR�k�M� � N�
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�see ������ ���� and ������ Now HomR�k�M� �� ks for some s 	 
� and
so HomR�k�M� � N �� �N�m N�s � In conjunction with ���� this yields the
equation asserted�

�b� One has a natural isomorphism �M�N��J�M�N� ��M��N�JN�
for an arbitrary ideal J � S � Therefore we may use induction on the
length n of y� and only the case n � �� y � y needs justi�cation�

By Krull�s intersection theorem one has
T�

i�� m i�M�N� � 
� Suppose
that yz � 
 for some z � M � N� If z �� 
� then there exists i such
that z � m i�M � N� n m i���M � N�� and y would be a zero�divisor on
m i�M �N��m i���M � N�� However� consider the embedding m iM �M�
Since N is �at� the induced map m iM�N �M�N is also injective� and
its image is m i�M � N�� The same reasoning for m i�� and �atness again
then yield an isomorphism

m i�M � N�
�

m i���M �N� �� �m iM�m i��M� �N �� kt �N �� �N�m N�t

for some t 	 
� Since y is regular on N�m N� it must be regular on

m i�M � N��m i���M � N��
In order to test �atness of N�yN it su�ces to consider exact sequences


 �� M� ��M� ��M� �� 


of �nite R�modules ������� Theorem ������ By hypothesis


 ��M� �N ��M� �N ��M� �N �� 


is also exact� As has been shown previously� y is regular on M��N� and
�M��N��y�M� �N� ��M��N�yN� Therefore ����� yields the exactness
of


 ��M� � N�yN ��M� � N�yN �� M� � N�yN �� 
�

Proof of ������� Let x � x�� � � � � xm be a maximal M�sequence� and
y � y�� � � � � yn a maximal �N�m N��sequence� First� ��x� � ��x��� � � � � ��xm�
is an �M � N��sequence� see ������ Second� by �����	� y is an � �M � N��
sequence where �M � M�xM� Since �M � N �� �M � N����x��M � N�� it
follows that ��x�� y is an M �N�sequence�

Set N� � N�yN� Then N��m N� �� �N�m N��y�N�m N�� and

�M �N�
�
���x�� y��M � N� �� �M � N� �

An application of ����� therefore gives the isomorphisms

HomR�k� �M� �� ExtmR�k�M�� HomS �l� N
��m N�� �� ExtnS�l� N�m N��

HomS �l� �M � N�� �� Extm�nS �l�M �N��

Part �a� of �����	 implies that diml Ext
m�n
S �l�M � N� has the dimension

required for �b�� and in particular is non�zero� Together with the fact that
��x�� y is an �M �N��sequence this proves depth�M �N� � m� n�



���� Grade and depth ��

The type of a module of depth 
 is the dimension of its socle�

De�nition ������� Let M be a module over a local ring �R� m � k�� Then

SocM � �
 � m �M �� HomR�k�M�

is called the socle of M�

For ease of reference we formulate the following lemma which was
already veri�ed in the proof of �������

Lemma ������� Let �R� m � k� be a Noetherian local ring� M a �nite R�
module and x a maximal M�sequence� Then r�M� � dimk Soc�M�xM��

Exercises

������� Let k be a 	eld and R � kX��Y �� Deduce that X� Y and � � XY are
maximal R�sequences� �This example shows that the condition IM �� M in �����
is relevant��

������� Let R be a Noetherian ring� I � R an ideal� I � �x� � � � � � xn�� and M a
	nite R�module with IM �� M� Set g � grade�I�M�� Prove
�a� I can be generated by elements y� � � � � � yn such that yi� � � � � � yih form an M�
sequence for all i�� � � � � ih with � � i� � � � � � ih � n� h � g�
�b� if y�� � � � � yn satis	es �a�� then� in fact� every permutation of yi� � � � � � yih is an
M�sequence�
Hint� It is possible to choose yi � xi �

P
j ��i ajxj � Use the discussion above �����

for �b��

������� Let R be a Noetherian ring� I � R an ideal� and M a 	nite R�module with
IM �� M� Set �R � R�AnnM�
�a� Prove that grade�I�M� � height I �R�
�b� Give an example where grade�I�M� � height I �
�c� Show that if I � �x� � � � � � xn�� then grade�I�M� � n�

������� Let R be a Noetherian local ring� and I � R an ideal� Show grade I �
depthR � dimR�I � �Hint� Use ��������

������� Let R be a Noetherian ring� M a 	nite R�module� and I an ideal of R� Show
that grade�I�M� � � if and only if the natural homomorphismM � HomR�I�M�
is an isomorphism�

������� Let � � �R� m � � �S� n � be a homomorphism of local rings� and N an
R��at S �module such that N�m N has 	nite length over S � Show that for every
	nite length R�module M� �S �M � N� � �R�M� � �S �N�m N�� �The symbol �
denotes length�� Hint� use induction on ��M��

������� Let � � �R� m � � �S� n � be a homomorphism of Noetherian local rings�
and M an S �module which is 	nite as an R�module�
�a� Suppose p � AssS M� and let x �M with AnnS x � p � Prove that � induces an
embedding R��p 	 R� � S�p 
� Sx which makes S�p a 	nite R��p 	 R��module�
Conclude that p 	 R �� m � if p �� n �
�b� Show that depthR M � depthS M�
�c� Suppose in addition that � is surjective� Prove rR �M� � rS �M��
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�����	� Let R be a Noetherian ring� M a 	nite R�module� and N an arbitrary
R�module� Deduce that AssHomR�M�N� � SuppM 	 AssN�

��� Depth and projective dimension

Let R be a ring� and M an R�module� M has an augmented projective
resolution

P
�
� � � � �� Pn

�n

�� Pn�� �� � � � �� P�

��

�� P�

��

��M �� 
�

�By de�nition a projective resolution is non�augmented� i�e�M is replaced
by 
� for the most part it is clear from the context whether one uses a non�
augmented resolution or an augmented one� so that one need not mention
the attribute �augmented� explicitly�� Set M� � M and Mi � Ker�i�� for
i 	 �� The modules Mi depend obviously on P�� However� M determines
Mi up to projective equivalence ������� Theorem ���� and therefore it is
justi�ed to call Mi the i�th syzygy of M� The projective dimension of M�
abbreviated proj dimM� is in�nity if none of the modulesMi is projective�
Otherwise proj dimM is the least integer n for which Mn is projective�
replacing Pn by Mn one gets a projective resolution of M of length n�


 ��Mn �� Pn�� �� � � � �� P� ��M �� 
�

For a �nite module M over a Noetherian local ring �R� m � k� there is
a very natural condition which� if satis�ed by P�� determines P� uniquely�
It is a consequence of Nakayama�s lemma that x�� � � � � xm � M form a
minimal system of generators of M if and only if the residue classes
�x�� � � � � �xm � M�m M �� M � k are a k�basis of M � k� Therefore m �
dimkM � k� and

��M� � dimkM � k

is the minimal number of generators of M� Set �� � ��M�� We choose a
minimal system x�� � � � � x�� of generators ofM and specify an epimorphism

�� � R�� � M by ���ei� � xi where e�� � � � � e�� is the canonical basis of

R�� � Next we set �� � ��Ker��� and de�ne similarly an epimorphism
R�� � Ker��� Proceeding in this manner we construct a minimal free

resolution

F
�
� � � � �� R�n

�n

�� R�n�� �� � � � �� R��
��

�� R��
��

�� M �� 
�

It is left as an exercise for the reader to prove that F
�
is determined by

M up to an isomorphism of complexes� The number �i�M� � �i is called
the i�th Betti number of M�

Proposition ������ Let �R� m � k� be a Noetherian local ring� M a �nite

R�module� and

F� � � � � �� Fn
�n

�� Fn�� �� � � � �� F�

��

�� F� �� 




��
� Depth and projective dimension �	

a free resolution of M� Then the following are equivalent	

�a� F
�
is minimal�

�b� �i�Fi� � m Fi�� for all i 	 ��
�c� rankFi � dimk Tor

R
i �M� k� for all i 	 
�

�d� rankFi � dimk Ext
i
R�M� k� for all i 	 
�

Proof� The equivalence of �a� and �b� follows easily from Nakayama�s
lemma� Since TorRi �M� k� � Hi�F�

� k�� �c� holds if and only if �i � k � 

for all i 	 
� The latter condition is evidently equivalent to �b�� To relate
�b� to �d� one uses that ExtiR�M� k� � H i�HomR�F�

� k��

Corollary ������ Let �R� m � k� be a Noetherian local ring� and M a �nite

R�module� Then �i�M� � dimk Tor
R
i �M� k� for all i and

proj dimM � supfi � TorRi �M� k� �� 
g�

The following theorem� the �Auslander�Buchsbaum formula�� is not
only of theoretical importance� but also an e ective instrument for the
computation of the depth of a module�

Theorem ����� �Auslander�Buchsbaum�� Let �R� m � be a Noetherian local

ring� and M �� 
 a �nite R�module� If proj dimM � �� then

proj dimM � depthM � depthR�

The proof is by induction on depthR� We isolate the main arguments
in two lemmas� the �rst of which� in view of a later application� is more
general than needed presently�

Lemma ����	� Let �R� m � k� be a local ring� and � � F � G a homomorphism

of �nite R�modules� Suppose that F is free� and let M be an R�module with
m � AssM� Suppose that ��M is injective� Then

�a� �� k is injective�

�b� if G is a free R�module� then � is injective� and ��F� is a free direct

summand of G�

Proof� Since m � AssM� there exists an embedding 	 � k � M� As F is
a free R�module� the map F � 	 is also injective� Furthermore we have a
commutative diagram

F � k
F��

����� F �M

��k

��y ��y��M
G� k ����� G�M

If ��M is injective� then �� k is injective too� This proves �a��
For �b� one notes that its conclusion is equivalent to the injectivity of

�� k� This is an easy consequence of Nakayama�s lemma�
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Lemma ������ Let �R� m � be a Noetherian local ring� and M a �nite R�
module� If x � m is R�regular and M�regular� then

proj dimR M � proj dimR��x� M�xM�

Proof� Choose an augmented minimal free resolution F� of M� Then
F� � R��x� is exact by ������ and therefore it is a minimal free resolution
of M�xM over R��x�� Now apply ������

Proof of ������ Let depthR � 
 �rst� By hypothesis M has a �minimal�
free resolution

F� � 
 �� Fn
�n

�� Fn�� �� � � � �� F� �� F� �� M �� 


with n � proj dimM� Since depthR � 
� the maximal ideal m is in
AssR� If n 	 �� i�e� if �n is really present� then� as shown in ������
�n maps Fn isomorphically onto a free direct summand of Fn��� in
contradiction to proj dimM � n� Therefore n � 
� and furthermore
depthM � depthR � 
 since M is a free R�module�

Let now depthR � 
� Suppose �rst that depthM � 
� Then ����
yields depthM� � � for a �rst syzygy M� of M� Since proj dimM� �
proj dimM � �� it is enough to prove the desired formula for M�� Thus
we may assume depthM � 
� Then m �� AssR and m �� AssM� So
m contains an element x which is both R�regular and M�regular� The
formulas for the passage from M to M�xM in �����
 and ����� yield

depthR��x�R��x� � depthR � �� depthR��x�M�xM � depthR M � ��

proj dimR��x� M�xM � proj dimM�

Therefore induction completes the proof�

Exercises

������ Let R be a Noetherian local ring� M a 	nite R�module� and x an M�sequence
of length n� Show proj dim�M�xM� � proj dimM � n�

����	� Let R be a Noetherian local ring� and N an n�th syzygy of a 	nite R�module
in a 	nite free resolution� Prove that depthN � min�n�depthR��

��	 Some linear algebra

In this section we collect several notions and results which may be
classi�ed as �linear algebra�� torsion�free and re�exive modules� the rank
of a module� the acyclicity criterion of Buchsbaum and Eisenbud� and
perfect modules�
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Torsion�free and re�exive modules� Let R be a ring� and M an R�module�
If the natural map M �M �Q� where Q is the total ring of fractions of
R� is injective� then M is torsion�free� it is a torsion module if M �Q � 
�
The dual of M is the module HomR�M�R�� which we usually denote
by M�� the bidual then is M��� and analogous conventions apply to
homomorphisms� The bilinear map M 
M� � R� �x� �� �� ��x�� induces
a natural homomorphism h � M � M��� We say that M is torsionless

if h is injective� and that M is re�exive if h is bijective� Some relations
between the notions just introduced are given in the exercises� Here we
note a useful criterion�

Proposition ��	��� Let R be a Noetherian ring� and M a �nite R�module�
Then	

�a� M is torsionless if and only if

�i� Mp is torsionless for all p � AssR� and
�ii� depthMp 	 � for p � SpecR with depthRp 	 ��

�b� M is re�exive if and only if

�i� Mp is re�exive for all p with depthRp � �� and
�ii� depthMp 	 � for p � SpecR with depthRp 	 ��

Proof� Consider the natural map h � M � M�� and set U � Ker h�
C � Cokerh� Note that the construction of h commutes with localization
in the situation considered� Therefore the necessity of conditions �i� in
�a� and �b� is obvious� Next Exercise ����� implies

depthM��
p 	 min��� depthRp �

for all p � SpecR� That �b��ii� is necessary for re�exivity follows directly
from this inequality� If M is torsionless� then Mp is isomorphic to
a submodule of M��

p � and we get depthMp 	 min��� depthRp � for all
p � SpecR� So �a��ii� is necessary for M to be torsionless�

As to the su�ciency of �a��i� and �ii�� note that Up � 
 for all
p � AssR by �i�� and� by �ii�� depthUp 	 � if depthRp 	 �� It follows
that AssU � �� hence U � 
�

For the su�ciency of �b��i� and �ii� we may now use that �a� gives us
an exact sequence 
�M � M��� C � 
� If depthRp � �� then Cp � 

by �i�� If depthRp 	 �� then depthMp 	 � by �ii�� and depthM��

p 	 �
by the inequality above� Therefore depthCp 	 �� and it follows that
AssC � ��

Rank� The dimension of a �nite dimensional vector space over a �eld
is given either by the minimal number of generators or by the max�
imal number of linearly independent elements� The second aspect of
�dimension� is generalized in the notion of �rank��



�
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De�nition ��	��� Let R be a ring� M an R�module� and Q be the total
ring of fractions of R� Then M has rank r if M � Q is a free Q�module
of rank r� If � � M � N is a homomorphism of R�modules� then � has
rank r if Im� has rank r�

Proposition ��	��� Let R be a Noetherian ring� and M an R�module with

a �nite free presentation F�

�
�� F� �� M �� 
� Then the following are

equivalent	

�a� M has rank r�
�b�M has a free submodule N of rank r such thatM�N is a torsion module�

�c� for all prime ideals p � AssR the Rp �module Mp is free of rank r�
�d� rank� � rankF� � r�

Proof� �a�  �b�� A free basis x�� � � � � xr of M � Q can be formed from
elements xi � M �multiply by a suitable common denominator�� Now
take N �

P
Rxi�

�b� �a�� This is trivial�
�a� �c�� Mp is a localization of M �Q�
�c�  �a�� Q is a semi�local ring� Its localizations with respect to its

maximal ideals are just the localizations of R with respect to the maximal
elements of AssR� By hypothesisM is therefore a projective module over
Q� and moreover the localizations with respect to the maximal ideals of
Q have the same rank r� Such a module is free� see Lemma ����� below�

�c�� �d�� In view of the equivalence of �a� and �c� we can replace
�d� by the condition that �Im��p is free and rank�Im��p � rankF� � r
for all p � AssR� Now consider the exact sequence


 �� �Im��p �� �F��p ��Mp �� 
�

If Mp is free� then �Im��p must be free� Since p � AssR� the converse is
also true� see ������

Lemma ��	�	� Let R be a semi�local ring� and M a �nite projective R�
module� Then M is free if the localizations Mm have the same rank r for

all maximal ideals m of R�

Proof� We use induction on r� The case r � 
 is trivial� Suppose that
r � 
� Then ����� �with N � M and p �� � � � � p m denoting the maximal
ideals of R� yields an element x �M such that x �� m Mm for all maximal
ideals of M� Thus x is a member of a minimal system of generators
of Mm � Since every such system is a basis of the free module Mm � one
concludes that �M�Rx�m is free of rank r��� By the induction hypothesis
M�Rx is free of rank r��� Therefore M �� Rx�M�Rx� In particular Rx
is a projective R�module� But Rx is also free� the natural epimorphism
� � R � Rx yields an isomorphism �m � Rm � �Rx�m for every maximal
ideal m � Since �Ker��m � Ker�m it follows that Ker� � 
�
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Rank is additive along exact sequences�

Proposition ��	��� Let R be a Noetherian ring� and 
� U �M � N � 

an exact sequence of �nite R�modules� If two of U� M� N have a rank� then

so does the third� and rankM � rankU � rankN�

Proof� In view of ����� we may assume that R is local and of depth 
�
Then two of U� M� N are free� If U and N are free� then so is M� Thus
M is always free �after the reduction to depth 
�� and the result follows
from the equivalence of ������a� and �d��

Corollary ��	��� Let R be a Noetherian ring� and M an R�module with

a �nite free resolution F� � 
 � Fs � Fs�� � � � � � F� � F�� Then

rankM �
Ps

j������
j rankFj �

Proof� Observe ����� and use induction on s�

Corollary ��	��� Let R be a Noetherian ring� and I �� 
 an ideal with a

�nite free resolution� Then I contains an R�regular element�

Proof� By ����� I has a rank� and that rank I � rankR�I � rankR � �
follows immediately from ������ Since I is torsion�free and non�zero�
the only possibility is rank I � �� whence rankR�I � 
� Thus R�I is
annihilated by an R�regular element�

Ideals of minors and Fitting invariants� Let U be an m
n matrix over R
where m� n 	 
� For t � �� � � � �min�m� n� we then denote by It�U� the ideal
generated by the t�minors of U �the determinants of t 
 t submatrices��
For systematic reasons one sets It�U� � R for t � 
 and It�U� � 
 for
t � min�m� n�� If � � F � G is a homomorphism of �nite free R�modules�
then � is given by a matrix U with respect to bases of F and G� It
is an elementary exercise to verify that the ideals It�U� only depend on
�� Therefore we may put It��� � It�U�� It is just as easy to show that
It��� is already determined by the submodule Im� of G� As proved by
Fitting in ���� these ideals are even invariants of Coker� �when counted
properly�� and therefore called the Fitting invariants of Coker�� let

F�

�
�� F� ��M �� 
 and G�

�
�� G� ��M �� 


be �nite free presentations of the R�module M� and n � rankF�� p �
rankG�� then In�u��� � Ip�u��� for all u 	 
� �The proof is left as an
exercise for the reader�� This justi�es the term u�th Fitting invariant of M
for In�u����

It is an important property of the ideals It��� that their formation
commutes with ring extensions� if S is an R�algebra� then It�� � S� �
It���S � �Simply consider � as given by a matrix��
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The ideals It��� determine the minimal number ��Mp � of generators
of a localization in the same way that they control the vector space
dimension of M if R is a �eld�

Lemma ��	��� Let R be a ring� M an R�module with a �nite free presenta�

tion F�

�
�� F� ��M �� 
� and p a prime ideal� Then the following are

equivalent	

�a� It��� �� p �

�b� �Im��p contains a �free� direct summand of �F��p of rank t�
�c� ��Mp � � rankF� � t�

Proof� It is no restriction to assume that R � Rp � Nakayama�s lemma
entails that ��M� � ��M�p M�� Similarly it implies that Im� contains a
�free� direct summand of F� of rank t if and only if there are elements
x�� � � � � xt � Im� which are linearly independent modulo p F�� �Note that
every direct summand of a �nite free module over a local ring is free itself
� again an application of Nakayama�s lemma�� After these observations
we may replace R by the �eld R�p � For vector spaces over �elds the
equivalence of �a�� �b� and �c� is an elementary fact�

Lemma ��	��� With the notation of ������ the following are equivalent	

�a� It��� �� p and It�����p � 
�
�b� �Im��p is a free direct summand of �F��p of rank t�
�c� Mp is free and rankMp � rankF� � t�

Proof�We may assume that R � Rp � Then each of �b� and �c� is equivalent
to the split exactness of the sequence 
� Im�� F� �M � 
�

If �a� holds� then� with respect to suitable bases of F� and F�� the
matrix of � has the form �

idt 


 


�
where idt is the t 
 t identity matrix� This implies �b�� The converse is
seen similarly�

Let M be a �nite module over a Noetherian ring R� Then M is a
projective module �of rank r� if and only if Mp is a free Rp �module �of
rank r� for all p � SpecR� Combining this fact with ���� we obtain the
global version of �����

Proposition ��	��
� Let R be a Noetherian ring� and M a �nite R�module

with a �nite free presentation F�

�
�� F� ��M �� 
� Then the following

are equivalent	

�a� Ir��� � R and Ir����� � 
�
�b� M is projective and rankM � rankF� � r�

The rank of a homomorphism � � F � G is determined by the ideal
It���� just as in elementary linear algebra�
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Proposition ��	���� Let R be a Noetherian ring� and let � � F � G be a

homomorphism of �nite free R�modules� Then rank� � r if and only if

grade Ir��� 	 � and Ir����� � 
�

The easy proof is left as an exercise for the reader�

The Buchsbaum�Eisenbud acyclicity criterion� Let R be a ring� A complex

G
�
� � � � �� Gm

�m

�� Gm�� �� � � � �� G�

��

�� G� �� 


of R�modules is called acyclic if Hi�G�
� � 
 for all i � 
� and split acyclic

if it is acyclic and �i���Gi��� is a direct summand of Gi for i 	 
�
Let R be a Noetherian ring� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� We want to develop a criterion for
F� to be acyclic� This criterion will involve ideals generated by certain
minors of the homomorphisms �i� A �rst relation between the ideals
It��� and the acyclicity of complexes is given in the next proposition�

Proposition ��	���� Let R be a ring� M an R�module�

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


be a complex of �nite free R�modules� and p � R be a prime ideal� Set

ri �
Ps

j�i����
j�i rankFj for i � �� � � � � s� Then the following are equivalent	

�a� F� � Rp is split acyclic�

�b� Iri��i� �� p for i � �� � � � � s�

Furthermore� It��i�p � 
 for all i � �� � � � � s and t � ri� if one of these

conditions holds�

If p � AssM� then �a� and �b� are equivalent to
�c� F� �Mp is acyclic�

Proof� We may suppose that R � Rp �
�a�  �b�� If F� is split acyclic� then F� � R�p is a �split� acyclic

complex of vector spaces over R�p � so we can refer to elementary linear
algebra�

�b�  �a�� We again use induction� and may assume that Coker��

is a free R�module of rank r�� According to ������ Im�� contains a free
direct summand U of F� of rank r�� So we get an induced epimorphism
Coker�� � U of free R�modules� both of which have rank r�� Such a
map must be an isomorphism� One easily concludes that Im�� � U�
Hence F� is split acyclic�

That It��i� � 
 for t � ri� follows most easily from �a� in conjunction
with �����
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�c�  �a�� Let F �
�
be the truncation 
 � Fs � � � � � F� � 
� Then

F �
�
�M is acyclic� arguing inductively� we may therefore suppose that

F �
�
is split acyclic� Then F �� � Coker�� is free� and the induced map

F �� �M � F� �M is injective by hypothesis� By virtue of ������ F �� is
mapped isomorphically onto a free direct summand of F��

�a� �c�� This is evident�

We have completed our preparations for the following important and
extremely useful acyclicity criterion�

Theorem ��	��� �Buchsbaum�Eisenbud�� Let R be a Noetherian ring� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� Set ri �
Ps

j�i����
j�i rankFj � Then the

following are equivalent	

�a� F� is acyclic�

�b� grade Iri��i� 	 i for i � �� � � � � s�

Before we prove the theorem the reader should note that ri �
rank�i 	 
 when F� is acyclic� this is just a restatement of ������ Con�
versely� it is not necessary to require that ri 	 
 for the implication
�b� �a�� if ri � 
� then ri�� � rankFi� and Iri����i��� � 
 in contradic�
tion with �b�� In the situation of ������ we call ri the expected rank of

�i�

Proof� �a�  �b�� By what has just been said and ������� we see that
grade Iri��i� 	 � for i � �� � � � � s� In particular there is an R�regular
element x contained in the product of the ideals Iri��i�� If x is a unit� then
Iri��i� � R for all i� and we are done� Otherwise we use induction� Let �
denote residue classes modulo x� It follows immediately from ����� that
the induced complex 
 � �Fs � �Fs�� � � � � � �F� � �F� � 
 is acyclic�
Furthermore Iri��i�� � Iri���i�� and grade Iri���i� 	 i�� by induction� Then
grade Iri��i� 	 i for i � �� � � � � s�

The reader may have noticed that this implication follows imme�
diately from the Auslander�Buchsbaum formula ������ In view of the
generalization ���� an independent proof is useful� however�

�b�  �a�� Using induction again we may assume that F �
�
� 
 �

Fs � Fs�� � � � � � F� � F� � 
 is acyclic� We set Mi � Coker�i��

for i � �� � � � � s� and show by descending induction that depth�Mi�p 	
minfi� depthRp g for all p � SpecR and i � �� � � � � s�

As Ms � Fs� this is trivial for i � s� Let i � s and consider the exact
sequence


 �� Mi�� �� Fi ��Mi �� 
�

If depthRp 	 i� �� then depth�Mi���p 	 i� �� and we get depth�Mi�p 	 i
from ����� If depthRp � i� then Iri����i��� �� p by hypothesis� on the
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other hand rankMi�� � rank�i�� � ri��� and therefore It��i��� � 
 for
t � ri��� So ���� yields that �Mi�p is free� hence depth�Mi�p � depthRp �

We still have to show that the induced map ��� � M� � F� is injective�
Let N � Ker���� In order to get N � 
� we derive that AssN � ��
If depthRp 	 �� then depth�M��p 	 � as seen above� therefore p ��
AssM� � AssN� If depthRp � 
� then Iri��i� �� p for i � �� � � � � s� and
F

�
� Rp is even split acyclic by ������� It follows that Np � 
 since

Np
�� H��F�

� Rp ��

Often one only needs the following consequence of �������

Corollary ��	��	� Let R be a Noetherian ring� and F
�
be a complex as in

������� If F� � Rp is acyclic for all prime ideals p with depthRp � s� then
F� is acyclic�

Proof� Let p be a prime ideal with depthRp � i � s� The implication
�a�  �b� of the theorem applied to F� � Rp yields grade Iri��i�p 	 i�
which is only possible if Iri��i� �� p � This shows grade Iri��i� 	 i� and the
acyclicity of F� follows from the implication �b�  �a� of the theorem�

Theorem ������ is the most important case of the acyclicity criterion
of Buchsbaum and Eisenbud� Its general form will be discussed in
Chapter �

Perfect modules� Let R be a Noetherian ring� and M a �nite R�module�
Since one can compute ExtiR�M�R� from a projective resolution of M�
one obviously has gradeM � proj dimM� Modules for which equality is
attained have especially good properties�

De�nition ��	���� Let R be a Noetherian ring� A non�zero �nite R�module
M is perfect if proj dimM � gradeM� An ideal I is called perfect if R�I
is a perfect module�

Perfect modules are �grade unmixed��

Proposition ��	���� Let R be a Noetherian ring� and M a perfect R�module�
For a prime ideal p � SuppM the following are equivalent	

�a� p � AssM�

�b� depthRp � gradeM�

Furthermore grade p � gradeM for all prime ideals p � AssM�

Proof� For all �nite R�modules M and p � SuppM one has the inequal�
ities

gradeM � gradeMp � proj dimMp � proj dimM�

and moreover proj dimMp � depthMp � depthRp by the Auslander�
Buchsbaum formula ������ If M is perfect� then the inequalities become
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equations� and depthMp � 
 if and only if depthRp � gradeM� This
shows the equivalence of �a� and �b��

If p � AssM� then p � AnnM� and so grade p 	 gradeM� For perfect
M the converse results from �b� and the inequality grade p � depthRp �

It follows easily from ����� that an ideal generated by a regular
sequence in a Noetherian ring R is perfect� Some more examples are
described in the following celebrated theorem�

Theorem ��	��� �Hilbert�Burch�� Let R be a Noetherian ring� and I an

ideal with a free resolution

F� � 
 �� Rn
�
�� Rn�� �� I �� 
�

Then there exists an R�regular element a such that I � aIn���� If I is

projective� then I � �a�� and if proj dim I � �� then In��� is perfect of

grade ��
Conversely� if � � Rn � Rn�� is an R�linear map with grade In��� 	 ��

then I � In��� has the free resolution F
�
�

Proof� First we prove the converse part� Let � � Rn � Rn�� be a map
with grade In��� 	 �� Then � is given by an �n � �� 
 n matrix U�
Let 
i denote the i�minor of U with the i�th row deleted� and consider
the homomorphism � � Rn�� � R which sends ei to ����i
i� Laplace
expansion shows that we have a complex


 �� Rn
�
�� Rn�� �

�� I �� 
�

which in fact is exact by �������
Suppose now that an ideal I with free resolution F� is given� Then

������ yields grade In��� 	 �� and we can apply the �rst part of the proof
to obtain I �� Coker� �� In���� equivalently� there exists an injective
linear map � � In��� � R with I � Im �� According to ������� � is just
multiplication by some a � R� Because of ����	 �or ������� a cannot be a
zero�divisor�

If I is projective� then In��� � R by �����
� and thus I � �a�� If
proj dim I � �� then proj dim�R�In���� � proj dimR�I � �� and R�In���
is perfect of grade ��

Exercises

�����
� Let R be a ring� and M a 	nite torsion�free module� Prove that if M has
a rank� then M is isomorphic to a submodule of a 	nite free R�module of the
same rank�

������� Let R be a Noetherian ring� I an ideal� and M� N 	nite modules� Prove
grade�I�HomR�M�N�� � min��� grade�I�N���
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������� Let R be a Noetherian ring� and M a 	nite R�module� Prove

�a� if M is torsionless� then it is torsion�free�

�b� M is torsionless if and only if it is a submodule of a 	nite free module�

�c� if M is re�exive� then it is a second syzygy� i�e� there is an exact sequence
��M � F� � F� with Fi 	nite and free�

������� Let R be a Noetherian ring� and M a 	nite R�module� Suppose � � G� F
is a homomorphism of 	nite free R�modules with M � Coker�� Then D�M� �
Coker�� is the transpose of M� �It is unique up to projective equivalence�� Show
that Ker h � Ext�R�D�M�� R� and Coker h � Ext�R�D�M�� R� where h � M �M�� is
the natural homomorphism�

������� Let R be a Noetherian ring� and M a 	nite R�module such that M� has
	nite projective dimension� Prove

�a� if depthMp � min��� depthRp � for all p � SpecR� then M is torsionless�

�b� if depthMp � min��� depthRp � for all p � SpecR� then M is re�exive�

Hint� proj dimM� � �� proj dimD�M� � ��

������� Let R be a Noetherian ring� and M a 	nite R�module� Show that M has
a rank if and only if M� has a rank �and both ranks coincide�� Hint� It is enough
to consider the case R � Rp � depthRp � �� Apply �������

������� Let R be a Noetherian local ring� and � � Ls � Ls�� � � � � � L� �
L� � � a complex of 	nite R�modules� Suppose that the following hold for i � ��
�i� depthLi � i� and �ii� depthHi�L�� � � or Hi�L�� � �� Show that L� is acyclic�
�This is Peskine and Szpiro�s �lemme d�acyclicit�e� �
����

Hint� Set Ci � Coker�Li�� � Li�� and show by descending induction that
depthCi � i and Hi�L�� � � for i � ��

������� Let R be a Noetherian ring� I an ideal of 	nite projective dimension� and
M a 	nite R�I�module� Prove the following inequality of Avramov and Foxby
�
��

gradeR�I M � gradeR R�I � gradeR M � gradeR�I M � proj dimR R�I�

if I is perfect� then equality is attained� �Use the Auslander�Buchsbaum formula��

������� Let R be a Noetherian ring� andM a perfect R�module of grade n� Suppose
P

�
is a projective resolution of M of length n and set M� � ExtnR�M�R�� Prove

�a� P �
�

is acyclic and resolves M��

�b� M� is perfect of grade n� and M�� � M�

�c� AssM� � AssM�

�����	� Let R be a Noetherian ring� x an R�sequence of length n� and I � �x��
Show that R�Im is perfect of grade n for all m � �� �Theorem ����� is useful��

��� Graded rings and modules

In this section we investigate rings and modules which� like a polyno�
mial ring� admit a decomposition of their elements into homogeneous
components�
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De�nition ������ A graded ring is a ring R together with a decomposition
R �

L
i�Z Ri �as a Z�module� such that RiRj � Ri�j for all i� j � Z�

A graded R�module is an R�module M together with a decomposition
M �

L
i�ZMi �as a Z�module� such that RiMj � Mi�j for all i� j � Z�

One calls Mi the i�th homogeneous �or graded� component of M�

The elements x � Mi are called homogeneous �of degree i�� those of
Ri are also called i�forms� According to this de�nition the zero element is
homogeneous of arbitrary degree� The degree of x is denoted by deg x�
An arbitrary element x � M has a unique presentation x �

P
i xi as a

sum of homogeneous elements xi � Mi� The elements xi are called the
homogeneous components of x�

Note that R� is a ring with � � R�� that all summands Mi are R��
modules� and that M �

L
i�ZMi is a direct sum decomposition of M as

an R��module�

De�nition ������ Let R be a graded ring� The category of graded R�modules�
denoted M��R�� has as objects the graded R�modules� A morphism

� � M � N inM��R� is an R�module homomorphism satisfying ��Mi� �
Ni for all i � Z� An R�module homomorphism which is a morphism in
M��R� will be called homogeneous�

Let M be a graded R�module and N a submodule of M� N is called
a graded submodule if it is a graded module such that the inclusion map
is a morphism inM��R�� This is equivalent to the condition Ni � N �Mi

for all i � Z� In other words� N is a graded submodule of M if and only
if N is generated by the homogeneous elements of M which belong to N�
In particular� if x � N� then all homogeneous components of x belong to
N� Furthermore� M�N is graded in a natural way� If � is a morphism in
M��R�� then Ker� and Im� are graded�

A �not necessarily commutative� R�algebra A is graded if� in addition
to the de�nition� AiAj � Ai�j�

The graded submodules of R are called graded ideals� Let I be an
arbitrary ideal of R� Then the graded ideal I� is de�ned to be the ideal
generated by all homogeneous elements a � I � It is clear that I� is the
largest graded ideal contained in I � and that R�I� inherits a natural
structure as a graded ring�

Examples ������ �a� Let S be a ring� and R � S�X�� � � � � Xn� a polynomial
ring over S � Then for every choice of integers d�� � � � � dn there exists a
unique grading on R such that degXi � di and deg a � 
 for all a � S�
the m�th graded component is the S�module generated by all monomials
Xe�

� � � �X
en
n such that

P
eidi � m� If one chooses di � � for all i� then one

obtains the grading of the polynomial ring corresponding to the total
degree of a monomial� Unless indicated otherwise we will always consider
R to be graded in this way�
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�b� Every ring R has the trivial grading given by R� � R and Ri � 

for i �� 
� A typical example of a graded module over R is a complex

C
�
� � � �

�
�� Cn

�
�� Cn��

�
�� � � �

of R�modules� Such a complex may be equivalently described as a graded
module C

�
�
L�

i���Ci together with an R�endomorphism  such that

� � 
 and �Ci� � Ci�� for all i� �In the terminology to be introduced
below�  is a homogeneous endomorphism of degree ����

The most important graded rings arise in algebraic geometry as
the coordinate rings of projective varieties� They have the form R �
k�X�� � � � � Xn��I where k is a �eld and I is an ideal generated by homo�
geneous polynomials �in the usual sense�� Then R is generated as a
k�algebra by elements of degree �� namely the residue classes of the
indeterminates� Graded rings R which as R��algebras are generated by
��forms will be called homogeneous R��algebras� More generally� if R is a
graded R��algebra generated by elements of positive degree� then we say
that R is a positively graded R��algebra�

We want to clarify which graded rings are Noetherian� Let us �rst
consider positively graded rings�

Proposition ����	� Let R be a positively graded R��algebra� and x�� � � � � xn
homogeneous elements of positive degree� Then the following are equivalent	

�a� x�� � � � � xn generate the ideal m �
L�

i��Ri�

�b� x�� � � � � xn generate R as an R��algebra�

In particular R is Noetherian if and only if R� is Noetherian and R is a

�nitely generated R��algebra�

Proof� For the implication �a� �b� it is enough to write every homoge�
neous element y � R as a polynomial in x�� � � � � xn with coe�cients in R��
and this is very easy by induction on deg y� The rest is evident�

The last assertion of ����� holds for graded rings in general�

Theorem ������ Let R be a graded ring� Then the following are equivalent	

�a� every graded ideal of R is �nitely generated�

�b� R is a Noetherian ring�

�c� R� is Noetherian� and R is a �nitely generated R��algebra�

�d� R� is Noetherian� and both S� �
L�

i��Ri and S� �
L�

i��R�i are �nitely
generated R��algebras�

Proof� The implications �d� �c� �b� �a� are obvious� For �a� �d�
we �rst note that R� is a direct summand of R as an R��module� It follows
that IR � R� � I for every ideal I of R�� and thus �a� implies that R�

is Noetherian� �Extend an ascending chain of ideals of R� to R� and
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contract the extension back to R��� A similar argument shows that Ri is
a �nite R��module for every i � Z�

Let m �
L�

i��Ri� We claim that m is a �nitely generated ideal of
S�� By hypothesis m R has a �nite system of generators x�� � � � � xm� which
may certainly be chosen to be homogeneous of positive degrees di� Let
d be the maximum of d�� � � � � dm� Then a homogeneous element y � m

with deg y 	 d can be written as a linear combination of x�� � � � � xm
with coe�cients from S�� Thus x�� � � � � xm together with a �nite set of
homogeneous elements spanning R�� � � � � Rd�� over R� generate m as an
ideal of S�� According to ������ S� is a �nitely generated R��algebra� and
the claim for S� follows by symmetry�

Very often we shall derive properties of a graded ring or module from
its localizations with respect to graded prime ideals� The following lemma
is basic for such arguments�

Lemma ������ Let R be a graded ring�

�a� For every prime ideal p the ideal p � is a prime ideal�

�b� Let M be a graded R�module�

�i� If p � SuppM� then p � � SuppM�

�ii� If p � AssM� then p is graded� furthermore p is the annihilator of

a homogeneous element�

Proof� �a� Let a� b � R such that ab � p �� We write a �
P

i ai� ai � Ri�
and b �

P
j bj � bj � Rj � Assume that a �� p � and b �� p �� Then there

exist integers p� q such that ap �� p �� but ai � p � for i � p� and bq �� p ��
but bj � p � for j � q� The �p � q��th homogeneous component of ab isP

i�j�p�qaibj � Thus
P

i�j�p�qaibj � p �� since p � is graded� All summands

of this sum� except possibly apbq � belong to p �� and so it follows that
apbq � p � as well� Since p � � p � and since p is a prime ideal we conclude
that ap � p or bq � p � But ap and bq are homogeneous� and so ap � p � or
bq � p �� a contradiction�

�b� For �i� assume p � �� SuppM� then Mp � � 
� Let x � M be a
homogeneous element� Then there exists an element a � R n p � such that
ax � 
� It follows that aix � 
 for all homogeneous components ai of a�
Since a � R n p �� there exists an integer i such that ai �� p �� Since ai is
homogeneous� we even have ai �� p � Hence x�� � 
 in Mp � This holds
true for all homogeneous elements of M� Thus we conclude that Mp � 
�
a contradiction�

For �ii� we choose an element x � M with p � Annx� Let x �
xm � � � �� xn be its decomposition as a sum of homogeneous elements xi
of degree i� Similarly we decompose an element a � ap � � � � � aq of p �
Since ax � 
� we have equations

P
i�j�raixj � 
 for r � m�p� � � � � n�q� It

follows that apxm � 
� and� by induction� aipxm�i�� � 
 for all i 	 �� Thus



��� Graded rings and modules ��

an�m��
p annihilates x� As p is a prime ideal� we have ap � p � Iterating this
procedure we see that each homogeneous component of a belongs to p �

In order to prove the second assertion in �ii� one can now use the fact
that p is generated by homogeneous elements� It follows easily that p

annihilates all the homogeneous components of x� Set a i � Ann xi� then�
as just seen� p � a i� On the other hand

Tn
i�m a i � p � Since p is a prime

ideal� there exists j with a j � p � and therefore a j � p �

Let p be a prime ideal of R� and let S be the set of homogeneous
elements of R not belonging to p � The set S is multiplicatively closed�
and we put M�p � � MS for any graded R�module M� For x�a � M�p ��
x homogeneous� we set deg x�a � deg x � deg a� We further de�ne a
grading on M�p � by setting

�M�p ��i � fx�a �M�p � � x homogeneous� deg x�a � ig�

It is easy to see that R�p � is a graded ring and that M�p � is a graded R�p ��
module� M�p � is called the homogeneous localization of M� The extension
ideal p �R�p � is a graded prime ideal in R�p �� and the factor ring R�p ��p �R�p �

has the property that every non�zero homogeneous element is invertible�

Lemma ������ Let R be a graded ring� The following conditions are equiv�

alent	

�a� every non�zero homogeneous element is invertible�

�b� R� � k is a �eld� and either R � k or R � k�t� t��� for some homoge�
neous element t � R of positive degree which is transcendental over k�

Proof� �a� �b�� R� � k is a �eld� If R � R�� then R is a �eld� Otherwise
R �� R�� and there exist non�zero homogeneous elements of positive
degree� Let t be an element of least positive degree� say deg t � d � As t
is invertible there exists a homomorphism � � k�T �T��� � R of graded
rings where � maps k identically to R� and where ��T � � t� �The grading
on k�T �T��� is of course de�ned by setting degT � d ��

We claim that � is an isomorphism� Let f � Ker�� f �
P

i�Z aiT
i�

ai � k� then 
 � ��f� �
P

i�Z ait
i� and so ait

i � 
 for all i� As t is

invertible� we get ai � �aiti� � t�i � 
 for all i� which implies that f � 
�
Hence � is injective� In order to show that � is surjective� we pick a
non�zero homogeneous element a � R of degree i� If i � 
� then a � Im��
Thus we may assume that i �� 
� Write i � jd � r with 
 � r � d � The
element at�j has degree r� As d was the least positive degree� we conclude
that r � 
� Thus a � btj for some b � R�� and hence a � ��bT j� � Im��

�b� �a� is trivial�

The following theorem contains the dimension theory of graded rings
and modules�
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Theorem ������ Let R be a Noetherian graded ring� M a �nite graded

R�module and p � SuppM�

�a� If p is graded� then there exists a chain p � � � � � � p d � p � d � dimMp �

of graded prime ideals p i � SuppM�

�b� If p is not graded� then dimMp � dimMp � � ��

Proof� A very special case of �b� is the following� if p is not graded�
then height p �p � � �� In order to prove this equation we may replace
R by R�p � and assume that p � � 
� Then p does not contain a non�
zero homogeneous element� Therefore it is harmless to invert all these
elements� This yields the homogeneous localization R���� Since p R���

is a non�zero prime ideal� R��� has the form k�t� t��� by ����	� whence
height p � height p R��� � ��

Now let p � SuppM be an arbitrary prime ideal� and d � dimMp �
Both claims will be proved once we show that there exists a chain
p � � � � � � p d � p of prime ideals in SuppM such that p �� � � � � p d�� are
graded� Note that in the case of �b� it follows that p d�� � p �� and
therefore p d�� � p � since there is no prime ideal properly between p and
p d���

Let p � � � � � � p d � p be a chain of prime ideals in SuppM� Then p �

is minimal in SuppM� and therefore graded by ������ In the case d � �
we are already done� Arguing inductively we may therefore suppose that
p �� � � � � p d�� are graded�

If p is not graded� we replace p d�� by p �� which is properly contained
in p � and properly contains p d�� because height p �p � � �� as was proved
above�

If p is graded� then it contains a homogeneous element a �� p d���
and we replace p d�� by a minimal prime q of p d�� � �a� contained in p �
Since height p �q � �� it is impossible for q to equal p � furthermore q is a
minimal element of SuppR��p d��� �a��� and thus graded by ������

Our next goal is an equation similar to ����� for the depth of a
graded module� We shall need the result that the ordinary Ext�groups
ExtiR�M�N� of graded R�modules admit a natural grading� provided R is
Noetherian and M is �nite�

If M is a graded R�module and i is an integer� then M�i� denotes the
graded R�module with grading given by M�i�n � Mi�n�

The category M��R� has enough projectives� In fact� each module
M � M��R� is a homomorphic image �inM��R�� of a module of the formL

R�i�� So every graded module has a graded free resolution� When we
speak of a natural grading of modules appearing as the values of derived
functors� then it is of course important that the standard argument of
homological algebra ������� Theorem ������ which guarantees that derived
functors are well de�ned� can be made �graded�� ThatM��R� has enough
injectives will be shown in ������
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It is not hard to see that the tensor product M � N of graded R�
modules is a graded R�module� its homogeneous component �M � N�n
is generated �as a Z�module� by the products x � y with x � M� y � N
homogeneous such that deg x � deg y � n� see ������ Together with the
fact that each graded module has a graded free resolution this implies
that the modules TorRi �M�N� admit a natural grading�

Let M� N be graded R�modules� In general� the set of morphisms
� � M � N in M��R� is not a submodule of HomR�M�N�� Thus for
the construction of a reasonable graded Ext functor one must consider
a larger class of maps� An R�module homomorphism � � M � N is
called homogeneous of degree i if ��Mn� � Nn�i for all i� �A homogeneous
homomorphism whose degree is not explicitly speci�ed has degree 
��
Note that � may be considered as a morphism � � M��i�� N inM��R��
Denote by Homi�M�N� the group of homogeneous homomorphisms of
degree i� The Z�submodules Homi�M�N� of HomR�M�N� form a direct
sum� and it is obvious that �HomR�M�N� �

L
i�ZHomi�M�N� is a graded

R�submodule of HomR�M�N�� In general �HomR�M�N� �� HomR�M�N��
but equality holds if M is �nite� see Exercise ������

For any N � M��R� we de�ne �ExtiR�M�N� as the i�th right derived
functor of �HomR� � N� in M��R�� Thus� if P� is a projective resolution
of M inM��R�� then

�Ext
i
R�M�N� �� H i��HomR�P�� N��

for all i 	 
� It is immediate from this de�nition and the above remarks
that �ExtiR�M�N� � ExtiR�M�N� for Noetherian R and �nite M� Nev�

ertheless we shall use the notation �ExtiR�M�N� to emphasize that these
modules are graded�

Theorem ������ Let R be a Noetherian graded ring� M a �nite graded

R�module� and p � SuppM a non�graded prime ideal� Then

depthMp � depthMp � � � and r�Mp � � r�Mp � ��

Proof� In order to compute the depths and types of Mp and Mp � we may
consider both modules as modules over the homogeneous localizationR�p �

of R with respect to p � Thus we may assume that R�p � �� k�t� t��� where
k is a �eld and t is an element of positive degree which is transcendental
over k� It follows that p � aR � p � for some a � R n p �� Hence we have
an exact sequence


 �� R�p �
a
�� R�p � �� R�p �� 
�

which yields the long exact sequence

� � � �� �Ext
i
R�R�p ��M�

a
�� �Ext

i
R�R�p ��M� �� Exti��

R �R�p �M� �� � � �
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The �ExtiR�R�p ��M� are graded R�p ��� k�t� t�����modules� Since every
graded k�t� t����module is free �Exercise �����
� and a �� p �� the map

�Ext
i
R�R�p ��M�

a
�� �Ext

i
R�R�p ��M�

is injective� Therefore

Exti��
R �R�p �M� �� �Ext

i
R�R�p ��M�

�
a � �Ext

i
R�R�p ��M��

The equation p � aR � p � implies that Exti��
R �R�p �M� is a free �R�p ��

module of the same rank as the free �R�p ���module �ExtiR�R�p ��M��
Hence

dimk�p � Ext
i��
Rp
�k�p ��Mp � � rankR�p Ext

i��
R �R�p �M��

� rankR�p �

�Ext
i
R�R�p ��M� � dimk�p ��

�Ext
i
Rp �
�k�p ���Mp � ��

This equation in particular entails the assertion of the theorem�

What makes the proof of ���� more di�cult than one might expect
at �rst sight is illustrated by the following example� Let k be a �eld
and S � k�X� Y � be graded such that degX � 
 and degY � �� The
residue class ring R � S��XY � is graded� and �x� y� is a graded maximal
ideal of grade �� Nevertheless every homogeneous element of �x� y� is a
zero�divisor� in fact contained in a minimal prime ideal� However� as we
shall see in ������� under suitable hypotheses there exist homogeneous
regular sequences� First we prove a graded version of prime avoidance�

Lemma �����
� Let R be a graded ring and I an ideal generated by elements
of positive degree� Let p �� � � � � p n be prime ideals such that I �� p i for i �
�� � � � � n� Then there exists a homogeneous element x � I � x �� p � � � � � � p n�

Proof� Let S �
L�

j��Rj � Since I is generated by elements of positive
degree� one has I � S �� p i � S for i � �� � � � � n� Therefore we may assume
that R is positively graded� Furthermore it is harmless to replace p i by
p �i for all i�

Using induction on n� we may suppose that p n is a minimal element of
fp �� � � � � p ng and that there is a homogeneous x

� � I with x� �� p ��� � �� p n���
If x� �� p n� then we are done� Otherwise there exists a homogeneous

r � �
Tn��

i�� p i� n p n� We choose a homogeneous y � I n p n� Then deg x
� � 


and deg ry � 
 so that �x��u��ry�v is homogeneous for suitable exponents
u� v� Furthermore� �x��u � �ry�v �� p � � � � � � p n�

Proposition ������� Let R be a Noetherian graded ring� and let I be

an ideal in R generated by homogeneous elements of positive degree� Set

h � height I and g � grade�I�M� where M is a �nite R�module� Then there
exist sequences x � x�� � � � � xh and y � y�� � � � � yg of homogeneous elements

of I such that height�x�� � � � � xi� � i for i � �� � � � � h and y is an M�sequence�
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Proof� It is enough to �nd x� and y� because we may use induction on
n after having replaced all objects by their reductions modulo x� or y��
But the choice of x� or y� only requires the avoidance of �nitely many
prime ideals none of which contains I �

Often one needs a stronger version of �������

Proposition ������� In addition to the hypotheses of ������ assume that R�

is a local ring with an in�nite residue class �eld and that I is generated by

elements of degree �� Then the sequences x � x�� � � � � xh and y � y�� � � � � yg
can be composed of elements of degree ��

Proof� We choose a system z�� � � � � zn of degree � elements generating I � If
heightI � 
 and p is a minimal prime ideal of R� then I� �� p � Therefore
I� � p is a proper R��submodule of I�� As k� is in�nite� it is impossible
for I� to be the union of the �nitely many proper submodules obtained
in this manner� �Modulo the maximal ideal m � of R� this turns into an
elementary fact of linear algebra�� So I� has an element x� which is not
in any minimal prime ideal of R� In order to construct x�� � � � � xh one
proceeds by induction� The construction of y is similar�

�Local rings� In the following de�nition we introduce the graded coun�
terparts of local rings�

De�nition ������� Let R be a graded ring� A graded ideal m of R is called
�maximal� if every graded ideal that properly contains m equals R� The
ring R is called �local� if it has a unique �maximal ideal m � A �local ring
with �maximal ideal m will be denoted by �R� m ��

Let �R� m � be a �local ring� All non�zero homogeneous elements of
the graded ring R�m are invertible� and so R�m is either a �eld� or else
R�m �� k�t� t���� where k is a �eld and t is a homogeneous element of
positive degree which is transcendental over k� see ����	� In the �rst case m

is a maximal ideal� and in the second m is a prime ideal with dimR�m � ��
Note that R� is a local ring with maximal ideal m � � m �R�� and that all
homogeneous elements a � R n m are units� We de�ne the �dimension of
R as the height of m and denote it by �dimR� According to ������ �dimR
equals the supremum of all numbers h for which there exists a chain of
graded prime ideals p � � p � � � � � � p h in R� If x�� � � � � xn� n � �dimR� are
homogeneous elements such that �x�� � � � � xn� is m �primary� then x�� � � � � xn
is called a homogeneous system of parameters�

Examples �����	� �a� Let p be a graded prime ideal� Then R�p � is a �local
ring�

�b� Let R be a positively graded ring for which R� is a local ring
with maximal ideal m �� Then R is a �local ring with �maximal ideal



�� �� Regular sequences and depth

m � m � �
L

n��Rn� In particular a positively graded algebra over a �eld
is �local�

�c� Let �S� n � be a local ring and t an indeterminate over S � Then
R � S�t� t��� is in a natural way a �local ring with �maximal ideal
n S�t� t���� and one has dimS � �dimR � dimR � ��

With respect to its �nite graded modules M� a �local ring �R� m �
behaves like a local ring� as we shall now see�

Let g�� � � � � gn be a homogeneous minimal system of generators of
M� Let F� �

Ln
i��R�� deg gi�� the i�th summand being generated by an

element ei satisfying deg ei � deg gi� The R�module F� is free of rank n�
and the assignment ei �� gi induces a surjective morphism �� of graded
modules� Of course Ker�� is a graded submodule of F�� Suppose that
Ker�� �� m F�� Then there exists a homogeneous element u � Ker���
u �� m F�� and one of the coe�cients ai in u �

P
aiei is not in m � call it

aj � But all the ai are homogeneous� and so aj is a unit by hypothesis on
�R� m �� It follows that the given system of generators is not minimal� which
is a contradiction� Localizing with respect to m we see that n � ��Mm ��
In particular all homogeneous minimal systems of generators have the
same number of elements� Furthermore� iterating the construction of F�

and ��� one obtains an �augmented� free resolution of M which for the
reasons given is called a minimal graded free resolution of M� It is easy
to show that such a resolution is unique up to an isomorphism inM��

Proposition ������� Let �R� m � be a Noetherian �local ring� M a �nite graded

R�module� and I a graded ideal� Then

�a� every minimal homogeneous system of generators of M has exactly

��Mm � elements�
�b� if F� is a minimal graded free resolution of M� then F��Rm is a minimal

free resolution of Mm �

�c� the functor � Rm is faithfully exact on the categoryM��

�d� M is projective if and only if it is free�

�e� one has

proj dimM � proj dimMm � grade�m �M� � depthMm �

gradeM � gradeMm � grade�I�M� � grade�Im �Mm ��

Proof� �a� and �b� were shown above� and �a� implies that � Rm is
faithful� which proves �c� because localization is always exact� Part �d�
follows from �b� since the �rst Betti number ���Mm � � 
 ifM is projective�
and therefore F� � 
 in a minimal graded free resolution of M� The �rst
equation in �e� is also a consequence of �b�� whereas the remaining
ones result from �c� and the fact that the modules ExtiR�R�I�M� and

ExtiR�M�R� are graded� �One must of course use the description of grade
by �������
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It is customary to collect the terms with the same �shift� in each free
module of a graded free resolution and to write it in the form

� � � ��
M
j

R��j��ij �� � � � ��
M
j

R��j���j ��M �� 
�

Though a minimal graded free resolution is uniquely determined� this is
not true for the numbers �ij if one only requires that �R� m � is �local� We
need a slightly stronger hypothesis which is satis�ed for example by all
positively graded algebras over local rings�

Proposition ������� Let �R� m � be a Noetherian �local ring such that m is

a maximal ideal of R �in the ordinary sense�� Then for every �nite graded

R�module M the numbers �ij in a minimal graded free resolution of M are

uniquely determined by M�

Proof� Let F �
L

j R��j�
�j � Then �j � dimR�m �F � R�m �j since one has

R��j�� R�m �� R�m ��j��

In the situation of ������ not only is the cardinality of a minimal
homogeneous system of generators unique� but also their degrees are
�xed �up to a permutation��

Graded Noether normalization� The existence of Noether normalizations
of a�ne algebras is stated in A���� Here we want to prove its graded
variant�

Theorem ������� Let k be a �eld and R a positively graded a�ne k�algebra�
Set n � dimR�
�a� The following are equivalent for homogeneous elements x�� � � � � xn	

�i� x�� � � � � xn is a homogeneous system of parameters�

�ii� R is an integral extension of k�x� � � � � � xn��
�iii� R is a �nite k�x�� � � � � xn��module�

�b� There exist homogeneous elements x�� � � � � xn satisfying one� and there�

fore all� of the conditions in �a�� Moreover� such elements are algebraically

independent over k�
�c� If R is a homogeneous k�algebra and k is in�nite� then such x�� � � � � xn
can be chosen to be of degree ��

Proof� We set S � k�x�� � � � � xn� and I � �x�� � � � � xn��
The existence of x�� � � � � xn as claimed in �b� or �c� follows immediately

from ������ and ������ if one observes that the �maximal ideal m of R
has height n� The algebraic independence of x�� � � � � xn results from �a��ii�
in conjunction with A�� because dimS � n if and only if x�� � � � � xn are
algebraically independent�

The equivalence of �a��ii� and �iii� is a general fact� R is a �nitely
generated S�algebra� That �a��ii�  �i� follows from A�� which entails
that dimR�I � dim�S�I � S� � 
� Thus I is m �primary�
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There remains the proof of �a��i� �iii�� We choose a system y�� � � � � ym
of homogeneous elements of positive degree generating R over k� If �i�
holds� then I is m �primary� and there exists an e such that z � ye�� � � � y

em
m �

I whenever deg z 	 e �deg is the degree in R�� Let M be the S�submodule
of R generated by those monomials z with deg z � e� We claim that
R � M� In fact� every r � R is a k�linear combination of monomials
ye�� � � � y

em
m � and thus it is enough that s � ye�� � � � y

em
m � M for all ei � N�

If deg s � e� then s � M for trivial reasons� So assume deg s 	 e� Then
s � I � and s �

Pn
i�� fixi with elements fi � R� Since s and the xi are

homogeneous of positive degree� the fi can be chosen homogeneous of
degree � deg s� Now write fi as a k�linear combination of monomials in
y�� � � � � ym� and apply an inductive argument�

Dehomogenization� In concluding we want to study the relation between
a graded ring R and a residue class ring A � R��x � �� where x is
a non�nilpotent homogeneous element of degree �� One calls A the
dehomogenization of R with respect to x� The relationship between R
and A is much closer than between a ring and a residue class ring in
general� A typical example for R and A arises in algebraic geometry�
R is the homogeneous coordinate ring of a projective variety� and A is
the coordinate ring of the a�ne open subvariety complementary to the
hyperplane given by the vanishing of x�

Let � � R � A be the natural homomorphism� and S � Rx� Then �
factors in a natural way through a homomorphism � � S � A� Since x is
homogeneous� the grading of R induces a grading on S �

Proposition ������� �a� The homomorphism S��X�X��� � S which is the

identity on S� and sends X to x is an isomorphism�

�b� The restriction of � to S� is an isomorphism S� �� A�

Proof� �a� This is a general fact� if T is a graded ring which has a unit
x of degree �� then T �� T��X�X����

�b� The kernel of � is the ideal �x � ��S � and therefore � induces an
isomorphism A �� S��x � ��S �� S��

It follows easily that several properties transfer from R to A� For
example� it is immediate that if R is reduced or an integral domain� then
so is A� Also see Exercises ������� ������� and �������

Exercises

������� Let R be a graded ring� All the modules in this problem are supposed to
be graded�

�a� Prove that
L

Mi has a unique grading for which the natural embeddings
Mj �

L
Mi are morphisms in M� � that is�

L
Mi is the direct sum in M� �
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�b� The direct product
Q
Mi lacks this property of the direct sum� nevertheless�

prove there exists a direct product in M�� let �
Q
Mi be the submodule of

Q
Mi

generated by the elements �xi� such that all the xi are homogeneous of degree n�
n � Z�
�c� What can be said about direct and inverse limits in M��
�d� Prove that the tensor product M � N is a graded R�module with �M � N�u
generated over Z by the tensor products x � y of homogeneous elements with
degx � deg y � u� �Choose a presentation G � F � M � � in M� with
F �

L
R��i� and G �

L
R��j ���

�e� Show the functor �HomR� � N� is left exact� and one has �HomR�
L

Mi� N� 
�
�
Q

�HomR�Mi� N��
�f� Verify that �HomR�M�N� � HomR�M�N� if M is 	nite� In general� however�
�HomR�M�N� is a proper submodule of HomR�M�N��
�g� Prove �HomR�M��i�� N��j�� 
� �HomR�M�N��i � j��

������� Let R � kt� t��� be a graded ring where R� � k is a 	eld� and t � R is
a homogeneous element of positive degree which is transcendental over k� Show
that every graded R�module is free�

������� Let k be a 	eld� S � kX� � X� � Y�� Y�� the polynomial ring with the grading
determined by degXi � � and degYi � �� and R � S��X�Y� � X�Y��� Prove that
the grade of the ideal I � �x�� x�� y� � y�� in R is �� but I does not even contain a
homogeneous R�sequence of length ��

������� Let k be a 	eld� We consider the polynomial ring R � kX� � � � � � Xn� as a
graded k�algebra with degXi � ai for i � �� � � � � n� Show that R is �local if and
only if all ai are positive or all ai are negative�

������� Let �R� m � be a Noetherian �local ring� and M a 	nite graded R�module�
Show that every permutation of a homogeneous M�sequence is an M�sequence�

������� Prove the following variants of Nakayama�s lemma�
�a� Let �R� m � be a � local ring� M a 	nite graded R�module� and N a graded
submodule� If M � N � m M� then M � N�
�b� Let R be a graded ring for which �R� � m �� is local� Suppose that M is a graded
R�module such that Mi is 	nite over R� for all i� If one has M � N � m �M for a
graded submodule N of M� then M � N�

������� Let R be a Noetherian positively graded ring� and M a 	nite graded
R�module� Prove dimM � supfdimMp � p � SuppM gradedg� Hint� consider an
ideal m which is maximal among the graded members of SuppM and use ������

������� Let R be a graded ring� x a non�nilpotent element of degree �� A �
R��x���� and � � R � A the natural homomorphism� As in ������ we set S � Rx�
and identify A and S� �
�a� One has ��I� � IS 	A for every homogeneous ideal I � R and J � ��JS 	R�
for every ideal J of A� �One calls ��I� the dehomogenization of I � and JS 	 R the
homogenization of J ��
�b� The homomorphism � induces a bijective correspondence between the set of
homogeneous ideals of R modulo which x is regular and the set of all ideals of
A�
�c� This correspondence preserves inclusions and intersections� and the properties
of being a prime� primary� or radical ideal�
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��� The Koszul complex

We introduce the Koszul complex K��x� of a sequence x � x�� � � � � xn
of elements of a ring R� Under suitable hypotheses one can determine
grade�I�M� from the homology ofK

�
�x��M where I is the ideal generated

by x� This fact and its �universal� properties make the Koszul complex an
indispensable tool�

Moreover� the Koszul complex is the paradigm of a complex with
an algebra structure� In order to emphasize this fact we introduce more
generally the Koszul complex of a linear form� A review of exterior
algebra has been included for the reader�s convenience�

Review of exterior algebra� The following is an excerpt from Bourbaki
����� Ch� III� which we recommend as a source for exterior algebra�
We hope that the details included will enable the reader to carry out
the calculations on which the theory is based� When one has to check
whether a map is well de�ned� it is usually the best strategy to exploit
the universal properties of the objects under consideration�

Let R be a ring� andM an R�module� We consider R as a graded ring
by giving it the trivial grading� Let M�i denote the i�th tensor power of
M� i�e� the tensor product M � � � � �M of i factors M for i � 
� and R
for i � 
� The tensor powers form a graded R�moduleN

M �
�M
i��

M�i�

The assignment

��x�� � � � � xm�� �y�� � � � � yn�� ��� x� � � � � � xm � y� � � � � � yn

induces an R�bilinear map M�m 
 M�n � M��m�n�� and its additive
extension to

N
M


N
M gives

N
M the structure of a graded associative

R�algebra� Henceforth �R�algebra� always means �associative R�algebra��
�Obviously

N
M is not commutative in general�� The tensor algebra is

characterized by a universal property� given an R�linear map � � M � A
where A is an R�algebra� there exists a unique R�algebra homomorphism
� �
N

M � A extending �� here we identify M and M���
The exterior algebra

V
M is the residue class algebra�

M � �
N

M��J

where J is the two�sided ideal generated by the elements x � x� x � M�
Since J is generated by homogeneous elements�

V
M inherits the structure

of a graded R�algebra� The product in
V
M is denoted x � y� In generalV

M is not commutative� it is however alternating� one has

x � y � �����degx��degy�y � x for homogeneous x� y �
�

M� and

x � x � 
 for homogeneous x� deg x odd�
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Let x�� � � � � xn be elements of M� and � a permutation of f�� � � � � ng� Then

x���� � � � � � x��n� � ����x� � � � � � xn�

here ���� is the sign of �� Furthermore x� � � � � � xn � 
 if xi � xj for
some indices i �� j� For a subset I of f�� � � � � ng we set

xI � xi� � � � � � xim when I � fi�� � � � � img with i� � � � � � im�

For subsets J � K � f�� � � � � ng with J � K � � let ��J�K� � ����i where
i is the number of elements �j� k� � J 
 K with j � k� if J � K �� �� let
��J�K� � 
� Then

xJ � xK � ��J�K�xJ�K �

Useful identities satis�ed by � are given in Exercise ������� It is clear
that the notation xI can be extended to the more general case in which
�xg�g�G is a family of elements of M indexed by a linearly ordered set G
and I is a �nite subset of G�

The i�th graded component of
V
M is denoted by

ViM and is called
the i�th exterior power of M� From the de�nition of

V
M it follows easily

that one has natural isomorphisms
V�M �� R�

V� M �� M� so we may

identify R and
V� M� M and

V� M�

Let �xg�g�G be a system of generators of M� Then
Vj M is generated

by the exterior products xI with I � G and jIj � j� In particular� if M is

generated by x�� � � � � xn� then
ViM � 
 for all i � n�

The exterior algebra is characterized by a universal property which it
inherits from that of the tensor algebra� given an R�linear map � � M � E
from M to an R�algebra E such that ��x�� � 
 for all x �M� there exists
a unique R�algebra homomorphism � �

V
M � E extending �� It follows

immediately that for every R�linear map � � M � N there exists a unique
R�algebra homomorphism

V
� for which the diagram

M
�

����� N

nat

��y ��ynatV
M

V
�

�����
V
N

commutes�
V
� is homogeneous of degree 
� and one has�

��x� � � � � � xn� � ��x�� � � � � � ��xn�

for all x�� � � � � xn � M� If � is surjective� then
V
� is also surjective� and

Ker
V
� is the ideal generated by Ker�� �This is neither obvious nor

indeed true in general� for example� if � is injective�
V

� need not be

injective�� The map
ViM �

ViN induced by
V

� is denoted by
Vi ��

Suppose that � is surjective� then
Vi � is also surjective� and from the
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description of Ker
V

� just mentioned �and the alternating property ofV
M� it follows easily that the sequence

i���
M �Ker� ��

i�
M

Vi �
���

i�
N �� 


is exact where the map on the left hand side is induced by the exterior

multiplication
Vi��M 
Ker��

ViM�

The exterior powers
ViM are also characterized by a universal prop�

erty� for every alternating i�linear map � � Mi � N� N an R�module�

there exists a unique R�linear map � �
ViM � N such that

��x�� � � � � xi� � ��x� � � � � � xi�

for all x�� � � � � xi �M�
An important property of the exterior algebra is that it commutes

with base extensions� if R � S is a homomorphism of commutative
rings� then one has a natural isomorphism

�
�

M��R S ��
�
�M �R S�

of graded S�algebras�
Let M�� M� be R�modules� On �

V
M�� � �

V
M�� one de�nes a

multiplication by setting

�x� y��x� � y�� � �����degy��degx
���x � x��� �y � y��

for all homogeneous elements x� x� �M�� y� y
� �M�� It is straightforward

to verify that �
V
M��� �

V
M�� is an alternating graded R�algebra under

this multiplication� Its degree � component is �M� � R� � �R �M�� ��
M��M�� By the universal property of the exterior algebra the natural map
M� �M� � �

V
M�� � �

V
M�� extends to an R�algebra homomorphism

� �
V
�M� �M��� �

V
M��� �

V
M���

One gets an inverse � � �
V
M�� � �

V
M�� �

V
�M� � M�� to � by

setting
� �x� y� � ���x� ����y�

where�i �
V

Mi �
V
�M��M�� is the extension of the natural embedding

Mi �M��M�� The compositions � �� and � �� are the identities on
�
V
M��� �

V
M�� and

V
�M� �M��� Therefore we have an isomorphism

�
�

M��� �
�

M�� ��
�
�M� �M��

of alternating graded R�algebras�
In what follows� the most important case for M is that of a �nite free

R�module F � Suppose e�� � � � � en is a basis of F � The elements

eI � I � f�� � � � � ng� jIj � i�
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form a basis of
Vi F� this non�trivial fact amounts to the existence of

determinants� In particular
Vi F is free of rank

�
n
i

�
� A multiplication

table of
V
F with respect to this basis in given by

eI � eJ � ��I� J�eI�J �

Suppose R is a graded ring� and M �
L

i�ZMi is a graded R�module�
Then one can endow

V
M with a unique grading such that M �

V
M

has the given grading� and
V
M is a graded algebra over R� We restrict

ourselves to the case M � F �
Ln

i��R��ai�� Let e�� � � � � en be the basis of
F corresponding to this decomposition� Then one assigns to eI the degreeP

i�I ai� and veri�es easily that the induced grading on
V
F makes

V
F a

graded �in fact� a bigraded� R�algebra�

Basic properties of the Koszul complex� Let R be a ring� L an R�module�
and f � L� R an R�linear map� The assignment

�x�� � � � � xn� ��
nX
i��

����i��f�xi�x� � � � � � bxi � � � � � xn

de�nes an alternating n�linear map Ln �
Vn��L� �By bxi we indicate that

xi is to be omitted from the exterior product�� By the universal property of

the n�th exterior power there exists an R�linear map d�n�
f �

VnL�
Vn��L

with

d�n�
f �x� � � � � � xn� �

nX
i��

����i��f�xi�x� � � � � � bxi � � � � � xn

for all x�� � � � � xn � L� The collection of the maps d�n�
f de�nes a graded

R�homomorphism

df �
�

L�
�

L

of degree ��� By a straightforward calculation one veri�es the following
identities�

df � df � 
 and df�x � y� � df�x� � y � ����degxx � df�y�

for all homogeneous x �
V
L� To say that df � df � 
 is to say that

� � � ��
n�
L

df
��

n���
L �� � � � ��

��
L

df
�� L

f
�� R �� 


is a complex� The second equation expresses that df is an antiderivation

�of degree ����
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De�nition ������ The complex above is the Koszul complex of f� denoted
by K

�
�f�� More generally� if M is an R�module� then K

�
�f�M� is the

complex K
�
�f� �R M� called the Koszul complex of f with coe�cients in

M� its di erential is denoted by df�M �

Proposition ������ Let R be a ring� L an R�module� and f � L � R an

R�linear map�
�a� The Koszul complex K

�
�f� carries the structure of an associative graded

alternating algebra� namely that of
V
L�

�b� Its di�erential df is an antiderivation of degree ���
�c� For every R�module M the complex K

�
�f�M� is a K

�
�f��module in a

natural way�

�d� One has df�M�x � y� � df�x� � y�����deg xx � df�M�y� for all homogeneous
elements x of K��f� and all elements y � K��f�M��

Proof� �a� and �b� are part of the discussion preceding the proposition�
�c� is obvious� if A is an R�algebra� then A�R M is an A�module for

every R�module M�
�d� It is enough to verify the equation for elements y � w � z with

w � K��f�� z � M� Then df�M�x � w� z� � df�M��x�w�� z� � df�x�w�� z�
and the rest follows from the fact that df is an antiderivation�

For a subset S of K��f� and a subset U of K��f�M� let S �U denote the
R�submodule of K��f�M� generated by the products s � u� s � S � u � U�

Set

Z��f� � Ker df � Z��f�M� �Ker df�M �

B��f� � Im df� B��f�M� � Im df�M �

De�nition ������ The homology H��f� � Z��f��B��f� is the Koszul homo�
logy of f� For every R�module M the homology Z��f�M��B��f�M� is
denoted by H��f�M� and called theKoszul homology of f with coe�cients

in M�

From ������d� one easily derives the following relations�

Z
�
�f� � Z

�
�f�M� � Z

�
�f�M�� Z

�
�f� � B

�
�f�M� � B

�
�f�M��

B
�
�f� � Z

�
�f�M� � B

�
�f�M��

We have a natural isomorphism K��f� �� K��f� R�� So the �rst relation
entails that Z

�
�f� is a graded R�subalgebra of K

�
�f�� and the second and

third show that B
�
�f� is a two�sided ideal in Z

�
�f��

Proposition ����	� Let R be a ring� L an R�module� and f � L � R an

R�linear map�
�a� The Koszul homology H��f� carries the structure of an associative

graded alternating R�algebra�
�b� For every R�module M the homology H��f�M� is an H��f��module in a

natural way�
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Proof� �a� That H
�
�f� is an R�algebra follows from the discussion pre�

ceding the proposition� The asserted properties are inherited by quotients
of graded R�subalgebras of K

�
�f� modulo graded ideals�

�b� The �rst of the relations above shows that Z
�
�f�M� is a Z

�
�f��

module� the second says that B
�
�f�M� is a Z

�
�f��submodule� and the

third implies that Z
�
�f�M��B

�
�f�M� is annihilated by B

�
�f��

It results immediately from ����� that H��f�M� is an R�I�module
where I � Im f� This will be stated in ����� where it follows from a
somewhat stronger statement�

It is useful also to introduce the Koszul cohomology �with coe�cients

in M�� we set

K��f� � HomR�K��f�� R�� K��f�M� �HomR�K��f��M��

H��f� � H��K��f��� H��f�M� �H��K��f�M���

Let I � Im f � R� then� by construction� H��f� � R�I and H��f�M� �
M�IM�

Proposition ������ Let R be a ring� L an R�module� and f � L � R an

R�linear map� Set I � Im f�
�a� For every a � I multiplication by a on K��f�� K��f�M�� K��f�� K��f�M�
is null�homotopic�

�b� In particular I annihilates H��f�� H��f�M�� H��f�� H��f�M��
�c� If I � R� then the complexes K��f�� K��f�M�� K��f�� K��f�M� are

null�homotopic� In particular their �co�homology vanishes�

Proof� We choose x � L with a � f�x�� Let �a denote the multiplication
by a on K

�
�f�� and �x the left multiplication by x on K

�
�f�� Then

�a � df � �x � �x � df as is easily veri�ed�
Thus multiplication by a is null�homotopic on K

�
�f�� Of course �a�M

and HomR��a�M� are the multiplications by a on K
�
�f�M� and K��f�M��

and the rest of �a� follows immediately� Part �b� is a general fact� if � is a
null�homotopic complex homomorphism� then the map induced by � on
homology is zero� For �c� we choose a � �� and apply �a� and �b��

Let L� and L� be R�modules� and f� � L� � R� f� � L� � R be R�
linear maps� Then f� and f� induce a linear form f � L� � L� � R by
f�x� � x�� � f��x�� � f��x���

Proposition ������With the notation just introduced� one has an isomorphism

of complexes K��f���R K��f�� �� K��f��

Proof� The graded R�algebras underlying K��f�� � K��f�� and K��f��
namely �

V
L�� � �

V
L�� and

V
L� are isomorphic� as noted above� We

may identify them� The di erential df is an antiderivation on
V
L which

on the degree � graded component L � L� � L� coincides with df� � df� �
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An antiderivation on the exterior algebra
V

L is uniquely determined
by its values on L� Therefore it is enough to check that df� � df� is
an antiderivation too� The straightforward veri�cation of this fact is
left as an exercise for the reader� One has of course to remember the
de�nition of tensor product of complexes� the n�th graded component of

K
�
�f��� K

�
�f�� is

Ln
i��

Vi L� �
Vn�iL�� and

df� � df��x� y� � df��x�� y � ����ix� df��y�

for x� y �
Vi L� �

Vn�iL��

The Koszul complex �commutes� with ring extensions� and so does
Koszul homology if the extension is �at�

Proposition ������ Let R be a ring� L an R�module� and f � L � R an

R�linear map� Suppose � � R � S is a ring homomorphism�

�a� Then one has a natural isomorphism K��f��R S �� K��f � S��
�b� Moreover� if � is �at� then H

�
�f�M�� S �� H

�
�f � S�M � S� for every

R�module M�

Proof� There is a natural isomorphism �
V
L�� S ��

V
�L� S�� and df � S

and df�S are antiderivations which coincide in degree �� So we can use
the same argument as in the previous demonstration� This proves �a�� and
�b� follows immediately since H��C� � S� � H��C�� � S for an arbitrary
complex C� over R if S is R��at�

Suppose L and L� are R�modules with linear forms f � L � R and
f� � L� � R� Every R�homomorphism � � L� L� extends to a homomor�
phism

V
� �
V
L�

V
L� of R�algebras� as discussed above� If f � f� ���

then
V

� is a homomorphism of Koszul complexes�

Proposition ������ With the notation just introduced� if f � f� � �� thenV
� � K��f�� K��f�� is a complex homomorphism�

The Koszul complex of a sequence� Let L be a �nite free R�module with
basis e�� � � � � en� Then a linear form f on L is uniquely determined by the
values xi � f�ei�� i � �� � � � � n� Conversely� given a sequence x � x�� � � � � xn�
there exists a linear form f on L with f�ei� � xi� We set

K��x� � K��f��

and the rest of the notation is to be modi�ed accordingly� Henceforth
we shall only consider Koszul complexes K��x�� Since f is just the �direct
sum� of the linear forms fi � R � R� fi��� � xi� ����� specializes to the
isomorphism

K��x� �� K��x��� K��xn� �� K��x��� � � � � K��xn�
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where x� � x�� � � � � xn��� Furthermore one should note that� by ������ K�
�x�

is essentially invariant under a permutation of x�

We set I � �x�� Let F
�
be a free resolution of R�I � As H��x� � R�I �

there exists a complex homomorphism � � K
�
�x�� F

�
lifting the identity

on R�I� note that � is unique up to homotopy�

Proposition ������ Let R be a ring� x � x�� � � � � xn a sequence in R� and
I � �x�� For all i there exist natural homomorphisms

Hi�x�M�� TorRi �R�I�M� and ExtiR�R�I�M�� H i�x�M��

Proof� The map � introduced above yields complex homomorphisms
��M � K��f�M�� F��M and HomR���M� � HomR�F��M�� K��f�M��

Let L be a �nite free R�module with basis e�� � � � � en� Then e��� � ��en is
a basis of

VnL� and there exists a unique R�isomorphism �n �
Vn L� R

with �n�e� � � � � � en� � �� �An isomorphism
Vn L �� R is usually called

an orientation on L�� We de�ne �i �
ViL� �

Vn�iL�� by setting

��i�x���y� � �n�x � y� for x �
i�
L� y �

n�i�
L�

�This causes no ambiguity for i � n if we identify R and R� under the
natural isomorphism�� It follows immediately that

��i�eI���eJ� �

�

 for I � J �� ��
��I� J� for I � J � ��

In this formula I and J are multi�indices as introduced above� It shows
that �i is an isomorphism� If we denote the dual basis of �eI � by �e

�
I �� the

formula says that

�i�eI� � ��I� �I�e��I

where �I � f�� � � � � ng n I � Thus �i is an isomorphism� We consider the
diagram

K
�
�x� � 
 ��

n�
L

d
��

n���
L

d
�� � � �

d
�� L

d
�� R �� 
��y	n

��y	n��

��y	�

��y	�

K��x� � 
 �� R
d�

�� L�
d�

�� � � �
d�

�� �
n���

L��
d�

�� �
n�
L�� �� 


with d � dx and d� � �dx���
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Proposition �����
� Let x � x�� � � � � xn be a sequence in a ring R�
�a� With the notation just introduced� one has �i�� �di � ����i��d�n�i����i

for all i�
�b� The complexes K��x� and K��x� � �K��x��� are isomorphic �we say that

K
�
�x� is self�dual��

�c� More generally� for every R�module M the complexes K��x�M� and

K��x�M� are isomorphic� and
�d� Hi�x�M� �� Hn�i�x�M� for i � 
� � � � � n�

Proof� The veri�cation of �a� is left as an exercise for the reader �������
is helpful�� We observed above that �i is an isomorphism so that the
maps �i � ����i�i������i de�ne an isomorphism K��x� �� K��x� � �K��x����

For �c� we note that there is a natural homomorphism N� �M �
HomR�N�M� for all R�modules N� M� If N is �nite and free� this
homomorphism is an isomorphism� and it induces an isomorphism
K��x� � M �� HomR�K��x��M�� Now one uses �b�� Part �d� is a triv�
ial consequence of �c��

The reader may have noticed that for a formally correct formulation
of �����
�b� one would �rst have to convert the cochain complex K��x�
into a chain complex C� �by setting Ci � K�i�x�� and then state that
K��x� �� C���n�� A similar manipulation would be necessary for �c��

The Koszul complex is an exact functor�

Proposition ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and

� U �M � N � 
 an exact sequence of R�modules� Then the induced

sequence


 �� K��x� U� �� K��x�M� �� K��x� N� �� 


is an exact sequence of complexes� In particular one has a long exact

sequence

� � � �� Hi�x� U� �� Hi�x�M� �� Hi�x� N� �� Hi���x� U� �� � � �

of homology modules�

Proof� The components of K
�
�x� are free� hence �at R�modules�

In place of an R�moduleM one can more generally consider a complex
C

�
� and then de�ne the Koszul homology of C

�
to be the homology of

K��x�� C� etc� We consider this construction only for the special case in
which x � x�

Proposition ������� Let R be a ring� and x � R�
�a� For every complex C� of R�modules one has an exact sequence


 �� C� �� C� �K��x� �� C����� �� 
�
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�b� The induced long exact sequence of homology is

� � � �� Hi�C�
� �� Hi�C�

� K
�
�x�� �� Hi���C�

�
�x
�� Hi���C�

� �� � � �

�c� Moreover� if x is C
�
�regular� then there is an isomorphism

H
�
�C

�
� K

�
�x�� �� H

�
�C

�
�xC

�
��

�According to our convention for graded modules C
�
���� is just the

complex C
�
with all degrees increased by ���

Proof� The complexK
�
�x� is simply 
 �� R

x
�� R �� 
� The i�th graded

component of K
�
�x�� C

�
is therefore �R � Ci�� �R � Ci��� � Ci � Ci���

So we have in each degree an exact sequence


 �� Ci

�
�� Ci � Ci��

�
�� Ci�� �� 
�

where 	 and � are the natural embedding and projection� If  is the
di erential of C�� then the di erential d � Ci�Ci�� � Ci���Ci�� is given
by the matrix �

 ����i��x

 

�
according to the de�nition of tensor products of complexes� Now �a� is
obvious�

For �b� one looks up the de�nition of connecting homomorphism� It
is de�ned by the following chain of assignments starting from z � Ci��

with �z� � 
�

z
���

��� �
� z�
d
��� �����i��xz� 
�

���

��� ����i��xz�

So the connecting homomorphism Hi�C������ � Hi���C�� � Hi���C�� is
multiplication by ����i��x�

�c� The natural maps Ci � Ci�� � Ci � Ci�xCi constitute a complex
homomorphism C��K��x�� C��xC�� We claim that the associated map
of homology is an isomorphism� In fact� let z � Ci such that �z� �
xCi��� Then there exists z� � Ci�� with �z� � xz�� and d�z� ����iz�� �
�
� ����i�z���� Next one has x�z�� � ��z�� � 
� so �z�� � 
 since
multiplication by x is injective on C� � �z� ����iz�� is a cycle mapped to the
cycle �z � Ci�xCi� That the map of homology is injective can be veri�ed
similarly�

Corollary ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and M
an R�module�
�a� Set x� � x�� � � � � xn��� Then one has an exact sequence

� � �
�xn
��� Hi�x

��M�� Hi�x�M�� Hi���x
��M�

�xn
��� Hi���x

��M�� � � �

�b� Let p � n� x� � x�� � � � � xp� and x�� � xp��� � � � � xn� If x� is weakly

M�regular� then one has an isomorphism H��x�M� �� H��x���M�x�M��
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Proof� Part �a� is a special case of �������b� when we take C
�
� K

�
�x��M�

and use the isomorphisms

K
�
�x��M�� K

�
�xn� �� K

�
�x���M � K

�
�xn� �� K

�
�x�M��

For part �b� it is enough to do the case p � � from which the general
case follows by induction� Next we may permute x to the sequence
x�� � � � � xn� x�� and then the assertion follows from �������c��

It is an immediate consequence of ������ that Hi�x�M� � 
 for i �
n� p� �� � � � � n if �the �rst� p elements of x�� � � � � xn form an M�sequence�
As we shall see in ������� there is a somewhat stronger vanishing theorem�

Corollary �����	� Let R be a ring� x a sequence in R� and M an R�module�
�a� If x is an M�sequence� then K��x�M� is acyclic�
�b� If x is an R�sequence� then K��x� is a free resolution of R��x��

Remark ������� Let R be a graded ring and x � x�� � � � � xn a sequence
of homogeneous elements� Then x induces a linear form of degree 
 on
F �

Ln
i��R�� deg xi�� The Koszul complex K��x� is a graded complex

with a di erential of degree 
 if we give
V

F the grading discussed above�
In particular one has

Vn F �� R��
Pn

i�� deg xi��

The Koszul complex and grade� The main importance of the Koszul
complex stems from the fact that H��x�M� measures grade�I�M� if M is
a �nite module over a Noetherian ring R and I � �x�� This will be made
precise in �����	� The �niteness assumption just stated will be necessary
to establish the existence of an M�sequence in I from the vanishing of
certain homology modules Hi�x�M�� The converse holds without such an
assumption�

Theorem ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and M
an R�module� If I � �x� contains a weak M�sequence y � y�� � � � � ym� then

Hn���i�x�M� � 
 for i � �� � � � � m� and

Hn�m�x�M� �� HomR�R�I�M�yM� �� ExtmR�R�I�M��

Proof� The last isomorphism is given by Lemma ������ The remaining
claims are proved by induction on m� For m � 
 we must show that

Hn�x�M� �� HomR�R�I�M��

In fact� by �����
 one has Hn�x�M� �� H��x�M�� and the latter is naturally
isomorphic with HomR�R�I�M�� as follows from the exactness of Rn �
R � R�I � 
 and the left exactness of HomR� �M�� Explicitly� if we
identify

Vn Rn �M and R �M �� M via an orientation �n of R
n� then

Hn�x�M� is just the submodule fy �M � Iy � 
g �� HomR�R�I�M� of M�
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Let m 	 �� Then we set �M � M�y�M� The exact sequence


 ��M
y�
��M �� �M �� 


induces an exact sequence

� � � �� Hi�x�M�
y�
�� Hi�x�M� �� Hi�x� �M� �� Hi���x�M�

y�
�� � � � �

see ������� Since� by ������ y� annihilates Hi�x�M� for all i� this exact
sequence breaks up into exact sequences


 �� Hi�x�M� �� Hi�x� �M� �� Hi���x�M� �� 
�

It only remains to apply the induction hypothesis�

Theorem ������� Let R be a Noetherian ring� and M a �nite R�module�
Suppose I is an ideal in R generated by x � x�� � � � � xn�
�a� All the modules Hi�x�M�� i � 
� � � � � n� vanish if and only if M � IM�

�b� Suppose that Hi�x�M� �� 
 for some i� and let

h � maxfi � Hi�x�M� �� 
g�

Then every maximal M�sequence in I has length g � n�h� in other words�

grade�I�M� � n� h�

Proof� �a� The implication �� is trivial� M � IM � H��x�M� ��
M�IM � 
� For the converse choose a prime ideal p � By ����	 and
the �atness of localization one has �Hi�x�M��p

�� Hi�x�Mp � where x is
considered a sequence in Rp on the right hand side� If I �� p � then
Hi�x�Mp � � 
 by ������ If I � p � then Mp � 
 by Nakayama�s lemma�
and again we have Hi�x�Mp � � 
�

�b� We give two proofs� �A third proof for the caseM � R is indicated
in Exercise �����
��

�i� By part �a� we have M �� IM� Let y be a maximal M�sequence in
I� then y has length g � grade�I�M�� It follows immediately from ������
and ����� that Hi�x�M� � 
 for i � n � g � �� � � � � n and Hn�g�x�M� ��
ExtgR�R�I�M� �� 
�

�ii� Let y be a maximal M�sequence in I � and suppose that y has
length g� Then Hi�x�M� � 
 for i � n � g � �� � � � � n by ������� and
furthermore Hn�g�x�M� �� HomR�R�I�M�yM�� Since I consists of zero�
divisors of M�yM� this module is non�zero� see ������

The second proof just given is independent of the �homological�
Lemma ������ and shows again that all maximal M�sequences in I have
the same length� Therefore one could build the theory of grade upon
�����	�

Corollary ������ can be reversed for local rings� We need the following
lemma�
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Lemma ������� Let �R� m � be a Noetherian local ring� M a �nite R�module�
and x � x�� � � � � xn a sequence in m � Set x� � x�� � � � � xn��� If Hi�x�M� � 
�
then Hi�x��M� � 
�

Proof� By ����� we have K
�
�x� �� K

�
�x�� � K

�
�xn�� So ������ gives us an

exact sequence

Hi�x
��M�

�xn
��� Hi�x

��M� �� Hi�x�M��

These modules are �nite� If Hi�x�M� � 
� then multiplication by xn
on Hi�x��M� is surjective� whence Hi�x��M� � 
 by Nakayama�s lemma�

Corollary ������� Let �R� m � be a Noetherian local ring� M �� 
 a �nite R�
module� and I � m an ideal generated by x � x�� � � � � xn� Then the following
are equivalent	

�a� grade�I�M� � n�
�b� Hi�x�M� � 
 for i � 
�
�c� H��x�M� � 
�
�d� x is an M�sequence�

Proof� The equivalence of �a� and �b� follows from �����	� and �b� �c�
and �d�  �a� are trivial� The proof of �c�  �d� is an easy induction
based on ������ and �������

We saw in ����� that under the hypotheses of ����� every permutation
of an M�sequence is again an M�sequence� Since� by ������ the Koszul
complexes of x and every permutation of x are isomorphic� ����� yields
another proof of ������

Remark �����
� For an arbitrary ring R and an arbitrary module M it
follows from H��x�M� � 
 that x is M�quasi�regular� provided xM �� M�
see ����� Ch� X� x� Th�eor!eme ��

The Koszul complex as an invariant� Let R be a Noetherian local ring�
I an ideal� and x � x�� � � � � xn and y � y�� � � � � yn minimal systems of
generators of I � Then any n
 n matrix A � �apq� such that

xi �
nX

j��

ajiyj � i � �� � � � � n�

is invertible since the residue classes of x and y are bases of I�m I
over R�m � If f and f� are the linear forms on Rn de�ned by x and y

respectively� then there exists an R�automorphism � of Rn �de�ned by A�
such that f � f� � �� and it follows from ����� that the Koszul complexes
K��x� and K��y� are isomorphic� This obviously fails if x and y have
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di erent lengths� Nevertheless the Koszul complexes K
�
�x� and K

�
�y� are

closely related� The following proposition shows how to compare each of
them to K

�
�x� y��

Proposition ������� Let R be a ring� x � x�� � � � � xn a sequence in R� and
x� � x�� � � � � xn� xn��� � � � � xm with xn��� � � � � xm � �x�� Then

K
�
�x�� �� K

�
�x��

�
Rm�n

as graded R�algebras� here
V

Rm�n is considered a complex with zero dif�

ferential� In particular� for every R�module M one has

H��x
��M� �� H��x�M��

�
Rm�n�

Proof� Since
V
Rk�� ��

V
Rk �

V
R it su�ces to treat the case m � n� ��

Write xn�� �
Pn

j�� ajxj � Let f be the linear form on Rn�� de�ned by x�

and f� the linear form de�ned by x�� � x� 
� The assignment ei �� ei for
i � �� � � � � n and en�� ��

Pn
j�� ajej � en�� induces an automorphism � of

Rn�� such that f � f� � �� As above one concludes that K��x�� �� K��x����
in other words� there is no restriction in assuming that xn�� � 
�

In the special situation we have reached� the �rst claim is a trivial
consequence of ������ The second claim is easily veri�ed�

Corollary ������� Let R be a ring� I a �nitely generated ideal� and M an R�
module� Suppose x � x�� � � � � xm and y � y�� � � � � yn are systems of generators
of I � and let g � N� Then Hi�x�M� � 
 for i � m� g��� � � � � m if and only

if Hj �y�M� � 
 for j � n� g � �� � � � � n�

The corollary follows easily from ������� Note that for a �nite module
M over a Noetherian ring R it just restates part of �����	� However�
when we de�ne the grade of a �nitely generated ideal with respect to an
arbitrary module in Chapter � ������ will be an essential result�

Exercises

������� Let I � J � I� � I� � I� be 	nite subsets of N� Suppose I � fi� � � � � � ipg�
J � fip��� � � � � ip�qg� the elements given in ascending order�

�a� Suppose I 	 J � � and let � be the permutation of I � J given by ��jk� � ik
where I � J � fj� � � � � � jp�qg is given in ascending order� Prove 	�I� J� � 	��� �
����pq	�J� I��

�b� Deduce that 	�I� � I��	�I� � I� � I�� � 	�I� � I� � I��	�I� � I���

������� Let R be a local ring� and M a 	nite R�module�

�a� Show 
�
Vi

M� �
�
��M�
i

�
for all i �N�

�b� Let � � i � 
�M�� Prove that M is free if and only if
Vi

M is free�
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������� �a� Let R be a ring� and M an R�module of rank r� Prove rank
ViM �

�
r
i

�
for all i �N�
�b� Show the analogue for a homomorphism � � F � G of 	nite free modules
over a Noetherian ring�
Hint for �b�� One may assume that R is local and of depth �� Then Im� is a free
direct summand of G�

������� Let R be a Noetherian local ring� F a 	nite free R�module� U � F a

submodule of rank r and � the natural embedding� Show that
Vj � is injective if

and only if
Vj U is torsion�free� In particular

Vj U is non�zero� but
Vj � is not

injective for rankU � j � 
�U��

�����	� Let R be a ring� and M an R�module� For f� � � � � � fp � M� let ��f�� � � � � fp�
be the restriction of df� � � � � � dfp to

Vp M� Show that � induces an R�linear map

� �
Vp�M�� � �

VpM�� � Prove that � is an isomorphism� if M is 	nite and free�

�����
� Let L� be an R�module� x � L�� and  the right multiplication by x onV
L�� Prove

eK��x� � � ��� R
�

��� L�
�
���

��
L�

�
��� � � �

is a complex�

Suppose that L� � �Rn�� and f � L�� Then the complexes eK��f� and K��f�
are isomorphic� �Since K��f� 
� K��f� by ������� one can introduce the Koszul

complex via eK��f� if one is satis	ed with having it only for linear forms on 	nite
free modules��

������� Let R be a Noetherian ring� x � �x�� � � � � xn� an element of Rn� M � Rn�Rx�
and I the ideal generated by x�� � � � � xn� Prove that grade I � k if and only if

� ��� R
�
��� Rn

�
���

��
Rn

�
��� � � �

�
���

k�
Rn ��� �

is a free resolution of
Vk M� �The map  is right multiplication by x as in �������

one always has
Vk M 
� �

Vk Rn���
Vk�� Rn���

������� Let x � x�� � � � � xn be a sequence in R� and denote by �i the di�erentialVi Rn �
Vi�� Rn in the Koszul complex of x� Let ri �

�
n��
i��

�
be the expected rank

of �i�
�a� Show that Rad Iri��i� � Rad�x��
�b� Derive ������ for M � R from the Buchsbaum�Eisenbud acyclicity criterion�

������� Let R be a Noetherian ring� and M �� � a 	nite R�module� Let I be an
ideal� x � x� � � � � � xn a system of generators of I � and g � grade�I�M�� Show
Hi�x�M� � � for i � n� g � �� � � � � n� and Hi�x� M� �� � for i � �� � � � � n � g� �This
property is called the rigidity of the Koszul complex�� Hint� Reduce to the local
case and use ������ for an inductive argument�

������� Let �R� m � be a Noetherian local ring� I � m an ideal� x � m � and M a
	nite R�module� Prove grade�I � �x�� M� � grade�I�M� � ��

������� Let �R� m � be a �local ring� and p �� m be a prime ideal such that p � � m �
Choose a � p with p � m � �a� �see the proof of ����
�� Then a is R�regular
�why��� If F� is a graded minimal free resolution of R�m � show that �F��K��a��p

is a minimal free resolution of Rp �p Rp �
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Notes

After the foundations of homological algebra had been laid by Cartan and
Eilenberg ��	�� it invaded commutative ring theory through the epochal
work of Auslander and Buchsbaum ��	�� ����� ���� Rees ��
��� and Serre
������ These works cover the contents of Sections �������� and much more�
to be developed in Chapters ���� Previously commutative algebra had
been ideal theory �under which title Krull �in German� and Northcott
published in�uential monographs�� now modules were considered the
objects that give structure to a ring� An intermediate position was taken
by Gr�obner�s rather �modern� treatise ������ but it introduced modules
only as �Vektormoduln�� i�e� submodules of free modules over polynomial
rings�

Proposition������ and several theorems in Chapters � and � resemble a
very successful method in topology� namely to relate the properties of the
total space of a �bration to those of the base and the �bre� The algebraic
analogue of this principle was studied systematically by Grothendieck
����� �which� by the way� contains various results on regular sequences
not reproduced by us��

Torsion�freeness� re�exivity� and their �higher� analogues are treated
in the monograph ���� of Auslander and Bridger� see Bruns and Vetter
���� for a compact presentation� The de�nition of rank is taken from
Scheja and Storch ������

The very useful acyclicity criterion of Buchsbaum and Eisenbud ap�
peared in ����� It is closely related to Peskine and Szpiro�s equally
important �lemme d�acyclicit�e� ��	� which we reproduced in Exercise
�������

The notion of perfect ideal or module appeared in Rees ��
��� It is an
abstract version of Gr�obner�s ����� which in turn goes back to Macaulay
������ A special form of the Hilbert�Burch theorem was proved by
Hilbert ��	�� �and had been previously conjectured by Meyer ��	���
whereas Burch ���� provided the �rst �modern� version� The theorem has
been re�proved several times� we have essentially reproduced the version
of Buchsbaum and Eisenbud ���� who generalized the theorem to a
factorization theorem for the ideals Iri��i� appearing in their acyclicity
criterion�

Because of their importance for algebraic geometry� graded rings have
been a standard topic in commutative algebra� Their enumerative theory
will be developed in Chapter �� Rees ��
�� ascribes Theorem ����� to
Samuel� Theorem ����� is due to Matijevic ���	�� and ���� was given
by Matijevic and Roberts ������ �The proof of ���� has been drawn
from Fossum and Foxby ��
� and Goto and Watanabe ������� These
theorems are part of a programme aiming at characterizations of graded
rings which only use localizations with respect to graded prime ideals�
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We shall reproduce the pertinent results in the exercises of Chapters �
and ��

The Koszul complex ���
� appeared for the �rst time in Hilbert ��	���
after having proved his syzygy theorem �see ������� Hilbert determined the
free resolution of the k�X�� � � � � Xn��module k� That the Koszul complex
is an utterly useful construction even when it is not acyclic seems to
have been recognized by Auslander and Buchsbaum ��� and Serre
������ Auslander and Buchsbaum established the main results of Section
��� whereas Serre found the connection with multiplicity theory� see
Chapter ��
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In this chapter we introduce the class of Cohen�Macaulay rings and two
subclasses� the regular rings and the complete intersections� The de�nition
of Cohen�Macaulay ring is su�ciently general to allow a wealth of
examples in algebraic geometry� invariant theory� and combinatorics� On
the other hand it is su�ciently strict to admit a rich theory� in the
words of Hochster� �life is really worth living� in a Cohen�Macaulay ring
������� p� ��	�� The notion of Cohen�Macaulay ring is a workhorse of
commutative algebra�

Regular local rings are abstract versions of polynomial or power series
rings over a �eld� The fascination of their theory stems from a unique
interplay of homological algebra and arithmetic� Complete intersections
arise as residue class rings of regular rings modulo regular sequences� and�
in a sense� are the best singular rings� Their exploration is dominated by
methods related to the Koszul complex�

��� Cohen�Macaulay rings and modules

Let R be a Noetherian local ring� andM a �nite module� If the �algebraic�
invariant depthM equals the �geometric� invariant dimM� then M is
called a Cohen�Macaulay module�

De�nition ������ Let R be a Noetherian local ring� A �nite R�module
M �� 
 is a Cohen�Macaulay module if depthM � dimM� If R itself
is a Cohen�Macaulay module� then it is called a Cohen�Macaulay ring�
A maximal Cohen�Macaulay module is a Cohen�Macaulay module M
such that dimM � dimR�

In general� if R is an arbitrary Noetherian ring� then M is a Cohen�

Macaulay module if Mm is a Cohen�Macaulay module for all maximal
ideals m � SuppM� �So we consider the zero module to be Cohen�
Macaulay�� However� for M to be a maximal Cohen�Macaulay module
we require that Mm is such an Rm �module for each maximal ideal m of
R� As in the local case� R is a Cohen�Macaulay ring if it is a Cohen�
Macaulay module�

If I is an ideal contained in AnnM� then it is irrelevant for the
Cohen�Macaulay property whether we consider M as an R�module or

�	
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an R�I�module� In particular� if R is local and M a Cohen�Macaulay
module� then M is a maximal Cohen�Macaulay module over R�AnnM�

The next theorem exhibits the fact that for a Cohen�Macaulaymodule
the grade of an arbitrary ideal is given by its �codimension��

Theorem ������ Let �R� m � be a Noetherian local ring� and M �� 
 a

Cohen�Macaulay R�module� Then

�a� dimR�p � depthM for all p � AssM�

�b� grade�I�M� � dimM � dimM�IM for all ideals I � m �

�c� x � x�� � � � � xr is an M�sequence if and only if dimM�xM � dimM� r�

�d� x is an M�sequence if and only if it is part of a system of parameters

of M�

Proof� �a� We saw depthM � dimR�p in ������� and dimR�p � dimM
holds since AssM � SuppM�

�b� If grade�I�M� � 
� then there exists p � AssM with I � p �
therefore dimM�IM � dimM follows from �a�� If grade�I�M� � 
�
then we choose x � I regular on M� One has grade�I�M�xM� �
grade�I�M���� depthM�xM � depthM��� and dimM�xM � dimM��
so that induction completes the argument�

�c� It su�ces now to quote ������
�d� This is just a reformulation of �c��

The Cohen�Macaulay property is stable under specialization and
localization�

Theorem ������ Let R be a Noetherian ring� and M a �nite R�module�
�a� Suppose x is an M�sequence� If M is a Cohen�Macaulay module� then

M�xM is Cohen�Macaulay �over R or R��x��� The converse holds if R is

local�

�b� Suppose that M is Cohen�Macaulay� Then for every multiplicatively

closed set S in R the localized module MS is also Cohen�Macaulay� In

particular� Mp is Cohen�Macaulay for every p � SpecR� If Mp �� 
�
then depthMp � grade�p �M�� if in addition R is local� then dimM �
dimMp � dimM�p M�

Proof� �a� By the de�nition of Cohen�Macaulay module one may ev�
idently assume that R is local� Let n be the length of x� Then
dimM�xM � dimM � n by ������ and depthM�xM � depthM � n
by �����
�

�b� Let q be a maximal ideal of RS � The ideal q is the extension of
a prime ideal p in R� and so �RS �q

�� Rp � Let m be a maximal ideal of
R containing p � Then Rp is a localization of the Cohen�Macaulay local
ring Rm � So we may again assume that R is local�

There is nothing to prove if Mp � 
� When Mp �� 
� we use induction
on depthMp � If depthMp � 
� then p � AssM� and p is a minimal
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prime of SuppM by ������ therefore dimMp � 
� The same argument
shows that p cannot be contained in any q � AssM if depthMp � 
�
So p contains an M�regular element x� and the induction hypothesis
applies to M�xM� It follows easily that Mp is Cohen�Macaulay and
that depthMp � grade�p �M�� The second equation results from that and
������

Corollary ����	� Let R be a Cohen�Macaulay ring� and I �� R an ideal�

Then grade I � height I � and if R is local� height I � dimR�I � dimR�

Proof� One has heightI � minfdimRp � p � V �I�g and furthermore
grade I � minfdepthRp � p � V �I�g� Theorem ����� yields dimRp �
depthRp for all p � SpecR� This proves the �rst equation� and the
second follows from that and ������

Let k be a �eld� We shall see in the next section that every �nite
module over a polynomial ring k�X�� � � � � Xn� or a power series ring
k��X�� � � � � Xn�� has �nite projective dimension� Furthermore these rings
are Cohen�Macaulay as will be shown below� This explains why the
following theorem is a very e ective Cohen�Macaulay criterion�

Theorem ������ Let R be a Cohen�Macaulay ring� and M a �nite R�module
of �nite projective dimension�

�a� If M is perfect� then it is a Cohen�Macaulay module�

�b� The converse holds when R is local�

Proof� Let M be perfect and p � SuppM� Then Mp is a perfect module
as shown in the proof of ������� So we may assume that R is local� The
Auslander�Buchsbaum formula gives proj dimM � dimR�depthM� and
����� yields gradeM � dimR � dimM� Thus depthM � dimM if and
only if proj dimM � gradeM�

One says that an ideal I is unmixed if I has no embedded prime
divisors or� in modern language� if the associated prime ideals of R�I are
the minimal prime ideals of I � Macaulay showed in ��� that an ideal
I � �x�� � � � � xn� of height n in a polynomial ring over a �eld is unmixed�
and for regular local rings this was proved by Cohen in ���� �An n�
generated ideal of height n is said to be of the principal class�� These facts
and the following theorem explain the nomenclature �Cohen�Macaulay��

Theorem ������ A Noetherian ring R is Cohen�Macaulay if and only if

every ideal I generated by height I elements is unmixed�

Proof� ��� Suppose I � �x�� x � x�� � � � � xn� and let p � q � AssR�I � p � q �
Then there is a maximal ideal m with q � m � and p Rm � q Rm � Ass�Rm �Im ��
If height I � n� then dim�Rm �Im � � dimRm � n� and x is an Rm �sequence
by ������ Therefore Rm �Im is Cohen�Macaulay� whence p Rm � q Rm

�again by ������� and so p � q �
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���� Let J � R be an arbitrary ideal� say heightJ � n� Then
there exist x�� � � � � xn � J with height�x�� � � � � xi� � i for all i � 
� � � � � n
�see A���� It is impossible for xi�� to be contained in a minimal prime
ideal of �x�� � � � � xi�� By hypothesis it therefore is an �R��x�� � � � � xi���
regular element� So x�� � � � � xn is an R�sequence� We have shown that
gradeJ � heightJ for every proper ideal J of R� Then R is certainly
Cohen�Macaulay�

Flat extensions of Cohen�Macaulay rings and modules� The behaviour of
depth under �at local extensions was studied in Section ���� That makes
it easy to prove an analogous theorem for the Cohen�Macaulay property�

Theorem ������ Let � � �R� m �� �S� n � be a homomorphism of Noetherian

local rings� Suppose M is a �nite R�module and N is an R��at �nite S�
module� Then M �R N is a Cohen�Macaulay S�module if and only if M is

Cohen�Macaulay over R and N�m N is Cohen�Macaulay over S �

In fact� according to ������ we have depthS M � N � depthR M �
depthS N�m N� Since depth is bounded above by dimension� the theorem
follows from the analogous equation for dimension� see A����

Corollary ������ Let �R� m � be a Noetherian local ring� M a �nite R�

module� and �M its m �adic completion�

�a� Then dimR M � dim 	R
�M and depthR M � depth 	R

�M�

�b� M is Cohen�Macaulay if and only if �M is Cohen�Macaulay�

Proof� The extension R � �R is local and �at� and �M � M�R
�R since M

is �nite�

One can of course use more direct arguments in order to prove the
previous corollary� Similarly there is a more �elementary� approach to the
following theorem� see for example ������

Theorem ������ Let R be a Noetherian ring� M a �nite R�module� and S �
R�X�� � � � � Xn� or S � R��X�� � � � � Xn��� Then M � S is a Cohen�Macaulay

S�module if and only if M is a Cohen�Macaulay module�

Proof� Since the indeterminates can be adjoined successively� we may
assume n � �� X � X�� The �only if� part is easy� in both cases X is
�M � S��regular� and R �� S��X�� M �� �M � S��X�M � S�� �That X
is �M � S��regular is evident for S � R�X�� the reader should �nd a
justi�cation for S � R��X����

Conversely� let m be a maximal ideal of S � and set p � m � R� As
outlined below A��� the �bre Sm �p Sm is a discrete valuation ring� and
thus Cohen�Macaulay� Now we invoke ����	 and complete the proof�
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For polynomial extensions the proof of ���� shows that a stronger
local version of ���� is valid� for q � SpecR�X�� � � � � Xn� the localization
R�X�� � � � � Xn�q is Cohen�Macaulay if and only if Rp is Cohen�Macaulay
for p � q �R� Similarly� there is a local version of the following theorem�

Theorem �����
� Let k be a �eld� R a Noetherian k�algebra� and K an

extension �eld of k� Suppose that R is a �nitely generated k�algebra� or
that K is �nitely generated as an extension �eld of k� Then R is a Cohen�

Macaulay ring if and only if R �k K is�

Proof� If R is a �nitely generated k�algebra� then R �k K is a �nitely
generated K�algebra� and therefore Noetherian� Suppose that K is a
�nitely generated extension �eld� Then K is a �nite algebraic extension
of a �nite purely transcendental extension K � of k� Since K � is the �eld of
fractions of a polynomial ring k�T�� � � � � Tn�� we �nd again that R �k K

�

is Noetherian� whence R �k K � �R �k K
���K � K is also Noetherian�

Evidently R�K is a faithfully �at R�algebra� Therefore� given a prime
ideal p of R� there exists q � SpecR�K such that p � R� q � The �bre of
the extension Rp � �R�K�q is a localization of k�p ��K � In conjunction
with ����	 this argument reduces the theorem to the assertion that L�kK
is Cohen�Macaulay for extension �elds L and K of k� provided one of
them is �nitely generated� This follows from the next proposition�

Proposition ������� Let k be a �eld� R a k�algebra� and K a �nitely gener�

ated extension �eld of k� Then R �k K is isomorphic to a ring

R�X�� � � � � Xn�S��f�� � � � � fm�

where S is a multiplicatively closed subset of R�X�� � � � � Xn�� and f�� � � � � fm
is a R�X�� � � � � Xn�S �sequence�

Proof� The extension k � K decomposes into a series of cyclic extensions
k � K� � � � � � Kt � K � We use induction on t� Suppose that T �
R �k Ki � R�X�� � � � � Xn�S��f�� � � � � fm��

If Ki�� � Ki�Y ���g� with a monic irreducible polynomial g� then

R �k Ki��
�� T �Ki

Ki��
�� T �Y ���g��

Since T is a �at Ki�algebra� g is not a zero�divisor of

T �Y � � R�X�� � � � � Xm� Y �S��f�� � � � � fm��

If Ki�� � Ki�Y �� then R �k Ki�� � R�X�� � � � � Xn� Y �S ���f�� � � � � fm� where
S � is generated by the image of S and the image of Ki�Y � n f
g�

Chain conditions in Cohen�Macaulay rings� Cohen�Macaulay rings were
introduced as those rings for which depth equals dimension� Corollary
����� and the next theorem show that dimension theory itself is simpler



�� �� Cohen�Macaulay rings

for Cohen�Macaulay rings than for general Noetherian rings� One says
a Noetherian ring R is catenary if every saturated chain joining prime
ideals p and q � p � q � has �maximal� length height q �p � R is universally
catenary if all the polynomial rings R�X�� � � � � Xn� are catenary� It is easy
to see that R is universally catenary if and only if every �nitely generated
R�algebra is �universally� catenary�

Theorem ������� A Cohen�Macaulay ring R is universally catenary�

Proof� �Universally� may be dropped because of ����� So let p � q be
prime ideals of R� The localization Rq is Cohen�Macaulay� and �����
applied to Rq yields

height q � dimRq � height p Rq � dim�Rq �p Rq � � height p � height q �p �

It is an easy exercise to show that R is catenary if this equation holds for
all prime ideals p � q �

Corollary ������� A Noetherian complete local ring R is universally cate�

nary�

Proof� Cohen�s structure theorem �see A���� tells us that R is a residue
class ring of a formal power series ring A � k��X�� � � � � Xn�� where k is a
�eld or a discrete valuation ring� By ����� A is Cohen�Macaulay and
therefore universally catenary� R inherits this property as a residue class
ring of A�

Remark �����	� For the sake of clarity ����� and ������ were kept more
special than necessary� If R has a Cohen�Macaulay module M with
SuppM � SpecR� then we need only replace grade I by grade�I�M� in
����� to obtain an equally valid result� It follows that a local Noetherian
domain which has a maximal Cohen�Macaulay module is universally
catenary� One of Nagata�s famous counter�examples is a non�catenary
such domain ������� Example �� p� �
���

However� to be universally catenary is not the only necessary condition
for R to have a Cohen�Macaulay module M with SuppM � SpecR�
it must also satisfy Grothendieck�s condition �CMU�� This condition
requires that for every prime ideal p of R the spectrum of R�p contains
a non�empty open subset U such that �R�p �q is Cohen�Macaulay for all
q � U� see ������ IV� ����� A local ring violating �CMU� was constructed
by Ferrand and Raynaud ��
���

A Noetherian complete local ring is universally catenary since it is a
residue class ring of a Cohen�Macaulay ring� and for the same reason
it satis�es �CMU�� It is an open question whether every Noetherian
complete local ring has a maximal Cohen�Macaulay module�

We shall see in Chapter  that the existence of maximal Cohen�
Macaulay modules implies a wealth of homological theorems� Fortu�
nately� it will not be essential that these Cohen�Macaulay modules M
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are really �nite� we �only� need every system of parameters of the ring to
be an M�sequence� In Chapter � such modules will be shown to exist for
local rings containing a �eld�

For a prime ideal p in a Cohen�Macaulay local ring R the residue
class ring R�p is not Cohen�Macaulay in general� it is however unmixed
in the sense of Nagata ������

Theorem ������� Let R be a Cohen�Macaulay local ring� and p a prime

ideal� Then dim �R�q � dimR�p for all q � Ass� �R�p �R�� In particular p �R
is an unmixed ideal�

Proof� If q � R �� p � then q would contain an � �R�p �R��regular element�

Therefore q � R � p � and we have a �at local ring extension Rp � �Rq �

Applying ������ and since �Rq and Rp are Cohen�Macaulay we get

dim �Rq � depth �Rq � depthRp � depth� �Rq �p �Rq � � dimRp �

In view of ����� this equation is equivalent to the theorem�

Serre�s condition �Sn�� Sometimes one only needs a ring or a module
to be Cohen�Macaulay in low �codimension�� A �nite module over a
Noetherian ring R satis�es Serre�s condition �Sn� if

depthMp 	 min�n� dimMp �

for all p � SpecR� The theorems of this section need some modi�cation
when Cohen�Macaulay is replaced by �Sn�� As an example we treat the
�Sn� analogue of ����	�

Proposition ������� Let � � R � S be a �at homomorphism of Noetherian

rings�

�a� Let q � Spec S and p � q � R� If Sq satis�es �Sn�� then so does Rp �

�b� Suppose R and all the �bres k�p ��S with p � SpecR satisfy �Sn�� Then
S satis�es �Sn��

Proof� �a� Replacing R by Rp and S by Sq we may assume that � is a �at
homomorphism of local rings� For p � SpecR we now choose a minimal
prime q of p S � Then dim�Sq �p Sq � � 
� and according to ������ we have

depthRp � depth Sq 	 min�n� dimSq � � min�n� dimRp ��

�b� For q � Spec S and p � R � q one similarly deduces

depthSq � depthRp � depth�Sq �p Sq �

	 min�n� dimRp � � min�n� dim�Sq �p Sq ��

	 min�n� dimRp � dim�Sq �p Sq ��

� min�n� dimSq ��
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Exercises

�����	� Let k be a 	eld� and R � kX� � � � � � Xn�� If p is a prime ideal in R with
height p � f�� �� n� �� ng� show that R�p is Cohen�Macaulay�

�����
� Let k be a 	eld� Show
�a� the subalgebra S � kU� � U�V �UV � � V �� of kU� V � is not Cohen�Macaulay�
�b� for each m with � � m � n � � there exists a prime ideal of height m in
R � kX� � � � � � Xn� for which R�p is not Cohen�Macaulay�

������� Let k be a 	eld� and S the subalgebra of kX� � � � � � Xn� generated by the
monomials of degrees � and �� Show S is an n�dimensional domain� the maximal
ideal �X� � � � � � Xn� 	 S has height n and grade ��

������� Prove �a� a one dimensional reduced Noetherian ring is Cohen�Macaulay�
�b� a one dimensional Noetherian local ring has a maximal Cohen�Macaulay
module�

������� Characterize �Sn� by an unmixedness property�

������� Prove that a module M satis	es �Sn� if and only if Mp is Cohen�Macaulay
for all prime ideals p with depthMp � n�

������� Let R � S be a faithfully �at homomorphism of Noetherian rings� Show
the following are equivalent�
�a� S is Cohen�Macaulay�
�b� R and all the 	bres Sq �p Sq are Cohen�Macaulay where q � SpecS and
p � q 	 R�
Hint� use A����

������� Prove the analogues of ������b�� ����
� and ������ for �Sn�� For the passages

from R to �R and to RX� � � � � � Xn�� assume that R is a residue class ring of a
Cohen�Macaulay ring�

������� Prove the converse of ������a� under the hypothesis that SuppM is con�
nected� �The crucial point is to show that the function p �� proj dimMp is locally
constant on SuppM if M is locally perfect��

������� Let R be a Cohen�Macaulay local ring of dimension d and M a 	nite
R�module� Deduce that the d�th syzygy of M in an arbitrary 	nite free resolution
is either � or a maximal Cohen�Macaulay module�

�����	� Let R be a Noetherian graded ring� and M a 	nite graded R�module�
Show�
�a� For p � SpecR the localization Mp is Cohen�Macaulay if and only if Mp � is�
�This follows easily from the results of Section �����
�b� The following are equivalent�

�i� M is Cohen�Macaulay�
�ii� Mp is Cohen�Macaulay for all graded prime ideals p �
�iii� M�p � is Cohen�Macaulay for all graded prime ideals p �

�c� Suppose in addition that �R� m � is � local� Then M is Cohen�Macaulay if and
only if Mm is�

�����
� Let �R� m � be a Noetherian �local ring� and x � m a homogeneous
R�regular element� Then R is Cohen�Macaulay if and only if so is R��x��
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������� Let the Noetherian ring R be a free Z�module such that R � K is
Cohen�Macaulay for some 	eld K of characteristic p � �� Show that R � L is
Cohen�Macaulay for every 	eld L of characteristic ��
Hint� reduce the problem to the case in which K � Z��p�� L � Q and use R�Zp �
p � �p�� as a �bridge��
This is the 	rst and easiest example of reduction to characteristic p�

��� Regular rings and normal rings

The most distinguished of all Noetherian local rings are those whose
maximal ideal can be generated by a system of parameters�

De�nition ������ A Noetherian local ring �R� m � is regular if it has a
system of parameters generating m � such a system of parameters is called
a regular system of parameters�

Evidently� when dimR � 
� then R is regular if and only if it is a �eld�
and when dimR � �� R is regular if and only if it is a discrete valuation
ring� Other examples of regular local rings are k��X�� � � � � Xn�� where k is
a �eld� and k�X�� � � � � Xn�m � m � �X�� � � � � Xn��

We may rephrase the de�nition above as follows� R is regular if and
only if ��m � � dimR� In fact� ��m � 	 dimR by Krull�s principal ideal
theorem� and a system of generators of m has dimR elements exactly
when it is a system of parameters�

Proposition ������ A Noetherian local ring �R� m � is regular if and only if

its m �adic completion �R is regular�

Proof� The maximal ideal of �R is m �R� and we have natural isomor�

phisms R�m �� �R�m �R� m �m � �� �m �R���m �R��� Therefore ��m � � ��m �R��

Furthermore dimR � dim �R� and by de�nition R is regular if and only if
dimR � ��m ��

It is easily proved that regular local rings are integral domains�

Proposition ������ Let �R� m � be a regular local ring� Then R is an integral

domain�

Proof� We use induction on dimR� When dimR � 
� R is a �eld� So
suppose dimR � 
� and let p �� � � � � p m be the minimal prime ideals of R�
There exists an element x � m which is not contained in any of the ideals
m �� p �� � � � � p m� �This follows easily from ����� withM � N � m �� Since x is
part of a minimal system of generators of m � it is part of a regular system
of parameters� and thus R��x� is regular �use that dimR��x� � dimR����
As dimR��x� � dimR we may assume that R��x� is a domain� Thus �x�
is a prime ideal� and therefore contains a minimal prime ideal of R� say
p �� Every y � p � has the form y � xz� and since x �� p �� z is an element
of p �� It follows that p � � xp �� which� by Nakayama�s lemma� implies
p � � 
� as required�
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Using the previous proposition� one can say precisely which residue
class rings of a regular local ring are also regular�

Proposition ����	� Let R be a regular local ring� and I � R an ideal� Then

R�I is regular if and only if I is generated by a subset of a regular system

of parameters�

Proof� The �if� part is trivial� So suppose that R�I is regular� Then
��m �I� � dimR�I� set m � dimR � dimR�I � By Nakayama�s lemma
I contains elements x�� � � � � xm which are part of a minimal system of
generators of m � Then R��x�� � � � � xm� is regular of dimension dimR �
m � dimR�I � Since I and �x�� � � � � xm� are prime ideals� one must have
I � �x�� � � � � xm��

The next proposition gives useful characterizations of regularity�

Proposition ������ Let �R� m � k� be a Noetherian local ring� and x�� � � � � xn a
minimal system of generators of m � Then the following are equivalent	

�a� R is regular�

�b� x�� � � � � xn is an R�sequence�
�c� the substitution Xi �� �xi � m �m � yields an isomorphism k�X�� � � � � Xn� ��
grm �R��

Proof� �a�  �b�� Since x�� � � � � xn is a minimal system of generators of
m � it is a regular system of parameters� and R��x�� � � � � xi� is also regular
for each i� Therefore R��x�� � � � � xi� is a domain� and xi�� is regular on
R��x�� � � � � xi��

�b� �a�� An R�sequence is part of a system of parameters by �������
�b�� �c�� This follows from ����� and its converse �������

Corollary ������ A regular local ring is Cohen�Macaulay�

The Auslander�Buchsbaum�Serre theorem� Whereas the characterizations
of regular local rings in ����� are rather close to the de�nition� this can
hardly be said of the following theorem� Together with ����� below�
it is considered to be the most important achievement of the use of
homological algebra in the theory of commutative rings�

Theorem ����� �Auslander�Buchsbaum�Serre�� Let �R� m � k� be a Noe�

therian local ring� Then the following are equivalent	

�a� R is regular�

�b� proj dimM � � for every �nite R�module M�

�c� proj dim k � ��

Proof� �a�  �b�� Let d � dimR� and N a d�th syzygy module of M�
Since R is Cohen�Macaulay� N is a maximal Cohen�Macaulay module
or 
 by Exercise ������� If N � 
� we are done� otherwise every regular
system of parameters x is a �maximal� N�sequence� Lemma ����� gives
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proj dimR N � proj dimR��x��N�xN� � proj dimk�N�m N� � 
� So N is
free� and proj dimM � d �

�b� �c�� This is trivial�
�c� �a�� This is a special case of the following theorem�

Theorem ����� �Ferrand� Vasconcelos�� Let �R� m � be a Noetherian local

ring� and I �� 
 a proper ideal with proj dim I � �� If I�I� is a free

R�I�module� then I is generated by a regular sequence�

Proof� Since I has a �nite free resolution� it contains an R�regular element
x by ����	� It is no restriction to assume x �� m I� if x � m I � then we
choose some y � I n m I� Ry � Rx is not contained in any p � AssR�
and by ����� there is a � R for which y � ax has the same property� This
proves the theorem when ��I� � �� and when ��I� � �� we use induction�
passing from R to R��x� and from I to I��x��

Of course� we must �rst verify that proj dimR��x� I��x� � �� Since

x �� m I � the residue class of x in I�I� is part of a basis �x� �x�� � � � � �xm of
this free module� Set J � �x�� � � � � xm�� we claim� J � �x� � xI � In fact� if
z � ax � a�x� � � � � � amxm� then a � I because �x� �x�� � � � � �xm are linearly
independent modulo I � Therefore we get a composition of maps

I��x� � �J � �x����x� �� J�J � �x� �� I�xI �� I��x��

in which the residue class of xi is sent to itself� and which therefore is the
identity on I��x�� So I��x� is a direct summand of I�xI� as x is I�regular�
the latter has �nite projective dimension over R��x� by ������

Finally we need that �I��I� is a free R�I�module where �I � I��x�� But
this is a very easy consequence of the linear independence of x� x�� � � � � xm
modulo I �

The proof of ����	 can be varied� the Koszul complex of a regular
system of parameters resolves k by ����� and ������� whence �a�  �c��
Moreover� the implication �c� �b� follows from ������ proj dim k � � 
TorRi �M� k� � 
 for i � 
� and this in turn gives proj dimM � �� While
this reasoning uses a truly homological argument� namely the fact that
Tor can be computed from a free resolution of either module� the proof
above merely exploits the existence of minimal free resolutions� Serre�s
original argument for �c� �a� will be indicated in Exercise �������

Corollary ������ Let R be a regular local ring� and p a prime ideal in R�
Then Rp is regular�

Proof� By ����	�a�  �b� we have proj dimR�p � �� It follows that
proj dimRp

�R�p �p � proj dimRp
�Rp �p Rp � � �� whence Rp is regular by

����	�c� �a��

Over a regular local ring the Cohen�Macaulay property is equivalent
to perfection �see Section ��� for this notion��
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Corollary �����
� A �nite module M over a regular local ring is Cohen�

Macaulay if and only if it is perfect�

The corollary is an immediate consequence of ����� and ����	�
Let �R� m � be a Noetherian local ring� By ������ R is Cohen�Macaulay

if and only if its m �adic completion �R is Cohen�Macaulay� Furthermore�
if R contains a �eld or is a domain� then it is a �nite module over a
regular local subring �see A����� Thus the following proposition may
almost be considered a new description of the Cohen�Macaulay property
for rings�

Proposition ������� Let R be a Noetherian local ring and S a regular local

subring such that R is a �nite S�module� Then R is Cohen�Macaulay if

and only if it is a free S�module�

Proof� By ����	 one has proj dimS R � �� therefore R is S�free if and
only if depthS R � dimS � Choose a �regular� system of parameters x
in S � Then x is also a system of parameters of R� and therefore R is
Cohen�Macaulay � x is an R�sequence � depthS R � dim S � �One
could also use Exercise ��������

Flat extensions of regular rings� The behaviour of regularity under �at
local extensions is described by the following theorem�

Theorem ������� Let � � �R� m � k� � �S� n � l� be a �at homomorphism of

Noetherian local rings�

�a� If S is regular� then so is R�
�b� If R and S�m S are regular� then so is S �

Proof� �a� Let F� be a minimal free resolution of the R�module k� Then
F�� S is a free resolution of k� S �� S�m S because of �atness� and even
a minimal one since ��m � � n � Thus proj dimR k � proj dimS S�m S � ��
and R is regular by ����	�

�b� Let m � dimR� n � dimS�m S � and choose minimal systems of
generators x�� � � � � xm of m and y�� � � � � yn of n �m S � Then ��x��� � � � � ��xm��
y�� � � � � yn generate n � and S must be regular because dimS � dimR �
dimS�m S� see A����

An easy example shows that S�m S need not be regular in the situation
of �������a�� Let k be a �eld� and choose S � k��X� Y ����Y � X�� and
R � k��y�� � S � Then R and S are regular� and S is a free R�module
generated by � and x� but S�yS �� k��X����X�� is not regular� �The reader
should imagine the geometry of this example��

In order to formulate a theorem relating the regularity of R and
that of R�X�� � � � � Xn� we must �rst agree on calling a Noetherian ring
R regular if its localizations Rm with respect to maximal ideals m are
regular�
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Theorem ������� A Noetherian ring R is regular if and only if R�X�� � � � � Xn�
is regular� The same holds for R and R��X�� � � � � Xn���

Proof� We may assume that n � � and set X � X�� Suppose that R�X� is
regular� and� given a maximal ideal m of R� choose n � �m � X� � R�X��
Then X �� n �� equivalently X �� �n R�X�n �

�� and it follows immediately
from the de�nition of regularity that Rm is regular� The same argument
shows that regularity descends from R��X�� to R� Of course� what has just
been shown can also be derived from �������a�� and the reader is invited
to use �������b� in proving that regularity ascends from R to R�X� and
R��X��� �Compare the proof of ������

In particular� a polynomial ring k�X�� � � � � Xn� over a �eld k is regular�

Corollary �����	� Let k be a �eld� and R � k�X�� � � � � Xn��
�a� �Hilbert�s syzygy theorem� Every �nite graded R�module M has a �nite

graded free resolution of length � n�
�b� Moreover� proj dimM � n for every �nite R�module M�

�c� In fact� every �nite R�module has a �nite free resolution of length � n�

Proof� �a� Set m � �X�� � � � � Xn� and consider a minimal graded free
resolution F� of M� Such a resolution exists� and furthermore F� � Rm is
a minimal free resolution of Mm � see ������� Now Rm is a regular local
ring� Therefore F� � Rm has length at most n� and the same holds true
for F��

�b� Consider an arbitrary maximal ideal n of R� Then dimRn �
dimR � n� and Rn is a regular local ring� Hence proj dimRn

Mn � n�
Taking the supremum over all maximal ideals� we get proj dimM � n�
�In fact� let N be the n�th syzygy of M in a resolution by �nite projective
R�modules� Then Nn is a �nite free Rn �module for all n � and therefore N
is projective��

�c� By the theorem of Quillen and Suslin ������� Theorem ���� every
�nite projective R�module is free�

In �������a� and ������ below it is not essential that degXi � � for
all i� One may replace the standard grading of R by any grading which
makes R a �local ring� for example by a grading such that degXi � 
 for
all i�

Corollary ������� Let k be a �eld� R � k�X�� � � � � Xn�� m � �X�� � � � � Xn��
and M a �nite graded R�module� Then the following are equivalent	

�a� M is Cohen�Macaulay�

�a�� M is perfect�

�b� Mm is Cohen�Macaulay�

�b�� Mm is perfect�

Proof� The implications �a��  �a�  �b�  �b�� follow from ����� and
�����
� The remaining implication �b�� �a�� is an immediate consequence
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of the equations proj dimM � proj dimMm and gradeM � gradeMm

proved in �������

Remark ������� Let R be a Noetherian k�algebra where k is a �eld� and
K an extension �eld of k� If R is �nitely generated as a k�algebra or K is
a �nitely generated extension �eld� then R �k K is a Noetherian ring as
shown in the proof of �����
� Since R �k K is a �at R�algebra� it follows
readily from ������ that R is regular if R �k K is regular� We saw in the
proof of �����
 that the �bres of the extension R � R �k K are of the
form �L�k K�p where L is an extension �eld of k and p � Spec�L�k K��
If L�kK is regular for every extension �eld L of k �provided one of K�L
is �nitely generated�� then one obtains from ������ that R �k K is regular
if R is regular�

The �elds K satisfying the condition just formulated are the separable
extensions of k� We refer the reader to ��	
�� x�� for a discussion of
separability� and to ������ IV� ��	���� for the theorem concerning the
regularity of L�k K �

Factoriality of regular local rings� Our next goal is to show that a regular
local ring is a factorial domain �a UFD in other terminology�� We need
two elementary lemmas whose proofs are left as an exercise for the reader�

Lemma ������� A Noetherian domain R is factorial if and only if every

prime ideal p of height � is principal�

Lemma ������� Let R be a Noetherian domain and � a prime element in R�
Then R is factorial if and only if R� is factorial�

Theorem ������ �Auslander�Buchsbaum�Nagata�� A regular local ring R
is factorial�

Proof� We use induction on dimR� If dimR � 
� then R is a �eld� and
there is nothing to prove� So suppose dimR � 
� and choose � � m n m ��
Since R���� is again a regular local ring� � is a prime element� According
to the previous lemma� it is enough to show that S � R� is factorial�

Let p be a prime ideal of S with height p � �� Every localization Sq

is a localization of R with respect to a prime ideal �� m � and therefore
a regular local ring by ����� By induction Sq is factorial� If p �� q � then
p Sq

�� Sq for trivial reasons� and if p � q � then also p Sq
�� Sq as follows

from �����	 in conjunction with the factoriality of Sq � This implies that p

is a projective S�module of rank ��
Of course p is of the form P S with a prime ideal P of R� The

R�module P has a �nite free resolution F�� whence p � P � has an
augmented resolution

G� � 
 �� Gs

�s

�� Gs�� �� � � � �� G�

��

�� G� �� p �� 
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by �nite free S�modules� However� p is a projective S�module� and its
syzygy modules with respect to G

�
are likewise projective� In particular

Im�s�� � Gs
�� Gs��� If s � �� we can modify the tail of G

�
to obtain the

free resolution

G
�
� 
 �� Im�s���Gs �� Gs���Gs �� � � � �� G�

��

�� G� �� p �� 
�

Therefore� by induction on the length of G
�
� p in fact has a free resolution


 �� Sn
�
�� Sn�� �� p �� 
�

The Hilbert�Burch theorem �����	 yields that p � aIn��� with some a � S �
and furthermore that p � aS since p is projective� So p is a principal
ideal�

A ring is normal if all its localizations are integrally closed domains� a
Noetherian ring is normal if and only if it is the direct product of �nitely
many integrally closed domains �see ��	
� for a detailed discussion of
normality��

Corollary �����
� A regular local ring is a normal domain� A regular ring

is the direct product of regular domains�

In fact� every factorial ring R is a normal domain� �One proves this
just as for the special case R � Z�� The �classical� proof of the corollary
uses ����� and the fact that a Noetherian local ring is a normal domain
if grm �R� is a normal domain� see ����� There is even a third proof� as
we shall see now�

Serre�s normality criterion� A Noetherian ring R satis�es Serre�s condition
�Rn� if Rp is a regular local ring for all prime ideals p in R with dimRp � n�
�Note the similarity with �Sn�� contrary to �Sn� however� �Rn� says nothing
about localizations Rp with dimRp � n��

We leave it as an exercise for the reader to prove that the behaviour
of �Rn� under �at local extensions is the same as that of �Sn��

Proposition ������� Let � � R � S be a �at homomorphism of Noetherian

rings�

�a� Let q � Spec S and p � q � R� If Sq satis�es �Rn�� then so does Rp �

�b� If R and all �bres k�p �� S � p � SpecR� satisfy �Rn�� then so does S �

It is easy to see that a Noetherian ring R is reduced if and only if it
satis�es �R�� and �S��� Serre characterized normality in a similar way�

Theorem ������ �Serre�� A Noetherian ring R is normal if and only if it

satis�es �R�� and �S���

We refer the reader to Serre ������ IV��� or ��	
�� x��� for a proof of
������� The following corollary is an evident consequence of ������� �������
and �������
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Corollary ������� Let � � R � S be a �at homomorphism of Noetherian

rings�

�a� Let q � Spec S and p � q � R� If Sq is normal� then so is Rp �

�b� If R and all the �bres k�p �� S � p � SpecR� are normal� then so is S �

Suppose that �R� m � and �S� n � are local� and that � is �at and local�
Then� for S to be normal� it is not su�cient to have R and S�m S normal�
there are normal local domains whose completions are not even domains�
see ������ p� �
� Example 	�

Exercises

������� Let R be a Noetherian graded ring� Show�
�a� For p � SpecR the localization Rp is regular if and only if Rp � is�
�b� The following are equivalent�

�i� R is regular�
�ii� Rp is regular for all graded prime ideals p �
�iii� R�p � is regular for all graded prime ideals p �

�c� Suppose moreover that �R� m � is �local� Then R is regular if and only if Rm is�
Hint� Use �������

������� Let R be a positively graded k�algebra over a 	eld k� Prove the following
are equivalent�
�a� R is regular�
�b� Rm is regular where m is the �maximal ideal�
�c� there exist homogeneous elements x�� � � � � xn of positive degree for which the
assignment Xi �� xi induces an isomorphism kX� � � � � � Xn� 
� R�
Hint� For the non�trivial implication �b� � �c� choose a minimal homogeneous
system of generators x�� � � � � xn of m � then apply ������ and ������ The rest is a
simple dimension argument�

������� In the situation of ������ characterize the Cohen�Macaulay R�modules by
a property they have as S �modules�

�����	� Let R be a Noetherian ring over which every 	nite module has a 	nite
free resolution� Show R is a factorial domain�

�����
� Let R be a regular local ring� and I an ideal of height �� Prove that the
following are equivalent�
�a� R�I is Cohen�Macaulay�
�b� height p � � for all prime ideals p � AssR�I�
�c� I is a principal ideal�
Hint� For �b� � �c� one uses primary decomposition and the factoriality of R�

������� Prove that a Noetherian ring R satis	es �Ri� and �Si��� if and only if Rp is
regular for every prime ideal p such that depthRp � i�

������� �a� Show a Noetherian normal ring of dimension � is Cohen�Macaulay�
�b� A Cohen�Macaulay ring is normal if and only if it satis	es �R���

������� �a� Let R be a Noetherian complete local domain� Then R is a 	nite module
over a regular local ring S contained in R� see A���� Set M � HomS �R� S �� then
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M is an R�module in a natural way� Show that depthR M � depthS M �
min�dimR� ���
�b� Prove that every Noetherian complete local ring of dimension � has a maximal
Cohen�Macaulay module�

������� Let R be a Noetherian complete local domain� It is known that the integral
closure of R in its 	eld of fractions is a 	nite R�module ������ ������ or ���� Ch�
IX� x��� Use this to give a fresh proof of the fact that a Noetherian complete
local ring of dimension � has a maximal Cohen�Macaulay module�

������� Let R be a Noetherian ring� and x � R an R�regular element�
�a� Assume that Rx ful	lls �Rn� and �Sn���� and that �Rn�� � and �Sn� hold for
R��x�� Show that R satis	es �Rn� and �Sn����
�b� Assume Rx is a normal domain� and R��x� is reduced� Show that R is a
normal domain�

������� Let R be a Noetherian graded ring� and A its dehomogenization with
respect to an element of degree � �see �������� Show that if R is a normal domain�
then so is A�

������� We keep the notation of ������� Let p be a graded prime ideal of R with
x �� p � and q � SpecA its dehomogenization �see �������� Show that Rp is a �at
local extension of Aq � and determine its 	bre� Compare Rp and Sq with respect to
the following quantities and properties� dimension� depth� type� being reduced�
an integral domain� Cohen�Macaulay� normal� regular�

��� Complete intersections

We observed that the homological relationship between a local ring S
and a residue class ring R � S�I is particularly strong if I is generated
by an S�sequence� In this section we investigate such residue class rings
of regular local rings� Slightly more generally we de�ne�

De�nition ������ A Noetherian local ring R is a complete intersection �ring�

if its completion �R is a residue class ring of a regular local ring S with
respect to an ideal generated by an S�sequence�

Note that �R is always a residue class ring of a regular local ring �see
A����� It follows immediately from ������ ������ and ����� that a complete
intersection is Cohen�Macaulay�

The nomenclature �complete intersection� comes from algebraic ge�
ometry� Suppose R is the coordinate ring of an a�ne variety over
an algebraically closed �eld k� Then R has the form R � S�I where
S is a polynomial ring over k� and R is called a complete intersec�
tion if I is generated by the least possible number of elements� namely
codimV � height I � Then V is the intersection of codimV hypersurfaces�
and I is generated by an S�sequence�

Let �S� n � be a regular local ring� and �R� m � a residue class ring�
R � S�I � Suppose that I �� n �� Then there exists x � I � x �� n �� and we
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obtain a representation R � S ��I � with S � � S��x�� I � � I��x�� The ring
S � is regular again� and I is generated by a regular sequence if and only
if I � is� the element x is part of a minimal system of generators of I � and
I can be generated by an S�sequence if and only if every minimal system
of generators is an S�sequence� see ������ Iterating this procedure we
eventually obtain a minimal presentation R � S ���I �� in which S �� is regular
and I �� � �n ����� It follows that ��m � � ��n ��� � dimS ��� For an arbitrary
local ring �R� m � the number ��m � is called the embedding dimension of
R�

emb dimR � ��m ��

�This terminology is again to be illustrated by the geometric analogue��
The discussion above shows that we may freely assume that I � n � when
it is only to be veri�ed whether I is generated by an S�sequence or
otherwise�

Nevertheless our de�nition has two �aws� �rst� it does not use intrinsic
characteristics of R� second� it is not clear whether for an arbitrary

presentation �R � S�I with S regular local� the ideal I is generated by an
S�sequence if R is a complete intersection� The intrinsic characteristics
we are seeking are hidden in a Koszul complex� Let us �x some standard
notation which we shall use frequently throughout this section� �R� m � k�
is a Noetherian local ring� and x � x�� � � � � xn is a minimal system of
generators of m � If present� �S� n � k� is a regular local ring such that
R � S�I with I � n �� the ideal I is minimally generated by a � a�� � � � � am�
and y � y� � � � � yn is a regular system of parameters such that xi is the
residue class of yi� Furthermore we write ai �

P
ajiyj with aji � n

�necessarily��
Let � � Sm � Sn be given by the matrix �aji�� and g � Sn � S and

h � Sm � S be the linear forms de�ned by y and a respectively� Then
h � g � �� and �

� � K��a�� K��y�

is a complex homomorphism� see ������ By ����	� K��y�� R is just K��x��
and K��a� � R has zero di erential� forgetting it� we write

V
Rm for

K��a�� R� So we have a complex homomorphism�
�� R �

�
Rm � K

�
�x��

Since
V

Rm has zero di erential� this yields a map
V
Rm � H��x�� and

�nally� as m H��x� � 
� a map

� �
�

km � H��x��

As � is induced by
V

�� it is a homomorphism of graded k�algebras�
Sometimes it will be necessary to use the canonical bases f�� � � � � fn of

Sn� e�� � � � � em of Sm� and the elements ui � ��ei� � Sn� By the choice of ��
da�ei� � ai � dy�ui�� Finally� � denotes residue classes mod I �
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Theorem ������ With the notation just introduced�

�a� �� � km � H��x� is an isomorphism of k�vector spaces�
�b� ��I� � dimkH��x��

�c� ���k� �
�embdimR

�

�
� dimkH��x��

�Here ���k� is the second Betti number of k as an R�module� see
Section �����

Proof� We constructed � such that it maps the canonical basis of km to
the homology classes of u�� � � � � um� A minimal free resolution of k starts
as

Rn x

�� R �� 
�

and therefore ���k� � ��Z��x��� So it is enough for �a�� �b�� and �c� to
prove that

dx��fp � �fq�� � � p � q � n� and �ui� i � �� � � � � m�

form a minimal system of generators of Z��x��
Suppose that �b � Z��x�� b � Sn� Then dy�b� � I �

dy�b� � c�a� � � � � � cmam � c�dy�u�� � � � � � cmdy�um��

Since K��y� is acyclic� b �
P

ciui is a linear combination of the elements
dy�fp � fq�� That is� the elements considered generate Z��x��

Now assume that
P
��pqdx��fp��fq��

P ��i�ui � 
� We have to show that

all the coe�cients ��pq� ��i are in m � Lifting the equation to Sn givesX
�pqdy�fp � fq� �

X
�iui � ISn�

and applying dy yields
P

�iai � n I � So �i � n by the choice of a� As

I � n � one obtains
P

�pqdy�fp � fq� � n �Sn� Looking at the components
of the elements dy�fp � fq� � Sn and since y is a minimal system of
generators of n � one sees that �pq � n for all p� q�

The Koszul complexes with respect to di erent minimal systems of
generators of m are isomorphic R�algebras� see the discussion before
������� In particular H

�
�x� is essentially independent of x� this justi�es

the notation
H��R� � H��x��

and we call H��R� the Koszul algebra of R� The number

���R� � dimk H��R�

is the �rst deviation of R� It follows immediately from ����� and �����
that R is regular if and only if ���R� � 
� So ���R� may be considered a
measure of how far R deviates from regularity�

The following theorem contains the desired intrinsic characterization
of complete intersections�
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Theorem ������ Let �R� m � k� be a Noetherian local ring�

�a� One has ���R� � ��� �R��
�b� The following are equivalent	

�i� R is a complete intersection�

�ii� ���R� � embdimR � dimR�

�iii� ���k� �
�
���k�
�

�
� ���k� � dimR�

�c� Suppose that R � S�I with S regular and local� Then R is a complete

intersection if and only if I is generated by an S�sequence�

Proof� �a� Choose a minimal system x of generators of m � We write �x

for x considered as a sequence in �R� Then H
�
� �R� �� H

�
� �x� �� H

�
�x�� �R ��

H��R�� �R by ����	� Since H��R� has �nite length� one has H��R�� �R ��
H��R��

�b� Because of �a� and the de�nition of complete intersection we may
assume that R is complete and has a minimal presentationR � S�I � If R is
a complete intersection� then there is such a presentation with I generated
by an S�sequence� hence ���R� � ��I� � dimS � dimR� Conversely� if
���R� � embdimR � dimR� then ��I� � dimS � dimR in an arbitrary
minimal presentation� and so I is generated by an S�sequence� see ������

The equivalence of �ii� and �iii� follows immediately from ������
�c� is proved along the same lines as �b��

Permanence properties of complete intersections� As we did for the Cohen�
Macaulay property and regularity we want to discuss how complete
intersections behave under certain standard ring extensions�

Theorem ����	� Let �R� m � k� be a Noetherian local ring�

�a� Suppose x is an R�sequence� Then

���R��x��� �embdimR��x�� dimR��x�� � ���R�� �embdimR � dimR��

in particular R is a complete intersection if and only if R��x� is a complete

intersection�

�b� Suppose R is a residue class ring of a regular local ring� Then if R is

a complete intersection� so is Rp for every p � SpecR�

Proof� Using induction we only need to prove �a� in the case in which x �
x � R� Suppose �rst that x �� m �� Then embdimR��x� � embdimR � �
and dimR��x� � dimR � �� furthermore H��R� �� H��R��x�� as k�vector
spaces by �������b�� So ���R� � ���R��x��� Now suppose that x � m ��
Then embdimR��x� � embdimR and dimR��x� � dimR � �� moreover
we have an exact sequence


 �� H��R� �� H��R��x�� �� H��R� �� k �� 


as in the proof of ������� Thus ���R��x�� � ���R� � ��
The proof of �b� is very easy� it uses ����� and basic properties of

regular sequences�
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Remark ������ Having studied an �abstract� characterization of complete
intersections� the reader may expect an �abstract� version of ������b� with�
out any restrictions� In fact� such an assertion holds for arbitrary complete
intersections as was proved by Avramov ����� Actually Avramov proved
a stronger result� namely the analogue of ����	� suppose �R� m � � �S� n �
is a �at homomorphism of Noetherian local rings� then S is a complete
intersection if and only if R and S�m S are complete intersections� It is
not di�cult to deduce the localization property from the theorem on �at

extensions� there is �by faithful �atness� a prime ideal q � �R such that

p � q � R� the extension Rp � �Rq is local and �at� and �Rq is a complete
intersection by ������b��

In ����� Avramov gave quantitatively precise results concerning �at
extensions �and localizations�� let 
�R� � ���R� � �embdimR � dimR�
be the complete intersection defect of R� then� in the situation of a �at
extension� 
�S� � 
�R� � 
�S�m S�� �Limitation of space prevents us
including a proof�� Using Avramov�s theorem one can also remove the
undesirable restrictions in ����� and ����	 below�

In the following we say that a Noetherian ring is a locally complete

intersection if all its localizations are complete intersections�

Theorem ������ Let R be a Noetherian ring which is a residue class ring

of a regular ring S � Then R is a locally complete intersection if and only if

R�X�� � � � � Xn� is a locally complete intersection� The same holds for R and

R��X�� � � � � Xn���

The proof follows the pattern of that of ����� one notes that
S�X�� � � � � Xn� and S��X�� � � � � Xn�� are regular rings by ������� and replaces
����	 by Exercise �����
�

As with the Cohen�Macaulay property� the argument outlined really
proves the stronger local version of ������ Rp is a complete intersection
if and only if R�X�� � � � � Xn�q is a complete intersection for p � SpecR�
q � SpecR�X�� � � � � Xn� with R � q � p � A similar remark applies to the
following theorem and its proof�

Theorem ������ Let k be a �eld� R a Noetherian k�algebra� and K an

extension �eld of k� Suppose that R is a �ring of fractions of a� �nitely
generated k�algebra or K is �nitely generated as an extension �eld� More�

over� suppose that R is a residue class ring of a regular ring� Then R is

a locally complete intersection if and only if R �k K is a locally complete

intersection�

Proof� We saw in �����
 that R�kK is a Noetherian ring� Given a prime
ideal q in R �k K � we set p � R � q � conversely� by faithful �atness�
for every p � SpecR there exists q � SpecR � K such that p � R � q �
Furthermore the extension R � �R � K�q factors through Rp � K� so
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we may replace R by Rp � By hypothesis� R � S�I with a regular local
k�algebra S �

Let R be a complete intersection� Then I is generated by a regular
sequence g�� � � � � gr� Because of faithful �atness g�� � � � � gr is also a regular
sequence in S � K � So it su�ces that S � K is a locally complete
intersection� and this is immediate from ������ �in conjunction with
��������

As to the converse� we only do the more di�cult case in which K is
a �nitely generated �eld extension� By ������ again� one has

K �� �k�X�� � � � � Xn��T��h�� � � � � hm�

where h�� � � � � hm is a regular sequence in �k�X�� � � � � Xn��T and T is a
multiplicatively closed set� Therefore h�� � � � � hm is a regular sequence
in the faithfully �at extension R � �k�X�� � � � � Xn��T �� �R�X�� � � � � Xn��T ��
here T � is the image of the natural map k�X�� � � � � Xn� � R�X�� � � � � Xn��
Moreover� �R � K�q has the form R�X�� � � � � Xn�Q ��h�� � � � � hm�Q with Q �
SpecR�X�� � � � � Xn� such that Q � R � p and T � � Q � �� By ������
R�X�� � � � � Xn�Q is a complete intersection� So we can apply the local
version of ������

The Koszul algebra of a complete intersection� Above we constructed an
algebra homomorphism � �

V
km � H��R�� m � ���R�� starting from a

minimal presentation R � S�I � and we saw that �� � km � H��R� is an
isomorphism� Such a homomorphism is always present� In fact� H��R�
is an alternating graded k�algebra� therefore� by the universal property
of the exterior algebra� there exists a unique algebra homomorphism
�� �
V

H��R� � H��R� extending the identity on H��R�� Moreover� alge�
bra homomorphisms �� �� �

V
H��R� � H��R� such that �� and ��� are

isomorphisms� only di er by the automorphism
V
�����

��
� � of

V
H��R��

So we may replace the �abstract� homomorphism �� by the �concrete� �
whenever we have a minimal presentation�

The situation under consideration can be generalized as follows� S
is a ring� I and n are ideals generated by sequences a � a�� � � � � am and
y � y�� � � � � yn� and we have I � n � Then� as above ������ there is a
homomorphism

� � H
�
�a� S�n � �

�
�S�n �m � H

�
�y� S�I��

Choose S�free resolutions F� of S�I and G� of S�n � Then there exist
complex homomorphisms K��a� � F� and K��y� � G�� These in turn
induce maps

� � H��a� S�n � �� H��F� � S�n � �� TorS
�
�S�I� S�n ��

� � H��y� S�I� �� H��S�I � G�� �� TorS
�
�S�I� S�n ��
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Hence there exist two maps from H
�
�a� S�n � ��

V
�S�n �m to TorS

�
�S�I� S�n ��

namely � and � � �� It is crucial that these maps are essentially equal
� of course� we must use the proper identi�cation of H

�
�F

�
� S�n � and

H
�
�S�I � G

�
�� To this end one forms the double complex F

�
� G

�
and

considers S�I and S�n as complexes concentrated in degree 
� Then one
has complex homomorphisms K��a�� F� � S�I and K��y�� G� � S�n �
Taking tensor products yields a commutative diagram

K
�
�a�� S�n



����� K

�
�a�� K

�
�y�

�
����� S�I � K

�
�y���y ��y ��y

F� � S�n ����� F� �G� ����� S�I � G�

By a fundamental theorem of homological algebra ������� Theorem ������
the bottom row induces an isomorphism

H��F� � S�n �
��
�� H��F� � G��

��
�� H��S�I �G���

It is this identi�cation we need�

Lemma ������ With the notation introduced� �s � ����s�s � �s�

Proof� Let e�� � � � � em be a basis of Sm and choose elements ui � Sn with
dy�ui� � da�ei�� One has �s��ei� � � � � ��eis� � �ui� � � � � � �uis � Thus it is enough
to show that �s��ei� � � � � � �eis� � ����s�s��ui� � � � � � �uis��

Let z � K��a� � K��y� be a cycle� Then the commutativity of the
diagram above implies that z� ��z�� and ��z� are all mapped to the same
homology class� So it su�ces to exhibit a cycle z with ��z� � �ei� � � � � ��eis
and ��z� � ����s��ui� � � � � � �uis��

Simply take z � �ei� � �� �� ui�� � � � �eis � �� �� uis�� In order to see
that it is a cycle� one uses the de�nition of the di erential of K��a��K��y�
and the fact that a product of cycles is again a cycle�

Theorem ������ Let S be a ring� and a � a�� � � � � am and y � y�� � � � � yn be S�
sequences such that I � �a� � n � �y�� Then H��y� S�I� �� TorS

�
�S�I� S�n �

is �isomorphic with� the exterior algebra
V
�S�n �m�

Proof� The isomorphism H
�
�y� S�I� �� TorS

�
�S�I� S�n � results from the

fact that K
�
�y� is a free resolution of S�n � see ������� So� with the

notation above� � is an isomorphism� Similarly � is an isomorphism�
hence �� being an algebra homomorphism� is an isomorphism of graded
algebras� �In order to remove the sign in ����� one would have to replace
� by

V
�������

Corollary �����
� �a� With the hypotheses of ���� suppose that m � n�
Write ai �

P
ajiyj � i � �� � � � � n� Then I � n � I � S�� � � det�aji��

�b� In particular� suppose that y is a regular system of parameters in a

regular local ring S � Then Soc�S�I� � ��S�I��



�
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Proof� �a� That �I � n ��I �� HomS �S�n � S�I� and Hn�y� S�I� can be iden�
ti�ed was shown in the proof of ������� Now let f�� � � � � fn be a basis
of Sn with dy�fi� � yi� and set ui �

Pn
j��ajifj � Then if e�� � � � � en is a

basis of Sn with da�ei� � ai� one has dy�ui� � ai � da�ei�� The theorem

implies that Hn�y� S�I� is generated by �u� � � � � � �un � ��f� � � � � � �fn� So
�u� � � � � � �un is mapped to the residue class of � in S�I by the homo�
morphism which sends f�� � � � � fn to � �and thus gives the identi�cation
�I � n ��I � Hn�y� S�I���

�b� By de�nition� Soc�S�I� � �I � n ��I �

We have completed our preparations for the following beautiful char�
acterization of complete intersections�

Theorem ������ �Tate� Assmus�� Let �R� m � k� be a Noetherian local ring�

Then the following are equivalent	

�a� R is a complete intersection�

�b� H��R� is �isomorphic to� the exterior algebra of H��R��
�c� H��R� is generated by H��R��
�d� H��R� � H��R�

��

Here H��R�� is the k�vector space generated by the products w � z
with w� z � H��R��

Proof� It was observed in the proof of ����� that H��R� is invariant under
completion� So we may assume that R is complete and has a minimal
presentation R � S�I �

The implication �a� �b� is a special case of ����� and �b� �c� �d�
is trivial�

For �d� �a� we note �rst that the map � above is an isomorphism�
Next� �d� says that �� � K��a� � S�n � H��y� S�I� �� TorS� �R� S�n � is
surjective� So �� is surjective� Choose F� as a minimal free resolution of
S�I � Then we have a commutative diagramV� Sm ����� Sm ����� S ����� 
��y� ��y�� ���

F� ����� F� ����� S ����� 


The map �� is just � � k� and � � k being surjective� � is surjective itself�
It follows immediately that H��a� � 
� whence a is an S�sequence by
������

Theorem ����� contains a characterization of complete intersections
in terms of the numerical invariants dimR� emb dimR � ���k�� and ���k��
It is possible to remove the �non�homological� Krull dimension� and to
give a description of complete intersections using ���k�� ���k�� and ���k��
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In order to construct the �rst steps in a free resolution of k� we start with
the Koszul complex

��
Rn �� Rn �� R �� 
�

unless R is regular� H��R� is non�zero� So we add a free direct summand
Rm with m � dimk H��R� � ���R�� and send its generators e�� � � � � em to
cycles u�� � � � � um whose homology classes generate H��R��

Rm �
��
Rn

d�
�� Rn

d�
�� R �� 
�

The kernel of d� contains the Koszul cycles dx�fi � fj � fl� as well as the
elements xiep� fi � up� again� f�� � � � � fn denotes a basis of Rn� In order to
�kill� at least these cycles we form the complex

T� � �R
n � Rm��

��
Rn d�
�� Rm �

��
Rn d�
�� Rn d�

�� R �� 


with

d��fi � fj � fl� � dx�fi � fj � fl��

d��fi � ep� � xiep � fi � up � dx�fi�ep � fi � d��ep��

Part �a� of the following theorem shows that ��H��T��� is an invariant
of R� One writes ���R� � ��H��T��� and calls this number the second

deviation of R�

Theorem ������� Let �R� m � k� be a Noetherian local ring� Then

�a� H��T�� �� H��R��H��R���

�b� R is a complete intersection if and only if ���R� � 
�

�c� ���R� � ���k� �
�
�� �k�
�

�
� ���k�

	
���k� �

�
���k�
�

�

�

Proof� �a� Let K� be the complex

K� �
��
Rn ��

��
Rn �� Rn �� R �� 
�

obtained by truncating the Koszul complex� K� is a subcomplex of T��
The quotient T��K� is isomorphic to

L� � R
n � Rm

d��id
���� Rm �� 


with Rn � Rm in degree �� Consider the exact sequence of homology

H��L��� H��K��� H��T��� H��L��� H��K��� H��T�� � 
�
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The map H��L�
� � H��K�

� is an isomorphism since both vector spaces
have dimension m� Hence we have an exact sequence H��L�

�� H��K�
��

H��T�
�� 
� The kernel of Rn � Rm � Rm is obviously generated by the

elements dx�fi � fj� � eq and up � eq� An analysis of the connecting
homomorphism shows that the class of dx�fi � fj� � eq goes to that of
dx�fi � fj� � uq which is a boundary in the Koszul complex �see the
formulas above ������� the class of up � eq goes to that of up � uq whence

the image of H��L��� H��K�� is H��K����
�b� follows immediately from �a� and �������
�c� The veri�cation is similar to that of ������c�� and therefore left to

the reader�

Remark ������� The equation d��fi � ep� � dx�fi�ep � fi � d��ep� suggests
that d� is a component of an antiderivation of an alternating algebra� In
fact� the choice of d� is part of Tate�s construction of resolutions with
algebra structures �����

Suppose that A� is an alternating graded R�algebra equipped with an
antiderivation of degree�� such that � � 
� and consider the homology
H��A�� � Ker � Im � Let �z � Hp�A�� be a non�zero homology element�
Then one may adjoin a variable to �kill� the cycle z representing �z�

�i� If p is even� let B� be the exterior algebra in a variable of degree p���
i�e� B� � R � Re with R in degree 
 and Re �� R in degree p � �� the
multiplication being de�ned by e� � 
�

�ii� For p odd let B� be the �divided power algebra� over R in a variable
of degree p� �� i�e� B� �

L�
j��Rej with Rej �� R in degree j�p� ��� the

multiplication being de�ned by ejel � ��j � l�"�j" l"�ej�l�

In both cases A��B� is again an alternating algebra� and there is a unique
antiderivation d on A��B� such that djA��� � � d�e� � z in case �i�� and
d�ej� � zej�� for all j in case �ii�� moreover� one has d� � 
� It follows
easily that Hq�A��B�� �� Hq�A�� for q � p and Hp�A��B�� �� Hp�A���R�z�

In order to resolve the residue class �eld k of a local ring �R� m � k�
one starts with the R�algebra T ���

�
� R� Let ���R� � embdimR � ��m ��

and successively adjoin ���R� variables of degree � �to kill the zero�cycles��
The resulting algebra T ���

�
is the Koszul complex of a minimal system

of generators of m � Next one adjoins ���R� variables of degree � to kill
���R� cycles generating H��T ���

�
�� The algebra T ���

�
thus constructed has

H��T ���
�
� � 
� It is a theorem of Tate ���� that in the case of a complete

intersection the complex T ���
�

is a minimal free resolution of k� However�
if R is not a complete intersection� then one has to adjoin ���R� variables
of degree � etc� A famous theorem of Gulliksen ����� and Schoeller ���
�
says that the resolution of k obtained in this way is always minimal�

For a comprehensive study of resolutions with an algebra structure
we refer the reader to Gulliksen and Levin ���	��
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As above� let �R� m � k� be a Noetherian local ring� We saw in ������
that surjectivity of the natural homomorphism � �

V
H��R� � H

�
�R� is

already su�cient for R to be a complete intersection� This is also true
for injectivity� at least when R contains a �eld�

Theorem �����	� Let �R� m � k� be a Noetherian local ring containing a �eld�

Then

�a� H��R�j � 
 for j � embdimR � dimR�

�b� in particular� R is a complete intersection if �and only if� the natural

map � �
V

H��R�� H
�
�R� is injective�

Proof� It is harmless to complete R so that we may assume that R has
a minimal presentation R � S�I as above� In order to prove �a� we
must anticipate Corollary ����� it says that� with the notation of ������
�j � 
 for j � embdimR � dimR� Since� in the present circumstances�
�j is an isomorphism� one has �j � 
 for j � embdimR � dimR� As

H��R�
j � �j�

Vj H��R��� one has H��R�
j � 
� This proves �a�� and �b� is

an obvious consequence of �a��

The restriction to local rings containing a �eld is forced upon us since
there does not yet exist a proof of ���� without this restriction� However�
one always has H��R�j � 
 for j � embdimR � dimR � � so that the
gap in ������ is as small as it could be� see ���	�

The reader may have noticed that ������ is trivial for Cohen�Macaulay
rings R� if j � embdimR � depthR� then even Hj �R� � 
 by �����	� On
the other hand� for Cohen�Macaulay R the non�vanishing of H��R�p for
p � embdimR � dimR conveys the strongest possible information� R is
a complete intersection� More generally� we have the following theorem�

Theorem ������� Let �R� m � k� be a Noetherian local ring� Then R is a

complete intersection if �and only if� H��R�p �� 
 for p � embdimR �
depthR�

Proof� By virtue of ������ the hypothesis H��R�p �� 
 for p � embdimR�
depthR forces R to be Cohen�Macaulay if it contains a �eld� Because of
this restriction we give a proof not using �������

First we reduce to the case depthR � 
� So suppose that depthR � 
�
Then there exists an x � m n m � which is not a zero�divisor� and ������
furnishes us with an isomorphism � � H��R� �� H��R��� R� � R��x�� It is not
di�cult to verify that � is a k�algebra isomorphism� after all� � is induced
by
V
�� � being the composition Rn � Rn�� � �R��n�� �see the proof of

�������� Furthermore embdimR� � depthR� � embdimR � depthR� and
R is a complete intersection if and only if this holds for R��

It remains to show that R is a zero dimensional complete intersection
if H��R�n �� 
 for n � embdimR� The complex K��R� has length n� so
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Bn���R� � 
� and therefore

H��R�
n � �Z��R�

n � Bn���R��
�
Bn���R� � Z��R�

n�

Consider an exact sequence Rm �
V� Rn

d�
�� Rn �� m �� 
 as above�

Choose elements v�� � � � � vn � Im d� � Z��R�� vi �
P

vjifj where f�� � � � � fn is
a basis of Rn� Then v� � � � � � vn � det�vji�f�� � � � � fn� whence H��R�n �� 

is equivalent to In�d�� �� 
� It remains to apply the next theorem�

Theorem ������ �Wiebe�� Let �R� m � k� be a Noetherian local ring� and

Rr
�
�� Rn � m � 
 a presentation of its maximal ideal� If In��� �� 
�

then R is a complete intersection of dimension zero �and conversely��

Proof� The ideal In��� is the zeroth Fitting ideal of m � which is an
invariant of m � Therefore it is enough to consider a special presentation�
Moreover� we may assume that R is complete� Then R � S�I where �S� n �
is a regular local ring and I � n �� Let y � y�� � � � � yn be a regular system
of parameters of S � and a � a�� � � � � am a minimal system of generators of
I � Write ai �

P
ajiyj �

The converse of the theorem is part of Corollary �����
� it implies
the following claim which is crucial in what follows� Let b � b�� � � � � bn be
a maximal S�sequence� and J � an ideal properly containing J � �b�� then
det�bji� � J � where the bji are chosen such that bi �

P
bjiyj � In fact�

det�bji�S�J is the socle of S�J � Since it has dimension � over k� it is
contained in every non�zero ideal of S�J �

Let f�� � � � � fn be a basis of Sn� and e�� � � � � em a basis of Sm� De�ne

� � Sm �
V� Sn � Sn by the Koszul map

V� Sn � Sn with respect to y

and ��ei� �
P

ajifj � We saw in ����� that Coker� � S�I �� m � So the
theorem claims that In��� � I unless S�I is a zero dimensional complete
intersection�

Choose an n 
 n submatrix U of �a matrix of� �� If U involves a
column corresponding to one of the elements fi � fj � then detU � I �
since� on the level of R� we are taking the exterior product of n cycles
at least one of which is a boundary� �detU��f� � � � � � �fn � Bn���R� � 
�
Therefore it is enough to consider submatrices U of �aji�� For simplicity
of notation one may assume U consists of the �rst n columns�

If a�� � � � � an is a regular sequence� then I contains J � �a�� � � � � an�
properly since S�I is not a complete intersection� So detU � I by the
claim above�

If a�� � � � � an is not a regular sequence� then dimS�J � 
� and it is
certainly enough to show that detU � J � that is� we may assume that
I � �a�� � � � � an��

We will show that detU � I� n p for all p �N� Then detU � I follows
from Krull�s intersection theorem� Fix p � N� According to Exercise
�����	 one �nds elements a��i � n p�� such that a�i � ai� a��i � i � �� � � � � n� is a
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regular sequence� Write a�i �
P

a�jiyj� then aji � a�ji � n p follows from the
quasi�regularity of the regular sequence y� in other words� from the fact
that the associated graded ring grn �S� is a polynomial ring �see �������
Therefore

detU � det�a�ji� � n p�

The ideal I � n p properly contains �a��� � � � � a
�
n� � I � n p��� Once more the

auxiliary claim above is applied� and it yields det�a�ji� � I � n p�

Exercises

�����	� Let �R� m � be a Noetherian local ring of depth t� and a�� � � � � at � m � Then�
given p � N� show there exist a��� � � � � a

�
t � m p such that a� � a��� � � � � at � a�t is an

R�sequence�

�����
� Let S be a regular local ring of dimension �� and y�� � � � � y� a regular system
of parameters� Let I � �y�y�� y�y�� y�y� � y�y�� and R � S�I �
�a� Construct a minimal free resolution of R�
�b� Prove depthR � � and dimR � ��
�c� Show that the vector space H��R�� has dimension �� the maximal value for an
ideal generated by � elements� but R is not a complete intersection�

������� Prove all the claims in the second paragraph of �������

������� Let � � �S� � n �� � �S� � n �� be a �at local homomorphism of regular rings�
and I � S� an ideal� Verify S��I is a complete intersection if and only if S��IS�
is a complete intersection�

������� Let R be a Noetherian graded ring� Show�
�a� For p � SpecR the localization Rp is a complete intersection if and only if
Rp � is�
�b� The following are equivalent�

�i� R is locally a complete intersection�
�ii� Rp is a complete intersection for all graded prime ideals p �
�iii� R�p � is locally a complete intersection for all graded prime ideals p �

�c� Suppose in addition that �R� m � is �local� Then R is locally a complete
intersection if and only if Rm is a complete intersection�
Hint� �������

������� Extend ����� and ������ to the following theorem which Serre ���� used
to prove ������c� � �a�� let �R� m � k� be a Noetherian local ring� and x a minimal
system of generators of m � then the natural map K

�
�x� k� � TorR

�
�k� k� �see ����
�

is injective�

Notes

The origins of the theory of Cohen�Macaulay rings are the unmixed�
ness theorems of Macaulay ����� and Cohen �	�� and the notion of
perfect ideals� which also goes back to Macaulay and was clari�ed by



�� �� Cohen�Macaulay rings

Gr�obner ������ The present shape of the theory was formed by Auslan�
der and Buchsbaum ����� Nagata ������ and Rees ��
��� It seems that
Cohen�Macaulay modules made their �rst appearance in Auslander and
Buchsbaum ����

The characterization �����	 of graded Cohen�Macaulay rings is es�
sentially due to Hochster and Ratli ��

� and Matijevic and Roberts
������

By analogy to the desingularization� one can try to �Macaulayfy� a
Noetherian scheme� Special results in this direction were obtained by
Brodmann ���� and Faltings ��

�� Recently Kawasaki ����� has proved
a general theorem on the existence of �Macaulay�cations��

Of all the notions generalizing Cohen�Macaulay rings and modules�
the concept of Buchsbaum ring or module is the most important� see
St�uckrad and Vogel ����� and Schenzel �����

The �classical� theory of regular local rings� to be found in Zariski
and Samuel ��	�� Vol� II� was developed by Krull ������ Chevalley
����� Cohen �	��� and Zariski ����� It depends in an essential way on
power series methods� and is therefore mainly restricted to local rings
containing a �eld� The problems it could not solve were �i� the regularity
of a localization of a regular local ring R �even if R contains a �eld�� and
�ii� the factoriality of such rings �because of the Cohen structure theorem
this is easy if R contains a �eld��

The breakthrough was the theorem ����	 of Auslander and Buchsbaum
��	�� ���� and Serre ����� which not only solved the localization problem�
�this resounding triumph of the new homological method marked a
turning point of the subject of commutative Noetherian rings� �Kaplansky
���
�� p� ���� Theorem ����� was independently given by Ferrand ��
��
and Vasconcelos ��	�� it generalizes Kaplansky�s proof of �������c� �a�
�see ��	
�� x���

The problem of factoriality was solved by Auslander and Buchsbaum
��
�� using results of Zariski and Nagata who reduced the theorem to
the case of Krull dimension �� See Nagata ������ p� ��	 for a minute
history� The proof we have reproduced is due to Kaplansky �except for
the application of the Hilbert�Burch theorem�� That regular local rings
are factorial can be expressed by saying that every ideal I has a greatest
common divisor� there is a regular element a and an ideal J of grade
	 � such that I � aJ � MacRae ����� proved this fact for every ideal
with a �nite free resolution� Another �related� generalization is that every
module with a �nite free resolution over a normal domain has divisor
class zero� see ��	�� Ch� VII� x�� The most concrete and computationally
e ective result is the factorization theorem of Buchsbaum and Eisenbud
�����

The notion of complete intersection is classical in algebraic geometry�
An abstract de�nition in terms of local algebra was given by Scheja



Notes �	

������ together with ������ Our de�nition is that of Grothendieck ������
Avramov�s contributions ����� ���� have been described in ������ they
ultimately justi�ed the abstract notion of complete intersection�

The program of Tate�s seminal paper ���� has been outlined in Re�
mark ������� Assmus ���� used Tate�s method to give the description ������
of complete intersections in terms of their Koszul algebras� There are
several papers devoted to the characterization of complete intersections
by the vanishing of a deviation �i �which we de�ned only for i � �� ��� the
question was �nally settled by Halperin ����� who showed that �i � 
 for
all i if R is not a complete intersection� Wiebe�s theorem ������ appeared
in ����� see Kunz ������ Hilfssatz �� for a related result�

A driving force in this area of research was the problem �posed by
Serre ������ of whether the Poincar�e series

P
�i�k�t

i of a Noetherian local
ring �R� m � k� is a rational function of t� After several special cases had
been solved positively� the general question was answered negatively by
Anick ���

In several theorems we studied the behaviour of ring�theoretic prop�
erties under �at extensions R � S � Avramov� Foxby� and Halperin ����
investigated the more general situation in which S is supposed of �nite
�at dimension over R� As we have seen� another �homologically nice�
type of extension is that of passing to a residue class modulo a regular
sequence� Avramov and Foxby have essentially completed a program
which aims at the uni�cation of these types of extensions by introducing
a suitable notion of �bre� see ��	�� ����� ���� ��
��



� The canonical module� Gorenstein rings

The concept of a canonical module is of fundamental importance in the
study of Cohen�Macaulay local rings� The purpose of this chapter is
to introduce the canonical module and derive its basic properties� By
de�nition it is a maximal Cohen�Macaulay module of type � and of
�nite injective dimension�

In the �rst two sections we investigate the injective dimension of
a module� and prove Matlis duality which plays a central role in
Grothendieck�s local duality theorem� Actually the canonical module
has its origin in this theory� Here the canonical module is introduced
independently of local cohomology which is an important notion in itself
and will be treated later in this chapter�

A ring which is its own canonical module is called a Gorenstein ring�
Next to regular rings and complete intersections� Gorenstein rings are
in many ways the �nicest� rings� Distinguished by the fact that they are
of �nite injective dimension� they have various symmetry properties� as
re�ected in their free resolution� their Koszul homology� and their Hilbert
function� The last aspect will be discussed in the next chapter�

Gorenstein rings of embedding dimension at most two are complete
intersections� The �rst non�trivial Gorenstein rings occur in embedding
dimension three� and they are classi�ed by the Buchsbaum�Eisenbud
structure theorem�

In the �nal section the canonical module of a graded ring is intro�
duced�

��� Finite modules of �nite injective dimension

In this section we study injective resolutions of �nite modules� We shall
see that the injective dimension of a �nite module M over a Noetherian
local ring R either is in�nite or equals the depth of R� and is bounded
below by the dimension of M� Thus� quite contrary to the behaviour
of projective dimension� the injective dimension� if it is �nite� does not
depend on the module� We introduce Gorenstein rings and show that
Gorenstein rings are Cohen�Macaulay rings�

De�nition ������ Let R be a ring� An R�module I is injective if the functor
HomR� � I� is exact�

��
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Notice that HomR� � I� is always left exact� Thus the R�module I is
injective if and only if HomR� � I� is right exact as well�

We now list some useful characterizations of injective modules�

Proposition ������ Let R be a ring and I an R�module� The following

conditions are equivalent	

�a� I is injective�

�b� given a monomorphism � � N �M of R�modules� and a homomorphism

� � N � I � there exists a homomorphism � � M � I such that � � � � ��
�c� given R�modules N � M� and a homomorphism � � N � I � there exists
a homomorphism � � M � I such that �jN � �� in other words� � � N � I
can be extended to a homomorphism � � M � I�
�d� for all ideals J � R� every homomorphism J � I can be extended to R�
that is� Ext�R�R�J� I� � 
�
�e� let M be an R�module with I �M� then I is a direct summand of M�

�f� Ext�R�M� I� � 
 for all R�modules M�

�g� ExtiR�M� I� � 
 for all R�modules M and all i � 
�

Proof� The ExtiR� � I� are the right derived functors of HomR� � I�� The
equivalence of �a�� �f� and �g� follows therefore from the general properties
of right derived functors� For details we refer to ������ Section ��

�a�  �b�� The monomorphism � � N � M induces the homomor�
phism

Hom��� I� � HomR�M� I� �� HomR�N� I��

where Hom��� I���� � � � � for all � � HomR�M� I�� By assumption�
Hom��� I� is an epimorphism� and so � � HomR�N� I� is of the form � ��
for some � � HomR�M� I�� Similarly one proves �b� �a��

The implications �b�� �c� and �c� �d� are clear�
�d�  �c�� We consider the set of all pairs �U���� where U is a

submodule of M with N � U� and where � extends �� We order this set
partially� �U�� ��� � �U�� ��� if and only if U� � U� and �� � ��jU� � By
Zorn�s lemma there exists a maximal element �U� � ��� in this set� Suppose
U� �� M� then we may choose x � M n U� � Set W � U� � Rx� then
W�U� �� R�J for some ideal J in R� Applying the functor HomR� � I� to
the exact sequence


 �� U� ��W �� R�J �� 
�

we obtain the exact sequence

HomR�W� I� �� HomR�U
� � I� �� Ext�R�R�J� I��

Since by assumption Ext�R�R�J� I� � 
� it follows from the exact sequence
that any homomorphism from U� to I can be extended to a homomor�
phism W � I � contradicting the maximality of �U� � ���� Thus we have
shown that U� � M�
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�c�  �e�� There exists a homomorphism � � M � I with �jI � idI �
Therefore� M � I �Ker ��

�e� �b�� Given a monomorphism � � N �M and a homomorphism
� � N � I � we want to �nd � � M � I such that � � � ��� In order to do
this� we construct a commutative diagram

N
�

����� M




��y ��y�
I

�
����� W

where � is injective� In fact� we may choose W � �M � I��C with
C � f���x�����x�� � x � Ng� � and � are the natural homomorphisms
arising from this situation� �This diagram is called the pushout of � and
���

Since � is injective by construction� it is split injective by our assump�
tion �e�� This means that there exists a homomorphism � � W � I with
� � � � idI � The homomorphism � � M � I � � � � � �� is the desired
extension of ��

Corollary ������ Let R be a Noetherian ring�

�a� If I is an injective R�module and S is a multiplicatively closed set of R�
then IS is an injective RS �module�

�b� If �I���� is a family of injective R�modules� then the direct sum

I �
M
��

I�

is an injective R�module�

Proof� �a� Let J be an ideal of R� Since R is Noetherian one has

Ext�RS
�RS�JRS � IS � �� Ext�R�R�J� I�S � 
�

Since every ideal of RS is extended from R� ����� yields that IS is an
injective RS �module�

�b� By ����� it is enough to show that for an ideal J of R� any homo�
morphism � � J �

L
�� I� extends to R� Since J is �nitely generated

there exists a �nite subset f��� � � � � �ng of � such that Im� �
Ln

i�� I�i �
We denote by �j the j�th component of �� Since I�i is injective we can
extend ��i � J � I�i to a homomorphism �i � R � I�i � It is clear that
� � R �

L
�� I� with ��a� �

Pn
i���i�a�� a � R� extends � to all of R�

Remark ����	� It is a simple exercise to see that for an arbitrary ring
R any direct product of injective modules is injective� It is however
essential to require that R is Noetherian �as we have done in ������ to
obtain a similar result for direct sums� In fact� this property characterizes
Noetherian rings� see ������ Theorem ���
�




��� Finite modules of �nite injective dimension �

An R�module M is divisible if for every regular element r � R� and
every element m �M� there exists an element m� �M such that m � rm��

Condition ������d� has the following consequence�

Corollary ������ Let R be a ring and I an R�module�
�a� If I is injective� then I is divisible�

�b� If R is a principal domain and I is divisible� then I is injective�

Proof� The property that I is divisible is equivalent to the property
that every homomorphism � � �r� � I � r regular� can be extended to R�
Therefore �a� and �b� follow from ������d��

For later applications we note the following result about change of
rings�

Lemma ������ Let � � R � S be a ring homomorphism� and let I be an

injective R�module� Then HomR�S� I� �equipped with the natural S�module
structure� is an injective S�module�

Proof� Let M be an S�module� There is a natural isomorphism

HomS �M�HomR�S� I�� �� HomR�M� I�

of S�modules� Indeed� to � � HomS�M�HomR�S� I�� one assigns �� �
HomR�M� I� where ���x� � ��x���� for all x � M� Thus the exactness of
the functor HomR� � I� on the category of S�modules �considered as R�
modules via �� implies the exactness of the functor HomS� �HomR�S� I���
This means that HomR�S� I� is an injective S�module�

De�nition ������ Let R be a ring and M an R�module� A complex

I� � 
 �� I� �� I� �� I� �� � � �

with injective modules I i is an injective resolution of M if H��I�� �� M
and H i�I�� � 
 for i � 
�

While it is obvious that every module has a projective resolution� it
is less obvious that it has an injective resolution� It is however clear that
an injective resolution can be constructed by resorting to the following
result�

Theorem ������ Let R be a ring� Every R�module can be embedded into an

injective R�module�

Proof� The Z�module Q is divisible� and hence injective� Therefore any
free Z�module F can be embedded into an injective Z�module I � We just
take su�ciently many copies of Q� If G is an arbitrary Z�module� then
G �� F�U� and we can embed G into I�U� It is immediate that I�U
is again divisible� and hence injective� Thus the theorem is proved for
Z�modules�
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Now let R be an arbitrary ring� and let M be an R�module� The map
� � M � HomZ�R�M� with ��x��a� � ax for all x �M and all a � R is an
R�module monomorphism� By our considerations above� the R�module
M can be embedded as a Z�module into an injective Z�module I � This
inclusion induces a monomorphism

� � HomZ�R�M� �� HomZ�R� I��

By ������ the R�module J � HomZ�R� I� is injective� and thus ��� � M � J
is the desired embedding�

Injective dimension� Let R be a ring and M an R�module� The injective
dimension of M �denoted inj dimM or inj dimR M� is the smallest integer
n for which there exists an injective resolution I� of M with Im � 
 for
m � n� If there is no such n� the injective dimension of M is in�nite�

The following observation is an immediate consequence of ����� and
the exactness of localization�

Proposition ������ Let R be a Noetherian ring� M an R�module and S a

multiplicatively closed set� Then inj dimRS
MS � inj dimR M�

In the next proposition we characterize the injective dimension of a
module homologically�

Proposition �����
� Let R be a ring and M an R�module� The following

conditions are equivalent	

�a� inj dimM � n�
�b� Extn��

R �N�M� � 
 for all R�modules N�

�c� Extn��
R �R�J�M� � 
 for all ideals J of R�

Proof� �a� �b� follows from the fact that Extn��
R �N�M� can be computed

from an injective resolution of M�
�b� �c� is trivial�
�c� �a�� Let


 ��M �� I� �� I� �� � � � �� In�� �� C �� 


be an exact sequence� where the modules Ij are injective� From the fact
that ExtiR�R�J� I� � 
 for i � 
 if I is an injective R�module� the above
exact sequence yields the isomorphism

Ext�R�R�J� C��� Extn��
R �R�J�M��

and so Ext�R�R�J� C� � 
 for all ideals J of R� This is condition �d� of
������ and so C is injective�

Proposition �����
 can be sharpened if R is Noetherian� We �rst
observe�
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Lemma ������� Let R be a Noetherian ring� M an R�module� N a �nite

R�module and n � 
 an integer� Suppose that ExtnR�R�p �M� � 
 for all

p � SuppN� Then ExtnR�N�M� � 
�

Proof� N has a �nite �ltration whose factors are isomorphic to R�p for
certain p � SuppN� Hence the lemma follows from the �additivity� of the
vanishing of ExtnR� �M��

Corollary ������� Let R be Noetherian and M an R�module� The following
conditions are equivalent	

�a� inj dimM � n�

�b� Extn��
R �R�p �M� � 
 for all p � SpecR�

Lemma ������ has another remarkable consequence�

Proposition ������� Let �R� m � k� be a Noetherian local ring� p a prime ideal

di�erent from m � and M a �nite R�module� If Extn��
R �R�q �M� � 
 for all

prime ideals q � V �p �� q �� p � then ExtnR�R�p �M� � 
�

Proof� We choose an element x � m n p � The element is R�p �regular� and
therefore we get the exact sequence


 �� R�p
x
�� R�p �� R��x� p � �� 


which induces the exact sequence

ExtnR�R�p �M�
x
�� ExtnR�R�p �M� �� Extn��

R �R��x� p ��M��

Since V �x� p � � fq � V �p � � q �� p g� Lemma ������ and our assumption
imply

Extn��
R �R��x� p ��M� � 
�

so that multiplication by x on the �nite R�module ExtnR�R�p �M� is a
surjective homomorphism� The desired result follows from Nakayama�s
lemma�

It is now easy to derive the following useful formula for the injective
dimension of a �nite module�

Proposition �����	� Let �R� m � k� be a Noetherian local ring� and M a �nite

R�module� Then

inj dimM � supfi � ExtiR�k�M� �� 
g�

Proof� We set t � supfi � ExtiR�k�M� �� 
g� It is clear that inj dimM 	 t�
To prove the converse inequality� note that the repeated application of
������ yields ExtiR�R�p �M� � 
 for all p � SpecR and all i � t� According
to ������ this implies inj dimM � t�
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Corollary ������� Let �R� m � k� be a Noetherian local ring and M a �nite

R�module� If x � m is an element which is R� and M�regular� then

inj dimR��x� M�xM � inj dimR M � ��

The proof is an immediate consequence of ������ and the following
result of Rees ��
��� Theorem ����

Lemma ������� Let R be a ring� and let M and N be R�modules� If x is

an R� and M�regular element with x �N � 
� then

Exti��
R �N�M� �� ExtiR��x��N�M�xM�

for all i 	 
�

Proof� We set �R � R��x� and �M � M�xM� and show that the functors

Exti��
R � �M�� i 	 
� from the category of �R�modules into itself are the

right derived functors of Hom�R� � �M�� To see this� we have to verify

��� the functors Exti��
R � �M�� i 	 
� are strongly connected�

��� the functors Ext�R� �M� and Hom�R� � �M� are equivalent�

��� Exti��
R �F�M� � 
 for all i � 
 and every free �R�module F �

�An axiomatic description of the Ext groups as functors in the second
variable is given in ������ Theorem 	���� Similarly the Ext groups can
be described axiomatically as functors in the �rst variable� see ������
Exercise 	��	��

��� is obvious� The exact sequence 
 �� M
x
�� M �� �M �� 


yields the exact sequence

HomR�N�M� �� HomR�N� �M� �� Ext�R�N�M�
x
�� � � �

Since HomR�N�M� � 
� and since x annihilates Ext�R�N�M�� we obtain
the natural isomorphism

Hom�R�N� �M� �� Ext�R�N�M��

This proves ���� Finally� ��� is clear since proj dimR F � � for every free
�R�module F �

We now present the main result of this section�

Theorem ������� Let �R� m � k� be a Noetherian local ring� and let M be a

�nite R�module of �nite injective dimension� Then

dimM � inj dimM � depthR�
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Proof� Let p � � p � � � � � � p d � m be a maximal chain of prime ideals

in SuppM� We show by induction on i that ExtiRp i
�k�p i��Mp i

� �� 
� In

particular� it will follow that ExtdR�k�M� �� 
 for d � dimM� so that
dimM � inj dimM by �������

If i � 
� then p �Rp �
� AssMp �

� and therefore HomRp �
�k�p ���Mp �

� �� 
�

Now suppose i � 
� We set B � Rp i
� then

Exti��
B �B�p i��B�Mp i

�p i��
�� Exti��

Rp i��
�k�p i����Mp i��

� �� 
�

by the induction hypothesis� and so Exti��
B �B�p i��B�Mp i

� �� 
� It follows
from ������ that

ExtiB�k�p i��Mp i
� �� 
�

To prove the equality inj dimM � depthR� we set r � inj dimM and
t � depthR� Let x � x�� � � � � xt be a maximal R�sequence� Then the
Koszul complex K��x� is a minimal free resolution of R��x� by ����� so
that proj dimR��x� � t and furthermore ExttR�R��x��M� is isomorphic
to the t�th Koszul cohomology H t�x�M�� It follows from �����
 that
H t�x�M� �� H��x�M� � M�xM �� 
� This implies r 	 t�

On the other hand� since depthR��x� � 
� there is an embedding
k � R��x� which induces an epimorphism

ExtrR�R��x��M� �� ExtrR�k�M�

since Extr��
R �N�M� � 
 for all R�modulesN� But ExtrR�k�M� �� 
 by �������

and so ExtrR�R��x��M� �� 
� It follows that t � proj dimR R��x� 	 r�

Gorenstein rings� We are now going to introduce an important class of
local rings� As for regular rings� this class can be characterized in terms
of homological algebra�

De�nition ������� A Noetherian local ring R is a Gorenstein ring if
inj dimR R � �� A Noetherian ring is a Gorenstein ring if its localization
at every maximal ideal is a Gorenstein local ring�

The Gorenstein property is stable under standard ring operations� To
begin with we show

Proposition ������� Let R be a Noetherian ring�

�a� Suppose R is Gorenstein� Then for every multiplicatively closed set S in

R the localized ring RS is also Gorenstein� In particular� Rp is Gorenstein

for every p � SpecR�
�b� Suppose x is an R�regular sequence� If R is Gorenstein� then so is

R��x�� The converse holds when R is local�

�c� Suppose R is local� Then R is Gorenstein if and only if its completion
�R is Gorenstein�
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Proof� �a� Let q be a maximal ideal of RS � The ideal q is the extension
of a prime ideal p in R� and so �RS �q

�� Rp � Let m be a maximal ideal
of R containing p � Then Rp is a localization of the Gorenstein local ring
Rm � From ���� the conclusion follows�

�b� Without restriction we may assume that R is local� Thus �b� is an
immediate consequence of �������

�c� Let k be the residue �eld of R� Use that ExtiR�k� R�b�� Exti	R�k�
�R��

In concluding this section we clarify the position of the Gorenstein
rings in the hierarchy of Noetherian local rings�

Proposition �����
� Let �R� m � k� be a Noetherian local ring� Then we have

the following implications	

R is regular R is a complete intersection R is Gorenstein

 R is Cohen�Macaulay�

Proof� The �rst implication is trivial� If R is regular� then its global
homological dimension is �nite �see ����	�� and hence ExtiR�k� R� � 
 for
i � 
� It follows from ������ that R is Gorenstein� In view of ������c�
we may as well assume that R is complete� Now ������b� implies that
a complete intersection is Gorenstein� The last implication follows from
�����	�

All the implications of �����
 are strict� This is clear for the �rst� and
will be shown for the other implications in the next section �see ��������
where we derive a di erent� more easily veri�able� characterization of
Gorenstein rings�

Exercises

������� Let R be a principal ideal domain with 	eld of fractions K � Prove that
�� K � K�R � � is an injective resolution of R�

������� Let k be a 	eld� and let R be a local k�algebra of 	nite k�dimension� Show
that the R�module Homk�R� k� is an indecomposable �see the de	nition before
������ injective R�module�

������� Let R be a Noetherian local ring� If there exists a non�zero 	nite injective
R�module� then deduce R is Artinian�

������� Let �R� m � k� be a Noetherian local ring� M �� � andN �� � 	nite R�modules�
If inj dimN � �� then deduce the following result of Ischebeck �����

depthR � depthM � supfi � ExtiR�M�N� �� �g�

In particular� if R admits a 	nite module of 	nite injective dimension� then show
that the depth of any 	nite R�module does not exceed the depth of R� �Bass�
conjecture claims more� in the above situation R is Cohen�Macaulay� In 
���� a
proof of this conjecture will be given� provided R contains a 	eld��
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������� Let R be a Gorenstein local ring� and M a 	nite R�module� Show
proj dimM � � if and only if inj dimM � �� �Foxby ���� proved the following
remarkable characterization of Gorenstein rings� if a Noetherian local ring
possesses a 	nite module M for which inj dimM � � and proj dimM � �� then
it is Gorenstein��

������� Let �R� m � k� be a Noetherian local ring� If inj dimk � �� show R is
regular�

��� Injective hulls� Matlis duality

We saw in Section ��� that any module M can be embedded into an
injective module� Here we will show that such an embedding can be
chosen minimal� In this case the corresponding injective module is
unique up to isomorphism� and is called the injective hull of M�

We will see that for a Noetherian ring R an injective module can be
uniquely written as a direct sum of indecomposable injective modules�
and the indecomposable injective R�modules are just the injective hulls
of the cyclic R�modules R�p � where p � SpecR� If �R� m � k� is a complete
Noetherian local ring� and E is the injective hull of k� then the func�
tor HomR� � E� establishes an anti�equivalence between the category of
Artinian R�modules and the category of �nite R�modules� This result is
known as the main theorem of Matlis duality�

De�nition ������ Let R be a ring and let N �M be R�modules� M is an
essential extension of N if for any non�zero R�submodule U of M one
has U �N �� 
� An essential extensionM of N is called proper if N �� M�

The following proposition gives a new characterization of injective
modules�

Proposition ������ Let R be a ring� An R�module N is injective if and only

if it has no proper essential extension�

Proof� Let N � M be an extension� If N is injective� then N is a direct
summand of M� Let W be a complement of N in M� Then N �W � 
�
and so� if the extension is essential� W � 
� It follows that N � M�

Conversely� suppose that N has no proper essential extension� Given
a monomorphism � � U � V and a homomorphism � � U � N� we want
to construct � � V � N such that � � � � ��

As in the proof of ����� we consider the pushout diagram

U
�

����� V




��y ��y�
N

�
����� W
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Here � is a monomorphism� since � is a monomorphism� Thus we may
consider N as a submodule of W � Employing Zorn�s lemma one shows
that there exists a maximal submodule D �W such that N �D � 
� and
so N may even be considered as a submodule of W�D� obviously�W�D
is an essential extension of N� It follows that N � W�D� since N has
no proper essential extension� and so W � N � D� Let � � W � N be
the natural projection of W onto the �rst summand� The composition
� � � � V � N is an extension of ��

De�nition ������ Let R be a ring andM an R�module� An injective module
E such that M � E is an essential extension is called an injective hull of
M� Our notation will be E�M� or ER�M��

The next proposition justi�es this name�

Proposition ����	� Let R be a ring and M an R�module�
�a� M admits an injective hull� Moreover� if M � I and I is injective� then

a maximal essential extension of M in I is an injective hull of M�

�b� Let E be an injective hull of M� let I be an injective R�module� and
� � M � I be a monomorphism� Then there exists a monomorphism � � E �
I such that the diagram

M ����� E




��y �
��� �

I

is commutative� where M � E is the inclusion map� In other words� the

injective hulls of M are the �minimal� injective modules in which M can be

embedded�

�c� If E and E� are injective hulls of M� then there exists an isomorphism

� � E � E� such that the diagram

M

�
��

J
J�

E
�

���� E�

commutes� Here M � E and M � E� are the inclusion maps�

Proof� �a� We embed M into an injective R�module I � Consider the set
S of all essential extensions M � N with N � I � Zorn�s lemma applied
to S yields the existence of a maximal essential extension M � E with
E � I � We claim that E has no proper essential extension� and this
together with ����� implies then that E is an injective hull of M� Indeed�
assume that E has a proper essential extension E�� Since I is injective
there exists � � E� � I extending the inclusionE � I � Suppose Ker� � 
�
then Im� � I is an essential extension of M �in I� properly containing
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E� a contradiction� On the other hand� since � extends the inclusion
E � I we have E �Ker� � 
� But this contradicts the essentiality of the
extension E � E��

�b� Since I is injective� � can be extended to a homomorphism
� � E � I � We have �jM � �� and so M �Ker� � Ker � � 
� Thus� since
the extension M � E is essential� we even have Ker� � 
�

�c� By �b� there is a monomorphism � � E � E� such that �jM equals
the inclusion M � E�� Im� is injective and hence a direct summand of
E�� However� since the extension M � E� is essential� � is surjective� and
therefore an isomorphism�

We may apply ����� to construct an injective resolution E��M� of
a module M which for obvious reasons is called the minimal injective

resolution of M� we let E��M� � E�M�� and denote by �� the embed�
ding M � E��M�� Suppose the injective resolution has already been
constructed up to the i�th step�


 �� E��M�
��

�� E��M� �� � � � �� Ei���M�
�i��

��� Ei�M��

We then de�ne Ei���M� � E�Cokeri���� and i is de�ned in the obvious
way�

It is clear that any two minimal injective resolutions of M are iso�
morphic� Moreover� if I� is an arbitrary injective resolution of M� then�
as is readily seen� E��M� is isomorphic to a direct summand of I��

We note a technical result about injective hulls which will be needed
later in this section�

Lemma ������ Let R be a Noetherian ring� S � R a multiplicatively closed

set and M an R�module� Then ER�M�S �� ERS
�MS��

Proof� We show that ER�M�S is an injective hull of the RS �module MS �
We know from ����� that ER�M�S is an injective RS �module� It remains
to be shown that ER�M�S is an essential extension of MS � To simplify
notation we set N � ER�M�� and pick x � NS � x �� 
� We want to prove
that RSx �MS �� 
�

There exists y � N such that RSy � RSx� Thus we may as well assume
that x � N� We consider the set of ideals S � fAnn�tx� � t � Sg� Since
R is Noetherian this set has a maximal element� say Ann�sx�� and since
RSx � RS �sx�� we may replace x by sx� and thus may assume that Ann�x�
is maximal in the set S�

Since N is an essential extension of M� we have Rx �M � Ix �� 
�
where I is an ideal in R� Let I � �a�� � � � � an�� and assume that aix � 
 in
NS for i � �� � � � � n� Then there exists t � S such that t�aix� � 
 in N for
i � �� � � � � n� But Ann�tx� � Ann�x�� by the choice of x� and so Ix � 
�
This is a contradiction� Hence aix �� 
 in NS for some i� and it follows
that RSx �MS �� 
�
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In the next theorem we determine the indecomposable injective R�
modules of a Noetherian ring R� Recall that an R�module M is de�

composable if there exist non�zero submodules M��M� of M such that
M � M� �M�� otherwise it is indecomposable�

Theorem ������ Let R be a Noetherian ring�

�a� For all p � SpecR the module E�R�p � is indecomposable�
�b� Let I �� 
 be an injective R�module and let p � Ass I � Then E�R�p � is
a direct summand of I � In particular� if I is indecomposable� then

I �� E�R�p ��

�c� Let p � q � SpecR� Then E�R�p � �� E�R�q �� p � q �

Proof� �a� Suppose E�R�p � is decomposable� Then there exist non�zero
submodules N�� N� of E�R�p � such that N� � N� � 
� It follows that
�N� �R�p �� �N� �R�p � � �N� �N���R�p � 
� On the other hand� since
R�p � E�R�p � is an essential extension� we have N��R�p �� 
 �� N��R�p �
This contradicts the fact that R�p is a domain�

�b� R�p may be considered as a submodule of I since p � Ass I � It
follows from ����� that there exists an injective hull E�R�p � of R�p such
that E�R�p � � I � As E�R�p � is injective� it is a direct summand of I �
Statement �c� follows from the next lemma�

Lemma ������ Let R be a Noetherian ring� p � SpecR� and M a �nite

R�module� Then
�a� AssM � AssE�M�� in particular one has fp g � AssE�R�p ��
�b� k�p � �� HomRp

�k�p �� E�R�p �p ��

Proof� �a� It is clear that AssM � AssE�M�� Conversely� suppose
q � AssE�M�� Then there exists a submodule U � E�M� which is
isomorphic to R�q � We have U �M �� 
 since the extension M � E�M�
is essential� and so q � Ass�U �M� � AssM�

�b� Since E�R�p �p
�� ERp

�k�p ��� we assume that �R� m � k� is local and
p � m is the maximal ideal� The k�vector space HomR�k� E�k�� may be
identi�ed with V � fx � E�k� � m x � 
g� it contains k� If V �� k� then
there exists a non�zero vector subspace W of V with k �W � 
� This�
however� contradicts the essentiality of the extension k � E�k��

The importance of the indecomposable injective R�modules results
from the following�

Theorem ������ Every injective module I over a Noetherian ring R is a

direct sum of indecomposable injective R�modules� and this decomposition

is unique in the following sense	 for any p � SpecR the number of inde�

composable summands in the decomposition of I which are isomorphic to

E�R�p � depends only on I and p �and not on the particular decomposition��
In fact� this number equals dimk�p �HomRp

�k�p �� Ip ��
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Proof� Consider the set S of all subsets of the set of indecomposable
injective submodules of I with the property� if F � S� then the sum of
all modules belonging to F is direct� The set S is partially ordered by
inclusion� By Zorn�s lemma it has a maximal element F�� Let E be the
sum of all the modules in F�� The module E is a direct sum of injective
modules� and hence by ����� is itself injective� Therefore E is a direct
summand of I � and we can write I � E �H � where H is injective since it
is a direct summand of I � Suppose H �� 
� then there exists p � AssH �
and so E�R�p � is a direct summand of H� see ������b�� Thus we may
enlargeF� by E�R�p �� contradicting the maximality of F�� We conclude
that H � 
 and I � E�

Suppose that I �
L

�� I� is the given decomposition� Then

HomRp
�k�p �� Ip � �� HomRp

�k�p ��
M
��

�I��p � ��
M
��

HomRp
�k�p �� �I��p ��

By ����	 we haveM
��

HomRp
�k�p �� �I��p � ��

M
���

HomRp
�k�p �� �I��p ��

where �� � f� � � � I� �� E�R�p �g� If we again use ����	� we �nally get

HomRp
�k�p �� Ip � ��

M
���

HomRp
�k�p �� �I��p � �� k�p �����

Bass numbers� Let R be a Noetherian ring� M a �nite R�module and
p � SpecR� The ��nite� number �i�p �M� � dimk�p �Ext

i
Rp
�k�p ��Mp � is

called the i�th Bass number of M with respect to p �
These numbers have an interpretation in terms of the minimal injective

resolution of M�

Proposition ������ Let R be a Noetherian ring� M a �nite R�module� and
E��M� the minimal injective resolution of M� Then

Ei�M� ��
M

p �SpecR

E�R�p ��i�p �M��

Proof� Let 
 �� M �� E��M�
��

�� E��M�
��

�� � � � be the minimal
injective resolution of M� and let p � SpecR� Since localization is exact�
it follows from ����� that


 ��Mp �� E��M�p

d�

�� E��M�p

d�

�� � � �

is the minimal injective resolution of Mp � here d i is the localization of i�
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The complex HomRp
�k�p �� E��M�p � is isomorphic to the subcomplex

C� of E��M�p � where

C i � fx � Ei�M�p � p Rp � x � 
g�

Let x be a non�zero element of C i� Since the extension Im d i�� � Ei�M�p

is essential� there exists a � Rp with ax � Im d i�� and ax �� 
� Since
p Rp annihilates x� we see that a �� p Rp � Hence a is a unit in Rp � and

x � Im d i��� It follows that d i�x� � 
� and hence d ijC i � 
 for all i�

Consequently we get ExtiRp
�k�p ��Mp � �� HomRp

�k�p �� Ei�M�p �� which by

����� implies the isomorphism asserted�

Among the Bass numbers the type of a module or a local ring is of
particular importance� Let �R� m � k� be a Noetherian local ring and M a
�nite module of depth t� In Chapter � we have already considered the
Bass number r�M� � �t�m �M�� and called it the type of M�

In the next theorem we give a new� extremely useful characterization
of Gorenstein rings�

Theorem �����
� Let �R� m � k� be a Noetherian local ring� The following

conditions are equivalent	

�a� R is a Gorenstein ring�

�b� R is a Cohen�Macaulay ring of type ��

Proof� Let x be a maximal R�sequence� By ������ R is Gorenstein if
and only if R��x� is� Similarly the properties in �b� are stable under
specialization modulo x� see ����� and ������ Thus we may assume
dimR � 
�

�a�  �b�� By �����	� R is an injective R�module� Since R is local� it
is indecomposable as an R�module� and so� since AssR � fm g� we have
that R �� ER�k�� see ������ It follows from ����	 that R is of type ��

�b� �a� follows from statement �e� in ������ below�

We use this new characterization of Gorenstein rings to give examples
of Cohen�Macaulay rings which are not Gorenstein� and of Gorenstein
rings which are not complete intersections�

Examples ������� �a� Let �R� m � k� be an Artinian local ring for which
m � � 
� For instance� R � k�X�� � � � � Xn���X�� � � � � Xn�� is such a ring� It
is easily seen that m � SocR� Hence we have r�R� � embdimR� and
conclude that R is Gorenstein if and only if embdimR � �� When R is
Gorenstein� it is even a complete intersection�

�b� In the following we present a method to produce a large class of
Artinian Gorenstein rings� let k be a �eld� S � k�X�� � � � � Xn� the polyno�
mial ring in n variables over k� m an integer� Sm the m�th homogeneous
part of S � and � � Sm � k a non�trivial k�linear map�
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For every j � N� we de�ne Ij � fa � Sj � ��a � Sm�j� � 
g� It is readily
seen that I �

L
j	� Ij is a graded ideal with Ij � Sj for j � m� Thus we

conclude that R � S�I is an Artinian �graded� local ring�
We claim that R is a Gorenstein ring� To see this� we determine the

socle of R� For any element a � S � we denote by �a its residue class
modulo I � Let j � N with 
 � j � m� and let �a � Rj � �a �� 
� Then by
the de�nition of I � there exists b � Sm�j such that ��a � b� �� 
� and so

�a � �b �� 
� But since �b belongs to the maximal ideal of R� it follows that
�a �� SocR� Therefore� SocR � Rm� As dimk Rm � �� it follows that R is
Gorenstein�

We give an explicit example for this construction� let � � S� � k be
the k�linear map with

��XiXj� � 
� � � i � j � n� ��X�
i � � �� i � �� � � � � n�

For this linear form � we get

I � �X�
� � X�

� � � � � � X
�
� � X�

n � X�X�� X�X�� � � � � Xn��Xn��

Therefore� R � S�I is Gorenstein� and is a complete intersection if and
only if n � ��

Matlis duality� Let �R� m � k� be a Noetherian local ring� We are going
to study the functor which takes the dual M� of an R�module M with
respect to the injective hull E of k� If M is a �nite module� the dual M�

need not be �nite� Indeed� we know from Exercise ������ that R� �� E is
�nite only if R is Artinian� However� the E�dual of a module of �nite
length also has �nite length� as we shall see now�

Proposition ������� Let �R� m � k� be a Noetherian local ring� E the injective

hull of k� and N an R�module of �nite length� For any R�module M we set

M� � HomR�M�E�� Then	
�a� one has

ExtiR�k� E�
��

�
k for i � 
�

 for i � 
�

�b� ��N� � ��N���
�c� the canonical homomorphism N � N�� is an isomorphism�

�d� ��N� � r�N�� and r�N� � ��N���
�e� if R is Artinian� then E is a �nite faithful R�module satisfying

�i� ��E� � ��R��
�ii� the canonical homomorphism R � EndR�E�� a �� �a� where �a�x� �
ax for all x � E� is an isomorphism�

�iii� r�E� � � and ��E� � r�R��
conversely� any �nite faithful R�module of type � is isomorphic to E�



�
� 
� The canonical module� Gorenstein rings

Proof� �a� ExtiR�k� E� � 
 for i � 
� as E is injective� furthermore
HomR�k� E� �� k� see ����	�

�b� We prove the equality asserted by induction on the length of N�
If ��N� � �� then N �� k� and the equality follows from �a�� Now suppose
that ��N� � �� Then there exists a proper submodule U � N� and we
obtain an exact sequence


 �� U �� N ��W �� 


with ��U� � ��N� and ��W � � ��N��
Since E is injective this sequence yields the dual exact sequence


 ��W � �� N� �� U� �� 
�

The induction hypothesis applies to U and W � and the additivity of
length gives the result�

�c� Again we use induction on ��N�� If ��N� � �� then N �� k�
and N�� �� k by �a�� Therefore it su�ces to show that the canonical
homomorphism � � k � HomR�HomR�k� E�� E� is not the zero map� Let
x � E� x �� 
� be a socle element of E� There exists � � HomR�k� E� with
���� � x� Then ������� � x �� 
� and so � �� 
� If ��N� � �� we choose as
before an exact sequence


 �� U �� N ��W �� 


with ��U� � ��N� and ��W � � ��N��
The natural homomorphisms into the bidual modules induce a com�

mutative diagram


 ����� U ����� N ����� W ����� 
��y ��y ��y

 ����� U�� ����� N�� ����� W �� ����� 


where the outer vertical arrows are isomorphisms by our induction hy�
pothesis� The snake lemma ������� Theorem ���� applied to this diagram
implies N � N�� is an isomorphism�

�d� The module �N�m N�� is the kernel of the linear map N� � �m N��

which assigns to every � � N� its restriction to m N� Hence � � �N�m N��

if and only if m ��N� � ��m N� � 
� In other words�

�N�m N�� � f� � N� � m � � � 
g � SocN� �

Thus we get ��N� � dimk N�m N � dimk�N�m N�� � dimk SocN
� � r�N���

The second equality follows from the �rst by �c��
�e� By �b� we have ��E� � ��R�� � ��R� � �� In particular� E is a

�nite R�module� Next it follows from �c� that the canonical homomor�
phism � � R � HomR�HomR�R� E�� E� is an isomorphism� If we identify
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HomR�R� E� with E� then � identi�es with the canonical homomorphism
R � EndR�E�� A module whose endomorphism ring is R is necessarily
faithful� Statement �e��iii� follows from �d��

Finally� let N be a faithful R�module of type �� Then N� is cyclic� and
so N �� HomR�R�I� E� for some ideal I � Here we have used �c� and �d��
But since N is faithful� I � 
 and so N �� E�

Proposition ������ may be viewed as the Matlis duality theorem for
�nite Artinian modules� Now we prove its general form� It will be of
crucial importance for the local duality theorem of Grothendieck� which
we will discuss in Section ����

Let �R� m � k� be a complete local ring� We denote by M�R� the
category of R�modules� by A�R� the full subcategory of Artinian R�
modules and by F�R� the full subcategory of �nite R�modules� Let E
be an injective hull of k� We set T � � � HomR� � E�� The contravariant
functor T �M�R��M�R� is exact� Its restriction to A�R� or F�R� will
again be denoted by T �

Theorem ������ �Matlis�� Let �R� m � k� be a Noetherian complete local ring�

N � A�R� and M � F�R�� Then

�a� T �R� �� E and T �E� �� R�

�b� T �M� � A�R� and T �N� � F�R��

�c� there are natural isomorphisms T �T �N�� �� N and T �T �M�� ��M�

�d� the functor T establishes an anti�equivalence between the categories

A�R� and F�R��

Proof� We proceed in several stages� ��� For all n � N we set En �
fx � E � m nx � 
g� Let x � E� x �� 
� then Ass�Rx� � AssE � fm g� see
����	� Hence there exists an integer n such that m nx � 
� This proves that
E �

S
n	�En � lim

��
En�

��� The natural homomorphism R � EndR�E� � T �E� is an isomor�
phism� by �������e��ii�� the natural homomorphisms �n � R�m n � T �En�
are isomorphisms� and we obtain commutative diagrams such as

R ����� T �E���y ��y
R�m n


n
����� T �En�

in which the only homomorphisms are the natural ones� As R is complete�
the map R � lim

��
R�m n is an isomorphism� Likewise T �E�� lim

��
T �En�

is an isomorphism since by ������ Theorem ���	� and ��� we have
lim
��

T �En� � T �lim
��

En� � T �E�� It follows that the natural homomor�

phism R � T �E� is an isomorphism as well� This proves �a��
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��� E is Artinian� let E � U� � U� � U� � � � � be a descending chain
of submodules of E� This chain induces a sequence of epimorphisms

R � T �E� �� T �U�� �� T �U�� �� � � �

Thus we can write T �Ui� � R�Ii� where �
� � I� � I� � I� � � � � is an
ascending chain of ideals� Since R is Noetherian this chain stabilizes�
and so there exists an integer i� such that T �Ui� � T �Ui��� for i 	 i��
We will show that Ui � Ui�� for i 	 i�� Suppose that Ui �� Ui��� but
T �Ui� � T �Ui���� Let V � Ui�Ui��� then V �� 
� but T �V � � 
� However�
V is a subquotient of E� and so AssV � fm g� see ����	� In other
words� there exists a monomorphism k � V � Applying T � we obtain an
epimorphism 
 � T �V �� T �k� � k� a contradiction�

��� If N is Artinian� then there exists an embedding N � En for some
integer n� SocN is a �nite dimensional k�vector space since N is Artinian�
Moreover� the extension SocN � N is essential� In fact� if x � N� then
Rx is a �nite Artinian module� and therefore Rx � SocN � SocRx �� 
�
Let N � I be an embedding of N into an injective R�module� By ������
an injective hull E�N� can be chosen as a maximal essential extension
of N in I � Since the extension SocN � N is essential� E�N� is likewise
an injective hull of SocN� Suppose SocN �� kn� then it follows that
N � E�SocN� �� En�

The remaining assertions of the theorem now follow easily�

�b� Let N � A�R�� then by ��� there exists an embedding N � En

which by ��� induces an epimorphism Rn � T �N�� therefore T �N� �
F�R�� Conversely� suppose M � F�R�� We choose an epimorphism
Rn � M� This epimorphism yields an embedding T �M� � En� The
module E is Artinian by ���� and so any submodule of En is Artinian� It
follows that T �M� � A�R��

�c� By ��� there exists an integer n and an exact sequence 
 � N �
En �W � 
 which we may complete to a commutative diagram


 ����� N ����� En ����� W ����� 





��y �

��y �

��y

 ����� T �T �N�� ����� T �T �En�� ����� T �T �W �� ����� 


whose vertical maps are just the canonical homomorphisms�

It follows from ��� that � is an isomorphism� Therefore� by the snake
lemma� � is an isomorphism if and only if � is a monomorphism� Let
x � Ker �� then ��x� � 
 for all � � HomR�W�E�� Suppose x �� 
� and
let � � Rx� E be the homomorphism which maps x to a non�zero socle
element of E� Then ��x� �� 
� and since E is injective� � can be extended
to a homomorphism � � W � E� We then have ��x� �� 
� a contradiction�
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Similarly one proves that the natural linear map M � T �T �M�� is an
isomorphism� starting with the exact sequence 
 � U � Rn � M � 

and using the fact that the natural homomorphism R � T �T �R�� is an
isomorphism �which is an immediate consequence of �����

Exercises

������� Let �R� m � k� be a Noetherian local ring� E an injective hull of k� Prove�

�a� The natural homomorphism E � E �R
�R is an isomorphism� In particular� E

is an �R�module�
�b� As an �R�module� E 
� E 	R�k��
�c� For all 	nite R�modules N there exists a natural isomorphism

HomR�N� E� 
� Hom 	R� �N�E��

�If this problem seems to be too di�cult� the reader may consult ����� Theorem
������

������� Let �R� m � be an Artinian local ring� Show the following conditions are
equivalent�
�a� R is a Gorenstein ring�
�b� all 	nite R�modules are re�exive�
�c� I � AnnAnn I for all ideals I of R�
�d� for all non�zero ideals I and J one has I 	 J �� ��

��� The canonical module

So far we have studied �nite modules of �nite injective dimension over
Noetherian local rings� but we have ignored the question as to under what
circumstances such modules actually exist� A Gorenstein ring R admits
plenty of �nite modules of �nite injective dimension� any module of
�nite projective dimension has �nite injective dimension as well� simply
because R itself has �nite injective dimension by de�nition� Also any
Artinian local ring �R� m � k�� Gorenstein or not� admits a �nite injective
module � the injective hull of k� The question becomes more delicate
for non�Gorenstein local rings of positive dimension� One of the main
results of this section will be that any Cohen�Macaulay ring which
is a homomorphic image of a Gorenstein ring has a �nite module of
�nite injective dimension� Moreover� this module can be chosen to be a
maximal Cohen�Macaulay module of type �� It will be shown that such
a module is unique up to isomorphism� It is called the canonical module
of R� For a Gorenstein ring the canonical module is just the ring itself�

We shall study the behaviour of the canonical module under �at
extensions� localizations� and specializations�

De�nition ������ Let �R� m � k� be a Cohen�Macaulay local ring� A maximal
Cohen�Macaulay module C of type � and of �nite injective dimension is
called a canonical module of R�
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It is immediate �see ����� and ������� that C is a canonical module of
R if and only if

dimk Ext
i
R�k� C� � 
id � d � dimR�

Two questions arise� when does a canonical module exist� and is it
uniquely determined up to isomorphism# This question has a simple
answer in the case dimR � 
� by ������ ER�k� is the uniquely determined
canonical module� To prove uniqueness in general� we will need the
following two results�

Lemma ������ Let �R� m � k� be a Noetherian local ring� � � M � N a

homomorphism of �nite R�modules� and x an N�sequence� If �� R��x� is
an isomorphism� then � is an isomorphism�

Proof� The surjectivity of � follows from Nakayama�s lemma� In order
to prove that � is injective� we may assume without loss of generality
that the sequence x consists of one element� say x� Let K � Ker�� since
x is N�regular� the exact sequence


 �� K ��M �� N �� 


induces the exact sequence


 �� K�xK ��M�xM �� N�xN �� 
�

By assumption� K�xK � 
� and hence K � 
� by Nakayama�s lemma�

Proposition ������ Let �R� m � k� be a Cohen�Macaulay local ring of dimen�

sion d � and C a maximal Cohen�Macaulay R�module�

�a� Suppose M is a maximal Cohen�Macaulay R�module with ExtjR�M�C�
� 
 for all j � 
� Then HomR�M�C� is a maximal Cohen�Macaulay

module� and for any R�sequence x we have

HomR�M�C�� R�xR �� HomR�xR�M�xM�C�xC��

�b� Assume in addition that C has �nite injective dimension� and M is a

Cohen�Macaulay R�module of dimension t� Then

�i� ExtjR�M�C� � 
 for j �� d � t�

�ii� Extd�tR �M�C� is a Cohen�Macaulay module of dimension t�

Proof� �a� Let x � m be an R�regular element� Since C is a maximal
Cohen�Macaulay module� the element x is C�regular as well� and one
has the exact sequence


 �� C
x
�� C �� C�xC �� 


which by our assumtion induces the exact sequence


 �� HomR�M�C�
x
�� HomR�M�C� �� HomR�M�C�xC� �� 
�
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Therefore�

HomR�xR�M�xM�C�xC� �� HomR�M�C�xC�

�� HomR�M�C��xHomR�M�C�
�� HomR�M�C�� R�xR�

For an arbitrary R�sequence x one proceeds by induction on the
length of the sequence�

�b��i� It follows from �����
�e� that ExtjR�M�C� � 
 for j � d� t� Next

we show by induction on t that ExtjR�M�C� � 
 for any t�dimensional
Cohen�Macaulay module M and all j � d � t� If t � 
� then the claim
follows from �����	� Now suppose that t � 
� and let x � m be an
M�regular element� The exact sequence


 ��M
x
��M ��M�xM �� 


induces the exact sequence

ExtjR�M�C�
x
�� ExtjR�M�C� �� Extj��

R �M�xM�C��

M�xM is a �t� ���dimensional Cohen�Macaulay module� Hence by the

induction hypothesis we have Extj��
R �M�xM�C� � 
 for j � d � t� and

so Nakayama�s lemma implies that ExtjR�M�C� � 
 for j � d � t�
�ii� We proceed by induction on t� The assertion is trivial if t � 
�

Assume now dimM � t � 
� and let x � m be an M�regular element� By
�i�� the exact sequence


 �� M
x
��M ��M�xM �� 


yields the exact sequence


 �� Extd�tR �M�C�
x
�� Extd�tR �M�C� �� Extd��t���

R �M�xM�C� �� 
�

Thus x is regular on Extd�tR �M�C�� and so it follows from our induction

hypothesis that Extd�tR �M�C� is Cohen�Macaulay�

We are now ready to prove the uniqueness of the canonical module�

Theorem ����	� Let �R� m � k� be a Cohen�Macaulay local ring� and let C
and C � be canonical modules of R� Then
�a� C�xC �� ER��x��k� for any maximal R�sequence x�

�b� the canonical modules C and C � are isomorphic�

�c� HomR�C�C �� �� R� and any generator � of Hom�C�C �� is an isomor�

phism�

�d� the canonical homomorphism R � EndR�C� is an isomorphism�
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Proof� �a� By ������� C�xC is an injective R��x��module of type �� Since
Spec�R��x�� � fm ��x�g� ����� yields the assertion�

�b� and �c�� It follows from �a� that

C�xC �� ER��x��k� �� C ��xC ��

Now ����� and ������ imply that

HomR�C�C �� �R R��x� �� HomR��x��C�xC�C ��xC �� �� R��x��

and so HomR�C�C �� is cyclic by Nakayama�s lemma� Let � be a generator
of this module� Then the natural inclusion R� � HomR�C�C �� induces
the above isomorphism modulo x� By ������ HomR�C�C �� is a maximal
Cohen�Macaulay module� Thus ����� implies that R�� HomR�C�C �� is
an isomorphism� In particular it follows that R� is a maximal Cohen�
Macaulay module� We may therefore apply ����� once again to conclude
that R � R� is an isomorphism� too�

Next we show that � � C � C � is an isomorphism� Indeed� �� R��x�
can be identi�ed with a generator of End�ER��x��k��� It follows therefore
from �������e��ii� that ��R��x� is an isomorphism� Since C � is a maximal
Cohen�Macaulay module� ����� implies that � is an isomorphism� It is
clear that any other isomorphism C � C � is a generator of HomR�C�C ���
too�

�d� is proved similarly�

In view of this result we may talk of the canonical module of R
provided it exists� From now on we will denote the canonical module of
R by �R �

The next theorem lists some useful and often applied change of ring
formulas for the canonical module�

Theorem ������ Let �R� m � k� be a Cohen�Macaulay local ring with canon�

ical module �R � Then

�a� �R�x�R
�� �R�xR for all R�sequences x� that is� the canonical module

specializes�

�b� ��R�p
�� �Rp

for all p � SpecR� that is� the canonical module localizes�

�c� ��R�b�� � 	R �

Proof� �a� First notice that x is an �R�sequence� too� The �R�xR��module
�R�x�R has �nite injective dimension� see ������� Since r��R�x�R� �
r��R� � �� the module �R�x�R is the canonical module of R�xR� by
de�nition�

�b� The Rp �module ��R�p has �nite injective dimension �see ������ and
is again a maximal Cohen�Macaulay module� It remains to be shown
that r���R�p � � �� Let x be a sequence of elements of R whose image in
Rp is a maximal Rp �sequence� Then by �������

M � ��R�p �x��R�p
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is an injective module over the Artinian local ring A � Rp �xRp � It follows
from ����	 and ����� that

M �� EA�k�p ��r � r � r�M��

From ������ we get

HomA�M�M� �� Ar� ����

On the other hand� from ������a� we obtain

HomA�M�M� �� HomR�xR��R�x�R � �R�x�R�p���
�� HomR�xR��R�xR � �R�xR�p

�� �R�xR�p � A�

For the last isomorphism we used the fact that the endomorphism ring
of the canonical module of S � R�xR is isomorphic to S� see ������ A
comparison of ��� and ��� yields r � �� as desired�

�c� The �bre of R � �R is k� so that by �atness� ExtiR�k� �R�b ��
Exti	R�k� ��R�b� for all i� This implies the assertion�
Existence of the canonical module� Our next goal is to clarify for which
Cohen�Macaulay local rings the canonical module exists�

Theorem ������ Let �R� m � k� be a Cohen�Macaulay local ring� The fol�

lowing conditions are equivalent	

�a� R admits a canonical module�

�b� R is the homomorphic image of a Gorenstein local ring�

One direction of the proof resorts to the principle of idealization due
to Nagata� let R be a ring and M an R�module� We construct a ring
extension R � R �M of R� called the trivial extension of R by M� As an
R�module� R �M is just the direct sum of R and M� The multiplication
is de�ned by

�a� x��b� y� � �ab� ay� bx�

for all a� b � R and x� y �M�
Some basic facts on trivial extensions are the subject of Exercise

������� Here we will only use that R �M is a ring� and if M is �nite and
R is a Noetherian �or Artinian� local ring with maximal ideal m � then so
is R �M with maximal ideal m �M � f�a� x� � R �M � a � m g�

Proof of ������ �a�  �b�� The ring R is a homomorphic image of the
trivial extension R � �R � We will show that R � �R is a Gorenstein ring�
Let x be an R�regular sequence of maximal length� It is easy to see that
x is a maximal �R ��R��sequence as well� and that

�R ��R��x�R ��R� �� �R�xR� � ��R�x�R��
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By ������ �R�x�R
�� ER�xR�k�� Bearing in mind the characterization �����


of Gorenstein rings� we may assume that R is Artinian� and it remains to
be shown that the type of the Artinian local ring R� � R � ER�k� is ��

Let �a� x� � SocR�� then �b� 
��a� x� � �ba� bx� � �
� 
� for all b � m �
This implies that a � SocR and x � SocER�k��

Assume that a �� 
� The exact sequence

R
a
�� R �� R��a� �� 


induces the exact sequence 
 �� ER��a��k� �� ER�k�
a
�� ER�k� �see

�������
As

��ER��a��k�� � ��R��a�� � ��R� � ��ER�k��

�see �������� multiplication by a on ER�k� cannot be the zero map� There�
fore there exists y � ER�k� with ay �� 
� and so �
� y��a� x� � �
� ay� �� �
� 
��
a contradiction�

Our conclusion is that Soc�R � ER�k�� �� SocER�k�� and therefore by
������� r�R � E�k�� � ��

For the proof of ������b�  �a� we note the following more general
result�

Theorem ������ Let �R� m � be a Cohen�Macaulay local ring�

�a� The following conditions are equivalent	

�i� R is Gorenstein�

�ii� �R exists and is isomorphic to R�
�b� Let � � �R� m � � �S� n � be a local homomorphism of Cohen�Macaulay

local rings such that S is a �nite R�module� If �R exists� then �S exists

and

�S
�� ExttR�S� �R�� t � dimR � dimS�

Proof� �a��i�� �ii� follows from ������ and �����
�
�b� By virtue of ������b�� and since dim S � dim�R�Ker��� there

exists an R�sequence x � x�� � � � � xt with xi � Ker�� t � dimR � dim S �
Set �R � R��x�R� as �R��x��R

�� ��R �see ������� we have ExttR�S� �R� ��
Hom�R�S� ��R�� by ������� Thus we may assume from the beginning that
dimR � dimS �

Let d � dimR� and y � y�� � � � � yd an R�sequence� Then y is �R�
regular and HomR�S� �R��regular as well� since both modules are Cohen�
Macaulay modules of dimension d� see ������ It follows from ������a�
that

HomR�S� �R��R R� �� HomR� �S �� �R���

where R� � R��y�R� and S � � S��y�S � In view of Exercise ������ it
su�ces to show that HomR��S �� �R� � is the canonical module of S �� Since
�R�

�� ER��k�� ����� implies that HomR� �S �� ER��k�� is an injective S ��module�
and so HomR� �S �� ER��k�� �� ES ��k�r for some r � 
� By �������b� and �e��i�
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we get ��ES ��k�� � ��S �� � ��HomR� �S �� ER��k��� � r ��ES ��k��� therefore
r � ��

A noteworthy case of ����	 is the following� let k be a �eld� and R an
Artinian local k�algebra� Then Homk�R� k� is the canonical module of R�

A Noetherian complete local ring is a homomorphic image of a
regular local ring� see A���� Regular local rings are Gorenstein �see
�����
�� and so ����� implies

Corollary ������ A complete Cohen�Macaulay local ring admits a canonical

module�

Corollary ������ Let �R� m � k� be a regular local ring and I � m an ideal

of height g such that S � R�I is Cohen�Macaulay� Let

F� � 
 �� Fg �� Fg�� �� � � � �� F� �� 


be the minimal free R�resolution of S � and let G
�
� HomR�F�

� R� be the

dual complex

G� � 
 �� Gg �� Gg�� �� � � � �� G� �� 
�

where Gi � F�g�i for i � 
� � � � � g� Then G� is a minimal free R�resolution of
�S �

Proof� Note that g is indeed the length of the minimal free resolution of
S� see �����
� One has ExtiR�S� R� �� H i�F�

�
� for all i 	 
� The corollary

follows therefore from ������b� and ����	�

Further properties of the canonical module� In the next theorem some
useful characterizations of the canonical module will be given�

Theorem �����
� Let �R� m � k� be a Cohen�Macaulay local ring of dimen�

sion d � and let C be a �nite R�module� Then the following conditions are

equivalent	

�a� C is the canonical module of R�
�b� �i�p � C� � 
ih for all i 	 
 and all p � SpecR� where h � height p �

�c� for all integers t � 
� �� � � � � d � and all Cohen�Macaulay R�modules M
of dimension t one has

�i� Extd�tR �M�C� is a Cohen�Macaulay R�module of dimension t�

�ii� ExtiR�M�C� � 
 for all i �� d � t�

�iii� there exists an isomorphism M � Extd�tR �Extd�tR �M�C�� C� which
in the case d � t is just the natural homomorphism from M into the

bidual of M with respect to C�
�d� for all maximal Cohen�Macaulay R�modules M one has

�i� HomR�M�C� is a maximal Cohen�Macaulay R�module�
�ii� ExtiR�M�C� � 
 for i � 
�
�iii� the natural homomorphism M � HomR�HomR�M�C�� C� is an

isomorphism�
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Proof� �a� � �b�� The canonical module localizes� see ������ therefore
�a� implies �b�� Choosing p � m � we obtain �a� from �b��

�a�  �c�� �i� and �ii� have already been shown in ������ From the
Rees lemma ������ and �i� one deduces that

Extd�tR �Extd�tR �M�C�� C� �� HomR�xR�HomR�xR�M�C�xC�� C�xC�

for an R�sequence x of length d � t which is contained in AnnR M�
Replacing R by R�xR� we may as well assume that t � d � Since by ������
HomR�M�C� � R�yR �� HomR�yR �M�yM�C�yC� for any R�sequence y�
we may �nally assume that dimR � 
� In this case however C �� ER�k��
and the assertion follows from �������

�d� is a special case of �c��
�d�  �a�� If we choose M � R� then it follows from �i� that C is a

maximal Cohen�Macaulay module�
According to Exercise ������� for all i 	 d the i�th syzygy module of

the residue class �eld k of R is 
 or a maximal Cohen�Macaulay module�
Therefore �ii� implies that ExtiR�k� C� � 
 for i � d � and hence we have
inj dimC � �� see �������

It remains to be shown that r�C� � �� By ������a�� the conditions in
�d� are stable under reduction modulo R�sequences� Thus� since the type
of C is also stable under reduction modulo R�sequences� we may restrict
ourselves to the case where R is Artinian� Then the module C is necessarily
injective� and so it must be isomorphic to ER�k�

r � r � r�C�� Now it follows

from ������ that Rr� �� HomR�HomR�R�C�� C�� Consequently condition
�iii� implies r�C� � ��

We complement the previous theorem with some extra information
about the Exti� � �R�� Observe the analogy of the statements with �������
The canonical module takes the position of the injective hull when one
deals with arbitrary Cohen�Macaulay local rings rather than Artinian
local rings�

Proposition ������� Let R be a Cohen�Macaulay local ring of dimension

d with canonical module �R � and M a Cohen�Macaulay R�module of di�

mension t� Then

�a� ��M� � r�Extd�tR �M��R���

�b� r�M� � ��Extd�tR �M��R���
�c� �R is a faithful R�module� and

�i� r��R� � �� ���R� � r�R��
�ii� End��R� � R�

Proof� There exists an �R�sequence x of length d � t in AnnM� and we
get

Extd�tR �M��R� �� HomR�xR�M��R�xR��
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So we may assume that dimR � dimM� By ������ we may further assume
that dimR � 
� Since the canonical module of an Artinian local ring
is the injective hull of the residue class �eld� all assertions follow from
�������

The previous proposition has an interesting application�

Corollary ������� Let R be a Cohen�Macaulay local ring� M a Cohen�

Macaulay R�module and p � SuppM� Then r�Mp � � r�M��

Proof� Pick q � Ass� �R�p �R�� then dim �R�q � dimR�p � see ������� There�

fore we obtain a �at local homomorphism Rp � �Rq whose �bre is of

dimension zero� From ������ it follows that r�Mp � � r� �Mq �� Since R � �R

is �at with �bre k� ������ once again applied gives r�M� � r� �M�� We
may therefore assume that R is complete� By A���� R is the epimorphic
image of complete regular local S � and by Exercise �������c� we have
rS�M� � rR�M�� Thus we may assume that R is regular� In particular R is
Gorenstein� Hence� by ����	� R has a canonical module and is isomorphic
to R� and so ������ yields

r�Mp � � ��Extd�tRp
�Mp � Rp �� � ��Extd�tR �M�R�p �

� ��Extd�tR �M�R�� � r�M��

where d � dimR and t � dimM� Here we have used that� by ������

d � t � dimR � dimM � dimR � dimR�p � �dimM � dimM�p M�

� dimRp � dimMp �

The canonical module and �at extensions� We will show that the canonical
module behaves well under �at ring extensions� For the proof we need

Proposition ������� Let �R� m � be a Cohen�Macaulay local ring� and C a

�nite R�module� The following conditions are equivalent	

�a� C is the canonical module of R�
�b� C is a faithful maximal Cohen�Macaulay R�module of type ��

Proof� �a� �b�� The canonical module is a maximal Cohen�Macaulay
module of type �� by de�nition� and faithful by �������

�b�  �a�� Note �rst that C has one of the properties in �a� or

�b� if and only if the completion �C has this property� For instance�
the property of being faithful means that the canonical homomorphism

� � R � HomR�C�C� is injective� Since R � �R is faithfully �at� � is
injective if and only if its completion is injective� The reader should
check the other properties�

We may now assume that R is complete� Then� by ������ R has a
canonical module �R � By �������b�� HomR�C��R� is a cyclic module� say
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R�I � so that by �����
�d��iii� we have C �� HomR�R�I� �R�� It follows that
I annihilates C � Since we assume that C is faithful� we get I � 
� and
hence C �� HomR�R��R� �� �R �

Theorem �����	� Let �R� m � be a Cohen�Macaulay local ring� and �R� m ��
�S� n � a �at homomorphism of local rings�

�a� If �R exists and S�m S is Gorenstein� then �S � �R � S �
�b� If C is a �nite R�module� and S a Cohen�Macaulay ring with canonical

module �S � C � S � then S�m S is Gorenstein and C �� �R �

Proof� A �at local homomorphism is faithfully �at� Thus we see as in
the proof of the previous proposition that a �nite R�moduleM is faithful
if and only if M �R S is a faithful S�module� By ������� we have

r��R � S� � r�S�m S�r��R� � ��

hence �a� follows from �������
Part �b� is proved similarly� by ������� � � r�S�m S�r�C� and C is

a maximal Cohen�Macaulay module� It follows that r�S�m S� � � and
r�C� � �� Therefore S�m S is Gorenstein �see �����
�� and in view of
������� C is the canonical module of R�

Corollary ������� Let � � �R� m � � �S� n � be a �at homomorphism of

Noetherian local rings� Then S is Gorenstein if and only if R and S�m S
are Gorenstein�

The canonical module for non�local rings� We saw in ����� that the canon�
ical module localizes� This suggests the following

De�nition ������� Let R be a Cohen�Macaulay ring� A �nite R�module
�R is a canonical module of R if ��R�m is a canonical module of Rm for
all maximal ideals m of R�

Remark ������� In contrast to the local case� a canonical module is in
general not unique �up to isomorphism�� Indeed� let R be a Cohen�
Macaulay ring �not necessarily local�� and let �R and ��

R be canonical
modules of R� We set I � HomR��R � �

�
R�� Localizing at a prime ideal

and using ����� and ����� we see that Ip
�� Rp for all p � SpecR�

We de�ne an R�module homomorphism � � I��R � ��
R by ����x� �

��x� for all � � I and all x � �R � Then � is an isomorphism since it is
locally an isomorphism�

Conversely� suppose �R is a canonical module of R and I is a locally
free R�module of rank�� Then I � �R is locally isomorphic to �R � and
so is a canonical module of R� Thus a canonical module of a Cohen�
Macaulay ring is only unique up to a tensor product with a locally free
module of rank ��
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Proposition ������� Let R be a Cohen�Macaulay ring and �R a canonical

module of R�
�a� The following conditions are equivalent	

�i� �R has a rank�

�ii� rank�R � ��
�iii� R is generically Gorenstein� i�e� Rp is Gorenstein for all minimal

prime ideals p of R�
�b� If the equivalent conditions of �a� hold� then �R can be identi�ed with

an ideal in R� For any such identi�cation� �R is an ideal of height � or

equals R� In the �rst case� the ring R��R is Gorenstein�

Proof� �a��i� �ii�� Let p � SpecR be a minimal prime ideal� Then �Rp

��
��R�p is a free Rp �module� and Rp is Artinian� The canonical module of
an Artinian local ring is the injective hull E of the residue class �eld� and
so the free Rp �module ��R�p has rank� since E is indecomposable� see
������ The implications �ii� �iii� and �iii� �i� are clear in view of ����	�

�b� The canonical module �R is torsion�free since all R�regular el�
ements are �R�regular as well� According to Exercise ������� �R is
isomorphic to a submodule of R� Therefore it may be identi�ed with an
ideal in R which we again denote by �R �

If dimR � 
� then necessarily �R � R� We may therefore assume
that dimR � 
� and that �R is a proper ideal of R� Then �R must
contain an R�regular element since rank�R � �� Let p be a prime ideal
containing �R � Using the fact that �RRp is a maximal Cohen�Macaulay
Rp �module we then get dimRp �� 	 dim�Rp ��RRp � 	 depth�Rp ��RRp � 	
depthRp �� � dimRp ��� This shows that height�R � �� and that R��R

is Cohen�Macaulay�
Finally we prove that R��R is Gorenstein� To show this� we may

assume that R is local� Applying the functor HomR� � �R� to the exact
sequence


 �� �R �� R �� R��R �� 
�

and using ������d� we obtain the exact sequence


 �� �R �� R �� Ext�R�R��R � �R� �� Ext�R�R��R� � 
�

This implies R��R
�� Ext�R�R��R� �R�� Thus the conclusion follows from

����	�

Corollary ������� Let R be a Cohen�Macaulay normal domain with canon�

ical module �R � Then �R is isomorphic to a divisorial ideal� In particular�

if R is factorial� then R is Gorenstein�

Proof� By ������� �R is an ideal� It satis�es the Serre condition �S���
and moreover� ��R�p

�� �Rp

�� Rp for all prime ideals of height �� This
follows from ����	 since� by normality� Rp is regular for all prime ideals
of height �� Thus we have shown that �R is a re�exive ideal� see ������
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A re�exive ideal is divisorial� �We refer to Fossum ��
�� for the theory
of divisorial ideals�� In a factorial ring all divisorial ideals are principal�
and so �R is principal and R is Gorenstein� see ����	�

In concluding these considerations we show that formula �������a� for
the canonical module under �at extensions has a non�local counterpart�

Proposition �����
� Let � � R � S be a �at homomorphism of Noetherian

rings whose �bres S �R k�p � are Gorenstein for all p � SpecR for which

there exists a maximal ideal q in S with p � q � R� If �R is a canonical

module of R� then �R �R S is a canonical module of S �

Proof� Let q be a maximal ideal of S � p � q � R� then Rp � Sq is
a �at local homomorphism whose �bre is a localization of S �R k�p ��
and thus is Gorenstein� It follows from �������a� that �Rp

�Rp
Sq is a

canonical module of Sq � Since ��R �R S�q
�� �Rp

�Rp
Sq � the proposition

is proved�

Corollary ������� Let R be a Cohen�Macaulay ring with canonical module

�R � and let S be either the polynomial ring R�X�� � � � � Xn� or the formal

power series ring R��X�� � � � � Xn��� Then �R �R S is a canonical module of

S � In particular� if R is Gorenstein� then so is S �

Proof� We may assume that n � �� The result then follows from �����

since in both cases the �bres considered there are regular rings� see the
proof of A����

Exercises

������� Let R be a ring� M an R�module� and R �M the trivial extension of R by
M� �The de	nition of R �M is given after Theorem ������� Prove�
�a� R �M is a ring�
�b� R can be identi	ed with the subring R � � � f�a� x� � R �M � x � �g�
�c� � �M � f�a� x� � R �M � a � �g is an ideal in R �M with �� �M�� � �� As
R�modules� M and � �M are isomorphic�
�d� If �R� m � is local� then R �M is local with maximal ideal m �M � f�a� x� �
R �M � a � m g�
�e� The natural inclusion R � R �M composed with the natural epimorphism
R �M � �R �M���� �M� is an isomorphism�
�e� If R is Noetherian and M is a 	nite R�module� then R �M is Noetherian and
dimR � dimR �M�

������� Let R be a Cohen�Macaulay local ring� C a maximal Cohen�Macaulay
R�module� and x an R�sequence� If C�xC is the canonical module of R��x�� show
that C is the canonical module of R�

������� Let �R� m � be a Gorenstein local ring and I � R an ideal of grade g
such that S � R�I is a Cohen�Macaulay ring� Let x � x� � � � � � xn be a system of
generators of I � Show that �S


� Hn�g �x��
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������� Let �R� m � be a Gorenstein local ring� I � R a perfect ideal of grade g�
and let

� ��� Fg

�g
��� � � �

��
��� F� ��� �

be a minimal free R�resolution of S � R�I � Prove�

�a� The dual complex � ��� F�
�

���
��� � � �

��g
��� F�

g ��� � is acyclic� and Coker ��g 
�
�S �
�b� HomS ��S � S � 
� Ker�Fg � S � Fg�� � S � 
� TorRg �S� S ��

�c� S is Gorenstein if and only if TorRg �S� S � 
� S � �If you 	nd this problem too
di�cult� consult ������ or ��
�� Section �����
�d� Suppose g � �� then 
�I� � r�S � � �� In particular� if R is regular and S is
Gorenstein� then S is a complete intersection

������� Let �R� m � k� be a Gorenstein local ring of dimension d � and M a 	nite
module of 	nite projective dimension� Show that

TorRi �k�M� 
� Extd�iR �k�M� for all i�

�����	� Let �R� m � be a Cohen�Macaulay local ring with canonical module �R �
Suppose for all 	nite R�modules M there exist an integer n and an epimorphism
�n

R �M� Prove R is a Gorenstein ring�

�����
� Let �R� m � be a Cohen�Macaulay local ring with canonical module �R �
�a� Suppose M is a maximal Cohen�Macaulay R�module of 	nite injective
dimension� Show M is isomorphic to a direct sum of 	nitely many copies
of �R �
�b� Let M be a 	nite R�module� Show inj dimM � � if and only if M has a
	nite �R�resolution� that is� there exists an exact sequence

� ��� �
rp
R

�p

��� � � �
��
��� �

r�
R ��� M ��� ��

Hint� For all 	nite R�modules M there exists an exact sequence � � Y �
X � M � � where X is a maximal Cohen�Macaulay R�module� and Y a
module of 	nite injective dimension� see ���� Such an exact sequence is called a
Cohen�Macaulay approximation�
�c� The �R�resolution is minimal if Im�i � m �

ri��
R for i � �� � � � � p� Show that a

module M of 	nite injective dimension even has a minimal �R�resolution� and
that ri � 
d�i�m �M� for all i when the resolution is minimal�

������� Let �R� m � be a Cohen�Macaulay local ring of dimension �� A subset
I of the total ring Q of fractions of R is called a fractionary ideal if there exist
R�regular elements x� y such that y � xI � R� The inverse of a fractionary ideal
I is the set I�� � fa � Q � aI � Rg� We denote by F the set of fractionary ideals
of R� Show�
�a� If I � F � then I�� � F and I � �I�� ��� �
�b� If I � R is a fractionary ideal� then ��R�I� � �� R � I�� and ��I���R� � ��
�c� The following conditions are equivalent�

�i� R is a Gorenstein ring�
�ii� I � �I�� ��� for all I � F�
�iii� ��R�I� � ��I���R� for all I � F� I � R�
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������� Let R � S be a faithfully �at homomorphism of Noetherian rings� and
C a 	nite R�module� Show the following are equivalent�

�a� C � S is a canonical module of S �

�b� C is a canonical module of R� and for every prime ideal q � Spec S the 	bre
Sq �p Sq � p � q 	 R� is Gorenstein�

������� Let k be a 	eld� and R a k�algebra which is Cohen�Macaulay and admits
a canonical module� Let K be a 	eld� and suppose that either R is a 	nitely
generated k�algebra or K is a 	nitely generated extension 	eld of k� Show that
�R �k K is a canonical module of R �k K �
Hint� apply �������

��	 Gorenstein ideals of grade �� Poincar�e duality

The Hilbert�Burch theorem �����	 identi�es perfect ideals of grade � as
the ideals of maximal minors of certain matrices� For Gorenstein ideals
of grade � there exists a similar �structure theorem� due to Buchsbaum
and Eisenbud �����

Let R be a Noetherian local ring� An ideal I � R is a Gorenstein

ideal �of grade g� if I is perfect and ExtgR�R�I� R�
�� R�I � Note that if R

is Gorenstein and I is perfect� then I is Gorenstein if and only if R�I is
Gorenstein� This follows from ����	�b��

To describe the structure theorem we recall a few facts from linear
algebra� let R be a commutative ring� and F a �nite free R�module� An
R�module homomorphism � � F � F� is said to be alternating if with
respect to some �and therefore with respect to any� basis of F and the
corresponding dual basis F�� the matrix of � is skew�symmetric and all
its diagonal elements are 
�

Suppose now that � is alternating� choose a basis of F and the basis
dual to this� and identify � with the corresponding matrix �aij�� If rankF
is odd� then det� � 
� and if rankF is even� there exists an element
pf��� � R� called the Pfa�an of �� which is a polynomial function of the
entries of �� such that det��� � pf����� For more details about Pfa�ans
we refer the reader to ����� Ch� IX� x�� no� �� We set pf��� � 
 if rankF
is odd� Just like determinants� Pfa�ans can be developed along a row�
Denote by �ij the matrix obtained from � by deleting the i�th and j�th
rows and columns of �� then for all i�

pf��� �
nX

j��

����i�j����i� j�aij pf��ij�

���i� j� is the sign of j� i�� From now on we assume that the rank of F is
odd� and consider the matrix � derived from � by repeating the i�th row
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and column as indicated in the following picture

� �

�BBB�

 ai� � � � ain
�ai�
��� �

�ain

CCCA �

Expansion with respect to the �rst row of � yields the equations


 � � pf��� �
nX

j��

����jaij pf��j�

for i � �� � � � � n� where �j is the matrix obtained from � by deleting
the j�th row and column� In other words� if we let � � R � F be the
linear map de�ned by �p�� � � � � pn� �with respect to the given basis� where
pj � ����j pf��j�� j � �� � � � � n� are the submaximal Pfa�ans of �� then
we obtain the complex

F���� � 
 �� R
�
�� F

�
�� F�

��

�� R �� 
�

Theorem ��	�� �Buchsbaum�Eisenbud�� Let �R� m � be a Noetherian local

ring�

�a� Suppose n 	 � is an integer� F a free R�module of rank n� and � � F �
F� an alternating map of rank n�� whose image is contained in m F�� Then
n is odd� Moreover� if Pf��� denotes the ideal generated by the submaximal

Pfa�ans of �� then gradePf��� � �� If grade Pf��� � �� then F���� is
acyclic and Pf��� is a Gorenstein ideal�

�b� Conversely� let I be a Gorenstein ideal of grade �� Then there exist a

free module F of odd rank and an alternating homomorphism � � F � F�

such that F���� is a minimal free R�resolution of R�I � In particular� any

Gorenstein ideal of grade � is minimally generated by an odd number of

Pfa�ans�

Part �a� of the theorem is a consequence of the Buchsbaum�Eisenbud
acyclicity criterion ������ and the following simple observation relating
the ideal of �n� ���minors of � to the ideal of submaximal Pfa�ans�

Lemma ��	��� Let �R� m � be a Noetherian ring� F a free R�module of rank
n� and � � F � F� an alternating map of rank n � �� Then RadPf��� �
Rad In������ and n is odd�

Proof� For all i� j � �� � � � � n� we denote by �ij the matrix which is
obtained from � by deleting the i�th row and j�th column� Then
In����� is generated by the elements det��ij�� and since pf��i�

� � det��ii�
it follows right away that a power of Pf��� is contained in In������

Conversely� we consider the matrix of
Vn��� with entries det��ij��
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i� j � �� � � � � n� It follows from Exercise ������ that rank
Vn��� � �

since� by assumption� rank� � n � �� Now ������ implies that all ��

minors of
Vn��� are zero� Therefore� since � is skew�symmetric� we

have � det��ij�
� � det��ij� det��ji� � det��ii� det��jj� � pf��i�

� pf��j�
� for

all i� j � �� � � � � n� This implies that a power of In����� is contained in
Pf����

Finally� since In����� �� 
� we conclude that Pf��� �� 
� This is only
possible if n is odd�

For the proof of part �b� of ����� a little excursion to resolutions with
algebra structures is needed� Let R be a commutative ring� and let

P� � � � � �� P�
d
�� P�

d
�� P� � R �� 


be an acyclic complex of projective modules� We may consider P� as a
graded module equipped with an endomorphism d � P� � P� of degree
�� satisfying d � d � 
� The question is whether there can be de�ned an
associative multiplication on P� satisfying the following rules�

�a� PpPq � Pp�q for all p� q 	 
�

�b� � � P� acts as the unit element� i�e� �a � a� � a for all a � P��

�c� ab � �����dega��degb�ba for all homogeneous elements a� b � P
�
�

�d� aa � 
 for all homogeneous elements a � P� of odd degree�

�e� d�ab� � �da�b� ����deg aa�db� for all homogeneous elements a� b � P��

An example of a complex admitting such a multiplication is the
Koszul complex� Unfortunately not all �nite projective resolutions can
be given an algebra structure with these properties� Avramov ���� found
obstructions for this� and gave explicit examples of �nite projective res�
olutions which fail to have such a structure� Nevertheless� if we do not
insist on the associativity of the multiplication� we surprisingly have

Theorem ��	�� �Buchsbaum�Eisenbud�� Any projective resolution P� with

P� � R admits a �possibly non�associative� multiplication satisfying the

conditions �a���e��

Proof� We form the tensor product P
�
� P

�
of complexes� and de�ne the

second symmetric power S��P�� of P� to be

S��P�� � �P� � P���U

where U is the graded submodule of P� � P� which is generated by the
elements a� b� �����dega��degb�b� a with homogeneous a� b � P�� and the
elements a�a with homogeneous a � P� of odd degree� Let d again denote
the di erential of P� � P�� then d�U� � U� This implies that d induces
a di erential on S��P��� so that S��P�� inherits a complex structure� We
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claim �and this is crucial for the proof� that the homogeneous components
S��P�

�k of this complex are all projective modules� Indeed� we have

S��P�
�k �� �

M
i�j�k
i�j

Pi � Pj�� Tk

where

Tk
��

���

 if k is odd�V� Pk�� if k is of the form �n� ��
S��Pk��� if k is of the form �n�

Thus S��P�
� is a complex of projective R�modules which coincides with

P� in degrees 
 and �� Therefore there exists a complex homomorphism
� � S��P�� � P� extending the identity in degrees 
 and �� and we may
assume that � is chosen such that its restriction to R � Pk is just the
natural homomorphism to Pk�

For all homogeneous elements a� b � P� we denote by ab the image

of a � b under the composition of the maps P� � P� �� S��P��
�
�� P��

and extend this multiplication by linearity to all other elements of P�� It
is clear that it has all the desired properties�

Suppose now we are given a Noetherian local ring R and a Gorenstein
ideal I � R of grade g� Let

F
�
� 
 �� Fg �� � � � �� F� �� F� �� 


be the minimal free resolution of R�I � The dual complex F�
�
is a minimal

free resolution of ExtgR�R�I� R�
�� R�I � and hence must be isomorphic

to F�� Such an isomorphism is unique up to homotopy� and we are
now choosing one which is derived from the multiplicative structure
on F� as given by ������ Observe that the multiplication de�nes maps
Fi � Fg�i � Fg �� R which in turn induce R�module homomorphisms
si � Fi � F�g�i�

For i � 
� � � � � g we let

ti �

�
si if i � 
� � mod ��
�si if i � �� � mod ��

Proposition ��	�	� t� � F� � F�
�
is an isomorphism of complexes� In particu�

lar� si � Fi � F�g�i is an isomorphism for i � 
� � � � � g�

Proof� We denote by d the di erential of F�� Let a � Fi and b � Fg���i�
Then ab � 
� and therefore 
 � d�ab� � d�a�b � ����iad�b�� or d�a�b �
����i��ad�b�� It follows that

si���d�a���b� � d�a�b � ����i��ad�b� � ����i��si�a��d�b��

� ����i��d��si�a���b��
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Thus si�� � d � ����i��d� � si which implies that t
�
is a homomorphism

of complexes� The induced homomorphism H��t�� � R�I � R�I must be
an isomorphism since t� � s� is an isomorphism� Since t

�
extends H��t��

it must be an isomorphism as well�

We are now ready to prove ������b�� let

F
�
� 
 �� F�

�
�� F�

�
�� F�

�
�� R �� 


be the minimal free resolution of R�I equipped with a multiplication
as in ������ Let e�� � � � � en be a basis of F�� Then� as we have just seen�
s��e��� � � � � s��en� is a basis of F�� � and we may choose basis elements
f�� � � � � fn of F� such that f�i � s��ei� for i � �� � � � � n� Then eifj � 
ijg
for all i� j � �� � � � � n where g is a basis element of F� and 
ij denotes
the Kronecker symbol� Let ��ei� �

Pn
j��aijfj� we claim that �aij� is

skew�symmetric� and all its diagonal elements are 
� To see this� notice
that ej��ei� � aijg� Therefore�

aij��g� � ��ej��ei�� � ��ej���ei��

The claim follows since � is injective� and since ��ei���ej� � ���ej���ei�
and ��ei���ei� � 
 according to the multiplication rules�

Now let ��g� �
Pn

i�� aiei� since F�

�� F�
�
� � is isomorphic to the

transpose of �� and we conclude that I � �a�� � � � � an�� On the other
hand� rank� � n � � and grade Pf��� � grade In������ by ������ Now
grade In����� 	 � since F

�
becomes split exact after localizations at prime

ideals of height � �� Thus part �a� of Theorem ����� implies that F
�
���

is acyclic� In particular it follows that Ker� is generated by
Pn

i�� piei
where� up to signs� the pi are the submaximal Pfa�ans of �� Thus we
have Pf��� � I � as desired�

Poincar�e duality� Buchsbaum and Eisenbud ���� remark that the mul�
tiplication de�ned on F� induces a multiplication on Tor��k� R�I� giving
it the structure of an associative graded alternating algebra� They fur�
ther point out that in view of ������ Tor

�
�k� R�I� is a Poincar�e algebra

if I is a Gorenstein ideal� Recall that an associative graded alternating
algebra A �

Lg
i��Ai is a Poincar�e algebra if for all i � 
� � � � � g the A��

homomorphisms Ai � HomA� �Ag�i� Ag�� a �� �a with �a�b� � ab� are
isomorphisms�

Notice that if R is regular� then there is a natural isomorphismbetween
Tor��k� R�I� and the Koszul homology H��R�I� � H��x� R�I� where x is a
minimal set of generators of the maximal ideal of R� see ����� It can be
shown that this is an isomorphism of algebras� In particular� the Koszul
homology H��R� of a Gorenstein ring is a Poincar�e algebra� This is one
direction of the theorem of Avramov and Golod ���� which asserts that a
Gorenstein ring is characterized by its Koszul homology� Their theorem
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complements the result ������ of Tate and Assmus according to which
the Koszul algebra of a complete intersection is an exterior algebra� We
will present their proof which is independent of the above considerations�

Theorem ��	�� �Avramov�Golod�� Let �R� m � k� be a Noetherian local ring�
and let n � embdimR� depthR� The following conditions are equivalent	

�a� R is a Gorenstein ring�

�b� H
�
�R� is a Poincar�e algebra�

�c� the k�linear map Hn���R�� Homk�H��R�� Hn�R�� induced by the mult�

iplication on H
�
�R� is a monomorphism�

We begin with a few preliminary remarks� Suppose t � depthR � 
�
By ����� �choose M � R and N � m �� there exists an R�regular element
y� � m n m �� Hence by induction on t we may construct an R�sequence y �
y�� � � � � yt such that y is part of a minimal system of generators of m � By
������� one has H��R� �� H��R�yR� as graded k�vector spaces� Inspecting
this isomorphism we see that it is actually a k�algebra isomorphism� On
the other hand� R is Gorenstein if and only if R�yR is too� Thus we may
assume that depthR � 
�

Let x � x�� � � � � xn be a minimal system of generators of m � and
K� � K��x� the Koszul complex of this sequence� then� by de�nition�
H��R� � H��K��� Note that K� is a Poincar�e algebra� let e�� � � � � en be an R�
basis of K�� then� in the terminology of Section ���� the eI � I � f�� � � � � ng�
jIj � i� form an R�basis of Ki � and we have eI �eJ � ��I� J�e��� � ��en for
J � f�� � � � � ng� jJj � n� i� Here ��I� J� � �� if I � J � �� and 
 otherwise�
This clearly proves that the maps �i � Ki � HomR�Kn�i� Kn�� �i�a� � �a

with �a�b� � a � b� are isomorphisms as asserted�
We denote by d� the di erential of K�� Then d� and its dual anticom�

mute with ��� In other words� we have

�i�� � di � ����i��Hom�dn�i��� Kn� ��i

for all i � 
� � � � � n� This equation is stated in �����
� the only di erence
being that there Kn is identi�ed with R� It follows that the isomorphisms
�i induce isomorphisms e�i � Hi�R�� Hn�i�R� where we identify Hn�i�R�
with Hn�i��K����� and where �K��� � HomR�K�� Kn��

Consider the diagram

Hi�R�
�i

����� Homk�Hn�i�R�� Hn�R��

$	i

��y ��y�i
Hn�i�R�

�i
����� HomR�Hn�i�R�� Kn�

Here the upper map �i is induced by the multiplication on H��R�� We
have just seen that e�i is an isomorphism� The lower map �i is the natural
homomorphism which assigns to a homology class ��� � an �n� i��cycle in
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�K
�
��� the �well de�ned� homomorphism �i���� � HomR�Hn�i�R�� Kn� with

�i������a� � ��a�� a � Kn�i a cycle� Next note that Hn�R� � SocKn � Kn�
We de�ne �i to be Hom�Hn�i�R�� 	� where 	 � SocKn � Kn is the natural
inclusion� It is clear that �i is an isomorphism� In fact� since Hn�i�R� is
annihilated by m � any homomorphism Hn�i�R� � Kn necessarily maps
Hn�i�R� into SocKn�

We leave it to the reader to check the commutativity of the diagram�
In conclusion we have that �i is a mono�� epi�� or isomorphism if and
only if �i is too� We will determine the kernel and cokernel of �i�

Lemma ��	��� Let B
�
denote the boundaries of K

�
� Then for any i we have

a long exact sequence


 �� Ext�R�Ki���Bi��� Kn� �� H i�R�
�n�i

��� HomR�Hi�R�� Kn�

�� Ext�R�Bi��� Kn� �� � � �

Proof� The short exact sequence 
 � Hi�R� � Ki�Bi � Bi�� � 
 gives
rise to the long exact sequence


 �� HomR�Bi��� Kn� �� HomR�Ki�Bi� Kn�
�i
�� HomR�Hi�R�� Kn�

�� Ext�R�Bi��� Kn� �� � � �

It is immediate to see that Im �n�i � Im �i� so that the sequence

H i�R�
�n�i

��� HomR�Hi�R�� Kn� �� Ext�R�Bi��� Kn� �� � � �

is exact�
The module U of i�cycles of �K��� whose homology classes belong to

Ker �n�i is the module of homomorphisms � � �Ki�
� for which �jZi

� 

�Zi cycles in Ki�� Therefore U is isomorphic to HomR�Bi��� Kn�� Under
this identi�cation Ker �n�i equals U�V where V is the module of homo�
morphisms � � Bi�� � Kn which can be extended to Ki��� This means
that Ker �n�i �� Ext�R�Ki���Bi��� Kn��

In order to complete the proof of ����� we need the following

Lemma ��	��� Let �R� m � k� be a Noetherian local ring of depth 
� If

Ext�R�k� R� � 
� then R is Gorenstein�

Proof� The hypothesis implies that the functor HomR� � R� is exact on
the category of R�modules of �nite length� This yields ��HomR�M�R��
� ��M� ��HomR�k� R�� for any R�module of �nite length M�

Now assume dimR � 
� Then ��R�m n�� and so ��HomR�R�m n� R���
tends to in�nity with n� On the other hand� HomR�R�m n� R� �� 
 � m n�
Since 
 � m � 
 � m � � � � � is an ascending chain of ideals� and since R
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is Noetherian� this chain stabilizes� Consequently� ��HomR�R�m n� R�� is
bounded� a contradiction�

Thus R is a zero dimensional ring for which HomR� � R� is an exact
functor� Hence R is an injective R�module� and so R is Gorenstein by
de�nition�

End of the proof of ������ We have already accomplished the reduction
to the case depthR � 
�

�a�  �b�� Since R is Gorenstein and Kn
�� R� all Ext groups in the

exact sequence ����� vanish� and so �i is an isomorphism for all i�
�b� �c� is trivial�
�c� �a�� By assumption �n�� is injective� and this implies that �n��

is injective� Thus it follows from ����� that Ext�R�K��B�� R� � 
� Now
����	 completes the proof since K��B� � k�

Corollary ��	��� Let R be a Gorenstein local ring which is not a complete

intersection� Then H��R�
n�� � 
 for n � embdimR � dimR�

Proof� Suppose the vector subspaceH��R�n�� ofHn���R� is not zero� Then
H��R�n �� 
 since �� � H��R�� Homk�Hn���R�� Hn�R�� is an isomorphism�
This contradicts �������

Exercises

������ Let k be a 	eld and I � kX� � X� � X��� the ideal generated by the polynomials
X�

� �X
�
� � X

�
� �X

�
� � X�X� � X�X� � X�X� � By ������ it is a Gorenstein ideal of grade ��

Compute its free resolution �as a kX� � X� � X����module��

������� Let �R� m � k� be a Cohen�Macaulay local ring with canonical module
�R� and x a minimal set of generators of m � We denote by H��M� the Koszul
homology of an R�module M with respect to x� Recall that H��M� is an H��R��
module� Let n � embdimR � dimR� Show that for all i� � � i � n� the
k�linear map Hi�R� � Homk�Hn�i ��R�� Hn��R�� which is induced by the scalar
multiplication of H��R� on H���R � is an isomorphism�

��� Local cohomology� The local duality theorem

The canonical module was introduced by Grothendieck in connection
with the local duality theorem which relates local cohomology with certain
Ext functors� We will describe this approach to the canonical module
in this section� First local cohomology functors will be introduced� and
it will be shown that the depth and the dimension of a module can be
expressed in terms of their vanishing and non�vanishing� We end with
the local duality theorem�

Let �R� m � k� be a Noetherian local ring and M an R�module� Denote
by �m �M� the submodule of M consisting of all elements of M with
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support in fm g� That is�

�m �M� � fx �M � m kx � 
 for some k 	 
g�

LetF � �Ik�k	� be a family of ideals of R such that Ij � Ik for all j � k�
Then F de�nes a topology on R� see ��	
�� Section �� F gives the
m �adic topology on R if and only if for each Ik there is a j � N such
that m j � Ik� and for each m i there is an l � N such that Il � m i�

It is clear that for any such family one has

�m �M� � fx �M � Ikx � 
 for some k 	 
g�

Let x � x�� � � � � xn be a sequence of elements in R generating an m �primary
ideal� We set

xk � xk�� � � � � x
k
n for all k 	 
�

The family �xk� gives the m �adic topology on R� and so

�m �M� � fy �M � �xk�y � 
 for some k 	 
g�

Noting that HomR�R�I�M� � fx � M � Ix � 
g for any ideal I of R� we
obtain natural isomorphisms

�m �M� �� lim
��

HomR�R�m k �M� �� lim
��

HomR�R��x
k��M��

Proposition ������ �m � � is a left exact additive functor�

Proof� The additivity of �m � � is trivial� We show that �m � � is left exact�
If


 ��M�


��M�

�
��M�

is exact� then we have a sequence 
 �� �m �M��

�

�� �m �M��
� �

�� �m �M���
where �� � �m ��� � �j�m �M�� and �� � �m ��� � �j�m �M���

It is obvious that �� is injective� Let x � Ker ��� then ��x� � 
� and
so there exists y �M� such that x � ��y�� Since x � �m �M��� there exists
an integer k 	 
 such that m kx � 
� It follows that m k��y� � ��m ky� � 
�
But � is injective� and so y � �m �M�� and ���y� � x�

De�nition ������ The local cohomology functors� denoted by H i
m � �� are

the right derived functors of �m � �� In other words� if I� is an injective
resolution of the R�module M� then H i

m �M� �� H i��m �I
��� for all i 	 
�

Remarks ������ �a� Let M be an R�module� then H�
m �M� �� �m �M� and

H i
m �M� � 
 for i � 
�

�b� If I is an injective R�module� then H i
m �I� � 
 for all i � 
�

�c� For any R�module M and all i 	 
 one has

H i
m �M� �� lim

��
ExtiR�R�m k�M� �� lim

��
ExtiR�R��x

k��M��
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where x is a sequence in R generating an m �primary ideal�
�d� A short exact sequence of R�modules


 ��M� ��M� ��M� �� 


gives rise to a long exact sequence


 �� �m �M�� �� �m �M�� �� �m �M�� �� H�
m �M�� �� � � �

�� H i��
m �M�� �� H i

m �M�� �� H i
m �M�� �� � � �

Only �c� needs some explanation� lim
��

is an exact functor� see ������

Theorem ����� Therefore if I� is an injective resolution of M� then

H i
m �M� �� H i�lim

��
HomR�R�m k � I��� �� lim

��
H i�HomR�R�m k � I���

�� lim
��

ExtiR�R�m k�M��

Note that

�m �E�R�p �� �

�
E�k� if p � m �

 otherwise�

see ����	 and part ��� of the proof of ������� Using the structure of the
minimal injective resolution E��M� of M given in ����� we conclude that
�m �E

��M�� is a complex of the form


 �� E�k����m �M� �� E�k����m �M� �� � � � �� E�k��i�m �M� �� � � �

This entails

Proposition ����	� Let �R� m � k� be a Noetherian local ring and M a �nite

R�module�
�a� The modules H i

m �M� are Artinian�
�b� One has H i

m �M� � 
 if and only if i � depthM�

�c� If R is Gorenstein� then

H i
m �R� ��

n
E�k� for i � dimR�

 otherwise�

�d� Let �N denote the m �adic completion of an R�module N� Then

H i
m �M� �� H i

m �M��R
�R �� H i

	m � �M� for all i 	 
�

Proof� �a�� �b� and �c� follow from the structure of �m �E
��M�� and the

fact that depthM � inffi � �i�m �M� �� 
g�
�d� As H i

m �M� is Artinian� it is the direct limit of submodules Uj of

�nite length� For each Uj one has Uj �R
�R �� Uj � and so

H i
m �M� �� lim

��
�Uj �R

�R� �� �lim
��

Uj��R
�R �� H i

m �M��R
�R�

Using the R��atness of �R� we get

H i
m �M��R

�R �� lim
��

ExtiR�R�m j �M� �R
�R �� lim

��
Exti	R�

�R� �m
j � �M�

�� H i
	m � �M��
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Local cohomology and the Koszul complex� Our next goal is to construct
a more explicit complex whose cohomology gives us H�

m �M�� Let x �
x�� � � � � xn be a system of parameters of R� For all l 	 
 we get a
commutative diagram

K��xl���
��l�

�

����� K��xl���y ��y
K��xl��� K��xl�

with ��l�
� �ei� � xiei for i � �� � � � � n� �In both Koszul complexes we denote

the natural basis of K�
�� Rn by e�� � � � � en��

Let �
�l�
i �

Vi �
�l�
� � then ��l�

�
� K��xl��� �� K��xl� is a complex homo�

morphism� see ������ We denote by

��

l � K
��xl� �� K��xl���

the dual complex homomorphism� This can be done for each l� and so
we obtain a direct system of complexes� Thus we may form the complex

lim
��

K��xl��

On the other hand� one de�nes a complex

C� � 
 �� C� �� C� �� � � � �� Cn �� 
�

Ct �
M

�
i��i������it
n

Rxi�xi� ���xit
�

where the di erentiation dt � Ct � Ct�� is given on the component

Rxi� ���xit
�� Rxj� ���xjt��

to be the homomorphism ����s�� �nat� Rxi� ���xit
� �Rxi� ���xit

�xjs if fi�� � � � � itg

� fj�� � � � � bjs� � � � � jt��g and 
 otherwise�

The complex C� is called the modi�ed �Cech complex� In the usual
%Cech complex� C� is replaced by 
 and the homological degree is shifted
by ��

Proposition ������ lim
��

K��xl� �� C��

Proof� For all l 	 
 we de�ne a complex homomorphism

��

l � K
��xl� �� C� by �t

l ��ej� � � � � � ejt�
�� �

�

�xj�xj� � � � xjt�
l
�

here �ej� � � � � � ejt�
� is an element of the basis of �

Vt Rn�� which is dual

to the standard basis of
Vt Rn� A straightforward calculation shows
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�i� ��

l is indeed a complex homomorphism�
�ii� ��

l � ��

l�� � �
�

l for all l 	 
� and therefore the family ���

l � induces a

complex homomorphism �� � lim
��

K��xl� �� C��

�iii� �� is an isomorphism�
Note that for �iii� one essentially has to verify that Rxi� ���xit

is the limit of

the direct system �Fi�i	� in which Fi � R for all i and the map Fi � Fi��

is just multiplication by xi� � � � xit �

The importance of these complexes results from

Theorem ������ Let M be an R�module� Then

H i
m �M� �� H i�M �R C�� �� lim

��
H i�xl �M� for all i 	 
�

Proof� The second isomorphism follows from the fact that lim
��

is an exact

functor� and hence commutes with cohomology� In order to prove the
�rst isomorphism� we show that the functors H i� � C�� are the right
derived functors of �m � ��

IdentifyingM � Rxi with Mxi we have

H��M �R C�� � Ker�M ��
nM

j��

Mxj ��

The kernel consists of all m � M for which there exist integers lj �

j � �� � � � � n� such that x
lj
j m � 
� and this set is obviously equal to �m �M��

Since C� is a complex of �at R�modules� the exact sequence of R�
modules


 ��M� ��M� ��M� �� 


yields the exact sequence


 ��M� �R C� ��M� �R C� ��M� �R C� �� 
�

from which we obtain the long exact sequence


 �� H��M� �R C�� �� H��M� �R C�� �� H��M� �R C��

�� H��M� �R C�� �� H��M� �R C�� �� � � �

It remains to show that H i�I �R C�� � 
 for i � 
 and any injective
R�module I � Of course we may assume that I is indecomposable�

Let I � E�k� and a � E�k�� Then for j � �� � � � � n there exist integers

lj � 
 such that x
lj
j a � 
� and so E�k� � C i � 
 for i � 
�

Next assume I � E�R�p �� p �� m � then there exists j � f�� � � � � ng
such that xj �� p � We claim that multiplication by xj on E�R�p � is an
isomorphism� It is certainly a monomorphism since AssE�R�p � � fp g �see
����	� and since xj �� p � The submodule xjE�R�p � of E�R�p � is an injective
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module since xjE�R�p � �� E�R�p �� and hence is a direct summand of
E�R�p �� But E�R�p � is indecomposable� and so xjE�R�p � � E�R�p �� We
can then de�ne a homotopy �� of the complex E�R�p ��R C��

�l � E�R�p ��R C l �� E�R�p ��R C l��

is de�ned on the component E�R�p �xi� ���xil �� E�R�p �xj� ���xjl��
to be

����s�� � nat� if fj�� � � � � jl��g � fi�� � � � � bis � � � � � ilg and is � j� and 
 oth�
erwise� It is easily veri�ed that �� is a contracting homotopy� that is� the
identity and the zero�map of the complex are homotopic via �� � This
implies that E�R�p ��R C� is exact�

Grothendieck�s theorems� We are now in the position to prove the follow�
ing important vanishing theorem�

Theorem ����� �Grothendieck�� Let �R� m � k� be a Noetherian local ring

and M a �nite R�module of depth t and dimension d � Then
�a� H i

m �M� � 
 for i � t and i � d �

�b� Ht
m �M� �� 
 and Hd

m �M� �� 
�

Proof� We �rst note the following rule which will be used several times
in the proof of �a� and �b��

Let � � �R� m � k� � �R�� m �� k�� be a local ring homomorphism such
that m R� is an m ��primary ideal� Then for any R��module M one has

H i
m �M� �� H i

m ��M� for all i 	 
����

Of course� on the left hand side of this formula M is considered as an
R�module�

In fact� if m � �x� with x � x�� � � � � xn and if x� � ��x��� � � � � ��xn��
then C� �R M �� C �� �R� M� where C� and C �� are the complexes of �����
de�ned with respect to x and x�� The isomorphism ��� follows from ������

�a� We only need to prove that H i
m �M� � 
 for i � d � The other part

of statement �a� has already been shown in ������
Let R � R� � R�AnnM be the canonical epimorphism� Then M is

an R��module with dimM � dimR�� Using ��� we may therefore assume
that dimR � dimM � d � Let x � x�� � � � � xd be a system of parameters of
R� and let C� be the complex ����� de�ned with respect to x� Then C i � 

for i � d � and so H i

m �M� �� H i�M �R C�� � 
 for i � d� see ������
�b� We proceed by induction on t in order to show that H t

m �M� �� 
�
If t � 
� then 
 �� SocM � H�

m �M�� Now suppose t � 
� then there exists
an M�regular element x � m � The exact sequence


 �� M
x
��M ��M�xM �� 


yields the exact sequence 
 � Ht��
m �M� �� Ht��

m �M�xM� �� Ht
m �M��

By our induction hypothesis we have Ht��
m �M�xM� �� 
� this implies

H t
m �M� �� 
�
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Finally we show that Hd
m �M� �� 
� Using ����� and the fact that

dim �M � dimM for the m �adic completion �M ofM� we may assume that
R is complete�

Let p � SuppM with dimM � dimR�p � Then dimM�p M � dimM
� d � and we get an exact sequence of R�modules


 �� U �� M ��M�p M �� 
�

inducing the exact sequence Hd
m �M� �� Hd

m �M�p M� �� Hd��
m �U�� Ac�

cording to �a� we have Hd��
m �U� � 
� and so� if Hd

m �M�p M� �� 
� then
Hd

m �M� �� 
� As M�p M is an R�p �module we may as well assume� by ����
that R is a domain and dimR � dimM�

Any complete Noetherian domain has a Noether normalization� there
exists a regular local subring �S� n � such that R is a �nite S�module� see
A���� In particular� the extension ideal n R is m �primary� Again using ���
we may replace R by S � and so may assume that R itself is regular� Let
K be the fraction �eld of R� and let � � M � K �R M be the canonical
homomorphism� We set U � Ker � and N � Im �� Then we obtain the
exact sequence


 �� U ��M �� N �� 
����

and� as a consequence of Exercise ������� an exact sequence


 �� N �� Rs ��W �� 
����

where s � rankM � rankN and consequently dimW � dimR � d �
As dimW � d � ��� yields the exact sequence

Hd
m �N� �� Hd

m �R
s� �� Hd

m �W � � 
�

We have Hd
m �R

s� �� Hd
m �R�

s �� E�k�s �see ������ and so Hd
m �N� �� 
� Finally�

from the exact sequence ��� it follows that Hd
m �M� �� 
�

The next theorem is known as the local duality theorem�

Theorem ����� �Grothendieck�� Let �R� m � k� be a Cohen�Macaulay com�

plete local ring of dimension d � Then for all �nite R�modules M and all

integers i there exist natural isomorphisms

H i
m �M� �� HomR�Ext

d�i
R �M��R�� E�k��� and

ExtiR�M��R� �� HomR�H
d�i

m �M�� E�k���

Proof� The �rst isomorphisms result from the second by Matlis duality
������� For the proof of the second isomorphisms note that both sides
vanish for i � 
� see ����	� For i 	 
 we set T i� � � HomR�H

d�i
m � �� E�k���

It is clear that T �� � is a contravariant left exact functor which maps
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direct sums to direct products� Hence there exists an R�module C such
that

T �� � �� HomR� � C��

see ������ Theorem ����� It follows that C �� T ��R�� As Hd
m �R� is an

Artinianmodule� Matlis duality ������ implies that C is a �nite R�module�
In order to conclude the proof we will show that the functors T i� �

are the right derived functors of T �� �� and that C �� �R �
Remark ����� implies immediately that the functors T i� � are strongly

connected �see ������ p� ����� Thus the T i� � are the right derived functors
of T �� �� once we have shown that T i�F� � 
 for every free R�module F
and all i 	 ��

The functors T i� � map direct sums to direct products� and so it
su�ces to show that T i�R� � 
 for i 	 �� or equivalently that H i

m �R� � 

for i � d � This however follows from ����	 since R is Cohen�Macaulay�

Summing up we have

HomR�H
i

m �M�� E�k�� �� Extd�iR �M�C����

for all i and all R�modules M� Now ����	 yields

H i
m �k�

��

�
k for i � 
�

 for i � 
�

and therefore ExtiR�k� C�
��

�
k for i � d �

 for i �� d �

by ���� Thus it follows from the remark after ����� that C �� �R �

Grothendieck�s duality theorem has the following often applied vari�
ant�

Corollary ������ Let �R� m � k� be a Cohen�Macaulay local ring of dimension

d which is the homomorphic image of a Gorenstein local ring� Then R has

a canonical module� and for all �nite R�modules M and all integers i there
exist natural isomorphisms

H i
m �M� �� HomR�Ext

d�i
R �M��R�� E�k���

Proof� For the proof we apply ������ ������ and Exercise ������� Then

H i
m �M� �� H i

	m � �M� �� Hom 	R�Ext
d�i
	R
� �M�� 	R�� E�k��

�� HomR�Ext
d�i
R �M��R�� E�k���

Remark �����
� Let �R� m � k� be a complete local ring� The proof of
����� shows that the functor HomR�Hd

m � �� E�k�� is representable� even if
R is not a Cohen�Macaulay ring� In other words� there exist a unique
R�module KR �in the proof of ����� this module was denoted by C� and
a canonical isomorphism

HomR�H
d

m �M�� E�k�� �� HomR�M�KR �
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for all R�modules M�
Of course� KR

�� �R if R is Cohen�Macaulay� Even in the more
general situation when the ring is not Cohen�Macaulay� the module
KR is often called the canonical module of R� Its properties have been
investigated by Aoyama ��
�� Schenzel ���� has introduced the canonical
module KM of an R�module M�

The local duality theorem combined with ����	 allows us to generalize
�����
�d��

Corollary ������� Let �R� m � k� be a Cohen�Macaulay local ring of dimen�

sion n with canonical module �R � and M a �nite R�module of depth t and
dimension d � Then
�a� ExtiR�M��R� � 
 for i � n� d and i � n� t�

�b� ExtiR�M��R� �� 
 for i � n� d and i � n� t�

�c� dimExtiR�M��R� � n� i for all i 	 
�

Proof� We have ExtiR�M��R�b�� Exti	R�
�M�� 	R� for all i 	 
� since ��R�b��

� 	R �see ������� Under completion depth and dimension of a module are
preserved� We may therefore assume that R is complete� and so �a� and
�b� follow from ����	 and ������

To prove �c�� we choose p � SuppExtiR�M��R� such that

dimExtiR�M��R� � dimR�p � dimR � dimRp �

�The last equality holds since R is Cohen�Macaulay� see ������� By the
choice of p we have


 �� ExtiR�M��R�p
�� ExtiRp

�Mp � �Rp
��

and so �a� yields i � dimRp � n� dimExtiR�M��R��

Exercises

������� Let �R� m � be a Noetherian local ring� and M a 	nite R�module� Prove�
�a� If 
i���m � M� � � and 
i�m � M� �� �� then H i

m
�M� �� ��

�b� Suppose inj dimM � �� then 
i�m � M� �� � for all i � dimM�

������� Find a Noetherian local ring �R� m � of dimension d and depth t with
�a� H i

m
�R� �� � for i � t� � � � � d �

�b� H i
m
�R� � � for i �� t and i �� d �

������� Let �S� n � k� be a complete Cohen�Macaulay local ring� �R� m � k� a residue
class ring of S � and M a 	nite R�module� Show that

HomR�H
i

m
�M�� ER�k�� 
� HomS �H

i
n
�M�� ES �k���

and derive the following version of the local duality theorem� for all integers i
there exist natural isomorphisms

HomR�H
i

m
�M�� ER�k�� 
� Extd�iS �M��S �� d � dimS�

Hint� See the 	rst step in the proof of ������ and use ������
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������� Let �R� m � k� be a regular local ring of dimension d � �� Let E be a 	nite
R�module which is locally free on the punctured spectrum of R� That is� Ep is
free for all p � SpecR� p �� m � Show

�a� ��H i
m
�E�� � � for all i � d �

�b� the R�dual E� of E is again locally free on the punctured spectrum of R� and
H i

m
�E�� � � for i � �� ��

�c� H i��
m

�E�� 
� HomR�H
d�i

m
�E�� E�k�� for i � �� � � � � d � ��

��� The canonical module of a graded ring

For a graded ring R we de�ne the canonical module in the category of
graded R�modules and establish the graded version of the local duality
theorem� Under certain restrictive assumptions on R the degrees of the
generators in a minimal set of generators of the canonical module are
uniquely determined� and one de�nes the a�invariant of R to be the
smallest of these degrees� multiplied by ���

We adopt the assumptions and notation of Section ���� Thus R will be
a Noetherian graded ring� andM��R� the category of graded R�modules�
M��R� is an Abelian category which has direct sums and direct products�
see ������ Likewise limits and colimits exist in M��R�� As we have
already mentioned in Section ���� M��R� has enough projectives� Our
next concern will be to show thatM��R� has enough injectives as well�

�Injective modules� A graded R�module M is called �injective if it is an
injective object inM��R�� One sees easily that this is the case if and only
if the functor

�HomR� �M� �M��R� ��M��R�

is exact�
A �injective module M need not be injective �in the category M�R��

see ������� Just as in the category of all R�modules� one calls an extension
N � M of graded R�modules �essential if for any graded submodule

 �� U � M one has U � N �� 
� If� in addition� N �� M� the extension
is called a proper �essential extension� Similarly as in the non�graded case
�see ������ one shows

Proposition ������ A graded module is �injective if and only if it has no

proper �essential extension�

We now prove that any graded R�module has a �injective hull� In
analogy to the de�nition in the non�graded case� E is called a �injective

hull of M if it is �injective and a �essential extension of M�

Theorem ������ Any graded R�module M admits a �injective hull� and any

two �injective hulls of M are isomorphic�




��� The canonical module of a graded ring ��	

Proof� We embed M into a �not necessarily graded� injective R�module
I � According to ����� this is possible� Similarly as in the proof of ����� we
consider the set S � fN � M � N � I� M � N is �essentialg� We de�ne
a partial order � on S by setting N� � N� if N� is a graded submodule
of N�� Zorn�s lemma applied to this set yields a maximal �essential
extension M � E with E � I � Suppose E is not �injective� then E has a
proper �essential extension E � E� by ������ As I is injective� there exists
an R�module homomorphism � � E� � I �not necessarily homogeneous��
extending the inclusion E � I � We claim that � is injective� In fact�
assume that there is a non�zero element x � Ker�� say x � xr � � � �� xs�
with xi homogeneous of degree i� r � s� and xr �� 
� We show by induction
on s� r that there exists a homogeneous element a � R such that ax � E
and ax �� 
� Since �jE is injective� this gives a contradiction�

If s � r � 
� x is homogeneous� and the assertion follows since the
extension E � E� is �essential� Now suppose that s� r � 
� We choose a
homogeneous element a � R such that axr � E n f
g� Let

x� � x� xr � xr��� � � � � xs�

If ax� � 
� then ax � axr � E n f
g and we are done� Otherwise ax� �� 
�
and by our induction hypothesis we may choose a homogeneous element
b � R such that bax� � E and bax� �� 
� Then bax � bax�� baxr � E� and
bax �� 
�

Next let eE � Im�� As � is injective we may give eE a natural graded

structure �eEi � ��Ei� for all i � Z�� Then E � eE is a proper �essential

extension with eE � I � contradicting the maximality of E�

The uniqueness of the �injective hull is proved as in the non�graded
case�

We denote the �injective hull of a graded R�module M by �E�M� or
�ER�M� �

The preceding theorem implies in particular that any graded R�module
N has a �injective resolution� That is� there exists a complex

I� � 
 �� I� �� I� �� I� �� � � �

with �injective modules I i such that H��I�� �� N and H i�I�� � 
 for i � 
�
Given such a �injective resolution I� of N we have

�Ext
i
R�M�N� �� H i��HomR�M� I���

for all i 	 
 and all graded R�modules M�

We omit the proofs of the following two results which have their
analogues in ������ ����	� ������ and ����� and which can be proved along
the same lines as in the corresponding local case�
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Theorem ������ Let R be a Noetherian graded ring� Then

�a� Ass �E�M� � AssM for all M � M��R��
�b� E �M��R� is a �indecomposable �injective module if and only if

E �� �E�R�p ��n�

for some graded prime ideal p � R and some integer n � Z�
�c� every �injective module can be decomposed into a direct sum of �inde�

composable �injective modules� and this decomposition is unique up to homo�

geneous isomorphism�

Proposition ����	� Let R be a Noetherian graded ring� and M a graded

R�module� Consider the minimal �injective resolution


 ��M �� �E��M�
d�

�� �E��M�
d�

�� � � �

of M �which is obtained recursively by setting �Ei�M� � �E�Im d i����� Then�
for every graded prime ideal p of R and for every integer i 	 
� the
Bass number �i�p �M� equals the number of graded R�modules of the form
�E�R�p ��n�� n � Z� that appear in �Ei�M� as direct summands�

For anyM �M��R� we denote by �inj dimM the �injective dimension�

Theorem ������ Let R be a Noetherian graded ring and M �M��R�� Then
�a� inj dimM � �inj dimM � ��
�b� if M is �injective� then inj dimM � � if and only if p ��AssM for

some non�graded prime ideal p of R�

For the proof of ����� we will use

Proposition ������ Let M � M��R� and p a non�graded prime ideal in R�
Then ���p �M� � 
� and �i���p �M� � �i�p ��M� for every integer i 	 
�

The proof of this proposition is already given in ����� where we
actually prove more than is stated in that theorem itself�

Proof of ������ �a� We may assume that �inj dimM � t � �� Let
p � SpecR� we want to prove that �i�p �M� � 
 for i 	 t � �� This is
certainly true when p is a graded prime ideal� see ������ Now suppose
that p is not a graded prime ideal� Then �i���p �M� � �i�p ��M� by �����
and �i�p ��M� � 
 for i 	 t� �� hence the assertion follows�

�b� inj dimM � � happens if and only if ���p �M� �� 
 for some non�
graded prime ideal p of R� But ���p �M� � ���p ��M�� and so ���p �M� �� 

if and only if p ��AssM�

Corollary ������ Let R be a Noetherian graded ring and m a graded maximal

ideal of R� Then
�E�R�m � �� E�R�m ��

Proof� By ����� we have Ass �E�R�m � � fm g� and so ����� implies that
�E�R�m � is injective as an object inM�R�� Since ���m � �E�R�m �� � � �see
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������� we conclude that �E�R�m � is indecomposable inM�R�� and hence
by ����� it must be isomorphic to E�R�m ��

The �canonical module of a graded ring� Recall from ��� that a graded
ring is a �local ring if it has a unique �maximal ideal� that is� a graded
ideal m which is not properly contained in any graded ideal �� R�

De�nition ������ Let �R� m � be a Cohen�Macaulay �local ring of �dimen�
sion d � A �nite graded R�module C is a �canonical module of R if there
exist homogeneous isomorphisms

�ExtiR�R�m � C� ��

�

 for i �� d �
R�m for i � d �

For a �nite graded R�module M it may happen that there exists
a homogeneous isomorphism M �� M�i� with i �� 
� To avoid this
phenomenon� one has to require that R has no homogeneous units of
positive degree� For a �local ring �R� m � this is the case if and only if m

is maximal �in the usual sense�� see �������

Proposition ������ Let �R� m � be a Cohen�Macaulay �local ring� and C be

a �canonical module of R� Then
�a� C is a canonical module of R�
�b� C is uniquely determined up to homogeneous isomorphism� provided m

is maximal�

Proof� �a� We need to show that Cp is a canonical module of Rp for all
p � SpecR� First� let p � SpecR be a graded prime ideal� then p � m �
The de�nition of the �canonical module implies that Cm is a canonical
module of Rm � and so Cp is a canonical module of Rp � see ������ Now let
p � SpecR be a non�graded prime ideal� Then �i���p � C� � �i�p �� C�� by
������ and the assertion follows again�

�b� Let C � be another �canonical module� Remark �����	 implies that
�HomR�C�C �� is a projective module of rank �� and hence� as a graded
module� is free �see �������� Therefore� �HomR�C�C �� �� R�i� for some
i � Z� This implies �HomR�C�C ���i�� �� R� Let � � �HomR�C�C ���i��
be an element corresponding to � under this identi�cation� Then� since
�HomR�C�C ���i�� � HomR�C�C �� by Exercise ������f�� it follows from
�a� and ������c� that � is locally an isomorphism� But then � is a
homogeneous isomorphism� and we have

R�m �� �Ext
d
R�R�m � C� �� �Ext

d
R�R�m � C ���i��

�� �Ext
d
R�R�m � C ����i� �� �R�m ���i��

Therefore i � 
� and C �� C ��

Example �����
� Let R � k�X�� � � � � Xn� be a polynomial ring over a �eld�
and assign to the indeterminates the degree degXi � ai � 
 for i � �� � � � � n�
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The �maximal ideal of R is m � �X�� � � � � Xn�� and the Koszul complex of
X�� � � � � Xn yields a homogeneous free resolution of R�m whose last term

is R��
Pn

i��ai�� From this one concludes that �Exti�R�m � R� � 
 for i �� n�
and �Extn�R�m � R� � �R�m ��

Pn
i��ai�� In other words� the �canonical

module of R is R��
Pn

i��ai��

Proposition ������� Let �R� m � be a Cohen�Macaulay �local ring with
�canonical module �R � The following conditions are equivalent	

�a� R is a Gorenstein ring�

�b� �R
�� R�a� for some integer a � Z�

Proof� R is Gorenstein if and only if �R is locally free� By �������d� this
is the case if and only if �R

�� R�a� for some a � Z�

The number a occurring in ������ is a numerical invariant of the
Gorenstein �local ring �R� m �� provided m is maximal� In the case of a
positively graded algebra over a �eld it will be given a special name� see
�������

Let �R� m � be a Cohen�Macaulay �local ring with �canonical module
�R � The �canonical module is a graded module� and by ������� every
minimal system of homogeneous generators of �R has exactly ����R�m �
elements� In analogy to the local case we de�ne this number to be the
type of R� and denote it by r�R��

In view of ������ it is clear that R is Gorenstein if and only if r�R� � ��
For the sake of completeness we list a few change of rings properties

of the �canonical module� While part �a� of the next proposition follows
easily from the results proved so far� it is best to use the change of rings
spectral sequence

�Ext
p
S �k�

�ExtqR�S� �R�� �
p

�Ext
n
R�k� �R�

for �b� �see ������ ������� the reduction we used for the corresponding
local result ����	 is only possible if homogeneous systems of parameters
are available�

Proposition ������� Let �R� m � be a Cohen�Macaulay �local ring with
�canonical module �R �

�a� If p is a graded prime ideal of R� then �R�p �
�� ��R��p � up to a shift�

�b� Let � � �R� m � � �S� n � be a ring homomorphism of Cohen�Macaulay
�local rings satisfying

�i� ��Ri� � Si for all i � Z�
�ii� ��m � � n �

�iii� S is a �nite graded R�module�
Then �S

�� �ExttR�S� �R�� where t � �dimR � �dim S �

Example �����
 and ������ imply that any Cohen�Macaulay positively
graded algebra over a �eld admits a �canonical module� Following Goto
and Watanabe ����� we de�ne�
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De�nition ������� Let k be a �eld� and R a Cohen�Macaulay positively
graded k�algebra� Then

a�R� � �minfi � ��R�i �� 
g

is called the a�invariant of R�

As a consequence of ������ we have

Corollary �����	� Let R be a Cohen�Macaulay �local ring with �canon�

ical module �R � and let x � x�� � � � � xn be an R�sequence of homogeneous

elements with deg xi � ai for i � �� � � � � n� Then

�R�xR
�� ��R�x�R��

nX
i��

ai��

In particular� if k be a �eld� and R a Cohen�Macaulay positively graded

k�algebra� then a�R�xR� � a�R� �
Pn

i�� ai�

Proof� The Koszul complex K��x�R� is a graded free R�resolution of
R�xR� and Kn�x�R� �� R��

Pn
i�� ai�� From ������ we obtain

�R�xR
�� �Ext

n
R�R�xR��R� �� Hn�x� �R� �� ��R�x�R��

nX
i��

ai��

Examples ������� �a� A graded polynomial ring R � k�X�� � � � � Xn� over a
�eld k with degXi � ai � 
 has the a�invariant a�R� � �

Pn
i�� deg ai�

�b� Let k be a �eld� and R � S a homomorphism of Cohen�Macaulay
positively graded rings with �maximal ideals m and n � respectively� Sup�
pose the homomorphism satis�es the conditions of �������b�� and suppose
further that S has a �nite free homogeneous R�resolution


 �� Ft �� Ft�� �� � � � �� F� �� S �� 
�

where t � dimR � dimS � Write Ft �
L

i�Z R��ai�� then a�S� � a�R� �
maxfai � i � Zg� This is proved exactly as in the special case �������

Local Duality� Our �nal objective is to derive the graded version of the
local duality theorem� We begin with Matlis duality�

Let �R� m � be a Noetherian �local ring� then R� is local with maximal
ideal m �� We consider R� as a graded ring by de�ning �R��i � 
 for
i �� 
� Similarly any R��module may be considered a graded R��module
concentrated in degree 
� Moreover� if M is a graded R�module� it may
be viewed as a graded R��module as well� Thus we can de�ne

M� � �HomR� �M�ER� �R��m ����

A priori� M� is a graded R��module whose grading is given by

�M��i � HomR� �M�i� ER� �R��m ���



��� 
� The canonical module� Gorenstein rings

for all i � Z� But it is obvious that M� has a natural structure as a
graded R�module�

The Noetherian �local ring �R� m � is said to be �complete if �R�� m �� is
complete� If �R� m � is �complete and M is a �nite graded R�module� then
all homogeneous components Mi of M are complete R��modules �since
they are �nite R��modules��

Proposition ������� Let �R� m � be a Noetherian �complete �local ring� Then

�a� the additive contravariant functor � �� � M��R� ��M��R� is exact�
�b� M� �� �HomR�M�R�� for all graded R�modules M�

�c� one has R� �� �ER�R�m ��

Proof� �a� is obvious�
�b� We de�ne � � �HomR�M� �HomR� �R� E���

�HomR� �M�E� by set�
ting �����x� � ��x���� for all � � �Hom�M� �HomR� �R� E�� and all x � M�
It is readily seen that � is an isomorphism�

�c� It follows from �a� and �b� that �HomR� � R�� is an exact functor�
and so R� is �injective� R� is �indecomposable since R�� �� R� Note
further that �R�m �� �� R�m � This is clear in the case where R�m �� k
is a �eld� and it is easy to see in the case R�m �� k�t� t���� since then
all homogeneous components of k�t� t��� are isomorphic to k� Therefore
the canonical epimorphism R � R�m yields a monomorphism R�m ��
�R�m �� �� R�� and the assertion follows from ������

M � M��R� is called �Artinian if every descending chain of graded
submodules terminates� The homogeneous socle of a graded R�moduleM
is de�ned to be �SocM � �HomR�R�m �M�� It is an R�m �module and
can be viewed as a graded submodule of M� As an R�m �module it is free
�see Exercise �����
�� and so �SocM ��

L
i�I �R�m ��ai�� If M is Artinian�

then �SocM can have only �nitely many summands �R�m ��ai�� Hence we
may write

�SocM ��

nM
i��

�R�m ��ai��

As in the proof of ������ we conclude that M is �Artinian if and only if
there exist an integer n 	 
 and integers a�� � � � � an such that

M �
nM
i��

R��ai���	�

Let A��R� denote the full subcategory of M��R� consisting of all
�Artinian R�modules and F��R� the full subcategory of all �nite graded
R�modules�

Theorem ������ �Matlis duality for graded modules�� Let �R� m � be a

Noetherian �complete �local ring� and let M � F��R� and N � A��R��
Then
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�a� M� � A��R� and N� � F��R��
�b� M�� ��M and N�� �� N�

�c� the functor � �� � F��R� �� A��R� establishes an anti�equivalence of

categories�

Proof� Using �	� one proves the theorem in the same way as ������� For
example� in order to show �b� we set E � ER��R��m ��� Then we have

�M���i � HomR� �HomR� �Mi� E�� E� ��Mi

by Matlis duality� see �������

Now let �R� m � be a Noetherian �local ring� ForM �M��R� we de�ne

�H i
m �M� � �lim

��
�Ext

i
R�R�m k�M��

it is called the i�th �local cohomology functor� �H�
m � � is left exact and the

functors �H i
m � �� i 	 
� are the right derived functors of �H�

m � ��

Remark ������� Assume in addition that the �maximal ideal m of R
is maximal� Since for all i and j� and all M � M��R�� we have
�ExtiR�R�m j �M� �� ExtiR�R�m j �M� �� ExtiRm

�Rm �m jRm �Mm �� we see that

in this case �H i
m �M� �� H i

Rm
�Mm ��

Theorem ������ �The local duality theorem for graded modules�� Let

�R� m � be a Cohen�Macaulay �complete �local ring of �dimension d � Then
�a� R has a �canonical module �R � and �R

�� ��Hd
m �R��

��

�b� for all �nite graded R�modules M and all integers i there exist natural
homogeneous isomorphisms

��H i
m �M��� �� �Ext

d�i
R �M��R��

The proof follows as in the non�graded case� see ������
Let R be a positively graded k�algebra� Then it follows from ������a�

that

a�R� � maxfi � �Hd
m �R�i �� 
g�

If in addition dimR � 
� then a�R� � maxfi � Ri �� 
g�

Exercises

������� Let R be a Noetherian graded ring�
�a� For p � SpecR show that Rp is Gorenstein if and only if Rp � is Gorenstein�
�b� Show the following conditions are equivalent�

�i� R is a Gorenstein ring�
�ii� Rp is a Gorenstein ring for all graded prime ideals p � SpecR�
�iii� R�p � is a Gorenstein ring for all graded prime ideals p � SpecR�



��� 
� The canonical module� Gorenstein rings

�c� Let �R� m � be �local ring� Deduce that R is Gorenstein if and only if Rm is
Gorenstein�

������� The purpose of this exercise is to re�prove a few results of Goto and
Watanabe�

Let R be a graded ring� d a positive integer� The ring R�d� �
L

i�ZRid is
called the d�th Veronese subring of R� It is a graded subring of R with grading
�R�d��i � Rid for all i � Z� For j � �� � � � � d�� we consider the graded R�d��modules
Mj �

L
i�Z Rid�j with grading �Mj �i � Rid�j for all i � Z� We assume that R is

Noetherian� and for �d� and �e� that it is a positively graded algebra over a 	eld�
Show�
�a� R �

Ld��
j�� Mj �as R�d��module�� In particular� R�d� is a direct summand of R�

R�d� is Noetherian� and the Mj are 	nite R�d��modules� �Hint� Compare the proof
of �������
�b� R is Cohen�Macaulay if and only if all Mj are maximal Cohen�Macaulay
R�d��modules�
�c� If R is Cohen�Macaulay� then �R�d�


�
L

i�Z��R�id �
�d� If R is Gorenstein and a�R� � bd � j� � � j � d � �� then �R�d�


� Mj�b��

�e� If R is Gorenstein and a�R� � � mod d � then R�d� is Gorenstein� Is a�R� �
� mod d if R and R�d� are Gorenstein�

������� Let k be a 	eld� We consider R � kX� � � � � � Xn� as a graded k�algebra with
degXi � ai � � for i � �� � � � � n� Determine all Veronese subrings of R which are
Gorenstein�

������� Let R be a homogeneous k�algebra� k a 	eld� Express a�R�d�� in terms of
a�R� and d �

Notes

Grothendieck introduced the canonical module �often called dualizing
module� and proved the local duality theorem� A comprehensive presen�
tation of this theory including local cohomology is given in ������ Equally
fundamental is the famous paper of Bass ��	�� The interested reader can
�nd some more historical background there�

We were guided by the books of Kaplansky ����� and Matsumura
��	
� in Sections ��� and ���� In Sections ��� and ��� we follow partly
the lecture notes of Herzog and Kunz ����� Part of Section ��� has been
in�uenced by the notes of P� Roberts ������ In particular the description

of the modi�ed %Cech complex has been taken from this source� In Section
��� we follow to a large extent the papers ����� by Goto and Watanabe
and ��
� by Fossum and Foxby�

The main result �����	 of Section ��� is due to Bass ��	�� The charac�
terization �����
 of Gorenstein rings in terms of the type was �rst proved
by Bass ����� Bass ��	� gives a list of other equivalent conditions for the
Gorenstein property� In ����� Foxby proves the following conjecture of
Vasconcelos� which is a remarkable characterization of Gorenstein rings�
Suppose �R� m � k� is a Noetherian local ring of dimension d containing a



Notes ���

�eld� then R is a Gorenstein ring if �d�m � R� � �� �We will give a proof of
this result in ������ The main theorem of Matlis duality and the structure
theorem for injective modules are proved by Matlis in ����� and can also
be found in the more general framework of Abelian categories in Gabriel
������

Theorem �����
 which characterizes the canonical module is taken
from ����� However in the proof given here we do not use local
cohomology� Theorem ����� on the existence of the canonical module
is independently due to Foxby ����� and Reiten ��
	�� and ����� is a
theorem of Murthy ������ It says that every factorial Cohen�Macaulay
ring with a canonical module is Gorenstein� In ��	�� Ulrich proves a
certain converse of Murthy�s theorem� any Gorenstein ring which is
a factor ring of a regular local ring and which is locally a complete
intersection in codimension one can be realized as a specialization of a
Cohen�Macaulay factorial domain�

For a while it had been open whether or not there exist non�Cohen�
Macaulay factorial local rings� Such examples were found by Bertin ����
�see ����	� and also by Fossum and Gri�th ������ in characteristic p and
by Freitag and Kiehl ����� in characteristic 
�

There are two remarkable extensions of the theory of the canonical
module in its basic form as presented here� Sharp introduced Gorenstein
modules in ���	� as those �nite modules G whose Cousin complex pro�
vides a �minimal� injective resolution for G� A Gorenstein module shares
many properties with the canonical module� It is a Cohen�Macaulay
module of �nite injective dimension whose type and rank� however� may
be bigger than one� We refer the reader to the papers on Cousin com�
plexes and Gorenstein modules ������ ���	�� ������ and ����� by Sharp�
and the article ����� by Foxby� It is shown in ���� that for a Noetherian
local ring admitting a canonical module �R � any Gorenstein module is a
direct sum of copies of �R � However there exist Cohen�Macaulay local
rings not admitting a canonical module� A �rst example of a one dimen�
sional ring with this property was given by Ferrand and Raynaud ��
���
and an example of a factorial Cohen�Macaulay ring without a canonical
module is due to Ogoma ����� In ���� Weston gives an example of a
ring with a Gorenstein module of rank �� admitting no canonical module�

The second extension of the basic concept gives a duality theory even
for non�Cohen�Macaulay rings� In this theory the canonical module has
to be replaced by the so�called dualizing complex� and duality is obtained
in the derived category� We refer the reader to the book of Hartshorne
������ A more elementary account of the theory can be found in Sharp
���
��

As a consequence of the structure theorem ����� for Gorenstein ideals
of grade three� these ideals have an odd number of generators� This had
been observed before by J� Watanabe ������ He uses linkage arguments
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in his proof� Linkage had already been considered in ��� by Ap�ery
���� and by Gaeta ����� in ���� It has become popular as a result of
the paper of Peskine and Szpiro ����� Linkage provides a technique to
construct large and interesting classes of perfect ideals or of Gorenstein
ideals whose structure is well understood� Of particular interest are the
ideals in the linkage class of a complete intersection� called licci ideals�
The simplest examples are the so�called Northcott ideals ����� and the
Gorenstein ideals de�ned in ������ More important is the fact that perfect
ideals of grade two ���� and Gorenstein ideals of grade three ����� are
in the linkage class of a complete intersection� They are in a sense the
archetypes of licci ideals as shown by Huneke and Ulrich ���
�� For
further study of linkage theory we refer the reader to the papers of
Huneke ���
�� ������ Huneke and Ulrich ����� ������ ������ Kustin and
Miller ������ ������ ������ and Ulrich ��	��� ��	���

The height � monomial Gorenstein ideals have been completely clas�
si�ed by Bruns and Herzog �����

There have been attempts to obtain structure theorems for non�
Gorenstein ideals of grade � or even for ideals of grade higher than
�� The next case of interest is Gorenstein ideals of grade �� As a �rst
approach to the problem one may try to classify the Tor�algebras of these
ideals I � i�e� TorR�k� R�I� when I is an ideal in the local ring R with
residue class �eld k� For ideals I such that proj dimR�I � � this has been
done by Weyman ���� in characteristic 
 and by Avramov� Kustin� and
Miller ���� in all characteristics� The next case of interest is Gorenstein
ideals of grade �� At the moment a general structure theorem for these
ideals seems to be out of range� Kustin and Miller ����� succeeded in
classifying their Tor�algebras�

A remarkable result� valid for ideals of arbitrary grade� is due to Kunz
������ if I is a Gorenstein ideal� then ��I� �� grade I � ��

Duality theory is a classical and fundamental topic in algebraic ge�
ometry� and has also several algebraic aspects we have not even touched
upon� We must content ourselves with a list of keywords and references�
Riemann�Roch theorem� Serre duality� modules of regular di erentials�
residue symbols� trace maps� see Hartshorne ������ ������ Kunz ���	��
Kunz and Waldi ���
�� Lipman ����� Scheja and Storch ������ ������ and
Serre ������
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The Hilbert function H�M� n� measures the dimension of the n�th homo�
geneous piece of a graded module M� In the �rst section of this chapter
we study the Hilbert function of modules over homogeneous rings� prove
that it is a polynomial for large values of n� and introduce the Hilbert
series and multiplicity of a graded module� The next section is devoted
to the proof of Macaulay�s theorem which describes the possible Hilbert
functions� The third section complements these results by Gotzmann�s
regularity and persistence theorem�

The Hilbert function behaves quite regular� even for graded� non�
homogeneous rings� Such rings will be considered in the fourth section�
where we will also investigate the Hilbert function of the canonical
module�

The passage to the associated graded ring with respect to a �ltration
allows us to extend some concepts for graded rings like �Hilbert function�
or �multiplicity� to non�graded rings� and leads to the Hilbert�Samuel
function and the multiplicity of a �nite module with respect to an ideal
of de�nition� We shall study basic properties of �ltrations and their
associated Rees rings and modules� and sketch the theory of reduction
ideals� Finally we prove Serre�s theorem which interprets multiplicity as
the Euler characteristic of a certain Koszul homology�

	�� Hilbert functions over homogeneous rings

We begin by studying numerical properties of �nite graded modules over
a graded ring R� Our standard assumption in this section will be that R�

is an Artinian local ring� and that R is �nitely generated over R�� Notice
that for each �nite graded R�module M� the homogeneous components
Mn of M are �nite R��modules� and hence have �nite length�

De�nition 	����� LetM be a graded R�module whose graded components
Mn have �nite length for all n� The numerical function H�M� � � Z� Z

with H�M� n� � ��Mn� for all n � Z is the Hilbert function� and HM �t� �P
n�ZH�M� n�tn is the Hilbert series of M�

For the rest of this section we will assume that R is generated over R�

by elements of degree �� that is� R � R��R��� Recall that such a ring is
said to be homogeneous�

��	
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We say that a numerical function F � Z� Z is of polynomial type �of
degree d� if there exists a polynomial P �X� � Q�X� �of degree d� such
that F�n� � P �n� for all n � 
� By convention the zero polynomial has
degree ���

We de�ne the di�erence operator � on the set of numerical functions
by setting ��F��n� � F�n � ��� F�n� for all n � Z� Notice that � maps
polynomial functions to polynomial functions� lowering the degree of
non�zero polynomials by �� The d times iterated ��operator will be
denoted by �d � We further set ��F � F �

Lemma 	����� Let F � Z � Z be a numerical function� and d 	 
 an

integer� The following conditions are equivalent	

�a� �dF�n� � c� c �� 
� for all n� 
�
�b� F is of polynomial type of degree d �

Proof� �b�  �a� is easy� We prove the other implication by induction
on d � The assertion is trivial for d � 
� Now assume that d � 
� and
�dF�n� � �d���F�n����F�n�� � c� c �� 
� for all n� 
� By the induction
hypothesis it then follows that there exist an integer n� and a polynomial
P �X� � Q�X� of degree d � � such that F�n � �� � F�n� � P �n� for all
n 	 n�� Then F�n � �� � F�n�� �

Pn
k�n�

P �k�� and this last sum is a

polynomial function in n of degree d �

After these preparations we can state the main result of this section
as follows�

Theorem 	���� �Hilbert�� Let M be a �nite graded R�module of dimension
d � Then H�M� n� is of polynomial type of degree d � ��

Proof� We prove the theorem by induction on the dimension d of M�
First note that there is a chain 
 � N� � N� � � � � � Nn � M of graded
submodules of M such that for each i we have Ni���Ni

�� �R�p i��ai�
where p i is a graded prime ideal� Indeed� we may assume that M �� 
�
Choose p � � Ass�M�� The prime ideal p � is graded� see ������ There
exists a graded submodule N� �M with N�

�� �R�p ���a��� If N� �� M we
choose p � � Ass�M�N��� Then there exists a graded submodule N� �M
with N��N�

�� �R�p ���a��� If N� �� M� we may proceed in the same way�
But M is Noetherian� and so this process terminates eventually�

Now� since the Hilbert function is additive on short exact sequences� it
follows that H�M� n� �

P
iH��R�p i��ai�� n�� Notice that d is the supremum

of the numbers dimR�p i� Hence the theorem will follow once we have
shown it for M � R�p � p a graded prime ideal� �Here� of course� one has
to observe that the polynomials describing Hilbert functions are zero or
have positive leading coe�cients since their values are non�negative for
n � 
� As a consequence� the degree of the sum of such polynomials is
the maximum of their degrees��
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If dimR�p � 
� then p is the unique graded maximal ideal m � �L
n��Rn of R� where m � is the maximal ideal of R�� It follows that

H�R�p � n� � 
 for n � 
�
If dimR�p � 
� we may choose a homogeneous element x � R�p �

x �� 
� of degree �� Here we use the fact that R is homogeneous� The
exact sequence


 �� �R�p �����
x
�� R�p �� R��x� p � �� 


gives the equation

�H�R�p � n� � H�R�p � n� ��� H�R�p � n� � H�R��x� p �� n� ���

As dimR��x� p � � d��� our induction hypothesis implies that �H�R�p � n�
is of polynomial type of degree d � �� Hence if d � �� then ����� implies
that �d��H�R�p � n� � �d����H�R�p � n�� is a non�zero constant function
for large n� and if d � �� then �d��H�R�p � n� � H�R�p � n� � H�R�p � 
� �Pn

i��H�R��p � x�� i� is constant for large n since H�R��p � x�� i� � 
 for
i � 
� Again this constant is not zero since H�R�p � 
� �� 
� Now ������
�a� �b� yields the assertion�

Hilbert�s original proof �see ��	��� makes use of his syzygy theorem
������� This approach will be described in �������

The next lemma clari�es which polynomials in Q�X� have integer
values�

Lemma 	���	� Let P �X� � Q�X� be a polynomial of degree d � �� Then
the following conditions are equivalent	

�a� P �n� � Z for all n � Z�
�b� there exist integers a�� � � � � ad�� such that

P �X� �
d��X
i��

ai

�
X � i

i

�
�

Proof� �b� �a� is trivial� For the converse observe that the polynomials�
X�i
i

�
� i � N� form a Q�basis of Q�X�� Therefore P �X� �

Pd��
i�� ai

�
X�i
i

�
with ai � Q� The identity

�
X�i��

i

�
�
�
X�i
i

�
�
�
X�i
i��

�
immediately implies

that ai � �iP ��i� �� � Z for i � 
� � � � � d � ��

De�nition 	����� Let M be a �nite graded R�module of dimension d �
The unique polynomial PM�X� � Q�X� for which H�M� n� � PM�n� for
all n� 
 is called the Hilbert polynomial of M� We write

PM�X� �
d��X
i��

����d���ied���i

�
X � i

i

�
�
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Then the multiplicity of M is de�ned to be

e�M� �

�
e� if d � 
�
��M� if d � 
�

Remark 	����� The higher iterated Hilbert functions Hi�M� n�� i � N� of a
�nite graded R�module M are de�ned recursively as follows�

H��M� n� � H�M� n�� and Hi�M� n� �
X
j
n

Hi���M� j�

for i � 
� Occasionally the functionsHi�M� � are called the sum transforms

of H�M� ��
It follows from ����� and ����� that Hi�M� n� is of polynomial type of

degree d � i � �� where d � dimM� In particular� for all n � 
 there is

a representation H��M� n� �
Pd

i�� ai
�
n�i
i

�
with ai � Z� and it is easy to

see that ad � e�M�� Another formula for the multiplicity will be given in
�����

Theorem ����� together with the next lemma yields a structural result
about Hilbert series�

Lemma 	����� Let H�t� �
P

ant
n be a formal Laurent series with integer

coe�cients� and ai � 
 for i � 
� Further� let d � 
 be an integer� Then

the following conditions are equivalent	

�a� there exists a polynomial P �X� � Q�X� of degree d � � such that

P �n� � an for large n�
�b� H�t� � Q�t����� t�d where Q�t� � Z�t� t��� and Q��� �� 
�

Proof� Assume �a�� and set F�n� � an for all n � Z� Then

��� t�dH�t� �
X
n

�dF�n � d�tn�

and it follows from ����� that �� � t�dH�t� � Z�t� t��� � We set Q�t� �P
n�

dF�n� d�tn� Suppose Q��� � 
� then


 �
X
n

�dF�n � d� �
X
n

��d��F�n � �� d�� �d��F�n� d�� � �d��F�m�

for large m� This contradicts ������ and thus proves the implication
�a� �b�� The converse is proved similarly�

Corollary 	����� Let M �� 
 be a �nite graded R�module of dimension d �
Then there exists a unique QM�t� � Z�t� t

��� with QM��� �� 
 such that

HM�t� �
QM�t�

��� t�d
�

Moreover� if QM�t� �
P

i hit
i� then minfi � hi �� 
g is the least number such

that Mi �� 
�
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Proof� The �rst part of the assertion is clear for d � 
� and for d � 
 it
follows from ����� and ����	� In order to prove the second part multiply
both sides of HM�t� � QM�t����� t�d by ��� t�d and compare coe�cients�

In the next proposition we show how one can recover the coe�cients
ei of the Hilbert polynomial of a module M from QM � We will denote by
P �i� the i�th formal derivative of an element P � Z�t� t����

Proposition 	����� Under the assumptions of ����� the following formulas

hold	

ei �
Q

�i�
M���

i"

for i � 
� � � � � d � �� Moreover� e�M� � QM����

Proof� We write

HM�t��
d��X
i��

����i

i"

Q�i�
M���

��� t�d�i
�

D�t�

��� t�d

where D�t� � QM�t��
Pd��

i��
����i

i
 Q�i�
M������t�

i is the remainder of the Taylor

expansion of QM�t� up to degree d � �� The element D�t� � Z�t� t��� is
divisible by ���t�d since D�j���� � 
 for j � 
� � � � � d��� It follows that the

coe�cients of HM�t� and
Pd��

i�� �
����i

i
 Q�i�
M������� t�d�i� coincide for large

n� Hence
d��X
i��

����i

i"

Q
�i�
M���

��� t�d�i
�
X
n	�

PM�n�t
n�

since the coe�cients of both series are polynomial functions in n which
are equal for large n �and hence must be equal for all n�� Expanding
the left hand side of the equation as a power series� and comparing

coe�cients we get ei � Q�i�
M����i"�

Finally� by what we have just proved� we have e�M� � e� � QM��� if
d � 
� and� if d � 
� e�M� � ��M� �

P
nH�M� n� � HM��� � QM���� since

in this case HM�t� � QM�t��

Corollary 	����
� Assume that in addition to the assumptions of ����� the

module M is Cohen�Macaulay� Let QM�t� �
P

hit
i� Then hi 	 
 for all i�

Moreover� ei 	 
 for all i if Mj � 
 for all j � 
�

Proof� Without loss of generality we may assume that the residue class
�eld of R� is in�nite� Otherwise we resort to a standard trick� we replace
R by R� � R �R� R��Y � and M by M� � M �R� R��Y � where Y is
an indeterminate over R�� and where R��Y � is the local ring R��Y �S �
S being the multiplicatively closed set of polynomials P �Y � � R��Y �
which have at least one unit among their coe�cients� The natural ring



��� �� Hilbert functions and multiplicities

homomorphism R� � R��Y � is local and �at� and its �bre is the residue
class �eld of R��Y �� namely the �eld k�Y � of rational functions over
k � R��m �� If we assign the degree 
 to the elements of R��Y �� then
both R� and M� are naturally graded� and because of �atness� M� is a
Cohen�Macaulay R��module of dimension d with HM ��t� � HM�t�� see
����	 and ������� Moreover� R�

� � R��Y �� and hence has an in�nite residue
class �eld�

In view of ���� it su�ces to show that hi 	 
 for all i� We prove the
assertion by induction on d � If d � 
� then QM�t� � HM�t� �see ������� and
so all coe�cients of QM�t� are non�negative�

Suppose now that d � 
� The unique homogeneous maximal ideal
M � m � �

L
n��Rn of R does not belong to AssM� and the ideal

I �
L

n��Rn� generated by the elements of R�� is M �primary� Thus� since
R�M is in�nite there exists an element a � R� which is M�regular� see
������� Let N � M�aM� then N is a Cohen�Macaulay graded R�module
of dimension d � �� and the exact sequence


 ��M����
a
��M �� N �� 


gives the equation �� � t�HM�t� � HN�t�� It follows that QM�t� � QN�t��
which by our induction hypothesis yields the conclusion�

Remark 	������ The arguments in the previous proof show the following
notable result� suppose M is a �nite graded R�module� and x is an
M�sequence of elements of degree �� then QM�t� � QM��x�M�t��

Hilbert�s theorem tells us that the Hilbert function of a �nite graded
module is a polynomial function for large n� We will determine from
which integer n onwards this happens�

Proposition 	������ Let M �� 
 be a �nite graded R�module of dimension

d � and QM�t� �
Pb

i�a hit
i with hb �� 
� Then H�M� b � d� �� PM�b� d� and

H�M� i� � PM�i� for all i 	 b� d � ��

Proof� For i � a� � � � � b we set Hi�t� � hit
i���� t�d and Pi�n� � hi

�
n�i�d��
d��

�
�

Then Hi�t� �
P�

n�iPi�n�t
n� but since Pi�n� � 
 for n � i� �d � ��� � � � � i� �

we even have Hi�t� �
P�

n�i��d���Pi�n�t
n� Furthermore PM�n� �

Pb
i�aPi�n�

for all n � Z� For n 	 b � d � � one has H�M� n� �
Pb

i�aPi�n�� whereas

H�M� b � d� �
Pb��

i�a Pi�b � d� and Pb�b � d� �� 
� Thus H�M� b � d� ��
PM�b� d��

In Section ��� we will give a homological interpretation of the di er�
ence between the Hilbert function and the Hilbert polynomial�

Hilbert series and free resolutions� The Hilbert series of a graded module
can be expressed in terms of its graded resolution�
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Lemma 	������ Let M be a �nite graded R�module of �nite projective

dimension� and let


 ��
M
j

R��j��pj �� � � � ��
M
j

R��j���j ��M �� 


be a graded free resolution of M� Then

HM�t� � SM�t�HR�t�

where SM�t� �
P

i�j����
i�ijt

j � In particular� if R � k�X� � � � � � Xn� is the

polynomial ring over the �eld k� then

HM�t� �
SM�t�

��� t�n
�

Proof� For the proof we simply note that the Hilbert function is additive
on short exact sequences� so that HM�t� �

P
i����

i�ijHR��j��t�� Taking

into account that HR��j��t� � tjHR�t�� we obtain the required formula�
If R � k�X�� � � � � Xn� is the polynomial ring� then H�R� i� equals the

number of monomials in degree i� One easily proves by induction on

n that this number is
�
n�i��
n��

�
� whence HR�t� �

P
i

�
n�i��
n��

�
ti � ���� � t�n�

Corollary 	����	� Let R � k�X�� � � � � Xn� be a polynomial ring over a �eld

k� and let M be a �nite graded R�module of dimension d � Then

�a� SM�t� � ��� t�n�dQM�t��

�b� n� d � inffi � S �i�
M ��� �� 
g�

�c� S �n�d�i�
M ��� � ����n�d

�
n�d�i

i

�
ei�

Proof� �a� and �b� are immediate while �c� follows from �a� and �����

We conclude this section with an application to a special class of
graded rings� Let R � k�X�� � � � � Xn� be a polynomial ring over a �eld k�
I � R a graded ideal� We say that R�I has a pure resolution of type
�d�� � � � � dp� if its minimal resolution has the form


 �� R��dp�
�p �� � � � �� R��d��

�� �� R �� R�I �� 
�

Note that d� � d� � � � � � dp�

Theorem 	������ Suppose R�I is Cohen�Macaulay and has a pure resolution

of type �d�� � � � � dp�� Then

�a� �i � ����i��
Y
j �i

dj
�dj � di�

� �b� e�R�I� �
�

p"

pY
i��

di�



��� �� Hilbert functions and multiplicities

Proof� As R�I is Cohen�Macaulay� the Auslander�Buchsbaum formula
����� �in conjunction with ������� implies that p � dimR � dimR�I�
therefore� with �� � �� d� � 
� we have

SR�I�t� �

pX
i��

����i�it
di and S �j�

R�I��� � 


for j � 
� � � � � p� �� see ������� We obtain the following system of linear
equations�

pX
i��

����i�i � ���

pX
i��

����i�idi�di � �� � � � �di � j � �� � 
 for j � �� � � � � p� ��

Upon applying elementary row operations� which do not a ect the solu�
tion of this system of linear equations with coe�cient matrix

�di"��di � j�"� j�������p��
i�������p

�

we are led to the Vandermonde matrix whose determinant is
Q

i�j�di�dj��

Now Cramer�s rule gives the stated solutions for the �i�
�b� According to ������ we have

e�R�I� � ����p
S �p�
R�I ���

p"
�

pX
i��

����p�i�i

�
di
p

�
�

Thus �a� implies that

e�R�I� �
�

p"

pY
i��

di

pX
i��

Qp��
j���di � j�Q
j �i�di � dj�

�

It remains to show that the sum in this expression equals �� We introduce
the rational complex function

f�z� �

Qp��
j���z � j�Qp
j���z � dj�

�

This function has simple poles at worst in the points d�� � � � � dp� and the
residues in these points are

Resdi f�z� �

Qp��
j���di � j�Q
j �i�di � dj�

�
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The sum of all residues of a rational function at all points including �
is zero� and Res� f�z� � �Res� f���z��z�� Therefore

pX
i��

�
p��Y
j��

�di � j�
Y
j �i

�di � dj�
��

�
�

pX
i��

Resdi f�z�

� Res�
f���z�

z�
� Res�

�
�

z

p��Y
j��

��� jz�

pY
j��

��� djz�
��

�
� ��

Exercises

������� Let k be a 	eld� and M a 	nite graded module over the polynomial ring
R � kX� � � � � � Xn� with minimal graded resolution

� ���
M
j

R��j��pj ��� � � � ���
M
j

R��j���j ��� M ��� ��

We say that two modules have numerically the same resolution if their graded
Betti numbers �ij are the same� Show�
�a� The homogeneous rings kX� Y ���X� � Y �� and kX� Y ���X� � XY � Y �� have
the same Hilbert series� but their minimal graded free kX� Y ��resolutions are
numerically di�erent�
�b� The homogeneous rings kX� Y ���X� � Y �� and kX� Y ���XY � X� � Y �� have
numerically the same graded kX� Y ��resolution� but are not isomorphic when
k � R�

�����	� Let k be a 	eld� and let R � kX� � � � � � Xn��I be a homogeneous Cohen�
Macaulay ring� The ring R has an m�linear resolution if it has a pure resolution
of type �m�m� �� � � � � m� p� ��� p � n� dimR�
�a� Suppose R has an m�linear resolution� What are the ranks of the free modules
in the free resolution of R� and what is the multiplicity of R�
�b� Suppose dimR � �� prove R has an m�linear resolution if and only if
I � �X� � � � � � Xn�

m�
Hint� relate the last shifts in the resolution of R with the degrees of the socle
elements of R�
�c� Prove the homogeneous Cohen�Macaulay ring R � kX� � � � � � Xn��I has an

m�linear resolution if and only if Ij � � for j � m� and dimk Im �
�
m�g��

m

�
� where

g � height I �
Hint� reduce to dimension zero�

�����
� Let k be a 	eld� and let R � kX� � � � � � Xn��I be a homogeneous Gorenstein
ring of dimension �� Assume that all generators of I have the same degree c�
�a� Show a�R� � �c � ��
�b� Show a�R� � �c � � if and only if R has a pure resolution of type �c� c � ��
� � � � c� n� �� �c� n� ��� In this case R is called an extremal Gorenstein ring� This
class of Gorenstein rings was 	rst considered by Schenzel �����
�c� Compute the Betti numbers �i�R� of an extremal Gorenstein ring R in a
minimal graded free kX� � � � � � Xn��resolution of R�



��� �� Hilbert functions and multiplicities

	�� Macaulay�s theorem on Hilbert functions

This section is devoted to a theorem of Macaulay describing exactly
those numerical functions which occur as the Hilbert function H�R� n� of
a homogeneous k�algebra R� k a �eld� Macaulay�s theorem says that for
each n there is an upper bound for H�R� n � �� in terms of H�R� n�� and
this bound is sharp in the sense that any numerical function satisfying it
can indeed be realized as the Hilbert function of a suitable homogeneous
k�algebra� One part of the proof of Macaulay�s theorem will be based on
a theorem of Green which relates the Hilbert function of a homogeneous
ring R with the Hilbert function of the factor ring R�hR by a general
linear form h�

Let R �
L

n	�Rn be a homogeneous k�algebra� where R� � k is a
�eld� We will show that R has a k�basis consisting of monomials in a
basis x�� � � � � xm of R�� We are going to de�ne this basis of monomials on
the level of the polynomial ring� So let

� � k�X�� � � � � Xm� �� R

be the surjective k�algebra homomorphism with ��Xi� � xi�

De�nition 	����� A non�empty set M of monomials in the indetermi�
nates X�� � � � � Xm is called an order ideal of monomials if the following
holds� whenever m � M and a monomial m� divides m� then m� � M �
Equivalently� if Xa�

� � � �X
am
m � M and 
 � bi � ai for i � �� � � � � m� then

Xb�
� � � �X

bm
m � M �

Remarks 	����� �a� In Chapter  we introduce the order ideal of an
element in a module� This notion has nothing to do with the order ideal
of monomials� and they should not be confused�

�b� Of course an order ideal of monomials M is not a k�basis of
an ideal� let alone an ideal� Quite the contrary� if we let C M be the
complement of M in the set of all monomials� then C M is a k�basis of
the ideal generated by the monomials m � C M �

Theorem 	���� �Macaulay�� Let R be a homogeneous k�algebra� k a �eld�

Further let x�� � � � � xm be a k�basis of R�� and � � k�X�� � � � � Xm� � R the

k�algebra homomorphism with ��Xi� � xi for i � �� � � � � m� Then there exists
an order ideal M of monomials such that ��M � is a k�basis of R�

Proof� Let S denote the set of all monomials in the indeterminates
X�� � � � � Xm� We de�ne a total order� the so�called reverse degree�lexico�

graphical order� on S� if u � Xa�
� � � �X

am
m and v � Xb�

� � � �X
bm
m � then u � v

if the last non�zero component of �b� � a�� � � � � bm � am�
P

bi �
P

ai� is
positive� �The usage of the term �reverse degree�lexicographical� is not
coherent in the literature��
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It is clear that �S� �� is an ordered semigroup� i�e� u � v  mu � mv
for all u� v� m � S� Moreover� any descending chain v� � v� � � � � of
elements of S must stop after a �nite number of steps� Equivalently�
every non�empty set of elements in S has a minimal element � a fact
that will be used later�

Now we de�ne recursively a sequence of monomials u�� u�� � � � accord�
ing to the following rule� We set u� � �� assume u�� � � � � ui have been
de�ned� then we let ui�� be the least element in the reverse degree�
lexicographical order such that ��u��� � � � � ��ui�� ��ui��� are linearly inde�
pendent over k� If such ui�� does not exist� the sequence terminates
with ui�

We claim that M � fu�� u�� � � �g is the required order ideal of monomi�
als� By construction ��M � is a k�basis of R� Assume M is not an order
ideal of monomials� Then there exist ui� � M and u � S n M such that
ui� � u � Xj for some Xj � As u �� M � we can write ��u� �

P
�i��ui� with

ui � M � ui � u� and �i � k� Then ��ui� � �
P

�i��uiXj�� and uiXj � ui� � for
all i in the sum� a contradiction�

We saw in the proof that our k�basis ��u��� ��u��� � � � of R has a
remarkable property� let u � S� and write ��u� �

P
�i �� �i��ui�� Then

ui � u for all i� and if u �� M � these inequalities are strict�
The previous theorem and ������b� immediately imply

Corollary 	���	� Let J be the ideal which is generated by the monomials

in C M � Then the homogeneous k�algebra R and k�X�� � � � � Xm��J have the

same Hilbert function� In particular� all Hilbert functions of homogeneous

rings arise as Hilbert functions of homogeneous rings whose de�ning ideal

is generated by monomials�

The set of monomials C M associated with R can be described di er�
ently� Let I � Ker �� and set

L�I� � fL�f� � f � Ig� and I� � L�I�R

where L�f� denotes the leading monomial of f� that is� the monomial
occurring in f which is maximal in the reverse degree�lexicographical
order� Then L�I� � C M � Indeed� let v � L�I�� and choose f � I �
f �

Pn
i���ivi with monomials vi such that v � L�f� � vn� Assume

vn �� C M � then vn � M � and so


 �� ��vn� � �
n��X
i��

���
n �i��vi��

Each ��vi� is a linear combination
P

�ij��uj�� �ij � k� uj � M � uj � vi � vn�
Replacing the ��vi� in the above equation by their linear combinations
gives a representation as a non�trivial linear combination of elements in
��M �� This contradicts ������
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Conversely� suppose v � C M � Then ��v� �
P

�i��ui� with ui � M �
ui � v� Hence� if we set f � v �

P
�iui� then ��f� � 
 and L�f� � v�

The ideal I� is �nitely generated� Therefore there exist polynomials
f�� � � � � fn � I such that I� � �L�f��� � � � � L�fn��� Any such subset of I is
called a Gr�obner or standard basis of I �

Note that any Gr�obner basis of I generates I� let f � I� then
L�f� �

P
giL�fi� for some gi � k�X� � � � � � Xm�� and it follows that either

f � �
P

gifi� or L�f � �
P

gifi� � L�f� for a suitable � � k� In the �rst
case� f is an element of �f�� � � � � fn�� In the second case we apply the same
procedure to f� � f � �

P
gifi to obtain an element f�� which is either

zero� in which case f � �f�� � � � � fn�� or which has L�f��� � L�f��� Since any
descending sequence of elements in S terminates� we eventually arrive at
the required conclusion�

We should warn the reader that the converse is not true� Consider
for example the ideal I � �f�� f�� with f� � X�X� �X�

� � f� � X�X�� Then
X�X

�
� � X�f� � X�f� is an element of I� � but not of �L�f��� L�f��� �

�X�
� � X�X���
Even though a Gr�obner basis of an ideal I is not simply given by the

leading forms of a system of generators of I � there does exist an algorithm
to compute a Gr�obner basis � the so�called Buchberger algorithm� This�
and the fact that most explicit calculations in commutative algebra are
performed using Gr�obner bases� explain their importance� Buchberger�s
algorithm has been implemented in various computer algebra programs�

Macaulay representations and lexsegment ideals� Let S � k�X�� � � � � Xm�
denote the polynomial ring over a �eld k� The problem of determining
the Hilbert function of a homogeneous factor ring R of S boils down to
the following question� given a subspace V � Sd � what can be said about
the k�dimension of the subspace S�V in Sd��#

We will give the answer in a special but important case� Let u � Sd
be a monomial� We de�ne the sets

Lu � fv � Sd � v � ug and Ru � fv � Sd � v 	 ug

of the monomials of degree d which are �left� and �right� of u� Note
that RX� � fX�� � � � � Xng� Monomial sets of the form Ru � Sd are called
lexsegments �of degree d�� The next lemma says that a lexsegment of
degree d spans a lexsegment of degree d � ��

Lemma 	����� RX�Ru � RX�u�

Proof� Let v � Ru� then Xiv 	 X�v 	 X�u� Conversely� let v � RX�u� We
may assume that X� does not divide v� then v � X�u� Let u � Xa�

� � � �X
am
m �

v � Xb�
� � � �X

bm
m � and i be the largest integer such that bi � ai� If there

exists j � i with bj � 
� then X��
j v � Ru� otherwise� X��

i v � Ru� In both

cases it follows that v � RX�Ru�
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The setsLu admit a natural decomposition� let i be the largest integer
such that Xi divides u� Then we can write

Lu �L�
u �L

��
uXi�

where Xi does not divide any element inL�
u� It is clear that this union is

disjoint� that L�
u consists of all monomials of degree d in the variables

X�� � � � � Xi��� and that L��
u �LX��

i u�

An example illustrates this decomposition� Let S � k�X�� � � � � X�� and
u � X�

�X�� Then

Lu � fX
�
� � X

�
�X�� X�X

�
� � X

�
� � X

�
�X�� X�X�X�g�

L�
u � fX

�
� � X

�
�X�� X�X

�
� � X

�
�g�

L��
u � fX

�
� � X�X�g �LX�

�
�

It is convenient to denote the set of all monomials of degree d in the
variables X�� � � � � Xi by �X�� � � � � Xi�d � We may again decompose L��

u � etc�
Thus if we write

u � Xj���Xj��� � � �Xj�d�

with � � j��� � j��� � � � � � j�d�� then

Lu � �X�� � � � � Xj�d����d �LX��
j�d�u

Xj�d�

� �X�� � � � � xj�d����d � �X�� � � � � Xj�d������d��Xj�d�

�LX��
j�d���X

��
j�d�u

Xj�d���Xj�d�

� � � � �

and we end up with the disjoint union

Lu �
d�
i��

�X�� � � � � Xj�i����iXj�i��� � � �Xj�d��

called the natural decomposition of Lu�
It follows that

jLuj �
dX
i��

�
k�i�

i

�
with k�i� � j�i� � i � �� Note that k�d� � k�d � �� � � � � � k��� 	 
� Here

and in the sequel we use that
�
k
l

�
� 
 for 
 � k � l�

The above considerations show that any non�negative integer has
such a binomial sum expansion� We prove this directly�

Lemma 	����� Let d be a positive integer� Any a � N can be written

uniquely in the form

a �

�
k�d�

d

�
�

�
k�d � ��

d � �

�
� � � ��

�
k���

�

�
�

where k�d� � k�d � �� � � � � � k��� 	 
�
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Proof� In order to prove the existence� we choose k�d� maximal such

that
�
k�d�
d

�
� a� If a �

�
k�d�
d

�
� then a �

Pd
i��

�
k�i�
i

�
with k�i� � i � � for

i � �� � � � � d � �� Now assume that a� � a �
�
k�d�
d

�
� 
� By the induction

hypothesis we may assume that a� �
Pd��

i��

�
k�i�
i

�
with k�d��� � k�d��� �

� � � � k��� 	 
� It remains to show that k�d� � k�d���� since
�
k�d���

d

�
� a�

it follows that�
k�d�

d � �

�
�

�
k�d� � �

d

�
�

�
k�d�

d

�
� a� 	

�
k�d � ��

d � �

�
�

Hence k�d� � k�d � ���
The uniqueness follows by induction on a� once we have shown the

following� if a �
Pd

i��

�
k�i�
i

�
with k�d� � k�d � �� � � � � � k��� 	 
� then

k�d� is the largest integer with
�
k�d�
d

�
� a� Again we prove this statement

by induction on a� For a � � the assertion is trivial� Now assume that

a � �� and
�
k�d���

d

�
� a� Then

d��X
i��

�
k�i�

i

�
	

�
k�d� � �

d

�
�

�
k�d�

d

�
�

�
k�d�

d � �

�
	

�
k�d � �� � �

d � �

�
�

and this contradicts the induction hypothesis�

Following Green ����� we refer to the sum ����� as the d�th Macaulay

representation of a� and call k�d�� � � � � k��� the d�th Macaulay coe�cients

of a�
Note that for all i � d the coe�cient k�i� is determined by the property

of being the maximal integer j such that�
j

i

�
� a�

�
k�d�

d

�
� � � � �

�
k�i � ��

i� �

�
�

The d�th Macaulay coe�cients have the following nice property�

Lemma 	����� Let k�d�� � � � � k���� respectively k��d�� � � � � k����� be the d�th
Macaulay coe�cients of a� respectively a�� Then a � a� if and only if

�k�d�� � � � � k���� � �k��d�� � � � � k�����

in the lexicographical order�

Proof� We prove both implications by induction on d � For d � �
the assertion is trivial� We now assume that d � �� If k�d� � k��d��
then k�d � ��� � � � � k��� �respectively k��d � ��� � � � � k����� are the �d � ���th

Macaulay coe�cients of a�
�
k�d�
d

�
�respectively a� �

�
k��d�
d

�
�� and we may

apply the induction hypothesis� If k�d� �� k��d�� then k�d� � k��d� if
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and only if a � a�� This follows from the characterization of the d�th
Macaulay coe�cients preceding this lemma�

Skipping the summands which are zero in the d�th Macaulay repre�
sentation of a we get the following unique sum expansion�

a �

�
k�d�

d

�
�

�
k�d � ��

d � �

�
� � � � �

�
k�j�

j

�
where k�d� � k�d � �� � � � � � k�j� 	 j 	 �� We de�ne

ahdi �

�
k�d� � �

d � �

�
�

�
k�d � �� � �

d

�
� � � � �

�
k��� � �

�

�
�

�
k�d� � �

d � �

�
�

�
k�d � �� � �

d

�
� � � � �

�
k�j� � �

j � �

�
�

and set 
hdi � 
�

Proposition 	����� Let u be a monomial of degree d in the polynomial ring

S � Then jLX�uj � jLujhdi�

Proof� Let Lu �
Sd

i���X�� � � � � Xj�i����iXj�i��� � � �Xj�d� be the canonical
decomposition of Lu� We claim that

d�
i��

�X�� � � � � Xj�i����i��Xj�i��� � � �Xj�d�

is the canonical decomposition of LX�u� Indeed� the canonical decom�
position of Lu is completely determined by the sequence j���� � � � � j�d�
attached to u� Let l���� � � � � l�d��� be the corresponding sequence for X�u�
Then l��� � �� and l�i� � j�i��� for i � �� � � � � d��� This proves the claim
and the proposition�

Let S � k�X�� � � � � Xm� be a polynomial ring over a �eld� and u � S
a monomial� An ideal which in each degree is spanned by a lexsegment
will be called a lexsegment ideal� In view of ����� and ����� we obtain

Corollary 	����� Let I � S be a lexsegment ideal� and set R � S�I � Then

H�R� n � �� � H�R� n�hni for all n�

Equality holds for a given n if and only if In�� � �X�� � � � � Xm�In�

Macaulay�s theorem� We now come to the main result of this section� It
will follow that the growth of the Hilbert function of a homogeneous
ring de�ned by a lexsegment ideal is� in a sense� the maximum possible�
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Theorem 	����
 �Macaulay�� Let k be a �eld� and let h � N � N be a

numerical function� The following conditions are equivalent	

�a� there exists a homogeneous k�algebra R with Hilbert function H�R� n�
� h�n� for all n 	 
�

�b� there exists a homogeneous k�algebra R with monomial relations and

with Hilbert function H�R� n� � h�n� for all n 	 
�

�c� one has h�
� � �� and h�n� �� � h�n�hni for all n 	 ��

�d� let m � h���� and for each n 	 
 let Mn be the �rst h�n� monomials in
the variables X�� � � � � Xm of degree n in the reverse degree�lexicographical

order� set M �
S

n	�Mn� then M is an order ideal of monomials�

The following example demonstrates the e ectiveness of Macaulay�s
theorem� let us check that � � �t� �t� � �t� is not the Hilbert series of a
homogeneous ring� In fact� condition �c� is violated since � �

��
�

�
�
��
�

�
�

and �h�i �
��
�

�
�
��
�

�
� 	 � �� Instead we also could apply �d�� and

get M� � fX�� X�� X�g� M� � fX�
� � X�X�� X�

� � X�X�� X�X�g� M� �
fX�

� � X
�
�X�� X�X

�
� � X

�
� � X

�
�X�� X�X�X�� X

�
�X�� X�X

�
�g� Thus we see that

X�X
�
� �M�� but X��

� �X�X
�
�� �� M�� ThereforeM is not an order ideal of

monomials�
Most parts of the theorem have already been shown� the equivalence

of �a� and �b� is the content of ������ and the implication �d�  �b�
is trivial� For the proof of �c�  �d� we assume that h��� � m� Then

condition �c� implies that h�n� �
�
n�m��

n

�
� Suppose that h�n� �� �

�
n�m
n��

�
�

then h�n� �
�
n�m��

n

�
� and so Mi � �X�� � � � � Xm�i for i � n and i � n � ��

Therefore� if u � Mn��� and Xi divides u� then trivially X��
i u � Mn�

Now we suppose that h�n � �� �
�
n�m
n��

�
� then there exist a monomial

un�� such that Mn�� � Lun�� � If� as before� Mn � �X�� � � � � Xm�n� there
is nothing to show� Otherwise� there exists a monomial un such that
Mn �Lun � Condition �c� and ����� imply that RX�Run � Run�� � Therefore�

if u � Mn��� and Xi divides u� then X��
i u � Mn� In other words�

M �
S

n	�Mn is an order ideal of monomials�
For the most di�cult implication �a�  �c� we present the elegant

proof of Green ������ This needs some preparations�
If a positive integer a has d�th Macaulay coe�cients k�d�� � � � � k����

then let

ahdi �

�
k�d� � �

d

�
�

�
k�d � ��� �

d � �

�
� � � � �

�
k���� �

�

�
�

�
k�d� � �

d

�
� � � ��

�
k�j� � �

j

�
�

where j � minfi � k�i� 	 ig�
Note that ahdi has d�th Macaulay coe�cients k�d���� � � � � k�j���� j �

�� j � �� � � � � 
�
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Lemma 	������ �a� If a � a�� then ahdi � a�hdi�

�b� If k�j� �� j for j � minfi � k�i� 	 ig� then �a� ��hdi � ahdi �

Proof� �a� follows from the observation preceding this lemma and ����	�
For �b� let k�d�� k�d � ��� � � � � k��� be the d�th Macaulay coe�cients of a�
and k��d�� k��d � ��� � � � � k���� the d�th Macaulay coe�cients of a� �� then

k��d� � k�d� by ����	� If k��d� � k�d�� we set a� � a �
�
k�d�
d

�
� Convince

yourself that a� � � � 
� Then it follows that a� �respectively a� � �� has
�d � ���th Macaulay coe�cients k�d � ��� k�d � ��� � � � � k��� �respectively
k��d � ��� k��d � ��� � � � � k������ Moreover� a� satis�es the hypothesis of
�b�� Therefore� if we argue by induction on d � we may assume that
�a� � ��hd��i � a�hd��i� Hence the required inequality in the case in

which k��d� � k�d� follows from the equalities ahdi � a�hd��i �
�
k�d���

d

�
and

�a� ��hdi � �a� � ��hd��i �
�
k�d���

d

�
�

Now suppose that k��d� � k�d�� Our assumption implies that the
d�th Macaulay coe�cient of ahdi is k�d�� �� and that the d�th Macaulay
coe�cient of �a � ��hdi is less than or equal to k��d� � �� Therefore the

conclusion follows from ����	�

Theorem ������� interesting in its own right� is the key to the still
unproved implication �a� �c� of �����
�

Let R be a homogeneous k�algebra� k an in�nite �eld� The a�ne
k�space R� is irreducible� and so any non�empty �Zariski�� open subset is
dense in R�� This suggests the following terminology� a property P holds
for a general linear form of R� if there exists a non�empty open subset U
of R� such that P holds for all h � U�

Theorem 	����� �Green�� Let R be a homogeneous k�algebra� k an in�nite

�eld� and let n 	 � be an integer� Then

H�R�hR� n� � H�R� n�hni

for a general linear form h�

Proof� Let s � supfdimk hRn�� � h � R�g� then dimk hRn�� � s for a
general linear form� Indeed� let U � R� be the subset of elements h � R�

such that dimk hRn�� � s� It is obvious that U �� �� In order to see that
U is open� we choose a basis a�� � � � � am of R� and bases of Rn�� and
Rn� Then the multiplication map h � Rn�� � Rn� h �

Pm
i�� xiai� can be

described by a matrix of linear forms in x�� � � � � xm� Replacing the xi by
indeterminates yields a matrix A of linear polynomials with coe�cients
in k� and it is clear that U is the complement of V �Is�A�� in R��

Let h � U� and set S � R�hR� We claim that H�S� n� � H�R� n�hni� and
prove it by induction on minfn� dimk R�g� If either n � � or dimk R� � ��
then the assertion is trivial� Now assume that n � � and dimk R� � �� Let
V � S� be the subset of linear forms g for which dimk gSn�� is maximal�
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and denote by � the canonical epimorphism R � S � We consider the
open subset

W � �U n kh� � ����V �

of R�� The set W is non�empty since R� is irreducible and both ����V �
and U n kh are non�empty� In fact� assume that U � kh� Then� since
U is a dense and kh is a closed subset in R� it follows that R� � kh�
contradicting the assumption dimk R� � �� Now we choose h� �W � and
get

H�S� n� � dimk�Sn�h
�Sn��� � dimk h

�Sn���

By our choice of h�� the induction hypothesis yields the inequality

dimk�Sn�h
�Sn��� � H�S� n�hni�

To obtain an upper bound for the second summand note �rst that

dimk h
�Sn�� � dimk�h

�Rn���h�h
�Rn���� � dimk�hRn���h

��hRn�����

The last equality holds true since the di erence of both sides equals
dimk�Rn�hRn���� dimk�Rn�h

�Rn���� and this di erence is zero since both
h and h� belong to U�

Let W � � R� be the �non�empty� open set of linear forms l for
which l�hRn��� has maximal dimension� Then� if we actually choose
h� � W � W �� noting that hRn�� may be viewed as the �n � ���th
homogeneous component of P � R��Annh�� we may apply our induction
hypothesis to conclude that dimk h

�Sn�� � �H�R� n� � H�S� n��hn��i� The
rest of the proof is a purely numerical argument� What we need is this�
given integers 
 � b � a such that

b � bhni � �a� b�hn��i�

then b � ahni�

Assume this fails� and write b �
�
k�n�
n

�
� � � � �

�
k�j�
j

�
with k�n� �

� � � � k�j� 	 j � 
� Then a �
�
k�n���

n

�
� � � � �

�
k�j���

j

�
� and so a � b ��

k�n�
n��

�
� � � � �

�
k�j�
j��

�
�

We distinguish two cases� If j � �� then a�b �
�
k�n�
n��

�
� � � ��

�
k���
�

�
� and

hence �a�b�hn��i �
�
k�n���
n��

�
�� � ��

�
k�����

�

�
� and bhni �

�
k�n���

n

�
�� � ��

�
k�����

�

�
�

Thus our hypothesis implies b �
�
k�n�
n

�
� � � � �

�
k���
�

�
�
�
k�����

�

�
� b� a

contradiction�
If j � �� then �a� b�hn��i �

�
k�n���
n��

�
� � � � �

�
k�j���
j��

�
� and this together

with our assumption again yields a contradiction�

In order to complete the proof of Macaulay�s theorem another nu�
merical result is needed�
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Lemma 	������ Let a� a�� and d be positive integers�

�a� If a � a�� then ahdi � a�hdi�
�b� Let k�d�� � � � � k��� be the d�th Macaulay coe�cients of a� and j �
minfi � k�i� 	 ig� Then

�a� ��hdi �

�
ahdi � k��� � � if j � ��
ahdi � � if j � ��

Proof� Claim �a� follows from ����	� and �b� is immediate for j � ��
Now assume that j � �� and let i be the maximal integer such that
k�i� � k��� � i� �� Then

a �

�
k�d�

d

�
� � � � �

�
k�i � ��

i � �

�
�

iX
r��

�
k��� � r � �

r

�
�

�
k�d�

d

�
� � � � �

�
k�i � ��

i � �

�
�

�
k��� � i

i

�
� ��

and hence

a� � �

�
k�d�

d

�
� � � � �

�
k�i � ��

i � �

�
�

�
k��� � i

i

�
is the d�th Macaulay expansion of a� � since k�i � �� � k��� � i�

Now we get

ahdi �

�
k�d� � �

d � �

�
� � � � �

�
k�i � �� � �

i � �

�
�

iX
r��

�
k��� � r

r � �

�

�

�
k�d� � �

d � �

�
� � � � �

�
k�i � �� � �

i � �

�
�

i��X
r��

�
k��� � r � �

r

�
�

�
k�d� � �

d � �

�
� � � � �

�
k�i � �� � �

i � �

�
�

�
k��� � i � �

i� �

�
� k���� ��

and so

�a� ��hdi �

�
k�d� � �

d � �

�
� � � ��

�
k�i � �� � �

i � �

�
�

�
k��� � i � �

i� �

�
� ahdi � k��� � ��

as asserted�

Proof of �����
� �a� �c�� We may assume that k is in�nite� if necessary
replace R by l �k R where l is an in�nite extension �eld of k�

Let g be a linear form� and set S � R�gR� The exact sequence


 �� gRn �� Rn�� �� Sn�� �� 
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yields the inequality H�R� n � �� � H�R� n� � H�S� n � ��� Set a � H�R� n�
and b � H�R� n � ��� For a general linear form g the inequality and
������ give b � a� bhn��i� Let k�n���� � � � � k��� be the �n����th Macaulay
coe�cients of b� Then

bhn��i �

�
k�n � ��� �

n� �

�
� � � � �

�
k���� �

�

�
�

and so

a 	

�
k�n � ��� �

n

�
� � � � �

�
k��� � �

�

�
�

�
k��� � �




�
�

Let� as before� j � minfi � k�i� 	 ig� If j � �� then k��� � 
� and

ahni 	

�
k�n � ��

n� �

�
� � � � �

�
k���

�

�
� b�

If j � �� then

ahni 	

�
k�n � ��

n� �

�
� � � � �

�
k���

�

�
�

�
k���

�

�
� k����

by ������� But k��� � k���� and hence ahni � b�

Corollary 	����	� Let R be a homogeneous k�algebra� k a �eld� Then

H�R� n� �� � H�R� n�hni for n� 
�

Proof� Write R � S�I � S � k�X�� � � � � Xm�� According to �����
�d� there
exists an order ideal of monomialsM �

S
n	�Mn in S such thatH�R� n� �

H�S�J� n� for all n� where J is the ideal generated by all the monomials
not in M� Moreover� the choice of M was such that Mn consists of all
monomials of degree n if In � 
 and Mn � Lun for a suitable monomial
un otherwise� Since J is �nitely generated� there exists an integer r such
that Run�� � RX�Run for all n 	 r� Thus the assertion follows from
������

If we combine ������ with Macaulay�s theorem� we obtain the fol�
lowing characterization of the Hilbert series of Cohen�Macaulay homo�
geneous algebras�

Proposition 	������ Let k be a �eld� and h�� � � � � hs a �nite sequence of

positive integers� The following conditions are equivalent	

�a� there exist an integer d � and a Cohen�Macaulay �reduced� homogeneous
k�algebra R of dimension d �whose de�ning ideal is generated by squarefree
monomials� such that

HR�t� �

Ps
i��hit

i

��� t�d
�

�b� h� � �� and 
 � hi�� � h
hii
i for all i � �� � � � � s� ��



���� Macaulay�s theorem on Hilbert functions ��	

Proof� �a�  �b�� By ������ there exists an R�sequence x � x�� � � � � xd of
degree � elements� According to ����� we have

HR�t� �
QR�t�

��� t�d
� QR�t� �

sX
i��

hit
i�

Let �R � R�xR� then H�R�t� � �� � t�dHR�t� � QR�t�� It follows that
H��R� n� � hn for all n 	 
� Therefore �����
 yields the assertion�

�b�  �a�� By �����
 there exists a homogeneous k�algebra R �
k�X�� � � � � Xm��I � where I is generated by monomials� such that HR�t� �Ps

i��hit
i� The k�algebra R is Cohen�Macaulay� simply because R is of

dimension zero� In order to get a reduced such k�algebra with the required
Hilbert series we consider a certain �deformation� of R as described in
the next lemma�

Lemma 	������ Let R � k�X�� � � � � Xm��I be a homogeneous k�algebra�
where k is a �eld and I is generated by monomials� Then there exist

a reduced homogeneous k�algebra S whose de�ning ideal is generated by

squarefree monomials� and an S�sequence y of elements of degree � such

that R �� S�yS �

Proof� Assume I � �u�� � � � � un�� ui � Xai�
� � � �Xaim

m for i � �� � � � � n� If all
exponents aij are at most �� then I is a radical ideal� see Exercise �����	�
Suppose now that at least one aij � �� say ai� � � for some i� We
introduce a new indeterminate Y � and set

vk � Y ak���X�X
ak�
� � � �Xakm

m

if ak� � �� and vk � uk otherwise� The vi satisfy the following conditions�
�i� if Y divides vi� then X� divides vi�
�ii� the indeterminate X� occurs in each vi with multiplicity at most ��

We claim that Y � X� is regular modulo the ideal J � �v�� � � � � vn��
Indeed� assume the contrary is true� Then there exists an associated prime
ideal p of k�X�� � � � � Xm� Y ��J with Y � X� � p � By Exercise ������� p is
generated by a set of variables� and so X�� Y � p � It follows that there
exists w � k�X�� � � � � Xm� Y �� w �� J � with X�w � J and Yw � J � As J is
generated by monomials� we may assume that w is a monomial� Then
there exist integers i� j and monomials u�� u� such that X�w � viu� and
Yw � vju�� As Y divides vj � it follows from �i� that X� does also� and
so X� divides w� But then the multiplicity of X� in vi is at least �� a
contradiction�

If all variables in the vi occur with multiplicity one� then J is a radical
ideal� Otherwise we repeat this construction� and eventually reach the
goal� since at each step we lower the multiplicities of the variables in the
generators�
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Exercises

�����	� Let R be a homogeneous k�algebra� k a 	eld�
�a� Establish from ������ that there exist integers a� � a� � � � � � aj � � such
that

PR�n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � ��

�
n� aj � �j � ��

aj

�
�

�b� Determine the dimension and the multiplicity of R in terms of the integers
a�� � � � � aj �

�����
� Let k be a 	eld� S � kX� � � � � � Xm�� and

u � Xa�
� X

a�
� � � �X

am
m � Xj���Xj��� � � �Xj�d� � j��� � j��� � � � � � j�d��

a monomial of degree d � Set R � S�I � where I is the lexsegment ideal generated
by Ru� Then deduce
�a� dimR � j�d� � �� and
�b� e�R� � ai where i � maxfj � aj �� �g� provided dimR � ��

	�� Gotzmann�s regularity and persistence theorem

Gotzmann�s ����� regularity and persistence theorems give some deeper
insight into the nature of the Hilbert polynomial and the Hilbert function�

As before let S � k�X� � � � � � Xm� be the polynomial ring in m variables
de�ned over a �eld k� I � S a graded ideal� and R � S�I � The regularity
theorem is a statement about the regularity of the ideal sheafI associated
with I in projective space� Note that di erent ideals may yield the same
ideal sheaf� The ideal I � Ker�S � R��H�

m �R�� is called the saturation of

I� the sheafs associated with ideals I and J coincide if and only if I � J �
We will formulate Gotzmann�s theorems in the language of commu�

tative algebra� So we de�ne the �Castelnuovo�Mumford� regularity of a
�nite graded S�module M� rather than that of a sheaf� It is the number

regM � maxfi � j � �H i
m �M�j �� 
g�

Let q be an integer� ThenM is called q�regular if q 	 reg�M�� equivalently�
if �H i

m �M�j�i � 
 for all i and all j � q�
Before we set out for Gotzmann�s theorems� we include an interesting

description of regularity in terms of graded Betti numbers� It shows
that reg�M� measures the �complexity� of the minimal graded free reso�
lution of M� Therefore regularity plays an important r �ole in algorithmic
commutative algebra� Denoting by M	q the truncated graded R�moduleL

j	qMj � one has

Theorem 	���� �Eisenbud�Goto�� The following conditions are equivalent	

�a� M is q�regular�

�b� �TorSi �M� k�j�i � 
 for all i and all j � q�
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�c� M	q admits a linear S�resolution� i�e�� a graded resolution of the form


 �� S��q � l�cl �� � � � �� S��q � ��c� �� S��q�c� �� M	q �� 
�

Proof� �b�� �c�� By de�nition� the moduleM	q has a linear resolution
if and only if

�Tor
S
i �M	q � k�r � Hi�x�M	q�r � 
 for all i� r� r �� i � q�

Here H
�
�x�M� is the Koszul homology ofM with respect to the sequence

x � X�� � � � � Xm�
Since �M	q�j � 
 for j � q� we always have Hi�x�M	q�r � 
 for

r � i � q� while for r � i� q

Hi�x�M	q�r � Hi�x�M�r �
�Tor

S
i �M� k�r �

Thus the desired result follows�
�a�  �c�� We may assume q � 
 and M � M	�� Then it is

immediate that �H�
m �M� is concentrated in degree 
� This implies M �

�H�
m �M��M��H�

m �M�� The �rst summand is a direct summand of copies
of k� Hence M is 
�regular if and only if M��H�

m �M� is 
�regular� In
other words� we may assume that depthM � 
� We may further assume
that k is in�nite� Then there exists an element y � S of degree � which is
M�regular� From the cohomology exact sequence associated with


 ��M����
y
��M ��M�yM �� 


it follows that M�yM is 
�regular� By induction on the dimension on
M� we may suppose that M�yM has a linear S�yS�resolution� But if F�

is a minimal graded free S�resolution� then F��yF� is a minimal graded
S�yS�resolution of M�yM� This implies that F� is a linear S�resolution
of M�

�c� �a�� Again one may assume q � 
 and M � M	�� Then M has
a linear resolution

� � � �� S����c� �� S����c� �� S c� ��M �� 
�

Computing �ExtiS �M� S� from this resolution we see that �ExtiS �M� S�j � 

for j � �i� By duality �see ������ there exists an isomorphism of graded
R�modules

�H i
m �M� �� Homk

�
�Extm�iS �M� S��m��� k

�
�

Therefore �H i
m �M�j�i � 
 for all j � 
� as desired�

The regularity theorem says that the regularity of the saturation of
an ideal I can be read o the Hilbert polynomial of S�I �
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Theorem 	���� �Gotzmann��Write the Hilbert polynomial PR�n� of R � S�I
in the unique form

PR�n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � � �

�
n� as � �s� ��

as

�
with a� 	 a� 	 � � � 	 as 	 
� as described in �����	� Then the saturation I
of I is s�regular�

Proof� We prove the theorem by induction on the dimension of S � For
m � � the assertion is trivial� Now let m � �� and choose be a general
linear form h� Since PR�n� � PS�I�n� we may assume that I � I � We may

further assume that I �� S � Then depthR � 
� and h is R�regular� Hence
we get an exact sequence


 �� R����
h
�� R �� R�hR �� 


yielding the equation

PR�hR�n� � PR�n�� PR�n� ������

Set eR � R�hR� eS � S�hS� then eR � eS�J for some ideal J � eS � Further�
more P$R�n� � P$S�J�n�� Suppose that

P$S�J�n� �

�
n� b�
b�

�
�

�
n� b� � �

b�

�
� � � � �

�
n� br � �r � ��

br

�
����

then J is r�regular by the induction hypothesis�
��� and ��� imply

PR�n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � � �

�
n� ar � �r � ��

ar

�
� c�

where c is a constant and ai � bi � � for all i�

We claim that c 	 
� and that I is s�regular for s � r � c� These two
claims complete the proof� Indeed� we may set ar�� � � � � � ar�c � 
�

In order to derive the �rst claim� assume that c � 
� For n � 
 we
then have

H�R� n� �

�
n� a�
a�

�
�

�
n� a� � �

a�

�
� � � � �

�
n� ar � �r � ��

ar

�
����

The right hand side b of this inequality satis�es the equation

b �

�
n� a�

n

�
�

�
n� a� � �

n� �

�
� � � ��

�
n� ar � �r � ��

n� �r � ��

�
�
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so that

bhni �

�
n� b�

n

�
�

�
n� b� � �

n� �

�
� � � � �

�
n� br � �r � ��

n� �r � ��

�
�

�
n� b�
b�

�
�

�
n� b� � �

b�

�
� � � � �

�
n� br � �r � ��

br

�
�

Observing that n � ar � �r � �� � n � �r � ��� one deduces from ��� �see
������� that H�R� n�hni � bhni� Therefore by Green�s theorem�

H�eR� n� � �n� b�
b�

�
�

�
n� b� � �

b�

�
� � � � �

�
n� br � �r � ��

br

�
�

This contradicts ����
For the proof of the second claim note �rst that �H i

m �J� �
�H i

m �J�

for i � �� Therefore and since J is r�regular we deduce from the local
cohomology sequence associated with


 �� I����
h
�� I �� J �� 


that H i
m �I�j�i � 
 for all i � � and j � r �and thus for j � s��

It remains to be shown that �H�
m �I�j�� � 
 for j � s� Suppose this is

not the case� and let j be the largest number with �H�
m �I�j�� �� 
� Then

by ������b� below�

H�R� j � ��� PR�j � �� � ��H�
m �R�j�� � 


since �H�
m �R� � 
 and �H i��

m �R�j�� � �H i
m �I�j�� � 
 for i � �� as we have

already seen� By our choice of j we have �H�
m �R�j�� � 
� so that

H�R� j � �� � PR�j � ��� but H�R� j � �� � PR�j � ���

If j � s� �� then j � � � s� �� and

PR�s� �� �

�
s� � � a�

s� �

�
� � � � �

�
� � as��

�

�
� ��

whence

H�R� j � �� � H�R� s� �� �

�
s� � � a�

s� �

�
� � � ��

�
� � as��

�

�
�

Thus Macaulay�s theorem implies

H�R� j � �� � H�R� j � ��hj��i �

�
s � a�

s

�
� � � ��

�
� � as��

�

�
� PR�s�� �as � �� � PR�s� � PR�j � ���

which is a contradiction�
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If j � s � �� then PR�j � ��hj��i � PR�j � �� �see �������� We apply
Macaulay�s theorem again� and get

H�R� j � �� � H�R� j � ��hj��i � PR�j � ���

leading to the same contradiction�

By ������ we have H�R� n � �� � H�R� n�hni for all large n� But could
it happen that H�R� n � �� � H�R� n�hni� and H�R� r � �� � H�R� r�hri for
some r and n with r � n# The following persistence theorem answers this
question�

Theorem 	���� �Gotzmann�� Suppose that H�R� n��� � H�R� n�hni for some
n and that I is generated by elements of degree � n� Then H�R� r � �� �
H�R� r�hri for all r 	 n�

Proof� We prove the theorem by induction on m � dimS � If m � �� I is
principal� and the assertion is trivial� Now let us assume that m � �� Let

H�R� n� �

�
k�n�

n

�
� � � � �

�
k���

�

�
be the n�th Macaulay expansion of H�R� n�� Macaulay�s theorem implies

H�R� r� �

�
r � n� k�n�

r

�
� � � � �

�
r � n� k���

r � n� �

�
���

for all r 	 n� and it remains to be shown that equality holds�
Let h be a general linear form� Then

�H�R� n�hni�
hni 	 H�R�hR� n�hni 	 H�R�hR� n� �����

	 H�R� n� ���H�R� n� � �H�R� n�hni�
hni�

The �rst inequality is Green�s theorem� the second is Macaulay�s� the
third follows from the exact sequence

R����
h
�� R �� R�hR �� 
�

and the last equality results from the hypothesis that H�R� n � �� �
H�R� n�hni�

Since the �rst and last term in this chain of inequalities coincide�
we must have equality everywhere� In particular� H�R�hR� n � �� �

H�R�hR� n�hni� Since the de�ning ideal of R�hR is again generated by
elements of degree � n� the induction hypothesis applies and yields
H�R�hR� r� �� � H�R�hR� r�hri for all r 	 n�

One also deduces from ��� that

H�R�hR� n� �� � �H�R� n�hni�
hni �

�
k�n�

n� �

�
� � � � �

�
k���

�

�
�
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Therefore

PR�hR�r� �

�
r � �k�n�� n� ��

k�n�� n� �

�
� � � � �

�
r � �k���� ��� �n� ��

k���� �

�
for all r�

Hence the saturation J of the de�ning ideal of R�hR is n�regular by

the regularity theorem� Let I again denote the saturation of I and set
R � S�I � It follows just as in the proof of the regularity theorem that

PR�r� �

�
r � �k�n�� n�

k�n� � n

�
� � � � �

�
r � �k���� ��� �n� ��

k���� �

�
� c���

with c 	 
�
Suppose c � 
� since PR�n� � PR�n�� the inequality ��� then implies

PR�r� �

�
r � n� k�n�

r

�
� � � � �

�
r � n� k���

r � n� �

�
� c

	 H�R� r� � c � H�R� r�

for all r 	 n� This is a contradiction�
Now ��� and Gotzmann�s regularity theorem entail that I is n�regular�

whence H�R� r� � PR�r� for all r 	 n�
Thus for all r 	 n we obtain the following string of inequalities�

H�R� r� � H�R� r� � PR�r� � PR�r� � H�R� r��

Hence equality holds everywhere� and this proves the theorem�

Exercise

������ Let S � kX� � � � � � Xm� be a polynomial ring over a 	eld k� and let n � � be
an integer� A subspace V of the k�vector space Sn is called a Gotzmann space if
the ideal I generated by V satis	es H�S�I� n� �� � H�S�I� n�hni�
�a� According to ����
� lexsegments span Gotzmann spaces� Give an example of
a set of monomials which is not a lexsegment �even after a permutation of the
variables�� but spans a Gotzmann space�
�b� Let I be the ideal generated by a Gotzmann space V � Sn � It can be shown
that the ideal I has a linear resolution� Compute the Betti numbers of I �
�c� Suppose that dimR�I � �� Show I is generated by a Gotzmann space if and
only if I � m n for some n � � where m � �X� � � � � � Xm��

	�	 Hilbert functions over graded rings

In this section we consider positively graded k�algebras� that is� graded k�
algebras of the form R �

L
i	� Ri where R� � k and R is �nitely generated

over k� For simplicity we will assume that k is a �eld� In contrast to a
homogeneous k�algebra the generators of a positively graded k�algebra
may be of arbitrarily high degree�

In analogy with ����� we have
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Proposition 	�	��� Let R be a positively graded k�algebra� k a �eld� and

M �� 
 a �nite graded R�module of dimension d � Then there exist positive

integers a�� � � � � ad � and Q�t� � Z�t� t��� such that

HM�t� �
Q�t�Qd

i����� tai�
with Q��� � 
�

Proof� We prove the assertion by induction on the dimension d of M� If
d � 
� then dimk M � �� and so Mn � 
 for n � 
� Therefore HM �t� �
Z�t� t���� and we set Q�t� � HM�t�� It is clear that Q��� � dimkM � 
�

Now assume that d � 
� and let U � �H�
m �M�� where m �

L
i��Ri

is the unique graded maximal ideal of R� Note that U is a graded
submodule of M with dimk U � �� and that m �� Ass�M�U�� We may
assume that k is in�nite �see the proof of �����
�� Then� according to
������� there exists a homogeneous �M�U��regular element x � m � say of
degree a�� The exact sequence


 �� �
 � x�M��a�� ��M��a��
x
��M ��M�xM �� 
�

where �
 � x�M � fu �M � xu � 
g� gives rise to the equation

HM�t���� ta�� � HM�xM�t�� P �t��

where P �t� is the Hilbert series of �
 � x�M��a��� The series P �t� actually
belongs to Z�t� t��� since �
 � x�M � U� and U is of �nite length� By
the induction hypothesis there exist �Q�t� � Z�t� t���� and positive integers
a�� � � � � ad such that

HM�xM�t� �
�Q�t�Qd

i����� tai�
� �Q��� � 
�

Set Q�t� � �Q�t� � P �t�
Qd

i���� � tai�� then� as required� we have HM�t� �

Q�t��
Qd

i����� tai� with Q��� � 
�

Remarks 	�	��� �a� Proposition ����� is analogously valid in the case where
R� is an Artinian local ring�
�b� It can easily be veri�ed that the integers a�� � � � � ad found in the proof
of ����� are the degrees of elements generating a Noether normalization
of R�AnnM� �Also see Exercise ��������

A function P � Z� C is called a quasi�polynomial �of period g� if there
exist a positive integer g and polynomials Pi� i � 
� � � � � g � �� such that
for all n � Z one has P �n� � Pi�n� where n � mg � i with 
 � i � g � ��

In the following theorem we consider the graded components of the
modules �H i

m �M�� Note that they are �nite dimensional k�vector spaces
�why#��
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Theorem 	�	�� �Serre�� Let R be a positively graded k�algebra� k a �eld� and
M �� 
 a �nite graded R�module of dimension d � and denote the �maximal

ideal of R by m � Then

�a� there exists a uniquely determined quasi�polynomial PM with H�M� n� �
PM�n� for all n� 
�

�b� H�M� n� � PM�n� �
Pd

i������
i dimk

�H i
m �M�n for all n � Z�

�c� one has

degHM�t� � maxfn � H�M� n� �� PM�n�g

� maxfn �
dX
i��

����i dimk
�H i

m �M�n �� 
g�

�Here degHM�t� denotes the degree of the rational function HM�t���

Proof� �a� follows from Exercise �����
 or Exercise �������

�b� holds when d � 
� since then PM � 
 and M � �H�
m �M� whereas

�H i
m �M� � 
 for i � 
� Next one notes that both sides of the equation

change by the same amount� namely dimk
�H�

m �M�n� if one replaces M by
M��H�

m �M�� As in the proof of ����� we may thus assume that �H�
m �M� � 


and that m contains a homogeneous M�regular element x of degree e�
Then we have an exact sequence


 ��M��e�
x
�� M �� M�xM �� 
�

Set H �
M�t� �

P
n�Z�H�M� n�� PM�n��tn and

H ��
M�t� �

X
n�Z

�
dX
i��

����i dimk
�H i

m �M�n�t
n�

As HM�xM�t� � ���te�HM�t�� it follows that PM�xM�n� � PM�n��PM�n�e�
for all n � 
� and� hence� PM�xM�n� � PM�n�� PM�n � e� for all n � Z�
Therefore H �

M�xM�t� � ��� te�H �
M�t�� The long exact sequence of graded

local cohomology derived from the exact sequence above easily yields that
likewise H ��

M�xM�t� � ��� te�H ��
M�t�� By induction� H

�
M�xM�t� � H ��

M�xM�t��

so H �
M�t� � H ��

M �t� as well�

�c� follows immediately from �b� and Exercise �����
�

The previous theorem generalizes Hilbert�s theorem ������ and conse�
quently PM is termed the Hilbert quasi�polynomial of M�

Suppose that M � R in ����� and that R is Cohen�Macaulay� Then
degHR�t� equals maxfn �

�Hd
m �R�n �� 
g� and thus is the a�invariant of

R introduced in Section ���� see the remark following ������ This fact
motivates the following extension of the notion of a�invariant�
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De�nition 	�	�	� Let R be a positively graded k�algebra where k is a
�eld� Then the degree of the Hilbert function of R is denoted by a�R�
and called the a�invariant of R�

Observe that a�R� � 
 if and only if H�R� n� � PR�n� for all n 	 
�
That this condition has structural implications� is exhibited by a theorem
of Flenner ��
	� and Watanabe ����� if k is an algebraically closed �eld
of characteristic 
� and R is a normal Cohen�Macaulay positively graded
k�algebra with negative a�invariant� then R has rational singularities�
provided Rp has rational singularities for all prime ideals p di erent from
the �maximal ideal of R� In Chapter �
 we will again encounter the
condition a�R� � 
�

The Hilbert function of the canonical module� Stanley�s theorem ����� an�
alyzes how the Gorenstein property of a positively graded k�algebra is
re�ected by its Hilbert series� It will be deduced from the next result
which asserts that the �canonical module of a Cohen�Macaulay posi�
tively graded k�algebra is determined by its Hilbert series� provided R is
a domain� Occasionally one can use this fact to identify the �canonical
module� see for example �����

The automorphism � � Z�t� t��� � Z�t� t���� ��t� � t��� can be ex�
tended to all rational functions F�t�� and we set F�t��� � ��F�t���

Theorem 	�	��� Let k be a �eld� R a d�dimensional Cohen�Macaulay

positively graded k�algebra� M a Cohen�Macaulay graded R�module of di�

mension n� and M� � �Extd�nR �M��R�� Then
�a� HM ��t� � ����nHM�t����
�b� if R is a domain� dimM � d � and HM�t� � tqH	R

�t� for some q� then
M�q� �� �R �

Proof� �a� We set

VM�t� �
X
i�Z

dimk�
�Hn

m �M��i�t
i�

By the graded local duality theorem ����� one has VM�t� � HM ��t��
Furthermore HM�t� � VM�t��� if dimM � 
�

Let a � R be an M�regular homogeneous element of degree g� Then
the exact sequence


 ��M��g�
a
��M ��M�aM �� 


induces an exact sequence


 �� �Hn��
m �M�aM� �� �Hn

m �M��g�� �� �Hn
m �M� �� 
�

Since �Hn
m �M��g�� �� �Hn

m �M���g�� one obtains VM�aM�t� � �t�g���VM�t��
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By ������ there exists a maximal M�sequence x of homogeneous
elements� Set bi � deg xi� An iterated application of the previous
argument then yields

HM�t� �
HM�xM�t�Qn
i����� tbi�

�
VM�xM�t

���Qn
i����� tbi�

� ����nVM�t
��� � ����nHM ��t����

�b� We may assume q � 
� Then HM ��t� � H	�

R
�t� � HR�t�� It follows

that there exists an element x �M� of degree 
� x �� 
� Let � � R �M� be
the homogeneous R�module homomorphism mapping � to x� Since R is
a domain and M� a Cohen�Macaulay R�module of maximal dimension�
the homomorphism � is injective� But since R and M� have the same
Hilbert series� � must actually be an isomorphism� and it follows that
M ��M�� �� R� �� �R �

Corollary 	�	�� �Stanley�� With the notation and hypothesis of ����� suppose

that R has the Hilbert series HR�t� �
Ps

i��hit
i�
Qd

j����� taj��

�a� Then H	R
�t� � ����dHR�t���� equivalently�

H	R
�t� �

t
P
aj�s
Ps

i��hs�it
iQd

j����� taj �
�

�b� If R is Gorenstein� then HR�t� � ����dta�R�HR�t����

�c� Suppose R is a domain� and HR�t� � ����dtqHR �t��� for some integer

q� Then R is Gorenstein�

Proof� �a� follows immediately from ������ and according to ������ we
have �R � R�a�R��� This implies �b�� With R � M� �c� results from
������b��

Remarks 	�	��� �a� Assume the positively graded k�algebra R is Goren�

stein� and write HR�t� � QR�t��
Qd

i�����tai�� Then the functional equation

������b� for HR�t� is equivalent to the equation QR�t� � tdegQRQR�t���� that
is� to the symmetry of the polynomial QR�t��

�b� Consider the homogeneous k�algebra R � k�X� Y ���X�� XY � Y ���
Then HR�t� � � � �t � t�� but R is not Gorenstein� Applying �������
we derive from R a reduced non�Gorenstein Cohen�Macaulay ring S
satisfying HS �t� � ����dtqHS �t���� Thus for ������c� it is essential to
require that R be a domain�

On the other hand� suppose the Hilbert series of the positively graded
k�algebra R satis�es ������b�� but R is not necessarily a domain� Instead
suppose there exist a positively graded algebra S which is a Cohen�
Macaulay domain� and a homogeneous S�sequence x such that S�xS �� R�
Since QS�t� is symmetric if and only if QR�t� is� we conclude that R is
Gorenstein�
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In particular it follows that the above Artinian algebra cannot be
the residue class ring of a homogeneous domain S by a homogeneous
S�sequence�

Stanley observed that the following result on numerical semigroup
rings� due to Herzog and Kunz ���
�� can be derived easily from the
previous corollary� A numerical semigroup is a subsemigroup S of the
additive semigroup N such that 
 � S and N n S is �nite� The last
condition is equivalent to the requirement that the greatest common
divisor of all the elements of S is �� If S is a numerical semigroup� then
there exist integers 
 � a� � � � � � an such that S is the set of linear
combinations

z�a� � z�a� � � � � � znan with zi �N�

Any such set of integers is called a set of generators of S � and we write
S � ha�� � � � � ani� It is clear that a minimal set of generators of S is
uniquely determined�

The conductor c � c�S� of S is de�ned by c � maxfa �N � a�� �� Sg�
For example� S � h�� 	i has the conductor c�S� � ���

If k is a �eld� k�S� denotes the k�subalgebra of the polynomial
ring k�X� generated by all monomials Xa� a � S � Note that k�S� �
k�Xa� � � � � � Xan� if S � ha�� � � � � ani� Thus� if we set degX � �� then k�S� is
a positively graded k�algebra with k�basis Xa� a � S � Moreover� k�S� is
Cohen�Macaulay since it is a one dimensional domain�

Theorem 	�	��� Let S be a numerical semigroup with conductor c� The

following conditions are equivalent	

�a� k�S� is Gorenstein�
�b� the semigroup S is symmetric� that is� for all i with 
 � i � c � � one

has i � S if and only if c� i � � �� S �

Proof� Write R � k�S�� Then

HR�t� �
X
j�S

tj � ����� t��
X

i�NnS

ti�

and so
�HR �t

��� � t���� t� �
X

i�NnS

t�i�

Suppose HR�t� � �trHR�t���� then necessarily r � c � �� and

����� t��
X

i�NnS

ti � tc���� t� �
X
i�NnS

tc���i�

Hence HR �t� � �tc��HR�t
��� if and only if S is symmetric� and the

assertion follows from ������
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A homogeneous Cohen�Macaulay k�algebra R is called a level ring if
all elements in a minimal set of generators of �R have the same degree�
When R is Artinian� then ���R� � dimk

�SocR� and therefore R is a
level ring if and only if the homogeneous socle of R equals Rs where
s � maxfi � Ri �� 
g�

Recall that a Cohen�Macaulay ring R is generically Gorenstein if Rp

is Gorenstein for all minimal prime ideals p of R�

Theorem 	�	�� �Stanley�� Let R be a homogeneous Cohen�Macaulay k�
algebra� Suppose that R is a domain� or generically Gorenstein and a level

ring� Let HR�t� �
Ps

i�� hit
i���� t�d� then

jX
i��

hi �

jX
i��

hs�i for all j � 
� � � � � s�

Proof� Note that the least degree of a homogeneous non�zero element of
�R is b � �a�R�� Our assumptions guarantee the existence of a homo�
geneous element x � �R of degree b such that Rx �� R��b�� This is
clear if R is a domain� Next assume that R is generically Gorenstein and
a level ring� Then the natural homomorphism � � �R � ��R��� �which
is homogeneous� is a monomorphism� see ������ Let G � ��R�� be a
homogeneous epimorphism� where G is free� Then the dual homomor�
phism ��R��� � F � G� is a monomorphism which� composed with ��
yields a homogeneous monomorphism � � �R � F � We identify �R with
its image in F � Suppose that the k�vector space ��R�b is contained inS

p �Ass R p F � Then� since ��R�b� p F is a subspace of ��R�b� and as we may

assume that k is in�nite �the reader should check this�� it follows that
��R�b � p F for some p � AssR� However the elements of ��R�b generate
the canonical module� and so �R � p F � This is impossible� because it
would imply that p Fp contains a free Rp �module of rank �� Now we
choose x � ��R�b n

S
p �Ass R p F� then Rx �� R��b��

Thus� in any case� there exists an exact sequence of graded R�modules


 �� R
�
�� �R�b� �� N �� 
�

where ���� � x is a non�zero homogeneous element of degree b in �R �
Let HR�t� �

Ps
i��hit

i���� t�d � d � dimR� be the Hilbert series of R�
By ������ the exact sequence implies that

HN�t� � ��� t��d
sX
i��

�hs�i � hi�t
i�

The module N has rank 
 since rank�R � �� and so dimN � d � On
the other hand� the exact sequence shows that depthN 	 d � �� and thus
we conclude that N is a graded Cohen�Macaulay module of dimension
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d � �� Therefore HN�t� �
Pr

i�� ait
i���� t�d�� with ai 	 
 for i � �� � � � � r�

see �����
� It follows that

sX
i��

�hs�i � hi�t
i � ��� t�

rX
i��

ait
i�

Thus we obtain the following set of equations�

hs � h� � a�� hs�� � h� � a� � a�� � � � � h� � hs � as � as���

Here we have set ai � 
 for i � r� Adding up the �rst j � � equations
gives

jX
i��

hs�i �

jX
i��

hi � aj 	 
�

as asserted�

Consider the sequence ��� �� �� ��� Proposition ������ implies that this
is the h�sequence of a Cohen�Macaulay reduced homogeneous k�algebra
R� But ���� implies that such an R is not a domain�

Exercises

������� Let F�t� � Q�t��
Qd

i���� � tai � �
P�

i�a fit
i with Q�t� � Zt� t��� and positive

integers a�� � � � � ad � Let
P�

n�a fnt
n be the Laurent expansion of F at �� Show

�a� there exists a unique quasi�polynomial P with P �n� � fn for n� ��

�b� maxfn � fn �� P �n�g � degF �

Hint� For �b� one argues similarly as in the proof of �������

������� Let R be a Noetherian positively graded k�algebra over a 	eld k� generated
by homogeneous elements x� � � � � � xm of degrees e� � � � � � em� Let e be the least
common multiple of e� � � � � � em and de	ne S to be the k�subalgebra generated by
the degree e homogeneous elements of R� A 	nite graded R�module obviously
decomposes into the direct sum of its S �submodules Mi �

L
j�ZMje�i� i �

�� � � � � e � ��

�a� Show that the Mi are 	nite S �modules�

�b� By considering S as a homogeneous k�algebra in the appropriate way� deduce
that the Hilbert function H�M� n� is a quasi�polynomial of period e for n� ��

������� Let R be a Noetherian positively graded k�algebra over a 	eld k and
M �� � a 	nite R�module� Furthermore let S be a graded Noether normalization
of R�AnnM generated by elements of degrees a� � � � � � ad � d � dimM�

�a� Derive ����� from Hilbert�s syzygy theorem ������ by computing the polyno�

mial Q�t� � Zt� t��� with HM �t� � Q�t��
Qd

i���� � tai �� moreover� show Q��� �
rankS M � ��

�b� Prove that the coe�cients of Q�t� are non�negative if M is a Cohen�Macaulay
module�
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������� �a� Let R be a Noetherian positively graded k�algebra of dimension ��
where k is an algebraically closed 	eld� If H�R� n� � � for some n� show R is not
a domain�

�b� Find an example of a ��dimensional homogeneous R�algebra R which is a
domain� and for which H�R� n� � � for all n � ��

������� Let k be a 	eld� and P �t� a formal power series with integer coe�cients�
Demonstrate the following conditions are equivalent�

�a� there exists a d�dimensional homogeneous k�algebra which is a complete
intersection� and which has the Hilbert series P �t��

�b� there exist an integer n� n � d � and integers ai � �� i � �� � � � � n� such that
P �t� � ��� t��d

Qn
i���� � t � t� � � � �� tai ��

������� Let k be a 	eld� In this exercise we want to specify the associated prime
ideals of an ideal I � R � kX� � � � � � Xn� which is generated by monomials in the
variablesX� � � � � � Xn � We order the monomials in the reverse degree�lexicographical
order� and denote by L�a� the leading monomial of a� see the proof of ����� and
the discussion following ������

�a� Let a � R� and write a �
P

i �ivi with �i � k and vi monomials for all i� Then
L�a� � I if a � I � Conclude from this that a � I if and only if vi � I for all i with
�i �� ��

�b� Let a � R be a monomial� Show the ideal J � fb � R � ba � Ig is generated
by monomials�

�c� Prove that an ideal generated by monomials is a prime ideal if and only if it
is generated by a subset of fX� � � � � � Xng�

�d� Prove that the associated prime ideals of R�I are all generated by subsets of
fX� � � � � � Xng

�e� Show an ideal I generated by monomials is a primary ideal if and only if it
satis	es the following condition� for every variable Xi which divides a monomial
m � I such that m�Xi �� I � some power of Xi belongs to I �

������� �a� Let k be a 	eld� and I�� I�� I� � kX� � � � � � Xn� ideals generated by
monomials� Show I� 	 �I� � I�� � �I� 	 I�� � �I� 	 I���

�b� Let v�� � � � � vm � kX� � � � � � Xn� monomials in X� � � � � � Xn � Suppose v� � ab is
the product of monomials a and b with greatest common divisor �� then show
�ab� v�� � � � � vm� � �a� v�� � � � � vm� 	 �b� v� � � � � � vm��

�c� Describe an algorithm to determine the primary components of an ideal
generated by monomials�

�����	� Let k be a 	eld� and I � kX� � � � � � Xn� an ideal generated by squarefree
monomials� Demonstrate that kX� � � � � � Xn��I is reduced�

�����
� Let k be a 	eld and I � R � kX� � � � � � Xn� the ideal generated by the
monomials XiXj � � � i � j � n� Determine AssR�I �

������� Let k be a 	eld� I � kX� � � � � � Xn� an ideal generated by monomials� and
R � kX� � � � � � Xn��I � Show

�a� Show that a ��dimensional Gorenstein ring is a complete intersection� �This
is also true in dimension �� see Bruns and Herzog �����

�b� Give a ��dimensional Gorenstein example that is not a complete intersection�
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������� Prove the graded version of ������� let R be a graded ring� and M and N
graded R�modules� if x � R is a homogeneous element of degree a which is R�

and M�regular and annihilates N� then �Exti��
R �N�M���a� 
� �ExtiR��x��N�M�xM��

������� Let k be a 	eld� and let R be a homogeneous Gorenstein k�algebra of
dimension d � Prove �e� � �a�R� � d�e� �

	�� Filtered rings

In this section we introduce the extended Rees ring and associated graded
ring of a �ltered ring� We will compute their dimensions� and show that
a �ltered ring inherits many good properties from its associated graded
ring� The results will be used in the next section where we consider
the Hilbert�Samuel function� and in Chapter 	 for the study of graded
Hodge algebras�

De�nition 	����� Let R be a ring� A �ltration F on R is a descending
chain R � I� � I� � I� � � � � of ideals such that IiIj � Ii�j for all i and j�
A �ltered ring is a pair �R� F� where R is ring and F is a �ltration on R�

The most common �ltration is the one given by the powers of an
ideal I � called the I�adic �ltration�

Let R be a �ltered ring with �ltration F � �Ii�i	�� We de�ne the
extended Rees ring of R with respect to F by

R�F� �
M
i�Z

Iit
i�

Here Ii � R for i � 
� and R�F� is viewed as a graded subring of R�t� t����
Moreover� we de�ne the associated graded ring of R with respect to F by

grF�R� �
�M
i��

Ii�Ii���

It is a graded ring with multiplication induced by the multiplication map
Ii 
 Ij � Ii�j�

Given an R�moduleM� R�F�M� �
L

i�Z IiMti �respectively grF�M� �L�
i�� IiM�Ii��M� is in a natural way a graded module over R�F� �re�

spectively grF�R��� In the case where F is the I�adic �ltration we denote
by R�I� the extended Rees ring� and in accordance with Section ��� by
grI�R� the associated graded ring� Further we write R�I�M� for R�F�M�
and grI�M� for grF�M��

We will also encounter the Rees ring R��F� �
L�

i�� Iit
i and the

graded R��F��modules R��F�M� �
L�

i�� IiMti� The notations in the
case of I�adic �ltrations are to be modi�ed accordingly�

The following observation� whose proof is left to the reader� is of
crucial importance in the study of the extended Rees ring�
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Lemma 	����� Let R be a �ltered ring with �ltration F � Then
�a� the element t�� � R�t� t��� belongs to R�F� and is R�F��regular�
�b� R�F��t��R�F� �� grF�R��

�c� R�F�t��
�� R�t� t����

We call F Noetherian if R�F� is Noetherian� For example� I�adic
�ltrations on a Noetherian ring are Noetherian� It is clear that if R is
Noetherian and R�F� is �nitely generated over R� then F is Noetherian�
But the converse is true as well�

Proposition 	����� Let R be a �ltered ring with �ltration F � �Ii�i	�� The
following conditions are equivalent	

�a� F is Noetherian�

�b� R is Noetherian� and R�F� is �nitely generated over R�
�c� R is Noetherian� and R��F� is �nitely generated over R�
�d� R is Noetherian� and there exist positive integers j���� � � � � j�n� and xi �
Ij�i�� i � �� � � � � n� such that Ik �

Pn
i�� xiIk�j�i� for all k � 
�

Proof� The equivalence of the statements �a�� �b� and �c� follows from
������

�c�  �d�� Let R��F� � R�a�� � � � � an�� We may assume that a�� � � � � an
are homogeneous elements of positive degree� Then ai � xit

j�i� for some
j�i� � 
 and xi � Ij�i�� i � �� � � � � n� These xi satisfy the conditions in �d��

�d� �a� is proved similarly�

Note that if R�I� is Noetherian and grF�R� is �nitely generated over
R�I�� it does not follow in general that F is Noetherian� For example� let
�R� m � be a local ring and let F � �Ii�i	� with Ii � m for all i � 
� Then
grF�R� � R�m � but R�F� is not Noetherian� Thus we have to pose an
extra condition on F� the �ltration F � �Ii�i	� is separated if

T
i	� Ii � 
�

and F is strongly separated if
T

i	��I � Ii� � I for all ideals I � R� By
Krull�s intersection theorem� I�adic �ltrations on local rings are strongly
separated� provided I �� R�

Recall that the �ltration F � �Ii�i	� de�nes a topology on R whose
base is given by the sets a � Ii� a � R and i 	 
� see ����� With this
topologyR is a Hausdor space if and only if F is separated� The closure
of an ideal I is given by

T
i	��I � Ii�� hence F is strongly separated if and

only if all ideals of R are closed subsets�

Let us denote by �M the completion of an R�module M with respect

to F �see ����� ���� Then �R is complete with respect to the �ltration
�F � ��Ii�i	�� and �Ii is the closure of Ii �R in �R� If the �ltration is separated�

then the canonical homomorphism R � �R is injective� and �Ii � R � Ii�

see ����� Theorem �� p� �
� Further� if grF�R� is Noetherian� then �R is

Noetherian and for all ideals I � R� I �R is the closure of I in �R ������
Theorem �� and Corollary �� p� �����
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Proposition 	���	� If F is Noetherian� then R is Noetherian and grF�R� is
�nitely generated over R�I�� Conversely� if F is strongly separated� R�I� is
Noetherian� and grF�R� is �nitely generated over R�I�� then F is Noetherian�

Proof� The �rst part of the assertion is obvious in view of ������ For
the converse we show that R is Noetherian� and that R�F� is �nitely
generated over R� Then� by ������ F is Noetherian�

Let I � R be an ideal of R� and a � I �R � R� Since I �R is the

closure of I in �R� there exist� for all i 	 
� elements ai � I such that

ai�a � �Ii�R � Ii �R�R � Ii� Therefore a �
T

i	��I�Ii� � I � Thus we have

I �R � R � I � and this proves that R is Noetherian since �R is Noetherian�

In order to prove that R�F� is �nitely generated we may assume
that grF�R� � R�I���x�� � � � � �xn� where the �xi are homogeneous of pos�
itive degree� say �xi � xi � Ij�i���� xi � Ij�i� for i � �� � � � � n� Let A �

R�t��� x�t
j���� � � � � xnt

j�n��� then A is a graded subalgebra of R�F�� and we
claim that indeed A � R�F�� let k � 
 and x � Ikt

k� then x � a� � b�t
k

with a� � Ak and b� � Ik��� by the de�nition of A� For the same reason
we have b�tk�� � a�� b�t

k�� with a� � Ak�� and b� � Ik��� It follows that
x � a� � a�t

�� � b�t
k � and hence x � Ak � Ik��t

k � By induction on j one
shows that x � Ak � Ik�jt

k for all j 	 �� Thus x �
T

j	��Ak � Ik�jt
k� � Ak

since F is strongly separated�

In the next theorem we compare the dimension of a module M with
the dimension of R�F�M� and grF�M� where F is a �ltration on R� For
the proof we will have to identify the minimal prime ideals of R�F��

Let p � SpecR� then p � � p R�t� t��� � R�F� is a prime ideal of R�F�
and p � � R � p � It is clear that p � belongs to the set �D�t��� of graded
prime ideals of R�F� which do not contain t���

Lemma 	����� Let F be a Noetherian �ltration�

�a� The map � � SpecR � �D�t���� p �� p �� is an inclusion preserving

bijection�

�b� height p � height p � for all p � SpecR�

�c� � induces a bijection between the minimal prime ideals of R and R�F��

Proof� �a� It is clear that � is injective and inclusion preserving� Let
P � �D�t���� then P R�F�t�� � P R�t� t��� is a graded prime ideal of
R�t� t���� and hence of the form p R�t� t��� for some p � SpecR� It follows
that P � P R�F�t�� �R�F� � p R�t� t��� �R�F� � p ��

�b� Obviously we have height p � 	 height p � Suppose height p � � h�
By ������ there exists a strictly descending chain of graded prime ideals
p � � P � � P � � � � � � P h� Since all P i �

�D�t���� there exist p i � SpecR
with p �i � P i� Then p � p � � p � � � � � � p h is a strictly descending chain
of prime ideals in R� thus height p 	 h�
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�c� Let P be a minimal prime ideal of R�F�� Then t�� �� P since t�� is
R�F��regular� According to ������ P is graded� and so belongs to �D�t����
The rest follows from �a� and �b��

Theorem 	����� Let R be a �ltered ring with Noetherian �ltration F �
�Ii�i	�� and M a �nite R�module� Then R�F�M� is a �nite R�F��module�
and

�a� dimR�F�M� � dimM � ��
�b� dimgrF�M� � supfdimMm � m � Supp�M�I�M�� m maximalg� In par�
ticular� dimgrF�M� � dimM� and dimgrF�M� � dimM if I� is contained
in all maximal ideals of R�

Proof� �a� It is clear that R�F�M� is a �nite R�F��module� Let J �
AnnM� and set R� � R�J and F � � �IiR

��i	�� Then M is an R��module
and R�F�M� �� R�F ��M�� Thus we may as well assume that M is a
faithful R�module� But then R�F�M� is a faithful R�F��module� too� so
that dimR�F�M� � dimR�F�� Therefore it su�ces to prove the assertion
for M � R�

Let P � SpecR�F�� and set p � P � R� We choose a minimal prime
ideal Q � P such that height�P �Q � � height P � By ������ there exists q �
SpecR such that Q � q �� Thus we obtain the �nitely generated extensions
R�q � R�F��q � � R�t� t����q R�t� t��� of integral domains� and it follows
that the transcendence degree of the fraction �eldQ�R�F��q �� over Q�R�q �
is one� Thus A�� yields height P � height�P �q �� � height�p �q � � � �
height p � �� In particular we conclude that dimR�F� � dimR � ��

Conversely� dimR�F� 	 dimR�F�t�� � dimR�t� t��� � dimR � �� The
reader may check the last equality�

�b� As for �a� we may reduce the assertion to the case in which
M is faithful� Then R�F�M� is a faithful R�F��module� and therefore
grF�M� �� R�F�M��t��R�F�M� is a faithful grF�R��module� Thus we may
assume M � R�

According to Exercise ������� the dimension of grF�R� is the supremum
of all numbers dimgrF�R�N where the supremum is taken over all graded
maximal ideals N � Spec grF�R�� Let N be such an ideal and M its
preimage in R�F�� Then M is a graded maximal ideal� and �hence�
contains t��� Let m � M � R� As R�F��M is a graded ring and a �eld� it
is isomorphic with its degree zero homogeneous component R�m � Thus

M �
M
i��

Rti � m �
M
i��

Iit
i�

In particular m is a maximal ideal� and Ii � �Iit
i�t�i � m for i � 
� Now

the decomposition of M shows that M � �m �� t���� Since m � M � R� we
have� as in �a�� that height m � height m � � height M � height m � �� so
that height N � height M � � � height m �
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Conversely� let m � I� be a maximal ideal of R� ThenR�F���m �� t��� ��
R�m � whence M � �m �� t��� is a maximal ideal of R�F� with m � M �R�
As above� it follows that height N � height m for the graded maximal
ideal N � M ��t��� of grF�R��

The next series of results demonstrate that �good� properties of grF�R�
descend to R�

Theorem 	����� Let R be a �ltered ring with Noetherian �ltration F �
�Ii�i	��

�a� If grF�R� is Cohen�Macaulay� then so is Rp for all p � V �I���

�b� If grF�R� is Gorenstein� then so is Rp for all p � V �I���

Proof� �a� Let p � V �I��� The �ltration F � �Ii�i	� on R induces the
�ltration F � � �IiRp �i	� on Rp � and we have Rp �R grF�R�

�� grF ��Rp �� Thus
we may as well assume that �R� m � is local� I� � m � and p � m � Then
R�F� is �local� and t�� belongs to the unique graded maximal ideal of
R�F�� Therefore R�F� is Cohen�Macaulay by ������a�� �b� and Exercise
������� Applying ������c� we see that R�t� t��� is Cohen�Macaulay� Since
the extension R � R�t� t��� is faithfully �at� R is Cohen�Macaulay� see
�������

�b� is proved in a similar manner�

Theorem 	����� Let R be a �ltered ring with separated �ltration F � If

grF�R� is reduced or a domain� then so is R�

The proof� whose details we leave to the reader� follows easily from
�����
�

We close this section by showing that� under mild hypotheses� nor�
mality of the associated graded ring implies normality of the ring itself�
Let R be a Noetherian domain with fraction �eld K � Recall that x � K
is completely integral over R if there exists an element a �� 
 in R such
that axn � R for all n 	 
� Note that R is normal �integrally closed
in K� if and only if R is completely integrally closed� i�e� every element
x � K which is completely integral over R is an element of R� Indeed�
suppose x � K � x � c�d � is integral over R� Then there exists an equation
xm � a�x

m�� � � � � � am��x � am � 
 with ai � R� and it is clear that
dmxn � R for all n 	 
� Conversely� if x � K such that axn � R for some
a � R� a �� 
� and all n 	 
� then R�x� � a��R� Since a��R is a �nite
R�module this implies that x is integral over R� see ��	
�� Theorem ���

We introduce a notation which is useful in the proof of the following
theorem� Let R be a �ltered ring with separated �ltration F � �Ii�i	��
For each non�zero g � R there exists a unique integer i 	 
 such that
g � Ii nIi��� We set g� � g�Ii�� and call it the initial form of g in grF�R��
of course� 
� � 
�
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Theorem 	����� Let R be a �ltered ring with Noetherian �ltration F �
�Ii�i	� satisfying

T
i	��aR � Ii� � aR for all a � R� If grF�R� is a normal

domain� then so is R�

Proof� The assumptions imply that F is separated� Hence by ������ R is a
domain� Let K be the �eld of fractions of R� and x � c�d an element in
K which is completely integral over R� We want to show that c � Rd � It
su�ces to prove that c � Rd�Ii for all i 	 
� since Rd �

T
i	��Rd�Ii� by

assumption� We prove this by induction on i� the case i � 
 being trivial�
Suppose c � Rd � Ii� then c � ud � w� u � R� w � Ii� As x is completely
integral over R there exists a � R� a �� 
� such that a�x� u�n � R for all
n 	 
� and this implies a�w�d�n � R for all n 	 
� In other words� there
exist elements wn � R such that awn � wnd

n for all n 	 
�

We have �gh�� � g�h� for all g� h � R since grF�R� is a domain�
see Exercise �����
� Applied to the above equation we obtain a��w��n �
w�
n�d

��n� This means that w��d� is completely integral over grF�R�� By
assumption� grF�R� is an integrally closed domain� Therefore� w��d� �
grF�R�� or equivalently� w

� � v�d� for some v � R� Since w � Ii� the
last equation yields w � vd � Ii��� But then c � �u� v�d � �w � vd�� as
desired�

Exercises

������� Let R be a 	ltered ring with separated 	ltration� Show�

�a� a�b� � �ab�� or a�b� � ��

�b� a�b� � �ab�� if grF �R� is a domain�

������� Let R be a 	ltered ring with Noetherian 	ltration F � �Ii�i�� � Prove

�a� dimR � dimR��F� � dimR � ��

�b� dimR��F� � dimR � ��� I� ��
T
fp � AssR � dimR�p � dimRg�

������� Let R be a 	ltered ring with 	ltration F � �Ii�i�� � The s�th Veronese

subring R�s�
� �F� of R��F� is again a Rees ring which is de	ned by the 	ltration

F �s� � �Isi�i�� � Show the following conditions are equivalent if R is Noetherian�

�a� R��F� is a 	nitely generated R�algebra�

�b� R�s�
� �F� is a 	nitely generated R�algebra for all s � ��

�c� there exists an integer s � � such that R�s�
� �F� is a 	nitely generated R�algebra�

�d� there exists an integer s � � such that Ii�s � IiIs for all i � s�

�e� there exists an integer s � � such that Iis � �Ii�
s �

Hints� for the proof of �c� � �a� consider the ideals Mj �
L

i�� Iis�jt
is of R�s�

� �F��
j � �� � � � � s� �� and for �a� � �d� use that R��F� � RI�t� � � � � Irt

r� for some r � ��
then choose s � �r � ��r � �The implication �a� � �d� is due to Rees ������

������� Let k be a 	eld� R � kX
 � X� � X�� � and m the ideal in R generated by
X
 � X� and X�� � Show R is Gorenstein� but gr

m
�R� is not even Cohen�Macaulay�
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	�� The Hilbert�Samuel function and reduction ideals

Let �R� m � be a Noetherian local ring� and M �� 
 a �nite R�module� In
order to de�ne the multiplicity of M one passes to the associated graded
module grm �M�� and de�nes

e�M� � e�grm �M���

To be more �exible we may as well consider an ideal I � m such that
m nM � IM for some n� Any such ideal is called an ideal of de�nition

of M�
The associated graded ring grI�R� is a homogeneous algebra� and

grI�M� is a graded grI�R��module�

De�nition 	����� The �rst iterated Hilbert function

�IM�n� � H��grI �M�� n� �
nX
i��

H�grI�M�� i�

�
nX
i��

��I iM�I i��M� � ��M�In��M�

is called the Hilbert�Samuel function of M� and e�I�M� � e�grI �M�� the
multiplicity of M with respect to I �

As an immediate consequence of ����� we obtain

Proposition 	����� Let �R� m � be a Noetherian local ring� M �� 
 a �nite

R�module of dimension d � and I an ideal of de�nition of M� Then

�a� the Hilbert�Samuel function �IM�n� is of polynomial type of degree d �

�b� e�I�M� � limn���d"�nd� ��M�In��M��

Proof� By ������ we have dimM � dimgrI�M�� Thus �a� follows from
������

�b� For large n we have �IM�n� � �e�I�M��d"�nd�terms in lower powers
of n� This yields the desired result�

The polynomial �I
M�X� � Q�X� with �I

M�n� � �IM�n� for n � 
 is
called the Hilbert�Samuel polynomial of M with respect to I � When
I � m � we simply write �M�X� instead of �I

M�X�� �Note that �M�X� is
not the Hilbert polynomial of grm �M���

Examples 	����� �a� Let �R� m � k� be a regular local ring of dimension d �
Then the homogeneous k�algebra grm �R� is isomorphic to the polynomial

ring k�X�� � � � � Xd�� see ������ Thus �R�X� �
�
X�d
d

�
and e�R� � ��

�b� Let �R� m � k� be a regular local ring� I � R a proper ideal� and
S � R�I � We denote by n the maximal ideal of S � The canonical
epimorphism � � R � S induces a surjective homomorphism of graded
k�algebras gr��� � grm �R� � grn �S�� Indeed� let a � R� a �� 
� and
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a� � a� m j�� in grm �R� its initial form� see the de�nition above ����� It
is clear that the homogeneous elements of grm �R� are just the initial forms
of elements of R� For a � m j n m j�� we de�ne grm ����a

�� � ��a� � n j���
Let I� be the ideal generated by the elements a�� a � I � Then

I� � Ker�grm ���� because if a
� � a � m j�� � I� � then ��a� � n j��� Hence

there exists b � m j�� such that ��b� � ��a�� It follows that c � a� b � I �
and c� � a�� The converse inclusion is obvious�

We conclude that grn �S� � k�X�� � � � � Xd��I�� Thus �S�X� and e�S�
may be computed once I� and its graded resolution are known� see
�������

Assume I � �a�� � � � � am�� then �a��� � � � � a
�
m� � I� with equality if m � ��

In general� however� we have �a��� � � � � a
�
m� �� I� �Exercise ��������

Computing e�I�M� may be a painful and often impossible task� We
will show that an arbitrary ideal of de�nition of M may be replaced by
an ideal J which is generated by a system of parameters of M such that
e�J�M� � e�I�M�� provided the residue class �eld k of R is in�nite�

De�nition 	���	� Let R be a Noetherian ring� I a proper ideal� and M
a �nite R�module� An ideal J � I is called a reduction ideal of I with

respect to M if JInM � In��M for some �or equivalently all� n� 
�

The de�nition of a reduction ideal almost immediately yields

Lemma 	����� Let �R� m � be a Noetherian local ring� M a �nite R�module�
I an ideal of de�nition of M� and J a reduction ideal of I with respect to

M� Then J is an ideal of de�nition of M� and e�J�M� � e�I�M��

Proof� For large n we have In��M � JInM � JM� and this shows that J
is an ideal of de�nition of M� Moreover� we get the inequalities

��M�Im�n��M� 	 ��M�JmM� 	 ��M�ImM�

for all m 	 �� Thus ����� implies the assertion�

In the framework of Rees rings and Rees modules� reduction ideals
can be characterized as follows�

Proposition 	����� Let R be a Noetherian ring� J � I proper ideals of R�
and M a �nite R�module� The following conditions are equivalent	

�a� J is a reduction ideal of I with respect to M�

�b� R��I�M� is a �nite R��J��module�

Proof� �a�  �b�� Suppose In��M � JInM� then R��I�M� is generated
over R��J� by the elements of degree � n� and hence is �nitely generated�

�b� �a�� We may choose a homogeneous set of generators x�� � � � � xr
of R��I�M�� Let n be the maximal degree of the elements xi� and let
x � In��M� There exist elements ai � Jbi � bi � n � � � deg xi� such that
x �

Pr
i�� aixi� Since aixi � JbiIn���biM � JInM� it follows that x � JInM�

Thus we have In��M � JInM� The converse inclusion is trivial�
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In terms of Rees rings we now introduce an invariant which gives a
lower bound for the number of generators of a reduction�

De�nition 	����� Let �R� m � be a Noetherian local ring� I a proper ideal
of R� and M a �nite R�module� The number

��I�M� � dim
�
R��I�M��m R��I�M�

�
� dim

�
grI �M��m grI�M�

�
is the analytic spread of I with respect to M� We set ��I� � ��I� R� and
call it the analytic spread of I �

Proposition 	����� Under the hypothesis of ����	 we have ��J� 	 ��I�M�
for any reduction ideal J of I with respect to M� Suppose in addition that

R�m is in�nite� Then there exists a reduction ideal J of I with respect to

M such that ��J� � ��I�M��

Proof� The module R��I�M��m R��I�M� is �nite over R��J��m R��J� �L
i	� J

i�m J i which in turn is a factor ring of k�X�� � � � � Xm�� where m �

dimk J�m J � ��J�� Therefore dim
�
R��I�M��m R��I�M�

�
� m� This

proves the �rst part of the proposition�
Now let A � R��I��a � where a is the annihilator of the R��I��module

R��I�M��m R��I�M�� The ideal a is graded and contains m R��I�� Con�
sequently A is a homogeneous R�m �algebra� and dimA � ��I�M�� Since
R�m is in�nite� the Noether normalization theorem says that there exist
elements y�� � � � � yd � A of degree �� d � ��I�M�� such that A is a
�nite B�module� where B � k�y�� � � � � yd�� see �����	� It follows that
R��I�M��m R��I�M� is a �nite graded B�module�

For each yi we choose zi � I such that zi is mapped to yi under the
canonical map I � R��I��a � Let J � �z�� � � � � zd�� then ��J� � ��I�M��
and R��I�M��m R��I�M� is a �nite

�
R��J��m R��J�

�
�module� Now the

graded version ������ of Nakayama�s lemma implies that R��I�M� is a
�nite �R��J���module� and this completes the proof� see ������

Remark 	����� Let �R� m � k� be a Noetherian local ring� and I a proper
ideal of R� Northcott and Rees ���� call an ideal J a minimal reduction

of I if J is a reduction ideal of I � and J itself does not have any proper
reductions� and they prove that minimal reductions exist � a fact which
we will not use explicitly here� In the case where k is in�nite one has
the following result� let J be a reduction of I � and suppose that J is
minimally generated by x�� � � � � xn� Then J is a minimal reduction of I if
and only if the elements x�� � � � � xn are analytically independent in I and
n � ��I��

Recall that x�� � � � � xn are analytically independent in I if whenever
f�X�� � � � � Xn� is a homogeneous polynomial of degree m in R�X�� � � � � Xn�
�m arbitrary� such that f�x�� � � � � xn� � Im m � then all the coe�cients of f
are in m �
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It is clear from this description and the proof of ����� that the ideal J
constructed there is a minimal reduction of I when M � R�

Corollary 	����
� Let �R� m � be a Noetherian local ring with in�nite residue

class �eld� M a �nite R�module� and I an ideal of de�nition of M� Then

there exists a system of parameters x of M such that �x� is a reduction

ideal of I with respect to M� In particular e�I�M� � e��x��M��

Proof� We show that dim
�
R��I�M��m R��I�M�

�
� dimM� This� in

view of ����� and ������ implies the assertion� Note that ��InM�m InM�
� ��InM�� and ��InM�In��M� � ��InM� ��M�IM�� Indeed� let y�� � � � � ym�
m � ��InM�� be a system of generators of InM� We may write yj � ajxj
with aj � In� xj � M� Thus there exists an epimorphism

L
Rxj � InM

which yields an epimorphism
L

R�xj � InM�In��M where �xj denotes
the residue class of xj modulo IM� Since R�xj � M�IM� the desired
inequality follows� We therefore obtain the inequalities

H
�
R��I�M��m R��I�M�� n

�
� H�grI�M�� n�

� ��M�IM� H
�
R��I�M��m R��I�M�� n

�
�

By ����� and ������ the Hilbert function H�grI�M�� n� is a polynomial of
degree dimM � � for large n� and so is H

�
R��I�M��m R��I�M�� n

�
by

the above inequalities� Hence� if we again apply ������ the conclusion
follows�

Exercises

������� Let R be a Noetherian ring� I a proper ideal of R� M a 	nite R�module�
M� a submodule� and M�� a factor module of M� If J is a reduction ideal of I
with respect to M� show it is a reduction ideal of I with respect to M� and M���
too� �Hint� Use �������

������� �a� Let �R� m � k� be a regular local ring� and f an element in m whose
initial form f� has degree a� see ������ Set S � R��f� and prove that gr

m
�S � 
�

kX� � � � � � Xd ���f
��� and e�S � � a�

�b� Let I � �X� � XY � Z �� � kX� Y �Z ��� Show the ideal I� of initial forms of I
is not generated by the initial forms X� and XY of the generators of I �

������� Let �R� m � be a Noetherian local ring and I a proper ideal of R� Show
that the analytic spread of an ideal has the following properties�
�a� ��IRp � � ��I� for all p � SpecR�
�b� if I is m �primary� then ��I� � dimR�
�c� height I � ��I� � dimR�

������� Let �R� m � k� be a d�dimensional Cohen�Macaulay local ring� Prove�
�a� If k is in	nite� then there exists an R�sequence x � x�� � � � � xd such that
e�R� � ��R��x���
Hint� Proceed by induction on d� choose x� such that its initial form in gr

m
�R�

is an element of degree � whose annihilator has 	nite length�
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�b� e�R� � embdimR�dimR��� if equality holds� then R is said to have minimal
multiplicity�
�c� If k is in	nite� then R has minimal multiplicity if and only if there exists an
R�sequence x such that m � � �x�m �

������� Let �R� m � k� be a one dimensional local ring� Prove�
�a� If k is in	nite� there exists an element x such that m n�� � xm n for all n� ��
any such element is called super�cial�
�b� If x is a super	cial element� then x �� m ��
�c� e�R� � 
�m n� for large n�

������� Let �R� m � k� be a one dimensional Cohen�Macaulay local ring� and x a
super	cial element of R�
�a� Suppose I is an ideal of height � in R� Show that ��I�xI� � e�R��
�b� Prove that 
�I� � e�R� for all ideals of height � of R�

�����	� Let �R� m � k� be a Noetherian local ring� Suppose there exists an integer n
such that 
�I� � n for all ideals I of R� Show that dimR � ��

�����
� Let R � kt��� k a 	eld� Let f��t�� � � � � fn�t� � R� We denote by
kf��t�� � � � � fn�t��� the subring

A � fF�f��t�� � � � � fn�t�� � F � kX� � � � � � Xn��g

of R� Suppose the integral closure of A is R� prove e�A� is the minimum of the
initial degrees of the fi�t�� Hint� use the fact that R is a 	nite A�module� see
����� x���

	�� The multiplicity symbol

In the previous section we saw that the computation of the multiplicity
e�I�M� of a �nite module M with respect to an ideal of de�nition I can
be reduced to the case when I is generated by a system of parameters of
M� The advantage of this reduction will become apparent when we show
that the multiplicity of a module M with respect to an ideal generated
by a system of parameters x can be expressed in terms of the Koszul
homologyH

�
�x�M�� We approach this goal by introducing the multiplicity

symbol e�x�M�� due to Northcott�
Let �R� m � be a Noetherian local ring� and M a �nite R�module� A

sequence of elements x � x�� � � � � xn in m is a multiplicity system of M if
��M��x�M� is �nite� equivalently� if �x� is an ideal of de�nition of M�

Lemma 	����� Let �R� m � be a Noetherian local ring� x a sequence of el�

ements in R� and 
 � M� � M � M�� � 
 an exact sequence of �nite

R�modules� The sequence x is a multiplicity system of M if and only if it

is a multiplicity system of M� and M���

Proof� The exactness of M���x�M� � M��x�M � M����x�M�� � 
 im�
plies that

��M����x�M��� � ��M��x�M� � ��M����x�M��� � ��M���x�M���
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It therefore remains to show that ��M���x�M�� � � if ��M��x�M� is�
According to the Artin�Rees lemma ���	
�� Theorem ���� there exists
an integer m such that �x�mM � M� � �x�M�� and this implies that
��M���x�M�� � ��M���x�mM �M�� � ��M��x�mM��

Corollary 	����� Let �R� m � be a Noetherian local ring� M a �nite R�module�
and x � x�� � � � � xn a multiplicity system of M� Then x� � x�� � � � � xn is a

multiplicity system of M�x�M and �
 � x��M �

Proof� Note that x�M�x�M� � x��M�x�M�� and x�
 � x��M � x��
 � x��M �

This corollary allows an inductive de�nition of the multiplicity symbol�

De�nition 	����� Let �R� m � be a Noetherian local ring� M a �nite R�
module� and x � x�� � � � � xn a multiplicity system of M� If n � 
� then
��M� � �� and we set e�x�M� � ��M�� if n � 
� we set e�x�M� �
e�x��M�x�M� � e�x�� �
 � x��M�� x

� � x�� � � � � xn� We call e�x�M� the
multiplicity symbol�

At �rst glance it seems as if the multiplicity symbol depends on the
order of the elements of x� That this is not the case will follow from the
next theorem�

Note that the homology H��x�M� of the Koszul complex of a multi�
plicity system x of M has �nite length as follows from ������ Hence we
may consider the Euler characteristic

��x�M� �
X
i

����i ��Hi�x�M��

of the Koszul homology�

Theorem 	���	 �Auslander�Buchsbaum�� Let �R� m � be a Noetherian local

ring� M a �nite R�module� and x a multiplicity system of M� Then

e�x�M� � ��x�M��

The proof of the theorem is based on

Lemma 	����� Let �R� m � be a Noetherian local ring� and x � x�� � � � � xn a

sequence of elements in m � Whenever the Euler characteristic is de�ned it

has the following properties	

�a� ��x� � is additive on short exact sequences� that is� for any short exact

sequence 
�M� �M �M�� � 
 for which x is a multiplicity system of

M� one has

��x�M� � ��x�M�� � ��x�M����

�b� if x�M � 
� then ��x�M� � 
�
�c� if x� is M�regular� then ��x�M� � ��x�� � � � � xn�M�x�M��
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Proof� �a� By the additivity of length� the alternating sum of the lengths
of the homology modules in the long exact sequence

� � � �� Hi�x�M
�� �� Hi�x�M� �� Hi�x�M

��� �� � � �

is zero� This yields the desired result�
�b� Let x� � x�� � � � � xn� If x�M � 
� then

Hi�x�M� � Hi�
� x
��M� �� Hi�x

��M�� Hi���x
��M��

for all i� see ������� Thus

��x�M� �
X
i

����i
�
��Hi�x

��M�� � ��Hi���x
��M�

�
� 
�

�c� If x� is an M�regular element� then Hi�x�M� �� Hi�x��M�x�M� by
������� This implies the assertion�

Proof of ��	��� Let x � x�� � � � � xn and x
� � x�� � � � � xn� We show that

��x�M� � ��x��M�x�M�� ��x�� �
 � x��M���	�

The ascending chain 
 � �
 � x��M � �
 � x���M � � � � of submodules
of M stabilizes since M is Noetherian� Let a be an integer such that
�
 � xa��M � �
 � xa��

� �M � We leave it to the reader to verify that x� is
regular on N � M��
 � xa��M � and that x� is a multiplicity system of
�
 � xa��M �

Consider the following commutative diagram with exact rows and
columns�


 
��y ��y
�
 � x��M �
 � x��M 
��y ��y ��y


 ����� �
 � xa��M ����� M ����� N ����� 


x�

��y x�

��y x�

��y

 ����� �
 � xa��M ����� M ����� N ����� 
��y ��y ��y

 ����� C ����� M�x�M ����� N�x�N ����� 
��y ��y ��y
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From ��	���a� it follows that ��x�� N�x�N� � ��x��M�x�M�� ��x�� C�� and
��x�� C� � ��x�� �
 � x��M�� and thus

��x�� N�x�N� � ��x��M�x�M�� ��x�� �
 � x��M�����

Now we apply ��	���a� and �c� to see that

��x�� N�x�N� � ��x� N� � ��x�M�� ��x� �
 � xa��M����

Finally� by induction on i� it follows from ��	���a� and �b�� and the exact
sequences


 �� �
 � xi��
� �M �� �
 � xi��M �� �
 � xi��M��
 � xi��

� �M �� 


that ��x� �
 � xi��M� � 
 for all i� This� together with ��� and ��� completes
the proof�

If the sequence x generates the ideal �x� minimally� then the Koszul
homology H��x�M� depends only on the ideal �x�� By ��	��� the same
holds for the multiplicity symbol� Much more is true�

Theorem 	���� �Serre�� Let �R� m � be a Noetherian local ring� M a �nite R�
module� x � x�� � � � � xn a multiplicity system of M� and I the ideal generated

by x� Then

��x�M� �
n
e�I�M� if x is a system of parameters of M�


 otherwise�

Taking into account ��	�� we see that for any system of parameters x
of M the numbers e�x�M�� e��x��M� and ��x�M� are all the same�

Proof of ��	��� Let K� � K��x�M� be the Koszul complex� and for each
integer m let K �m�

�
be the subcomplex


 �� ImKn �� Im��Kn�� �� � � � �� Im�nK� �� 


of K�� We �rst claim that K�m�
�

is exact for all m� 
� for a �xed integer
i its i�cycles are Zi�K�m�

�
� � Zi�K�� � Im�n�iKi� By the Artin�Rees lemma

���	
�� Theorem ���� we have

Zi�K�� � Im�n�iKi � I �
�
Zi�K�� � Im�n�i��Ki

�
for all m � 
� We may pick m� large enough for this equality to hold
simultaneously for all i and all m 	 m��

Now let m 	 m�� and z � Zi�K �m�
�
�� then z �

Pn
i�� xizi with zi �

Zi�K�� � Im�n�i��Ki � Let e�� � � � � en be a basis of K��x� R� with dx�ei� � xi
for i � �� � � � � n� where dx denotes the di erential of K��x� R�� Then
w �

Pn
i�� ei�zi � Im�n�i��Ki�� and dx�M�w� � z� Thus K�m�

�
is indeed exact�

It follows from this� the exact sequence of complexes


 �� K�m�
�
�� K

� �� K��K
�m�
�
�� 
�
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and the exactness of K�m�
�
� that H

�
�K

�
� �� H

�
�K

�
�K �m�

�
�� hence ��x�M� �Pn

i������
i ��Hi�K�

�K �m�
�
��� However� since Ki�K

�m�
i is of �nite length for

all i � its length is actually
�
n
i

�
��M�Im�n�iM� � we have

nX
i��

����i ��Hi�K�
�K�m�

�
�� �

nX
i��

����i ��Ki�K
�m�
i ��

and thus for m� 
�

��x�M� �
nX
i��

����i
�
n

i

�
�IM�m� n� i� �� � �n�IM�m� ��

�

�
e�I�M� if dimM � n�

 if dimM � n�

see ������ and use that the application of � decreases the degree of a
polynomial function by ��

Let �R� m � be a Noetherian local ring� and I an ideal of de�nition of
R� We �x an integer q� and denote byKq�R� the full subcategory of the
category M�R� of �nite R�modules whose dimension is at most q� We
de�ne

eq�I�M� �

�
e�I�M� if dimM � q�

 if dimM � q�

Corollary 	����� The �modi�ed� multiplicity eq�I�M� is an additive function

on the category Kq�R�� that is� eq�I�M� � eq�I�M�� � eq�I�M��� for all

exact sequences 
 ��M� ��M ��M�� �� 
 in Kq�R��

Proof� Without loss of generality we may assume that R�m is in�nite�
For otherwise we may extend the residue class �eld of R� see the proof
of �����
�

We may further assume that the module M in the above exact se�
quence has dimension q� By �����
 there exists a system of parameters
x � x�� � � � � xq of M such that �x� is a reduction ideal of I with respect
to M� Now �����
 and ��	�� imply that eq�I�M� � ��x�M�� According
to Exercise ������ the ideal �x� is a reduction ideal of I with respect
to M� and M�� as well� Hence we also have eq�I�M�� � ��x�M�� and
eq�I�M

��� � ��x�M���� Thus the result follows from ��	���

Corollary 	����� Let �R� m � be a Noetherian local ring� I an ideal of de�ni�

tion of R� and M a �nite R�module of dimension � q� Then

eq�I�M� �
X

p

��Mp �eq�I� R�p ��

where the sum is taken over all prime ideals p with dimR�p � q�
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Proof� The module M has a �ltration 
 � M� � M� � � � � � Mr�� �
Mr � M such that Mi�Mi��

�� R�p i for i � �� � � � � r� Of course�
dimR�p i � q for all i� Thus by the previous corollary we have
eq�I�M� �

Pr
i�� eq�I� R�p i�� Only those summands contribute to the

sum for which dimR�p i � q� Fix a prime ideal p with dimR�p � q�
Then the number of integers i for which p � p i equals the length of
Mp � as can be easily seen by localization at p � This proves the formula
asserted�

As an important special case of the previous result we have

Corollary 	����� Let �R� m � be a Noetherian local ring� M a �nite module

of positive rank� and I an m �primary ideal of R� Then

e�I�M� � e�I� R� rankM�

In particular� e�M� � e�R� rankM�

Proof� Let r � rankM� By virtue of ����� we have Mp
�� Rr

p for all prime

ideals p of R with dimR�p � d � In particularM has maximal dimension�
and so e�I�M� � ed �I�M�� d � dimR� Therefore ��	�� yields

e�I�M� �
X

p

��Mp �e�I� R�p � �
X

p

r ��Rp �e�I� R�p � � e�I� R� rankM�

Here the sums are taken over the prime ideals p with dimR�p � d �

Partial Euler characteristics� One remarkable consequence of ��	�� is the
following� let �R� m � be a Noetherian local ring�M a �nite R�module� and
x a multiplicity system of M� Then ��x�M� �

P
i����

i ��Hi�x�M�� 	 
�
One de�nes for all j 	 
 the partial Euler characteristics

�j�x�M� �
X
i	j

����i�j ��Hi�x�M��

of M with respect to x� Surprisingly� all the partial Euler characteristics
are non�negative� as shown by Serre ������� Appendice II�� We only prove
the result for �� �see however Remark ��	�����

Theorem 	����
 �Serre�� Let �R� m � be a Noetherian local ring� M a �nite

R�module� and x a multiplicity system of M�

�a� ���x�M� 	 
� or equivalently� ��M�xM� 	 ��x�M��
�b� Assume in addition that x is a system of parameters of M� Then the

following conditions are equivalent	

�i� ���x�M� � 
�
�ii� H��x�M� � 
�
�iii� Hi�x�M� � 
 for i 	 ��
�iv� x is an M�sequence�

�v� M is Cohen�Macaulay�
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Proof� Let x � x�� � � � � xn� We prove �a� by induction on n� if n � �� then
���x��M� � ��H��x��M��� and the assertion is trivial� Now let n � �� and
set x� � x�� � � � � xn� Notice that ��x�M� � ��M�xM�� ���x�M�� whence

���x�M� � ���x
��M�x�M� � ��x�� �
 � x��M����
�

in view of equation �	� above� By induction ���x��M�x�M� 	 
� and since
��x�� �
 � x��M� 	 
� the assertion follows�

�b� The equivalence of the statements �ii���v� was shown in ����� and
������ and �iii� �i� is obvious� We now prove the implication �i� �v��
Suppose that ���x�M� � 
� then ��
� implies

���x
��M�x�M� � 
 and ��x�� �
 � x��M� � 
�

By induction we may assume that M�x�M is a Cohen�Macaulay module
of dimension n � �� It remains to show that �
 � x��M � 
� Set M� �
M��
 � x��M� then the snake lemma applied to the commutative diagram


 ����� �
 � x��M ����� M ����� M� ����� 


x�

��y x�

��y x�

��y

 ����� �
 � x��M ����� M ����� M� ����� 


yields the exact sequence


 �� �
 � x��M
�
�� �
 � x��M �� �
 � x��M�

�� �
 � x��M
�
��M�x�M ��M��x�M� �� 
�

It is clear that � is an isomorphism� We claim that � � 
� In�
deed� it follows from ��	�� and ��	�� that dim�
 � x��M � n � � since
��x�� �
 � x��M� � 
� On the other hand� dimR�p � n � � for all
p � Ass�M�x�M� since M�x�M is Cohen�Macaulay� see ������ Therefore
Hom��
 � x��M �M�x�M� � 
 by ������

We obtain the isomorphisms

M�x�M ��M��x�M� and �
 � x��M �� �
 � x��M� �

It follows from �	� that

���x�M� � ��M�xM�� ��x��M�x�M� � ��x�� �
 � x��M��

and hence the analogous equation for M� and the isomorphisms give us
���x�M�� � ���x�M� � 
�

Repeating these arguments we obtain a sequence of modules Mn�
de�ned recursively by Mn � Mn����
 � x��Mn�� with

Mn�x�Mn
��Mn���x�Mn�� and �
 � x��Mn

�� �
 � x��Mn�� �
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Consider the composition M � M� � � � � �Mn�� �Mn of the canon�
ical epimorphisms� A simple inductive argument shows its kernel is
�
 � xn��M � Since M is Noetherian there exists an integer m such that

�
 � xm� �M � �
 � xm��
� �M � and so the canonical epimorphism Mm �Mm��

must be an isomorphism� therefore �
 � x��Mm
� 
� But then� as required�

�
 � x��M �� �
 � x��M�
�� � � � �� �
 � x��Mm

� 
�

Combining ��	� and ��	��
 we obtain the following Cohen�Macaulay
criterion for modules�

Corollary 	������ Let �R� m � be a Noetherian local ring� M a �nite R�
module of positive rank� and I an ideal generated by a system of parameters

of R�
�a� ��M�IM� 	 e�I� R� rankM�

�b� M is Cohen�Macaulay if and only if ��M�IM� � e�I� R� rankM�

�c� Suppose R is Cohen�Macaulay� then M is Cohen�Macaulay if and only

if ��M�IM� � ��R�I� rankM�

Remark 	������ The positivity of the partial Euler characteristics can be
easily proved in an important special case� Let �R� m � k� be a Noetherian
local ring containing a �eld� M a �nite R�module� and x a multiplicity
system of M� Then �j�x�M� 	 
 for all j 	 
� and if �j�x�M� � 
 for
some j� then Hi�x�M� � 
 for all i 	 j�

For the proof we may assume that R is complete since homology

commutes with completion� so that H��x� �M� �� H��x�M�b�� H��x�M��
The last isomorphism is valid since H��x�M� has �nite length�

Now� as we assume that R is complete and contains a �eld� the ring R
even contains its residue class �eld� see A��
� Let A � k��X�� � � � � Xn��� and
de�ne a ring homomorphism � � A � R by ��Xi� � xi for i � �� � � � � n�
We may view M as an A�module via �� It is then clear that M is a �nite
A�module� and that H��X�� � � � � Xn�M� �� H��x�M�� In other words� we
may assume that x is an R�sequence �replace R by A��

We prove the assertions by induction on j� For j � 
 and j � � we
know the result from ��	�� and ��	��
� Now we let j � �� and consider an
exact sequence


 �� U �� F ��M �� 


where F is a �nite free R�module� Then� owing to ������ and the
assumption that x is R�regular� it follows that Hi�x�M� �� Hi���x� U� for
all i � �� Therefore �j�x�M� � �j���x� U�� and the proof is complete by
our induction hypothesis�

Exercises

��	���� �a� Let �R� m � be a Noetherian reduced local ring� Verify e�R� �
P

p
e�R�p �

where the sum is taken over all prime ideals p with dimR�p � dimR�
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�b� Let k be a 	eld� Compute the multiplicity of

kX� � � � � � Xn����X�X� � X�X� � � � � � Xn��Xn � XnX���

Hint� apply �������

��	���� Let �R� m � be a Noetherian local ring of dimension d � M a maximal
Cohen�Macaulay R�module� x a system of parameters of R� and n an integer
such that m n � �x�� Show that ��M�xM� � nd e�M��

��	���� �a� Let k be a 	eld� and assume that R � kX� � � � � � Xn���I is a domain of
dimension d with quotient 	eld L� Let y � y� � � � � � yd be a system of parameters
of R� The subring A � ky� � � � � � yd �� of R is regular and R is a 	nite A�module�
see A���� We denote by K the quotient 	eld of A�
�a� Show that L � K� � ��R��y��� Equality holds if and only if R is Cohen�
Macaulay�
�b� Formulate and prove a similar statement for graded k�algebras�

��	���� In this exercise we want to use the criterion ������ in a concrete situation�
�a� Let k be a 	eld� and k�X� � � � � � Xn� the rational function 	eld in n variables
over k� For a vector v � �a� � � � � � an� in Zn we set Xv � X

a�
� � � �X

an
n � If v�� � � � � vn are

vectors in Zn � show that

k�X� � � � � � Xn� � k�Xv� � � � � � Xvn �� � jdet�v�� � � � � vn�j�

Hint� use the theory of elementary divisors�
�b� Let m�� � � � � mr be monomials in X�� � � � � Xn � and consider the subring R �
km�� � � � � mr� of the polynomial ring kX� � � � � � Xn�� �Such a ring is called an a�ne
semigroup ring and will be studied more systematically in Chapter ��� Assume
that

�i� Q�R� � k�X� � � � � � Xn��
�ii� there are monomials w�� � � � � wn � R such that ��R��w�� � � � � wn�R� � ��

Let wi � Xvi for i � �� � � � � n� prove that R is a Cohen�Macaulay ring if and only
if jdet�v�� � � � � vn�j equals the number of all monomials in R not belonging to the
ideal of monomials �w� � � � � � wn��
�c� Apply this criterion to show that the ring kX�Y � X�Y � XY �XY �� XY �� is
Cohen�Macaulay� but that kX� � X�Y � XY �XY �� Y �� is not�

��	��	� Let �A� m � be a regular local ring� I � m an ideal and R � A�I � The
R�module I�I� is called the cotangent module of R�
�a� Suppose R is Cohen�Macaulay and generically a complete intersection� that
is� Rp is a complete intersection for all minimal prime ideals p � SpecR� Prove
that rank I�I� � height I �
�b� Let B be a local ring� and J � B a proper ideal� The pair �J� B� is called an
embedded deformation of �I� A� if there exists a B�sequence x such that A 
� B�xB�
I � JA� and x is a B�J�sequence too�

Suppose dimA�I � � and embdimA�I � n� If �I� A� has an embedded
deformation �J� B� such that B�J is generically a complete intersection� show
��I�I�� � n ��A�I��
�c� Let k be a 	eld� and I � kX� � � � � � Xn� an ideal generated by monomials
containing a power of each indeterminate� Show the number of monomials not
contained in I� is greater than or equal to n� � times the number of monomials
not contained in I � Equality holds if I is generated by powers of the Xi �
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Notes

In his famous paper � �Uber die Theorie der algebraischen Formen� ��	��
published a century ago� Hilbert proved that a graded module over a
polynomial ring has a �nite graded free resolution� and concluded from
this fact that the function �which we now call the Hilbert function� is of
polynomial type� The in�uence of this paper on commutative algebra has
been tremendous� Till today both free resolutions and Hilbert functions
have fascinated mathematicians� and many problems still remain open�

For many applications it is more convenient to consider the so�called
Hilbert series of a graded module� This point of view is stressed in
Section ���� Stanley calls the ��nite� coe�cient vector of the numerator
of this rational function the h�vector of the module� Its signi�cance
became apparent in Stanley�s work on combinatorics� An introduction
to this aspect of commutative algebra is given in Stanley�s monograph
����� which is well�known as the �green book�� Certainly Stanley�s work
initiated a new interest in Hilbert functions� other important motivations
come from algebraic geometry�

Graded free resolutions determine the Hilbert function� but the con�
verse is not true� except when the module has a pure resolution� This is
the content of ������ which is taken from Herzog and K�uhl ����� and
Huneke and Miller ���	��

Section ��� is based on the paper ���	� in which Stanley states
Macaulay�s theorem on Hilbert functions in the form presented in this
book� We also took ������ and ����� from this article� The latter result
is Stanley�s beautiful theorem characterizing graded Gorenstein domains
by their Hilbert function� �A generalization of ����� has recently been
proved by Avramov� Buchweitz� and Sally ����� Theorem ���� appears in
an article of Stanley ����� with the hypothesis that R be a domain� Our
slightly more general version was given by Hibi ��	
��

Macaulay�s article �Some properties of enumeration in the theory of
modular systems� ����� appeared in ��	� and has become a source of
inspiration in commutative algebra and combinatorics� see for instance
Sperner ������ Whipple ����� Clements and Lindstr�om �	
�� Elias and
Iarrobino ���� Stanley ���	�� Hibi ���	�� and Green ������

In the �rst part of his paper Macaulay shows that the Hilbert function
of a homogeneous ring arises as the Hilbert function of a polynomial
ring modulo an ideal which is de�ned by monomials� For his proof
Macaulay ordered the monomials� and thereby introduced implicitly
�and possibly for the �rst time� what nowadays is called a Gr�obner basis�
Buchberger ���� was the �rst to describe an algorithm computing the
Gr�obner basis of an ideal� Robbiano ��
�� is an �early� survey of this
topic� Meanwhile e ective computation has become an important area
of research in commutative algebra� and we recommend especially the
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books of Eisenbud ��� and Vasconcelos ����� for a detailed account�
The importance of the Castelnuovo�Mumford regularity has been brie�y
indicated by Theorem ������ which is due to Eisenbud and Goto ����
More information is provided by the survey of Bayer and Mumford ����
and by Eisenbud�s book ����

Macaulay�s main result in ����� however is the inequalityH�R� n��� �
H�R� n�hni which characterizes the Hilbert functions of homogeneous
k�algebras� As a note preceding it Macaulay writes� �This proof of the
theorem which has been assumed earlier is given only to place it on
record� It is too long and complicated to provide any but the most
tedious reading�� We present Green�s proof ����� of Macaulay�s theorem
which is less computational than the original� The proofs of Gotzmann�s
theorems ����� have also been drawn from Green ������

Theorems of Gotzmann type for exterior algebras have recently been
proved by Aramova� Herzog� and Hibi �����

The lexsegment ideals that appear in the proof of Macaulay�s theorem
have a remarkable �extremal� property� if J is the lexsegment ideal with
the same Hilbert function as a given ideal I � then each graded Betti
number �ij�I� is bounded above by �ij�J�� This was shown independently
by Bigatti ���� and Hulett ��
	� in characteristic 
 and by Pardue in
positive characteristic ����� �Macaulay�s theorem states this inequality
for i � 
"� See Valla ��		� for a related result�

In his article ���
�� Samuel laid the foundation of modern multiplicity
theory� He was the �rst to apply Hilbert�s theory to the associated graded
ring of an m �primary ideal I in a Noetherian local ring �R� m �� This led to
the so�called Hilbert�Samuel function� and provided the de�nition of the
multiplicity of R with respect to I � In this context the notion of reduction
ideals� invented and investigated by Northcott and Rees in ����� plays
an important role� Our Proposition ������ though formulated for modules�
is taken from this paper� In a special case ����� says that the multiplicity
of a module with respect to an ideal equals the multiplicity of the module
with respect to a suitable system of parameters� This had already been
observed by Samuel in ���
�� More information on reduction ideals and
related questions can be found in Sally�s book �����

As a measure of the complexity of an ideal I may serve the analytic
deviation ��I�� height I � Ideals of analytic deviation zero are called equi�

multiple� The interested reader may consult the monograph by Herrmann�
Ikeda� and Orbanz ������ Ideals with small analytic deviation have been
studied by Huckaba and Huneke ��
��� ��
��� and Vasconcelos ������

The question of when the Rees ring or the associated graded ring of
an ideal is Cohen�Macaulay has been of central interest in commutative
algebra� The problem is well understood for ideals generated by d�
sequences� This notion� introduced by Huneke� generalizes the notion of
a regular sequence considerably� but still guarantees that the Rees ring
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of an ideal I generated by a d�sequence is isomorphic to the symmetric
algebra of I� see Huneke ��
� and Valla ��	��� The reader who wants
more information on d�sequences is referred to the articles by Huneke
������ and Herzog� Simis� and Vasconcelos ������ ������

Other approaches to the Rees ring and associated graded ring of
an ideal can be found in the papers by Bruns� Simis� and Trung ��
��
Eisenbud and Huneke ���� Goto and Shimoda ������ Huneke ������
Ikeda ������ ������ Trung and Ikeda ������ Valla ��	�� and Vasconcelos
������ A comprehensive account of the recent developments in this area
is given in Vasconcelos� monograph ������

Most important is Serre�s theorem ��	�� which relates the multiplicity
to the Euler characteristic of the Koszul complex� Serre proved this result
in the mid��fties� The notes ����� by Gabriel of Serre�s course at the
Coll!ege de France were published ���� Auslander and Buchsbaum� in
their classic paper ���� proved a version of Serre�s theorem for arbitrary
Noetherian rings� and gave an axiomatic description of the multiplicity�
In Section ��	 we follow this axiomatic approach� and introduce the
multiplicity symbol� This terminology stems from Northcott who� in his
book ����� systematically developed multiplicity theory from the formal
properties of this symbol�

Corollary ��	��� is taken from ���� In our presentation it is a
consequence of the fact that the �rst truncated Euler characteristic �� of
the Koszul complex is non�negative� Serre ����� proves this not just for
the �rst but also for the higher truncated Euler characteristics� We only
show the non�negativity of �� �see ��	��
�� following Lichtenbaum ������
In writing this part of the section we consulted the article ����� of Simis
and Vasconcelos�

The Koszul homology can be interpreted as a Tor of modules� and
this leads to a far reaching generalization� the intersection multiplicity of
modules introduced by Serre ������ see Remark �����
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� Stanley�Reisner rings

This chapter is an introduction to �combinatorial commutative algebra�� a
fascinating new branch of commutative algebra created by Hochster and
Stanley in the mid�seventies� The combinatorial objects considered are
simplicial complexes to which one assigns algebraic objects� the Stanley�
Reisner rings� We study how the face numbers of a simplicial complex are
related to the Hilbert series of the corresponding Stanley�Reisner ring�
This is the basis of all further investigations which culminate in Stanley�s
proof of the upper bound theorem for simplicial spheres� It turns out that
most of the important algebraic notions introduced in the earlier chapters�
such as �Cohen�Macaulay�� �Gorenstein�� �local cohomology�� and �Hilbert
series�� are the proper concepts in solving purely combinatorial problems�
Other applications of commutative algebra to combinatorics will be given
in the next chapter�

��� Simplicial complexes

The present section is devoted to introducing the Stanley�Reisner ring
associated with a simplicial complex� and studying its Hilbert series� The
most important invariant of a simplicial complex� its f�vector� can be
easily transformed into the h�vector� an invariant encoded by the Hilbert
function of the associated Stanley�Reisner ring� It is of interest to know
when a Stanley�Reisner ring is Cohen�Macaulay� because then the results
about Hilbert functions of Chapter � may be employed to get information
about the f�vector� In concluding this section we show that the Stanley�
Reisner ring of a shellable simplicial complex is Cohen�Macaulay� and
study systems of parameters of such a ring�

De�nition ������ Let V � fv�� � � � � vng be a �nite set� A ��nite� simplicial
complex � on V is a collection of subsets of V such that F � � whenever
F � G for some G � �� and such that fvig � � for i � �� � � � � n�

The elements of � are called faces� and the dimension� dimF � of a face
F is the number jFj � �� The dimension of the simplicial complex � is
dim� � maxfdimF � F � �g�

Note that the empty set � is a face �of dimension ��� of any non�
empty simplicial complex� Faces of dimension 
 and � are called vertices

�
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and edges� respectively� The maximal faces under inclusion are called the
facets of the simplicial complex�

Given an arbitrary collection fF�� � � � � Fmg of subsets of V there is
a �unique� smallest simplicial complex� denoted by hF�� � � � � Fmi� which
contains all Fi� This simplicial complex is said to be generated by
F�� � � � � Fm� It consists of all subsets G � V which are contained in some
Fi� A simplicial complex generated by one face is called a simplex�

Each simplicial complex has a geometric realization as a certain subset
�composed of simplices� of a �nite dimensional a�ne space� This explains
the geometric terminology introduced above� Geometric realizations will
be discussed in the next section� As an example consider the octahedron
with vertex set fv�� � � � � vg �Figure ����� Its facets are the sets fv�� v�� v�g�
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Figure ���

fv�� v�� v�g� fv�� v�� vg� fv�� v�� vg� fv�� v�� v�g� fv�� v�� v�g� fv�� v�� vg� and
fv�� v�� vg�

An important class of simplicial complexes arises from �nite sets with
partial order �� called posets for short� The order complex ���� of a
poset � is the set of chains of � � Recall that a subset C of � is a chain

if any two elements of C are comparable� Obviously� ���� is a simplicial
complex�

For example� if we order the elements of the set fv�� � � � � v�g according
to Figure ���� then the order complex of the corresponding poset has the
facets fv�� v�� v�� v�g and fv�� v�� v�� v�g�

Stanley�Reisner rings and f�vectors� Now let � be an arbitrary simplicial
complex of dimension d � � 	 
 on a vertex set V � We denote by fi the
number of i�dimensional faces of �� We have f� � jV j� and f�� � � since
� � �� The d�tuple

f��� � �f�� f�� � � � � fd���
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is called the f�vector of �� For example� the octahedron has the f�vector
��� ��� ��� while the above order complex has the f�vector ��� � 	� ���

The possible f�vectors of simplicial complexes have been determined
by Kruskal ����� and Katona ������ Given two integers a� d � 
� let

a �

�
k�d�

d

�
�

�
k�d � ��

d � �

�
� � � � �

�
k�j�

j

�
�

k�d� � k�d � �� � � � � � k�j� 	 j 	 �� be the unique d�th Macaulay
representation of a� see ����� and the de�nition following ����	� We set

a�d� �

�
k�d�

d � �

�
�

�
k�d � ��

d

�
� � � � �

�
k�j�

j � �

�
�

Then �f�� f�� � � � � fd��� � Z
d is the f�vector of some �d � ���dimensional

simplicial complex if and only if


 � fi�� � f�i���
i � 
 � i � d � ��

However� if we consider more restricted classes of simplicial complexes�
for instance those simplicial complexes whose geometric realization is a
sphere� new constraints appear� this will be the topic of the next sections�
It turns out that the Stanley�Reisner rings are the appropriate tool to
attack these problems�

De�nition ������ Let � be a simplicial complex on the vertex set V �
fv�� � � � � vng� and k a ring� The Stanley�Reisner ring �or face ring� of the
complex � �with respect to k� is the homogeneous k�algebra

k��� � k�X�� � � � � Xn��I��

where I� is the ideal generated by all monomials Xi�Xi� � � �Xis such that
fvi� � vi� � � � � � visg �� ��

The choice of the letter k in the de�nition indicates that� with a few
exceptions� we usually have in mind a �eld for the coe�cient ring of a
Stanley�Reisner ring�
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Note that I� is generated by squarefree monomials� On the other
hand� if I � �X�� � � � � Xn�� is any ideal which is generated by squarefree
monomials� then k�X�� � � � � Xn��I �� k��� for some simplicial complex ��

The correspondence between simplicial complexes and squarefree
ideals is inclusion reversing� if � and �� are simplicial complexes on
the same vertex set� then � � �� � I�� � I��

Throughout this chapter we will assume� unless otherwise stated� that
V � fv�� � � � � vng is the vertex set of the simplicial complex ��

Example ������ Let P � fv�� � � � � vng be a poset� and � the order complex
of P � Then I� is generated by all monomials XiXj for which vi and vj
are incomparable� In the above example� I� � �X�X���

The dimension of a Stanley�Reisner ring can be easily determined�

Theorem ����	� Let � be a simplicial complex� and k a �eld� Then

I� �
�
F

P F �

where the intersection is taken over all facets F of �� and P F denotes the

�prime� ideal generated by all Xi such that vi �� F � In particular�

dim k��� � dim�� ��

Proof� By Exercise �����	� k��� is reduced� and hence I� is the intersection
of its minimal prime ideals� by Exercise ������� all these ideals are
generated by subsets of fX�� � � � � Xng� Let P � �Xi� � � � � � Xis�� notice that
I� � P if and only if fv�� � � � � vng n fvi� � � � � � visg is a face of �� and that P

is a minimal prime ideal of I� if and only if fv�� � � � � vng n fvi� � � � � � visg is a
facet�

A simplicial complex � is pure if all its facets are of the same
dimension� namely dim�� and � is called a Cohen�Macaulay complex

over k if k��� is a Cohen�Macaulay ring� We say that � is a Cohen�

Macaulay complex if � is Cohen�Macaulay over some �eld� According
to Exercise ������� � is a Cohen�Macaulay complex over every Cohen�
Macaulay ring k if and only if Z��� is Cohen�Macaulay�

As a consequence of ����� and the previous theorem we obtain

Corollary ������ A Cohen�Macaulay complex is pure�

We are going to relate the f�vector of a simplicial complex to the
Hilbert series of k���� To this end we introduce a Zn�grading or �ne

grading on k����
More generally� let �G��� be an Abelian group� A G�graded ring is

a ring R together with a decomposition R �
L

a�G Ra �as a Z�module�
such that RaRb � Ra�b for all a� b � G�
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Similarly one de�nes a G�graded R�module� the category of G�graded
R�modules� G�graded ideals etc� simply by mimicking the corresponding
de�nitions for graded rings and modules with G � Z� see Section ���� If
M is a G�graded R�module� then x �M is homogeneous �of degree a � G�
if x �Ma� and we set deg x � a�

Example ������ The polynomial ring R � k�X�� � � � � Xn� has a natural
Zn�grading� for a � �a�� � � � � an� � Zn� ai 	 
 for i � �� � � � � n� we let
Ra � fcXa � c � kg be the a�th homogeneous component of R� and set
Ra � 
 if ai � 
 for some i� Here� Xa � Xa�

� � � �X
an
n for a � �a�� � � � � an��

Note that the Zn�graded ideals in R are just the ideals generated by
monomials� and the Zn�graded prime ideals are just the �nitely many
ideals which are generated by subsets of fX�� � � � � Xng�

Let I � R be an ideal generated by monomials� Since I is Zn�
graded� the factor ring R�I inherits the natural Zn�grading given by
�R�I�a � Ra�Ia for all a � Z

n� In particular� Stanley�Reisner rings are
Zn�graded in this way�

Now let R be an arbitrary Zn�graded ring� and M a Zn�graded R�
module� Each homogeneous component Ma of M is an R��module� Just
as for Z�graded modules we de�ne the Hilbert function H�M� � � Zn � Z

by H�M� a� � ��Ma�� provided all homogeneous components of M have
�nite length� and call HM�t� �

P
a�Zn H�M� a�ta the Hilbert series of M�

Here t � �t�� � � � � tn� where the ti are indeterminates� and ta � ta�� � � � t
an
n for

a � �a�� � � � � an��
For example� the Zn�graded polynomial ring R � k�X�� � � � � Xn� has

the Hilbert series

HR�t� �
X
a�Nn

ta �
nY
i��

��� ti�
���

Let us return to Stanley�Reisner rings� Given a simplicial complex ��
we denote by xi the residue classes of the indeterminates Xi in k���� then
k��� � k�x� � � � � � xn��

We de�ne the support of an element a � Zn to be the set supp a �
fvi � ai � 
g� If xa and xb are non�zero monomials �with non�negative ex�
ponents� in x�� � � � � xn� then xa � xb if and only if a � b� Therefore� without
ambiguity� we may set supp xa � supp a for any non�zero monomial�

Note that xa �� 
 if and only if supp a � �� and that the non�zero
monomials xa form a k�basis of k���� Therefore�

Hk����t� �
X
a�Nn

supp a��

ta �
X
F��

X
a�Nn

supp a�F

ta�

If F � �� then
P

supp a�F t
a � �� and if F �� �� then

P
supp a�F t

a �Q
vi�F

ti���� ti�� Thus� if we understand that the product over an empty
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index set is �� we get

Hk����t� �
X
F��

Y
vi�F

ti
�� ti

����

We are actually interested in the Hilbert series of k��� as a homoge�
neous Z�graded algebra� Note that for all i � Z we have

k���i �
M

a�Zn � jaj�i

k���a�

where jaj � a� � � � � � an for a � �a�� � � � � an�� �This relation explains the
alternative terminology ��ne grading� for �Zn�grading���

It follows that the Hilbert series of k��� with respect to the Z�grading
is obtained from ��� by replacing all ti by t� Thus we have shown

Theorem ������ Let � be a simplicial complex with f�vector �f�� � � � � fd����
Then

Hk����t� �
d��X
i���

fit
i��

��� t�i��
�

From the Hilbert series of k��� we can read o its Hilbert function�

H�k���� n� �

�
� if n � 
�Pd��

i�� fi
�
n��
i

�
if n � 
�

We note the following interesting fact� H�k���� n� is a polynomial function
for n � 
� and hence coincides with the Hilbert polynomial for all n 	 


except possibly for n � 
� Evaluating
Pd��

i�� fi
�
n��
i

�
at n � 
 gives

���� �
d��X
i��

����ifi�

the so�called Euler characteristic of �� Thus the Hilbert function and
the Hilbert polynomial of � agree for all n 	 
 if and only if ���� � ��
The geometric signi�cance of the Euler characteristic will become clear
in �����	�

Two other conclusions can be drawn from ����	� First� we recover that
dim k��� � d since the degree of the Hilbert polynomial Pk����t� is d � ��
secondly� we see that the multiplicity of k��� equals fd��� the number of
�d � ���dimensional facets of ��

The h�vector� Recall from ����� that a homogeneous k�algebra R of
dimension d has a Hilbert series of the form HR�t� � QR�t����� t�d where
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QR�t� is a polynomial with integer coe�cients� Let � be a simplicial
complex� and write

Hk����t� �
h� � h�t� � � �

��� t�d
�

The �nite sequence of integers h��� � �h�� h�� � � �� is called the h�vector of
��

A comparison with ����	 yields

Lemma ������ The f�vector and h�vector of a �d����dimensional simplicial
complex � are related by

X
i

hit
i �

dX
i��

fi��t
i��� t�d�i�

In particular� the h�vector has length at most d � and for j � 
� � � � � d �

hj �

jX
i��

����j�i
�
d � i

j � i

�
fi�� and fj�� �

jX
i��

�
d � i

j � i

�
hi�

Proof� Comparing the coe�cients in the polynomial identity gives the
formula for the hj in terms of the fi� In order to prove the inverse relation
replace t by s���� s�� Then the above polynomial identity transforms into

dX
i��

his
i�� � s�d�i �

dX
i��

fi��s
i

from which one obtains the last set of equations�

The octahedron has f�vector ��� ��� ��� Applying ����� we see that its
h�vector is ��� �� �� ���

We single out some special cases of the above equations�

Corollary ������ With the assumptions of ����� one has

h� � �� h� � f� � d� hd � ����d�������� �� and

dX
i��

hi � fd���

Since the f�vector and h�vector of a simplicial complex determine
each other� bounds for the h�vector implicitly contain certain constraints
for the f�vector� We treat an important case�

Theorem �����
� Let � be a �d����dimensional Cohen�Macaulay complex

with n vertices and h�vector �h�� � � � � hd�� Then


 � hi �

�
n� d � i� �

i

�
� 
 � i � d�
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Proof� Let R � k���� where k is a �eld for which k��� is Cohen�Macaulay�
We may assume that k is in�nite� Then� since R is Cohen�Macaulay� there
exists an R�sequence x of elements of degree � such that �R � dimR�xR
is of dimension 
� see ������� Now it follows from ������ that hi � H��R� i�
for all i� This implies already that hi 	 
 for all i�

Notice that �R is generated over k by n � d elements of degree ��
Therefore� the Hilbert function of �R is bounded by the Hilbert function
of a polynomial ring in just as many variables� This yields the second
inequality�

To illustrate the theorem consider the simplicial complex � in Figure
��� with facets F� � fv�� v�� v�g and F� � fv�� v�� v�g� We have f��� �

�
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Figure ���

��� �� ��� and so h��� � ��� ������ It follows that � is not a Cohen�
Macaulay complex�

Shellable simplicial complexes� The previous theorem will be of real use
only when we are able to exhibit interesting classes of Cohen�Macaulay
complexes� Such a class is given in the following de�nition�

De�nition ������� A pure simplicial complex � is called shellable if one
of the following equivalent conditions is satis�ed� the facets of � can be
given a linear order F�� � � � � Fm in such a way that
�a� hFii�hF�� � � � � Fi��i is generated by a non�empty set of maximal proper
faces of hFii for all i� � � i � m� or
�b� the set fF � F � hF�� � � � � Fii� F �� hF�� � � � � Fi��ig has a unique minimal
element for all i� � � i � m� or
�c� for all i� j� � � j � i � m� there exist some v � Fi n Fj and some
k � f�� �� � � � � i� �g with Fi n Fk � fvg�

A linear order of the facets satisfying the equivalent conditions �a��
�b�� and �c� is called a shelling of ��

Let us check that these conditions are indeed equivalent�
�a�  �b�� We may assume that Fi � fv�� � � � � vmg� and that hFii �
hF�� � � � � Fi��i is generated by the faces fv�� � � � � vj��� vj��� � � � � vmg� � �
j � r � m� The unique minimal element in the set Si � fF � F �
hF�� � � � � Fii� F �� hF�� � � � � Fi��ig is fv�� � � � � vrg�
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�b�  �c�� Let G be the unique minimal element in Si � Since G �� Fj �
there exists v � G nFj � Then v � Fi nFj � and it follows from the de�nition
of G that there exists a k� � � k � i� �� such that Fi n Fk � fvg�
�c�  �a�� Let F � hFii � hF�� � � � � Fi��i� Then F � Fj for some j � i�
Let v � Fi n Fj as in �c�� Then Fi n fvg is a maximal proper face of hFii
belonging to hFii � hF�� � � � � Fi��i and containing F � This proves �a��

In Figure ��� the �rst simplicial complex is shellable� the second is not�
Shellable simplicial complexes arise naturally in geometry� see Section
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Figure ���

���� Other interesting classes arise from order complexes of certain posets�
Here we discuss one important case� For this we need to introduce some
more terminology� a ��nite� poset is said to be bounded if it has a least

and a greatest element� denoted �
 and ��� The poset is pure if all maximal
chains have the same length� and graded if it is bounded and pure� In
this case all unre�nable chains between two comparable elements have
the same length �Exercise ��������

Let � be a poset� and v � � � The rank of v� rank v� is de�ned to be
the maximal length of all chains descending from v� The length of � is
the maximal rank of an element of � � Let u� v � �� we say that v covers
u� written u � v� if u � v� and if there is no w � � such that u � w � v�

The poset � is locally upper semimodular if whenever v� and v� cover
u� and v�� v� � v for some v � � � then there is t � � � t � v� which covers
each of v� and v�� see Figure ����
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Theorem ������ �Bj�orner�� The order complex of a bounded� locally upper

semimodular poset is shellable�
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Proof� In a �rst step we shall prove that for every graded poset �����
the set M of maximal chains can be given a linear order � such that

for any two chains m�m� � M � m � �
 � x� � x� � � � � � xn � �� and

m� � �
 � y� � y� � � � � � yn � �� with xi � yi for i � 
� �� � � � � e� and
xe�� �� ye�� the following conditions are satis�ed�
�i� If fy�� y�� � � � � ye��g is contained in a maximal chain m�� and if m� �� m�
then m�� �� m�
�ii� If m� n fxeg is contained in some maximal chain m�� with m�� �� m
but m n fxeg is contained in no maximal chain m��� with m��� �� m� then
m� �� m�

In a second step we shall see that such a linear order is a shelling
of the order complex ����� provided � satis�es the hypothesis of the
theorem�

First we prove by induction on the length n of � the existence of a
linear order on M satisfying �i� and �ii�� The assertion being trivial for
n � �� we may assume that n 	 �� We denote by � � the subposet of �
consisting of the elements x � � with rankx �� n � �� �The order �� of
� � is induced by the order � of � � that is� for all x� y � � �� x �� y if and
only x � y�� Since � � is graded of length n� �� the induction hypothesis
implies that there exists a linear order �� of the set of maximal chains M �

of � � satisfying �i� and �ii�� Let m�
�� m

�
�� � � � � m

�
s be the elements of M � in

their linear order� For m�
i � �
 � x� � x� � � � � � xn�� � �� we de�ne the set

Ai � fz � � � xn�� � z � ��g� and the set Bi of all z � Ai for which there
is an element y � � such that xn�� � y � z and �m�

i nfxn��g��fyg �
� m�

i�
Finally we let Ci � Ai n Bi� Now we order the elements of Ai linearly
in such a way that all elements of Bi are less than all elements of Ci�
We label the elements of Ai� zi�� zi�� � � � � ziai � ai � jAij� according to their
order� and set mij � m�

i � fzijg for i � �� �� � � � � s and j � �� �� � � � � ai� The
lexicographic order of the indices determines a linear order � of the set
M � fmij � � � i � s� � � j � aig of maximal chains of � �

We claim that � satis�es �i� and �ii�� Indeed� let m�m� � M � m � �
 �

x� � x� � � � � � xn � �� and m� � �
 � y� � y� � � � � � yn � �� with xi � yi
for i � 
� �� � � � � e� and xe�� �� ye��� We distinguish two cases�

In the �rst case suppose e � � � n � �� then m� � mij and m � mik

for some i� j� k with � � i � s and � � j� k � ai� Condition �i� is trivially
satis�ed since necessarily m�� � m�� The hypothesis of condition �ii� implies
yn�� � Bi and xn�� � Ci� Therefore� j � k� and hence m� �� m�

In the second case we assume that e�� � n� �� If fy�� y�� � � � � ye��g �
m�� � M � then fy�� y�� � � � � ye��g � �m�� n fzg� � M � where z � m��� rank z �

n��� Suppose now that m� �� m� then �m� n fyn��g� ���

�mn fxn��g�� and

thus� by the induction hypothesis� �m�� n fzg� ���

�m n fxn��g�� But then
m�� �� m� and this proves condition �i�� In a similar manner one checks
condition �ii��
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Now suppose that � is a bounded� locally upper semimodular poset�
By ������� � is pure and hence graded� Therefore� as we have just seen�
the set M of maximal chains of � admits a linear order � satisfying
the conditions �i� and �ii�� In order to prove that this is a shelling of

����� we consider m�m� � M � m � �
 � x� � x� � � � � � xn � �� and

m� � �
 � y� � y� � � � � � yn � �� with m� �� m� Let d be the greatest
integer such that xi � yi for i � d � and let g be the least integer for which
yd�� � xg �

Since � is locally upper semimodular there exists an element zd��

which covers both yd�� and xd�� and such that zd�� � xg� If g � d � ��
we �nd again an element zd�� which covers zd�� and xd�� and such that
zd�� � xg� This process ends with zg � xg � Setting zd�� � yd�� we obtain
Figure ���� By the choice of g we have ye �� xe and ze �� xe for all e�
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xd � yd

xd��

xd��

xg��

xg��

xg

zd�� � yd��

zd��

zg��

zg��

Figure ���

d � � � e � g � �� It remains to show that for some e in this range there
is a maximal chain m�� with m�� �� m such that m n fxeg � m���

For i � d��� d ��� � � � � g� � we let mi be the maximal chain �
 � x� �

x� � � � � � xi�� � zi � zi�� � � � � � zg�� � xg � xg�� � � � � � xn � ���

As we assume that m� �� m� property �i� of � implies that md�� �
� m�

Now� either m n fxd��g � m�� for some maximal chain m�� �� m as we
want� or� otherwise� property �ii� of � implies that md�� �� m� Again�
if m n fxd��g � m�� for some maximal chain m�� �� m the proof is
completed� otherwise md�� �

� m� Continuing this argument we conclude
that either m n fxeg is contained in some earlier maximal chain for some
e� or mg�� �� m� In the latter case however� m n fxg��g � mg�� with
mg�� �

� m�

After this purely combinatorial result we return to algebra�

Theorem ������� A shellable simplicial complex is Cohen�Macaulay over

every �eld�
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Proof� The proof is based on the following simple observation� let I�
and I� be two ideals of a ring R� Then there exists an exact sequence of
R�modules


 �� R��I� � I��


�� R�I� � R�I�

�
�� R��I� � I�� �� 
���

with ��a�I��I�� � �a�I���a�I��� and ��a�I�� b�I�� � �a�b��I��I��
Suppose moreover that R is a polynomial ring over a �eld� that I� and
I� are graded ideals such that R�I� and R�I� are d�dimensional Cohen�
Macaulay rings� and that R��I� � I�� is a �d � ���dimensional Cohen�
Macaulay ring� then R��I��I�� is a d�dimensional Cohen�Macaulay ring�
The proof of these statements is left to the reader�

Let � be a shellable complex of dimension d � � �on the vertex set
fv�� � � � � vng�� and F�� � � � � Fm a shelling of �� By ������ we have I� �

Tm
i�� P Fi

where P Fi
is the ideal generated by all Xj such that vj �� Fi� Set

�j � hF�� � � � � Fji� � � j � m� then k��j� �� k�X�� � � � � Xn��
Tj

i�� P Fi
� In

fact� we may suppose that fv�� � � � � vrg� r � n� is the vertex set of hF�� � � � � Fji�
For all i � j� let p Fi

be the ideal in k�X�� � � � � Xr� generated by all Xs�
s � r� such that Xs � P Fi

� Then P Fi
� p Fi

� �Xr��� � � � � Xn� for all i � j�
and it follows from ������ that

j�
i��

P Fi
� �

j�
i��

p Fi
� � �Xr��� � � � � Xn��

Therefore� k��j� �� k�X�� � � � � Xr��
Tj

i�� p Fi

�� k�X�� � � � � Xn��
Tj

i�� P Fi
�

We show by induction on j that �j is Cohen�Macaulay� If j � �� then
k���� is a polynomial ring� and there is nothing to prove� Now suppose

that j � �� The sequence ��� with I� �
Tj��

i�� P Fi
and I� � P Fj

yields the
exact sequence


 �� k��j� �� k��j���� k�Fj � �� k�hFj i � �j��� �� 
����

It follows easily from De�nition �������a� and ����� that k�hFji � �j���
is isomorphic to a residue class ring of a polynomial ring in d variables
modulo a single equation� and therefore is a Cohen�Macaulay ring of
dimension d � �� By our induction hypothesis k��j��� is a d�dimensional
Cohen�Macaulay ring� Finally� since k�Fj � is a d�dimensional polynomial
ring �� is pure�� it follows from the general properties of the sequence ���
that k��j� is Cohen�Macaulay�

From the exact sequence ��� we easily derive a combinatorial interpre�
tation of the h�vector of a shellable simplicial complex� due to McMullen
and Walkup ��	���

Corollary �����	� Let � be a �d � ���dimensional shellable simplicial com�
plex with shelling F�� � � � � Fm� For j � �� � � � � m� let rj be the number of facets
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of hFji � hF�� � � � � Fj��i� and set r� � 
� Then

hi � jfj � rj � igj for i � 
� � � � � d�

In particular� up to their order� the numbers rj do not depend on the par�

ticular shelling�

Proof� Set �j � hF�� � � � � Fji� and write Hk��j��t� � Qj�t����� t�d � Then it
follows from the sequence ��� that

Qj�t�

��� t�d
�

Qj���t�

��� t�d
�

�

��� t�d
�

Pj�t�

��� t�d��
�

where Pj�t���� � t�d�� is the Hilbert series of hFji � �j��� According
to Exercise ����� one has Pj�t� � � � t � � � � � trj�� � therefore� Qj�t� �
Qj���t� � trj � As Q��t� � �� it follows that Qm�t� �

Pm
j�� t

rj � This implies

the assertion since the coe�cient vector of Qm�t� is just the h�vector of ��

Analyzing the proof of ������ we see that we did not use all the
properties of shellability� It su�ces to require that � is constructible which
means that � can be obtained by the following recursive procedure� �i�
any simplex is constructible� �ii� if �� and ��� are constructible of the
same dimension d � and if ������ is constructible of dimension d��� then
�� � ��� is constructible�

It is clear that the following implicationshold for simplicial complexes�

shellable constructible Cohen�Macaulay�

Nevertheless the h�vectors of all these types of complexes are charac�
terized by the same condition� For the next theorem recall the de�nition
of ahni given before ������

Theorem ������ �Stanley�� Let s � �h�� � � � � hd� be a sequence of integers�

The following conditions are equivalent	

�a� h� � � and 
 � hi�� � h
hii
i for all i� � � i � d � ��

�b� s is the h�vector of a shellable complex�

�c� s is the h�vector of a constructible complex�

�d� s is the h�vector of a Cohen�Macaulay complex�

Proof� The implications �b�  �c�  �d� are obvious� while �d� �
�a� follows from ������� Following ��� we indicate the proof of the
implication �a� �b�� which is a purely combinatorial result� A full proof
can be found in ����� Given a vector s satisfying �a�� let n � h� � d and
V � f�� �� � � � � ng� Let F be the collection of all subsets of V with d
elements� and Fi the set of those members F of F such that d � � � i
is the smallest element of V not in F � The elements of F are ordered in
such a way that F � G if the largest element in their symmetric di erence
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lies in G� For each i� 
 � i � d � choose the �rst hi members of Fi�
The resulting collection C consists of the facets of the required shellable
complex� and the given order on F induces the shelling order�

Systems of parameters� Let � be a simplicial complex� Given two faces
G � F � the set of faces �G� F� � fH � G � H � Fg is called the interval

between G and F � Now assume � is shellable with shelling F�� � � � � Fm � By
de�nition� there is a unique minimal element Gi � hFiinhF�� � � � � Fi��i� and
it is clear that � is the disjoint union of the intervals �Gi� Fi�� i � �� � � � � m�
In the following we use that k�F� is a residue class ring of k��� in a
natural way�

Theorem ������� Let k be a �eld� � a �d����dimensional simplicial complex�
and y � y�� � � � � yd a sequence of elements of degree � in k����
�a� The following conditions are equivalent	

�i� y is a homogeneous system of parameters of k����
�ii� for all facets F of �� the k����module k�F���y�k�F� is isomorphic

to k�
�b� Suppose the equivalent conditions in �a� hold� Then the images of the

monomials xF �
Q

vi�F
xi in S � k�����y�� F � �� form a system of gener�

ators of the ��nite� k�vector space S �
�c� �Kind�Kleinschmidt� Assume in addition that � is shellable with de�

composition � �
Sm

i���Gi� Fi�� as described above� If y is a homogeneous

system of parameters of k��� and S � k�����y�� then the images of the

monomials xGi in S form a k�basis of S � In particular� k��� is a free

k�y�� � � � � yd��module with basis xG� � xG� � � � � � xGm �

Proof� �a��i� �ii�� Since k�F� is a homomorphic image of k��� it follows
that k�F��yk�F� has �nite length� Note k�F� is a polynomial ring and
y a sequence of elements of degree �� Therefore k�F��yk�F� is also a
polynomial ring� If it has �nite length� it must be isomorphic to k�

�ii�  �i�� Let � � k�X�� � � � � Xn� �
L

F�k�X�� � � � � Xn��P F� �
L

F k�F�
be the homomorphism which on each component is the canonical epi�
morphism� The direct sum is taken over all facets of �� Since Ker� �T

F P F � I� � we obtain an induced homomorphism k��� �
L

F k�F� of
�nite k����modules which actually is a monomorphism� As we did for
local rings �see ��	��� one shows that k�����y� has �nite length if the
module �

L
F k�F���y�

L
F k�F�� has �nite length� But this follows from

assumption �ii��
�b� Let F be a facet of �� Since P Fk��� is the annihilator of x

F in
k��� it follows that xFS is a �k�F��yk�F���module� Therefore� by �a��ii��
xix

F � 
 in S for all i � �� � � � � n which clearly implies that the elements
xF

�

� F � � �� form a system of generators of the k�vector space S �
�c� First note that S is generated as an algebra over k by the monomials

xGi � i � 
� � � � � m� This follows from �b� simply because any other monomial
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xF is a multiple of some xGi �
Set �j � hF�� � � � � Fji� then k��j� is a residue class ring of k��� of the

same dimension� Therefore y is a homogeneous system of parameters
of k��j�� too� We set Sj � k��j���y�� and show by induction on j that

Sj �
Lj

i�� kx
Gi � For j � m this is the desired assertion�

Since �� � hF�i it follows from �a��ii� that S� �� k� Since G� � �� we
have � � xG� which is a basis of S�� Now suppose j � �� then we have

Sj�� �
Lj��

i�� kx
Gi by the induction hypothesis� Further we know that

Sj��xGj � � Sj�� since Sj is generated as a k�algebra by the monomials xGi �
i � j� Note that k��j� is Cohen�Macaulay� Thus y is a k��j ��sequence�
and so Remark ������ implies that dimk Sj �

P
i hi��j�� By ����� this sum

equals the number of facets of �j � which is j� But this is only possible if

Sj �
Lj

i�� kx
Gi �

It remains to show that k��� is a free k�y� � � � � � yd��module with basis
xG� � � � � � xGm� from Nakayama�s lemma for graded modules �see ������� it
follows that xG� � � � � � xGm is a minimal set of generators of the k�y�� � � � � yd��
module k���� Let n be the graded maximal ideal of k�y�� � � � � yd�� Then
k���n is a maximal Cohen�Macaulaymodule over k�y� � � � � � yd�n � Hence by
������� k���n is free over k�y�� � � � � yd�n � But then k��� is a free k�y�� � � � � yd��
module� see ������� In particular� xG� � � � � � xGm is a basis of k��� over
k�y�� � � � � yd��

Exercises

�����	� Let k be a 	eld� and I � kX� � � � � � Xn� an ideal generated by squarefree
monomials of degree �� Does there exist a poset � such that kX� � � � � � Xn��I 
�
k�� with � � ��� ��

�����
� �a� Show that in a graded poset all unre	nable chains between two
comparable elements have the same length�
�b� Show that a bounded� locally upper semimodular poset is pure�

������� Let � be a simplicial complex which is generated by m maximal proper
faces Fi of the simplex with vertex set fv� � � � � � vng� say Fi � fv�� � � � � vng n fvig� Show
�a� k�� � kX� � � � � � Xn���X� � � �Xm��
�b� h��� is the vector ��� �� � � � � �� with m components�

������� Let � and � be simplicial complexes on disjoint vertex sets V and W �
respectively� The join � � � is the simplicial complex on the vertex set V �W
with faces F � G where F � � and G � �� Compute h�� � �� in terms of h�� �
and h����
Hint� 	rst show that k� � �� 
� k� � �k k�� �as graded k�algebras��

������� Let � and � be simplicial complexes� Prove that � and � are Cohen�
Macaulay if and only if their join � � � is Cohen�Macaulay�

������� Let � be a �d � ���dimensional simplicial complex� For r� � � r � d � ��
one de	nes the r�skeleton of � to be �r � fF � � � dimF � rg� Compute h��d���
in terms of h����
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������� Let � be a simplicial complex with r�skeleton �r� Show�

�a� depth k�� � maxfr � �r is Cohen�Macaulay over kg� �� Hint� Use induction
on the number of faces�

�b� If � is Cohen�Macaulay� then �r is Cohen�Macaulay�

������� Prove all skeletons of a shellable complex are shellable�

������� Let � be a simplicial complex� Show�

�a� The following conditions are equivalent�

�i� Z�� is Cohen�Macaulay�
�ii� k�� is Cohen�Macaulay for all 	elds k�
�iii� R�� is Cohen�Macaulay for all Cohen�Macaulay rings R�

�The Cohen�Macaulay property of k�� may well depend upon k� see Reisner�s
example at the end of Section �����

Hint� It is crucial that R�� is a free R�module for an arbitrary ring R� For
�i� � �ii� one uses ������� for �ii� � �iii� note that �ii� applies to k�p � � R���
p � SpecR� so that ������ becomes applicable�

�b� The following conditions are equivalent�

�i� Q�� is Cohen�Macaulay�
�ii� there exist prime numbers p� � � � � � pn such that k�� is Cohen�Macaulay
for any 	eld k whose characteristic is di�erent from pi� i � �� � � � � n�
�iii� there exists a prime number p such that k�� is Cohen�Macaulay for any
	eld k whose characteristic is p�

Hint� �����
�

������� Let � be a simplicial complex� � is called disconnected if the vertex set V
of � is a disjoint union V � V� � V� such that no face of � has vertices in both
V� and V�� Otherwise � is connected� Show�

�a� If dim� � �� then � is Cohen�Macaulay�

�b� depth k�� � � if � is disconnected� In particular� all Cohen�Macaulay
complexes of positive dimension are connected�
Hint� let �i� i � �� �� be the subcomplex of � consisting of all faces of �
whose vertices belong to Vi� and represent k�� as the kernel of a suitable map
k��� � k��� � k�

�c� Suppose dim� � �� The following conditions are equivalent� �i� � is connected�
�ii� � is shellable� �iii� � is Cohen�Macaulay�

�����	� Let � be a �d����dimensional simplicial complex with h�vector h�� � � � � hd �
We de	ne the a�invariant a��� of � to be a�k��� where k is an arbitrary 	eld�
Show�

�a� a��� � ��

�b� The following conditions are equivalent� �i� a��� � �� �ii� ���� � ��

If moreover � is shellable with shelling F�� � � � � Fm� then �i� and �ii� are equivalent
to �iii� There exists an integer i � m such that hF�� � � � � Fi��i 	 hFii consists of all
maximal proper faces of hFii�

�����
� Let k be a 	nite 	eld� Find a simplicial complex � for which k�� does
not have a homogeneous system of parameters consisting of linear forms�
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��� Polytopes

We brie�y discuss combinatorial properties of polytopes� and give an
outline of McMullen�s proof of the upper bound theorem for polytopes�
Stanley�s far�reaching generalization to simplicial spheres will be proved
in the next sections� The topic as well as the methods employed in this
section are non�algebraic� Therefore most of the statements will be given
without proof� Though many of them seem obvious from our geometric
intuition� they need a rigorous proof� We refer the interested reader to
the standard work on polytopes by Gr�unbaum ������ and to the excellent
monograph ��	�� by McMullen and Shephard of which large parts of
this section are an abstract� Another very good reference is the recent
book by Ziegler ����

We consider Rd as a d�dimensional Euclidean space whose points are
d�tuples x � � �� � � � �  d� of real numbers� and whose scalar product is
given by

hx� yi �
dX
i��

 i!i� x � � �� � � � �  d�� y � �!�� � � � � !d��

A subset K of Rd is convex if for any two points x�� x� � K the
line segment with end points x� and x�� that is� the set of points x �
��� ��x� � �x�� � � R� 
 � � � �� belongs to K � The intersection of any
non�empty family of convex sets is again convex� This allows us to de�ne
the convex hull� convX � of a subset X � Rd to be the intersection of all
convex sets K � Rd which contain X � The convex hull of X can also be
described as the set of all convex combinations of �nite subsets of X � that
is� as the set of linear combinations

��x� � � � � � �rxr with xi � X� �i 	 
�
rX
i��

�i � ��

De�nition ������ A polytope is the convex hull of a �nite set of points in
Rd �

There is an alternative description of a polytope as the intersection
of a �nite number of �closed� half�spaces� let a � Rd � a �� 
� and � � R�
the set

H � fx � Rd � ha� xi � �g

is a hyperplane with normal vector a� The set of points lying on one side
of a hyperplane �including the hyperplane� is a closed half�space� Thus
H determines two half�spaces

H� � fx � Rd � ha� xi 	 �g and H� � fx � Rd � ha� xi � �g�

De�nition ������ A polyhedral set or polyhedron is the intersection of a
�nite number of closed half�spaces�
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Obviously polyhedra are convex sets� but of course need not be
bounded�

Theorem ������ A subset of Rd is a polytope if and only if it is a bounded

polyhedron�

Let P be a polyhedron� and H a hyperplane� Then H is called a
supporting hyperplane if H � P �� � and P is contained in one of the
closed half�spaces determined by H � If H is a supporting hyperplane of
P � then H � P is called a face of P �

It is convenient to consider the empty set and P as faces� the improper
faces� All the other faces of P are called proper faces� The faces of a
polyhedron �polytope� are again polyhedra �polytopes��

The dimension� dimP � of a polyhedron P is the dimension of its a�ne
hull� a d�polyhedron is a polyhedron of dimension d � Recall that for an
arbitrary set X � Rd there is a smallest �under inclusion� a�ne space A
containing X � namely just the intersection of all a�ne subspaces of Rd

containing X � This a�ne space A is called the a�ne hull� denoted by
a X � A j�face is a face whose dimension as a polyhedron is j� and we
set dim� � ��� If dimP � t� faces of dimension 
� �� t� �� t� � are called
vertices� edges� subfacets and facets� respectively�

In the following theorem we collect a few facts about the facial
structure of a polyhedron�

Theorem ����	� Let P be a polyhedron�

�a� P has only a �nite number of faces�

�b� Let F be a face of P and F � a face of F � Then F � is a face of P �
�c� Any proper face of P is a face of some facet of P �
�d� The set of faces of P � ordered by inclusion� is a lattice�

The lattice in ������d�� denoted by F�P �� is called the face lattice

or boundary complex of P � Two polyhedra are called combinatorially

equivalent if their face lattices are isomorphic� An invariant under com�
binatorial equivalence is the f�vector �f�� f�� � � � � fd��� of a d�polyhedron
P � Here fj � fj�P � is the number of j�faces of P �

Simplicial polytopes� Let A � Rd be a k�dimensional a�ne subspace of
Rd � We pick x � A� then there exists a linear subspace U of Rd �not
depending on x� such that A � x� U� The vector space U is called the
associated linear space of A� Let u�� � � � � uk be a basis of U� Then each
element y � A has a �unique� presentation

y � x� ��u� � � � � � �kuk

with �i � R� Set x� � x� �� � �� �
P

i �i�� xi � x � ui and �i � �i for
i � �� � � � � k� Then

y � ��x� � ��x� � � � � � �kxk and �� � � � �� �k � �����
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This suggests de�ning y to be a�nely dependent on x�� � � � � xk if there
exists an equation as in ���� It is clear that the set of elements which
are a�nely dependent on x�� � � � � xk is just the a�ne hull of fx�� � � � � xkg�
The elements x�� � � � � xk are called a�nely independent if each element
y � a fx�� � � � � xkg has a unique presentation as in ���� or equivalently� if
the elements x� � x�� x� � x�� � � � � xk � x� form a basis of the associated
linear space of a fx�� � � � � xkg�

De�nition ������ A d�simplex is the convex hull of d � � a�nely inde�
pendent points� A polytope is called simplicial if all its proper faces are
simplices�

Let P be a simplex de�ned by d�� a�nely independent points x�� x��
� � � � xd � and let X be a subset of fx�� x�� � � � � xdg consisting of d points�
For the following argument we may assume that P � Rd � Then a X is
a hyperplane which supports P � and thus convX � P � a X is a facet
of P � Since any subset of a set of a�nely independent points is again
a�nely independent it follows that convX is a �d � ���simplex� Thus
induction on the dimension yields

Proposition ������ Every j�face of a d�simplex P is a j�simplex� and every

j � � vertices of P are the vertices of a j�face of P �

Corollary ������ Let P be a simplicial polytope with vertex set V � and let

��P � be the collection of subsets of V consisting of the empty set and the

vertices of the proper faces of P � Then ��P � is a simplicial complex�

We call ��P � the vertex scheme of P � It is clear that not every
simplicial complex is the vertex scheme of some simplicial polytope P �
Nevertheless� to any simplicial complex � we may associate a geometric
object whose construction is in a sense inverse to the one given in ����	�
Let X be an arbitrary subset in Rd � We de�ne the relative interior of
X � denoted relintX � as the interior of X relative to a X � For example�
it is not di�cult to see that the relative interior of the convex hull of
fx�� � � � � xrg� xi � Rd � is the set of points

��x� � � � � � �rxr � �i � 
�
rX
i��

�i � ��

De�nition ������ Let � be a simplicial complex on the vertex set V �
Suppose the map � � V � Rd satis�es the following conditions�

�a� � is injective�

�b� the elements of ��F� are a�nely independent for all F � ��

�c� relint�conv��F�� � relint�conv��G�� � � for all F�G � �� F �� G�
Then

S
F�� relint�conv��F�� is called a geometric realization of ��
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Giving a geometric realization of � its natural topology as a subspace
of Rd � we note that any two geometric realizations of � are homeomor�
phic� and we denote the underlying topological space by j�j�

A geometric realization always exists� Indeed� if V � fv�� � � � � vng is
the vertex set of �� and x�� � � � � xn are a�nely independent elements in
Rd � then � � V � Rd with ��vi� � xi for i � �� � � � � n de�nes a geometric
realization of ��

Cyclic polytopes� Consider the algebraic curve M � Rd � de�ned para�
metrically by

x��� � ��� ��� � � � � �d�� � � R�

M is called the moment curve� It is a curve of degree d which implies that
a hyperplane not containingM intersects it in at most d points�

De�nition ������ Let n 	 d � � be an integer� A cyclic polytope� denoted
C�n� d�� is the convex hull of any n distinct points on M�

The notation C�n� d� is justi�ed since� as we shall see in a moment� its
face lattice depends only on n and d � We �rst observe

Proposition �����
� Any d�� distinct points on M are a�nely independent�

In particular� C�n� d� is a simplicial d�polytope�

Proof� Let ��� � � � � �d be the distinct parameters of these points� We
need to show that the vectors x���� � x����� � � � � x��d� � x���� are linearly
independent� or� equivalently� that the corresponding matrix with these
row vectors is non�singular� Clearly� this is the case if and only if the
Vandermonde matrix

A �

�BB�
� �� ��� � � � �d�
� �� ��� � � � �d�
���

���
� �d ��d � � � �dd

CCA
is non�singular� The determinant of A is known to be

Q
�
i�j
d��i � �j��

and this expression is non�zero since the �i are pairwise distinct�

Next we determine the vertex scheme ��C�n� d�� which encodes the
combinatorial properties of C�n� d�� Let C�n� d� be the convex hull of
the points xi � x��i�� �� � �� � � � � � �n� n 	 d � �� A subset X of
V � fx�� � � � � xng will be called an end set if there exists an integer i�
� � i � n� such that either X � fx�� � � � � xig or X � fxi� � � � � xng� The set
X will be called contiguous if there exist integers � � i � j � n such that
X � fxi� � � � � xjg� and an odd �even� contiguous set if it is contiguous and
jXj is odd �even�� It is clear that any proper subset W � V has a unique
decomposition

W � Y� �X� �X� � � � � �Xt � Y��
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where the Xi are contiguous� and Y� and Y� are end sets or empty� The
set W is of type �r� s� if jW j � r� and if there are exactly s odd contiguous
subsets Xi of W �

Theorem ������� Let j be an integer with 
 � j � d � �� A subset W � V
is a j�face of C�n� d� if and only if W is of type �j � �� s� for some s with

 � s � d � j � ��

Proof�We �rst show the assertion for j � d��� Since C�n� d� is simplicial�
any �d � ���face has d vertices� Thus we have to show that if W � V
is of type �d� s�� then convW is a facet if and only if s � 
� By �����
�
the points of W are a�nely independent� and hence de�ne a hyperplane
H � Rd � It is clear that W � H �M� But actually�W � H �M since M
is a curve of degree d � and it follows that the points of W divide M into
d � � arcs lying alternately on each side of H � Now convW is a facet of
C�n� d� if and only if H supports C�n� d�� or in other words� if and only if
all points of V nW lie on one side of H � Obviously this happens exactly
when every two points of V nW are separated by an even number of
points of W � that is� when s � 
�

Let us now treat the general case� and assume that jW j � j � ��
Suppose that W has at most d � j� � odd contiguous subsets� Then it is
possible to �nd a subset T of d � j� � points of M such that V �T � ��
and W � T has only even contiguous subsets� Since jW � T j � d it
follows from the �rst part of the proof that conv�W � T � is a facet of
C�n � d � j � �� d� supported by the hyperplane H � a �W � T �� As
W � H � V we conclude that convW � H � C�n� d� is a face of C�n� d��

Conversely� if convW is a j�face of C�n� d�� then there exists some
facet convW � of C�n� d� with W � W �� Since W � has no odd contiguous
subsets� W can have at most d � j � � odd contiguous subsets�

Corollary ������� The combinatorial type of a cyclic polytope C�n� d� de�
pends only upon n and d � and not on the particular vertex set V �M�

A polytope P has the highest possible number of j�faces when every
subset of j � � elements of the vertex set of P is the set of vertices of a
proper face of P � In this case we say that P is �j � ���neighbourly�

Corollary ������� C�n� d� is �d����neighbourly�

The upper bound theorem� In ��	 Motzkin ��	�� made the following
conjecture� Let P be a d�polytope with n vertices� then fj�P � � fj�C�n� d��
for all j� � � j � d � This conjecture was proved in �	
 by McMullen
��	��� We indicate the ideas of his proof� given a d�polytope P with
n vertices� one applies in a �rst step a process� known as �pulling the
vertices�� with the e ect of transforming P into a simplicial polytope
with the same number of vertices as P � and at least as many faces of
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higher dimension� Thus one may assume from the beginning that P is a
simplicial polytope�

Just as for simplicial complexes one de�nes the h�vector �h�� � � � � hd� of

P by the equation
Pd

i��hit
i �
Pd

i��fi��t
i�� � t�d�i� f�� � �� Then owing

to the fact that C�n� d� is �d����neighbourly we have

�a� hi�C�n� d�� �
�
n�d�i��

i

�
for all i� 
 � i � �d����

Moreover� the existence of a line shelling of P �see below� yields

�b� 
 � hi�P � �
�
n�d�i��

i

�
� and

�c� hi�P � � hd�i�P � for all i� 
 � i � d �

The identities in �c� are the famous Dehn�Sommerville equations�
Now �a�� �b� and �c� imply hi�P � � hi�C�n� d�� for all i� 
 � i � d �

Finally� since the fj�P � are non�negative linear combinations of the hi�P �
�see ������� the proof of the upper bound theorem is completed�

Shellings� A shelling of the boundary complex of a d�polytope P �or
simply a shelling of P � is an order of its facets F�� � � � � Fm such that

Fi �
Sj��

i�� Fi is homeomorphic to a �d � ���dimensional ball or sphere for
all j� � � j � m�

Theorem �����	 �Bruggesser�Mani�� Every polytope is shellable�

We give a sketch of the proof� Present P as an intersection of
closed half�spaces� One may assume without loss of generality that
P � fx � Rd � hai� xi � �g� 
 � i � m� where ai is a normal vector for the
face Fi� Choose a vector c such that hai� ci �� 
� and order the faces in such
a way that ha�� ci � ha�� ci � � � � � ham� ci� Then F� � � � � Fm is a shelling of
P � Such a shelling is called a line shelling of P � It can be imagined as
follows� moving along the line L in direction c starting from the origin�
one lists the facets of P as they become �visible�� �This happens exactly
when one meets the corresponding supporting hyperplane�� Coming back
from the opposite side one lists the remaining facets in the order they
�disappear��

Corollary ������� Let F�� � � � � Fm be a line shelling of the polytope P � Then
Fm� Fm��� � � � � F� is a line shelling of P � too�

Proof� Let F�� � � � � Fm be the line shelling induced by c� Then Fm� � � � � F� is
the line shelling induced by �c�

Suppose now that P is a simplicial polytope� Then the h�vector of
P and the h�vector of the vertex scheme ��P � coincide� Furthermore� it
is clear that a shelling of P induces a shelling of ��P � �in the sense of
Section ����� Thus we may apply ������ to compute the h�vector from a
line shelling of P � In particular� it follows from ������ that hi 	 
 for all i�
Moreover� in view of ������� we obtain the Dehn�Sommerville equations�
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Theorem ������ �Sommerville�� Let �h�� � � � � hd� be the h�vector of a sim�

plicial polytope� Then hi � hd�i for 
 � i � d �

These formulas imply in particular that hd � �� Thus ���� yields

Corollary ������� Let P be a simplicial d�polytope with f�vector �f�� � � � �
fd���� Then

d��X
i��

����ifi � �� ����d �

This formula is valid not only for simplicial polytopes� but more
generally for all polytopes� and is known as the Euler relation�

For the proof of the inequalities hi �
�
n�d�i��

i

�
one again uses line

shellings� We refer the reader to McMullen�s original paper ��	�� or ��	���

Exercise

�����
� Let ��n� d� denote the boundary complex of the cyclic polytope C�n� d��

�a� Show that the cyclic permutation xi �� xi��mod n induces an automorphism of
��n� d� for d even�

�b� Show that the substitution X� �� X�Xn��� Xi �� Xi for i � �� � � � � n� maps the
monomial generators of I��n�d� � d even� to those of I��n���d��� �

��� Local cohomology of Stanley�Reisner rings

We will compute the local cohomology of a Stanley�Reisner ring k���

in terms of the modi�ed %Cech complex C� introduced in Section ���� It
is not surprising that C�� just like k���� is equipped with a �ne grading�
This allows us to decompose the local cohomology groups of k���� As
it turns out� their homogeneous pieces can be interpreted as the reduced
simplicial homology of certain subcomplexes of �� This basic result of
Hochster is the main content of this section� As a corollary one obtains
Reisner�s Cohen�Macaulay criterion for simplicial complexes�

For the reader�s convenience we recall the notion of reduced simplicial
homology� Let � be a simplicial complex with vertex set V � An orientation
on � is a linear order on V � A simplicial complex together with an
orientation is an oriented simplicial complex�

Suppose � is an oriented simplicial complex of dimension d � ��
and F � � an i�face� We write F � �v�� � � � � vi� if F � fv�� � � � � vig and
v� � v� � � � � � vi � and F � � � if F � �� Having introduced this notation�
we de�ne the augmented oriented chain complex of ��

eC��� � 
 �� Cd��
�
�� Cd�� �� � � � �� C�

�
�� C�� �� 
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by setting

Ci �
M
F��

dimF�i

ZF and F �
iX

j��

����jFj

for all F � �� here Fj � �v�� � � � � �vj � � � � � vi� for F � �v�� � � � � vi�� A straight�
forward computation shows that  �  � 
� Let G be an Abelian group�
We set eH i���G� � Hi�eC����G�� i � ��� � � � � d � ��

and call eH i���G� the i�th reduced simplicial homology of � with values in

G� It follows from the next lemma that a reference to the orientation is
super�uous�

Lemma ������ De�ne eC���� in the same way as eC���� but with respect to a

di�erent orientation of �� Then there exists an isomorphism of complexeseC��� �� eC�����
Proof� Let � and � be the di erent linear orders on the vertex set of
V � Given F � fv�� � � � � vig� v� � v� � � � � � vi� there exists a permutation
� � �F of the vertices of F such that v���� � v���� � � � � � v��i�� We leave

it to the reader to verify that � � eC���� eC��� with ��F� � ���F�F is the
desired isomorphism�

The i�th reduced simplicial cohomology of � with values in G is de�ned
to be eH i���G� � H i�HomZ�eC���� G��� i � ��� � � � � d � ��

We set eH i��� � eH i���Z� and eH i��� � eH i���Z� for all i� The simplicial

complex � is called acyclic if eH ���� � 
� In this case� eC��� is split exact�
and so eH ����G� � 
 and eH ����G� � 
 for all Abelian groups G� Examples
of acyclic simplicial complexes are the cones� the cone cn��� of � is the
join �see �����
� of a point � � fv�g with �� The reader is referred to
Exercise �����
 for further details�

The cone construction can be iterated� We set cnj��� � cn�cnj������
for all j � �� It is immediate that cnj��� is the join of � with a j�simplex�
and it follows that eH

�
�j�simplex � �� � 
����

If G � k is a �eld� then the reduced simplicial homology and cohomology
groups are k�vector spaces� and there are canonical isomorphismseH i��� k� �� Homk�eH i��� k�� k�� eH i��� k� �� Homk�eH i��� k�� k�

for all i� see Exercise ������� In particular it follows that dim eH i��� k� �

dim eH i��� k� for all i�
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Since Ci � k is a vector space of dimension fi� elementary linear
algebra yields

d��X
i���

����i dim eH i��� k� �
d��X
i���

����ifi�

This sum� denoted by e���� is called the reduced Euler characteristic of ��
A comparison with the Euler characteristic ���� introduced in Section ���
shows that e���� � ����� �� and we can rewrite the Euler relation �����	
as e���� � ����d���

A geometric realization of � in Rn inherits the structure of a topo�
logical space �with the subspace topology�� In Section ��� we denoted this
space by j�j and remarked that it is unique up to homeomorphism� Let
X be a topological space� and � � j�j � X a homeomorphism� The pair
��� �� is called a triangulation of X � Less precisely� we often say in this
situation that � is a triangulation of X �

It is a fundamental theorem in topology �see ���
�� Theorem �����

that the reduced singular homology eH i�X� k� of a topological space X
with triangulation � can be computed by means of the reduced simplicial
homology of ��

Theorem ������ Let X be a topological space with triangulation �� TheneH i�X� k� �� eH i��� k� for all i�

Examples ������ �a� Let � be the d�simplex with vertices V � fv�� � � � �
vdg� Then j�j is homeomorphic to the d�dimensional closed ball Bd �
whose reduced singular homology is trivial since Bd is contractible to a

point� Thus ����� implies that eH ���� k� � 
� That the reduced simplicial
homology of � is trivial can be seen directly� one immediately identi�eseC�� k with the Koszul complex K��f� associated with f � kd�� � k where
f maps the canonical basis elements of kd�� to �� It follows from ������b�
that this Koszul complex is exact�

�b� Consider the subcomplex � � � obtained from � by deleting the
face F � fv�� � � � � vdg� then j� j is homeomorphic to the �d����dimensional

sphere Sd��� It is clear that the quotient U
�
� eC����eC�� � has Ui � 
 for

i �� d and Ud
�� Z � �v�� � � � � vd�� Therefore

eH i�S
d��� k� �� eH i�� � k� ��

�
k if i � d � ��

 if i �� d � ��

�c� Let � be the vertex scheme of a simplicial �d � ���polytope P �
Then j�j is homeomorphic to the �d � ���sphere� Therefore� by �b��

e���� � d��X
i���

����i dim eH i�S
d��� k� � ����d���
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Thus we have recovered the Euler relation�

The following notions will be crucial in the analysis of the local
cohomology of a Stanley�Reisner ring�

De�nition ����	� Let � be a simplicial complex� and F a subset of the
vertex set of �� The star of F is the set st� F � fG � � � F �G � �g� and
the link of F is the set lk� F � fG � F � G � �� F �G � �g�

To simplify notation we occasionally omit the index � in st� or lk� �
It is clear that stF is a subcomplex of �� lkF a subcomplex of stF � and
that stF � lkF � � if F �� ��

In Figure ��	 let v be the vertex in the centre of the hexagon� Then st v
is the full simplicial complex� while lk v is the subcomplex constituting
the boundary of the hexagon�

�

�

�

�

�

� �
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Figure ���

Lemma ������ Let F be a face of the simplicial complex �� and G � lkF �
Then

�a� F � lkG and lkstG F � hGi � lklkG F�
�b� lkstG F is acyclic� if G �� ��

Proof� Statement �a� is trivial� and �b� follows from equation ����

Local cohomology� Let � be a simplicial complex� k a �eld� and R �
k�X�� � � � � Xn��I� the Stanley�Reisner ring of �� Let m be the maximal
ideal generated by the residue classes xi of the indeterminates Xi� Note
that �R� m � is a �local ring� and hence by �����	� R is Cohen�Macaulay
if and only if Rm is Cohen�Macaulay� Thus� in order to determine when
� is Cohen�Macaulay� we are led to compute the local cohomology
H�

m Rm
�Rm � of Rm � To simplify notation we will write H

�

m �R� for H
�

m Rm
�Rm ��

Let x � x�� � � � � xn� as in Section ��� we consider the complex lim
��

K��xk�

which is isomorphic to

C� � 
 �� C� �� C� �� � � � �� Cn �� 
�

Ct �
M

�
i��i������it
n

Rxi�xi� ���xit
�
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and whose di erential is composed of the maps

����s�� nat� Rxi� ���xit
�� Rxj� ���xjt��

if fi�� � � � � itg � fj�� � � � � bjs� � � � � jt��g� and 
 otherwise� It follows from �����
that H i

m �R�
�� H i�C�

m �
�� H i�C��m � We claim that SuppH i�C�� � fm g for

all i� This �nally implies

H i
m �R�

�� H i�C��

for all i� Indeed� C�

xj
is exact for j � �� � � � � n because the identity and

the zero�map of C�

xj are homotopic via ��� where �k � Ck � Ck�� is

de�ned on the component �Rxi� ���xik
�xj � �Rxj� ���xjk��

�xj to be ����s�� id if

fi�� � � � � ikg � fj�� � � � � jk��� jg and is � j� and 
 otherwise�
Next note that C� is a Zn�graded complex� recall from Section ���

that R itself is Zn�graded� Let a � Zn� a � �a�� � � � � an�� then Ra
�� k if

a � Nn and fvi � ai � 
g � �� and Ra � 
 otherwise� The components of
C i are of the form Rx for some element x � R which is homogeneous in
the �ne grading of R� One de�nes a Zn�grading on Rx by setting

�Rx�a � f
r

xm
� r homogeneous� deg r �m deg x � ag�

Of course the terms �homogeneous� and �deg� refer to the �ne grading
of R�

We extend this grading on the components to C i� Then it is clear
that C� becomes a Zn�graded complex� and we may equip the homology
of C� with the induced Zn�graded structure� In other words� the local
cohomology modules H i

m �R� are in a natural way Z
n�graded modules�

As R is a homogeneous k�algebra �in the sense of Section ����� we
may as well consider the graded local cohomology modules �H i

m �R� of R
introduced in Section ���� Then

�H i
m �R�j

��
M

a�Zn � jaj�j

H i
m �R�a

for all i and j� see Exercise �������
Given x � xi� � � � xir � i� � � � � � ir � we set F � fvi� � � � � � virg� In order

to analyze when �Rx�a �� 
 for a � Zn we introduce some more notation�
and put

Ga � fvi � ai � 
g and Ha � fvi � ai � 
g�

Lemma ������ �a� dimk�Rx�a � � for all a � Zn�

�b� �Rx�a �� k if and only if F � Ga and F �Ha � ��

Proof� �a� Let ri�xni � i � �� �� be non�zero elements in �Rx�a� Then xn�r�
and xn�r� are homogeneous of the same degree� and hence are linearly
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dependent over k� We may assume that "�xn�r�� � xn�r� for some " � k�
then "�r��xn�� � r��x

n� �
�b� We have �Rx�a �� 
 if and only if there exist a monomial v in R

and an integer l such that

�i� xmv �� 
 for all m �N� and �ii� deg v�xl � a�

Condition �i� is equivalent to �i�� v�xl �� 
�
Now �i� implies F � supp v � �� and �ii� implies F � Ga and Ha �

supp v� In particular� F �Ha � ��
Conversely� suppose F � Ga and F � Ha � �� Set v �

Q
ai�� x

ai
i �

w �
Q

ai�� x
�ai
i � Since F � Ga there exists an integer l such that xl � wu

where u is a monomial �with non�negative exponents� in the xi� Since
F �Ha � �� we have vu�xl �� 
� and it follows that deg vu�xl � a�

Let a � Zn� as a consequence of the lemma we see that �C i�a has a
basis

fbF � F � Ga� F �Ha � �� jFj � ig�

Restricting the di erentiation of C� to the a�th graded piece we obtain
a complex �C��a of �nite dimensional vector spaces with di erentiation
 � �C i�a � �C i���a given by �bF� �

P
������F�F

��bF � where the sum is
taken over all F � such that F � � F � F � � Ha � � and jF �j � i � �� and
where ��F� F �� � s for F � � �v�� � � � � vi� and F � �v�� � � � � �vs � � � � � vi��

Lemma ������ For all a � Zn there exists an isomorphism of complexes

�� � �C��a � HomZ�eC�lkstHa
Ga���j � ��� k�� j � jGaj�

Proof� The assignment F �� F � � F nGa establishes a bijection between
the set

B � fF � � � F � Ga� F �Ha � �� jFj � ig

and the set B� � fF � � � � F � � lkstHa
Ga� jF �j � i � jg� Therefore it is

clear that

�i � �C i�a � HomZ�eC�lkstHa
Ga�i�j��� k�� bF �� �FnGa

is an isomorphism of vector spaces� Here �F � is de�ned by

�F ��F ��� �
n
� if F � � F ���

 otherwise�

By ������ we have the possibility of adjusting the orientation of � suitably�
We choose it in such a way that the elements in Ga are latest in the linear
order of the vertex set of �� Furthermore we give the subcomplex lkstHa

Ga

the induced orientation� With this standardization� �� becomes a complex
homomorphism�
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We are ready to prove the main result of this section�

Theorem ����� �Hochster�� Let � be a simplicial complex� and k a �eld�

Then the Hilbert series of the local cohomology modules of k��� with re�

spect to the �ne grading is given by

HH i
m �k�����t� �

X
F��

dimk
eH i�jFj���lkF� k�

Y
vj�F

t��
j

�� t��
j

�

Proof� By the previous lemma we have

H i
m �k����a

�� eH i�jGaj���lkstHa
Ga� k��

and therefore dimkH
i

m �k����a � dimk
eH i�jGaj���lkstHa

Ga� k�� see Exercise
�������

If Ha �� �� then� by ������ lkstHa
Ga is acyclic� and if Ha � �� then

stHa � �� and so lkstHa
Ga � lkGa�

Let Zn
� � fa � Zn � ai � 
 for i � �� � � � � ng� then Ha � � if and only if

a � Zn
�� and it follows that

HH i
m
�k�����t� �

X
F��

X
a�Zn

� � Ga�F

dimk
eH i�jFj���lkF� k�t

a

�
X
F��

dimk
eH i�jFj���lkF� k�

Y
vj�F

t��
j

�� t��
j

�

Hochster�s theorem yields an important Cohen�Macaulay criterion
for simplicial complexes�

Corollary ����� �Reisner�� Let � be a simplicial complex� and k a �eld�

The following conditions are equivalent	

�a� � is Cohen�Macaulay over k�

�b� eH i�lkF� k� � 
 for all F � � and all i � dim lkF �

Proof� Let dim� � d ��� Then � is Cohen�Macaulay over k if and only
if H i�C�� � 
 for i � d � The latter is equivalent toeH i�jFj���lkF� k� � 
 for all F � � and all i � d����

�a� �b�� If � is Cohen�Macaulay over k� then � is pure �see �������

and so dim lkF � d � jFj � �� Therefore ��� implies eH i�lkF� k� � 
 for
i � dim lkF �

�b�  �a�� Let F � � and G � lkF � Then lklkF G � lk�G � F��
Therefore� by induction on the dimension of the simplicial complex we
may assume that all proper links of � are Cohen�Macaulay over k�

In particular� the links of the vertices are pure� Now since eH���� k� �eH��lk�� k� � 
 if dim� 	 �� we conclude that � itself is pure� Then
obviously �b� implies ����
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As a �rst application we consider an example of Reisner� let � be a
triangulation of the real projective plane P�� Figure ��� indicates such a
triangulation� For reasons of readability the triangles in the �gure have

�

�

�

� �

�

�

� �������������������������������������������������������������������������������������������������������������������������������������������������������
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�������
�������
�������
�������
�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
���������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
�������
��������
��������
�������
��������
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������
��������
��������
��������
��������
��������
��������
������

��������
�������
��������
��������
�������
��������
��������
�������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������

v�

v� v�

v�

v�v�

v�

v

v�

Figure ���

not been shadowed� Also note that edges with the same vertices have to
be identi�ed according to their orientations�

Let k be a �eld� If � is Cohen�Macaulay over k� then ���� implieseH i��� k� � 
 for i � �� Since P� is connected� we have eH��P�� k� � 
� But

eH��P
�� k� �

�
k if char k � ��

 otherwise�

see ���
�� Theorem �
�� and Theorem ����� In particular� � is not Cohen�
Macaulay over a �eld k of characteristic �� On the other hand� it follows
from Exercise ������ that � is Cohen�Macaulay over k if char k �� ��

Exercises

������� �a� Let � � � be the join of the simplicial complexes � and �� Show thateC�� � �� 
� eC�� � � eC���
�b� Let � � fv�g be the simplicial complex consisting of one point� and form the
cone cn��� � � � �� Show there exists an exact sequence

� ��� eC��� ��� eC�cn���� ��� eC������� ��� �

where eC��� � eC�cn���� � eC�� � � eC��� is the natural complex homomorphism
a �� �� a�
�c� Prove that the connecting homomorphisms in the associated long exact homo�

logy sequence are isomorphisms� and conclude that eH��cn���� � �� �This conclu�
sion can also be drawn directly from ������ with x � ���

������� Let � be a simplicial complex� and k a 	eld� Show there exist natural
isomorphisms

eH i��� k� 
� Homk�eH i��� k�� k�� eH i��� k� 
� Homk�eH i��� k�� k��
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������� Let � be a simplicial complex� and k a 	eld�

�a� Consider k�� as a homogeneous k�algebra� and give the modules C i the
structure of Z�graded k���modules by setting �C i�j �

L
a�Zn � jaj�j �C

i�a � Show C�

is a complex of Z�graded modules�

�b� Give H i�C�� the induced Z�graded structure� and deduce �H i
m
�k��� 
� H i�C��

as graded k���modules�

�c� Conclude from �a� that �H i
m
�k���j 
�

L
a�Zn �jaj�j H

i�C��a for all i and j�

������� Use Reisner�s criterion to give an alternative proof of the equivalence
�i� �� �iii� of Exercise �������c��

������� Let � be a simplicial complex of dimension �� Show that � is Cohen�
Macaulay over k if and only if the following conditions are satis	ed�

�a� � is connected�

�b� eH���� k� � ��

�c� each point of j�j has arbitrarily small connected punctured neighborhoods�
Hint� �c� is equivalent to the condition that the links of the vertices of � be
connected�

������� Let � be a simplicial complex of dimension d � �� k a 	eld� and m the
graded maximal ideal of k���

�a� Show the following conditions are equivalent�

�i� � is pure and k��p is Cohen�Macaulay for all prime ideals p �� m �
�ii� H i

m
�k��� has 	nite length for all i � d�

�iii� H i
m
�k���a � � for all a �� � and i � d�

�iv� eH i�lk F� k� � � for all F � �� F �� � and all i � dimlkF�

�v� H i
m
�k��� 
� eH i����� k� for all i � d �

�b� �Reisner� Show the following conditions are equivalent�

�i� � is Cohen�Macaulay�

�ii� eH i��� k� � � for all i � d � �� and the links of all vertices of � are
Cohen�Macaulay�

Hint� �a��i� is equivalent to the condition that k��xi be Cohen�Macaulay for all

i � �� � � � � n� Further� observe that k��xi

� kxi� x

��
i �lkfxig��

��	 The upper bound theorem

This section is devoted to the proof of the upper bound theorem for sim�
plicial spheres� that is� simplicial complexes whose geometric realization
is topologically a sphere� It follows from a result of Kalai ���� that there
are many more simplicial spheres than polytopes� Therefore� the upper
bound theorem for simplicial spheres properly generalizes McMullen�s
theorem for polytopes whose proof we sketched in Section ����

The upper bound theorem for simplicial spheres was conjectured by
Klee in ��� and proved by Stanley ����� in �	��

The proof is carried out in three steps� �rst we show that Euler com�
plexes satisfy the Dehn�Sommerville equations� secondly we prove the
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upper bound theorem for Cohen�Macaulay Euler complexes� and �nally
we show that simplicial spheres are Cohen�Macaulay Euler complexes�

De�nition ��	��� The simplicial complex � is an Euler complex if � is
pure� and e��lkF� � ����dim lkF for all F � ��

Theorem ��	�� �Dehn� Sommerville� Klee�� Let � be an Euler complex of

dimension d � � with h�vector �h�� � � � � hd�� Then hi � hd�i for i � 
� � � � � d �

The proof will easily follow from

Lemma ��	��� Let � be a simplicial complex on V � fv�� � � � � vng� Then

Hk����t
��
� � � � � � t��

n � �
X
F��

����dimFe��lkF�Y
vi�F

ti
�� ti

�

Proof� We have Hk����t� �
P

F��

Q
vi�F

ti��� � ti�� see Section ���� The

substitution ti �� t��
i transforms ti���� ti� into ���� ti���� ti��� It follows

that
Q

vi�F
ti���� ti� is transformed into

����dimF��
Y
vi�F

�� �
ti

�� ti
� � ����dimF��

X
G�F

Y
vi�G

ti
�� ti

�

so that

Hk����t
��
� � � � � � t��

n � �
X
F��

����dimF��
X
G�F

Y
vi�G

ti
�� ti

�
X
G��

	X
F��
G�F

����dimF��

Y
vi�G

ti
�� ti

�

Since
P

F��� G�F����
dimF�� �

P
F�lkG����

dimF�dimG � ����dimGe��lkG��
the assertion follows�

Proof of ������ If � is an Euler complex of dimension d � �� thene��lkF� � ����dim lkF � ����d�dimF � The latter equality holds since � is
pure� Now ����� yields

Hk����t�� � � � � tn� � ����dHk����t
��
� � � � � � t��

n ��

Replacing the ti by t we obtain the identity Hk����t� � ����dHk����t��� for
the Hilbert function of k���� It is clear that this yields the desired result�
see also ����	�a��

Let � be an Euler complex� and k a �eld� It follows from Reisner�s
criterion ���� that � is Cohen�Macaulay over k if and only if for all
F � �

eH i�lkF� k� ��
n
k if i � dim lkF �

 otherwise�

�	�
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In view of the results in the previous sections it is now an easy matter
to show that the upper bound theorem holds for any simplicial complex
whose faces satisfy condition �	�� In other words we have

Theorem ��	�	� Let � be an Euler complex of dimension d � � with n
vertices which is Cohen�Macaulay over a �eld k� Then fi��� � fi�C�n� d��
for i � �� � � � � d � ��

Proof� Just as in the proof of the upper bound theorem for polytopes it

su�ces to show �a� hi��� �
�
n�d�i��

i

�
for i � 
� � � � � d � and �b� � satis�es

the Dehn�Sommerville equations� But �a� follows from �����
� and �b�
from ������

The �nal step in the proof of the upper bound theorem for simplicial
spheres is to show that the faces of a simplicial complex satisfy �	� if the
geometric realization is homeomorphic to a sphere�

In the next lemma which is a reformulation of ���
�� Lemma ���� we
refer to the notation used in ������ and denote� as usual� by H��X� Y � k�
the relative singular homology of the pair �X� Y � where X is a topological
space and Y a subspace of X �

Lemma ��	��� Let � be a simplicial complex on the vertex set V � and k be a

�eld� Suppose that X is a geometric realization of � given by � � V � Rd �

that F � � is a face of dimension j� and that p � relint�conv���F���� If
lkF �� �� then

Hi�X�X n fpg� k� �� eH i�j���lkF� k� for all i�

and if lkF � �� then

Hi�X�X n fpg� k� ��
n
k for i � j�

 otherwise�

As a consequence of this lemma and Reisner�s criterion we see that
the Cohen�Macaulay property of � only depends on the topology of j�j�

Corollary ��	�� �Munkres� Stanley�� Let � be a �d � ���dimensional sim�
plicial complex� X � j�j� and k a �eld� The following conditions are equiv�

alent	

�a� � is Cohen�Macaulay over k�
�b� for all p � X and all i � dimX one haseH i�X� k� � Hi�X�X n fpg� k� � 
�

Moreover� if the equivalent conditions are satis�ed� then � is an Euler

complex if and only ifeHd���X� k� �� Hd���X�X n fpg� k� �� k for all p � X�



��
 � Stanley�Reisner rings

Proof� We only prove the implication �b� �a�� the converse implication
is proved similarly� We have lkF � � if and only if F is a facet� Thus
assumption �b� and ����� imply that all facets have dimension d � �� that
is� � is pure�

Now suppose that lkF �� �� Since � is pure we have dim lkF �
d � � � dimF � d � � � j� Therefore� by ����� and assumption �b�� if

F �� � and i � dim lkF � then eH i�lkF� k� �� Hi�j���X�X n fpg� k� � 
 since
i � j � � � d � �� Finally� if F � �� then lkF � �� and �b� implies

that eH i�lkF� k� �� eH i�X� k� � 
 for i � dim lkF � By Reisner�s criterion it
follows that � is Cohen�Macaulay over k�

The supplement concerning the Euler property is obvious�

Corollary ��	�� �The upper bound theorem for simplicial spheres�� Let
� be a simplicial complex with n vertices and j�j �� Sd��� Then fi��� �
fi�C�n� d�� for i � �� � � � � d � ��

Proof� The assertion is clear in view of ����� and ������

Exercises

����
� �a� Give an example of a simplicial complex which does not satisfy the
Dehn�Sommerville equations�
�b� Give an example of a simplicial complex � which for some i fails the condition
hi �

�
n�d�i��

i

�
� d � � � dim�� n � f�����

������ Let k be a 	eld� and � a Cohen�Macaulay complex over k� � is called
level over k if k�� is a level ring� that is� if all generators in a minimal set of
generators of the �canonical module �k�� have the same degree� The type of �
over k� denoted by rk���� is the type of k��� Let s � maxfi � hi��� �� �g� Show
that hs � rk���� and that equality holds if and only if � is level over k�

��� Betti numbers of Stanley�Reisner rings

Let k be a �eld� and � a simplicial complex on a vertex set V with
jV j � n� We write k��� �� R�I� with R � k�X�� � � � � Xn�� Since k��� is a
Zn�graded R�module� it has a minimal Zn�graded resolution

F� � 
 �� Fp
�p

�� Fp�� �� � � � �� F�

��

�� F� �� 
�

where Fi �
L�i

j��R��aij� for i � 
� � � � � p with certain aij �N
n� and where

the maps �i are homogeneous of degree 
� see ������ where a similar
result has been established for Z�graded resolutions� Minimality of the
resolution means that �i�Fi� � �X�� � � � � Xn�Fi�� for all i� The numbers
�ia � jfj � aij � agj� a � Zn� are called the �ne Betti numbers of k���� It is
easily seen that the minimal Zn�graded resolution is uniquely determined
up to isomorphism�



�� Betti numbers of Stanley�Reisner rings ���

In order to compute the shifts aij in the resolution F�
� we consider the

k�vector spaces Ti � TorRi �k� k���� and notice that Ti
�� Fi��X�� � � � � Xn�Fi

as a Zn�graded vector space� Obviously� �ia � dimk�Ti�a �
Let W � V � we set �W � fF � � � F � W g� and call �W the

restriction of � to W � It is clear that �W is again a simplicial complex�
The following theorem gives a combinatorial interpretation of the �ne

Betti numbers of k����

Theorem ����� �Hochster�� Let HTi
�t� �

P
a�Zn �iat

a be the �ne Hilbert

series of the module Ti � TorRi �k� k����� Then

HTi
�t� �

X
W�V

�
dimk

eH jW j�i����W � k�
� Y
vj�W

tj �

We say that a � Zn is squarefree if each of its entries is either 
 or ��
One remarkable consequence of Hochster�s theorem is

Corollary ������ The shifts in the minimal Zn�graded R�resolution of k���
are squarefree�

For the proof of ����� we shall need Alexander duality� It involves the
dual complex of � which is given by

�� � fG � � � �G �� �g�

Here �G denotes the complement of G in V � and � the simplex on the
vertex set V � It is easy to see that �� is again a simplicial complex� and

that ��� � ��
Let � � � be a simplicial subcomplex of �� then eC�� � is a subcomplexeC���� and we may form the quotient complex eC����eC�� �� For an Abelian

group G we set

eH i��� � �G� � Hi

�eC����eC�� �� G
�

and eH i��� � �G� � Hi

�
HomZ�eC����eC�� �� G���

These groups are called the reduced relative simplicial homology and
cohomology of the pair ��� � � �with values in G�� The following lemma is
the relative version of Alexander duality�

Lemma ������ Let k be a �eld� and let � � � � � be simplicial complexes�

where � is the simplex on the vertex set V � jV j � n� Then

eH i��� � � k� �� eHn���i� �� � ��� k� �� eHn���i� �� � ��� k��

for all i� In particular� one has eH i��� k� �� eHn���i���� k� �� eHn���i���� k��
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Proof� Let e�� � � � � en be a basis of the free Z�module L � Zn� The exterior

products eF �
V

j�F ej � F � V � jFj � j� are a basis of
Vj L� and

V
L

together with the di erential

j �

j�
L�

j���
L� ei� � � � � � eij ��

jX
k��

����k��ei� � � � � eik�� � eik�� � � � � eij

is an exact complex� in fact� it is just the Koszul complex K���� of the

linear form � � L� Z with ��ei� � � for all i� Evidently eC������� may be
identi�ed with the subcomplex of

V
L spanned by the basis elements eF �

F � ��
In �����
 we have exhibited an isomorphism � � K����� K����� which is

induced by the multiplication on
V
L and the orientation �n �

Vn L� Z�

�n�e��� � ��en� � �� The restriction of � to eC������� yields an isomorphismeC����eC�� � �� HomZ�eC����eC�� ��Z�� Upon tensoring with k one gets the
�rst of our isomorphisms whereas the second holds because we are taking
coe�cients in a �eld�

In the special case in which � is the empty set one has eH i��� k� ��eHn���i��� ��� k�� On the other hand� eHn���i��� ��� k� �� eHn���i���� k�� as
follows from the long exact cohomology sequence

eH j����� k� �� eH j������ k� �� eH j��� ��� k� �� eH j��� k�

and the fact that eH ���� k� � 
�

Proof of ������ The Koszul complex K��x�R� of the sequence x �
X�� � � � � Xn is a minimal graded free resolution of the R�module k � R��x�
�see �������� Thus for each i 	 
� and each a � Zn

Hi�x� k����a �� TorRi �k� k����a �

We will compute the graded components of TorRi �k� k���� by means of
these isomorphisms�

With a subset F � f�� � � � � ng we associate the vector ��F� �
P

i�F ei�
where ei is the i�th canonical unit vector in Zn� Now it is straightforward
to verify that Ki�x� I��a is a k�vector space with basis

xbeF � b� ��F� � a� jFj � i� and supp�b� �� ��

�As above� eF �
V

j�F ej �� Thus� if �a is the simplicial complex consisting

of those faces F � �� F � suppa� for which supp�a n ��F�� �� �� then the
map

�i � eC i����a� �� Ki�x� I��a� F �� xa���F�eF �

is an isomorphism of vector spaces�



��� Gorenstein complexes ���

One easily checks that �
�
is a chain map� so that we actually have an

isomorphism of complexes �
�
� eC

�
��a����� �� K

�
�x� I��a� Therefore the

exact sequence of complexes


 �� K
�
�x� I�� �� K

�
�x� R� �� K

�
�x� k���� �� 


yields the isomorphisms

TorRi �k� k����a
�� Hi�x� k����a �� Hi���x� I��a �� eH i����a� k�

for i � 
� The case i � 
 is trivial� dimk
eH jW j����W � k� �� 
 if and only if

W � � and� equivalently� �W � �� furthermore dimk
eH������ k� � ��

Suppose �rst that a � �a�� � � � � an� is not squarefree� We pick j such that
aj 	 �� and consider the element a�r� � �a�� � � � � aj � r� � � � � an�� Then �a �

�a�r� for all r 	 
� Hence it follows that TorRi �k� k����a � TorRi �k� k����a�r�
for all r 	 
� This is only possible if TorRi �k� k����a � 
� because otherwise
there would exist in�nitely many shifts in the �nite resolution F� of k����

Now we assume that a is squarefree� Let W � supp a� then F � �a if
and only if W n F �� �W � Therefore� �a � �W with respect to the vertex
set W � and the assertion follows from Alexander duality�

Exercises

������ Let k be 	eld� and � a simplicial complex with n vertices�

�a� Show that the Betti numbers �ia of k�� are independent of k for i � �� �� �� n���
and n�

Hint� Use Alexander duality and the fact that eH i�� � k� does not depend on k for
i � �����

�b� Prove that all Betti numbers of k�� are independent of k if n � ��

�c� Give an example of a simplicial complex � with � vertices for which the Betti
numbers of k�� depend on k�

������ Let k be 	eld� and � a simplicial complex on a vertex set V with n elements�

�a� Let F be a face of the dual simplicial complex ��� and set W � V n F � Show
that eH i���lk�� F� k� 
� eH jW j�i�� ��W � k��

�b� Use �a� and ����� to prove the following theorem of Eagon and Reiner ����
the Stanley�Reisner ring k�� has an m�linear resolution �see ������� if and only
if �� is Cohen�Macaulay over k� Determine m�

��� Gorenstein complexes

Let � be a simplicial complex on the vertex set V � and k a �eld� The
complex � is called Gorenstein over k if k��� is Gorenstein� Our main
concern in this section is to characterize the Gorenstein complexes�
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We de�ne core� to be �coreV where coreV � fv � V � st v �� �g�
Notice that � � �core�� � �VncoreV � Therefore�

k��� �� k�core��� k��VncoreV � �� k�core���Xi � vi � V n coreV ��

It follows that � is Gorenstein if and only if core� is Gorenstein�

Theorem ������ Let � be a simplicial complex� � � core�� and k a �eld�

The following conditions are equivalent	

�a� � is Gorenstein over k�
�b� for all F � � one has

eH i�lk� F� k� ��

�
k if i � dim lk� F �

 if i � dim lk� F�

�c� for X � j� j and p � X one has

eH i�X� k� �� Hi�X�X n fpg� k� ��

�
k if i � dimX �


 if i � dimX �

Proof� The equivalence of �b� and �c� follows from ������ and that of �a�
and �b� from the next theorem�

Theorem ������ Let � be a simplicial complex with � � core�� Then �
is Gorenstein over k if and only if � is an Euler complex which is Cohen�

Macaulay over k�

For the proof of ����� we need the following two lemmas�

Lemma ������ Let � be a simplicial complex� and k a �eld� Let M be

a Zn�graded k����module whose �ne Hilbert series coincides with that of

k���� Suppose M is indecomposable� Then k��� and M are isomorphic as

Zn�graded modules�

Proof� We set R � k���� There exists a non�zero Zn�graded homomor�
phism � � R �M of degree 
� We want to show that � is an isomorphism�
Consider the exact sequence


 �� K �� R
�
��M

�
�� N �� 
�

whereK � Ker� andN � Coker�� Since R andM have the same Hilbert
series �with respect to the �ne grading�� this is true for K and N as well�
We choose homogeneous generators x�� � � � � xn of M with ���� � x��
and such that ��x��� � � � � ��xn� form a minimal system of generators of N�
Consider the sets A � fa � Zn � �Rx��a �� 
g� B � fa � Zn � Ka �� 
g and
C � fa � Zn � Na �� 
g� Then A � B � �� B � C � and A � B � D where
D � fa � Zn � Ra �� 
g � fa � Nn � supp a � �g� see Section ��� for the
last equality and the de�nition of supp�



��� Gorenstein complexes ���

We want to show thatM � Rx���Rx��� � ��Rxn�� As� by assumption�
M is indecomposable� the assertion of the lemma will follow�

Suppose Rx���Rx�� � � ��Rxn� �� 
� Then there exists a homogeneous
element y � Rx� � �Rx�� � � ��Rxn�� y �� 
� It follows that a � deg y � A�
On the other hand� there exist a homogeneous element r � R and some
xi� i 	 �� such that y � rxi� Therefore� a � deg r � deg xi� Note that
deg xi � C � B� Hence there exists a homogeneous element z � K � z �� 
�
with deg z � deg xi� Consider w � rz� since supp�deg r� � supp�deg z� �
supp�deg r� � supp�deg xi� � supp a � �� it follows that w �� 
� Therefore�
a � degw � B� a contradiction�

Lemma ����	� Let � be a �d � ���dimensional Gorenstein complex over a

�eld k with � � core�� Then hd��� � ��

Proof� It is enough to show that hd��� �� 
� We write k��� �� R�I��
R � k�X�� � � � � Xn�� and consider the minimal Zn�graded resolution

F� � 
 �� Fp
�p

�� Fp�� �� � � � �� F�

��

�� F� �� 
�

where Fi �
L�i

j��R��aij� for i � 
� � � � � p with certain aij �Nn�

It is obvious that �F��m is a minimal Rm �resolution of the Gorenstein
ring k���m where m � �X�� � � � � Xn�� It follows from ����� that p � n � d �
and ���� implies that Fn�d � R��a� for some squarefree a �Nn�

Notice that F� is also a minimal Z�graded resolution� simply replace
the shifts aij by jaij j� where jbj denotes the sum of the components of a
vector b� Thus we may apply �������a�� and conclude that jaj � �n � d�
is the largest integer s for which hs��� �� 
� The assertion of the lemma
follows once we have shown that jaj 	 n�

We claim that a � ��� � � � � �� �which implies jaj � n�� Indeed� Hochster�s
theorem ����� shows that 
 or � are the only possible entries of a� By
����� the R�dual �F��� of F� �suitably shifted� is a minimal free resolution
of k���� Thus� if an entry of a was zero� then the corresponding variable
would not divide any of the generators of I�� a contradiction to our
hypothesis that � � core��

Proof of ������ According to Exercise ����� the �canonical module �k���

has a natural Zn�grading�
Suppose that � is an Euler complex which is Cohen�Macaulay over k�

Then the formula given in Exercise ����� implies that k��� and �k��� have
the same Hilbert series with respect to the �ne grading� By ������ this
implies that �k���

�� k��� which in turn implies that k��� is Gorenstein�
see �������

Conversely� suppose that � is Gorenstein over k� Then� just as in
������� one sees that �k���

�� k����c�� c � �c�� � � � � cn� � Z
n� where jcj is the

a�invariant of k���� As we assume that � � core�� it follows from �����
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that jcj � 
� Since by Exercise ������ ci � 
 for i � 
� � � � � n� this implies
c � 
� Therefore� again by Exercise ������X

F��

dimk
eHdim lkF�lkF� k�

Y
vi�F

ti
�� ti

�
X
F��

Y
vi�F

ti
�� ti

�

Comparing coe�cients we see that dimk
eHdim lkF�lkF� k� � � for all F � ��

This together with the fact that � is Cohen�Macaulay over k implies that
� is an Euler complex�

Corollary ������ Simplicial spheres are Gorenstein over every �eld�

Exercises

������ Let k be a 	eld� and � a �d � ���dimensional Cohen�Macaulay complex
over k� According to �����
� the �canonical module �k�� of k�� is isomorphic

to �Homk�
�Hd

m
�k���� k�� Conclude that �k�� has a natural Zn�grading� and show

that

H	k��	
�t� �

X
F��

dimk
eHdimlkF �lkF� k�

Y
Xi�F

ti
�� ti

� ����dHk���t
��
� � � � � � t��

n ��

Hint� ����� and ������

����	� Let k be a 	eld� and � be a �d ����dimensional Cohen�Macaulay complex
over k� Prove the following conditions are equivalent�
�a� � is an Euler complex�
�b� Hk���t� � � � � � tn� � ����dHk���t��

� � � � � � t��
n ��

�c� �k��

� k�� as a Zn�graded k���module�

����
� With the assumptions of ����� show the following conditions are equivalent�
�a� � is Gorenstein over k�
�b� taHk���t� � � � � � tn� � ����dHk���t��

� � � � � � t��
n ��

Suppose the equivalent conditions hold� Show ta is a squarefree monomial in
t� � � � � � tn of degree jV n coreV j� Conclude that a�k��� � �jV n coreV j�

������ Determine all ��dimensional Gorenstein complexes�

������� Let k be a 	eld and � a Gorenstein complex over k of even dimension d
such that � � core�� Show � is d���neighbourly if and only if k�� is an extreme
Gorenstein ring�

��� The canonical module of a Stanley�Reisner ring

Let k be a �eld� and � a Cohen�Macaulay complex over k� In the
previous section we have already considered the �canonical module �k���

of k���� By Exercise ������ it has a natural �ne grading with Hilbert series

H	k��	�t� �
X
F��

dimk
eHdim lkF�lkF� k�

Y
vi�F

ti
�� ti

����



��� The canonical module of a Stanley�Reisner ring ��	

In ������ we de�ned the canonical module of a non�local ring R to be
a �nite module which is locally isomorphic to the canonical modules of
the corresponding local rings� and observed in �����	 that a canonical
module� if it exists� is only unique up to tensor products with locally
free R�modules of rank �� Hochster ������� Theorem ���� showed that all
locally free k����modules of rank � are actually free� Hence for k��� we
do not have to distinguish between the canonical and �canonical module�
The reader may recover the proof of Hochster�s theorem in Exercise ��	��
where we indicate the steps�

As k��� is reduced� it follows from ������ that �k��� can be identi�ed
with an ideal I of k���� Unfortunately we cannot expect that I be Zn�
graded �n the number of vertices of ��� simply because it may happen that
dimk��k����a � � for some a � Zn� Indeed� consider the ��dimensional
simplex in Figure ��� By ���� the �ne Hilbert series of its canonical

�

�

�

�

�������������
�������������
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Figure ��


module is

�
t�

�� t�
�

�X
i��

t�ti
��� t����� ti�

�

Thus for a � ��� 
� 
� 
� we have dimk��k����a � ��

Theorem ������ Let � be a �d � ���dimensional Cohen�Macaulay complex

over a �eld k� Then the following conditions are equivalent	

�a� � is not an Euler complex� and there exists an embedding �k��� � k���
of Zn�graded k����modules�
�b� there exists a �d � ���dimensional subcomplex � of � which is Euler

and Cohen�Macaulay over k such that for all F � �

eHdim lkF�lkF� k� ��

�

 if F � ��
k if F �� ��

If the equivalent conditions hold� then as a Zn�graded k����module� �k���

is isomorphic to the ideal J in k��� which is generated by the monomials

xF �
Q

vi�F
xi� F � � n ��

Proof� �a� �b�� Let I be the Zn�graded ideal in k��� which is isomorphic
to the image of �k��� � k���� As we assume that � is not an Euler
complex� Exercise ����	 implies that I �� k���� Further note that if xa � I �
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then
Q

ai�� xi � I � This can be deduced from the Hilbert series of �k����

see ����� Thus if we set � � fsupp u � u �� Ig� then

k�����k���
�� k����I �� k����

It follows that � is a �d����dimensional Cohen�Macaulay complex over
k� Since Hk����t� � Hk����t� � H	k��	�t� we conclude from Exercise �����
that

Hk����t
��
� � � � � � t��

n � � ����dH	k��	�t�� ����dHk����t�

� ����d���Hk����t�� H	k��	�t�� � ����d��Hk����t��

By ����	� this implies that � is an Euler complex�
Once again applying ���� we obtainX
F��

dimk
eHdim lkF�lkF� k�

Y
vi�F

ti
�� ti

� H	k��	�t� � Hk����t��Hk����t�

�
X

F��n�

Y
vi�F

ti
�� ti

�

A comparison of the coe�cients on both sides yields the assertion con�
cerning the links of the faces of �� Moreover it follows that I equals the
ideal J described in the theorem since both ideals have the same Hilbert
series�

�b�  �a�� First observe that � is not an Euler complex� since the
links of the faces which belong to � are acyclic�

In order to obtain the desired embedding of the canonical module we
add a vertex w� form the cone cn��� � fwg��� and let � � cn������ Then
dim� � dim� � d � �� k�� � � k�X�� � � � � Xn� Y ��I� �Y corresponding to
the vertex w�� and k�� ���y� �� k��� where y denotes the residue of Y
modulo I� �

We will show that � is an Euler complex which is Cohen�Macaulay
over k� In particular � will be Gorenstein� Then ������ implies

�k���
�� Homk�� ��k���� k�� �� �� Ann�y� � Jk�� � � J�

Since these isomorphisms are obviouslyZn�graded� the desired conclusion
follows�

It remains to be shown that the links of the faces F � � are homology
spheres� that is� satisfy condition �	� of Section ���� We distinguish several
cases�

�i� F � � n �� then lk� F � lk� F � and �	� is satis�ed by assumption�
�ii� F � �� then lk� F � cn�lk� F� � lk� F � Since cn�lk� F� � lk� F �

lk� F � the Mayer�Vietoris sequence ����
�� Theorem ����� applied to this
situation yields the long exact sequence

� � � �� eH i�lk� F� k� �� eH i�cn�lk� F�� k� � eH i�lk� F� k�

�� eH i�lk� F� k� �� eH i���lk� F� k� �� � � � �
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provided lk� F �� �� Note that eH
�
�lk� F� k� � 
 by assumption� andeH

�
�cn�lk� F�� k� � 
 by Exercise �����
� so that

eH i���lk� F� k� �� eH i�lk� F� k� for all i�

As � is an Euler complex which is Cohen�Macaulay over k� it follows
that lk� F is a homology sphere�

If lk� F � �� then lk� F � fwg � lk� F � Note that F is a facet of �� so
that dim lk� F � 
� Hence assumption �b� implies that lk� F consists of
one vertex� Therefore lk� F � fw� vg where v is a vertex of �� and thus it
is a sphere�

�iii� w � F� then F � fwg �G where G � �� and lk� F � lk� G� Again
we derive the desired conclusion�

Let � be a simplicial complex whose geometric realization X � j�j is
a manifold with boundary X � Then X � j�j where � is the subcomplex
of � which is characterized by the property that its facets are faces of
precisely one facet of � ����
�� x�� and Exercise ���

As an application of ��	�� we obtain

Theorem ����� �Hochster�� Let k be a �eld� and � a �d � ���dimensional
Cohen�Macaulay complex over k whose geometric realization X � j�j is a
manifold with a non�empty boundary X � Further let � be the subcomplex

of � with X � j�j� and J the ideal in k��� generated by the monomials

xF � F � � n �� Then the following conditions are equivalent	

�a� �k���
�� J as a Zn�graded k����module�

�b� � is a Gorenstein complex over k�

�c� � is an Euler complex which is Cohen�Macaulay over k�

Proof� �a�  �b�� Suppose J is the canonical module of k���� Then
�������b� in conjunction with �����
�c� shows that k��� �� k����J is Goren�
stein�

�b� �c�� By ������ it su�ces to show that � � core�� Suppose this
is not the case� Then there exists a vertex v � � such that st v � �� and
so � � fvg � � for some subcomplex � of �� But then �X� � j�j �
j� j �� �� a contradiction since the boundary of a manifold is a manifold
without boundary�

�c� �a�� We have to check the conditions ��	���b� for the links of the
faces of �� Let � � �� Rn be the map de�ning the geometric realization
of ��

Suppose F � �� F �� �� and p � relint�conv��F��� If lkF �� �� then
����� yields

eHdim lkF�lkF� k� �� Hd���X�X n fpg� k� ��

�

 if p � X �
k if p �� X �
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The �rst case happens when F � �� the second when F �� �� If lkF � ��

then F �� � and again eHdim lkF�lkF� k� � eH����� k� �� k�
Now suppose F � �� Then lkF � �� and we need to show thateHd���X� k� �� 
� or equivalently� that any �d � ���cycle z �

P
aFF of the

chain complex eC��� is trivial� As z is a cycle we haveX
F�F �

dimF�d��

�aF � 


for all F � � � with dimF � � d � �� Now since X is a manifold with
boundary� each �d � ���face F � � � is a face of precisely one facet of �
when F � � �� and of precisely two facets of � when F � �� �� Hence �i�
aF � 
 if F contains a facet F � � �� and �ii� aF� � aF� � 
 if F � �� �
and F� and F� are the facets of � containing F � � Since by assumption
� �� �� we conclude from �i� that aF � 
 for at least one facet of ��
Now let G � � be any other facet� Notice that � is connected since it
is Cohen�Macaulay of positive dimension� see Exercise ������� Therefore
we can �nd a chain of faces

F � F� � F� � F� � � � � � F�m�� � F�m � G

with alternating inclusions where dimF�i � d � � and dimF�i�� � d � �
for i � 
� � � � � m� Thus it follows from �ii� and by induction on i that
aF�i � 
 for i � 
� � � � � m� in particular� aG � 
�

A Zn�graded embedding of �k���� Though the canonical module of a
Stanley�Reisner ring k��� cannot always be identi�ed with a Zn�graded
ideal� it may be realized as a kernel of a certain Zn�graded homomor�
phism� In order to derive such a presentation we �rst observe that the
homology of the complex C� is concentrated in �negative degrees�� see
Theorem ������ To be precise� we have H��C�

a� � 
 if some component ai
of a is positive� Thus if we set

Di �
M
a�Zn

�

C i
a

where Zn
� � fa � Zn � ai � 
 for i � �� � � � � ng� then

H��D�� �� H��C�� �� H�

m �k�����

and these are isomorphisms of Z�graded modules� Write k��� � k�X��I�
with k�X� � k�X�� � � � � Xn�� Then by virtue of the local duality theorem
for graded modules we obtain the isomorphisms

H i�D��� �� �Ext
n�i
k�X��k���� k�X��� i 	 
�

where H i�D��� �� �Homk�H
i�D��� k� �� Hi�

�Homk�D
�� k���
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Let us more closely inspect the complex G
�
� �Homk�D

�� k�� Re�
call that C t is a direct sum of modules Rxi� ���xit

where R � k����

Let F � fvi� � � � � � vitg� X � Xi� � � �Xit and x � xi� � � � xit� then Rx
��

k�Xi� X
��
i � vi � F��Xi � vi �� F���I��X where �I��X is an ideal generated by

certain squarefree monomials in the variables Xi for which vi �� F � It is
clear that � � �I��X if and only if F �� �� Thus we see thatM

a�Zn
�

�Rx�a ��

�

 if F �� ��
k�X��

i � vi � F� if F � ��

so that �Homk�
L

a�Zn
�

�Rx�a� k� �� k�Xi � vi � F� �� k�X�� � � � � Xn��P F if

F � �� By de�nition� Gt is a direct sum of such modules� Thus we have

Theorem ������ Let � be a �d � ���dimensional simplicial complex� and k
a �eld� For each i � 
� � � � � d let Gi be the direct sum of the k����modules
k�X�� � � � � Xn��P F where F � � and jFj � i� Consider the complex

G� � 
 �� Gd �� Gd�� �� � � � �� G� �� G� � k �� 


of k����modules whose di�erentiation is composed of the maps

����j�� nat � k�X� � � � � � Xn��P F �� k�X�� � � � � Xn��P F �

if F � fvi� � � � � � virg and F � � fvi� � � � � �bvij � � � � � virg� and zero otherwise� Then

for i � 
� � � � � d �
Hi�G�� �� Extn�ik�X��k���� k�X���

In particular� if � is Cohen�Macaulay� then one obtains the exact sequence

of Zn�graded k����modules


 �� �k��� �� Gd �� Gd�� �� � � � �� G� �� G� �� 
�

As a consequence of ��	�� we derive a result of Gr�abe ���	��

Corollary ����	� Let k be a �eld� and � a �d � ���dimensional simplicial
complex which is Cohen�Macaulay over k� Then there is a Z�graded em�

bedding

�k�����d� �� k����

Proof� Let � � k�X�� � � � � Xn� � Gd �
L

jFj�d�k�X�� � � � � Xn��P F� be the

homomorphism which on each component is just the canonical epi�
morphism� Then Ker � �

T
jFj�d P F � and so � induces an isomorphism

��� k���� Im ��
Let x �

P
jFj�d x

F� then x is homogeneous of degree d � Moreover� x is

Gd�regular and xGd � Im �� To see this� note that if a � �aF� � Gd � then
xa � �xFaF�� From this it follows immediately that x is indeed Gd�regular�
and it also follows that ���xF� � xeF for all facets F � Here eF denotes the
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element of Gd whose projection to k�X�� � � � � Xn��P F � is � if F � F � � and 

otherwise� Since these elements generate Gd � the element x multiplies Gd

into the submodule Im �� as asserted�
In conclusion we have

�k�����d� �� x�k��� � xGd � Im � �� k����

We illustrate ��	�� by means of the simplicial complex � illustrated in
Figure ��� Theorem ��	�� yields the exact sequence


 �� �k��� ��
�M
i��

k�X�� Xi� ��
�M
i��

k�Xi� �� k �� 
�

and it is readily seen that �k��� is generated by the elements �X���X�� 
�

and �X�� 
��X�� in
L�

i�� k�X�� Xi�� Then �
P

jFj��x
F��k��� has the genera�

tors �X�
�X���X

�
�X�� 
� and �X�

�X�� 
��X
�
�X��� Thus we see that the ideal

in k��� corresponding to x�k��� via ��
�� is generated by x��x� � x��x� and

x��x� � x��x��

Doubly Cohen�Macaulay complexes� Let k be a �eld� In Exercise ����
we noticed that the type rk��� of a Cohen�Macaulay complex � over
k is at least hs� the last non�vanishing component of the h�vector of ��
Unfortunately� we may have rk��� � hs� see Exercise ��	��
� By ����
equality holds exactly when � is level over k� The situation is particularly
simple when � is level and s � d � dim� � �� Then ���� implies that
rk��� � ����d��e����� and this number is reasonably accessible�
De�nition ������ Let k be a �eld� A simplicial complex � on the vertex
set V is doubly Cohen�Macaulay over k if � is Cohen�Macaulay over k�
and for all v � V the subcomplex �Vnfvg is Cohen�Macaulay over k of
the same dimension as ��

Concluding this chapter we present two results of Baclawski ���� on
doubly Cohen�Macaulay complexes�

Theorem ����� �Baclawski�� Let k be a �eld� and � a �d � ���dimensional
doubly Cohen�Macaulay complex over k� Then � is level and

rk��� � ����d��e�����
Proof� We make use of Hochster�s formula ����� which gives the Hilbert
series of TorRi �k� k���� where R � k�X�� � � � � Xn�� Note � is Cohen�

Macaulay over k if and only if TorRi �k� k���� � 
 for i � n � d � Thus we
have the following result�

� is Cohen�Macaulay over k �eH j��W � k� � 
 for all W � V and j � jW j � �n� d� � ��
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We claim that TorRn�d�k� k����a � 
 for a �� ��� � � � � ��� Suppose this is
not the case� Then from ����� we deduce that there exists a proper

subset W of V such that eH j��W � k� �� 
 for j � jW j � �n � d� � ��
Choose i such that W � V � � V n fvig� then ��V ��W � �W � Since by
assumption �V � is Cohen�Macaulay it follows from ��� �applied to �V ��
that jW j � �n� d�� � � j 	 jW j � �n� �� d� � �� a contradiction�

We leave it to the reader to complete the proof� Simply observe that
the degrees of the non�zero components of TorRn�d�k� k���� determine the

degrees of the generators of �k���� and that hd � dimk Tor
R
n�d�k� k����a for

a � ��� � � � � ���

We may view eC���� k as a graded k�vector subspace of k��� simply

by identifying the elements F � � with xF for all F � �� Then eHd����� k�
is identi�ed with a k�vector subspace of k����

Corollary ����� �Baclawski�� If � is doubly Cohen�Macaulay over k� then
as a Z�graded module� �k�����d� is isomorphic to the ideal generated byeHd����� k��

Proof� We view �k��� as a submodule of Gd � By Exercise ��	�� �k��� is
generated by elements of degree 
� that is� by elements of Ker��Gd�� �
�Gd������ Let x �

P
jFj�d x

F be as in the proof of ��	��� Then x�k��� is

the ideal in k��� which is generated by Ker��xGd�d � �xGd���d�� and this
yields the desired conclusion since �xGd�d � �xGd���d can be identi�ed
with Cd������ k � Cd������ k�

Exercises

��	�
� Let k be a 	eld� � a simplicial complex� and P a 	nite k���module of
rank � which is locally free� Show P is free� The proof can be accomplished in
the following steps�

�a� Let R be a Noetherian ring� P a 	nite module� and I�� I� two ideals in R
such that P�IjP is a free �R�Ij ��module of rank � for j � �� �� Assume that the
group of units of R��I� 	 I�� is mapped surjectively onto that of R��I� � I��� Show
P��I� 	 I��P is a free R��I� 	 I���module of rank ��

�b� Use �a� and induction on the number of facets of �� To start the induction
observe that a 	nite� locally free kX� � � � � � Xn��module of rank � is actually free�
Indeed such a module is isomorphic to a projective ideal� and since kX� � � � � � Xn�
is factorial� projective ideals are principal� see ����� Theorem �����

��	��� Let k be a 	eld� and � a �d � ���dimensional doubly Cohen�Macaulay
complex over k� Show Ker�Gd � Gd�� � is generated by elements of degree � in
Gd �

��	���� Show a ��dimensional simplicial complex � on V satis	es r��� � e���� if
and only if for all v � V the subcomplex �Vnfvg is connected� �Reference to a 	eld
k is not needed in dimension �� Why��
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��	���� Give an example of a Cohen�Macaulay complex whose type depends on
the 	eld k�

��	���� Prove the converse of ������ if � is a Cohen�Macaulay complex and k a
	eld such that rk��� � ����d��e����� then � is doubly Cohen�Macaulay�

��	���� Characterize the ��dimensional simplicial complexes � for which there
exists a Zn�graded embedding �k�� � k���

Notes

Simplicial complexes have been considered in topology since Poincar�e
��

� who computed homology groups of topological spaces via triangu�
lations�

Another motivation comes from polytope theory where simplicial
complexes appear as boundary complexes of simplicial polytopes� The
question of how the number of the faces in various dimensions are related
to each other has attracted combinatorialists and geometers since Euler
who discovered the familiar equation f� � f� � f� � � for ��polytopes in
�	���

A new technique in studying simplicial complexes was introduced
by Stanley ������ His proof of the upper bound theorem for simplicial
spheres depends heavily on methods from commutative algebra whose
foundations were laid by Hochster ����� and Reisner ��
��� Naturally
our exposition concentrates on the algebraic aspects of the theory� It is
very much in�uenced by Stanley�s monograph ����� and the lectures by
McMullen and Stanley held at the DMV�Seminar in Blaubeuren� July
��� The reader interested in a general� up�to�date survey on convex
polytopes is referred to the excellent article ��� by Bayer and Lee� Hibi�s
book ���� o ers an attractive introduction to algebraic combinatorics�

The results of Kruskal�Katona mentioned in Section ��� can be
understood as a theorem on Hilbert functions of residue class rings of an
exterior algebra� see Aramova� Herzog� and Hibi ���� for this approach�

Hochster�s formula ����� appeared in ������ Our treatment is taken
from Bruns and Herzog ��� where a more general result for monomial
ideals of semigroup rings has been given�

There are other notable results in the direction of Baclawski�s theorem�
For example� Miyazaki ��	�� proved that the barycentric subdivision of
a level complex is again level� and Hibi ����� showed that the proper
skeletons of a Cohen�Macaulay complex are all level�

There are several aspects in the algebraic theory of simplicial com�
plexes not considered in this book or only discussed in passing� for
instance� a careful account of order complexes of posets� or Schenzel�s
characterization of Buchsbaum complexes� see ��	��� ����� and ������
It should be mentioned that the statements �i���v� in Exercise �������a�
are all equivalent to the Buchsbaum property� Fr�oberg and Hoa ���
�
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investigated Segre products of Stanley�Reisner rings� For an excellent
and up�to�date overview see Stanley ������

A thorough study of order complexes of posets can be found in
Bj�orner�s paper ����� Theorem ������ on the shellability of bounded�
semimodular posets is taken from ����� Garsia�s paper ����� is another
source of information on this topic� In ����� Hibi classi�es those order
complexes of distributive lattices which are Gorenstein�

In the notes of Chapter � we have mentioned the problem as to
whether the Poincar�e series of a local ring is a rational function� For
a positively graded ring R over a �eld k one de�nes its Poincar�e series
with respect to a minimal free graded resolution of k� Fr�oberg ����
showed that if R is de�ned by monomial relations of degree �� then k
has a linear resolution over R� in particular the Poincar�e series of R is
rational� Backelin ���� proved the rationality of the Poincar�e series for
graded algebras de�ned by monomial relations of arbitrary degree�

Another important result left out is the g�theorem whose existing
proof goes beyond the scope of this book� A vector h � �h�� � � � � hd� �
Nd�� satis�es the g�condition if h� � �� hi � hd�i for all i� and if
�h�� h� � h�� � � � � h�d��� � h�d������ is the h�vector of a homogeneous k�
algebra� According to �����
� the latter condition is satis�ed if and only
if h� � h� � � � � � h�d���� and hi��� hi � �hi � hi���hii for all i � d��� ��
The name g�condition stems from the fact that one commonly denotes
by gi the di erences hi � hi���

It was conjectured by McMullen in �	� that �h�� � � � � hd� � Nd�� is
the h�vector of a simplicial polytope if and only if it satis�es the g�
condition� The �su�ciency� was proved by Billera and Lee ����� while
the �necessity� was shown by Stanley ���� who exhibited a homogeneous
system of parameters #�� � � � � #d of k��� such that deg#i � � and A �
k�����#�� � � � � #d� has a Lefschetz element� that is� an element � � A� for
which multiplication by � induces linear maps Ai�� � Ai of maximal
rank�
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This chapter opens with the study of a�ne semigroup rings� i�e� sub�
algebras of Laurent polynomial rings generated by a �nite number of
monomials� We relate the structure of such a ring R to that of the semi�
group C formed by the exponent vectors of the monomials in R� and to
the cone D spanned by C � From the face lattice of D we then construct
a complex for the local cohomology of R�

The connection between R and D is strongest if R is normal� this is
the case if and only if R contains all monomials which correspond to
the integral points in D� By a theorem of Hochster normal semigroup
rings are Cohen�Macaulay� Moreover� we shall determine their canonical
modules and� as a combinatorial application� derive the reciprocity laws
of Ehrhart and Stanley�

We are led to the second topic of this chapter by the fact that rings
of invariants of torus actions are normal semigroup rings� We also treat
�nite groups� covering Watanabe�s characterization of Gorenstein invari�
ants and the famous Shephard�Todd theorem on invariants of re�ection
groups� The discussion of invariant theory culminates in the Hochster�
Roberts theorem which warrants the Cohen�Macaulay property for rings
of invariants of all linearly reductive groups�

��� A�ne semigroup rings

An a�ne semigroup C is a �nitely generated semigroup which for some
n is isomorphic to a subsemigroup of Zn containing 
� Let k be a �eld�
We write k�C� for the vector space k�C�� and denote the basis element
of k�C� which corresponds to c � C by Xc� This �monomial� notation
is suggested by the fact that k�C� carries a natural multiplication whose
table is given by XcXc� � Xc�c� �we use � to denote the semigroup
operation�� For example� k�Zn� is isomorphic to the Laurent polynomial
ring k�X�� X

��
� � � � � � Xn� X

��
n � if we let Xi correspond to the i�th element of

the canonical basis of Zn� similarly k�Nn� is isomorphic to k�X�� � � � � Xn��
The rings k�C� where k is a �eld and C is an a�ne semigroup are called
a�ne semigroup rings�

There is a �smallest� group G containing C � characterized by the fact
that every homomorphism from C to a group factors in a unique way
through G� We write ZC for G� for if C � Zn� then G is just the

���
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Z�submodule of Zn generated by C � Since an a�ne semigroup can be
embedded into Zn for some n� we see that ZC �� Zd for some d � N
which we call the rank of C � We set QC � Q�ZZC and RC � R�ZZC �
In the following we will consider ZC as a subgroup of QC and QC as
a Q�vector subspace of RC where the inclusions are the map z �� �� z
and the one induced by the embedding Q� R�

An embedding C $� Zn of semigroups induces an embedding k�C� $�
k�Zn� of k�algebras� Therefore k�C� is a domain� it is Noetherian since
C is �nitely generated� Obviously k�C� and k�ZC� have the same �eld of
fractions if we regard k�C� as a subalgebra of k�ZC� in a natural way� It
follows that ZC �� Zd where d � dim k�C�� so dim k�C� � rankC �

The ring k�C� is a k�subalgebra of k�ZC�� it is in fact a graded subring
of the ZC�graded ring k�ZC� �see Section ��� for this notion�� and without
further speci�cation the attributes �graded� and �homogeneous� always
refer to the ZC�graduation of k�C�� The graded ideals of k�C� are those
generated by homogeneous elements� Each homogeneous component of
k�C� is a one dimensional k�vector space� and therefore the graded ideals
correspond to certain subsets of C which will be identi�ed below� In
order to switch from the ring k�C� to the semigroup C we introduce the
operator

log I � fc � Xc � Ig for a subset I � k�C��

It is clear that log establishes a bijection between the set of graded vector
subspaces of k�C� and the set of subsets of C �

In a semigroup C we may de�ne ideals� and even radical� prime� or
primary ideals� S � C is an ideal if c � s � S for all c � C � s � S �so �
is an ideal�� The radical of an ideal S is Rad S � fs � ms � S for some
m � Ng� Rad S is itself an ideal� and S is a radical ideal if S � Rad S �
An ideal S �� C is prime if c � c� � S implies c � S or c� � S � and it is
primary if c � c� � S � c �� S implies c� � Rad S � It is easy to check that
the radical of a primary ideal is prime� The following proposition whose
proof is left for the reader �Exercise ����� establishes the correspondence
of the ideal theory of C and that of the graded ideals of k�C��

Proposition ������ Let C be an a�ne semigroup� and I � I � � k�C� graded
k�vector subspaces� Then
�a� I � I � � log I � log I �� log�I� � I�� � log I� � log I�� log I� � I� �
log I� � log I��
�b� I is a �radical� prime� primary� ideal if and only if log I is a �radical�
prime� primary� ideal� furthermore logRad I � Rad log I �
�c� the minimal prime overideals of I are graded�

Normal semigroup rings� An a�ne semigroup C is called normal if it
satis�es the following condition� if mz � C for some z � ZC and m �N�
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m � 
� then z � C � One sees immediately that C must be normal if
k�C� is a normal domain� Xz is an element of the �eld of fractions of
k�C�� and if �Xz�m � k�C� and k�C� is normal� then Xz � k�C�� That the
converse is also true will be shown below� First we explore the geometric
signi�cance of normal semigroups�

A non�empty subset D of an R�vector space V is called a cone if it
is closed under linear combinations with non�negative coe�cients in R�
For S � V the set

R�S � f
nX
i��

aivi � ai � R�� vi � S� n �Ng

is obviously the smallest cone containing S� it is the cone generated by S �
Finitely generated cones can be characterized in complete analogy with
convex polytopes� a subset D of a �nite dimensional R�vector space V
is a �nitely generated cone if and only if there exist �nitely many vector
half�spaces

H�
i � fv � V � hai� vi 	 
g� ai � V � ai �� 
� i � �� � � � � m�

such that D � H�
� � � � � �H�

m �
In the following it will be necessary to consider rational polytopes

and cones� Let V be an R�vector space of �nite dimension� and U a
Q�vector subspace of V such that dimQU � dimR V � A polytope P � V
is rational �with respect to U� if its vertices lie in U� and a cone is rational
if it is generated by a subset of U� We choose a scalar product which has
an orthonormal basis in U� and de�ne a rational half�space to be a set

H� � fv � V � ha� vi 	 �g

with a � U� a �� 
 and � � Q� Of course� the notion of rationality makes
sense only with respect to a �xed Q�subspace U �and� for a half�space�
is independent of the choice of the scalar product� provided it has an
orthonormal basis in U�� If V � Rn� then it is tacitly understood that
U � Qn� and when V � RC for an a�ne semigroup C � U � QC �

We need some results about rational polytopes and cones�
�i� A subset P � V is a rational polytope if and only if it is bounded and
the intersection of �nitely many rational half�spaces�
�ii� A subset D � V is a �nitely generated rational cone if and only if it
is the intersection of �nitely many rational vector half�spaces�
�iii� Let v�� � � � � vm � U� Then u � U � convfv�� � � � � vmg if and only if there
exist r�� � � � � rm � Q� with

Pm
i�� ri � � such that u �

Pm
i�� rivi� in other

words
U � convfv�� � � � � vmg � convQfv�� � � � � vmg�

�iv� Let v�� � � � � vm � U� Then u � U �R�fv�� � � � � vmg if and only if there
exist r�� � � � � rm � Q� such that u �

Pm
i�� rivi� in other words

U �R�fv�� � � � � vmg � Q�fv�� � � � � vmg�
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It is a good exercise for the reader to prove �i���iv�� An essential argument
is that a linear system of equations with rational coe�cients is soluble
over Q if and only if it has a solution over R�

Proposition ����� �Gordan�s lemma�� �a� If C is a normal semigroup� then

C � ZC �R�C �within RC��
�b� Let G be a �nitely generated subgroup of Qn and D a �nitely generated

rational cone in Rn� Then C � G �D is a normal semigroup�

Proof� �a� It follows from �iv� above that ZC �R�C � ZC �Q�C � and
that C � ZC �Q�C is �almost� the de�nition of a normal semigroup�

�b� The essential point to prove is that G � D is a �nitely generated
rational semigroup� the rest is again elementary�

We claim that D �RC is a �nitely generated rational cone in RC �
In fact� let D �

T
H�
i be given as the intersection of �nitely many

rational half�spaces of Rn� Then D�RC �
T
�H�

i �RC�� and because of
QC � RC �Qn� each H�

i �RC is a rational half�space of RC or equal
to RC �

Replacing G by ZC and Rn by RC we may now assume that G � Zn�
By hypothesis there exist q�� � � � � qv � Q

n with D � f
Pv

i��aiqi � ai � R�
ai 	 
g� Multiplying by a suitable common denominator we may assume
that q�� � � � � qv � Zn�

Choose c � C � Then c �
Pv

i�� aiqi with ai � Q�� and therefore

c �
vX
i��

a�iqi �
vX
i��

a��i qi

with a�i � N and a��i � Q� 
 � a��i � �� Since C � Zn � D� we have c�� �Pv
i��a

��
i qi � C � But c�� lies in the bounded set B � f

Pv
i�� a

��
i qi � 
 � a��i � �g

so that Zn � B is �nite� The �nite set �B � Zn� � fq�� � � � � qvg generates
C �

The invertible elements in a semigroup C form a group C�� the largest
group contained in C � If C� � 
� we say that C is positive� If C is normal�
then C splits into a direct sum of C� and a positive normal semigroup�

Proposition ������ Let C be a normal semigroup� and C� the group of its

invertible elements�

�a� Then C �� C� � C � with a positive normal semigroup C �� Furthermore

C�
�� Zu for some u 	 
�

�b� One has k�C� �� k�C���k k�C
�� �� k�Zu��k k�C

�� for every �eld k�

Proof� It follows immediately from the normality of C that the group
ZC�C� is torsion�free� Therefore C� is a direct summand of ZC � and
hence of C itself� The rest of �a� is quite obvious� Part �b� is a special
case of the general fact that k�C� � C�� �� k�C���k k�C���
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With the notation of the previous proposition� all essential ring�
theoretic properties are shared by k�C� and k�C ��� the ring k�C� arises
from k�C �� by a polynomial extension followed by the inversion of the
indeterminates� and is a free� thus faithfully �at� k�C ���module�

Theorem ����	� Let C be an a�ne semigroup� and k a �eld� Then the

following are equivalent	

�a� C is a normal semigroup�

�b� k�C� is normal�

Proof� The implication �b� �a� has already been observed�
For �a�  �b� we note that C is the intersection of �nitely many

rational half�spaces H�
i � fq � RC � hai� qi 	 
g of RC with ZC � ai �

QC� see ������ Set Ci � ZC � H�
i � One has �Ci�� � fz � Ci � hai� zi � 
g�

It follows that �Ci�� �� Zd�� where d � rankC � Thus the semigroup C �
i in

the splitting Ci � �Ci�� � C �
i has rank��

Since Ci is normal� C
�
i is also normal� Being a normal subsemigroup of

Z� and not a group� C �
i is isomorphic toN� Therefore k�Ci� �� k�Zd���N�

is even regular� As k�C� is the intersection of the normal rings k�Ci�� it is
normal itself�

In order to use the results on Z�graded rings and modules for a�ne
semigroup rings we say that a decomposition

k�C� �
M
i�N

k�C�i

of the k�vector space k�C� is an admissible grading if k�C� is a positively
graded k�algebra with respect to this decomposition� and furthermore
each component k�C�i is a direct sum of �nitely many ZC�graded com�
ponents� It follows that Xc is homogeneous for each c � C � and that the
�maximal ideal m of k�C� is generated by the monomials Xc� c �� 
� Thus
k�C� has an admissible grading only if C is positive� That the converse is
also true� will be very important in the following�

Proposition ������ Let C be a positive a�ne semigroup� Then C is isomor�

phic with a subsemigroup of Nm for some m� In particular k�C� is isomor�
phic with a graded k�subalgebra of k�X�� � � � � Xm�� and has an admissible

grading�

Proof� We choose a scalar product that has a Z�basis of ZC as an
orthonormal basis� The cone R�C is the intersection of half�spaces

H�
i � fv � RC � hai� vi 	 
g� ai � QC� ai �� 
� i � �� � � � � m�

Multiplying by a suitable common denominator we may assume that
ai � ZC � Then hai� ci � Z for all c � ZC � and � � ZC � Zm� ��c� �
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�ha�� ci� � � � � ham� ci� is a group homomorphism with ��C� � Nm� The ker�
nel of � is the intersection of the hyperplanes Hi � fv � RC � hai� vi � 
g�
therefore the group Ker� � ZC is contained in C � Since C is positive�
�jC is injective� The rest is obvious�

The graded prime ideals of an a�ne semigroup ring� The results of Sections
��� and ��� depend crucially on the fact that one can determine the graded
prime ideals of k�C� from the geometry of the cone R�C � Let us �rst
show that the set of non�zero graded radical ideals in k�C� has a unique
minimal element� For an a�ne semigroup C we set

relintC � C � relintR�C�

Lemma ������ Let C be an a�ne semigroup� Then the ideal generated by

the elements Xc� c � relintC is a radical ideal� and is contained in every

non�zero graded radical ideal of k�C��

Proof� In view of ����� we may equivalently prove that relintC is the
smallest non�empty radical ideal of C �

Set I � relintC � It is obvious that I is a radical ideal of C � Let
J � C be an arbitrary non�empty radical ideal� c � I � and s � J � We
must show that c � J � for which there is only something to prove if c �� s�
As c � relintR�C � the intersection of relintR�C with the line L through
s and c is a neighbourhood of c in L� Since L is rational� there exist
rational points on both sides of c in L arbitrarily close to c� So there
exists t � L� �relintR�C��QC such that c lies in the line segment �s� t��
Therefore we have an equation

c � �s� ��� ��t with � � Q� 
 � � � ��

Multiplication with a suitable common denominator yields an equation

mc � ns� t� with m� n � N n f
g

and t� � C � It follows that c � J because J is a radical ideal and s � J �

We shall see in Theorem ����� that the ideal considered in ����� is the
canonical module of k�C� if C is a normal semigroup�

Let C be an a�ne semigroup� and suppose that F is a face of R�C �
The set C n F is immediately seen to be a prime ideal of C � By �����
it follows that the ideal P �F� of k�C� generated by the elements Xc�
c � C nF � is a graded prime ideal of k�C�� In fact� all homogeneous prime
ideals can be represented in this way�

Theorem ������ Let C be an a�ne semigroup� and k a �eld� Then the

assignment F �� P �F� is a bijection between the set of non�empty faces of

R�C and the set of graded prime ideals of k�C��
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Proof� In view of ����� we may equivalently show that the assignment
F �� ��F� � C n F is a bijection between the set of non�empty faces of
R�C and the set of prime ideals of C �

It is easy to see that � is injective� in fact� F � R��C � F� �
R��C n��F�� for every face F of R�C �

Surjectivity of� is proved by induction on rankC � the case rankC � 

being trivial� Let rankC � 
 and P � C be a prime ideal� If P � �� then
P � ��R�C�� So suppose P �� �� By ����� we have P � relintC � As
relintC � ��F�� � � � � ���Fm� where F�� � � � � Fm are the maximal proper
faces of R�C � it follows that P � ��Fi� for at least one i� say P � ��F���

The intersection C � F� is an a�ne semigroup with rankC � F� �
rankC � As P � F� is a prime ideal in C � F�� there exists a face G of
R�F� with P � F� � �C � F�� nG� Being a face of a face of R�F�� G is a
face of R�C � and elementary set theory shows that P � ��G��

In the next section the homogeneous localizations k�C��p � will play
a crucial role� Since we shall argue rather geometrically� it is more
suggestive to denote them by

k�C�F

where F is the face of R�C with p � P �F�� This notation is also justi�ed
by the fact that k�C�F is the ring of fractions of k�C� with respect to the
multiplicatively closed set fXc � c � C � Fg�

Finally we want to relate the faces of the cone R�C to those of a
suitably chosen polytope� For simplicity we restrict ourselves to the case
in which C is positive� More generally� let

D � fx � Rn � hai� xi 	 
 for i � �� � � � � mg

be a cone in Rn given as the intersection of vector half�spaces de�ned by
ai � Rn� i � �� � � � � m� Let us say that D is positive if 
 is the only element
v � D with �v � D�

This is the case if and only if a�� � � � � am generateRn� Set b � a��� � ��am
and de�ne

T � fx � D � hb� xi � �g�

It follows easily that T is bounded� Being the intersection of �nitely many
a�ne half�spaces� it is a convex polytope� We say that the hyperplane
fx � hb� xi � �g is transversal to D� and call T a cross�section of D� Cross�
sections are introduced because their combinatorial structure will lead
us to a complex by which one can compute the local cohomology of an
a�ne semigroup ring�

A non�empty face of D is given by D itself or by H � D where H
is a supporting hyperplane of D� Since D is a cone� H must contain 
�
Therefore there is a unique minimal non�empty face of D� namely f
g�
and we choose F�D� to be the set of non�empty faces of D�
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Proposition ������ Let D be a positive cone� and T a cross�section of D�
Then the assignment F �� F � T induces an isomorphism F�D� �� F�T �
of partially ordered sets� Its inverse is given by G �� R�G�

The proof is easy and left as an exercise for the reader�

At several places below we will have to use the correspondence
between the faces of R�C and those of a cross�section T of R�C � as
given by ������ In order to avoid cumbersome notation we agree on
denoting corresponding faces by corresponding capital and small letters�
So� if F is a face of R�C � then f � �R�C� � T �

Exercises

������ Prove Proposition ������

Hint� For the implication ��� in �b� and for �c� one uses that ZC 
� Zd �
d � rankC � can be given a linear order under which it becomes an ordered
group� �For example one may choose the reverse degree�lexicographical order
introduced in Section ����� Then the homogeneous components of an element are
linearly ordered� and one argues similarly as in the proof of Lemma ������

������� Let S � T be a�ne semigroups� S � T � One says that S is a full

subsemigroup of T if S � T 	ZS � Show

�a� a full subsemigroup of a normal semigroup is again normal�

�b� a positive a�ne semigroup is normal if and only if it is isomorphic to a full
subsemigroup of Nn for some n � ��

�c� if S is full in T � then kS � is a direct kS ��summand of kT ��

������� Let C be an a�ne semigroup� Then kC� is regular if and only if C is of
the form Zu �Nv �

Hint� The implication ��� is easy� For the implication ��� one uses ����� and
������� noting that a minimal set of generators of the �maximal ideal of kC� can
be chosen of the form Xc� � � � � � Xcv �

������� Let C be an a�ne semigroup� and F a face of R�C � Show

�a� the composition kC 	 F� � kC� � kC��P �F� of natural maps is an
isomorphism of a�ne semigroup rings�

�b� if C is normal� then kC 	 F� is also normal�

�c� kC�F is an a�ne semigroup ring�

������� Let D � Rn be a positive cone� and z � Rn� Show that z �� �D if and
only if there exists a hyperplane H which is transversal to D and contains z�

��� Local cohomology of a�ne semigroup rings

In this section we shall de�ne a complex by which we can compute
the local cohomology of an a�ne semigroup ring� it is based on a
construction of algebraic topology� namely the oriented augmented chain
complex associated with a �nite regular cell complex�
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Cell complexes� Regular cell complexes generalize the simplicial com�
plexes of Chapter �� Massey ����� gives an introduction to the theory of
cell complexes which is very well suited for our purpose� We introduce the
chain complex associated with a cell complex axiomatically� borrowing
the existence and uniqueness theorems from algebraic topology�

A �nite regular cell complex is a non�empty topological space X
together with a �nite set � of subsets of X such that the following
conditions are satis�ed�

�i� X �
S

e�� e�

�ii� the subsets e � � are pairwise disjoint�

�iii� for each e � � � e �� � there exists a homeomorphism from a closed
i�dimensional ball Bi � fx � Ri � kxk � �g onto the closure �e of e which
maps the open ball Ui � fx � Ri � kxk � �g onto e�

�iv� � � � �

By the invariance of dimension the number i in �iii� is uniquely
determined by e� and e is called an open i�cell� � is a �����cell� By � i

we denote the set of the i�cells in � � The dimension of � is given by
dim� � maxfi � � i �� �g� It is �nite since � is �nite� One sets j� j � X �

Finite regular cell complexes are special cases of a more general
topological structure� namely that of a CW�complex� Since all our CW�
complexes are �nite and regular� we shall simply call them cell complexes�

A cell e� is a face of the cell e �� e� if e� � �e� and a subset � of � is a
subcomplex if for each e � � all the faces of e are contained in ��

The classical examples of cell complexes are convex polytopes P
together with their decomposition P �

S
f�F�P � relintf� For them the

following property� which follows from �i���iv�� is an elementary theorem�
�v� if e � � i and e� � � i�� is a face of e� then there exist exactly two cells
e�� e� � � i�� such that ej is a face of e and e� is a face of ej �

Each simplicial complex � may be identi�ed with a cell complex�
namely the cell complex it de�nes in a natural way on a geometric
realization and whose open cells correspond to the faces of �� It is
convenient to denote this cell complex simply by �� and an open cell
by the corresponding face of �� Let fv�� � � � � vng be the vertex set of
�� For e � �i and e� � �i�� we set ��e� e�� � 
 if e� is not a face
of e� and ��e� e�� � ����k�� if e corresponds to fvi� � � � � � vimg and e� to
fvi� � � � � �bvik � � � � � vimg� i� � � � � � im � Then the augmented oriented chain
complex of �� which has been introduced in Chapter �� is a complex of
free Z�modules Ci��� �

L
c��i Ze whose di erential is given by �e� �P

e���i�� ��e� e��e�� The crucial point in constructing a similar complex for
an arbitrary cell complex is to �nd a suitable function ��

Let us say that � is an incidence function on � if the following
conditions are satis�ed�
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�a� to each pair �e� e�� such that e � � i and e� � � i�� for some i 	 
� �
assigns a number ��e� e�� � f
���g�

�b� ��e� e�� �� 
� e� is a face of e�

�c� ��e� �� � � for all 
�cells e�

�d� if e � � i and e� � � i�� is aface of e� then

��e� e����e�� e
�� � ��e� e����e�� e

�� � 


where e� and e� are those �i� ���cells such that ej is a face of e and e� is
a face of ej �see �v� above��

Lemma ������ Let � be a cell complex� Then there exists an incidence

function on � �

For a proof see Lemma IV�	�� in ����� where the incidence numbers
��e� e�� appear as topological data determined by orientations of the cells�
Figure ��� indicates two incidence functions on the solid rectangle and
how they are induced by orientations�
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Figure ���

Let 
 � � � f��g be a function with 
��� � � and 
�e� � � for all

�cells e� Then the function

���e� e�� � 
�e����e� e��
�e�

is also an incidence function� On the other hand� all pairs �� �� of incidence
functions di er only by a �sign� 
�

Theorem ������ Let � be a cell complex with incidence functions � and

��� Then there exists 
 � � � f��g such that 
��� � � and ���e� e�� �

�e����e� e��
�e� for all e � � i� e� � � i��� i � 
� � � � � dim� �

This is Theorem IV�	�� of ����� �in a di erent formulation�� Its proof
shows that incidence functions can be constructed in a completely naive
manner� �i� One starts with � � on which there is no choice according
to property �c� of incidence functions� �ii� If one has constructed an
incidence function �i on � � � � � � � � i� then there exists an incidence
function �i�� on � � � � � � � � i�� whose restriction to � � � � � � � � i is just
�i� The reader is advised to construct incidence functions for some three
dimensional polytopes�
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Let � be a cell complex of dimension d � �� and � an incidence
function on � �as in Chapter � it is convenient to denote dimension
by d � ��� We de�ne the augmented oriented chain complex of � by the
complex

eC�� � � 
 �� Cd��
�
�� Cd�� �� � � � �� C�

�
�� C�� �� 


where we set

Ci �
M
e�� i

Ze and �e� �
X

e��� i��

��e� e��e� for e � � i�

i � 
� � � � � d � �� That � � 
 follows from the de�nition of an incidence

function and property �v� of cell complexes� The notation eC�� � is

justi�ed since the dependence of eC�� � on � is inessential� Theorem �����
guarantees that we obtain an isomorphic complex upon replacing � by
another incidence function ��� �The isomorphism is given by e �� 
�e�e��

For simplicity of notation we set eH i�� � � Hi�eC�� ���
The fundamental importance of eC�� � in algebraic topology relies on

the fact that it computes reduced singular homology �

Theorem ������ Let � be a cell complex� Then eH i�� � � eH i�j� j� for all

i 	 
 �and eH���� � � 
��

Theorem IV���� of ����� states that Hi�C�� �� �� Hi�j� j� for the non�

augmented complex C�� � which arises from eC�� � if we replace eC�� by


� It follows easily that eH��� � �� eH��j� j� as well�
We use ����� via the following corollary�

Corollary ����	� Let � be a cell complex such that j� j is homeomorphic to

a closed ball Bn� Then eH i�� � � 
 for all i 	 ���

Local cohomology� Let C be a positive a�ne semigroup� and k a �eld�
The ideal m in R � k�C� generated by the elements Xc� c � C n f
g� is
maximal� For an R�moduleM we denote by H i

m �M� the i�th right derived
functor of

�m �M� � fx �M � m ix � 
 for i� 
g�

As in ����� one has a natural isomorphism

H i
m �M� �� lim

��
ExtiR�R�m j �M� for all i 	 
�

The natural map ExtiR�R�m j �M�� ExtiRm
�Rm ��m Rm �j �Mm � is an isomor�

phism� Therefore H i
m �M� �� H i

m Rm
�Mm �� and we are justi�ed in calling

H i
m �M� a local cohomologymodule� We now want to construct a complex
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�computing� H i
m �M� which resembles the combinatorial structure of C as

closely as possible�
Suppose for the moment thatC � Nn so that R � k�C� �� k�X�� � � � � Xn�

and m � �X�� � � � � Xn�� As we saw in ������ the modi�ed %Cech complex

C� � 
 �� C� �� C� �� � � � �� Cn �� 


with
Ct �

M
Rxi� ���xit

computes H�

m �M� in the sense thatH i
m �M� �� H i�M�C�� for all i 	 
� The

components of Ct are of the form RF where F is a face of Rn
� � R�N

n�
and the di erential is composed of maps

� � nat� Rxi� ���xit
�� Rxi� ���xitxj

whose signs � are just the values of an incidence function on the pair
�convfei� � � � � � eit � ejg� convfei� � � � � � eitg� of faces of the simplex spanned by
the canonical basis e�� � � � � en of Rn� This simplex is a cross�section of the
cone Rn

��
It is easy to generalize this construction� Let C be a positive a�ne

semigroup of rank d � R � k�C�� T a cross�section of the cone R�C � and
F � F�T � its face lattice� �We remind the reader of our convention of
denoting corresponding faces of R�C and T by F and f respectively��
Let

Lt �
M

f�Ft��

RF � t � 
� � � � � d�

and de�ne  � Lt�� � Lt by specifying its component

f��f � RF � � RF to be

�

 if F � �� F �
��f� f�� nat if F � � F�

here � is an incidence function on F� It is clear that

L� � 
 �� L� �
�� L� �� � � � �� Ld�� �

�� Ld �� 


is a complex�

Theorem ������ Let C be a positive a�ne semigroup� and k a �eld� Let m

be the maximal ideal generated by the elements Xc� c � C n f
g� Then for

every k�C��module M� and all i 	 
�

H i
m �M� �� H i�L� �M��

Proof� We follow the pattern of the proof of ������ Let I be the ideal gen�
erated by the elements Xc� c �� 
 for which there exists a one dimensional
face F of R�C with c � F � In order to show H��L� �M� � H�

m �M� for
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all k�C��modules M� we must verify that Rad I � m � Let c�� � � � � cm � C
be a minimal set of generators of Q�C � Then each one dimensional face
F of R�C contains exactly one of the ci � and it is enough to show that
RadJ � m where J is the ideal generated by Xc� � � � � � Xcm � Let c � C �
c �� 
� There exist q�� � � � � qm � Q� with c � q�c� � � � � � qmcm� Multipli�
cation by a common denominator yields rc � s�c� � � � � � smcm with r�
si �N� Since si �� 
 for at least one i� it follows that �Xc�r � J �

Now let 
 � M� � M� � M� � 
 be an exact sequence of k�C��
modules� Since all the summands of L� are �at k�C��modules� this yields
an exact sequence


� L� �M� � L� �M� � L� �M� � 
�

As desired we have a long exact sequence

� � � � H i�L��M��� H i�L��M��� H i�L��M��� H i���L��M��� � � �

Finally we must show that H i�L��M� � 
 for all i ifM is an injective
k�C��module� It su�ces to consider the indecomposable modules E�R�p �
where p is a prime ideal of R � k�C�� Then� as shown in the proof of
������ there are only two possibilities for an element x of R� either every
element of E�R�p � is annihilated by some power of x� namely if x � p �
or multiplication by x is bijective on E�R�p �� So

E�R�p � � RF �

�

 if F � p �� ��
E�R�p � if F � p � ��

Set P � log p � Then P is a prime ideal in the semigroup C � and by ����	
there is a face G of R�C with P � C nG� Thus

E�R�p �� RF �

�

 if F �� G�
E�R�p � if F � G�

Let G � F�g� denote the face lattice of the face g � G � T of a
cross�section T of R�C � It follows that

Lt � E�R�p � �
M
f�Gt��

E�R�p �

for all t 	 
� Of course G is a subcomplex of F � F�T �� and the
restriction of an incidence function on F to G is an incidence function
on G� Therefore we have

L� � E�R�p � �� HomZ
�eC�G������ E�R�p �

�
�

�This statement is the heart of the proof� the reader should verify it
carefully�� Since g is a convex polytope� it is homeomorphic to a closed

ball� So eC�G� is an exact complex� see ������ Since eC�G� is a complex

of free Z�modules� exactness is preserved in HomZ�eC�G������ E�R�p ���



���� Local cohomology of a�ne semigroup rings ��

Corollary ������ Let C be a positive a�ne semigroup of rank d � and k
be a �eld� Then k�C� is Cohen�Macaulay if and only if H i�L�� � 
 for

i � 
� � � � � d � ��

Proof� Set R � k�C�� and note that d � dimRm �why#�� If R is Cohen�
Macaulay� then Rm is Cohen�Macaulay� Thus it follows from ����	 that
H i�L�� � 
 for i � 
� � � � � d � �� Conversely� ����	 also implies that Rm is
Cohen�Macaulay if H i�L�� � 
 for i � 
� � � � � d � �� By virtue of �����
R is a �local ring with �maximal ideal m � Now �����	 yields that R is
Cohen�Macaulay�

Exercises

����	� We will see in the next section that a normal semigroup ring is Cohen�
Macaulay� This exercise presents an example �due to Hochster ����� of an a�ne
semigroup ring showing that Serre�s condition �S�� alone is not su�cient for the
Cohen�Macaulay property� Let k be a 	eld� and Y� � Y�� Z� � Z� be indeterminates
over k� Prove�
�a� The semigroup C generated by the monomials xij � YiZj � i� j � �� �� is normal�
S � kC� is a normal domain of dimension ��
�b� The substitution Xij �� xij induces an isomorphism

kX�� � X�� � X�� � X�����X��X�� �X��X��� 
� S �

S is a Cohen�Macaulay ring�
�c� The subsemigroup C � of C generated by all monomials f with degY�

f � �
and degY�

f � � is 	nitely generated�

�d� The elements x�
�� � x

�
�� � x

�
�� � x�

�� form a homogeneous system of parameters of
R � kC ��� but not an R�sequence�
�e� The ideals generated by x�

�� and x�
�� in R are unmixed� �Hint� Use that the

associated primes of a ZC ��graded module are ZC ��graded� this follows as in
�������
�f� Rx��

�� � x
��
�� � � S x��

�� � x
��
�� ��

�g� R satis	es Serre�s condition �S� �� but is not Cohen�Macaulay�

����
� One says that an n�dimensional positive cone D is simplicial if it is generated
by n elements� and a positive a�ne semigroup C is simplicial if the cone R�C is
simplicial� Let k be a 	eld�
�a� Let C be an arbitrary positive a�ne semigroup� Prove that Xc� � � � � � Xcn with
c� � � � � cn � C form an kC��sequence if and only if Xci � Xcj is an kC��sequence
for all i �� j� equivalently� ci � s � cj � t for s� t � C implies s � ci � C �
�b� Show that C is simplicial if and only if kC� has a homogeneous system of
parameters Xc� � � � � � Xcn with c� � � � � cn � C �
�c� Let C be simplicial� Deduce from �a� and �b� that kC� is Cohen�Macaulay if
and only if it satis	es Serre�s condition �S� �� and that this property is independent
of k �Goto� Watanabe� and Suzuki ������
�d� Formulate a Gorenstein criterion for kC� with C simplicial� using the socle
of kC���Xc� � � � � � Xcn �� and show that this property is also independent of k�
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��� Normal semigroup rings

In this section we want to show that a normal semigroup ring is a
Cohen�Macaulay ring and to determine its canonical module�

The complex L� constructed in the previous section is ZC�graded in
a natural way� and in order to compute its cohomology we analyze its
graded components just as in the proof of ������ Given z � ZC � the main
point is to determine those faces F of C for which �RF�z �� 
� As we shall
see� this is the case if and only if the face F is not �visible� from z�

Let P be a polyhedron in a R�vector space V � Let x� y � V � We
say that y is visible from x if y �� x and the line segment �x� y� does not
contain a point y� � P � y� �� y� A subset S � V is visible if each v � S is
visible�

Proposition ������ Let P be a polytope in Rn with face lattice F� and

x � Rn a point outside P � Set S � fF � F � F visible from xg� Then S is

a subcomplex of F� its underlying space S �
S

F�S F is the set of points

y � P which are visible from x� and is homeomorphic to a closed ball�

Proof� Let y � P be visible from x� There exists a �unique� face F with
y � relintF � and one concludes easily �for example by ����� below� that
the whole of F is visible from x� Therefore S � fy � P � y visible from xg�
and it follows easily that S is homeomorphic to a closed ball� That S is
a subcomplex is obvious�

Let P be a polyhedron in an R�vector space V � dimV � �� Suppose
that P is given as the intersection of �nitely many half�spaces

H�
i � fx � V � hai� xi 	 �ig� i � �� � � � � m�

We set

x� � fi � hai� xi � �ig� x� � fi � hai� xi � �ig� x� � fi � hai� xi � �ig�

Lemma ������ With the notation introduced� a point y � P is visible from

x � V n P if and only if y� � x� �� ��

The elementary proof is left for the reader� Figure ��� illustrates the
following lemma� Let C � N� � R�� and F be the positive X�axis� G
the positive Y �axis� Then k�C�F � k�X� Y �X���� and �k�C�F�z �� 
 for
z �� C exactly when z is in the second quadrant �including the negative
X�axis�� Thus �k�C�F�z �� 
 if and only if F is not visible from z� Similar
arguments work for the faces f
g� G� and C �

Lemma ������ Let C be a normal semigroup� k a �eld� and R � k�C�� Let F
be a face of R�C and z � ZC � Then �RF�z �� 
 �and therefore �RF�z �� k�
if and only if F is not visible from z�
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C

F

G

Figure ���

Proof� Suppose �rst that F is not visible from z� Then there exists
c � C � F which is not visible from z� We have c� � z� �note that
c� � ��� and it follows that �mc� z�� � � for m� 
� whence mc� z � C �
�Of course z�� c� etc� are de�ned with respect to a representation of R�C
as an intersection of vector half�spaces�� That mc � z � C is equivalent
with �Xc�mXz � R so that Xz � RF �

Conversely suppose that �RF�z �� 
� Then there exists c � C � F with
XcXz � R� Consequently c � z � C � and �c � z�� � �� which is only
possible if c is not visible from z�

Now we can compute the local cohomology of normal semigroup
rings� In the sequel �C is the a�ne semigroup f�c � c � Cg�

Theorem ����	� Let C be a positive normal semigroup of rank d � k a �eld�

and z � ZC �

�a� If z � relint��C�� then �L��z is isomorphic to 
 � k � 
 with k in

degree d � Consequently H i�L��z � 
 for i �� d � and Hd �L��z �� k �� �L��z �

�b� Suppose that z �� relint��C�� Let T be a cross�section of R�C with

face lattice F� and S � fF � T � F � F�R�C� visible from zg � Then

�i� �L��z �� HomZ
�
�eC�F�

�eC�S������� k
�
�

�ii� eH i�F� � eH i�S� � 
 for all i�

�iii� �H i�L���z � 
 for all i�

Proof� �a� For z � relint��C� one has z � RF if and only if F � R�C �

�b��i� The complex eC�F� consists of direct summands Zf� f � F�

As S is a cell subcomplex of F� eC�S� is a chain subcomplex of eC�F��

and we obtain eC�F��eC�S� if we replace all the direct summands Zf

with f � S by 
� The complex HomZ��eC�F��eC�S������� k� is therefore
isomorphic to the complex

D� � 
 �� D� �
�� � � �

�
�� Dd � 
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with
Dt �

M
f�Ft��nS

kf� and ��f���� �
X

��f� f��f��

According to ������ �L��z is given by D��
�ii� Note that the combinatorial structures ofF andS do not depend

on the chosen cross�section T � �This follows from ������� Therefore we

may vary T � Furthermore it was observed above that eH i�F� � 
 for all i�

If z � C � then S � �� and eC�S� is the zero complex� So suppose that
z �� C in the following�

If z �� �C � then� by virtue of ������� there exists a hyperplane E
through z which is transversal to R�C � Choose T � E �R�C � Then S
is the set of faces of T which are visible from z� and we invoke ����� in

conjunction with ����� to conclude that eH i�S� � 
 for all i�
If z � �C � then there exists a point z� � RC n ��C� with �z��� � z��

�By hypothesis z �� relint��C�� consider a su�ciently small neighbour�
hood of z�� Because of ����� we may replace z by z� in de�ning S and
argue as in the case z �� �C �

�iii� We have a long exact sequence

� � � �� eH i�S� �� eH i�F� �� eH i�eC�F��eC�S�� �� eH i���S� �� � � �

Thus it follows from �ii� that eC�F��eC�S� is exact� As it is a complex of
free Z�modules� the dual �of a shifted copy� with respect to an arbitrary
Z�module is also exact�

The previous theorem allows us not only to show that normal semi�
group rings are Cohen�Macaulay� but also to determine their canonical
modules�

Theorem ������ Let C be a normal semigroup� and k a �eld� Then

�a� �Hochster� k�C� is a Cohen�Macaulay ring�

�b� �Danilov� Stanley� the ideal I generated by the monomials Xc with

c � relintC is the canonical module of k�C��

Proof� �a� We write k�C� in the form k�C� �� k�C�� � k�C �� as in ������
then k�C� �� k�C ���X�� X

��
� � � � � � Xu� X

��
u � for some u 	 
� In view of ����

it is therefore enough to show that k�C �� is Cohen�Macaulay� But this
follows immediately from ����� and ������ the latter of which in particular
says that H i�L�� � 
 for i � 
� � � � � d � ��

�b� Suppose �rst that C is positive� As Ld � k�ZC�� we have an exact
sequence


 �� U �� k�ZC� �� Hd �L�� �� 
���

of ZC�graded k�C��modules� The functor �Homk� � k� in the category of
ZC�graded k�C��modules assigns each module the k�vector spaceM

z�ZC

Homk�M�z� k��
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which is a ZC�graded k�C��module in a natural way� Applying this
functor to the exact sequence above we obtain an exact sequence


 �� �Homk�H
d �L��� k� �� k�ZC� �� U� �� 
�

It follows from ����� that �Homk�Hd�L��� k� consists exactly of those
graded components k�ZC�z with z � relintC � Therefore

I �� �Homk�H
d �L��� k� as ZC�graded modules�

As in the proof of ����� we use that k�C� has an admissible grading�
Thus it is a �local Z�graded ring whose �maximal ideal m is generated
by the monomials Xc� c � C � c �� 
� Furthermore each Z�homogeneous
component of k�C� is the direct sum of �nitely many ZC�graded compo�
nents� The same holds for Hd �L��� As Homk commutes with �nite direct
sums� we conclude that

I �� �Homk�H
d�L��� k� as Z�graded modules�

In Section ��� we de�ned the �local cohomology functors �H i
m � � in the

category of Z�graded k�C��modules� If M is a Z�graded k�C��module�
then L� �M is a complex of Z�graded modules� and virtually the same
arguments as in the proof of ����� show that �H i

m �M� �� H i�L��M� for all
i� Finally we deduce from ����� and ���� that I is the canonical module
of k�C��

The general case of �b� in which C is not necessarily positive follows
as in �a� if we use ������ to compute a canonical module of a polynomial
extension�

Corollary ������ Suppose� in addition to the hypothesis of ������ that C is

positive� Then I is the �unique� �canonical module of k�C� with respect to

an arbitrary admissible grading�

Remark ������ The formulation �the canonical module� of ����� needs
justi�cation beyond ������ First� if we had developed the theory of Zn�
graded rings to the same extent as that of Z�graded rings� it would be
immediate that I is the unique ZC�graded canonical module of k�C� �up
to an isomorphism of ZC�graded modules�� Second� and even more� a
canonical module of k�C� is unique in the category of all k�C��modules�
We brie�y indicate the argument� it exploits the theory of class groups
�Fossum ��
���� and will be explained in detail in Section 	�� where it
is more essential� With our usual notation� the extension k�C �� � k�C�
induces an isomorphism of class groups Cl�k�C ��� �� Cl�k�C��� Because of
this isomorphism a canonical module � of k�C� is of the form �� � k�C�
for some k�C ���module �� � The extension k�C �� � k�C� is faithfully �at�
Applying �����
 one concludes that �� is a canonical module of k�C ���
Thus it is enough to consider positive semigroups C � For those one has
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an isomorphism Cl�k�C�� �� Cl�k�C�m � ���
��� �
���� Finally one uses that
the canonical module of a local ring is unique�

The preceding argument amounts to the fact that a projective rank �
module over k�C� is free� This was shown for arbitrary projective k�C��
modules by Gubeladze ������

Corollary ������ Let C be a normal semigroup� and k a �eld� Then k�C� is
Gorenstein if and only if there exists c � relintC with relintC � c� C �

Proof� If relintC � c� C � then the ideal I of ����� is principal� and k�C�
is Gorenstein by ����	� For the converse implication we decompose C in
the form C � C� � C � where C� is a group and C � is positive� If k�C�
is Gorenstein� then k�C �� is Gorenstein� the extension k�C �� � k�C� is
faithfully �at� and the Gorenstein property descends from k�C �� to k�C�
by �����
� For k�C �� we can apply ������ �with respect to an admissible
grading�� and thus I �� k�C ��� It follows that I is generated by an element
Xc� Therefore relintC � � c�C � � and it is easy to verify that relintC � c�C
as well�

Combinatorial applications� Let S be a system of homogeneous linear
Diophantine equations in n variables� It follows directly from ����� that
the set C of solutions c � Nn of S is a positive normal semigroup� This
fact enables us to apply results on Hilbert functions to the combinatorial
object C �

The set C can be represented by the power series

C�t� �
X
c�C

tc

in n variables t � t�� � � � � tn� Obviously C�t� is the Zn�graded Hilbert
series of k�C� if we consider the Zn�grading on k�C� it inherits from
k�Nn� � k�X�� � � � � Xn�� As we have not developed the theory of Zn�graded
modules to the necessary extent� we restrict ourselves to considering the
specialization

c�t� �
X
c�C

tjcj�

It is the Hilbert series of k�C� for the Z�grading induced by the total
degree of a monomial� Under this grading k�C� is a positively graded
k�algebra�

Let C� be the set of strictly positive integral solutions of S� i�e�
solutions c � Nn with ci � 
 for i � �� � � � � n� It may of course happen that
C� � �� but otherwise we have C� � relintC �Exercise �������� Therefore�
and by ������ the power series

c��t� �
X
c�C�

tjcj
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is the Hilbert series of the �canonical module � of k�C�� Hence �����
immediately yields the following reciprocity law �

Theorem ����� �Stanley�� With the notation introduced� suppose that C� is

non�empty� Then

c��t� � ����dc�t���� d � rankC�

Of all the results of Section ��� only ����� has been applied to k�C��
We could extend ���� by furthermore considering the Hilbert function
H�k�C�� m� � jfc � C � jcj � mgj� Below� such an extension is carried out
for the Ehrhart function of a rational polytope�

Remark �����
� In ������ Theorem ������� Stanley proves the ��ne� version

C��t� � ����dC�t���

of the previous theorem by combinatorial methods� In order to obtain
it by ring�theoretic arguments one needs the Zn�graded variant of �����
which was also given by Stanley� see ���	�� Theorem ���� �Exercise �����
is the Zn�graded variant of ����� for Stanley�Reisner rings��

Conversely� the computation of the canonical module of a normal
semigroup ring in ���	� uses the �ne reciprocity law� similarly as in �����
one shows that the ideal generated by the monomials Xc� c � C�� is the
canonical module of k�C� once the equation C��t� � ����dC�t��� has
been established�

Let P � Rn be a polytope of dimension d � Since P is bounded� we
may de�ne its Ehrhart function by

E�P �m� � jfz � Zn �
z

m
� P gj� m �N� m � 
� and E�P � 
� � ��

and its Ehrhart series by

EP �t� �
X
m�N

E�P �m�tm�

It is clear that E�P �m� � jfz � Zn � z � mP gj where mP � fmp � p � P g�
Similarly as above we set

E��P �m� � jfz � Zn �
z

m
� relintP gj for m � 
� E��P � 
� � 
�

and
E�
P �t� �

X
m�N

E��P �m�tm�

Note that E��P �m� � jfz � Zn � z � relintmP gj for m � 
�
We de�ne the cone D � Rn�� by D � R�f�p� �� � p � P g� Then

C � D�Zn�� is a subsemigroup of Zn��� Therefore one may consider the
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k�algebra k�C�� Suppose P is a rational polytope� then D is a rational
cone� and C is a positive normal semigroup� Let us �x a grading on k�C�
by assigning to c � �c�� � � � � cd��� the degree cd��� For this grading the
Hilbert functions of k�C� and of the ideal I generated by the monomials
Xc� c � relintC � are given by

H�k�C�� m� � E�P �m� and H�I� m� � E��P �m��

The grading under consideration is admissible for k�C�� and therefore
we may apply the theory of Chapter � to k�C�� Part �b� of the following
theorem is Ehrhart�s remarkable reciprocity law for rational polytopes�

Theorem ������ �Ehrhart�� Let P � Rn be a d�dimensional rational poly�
tope� d � 
� Then

�a� EP �t� is a rational function� and there exists a quasi�polynomial q with

E�P �m� � q�m� for all m 	 
�

�b� E�
P �t� � ����d��EP �t

���� equivalently

E��P �m� � ����dE�P ��m� for all m 	 �

where E�P ��m� � q��m� is the natural extension of E�P � ��

Proof� �a� Since EP �t� is the Hilbert series of a positively graded Noe�
therian k�algebra� it is a rational function� According to ����� we must
show for the second statement in �a� that EP �t� has negative degree� or�
equivalently� that the a�invariant of k�C� is negative� By ����� the ring
k�C� is Cohen�Macaulay� and by ����� its �canonical module is generated
by the elements Xc� c � relintC � These have positive degrees under the
grading of k�C�� and hence a�k�C�� � 
�

�b� By what has just been said� E�
P �t� is the Hilbert series of the

�canonical module of k�C�� Furthermore� dim k�C� � d � �� Thus the
�rst equation is a special case of ������ The second equation results fromP

m	� E�P ��m�tm � �EP �t���� The reader may prove this identity as an
exercise� or look up ������ ������

The quasi�polynomialq in ������ is called the Ehrhart quasi�polynomial
of P �

Suppose that P is even an integral polytope� that is� a polytope whose
vertex set V is contained in Zn� Then� in addition to k�C�� we may also
consider its subalgebra

k�V � � k�X�v��� � v � V ��

Obviously k�V � is a homogeneous k�algebra� Let c � C� then there exist
qv � Q� such that c �

P
v�V qvv� If we multiply this equation by a suitable

common denominator e and interpret the result in terms of monomials�
then we see that �Xc�e � k�V �� Thus k�C� is integral over k�V �� Since it is
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also a �nitely generated k�V ��algebra� it is even a �nite k�V ��module� In
particular� by Hilbert�s theorem ������ the Ehrhart quasi�polynomial of P
is a polynomial and therefore called the Ehrhart polynomial� Furthermore
k�C� has a well de�ned multiplicity� In concluding this section we want
to illuminate the beautiful relation between the volume volP of an n�
dimensional integral polytope P � Rn and the multiplicity of k�C��

Theorem ������� Let P � Rn be an n�dimensional integral polytope� and
let k�C� the normal semigroup ring constructed above� Then

e�k�C�� � n" volP �

Proof� Elementary arguments of measure theory show that the volume
of P is

volP � lim
m��

E�P �m�

mn
�

Being the Hilbert polynomial of a �n � ���dimensional k�V ��module�
E�P �m� has degree n� Thus its leading coe�cient is given by volP � On
the other hand� it is also given by e�k�C���n"�

The restriction to n�dimensional polytopes P � Rn is only for sim�
plicity� see ������ Section ���� for the general case� Using the fact that
the volume of P is the leading coe�cient of its Ehrhart polynomial one
can derive classical formulas for volP � Exercise �����	 presents the cases
n � � and n � ��

Exercises

������� Let C be a positive normal semigroup� For each i � �� � � � � d let Gi be the
direct sum of the residue class rings kC��P �F� where F is an i�dimensional face
of R�C � De	ne the map kC��P �F� � kC��P �F �� to be ��f� f�� nat if F � � F �
dimF � � dimF � �� or � otherwise� Show that the induced sequence

� ��� I
nat
��� kC� � Gd ��� Gd�� ��� � � � ��� G� ��� G� � k ��� �

is exact �of course I is de	ned as in ������� Hint� The proof is similar to that of
������

������� Let C be the semigroup of solutions c �Nn of a system of homogeneous
linear Diophantine equations� and C� � fc � C � ci � � for all ig� Show that if
C� �� � then C� � relint C �

������� Let P be an integral polytope of dimension n� and de	ne the semigroup
C and the grading of kC� as above� It is customary to call �h�� � � � � hn� the
h�vector of P where hi is the i�th coe�cient of the �Laurent� polynomial Q�t� in
the numerator of the Ehrhart series of kC�� it follows from ������ that hi � � for
i � n� Prove the following inequalities due to Stanley ���� and Hibi �����
�a� hi � � for all i�

�b�
Pj

i�� hi �
Pj

i�� hs�i for all j � �� � � � � s where s � maxfi � hi �� �g�
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�c�
Pn

i�n�j hi �
Pj��

i�� hi for all j � �� � � � � n�

Hint� For �b� and �c� study �again� the proof of ����
� For R � kC� we also have
an exact sequence �� � � R � R��� ��

������� With P � C � and kC� as in ������� set L � f�p� ��� p � P 	Zng and let kP �
be the k�algebra generated by the elements Xw � w � L�

�a� Show the following are equivalent�

�i� kC� � kP ��
�ii� kC� is homogeneous�
�iii� kP � is normal and ZL � Zn���

�b� Discuss the conditions of �a��iii� for the polytopes P� � P� � R� spanned by ���
v� � �� v� � ��� �� ��� v� � ��� �� ��� and v� � ��� �� ��� and ��� v� � �� v� � ��� �� ���
v� � ��� �� ��� and v� � ��� �� ���

�����	� Prove that the volume of an n�dimensional integral polytope P in Rn is

volP �
�

�
�E�P � �� � E��P � �� � �� for n � �� and

volP �
�

�
�E�P � �� � �E�P � ��� E��P � �� � �� for n � ��

Hint� The coe�cients of a polynomial can be determined by interpolation�

��	 Invariants of tori and �nite groups

In the followingwe use some elementary notions and results from the the�
ory of linear algebraic groups for which we refer the reader to Humphreys
��
��� Kraft ������ or Mumford and Fogarty ��	��

Let k be an algebraically closed �eld� and V a k�vector space of
�nite dimension� Each � � GL�V � yields a k�algebra automorphism ��
of the symmetric algebra R � S�V �� In concrete terms� if e�� � � � � en is a
basis of V � then S�V � �� k�X�� � � � � Xn�� the isomorphism being induced by
the linear map which sends ei to Xi� i � �� � � � � n� If we identify V and
kX�� � � �� kXn via this map� then �� is just the k�algebra automorphism
of R � k�X�� � � � � Xn� given by the substitution Xi �� ��Xi�� �From a
categorical point of view it would be better to consider the action of
GL�V � on S�V ��� the ring of polynomial functions on V ��

Suppose that G is a linear algebraic group over k� such a group is
always isomorphic to a Zariski closed subgroup of GL�W � where W is a
suitable �nite dimensional k�vector space� A morphism � � G � GL�V �
�in the category of algebraic groups� is called a representation of G� It
assigns the automorphism ���g� of R to each g � G� so that we say that
G acts linearly on R� It is the classical problem of �algebraic� invariant
theory to determine the structure of the ring of invariants

RG � ff � R � g�f� � f for all g � Gg�
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where we have set g�f� � ���g��f� for simplicity of notation� If f is

homogeneous of total degree d � then so is g�f�� Therefore RG is a
positively graded k�algebra inheriting its grading from R�

A character of G is a representation � � G� GL�k�� To each character
� we associate the set

R� � ff � R � g�f� � ��g�f for all g � Gg

of semi�invariants of weight �� It is easily veri�ed that R� is a graded
RG�submodule of R� Especially important in the following is the inverse
determinant character g �� det���g� � det��g��� associated with ��

The ring RG of invariants only depends on ��G� � GL�V �� thus
we shall often simplify the situation by directly considering a subgroup
of GL�V �� Furthermore� for concrete groups the requirement that k be
algebraically closed can sometimes be relaxed�

More generally� one may always form the ring RG when R is a ring
and G is a subgroup of AutR� Clearly RG inherits all properties of R
which descend to subrings� and is a normal domain along with R�

Proposition ��	��� Let R be a normal domain� and G a subgroup of AutR�
Then RG is a normal domain�

Proof� It is easy to see that RG is the intersection of its �eld of fractions
Q�RG� with R �within Q�R���

Invariants of diagonalizable groups� Let k be an algebraically closed
�eld� For each m �N the group GL�k�m is called a torus� it is isomorphic
to the group of m
m diagonal matrices of rank m over k� Slightly more
generally we want to consider diagonalizable groups over k� i�e� direct
products

D � T 
H

where T is a torus and H is a �nite Abelian group whose order is not
divisible by char k� Since k contains a primitive q�th root of unity for
each q not divisible by char k� H may be written in the form

H � h'�i 
 � � � 
 h'wi

where h'ji is the cyclic subgroup of GL�k� generated by a root of unity 'j �
Thus we may write each element in D in the form �d�� � � � � dm� '

s�
� � � � � � '

sw
w �

with sj � N�
Suppose now that we are given a representation of D� that is� a

homomorphism � � D � GL�V �� Then � can be diagonalized� there
exists a basis e�� � � � � en of V such that each ei is an eigenvector of ��d�
for every d � D� Thus the vector subspace kei �� k is stable under the
action of D� and therefore � induces a character �i of D� �i associates
to each element d � D its eigenvalue with respect to ei� It is su�cient to
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determine the characters of the direct factors GL�k� and h'ji of D� One
sees easily that in both cases the characters are the powers a �� as� s � Z�
Thus there exist t�i� � � � � tmi � Z and u�i� � � � � uwi �N� i � �� � � � � n� such that

��d�� � � � � dm� '
s�
� � � � � � '

sw
w ��ei� � dt�i� � � � d

tmi
m 's�u�i� � � � 'swuwiw ei

for i � �� � � � � n�

Theorem ��	��� Let k be an algebraically closed �eld� and D a diagonaliz�

able group over k acting linearly on a polynomial ring R � k�X�� � � � � Xn��
Then

�a� �Hochster� the ring RD of invariants is a graded Cohen�Macaulay ring�

�b� �Danilov� Stanley� Rdet��

��n� is the �canonical module of RD� provided

Rdet��

�� 
�

Proof� We may assume right away that D acts diagonally as just de�
scribed� It follows that each monomial Xa�

� � � �X
an
n is mapped to a

multiple of itself by every d � D� Therefore f � R is invariant if and only
if all its monomials are invariant� so that RD � k�C� for some semigroup
C � Nn� Extending the formula for the action of D to monomials� we
see that Xa�

� � � �X
an
n is an invariant if and only if �a�� � � � � an� satis�es the

system
tj�a� � � � � � tjnan � 
� j � �� � � � � m�

of homogeneous linear equations with integral coe�cients� and simulta�
neously the system

sj�uj�a� � � � �� ujnan� � 
 mod �ord 'j�� j � �� � � � � w�

of homogeneous congruences �of course ord 'j denotes the order of the
root of unity 'j��

It follows easily that C is the intersection of Rn
� with a �nitely

generated group G � Qn� Therefore C is normal� and part �a� is an
immediate consequence of ������a��

Similarly� part �b� can be derived rather quickly from ������b�� Set

S � RD� M � Rdet��

� and P � X� � � �Xn� Then d�P � � det�d�P for all
d � D� Hence� for every f � R� f �M if and only if Pf � S � Obviously
M is an S�module generated by monomials �even as a k�vector space��
and therefore a graded S�module�

Let I be the ideal generated by the monomials Xc�
� � � �X

cn
n with

�c�� � � � � cn� � relintC � We know from ����� in conjunction with ����	
that I is the graded canonical module of S �up to an isomorphism of
graded modules�� Evidently it is enough to show that PM � I and
P��I �M� provided M �� 
�

The representation C � Rn
� �G readily yields that

f�c�� � � � � cn� � C � ci � 
 for all ig � relintC�
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Therefore PM � I � Conversely� suppose M �� 
� and let Xb�
� � � �X

bn
n � M�

Then PXb�
� � � �X

bn
n � S � and so C contains an element �c�� � � � � cn� with

ci � 
 for all i� Hence C is not contained in a coordinate hyperplane� and
consequently no relative interior point of C lies in such a hyperplane� It
follows that P��I � k�X�� � � � � Xn�� and thus P��I �M�

The preceding proof shows that the degenerate case Rdet��

� 
 oc�
curs precisely when� after diagonalization� RG is contained in one of the

subrings k�X�� � � � � �Xi� � � � � Xn�� Furthermore� the condition that k be alge�
braically closed is dispensable once the action of D is a priori diagonal�
If k is in�nite� then the proof of ����� remains valid without modi�cation�
if k is �nite� then one must set T � fidg and m � 
� This generalization
can also be extended to the following corollary�

Corollary ��	��� Under the hypothesis of ����� suppose additionally that

detd � � for all d � D� Then RD is a Gorenstein ring�

The proof of ����� suggests that ����� is just a special case of ������
however� Exercise ������ shows that these theorems are actually equiva�
lent�

Finite groups� Theorem ����� in particular covers the case in which a
�nite Abelian group G acts linearly on a polynomial ring k�X�� � � � � Xn��
provided the order jGj of G is invertible in k� With the same proviso� we
now want to treat the case of an arbitrary �nite group� It is convenient
to restrict oneself to subgroups G of GL�V ��

More generally let us �rst consider a ring R and a �nite group G of
automorphisms of R such that jGj is invertible in R� Let S be the ring
RG of invariants� and set

��r� � jGj��
X
g�G

g�r�

for every r � R� It is straightforward to verify that � is an S�linear map
from R to S with �jS � idS � A map satisfying these conditions is called
a Reynolds operator �for the pair �R� S��� The existence of a Reynolds
operator is obviously equivalent to the fact that S is a direct summand
of R as an S�module�

Proposition ��	�	� Let R be a ring� S a subring of R� and suppose that there
exists a Reynolds operator for �R� S�� Then the following hold	

�a� for every ideal I of S one has IR � S � I�
�b� if R is Noetherian� then so is S�
�c� if x is an R�sequence in S � then it is also an S�sequence�

Proof� �a� For s�� � � � � sn � S � r�� � � � � rn � R with r �
P

siri � S one has
r � ��r� �

P
si��ri��
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�b� If I� � I� � � � � is an ascending sequence of ideals in S � then the
sequence I�R � I�R � � � � is stationary in R� Therefore� and by �a�� the
sequence I� � I� � � � � is also stationary�

�c� This follows easily from �a��

In the case of a group action considered above� each r � R is a
solution of the equation Y

g�G

�X � g�r�� � 
�

The left hand side is a monic polynomial in X whose coe�cients are
elementary symmetric functions in the elements g�r�� g � G� Therefore all
the coe�cients belong to the ring S of invariants� and we see that R is
integral over S �

Theorem ��	�� �Hochster�Eagon�� Suppose R is a Cohen�Macaulay ring

and S is a subring such that there exists a Reynolds operator �� and R is

integral over S � Then� if R is Cohen�Macaulay� so is S �

Proof� We must show that the localizations Sn of S with respect to its
maximal ideals n are Cohen�Macaulay� Given a maximal ideal n of S �
we replace S by Sn and R by R � Sn � Therefore we may assume that S
is a local ring with maximal ideal n � Since R is integral over S � it is a
semi�local ring� �This follows easily from A����

We argue by induction on the length of a maximal R�sequence in n �
Suppose �rst that n consists entirely of zero�divisors of R� Then each
s � n is contained in one of the associated prime ideals p �� � � � � p m of
R� So n �

S
p i � S � and there exists a j with n � p j � S � As R is

Cohen�Macaulay� all the p i are minimal prime ideals of R� On the other
hand� since R is integral over S � p j is also a maximal ideal of R�

If p j is the only maximal ideal of R� then it follows immediately that
dimS � dimR � 
 so that S is Cohen�Macaulay as desired� Otherwise
the zero ideal of R can be written q � r where q is p j�primary and r �� p j �
As q � r � R� the Chinese remainder theorem implies that R splits into
the direct product of subrings R�� R�� If we can replace R by one of
them� then we can �nish the case under consideration by induction on
the number of maximal ideals of R�

Let �� and �� be the projections of R onto R� and R�� and 	 the
embedding of S into R� Then both �����	 and �����	 are endomorphisms
of the S�module S � Hence there exist s� and s� such that � � �i � 	 is
multiplication by si� It follows that

� � � � 	��� � � � ��� � ��� � 	��� � s� � s�

so that at least one of s� and s� is a unit in S � say s�� Then �� � 	 is an
embedding of S into R�� and one easily checks that all the hypotheses
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pass on to the pair �R�� S�� This �nishes the case in which n consists
entirely of zero�divisors of R�

Now suppose that s � n is R�regular� Then ����� implies that S�sS is
in a natural way a subring of R�sR� and it is again easily veri�ed that
the remaining hypotheses hold for the subring S�sS of R�sR� As R�sR
is Cohen�Macaulay� we conclude that S�sS and� hence� S are Cohen�
Macaulay�

Corollary ��	��� Let R be a Cohen�Macaulay ring� and G a �nite group

of automorphisms of R whose order is invertible in R� Then the ring RG of

invariants is Cohen�Macaulay�

Remark ��	��� In our derivation of ����� we have used that jGj is invertible
in R in order to show that RG is Noetherian� However� for this property
of RG the hypothesis on jGj is quite inessential� if R is a �nitely generated
algebra over a Noetherian ring k such that G acts trivially on k� then�
by a famous theorem of E� Noether� RG is a �nitely generated k�algebra�
We saw above that R is integral over RG� Therefore R is already integral
over the k�subalgebra A generated by the coe�cients of the equations
fi�x� � 
� fi � k�T �� which establish that the �nitely many generators xi
of R are integral over RG� It follows that R and� hence� RG are �nite
A�modules�

On the other hand� that jGj is invertible in R is essential for the
Cohen�Macaulay property of RG� In fact� if k is a �eld of characteristic ��
then k�X�� � � � � X��G is a non�Cohen�Macaulay factorial domain for the
group G of cyclic permutations of X�� � � � � X�� see Bertin �����

Similarly to ����� one can determine the canonical module of RG from
invariant theoretic data if G acts linearly on a polynomial ring R� Let V
be again a vector space of �nite dimension over a �eld k which we now
assume to be of characteristic 
 �see Remark ������ for the more general
case in which jGj is not divisible by char k�� As above we extend the action
of G to the symmetric algebra R � S�V � which we may identify with the
polynomial ring k�X�� � � � � Xn�� n � dimV � whenever it is appropriate�

Let S � RG� Since the action of G can be restricted to the graded
components Ri of R� S is a positively graded k�algebra� Being a �nitely
generated integral extension of S � R is a �nite graded S�module� and in
fact a maximal Cohen�Macaulay S�module� according to �����	 there
exists a homogeneous system of parameters x in S� it follows that
heightxR � n� and thus x is an R�sequence� �In conjunction with �����
this observation yields a quick proof of the previous corollary in the
special case under consideration��

It is customary to call the Hilbert series of S the Molien series of G�

MG�t� � HS �t� �
�X
i��

dimSit
i�
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We also need the Molien series and the Reynolds operator for the semi�
invariants of G� For a character � of G we set

M��t� � HM�
�t� �

�X
i��

dimR
�
i t
i and ���r� � jGj��

X
g�G

��g���g�r��

It is easy to check that ���R� � R� and ���r� � r for r � R�� The operator
�� is a k�endomorphism of the graded k�vector space R� Let ��i denote

its restriction to Ri� then ��i � ���i �
�� and therefore

dimR�
i � dimIm ��i � Tr ��i � jGj��

X
g�G

��g���TrgjRi
�

Here Tr denotes the trace� and we use its linearity� Combining the
formulas yields

M��t� � jGj��
X
g�G

��g���
�X
i��

�TrgjRi
�ti�

Theorem ��	�� �Molien�s formula�� Let k be a �eld of characteristic 
�
V a �nite dimensional k�vector space� and G a �nite subgroup of GL�V ��
Then the Molien series of a character � of G is given by

M��t� � jGj��
X
g�G

��g���

det�id�tg�
�

Proof� We need to show that

�

det�id�tg�
�

�X
i��

�TrgjRi
�ti

for each g � G� In fact� this equation holds for an arbitrary element
g � GL�V �� In order to prove it we may extend k to an algebraically
closed �eld� Then� for a suitable basis X�� � � � � Xn of V � g is given by
an upper triangular matrix whose diagonal entries are the eigenvalues
��� � � � � �n of g �as an element of GL�V ���

The monomials of total degree i in X�� � � � � Xn form a basis of the
vector space Ri� If these monomials are ordered lexicographically� then
gjRi

is again represented by an upper triangular matrix whose diagonal
entry corresponding to the monomial X a � Xa�

� � � �X
an
n is �a � �a�� � � � �

an
n �

Therefore

TrgjRi
�
X
jaj�i

�a�
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and the expansion of the product of the geometric series ���� � �jt��
j � �� � � � � n� gives us

�X
i��

�TrgjRi
�ti �

�X
i��

X
jaj�i

�ati �
nY
j��

�

�� �jt
�

Using that ���
� � � � � � ���

n are the eigenvalues of g��� we �nally get

nY
j��

�

�� �jt
�

nY
j��

���
j

���
j � t

�
detg��

det�g�� � t id�
�

�

det�id�gt�
�

We can now easily prove the analogues of ����� and ����� for linear
actions of �nite groups�

Theorem ��	�� �Watanabe�� Let k be a �eld of characteristic 
� V a k�
vector space of dimension n� R � S�V �� and G a �nite subgroup of GL�V ��

�a� Then Rdet��

��n� is the �canonical module of RG�

�b� In particular RG is Gorenstein if G � SL�V ��

Proof� Set S � RG and � � det��� Since �� is an S�linear map from R
onto N � R�� we see that N is a direct S�summand of R� It was observed
above that R is a maximal Cohen�Macaulay module over S� therefore N
is also a maximal Cohen�Macaulay S�module� Furthermore

M��t� � jGj
��
X
g�G

det g

det�id�tg�
� jGj��

X
g�G

�

det�g�� � t id�

� jGj��
X
g�G

�

det�g � t id�
� jGj��

X
g�G

����nt�n

det�id�t��g�

� ����nt�nMG�t
����

As the Molien series are Hilbert series� we may apply ����� to conclude
that N��n� is the �canonical module of S � This proves �a��

If G � SL�V �� then� by �a�� S is isomorphic to the �canonical module
of S � As a �canonical module is canonical� S is Gorenstein�

Very easy examples show that �����b� cannot be reversed� The
obstruction is the presence of pseudo�re�exions in G� g � GL�V � is
called a pseudo�re�exion if it has �nite order and its eigenspace for the
eigenvalue � has dimension dimV � �� �Thus the remaining eigenvalue is
the determinant��

Theorem ��	��
� With the notation of ���� the following hold�

�a� �Stanley� RG is Gorenstein if and only ifX
g�G

�

det�id�tg�
� t�m

X
g�G

detg

det�id�tg�

where m is the number of pseudo�re�exions in G�
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�b� �Watanabe� Suppose G contains no pseudo�re�exions� Then RG is

Gorenstein if and only if G � SL�V ��

Proof� �a� If we apply ����� to the Molien series of RG� then it follows
easily that RG is Gorenstein if and only if the equation in �a� holds for
some m � Z� It remains to determine m� To this end we expand both
sides in a Laurent series at t � �� Let n � dimV � and � denote the set of
pseudo�re�exions in G�

The pole order of �� det�id�tg� at t � � is the multiplicity of � as
an eigenvalue of g� Thus the only summand with a pole of order n is
�� det�id�t id� � ���� � t�n� and those with a pole of order n � � are
exactly the summands

�

det�id�t��
�

�

��� t�n��

�

�� det �
� � � � � � � ��

where � � � denotes terms of higher order in ��� t�� Thus the left hand side
is

�

��� t�n
�

�

��� t�n��

X
���

�

�� det �
� � � �

whereas the right hand side is

�� � m��� t� � � � ��
	 �

��� t�n
�

�

��� t�n��

X
���

det �

�� det �
� � � �



so that a comparison of coe�cients yields m � j�j as required�

�b� Evaluating the formula in �a� for t � 
 gives jGj �
P

g�G det g�
Since the eigenvalues of the elements of G are roots of unity� we must
have det g � � for all g � G� �Note that the elements of k which are
algebraic over k may be considered complex numbers��

Remark ��	���� Theorems ���� and �����
 were proved byWatanabe ���	��
����� under the weaker assumption that jGj is not divisible by char k� His
proofs use divisorial methods� Hini%c ��	�� extended Watanabe�s results
to invariant subrings of Gorenstein rings�

Finite groups generated by pseudo�re�exions� That the pseudo�re�exions
in a �nite group G � GL�V � play a special role has already been
demonstrated by �����
� However� the most ostensive indication of this
fact is the celebrated theorem which characterizes the regular ones among
the rings of invariants of �nite groups�

Theorem ��	��� �Shephard�Todd� Chevalley� Serre�� Let k be a �eld of

characteristic 
� V a k�vector space of dimension n� R � S�V �� and G a

�nite subgroup of GL�V �� Then the following are equivalent	

�a� G is generated by pseudo�re�exions�
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�b� R is a free RG�module�

�c� the k�algebra RG is generated by �necessarily n� algebraically indepen�

dent elements�

That �c� is equivalent with the regularity of RG follows from Exercise
������� which also shows that the algebraically independent elements
can be chosen homogeneous� their number is n� as dimRG � dimR �
dimV � n�

The remainder of this section is devoted to a proof of ������� The
next lemma covers the equivalence �b�� �c��

Lemma ��	���� Let R be a positively graded� �nitely generated algebra

over an arbitrary �eld k� and S a graded k�subalgebra such that R is a

�nite S�module�
�a� Then S is a �nitely generated k�algebra�
�b� If R is Cohen�Macaulay and S is generated by algebraically indepen�

dent elements over k� then R is a free S�module� Moreover� it has a basis

of homogeneous elements�

�c� If R is generated by algebraically independent elements over k and a

free S�module� then S is generated by algebraically independent elements�

Proof� �a� This is a special case of E� Noether�s theorem proved in ����	�
�b� By hypothesis S is a regular ring� a minimal homogeneous system

x�� � � � � xn of generators of its
�maximal ideal is algebraically independent�

and furthermore generates S as a k�algebra �see Exercise �������� Since R
is a �nite S�module� x�� � � � � xn is also a homogeneous system of parameters
of R� and thus an R�sequence by hypothesis on R� Consequently R is a
maximal Cohen�Macaulay S�module� It follows from ������ that R is a
projective S�module� and then ������ implies that R is a free S�module�
and that every minimal homogeneous system of generators of R over S
is a basis�

�c� Let m and n be the �maximal ideals of R and S � The hypothesis
implies that Rm is a regular local ring and a �at local extension of Sn �
Thus Sn is regular according to ������� Again we apply ������ to conclude
that S is generated by algebraically independent elements�

We now show that �a� �b� in ������� For R to be a free S�module�
S � RG� it is su�cient that M � TorS� �R� S�n � � 
� In fact this implies
that Rn is a free Sn �module� whence R is free over S by ������� The module
M is the kernel of the homomorphism � � R �S n � R �S S induced by
the embedding n � S � Given a minimal homogeneous system x�� � � � � xm
of generators of n � M consists of all the elements

P
yi � xi� yi � R withP

yixi � 
�
Evidently M is a graded submodule of the graded S�module R � n

with deg a�b � deg a�deg b for homogeneous elements a � R� b � n � We
assume that M �� 
� In order to derive a contradiction choose a non�zero
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homogeneous element
P

yi � xi of minimal degree in M� Replacing yi
by a suitable homogeneous component� we may suppose that each yi is
itself homogeneous�

We claim that
P

yi � xi �
P

g�yi� � xi for all g � G� Since G is
generated by pseudo�re�exions� it is enough to show this for a pseudo�
re�exion �� We choose a basis X�� � � � � Xn of V such that ��Xi� � Xi for
i � �� � � � � n and ��X�� � 'X� where ' is a root of unity� For each monomial
f in X�� � � � � Xn it follows easily that X� divides ��f� � f� Therefore X�

divides ��f� � f for every element f of R� Let ��yi� � yi � X�y
�
i for

i � �� � � � � n� Then
P

y�ixi � 
 so that
P

y�i�xi �M� From the assumption
on
P

yi�xi we conclude
P

y�i�xi � 
 and� hence�
P

yi�xi �
P

��yi��xi �

The Reynolds operator �� viewed as an S�endomorphism of R� induces
an S�linear map �� � � � id� R � n � R � n � By what has just been
proved� ���

P
yi � xi� �

P
yi � xi� On the other hand Im � � S so that ��

factors as

R � n
���

�� S � n
�
�� R � n

where 	 is induced by the embedding S � R� It is immediate that
����M� is mapped to the kernel TorS��S� S�n � � 
 of the natural map
S � n � S � S � S � Thus ���

P
yi � xi� � 
� and therefore

P
yi � xi � 
�

which is the required contradiction�

It remains to prove the implication �c�  �a� for which we use a
combinatorial argument based on the following lemma�

Lemma ��	��	� Let k be a �eld of characteristic 
� V a k�vector space

of �nite dimension� R � S�V �� and G a �nite subgroup of GL�V �� Let

x�� � � � � xn� n � dimV � be a homogeneous system of parameters of RG�

�a� Then x�� � � � � xn are algebraically independent over k� and RG is a free

k�x�� � � � � xn��module� it has a basis of homogeneous elements h�� � � � � hm�

�b� Let di � deg xi� i � �� � � � � n� and ej � deg hj � j � �� � � � � m� and let �
denote the set of pseudo�re�exions in G� Then

mjGj � d� � � � dn� and mj�j� ��e� � � � � � em� � m�d� � � � � � dn � n��

Proof� �a� According to �����	 RG is a �nite k�x�� � � � � xn��module� Thus we
have dim k�x�� � � � � xn� � n so that x�� � � � � xn are algebraically independent
over k� One now applies �������

�b� The Hilbert series of k�x�� � � � � xn� is ��
Qn

i���� � tdi�� Thus the

Hilbert series of the k�x�� � � � � xn��module R
G �

L
hik�x� � � � � � xn� is

MG�t� �
te� � � � �� temQn

i����� tdi�
�

�

��� t�n
f�t�



���� Invariants of tori and �nite groups ��

where f�t� � �te� � � � � � tem��
Qn

i��

Pdi��
j�� tj does not have a pole at t � ��

Expansion in a Laurent series at t � � yields

MG�t� �
�

��� t�n
�
f���� f������� t� � � � �

�
with f��� � m��d� � � � dn� and

f���� �
e� � � � � � em � �m���

Pn
i���di � ��

d� � � � dn
�

As we saw in the proof of �����
� we also have

MG�t� � jGj��
	 �

��� t�n
�

�

��� t�n��

X
���

�

�� det �
� � � �



�

Observe thatX
���

�

�� det �
�
�

�

	X
���

�

�� det �
�
X
���

�

�� det ���



�
�

�

X
���

� �
�

�
j�j�

Comparing coe�cients in the Laurent expansions gives the required
formulas�

We now complete the proof of ������ with the implication �c�  �a��
Let H be the subgroup of G generated by the pseudo�re�exions in
G� Using the implication �a�  �c�� we see that RH is generated by
algebraically independent homogeneous elements y�� � � � � yn� Since RG is�
by hypothesis� also generated by algebraically independent homogeneous
elements x�� � � � � xn� we have an inclusion k�x� � � � � � xn� � k�y�� � � � � yn�� We
want to show that there exists a permutation � of f�� � � � � ng such that
deg xi 	 deg y��i� for all i�

To this end we de�ne Pi to be the smallest subset of f�� � � � � ng such
that xi � k�yj � j � Pi�� For each subset I of f�� � � � � ng the set

S
i�I Pi must

have at least jIj elements since the xi� i � I � are algebraically independent�
Thus the marriage theorem of elementary combinatorics guarantees an
injective map � with ��i� � Pi for all i� By de�nition of Pi we have
deg xi 	 deg y��i��

Arranging y�� � � � � yn in the order prescribed by � we may assume
that di � deg xi 	 zi � deg yi for all i� Lemma ������ applied to RG �
k�x�� � � � � xn� yields

j�j � d� � � � � � dn � n�

since we have m � �� h� � �� and d� � 
� But ������ also applies to
RH � k�y�� � � � � yn�� and since H contains all the pseudo�re�exions of G�
we similarly obtain

j�j � z� � � � � � zn � n�

Summing up� we must have di � zi for all i� Therefore jGj � jHj by the
�rst equation in ������� and G � H �
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Remarks ��	���� �a� The equivalence of �b� and �c� in ������ is independent
of any assumption on the characteristic of k or the order of G� as is clearly
exhibited by ������� Furthermore� the proof of the implication �a�  �a�
only uses that jGj is not divisible by char k� It is due to Serre ������ as
well as a proof of �c�  �a� �based on rami�cation theory� which does
not require any assumption on k or G� see also Bourbaki ���� Ch� �� For
�c�  �a� we have reproduced the original argument of Shephard and
Todd ����� which exploits the fact that char k � 
 in an essential way�

�b� Within the hierarchy �regular� complete intersection� Gorenstein�
Cohen�Macaulay�� the property of being a complete intersection is the
most di�cult for rings of invariants of linear actions of �nite groups�
A necessary condition for RG to be a complete intersection was given
by Kac and Watanabe ������ if RG is a complete intersection� then G is
generated by elements g with rank�g� id� � �� The proof uses geometric
methods� Exercise ������ presents an example showing that this condition
is not su�cient for RG to be a complete intersection� See Gordeev ����
and Nakajima and Watanabe ���	� for a classi�cation of the groups G
for which RG is a complete intersection� Nakajima ����� has classi�ed
the hypersurface rings RG�

Exercises

������� Let S � T be a�ne semigroups� S � T � One says that S is an expanded

subsemigroup of T if S � T 	QS �in QT �� Prove�

�a� An expanded subsemigroup is a full subsemigroup�

�b� The following are equivalent for a subsemigroup S of Nn�

�i� S is expanded�
�ii� there exists a vector subspace U of Qn with S � U 	 Qn�
�iii� there exists a homogeneous system of linear equations with integral
coe�cients such that S is the set of its non�negative solutions�
�iv� kS � is the ring of invariants of a linear torus action on kX� � � � � � Xn��

�c� Every positive normal semigroup C is isomorphic to an expanded subsemi�
group of Nn for some n � ��

Hint for �c� �communicated by Hochster�� By ������ we may assume that C is a

full subsemigroup of Nm for some m � �� thus C � Nm 	ZC � Set �C � Nm 	QC �

Then Z �C�ZC is a torsion group� so that there exist a basis e� � � � � � er of Z �C and
positive integers qi for which q�e� � � � � � qrer is a basis of ZC � Extend e� � � � � � er to
a basis of Qm� and let �i� i � �� � � � � r� be the linear form on Qm which assigns
each vector its i�th coordinate with respect to this basis� Note that �i�a� � Z for

all a � Z �C� Then C is the set of elements of c � Nm satisfying �i� a system of
homogeneous linear equations with rational coe�cients whose set of solutions is
QC � and secondly the congruence conditions �i�c� � �modqi� Adding positive
integral multiples of qi to the coe�cients of �i �with respect to the dual canonical
basis of Qm�� we may replace the �i by linear forms which are non�negative
on Nm� Then �i�c� � �modqi if and only if the linear equation �i�c� � yiqi
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has a non�negative integral solution yi�c�� Consider the map C � Nm � Nr �
c �� �c� y��c�� � � � � yr�c���

�����	� Let k be an in	nite 	eld� and R � Y� � Y�� Z�� Z��� Suppose that GL��� k� �
k n f�g acts on R by the substitutions Yi �� aYi� Zi �� a��Zi�
�a� Show that S � RG is generated by the elements xij � YiZj � i� j � �� ��
In Exercise ����� we have seen that S 
� kX�� � X�� � X�� � X�����X��X�� � X��X����
the isomorphism being induced by the substitution Xij �� xij �
�b� Let p � �x�� � x��� and q � �x�� � x���� Show �i� p and q are prime ideals in S and
maximal Cohen�Macaulay S �modules� �ii� p j and q j are not Cohen�Macaulay
for j � �� ������� is helpful for �ii�� use a system of parameters consisting of
��forms� Or use the Hilbert�Burch theorem��
�c� The characters of GL��� k� are given by the maps a �� aj � j � Z� Compute
the semi�invariants for each of the characters� and 	nd out which of them are
Cohen�Macaulay S �modules�

�����
� Let V be a 	nite dimensional vector space over a 	eld k� R � S �V �� and
G a 	nite subgroup of GL�V � such that jGj is invertible in k� Show that for each
character � of G the RG�module M
 is a direct RG�summand of R and a rank �
maximal Cohen�Macaulay RG�module�

������� Let G be the cyclic subgroup of GL���C� generated by the matrix�
� ��
� �

�

and R � S �C�� � CX� � X��� Compute the Molien series of G� and show that
RG is a complete intersection� �In order to determine the generators of RG one
should draw as much information as possible from the Molien series��

������� Show that the subgroup of GL���C� generated by the matrices�
� ��
� ��

�
and

�
� �
� �

�

is isomorphic to S�� the permutation group of three letters� Prove that RG �with
R � S �C�� � CX� � X��� is generated by algebraically independent elements x�� x��
and determine their degrees�

������� �a� Let k be a 	eld and S a graded k�algebra generated by elements
x�� � � � � xn of positive degrees d�� � � � � dn� If S is a complete intersection� then
there exist positive integers e� � � � � � er with r � n � dimS such that HS �t� �Qr

i���� � tei ��
Qn

j����� tdj ��
�b� Embed the group G of the previous problem into GL���C� by sending each

matrix A � G to the matrix
�
A �
� A

�
� and let R � S �C�� � CX� � � � � � X��� Show

that RG is not a complete intersection� Is RG Gorenstein�

������� Let k be a 	eld� R � kX� � � � � � Xn�� and 	�� � � � � 	n be the elementary
symmetric polynomials in X� � � � � � Xn �
�a� Show that height�	� � � � � � 	n�R � n�
�b� Let G be the subgroup of GL�n� k� formed by the permutation matrices�
Noting that G is generated by pseudo�re�exions� give a fast proof of the main
theorem on symmetric functions in the case in which char k � ��
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��� Invariants of linearly reductive groups

Let k be an algebraically closed �eld� A linear algebraic group G over
k is called linearly reductive if for every �nite dimensional representation
G� GL�V � the k�vector space V splits into the direct sum of irreducible
G�subspaces U� Here U is a G�subspace if g�u� � U for all g � G and
u � U� it is irreducible if it has no G�subspaces other than f
g and U�

The main objective of this section is the proof of the following
fundamental result�

Theorem ����� �Hochster�Roberts�� Let k be an algebraically closed �eld

and G be a linearly reductive group over k acting linearly on a polynomial

ring R � k�X�� � � � � Xn�� Then the ring RG is Cohen�Macaulay�

The most classical examples of linearly reductive groups are �nite
groupsG whose order is not divisible by char k� this is Maschke�s theorem�
The tori GL��� k�m are linearly reductive independently of char k� as
follows easily from the fact that a torus action can be diagonalized� Thus
the results of the previous section about the Cohen�Macaulay property
of rings of invariants of tori or �nite groups are special cases of ������

In characteristic 
 the groups GL�n� k� and SL�n� k� are linearly re�
ductive� and so are the orthogonal and symplectic groups� However� in
characteristic p � 
 there exist only a few linearly reductive groups so
that ����� has its main applications in characteristic 
�

Let G � GL�V � be a �nite dimensional representation of a linearly
reductive group G� Then the set VG of invariants is the maximal trivial
G�subspace of V where trivial means for a G�subspace U that g�u� � u
for all g � G and u � U� Let W be the sum of all non�trivial irreducible
G�subspaces of V � Then W is in fact a direct sum W� � � � � �Wt of non�
trivial irreducible subspacesWi� and it follows easily that VG�W � WG

� �
� � � �WG

t � 
� Thus V � VG �W � and W is the unique complementary
G�subspace of VG� as every irreducible subspace U with U � VG � 
 is
contained in W � The projection � � V � VG with kernel W satis�es the
condition ��g�v�� � ��v� for all g � G and v � V � It is called the Reynolds
operator�

As in the previous section let now R � k�X�� � � � � Xn� be a polynomial
ring over k whose space of ��forms is identi�ed with V � Then G acts
linearly on the graded components Ri of R for each of which we have
a Reynolds operator �i� The direct sum of the �i is a surjective map
� � R � RG which is easily seen to be RG�linear� In fact� the RG�linearity
of � is equivalent to rKer � � Ker � for all r � RG� It is enough to show
that rU � Ker � for a homogeneous element r � RG of degree i and
a non�trivial G�subspace U � Rj � As multiplication by an invariant is
G�linear� rU is either 
 or G�isomorphic to U� Therefore rU � Ker �i�j�
In the general context of linearly reductive groups we have thus recovered
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the existence of a Reynolds operator R � RG which was �rst encountered
above ����� and which is the crucial fact in the proof of ������

By ����� the existence of a Reynolds operator R � RG implies that
IR � RG � I for every ideal I of RG� and furthermore that RG is a
Noetherian k�algebra� Being positively graded� it is even �nitely generated
over k� So ����� follows from the more general� purely ring�theoretic

Theorem ������ Let k be a �eld� and R � k�X�� � � � � Xn�� Suppose S is a

�nitely generated graded k�subalgebra of R such that IR � S � I for all

ideals I of S � Then S is Cohen�Macaulay�

Remarks ������ �a� The original Hochster�Roberts theorem ��
�� is more
general than stated in ������ It says� let G be a linearly reductive group

over a �eld k acting rationally on a regular Noetherian k�algebra R� then
RG is Cohen�Macaulay�

�b� Let S � R be rings� S is called a pure subring �or R a pure

extension of S� if for every S�module M the natural homomorphism
M � M �S S � M �S R is injective� The reader may prove that S is a
pure subring of R if one of the following conditions holds� �i� there exists
a Reynolds operator R � S� �ii� R is faithfully �at over S� �iii� R�S is
�at over S � Thus� under the conditions of ������ RG is a pure subring of
R� The choice M � S�I yields that IR � S � I for every ideal I of S if
S is a pure subring of R� See ��	
�� x	 or Hochster and Roberts ��
���
Section � for a discussion of purity�

Using the notion just introduced we can formulate the following
even more general theorem of Hochster and Huneke ��	�� let R be

a regular ring� and S a pure subring of R containing a �eld� then S is

Cohen�Macaulay� We will prove this theorem under the slightly weaker
hypothesis that S is a direct S�summand of R� see �
����� The case in
which R contains a �eld of characteristic p � 
 was already given by
Hochster and Roberts ��
��� and the case in which R and S are �nitely
generated algebras over a �eld was established by Kempf ������

�c� An important variant of the theorem of Hochster and Roberts is
due to Boutot ��
�� Let R be a �nitely generated algebra over an alge�

braically closed �eld of characteristic 
� and S a pure subring of R� if R
has rational singularities� then so has S � It is remarkable that Boutot�s
theorem �for which there is also an analytic version� weakens the hypoth�
esis of the Hochster�Roberts theorem while strengthening its conclusion�
For the notion of rational singularity we refer the reader to ����� and
�����

�d� The hypotheses of the theorems presented in �b� and �c� cannot
be weakened essentially� In particular it is not true that RG is Cohen�
Macaulay whenever a linearly reductive group G acts linearly on a
Cohen�Macaulay ring R� See ����	 for a simple counterexample�
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�e� By �����
 a positive normal semigroup ring S � k�C� can be
embedded as a graded subring into a polynomial ring R over k such
that there exists a Reynolds operator R � S � In conjunction with
����� this argument is the fastest and most elementary proof of the
Cohen�Macaulay property of normal semigroup rings� especially if one
uses the simple reduction to characteristic p indicated in Exercise ������
Nevertheless the proof given in ��� retains is value since it gave us insight
into the combinatorial structure of S � and� above all� allowed us to
compute the canonical module�

The following proof of ����� has been drawn from Knop ����� Its
characteristic p part is an argument from tight closure theory� which we
will study systematically in Chapter �
�

The �rst step is the reduction of ����� to Theorem ����� below� The
k�algebra S is positively graded� By �����	 it has a homogeneous system
of parameters f�� � � � � fs� Suppose that gr��fr�� � g�f�� � � ��grfr for some
r� 
 � r � s � �� If we can show that gr�� � �f�� � � � � fr�� then f�� � � � � fs
is an S�sequence� and the theorem is proved� Suppose on the contrary
that gr�� �� �f�� � � � � fr�� As �f�� � � � � fr�R � S � �f�� � � � � fr� by hypothesis�
one even has gr�� �� �f�� � � � � fr�R� The elements f�� � � � � fs are algebraically
independent over k� Moreover� S is a �nite k�f�� � � � � fs��module� Therefore
it is enough to prove the following theorem�

Theorem ����	� Let k be a �eld� and f�� � � � � fs algebraically independent

homogeneous elements of positive degree in R � k�X�� � � � � Xn�� Suppose

that S is a module��nite graded k�f� � � � � � fs��algebra such that there ex�

ists a homogeneous homomorphism � � S � R of k�f� � � � � � fs��algebras� If
gr��fr�� � g�f�� � � �� grfr with g�� � � � � gr�� � S for some r� 
 � r � s� ��
then ��gr��� � �f�� � � � � fr�R�

Proof� Without restriction we may assume that the gi are homogene�
ous elements of S � Let r�� � � � � rm be a system of generators of S as a
k�f�� � � � � fs��module� Suppose A is a �nitely generated Z�subalgebra of R
containing all the elements of k which appear as coe�cients in

�i� ��gi� as a polynomial in X�� � � � � Xn� i � �� � � � � r � ��

�ii� the polynomials piju � k�Y� � � � � � Ys� with rirj �
Pm

u��piju�f�� � � � � fs�ru�
and

�iii� the analogous representations gi �
Pm

u�� qiu�f�� � � � � fs�ru�

Let B � A�f�� � � � � fs�� C � A�X�� � � � � Xn�� and T � B�r�� � � � � rm� � S � Then

A�f�� � � � � fs� � C� ��T � � C� gi � T � T � Br� � � � �Brm�

Thus� if we replace k by the �nitely generated Z�subalgebra A� then all the
assumptions of the theorem �except that on k� remain valid� It is enough
to show ��gr��� � �f�� � � � � fr�C for one such A� As ��gr���� f�� � � � � fr are
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homogeneous this is equivalent to the solubility of a system S of linear
equations with coe�cients in A� �The system S arises from comparing
coe�cients in C � A�X�� � � � � Xn���

If S has a solution over the �eld of fractions of A� then we enlarge
A by adjoining the reciprocals of the �nitely many denominators of a
solution� and obtain a solution in the new A�

So suppose that S is insoluble over the �eld of fractions of A� Then
there is a non�zero element d � A such that the reduction of S modulo a
maximal ideal m of A does not have a solution whenever d �� m � �Simply
take d as a suitable subdeterminant of the matrix ofS including the right
hand side�� Adjoining d�� � k to A� we may assume that the reduction
of S modulo any maximal ideal m of A is insoluble�

We want to pass to such a reduction� It may happen however that
the induced map B�m B � C�m C is not injective� Therefore an extra
condition must �rst be satis�ed� In fact� by the theorem on generic
�atness� which we will prove below� there exists t � B such that Ct is a
free Bt�algebra� As A and B are �nitely generated Z�algebras� they are
Hilbert rings� This implies that ��� there exists a maximal ideal n of B
with t �� n � ��� m � n � A is a maximal ideal of A� and furthermore ���
A�m is a �nite �eld� see A��	� A���� One has a commutative diagram

B�m B
�

����� C�m C

�

��y ��y
Bt�m Bt

�
����� Ct�m Ct

Since m B is a prime ideal with t �� m B� " is injective� Next � is injective
because the extension Bt � Ct is faithfully �at� and so 	 is injective as
desired�

One now replaces all objects by their residue classes modulo m � Since
the �eld A�m is �nite� the theorem has been reduced to the case in which
k is a �nite �eld" Let p be its characteristic�

The �nite k�f�� � � � � fs��module S has a rank �just because k�f�� � � � � fs�
is a domain�� Let F be a free submodule of S such that rankF � rank S �
There exists a non�zero element c � k�f�� � � � � fs� such that cS � F � We set
q � pe� and take the q�th power of the equation gr��fr�� � g�f��� � ��grfr
and multiply by c to obtain

�cgqr���f
q
r�� �

rX
i��

�cgqi �f
q
i �

The elements cgqi � i � �� � � � � r � � are in the free k�f�� � � � � fs��module
F � Then an elementary argument yields hiq � F with cgqi � hiqf

q
r�� for

i � �� � � � � r� By substituting these expressions into the previous equation
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and applying � � S � k�X�� � � � � Xn� one has

cfqr����gr���
q �

rX
i��

fqi f
q
r����hiq�� hence c��gr���

q �
rX
i��

fqi ��hiq��

Let M be the set of monomials � � X��

� � � �X
�n
� with �i � q for

i � �� � � � � n� Taking q�th powers in k is bijective since k is �nite� Therefore
every element h � k�X�� � � � � Xn� has a necessarily unique representation
h �

P
��M�h��

q�� in particular

��hiq� �
X
��M

�hiq��
q��

Thus
rX
i��

fqi ��hiq� �
X
��M

� rX
i��

hiq�fi
�q
� �

X
��M

�hq��
q�

with hq� � �f�� � � � � fr�R�
The crucial point is that c does not depend on q� We choose q so

large that c �
P

��M c��� with c�� � k� Let c�� � �c��q � ThenX
��M

�c���gr����
q� �

X
��M

�hq��
q��

Since c �� 
 there exists � with c� �� 
� and so

��gr��� �
�

c�
hq� � �f�� � � � � fr�R�

A remarkable feature of the preceding proof is that a theorem which
has its main applications in characteristic 
 has been reduced to its
characteristic p case� Such a reduction will also be fundamental for the
results of Chapters �� � and �
�

Remark ������ In view of ����� and ���� it is tempting to conjecture that

Rdet��

� if non�zero� is the canonical module of RG under the hypothesis
of ������ Then� in particular� RG would be a Gorenstein ring if detg � �
for all g � G� This was however disproved by Knop ������ in fact� every
ring of invariants RG can be written in the form �R��G

�

where det g� � �
for all g� � G�� see Exercise ������ On the other hand� Knop showed that

over an algebraically closed �eld of characteristic zero Rdet��

is indeed
the canonical module of RG if the action of G on the vector space V �of
��forms of R� satis�es a mild non�degeneracy condition� the proof uses
methods of geometric invariant theory beyond the scope of this book�
Knop also proved estimates for the a�invariant a�RG�� in particular one
always has a�RG� � � dimRG �compare this with ����� and ������
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However� for one class of groups the ring of invariants is always
Gorenstein in characteristic 
� if G is semisimple and connected �for
example G � SL�n� k��� then RG is factorial� and therefore Gorenstein by
����� and ������ In fact� let f � �� � � � �m be the prime decomposition of
an invariant f� Then the action of an element g � G permutes the prime
ideals R�i� Since fg � G � g�R�i� � R�ig is a non�empty Zariski closed
subset of the connected variety G� this set equals G� So g��i� � �i�g��i
with �i�g� � k n f
g� �i is a character of G� But a semisimple group has
no non�trivial characters� Thus g��i� � �i for all g � G� and therefore f
has a prime decomposition in RG�

Generic �atness� In the proof of ����� we used the following theorem on
�generic �atness��

Theorem ������ Let R be a Noetherian domain� S a �nitely generated R�
algebra� and M a �nite S�module� Then there exists f � R such thatM�Rf

is a free �in particular �at� Rf�module�

Proof� There is nothing to prove forM � 
� So suppose thatM �� 
� Then
there exists in M a chain 
 � M� �M� � � � � � Mm � M of submodules
such that Mi���Mi

�� S�p i for some prime ideal p i of S � �One only needs
that AssN �� � for an S�module N �� 
�� It is enough to prove that the
theorem holds for each quotient Mi���Mi� since N � U � N�U if U is a
submodule of N for which N�U is free� That is to say� we may suppose
that M � S � and� furthermore� that S is a domain�

If the natural homomorphism R � S is not injective� we simply take
f from its kernel� Thus R may be considered as a subring of S � Let Q
be the �eld of fractions of R� Then S �Q � SRnf�g is a domain contained
in the �eld of fractions of S � It is a �nitely generated Q�algebra� and
therefore has �nite Krull dimension� say d � We go by induction on d �

By the Noether normalization theorem A��� the Q�algebra S � Q
contains y�� � � � � yd such that S�Q is integral over Q�y�� � � � � yd�� moreover�
y�� � � � � yd are algebraically independent over Q� Multiplying by a suitable
common denominator� we may assume that yi � S for all i� Let z be
an element of S � As z is integral over Q�y�� � � � � yd�� it is easy to �nd
g � R such that z is already integral over Rg�y�� � � � � yd�� Since R is a
�nitely generated R�algebra� one therefore has that Sg is integral over
Rg�y�� � � � � yd� for some element g � R� In view of what is to be proved
we may replace R by Rg and S by S � Rg�

Thus we have reached a situation in which S is a �nite module
over the ring T � R�f�� � � � � fd� � S which in turn is isomorphic to a
polynomial ring over R� and therefore a free R�module� Let F be a free
T �submodule of S such that S�T is a torsion module� Then F is a free
R�module� It remains to show that the theorem holds for S�T as a �nite
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T �module� As above� S�T has a �nite �ltration with successive quotients
of type T�p where p � SpecT � Since S�T is a torsion module� p �� 
�
Therefore T�p � Q� if non�zero� is a proper residue class ring of T � Q�
and so has dimension � dimT � Q � d � Thus we may repeatedly apply
the induction hypothesis in order to complete the proof�

Exercises

����	� Let k be an in	nite 	eld� and let R � kY� � Y�� Z� � Z����Y �
� �Y �

� �� Obviously
R is a Cohen�Macaulay ring� and reduced if char k �� �� Let G � GL��� k� act on
kY�� Y�� Z� � Z�� by the substitutions Yi �� aYi� Zi �� a��Zi� a � k� a �� �� Prove�
�a� The action of G induces an action of G on R� and RG is the k�subalgebra
generated by the products yizj � i� j � �� �� �Small letters denote residue classes in
R��
�b� The substitution Xij �� YiZj induces a surjective k�algebra homomorphism
kX�� � X�� � X�� � X�� � � RG� Its kernel is generated by the elements X��X���X��X�� �
X�

�� � X�
�� � X��X�� �X��X�� � X

�
�� � X�

�� �
�c� RG is not Cohen�Macaulay�
By increasing the number of variables Yi �and the degree of the equation de	ning
R� one can even produce examples of factorial hypersurface rings R such that RG

is not Cohen�Macaulay� �A hypersurface ring is a residue class ring of a regular
ring with respect to a principal ideal��

����
� Suppose G be a subgroup of GL�V � where V is a 	nite dimensional vector
space over an in	nite 	eld k� Set V � � k��k��V and let G� � SL��� k��SL��� k��G
act on V � by

�f� h� g��u� w� v� �
�
�det g�f�u�� �det g���h�w�� g�v�

�
�

Then obviously det g� � � for all g� � G�� Let R � S �V � and R� � S �V ��� Show
RG 
� �R��G

�

�

Notes

Hochster ��	�� proved the Cohen�Macaulay property of normal semi�
group rings using the shellability of convex polytopes �see Section ��� for
the notion of shellability�� A purely algebraic proof was provided by Goto
and Watanabe ������ they computed local cohomology from a complex
similar to L�� Such complexes� or their graded k�duals �which are dual�
izing complexes� have been constructed by several authors� See Trung
and Hoa ��	�� or Sch�afer and Schenzel ������ these articles give Cohen�
Macaulay criteria for general a�ne semigroup rings� For a general a�ne
semigroup C the Cohen�Macaulay and the Gorenstein property of k�C�
may depend on the �eld k� see ��	�� and Hoa ��	��� Gilmer ����� treats
semigroup rings from a more general point of view�

Our approach is close to that of Ishida ���	�� from Danilov �	�� we
borrowed the idea of proving the vanishing of certain cohomology groups
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by a topological argument� See also Stanley ���
� and ����� where the
method is also applied to certain modules over normal semigroup rings�
namely those which in the invariant�theoretic situation arise as semi�
invariants� �See �����	 for a non�Cohen�Macaulay such module�� More
recently the Cohen�Macaulay property of modules of semi�invariants
was investigated by Van den Bergh ��	��� The complete intersection
normal semigroup rings were classi�ed by Nakajima ������

Stanley computed the canonical module of a normal semigroup ring
by a combinatorial argument outlined in �����
� whereas Danilov �	��
applied di erentials� Local cohomology as in ����� was used by Goto and
Watanabe�

For the theory of Ehrhart polynomials and related combinatorial
functions we refer the reader to Ehrhart ���� Stanley ������ and to Hibi�s
survey ����� where numerous references are given� See also Danilov �	���

Normal semigroup rings� or rather their spectra� are the most special
cases of toric varieties which connect combinatorics and algebraic geom�
etry� We must con�ne ourselves to a list of references� Kempf� Knudsen�
Mumford� and Saint�Donat ������ Danilov �	��� Oda ����� and Ewald
��� The recent book by Sturmfels ����� treats the combinatorial aspects
of Gr�obner bases for the de�ning ideals of semigroup rings�

The invariant theory of �nite groups is a classical subject whose
literature we cannot cover adequately� instead we refer the reader to
Springer ������ Stanley ������ Benson ��
�� and Smith ������ While �����
is due to Hochster and Eagon ����� the Cohen�Macaulay property of
rings of invariants of �nite groups seems to have been realized by several
authors� The characterization of Gorenstein invariants is the work of
Watanabe as pointed out in ������� Stanley gave the combinatorial proof
reproduced by us� The determination of the canonical module is only
implicit in Watanabe�s papers� according to Stanley ����� it was made
explicit by Eisenbud�

References for the Hochster�Roberts theorem� its variants and exten�
sions have been indicated in ������ Hochster ���	� contains an extensive
discussion of the problem of determining the canonical module of a ring
of invariants� As pointed out in ������ this problem was satisfactorily
solved by Knop ������

The example in ����	 is a simpli�cation of that of Hochster and Eagon
����� p� �
��� It is a very special instance of the Segre product of graded
rings� The Cohen�Macaulay property of Segre products was explored by
Chow ��� and Goto and Watanabe ������

Hochster ����� is a survey of the invariant theory of commutative
rings�

The theorem of generic �atness is due to Grothendieck ������ IV����
A more re�ned version was given by Hochster and Roberts ��
��� see
also ��	
�� x���



	 Determinantal rings

Determinantal rings occur in algebraic geometry as coordinate rings of
classical algebraic varieties� From the algebraic point of view they are
graded algebras with straightening law which themselves form a subclass
of the class of graded Hodge algebras� The special feature of such an
algebra is that it is free over the ground ring with a monomial basis
whose multiplication table is compatible with a partial order on the
algebra generators�

The results on �ltered rings in Section ��� will be applied to �trivialize�
a graded Hodge algebra� by repeatedly passing to a suitable associated
graded ring one eventually gets a discrete Hodge algebra� which is noth�
ing but the residue class ring of a polynomial ring modulo an ideal
generated by monomials� A discrete algebra with straightening law may
be considered the Stanley�Reisner ring of the order complex of a certain
poset� and as an application we will thus obtain a Cohen�Macaulay
criterion�

The remaining sections of the chapter are devoted to the most impor�
tant examples of algebras with straightening law� the determinantal rings�
It will be shown that these rings are normal Cohen�Macaulay domains�
The class group and the canonical module will be identi�ed� and we will
characterize the Gorenstein determinantal rings�

��� Graded Hodge algebras

In this section we introduce graded Hodge algebras and study their basic
properties�

Let A be a ring� H a �nite subset of A� and c � NH � c � �c��� An
element u �

Q
��H  c� is called a monomial on H with exponent c� Its

support is the set supp u � f � H � c� �� 
g� Let u and u� be monomials
on H with exponents c and c�� respectively� We say u divides u� or u is a

factor of u� if c� � c � NH � Finally� if � � NH is a semigroup ideal� we
call c � � a generator of � if c� c� ��NH for all c� � �� c� �� c�

De�nition ������ Let A be a B�algebra� H � A a �nite subset with partial
order �� and � �NH a semigroup ideal� A is a graded Hodge algebra on

H over B governed by � if the following conditions hold�
�H�� A �

L
i	�Ai is a graded B algebra with A� � B� and H consists of

elements of positive degree and generates A over B�

�
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�H�� The monomials on H with exponent in NH n � are linearly inde�
pendent over B� They are called standard monomials�
�H�� �Straightening law� If v is a monomial on H whose exponent is a
generator of �� then v has a presentation

v �
X

buu� bu � B� bu �� 
� u a standard monomial�

such that for each  � H which divides v there exists for every u a factor
'u with 'u �  �

The right hand side of a straightening relation may of course be
the empty sum� i�e� equal to zero� If this happens for all straightening
relations� the graded Hodge algebra is called discrete� In this case
A �� B�X� �  � H��I where I is generated by the monomials

Q
��H X

c�
� �

c � �c��� c � �� In particular� Stanley�Reisner rings are discrete Hodge
algebras�

The graded Hodge algebra A is called a graded algebra with straight�

ening law �on H over B�� abbreviated graded ASL� if � is generated by
the exponents of monomials  ( where  and ( are incomparable elements
in H � It follows that a monomial u is standard if and only if all factors
of u are comparable with each other� and for all incomparable  � ( � H
we have a straightening relation

 ( �
X

buu� bu � B� bu �� 
� u a standard monomial�

satisfying the condition� every u contains a factor ' � H such that ' �  �
' � (� In fact� by �H�� there exist factors 'u and '�u of u such that 'u �  
and '�u � (� Since all factors of u are comparable with each other we may
choose for ' the minimum of 'u and '�u�

ASLs are the most important graded Hodge algebras� Signi�cant
examples will be treated in the next sections�

Proposition ������ Let A be a graded Hodge algebra on H over B governed

by �� Then the standard monomials form a B�basis of A�

Proof� Let  � H� we de�ne dim to be the maximal length of chains
 �  � �  � � � � � in H � and de�ne the weight of a monomial u �

Q
��H  c�

to be
P

��H c��d���
dim� � where d is the maximum of the numbers

P
��H c�

of generators c � �c�� of ��
It su�ces to show that all non�standard monomials are linear com�

binations of standard monomials� Let v� be a monomial with exponent
c� � �� and let c be a generator of � such that c� � c � NH � Then
v �

Q
��H  c� divides v�� and so v� � vw where w is a monomial on H �

Applying the straightening law for v� we obtain the equation v� �
P

buuw�
bu � B� bu �� 
� u standard� We claim that all monomials on the right
hand side of this equation are of strictly greater weight than v� � In



�
� �� Determinantal rings

fact� if � � maxfdim � c� �� 
g� then for any u in the straighten�
ing equation for v there exists a factor  u with � � dim u� so that
weightv �

P
��H c��d � ��
 � �d � ��
�� � �d � ��dim �u � weightu� Since

the weight of a product of monomials is the sum of the weights of the
factors� the claim follows�

On the other hand� the monomials on the right hand side of the
equation for v� have the same degree as v� � Therefore descending induction
concludes the proof�

The previous proposition guarantees that every element of A has a
unique presentation as a B�linear combination of standard monomials�
which we call its standard representation�

Proposition ������ Let A be a graded Hodge algebra on H over B governed

by �� and T��  � H � a set of indeterminates over B� For each monomial

u �  � � � � �  n on H we set Tu � T�� � � �T�n � Then the kernel of the B�
algebra epimorphism

� � B�T� �  � H� �� A� T� ��  �

is generated by the elements Tv�
P

buTu corresponding to the straightening

relations�

Proof� Let I be the ideal in B�T� �  � H� generated by the elements
Tv �

P
buTu corresponding to the straightening relations� It is clear that

I � Ker�� Conversely� let f � Ker�� then the proof of 	���� shows
that there exists g � I such that f � g �

P
buTu� u standard� It follows

that 
 � ��f � g� �
P

buu� According to �H�� all bu � 
� and hence
f � I �

Among the graded Hodge algebras on H over B governed by ��
the discrete Hodge algebra is in a sense the simplest� Its ring�theoretic
properties are determined only by the ground ring B and the combi�
natorial properties of H and �� Surprisingly this is true in part for a
general graded Hodge algebra as well� The set IndA of elements  � H
which appear as factors in the monomials on the right�hand side of the
straightening relations is called the indiscrete part of A� It serves as a
measure of how much A di ers from a discrete Hodge algebra�

The following theorem allows the stepwise approach from a general
graded Hodge algebra to a discrete one by forming suitable associated
graded rings� The results of ��� permit us to control ring�theoretic
properties of the algebras involved in this operation�

Suppose IndA �� �� choose a minimal element  � � IndA� and set
I � � ��� We will �rst prove a re�nement of 	�����

Lemma ����	� The ideal Ij has a B�basis consisting of all standard mon�

omials u �
Q

��H  c� such that c�� 	 j�
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Proof� Certainly the elements  j�u� u a standard monomial� generate Ij

as a B�module� We claim that  j�u either is a standard monomial or is
zero� This� in view of 	����� will prove the lemma�

Suppose  j�u is not standard� then it is a multiple of a monomial v
whose exponent is a generator of �� Since u is standard� the element  �
is a factor of v� and thus for each monomial on the right hand side of
the straightening relation for v there exists a factor less than  �� Since  �
is a minimal element among such factors� the straightening relation must

be trivial� It follows that  j�u � 
�

For an element a � A we de�ne ord a as the supremum of integers j
for which a � Ij � and call a� � a� Iord a�� the initial form of a in grI�A��
We have ord � � �� and ord � 
 for all  � H �  ��  ��

Let a� b � A� then ord ab 	 ord a�ord b� and �ab�� � a�b� if ord ab �
orda � ord b� By induction one proves a similar formula for more than
just two factors� Thus� if u �

Q
��H  c� is a standard monomial in A� it

follows from the previous lemma that u� �
Q

��H � 
��c� � In conclusion we

see that grI�A� is generated over B by the elements  ��  � H � and that
grI�A� is a free B�module with basis fu

� � u is a standard monomial of Ag�
Moreover� grI�A� may be viewed as a positively graded B�algebra� if� for
all j 	 
� the set of homogeneous elements of degree j of grI�A� is de�ned
to be fa� � a � A is homogeneous of degree jg�

Now it is easy to give grI�A� the structure of a graded Hodge algebra�
we let H� � f � �  � Hg� The map H � H� �  ��  �� induces a bijection

� � NH � NH�

� and we set �� � ����� The partial order de�ned on H�

will of course be given by  � � !� �  � !�

Theorem ������ grI�A� is a graded Hodge algebra on H� over B governed

by ��� and IndgrI�A� � f 
� �  � IndAg n f ��g�

Proof� It remains to check �H��� let d � �d��� be a generator of �
� � and

w �
Q

���H� � ��d�� � Then c � �c��� c� � d�� for all  � H � is a generator

of �� and for v �
Q

��H  c� we have the straightening relation v �
P

buu�
We want to de�ne the straightening relation for w� There are two

cases to consider� In the �rst case�  � is a factor of v� Then v �  �v
� where

v� is a standard monomial� and it follows that v � 
 as we saw in the proof
of 	����� Therefore w � 
 is the desired straightening relation in this case�
In the second case�  � is not a factor of v� Then w �

P
ord u��buu

� is the
straightening relation for w� In particular it follows that  �� �� Ind grI�A��

Let A �respectively A�� be a graded Hodge algebra on H �respectively
H �� over B governed by � �respectively ���� We say that A and A� are

Hodge algebras with the same data� if there is an isomorphism H � H � of
posets for which the corresponding map NH � NH �

induces a bijection
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� � ��� We have just seen that A and grI�A� are graded Hodge algebras
with the same data� the only di erence being that the indiscrete part
has become smaller� Thus after �nitely many such steps we arrive at a
discrete Hodge algebra with the same data as A�

Corollary ������ Let A be a graded Hodge algebra on H over the Noetherian

ring B governed by �� and let A� be the discrete Hodge algebra over B
with the same data� Then	

�a� dimA � dimA��

�b� A is reduced� Cohen�Macaulay� or Gorenstein if A� is too�

Proof� A basic observation for �a� and �b� is that both A and A� are free
and� hence� faithfully �at B�algebras� In conjunction with A��� it implies

dimA � max�dimBp � dimA� k�p ��

where p ranges over SpecB� It is clear that A� k�p � is a Hodge algebra
over k�p � with the same data as A� therefore A� � k�p � �� �A � k�p ����
Thus it is enough to consider the case in which B � k is a �eld� Next we
may replace A� by grI�A�� Both these rings are positively graded so that
dimA � dimAm and dimA� � dimAm � where m and m � are the �maximal
ideals� Furthermore I is generated by homogeneous elements of positive
degrees� Therefore ����� yields the desired equality of dimensions�

We show �b� for the Cohen�Macaulay property� The Cohen�Macaulay
property of A� implies that of B and that of A�� k�p � for all prime ideals
p of B �see ����	�� Let P be a prime ideal of A and set p � B � P � Then

depthAP � depthBp � depthAP � k�p �

� dimBp � depth�A� k�p ��q

where q is the image of P in A � k�p � �see �������� It follows that
AP is Cohen�Macaulay if depth�A � k�p ��q � dim�A� k�p ��q � Thus the
isomorphism A� � k�p � �� �A � k�p ��� reduces the contention once more
to the case in which B � k is a �eld�

It is enough to derive the Cohen�Macaulay property of A from that
of grI �A�� Let m be the �maximal ideal of A� Since I � m � ����	 implies
that Am is Cohen�Macaulay� and then A is� too� by Exercise �����	�

For the Gorenstein property one argues similarly� using ������� ����	�
and Exercise �����
� The assertion about A being reduced follows imme�
diately from ������

In case A is an ASL on H over B� the discrete ASL with these data
is the Stanley�Reisner ring of the order complex ��H� �see Section ����
over B� Thus we may use the results of Chapter � in order to conclude
that certain ASLs are Cohen�Macaulay� In the following corollary we
extend the poset H by adding absolutely minimal and maximal elements
�
 and ���
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Corollary ������ Let A be an ASL on H over B� If B is Cohen�Macaulay

and H � f�
� ��g is a locally upper semimodular poset� then A is Cohen�

Macaulay �

Proof� By virtue of ������ and ������ the discrete ASL A�
� on H � f�
� ��g

is Cohen�Macaulay� provided B is a �eld� Since A�
� is obviously a

polynomial ring over the discrete ASL A� on H � it follows that A� is
Cohen�Macaulay� According to Exercise ������� A� is Cohen�Macaulay
for every Cohen�Macaulay ring B� Now one applies 	�����

There is a simple proof of 	���	 which avoids the combinatorially
di�cult theorem ������� see �
� or ����� �������

Exercises

	���
� Let A be a graded Hodge algebra on H over a ring B governed by ��

�a� Let H � be a subset of H such that the ideal H �A is generated as a B�module
by the standard monomials it contains� Show that A�H �A is in a natural way a
Hodge algebra on H nH � governed by �� where H nH � is considered as a subposet
of H and �� consists of all elements of � which are exponents of monomials on
H nH ��

�b� Show that �a� in particular applies if H � is an ideal in H � �An ideal in H � is a
subset satisfying the following condition� h� � h � H � � h� � H ���

�c� Let H � and H �� be ideals in H � Then H �A 	H ��A is the ideal of A generated
by H � 	H ���

�d� Specialize �a�� �b�� and �c� to the case of an ASL A�

	����� With the notation of ����� assume that � is generated by squarefree
monomials� Show that A is reduced if �and only if� B is reduced� In particular a
graded ASL over a reduced ring B is reduced�

	������ Let A be a graded ASL on the poset H over a Noetherian ring B� Show
that dimA � dimB � rankH � ��

Hint� First prove the formula for a 	eld B� Next deduce dimA � maxfdimBp �
dimk�p ��A � p � SpecBg from A��� and the fact that A is a free B�module� and
note that k�p � � A is an ASL on H over the 	eld k�p ��

	������ �Hibi� Let k be a 	eld� C a positive a�ne semigroup generated by
c�� � � � � cn � and A � kC�� We order fc� � � � � � cng by setting c� � � � � � cn � and
let � be the set of exponents �a� � � � � � an� such that there exists �b� � � � � � bn�
which is lexicographically greater than �a� � � � � � an� and satis	es the condition
�Xc� �a� � � � �Xcn �an � �Xc� �b� � � � �Xcn �bn �

�a� Show kC� is a graded Hodge algebra over k with these data�

�b� Let C be the subsemigroup of N� generated by ��� ��� ��� ��� ��� ��� and ��� ���
Determine the sets � for the orders �i� ��� �� � ��� �� � ��� �� � ��� �� and �ii�
��� �� � ��� �� � ��� �� � ��� ��� and show that the discrete Hodge algebra A� is
Gorenstein in case �i�� and not even Cohen�Macaulay in case �ii��
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��� Straightening laws on posets of minors

The most important examples of ASLs are rings related to matrices and
determinants� and the prototype of such a ring is

Rr�� � Rr���X� � B�X��Ir���X�

where B�X� is the polynomial ring in the entries of an m 
 n matrix of
indeterminates Xij over some ring B of coe�cients� and Ir���X� denotes
the ideal generated by the �r � ���minors of X � We always suppose that

 � r � min�m� n�� the trivial cases r � 
 and r � min�m� n� being included
for reasons of systematics�

What makes the analysis of Rr�� di�cult is the fact that the generators
of Ir���X� are very complicated expressions in terms of the Xij � Therefore
one enlarges the set of generators of the B�algebra B�X� by considering
each minor as a generator� Of course� apart from trivial cases� we lose
the algebraic independence of the generating set� but only to the extent
that B�X� is an ASL on the set of minors of X �

The minor corresponding to the submatrix of X with rows a�� � � � � au
and columns b�� � � � � bu is denoted by

�a� � � � au j b� � � � bu��

The set � consists of those minors �a� � � � au j b� � � � bu� which satisfy the
condition a� � � � � � au� b� � � � � � bu� It is partially ordered by the rule

�a� � � � au j b� � � � bu� � �c� � � � cv j d� � � � dv�

� u 	 v and ai � ci� bi � di� i � �� � � � � v�

It is easy to see that � is a distributive lattice under this partial order�
Rather than proving directly that B�X� is a graded ASL on � we take

a detour which leads to a substantial simpli�cation of the combinatorial
details� and introduces another interesting and important class of rings�
We suppose that m � n� Then the maximal minors of X are the m�minors�
An m�minor of X is simply denoted by

�a� � � � am�

where a�� � � � am are the column indices of the submatrix whose determi�
nant is taken� The subset of � consisting of all m�minors in � is called
� � Obviously � is a sublattice of �� We write

G�X��

or� if appropriate� GB�X� for the B�subalgebra of B�X� generated by � �
The letter G has been chosen since �over a �eld B� G�X� is the coordinate
ring of the Grassmannian of m�dimensional vector subspaces of Bn�
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Theorem ����� �Hodge�� Let B be a ring� and X an m 
 n matrix of

indeterminates over B with m � n� Then G�X� is a graded ASL on � �

Condition �H�� is evidently satis�ed� and the validity of �H�� is stated
in the following lemma�

Lemma ������ The standard monomials in � are linearly independent�

Proof� For � � �a� � � � am� let U� be the following m 
 n matrix whose
entries Uij are indeterminates over B��BBBBB�


 � � � 
 U�a� � � � U�a��� U�a� � � � U�a��� � � � U�am � � � U�n


 � � � 
 U�a� � � � U�a���


 � � � 
 � � �
���

���
���

���
���

���
���

���

 � � � 
 
 � � � 
 
 � � � 
 � � � Umam � � � Umn

CCCCCA �

The substitutionwhich maps Xij to the corresponding entry of U� induces
a B�algebra homomorphism �� � G�X�� G�U�� where G�U�� denotes the
B�subalgebra of B�Uij � j 	 ai� generated by the maximal minors of U� �
Observe that for 
 	 � the matrix U� has indeterminate entries where
U� has non�zero entries� Therefore the analogous substitution yields a
B�algebra homomorphism ��� � G�U��� G�U�� with �� � ��� � ���

The matrix U� is chosen in such a way that the submatrix of its
columns �� � � � � ai � � has rank i � � for i � �� � � � � m � � �where we let
am�� � n� ��� The reader may carefully check that this implies ����� � 

for all � �	 �� So the application of �� to a linear combination of standard
monomials strips o all terms which contain a factor � �	 ��

The lemma follows immediately from the following claim �with � �
�� � � �m��� let ���� be the set of standard monomials all of whose factors
are 	 ��� then �������� is a linearly independent subset of G�U���

We prove this claim by descending induction over the poset � � LetP
u�U bu���u� � 
 be a linear combination with U � ����� U �� �� and

bu �� 
 for all u � U� The element ����� is a product of indeterminates�
and therefore G�U���regular� Thus� cancelling ����� if necessary� we
may suppose that � does not occur as a factor of at least one of the
standard monomials in the sum� say u�� Let �� be the smallest factor
of u�� Then �� � �� and 
 �

P
u�U bu��������u�� �

P
u��U � bu�����u�� where

U� � U ������� Since u� � U� � we obtain a contradiction to the induction
hypothesis�

Next we want to show that every product �
 of �incomparable�
minors �� 
 � � can be written as a linear combination of standard
monomials� This �straightening� will be performed by iterated applications
of the Pl�ucker relations given in the following lemma� �We use ��i� � � � is�
to denote the sign of the permutation of f�� � � � � sg represented by the
sequence i�� � � � � is��
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Lemma ������ For every m 
 n�matrix� m � n� with elements in a ring A
and all indices a�� � � � � ap� bq� � � � � bm� c�� � � � � cs � f�� � � � � ng such that s �
m� p� q � � � m and t � m� p � 
 one hasX

i������it
it�������is

fi� ���� �isg�f������sg

��i� � � � is��a� � � � apci� � � � cit��cit�� � � � cisbq � � � bm� � 
�

Proof� It su�ces to prove the lemma for a matrix X of indeterminates
over Z� Next we may replace Z by Q� and �nally the ring Q�X� by its
�eld of fractions Q�X�� We consider the Q�X��vector space V generated
by the columns of X � Let S be the group of permutations of f�� � � � � sg�
and let Xj denote the j�th column of X � We de�ne � � V s � Q�X� by

��y�� � � � � ys� �X
��S

���� det�Xa� � � � � � Xap � y����� � � � � y��t�� det�y��t���� � � � � y��s�� Xbq � � � � � Xbm��

It is straightforward to check that � is a multilinear form on V s � When
two of the vectors yi coincide� every term in the expansion of � which
does not vanish anyway is cancelled by a term of the opposite sign� Thus
� is alternating� Since s � dimV � m� one has � � 
�

Let us �x a subset fi�� � � � � itg� i� � � � � � it� of f�� � � � � sg� Then� for all
� such that ��f�� � � � � tg� � fi�� � � � � itg� the summand corresponding to � in
the expansion of � equals

��i� � � � is� det�Xa� � � � � � Xap � yi� � � � � � yit� det�yit�� � � � � � yis � Xbq � � � � � Xbm�

where it��� � � � � is are chosen as above� Therefore each of these terms
appears with multiplicity t" �s� t�" in the expansion of �� and cancelling
this factor we obtain the desired formula�

Let us �straighten� the product �� � ���� � ��� For the data p � ��
a� � �� q � �� b� � �� �c�� � � � � c�� � ��� �� �� �� one has the following Pl�ucker
relation�

�� � ���� � �� � �� � ���� � ��� �� � ���� � ��

� �� � ���� � ��� �� � ���� � �� � �� � ���� � �� � 
�

When solved for �� � ���� � ��� it is not yet a linear combination of
standard monomials� However� �� � ���� � �� is the �worst� term� for
it incomparability occurs already in the second position� whereas in the
remaining terms at least positions � and � are ordered� Using the Pl�ucker
relations

�� � ���� � ��� �� � ���� � �� � �� � ���� � ��� �� � ���� � �� � 
�

�� � ���� � �� � �� � ���� � �� � �� � ���� � ��� �� � ���� � �� � 
�
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one �nally gets

�� � ���� � �� � ���� � ���� � ��� �� � ���� � �� � �� � ���� � ���

We now describe how to apply the Pl�ucker relations in general�

Lemma ����	� Let �a� � � � am�� �b� � � � bm� be elements of � such that ai � bi
for i � �� � � � � p and ap�� � bp��� We put q � p� �� s � m� �� �c�� � � � � cs� �
�ap��� � � � � am� b�� � � � � bp���� Then� in the Pl�ucker relation 	���� with these

data� all the non�zero terms �d� � � � dm��e� � � � em� �� �a� � � � am��b� � � � bm� have
the following properties �after their column indices have been arranged in

ascending order�	

�a� �d� � � � dm� � �a� � � � am�� �b� d� � e�� � � � � dp�� � ep���

Proof� Since b� � � � � � bp�� � ap�� � � � � � am� �d� � � � dm� arises
from �a� � � � am� by a replacement of some of the ai by smaller in�
dices� This implies �a� and di � ei for i � �� � � � � p� Furthermore dp�� �
fa�� � � � � ap� b�� � � � � bp��g� so dp�� � bp��� and ep�� � fap��� � � � � am� bp��� � � � �
bmg� so bp�� � ep���

By induction on p it follows immediately from 	���� that a product
�
� �� 
 � � � is a B�linear combination of standard monomials ��� � � ��
such that � � �� This however does not yet imply �H��� �In general
the straightening procedure based on 	���� produces intermediate results
violating �H���� In order to see that �H�� is indeed satis�ed we must
also straighten the product in the order 
�� The standard monomials
�� obtained now satisfy � � 
� By linear independence of the standard
monomials� both representations of �
 � 
� coincide� and �H�� follows�
This completes the proof of 	�����

Before we turn to the discussion of the polynomial ring B�X�� we
state a useful corollary of 	�����

Corollary ������ �a� Let T� � � � � � be a set of indeterminates over B�
Then the kernel of the surjective homomorphism B�T� � � � � �� G�X� is
generated by the elements representing the Pl�ucker relations�

�b� One has GB�X� � GZ�X�� B�
�c� Suppose B is a Noetherian ring� Then dimG�X� � dimB�m�n�m����

Proof� By 	����� GB�X� is the residue class ring of B�T� � � � � � modulo
the ideal generated by the elements representing the straightening rela�
tions� As seen above� the straightening relations are linear combinations
of the Pl�ucker relations� This proves �a�� and �b� is a simple consequence
of �a� if one notes that the Pl�ucker relations are de�ned over Z�

By virtue of 	����
 one has dimG�X� � dimB�rank���� Each cover
of �a� � � � am� � � is obtained by replacing one of the indices ai by ai�� �of
course� this is only feasible if ai�� � ai���� Furthermore rank�� � � �m� � 
�
Therefore rank�a� � � � am� �

Pm
i�� ai � i �

Pm
i��ai � m�m � ����� This

immediately yields rank� � rank�n� m� � � � �n� � m�n� m��
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As before let X be a matrix of indeterminates� and � the poset of its
minors� the condition m � n is no longer required� We extend X by m
columns of further indeterminates� obtaining

X � �

�B� X�� � � � X�n X��n�� � � � X��n�m

���
���

���
���

Xm� � � � Xmn Xm�n�� � � � Xm�n�m

CA �

Then B�X �� is mapped onto B�X� by substituting for each entry of X �

the corresponding entry of the matrix�BBBBBB�

X�� � � � X�n 
 � � � � � � 
 �
��� � �

�
� �
�



���

���
��� � �

�
� �
�

� �
� ���


 � �
�

� �
� ���

Xm� � � � Xmn � 
 � � � � � � 


CCCCCCA �

Let � � G�X ��� B�X� be the induced homomorphism� Then

���b� � � � bm�� � ��a� � � � at j b� � � � bt����

where t � maxfi � bi � ng and a�� � � � � at have been chosen such that

fa�� � � � at� n�m� �� bm� � � � � n� m� �� bt��g � f�� � � � � mg�

Equation ��� shows that � is surjective� and furthermore sets up a bijective
correspondence between the set � � of m�minors of X � and ��f��g� Note
that the maximal element e� � �n � � � � � n � m� of � � is mapped to ���
and that the restriction of � to � � n fe�g is an isomorphism of posets� �We
leave the veri�cation of this fact to the reader� the details can also be
found in ����� ������

Lemma ������ The kernel of � � G�X ��� B�X� is generated by e�� ��

Proof�Note that G�X ��� B�X�� and � are obtained from the corresponding
objects over Z by taking tensor products of the latter with B� �This is
non�trivial only for G�X �� for which it has been stated in 	������ Therefore
it is su�cient to consider the case B � Z� Then G�X �� is an integral
domain� and it follows from the properties of dehomogenization �see
������� that e�� � generates a prime ideal p of height �� By virtue of 	����
one has

dimG�X �� � dimZ� mn� � � dimZ�X� � ��

As p � Ker�� we in fact have p � Ker��

Theorem ����� �Doubilet�Rota�Stein�� Let B be a ring� and X an m
 n
matrix of indeterminates� Then B�X� is a graded ASL on the poset � of

minors of X �
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Proof� From our previous arguments it is obvious that � maps the
standard monomials in � � n fe�g to standard monomials in �� Since � is
surjective and G�X �� is a graded ASL on � �� the standard monomials in
� generate B�X� as a B�module�

The smallest factor of a standard monomial on the right hand side of
a straightening relation in an arbitrary ASL is never a maximal element of
the underlying poset� Therefore the validity of �H�� cannot be destroyed
by a substitution which takes such an element to an element of B�

It only remains to observe the linear independence of the standard
monomials in �� or� equivalently� that there is no non�trivial relationX

auu � �e�� ��
X

bvv

where u and v represent pairwise distinct standard monomials in G�X ���
and none of the u contains e� as a factor�

Exercises

	���
� Let u � �� � � � �r be a product of minors of X� The content of u is the vector
of length m � n which for each row and each column lists the multiplicity with
which the row or column appears in u� Let v be a standard monomial in the
standard representation of u� Show that v has the same content as u� and has at
most r factors�

	����� Let m � n� and X be an m � n matrix of indeterminates over a ring B�
Let � � r� � � � � � rs � m be integers� and consider the subposet � �r� � � � � � rs� of
� formed by all minors which are of the form � � � � ri j a� � � � ari� for some i� Show
that B� �r� � � � � � rs�� is a graded ASL on � �r� � � � � � rs�� �Note that this class of rings
generalizes G�X���
�For a 	eld B � k� k� �r� � � � � � rs�� is the multihomogeneous coordinate ring of the
variety of �ags � � U� � � � � � Ur � kn of linear subspaces such that dimUi � ri��

	������ Let H be a 	nite poset with partial order � � and H� the poset with
the reverse partial order �� h � h� �� h� � h� A graded ASL R on H is
called symmetric if it is also an ASL on H� �with respect to the same embedding
H � R��
�a� Show that G�X� is a symmetric ASL�
�b� Show that the graded ASLs B� �r� � � � � � rs�� of the previous exercise are
symmetric�

��� Properties of determinantal rings

In this section we shall assume that the ground ring B is a �eld� and
therefore replace the letter B by k throughout� The transfer of the results
to more general ground rings is indicated in Exercise 	�����

As in the previous section let X be an m
 n matrix of indeterminates
over k� The determinantal ring Rr�� is the residue class ring of k�X� with
respect to the ideal generated by the �r � ���minors of X � In view of the
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ASL structure of k�X� it is useful to extend this system of generators by
including all t�minors with t 	 r��� The enlarged system of generators is
an ideal in the poset � of all minors of X � By Exercise 	����� Rr�� inherits
the ASL property of k�X�� its underlying poset is the coideal �r�� of �
which consists of the u�minors of X with u � r � �� �A coideal is the
complement of an ideal�� Evidently �r�� has a single minimal element�
namely �� � � � r j � � � � r��

More generally� for 
 � � we want to investigate the residue class
rings R� of k�X� modulo the ideal I� generated by all minors � �	 
� As
in the special case 
 � �� � � � r j � � � � r� above� R� is an ASL on the coideal
�� � f' � � � ' 	 
g� In a distributive lattice a coideal with a single
minimal element is again a distributive lattice� and it follows directly from
	���	 and 	��� that R� is a reduced Cohen�Macaulay ring� Moreover we
can easily compute its dimension�

Similarly we may consider the residue class rings G� of G�X�� These
are the residue class rings of G�X� with respect to the ideal J� generated
by all � � � � � �	 �� The corresponding coideal in � is denoted �� �

Theorem ������ Let k be a �eld� and X an m
 n matrix of indeterminates

over k�
�a� �Hochster� Laksov� Musili� Suppose m � n� and let � � �a� � � � am� � � �

Then G� is a normal Cohen�Macaulay domain of dimension

m�n� m� �
m�m� ��

�
�

mX
i��

ai � ��

�b� Let 
 � �a� � � � ar j b� � � � br� � �� Then R� is a normal Cohen�Macaulay

domain of dimension

�m� n� ��r �
rX
i��

�ai � bi��

�c� �Hochster�Eagon� In particular� Rr�� is a normal Cohen�Macaulay

domain of dimension �m� n� r�r�

Proof� The Cohen�Macaulay property of R� and G� follows from the
fact that the posets �� and �� are distributive lattices� as explained above�
In order to compute their dimensions one must determine the ranks of
the posets �� and ��� see 	����
�

Since all maximal chains in a distributive lattice have the same length�
one has

rank�� � rank� � �rank � � ���

Both rank� and rank � were computed in the proof of 	�����
For the computation of dimR� and for the proof of normality it is

convenient to relate R� to a ring of type G�� in the same way as B�X�
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was related to G�X �� for the proof of 	���	� We choose

�� � �b� � � � br �n�m� ��� a�� � � � �n� m� ��� a�m�r�

with fa��� � � � � a
�
m�rg being the complement of fa�� � � � � arg in f�� � � � � mg�

Then � � G�X �� � B�X� as de�ned before 	���� maps �� to �
 and the
generators of J�� to a generating set of I� � It follows from 	���� that the
induced homomorphism �� � G�� � R� is surjective� and that its kernel is
generated by e�� � where the maximal element e� of � � is considered as
an element of G�� � Now an easy computation yields the dimension of R� �

As we just saw� R� is a dehomogenization of a ring of type �� �
and therefore it is su�cient to prove that G� is a normal domain �see
Exercise �������� Note �rst that G� is indeed a domain� the surjective
homomorphism �� � G�X� � G�U�� constructed in the proof of 	����
induces a homomorphism ��� � G� � G�U��� and ��� maps the standard
basis of G� onto a linearly independent subset of G�U�� as was shown
there� So G� is isomorphic to the integral domain G�U���

To prove normality we apply the criterion in Exercise ������ with
x � �� being the single minimal element of �� � � is evidently ���regular�
moreover� G����� is an ASL on �� n f�g� and therefore reduced� Finally

	���� shows that G������ is a normal domain�

Theorem 	�����c� entails the classical formula

height Ir���X� � �m� r��n� r��

Thus Ir���X� has maximal height� by a theorem of Eagon and Northcott
one has height Ir���x� � �m � r��n � r� for an arbitrary m 
 n matrix x
over a Noetherian ring S � provided Ir���x� �� S� see ����� ����� or ��	
��
x���

Lemma ������ With the notation of 	���� let

� �
�
�d� � � � dm� � �� � ai �� �d� � � � dm� for at most one index i

�
�

Then

G���
��� � k��� �����

and the elements of � are algebraically independent over k� In particular

G���
��� is a regular domain�

Proof� We show that �e� � � � em� � k��� ���� for all �e� � � � em� � �� by
induction on the number w of indices i such that ei �� �a� � � � am�� For
w � 
 and w � �� �e� � � � em� � � by de�nition� Let w � � and choose an
index j such that ej �� �a� � � � am�� We use the Pl�ucker relation 	����� the
data of 	���� corresponding to the present ones in the following manner�
p � 
� q � �� s � m � �� �b�� � � � � bm� � �e�� � � � � ej��� ej��� � � � � em�� and
�c�� � � � � cs� � �a�� � � � � am� ej�� In this relation all the terms di erent from

�a� � � � am��ej e� � � � ej�� ej�� � � � em� � ����j���a� � � � am��e� � � � em�
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and non�zero in G� have the form 
� such that 
 � � and � has only w��
indices not occurring in �� Solving for �a� � � � am��e� � � � em� and dividing by
�� one gets �e� � � � em� � k��� �����

For the proof of the algebraic independence of � we �rst note that
dimG������ � dimG� � This follows easily from A��� if one uses that G� is
an a�ne domain over k as was demonstrated in the proof of 	����� Now
it is enough to verify that j� j � dimG� � a combinatorial exercise which
we leave for the reader�

Lemma 	���� enables one to compute the singular locus of the rings
G�� and� again by dehomogenization� that of R�� see ����� ��B� We con�ne
ourselves to the rings Rr��� for which there is a simpler approach�

Suppose that x � �xij� is an m 
 n matrix over a ring R such that
x�� is a unit� Then we may transform x by elementary row and column
operations into the matrix�BB�

x�� 
 � � � 


 y�� � � � y��n��

���
���

���

 ym���� � � � ym���n��

CCA � yij � xi���j��� x��j��xi����x
��
�� �

and clearly Ir���x� � Ir�y�� The equation yij � xi��j��� x�j��xi����x
��
�� �

read as a substitution of indeterminates� suggests the following elementary
lemma�

Lemma ������ Let X � �Xij� and Y � �Yij� be matrices of indeterminates
over a ring B of sizes m
 n and �m � �� 
 �n � ��� Then the substitution

Yij �� Xi��j��� X�j��Xi����X
��
�� yields an isomorphism

B�Y �X��� � � � � Xm�� X��� � � � � X�n� X
��
�� �

�� B�X�X��
�� �

which for every t � 
 maps the extension of It���Y � to the extension of

It�X�� In particular it induces an isomorphism

Rt���Y ��X��� � � � � Xm�� X��� � � � � X�n� X
��
�� �

�� Rt�X��x
��
�� ����

where x�� denotes the residue class of X�� in Rt�X��

Proposition ����	� For a prime ideal p � SpecRr�� the localization is regular

if and only if p �� Ir�X��Ir���X��

Proof� We use induction on r� starting from the trivial case r � 
 �note
that I��X� � k�X��� Suppose now that r � 
� If p is the maximal ideal
of R � Rr�� generated by the xij � then Rp is evidently non�regular and p

contains Ir�X��Ir���X�� Otherwise p does not contain one of the residue
classes xij � and by symmetry we may assume that x�� �� p � Then Rp

is a localization of R�x��
�� �� and contracting the extension of p via the

isomorphism ��� to S � Rr�Y � we obtain a prime ideal q � Spec S � As the
extension from S to R�x��

�� � is an adjunction of indeterminates followed



��
� Properties of determinantal rings ���

by the inversion of one of them� Rp is regular if and only if Sq is regular�
Furthermore p � Ir�X��Ir���X� if and only if q � Ir���Y ��Ir�Y ��

The rings Rr�� satisfy Serre�s condition �R�� since

height�Ir�X��Ir���X�� � height Ir�X�� height Ir���X�

� m� n� �r � � 	 ��

By Serre�s normality criterion this argument� together with the Cohen�
Macaulay property� proves independently of 	���� that Rr�� is a normal
domain� �In fact� all the rings R� and G� satisfy �R��� see ����� ��������
The example m � n � �� r � � shows that �R�� fails in general�

Finally we want to determine which of the rings Rr�� are Gorenstein�
The easiest way to solve this problem is to determine the canonical
module� or rather the divisor class it represents �see ������ the canonical
module of Rr�� is unique by �vi� below�� In the following we use
elementary facts from the theory of class groups of Noetherian normal
domains R� see ��	�� Ch� 	� or ��
���

�i� The elements of Cl�R� are the isomorphism classes �I� of fractionary
divisorial ideals of R� a fractionary ideal is divisorial if and only if it is a
re�exive R�module� and p � SpecR is divisorial if and only if height p � ��
One has �I� � 
 if and only if I is principal� In particular� R is factorial
if and only if Cl�R� � 
�

�ii� The addition in Cl�R� is given by �I� � �J� � ��IJ���� where �

denotes the R�dual HomR� � R��
�iii� ��Gauss� lemma�� The extension �I� �� �IR�T �� yields an isomor�

phism of class groups Cl�R� �� Cl�R�T �� �here T denotes an indeterminate
over R��

�iv� �Nagata�s theorem� If S � R is multiplicatively closed� then the
assignment �I� �� �IRS � maps Cl�R� surjectively onto Cl�RS�� the kernel
of this map is generated by the classes �p � of the divisorial prime ideals
p with p � S �� ��

�v� An ideal I � R is divisorial if and only if I �
Tr

i�� p
�ei�
i with

divisorial prime ideals p i� one then has �I� �
Pr

i�� ei�p i� �p �e� is the e�th
symbolic power R � p eRp ��

�vi� If R is a positively graded k�algebra with �maximal ideal m �
then one has a natural isomorphism Cl�R� �� Cl�Rm �� It follows that the
canonical module of R is unique �up to isomorphism� since this holds for
Rm �

Theorem ������ Suppose that 
 � r � min�m� n�� and let p be the ideal of

Rr�� generated by the r�minors of the �rst r rows of the residue class x of

X � and q the corresponding ideal for the �rst r columns� Then
�a� p and q are prime ideals of height ��
�b� Cl�Rr��� is isomorphic to Z� and is generated by �p � � ��q ��
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Proof� �a� follows from the isomorphism Rr���p �� R�� � � �� � � � r�� r�� j
� � � � r�� together with 	���� and the analogous isomorphism for Rr���q �

�b� Let 
 � �� � � � r j � � � � r�� and � � fxij � i � r or j � rg� We

claim that � is algebraically independent over k and that Rr���
��� �
k��� 
���� In fact� one sees that xuv � k��� 
��� by expanding the
minor �� � � � r u j � � � � r v� along row u �or column v�� in Rr�� one has
�� � � � r u j � � � � r v� � 
� The algebraic independence of � follows as in the
proof of 	����� By �iii� and �iv� above� Cl�k��� 
���� � 
 so that� again by
�iv�� Cl�Rr��� is generated by the classes of those divisorial prime ideals
which contain 
�

The systems of generators of p and q speci�ed in the theorem are
ideals in the poset �r�� and their intersection is exactly f
g� In conjunction
with Exercise 	���� this shows �
� � p � q � We conclude that �p � � ��q �
and that �p � generates Cl�Rr����

It remains to be shown that u�p � �� 
 for all u � 
� Suppose that
u�p � � 
� or� equivalently� that p �u� is a principal ideal �a�� a � R� Since
p �u� contains 
u� the extension p �u�k��� 
��� equals k��� 
���� Hence a is
a unit in k��� 
���� In k�� � the element 
 is the determinant of a matrix
of indeterminates� and therefore a prime element according to 	����� Thus
a � e
v with e � k and v 	 
� In the case where u � 
 we would have
v � 
� and p and q would be minimal prime ideals of p �u��

It is now easy to reduce the computation of the canonical class of
Rr�� to the case r � �� fortunately R� is a normal semigroup ring� and
we can draw on the results of Chapter �� The hypothesis 
 � r � n � m
in the following theorem has been inserted in order to exclude the trivial
cases r � 
 or r � min�m� n�� The condition n � m is no restriction since
we may replace X by its transpose if necessary�

Theorem ������ With the notation of 	���� suppose that 
 � r � n � m�
Then

�a� p �m�n� is the canonical module of Rr���

�b� �Svanes� Rr�� is Gorenstein if and only if m � n�

Proof� The canonical module of Rr�� is uniquely determined as was
observed above� In particular �a� implies �b��

In proving �a� we �rst suppose that r 	 �� The isomorphism ��� in
	����� and �iii� and �iv� above induce a homomorphism

Cl�Rr���� Cl�Rr���x
��
�� �� �� Cl�Rr�Y ��X��� � � � � Xm�� X��� � � � � X�n� X

��
�� ��

�� Cl�Rr�Y ��

which maps the generator �p � of Cl�Rr��� to the analogous generator �p ��
of Cl�Rr�Y ��� in particular it is an isomorphism�

We set S � Rr���x��
�� �� and identify Rr�� and Rr�Y � with subrings of

S � Let � be the canonical module of Rr��� Since the formation of the
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canonical module commutes with localization� � �Rr�� S is a canonical
module of S � Let �� be a divisorial ideal of Rr�Y � which under the above
isomorphism has the same class as �� Then � �Rr�� S

�� �� �Rr�Y � S �
As the extension Rr�Y � � S is faithfully �at� �����
 implies that �� is a
canonical module of Rr�Y ��

Summing up� we conclude that u�p � is the class of the canonical
module of Rr�� if and only if u�p �� is the class of the canonical module
of Rr�Y �� An iteration of the argument reduces �a� to the case r � ��

Suppose that r � �� Let U�� � � � � Um and V�� � � � � Vn be indeterminates
over k� The ��minors of the matrix x � �UiVj� vanish so that the
substitution Xij �� xij � UiVj induces a surjective homomorphism from
R� onto the normal semigroup ring k�C� generated by the monomials xij �
An easy calculation of dim k�C� yields that we may in fact identify R�

and k�C�� Let I be the ideal generated by relintC in k�C�� By virtue of
����� I is the canonical module of k�C��

Let p i be the prime ideal generated by the entries in the i�th row of
x � �xij�� and q j the corresponding ideal for the j�th column� Then the
ideals p i and q j are exactly the height � ZC�graded prime ideals� In fact�
the ZC�graded prime ideals are those prime ideals which are generated
by some of the elements xij � and thus are the prime ideals generated by all
the xij in the union of a set of columns and a set of rows� It follows from
����� and ����� �or direct arguments� that I � p � � � � � � p m � q � � � � � � q n�
Therefore

�I� �
mX
i��

�p i� �
nX

j��

�q j� � m�p � � n�q � � �m� n��p ��

Remarks ������ �a� One can show that the symbolic and ordinary powers
of the prime ideals p and q in 	���� coincide so that p m�n is the canonical
module of Rr��� �The case r � � is indicated in Exercise 	����� Fur�
thermore 	���� and 	���� can be extended to all the rings R� and G�� see
�����

�b� With the notation of 	���� and its proof� I is the �canonical module
of R�� But it is impossible to preserve the grading under the divisorial
arguments by which we computed the canonical module of Rr�� from that
of R�� In Bruns and Herzog ��	� it has been shown that the a�invariant
of Rr�� is �rm� As p m�n is generated by elements of degree �m � n�r� it
follows that p m�n��rn� is the �canonical module of Rr���

�c� Let X be a symmetric n 
 n matrix of indeterminates� more
precisely� the entries Xij of X with i � j are algebraically independent�
and Xij � Xji for i � j� The residue class rings Sr�� � k�X��Ir���X� are
as well understood as the rings Rr�� constructed from �generic� m 
 n
matrices� In particular Sr�� is a normal Cohen�Macaulay domain of
dimension r�r � ���� � �n � r�r �Kutz ������� its divisor class group is
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Z����� and it is Gorenstein if and only if r � � � n mod� �Goto ���
��
������� see Exercise 	����
� There is also a �standard monomial� approach
to the structure of Sr��� in which �doset algebras� replace ASLs �see
De Concini� Eisenbud� and Procesi �	����

�d� Let X be a alternating n
nmatrix of indeterminates� this of course
means that the entries Xij of X with i � j are algebraically independent�
Xii � 
� and Xij � �Xji for i � j� The residue class ring Pr�� of k�X�
with respect to the ideal Pfr���X�� r even� is a normal Cohen�Macaulay
domain of dimension r�r � ���� � �n� r�r �Kleppe and Laksov ���	��� it
is factorial �Avramov ������ and therefore Gorenstein by ������ The rings
Pr�� carry a �natural� ASL structure �	���

Exercises

	���
� Let R be a 	nitely generated faithfully �at Z�algebra� and let P be one
of the properties �Cohen�Macaulay�� �Gorenstein�� �reduced�� �normal�� �integral
domain�� �Sn�� �Rn��
�a� Show that the following are equivalent� �i� R � k has P for every 	eld k� �ii�
R � B has P for every Noetherian ring B which satis	es P�
�b� Suppose that K�k L has P whenever K and L are extension 	elds of k one of
which is 	nitely generated �for which of the listed properties is this true��� Show
that �a��ii� already follows from the fact that R has P�
Hint� Exercise ������ is a similar problem�

	����� With the notation of ����� assume r � �� Show p �i� � p i for all i� Hint� ������

	������ With the notation of ������c� let p be the ideal generated by the r�minors
of the 	rst r rows of X� and � � � � � � r j � � � � r�� We use the fact that Sr�� is a
normal Cohen�Macaulay domain� and that p is a prime ideal in Sr��� Show
�a� p � � ���� p ��� � ���� and Cl�Sr��� � Z�����
�b� the canonical module of Sr�� is Sr�� if r � � � n mod�� and p otherwise�
�c� Sr�� is Gorenstein if and only if r � � � n mod��
Hint� S� can be considered as the second Veronese subring of a polynomial ring
kY�� � � � � Yn�� or as a normal semigroup ring�

	������ Let X be an m � n matrix of indeterminates over a 	eld k with m � n�
Show that �� � � � � m� is a prime element in G�X�� and deduce G�X� is factorial�

Notes

The notion of an algebra with straightening law is due to Eisenbud �
��
It was generalized to that of a �not necessarily graded� Hodge algebra
in De Concini� Eisenbud� and Procesi �	��� This monograph contains
all the theory developed in Section 	�� as well as numerous examples
of Hodge algebras� A signi�cant class of non�ASL Hodge algebras
are the coordinate rings of the varieties of complexes �De Concini and
Strickland �	���� That the notion of a graded Hodge algebra is very
general is illustrated by a theorem of Hibi ������ every positively graded



Notes ��

a�ne algebra over a �eld is a Hodge algebra� A non�graded Hodge
algebra may behave pathologically as was shown by Trung ��	
��

The term �Hodge algebra� re�ects the fact that the �rst standard
monomial theory was created by Hodge ��
�� as a method for estab�
lishing the �postulation formula� for the Grassmannian and its Schubert
subvarieties� In algebraic language this amounts to the computation of
the Hilbert function of the rings G�X� and G� � and therefore is �only� a
matter of counting the standard monomials of a �xed degree� See also
Hodge and Pedoe ��
��� More recent accounts are due to Laksov �����
and Musili ������ whom we follow in proving the linear independence of
the standard monomials� The straightening law on the polynomial ring is
due to Doubilet� Rota� and Stein �		�� We follow De Concini� Eisenbud�
and Procesi �	�� in deriving it from that of G�X��

For a detailed account of the history of determinantal ideals we refer
the reader to Bruns and Vetter ����� ��E� It begins with Macaulay �����
who proved �in a special case� that the ideals Ir���X� are unmixed for
r�� � min�m� n�� In the in�uential paper ���� Eagon and Northcott con�
structed a �nite free resolution of these ideals and proved their perfection
�which �over a �eld of coe�cients� is equivalent to the Cohen�Macaulay
property of the rings Rr��� see �������� This resolution� the so�called
Eagon�Northcott complex� has served as a model for several related con�
structions� In this connection one should mention the theory of generic
perfection which was also developed by Eagon and Northcott ��	�� also
see ����� Section �� Its main result is that a �generic� acyclic complex
remains acyclic under extensions of the ring of coe�cients�

The Cohen�Macaulay property of the rings Rr�� and their normality
for general r are due to Hochster and Eagon ����� They used an inductive
scheme based on a �principal radical system�� That the rings G� are Cohen�
Macaulay seems to have been realized independently by Hochster ��		��
Laksov ������ and Musili ������ The Gorenstein determinantal rings
were determined by Svanes ���	� whereas the divisor class group and the
canonical module were computed by Bruns ����� �����

A driving force in the investigation of determinantal ideals was their
relation to invariant theory� the rings Rr�� and G�X� appear as ring of
invariants of �natural� linear group actions� In order to prove this fact
�in arbitrary characteristic� De Concini and Procesi �	�� established the
straightening laws on which the ASL structures are built� also see �����

The Rees and associated graded rings of k�X� with respect to the
ideals Ir���X� are ASLs in a natural way and Cohen�Macaulay when
r�� � min�m� n�� see Bruns� Simis� and Trung ��
�� For r�� � min�m� n�
the Cohen�Macaulay property holds at least in characteristic zero� but
fails in general �����

The Hilbert function of Rr�� and the numerical invariants derived
from it are the subject of a monograph by Abhyankar �	�� See Herzog
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and Trung ����� for an approach using Gr�obner bases�
The homological properties of Rr�� discussed in this chapter were

proved by inductive methods� It would be much more satisfactory to
derive them from a minimal free resolution of Rr�� over k�X�� As pointed
out above� in the case r � � � min�m� n� the Eagon�Northcott complex
is such a resolution� and for r � � � min�m� n� � � a suitable complex
was constructed by Akin� Buchsbaum� and Weyman ���� Both these
complexes are characteristic�free� they are de�ned over Z and specialize
to a minimal free resolution under base change from Z to an arbitrary
�eld� Recently Hashimoto ����� showed that such a resolution also exists
for r�� � min�m� n���� In characteristic zero Lascoux ���	� described a
minimal resolution of Rr�� for arbitrary r� However� the construction of
such resolutions seems to be exceedingly di�cult in positive characteristics
as is indicated by a result of Hashimoto ������ for � � r�� � min�m� n���
the Betti numbers of Rr�� depend on the characteristic of k�

The theory of determinantal rings has many aspects not considered
in this chapter� For these� as well as for an extensive bibliography� we
refer the reader to �����



Part III

Characteristic p methods

���






 Big Cohen�Macaulay modules

In this chapter we prove Hochster�s theorem on the existence of big
Cohen�Macaulay modules M for Noetherian local rings R containing a
�eld� An R�module is called a big Cohen�Macaulay module if there is a
system of parameters x for which M is x�regular� Note that one does
not require M to be �nite� thus the attribute �big�� The importance of big
Cohen�Macaulay modules stems from the fact that one can deduce many
fundamental homological theorems from their existence �as we shall see
in Chapter ��

Their construction is a paradigm for the application of characteristic
p methods� one �rst shows that big Cohen�Macaulay modules exist in
characteristic p� then the result is transferred to characteristic zero via
a rather abstract principle� It asserts that certain �generic� systems of
equations are soluble over some local ring of characteristic p if there is a
solution in characteristic zero�

Rings of characteristic p are endowed with a canonical endomor�
phism� the Frobenius homomorphism a �� ap� Its homological power
seems to have �rst been realized by Peskine and Szpiro� They also intro�
duced M� Artin�s approximation theorem to commutative algebra� The
approximation theorem guarantees the descent from complete� �analytic�
local rings to �algebraic� ones�

��� The annihilators of local cohomology

Let �R� m � be a Noetherian local ring and let

a i � AnnR H
i

m �R�

be the annihilator of the i�th local cohomology� This notation is kept
throughout the section� As we shall see� the products a � � � � a j anni�
hilate the homology of certain complexes� and furthermore a � � � � a n��

annihilates the ideals �x�� � � � � xj� � xj�� modulo �x�� � � � � xj� for all systems
x�� � � � � xn of parameters and j � 
� � � � � n � �� This will be important in
the construction of big Cohen�Macaulay modules in characteristic p�

Theorem ������ Let R be a Noetherian local ring of dimension n which is

a residue class ring of a Gorenstein local ring S � dimS � d � Then the

following hold for i � 
� � � � � n	

���
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�a� a i � AnnR Ext
d�i
S �R� S��

�b� dimR�a i � i�

�c� a � � � � a n�� contains a non�nilpotent element�

�d� for p � SpecR� dimR�p � i� one has p � AssR�a i � p � AssR�

Proof� �a� We want to show �rst that both R and S can be replaced

by their completions �R and �S for the proof of �a�� Of course one has
�R �� R �S

�S � and the formation of local cohomology commutes with
completion� by ������

H i
m �R�

�� H i
m �R��R

�R �� H i
	m � �R��

The same holds for Ext since �S is a �at S�module and R has a resolu�
tion by �nite free S�modules� Finally� for every R�module N� one has

AnnR N � R � �Ann 	R�N �R
�R�� because �R is faithfully �at� So we may

assume that S and R are complete�
We saw in the proof of ����	 that H i

m �R�
�� H i

n �R� for all i �as an S�
or R�module�� n denoting the maximal ideal of S � Let E be the injective
hull of S�n over S � and � the functor HomS � � E�� Since H i

n �R� � H i
n �R�

��

we have

AnnR H
i

n �R� � AnnR H
i

n �R�
� � AnnR H

i
n �R�

�� � AnnR H
i

n �R��

and so the local duality theorem ������ applied to the S�module R� yields

AnnR H
i

n �R� � AnnR H
i

n �R�
� � AnnR Ext

d�i
S �R� S��

�b� This inequality is �������c��
�c� By �b� one has dim�R��a � � � � a n���� � n � �� Therefore a � � � � a n��

is not contained in any minimal prime ideal p with dimR�p � n�
�d� Consider the preimage q of p in S � Since dim Sq � d � i� one has

depthRp � depthRq � 
 if and only if Extd�iS �R� S�p � Extd�iS �R� S�q �� 
�

Consequently p � AssR if and only if p � SuppExtd�iS �R� S�� Because of
�a� and �b� the latter is equivalent to p � AssR�a i for prime ideals p such
that dimR�p � i�

A very important property of the ideals a i is expressed by the following
theorem�

Theorem ������ Let R be a Noetherian local ring� and

F� � 
 �� Fm �� Fm�� �� � � � �� F� �� 


a complex of �nitely generated free R�modules such that all the homology

modules Hi�F�� have �nite length� Then a � � � � a m�i annihilates Hi�F�� for
i � 
� � � � � m�
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Proof� First we construct an object which connects the local cohomology
of R and the homology of F

�
� Let x�� � � � � xn be a system of parameters�

and let K
�
denote the complex


 �� Kn �� � � � �� K� �� K� �� 
�

Kj �
M

�
i������in�j
n

Rxi� ���xin�j
�

Then H i
m �R� � Hn�i�K�

� �see ����� where we write C i for Kn�i�� Now we
form the tensor product K

�
�R F�

� a �rst quadrant bicomplex� The crucial
point is that the homology of the associated total complex T

�
can be

computed from two spectral sequences�
First we consider the spectral sequence whose E�

pq�term is given by
Hq�Kp �R F��� the homology of the columns of K� �R F� �see ������

Theorem ����� where the E��terms are described�� This spectral sequence
converges to the homology of the total complex� The modules Kp are �at
R�modules� thus

Hq�Kp �R F�� � Kp �R Hq�F���

Being an R�module of �nite length� Hq�F�� is annihilated by a power of
each of the elements xi� Hence

Hq�Kp � F�� �

�

 for p � n�
Hq�F�� for p � n�

Since the E��terms are concentrated in a single column� it follows imme�
diately that

E�
p�q � E�

p�q �

�

 for p � n�
Hq�F�� for p � n�

and therefore Hi�n�T�� � Hi�F�� for all i�
Secondly� one determines the homology of the total complex by �rst

computing the homology of its rows�

E�
p�q � Hq�K� � Fp� � Hn�q

m �Fp� � �Hn�q
m �R��r � r � rankFp�

By the de�nition of the ideals a i one has a n�qE
�
p�q � 
� Since all the terms

Er
p�q are subquotients of E

�
p�q � they are equally annihilated by a n�q �

a n�qE
�
p�q � 
�

This spectral sequence also converges to the total homology of T
�
�������

Theorem ������ For every t one therefore has a �ltration


 � U�� � U� � � � � � Uu � Ht�T��

where Up�Up�� � E�
p�t�p� Observe that E

�
p�t�p � 
 for p � m or t� p � n�

Thus the �ltration is already given by


 � Ut�n�� � Ut�n � � � � � Um � Ht�T���
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and Ht�T�
� is annihilated by a n��t��t�n�� � � � a n��t�m� � a � � � � a n�t�m� Taking

into account that Hi�F�
� � Hi�n�T�

� we get the desired result�

As a consequence we derive another �annihilation theorem� whose
second part is crucial in the construction of big Cohen�Macaulaymodules
in characteristic p�

Corollary ������ Let R be a Noetherian local ring of dimension n� Then�
given a sequence x � x�� � � � � xm � R such that codim�x�� � � � � xm� � m� the
following hold	

�a� a � � � � a n�i annihilates the Koszul homology Hi�x�� i � 
� � � � � m�
�b� a � � � � a n�� annihilates ��x�� � � � � xm��� � xm���x�� � � � � xm����

Proof� �a� The sequence x can be extended to a system of parameters
x�� � � � � xn �recall that codim I � dimR � dimR�I�� We start a descending
induction at m � n for which the assertion is obviously a special case of
������

Suppose now that m � n and put x� � x�� � � � � xm� xtm��� t 	 �� By
������ we have an exact sequence

Hi�x�
�xtm��

���� Hi�x�
�
�� Hi�x

���

By induction the submodule Im� �� Hi�x��xtm��Hi�x� of Hi�x�� is annihi�

lated by a � � � � a n�i� Since
T
xtm��Hi�x� � 
� we are done�

�b� We use another segment of the long exact sequence of Koszul
homology� now relating x and x�� � x�� � � � � xm�� �

H��x�
�
�� H��x

���
xm
�� H��x

����

Since a � � � � a n��H��x� � 
� we also have a � � � � a n���Im�� � 
� Im�
consists of exactly those elements inH��x��� � R��x�� � � � � xm��� annihilated
by xm� that is Im� � ��x�� � � � � xm��� � xm���x�� � � � � xm����

The preceding corollary is completely vacuous if R happens to be a
Cohen�Macaulay ring� but in connection with ����� it shows that certain
local rings� among them the complete ones� preserve a faint trace of the
Cohen�Macaulay property� the modules

��x�� � � � � xj��� � xj���x�� � � � � xj����

which are zero for R Cohen�Macaulay� cannot be arbitrarily �big��

Corollary ����	� Let R be a Noetherian local ring which is a residue class

ring of a Gorenstein local ring S � Then there exists a non�nilpotent element

c � R such that c � ��x�� � � � � xj� � xj�����x�� � � � � xj� � 
 for all systems of

parameters x�� � � � � xn and all j � 
� � � � � n� ��

Proof� According to ����� there exists a non�nilpotent c � a � � � � a n��� By
����� such a c satis�es our needs�
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Remark ������ Parts �b� of ����� and ����� are not true for arbitrary Noethe�
rian local rings� One of the most used counterexamples of commutative
algebra �constructed by Nagata ������ Example �� p� �
�� works here�

too� let R be a ��dimensional local domain such that its completion �R

has an associated prime ideal p with dim �R�p � �� Put a � � AnnR H
�

m �R�

and b � � Ann 	R H
�
	m �
�R�� Since H�

m �R�
�� H�

	m �
�R� as R�modules� a � � b � �R�

Of course ����� applies to �R� and by its third part� p � Ass �R�b �� So
a � � p � R � 
 and dimR�a � � �� �Note that a regular element of R

stays regular in �R��
Let x � x� y be a system of parameters of R and put xt � xt� yt� Then

H�
m �R� is the direct limit of the Koszul cohomology modules H

��xt�� By
�����
 one has H��xt� �� H��x

t�� Consider the long exact sequence �which
appeared already in the proof of �������

H��y
t� �� H��x

t� �� H��y
t�

xt

�� H��y
t��

R is a domain� so H��y
t� � 
� and H��x

t� � �yt � xt���yt�� An element c
annihilating all the modules �yt � xt���yt� must annihilate H�

m �R�� hence
c � 
 as seen above�

Exercises


����� Let M be an arbitrary module over a Noetherian local ring �R� m �� and
a i�M� � AnnH i

m
�M�� Let F� be a complex of 	nite free R�modules with homology

of 	nite length as in ������ Prove that a ��M� � � � a m�i�M� annihilates Hi�F� �M�
for i � �� � � � � m�


���	� With R and M as in ����� assume that H i
m
�M� � � for i � �� � � � � n � �

where n � dimR� and M�m M �� �� Let x be a system of parameters of R� Show
Hi�x�M� � � for i � �� � � � � n� and that x is M�quasi�regular� �See ��������

��� The Frobenius functor

Let R be a ring of characteristic p� i�e� a ring with a monomorphism
Z�pZ �� R where p is a prime number� The Frobenius homomorphism

is the map F � R �� R� F�a� � ap� Via F one may consider R as an R�
algebra in a non�trivial way� The crucial point in the construction of the
Frobenius functor is to work simultaneously with two essentially di erent
module structures of R itself� This is an unusual idea in commutative
algebra and has to be kept �rmly in mind� Let RF denote the �R�R��
bimodule with additive group R and left and right scalar multiplication
given by

a � r � b � arF�b� � arbp� a� b � R� r � RF �

�The standard associative laws are obviously satis�ed��
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Let M be a left R�module� Then we take the tensor product RF �R M
with RF as a right R�module� i�e�

a� bx � a � b� x � abp � x� a � RF � b � R� x �M�

The left R�module structure of RF endows RF �R M with a like structure
such that c�a � x� � ca � x� �This tensor product is merely biadditive�
bilinearity is lost because in general a � r �� r � a for a � R� r � RF �� The
Frobenius functorF acts on a left R�module M by assigning to it the left
R�module RF �R M� For an R�linear map � � M � N one consequently
considersF��� to be the R�linear map idRF �R�� The following properties
of F are just the fundamental ones of tensor products�

Proposition ������ Let R be a ring of characteristic p� ThenF is a covariant�

additive� and right exact functor from the category of left R�modules to

itself�

We want to compute some speci�c values of F� First we see that
F�R� � RF �R R � RF as a left R�module� so F�R� � R� then additivity
implies F�Rn� � Rn� For a cyclic R�module R�I one gets F�R�I� �
RF �R R�I � RF��RF � I�� Now r � a � rap for r � RF � a � I � and
RF � I turns out to be the ideal I�p� generated by the p�th powers of the

elements of I � Hence RF��RF � I� � R�I�p� with its ordinary left scalar
multiplication�

Proposition ������ Let R be a ring of characteristic p� Then

�a� F�Rn� � Rn for all n �as left R�modules�� and if e�� � � � � en is a basis of

Rn� �� e�� � � � � �� en is a basis of F�Rn��

�b� F�R�I� � R�I�p� for all ideals I of R�

More generally� we denote by I�q�� q � pe� the ideal generated by the
q�th power of the elements of I� I �q� is called the q�th Frobenius power of
I �

The Frobenius functor owes its power to its non�linearity� again
something remarkable� It is straightforward to verify the following�

Proposition ������ Let R be a ring of characteristic p� M and N be R�
modules� and � � M � N an R�linear map� Then

�a� F�a�� � apF��� for all a � R�

�b� if ��x� �
P

aiyi for x � M� ai � R� yi � N� then F����� � x� �P
api ��� yi��

�c� the map M � F�M�� x �� � � x� is not R�linear in general	 instead

one has �ax� �� ap��� x��

We can now give a concrete description of F in terms of �generators
and relations��
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Proposition ����	� Let R be a ring of characteristic p and M an R�module

with a presentation Rm
�
�� Rn ��M �� 
�

�a� Then F�M� has the presentation Rm
F���
��� Rn ��F�M� �� 
�

�b� furthermore� if � is given by a matrix �aij�� then F��� is given by the

matrix �apij��

Part �a� follows from the right exactness of F and the fact that F
leaves Rn untouched� Part �b� follows from ������

We conclude the list of basic properties of the Frobenius functor with
its behaviour under localization�

Proposition ������ Let R be a ring of characteristic p� The Frobenius functor
commutes with rings of fractions	 RS �R F�M� �F�RS �R M� for all R�
modules M� and analogously for R�linear maps�

Proof� We have RS �R F�M� � RS �R RF �R M and

F�RS �R M� � RF
S �RS

RS �R M � RF
S �R M�

As left RS�modules� RS �R RF �� RS �R R �� RS and RF
S are naturally

isomorphic� this isomorphism is also an isomorphism of right R�modules�

We cannot resist trying the strength of the Frobenius functor by prov�
ing the �new intersection theorem� in characteristic p� �This nomenclature
will be explained in Chapter �� The elegant argument� including ������ is
due to Roberts�

Theorem ������ Let �R� m � be a Noetherian local ring of characteristic p�
and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules such that each homology Hi�F�� has

�nite length� If s � dimR� the complex F� is exact�

Proof� Note that it is enough to cover the case of a complete ring R� if

R is not complete� we simply tensor all our objects by �R� a faithfully �at
extension of the same dimension�

Assume that F
�
is not exact� If H��F�

� � 
� the map �� is a split
epimorphism� and F

�
decomposes into the direct sum of two shorter

complexes of the same type� So we may suppose H��F�
� �� 
� Furthermore�

if ���F�� �� m F�� F� splits o an isomorphism ��� � F
�
� � F �� of direct

summands of F� and F�� This leaves the essential case ���F�� � m F��
Apply the Frobenius functor F to F�� The modules appearing in

F�F�� are the same as in F�� Furthermore F�F�� has �nite length
homology� by hypothesis F� � Rp is split exact for all prime ideals p �
SpecR� p �� m � Since the Frobenius functor commutes with localization�
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this also holds for F�F
�
�� Something has changed however� namely we

have F�����F�� � m pF� by ������b��
Now one iterates this procedure� all the complexes Fe�F��� e 	 
�

have �nite length homology� andFe�����F�� � m peF�� On the other hand
H��Fe�F��� is annihilated by the ideal a � � � � a s where a i � AnnH i

m �R��
see ������ This forces a � � � � a s to be contained in

T
m pe � 
� contradicting

����� for s � dimR since R� a complete local ring� is a residue class ring
of a Gorenstein ring�

A crucial point in the preceding proof is that for a �nite free complex
F

�
the Frobenius functorF preserves the property of having �nite length

homology� It also preserves acyclicity�

Theorem ����� �Peskine�Szpiro�� Let R be a Noetherian ring of character�

istic p� and F� � 
 �� Fs
�s

�� � � �
��

�� F� a complex of �nite free R�modules�
Then F� is acyclic if and only if F�F�� is acyclic�

Proof� Set rj �
Ps

i�j����
i�j rankFi� By the acyclicity criterion ������ it

depends only on the grades of the ideals Iri��i� whether F� is acyclic or
not� it is acyclic if and only if grade Iri��i� 	 i for i � �� � � � � s�

By virtue of ����� and ������ �rst F�Fj� � Fj � and next Iri�F��i�� �

Iri��i�
�p�� The two ideals have the same radical� hence the same grade�

The following corollary will play an important r �ole in Chapter �
�

Corollary ����� �Kunz�� Let R be a regular ring of characteristic p� Then
RF is a �at R�algebra� equivalently� F is an exact functor�

Proof� Since �atness is a local property and F commutes with localiza�
tion� we may assume that R is a regular local ring� By a standard �atness
criterion �for example� see ��	
�� 	��� it is enough that TorR� �R

F � R�I� � 

for every ideal I of R� This follows from ����	� the �nite free resolution
of R�I stays acyclic when tensored with RF �

The assertion of ����� is usually called the �atness of the Frobenius�
Kunz ����� also showed the converse of ������ see Exercise ������ for the
case in which R is Cohen�Macaulay�

Exercises


����� Let R be a Noetherian ring� M a 	nite R�module of 	nite projective
dimension with 	nite free resolution F�� and e � � an integer� Prove that Fe�F��
is acyclic� and proj dimFe�M� � proj dimM�


������ Let R be a regular local ring of characteristic p� Show ��Fe�M�� �
pedimR ��M� for every 	nite length module M� �Use induction on ��M���
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������ Herzog ���� proved that ����
 characterizes modules of 	nite projective
dimension� then it follows immediately from ����� that the exactness of F
characterizes the regular ones among the Noetherian local rings� For simplicity
we restrict ourselves to Cohen�Macaulay rings� So suppose R is a Cohen�
Macaulay local ring of characteristic p�
�a� Let F

�
be a minimal free resolution of a 	nite R�module M and x a maximal

R�sequence� If Fe�F
�
� is acyclic for all e � �� show TorRi �R��x��F

e�M�� 
�
�R��x��bi�M� for i � � and e� ��
�b� Conclude that proj dimM � ��

��� Modi�cations and non�degeneracy

In this section we show that for a system of parameters x � x�� � � � � xn
of a Noetherian local ring of characteristic p there exists an x�regular
R�module� The conditions to satisfy are� �i� xs�� is a regular element of
M��x�� � � � � xs�M� s � 
� � � � � n � �� �ii� M �� xM� Since the trivial choice
M � 
 satis�es �i�� we see that �i� is completely useless without �ii�� and
we need results from the preceding sections in order to show that the
construction below does not degenerate by violating condition �ii��

Suppose M is an R�module such that xs�� is not �M��x�� � � � � xs�M��
regular� Then there exists a y � M� y �� �x�� � � � � xs�M� for which xs��y �
�x�� � � � � xs�M� Equivalent to y �� �x�� � � � � xs�M is the non�existence of
a solution z�� � � � � zs � M of the equation y � x�z� � � � � � xszs � The
deus ex machina by which algebraists force equations to be soluble is to
extend the given object by some �free� variables and to introduce the as
yet insoluble equation as a relation on them� In our case we pass to
M� � �M�Rs��Rw� where w � y� �x�e�� � � ��xses�� and e�� � � � � es a basis
of Rs� The element y�� the image of y under the natural map M � M� �
no longer keeps xs�� from being regular on M���x�� � � � � xs�M�� It is quite
obvious that a well organized iteration of this construction in the limit

yields a module fM satisfying condition �i� of x�regularity�

It is however equally obvious that we may lose condition �ii� for fM �
One attempt to control �ii�� successful in characteristic p� is to keep track
of a �xed element f � M on its way to the limit and to make sure that
f �� xMi for all approximationsMi�

For a pair �M� f�� f � M� let M� be constructed as above� and f� be
the image of f under the natural mapM �M�� Then �M�� f�� is called an
x�modi�cation of �M� f� �of type s�� More generally� if there is a sequence

�M� f� � �M�� f�� �� �M�� f�� �� � � � �� �Mr � fr� � �N� g��

with �Mi��� fi��� an x�modi�cation of �Mi� fi� �of type si���� then �N� g�
is an x�modi�cation of �M� f� �of type �s�� � � � � sr��� As soon as x is �xed�
we may simply speak of a modi�cation� If g �� xN� then �N� g� is non�
degenerate�
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Proposition ������ Let R be a Noetherian ring� and x � x�� � � � � xn � R�
Then the following are equivalent	

�a� there exists an x�regular R�module M�

�b� every x�modi�cation �N� g� of �R� �� is non�degenerate�

Proof� We start with the more important implication �b�  �a�� Our
goal is to construct a direct system of modules �Mi� �ij�� i � N� starting
from M� � R such that M � lim

��
Mi is x�regular� Each �Mi� ��i����

will be a modi�cation of �R� ��� Therefore our hypothesis �b� forces
lim
��

��i��� �� xM�

Suppose thatM�� � � � �Mj �together with the natural maps in a sequence
of modi�cations� have been determined� Now choose �rst i� then s�
minimal such that there exists a y � Mi with xs���ij�y� � �x�� � � � � xs�Mj

while �ij�y� �� �x�� � � � � xs�Mj � Then put Mj�� � �Mj � Rs��Rw� w �
y � �x�e� � � � � � xses� as above� the maps �i�j�� being the natural ones�
Let us say that step j � � has index �i� s��

We claim that for each pair �i� s� there are only �nitely many steps of
index �i� s�� For� if the sequence j � �� � � � of steps of index �i� s� does not
stop� one �nds a non�stationary ascending chain of submodules of Mi by
taking the preimages of �x�� � � � � xs�Mj��� �x�� � � � � xs�Mj��� � � � in Mi� But R
is Noetherian� and all the modules Mi are �nite�

If there is an equation xs��y � x�z�� � � ��xszs for elements y� z�� � � � � zs
of the limitM� it has to hold in an approximationMi as well� According
to the claim� �ij�y� � �x�� � � � � xs�Mj for j � i� hence y � �x�� � � � � xs�M�

The validity of the implication �a�  �b� is forced by our choice of
a free direct summand in the construction of a modi�cation� Let f �M
be any element �� xM� Trivially there is a homomorphism R � M�
� �� f� So it is enough to show that if �N� � g�� is a type s modi�cation
of �N� g� and there is a map � � N � M� ��g� � f� then this map can be
extended to �� � N� � M� ���g�� � f� Suppose that N� � �N � Rs��Rw�
w � y � �x�e� � � � � � xses�� Since xs����y� � �x�� � � � � xs�M and M is x�
regular� there are elements e��� � � � � e

�
s �M such that ��y� � x�e

�
��� � ��xse

�
s�

Thus take �� to be the map induced by � and the assignment ei �� e�i�

Of course� the implication �a� �b� of the preceding proposition does
not help in the construction of a big Cohen�Macaulay module� However�
the idea in its proof� namely to compare a sequence of modi�cations to
some �universal� object� is very useful�

Lemma ������ Let R be a Noetherian local ring which is a residue class

ring of a Gorenstein ring� Then there exists a non�nilpotent element c � R
such that for every system of parameters x and every sequence �R� �� �
�M�� f�� � � � � � �Mr� fr� of x�modi�cations one has a commutative dia�
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gram

�M�� f�� ��� �M�� f�� ��� � � � ��� �Mr��� fr��� ��� �Mr � fr���y��

��y��

��y�r��

��y�r

�R� ��
c

��� �R� c�
c

��� � � �
c

��� �R� cr���
c

��� �R� cr�

the commutativity including �i�fi� � ci� i � 
� � � � � r�

Proof� Take c as in ������ i�e� non�nilpotent and

c � ��x�� � � � � xs� � xs�����x�� � � � � xs� � 


for every system of parameters x and s � 
� � � � � dimR � ��
Naturally �� � id� Suppose �i has been chosen� If

Mi�� � �Mi � Rs��Rw�

w � y � �x�e� � � � � � xses��

xs��y � x�z� � � � � � xszs� zj �Mi�

then �i�y� � �x�� � � � � xs� � xs��� and there are elements e��� � � � � e
�
s � R for

which c�i�y� � x�e
�
� � � � � � xse

�
s � The homomorphism �� � Mi � Rs � R�

���g� � c�i�g� for g � Mi� ���ei� � e�i� factors through Mi��� yielding the
desired map �i���

Suppose R has characteristic p� and let F denote the Frobenius
functor� Given an R�module M and f � M� we write F�f� for � � f �
F�M� � RF � M� We want to investigate how modi�cations behave
under F� With the standard meanings of y� zi � w�M� we have

xps��F�y� � xp�F�z�� � � � �� xpsF�zs��

F�w� �F�y�� �xp�F�e�� � � � �� xpsF�es���

F�M�� � �F�M��F�Rs���RF�w��

and F�e��� � � � �F�es� form a basis of F�Rs� �� Rs� see ����� � ������ This
shows that if �M� � f�� is an x�modi�cation of �M� f�� then �F�M���F�f���
is an xp�modi�cation of �F�M��F�f���

All the arguments necessary to prove the existence of big Cohen�
Macaulay modules in characteristic p have now been collected� Let R
be a Noetherian local ring of characteristic p� Note that a system of

parameters x of R is a system of parameters of �R� and every x�regular �R�
module is also an x�regular R�module� Therefore we may assume that R is
complete� According to ����� the existence of a degenerate x�modi�cation
�N� g� of �R� �� must be excluded� Suppose �N� g� is degenerate and of
type �s�� � � � � sr�� Let us now iterate the application of the Frobenius
functor to the given data� After the e�th iteration we have reached an xp

e

�
modi�cation �N�e�� g�e�� of �R� ��� Since �N� g� is degenerate� i�e� g � xN�
�N�e�� g�e�� is degenerate� too� i�e� g�e� � xp

e

N�e�� Since R is complete� �����
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can be invoked� there exists a homomorphism �r � N�e� � R such that
cr � �r�g�e��� However� g�e� � xp

e

N�e�� so cr � �xp
e

� for all e� SinceT
�xp

e

� � 
� c must be nilpotent � a contradiction�

Theorem ������ Let R be a Noetherian local ring of characteristic p � 
�
and x a system of parameters� Then there exists an x�regular module M�

In particular R has a big Cohen�Macaulay module�

An equational criterion for degeneracy of modi�cations� In the coming
section we want to derive the existence of big Cohen�Macaulay modules
in characteristic zero from their existence in characteristic p� The key
argument will be Hochster�s �niteness theorem which guarantees the
solubility of certain systems of polynomial equations over some local
ring of characteristic p provided there is a solution in characteristic zero�
The following proposition gives a su�ciently detailed description of the
equations to be used� Combined with ����� it is a criterion for the existence
of x�regular modules� in particular the existence of big Cohen�Macaulay
modules�

Proposition ����	� Let n � Z� n 	 �� and let s�� � � � � sr � Z with 
 �
s�� � � � � sr � n � �� Then there exists a set S�s�� � � � � sr� of polynomials

p � Z�X�� � � � � Xn� Y�� � � � � Ym�� m determined by s�� � � � � sr � such that for every
ring R and every sequence x � x�� � � � � xn � R the following are equivalent	

�a� there is a degenerate x�modi�cation �N� g� of �R� �� of type �s�� � � � � sr��

�b� there exist y�� � � � � ym � R such that p�x�� � � � � xn� y�� � � � � ym� � 
 for all

p � S�s�� � � � � sr��

Proof� Consider a sequence

�R� �� � �M�� f�� �� � � � �� �Mr� fr� � �N� g��

�Mi� fi� being a modi�cation of �Mi��� fi��� of type si� Mi is constructed
by adding generators ei�� � � � � e

i
si
and a relation wi � yi� �x�ei�� � � ��xsie

i
si
�

to Mi��� so

N � Mr � �
rM

j��

Fj��
rX

v��

Rwv �

The module M� � R is simply generated by e�� � �� and Fi has the basis
ei�� � � � � e

i
si � Writing yi as a linear combination of the basis elements one

obtains alij � R such that

yi �
i��X
j��

sjX
l��

ajile
j
l �

wi �
i��X
j��

sjX
l��

ajile
j
l � �x�e

i
� � � � � � xsie

i
si��

�������������
i � �� � � � � r����
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The condition xsi��yi � �x�� � � � � xsi�Mi�� can be formulated in
Li��

j��Fj �

xsi��yi �

siX
u��

xug
u
i �

i��X
v��

bviwv

with gui �
Li��

j��Fj � b
v
i � R� Expressing the gui in the given basis ofLi��

j��Fi�� and substituting the right sides of ��� for yi and wi yields

i��X
j��

sjX
l��

xsi��a
j
ile

j
l���

�
siX
u��

i��X
j��

sjX
l��

xuc
uj
il e

j
l �

i��X
v��

	v��X
j��

sjX
l��

bvi a
j
vle

j
l �

svX
l��

bvi xle
v
l



� i � �� � � � � r�

Each of these equations relating elements of the free module
Li��

j��Fi
splits into its components with respect to the elements of the given

basis� Replacing the coe�cients ajil � b
v
i � c

uj
il � xu by algebraically independent

elements Aj
il � B

v
i � C

uj
il � Xu over the ring Z and collecting all the terms in

the components of ��� on one side� one obtains a set S��s�� � � � � sr� of
polynomials over Z which depends only on �s�� � � � � sr��

We have seen that an x�modi�cation of type �s�� � � � � sr� leads to a

solution of the system S��s�� � � � � sr� in which the variables Aj
il � B

v
i � C

uj
il

take values in R whereas x�� � � � � xn are substituted for X�� � � � � Xn� Con�
versely� given such a solution� one de�nes the elements yi and wi by their
representations in ���� The validity of ��� then guarantees that one has
constructed a chain of modi�cations�

Next we write down what it means for �Mr � fr� to be degenerate� The
element fr is just the residue class of e�� � � in Mr � Therefore �Mr � fr� is
degenerate if and only if

e�� � x�
rM

j��

Fj� �
rX

v��

Rwv �

This adds an �r � ���th relation to the system ����

e�� �
nX

u��

rX
j��

sjX
l��

xuc
uj
r���le

j
l �

rX
v��

�
v��X
j��

sjX
l��

bvr��a
j
vle

j
l �

svX
l��

bvr��xle
v
l ��

Accordingly we enlarge our sets of indeterminates and of equations�
In view of what must be proved� there is no need to distinguish the

variables Aj
il � B

v
i � C

uj
il � We order them in some sequence and rename them

Y�� � � � � Ym�
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Exercise


����� Let �R� m � k� be a Noetherian local ring of dimension n� M a big Cohen�
Macaulay module� and y a system of parameters� Prove
�a� H i

m
�M� � � for i � �� � � � � n� � and Hn

m
�M� �� ��

�b� Hi�y� M� � � for i � �� � � � � n and H��y� M� �� ��
�c� y is M�quasi�regular�

�d� ExtiR�k�M� � � for i � �� � � � � n� � and Extnk�k�M� �� ��

�Use �������

��	 Hochster�s �niteness theorem

The following theorem is fundamental for the application of characteris�
tic p methods to �local� rings containing a �eld of characteristic zero� Let
X � X�� � � � � Xn� Y � Y�� � � � � Ym be families of independent indeterminates
over Z� Then we call a subset E of Z�X �Y � simply a system of equations

�over Z�� It has a solution of height n in a Noetherian ring R if there are
families x � x�� � � � � xn� y � y�� � � � � ym in R such that

�i� p�x� y� � 
 for all p � E� �ii� heightxR � n�

Note that condition �ii� implies xR �� R �by de�nition� heightR � ���

Theorem ��	�� �Hochster�� �a� Suppose that the system E of equations has

a solution of height n in a Noetherian ring R containing a �eld� Then E
has a solution x�� y� in a local ring R� of characteristic p � 
 such that x�

is a system of parameters for R��

Moreover� R� can be chosen as a localization of an a�ne domain over

a �nite �eld with respect to a maximal ideal�

�b� If� in addition� R is a regular local ring such that x is a regular system

of parameters� then the ring R� in �a� can be chosen as a regular local ring

with regular system of parameters x��

The theorem suggests the following strategy for proving a statement
S about Noetherian rings containing a �eld�
�i� prove S for local rings of characteristic p � 
�
�ii� show that there exists a family �Ei�i�I of systems of equations with
the property that S holds for R if and only if none of the systems Ei has
a solution of the appropriate height in R�

Both steps �i� and �ii� have been carried out for the statement �If
R is local and x a system of parameters� then there exists an x�regular
R�module�� see ������ ������ and ������ Thus one obtains

Theorem ��	�� �Hochster�� Let R be a Noetherian local ring containing a

�eld� and x a system of parameters for R� Then there exists an x�regular

R�module M� In particular� R has a big Cohen�Macaulay module�
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The proof of ����� falls into three parts� �i� the reduction to its part
�b�� �ii� the reduction to the case in which R is the localization of an
a�ne algebra� and �iii� the �nal step�

Before we set out for the proof of ������ we show that certain conditions
of linear algebra over a regular local ring can be formulated by stating
that the ring elements involved and some auxiliary elements satisfy a
suitable system of equations�

The equational presentation of acyclicity� Some conditions for elements in
a ring R and vectors and matrices formed by them are evidently of an
equational nature� for example� the membership of a vector in a �nite
submodule of a free module of �nite rank �especially that of an element
in a �nite ideal� and the assertion that a sequence of matrices forms a
complex� The crucial fact for regular local rings is that the acyclicity of
a complex can also be cast into equational conditions�

Lemma ��	��� Suppose R is a regular local ring with regular system of

parameters x�� � � � � xn� and let the matrices �p� � � � � �� represent the linear

maps in a �nite free resolution over R� Denote the family of the entries of

all the �i by z � �z�i�jk��

Then there is a set A of polynomials over Z in the indeterminates

X � X�� � � � � Xn� the family of indeterminates Z � �Z �i�
jk � representing the

entries of all the matrices �i� and auxiliary indeterminatesW � W�� � � � �Wu

such that the following holds	

�a� there are w � w�� � � � � wu � R for which x� z�w is a solution of A�

�b� whenever x�� z��w� are specializations of X �Z �W in a regular local ring

R� satisfying the systems of equationsA and such that x� is a regular system

of parameters� then the complex formed by the matrices ��i with entries z�i�jk
�

is acyclic�

Proof� We use the Buchsbaum�Eisenbud acyclicity criterion ������� Let
ri be the �expected� rank of �i� Then grade Iri��i� 	 i� For i � dimR
this is equivalent to the existence of elements aij � �x�� j � �� � � � � n � i�
for which Iri��i� � �ai�� � � � � ai�n�i� contains a power of each of the xl � For
i � dimR� the condition grade Iri��i� 	 i just says � � Iri��i�� Thus the
grade condition of the acyclicity criterion can be interpreted equationally�
In R� we use the converse direction of the acyclicity criterion�

This lemma describes very precisely which indeterminates and equa�
tions between them must be introduced in order to transfer objects of
linear algebra represented by matrices and some of their properties P
from the regular local ring R to another regular local ring R� of the same
dimension via a generic presentation as in ������ Let us simply say that P
has a regular equational presentation� The following corollary lists some
properties with regular equational presentations�
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Corollary ��	�	� Let �R� m � be a regular local ring� U � V submodules of

Rr� v � Rr� W a submodule of Rs� and � � Rr � Rt a linear map� Then the

following properties have regular equational presentations	

�a� U � Ker��
�b� V�U �� Rs�W �

�c� v �� U�

�d� ExtiR�R
r�U� R� �� Rs�W for some �xed i�

�e� dimRr�U � d for some integer d �

Proof� �a� We choose a system u�� � � � � uq of generators of U and de�ne
the linear map � � Rq � Rr by sending the i�th basis vector to ui� Then

the sequence Rq
�
�� Rr

�
�� Rt can be extended to a �nite free resolution

F� of Coker�� By virtue of the previous lemma the acyclicity of F� has a
regular equational presentation� and the acyclicity includes the condition
U � Ker��

�b� The given isomorphism V�U �� Rs�W and the choice of a system
of generators of U as above induce a commutative diagram


 ����� Rq ����� Rq�s
�

����� Rs ����� 


�

��y �

��y �

��y

 ����� U ����� V ����� V�U ����� 


with exact rows and epimorphisms �� �� �� Conversely� given such a
diagram� one has Ker � � ��Ker ��� In other words� a system of generators
of W is obtained by projecting a system of generators of Ker � onto the
last s coordinates� Let T � Ker �� After the speci�cation of matrices for
�� �� � it is su�cient that the conditionT � Ker � has a regular equational
presentation� and this is warranted by �a� since � can also be considered
as a linear map with target Rr �

�c� Set V � U � Rv� then V�U �� 
� and so V�U �� Rs�W with s � 

and W � m Rs� The condition V�U �� Rs�W has a regular equational
presentation by �b�� and the same evidently holds for W � m Rs�

�d� Again we choose an epimorphism � � Rq � U and extend it to
a free resolution F� of Rr�U� Let �j � j � �� � � � � p be the maps in F��

Then ExtiR�R
r�U� R� �� Im��i �Ker�

�
i�� �here

� denotes the R�dual�� Set
M � Im��i and N � Ker��i��� Since the acyclicity of the resolution
and the condition N � Ker��i�� have a regular equational presentation

�for M � Im��i this is trivial�� Ext
i
R�R

r�U� R� �� N�M also has such a
presentation� and an application of �b� concludes the argument�

�e� One has dimR � dimRr�U � gradeRr�U since R is a regular

local ring� However� gradeRr�U � minfi � ExtiR�R
r�U� R� �� 
g� and

the vanishing and non�vanishing of Ext can be captured by equations
according to �d��
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The reduction to the a�ne case� The reader should note that we are free
to extend the set of indeterminates appearing in E and the system E itself�
Moreover� we can also change the family X of distinguished variables
that guarantees the height of the solution� We only have to make sure
that the elements to which the variables X will �nally specialize generate
an ideal of height n�

The very �rst step is a routine matter� we choose a prime ideal
p minimal over �x� such that height p � n� then we complete Rp with

respect to the p Rp �adic topology� and �nally replace R by �Rp � Because of
Cohen�s structure theorem A��� we can write R as a residue class ring of
a regular local ring �containing a �eld�� say R � S�I where I is generated
by elements b � b�� � � � � bs and S has a regular system of parameters
a � a�� � � � � ar � Extend the set of indeterminates by A � A�� � � � � Ar and

B � B� � � � � Bs� and modify the system E to a system eE as follows� each
equation p�X �Y � � 
 is replaced by the equation

p�X �Y � � Cp�B� � � � � � CpsBs

where the Cpj are new indeterminates�

Next we enlarge eE by further equations expressing �i� the condition
that dim S��b�� � � � � bs� � n and �ii� the fact that a power of each ai lies in
the ideal generated by b and preimages of the xj � While the equations
for �ii� simply exist because x is a system of parameters of R� we must
invoke ������e� for �i��

Next suppose part �b� of the theorem has been proved� Then we

can �nd a solution ex� ey to the system eE in a regular local ring eS in
which A specializes to a regular system of parameters ea� We simply set
R� � S ���b��� The original system E is solved by the residue classes x�

and y� in R� of the families ex and ey� Moreover� dimR� � n because of
the extra equations for �i� above� and x� is a system of parameters by the
additional equations for �ii��

The reduction to the a�ne case� For the next reduction step Artin�s ap�
proximation theorem will be crucial� In order to explain it we need the
theory of Henselian local rings� We must content ourselves with a very
brief sketch� referring the reader to Grothendieck ������ IV� x��� Nagata
������ or Raynaud ��
�� for a full treatment� A local ring �R� m � is
Henselian if it has the following property� suppose f � R�X� is a monic
polynomial such that its residue class �f modulo m R�X� has a factor�
ization �f � g�h� with monic polynomials g�� h� � �R�m ��X� for which
�g�� h�� � �R�m ��X�� then there exist monic polynomials f� g � R�X� such
that f � gh and �g � g�� �h � h�� A more abstract characterization is that R
is Henselian if and only if every R�algebra S which is a �nite R�module
is a product of local rings�
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Hensel�s lemma says that a complete local ring is Henselian� Moreover�
for each local ring �R� m � there exists a Henselization �Rh� m h� which� in
a sense� is the smallest Henselian local ring containing R� One has local

embeddings �R� m � � �Rh� m h� � � �R� �m �� and m Rh � m h� The ring Rh is a
direct limit of subrings S each of which is the localization of a module�
�nite extension of R with respect to a maximal ideal lying over m � More
precisely� S has the form �R�X��f��m �X� where f � Xn�cn��X

n��� � � ��c�
is a monic polynomial with c� � m � c� �� m � �It follows that Rh is a �at
extension of R��

We can now formulate �a special case of� Artin�s approximation
theorem �����

Theorem ��	��� Let R be a local ring which is a localization of an a�ne

algebra over a �eld k� Let E be a system of polynomial equations over R

in n variables� If E has a solution x � �Rn� then it has a solution x� � �Rh�n�
Furthermore� given t� the solution x� can be chosen such that it approximates

x to order t� that is� x � x�mod m t �Rn�

We will not need the statement about approximation to order t� it
has only been included for completeness�

Proposition ��	��� Let E � Z�X �Y � be a system of equations with X �
X�� � � � � Xn and Y � Y�� � � � � Ym � Suppose that E has a solution x� y in a

regular local ring R that contains a �eld K and such that x is a regular

system of parameters� Then there exist an algebraically closed �eld L of

like characteristic� an a�ne domain A over L� and a maximal ideal m of A
with Am regular such that E has a solution x�� y� in Am for which x� is a

regular system of parameters of Am �

Proof� We may assume R is complete� By Cohen�s structure theorem
A���� R is just a formal power series ring K��x�� in which the elements
of x are the indeterminates� It is obviously harmless to replace K by an
algebraic closure L�

Next the indeterminates X in the system E are replaced by the
elements of x so that we obtain a system of polynomial equations E�

in the unknowns Y over L�x�� By hypothesis it has a solution in
the completion L��x�� of A� � L�x��x� with respect to its maximal ideal
m � � xA�� Thus the approximation theorem yields a solution in the
Henselization of A�� and therefore in an extension A�� � �A��X���f���m � �X�

where f � Xn � cn��X
n��� � � � � c� is a monic polynomial with c� � m ��

c� �� m �� It is easily veri�ed that dimA�� � n and that the image of x
generates the maximal ideal of A��� It follows that A�� is a regular local
ring for which x is a regular system of parameters� In order to arrive at
an integral domain A we replace A��X���f� by the residue class ring with
respect to its unique minimal prime ideal contained in �m �� X�A��X���f��
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The �nal step� Let L� A� m � x�� and y� be as in ������ We rename x� and
y� by setting x � x�� y � y�� Since L is algebraically closed� the injection
L� A induces an isomorphism L �� A�m by Hilbert�s Nullstellensatz in
its algebraic version� see A���� In other words� A �� L� m as an L�vector
space� This implies that A � L�z�� � � � � zr� where z�� � � � � zr generates the
ideal m � We write A �� L�Z��I � Z � Z�� � � � � Zr being indeterminates over
L� The ideal I is �nitely generated by polynomials f�� � � � � fs� Let C � L
be the �nite set of coe�cients appearing in

��� the polynomials f�� � � � � fs�

��� n � m polynomials expressing x�� � � � � xn and y�� � � � � ym in terms of
z�� � � � � zr �

��� a polynomial g �� m and polynomials hij such that gzi �
P

hijxj for
all i� �The polynomials hij can be found since x generates m Am ��

Let L� be the sub�eld generated by C over the prime �eld of L and
set R� � L��z�� � � � � zr��

The �rst point to be observed is that I � L��Z� is generated by
f�� � � � � fs� since the extension L��Z� � L�Z� is faithfully �at� This
implies R� �� L��Z���f�� � � � � fs�L��Z�� therefore A � L �L� R

�� Obviously
z�� � � � � zr generate a maximal ideal m � of R�� and R��m � �� L�� hence
R� � L�� �z�� � � � � zr�R�� The extension R�

m � � Am is �at� and so dimR�
m � �

dimAm � n by A���� The solution x� y is contained in R�� and m �R�
m � is

generated by x because of ��� above�
Let us �rst treat the case of characteristic 
� after all� the descent

from characteristic 
 to positive characteristic is the main point of ������
�In positive characteristic it only remains to replace L� by a �nite �eld
of the same characteristic�� With the notation just introduced� L� is the
�eld of fractions of the �nitely generated Z�algebra B � Z�C�� and apart
from the fact that the coe�cients no longer form a �eld� almost nothing
is lost if we replace L� by B�

�i� R�� � B�z�� � � � � zr� is a domain containing x� y� This is obvious�

�ii� p � �z�� � � � � zr�R� � R�� is a prime ideal of height n� evidently p is a
prime ideal� and it has the same height as its extension in R�� a ring of
fractions�

�iii� p � �z�� � � � � zr�R�� and R�� � B � p � This is an immediate consequence
of R� � L� � �z�� � � � � zr�R��

�iv� p R��
p is generated by x because C contains all the coe�cients appearing

in ��� above and g �� p �

For the very last step we choose a maximal ideal q of B not containing
the constant coe�cient of the polynomial g appearing in ��� above� This
is possible since Z and� hence� B are Hilbert rings� and for the same
reason B�q is a �nite �eld �see A����� We claim that replacing all the
data by their residue classes mod q gives us the desired solution of E in
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a local ring of characteristic p�
First note that x generates �p since �p is generated by the residue classes

�zi of the zi� and these in turn can be written as linear combinations of
the �xj because the polynomial g of ��� above is non�zero modulo �p �

Second� height �p � n as will now be shown� Let P � q � p � Then
height P � height q �dim�R��

P �q R��
P � by A��� applied to the homomorphism

Bq � R��
P � and therefore

height �p � dim�R��
P �q R��

P � 	 height P � height q �

The ring R��� a residue class ring of a polynomial ring over Z� and thus
of a Cohen�Macaulay ring� is catenary� see ������� Since R�� is also a
domain�

height P � height p � height P �p � height p � height q �

or height �p 	 height p � n� as desired�
In positive characteristic the argument is essentially the same� one

only has to replace Z by the prime �eld of L��

Exercise


���	� Let R be a regular local ring and U� M� N 	nite R�modules� given as
quotients of 	nite free R�modules by submodules� Show that both the acyclicity
and the non�acyclicity of a complex U � M � N have regular equational
presentations� �Describe the maps by matrices��

��� Balanced big Cohen�Macaulay modules

Big Cohen�Macaulay modules M lack many of the properties of �nite
Cohen�Macaulay modules� For example� let R � K��X� Y �� and M �
R � Q� where Q is the �eld of fractions of R��Y �� Then X is obviously
regular on M� and M�XM �� R��X�� Thus M is �X� Y ��regular� but not
�Y �X��regular� However� it is important for the applications in Chapter 
and an interesting fact in itself that every local ring R possessing a
big Cohen�Macaulay module even has a balanced big Cohen�Macaulay
module� i�e� a module M such that every system of parameters is an M�
sequence� More precisely� we want to prove that the m �adic completion
of any big Cohen�Macaulay module is balanced� Our main argument
will be that ����� has a converse for complete modules�

Theorem ������ Let R be a ring� x � x�� � � � � xn a sequence of elements of

R� and M an R�module� Let I � xR� and denote the I�adic completion of

M by �M � Then the following are equivalent	

�a� x is M�quasi�regular�

�b� x is �M�quasi�regular�

�c� x is �M�regular�
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Proof� By de�nition quasi�regularity includes the requirement IM �� M�

Since Ij �M�Ij�� �M is naturally isomorphic with IjM�Ij��M� one has a
commutative diagram

M � �R�I��X�� � � � � Xn� ����� grI M��� ���
�M � �R�I��X�� � � � � Xn� ����� grI �M

Together with the description of quasi�regularity by the conclusion of
����� this diagram immediately yields the equivalence of �a� and �b��

Theorem ����� says that �c� implies �b�� We want to prove the crucial
implication �b� �c� by induction on n� and recall the results of Exercise
������� namely
�i� if x�z � I iM for z � M� then z � I i��M�
�ii� the sequence x�� � � � � xn is �M�x�M��quasi�regular�

Let z �M such that x�z � 
� Then� by �i�� z �
T
Ij �M � 
� and hence x� is

�M�regular� Because of �ii� it remains to prove that �M�x� �M �� � �M�x� �M�b�
There is a natural exact sequence


� �x� �M�� �� �M �� � �M�x� �M�b�� 
�

in which �x� �M�� is the completion of x� �M with respect to its subspace
topology �see ��	
�� Theorem ���� note that the quotient topology on
�M�x� �M is just the I�adic topology�� The subspace topology is given

by the �ltration �x� �M � Ij �M�� Of course x� �M �� �M is complete in its
own I�adic topology� and we are left to verify the following claim of
Artin�Rees type� if x is M�quasi�regular for some R�module M� then
x�M � IjM � Ij��x�M� But this follows immediately from �i��

Since quasi�regularity of a sequence is invariant under permutations

of its elements� one can permute �M�regular sequences�

Corollary ������ With the notation of ����� assume that x � x�� � � � � xn is
�M�regular� Then for every permutation � of f�� � � � � ng the sequence x� �

x����� � � � � x��n� is �M�regular�

Another consequence is the existence of balanced big Cohen�Macau�
lay modules�

Corollary ������ Let �R� m � be a Noetherian local ring� and M a big

Cohen�Macaulay R�module� Then the m �adic completion �M is a balanced

big Cohen�Macaulay module� In particular� if R contains a �eld� it has a

balanced big Cohen�Macaulay module�

Proof� Note that for any system of parameters x the m �adic and �x��adic
topologies on M coincide� Therefore we can apply ����� to the m �adic
completion�
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Suppose that the system of parameters x � x�� � � � � xn is an M�
sequence� and let y � y�� � � � � yn be an arbitrary system of parameters� By
the standard prime avoidance argument there exists an element w � m

not contained in any minimal prime ideal of �x�� � � � � xn��� or �y�� � � � � yn����
Hence x�� � � � � xn��� w and y�� � � � � yn��� w are systems of parameters�

Note that x�� � � � � xn��� w is an M�sequence� a power of xn being a
multiple of w modulo �x�� � � � � xn���� the element w must be regular on
M��x�� � � � � xn���M� Then w� x�� � � � � xn�� is M�quasi�regular and therefore
�M�regular� Furthermore �M�w �M is an �x�� � � � � xn����regular module for
the local ring �R � R�Rw� By induction on n one may assume that

��y�� � � � � �yn��� is � �M�w �M��regular� too� Then w� y�� � � � � yn�� is �M�regular�
and applying the preceding arguments in reverse order we get that y is

an �M�sequence�
Now the second part of the corollary follows immediately from the

existence of big Cohen�Macaulay modules for local rings containing a
�eld� see ������

Remark ����	� A di erent construction of balanced big Cohen�Macaulay
modules was given by Gri�th in ���� and ���
�� Let R be a Noetherian
complete local domain containing a �eld K � As in the proof of ������ R
is a module��nite extension of a formal power series ring K��x�� where x
is an arbitrary system of parameters� By ����� Theorem ���� there exists
an R�module which is a free A�module �with countable basis�� Such a
module is a balanced big Cohen�Macaulay module ����
�� Proposition
�����

Balanced big Cohen�Macaulay modules are much closer to �nite
modules than is apparent from their de�nition� Sharp ����� developed
the theory of grade for balanced big Cohen�Macaulay modules� similar to
that for �nite modules� using Theorem ����� below as a prime avoidance
argument� Unfortunately� however� the property of being a balanced big
Cohen�Macaulay module is not stable under localization� In Chapter 
we shall introduce a general notion of grade that overcomes this obstacle�

Proposition ������ Let R be a Noetherian local ring� and M a balanced big

Cohen�Macaulay module�

�a� One has dimR�p � dimR for all p � AssM�

�b� in particular AssM is �nite�

�c� AssM consists of the minimal prime ideals of AnnM� and so SuppM �
V �AnnM��

Proof� �a� Let q � SpecR with dimR�q � dimR� Then q is not contained
in a prime ideal p such that dimR�p � dimR� hence not contained in the
union of these prime ideals� So there exists x � q with dimR��x� � dimR�
The element x can be extended to a system of parameters� Thus it is
regular on M� and q �� AssM�
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Part �b� follows immediately from �a��
�c� Let AssM � fp �� � � � � p rg� Since AnnM � p i for all i� it remains to

be shown for the �rst assertion in �c� that fj � AnnM for all f �
Tr

i�� p i

and j � 
� Given such an element f� there exists j with fj�� � 
 in Rp i

for all i� It follows that fjMp i
� 
� and so p i �� Ass fM� On the other

hand� Ass fjM � AssM� Therefore Ass fjM � �� which is only possible
if fjM � 
�

The second assertion in �c� follows from the �rst since� over a Noe�
therian ring� every prime ideal q � SuppM contains a p � AssM�

Theorem ������ Let R be a Noetherian local ring� and M a balanced big

Cohen�Macaulay module� Suppose that x � x�� � � � � xr is an M�sequence�

Then AssM�xM is �nite� and dimR�p � dimR�r for all p � AssM�xM�

Proof� Let q be prime ideal such that dimR�q � dimR� Then Rx� �
AnnM �� q � if q � AssM� then x� �� q � if q �� AssM� then AnnM �� q

by ������ As the number of such prime ideals is �nite� Rx� � AnnM is
not contained in their union� By ����� one therefore �nds an element
y � AnnM with x� � y �� q for all q such that dimR�q � dimR� The
following facts are now obvious�
�i� dim�R��x� � y�� � dimR � �� and M��x� � y�M is a balanced big
Cohen�Macaulay module over R��x� � y��
�ii� x� � y� x�� � � � � xr is an M�sequence�
�iii�M�xM ��M��x� � y� x�� � � � � xr�M�

Set �R � R��x�� y� and �M � M��x�� y�M� Because of �i� and �ii� we
can apply an inductive argument to the �M�sequence �x�� � � � � �xr � By �iii� the
associated primes of M�xM are exactly the preimages of the associated
primes of �M���x�� � � � � �xr�M over �R�

Exercises


���	� Prove that each of the conditions �a�� �b�� and �c� of ����� is equivalent to
�M being a �balanced� big Cohen�Macaulay module�


���
� Let R be a Noetherian local ring� and M a balanced big Cohen�Macaulay
module over R� One sets suppM � fp � SpecR � Mp �p Mp �� �g� Show
�a� Mp is a big Cohen�Macaulay module for Rp if and only if p � suppM�
�b� one has height p � dimRp � dimR for every p � suppM�
�For general M one uses ����
�c� to de	ne suppM� see Foxby ������


����� Let R and M be as in ������ Then verify that the following are equivalent
for p � SpecR�
�a� p � suppM�
�b� there exists an M�sequence a� � � � � � ar with p � Ass�M��a� � � � � � ar�M��
�c� there exists i with 
i�p � M� �� ��
�d� there exists i with H i

p Rp
�Mp � �� ��

�e� H i
p Rp

�Mp � � � for i � �� � � � � height p � � and Hh
p Rp

�Mp � �� � for h � height p �
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Hint� �b� � �c�� localize and consider i � r� �c� � �d�� use ������� �d� � �e�� by
hypothesis on M there exists an M�sequence a�� � � � � ah in p � �e� � �a�� this holds
for arbitrary M by ������

Notes

The results in this chapter on the existence of big Cohen�Macaulay
modules are entirely due to Hochster� as well as the method of their
construction� With one exception we have followed closely Hochster�s
original treatment in ��	�� and his in�uential lecture notes ������ The
exception is the existence of �amiable� systems of parameters� for which
Hochster avoids local cohomology� The results ������ ������ and ����� are
due to Schenzel ������ ����� The proof of Roberts� theorem ����� is a
slight variation of his original argument ��
� introduced by Schenzel
����� in order to obtain a somewhat more general result�

There have been suggestions for modifying Hochster�s methods� Bar�
tijn and Strooker ����� constructed a �pre�Cohen�Macaulay� module by
�monomial modi�cations�� and showed that the m �adic completion of such
a module is a balanced big Cohen�Macaulay module� Our proof of the
existence of such modules is a variant of their arguments� whereas the
�rst construction was given by Hochster in ���
� �based on an extension
of the �modi�cation method��� Gri�th�s work was mentioned in ������
There are several articles which deal with the properties of balanced big
Cohen�Macaulay modules� see Duncan �	��� Sharp ������ ������ Zarzuela
���� and the literature quoted in these papers� Theorem ����� and Exer�
cises ����� and ���� have been taken from Sharp ������ who coined the
notion �balanced� in that article�

A very interesting revision of Hochster�s arguments is due to van
den Dries who introduced methods of model theory to our subject� see
Chapter �� of Strooker ������ A completely di erent construction in
characteristic zero was given by Roberts ���
� who derived the existence
of a �Cohen�Macaulay complex� from resolution of singularities and the
Grauert�Riemenschneider vanishing theorem� We refer the reader to
Hochster and Huneke ��	� for a more extensive list of properties that
have a regular equational presentation�

It is still open whether there exist big Cohen�Macaulay modules for
local rings of mixed characteristic� The most intensive attempts towards
their construction can be found in Hochster�s article ���
��

We saw in ������ that one cannot expect a �nite maximal Cohen�
Macaulay module for every local ring� Of course a local ring of dimen�
sion � has such a module� and also a complete local ring of dimension �
������
 and �������� It is an open question whether there exist �nite
maximal Cohen�Macaulay modules for all complete local rings� A very
special positive result in dimensions � � is due to Hartshorne� Peskine�
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and Szpiro� see ���
�� �������
Hochster�s article ���
� also contains a discussion of the question

whether there exist big Cohen�Macaulay algebras� For positive charac�
teristics Hochster and Huneke ���� have answered this question� if R is
excellent� then the integral closure of R�p where p is a prime ideal with
dimR�p � dimR in an algebraic closure of its �eld of fractions is a big
Cohen�Macaulay module for R �see also Remark �
������

The material on the Frobenius functor has been taken from Peskine
and Szpiro�s ingenious thesis ��	�� Theorem ����	 is just the �rst in
their long series of surprising results� many of which will be dealt with
in Chapter � Kunz�s characterization ����� of regular local rings of
characteristic p and Herzog�s converse ���	� of ����	 were mentioned in
������� More recently� the Frobenius functor was investigated by Dutta
�	�� ���� and Seibert ������
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This chapter is devoted to the consequences of the existence of big
Cohen�Macaulay modules for local rings containing a �eld� Among the
theorems covered� the reader will �nd Hochster�s direct summand theorem
for regular local rings� his canonical element theorem� the Peskine�Szpiro
intersection theorem and its extensions� the theorem of Evans and Gri�th
on ranks of syzygy modules� and� �nally� bounds for the Bass numbers
of modules� These bounds entail surprising characterizations of Cohen�
Macaulay and Gorenstein local rings�

There exist derivations of all the theorems in this chapter avoiding big
Cohen�Macaulay modules� most of them will only be outlined brie�y�
They were found in attempts to prove the theorems in mixed characteris�
tic� With the main exception of Roberts� new intersection theorem �whose
proof in mixed characteristic requires methods beyond the scope of this
book� these e orts have not yet succeeded�

��� Grade and acyclicity

The fundamental argument in Sections ����� is that certain �nite free
complexes become exact when tensored with a balanced big Cohen�
Macaulay module� This section contains the acyclicity criterion on which
our treatment is based�

Let R be a Noetherian ring�

F
�
� 
 �� Fs

�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� and M an R�module� We saw in
������ that F� is acyclic if and only if grade Iri��i� 	 i for i � �� � � � � s�
Here ri �

Ps
j�i����

j�i rankFj is the expected rank of �i� Now we want
to develop a more general criterion by which one can decide whether
F

�
�M is acyclic for a given R�module M� As we shall see� the condition

grade Iri��i� 	 i is just to be replaced by grade�Iri��i��M� 	 i� It will be
crucial that we can use the general criterion for a balanced big Cohen�
Macaulay module M� Therefore we must �rst introduce a concept of
grade which does not exclude non��nite modules�

De�nition ������ Let R be a ring� I an ideal generated by x � x�� � � � � xn�
and M an R�module� If all the Koszul homology modules Hi�x�M�

���
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vanish� then we set grade�I�M� � �� otherwise grade�I�M� � n � h
where h � supfi � Hi�x�M� �� 
g�

Note that by ������ grade�I�M� is well de�ned� it does not depend
on the choice of x� Furthermore� �����	 shows that for a �nite module
M over a Noetherian ring R the de�nition of grade is consistent with
that in Chapter �� There is not much point in considering non��nite
ideals I� for completeness let us de�ne grade�I�M� to be the supremum
of grade�I ��M� where I � ranges over the �nitely generated subideals of I �
�This makes sense because grade is monotone with respect to inclusion of
��nite� ideals� see ������ On the other hand� there is no reason to restrict
ourselves to Noetherian rings� as we shall see below�

Proposition ������ Let R be a ring� I a �nite ideal� and M an R�module�
Then

�a� grade�I�M� � 
� HomR�R�I�M� �� 
� fz �M � Iz � 
g �� 
�

�b� if y � y�� � � � � ym is a weak M�sequence in I � then grade�I�M� 	 m� and
grade�I�M�yM� � grade�I��y��M�yM� � grade�I�M� �m�

�c� if R � S is a �at ring homomorphism� then grade�IS�M � S� 	
grade�I�M�� in particular grade�Ip �Mp � 	 grade�I�M� for p � SpecR�

�d� if R � S is faithfully �at� then grade�IS�M � S� � grade�I�M��

�e� if 
� U �M � N � 
 is an exact sequence of R�modules� then

grade�I�M� 	 minfgrade�I� U�� grade�I� N�g�

grade�I� U� 	 minfgrade�I�M�� grade�I� N� � �g�

grade�I� N� 	 minfgrade�I� U� � �� grade�I�M�g�

�f� if J � I is �nite� then grade�J�M� 	 grade�I�M��

�g� if S is a subring of R containing a system of generators x of I � then
grade�xS�M� � grade�I�M��

Proof� �a� By virtue of ������ one has Hn�x�M� � HomR�R�I�M� for
every system of generators x � x�� � � � � xn of I �

�b� The inequality grade�I�M� 	 m follows immediately from �������
Let � denote residue classes modulo �y�� We have an isomorphism

K��x� �R
�M �� K��x� �R

�R ��R
�M �� K���x� ��R

�M� see ����	� This shows
grade�I� �M� � grade��I� �M�� Now we extend y by a sequence z to a system
of generators of I � Then grade��z�� �M� � grade�I�M� � m by ������� and
grade��z�� �M� � grade���z�� �M� � grade��I� �M� follows as above�

�c� and �d� are immediate consequences of ����	�
�e� One argues as in the proof of ����� but uses the exact sequence

������ of Koszul homology rather than that of Ext� �To carry the analogy
one step further� one could work with Koszul cohomology� see �����
��

�f� It is enough to consider the case in which J � I � �y�� Let I � �x�
and compare H��x�M� and H���x� y��M� via �������
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�g� Let xS denote x as a sequence in S � By ����	 one has K�
�xS��SM ��

K
�
�xS ��S R �R M �� K

�
�x��R M�

Part �g� of ���� explains why the computation of grade can always
be reduced to a situation in which R is Noetherian� one simply replaces
R by the Z�subalgebra generated by a system of generators of I �

For inductive proofs one must be able to decrease grade by passing
to residue classes modulo a regular element� In general� one cannot �nd
such an element in an ideal of positive grade� but one need not go very
far� For simplicity we write I�X� for IR�X� and M�X� for M � R�X��

Proposition ������ Let R be a ring� I and J �nite ideals� andM an R�module�
�a� Suppose grade�I�M� 	 �� Then I�X� contains anM�X��regular element�
�b� One has grade�IJ�M� � min�grade�I�M�� grade�J�M���

Proof� �a� We may replace R by a Noetherian subring� Let x�� � � � � xn
generate I � and set y � x� � x�X � � � � � xnX

n��� If y is a zero�divisor�
then it is contained in an associated prime of M�X�� whether M is �nite
or not� But M�X� is a graded module over the graded ring R�X�� so
by ����� y annihilates a non�zero homogeneous element of M�X� which
necessarily has the form Xpz� z �M� z �� 
� It follows that Iz � 
 which
contradicts our hypothesis�

�b� We go by induction on grade�IJ�M�� If grade�IJ�M� � �� then the
assertion follows from �����f�� If grade�IJ�M� � 
� then grade�I�M� � 

or grade�J�M� � 
 by �����a�� In the other case we may �rst adjoin an
indeterminate because of �����d�� Then IJ contains anM�regular element
y by �a�� now one replaces all data by their residue classes modulo y�
and applies the induction hypothesis in conjunction with �����b��

It remains to add a proposition which describes the special properties
of grade over Noetherian rings R� for these it makes sense to introduce
the notation

depthMp � grade�p Rp �Mp ��

Proposition ����	� Let R be a Noetherian ring� I an ideal in R� and M an

R�module� Then
�a� grade�I�M� � 
 if and only if there exists p � AssM with I � p �

�b� p � AssM � depthMp � 
�
�c� grade�I�M� � inffdepthRp � p � V �I�g�

Proof� �a� One has grade�I�M� � 
 exactly when there exists a non�zero
x �M such that Ix � 
� Over a Noetherian ring� I must be contained in
an associated prime ideal of M�

�b� Because of �a�� depthRp � 
 is equivalent with p Rp � AssMp � and
this holds if and only if p � AssM� �One only needs that p is �nite��

�c� One has grade�I�M� � depthMp for all p � V �I�� So �c� is trivial
when grade�I�M� � �� Suppose that in the case of �nite grade we have
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found P � V �I�X�� such that depthM�X�P � grade�I�X��M�X��� and set
p � R � P � Then

depthMp � grade�p Rp �Mp � � grade�p R�X�P �M�X�P � � depthM�X�P �

Together with grade�I�X��M�X�� � grade�I�M� this yields grade�I�M� �
depthRp � and thus the assertion�

In order to �nd P one proceeds by induction� using the fact that I�X�
contains an M�regular element if grade�I�M� � 
� the case of grade zero
is covered by �a� and �b��

Let � � F � G be a homomorphism of �nite free R�modules� and
M �� 
 an R�module� We say the � has rank r with respect to M� if
grade�Ir����M� 	 �� whereas Ir�����M � 
� We write rank���M� � r�
Note that rank���M� may not be de�ned� Furthermore� rank��� R� �
rank� by ������� For systematic reasons one sets rank���M� � 
 when
M is the zero module�

Proposition ������ Let R be a ring� M �� 
 an R�module� and F� � 
� Fs �
Fs�� � � � � � F� � F� � 
 a complex of �nite free R�modules such that

F��M is acyclic� Let �i denote the map Fi � Fi��� Then rank��i�M� is the
expected rank ri of �i for i � �� � � � � s	 rank��i�M� �

Ps
j�i����

j�i rankFj �

Proof� We choose bases of the free modules� and matrices Ai representing
the homomorphisms �i� Let S be the Z�subalgebra generated by the
entries of all these matrices� They de�ne a complex F �

�
of �nite free

S�modules such that F �
�
�S R � F�� Therefore F �

�
�S M � F� �R M is

acyclic� The ring S is Noetherian� For p � AssS M the complex F �
�
� Sp

is split exact by ������ which furthermore implies that Iri�Ai�p � Sp and
Iri���Ai�p � 
�

Since S is Noetherian� one has grade�Iri�Ai��M� 	 � by ����� Let
I � Iri���Ai�� Assume IM �� 
� and choose z �M such that Iz �� 
� Then
Ass Iz �� �� For p � Ass Iz one has �Iz�p �� 
� and hence IMp �� 
� which
is a contradiction� since Ass Iz � AssM� one even has Ip � 
 as seen
above� It follows that rank�Ai�M� � ri�

By the de�nition of rank and ���� it is irrelevant for rank�Ai�M�
whether one considers Ai as a matrix over S or R�

Theorem ����� �Buchsbaum�Eisenbud� Northcott�� Let R be a ring� M
an R�module� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� Let ri be the expected rank of �i� Then

the following are equivalent	

�a� F� �M is acyclic�

�b� grade�Iri��i��M� 	 i for i � �� � � � � s�
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The remark about ri that follows ������ applies here� too� each of �a�
and �b� implies that ri 	 
 for i � �� � � � � s�

Proof� As in the proof of ���� one reduces the theorem to the case in
which R is Noetherian� Then the proof is mutatis mutandis the same as
that of ������� We indicate some of the modi�cations� There is nothing
to prove if M � 
� so assume that M is non�zero�

For �a�  �b� one uses ���� to get grade�Iri��i��M� 	 �� Then
one adjoins an indeterminate� which a ects neither the acyclicity of
the complex nor the grades under consideration� By virtue of ����
one �nds an M�regular element in the intersection of the ideals Iri��i��
and completes the proof of �a�  �b� as in the case of ������� It is
not necessary to pass from R to R��x�� instead one substitutes M�xM
for M in order to apply the induction hypothesis� If xM � M� then
grade��x��M� � grade�Iri��i��M� � � for all i�

For �b�  �a� one sets Mi � Coker�i���M� and replaces depthRp

by depthMp � and Fi by Fi �M� That �Mi�p is free for depthRp � i� must
be modi�ed to ��Mi�p is a direct sum of �nitely many copies of Mp if
depthMp � i��

We introduce a new invariant of a complex and provide a lemma
which is fundamental for the results in Sections ������ �Recall that
codim I � dimR � dimR�I for an ideal I in a local ring R��

De�nition ������ Let �R� m � be a Noetherian local ring�

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� and ri the expected rank of �i� We
de�ne the codimension of F� by

codimF� � inffcodim Iri��i�� i � i � �� � � � � sg�

If F
�
is acyclic� then codimF

�
	 
 by the Buchsbaum�Eisenbud

acyclicity criterion ������ �or ����� since grade I � codim I for all ideals�
Conversely� if codimF

�
	 
� then F

�
need not be acyclic� but F

�
�M is

acyclic for a balanced big Cohen�Macaulay module M�

Lemma ������ Let �R� m � be a Noetherian local ring� and F� a complex of

�nite free R�modules as above� Suppose that codimF
�
	 
� Then F

�
�M

is acyclic for every balanced big Cohen�Macaulay module M�

Proof� In view of ���� it is enough that grade�Iri��i��M� 	 i for i �
�� � � � � s� In fact� if I is an ideal with codim I 	 i� then it contains a
sequence x�� � � � � xi which is part of a system of parameters� as is easily
shown by induction on i� Such a sequence is M�regular�
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In Section �� we shall investigate lower bounds for the numbers ri�
A �rst result in this direction can be recorded already� Let �R� m � be a
local ring� We say that a complex of �nite free R�modules F

�
as in ���	

is minimal of length s if Fs �� 
 and �i�Fi� � m Fi�� for all i� Considering
minimal complexes only is not a severe restriction since every complex
of �nite free modules over a local ring decomposes into a direct sum of
a minimal such complex and a split exact one�

Proposition ������ Let �R� m � k� be a local ring� and F
�
a length s minimal

complex of �nite free R�modules as above� Suppose there exists an R�
module M such that M �� m M and F

�
�M is acyclic� Let ri denote the

expected rank of �i� Then ri 	 � for i � �� � � � � s�

Proof� One has rs � rankFs 	 � by hypothesis� and it follows from
Proposition ���� that ri � rank��i�M� 	 
 for all i� Arguing inductively�
we must only show r� � 
 implies r� � 
�

If r� � rank����M� � 
� then I�����M � 
� and so �� �M � 
�
Therefore we have an exact sequence

F� �M
���M
���� F� �M �� 
�

Consequently F��M� k � F��M� k � 
 is also exact� By hypothesis
M �� m M� equivalently� M � k is a non�zero k�vector space� Thus the
sequence F��k � F��k � 
 must be exact� On the other hand� ���k � 

since ���F�� � m F�� Hence we get F� � 
� and r� � rankF� � r� � 
�

Exercises

������� Let R be a ring� I a 	nitely generated ideal� and M an R�module�
Furthermore let R� be a polynomial ring over R in an in	nite number of
indeterminates� I� � IR�� and M� � M � R�� Prove the following�
�a� If grade�I�M� � �� then every maximal weak M��sequence in I� has length
equal to grade�I�M��
�b� One has grade�I�M� � � if and only if I� contains an in	nite weak M��
sequence�
�c� One has grade�I�M� � inffi � ExtiR��R��I��M�� �� �g�

�d� For Noetherian R one has grade�I�M� � inffi � ExtiR�R�I�M� �� �g�
�e� Suppose that the number of associated prime ideals of M��x�M is 	nite for
every weak M�sequence x� �For example� this holds when M is a balanced big
Cohen�Macaulay module over a Noetherian local ring� see ������� Then one can
drop the subscript � in �a�� �b�� and �c��

������� For a 	nite module M over a Noetherian ring R we have grade�I�M� � �
if IM � M� For non�	nite M this may be false� Find an example�

������� Let �R� m � be a Noetherian local ring� and M an R�module� Prove
�a� if M �� m M� then depthM is 	nite�
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�b� if depthM is 	nite� then depthM � dimR�
�c� depthM � inffi � H i

m
�M� �� �g�

�d� depthM � dimR �� �M is a �balanced� big Cohen�Macaulay module�

������� Sometimes it may be more natural to work with homology modules
rather than the ideals Iri ��i�� Therefore it is worth while reformulating the
crucial condition for acyclicity� One must however use the homology of F�

�
�

HomR�F�
� R�� With the notation of 
����� show the following are equivalent�

�a� grade�Iri ��i��M� � i for i � �� � � � � s�

�b� grade�AnnH i�F�
�
��M� � i for i � �� � � � � s�

������� Generalize the �lemme d�acyclicit�e� ������ to the case of arbitrary R�modules
Li�

������� Let R be a Noetherian local ring and M a balanced big Cohen�Macaulay
module� Prove TorRi �N�M� � � for all 	nite R�modulesN and i � �� In particular�
M is faithfully �at if R is regular�

��� Regular rings as direct summands

Let R and S be Noetherian local rings such that R � S and S is a
�nite R�module� Suppose that R is regular and� for the moment� S is a
Cohen�Macaulay ring� Since every system of parameters of R is a system
of parameters of S � the R�module S � having �nite projective dimension�
must be free� Furthermore the element � � R is part of an R�basis of S �
and it follows that R is a direct summand of S as an R�module� Quite
surprisingly this holds true regardless of the Cohen�Macaulay property
of S � at least when S contains a �eld�

The argument above uses the fact that a system of parameters of R
is an S�sequence� As we shall see� a much weaker property su�ces� It is
given by the following �monomial theorem��

Theorem ������ Let S be a Noetherian local ring containing a �eld� Then for

every system x � x�� � � � � xn of parameters and all t 	 
 one has xt� � � � x
t
n ��

�xt����

Proof� By ����� there exists an x�regular module M� Suppose that
xt� � � � x

t
n � �xt���� Then xt� � � � x

t
nM � xt��M� The associated graded

module gr�x�M is an �R��x��X�� � � � � Xn���module in a natural way� and� a

fortiori� Xt
� � � �X

t
n gr�x� M � �Xt��

� � � � � � Xt��
n � gr�x�M�

On the other hand� since x is an M�sequence� the associated graded
module gr�x� M is isomorphic to M�R��x��X�� � � � � Xn� �see ������� There�
fore

�gr�x�M�
�
�X t��

� � � � � � X t��
n � gr�x� M

��
M

Xe�
� � � �X

en
n �M�xM�

as an R�module where the direct sum is taken over all monomials

Xe�
� � � �X

en
n �� �Xt��

� � � � � � Xt��
n ��

This is a contradiction since Xt
� � � �X

t
n �� �Xt��

� � � � � � Xt��
n ��
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The proof of ���� shows much more than stated in the theorem�
let I�� J� be ideals in Z�X�� � � � � Xn� generated by monomials� and I�� J�
the ideals generated by the corresponding monomials in x�� � � � � xn� then
I� � J� � I� � J��

Suppose that S � R � C as an R�module� Then for every ideal
I � R one has IS � I � IC � hence IS � R � I � Let x � x�� � � � � xn
be a system of parameters of R� If R is regular� then� as the proof
of ���� shows� xt� � � � x

t
n �� �xt���� so xt� � � � x

t
n �� xt��S � for otherwise

xt� � � � x
t
n � �xt���S � R � �xt���� This simple observation proves the easy

part of the following lemma�

Lemma ������ Let �R� m � be a regular local ring and x � x�� � � � � xn a

regular system of parameters� Suppose that S � R is an R�algebra which

is �nite as an R�module� Then R is a direct R�summand of S if and only if

xt� � � � x
t
n �� xt��S for every t 	 
�

Proof� Since the m �adic completion �R is a faithfully �at extension of R�

the same holds true for the extension S � �R of S � Thus xt� � � � x
t
n �� xt��S

implies that xt� � � � x
t
n �� xt��S � �R�

Suppose that the implication still open holds under the additional

assumption that the regular local ring is complete� Then �R is a direct �R�

summand of S � �R and the natural homomorphism �given by restriction
of maps�

��� Hom 	R�S �
�R� �R� �� Hom 	R�

�R� �R�

is surjective� Since S is a �nitely presented R�module� one has a natural
commutative diagram

HomR�S� R�� �R
� � 	R
����� HomR�R� R�� �R��� ���

Hom 	R�S �
�R� �R�

	�
����� Hom 	R�

�R� �R�

where � � HomR�S� R�� HomR�R� R� is again given by restriction� Since

�� �R is surjective� � itself must be surjective� the identity map on R can
be extended to an R�homomorphism S � R� so R is a direct R�summand
of S �

After these preparations we may assume that R is complete� Let Rt �
R��xt�� and St � S�xtS� Rt is a Gorenstein ring of dimension zero� Since
xt��
n � � � xt��

n �� xt� but m xt��
� � � � xt��

n � xt� the residue class of xt��
� � � � xt��

n

generates SocRt� Therefore each of the induced maps �t � Rt � St is
injective� otherwise its kernel would contain SocRt� whence x

t��
� � � � xt��

n �
xtS � contradicting the hypothesis of the lemma� Furthermore Rt is an
injective Rt�module� Thus each of the maps �t splits� there is an Rt�
homomorphism �t � St � Rt such that �t � �t � idRt

�
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The ideals �xt� form a system co�nal with that of the powers of m �
Since R is m �adically complete� one has

HomR�S� R� � HomR�S� lim��
Rt� � lim

��
HomR�S� Rt� � lim

��
HomRt

�St� Rt��

In the latter inverse system the map �ij � HomRi
�Si� Ri� � HomRj

�Sj � Rj�
associates to each homomorphism Si � Ri the induced map Sj � Rj �

We have to �nd homomorphisms �t � St � Rt such that �i� �ij��i� �
�j � and �ii� �t ��t � idRt

� Because of �i� we then obtain a homomorphism
lim
��

�t � � � S � R� which by �ii� satis�es �jR � idR� if ��y� �� y for

some y � R� then �t � �t �� idRt
for every t such that ��y�� y �� �xt��

Let Dt be the set of homomorphisms � � St � Rt for which ���t � idRt
�

Obviously the sets Dt � HomRt
�St� Rt� are non�empty and form an inverse

system� However� since the maps �ij jDi
� Di � Dj may not be surjective�

we cannot immediately conclude that lim
��

Dt �� �� as desired� Instead we

de�ne subsets

Et �
�
i	t

�it�Di��

Then Et � �it�Ei� for all i with i 	 t� and it is enough to show that Et �� �
for some� equivalently all� t�

Every Di is an a�ne subspace of HomRi
�Si� Ri�� that is� it is of the

form �i � Ui with a submodule Ui � Therefore

�tt�Dt� � �t���t�Dt��� � � � � � �it�Di� � � � �

is a decreasing chain of non�empty a�ne subspaces Aj of HomRt
�St� Rt��

Consequently the submodules Mj � f�� � � �� � � Ajg are non�zero and
form a decreasing chain� too� This chain stabilizes in the Artinian module
HomRt

�St� Rt�� and so does the chain of a�ne subspaces Aj �

A consequence of ���� and ���� is the �direct summand theorem� for
regular local rings�

Theorem ����� �Hochster�� Let R be a regular local ring containing a �eld�

and S � R an R�algebra which is a �nite R�module� Then R is a direct

summand of the R�module S �

Proof� As in the proof of the lemma� we may assume that R is complete�
Let p be a prime ideal of S lying over the zero�ideal of R� If R is a direct
R�summand of S�p � then it is a direct R�summand of S� compose a
section of the natural embedding R � S�p with the natural epimorphism
S � S�p � Being an integral domain which is module��nite over a
complete local ring� S�p is local itself ������� ��
����� and we can invoke
���� and �����



��
� Canonical elements in local cohomology modules ��	

Remarks ����	� �a� In characteristic zero a much weaker property than
regularity is su�cient for the direct summand property of R as described
by ����� Let R be a Noetherian normal domain containing a �eld of
characteristic zero� and S a module��nite extension ring� In showing that
R is a direct R�summand of S � it is harmless to replace S by any S�algebra
T �see the proof of ������ So we �rst factor out a prime ideal p of S
lying over the zero�ideal of R� and may assume that S is a domain� Then
we extend the �eld of fractions of S to a �nite normal extension L of the
�eld K of fractions of R� and replace S by the integral closure T of R in
L� Let d � dimK L and Tr� L� K denote the trace map� Then for every
x � K one has ���d� Trx � x� and Try � R for every y � T � since the
trace of an integral element is integral and R is integrally closed in K �
�We refer the reader to ��	�� Chapter II for the �eld theory involved��

As a consequence one obtains a proof of ���� avoiding big Cohen�
Macaulay modules� if x�� � � � � xn is a system of parameters of S � then

there is a regular subring R of �S in which x�� � � � � xn generate the maximal

ideal and over which �S is �nite �see A����� Since the conclusion of ����
is invariant under completion� one obtains ���� in the same way as the
implication �� of �����

�b� In characteristic p the situation is just inverted� there is a direct
proof of ����� Let n be the maximal ideal of S � By ������

Hn
n �S� �� lim

��
Hn�xt� �� 
�

One has Hn�xt� �� S��xt�� and the map S��xt� � S��xt�i� is induced by
the multiplication by xi� � � � x

i
n� Since Hn

n �S� �� 
� this map must be non�

zero for t su�ciently large� Equivalently� xi� � � � x
i
n �� �xt�i� � � � � � xt�in � for t

su�ciently large and i 	 t� On the other hand� if xt� � � � x
t
n � �xt��

� � � � � � xt��
n ��

then one applies the Frobenius homomorphism repeatedly to obtain

xtp
e

� � � � xtp
e

n � �xp
e�tpe

� � � � � � xp
e�tpe

n ��

which is a contradiction for e large�
Via ���� this argument yields an �elementary� proof of ����� For

still another proof of ���� in characteristic p see ��	��� as well as for a
counterexample showing that normality is not su�cient in characteristic
p for R to have the direct summand property�

��� Canonical elements in local cohomology modules

Independently of characteristic� the discussion in �����b� shows that
���� and� hence� ���� are equivalent to the non�vanishing of certain
elements in the local cohomology module Hn

n �S� �notation as in ������
one has xk� � � � x

k
n �� �xk��� for all k if and only if the image of � under
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the map S � S��x� � lim
��

S��xk� � Hn
n �S� is non�zero� As the example

S � K��X�� and x � X or x � X� shows� the element thus obtained
depends heavily on the choice of the system of parameters� for example�
its annihilator varies with x� In the following we shall discuss a theorem
which involves a �canonical element� in a local cohomology module
although local cohomology does not appear explicitly�

Theorem ������ Let �R� m � k� be a Noetherian local ring of dimension n
containing a �eld� Let F� be a free resolution of the residue class �eld k� and
x a system of parameters� If � � K

�
�x� � F

�
is a complex homomorphism

extending the natural epimorphism R��x� � k� then the homomorphism

�n � Kn�x�� Fn is non�zero�

Proof� In order to derive a contradiction we assume that there exists a
complex homomorphism � with �n � 
�

There exists an x�regular moduleM by ������ Since �x� � m i for i large
and M�xM �� 
� we can pick an element y � M such that y �� xM� but
m y � xM� The assignment � �� y then de�nes a homomorphism R�m �
M�xM� This homomorphism can be lifted to a complex homomorphism
� � F� � K�x�M� since the Koszul complex K�x�M� is acyclic� see �������
Composition with � gives a homomorphism � � � � � � K�x�� K�x�M�
with �n � 
�

The complex homomorphism � extends the homomorphism �� � R �
M with ����� � y� As K��x�M� � K��x� � M� one obtains a second
such extension by �� � idK��x����� The complex K��x� is projective and
K��x�M� is acyclic� therefore � and �� di er only by a homotopy �� In
particular ��n � ��n � �n � �n�� � n�


 ����� Kn�x�
�n

����� Kn���x�

�
��� �n

��y
�n �
��� �n��


 ����� Kn�x�M��

We may identifyKn�x� with R� Kn�x�M� � Kn�x��M withM and Kn���x�
with Rn� Then n�R� � xRn� and so y � ��n��� � �n�� � n��� � xM� which
is a contradiction�

Let us �x the data x and F
�
of the theorem� Complex homomorphisms

� and �� both extending the epimorphism R��x�� k di er by a homotopy
��


 ����� Kn�x�
�n

����� Kn���x� ����� � � �

�
���

�n
�n

��y��n �
��� �n��

��y
� � � ����� Fn�� �����

�n��

Fn �����
�n

Fn�� ����� � � �
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As above we identify Kn�x� with R� furthermore we consider N �
Ker�n�� � Im�n as the target of �n� �The module N is the n�th syzygy
of k with respect to the resolution F

�
�� Then

�n � �n���� �n � �
�
n��� � �n � �n�� � n����

This element belongs to xN� since n��� � xKn���x�� So di erent choices
of the complex homomorphism yield the same residue class ��n��n����� �
N�xN� On the other hand� given a complex homomorphism �� we
may freely choose � to de�ne �� by �� � � � � �  � � � �� For the
possible choices of �n��� the elements �n�� � n��� exhaust xFn� note that
n��� � �x�e� � � � � � xnen with respect to a suitable basis of Rn� In sum�
�n �� 
 for every choice of � if and only if �n � �n��� �� xN for a speci�c
choice�

Now consider the systems of parameters xt� t � 
� There is a natural
map K��xt� � K��x�� it sends ei� � � � � � eiu to xt��

i�
� � � xt��

iu
ei� � � � � � eiu �

Composition with � � K��x�� F� gives a complex homomorphism �t with
�tn��� � xt��

� � � � xt��
n �n���� If all the homomorphisms 
 � K��xt�� F� which

lift the epimorphism R��xt� � k have 
n �� 
� then the arguments above
imply

xt��
� � � � xt��

n �n � �n��� �� xtN for all t � 
����

Observe that Hn
m �N� � lim

��
N�xtN� So condition ��� is equivalent to the

following� the image of �n � �n��� under the map N � N�xN � Hn
m �N�

is non�zero�
The module Hn

m �N� can also be represented as lim��
ExtnR�R�m t� N� �see

������� Hence there is a natural homomorphism ExtnR�k� N� � Hn
m �N��

Moreover� the exact sequence 
 � N � Fn�� � � � � � F� � k � 

represents an element ��F�� � ExtnR�k� N� and thus an element !�F�� �
Hn

m �N�� The connection between �extensions� like the previous exact
sequence and Extn is discussed in ������ pp� ����	� or ����� Ch� X� x	� if
one writes

ExtnR�k� N�
�� HomR�N�N��	��HomR�Fn��� N��

where 	 � N � Fn�� is the natural embedding� then ��F
�
� is the residue

class of � idN � The elements ��F
�
� and !�F

�
� may be called �canonical�

since they depend functorially on F
�
� In particular the vanishing of !�F

�
�

is independent of F
�
� Hochster ����� contains a detailed discussion of

these facts and a proof of the following crucial statement� the element
of Hn

m �N� constructed from a complex homomorphism � � K��x�� F� as
above can be identi�ed with !�F��� The conclusion of ���� is therefore
equivalent to !�F�� �� 
� which justi�es the name �canonical element
theorem� for �����

As an application of ���� we prove a generalization of Krull�s prin�
cipal ideal theorem� �Another one will be given in ������ Let M be a
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module over a commutative ring R� and x �M� Then

O�x� � f��x� � � � HomR�M�R�g

is called the order ideal of x�

Every �nitely generated ideal is an order ideal� given x�� � � � � xn � R�
one sets M � Rn and x � �x�� � � � � xn�� Obviously O�x� �

P
Rxi� By Krull�s

principal ideal theorem O�x� has height � n if R is Noetherian� provided
O�x� is a proper ideal� For x �M � Rn this condition is equivalent to the
existence of a maximal ideal m such that x � m M� The following theorem
generalizes Krull�s bound on heightO�x� to arbitrary �nite modules� In
the general version the number n � rankRn must be replaced by

big rankM � maxf��Mp � � p � SpecR minimalg�

If M has a rank� then big rankM � rankM�

Theorem ����� �Eisenbud�Evans�� Let �R� m � k� be a Noetherian local ring

containing a �eld� and M a �nite R�module� Then heightO�x� � big rankM
for all elements x � m M�

Proof� There is a prime ideal p with heightO�x� � height��O�x� � p ��p ��
Let � denote taking residue classes modulo p � Every linear form M � R
induces an �R�linear form �M � �R� therefore O�x�� � O��x�� Suppose the
theorem has been proved for �R and �M � Then

heightO�x� � heightO�x�� � heightO��x� � big rank �M � big rankM�

Furthermore note that �x � �m �M if and only if x � m M�

As these arguments show� it su�ces to treat the case of an integral
domain R� Then big rankM � rankM� Let h � heightO�x� and n �
dimR� There exists a system of parameters x�� � � � � xn with x�� � � � � xh �
O�x�� Replacing M by M � Rn�h and x by x � �xh��� � � � � xn�� we may
assume that O�x� is m �primary�

As usual� � denotes HomR� � R�� Choose �i �M� such that a� � ���x��
� � � � an � �n�x� is a system of parameters� The collection ��� � � � � �n de�nes
a map � � M � Rn through ��z� � ����z�� � � � � �n�z��� Let y � y�� � � � � ym
generate m � Since x � m M� there is a homomorphism � � Rm � M
with ��y�� � � � � ym� � x� Let us put F � �Rn�� and G � �Rm��� and de�ne
f � F � G by f � �� � ��� Then f �writes� a � a�� � � � � an in terms of y� i�e�
f makes the diagram

F
a

����� R��yf ���
G

y

����� R
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commute� By ����� the exterior powers of f yield a complex homomor�
phism


 ���
Vn F ��� � � � ���

V� F ��� F
a

��� R ��� 
��yVn f

��yV� f

��yf ���Vn��G ���
VnG ��� � � � ���

V� G ��� G
y

��� R ��� 


of Koszul complexes� By de�nition f factors through M�� So rankf �
rankM� � rankM� On the other hand�

Vn f �� 
 because there exists a
complex homomorphism � from K��y� to a free resolution F� of k which
extends the identity on k� ���� guarantees that �n �

Vn f �� 
� Therefore
rankf 	 n and� hence� rankM 	 n�

Remarks ������ �a� Bruns ���� gave a more elementary proof of ����
which works for arbitrary local rings�

�b� Formula ��� above shows that the canonical element theorem ����
implies ���� and thus the direct summand theorem ����� Surprisingly
one can conversely derive ���� from ���� if the residue class �eld of
the local ring under consideration has characteristic p � 
� see Hochster
������ �There seems to be no such derivation in characteristic zero��
Furthermore the main homological theorems like ���� and ���� can be
derived from ����� �See ���� and ���	��

�c� It is not di�cult to reduce ���� to characteristic p via ������ see
������ �Such a reduction will be carried out in detail for ������ In
connection with �b� and ���� that yields a proof of ���� which does not
use big Cohen�Macaulay modules�

��	 Intersection theorems

We have already met an intersection theorem in Section ���� the �new
intersection theorem� �for local rings of characteristic p�� We now want to
prove a very powerful generalization and to derive several consequences�
one of which will eventually explain why the results in this section
are called �intersection theorems�� it generalizes a variant of Serre�s
intersection theorem for the spectrum of a regular local ring�

Theorem ��	��� Let �R� m � k� be a Noetherian local ring containing a �eld�

and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules such that codimF� 	 
� Let C �
Coker�� and e � C � e �� m C � Then codim�Ann e� � s�

Proof� We use induction on dim�R��Ann e��� Suppose dim�R��Ann e�� �

 �rst� By ����� there exists a balanced big Cohen�MacaulayR�moduleM�



��� �� Homological theorems

Lemma ���� implies that F
�
�M is acyclic� One has depthM � dimR� and

���� yields depth�C�M� 	 dimR�s� note that C�M �� Coker����M��
On the other hand� the natural surjection C�M � C�m C �M�m M

maps e�M onto a module isomorphic toM�m M� In particular� e�M �� 
�
Since dim�R��Ann e�� � 
� one has m p�e �M� � 
 for some p� whence
fm g � Ass�e �M� � AssC �M� Therefore depthC �M � 
� and so
s 	 dimR�

Now suppose that dim�R��Ann e�� � 
� There is nothing to prove if
s � dimR� So we may assume that s � dimR� Let P be the �nite set of
prime ideals p such that �i� Ann e � p and codim p � codim�Ann e�� or
�ii� there exists i with Iri��i� � p and codim p � i� Then m �� P � so we can
choose x � m such that x �� p for any p � P � Let � denote residue classes
modulo x� It is a routine matter to verify that codim �F� 	 
� Furthermore
�e �� �m �C� and dim��R��Ann�e�� � dim�R��Anne��� The inductive hypothesis
yields codim�Ann�e� � s� Since dimR � dim �R � �� we have� as desired�

codim�Ann e� � dimR � dim�R��Ann e��

� dim �R � �� �dim��R��Ann�e�� � �� � s�

The following corollary is usually called the �improved new intersection
theorem��

Corollary ��	�� �Evans�Gri�th�� With the notation of ���� suppose that

F��Rp is acyclic for all p � SpecR� p �� m � If ��Re� � �� then s 	 dimR�

Proof� Assume that s � dimR� In order to apply the theorem one must
show that codim Iri��i� 	 i for i � �� � � � � s�

We even claim that heightIri��i� 	 i� If this is false� then there exist
j and a prime ideal p � Irj ��j� with height p � height Irj ��j� � j� Since
j � s � dimR� one has p �� m � On the other hand� the acyclicity of
F� � Rp implies that grade�Irj ��j��p � grade Irj ��j � Rp � 	 j by virtue of
������� which is a contradiction�

Now that we can apply ����� we get a contradiction to our initial
assumption s � dimR� ��Re� � � is equivalent with codim�Ann e� 	
dimR�

The next level of specialization is the �new intersection theorem� which
for local rings of characteristic p was already proved in ������

Corollary ��	�� �Peskine�Szpiro� Roberts�� With the notation of ����
suppose that F

�
� Rp is exact for all p � SpecR� p �� m � If s � dimR�

then the complex F� is exact�

Proof� The complex F� satis�es the hypothesis of ����� and furthermore
��Re� � � for all e � Coker��� So Coker�� � 
 by Nakayama�s lemma�
The map �� is a split epimorphism� and we obtain a shorter complex
which also satis�es the hypothesis of the corollary� Induction on s yields
the assertion�
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At least once in this chapter we want to give a complete proof of a
theorem by direct reduction to characteristic p via Hochster�s �niteness
theorem ������ Since we have a proof of ���� in characteristic p which is
independent of big Cohen�Macaulay modules� ���� is the best candidate
for such a demonstration�

Second proof of ����� Suppose that ���� is violated for a local ring
containing a �eld of characteristic zero� Arguing as in the proof of ������
we may assume that F� �� 
 and Im�� � m F�� Choose a basis for Fi�
i � 
� � � � � s� Then each homomorphism �i is represented by a matrix

Ai � �a�i�jl �� Since F�
is a complex� one has

Ai��Ai � 
� i � �� � � � � s����

Let x be a system of parameters for R� That Im�� � m F�� can be
expressed by the relation

�a�i�jl �
t � xR���

for some t � 
 and all i� j� l� That F� � Rp is exact for all p �� m � is
described by the following two conditions�

�i� F� � Rp is split acyclic for each p � SpecR� p �� m �

�ii�
Ps

i������
i rankFi � 
�

Let ri be the expected rank of �i� Via ������ condition �i� can be translated
into the non�vanishing of Iri�Ai� modulo p for all prime ideals p �� m �
equivalently

�xR�u � Iri�Ai����

for some u � 
 and all i � �� � � � � s�
It is mechanical to express ��� � ��� in terms of polynomial equations

over Z satis�ed by the entries of the matrices� the elements of x� and
the coe�cients in the linear combinations involved� These equations only
depend on the numerical parameters s� rankFi� t� and u� Conversely�
given a solution to one of the systems of equations thus obtained� one
immediately constructs a counterexample to ����� interpreting the matri�
ces as homomorphisms�

The reader is invited to try similar reductions for ����� ����� and
�����

The next member of the chain of corollaries is the �homological height
theorem�� It belongs to the class of �superheight theorems�� For a proper
ideal I of a Noetherian ring R let us de�ne its superheight as the supre�
mum of heightIS where S is any Noetherian ring to which there exists a
ring homomorphism R � S � with IS �� S � The fundamental superheight
theorem is Krull�s principal ideal theorem� it says that superheightI is
bounded above by the minimal number of generators of I �
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Theorem ��	�	 �Hochster�� Let R be a Noetherian ring containing a �eld�

and M �� 
 a �nite R�module� Then superheightAnnM � proj dimM�

Before proving this theorem one should note that it is a far�reaching
generalization of Krull�s principal ideal theorem for Noetherian rings
containing a �eld k� take R � k�X�� � � � � Xn� and M � k �� R��X�� � � � � Xn��
Then proj dimM � n� and therefore height�x�� � � � � xn� � n for elements
x�� � � � � xn of a K�algebra S with �x�� � � � � xn� �� S � �Simply consider the
extension R � S induced by the substitution Xi � xi��

Proof of ����� The theorem is trivial if proj dimM � �� so assume
it is �nite� and let R � S be a Noetherian extension of R such that
�AnnM�S �� S � Replacing S by a localization Sq for a minimal prime
ideal of �AnnM�S and R by Rq �R � one may assume that R � S is a
local extension� and �AnnM�S is not contained in any prime ideal p of
S di erent from the maximal ideal q of S �

Let F� be a minimal free resolution ofM over R� Then p �R �� AnnM
for every p � Spec S with p �� q � Hence M � Rp �R � 
� and F� � Rp �R

is split exact� Split exactness is preserved under ring extensions� and so
F� � Sp is split exact� F� � S satis�es the hypotheses of ����� whence
proj dimM 	 dimS �

Let k be an algebraically closed �eld� and Y � Z subvarieties of the
a�ne spaceAn�k� �or the projective space Pn�k��� Then a classical theorem
of algebraic geometry asserts that

dimW 	 dimY � dimZ � n

for every irreducible component of Y � Z ������� Prop� 	���� If p � q � r are
the prime ideals de�ning the varieties Y � Z � and W respectively� then this
inequality can be written

height r � height p � height q ����

Note that r is a minimal prime ideal of p � q � Serre showed in ������
Th�eor!eme �� p� V��� that the inequality ��� holds for prime ideals p � q � r of
a regular local ring such that r is a minimal prime ideal of p � q � Suppose
that r � m is the maximal ideal of R� Then r contains all the minimal
prime ideals of any ideal I � R� and we can replace p and q by arbitrary
ideals I and J to obtain the following version of Serre�s theorem� let I� J
be ideals of a regular local ring �R� m � such that I � J is m �primary� then
heightI � heightJ 	 dimR� or� returning to dimensions�

dimR�I � dimR � dimR�J����

The example R � k��X�� X�� Y�� Y�����X�Y� � X�Y��� I � �x�� x��� J �
�y�� y��� shows that the last inequality is false in non�regular local rings�
However� one can hope that in the presence of their characteristic property
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namely �nite projective dimension of �nite modules� one can generalize
the inequality above� reading I and J as the annihilators of modules M
and N� The best possible result to be expected is the direct generalization
of ����

dimN � dimR � dimM�	�

for all modules M�N over a local ring �R� m � such that M has �nite
projective dimension and SuppM � SuppN � fm g� It seems to be
unknown whether �	� holds� but �	� turns into a valid inequality if we
replace its right side by depthR�depthM � proj dimM �the Auslander�
Buchsbaum formula� see ������� It should now be clear why the following
corollary is named the �intersection theorem�� �It is customary in this
context to express the condition SuppM�SuppN � fm g by ��M�N� �
�� which is an equivalent requirement if M�N �� 
��

Theorem ��	�� �Peskine�Szpiro�� Let R be a Noetherian local ring con�

taining a �eld� and M�N �� 
 �nite R�modules such that ��M � N� � ��
Then dimN � proj dimM�

Proof� There is nothing to prove if proj dimM � �� So assume it is
�nite� Neither the condition ��M � N� � �� nor the number dimN� can
change if we replace N by another �nite module with the same support�
In particular we may replace N by S � R�AnnN� Then �AnnM�S is
primary to the maximal ideal of S � and the desired inequality proves to
be a special case of �����

It is easy to generalize ���� to situations in which ��M � N� is not
necessarily �nite� Suppose that dim�M � N� � 
� Then dimN � 
� and
none of the �nitely many minimal prime ideals of M � N or N equals
m � Therefore there exists x � m such that dimN�xN � dimN � � and
dim�M� �N�xN�� � dim�M�N���� Applied inductively� this argument
proves the following corollary�

Corollary ��	��� Let R be a Noetherian local ring containing a �eld� and

M�N �� 
 �nite R�modules� Then dimN � proj dimM � dim�M � N��

One of the reasons for which we have stated the corollary� is that it
explains why ���� is easier to prove than inequality �	� above� ���� is
equivalent to dimR � dimM � depthR � depthM for N � R�

The following theorem� often called �Auslander�s conjecture�� does not
strictly fall under the title of this section� but its proof is short and an
elegant application of the intersection theorem �����

Theorem ��	�� �Peskine�Szpiro�� Let �R� m � be a Noetherian local ring

containing a �eld� and M �� 
 a �nite module of �nite projective dimension�

Then every M�sequence is an R�sequence� in particular every M�regular

element is R�regular�
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Proof� If x � R is regular on M and on R� then proj dimR��x� M�xM �
proj dimM by ������ Thus it is enough to prove the second statement� the
�rst follows by induction�

One has to show that every p � AssR is contained in some q � AssM�
We proceed by induction on dimM� If dimM � 
� then m � AssM� and
certainly p � m � Assume that dimM � 
�

If there is a prime ideal q � SuppM such that m �� q � p � one can
apply the inductive hypothesis to Mq � there exists q � � SpecRq with
q � � AssMq and q � � p Rq � hence q � � R satis�es our needs�

Otherwise V �p � � SuppM � fm g� So dimR�p � proj dimM by
����� On the other hand depthR � dimR�p according to ������� and
furthermore the Auslander�Buchsbaum formula says that proj dimM �
depthM � depthR� Therefore depthM � 
� whence m � AssM�

Remarks ��	��� �a� The new intersection theorem ���� was proved for
all local rings by Roberts ������ Consequently ��������	 and ����
����
 hold without the hypothesis that R contains a �eld� In particular
���� is a true generalization of Krull�s principal ideal theorem �take
R � Z�X�� � � � � Xn���

�b� It is possible to avoid the use of big Cohen�Macaulay modules in
the proof of the improved new intersection theorem ����� In fact� ����
is on a par with the canonical element theorem ����� Hochster �����
derived ���� from ����� and Dutta ���� found the converse� As pointed
out in ����� the canonical element theorem can be proved independently
of the existence of big Cohen�Macaulay modules�

�c� The intersection theorem ���� can be improved to the best con�
ceivable result if M is perfect� see ��	�� p� �� Th�eor!eme ����
�i� gradeM � dimM � dimR�
�ii� if N is a �nite R�module such that l�M � N� � �� then dimM �
dimN � dimR�

Furthermore both �i� and �ii� hold if R �
L�

i��Ri is a graded ring
with R� an Artinian local ring� M is a �nite graded R�module of �nite
projective dimension� and N is a �nite graded R�module� see Peskine and
Szpiro ���� Equation �i�� sometimes called the �codimension conjecture��
was proved by Foxby ����� for modules M of �nite projective dimension
over a large class of equicharacteristic local rings�

�d� Let R be a Noetherian ring� and M�N �nite R�modules such that
proj dimM � � and ��M�N� � �� Then the modules TorRi �M�N� have
�nite length� and only �nitely many are non�zero� Thus one can de�ne
the intersection multiplicity of M and N by

e�M�N� �
�X
i��

����i ��TorRi �M�N���

This notion was introduced by Serre ������ He proved that the following
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hold if �R� m � is an unrami�ed regular local ring �see ��	
� for this
notion��
�i� if dimM � dimN � dimR� then e�M�N� � 
�
�ii� if dimM � dimN � dimR� then e�M�N� � 
�
�Note that dimM�dimN � dimR� as discussed above�� Recently Gabber
����� showed that over an arbitrary regular local ring one has ��M�N� 	

� However� both �i� and �ii� fail if R is allowed to be an arbitrary local
ring� Dutta� Hochster� andMcLaughlin ���� constructed counterexamples
over the hypersurface ring k�X�� X�� Y�� Y����X�Y� � X�Y��� However� �i�
was shown to hold if bothM and N have �nite projective dimension and
R is a complete intersection �Roberts ������ ������ Gillet and Soul�e ������
or dimSingR � � ��������

Exercises

������ A Noetherian local ring �R� m � containing a 	eld is Cohen�Macaulay if �and
only if� there exists an R�module of 	nite length and 	nite projective dimension�
Prove this�

������� Let � � R � S be a surjective homomorphism of Noetherian local rings
containing a 	eld such that proj dimR S � �� Show the following are equivalent�

�i� R is Cohen�Macaulay and S is a perfect R�module �of type ���
�ii� S is Cohen�Macaulay �Gorenstein��

Hint� 
���
 is essential for the di�cult implication �ii� � �i��

������� Prove the assertions on perfect R�modules in 
�����c� for Noetherian local
rings R containing a 	eld�
Hint� It su�ces to prove that gradeM � dimM � dimR which is quite evident�

������� Let R be a Cohen�Macaulay local ring� and x a system of parameters for
R� Show that e�x� N� � e�R��x�� N� for all 	nite R�modules N�

��� Ranks of syzygies

Let R be a local ring� and M a �nite R�module of �nite projective
dimension� Then proj dimM � depthR� the length of a minimal free
resolution is bounded by depthR� Moreover� each of the values s �

� � � � � depthR occurs if we choose M � R��x� with an R�sequence x �
x�� � � � � xs� In this section we shall discuss the possible values for the
Betti numbers of M and the ranks of its syzygy modules� For systematic
reasons and in view of an application to Bass numbers below� it is useful
to consider a larger class of complexes than just minimal free resolutions�
namely minimal complexes of codimension 	 
�

Let M be a module over a commutative ring R� and x � M� The
notion of order ideal� which was introduced in connection with �����
plays an important role in the following� The next lemma describes a
property of x which is controlled by O�x��
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Lemma ������ Let R be a Noetherian ring� M a �nite R�module� x � M�

and p a prime ideal� Then x generates a non�zero free direct summand of

Mp if and only if p �� O�x��

Proof� Since HomRp
�Mp � Rp � is naturally isomorphic to Hom�M�R�p � the

formation of order ideals commutes with localization� We may therefore
assume that �R� p � is a local ring� If M � Rx � N and Rx �� R� then
there obviously exists � � HomR�M�R� such that ��x� � �� Conversely� if
��x� � �� then M � Rx�Ker ��

Suppose now that � � F � G is a map of �nite free modules� Let
e � F � Given a basis g�� � � � � gn of G� there are uniquely determined
elements a�� � � � � an � R such that ��e� � a�g� � � � � � angn� The elements
g��� � � � � g

�
n of the dual basis of HomR�G�R� yield the values g

�
j ���e�� � aj �

Therefore OG���e�� � �a�� � � � � an��

Theorem ������ Let �R� m � be a local ring containing a �eld� and

F� � 
 �� Fs
�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a complex of �nite free R�modules� Then� for j � �� � � � � s and every e � Fj
with e �� m Fj � Im�j��� one has codimO��j�e�� 	 codimF� � j�

Proof� Let t � codimF�� For given j we truncate the complex at Fj���
and adjust the indices by setting F �i � Fi�j�� and t� � t� j� �� Replacing
the given data by those just de�ned� we may assume that j � �� Let
J � O����e��� There is something to prove only if J � m and codimF� 	 
�

We put �R � R�J and �F � F�� �R � From the description of J preceding
the theorem one sees that �����e� � 
� In order to derive a contradiction�
we assume that codim J � t� Note that Iri���i� � �Iri��i� � J��J � Hence

dim��R�Iri���i�� � dim�R�Iri��i�� � dimR � i� t � dim �R � i�

This inequality shows that codim �F
�
	 
� Let M be a balanced big

Cohen�Macaulay module for �R� By virtue of ����� �F� �M is acyclic�
Since �����e� � 
� we have ���� �M���e �M� � 
� Let C � Coker��� and
� � F� � C be the natural epimorphism� Since �F� �M is acyclic� ��� �M
induces an isomorphism �C �M � Im���� �M�� So ����e��M � 
�

On the other hand� the hypothesis e �� m F� � Im�� implies that
����e� �� m �C � Thus the image of ����e��M under the natural epimorphism
�C �M � ��C�m �C� � �M�m M� is isomorphic to M�m M �� 
� This is a
contradiction�

An application of the following corollary was anticipated in the proof
of �������

Corollary ������ Let �R� m � k� be a regular local ring containing a �eld� and

I � m an ideal generated by a sequence x� Then the natural homomorphism

from Hi�x� k� � K��x�� k to TorRi �R�I� k� is zero for i � grade I �
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Proof� The natural homomorphism Hi�x� k� � TorRi �R�I� k� is induced
by a complex homomorphism � from K

�
�x� to a free resolution F

�
of

R�I� see ����� It only depends on I and x� so that we may assume
that F

�
is a minimal free resolution� Since R is regular� F

�
has �nite

length by ����	� That H
�
�x� k� � K

�
�x� � k and TorR

�
�R�I� k� �� F

�
� k�

follows from the minimality of the complexes K
�
�x� and F

�
� Thus the

map H
�
�x� k�� TorR

�
�R�I� k� is just � � k�

The assertion amounts to ��Ki�x�� � m Fi for i � grade I � Let z �
Ki�x�� and  and � denote di erentiation in K

�
�x� and F

�
� If ��z� �� m Fi�

then

gradeO����z��� � codimO�����z��� 	 i

by ����� an acyclic complex has non�negative codimension as observed
above� On the other hand� O�����z��� � O����z��� � I since Im  �
IK��x��

As indicated above� we aim at a bound for the expected ranks ri of
the maps in a free complex F�� Reasoning inductively� we will have to
pass to a complex 
� Fs � Fs�� � � � � � F� � F �� � F �� � 
 in which
rankF �� � rankF� � �� Theorem ���� enables us to �nd F ��� whereas the
following lemma contains the construction of F ���

Lemma ����	� Let R be a Noetherian ring and M a �nite R�module� Then
there is a �nite free R�module F and a homomorphism � � M � F with

the following property	 If p is a prime ideal� and N �Mp is a free direct

Rp �summand of rank r� then �� � Rp ��N� is a free direct Rp �summand of

Fp with rank��� Rp ��N� � r�

Proof� Let � denote the functor HomR� � R�� There is a �nite free R�
module G with an epimorphism � � G � M�� Let h � M � M�� be
the canonical homomorphism� and choose � � �� � h� F � G�� Then
� � M � F has the property that every linear form � � M� can be
extended to F along �� Since R is Noetherian and the modules involved
are �nite� the preceding construction commutes with every localization
of R� Thus assume R � Rp �

Now the hypothesis on N is equivalent to the existence of g�� � � � � gr �
N and ��� � � � � �r � M� such that N � Rg� � � � � � Rgr and �i�gj� � 
ij �
Since the �i can be extended to F � the elements ��g��� � � � � ��gr� generate
a free direct summand of rank r�

As pointed out before ��� every complex of �nite free modules over
a local ring decomposes into a split exact direct summand and a direct
summand which is minimal� For the ranks of the maps in a split exact
complex one can only say that they are non�negative� but for those
of a minimal complex there exists a non�trivial lower bound� �It was
essentially given by Evans and Gri�th in the form of Corollary ������
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Theorem ������ Let �R� m � be a local ring containing a �eld� and

F
�
� 
 �� Fs

�s

�� Fs�� �� � � � �� F�

��

�� F� �� 


a length s minimal complex of �nite free R�modules� Let ri denote the

expected rank of �i� If codimF
�
	 
� then ri 	 codimF

�
� i for i �

�� � � � � s � ��

Proof� The same manipulation as in the proof of ���� reduces the
theorem to a statement about r�� Since the theorem makes an assertion
only on r�� � � � � rs��� the complex which remains after the truncation has
length 	 �� there is nothing to prove if s � �� We introduce an auxiliary
variable t� and use induction on t to show that codimF� 	 t implies
r� 	 t� ��

Since codimF� 	 
� Lemma ���� yields acyclicity of F� �M for a
balanced big Cohen�Macaulay module M of R� such a module exists
by ������ Therefore ��� implies ri 	 � for i � �� � � � � s� This inequality
covers the case t � 
� and shows furthermore that F� �� 
� one has
rankF� � r� � r� 	 �� So there exists e � F� with e �� m F�� Since F� is
minimal� e �� m F� � Im���

Let t 	 �� Put F �� � F��Re� and choose ��� as the induced map
F� � F ��� Applying ���� to Coker��� one obtains a homomorphism
Coker��� � F � F ��� Its composition with the natural epimorphism
F �� � Coker��� then yields �

�
� � F

�
� � F ��� For the complex

F �
�
� 
 �� Fs �� Fs�� �� � � � �� F�

���
�� F ��

���
�� F �� �� 


one has r�� � r�� r
�
� � r� � �� In order to show that codimF �

�
	 t� � we

must verify the following inequalities� �i� codim Ir����
�
�� 	 t � �� and �ii�

codim Ir����
�
�� 	 t�

For �i� we choose a prime ideal p with codim p � t� Certainly
Iri��i� �� p for i � �� � � � � s� Therefore F� � Rp is split acyclic by ������� In
particular we have a decomposition

�F��p
�� �Im���p � �Coker���p

with rank�Im���p � r� and rank�Coker���p � r�� Moreover � and this is
the crucial argument � codimO����e�� 	 t � � by ����� Therefore ���e�
generates a free direct summand of �F��p by ����� A fortiori the residue
class �e of e generates a non�zero free direct summand of �Coker���p � So
�Coker����p

�� �Coker���p �Rp �e is free of rank r�� � r� � �� and the exact
sequence


 �� �Im����p �� �F ���p �� �Coker����p �� 


splits� Also this shows that �Im����p is a free direct summand of rank
r� � r�� of �F

�
��p � By ����� we get Ir����

�
�� �� p � Since p is an arbitrary prime

ideal with codim p � t� the inequality �i� has been proved�
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Slightly more than required for �ii� we show that codim�R�Ir����
�
��� 	

t � �� Pick p as before� We saw that �Coker����p is free of rank r���
Since ��� was constructed as prescribed by ����� �Coker����p is mapped
isomorphically onto a free direct summand of F ��� As desired� Ir�� ��

�
�� �� p �

If it should happen that F �
�
is not minimal� then one splits o a

direct summand id� Ru � Ru from F �� � F ��� This does not a ect the
codimension� and even improves the desired inequality r�� 	 t which holds
by induction� �Because of s 	 � the construction of F �

�
does not touch Fs �

so that F �
�
also has length s��

Corollary ����� �Evans�Gri�th�� Let R be a Noetherian local ring con�

taining a �eld� and M �� 
 a module of projective dimension s � �� Then
�a� for i � �� � � � � s� � the i�th syzygy Mi of M has rank 	 i�
�b�

�i�M� 	

�
�i� �� i � 
� � � � � s� ��
s� i � s� ��
�� i � s�

Proof� A minimal free resolution F� of M is acyclic� and thus has
codimension 	 
� as was observed above� Theorem ���� says that for
i � �� � � � � s � � the i�th map �i has expected rank ri 	 i� Since F� is
acyclic� ri � rank�i � rankMi� see ������ This proves �a� from which
�b� follows with �i�M� � ri � ri��� �Note that �s�M� � 
 because of
proj dimM � s��

It is of course not di�cult to give a non�local version of the corollary�
which we leave to the reader�

Remarks ������ �a� Corollary ���� is the best possible result� In fact�
if R is a Noetherian local ring� and M the m�th syzygy module of a
module of �nite projective dimension� then M contains a free submodule
L such that M�L inherits this property and rankM�L � m� see Bruns
����� Similarly one can �nd modules M for all preassigned values of
proj dimM � s � depthR and �i�M�� i � 
� � � � � s� which are consistent
with �����

�b� It is not necessary to use big Cohen�Macaulay modules in the
proof of ����� Ogoma ���� derived it from the improved new intersection
theorem �����

�c� Theorem ���� and its consequences admit conclusions even for
local rings not containing a �eld� Let p � charR�m � Then one passes
from a given complex F� over R to F� � R��p�� and R��p� contains a
�eld� The reader may verify that codimO��j�e�� 	 codimF� � j � � in
����� regardless of whether dimR��p� � dimR� or dimR��p� � dimR���
Similarly the bounds in ����� ����� and �����a� become worse by at
most ��
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��� Bass numbers

Let R be a Noetherian ring� and M a �nite R�module� The Bass numbers

�i�p �M� � dimk�p � Ext
i
Rp
�k�p ��Mp �� p � SpecR�

determine the modules in a minimal injective resolution

I� � 
 �� E��M� �� E��M� �� � � � �� Ei�M� �� � � �

of M� by ���� one has Ei�M� �
L

p �SpecR E�R�p ��i�p �M� for all i 	 
�

In this section we want to derive inequalities satis�ed by the numbers
�i�m �M� when �R� m � is a local ring� since the Bass numbers are local
data by de�nition� such inequalities can be translated into assertions
about the �i�p �M� in general�

Suppose that �R� m � k� is a local ring with m �adic completion � �R� �m � k��

Since ExtiR�k�M� �� ExtiR�k�M� � �R �� Exti	R�k�
�M� for all i 	 
� one

has �i�m �M� � �i� �m � �M�� Therefore it is no restriction to assume R is
complete� For simplicity of notation we set �i � �i�m �M��

By their very de�nition the local cohomology modules ofM are given
as H i

m �M� � H i��m �I
���� see Section ���� It is easy to determine �m �I

��
since a non�zero element of E�R�p � cannot be annihilated by a power of
m if p �� m � see ����	� Thus �m �I

�� is the subcomplex

J� � 
 �� E�k���
��

�� � � �
�i��

��� E�k��i
�i
�� � � �

By Grothendieck�s theorem ����	 we have H i
m �M� �� 
 for i � depthM

and i � dimM� in particular �i �� 
 for these values of i� On the other
hand� �i � 
 for i � depthM�

By assumption R is complete� So Theorem ������ yields

HomR�E�k�� E�k�� � R�

and one obtains a complex of �nite free modules from an application of
the functor HomR�E�k�� � to J��

G� � HomR�E�k�� J
�� � 
 �� R��

��

�� R�� �� � � �
�i��

��� R�i
�i

�� � � �

Moreover there is some information on the maps �i and �i� The endo�
morphisms of E�k� are just given by multiplication by elements of R�
therefore the maps �i can naturally be considered as matrices over R�
and �i is given by the same matrix as �i� Since I� is a minimal injective
resolution� the entries of these matrices are in m �

Also� one obtains a complex of �nite free R�modules if one applies
HomR� � E�k�� to J��

L� � HomR�J
�� E�k�� � � � �

�i
�� R�i

�i��

��� � � �
��
�� R��

��
�� R�� �� 
�
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the matrix representing �i is the transpose of �i� Let � denote the functor
HomR� � R�� As just seen�

�G��� � L
�
� �L

�
�� � G��

The advantage of L
�
over G� is that we know its homology� By the

exactness of HomR� � E�k���

Hi�L�
� �� HomR�H

i�J��� E�k�� �� HomR�H
i

m �M�� E�k���

We claim that dimHi�L�
� � i� for this to hold it is surely su�cient that

dim
�
R��AnnH i

m �M��
�
� i� and the latter inequality has already been

proved in ������
In order to adapt the present notation to that in the previous section

we set
d � dimR� )i � �d�i� �i � �d�i�

and de�ne the complex F� by

F� � 
 �� R�d
�d

�� R�d�� �� � � � �� R��
��

�� R�� �� 
�

We want to show that codimF� 	 
� We consider the truncation

�L�jd � i� ��� R�d�i��
�d�i

��� R�d�i �� � � � �� R��
��
�� R�� �� 
�

Since dimHv�L�� � v� the complex �L�jd � i � ��� Rp is exact� and thus
split exact for prime ideals p satisfying codim p � i��� We dualize to get
that


 �� R�d
�d

�� R�d�� �� � � � �� R�i�� �� 


is split acyclic� Thus ������ gives Iri��i� �� p � and codim Iri��i� 	 i as
desired�

Let t � depthM� As noticed above� R�d�t�j � 
 for j 	 �� R�d�t �� 
�
and F� is a minimal complex of length d � t� Now we have reached our
goal� ���� yields

)i � ri��� ri 	

� �� i � d � t�
d � t� i � d � t� ��
�i� �� i � 
� � � � � d � t� ��

Returning to the previous notation we get part �a� of

Theorem ������ Let R be a Noetherian local ring containing a �eld� dimR �
d � and M a �nite R�module of depth t�
�a� Then

�i�m �M� 	

� �� i � t�
d � t� i � t� ��
��d � i� � �� i � t� �� � � � � d �

�b� If t � dimM � d � then �d�m �M� 	 ��
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Proof� �a� was proved above� In its proof we exploited results on the
vanishing of local cohomology and its non�vanishing at the depth of a
module� Part �b� relies on its non�vanishing at the dimension� as will be
seen now�

Consider the interval R�d��
�d
�� R�d

�d��

��� R�d�� of L
�
� Its homology

at R�d is Hd�L�
� � HomR�H

d
m �M�� E�k��� and the transpose of �d�� is the

map �� in

F
�
� 
 �� R�d �� � � � �� R��

��

�� R�� �� 
�

Suppose that )� � �d � �� Since depthM � d � the arguments that proved
�a� yield that r� 	 � �with respect to F��� hence r� � �� note that r� � )��
Furthermore dim�R�Ir������ � d��� as stated above� This implies ���Rp

is surjective for prime ideals p with dimR�p � dimR� Therefore �d���Rp

is injective� and dimHd�L�� � d �
We choose a Gorenstein ring S with an epimorphism S � R� By the

variant ������ of the local duality theorem

Hd�L�� �� HomR�H
d

m �M�� E�k�� �� Extn�dS �M� S�� n � dimS�

Let q � SuppS M with dimS�q � d � Then Extn�dSq
�Mq � Sq � � 
� since

dimHd�L�� � d� that however contradicts ������ �note that dimMq � 
�
dimSq � n� d��

Two corollaries are immediate� The �rst of them is usually called
�Bass� conjecture�� the second was conjectured by Vasconcelos�

Corollary ����� �Peskine�Szpiro�� Let R be a Noetherian local ring con�

taining a �eld� If R has a �nite module M �� 
 of �nite injective dimension�

then R is a Cohen�Macaulay ring�

In fact� if inj dimM is �nite� then it equals depthR by �����	� The
theorem yields inj dimM 	 dimR� The converse could already have been
proved in Chapter �� Let �R� m � k� be a local Cohen�Macaulay ring� x
a system of parameters� and E the injective hull of k over R� Then
HomR�R��x�� E� has �nite length by ������� The Koszul complex K��x� is
a projective resolution of R��x�� Therefore the acyclic complex K��x� E� �
HomR�K��x�� E� is an injective resolution of K��x� E� �� HomR�R��x�� E��

Corollary ����� �Foxby�� Let R be a Noetherian local ring containing a

�eld� and d � dimR� If �d�m � R� � �� then R is a Cohen�Macaulay ring�

hence Gorenstein�

Remarks ����	� �a� Both the corollaries hold for all local rings�
�i� Roberts ����� gave a characteristic�free proof of ����� It exploits

the properties of dualizing complexes� Kawasaki ����� generalized ����
using the methods of this section� a complete local ring of type n
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satisfying Serre�s condition �Sn��� is Cohen�Macaulay �for n � � one has
additionally to assume that R is unmixed��

�ii� For a large class of local rings� ���� was �rst proved by Peskine
and Szpiro� Their argument rests mainly on the intersection theorem
���� and the following fact which is interesting in itself� let �R� m �
be a Noetherian complete local ring� and M �� 
 a �nite R�module of

�nite injective dimension� then there exists a �nite R�module N such that

proj dimN � depthR � depthM and SuppN � SuppM� Since Roberts
����� proved the intersection theorem for all local rings� ���� holds
without any restriction�

The theorem of Peskine�Szpiro just mentioned can be proved by the
method we used for ����� independently of the hypothesis that R contains
a �eld� �One constructs the complex F� as in the proof of ���� and
chooses N � Coker�d�u�� where d � dimR� u � depthR � inj dimM��
On the other hand� it can also be obtained as a consequence of ���� in
conjunction with Exercise ����� In fact� if R contains a �eld and has a
�nite module of �nite injective dimension� then it is Cohen�Macaulay by
����� Furthermore it has a canonical module since it is complete� and
thus it satis�es the hypothesis of �����

�b� Using ���	�c� one can derive slightly weaker bounds for Bass
numbers over an arbitrary Noetherian local ring�

�c� If R is a Cohen�Macaulay ring� then the complex F� above is
acyclic� and already ��� gives

�i�m �M� 	

�
�� i � depthM and i � dimR�
�� depthM � i � dimR�

This inequality and �����b� were �rst obtained by Foxby ����� for Cohen�
Macaulay rings and local rings containing a �eld�

�d� Whenever �d�m �M� � 
� d � dimR� and inj dimM � �� then
�i�m �M� � 
 for all i 	 dimR� see �������

Exercise

������ Let R be a Cohen�Macaulay local ring with canonical module �� Recall
from Exercise ������ that a 	nite R�module of 	nite injective dimension has
a minimal augmented ��resolution �

�
� � � �rp � � � � � �r� � M � �

with p � dimR � depthM� The following assertions �due to Sharp ��
��
set up a bijective correspondence between 	nite modules M of 	nite injective
dimension and those of 	nite projective dimension that is given by the assignment
M �� HomR���M� and its inverse N �� N ���

�a� Let N be a 	nite R�module of 	nite projective dimension with minimal free
resolution F�� Show that F� � � is a minimal ��resolution of M � N � �� in
particular dimR � depthM � proj dimN and SuppM � SuppN�
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�b� Conversely� let M be a 	nite R�module of 	nite injective dimension with
minimal ��resolution �

�
� Show that HomR��� ��

� is a minimal free resolution of
N � HomR���M��

�c� Using 
�����a� show that 
���� gives the best possible lower bounds for the
Bass numbers of an R�module�

Hint� use 
���� for �a� and �b�� noting that � is a Cohen�Macaulay module with
Supp� � SpecR and that End��� � R�

Notes

The acyclicity criterion ���� is essentially due to Buchsbaum and Eisen�
bud ����� The general version without any �niteness condition on the
ring R or the module M was given by Northcott ��
�� The concept of
grade on which it is based goes back to Hochster ��	�� To us it seemed
most convenient to use Koszul homology in the de�nition of grade�

Section �� is based on Hochster�s article ��	��� We outlined the fact
that essentially all the homological theorems can be derived from the
direct summand theorem ���� or its equivalent� the monomial theorem
����� One of the rare results in mixed characteristic is due to Hochster
and McLaughlin ���� it says that a regular local ring is a direct
summand of a �nite extension domain if the extension of the �elds of
fractions has degree two� As a surprising spin�o of an investigation of
the monomial theorem in mixed characteristic� Roberts ���	� obtained
a counterexample for Hilbert�s fourteenth problem� and furthermore a
prime ideal in a formal power series ring whose symbolic Rees algebra is
not �nitely generated�

The material on the canonical element theorem in Section �� is taken
from Hochster�s comprehensive treatise ������ It seems however that the
idea to compare a Koszul complex for a system of parameters with a free
resolution of the residue class �eld� was �rst used by Eisenbud and Evans
��� in the demonstration of their generalized principal ideal theorem
����� Hochster ����� contains many more results than indicated in ����
and ����� In particular we would like to mention a connection between
canonical elements and canonical modules� The canonical element the�
orem has also been studied by Dutta ����� ����� and Huneke and Koh
������

A �tremendous breakthrough� �Hochster ������ p� ��� was made
by Peskine and Szpiro in ��	�� As mentioned already in Chapter ��
they were the �rst to apply the Frobenius morphism in the context of
homological questions and to reduce such questions from characteristic
zero to characteristic p through Artin approximation� They proved the
intersection theorem ���� in characteristic p and for local rings which can
be obtained as inductive limits of local �etale extensions of localizations
of a�ne algebras over a �eld of characteristic zero� Furthermore� for the
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same class of local rings they were able to deduce Auslander�s conjecture
���	 and Bass� conjecture ���� from the intersection theorem�

An equally fundamental achievement is Hochster�s construction of
big Cohen�Macaulay modules� It enabled him to extend Peskine and
Szpiro�s results to all local rings containing a �eld� and had the side�e ect
of a considerable technical simpli�cation� See ��	��� ��	��� ������

The new intersection theorem is due independently to Peskine and
Szpiro ��� and Roberts ��
�� It seems that Foxby ����� published the
�rst complete proof valid for all equicharacteristic local rings� using big
Cohen�Macaulay modules he gave an even more general theorem than
����� As pointed out above� Roberts ������ ����� proved the new intersec�
tion theorem in full generality� it has been noted which of the theorems
therefore become valid without a restriction on the characteristic� The
improved new intersection theorem ���� is implicitly contained in Evans
and Gri�th �	�� it was explicitly formulated �and given its name� by
Hochster ������ Still another extension of the intersection theorem must
be mentioned� namely Foxby�s version for complexes in ������

In ���� we commented on generalizations of Serre�s theorem for
intersection multiplicities� It should be added here that some positive
results were obtained by Foxby ���	� and Dutta ��
�� �����

The original argument of Evans and Gri�th�s remarkable syzygy
theorem ���� is found in �	�� It requires a weak condition on the
underlying ring� Such conditions were removed by Ogoma ����� as
pointed out in ���	� Our proof of the more general result ���� is a direct
generalization of the argument in ���� This monograph of Evans and
Gri�th contains an extensive discussion of questions related to the syzygy
theorem� its bibliography gives an overview of the pertinent literature�

Successively better inequalities for Bass numbers were obtained by
Foxby ������ Fossum� Foxby� Gri�th� and Reiten ���
�� and again Foxby
������ the last two articles make use of big Cohen�Macaulay modules�
The relationship of injective resolutions to �nite free complexes was
realized by Peskine and Szpiro in their proof of Bass� conjecture �����
Their arguments were extended by Foxby ������ In particular �����b�
and ���� �even a more general version for modules� are due to him� As
pointed out already� Roberts gave a characteristic free version of �����
The investigation of ���� originated from Vasconcelos ���
� who proved
it for certain one dimensional local rings�
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The �nal chapter extends the characteristic p methods by introducing the
tight closure of an ideal� a concept that� via the comparison to a regular
subring or overring� conveys the �atness of the Frobenius to non�regular
rings� It was invented by Hochster and Huneke about ten years ago and
is still in rapid development�

The principal classes of rings whose de�nition is suggested by tight
closure theory consist of the F�regular and F�rational rings� they are char�
acterized by the condition that all ideals or� in the case of F�rationality�
the ideals of the principal class are tightly closed� Under a mild extra
hypothesis F�rationality implies the Cohen�Macaulay property� More
is true� F�rational rings are the characteristic p counterparts of rings
with rational singularities� we will at least indicate this connection � a
full treatment would require methods of algebraic geometry beyond our
scope�

Tight closure theory has many powerful applications� Among them
we have selected the Brian�con�Skoda theorem� whose proof is based on
the relationship of tight closure and integral closure� and the theorem of
Hochster and Huneke that equicharacteristic direct summands of regular
rings are Cohen�Macaulay�

�
�� The tight closure of an ideal

Throughout this section we suppose that all rings are Noetherian and of

prime characteristic p� unless stated otherwise� Recall from Section ���
that I �q�� q � pe� denotes the q�th Frobenius power of an ideal I � that
is� I �q� is the ideal generated by the q�th powers of the elements of I�
equivalently� I�q� is the ideal generated by the image of I under the e�fold
iteration Fe of the Frobenius homomorphism F � R � R� F�a� � ap� We
reserve the letter q for powers of p� for example� we will say �for q � 
�
when we mean �for q � pe with e� 
��

In the following the set R� of elements of R that are not contained in
a minimal prime ideal of R will play an important r �ole� Note that R� is
multiplicatively closed�

De�nition �
����� Let I � R be an ideal� The tight closure I� of I is the
set of all elements x � R for which there exists c � R� with cxq � I�q� for
q� 
� One says I is tightly closed if I � I��

�	�
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In previous chapters I� has denoted the ideal generated by the homo�
geneous elements in I where I is an ideal in a graded ring� Since there
is no danger of confusion� we keep the �traditional� notation for tight
closure�

The next proposition lists some basic properties of tight closure� in
particular it behaves as expected for a closure operation�

Proposition �
����� Let I and J be ideals in R� Then the following hold	

�a� I� is an ideal and I � J  I� � J��
�b� there exists c � R� with c�I���q� � I�q� for q � 
�
�c� I � I� � I���
�d� if I is tightly closed� then so is I � J�
�e� x � I� if and only if the residue class of x lies in ��I � p ��p �� for all

minimal prime ideals p of R�
�f� if R is reduced or heightI � 
� then x � I� implies that there exists

c � R� with cxq � I �q� for all q�

Proof� �a� is obvious�
�b� We choose a system y�� � � � � ym of generators of I�� For each i there

exist ci � R� such that ciy
q
i � I �q� for q � 
� and therefore c�I���q� � I �q�

for c � c� � � � cm and q � 
�
�c� Suppose dxq � �I���q� for q � 
 with d � R�� With c as in �b� one

then has �cd�xq � I �q� for q � 
� Since cd � R�� it follows that x � I��
�d� Note that �I � J��q� � I �q� � J�q�� Thus cxq � �I � J��q� for q � 


implies c�xy�q � I �q� for all y � J and q � 
� Hence xy � I� � I for all
y � J � and therefore x � I � J �

�e� If x � I�� then the residue class �x belongs to ��I � p ��p �� since
R� � p � ��

Conversely� let p �� � � � � p n be the minimal prime ideals of R� and
suppose �x � ��I � p i��p i�

� for all i� Then there exist ci � R n p i with
cix

q � I�q� � p i for q � 
� We may assume that ci � R�� replace ci
by ci � c�i where c�i � p j if and only if ci �� p j � �Such c�i exist since the
intersection of some minimal prime ideals is not contained in the union
of the remaining ones�� In the next step we take d �

P
i cidi where di �� p i�

but di �
Q

j �i p j �

Now pick r � pf so large that �p � � � � p m�
�r� � 
� Then we have

�dici�
rxrq � �I �rq� � p

�r�
i �
Y
j �i

p
�r�
j � I�rq� for all i�

This implies drxq � I�q� for q � 
� Since d � R�� we conclude x � I��
�f� If height I � 
� then R� � I �� �� so that c � R� with cxq � I �q� for

q� 
 can be replaced by car with a � I and r su�ciently large�
Suppose now that R is reduced� Applying the previous argument for

the case of positive height to the residue class rings R�p i� where p �� � � � � p m
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are again the minimal prime ideals of R� we �nd ci � R� such that
cix

q � I�q� � p i for all q 	 
� Now we choose d as in the proof of �e� and
�nd that dxq � I �q� � p � � � � p m � I�q��

Usually the computation of I� is very di�cult� We give two examples�

Examples �
����� �a� Let R� � k�X� Y � Z���X� � Y � � Z�� where k is a
�eld of arbitrary characteristic p � 
� Evidently R� is an integral domain�
a complete intersection� and therefore Cohen�Macaulay� Furthermore�
the ideal generated by the residue classes of the partial derivatives of
X�� Y � � Z� is primary to the maximal ideal m � �x� y� z� �small letters
denote residue classes�� The Jacobian criterion �for example� see ��	
��
��
���� shows that �R��p is a regular local ring for p �� m � Especially� R� is
a normal ring by Serre�s criterion ������� Setting degX � ��� degY � ���
and degZ � � makes R� a positively graded k�algebra with �maximal
ideal m � �All these assertions hold over an arbitrary �eld k��

We claim that x � �y� z��� If p � �� then obviously xq � �y� z��q� for
all q � pe� For p � � one has cxq � �y� z��q� for c � x� In fact� set
u � �q � ����� Then xq�� is a k�linear combination of monomials y�vz�w

with v � w � u� It is an elementary exercise that �v 	 q or 	w 	 q�
�b� Let R� � k�X� Y � Z���X� � Y � � Z��� Then� as in �a�� R� is a

normal complete intersection domain� The graduation is now given by
degX � ��� deg Y � �
� and degZ � �� We claim that x �� �y� z�� if and
only if char k � 	� In this case �y� z� is tightly closed because the only
proper ideal of R��y� z� is generated by the residue class of x�

Evidently S � k�y� z� is isomorphic to the polynomial ring in two
indeterminates over k and R� is a free S�module with basis �� x� Therefore
every element f � R� has a unique presentation of the form f��xf� with
f�� f� � k�y� z��

The case p � � is trivial� So suppose p is an odd prime� As above� set
u � �q������ choose c � R�

� � and let s and t denote the highest exponents
with which y and z respectively appear in c� and c� where c � c� � xc�
with c�� c� � k�y� z�� One has

xq�� � c
X

v�w�u

�
u

v

�
y�vz�w �

Therefore cxq � �yq � zq� only if all the binomial coe�cients
�
u
v

�
for which

�v � s � q and �w � t � q vanish modulo p�
First let p � 	� Then at least one �for p � �
 each� of the following

inequalities has an integral solution�

�i�
�

�

p � �p �

p

�
� �ii�

�

�
p � �p �

�

�
p�

If �i� has a solution �p� then v � pe���p and w � u � v satisfy the
inequalities �v� s � q and �w� t � q for e� 
� q � pe� Since none of the
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factors in the �numerator� of
�
u
v

�
� u�u� �� � � � �u� v � ���v" is divisible

by pe� one sees easily that
�
u
v

�
is non�zero modulo p� If �ii� has an integral

solution� the argument is analogous� This shows cxq � �yq � zq� for q � 

is impossible�

Second� for p � 	 neither �i� nor �ii� has an integral solution� Never�
theless� there appears exactly one multiple of 	e�� in the �numerator� as
well as in the �denominator� of

�
u
w

�
�
�
u
v

�
� Therefore it is enough if we

can choose w as an integral multiple of 	e�� in the critical range� and this
is possible since ��� �  � ����

The argument showing that x � �y� z�� for p � � and p � � is left to
the reader�

Though R� and R� have a very similar structure� there is an invariant
distinguishing them� the a�invariantof R� is non�negative� namely a�R�� �
�� whereas a�R�� � �� �see ������ and ������ for the computation of a�
invariants�� Therefore� if k is a �eld of characteristic 
� R� has a rational
singularity by the criterion of Flenner ��
	� and Watanabe ���� whereas
the singularity of R� is non�rational� The connection between rational
singularities and tight closure will be discussed in Section �
��� and we
will see that the di erent behaviour of R� and R� with respect to tight
closure is by no means accidental�

Remark �
���	�While it is usually not di�cult to show that homologically
de�ned invariants commute with localization or� in the case of a local
ring �R� m �� with m �adic completion� tight closure so far has resisted all
e orts to establish these properties for it� It is obvious that �I��p � �Ip ��

and I� �R � �I �R��� but the converse inclusions are only known in special
cases� some of which will be discussed below� The best result available
for localization is due to Aberbach� Hochster� and Huneke ���� under
some mild conditions on R one has �I��p � �Ip �� for ideals I of �nite
phantom projective dimension� this includes all ideals of �nite projective
dimension� The de�nition of �nite phantom projective dimension requires
the introduction of tight closure for submodules U � M �see Hochster
and Huneke ���� and Aberbach �����

The following proposition indicates how elements in the tight closure
of an ideal may arise in a non�trivial way�

Proposition �
����� Let S � R be a module��nite R�algebra� Then one has

�IS�� � R � I� for all ideals I of R�

Proof� Assume �rst that R and S are integral domains� Then there are a
free R�submodule F of S and an element e � R� e �� 
� with eS � F � and
for each element u � F � u �� 
� there exists an R�linear map f � F � R
with f�u� �� 
� Therefore� given c � S�� one can �nd an R�linear map
g � S � R with g�c� �� 
�
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Now pick x � �IS�� � R� Then there is a c � S� with cxq � �IS��q� �
I �q�S for all q � 
� and applying an R�linear map g one gets g�c�xq � I�q��
Choosing g as above� one concludes x � I��

In the general case let p �� � � � � p m be the minimal prime ideals of R�
and pick minimal prime ideals q �� � � � � q m with p i � q i�R� �This is possible
by A���� Let �i � R � R�p i be the natural map and �i the composition
R � R�p i � S�q i� Then

�IS�� � R �
�
i

���
i

�
�IS���q i

�
�
�

���
i �IS�q i�

� � ���
i �IR�p i�

�

where the last inclusion is given by the �rst part of the proof� By virtue
of �
�����e� it follows that �IS�� � R � I��

In the next remark and in Section �
�� we will need the notion of
excellence for rings� A Noetherian ring R is called excellent if it satis�es
the following conditions�

�i� R is universally catenary�

�ii� for all prime ideals p of R� all prime ideals q of Rp � and all �nite �eld

extensions L � k�q � the ring �Rp �b� L is regular ��Rp �b is the p Rp �adic
completion of Rp ��

�iii� for every �nitely generated R�algebra S the singular locus Sing S �
fq � Spec S � Sq non�regularg is closed in Spec S �

Property �ii� is called the geometric regularity of the formal �bres of

all localizations of R� Complete local rings� and in particular �elds are
excellent� Furthermore the localizations of an excellent ring R and the
�nitely generated R�algebras are excellent as well� We refer the reader to
��	
�� x�� or ������ IV�	�� for a systematic development of this concept�

Remarks �
����� �a� Suppose R is a domain and S a module��nite exten�
sion domain� Then the �eld of fractions of S is an algebraic extension
of R and can therefore be embedded into a �xed algebraic closure L of
the �eld of fractions of R� Through this embedding� S is contained in the
integral closure R� of R in L� one calls R� the absolute integral closure

of R� Conversely� R� is the union of module��nite extension domains of
R� Thus �
���� implies IR� � R � I�� It is not known whether equality
holds in general� but Smith ����� has proved that IR��R � I� for ideals
I of the principal class in domains R such that Rp is excellent for all
p � SpecR�

�b� By a remarkable theorem of Hochster and Huneke ����� the ring
R� is a big Cohen�Macaulay algebra for R if R is an excellent local
domain of characteristic p� This allows one to construct big Cohen�
Macaulay algebras for all Noetherian local rings containing a �eld�
moreover� the construction is �functorial� in the best possible way� See
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Hochster and Huneke ��	� for the numerous applications of the existence
and functoriality of big Cohen�Macaulay algebras�

The next theorem gives a crucial property of tight closure� It also
shows that the attribute �tight� is well chosen�

Theorem �
����� Let R be a regular ring� Then

�a� I �q� � J�q� � �I � J��q� for all ideals I and J of R� and
�b� every ideal of R is tightly closed�

Proof� �a� By induction it is enough to show I �p� � J�p� � �I � J��p�� One
has I�p� � IRF where RF is R viewed as an R�algebra via the Frobenius
endomorphism F � For a regular ring R� the R�algebraRF is �at by Kunz�s
theorem ������ and we show more generally that IS � JS � �I � J�S if S
is a �at algebra over R�

The ideal I � J is the annihilator of the R�module �J � I��I � Since S
is �at� one has natural isomorphisms �I � J�� S �� �I � J�S and

��J � I��I�� S �� ��J � I�� S���I � S� �� �J � I�S�IS�

Therefore it is enough to show �AnnR M�S � AnnS �M�S� for a �nite R�
moduleM� This follows by tensoring the exact sequence 
� AnnR M �
R � EndR�M� with S and using the natural isomorphism EndR�M��S ��
EndS �M � S��

�b� Let I be an ideal of R and suppose that cxq � I�q� for x � R�
x �� I � c � R�� and q � 
� Then I � x �� R� and all the conditions remain
true after localization at a prime ideal containing I � x� In order to derive
a contradiction we may therefore assume that R is local with maximal
ideal m �

By �a� one has �I � x��q� � I �q� � xq for all q 	 
� Therefore� if
c � I�q� � xq for q � 
� then c � �I � x��q� � m �q� � m q for q � 
� This
implies c � 
� the desired contradiction�

For several theorems below it will be essential that R is equidimen�
sional� this means dimR�p � dimR � � for all minimal prime ideals p

of R�

Corollary �
����� Suppose R is equidimensional and a �nite module over a

regular domain A� Then IR �R JR � ��I �A J�R�� and IR�JR � ��I�J�R��

for all ideals I and J of A�

Proof� There exist c � A� c �� 
� and a free A�submodule F of R such
that cR � F � Choose x � IR �R JR� Then xqJ�q� � I�q�R for all q�
Multiplication with c yields J�q��cxq� � I �q�F � Since F is a free A�module�
this implies cxq � �J �q� � I�q��F � By �
���	�a� one has �J�q� � I �q��F �
�I � J��q�F � and so cxq � �I � J��q�F � �I � J��q�R� The argument for
IR � JR is similar�
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It remains to show c � R� for which we need the hypothesis that
R is equidimensional� Let p be a minimal prime ideal of R� Then
dimR�p � dimA��p � A� by the corollary A�� of the going�up theorem�
and there exists such a prime ideal p � with p � � A � 
� Especially�
dimA � dimR � dimA��p �A� and� hence� p �A � 
 for allminimal prime
ideals p of R� �Conversely� this fact implies that R is equidimensional��

If� in the situation of �
����� R �and therefore A� is a local ring� then
every system of parameters x� � � � � xd of A is also a system of parameters
of R and an A�sequence� The last condition is equivalent to

�x�� � � � � xj� �A xj�� � �x�� � � � � xj��

Since A is regular� �x�� � � � � xj�
� � �x�� � � � � xj� for j � 
� � � � � d � � by �
���	�

and so

�x�� � � � � xj� �R xj�� � �x�� � � � � xj�
�� j � 
� � � � � d � ��

If R is an equidimensional complete local ring� then we can always �nd a
suitable regular �Noether normalization� A �see A����� Roughly speaking
one may therefore say that R is �Cohen�Macaulay up to tight closure��
This holds for a larger class of local rings�

Theorem �
���� �Hochster�Huneke�� Let R be an equidimensional residue

class ring of a Cohen�Macaulay local ring A� and x� � � � � xd a system of

parameters of R� Then

�x�� � � � � xj� �R xj�� � �x�� � � � � xj�
�� j � 
� � � � � d � ��

Proof� We write R � A�I � Lemma �
����
 below shows that there exists a
system of parameters z�� � � � � zg� y�� � � � � yd in A with g � codim I such that
z�� � � � � zg � I and xi is the residue class of yi� Since A is Cohen�Macaulay�
z�� � � � � zg � y�� � � � � yd is an A�sequence�

Set J � �z�� � � � � zg�� Since R is equidimensional� all the minimal prime
ideals p �� � � � � p m of I have height g� and are therefore minimal prime
ideals of J � Let p m��� � � � � p n be the remaining minimal prime ideals of J �
If we now choose c � �p m�� � � � � � p n�

s n �p � � � � � � p m� for s su�ciently
large� then cIr � J for some r � 
� Furthermore the residue class d of c
in R belongs to R��

Suppose that bxj�� � �x�� � � � � xj� for some b � R� Then we pick a
preimage a of b in A� obtaining a relation ayj��� �a�y� � � � �� ajyj� � I �
For q � pe 	 r this entails

caqyj��� �aq�y
q
� � � � � � aqj y

q
j � � bq�z� � � � �� bqgzg with buv � A�

However z�� � � � � zg� y�� � � � � yd is an A�sequence� and so is z�� � � � � zg � y
q
� � � � � � y

q
d

�see �����
�� Therefore caq � �y�� � � � � yj��q� � I for all q 	 r� and taking
residue classes we get the desired result�
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Lemma �
����
� Let �A� m � be a Noetherian local ring �not necessarily of

characteristic p�� I a proper ideal of A� and x�� � � � � xd a system of parame�

ters of A�I � Then one can �nd representatives y�� � � � � yd of x�� � � � � xd in A
and z�� � � � � zg � I � g � codim I � such that z�� � � � � zg � y�� � � � � yd is a system of

parameters for A�

Proof� Note that g � d � dimA� Suppose we have constructed represen�
tatives y�� � � � � yd of x�� � � � � xd such that codimJ � d for J � �y�� � � � � yd��
Since dimA�J � g and since �I � J��J is m �J�primary� we can then �nd
z�� � � � � zg � I that complement y�� � � � � yd to a system of parameters�

The elements y�� � � � � yd are constructed inductively� Assume that
y�� � � � � yj�� have been found such that codim�y�� � � � � yj��� � j��� Choose
a representative y�j of xj � Then

dimA��y�� � � � � yj��� I� y
�
j� � d � j � g � d � j � � � dimA��y�� � � � � yj����

Thus I � �y�j� is not contained in any of the �nitely many prime ideals

p �� � � � � p m � �y�� � � � � yj��� with dimA�p i � g � d � j � �� Now Lemma
����� �with M � A and N � I � �y�j�� yields a representative yj of xj such

that yj �� p i for i � �� � � � � m�

In the case in which R is a residue class ring of a Gorenstein local
ring� one can give a shorter proof of �
���� using ������ This technique
will be applied in the proof of �
�����

F�regularity� Theorem �
��� shows that rings in which every ideal is
tightly closed have special properties� They deserve a special name�

De�nition �
������ One says R is weakly F�regular if every ideal of R is
tightly closed� If all rings RT of fractions of R are weakly F�regular� then
R is F�regular�

The distinction between weak F�regularity and F�regularity is unde�
sirable but hard to avoid as long as the localization of tight closure has
not been proved� However� it is enough to require F�regularity for the
localizations Rp � p � SpecR�

Proposition �
������ �a� Let I be an ideal primary to a maximal ideal m �

Then �IRm �
� � I�Rm �

�b� If every ideal primary to a maximal ideal is tightly closed� then R is

weakly F�regular�

�c� R is weakly F�regular if and only if Rm is weakly F�regular for all

maximal ideals m �

�d� A weakly F�regular ring is normal�

�d� If R is a weakly F�regular residue class ring of a Cohen�Macaulay

ring� then R is Cohen�Macaulay�
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Proof� �a� We only need to show the inclusion �IRm �� � I�Rm � and it
holds if �IRm �� �R � I�� By virtue of �
���� it is enough that

��IRm �
� � R � p ��p � ��I � p ��p ��

for all minimal prime ideals p of R� If m �� p � equivalently I �� p �
then both sides equal R�p � So suppose p � m � Then the image of
x � �IRm �

��R under the natural map R � Rm �p Rm certainly belongs to
the tight closure of �I � p �Rm �p Rm � This observation reduces �a� to the
case of an integral domain R in which we have R�

m � R � R�� �So far we
have only used that Rm is a localization of R��

Suppose that cxq � I�q�m for x � R� c � R�
m � and q � 
� Then we

can obviously assume c � R� It follows that c � R�� Furthermore

cxq � I�q�m � R � I�q� where for the last equation we have used that I�q� is
m �primary because Rad I�q� � m and m is a maximal ideal�

�b� By Krull�s intersection theorem� every ideal I of R is the intersec�
tion of the ideals I � m n where m is a maximal ideal containing I and
n � N� Furthermore the intersection of tightly closed ideals is tightly
closed�

�c� is an immediate consequence of �a� and �b��
�d� will be proved after �
���	�
�e� We must show that Rm is Cohen�Macaulay for all maximal ideals

m � Part �c� implies that Rm is weakly F�regular� Thus Rm is a normal do�
main by �d� and� therefore� equidimensional� Now the Cohen�Macaulay
property results from �
����

The following proposition yields the most important examples of
F�regular rings�

Proposition �
������ Let S � R be a �weakly� F�regular R�algebra such

that IS � R � I for all ideals I of R� If R� � S�� then R is �weakly�
F�regular�

Proof� The hypothesis ��R�� � S� implies that �I��S � �IS��� whence the
assertion about weak F�regularity is obvious� Furthermore it is inherited
by every localization� as is the condition IS � R � I� if the induced
homomorphism R�I � S�IS is injective� then so is RT�IRT � ST �IST
for all multiplicatively closed subsets T of R� and every ideal of RT has
the form IRT for an ideal I of R�

The hypothesis IS � R � I is satis�ed if R is a direct summand of
S as an R�module or� more generally� if S is pure over R �see ������b�
for the notion of purity�� An immediate corollary is the characteristic p
version of the Hochster�Roberts theorem�

Corollary �
����	� Let the ring R be a direct summand of the regular ring

S � If R is a residue class ring of a Cohen�Macaulay ring� then R is Cohen�

Macaulay�
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Exercises

�������� �a� Let I and J be ideals of R� Show �I	J�� � I�	J�� �I�J�� � �I��J��� �
and �IJ�� � �I�J���� furthermore ���� � Rad����
�b� Let �R � R�Rad���� Prove I� is the preimage of �I �R�� under the natural
homomorphism R� �R�

�������� �a� Let x�� � � � � xn� y� z be elements of R such that the ideals �x� � � � � � xn� y�
and �x� � � � � � xn� z� are tightly closed and grade�x� � � � � � xn� y� � n � �� Show
�x�� � � � � xn� yz� is tightly closed� �Use ��������
�b� Suppose that grade�x� � � � � � xn� � n and �x� � � � � � xn� is tightly closed� Show
�xa�� � � � � � x

an
n � is tightly closed for all integers a� � � � � � an � ��

������	� Find a tight closure proof of the �monomial theorem� 
���� in character�
istic p�

������
� �a� Show that a primary component q of a tightly closed ideal I that
belongs to a minimal prime ideal of I is tightly closed� �Hint� q � I � x for a
suitable x��
�b� Let I be a tightly closed ideal such that the maximal ideal m is a minimal
prime ideal of I � Show Im is tightly closed�
�c� Let I be an ideal all of whose minimal prime ideals are maximal ideals� Show
I is tightly closed if and only if all the localizations Im with respect to maximal
ideals m are tightly closed�

�������� �Smith� Prove the following assertions�
�a� If tight closure commutes with localization in R�p for each minimal prime of
p of R� then tight closure commutes with localization in R�
�b� Let R be a domain that has an F�regular module�	nite extension� Then tight
closure commutes with localization in R�
�c� Tight closure commutes with localization in rings R � kX� � � � � � Xn��I where
I is generated by monomials and binomials� �Hint� the minimal prime ideals of
I are again generated by such elements� and if I is prime� then R is an a�ne
semigroup ring� See Eisenbud and Sturmfels 
�� for the theory of binomial
ideals��

�
�� The Brian�con�Skoda theorem

This section is devoted to the relationship between the tight closure and
the integral closure of an ideal� Our major objective is a proof of the
Brian�con�Skoda theorem for regular rings containing a �eld� It will be
derived from its tight closure variant by reduction to characteristic p�

Integral dependence on an ideal� We �rst discuss the basic notion of
integral dependence on an ideal I and introduce the integral closure of I �

De�nition �
����� Let R be a ring and I � R an ideal� Then x � R is
integrally dependent on I or integral over I if and only if there exists an
equation

xm � a�x
m�� � � � � � am � 
 with ai � I i� i � �� � � � � m�
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The elements x � R that are integral over I form the integral closure
�I of I �

It is evident that I � �I � Rad I � that I� � I�  �I� � �I�� and
that integral dependence is preserved under ring homomorphisms� The
following proposition lists less obvious properties of integral dependence�

Proposition �
����� �a� The following are equivalent	

�i� x � �I�
�ii� there exists m 	 � with xm � I�I � Rx�m���

�iii� there exists m 	 � with �I � Rx�m�k � Ik���I � Rx�m�� for all

k �N�

�iv� there exists a �nite ideal J � R such that xJ � IJ and Ann J
annihilates a power of x�

�b� �I is an integrally closed ideal�

�c� Suppose that R is Noetherian� Then x � �I if and only if the residue

class of x is integral over �I � p ��p for all minimal prime ideals p of R�

Proof� �a� The equivalence of �i� and �ii� is evident� and �ii� results from
�iii� with k � 
� Conversely� xm � I�I � Rx�m�� implies �I � Rx�m �
I�I � Rx�m�� from which �iii� follows by induction on k�

For �i�  �iv� pick x � �I � Then there exists a �nite subideal I � of I
over which x is integral� Therefore we may assume I to be �nite and
choose J � Rxm�� � Ixm��� � � � � Im���

For �iv�  �i� let J be generated by y�� � � � � yn� Then there exists an
n
 n matrix A � �aij� with aij � I such that �xEn � A�y � 
 where y is
the column vector with components yj and En is the n 
 n unit matrix�
It follows that det�xEn � A�J � 
� and so det�xEn � A� � AnnJ � Upon
multiplication by a power of x we obtain an equation showing x � �I �

�b� It is obvious that ax � �I for all x � �I and a � R� Suppose x�� x� � �I �
Again we may assume that I is �nitely generated and we choose J� for x�
and J� for x� as we have chosen J for x above� especially� both J� and J�
contain a power of I � It follows immediately that �x� � x��J�J� � IJ�J��
furthermore Ann J�J� annihilates a power of I and therefore annihilates
�x� � x��n for n� 
�

The argument showing that �I is integrally closed is similar and can
be left to the reader�

�c� The �only if� part is obvious� For the �if� part let p �� � � � � p r be the
minimal prime ideals of R� We lift an integral dependence equation of
the residue class of x with respect to �I � p i��p i to a relation Fi�x� � p i

such that the coe�cients of the powers of x satisfy the requirements of
De�nition �
����� Then F�x� � F��x� � � �Fr�x� � p � � � � p r � and a suitable
power of F�x� vanishes�

For ideals J � I of a Noetherian ring R one has �I � �J if and only if
J is a reduction ideal of I �see Exercise �
����
��
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We note a useful criterion for normality�

Proposition �
����� A Noetherian ring R is normal if and only if it satis�es

the following conditions	

�i� Rp is a �eld for each prime ideal p that is both minimal and maximal�

�ii� the principal ideals �x�� x � R�� are integrally closed�

Proof� The essential observation relating normality and condition �ii� is
the following� let x be a regular element of R and suppose we have an
integral dependence relation

ym � a�xy
m�� � � � � � am��x

m��y � amx
m � 
� ai � R�

Then the element y�x of the total ring of fractions Q of R is integral over
R� Now� if R is integrally closed in Q� it follows that y�x � R and� hence�
y � �x�� Conversely� if f�g �f� g � R� g a regular element� is integral over
R� one sees immediately that f is integral over the ideal �g��

Suppose now that R is normal� Then it is the direct product of �nitely
many integrally closed domains� Therefore it obviously satis�es condition
�i�� Furthermore every element x � R� is a regular element of R so that
the previous observation immediately yields that �x� is integrally closed�

For the converse we �rst split R into a direct product R� 
 � � � 
 Rr

such that SpecRi is irreducible for each of the rings Ri� It su�ces to show
that each Ri is a normal domain� Note that condition �ii� is inherited by
Ri� Furthermore condition �i� implies that Ri is a �eld if Ri has a prime
ideal that is both minimal and maximal� So we can assume that SpecR
is irreducible and R has no such prime ideal�

The �rst �and crucial� step is to show that R is reduced� For each
minimal prime ideal p i� i � �� � � � � s� there is a non�minimal prime ideal
q i � p i� Choose a � �

T
i q i� n �

S
i p i�� The nilradicalN of R is contained in

every integrally closed ideal� and therefore it is contained in
T

j�a
j� since

a � R�� There exists an element c � R such that b � � � ca annihilatesT
j�a

j� �this is the usual argument from which Krull�s intersection theorem

is derived�� A fortiori� bN � 
� The choice of a ensures that b � R� as
well� and� by the same token� we have �� � db�N � 
 for some d � R�
This shows N � 
�

Since R is reduced� the total ring of fractions Q of R is the direct
product of �elds Qi� The idempotents ei representing the unit elements
of Qi satisfy the equation e�i � ei � 
� Write ei � fi�gi with fi � R and
a regular element gi � R� The initial observation yields ei � R� By the
assumption on R this is only possible if Q is a �eld and� hence� R is a
domain� Now we apply the initial observation once more to conclude
that R is integrally closed�

For the connection with tight closure it is important that in a Noethe�
rian ring integral dependence can be characterized by homomorphisms



�
 ��� Tight closure

to valuation rings� Let K be a �eld� Recall that a proper subring V of K
is a valuation ring of K if x � V or x�� � V for all x � K � It follows that
the set of ideals of V is linearly ordered by inclusion� in particular V is
local and every �nite ideal of V is principal� If V is Noetherian� then
the maximal ideal m V of V is principal� and conversely� a Noetherian
valuation ring V is a regular local ring of dimension � and is termed a
discrete valuation ring�

The following theorem will be crucial� let K be a �eld� A a subring of
K � and p � A a prime ideal of A� then there exists a valuation ring V of
K such that A � V and m V �A � p � Furthermore it is easily proved that
a valuation ring is normal� �See ��	
�� x�
� ��	�� Ch� VI� or ��	�� Vol� II�
Ch� VI for proofs and more information on valuation rings��

Proposition �
���	� �a� Let R be an integral domain with �eld of fractions

K and I an ideal of R� Then �I is the intersection of all ideals IV where V
ranges over the valuation rings of K containing R�
�b� Suppose R is a Noetherian ring� Then there exist a �nite number of

homomorphisms �i from R to discrete valuation rings Vi such that Ker�i

is a minimal prime ideal of R and �I is the intersection of the preimages

����IVi��

Proof� �a� Let J be the intersection of the ideals IV � For �I � J it is
enough that all the ideals IV are integrally closed� As observed above�
IV is a principal ideal of V � Since V is a normal domain� principal ideals
of V are integrally closed �see �
���� � for this implication the Noetherian
property is irrelevant��

For the converse inclusion choose x � J � Let L be the set of all
quotients a�x with a � I and consider the ideal LR�L� in the subring
R�L� of K � If LR�L� were a proper ideal of R�L�� then there would
exist a valuation ring V of K with LR�L� � m V � In particular we would
have a�x � m V for all a � I� this implies x�a �� V � and so x �� IV �
a contradiction� Thus LR�L� � R�L�� and there exists a representation
� � f�a��x� � � � � am�x� where f is a polynomial with coe�cients in R and
a�� � � � � am � I � Multiplication by a su�ciently high power of x yields an
integral dependence relation for x on I �

�b� In view of �
���� we can restrict ourselves to the case of a domain
R� Choose a system of generators x�� � � � � xn of I and let Ri be the integral
closure of R�xj�xi � j � �� � � � � n� in K � We claim that �I �

T
i Rixi� The

inclusion ��� holds because the principal ideal Rixi is integrally closed
in the normal domain Ri� For the converse we use part �a�� Let V be
a valuation ring of K containing R� and pick an index i such that xi
generates IV � Then xj�xi � V for all j and therefore Rixi � IV � It
follows that the intersection

T
i Rixi is contained in every ideal IV where

V ranges over the valuation rings of K �
Though the ring Ri need not be Noetherian� it is a Krull ring �see
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��	
�� x���� A divisorial ideal a of a Krull ring� and especially a principal
ideal� has the primary decomposition a �

T
j�a Rp j

� R� where the p j are

the �nitely many divisorial prime ideals containing a � and furthermore
Rp j

is a discrete valuation ring�

Tight closure and integral closure� After these preparations we can easily
show that tight closure is tighter than integral closure� In the sequel we
shall again assume that R is a Noetherian ring of characteristic p�

Proposition �
����� One has I� � �I for all ideals I of R�

Proof� Let � be a homomorphism from R to a discrete valuation ring V
such that Ker� is a minimal prime ideal of R� Then ��I��V � �IV �� since
��R�� � V �� Moreover� V is a regular local ring and� thus� �IV �� � IV �
So �
���� implies I� � �I �

It is easy to give examples of tightly closed ideals that are not
integrally closed� For example� every ideal in a polynomial ring R over
a �eld is tightly closed� but not every ideal of R is integrally closed if
dimR � � �see Exercise �
�������

The tight closure version of the Brian�con�Skoda theorem is an
�asymptotic� converse of the previous proposition�

Theorem �
���� �Hochster�Huneke�� Let I be an ideal of R generated by

elements f�� � � � � fn�
�a�Then In�w � �Iw���� for all w �N�

�b� If R is regular or just weakly F�regular� then In�w � Iw��� and in

particular In � I �

Proof� We must relate Frobenius powers and ordinary powers of I � This
is possible through the equation

Ik�n�w� � �fk� � � � � � f
k
n�
w��Ik�n����

whose elementary veri�cation is left to the reader�
In view of �
���� and �
���� we may assume that R is an integral

domain� Set J � In�w and pick x � �J � By �
���� there exists m 	 � with
�J � Rx�m�k � Jk���J � Rx�m�� for all k �N� in particular

xmxk � Jk � Ik�n�w� � �fk� � � � � � f
k
n�
w��Ik�n���

for all k �N� Setting c � xm and k � q � pe we obtain

cxq � �f
q
� � � � � � f

q
n�
w��Iq�n��� � �Iw����q��

as desired�
Part �b� results immediately from �a��

The following corollary is crucial for issues of normality�
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Corollary �
����� Let I � �x� be a principal ideal� Then �I � I��

Proof� The inclusion I� � �I is Proposition �
����� and the converse
inclusion is contained in the theorem�

As a consequence of �
���� and �
���� we derive the normality of a
weakly F�regular ring R� which has already been stated in �
������ Since
Rad�
� � �
��� an F�regular ring is reduced� whence it satis�es condition
�i� of �
����� By de�nition it also ful�lls condition �ii� so that normality
follows immediately�

The original Brian�con�Skoda theorem ���	� is essentially the assertion
of �
���� for R � ChX�� � � � � Xdi� the ring of convergent power series in
d indeterminates� It was motivated by the following problem� given
f � �X�� � � � � Xd�� what is the smallest number m such that fm � I �
�X��f� � � � � Xddf�# �Here i is the partial derivative with respect to
Xi�� Answering this question obviously generalizes the well�known rule
uf � X��f � � � � � Xddf for a homogeneous polynomial f of degree u�
The connection with integral closure is given by the fact that f � �I� this
results easily from the criterion �
�����

We derive a generalization of the original Brian�con�Skoda theorem
from �
���� by reduction to characteristic p�

Theorem �
���� �Lipman�Sathaye�� Let R be a regular ring containing a

�eld of arbitrary characteristic and I be an ideal of R generated by elements

f�� � � � � fn� Then In�w � Iw�� for all w �N� and in particular In � I �

Proof� The theorem has already been proved in characteristic p� So
suppose that there exists a counterexample �R� f�� � � � � fn� in characteristic

� Suppose that y � In�w but� y �� Iw��� Then there is a maximal ideal
m of R such that x �� Iw��

m � and since integral closure commutes with
localization �see Exercise �
����
�� we may assume R is local�

For the application of the �regular� variant �b� of Theorem ����� we
must show that our data have a regular equational presentation� That
y � In�w can easily be expressed in terms of a single equation� we
simply choose indeterminates representing y� the generators of I � and the
coe�cients in an integral dependence relation for y on In�w� The di�cult
part of the problem� namely to express the condition y �� Iw��� has
fortunately been solved in Corollary ������ �Observe that the generators
of Iw�� are polynomials in f�� � � � � fn��

It follows that there exists a counterexample to the theorem in which
R is a regular local ring of characteristic p � 
� a contradiction to �
�����

Remarks �
����� �a� If �R� m � is a local ring with an in�nite residue class
�eld� then every ideal I � m has a reduction ideal J � I generated by
at most d � dimR elements� see ������ Since Jw is a reduction of Iw for
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all w � N� one can replace n by the minimum of n and d in �
���� and
�
���� if the hypothesis on R is satis�ed�

�b� Theorem �
���� was proved by Lipman and Sathaye ���
� for
arbitrary regular rings� A variant� valid for an ideal I generated by a
regular sequence in a pseudo�rational ring �see �
����� below�� was given
by Lipman and Teissier ������

�c� Since it seems impossible to derive the mixed characteristic cases
of these theorems from characteristic p results� the tight closure approach
does not supersede the proofs given by Lipman�Sathaye and Lipman�
Teissier� However it o ers a re�nement we have neglected so far� namely
the extra factor Iq�n��� that appears in the proof of �
����� Taking care
of it leads one to the Brian�con�Skoda theorems with coe�cients of
Aberbach and Huneke ����

Exercises

�������� �a� Let I and J be ideals in a ring R and x � R integral over I � y � R
integral over J � Deduce xy is integral over IJ �

�b� Show that x is integral over the ideal I if and only if xt � Rt� is integral
over the Rees algebra R�I� � RIt�� �Thus integral dependence on ideals can be
considered a special case of integral dependence on rings��

�c� Let J � I be ideals and suppose I is 	nitely generated� Prove that �I � �J if
and only if there exists r � N with JIr � I r���

�d� Let T � R be a multiplicatively closed set and S � T��R� Show IS � �IS �

�������� The de	nition of integral dependence can be extended as follows� let
R � S be rings and I � R an ideal� then x � S is integral over I if it satis	es an
equation as in ������� Extend ������ and ������� to this situation�

�������� Let K be an arbitrary 	eld and I � KX� � � � � � Xn� an ideal generated
by monomials� Show that the integral closure of I is the ideal generated by all
monomials whose exponent vector belongs to the convex hull �in Rn or Qn� of
the set of exponent vectors of the monomials in I �

�������� Given a regular local ring of dimension n� 	nd an n�generated ideal I of

R with In�� �� I �

�
�� F�rational rings

Throughout this section we suppose that all rings are Noetherian and of

characteristic p� unless stated otherwise� Recall that in a weakly F�regular
ring every ideal is tightly closed by de�nition� Now we discuss a weaker
condition for a ring R�

De�nition �
����� One says R is F�rational if the ideals of the principal
class� that is� ideals I generated by heightI elements� are tightly closed�
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Note that for an equidimensional� universally catenary local ring
�R� m � an ideal I � �x�� � � � � xi� is of the principal class if and only if
x�� � � � � xi are part of a system of parameters of R�

The name �F�rational� indicates that such rings are the characteristic
p analogues of rings with rational singularities� The results of Smith
���� and Hara ���� discussed at the end of this section justify this
comparison�

In the following we present some basic properties of F�rational rings�
Just as for weakly F�regular rings it results from �
���� and �
���	 that

Proposition �
����� F�rational rings are normal�

The following lemma is essential in the study of F�rational local rings�

Proposition �
����� Let �R� m � be an equidimensional local ring that is a

homomorphic image of a Cohen�Macaulay ring� and �x�� � � � � xd� a system

of parameters of R� Then

�a� �x�� � � � � xi���� � xi � �x�� � � � � xi���� for all i � �� � � � � d�

�b� If �x�� � � � � xd� is tightly closed� then so is �x�� � � � � xi� for all i � �� � � � � d �

Proof� Set Ji � �x�� � � � � xi� and pick r � J�i�� � xi� Then rxi � J�i��� and

hence there exists c � R� such that c�rxi�
q � J

�q�
i�� for q large� see �
�����b��

Thus from �
��� we conclude that crq � J�q�
i�� � x

q
i � J�i��� which yields

r � J�i��� This proves �a��

We derive �b� by descending induction on i� Suppose it is already
known that Ji is tightly closed� Let r � J�i��� then r � J�i � and hence
r � Ji by the induction hypothesis� So r � a � xib with a � Ji�� and
b � R� Then r � a � J�i��� whence b � J�i�� � xi � J�i�� by �a�� This
shows J�i�� � Ji�� � xiJ

�
i��� and the conclusion follows from Nakayama�s

lemma�

Corollary �
���	� An F�rational ring R is Cohen�Macaulay if it is a homo�

morphic image of a Cohen�Macaulay ring�

Proof� Let m be a maximal ideal of R� We choose elements x�� � � � � xd � m �
d � dimRm that generate an ideal I of the principal class� Especially�
x�� � � � � xd form a system of parameters in Rm � By hypothesis I is tightly
closed� As m is a minimal prime ideal of I � we conclude from �
�����
that Im is tightly closed�

Notice that Rm is a domain since it is normal by �
����� Hence
�
�����b� entails that the ideals �x�� � � � � xi�Rm are tightly closed for all i�
Now �
�����a� and �
��� imply that x�� � � � � xd is an Rm �sequence� Thus
Rm is Cohen�Macaulay�

For local rings� F�rationality is easier to control� In fact one has
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Proposition �
����� Let �R� m � be a local ring that is a homomorphic im�

age of a Cohen�Macaulay ring� Then R is F�rational if and only if it is

equidimensional and one ideal generated by a system of parameters is tightly

closed�

Proof� Let x�� � � � � xd be a system of parameters of R generating a tightly
closed ideal� By �
�����b�� R is F�rational if any other system of pa�
rameters y�� � � � � yd of R generates a tightly closed ideal as well� Choose

t � N such that y�� � � � � yd � �xt�� � � � � x
t
d�� and write yi �

Pd
j�� aijx

t
j � Then

�y�� � � � � yn� � �xt�� � � � � x
t
d� � a with a � det�aij�� This follows from �����
�

since� by �
����� R is Cohen�Macaulay� so that every system of parameters
is R�regular� Now Exercise �
������b� tells us that �xt�� � � � � x

t
d� is tightly

closed� Finally �
���� implies that �y�� � � � � yd� is tightly closed� too�

Proposition �
����� Let R be a homomorphic image of a Cohen�Macaulay

ring� Then R is F�rational if and only if Rm is F�rational for every maximal

ideal m of R�

Proof� ���� Let I � R be an ideal of the principal class� Suppose that I
is strictly contained in I�� Then for some maximal ideal m of R we have
again a strict inclusion Im � �I��m � It follows that Im is not tightly closed
as �I��m � �Im ��� This is a contradiction since Im is of the principal class�
and Rm is F�rational�

��� Let m be a maximal ideal of R� As in the proof of �
���� we
conclude that some ideal in Rm generated by a system of parameters is
tightly closed� Hence the assertion results from �
�����

Now we can easily show that for a Gorenstein ring �F�rational� is a
condition as strong as �F�regular��

Proposition �
����� A Gorenstein ring is F�regular if and only if it is F�
rational�

Proof� In view of �
���� and �
������c� we only need to show that an
F�rational Gorenstein local ring is F�regular� In order to apply �
������b��
we choose an ideal I which is primary to the maximal ideal m of R and
show it is tightly closed� There exists an ideal J � I generated by a
system of parameters� Since R is Gorenstein� we have I � J � �J � I��
�This follows immediately from Exercise ������ applied to the Artinian
ring R�J�� The ideal J is tightly closed since R is F�rational� and by
�
�����d�� I is tightly closed as well�

The previous proposition cannot be generalized essentially� there exist
F�rational� but not weakly F�regular rings of dimension �� see Watanabe
��
� or Hochster and Huneke ����� �	����� �	�����

F�rationality has good permanence properties� for example� it localizes
as will easily follow from
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Proposition �
����� Suppose I is an ideal generated by an R�sequence� Then
�IRS�� � I�RS for every multiplicatively closed set S � R�

The proof of the proposition uses

Lemma �
����� Let R be an arbitrary Noetherian ring� I � R an ideal� and

S � R a multiplicatively closed set�

�a� Then there exists an element s � S such that
S

w�S I
m � w � Im � sm for

all m �N�

�b� Suppose in addition that charR � p � 
� and that I is generated by an

R�sequence x�� � � � � xn� Then� with s � S as in part �a�� we have�
w�S

I�q� � w � I�q� � s�n���q for all q�

Proof� �a� It is enough to show the inclusion ���� Let T be the associated
graded ring grI�R�� Since T is Noetherian� there exists s � S such that
AnnT �s� � AnnT �ws� for all w � S � �One chooses an element s for which
Ann�s� is maximal��

Now suppose u � Im � w� u � Ir n Ir��� We may assume that r � m�
since otherwise the assertion is trivial� We claim that usm�r � Im� Indeed�
uw � Im � Ir��� and so uws � Ir��� By the choice of s this implies
us � Ir��� Induction on r concludes the proof of �a��

�b� Again only the inclusion ��� needs proof� Given w � S and q�
�x u � I�q� � w� We shall prove by induction on h � N that the element
dh � sq�hu belongs to I �q� � Iq�h� Once we know this� it follows for
h � qn that s�n���qu � I �q� � Iq�n��� � I�q�� �The last equality holds� since
Iq�n���� I�q���

We start the induction with h � 
� Then I�q� � Iq � Iq � and the
assertion follows from �a��

Now suppose that dh � I�q� � Iq�h for some h � 
� Say�

dh �
X
i

r�ix
q
i �
X
a

rax
a� a � �a�� � � � � an� � N

n�

with
P

i ai � q�h and ai � q for every i� As wu � I�q�� we get an equationX
i

r��i x
q
i �

X
i

wr�ix
q
i �
X
a

wrax
a

with certain r��i � R� This impliesX
i

�wr��i � r�i�x
q
i �
X
a

wrax
a � 
�

Since x�� � � � � xn is R�regular� all the wra are in I � Therefore sra � I for
all a� and we conclude that dh�� � sdh � dh �

P
i sr

�
ix

q
i �

P
a srax

a lies

in I �q� � Iq��h���� Indeed� the �rst sum belongs to I�q�� the second to
Iq��h����
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Proof of �
����� Let u�� � �IRS��� then there exists an element c � R�

such that for all q � 
 one �nds s�q� � S with s�q�cuq � I�q�� It
follows that cuq � I�q� � s�q�� With s � S as in �
����b� we have
s�n���qcuq � c�sn��u�q � I �q�� This implies sn��u � I�� and so u�� � I�RS �
The other inclusion is trivial�

Now we can show

Proposition �
����
� Let R be an F�rational ring that is a homomorphic

image of a Cohen�Macaulay ring� and S a multiplicatively closed set in R�
Then RS is F�rational�

Proof� By �
���� it su�ces to show that Rp is F�rational for every prime
ideal p of R� Since R is Cohen�Macaulay� we have height p � grade�p � R�
�see ������� Therefore there exists an R�sequence x�� � � � � xd � p of length
d � height p � In Rp this sequence forms a system of parameters� By �
����
we only need that �x�� � � � � xd�Rp is tightly closed� But this results from
�
�����

Another easily proved permanence property is given by the following

Proposition �
������ Let �R� m � be a local ring� and let x � m be an R�
regular element� Then R is F�rational� if R�xR is F�rational�

Proof� R�xR is Cohen�Macaulay by �
����� and so is R� In particularR is
equidimensional� We may extend x to a system of parameters x� x�� � � � � xd
of R� According to �
���� it su�ces to show that I � �x� x�� � � � � xd�
is tightly closed� Choose u � I� and c � R� such that cuq � I�q� for
q � 
� We may write c � dxt where d �� xtR for some t� Then
duq � �xq�t� xq�� � � � � x

q
d� for q � 
� Since d �� 
 and since the F�rational

ring R�xR is a domain� the image of u in R�xR is in the tight closure of
�x�� � � � � xd�R�xR� Since this ideal is tightly closed� u � I as desired�

At this point it is useful to resume the discussion of the examples
�
�����

Examples �
������ �a� We have seen that x � �y� z�� for R� � k�X� Y � Z��
�X�� Y � � Z�� where k is a �eld of positive characteristic� Therefore R�

is not F�rational� independently of k� Moreover� no ideal I generated by
a system of homogeneous parameters of R� is tightly closed� Otherwise
Im would be tightly closed in the localization �R��m with respect to
m � �x� y� z�� and it would follow that �R��m is F�rational� Since �R��p is
regular for prime ideals p �� m � the ring R� would have to be F�rational�
too� That R� is not F�rational follows also from the fact that a�R�� 	 
�
see Exercise �
������

�b� We have also seen that �y� z� is tightly closed in R� � k�X� Y � Z��
�X� � Y � � Z�� where k is a �eld of characteristic at least 	� Therefore
�R��m is F�rational� and so is R�� by the same localization argument as in
�a�� Since R� is Gorenstein� it is even F�regular�
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Remarks �
������ �a� Let R be a positively graded ring with �maximal
ideal m � In analogy to the assertions relating the homological properties
of R and Rm �for example� see �����	�� one may ask whether the �weak�
F�regularity or F�rationality of R and that of Rm are equivalent� At least
for F�rationality there is a satisfactory theorem� a homogeneous k�algebra
R over a perfect �eld is F�rational if and only if Rm is F�rational� For
weak F�regularity there is only a weaker result� See Hochster and Huneke
����� ���	� and ������

�b� Again in analogy to the homologically de�ned ring�theoretic prop�
erties� one may ask how �weak� F�regularity and F�rationality behave
under �at ring extensions with �good� �bres� We refer the reader to
Hochster and Huneke ���� and Velez ����� for theorems of this type�
unfortunately they are much harder to prove than their homological
counterparts�

Test elements� The proofs of the next results require test elements� We
brie�y discuss this notion�

De�nition �
����	� An element c � R� is called a test element if for all
ideals I and all x � I� one has cxq � I�q� for all q�

The following is the most general existence theorem for test elements�

Theorem �
����� �Hochster�Huneke�� Let R be a reduced algebra of �nite

type over an excellent local ring �S� n �� Let c � R� be an element such that

Rc is F�regular and Gorenstein� Then some power of c is a test element�

The theorem implies in particular that test elements exist in reduced
excellent local rings� choose an element c � I � R� where I is an ideal
with SingR � V �I��

For the proof of �
����� the reader is referred to ����� ������ We will
show the existence of test elements only in the important special case of
reduced F��nite rings� one calls R F��nite if R� viewed as an R�module
via F � is �nite� For example� every ring which is a localization of an a�ne
algebra over a perfect �eld and every complete local ring with perfect
residue class �eld is F��nite� By a theorem of Kunz ������ F��nite rings
are excellent�

Theorem �
������ Let R be an F��nite reduced ring� and c �� 
 an element

of R such that Rc is regular� Then some power of c is a test element�

Let R be a domain of characteristic p with quotient �eld K� for each
integer e one may then identify R� viewed as an R�module via Fe� with
the ring R��q� q � pe� of the q�th roots of the elements of R in some
algebraic closure of K � The R�algebra structure of R��q is of course given
by the inclusion map R � R��q� The notation R��q is convenient in the
next lemma that will be needed for the proof of �
������
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Lemma �
������ Let R be an F��nite regular domain� and d � R� Then
there exist a power q of p and an R�linear map � � R��q � R such that

��d��q� � ��

Proof� Krull�s intersection theorem implies that for each maximal ideal
m there is a power qm of p with d �� m �qm �� By Kunz�s theorem ������

R
��qm

m is a free Rm �module� Since d��qm �� is part of a basis of R��qm

m � there

exists an Rm �homomorphism �m � R
��qm

m � Rm with �m �d
��qm ��� � �� The

map �m is of the form �m �am where �m � R��qm � R is R�linear and

am � R n m � in particular �m �d��qm � � am �
Since the ideal generated by the elements am is not contained in a

maximal ideal� it is the unit ideal� and hence � is a linear combination
of some elements a� � am � � � � � � ar � am r

� say � �
P

biai� Set �i � �m i
�

qi � qm i
� and q � maxfq�� � � � � qrg� Since d �� m

�qi�
i � a fortiori d �� m

�q�
i �

Running through the argument above once more� we may in fact assume
that qi � q for all i and �i�d

��q� � ai� Now � �
P

bi�i has the desired
property�

Proof of �
������ As Rc is regular� the previous lemma implies that there

exist a power q of p and an Rc�linear map � � R
��q
c � Rc with ���� � ��

One can write � � ��cn where � � R��q � R is R�linear� It follows that
� ��� � cn for some n� and replacing c by cn we may as well assume that
� ��� � c� Restricting � to R��p �which is contained in R��q� yields an
R�linear map � � R��p� R with ���� � c�

We claim that c� is a test element if charR �� �� and that c� is a test
element if charR � �� In fact� let I � R be an ideal of R� and pick
x � I�� Then there exists an element d � R� with dxq � I�q� for all q�
As before� we �nd a power q� of p and an R�linear map � � R��q� � R

such that ��d��q�� � cN for some N� Taking the q��th root of the relation
dxqq

�

� I�qq
��� one obtains d��q�xq � I �q� for all q� Now we apply � and get

cNxq � I�q� for all q�
Let N be the smallest integer with this property and write N � mp� r

with 
 � r � p� Then �cr���pcmxq � I �q�R��p� and multiplication by
�cp�r���p yields cm��xq � I �q�R��p for all q� Applying the linear map �
constructed in the �rst paragraph of the proof we obtain cm��xq � I �q�

for all q� Since N was chosen minimal� m � � 	 N� This implies that
N � �� if p � �� and N � �� if p � ��

Using test elements we can now prove a result about the behaviour
of tight closure under completion�

Proposition �
������ Let �R� m � be an excellent local ring with m �adic com�

pletion �R� and let I be an m �primary ideal of R� Then I� �R � �I �R���

Proof� We denote by Rred the residue class ring of R modulo its nilradical
N � Rad�
�� Choose an element c � R such that �Rred�c is regular �this
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is possible since SingRred is Zariski�closed�� It follows from �
����� that
some power of c is a test element� Replacing c by this power we may
assume that c itself is a test element� Let q� be such that Nq� � 
� Then for
all ideals J in R� c has the property that x � J� if and only if cxq � J�q�

for all q 	 q�� One therefore says that c is a q��weak test element for R�

Since R is excellent� the ring � �Rred�c is also regular �this uses the
regularity of the formal �bres of Rred�� and hence we may assume c is a

q��weak test element for �R as well�

The inclusion I� �R � �I �R�� is obvious since R� � � �R��� For the proof

of the other inclusion we �rst notice that �I �R�� � �I� �R��� so that it su�ces

to show that �I� �R�� � I� �R� We may therefore assume that I is tightly

closed� Since �I �R�� is �m �primary� there is an ideal J � R containing I

with J �R � �I �R��� Suppose I �R is not tightly closed� Then the inclusion

I � J is proper� Hence there exists an element x � ��I �R�� n I �R� � R� For

all q 	 q� we then have cxq � I�q� �R � R � I�q�� This implies x � I� � I � a
contradiction�

Corollary �
������ Let �R� m � be an excellent local ring� Then R is F�

rational if and only if its m �adic completion �R is F�rational�

Proof� Suppose R is F�rational� and let I be an ideal of �R generated by

a system of parameters� Then there exists an ideal J of R with I � J �R
such that J is also generated by a system of parameters� By �
����� and

our assumption� I� � �J �R�� � J� �R � J �R � I �

Conversely� assume that �R is F�rational and I is an ideal of R

generated by a system of parameters� Since �R is a faithfully �at R�

module� I� � �I� �R� � R � �I �R�� � R � �I �R� � R � I �

The Frobenius and local cohomology� We shall see that the Frobenius
homomorphism F � R � R induces a natural action on local cohomology�
This leads to an important characterization of F�rationality in terms of
local cohomology discovered by Smith�

Let x�� � � � � xd be a system of parameters of R� We know from Section
��� that local cohomology may be computed as the homology of the

modi�ed %Cech complex

C� � 
 �� C� �� C� �� � � � �� Cn �� 
�

Ct �
M

�
i��i������it
n

Rxi�xi� ���xit
�

The Frobenius acts naturally on each C i� and it is easy to see that it is
compatible with the di erentiation of C�� This shows that F induces an
action

F � H i
m �R�� H i

m �R� for all i�
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�This map obviously coincides with that induced by the ring homo�
morphism F � R � R�� We will describe the action of F explicitly
on the highest non�vanishing local cohomology module Hd

m �R�� Notice
that an element c � Hd

m �R� is the homology class � axt � of an element

a�xt � Cd � Rx� where x � x� � � � xd �

Lemma �
����
� �a� � axt � � � ax
n

xt�n � for all integers n 	 
�

�b� � axt � � 
 if and only if there exists an integer n 	 
 such that axn �

�xt�n� � � � � � xt�nd ��

�c� if R is Cohen�Macaulay� then � axt � � 
 if and only if a � �xt�� � � � � x
t
d��

�d� F�� axt �� � � a
p

xtp ��

Proof� �a� and �d� are obvious� while �c� follows from �b�� Finally� � axt � � 


if and only if a�xt is a boundary in C�� This is the case exactly when
there exist elements ci � R such that

dX
i��

����i��ci
xsii
xsi

�
a

xt

for some integers si 	 
� We may assume that si � s for all i� Then such
an equation holds if and only if there exists an integer m 	 
 such that

dX
i��

����i��c�ix
t��s�m�
i � axs�m� c�i � cix

m
Y
j �i

xtj �

Thus the assertion follows with n � s � m�

As a �rst application of these concepts we prove a criterion for F�
rationality� due to Fedder and Watanabe ��
��� which can often be used
in concrete situations�

A local ring �R� m � is called F�injective� if F � H i
m �R� � H i

m �R� is
injective for all i � 
� � � � � d � d � dimR� If R is Cohen�Macaulay� this
is only a requirement on Hd

m �R� that� by �
����
�c�� is equivalent to the
following condition� xp � I�p� implies x � I for each ideal I in R generated
by a system of parameters �

Proposition �
������ Let �R� m � be an excellent Cohen�Macaulay local ring�

and let f � m be an R�regular element such that �i� R��f� is F�injective
and �ii� Rf is an F�regular Gorenstein ring� Then R is F�rational�

Proof� Since F�regular rings are normal �see �
������d�� and hence re�
duced� assumption �ii� and �
����� imply that some power of f� say
ft� is a test element for R� Since f is R�regular we can extend f
to a system of parameters f� x�� � � � � xd � In order to prove that R is
F�rational we apply �
���� and show that I � �f� x�� � � � � xd� is tightly
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closed� Indeed� let x � I�� then for all q there exist aiq � R such
that ftxq � a�qf

q � a�qx
q
� � � � � � adqx

q
d � Thus� for q � t we get

ft�xq � a�qf
q�t� � �xq� � � � � � x

q
d�� Since R is Cohen�Macaulay� the sequence

f� x�� � � � � xd is R�regular� Hence xq � �fq�t� xq�� � � � � x
q
d�� Since R��f� is

F�injective� this implies �x � � �x�� � � � � �xd� where�denotes reduction modulo
f� Thus x � �f� x�� � � � � xd�� In other words� I is tightly closed�

A submodule N � Hd
m �R� is called F�stable if F�N� � N� We have the

following characterization of F�rationality�

Theorem �
����� �Smith�� Let �R� m � be an excellent local ring� Then the

following conditions are equivalent	

�a� R is F�rational�
�b� R is Cohen�Macaulay and Hd

m �R� has no proper non�zero F�stable sub�
module�

Proof� �b�  �a�� Assume R is not F�rational� Choose a system of
parameters x�� � � � � xd of R and set I � �x�� � � � � xd�� Then� by �
����� there
exists an element a � I� n I � The element ! � � ax � � Hd

m �R� is non�zero
since R is Cohen�Macaulay� see �
���� and �
����
�c�� Consider the
smallest F�stable submodule N � Hd

m �R� containing !� The non�zero
module N is obviously spanned by the elements Fe�!� � � a

q

xq �� q � pe�

e 	 
� Since a � I�� there exists an element c � R� such that caq � I �q�

for all q �see �
������ This implies cN � 
�
Suppose N � Hd

m �R�� then c annihilates Hd
m �R� and consequently its

Matlis dual� which is the canonical module � 	R of the completion of R�
This is a contradiction� since � 	R is faithful according to �������

�a�  �b�� As R is excellent� the m �adic completion of R is again
F�rational� Since furthermore R and its completion have the same local
cohomology� we may assume that R is complete�

Suppose there is a proper non�zero F�stable submodule N � Hd
m �R��

Taking Matlis duals yields an epimorphism �R �� N� with non�zero
kernel U� Since R is a domain and �R is a module of rank � �see ��������
N� is a torsion module� Hence there exists an element c � R� such that
cN� � 
� Therefore cN � 
�

As N �� 
� one �nds a non�zero ! � � ax � in N� where x � x� � � � xd for a
system of parameters x�� � � � � xd of R� Since N is F�stable� c annihilates all
elements Fe�!�� that is� � ca

q

xq � � 
 for all q� Because R is Cohen�Macaulay�
this implies caq � �x�� � � � � xq� for all q� see �
����
�c�� In other words�
a � �x�� � � � � xd��� Since R is F�rational� a � �x�� � � � � xd�� and so ! � 
� a
contradiction�

Pseudo�rational and rational singularities� A point x on a normal variety
X is said to be a rational singularity� if there exists a desingularization
f � W � X such that �Rif�OW �x � 
 for all i 	 �� �Since this condition
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is local� it su�ces to compute the higher direct image sheaves when X
is a�ne� in which case Rif�OW is the sheaf associated to the module
H i�W�OW ���

The disadvantage of this de�nition is that X may have no desingu�
larization� Therefore Lipman and Teissier ����� introduced the notion of
pseudo�rationality� It coincides with rationality for rings that are local�
izations of a�ne domains over �elds of characteristic zero� furthermore
they showed that regular rings are pseudo�rational�

De�nition �
������ Let �R� m � be a d�dimensional normal Cohen�Macaulay
local ring whose completion is reduced� Then R is pseudo�rational if for
any proper birational map � � W � X � SpecR with W normal and
closed �bre E � ����m �� the canonical map


� � H
d

m �R� �� Hd
E �W�OW �

is injective�

In the de�nition� H i
E �W�OW � denotes cohomology with supports in

E� see Hartshorne ������ Exercise III����� Cohomology with supports is
related to ordinary cohomology via the long exact sequence


 �� H�
E �W�OW � �� H��W�OW � �� H��W n E�OW � �� � � ����

�� H i
E �W�OW � �� H i�W�OW � �� H i�W n E�OW � �� � � �

If X � SpecR and x � fm g� then cohomology with supports is just local
cohomology� H i

x�X�OX� �� H i
m �R� for all i� Furthermore� for a�ne X the

above long exact sequence implies that H i
x�X�OX� �� H i���X n x�OX� for

i 	 � since H i�X�OX� � 
 for i � 
� see ������ Theorem III���	�

The homomorphism 
� is the composition of the maps

Hd
m �R� � Hd���X n x�OX�



�� Hd���W n E�OW �

�
�� Hd

E�W�OW ��

where � is the edge homomorphism E
d����
� � Ed�� of the Leray spectral

sequence �see Godement ������ II����	�

Ep�q
� � Hp�X n x� Rq��OX� Ep�q � Hp�q�W n E�OW ��

and � is a connecting homomorphism in the long exact sequence ����
Since 
� is de�ned naturally� it has good functorial properties�

Suppose R is of characteristic p� then we have a morphism of schemes
F � W � W � the absolute Frobenius morphism� This map is the identity
on the underlying topological space and the p�th power map locally on
sections of OW � F�OW � OW � This morphism of schemes induces a
natural map on cohomology with supports� compatible with 
� � In other
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words� one has a commutative diagram

Hd
m �R� ����� Hd

m �R�

��

��y ��y��
Hd
E �W�OW � ����� Hd

E�W�OW ��

where the top horizontal map is just the Frobenius action on Hd
m �R�

de�ned above� Consequently� the kernel of 
� is an F�stable submodule
of Hd

m �R�� This observation is part of the proof of

Corollary �
����	 �Smith�� Let �R� m � be an excellent local ring of charac�

teristic p� If R is F�rational� then it is pseudo�rational�

Proof� By �
����� it su�ces to show that the kernel of 
� is not all of
Hd

m �R��
We may assume that d 	 �� and prove that codimKer 
� 	 � �which

of course implies Ker 
� �� Hd
m �R��� From the exact sequence ��� we obtain

that Ker � is the image of � � Hd���W�OW �� Hd���W nE�OW �� Since R
is normal and � is birational� � is an isomorphism at primes of height ��
hence Hq�W�OW �p � 
 for q � 
 and all p � X with height p � �� This
implies codimKer � 	 ��

It remains to show that codimKer � 	 �� Pick p � X with height p � s�
then

�Rq��OW �p � Hq�W�OW �p � Hq�����SpecRp ��OW � � 


for q � 
� q 	 s� In fact� by Chow�s Lemma ������� Exercise III����
� we
can assume that � � ����SpecRp �� SpecRp is projective� and is therefore
obtained by blowing up an ideal of Rp � So the maximal dimension of
the closed �bre of � is bounded by s � �� whence the assertion on
the vanishing of �Rq��OW �p follows from the comparison theorem for
projective morphisms ������� Corollary III�������

The vanishing of �Rq��OW �p for q 	 s implies dimSupp�Rq��OW � �
d � q � �� Hence

dimSupp�Rq��OW � � �X n x� � d � q � ��

and so Hp�X n x� Rq��OW � � 
 for p � q � d � �� q � 
� The Leray

spectral sequence now yields Hd���W n E�OW � � Ed����
� � In particular� �

may be identi�ed with the map Ed����
� � Ed����

� which is the composition
of the surjective maps

Ed����
� �� Ed����

� �� Ed����
� �� � � �

where� for each r 	 �� the kernel of dr � Ed����
r � E

d����
r�� is the image of

Ed���r�r��
r � Ed����

r � Since each Ed���r�r��
r is a subquotient of

Ed���r�r��
� � Hd���r�X n x� Rr����OW ��
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and since codimSupp�Rr����OW � 	 �� as observed above� we conclude
codim�Ker dr� 	 � for all r 	 �� Therefore codimKer � 	 ��

The following corollary is the characteristic p analogue of Boutot�s
theorem ��
� that a direct summand of a rational singularity is a rational
singularity�

Corollary �
������ Let �R� m � be an excellent local ring of characteristic p
which is a direct summand of an F�regular overring� Then R is pseudo�

rational�

Proof�We know from �
����� that a direct summand of an F�regular ring
is again F�regular� and hence F�rational� Now we apply �
������

For the sake of completeness we quote without proofs the extension
of the theory to characteristic 
�

De�nition �
������ Let k is a �eld of characteristic 
� and R an a�ne k�
algebra� The ring R is of F�rational type if there exists a �nitely generated
Z�subalgebra A of k and a �nitely generated A�algebra RA� with �at
structure map A� RA such that
�a� �A� RA� �A k is isomorphic to k � R�
�b� the ring RA �A A�m is F�rational for all maximal ideals m in a dense
open subset of SpecA�

A typical situation described in the de�nition is the following� R
is an a�ne k�algebra k�X� � � � � � Xn���f�� � � � � fm� where the polynomials fi
are de�ned over Z� Z�X�� � � � � Xn���f�� � � � � fm� is a free Z�module� and
�Z�p��X�� � � � � Xn����f�� � � � � �fm� is F�rational for all but �nitely many prime
elements p�

Let X be a scheme of �nite type over a �eld of characteristic zero�
One says that a point x � X has F�rational type if x has an open a�ne
neighbourhood de�ned by a ring R of F�rational type� The scheme X
has F�rational type if every point x � X has F�rational type�

The following fundamental theorem relates rational singularities and
F�rational rings�

Theorem �
����� �Smith and Hara�� Let X be a scheme of �nite type over

a �eld of characteristic 
� Then X has F�rational type if and only if X has

rational singularities�

Exercises

������
� Let R be a positively graded k�algebra where k is a 	eld of positive charac�
teristic� Prove that a�R� � � if R is F�rational� �Hint� a�R� � maxfi � �Hm �R� �� �g�
See �
��� ������ and ������ for converse results��

�������� Show that F�rationality implies F�injectivity for Cohen�Macaulay local
rings�
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�������� One says that R is F�pure if R is a pure extension of R via the Frobenius
map F �see ������b� for this notion�� Show that kX� � � � � � Xn��I is F�pure for
every 	eld k of positive characteristic and each ideal I generated by squarefree
monomials� indeed� R is a direct summand of R under F �

�������� �a� Let R be an arbitrary ring and S a pure extension of R� Show that for
every complex C� of R�modules the natural map Hi�C�� � Hi�C� � S � is injective
for all i�

�b� Prove that F�purity implies F�injectivity� �One can show that weak F�regularity
implies F�purity� see Fedder and Watanabe ����� �����

�
�	 Direct summands of regular rings

In this section we return to a subject that has been treated several times
before� namely the Cohen�Macaulay property of direct summands of
regular rings� which we will now prove for rings containing a �eld � the
general case seems to be unknown� The next theorem generalizes ������ in
which we have considered graded direct summands of polynomial rings
k�X�� � � � � Xn�� and �
������ which covers rings of characteristic p�

Theorem �
�	�� �Hochster�Huneke�� Let R be a Noetherian ring containing

a �eld and suppose R is a direct summand of a regular ring S � Then R is

Cohen�Macaulay�

Proof� Already the proof of ����� depended on reduction to characteristic
p and eventually used a tight closure argument� However� not even in the
relatively �harmless� setting of ����� could the direct summand property
be pushed through the reduction� Therefore we will have to prove a
general local analogue of ����� from which we now derive the theorem�

Being Cohen�Macaulay is a local property� Thus� let p be a prime
ideal of R� Then the hypotheses are inherited by the submodule Rp of Sp

so that we may assume R is local with maximal ideal m � Next we pass to

the m �adic completion �R and the m S�adic completion �S of S � It is clear

that �R is a direct summand of �S � Also regularity has survived� Indeed�

one has �S�m �S �� S�m S � and m �S is contained in the Jacobson radical of �S
�see ��	
�� x��� It results from this fact and Nakayama�s lemma that every

maximal ideal of �S is of the form n �S where n is a maximal ideal of S �
Now one uses the natural isomorphism between the n �adic completion S�
of S and the n �S�adic completion S� of �S to conclude that �Sn 	S is a regular
local ring� The isomorphism of S� and S� is not hard to prove� choose
systems of generators a�� � � � � ar and b�� � � � � bs of m S and n respectively�
with X � X�� � � � � Xr and Y � Y�� � � � � Ys one then has

S� �� S��X �Y ����X� � a�� � � � � Xr � ar � Y� � b�� � � � � Ys � b���

S� �� �S��X ����X�� a�� � � � � Xr � ar����Y ����Y� � b�� � � � � Ys � bs�
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by ��	
�� ���� �for the �rst isomorphism we use that a�� � � � � arb�� � � � � bs
also generates n ��

From now on we may assume that R is a residue class ring of a
Cohen�Macaulay ring� Notice that S is the direct product S� 
 � � � 
 Ss
of regular integral domains� Let ei � S be the idempotent representing
� � Si� For the R�homomorphism � � S � R splitting the inclusionR � S
we have � � ��e�� � � � � � ��es�� Since R is local� one of the ��ei� is a unit
in R� It follows easily that the induced map R � Si is split� Hence we
can replace S by the domain Si� especially� R is a domain�

Now choose a system of parameters x�� � � � � xd of R� Then

��x�� � � � � xm��� �R xm�S � �x�� � � � � xm���S� m � �� � � � � d�

by �
���� below� Moreover� IS � R � I for all ideals I of R� and we
conclude immediately that x�� � � � � xd is an R�sequence� as desired�

Remark �
�	��� The theorem holds under the slightly weaker hypothesis
that R is a pure subring of S �see ������b� for this notion�� In fact� purity
implies that IS � R � I for all ideals I of R� furthermore it is stable
under the reduction in the proof of �
���� �see Hochster and Roberts
��
��� Section ��� If one assumes directly that R and S are domains and
R is a residue class ring of a Cohen�Macaulay ring� then it is su�cient
that IS �R � I for all ideals I of R �as was the case for ����� and �
�������

We refer the reader to ����� for a discussion of the predecessors and
variants of �
�����

Theorem �
�	��� Let �R� m � be Noetherian local domain of dimension d that

contains a �eld and is a homomorphic image of a Cohen�Macaulay local

ring� Furthermore let S be a regular domain extending R� Then one has

��x�� � � � � xm��� �R xm�S � �x�� � � � � xm���S for every system of parameters

x�� � � � � xd of R and m � �� � � � � d �

Proof� If the claim should fail� then there exists a maximal ideal n of S
such that ��x�� � � � � xm��� �R xm�Sn �� �x�� � � � � xm���Sn � Evidently p � R � n

must contain x�� � � � � xm� In order to replace R by Rp we must only
show that x�� � � � � xm can be extended to a system of parameters of Rp �
This holds if height�x�� � � � � xm� � m� Indeed� by assumption we have
codim�x�� � � � � xm� � m� and R is a �universally� catenary local domain �see
�������� In such a ring one has height I � codim I for all ideals I �

After this �rst step we can assume S is a regular local domain
extending R� The completion of S �with respect to its maximal ideal� is a
regular local ring extending S � and since it is faithfully �at over S � there
is no harm in supposing that S is even a complete regular local ring�

The homomorphism R � S induces a map �R � �S � S � which however

need not be injective� At least� its kernel q is a prime ideal of �R with
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q � R � 
� Since �R is �at over R� q is a minimal prime ideal of �R and

dim �R�q � dim �R by virtue of Theorem �������
As in Section ��� we use the ideals a i � AnnH i

m �R�� Set a �R� �
a � � � � a d�� and recall from ����� that

a �R� � ��x�� � � � � xm��� �R xm� � �x�� � � � � xm���R�

furthermore� by ������ a �R� �� q � Since the image of a �R� under the map
R � S is non�zero� we can invoke the following lemma and conclude the
proof�

It is necessary to relax the condition that the homomorphism R � S
be injective� Actually we will have to reduce the next lemma to the case
where this map is surjective in order to prove it in characteristic 
� �The
hypothesis �complete� is only included to save us another reduction��

Lemma �
�	�	� Let �R� m � be a complete Noetherian local ring containing

a �eld� �S� n � a complete regular local ring� and � � R � S a ring homo�

morphism such that ��a �R�� �� 
� Then

��x�� � � � � xm��� �R xm�S � �x�� � � � � xm���S

for every system of parameters x�� � � � � xd of R and m � �� � � � � d �

Proof� Let us �rst prove the lemma in characteristic p� Pick d � a �R�
such that c � ��d� �� 
� For y � �x�� � � � � xm��� �R xm and all q � pe

one has yq � �xq� � � � � � x
q
m��� �R xqm� Since x

q
� � � � � � x

q
d is also a system of

parameters� dyq � �xq�� � � � � x
q
m���� Applying �� we immediately see that

��y� � ��x�� � � � � xm���S��� whence ��y� � �x�� � � � � xm���S by �
���	�
The next step is the reduction to the case in which � is surjec�

tive� By Cohen�s structure theorem A��� there are representations
R �� K��Y� � � � � � Yr���I and S �� L��Z�� � � � � Zs�� where K �� R�m and
L �� S�n are coe�cient �elds of R and S � respectively� The map �
induces an inclusion K � L so that we may view K as a sub�eld of L�
We set A � K��Y� � � � � � Yr�� and A� � L��Y�� � � � � Yr���

Evidently� � can only be surjective if K � L� and therefore we must
extend R such that the extension R� has residue class �eld L� Consider
the homomorphism A � S induced by �� It clearly factors through A��
Therefore � factors through R� � A��IA�� Note that R� is �at over R� �rst�
it is easily proved that A� is a �at A�algebra �see Exercise ������� and�
second� if C

�
is an exact sequence of R�modules� then C

�
�R R

� �� C
�
�AA

��
Moreover� m R� is the maximal m � ideal of R�� Especially dimR� � dimR�
and so every system of parameters of R is also a system of parameters
of R��

We can replace R by R� if we have shown that a �R�R� � a �R��� We
set b i � AnnAH

i
m �R�� and de�ne b �i similarly� Then b i is the preimage

of AnnR H
i

m �R�� and the corresponding statement holds for b �i� Therefore
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it is enough that b iA
� � b �i� By ����� we have b i � AnnAM where M �

Extd�iA �R�A�� The �atness of A� over A implies M � A� �� Extd�iA� �R�� A��
and AnnA�M�A� � AnnA��M � A�� �see the proof of �
���	�� Using �����
once more� we arrive at the desired equality�

From now on we may assume that K � L� R � R�� and A � A�� Next

we extend � to a surjection � � eR � S by choosing eR � R��Z�� � � � � Zs��

and setting ��Zj� � Zj � S � The extension R � eR is faithfully �at�
and every system of parameters of R can be extended by Z�� � � � � Zs to a

system of parameters of eR� Before we can replace R by eR� we need only
to prove that a �R�eR � a �eR�� This however results again from ������ the

reader can easily check that a ieR � ea i�s for all i � 
� � � � � d and ea i � eR for

i � 
� � � � � s� �� set eA � A��Z�� � � � � Zs�� and use that eR � R �A
eA�

We may now replace R by eR and A by eA� After this change of
notation the failure of the lemma can be described as follows� there exist

�i� a regular local ring A with a regular system of parameters a�� � � � � an� a
residue class ring R � A��b�� � � � � bu� of dimension d � and a residue class
ring S � A��a�� � � � � av�� v � n� such that �b�� � � � � bu� � �a�� � � � � av� �in fact�
the kernel of the homomorphism A � S is generated by a subset of a
regular system of parameters��

�ii� elements c�� � � � � cd�� with ci � AnnA Ext
d�i
A �R�A� and c � c� � � � cd�� ��

�a�� � � � � av��

�iii� elements x�� � � � � xd � A whose residue classes form a system of
parameters� a number m� � � m � d � and an element w � A such that
wxm � �x�� � � � � xm��� � �b�� � � � � bu�� but xm �� �x�� � � � � xm��� � �a�� � � � � av��

We want to show that� given such data in characteristic 
� we can
also �nd them in characteristic p� To this end we must show that the
data above have a regular equational presentation� Theorem ����� then
yields a characteristic p counterexample to our contention� the desired
contradiction�

All the relations ��� and ��� can of course be expressed by polynomial
equations� This holds also for the fact that b�� � � � � bu and y�� � � � � yd
generate an ideal whose radical contains �a�� � � � � an�� Furthermore we
have already seen in ����� that the dimension condition in �i� and the
non�membership relations in �ii� and �iii� can be captured by equations�

For given i we write Extd�iA �R�A� as a residue class module As�W �

Then the isomorphism Extd�iA �R�A� �� As�W admits a regular equational
presentation by ������ as does the relation ciA

s � W for trivial reasons�
This �nally shows that all the data given in �i���iii� can be encoded in a
system of polynomial equations over Z�
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Notes

The fundamental paper for tight closure is Hochster and Huneke �����
Essentially all of the material of Sections �
�� and �
�� has been taken
from this source� A detailed discussion of the not yet solved localization
and completion problems can be found in Huneke�s lecture notes �����
which we have consulted extensively in writing Chapter �
� Much of the
work that preceded tight closure theory and motivated its creation has
been discussed Chapters � and �

The theorem of Brian�con and Skoda was originally proved by analytic
methods� and the lack of an algebraic proof had been �for algebraists
something of a scandal � perhaps even an insult � and certainly a
challenge� �Lipman and Teissier ������� As pointed out in Section �
��
algebraic proofs of slightly di erent theorems were given by Lipman and
Teissier and Lipman and Sathaye ���
�� the latter work uses di erential
methods� The proof of the tight closure version by Hochster and Huneke
is contained in their article ��
�� which is still very useful as a �rst
overview of our subject� For variants and generalizations of the Brian�con�
Skoda theorem see Aberbach and Huneke ���� ���� and Swanson ������ For
the connection with reduction numbers and Rees algebras see Aberbach�
Huneke� and Trung ����

F�rational �local� rings appeared �rst in Fedder and Watanabe ��
���
Our treatment of their basic properties essentially follows Huneke ������
The connection with local cohomology and the Frobenius action on it
goes back to the work ��
�� of Hochster and Roberts that introduced
F�purity� Special cases of Smith�s theorem ���� that F�rational type
implies rational singularity and its converse by Hara ����� which we
have quoted in �
����	� had been proved in special cases by Fedder ��
���
��
��� ��
�� and Hochster and Huneke ��
�� The proof of �
����� was
suggested to us by Watanabe�

We could only prove the easiest result on the existence of test elements
that in its general version presents the perhaps most intricate aspect of
tight closure� see Hochster and Huneke ����� ����� The existence of
test elements is closely related with the so�called persistence theorem that
under suitable conditions guarantees the relation ��I�� � ���I�S�� for a
ring homomorphism � � R � S� see ����� �������

Some results about the hierarchy of �F�properties� have been indicated
in Section �
��� For more information� especially for examples delimiting
these properties from each other and for the relation to singularity theory�
the reader is referred to Fedder and Watanabe ��
��� Watanabe ��
��
����� and Hara and Watanabe ���
��

Theorem �
���� was stated by Hochster and Huneke ��
�� ��� without
proof� A complete proof appeared in their paper ��	�� It uses the
functoriality of big Cohen�Macaulay algebras� Our derivation of the
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theorem is certainly a variant of the idea behind ��
�� ����
The de�nition of tight closure can be extended from the situation

I � R to that in which U is a submodule of the R�module M� In
particular� this leads one to the notion of phantom homology and phan�
tom acyclicity� see Hochster and Huneke ����� ����� For phantom
acyclic complexes one has a vanishing theorem similar to �
���� where
the ideal quotient is replaced by the homology of a phantom acyclic
complex� It seems however that the strongest such vanishing theorem
��	�� ����� needs big Cohen�Macaulay algebras� One can also derive
a �phantom� version of the �improved new intersection theorem� �����
thus tight closure o ers another approach to the homological theorems
of Chapter � Aberbach has developed �phantom� homological alge�
bra that includes phantom projective dimension� phantom depth and an
Auslander�Buchsbaum formula�

Tight closure can be also de�ned in characteristic 
� see ���� and the
Appendix of ����� by Hochster� So far there seems to be no de�nition of
tight closure in mixed characteristic� Hochster has developed a theory of
solid closure that does not depend on characteristic ������ For �good� rings
of characteristic p � 
 solid closure coincides with tight closure� however�
there exist examples showing that ideals in a regular ring containing a
�eld of characteristic 
 need not be solidly closed�

There are many more aspects and applications of tight closure� We
content ourselves with a list of cues and references� tight closure in graded
rings �Smith ���
��� Hilbert�Kunz functions and multiplicities �Kunz
������ Monsky ��		��� uniform Artin�Rees theorems �O�Carroll �����
Huneke ������� arithmetic Macaulay�cation �Huneke and Smith �����
stronglyF�regular rings �Hochster and Huneke ����� Glassbrenner ���	���
di erentially simple rings �Smith and Van den Bergh ������� Kodaira
vanishing and other vanishing theorems of algebraic geometry �Huneke
and Smith ������ Smith �������



Appendix A summary of dimension theory

Dimension theory is a cornerstone of commutative ring theory� and is
covered by every serious introduction to the subject� For ease of reference
we have collected its main theorems in this appendix� together with the
structure theorems for complete local rings�

Most of the theorems below have the names of their creators associ�
ated with them and should be easily located in the literature� For some
of the results we outline a proof�

Height and dimension� There exist two principal lines of development for
general dimension theory� The �rst and �classical� approach� to which
we shall adhere� starts from the Krull principal ideal theorem ���	��
������ ������ ������ ��	�� whereas the second brings the Hilbert�Samuel
function into play at a very early stage ������ ��	
���

Let R be a commutative ring� and p � SpecR� The height of p is the
supremum of the lengths t of strictly descending chains

p � p � � p � � � � � � p t

of prime ideals� For an arbitrary ideal I one sets

height I � inffheight p � p � SpecR� p � Ig�

The fundamental theorem on height is Krull�s principal ideal theorem�

Theorem A��� Let R be a Noetherian ring� and I � �x�� � � � � xn� a proper

ideal� Then height p � n for every prime ideal p which is minimal among

the prime ideals containing I �

In particular� every proper ideal in a Noetherian ring has �nite height�
In a sense� the following theorem is a converse of the principal ideal
theorem�

Theorem A��� Let R be a Noetherian ring� and I a proper ideal of height

n� Then there exist x�� � � � � xn � I such that height�x�� � � � � xi� � i for i �
�� � � � � n�

The elements xi are chosen successively such that xi is not contained
in any minimal prime overideal of �x�� � � � � xi���� that such a choice is
possible follows from ������

���
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The �Krull� dimension of a ring R is the supremum of the heights of
its prime ideals�

dimR � supfheight p � p � SpecRg�

Because of the correspondence between SpecRp � p � SpecR� and the set
of prime ideals contained in p � one has

dimRp � height p �

A fundamental and very easily proved inequality is

heightI � dimR�I � dimR

for all proper ideals I of R�
The dimension of a Noetherian local ring can be characterized in

several ways�

Theorem A��� Let �R� m � be a Noetherian local ring� and n �N� Then the

following are equivalent	

�a� dimR � n�
�b� height m � n�
�c� n is the in�mum of all m for which there exist x�� � � � � xm � m with

Rad�x�� � � � � xm� � m �

�d� n is the in�mum of all m for which there exist x�� � � � � xm � m such that

R��x�� � � � � xm� is Artinian�

The equivalence of �a� and �b� is trivial� That of �b� and �c� results
from A�� and A��� and for �c�� �d� one uses the fact that a Noetherian
ring is Artinian if and only if all its prime ideals are maximal� in other
words� if it has dimension 
� If dim�R��x�� � � � � xn�� � 
 with n � dimR�
then x�� � � � � xn is a system of parameters of R�

Sometimes it is appropriate to use the codimension of an ideal in a
ring R which is given by

codim I � dimR � dimR�I�

Dimension of modules� The notion of dimension can be transferred to
modules� Let M be an R�module� then dimM is the supremum over the
lengths t of strictly descending chains

p � p � � p � � � � � � p t with p i � SuppM�

In the case of main interest in which M is a �nite module one has
SuppM � fp � SpecR � p � AnnMg so that dimM � dim�R�AnnM��
If �R� m � is local� then a system of parameters for a non�zero �nite
R�module M is a sequence x�� � � � � xn � m � n � dimM� such that
M��x�� � � � � xn�M is Artinian� The following inequality is often useful�
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Proposition A�	� Let �R� m � be a Noetherian local ring� M a �nite R�module�
and x�� � � � � xr � m � Then

dim�M��x�� � � � � xr�M� 	 dimM � r�

equality holding if and only if x�� � � � � xr is part of a system of parameters

of M�

This is easy� One �rst replaces M by R�AnnM so that it is harmless
to assume M � R� Then one chooses y�� � � � � ym � m such that their
residue classes in R��x�� � � � � xr� form a system of parameters� Finally one
applies A���

An important datum of a homomorphism of local rings �R� m � �
�S� n � is its �bre S�m S � For example it relates the dimensions of R and S�

Theorem A��� Let �R� m �� �S� n � be a homomorphism of Noetherian local

rings�

�a� Then dimS � dimR � dim S�m S�
�b� more generally� if M is a �nite R�module and N is a �nite S�module�
then dimS �M �R N� � dimR M � dimS N�m N�

For the proof of �b� set I � AnnM and �R � R�I � Then U �R N ��
U ��R N�IN for every �R�module U� Thus we may replace R by �R� S
by S�IS � and N by N�IN� That is� we may assume SuppM � SpecR�
Next� replacing S by S��AnnN�� we may suppose SuppN � Spec S �
Under these conditions the desired inequality is equivalent with �a�� For
�a� one chooses a system x�� � � � � xn of parameters of R� and uses that
Rad�x�� � � � � xn�S � Rad m S �

Integral extensions� Recall that an extension R � S of commutative rings
is integral if every element x � S satis�es an equation xn � an��x

n�� �
� � �� a� � 
 with coe�cients ai � R� Very often one uses that S is a �nite
R�module if and only if it is an integral extension and �nitely generated
as an R�algebra�

Theorem A��� Let R � S be an integral extension� and p � SpecR�
�a� There exists a prime ideal q � Spec S with p � q � R �one says q lies

over p ��
�b� there are no inclusions between prime ideals lying over p �

�c� in particular� when q lies over p � then p is maximal if and only if q is�

The following theorem comprises the Cohen�Seidenberg going�up and
going�down theorems�

Theorem A��� Let R � S be an integral extension�

�a� If p � � p are prime ideals of R and q � Spec S lies over p � then there

exists a prime ideal q � � q in S lying over p ��
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�b� if� in addition� S is an integral domain and R is integrally closed� then�

given prime ideals p � � p of R and q of S � q lying over p � there exists

q � � Spec S � q � � q � which lies over p ��

Corollary A��� Let R � S be an integral extension of Noetherian rings� and

I a proper ideal of S � Then dim S�I � dimR��I � R��

The �rst step in proving the corollary is to replace S by S�I and R by
R��I�R� so that one may assume I � 
� Then given a strictly descending
chain q � � q � � � � � � q t of prime ideals� the chain of prime ideals R � q i
is also strictly descending by A��� and conversely� given a chain in SpecR�
one constructs a chain of the same length in Spec S using A�	�a��

In general� one says that going�up or going�down holds for a ring
homomorphism R � S if it satis�es mutatis mutandis the conclusions of
A�	�a� or �b� respectively�

Flat extensions� It is an important fact that �atness implies going�down�

Lemma A��� Let R � S be a homomorphism of Noetherian rings� and

suppose there exists an R��at �nite S�module N with SuppN � Spec S �
Then going�down holds�

Going�down can be reformulated as follows� for all prime ideals p �
SpecR and q � Spec S lying over p the natural map Spec Sq � SpecRp is
surjective� Now� given such prime ideals p and q � Nq is even a faithfully
�at Rp �module� and the surjectivity of Spec Sq � SpecRp follows from
the next lemma�

Lemma A��
� Let R � S be a ring homomorphism� If an S�module N
is faithfully �at over R� then the associated map SuppN � SpecR is

surjective�

In fact� let p � SpecR� we set k�p � � Rp �p Rp � Then k�p � �R N �� 
�
and the support of the k�p � �R S�module k�p � �R N contains a prime
ideal Q � If we choose q � S � Q � then q � SuppN� and furthermore
q � R � p � one has q � R � Q � R� and Q � R � p since the map
Spec�k�p ��R S�� SpecR factors through Spec k�p ��

For �at extensions the inequalities in A�� become equations�

Theorem A���� Let �R� m � � �S� n � be a homomorphism of Noetherian

local rings�

�a� If S is a �at R�algebra� then dimS � dimR � dim S�m S�
�b� more generally� if M is a �nite R�module and N is an R��at �nite
S�module� then dimS �M �R N� � dimR M � dimS N�m N�

As we did for A��� the theorem is easily reduced to the case in which
SuppN � Spec S � By virtue of the previous lemma the homomorphism
R � S then satis�es going�down� We choose a prime ideal q of S
which contains m S and has the same height as m S � Then going�down
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immediately implies height q 	 height m � Hence

dimS 	 height m S � dimS�m S 	 height m � dimS�m S�

as desired� The converse inequality is part of A���

Polynomial and power series extensions� The dimension of a polynomial
or power series extension is easily computed�

Theorem A���� Let R be a Noetherian ring� Then

dimR�X� � dimR��X�� � dimR � ��

Let S � R�X� or S � R��X��� Then R �� S��X�� and since height�X� � �
one has dimS 	 dimR � �� For the converse we �rst consider the
polynomial case� Let n be a maximal ideal of R�X�� and set p � R � n �
As S � R�X� is R��at� one may apply A���� and only needs to show
that dim�Sn �p Sn � � �� It is a routine matter to check that Sn �p Sn is
a localization of the polynomial ring �Rp �p Rp ��X� with respect to a
maximal ideal� Since Rp �p Rp is a �eld� Sn �p Sn is a discrete valuation
ring and therefore of dimension �� In the power series case p is always a
maximal�"� ideal of R� and Sn �p Sn is therefore the discrete valuation ring
�R�p ���X���

Corollary A���� Let k be a �eld� Then

dim k�X�� � � � � Xn� � dim k��X�� � � � � Xn�� � n�

A�ne algebras� Let k be a �eld� A �nitely generated k�algebra R is called
an a�ne k�algebra� Excellent sources for the theory of a�ne algebras are
Kunz ���� and Sharp ������ The key result is Noether�s normalization
theorem �

Theorem A��	� Let R be an a�ne algebra over a �eld k� and let I be a

proper ideal of R� Then there exist y�� � � � � yn � R such that

�a� y�� � � � � yn are algebraically independent over k�
�b� R is an integral extension of k�y�� � � � � yn� �and thus a �nite k�y� � � � � � yn��
module��
�c�

I � k�y�� � � � � yn� �
nX

i�d��

yik�y�� � � � � yn� � �yd��� � � � � yn�

for some d � 
 � d � n�

Moreover� if y�� � � � � yn satisfy �a� and �b�� then n � dimR�
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If y�� � � � � yn satisfy �a� and �b�� then k�y�� � � � � yn� is called a Noether

normalization of R� That necessarily n � dimR follows from A�� and A����
That condition �c� can be satis�ed in addition to �a� and �b� is crucial for
dimension theory� The graded variant of Noether normalization �due to
Hilbert� is given in �����	�

An important consequence of Noether normalization is �the abstract
version of� Hilbert�s Nullstellensatz �

Theorem A���� Let k be a �eld� and K an extension �eld of k which is a

�nitely generated k�algebra� Then K is a �nite algebraic extension of k�

In fact� if k�y� � � � � � yn� is a Noether normalization of K � then n �
dimK � 
 and K is an integral extension of k� from which one easily
concludes that it is a �nite algebraic extension�

The following theorem contains the main results of the dimension
theory of a�ne algebras�

Theorem A���� Let R be an a�ne algebra over a �eld k� Suppose that R
is an integral domain� Then

�a� dimR � tr degk Q�R� where tr degk Q�R� is the transcendence degree of
the �eld of fractions of R over k�
�b� height p � dimR � dimR�p for all prime ideals p of R�

For part �a� we choose a Noether normalization k�y�� � � � � yn�� Then
Q�R� is algebraic over Q�k�y�� � � � � yn��� and the latter has transcendence
degree n over k� For part �b� we require in addition that k�y� � � � � � yn�
satis�es A��� for I � p � Then the image of k�X� � � � � � Xd� in R�p is a
Noether normalization for that ring� whence dimR�p � d � On the other
hand� note that going�down holds according to A�	� being a factorial ring
�a UFD in other terminology� k�y� � � � � � yn� is integrally closed� It follows
that height p 	 height p � k�y� � � � � � yn� � n � d � Summing up� we have
height p �dimR�p 	 n � dimR� and the converse inequality is automatic
as noticed above�

Hilbert rings� It is a consequence of Hilbert�s Nullstellensatz that a prime
ideal in an a�ne algebra over a �eld is the intersection of the maximal
ideals in which it is contained� Rings with this property are therefore
called Hilbert rings �Bourbaki prefers the term Jacobson rings�� The
following is the main theorem on Hilbert rings�

Theorem A���� Let R be a Hilbert ring� and S a �nitely generated R�
algebra� Then

�a� S is a Hilbert ring�

�b� m � R is a maximal ideal of R for every maximal ideal m of S �

Corollary A���� Let R be a �nitely generated Z�algebra� and m a maximal

ideal of R� Then m �Z � �p� for some prime number p � Z� and R�m is a

�nite �eld�
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In fact� Z is a Hilbert ring� and R�m is a �nite algebraic extension of
Z��p� by A����

A dimension inequality� For the study of the dimension of Rees rings
and associated graded rings the following theorem �due to Cohen� is
important�

Theorem A���� Let R � S be an extension of integral domains� and suppose

R is Noetherian� Let P � Spec S and p � P � R� Then

dimSP � tr degQ�R�p � Q�S�P � � dimRp � tr degQ�R� Q�S��

We reproduce the proof given in ��	
�� x��� The �rst step is a reduction
to the case in which S is a �nitely generated R�algebra� There is nothing
to prove if the right hand side is in�nite� So suppose it is �nite� and let
m and t be integers with 
 � m � dimSP � 
 � t � tr degQ�R�p � Q�S�P ��
Then there exists a strictly descending chain P � P � � � � � � P m of
prime ideals in S � We choose ai�� � P i n P i��� and furthermore elements
c�� � � � � ct � S whose residue classes in S�P are algebraically independent
over Q�R�p �� Let S � � R�a�� � � � � am� c�� � � � � ct�� and P � � P � S �� then
dimS �

P � 	 m and tr degQ�R�p � Q�S�P �� � t� Thus it is enough to prove the

claim for S � and C ��
In the case in which S is �nitely generated� we use induction on the

number of generators so that only the case S � R�x� remains� Write
S � R�X��Q �

If Q � 
� then S � R�X�� and dimSP � dimRp � dim�SP �p SP � by
A���� As SP �p SP is a localization of Q�R�p ��X�� we have dim�SP �p SP � �
�� tr degQ�R�p � Q�S�P � � tr degQ�R� Q�S�� tr degQ�R�p � Q�S�P ��

In the case Q �� 
 we have tr degQ�R� Q�S� � 
� Since R is a subring of
S � Q � R � 
 so that R�X�Q is a localization of Q�R��X�� and therefore
has dimension �� equivalently height Q � �� Let P � the inverse image of
P in R�X�� and note that Q�R�X��P �� �� Q�S�P � in a natural way� Then

dimSP � dimR�X�P � � height Q

� dimRp � �� tr degQ�R�p � Q�R�X��P ��� �

� dimRp � tr degQ�R�p � Q�S�P ��

Complete local rings� The theory of Noetherian complete local rings� for
which we recommend Matsumura ��	
� or Bourbaki ��	� as a source�
leads to similar results as that of a�ne algebras�

For the relation between the characteristic charR of a local ring �R� m �
and that of its residue �eld R�m one of the following cases holds true�
�i� charR�m � 
� then R contains the �eld Q of rational numbers� in
particular charR � 
� �ii� charR�m � p � 
 and charR � p too� then
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R contains the �eld Z�pZ� �iii� charR�m � p � 
 and charR � 
 �the
typical case in number theory�� �iv� charR�m � p � 
 and charR � pm

for some m � �� In cases �i� and �ii� one says that R is equicharacteristic�
�Note that R does not contain a �eld in cases �iii� and �iv�� and that �iv�
is excluded for a reduced ring��

Theorem A��
� Let �R� m � be a Noetherian complete local ring�

�a� If R is equicharacteristic� then it contains a coe�cient �eld� i�e� a �eld

k which is mapped isomorphically onto R�m by the natural homomorphism

R � R�m �

�b� Otherwise let p � charR�m � Then there exists a discrete valuation

ring �S� pS� and a homomorphism � � S � R which induces an isomorphism

S�pS � R�m and furthermore

�i� is injective� if charR � 
�
�ii� has kernel pmS � if charR � pm�

It is a standard technique to pass from a Noetherian local ring �R� m �

to its completion �R �with respect to the m �adic topology�� Then one is in
a position to apply Cohen�s structure theorem �

Theorem A���� Let �R� m � be a Noetherian complete local ring� Then there

exists a ring R� which is a �eld or a discrete valuation ring such that R is

a residue class ring of a formal power series ring R���X�� � � � � Xn���

In fact� let x�� � � � � xn be a system of generators of m � Then there
exists a uniquely determined homomorphism � � R���X�� � � � � Xn�� � R
with ��Xi� � xi where R� is either a coe�cient �eld of R or� in the case
of unequal characteristic� a discrete valuation ring S according to A��
�
In Section ��� it is shown that R���X�� � � � � Xn�� is a regular local ring� and
often one uses A��� �only� to the extent that a complete local ring is a
residue class ring of a regular local ring�

The analogue of Noether normalization is

Theorem A���� Let �R� m � be a Noetherian complete local ring� and suppose
that R is equicharacteristic or a domain�

�i� In the equicharacteristic case let R� � R be a coe�cient �eld of R� and
y�� � � � � yn a system of parameters�

�ii� otherwise� let p � charR�m and R� � R be a discrete valuation ring

according to A��
� and y�� � � � � yn be elements such that p� y�� � � � � yn is a

system of parameters�

Then R is a �nite R���y�� � � � � yn���module� and R���y�� � � � � yn�� is isomorphic
to the formal power series ring R���Y�� � � � � Yn���

One �rst shows that R is a �nite R���y�� � � � � yn���module� so that
dimR � dimR���y�� � � � � yn��� The substitution Yi �� yi induces a surjec�
tive homomorphism � � R���Y�� � � � � Yn�� � R���y�� � � � � yn�� which is also
injective since dimR���Y�� � � � � Yn�� � dimR���y�� � � � � yn���
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��� �� least� greatest element of a poset� ���
a� � � � am� maximal minor of a matrix� ���
a� � � � au j b� � � � bu� minor of a matrix� ���

ahdi ���
ahdi ���
a�X a�ne hull of the set X� ���
a�R� a�invariant of the graded ring R� ���� ���
A��R� category of Artinian graded R�modules� ���
A�R� category of Artinian R�modules� ���
�i�M� i�th Betti number of the module M� ��
C 	eld of complex numbers
C� ���eC���� eC�� � augmented oriented chain complex of the simplicial complex

�� the cell complex � � ��
� ���
chark characteristic of the 	eld �ring� k
���� Euler characteristic of the simplicial complex �� ���e���� reduced Euler characteristic of �� ���
�j�x� M� j�th partial Euler characteristic of H��x�M�� �
�
�IM�n� Hilbert�Samuel function of M with respect to I � ���
��x�M� Euler characteristic of H��x� M�� �
�
Cl �R� divisor class group of the ring R
C�n� d� cyclic polytope� ���
cn ��� cone over the simplicial complex �� ���
codimF� codimension of the complex F�� ���
codimI codimension of the ideal I � ���
convX convex hull of the set X� ���
core� core of the simplicial complex �� ���
degx degree of the element x� ��
���d �d times iterated� di�erence operator� ���
�� ���
��P � vertex scheme of the polytope P � ���
��� � order complex of the poset � � ���
�r r�skeleton of the simplicial complex �� ���
depthM depth of the module M� ��
det�� inverse determinant character� ��

df di�erential of the Koszul complex of f� ��
df�M di�erential of K��f�M�� ��
dimM Krull dimension of the module M� ���
�dimR �dimension of the graded ring R� ��

��



��
 Notation

dimR Krull dimension of the ring R� ���
E�M� injective hull of the R�module M� 
�
�E�M� �injective hull of the graded module M� ���
embdimR embedding dimension of the local ring R� ��
e�I�M� multiplicity of M with respect to the ideal I � ���
e�M� multiplicity of the �graded� module M� ���� ���
e�x�M� multiplicity symbol� �
�
���R� 	rst deviation of the local ring R� ��
���R� second deviation of the local ring R� ��
�Exti �M�N� i�th graded extension module of M by N� ��
F Frobenius functor� ���
F�D� face lattice of the cone D� ���
F�P � face lattice of the polyhedron P � ���
f��� f�vector of the simplicial complex �� ���
F��R� category of 	nite graded R�modules� ���
F�R� category of 	nite R�modules� ���
� � � join of the simplicial complexes � and �� ���
�� ���
�m �M� submodule of elements of M with support in fm g� ���
G� residue class ring of G�X�� ���
GL �n� k� group of invertible n� n matrices over k
GL�V � group of automorphisms of the vector space V
grade I grade of the ideal I � ��
grade�I�M� grade of the ideal I with respect to the module M� ��
gradeM grade of the module M� ��
grF �R� associated graded ring with respect to 	ltration F � ���
grF �M� ���
grI �M� associated graded module of M with respect to ideal I � �
grI �R� associated graded ring of R with respect to ideal I � �
g� initial form of g� ���
G�X�� GB�X� B�algebra generated by the maximal minors of X� ���
H�� H� closed half�spaces de	ned by the hyperplane H � ���
height I height of the ideal I � ���
H��f� cohomology of the Koszul complex of f� ��
H��f� homology of the Koszul complex of f� ��
H��f�M� cohomology of K��f�M�� ��
H��f�M� homology of K��f�M�� ��eH i���G� i�th reduced simplicial cohomology of � with values in G� ���eH i���G� i�th reduced simplicial homology of � with values in G� ���
Hi�M�n� i�th iterated Hilbert function of the module M� ���
H�M� n� Hilbert function of the graded module M� ���
HM�t� Hilbert series of the graded module M� ���
�H i

m
�M� i�th �local cohomology module of the module M� ���

H i
m
�M� i�th local cohomology module of the module M� ���

H��F�� cohomology of the complex F�

H��F�� homology of the complex F�

H i�F�� i�th cohomology of the complex F�



Notation ���

Hi�F�
� i�th homology of the complex F

�

�HomR �M�N� group of homogeneous homomorphisms � � M � N� ��
H

�
�R� Koszul algebra of the local ring R� ��

Hi�R�j ��
I� divisor class of the ideal I
�I integral closure of the ideal I � ���
I� ���
idM identity map on the set M
�inj dimM �injective dimension of the graded module M� ���
inj dimM injective dimension of the module M� 
�
I q� q�th Frobenius power of I � ���
I� ideal generated by the homogeneous elements in I � ��
I� tight closure of the ideal I � ���
I� ideal generated by leading monomials of the elements of I � ���
It��� ideal generated by the t�minors of �a matrix of� �� ��
It�U� ideal generated by the t�minors of the matrix U� ��
kC� a�ne semigroup ring over C � ���
kC�F ���
k�� Stanley�Reisner ring of the simplicial complex �� ��

K��f� dual of the Koszul complex with respect to f� ��
K��f� Koszul complex of f� ��
K��f�M� dual of K��f� with respect to M� ��
K��f�M� Koszul complex of f with coe�cients in M� ��
K��x� Koszul complex with respect to sequence x� ��
k�p � residue class 	eld of localization with respect to p � 

��I� analytic spread of the ideal I � �
�
��I�M� analytic spread of the ideal I with respect to M� �
�
��M� length of the module M
L�f� leading monomial of f� ���
L�I� set of the leading monomials of the elements of I � ���
lim
��

Mi direct limit of the modules Mi

lim
��

Mi inverse limit of the modules Mi

lk� F link of the face F with respect to �� ���
log ���
Lu ���
M��R� category of graded R�modules� ��
M�� M�� �bi�dual of the module M� �

Mf module of fractions with respect to the powers of f
�M completion of the module M over a local ring
M�i� module with shifted grading� ��
M
�t� Molien series of the character �� ���
MG�t� Molien series of the group G� ���
M�p � homogeneous localization of M with respect to p � ��
MS module of fractions of M with respect to the multiplicatively

closed set S

i�p �M� i�th Bass number of M with respect to p � ���

�M� minimal number of generators of M� ��



��� Notation

N set of non�negative integers
nat natural map
�R canonical module of the ring R� ���
O�x� order ideal of the element x of a module� ���
Pf ��� ideal generated by the submaximal Pfa�ans of �� ���
pf ��� Pfa�an of the matrix �� ���
PM�n� Hilbert polynomial of the graded module M� ��

proj dimM projective dimension of the module M� ��
Q 	eld of rational numbers
Q� set of non�negative rational numbers
QC Q�vector space generated by the a�ne semigroup C � ���
rankM rank of the module M� ��
rank� rank of the homomorphism �� ��
rank ���M� rank of � with respect to the module M� ���
rank v rank of the poset element v� ���
R
 module of semi�invariants of the ring R with respect to the

character �� ��

R� determinantal ring� ���
R 	eld of real numbers
R� set of non�negative real numbers
R�S cone generated by the set S � ���
RC R�vector space generated by the a�ne semigroup C � ���
R��F� Rees ring with respect to the 	ltration F � ���
R��F�M� ���
R�F� extended Rees ring with respect to the 	ltration F � ���
R�F�M� ���
R�I�M� ���
reg�M� regularity of the graded module M� ���
relintC relative interior of the a�ne semigroup C � ���
relintX relative interior of the set X� ���
Rf ring of fractions with respect to the set of powers of f

RG ring of invariants of R under the action of G� ���
�R completion of the local ring R

rk��� type of the simplicial complex � over the 	eld k� ���
R �M trivial extension of the ring R by the module M� ���
�R� m � �local ring R with �maximal ideal m � ��
�R� m � local ring R with maximal ideal m

�R� m � k� local ring R with maximal ideal m and residue class 	eld
k � R�m

r�M� type of the module M� ��
�Rn� Serre�s condition �Rn�� ��
R�p � homogeneous localization of R with respect to p � ��

R��q ring of q�th roots of the elements of R� �
�
Rr��� Rr���X� determinantal ring� ���
RS ring of fractions of R with respect to the multiplicatively closed

set S
Ru ���



Notation ���

RX� � � � � � Xn�� formal power series ring over R
R� set of elements of R not contained in a minimal prime ideal�

���
SingR singular locus of R� ���
SL �n� k� group of n� n matrices over k with determinant �
SL �V � group of automorphisms of V with determinant �
�I
M�n� Hilbert�Samuel polynomial of M with respect to I � ���

�Sn� Serre�s condition �Sn�� ��
SocM socle of the module M� ��
�SocM homogeneous socle of the graded module M� ���
st� F star of the face F with respect to �� ���
suppa support of the element a � Zn � ���
suppu support of the monomial u� ���
suppxa support of the monomial xa� ���
S �V � symmetric algebra of V � ���
tr degk K transcendence degree of K over k
Tr trace of the linear map � ���
u � v v covers u� ���
V �I� set of prime ideals containing I
volP volume of the polytope P � ���ViM i�th exterior power of the module M� ��V
M exterior algebra of the module M� ��V
� extension of � to exterior algebra� ��

xF monomial corresponding to the face F � ���
x� y product of x and y in exterior algebra� ��
hx� yi scalar product of x and y� ���
Z ring of integers
ZC group generated by the a�ne semigroup C � ���



Index

absolute integral closure� ���
acyclic complex� ��

acyclicity criterion� ��� ��� ��� ���
admissible grading� ���
a�ne algebra� �������
a�ne hull� ���
a�ne semigroup� ���

simplicial� ��


a�ne semigroup ring� �������� ���
and regularity� ���
Cohen�Macaulay property of� ��

graded prime ideals of� ���
local cohomology of� ������


a�nely �in�dependent� ���
a�invariant

free resolution and� ���
of a Veronese subring� ���
of a Cohen�Macaulay ring� ���

of a Gorenstein ring� ���
of a positively graded algebra� ���
of a simplicial complex� ���

a�invariant
and F�rationality� ���

Alexander duality� ���
algebra structure on a resolution� ���
algebra with straightening law� see

graded ASL
alternating graded algebra� ��
alternating homomorphism� ���
analytic deviation� ���
analytic spread� �
�

inequalities for� �
�
analytically independent� �
�
antiderivation� ��
Artin�s approximation theorem� ���
�Artinian� ���

ASL� see graded ASL
associated graded module� �� �� ���

associated graded ring� �� ���� ���
dimension of an� ���

augmented oriented chain complex�
��
� ���

Auslander�s conjecture� ���
Auslander�Buchsbaum formula� ��
Auslander�Buchsbaum�Nagata

theorem� ��
Auslander�Buchsbaum�Serre

theorem� ��

Bass number� �������� ���� ����
�������

Bass� conjecture� 
�� ���
Betti number� ��� ��� �������

and characteristic� ���
	ne� ���
graded� ��

bidual� �

big Cohen�Macaulay algebra� ����

���
big Cohen�Macaulay module� ����

���� ���
balanced� �������� ���
completion of� ���

big rank� ���
boundary complex� ���
Boutot�s theorem� �
�
Brian!con�Skoda theorem� �
���
�
Bruggesser�Mani theorem� ���
Buchberger algorithm� ���
Buchsbaum ring� module� ��
Buchsbaum�Eisenbud

acyclicity criterion� ������ ���
structure theorem� ���

canonical element theorem� ��
� ����
���

���



Index ���

canonical module� �������
and 	nite extension� ���
and �at extension� �������� ���
and ground 	eld extension� ���
and polynomial extension� ���
and power series extension� ���
class of� ���
completion of� ���
existence of� ���� ���
free resolution of� ���
is divisorial ideal� ���
localization of� ���
modulo regular sequence� ���� ���
of a graded ring� �������
of a non�Cohen�Macaulay ring�

���
of an Artinian algebra� ���
rank of� ���
uniqueness of� ��


�canonical module� ��
����
existence of� ���� ���
localization of� ���
modulo regular sequence� ���
uniqueness of� ��


catenary� ��
'Cech complex

modi	ed� ���
cell complex� �������
chain� ���
character� ��


inverse determinant� ��

class group� ���

of a localization� ���
of a polynomial extension� ���
of a positively graded algebra� ���

closed half�space� ���
codimension

conjecture� ���
of a complex� ���� ���� ���� ���
of an ideal� ���

coe�cient 	eld� ��

Cohen�s structure theorem� ��

Cohen�Macaulay approximation� ��

Cohen�Macaulay complex� ���� ��
�

���
and base ring� ���
and links� ���

doubly� �������
level� ���� ���
topological characterization of� ��

type of� ���
upper bound for h�vector� ���

Cohen�Macaulay module� ������ ���
�


and completion� ��
and �at extension� ��
and polynomial extension� ��
and power series extension� ��
big� see big Cohen�Macaulay

module
graded� ��
localization of� ��
maximal� ��� ��� ���
modulo regular sequence� ��
multiplicity of� �
�

Cohen�Macaulay ring� ������ ��� 
��
���� ���

see also Cohen�Macaulay module
and F�rationality� �
�
and associated graded ring� ���
and base 	eld extension� ��
and faithfully �at extension� ��
and Reynolds operator� ���
graded� ��
is universally catenary� ��
one dimensional� �
�
unmixedness of ideals in� �


Cohen�Seidenberg theorems� ���
coideal in a poset� ���
�complete� ���
complete intersection� ������ 
�� ��
�

���
and �at extension� ��
and ground 	eld extension� ��
and polynomial extension� ��
and power series extension� ��
graded� ��
localization of� ��� ��
locally� ������ ��
modulo regular sequence� ��

complete intersection defect� ��
complete local ring� ��� ���� ����

������

completely integral� ���



��� Index

completely integrally closed� ���
complex with 	nite length homology�

���� ���� ��
� ���
cone� ���� ���
convex

combination� ���
hull� ���
set� ���

cotangent module� ���
cover� ���
cross�section� ���
cyclic polytope� �������

decomposable module� ���
Dehn�Sommerville equations

for Euler complexes� ���
for polytopes� ���� ��


dehomogenization� ����
� ��
depth� ����� 
�� ���

and dimension� ��
and Ext� ��
and 	nite extension� ��
and �at extension� ��
and projective dimension� �����
of a non�	nite module� ���
of completion� ��

determinantal ring� ���� �������
a�invariant of� ���
canonical module of� ���
Cohen�Macaulay property of� ���
dimension of� ���
Gorenstein property of� ���
normality of� ���
of alternating matrix� ���
of symmetric matrix� ���� ���
Serre condition �R�� for� ���

diagonalizable group� ��

di�erence operator� ���
dimension� ���� ���� ���� �������

and �at extension� �������
and polynomial extension� ���
and power series extension� ���
inequality� ���
of completion� ��

�dimension� ��
direct summand theorem� ���� ���
divisible module� 
�
divisor class group� see class group

divisorial ideal� ���
doset algebra� ���
d�sequence� ���
dual� �


edge� ���
Ehrhart

function� series� ���
quasi�polynomial� ���

embedded deformation� ���
embedding dimension� ��
equicharacteristic local ring� ��

equidimensional� ���
equimultiple ideal� ���
essential extension� 
�

maximal� 
�
proper� 
�

�essential extension� ���
proper� ���

Euler characteristic
and multiplicity� �
�
and multiplicity symbol� �
�
of a simplicial complex� ���� ���

reduced� ���
of the Koszul homology� �
�
partial� �
�

Euler complex� ���
f�vector of� ��


Euler relation� ��

Evans�Gri�th syzygy theorem� ���
excellent ring� ���
expanded subsemigroup� �
�
expected rank� ��� ���� ���� ���
exterior algebra� ������ �
� ��

of free module� ��
of graded module� ��

exterior power� ��� �����

face lattice� ���� ���
face of a cell� ���
face of a simplicial complex� ���

dimension of� ���
face ring� ��

facet of a simplicial complex� ���
factorial ring� ������ ���� ���
F�	nite ring� �
�
	bre� ���
	ltered ring� ���



Index ��	

	ltration� ���
Noetherian� ���� ���
separated� ���
strongly separated� ���

	ne grading� ���
	nite �at dimension� ��
	nite regular cell complex� see cell

complex
F�injective ring� ���
	rst deviation� ��� ��
Fitting invariant� �����

of maximal ideal� ��
�ag variety� ASL property of

coordinate ring of� ���
form� ��

initial� ���
F�pure ring� ���
fractionary ideal� ��

F�rational ring� �
�

and Cohen�Macaulay property� �
�
and completion� ���
and �at extensions� �
�
and localization� �
�� �
�
and pseudo�rationality� ���
Gorenstein� �
�
graded� �
�
is normal� �
�
modulo regular element� �
�� ���

F�rational type� ���
F�regular ring� �������

see also F�rational ring
Frobenius functor� �������

�atness of� ���
Frobenius homomorphism� ���

action on local cohomology�
�������

Frobenius power� ���
F�stable� ���
full subsemigroup� ���
function of polynomial type� ���
f�vector� ��


and h�vector� ���

Gauss� lemma� ���
general linear form� ���
generic �atness� �
�
generically complete intersection� ���
generically Gorenstein� ���� ��


geometric realization� ���

G�graded ring� ���

going�down� ���� ���

going�up� ���� ���

Gordan�s lemma� ��


Gorenstein complex� �������

and Euler complex� ���

simplicial sphere is� ���

topological characterization of� ���

Gorenstein ideal� ���

of grade three� ���

Gorenstein ring� 
��
�� ���� ���� ����
��


and �at extension� ���

and associated graded ring� ���

and faithfully �at extension� ���

de	ned by monomials� ���

extremal� ���

graded� ���

is Cohen�Macaulay� ���

localization of� 
�

modulo regular sequence� 
�

of dimension one� ��


of dimension zero� ���

ring of type � is� ���

type of a local� ���

Gotzmann space� ���

Gotzmann�s theorem

persistence� ���

regularity� ��


Gr#obner basis� ���

grade� ����� ��� ��

and acyclicity� ��� ���

and dimension� ��

and exact sequence� ��

and Ext� ��

and height� ��� �


and Koszul complex� �����

formulas for� ��

of a module� ��� ��� ���

of a non�	nite module� �������

graded algebra� ��

graded ASL� ���

Cohen�Macaulay property of� ���

discrete� ���



��� Index

graded Hodge algebra� ���
Cohen�Macaulay property of� ���
discrete� ���
Gorenstein property of� ���

graded ideal� ��
graded module� ����


category of� ��� ��
depth of� ��� ��
dimension of� ��� �

grade of� ��
projective� ��
projective dimension of� ��
support of� ��
type of� ��

graded ring� ����

Noetherian� �

polynomial ring as� ��
trivial� �


graded submodule� ��
Grassmannian� ���

ASL property of coordinate ring
of� ���

Grothendieck�s condition �CMU�� ��
G�subspace� �
�
g�theorem� ���

height� ���� ���
Henselian local ring� ��

Henselization� ���
Hilbert function� ���

of a positively graded algebra� ���
and f�vector� ���
and graded free resolution� ���
higher iterated� ���
of �k��� ���
of a Zn�graded module� ���
of a Gorenstein complex� ���
of a graded Gorenstein ring� ���
of a homogeneous complete

intersection� ���
of a homogeneous ring� ���
of a one dimensional homogeneous

domain� ���
of an Euler complex� ���
of the �canonical module� ���� ���

Hilbert polynomial� ��

coe�cients of� ���

Hilbert quasi�polynomial� ���

Hilbert ring� ���
Hilbert series� ���

see also Hilbert function
Hilbert�s Nullstellensatz� ���
Hilbert�s syzygy theorem� �

Hilbert�Burch theorem� ��
Hilbert�Samuel function� ���
Hilbert�Samuel polynomial� ���
Hochster�s 	niteness theorem� �������
Hochster�Roberts theorem� �
�� ���
Hodge algebra� see graded Hodge

algebra
homogeneous

algebra� ring� �
� ���
component� ��
element� ��
homomorphism� ��

of degree i� ��
localization� ��
system of parameters� ��� ��

homogeneous socle� ���
homogenization� �

homological height theorem� ���
h�vector� �������

of a homogeneous
Cohen�Macaulay algebra� ���

of a level ring� ��

of an integral polytope� ���

hyperplane� ���
hypersurface ring� �
�

I�adic 	ltration� ���
ideal generated by monomials� ���
ideal in a semigroup� ���

primary� ���
prime� ���
radical� ���
radical of� ���

ideal of de	nition� ���
ideal of minors� �����
ideal of the principal class� �

incidence function� ���
indecomposable module� ���
indiscrete part� ���
injective dimension� 
��
�

and localization� 
�
	nite� 
�� ��
� ���� ���
modulo regular sequence� 
�



Index ��

�injective dimension� ���
injective hull� 
������ ���� ���

localization of� 


�injective hull� ���
injective module� ���
�

decomposition of� ���
direct sum of� 
�
localization of� 
�

�injective module� ������

injective resolution� 
�� 
�

minimal� 

� ���
�injective resolution� ���
integral closure of an ideal� ���

of monomials� �
�
integral dependence on an ideal�

�����
�
and on a ring� �
�
valuative criterion for� �
�

integral extension� �������
integral over an ideal� see integral

dependence on an ideal
integral polytope� ���
intersection multiplicity� ���
intersection theorem� �������

improved new� ���� ���� ���
new� ��
� ���� ���
Peskine�Szpiro� ���
Serre�s� ���� ���

invariant of a group� ���

join� ���

Koszul algebra� ��
and the canonical module� ���
of a complete intersection� �����
of a Gorenstein ring� ���� ���

Koszul cohomology� ��� ���
Koszul complex� ������ ��� ��� ��

algebra structure on� ��
and �at extension� ��
and grade� �����
as an invariant� ��
functorial properties� ��
of a sequence� ��
of regular sequence� ��
rigidity of� ��

Koszul homology� ������ ���� ���
algebra structure on� ��
and cohomology� ��
and �at extension� ��
annihilator of� ���
exact sequence of� �

functorial properties of� ��

Krull dimension� see dimension
Krull�s principal ideal theorem� see

principal ideal theorem

leading monomial� ���
lemma of Rees� 
�
lemme d�acyclicit�e� ��
length of a module

and �at extension� ��
length of a poset� ���
level ring� ��
� ���
lexsegment� ���

ideal� ���
line segment� ���
line shelling� ���
linear algebraic group� ���
linear resolution� ��

link� ���
local cohomology� �������� ���

and depth� ���
and dimension� ���
annihilator of� �������
canonical element in� �������
functors� ���
of a Gorenstein ring� ��

vanishing of� ���

local duality� ���� ���
for graded rings� �������

�local ring� ������ ��� ��� ��
locally free module� ���
locally upper semimodular� ���
lying over� ���

Macaulay
coe�cient� ���
representation� ���

Macaulay�s theorem
on Hilbert functions� ���
on order ideals of monomials� ���

Matlis duality� �������
for graded modules� ���



��
 Index

�maximal� ��
minimal

complex of length s� ���
free resolution� ��

graded� ��
multiplicity� �
�
number of generators� ��
presentation of a local ring� ��
reduction� �
�
system of generators� ��

homogeneous� ��
m�linear resolution� ���
modi	cation� �������

non�degenerate� ���
of type s� �s� � � � � � sr�� ���

module of semi�invariants� ��

Molien series� ���
Molien�s formula� ���
monomial theorem� ���
monomial with exponent� ���

support of� ���
multiplicity� ���� ���

and Cohen�Macaulay module� �
��
�



and rank of a module� �
�
of a �non�graded� module� ���
symbol� �
�
system� �
�

Nagata�s theorem� ���
Nakayama�s lemma� graded variant�

�

neighbourly� ���
Noether normalization� ���

graded� ��
in complete local ring� ��


normal domain� see normal ring
normal ring� ������ ���

as direct summand� ���
ring of invariants is� ��


normal semigroup� �
�
normal semigroup ring� ��������

�������
canonical module of� ���� ���
Cohen�Macaulay property of� ���
Gorenstein property of� ���
local cohomology of� ���

normal vector� ���

normality criterion� ��� ��� ���

numerical semigroup� ���

conductor of� ���

symmetric� ���

octahedron� ���

order complex� ���

order ideal of a module element� ����
���

order ideal of monomials� ���

orientation of a module� ��

oriented simplicial complex� ��


perfect ideal� see perfect module

perfect module� ������ ���

Cohen�Macaulay property of� �
�
��� �


Pfa�an� ���

ideal� ���

Pl#ucker relation� ���

Poincar�e

algebra� ���

duality� �������

series� ��

polyhedral set� ���

polyhedron� ���

f�vector of� ���

combinatorial equivalent� ���

dimension of� ���

edge of� ���

face of� ���

facet of� ���

subfacet of� ���

vertex of� ���

polynomial ring

ASL property of� ���

polynomial ring over a 	eld� �
� ��

polynomials with coe�cients in a
module� �

polytope� ���� ���

f�vector of� ��


see also polyhedron

simplicial� ���



Index ���

poset� ���

bounded� ���
graded� ���

locally upper semimodular� ���

of minors� ���
pure� ���

shellable� ���
positive cone� ���

positive semigroup� ��


positively graded algebra� ring� �
� ���
���

Noetherian� �


prime avoidance� �� ��
principal ideal domain� 
�

principal ideal theorem� ��
� ���� ���
projective dimension� ������ ��

	nite� ��� �
� ��
� ���� ���� ���

projective module� ��
projective resolution� ��

pseudo�rational ring� �
�� ���
and rational singularities� �������

pseudo�re�exion� ���

pure
extension� �
�

subring� �
�
pure resolution� ���

pure subring� ���

quasi�polynomial� ���
quasi�regular sequence� ���� ��� ���

rank
of a homomorphism� see rank of a

module

of a module� �
���� ��� ��
of a poset element� ���

of a semigroup� ���
with respect to a module� ���

rational

cone� ���
half�space� ���

polytope� ���
real projective plane� ���

reduced simplicial �co�homology� ���

relative� ���

reduced singular homology
and simplicial homology� ���
and cell complex� ���
of a sphere� ���

reduction ideal� ��
� ���
reduction to characteristic p� ��� �
��

���� ���
Rees ring� ���

and reduction ideal� ��

dimension of� ���
extended� ���
minimal prime ideals of� ���

re�exive module� �
� ��� ���
regular element� �� 
� ��
regular equational presentation� ���
regular local ring� ������ 
�

as a direct summand� �������
associated graded ring� ��
Cohen�Macaulay property of� ��
completion of� ��
factoriality of� ��
localization of� ��
normality of� ��
of characteristic p� �������

regular ring� ������ 
�� 
�
and ground 	eld extension� ��
and polynomial extension� �

and power series extension� �

graded� ��
positively graded� ��

regular sequence� ���� ��� ��� �
� ���
and completion� �
and 	nite projective dimension� ���
and �at extension� �
and localization� �
and system of parameters� ��
homogeneous� ��
of ��forms� ��

regular system of parameters� ��� �

regularity �Castelnuovo�Mumford��

���
Reisner�s criterion� ���
relative interior� ���� ���
representation of a group� ���
resolution with algebra structure� ��
reverse degree�lexicographic order�

���



��� Index

Reynolds operator� ���� ���� �
�
ring of characteristic p� ���
ring of invariants� �����
�
a�invariant of� �
�
and regularity� ���
canonical module of� ���� ���� �
�
Cohen�Macaulay property of� ����

���� �
�
complete intersection property of�

�
�
Gorenstein property of� ���� ����

�
�
of a diagonalizable group� ��
����
of a 	nite group� �����
�
of a group of pseudo�re�exions�

�����
�
of a linearly reductive group�

�
���
�
ring of type one� ���

saturation� ���
second deviation� ��
self�dual complex� ��
semi�invariant of a group� ��

separable� ��
sequence� see regular sequence
Serre�s condition �Rn�� ��� ��
Serre�s condition �Sn�� ������ ��� ��
Serre�s normality criterion� ��
shellable complex� �������
h�vector of� ���
is Cohen�Macaulay� ���

shelling� ���
of a polytope� ���

simplex� ���� ���
simplicial complex� ���

acyclic� ���
connected� ���
constructible� ��

core of� ���
dual� ���
of a simplicial polytope� ���
pure� ���
restriction of� ���
shellable� see shellable complex

simplicial sphere� ���
singular locus� ���
skeleton� ���

small support of a module� ���
socle� ��� �

solution of height n� ���
split acyclic complex� ��
standard basis� ���
standard monomial� ���
standard representation� ���
Stanley�s reciprocity law� ���
Stanley�Reisner ring� ��
� ���

and punctured spectrum� ���
canonical module of� �������
Cohen�Macaulay property of� see

Cohen�Macaulay complex
dimension of� ���
Gorenstein property of� see

Gorenstein complex
homogeneous system of parameters

of� ���
local cohomology of� �������
minimal prime ideals of� ���
of order complex� ���

Stanley�Reisner rings
Betti numbers of� �������

star� ���
straightening law� relation� ���

on poset of minors� �������
super	cial element� �
�
superheight� ���
support

of a monomial� ���� ���
of an element a � Zn� ���

supporting hyperplane� ���
symmetric ASL� ���
system of homogeneous linear

diophantine equations� ���
system of parameters� ���� ���� ����

���
and multiplicity� �
�

syzygy� ��� ��
rank of� �������

test element� �
���


tight closure� ���

and completion� ���� �


and integral closure� �
���
�
and localization� ���� �
�
and module�	nite extension� ���
and regular rings� ���



Index ���

and system of parameters� ���
of m �primary ideal� ���
of a principal ideal� �
�

tightly closed ideal� ���
primary component of� ���

torsion module� �

torsion�free module� �
� ��� ��
torsionless module� �
� ��
torus� ��

transpose of a module� ��
transversal� ���
triangulation� ���
trivial extension� ���
type of a module� ������ ���� ���� ���

and �at extension� ��
and localization� ���

UFD� see factorial ring
universally catenary� ��
unmixed ideal� �
� ��
unmixed ring� ��

upper bound theorem
for polytopes� ���
for simplicial complexes� �������

valuation ring� �
�
vanishing of ExtiR �M��R�� ���
Veronese subring� ���
vertex� ���

scheme� ���
visible� ���
volume of a polytope� ���

weak sequence� see weakly regular
sequence

weakly F�regular� see F�regular ring
weakly regular sequence� ��
� ��� ���

x�regular module� �

Zn�grading� ���


	Cover
	Copyright
	Contents
	Preface to the revised edition
	Preface to the first edition
	Part I. Basic concepts
	1. Regular sequences and depth
	1.1 Regular sequences
	1.2 Grade and depth
	1.3 Depth and projective dimension
	1.4 Some linear algebra
	1.5 Graded rings and modules
	1.6 The Koszul complex
	Notes

	2. Cohen-Macaulay rings
	2.1 CohenMacaulay rings and modules
	2.2 Regular rings and normal rings
	2.3 Complete intersections
	Notes

	3. The canonical module. Gorenstein rings
	3.1 Finite modules of finite injective dimension
	3.2 Injective hulls. Matlis duality
	3.3 The canonical module
	3.4 Gorenstein ideals of grade 3. Poincaré duality
	3.5 Local cohomology. The local duality theorem
	3.6 The canonical module of a graded ring
	Notes

	4. Hilbert functions and multiplicities
	4.1 Hilbert functions over homogeneous rings
	4.2 Macaulay's theorem on Hilbert functions
	4.3 Gotzmann's regularity and persistence theorem
	4.4 Hilbert functions over graded rings
	4.5 Filtered rings
	4.6 The Hilbert-Samuel function and reduction ideals
	4.7 The multiplicity symbol
	Notes


	Part II. Classes of Cohen-Macaulay rings
	5. Stanley-Reisner rings
	5.1 Simplicial complexes
	5.2 Polytopes
	5.3 Local cohomology of Stanley-Reisner rings
	5.4 The upper bound theorem
	5.5 Betti numbers of Stanley-Reisner rings
	5.6 Gorenstein complexes
	5.7 The canonical module of a Stanley-Reisner ring
	Notes

	6. Semigroup rings and invariant theory
	6.1 Affine semigroup rings
	6.2 Local cohomology of affine semigroup rings
	6.3 Normal semigroup rings
	6.4 Invariants of tori and finite groups
	6.5 Invariants of linearly reductive groups
	Notes

	7. Determinantal rings
	7.1 Graded Hodge algebras
	7.2 Straightening laws on posets of minors
	7.3 Properties of determinantal rings
	Notes


	Part III. Characteristic p methods
	8. Big Cohen-Macaulay modules
	8.1 The annihilators of local cohomology
	8.2 The Frobenius functor
	8.3 Modifications and non degeneracy
	8.4 Hochster's finiteness theorem
	8.5 Balanced big Cohen-Macaulay modules
	Notes

	9. Homological theorems
	9.1 Grade and acyclicity
	9.2 Regular rings as direct summands
	9.3 Canonical elements in local cohomology modules
	9.4 Intersection theorems
	9.5 Ranks of syzygies
	9.6 Bass numbers
	Notes

	10. Tight closure
	10.1 The tight closure of an ideal
	10.2 The Briançon-Skoda theorem
	10.3 F-rational rings
	10.4 Direct summands of regular rings
	Notes


	Appendix: A summary of dimension theory
	References
	Notation
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


