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Introduction

.+, I was not able to write anything about it [bullfighting] for
five years-and I wish I would have waited ten. However, if I
had waited long enough I probably never would have written
anything at all since there is a tendency when you really begin

to learn something about a thing not to want to write about it
but rather to keep on learning about it always and at no time,
unless you are very egotistical, which, of course, accounts for

many books, will you be able to say: now I know all about this

and will write about it. Certainly I do not say that now; every

year I know there is more to learn . . . .

-Ernest Hemingway, from “Death in the Afternoon.“]

It has seemed to me for a long time that commutative algebra is best
practiced with knowledge of the geometric ideas that played a great role in
its formation: in short, with a view toward algebraic geometry.

Most texts on commutative algebra adhere to the tradition that says a
subject should be purified until it references nothing outside itself. There
are good reasons for cultivating this style; it leads to generality, elegance,
and brevity, three cardinal virtues. But it seems to me unnecessary and
undesirable to banish, on these grounds, the motivating and fructifying
ideas on which the discipline is based.

‘Reprinted with permission of Scribner, an imprint of Simon & Schuster, from
Death in the Afternoon by Ernest Hemingway. Copyright 1932 by Charles Scribner’s
Sons. Copyright renewed (¢) 1960 by Ernest Hemingway.



2 Information for the Expert

In this book I have tried to write on commutative algebra in a way
that makes the heritage of the subject apparent. I have allowed myself
many words and pictures with the vague and difficult aim of clarifying
the “trye meaning” of the results and definitions. For all this, I have tried
not to compromise the technical perfection to which the subject has been
brought by masters like Hilbert, Emmy Noether, Krull, Van der Waerden,
and Zariski, to name only a few of those no longer living.

Advice for the Beginner

Because of my attempt to mix algebra and geometry, this text has a certain
unevenness of level. Dear reader, unless you are unusually experienced, you
will probably find some passages for which you are simply unprepared, a
problem you would not encounter with a book written in a more linear style
You should feel free to skip lightly over, or “read for culture,” explanatory
material which seems difficult, or which uses ideas of which you have not
yet heard. Perhaps when you do hear of them—and you will, as they come
from the mainstream-you will feel a sense of recognition, knowing that
they have something to do with this subject. I have taken some pains to
make a thread of theorems and definitions that are stated without reference
to these more obscure passages. You should think of them as something to
return to when more of the pieces in the vast puzzle of mathematics have
fallen into place for you.

Information for the Expert

I shall now describe some of the contents of this book, emphasizing its
more novel features. From the beginning, rny goal has been to cover at
least the material that graduate students studying algebraic geometry-
and in particular those studying Algebraic Geometry, the excellent book
by Robin Hartshorne [1977]—should know (in fact the title of this book
began as a pun). In particular, all the algebraic results referred to in that
book without proof may be found here.

The first chapter sets the stage: It surveys some of the prehistory of
commutative algebra in number theory, the theory of Riemann surfaces,
and invariant theory; and it concludes with a survcy of Hilbert's amazing
contributions near the end of the nineteenth century. I have done this to
provide something interesting right at the beginning and to introduce the
reader to the translation between commutative algebra and the geometry
of affine and projective varieties. Much use is made of this translation
later in the book, though mostly in a very elementary way. Chapter 1 also
introduces graded rings, to which we return often.



Introduction 3

The second chapter begins afresh, with that now indispensable operation,
localization. The chapter includes an analysis of rings whose primes are all
maximal-what are later called zero-dimensional rings.

Chapter 3 on primary decomposition begins with the standard treatment,
emphasizing associated primes. Symbolic powers and their connections with
the order of vanishing of functions (the theorem of Nagata and Zariski) are
discussed to provide a nontrivial application. I also discuss the geometric
information hidden in the embedded components. The exercises include
a complete treatment of primary decomposition for monomial ideals, a
number of examples, and an exploration of the nonuniqueness of embedded
components.

Chapter 4 concerns the Nullstellensatz and integrality. I develop
Nakayama’s lemma here from the Cayley-Hamilton theorem, and study
the behavior of primes in an integral extension-the relative version of the
zero-dimensional theory treated in Chapter 2. Five different proofs of the
Nullstellensatz are given in this book: The text of Chapter 4 contains the
strongest, which is essentially due to Bourbaki. The exercises treat the
proof by Artin-Tate and two “quick-and-dirty” methods, one due to Van
der Waerden and Krull and one for which I don’t know an attribution;
I learned it from Artin. The fifth proof, using the Nocther normalization
theorem, is given in Chapter 13.

Chapter 5 takes up some of the constructions of graded rings from a ring
and an ideal: the associated graded ring and the “blowup algebra.” The
Krull intersection theorem is proved there.

Chapter 6 is concerned with flatness. A number of simple geometric
examples are intended to convey the notion that flatness is a kind of “con-
tinuity of fibers.” I then take up a number of characterizations of flatness,
for example the one by equations, and the “local criterion.” This chapter
also contains a gentle introduction to the use of Tor.

I next treat the concept of completion, emphasizing the good geometric
properties that come from Hensel’s lemma. I present completion as a sort
of superlocalization that allows one to get at neighborhoods much smaller
than a Zariski neighborhood. Hensel’s lemma is presented as a version of
Newton’s method for finding solutions to equations. There is a thorough
treatment of coefficient fields and the equicharacteristic part of the Cohen
structure theorems.

Chapter 8 begins the treatment of dimension theory. I begin with a sur-
vey, to explain some history and bring forward the main points of the
theory. I even give a set of axioms characterizing Krull dimension, hoping
in this way to explain the central role of the theorems about the dimension
of fibers. This chapter is somewhat more advanced than the ones around
it and is meant to be read “for culture only” on a first pass through the
subject. Nothing in it is required for the subsequent development.

In the following chapter, therefore, I have repeated some of the most
basic definitions and also collected the information about dimension that



4  Information for the Expert

was accumulated (without an appropriate language) in earlier parts of the
book -essentially the theory of dimension zero and relative dimension zero.

Chapter 10 handles the principal ideal theorem (I give Krull’s proof) and
its consequences. This is where regular local rings and regular sequences
are introduced. The fact that a regular local ring is a domain is proved as
an application. The exercises contain, among other things, a treatment of
the codimensions of determinantal ideals.

Chapter 11 treats “dimension and codimension one”—that is, essentially,
normal rings (including discrete valuation rings and Serre’s criterion) and
the ideal class group. Dedekind domains are treated along the way.

Chapter 12 introduces the Hilbert-Samuel function and polynomial; the
easy case of the Hilbert function and polynomial was already presented in
Chapter 1. Multiplicities naturally appear here.

Chapters 13 and 14 take up a somewhat deeper side of dimension theory,
examining affine rings and the dimensions of fibers of finitely generated
algebras. I explain something of classical as well as modern elimination
theory.

In Chapter 15 I give an account of the theory of initial ideals and Grobner
bases, including the theorems of Galligo, Bayer and Stillman on generic
initial ideals. Relative to the other prescntations available I take a rather
mathematical approach to the subject. I feel that this leads to considerable
simplification without sacrificing the power to “actually compute” that this
theory affords. At the end of the chapter is a long series of applications
and a set of computer algebra “projects” showing how the computational
possibilities of this theory let one make new conjectures, hard and easy,
trivill as well as significant.

Chapter 16 is about modules of differentials. My goals are to explain
the roles these play in linearizing problems, from the Jacobian criterion
to infinitesimal automorphisms to deformation theory, and also to prove
some of the technical results that intervene in the field theory necessary
for the Cohen structure theorems and for various topics concerning finitely
generated algebras (separability, p-bases, differential bases).

The final chapters treat and use the homological tools in earnest. I begin
with an elementary treatment of the Koszul complex of two elements. (This
is adapted from the treatment by David Buchsbaum that first lured me into
commutative algebra 25 years ago.) Next follows a technical account of the
Koszul complex, using some multilinear algebra. In the exercises, among
other things, are Priddy’s generalized Koszul complex (an explicit form for
the linear part of the resolution of the residue class field) and the Taylor
complex (a resolution of monomial ideals).

The notion of depth and the Cohen-Macaulay property occupy
Chapter 18. After establishing the basic properties, such as localiza-
tion, I explain applications of the Cohen-Macaulay property: Macaulay’s
unmixedness theorem; Hartshorne’s theorem on connectedness in codimen-
sion one; flatness over a regular base; and the application to proving that
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an ideal is prime, using Serre’s characterization of normality.

The homological characterization of regular local rings as those of
finite global dimension is presented in Chapter 19, along with the appli-
cation to factoriality. This requires some talk of stable freeness, and I
present the classic example of the tangent bundle to the real a-sphere.
The Auslander-Buchsbaum formula and the associated characterization of
Cohen-Macaulay rings are here to0o.

Chapter 20 examines a number of topics concerning free resolutions.
Various criteria of exactness are presented. The material is approached
through the Fitting invariants and their significance. I present the Hilbert-
Burch theorem characterizing ideals of projective dimension 1, and apply
this to finding the equation the cubic surface in P3 corresponding to six
given points in the plane. The chapter closes with an algebraic treatment
of Castelnuovo-Mumford regularity. The expert reader will recognize that
the selection of material for this chapter has much to do with my personal
taste and experience.

Chapter 21 contains an account of the canonical module and duality for
local Cohen-Macaulay rings, and some of the theory of Gorenstein rings.
I have included more than the usual amount of material on the Artinian
case (including “pictures” of the canonical module), with a view to giving
the student some comfort in that case and motivating the use of injective
dimension in the general case. The canonical module is defined as a mod-
ule that reduces, modulo a regular sequence, to the canonical module of
the associated Artinian ring. This treatment seems to me somewhat more
concrete and accessible than the one found in most other expositions. As
an application I explain something of linkage. The exercises contain a proof
of the Cayley-Bacharach theorem in a modern formulation.

Throughout the text I have tried to include illustrations of the power
of the ideas on concrete examples provided by geometry. For example, I
illustrate the Hilbert-Burch theorem not only with the application to cubic
surfaces, but also, in Chapter 21 for the proof by Apéry and Gaeta that
Cohen-Macaulay ideals of codimension two in a regular ring are linked to
complete intersections.

It is hard to do commutative algebra without knowing at least a small
amount of field theory (separable extensions, pbases), category theory
(functors, natural transformations, adjointness, limits, and colimits), homo-
logical algebra (projective and injective resolutions, Tor, Ext, and local
cohomology), and multilinear algebra (symmetric and exterior algebras).
I have provided appendices on these subjects that far exceed the actual
requirements for this course. For example, the appendix on limits and col-
imits contains a treatment of the Lazard-Govorov characterization of flat
modules; and the appendix on multilinear algebra contains a treatment of
the Eagon-Northcott “family” of complexes, sufficiently thorough to allow
the reader to write down, for example, explicit minimal free resolutions for
the ideals of elliptic normal curves.
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The last appendix outlines enough local cohomology to explain the alge-
braic interpretation of the cohomology of coherent sheaves on projective
spaces.

The exercises contain a large number of theoretical results, worked out
as sequences of problems. I personally don’t like hard exercises very much;
why spend time on them rather than on doing research? So I have tried
to break the problems down into fairly small pieces. Many basic geometric
objects, such as toric varieties, are also illustrated. In general, I have used
the exercises to expose some of the topics I have omitted from the text
(the fact that the reader can have the fun of “inventing” these topics, with
guidance, seems to me a positive effect of the inevitable lack of space). At
the end of the book I have provided hints or sketches of solutions to quite a
', In those few cases where I have later
used the result of an exercise, a reasonably full solution is given.

few of the exercises, indicated by a

Prerequisites

The formal prerequisites for reading this book are rather modest, although
because of the mixing of subjects a certain sophistication is necessary for
reading it without the help of a teacher. I have presupposed a background
in algebra on the level of a good undergraduate preparation: knowledge
of groups, rings, fields, and abstract vector spaces. For the later sections
of the part on dimension theory, a little Galois theory is required. All
the necessary facts from homological algebra that are not included in the
main text are developed from scratch in Appendix 3, but the reader who
has never heard of Ext and Tor before may find this treatment rather
compressed. It is not necessary to follow the more demanding sections on
geometry in order to understand the rest of the book; but in order to
enjoy them one needs to know such things as what a tangent space is
and what the implicit function theorem says, and also something about
analytic functions. I see the most natural reader of this book as one who
has taken courses in algebra, geometry, and complex analysis at the level
of a first-year graduate program. However, the actual knowledge required
is much less, and it is possible to tackle most of the book with only an
undergraduate preparation in algebra.

Sources

Standard references for some of the material treated here are the books of
Zariski and Samuel [1958], Serre [1957], Bourbaki [1983, 1985], Atiyah and
MacDonald [1969], Kunz [1985], and Matsumura [1980, 1986]. I have often
leaned on the extremely elegant but resolutely nongeometric treatment of
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Kaplansky [1970], from whom I first heard about many of the theorems
presented here, and on the deep and beautiful book of Nagata [1962]. The
books of Matsumura are perhaps the best general references for the subject,
but are difficult for beginners (and weakly motivated algebraic geometers).
The books of Kunz [1980] and Peskine [in press] share a geometric slant with
this one, but differ from it in content and style. The book of Stiickrad and
Vogel [1986] contains extensive material on Buchsbaum rings and linkage
not found in the other treatments mentioned, with a wealth of references
to the literature. The new book of Bruns and Herzog [1993] contains an
up-to-date treatment of the homological and module-theoretic aspects of
commutative algebra. The undergraduate book by Reid (not yet out as of
this writing) shares some of the spirit of this book, but covers much less
material. The book of Cox, Little, and O’Shea [1992] does a particularly
nice job of explaining, at an undergraduate level, the relation of geometry
with the algebra of polynomial rings. It contains an excellent treatment of
Grobner bases, more elementary than the one presented in Chapter 15 of
this book. The early chapters of Fulton’s book [1969] on algebraic curves is
another excellent source for the connection between algebra and geometry.
I am grateful to the authors of these books, having learned from them.

For the history of the subject I have leaned heavily on the account of
nineteenth-century number theory, invariant theory, and algebraic geom-
etry given by Morris Kline [1972], and also on the historical summaries
in the books of Krull [1968], Nagata [1962], Bourbaki [1983, 1985], and
Edwards [1977]. Some material on topological dimension theory comes from
Hurewicz and Wallman [1941].

Courses

There are at least two natural one-semester courses that can be made from
this book, corresponding roughly to the first and second halves. Here are
possible syllabi. The assignments are a plausible (though not canonical)
minimum; I would expect any instructor to add, according to taste, and 1
would probably make a different minimum set myself each time 1 taught
the book.

A First Course

For students with no previous background in commutative algebra, this
course covers the basics through completions, some of Cohen structure
theory, and a thorough treatment of dimension theory.

Chapter 1: Roots of Commutative Algebra. Do 1.2-1.4 and 1.11; more

depending on the experience of the students. (Assign the rest as reading.)
Exercises: 1.1-1.4, 1.18, 1.19, 122, 123
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Chapter 2: Localization. All but “Products of Domains.”
Exercises: 2.3, 24, 26, 211, 215, 219, 226
Chapter 3: Associated Primes and Primary Decomposition. All but “Sym-
bolic Powers . . .” and “A Determinantal Example.”
Exercises: 3.1, 3.3, 34, 36
Chapter 4: Integral Dependence and the Nullstellensatz. All
Exercises: 4.1, 4.3, 44, 4.9, 413, 420, 4.24, 429
Chapter 5: Filtrations and the Artin-Rees Lemma. Al
Exercises: 53, 5.5
Chapter 6: Flat Families. Through Corollary 6.3.
Exercises: 6.1, 6.4, 6.7, 6.9, 6.12
Chapter 7: Completions and Hensel's Lemma. 7.1-7.6. Concentrate on
Hensel’s lemma. Do statement of Cohen structure theorem (7.7); do coef-
ficient fields only in characteristic 0; skip the proof of the Cohen structure
theorem.
Exercises: 7.1, 7.5, 7.6, 7.8, 79, 719, 7.20, 725
Chapter 8: Introduction to Dimension Theory. As much as will fit in one
lecture, stressing fibers (Axiom D3) and Theorems A, B, and C.
Chapter 9: Fundamental Definitions of Dimension Theory. AllL
Exercises: 9.1, 9.2 (prepares for the proof of Noether normalization), 9.3,
9.4
Chapter 10: The Principal Ideal Theorem and Systems of Parameters. All.
Exercises: 10.1, 104, 10.5, 10.9, 10.10
Chapter 11: Dimension and Codimension one. Through 11.6. Sections on
invertible modules, class group, Dedekind domains as time permits. Skip
section on multiplicity of principal ideals.
Exercises: 11.1, 117, 11.8, 11.10, 11.13
Chapter 12: Dimension and Hilbert-Samuel Polynomials. All.
Exercises: 121, 122, 125
Chapter 13: The Dimension of Affine Rings. All
Exercises: 13.1, 13.2, 133, 136, 13.12, 1313
Chapter 14: Elimination Theory, Generic Freeness, and the Dimension of
Fibers. As time permits.
Exercises: 14.1, 14.5, 14.8
If time permits one further topic, my choice would be Chapter 15:
Grobner Bases, through Algorithm 15.9, as this allows the computation of
dimension for affine (especially graded) rings. This chapter can also serve
as the text of a short course in computational commutative algebra. For
exercises, see below.

A Second Course

For students whose preparation includes something like the contents of
Atiyah and MacDonald [1969] or a course like the first course just described
and a small amount of homological algebra, here is a course covering
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Grobner basis techniques of computation, homological methods, some the-

ory of free resolutions, Gorenstein rings, and duality. Differentials and the

Jacobian criterion would be an option.

Review of multilinear algebra, as required: (Sections A2.1-A2.3).
Exercises: A22 A27

Review of free resolutions, Ext and Tor, as required: (Sections A3.9-A3.11).
Exercises: A3.16, A3.17, A3.18, A323, A3.26

Chapter 15: Grobner Bases. Through Corollary 15.11 (proof of the Hilbert-
Syzygy theorem).
Exercises 15.3, 154, 155, 15.14, 15.27, 1529, 15.30

Option: Chapter 16: Modules of Differentials. Through Theorem 16.19
(Jcobian criterion).
Exercises: 16.1, 16.2, 16.3, 16.7, 16.8

Chapter 17: Regular Sequences and the Koszul Complex. Through Propo-
sition 17.14.
Exercises: 17.2, 17.7, 17.12, 17.15, 17.16

Chapter 18: Depth, Codimension, and Cohen-Macaulay Rings. Through
18.15.
Exercises: 18.2, 18.7, 18.8, 1810, 18.12 (if the <acobian criterion is
known), 18.14, 18.15

Chapter 19: Homological Theory of Regular Local Rings. All but Corollary
19.11 (or go back to pick up the necessary material from Chapter 15).
Exercises: 19.1, 19.2, 19.3, 19.14, 19.15 19.16

Chapter 20: Free Resolutions and Fitting Invariants. Through 20.15
(Hilbert-Burch theorem).
Exercises: 20.13, 20.15, 20.17, 20.22, 20.23

Chapter 21: Duality, Canonical Modules, and Gorenstein Rings. As time
permits.
Exercises: 21.1, 21.6, 21.7, 21.8, 21.11, 21.18
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0
Elementary Definitions

For the sake of establishing a common language, this chapter introduces
some notation and elementary definitions such as would appear in many
undergraduate algebra courses.

Following the usage introduced by Paul Halmos we shall write “iff” for
“if and only if.” We use the symbol ¢ to mean “contained in or equal to,”
and write g when equality is not an option. We write = for isomorphism,
but often use = when the isomorphism is canonical.

0.1 Rings and Ideals

A ring is an abelian group R with a multiplication operation (a, b) > gb
and an “identity element” 1, satisfying, forall a, b, ¢ € R:

a(be) = (ab)c (associativity)
(b +¢=ab+ UC
(b+cla = ba+ca  (distributivity)
la =al = a (identity).

A ring R is commutative if, in addition, ab = ba for all a, b € R. Nearly
every ring treated in this book is commutative, and we shall generally omit
the adjective.
A unit (orinvertible element) in aring R is an element y such that
there is an element » € R with vy = 1. Such a » is unique. It is denoted
-1 and called the inverse of u. A field is a ring in which every nonzero
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element is invertible. We write Z, Q, R, and C respectively for the ring of
integers and the fields of rational, real, and complex numbers.

A zerodivisor in R is a nonzero element r € R such that there is a
nonzero element s € R with rs = 0. A nonzero element that is not a
zerodivisorisanonzerodivisor.

An ideal in a commutative ring R is an additive subgroup [/ such that
if € R and s € I, then rs € I. Anideal [ is said to be generated by a
subset S ¢ R if every element t € | can be written in the form

n
t:ZriSi with 7;in R and s; in S.

We shall write (S) for the ideal generated by a subset § ¢ R; if S consists
of finitely many elements sy, .., §,, then we usually write (s1,..., s) in
place of (S). By convention, the ideal generated by the empty set is 0. An
ideal is principal if it can be generated by one element.

An ideal [ of a commutative ring R is prime if [ # R (we usually say
that [ isa proper ideal in this case) and if f,g € R and fg € I implies
f € I or g € 1. Equivalently, [ is prime if for any ideals J, K with JK C |
we have J ¢ [ or K ¢ I. It follows by induction on n that if [ is prime and
contains a product of ideals (or even a product of sets) .J; .J5-- Jm then
I contains one of the J;, The ring R is called a domain if 0 is prime. A
maximal ideal of R is a proper ideal P not contained in any other proper
ideal. f P ¢ R is a maximal ideal, then R/P is a field, so P is prime. For
reasons explained in Chapter 2, R is called a local ring if P is the unique
maximal ideal. We sometimes indicate this by saying that (R, P) is a local
ring.

An element 2 € R is prime if it generates a prime ideal-equivalently,
h is prime if A is not a unit, and whenever h divides a product fg, then A
divides f or A divides g.

A ring homomorphism, or ring map, from aring R to a ring S
is a homomorphism of abelian groups that preserves multiplication and
takes the identity element of R to the identity element of S. Generally we
shall omit the adjective “ring” when it is clear from context. A subring of
S is a subset closed under addition, subtraction, and multiplication, and
containing the identity element of S.

If R and S are rings, then the direct product R x S is the set of
ordered pairs (a, b) witha € R and 4 € S made into a ring by defining the
operations componentwise:

(@,b)+@,b)=(@+ad,b+b)
(a, b)(a’, b)) = (aw’, bb).

Note that the map a — (a, 0) makes R a subset of Rx S and similarly with
S; as subsets of R x S we have RS = 0. Consider the elements ¢; = (1,0)
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and e3 = (0,1) of RxS. They are idempotent in the sense that e = ¢; and
e3 = es. Furthermore, they are orthogonal idempotents in the sense that
eres = 0. They are even a complete set of orthogonal idempotents
in the sense that, in addition, e; + es = 1. Quite generally, if e1,..., e, is
a complete set of orthogonal idempotents in a commutative ring K, then
R = Rey X --- X Re, is a direct product decomposition.

If R is a commutative ring, then a commutative algebra over R (or
commutative R-algebra) is a commutative ring S together with a homo-
morphism « : R — S of rings. We usually suppress the homomorphism «
from the notation, and write rs in place of «(r)s when r € R and s € S.
Any ring is a Z-algebra in a unique way. A more interesting example of
an R-algebra is a polynomial ring S = R[z;,...,2,] in finitely many vari-
ables. A subalgebra of S is a subring S’ that contains the image of R. A
homomorphism of R-algebras ¢ : S — T is a homomorphism of rings
such that ¢(rs) = rp(s) for r € R,s € S. Given an ideal I C S we shall
often be interested in its preimage in R. We shall sometimes denote this
preimage by RN I, even though R need not be a subset of S.

The commutative algebras that are of greatest interest to us—-the ones
of which the reader should think when we say “let R be a commutative
algebra” (or “let R be a ring”)—are those of the form R = S/I, where S
is a polynomial ring over a field or, at a more sophisticated level, over the
integers, or the localization of such a ring at a prime ideal (see Chapter 2
for localization).

We establish some terminology about polynomials: If k is a commutative
ring, then a polynomial ring over k£ in r variables xy,...,x, is denoted
klzy,...,x;]. (We shall much less frequently be interested in polynomial
rings in infinitely many variables.) The elements of k are generally referred
to as scalars. A monomial is a product of variables; its degree is the
number of these factors (counting repeats) so that, for example, z?2z3 =
T1T1X0x9x9 has degree 5. By convention the element 1 is regarded as the
empty product —it is the unique monomial of degree 0. A term is a scalar
times a monomial. Every polynomial can be written uniquely as a finite
sum of nonzero terms. If the monomials in the terms of a polynomial f all
have the same degree (or if f = 0), then f is said to be homogeneous.
We also use the word form to mean homogeneous polynomial.

If kis a field, and I C k[z] is an ideal, and f € [ is an element of
lowest degree, then Euclid’s algorithm for dividing polynomials shows that
f divides every element of I. Thus k[z] is a principal ideal domain, a
domain in which every ideal can be generated by one element.

0.2 Unique Factorization

Let R be a ring. An element r € R is irreducible if it is not a unit and
if whenever r = st with s,t € R, then one of s and ¢ is a unit. A ring R



14 0. Elementary Definitions

is factorial (or a unique factorization domain, sometimes abbreviated
UFD) if R is an integral domain and elements of R can be factored uniquely
into irreducible elements, the uniqueness being up to factors which are units
(this is the same sense in which factorization in Z is unique). Factoriality
played an enormous role in the history of commutative algebra, and it will
come up many times in this book. Here is an elementary analysis of the
condition:

If R is factorial, and if a1, as, . .. is a sequence of elements such that a; is
divisible by a;.1, then the prime factors of ¢, (counted with multiplicity)
are among the prime factors of a;, so for large i the prime factorization
is the same, and a;,a;,, differ only by a unit. In the language of ideals,
any increasing sequence of principal ideals (a;) C --- C (a;) C --- must
terminate in the sense that for all large ¢ we have (a;) = (a;+1). This
condition is called the ascending chain condition on principal ideals.

Furthermore, if R is factorial then the irreducible elements of R are
prime, that is, they generate prime ideals. (Proof: Suppose R is factorial
and r is irreducible. If st € (r), then st = ru for some element u, and by
the uniqueness of factorizations, r must divide one of s and t.)

Conversely, if R has ascending chain condition on principal ideals, then
any element of R can be factored into a product of irreducible elements: For
suppose a; € R admits no factorization into irreducibles (and is not a unit).
As a; is not irreducible, it can be factored as bc with neither b nor ¢ a unit.
Clearly not both b and ¢ can have factorizations into irreducible elements,
or putting them together would result in a factorization of a,. Say b admits
no factorization into irreducibles. Setting a; = b, we have (a;) G (a2).
Repeating the argument inductively, we get a nonterminating sequence of
principal ideals (a1) G (a2) G - - -, contradicting our assumption.

If, in addition, every irreducible element of R is prime, then factorization
into products of irreducible elements is unique, so R is factorial. The key
step in the proof is to show that if st = ru € R with r irreducible, then r
divides one of s and t. Since (r) is prime, we must have s € (r) or t € (r),
which amounts to what we want to prove. The remainder of the proof is
exactly as in the case of the integers.

Using these ideas, it is easy to show, for example, that any principal ideal
domain R is factorial: First, if (a;) C -+ C (a;) C -+ is an ascending chain
of ideals, then the set U;(a;) is again an ideal. Since R is a principal ideal
domain, it can be generated by one element b € U;(a;). Of course, then
b € (a;) for some i, and it follows that (a;) = (@;;1) = -+ . This proves the
ascending chain condition on principal ideals.

To show that an irreducible element r € R is prime, note that the ideal (r)
is a proper ideal, so (by Zorn’s lemma or by the ascending chain condition
just established) we may find a maximal ideal P containing r. Since P is
principal, we may write P = (p) for some p € R, and we see that r = sp for
some s € R. Since r is irreducible, s is a unit, so (r) = P. Since maximal
ideals are prime, this shows that r is prime.
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The polynomial ring in any number of variables over a field or, indeed,
over any factorial ring, is again factorial. This is proved in most elementary
texts using a result called Gauss’ lemma. See, for example, Exercise 3.4.

0.3 Modules

If R is a ring, then an R-module M is an abelian group with an action
of R, that is, a map R x M — M, written (r,m) — rm, satisfying for all
r,s € Rand m,n € M:

r(sm) = (rs)m (associativity)
rlm+n) = rm+1mn
(r+s)ym = rm+ sm (distributivity, or bilinearity)
Im = m (identity).

The R-modules we shall be most interested in are the ideals I and the
corresponding factor rings R/I; but many others intervene in the study of
these.

If M is an R-module, we shall write ann M for the annihilator of M:;
that is,

ann M = {r € R|rM = 0}.
For example, ann R/I = I.

It is convenient to generalize this relation. If I and J are ideals of R, we
write (I : J) = {f € R|fJ C I} for the ideal quotient. (The notation is
supposed to suggest division, which it represents in case I = (i), J = (ij),
and i is a nonzerodivisor.) It is useful to extend this notion to submodules
M, N of an R-module P, and write (M : N)={f € R|fNC M} IfICR
is an ideal and M C P is a submodule, then we occasionally write (M : I)
or (M :p I) for the submodule {p € P|Ip C M}.

A homomorphism (or map) of R-modules is a homomorphism of abelian
groups that preserves the action of R. We say that a homomorphism is a
monomorphism (or an epimorphism or an isomorphism) if it is an
injection (or surjection or bijection) of the underlying sets. The inverse map
to an isomorphism is automatically a homomorphism.

If M and N are R-modules, then the direct sum of M and N is the
module M & N = {(m,n)lm € M,n € N} with the module structure
r(m,n) = (rm,rn). There are natural inclusion and projection maps M C
M @& N and M & N — M given by m — (m,0) and (m,n) — m (and
similarly for ). These maps are enough to identify a direct sum: That
is, M is a direct summand of a module P iff there are homomorphisms
a: M — P and o : P — M whose composition ga is the identity map of
M; then P = M@ (ker o). The simplest modules are the direct sums of
copies of R: These are called free R-modules.

Similar considerations hold for the direct sum of any finite set of modules,
but for infinite sets of modules {M,;};,c; we must distinguish the direct
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product II; M;, whose elements are tuples (m;);cs, from the direct sum,
@;M; C II;M;, consisting of those tuples (m;) such that all but finitely
many m; are 0.

A free R-module is a module that is isomorphic to a direct sum of
copies of R. We usually write R™ for the direct sum of n copies of R,
and think of it as a free module with a given basis, namely the set of
“coordinate vectors” (1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1). If M is
a finitely generated free module, that is M = R" for some n, then the
number n is an invariant of M (in the case when R is a field this is just
the dimension of M as a vector space). It is called the rank of M. For a
somewhat unusual proof that the rank is well defined, see Corollary 4.5.

If A, B, and C are R-modules, and o : A — B, 8 : B — C are homo-
morphisms, then a pair of homomorphisms

A& B¢

is exact if the image of « is equal to ker 3, the kernel of 3. In general, a
sequence of maps between modules like

is exact if each pair of consecutive maps is exact.
For example, a short exact sequence is a sequence of maps

0-ASB2C =0

such that each pair of consecutive maps is exact; that is, such that « is
an injection, (3 is a surjection, and the image of « is the kernel of 3. The
short exact sequence is split iff there is a homomorphism 7 : C — B such
that A7 is the identity map of C; then B = A @ C. (Reason: If a map 7
with the desired property exists, then im 7, the image of 7, is disjoint from
the image of a, and together they generate B, so B = a(A) @ 7(C). But
a(A) =2 Aand 7(C) = C.) Equivalently, the sequence is split iff there exists
a homomorphism o : B — A such that o« is the identity map of A. (Reason
for the equivalence: Given 7 such that 87 = 1,set 0’ =1—-73: B — B.
Since B0’ = 3—B718 = 3—18 = 0, the image of ¢’ is contained in the image
of a, so we may factor ¢’ as 0/ = ao for some map o : B — A. For any
a € A we have a(ca(a)) = ac(ala)) = d'ala) = ala) — 78a(a) = a(a),
and since « is an injection, this implies ca(a) = a so o« is the identity of
A. Conversely, given a map ¢ with ca = 1, a dual path leads back to a
suitable map 7.)

Here are three common examples that may help make these things clear:

1. If M; and M, are submodules of a module M, and M; + M, C M is
the submodule they generated, then the two inclusion maps combine
to give a map M; N My, — M, & M,, and with the “difference” map
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M, & My — M, + M, given by (my, ma) — m; —ma, this gives a short
exact sequence

00— M NMy, > M &My — M + My, — 0,

as the reader may easily check. The case of vector spaces is probably
already familiar, and this case is no different.

. If Risaring, I C R an ideal, and a € R an element, then R/I maps
onto R/(I + (a)). The kernel is generated by the class of a modulo
I. Since the kernel is generated by just one element, it has the form
R/J for some ideal J; in fact, J is the annihilator of @ modulo I, that
is, J = (I : a). Putting this together, we see that there is an exact
sequence

0— R/(I:a) 5 R/I— R/(I+(a))— 0,

where the element a over the left-hand map indicates that it is mul-
tiplication by a.

. One way to specify an R-module is by giving “gencrators and rela-
tions”: For example, if we say that a module has one generator g and
relations fig = fog = --- = fng = 0, for some elements f1,..., f, € R,
then the module is R/(f1,..., fn)- Here is an exact sequence view:

An element m of a module M corresponds to a homomorphism from
R to M, sending 1 to m. Thus, giving a set of elements {m, }oca € M
corresponds to giving a homomorphism ¢ from a direct sum G := R4
of copies of R, indexed by A, to M, sending the o!” basis element to
m,. If the m, generate M, then ¢ is a surjection.

The relations on the m, are the same as elements of the kernel of
the map G — M. A set of relations {ng}sep € G corresponds to a
homomorphism ¢ from a free module F := RZ to the kernel of ¢.
The m, generate M and the n; generate the kernel —that is, M may
be described as the module with generators {m,}.c4 and relations
{ns}sep —iff the sequence

F—-G—->M-—0

is exact. This sequence is usually called a free presentation of M.
In case A and B are finite sets, so that each of F' and G is a finitely
generated free module over R, it is called a finite free presentation.
A module M is finitely generated if there exists a finite set of
elements that generate M, and finitely presented if it has a finite
free presentation.
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Basic Constructions
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Roots of Commutative Algebra

This chapter describes the origins of commutative algebra and follows its
development through the landmark papers published by David Hilbert
in 1890 and 1893. Three major strands of nineteenth-century activity lie
behind commutative algebra and are still its primary fields of application:
number theory, algebraic geometry (the algebraic aspect really begins with
Riemann’s “function theory”), and invariant theory. We shall say a little
about developments in each.

Advice for the beginner: A complete understanding of this chapter
would require more background than is necessary for the rest of this book,
and you should feel free to read lightly over the more difficult parts. Most of
the topics treated here are taken up again later, with greater generality and
in greater detail. In order to go on, you need to master only Theorem 1.2
and its Corollaries 1.3, 1.4, the definition of a graded ring in Section 1.5,
and Theorem 1.11, the fact that the Hilbert function becomes a polynomial
(this last is not actually needed until Chapter 12).

1.1 Number Theory

Interest in the objects that we now associate with commutative algebra
probably first arose in number theory. After Z,Q,R, and C, perhaps
the very first ring of interest was the ring of “Gaussian integers” Zli],
with i> = —1, introduced and exploited by Gauss in his 1828 paper on
biquadratic residues. Gauss proved that the elements of Z[i] admit unique
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factorization into prime elements, just as is the case for ordinary integers,
and he exploited this unique factorization to prove results about the ordi-
nary numbers.

Number theorists soon appreciated how useful it was to adjoin solu-
tions of polynomial equations to Z, and they found that in many ways
the enlarged rings behaved much like Z itself. Euler, Gauss, Dirichlet,
and Kummer all used this idea for the rings Z[(], with ¢ a root of unity,
to prove some special cases of Fermat’s last theorem (the insolubility in
integers of the equation x" + y" = 2"). Around 1847, Lamé thought he
had a proof in general based on this method, but Liouville was quick to
point out problems. Kummer, who already knew the error, did succeed in
proving the result for n < 100 in 1851. The idea behind these proofs is
rather obvious, and obviously attractive: If ¢ is an nth root of —1, then
" +y" = (2 — ¢¥*ly). If Z[¢] has unique factorization into primes, it is
profitable to compare the factorization of 2" +y" as I1;(z — (**'y) with the
factorization as z". It is a plausible conjecture that Fermat’s unreported
“proof” (the one that was too long to fit in the margin of his copy of
Diophantus’ book) was also based on this idea.

The problem with these proofs is that for most n the ring Z[(] does
not have unique factorization (the first example is n = 23). The search
for some generalization of unique factorization that might be used instead
guided a large proportion of early commutative algebra. Most significant
for modern algebra is surely Dedekind’s introduction of ideals of a ring; the
name comes from the view that they represent “ideal” (that is to say, “not
real”) elements of the ring. The search for unique factorization culminated
in two major theories, which we shall describe later: Dedekind’s unique
factorization of ideals into prime ideals in the rings we now call Dedekind
domains; and Kronecker’s theory of polynomial rings and Lasker’s theory
of primary decomposition in them.

Dedekind’s idea was to represent an element r € R by the ideal (r) of
its multiples; arbitrary ideals might thus be regarded as ideal elements.
The ideal () determines the element r only up to multiples by units u of
R. Since “unique prime factorization” is only unique up to unit multiples
anyway, this is just right for generalizing prime factorization. Dedekind
sought and found conditions under which a ring has unique factorization
of ideals into prime ideals—he showed that this occurs for the ring of all
integers in any number field. Dedekind made these definitions, together
with the definition of a ring itself, in a famous supplement to later editions
(after 1871) of Dirichlet’s book on number theory.

Dedekind’s ideas restored a kind of unique prime factorization --of ide-
als in terms of prime ideals --to the rings with which Kummer was deal-
ing; unfortunately, they did not rescue the proof of Fermat’s last theorem.
(Perhaps this was fortunate after all, given the immense amount of mathe-
matics that this area of number theory has spawned.) The rings for which
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Dedekind’s theory works are now called Dedekind domains in his honor;
they are treated in Chapter 11 of this book.

Around the same time, Kronecker (who was incidentally Kummer’s stu-
dent; Dedekind had been Gauss’ student) took a step that led to a differ-
ent generalization of unique factorization. In his memoir [1881], he put the
notion of “adjoining a root of a polynomial equation f(x) = 0 to a field
k” on a firm footing by introducing the idea of the polynomial ring k[z]
in an “indeterminate” = over k; the desired ring is then k[z|/(f(x)), and
the image of z in this ring is the desired root. He introduced a theory for
these polynomial rings equivalent to Dedekind’s theory of ideals. What we
would call an ideal in the polynomial ring, he called a “modular system” or
“module.” (The origin of the term is an older usage, which survives today
in statements such as, “7 is congruent to 3 modulo 4.”) There is no way to
factorize ideals in polynomial rings multiplicatively, as in Dedekind’s the-
ory, but Lasker [1905] showed how to generalize unique factorization into
primary decomposition (treated in Chapter 3 of this book).

Both Dedekind’s and Lasker’s theories were thoroughly reformulated and
axiomatized by Emmy Noether in the 1920s, initiating the modern devel-
opment of commutative algebra.

1.2 Algebraic Curves and Function Theory

L’algebre n’est qu’une géométrie écrite; la géométrie n’est
qu’une algebre figurée.

(Algebra is but written geometry; geometry is but drawn alge-
bra.)

Sophie Germain (1776-1831)

The study of algebraic curves in the early nineteenth century is in ret-
rospect very closely related to commutative algebra, but the connection
hardly began to appear until the 1870s and 1880s. Conics had of course
been studied since antiquity. The work of Fermat and Descartes on coordi-
nate geometry made it possible to speak of the (real) plane curves of any
degree represented by algebraic equations, and these were studied intensely
in the eighteenth century (for example, Isaac Newton classified real plane
cubics (curves in R? defined by the vanishing of a polynomial f(z,y) of
degree 3) into families—there are more than 90; and MacLaurin showed in
1720 that a plane curve of degree d could have at most (d — 1)(d — 2)/2
nodes), along with some curves and surfaces in three-space. However, the
ideas necessary for associating rings to these objects were entirely absent.
Indeed, until the introduction of complex numbers by Gauss and others,
early in the nineteenth century, a close connection of the kind explained
later in this chapter was out of reach.
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About 1860 the work of Abel, Jacobi, and Riemann made an entirely
new view of algebraic curves possible. Clebsch, around 1864, was the first
to apply Riemann’s ideas directly to plane curves. The new emphasis was
mostly on the field of meromorphic functions on a curve. Kronecker, Weier-
strass, Dedekind, and Weber discovered in the period from 1875 to 1882
that many of the recently developed algebraic techniques for handling num-
ber fields could be applied to these geometrically defined fields; they pio-
neered what was then called the “arithmetic approach to function theory.”
This approach continued to develop through the end of the nineteenth cen-
tury and is well represented by Hensel and Landsberg [1902]. The work of
Dedekind and Weber might have been described at the time as the applica-
tion of ideas from number theory to problems from analysis. It seems now
to be the real beginning of the interaction of geometry with commutative
algebra, the central theme of this book.

1.3 Invariant Theory

As all roads lead to Rome so I find in my own case at least
that all algebraic inquiries, sooner or later, end at the Capitol
of modern algebra over whose shining portal is inscribed the
Theory Of Invariants.

-—J.J. Sylvester [1864, p. 380]

The work on ideals done in the 1880s, both in number-theoretic and
function-theoretic contexts, seems a trifle quaint to modern readers; but the
work of Hilbert just a few years later seems quite modern. In two extraordi-
nary papers [1890, 1893|, which are still a pleasure to read, Hilbert greatly
advanced the theory of ideals in polynomial rings. Hilbert’s motivation
comes from a subject we have not yet mentioned: the theory of invariants.
We shall sketch a little of this theory. For systematic modern accounts, see
Fogarty [1969], Kraft [1985], and Sturmfels [1992].

Especially after the introduction of projective coordinates by Pliicker
around 1830, people became interested in the geometric properties of plane
curves that were invariant under certain classes of transformations. One
way to express such an invariant property is to give some sort of function
that associates to a geometric configuration a number that is independent
of the choice of coordinates.

As time went on, mathematicians realized that the invariance under
choice of coordinates was really the invariance under an action of a group,
typically the special linear group SL, (k) of n x n matrices of determinant 1
with entries in k, or the general linear group GL, (k) of all invertible matri-
ces with entries in R, or a finite group. The functions studied were mostly
polynomial functions of quantities defining the geometric objects, such as
the coefficients of the equations of algebraic plane curves. Thus the general
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problem of invariant theory came to be the following: Given a “nice” action
of a group G as automorphisms of a polynomial ring S = k[z, ..., z,], find
the elements of S that are left invariant by G. The set of invariant elements,
written S€, forms a subalgebra of S. In many interesting cases people saw
that they could find a finite set of invariants generating the ring S¢, and
in this way they could describe all the invariants in finite terms.

Invariant theory has always been a subject of examples, and the following
is a central one.

Example 1.1. Let S = k[zy,...,z,;] be the polynomial ring, and let ¥ be
the symmetric group of all permutations of {1,...,r}. The group ¥ acts
on S as follows: If 0 € ¥ and f € S, we define

(*) J(f)(:cl,...,:cr) = f(ngl(l),...jflja—l(r)).

The group ¥ then acts as a group of k-algebra automorphisms of S. The
set of invariants

§% = {f € Sla(f) =},
which in this case is called the ring of symmetric functions, is therefore a
subring of S. It obviously contains the elementary symmetric functions
fl(xla"'V/L.T) =z 4+,
oz, 2p) = Z TiZj,

1<i<j<r
ff'(x11~~-,1;r) =X X T
In fact, S is generated as a k-algebra by f1,..., f., and every symmetric

function can be written uniquely as a polynomial in the f; (see Exercise 1.6
for a proof). Thus S* is isomorphic to a polynomial ring k[y,...,y.] by
the map sending y; to f;.

A great deal of late nineteenth-century work was devoted to the problem
of finding finite systems of generators for rings of invariants in similarly
explicit cases. For example, if we let F = zgs? + 2157 1t + ... + z4t? be
the “general” form of degree d in variables s,t, then for a,b,c,d € C a
substitution s = as’ + bt’, t = cs' + dt’ leads to an expression of F in
terms of monomials in ¢’ and ¢’ with new coefficients xj, ...,z that are
linear combinations of zg,...,z4. Restricting to invertible substitutions of
this type with determinant 1, we get an action of the group SLy(C) on
the polynomial ring Cl[zy, ..., z4]. The “Problem of invariants of binary
forms of degree d” is to find the invariants of this action. This remains a
hard problem: Systems of generators are still not known, when d is large.
The fundamental problem of invariant theory was the problem of the
existence of finite systems of generators.
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Hilbert solved this problem in a spectacular series of papers from 1888
to 1893, showing that the ring of invariants is finitely generated in a wide
range of cases, including the ones above.! The proof that we shall soon
give parallels Hilbert’s, though we have modernized it slightly. Hilbert’s
proof is quite nonconstructive and is said to have provoked Paul Gordan,
the reigning “king of invariants,” to remark: “This is not mathematics
but theology!” Hilbert returned to the problem in a later paper [1893]
and gave a proof that is constructive (see Sturmfels [1993] for a modern
discussion). Gordan, for his part, was quick to understand and appreci-
ate Hilbert’s new idea; he simplified Hilbert’s nonconstructive proof in
a paper of his own, and remarked, “I have convinced myself that The-
ology also has its advantages.” (Nachrichten Koénig. Ges. der Wiss. zu
Gott., 1899, 240-242; the story is from Kline [1972], p. 930. We shall give
what is essentially Gordan’s proof in Exercise 15.15.) Hilbert’s work is
often said to have killed invariant theory by solving its central problem.
But mathematics seems to be immortal. After a period of relatively lit-
tle activity, invariant theory has enjoyed a resurgence in our day, as the
books quoted above indicate; and it has a whole new branch, geomet-
ric invariant theory, of which we shall say a little after we introduce the
Nullstellensatz.

Aside from the invariant theory, Hilbert proved four major results in the
papers of 1890 and 1893: the basis theorem (which leads directly to the
finite generation of invariants), the “theorem of zeros” (traditionally called
by its German name, the Nullstellensatz), the polynomial nature of what
we call the Hilbert function, and the syzygy theorem. These results have
played an enormous role in determining the shape of commutative algebra.
There seems no better introduction to the subject than to discuss them in
turn.

1.4 The Basis Theorem

The first step in Hilbert’s proof of the finiteness of invariants was the Basis
Theorem: If R is a polynomial ring in finitely many variables over a field or
over the ring of integers, then every ideal in R can be generated by finitely

'Hilbert remained interested in the problem afterward. In 1900 he gave an
address to the International Congress of Mathematicians containing a list of prob-
lems that has since become quite celebrated. The fourteenth problem asks whether
there is a finite basis for the invariants of any linear group acting on a polynomial
ring by linear change of coordinates, or for still more general subrings. The first
counterexample was found by Nagata in 1959. But a closely related problem first
studied by Zariski remains central. Perhaps its most interesting avatar is the prob-
lemn of the “finite generation of the canonical ring of a variety of general type,”
whose solution in dimension three was one of the key steps in the work for which
Mori won a Fields medal in 1986.


moghaddam
Polygon


1.4 The Basis Theorem 27

many elements (the word “basis” at the time simply meant “generators”).
This key property is now named not after Hilbert, but after Emmy Noether,
who realized its full importance. (Interestingly, Noether was a student of
Gordan.) Noether showed in [1921] how to use the property as a basic
axiom in commutative algebra. In particular, she showed that results such
as Lasker’s “primary decomposition,” which had seemed to rest on the
innermost nature of polynomial rings, could be derived very simply with
just this axiom. See Exercise 1.2 for a central example.

We say, then, that a ring R is Noetherian if every ideal of R is finitely
generated; it is easy to see that this is equivalent to the ascending chain
condition on ideals of R, which says that every strictly ascending chain
of ideals must terminate. (Proof: If I C R is an ideal, then by successively
choosing elements f; of I, we get a chain of ideals (f1) C (f1, f2) C -+ - that
can be made to ascend forever unless one of them is equal to 7. Thus if R has
ascending chain condition, then [ is finitely generated. Conversely, if I; g
Iy ;Ct -+ i8 a strictly ascending chain of ideals of R, and the ideal U;I; has a
finite set of generators, then these generators must all be contained in one
of the I;; and thus I; = I, and the ascending chain terminates at I;.) The
ascending chain condition may be restated by saying that every collection
of ideals in R has a maximal element. See Exercise 1.1 for Hilbert’s original
statement.

For example, any field is Noetherian (the only ideals are 0 and the whole
field) and the ring Z of integers is Noetherian (each ideal is generated by
a single integer, the greatest common divisor of the elements of the ideal).
Hilbert originally showed that a polynomial ring in n variables over a field
or over the ring of integers is Noetherian. The modern version is somewhat
more general. (Hilbert’s version is contained in Corollary 1.3.)

Theorem 1.2 (Hilbert Basis Theorem). If a ring R is Noetherian, then
the polynomial ring R[x] is Noetherian.

The following notion will be useful in the proof and later: If f = a, 2" +
an_12" '+ -+ + ay € R[z], with a, # 0, we define the initial term of f
to be a,z™, and we define the initial coefficient of f to be a,.

Proof. Let I C R[z] be an ideal; we shall show that [ is finitely generated.
Choose a sequence of elements f1, fa,... € I as follows: Let f; be a nonzero
element of least degree in I. For i > 1, if (f1,..., fi) # I, then choose fi,
to be an element of least degree among those in I but not in (fy,..., fi).
If (f1,...,fi) = I, stop choosing elements.

Let a; be the initial coefficient of f;. Since R is Noetherian, the ideal
J = (a1, as,...) of all the a; produced is finitely generated. We may choose
a set of generators from among the a; themselves. Let m be the first integer
such that ay,...,a, generate J. We claim that [ = (f1,..., fn).
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In the contrary case, our process chose an element f,,,1. We may write
Ami1 = Z;-n:l uja;, for some u; € R. Since the degree of f,,,) is at least as
great as the degree of any of the fi,..., f,,, we may define a polynomial

g € R having the same degree and initial term as f,,;1 by the formula
m
9= Z ujfjxdengH_degf) € (flv cee af"l)'
j=1

The difference f,,.1 — g is in I but not in (fi,..., fn), and has degree
strictly less than the degree of fy,11. This contradicts the choice of f,,+1 as
having minimal degree. The contradiction establishes our claim. O

The basis theorem can be applied to any finitely generated algebra.

Corollary 1.3. Any homomorphic image of a Noetherian ring is Noethe-
rian. Furthermore, if Ry is a Noetherian ring, and R 1s a finitely generated
algebra over Ry, then R is Noetherian.

Proof. Given an ideal [ in R/J, with R Noetherian, the preimage of I in
R is finitely generated, and the images of its generators generate I.

Since R is a finitely generated algebra over R, R is a homomorphic image
of S := Ry[xy,...,z,] for some r. Using Theorem 1.2 and induction on 7,
we see that S is Noetherian. Since a homomorphic image of a Noetherian
ring is Noetherian, we are done. O

We shall need a more general definition in the sequel, and we make it now:
An R-module M is Noetherian if every submodule of N is finitely gener-
ated. By the same argument as above, this is equivalent to the condition
that M has ascending chain condition on submodules, or again that every
collection of submodules of M has a maximal element. The importance of
Noetherian modules comes from the following observation:

Proposition 1.4. If R is a Noetherian ring and M 1is a finitely generated
R-module, then M is Noetherian.

Proof. Suppose that M is generated by f1,..., fi, and let N be a submodule.
We shall show that N is finitely generated by induction on ¢.

If¢t = 1, then the map R — M sending 1 to f; is surjective. The preimage
of N is an ideal, which is finitely generated since R is Noetherian. The
images of its generators generate N.

Now suppose t > 1. The image N of N in M/Rf, is finitely generated by
induction. Let gi,. .., g; be elements of N whose images generate N. Since
Rfi € M is generated by one element, its submodule N N Rf; is finitely
generated, say by hy,..., h,.

We shall show that the elements h;,...,h, and gi,...,gs together gen-
erate N: Given n € N, the image of n in N is a linear combination of the
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images of the g;; so subtracting the corresponding linear combination of
the g; from n itself, we get an element of N N Rf;, that is a linear combi-
nation of the h; by hypothesis. This shows that n is a linear combination
of the g; and h;. O

1.4.1 Finite Generation of Invariants

Hilbert’s original application, the existence of finite bases of invariants, is
a good illustration of the power of the basis theorem. We shall abstract
what we need about the rings of invariants Hilbert considered, but for the
interested reader, here are some details.

Let k& be a field of characteristic 0 (Hilbert would have taken C) and let
G be a finite group or one of the “linear groups” SL,(k) or GL,(k). The
ideas we shall present can be generalized to a much wider class of groups
and fields, and the type of actions treated can be greatly extended, but the
cases we shall treat remain central examples. See Kraft [1985].

Suppose that S = k[z1,...,z,]| is a polynomial ring, and that G is rep-
resented as a group of linear transformations of the vector space of linear
forms of S —that is, we are given a homomorphism of groups G — GL,(k),
where we regard the latter group as the group of invertible linear transfor-
mations of the vector space with basis z1,...,z,. If G is SL,(k) or GL,(k),
then we restrict attention to the cases where the representation is rational
in the following sense: Regarding elements of G as matrices, we require that
the matrix by which an element g € G acts has entries that are rational
functions in the entries of g. We extend the action of an element g € G
to all of S by setting g(f)(x1,...,z,) = f(g~Hz1),...,97(z,)), and G
becomes in this way a group of automorphisms of S. An invariant of GG is a
polynomial left invariant by each element of G, and the set S¢ of invariants
is a subring of S.

Hilbert used two basic facts about the ring of invariants R = S¢ in
the cases he considered. First, R may be written as a direct sum of the
vector spaces R; consisting of homogeneous forms of degree i that are
invariant under G. This situation will occur so frequently, and plays such
an important part in commutative algebra generally, that we pause here to
abstract it.

1.5 Graded Rings

A graded ring is a ring R together with a direct sum decomposition
R=R;®R ®Ry®--- as abelian groups,

such that
RiRj C Ri+j for Z,] > 0.
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A homogeneous element of R is simply an element of one of the groups
R;, and a homogeneous ideal of R is an ideal that is generated by homo-
geneous elements. (Note that since the sum of homogeneous elements of
different degrees is not homogeneous, homogeneous ideals contain lots of
nonhomogeneous elements.) If f € R, there is a unique expression for f of
the form

f=fo+fi+--- with fie R;and f; =0 for j;

the f; are called the homogeneous components of f. (One can enlarge
these definitions to allow components of negative degrees: We shall some-
times call the result a Z-graded ring. More generally, one can imagine a
ring graded by any semigroup with identity; we shall occasionally meet
Z"-graded rings in the sequel, and Z/(2)-graded rings are also important.)
Although it is the most important ideal of R, the ideal consisting of all
elements of degree greater than 0 is called the irrelevant ideal (the rea-
son will become clear when we come to the connection with projective
geometry), written R, .

The simplest example of a graded ring is the ring of polynomials S =
klzi,...,z.] graded by degree: that is, with grading

S=S &5 -,

where Sy is the vector space of homogeneous polynomials (also called forms)
of degree d.

Suppose that I is a homogeneous ideal of a graded ring R, and I is
generated by homogeneous elements fi,..., f,. If f € I is any homogeneous
element, then we can write f = > g; f; with each g; homogeneous of degree
deg g; = deg f—deg f;. Indeed, if f = )_ G, f; is any expression with G; € R,
then we may take g; to be the homogeneous component of G; of degree
equal to deg f — deg f;; all the other terms in the sum must have cancelled
anyway. This apparently innocuous fact about graded rings is actually quite
powerful. The ungraded situation is far more complicated; see the remark
after Corollary 1.7.

The second fact about invariants that we shall use is that, in the cases
we are treating, there is a map of S¢-modules ¢ : § — S¢, which preserves
degrees and takes each element of S to itself. In case G is a finite group,
this is easy: If v is the number of elements in G, then because k has char-
acteristic 0, v has an inverse 1/y € k, and the “averaging” map ¢ taking
f €S top(f)=01/v)> ,cqo(f) has the desired properties. In the case
where G = GL, (k) or SL,(k), acting rationally, ¢ may be constructed by
replacing the sum above with an integral; see Kraft [1985]. Hilbert him-
self did not know the existence of the map ¢ in the case of SL,(k) and
GL,(k), and used a map with a weaker property, “Cayley’s Q-process.”
See Sturmfels [1993, Chapter 4.3].

Hilbert’s finiteness result follows at once by taking R = S¢ in the fol-
lowing:
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Corollary 1.5. Let k be a field, and let S = k[x1,...,x,] be a polynomial
ring graded by degree. Let R be a k-subalgebra of S. If R is a summand of
S, in the sense that there is a map of R-modules ¢ : S — R that preserves
degrees and takes each element of R to itself, then R is a finitely generated
k-algebra.

Proof. Let m C R be the ideal generated by the homogeneous elements
of R of strictly positive degree. Since S is Noetherian, the ideal mS has a
finite set of generators, which may be chosen to be homogeneous elements
fi, ..., fs of m. We shall show that these elements generate R as a k-algebra.

To do this, let R’ be the k-subalgebra of S generated by f,..., fs, and
suppose f € R. We shall show that f € R’ by induction on the degree of
f. To start the induction, note that if degree f = 0, then f € £k C R/, as
claimed.

Now suppose deg f > 0, so that f € m. Since the f; generate mS as an
ideal of S, we may write f = >_ g; f;, where each g; is a homogeneous form
of degree

deg g; = deg f — deg f; < deg f.

Applying ¢, and using the fact that f and the f; are in R, we get f =
> (g fi. Since ©(g;) has lower degree than f, we have p(g;) € R’ by
induction. Thus f € R’ as required. O

For an analysis of the idea behind this surprising proof, see Exercises 1.4
and 1.5.

1.6 Algebra and Geometry: The Nullstellensatz

Gauss’ fundamental theorem of algebra establishes the basic link bet-
ween algebra and geometry: It says that a polynomial in one variable over
C, an algebra object, is determined up to a scalar factor by the set of its
roots (with multiplicities), a geometric object. Hilbert’s Nullstellensatz
extends this link to certain ideals of polynomials in many variables. It is
a formal consequence of the fundamental theorem of algebra in the sense
that it holds for any algebraically closed field. We shall now sketch this very
important connection. (For a more detailed treatment see Fulton [1969] or
Cox, Little, and O’Shea [1992].)

A polynomial f € k[z,...,x,] with coefficients in a field k& defines a
function, f : k™ — k; the value of f at a point (a1,...,a,) € k" is obtained
by substituting the a; for the z; in f. The function defined by f is called a
polynomial function on the n-dimensional vector space k" over k, with
values in k. If k is infinite, then no polynomial function other than 0 can
vanish identically on k™. (Reason: The case of one variable is the statement
that a polynomial in one variable can have only finitely many roots, and
follows from Euclid’s algorithm for division. In the general case we think
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of a nonzero polynomial f(z1,...,Z,) in n variables as a polynomial in
n — 1 variables with coefficients that are polynomials in one variable. By
the preceding case we can specialize this one variable to a scalar in such a
way that the polynomial remains nonzero, and we are done by induction
on the number of variables.)

If follows that if k£ is infinite, then distinct polynomials define distinct
functions. Thus we may regard the polynomial ring k[z,,. .., z,] as the ring
of polynomial functions on k™. Viewed with its ring of polynomial functions,
k™ is usually called affine n-space over k, written A"(k) or simply A™.
(If k£ is not algebraically closed, it is useful and customary in algebraic
geometry to make a distinction between A™(k) and k"; see Eisenbud and
Harris [1992]. This will not concern us here.)

Given a subset I C k[z1,...,xy], we define a corresponding algebraic
subset of k" to be

Z(I) = {(a1,...,a,) € E"|f(a1,...,a,) =0 forall f eI}

Such algebraic sets are sometimes called an affine algebraic sets to dis-
tinguish them from the “projective” objects we shall define later.

From the definition of the algebraic subset Z(I), it is clear that I may
be replaced by the ideal that it generates in k[zy, ..., z,] without changing
Z(I).
If X = Z(I) is an algebraic set, then an algebraic subset ¥ Cc X
is a set of the form Y = Z(J) that happens to be contained in X. An
algebraic set is called irreducible if it is not the union to two smaller
algebraic subsets. Irreducible algebraic sets are called algebraic varieties
(this name is used by some authors for all algebraic sets, but we shall
maintain the distinction).

If k = Ror k = C, then £" is naturally a topological space (as a product
of copies of k), and an algebraic subset X C AT inherits the subspace
topology, called the classical topology. But there is another, coarser,
topology on X that is defined over any field. Polynomial functions on X
will play the role of continuous functions, even when the fields we are
working over have no topology, and by analogy with the continuous case it
is natural to think of an algebraic subset Y as a closed subset of X. Since
we obviously have N, Z(J;) = Z(U;J;), the intersection of any collection of
algebraic subsets is algebraic. Furthermore, if we define IT7'_; J; to be the set
consisting of all products of one function from each J;, then U, Z(J;) =
Z(I1?_, J;), so any finite union of algebraic subsets is algebraic. Thus we may
define a topology on X by taking the closed sets to be the algebraic subsets
of X. This topology is called the Zariski topology in honor of Oscar
Zariski, one of the pioneers of work with algebraic varieties over arbitrary
fields. The Zariski topology is much coarser than the classical topology
when & = R or C, but it is still quite useful. Some additional information
and an important extension of the idea will be found in Exercise 1.24.
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There is a sort of inverse to the construction of an algebraic set: Given
any set X C k", we define

I(X)=A{f € klz1,...,z)|f(a1,...,a,) =0 forall (ai,....a,) € X}.

It is clear that I(X) is an ideal. A polynomial function (or regular
function) on X is by definition the restriction of a polynomial function
on k" to X. Identifying two polynomial functions if they agree at all the
points of X, we get the coordinate ring A(X) of X (so called because it
is the k-algebra of functions on X generated by the “coordinate functions”
z;). Clearly we have A(X) = k[zy,...,z,)/I(X).

Not every homomorphic image A = k[z,...,z,]/] could be the coor-
dinate ring of a set. For suppose an element f € A satisfies f* = 0. If f
were a function on some set X, then because evaluation at a point p € X
is a ring homomorphism, we would have 0 = f%(p) = f(p)?; that is, f(p) is
nilpotent for all p € X. But the values of f are elements of k, a field; so
they are all 0, and f itself is the zero element of A(X). In general, a ring is
said to be reduced if its only nilpotent element is 0; we have just shown
that A(X) is reduced.

It is easy to formulate the corresponding condition on I(X): If R is a
ring and I C R is an ideal, then the set

radl :={f € R|f™ € I for some integer m}

is an ideal. (Reason: If f™ and ¢ = 0, then (af + bg)"*" = 0, since it
is a sum of polynomials each divisible by either f" or ¢™.) It is called the
radical of /. An ideal [ is called a radical ideal if I = rad . It follows
at once that R/I is a reduced ring iff I is a radical ideal. Thus, the ideals
I(X) are all radical ideals.

Not even every radical ideal in S can occur as I(X): For example, the
ideal I = (z° 4+ 1) C R|z] is radical because R[x]/(x? + 1) 2 C is reduced.
But Z(I) =, so I is not of the form I(X) for any X. If k is algebraically
closed, however, the situation is better. For example, every polynomial
in one variable is a product of linear factors, and a polynomial f € k[z]
generates a radical ideal iff it has no multiple roots. In this case if X is the
set of roots of f, then I(X) = (f). Hilbert’s Nullstellensatz [1893] extends
this to polynomial rings with many variables.

Theorem 1.6 (Nullstellensatz). Let k be an algebraically closed field. If
I Cklxy,...,x,| is an ideal, then
I(Z(I)) =rad I

Thus, the correspondences I +— Z(I) and X — I(X) induce a bijection
between the collection of algebraic subsets of A} = k™ and radical ideals of
klzy, ..., xn).

We shall later give five different proofs of forms of the Nullstellensatz. The
strongest and most general version is that given in Theorem 4.19. Three



34 1. Roots of Commutative Algebra

more proofs are given in the exercises to Chapter 4, and the fifth is given in
Chapter 13. It is worth emphasizing at the outset that the only difficult part
of the Nullstellensatz as we have stated it here is the identification of ideals
of the form 7(X) as being exactly the radical ideals; see Exercise 1.8.

We now present a sequence of remarkable consequences of the Nullstel-
lensatz, Corollaries 1.7-1.10. (In fact, each is a statement from which the
Nullstellensatz could be easily deduced.) The first gives a remarkable cri-
terion for the solvability of a family of polynomial equations.

Corollary 1.7. A system of polynomial equations

fl(.’ll‘l,...,.’l)n) =0
fm(xl,...,xn) =0

over an algebraically closed field k has no solution in k™ iff 1 can be
expressed as a linear combination

1= sz'fi

with polynomial coefficients p;.

Proof. By the Nullstellensatz, if Z(f1,..., f,,) = 0, then 1 is in the radical
of (fi,..., fm)- The converse is obvious. O

Remark: To make this an effective criterion, it is necessary to know bounds
on the degrees of the polynomials p; that may be needed, and to know
bounds on the “sizes” of their coeflicients. Some bounds are known, and
this is an area of active research; see, for example, Kollar [1988] and Teissier
[1990].

The Nullstellensatz can be used to transfer the geometric study of alge-
braic varieties into algebra. First, it gives us a description of the k-algebras
of the form A(X).

Corollary 1.8. If k is an algebraically closed field and A is a k-algebra,
then A = A(X) for some algebraic set X iff A is reduced and finitely
generated as a k-algebra.

Proof. If A = A(X) for some X C k", then A = k[z1,...,z,]/I(X) is
generated as a k-algebra by xi,...,x,. Since I(X) is a radical ideal, A is
reduced.

Conversely, if A is a finitely generated k-algebra, then after choosing
generators we may write A = k[ry,...,2,]/I for some ideal I. Since A is
reduced, I is a radical ideal. Thus I = I(Z(I)) by the Nullstellensatz, and
we may take X = Z(I). 0
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Because of the result of Corollary 1.8, reduced finitely generated k-
algebras are often called affine k-algebras, or, when it is not necessary
to refer explicitly to the field &, simply affine rings.

To get X from A(X) with the idea of Corollary 1.8 we must choose a set
of k-algebra generators for A(X). But it turns out that X is in a certain
sense independent of this choice. First, note that for any field the ideal of
polynomials in k[zy,...,z,] vanishing at the point p = (ay,...,a,) € A"
ism, = (x1 — ay,...,2, — a,). (Reason: It is obvious that the given ideal
is in I(p); but, on the other hand, factoring out m, identifies the variables
x; with the scalars a;, so k[z1, ...,:):,,J/mp = k, and we see that m, is a
maximal ideal.) The Nullstellensatz shows that every maximal ideal has
this form.

Corollary 1.9. Let k be an algebraically closed field and let X C A"
be an algebraic set. Every maximal ideal of A(X) is of the form
my, = (1 — a1, ...,2Z, — a,)/1(X) for some p = (ay,...,a,) € X. In par-
ticular, the points of X are in one-to-one correspondence with the mazximal
ideals of the ring A(X).

Proof. The maximal ideals of A(X) correspond to the maximal ideals of
k[x1,...,x,] containing /(X), so it suffices to treat the case X = A",
A(X) = k[xy,...,x,]. To prove the first statement, note that any maximal
ideal m—even any prime ideal —is a radical ideal, and thus I(Z(m)) = m
by the Nullstellensatz. But if p € Z(m), then m C m,, and since m is
assumed maximal, m = m,. The second statement follows at once. H

Given a reduced affine algebra A over an algebraically closed field, Corol-
lary 1.8 tells us that A = A(X) for some algebraic set X, and Corollary 1.
gives us X as a set. But having X as a set is not enough; we would like to
show that A reflects all the “structure of X as an algebraic set.” For this
we must know when two algebraic sets should be considered isomorphic or,
better, what the natural maps are between algebraic sets. For simplicity,
we shall assume throughout the following discussion that the ground field
k is algebraically closed.

The natural maps of one algebraic set X C k" to another, Y C k™ are
those that are the restrictions of polynomial maps

F:(ay,...,an) — (fi(a1,..-,80),..., fm(a1,...,an))

from k" to k™, and such maps are called morphisms (or polynomial
maps, or regular maps) from X to Y. We can use the same polynomials
fi to define a map of rings

F# : k[yh-")ym] _—)k[mla---vmn]

sending y; to fi(x1,...,z,). To say that F restricts to a map carrying X
to Y is to say that if g € I(Y), then

F#(g) = g(f1(331, .- -aa:n)a .- ‘afm(xly ces 7-1771))
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vanishes on X; equivalently, F#(g) € I(X). Thus F# induces a map of
k-algebras, which we also call F#,

F* L AY) =Ky, .oy JI(Y) — klzy, ..., 2]/ 1(X) = A(X).

If we regard A(X) and A(Y') as rings of functions on X and Y, then the map
F7# is simply “composition with F.” This shows that two maps F and F’
with the same restriction to X induce the same map F# : A(Y) — A(X).

This process can be reversed: Given any map of k-algebras ¢ : A(Y) —
A(X), we may choose representatives f; in k[zi,...,z,] of the elements
o(y;) and thus get a set of m polynomials that define a map F : k" — k™
carrying X to Y, and such that ¢ = F¥. In terms of the description of X
and Y as sets given in Corollary 1.9, the map F' acts as follows: If p € X,
then p corresponds to a maximal ideal m, C A(X), and from the form of
m, given in Corollary 1.9 we see that A(X)/m, = k. The composite map
AY) - A(X) — A(X)/m, = k is a surjection because there is a copy
of k in A(Y) that maps to the copy of k in A(X) that already surjects to
k = A(X)/m,. Thus, the kernel of the composite map is a maximal ideal
of A(Y). By Corollary 1.9 again, this maximal ideal corresponds to a point
q of Y. The map F takes p to q.

The beauty of this description of the morphisms from X to Y is that it is
independent of the description of A(X) and A(Y') as quotients of particular
polynomial rings—that is, it is independent of the particular embeddings
of X C k™ and Y C k™! In particular, we see that X and Y are isomorphic
by polynomial maps iff A(X) and A(Y) are isomorphic as k-algebras.

In sum, the Nullstellensatz gives us:

Corollary 1.10. The category of affine algebraic sets and morphisms (over
an algebraically closed field k) is equivalent to the category of affine k-
algebras with the arrows reversed.

Here the notion of equivalence of categories is just that the objects corre-
spoud to one another, and the morphisms do too (a formal definition may
be found in Appendix A5). Using Corollary 1.10 we recapture the whole
geometric picture of varieties and their maps in algebra, and at the same
time we have a whole wealth of geometric ideas to bring into the study of
rings, at least rings without nilpotent elements. Some further steps are out-
lined in Exercises 1.24 and 1.25. (Starting in the 1950s Grothendieck took
the step to arbitrary rings by generalizing the geometric side of the equiv-
alence, the affine algebraic sets, to affine schemes; but we shall leave this
to a course on algebraic geometry. See, for example, Eisenbud and Harris
[1992] and Hartshorne [1977].)
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Example. The ring represented by the following figure

might be
klz,y)/(y — 2°) N (y) = klz, ]/ (y* — 27y).

Of course it is hard to tell from the picture exactly which curve tangent
to the given line is meant, and we have simply chosen one—the parabola
tangent to the r-axis—for the purpose of writing down a definite example.
This is typical: The picture captures some qualitative aspect of a ring, but
generally does not specify it completely. After a little experience, this will
cause the reader no trouble. Further examples for the reader to try are
given in the exercises to this chapter.

1.7 Geometric Invariant Theory

Let G be a group acting on a set X. The quotient space X/G is by
definition the set of orbits of G in X, and there is a natural projection
map 7 : X — X/G taking each element x € X to its orbit Gz € X/G. If
X is a topological space, then X /G is naturally a topological space too, if
we define an open set of X/G to be a set whose preimage in X is open.

If X is an algebraic variety over a field k, and G acts by polynomial maps,
one might hope that X/G could be made into an algebraic variety in such
a way that 7 is a morphism. In general, however, this is not possible. For
example, if X is the affine line and G is the multiplicative group of nonzero
elements in k, then G has only two orbits on X—the set of nonzero elements
and the set {0}. But 0 is in the closure of the set of nonzero elements in
the Zariski topology! The quotient space X/G thus consists of two points,
and one of them is in the closure of the other. But any finite algebraic set
has the discrete topology, where every point is closed. Thus X/G cannot
be made into an algebraic variety in such a way that 7 is a morphism.
However, if we restrict our attention to the open set of nonzero elements in
X, then the quotient, consisting of just one point, is a perfectly nice affine
algebraic variety. It turns out that this trivial example is rather typical.

If A(X) is the affine coordinate ring of X, then G will act on A(X) by
composition (if ¢ € G, and f € A(X) is a polynomial function, then fg
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is a polynomial function). Since the invariant functions, the elements of
A(X)®, are exactly those polynomial functions that are constant on the
orbits, we can regard A(X)® as a ring of functions on the quotient X/G. If
X /G or some large subset of it is to be an affine algebraic variety in a way
compatible with the quotient map 7, then A(X)% should be its coordinate
ring. Geometric invariant theory, as developed by David Mumford (see
Mumford and Fogarty [1982]), is the study of such quotients X/G and the
algebraic varieties that “approximate” them. Here is how it begins:

Suppose that we are in a situation, such as the ones given by Corol-
lary 1.5, where R := A(X)% is a finitely generated k-algebra. The algebra
R is a subring of A(X), so R is reduced. Suppose further that & is alge-
braically closed. By the Nullstellensatz, R = A(Y') for some algebraic set
Y, which may be identified with the set of maximal ideals of R. Further-
more, there is a natural map 7 : X — Y determined as follows: A point
xz € X corresponds to a maximal ideal m, of A(X). By Corollary 1.9, the
composite map k — A(X) — A(X)/m, is an isomorphism. It follows that
the composite map k — R — R/(RNm,) is an isomorphism, so that RNm,
is a maximal ideal of R. Let y € Y be the point corresponding to R N'm,.
We set m(x) = y. As shown in the discussion preceding Corollary 1.10, 7 is
actually a polynomial map.

In addition, we claim that 7 factors through the set X/G. Indeed, since
R is invariant under g, we have RNm, = g(RNm,) = RN g(m,). Since
g(m,) = my-1,, this says that 7(g~'z) = n(z); that is, 7 : X — Y factors
through a map X/G — Y.

Under good circumstances, the map X/G — Y is surjective. If we are in
situation where R is a summand of A(X), as in the cases Hilbert treated,
then for any maximal ideal n of R we have nA(X) # A(X). Thus there :
is a maximal ideal m of A(X) containing nA(X) and with it n. Since n is
maximal, we must have m N R = n.

Now suppose that G is a finite group acting by linear transformations on
X = A", over an algebraically closed field of characteristic 0. We have seen
that A(X)“ is finitely generated and a summand of A(X), so 7 induces an
epimorphism A" /G — Y as above. We shall prove in Chapter 13 that the
map 7 identifies A"/G with Y, giving the quotient a natural structure of
an algebraic variety. The same would be true, by a more careful analysis,
even without the assumption that k is of characteristic 0.

The cases of greatest interest in invariant theory are those where k = C
and G is a group such as SL,,(C) or GL,,(C)—not a finite group. Such cases
arise when one wants to make a “moduli” space, a space whose points cor-
respond to the isomorphism classes of certain algebraic sets. (The idea is
that one finds some “canonical” embedding for the algebraic sets, so that
the isomorphisms between the embedded objects become the linear auto-
morphisms of the ambient space.) Again, in these cases A(X)Y is finitely
generated, but X/G may not be an algebraic variety, and the set corre-
sponding to A(X)% may be a further quotient, as in the example of the
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multiplicative group acting on the affine line. This delicate and important
phenomenon is the subject of geometric invariant theory.

1.8 Projective Varieties

Kepler in 1604 and Desargues in his book in 1639 realized that the introduc-
tion of imaginary points could substantially simplify Euclidean geometry.
Each line in the plane was given one new point, “at infinity,” in such a
way that two parallel lines would meet at their points at infinity. In this
way many geometric results became simpler (for example, the statement
that every two distinct lines meet in exactly one point), and a remarkable
duality between points and lines was introduced. For example, the paren-
thetical statement in the last sentence is dual to the statement that through
every pair of distinct points—including points at infinity—passes exactly
one line. Of course, this makes unavoidable the idea that the set of points
at infinity form a line.

Although this development came at almost the same time as the intro-
duction of coordinates in geometry by Fermat and Descartes (Descartes’
book was published in 1637), it was nearly 200 years later, in the works
of Mobius (1827) and especially Pliicker (1830), that the plane with these
additional points was coordinatized. Pliicker’s system for coordinatization
is the one in use today. By means of it we can define algebraic sets in the
projective plane. It turns out that the Nullstellensatz can be used to make
these correspond to homogeneous ideals in the polynomial ring in three
variables. We turn now to this correspondence.

If k is a field, then the projective r-space over k, written P"(k) or
simply P", is the set of one-dimensional subspaces (meaning lines through
the origin) of an (r+1)-dimensional vector space over k. A one-dimensional
subspace L C k"*! may be represented by a point (ag,...,a.) # (0,...,0)
of L, the representation being unique up to a nonzero scalar multiple. The
elements aq, . . ., a, are called homogeneous coordinates of the point L.
Via this representation, P"(k) may be regarded as the set of (r 4+ 1)-tuples
(ap, ..., a,) of elements of k, modulo the equivalence relation (aq, ..., a,) ~
(bag, ..., ba,) for b # 0 in k.

Given a polynomial in r 4 1 variables f(xy,...,z,), and a point L repre-
sented by an (r + 1)-tuple (ao,...,a,), it makes no sense to “evaluate f at
L, because the value f(ay,...,a,) depends on the representative chosen.
But if f is a homogeneous polynomial of degree d, then for b € k we have

f(bag, ... ba,) =bf(ag,..., a),

so the statement that f(ay,...,a,) = 0isindependent of the representative,
and it makes sense to say whether or not f vanishes at L.
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Let S = k[xyg, ..., x|, and let S; be the vector space of all forms of degree
d, so that we have k = Sy, and

S=56568&---.

Since S;5; C S;4; for i, j > 0, we may regard S with this decomposition as
a graded ring, graded “by degree.” Given any homogeneous ideal I of S,
we define the projective algebraic set Z(I) associated to I to be

Z(I) = {(ao,...,a,) € P"(k)|flao,...,a,) =0
for all homogeneous f € I}.

The irrelevant ideal corresponds to the empty set—whence its name.

Again, there is a sort of inverse operation: Given any subset X C P"(k),
we define I(X) to be the homogeneous ideal in S generated by all forms
vanishing on X. If k is algebraically closed, then, just as in the affine case,
the Nullstellensatz gives a bijection between the set of radical homogeneous
ideals of S other than the irrelevant ideal and the set of projective algebraic
sets in P"(k); the only additional observation required is that the radical of
a homogeneous ideal is homogeneous. ( Reason: Suppose I is a homogeneous
ideal, and f = fg+ fs;1+ -+ fo € rad I, where each f. is a homogeneous
form of degree c. If f* € I, then since I is homogeneous, the homogeneous
components of f are in I too. The lowest degree component is f}. Thus
fa € rad I. Subtracting f; from f and repeating the argument, we see that
each homogeneous component of f is in rad I, so rad [ is homogeneous).
Note that if we included the irrelevant ideal, we would not get a one-to-
one correspondence: Both the irrelevant ideal and the “unit ideal” (1) = S
would correspond to the empty set.

The graded ring S/I(X) is called the homogeneous coordinate ring
of X. It is an invariant not of X alone (as in the affine case), but of X
together with its embedding into projective space.

One way to view projective algebraic sets is as conical algebraic sets
in affine (r + 1)-space—that is, sets Y such that (ag,...,a,) € Y implies
(aag,...,aa,) € Y for all scalars a € k. It is not hard to show, conversely,
that if k is infinite then the ideal of any such cone is a homogeneous ideal
(this shows that the correspondence between projective algebraic sets and
homogeneous ideals may be regarded as a special case of the Nullstellensatz
in Theorem 1.6 rather than a parallel theorem).

Projective space may be viewed as affine space “completed” by adding
some “points at infinity” (in case the ground field k is C, we can take
“completed” to mean “compactified”). We now describe this view.

Consider the complement U in P7 of the hyperplane H defined by the
equation zp = 0, that is, U = {(ay,...,a,;) € P"|ag # 0}. Since the coor-
dinates are defined up to multiplication by a nonzero scalar, every point
(ag,...,a,) € U can be represented uniquely in the form (1,b1,...,b,),
with b; = a;/ag. The association (ag,...,ar) — (b1,...,b,) is a bijection
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between U and A", so we have expressed P" as a union: P = UU H =
A" U H. We call H the hyperplane at infinity. Note that H may be
identified with P""!, so we may continue this decomposition and obtain
P =A"TTA™'II...1I A° where we have written II for disjoint union.
Alternately, since we could have started with any variable z; in place of x,
we have defined a covering of P by copies of A™ (not disjoint), each the
complement of one of the hyperplanes z; = 0.

For these identifications to be useful, we must see that an algebraic
set in P meets U in an affine algebraic set. To this end note that if
X C P7 is an algebraic set defined by homogeneous polynomial equations
Fi(xg,...,z;) = 0,then XNU may be described by the polynomial equations
filxy,...,x,) = F;(1,zy,...,2,) = 0; thus X N U is naturally an algebraic
set in A",

Every polynomial f(r{,...,x,) may be written in the form
F(1,z,...,z,) for some homogeneous polynomial F'(xy, ..., z,). For exam-
ple, let d be the degree of f, and let ' be the result of multiplying each
homogeneous component of f by a power of x; to bring up its degree to d.
More formally, we may write

F(xg,...,x,) = zlf(21/x0,...,2,/20).

It follows that F(1,z1,...,2,) = f(x1,...,2,). The form F is called the
homogenization of f with homogenizing variable xg. The existence
of such homogenizations shows that every algebraic set in A” is the inter-
section of U with an algebraic set in P".

These remarks show that it is reasonable to identify U with A™. They
also suggest a natural operation: Given an affine algebraic set X C A",
define the projective closure X of X in P” to be the smallest algebraic
set intersecting U = A7 in X. The homogeneous ideal of the set X is gen-
erated by the homogeneous forms F(zy,...,x,) such that f(z,...,z,):=
F(1,zy,...,2,) € I(X). Since F(xzg,...,z,) is a power of z, times the
homogenization of f, it follows that /(X) is generated by the homogeniza-
tions of all the elements of I(X). Some caution must be exercised here: It
is not enough to take the homogenizations of a set of generators of I(X).
See Exercise 1.17 for an example.

1.9 Hilbert Functions and Polynomials

It is interesting to look for numerical invariants of a projective algebraic set
X = Z(I) C Pj. The next major result of Hilbert concerns a particularly
simple and important class of such invariants, given by the dimensions of
the spaces of forms I; of degree d vanishing on X for various d. Since the
space of all forms of degree d has known dimension ("%), knowing the

dimension of I; is equivalent to knowing the dimension of the degree d
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part of the homogeneous coordinate ring k[zy, ..., z,|/I. Hilbert’s original
motivation for studying these numbers came again from invariant theory:
Given the action of a group on the linear forms of a polynomial ring, he
wanted to understand how the dimension of the space of invariant forms of
degree d can vary with d.

The natural context is that of graded modules:

Definition. I[f R = Ry® R, & - - - is a graded ring, then a graded module
over R 1s a module M with a decomposition

M = @ M; as abelian groups

-G

such that R;M; C M;y; for all i, j.

Definition. Let M be a finitely generated graded module over klxy, ..., =],
with grading by degree, as in the preceding definition. The numerical func-
tion

HA[(S) = dimk ]\/fs

is called the Hilbert function of M. (These dimensions are all finite; if
M, were not finite dimensional, then the submodule ®°M; would not be
finitely generated, contradicting Proposition 1.4.)

Hilbert’s insight was that all the information encoded in the infinitely
many values of the function Hjs can be read off from just finitely many of
its values, and in a simple way:

Theorem 1.11 (Hilbert). If M is a finitely generated graded module over
klxy,..., x|, then Hp(s) agrees, for large s, with a polynomial of degree
<r-—1.

Definition. This polynomial, denoted Pyr(s), is called the Hilbert poly-
nomsial of M.

Before proving the theorem, we need a notation to indicate that we have
altered a graded module M by “shifting” its grading d steps. We define
M (d) to be this graded module; more formally, M(d) is isomorphic to M
as a module and has grading defined by

M(d)e - ]\/[d+6'

M (d) is sometimes referred to as the dth twist of M. Many natural maps
of graded modules take the grading of one to the grading of the other with
a shift of degrees. Using our notation, we can write them as maps of degree
0 (so that they take homogeneous elements to homogeneous elements of
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the same degree) between one of the modules and a shift of the other.
This makes it is easy to keep track of graded components. For example,
multiplication by a linear form on a module M as above raises the degrecs
by 1. Thus it can be thought of as a map of degree 0 from M (—1) to M. We
shall use this idea in the following proof. We shall also use an elementary
result about integer-valued functions.

Lemma 1.12. Let H(s) € Z be defined for all natural numbers s. If the
“first difference” H'(s) = H(s) — H(s — 1) agrees with a polynomial of
degree < n — 1 having rational coefficients for s > sg, then H(s) agrees
with a polynomial of degree < n having rational coefficients for all s > s.

Proof. Suppose that Q(s) is a polynomial of degree < n — 1 with rational
coefficients such that H'(s) = Q(s) for s > so. For any integer s set P(s) =
H(so)+>_;_, 11 Q(t), where the sum is taken over all integers between so+1
and s whether s > so+1or s < sy+1. For s > sy we have P(s) = H(s). For
all s we have P(s) — P(s — 1) = Q(s). It follows that P(s) is a polynomial
of degree < n with rational coefficients; see Exercise 1.21a and its hint for
a quick proof. O

Proof of Theorem 1.11. We do induction on r, the number of variables. If
r = 0, then M is simply a finite-dimensional graded vector space. In this
case Hys(s) =0 for all large s, and this is a polynomial of degree —1.

In the general case, if we let K C M be the kernel of multiplication by x,,
we get an exact sequence of graded vector spaces, with maps of degree 0 :

0— K(-1) = M(-1) 3 M — M/z,M — 0.

Taking the component of degree s of each term in this exact sequence, we
see that
HM(S) - HM(S — 1) = HM/:c,.M(S) — HK(S - 1).

Now both K and M/x,M are finitely generated modules over k[z1,...,
z,-1]. By induction, the terms on the right-hand side agree for large s with
polynomials of degree less than or equal to r — 2, and we are done by
Lemma 1.12. U

The Hilbert function actually includes all the invariants of modules that
are additive in a certain sense, and the Hilbert polynomial includes all
additive invariants that vanish on modules of finite length. See Exercises
19.15 and 19.16.

In the case of greatest interest, M is the homogeneous coordinate ring
of a projective algebra set X C P"~!. Here the Hilbert function is a rich
source of discrete invariants of X and its embedding. We shall see that
the degree d of the Hilbert polynomial P(s) is the dimension of X in a
suitable sense, and the initial coefficient of P(s), multiplied by d factorial,
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is what is called the degree of X—the number of points in which X meets
a general plane of complementary dimension in P!, See Exercise 1.18 for
an illustration.

One may well wonder what the values Py(s) are for small values of
s when they are not the values of Hys(s). We shall provide an answer in
terms of free resolutions. There is a different answer in terms of cohomology
groups: The function that, is really a polynomial is an Euler characteristic,
made from the Hilbert functions of the module and all its cohomology
groups. The cohomology groups have geometric interpretations, and this
expression is quite useful in geometric applications.

We mention in passing two further geometric contexts in which the
Hilbert polynomial appears: First, the Riemann-Roch theorem is a
computation of the Hilbert polynomial (for a certain class of modules)
that plays an enormously important role in algebraic geometry. Second, a
graded module over a polynomial ring corresponds to a “coherent sheaf”
on a projective space. The information contained in the coefficients of the
Hilbert polynomial is usually presented in algebraic geometry by giving
the Chern classes of this sheaf—a different set of integers, which can be
deduced from the coefficients, and from which the coefficients can also be
deduced. See Exercise 19.18.

1.10 Free Resolutions and the Syzygy Theorem

The members of any group of functions, more than two in num-
ber, whose nullity is implied in the relation of double contact
. must be in syzygy.

—J.J. Sylvester, 1850 (First mathematical use of the term syzygy,
according to the Oxford English Dictionary)

The word syzygy, (from the Greek word for pairing (or copulation)) has long
been used in English as an astronomical term for conjunctions of planets.
But since the middle of the last century, and in particular since the work
of Hilbert at the end of the century, its meaning has had to do with the
solutions to a system of homogeneous linear equations over a ring.

The proof we have given for Theorem 1.11 is quite different from the one
Hilbert gave. In place of our induction, he used free resolutions. We shall
now sketch his ideas, postponing proofs until Chapters 15 and 19.

If R is a graded ring, then we shall define a graded free R-module
to be a direct sum of modules of the form R(d), for various d. Note that
the nice mnemonic definition of M(d) by the formula M(d). = M. has
the at first rather annoying consequence that R(d)_; = Ry, so R(d) has its
generator in degree —d, not d.
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Definition. A complex of R-modules is a sequence of modules F; and
maps F; — F;,_; such that the compositions F; .1 — F; — F,_1 are all zero.
The homology of this complex at F; is the module

ker(Fy — Fi_y)/im(Fiy — F).
A free resolution of an R-module M is a complez
F. o o F%S.. SRS F

of free R-modules such that coker o1 = M and F is exact (sometimes we
add “— 07 to the right of I and then insist that F be exact except at Fy).
We shall sometimes abuse this notation and say that an exact sequence

F: oo BB R AF M0

is a resolution of M. The image of the map ¢; is called the ith syzygy
module of M. A resolution ¥ is a graded free resolution if R is a graded
ring, the F; are graded free modules, and the maps are homogeneous maps
of degree 0. Of course only graded modules can have graded free resolutions.
If for some n < oo we have F,1; = 0, but F; # 0 for 0 < i < n, then we
shall say that F is a finite resolution of length n.

It is easy to see that every module has a free resolution and, if R is graded,
that every graded module has a graded free resolution. To construct one,
begin by taking a set of generators for M and map a free module onto M
sending the free generators of the free module to the given generators of M.
Let M, be the kernel of this map, and repeat the procedure, now starting

Exercises 1.22 and 1.23 give two special cases in which free resolutions
are not difficult to compute “by hand”; we shall eventually give far-reaching
generalizations of both.

We can finally state, in the following theorem, the last of the four great
results on commutative algebra in Hilbert’s papers.

Theorem 1.13 (Hilbert syzygy theorem). If R = k[z1, ..., z,], then every
finitely generated graded R-module has a finite graded free resolution of
length < r, by finitely generated free modules.

We shall give a constructive proof of the syzygy theorem in Chapter 15,
and a different, nonconstructive proof in Chapter 19. Here we apply it to
its original purpose:

Hilbert’s Proof of Theorem 1.11. Let R = klzy,...,z,|. If M = R(d) for
some d, then

td+r—1
Hpg(s) = Hr(s +d) = (s r )

r—1
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which agrees for s > —(d + r — 1) with the polynomial

Qis)=1/r—1))[s+d+r—=1)] [s+(d+r—=2)]- - -[s+d]
= "' /(r — 1)! + (lower order terms).

If F is a finitely generated graded free module, then F' is a direct sum of
various R(d), so Hp(s) is a finite sum of functions of the form Hpg)(s).

The Syzygy theorem shows that any finitely generated graded module
over R = k[zy,...,z,] has a finite graded free resolution F

F.:. 0—-F. —----—=F—-M-—>0.

Thus |
Hy(s) =) (~1)'HE(s)

is a linear combination of functions that are eventually equal to polynomials
of degree < r — 1. O

Note that this proof yields a simple computation for the value of Hjs(s)
for every s, not just for large s. It also shows that the deviation from being
a polynomial comes about because R; = 0 for all d < 0—of course no
nonzero polynomial has this property.

In Chapter 15 we shall see that free resolutions can be computed effec-
tively, and this yields an effective computation of Hj; and Py (in the same
chapter we shall give a much simpler method of computation).

1.11 Exercises

Noetherian Rings and Modules

Exercise 1.1:* Prove that the following conditions on a module M over a
commutative ring R are equivalent (the fourth is Hilbert’s original formu-
lation; the first and third are the ones most often used). The case M = R
is the case of ideals.

1. M is Noetherian (that is, every submodule of M is finitely generated).

2. Every ascending chain of submodules of M terminates (“ascending
chain condition”).

3. Every set of submodules of M contains elements maximal under inclu-
sion.

4. Given any sequence of elements fi, fa,... € M, there is a number m
such that for each n > m there is an expression f, = >_1", a;f; with
a; € R.
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Exercise 1.2 (Emmy Noether): Prove that if R is Noetherian, and
I C R is an ideal, then among the primes of R containing I there are
only finitely many that are minimal with respect to inclusion (these are
usually called the minimal primes of I, or the primes minimal over I)
as follows: Assuming that the proposition fails, the Noetherian hypothesis
guarantees the existence of an ideal I maximal among ideals in R for which
it fails. Show that I cannot be prime, so we can find elements f and g in
R, not in 7, such that fg € I. Now show that every prime minimal over /
is minimal over one of the larger ideals (I, f) and (I, g).

With Hilbert’s basis theorem and the Nullstellensatz (see Exercise 1.9),
Exercise 1.2 gives one of the fundamental finiteness theorems of algebraic
geometry: An algebraic set can have only finitely many irreducible com-
ponents. Originally the result was proved by difficult inductive arguments
and elimination theory. For a further discussion of the significance of this
result see the beginning of Chapter 3, and particularly example 2 there.
The result of this exercise is strengthened in Theorem 3.1.

Exercise 1.3: Let M’ be a submodule of M. Show that M is Noetherian
iff both M’ and M /M’ are Noetherian.

An Analysis of Hilbert’s Finiteness Argument

Exercise 1.4:* We have seen from Corollary 1.3 that any finitely generated
algebra over a field is Noetherian. The converse is quite false, and we shall
see many important examples of rings that are Noetherian but not finitely
generated (for instance localizations and completions). But the converse is
true for graded rings R where Ry is a field, as the following result shows.

Let R = Ry ® R; & --- be a graded ring. Prove that the following are
equivalent:

1. R is Noetherian.

2. Ry is Noetherian and the irrelevant ideal Ry & Ry @ --- is finitely
generated.

3. Ry is Noetherian and R is a finitely generated Ry-algebra.

Exercise 1.5:* Although the Noetherian property does not usually pass
from a ring to a subring, it does when the subring is a summand:

Let R C S be rings, and assume that R is a summand of S as an R-
module, that is, there is a homomorphism ¢ : § — R of R-modules fixing
every element of R. Prove that if S is Noetherian, then R is Noetherian.

Some Rings of Invariants

Exercise 1.6: The following proof of the assertions of Example 1.1 is from
Van der Waerden [1971]. We shall systematically develop this method in
Chapter 15. Let 3~ and fi,..., f, be as defined in Example 1.1.
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Order the monomials of the polynomial ring S = k[zy, ..., z,] according

my

to the degree-lexicographic order, defined as follows: Let A = x7" .- - 2™

T

and B = z7* -+ - 2 be two monomials. We say that A > B if either deg A>
deg B, or else deg A = deg B and the sequence of exponents (mq,...,m,)

is greater than the sequence (ny,...,n,) in the lexicographic order; that is,
the difference m; — n; > 0 for the first index 4 for which it is not zero.
Given any polynomial p(zi,...,z,), we define the initial term of p to

be the term involving the greatest monomial in the order >.

a. Show that for each monomial A there are only finitely many mono-
mials B such that A > B.

b.* Show that if p is invariant under >, then the initial term of p is an
element of k times a monomial z{" - - -z with my > my > -+ > m,.

c. Show that the initial term of the product fi" ... f# is " ...z,
where m; = > 7o, ;.

d. Show that the function Z" — Z" defined by

(U1, ..oy por) = (my,...,m,) with m; = Zu]

3>i

is a monomorphlbm Conclude that a monomial 27" - - - 2" with m; >
my > -+ > m, is the initial monomial of a unique product of f;.

Now show that any element of S* can be written uniquely as a poly-
nomial in the f;.

Exercise 1.7:* a. (The simplest-group action whose ring of invariants is
not a polynomial ring) Suppose that k is a field of characteristic # 2. Let
the generator g of the group G := Z/2 act on the polynomial ring k[, y|
in two variables by sending x to —z and y to —y. Show that the ring of
invariants is k[z?, 2y, y?]. Prove that k[z? zy,y?] = klu,v, w]/(uw — v?).
Show that this is not isomorphic to any polynomial ring over a field. (A
theorem of Shepard, Todd and Chevalley shows that if a finite group acts by
linear transformations of the variables on a polynomial ring, then the ring
of invariants is isomorphic to a polynomial ring iff the group is generated
by “pseudo-reflections,” where an element is a pseudo-reflection if it acts
as the identity on a hyperplane. See Sturmfels [1992], Section 2.4.)

b. More generally, let G be any finite abelian group, acting linearly on
the space of linear forms of the ring S = k{z;,...,z.]. Assume that G acts
by characters; that is, assume that there are homomorphisms «; : G — k*,
and g(z;) = a;(g)z; for all g € G, where k* is the multiplicative group of
the field k. (As long as the characteristic of k& does not divide the order of G,
this could be achieved, by a suitable choice of variables, for any action of G.)
Show that the invariants of G are generated by those monomials I1z}* whose
exponent vectors (ai, ..., a,) are in the kernel of a map from Z” to a certain
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finite abelian group. Conclude that the quotient field of S¢ is isomorphic
to a field of rational functions in r variables. (Emmy Noether asked, in a
famous paper, whether the last statement is true for finite nonabelian groups
as well. It is not; sec, for example, Saltman [1982] for a survey.)

Algebra and Geometry

Exercise 1.8 (A formal Nullstellensatz): Let X and § be partially
ordered sets, and suppose that I : X — g and Z : § — X are functions such
that

i) I and Z reverse the order in the sense that x < y &€ X implies
I(x) > I(y), and i < j € J implies Z(i) > Z(j).

ii) ZI and IZ are increasing functions, in the sense that x € X imples
ZI1(z) > z, and i € J imples I Z(i) > i.

a. Show that I and Z establish a one-to-one correspondence bet-
ween the subsets I(X) C J and Z(3) C X.

b. Let &k be a field. Call an ideal I C k[z1, ..., z,] formally radical
if it is of the form Z(X) for some set X C k". Use part a to prove
that there is a one-to-one correspondence between formally rad-
ical ideals and algebraic subsets of k”. (Hilbert’s Nullstellensatz
identifies the formally radical ideals with the ordinary radical
ideals when k is algebraically closed.)

Exercise 1.9: Let S = k[z,,...,z,], with k an algebraically closed field.
Show that under the correspondence of radical ideals in S and algebraic
subsets of A", the prime ideals correspond to the algebraic sets that cannot
be written as a proper union of smaller algebraic sets.

Exercise 1.10: Find rings to represent the following figures.

N X

The first represents the union of a circle and a parabola in the plane, and
the second shows the union of two skew lines in 3-space. (You may use the
Nullstellensatz to prove that your answer is right.)

Exercise 1.11:* When we draw pictures representing algebraic sets, we
often draw the same picture for all ground fields &, although by rights it
generally represents best the case k = R.. In fact, we are usually interested
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in the case of an algebraically closed field k, such as k = C, where the Null-
stellensatz applies. The main way in which the pictures can be misleading
is illustrated by the following examples.

a. If k = R then the ring k[x,y|/(2? +y* — 1) N (y — 2 — x2) corresponds
to the union of a circle and a parabola.

If k = C, show that there are four points in the intersection of these
two components. Show that there is a bijection given by polynomial
maps between the parabola and the line z = 0. Show further that
“projection from the north pole” gives a bijection (given by rational
functions) between the circle minus one point and the line minus two
points. (Can you find such a bijection between the circle and the line
minus one point?)

b. Show that the polynomial f(z,y) = y*> — (z— 1)z(z +1) is irreducible
over any field k. Thus X = Z(f) C A? is an irreducible algebraic set.
This is not so obvious from the real picture, which approximately
resembles the following image.
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Exercise 1.12: Find equations for a parabola meeting a circle just once
in the complex plane, represented by the following picture:

Exercise 1.13: Suppose that I is an ideal in a commutative ring. Show that
if rad I is finitely generated, then for some integer N we have (rad I)V c I.
Conclude that in a Noetherian ring the ideals I and J have the same
radical iff there is some integer N such that IV ¢ J and JY ¢ I. Use the
Nullstellensatz to deduce that if I, J € S = k[xy, ..., z,] are ideals and k is
algebraically closed, then Z(I) = Z(J) iff IV ¢ J and JV C I for some N.

Exercise 1.14:* Not all interesting graded rings are generated by forms of
degree 1, as are the homogeneous coordinate rings of projective varieties.
For example, k[z,y|/(y* — 2*), the ring corresponding to the cusp becomes

a graded ring if we give x degree 2 and y degree 3. Prove that the map
k[r,y] — klt] sending x to t* and y to #* induces an isomorphism

klz,y]/(y* — 2®) = k[t?, %] C K[t].

Graded Rings and Projective Geometry

Exercise 1.15 (Classification of conics and quadrics): Here is an
example of the simplification brought to geometry by the idea of projective
space. As the reader probably remembers from high school, a conic in the
affine real plane R? (that is, the locus defined by a quadratic equation in
two variables z and y with real coefficients) belongs to one of the following
eight types:

a. The empty set (as with 22 + y2 + 1 =0)
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b. A single point (as with 2% + y? = 0)

c. A line (22 = 0)

d. The union of two coincident lines (zy = 0)

e. The union of two parallel lines (z(z — 1) = 0)
f. A parabola (y — 22 = 0)

g. A hyperbola (zy — 1 = 0)

h. An ellipse (z* + 2y* — 1 = 0)

Any two examples of one of these types differ only by an invertible linear
transformation of the coordinates.

a. Show that in the complex affine plane C? there are only five types of
loci defined by equations of degree 2: Types a and b disappear, and types
g and h coincide.

b.* Show that in the complex projective plane P?(C) there are only three
types of loci represented by quadratic equations: they are represented by
types ¢, d, and h on the above list. More generally, there are exactly n
types of nonzero quadratic forms in n variables, classified by rank (where
the rank of a quadratic form ), . a;;z;z; is defined to be the rank of the
symmetric matrix (a;;)).

c. Show that the different types in part (a) correspond to the relative
placement of the conic and the line at infinity, in the sense that a parabola
is a rank-3 conic tangent to the line at infinity, while an ellipse/hyperbola
is a rank-3 conic meeting the line at infinity at two distinct points. The
classification over the real numbers may be recovered from the position of
these points: A real rank-3 conic meeting the line at infinity in two points
is a hyperbola if the points are real, and an ellipse if the points are nonreal
(they are then conjugate complex points). If the affine plane is represented
by points (z,y,2) € P? with z = 1, the ellipse is a circle iff it meets the
line at infinity in the points (1,4,0) and (1, —7,0), the “circular points at
infinity.”

1<j

Exercise 1.16: a. Let I be a homogeneous ideal in S = k[zy, ..., z,], and
suppose that the projective algebraic set corresponding to I is nonempty.
Let Y C k™! be the affine algebraic set associated to I. Show that Y is a
union of one-dimensional subspaces of k"*!, and that these one-dimensional
subspaces are precisely the points of the projective algebraic set associated
to 1.

b.* Show also that if k is an infinite field and X C A"(k) is a union of
lines through the origin, then 7(X) is a homogeneous ideal.

Exercise 1.17:* Let I C k[z1, 22, 23] be the ideal (23 + 22,27 4 z3), and
let X C A® be the affine algebraic set Z(I). Let X C P? be the projective
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closure of X. Show that the homogeneous ideal I(X) is not generated by
the homogenizations of z} + x9 and z$ + 3. We shall return to this subject
in Chapter 15.

Hilbert Functions

Exercise 1.18: Let k be a field. Compute the Hilbert function and poly-
nomial for the ring

klz,y, 2z, w]/(z,y) N (2, w)

corresponding to the disjoint union of two lines in projective 3-space. Com-
pare these to the Hilbert function and polynomial of the ring corresponding
to one projective line, k[z, y].

Exercise 1.19: Let k be a field. Let I C k[z,y, z,w| be the ideal generated
by the 2 X 2 minors of the matrix

Ty z
Yy z w )’

that is, I = (yw — 2%, 2w — yz, 22 — y?).

Show that R = k[z,y, z,w]/I is a finitely generated free module over S =
k[z,w]. Exhibit a basis for R as an S-module. Show that there is a ring
homomorphism R — k[s,t] such that z — 83, y s §2%t, 2 — st?, w — t3,
Use the basis you constructed to show that it is a monomorphism. Conclude
that I is prime. From the rank of R as a free S-module, and the degrees
of the generators, deduce the Hilbert function of R. Show that R is not
finitely generated as a module over k[z, y].

Exercise 1.20:* Given a number s;, find an example of a graded
k[z1,...,x-)-module M generated by elements of degree 0 for which the
function Hys(s) is not equal to the Hilbert polynomial Py (s) for any s < sg.
If you find this too easy, can you find torsion-free k[z1, ..., z,]-modules of
this sort?

Exercise 1.21: Consider the subring 7' C QIn] of rational polynomials
that take integral values at sufficiently large integers. T is of interest to us
because it contains all the Hilbert polynomials discussed in this chapter.
The ring T obviously contains Z[n], but it is larger: It contains things like

(’2’) = (n?—n)/2.

a.* Let F'(n) be a function defined for sufficiently large integers n, and
set G(n) := F(n+1)— F(n). Show that F(n) € Q[n] iff G(n) € Q|n],
and that if these conditions are satisfied then deg FF =1 4 deg G.
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b. Show by induction on the degree that T is a free abelian group with
basis given by the functions

Fk:<z>:n(n—l)---(n—k+1)/k! 0 <k < oo,

where F}, is a polynomial function in n of degree k.

c. Although Q ®z T = QIn], the ring T itself is not finitely generated
as an algebra over Z; show that T is not even Noetherian. We shall
meet T again as a free divided power algebra in Appendix A2.

Free Resolutions

Exercise 1.22: Let R = k[z|. Use the structure theorem for finitely gen-
erated modules over a principal ideal domain to show that every finitely
generated R-module has a finite free resolution.

Exercise 1.23: Let R = k[z]/(z"). Compute a free resolution of the R-
module R/(z™), for any m < n. Show that the only R-modules with finite
free resolutions are the free modules.

Spec, mazx-Spec, and the Zariski Topology

An ideal I C R is called a prime ideal if R/I is an integral domain. I is
a maximal ideal if R/I is a field, so maximal ideals are prime. The set of
all prime ideals of a ring R is called the spectrum of R, written Spec R,
and the set of all maximal ideals is usually denoted by the typographically
awkward but reasonably descriptive name max-Spec R.

Exercise 1.24: In the text we defined the Zariski topology on an algebraic
set over any algebraically closed field k. We may identify X with the set
max-Spec A(X). The subset Z(I) is identified with the set of maximal
ideals containing I. This suggests a way of defining a topology on the set
of maximal ideals of any ring. The corresponding idea can also be applied
to the set of all prime ideals, and it turns out to be even more useful there.
These ideas were first pursued by Oscar Zariski, and the resulting topology
bears his name.

Definition. Let R be any ring. The subsets of Spec R of the form
Z(I) := {p a prime ideal of Rlp D I},

for ideals I of R are called Zariski-closed subsets. When there is no
danger of confusion, we shall simply call them closed subsets.

a. Prove that finite unions and arbitrary intersections of closed subsets
are closed, and therefore the closed subsets define a topology, called
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the Zariski topology, on Spec R. The induced topology on the
subset max-Spec R is also called the Zariski topology.

If k = R or C (or some other topological field), then we have
two topologies on k™: the topology induced from the topology of k,
called the classical topology, and the Zariski topology. The Zariski
topology has many fewer closed sets than the classical topology.

b. Suppose for simplicity that k is an algebraically closed field, in the
Zariski topology on Al(k) (that is, on the maximal ideals of k[z])
show that the open sets are exactly the complements of finite sets.
In particular this topology is not Hausdorff. Show that the Zariski
topology on A™(k) = k™ is not the product topology, even for n = 2.

c. We define a distinguished open set of Spec R to be an open set of
the form U(f) := {p a prime ideal of R|f & p} for some f € R. Show
that the distinguished open sets form a basis for the Zariski topology,
in the sense that every open set is a union of distinguished open sets.
Show that Spec R = U;U(f;) for some collection f; of elements of R
iff the ideal generated by all the f; is the unit ideal (1).

d. Show that if R is any ring then Spec R is compact in the Zariski
topology (that is, every open covering has a finite refinement).

Exercise 1.25 (max-Spec for rings of continuous functions): (From
the formulation of Atiyah and MacDonald [1969], Chapter I, Exercise 26.)
Let X be a compact Hausdorff space and let R = C(X) be the ring of
continuous real-valued functions on X. Let i : X — max-Spec R be the
map taking a point x € X to the maximal ideal m, of all continuous
functions vanishing at x. Prove that u is a homeomorphism, so that X can
be reconstructed algebraically from C(X), as follows:

a. p is surjective: Let m be a maximal ideal of C(X). We wish to prove
that m = m, for some z. Let V = V(m) be the set of common zeros
of the functions in m. If V' is empty, then for each £ € X there exists
fr € msuch that f,(z) # 0. Since f, is continuous, there is an open
neighborhood U(z) of x such that f, does not vanish on U(z). By
compactness, X is the union of finitely many of these neighborhoods,
say

X =U(z)U---UU(x,).
Use these ideas to construct a function f € m that does not vanish
anywhere on X . Derive a contradiction.

It now follows that m C m; for some z. Since m is maximal, the
ideals are equal.

b. u is injective: Use Urysohn’s lemma (see Kelly [1955], Lemma 4.4;
this is the only nontrivial fact required in the proof) to show that if
x # y, then there is a continuous function vanishing at x but not y.
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¢. p is a homeomorphism: A subbasis for the topology of X is given by
the sets
Ur = {o € X|f(2) #0}, f€CX)

while a subbasis for the topology of max-Spec R is given by the sets
Vi = {m € max-Spec R|f €m}, f[feC(X).

Show that p(Uys) = V5.



2

Localization

A local ring is a ring with just one maximal ideal. Ever since Krull’s paper
[1938], local rings have occupied a central position in commutative algebra.
The technique of localization reduces many problems in commutative
algebra to problems about local rings. This often turns out to be extremely
useful: Most of the problems with which commutative algebra has been
successful are those that can be reduced to the local case.

Despite this, localization as a general procedure was defined rather late:
In the case of integral domains it was described by Grell, a student of
Noether’s, in [1927], and it was not defined for arbitrary commutative rings
until the work of Chevalley [1944] and Uzkov [1948], long after the basic
ideas of commutative algebra were established. Perhaps this is because
interest was focused on finitely generated algebras on the one hand, and
power series rings on the other, and neither of these classes of rings is closed
under localization. Instead of passing to a localized ring, as we would now,
people often used ideal quotients as a substitute. (We shall explain how
this is done in Exercise 2.3.)

The idea of localization, as well as the name, comes from a geometric
special case: Given a point p in an algebraic set X C AJ, we might wish
to investigate the nature of X “near” p. That is, we wish to investigate
arbitrarily small open neighborhoods of p in the Zariski topology. The
Zariski open neighborhoods of p are sets of the form X — Y., where Y
is an algebraic subset of X not containing p. Now X — Y is generally not
isomorphic to an affine algebraic set—for example, the plane minus a point
is not (see, for example, Hartshorne [1977], Exercise 3.5). However, small
neighborhoods of p in X correspond to large algebraic subsets Y, so we
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may assume that Y is the set defined by the vanishing of a single function
f, which does not vanish at p. In this case we shall see that X — Y is
isomorphic to an algebraic set embedded in A}™!, and for this reason we
refer to such a set X —Y as an open affine neighborhood of p. The affine
ring A(X —Y) is obtained from A(X) by adjoining a multiplicative inverse
for f; we call this inverting f. If we invert all the functions in A(X) not
vanishing at p, then the corresponding object, though no longer a finitely
generated k-algebra, is a good algebraic representative of the “germ of X
at p”: It is the local ring of X at p.

In this chapter we shall explain how to construct new rings from old
by inverting arbitrary sets of elements. To motivate the constructions, we
return to the problem of removing an algebraic subset Y defined by one
equation f = 0 from an algebra set X. The points of X — Y are the points
z at which f(x) # 0, so they are the points = such that there is a number,
z(z) say, with z(z)f(x) = 1. The idea is that z(z) should be a regular
function on X — Y. If X C Aj corresponds to the ideal

I Cklxy,...,z,

then the points of X — Y will correspond—by projection onto the first r
coordinates —to the subset of A" defined by the ideal

J=I1+(2f-1) Ckl[z,...,z, 2]

We may thus define X —Y to be the affine algebraic set in A” x Al = A"+!
corresponding to J, with the inclusion X — Y C X given as above by
projection to A”. The following picture gives the simplest case, where we
have subtracted Y = {0} from X = Al and the set X — Y is embedded as
a hyperbola in the plane:

AZ

X —Y = Z(z,2— 1)

i Z
Y = {0} ‘ ‘
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In terms of rings, we may write

AX =Y)=klx,... 2., 2]/J
= AL/ (f - 1)

Thus we may describe A(X —Y') as the effect of adjoining an inverse of f
to A(X) in the “freest” possible way.

2.1 Fractions

In general, we want to be able to put in inverses of many polynomials at
once. The product of the inverses of two elements f and g is an inverse for
fg, so we shall actually be adjoining the inverses of all the clements of a
set U that is multiplicatively closed: that is, such that any product of
elements of U is in U —including the “empty product” = 1. The definition
is motivated by the idea of introducing fractions r/u, with » € Rand u € U
(or similarly for elements of a module) as ordered pairs (r,u) modulo the
relations that would be satisfied automatically if the elements of U were
units and we interpreted r/u as v~ '. There is a mild complication coming
from the fact that if f¢g = 0 in R and we adjoin an inverse for f, then we
had better make g = 0.

Given a ring R, an R-module M, and a multiplicatively closed subset
U C R, we define the localization of M at U, written as M[U~'] or
UM, to be the set of equivalence classes of pairs (m,u) with m € M
and u € U with equivalence relation (m, u) ~ (m',«’) if there is an element
v € U such that v(u'm —um’) = 0 in M. The equivalence class of (m,u) is
denoted m/u. We make M[U '] into an R-module by defining

m/u+m'/u = (um+um)/uu' and r(m/u) = (rm)/u

for m,m' € M, u,v’ € U, and r € R. Note that v'm/u'u = m/u, and the
additive inverse of m/u is (—m)/u, as one would expect. The localization
comes equipped with a natural map of R-modules M — M[U™!] carrying
m to m/1.

It is convenient to extend the notation a little further: If U C R is an
arbitrary set, and U C R is the multiplicatively closed set of all products
of elements in U, then we set M[U 1] :== M[U1].

If we apply the definition in the case M = R, the resulting localization
is a ring, with multiplication defined by

(r/u)(r'Ju') = rr' Jud,
and in fact M[U™!] is an R[U!]-module with action defined by

(r/u)(m/u') =rm/uu’ forr € R,m e M and u,u’ € U.
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It is useful to have a simple description of when an element localizes to 0:

Proposition 2.1. Let U be a multiplicatively closed set of R, and let M be
an R-module. An element m € M goes to 0 in M[U™'] (that is, m/1 = 0)
iff m is annihilated by an element w € U. In particular, if M is finitely
generated, then MU~ = 0 iff M 1is annihilated by an element of U.

Proof. The first statement is immediate from the definition. For the second,
note that if gencrators m; € M arc annihilated by elements u; € U, then
M is annihilated by the product of the u;. O

As a first example, the quotient field of an integral domain R, which
we shall denote by K(R), is the localization R[U~!] where U = R — {0},
Perhaps the most useful analogue for an arbitrary ring R is to take U to
be the set of nonzerodivisors of R, and define the total quotient ring
K(R) of Rby K(R) := R|U~!]. By Proposition 2.1, K(R) is the “biggest”
localization of R such that the natural map R — R[U~!] is an injection.

The very definition of a prime ideal says that an ideal P C R is prime iff
R — P is a multiplicatively closed set. Localization at such a multiplicative
set is used so often that it has its own notation: If P is a prime ideal and
U = R — P, then we write Rp for R{U™']. Similarly, for any R-module M,
we write Mp for M[U~!]. We write x(P) for the ring Rp/Pp, the residue
class field of R at P. For example if R is a domain, so that 0 is a prime
ideal, then the quotient field of R is K(R) = Ry = x(0).

The local ring of an affine variety X at a point £ € X mentioned at
the beginning of this chapter may now be defined as follows: If R is the
affine coordinate ring of X, and P C R is the ideal of functions vanishing
at x, then the local ring of X at x, obtained from R by inverting all the
functions that do not vanish at z, is the ring Rp.

If p: M — N is a map of R-modules, then there is a map of R[U |-
modules p[U7!] : M[U™'] — N[U™!] that takes m/u to ¢(m)/u, called
the localization of ¢. This makes localization into a functor from the
category of R-modules to the category of R[U ']-modules. Later we shall
show (Proposition 2.10) that if M is finitely presented, then every homo-
morphism M[U™'] — N[U7!] is a localization. With Exercise 2.10 this
establishes a very tight connection between modules over a ring and mod-
ules over a localization. Many constructions, such as the direct sum of
modules, are preserved by localization (this may be proved directly, and
it also follows at once from Lemma 2.4, since tensoring preserves direct
sums).

If ¢ : R — S is any homomorphism of rings with the elements of U going
to units, then the elements p(r)p(u) ' € S must satisfy the same relations
as those imposed on the fractions r/u above. Thus, for any such ¢ there
is a uniquely defined extension to a homomorphism ¢’ : R[U™!] — S. This
is called the universal property of localization; see Figure 2.1. It makes
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RIUT

FIGURE 2.1. Universal property: The extension ¢’ cxists (uniquely) iff ¢ carries
elements of U to units.

precise a sense in which R[U '] is the result of adjoining inverses of elements
of U to R in the freest possible way. Another is given in Exercise 2.9.

Notation: For the remainder of this section, R will be a ring, U a multi-
plicatively closed subset, and M an R-module.

The ideal theory of R[U~!] is a simplified version of the ideal theory of R:

Proposition 2.2. Let ¢ : R — R[U '] be the natural map r — r/1.

a. For any ideal I C R[U!| we have I = o *(I)R[U™!|. Thus the map
I — o Y(I) 15 an injection of the set of ideals of R[U™!] into the set
of ideals of R. It preserves inclusions and inlersections, and takes
prime ideals to prime ideals.

b. An ideal J C R is of the form ¢ Y(I) for some ideal I C R[U™]
iff J = ¢ Y (JR[U™Y]). This is the case iff each element w € U is a
nonzerodivisor mod J in the sense that if r € R and ru € J, then
r € J. In particular, the correspondence I — ¢ '(I) is a bijection
between the primes of R[U™'] and the primes of R not meeting U.

A similar result holds for submodules of an arbitrary module. We leave
this easy generalization to the interested reader.

Proof.

a. The inclusion 7 O ¢~ 1(7)R[U~'] is obvious and the reverse inclusion
follows because for any element r/u € I, with r € R and v € U,
the element r is in ¢ !(I). It follows at once that I — ¢ !(I) is an
injection.

If p: R — S is any map of sets, then the operation taking subsets
of S to subsets of R by I s ~!(I) preserves inclusions and intersec-
tions. If ¢ is a map of rings and I C S is an ideal, then ¢ }(I) is an
ideal of R. Moreover, ¢ induces an injection R/¢ '(I) C S/I. If, in
addition, I is prime then S is a domain, and it follows that R/¢ ()
is a domain, so ¢~ !(I) is prime.

b. If J = ¢ }(I) then JR[U™'] C I, so J = o }(JR[U™!]). Since the
elements of U act as units on R[U !]/I, they act as nonzerodivisors on
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the R-submodule R/.J, so J satisfies the given condition. Conversely,
suppose that the elements of U act as nonzerodivisors on R/J. If r €
¢ Y(JR[U ), thenr/1 € JR[U™'],s0r/1 = j/u for some j € J and
u € U. It follows that wu'r = v'j € J for some u' € U. Since u and v’
are nonzerodivisors mod J, we have r € J. Thus J = o ' (JR[U™Y]),
and we are done. The last statement follows because any element not
in a prime ideal is a nonzerodivisor modulo that ideal. O

Corollary 2.3. A localization of a Noetherian ring is Noetherian.

This is one way in which the Noetherian condition on rings behaves
“better” than the condition of being finitely generated over a field.

Proof. 1f I C R[U '] is an ideal, then by Proposition 2.2, I = ¢ '(I)R[U '],
so I is generated by the images in R[U '] of a set of generators of ¢ 1([).
If R is Noetherian, then ¢~1(I) is finitely generated, so I is too. O

2.2 Hom and Tensor

It is useful and suggestive to express the localization in terms of a more
general construction, the tensor product. There is a brief treatment of
this notion in Appendix A2 (Multilinear Algebra), but we pause here to
state some of its main properties. We will often use it along with a closely
related construction, the module of homomorphisms between two modules,
and we discuss this first.

If M and N are R-modules, then we write Homg (M, N) for the abelian
group of all homomorphisms from M to N. It is itself an R-module by the
definition

(rp)(m) :=rp(m) = p(rm) for r € R and ¢ € Homg(M, N).

The following properties of Hom are very easy to prove from the definition;
the reader who is not familiar with these ideas should probably pause and
check them as an exercise:

1. Hompg(R, N) = N by the map ¢ — ¢(1).

2. Hom is functorial in the sense that if o : M’ — M and 3: N — N’
are homomorphisms (note their directions!), then there is an induced
homomorphism

Homp(M, N) — Hompg(M' N'); @ — Boa.

This homomorphism is often denoted by Homg(a, 8); or if 3 is the
identity map of N, by Homg(a, N) (and similarly when « is the
identity map of M).
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3. Hom takes direct sums in the first variable and direct products in the
second variable to direct products, in the sense that

HOmR(EBiMZ-, N) = Hi HOI’II(MZ', N)
HOIIIR(]\47 Hij) = Hj Hom(M, Nj);

this just says that giving a map from the direct sum @;M; to N is
the same thing as giving a map from each M; to N, and similarly for
maps from M to II; ;.

4. If M is an R-module, then the functor Hompg(M, —) preserves kernels
in the sense that if A = ker(¢p : B — C), then Homy(M, A) =
ker(Hompg(M, ¢) : Homg(M, B) — Hompg(M,C)). This is usually
expressed by saying that Hom is a left-exact functor, which means
that if

0—-A—-B—->C

is an exact sequence (such a thing is sometimes called a left-exact
sequence) and M is any module, then the sequence of maps

0 — Homp(M, A) — Homg(M, B) — Homp(M,C),

obtained because Homg(M, —) is a functor, is exact. (Interpretation:
Regarding A as a submodule of B, and B/A as a submodule of C, a
nonzero map M — A composes with the monomorphism A — B to
give a nonzero map M — B; and a map M — B composed with the
map to M /A C C gives 0 iff the image of M is contained in A C B.)
Similarly, if

A—-B—-C—0

is an exact sequence (sometimes called a right-exact sequence),
then
0 — Hompg(C, N) — Homg(B, N) — Hompg(A, N)

is exact. These two properties are immediate from the definitions.

It is often necessary to work with bilinear maps: If M, N, and P are
R-modules, then a bilinear map from M x N to P is defined to be a map
of sets (not a map of modules!) ¥ : M x N — P satisfying the condition
of bilinearity:

P((am 4+ a'm') x (bn 4+ b'n')) = abyp(m x n) + a’byp(m’ x n)
+ab'p(m x n') + dVyp(m' x n').

Bilinear maps may be interpreted in terms of ordinary maps of R-modules
by introducing a new module, the tensor product M ®gN, which may
be defined roughly as the module with just enough relations to define a
bilinear map M x N —- M ®pr N.
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More formally, we define M ®r N to be the module with generators
{m & n|m € M,n € N} and relations

(am+a'm')®(bn+b'n") = ab(m®n)+ad'b(m’ &@n)+ab' (men')+d'b (m'@n'),

mimicking the condition of bilinearity. Note that in particular we have
r(m®n)=(rm)®n =m® (rn). When the ring R is clear from context,
we sometimes write M @ N for M ®r N.

It is obvious from the definition that the map m xn — m®mn is a bilinear
map from M xN to M®prN. Thus, if p: M&zr N — P is a homomorphism,
then the map ¢ : M x N — P defined by y(m x n) = p(m @ n) is
bilinear. Conversely, since no relations other than the bilinear relations
were imposed on M ®p N, if v : M x N — P is bilinear then there
is a unique homomorphism ¢ : M ®r N — P satisfying ¥(m x n) =
p(m@mn).

One point about this construction requires some care: Not every element
of M ®r N may be written in the form m ® n. Rather, every element is
expressible (generally in many ways) as a finite sum ) m; & n; for some
m; € M and n; € N.

Though brief, the definition of the tensor product is somewhat opaque—
for example, it is not easy to tell when two elements > m; ® n; and
>_m; @n) are equal (though a general criterion is given in Chapter 6).
In practice, the following facts arc often used to get information about
M ®g N. The reader will note that they are in a certain sense dual to the
preceding facts about Hom. There is a very close relationship between &
and Hom, called adjointness, explained in Appendix 5. The properties
below can be deduced from this relationship, or directly by using the char-
acterization of maps from M ®pr N as bilinear maps from M x N, given
above.

1. For any module M we have M ®r R = RQpr M = M by isomorphisms
sending 1 ® m and m ® 1 to m. Also, M @g N % N @z M by a map
sending m ® n to n ® m.

2. The tensor product is functorial in the sense that if a : M' —
M and 3 : N’ — N are homomorphisms, then there is an induced
homomorphism called a® 3 : M'®@p N’ — M ®p N that sends m’ ®@n/
to a(m’) ® B(n’).

3. The tensor product preserves direct sums in the sense that if M =
®;M;, then M ®p N = ®;(M,; Qg N).

4. The tensor product preserves cokernels in the sense that if o : M’ —
M is a map with cokernel coker(a) = M", then for any module N the
cokernel of the induced map a®1: M'@p N — M QrN is M"Qr N.
This is usually expressed by saying that the tensor product is right
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exact in the sense that the functor — ®r N takes an exact sequence
of the form
M -M-—-M —0

(that is, a right-exact sequence) to an exact sequence
MorN —>MgpN - M' @ N — 0.

These ideas are often used together. For example, to compute the mod-
ule M ®r N we first find a free presentation of A : That is, we write M
as the cokernel of a map of free R-modules a : ®;cfR — @jcsR, where
I and J are sets indexing the bases of the two modules. Giving such a
presentation is equivalent to giving generators and relations for M as an
R-module. From facts 1 and 3 we see that (®,c;R) @R N = DN is
simply a direct sum of copies of N, and similarly for (®;esR) ®r N. (In
fact, if « is written as a matrix using the given bases of the free mod-
ules @i/ R and ®jc R, then the map a ® 1 is given in a natural sense by
the same matrix.) Thus we get an explicit map a ® 1 : @it N — @,y N
whose cokernel is M ®pr N. Of course, similar constructions are possible
with Hom.

The tensor product is extremely useful in relating the properties of a ring
and an algebra over it. If M is an R-module and S is an R-algebra, then
S®gM is not only an R-module, it is also an S-module with multiplication
given by the rule s(t ® m) = st ® m for s,t € S and m € M. (In the case
where S is a localization R[U!], we shall prove below that S ®p M =
MU 1)

Carrying this one step further, if A and B are both R-algebras, then
the A-module A ® B is naturally an R-algebra too, with multiplication
(a ® b)(c ®d) = (ac) ® (bd). There are natural maps of algebras A —
A®r Band B — A®p B sending a — a ® 1 and b — 1 ® b. The algebra
A ®p B is the “freest” way to put the algebras A and B together into
a commutative algebra: Given any commutative R-algebra C' and maps
a:A— Cand 3 : B — C of algebras, the map A x B — C sending
a X b to a(a)B(b) is bilinear, so there is a unique map A ®p B — C of
modules, which turns out to be a map of algebras too, sending a ® b to
a(a)B(b).

The reader who has not seen such things before would do well to pause
and try to work out a few examples, such as those given in Exercise 2.4.

There is an amazingly useful geometric interpretation of the tensor prod-
uct of algebras: If R, A, and B are the coordinate rings of affine varieties
X, Y, and Z over an algebraically closed field, then the maps R — A
and R — B corresponding to the algebra structures correspond to maps
a:Y — Xand B:Z — X. It turns out that A®p B is then the coordinate
ring of the “fiber product” {(y,z) € Y x Z|a(y) = B(z)}. See, for example,
Hartshorne [1977, Chapter 2].
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The localization of modules can be described in terms of tensor products:

Lemma 2.4. The natural map RIU|®@r M — M[U™'] defined by sending
r/u®m to rm/u is an isomorphism.

Proof. It is enough to give a map of sets that is inverse to the given map. We
define first a map o : M xU — R[U '|®gp M by sending (m,u) to 1/u@m.
We claim that this induces a map g : M[U~!] — R[U"'®r M. To sce that
B is defined, suppose that (m',u') is another pair, with m/u = m//v'.
This means that there is an element v € U such that vu'm = vum'. Thus
L/ (vueY@uu'm = 1/(vur)@vum’. But 1/(vun)@vu'm = v’ /(ve'u)@m =
1/u®m by the definition of the tensor product. Similarly, 1/(vuu')Quum’ =
1 /v ®@m'. Putting these together gives the desired equality. It is immediate
that 3 is the inverse of the map r/u ® m = 1/u ® rm > rm/u. O

We next turn to a central property of localization called fiatness. We say
in general that an R-module F is fiat if for every monomorphism M’ — M
of R-modules, the induced map F'®pz M’ — F ®p M is again a monomor-
phism. Since tensor products always preserve right-exact sequences, this is
the same as saying that tensoring with F' preserves all exact sequences—in
particular, it preserves kernels and cokernels. In Chapter 6 we shall explain
something of the geometric meaning and uses of this condition. The most
interesting case occurs when F' is an R-algebra. An example of how this
condition is used is given in Proposition 2.10. The next result shows that
the condition is satisfied by localizations of R:

Proposition 2.5. For any multiplicatively closed subselt U C R, the ring
R[UY] is flat as an R-module; that is, localization takes submodules to
submodules, and thus preserves kernels and cokernels.

Proof. Given an injection M’ C M, we must show that
RU Y @r M — RU ' ®@r M

is an injection. To do this, we use the other description of the localization,
and it is enough to prove that the natural map

MUY — MUY
extending the composite
M - M- MU

is an injection. But if, for some m € M, the clement m/u goes to zero in
M U], then there must be an element v € U such that vm = 0 in M,
and this will hold in M' as well. Thus m/u = 0 already as an element of
M'[U'], and we are done. O
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Here is a useful consequence:

Corollary 2.6. Localization preserves finite intersections: That is, if
My, ..., M; C M are submodules, then (N;M;)[U™'] = n;(M;[U1]).

Proof. The point is that intersections can be defined in terms of
kernels. Explicitly: The submodule N;M; is the kernel of the map
M — @&;M/M;. Since localizing preserves kernels, quotients, and direct
sums, we see that (N;M;)[U~!] is the kernel of the map M[U~!] —
@GM/M)UY] = &(M/M)U] = @MU-)/(MGU); that s,
(MU = ni(M;[U1)). O

Unfortunately, localization generally does not preserve infinite intersec-
tions (see Exercise 2.5).

We reemphasize the last statement of Proposition 2.1 with a definition:
The support of M, written Supp M, is defined to be the set of prime
ideals such that Mp 5 0. The last statement of Proposition 2.1 immediately
gives:

Corollary 2.7. If M 1is a finitely generated R-module, and P is a prime
of R, then P € Supp M iff P contains the annihilator of M. O

For those who know about sheaves, the terminology can be explained as
follows: In algebraic geometry modules over R are treated as sheaves on
Spec R. The stalk of the sheaf corresponding to the module M at the point
P € Spec R is the localization Mp. Support is a well-defined notion for
any sheaf; it is the set of points where the stalk of the sheaf is nonzero.

We have already mentioned the geometric interpretation of localization:
If X is an affine algebraic set over an algebraically closed field, R = A(X)
is its coordinate ring, and m = m, is the maximal ideal corresponding to
a point p € X, then Ry is the ring of “polynomial function germs” on
the “germ” of X at p. Here we interpret a germ just as in the theory of
manifolds: The germ of a function on the germ of a space X at a point p
is by definition the equivalence class of a function defined on some open
neighborhood of p, two functions being equivalent if they agree on some
(perhaps smaller) open neighborhood on which both are defined. We have
already seen that any “polynomial function defined on a neighborhood of
p” is of the form f/u for f, v € R and u not vanishing at p (that is,
u ¢ my). Two such polynomial functions f/u and g/v represent the same
germ if they agree on some small neighborhood of p, which means that they
agree on the set wherever some function w € R — m, is nonzero, that is,
wow(f/u—g/v) = 0 as a function on X; this matches exactly the criterion
for f/u and g/v to be equal in Ry,. (In the theory of schemes it is convenient
to let the definitions go the other way: The germ of X at p is defined in terms
of the local ring Rm; see Hartshorne [1977] or Eisenbud and Harris [1992].)
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The statement that a function is zero iff it is zero locally at any point
has as its analogue the following extremely useful lemma.

Lemma 2.8. Let R be a ring and let M be an R-module.

a. If m e M, then m = 0 iff m goes to zero in each localization My, of
M at a maximal ideal m of R. Similarly,

b. M =0 iff My, =0 for each maximal ideal m of R.

Proof. m goes to zero in a localization My, iff the annihilator I of m is
not contained in m. But m = 0 iff I = R iff I is not contained in any
maximal ideal of R (this last step uses Zorn’s lemma, in general, though
for Noetherian rings the existence of a maximal ideal containing a given
ideal is of course axiomatic). This proves statement a.

To deduce statement b, note that M = 0 iff every element of M is 0; using
part a, we see that this happens iff every element of M goes to zero in every
localization My, at a maximal ideal iff every such My, is 0. O]

This lemma can be used with Proposition 2.5 to reduce many questions
to the local case. Here is a typical step in the reduction process:

Corollary 2.9. If ¢ : M — N s a map of R-modules, then ¢ is a
monomorphism (or epimorphism, or isomorphism) iff for every maximal
ideal m of R the localized map

om : M — N

is a monomorphism (or epimorphism, or isomorphism).

Proof. ¢ is a monomorphism iff ker ¢ = 0. Because localization is flat,
(ker p)m = ker(ypm). Applying the lemma, we get the first version. The
statement about epimorphism is similar (but does not require flatness). The
statement about isomorphism is made by putting the first two statements
together. O

An easy but useful application is the general form of the “Chinese remain-
der theorem” given in Exercise 2.6.

We next turn to a more sophisticated bond between a ring and its
localizations: Homomorphisms between localizations of nice modules all
come from homomorphisms between the original modules. In fact this
relation depends only on flatness. The hypothesis we need involves a certain
R-module M being finitely presented. In the cases of primary interest to us,
R will be Noetherian. In this case M is finitely presented iff M is finitely
generated, since if ¢ : G — M is a surjection from a finitely generated free
module G, then ker p, as a submodule of G, is also finitely generated, so
M has a finite free presentation.
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Proposition 2.10. Let R be a ring and let S be an R-algebra. If M and
N are R-modules, then there is a unique S-module homomorphism

anr - S®p HOmR(M, N) — Homs(S Qr M,S Qp N)

that takes an element 1 ® p € S ®@p Homp(M, N) to the S-module homo-
morphism 1 Qp ¢ : SQr M — S @z N in Homg(S @r M, S ®g N). If
S is flat over R and M 1is finitely presented, then ays is an isomorphism.
In particular, if M is finitely presented, then Homp(M, N) localizes in the
sense that the map a provides a natural isomorphism

Hom g (M[U™'], N[U™']) = Hompg(M, N)[U "]
for any subset U C R.

Proof. By Proposition 2.5, the last statement is a special case of the first
statements.

The map of sets o : Homgz(M, N) — Homg(S ® M,S ® N) taking a
homomorphism ¢ to the homomorphism 1 ® ¢ is easily seen to be a map
of R-modules. Since the target is an S-module, &’ extends to a unique map
a = ayr of S-modules with the desired property.

Now we suppose that S is flat and M is finitely presented, and prove
that aps is an isomorphism. First suppose that M = R. We may identify
Homp(R, N) with N by taking a map ¢ to the element ¢(1). Also, S®pR =
S, and the same remark shows that Homg(S®z R, S®r N) = SQ@rN. It
is easy to sec that the map ap : S ®r N — S ®gr N is the identity map.

Next suppose that M = G R is a free module of finite rank, the direct
sum of m copies of R. The functors Hom and & both commute with finite
direct sums, and the map au also decomposes as a direct sum, agng =
@ ap. Since each ap is an isomorphism, so is ay.

Finally, suppose M is any finitely presented module. Choose a finite free
presentation

Fhabh Mo

If we tensor with S. then because tensoring preserves right-exact sequences,
and because S ®x F and S ®p G are finitely generated free S-modules, we
get a finite free presentation of S ®p M as an S-module.

To simplify the notation, we denote the tensor product S ®p M by
M', and similarly for other modules and maps. Applying Hompg(—, N) to
the free presentation of M and Homg(—,N’) to that of M’, we obtain
exact sequences 0 — Homp(M,N) — Hompr(G,N) — Hompg(F, N) and
0 — Homg(M',N') — Homg(G',N') — Homg(F',N'). Because S is
flat over R, we may tensor the first of these with S and still have an
exact sequence, 0 — Hompg(M,N) — Hompg(G,N) — Hompg(F,NY.
The map defined in the proposition is, with this notation, a map au :
Hompg(M,N)" — Homg(M’, N'); we wish to show that ajs is an isomor-
phism. By the arguments above, ar and ag are isomorphisms. Putting
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these maps together, we get a commutative diagram with exact rows

2

0 — Homg(M,NY % Homg(G,NY v Homg(F, N)'
[e37; ag ap

0 — Homs(M',N’) — Homs(G’,N’) - Homg(F’,N’),
ul\/

\01\/

where ¢"' and 1" are the maps induced by ¢ and ¥, and ¢’V and 9’V are
the maps induced by ¢’ and 7).

It now follows formally that «,; is an isomorphism, for example, from
the “Five-Lemma” of Appendix 3, Exercise A3.11 (one adds another 0 —
to the left of each of the rows above to make each one a five-term exact
sequence). Here is a direct proof:

First we prove that ay; is a monomorphism. Suppose that z € ker ay;.
Since the diagram commutes, we have agy"'(z) = ¢V ay(z) = 0. Since ag
is an isomorphism, ¢"/(z) = 0. Since ¢’ is a monomorphism, z = 0.

Finally, we show that aj; is an epimorphism. Suppose that y €
Homg(M',N'). Since ag is an epimorphism, we may choose 2 €
Hompg(G, N so that ag(z) = ¢V (y). To show that = comes from an ele-
ment of Hompg(M, N)', it suffices, since the first row of the diagram is
exact, to show that ¢V'(z) = 0. By commutativity, ary"'(z) = ¢V ag(z)
V'™V (y) = 0. Since ap is an isomorphism, we see that Y'(z) =
so z = ¢Y'(z) for some z € Hompg(M,N)'. Furthermore, ¢ a(z)
acp'(z) = ag(z) = ¢"V(y). Since ¢V is a monomorphism, we see that
ap(x) = y as required. O

|

bl

We shall apply this result often, starting in Theorem 2.13 below. See
Exercises 3.3, 4.11-4.13, and 19.4 for some surprising applications beyond
the ones in the text.

2.3 The Construction of Primes

The complement of a prime ideal is, as we have already mentioned, a mul-
tiplicatively closed subset. There is a sort of converse:

Proposition 2.11. If R is any commutative ring, U C R a multiplicatively
closed subset, and I C R an ideal maximal among those not meeting U,
then I is prime.

Quite generally, ideals maximal with respect to some property have an
uncanny tendency to be prime—see the problems for some more examples,
one of which is at the center of the theory of primary decomposition, treated
in Chapter 3.



2.4 Rings and Modules of Finite Length 71

Proof. If f, g € R are not in I, then, by the maximality of I, both I + (f)
and I + (g) meet U. Thus, there are elements of the form af +i and bg + j
in U with ¢, j € I. If fg were in I, then the product of af + i and bg + j
would be in I, contradicting the fact that I doesn’t meet U. O

Here is a variant of the proof just given that makes the relation to local-
ization obvious: Since distinct ideals of R[U '] contract to distinct ideals
of R, the ideal IR[U '] must be a maximal ideal, and thus prime. If P is
the preimage of /R[U '] in R, then P is prime. But I C P, and P does
not meet U, so I = P.

Note that, for any given U, we can use Zorn’s lemma to produce an ideal
I as in the proposition.

This simple idea is extremely fruitful. For example, it gives a formula for
the radical of an ideal (recall from Chapter 1 that if I C R is an ideal, then
rad I = {f € R|f" € I for some n}):

Corollary 2.12. If I is an ideal in a ring R, then radl = {f|[f" € I
for some n} = Mpy prime containing 1P. In particular, the intersection of all
primes of R is the radical of (0), which is the set of all nilpotent elements
of R.

Proof. The set rad I is obviously contained in the right-hand side. Con-
versely, if f is not in rad I, then an ideal maximal among those containing
I and disjoint from {f"|n > 1} is prime, so f is not contained in the
right-hand side. 0

2.4 Rings and Modules of Finite Length

Recall that a ring is called Artinian if it satisfies a condition dual to the
Noetherian condition: the descending chain condition on ideals. That is, R
is Artinian if every descending chain of ideals is finite. We shall see below
that any Artinian ring is automatically Noetherian.

We shall show in particular that all the prime ideals in a Noetherian ring
R are maximal iff R is Artinian, and in this case there are only finitely
many maximal ideals. As a consequence, we shall see that an algebraic
set whose coordinate ring is Artinian has only finitely many points (the
converse is easy). This is the germ of a fundamental finiteness principle in
algebraic geometry.

We shall analyze the structure of Artinian rings and modules over them
in terms of localization. Consider a simple example, the ring Z/(12). It is
Artinian (as is every finite ring!) and has maximal ideals (2) and (3). From
an elementary course in algebra the reader will know that Z/(12) = Z/(4) x
Z/(3)—this is a case of the “Chinese remainder theorem,” known to Sun-
Tsu in the first century A.D. We may give a sophisticated description of the
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isomorphism as follows: If we localize at the prime (2), then all the integers
not divisible by 2 become units. Thus (12)() = (4)(2). On the other hand,
the odd numbers are already units in Z/(4), so (Z/(12))2) = (Z/(4))2) =
Z/(4). The localization map Z/(12) — (Z/(12))@ = Z/(4) sending n €
Z/(12) to n/1 is the same as the projection map sending n = n + (12)
to n + (4). Similarly, (Z/(12))) = Z/(3) by the projection map. Putting
these maps together, we get the isomorphism Z/(12) — Z/(4) x Z/(3). We
shall prove that something similar happens for any Artinian ring.

We begin with a general study of modules with finite composition series:
If M is a module, then a chain of submodules of M is a sequence of
submodules with strict inclusions

M=M,D>DM D> ---DM,.

Such a chain is said to have length n (the number of links). The chain is said
to be a composition series if each M;/Mj;,, is a nonzero simple module
(that is, has no nonzero proper submodules). Equivalently, a composition
series i8 a maximal chain of submodules of M. We define length M to
be the least length of a composition series for M, or oo if M has no finite
composition series. We shall prove that every composition series for M has
the same length.

Of course, a simple module must be generated by any nonzero element,
so each M;/M;;; = R/P for some ideal P, which may be described by
P =ann M, /M;.,. Again because M; /M, is simple, P must be a maximal
ideal.

The next result, which tells something of the structure of modules of finite
length, includes the Jordan-Hdélder theorem for modules and the Chinese
remainder theorem. (A more usual form of the Chinese remainder theorem,
proved with the same methods, is given as Exercise 2.6.)

Theorem 2.13. Let R be a ring, and let M be an R-module. M has a
finite composition series iff M is Artinian and Noetherian. If M has a
finite composition series M = My D My D -+ D M, = 0 of length n, then:

a. Every chain of submodules of M has length < n, and can be refined
to a composition series.

b. The sum of the localization maps M — Mp, for P a prime ideal,
gives an isomorphism of R-modules

M= @PMPa

where the sum is taken over all maximal ideals P such that some
M;/M; 1 = R/P. The number of M;/M;, isomorphic to R/ P is the
length of Mp as a module over Rp, and is thus independent of the
composition series chosen.

c. We have M = Mp iff M is annihilated by some power of P.
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Proof. First suppose that M is Artinian and Noetherian, so that it sat-
isfies both ascending chain condition and descending chain condition on
submodules. By the ascending chain condition we may choose a maximal
proper submodule M), a maximal proper submodule M; of M;, and so
on. By the descending chain condition this sequence of submodules must
terminate, and it can only terminate when some M, = 0. In this case
M=M,> M, D -2 M, =0is a composition series for M.

a. Suppose that M’ C M is a proper submodule. We shall show that
length M’ < length M. The idea is simple: We intersect the terms of the
given composition series for M with M’ and derive a shorter composition
series for M'.

The quotient (M’ N M;)/(M' N M;,,) is isomorphic to ((M' N M;) +
M)/ Miyn C M;/M;,,. Since M; /M, is simple, we have either (M' N
M;)/(M'N M) =0 orelse (M' N M,)/(M'NM,,1) is simple, and (M’ N
M)+ My = M;.

We claim that the latter possibility cannot happen for every i. Assum-
ing on the contrary that it did, we prove by descending induction on ¢
that M’ D M; for every i, and we get a contradiction from the statement
M' > My = M. If i = n then clearly M O M;. Supposing by induction
that M’ D] Mi+1, we see that M’ ﬂMi S (M/ N Mz) + Mi+1 = Mi) and it
follows that M’ D M,;.

From these facts we see that the sequence of submodules M’ > M'NM; D
.+ D M'n M, = 0 can be changed, by leaving out the terms M’ N M; such
that M' N M; = M’ N M;, to a composition series for M’ whose length is
< n. Since we could do this for any composition series for M, we get length
M' < length M as claimed.

Suppose now that M = Ny D Ny D --- D Ni is a chain of submodules.
We shall show by induction on length M that k < length M. This is obvious
if length M = 0, since then M = 0. By the argument above, length N; <
length M so by induction, the length of the chain Ny D -+ D Ni,is k —1
< length Nj. Since length N; < length M, it follows that & < length M.

From the definition of length it now follows that every maximal chain of
submodules has length n, and every chain of submodules can be refined to a
maximal chain. Further, n is a uniform bound on the lengths of all ascending
or descending chains of submodules, so that M has both ascending chain
condition and descending chain condition.

b. By Corollary 2.9 it suffices to show that the given map becomes
an isomorphism after localizing at any maximal ideal Q of R. This will
be easy once we understand what happens when we localize a module of
finite length.

We begin with the case when M has length 1, that is, when M is a
simple module. In this case M = R/P for some maximal ideal P = ann M.
If P = @, then since R/Q) is a field, the elements outside of @ act as units
on R/Q, and we see that (R/Q)g = R/Q. If on the other hand P # Q,
then since P is maximal, P ¢ @, so Py = Rg. Thus (R/P)g = Ry/Py = 0.
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It follows in particular from this that if () and @’ are distinct prime ideals,
then (Mg)g = 0.

We now return to the general case, length M = n < oo. The composition
series for M localizes to a sequence of submodules

Mg = (Mo)g O (My)g D -+ D (M,)q = 0.

The modules M;/M;,; have length 1, so the case already treated shows
that (Mi/MZ'+1)Q = Mi/M7'+1 if Q = ann Mi/ML'+17 and (Mi/Mi+l)Q =0
otherwise. Thus M has a finite composition series corresponding to the
subseries of the one for M, obtained by keeping only those (M;)y such
that M;/M,.; = R/Q. In particular, if none of the modules M;/M;,, is
isomorphic to R/Q, then My = 0; and if @ and @’ are distinct maximal
ideals, then (Mg)y = 0.

Now consider the map a : M — @Mp, the sum of the localization maps,
where P ranges over those maximal ideals such that some M, /M, ., =~ R/P.
We see from the above that we could harmlessly extend the sum to all
maximal ideals; the new terms are all 0. For any maximal ideal @Q and any
module M we have (My)g = Mg, so the identity map is one part of the
localization of a:

(67020 MQ - (@Pa maximal ideal MP)Q = @D Pa maximal ideal ((MP)Q)

But if P # @ and M has finite length, then we have seen that (Mp)g = 0.
Thus ag is the identity map for every maximal ideal @), and it follows that
o 18 an isomorphism.

c. Suppose that M is annihilated by a power of a maximal ideal P. If
(Q # P is another maximal ideal, then P contains an element not in Q.
This element acts as a unit on M. Since a power of the element acts as
0 on M, we must have My = 0. Thus by part b, M = Mp. Conversely,
suppose that M = Mp. The preceding description of localization shows
that every factor M;/M; 1 = R/P. By induction, we see that P/M C M,,
and in particular P"M = 0. ]

We now return to Artinian rings. The result that an Artinian ring is
Noetherian, which is part of the next theorem, is true even for noncommu-
tative rings (with unit); in the more general setting it is due to Hopkins
[1939]. The proof in the commutative case is somewhat simpler. We follow
the presentation of Altman and Kleiman [1970].
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Theorem 2.14. Let R be a ring. The following conditions are equivalent:

a. R is Noetherian and all the prime ideals in R are maximal.
b. R is of finite length as an R-module.

c. R is Artinian.

If these conditions are satisfied, then R has only finitely many maximal
ideals.

Proof. a = b: If R is Noetherian and not of finite length, let / C R be an
ideal maximal with respect to the property that R/I is not of finite length.
We claim that I is prime. Indeed, if ab € I and a ¢ I, then we may form
an exact sequence

0—-R/(I:a)3 R/I— R/(I+(a))— 0.

Since I + (a) properly contains I, the module R/(I + (a)) has finite length.
Ifb ¢ I, then (I : a) properly contains I as well, so by assumption R/(I : a)
also has finite length. Putting together composition series for R/({ 4 (a))
and R/(I : a) we get a composition series for R/I, so it has finite length
too, contrary to our assumption. The contradiction shows that b € I. Thus
I is prime.

Now suppose in addition that all the prime ideals in R are maximal.
If R were not of finite length, then the prime I just constructed would
be a maximal ideal and R/I would be a field, contradicting the defining
property of I and showing that R is of finite length after all.

b = c: This is clear from Theorem 2.13.

¢ = a: Suppose that R is Artinian. Qur first goal is to show that 0 is a
product of maximal ideals of R. Since R is Artinian, we may choose from
among all ideals that are products of maximal ideals of R, a minimal such
ideal, J. We wish to show that J = 0.

For every maximal ideal M of R, the minimality of J implies that MJ =
J: in particular, J C M. Since J? is also a product of maximal ideals, we
have J? = J. If J # 0, we can choose an ideal ] minimal among ideals not
annihilating J. Since (IJ)J = IJ? = IJ # 0, and IJ C I, we must have
IJ=1.

Some element f € I must satisfy fJ # 0, and since [ is minimal, we
must have I = (f). Since IJ = I, there is an element g € J such that
f = fg, or equivalently (1 — g)f = 0. Since ¢ is in every maximal ideal,
1 — g is in none; that is, 1 — g i1s a unit. Thus f = 0. This contradiction
shows that indeed J = 0.

We now have 0 = MM, --- M, for some maximal ideals M; of R. For
each s, the quotient M;My--- M;/MiM,--- M. is a vector space over
R/M,.,. Any subspace is a submodule, corresponding to a certain ideal of
R containing My M, - - - M, ;. Similarly, any descending chain of subspaces
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corresponds to a descending chain of ideals of R, and since R is Artinian,
any such chain must be finite. Thus MMy --- M /MM, --- M, is finite
dimensional over R/M,;, and has in particular a finite composition series.
Putting these composition series together, we see that R has finite length.
By Theorem 2.13, R is Noetherian.

Suppose that P is a prime ideal of R. Since P D 0 = MM, --- M, we
see that P D M, for some 4. Since M; is a maximal ideal, P = M;, and P
is maximal. In particular, every maximal ideal is one of the M;, so there
are only finitely many. ]

Applying this result in the geometric context, we get:

Corollary 2.15. Let X be an affine algebraic set over a field k. The fol-
lowing are equivalent:

a. X is finite.

b. A(X) is a finite dimensional vector space over k, whose dimension is
the number of points in X.

c. A(X) is Artinian.

Proof. a = b: If X is finite, then since A(X) is the ring of polynomial
functions restricted to X, we have A(X) = I;ex A(z) = llexk, a direct
product of as many copies of the residue field as there are points in X.

b = ¢ If R is a k-algebra that is finite dimensional as a k-vector
space, then any descending chain of subvector spaces is finite, and thus
any descending chain of ideals is necessarily finite.

c = a: If A(X) is Artinian, then by Theorem 2.14 it has only finitely
many maximal ideals. Since the points of X correspond to maximal ideals,
we are done. J

Combining Theorem 2.14 with Theorem 2.13b, we deduce a sort of struc-
ture theorem for Artinian rings:

Corollary 2.16. Any Artinian ring is a finite direct product of local
Artinian rings.

Proof. Since R has finite length as a module over itself, we see from Theo-
rem 2.13 that the sum of the finitely many localization maps, R — @; Ry, is
an isomorphism of R-modules. The R-algebra ][, Ry, which is the direct
product of the localizations, is nothing but @;R;; when regarded as an
R-module. Since each map R — Ry is a map of rings, the isomorphism
of R-modules R — [[; R, is actually an isomorphism of rings, and we see
that R is the direct product of finitely many local Artinian rings. 0

We can also characterize modules of finite length over Noetherian rings.
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Corollary 2.17. Let R be a Noetherian ring, and let M be finitely generated
R-module. The following are equivalent:

a. M has finite length.

b. Some finite product of mazimal ideals II}' | P; annihilates M.
c. All the primes that contain the annihilotor of M are mazximal.
d. R/ann(M) is an Artinian ring.

Proof. a = b: If M has finite length, then by Theorem 2.13b and ¢, M is a
direct sum of modules, each of which is annihilated by a power of a certain
prime. The product of these powers annihilates M.

b = c: If a product of maximal ideals IT}' | P, annihilates M and a prime
P contains the annihilator of M, then P D II' ; P, and thus P = P; for
some 7.

¢ = d: Immediate from Theorem 2.14.

d = a: Set S = R/ann(M), and suppose that S is Artinian. By The-
orem 2.14, S has finite length as an S-module (or equivalently as an R-
module). Since M is a finitely generated S-module, it is a homomorphic
image of a finite direct sum of copies of S, and is thus a module of finite
length. Ol

Using Corollary 2.17, we see that every finitely generated module can be
made into a module of finite length by localization at a prime minimal over
its annihilator.

Corollary 2.18. Let R be a Noetherian ring, 0 # M a finitely generated
R-module, I the anmihilator of M, and P a prime ideal containing I. The
Rp-module Mp is a nonzero module of finite length iff P is minimal among
primes contarning I.

Proof. If P is a prime ideal minimal among primes containing I, then Pp
is nilpotent in Rp/Ip by Corollary 2.12. Thus, a power of Pp annihilates
Mp, and Corollary 2.17 shows that Mp has finite length.

Conversely, suppose that Mp has finite length over Rp. The annihilator
of Mp is Ip. Thus, by Corollary 2.17, every prime of Rp/Ip is maximal.
Since the primes of Rp/Ip correspond to the primes of R containing I and
contained in P, we see that P is minimal in the desired sense. [

The most useful special case of these results is where M = R/I (so that
in particular I = ann M).

Corollary 2.19. Let I be an ideal in a Noetherian ring R. The following
are equivalent for a prime P containing I:

a. P is minimal among primes containing 1.
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b. Rp/Ip is Artinian.
c. In the localization Rp we have Py C Ip for all n>> 0.
Proof.

a = b: If P is minimal among primes containing I, then Pp is the
unique prime of Rp/Ip. Corollary 2.17 shows that Rp/Ip is
Artinian.

b = c: Suppose that Rp/Ip is Artinian. By Theorem 2.14 Rp/Ip has
finite length, and by Theorem 2.13c it is annihilated by a power
of Pp—that is, Pp C Ip for large n.

¢ = a: Suppose that P C Ip. If Q is a prime of R such that I C
Q) C P, then after localizing we scc that PR C Qp, so Pp =
Qp. It follows that P = (). Thus P is minimal among primes
containing 1. [l

2.5 Products of Domains

In a different direction we may use localization to characterize the Noethe-
rian rings that are direct products of domains.

Proposition 2.20. If R is a Noetherian ring, then R is a finite direct
product of domains iff for every maximal ideal P of R, the local ring Rp is
a domain.

Proof. Suppose R = [[, R; is a direct product of domains R;. A prime
ideal P of R cannot contain the unit element e; of each of the R;. But
if e; ¢ P then since e; annihilates R; for j # i we have Rp = (R;)p, a
domain.

Conversely, suppose that every localization of R at a maximal ideal is a
domain. Let {Q;} be the set of minimal primes of R. Since an intersection
of primes in a descending sequence is again prime, this set is nonempty.
By the result of exercise 1.2 (or see Theorem 3.1a) there are only finitely
many Q;. We must show that the map ¢ : R — II;R/Q; is an isomorphism.
By Corollary 2.9 it is enough to show that ¢ becomes an isomorphism
after localizing at a maximal ideal P of R. The minimal primes of Rp are
the localizations of the minimal primes of R contained in P. Since Rp is
a domain by hypothesis, there is only one of these, say @, and we have
(Qi1)p =0,(Qi)p = R for i # 1. Tt follows that (I, R/Q;)p = (R/Q1)p =
Rp and ¢ localizes to an isomorphism as required. J

In trying to prove that a given ring is a domain, using methods of local
algebra, one often proves in fact that the ring is locally a domain in the
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sense above. Using Proposition 2.20 it is then enough to eliminate the
possibility that the ring contains idempotent elements other than 0 and 1.
We shall return to these ideas much later, in Theorem 18.15.

2.6 Exercises

Exercise 2.1: Check that the definitions really do make R[U~!] into a ring
and M[U1] into an R[U!]-module (and thus also an R-module). Check
that the map R — R[U~!| sending r to r/1 is a ring homomorphism, and
themap M — M[U~'] sending m to m/1 is a homomorphism of R-modules.

Exercise 2.2 (An alternate construction of localization): Let R be
a ring and let U be any subset of R. Show that R[U~!] is the result of
adjoining inverses of elements of U to R in the freest possible way, in the
sense that

R[U_l} = R[{xu}uEU]/({uxu - 1}UEU)'

Exercise 2.3 (How to localize without admitting it): Here is a col-
lection of results that allow one to do many things in a localization with-
out having to admit that there is any such thing. Suppose U C R is a
multiplicatively closed subset of a ring. Show that there is a one-to-one
correspondence, preserving sums and intersections, between the ideals in
R[U7!] and the ideals I in R such that (I : f) = I for all f € U (recall from
Chapter O that (I : f) := {r € R|fr € I}). Show that this correspondence
respects the property of being prime. Show that for any ideal J < R we
have RN JRUT = 3"y (J & f°°) where (J @ f%) := U2, (J : f). Show
that the ideals I C R such that (I : f) = I are exactly the image of the
map J — RN JR[U']. Historically, constructions like (I : f) were used
before localizations were defined, to accomplish the same ends.

Exercise 2.4 (Practice with Hom and ®): Let k£ be a field, and let
Z denote (as usual) the ring of integers. Let m, n be integers. Describe as
explicitly as possible:

a. Homz(Z/(n),Z/(m)) and Homy,(k[z]/(z"), k[z]/(z™)).
b. Z/(n) ®z Z/(m) and k[z]/(z") @y k[z]/(z™).
c. k[z] ®x k[x] (describe this as an algebra).

Exercise 2.5: Suppose k is an infinite field, and let U be the set of
nonzero elements of the polynomial ring k[z] in one variable. Show that
(Nack(z — a))[U] # Nuer((z — a)[UY]). Thus, Corollary 2.6 would be
false for infinite intersections.
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Exercise 2.6 (General form of the Chinese remainder theo-
rem): Let R be a ring, and let @Qi,...,Q, be ideals of R such that
Q; + Q; = R for all ¢ # j. Show that R/(N;Q,) = II;R/Q; as follows:

a. Consider the map of rings ¢ : R — II;R/Q; obtained from the n
projection maps R — R/Q;. Show that ker ¢ = N;Q;.

b. Let m be a maximal ideal of R. Show that the hypothesis that Q; +
Q; = R for all 7 # j means that at most one of the @, is contained
in m. Now use Corollary 2.9 to show that  is surjective.

Exercise 2.7: Show that the universal property of the localization given
in the text characterizes R — R[U '] up to unique isomorphism in the sense
that if another map R — S has the same property, then there is a unique
isomorphism R[U~!] — S making the diagram commute.

RIU]

A

R

N

Exercise 2.8: Show that the following universal property similarly char-
acterizes M — M[U™!]: Given a map ¢ from M to an R-module N on
which the elements of U act by multiplication as automorphisms, therc is a
unique extension ¢’ : M[U '] — N. In particular, if M and N are R[U™!|-
modules, then the maps of R-modules from M to N are the same as the
maps of R[U 1}-modules.

S

Exercise 2.9: One way of describing the ring R[U~!] is to say what its
modules are: Show that an R[U~!]-module is the same thing as an R-
module on which the elements of U act as automorphisms. In particular,
the map M — M[U~'] is an isomorphism iff the elements of U act as
automorphisms on M.

Exercise 2.10: Show that every finitely generated module over R[U '] is
the localization of a finitely generated module over R. Here is a truly trivial
statement that sounds deeper: The same is true without the condition
finitely generated.

Exercise 2.11:* Let N’ ¢ M[U~!] be an R[U '|-submodule, and let N C
M be the preimage of N’. Show that N’ = N[U1].
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Exercise 2.12: Show that Proposition 2.10 is sharp in the following sense:
Consider the ring R = Z of integers. Let U be the set of powers of 2.
Consider the statement of the proposition with M = @2 R, N = R,
S = R[U.

a. If N = R, show that element (2—1,)i:1 . I8 not in the image of the
map o : (112, R) U] — I, (R[UY]) of the proposition.

b. Now suppose N = &%, R/(2'), with M and S as before. Show that
the map sending the generator of the ith factor of M to the generator
of the ith factor of N is nonzero in Homg(M, N)[U~!], but goes to 0
under «.

Exercise 2.13 (Splitting criteria for a short exact sequence): Sup-
pose that

(%) 0-A—-B->C—0
is a short exact sequence of R-modules.

a. Show that (%) is split iff the map Homg(C,B) — Hompg(C,C)
induced by the right-hand map of () is an epimorphism.

b. Suppose that (x) is locally split in the sense that for each maximal
ideal P C R the localized sequence 0 — Ap — Bp — Cp — 0 is split.
If C is finitely presented, show that () is split by using part a and
Proposition 2.10.

Z-graded Rings and Their Localizations

If we invert an element of a graded ring, even a homogeneous element,
we usually do not get a graded ring in the sense of Chapter 1: Negative
degrees will occur in the obvious grading. Thus we introduce the notion of
a Z-graded ring:

Definition. A Z-graded ring is a ring R such that
R=Ro2,®R 1R ®PR SRy P ---

as abelian groups and R,R; C R,.;. The elements of R; are called homo-
geneous elements of degree i. A homogeneous ideal in a Z-graded ring
is simply an ideal generated by homogeneous elements.

The case of ordinary graded rings is the case where R; = 0 for i < 0.

Exercise 2.14 (Characterization of homogeneous ideals): Show that
an ideal I of a Z-graded ring R is homogeneous iff for every element f € I,
all the homogeneous components of f are in I.
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Exercise 2.15: Many basic operations on ideals, when applied to homoge-
neous ideals in Z-graded rings, lead to homogeneous ideals. For example,
let I be a homogeneous ideal in a Z-graded ring R. Show that:

a.

b.

C.

The radical of I is homogeneous; that is, the radical of I is generated
by all the homogeneous elements f such that f" € I for some n.

If I and J are homogeneous ideals of R, then
(I:J):={feR|fJCI}
is a homogeneous ideal.

Suppose that for all f, g homogeneous elements of R such that fg € I,
one of f and ¢ is in I. Show that I is prime.

See Section 3.5 for further results in this direction.

Exercise 2.16: Let R be a Z-graded ring and let M be a graded R-module.
Show that if z is a homogeneous element of nonzero degree, then v :=1—x
is a nonzerodivisor on M. The element u is a unit iff z is nilpotent.

Given a projective variety X C Pj, it is very useful to be able to write
the localizations of the affine coordinate rings of the affine open pieces of X
directly in terms of the homogeneous coordinate ring of X. The following
exercise explains how to do this, in a form that works for arbitrary Z-graded

rings.

Exercise 2.17 (Localization of graded rings): Suppose R is a Z-graded
ring and 0 # f € R;. Show that R[f™'] is again a Z-graded ring. Let
S = R[f .

a.

Show that R[f~!] = S|z,z'], where x is a new variable. (The ring
S|z, z 1] is called the ring of Laurent polynomials over S. We make
the convention that if S is the zero ring, then S[z, z7!] is also the zero

ring.)
Show that S = R[f '] 2 R/(f - 1).

. Let U C R be a multiplicatively closed set of homogeneous elements

Y

containing at least one nonzero element of R;. Show that R[U™!] =
(RIU))o[z,z "], where z is an indeterminate of degree 1.

Now let P be a homogeneous prime ideal of R, and let U be the mul-
tiplicative set of homogeneous elements not in P. Note that R[U 1]
is naturally a Z-graded ring. We define R(p) to be the degree-0 com-
ponent R[ 1]0 of R[U™1]. If P does not contain R;, then by part c,
RUTY = Rpylz,z71].
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Suppose f € Ry, but f ¢ P. Write @) for the ideal that is the image
of Pin R/(f —1). Show that @ is a prime ideal and that

Ripy = (R/(f —1)q-

If R is the homogeneous coordinate ring of a projective variety X, and
P is the ideal of a subvariety Y, then these objects have a geometric
meaning: If V is the affine open subset x = 1, for some linear form
z, and V' meets Y nontrivially, then Ep) is the ordinary localization
of the affine coordinate ring of V' at the prime ideal Q = I(V NY).

Exercise 2.18: Show that if R is a graded ring with no nonzero homoge-
neous prime ideals, then Ry is a field and either R = Ry or R = Rylz, z7}].

Partitions of Unity

Exercise 2.19 (Partition of unity): Let R be a ring and let M be an
R-module. Suppose that {f;} is a set of elements of R that generate the
unit ideal. Prove:

a.* If m € M goes to 0 in each M[f;'], then m = 0.

b.* If m; € M[f;!] are elements such that m; and m; go to the same
element of M[fl.’lfj’l], then there is an element m € M such that m
goes to m; in M[f,!] for each i. Note that by part a, the element m
is unique.

This result is the essential point in establishing that R-modules are
sheaves on Spec R. It plays the role of the classical “partition of unity
argument” in geometry. For example, in the case M = R it allows one to
piece together global functions from functions defined on each open set of
a covering and agreeing on the overlaps. See, for example, Eisenbud and
Harris [1992].

Exercise 2.20: There are other collections of localizations that have the
property of the set of localizations at all maximal ideals described in Corol-
lary 2.9. Perhaps the most important type is the following, which gen-
eralizes the covering of an affine set by open affine subsets: Show that
for a collection of elements fi,..., f,, € R, the following properties are
equivalent:

a. The ideal generated by fi,..., fi is R.

-1

b. An R-module M is zero iff each of the modules M[f™"] is zero.

13



84 2. Localization

Gluing

An important use of localization in geometry is to construct new algebraic
sets by gluing together old ones along open subsets, just as in the classical
theory of manifolds. For example, take two copies X and Y of the affine line
Al over k, corresponding to the affine algebras k[s| and k[t]. Let X' C X
and Y’ C Y be the origins, so the open affine subsets X — X’ and Y — Y’
correspond to the algebras k[s, s7!| and k[t,t 1], respectively. Clearly, X —
X'>2Y — Y’ in (at least) two different ways. We write

o: X-X' >5Y-Y z—z
v X X' -5Y Y zw—z!

for two isomorphisms. If we glue together X — X’ and Y — Y” by ¢, we get
a strange, rather nongeometric space, a line with the origin doubled. But
if we use v as the gluing map, we get the projective line, as the following
picture suggests and Exercise 2.21 proves.

X X’
- Glue outside
X'and Y’
0 to get: o
XUY/X = X') ~p (Y =Y,
v {// a line with “doubled” origin
X X’
. Glue outside
X'and Y’
Y reversing 0
and oo, to
get:
Y Y’

XUY/NX - X') ~y (Y =Y,
the projective line

Exercise 2.21:

a. Show that P! is obtained by gluing two copies of A! as follows:
Consider the two open subsets Uy = {(ag,a1) € Pllay # 0} and
Uy = {(ao, a1) € P|a; # 0}, as described in Chapter 1. Each of these
is identified with an affine space: With notation as above we may
write the identifications as Uy = X by (ag,a1) — a1/ag and Uy 2 Y
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by (ag,a1) — ap/a1. Show that Uy NU, is taken by these two identifi-
cations to X — X’ and Y —Y”, respectively. Show that the composite
identification X — X' - UyNU; - Y — Y’ is the map s — t .

b. Formulate a corresponding “gluing” description of P".

Constructing Primes

The next exercises exemplify the tendency of ideals maximal with respect
to some property to be prime (see also Proposition 2.11). Exercise 2.24
gives an application.

Exercise 2.22:* (Cohen [1950]): An ideal maximal with respect to not
being finitely generated is prime; thus a ring whose primes are finitely
generated is Noetherian.

Exercise 2.23: (M. Isaacs): An ideal maximal among those that are not
principal is prime.

Exercise 2.24: Let R be a Noetherian ring, and let n be a natural num-
ber. Show that there are only finitely many primes P of R such that the
cardinality of R/P is < n as follows:

a. Suppose that R has infinitely many such primes. Let I C R be an
ideal maximal among those for which R/I has infinitely many such
primes. Show that I must be prime. Replacing R by R/I, we may
assume from the outset that R is a domain and that every proper
homomorphic image of R satisfies the desired statement.

b. Note that R must be infinite (otherwise R has only finitely many ide-
als!). Let ay, ..., an1 be distinct elements of R, and let p = I, ;(a, —
a;) be the product of their differences. Because R is a domain, p # 0.
If P C R is a prime ideal, and p € P, show that the cardinality
of R/P is greater than n. Using the hypothesis at the end of step
a, show that there are only finitely many primes P containing p for
which the cardinality of R/P is n or less than n.

Idempotents, Products, and Connected Components

Exercise 2.25 (Idempotents and connectedness):* If R is a ring, then
as in Exercise 1.25 we write Spec R for the topological space whose points
are the prime ideals of R and whose closed sets are the sets of prime ideals
containing a given ideal of R. Show that Spec R is disconnected —that
is, Spec R is the disjoint union of two nonempty closed sets, say X;, X, iff
R contains a nontrivial idempotent—that is, an element e # 0,1 such
that e? = e, as follows.
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First, if e is a nontrivial idempotent, show that 1-e is also a nontrivial
idempotent, and e(1 — e) = 0. Take X; and X, to be the sets of primes
containing e and 1-e, respectively. Show that Spec R is the disjoint union
of X; and X, and that these sets are nonempty.

For the converse, suppose that Spec R is the disjoint union of nonempty
closed sets X7 and Xo.

a. Since X; is closed, there is an ideal I; such that P € X; iff P D I;.
Show that I + Is = R and every element of I, I, is nilpotent.

b. Write 1 = a; + a2 with a; € I;. By part a, aja, is nilpotent, say
(a1a2)™ = 0. By splitting up the right-hand side of the expression
1= (a;+az)® = a? 4 - + a3 suitably, show that a; and a; may be
replaced with elements e; and e such that e; +e3 = 1 and e1e3 = 0.

c. Show that e; and ey are nontrivial idempotents.

Exercise 2.26 (Idempotents and products): Show that R can be writ-
ten as a direct product of two or more (nonzero) rings iff R contains a non-
trivial idempotent. Show that if e is an idempotent, then R = Re x R(1—e),
and that Re may be realized as a localization, Re = R[e™!].

Exercise 2.27 (Products and their modules):* If R, v € I, are rings,
then the direct product of rings IL,cr R, is the direct product of the sets
R, with componentwise ring operations. If R is a Noetherian ring all of
whose primes P, are maximal, then by the Chinese remainder theorem,
Proposition 2.14, we have R = 11, R, and the product is finite. In this case
R, = Rp, is a localization of R. We have seen in Proposition 2.17 that the
modules over R are made by taking a direct product of modules, one over
each Rp. These phenomena are somewhat more general:

a. Suppose that R = Il,cr R, is a finite direct product of rings. Write
ey € R for the element whose yth component is 1 and whose éth
component is 0 for § # ~. Show that every R-module M is uniquely
expressible as a direct product M = Il,cr M., where M, is an R,-
module and the action is componentwise; show in fact that M, =
e;M = M[e>']. Show that any homomorphism

p:M=][M—>N=][»,
~el ~el

of R-modules is a direct product of homomorphisms ¢, : M, — N,
of R.,-modules.

b. Show that if R = IL,cr R, is an infinite direct product, then not every
module is the product of R,-modules as above.
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Associated Primes and Primary
Decomposition

As we have suggested in Chapter 1, the earliest impulse toward the devel-
opment of what is now commutative algebra came from the desire of the
number theorists to make use of unique factorization in rings of integers in
number fields other than Q. When it became clear that unique factoriza-
tion did not always hold, the search for the strongest available alternative
began. The theory of primary decomposition is the direct result of that
search. Given an ideal I in a Noetherian ring R, the theory identifies a
finite set of “associated” prime ideals of R, and tells how to “decompose”
I as an intersection of “primary” ideals that are closely connected with
these prime ideals. More generally, the theory produces such a set of asso-
ciated primes and a decomposition of any submodule of a finitely generated
R-module.

Besides the search for an analog of unique prime factorization, there
is another reason why primary decomposition is historically important in
commutative algebra. Lasker, who first formulated primary decomposition
in [1905], was able to do it only for affine rings and convergent power series
rings. His proofs used complicated arguments from elimination theory to
make an induction on the number of variables. Emmy Noether rewrote the
subject in her brilliant paper [1921]. Here she developed the general theory
of primary decomposition from the ascending chain condition alone. In
this way she enormously simplified the theory and extended its reach. This
paper and her subsequent paper on Dedekind domains [1927] showed the
importance of the ascending chain condition. It is this work we honor with
the name Noetherian.
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To help the reader digest the theory that follows, we begin with three
examples.

1. Corresponding to the unique prime factorization

of an integer in Z into powers of distinct primes, we may write the
ideal (n) as

(n) = (p{) N -+ N (pf).

(Proof: By induction on t we have J := (p2 - -- p*) = (p@)N---N(pM),

and it suffices to show that if I = (p(f‘) then IJ=INnJ. IfI,JCR
are ideals in any commutative ring, then IJ C I N J, but generally
the containment may be strict. However, if I +.J = R, as in our case,
we can write 1 =i+ j with ¢ € [ and j € J. Thusif f € I N J, then
f=1f=if+3felJ+Jl =1J, soINJ = IJ.For a generalization,
see Exercise A3.17.)

In this case we shall see that the associated primes of (n) are
the primes (p;), and the primary components of (n) are the ideals
(pfl). This is the sense in which the theory of primary decomposition
generalizes the unique factorization of integers.

2. Consider the geometric setting, where R = k[z1,...,z,] is a poly-
nomial ring over an algebraically closed field. An algebraic set X in
affine r-space over k is called irreducible if it cannot be expressed as
the union of two properly smaller algebraic sets. If I C k[z1, ..., z,]
is the ideal of X, then X is irreducible iff I is prime.

(Proof: If X isirreducible and fg € I, then Z(I, f)UZ(I,g) = X,s0 f
or g must vanish on X and be in /. Conversely, suppose X = X; U Xs.
If each X; is an algebraic set smaller than X, then there is a function
fi vanishing on X; but not X. Since f)f, vanishes on X, we have
fifa € I though neither f; isin I.)

If X is any algebraic set, then the ideal I of X is a radical ideal
so, by Corollary 2.12, I is an intersection of prime ideals. We shall
see that I may be written in a unique minimal way as a finite inter-
section of primes. The primary decomposition of I is this expression.
It corresponds to writing X in a unique minimal way as the union
of irreducible algebraic sets X;. We may think of the decomposition
as specifying I to be the set of polynomials that vanish on each of
the Xi.

3. The ideal I := (22 zy) C k[z,y] may be written as

I = (z)N (2%, 2y, %),
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and described as the ideal of polynomials vanishing along the line
x = 0 and vanishing to order at least two at the point x = y = Q.
Note that the given decomposition is not unique: We could also write
I = (z) N (z*,y), which corresponds to saying that a polynomial f
is in I if it vanishes along the line x = 0 and its derivative 0f/0x
vanishes at the point x =y = 0.

In this case we shall see that the associated primes of I are the
primes (z) and (z,y). The primary component of I corresponding
to the prime (z) is (z), while the primary component correspond-
ing to (z,y) is not uniquely defined, but may be taken to be either
(2%, 2y,y*) or (z%,y).

Quite generally, given any ideal I C k[z1,...,z,] with k alge-
braically closed, primary decomposition theory produces a finite set
of irreducible algebraic sets X;—possibly with some embedded in
others—and says that I can be specified as the set of polynomial
functions satisfying certain “vanishing conditions” on the X;.

3.1 Associated Primes
Let R be a ring and let M be an R-module.

Definitions. A prime P of R is associated to M if P is the annihilator of
an element of M. The set of all primes associated to M is written AssgM
or simply AssM when there can be no confusion.

Tradition dictates one exception to this terminology: If I is an ideal of R,
then the associated primes of the module R/I are called associated primes
of I. Confusion rarely arises in this way, since the associated primes of
as a module are usually not interesting. For example, if R is a domain and
I is a nonzero ideal, then the only associated prime of the module [ is 0.

From the definition we see that P is an associated prime of M iff R/P
is isomorphic to a submodule of M. Note that all the associated primes of
M contain the annihilator of M.

The next Theorem gathers the central results about associated primes.

Theorem 3.1. Let R be a Noetherian ring and let M be a finitely generated,
nonzero R-module.

a. Ass M is a finite, nonempty set of primes, each containing ann M.
The set Ass M includes all the primes minimal among primes con-
taining ann M.

b. The union of the associated primes of M consists of 0 and the set of
zerodivisors on M.
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c. The formation of the set Ass M commutes with localization at an
arbitrary multiplicatively closed set U, in the sense that

Assp-y MUY = {PRUT'||P € AssM and PNU = 0.}

The proof will be given after a series of preliminary results and corollaries.

Essentially because of the second part of conclusion a, the primes minimal
among those primes containing a given ideal I appear rather often in what
follows. To simplify our language, we usually call them primes minimal
over I.

The primes in Ass M that are not minimal are called embedded primes
of M. If M = R/I corresponds to a subscheme X = Spec R/I of Spec R,
then the varieties associated to minimal primes over I are called isolated
components of X, and the varieties associated to other associated primes
are called embedded components of X (geometrically, they are “embed-
ded in” the isolated components).

If R is a graded Noetherian ring and M is a finitely generated, graded R-
module, then the associated primes of R are homogeneous, as we shall see in
Proposition 3.12. This allows one to make graded versions of Theorem 3.1
and all the other results in this chapter.

One important consequence of Theorem 3.1 is as follows.

Corollary 3.2. Let R be a Noetherian ring and let M be a finitely gener-
ated, nonzero R-module. Every ideal consisting entirely of zerodivisors on
M actually annihilates some element of M.

To prove this we need to know that an ideal contained in a union of primes
is contained in one of them. This somewhat surprising but elementary fact
often goes under the name prime avoidance.

3.2 Prime Avoidance

Lemma 3.3 (Prime Avoidance). Suppose that I,,...,1,,J are ideals of a
ring R, and suppose that J C U;I;. If R contains an infinite field or if at
most two of the I; are not prime, then J is contained in one of the I;.

If R is graded, J is generated by homogeneous elements of degree > 0,
and all the I; are prime, then it is enough to assume that the homogeneous
elements of J are contained in U;I;.

Despite the odd hypotheses, the lemma is rather sharp; see Exercise 3.17.
The name “prime avoidance” comes from the following typical application:
If an ideal I is not contained in any of a finite number of primes P;, then
there is an element of I that “avoids” being contained in any of the P;.
In the geometric setting we can translate this by saying that if a finite
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number of subvarieties X; of a variety X are given, along with polynomial
functions fi,..., fs on X, not all vanishing on any of the X, then there
is some polynomial linear combination f = Xg;f; that does not vanish on
any of the X;. The last part will be used in Chapter 14. In fact, the first
of the g; can often be chosen to be 1; see Exercise 3.19 for this and a
refinement, and see McAdam [1974] for further refinements and a history
of the ring-theoretic formulations of this result.

Proof of Lemma 3.3. If R contains an infinite field, the result is trivial: No
vector space over an infinite field can be a finite union of proper subspaces.

In the other case, we do induction on n; the case n = 1 is trivial. By
induction we may suppose that J is not contained in any smaller union
of the I;, so we can find elements x; € J, z; not in U;xI;. Supposing that
J C Ul;, we must have z; € I;.

If n = 2, then 2145 is in neither I; nor I, contradicting the supposition.
If on the other hand n > 2, then we may assume that I; is prime, and
r1 4 xox3 - -+ is not in any of the I;, again a contradiction.

For the graded case we can use the same proof after raising the x; to a
power, chosen so that x; and the product xzyxs--- have the same degree.
We need the hypothesis that each I; is prime to ensure that for each j the
powers of x; are not in I; for j # i. ]

Note that in Lemma 3.3 we did not assume that R was Noetherian; we
shall have occasion to use the result in a (possibly) non-Noetherian case in
Proposition 13.10. Also, in the cases not involving a ground field, the proof
just given uses only that J is a subring—without unit—of R.

Proof of Corollary 3.2. By Theorem 3.1 an ideal consisting of zerodivi-
sors on M is contained in the union of the associated primes of M. By
Lemma 3.3, it is in one of them. ]

Theorem 3.1 clearly implies that if A is nonzero, then AssM is
nonempty. For example, since the intersection of a descending chain of
primes is certainly prime, there are (even without Noetherian hypotheses)
always primes minimal over a given ideal. The first step in the proof is to
establish the existence of an associated prime directly.

Proposition 3.4. Let R be a ring and let M be an R-module. If I is an
ideal of R maximal among all ideals of R that are annihilators of elements
of M, then I is prime (and thus belongs to Ass M ). In particular, if R is
a Noetherian ring, then Ass M is nonempty.

Proof. If rs € I and s ¢ I, then we must show that r € I. If m € M is
an element with ann m = I, then rsm = 0 but sm # 0. Thus (r,I) is
contained in the annihilator of sm, and since I was maximal, (r) + I = I.

Thus r € I. ]
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Proposition 3.4 is the basis for one of the characteristic applications of
the theory of associated primes. If x € M is an element of any module over
any (not necessarily Noetherian) ring R, then by Lemma 2.8 we can test
whether z = 0 by seeing whether z goes to 0 in the localization Mp for each
prime, or even each maximal ideal P. Now we see that if R is Noetherian we
can restrict our attention to the associated primes. If M is finitely generated
there will be only finitely many of these, a great improvement.

Corollary 3.5. Suppose that M is a module over a Noetherian ring R.

a. If me M, then m =0 iff m goes to 0 in Mp for each of the mazximal
associated primes of M.

b. If K C M is a submodule, then K =0 iff Kp = 0 for all P € Ass M.

c. If p : M — N 1is a homomorphism from M to an R-module N,
then ¢ is a monomorphism iff the localization pp : Mp — Np is a
monomorphism for each associated prime P of M.

Proof.

a. Suppose m # 0. Since R is Noetherian, there is a prime maximal
among the annihilators of elements of M that contain ann m, and
this prime is an associated prime of M by Proposition 3.4. Thus ann
m is contained in a maximal associated prime P, so m/1 # 0 in Mp.

b. If K =0 then clearly Kp =0 for all P. If K # 0, choose 0 #m € K
and apply part a.

c. By Proposition 2.5, (ker ¢)p = ker(pp). The result follows by putting
K = ker ¢ in part b. O

Proposition 3.4 makes the proof of part b of Theorem 3.1 immediate: If
r annihilates a nonzero element of M, then r is contained in a maximal
annihilator ideal.

To prove part a we shall apply the following tool:

Lemma 3.6.
a. If M =M @® M", then Ass M = (Ass M") U (Ass M").

b. More generally, if 0 — M' — M — M" — 0 is a short exact sequence
of R-modules, then Ass M’ C Ass M C (Ass M') U (Ass M").

Proof.
a. Given part b, it is enough to observe that Ass M" C Ass M.

b. The first containment is clear from the definition. For the second,
suppose that P € Ass M — Ass M’. If x € M has annihilator P, so
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that Rx = R/P, then since P is prime every nonzero submodule of
Rx also has annihilator P. It follows that Rz N M’ = 0, so Rz is
isomorphic to its image in M”. Thus P € Ass M” as required. ]

The first exact sequences on which we shall use Lemma 3.6 are produced
as follows:

Proposition 3.7. If R is a Noetherian ring and M 1is a finitely generated
R-module, then M has a filtration

O=MyCcMyC---CM,=M
with each M /M; =2 R/P; for some prime ideal P,.

Proof. If M # 0 then by Proposition 3.4, M has at least one associ-
ated prime, say P, so that there is a submodule M; = R/P,. Applying
this reasoning again to M/M,;, we produce M, and continue in this way.
The process must come to an end because the submodules of M satisfy
the ascending chain condition, and this means that some M, = M, as
required. L]

Using Lemma 3.6 inductively, we see that the associated primes of M
are among the primes P; appearing in Proposition 3.7. This proves the
finiteness statement of Theorem 3.1.

One might ask which modules M admit a filtration as in Proposition 3.7,
where in addition every P, is an associated prime of M. Such modules are
called clean. For example, when R is a domain and M is torsion-free but
not free, M is not clean, as the reader may verify. As of this writing I know
of no interesting characterization of cleanliness—-perhaps the reader will
find one! Proposition 3.13 provides an interesting class of filtrations where
the associated primes do split up nicely.

Conclusion of the Proof of Theorem 3.1. We first prove part c: If P €
Ass M, then there is an inclusion R/P C M. Localizing, we get an injection
R[UY/PRIUY} € M[U™"]. Thus if PR[U '] is a prime ideal of R[U']---
that is, if PNU = () so PR[U™'] is still a proper ideal—then PR[U™!] €
Ass M[U71.

Conversely, suppose @ is a prime of R[U!] that is associated to M[U~].
We may write Q = PR[U '] with P a prime of R and PNU = . There is
an injection ¢ : R[U '}/PR[U™'] — M[U™']. Since P is finitely generated,
we have

Homp- (RU™/PRU'], M[U™']) = Homp(R/P,M)[U™"]

by Proposition 2.10, so we may write ¢ = u 'f for some f &
Homp(R/P,M) and u € U. Since u is a nonzerodivisor on R/P, it fol-
lows that f is an injection, concluding the proof of part c.
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It remains to show that if P is any prime minimal over ann M, then
P € Ass M. By part ¢, we may localize and suppose that R is local with
maximal ideal P. By Proposition 3.4 the set Ass M is nonempty, and since
P is the only prime that contains ann M, it follows that P € AssM. [

3.3 Primary Decomposition

To avoid endlessly repeating the hypotheses, we shall assume throughout
the rest of this chapter that R is a Noetherian ring, and we shall assume
that M is a finitely generated R-module.

As often happens, it is advantageous to work with modules instead of
ideals, and we shall define primary decompositions for a submodule M’ of
a finitely generated module M: That is, we shall write M’ as the intersec-
tion of certain submodules M; that correspond to the prime powers above.
These are defined as follows: A submodule N of a module M is primary
if Ass(M/N) consists of just one prime; if Ass(M/N) = {P}, we say that
N is P-primary. Since this is really a condition on M/N, it is convenient
to say that a module M is coprimary if 0 is a primary submodule—that
is, if Ass(M) consists of just one prime ideal. From Lemma 3.6 we easily
see that an intersection of P-primary submodules is P-primary.

Corollary 3.8. Suppose that P is a prime ideal of a ring R, and Ny, ..., N;
C M are R-modules. If each N; is a P-primary submodule of M, then N; N;
1s P-primary.

Proof. By induction it suffices to do the case t = 2. By hypothesis M /Ny and
M/N, are P-coprimary. Lemma 3.6a shows that P is the only associated
prime of M /Ny & M/N,. Since M/(Ny; N Ns) injects into M /Ny & M /N,
Lemma 3.6b shows that M /(N1 N N3) is also coprimary. O

The results of Theorem 3.1 lead to the following description of coprimary
modules.

Proposition 3.9. Let P be a prime ideal of R. The following statements
are equivalent:

a. M is P-coprimary.

b. P is minimal over ann M, and every element not in P 1s a nonzero-
divisor on M.

c. A power of P annihilates M, and every element not in P is a nonze-
rodivisor on M.
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Proof.

a = b: Since P is the only associated prime of M, Theorem 3.1a shows
that P is minimal over ann M, and Theorem 3.1b shows that
every element not in P is a nonzerodivisor on M.

b = c¢: Since the elements not in P are nonzerodivisors on M, it suffices
to prove the statement after localizing at P, so we may assume
that R is a local ring with maximal ideal P. Since P is minimal
over ann M, it follows by Corollary 2.12 that P is the radical of
ann M, so P is nilpotent modulo ann M.

¢ = a: Since P is nilpotent modulo ann M, it is certainly minimal
among primes containing ann M and is an associated prime
of M by Theorem 3.1a. Since every element outside of P is a
nonzerodivisor, every associated prime of M is contained in P
by Theorem 3.1b. Thus P is the only associated prime of M.[]

The most important case is the one where M = R/I for some ideal I of
R. In this setup, Proposition 3.9c shows that I is P-primary iff I contains
a power of P, and for every r, s € R, the conditions rs € I and r € P imply
s € I. This is the classical definition.

It is often convenient to think of these definitions above in terms of local-
izations: Proposition 3.9b shows that M is P-coprimary iff P is minimal
over the annihilator of M and M injects into Mp. In general, if M is any
module and P is a minimal prime over the annihilator of M, then the
submodule M’ C M defined by

M’ =ker(M — Mp)

is P-primary because M /M’ injects into (M /M')p = Mp. In this situation,
M’ is called the P-primary component of 0 in M. Note that it depends
only on M and on P.

Primary decomposition consists of writing an arbitrary submodule M’
of M as the intersection of primary submodules.

Theorem 3.10. Let R be a Noetherian ring, and let M be a finitely gen-
erated R-module. Any proper submodule M’ of M is the intersection of
primary submodules. Furthermore, if Py, ..., P, are prime ideals and we
write M' = (._; M; with M; a P;-primary submodule, then

a. Every associated prime of M /M’ occurs among the P;.

b. If the intersection is irredundant (meaning no M; can be dropped),
then the P; are precisely the associated primes of M /M'.

c. If the intersection is minimal, in the sense that there is no such
intersection with fewer terms, then each associated prime of M /M’
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s equal to P; for exactly one index i. In this case, if P; is minimal
over the annihilator of M /M’', then M, is the Pi-primary component
of M'.

d. Minimal primary decompositions localize in the following sense: Sup-
pose that M' = [\._, M, is a minimal primary decomposition. If U
is any multiplicatively closed set of R, and Py, ..., P, are the primes
among the P; that do not meet U, then

MU = (MU

is a minimal primary decomposition over R[U™Y|.

Proof. We first prove the existence of a slightly finer but less canonical
decomposition. We shall say that a submodule N C M is irreducible if N
is not the intersection of two strictly larger submodules. We first claim—and
this is Emmy Noether’s fundamental observation—that every submodule
of M can be expressed as the intersection of irreducible submodules. Oth-
erwise, by the ascending chain condition on submodules of M, we could
choose a submodule N C M maximal among those submodules that are
not the intersection of irreducible submodules. In particular, N itself is not
irreducible, so it is the intersection of two strictly larger submodules N; and
N>. By the maximality of N, both the N; are intersections of irreducible
submodules, and it follows that N is too. The contradiction proves our
claim and shows that there is an irreducible decomposition M’ = N;M;
with each M; irreducible.

We next show that every irreducible decomposition is a primary decom-
position. That is, we show that any irreducible submodule N C M is
primary, or equivalently that M /N is coprimary. Otherwise, M /N would
have at least two associated primes, P and () say, so it would contain a
submodule isomorphic to R/P and another isomorphic to R/(Q). The anni-
hilator of every nonzero element of R/P is P, and similarly for @, so these
two submodules of M/N can only meet in 0. Thus 0 is reducible. Taking
preimages of these submodules in M, we see that N is reducible: a con-
tradiction. This proves that M /N is coprimary, and thus that irreducible
decompositions are primary decompositions.

Statements a through d are really statements about M/M’. To simplify
the notation, we begin by factoring out M’, and we assume henceforward
that M’ = 0.

a. Now suppose that 0 = [, M; is a primary decomposition. Note that
M C @M /M;, so by Lemma 3.6 every prime in Ass M occurs among
the primes P,. This proves assertion a.

b. Next suppose that the given decomposition is irredundant, so that
for each j, [,,; M; # 0. Note that because M; N[, M, = 0, we
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have

(M, / M; 0 (M

/
i) \ij i

1%

(VM + M; | /M; € M/M;.
\ii

As this module is Pj-coprimary, so is [;,; M;. By Lemma 3.6, P; is
an associated prime of M. Together with a, this proves part b.

. Finally, suppose that the given decomposition is minimal. By Corol-
lary 3.8 the intersection of P-primary submodules is P-primary, so
minimality implies that the primes P; are distinct. With part b, this
proves the first statement of c.

For the last statement, suppose that P; is minimal over the anni-
hilator of M. We must show that M, is the kernel of the localization
map o : M — Mp. Consider the commutative diagram

o Yr
BN
M (MIM) P,
N,

where 3 is the projection map, ¢ is the localization map, and = is the
projection of Mp to Mp /M;p = (M/M;)p,. The kernel of 3 is M;. To
show that the kernel of « is also M;, it suffices to show that both ~
and 6 are monomorphisms. Since M; is P;-primary, this is immediate
for 6.

Since N; M; = 0, the natural map ¢ : M — §M /M, is a monomor-
phism. By Proposition 2.5, localization preserves monomorphisms, so
op : Mp — ®(M/M;)p, is a monomorphism. The map 7 is the i*®
component, of ¢p. Because P; is minimal over the annihilator of M,
we know that P; is not contained in P; for j # 4. Since M/M; is
Pj-coprimary, we have (M/M,)p, = 0 for j # i, so the j** component
of pp vanishes, and we see that v is a monomorphism as required.

. IfUN P, =0, then P[U!] is a prime ideal of R[U~!], and by Theo-
rem 3.1¢c, M;[U~] is P;[U!]-primary. If U N P; # () then we see from
Proposition 3.9¢ that M;[U~1] = M[U~!]. Thus

0= ﬁ MUY
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is a primary decomposition. To see that it is minimal, it suffices by
part b to show that the associated primes of M[U~!] are the asso-
ciated primes of M that do not meet U, and this also follows from
Theorem 3.1c. ]

In Exercise A3.6 we present a different view of primary decomposition:
It is the reflection, in M, of the fact that the injective envelope of M
decomposes in a nice way. This point of view also explains the meaning of
the irreducible decompositions defined in the preceding proof.

3.4 Primary Decomposition and Factoriality

It is easy to express the relationship between primary decomposition and
unique factorization in the classical sense.

Proposition 3.11. Let R be a Noetherian domain.

a. If f € R and f = ullpy, in such a way that u is a unit of R, the p; are
primes generating distinct ideals (p;), and each e; is a positive integer,
then (f) = N(py") is the minimal primary decomposition of (f).

1

b. R is factorial iff every prime ideal minimal over a principal ideal is
itself principal.

Proof.

a. First we show that (p{') is a (p;)-primary ideal. If @ is an associated
prime of (p{'), then since @ contains a power of p we have Q D (p;).
If g is any element of @, then ¢ annihilates some element of R/(p{*);
that is, for some f ¢ (p{") we have ¢f = pi'g. Since p{* divides ¢f
but not f, and since p; 1s prime, we see that p; divides g. This shows
Q C (p;) as required.

Clearly, we have (f) C N(p;"); we wish to show equality. By induc-
tion on the number of primes p; involved, it suffices to show that if g
is not divisible by a prime p, then (g) N (p°) = (gp°). But if hg € (p°),
then since p does not divide g and p is prime, p must divide A, and
(h/p)g € (p°!). Repeating this argument, we eventually see that p©
divides h, so hg € (gp°).

We now see that (f) = N(p}*) is a primary decomposition. Thus
every prime of Ass R/(f) is one of the (p;). Each (p;) is contained in an
associated prime of (f) because p; is a zerodivisor modulo (f): for p;
divides f and p;(f/pi) € (f). Thus, the given primary decomposition
is minimal.

b. Suppose R is factorial. If f = ullp{" is the prime factorization of an
element, then by part a the associated primes of (f), and thus in
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particular the minimal primes of R that contain f, are the principal
primes (p;).

Conversely, suppose that every prime ideal minimal over a princi-
pal ideal is itself principal. To prove that R is factorial, the argument
given in Section 0.2 shows that since R is Noetherian it is enough
to check that any irreducible element f € R is prime. But if P is a
prime minimal over (f), then by hypothesis we may write P = (p)
for some p € R, and f € P becomes f = rp for some r € R. Since f
is irreducible, r must be a unit, so (f) = (p) = P is prime. O

We shall sharpen this result a little in Corollary 10.6.

3.5 Primary Decomposition in the Graded Case

If R is a graded Noetherian ring and M is a finitely generated graded
R-module, then the associated primes of M are homogeneous, a primary
decomposition of 0 in M can be made in terms of homogeneous modules,
and M has a filtration as in Proposition 3.7 where the M; and P, are
homogeneous. The proofs of these things involve only one new idea, given
in Proposition 3.12, and we leave the details to the reader. We state the
proposition here for ordinary graded rings R = Ry & R; ® - - -, but in fact
it holds (with the same proof!) for Z-graded rings and modules, and much
more generally. See Exercise 3.5.

Proposition 3.12. Suppose that R = Ry R1®- - - is a graded ring, and M
is a graded R-module. Let m € M be any element, and set P = annm C
R. If P is prime, then P is homogeneous and P s the annihilator of a
homogeneous element.

Proof. Any f € R may be expressed in a unique way as asum f = >.° | f;,
where each f; is nonzero and homogeneous of some degree d;, and d; <
..+ < ds. We may prove that P is homogeneous by showing that if f € P
then f; € P for each i. By induction on s it suffices to show that f; € P.
Thus we suppose that fm = 0 and we wish to prove that fim = 0.

We may also write m = Zﬁzl m; in a unique way so that each m; is
nonzero and homogeneous of some degree e;, and e; < --- < ¢;. We do
induction on the number of terms ¢. Since fm = fim; + (terms of higher
degree), we see that fim; = 0. Thus, if ¢ = 1 we are done. Suppose t > 1
and that the result has been proven for all smaller values of ¢.

The element fim = 2212 fim; is a sum of fewer homogeneous terms than
is m. Set I = ann fym. Note that P C I. If P = I then P is homogeneous
by the induction, and we are done. Otherwise, we may choose an element
g € I such that g ¢ P. We have gfym = 0, so gf; € annm = P. Since
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g ¢ P, and P is prime, we have f) € P as claimed, proving that P is
homogeneous.

From the fact that P is homogeneous it follows that Pm; = 0 for each
i. Since P = annm D N,(annm;) D P, we see that P = M;(annm;) D
IT;(annm;). Since P is prime, we have P D annm, for some i, whence
P = annm,, and we are done. ]

3.6 Extracting Information from
Primary Decomposition

We maintain the assumptions that R is a Noetherian ring, and we shall
assume that M is a finitely generated R-module.

We have already seen that if 0 = N;M; is the minimal primary decompo-
sition, then the M, corresponding to minimal primes of Ass M are uniquely
determined by M, and thus might be expected to shed some light on the
structure of M, whereas the M; corresponding to embedded primes gen-
erally are not uniquely detcrmined (we shall analyze this phenomenon in
a moment). The same mechanism that leads to the uniqueness of the M;
corresponding to the minimal primes carries us a little further and shows
that certain intersections of primary components are well defined. It turns
out that these intersections correspond to the sets of associated primes not
containing a given ideal—that is, to the closed subsets of Spec A in the
Zariski topology introduced in Chapter 1.

To express the intersections above, we shall make a definition: For any
ideal I C R, we set

H{(M) ={me M|I"m =0 for n>> 0}

the set of elements annihilated by some power of I. The notation comes
from local cohomology; see Appendix A4, in which functors Hi(M) are
defined for all i. (Pursuing the analogy with sheaf theory from which local
cohomology arises, some authors write I';(M) for what we have called
HY(M).)

The set HY(M) is easily seen to be a submodule of M. It actually depends
only on the radical of I, in the sense that HY(M) = HY(M) if rad(I) =
rad(J).

Proposition 3.13. Let I be an ideal of R, and let

A={PecAssM|P DI}

a. Let 0 = O, M; be a primary decomposition of 0 C M, and suppose M;
is Pi-primary. The submodule H?(M) is the intersection of those M;
such that P; € A. In particular, this intersection is independent of
the primary decomposition chosen.
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b. There is an element f € I such that P € A iff P € AssM and f € P.
For any such f we have

HYM) = ker(M — M[f7']).

c. We have Ass HY(M) = A, and Ass M/H}(M) = (Ass M) — A. These
properties characterize HY(M) uniquely.

Proof.

a. We may write H?(M) = (0 :pr 1) := U, (0 :3s I™), where (0 :3y I") =
{m € M|I"™m = 0}. Using the given primary decomposition, we get

H)(M) = ((QM) M 1@) = [ (M; 1)

:

A power of P; annihilates M /M;, so if P, D I then (M; 13y I®) = M,
and we may drop this component from the intersection. On the other
hand, if P; 2 I then I contains a nonzerodivisor on M /M;, so (M; :3r
1) = M;. The desired formula for HY(M) follows.

b. By prime avoidance we may choose f € I not in any of the finitely
many primes Q € (AssM) — A. Set N = ker(M — M|[f!]). By
Proposition 2.1 we have N = (0 :); f*°). By the argument of part a,
applied to the ideal (f) in place of I, this is the intersection of those
M, such that P 2 f, the same as H?(M).

c. By part a, the primary decomposition of HY(M) in M is

HY(M) = N M;.
i such that P,¢A

If we choose the primary decomposition 0 = N; M; to be irredundant,
then we get an irredundant primary decomposition of H?(M), and it
follows from Theorem 3.10 that Ass M/HY(M) = (Ass M) — A. Fur-
ther, by Lemma 3.6b we see that Ass HY (M) is a subset of primes of
Ass M that contains A. Since every element of HY(M) is annihilated
by a power of I, it follows that the primes of Ass H(M) all contain
I. Thus Ass HY(M) = A.

Conversely, let N be any submodule of M such that Ass N = A
and Ass M/N = Ass M — A. If we choose f as in part b, then a power
of f annihilates N and f is a nonzerodivisor on M/N. If follows that
N =ker(M — M[f™']), so N = HY(M) by part b. O

The mechanism of part b could be applied with any localization, but it
does not yield any submodules other than the H?(M). See Exercise 3.12.
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A typical application of part a of the proposition is to show that the
intersection of all primary components corresponding to primes of dimen-
sion greater than or equal to some number d is well defined. (See Chapter 9
for the definition of dimension.)

The most interesting case of Proposition 3.13 occurs when the ideal I is a
prime P. The module H},(M)p C Mp is then the unique largest submodule
of finite length. Its length is called the multiplicity of P in M. We see
from the proposition (or directly from Theorem 3.1) that P is associated
to M iff the multiplicity of P in M is nonzero. In general, one may think
of the multiplicity as measuring “how associated” P is to M.

Somewhat surprisingly, there seems no general way to extract “invariant”
information about M from a primary decomposition that is not covered
by Proposition 3.13 (but in some special circumstances there is- -see, for
example, Exercise 3.11). This has led some people to the view that one
should ignore primary decomposition entirely; localization and the set of
associated primes together are sufficient for many purposes.

3.7 Why Primary Decomposition Is Not Unique

We take a moment to explain why the terms in a primary decomposition
corresponding to embedded primes are not unique, and to explore some
related ideas. Assume for simplicity that R is a local Noetherian ring, and
that the finitely generated module M has two associated primes, a minimal
prime @ and the maximal ideal P itself. If we write a minimal primary
decomposition 0 = M'N M", where M’ is Q-primary and M" is P-primary,
then by Theorem 3.10c, M’ = ker(M — M) is uniquely determined.
However, as the reader may easily check, M"” may be taken to be any
submodule such that

a. For some integer d, M" D P*M.
b. M"NM' =0.

In particular, we could simply take M” = P?M for any sufficiently large d.

One may try to avoid the problem by taking M” maximal satisfying
properties a, b. However, uniqueness is prevented even then, essentially by
the fact that the complement of a vector space is not unique. For example,
let k£ be a field and let R = k[z](;) be a localization of the polynomial ring
in one variable. Let M = RG R/(x), and let e be a generator for the second
summand. With notation as above, Q = 0, P = (xz), and M’ = Re, the
second summand. Here M” may be any nonzero submodule meeting Re in
0. The maximal choices for M" are precisely the complements of the second
summand, Re; these are the modules generated by elements of the form (1,
ue), with u € k. Since any two such elements are carried into one another
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by an automorphism of M, there is no distinguished choice for M”. (Some
more examples are given in Exercise 3.10.)

In situations where “nice” subspaces have distinguished complements (for
example, in the presence of a suitable group action) there are sometimes
distinguished primary decompositions, however. See Exercise 3.11.

3.8 Geometric Interpretation of Primary
Decomposition

If k£ is an algebraically closed field and I C S = k[x),...,x,] is an ideal,
we can hope to “see” some of the meaning of a primary decomposition of
I. Let I = N;I; be a minimal primary decomposition. It follows of course
that Z(I) = U,;Z(I;). If I is a radical ideal, then cach of the I; is a prime
ideal minimal over I, and the primary decomposition simply expresses the
algebraic set Z(I) as the union of the irreducible algebraic sets (algebraic
varieties) Z(I;). But in more general cases the algebra suggests more. What
we shall do here informally is formalized in the theory of schemes; see, for
example, Eisenbud and Harris [1992] for an expository treatment in the
spirit of this text, and Hartshorne [1977, Chapter 2| for more technical
detail.

Let us begin with the case of an ideal I C S = k[, y| that is primary to
the maximal ideal (x,y) so that Z(I) is the origin in the affine plane. For
example, what geometric object X should be associated with the primary
ideal (z2,y)? The idea is that X should be that geometric object that
determines the coordinate ring S/I. If

f=ay+ a1z + asy + azx® + agzy + asy® + agx® + -

is a polynomial, then from the class of f modulo (22, %) we can read off the
scalars ag = f(0,0) and a; = 9f/0x(0,0). That is, if we restrict a function
to X, then we “see” the value of the function at the origin—so the point
(0, 0) should be “in” X-—and the value of the first derivative of f in the
horizontal direction. There is a standard geometric object of this kind: It
is the origin plus the horizontal tangent vector at the origin!

X
o>

I = (22, y) corresponds to X, a point with tangent vector.
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In a similar way, if we take I = (22, zy,y?), then the class of f modulo [/
reveals the value of f at 0 and the value of the first derivative of f in any
direction. Thus, it is natural to think of the corresponding X as the whole
first-order infinitesimal neighborhood of the origin in the plane.

I = (2%, 2y, y*) corresponds to X, the first-order infinitesimal neighborhood of (0,0).
vy

If we replace I by, for example, the nth power (z, y)", then all the deriva-
tives of f up to order n — 1 are visible modulo 7, so the corresponding
geometric object X is the (n — 1)st infinitesimal neighborhood.

Similar considerations are suggestive in higher dimensional cases, too.
For example, the ideal (z) C k[x,y] corresponds to Z((x)), the vertical
line in the plane, while modulo (2%) one can see the values of a function
f(z,y) at every point on the vertical line together with the values of its first
derivatives in the horizontal direction at any point of the line. Thus (z?)
corresponds to the vertical line with all the horizontal tangent vectors at
points of the line—that is, the first-order neighborhood of the vertical line:

I = (z?) corresponds to X, the first-order infinitesimal neighborhood of the vertical
line.

From these ideas it is easy to see how to interpret more-or-less arbitrary
primary decompositions. For example, I = (z) N (2%, zy, y?) corresponds to
the vertical line together with the first-order neighborhood at the origin.
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I = (z)N(z?, zy,y*) corresponds to X, the vertical line plus the first-order infinites-
imal neighborhood of (0, 0).

Here the primary decomposition is not unique, and we could also write
I = (2%, zy) = {z) N (x2,y), corresponding to the fact that the only infor-
mation about a function f that is available on the first-order infinitesimal
neighborhood of the origin but not on the vertical line is the derivative of
the function in the horizontal direction.

3.9 Symbolic Powers and Functions Vanishing to
High Order

If P is a maximal ideal of R and I is any proper ideal containing a power
of P, then [ is P-primary: For in this case P is the only prime containing
the annihilator I of R/I, so Theorem 3.1a shows that Ass R/I = { P}. This
generalizes the fact that any power of a prime in the integers is primary.

In particular, the powers of a maximal ideal are all primary. One would
be tempted to hope that a power of any prime ideal P would be P-primary,
but this is not the case. In general, the P-primary component of the nth
power of P is called the nth symbolic power of P, and is written P,
In the geometric case, the symbolic powers of P have a nice geometric
description as follows, due to Zariski and Nagata.

Suppose that k is an algebraically closed field of characteristic 0 and
S = k[x1,...,z,;] is a polynomial ring. Let X be the variety corresponding
to the prime ideal P C S, so that P is the set of all polynomials vanishing
on X. Forn>1, let

P™ = {f € S|f vanishes to order > n at every point of X}.

The condition that f vanishes to order n at a point z € A™ means that if
m, is the maximal ideal of S consisting of functions vanishing at x, then
f € m%; equivalently, the Taylor expansion of f around z begins with terms
of order greater than or equal to n. Thus we may also write

P" = (Y ml.
reX

If the characteristic of k is 0, then P can be defined in another way as
well: Tt is the set of polynomials that vanish together with their partial
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derivatives of orders less than n at all the points of X. (In characteristic p,
this is a weaker condition, and not so interesting: the derivatives of order
> p of the function z7" are identically 0.)

Theorem 3.14 (Zariski, Nagata). Suppose that k is an algebraically closed
field and S is a polynomial ring over k. If P is a prime ideal of S, then
P = P the nth symbolic power.

Theorem 3.14 is true (with suitable interpretation) in a much broader
setting. See Eisenbud and Hochster [1979] for history and details.

Partial Proof. We shall prove in characteristic 0 that P is P-primary and
contains P". It follows that P contains P'™. We only sketch the opposite
inclusion; for a full proof see Eisenbud and Hochster [1979] and its references.
It is obvious that P is an ideal and that P > P". To show that P is
P-primary, we must show that if » ¢ P, but rs € P then s € P,

If m is a maximal ideal of S containing P such that r ¢ m, then since
rs € m"™ and m” is m-primary, we must have s € m". It follows that the
derivatives of order less than n of s all vanish on the set Y = {z € X|r(x) #
0}. Let g be such a derivative. Since rg vanishes at every point of X, we
have rg € P by the Nullstellensatz. Since r € P by hypothesis, it follows
that ¢ € P. Under the hypothesis that k£ has characteristic 0 we deduce
that s vanishes to order > n on X, proving that P{® is P-primary.

Here is the idea of the proof that P™ C P{™: Since P(™ is P-primary, it
is enough to show that (P™)[U~'] C (P")[U~'] for some multiplicatively
closed set U not meeting P. We shall later show that there exists an element,
u ¢ P such that for any point z € X with u(z) £ 0, with corresponding
maximal ideal m = m, there is a set of generators yi,...,y, of my such
that P, is generated by a subset of the g;. Under these circumstances the
y; act like a set of “variables” (see Corollary 10.14 and Exercise 17.13).

To see how the argument should go, we shift to the simpler case where
P is generated by a subset of variables: P = (y1,...,%.) C k[y1, ..., 4]

The polynomials f(y1,...,¥,), all of whose derivatives of order less than
n are in (y1,...,¥.), are precisely the polynomials whose terms are all of
degree at least n in yq, ..., y—that is, they are the polynomials in the nth

power of P, and P = P" The nth power of (yi,...,.) is also primary
by Exercise 3.6, so P* = P™. The analogous statements are also true in
the original case. In particular, after inverting u we have P{(" = p» = p(n),

]

3.9.1 A Determinantal Example

These ideas suggest an explicit example of a prime whose square is not
equal to its symbolic square (and we shall check the example directly). A
good general reference for the material that follows is the book of Bruns
and Vetter [1988], and the example we shall give is very close to the paper
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of DeConcini, Eisenbud, and Procesi [1982]; in particular, all the unproved
assertions encountered below are proved in these sources.

Consider the polynomial ring in 9 variables S = k[{z;;}1<ij<3] and the
generic 3 x 3 matrix G = (z;;) over S. Let P be the radical of the ideal
I(G) generated by the 2 x 2 minors of G. The algebraic set X defined by
I,(G) in the set M3 = A® of all 3 x 3 matrices is the set of 3 x 3 matrices of
rank < 1. This set is irreducible, so that P is prime, as the following very
typical geometric argument shows.

First, the algebraic set

Y :=GL(3,k) = {(g,y) C A® x Al|g a 3 x 3 matrix and (det g)y = 1}

is irreducible because the corresponding ring is k[{x;;}1<ij<3][(det g)7!],
a localization of the polynomial ring in 9 variables. The same is true of
the algebraic set Y x Y C A?; its ring is a localization of the ring of
polynomials in 18 variables. Let M3 = A® be the set of 3 x 3 matrices
over k. Choose any matrix m of rank exactly 1, and consider the morphism
Y x Y — Mj defined by (g, h) — gmh. Because any two nonzero matrices
of rank 1 differ only by a change of basis in source and target, the image
of p is exactly X. If X = X; U Xy, with X; and X, algebraic subsets of
X, then o 1 (X)) U }(X3) =Y x Y. Since Y x Y is irreducible, either
e X)) =Y xYorp!'(Xy) =Y xY,and thus X; = X or Xp = X
showing that X is irreducible, too.

It is obvious that no linear form vanishes on all rank-1 matrices, so P
contains no linear form. In fact, I>(G) is prime, so P = I5(G) is the prime
ideal of functions vanishing on the set of rank-1 matrices, but we shall not
need this here.

Let ¢ = det G, the determinant of G. We claim that ¢ € P®. Since P
contains no linear forms, P? is generated by forms of degree > 4 and g is
of degree 3, so this will show that P? £ P,

Checking Theorem 3.14 against this example, we note that the partial
derivatives of g with respect to the variables z;; are 2 x 2 minors of G, so
g € P? _Tf k has characteristic 0, then Theorem 3.14 applies to show that
g € P? as claimed.

We now give a direct proof. We must show that g becomes an element
of P? after we localize at P. Now z1; € P, so it suffices to show that
z119 € I;(G)?. This is easy to check: After multiplying the second and
third columns of G by 17, which changes the determinant to %, g, we may
add multiples of the first column to the two other columns (not changing
the determinant) to make the 1, 2 and 1, 3 elements of the matrix 0, as in
Figure 3.1:

3
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11 T2 T13 Il T11r12 T3
To1 X2 T23 = To1 T11x22 T11T23 =
I3l T32 I33 31 T11T32 T11T33

T11 0 0

To1 X11T22 — X12Z2) X11T23 — T137T21
I3l T11T32 — T12&31  T11X33 — T13731
FIGURE 3.1.

Thus the determinant x?,g is the product of z1; and the determinant of
the lower 2 x 2 submatrix

Q= T11T22 — T12T91 T11T23 — 13721
T11X32 — T12731 T11733 — T13T31

so that x1;9 = det G'. Since the entries of G’ are 2 x 2 minors of the original
matrix, det G’ € I,(G)?, and thus g € P,

In fact, it is known that P®) = (P2 g), and that a primary decomposition
of P? is P2 = P@ nm*, where m is the ideal generated by all the z;;.

Here is a geometric proof that ¢ vanishes to order > 2 at any point
a € X. Since we are in characteristic 0, it suffices to show that the partial
derivative 0g/0x;; vanishes at a for every ¢, j. If we write e;, for the matrix
which has all its entries equal to 0 except for the %, j entry, and whose 12, j
entry is 1, then 0¢/0x;; = dg(a + te;;)/dt, where t is a new variable. But
since both a and e;; have rank 1, every matrix of the form a + te;; has rank
< 2. Thus g vanishes identically on matrices of the form a + te;;, and we
see that the derivative is 0 as required.

More generally, we might asgk for the primary decomposition of any power
of any “determinantal” ideal. To be specific, if G = (z;;) is the “generic”
p x g matrix over the ring S = k[{z;; }1<i<p.1<j<4| then for each n the ideal
P, generated by the n x n minors of G is prime. If 1 < n < min(p, q),
then the powers of P, are not primary; however, the symbolic powers of
P, are known—they are generated by certain products of minors of various
orders—and a primary decomposition of the powers has the form
(%) pr=pP™n P,(f_"f) Nn---N Pl("””).

n

The decomposition (x) can be made minimal by taking only the first
a(m,n) terms for a certain function a(m,n)—see DeConcini—Eisenbud
and Procesi [1982] for a precise statement, proof, and history of these mat-
ters.

3.10 Exercises

Exercise 3.1: Let R = Z, the ring of integers. Identify the associated
primes of a finitely generated abelian group (Z-module) in terms of the
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usual structure theory of finitely generated abelian groups.

Exercise 3.2: If M’ = M, N M, are submodules of a module M, show that
Ass M/M’" C Ass M /M; U Ass M /M.

Exercise 3.3:* If R is Noetherian and M and N are finitely generated
R-modules, show that

Ass Hompr(M, N) = Supp M N Ass N,

where Supp M is the set of all primes containing the annihilator of M.
(Hint: Show that it suffices to assume R is local and prove that the maximal
ideal is in the set on the left-hand side iff it is in the set on the right-hand
side. You will need to use Nakayama’s lemma, Corollary 4.8.) Taking M =
R/I, and setting (0 :x I) = {n € N|In = 0}, show that Homz(M,N) =
(0:n5 I), and thus

Ass(0:y I) = AssNN{P C R|P is a prime ideal and I C P}.

Exercise 3.4 (Gauss’ Lemma):* Let R be any ring, and set S = Rz,
., Zy], the polynomial ring in r variables. If f € S is a polynomial, write
Content(f) for the ideal of R generated by the coefficients of f.
a. If f, g € S then

Content(fg) C Content(f) Content(g) C rad(Content(fg)).

Deduce that if Content(f) contains a nonzerodivisor of R, then f is a
nonzerodivisor of S.

b. If R is Noetherian and f is a nonzerodivisor of S, show conversely
that Content(f) contains a nonzerodivisor of R.

c. We say that f is primitive if Content(f) = (1). Gauss proved, in
the case R = Z and r = 1, that the product of primitive polynomials is
primitive, essentially to prove that if a primitive polynomial is irreducible
in Z[z] then it is irreducible in Q[z]. Prove that if R is a factorial domain
with quotient field K, and if f is irreducible in R[z], then f is irreducible in
K[z]. Then show that R[z] is again factorial. If R is an arbitrary factorial
domain, then the natural analogue of a primitive polynomial is a polynomial
f such that Content(f) is not contained in any principal ideal. Use part a
to show that if R is a factorial domain then R[z] is a factorial too. Deduce
that if K is the quotient field of R and a polynomial f € R|z] is irreducible
in K[z] then f is irreducible in R[z].

General Graded Primary Decomposition

Exercise 3.5: Let ' be an abelian monoid (that is, a set with a commuta-
tive associative addition operation possessing an identity element 0), and
let R = ®,erR, be a ring graded by I, in the sense that each R, is an
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abelian group and R,R, C R,,,. We say that I" acts on a set A if we
are given a map I' x A — A, denoted (v, \) — ~ + X and the associative
law v + (7' + ) = (v ++') + X holds. We say that I" acts freely on A if
v+ A = A only when v = 0. If M is an R-module, we say that M is graded
by A if M = @®xea M) as abelian groups and R, My C M, for any v € T,
A € A. An element of R is called homogeneous if it belongs to one of the
R,, and similarly for M. Every element of R or M can be written as a
sum of nonzero homogeneous elements in a unique way; these are called its
homogeneous components. An ideal I C R is called homogeneous if it can
be generated by homogeneous elements. Show that I is homogeneous iff 1
contains the homogeneous components of each of its elements.

If I' and A are totally ordered then we say that the action of I' on
A is compatible with the order if v < 4" and A < ) together imply
v+ A <~ + XN. We say that ' acts freely if, under these circumstances,
v+ A=~"+ X implies y = 4 and A = \’, and also that v + A # A unless
v=0.

a. Suppose that I' is a totally ordered abelian monoid and R is a ring
graded by I'. Suppose also that M is an R-module graded by a totally
ordered set A on which I' acts freely in a way compatible with the
orders. If P C R is a prime ideal that is the annihilator of an element
of M, adapt the argument of Proposition 3.12 to show that P is
homogeneous and that P is in fact the annihilator of a homogeneous
element of M.

b. Suppose that R is a Noetherian ring, M is a finitely generated R-
module, and R and M are graded as in part b. Show that Ass M
consists of homogeneous prime ideals. Show that 0 C M has a pri-
mary decomposition into homogeneous submodules. Show that in the
filtration of Proposition 3.7 the M; and the P, may be taken to be
homogeneous.

c. Let R = k[z,y], and let T be the abelian group Z/(2) with elements
written 0 and 1. We give R a grading by I, letting Ry be the set of
polynomials whose terms all have even degree in y, and R; the set
of all polynomials whose terms have odd degree in y. The element
r? —y? is homogeneous of degree 0. Let M = R/(z* — y?). Show that
M is also graded by I'. Show that the prime ideal P = (z — y) is the
annihilator of an element of M, but that P is not homogeneous. (By
part b, this shows that Z/(2) cannot be ordered in such a way that
the action of Z/(2) on itself is compatible with the order. Prove this
directly.) Show that 0 C M does not have a primary decomposition
by homogeneous submodules of M.
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Primary Decomposition of Monomial Ideals

Computing the primary decomposition of the ideal generated by an arbi-
trary set of polynomials is quite difficult. See for example Eisenbud, Huneke
and Vasconcelos [1992] for algorithms and references. But for monomial ide-
als the job is relatively easy. See Heinzer, Ratliff, and Shah [in press] and
Sturmfels, Trung, and Vogel [in press| for further information on monomial
primary decomposition. See Eisenbud and Sturmfels [in press] for the case
of binomial ideals.

Let k be a field (or any domain). A monomial ideal is an ideal I C
k[zo,...,z,] generated by monomials in the variables zy, ..., z,.

Exercise 3.6:* Which monomial ideals are prime? Irreducible? Radical?
Primary?

Exercise 3.7:* Find an algorithm for computing the radical of a monomial
ideal.

Exercise 3.8:* Find an algorithm for computing an irreducible decompo-
sition, and thus a primary decomposition, of a monomial ideal.

Exercise 3.9:* Products of linear primes

a. Let I = (zy) - (2o, 1) - --+ - (20,...,2,). Show that the associated
primes of I are (), (xg,21), ..., (Zo, ..., 2;).

b. More generally, for any subset J C {0,...,r}, let P(I) be the prime
ideal generated by {x;|i € T}. Let I,...,I; be subsets of {0,...,7},
and set I =TI, P(1;). Let T" be the “incidence graph,” whose vertices
are the sets I;, with an edge joining I; and I; iff I; N I; # 0. Show
that the associated primes of I are precisely those primes that may

be expressed as P(I;, U---UI; ) where I}, ..., I, forms a connected
subgraph of I'. (It may not be easiest to use the general algorithm
above.)

The Question of Uniqueness
Exercise 3.10:
a.* Let R = k[a,b]/I where I = (a) N (a,b)? = (a? ab). Show that (b") is
(a,b)-primary in R, and that
0= (a)N(b")
is a minimal primary decomposition of 0 in R for any n > 1.

b. Show that (a + Ab") is also (a,b) primary for any nonzero A € k, and
that
0= (a)n (a+ Ab").
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Show that each (a + Ab™) is maximal among those ideals J C R with
0=(a)NJ;

thus the length of the rings R/J, for J a “maximal (a,b)-primary
component of 0,” is actually unbounded.

c. It may be objected that example b is unnatural in the sense that
it gives an inhomogeneous primary decomposition of a homogeneous
ideal. However, it can be “homogenized” as follows: Let S = Rlc].
Show that 0 = (a) 1 (ac™! + Ab") are primary decompositions of 0
in S, and that (ac® ! + Ab") is maximal among homogeneous ideals
that can be used as primary components.

d.* (Huneke): For maximal associated primes in the homogeneous case
there is a small positive result: Let I C k[zy, ..., z,| be a homogeneous
ideal and suppose that R = k[z;,...,z,]/I has the maximal ideal
(x1,...,x,) as an associated prime. Show that there exists a number
B such that if

I=JnNJhnN---

is a primary decomposition of I by homogeneous ideals, and J;
is maximal among the homogeneous ideals that can appear as an
(x1,...,x,)-primary component, then the length of the ring R/J; is
bounded above by B.

Exercise 3.11 (Uniqueness of maximal monomial primary
decomposition):* (Bayer, Galligo, Stillman): Show that if I C
k[z1,...,2,] 1s a monomial ideal, then there is a unique minimal primary
decomposition I = NI; of I for which each I; is a monomial ideal, primary
to an ideal P; generated by a subset of the variables, and I; is maximal
among the possible monomial Pj-primary components.

Exercise 3.12: Let M be a finitely generated module over the Noetherian
ring R. Given any multiplicatively closed set U C R, show that the inter-
section of the primary components of 0 in M corresponding to those primes
of Ass M not meeting U is the kernel of the localization map M — M[U™!],
and is thus independent of the primary decomposition chosen. Show that
any such kernel may be written as HY(M) for some ideal I C R.

Determinantal Ideals
Exercise 3.13:
a. Let M, = A" be the affine space of 7 X7 matrices over an algebraically

closed field k. Show that if a polynomial f vanishes on all the matrices
of rank s in M,, then it must vanish on all matrices of rank s — 1.
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b. Use part a and the idea of the proof given in the text for the case of
3 X 3 matrices of rank 1 to show that the set of r x » matrices of rank
< s is irreducible. (In fact, the ideal of (s+ 1) x (s + 1) minors of the
generic r X r matrix is prime —but this is somewhat harder to prove;
see for example Bruns and Vetter [1988].)

c. Now show that if P is the radical of the ideal of (s + 1) x (s + 1)
minors of the generic 7 x r matrix, then the (s 4+ 2) x (s + 2) minors
are in the symbolic square of P.

Total Quotients

Exercise 3.14: Use the finiteness of the set of associated primes of a
Noetherian ring R to show that the total quotient ring K(R) has only
finitely many maximal ideals —they are the localizations of the maximal
associated primes.

Exercise 3.15: The construction of the ring of total quotients K(R) of
a ring R (obtained from R by inverting all the nonzerodivisors of R)
commutes with localization if the ring is reduced, but not in the general
case. The problem has to do with embedded primes:

a.* If R is a reduced ring, show that for any multiplicatively closed set
U C R we have K(R[U™1]) = K(R)[U™}].

b. If Ris any ring and U is any multiplicatively closed subset, show that
K(R[U 1)) = K(K(R)[U™1)) is a localization of K (R)[U™!].
c. Let k be a field, let R = k[z,y, 2]/(2% 2y, x2), and let P = (z,y).
Show that
K(R) - R(z,y,z);
Rp = kly, 2]y);
K(Rp) = k(y, 2);

and thus A (Rp) # Rp @ K(R) = Rp.

Exercise 3.16: Give an example of an extension of finitely generated
abelian groups for which the second inclusion of Lemma 3.6b is proper.

Prime Avoidance
Exercise 3.17: Here are two examples that show how the prime avoidance

Lemma 3.3 cannot be improved.

a. Show that if £ = Z/(2) then the ideal (z,y) C k[z,y]/(z,y)? is the
union of 3 properly smaller ideals.
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Let k be any field. In the ring k[z,y]/(zy.v?), consider the ideals
I = (z),I, = (y), and J = (2% y). Show that the homogeneous
elements of J are contained in I; U Iy, but that J ¢ I; and J ¢ I.
Note that one of the I; is prime.

Exercise 3.18: Prime avoidance usually fails for infinite sets of primes,
but not always.

a.

b.*

Show that in k[z,y] the ideal (z,y) is contained in an infinite union
of primes P; such that no P; contains (z,v).

Suppose that R = k[{z;};e4) is a polynomial ring with infinitely
many variables indexed by a set A. Let { 4;};cp be a (possibly) infinite
collection of mutually disjoint subsets of A, and for each ¢ € B let
P, be the prime ideal generated by {z;};cs,. Show that any ideal
contained in the union of the P, is contained in one of them. Conclude
that if U is the multiplicative set U = R — U;cpP;, then the maximal
ideals of S = R[U™!] are precisely the ideals SP;. See Exercise 9.6 for
more about this example.

Exercise 3.19 (Refinements of prime avoidance):* Prove the follow-
ing useful variants of prime avoidance:

a.

(%)

Suppose R is a ring containing a field k£, and let I, ..., I,, be ideals of
RIf(fi,..., fn) & Lifori =1,...,s, then there is a nonzero homoge-
neous polynomial g(¢1,...,%,) € k[t1,...,¢,] with the property that

Yoaifi €U, I for all (ay,...,a,) € K such that g(a,,...,a,) # 0.

In particular, If k£ is infinite, then there is an element (as,...,a,) €
k™! so that fi+ Z?:Q a; fi & Uj]j.

Suppose R is a ring, and let I,,..., I, be prime ideals of R. If f € R
and J is an ideal of R such that f+J ¢ I, for i = 1,...,n, then
there is an element g € J with the property that

f+e¢ 1.
j

In particular, if (f1,...,fs) ¢ I, for ¢ = 1,...,n, then there is an
element (as,...,a,) € R" ' so that fi + Y i a:ifi & UL}

Exercise 3.20: Let M be a finitely generated module M over a Noetherian
ring R. Proposition 3.4 immediately implies that the set of elements of R
that are zerodivisors on M is a union of primes. Here is a method, due to
Kaplansky, for showing directly that this set is a finite union of primes:
Consider

p = {(P,m)|P is a maximal annihilator ideal and P = annm}.
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Let M’ C M be the submodule generated by all the m that occur as
second members of pairs in p. Let m1,...,m, be a finite set of these m;
that generate M’, and let Pp,..., P, be the corresponding primes. Show
that the set of zerodivisors on M is P, U---UP,.
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Integral Dependence and the
Nullstellensatz

The problem of solving equations and saying something about the solutions
is a fundamental motivation and goal of commutative algebra. In pursu-
ing this goal, it is often important to adjoin a solution of a polynomial
equation in one variable: Given a ring R and a polynomial p(z) € R|z],
the ring R[z|/(p) may be thought of as the result of adjoining a root
of p to R as freely as possible; the root adjoined is of course the image
of z.

The study of localization and its cousin, primary decomposition, which
has occupied us for the last two chapters, may be regarded as the study
of the case where p is a linear polynomial with unit constant coefficient,
which we might as well write as p(z) = ax — 1. In this chapter we shall
take up another central case, in which p is a monic polynomial, that is, a
polynomial p(x) = 2" +r;z" 1 + ...+ r, whose leading coefficient is 1. This
case may be distinguished by the following fundamental remark, whose
proof we give later as an application of the Cayley-Hamilton theorem. (See

Exercises 3.4b and 6.5 for related results.)

Proposition 4.1. Let R be a ring and let J C Rlz] be an ideal in the
polynomial ring in one variable over R. Let S := R|x]/J, and let s be the

image of x in S.

S is generated by < n elements as an R-module iff J contains a monic
n—1

polynomzal of degree < n. In this case S is generated by 1,s,...,s
In particular, S 1s a finitely generated R-module iff J contains a

a.

monic polynomaial.
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b. S is a finitely generated free R-module iff J can be generated by a
monic polynomial. In this case S has a basis of the form 1,s,...,s" L.

If S is an R-algebra, and p(z) is a polynomial with coefficients in R,
then we say that an element s € S satisfies p if p(s) = 0. The element
s is called integral over R if it satisfies a monic polynomial with coeffi-
cients in R. The equation p(s) = 0 is then called an equation of integral
dependence or an integral equation for s over R. If every element of
S is integral over R, we say that S itself is integral over R. The following
result is the second key fact that makes this theory interesting.

Theorem 4.2. Let R be a ring and let S be an R-algebra. The set of all
elements of S integral over R is a subalgebra of S. In particular, iof S is
generated by elements integral over R, then S is integral over R.

In particular, Theorem 4.2 shows that the algebra obtained by adjoining
the solutions to any set of integral equations is integral. The proof of The-
orem 4.2 will also be given later as an application of the Cayley-Hamilton
theorem.

Given an R-algebra S, the ring of all elements of S integral over R is
called the integral closure, or normalization of R in S. The most
important examples occur when R is an integral domain and S is its quo-
tient field. In this case the subalgebra of elements of S integral over R is
simply called the normalization of R. A domain equal to its own nor-
malization is called a normal domain.

Generalizing the normalization of a domain in its quotient field, an R-
algebra S containing a copy of R as R -1 is called an integral extension
of R if every element of S satisfies a monic polynomial with coeflicients
in R.

Integral extensions and normalization appear naturally in many contexts.
For example:

e Geometrically, integral extensions of affine rings correspond to the
maps of affine algebraic sets that are finite and proper. (Over the
complex numbers, this means that the preimage of every set that is
compact in the classical topology is again compact; in general it has
a formulation that we shall explain in Chapter 14). If o : X — Y is a
morphism of algebra varieties, then the set of connected components
of fibers of ¢ form an algebraic set Y’ mapping to Y through which
¢ factors (the “Stein factorization of a morphism”; see Grothendieck
[1961]).

e By an important finiteness result of Emmy Noether (Corollary 13.13),
normalization is an operation that takes affine rings to affine rings.
Since it also commutes with localization, it extends easily to an oper-
ation on any algebraic variety. It has the effect of “improving” certain
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irregularities in a variety, and it is an important step toward resolu-
tion of singularities.

e There is a criterion, due to Serre, to test when a ring is equal to its
normalization in terms of certain geometric and homological proper-
ties of the ring. A natural extension gives one of the most important
tests for the primeness of an ideal. See Theorem 18.15 and the dis-
cussion following it.

e To return to our roots (pun intended), both the rings Z[z]/(z? +1) =
Z[i] ¢ Q[i] and Z[x]/(z* + 4) = Z[2i] C Q[i] are interesting because
they reflect the arithmetic in Z. But the ring Z[7] is “nicer” than the
ring Z[2i]. For example, the first ring has unique prime factorization
whereas the second does not, since (2¢)(2i) = —(2)(2). It will turn
out that the ring Z[7] is the normalization of Z[2:].

As a slightly less obvious example, consider the ring R = Z[/5] = Z[1 +
V5] C Q and the larger ring S = Z[' + 4V5]. In the first ring the
equation (1 + v/5)(1 — vB) = —4 = —(2)(2) suggests that R does not
have unique factorization. An easy check shows that this is true (one must
show that 1 + /5, 1 — /5, and 2 cannot be factored further, and that
they do not differ by units of R). However, in S we see that 1 + /5 =
214+ 1V5) and 1 — VB = 2(1 — 14vB) = 2(1 + 165 — v/B). Also,
(Ya+ 15/5)(1a— 144/5) = —1, so both 1o+ 14y/5 and 1s— 144/5 are units.
Thus the two factorizations are essentially the same in S; in fact, one can
show that S has unique factorization into primes. Again, the reason that
S is “better” than R is that S is the normalization of R. Although even
normal rings of algebraic integers may fail to have unique factorization,
we shall see that they always have it locally, whereas non-normal ones do
not.

In general, if K is a number field (that is, a finite extension field of Q),
then the set of elements of K that satisfy monic equations with coefficients
in Z is called the ring of algebraic integers in K. As we remarked in
Chapter 1, these are the rings whose study started commutative algebra.

4.1 The Cayley-Hamilton Theorem and
Nakayama’s Lemma

The classical Cayley-Hamilton theorem says that a linear transformation
on a finite-dimensional vector space satisfies its characteristic polynomial.
Hamilton proved this for linear transformations of R? in 1853, and Cayley
announced the general case in 1858, though he too seems only to have
checked the cases up to 3 x 3 matrices. For purposes later in this chapter,
we shall need a more general version.
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Theorem 4.3 (Cayley-Hamilton). Let R be a ring, I C R an ideal, and M
an R-module that can be generated by n elements. Let ¢ be an endomor-
phism of M. If

(M) C IM,

then there is a monic polynomial
p(z) = 2"+ pa" 4+ pa

with p; € I’ for each j, such that p(¢) = 0 as an endomorphism of M.

Despite the generality, the proof is virtually the same as for the classical
case.

Proof. Let my,...,m, be a finite set of generators of M. We may write
each ¢(m;) in terms of the m;, using coefficients in I:

<,o(ml) = Zaijmj, with ai; € 1.

We regard M as a module over the polynomial ring R[z] by letting = act
as . Let A be the n x n matrix with entries a;;, and let 1 be the n x n
identity matrix. If we write m for the column vector whose entries are the
m;, then the equations above say that

(z1 — A)-m = 0.
Multiplying the left-hand side by the matrix of cofactors of z1 — A, we get
[det(z1 — A)|1-m =0,
that is, det(z1 — A)m,; = 0 for all 4; thus
[det(z1 — A)|M = 0.

It follows that the polynomial p(x) = det(x1 — A) has the desired property
p(p) = 0. It is easy to see directly that the j** coefficient p; is in the j'°
power of I; from a high-brow point of view, this is because p; is the trace
of the j** exterior power of A, the sum of certain j X j minors of A. [

Before returning to the application to integral elements, we give a useful
and surprising application in another direction.

Corollary 4.4. Let R be a ring, and let M be a finitely generated R-module.

a. Ifa: M — M is an epimorphism of R-modules, then « is an iso-
morphism.

b. If M =2 R, then any set of n elements of M that generate M forms
a free basis; in particular, the rank n of M is well defined.
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Proof.

a.

We may regard M as a module over R[t], letting ¢ act by tm = a(m)
for m € M. If we set I = (z) C R[t], then since « is an epimorphism,
IM = M. Thus we may apply the Cayley-Hamilton theorem with ¢
the identity endomorphism of M. It follows that there is a polynomial
q(t) such that (1 — q(t)t)M = 0, or equivalently 1 — g(a)a = 0. From
this we see that g(«) is the inverse to a, and « is an isomorphism.

A set of n generators of M corresponds to a surjection 3 : R* — M
sending the basis elements of R" to the given generators of M. Since
M is free of rank n, we may choose an isomorphism v : M — R".
The map By : M — M is a surjection, and thus an isomorphism. It
follows that 8 = (#y)y~! is an isomorphism, so the given generators
for M are a free basis.

To prove that the rank of a finitely generated free module is well
defined, suppose that R™ = R™. If m # n, suppose that m < n. We
can extend a basis of length m by adjoining some elements equal to
zero, to obtain a set of n generators that do not form a free basis,
contradicting the first statement of part b. Thus m = n, and we see
that the rank is well defined. (One could prove this last statement
directly: If p is a maximal ideal of R then (R/P)®gR™ = (R/P)™ is a
vector space of dimension m. By the same argument it has dimension
n, S0 M = n). O

The criterion of Corollary 4.4a is often useful when one can “approxi-
mate” a homomorphism in some way; see Exercises 4.13 and 7.5 for exam-
ples. Corollary 4.4b Is, of course, fundamental. See Exercise 4.10 for a differ-
ent proof. This statement is not so trivial as it might seem: The rank is not,
in general, a well-defined invariant of a free module over a noncommutative
ring (although it is well defined in the Noetherian case). For example if an
abelian group A satisfies A = A& A, as does for example any infinite dimen-
sional vector space, and I' := Hom(A, A) is its ring of endomorphisms, then
I' = Hom(A, A) = Hom(A,A® A) = T @ T as right-I'-modules. The trick
used here is sometimes called the “Eilenberg Swindle”.
Next we use these results to prove Proposition 4.1.

Proof of Proposition 4.1.

a.

The powers of x generate R[r] as an R-module, so their images, the
powers of s, generate S. Suppose that J contains a monic polynomial
p of degree n. Any power s¢ of s with d > n may be written in terms of
smaller powers by means of the equation 0 = s4"p(s) = s+ r;s? 1 +
-+, 80 the first n powers of s generate S.

Conversely, suppose that S can be generated as an R-module by n
elements. We regard multiplication by s as an endomorphism of the
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R-module S. Taking I = R, the Cayley-Hamilton theorem shows that
s satisfies a monic polynomial p(z) of degree n. Since p(s) = 0, the
polynomial p(z) isin J.

b. Suppose that J is generated by a monic polynomial p of degree n. We
know from part a that the first n powers of s generate S. To show they
are linearly independent, suppose 2341 a;s' = 0 for some elements
a; € R. Tt follows that the polynomial ¢(z) = 28‘1 a;x' isin J = (p).
Since p is monic, any nonzero multiple of p has degree equal to n or
greater than n, and we see that ¢ = 0. This shows that S is a free

R-module having the first n powers of s as free basis.

Conversely, suppose S is a free R-module, and let n be its rank. As an
R-module, S can generated by n elements, so by part a there is a monic
polynomial p of degree n in J. It follows by part a that S is generated
as an R-module by 1,...,s" 1. Since S is free of rank n, Corollary 4.4b
shows that these powers form a basis of S as an R-module.

We claim that p generates J. If f € J is any polynomial, let ¢ be the
remainder of f on division by p, so that g € J and degree ¢ < n. As
above, the polynomial ¢ can be interpreted as a linear relation among
some of the first n powers of 5. Since these form a free basis of S, it
follows that ¢ = 0, so f is divisible by p as required. O

In general we shall say that an R-algebra S that is finitely generated as
an R-module is finite over R. This is stronger than being integral. The
following result extends the connection given in Proposition 4.1 to rings
generated by more than one element.

Corollary 4.5. An R-algebra S is finite over R iff S is generated as an
R-algebra by finitely many integral elements.

Proof. First suppose that S is finite over R. If s € S, then multiplication
by s is an endomorphism of S, and the Cayley-Hamilton theorem shows
that s satisfies an integral equation.

For the converse, suppose S is generated by t elements, and let S’ be the
subalgebra of S generated by ¢t — 1 of the generators. We may assume by
induction that S’ is finite over R. Suppose S’ is generated as an R-module
by a finite set of elements {s;}. The last generator, s, is integral over R
and thus also integral over S’; by Proposition 4.1 there is a finite set of
generators of S as an S’-module, say {t;}. It is easy to check that the set
of products {s;t;} generates S as an R-module. O

For the natural generality of the idea in the second part of the proof, see
Exercise 4.1.

Here is the application of the Cayley-Hamilton theorem, Theorem 4.3,
to integral elements.
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Corollary 4.6. If S is an R-algebra and s € S then s is integral over
R iff there exists an S-module N and a finilely generated R-submodule
M C N, not annihilated by any nonzero element of S, such that sM C M.
In particular, s is integral iff R[s] is a finitely generated R-module.

Proof. Suppose first that s is integral over R. Take N = S. By Proposi-
tion 4.1, M = R[s] C S is finitely generated as an R-module.

Conversely, we may regard multiplication by s as an endomorphism of
M. Applying the Cayley-Hamilton theorem we see that there is a monic
polynomial p having coefficients in R with p(s)M = 0. From our hypothesis
it follows that p(s) = 0 as an element of S, and thus s is integral as required.

The last statement, which may also be regarded as a restatement of
Proposition 4.1, follows because 1 € R|[s| is not annihilated by any nonzero
element of §. O

It would be natural to prove Theorem 4.2 by starting with the equations
satisfied by two integral elements and simply writing down the equations
satisfied by their sum and product. In a sense, this is what we shall do. But
in general the necessary polynomials are complicated. The Cayley-Hamilton
theorem gives them implicitly.

Proof of Theorem 4.2. Let s, s’ be elements of S that are integral over
R. We must show that s + s’ and ss’ are integral over R. Suppose that
M = RJs], and M’ = R[s'l| € S. By Proposition 4.1 both M and M’
are finitely generated modules. We define M M’ to be the module spanned
by all the pairwise products of elements of M and M’. Since it would be
enough to take pairwise products of generators of M and M’, the module
MM’ is also a finitely generated module. We have

ss' MM' = sMs'M' ¢ MM’
(s+ 8 YMM' C sMM'+ MsM' ¢ MM' + MM' = MM’,

so both ss’ and s + s’ are integral by Corollary 4.6. This shows that the
integral elements form a subring. O

If R is Noetherian, then in fact Theorem 4.2 follows directly from Corol-
lary 4.5. Replacing S by the algebra generated by the elements integral
over R, it suffices to show that every element of S is integral over R. If
s € S, then s is in a subring S’ generated by just finitely many integral
elements, which is finite by Proposition 4.5. Since R is Noetherian the sub-
algebra R[s| C S’ is finite over R, so s is integral by the other implication
of Corollary 4.5.

We now give two further consequences of the Cayley-Hamilton theorem
that will be of great importance in the next chapters.
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Corollary 4.7. If M is a finitely generated R-module and [ is an ideal
of R such that IM = M, then there is an element r € I that acts as the
identity on M ; that is, such that (1 —r)M = 0.

Proof. Take ¢ to be the identity in Lemma 4.3; the resulting equation
p(1)M = 0 becomes

(1+p1+"'+pn)M:O,

with p; in I C I, so we may take r = —(p; + -+ + p,). O

The next result, called Nakayama’s lemma (see the history in Nagata
[1962] p. 212-213), is an extraordinarily useful tool in the theory of local
rings. To state it in maximal generality we use the following definition.

Definition. The Jacobson radical of a ring R is the intersection of all
the maximal ideals of R.

Corollary 4.8 (Nakayama’s Lemma). Let I be an ideal contained in the
Jacobson radical of a ring R, and let M be a finitely generated R-module.

a. IfIM = M, then M = 0.

b. If mi,...,m, € M have images in M/IM that generate it as an
R-module, then my,...,m, generate M as an R-module.

Proof.

a. We apply Corollary 4.7 to get r € I such that (1 —r)M = 0. Since r
is in every maximal ideal, 1 — r is in no maximal ideal; that is, 1 —r
is a unit. It follows that M = 0.

b. Let N = M/(>_, Rm;). We have N/IN = M/(IM + (3., Rm;)) =
M/M =0,s0 IN = N. We now apply part a to get N = 0, that is,

Warning: It is tempting, but in general wrong, to use Nakayama’s lemma
to prove that a module M is finitely generated by exhibiting finitely many
generators for M/IM. But in some favorable cases this argument is correct;
see Exercises 4.6 and 7.2.

Nakayama’s Lemma says in particular that if (R, P) is a local ring
and M is a finitely generated R-module such that M/PM = 0, then
M = 0. Since M/PM = R/P ® M, the following result extends this
remark.

Corollary 4.9. If M and N are finitely generated modules over a ring R,
and M ®r N = 0, then ann M + ann N = R. In particular, if R is local,
then either M or N 1is 0.
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Proof. 1t suffices to prove the local case, since if ann M + anu N # R,
we could localize at a prime ideal containing both ann M and ann N, and
apply the local result to get a contradiction. Assuming that (R, P) is local,
and M # 0, Nakayama’s lemma implies that M/PM # 0. Since this is an
R/P vector space, it projects onto R/P and so there is a surjection from
M itself onto R/P. Thus 0 = M ® N surjects onto R/P® N = N/PN. By
Nakayama’s lemma, N = 0. O

4.2 Normal Domains and the
Normalization Process

We have already hinted that there is a connection between normality and
unique factorization. The following proposition gives the relation.

Proposition 4.10. Let R be a ring. If R is factorial, then R is normal.

Proof. Suppose that R is factorial, and that r/s with r, s € R, is a fraction
that is integral over R. We may assume that 7 and s are relatively prime,
and we wish to show that r/s € R. If the integral equation satisfied by r/s
is

(?"/3)“ + an—l(’f’/S)nil 400 = 0’
then multiplying by s” gives

4 8a, 1" 4 = 0.

Thus 7" is divisible by s, contradicting the relative primeness of r and s.(0

Proposition 4.10 shows immediately that the domain Z is normal. If &
is a field then k[zy,...z,] and Z[xy, ..., z,] are factorial, so these rings arc
normal too. In fact more is true: A ring R is normal iff the polynomial ring
R[z] is normal—see Exercise 4.18.

If R C S are rings and f(x) € R[z] is a monic polynomial with a root
in S, then by definition the root is integral over R. Having a root « is
the same as having a linear factor (z — «). The following result shows
that something similar is true for any factor, linear or not. Given that
Z is normal, as we have just shown, it generalizes the statement that a
monic polynomial with integer coefficients that is irreducible in Z[z] is
also irreducible in Q[z]. (This is usually proved from Gauss’ lemma; see
Exercise 3.4.)

Proposition 4.11. Let R C S be rings, and suppose that f € R|x] is a
monic polynomial. If f factors in S[z] as f = gh, with g and h monic, then
the coeffictents of g and h are integral over R.



126 4. Integral Dependence and the Nullstellensatz

Proof. Adjoining a root «; of g to S and using long division in the ring
Sley] = S[z]/(g), we see that g factors as (x — a;)g;, where the degree of
g1 is one less than the degree of g. Repeating this process inductively, we
may find an extension ring 7" of S and elements «; and 3; of T such that
g = I(z — «;), h = II(z — 3;) in T[z]. Since each «; and S; is a root of
the monic polynomial f, the subring 7" of T' generated as an R-algebra by
the «; and f; is integral over R. Since the coefficients of g and h are the
elementary symmetric functions in the o; and the 3;, respectively, they too
are integral over R. 0

If R is a domain and f = gh € R[z] is a factorization of a monic poly-
nomial into nonmonic polynomials, then because f is monic the leading
coefficients of g and h are units of 5, inverse to one another. Multiplying
each of g and A by the leading coefficient of the other produces a factoriza-
tion to which Proposition 4.11 applies.

As a consequence we get a weak converse of Proposition 4.10, tighten-
ing the connection of normality and factoriality and generalizing another
standard consequence of Gauss’ lemma. It is useful with such results as
Eisenstein’s criterion, Exercise 18.11.

Corollary 4.12. If R is a normal domain, then any monic irreducible
polynomial in R[z] is prime.

Proof. Let f be a monic irreducible polynomial. Write @ for the quotient
field of R. By Proposition 4.11, f remains irreducible in Q[x]. Since Q|[z]
is factorial, P = fQ[z] is prime. Since R[z]|/(f) is free over R, the map
R[z]/(f) — Q ®r R[z]/(f) = Q[z]/P is a monomorphism; thus (f) is
prime in R[z]. O

Normalization commutes with localization.

Proposition 4.13. Let R C S be rings, and let U be a multiplicatively
closed subset of R. If S' is the integral closure of R in S, then S'{U1] is
the integral closure of R[UY] in S[U™Y].

Proof. An element of S integral over R is certainly integral over R[U™!],
so §'[U~!] is integral over R[U!]. For the other inclusion we must show
that if s/u € S[U7?] is integral over R[U~!| then s times an element of U
is integral over R. If

(s/u)* + (r/u)(s/u)""t - =0

is an equation of integrality for s/u, then we can clear denominators by
multiplying by (uuy - - u,)", to get a relation of integrality for su; - - - u,:

(8uy -+ )™ + r(wty U ) (SUy - Up)P T A = 0. O
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If R is a Noetherian domain then one might hope that the integral closure
S of R (in its quotient field or perhaps some finite extension field) would be
Noetherian. If S is finitely generated as an R-algebra, then this will true by
Corollary 4.5. In general, an integral algebra over a ring R is a possibly infi-
nite union of finite algebras. If this union is really infinite, then S might not
be Noetherian; this can really happen, as an example due to Nagata [1962,
Example 8, p. 211] shows. However, in the case of affine rings, all is well.

Theorem 4.14 (Emmy Noether). If R is a finitely generated domain over
a field or over the integers, and L is a finite extension field of the field of
fractions of R, then the integral closure of R in L is a finitely generated
R-module.

We shall give the proof of Theorem 4.14 in the case of affine rings as
an application of the Noether normalization theorem in Corollary 13.13
(for the general case see the references given there). In a similar vein, the
Krull-Akizuki theorem (Theorem 11.13) shows that the normalization of a
“one-dimensional” Noetherian ring is again Noetherian. In general, rings R
satisfying the conclusion of Theorem 4.14 were named Japanese rings by
Grothendieck [1965] in honor of the contributions of the Japanese school.

Theorem 4.14, especially together with Proposition 4.13, is useful in
geometry: Theorem 4.14 says essentially that the normalization of an affine
variety is again an affine variety, and it is generally somewhat simpler.
Proposition 4.13 shows that a general reduced, irreducible variety made
by patching together affine pieces (for example, a projective variety) has a
nice normalization: We may normalize each affine piece separately, and then
glue together along the open sets (see the discussion in Chapter 2), which
are the normalizations of the open sets along which the original pieces were
elued.

Normalize
each piece
separately,
and gluing
still works!

glue
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4.3 Normalization in the Analytic Case

There is a beautiful interpretation of integrality for rational functions on an
affine variety over C that comes from complex analysis. We shall sketch a
special case, referring the reader to Gunning and Rossi [1965] for the general
case. For simplicity, we assume that the variety is regular except for one
singular point (see Chapter 10 and Theorem 16.19 for the definition, or
just look at the pictures below). In this case a rational function is integral
over the ring of polynomial functions localized at the singular point iff
it stays bounded in a neighborhood of the singular point in the classical
topology. For example, consider the coordinate rings C[z,y]/(y* — z*) and
Clz,y]/(y* — 2°(z + 1)) of the plane curves

and

yz—x2 (x+1)=0

respectively. In each case the singular point is the origin (0,0). In each
case the function y/z, though not regular in the sense that it is in the
coordinate ring (and not bounded in a neighborhood of the singular point
in the plane), does stay bounded along the curves. (For the real points of
the curves one sees this plainly from the pictures: It just means that the
distance from a point on the curve to the z-axis is never too much greater
than the distance of the point to the y-axis. For the complex points a little
algebra is necessary, as usual.)
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In each of these cases, it is easy to see the integral equation satisfied by
this bounded function: In the first case it is (y/x)> — z = 0, in the second
(y/x)*—(x —1) = 0. The “reason” why y/z is not in the coordinate ring is
that while all polynomial functions are restrictions of polynomial functions
on the plane, the function y/z does not even extend to a continuous (in
the classical sense) function on the plane. In the second case, y/z is not
even continuous on the curve: Along one “branch” of the curve, y/x has
limit 1 at (0,0), whereas along the other branch it has limit —1. Thus it
“separates” the two branches; see Exercise 4.24.

4.4 Primes in an Integral Extension

Suppose that R and S are affine k-algebras corresponding to varieties X
and Y, respectively. A homomorphism R — S corresponds to a morphism
Y — X. The homomorphism R — S is an inclusion iff no polynomial
function on X pulls back to 0 on Y—that is, iff the image of Y — X is not
contained in any proper closed subset of X or, in fancier language, iff the
image is dense in the Zariski topology.

What does it mean for S to be integral over R? The full answer, which we
shall not completely explain here, is that the map ¥ — X is proper with
finite fibers. If the ground field is C, then this means that the preimage in
Y of a compact subset of X (in the classical topology) is a compact subset
of Y; over a general ground field, properness is a good replacement for
this sort of relative compactness. We shall meet properness again when we
come to elimination theory in Chapter 14; the interested reader can find a
technical account of the general notion in Hartshome [1977, Chapter 2|. For
now we shall prove three facts, formulated by Cohen and Seidenberg [1946],
that reflect part of this geometric constellation. Their main use is to show
that if R C S is an integral extension, then chains of prime ideals in R and
in S are closely related; such information will be necessary when we come
to dimension theory. We shall also use Corollary 4.17 in the proof of the
Nullstellensatz at the end of this chapter. All three results are essentially
corollaries of Nakayama’s lemma.

Proposition 4.15 (Lying Over and Going Up). Suppose that R C S is
an integral extension of rings. Giwven a prime P of R, there exists a prime
Q of S with RNQ = P, and in fact Q may be chosen to contain any given
ideal () that satisfies the (obviously necessary) condition RN Qy C P.

The first statement of the proposition is called Lying Over because it
asserts the existence of a prime of S “lying over” a given prime of R. The
second statement is called Going Up because it constructs a prime Q “up”
from @ (see Figure 4.1). There is also a somewhat deeper going down
result that holds under stronger hypotheses (Theorem 13.9).
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Proof. Factoring out @Q; and RN @7, we may suppose that (); = 0, and we
need only prove the existence of a prime Q of S with RNQ = P. Let U be
the multiplicatively closed set R — P. Replacing R by Rp = R[U™!] and S
by S[U™!], we may assume that R is local with maximal ideal P.

With these hypotheses, any maximal ideal of S containing PS has preim-
age containing P, and therefore equal to P; so we need only prove that
PS # S.But if PS = S then 1 € S can be expressed as an S-linear combi-
nation of finitely many elements of P. If we let S’ be the subalgebra of S
generated by these elements, then 1 € PS’ so PS’ = §’. Since S and thus
S’ are integral over R, Corollary 4.5 shows that S’ is a finitely generated
R-module. By Nakayama’s lemma, S’ = 0, a contradiction. O

Even if we only assume that the quotient field of S is algebraic over
that of R, the following lemma shows that there is some relation between
the ideal theory of S and that of R. Recall from Chapter 2 that if R is a
domain, then K (R) denotes the quotient field of R.

Lemma 4.16. Let R C S be domains. If K(S) is algebraic over K(R) then
any nonzero ideal of S intersects R nontrivially.

Proof. 1t suffices to treat a principal ideal bS. Now b satisfies an equation
of the form a,b™ + --- + a1b + ap = 0, with each a; € K(R). Multiplying
by a common denominator of the a; in R, and dividing by a power of b if
necessary, we may suppose all a; € R and ag # 0. Clearly, ay € bS. [

With a hypothesis as in Lemma 4.16, suppose that R is a field. By the
lemma, any nonzero ideal of S contains a nonzero element of R, and this
is a unit; thus S is a field. If we assume that S is integral over R, then the
converse is true as well.

Corollary 4.17. If R C S is an integral extension of domains, then S is
a field iff R is a field. Equivalently, if S is an integral R-algebra and P is
a prime of S, then P 1s a maximal ideal of S iff PN R is a mazimal ideal
of R.

R S
P 3Q
ROQ——— @

FIGURE 4.1.
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Proof. We have already seen that if R is a field then S is too. For the
converse, if m is a maximal ideal of R, then by Lying Over there is a prime
Q@ of S intersecting R in m. If S is a field, then Q =0,som = RN Q = 0,
and R is a field. The second statement of the corollary may be reduced to
the first by factoring out P and P N R. [

For a direct proof of Corollary 4.17, see Exercise 4.3.

The hypothesis of Lemma 4.16 may be spoiled if we pass to factor rings
of R and S, since the equations that make the elements of S algebraic over
R may become trivial. However, integral equations cannot become trivial
in such a factor ring, and this makes the lemma particularly potent with
a hypothesis of integrality. Here is a typical application; for another, see
Theorem 11.13.

Corollary 4.18 (Incomparability). Suppose R C S is an integral extension
of rings. Two distinct primes of S having the same intersection with R are
incomparable.

Proof. If Q C @Q; C S are primes, with RNQ = RN Q1 = P C R, then
factoring out P in R and @ in S reduces to a situation where S is a domain,
Q = 0, and @Q; N R = 0. Since integral equations persist modulo P, S is
still integral over R, and thus K(S) is algebraic over K(R). Lemma 4.16
shows that @1 = 0 = @, as required. 0

Sometimes more is true: We shall show in Proposition 3.10 that if R
is normal and K(S)/K(R) is Galois, then any two primes with the same
preimage in R are conjugate under an automorphism of S.

4.5 The Nullstellensatz

The original Nullstellensatz, explained in the Introduction, deals with poly-
nomials in n variables over a field. The version below is much more general:
It deals with a property that fields (trivially) possess and that is preserved by
every polynomial extension. It does not even need a Noetherian hypothesis.
At the end of this chapter we shall show explicitly how to derive the version
of the Nullstellensatz given in Chapter 1 from the version given here. The
exercises contain three further proofs; a fifth will be given in Chapter 13.
We say that a ring R is a Jacobson ring if every prime ideal of R is the
intersection of maximal ideals!. It is obvious that any field is a Jacobson
ring. The version of the Nullstellensatz that we shall now prove, shows that

'This name, bestowed by Krull, honors Nathan Jacobson’s studies of the inter-
section of the maximal ideals of a ring, which is now called the Jacobson radical.
The name “Hilbert ring” also appears in the literature.
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any finitely generated algebra over a field is also a Jacobson ring. Recall
that if S is an R-algebra by some homomorphism «: R — S, and I C S is
an ideal, then for simplicity we write I N R for o 1(7), just as if a were an
inclusion.

Theorem 4.19 (Nullstellensatz—General form). Let R be a Jacobson ring.
If S is a finitely generated R-algebra, then S is a Jacobson ring. Further,
if n C S is a maxzimal ideal, then m := n N R is a mazimal ideal of R, and
S/n is a finite extension field of R/m.

The conclusion of the second statement can easily fail if R is not Jacobson
(the conclusion of the first statement fails trivially!). For example, let R =
k[t]s). The unique maximal ideal of R is (t), so the prime ideal 0 is not an
intersection of maximal ideals of R, and R is not Jacobson. If n = (zt—1) C
S := R|z|, then S/n = k(t), so n is a maximal ideal of S, but nN R = 0.

The proof will make use of a reformulation of the Jacobson property,
variants of which go under the name “Rabinowitch’s trick” (Rabinowitch
[1929]).

Lemma 4.20. Let R be a ring. The following are equivalent:

a. R is Jacobson.

b. If Pis a prime of R and if S := R/P contains an element b # 0 such
that S[b] is a field, then S is a field.

Proof. a = b: Since R is Jacobson, S is Jacobson, and since S is a domain,
it follows that the intersection of the maximal ideals of S is 0. The primes
of S[b~!] correspond to the primes of S that do not contain b, as illustrated
in the beginning of Chapter 2. Since S[b~!] is a field, b is contained in all
the nonzero prime ideals that S may have. Thus the ideal (0) must be a
maximal ideal—that is, S is a field.

b = a: Let ) be a prime ideal of R, and let I be the intersection of all the
maximal ideals containing ). We must show that I = Q. If, on the contrary,
I # @, choose an element f € I — (). By Zorn’s lemma we may choose a
prime P maximal among the primes of R containing () but not containing
f. By hypothesis, P is not a maximal ideal of R, so $ = R/P is not a field.
Nevertheless, P generates a maximal ideal of R[f '], so R/P[f '] is a field.
This contradicts hypothesis b, so I = @) as required. J

Proof of Theorem 4.19. We begin with an easy special case. Suppose that
R is a field, and S = R|[z], the polynomial ring in one variable over R.
The ring S is a principal ideal domain. Any nonzero prime ideal n of S
is generated by an irreducible monic polynomial f. Since one irreducible
polynomial cannot divide another, n is 2 maximal ideal. Of course nNR = 0,
the unique maximal ideal of R, since otherwise n would not be proper. The
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dimension of S/n over R is equal to the degree of f, and is in particular
finite. Thus the second statement of Theorem 4.19 is satisfied.

It now suffices to show that S is Jacobson, and since the nonzero primes
are maximal it only remains to show that 0 is the intersection of prime ideals
of S. Since no polynomial can have infinitely many irreducible factors it
suffices to show that S has infinitely many distinct prime ideals. For this
we may use Euclid’s famous old argument: If there were only finitely many
prime polynomials f; then [], fi + 1 (which is not a unit because it has
positive degree) would have no prime factors. Thus S is a Jacobson ring,
and we have proved the special case of Theorem 4.19.

Now let R be any Jacobson ring, and suppose that S is generated as an
R-algebra by just one element. For the first statement, we use the charac-
terization of Lemma 4.20, and we must show that if P is a prime of S and
if §’ := S/P contains an element b such that S’[b™'] is a field, then S’ is a
field. Replacing S by S’, and factoring out the preimage of P from R, we
may assume that R is a domain contained in S, and that b € S is such that
S[b '] is a field, and we must show that S is a field. We shall actually show
that R is also a field, and S is a finite extension of R in this case. For the
second statement of the theorem, we may make the same reduction and
assume that S itself is a field. The desired conclusion is exactly that R is a
field and S is finite over it, so the same proof will prove both statements.

Since S is generated over R by a single element ¢, we may write S =
R[z]/@ for some prime ideal @ of R[z], in such a way that ¢ is the image
of z. We first claim that @) # 0. In the contrary case, we would have
b € R[z] such that R[z][b"!] is a field. If we write K for the quotient field
of R, then K[z][b~!] would of course also be a field. Since we already know
that K[x] is Jacobson, this contradicts Lemma 4.20. Thus @ # 0, and
S[b71 = K[z]/QK]|x] is a field, finite dimensional over K.

Let p(x) € @ be a nonzero polynomial with coefficients in R, so that

p(t) = pat" + -+ po =0
in S. If we invert p,, then we can multiply p(¢) by p;' and we see that S[p, ']

is integral over R[p,']. The element b will satisfy an algebraic equation with
coefficients in R too, say

q(b) = g™ + -+ qo = 0.

Since S is a domain, we may divide by a power of b if necessary and assume
that gy # 0. Multiplying ¢ by 1/(geb™) and writing 3 for b~!, produces

B+ (q1/0)B™ 4+ + (am/q0) = 0.

Thus the field S[] is integral over the ring R[(p,q0)~}]. By Corollary 4.17,
R[(pnqo) '] is a field. Since R is a Jacobson ring, R itself is a field. Thus S
is integral over R. Again by Corollary 4.17, S is a field. This completes the
proof of Theorem 4.19 in the case where S is generated by one element.
The general case may be done by induction on the number of generators
r of § as an R-algcbra. We may suppose that » > 1 and that the result has
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been proved for algebras with < r — 1 generators. Let S’ be the subalgebra
of S generated by r—1 of the generators of S. By induction S’ is a Jacobson
ring, so, by the case r = 1, S is a Jacobson ring too. Similarly, if n is a
maximal ideal of S, then §' N n is a maximal ideal by the case r = 1, and
RNn = RN (5 Nn) is maximal by the induction step. Since the extensions
R/(RNn) C S'/(S'Nn) and S’'/(S"Nn) C S/n are finite by the inductive
hypothesis, R/(RNn) C S/n is finite, completing the proof. O

Before proving the version of the Nullstellensatz from Chapter 1, it is con-
venient to prove Corollary 1.9. For convenience, we recall the statements.

Corollary 1.9. Let k be a field. For each p = (a1,...,a,) € A"(k) the
ideal my, := (21 —ay,...,2, —ayn) C klz1,...,2,] is a mazimal ideal. If k is
algebraically closed and X C A’(k) is an algebraic set, then every mazimal
ideal of A(X) is of the form m,/I{X) for some p € X. In particular, the
points of X are in one-to-one correspondence with the maximal ideals of
the ring A(X).

Proof. 1t is clear that k[zy,...,z,]/m, = k, so m, is a maximal ideal. The
natural map k[zy,...,z,;] — k[z1,...,2:]/m, = k may be described as
evaluation at p. Thus m, D I(X) iff p € X. Since the maximal ideals of
A(X) are the maximal ideals of S := k[z1,...,z,]| containing I(X), taken
modulo 7(X), it only remains to show that every maximal ideal of S has
the form m, for some p.

Suppose n is a maximal ideal of S. By Theorem 4.19 applied with R =
k,S/nis algebraic over k/(nNk) = k. Since k is algebraically closed, S/n =
k. Let a; be the image of x; under the map § — S/n = k, and let p =
(a1,...,a,). It follows that m, is contained in n. Since m, is maximal,
m, = n. ]

Theorem 1.6. Let k be an algebraically closed field. If I C k[zy,...,x,] is
an ideal, then

I(Z(I)) =rad I.

Thus the correspondences I — Z(I) and X +— I(X) induce a bijection
between the collection of algebraic subsets of A"(k) and radical ideals of
klxzy,..., T,

Proof. Corollary 1.9 shows that the points of Z(I) correspond to the maxi-
mal ideals of k[xy,...,z,] containing I. Thus I(Z(I)) is the intersection of
all the maximal ideals containing /. By Theorem 4.19, this is the same as
the intersection of all the prime ideals containing I, which is rad I by Corol-
lary 2.12. Since the equality Z(I(X)) = X is automatic for an algebraic
set X, the last statement follows. O
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4.6 Exercises

Exercise 4.1: Let R be a ring, S an R-algebra, and M an S-module. The
structure map from R to S makes M an R-module. If S is finite over R, and
M is finitely generated as an S-module, show that M is finitely generated
as an R-module.

Exercise 4.2: Let R be a domain containing a polynomial ring in one
variable over a field, say R D S = k[t]. Show that if R is a finitely generated
S-module, then R is free as an S-module. Show by giving a basis that if
R = k[z,y]/(z* — y*) and t = 2™y, then the rank of R as an S-module
is 3m + 2n. Assuming again only that R is a finitely generated S = k[t]-
module, let R be the integral closure of R. By Noether’s theorem 4.14, R
is again finitely generated and thus free as an S-module. Show that it has
the same rank as R.

Exercise 4.3: Suppose that S is a ring, and that an element s € S satisfies
an equation

ros"+rs" 44, =0
with coefficients r; € S. Show that if r,, is a unit then s is a unit. Use this
to deduce Corollary 4.17 without using Lemma 4.16; and then derive the
latter from the former.

Exercise 4.4:* Let k be a field and let R = k[t]/(t?). Set
p(z) = tx® + t2* — 2% — x € R[x].

Show that S = R[z]/(p) is a free R-module of rank 2, even though p is not
monic (its leading coefficient is not even a unit). How do you reconcile this
with Proposition 4.17

Nakayama’s Lemma

Exercise 4.5: Let R = k[z](;) be the ring of polynomials in one variable
z over a field, localized at the prime (z). Find an R-module M that is not
finitely generated but such that M /xM is finitely generated.

Exercise 4.6: Here are two cases where Nakayama’s lemma works without
the finiteness condition; a third will be found in Exercise 7.2: Let R be a
ring, I an ideal, and M an R-module such that IM = M:

a. If Risgraded (by the positive integers), I is homogeneous and consists
of elements of strictly positive degree, and M is a graded module with
M, = 0 for n < 0, show that M = 0.

b. If I is nilpotent, show that M = 0.
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Exercise 4.7: Show that the Jacobson radical of R is

J ={r € R|]1 +rsis a unit for every s € R}.

Exercise 4.8: Give a proof of Nakayama’s lemma, 4.8a, without using
determinants, as follows: Do induction on the number of generators required
for M, and use the equation M = IM to write a unit times one of the
generators in terms of the others.

Exercise 4.9: The following is valid either in a local ring (R, P) or a pos-
itively graded ring R such that Ry is local (in which case we take P to be
the maximal homogeneous ideal).

Let I C R be an ideal, and suppose z € P is an element such that x is
a nonzerodivisor on R/I. Show that any minimal set of generators for I
reduces mod z to a minimal set of generators for the image of I in R/(x).
Show by example that this can fail if z is a zerodivisor on R/I.

Exercise 4.10: Give a proof of the assertions of Corollary 4.4a and b in
the special case where M is free of finite rank by showing that the n'®
exterior power of a surjection is a surjection.

Projective Modules and Locally Free Modules

Exercise 4.11:* Let R be a ring. Projective modules over R are defined
in section A3.3. One description (Proposition A3.1) is that an R-module is
projective iff it is a direct summand of a free R-module.

a. Use Nakayama’s lemma to show that if R is local and M is a finitely
generated projective module, then M is free. (This is also true with-
out finite generation; see Kaplansky [1958] or Lam [1978].) If R is
a positively graded ring, with Ry a field, and M is a finitely gen-
erated graded module that is projective, then M is a graded free
module (that is, a direct sum of the form ®R(a;) for some integers

ai.)

b. Use Proposition 2.10 to show that a finitely presented module M is
projective iff M is locally free in the sense that the localization Mp
is free over Rp for every maximal ideal of R (and then of course Mp
is free over Rp for every prime ideal P of R).

Exercise 4.12:

a.* Show that if M is a finitely presented R-module, then M is projective
iff M is locally free in the stronger sense that there is a finite set of
elements f1,...,f, € R such that (fi,...,f,) = R, and M[f '] is a
free R[f;']-module for every i. (Hint: Here is a useful intermediate
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step: Show that if M and N are finitely presented R-modules, and
Mp = Np for some prime P, then there is an element f € R, f ¢ P
such that M[f~!] = N[f71].)

b. Any projective module is flat. Show that if R is an integral domain
but not a field, then the quotient field K(R) is a flat R-module that
is not projective by showing that the only map K(R) — R is 0. (In
Corollary 6.6 we shall show that every finitely presented flat module
is projective.)

Exercise 4.13:* A ring is called semilocal if it has only finitely many
maximal ideals. Prove that if R is a semilocal ring and M, N are finitely
presented [R-modules such that Mp =2 Np for every maximal ideal P of
R, then M = N. (Hint: Use Proposition 2.10 to produce maps, combine
them using coefficients selected according to prime avoidance, Lemma 3.3,
and prove that the result is an isomorphism using Corollaries 4.4 and 2.9.)
This result can fail for rings with infinitely many maximal ideals, such as
Z[V=35] or k[z,y]/(z® + 3> — 1); we shall see in Chapter 11 that, more
generally, if I is an ideal in a Dedekind domain R then Ip = Rp for every
prime p of R, but we may have I %* R.

Integral Closure of Ideals

Exercise 4.14: If R is a domain and [ is an ideal of R, we define the
integral closure of I in R to be the set of elements s € R satisfying an
equation of the form

"4 44, =0

with r; € 17, the ;' power of I, for each j. Show that s is integral over [ iff
there is a finitely generated R-module N, not annihilated by any element
of R, such that

sN C IN.

Use this to show that the integral closure of I in R is an ideal.

Exercise 4.15: If R is a domain, show that every radical ideal is integrally
closed in R. Show that in a principal ideal domain, every ideal is integrally
closed.

Exercise 4.16: Let R be a domain, K its quotient field, and R the integral
closure of R in K. If I C R is an ideal, show that IR N R is contained in
the integral closure of I in R. (In general, the integral closure of I in R is
bigger; we shall see examples with ideals of monomials, below.)

Normalization

Exercise 4.17:* Let R C S be rings. Show that R is integrally closed in
S iff R[] is integrally closed in S|z].
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Exercise 4.18:* Let R be a domain. Show that R is normal iff R[z] is
normal.

Exercise 4.19: This exercise extends the elementary result that a monic
polynomial over Z that can be factored over Q can already be factored over
Z: Let R C S be rings with R integrally closed in S. Suppose that h(x)
is a polynomial in R[x| that factors in S[z| as the product of two monic
polynomials h(z) = f(z)g(x). Show that f and g are each in R[x]. (This
result leads to a solution of Exercise 4.17 different than the one given in
the hint. See Atiyah and Macdonald [1969, Chapter 5, Exercise 8-9].)

Exercise 4.20: For each n € Z, find the integral closure of Z[\/n| as
follows:

a. Reduce to the case where n is square-free.

b. /n is integral, so what we want is the integral closure R of Z in
the field Q[v/n]. If @« = a + by/n with a,b € Q, then the minimal
polynomial of « is 22 — Trace(a)z + Norm(«), where Trace(a) = 2a
and Norm(a) = a? — b?n. Thus a € R iff Trace(a) and Norm(a) are
integers.

c. Show that if @ € R then a € hZ. If a = 0, show o € Riff b€ Z. If
a = 15 and o € R, show that b € 15Z. Thus, subtracting a multiple
of /n, we may assume b = 0 or 1. b =0 is impossible.

d. Conclude that the integral closure is Z[\/n] if n # 1(mod4), and is
Z[/2+ 1hy/n] if n = 1(mod 4).

Exercise 4.21 (The graded case):

a.¥ Show that the integral closure of a graded domain in its quotient
field is graded, as follows: First, the degree 0 part of the graded ring
obtained by inverting all nonzero homogeneous elements of S is a
field. Next, show that a domain S is normal iff the ring of Laurent
polynomials S{r,z~!] is normal. Finally, show that if § C T are
graded domains (T can even be Z-graded), with S Noetherian, then
the integral closure of S in T is again graded.

b. If S is a graded Noetherian domain, show that for any homogeneous
prime ideal P of S not containing Si, the integral closure of Spy is
the degree 0 part of a localization of the integral closure of S.

Normalization and Convezity

The operation of normalizing has many similarities to the operation of
taking convex hulls, and indeed there is more than an analogy between
these ideas. Here are two cases where the correspondence is very tight.
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Exercise 4.22: Let [' € N” be a finitely generated subsemigroup (with
identity) of the n*® power of the semigroup of natural numbers under addi-
tion. Let k£ be a field, and define

k[T) C klz1, ..., 2,

to be the subring that is spanned as a vector space by all the monomials
with exponents in ['; that is, by all

2 i=xl'zy . ozl with y=(y,...,7) €T.

We define R.T to be the convex cone spanned by [; that is, R, I is
the set of all positive real linear combinations of elements of ['. We define
G(T') C Z™ to be the group generated by T'. Let

I'=[R:ITNN" = [R, [N G(T),

the semigroup of all integral points in the cone spanned by I'. Show that
k[L] is the integral closure of k[T'| in its quotient field as follows:

a. Show that
[ = {y € N"|m~v € T for some positive integer m.}
To do this, first prove
Caratheodory’s Theorem. Let vq,...,v,, € R" be points. The set
R.vi+--+Ryivy, is the union of the sets Ryv;, +--- + Ryv;, where

Viy, ..., Ui, are linearly independent.

Use this to show that any rational point of R_I is a positive rational
linear combination of elements of T'.

0

® =generatorof T
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Show that any monomial in k[T is integral over k[I"]: Make an integral
equation from a relation of the form ma =+ € I' with m € N.

. Given any element f of the quotient field of k[['], integral over k[I'],

show that f € k[G([')] N k[N"]: In fact, G(T') is a free abelian group,
so both the rings k[G([")] and k[N"| are normal. Thus any element of
the integral closure of k[I'| can be written as a polynomial f whose

monomials lie in k[G(T)]. It remains to show that all the monomials
of f liein R,T.

Let IV be the semigroup generated by I' and the monomials of f.
Let P be the set {vi,...,7,) € R"|> ;v = 1}, as in the figure. If
not all the exponents of monomials of f are in I', then one of these
exponents, say «, lies on the ray through an extremal vertex of the
convex set R.I'N P. Thus we may find a linear functional L on R"
with value > 0 on @ and < 0 on all the other exponents of monomials
in f and on all monomials in T.

Let f"+a,1f" ' +---4+a, = 0 be the integral equation satisfied by
f, with all the a, € k[I']. Evaluating L on the exponents of monomials
that occur in each term on the left-hand side, we find that the max-
imum value is taken on only at na, and thus 2" occurs only once.
Thus the left hand side cannot be 0 as claimed. The contradiction
shows that f € k[L].

Exercise 4.23: Let I C k[z1,...,x,] be an ideal generated by monomials in
a polynomial ring over a field k. Let I' be the set of exponents of monomials
in 7, so that I is the linear span of the monomials z7 for v € I'. Regarding

I' as a subset of N? ¢ R”

n, we let A be the convex hull of R} +T'; as in

the figure, and we let ['* be the set of integral points in A. Show that the
integral closure of I is the ideal generated by ['*.

A-(RT+T)

® =generatorof |
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Exercise 4.24: Let R be either of the domains Clx,y]/(y* — z*), or
Clz,y]/(y* — 2%(x + 1)), and let ¢ = y/x, an element of the quotient field.
Show that in each case, R[t] = C[t]. Pictorially, the normalization maps

are as follows:
< <—

/ >

and

Exercise 4.25: Let X be an affine variety over C, and let R =
C|z1,...,2,]/I be its coordinate ring. Show that if p(z)/q(z) is an ele-
ment of the quotient field of R that is integral over R, then for each point
x € X there is a neighborhood U of x and a real constant B such that the
absolute value |p(x)/q(z)| is bounded by B at all the points of U where q is
nonzero. {The converse is also true, but requires a deeper characterization
of the integral closure.)

Nullstellensatz

Exercise 4.26: Suppose that the additive group of the ring R is a finitely
generated abelian group. If P is a maximal ideal of R, show that R/P is
a finite field. Show that every prime ideal of R that is not maximal is a
minimal prime ideal.

Exercise 4.27 (Maximal ideals of a polynomial ring): Let & be a field
and let R = k[x1,...,2,] be a polynomial ring. Show that any maximal
ideal of R may be generated by r elements f;, where f; is a polynomial
depending only on zy,...,x;. See also Exercise 13.6.
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Exercise 4.28: Suppose that k is an algebraically closed field, and let m
be a maximal ideal of the polynomial ring R = k[zy,...,z,]. Show that
there is a k-algebra automorphism of R taking m to the ideal (z1,...,z,).

Three More Proofs of the Nullstellensatz

We now give three further proofs of the form of the Nullstellensatz given
in Theorem 1.6. The following provides what I think is the fastest proof of
the Nullstellensatz in case the ground field is C.

Exercise 4.29 (Quick and dirty proof of the Nullstellensatz): Let
K be an algebraically closed field of infinite transcendence degree over a
prime field k(= Q or = Z/(p)), such as C.

Show that each prime P of K[x),...,x,] is the intersection of maximal
ideals of the form m, = (z; —ay, ...,z —a,) by showing that given any f ¢
P, there is a point p € Z(P) such that f(p) # 0 (this proves Corollary 1.9
immediately, and with Corollary 2.12 it proves Theorem 1.6) as follows:

Show that there are elements a,...,a, € K such that writing K’ for
k(ay,...,a,), and P = PN K'[zy,...,z,|, we have P = P'K|xy,...,z,].
Show that P’ is a prime ideal.

Show that the quotient field L of K'[z,...,z,]/P" may be embedded
in K. (This is field theory: First embed the transcendental part, then the
algebraic part. This is where you need the transcendence degree of K to be
large—> r would do.) Let a; be the image of z; in K under this embedding.

Now show that p = (ai,...,a,) has the desired property.

(Remark for those who know some model theory: The only drawback of
this amazingly easy proof is that it requires K to have large transcendence
degree. This may be overcome by using some logic. If we start with any
field K, we may begin by replacing it with a nontrivial ultrapower to get
an “elementarily equivalent” field of infinite transcendence degree (see, for
example, Bell and Slomson [1969] for unexplained terminology). The truth
of the statement we need to prove can be transferred from this ultrapower
back to K.)

The next two proofs of the Nullstellensatz depend on a classic localization
argument that is another version of “Rabinowitch’s trick”.

Exercise 4.30: Suppose that k is a Noetherian ring such that

*) for every finitely generated k-algebra R and maximal ideal P C R
the k-algebra R/P is finite over k.

Show that for every reduced finitely generated k-algebra R and prime ideal
@ C R we have Q = NP, where the intersection runs over all primes P of
R such that R/P is finite over k. (Hint: If f € R, f € Q, we must find a
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prime P such that R/P is finite over k and f ¢ P. Consider a maximal
ideal in the k-algebra R[f '] and its intersection with R.)

Deduce in particular that Theorem 1.6 (for a given field k) follows if we
prove that ) holds for k.

Exercise 4.31 (Nullstellensatz for uncountable fields): The following
simple argument of Krull and Van der Waerden is the fastest way to check
the hypothesis *) of Exercise 4.30 for the complex numbers. Unfortunately,
it works only for uncountable fields.

Show that if k is a field and k(z) is the field of rational functions in
one variable over k, then the elements of the set {1/(x — a)|la € k} C k(x)
are linearly independent, so dimy k(x) > card k. Deduce that if K is an
extension field of k, and dimy K < card k, then K is algebraic over k.

On the other hand, show that if R is a finitely generated k-algebra, then
dim;. R is at most countable.,

Deduce that hypothesis *) of Exercise 4.30, and thus also Theorem 1.6,
holds for uncountable fields.

Exercise 4.32 (Artin-Tate Proof of the Nullstellensatz): E. Artin
and J. Tate in [1951] (reprinted in Artin [1965]) found a remarkable result
that implies hypothesis x) of Exercise 4.30 for any field:

Theorem (Artin-Tate). Suppose R is a Noetherian ring and S is a finitely
generated R-algebra. If T C S s an R-algebra such that S is a finitely
generated T-module, then T is a finitely generated R-algebra.

Prove the Artin-Tate Theorem. Suppose xi1,...,x, generate S as an R-
algebra. The fact that just finitely many elements sy, ..., s, generate S as
a T-module can be written down in terms of finitely many elements of T
as follows. There exist elements ¢;; and t};, in T such that

T, = Z t;J' 5
S8i8; = Z t;jk.sk.
Let Tp be the subalgebra of T' generated over R by the ¢;; and the ¢;,;. Show
that S is finitely generated as a Tj-module. Conclude that T is finitely
generated as a Ty-module. Use the fact that Tj is finitely generated over R
to finish the proof of the theorem.
Deduce that hypothesis x) of Exercise 4.30 holds for any field k:

1. Show that the fields that could appear as R/P in the statement are
exactly those extension fields of k that are finitely generated as alge-
bras. Thus, %) amounts to saying that if K is a field that is finitely
generated as a k-algebra, then K is finitely generated as a k-module
(that is, K is a finite field extension of k).
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2. Note that it is enough to prove that K is algebraic over k. Sup-
pose that zq,..., 2, € K is a transcendence base for K over k. Use
the Artin-Tate theorem to show that the field of rational functions
k(xi1,...,z,) is a finitely generated k-algebra. Show that this implies
that k(xy,...,7,) = k[z1,...,2,][f}] for some polynomial f. Con-
clude that every prime of k[z1,...,z,] must divide f. But if » > 0,

the following exercise shows that there are infinitely many primes, so
r =0.

Exercise 4.33: Let k be a field. Exhibit infinitely many maximal ideals of
k[x]. If k is infinite, show that there are infinitely many maximal ideals with
residue field k; if k is finite, one must consider finite extension fields of k.
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Filtrations and the
Artin-Rees Lemma

In this chapter we shall describe two constructions —the associated graded
ring and the blowup algebra—that are made from a descending multi-
plicative filtration of a ring R; that is, from a sequence of ideals

R=1,>1 DI >--- satistying I;I; C I;; forallz,j.

A third such construction, the Rees algebra, is treated at the end of the
next chapter, and sheds some light on the results we shall prove about the
associated graded ring. Chapter 7 will be devoted to a fourth example, the
completion. Each is used to get information about R by comparing it with
a closely related ring that is simpler in some way.

These constructions are most often used in the case where the I; are the
powers of a single ideal, I; = I'; this is called the I-adic filtration. In
applications [ is often taken to be the maximal ideal of a local Noetherian
ring R, and the reader will not lose too much by imagining this to be the
case throughout.

It is quite useful to generalize to the case of modules, so we also study
the I-adic filtration of a module M, say M D IM > I*M D> --- . But if
we intersect the terms of the I-adic filtration of M with some submodule
M’ c M, we do not generally get the I-adic filtration of M’. A key result
of the theory, the Artin-Rees lemma!, shows that the induced filtration is
often stable in the following sense:

'The paper of Rees [1956] contains a special case. According to Nagata, who
seems to have coined the name, Artin lectured on the general case in 1955.
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Definitions. Let R be a ring, let I C R be an ideal, and let M be an
R-module. A filtration M = My D My, D --- is called an I-filtration if
IM, C M,+1 for alln > 0. An I-filtration is called I-stable if in addition
IM, = M,y for all sufficiently large i. When the ideal I is understood, we
speak simply of stable filtrations.

An I-stable filtration is determined if one knows a sufficiently large finite
number of the M;; in this sense it is a finitely generated filtration.

Lemma 5.1 (Artin-Rees). Let R be a Noetherian ring, let I C R be an
ideal, and let M’ C M be finitely generated R-modules. If M = My D M; D

- is an [-stable filtration, then the induced filtration M’ > M' N M; D
M N My D --- is also I-stable. That is, there exists a number n such that
for alli >0, M' N\ M;,,, = I'(M' N M,).

We shall give the proof later in this chapter after having defined some
basic constructions. For an interesting recent development in this theory,
see Huneke [1992].

5.1 Associated Graded Rings and Modules

Let I be an ideal of a ring R. We define the associated graded ring of R
with respect to I, written gr; R to be the graded ring

gy R:=R/IGI/I*®--- .

Here the multiplication in gr; R is given as follows: If @ € I"™/I™*! and
b e I"/I"!, then taking representatives a’ and b’ of @ and b in I™ and I™,
respectively, we define ab € " /I"™*"*+! o be the image of a’t’. Note that
this is well-defined modulo /™71,

More generally, let J : M = My D M; O --- be an [-filtration of an
R-module M. Let

grqg M = M/Ml@Ml/Mg@"' .

We make gr; M into a graded gr; R-module as follows: If a € I™/I™*! and
b € M, /M, have representatives o’ € [™ and b’ € M,,, then ab is the class
of a'b’ in M, 1n/Mpins1. The assumption that J is an [-filtration ensures
that this is well defined. When there is no danger of confusion, we shall
simply write gr M for gry M.

The following elementary result explains the importance of the stability
property:

Proposition 5.2. Let I be an ideal in a ring R, and suppose that M is
a finitely generated R-module. If J : M = My > M; D --- is an I-stable
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filtration by finitely generated submodules of M, then gry M s a finitely
generated module over gr; R.

Proof. Suppose that IM; = M, for all i > n. Clearly, (I/I?)(M;/M;,1) =
M;i1/M;,o for ¢ > n. Thus the union of any sets of generators of the
modules My /M, ..., M, /M, will generate gr M. Since each M; is finitely
generated, each of these sets of generators may be chosen to be finite. [J

See Appendix 3, particularly Theorem A3.22 and Exercise A3.42, for

another use of stability.
Let M be an R-module with filtration J : M = My D M; D --- . There

is no interesting natural homomorphism from M to gr M, but there is an
interesting natural map of sets defined as follows: Given f € M, let m be
the greatest number such that f € M,,, and define the initial form of f,

denoted in(f) by
in(f) = f modulo M, € M,,/M;,41 C gr M,

or by
in(f) =0if f € "NTM,,.

See Exercise 5.1 for some of the properties of this map.

Now suppose that I C R is an ideal that J is an I-filtration of M. Set
G = gr;R. If M' ¢ M is a submodule, we define in(M’) to be the G-
submodule of gr M generated by in(f) for all f € M’. The submodule
in(M’) is generally not obtained as the submodule generated by the initial
forms of a given set of generators of M’. For example, if

J = (zy+y°,2°) C R = k[z,y],

and I = (z,y), then with respect to the I-adic filtration, in(x?) = z2 and
in(zy + y3) = zy but z? and zy do not generate in(J). For example,

r(zy +y°) —y(a®) = 2y’ € J,

S0
y(ey+y°) a2y’ =y° € J,

and thus ¢° € in(J). In fact, in(J) = (2%, zy,3°). In Chapter 15 we shall

exhibit a general technique for handling such computations. See Exer-

cise 5.2 for an easy special case.

A first hint of why the associated graded construction is interesting is
given by the fact that if / is a maximal ideal then gr; R is a graded algebra
over the field R/I. It is even a finitely generated algebra if, as in nearly
all cases of interest, I is a finitely generated ideal. Thus gr; gives us a way
of turning arbitrary local Noetherian rings into finitely generated graded
rings, about which we know more. For example, we get a ready-made theory
of Hilbert functions:
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Definition. If R is a local ring with mazimal ideal I, then the Hilbert
function of R is the function

HR(n) = dimR/[ In/In+1.
More generally, if M is an R-module, we can define

Hy(n) = dimp, "M/ T M.

Since these are just the Hilbert functions of gr; R and gr; M, and gr; M is
a finitely generated gr; R-module, we already know that they agree for large
n with polynomials Pr(n) and Pys(n) of degree < Hgr(1) — 1, and that Hp
and Hj; can be expressed exactly in terms of binomial coefficients. These
functions are quite important in dimension theory, and we shall return to
them in Chapter 12.

One can sometimes derive nice properties of R from nice properties of
gr; R. To do this we need to know that no elements of R have been “forgot-
ten” by gr; R, as would be the case if an element of R were in every power of
I. Fortunately, N;/7 = 0 in most cases of interest. The tool we need to prove
this is the Artin-Rees lemma. The proof of the lemma uses another con-
struction of great geometric and algebraic interest, to which we now turn.

5.2 The Blowup Algebra

Definition. If R is a ring and I C R i3 an ideal, then the blowup algebra
of I in R is the R-algebra

BIR=RelIaI’®- -- = R[t]] C R[t].

Note that BiR/IBIR = R/I ® I/I*> ® --- = gr; R, the associated graded
TIng.

The geometric context in which the blowup algebra arises accounts for
the name: If R is the coordinate k-algebra of an affine algebraic set X
over k, and [ is the ideal of an algebraic subsct Y C X, then there is an
algebraic set Z obtained by a process called blowing up Y CX, defined
as follows: Let ay, ..., a, be k-algebra generators for R and let gy, ..., g, be
generators of I as an ideal of R. The algebra By R is 2 homomorphic image
of the ring k[z1,..., 2., W, ..., ys| by the map sending z; — a; and y; — g,.
The kernel of this map is an ideal that is easily seen to be homogeneous in
the variables y;. It thus corresponds to an algebraic subset Z C A" x P*.
The projection map A" x P®* — A™ maps Z onto X and is an isomorphism
away from the preimage of Y. The set Z is called the blowup? of Y in
X. The preimage of Y in Z corresponds to the ring ByR/IB;R = gr; R.

2The name “blowup” may come from the most commonly used special case:
When one blows up a point on a smooth complex surface, one replaces the point
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This preimage, which is called the exceptional set of the blowup, is the
projective variety associated to the graded ring gr; R.

If M is an R-module and J: M = My D M; O --- is an I-filtration, then
the direct sum

BiM=M&oM&---

becomes a graded module over the blowup ring B;yR in an obvious way.
Using this construction, the connection between finitely generated modules
and stable filtrations becomes even tighter.

Proposition 5.3. Let R be a ring, let I C R be an ideal, and let M be a
finitely generated R-module with I-filtration J : M = My D M; D --- by
finitely generated modules M;. The filtration J is I-stable iff the B R-module
By M s finitely generated.

Proof. If BsM is finitely generated, then its generators must be contained
in the direct sum of the first n terms for some n. Replacing them by their
homogeneous components, we see that ByM is generated by elements of
the modules M; for various i < n. Of course, then

Mn@Mn-H@"‘
is generated as a By R-module by M,,—that is,
M7z+i = IiMn

for all ¢ > 0, so J is stable.
Conversely, if J is stable, so that M, ,; = I'M,, for some n and all 7 > 0

say, then By M is clearly generated by the union of any sets of generators
for My, My, ..., M,. O

With this construction, the Artin-Rees lemma becomes a corollary of the
Hilbert basis theorem.

Proof of Lemma 5.1. Let

I M=M>D>M :=MnMDDM,=MnM,---
be the induced filtration on M'. The module By M’ is naturally a graded
Bj;R-submodule of BjM. If J is a stable filtration, then ByM is finitely
generated by Proposition 5.3. Because BjR is a finitely generated R-

algebra, it is Noetherian, so the submodule By M’ is finitely generated
too. Proposition 5.3 now shows that J' is a stable filtration of AM’. O]

by a copy of P’C ~topologically a 2-sphere. Topologically, this corresponds to a
surgery. But I like to think of this process as that of sticking a soda straw into
the surface (topologically a 4-manifold) and blowing a little bubble (2-sphere) at
the point; the antipodal points of the bubble must then be identified to get back
a 4-manifold. The original German word, aufblasen, is consistent with this inter-
pretation. A Frenchman once suggested to me that the French translation, éclater
(explode), was chosen pour faire peur auzx gens (to frighten people).
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5.3 The Krull Intersection Theorem

As a first application we get an important theorem of Krull [1938] (in the
form given by Chevalley [1943]).

Corollary 5.4 (Krull Intersection Theorem). Let I C R be an ideal in a
Noetherian ring R. If M is a finitely generated R-module, then there is an
element r € I such that (1 —r)(N*IVM) = 0. If R is a domain or a local
ring, and I is a proper ideal, then

o
ﬂﬁ:&
1

Proof. By the Artin-Rees lemma, applied to the submodule NI'M C M,
there is an integer p such that

NI'M = (ﬂle)ﬂlp“M
1 1

_y ( (n pM) n nM)
1
m .
=1 (m IJM) |
1
The first statement now follows from Corollary 4.7. To prove the second
statement we take M = R. It is enough to show that in the given cases
1 — r is a nonzerodivisor. Since [ is a proper ideal, we have at least r # 1,
so 1 —r # 0, and if R is a domain we are done. In the case where R is local,

I must be contained in the maximal ideal, so r is too. Thus 1 — r is a unit
in this case. O

A common theme, to some extent explained in the next chapter, is that
good properties of gr; R imply good properties for R. Here is a sample:

Corollary 5.5. Let R be a Noetherian local ring and let I be a proper ideal
of R. If gr; R is a domain, then R is a domain.

Proof. If fg = 0 in R, then in(f)in(g) = 0 in gr; R, so in(f) or in(g) is 0.
By the Krull intersection theorem, N°I™ = 0, so this implies that f or g is
0. ]

The converse of Corollary 5.5 fails dreadfully, and quite generally gr; R
can be “bad” in ways in which R is “good.” See Exercise 5.8.

Example. Both the Krull intersection theorem and Corollary 5.5 can fail
in the non-Noetherian case. For example, let R be the ring of germs of €™
functions on (R, 0), and let z be the coordinate function. Let

1

g(z) =e 7 € R,
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whose graph is pictured in Figure 5.1. The ring R is local with maximal
ideal I generated by the function z, and since g(z)/z"™ is €* for every n,

we see that

oo

g(z) € ﬂI".

1

Y 1
\ fxz
X
FIGURE 5.1.

In this case N{°I™ is the set of germs of functions vanishing at the origin
that are flat in the sense that all their derivatives at the origin also vanish.
It is true that 7(N°1") = N{°I"—see Exercise 5.6. But the C* functions of
the form 1 — r with r € (x) are just the € germs with the value 1 at the
point 0. Thus g(x), for example, is not annihilated by any such function,
so Corollary 5.4 fails. For the fate of Corollary 5.5, see Exercise 5.7.

5.4 The Tangent Cone

The fact that the associated graded ring corresponds to the exceptional set
in the blowup has a simple and beautiful geometric consequence. Let

R =k[z,....z;|/J, I=(x1,...,2,)

where k is an algebraically closed field. Let X = Z(J) € A" and suppose
that J C I, so that 0 € X. The tangent cone of X at 0 is the cone com-
posed of all lines that are the limiting positions of secant lines to X passing
through the point 0. One can show that the ideal in;(J) C kfzy,...,z,]
defines the tangent cone so that the coordinate ring of the tangent cone

sssss

point. For a proof see, for example, Harris [1992].

5.5 FExercises

Exercise 5.1: Let R be a ring and M an R-module. Suppose that 7 :
M = My > M; D --- is a filtration by submodules. Although the map
M — gry M sending f to in(f) is not a homomorphism of abelian groups,
show that either in(f) + in(g) = in(f + g) or in(f) + in(g) = 0.
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tangent cone The tangent
Vo N cone at a

smooth point

is the tangent

line.
in (y2-x2 (x +1)) = (y2 -x2); tangent cone \\ nearby
so the tangent cone is the to X at (0,0) \‘\\\‘ secant lines
union of the two tangent defined by IR
lines at the node, x2=0 —W | '
(y-x)(y+x)=0

FIGURE 5.2.

Suppose that M = R, and that J is a multiplicative filtration, so that
gry R is a ring. Show that either in(f)in(g) = in(fg) or in(f)in(g) = 0.

Exercise 5.2: Let [ be an ideal in a ring R. Suppose that gr; R is a domain.
Show that if Rf C R is a principal ideal, then in(Rf) C gr R is generated
by in(f). Find an example of a local ring R with maximal ideal I and an
element f € I such that in(Rf) is not generated by in(f).

Exercise 5.3: Suppose J C I are ideals in a ring R. Show that
gry R/J = (ng R)/ ln(.])

Exercise 5.4: Taking the associated graded ring can also simplify some
features of the structure of R. For example, let k be a field, and let

R=k[z1,...,2;] C Ry = K[[z1,...,2/]]

be the rings of polynomials in r variables and formal power series in r
variables over k, and write I = (z1,...,x,) for the ideal generated by the
variables in either ring. Show that

gr; R =gr; R;.

If k is the field of real or complex numbers, write Ry for the ring of con-
vergent power series and R3 for the ring of €* functions on k", so that
R C Ry C R3, and R3 maps to R; by sending each element to its Taylor
series. Denote by I the ideal generated by the variables in any of these
rings. Show that

gr; R =gr; Ry = gry Ry = gr; R;.
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Exercise 5.5: A converse to the Krull intersection theorem: Let I C R be
an ideal in a Noetherian ring R and let M be a finitely generated R-module.
Show that there is a largest submodule N € M such that N is annihilated
by an element of the form 1 —r with r € I. Show that N°I’M = N.

Exercise 5.6: Let R be the ring of germs of €* functions on (R, 0), and let
I = (z), where z is the coordinate function. Show by elementary calculus
that if f is a €* function that vanishes with all its derivatives at the origin,
then f/xz is also such a function. Conclude that I(N$°I™) = N°I™.

Exercise 5.7:* Show that the ring R of germs of €* functions on (R, 0)
is not a domain, although gr; R = R|z] is a domain.

Exercise 5.8:

a. Let R =k[z,y]/(z*—¢?®), and let I = (x,y). Show that R is a domain,
but in(z)? = 0 in gr; R.

b.* Let R = k[t!, 5] C k[t], and let T = (t*t5,t1). Show that
in(I)in(t!!) = 0.
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Flat Families

Recall from Chapter 2 that a module M over a ring R is flat if for every
inclusion N ¢ N of R-modules the induced map M ®r N' — M ®p N is
again an inclusion. The notion of flatness was first isolated by Serre [1955-
56] and was then systematically developed and mined by Grothendieck. It
is now a central theme in algebraic geometry and commutative algebra.

We saw in Chapter 2 that the flatness of algebras of the form R[U ]
helps to connect their properties with the properties of R, and we shall
exploit this idea again when we come to completions in Chapter 7. But
flatness plays another important role as well: Flatness turns out to be a
property possessed by many natural families of varieties or algebras, and
it leads to good properties of these families. In this chapter we shall study
flatness abstractly, but first we digress to explain the idea of flat families.

First, what is a “family” of varieties or of algebras? One has in mind a
collection of objects, “varying with parameters.” A typical example, essen-
tially the first one ever considered, is the family of curves of degree d in the
affine plane over a field k. Algebraically, this corresponds to the family of
k-algebras k[z,y]/(f), where f is a nonzero polynomial of degree d. Here
the parameters are the coefficients of f. (To get the most from this example
one should consider projective plane curves instead of the affine case, which
we have taken for simplicity; see Exercise 6.6.)

Perhaps the most inclusive and powerful way of making the notion of
family precise is to say simply that a family is a morphism! For example,
if o : X — B is a morphism of varieties, then the preimages of points
of B, which are called the fibers of ¢, are varieties that vary in a family
parametrized by the points of B. To see the family of plane curves above
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from this point of view, we take B to be the affine space of polynomials
f = S a;;z'y’ of degree d, which is an affine space of dimension N :=
(d + 2)(d 4 1)/2, with coordinates {a;;}. We consider the affine (N + 2)-
space with coordinates z, y and {a;;}, and we take X C AV*2 to be the
hypersurface with equation Y a;;z'y’ = 0. The projection map AV —
AN — B restricts to a map X — B, and it is easy to see that the fiber over
a point of B is just the plane curve whose equation corresponds to that
point.

Bearing in mind that a morphism of affine varieties corresponds to a
homomorphism of rings in the opposite direction, we see that a family of
algebras should be defined simply as an algebra: If S is an algebra over
R, then for every maximal ideal P C R we define the fiber over P to be
the (R/P)-algebra S/PS. For arbitrary primes P C R we define the fiber
of S over P to be the x(P)-algebra x(P) ®p S, where x(P) = K(R/P)
denotes the quotient field of R/P as usual. This is a family of algebras
parametrized by the maximal ideals of R. The algebra corresponding to
the family of plane curves above is the algebra over R := k[{a;;}] defined
by S = Rlz, y]/(3 agz'y).

The problem with this definition is that it is too inclusive. The different
fibers may have nothing to do with one another. Already in the preceding
example of plane curves, the fiber over the point 0 € B is the whole plane
(the equation f = 5 0z'y? is identically 0)—not a curve at all! Our family
must satisfy some conditions if it is to be worth studying.

In the geometry of manifolds, for example, one often restricts attention
to families ¢ : X — B that are locally trivial, in the sense that for every
point * € X there is a neighborhood U of z such that U is isomorphic to
a product of ¢(U) and one of the fibers, U = o(U). In algebraic geometry
and commutative algebra this idea still leads to an interesting definition,
though to be most useful it must be applied with “neighborhoods” smaller
than the Zariski neighborhoods introduced in Chapter 1 (the necessary
ideas are introduced in Chapter 7). But many natural families do not fit
into this framework.

If we look at the preceding example of plane curves, but exclude the fiber
over 0, so that all the fibers are really curves, then it is reasonable to feel
that the fibers have something to do with one another. Nevertheless, some
fibers are singular curves while others are smooth. For instance consider
the family of curves defined by equation zy — a = 0. As a varies, the family
goes from a smooth hyperbola to a union of two lines (at @ = 0). Such a
family cannot be locally trivial near the point at which the two lines meet;
but in many respects these curves all do belong together.

This suggests that there might be a more general notion of what a “good”
family should be. The most inclusive in current use is that the family
should be flat. In algebraic terms, where the family is represented by an R-
algebra S, this means that S is flat over R (that is, flat as an R-module); In
geometric terms, when the family is represented by a morphism ¢ : X — B,
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it means that for each point x € X there is an affine neighborhood U of
X and an affine neighborhood V of ¢(z) such that ¢ restricts to a map
U — V, and the corresponding map of coordinate rings A(V) — A(U)
makes A(U) into a flat A(V)-module.

We now turn to some simple examples that give a feeling for flatness.
Then we systematically investigate the algebraic properties of flatness. At
the end of the chapter we explain the Rees algebra, a natural flat family
that gives some insight into results such as Corollary 5.5, in which a good
property of gr; R was seen to “propagate” to R.

6.1 Elementary Examples

We take R = k[t], the polynomial ring in one variable over an algebraically
closed field, and look at some simple R-algebras to see which are flat.

Example 1 (Figure 6.1). S = R[z|/(z—1). In this case S = R is as good an
R-algebra as one could possibly have. Since R@r N = N for any R-module
N, R is flat as an R-algebra.

Xc A
corresponds to

S=kltx]/(x—0)

'

Example 2 (Figure 6.2). S = R[z]/(x? — t). In this case the fiber over a
prime P = (t —a), witha #0 € k, is

klz]/(2* —a) 2k x k.

The fiber over (t) is k[z]/(z*). The fiber over (0) is k(¢)[z]/(z* — t), a field
of degree 2 over the residue field #((0)) = k(t). We see that for each prime
P the fiber over P is a vector space of dimension 2 over its residue field
k(P). In fact S is a free R-module on the generators (1, z), as the reader
may check. Thus, S®r N = N & N for any R-module N, and it follows
that S is flat.

R=Fk[1]
FIGURE 6.1.

Example 3 (Figure 6.3). S = R[z]/(tz—1). We may identify S with R[t 1],
so this example is obtained by localizing the algebra S in Example 1. As
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X C A?
corresponds to

S=kltx]/(x2—1)

R=klz]
FIGURE 6.2.

we know from Proposition 2.5, localizations are flat, so this is again a
flat family. The fiber over the prime P C R is the x(P)-algebra x(P),
corresponding to one point, except when P = (t), when the fiber is the
zero ring, corresponding to the empty variety. Note that S is not a free
R-module in this case.

X c A?
corresponds to

S=kltx]/tx=1)

v

Example 4 (Figure 6.4). S = R[z]/(tx —t). In this example, S in not flat;
we see that t(z — 1) = 0in S, so S has t-torsion, violating the criterion for
flatness given in Corollary 6.3. It is also true that the fibers vary wildly: If
the prime P does not contain ¢, then t is a unit in x(P) and thus also in
k(P)®pg S, so

R=kl1]
FIGURE 6.3.

K(P) ®x S = K(P)[x]/(tz — 1)

k(P)[X]/(z —1)
K(P)

I%

3

but if P = (t) then tz —¢ = 0 in k(P) ®r R[z], so k(P)®r S = R[z|, corre-
sponding to the vertical line in Figure 6.4. (More generally, a morphism of
varieties cannot be flat in the neighborhood of a point p if the fiber through
p has dimension greater than that of nearby fibers; see Exercise 6.9 for an
example, and Theorems 10.10, and 18.16 for more precise information.
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X C A
corresponds to

S=kltx]/(tx—1

R=klt]

FIGURE 6.4.

For two further examples, see Exercises 6.8 and 6.9.

6.2 Introduction to Tor

We shall establish several criteria for the flatness of modules. Proposi-
tion 6.1 is the key to these criteria. For the statement and proof we shall
make use, for the first time in this book, of the functors Tor®(M, N) (actu-
ally only with 4 = 0 and 1). It is not hard to avoid the use of Tor in this
proposition, and in this sense the proof can be made more elementary, but I
feel that the elementary argument is more complicated and less transparent
than the one with Tor. I have no doubt that those who are already familiar
with Tor will agree; for the others, I think this is a good time to learn the
elementary homological algebra required. It can be found, in a brief form,
in Appendix 3. (For a more leisurely account the reader might consult Rot-
man [1979] or Hilton and Stammbach [1971].) So that the reader may judge
the merits of the case for Tor, we present a proof of Proposition 6.1 without
Tor as well.

For the purposes of this chapter, the reader needs to know the following
about Tor:

.If---—-F,4—>F —>F,_1—--— Fy— N — 0is a free resolution
of N as an R-module, then Tor?(M, N) is the homology at M ® F; of
the complex M ® F;,1 > M ® F; — M ® F,_y; that is, it is the kernel
of M ® F; - M ® F;_; modulo the image of M ® F, ., - M ® F,.
This homology is independent of the resolution chosen. (We could
also compute Tor®(M, N) by tensoring N with a free resolution of
M). From this it is very easy to deduce:

a. Torg(M,N)=M ®p N.
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b. If M or N is free, then Tor?(M,N) = 0 for i > 0 (the same is
true for flat modules; see Exercise 6.1.).

c. As in the case of Torg, Tor®(M, N) is a covariant functor of
two R-modules M and N that is R-bilinear in the sense that it
is an R-module, and the map “multiplication by r € R” applied
to either M or N induces “multiplication by 77 on Tor®(M, N).

d. If R is Noetherian and M and N are finitely generated R-
modules, then Torf (M, N) is a finitely generated module.

e. If S is a flat R-algebra (such as a localization R[U™!]), then
S ©g Tor® (M, N) = Tor} (S @z M, S ®p N).

2. For any short exact sequence 0 — M’ — M — M" — 0 of R-modules,
and any R-module N, there is a long exact sequence of Tor:

...........................................

—

Tor®(M', N) — Torf (M, N) — Torf(M",N) —
M/®RN——~>M®RN—~—>M”®RN—>O

(With property 1b, this property actually characterizes Tor. See Exer-
cise A3.15.)

Here is a useful example of a computation of Tor:
Suppose that z € R is a nonzerodivisor, and that M is an R-module. We
shall compute the modules Tor(R/(z), M). The short exact sequence

is a actually a free resolution of R/(z), and we use it in the definition of
Tor. Thus the module Tor?(R/(z), M) is the ith homology module of the
complex

0->M3 M0,

and we find
Torf(R/(z), M) = M/xM

TorB(R/(z), M) = (0 :p )
Tor?(R/(z), M) =0 fori> 1.
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6.3 Criteria for Flatness

The relevance of Tor to flatness in general is exhibited in Exercise 6.1. For
our purposes, a more specific result is more interesting.

Proposition 6.1. Let R be a ring, and let M be an R-module. If I is an
ideal of R, then the mulliplication map I ®p M — M 1is an injection iff
Torl(R/I, M) = 0. The module M is flat iff this condition is satisfied for
every finitely generated ideal I.

Proof. From the short exact sequence 0 — I — R — R/I — 0, we get a
long exact sequence containing

Torf (R, M) — Torf(R/I,M) - I® M — R® M.

The left-hand term is 0 by property 1b, and the right-hand term is M.
Additionally, the right-hand map is just the multiplication map I @ M —
M. The equivalence in the first assertion follows.

By definition, M is flat iff for every injection N’ C N of R-modules,
the induced map N' ®p M — N ®p M is an injection. Suppose that the
condition of the proposition (which is simply the special case where N = R
and N’ = I is finitely generated) is satisfied.

First we note that I’ ® M — M is an injection for any ideal I’ of R.
Indeed, any element 0 # x of I’ ® M is a finite sum of elements ' ® m
for ' € I' and m € M. Thus x comes from a necessarily nonzero element
of some I ®p M, with I finitely generated, so z goes to a nonzero element,
of M.

Similarly, the module N ®g M is generated by the elements {n®zm|n €
N,m € M}, and the relations, which are the relations of bilinearity, each
involve just finitely many elements of N. Thus, the statement that an
z € N ®p M goes to 0 in N ®p M involves only finitely many elements of
N, and we may assume that N is finitely generated.

Now we can find a sequence of submodules

N’:N()CNl(:"'CNp:N

such that each N,.1/N; is generated by one element. Of course, it suffices
to show that each N; @ M — N;; | ® M is injective, so we may assume from
the outset that N/N' is a cyclic module, and write N/N" = R/I.

The short exact sequence 0 - N’ — N — N/N' — () gives rise to a long
exact sequence containing the terms

Torf(N/N' M) - N'©& M — N @ M.
Since Torf(N/N’, M) = Tori'(R/I, M) = 0 by hypothesis, we are done. (]

We used Tor in this proof to show that if I C R is an ideal and T® M —
R® M = M is an inclusion, then N'@ M — N ® M is an inclusion for any
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modules N’ C N such that N/N' = R/I. For purposes of comparison, we
shall now prove just this point without using Tor.

Choose an element n € N that maps to 1modI in N/N' = R/I, and
let ¢ : R — N be the map sending 1 to n. The map ¢ carries I into N’;
write ¢’ : I — N’ for the induced map. The kernel of ¢ is contained in I.
Since the induced map of R/I to N/N' is an isomorphism, the cokernels of
¢ and ¢’ coincide. Writing C for the cokernel, we thus get a commutative
diagram with exact rows and columns:

0 —- I —-— R —> R/I -0
ol Lo |
0—>N’—>N—>R/I—>O
! i
cC =C
! !
0 0

Tensoring with M, the upper row remains exact by hypothesis, and the
columns remain exact by the right exactness of the tensor product. It fol-
lows that the kernels of ¢’ ® M and ¢ ® M coincide—call them K. We thus
have a diagram with exact columns:

0 0
l !
K = K
L !
0> I®M — Re®M — (R/II)®M — 0
#®1 | L wol |
NeM — NoM — (R/II)@M — 0
! l
CeoM = CeoM
! !
0 0

If an element z € N’ ® M goes to 0 in N ® M, then it also goes to 0 in
C'® M, and thus comes from an element y € I @ M. This element, regarded
as an element of R ® M, goes to 0 under ¢ ® 1, and thus comes from K.
Thus z = (¢’ ® 1)(y) = 0. This shows that the map from N'® M to N @ M
is a monomorphism as required.

If the reader compares this last argument with the last paragraph of
the proof of Proposition 6.1, it will be clear at least that a considerable
compression has occurred even in this very simple case. I feel that there is
also an increase in clarity.

It seems natural to ask whether one could refine Proposition 6.1 by lim-
iting the ideals I that must be tested. In the most common situation it is
enough to check for all maximal ideals (Theorem 6.8).



6.3 Criteria for Flatness 163

Before deriving the general characterization of flatness that comes out of
Proposition 6.1, we give the simplest—and most useful-—special cases.

Corollary 6.2. Let k be a field. If R = k[t]/(t*), and M is an R-module,
then M is flat iff multiplication by t from M to tM induces an isomorphism
M/tM — tM.

Proof. The only nontrivial ideal of R is (¢), which is isomorphic as an R-
module to R/(t) by the map R/(t) — (t) sending 1 to t. Applying the
criterion of Proposition 6.1, we see that M is flat iff the map

M/tM>R/(t)9r M = (t)®g M - RQr M = M,

sending the class in M /tM of an element m € M to tm € M, is a monomor-
phism. But this map is the composition of an epimorphism M /tM — tM
induced from multiplication by t with the inclusion tM C M. 0

Corollary 6.3. If a € R is a nonzerodivisor in R, and M is a flat R-
module, then a is a nonzerodivisor on M. If R is a principal ideal domain,
then the converse is also true: M s flat as an R-module iff M is torsion
free.

Proof. Let I = Ra with a € R a nonzerodivisor. If M is flat, then for any
I CcRthemap o : I ®g M — R®r M = M is an injection. But I = R
by an isomorphism sending a to 1. Identifying I ® g M with R@r M = M
by means of this isomorphism, the map ¢ becomes multiplication by a. By
definition, this is a monomorphism iff a is a nonzerodivisor on M.

If now R is a principal ideal domain, then every nonzero ideal is generated
by a nonzerodivisor. The condition of Proposition 6.1 is trivial in the case
I = 0, so we see from the computation of Tor?(R/z, M) given at the end of
section 6.2 that M is flat iff every nonzero element of R is a nonzerodivisor
on M. This is what it means for M to be torsion-free. O

Before tackling the general case, we need an equational characterization
of when an element of a tensor product of modules is zero. This is a trans-
lation of the fact that tensor products preserve direct sums and right-exact
sequences.

Lemma 6.4. Let M and N be R-modules, and suppose that N 1s generated
by a family of elements {n;}. Every element of M ® g N may be written as
a finite sum > ., m; ®n; € M ®r N. Such an expression is 0 iff there exist
elements m; of M and elements a;; of R such that

E aijm;- =m,; fOT‘ all 2
J
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and
> ayni=0in N for all j.

Proof. 1f elements mg and a;; with the specified properties exist, then
2o ®@ny =330 aymy) ®ng = 37,(m; ® 37, aimi) = 0.

To prove the converse, we begin with what amounts to a special case: If
N is free and the n; are a basis, then 3. m; ® n; = 0 iff all the m; are 0.
This follows because N = @& Rn;, so

M®zrN = @j(M KR Rnl) = oM,

and Y .m; ® n; corresponds to the vector (my, mo,...).

Passing to the general case, let F — G — N — 0 be a free presentation
of N, chosen so that a basis {g;} of G maps to the set of elements {n;}, say
g; — n;. By the right-exactness of the tensor product functor, the natural

sequence
M@rF - M&rG —-M®pN —0

is exact, and of course Y . m; ® g; goes to zero. It follows that >_.m,; ® g; =
>_;m; ®y; for some m; € M, with y; in the image of F, that is, with
y; — 0 in N. We may write each y; in terms of the basis g;, say y; =
> _,aijgi. But using the special case above on the difference 0 =3, m; ®
gi — 2_;m; ® (32, aijgi), we see that m; = 3, a;jm}, while y; = 3, a;9;
goes to 0 = > a;;n;, as required. O

It is crucial for the truth of each half of this lemma that the n; actually
generate N. For example, consider a contrary case, where R = k[t| and
N = k[t]/(t?), with n; = t. Taking M = k[t]/(t), and m; = 1, we see that
the element my @ ny = 1 @t € klt]/(t) @y k[t]/(¢?) is 0, but my cannot be
expressed as am] in such a way that an; = 0. Of course, the general reason
is that if the same criterion held for a set of elements n; that generate
only a submodule of N, then the inclusion map of this submodule into N
would remain a monomorphism when tensored with M! This remark can
be put to work to derive a characterization of flatness by equations that
generalizes the preceding cases.

Corollary 6.5 (Equational Criterion for Flatness). An R-module M is flat
iff the following condition is satisfied:

For every relation 0 = Zi n;m; with m; € M and n; € R there exist
elements m’j € M and elements a;; € R such that

Zai]-m; =Tm; fOT all i
J
and
Zaijni =04 R for allj.

?
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Proof. The condition of Proposition 6.1 may be restated as saying that M
is flat if for every ideal I, an element z = Y. n; ®m; € I ®r M goes to 0 in
R®p M ift Y . n; ® m; satisfies the criterion of Lemma 6.4 for being 0. The
image of z in R®pr M = M is just )_, nym;, so the desired result follows.[]

Finally, the characterization of flatness can be reformulated in terms of
maps of modules in an appealing way. In the language of Exercise 4.11
this even shows that finitely presented flat modules are the same as finitely
generated projective modules.

Corollary 6.6. Let R be a ring, and let M be an R-module. The following
conditions are equivalent:

a. M s flat.

b. For every map B : F — M from a finitely generated free module F,
and for every submodule K of ker 3 generated by one element, there
18 a commutative diagram

with G free such that K C ker~.

c. The same as statement b, but for arbitrary finitely generated submod-
ules K of ker (3.

In particular, if M is finitely presented, then M is flat iff M is a sum-
mand of a free module.

Proof. a<=b: This is a “diagrammatic” translation of Corollary 6.5. An
element f in the kernel of a map from a free module F to M is a relation
on the images m; € M of the basis elements of F. The elements m] of
Corollary 6.5 correspond to a map from another free module, G, taking the
generators of G to the m). A matrix with entries a;; such that _; aijm} =
m; corresponds to a map <, making the diagram commute. The condition
that > a;;n; =0 in R for all j says that v(f) = 0.

b<=-c: Suppose we can find a map ~ whose kernel contains a given
element of K. Composing v with a map killing the image of another element
of K, and continuing in this way, we finally arrive at a map whose kernel
contains K. The other implication is trivial.

For the last statement, note first that direct sums and direct summands
of flat modules are flat. Since R itself is flat (tensoring with R is the identity
functor), any summand of a free module is flat.
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To say that M is finitely presented means that there is a surjection
F — M from a finitely generated free module having kernel K finitely
generated. If M is flat, let v be as in statement b. The image of ~ is carried
isomorphically to M by the map from G. Thus the map G — M splits, so
M is a direct summand of G. O

See Exercise 6.2 for another proof of the last statement of this corollary.
We shall extend this criterion to the statement that a module is flat iff it
is the “filtered direct limit” of free modules (Govorov-Lazard theorem) in
Appendix 6.

If (R, P) is a local ring and S is a flat R algebra, then good properties
of the fiber S/PS over R/P often imply good properties of S. We shall see
some dimension-theoretic versions of this statement in Chapters 10 and 14.
For now we prove a result that is a generalization of Corollary 5.5.

Corollary 6.7. Let k be a field, let R = k[t] be the polynomial ring in one
variable, and let S be a Noetherian ring that is flat over R. If the fiber S/tS
over the prime (t) is a domain, and U 1is the set of elements of the form
1 —ts for s € S, then S[U"!| is a domain.

Proof. We may replace S by S[U7!] at the outset and assume that all
elements of the form 1 4 st are units of S.

Suppose that I, J C S are ideals with IJ = 0; we must show that either
I or J is 0. Enlarging I and J if necessary, we may assume that each is the
annihilator of the other. Since IJ = 0(modulo t), and S/(t) is a domain,
we may suppose J C (t). Thus J = (J : t)t. Since t is a nonzerodivisor
and I(J : t)t = 0, it follows that (J : t) annihilates I. Thus (J : ¢t) C J,
and we have J = Jt. By Corollary 4.7 there is an element s € S such that
(1—-ts)J=0,s0J=0. O

It follows from primary decomposition that in the setting of Corollary 6.7
we can find a single element f € U such that S[f~!] is a domain. However,
one may not be able to avoid localization completely, as one sees from the
example R = k[t] — S = k[z,t] x k[t,t™!], where k is a field, pictured in
Figure 6.5. The fiber over the maximal ideal (t—a) (for a € k) is S/(t—a)S.
When a = 0 this fiber is a domain since tk[t,t~!] = k[t,t7}], but for all a
other than O the fiber is not a domain. Such troubles can be avoided by
working with graded rings—geometrically, working with projective maps,
or, more generally, with proper maps.

6.4 The Local Criterion for Flatness

We have shown in Proposition 6.1 that an R-module M is flat iff the maps
I® M — M are injections for all ideals I of R. We shall now show that if
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™

\ S = kiz,t] % k[t,t7 1]

@
0

R = K[t]

FIGURE 6.5.

R is a local ring and M satisfies some mild hypotheses, then it suffices to
check this condition when I is the maximal ideal of R.

Theorem 6.8 (Local Criterion for Flatness). Suppose that (R, m) is a local
Noetherian ring, and let (S,n) be a local Noetherian R-algebra such that
mS C n. If M s a finitely generated S-module, then M is flat as an R-
module iff Tor®(R/m, M) = 0.

The theorem is often applied with M = S, to establish the flatness of S.
See Theorem 18.16 and Exercise 18.17 for typical cases. However, it is also
interesting for the case R = S to test the flatness of a finitely generated
module. In this case the result is both easier and sharper; see Exercise 6.2.
For the necessity of the hypothesis, see Exercise 6.3. For a different-looking
statement proved by almost the same argument, see Exercise 6.5.

Proof. If M is flat then Torf(R/m, M) = 0, by Proposition 6.1.

Now suppose that S and M are as in the theorem, and that
Torf(R/m, M) = 0. As a preliminary step we shall show that if N is an
R-module of finite length, then Torf(N, M) = 0. We may prove this by
induction on the length, the hypothesis being the case of length 1: If N’
is any proper submodule of N, then the exact sequence 0 — N’ — N —
N/N' — 0 gives rise to an exact sequence of Tor containing the terms

Torf(N', M) — Torf(N, M) — Tor?(N/N' M).

By induction on the length, Tor®(N’,M) = 0 = Tor?(N/N', M), so
Tor?(N, M) = 0 as required.

Now let I be an arbitrary ideal, and suppose that u € I ® M is in the
kernel of the multiplication map I ® p M — M. We shall prove that u = 0.
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The S-module structure on M gives I ® g M the structure of an S-module
too, and we have m"(I @z M) C n*(I @ M). It is finitely generated as an
S-module, so by the Krull intersection theorem (Theorem 5.4), N,n"(I @
M) =0, and we see that N,m"*(I ®z M) = 0. Thus it suffices to show that
u € m"(I ®g M) for every n (this is the only use we shall make of the
hypothesis on M).

The module m"(I ®x M) is the image in I ®r M of (m"I) ®z M. By
the Artin-Rees lemma, m* NI C m"] for sufficiently large ¢, so it suffices to
show that u is in the image of (m! NI) ®g M for all ¢. Tensoring the short
exact sequence

0-m'NI—>T—I/(m'NI)—0

with M produces the exact sequence
M'NDNRrM - ITQpM—I/(m'NI)®p M — 0.

It thus suffices to show that u goes to 0 in I/(m' N I) ®z M. The map
I®pM — I/(m'NT)®r M is obtained by tensoring the top row of the
commutative diagram

— R/m!
with M to get
IT®r M > I/(mtNI)®@r M

P®1

M=R®prM — R/m'@p M.

Since u goes to zero under the left-hand vertical map, we see that it suffices
to show that the kernel of the right-hand vertical map ¢ ® 1 is 0.

Identifying I/(m! N I) with (I +m')/m! we see that p is the left-hand
map in the short exact sequence

0— (I +m")/m" - R/m' = R/(I +m') — 0.
Applying Tor, we get a long exact sequence of which a part is

OR1

TorE(R/(I +mb), M) — (I +m')/m' @ M *%' R/m' @5 M,

s0 it is enough to show that Tor?(R/(I +m*), M) = 0. Since R/(I +m?) is
annihilated by m’, it is a module of finite length, and we are done. O

If R — R’ is any homomorphism of rings and M is a flat R-module, then
R @r M is flat as an R'-module because tensoring over R’ with (R’ @z M)
is the same as tensoring over R with M—that is,

(R’@RM)@)R/N:M@RN
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for any R'-module N. We can use the criterion to prove the converse in an
important special case:

Corollary 6.9. Suppose that (R, m) is a local Noetherian ring. Let (S, n)
be a local Noetherian R-algebra such that mS C n, let x € m be a nonzero-
dwisor on R, and let M be a finitely generated S-module. If x is a nonze-
rodivisor on M, then M is flat over R iff M/xM is flat over R/(z).

Proof. If M is flat then M/zM = R/(z) ®p M is flat over R/(x) without
any hypothesis, as we have just remarked, so we suppose that M /z M is flat
over R/(z), and prove that M is flat over R. Let k = R/m be the residue
class field of R.

We have Tori’/™(k,M/zM) = 0 since M/zM is flat over R/(z).
By Lemma 6.10, Tor®(k, M) = 0, so M is flat by the local criterion,
Theorem 6.8. O

Lemma 6.10. If R is a ring, M is an R-module, and © € R is a
nonzerodivisor on R and on M, then for any (R/(z))-module N we have

Tor™ @ (N, M/2M) = TorR(N, M).

Proof. Let
F: '--—>F2—>F1—>F0

be a free resolution of M as an R-module. We claim that R/(z) ®F is a free
resolution of R/(z) ® M. Given this, we may compute Torf'/ (x)(N yM/zM)
as the homology of N ®pg/) R/(z) @ F = N Qr F, and we see that it
coincides with Tor®(N, M), as required.

The homology of the complex
R/(.’If) RF: - FQ/CL'FQ — F]/ZCFl — F()/.T,‘FO

is Tor®(R/(z),M). As we have shown at the end of section 6.2, we
have Torf(R/(x), M) = M/zM, and since x is a nonzerodivisor on R,
Tor?(R/(z), M) = 0 for all i > 0. This is the same as saying that the
complex R/(z) ® F is a resolution of M /z M. Since the modules F;/zF; are
free over R/(x), we are done. O

The corollary is often used in the following situation: Suppose that
@ VoAl
X3S5Y S A

are maps of affine varieties over a field k, and that X and Y are flat over
Al. We say that ¢ is flat, or that X is flat over Y, if the corresponding
map from the coordinate ring A(Y') of Y to the coordinate ring A(X) of
X makes A(X) into a flat (A(Y))-module. For each point p € A' we have
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a map of “fibers” X, := () '(p) — ¥ '(p) =: Y, as in Figure 6.6 where
we have chosen points p' € Y mapping to p and p” € X mapping to p'. We
think of the whole setup as a family of maps of varieties.

Xp Yp
144
p . p’
— | — /p
¢ 14 |
X Y A
FIGURE 6.6.

Let x be a coordinate function on A! that takes the value 0 at p, and
let R = A(Y)p, M = A(X)pr, where P’ and P" are the maximal ideals
corresponding to p’ and p”, respectively. If we assume that (as in the pic-
ture) X and Y map onto an open set of A!, then the maps k[z] — R and
k[x] — M corresponding to ¥ and to 1, respectively, are both injections
from k[z] into the domains R and M, so that x is a nonzerodivisor on both
R and M. By Corollary 6.3, X and Y are flat over A!.

In this setting Corollary 6.9 may be interpreted as saying that if the map
X, — Y, is flat in a neighborhood of p” in X, then X — Y is flat in a
neighborhood of p” in X. That is, if the fibers of X, — Y, vary “nicely”
near p”, then the same is true of all the fibers of X — Y near p”.

6.5 The Rees Algebra

One way of producing flat families is through the technique of Rees alge-
bras. Let R be a ring and let ] C R be an ideal. We define the Rees
algebra of R with respect to I to be the R-algebra

R(R,I):= > It =Rt,t '] C R[t,t7],

n=—oc

where we take I" = R if n < 0. If R is a k-algebra, then we regard R(R, I)
as a klt]-algebra. It is then clear that
R(R,)/tR(R,I) = gr R
R(R,I)/(t—a)R(R,I) =R forany 0 # a € k;
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that is, the Rees algebra defines a family of k-algebras over the line with
parameter ¢ having fiber gr; R at ¢ = 0 and fiber R at t = a for every
a # 0. We shall show that the Rees algebra is flat over k[t]. Combined with
the second statement of the following result and Corollary 6.7, this gives
an alternative proof of Corollary 5.5, much longer than the original to be
sure, but suggesting a general technique.

Corollary 6.11. If R is an algebra over a field k, then the Rees algebra
S =R(R,I) is flat over k[t]. If N, 1% = 0, then every element of the form
1 —ts with s € S is a nonzerodiwvisor on R(R,I).

Proof. For the first statement it is enough by Corollary 6.3 to show that
R(R,I) is torsion-free as a k[t]-module. Since R(R,I) C R[t,t ], this is
immediate. For the second statement, note that if p(1 — ts) = 0 for some s
in S, then, reading the equation modulo ¢, we must have p = ¢t for some
g € S. But t is a nonzerodivisor on S, so ¢(1 — ts) = 0. Repeating this
argument, it follows that p € t"S for every n. Writing p = Z;L_ ; p;t', with
p; € R, we see that p; € I" for each n, so p = 0 as required. O

6.6 Exercises

Exercise 6.1 (Tor and flatness):* Here is the basic relation between Tor
and flatness:

a. Let R be a ring, and let M be an R-module. Show that M is flat
iff Torf(M,N) = 0 for all R-modules N iff Torf(N, M) = 0 for all
R-modules N.

b.* Show that M is flat iff Tor?(M, N) = 0 for all R-modules N and all
i > 0.

Exercise 6.2 (Finitely presented flat modules are locally free):* Let
R be a ring and let M be a finitely presented R-module. Show that the
following statements are equivalent:

i. M is flat over R.
ii. Mp is flat over Rp for all maximal ideals P of R.
iii. Tor®(M,R/P) = 0 for all maximal ideals P of R.
iv. Mp is a free module over Rp for all maximal ideals P of R.

v. M is a projective R-module.

Here are some steps that may help you:
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a.* Let R, P be a local ring, and use Nakayama’s lemma to show that
if M is a finitely presented module, then M is flat iff M is free iff
Tor?(M,R/P) = 0.

b. Prove the equivalence of statements i and ii by localizing; one way to
do it is to show that if N is an Rp-module then M ®@p N = M ®g, N,
and use Corollary 2.9; another is to show that Tor localizes.

c. Use parts a and b with Exercise 4.11 to show that statements i, iv,
and v are equivalent. Statement i implies ii by Exercise 6.1, and the
converse comes by localizing and using part a.

Exercise 6.3:* Let R = k[z](,), where k is a field, and let M be any R-

module. Show that Torf(R/(z), M) = 0 iff M is flat, so that Theorem 6.8
holds for this ring without restriction on M. Show, however, that if R =
k[z, Y]z, and M = k(z) (with y acting as 0), then Tor{(R/(z,y), M) = 0
but M is not flat.

Exercise 6.4:* Let S = R|xy,...,2,| be the polynomial ring in r vari-
ables over a Noetherian ring R, and let f € S be a nonzerodivisor (see
Exercise 3.4). Show that S/(f) is a flat R-module iff the coefficients of f
generate the unit ideal of R. In case R = k[z], S = Ry, and f =1+ zy,
show that S/(f) is not free as an R-module.

Exercise 6.5 (Infinitesimal criterion of flatness): Prove the follow-
ing by adapting the proof of Theorem 6.8: Suppose that (R, P) is a local
Noetherian ring, and let (S, @) be a local Noetherian R-algebra such that
PS C Q. If M is a finitely generated S-module, show that M is flat as an
R-module ifft M/P"M is flat as an R/P"-module for every n.

Exercise 6.6 (The family of projective plane curves): The algebra in
this exercise corresponds to the first flat family ever considered (implicitly,
of course; to translate this exercise directly into geometry requires an alge-
braically closed field, so the time we are speaking of is about 1830, when
people were first seriously investigating projective plane curves over C). It
is still an object of active research. Fix a degree d. For each 3-component,
multiindex a = (ag, a1, ay) of degree d (that is, the a; are nonnegative inte-
gers wWith ag + a1 + ag = d) let z, be an indeterminate. Let R = k[{z,}] be
the polynomial ring in the z,, and let S be the R-algebra

R[y07 Y1, 92]/ Z -’ana)

ay  ap,. s

where we have written y* for the monomial y,°y;,"y5°. Geometrically, this
corresponds to the family of all projective plane curves of degree d; of course
one could replace 3 by any number r+ 1 and get the family of hypersurfaces
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of degree d in P". Except for the fiber over the point where all the =, are
zero, this family is “good”: The geometric properties of two plane curves
of degree d are closely related, and algebraically the fiber at a prime P is a
polynomial ring over x(P) modulo an equation of degree d; certainly these
have a strong “family resemblance.” Show that if we invert any z,, the
family becomes flat, that is, the family given by the R[z']-algebra S[z;}]
is flat, by showing that it is a free R-module (not finitely generated!). Show
that S is an integral domain (that is, Y z,y® is prime) and contains R,
so that S is torsion-free as an R-module. Show, however, that S itself is
not flat over R by proving and using the following facts:

a.* If S is a flat module over a ring R, and R — T is any map of rings,
then S ®p T is flat over T.

b. There is a map of rings R = k[{z,}] — k[t] = T such that T @ S =
k[t,vo,y1,y2]/tyd, and this is not a flat T-algebra.

Exercise 6.7 (Flatness and (almost) regular sequences): If R is
not a principal ideal domain, then the condition of Corollary 6.3 is not
sufficient for flatness, as the example of Exercise 6.6 shows. However, the
idea of part a of that exercise proves a much more powerful consequence
that is the first hint of the important interaction of flatness and regular
sequences. Show that if S is a flat R-module, and zy,...,z, is a sequence
of elements of R such that for each ¢ the element z; is a nonzerodivi-
sor on R/(xy,...,z;_1), then for each i the element x; is a nonzerodivi-
sor on S/(xy,...,z;-1). (This is not quite the condition that z,...,z,
be a regular sequence (see Chapter 10), because we are not insisting that
(21,...,2.)R # R or that (z;,...,2,)S # S.) Although we are not ready
to prove it, this condition is actually equivalent to flatness in many cases
of interest, for example in the case where R is a polynomial ring and S is
local, with maximal ideal containing x1,...,z, (see Exercise 18.18).

Exercise 6.8: Let k be a field, and set R = k[t], S = R[z]/((x) N (z,1)?)
should be ((x)N(x,t)?) (see Figure 6.7). Show that in this example, S is not
flat over R. (You may use the criterion for flatness given in Corollary 6.3.)
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X c A?
B — corresponds to

S = k[t, z}/((x) N (x,1)?)

* R = k[t]

FIGURE 6.7.
Exercise 6.9: Use Exercise 6.7 to show that the blowup of the plane is
not flat over the plane: That is, if R = k[z,y] and S is the subring of
the quotient field of R generated by the two elements z/y and y (crudely,
S = k[z/y,y]), then S is not flat as an R-module. The inclusion R C S
corresponds to the map from the plane to the plane suggested by Figure 6.8.

y

O

FIGURE 6.8. Blowup of a point in the plane.

Intuitively, flatness fails because the fiber over the origin is a curve, whereas
nearby fibers are only points (see Theorem 10.10 and Exercise 10.5 for a
more precise treatment).

Exercise 6.10 (Flatness of graded modules):* Let R=Ry® R @ - -
be a graded ring with Ry a field, and let M be a graded R-module.

a. Show that M is flat over R iff I @ M — M is an injection for every
homogeneous ideal I of R.

b. Show that M is flat iff Mp is flat, where P = R;{ & Ry @ --- is the
homogeneous maximal ideal.
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Flat Families of Graded Modules

Exercise 6.11: Let R = Ry @ R; @ --- be a graded ring such that Ry is
a local Noetherian ring and that R is finitely generated as an Ry-algebra
by elements of degree 1. Let M be a finitely generated graded R-module,
and let My be the degree d part of M. We may think of M as a family of
graded modules over the “base” Ry. If R = Ry, then we have seen that M
is flat over Ry iff M is free over Ry. The general case, which arises often,
can be analyzed in terms of this one:

a. Show that each My is finitely generated as an Ry-module.
b. Show that M is flat over Ry iff My is free over Ry for all d.

c.* (The following exercise may be interpreted as describing flatness
for families of sheaves on projective space. See Hartshome [1977],
Chapter II, for more information.) For every f € Ry the localization
M|f1] is graded; we write M[f~']y for its component of degree 0.
Show that M[f~!'], is flat over Ry for all f € Ry iff M, is a free
Ry-module for all d > 0.

d. For each prime P of Ry we may define a Hilbert function
Hﬁ(p)QQM(d) = dim,i(p) K(P) &® Md.

As in Chapter 1 we write Py pjgu(d) for the polynomial in d that agrees
with H, penm (d) for large d (see also Chapter 12). Show that if M is flat over
Ry, then the function H, pje(d) is independent of the prime P chosen in
Ry. Show that if M[f 1], is flat over Ry for all f € Ry, then the polynomial
P,(pygm(d) is independent of P.

As we shall see in Chapter 12, the Krull dimension (see Chapter 9 for
the definition) of K(P)® M as a module over k(P)® R can be read off from
this polynomial, so a consequence of flatness is that the Krull dimension of
k(P) ® M is constant. We shall further see, in Exercise 20.14, that in this
situation the constancy of the Hilbert function (or polynomial) guarantees
the flatness of M (or of all the M[f~!]y) as long as Ry is a reduced ring.

Embedded First-Order Deformations

Exercise 6.12: Let £k be a field and let ¢ : § -» R = S/I be k-algebras.
Let A be a k-algebra with a distinguished map p : A — k such inducing
the identity on k. Set § = A ®; S. We define an embedded deformation
of R with base A to be an ideal I C S such that R := S/I is flat over A
and such that p®1: S — S carries I onto I. (Abusing the terminology, we
sometimes say that R is an embedded deformation.) For any base algebra A
there is at least one embedded deformation, called the trivial embedded
deformation, obtained by setting I=A®;lI.
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If R and S are affine domains over k, then the data S - R corresponds
to an embedding variety X C Y. If A is also an affine domain over k,
corresponding to a variety Z, and the map p : A — k corresponds to a
point z € Z, then an embedded deformation with base A is a flat family X
over Z, embedded in Y x Z,

such that 771(z) = X. The family is trivial if X = X x Z as a subvariety
of Y x Z. The notion is useful, for example, when X is singular—one might
hope to find a family in which other fibers 771(2’) for 2’ € Z are smooth.

It is in general quite hard to find embedded deformations, and most of
the results about them relate to particular types of rings R or spaces X
(determinantal rings, rings with rational singularities, and so forth). Nev-
ertheless, there is a simple way of finding all nontrivial embedded deforma-
tions in which the base ring is k[x]/(2?). We shall describe it here and in
Exercise 16.8. We write k[¢] for k[z]/(z?), with €2 = 0.

Any embedded deformation A® S — R gives rise to embedded deforma-
tions over k[e], because if m is the kernel of the distinguished map A — k,
and we choose any map m/m? — k of k-vector spaces, with kernel m’, say,
then A/(m' +m?) = k[¢], and R®4 A/(m’ + m?) is a deformation over k[e].
The set of homomorphisms m/m? — k is by definition the Zariski tan-
gent space to A at the maximal ideal m. (If A corresponds to an affine
variety, this is the tangent space at the point corresponding to m in a more
geometric sense.) We shall see that the set of deformations of R over kle] is
naturally a k-vector space. Thus, in a certain natural sense this set is the
Zariski tangent space to the space of all deformations—-even if the latter
doesn’t exist! See Eisenbud and Harris [1992], Chapter 4, for a more com-
plete view of this idea, which is due to Grothendieck. In some cases there
is actually a space of all deformations (the “versal deformation space”);
see Schlessinger [1968], Artin [1976], and Sernesi [1986] for a treatment of
some of these.

Embedded deformations of S — R over k[e| are called first-order
infinitesimal embedded deformations, in keeping with the idea from
the theory of schemes that k[e| is the affine ring of the first-order infinites-
imal neighborhood of a point in a line.

a. Suppose M is any k[e]-module. Show that M is flat over k[e] iff
(0 :ar €), the annihilator of € in M, is equal to e M. (Note that the
free resolution of k as a kle]-module is

o kle] S kle] S k[e] S S kle] = k— 0.
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X

FIGURE 6.9. A normal vector field.

Thus, (0 :ar €)/eM = Tork[e](k,M), so the result in question is just
the local criterion of flatness, with no hypothesis on M.) Show that
this is equivalent to the condition that multiplication by e from M
to e M induces an isomorphism M /e M — eM.

. Note that I/1?, called the conormal module of R in S for reasons
explained in Chapter 16, is an R-module. Given any homomorphism
@:I/I* - R = S/I, define an ideal I C S[e] by I = el + (1 + ep)I
(here we regard € as a map from [ to S/e/ sending g € I to ep(g +
I?) € eS/el C S/el. Show that if a set of elements g; € I generates [
and if g/ is a representative in S for ¢(g;) in S/7, then I is generated
by the elements g; + eg/. Show that S/T is flat over k[g], so that we
have defined a first-order infinitesimal embedded deformation from
an element of the module N := Hom(//I% R), called the normal
module of R in S.

. Given a first-order infinitesimal embedded deformation R = Sle]/1,
we may regard I as a subspace of S[g] = S ® Se. As such, show
that I projects onto I C S. It follows that I contains Ie C Se. Use
the flatness of R to show that the image I/Ie of I in S @ Se/le is
the graph of a homomorphism from I to Se/le = S/I = R; that is,
I/Ie = {(g,v¥(g))|g € I} for some ¢ € Hom(I, R). Since I kills R, ¢
kills I?, and thus v induces a homomorphism ¢ € Hom(//I%?,R) = N.

. Show that the correspondences defined in parts b and ¢ are inverse to
one another. Thus they define a bijection between the set of first-order
embedded deformations of S — R = S/I and N = Homg(I/I?, R).
(As we shall see in Chapter 16, if S corresponds to a smooth affine
variety Y, and R to a smooth subvariety X C Y, or a little more
generally, then N is the set of normal vector fields in Y along X,
such as the one in Figure 6.9.) The associated infinitesimal deforma-
tion should be thought of as the flow moving each point of X in the
direction determined by this vector field.
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(Compare with Exercise 16.8f) Let S = k[z] and R = k[z]/(«™) (the
“n-fold point on a line”). Show that every first-order infinitesimal
embedded deformation may be written in the form

Slel/(2™ + a1ex™™ 4 - 4 a¢)

for a unique ay,...,a, € k. (Geometrically, this corresponds to a
family of n points on a line approaching 0.)

. (Compare with Exercise 16.8g) Let S = k[z,y] and R = k[z]/(zy)

(the “ordinary double point” ). Show that each first-order infinitesimal
embedded deformation may be written in the form

Slel/(zy + e(a+ zp(z) + ya(y)))

for unique a € k, p(z) € k[z], p(y) € k[y]. Note that the space of
deformations is infinite-dimensional.

If R and S are graded, show that N is graded and that the first-
order infinitesimal embedded deformations of R as a graded S-algebra
correspond to the homogeneous elements of degree 0 in N.
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Completions and Hensel’s Lemma

In this section we shall study the completion of a ring R with respect to
an ideal m, written R, or simply R if m is clear from the context. The
construction is usually applied in the case where R is a local ring and m
is the maximal ideal. If R is a polynomial ring R = k[zy,...,z,] over a
field, and m = (21, ..., z,) is the ideal generated by the variables, then the
completion is the ring k[[zy,...,z,]] of formal power series over k. More
generally, if k is a field and R = k[z1,...,2,|/I, then the completion of R
with respect to m = (z1,...,z,) is the ring k[[z1, ..., 2,]]/Tk][21,. .., z.]].
General completions can similarly be defined in terms of formal power series
(Exercise 7.11), but we shall give an intrinsic development.

Completions first appeared in number theory. Hensel worked out and
refined the theory of p-adic numbers during a decade or so starting in
[1897]. He saw the p-adic numbers as bringing analysis, similar to the local
analysis of functions on a Riemann surface, to bear on number theory, and
his idea has proved fantastically successful.

7.1 Examples and Definitions

The usefulness of completions can be stated geometrically as follows: A
localization R of the affine ring of a variety at the maximal ideal m of a
point on the variety represents and reflects the properties of Zariski open
neighborhoods of the point; the completion R represents the properties
of the variety in far smaller neighborhoods. For example, over the complex
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numbers, the information available from Ry, is (roughly speaking) infor-
mation about arbitrarily small neighborhoods in the “classical topology”
induced by the fact that the variety is a closed subspace of some C” with
its ordinary topology.

A simple example may make this clearer. Consider the two-to-one map
7 from the parabola to the horizontal line in Figure 7.1.

y

klz] C k[[z]] Ng )
T T

VA Te-1-Ee B
* 273

FIGURE 7.1.

Algebraically, the map 7% defined by composition with 7 is the inclu-
sion of the coordinate ring S of the line into the coordinate ring R of the
parabola,

7" S =klz] - R=klz,y|/(y  —2 1) z—z.

The derivative of 7 is nonzero near the point z = 0,y = —1 of the parabola.
Thus the inverse function theorem tells us (at least in the cases k = R
or k = C) that near the point z = 0 on the line there is an analytic
function ¢ from the line to the parabola that is a local inverse to 7. But the
inverse function theorem fails in algebraic geometry: There is no polynomial
mapping o that is locally the inverse to m, because the element y would
have to go to a square root of z + 1, and there is no such polynomial.
However, /x + 1 is represented by a power series, so that at the level of
power series there is an inverse,

0% 1 Rig ey = K[l y]l/(y* — 2 — 1) — Sy = k][z]]
Ty Vo t+tl=-1-2/24+2/8— ..

If k = R or C, then this series converges for |#| < 1 and represents a
function, the inverse of m guaranteed by the inverse function theorem. If k&
is arbitrary, (of characteristic # 2) we may still use it as a formal power
series. As we shall see, such a thing is generally true for completions and
is a variant of the result called Hensel’s lemma.
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We shall base our treatment of completions on the notion of the inverse
limit, and we begin by reminding the reader about this useful piece of
general algebra. The unproved assertions that follow are quite easy; the
reader who has not seen the theory before should prove them as exercises!
Appendix 6 contains further information on this construction.

Let R be an abelian group, and let R = mg D m; Dmy O ... be a
sequence of subgroups (a descending filtration). We define the completion
R of R with respect to the m; to be the inverse limit of the factor groups
R/m;, which is by definition a subgroup of the direct product:

R :=1lim R/m,
i={9="(91,9....) € []. B/mi | g; = gi(mod m;) for all j > i}.

If R is a ring and all the m; are ideals, then each of the R/m; is a ring, and
it follows at once that R is also a ring. R has a filtration by ideals

ﬁ‘li::{g:(gl,gg,..‘)E]A?|gj:0 for all 7 < i},

and it follows at once from the definition that R/ﬁi,- = R/m,.

The most important case is the one where R is a ring filtered by ideals of
the form m; = m? for some ideal m of R; this is called the m-adic filtration
of R. The completion of R with respect to m is defined to be the completion
with respect to the m-adic filtration. It is denoted by Ry. We write 1 for
m; in this case. For simplicity, we shall now restrict ourselves to the case
of the m-adic filtration, leaving the easy generalization to the interested
reader.

In case m is a maximal ideal, we claim that Ry, is a local ring with maxi-
mal ideal 7. Indeed, R/t Ry = R/m, a field. Moreover, if g = (g1, g2,...) €
Rm C I, R/m! is outside of m, then g; # 0, and it follows that each g; is out-
side of m(R/m"). Thus each g; is a unit. From the condition g; = g;(mod m?)
for j > 4 it follows that g,' = g, '(modm’) for j > 4, so the element
h=(g7%,g5,',...) isin Ry and is the inverse of g. Furthermore, R/m’ is
equal to its localization (R/m')y, = Ry /mi | so we get the same comple-
tion by first localizing R and then completing with respect to the localized
maximal ideal my,.

Example. If R = S[z1,...,z,] is a polynomial ring over the ring S, and
m = (21,...,x,), then the completion with respect to m is the formal power
series ring

R = S[z1,. .., 24]]-

Indeed, from the maps S|[x1,...,2,]] — R/m’ sending f to f + m‘, we get
a map
S[[#1,...,2,]] = Bm
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sending
f— (f+m,f+m2,...) ERm - HR/ml

The inverse map is given by sending (f; +m, fo +m?,...) € R, where the
fi are polynomials and f; = f; + (terms of degree > min(i, j)) to the power
series f1 + (fo — fi) + (fs — f2) + ---. This is a well-defined formal power
series because the degree of f;; 1 — f; is at least 7 + 1, and one checks at
once that it is independent of the choice of f; in f; + m’.

Here is a similar example from number theory, with a subtle difference:
Example. Let p € Z be a prime number. The ring Z( which is usually
written Z,, is called the ring of p-adic numbers.

Elements of this ring, the p-adic numbers themselves, may be written,
by a trick like the one above, as power series of the form

p)s

ap+a1p+ap’ + -+ with 0 < a; < p,

but addition is done by “carrying,” not “termwise” as in the formal power
series ring. For example,

(14+0p+0p>+-- )+ (p—1)+0p+0p*+---) =0+ 1p+0p* + - --.

If you aren’t already familiar with the p-adic numbers, you might pause to
check, for example, the surprising formula

14244484 =1

in the ring of 2-adic integers, by writing out the left-hand side as an element
of I, Z/(2") and adding 1 = (1,1,1,...).

When the natural map R — Ry, is an isomorphism, we shall say that R
is complete with respect to m. When m is a maximal ideal, we simply
say that R is a complete local ring. Note that the ideal N;m’ always goes
to zero in Ry so that if R is complete with respect to m, then n;m/ = 0.
This last condition is sometimes expressed by saying that R is separated
with respect to m (the terminology is the usual topological one if we give
R the “Krull topology,” explained later in this chapter).

7.2 The Utility of Completions

There are several reasons why the completion is useful, and we shall
describe some of them before giving proofs. First, the completion is closely
related to the original ring. For example, it inherits the Noetherian prop-
erty:
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Theorem 7.1. Let R be a Noetherian ring and let m be an ideal of R. Let
R = Ry, be the completion of R with respect to m.

a. R is a Noetherian Ting.
b. fl/mJR = R/m/. Thus R is complete with respect to mR, and

8m, R=gr, R

The following result is one of the main results that help to transmit
information between a ring R and its completion.

Theorem 7.2. Let R be a Noetherian ring and let m be an ideal of R. Let
R = Ry be the completion of R with respect to m.

a. If M is a finitely generated R-module, then the natural map
Rep M —limM/m'M = M

is an isomorphism. In particular, if S is a ring that is finite as an
R-module, then R @r S is the completion of S with respect to the
powers of the ideal mS.

b. R is flat as an R-module.

A second reason why the completion is useful is that it is better than the
original ring in a crucial respect: Complete rings satisfy Hensel’s lemma.
The idea is very closely related, as we shall see, to Newton’s method for
solving equations, and to the implicit function theorem. A special case is
suggested in the example at the beginning of this section. Here is the result,
which is most often applied in the case where f'(a) is a unit.

Theorem 7.3 (Hensel’s Lemma). Let R be a ring that is complete with
respect to the ideal m, and let f(z) € Rlz]| be a polynomial. If a is an
approximate root of f in the sense that

f(a) = 0(mod f'(a)’m),
then there is a root b of f near a in the sense that
f(b) =0 and b = a(mod f'(a)m).
If f'(a) is a nonzerodivisor in R, then b is unique.

We shall see that if R is complete with respect to m then it is complete
with respect to any power of m, so that Theorem 7.3 handles arbitrary
degrees of approximation.
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Like Newton’s method, Hensel’s lemma works for systems of equations
in several variables, too. We give a multivariate version of the theorem in
Exercise 7.26. Complete rings are not the only ones that satisfy Hensel’s
lemma. For example, the rings of convergent power series over R or C
also satisfy it. Azumaya [1950] defined a local ring with maximal ideal m,
to be Henselian if it satisfies Hensel’s lemma. Given a local ring R with
maximal ideal m, there is a smallest ring S containing R and Henselian
with respect to m.S; it is called the Henselization of R with respect
to S; its existence was proved by Nagata in the 1950s. The Henselization
of R is much closer to R than is the completion because it is actually a
union of rings finite over R (this is almost never true of the completion).
It can thus be used to give the same microscopic view of a variety as the
completion, but without passing out of the category of algebraic varieties.
See, for example, Milne [1980, Section 1.4] for details and a geometric
view.

We shall deduce Theorem 7.3 from Theorem 7.16, which allows us to
construct maps from a power series ring to a complete ring, and from
Corollary 7.17, which gives a criterion for such a map to be an isomorphism
analogous to the inverse function theorem in analytic geometry.

Many statements of Hensel’s lemma involve factoring equations; the ver-
sion given here, in the case where f'(a) is a unit, is just the case where one
of the factors is linear. The general factorization result may be deduced
from Theorem 7.3 (or even the version in which f is assumed monic) in
a page: See, for example, Nagata [1962]. Instead of deriving it this way,
we invite the reader to prove it directly in Exercise 7.20. (It can also be
deduced from Exercise 7.26 using resultants.) The lifting of idempotents,
proved here in Corollary 7.5, is another equivalent version (we show how
to deduce the case of Theorem 7.3 in which f is monic from it in Exer-
cise 7.22).

Here are two fairly typical examples of the use of Hensel’s Lemma, one
from number theory and one from algebraic geometry.

Example (Square roots in the p-adic integers). Which elements ¢ € Z(p) are
perfect squares? Hensel’s lemma (together with quadratic reciprocity) can
be used to give a complete and easily computable answer to this question.

First of all we may write ¢ uniquely in the form ¢ = p"b for some non-
negative integer n and some element b not divisible by p. Thus ¢ is a square
iff n is even and b is a square.

Next we must decide whether b is a square. If b = a?, then reducing mod
p we see that the image b of b in the field Z,,/pZ,, = Z/(p) is the square of
the image a of a. (We could use quadratic reciprocity to check efficiently
whether b is a square.)

Now consider the polynomial f(z) = 2% — b € Z,[x]. Its derivative is
f'(z) = 2z. If b is a square mod p, say b = a’(modp), then f(x) has a
as a root. If p # 2, then f'(a) = 2(a) # 0 in the field Z/pZ, so we may
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apply Hensel’s lemma to conclude that b has a p-adic square root. Thus the
apparently trivial condition that b have a square root is actually a sufficient
condition for b to have a square root if p # 2.

If p = 2, then f’(a) = 0 and the preceding argument fails. However,
suppose that b = 1(mod 8). Then we may take a = 1, and we have f'(a) =
2, and f(a) = 1 —b = 0(mod(2%p = 8)). Thus, Hensel’s lemma applies
to show that b has a 2-adic square root. The hypothesis b = 1(mod 8)
seems restrictive until one notices that if b is a square, then, since b is odd,
b= (1+2a)?=1+4(a+ a?), and 2 divides a + a?, whence b = 1(mod 8).
Thus Hensel’s lemma gives a complete result in this case too!

Example (Branch of a plane curve). Consider the affine coordinate ring of
anodal plane cubic curve over a field k of characteristic # 2 (see Figure 7.2).

R = kla,y)/ (4 — 22(1 + 2))
FIGURE 7.2.

As the curve is irreducible, the ring R is a domain, and it follows at once
that its localization at the maximal ideal m = (z,y), which corresponds to
the node, is a domain. This says that every Zariski neighborhood of the
node is irreducible—in this case, a Zariski neighborhood consists of the
whole curve minus a finite set of points other than the node. (The picture
over R, in Figure 7.3, looks like it might possibly become reducible if we
leave out a point; but over the complex numbers a neighborhood of the
omitted point will be a punctured disk, so the curve remains irreducible.)

However, if we examine a really small neighborhood of the node, either
by using convergent power series as functions in the case of the complex
numbers or formal power series in general, we see (See Figure 7.3) that in
this neighborhood the curve is reducible! This corresponds to the fact that
the equation y? — x%(z 4+ 1) can be factored in the power series ring; that
is, x 4+ 1 has a square root. This follows from Hensel’s lemma, exactly as in
the earlier example from number theory: The element 1 is a square root of
(2 4+ 1) mod z, and by Hensel’'s lemma it can be lifted to a square root in
the power series ring. Of course, in this case we can write down the square
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Spec klz, yley/(y* — = — )
C Spec k[z, Yliz,y)
is irreducible;

but its preimage,
corresponding to

kl[z, y11/(y* — 2* — 2%
is not.

FIGURE 7.3.
root directly, using the Taylor series
Vitz=1+(1/2)z—(1/8)x + (1/16)a® — (5/32)x* — - -
(which is even convergent for |z| < 1 over the complex numbers).

Further indications of the importance of Hensel’s Lemma can be seen in
the following corollaries. The first generalizes the example of the inverse
function theorem given in the beginning of this section.

Corollary 7.4. If f(t,x) is a polynomial in two variables over a field k,
and x = a is a simple root of f(0,x), then there is a unique power series
x(t) with £(0) = a and f(t,x(t)) = 0 identically.

Proof. Use Theorem 7.3 with R = k[[t]],m = (¢). O

Since the condition that f(0,z) has a simple root is the condition 8f/dx
(0,a) # 0, this is like the implicit function theorem for polynomials in two
variables. More general versions of Hensel’s lemma, such as those in the
exercises, imitate more general versions of the implicit and inverse function
theorems.

7.3 Lifting Idempotents

A striking algebraic consequence of Hensel’s lemma is the liftability of idem-
potents, an idea due to Azumaya [1950]. If A is a (not necessarily commu-
tative) algebra over a commutative ring R, and ey, ..., e, € A, then we say
that the e; are idempotent if €2 = ¢;. We say that the e; are orthogonal
idempotents if in addition, e;e; = e;e; = 0 for 7 # j. The elements 0 and
1 are called trivial idempotents. Elementary algebra shows that the sum



7.3 Lifting Idempotents 187

of any set of orthogonal idempotents is again an idempotent. The set of
orthogonal idempotents {e,...,e,} is complete if > e; = 1. If the set is
not complete, it can always be completed by adjoining f :=1—>" ¢;; again,
elementary algebra shows that f is an idempotent, orthogonal to the e;.

For example, suppose that M is an R-module with a direct sum decom-
position M = @ | M;. Let A = Hompg(M, M), the endomorphism algebra,
of M. Let e; be the projection of M onto its submodule M;, with kernel
®;4M;. Then the e; form a complete set of orthogonal idempotents of
A. Conversely, if {e1,...,e,} is a complete set of orthogonal idempotents
of A, then for any m € M we have m = lm = ) e;(m), so the ¢;(M)
together generate M. Furthermore, if m € e;(M) Ne;(M), then writing
m = e;(n) for some n € M shows that e;j(m) = eje;(n) = 0. But writing
m = e;j(n’) for some n’ € M shows that e;(m) = ejej(n') = ej(n') = m,
so m = 0. Thus e;(M) Ne;j(M) = 0 for each i # j, and we see that
M = ®e;(M). Thus, complete sets of orthogonal idempotents of A are
in one-to-one correspondence with direct sum decompositions of M. In
the special case where M = A, we write e;(A) = e;A. If each ¢; is in
the center of A (that is, the set of elements that commute with every
element of A)—for example, if A is commutative—then the decomposi-
tion A = Pe; A expresses A as a direct product of subalgebras, since
(e;0)(eib) = e?ab = e;ab € e;A for any a,b € A, and (e;a)(e;b) = ejejab =
0 for i # j.

A second important example concerns factorization. Suppose an element
f € Rhas a factorization f = gh and that g and h are relatively prime in the
sense that (f,g) = R. Write 1 = ag + bh for some a,b € R. Set A = R/(f)
and let e;,es be the images of ag and bh in A. Clearly e; + €3 = 1 and
eres = 0. Tt follows that e; = e;1 = ej(e; + e3) = €2, and similarly for e,
so {e1,e2} is a complete set of orthogonal idempotents. Thus we have a
direct product decomposition A = e; A x ex A. It is easy to see what these
rings are. First note that h annihilates e;. On the other hand, if an element
p € A annihilates e;, then p = (e; + e2)p = esp = bhp, so p is in the ideal
generated by h. Thus e;A = A/(hA) = R/(h), and similarly esA = R/(g),
so the decomposition in question is R[z]/(f) = R[z]/(g) x R[z]/(h). (Under
some circumstances we can go back from a direct sum decomposition of 4
to a product decomposition of f: see Exercise 7.22.)

Corollary 7.5. Let R be a (commutative) Noetherian ring complete with
respect to an ideal m. If A is an R-algebra, possibly not commutative, which
is finite as an R-module, then any set of orthogonal idempotents of A/mA
can be lifted to a set of orthogonal idempotents of A. If A is commutative,
then the lifting is unique.

Proof. Here is the central case: Suppose that € € R/m is an idempotent,
and let e € R be any element whose image in R/m is é. Take f(z) to
be the polynomial 2> — 2z € R[x] so that the roots of f are precisely the
idempotents of R. The derivative f/(e) = 2e — 1 is a unit since (2¢ — 1)? =
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4e’> —4e+ 1 = 1 modm, and thus f’(e)m =m. Also, f(e) = 0mod m. Thus
by Hensel’s lemma we may find a unique root e, of 22 — z in R that lifts
e1. (See Exercise 7.23 for a more direct proof.)

To prove the corollary, let {é;,...,é,} be aset of orthogonal idempotents
of A/mA. We do induction on n.

First suppose that A is commutative. By Theorem 7.2a, the algebra A
is itself complete with respect to mA, so we may also assume A = R. By
the central case just treated, there is for each i a unique idempotent e; € R
lifting €;. We must show that these are orthogonal. If 7 # j, then e;e; = 0, so
e;e; € m. But for any positive integer d we have e;e; = efed = (e;e;)? € m?.,
Thus, e;e; € Ngm? = 0 as required.

We now drop the hypothesis that A be commutative. If n = 1, let e
be any element of A that reduces to €;. Replacing A by the R-subalgebra
generated by e, we reduce to the commutative case.

Next, suppose that n > 1 and that the corollary has been proven for
sets of at most n — 1 orthogonal idempotents. Thus we may find a set of
orthogonal idempotents e1, . .., e, 1 lifting €1,...,€,_1. Let ¢ be any lifting
of &,. Set f =1-Y." e, Note that fe; = ¢, f= Oforalli <n—1. Further,
if f denotes the image of f in A/mA, then fe, = &,f = é,.

Set e = fe'f. The element e reduces to &, mod m and satisfies e;e =
ee; =0 for i < n —1. We may replace A by the R-subalgebra generated by
e1,...,e,-1,e again reducing to the commutative case. il

The lifting of idempotents can indeed by nonunique in the noncommu-
tative case. See Exercise 7.24.

Because of Corollary 7.5, algebras finite over a complete local ring behave
like finite-dimensional algebras over a field. The following result is the
extension of Corollary 2.16.

Corollary 7.6. Let R be a complete local Noetherian ring. If A is a com-
mutative R-algebra that is finite as an R-module, then A has only finitely
many mazimal ideals m;, each localization An, is a complete local ring finite
over R, and A = II; Ay, is the direct product of its localizations.

Proof. Let m be the maximal ideal of R. The hypothesis implies that
A/mA is a finitely generated module over the field R/m. By Theorems 2.14
and 2.16, A/mA may be written as a product A/mA = A; X ... x A, of
local rings. If &; is the unit element of the subalgebra A4;, then the e; form a
set of orthogonal idempotents of A/mA. By Corollary 7.5 we may lift them
to a set of orthogonal idempotents {ey,...,e,} of A. Setting A; = ¢; A, we
see that A = A; X ... x A,. Each A; is finite over R since it is a direct
summand of the R-module A.

If n; is a maximal ideal of A;, then by Corollary 4.17, n; N R is a maximal
ideal, so n; " R = m. We see from this that every maximal ideal of A;
contains mA;. Since A; /mA; is a local ring, it follows that A; is local too, and
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n; is its unique maximal ideal. The preimage m; of n; under the projection
map A = 114, — A; is a maximal ideal of A. Just as for A;, the maximal
ideals of A must contain m, so they correspond to the maximal ideals of
A/mA, and are all among the m,.

In the localization Ay, the idempotent e; becomes a unit. Since e;e; = 0
for j # 1, we have Am, = Ain, = A;, and we are done. O

7.4 Cohen Structure Theory and Coeflicient Fields

The Cohen structure theorem (Cohen [1946]) states, roughly speaking,
that any complete local Noetherian ring R is a homomorphic image of a
power series ring in finitely many variables over a “nice” ring. If R contains
a field, this nice ring may be taken to be a field and the result is another
consequence of Hensel’s lemma. If R does not contain any field, the nice
ring may still be taken to be a complete local principal ideal domain of a
special form. Because complete local Noetherian rings are finitely generated
in this sense over nice rings, they share certain properties with affine rings,
and in this way they are much better behaved than arbitrary Noetherian
local rings. We shall prove the structure theorem only for rings that contain
fields (these are called equicharacteristic rings; see Exercise 7.15 for the
reason), but we shall sketch some of the rest.

Theorem 7.7 (Cohen Structure Theorem). Let R be a complete local
Noetherian ring with maximal ideal m and residue class field K. If R con-
tains a field, then R = K|[xy,...,z,]]/] for some n and some ideal I.

The deepest part of the proof is to show what is obvious from the given
isomorphism: that R contains a coefficient field, that is, a field that maps
isomorphically onto the residue class field R/m. A more precise statement
would be useful: Given a ground field & C R, it would be nice if there were
a coefficient field in R containing k. Such coefficient fields do exist when
R/m is a (possibly infinite) separable extension of k. We shall not only
prove the existence of such coefficient fields, we shall describe them.

For any ring R and maximal ideal m C R one can ask whether R (or
the localization R,) contains a coefficient field—that is, a field K C¢ R
mapping onto the residue class field R/m. It is not hard to interpret this
question geometrically in the case of affine rings over k. In brief, if X C Y
is an irreducible algebraic subset of an algebraic set Y over a field &, then
the local ring of Y along X has a coefficient field containing k if, after
perhaps removing a closed set from X and Y, X is a neighborhood retract
in Y. In this noncomplete case the question is subtle. For example if k
is algebraically closed, ¥ = A}, and X is a curve, then the coefficient
field exists iff X is rational (that is, the field of rational functions on X is
isomorphic to k(t)). See Exercise 7.18.
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To describe the coefficient fields containing a field k& in a complete local
ring R, we use a notion from general field theory; see Appendix 1 for def-
initions. If £ € K are fields, then certain sets of elements of K are called
differential bases for K /k. The simplest definition uses the K-vector
space of differentials Qg /;, defined in Chapter 16. {2g/; is generated by
elements da with a € K. A differential basis for K/k is a set of elements
{a;} € K such that {do} C Qg is a vector space basis. We shall use
this notion only when K is separable over k, a case that includes the case
when k is perfect and K/k is an arbitrary extension. In this case differen-
tial bases are easy to describe: If k has characteristic 0, then a differential
basis is simply a transcendence basis. More generally, if K is separably
generated over k (that is, K is a separable algebra extension of a purely
transcendental extension of k; this is the case whenever K is separable and
finitely generated over k), then a differential basis is a separating transcen-
dence basis. In the general case, in characteristic p, with K separable but
perhaps not finitely generated, a differential basis is a p-basis: a set of
elements «; € K such that the monomials in the «o; of degree < p form a
vector space basis for K as a (k * KP)-vector space. See Theorem 16.14 for
proofs.

If R is a local ring with maximal ideal m and k¥ C R is a subfield, then
since k — {0} consists of units, it must be contained in R — m, and thus
k maps isomorphically to a subfield of R/m. Let K := R/m. If B C K
is a subset, then any coefficient field K C R contains a unique set B of
representatives of the elements of B. If R is complete and B is a differential
basis of K/k, then we shall show conversely that there is a unique coefficient
field of R containing any set B of representatives for the elements of B.

Theorem 7.8. Let R be a complete local Noetherian ring with maximal
ideal m and residue class field K. Suppose that R contains a field k, and that
K is separable over k. If B is a differential basis for K over k, then there
18 a one-to-one correspondence between coefficient fields KCR containing
k and sets BC R of representatives for B, obtained by associating to each
K the set B of representatives for B that it contains. If k is perfect of
characteristic p > 0, then k is contained in every coefficient field of R.

If R contains any field, then it contains either Q or Z/(p) (the quotient
field of the image of Z). These fields are all perfect. Since every extension of
a perfect field is separable, Theorem 7.8 implies that every complete local
ring containing a field contains a coefficient field.

Theorem 7.8 would be false without the hypothesis that K is separable
over k: see Exercise 7.17 for an example.

We briefly sketch some of what Cohen proved about an arbitrary com-
plete local ring R; see Cohen [1946], as well as Grothendieck [1961, EGA
III Oyp 10.3] and [1964, EGA IV, part 1, Section 19], Matsumura [1986],
and Bourbaki [1983] for more details.
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If the residue class field K of R has characteristic 0, then every integer is
invertible in R, so R contains the field Q. The structure of R is then given
by Theorem 7.7. If K has characteristic p > 0, Cohen showed that there is a
complete local domain W whose maximal ideal is generated by p and whose
residue class field is K; in case K is perfect, there is a unique such ring
W (K) (unique, in fact, up to a unique isomorphism that is the identity on
K), which can be given explicitly (it is called the ring of Witt vectors,
see Serre [1979]). For example, if K = Z/(p), then W(K) is the ring of
p-adic integers Z(p). Returning to our complete local ring R with residue
class field K and assuming that the characteristic of K is p > 0, Cohen
proved that one can write Ry, in the form W/[jzy, . .., 2,]]/I for W as above,
some n, and some ideal I of the power series ring. The ring W{[z1, ..., z,]]
has many properties in common with a ring of power series of the form
K|[z,z1,...,2,]]—they are both regular local rings of dimension n + 1.
We shall study such rings in Chapter 19.

There is a recent reformulation and extension of a useful part of these
results, due to Avramov, Foxby, and Herzog [1994]: If ¢ : R — S is any
homomorphism of local rings sending the maximal ideal m of R into the
maximal ideal of S, then ¢ has a factorization R — R’ — S, where R’ is
complete and local, " — S is a surjection, and R'/mR’ is a regular local
ring. Such a factorization is called a Cohen factorization. Cohen factor-
izations are not unique, but any two have a sort of common refinement.
In case S is a complete local ring with residue class field of characteristic
p > 0, for example, the map Z — S induces a natural map Z,) — S; and
we may then take the ring R’ to be W(K)|[z1,...,2,)], where K is the
residue class field of S.

Suppose X C A" is an affine variety with coordinate ring A(X) and
p is a point of X, with m, the maximal ideal of p. Let R = A(X)m, be
the localization, the “local ring of X at p”, and let m be its maximal
ideal, the localization of m,. The completion Rum should be thought of as a
ring of functions “defined on a very small neighborhood of p.” Of course,
one consequence of this view is that we would expect R, not to have
any nilpotent elements (functions with values in a field could hardly be
nilpotent!). This is indeed true, though we shall not prove it here.

Theorem 7.9. If R is a local ring with mazximal ideal m that is a local-
1zation of a ring finitely generated over a field or the ring of integers Z,

then the completion Re has no nilpotent elements. (See Zariski and Samuel
(1958, Vol. II, Chapter 8, Section 13].)

No such result holds for arbitrary Noetherian rings. In fact a theorem of
Larfeldt and Lech [1981] says that if A is any finite-dimensional algebra over
a field k (for example k[z]/(x?)), then there is a Noetherian local integral
domain R with maximal ideal m such that Ry, 22 A[[21, ..., z,]] for some n.
(For more sophisticated versions, see Heitmann [1993] and the references
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there.) This is one of the ways in which the Noetherian property is “too
general.” There have been attempts to define a more special class of rings
that would not only be Noetherian but would also share other good prop-
erties of affine rings, such as the one expressed by Theorem 7.9. Nagata’s
“pseudogeometric” is perhaps the first, and Grothendieck’s “excellent” the
most recent—perhaps even the definitive—example.

7.5 Basic Properties of Completion

In all of this section R will denote a commutative ring and m C R will
denote an ideal. We will consider the m-adic filtration m' of R, and the
completion R = Rn. Let m; be the kernel of the natural map R — R/m”".
Thus th,, consists of all those elements of R C [1; R/m? whose component
in R/m’ lies in m" for every j (and are thus 0 if j < n). Note that m"R C
m, C (m;)"; we shall see that in the Noetherian case they are all equal,
although in general they may differ (see the example in Bourbaki [1985]
Ex. I11.2.12.)

Before proving the Theorems above, we explain some useful elementary
results. From the definitions we get R/rﬁn = R/m". It follows that R =
lim R/m”, so R is complete with respect to the filtration by the m,,. Further,
if we write gr R for the associated graded ring of R with respect to this
filtration, then the natural map R — R induces an isomorphism gr, R =

grR.
It is convenient to define elements of R as limits of sequences or series
of elements of R. We shall say that a sequence of elements ay,as,... € R

converges to an element a € R if, for every integer n, there is an integer
i(n) so that a — a;;,) € m,. It follows that a sequence a; of elements of
Rm converges in Ry, iff it is a Cauchy sequence, in the sense that for every
integer n there is an integer i(n) such that

(%) a; —a; €m, foralli j>i(n).
If the a; are in R, this condition is clearly the same as the condition
a; —a; em” forall ¢,7 > i(n).

A convergent sequence of elements of R has a “limit” a € R defined by
taking a to be the element of II,, R/m" whose nth coordinate is the same
as that of a;;,). We write @ = lima;. Because the m, are ideals, both
addition and multiplication are continuous in the sense that if a = lima;
and b = lim b; then a; +b; and a;b, are convergent sequences which converge
to a + b and ab, respectively. For example, to prove the second equation, if
i(n) is chosen so that

a; —a; € m, foralli,j >i(n)
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and
b, —b; em, foralli,j>i(n),

then
aib; — ajbj = az-(b; — bj) + bj(a,- — LL]') € ﬁln for all ’i,j > z(n)

Note that condition (*) becomes the usual definition of a Cauchy
sequence if, for each a € f%m, we take the sets a + m, to be a base for the
open neighborhoods of a; the resulting topology is called the Krull topol-
ogy, or the m-adic topology, on R. In fact, the whole theory of completions
can be developed on this Cauchy sequence foundation, as the reader will
see from Fxercises 7.8-7.10.

The simplest way to write down sequences of elements satisfying condi-
tion (x) is as the partial sums of a series of elements of R whose ¢th term
1s in m’.

3
a; = Zb‘], bi € mi.
Jj=1

In this case we define the infinite sum 7%, b; to be the limit of the a,. Note
that this is exactly what we do when we write down formal power series—in
that case the ideal m is generated by the variables of a polynomial ring.

We can use these ideas, for example, to make sense of the usual Taylor
formula for 1/(1 + z) in the context of complete rings.

Proposition 7.10. If R is complete with respect to an ideal m, then the
elements of the multiplicatively closed set U := {1 + ala € m} are units
in R.

Proof. If a € m, then b= 1 — a4+ a® — ... is a power series that converges
in R; the product (1 + a)b is the limit of the series

(1+a)—(1+a)a+(l+a)a®—-- -
The ith partial sum of this series is 1 4 a‘, so the series converges to 1. [J

Corollary 7.11. If R is a local ring with mazimal ideal P, then the power
series ring

R[[JZI, ey .In]]

in indeterminates x; 18 a local ring with maxrimal ideal

P+ (z1,...,2,).

Proof. An element f outside P + (z1,...,x,) has constant term u outside
of P—thus a unit of R. The element u'f is of the form 1 + g(z), with
g(z) € (z1,...,2,). Thus, u~!f is a unit, so f is too. O
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Given this result, it is interesting to ask which localization we get by
inverting the elements of U := {1 + ala € m}. See Exercise 7.3.
Next we present a more serious application of the idea of convergence.

Proposition 7.12. Suppose that R is a ring that is complete with respect
to a filtration by ideals m;. Let gr R be the associated graded ring of R
with respect to this filtration, and for a € R let in(a) denote the initial
form with respect to this filtration. Suppose that I C R is an ideal, and

ai,...,as € I. If in(aq) . ..,in(a,) generate in(I) as an ideal in gr R, then
ay,...,as generate I.
Proof. Let I' = (a1,...,as). We may as well assume that no a¢; = 0, and

then we may choose a number d so large that none of the a; is contained
in my. Given any f € I, with in(f) of degree e, say, we may write

in(f) = ZGj in(a;),

with G; € gr,, R homogeneous of degree equal to deg(in(f)) — deg(in(a;)).
It follows that if we choose g; € R with in(g;) = G; then f -3 g;a; lies

in m., 1. Repeating this procedure, we eventually get an element f’ € I’ such

that f — f/ € mgy;. Thus we may assume from the outset that f € my, .
Under these circumstances, the G; defined above are of degree greater

than or equal to e —d > 0, and thus we may take g; € m._;. Now repeating

this procedure, we define elements gﬁ” € M, _g44; such that

0 1 9 .
f_z_9§')aj—Zg§-)aj—Zgﬁ.)aj*..._zgg )aj
J J F -

noo.
=J- Z Z g]('Z)aj € Mepptl-
7 1=0

The series Y ;o g](-i) converges in It; we write h; for its limit. Because limits

preserve finite sums and products, we get f = Zj h;a; € I' as required. O

Proof of Theorem 7.1a. With notation as in Proposition 7.12, gr f%,h =
gr., R. Since R is Noetherian, R/m is Noetherian. The ring gr,, R is gener-
ated over R/m by a basis for the finite-dimensional vector space m/m?, so
gr, R is Noetherian by the Hilbert basis theorem (Theorem 1.2). Thus for
any ideal I C Ry, the ideal in(I) is generated by the initial forms of finitely
many elements ay,...,as € I. It follows from Proposition 7.12 that the a;
generate I, so I is finitely generated. O

Another consequence suffices to prove Theorem 7.1b.
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Corollary 7.13. If R is Noetherian, then m, = m"Rum. In particular,
R/m/R = R/m/ R is complete with respect to mR, and

N

8m, Ry = gr, R.

Proof. The inclusion R C R,, induces an isomorphism
gr R = gr, R,

where gr Ry, is the graded ring with respect to the filtration by the ideals
m;.
For the first statement, it suffices by Proposition 7.12 to show that the
two ideals have the same initial ideals in gr R,,, and this is obvious because
both initial ideals consist of all elements of degree > n. The other state-
ments follow at once. O

We now turn to the question of flatness. We first need a criterion for
two filtrations (of an abelian group, say) to give the same completion. It is
enough for the two filtrations to be comparable in a sense made precise in
the following lemma.

Let R =ng D ny D ... be another filtration of R and write Ry and R,
for the respective completions.

Lemma 7.14. If for each n; there is an m; such that m; C n;, and for each
m; there is an n; such that n; C my, then there is a natural isomorphism

Ru 2 R,.

Proof. First, suppose that the n; are simply a subset of the m;; the condition
of the lemma says in this case that infinitely many m; are among the n,.
In this case the projection onto a subproduct

HR/I‘(L — HR/TI]'

clearly induces a natural isomorphism Ry = Rn, so we are done.
In the general case we may choose injective functions «, 3,7 : N — N
such that
Mj O Na(j) D Ma() 2 Ny(),

and these induce maps R/n,;) — R/mg; — R/ny; — R/m; for all j,
and thus natural maps as in Figure 7.4.
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~ ~ ~

Rq Rn Ry, Ry
| | I I

limR/nd — limR/m), — limR/n) — lim R/m,

s~ A A

FIGURE 7.4.

Since the maps from the first to the third terms and from the second to
the fourth terms are the isomorphisms treated in the special case above,
we are done. O

The next step is to show that in suitable circumstances completions
preserve exact sequences. This is very close to Theorem 7.2 and is a key
result in making completions usable. The nontrivial part of the proof is a
telling application of the Artin-Rees lemma. This is the most subtle step in
the theory; in general taking limits is not right exact. See Exercise A6.11.

Lemma 7.15. Let R be a Noetherian ring and let m be an ideal of R. If
0—-A—-B-C-—-0
s a short exact sequence of finitely generated R-modules, then
0— l@A/mjA — liinB/ij — l(iLnC/ij’ — 0
is ezact. Thus, completion with respect to the m-adic filtration preserves

exact sequences of finitely generated modules.

Proof. The second statement follows from the first because any exact
sequence

P+l Pn
'“"14n+1_’f4nﬁ‘> n—-1 — "

can be written as a “composite” of short exact sequences
0—ime, ; — A, —»imyp, — 0.

To prove the first statement, we begin by showing that ling/mj B —
limC /m’C' is an epimorphism. This follows by an easy diagram chase: If
(¢; + m/C) € limC/m/C, then we must show that there is an element
(b; + m’ B) € lim B/m/ B mapping to (c; + mJC). That is, we must show
that there is a sequence of elements b; € B such that

a. b; — ¢;(modm’/C), and

b. b; = bi(modm'B) if i < j; it is of course enough to check this for
i=7- L
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We choose these inductively: Having chosen by,...,b; satisfying con-
ditions a and b, we choose an arbitrary element b.,, mapping to
¢;+1mod m’*1C. Both ¥, and b; map to the same element ¢; modm’C.
But the sequence

A/m'A - B/m/B — C/m!C — 0

is exact since it is R/m’ ® {A — B — C — 0}; so there is an element
aj+1 € Asuch that a;y — bj—b,,; modm/. The element bj ;1 := b}, +a;.1
satisfies both conditions.

It remains to show that

(%) 0 — lim A/m/A — lim B/m B — lim C/miC

is exact. To do this we wish to replace lim A/m’A by lim A/(A N m/B),
because * is then replaced by the limit of the exact sequences

0— A/(ANm'B) - B/m'B — C/m’C,

and it is easy to show that such a limit is exact (that is, the inverse limit
of left-exact sequences is left-exact).

To make the replacement, we must show that the filtration of A by
the submodules m/ A gives the same completion as the filtration by the
submodules A N'm’ B. Indeed, it is clear that AN m/B D m/ A, and by the
Artin-Rees lemma (Lemma 5.1) there is a number k such that A Nm’B =
m/~*(ANm*B) C m’~*A. By the criterion of Lemma 7.14, the two filtrations
give the same completion, so the desired replacement is legitimate.

Now we must show that

0— limA/ANW B — lim B/m/ B — lim C//m’C

is left-exact. This follows directly from the definition of the inverse limit.
If
(b1,bo,...) € lgnB/ij goes to (0,0,...) € limC/m’C,

then each b; goes to 0 in C/m?C. Thus b; € A/ANmIB, and
(bi,ba,...) € lim A/A N miB

as required. O

Proof of Theorem 7.2a. The second statement follows at once from the first.

To prove the first, we begin with the case M = R, where the result is sim-
ply the definition of R = R,,. It follows at once from the definition that lim
commutes with finite-direct sums. Thus the result is true for finitely gen-
erated free modules. Now let M be any finitely generated module, and let

F-G-—->M-—>0

be a free presentation of M. From the fact that lim preserves the exactness
of sequences of finitely generated modules, it follows that the top row in
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the diagram

~ ~ N

F — G — M — 0

R

é@RF — E@RG — R@RM - 0

is right-exact. Of course, the bottom row is right-exact by the right-
exactness of tensor products, and the two vertical maps on the left are
isomorphisms by what we have already proved. A diagram chase now shows
that the right-hand vertical map is also an isomorphism, as required. [J

7.2b. By Proposition 6.1 it is enough to show that the multiplication map
IorR—IRCR

is a monomorphism for finitely generated ideals. By part a, this is the same
as showing that the map
I - R

is a monomorphism. This follows from Lemma 7.15.

7.6 Maps from Power Series Rings

Our next results concern homomorphisms of complete rings. One of the
things that makes a polynomial algebra R[zi,...,x,] nice is that a map
from it to another R-algebra S may be specified by simply telling where to
send each of the z;. The power series ring has a similar property, but only
with respect to complete rings S.

Theorem 7.16. Let R be any ring and let S be an R-algebra that is com-
plete with respect to some ideal w. Given fi,..., f, € n:

a. There is a unique R-algebra homomorphism
¢ : R[[xy,...,z,]] > S

sending x; to f; for each i. The map ¢ takes a power series

glx1, ..., xn) to g(f1,...,fn) €8.

b. If the induced map R — S/n is an epimorphism and fi,..., f, gen-
erate n, then ¢ 1s an epimorphism.

c. If the induced map of associated graded rings
Bry: R[xh ce 7:1;71] = 8L(z),....z,) R[[xla s ,.’L‘n]] — 8y S

is @ monomorphism, then ¢ is a monomorphism.
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Note that part b would follow at once from Nakayama’s lemma if we knew
in advance that S was a finitely generated module over R[[z1,...,z,]]. In
fact, the hypothesis of Nakayama’s lemma can be weakened, in the case of
complete rings, to include this case. See Exercise 7.2.

Proof.

a. The unique R-algebra map R[zi,...,r,] — S/n! sending z; to the
class of f; factors through

Rlz1,...,zo)l/(x1, .. 20) = Rlzy, ..., 2] /(21, .. 20)t — S/l

and thus induces unique maps R[[z1,...,z,]] — S/n’ sending z; to
the class of f;. Since S is the inverse limit of the S/n, there is a
unique map ¢ : R[[z1,...,2,]] — S sending x; to f;, as required. The
image of g+ (z1,...,2z,) in S/n"is g(f1,..., fn)+n' for every ¢, so the
image of g in S is g(fi1,..., fn), which makes sense precisely because
S is complete with respect to n.

b. It follows from our hypothesis that the map
(z1,...,1.)/(z1, ..., 2,)* — n/n?
is a surjection, so the induced map
gry :grg, a) R —gr,S

is also a surjection. Now, given 0 # g € S, let ¢ be the largest number
such that g € w'—such an i exists because S is complete, so Nn/ = 0.

Since gr is a surjection we may find an g; € (z1,...,,)" whose
initial form is carried to the initial form of g. It follows that g—¢(f1) €
nitl

Iterating this process, we obtain a sequence of elements g; €
(z1,...,2,)"" such that g = ZJOC:I ©(g;). Because ¢ preserves infi-
nite sums, this yields g = go(z;il gj), and we are done.

c. If 0 # g € R[[xy,...,x,]], then in(g) is a nonzero form, say of degree
d, and from our hypothesis we get

gr(in(g)) #0

in the degree d part of gr, S. But g = in(g) mod(zy,...,x,)%", so

¢(g) = gr ¢(in(g)) mod n*!, whence ¢(g) # 0 as well. O

To exploit the Theorem we introduce some notation. If f € R[[z]] is a
power series in one variable, we write f'(2) for the result of differentiating
f term by term with respect to z. Thus for example f(z) = f(0) + f'(0)z+
(higher order terms).
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Corollary 7.17. Let f € zR[[z]] be a power series. If ¢ is the endomor-
phism

¢: Rl[z]] — R[[z]l; z+ f,
which is the identity on R and sends x to f, then  is an isomorphism iff
f'(0) is a unit in R.

Proof. Suppose that ¢ is an isomorphism. The elements of R[[z]] not in (x)
are those with nonzero constant term, and ¢ preserves this subset. Since
@ is an isomorphism, it follows that ¢((x)) = (z). In particular, the image
o(z) = f of the generator X of (z) is a generator of (z). We deduce that
f + (2?) generates (z)/(z?). Since f = f/(0)z(mod(z?)), we see that f'(0)
is a unit of R.

Conversely, suppose that f'(0) = u is a unit of R. We have gr(,) R[[z]] =
RJz], and

gry: Rlz] — Rlz]; = — ux,

is an isomorphism because u is a unit. By Theorem 7.16 ¢ is injective. We
may write f = ux + hx? = (u + hx)z for some h € R[[z]]. Since u + hz is
a unit in R[[z]], we see that f generates (x). Again by Theorem 7.16, ¢ is
surjective, and thus an isomorphism. 0O

e can use thi rov nsel’s lemma.
Wi se this to ¢ Hensel’s le

Proof of Theorem 7.3. To simplify notation, set f'(a) = e. We may choose
h(z) so that

fla+ex) = f(a) + f'(a)ex + h(z)(ex)?
= f(a) + €*(z + 22h(z)).

By Theorem 7.16 there is a ring homomorphism ¢ : R[[z]] — R][z]] that
is the identity on R and takes x to x + xh(z). By Corollary 7.17, ¢ is an
isomorphism. Applying ¢! to the above equation, we obtain

fla+ep '(2)) = f(a) + ez.

By hypothesis, we may write f(a) = e’c with ¢ € m. By Theorem 7.16
there is an algebra homomorphism 1 that is the identity on R and carries
x to —c. Applying it, we get

fla+ e (z)) =0,

so b= a+ ey t(x) is the desired element.

Suppose now that e is a nonzerodivisor. To prove the uniqueness of b,
suppose that both b and b, are roots of f differing from a by elements of
em, say b = a + er and by = a + ery, with r,r; € m. By Theorem 7.16
there are ring homomorphisms 3, 3, : R[[x]] — R|[z]] that are the identity
on R and take = to r and to r; respectively. Applying them to the above
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formulas produces

0 = f(a+er) = f(a) + eX(r + r*h(r)),
0= fla+er) = f(a) + e (r +rih(ry)).

Subtracting and using the assumption that e is a nonzerodivisor we see that
r4+7r2h(r) = r1+72h(r1), that is, 3p(x) = Sip(z). By the uniqueness state-
ment of Theorem 7.16, we get B¢ = (1, and since ¢ is an isomorphism,
8 = 3. Thus r = r; as required. O

We now turn to the proof of the Cohen structure theorem. First we deal
with the existence of coefficient fields. We shall give separate proofs for
each of two overlapping cases. We first treat the case where the residue
class field has a separating transcendence basis (this includes all cases in
characteristic 0 and the finitely generated case in characteristic p). The
only tool that is necessary here is Hensel’s lemma. Next we treat the case
where the residue class field has characteristic p. Here the coefficient field
can be described using the pth power map.

Proof of Theorem 7.8. Let R be any local ring containing a field &k, and let
K be the residue class field of R. If B is a subset of K algebraically indepen-
dent over k, and B is any set of representatives for B, then every nontrivial
polynomial in the elements of B with coefficients in K has nonzero image
in K, and is thus invertible in R. It follows that R contains the field k(B) of
rational functions in the elements of B, and this field maps isomorphically
to k(B).

Now suppose that K is separable over k£ and that B is a differential
basis for K/k. In characteristic 0 the hypothesis is equivalent to B being
a transcendence basis for K/k; in the case of characteristic p > 0, Theo-
rem Al.3c shows that the elements of B are algebraically independent over
k* K?~. In either case, if B C R is a set of representatives for B, then the
field k:(B) is contained in R. Under the hypothesis that R is complete and
Noetherian, we shall show that there is a unique coefficient field K for R
containing k(B).

Suppose first that the characteristic of & is 0, or more generally that K is
separably algebraic over k(B). By Zorn’s lemma, we may choose a subfield
K' of K, containing k(B) and maximal among subfields containing k(B)
that have unique liftings to subfields of R containing k(B). Let K’ C R be
its lifting. We must show that K’ = K. Let a € K be an element, and let
f(t) be the monic irreducible polynomial with coefficients in K’ such that
f(a) = 0. Using the inverse of the isomorphism K’ — K’  we may lift f to
a monic polynomial f with coefficients in R. Since K’ is separable over K
the roots of f are distinct, so the derivative f'(a) # 0 in K. By Hensel’s
lemma (Theorem 7.3), there is a unique root @ € R of f whose image in K

is a. The field K'(a) is thus the unique field lifting K’(a) and containing
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K'. Putting this together with the uniqueness of K’, we see that K'(a) is
in fact the unique field lifting K'(a) and containing k(B). Since K’ was
maximal, we must have a € K’; that is, K’ = K as required.

Now consider the general case where the characteristic of £ is p > 0. We

shall show that i
(| kx*RiB]

q=p"*.n>1

is the unique coefficient field of R containing k and B. Here R? denotes the
ring of gth powers of elements of R, and k x R?[B] is the smallest subring
of R containing k, R?, and B. If £k’ is a perfect field contained in R, then
kK = k' C RY for every ¢ = p", so that ¥ C K. This proves the last
statement of the theorem as well.

We first show that any coefficient field K’ C R that contains k and
B must be contained in K. To see this, note that since K’ = K by an
isomorphism carrying B to B, the set B is a p-basis for K’ over k. Thus
by Theorem Al.4a, we have K’ =k« K'[B] C k x R1[B] for every q = p",
as required.

Next we define a homomorphism ¢ : K — K C R. For a € K and for each
g = p", let a, be a representative of a in k * R? [B]; such a representative
exists because k x K[B] = K by Theorem Al.4a. If a; is another such
representative, we claim that a;, — a; € m?, where m is the maximal ideal
of R. Once this is established, it follows that the sequence a1,a,,ap;,...
converges in R to a limit @ € Ng_pn>1k * RI[B ] K, 1ndependent of the
representatives a, chosen. We set p(a) = a. If r € K and r has image
a € K, then we may take a, = r for all ¢, so p(a) = r. Thus K = ¢(K). Of
course, the image of ¢(a) in K is just a. The independence of choices shows
immediately that ¢(a + b) = ¢p(a) + ¢(b) and similarly for multiplication,
s0 ¢ is a homomorphism and K is the unique coefficient field containing B.

It remains to show that with notation as above, a,—aj;, € m?. By definition
a, and a; are polynomials in the elements of B with coefficients in k x RY.

Any gth power of an element of B can be absorbed into the coefficients, so

we may write
. q ! / /q
= g UyTyW, A, = g Uy, T oW,

weW weW

with u,,u,, € k and ry,, 7}, € R, where W is the set of monomials in some
bi,...,bs € B, with degree < ¢ in each b;. Since a, — a, € m, the fact
that W is a basis for k x K9[by,...,bs| as k x K7 vector space shows that
Uyrd, — ul,rid € m for every w € W.

Let 7, and 7, be the images of 7, and r, in K. Since @,, /@), = (7], /Tw)¢ €
k7, and K contains no nontrivial purely inseparable extensions of k, we must
have (7, /7,) = v € k. Thus

(1/t) (s, — wyry) = v, — 7

= (vry —7),)? € m.
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Since m is prime, (vr, — 7)) € m, and thus (vr, — 7} )¢ € m4. Multiplying
by u,, we see that (u,rd, — u;,rd) € m. From this we get a, — a; € m?, as
required. 0

Proof of Theorem 7.7. Choose a coefficient field K C R, and let ay,
.,@n be a set of generators for the maximal ideal of R. Since R is com-

plete, Theorem 7.16a shows that there is a map ¢ : K|[zy,...,x,]] — R

sending x; to a;. Theorem 7.16b shows that this map is a surjection, so

that if 7 = ker ¢ then R = K{[[z1,...,z,]]/1. O

7.7 Exercises

Exercise 7.1: Let m be a maximal ideal of a ring R. Show that the map
R — R, factors through the localization map R — Ry.

Exercise 7.2: Suppose that M is a module over a ring R that is complete
with respect to an ideal m. We say that M is separated if Nym*M = 0.
This is the case, for example, if R is Noetherian and M is finitely generated.
If M is separated and the images of m,,...,m, € M generate M/mM,
show that my, ..., m, generate M. This is a version of Nakayama’s lemma
that works without assuming that M is finitely generated in advance.

Exercise 7.3: Recall that the Jacobson radical of a ring R is defined
to be the intersection of all maximal ideals of R. Let R be a ring, and let
I C R be an ideal. Show that [ is contained in the Jacobson radical of R
iff all the elements of U = {1 + ala € I} are invertible in R. Use this to
show that if R is complete with respect to an ideal m, then m is contained
in every maximal ideal of R.

Exercise 7.4: Suppose that R C S are Noetherian rings such that R
is complete with respect to the ideal m C R, and m is contained in the
Jacobson radical of S. Let M be a finitely generated S-module. Show that
if M/mM is finitely generated as an (R/m)-module, then M is finitely
generated as an R-module. This result is most often used when M = S.
Use it to give a different proof of the existence of the map ¢ in the example
at the very beginning of this chapter.

Modules Whose Completions Are Isomorphic

Exercise 7.5 Reflection of isomorphism from the completion: The
following result shows the tight relationship between module theory over an
arbitrary local ring and over its (in many ways much better behaved) com-
pletion. Suppose M and N are ﬁmtely generated modules over a Noetherian
local ring R whose completions M and N are isomorphic over R. Show that
M = N as follows:
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a. Deduce from Proposition 2.10 that Homg(M, N)" = HomR(M, N)

b. Let P be the maximal ideal of R. Show that P Hom R(M , N) consists
of maps that take M to PN.

c. Let ¢ € HomR(M ,N) be an isomorphism. Use Nakayama’s lemma
and part b to show that if ¢ € Homﬁ,(M , N) differs from ¢ by an
element of P Hom (M, N ), then ¢’ is an epimorphism.

d. Show that there are elements ¢/ € Homg(M,N) and ¢" €
Hompg(N, M) that are epimorphisms. Apply Corollary 4.4a to ¢'¢”

"

and to "¢’

The Krull Topology and Cauchy Sequences

Given a descending filtration R = mg D m; D my D ... of an abelian group
R by subgroups m;, we define the Krull topology on R (with respect to
the given filtration) by taking the subsets m; to be a base for the open
neighborhoods of 0, and imposing the condition that addition should be
continuous, so that the cosets r + m;, with r € R, form a base for the
family of all open sets.

Exercise 7.6:* Show that any subgroup m containing one of the m; is
open.

Exercise 7.7: Show that if R is a ring and the m; are ideals, then multi-
plication is continuous.

A Cauchy sequence with respect to the Krull topology is a sequence
of elements r; € R such that for each open neighborhood U of 0 in R there
is a number n with the property that for ,7 > n we have r; —ry € U. Two
Cauchy sequences r; and r! are equivalent if for each open neighborhood
U of 0 in R there is a number n with the property that for 7 > n we have
T, — 7‘; c U.

Exercise 7.8: Show that the set of Cauchy sequences forms a group under
componentwise addition, and that two sequences are equivalent iff their
difference is equivalent to 0.

Exercise 7.9:* Show that the set of sequences equivalent to 0 forms a
subgroup, so that the set of Cauchy sequences modulo those equivalent to
0 is again a group. We shall temporarily denote it by R’. Prove that R = R’.

Exercise 7.10: Show that under the hypotheses of Lemma 7.14, the topolo-
gies on R defined by the filtrations m; and n; are the same. Use this to give
a Cauchy sequence proof of the lemma.
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Completions from Power Series

Exercise 7.11:* Let R be a Noetherian ring, and let m = (ay,...,an) be
an ideal in R. Show that

~

Rm = R[[x1,...,2,]]/(z1 — a1, ..., Tp — an).

Exercise 7.12: If R is Noetherian, show that any element of the form
z — a, with @ € R, is a nonzerodivisor on R|[[z]]. This is trivial if we
replace R[[z]] by R]z], so it follows for R[[z]] by the flatness of completion.
Give a direct proof, without using the flatness of completion or the Artin-
Rees lemma. Construct a counterexample to the statement without the
Noetherian hypothesis. (Hint: The Noetherian hypothesis implies

(0:a™)=(0:a™") for large m.)

Exercise 7.13: If I is a finitely generated ideal of R, show that IR|[[z]] is
the ideal of all power series having their coefficients in I. Find an example
where [ is not finitely generated and the conclusion fails.

Exercise 7.14:* Taking the isomorphism of Exercise 7.11 as a definition,
show directly that the completion is flat as an R-module.

Coefficient Fields

Exercise 7.15: The characteristic of a ring R is the positive integer that
generates the kernel of the natural homomorphism Z — R. Let R be a local
ring with residue class field K. Prove that R contains some field k, iff the
characteristic of R is the same as that of K. In this case R is said to be an
equicharacteristic local ring.

Exercise 7.16: Let f € Q[x] be an irreducible polynomial of degree greater
than 1 with rational coefficients, and let R be the local ring Q[z](s). Show
that R has no coefficient field. If f(x) = 2°+ 1, find the (unique) coefficient
field in R.

Exercise 7.17 (Coefficient fields and maximal subfields): Any coef-
ficient field in a local ring R is a maximal subfield (a subfield is a subring
that is a field). By Zorn’s lemma, every local ring contains maximal sub-

fields.

a. Show that if R is complete and contains a field of characteristic 0,
then every maximal subfield is a coefficient field.

b. Let R = k(t)[[z]], where k is a field of characteristic p > 0. Show that
k(t? 4+ x) is a maximal subfield of R that is not a coefficient field. This
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example shows that the hypothesis of separability cannot be deleted
in Theorem 7.8.

Exercise 7.18: Suppose X C Y is an irreducible algebraic subset of an
algebraic set Y over a field k. Let R be the affine coordinate ring of X and
let S be that of Y, so that R = S/ P, for some prime ideal P. The quotient
field K := K(R) is the residue class field of Sp.

a. Show that the local ring of Y along X has a coefficient field con-
taining k if, after perhaps removing a closed set from X and Y, X
is a neighborhood retract in Y. To restate the problem algebraically,
suppose that there is a coefficient field of Sp containing k; that is,
suppose that there is a map of k-algebras o : K — Sp splitting the
surjection Sp — K. Show there is a single element f ¢ P and a map
o' : R — S[f™!] of k-algebras such that o is the localization of o’.
(This map o’ correspondstoamap Y —{y € Y|f(y) =0} - X—{z €
X|f(z) = 0} that is a retraction of the inclusion map.)

b. Supposing that S = k[x,y], and P = (2 — ), show that there is a
coeflicient field, and a retraction

k[z,yl/(x* — *) — k[z,ylly ']

c. If K = k(ty,...,t,), the field of rational functions in n variables,
show that S has a coefficient field. Now assume that k is algebraically
closed, that S = k[x1,...,x,], and that K has transcendence degree 1
over k. If you know some algebraic geometry (say Hurwitz’ theorem,
Hartshorne [1977, Chapter IV, Section 2]), you may show that S, has
a coefficient field iff K = k(t).

Other Versions of Hensel’s Lemma

The following theorem is the classic version of Hensel’s lemma, a criterion
for the factorization of a polynomial into relatively prime factors over a
complete local ring.

Theorem 7.18. Let R be a Noetherian ring, complete with respect to an
ideal m. Let F(z) € R[z] be a polynomial in one variable with coefficients
in R, and let f(x) be the polynomial over R/m obtained by reducing the
coefficients of f modm. If f factors as

f =919 € (R/m)[z]

in such a way that g1 and go generate the unit ideal, and g, is monic, then
there is a unique factorization
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F = G1G2 € R[CL‘]

such that Gy is monic and G; reduces to g; mod m.
The next two exercises give a proof for this theorem.

Exercise 7.19:* Suppose that S is a ring, that g;, g2 € S[x] are polynomials
such that g;, g» together generate the unit ideal, and that g; is monic of
degree d. Show that:

a. If h € S[z] is any polynomial, then there is a unique expression
h = hi1g; + hags for polynomials hy, hs with deghs < d.

(Note that the usual division with remainder is the case g, = 1.)

b. If S = R/m for some ring R and ideal m with m in the Jacobson
radical of R, and G1,G2 € R|z| are any polynomials such that G;
reduces mod m to g; and G, is monic, then G;, G5 together generate
the unit ideal of R[z].

Exercise 7.20:* Prove Theorem 7.18 by making a convergent sequence
of approximate factorizations, as follows: For the first approximation, take
any polynomials G},G, € R[z] with G| monic that reduce to ¢g; and go
mod m. Show that G| and G), generate the unit ideal.

By part a of Exercise 7.19 we may write the difference between F and
G1G5 in the form

F -GGy =G\ H, +GyH, with H; € R|z],deg H, < degG'.

As the second approximation, take GY = G} + Hy and G = G}, + H;.
Show that these polynomials give a factorization of F modm?. Show that
both H; and H, have coefficients in m, so that G/ agrees with G; mod m.

Since R is also complete with respect to m?, we may now replace m by m?
in the previous argument, which results in a third approximation G}’ and

! congruent to the second mod m?. Continuing this way, show that the
sequence of approximations G, GY,... converges to polynomials G; with

It
the desired properties.

Exercise 7.21: Prove that Theorem 7.18 implies Theorem 7.3 in the special
case where f'(a) is a unit, as follows: Writing ~ for reduction mod m, show
that we may write

Now show that
9(z) = f/(x) = f'(a) mod(x — a).

Use the fact that f’(a) is a unit in R/m, to show that g(z) and = — a
generate the unit ideal in R/m[z]. Now lift to a factorization of f(z).
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Exercise 7.22 (Lifting idempotents and factorization): Here is a
generalization of the case of Theorem 7.18 where F' is monic, proved by
lifting idempotents:

Let R be a Noetherian ring, complete with respect to an ideal m. Let S
be an R-algebra, and F' € S an element. Suppose that A = S/(F) is finite
as an R-algebra (that is, finitely generated as an R-module).

Let f € S:= R/m ®p S be the image of F, and suppose that f factors
as f = gi1g2, where (g1, g2) = (1). Show that S/(f) = S/(g1) x S/(g2), so
that there are orthogonal idempotents €1, ez € S/(f) such that (S/(f))e; =
S/(g;). Lift the e; to orthogonal idempotents E; of S/(F) so that S/(F) =
Al X A2 with Ai = (S/(F))El

Deduce that (with an obvious abuse of notation) (F) = (F, E;) N (F, E»)
= (F, Ey)(F, Ey), and that the ideals (F, E1), (F, E») reduce modm to the
ideals (g2), (g1), respectively. If (F, Ey) is a principal ideal, generated say
by an element G; € S, then F' € (G), so we may write F' = G1G» for some
G, € S. If g; is a nonzerodivisor, it follows that G maps to g mod m, and
we have thus lifted the given factorization of f.

Now suppose that S/F is free over R. Show that S/(F, E,) is projec-
tive over R. Suppose further that S/(g) is free over R/m. Show using
Nakayama’s lemma that S/(F, E») is free over R of the same rank.

To deduce Theorem 7.18 when F' is monic, take S = R[x]. By Proposi-

tion 4.1, S/(F) is finite and free over R. Also by Proposition 4.1, the ideal
(F, E,) is principal and generated by a monic polynomial if S/(F, Es) is
finite and free over R.
Exercise 7.23 (Direct proof of lifting idempotents):* Suppose m? =
0, and let € € R/m be an idempotent. Find a polynomial p(z) such that
if e € R is any element that maps to € in R/m, then p(e) is the unique
idempotent lifting € whose existence is guaranteed by Corollary 7.5.

Exercise 7.24: Let k be a field and let R be either k[[t]] or k[t]/(t?). Show
that the ring of 2 x 2 matrices over R contains many distinct idempotents
reducing mod ¢ to the idempotent

(00)

Exercise 7.25: Using the proof of Corollary 7.17 as a guide, prove the
inverse function theorem, which says:

Let fi,...,fa € (x1,...,20)R|[z1,...,2,]] be n power series. If ¢ is the
endomorphism

"2 R[[a:l’)a;n“ - RHxlw”amnHa N R ) f1a~--afna

and J(z) is the Jacobian matrix

J(x) = (8fi/0ux;),



7.7 Exercises 209
then ¢ is an isomorphism iff det J(0) is a unit in R.

Exercise 7.26: With notation as in Exercise 7.25, suppose det J(a) is a
unit in R. Follow the outline of the proof of Theorem 7.3 to show that if
(ai,...,a,) € R™ is an approximate solution to the system of equations
fi(x) = 0 in the sense that

fi(ay,...,a,) em fori=1ton,

then there is an actual solution (by,...,b,) € R" of the equations such that
each b; differs from a; by an element of m. If you feel ambitious, do the
same without assuming that det J(a) is a unit, but assuming instead that
each fi(ai,...,a,) is in the ideal

(det J(a))*m.

See Bourbaki [1985, sect 4.6, Theorem 2] if you get stuck. (Most of the
above treatment is taken from this source.)

Exercise 7.27:* Give a criterion for a p-adic unit v to be an nth power
for any n.



Part 11

Dimension Theory

In Chapter 8 I have given an introduction to dimension theory from an
historical point of view, and I have tried to explain the geometry behind
some of the most important results and definitions. This chapter could
logically be skipped, or postponed until later.

Chapters 9 through 14 present a unified treatment of classical dimension
theory. By contrast, Chapter 15, Grobner Bases, is a general introduc-
tion to that subject, which could be read independently of the preceding
chapters; indeed, it may be read independently of the rest of this book. 1
have included it in this part because the technique it contains allows one
to compute dimensions explicitly (it is not obvious from the definition of
dimension that effective computation is possible at all). Chapter 16 presents
the technique of differentials. Related to the tangent bundle, this is another
fundamental technique for handling dimension.



8

Introduction to Dimension Theory

Of all the theorems of analysis situs, the most important is that
which we express by saying that space has three dimensions. It
is this proposition that we are about to consider, and we shall
put the question in these terms: When we say that space has
three dimensions, what do we mean?

—Henri Poincaré, quoted by Hurewicz and Wallman [1941]

As with Chapter 1, the material presented in this chapter is rather
advanced compared to the rest of this book. If you have never studied
dimension theory before, you may find it difficult to understand the mate-
rial in detail. I suggest that you browse through Chapter 8 without worrying
about the details during the first reading; I hope that it will tell you some-
thing of what is significant in the theory. In Chapter 9 T have begun the
subject again, with a self-contained and more elementary account. None of
the actual results and definitions in Chapter 8 will be required for under-
standing the rest of the book.

Arguably the most fundamental notion in geometry and topology is that
of dimension. In this part of the book we shall take up its algebraic ana-
logue, which plays an equally fundamental role in commutative algebra
and algebraic geometry. In this section we shall sketch a little of the his-
tory that led to the modern algebraic notion, called Krull dimension, and
explain some of the reasons for accepting it as the “right” definition, at
least for Noetherian rings. (This explanation, beginning with the Axioms
D1-D4 leads us into rather advanced territory, and will not be used in the
sequel.) We then outline some of the central results of the theory. In the
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following chapters we shall start again and give a self-contained and more
elementary account.

To help understand the differences as well as the similarities between the
algebraic and topological notions, we begin by discussing the topological
one. It was an idea of the ancient Greek mathematicians that a curve (we
would say a curve segment) was something bounded by points; that a sur-
face was something bounded by curves; and that a volume was something
bounded by surfaces. In nineteenth-century geometry, the idea of dimension
was used intuitively. Euclidean n-space was, by agreement, of dimension n;
and in general an object was said to be n-dimensional if the least number
of parameters needed to describe its points, in some unspecified way, was
n. Knowledge of set theory, necessitated by the increasing sophistication
of analysis, caused the geometers to be driven from this paradise near the
end of the century: Cantor’s one-to-one correspondence between the points
of a line and the points of a plane (1875), and the space-filling curves of
Peano (1890) and Hilbert, showed decisively that more subtle ideas were
necessary. These developments must have been quite unsettling: Cantor
himself wrote of the one-to-one correspondence in a letter to Dedekind in
1877:

Your latest reply about our work was so unexpected and so
novel that in a manner of speaking I will not be able to attain
a certain composure until I have had from you, my very dear
friend, a decision on its validity. As long as you have not con-
firmed it, I can only say: I see it but I don’t believe it. [---] the
distinction between domains of different dimensions must be
sought for in quite another way than by the characteristic num-
ber of independent coordinates. (The translation is from Fauvel
and Gray [1987], or see Purkert and Ilgauds [1935] pp. 32-35.)"

A precise topological definition of dimension was first given by
L.E.J. Brouwer (1913), working from ideas of Poincaré. In 1922, Menger
and Urysohn independently found a similar definition, which coincided with
Brouwer’s for most spaces: Dimension is a local property of a space at a
point and is defined inductively to be the smallest number n for which
arbitrarily small neighborhoods of the point have boundary of dimension
less than n, To start things off, the empty set is defined to have dimension
—1. (A beautiful exposition of the topological theory may be found in the
classic Hurewicz and Wallman [1941], from which the quotation at the head
of this chapter is borrowed.)

In algebraic geometry the notion of dimension has some special peculiar-
ities. From the study of the conic sections in antiquity until about 1800,

'Reprinted from The History of Mathematics: A Reader by J. Fauvel, J. Gray
(1987), by permission of MacMillan Press Ltd., London, England.
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algebraic geometry concerned itself with real algebraic curves. After the
introduction of coordinates by Descartes, such curves were defined by one
equation on the coordinates of the two-dimensional Euclidean plane and
had dimension 1 in every sense. (Since the curve rather than the equation
was fundamental, the fact that some equations, like z? 4+ 3% = 0, do not
define a curve in the real plane was unimportant.) The introduction of
complex numbers and the complex projective plane in the first third of the
nineteenth century changed the nature of the objects considered, but not
the view that they were one-dimensional. Curves now had complex points
(for example, a circle r = z? + 22, thought of as a subset of the projective
plane with equation r23 = 2% + 22, contained the famous “circular points
at infinity” (0,1, +%) in the complex projective plane—see Exercise 1.15¢).
Thus the idea was born that dimension had a meaning independent of what
field is used for the coordinates of points.

As far as I am aware, the early workers were not concerned with the
collection of all complex points of a plane curve as a single geometric object,
a surface. But that concern took the spotlight in the work of Riemann, as
understood by Clebsch [1864] and later authors, where algebraic curves,
interpreted as “Riemann surfaces,” arose as coverings of C = R? or better
of the complex projective line, or “Riemann sphere” CU{oc}. Now C could
reasonably be called either the complex plane (from a topological point of
view) or the complex line (from a complex-analytic point of view). Thus
algebraic curves had reasonable claims to being called either one- or two-
dimensional. Even the names, Riemann surfaces and algebraic curves,
suggest a certain schizophrenia. We have grown used to the confusion, and
speak happily in general of an n-dimensional complex manifold, which, as
a topological space, has dimension 2n.

In the study of a Riemann surface X, the field K(X) of meromorphic
functions on X was important from the start, as was the result that this
field has transcendence degree 1 as an extension of C. The field K(X)
coincides with what we would call the field of rational functions on X; if
X is given as an affine plane curve with equation f(z,y) = 0, then K(X)
is the quotient field of the domain Clz,y|/(f).

In the last third of the nineteenth century, a good deal of attention
was also given to spaces Y described as the zero loci of single equations
in complex three-space; these were considered to be surfaces by algebraic
geometers, although they are four-dimensional in the topological sense.
Again, the field of rational functions K (Y') took center stage. The fact that
K (Y) has transcendence degree 2 over C was interpreted by saying that it
takes two complex-valued algebraic functions to parametrize the points of
Y (up to finite ambiguity), and thus that ¥ has dimension 2.

From these beginnings, and from the axiom, like that of the topologists,
that affine d-space has dimension d, came the algebraic definition of dimen-
sion that was used early in this century: The dimension of an irreducible
variety in affine r-space over a field k£ (initially C) is the transcendence
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degree over k of the field of rational functions on X. This is by definition
the quotient field of the domain R = k[z1,...,x,]/I, where I is the ideal
of all functions vanishing on X. It was only natural to define the dimen-
sion of R to be this same transcendence degree. This definition was still
the accepted standard as late as 1935, as one may see from Krull’s famous
book Idealtheorie, published in that year.

The definition of dimension as transcendence degree over a ground field k&
agrees with our modern notion as long as one sticks to the coordinate rings
of affine algebraic varieties over k: that is, to domains finitely generated over
k. However, it is inadequate for other fundamental examples. For instance,
rings of algebraic numbers (finite extensions of the ring of integers) do
not even contain fields. Also, geometric examples involving reducible alge-
braic sets, such as that of Figure 8.1 make it clear that dimension is most
interesting as a local property of a space at a point. Unfortunately, the
localization of the coordinate ring of a variety, which might be hoped to
be the carrier of this local information, is almost never finitely generated
over the ground field. If one passes to power series rings, which represent
the variety in a local analytic sense, the situation is still worse; k[[z]] has
uncountable transcendence degree over k, although its dimension should,
on geometric grounds, be 1.

Although the definition by transcendence degree is useless in the case
of rings of algebraic numbers, there is an analogy that suggests what the
dimensions of these rings should be. As we saw in Chapter 1, some of
the very earliest algebraic work on Riemann surfaces was done by exploit-
ing the amazing analogy between Riemann surfaces and rings of algebraic
numbers. On the basis of this analogy one might well imagine that the
dimension of any ring of algebraic numbers should be defined to be 1. In
other cases where the definition by transcendence degree is not the right
thing, other ad-hoc arguments could be made. For the local ring of a point
on an algebraic variety, for example, the definition of the dimension can be
taken from that of the variety itself. The same reasoning could be made

N

™~ dimension 2 here

dimension
1 here
FIGURE 8.1.
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for power series rings and their factor rings, which correspond to points on
analytic varieties.

As increasingly complex constructions were made in commutative alge-
bra, such ad-hoc definitions became unsatisfactory. In 1937 Krull proposed
the following definition. For justification he quoted geometric evidence
accumulated by Emmy Noether [1923] for factor rings of polynomial rings
and by W. Riickert [1932] for factor rings of power series rings. He also
mentioned the arithmetic analogy given in the previous paragraph. The
definition now bears his name.

Definition. The Krull dimension (or simply the dimension) of a ring
R, written dim R, is the supremum of the lengths of chains of distinct
prime tdeals in R.

Here the length of the chain P, D P,_y D --- D Py involving 7+ 1 distinct
prime ideals is taken to be r; we remind the reader that the ring itself is not
considered a prime ideal. The supremum may in fact be infinity even for
Noetherian rings (see Exercise 9.6), although in the case of a Noetherian
local ring or an affine ring we shall see that it is finite.

This definition gains plausibility from the familiar fact that the dimension
of a vector space over a field k is the length of the longest chain of proper
subspaces; algebraically, an n-dimensional vector space corresponds to a
polynomial ring R = k[z,,...,z,], and an increasing sequence of subspaces,
starting with 0, corresponds to the decreasing sequence of prime ideals

(z1,...,2,) D(x1,...,xr—1) D -+ D (z1) DO.

We shall see in Theorem A that no chain of greater length exists.

As first examples, we see that any field k¥ has dimension 0, while the
polynomial ring k[z] has dimension 1: (z) D 0 is a chain of primes of length
1, and since every ideal is principal, there are no longer chains of primes.
(Reason: If (p) D (q) 2 0 with (q) a prime ideal, then g is a prime element.
Since p divides g, the elements p and ¢ differ by a unit, whence (p) = (q).)
The same argument applies in any principal ideal domain that is not a
field, so, for example, the ring Z of integers has dimension 1.

It is interesting to compare Krull’s definition with Menger’s, given ear-
lier, although this is unhistorical in the sense that Krull does not mention
the topological case or its pioneers. Krull’s definition exploits the simple
structure of algebraic varieties and replaces the closed sets that are the
boundaries of small neighborhoods of p that occur in Menger’s definition
by maximal closed sets not containing any component and containing p. If
we regard the set of primes of a ring as a topological space in the Zariski
topology and apply Menger’s definition, we get the same thing in many,
but not all, cases; Krull’s definition is in a certain sense more local.

Is Krull’s definition the “right” definition of dimension? We offer two
kinds of responses to this vague question:
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First, we shall give a few axioms satisfied by the definition, correspond-
ing to simple geometric properties. The axioms determine the notion of
dimension uniquely. (The proof of this fact depends on the Cohen structure
theorems, and we shall only sketch it.) We give them in order to orient the
reader toward the central properties of dimension—especially its behavior
under ring extensions, of which Axiom D3 is the simplest part. The axioms
themselves will not be used in the remainder of this book.

Second, we shall list some characterizations of dimension that serve to
connect the notion with other geometric ideas and make the concept fruit-
ful. These characterizations play a major role in the rest of this book, and
some of the succeeding sections will be organized around proofs of them.

We shall assume for the rest of this section, and in nearly all of Part 11,
that all rings considered are Noetherian. In the non-Noetherian case the
Krull dimension exhibits various pathologies. For example, if R is Noethe-
rian, then dim R[z] = (dim R) + 1 (Corollary 10.13). Geometrically, if R is
the ring of functions on some space, then R|z] is the ring of functions on
the product of that space and the affine line, so this formula is forced. But
in the non-Noetherian case one can have dim R[z] = (dim R) + 2. See, for
example, Gilmer [1974] for a study of this phenomenon.

8.1 Axioms for Dimension

1. Just as in the topological definition of dimension given above, dimension
should be a local property. This means, in particular, that the dimension
of a ring should be the maximum of the dimensions of its localizations; but
also, since passing to the completion corresponds geometrically to taking a
smaller neighborhood, that dimension at a point is preserved by completion.

Axiom D1 (Dimension is a local property).
dim R = SUPP is a prime of R dim RP’

and R
dim Rp = dim RP.

2. If X is an affine algebraic set then the ring of functions on X has
no nilpotent elements; nilpotent functions are not apparent in ordinary
geometry. On the other hand, if R is the affine ring of an algebraic set X,
and p € X corresponds to the maximal ideal P in R, so that R/P = k
is the “ring of functions on {p},” then it is possible to regard an element
f € R/P? as a function with a value at p together with a linear func-
tional on the tangent space to X at p. Thus as a ring, R/P? describes
first-order jets of functions on X at p (this will be explained further in
Chapter 16). We may think of it as the ring of functions on a first-order
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infinitesimal neighborhood of p. In the theory of schemes (see, for example,
Eisenbud and Harris [1992]) nilpotent elements of an affine ring R are quite
generally interpreted as describing some infinitesimal neighborhood of the
variety defined by R,.q = R/(nilpotent elements). Thus it is geometrically
reasonable to pose as an axiom:

Axiom D2 (Nilpotents do not affect dimension). If I is a nilpotent ideal
of R, then dim R = dim R/I.

3. For a G surjective map f : M — N of manifolds, Sard’s theorem
implies that the general fiber of f (fiber = preimage of a point) is again a
manifold, and the dimension of M is the dimension of N plus the dimension
of the general fiber. Such a principle also holds, under mild assumptions,
for the Krull dimension, but all we need here is the case corresponding to
a surjective map with finite fibers (in which the dimension of M will equal
the dimension of N). To see what the algebraic content of this condition
is, consider a map

0:R=klxy,...,z;]/J — klz1,...,25]/J =S

corresponding to a map ¥ : Y — X of algebraic varieties. The image
of 9 is dense in X (in the Zariski topology; but if & = C, also in the
classical topology) iff ¢ is a monomorphism. We shall show that if ¢ makes
S a finitely generated R-module, then the fibers of v are all finite sets
(Corollary 9.3). Under these circumstances, we shall have dim X = dimY'.
We take such behavior as the third axiom.

Axiom D3 (Dimension is preserved by a map with finite fibers). If R C S
are rings such that S is a finitely generated R-module, then dim R = dim S.

4. Finally, in examples where we have some reason to know what the
dimension should be, we should get the expected answer. First, since the
polynomial ring k[zi,...,z,] in r variables over a field k corresponds to
affine r-space, it should have dimension r; as the formal power series ring
k[[z1,...,z,]] is its completion at the maximal ideal (zi,...,z,), this ring
should have dimension r. The converse implication works too: If k is alge-
braically closed, then a consequence of the Nullstellensatz (Exercise 4.28)
shows that any maximal ideal of k[z1,...,z,] can be transformed by an
automorphism into (z1,...,,), and thus k[z1,...,2,] has dimension r if
k[[x1,...,z,]] does. Thus, to cover both examples, we need only make an
assumption about one. To emphasize that dimension is a local property,
we choose the power series ring.

Axiom Dd4a (Calibration—algebras over a field). If k is a field, then
dimk[[z1,...,z/]] = 7.
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This suffices if we only want to work with rings containing a field. To
include the arithmetic case we need a slightly more sophisticated version,
one that includes the idea that rings of algebraic integers have dimension 1.
Since we have taken dimension to be a local property, we only need to
assert this for the localizations, or even the completions, of such rings.
These have the property that they are local Noetherian integral domains in
which every ideal is principal, but not fields; such rings are called discrete
valuation rings. A complete discrete valuation ring that contains a field
is isomorphic to a formal power series ring in one variable over a field (see
Proposition 10.16), and thus is certainly of dimension 1. A part of the
Cohen structure theorems that we do not treat in this book shows that
all other examples look a lot like the ring Zp of p-adic integers, or a finite
extension of such a ring. Now since

k([z1,. ..,z )] = k[[z1]][[z2, . - ., z/]],

we may think of a power series ring in r variables as a power series ring in
r — 1 variables over a discrete valuation ring, and if we take the position
that all discrete valuation rings should have analogous dimension-theoretic
properties then we arrive at the following stronger version of Axiom D4a.

Axiom D4b (Calibration—general case). If R is a complete discrete val-
uation ring, then
dim R[[zo,...,z.]] = 1.

These properties suffice to characterize a function “dim” on the class of
Noetherian rings, and this function is equal to the Krull dimension. Since
we shall not return to these axioms, it seems worthwhile to sketch the proof
(which may only be intelligible after this book has been read): By Axiom D1
and the fact that the completion of a Noetherian ring is Noetherian (see
Theorem 7.1), we need only consider complete local Noetherian rings. By
Axiom D2 we may assume that they have no nilpotent elements. But as
we shall see (Exercise 13.9), a complete Noetherian ring containing a field
is a finite module over some subring isomorphic to a power series ring in
finitely many variables over a field. Its dimension is thus determined by
Axioms D3 and D4a; a similar result that we have not proved (references
are given in Chapter 7) shows that a complete local ring without nilpotent
elements that does not contain a field is a finitely generated module over a
subring isomorphic to a power series ring over a complete discrete valuation
ring. Its dimension is thus determined by Axioms D3 and D4b.

8.2 Other Characterizations of Dimension

At the heart of dimension theory are three further characterizations of
dimension that are useful in different contexts. We shall return to these in
later chapters.
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8.2.1 Affine Rings and Noether Normalization

We may characterize dimension for affine rings as follows:

Theorem A. If R is an affine domain over a field k, then
dim R = transcendence degree,R.

This is the common length of all mazimal chains of prime ideals of R.

In particular, this shows that the dimension of an affine domain is finite.

The first part of this statement is an avatar of the idea that the dimension
of a variety is the number of independent functions on it. In this sense the
algebraic geometers have never left paradise: There is no snake (that is,
Peano curve) in the garden. The reason is that algebraic geometers work
with such a restricted class of functions. The second part is a uniformity
result, a strengthening of the idea that the dimension of an irreducible
variety is the same at each of its points. It implies for example that if an
affine ring contains a chain of four primes P 2 Pi 2 P» 2 Q and a prime P’
between P and @) as in Figure 8.2, then it contains either a prime strictly
between P and P’ or between P’ and Q. In technical language we say that
an affine ring is catenary. Not every Noetherian ring is catenary; this
is one of the important “nongeometric” pathologies that Noetherian rings
exhibit (see Nagata [1962] for an example). But the catenary condition
holds for virtually any ring that one could meet in algebraic geometry. We
shall prove a general result along these lines in Corollary 18.10.

We shall prove Theorem A using the Noether normalization theorem
(13.3), which says that any affine ring of dimension r and any chain
of primes in it are comparable, via a finite map, to a polynomial ring
k[x1,...,z,] and a chain whose members are primes generated by subsets
of the variables. More precisely,

Theorem A1l (Noether Normalization). If R is an affine ring over a field

k (that is, R is a finitely generated k-algebra) and P, 2 P._; 2 2 Py is
a chain of prime ideals of R, mazimal in the sense that no further prime

FIGURE 8.2.
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ideals can be inserted into the chain, then there is a subring S of R with
S = k[zy,...,x,] such that R is a finitely generated S-module and P,NS =

(T1,. .., ).

The Noether normalization theorem is a touchstone for results on affine
rings. We apply it to give another proof of Hilbert’s Nullstellensatz, to prove
the finiteness of the integral closure of an affine domain, and to prove some
results on the behavior of the fibers of a map.

8.2.2 Systems of Parameters and Krull’s
Principal Ideal Theorem

Krull’s principal ideal theorem (Krull [1928]) may be expressed as a char-
acterization of dimension:

Theorem B. If R is a Noetherian local ring with mazimal ideal m, then
dim R is the minimal number n such that there exist n elements fy, ..., f, €
m not all contained in any prime other than m.

To understand the geometric content of this result, consider first the case
where m is a maximal ideal of an affine ring S, corresponding to a point p
on some algebraic variety M, and R = Sy,. Considering the f; as functions
on M defined near p, the condition that no smaller prime contains all the
f; becomes the condition that the point p is singled out (in some small
neighborhood of p) by the vanishing of all the f;. Parallel in a certain sense
to the characterization of dimension by transcendence degree, Theorem B
is a second avatar of the idea that the dimension of R is “the least number
of parameters needed to describe the points of M.”

Among the many algebraic corollaries of Theorem B, one of the most
striking is that there are no infinite descending chains of primes in a Noethe-
rian ring. In fact, the number of generators of a prime ideal P gives an a
priori bound for the lengths of chains of primes descending from P. In
particular, this shows that if B, m is a local ring then

dim R < the number of generators of m < co.

Another appreciation of Theorem B may be had from the (leading) spe-
cial case where P is minimal among primes containing a principal ideal
(f) # 0 in a ring R. Localizing at P, the result says that dim Rp < 1 (and
if f is a nonzerodivisor the dimension is exactly 1). Thus, there is no chain
of primes of length greater than 1 descending from P. This is the original
form of the principal ideal theorem from which the name derives.

To understand the geometric content in this case, suppose that R is an
affine domain over C, corresponding to a variety M that is a complex
manifold. Suppose that N is the subvariety of points z such that f(z) = 0.
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By the second statement of Theorem A, the statement dim Rp = 1 shows
that dim M — dim N is equal to 1. To prove this “by geometry,” we may
pick a point p on N and claim that there is a point p’ near p on N (see the
following figure) where the derivatives of f do not all simultaneously vanish.
At p, the implicit function theorem asserts that N looks analytically like
a coordinate hyperplane—and is thus codimension 1.

p

By Theorem A an affine variety has the same dimension at each of its
points, so the dimension is 1 at p too. (To prove the claim, we may as well
pass to a local analytic neighborhood of p and assume that R is a power
series ring. We may further replace f by one of its factors and assume that
f is irreducible in this power series ring. Of course, not all the derivatives of
f can vanish identically, or f would be a constant. If g # 0 is the derivative
of f in some direction, then g is a power series whose initial term is of lower
degree than that of f—so g is not in the ideal generated by f. Since (f) was
supposed to be prime, this and an analytic version of the Nullstellensatz
show that g(p’) # 0 for some p’ near p in N, as claimed.)

8.2.83 The Degree of the Hilbert Polynomial

The characterizations of dimension given in Theorems A and B are both of
the form that the dimension is the maximum number of functions with a
certain independence property, or the minimal number with a certain suffi-
ciency property. The following characterization avoids individual functions
altogether.

Theorem C. Let R be a Noetherian local ring with mazimal ideal m, and
let H(n) be the Hilbert function

H(n) = dimp/m m"/m" 1,

For large n, H(n) agrees with a polynomial P(n), and
dim R = 1 + degree P.

Here dimp/y denotes the ordinary vector space dimension over the field
R/m. This result shows that the dimension of R depends only on the asso-
ciated graded ring of R (geometrically, we recall from Chapter 5 that if R is
the local ring of a point p on a variety M, then the associated graded ring
gr, R corresponds to the tangent cone of M at p). Since gr,, R = gr, R,
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where R is the completion of R at m, Theorem C implies that the dimension
of R is the same as that of R, as demanded by Axiom D1.

Geometrically, Theorem C is loosely an analogue of the fact that the
dimension of a variety near a point measures how fast the volume of a
neighborhood of the point grows with the diameter of the neighborhood.
One way to formulate this result, due to Thie [1967] is as follows. Suppose
p is a point on a complex analytic variety M C C’, and B. is the e-ball
around p in C”. The dimension of M is the unique integer d such that if V,
is the integral over the smooth points of M in M N B, of the d-dimensional
volume form on C”, then lim._ V; /5‘1 is a finite nonzero number. (In fact,
if W is the volume of C? N By, then lim, ¢ V. /W, is the multiplicity of M
at p; see Chapter 12 for the definition.) If M is algebraic, R is the local ring
of pon M, and m is the maximal ideal of R, then the ring R/m" should be
seen as the coordinate ring of the “nth-order infinitesimal neighborhood”
of p in M, and the number dimec R/m" = " | H(n) is a measure of the
size of this neighborhood—some sort of infinitesimal volume. Theorem C

implies that
(Z H (n)) / n?
i=1

has a finite nonzero limit as n — oo iff d = dim M.

Though one might suspect the opposite, Theorem C actually opens the
best avenue to the algorithmic computation of the dimension of an affine
ring: One first homogenizes the equations defining the ring to reduce to
the graded case, say R = k[x1,...,z,]/I, with I homogeneous. The theory
of Grobner bases then shows how to construct a monomial ideal I’ such
that k[xi,...,z,]/I and k[xy,...,z,]/I' have the same Hilbert function,
and thus the same dimension. Simple combinatorial ideas then suffice to
compute the dimension for I’. For all of this, see Chapter 15.



9

Fundamental Definitions of
Dimension Theory

In this chapter we collect the fundamental definitions and notation we shall
use. We also harvest the statements on dimension theory that have been
proved earlier in this book, before we had the language to describe them:
the characterization of dimension zero from Chapter 2 and the properties
of integral maps (relative dimension zero) from Chapter 4. To make this
chapter and what follows independent of the introductory Chapter 8, we
repeat a few definitions.

Definition. The Krull-dimension (or simply the dimension) of a ring
R, written dim R, is the supremum of the lengths of chains of prime ideals

in R.

Here the length of the chain P, 2 Py 2 - 2 P of prime ideals is taken
to be r; we recall that the ring itself is not considered a prime ideal.

Now let R be a ring, and I & R an ideal. We define the dimension of
I, written dim I, to be dim R/I. The name corresponds to the fact that if
R is the ring of functions on an algebraic set, then dim [ is the dimension
of subset corresponding to /; that is, the subset on which the “functions”
in I vanish.

If I is prime then the codimension of I, written codim I (also called
height I and rank I by various authors), is by definition the dimension of
the local ring R;. Equivalently, it is the supremum of lengths of chains of
primes descending from 7. If I is not assumed prime, then we define codim I
to be the minimum of the codimensions of the primes containing 7. (Our
terminology follows that of Krull, who called this the Dimensionsdefekt. He
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remarks that he chose this name in place of the name “rank,” which had
already been used in the case of polynomial rings by Lasker and Macaulay,
to emphasize the geometric content of the idea.)

If N is any R-module, then we define the dimension and codimension of N
to the be the dimension and codimension, respectively, of the annihilator of
N. Unfortunately, if N is an ideal, this standard definition conflicts with the
equally standard definition of the dimension of an ideal I as the dimension
of the ring R/I. For example, if R is a domain, then the annihilator of any
nonzero ideal is trivial, so the dimension of the ideal as a module is equal
to the dimension of R. Perhaps because these two definitions give such
different answers, their simultaneous use does not seem to cause confusion.
When we write dim I, for an ideal I, we shall always mean the dimension
of the ring R/I.

If R is a domain, finitely generated over a field, and I C R is an ideal,
then from the definitions, with Theorem A described in Chapter &, it follows
that codim I = dim R — dim I. But we have not used this as the definition,
because when R is not a domain, the quantity dim R — dim 7 is not local in
the sense that we want dimension theory to be local. To see this, consider
the example portrayed in Figure 9.1 of a plane M and a line L containing
a point N. Algebraically, we may represent this by

R = k[Xl,XQ,XS]/(Xl)(XQ,X:}) HMUL,
I = (X1+1,X2,X3) — N.

Here dim M = dim R = 2, whereas codim / = 1 and dim N = dim R/I =0,

SO

dim I + codim I # dim R.

Instead, codim I is the codimension of N in the component of M in which
N lies.

N

el

N

FIGURE 9.1.
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9.1 Dimension Zero

We now interpret some of the earlier results of this book in terms of dimen-
sion. Theorem 2.14 and Corollary 2.15 characterize rings of dimension 0.

Corollary 9.1. If R is Noetherian, then dim R = 0 if and only if R is
Artinian, in which case R is a direct product of local Artinian rings. An
affine algebraic set has dimension 0 iff it is a finite set.

We shall analyze affine rings by exhibiting them as finitely generated
modules over polynomial rings. For this reason we need a “relative” version
of Corollary 9.1. We need to understand the behavior of prime ideals with
respect to a homomorphism of rings ¢ : R — S that makes S a finitely
generated R-module. It is technically convenient to work with the more
general condition that S is integral over R.

Proposition 9.2. If ¢ : R — S is a map of rings that makes S integral
over R, then every prime ideal of R containing ker 1) is the preimage of a
prime ideal of S. Furthermore, if I is an ideal of S, then

dim I = dimy 1.

Proof. We may replace R by its image in S, and thus assume that R C S, so
that we can apply Proposition 4.15 and Corollary 4.18. The first statement
is immediate from Proposition 4.15.

For the dimension equality, consider a chain of primes of R ascending
from 7)~'1. By going np (Proposition 4.15), there is a chain of primes of S
ascending from I and having as preimage the given chain of primes of R.
Thus dim I > dim¢ 1.

On the other hand, by incomparability (Corollary 4.18), a chain of dis-
tinct primes containing / has as preimage a chain of distinct primes con-
taining ¢~'I, and thus dim I < dim 11, whence the equality. O

Here is the geometric version.

Corollary 9.3. If ¢ : X — Y is a morphism of affine algebraic sets such
that A(X) is a finitely generated A(Y)-module, then:

1. The fibers of ¢ are finite sets.

2. If X’ C X is a Zariski closed subset, then o(X') C Y is a Zariski
closed subset with the same dimension as X’'. In particular, if A(Y') C
A(X), then ¢ is surjective.

Maps ¢ satisfying the hypothesis of the corollary are called finite maps.
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Proof. Replacing X by X’ and Y by the closure of ¢(X’), we may assume
A(Y) C A(X) and we must show that ¢ is surjective and that X and Y have
the same dimension. These things are immediate from Proposition 9.2. Fur-
thermore, we see from Proposition 9.2 that ¢ has zero-dimensional fibers.
By Corollary 9.1, zero-dimensional algebraic sets are finite. [l

The same proof would prove the corollary with the weaker hypothesis
that A(X) is integral over A(Y), but since A(X) is finitely generated as
a ring, this makes no difference here. However, it would also prove the
same statement for the map Spec S — Spec R for any rings R and S as in
Proposition 9.2. In the context of schemes, the result is useful in this more
general form.

9.2 Exercises

Exercise 9.1: Show that a principal ideal ring (one whose ideals are each
generated by < 1 element) has dimension < 1.

Exercise 9.2: Let k be a field.

a. Let f(z,y) € k[z,y] be any polynomial, and consider the “variable”
¥’ = x — y". Show that k[z,y| = k[z', y], and that if n is sufficiently
large, then as a polynomial in 2’ and y, f is monic in y. Deduce
that k[z,y]/f is integral over its subring k[z’|. Use this to prove that
dimk[z,y] = 2.

b. Show that the same things are true for 2’ = x — ay for all but finitely
many a € k. (If k is finite, this could be all a € k.)

Exercise 9.3: Suppose that a ring S is integral over the image of a ring
homomorphism R — S. Show that the Krull dimension of M as an S-
module is the same as the Krull dimension of M as an R-module.

Exercise 9.4: Suppose that U is a multiplicatively closed subset of R,
and let S = R[U !] be the localization. Let P be a prime of S. Show that
codim P = codim(P N R).

Exercise 9.5 (Dimension of Veronese subrings): Let R = Ry ® R &
--- be a graded Noetherian ring, and let Ry = Ry @ Rg ® Royy @ - -+,
the Veronese subring. Show that R is integral over R); conclude that
dim R = dim R;. Show that there is a one-to-one correspondence between
the homogeneous primes of R and the homogeneous primes of R, defined
by R D P +— PN Ry. Also, show that if x € R is a homogeneous element
of strictly positive degree, then R[z™']4 = Ry [z74]; thus, in particular,
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(R[z7!])o, the degree 0 part, is equal to (Rg[z ™). (For geometers: This
says that Proj(R) = Proj(R) as schemes.) Taking R = k[z], where k is
a field, show by example that the correspondence P + P N R(; may be
many-to-one for nonhomogeneous prime ideals.

Exercise 9.6 (An infinite-dimensional ring):* One of the pathologies
that Noetherian rings can have is that they can be infinite-dimensional
(although as we shall later prove, a Noetherian local ring must be finite-
dimensional). Here is an example due to Nagata [1962] (Appendix, exam-

ple E1): Let R = k[zy,...,2,,...] be a polynomial ring in infinitely
many variables over a field k, and let P = (z1,...,zqu), P2 =
(ZTay+1s- -+ Zd2))s -+ Pm = (Tdm-1)+1y-- - Td(m)), ... be an infinite col-

lection of prime ideals made from disjoint subsets of the variables. Let
U =R —-UY_, P, be the complement of the union of the primes P,,, and
let S = R[U~!]. By Exercise 3.18 the maximal ideals of S are precisely the
ideals P,,[U']. Conclude that dim S = sup{d(m) —d(m —1)|1 < m < cc}.
Thus if the d(m) —d(m — 1) are unbounded, then S has infinite dimension.

Show that S is Noetherian by proving the following lemma and checking

its hypotheses.

Lemma 9.4. Let S be a ring such that for every mazimal ideal P C S
the local ring Sp is Noetherian. If for every element s € S there are only
finitely many maximal ideals containing s, then S is Noetherian.
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The Principal Ideal Theorem and
Systems of Parameters

In this chapter all rings will be assumed to be Noetherian.

It is elementary that a principal prime ideal in a Noetherian ring can have
codimension at most 1. A sharper statement is this: Any prime properly
contained in a proper principal ideal has codimension 0. Proof: If on the
contrary, @ & P G (z) in aring R, with P and @ prime, then factoring out
@ we can assume that ) = 0, and thus that R is a domain. If y € P, then
y = ax for some a, and since z ¢ P it follows that a € P; thus P = zP.
By Corollary 4.7, (1 — b)P = 0 for some b € (x). Since R is a domain, we
must have b = 1, so (x) is not proper, a contradiction.

The mainspring of the above argument is Nakayama’s lemma, here in the
guise of Corollary 4.7. A subtler application of Nakayama’s lemma yields
Krull’s principal ideal theorem (PIT) [1928], a cornerstone of dimension
theory for Noetherian rings. Krull’s theorem extends the above remark
from principal ideals to primes minimal over principal ideals. Geometrically,
the result encapsulates and generalizes the dimension-theoretic side of the
implicit function theorem in complex analysis, as we noted in Chapter 8.
The principal ideal theorem says that even the most complex polynomial
condition on the points of an algebraic variety is satisfied in codimension
1 if it can be satisfied at all.

Krull was the first to show that not only primary decomposition, but
also a great deal of the geometric theory of the polynomial ring, could
be carried over to the general Noetherian case. He deserves credit, after
Emmy Noether, for making the theory of Noetherian rings viable. We
give his beautiful proof of the principal ideal theorem; the result had
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been proved by Kronecker in the 1880s for polynomial rings by a difhcult
elimination-theoretic argument, and a geometric version was known (if not
proved) well before that, as part of the method of proof known in enumer-
ative geometry as “counting constants.”

Theorem 10.1 (First version of the Principal Ideal Theorem). If z € R,
and P is minimal among primes of R containing z, then codim P < 1.

Note that this result is vacuous if the element z is a unit, since then no
primes contain it.

For the proof we shall freely use the equivalences in Corollary 2.19, which
characterizes primes minimal over a given ideal. The proof uses an idea from
primary decomposition. Recall from Chapter 3 that if Q C R is a prime
ideal, then the nth symbolic power Q™ = {r € R|sr € Q" for some
s € R,s ¢ QQ} is the preimage in R of the nth power of the localized ideal
Qg in Rg. The elements outside @ are nonzerodivisors mod Q™. and on
localization we get (Q™)g = (Qg)™

Proof. We shall show that if @ is any prime ideal with @ G P, then Rg has
dimension 0, so codim ) = 0. This shows that codim P < 1.

Replacing R by Rp we may assume that P is maximal, and we have
ideals as in Figure 10.1. Since P is minimal over (z), the ring R/(z) is
Artinian by Theorem 2.14. Thus the descending chain (z)+ Q™ stabilizes,
say with Q™ C (z) +Q"*V. It follows that for any f € Q™ we may write
f = az+g with g € QY. This implies that az € Q™. Since P is minimal
over (), we have z € Q, so a € Q™.

From this we see that Q™ = (2)Q™ 4 Q("*1_ Since x € P, Nakayama’s

lemma, Corollary 4.8a, implies Q™ = Q™). A second application of
Nakayama’s lemma, this time in Rg, yields (Qq)™ = 0, so Rg has dimension
0 as claimed. ]

This version of the principal ideal theorem can serve as the first step in
an induction, yielding a result about primes minimal over an ideal with
many generators.

R

l

0"+ ()
(x) Q

FIGURE 10.1.
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Theorem 10.2 (Final version of the Principal Ideal Theorem). If
Z1,... & € R, and P is minimal among primes of R containing x1,.. ., x.,
then codim P < c.

Proof. We may suppose by localizing that P is the unique maximal ideal of
R. By Corollary 2.17, P is nilpotent modulo the ideal (z1,...,z.). Let P,
be a prime such that P O P, with no prime between. We shall show that
P, is minimal over an ideal generated by ¢ — 1 elements. By the inductive
hypothesis, codim P; < ¢ — 1, and this suffices.

By hypothesis, P cannot contain all the z;; for definiteness, suppose
x1 ¢ P;. Thus P is minimal over (P;,z1), so P and in particular all the
x; are nilpotent mod (P, ;). This means that for suitable n we can find
elements a; € R and y; € P| such that

x?:aix1+yia 7:22’"‘,0‘

We claim that P, is minimal among primes containing s, ..., y.. Indeed,
P is nilpotent mod (z1,ys2,-..,¥y:) so, by Theorem 10.1 the image of P
in R/(y2,...,y.) has codimension at most 1. Thus the image of P, in
R/(ya, . ..,y.) has codimension 0, the desired result. O

As a first consequence we have a strong descending chain condition on
prime ideals in a Noetherian ring.

Corollary 10.3. The prime ideals in a Noetherian ring satisfy the descend-
ing chain condition, with the length of a chain of primes descending from
a prime P bounded by the number of generators of P.

This allows us to take a major step toward Theorem A of Chapter 8.
Corollary 10.4. The ideal (z1,...,z.) C k[z1,...,x,] has codimension c.

But note that it does not quite suffice to compute the dimension of the
polynomial ring (we shall finish the job in Corollary 10.13).
There is a useful converse to the PIT, as follows.

Corollary 10.5 (Converse of the PIT). Any prime P of codimension c is
minimal over an ideal generated by ¢ elements.

Proof. Inductively, with 0 < r < ¢, having chosen zy, ..., x, € P to generate
an ideal of codimension r, it suffices to choose x,,; € P but not in any of
the finitely many primes minimal over (z1, ..., z,); this is possible by prime
avoidance, Lemma 3.3, and Theorem 10.2. O

Another easy consequence of the principal ideal theorem is an improved
characterization of factoriality.
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Corollary 10.6. A domain R is factorial if every codimension 1 prime of
R 15 principal.

Proof. By the principal ideal theorem and its converse, the codimension 1
primes are precisely the primes minimal over principal ideals, so we may
apply Proposition 3.11b. m

The principal ideal theorem is a first assertion giving an interesting geo-
metric conclusion from some hypothesis on the form of the generators of
an ideal. There have been many extensions of this way to extract geometry
from algebra. For example, there are similar bounds on the codimension of
determinantal ideals (see Exercise 10.9).

A very general question in this direction is: Given an ideal / in a ring
R, what is the maximal possible codimension for ideals of the form ¢(7)S,
where ¢ : R — S is a ring homomorphism such that ¢(/)S # S7 The supre-
mum of such codimensions is called the “superheight” of I (see Hochster
[1976]; to understand the name, recall that “height” is a synonym for “codi-
mension”). The principal ideal theorem may be restated by saying that if
I = (z) C Z[z] = R, then superheight I = 1. It is known (Serre [1957])
that the superheight of I is equal to the codimension of I when I is prime
and R is a regular local ring (the definition is given later in this chapter)
or when R/I has a projective resolution over R whose length is codim [
(see, for example, Hochster [1987]). The restriction to prime ideals must
be made only to avoid rather trivial phenomena. However, there are many
prime ideals in more complicated rings for which the superheight is strictly
larger than the codimension; see Exercise 10.6, for one such instance, and
Koh [1988] for further work on this idea.

10.1 Systems of Parameters and Parameter Ideals

Summarizing much of what we have done, we get another characterization
of the dimension of a local ring:

Corollary 10.7. If R is a local ring with maximal 1deal m, then dim R s
the smallest number d such that there exist d elements x1,...,z4 € m with
m"” C (z1,...,24) for n > 0.

Proof. If m" C (x1,...,24) C m, then m is minimal among primes over
(x1,...,z4) and dim R < d by the PIT.

On the other hand, we may find elements x,,...,r, with d = dim R
such that m is a minimal prime containing (z4,...,24) by the converse of

the PIT. But then R/(z1,...,z4) has only one prime ideal, which must be
nilpotent by Corollary 2.12, and we are done. OJ
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N/

FIGURE 10.2. The functions y, 2*> — y form a system of parameters for k[z, |,
Only finitely many points lie on the intersection of the level sets 22 —y =8, y = ¢
for small é and e.

Corollary 10.7 turns out to be so important that we codify the notions it
uses: An ideal q C m such that R/q has finite length (equivalently, m™ C g
for n > 0) is called a parameter ideal for R, and a sequence of elements
x1,...,xq as in Corollary 10.7 is called a system of parameters for R.

Geometrically, if R is the local ring of a point p on an algebraic variety
X, a system of parameters in R is a sort of local coordinate system for X
around p, in the sense that the values of the functions x; determine points
near p up to a finite ambiguity, as in Figure 10.2. Systems of parameters
can be characterized as the smallest sets of elements with this sufficiency
property, or as those sets having a certain algebraic independence property
(see Exercise 14.8).

More generally, if M is any finitely generated module over the local ring
(R, m), then we say that an ideal ¢ C m is a parameter ideal for M if M /qM
has finite length. By Corollary 2.17, this is true iff a power of m annihilates
M /qM. Recalling that ann M denotes the annihilator of M, and using
Nakayama’s lemma, we may write this condition as rad(ann(M/qM)) = m.

The next result shows that parameter ideals for modules are connected
with dimension theory in the general case just as in the special case above.

Proposition 10.8. If M is a finitely generated R-module, and q is any
ideal of R then rad(ann(M/qM)) = rad(q + ann M). In particular, if R is
a local ring with maximal ideal m, then:

a. q 1s a parameter ideal for M iff ( +ann M) D m" forn > 0 iff q is
a parameter ideal for R/(ann M).

b. Given a short exact sequence of modules
0-M —-M—-M'—0,

an ideal q is a parameter ideal for M iff q is a parameter ideal for
M' and M”.

c. dim M is the least number d such that there is a parameter ideal for
M generated by d elements.

Proof. To prove the equality on radicals it suffices, by Corollary 2.12, to
show that a prime P of R contains ann(M /qM ) iff P contains q + ann M.
By Proposition 2.1, P D ann(M/qM) iff (M/qM)p # 0. By Nakayama’s
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lemma (M/qM)p = Mp/qpMp # 0 iff Mp # 0 and qp C Pp. By Propo-
sition 2.1 these conditions are satisfied iff P contains both ann M and q;
that is, iff P D q+ann M.

a. Note that the annihilator of R/(ann M)/q(R/(ann M)) is g+ ann M.
Also, since m is the unique maximal ideal of R, we have rad(q +
ann M) = m iff g +ann M contains a power of m. The radical formula
just established thus proves the equivalence of the three assertions.

b. If g is a parameter ideal for M, then it is for M’ and M"” because
their annihilators contain the annihilator of M. The converse follows
from the induced exact sequence

M JqM' — M/qM — M" /qM" — 0

which shows that if M’'/qM’ and M"/qM" have finite length then
M /qM does also.

c. By definition dim M = dim R/(ann M), so conclusion ¢ follows from
a and Corollary 10.7. ]

The principal ideal theorem deals with codimension rather than dimen-
sion, and this is occasionally a nuisance. However, a version with dimension
follows in the local case. The local assumption is necessary for fairly trivial
reasons; see Exercise 10.8.

Corollary 10.9. If (R,m) is a local ring and M is a finitely generated
R-module, then for any x € m we have

dim M /xM > dim M — 1.

Proof. To say that dimM/zM = d means that dim R/ann(M/zM) is
a ring of dimension d. By Proposition 10.8a, there is a parameter ideal
for M/xM generated by d elements z;,...,z;. But this means that
M/(z,x1,...,xq)M has finite length, so (z,z1,...,24) is a parameter ideal
for M, and dim M < 1 + d as required. O

10.2 Dimension of Base and Fiber

Corollary 10.7 also yields a “superheight” result: If R is local with maximal
ideal m and S is an R-algebra with mS # S, then codimmS < codimm.
(Proof: If z1, ..., x4 is a system of parameters in R, then any prime minimal
over mS is minimal over (z1,...,z4)S.) The inequality in the following
theorem, which corresponds to part of Axiom D2 from Chapter &, gives an
extremely useful extension of this idea.
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Theorem 10.10. If (R,m) — (S,n) is a map of local rings, then
dim S < dim R 4+ dim S/mS,
with equality if S is flat as an R-module.

Equality in Theorem 10.10 is a much weaker condition than flatness, as
the example in Figure 10.4 (which is not flat) shows. However, under strong
hypotheses on R and S, flatness is equivalent to a statement about fiber
dimensions; see Theorem 18.16. Some strengthenings of Theorem 10.10, in
the case where S is a localization of a finitely generated R-algebra, that let
one compute the dimension of S without a flatness hypothesis, are given
in Corollary 13.5 and Theorem 13.8.

Proof. Write d = dim R, and ¢ = dim S/mS. By Corollary 10.7 there exist
xi,...,xq € m such that m* C (xq,...,z4) for s > 0 and y1,...,y. € S
such that n* C mS + (y1,...,y.) for t > 0. Thus

't C(mS+ (y1,...,9))°
CmsS+(y1,...,ye)
C (Ila"'vwda:Ul?"'?ye)S?

and by the principal ideal theorem dim S < d + e.

Now suppose that S is flat as an R-module. We must show that dim S >
dim R 4+ dim S/mS. Let @ be a prime of S, minimal over mS, such that
dim @ = dim §/mS. We have

dim S > dim @ + codim @ = dim S/mS + codim Q,

so it suffices to show that codim @ > dim R. Writing ¢ for the given map
R — S, we have »~'Q = m. Thus it suffices to show that given a chain of
primes m O P; D --- of R, descending from m, there is a chain of primes
QDO QD --of § with p71Q; = B. This is the content of the following
“going down” lemma. UJ

Lemma 10.11 (Going Down for flat extensions). Suppose that ¢ : R — S
is a map of rings such that S is flat as an R-module. If P D P’ are primes
of R and Q is a prime of S with ¢ 'Q = P, then there exists a prime Q' of
S contained in Q such that ¢ 'Q' = P’ as in Figure 10.3. In fact Q' may
be taken to be any prime of S contained in QQ and minimal over P'S.

The proof uses a fundamental lemma from the theory of primary decom-
position. An alternative (giving a slightly weaker result) is described in
Exercise 10.7.

Proof. Since P'S C @, we may find a prime Q' contained in @ and min-
imal over P'S (here we use the fact that the intersection of a descending
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FIGURE 10.3.

chain of primes is prime). Since tensoring preserves flatness (Exercise 6.6a),
S/P'S = S®R/P'is flat over R/P'. Replacing R by R/P' and S by S/P'S,
we may reduce to the case P’ = 0. Since S is flat over R, every nonzerodi-
visor in R—that is, every nonzero element of R—is a nonzerodivisor on S
(Corollary 6.3). Since @’ is a minimal prime of S, it consists of zerodivisors
on S by Theorem 3.1, proving that ©p=}(Q’) = 0 as required. O

For another case in which “going down” holds, see Theorem 13.9.

It is not hard to translate “going down” into an interesting geometric
statement: Suppose that ¥ : X — Y is a map of affine varieties over an
algebraically closed field with induced map ¢ : R = A(Y) — S = A(X).
Suppose the prime @ corresponds to a subvariety Z of X, and that W is a
subvariety of Y with ¢(Z) C W. If “going down” holds between R and S,
there must be a subvariety V' O Z in X whose image under ) is dense in
W. An example where this fails is given in Figure 10.4.

A slightly more careful analysis leads to a geometric result extending this
one: If ¢y : X — Y is a map of affine varieties such that the induced map
p:R:=A(Y) - S := A(X) makes S a flat R-module, then the map 1 is
open in the sense that it carries open sets to open sets. See, for example,
Hartshorne [1977, III, Ex. 9.1]. This is one of several ways in which flat
morphisms behave like submersive maps of manifolds.

The next two corollaries are applications of Theorem 10.10.

Corollary 10.12. If R,m is a local ring and R its completion at m, then

dim R = dim R.
Proof. R is flat over R by Theorem 7.2, and the fiber R/mR is the residue
class field, which has dimension 0. J
Corollary 10.13.
a. If k is a field, then
dim k[zq,...,z,] =7

b. More generally, if R[x] is the polynomial ring in one variable over R,
then
dim R[z] = 1+ dim R.
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—W

v (Z)

w(Z")
FIGURE 10.4. ¢y Y(W) has components W', Z, and Z'. No irreducible variety con-
taining Z maps to a dense subset of W.

c. Furthermore, if P is a prime ideal of R then there are prime ideals
Q of R[z] contracting to P, and for a maximal such ideal we have

dim R[z]g = 1 + dim Rp.

Proof. Part a follows from part b by induction on r.

For part b, first note that given a chain of primes P, C --- C P; of R we
get a longer chain of primes PiR[z| C --- C P;R[z] C P;R[x] + (z) in R[z],
so dim R[z] > 1 4 dim R. The other inequality follows from part ¢, since a
maximal ideal @ of R[] is certainly maximal among primes meeting R in
P = QN R. Thus, it suffices to prove part c.

First we check the result in the case where R is a field and P = 0. In
this case any prime ideal of R[z| contracts to 0 in R, so we take Q to be
any maximal ideal of R[z|. Since 0 is not a maximal ideal of R[x], we have
Q # 0, and codim@ > 1. On the other hand, R[z| is a principal ideal
domain, so @ is principal and codim @ < 1 by the principal ideal theorem
(or by the elementary argument given at the beginning of this chapter).
Thus, dim R[z]g = 1 = 1 + dim Rp, as required.

In the general case, PR[z| is a prime ideal of R[z] and PR[z]| "R = P,
proving the first statement of c. We may replace R by Rp and assume
that R is local with maximal ideal P. Let () be a maximal ideal of R|[z]
containing P; it follows that @ N R = P, and we must show that codim
Q =1+ codim P.

If Py C --- C P;= P is a chain of primes in R, then PyR[z] C --- C
P,R[z] is a chain of primes in R[z] of the same length. By the previous
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case, the maximal ideal Q/PR]z] in
R[z)/PRlz] = (R/P)[a]

has codimension 1, so codim@ > d + 1.
Let k = Rp/PRp be the residue class field of R at P. We may apply
Theorem 10.10 to get

dim R[z]g < dim Rp + dim R[z]q/PR[z]g
< dim Rp + dim k[z]
< dim Rp + 1,

completing the proof. O

For more on primes in polynomial rings, see Exercises 10.2 and 13.6.

10.3 Regular Local Rings

The principal ideal theorem gives us an interesting inequality connecting
the codimension of an ideal with the number of its generators. It is often
interesting to ask in such cases, “What happens in the case of equality?”
Restricting the question to the case of the maximal ideal of a local ring,
this strategy leads to a big payoff in the theory of regular local rings.

Suppose that (R, m) is a local ring of dimension d. The principal ideal the-
orem shows that m cannot be generated by fewer than d elements. Following
Krull, R is called regular if m can be generated by exactly d elements. By
Nakayama’s lemma a collection of elements generates m iff the images of
these elements generate the (R/m)-vector space m/m?, so this vector space
has dimension d iff R is regular, and then every minimal system of genera-
tors of m has d elements. Such a minimal system of generators is a system
of parameters for R; it is called a regular system of parameters.

Examples of regular local rings are k[z1,..., 4], . ., and the power
series ring k[[x1,...,xz4]], where k is a field. In both of these cases the
sequence of variables forms a regular system of parameters. If p is a prime
integer, then Z,[x1, ..., Zx](ps,,.. 2., a0d Z(p)[[azl, ..., ]| are also regular
local rings. (What is a regular system of parameters?)

Regular local rings occupy center stage in algebraic geometry, since, as
Zariski realized, they correspond to nonsingular points on algebraic vari-
eties. The simplest case is this: Over the complex numbers, an algebraic
variety X C C™ looks like a complex analytic submanifold of C™ locally
near a point z iff the localization of A(X) at the prime ideal corresponding
to z is a regular local ring. We shall prove an equivalent result in The-
orem 16.19. (History here is not what one might expect. Krull made the
definition [1937] a few years before Zariski proved the theorem [1940, 1947].
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Of course some suggestive geometric cases were familiar to Krull.) The fol-
lowing is the tip of an iceberg of results showing that regular local rings
are well behaved.

Corollary 10.14. If R is a regular local ring, then R is an integral domain.

Proof. Let R be a regular local ring with maximal ideal m. We do induction
on dim R. In case dim R = 0, we must have m = 0, so R is a field, and the
result is trivial. Thus we may suppose dim R = d > 0.

By Nakayama’s lemma, we have m? # m, so by prime avoidance
(Lemma 3.3) and the finiteness of the set of minimal primes of R, we
may find an element x € m that is outside the minimal primes of R, and
also outside m?. Set S = R/(z), and let n = mS be the maximal ideal of
S. By the choice of x we have dim S < dim R, so dim S = d — 1 by Corol-
lary 10.9. Also, n/n?> = m/(m? + (z)) is a proper homomorphic image of
m/m?, so it can be generated by (d — 1) elements. By Nakayama’s lemma,
n can be generated by (d — 1) elements, so S is regular of dimension d — 1.
By induction S is a domain; that is, (x) is a prime ideal. Since we chose
z outside the minimal primes, (x) is not a minimal prime of R. Thus (z)
contains some minimal prime ideal @ of R.

If y € Q is any element, then we may write y = ax for some a € R. Since
z is not in Q, we must have a € Q. This shows that Q = zQ. It follows that
m@ = @, so by Nakayama’s lemma ) = 0, and R is a domain as required.

O

In general it is extremely difficult to prove that a given ideal of polynomials
is prime; the simple idea of the proof just given is the basis of one of the
most powerful methods known for doing so, Hochster’s method of “principal
radical systems” (Hochster [1976]). Another method, using Serre’s criterion
for normality, is described in Chapter 18 (Theorem 18.15).

Corollary 10.14 has an extension that we shall use many times. It is best
stated in terms of a definition that generalizes the notion of a nonzerodivisor:

A sequence of elements ), . .., x4 in aring R is called an R-sequence (or
regular sequence on R) if the ideal (z1,...,z,) is proper and for each 3,
the image of x;,1 is a nonzerodivisor in R/(x1,...,x;).

Corollary 10.15. Ifxy,. .., x4 is a reqular system of parameters in a reqular
local ring R, then x1,...,x4 18 an R-sequence.

Proof. For each i the ring R/(x1, ..., ;) is a regular local ring, and thus an
integral domain by Corollary 10.14. The image of x;,; in this domain must
be nonzero, since the maximal ideal of R could otherwise be generated by
fewer elements. O

In our earlier examples of regular local rings containing a field, the regular
systems of parameters were systems of indeterminates. This is not true in
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general; for example, if k is any field, then (k[z, yl/(y* —z(z—1)(z+1)))(r,)
is a regular local ring—the dimension is 1, and the maximal ideal is generated
by z. But if the characteristic of k is not 2, this ring is very different than
k[z](,); for example, its quotient field is not isomorphic to k(z). However,
just as all smooth manifolds of a given dimension look alike in a sufficiently
small neighborhood, complete local rings do not vary very much.

Proposition 10.16. Suppose R is a compléte reqular local ring of dimension
d with residue class field k. If R contains a field, then R = k[[z1, ..., z4]], and
the isomorphism can be chosen to send the variables x; to any given regular
system of parameters in R.

Proof. By the Cohen structure theorem, R contains a copy of its residue field
k.If yq,...,yaq is a regular system of parameters in R, then by Theorem 7.16
there is a surjective ring homomorphism ¢ : k[[z1, ..., 2z4]] — R, sending z;
to y;. Since k[[x1, ...,z ]| is an integral domain of dimension d, any proper
homomorphic image of k[[z1, ..., Z4|| has dimension less than d. Thus, ¢ is
an isomorphism. O

Beyond this it is known, for example, that the elements of a regular local
ring have unique factorizations into primes, that localizations of regular local
rings are again regular, and much more --- . We shall prove some of these
things in Chapter 19, after we have homological tools at our disposal.

10.4 Exercises

Exercise 10.1: Let R be a Noetherian ring, and let x be an indeterminate.
Show that dim R[z,z '] = 1 + dim R.

Exercise 10.2 (Prime ideals in a polynomial ring):* Let R be a Noethe-
rian ring. This exercise refines the formula dim R[z] = 1 4 dim R. Suppose
that P is a prime ideal of R of codimension ¢. Show that the prime ideals
@ C R|z] that intersect R in P are all of the following two kinds, with codi-
mension as shown:

a. @ = PR|[z|. In this case codim Q = c.

b. @ 2 PR|z]. In this case codim@ = ¢ + 1, and there is a polynomial
f(z) € Q with leading coefficient not in P such that

Q = {g € R[z]| for some a € R — P, ag € PR[z] + (f)}.

For each prime P C R there are infinitely many primes in R[z] of type b. See
also Exercise 13.6.
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Exercise 10.3: Let k be a field. Show that the ring k[z] X k[z] contains a
principal prime ideal of codimension 1, although it is not a domain. (By the
argument of Corollary 10.14, there is no such example in a local ring.)

Exercise 10.4:* Let a, b be a regular sequence in a domain R, and let S =
R|z] be the polynomial ring in one variable over R. Show that az—bis a prime
of S. (See Exercise 17.2 for a sort of converse. Geometers will recognize this
as a very weak version of a theorem of Bertini.)

Exercise 10.5: If R = k[t]; and S is a domain containing R, then S is
torsion-free as an R-module and thus, as we have seen, flat, so the inequality
of Theorem 10.10 is an equality. Show, however, that we may have strict
inequality already in the case where R = k[s,t](s4) C S = k[s,t/s](s1/s), a8
in Exercise 6.9. Note that there is an open dense set of points p of the blowup
in Exercise 6.9 such that the equality holds in Theorem 10.10 if we take S to
be the localization of k[s,t/s] at the maximal ideal corresponding to p, and
R to be the localization of k[s, t] at the preimage of this maximal ideal. This
phenomenon is general; see Corollary 14.5.

Exercise 10.6: We mentioned that if P is a prime ideal in a regular local
ring R and if R — S is a map of local rings, then codim PS < codim P.
Here is an example showing that this may fail when R is not regular: Let
R =kx,y,s,t]/(zs—yt),and let S = R/(x,y) = k[s,t]. Let P = (s,t) C R.
Prove that codim P = 1, but codim PS = 2, as shown in Figure 10.5.

Z(s,t)

3

Z(xy)

FIGURE 10.5. Two planes in 4-space meeting in a point lie on the cone over a quadric
surface.

Exercise 10.7: Here is a weak “going down” statement without the hypoth-
esis of flatness: Show that if R is an integral domain contained in the local
ring (5, Q), then there is a minimal prime of S contracting to 0 in R. Give
another proof of Lemma 10.11 using this in place of Theorem 3.1.
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FIGURE 10.6. X = PU L, R is the coordinate ring of X.

Exercise 10.8: The condition that R be local is needed in Corollary 10.9
to avoid a rather trivial sort of counterexample. Find the one illustrated by
Figure 10.6, where X has dimension 2, but a hyperplane section of X by a
hyperplane parallel to P would only have dimension 0.

Determinantal Ideals

Exercise 10.9 Determinantal ideals and a generalized principal
ideal theorem:* Let M be a px ¢ matrix with entries in aring R (Noetherian
as always). Recall that a kX k minor of M is by definition the determinant
of some k x k submatrix of M. Let I, (M) be the ideal generated by the k x k
minors of M. If &k = 1 and p = 1, the PIT bounds the codimension of a
prime minimal over I (M) by q. Macaulay [1916] generalized this to the case
k = p arbitrary, giving the bound ¢ — k£ 4+ 1. (It is amusing to note that
Macaulay proved this generalized principal ideal theorem in the context of
polynomial rings before Krull proved Theorem 10.2.) The following general-
ization to the case where p and k are both arbitrary was given around 1960
by Jack Eagon in his thesis. The proof is taken from a subsequent paper by
Eagon and Northcott [1962].

Prove that if P is a prime minimal over I;(M), then P has codimension
<(p—-k+1)(g—k+1) as follows:

a.* (Reduction) Show that if one of the entries of M is a unit, then I} (M) =
It—1(M’) where M’ is a suitable (p — 1) x (¢ — 1) matrix.

b. Localize at P. Use induction on & to reduce to the case where all entries
arein Pand k& > 1.

c. Now pass to R|[t], where t is a new indeterminate. If the 1, 1 entry of M
was 1 1, replace M by the new matrix M’ whose 1, 1 entryis z; ; +¢ and
whose other entries are the same as those of M. Show that I(M') C
P’ := PRJt]. Since P’ has the same codimension as P, and M’ has the
1, 1 entry not contained in P’, the problem reduces to showing that P’
is minimal over I(M’).
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d. Prove that P’ + (¢) is minimal over Iy (M) + ().

e. Suppose that P O Q D I (M), with @ a prime of R[t]. Show that
P’ + (t) is minimal over @ + (¢). Deduce that P’ = @ by the principal
ideal theorem in R[t]/Q.

Exercise 10.10:* Let R be any Noetherian ring, and let M = (z;;) bea pxgq
matrix of indeterminates over the polynomial ring R[z,;|. Show that I},(M)
has codimension (p — k + 1)(¢ — k + 1).

Hilbert Series of a Graded Module

Let k be a field, let S be a polynomial ring over k, and let M be a finitely
generated graded S-module. In the Introduction we saw that if the variables
of S all have degree 1, then the Hilbert function Hys(n) = dim, M,, agrees
with a polynomial function of n for large n. This is not true when the variables
have different degrees, as the following exercises show. In this case Hjys(n)
still agrees with a “periodic polynomial,” but it is often more convenient to
use the Hilbert series instead.

Exercise 10.11: Let S be the graded polynomial ring k[z,, z9], where we
give x; degree 1.

a. Show that Hg(n) = |n/2] + 1. Show that this does not agree with a
polynomial function in n, even for n > 0.

b. Show that Hg(2n) and Hg(2n + 1) are both polynomial functions of
n for n > 0. Show also that the Hilbert series ) ., H4(n)t" is a
rational function in ¢ with denominator (1 — ¢)(1 — ¢2).

Exercise 10.12: Let S = k[zy,...,z,|, where z; is an indeterminate of
degree d;. Set q(t) = II'_, (1 — t%). The Hilbert series of M is defined to be
the formal power series in one variable ¢ given by ha(t) := > o Hu(n)t".

a. Show that hjs(t) is a rational function of ¢, and that in fact hps(t) may
be written as a polynomial divided by II* (1 — t%); that is, it is a
rational function with poles only at roots of unity.

b. Show that there is a number d (which may be taken to be the least
common multiple of the degrees of the d;) such that for each s, Hy (dn+
s) agrees with a polynomial in n for all n > 0; that is, Hys(n) is a
“polynomial with periodic coefficients.”

c. Imitating the proof that the Hilbert function agrees with a polynomial
for large n in the classical case, show that the Hilbert series of M is a
rational function.

Exercise 10.13: Continuing with the notation in Exercise 10.12:
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a. Now suppose that M has a system of parameters yi, ..., yn, Where

¥; is a homogeneous element of degree e; > 0. Suppose further that
Y1,..-,Ym is a regular sequence on M (that is, y; is a nonzerodi-
visor on M/(y1,...,4:-1)M for i = 1,...,m; because of the grad-
ing the condition (y1,...,ym)M # M is automatic). Show that
ha(t) = u(t)/s(t), where s(t) = 117, (1 — t%) and u(t) = S u;t?,
where u; = Hyy,, p0m) (1) gives the Hilbert function of the mod-
ule M/(y1,...,ym)M. Note that this is a module of finite length, so
that u(t) really is a polynomial, and that the coefficients of u(t) are
nonnegative integers.

Let S = k|[xy,xs], where both variables have degree 1. Compute the
Hilbert series of the S-module S/(z?, z;z3). Since x; is a system of
parameters, the Hilbert series of S can be written with denominator
(1 —¢); note that the numerator does not have positive coefficients.

. Since the Hilbert series of M is a rational function defined over the

integers by Exercise 10.12c¢, it makes sense to speak of the order of its
pole at any number. Show that the dimension of M is the order of the
pole of hys(t) at t = 1. (Hint: Use a system of parameters for Af).
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Dimension and Codimension One

A large part of classical algebraic geometry has to do with geometry “in
codimension one”: results about points in curves, curves in surfaces, and so
forth. The commutative algebra of codimension one is correspondingly rich.
In this chapter we digress from the presentation of dimension theory and use
the results of Chapters 9 and 10 to analyze some codimension-1 phenomena.
In particular, we shall study “invertible” modules; give a criterion for and
some consequences of normality, including a bit of the theory of Dedekind
domains; study the length of a one-dimensional ring modulo a principal
ideal; and prove that the integral closure of a one-dimensional Noetherian
domain is Noetherian.

Since normalization is such a well-behaved operation, a major strategy
in commutative algebra is to analyze any ring by comparing it with its nor-
malization. Our story begins with a description of one-dimensional normal
local rings.

11.1 Discrete Valuation Rings

Recall that a one-dimensional local ring (R, m) is said to be regular iff its
maximal ideal can be generated by one element. A generator for m is called
a regular (or uniformizing) parameter for R. Such rings have a very
simple structure:

Proposition 11.1. Let (R,m) be a regular local ring of dimension 1. If
7 1s a reqular parameter for R, then every element t of the quotient field
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K(R) can be written uniquely in the form t = ur™ with n € Z and u a
unit of R. In particular, every ideal of R is of the form (7"), and R is a
principal ideal domain.

It follows from this result that R is factorial; we shall prove that all
regular local rings are factorial in Chapter 19.

Proof. Since R is a regular local ring, it is a domain by Corollary 10.14. If
s € R, we may by the Krull intersection theorem choose a representation
s = vm™ with m € Z as large as possible such that v € R. Since v ¢ (7) =
m, v must be a unit. If t € K(R), then writing ¢ = s;/s, with s; € R, and
applying the result for s to s; and s», we see that ¢ may be represented
ast = un™ with n € Z and v € R a unit. Such a representation is unique
because if un™ = u'7", then u/u' = 7" ™ is a unit of R, so n’ = n and
u=u.

The last two statements follow easily. Ol

Let R be a one-dimensional regular local ring. We may define a group
homomorphism v : K(R)* — Z, from the multiplicative group K(R)* of
nonzero elements of the quotient field of R to Z, as follows. If ¢t € K(R)*,
then by Proposition 11.1 there is a unique n € Z such that t = un™ with
u a unit of R. We set v(t) = n. The map v is a discrete valuation. Note
that if s = vr™, then s + ¢ = (ur™? + va" )7r? with d = min(m, n),
so v(s +t) > min(v(s),v(t)). In general, a valuation on a domain R is a
group homomorphism v from K(R)* to a totally ordered group G such that
v(r) > 0 for r € R, satistying the inequality v(a+b) > min(v(a), v(b)). The
word discrete refers to the fact that G = Z, the only discrete subgroup of
the totally ordered group of real numbers under addition. The valuation
ring of v is the ring $ = v {9 € G|g > 0}. One-dimensional regular
rings are usually called discrete valuation rings, or DVRs. For more on
valuations, see Exercises 11.1-11.5.

Familiar examples of DVRs include the localization of a polynomial ring
in one variable over a field k[t](;) and its completion k[[t]]; and the arithmetic

analogues of these rings, Z, for any prime p and its completion Zp, the
ring of p-adic integers.

By Proposition 10.16, two complete DVRs that contain fields are iso-
morphic iff they have isomorphic residue class fields (and then they are
isomorphic to k[[z]], where k is the residue class field). On the other hand,
DVRs that are not complete can be very different from one another, even
when they are localizations of one-dimensional affine rings over a given
algebraically closed field. To give a quick example we appeal to some facts
from algebraic geometry. Suppose that R = Ap and R' = A}, are DVRs
obtained by localizing the affine rings A and A’ of nonsingular curves C' and
C’ over an algebraically closed field k at primes P and P’ corresponding
to points p € C and p’ € (', respectively. A basic argument from algebraic
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geometry (Hartshorne [1977, Chapter 1, section 6]) shows that C and C’
can be embedded as open subsets of unique nonsingular projective curves
C and C’ and that if R = R’ as k-algebras, then C' = (' by an isomorphism
carrying p to p'. If the genus of C is at least 2, then C has only finitely many
automorphisms, so given p there are only finitely many points p’ whose local
rings are isomorphic to that of p. In particular, R is isomorphic to Ag for
only finitely many maximal ideals () of A other than P. By Theorem 4.19
A is a Jacobson ring, and thus has infinitely many maximal ideals. So it
has infinitely many isomorphism classes of localizations at maximal ideals.

11.2 Normal Rings and Serre’s Criterion

In general, normalization has the effect of smoothing out certain irregulari-
ties in a variety; it is a step toward a “resolution of singularities.” We shall
show that a normal one-dimensional local Noetherian ring is a DVR; in
particular, a normal one-dimensional variety is already nonsingular. Nor-
malization gives a cheap and canonical process for resolution of singularities
in dimension one. Since normalization commutes with localization, it fol-
lows from this that the localizations of a normal ring at codimension-1
primes are regular—that is, they are discrete valuation rings. This is called
regularity in codimension 1. In the geometric setting, this means that a
normal variety is nonsingular in codimension 1—that is; the singular locus
is of codimension > 2. Our first main result, Serre’s criterion, explains the
condition that must be added to make the converse of this statement true
as well.

As an introduction, consider the case of a factorial domain. We have
seen in Proposition 4.10 that any factorial domain R is normal. The heart
of this argument is the following: Suppose 7/s is integral over R and we
wish to prove that r/s € R, that is, that r € (s). If (s) = R we are
done, so we assume that (s) is a proper ideal. The argument given in
Proposition 4.10 deduces from the integrality of r/s a relation of the form
ar = bs. This shows that if 7 ¢ (s), then at least r is a zerodivisor mod-
ulo s and is contained in an associated prime of s. In the factorial case,
this associated prime is generated by one of the prime elements divid-
ing s, so we can divide both r and s by its generator and complete the
proof by Noetherian induction (or, as in the version of Proposition 4.10,
we could assume from the outset that r and s have no common factor,
and derive a contradiction). Thus the condition we used could be stated
as follows: Associated primes of principal ideals are principal. It is not
hard to check that this condition is equivalent to factoriality (see Corol-
lary 10.6). But a slightly weaker condition of this sort is equivalent to
normality.
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Theorem 11.2. A Noetherian domain R is normal iff (%) for every prime
P of R associated to a principal ideal, Pp is principal.

This terse statement deserves some amplification. First, the condition
that Pp is principal implies (by the principal ideal thcorem) that codim
P =1, so (x) implies that (i) every associated prime to a principal ideal
has codimension 1.

Further, if codim P = 1, so that Rp is one-dimensional, then Pp is prin-
cipal iff Rp is a discrete valuation ring. Thus (x) is equivalent to condition i
along with condition ii: Every localization of R at a codimension-1 prime is
a discrete valuation ring (regularity in codimension 1). The theorem asserts
that normality is equivalent to conditions i and ii.

The one-dimensional local case of Theorem 11.2 says that a one-
dimensional local domain is normal iff it is a discrete valuation ring (that
is, iff its maximal ideal is principal).

Proof. We first show that the given conditions imply that R is normal.
Since an intersection of normal domains with a common quotient field is
obviously normal, it will be enough to show that R is the intersection of
its localizations at primes associated to principal ideals. This is done by
the following proposition. Since we shall soon want to apply it in a case
where R is not a domain but only reduced, we prove it more generally for
reduced rings. Here we need some terminology: We shall say that a prime
of R is associated to a nonzerodivisor if it is an associated prime of a
principal ideal generated by a nonzerodivisor.

Proposition 11.3. If R is a reduced Noetherian ring, then an element
x € K(R) belongs to R iff the image of x in K(R)p belongs to Rp for
every prime P associated to a nonzerodivisor in R.

Proof. Suppose that a/u € K(R), with a,u € R and u a nonzerodivisor. If
a/u ¢ R, then a ¢ (u). By Corollary 3.5, there is an associated prime P of
(u) such that a ¢ (u)p C Rp. Thus a/u ¢ Rp. O

Continuing the proof of Theorem 11.2, we next suppose that R is a
normal domain and that P is a prime of R associated to a principal ideal
(a); say P is the annihilator of bmod(a), with ¥ € R — (a). We shall show
that Pp is a principal ideal of Rp. Localizing if necessary, we may assume
from the outset that R is local with maximal ideal P. Let K be the quotient
field of R, and consider the set P~! := {r € K|rP C R}. We clearly have
P C P"'P C R, and since P is maximal, this leaves only the possibilities
P'P=Pand P'P=R.

If P1P = P, then by Corollary 4.6 the elements of P~! are integral over
R. Since R is normal, P~! = R. But Pb C (a), so b/a € P~! = R, whence
b € (a)—contradicting our assumption.



11.2 Normal Rings and Serre’s Criterion 251

Thus P~!P = R; that is, P is invertible. Since R is local, we get P =
R by Theorem 11.6a, so P is principal. (The necessary special case of
Theorem 11.6 is easy to do directly: Since R is local, P !P = R implies
that for some r € P~! we have rP = R. Consequently, P = Rr~! is
principal.) O

Corollary 11.4. If R is a normal Noetherian domain, then R is the inter-
section of its localizations at codimension-1 primes.

Proof. By Proposition 11.3 any ring is the intersection of its localizations at
the primes associated to nonzerodivisors. If R is normal and P is a prime
associated to a nonzerodivisor, then we have shown that Pp is principal.
Thus Pp, and with it P, has codimension 1. U

The geometric version of Corollary 11.4 is quite useful. It says that if X is
a normal variety and Y C X is a subvariety of codimension at least 2, then
any rational function on X regular on X —Y extends to a regular function
everywhere on X. Another version (that we shall not prove) of this is the
removable singularities theorem of several complex variables: If X is
a normal analytic variety of dimension at least 2, and x € X is a point (or
more generally a codimension-2 subset), then any meromorphic function
on X that is holomorphic outside x is holomorphic everywhere on X.

There is an important extension of the criterion of Theorem 11.2. First,
a definition: A ring R is normal if it is reduced, and integrally closed in its
total quotient ring. The normalization of a reduced ring R is the integral
closure of R in its total quotient ring.

Serre noticed that conditions i and ii following Theorem 11.2 really have
nothing to do with R being a domain, and that with small modifications
they distinguish normal rings among all Noetherian rings. It turns out that
a normal ring is a direct product of normal domains. A local or graded
ring cannot be a nontrivial direct product, so in many “practical” cases,
Theorem 11.5 gives a criterion that serves to distinguish normal domains.

It happens that it is generally rather hard to prove that a particular ring
is a domain, that is, that an ideal is prime, while it is often not so hard
to check the conditions of the criterion. For instance, condition i follows
from the Cohen-Macaulay condition that we shall investigate in Chapter 18.
Condition ii is often easy to check by using the Jacobian criterion, explained
in Chapter 16. Thus the following criterion is a powerful tool for proving
that a ring is a domain; see Theorem 18.15 and the example following it.
We shall deduce the general form of the criterion from the special case
given in Theorem 11.2. A related but easier result, characterizing reduced
rings, is given in Exercise 11.10.

Theorem 11.5 (Serre’s Criterion). A Noetherian ring R is a direct product
of normal domains iff the following two conditions are satisfied:
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i. Fvery associated prime of a principal ideal generated by a nonzero-
divisor in R s of codimension 1; every associated prime of 0 is of
codimension 0.

ii. Fvery localization of R at a codimension-1 prime is a discrete val-
uation ring, every localization of R at a codimension-0 prime is a

field.

Condition ii, regularity in codimension 1, is sometimes called “R1” where
the R stands for “Regular.” Condition i is usually called “S2” where the
S stands, somewhat asymmetrically, for Serre. See Exercise 11.10 for the
meaning of the condition “R0O and S1” and the discussion after Theo-
rem 18.15 for a reinterpretation of the conditions S1 and S2.

Proof. If R is a direct product of rings, say R = Ry X --- X R, then any
prime of R has the form

(%) Ry X XR_1XQi xRy X xXR,

for some i and some prime @); of R;. The associated primes of 0 are those of
the form (x) with @Q; associated to 0 in R;. Similarly, the primes associated
to a nonzerodivisor

(a1,...,a,) a; € R; a nonzerodivisor for each j

are those of the form (x) with Q; an associated prime of a;.

If now each of the R; is normal, then R satisfies condition i because by
Theorem 11.2, each of the R; does, and it satisfies condition ii because in
addition each localization of R at a prime of codimension ¢ is a localization
of some R; at a prime of codimension c.

Conversely, suppose that R satisfies conditions i and ii. We shall first
show that R is reduced. If

0 =nI; with I; a P;-primary ideal

is a minimal primary decomposition of 0, then each P; is an associated
prime of 0 and thus has codimension 0 by condition i. By condition ii, Rp
is a field, so that I; = P;, and R is reduced.

We may now apply Proposition 11.3. Since for each prime P associated
to a nonzerodivisor in R the ring Rp is integrally closed, it follows that R
itself is integrally closed in K(R). Since R is reduced, K(R) is a reduced
zero-dimensional ring, and by Proposition 2.16 K(R) is the product of
fields K; = (R/P;)p, . Let e; be the identity element of K, so that e; is an
idempotent of K(R) and e;e; = 0 for 7 # j. Since e; satisfies the integral
equation eJQ- — e; = 0, we must have e; € R for each j. It follows that R is
the product of the rings Re; = R/P;. Further, since R is integrally closed
in K(R), it now follows that each R/P; is integrally closed in K, so R is
a product of normal domains, as required. O



11.3 Invertible Modules 253
11.3 Invertible Modules

Anyone who has ever looked into a modern paper in algebraic geometry
will have seen the phrase “invertible sheat” or its approximate synonym
“line bundle” prominently displayed. The reason is that these notions play
a major role in the codimension-one theory of varieties. They will play a
major role for us, too. We begin with the definition.

If R is a ring and I is an R-module, then [ is invertible if I is finitely
generated and if for every prime ideal P of R we have Ip = Rp; that is, I is
locally free of rank 1. Of course, it suffices to check this for maximal ideals,
since if P C m are primes then Rp is a further localization of Ry,. We write
I' for Homp(I, R), and we make use of the natural map p: I*®1 — R by
©® a— p(a). (We shall see that every invertible module is isomorphic to
an ideal, so the name I is not too misleading.)

The simplest invertible ideals are the principal ones: If I = (x), where
x is a nonzerodivisor, then I is invertible. It is easy to give an example
of a nonprincipal invertible ideal: The ideal I = (2,1 + /=5) C Z[v/—5]
is one. (Proof: Easy computation shows 2 € I°. If I = (z) for some z,
then 2 = ux? for some element u of Z[v/—5]. Let N(a + by/—5) = a® 4 5b?
be the norm. We get 4 = N(2) = N(u)N(zx)?. Since N(z) is not a unit,
N(z) = £2. But a® + 5b # +2. Thus [ is not principal. To check that [ is
locally principal at a prime P, first note that if I ¢ P then Ip = Rp. If
I C P then 2 € TP, so by Nakayama's lemma Ip = (1 + +/=5)p.) In the
realm of affine rings, examples are common: For example, all the maximal
ideals of k[z,y]/(y* — 3 + x) are invertible but not principal if k is an
algebraically closed field of characteristic not 2. (Proof for those who know
some geometry: This is the affine ring of a nonsingular curve of genus 1 with
just one point at infinity. If a maximal ideal were principal then, because
the divisor of a rational function on a complete curve has degree 0, the
generator would birationally map the curve to P!.) Systematic algebraic
methods, and some more examples, are given in the exercises.

We shall compare invertible modules with R-submodules of the total quo-
tient ring K(R). These are called fractional ideals of R. If I is a finitely
generated fractional ideal of R, then choosing a common denominator for
the generators of I shows that I is isomorphic to an ordinary ideal of R. If
I C K(R) is any set, we define I™! := {s € K(R)|sI C R}.

Theorem 11.6. Let R be a Noetherian ring.

a. If I is an R-module, then I is invertible iff the natural map p : I* ®
I — R is an isomorphism.

b. Every invertible module is isomorphic to a fractional ideal of R. Fvery
invertible fractional ideal contains a nonzerodivisor of R.

c. If I,J C K(R) are invertible modules, then the natural maps [® J —
1J, taking s®t to st, and I=*J — Homg(I,J), taking t € I"'J to
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oy 2 I — J defined by pi(a) = ta, are isomorphisms. In particular,
It

d. If I C K(R) is any R-submodule, then I is invertible off I 'I = R.
Proof.

a. If I is invertible then u localizes, at any prime P, to the isomorphism
pup : Rp ® p,Rp = Rp ® p,Rp — Rp. By Corollary 2.9, p is an
isomorphism.

Conversely, suppose p is an isomorphism. Suppose that 1 =
p(do0 1 i ®a;). It follows that for every prime P,up : (I* ®r [)p =
(I*)p ®r, Ir — Rp is an isomorphism. We shall show that Ip = Rp
and that it is generated by one of the a;. Some ;(a;) must be outside
P. Let v = p;(a;)"! € Rp so that a := va; goes to 1 under (¢;)p.
Then Ip = Rpa @ ker(yp;)p, with Rpa = Rp. Similarly, regarding a
as a homomorphism from I} to Rp, we see that I, = Rpy; @ ker(a)
and Rp; = R. Now,

Ip ® Ip = Rpa ® Rpyp; ® ker(¢,)p ® Rppi © -+ .

Since (ker ;) ® Rpy; maps to ¢;(ker ;) = 0 under the isomorphism
u, we have (ker¢;)p = 0, and (y;)p is an isomorphism sending a,
to a generator, as claimed. It follows from Corollary 2.9 that I is
generated by ay,...,a,, so I is also finitely generated.

b. Suppose I is invertible. We wish to embed I in K(R). By Exer-
cise 3.14, K(R) is a semilocal ring; its maximal ideals are of the form
PK(R), where P is a maximal associated prime of R. For every such
P we have I ® K(R)pK(R) = IP = RP = K(R)pK(R). Thus by Exer-
cise 4.13, I ® K(R) =2 K(R).

Next we show that the localization map ¢ : I — K(R)® I = I[U™!],
where U is the set of nonzerodivisors on R, is a monomorphism.
To prove this, it is enough by Corollary 2.9 to check it locally at
a maximal ideal P. The map ¢p is the localization map ¢p : Ip =
Rp — K(R)®pRp = Rp[U™']. The elements of U are nonzerodivisors
on Rp, so pp is a monomorphism as required. The map I — K(R)®
I = K(R) is the desired embedding.

Suppose now that I C K(R) is any finitely generated fractional ideal
such that INR consists of zerodivisors. Because [ is finitely generated,
there is a nonzerodivisor v € R such that ul C RNI C R C K(R).
By Corollary 3.2 there is a nonzero element b € R annihilated by
RN I, and thus by ul. It follows that I is annihilated by ub, and
localizing at a prime P containing the annihilator of ub, we see that
Ip 2% Rp, so I is not invertible,
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c. Suppose that I,J C K(R) are invertible. We first show that the
natural surjection I ® J — I.J is a monomorphism. It suffices to show
that for any prime P of R the map Ip®p, Jp — (IJ)p C K(R)pis a
monomorphism. Now K (Rp) is a localization of K(R)p, and it suffices
to prove that the composite map to K(Rp) is a monomorphism. Thus
we may assume from the outset that R is local.

In this case I = J = R, so I and J are generated as R-modules
by some nonzerodivisors s and t of K(R). It follows that st is a
nonzerodivisor. The composite map R RQr R=21QpJ — 1J =
Rst C K(R) is multiplication by st, a monomorphism as claimed.

Next we show that the natural map I-'J — Hompg(I,J) sending ¢
to ¢ 18 an isomorphism. By part b we may choose a nonzerodivisor
ve RNI.IF0 #£t e I71J, then tv # 0, so t induces a nonzero element
of Hompg(I, J), and the map I'J — Homg(I, J) is a monomorphism.
To show that it is an epimorphism, let ¢ € Hompg(I, J) be arbitrary,
and set p(v) = w. We claim that ¢ = @, /,.

In fact, we claim that if any two homomorphisms ¢, 9 : I — K(R)
agree on v, then they agree on all of I. It suffices to show that they
agree after localization. The element v has the property that its anni-
hilator is 0, and this is preserved by localization, so v corresponds to a
nonzerodivisor of Rp under the isomorphism Ip = Rp. After choosing
such an isomorphism, we may regard ¢p and ¥p as homomorphisms
of Rp-modules Rp — K (R)p that agree on a nonzerodivisor v of Rp.

Thus, ve(1) = ¢(v) = $(v) = vis(1), 50 (1) = (1) and @ = v

d. First suppose that I C K(R) is an invertible module. By part ¢ the
isomorphism I* ® I — R may be identified with the multiplication
map [7'®I — R, so I"'I = R.

Finally, suppose I C K(R) is an R-submodule with /7T = R. We
may localize and suppose that R is local with maximal ideal P, and
we must then show that I = R. By our hypothesis there is an element
v € I"! such that vI ¢ P. It follows that v/ = R. This implies that
v is a nonzerodivisor, so multiplication by v is an isomorphism of
with R.

)

Part d of Theorem 11.6 accounts for the term “invertible” submodule.
Since the tensor product is associative, the set of isomorphism classes of
invertible R-modules forms a group under the operation ®: The unit is the
isomorphism class of R and by Theorem 11.6a the inverse of the class of I
is the class of I'*. This group is called the Picard group of R, denoted
Pic(R).

Similarly, the set of invertible submodules of K(R) forms a group under
multiplication; the inverse of I C K(R) is I'. This is called the group
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of Cartier divisors, C(R) (we shall see the origin of the term later). We
have:

Corollary 11.7. Let R be a Noetherian ring.

a. The map C(R) — Pic(R) sending each invertible submodule of K(R)
to its isomorphism class is surjective, and its kernel is isomorphic to
the group of units of K(R).

b. The group C(R) is generated by the set of invertible ideals of R.
Proof.

a. To each unit u € K(R) we associate the “principal divisor” Ru C
K(R); it is certainly an invertible module, with inverse Ru~!. The
map C(R) — Pic(R) is surjective by Theorem 11.6b and takes prin-
cipal divisors to the identity, so it suffices to show that if I, J C K(R)
are invertible submodules and ¢ : I — J is an isomorphism, then
I = uJ for some unit u € K(R)*. By part ¢ of Theorem 11.6,
Homg(I,J) = I"'J, so ¢ may be realized as multiplication by some
element u € K(R). The inverse map is similarly realized by multipli-
cation by some element v € K(R). Thus multiplication by uv is the
identity on I, and since I must contain a nonzerodivisor of R, we see
that uv = 1.

b. If I ¢ K(R) is an invertible fractional ideal of R, then [~! contains a
nonzerodivisor a € R by Theorem 11.6b. Thus al C R, and we may
write I = al - (a)™". O

11.4 Unique Factorization of
Codimension-One Ideals

As we have mentioned before, commutative algebra began in the search
for an analogue of unique factorization that would hold for the ring of
all integers in a given algebraic number field K—that is, for the integral
closure of Z in K. One fruit of this search was the Lasker-Noether theory
of primary decomposition, which deals with arbitrary ideals in an arbitrary
Noetherian ring, and in which products are replaced by intersections; we
treated this in Chapter 3. But long before the work of Lasker and Noether
(1905), Dedekind (1871) had described an extension of unique factorization
that gave a unique expression of ideals of a ring R of algebraic integers as
products of prime ideals. The key fact about R from this point of view
turns out to be that its localizations are all factorial. (In Dedekind’s case
R is normal and one-dimensional, so the localizations are all DVRs.) The
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generalization is worthwhile because, as we shall prove later, any regular
local ring is factorial. Thus if R is the affine ring of any nonsingular affine
variety, then R is locally factorial.

We gay that an ideal I in a ring R has pure codimension 1 if every
associated prime ideal of I has codimension 1. We include the case when I
has no associated primes at all-—that is, when I = R.

Theorem 11.8. Let R be a Noetherian domain, and suppose that for every
mazimal ideal P of R the ring Rp is factorial.

a. Let I C R be an ideal. I is an invertible module iff I has pure codi-
mension 1.

b. If I C K(R) is an invertible fractional ideal, then I is uniquely
expressible as a finite product of powers of prime ideals of codimension
1. Thus C(R) is a free abelian group generated by the codimension 1
primes of R.

Proof. Suppose first that I C R is an invertible ideal. If we localize at any
maximal ideal then I becomes principal, generated by a nonzerodivisor.
Since a factorial domain is normal by Proposition 4.10, Theorem 11.2 shows
that I is unmixed of codimension 1.

Next suppose that P is a prime ideal of codimension 1. Suppose m is
a maximal ideal of R. If P C m, then P, C R, is principal because R
is factorial. If P ¢ m, then P, = Rp. In either case Py = Ry, so P is
invertible.

We shall now show that any ideal I of pure codimension 1 is a finite
product of codimension 1 prime ideals. Since a product of invertible ideals
is invertible, this will show that I is invertible as well. Arguing by con-
tradiction, let I be an ideal of pure codimension 1, maximal among such
ideals that cannot be expressed as the product of codimension 1 prime ide-
als. Note that I = R is equal to the empty product of prime ideals, so we
may assume [ # R. Let P be a codimension 1 prime ideal containing /.

Since P is invertible, we have P~'P = R and thus P! 2 RIfP =1,
then P! would consist of elements integral over R by Corollary 4.6. As R
is locally factorial, it is normal by Proposition 4.10, so this is impossible
and P~1J ; I. By our maximality hypothesis, we may write P~ = 11Q;,
a finite product of codimension 1 prime ideals, and thus I = PIIQ; is
a product of prime ideals after all. By Corollary 11.7b, every invertible
fractional ideal may be expressed as a product of powers of codimension 1
prime ideals.

It remains to show that the expression of I as a finite product of powers
of distinct codimension 1 prime ideals is unique. Suppose I = H;’;lPid’ =
7, Q¢ are two such expressions. Multiplying both sides by any primes
that appear to negative powers, we may assume that all the d; and e; are
greater than 0. We do induction on d := > d;. If d = 0, then I = R and
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n = 0 as well. If d > 1, note that IIP;, C ;. Since @Q; is prime, some P,
must be contained in Q. Since P; and () are both codimension 1, we must
have P, = );. Since Q) is invertible, we may “cancel” J; by multiplying
both sides by Q*, reducing d and finishing the proof. (For the relation of
this to primary decomposition, see Exercise 11.11.) OJ

A Dedekind domain is a Noetherian normal domain of dimension 1.
Thus the ring of all integers in an algebraic number field and the affine
ring of a nonsingular irreducible algebraic curve are Dedekind domains.
Theorem 11.8 is most often stated and applied for Dedekind domains. Here
is the statement in this special case.

Corollary 11.9 (Dedekind). Let R be a Dedekind domain. Every nonzero
ideal of R is invertible and may be written uniquely as the product of prime
ideals. The same is true for fractional ideals. Thus C(R) is a free abelian
group generated by the set of maximal ideals of R.

If R is a Dedekind domain, then the group Pic(R) = C(R)/K(R)" is
usually called the class group of R. It is an interesting invariant, about
which a good deal is known. For example, if R is the ring of integers in a
number field, then Pic(R) is a finite group.

On the other hand, if R is the affine ring of a nonsingular curve over an
algebraically closed field, then Pic(R) is finite iff the curve is rational. For a
curve of genus g > 0, Pic(R) may be represented as the Picard group of
the associated complete curve modulo the subgroup generated by the
classes of the ideals of the finitely many points at infinity. Over the complex
numbers, for example, the Picard group of a complete curve of genus g is
isomorphic as a group to a product of Z and a torus, the product of 2¢
copies of the circle {z € C| |z| = 1}. This is an uncountable group, and an
easy argument shows that Pic(R) is actually a quotient of the torus by a
finitely generated group projection onto Z. Thus Pic(R) is an uncountable,
divisible group. If R is the affine ring of a singular curve, then the Picard
group of R maps onto that of the normalization of R, which corresponds to a.
nonsingular curve; the kernel is an interesting invariant of the singularities.

In general, it is known that every abelian group appears as the Picard
group of some Dedekind domain, and the sets of generators and relations
given by invertible ideals and principal ideals may also be prescribed; see
Leedham-Greene [1972].
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11.5 Divisors and Multiplicities

If a, b are elements of a ring, then b divides a iff a € (b). In general,
an ideal can be regarded as something by which an element might be
divisible-—a “divisor.” Because of the unique factorization into prime ide-
als in a Dedekind domain, nonzero ideals there correspond to finite sets of
codimension 1 prime ideals, each with multiplicity. The term divisor was
transferred to such sets and stuck there. We define a divisor (or Weil
divisor) in any ring R to be an element of the free abelian group Div(R)
whose generators are the codimension 1 prime ideals of R. That is, a Weil
divisor of R is a formal linear combination of codimension 1 prime ideals
in R, with integer coefficients.

On the other hand, the natural analogue, for an arbitrary ring R, of the
set of divisors in a Dedekind domain is in many respects the set of invertible
ideals of R, now called Cartier divisors. (Both the names Cartier divisor
and Weil divisor seem to have been coined by Mumford [1966].) In general,
these two sets are very different, but there is a natural homomorphism from
the group of Cartier divisors to the group of Weil divisors, which we shall
describe.

We shall exploit the following elementary fact: If R is a one-dimensional
ring and a € R is any nonzerodivisor, then R/(a) is zero-dimensional, and
thus of finite length. We shall see that the map R — {0} — Z defined
by a — length R/(a) extends to a homomorphism from K(R)* to Z. (In
general it is not a valuation; see Exercise 11.6.) This homomorphism even
extends to the group of invertible ideals.

Theorem 11.10. For any Noetherian ring R, there is a map ¢ : C(R) —
Div(R) sending an invertible ideal I C R to

o(I) = > length(Rp/Ip) - P € Div(R).

PCR codim 1 prime

If dim R = 1, then there is a map C(R) — Z sending an invertible ideal I
to length R/1.

Proof. We begin with a general remark: Suppose that G, H are abelian
groups and that s C G is a subset that generates G. To define a homo-