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Chapter 1

Categories, Functors, Natural
Transformations

1.1 Abstract and concrete categories

Exercise 1.1.i.
(i) Show that a morphism can have at most one inverse isomorphism.

Proof. Let 𝑓 : 𝑥 → 𝑦 be an arbitrary morphism, and let 𝑔 : 𝑦 → 𝑥 and ℎ : 𝑦 → 𝑥 be
two inverse isomorphisms of 𝑓 . That is to say, 𝑔 𝑓 = ℎ 𝑓 = 1𝑥 and 𝑓 𝑔 = 𝑓 ℎ = 1𝑦 .
Consider the composition 𝑔 𝑓 ℎ. This is a valid composition, since the domain of 𝑔
is equal to the codomain of 𝑓 , and the domain of 𝑓 is equal to the codomain of ℎ.
Composition is associative, so (𝑔 𝑓 )ℎ = 𝑔( 𝑓 ℎ).
Evaluate each of these expressions independently:

• Evaluated as (𝑔 𝑓 )ℎ, we find that 𝑔 𝑓 = 1𝑥 , so (𝑔 𝑓 )ℎ = 1𝑥ℎ = ℎ.
• Evaluated as 𝑔( 𝑓 ℎ), we find that 𝑓 ℎ = 1𝑦 , so 𝑔( 𝑓 ℎ) = 𝑔1𝑦 = 𝑔.

Since both expressions are equal, we can conclude that ℎ = 𝑔. So any two inverse
isomorphisms of 𝑓 must be equal. Since 𝑓 was arbitrary, we can generalize to
conclude that any morphism can have at most one (distinct) inverse isomorphism. □

(ii) Consider a morphism 𝑓 : 𝑥 → 𝑦. Show that if there exist a pair of isomorphisms
𝑔, ℎ : 𝑦 → 𝑥 so that 𝑔 𝑓 = 1𝑥 and 𝑓 ℎ = 1𝑦 , then 𝑔 = ℎ and 𝑓 is an isomorphism.

Proof. Let 𝑓 : 𝑥 → 𝑦 be an arbitrary morphism, and let 𝑔, ℎ : 𝑦 → 𝑥 be morphisms
such that 𝑔 𝑓 = 1𝑥 and 𝑓 ℎ = 1𝑦 . Similarly to above, evaluate the composition 𝑔 𝑓 ℎ
as (𝑔 𝑓 )ℎ = 1𝑥ℎ = ℎ and as 𝑔( 𝑓 ℎ) = 𝑔1𝑦 = 𝑔. Due to associativity, we have
(𝑔 𝑓 )ℎ = 𝑔( 𝑓 ℎ). So we can conclude that 𝑔 = ℎ. Since 𝑓 ℎ = 1𝑦 was given, using our
previous conclusion, we can substitute 𝑔 for ℎ to obtain 𝑓 𝑔 = 1𝑦 . Since we were also
given 𝑔 𝑓 = 1𝑥 , we can conclude that 𝑓 is an isomorphism. □
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Definition 1.1.11. A groupoid is a category in which every morphism is an isomorphism.

Exercise 1.1.ii. Let C be a category. Show that the collection of isomorphisms in C defines
a subcategory, the maximal groupoid inside C.

Proof. Let Ciso denote the objects of C together with its isomorphisms. We wish to
show that Ciso is a category. Ciso inherits composition and associativity from C. Notice
that the identity morphism for each object is in C is clearly an isomorphism as it is both
right and left invertible, so the identity morphisms for each object are in Ciso. Because
composition in Ciso is the same as in C, each object will have the same identity morphism
as in C. To show Ciso is closed under composition, take two morphisms 𝑓 : 𝑥 → 𝑦 and
𝑔 : 𝑢 → 𝑥 in Ciso. Since 𝑓 is an isomorphism, then there is a morphism ℎ ∈ mor Ciso with
ℎ : 𝑦 → 𝑥, such that 𝑓 ℎ = 1𝑦 and ℎ 𝑓 = 1𝑥 . Likewise, since 𝑔 is an isomorphism, then
there is a morphism 𝑗 ∈ mor Ciso with 𝑗 : 𝑥 → 𝑢, such that 𝑔 𝑗 = 1𝑥 and 𝑗𝑔 = 1𝑢. We can
take the composition 𝑓 𝑔, since dom( 𝑓 ) = cod(𝑔). We also have the composition 𝑗 ℎ, since
dom( 𝑗) = cod(ℎ). And again, respecting domains and codomains, we have the composition
( 𝑓 𝑔) ( 𝑗 ℎ), since dom( 𝑓 𝑔) = cod( 𝑗 ℎ). From the associativity of the parent category C, then
( 𝑓 𝑔) ( 𝑗 ℎ) = 𝑓 (𝑔 𝑗)ℎ = 𝑓 (1𝑥)ℎ = 𝑓 ℎ = 1𝑦 . Thus 𝑗 ℎ is the right inverse of the composition
𝑓 𝑔. Similarly, since cod( 𝑓 𝑔) = dom( 𝑗 ℎ), we have the composition ( 𝑗 ℎ) ( 𝑓 𝑔), which again
from the associativity of the category C, ( 𝑗 ℎ) ( 𝑓 𝑔) = 𝑗 (ℎ 𝑓 )𝑔 = 𝑗1𝑥𝑔 = 𝑗𝑔 = 1𝑢. So, 𝑗 ℎ is
the left inverse of 𝑓 𝑔, and 𝑓 𝑔 is an isomorphism.

We have shown that Ciso is a category, with all of the objects of C and morphisms of C
restricted to the isomorphisms of C. So the groupoid Ciso is a subcategory of C. Presented
with any other subcategory D, of C, that is strictly larger than Ciso, there must be a morphism
in D that is not in Ciso. Then this morphism must not be an isomorphism, and hence, D
cannot be a groupoid. So, the category Ciso is the maximal groupoid that is a subcategory
of C. □

Exercise 1.1.iii. For any category C and any object 𝑐 in C show that:
1. There is a category 𝑐/C whose objects are morphisms 𝑓 : 𝑐 → 𝑥 with domain 𝑐 and

in which a morphism from 𝑓 : 𝑐 → 𝑥 to 𝑔 : 𝑐 → 𝑦 is a map ℎ : 𝑥 → 𝑦 between the
codomains so that the triangle

𝑐
𝑔

��

𝑓

��
𝑥

ℎ
// 𝑦

commutes, i.e., so that 𝑔 = ℎ 𝑓 .

2. There is a category C/𝑐 whose objects are morphisms 𝑓 : 𝑥 → 𝑐 with codomain 𝑐
and in which a morphism from 𝑓 : 𝑥 → 𝑐 to 𝑔 : 𝑦 → 𝑐 between the domains so that
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the triangle

𝑥
ℎ //

𝑓
��

𝑦

𝑔
��

𝑐

commutes, i.e., so that 𝑓 = 𝑔ℎ
The categories 𝑐/C and C/𝑐 are called slice categories of C under and over 𝑐,
respectively.

Proof. First we must determine the form of the objects and morphisms in 𝑐/C. The
objects of 𝑐/C are diagrams of the following form.

𝑐
𝑓
// 𝑥

The morphisms in 𝑐/C are diagrams of the following form.

𝑐
𝑔

��

𝑓

��
𝑥

ℎ
// 𝑦

Though this is notation is by no means standard, to help distinguish between morphisms in
C and morphisms in the slice categories, we will define ℎ′ as a short hand for the diagram
with the morphism ℎ as the bottom arrow (or top in C/𝑐). Notice that both the objects
are commutative diagrams in C. We could also think of the objects as functors1 from the
category 2 and the morphisms as functors from the category 3. By the way we have defined
morphisms the only reasonable choices for the domain and codomain of ℎ′ are 𝑓 and 𝑔
respectively.

We can see how to compose two compatible morphisms 𝑖′ : 𝑒 → 𝑓 and ℎ′ : 𝑓 → 𝑔 in
𝑐/C by looking at the following diagram in C.

𝑐

��

𝑔

����

𝑒

��

𝑓

��
𝑧

𝑖
// 𝑥

ℎ
// 𝑦

Since (ℎ𝑖)𝑒 = ℎ(𝑖𝑒) = ℎ 𝑓 = 𝑔 in C the diagram commutes, and the composition ℎ𝑖 can
be thought of as a member of 𝑐/C denoted as (ℎ𝑖)′ with domain and codomain 𝑒 and 𝑔,
respectively. Using the diagram notation (ℎ𝑖)′ is denoted as follows.

𝑐
𝑔

��

𝑒

��
𝑥

ℎ𝑖
// 𝑦

1Functors are defined in section 1.3. Right now the diagrams here are just helpful tools to keep track of
equations. Diagrams are made formal in section 1.6.
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Because we have defined composition in 𝑐/C in terms of composition in C, 𝑐/C inherits
the associativity of C That is for composable morphisms ℎ′, 𝑖′, and 𝑗 ′ in C we have

(ℎ′𝑖′) 𝑗 ′ = (ℎ𝑖) 𝑗 = ℎ(𝑖 𝑗) = ℎ′ (𝑖′ 𝑗 ′).

We need to obtain the identity morphism of each object 𝑓 in 𝑐/C. To do so notice that
the follow diagram commutes, because C is a category.

𝑐

𝑓

��

𝑓

��
𝑥

1𝑥

// 𝑥

Looking at the same diagram from a different perspective we see that 1𝑥 actually acts as the
identity morphism for 𝑓 in 𝑐/C. Since we were careful when defining the morphisms in 𝑐/C,
this identity is well defined. If we had defined the morphisms in 𝑐/C to be anything less
than a commutative diagrams, it would seem as 1′𝑥 could serve as the identity for multiple
objects in 𝑐/C. This issue is not restricted to identity morphisms, but this ambiguity is
most obvious in the case of identity morphisms. However, since we defined morphisms
appropriately, we can use the notation defined earlier to write 1′𝑥 = 1 𝑓 : 𝑓 → 𝑓 without any
ambiguity. This notion can be used to obtain the left and right identities by considering the
following commutative diagram in C

𝑐

𝑔
��

𝑔

''
𝑓

��

𝑓

ww
𝑥

1𝑥

// 𝑥
ℎ

// 𝑦
1𝑦

// 𝑦

Translating the above diagram into the slice category notation we have that ℎ′1 𝑓 = ℎ′ =
1𝑔ℎ′. We have shown that 𝑐/C satisfies all the axioms of a category.

We can use the same procedure to show that C/𝑐 is also a category. The only difference
is direction of each arrow. Hence this proof will be relatively terse. The objects in 𝑐/C are
the following diagram.

𝑥
𝑓
// 𝑐

A morphisms ℎ′ in C/𝑐 has the form of the following diagram.

𝑥
ℎ //

𝑓
��

𝑦

𝑔
��

𝑐

The domain of ℎ′ is 𝑓 and the codomain of ℎ is 𝑔. We define composition on C/𝑐 by taking
compatible in C/𝑐 morphisms 𝑖′ : 𝑒 → 𝑓 and ℎ′ : 𝑓 → 𝑔 and observing the following
diagram in C.
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𝑧
𝑖 //

𝑒
��

𝑥

𝑓

��

ℎ // 𝑦

𝑔
��

𝑐

Again this diagram commutes since 𝑔(ℎ𝑖) = (𝑔ℎ)𝑖 = 𝑓 𝑖 = 𝑒 in C. We see that (𝑖ℎ) is
member of C/𝑐 with domain 𝑒 and codomain 𝑔 and is denoted as follows.

𝑧
𝑖ℎ //

𝑒
��

𝑦

𝑔
��

𝑐

Just like we did in the previous case, we have defined composition in terms of the composition
in C.Hence the associativity is inherited. That is given composable morphisms 𝑖′, ℎ′, and 𝑗 ′
we have

( 𝑗 ′ℎ′)𝑖′ = ( 𝑗 ℎ)𝑖 = 𝑗 (ℎ𝑖) = 𝑗 ′ (ℎ′𝑖′).

We can obtain the identity element for each object 𝑓 in C/𝑐 in the exact same way as before.

𝑐

𝑓

��

𝑓

��
𝑥

1𝑥

// 𝑥

Since the above diagram commutes we can write 1′𝑥 = 1 𝑓 : 𝑓 → 𝑓 To get an identity for an
arbitrary element observe that the diagram below commutes and gives us that 1 𝑓 ℎ′ = ℎ′ =
ℎ′1𝑔.

𝑥
1𝑥 // 𝑥

ℎ // 𝑦
1𝑦
// 𝑦

𝑐

𝑔

77

𝑔
??

𝑓
__

𝑓

gg

Therefore both 𝑐/C and C/𝑐 are categories in their own right. □

If you looked over to the next page and read the definition of opposite categories, you
should notice that ((𝑐/(C)op))op = (C/𝑐). If we knew about opposite categories beforehand
we could have just proved that the 𝑐/C is a category and then cited this result and been
done (since the opposite category is category, it’s in the name after all), without all the extra
tedium of swapping arrows.
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1.2 Duality

Exercise 1.2.i. Show that C/𝑐 � (𝑐/(Cop))op. Defining C/𝑐 to be (𝑐/(Cop))op, deduce
Exercise 1.1.iii(ii) from Exercise 1.1.iii(i).

Proof. This exercise asks us to prove that two categories are isomorphic, which is a
notion that we have not yet encountered. But, I will prove that the two categories are equal!

This exercise uses definitions from Exercise 1.1.iii. There are so many layers in the
present exercise that to keep things straight, it will help to add one more piece of notation.
Recall that for an object 𝑐 of a category C, the slice category C/𝑐 of C over 𝑐 has as objects
the morphisms 𝑓 : 𝑥 → 𝑐 in C. A morphism from 𝑓 to 𝑔 in C/𝑐, where 𝑓 has domain
𝑥 and 𝑔 domain 𝑦 in C, is a morphism ℎ : 𝑥 → 𝑦 in C such that 𝑔ℎ = 𝑓 . To distinguish
between ℎ as viewed in C and in C/𝑐, let’s write ℎ′ : 𝑓 → 𝑔 when we want to consider ℎ as
a morphism in C/𝑐 and ℎ : 𝑥 → 𝑦 when we want to consider it in C2. We can use similar
notation for the slice category 𝑐/C of C under 𝑐.

Since we will make systematic and careful use of opposite categories, recall that the
objects and morphisms of C and of Cop are precisely the same. Only, the assignment of
domains and codomains are swapped, allowing order of composition to be swapped. If 𝑓 is
a morphism in C, then 𝑓 op is precisely the same morphism, but the op reminds us that we
are considering it in Cop rather than in C so that we have different assignments for domain
and codomain.

Now, I claim that C/𝑐 = (𝑐/(Cop))op. We must first check that they have the same
objects, though we notate 𝑓 in the first category as 𝑓 op in the second. Then, for every pair
of objects 𝑓 and 𝑔 in C/𝑐 we must see that

(C/𝑐) ( 𝑓 , 𝑔) = (𝑐/(Cop))op ( 𝑓 op, 𝑔op).

(Note that we use this notation even when C is not locally small, so that each side of the
equality might be a proper class.) Finally, we must see that composition of morphisms is
the same in each category.

Since the objects of a category and its opposite category are the same, the objects in
(𝑐/(Cop))op are the objects in 𝑐/(Cop), which are morphisms 𝑓 op : 𝑐 → 𝑥 in Cop. But, these
are the same as morphisms 𝑓 : 𝑥 → 𝑐 in C, which is to say objects of C/𝑐 as claimed.

For the rest, let 𝑓 : 𝑥 → 𝑐, 𝑔 : 𝑦 → 𝑐 and ℎ : 𝑧 → 𝑐 be three morphisms in C. A
morphism

𝑖op′op : 𝑓 op → 𝑔op

in (𝑐/(Cop))op is just a morphism

𝑖op′ : 𝑔op → 𝑓 op

2The notation ℎ′ can still be ambiguous since there might also be other 𝑖 : 𝑐 → 𝑥 and 𝑗 : 𝑐 → 𝑦 such that
𝑗ℎ = 𝑖 so that we also have ℎ′ : 𝑖 → 𝑗. This leads to different morphisms labeled ℎ′, but they are distinguished
by their domains and codomains
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in 𝑐/(Cop). This in turn is a morphism 𝑖op : 𝑦 → 𝑥 such that 𝑖op𝑔op = 𝑓 op in Cop, together
with the ordered pair (𝑔op, 𝑓 op) giving the domain and codomain of 𝑖op′. Unravelling one
more layer, this is in turn a morphism 𝑖 : 𝑥 → 𝑦 such that 𝑔𝑖 = 𝑓 in C together with the
ordered pair ( 𝑓 , 𝑔). This in turn corresponds to a morphism 𝑖′ : 𝑓 → 𝑔 in C/𝑐. Each of
these correspondences is actually an equality of classes. So, we have argued that

(𝑐/(Cop))op ( 𝑓 op, 𝑔op)
= (𝑐/(Cop)) (𝑔op, 𝑓 op)
= {𝑖op ∈ Cop (𝑦, 𝑥) | 𝑖op𝑔op = 𝑓 op} × {(𝑔op, 𝑓 op)}
= {𝑖 ∈ C(𝑥, 𝑦) | 𝑔𝑖 = 𝑓 } × {( 𝑓 , 𝑔)}
= (C/𝑐) ( 𝑓 , 𝑔)

as required.
Notice also in this correspondence that when 𝑓 = 𝑔 that the identities in each class are

the same. Altogether, 1op
𝑓 op = 1 𝑓 .

Now, we must see that the composition laws are the same. We have already established
above that 𝑖op′op = 𝑖′. Similarly, if 𝑗 ′ : 𝑔 → ℎ, then we have 𝑗op′op𝑖op′op : 𝑓 op → ℎop. But,
examining the definitions of opposite categories and of slice categories, we have equality
of each of the following morphisms interpreted in the categories shown

𝑗op′op𝑖op′op : 𝑓 op → ℎop in (𝑐/(Cop))op

𝑖op′ 𝑗op′ : ℎop → 𝑓 op in 𝑐/(Cop)
(𝑖op 𝑗op)′ : ℎop → 𝑓 op in 𝑐/(Cop)
𝑖op 𝑗op : 𝑧 → 𝑥 in Cop

𝑗𝑖 : 𝑥 → 𝑧 in C
( 𝑗𝑖)′ : 𝑓 → ℎ in C/𝑐
𝑗 ′𝑖′ : 𝑓 → ℎ in C/𝑐

This proves that the two categories share the same composition law. Thus, they are one and
the same.

Now, looking back at Exercise 1.1.iii, we see that we we could have defined C/𝑐 as
(𝑐/(Cop))op, so that the existence of the category C/𝑐 follows from the existence of 𝑐/(Cop),
which we have by the first part of Exercise 1.1.iii applied to Cop. □

Exercise 1.2.ii.
(i) Show that a morphism 𝑓 : 𝑥 → 𝑦 is a split epimorphism in a category C if and only if

for all 𝑐 ∈ C, post-composition 𝑓∗ : C(𝑐, 𝑥) → C(𝑐, 𝑦) defines a surjective function.

Proof. First, assume that 𝑓 is a split epimorphism and that 𝑐 ∈ ob C. That is,
there exists a function 𝑔 : 𝑦 → 𝑥 such that 𝑓 𝑔 = 1𝑦 . Now, consider the function
𝑓∗ : C(𝑐, 𝑥) → C(𝑐, 𝑦). We know that this function corresponds to composition on
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the left by 𝑓 , so in order for this function to be surjective, for every 𝑘 : 𝑐 → 𝑦, there
must exists a 𝑗 : 𝑐 → 𝑥 such that 𝑓 𝑗 = 𝑘 . Now, for an arbitrary 𝑘 , consider 𝑗 = 𝑔𝑘 . It
is easy to see that 𝑔𝑘 : 𝑐 → 𝑥, and that 𝑓∗ (𝑔𝑘) = 𝑓 (𝑔𝑘) = ( 𝑓 𝑔)𝑘 = 1𝑦𝑘 = 𝑘 . Since
we can construct 𝑗 in this way for every 𝑘 ∈ C(𝑐, 𝑦), we see that 𝑓∗ is surjective.
Now, assume that 𝑓∗ is surjective, that is, for any choice of 𝑐 ∈ C, and any 𝑘 ∈ C(𝑐, 𝑦),
𝑘 = 𝑓 𝑔, for some 𝑔 ∈ C(𝑐, 𝑥). Now, suppose 𝑐 = 𝑦 and 𝑘 = 1𝑦 , so we have that there
exists a 𝑔 ∈ C(𝑦, 𝑥) where 𝑓 𝑔 = 1𝑦 , and this implies that 𝑓 is a spilt epimorphism.□

(ii) Argue by duality that 𝑓 is a split monomoprhism if and only if for all 𝑐 ∈ C,
pre-composition 𝑓 ∗ : C(𝑦, 𝑐) → C(𝑥, 𝑐) is a surjective function.

Proof. We know that if 𝑓 op is a split epimorphism, that 𝑓 op
∗ : 𝐶op (𝑐, 𝑦) → 𝐶op (𝑐, 𝑥)

is surjective. However, if we consider the definitions of 𝑓 op and split monomorphisms
and epimorphisms, we see that 𝑓 op being a split epimorphism implies that 𝑓 is a split
monomorphism. We also see that 𝑓 op

∗ : Cop (𝑐, 𝑦) → Cop (𝑐, 𝑥) is equivalent to
𝑓 ∗ : C(𝑦, 𝑐) → C(𝑥, 𝑐). So we have that 𝑓 is a split monomorphism if and only if
𝑓 ∗ : C(𝑦, 𝑐) → C(𝑥, 𝑐) is surjective. □

Lemma 1.2.11.
(i) If 𝑓 : 𝑥 ↣ 𝑦 and 𝑔 : 𝑦 ↣ 𝑧 are monomorphisms, then so is 𝑔 𝑓 : 𝑥 ↣ 𝑧.
(ii) If 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 are morphisms so that 𝑔 𝑓 is monic, then 𝑓 is monic.

Dually:
(i’) If 𝑓 : 𝑥 ↠ 𝑦 and 𝑔 : 𝑦 ↠ 𝑧 are epimorphisms, then so is 𝑔 𝑓 : 𝑥 ↠ 𝑧.
(ii’) If 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 are morphisms so that 𝑔 𝑓 is epic, then 𝑔 is epic.

Exercise 1.2.iii. Prove Lemma 1.2.11 by proving either (i) or (i’) and either (ii) or (ii’), then
arguing by duality. Conclude that the monomorphisms in any category define a subcategory
of that category and dually that the epimorphisms also define a subcategory.

First we will show the above properties for monomorphisms, and then apply duality, as
the problem suggests, to prove the corresponding properties for epimorphisms.

Proof. First, we will prove that the composition of two monomorphisms is a monomor-
phism. Let C be a category and 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 be monomorphisms of C. Let
ℎ, 𝑘 : 𝑤 → 𝑥 be two morphisms in C so that: (𝑔 𝑓 )ℎ = (𝑔 𝑓 )𝑘 . Since composition of
morphisms is associative, we have 𝑔( 𝑓 ℎ) = 𝑔( 𝑓 𝑘). Since 𝑔 is monic, we get: 𝑓 ℎ = 𝑓 𝑘 .

Since 𝑓 is monic, we ultimately get: ℎ = 𝑘. Thus, 𝑔 𝑓 is monic. Thus, the compositions of
two monomorphisms is indeed a monomorphism.

Next we will show that if the composition of two morphisms is monic, then the rightmost
morphism is monic. Take morphisms 𝑎 : 𝑥 → 𝑦 and 𝑏 : 𝑦 → 𝑧 from category C where
𝑏𝑎 is monic. Take ℎ, 𝑘 : 𝑤 → 𝑥 so that 𝑎ℎ = 𝑎𝑘 . Left composing 𝑏 on both sides of the
equations results in: 𝑏(𝑎ℎ) = 𝑏(𝑎𝑘). By associativity we get: (𝑏𝑎)ℎ = (𝑏𝑎)𝑘 . Applying
the properties of monomorphisms results in: ℎ = 𝑘 . Thus 𝑎 is monic. So we have shown
that if the composition of two morphisms is monic, then the rightmost morphism is monic.

9



Now we will show that the monomorphisms of any category forms a category. Suppose
that D is a subcategory of C where the morphisms of D are the monomorphisms of C and
D and C have the same objects. Since for any object 𝑥 in C, if we had for morphisms ℎ
and 𝑘 of C with codomain 𝑥 the following property: 1𝑥ℎ = 1𝑥𝑘 , then ℎ = 𝑘 , since 1𝑥
is left cancellable, thus the identity morphism for every object in D is a monomorphism.
Therefore, every object in D has an identity arrow in D. Since the composition of two
monomorphisms is a monomorphism, then D contains compositions of its morphisms.
Obviously, the domains and codomains of morphisms of D are contained in D since D and
C have the same objects. Thus D is a subcategory of C.

We have shown that:
• The composition of two monomorphisms in C is a monomorphism,
• if the composition of two morphisms in C is monic, then the rightmost morphism is

monic, and
• the class of monomorphisms of any category C forms a subcategory of C.
Now we will use duality to show the corresponding properties for epimorphisms. If

we have the opposite category Cop, where the epimorphisms of C are the monomorphisms
of Cop, this means that the three properties proven for monomorphisms also work for
Cop. The properties of monomorphisms in Cop are the dual properties of epimorphisms in
(Cop)op = C. We will show that:

• the composition of two epimorphisms in C is an epimorphism,
• if the composition of two morphisms in C is epic, then the leftmost morphism is epic

(since 𝑓 op𝑔op in Cop corresponds to 𝑔 𝑓 in C), and
• the class of epimorphisms of any category C forms a subcategory of C.

This completes the proof. □

Definition 1.2.7. A morphism 𝑓 : 𝑥 → 𝑦 in a category is
(i) a monomorphism if for any parallel morphisms ℎ, 𝑘 : 𝑤 ⇒ 𝑥, 𝑓 ℎ = 𝑓 𝑘 implies that

ℎ = 𝑘; or
(ii) an epimorphism if for any parallel morphisms ℎ, 𝑘 : 𝑦 ⇒ 𝑧, ℎ 𝑓 = 𝑘 𝑓 implies that

ℎ = 𝑘 .

Exercise 1.2.iv. What are the monomorphisms in the category of fields?

Proof. In the category of fields, morphisms are field homomorphisms. Let 𝑓 : 𝐴→ 𝐵

be a morphism in Field. As 𝑓 is a field homomorphism, its kernel is an ideal in 𝐵. Since
𝐵 is a field, there are only two ideals: {0} and 𝐵 itself. The kernel of 𝑓 cannot be the
whole field, since this would be the zero morphism which is not a field homomorphism. So
ker 𝑓 = {0} and from this, 𝑓 is injective, and in particular it is left cancellable.

Let ℎ and 𝑘 be morphisms in Field for which composition with 𝑓 makes sense and say
that

𝑓 ℎ = 𝑓 𝑘 .

Since 𝑓 is left cancellable, this implies that

ℎ = 𝑘,
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and 𝑓 is a monomorphism by Definition 1.2.7(i) above. (In fact, injections are monomor-
phisms in any category in which the objects have “underlying sets”.)

Thus, all of the morphisms in Field are monomorphisms. □

Exercise 1.2.v. Show that the inclusion Z ↩→ Q is both a monomorphism and an epimor-
phism in the category Ring of rings. Conclude that a map that is both monic and epic need
not be an isomorphism.

Proof. Note first that monic and epic correspond to a map being cancellable on the
left and right, whereas an isomorphism is by definition invertible. It is easy to see that
invertibility implies cancellability; however the converse need not be true. Looking at the
monoid of natural numbers under addition, every element is cancellable; however none
except zero is invertible. Because every monoid is a category this gives us an elementary
example where a map that is monic and epic is not an isomorphism. However, this example
might seem simplistic and it is worth asking whether there is an example of cancellability
not implying invertibility in a “larger” category where the arrows represent actual maps.

Recall that Q is the localisation of Z with respect to its cancellable elements Z\{0}. The
immediate result of this is the existence of a natural embedding 𝜄 : Z→ Q that is an injective
ring homomorphism. Further, this embedding has the following universal property: given
a ring 𝑅 and a homomorphism 𝜙 : Z→ 𝑅 such that 𝜙(𝑞) has an inverse for all 𝑞 ∈ Z, there
is a unique ring homomorphism 𝜓 : Q→ 𝑅 such that the following diagram commutes.

Z
𝜙

//

𝜄
��

𝑅

Q

𝜓

??

Note further that there is a unique ring homomorphism from Z to any ring 𝑅 which
maps Z onto the subring generated by the multiplicative identity of 𝑅. This implies that
there can be at most one homomorphism from Q to any ring 𝑅. If 𝜓 : Q → 𝑅 is a ring
homomorphism, then 𝜓𝜄 : Z→ 𝑅 must be the unique homomorphism from Z to 𝑅 and thus
𝜓 is the unique homomorphism specified by the universal property.

Supposing ℎ, 𝑘 : Q ⇒ 𝑅 are parallel homomorphisms, they are equal by virtue of the fact
that there is at most one homomorphism from Q to 𝑅, and 𝜄 vacuously fulfils the condition
of an epimorphism. □

Exercise 1.2.vi. Prove that a morphism that is both a monomorphism and a split epimor-
phism is necessarily an isomorphism. Argue by duality that a split monomorphism that is
an epimorphism is also an isomorphism.

𝑥𝑔 𝑓 ::

𝑓
))
𝑦

𝑔
hh 1𝑦

zz
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Proof. Let C be a category with objects 𝑥 and 𝑦 and a morphism 𝑓 : 𝑥 → 𝑦. If 𝑓
is a split epimorphism, then there exists another morphism 𝑔 : 𝑦 → 𝑥 such that 𝑓 𝑔 = 1𝑦 .
If 𝑓 is also a monomorphism, then for any object 𝑤 and any parallel pair of morphisms
ℎ, 𝑘 : 𝑤 ⇒ 𝑥, 𝑓 ℎ = 𝑓 𝑘 implies that ℎ = 𝑘 . Combining these facts with some basic algebra:

1𝑦 𝑓 = 𝑓 1𝑥 definition of identies,
𝑓 𝑔 𝑓 = 𝑓 1𝑥 𝑔 is a right inverse of 𝑓 ,
𝑔 𝑓 = 1𝑥 𝑓 is left cancellable,

gives that 𝑔 is also a left inverse of 𝑓 .
Suppose instead that 𝑓 is an epimorphism and a split monomorphism with left inverse

𝑔 in the category C. Then it is also a monomorphism and a split epimorphism in Cop, thus
𝑓 is an isomorphism in Cop and an isomorphism in C. □

Exercise 1.2.vii. Regarding a poset (P, ≤) as a category, define the supremum of a subcol-
lection of objects 𝐴 ∈ P in such a way that the dual statement defines the infimum. Prove
that the supremum of a subset of objects is unique, whenever it exists, in such a way that
the dual proof demonstrates the uniqueness of the infimum.

Proof. Given a subcollection 𝐶 of objects 𝐴 ∈ P, define an upper bound as follows: a
object 𝑢 is an upper bound of 𝐶 if for all objects 𝑥 in 𝐶 there is a morphism 𝑥 ≤ 𝑢 : 𝑥 → 𝑢.
(Recall that morphisms in a poset category are merely elements of the ≤ relation.) Note
that this immediately gives us a dual notion of a lower bound by considering instead Pop.
A lower bound of 𝐶 in P is an upper bound of 𝐶 in Pop. In other words an object 𝑙op

such that for all objects 𝑥op in 𝐶 there is a morphism (𝑥 ≤ 𝑙)op : 𝑥op → 𝑙op, or equivalently
(𝑙 ≤ 𝑥) : 𝑙 → 𝑥.

Letting 𝐹 be the collection of all upper bounds of 𝐶, we define the supremum of 𝐶, if it
exists3, to be a lower bound of 𝐹 (as defined above) which is contained in 𝐹. The condition
of containment implies uniqueness. Supposing we have two lower bounds 𝑥 and 𝑦 of 𝐹.
If both are contained in 𝐹, then there are maps 𝑥 ≤ 𝑦 : 𝑥 → 𝑦 and 𝑦 ≤ 𝑥 : 𝑦 → 𝑥. Since
the only endomorphisms in P are identities these must compose to identities and thus be
inverses, and because P is a partially ordered set (as opposed to just being a preordered set)

3There are many cases where suprema fail to exist. Consider the poset category:

𝑎 𝑏

𝑐

OO ??

𝑑

OO__

the set {𝑐, 𝑑} has as upper bounds {𝑎, 𝑏}. However, {𝑎, 𝑏} has as lower bounds {𝑐, 𝑑}. Because these sets are
disjoint there is no supremum of {𝑐, 𝑑}. Even in more common orderings, like the usual ordering on the rational
numbers, subcollections can fail to have suprema. For example, {𝑥 ∈ Q |𝑥2 < 2}.

A poset with the property that any collection of elements has a supremum and infimum is called a complete
lattice.
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the only isomorphisms are identities. In familiar terms, a partial order is antisymmetric.
Thus 𝑥 and 𝑦 are the same object.

We may thus define the infimum of𝐶 to be its supremum on Pop. This time we consider
the collection 𝐼 of lower bounds 𝐶 (the upper bounds of 𝐶 in Pop). The infimum is then
an upper bound of 𝐼 which is contained in 𝐼 (a lower bound in Pop). The infimum must be
unique because it’s a supremum in the opposite category, and suprema are unique. □

13



1.3 Functoriality

Exercise 1.3.i. What is a functor between groups, regarded as one-object categories?

Proof. Recall that a group as a category has a single object 𝑥, and that each element
of the group is a morphism in the category. All domains and codomains are that object 𝑥.
There is one identity morphism 1𝑥 , which is the identity element in the group. Composition
is the same as multiplication in this context.

A functor between groups C and 𝐷 with respective objects 𝑥1 and 𝑥2 must trivially be
such that 𝐹𝑥1 = 𝑥2. Our primary concern is the behavior of the functor on the morphisms.
We require that for a functor 𝐹1𝑥 = 1𝐹𝑥 for all objects 𝑥 ∈ ob C, which in this case just
implies that 1𝑥1 is taken to 1𝑥2 . Additionally, we require 𝐹 (dom( 𝑓 )) = dom(𝐹 𝑓 ) and
𝐹 (cod( 𝑓 )) = cod(𝐹 𝑓 ) for all morphisms 𝑓 in the first category. This is a trivial require-
ment, as 𝐹 (dom( 𝑓 )) = dom(𝐹 𝑓 ) = 𝐹 (cod( 𝑓 )) = cod(𝐹 𝑓 ) = 𝑥2 regardless of 𝑓 . Finally
we require that if 𝑓 and 𝑔 are a composable pair of morphisms in C, then 𝐹 ( 𝑓 𝑔) = 𝐹 𝑓 𝐹𝑔.
However, all morphisms in D are composable, and this implies that 𝐹 ( 𝑓 ∗ 𝑔) = 𝐹 𝑓 ∗ 𝐹𝑔
in the notation of groups with operation ∗. This property and the preservation of identities
are directly the definition of a group homomorphism, so this functor is simply a group
homomorphism. □

Exercise 1.3.ii. What is a functor between preorders, regarded as categories?

Proof. Recall that a preorder regarded as a category has objects that are the elements
of the underlying set of the preorder, and has morphisms that are the related pairs. Iden-
tities are the unique morphisms (𝑥, 𝑥), which exist based on the reflexivity of the relation.
Note that if (𝑎, 𝑏) and (𝑏, 𝑐) are in the relation, the composition will be (𝑏, 𝑐) (𝑎, 𝑏) = (𝑎, 𝑐).

What do the properties of a functor between preorders C (with relation 𝑅) and D (with
relation 𝑆) tell us? First, we know that 𝐹1𝑥 = 1𝐹𝑥 for all 𝑥 ∈ ob C. This implies that the
morphism (𝑥, 𝑥) must be brought to the morphism (𝐹𝑥, 𝐹𝑥). This becomes redundant with
the next step.

We also know that 𝐹 (dom( 𝑓 )) = dom(𝐹 𝑓 ) for all 𝑓 ∈ mor C. If 𝑓 = (𝑎, 𝑏), then
𝐹 (dom( 𝑓 )) = 𝐹 (𝑎) and thus 𝐹 𝑓 must be a pair (𝐹 (𝑎), 𝑧1) for some 𝑧1 ∈ ob D. Similarly,
𝐹 (cod( 𝑓 )) = cod(𝐹 𝑓 ) implies that if 𝑓 = (𝑎, 𝑏), then 𝐹 (cod( 𝑓 )) = 𝐹𝑏 and 𝐹 𝑓 must be
a pair (𝑧2, 𝐹𝑏). Combining these, we get that 𝐹 𝑓 for 𝑓 = (𝑎, 𝑏) must be a pair (𝐹𝑎, 𝐹𝑏).
This means that if (𝑎, 𝑏) ∈ 𝑅 then (𝐹𝑎, 𝐹𝑏) ∈ 𝑆.

Thus, 𝐹 provides us a preorder homomorphism, as 𝐹 preserves related pairs. The fi-
nal property to check for a functor is composable pairs. If two morphisms 𝑓 and 𝑔 are
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composable, then 𝐹 ( 𝑓 𝑔) = 𝐹 𝑓 𝐹𝑔. This means

𝐹 ((𝑏, 𝑐) (𝑎, 𝑏)) = 𝐹 (𝑎, 𝑐) = (𝐹𝑏, 𝐹𝑐) (𝐹𝑎, 𝐹𝑏) = (𝐹𝑎, 𝐹𝑐),

which was already confirmed by the previous property. Thus, the functor is a preorder
homomoprhism. □

Exercise 1.3.iii. Find an example to show that the objects and morphisms in the image of
a functor 𝐹 : C→ D do not necessarily define a subcategory of D.

At first, I was suspicious of this exercise since it seemed to me that the proof that the
image of a group (or monoid, or ring, . . . ) homomorphism is a subgroup (or submonoid, or
subring, . . . ) carries through without any change. Perhaps the author meant for the exercise
to be something different?

So, I asked her, and she pointed out a straightforward example that also exposed the
error in my reasoning. I will give below a simplification of the example that she sent me.
First, here is the error in my original argument.

Let 𝑎 and 𝑏 be morphisms in the image of 𝐹 such that dom 𝑎 = cod 𝑏 so that we can
form 𝑎𝑏 in D. Since 𝑎 and 𝑏 are in the image of 𝐹, there are morphisms 𝑓 and 𝑔 in C such
that 𝑎 = 𝐹 𝑓 and 𝑏 = 𝐹𝑔. Then

𝑎𝑏 = 𝐹 𝑓 𝐹𝑔 = 𝐹 ( 𝑓 𝑔)

so that 𝑎𝑏 is in the image of 𝐹.
Right? Wrong!! In order to compose 𝑓 and 𝑔 we need that dom 𝑓 = cod 𝑔. All we

know for sure is that dom 𝐹 𝑓 = cod 𝐹𝑔. If 𝐹 is injective on objects, then the argument
above is valid. But perhaps 𝐹 is not injective.

The Example.

Now, I provide the example requested in this exercise. Let C = 2 be the ordinal category
pictured as so:

0
𝑓
// 1.

Let 𝑔 be an endomorphism of some object 𝑥 in some category D such that 𝑔𝑔 is equal to
neither 1𝑥 nor 𝑔. For example, we could take 𝑥 to be the unique object in 𝐵N and 𝑔 = 3.
Composition of morphisms in 𝐵N is addition in N so that 𝑔𝑔 = 𝑔 + 𝑔 = 6 ≠ 3, 0.

Then we have a functor 𝐹 : 2 → D given by 𝐹0 = 𝐹1 = 𝑥, 𝐹10 = 𝐹11 = 1𝑥 and
𝐹 𝑓 = 𝑔. There are only four possible compositions of the three morphisms in 2, 1010, 𝑓 10,
11 𝑓 and 1111 and it is easy to see that 𝐹 preserves all four of these compositions. Thus, 𝐹
is a functor.

However, the image of 𝐹 has only the two morphisms 1𝑥 and 𝑔. Since 𝑔𝑔 is not in the
image, the image of 𝐹 is not a subcategory of D.
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Lemma 1.2.3. The following are equivalent:
(i) 𝑓 : 𝑥 → 𝑦 is an isomorphism in C.
(ii) For all objects 𝑐 ∈ C, post-composition with 𝑓 defines a bĳection

𝑓∗ : C(𝑐, 𝑥) → C(𝑐, 𝑦)

(iii) For all objects 𝑐 ∈ C, pre-composition with 𝑓 defines a bĳection

𝑓 ∗ : C(𝑦, 𝑐) → C(𝑥, 𝑐)

Definition 1.3.1. A functor 𝐹 from C to D is a functor 𝐹 : C→ D. Explicitly, this consists
of the following data:

• An object 𝐹𝑐 ∈ D, for each object 𝑐 ∈ C.
• A morphism 𝐹 𝑓 : 𝐹𝑐 → 𝐹𝑐′ ∈ D, for each morphism 𝑓 : 𝑐 → 𝑐′ ∈ C, so that the

domain and codomain of 𝐹 𝑓 are, respectively, equal to 𝐹 applied to the domain or
codomain of 𝑓 .

The assignments are required to satisfy the following two functoriality axioms:
• For any composable pair 𝑓 , 𝑔 in C, 𝐹𝑔𝐹 𝑓 = 𝐹 (𝑔 𝑓 ).
• For each object 𝑐 in C, 𝐹 (1𝑐) = 1𝐹𝑐.

The functors defined in 1.3.1 are called covariant so as to distinguish them from another
variety of functor that we now introduce.

Definition 1.3.5. A contravariant functor 𝐹 from C to D is a functor 𝐹 : Cop → D.
Explicitly, this consists of the following data:

• An object 𝐹𝑐 ∈ D, for each object 𝑐 ∈ C.
• A morphism 𝐹 𝑓 : 𝐹𝑐′ → 𝐹𝑐 ∈ D, for each morphism 𝑓 : 𝑐 → 𝑐′ ∈ C, so that the

domain and codomain of 𝐹 𝑓 are, respectively, equal to 𝐹 applied to the codomain or
domain of 𝑓 .

The assignments are required to satisfy the following two functoriality axioms:
• For any composable pair 𝑓 , 𝑔 in C, 𝐹 𝑓 𝐹𝑔 = 𝐹 (𝑔 𝑓 ).
• For each object 𝑐 in C, 𝐹 (1𝑐) = 1𝐹𝑐.

Definition 1.3.11. If C is locally small, then for any object 𝑐 ∈ C we may define a pair of
covariant and contravariant functors represented by 𝑐:

C
C(𝑐,−)

// Set Cop C(−,𝑐)
// 𝑆𝑒𝑡

𝑥

𝑓

��

↦→ C(𝑐, 𝑥)

𝑓∗

��

𝑥

𝑓

��

↦→ C(𝑥, 𝑐)

↦→ ↦→

𝑦 ↦→ C(𝑐, 𝑦) 𝑦 ↦→ C(𝑦, 𝑐)

𝑓 ∗

OO
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The notation suggests the action on objects: the functor C(𝑐,−) carries 𝑥 ∈ C to the set
C(𝑐, 𝑥) of arrows from 𝑐 to 𝑥 in C. Dually, the functor C(−, 𝑐) carries 𝑥 ∈ C to the set
C(𝑥, 𝑐).

The functor C(𝑐,−) carries a morphism 𝑓 : 𝑥 → 𝑦 to the post-composition function
𝑓∗ : C(𝑐, 𝑥) → C(𝑐, 𝑦) introduced in Lemma 1.2.3(ii). Dually, the functor C(−, 𝑐) carries
𝑓 to the pre-composition function 𝑓 ∗ : C(𝑦, 𝑐) → C(𝑥, 𝑐) introduced in 1.2.3(iii).

Exercise 1.3.iv. Verify that the constructions in Definition 1.3.11 are functorial.

Proof. We start by showing that the assignments of C(𝑐,−) satisfy the functoriality ax-
ioms for (covariant) functors. The actions of dom and cod on C(𝑐,−) can be seen as follows:
applying C(𝑐,−) to a morphism ℎ : 𝑖 → 𝑗 will give a morphism C(𝑐,−)(ℎ) : C(𝑐, dom ℎ) →
C(𝑐, cod ℎ), so dom C(𝑐,−)(ℎ) = C(𝑐, 𝑖) and cod C(𝑐,−)(ℎ) = C(𝑐, 𝑗).

To show composition, let 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑤 → 𝑥 be a composable pair of morphisms
in C. Note first that 𝑓 𝑔 : 𝑤 → 𝑦 and that C(𝑐,−)( 𝑓 ) : C(𝑐, 𝑥) → C(𝑐, 𝑦), and finally that
C(𝑐,−)(𝑔) : C(𝑐, 𝑤) → C(𝑐, 𝑥).
Since dom C(𝑐,−)( 𝑓 ) = cod C(𝑐,−)(𝑔) = C(𝑐, 𝑥), we can compose as follows:

C(𝑐,−)( 𝑓 ) (C(𝑐,−)(𝑔)) : C(𝑐, 𝑤) → C(𝑐, 𝑦).

Since C(𝑐,−)( 𝑓 𝑔) and C(𝑐,−)( 𝑓 ) (C(𝑐,−)(𝑔)) are given by applying 𝑓 𝑔 to a morphism
in C(𝑐, 𝑤), we have that C(𝑐,−)( 𝑓 )C(𝑐,−)(𝑔) = C(𝑐,−)( 𝑓 𝑔), satisfying functor compo-
sition.

To show that identities are preserved, note that for any object 𝑥 ∈ C, 1𝑥 : 𝑥 → 𝑥. Then
C(𝑐,−)(1𝑥) : C(𝑐, 𝑥) → C(𝑐, 𝑥) taking 1𝑥 to the post composition 1∗𝑥 : C(𝑐, 𝑥) → C(𝑐, 𝑥).
Since for any morphism 𝑎 ∈ C(𝑐, 𝑥), 1∗𝑥 takes 𝑎 ↦→ 1𝑥𝑎, this is the identity 𝑎 ↦→ 𝑎. Then
consider 1C(𝑐,−) (𝑥 ) = 1C(𝑐,𝑥 ) , which is the identity of C(𝑐, 𝑥), taking each element 𝑎 of the
set to itself: 𝑎 ↦→ 𝑎. Thus, C(𝑐,−)(1𝑥) = 1C(𝑐,−) (𝑥 ) and C(𝑐,−) preserves identities, as
show by the following diagram.

𝑐
𝑎 //

1𝑥𝑎
""

𝑥

1𝑥

��
𝑦 = 𝑥

To see that C(−, 𝑐) is a contravariant functor, we argue by duality. Since C(𝑐,−) : C→
Set is a functor for any category C, we have that Cop (𝑐,−) : Cop → Set is also a functor.
Additionally, it is contravariant since the definition a contravariant functor is a functor from
Cop to Set. Given that Cop (𝑐,−) = C(−, 𝑐), we know that C(−, 𝑐) is a contravariant functor,
completing the proof. □

Exercise 1.3.v. What is the difference between a functor Cop → D and a functor C→ Dop?
What is the difference between a functor C→ D and a functor Cop → Dop?
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Proof. We will show that if 𝐹 is a functor from C→ D, then 𝐹 is also a functor from
Cop to Dop, and then deduce the relation ship between a functor Cop → D and a functor
C→ Dop as a special case.

Let 𝐹 be a functor from C → D. We will show that 𝐹 is also a functor from Cop to
Dop directly from the functoriality axioms. That is for objects 𝑥, 𝑦, and 𝑧 in C and any
two composable morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 in C, we must have 𝐹 ( 𝑓 𝑔) = 𝐹 𝑓 𝐹𝑔
and 𝐹1𝑥 = 1𝐹𝑥 . Since for each object in C and D the identity maps are the same in
their respective opposite categories, we only need to verify that 𝐹 respects composition
when take composable morphisms from Cop to Dop. Since both the objects Cop and Dop

and morphisms C and D are exactly the same, but the morphisms have their domains and
codomains swapped, we let 𝑓 : 𝑦 → 𝑥 and 𝑔 : 𝑧 → 𝑦 be morphisms in Cop. Now observe
that since 𝐹 respects composition in C we have, 𝐹𝑔 𝑓 = 𝐹𝑔𝐹 𝑓 , and 𝐹 is a functor from Cop

to Dop. Now since C = (Cop)op and D = (Dop)op we see that there is no difference from a
functor Cop → D and a functor C→ Dop as well. □

Exercise 1.3.vi. Given functors 𝐹 : D→ C and 𝐺 : E→ C, show that there is a category,
called the comma category 𝐹 ↓ 𝐺, which has

1. as objects, triples (𝑑 ∈ D, 𝑒 ∈ E, 𝑓 : 𝐹𝑑 → 𝐺𝑒 ∈ C), and
2. as morphisms (𝑑, 𝑒, 𝑓 ) → (𝑑′, 𝑒′, 𝑓 ′), a pair of morphisms (ℎ : 𝑑 → 𝑑′, 𝑘 : 𝑒 → 𝑒′)

so that the square

𝐹𝑑

𝐹ℎ

��

𝑓
// 𝐺𝑒

𝐺𝑘

��

𝐹𝑑′
𝑓 ′
// 𝐺𝑒′

commutes in C, i.e., so that 𝑓 ′𝐹ℎ = 𝐺𝑘 𝑓 .
Define a pair of projection functors dom: 𝐹 ↓ 𝐺 → D and cod: 𝐹 ↓ 𝐺 → E

Proof. Before we prove that the comma category 𝐹 ↓ 𝐺 is actually a category, we need
to give a motivating example for a major issue in the proof.

Let 𝐴 : 2 → Set and 𝐵 : 2 → Set be functors where 𝐴0 = {0}, 𝐴1 = {0, 1, 2},
𝐵0 = {0, 1}, 𝐵1 = {0, 1, 2, 3} and where 𝐴 and 𝐵 maps the unique morphism 𝑓 : 0 → 1
to the inclusion functions 𝜄 : {0} → {0, 1, 2} and 𝜄 : {0, 1} → {0, 1, 2, 3} respectively. Let
us take our supposed objects (0, 0, 𝜄) and (1, 1, 𝛼) where 𝜄 is the inclusion function and our
supposed morphism ( 𝑓 : 0→ 1, 𝑓 : 0→ 1) so that the diagram

𝐴0

𝐴 𝑓

��

𝜄 // 𝐵0

𝐵 𝑓

��

𝐴1
𝛼
// 𝐵1

commutes. Now there are at least two functions for 𝛼 that would allow the diagram above
to commute. The first is if 𝛼 was simply an inclusion function so the functions 𝛼𝐴 𝑓 and
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𝐵 𝑓 𝜄 are inclusion functions from the singleton set 𝐴0 to 𝐵1, thus 𝛼𝐴 𝑓 = 𝐵 𝑓 𝜄. The second
function which I will denote 𝛼′ is defined as follows:

𝛼′ (0) = 0, 𝛼′ (1) = 2, 𝛼′ (2) = 1.

Since 𝛼′ still maps 0 in 𝐴1 to itself in 𝐵1, the diagram above still commutes. Thus
our supposed morphism ( 𝑓 : 0→ 1, 𝑓 : 0→ 1) would have two codomains ((1, 1, 𝛼) and
(1, 1, 𝛼′)) for our domain (0, 0, 𝜄).

This example shows we need additional notation to distinguish between arrows that are
represented the same but have different domains and codomains. Returning to the notation
established in the first paragraph, we will append morphism pairs ( 𝑓 , 𝑓 ′) to the end of
some morphism (ℎ : 𝑑 → 𝑑′, 𝑘 : 𝑒 → 𝑒′) so that we specify that the intended domain and
codomain of the morphism is (𝑑, 𝑒, 𝑓 ) and (𝑑′, 𝑒′, 𝑓 ′) respectively. Thus the uniqueness of
the domain and codomain of some morphism (ℎ : 𝑑 → 𝑑′, 𝑘 : 𝑒 → 𝑒′) ( 𝑓 , 𝑓 ′) follows from
the uniqueness of the domain and codomain of ℎ and 𝑘 , and additionally from our notation
which specifies unique morphisms 𝑓 and 𝑓 ′. Now we can complete the rest of the proof
using the notation established in the first paragraph.

For an object (𝑑, 𝑒, 𝑓 ),denoted as 𝑐, we can define an identity morphism for 𝑐 as the
following:

1𝑐 = (1𝑑 , 1𝑒) ( 𝑓 , 𝑓 )

where 1𝑑 and 1𝑒 are the respective identities of 𝑑 and 𝑒. Thus the diagram

𝐹𝑑

𝐹1𝑑
��

𝑓
// 𝐺𝑒

𝐺1𝑒
��

𝐹𝑑
𝑓
// 𝐺𝑒

trivially commutes. The unique domain and codomain of 1𝑐, both being (𝑑, 𝑒, 𝑓 ), are
derived from the unique domain and codomains of the identities 1𝑑 and 1𝑒, and the uniquely
specified 𝑓 .

Now let us define morphism composition between two morphisms.

(ℎ : 𝑑 → 𝑑1, 𝑘 : 𝑒 → 𝑒1) ( 𝑓 , 𝑓1) and (ℎ : 𝑑1 → 𝑑2, 𝑘 : 𝑒1 → 𝑒2) ( 𝑓1, 𝑓2)

which we will denote

𝛼 : (𝑑, 𝑒, 𝑓 ) → (𝑑1, 𝑒1, 𝑓1) and 𝛽 : (𝑑1, 𝑒1, 𝑓1) → (𝑑2, 𝑒2, 𝑓2).

The composition of 𝛼 and 𝛽 shall be defined as follows:

𝛽𝛼 = (ℎ′ℎ : 𝑑 → 𝑑2, 𝑘
′𝑘 : 𝑒 → 𝑒2) ( 𝑓 , 𝑓2)
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resulting in the diagram

𝐹𝑑

𝐹ℎ

��

𝑓
// 𝐺𝑒

𝐺𝑘

��

𝐹𝑑1

𝐹ℎ′

��

𝑓1 // 𝐺𝑒1

𝐺𝑘′

��

𝐹𝑑2
𝑓2 // 𝐺𝑒2

which commutes since functors preserve composition of morphisms and the top and bottom
squares commute by construction of 𝛼 and 𝛽4. Thus we have that the following diagram
commutes:

𝐹𝑑

𝐹ℎ′𝐹ℎ
��

𝑓
// 𝐺𝑒

𝐺𝑘′𝐺𝑘
��

𝐹𝑑2
𝑓2 // 𝐺𝑒2

which is the commutative square for the composed morphism 𝛽𝛼. The morphism 𝛽𝛼 derives
its unique domain from the unique domains of ℎ′ℎ and 𝑘 ′𝑘 and the specified function 𝑓

which gives the domain (𝑑, 𝑒, 𝑓 ) which is the domain of 𝛼, and the unique codomain is
derived similarly resulting in the codomain (𝑑2, 𝑒2, 𝑓2) which is the codomain of 𝛽. So the
composition of morphisms 𝛼 and 𝛽 gives a morphism 𝛽𝛼 with the domain of 𝛼 and the
codomain of 𝛽.

Now that we have defined the identity morphism and composition of morphism, we
can show that the identity morphism is left and right cancellable, and that composition is
associative.

Let (ℎ : 𝑑 → 𝑑′, 𝑘 : 𝑒 → 𝑒′) ( 𝑓 , 𝑓 ′) , denoted as 𝛼, be a morphism with domain and
codomain (𝑑, 𝑒, 𝑓 ) and (𝑑′, 𝑒′, 𝑓 ′,) respectively, denoted as 𝑐 and 𝑐′ respectively. Starting
with the composition of 𝛼 and 1𝑐, we can show the following chain of equalities:

𝛼1𝑐 = (ℎ1𝑑 , 𝑘1𝑒) ( 𝑓 , 𝑓 ′)
= (ℎ, 𝑘) ( 𝑓 , 𝑓 ′)
= 𝛼.

Composing 1𝑐′ and 𝛼 gives us a similar result:

1𝑐′𝛼 = (1𝑑′ℎ, 1𝑒′ 𝑘) ( 𝑓 , 𝑓 ′)
= (ℎ, 𝑘) ( 𝑓 , 𝑓 ′)
= 𝛼.

Thus we have shown that 1𝑐′𝛼 = 𝛼 = 𝛼1𝑐. Therefore the identity morphism is left and right
cancellable.

4See diagram 1.6.10.
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Finally, we will show that the composition of morphisms is associative. Take morphisms
(ℎ : 𝑑 → 𝑑1, 𝑘 : 𝑒 → 𝑒1) ( 𝑓 , 𝑓1), (ℎ : 𝑑1 → 𝑑2, 𝑘 : 𝑒1 → 𝑒2) ( 𝑓1, 𝑓2), and (ℎ : 𝑑2 → 𝑑3, 𝑘 : 𝑒2 → 𝑒3) ( 𝑓2, 𝑓3),
denoted as 𝛼, 𝛽, and 𝛾 respectively. Now observe that:

(𝛾𝛽)𝛼 = ((ℎ2ℎ1), (𝑘2𝑘1)) ( 𝑓1, 𝑓3)𝛼
= ((ℎ2ℎ1)ℎ, (𝑘2𝑘1)𝑘) ( 𝑓 , 𝑓3)
= (ℎ2 (ℎ1ℎ), 𝑘2 (𝑘1𝑘)) ( 𝑓 , 𝑓3)
= 𝛾((ℎ1ℎ), (𝑘1𝑘)) ( 𝑓 , 𝑓2)
= 𝛾(𝛽𝛼).

Thus the composition of morphisms is associative, and we have shown that 𝐹 ↓ 𝐺 is a
category.

Now we will define the functors dom: 𝐹 ↓ 𝐺 → D and cod: 𝐹 ↓ 𝐺 → E for object
(𝑑, 𝑒, 𝑓 ) and morphism (ℎ : 𝑑 → 𝑑′, 𝑘 : 𝑒 → 𝑒′) ( 𝑓 , 𝑓 ′) as follows:

dom (𝑑, 𝑒, 𝑓 ) = 𝑑, dom (ℎ, 𝑘) ( 𝑓 , 𝑓 ′) = ℎ

cod (𝑑, 𝑒, 𝑓 ) = 𝑒, cod (ℎ, 𝑘) ( 𝑓 , 𝑓 ′) = 𝑘.

Now we will verify that both dom and cod are indeed functors.
Now let us take the morphism (ℎ : 𝑑 → 𝑑1, 𝑘 : 𝑒 → 𝑒1) ( 𝑓 , 𝑓1) denoted 𝛼 : (𝑑, 𝑒, 𝑓 ) →

(𝑑1, 𝑒1, 𝑓1). Applying dom to 𝛼 gives us ℎ : 𝑑 → 𝑑1 where dom (𝑑, 𝑒, 𝑓 ) = 𝑑 and
dom (𝑑1, 𝑒1, 𝑓1) = 𝑑1. Applying cod to 𝛼 gives 𝑘 : 𝑒 → 𝑒1 where cod (𝑑, 𝑒, 𝑓 ) = 𝑒 and
cod (𝑑1, 𝑒1, 𝑓1) = 𝑒1. Thus𝛼 : (𝑑, 𝑒, 𝑓 ) → (𝑑1, 𝑒1, 𝑓1) gets mapped to dom𝛼 : dom (𝑑, 𝑒, 𝑓 ) →
dom (𝑑1, 𝑒1, 𝑓1) and cod𝛼 : cod (𝑑, 𝑒, 𝑓 ) → cod (𝑑1, 𝑒1, 𝑓1) by dom and cod respectively.

For object (𝑑, 𝑒, 𝑓 ), the identity arrow (1𝑑 , 1𝑒) ( 𝑓 , 𝑓 ) get mapped to 1𝑑 and 1𝑒 by dom
and cod respectively. Since dom (𝑑, 𝑒, 𝑓 ) = 𝑑 and cod (𝑑, 𝑒, 𝑓 ) = 𝑒, This shows that dom
and cod preserve identities.

Finally take morphisms (ℎ : 𝑑 → 𝑑1, 𝑘 : 𝑒 → 𝑒1) ( 𝑓 , 𝑓1) denoted𝛼 : (𝑑, 𝑒, 𝑓 ) → (𝑑1, 𝑒1, 𝑓1)
and (ℎ′ : 𝑑1 → 𝑑2, 𝑘

′ : 𝑒1 → 𝑒2) ( 𝑓1, 𝑓2) denoted 𝛽 : (𝑑1, 𝑒1, 𝑓1) → (𝑑2, 𝑒2, 𝑓2). Then we
have the following equalities:

dom(𝛽𝛼) = dom (ℎ′ℎ, 𝑘 ′𝑘) ( 𝑓 , 𝑓2) = ℎ′ℎ = dom 𝛽 dom𝛼

and
cod(𝛽𝛼) = cod (ℎ′ℎ, 𝑘 ′𝑘) ( 𝑓 , 𝑓2) = 𝑘 ′𝑘 = cod 𝛽 cod𝛼.

Thus dom and cod perserve morphism composition, and dom and cod are functors. □

Exercise 1.3.vii. Define functors to construct the slice categories 𝑐/C and C/𝑐 as special
cases of comma categories. What are the projection functors?

Proof. We want to choose functors in a comma category, so that the comma category
behaves like a slice category. Since the slice category treats morphisms like objects within a
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single category, and comma categories are defined generally with three categories in mind,
we have some room to reduce the structure of the comma category as we construct a slice
category.

Using the notation in the text’s definition of the comma category, let 𝐹 ↓ 𝐺 be our
comma category. Also, let D = C and let the functor 𝐹 be the identity functor, 1C. With
this choice of functor, the square in the definition of 𝐹 ↓ 𝐺 still commutes.

At this point, the objects of the comma category are (𝑑 ∈ C, 𝑒 ∈ 𝐸, 𝑓 : 𝑑 → 𝐺𝑒). The
morphisms are (ℎ : 𝑑 → 𝑑′, 𝑘 : 𝑒 → 𝑒′), such that (𝑑, 𝑒, 𝑓 ) → (𝑑′, 𝑒′, 𝑓 ′).

The above choice of the identity functor collapses the amount of data represented. Yet
there remain extra data at this point in the construction to qualify as a slice category. We
desire to keep one of the morphisms ℎ and 𝑘 , while reducing the object-triple (𝑑 ∈ C, 𝑒 ∈
𝐸, 𝑓 : 𝑑 → 𝐺𝑒) to a suitable object-morphism pair, that allows us to fix an element in C,
and take morphisms as objects.

To this end, let E be the ordinal category, 1, with one object represented as ∅, and
only the identity morphism. The objects in the comma category now are the triples
(𝑑 ∈ C, ∅, 𝑓 : 𝑑 → 𝑐 ∈ C). With the functor 𝐺 acting on the one object of 1, then 𝐺 sends
∅ to 𝑐 in C. Since, in E = 1, 𝑘 = 11, then 𝑘 can only send ∅ to ∅. So the objects in the
comma construction are rendered as pairs, with the relevant data 𝑐 and 𝑓 , represented as
(𝑑 ∈ C, 𝑓 : 𝑑 → 𝑐).

Letting the morphism ℎ take 𝑑 to 𝑑′, while the morphism 𝑘 = 11 sends ∅ to ∅, we have
a codomain of the comma morphism (ℎ, 𝑘) represented as (𝑑′ ∈ C, 𝑓 ′ : 𝑑′ → 𝑐). This is a
class of morphisms of C taken as objects, and the comma category is reduced to the C/𝑐
slice category. □

Exercise 1.3.viii. Lemma 1.3.8 shows that functors preserve isomorphisms. Find an ex-
ample to demonstrate that functors need not reflect isomorphisms: that is, find a functor
𝐹 : C → D and a morphism 𝑓 in C so that 𝐹 𝑓 is an isomorphism in D but 𝑓 is not an
isomorphism in C.

Consider the functor 𝐹 : 2 → 1 that maps everything in 2 to the identity in 1. So 𝐹
trivially satisfies all the properties of a functor. Because 2 is not a groupoid there exists at
least one morphism 𝑓 in mor 2 that is not an isomorphism. In this construction 𝐹 𝑓 will also
go to the best isomorphism, the identity map, even though 𝑓 itself is not an isomorphism.

Exercise 1.3.ix. For any group 𝐺, we may define other groups:
• the center 𝑍 (𝐺) = {ℎ ∈ 𝐺 | ℎ𝑔 = 𝑔ℎ ∀𝑔 ∈ 𝐺}
• the commutator subgroup 𝐶 (𝐺), the subgroup generated by the element 𝑔ℎ𝑔−1ℎ−1

for any 𝑔, ℎ ∈ 𝐺, and
• the automorphism group Aut(𝐺), the group of isomorphisms 𝜙 : 𝐺 → 𝐺 in Group.

Trivially, all three constructions define a functor from the discrete category of groups (with
only indentity morphsims) to Group. Are these constructions functorial in

• the isomorphisms of groups? That is, do they extend to functors Groupiso → Group?
• the epimorphisms of groups? That is, do they extend to functors Groupepi → Group?
• the homomorphisms of groups? That is, do they extend to functors Group→ Group?
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Proof. First, consider the functor 𝐹𝑍 : Groupid → Group, where 𝐺 → 𝑍 (𝐺). We will
now show that there exists a similar functor 𝐹𝑍 : Groupepi → Group. We define 𝐹𝑍 as the
following: 𝐹𝑍 (𝐺) = 𝑍 (𝐺) and if 𝑓 : 𝐺 → 𝐻, then 𝐹𝑍 𝑓 = 𝑓 |𝑍 (𝐺) . We must show that this
functor satisfies the properties of a functor.

1. Because each group has a unique center and each morphism 𝑓 with dom( 𝑓 ) = 𝐺 has
a unique restriction to 𝑍 (𝐺), this functor is well defined and satisfies the first two
properties (0 and 1).

2. We see that 𝐹𝑍1𝐺 = 1𝐺 |𝑍 (𝐺) = 1𝑍 (𝐺) = 1𝐹𝑍𝐺 , so the functor preserves identities.
3. We easily see that by definition of function restriction, if 𝑓 : 𝐺 → 𝐻, then dom(𝐹𝑍 𝑓 ) =
𝐹𝑍 dom( 𝑓 ). We choose cod(𝐹𝑍 𝑓 ) = 𝑍 (𝐻) = 𝐹𝑍 (cod( 𝑓 )). To see that our mor-
phisms are still well-defined from when the domain and codomain are restricted by
this functor, we show that if 𝑔 ∈ 𝑍 (𝐺), then 𝑓 (𝑔) ∈ 𝑍 (𝐻). To do this, consider, for
any 𝑘 ∈ 𝐻, that since 𝑓 is an epimorphism and therefore surjective, that 𝑘 = 𝑓 (ℎ) for
some ℎ ∈ 𝐺, so

𝑓 (𝑔)𝑘 = 𝑓 (𝑔) 𝑓 (ℎ) = 𝑓 (𝑔ℎ).

Since 𝑔 ∈ 𝑍 (𝐺),
𝑓 (𝑔ℎ) = 𝑓 (ℎ𝑔) = 𝑓 (ℎ) 𝑓 (𝑔) = 𝑘 𝑓 (𝑔)

So 𝑓 (𝑔) ∈ 𝑍 (𝐻) and therefore we have a well-defined morphism from 𝐹𝑍𝐺 to 𝐹𝑍𝐻.
4. If 𝑓 : 𝐺 → 𝐻 and 𝑔 : 𝐻 → 𝐾 , we see that 𝐹𝑍 (𝑔 𝑓 ) = 𝑔 𝑓 |𝑍 (𝐺) . By the property we

proved in the previous part

𝑔 𝑓 |𝑍 (𝐺) = 𝑔 |𝑍 (𝐻 ) 𝑓 |𝑍 (𝐺) = 𝐹𝑍𝑔𝐹𝑍 𝑓 .

So this functor also preserves morphism composition.
We have seen that 𝐹𝑍 satisfies all properties of a functor. We also note that 𝐹𝑍 will be

a functor from Groupiso → Group.
To show that there is no such functor between Group and Group, consider the com-

position of the homomorphism sgn: 𝑆𝑛 → {±1} and 𝜄 : {1, (1 2)} → 𝑆4. We say
𝑔(𝑥) = sgn(𝜄(𝑥)). We see that 𝑔 is an isomorphism, and so 𝐹𝑍𝑔 should also be an
isomorphism. However, this is not possible under any function of morphism, as 𝑆4 has
a trivial center and so any morphism from 𝑍 ({1, (1 2)} → 𝑍 (𝑆4) → 𝑍 ({±1}) must be
trivial. So 𝐹𝑍 cannot be a functor from Group→ Group.

Now consider the functor 𝐹𝐶 : Groupid → Group. We will show there exists a similarly
constructed functor from Group → Group defined as the following: for 𝐺 ∈ ob(Group),
𝐹𝐶𝐺 = 𝐶 (𝐺), where 𝐶 (𝐺) is the commutator subgroup of 𝐺. If 𝑓 : 𝐺 → 𝐻, 𝐹𝐶 𝑓 =

𝑓 |𝐶 (𝐺) , We will show that this satisfies all the properties of a functor.
1. Because each group has a unique commutator subgroup and each morphism 𝑓 with

dom( 𝑓 ) = 𝐺 has a unique restriction to𝐶 (𝐺), this functor is well defined and satisfies
the first two properties (0 and 1).

2. We see that 𝐹𝐶1𝐺 = 1𝐺 |𝐶 (𝐺) = 1𝐶 (𝐺) = 1𝐹𝐶𝐺 , so the functor preserves identities.
3. We easily see that by definition of function restriction, if 𝑓 : 𝐺 → 𝐻, then dom(𝐹𝑍 𝑓 ) =
𝐹𝑍 dom( 𝑓 ). We choose cod(𝐹𝐶 𝑓 ) = 𝐶 (𝐻) = 𝐹𝐶 (cod( 𝑓 )). To see that our mor-
phisms are well defined when we restrict the domain and codomain, we show that if
𝑔 ∈ 𝐶 (𝐺), then 𝑓 (𝑔) ∈ 𝐶 (𝐻). If 𝑔 ∈ 𝐶 (𝐺), 𝑔 =

∏𝑛
𝑖=1 𝑎𝑖 , where each 𝑎𝑖 = ℎ𝑘ℎ−1𝑘−1
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for some ℎ, 𝑘 ∈ 𝐺. So

𝑓 (𝑔) = 𝑓

(
𝑛∏
𝑖=1

ℎ𝑖𝑘𝑖ℎ
−1
𝑖 𝑘−1

𝑖

)
=

𝑛∏
𝑖=1

𝑓

(
ℎ𝑖𝑘𝑖ℎ

−1
𝑖 𝑘−1

𝑖

)
=

𝑛∏
𝑖=1

𝑓 (ℎ𝑖) 𝑓 (𝑘𝑖) 𝑓
(
ℎ−1
𝑖

)
𝑓

(
𝑘−1
𝑖

)
=

𝑛∏
𝑖=1

𝑓 (ℎ𝑖) 𝑓 (𝑘𝑖) 𝑓 (ℎ𝑖)−1 𝑓 (𝑘𝑖)−1

But since 𝑓 (𝑘𝑖), 𝑓 (ℎ𝑖) ∈ 𝐻, this is an element of 𝐶 (𝐻). So if 𝑔 ∈ 𝐶 (𝐺), 𝑓 (𝐺) ∈
𝐶 (𝐻) and therefore we have well-defined morphisms from our restricted domain to
our restricted co-domain.

4. If 𝑓 : 𝐺 → 𝐻 and 𝑔 : 𝐻 → 𝐾 , we see that 𝐹𝐶 (𝑔 𝑓 ) = 𝑔 𝑓 |𝐶 (𝐺) . By the property we
proved in the previous part

𝑔 𝑓 |𝐶 (𝐺) = 𝑔 |𝐶 (𝐻 ) 𝑓 |𝐶 (𝐺) = 𝐹𝐶𝑔𝐹𝐶 𝑓 .

So this functor also preserves morphism composition.
So we have shown that this is a functor for Group → Group, and we note that this

implies that it is also a functor for Groupiso → Group and Groupepi → Group.
Next, we show that there is a functor 𝐹𝐴 : Groupiso → Group, defined as follows: If 𝐺

is a group, then 𝐹𝐴𝐺 = Aut(𝐺) and if 𝜙 is a morphism between two groups 𝐺 and 𝐻, then
(𝐹𝐴𝜙) ( 𝑓 ) = 𝜙 𝑓 𝜙−1. We now show that this definition satisfies the properties of a functor.

1. Each group has uniquely defined automorphism group, and each morphism 𝜙 conju-
gates elements of Aut(𝐺)in a unique way, so the functor is well defined.

2. 𝐹𝐴(1𝐺) ( 𝑓 ) = 1 𝑓 1 = 1Aut(𝐺) ( 𝑓 ), so the functor preserves identities.
3. 𝐹𝐴(dom 𝜙) = 𝐹𝐴(𝐺) = Aut(𝐺) = dom 𝐹𝐴(𝜙).
4. By definiton of 𝐹𝐴, cod(𝐹𝐴𝜙) = Aut(𝐻) = 𝐹𝐴(cod(𝜙)).We see that 𝜙 𝑓 𝜙−1 ∈ Aut(𝐻)

for any 𝑓 ∈ Aut(𝐺) because it is a compostition of ismorphisms and therefore also
an isomorphism. So when we restrict the domain and codomain of our morphisms
using this functor, then they are still well-defined.

5. For two composable morphisms 𝜙 and 𝜏,

𝐹𝐴(𝜙𝜏) ( 𝑓 ) = 𝜙𝜏 𝑓 (𝜙𝜏)−1 = 𝜙𝜏 𝑓 𝜏−1𝜙−1 = 𝐹𝐴(𝜙) (𝜏 𝑓 𝜏−1) = 𝐹𝐴(𝜙)𝐹𝐴(𝜏) ( 𝑓 ),

so this functor preserves composition.
So 𝐹𝐴 satisfies all the properties of a functor, and there exists a functor from Groupiso →
Group of the desired form.

It is unclear whether or not there is a functor from Groupepi to Group and from Group
to Group defined in the manner, but I believe that this is not the case, although I am having
trouble finding a counterexample. □
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Exercise 1.3.x. Show that the construction of the set of conjugacy classes of elements of
a group is functorial, defining a functor Conj : Group→ Set. Conclude that any pair of
groups whose sets of conjugacy classes of elements have differing cardinalities cannot be
isomorphic.

Proof. Let the functor Conj : Group→ Set represent the construction of the set of
conjugacy classes of elements of a group, defined as follows:

• For any group 𝑠, Conj 𝑠 = 𝑠.
• For any groups 𝑠 and 𝑡 and any group homomorphism 𝑓 : 𝑠→ 𝑡, define the morphism

Conj 𝑓 : 𝑠→ 𝑡 such that for each [𝑥] ∈ 𝑠, Conj 𝑓 ( [𝑥]) = [ 𝑓 (𝑥)].5
First we will prove that Conj is functorial by showing that it fulfills both functoriality

axioms:
• Let 𝑓 and 𝑔 be group homomorphisms such that 𝑔 𝑓 is a valid composition, and let
[𝑥] ∈ (dom( 𝑓 ))∗ be arbitrary.

Conj 𝑔Conj 𝑓 ( [𝑥]) = Conj 𝑔( [ 𝑓 (𝑥)]) = [𝑔( 𝑓 (𝑥))] = [𝑔 𝑓 (𝑥)] = Conj(𝑔 𝑓 ( [𝑥])).

Since [𝑥], f, and g were arbitrary, Conj 𝑔Conj 𝑓 = Conj(𝑔 𝑓 ). So Conj fulfills the
first functoriality axiom.

• For an arbitrary group 𝑠 and element 𝑥 ∈ 𝑠,

Conj 1𝑠 ( [𝑥]) = [1𝑠 (𝑥)] = [𝑥] = 1𝑠 ( [𝑥]) = 1Conj 𝑠 ( [𝑥]).

Since s and x were arbitrary, Conj 1𝑠 = 1Conj 𝑠 . So Conj fulfills the second functoriality
axiom.

Conj fulfills both axioms, so we can conclude that it is indeed functorial.
Let 𝑠 and 𝑡 be two isomorphic groups, and let 𝑓 : 𝑠 → 𝑡 be an isomorphism. Functors

preserve isomorphisms, (as per the ‘first lemma in category theory’) so Conj 𝑓 : 𝑠→ 𝑡 must
also be an isomorphism. This makes 𝑠 and 𝑡 isomorphic, which in turn means they must
have the same cardinality. So we can conclude the contrapositive: that any pair of groups
whose sets of conjugacy classes have different cardinalities cannot be isomorphic.

5In order for each Conj 𝑓 to be well-defined, it must send each [𝑥 ] ∈ 𝑠 to a single [ 𝑓 (𝑥 ) ] ∈ 𝑡 . But there
may be more than one element in [𝑥 ], and since the definition does not mention which 𝑥 should be used as
a ’representative,’ it might seem that there could be cases in which there were multiple possible [ 𝑓 (𝑥 ) ] (and
therefore, multiple possible Conj 𝑓 ( [𝑥 ] )) for a single [𝑥 ]. So in order for Conj 𝑓 to be well-defined, [ 𝑓 (𝑥 ) ]
must be the same for every possible choice of 𝑥 ∈ [𝑥 ]. In other words, we need to show that [ 𝑓 (𝑎) ] = [ 𝑓 (𝑏) ]
for any 𝑎, 𝑏 in the same conjugate class.

So, let 𝑎, 𝑏 be arbitrary members of the same conjugate class. Recall that this means that there is some 𝑛 ∈ 𝑠
such that 𝑏 = 𝑛𝑎𝑛−1. Furthermore, recall that group homomorphisms (like 𝑓 ) preserve inverses. With this in
mind,

𝑓 (𝑏) = 𝑓 (𝑛𝑎𝑛−1 ) = 𝑓 (𝑛) 𝑓 (𝑎) 𝑓 (𝑛−1 ) = 𝑓 (𝑛) 𝑓 (𝑎) 𝑓 (𝑛)−1

𝑛 ∈ 𝑠, so 𝑓 (𝑛) ∈ 𝑡 . This means that there is some 𝑚 ∈ 𝑡 such that 𝑚 𝑓 (𝑎)𝑚−1 = 𝑓 (𝑏) . So 𝑓 (𝑎) and 𝑓 (𝑏)
are conjugates, (and therefore [ 𝑓 (𝑎) ] = [ 𝑓 (𝑏) ] by definition,) which makes Conj 𝑓 well-defined.
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1.4 Naturality

Exercise 1.4.i. Suppose 𝛼 : 𝐹 ⇒ 𝐺 is a natural isomorphism. Show that inverses of the
component morphisms define the components of a natural isomorphism 𝛼−1 : 𝐺 ⇒ 𝐹.

Proof. Suppose we have a natural isomorphism 𝛼 : 𝐹 ⇒ 𝐺. We display the square of
morphisms below for convenience.

𝐹𝑐 𝐺𝑐

𝐹𝑐′ 𝐺𝑐′

←→𝛼𝑐

←→𝐹 𝑓 ←→ 𝐺 𝑓

←→𝛼𝑐′

The above diagram commutes, and (𝐺 𝑓 ) (𝛼𝑐) = (𝛼𝑐′ ) (𝐹 𝑓 ) takes us from 𝐹𝑐 To 𝐺𝑐′.
Consider the component morphisms 𝛼𝑐 of 𝛼. Because 𝛼 is a natural isomorphism, every
component morphism, 𝛼𝑐, has an inverse, 𝛼−1

𝑐 . We need to see that all the inverse component
morphisms, 𝛼−1

𝑐 , make a natural transformation.
To see where 𝛼−1

𝑐 takes us, examine the square of morphisms below. All the components
are still in 𝐷 and take us from 𝐺𝑐 to 𝐹𝑐′.

𝐺𝑐 𝐹𝑐

𝐺𝑐′ 𝐹𝑐′

←→𝛼
−1
𝑐

←→𝐺 𝑓 ←→ 𝐹 𝑓

←→
𝛼−1
𝑐′

Since (𝐺 𝑓 )𝛼𝑐 = 𝛼𝑐′ (𝐹 𝑓 ),

𝛼−1
𝑐′ (𝐺 𝑓 ) = 𝛼−1

𝑐′ (𝐺 𝑓 )𝛼𝑐𝛼−1
𝑐 = 𝛼−1

𝑐′ 𝛼𝑐′ (𝐹 𝑓 )𝛼−1
𝑐 = (𝐹 𝑓 )𝛼−1

𝑐 .

So, the diagram above commutes and if we let (𝛼−1)𝑐 = 𝛼−1
𝑐 then 𝛼−1 is a natural transfor-

mation from 𝐺 to 𝐹. □

Exercise 1.4.ii. What is a natural transformation between a parallel pair of functors be-
tween groups, regarded as one-object categories?

Proof. For the abstract, one-object categories that are defined by groups, we can take
any single object 𝐶∗ and 𝐷∗ as the specials objects of the respective groups. We then have
the class of morphisms as the elements of the groups under their respective group operations.
Let the operations here be group multiplication. We will start by finding what the functors
are between these categories, and then find natural transformation in this context.

Given two such categories, B𝐶 and B𝐷 with their respective groups 𝐶 and 𝐷, any
functors 𝐹 and 𝐺 between B𝐶 and B𝐷 must map the object 𝐶∗ to the object 𝐷∗. Since
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functors are functions, looking at the functor 𝐹, the role of 𝐹 acting on the morphisms
of B𝐶 is the same as a function acting on the elements of 𝐶 under group multiplication.
So, 𝐹 : 𝐶∗ → 𝐷∗, for the special elements 𝐶∗ ∈ B𝐶 and 𝐷∗ ∈ B𝐷. Taking any two
elements 𝑐, 𝑐′ in 𝐶, 𝑐𝑐′ is the composition in the category B𝐶, and since the both the
domain codomain of B𝐶 are equal to 𝐶, then any pair 𝑐𝑐′ is composable. As functors
respect the functoriality axioms, 𝐹 (𝑐𝑐′) = 𝐹 (𝑐)𝐹 (𝑐′) in 𝐷, and 𝐹 (1𝐶 ) = 1𝐹𝐶 in 𝐷, then
the functor 𝐹 behaves as a group homomorphism between the groups 𝐶 and 𝐷.

To find a natural transformation 𝛼 : 𝐹 ⇒ 𝐺 between 𝐹 and 𝐺, we can let 𝛼𝐶∗ : 𝐹𝐶∗ →
𝐺𝐶∗ be a class of morphisms, with 𝑓 : 𝐶∗ → 𝐶∗, such that 𝐺 𝑓 𝛼𝐶∗ = 𝛼𝐶∗𝐹 𝑓 . In our case,
we have 𝐶∗ as the single object of 𝐵𝐶, and the morphism 𝑓 as an element 𝑐 in 𝐶. Also, we
have that 𝐹𝐶∗ = 𝐷∗ and 𝐺𝐶∗ = 𝐷∗, so our morphism is now 𝛼𝐶∗ : 𝐷∗ → 𝐷∗. Thus, for the
object 𝐶∗, the natural transformation gives the equality 𝛼𝐶∗𝐹 𝑓 = 𝐺 𝑓 𝛼𝐶∗ .

Since 𝛼𝐶∗ is a morphism from the object 𝐷∗ to itself, this endomorphism (and hence
automorphism) consists of the elements of the group 𝐷. Because each element has an
inverse, likewise 𝛼𝐶∗ has an inverse, 𝛼−1

𝐶∗. Thus 𝛼𝐶∗𝐹 𝑓 = 𝐺 𝑓 𝛼𝐶∗ implies 𝛼−1
𝐶∗𝛼𝐶∗𝐹 𝑓 =

𝛼−1
𝐶∗𝐺 𝑓 𝛼𝐶∗ , implies 𝐹 𝑓 = 𝛼−1

𝐶∗𝐺 𝑓 𝛼𝐶∗ , for all 𝑓 . Noting that 𝐹 𝑓 and 𝐺 𝑓 are morphisms in
the category B𝐷, and hence is an element of the group 𝐷, then 𝐹 𝑓 and 𝐺 𝑓 are in Aut(𝐷),
and 𝛼𝐶∗ forms a conjugacy class for these automorphisms. □

Exercise 1.4.iii. What is a natural transformation between a parallel pair of functors be-
tween preorders, regarded as categories?

Proof. Let C and D be preorder categories and 𝐹, 𝐺 : C ⇒ D be parallel functors.
Let us consider the properties of the natural transformation 𝛼 : 𝐹 → 𝐺. We will show
that you need only find morphisms 𝑓𝑐 : 𝐹𝑐 → 𝐺𝑐 in D for all 𝑐 ∈ ob C to produce a
natural transformation from 𝐹 to 𝐺. This will assist in our characterization of natural
transformations.

Suppose we have morphisms 𝑓𝑐 : 𝐹𝑐 → 𝐺𝑐 in D for 𝑐 ∈ ob C. We can define 𝛼 : 𝐹 → 𝐺

such that 𝛼(𝑐) = 𝑓𝑐. Take morphism 𝑔 : 𝑐 → 𝑐′ in D, we have that the diagram

𝐹𝑐

𝛼(𝑐)
��

𝐹𝑔
// 𝐹𝑐′

𝛼(𝑐′ )
��

𝐺𝑐
𝐺𝑔
// 𝐺𝑐′

commutes since in a preorder category, there is at most one morphism between objects.
Thus, our 𝛼 defines a natural transformation from 𝐹 to 𝐺. Thus it is sufficient to find
morphisms 𝑓𝑐 : 𝐹𝑐 → 𝐺𝑐 in D to define a natural transformation from 𝐹 to 𝐺.

Seeing the functors 𝐹 and 𝐺 as monotone maps (i.e. order preserving maps) between
preorders C to D, this allows us to characterize a natural transformation 𝛼 as a relation over
D containing only the pairs (𝐹𝑐, 𝐺𝑐). □

27



Exercise 1.4.iv. In the notation of Example 1.4.7, prove that distinct parallel morphisms
𝑓 , 𝑔 : 𝑐 ⇒ 𝑑 define distinct natural transformations

𝑓∗, 𝑔∗ : C(−, 𝑐) ⇒ C(𝑑,−)
𝑓 ∗, 𝑔∗ : C(𝑐,−) ⇒ C(𝑑,−)

Proof. These being natural transformations is shown in Example 1.4.7, so the primary
concern of this problem is whether they are distinct. First, we consider 𝑓∗, 𝑔∗ as natural
transformations from C(−, 𝑐) ⇒ C(−, 𝑑). To differentiate, consider the natural transfor-
mation defined by 𝑓∗ to be 𝛼 and 𝑔∗ to be 𝛽. We need to show the transformations are
different in at least some component. For a natural transformation, we can choose arbitrary
ℎ : 𝑐1 → 𝑐2 in C to look at the functions for. In this case, take ℎ = 1𝑐. We thus in our
diagram have ℎ∗ as our 𝐹ℎ and 𝐺ℎ, which is precomposition by 1𝑐. This must be the
case as a functor preserves identities. We then consider what this transformation does to
the morphism 𝑗 = 1𝑐 ∈ C(𝑐, 𝑐) to see what would happen to it if we put it trough the
transformation. Both directions take us to 𝑓 𝑗1𝑐 = 𝑓 𝑗 = 𝑓 . Similarly, constructing the same
diagram except with 𝑔, we get 𝑔 𝑗1𝑐 = 𝑔 𝑗 = 𝑔. Each takes us to a different morphism in
C(𝑐, 𝑑) and thus the two transformations are different. Essentially the same construction
works with 𝑓 ∗ and 𝑔∗.

C(𝑐, 𝑐)

𝑓∗
��

1∗𝑐 // C(𝑐, 𝑐)

𝑓∗
��

C(𝑐, 𝑑)
1∗𝑐 // C(𝑐, 𝑑)

Exercise 1.4.v. Recall the construction of the comma category for any pair of functors
𝐹 : D → C and 𝐺 : E → C described in Exercise 1.3.vi. From this data, construct a
canonical natural transformation 𝛼 : 𝐹 dom ⇒ 𝐺 cod between the functors that form the
boundary of the square

𝐹 ↓ 𝐺 cod //

dom
��

𝐸

𝐺

��

𝐷
𝐹
//

𝛼

8@

𝐶

Proof. Letting 𝑐 = (𝑑, 𝑒, 𝑓 : 𝑑 → 𝑒 ∈ 𝐶) as above, and a morphism 𝑚 = (ℎ : 𝑑 →
𝑑′, 𝑘 : 𝑒 → 𝑒′), we can describe the actions of the functors 𝐹 dom and 𝐺 cod on objects:

• 𝐹 dom 𝑐 = 𝐹𝑑,
• 𝐺 cod 𝑐 = 𝐺𝑒,

and their actions on morphisms:
• 𝐹 dom𝑚 = 𝐹ℎ,
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• 𝐺 cod𝑚 = 𝐺𝑘 .
From the definition of a natural transformation, we need an 𝛼 : ob 𝐹 ↓ 𝐺 → mor C, and we
can get this by taking (𝑑, 𝑒, 𝑓 ) ↦→ 𝑓 ∈ C. Then, 𝛼𝑐 : 𝐹𝑑 → 𝐺𝑒 in C. From this, we can
construct the following diagram:

𝐹𝑑
𝛼𝑐 //

𝐹ℎ

��

𝐺𝑒

𝐺𝑘

��

𝐹𝑑′
𝛼𝑐′
// 𝐺𝑒′

Which is precisely the diagram of the comma category with 𝑓 = 𝛼𝑐 and 𝑓 ′ = 𝛼𝑐′ , and from
the condition that 𝑓 ′𝐹ℎ = 𝐺𝑘 𝑓 , we have that this diagram commutes. Thus, 𝛼 is a natural
transformation. □

Exercise 1.4.vi. Given a pair of functors 𝐹 : A × B × Bop → D and 𝐺 : A × C × Cop → D
a family of morphisms

𝛼𝑎,𝑏,𝑐 : 𝐹 (𝑎, 𝑏, 𝑏) → 𝐺 (𝑎, 𝑐, 𝑐)

in D defines the components of an extranatural transformation 𝛼 : 𝐹 ⇒ 𝐺 if for any
𝑓 : 𝑎 → 𝑎′, 𝑔 : 𝑏 → 𝑏′, and ℎ : 𝑐 → 𝑐′ the following diagrams commute in D:

𝐹 (𝑎, 𝑏, 𝑏)
𝛼𝑎,𝑏,𝑐

//

𝐹 ( 𝑓 ,1𝑏 ,1𝑏 )
��

𝐺 (𝑎, 𝑐, 𝑐)

𝐺 ( 𝑓 ,1𝑐 ,1𝑐 )
��

𝐹 (𝑎′, 𝑏, 𝑏)
𝛼𝑎′ ,𝑏,𝑐

// 𝐺 (𝑎′, 𝑐, 𝑐)

𝐹 (𝑎, 𝑏, 𝑏′)
𝐹 (1𝑎 ,1𝑏 ,𝑔)//

𝐹 (1𝑎 ,𝑔,1𝑏′ )
��

𝐹 (𝑎, 𝑏, 𝑏)
𝛼𝑎,𝑏,𝑐

��

𝐹 (𝑎, 𝑏′, 𝑏′)
𝛼𝑎,𝑏′ ,𝑐

// 𝐺 (𝑎, 𝑐, 𝑐)

𝐹 (𝑎, 𝑏, 𝑏)
𝛼𝑎,𝑏,𝑐′

//

𝐺 (𝛼𝑎,𝑏,𝑐 )
��

𝐺 (𝑎, 𝑐′, 𝑐′)

𝐺 (1𝑎 ,1𝑐′ ,ℎ)
��

𝐺 (𝑎, 𝑐, 𝑐)
𝐺 (1𝑎 ,ℎ,1𝑐

// 𝐺 (𝑎, 𝑐′, 𝑐)

The left-hand square asserts the at the components 𝛼−,𝑏,𝑏 : 𝐹 (−, 𝑏, 𝑏) ⇒ 𝐺 (−, 𝑐, 𝑐) define
a natural transformation in 𝑎 for each 𝑏 ∈ B and 𝑐 ∈ C. The remaining squares assert that
the components 𝛼𝛼𝑎,−,− : 𝐹 (𝑎,−,−) ⇒ 𝐺 (𝑎, 𝑐, 𝑐) and 𝛼𝑎,𝑏,− : 𝐹 (𝑎, 𝑏, 𝑏) ⇒ 𝐺 (𝑎,−,−)
define transformations that are respectively extranatural in 𝑏 and in 𝑐. Explain why functors
𝐹 and 𝐺 must have a common target category for this this definition to make sense.

Notice that the definition of extranatural transformation does not actually have anything
to do with the question. This exercise is nothing more than a sanity check. If 𝐹 and 𝐺
do not have the same target category, when we try to write down any of the three above
diagrams, we will see that they are simply not defined if 𝐹 and 𝐺 do not have the same
target category.
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1.5 Equivalence of categories

Lemma 1.5.1. Fixing a parallel pair of functors 𝐹, 𝐺 : C ⇒ D, natural transformations
𝛼 : 𝐹 ⇒ 𝐺 correspond bĳectively to functors 𝐻 : C × 2 → D such that 𝐻 restricts along
𝑖0 and 𝑖1 to the functors 𝐹 and 𝐺, i.e., so that

C
𝑖0 //

𝐹
""

C × 2

𝐻

��

C𝑖1oo

𝐺
||

D

Before going on, I’d like to make a set-theoretic remark about exactly what the bĳection
is between. Say that𝑈 is a non-empty universe and that C and D are𝑈-categories.

Assume further that C is a 𝑈-small category and that D is a 𝑈-locally small category.
Then the class of all morphisms from 𝐹𝑐 to 𝐺𝑐 as 𝑐 varies over objects of C forms a
𝑈-set. Then the class of all functions from ob C to this 𝑈-set is also a 𝑈-set. The natural
transformations form a subclass of this𝑈-set, and so the class of all natural transformations
from 𝐹 to 𝐺 forms a𝑈-set.

In this case, C × 2 is also a 𝑈-small category and so each functor 𝐻 : C × 2 → D is a
𝑈-set by the Axiom of Replacement in 𝑈. We may thus form a 𝑈-class of these functors.
The lemma then implies through the Axiom of Replacement again that this 𝑈-class is also
a𝑈-set.

However, if the objects of C form a proper 𝑈-class, then any natural transformation
𝛼 : 𝐹 ⇒ 𝐺 is also a proper 𝑈-class. This is because as a function, 𝛼 has domain ob C, a
proper 𝑈-class. In this case, 𝛼 is not an element of 𝑈 and is thus not an element of any
𝑈-class.

In either case, let𝑉 be a universe such that𝑈 ∈ 𝑉 . Then all of the categories mentioned
in the lemma are small𝑉-categories so that the bĳection in the lemma is a bĳection between
𝑉-sets.

Exercise 1.5.i. Prove the lemma above.

Proof. In the category 2, there are precisely three morphisms:

𝜙00 : 0→ 0
𝜙01 : 0→ 1
𝜙11 : 1→ 1

(𝜙00 and 𝜙11 are identity morphisms.) Any morphism in C × 2 is of the form

( 𝑓 , 𝜙𝑚𝑛) : (𝑥, 𝑚) → (𝑦, 𝑛)

where 𝑓 : 𝑥 → 𝑦 is a morphism in C and 𝑚, 𝑛 ∈ {0, 1} with 𝑚 ≤ 𝑛.
Let 𝑁 be the collection (or more precisely 𝑈-set or 𝑉-set as above) of natural transfor-

mations from 𝐹 to𝐺, and let 𝑋 be the collection of functors 𝐻 as described in the statement
of the lemma. We first make a function from 𝑁 to 𝑋 taking 𝛼 ∈ 𝑁 to 𝐻𝛼 ∈ 𝑋 .

Define the functor 𝐻𝛼 : C × 2→ D as follows:
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1. For every 𝑐 ∈ ob C,
(a) 𝐻𝛼 (𝑐, 0) = 𝐹𝑐 and
(b) 𝐻𝛼 (𝑐, 1) = 𝐺𝑐.

2. For every morphism 𝑓 : 𝑥 → 𝑦 in C,
(a) 𝐻𝛼 ( 𝑓 , 𝜙00) = 𝐹 𝑓 ,
(b) 𝐻𝛼 ( 𝑓 , 𝜙11) = 𝐺 𝑓 , and
(c) 𝐻𝛼 ( 𝑓 , 𝜙01) = 𝐺 𝑓 𝛼𝑥 = 𝛼𝑦𝐹 𝑓 .

There is no ambiguity in the final case, since 𝛼 : 𝐹 ⇒ 𝐺 being a natural transformation
tells us that the following diagram commutes.

𝐹𝑥
𝐹 𝑓
//

𝛼𝑥

��

𝐹𝑦

𝛼𝑦

��

𝐺𝑥
𝐺 𝑓
// 𝐺𝑦

Let’s check that 𝐻 really is a functor. It takes objects to objects and morphisms to
morphisms. Notice that in each of the three formulas for 𝐻𝛼 ( 𝑓 , 𝜙𝑚𝑛), the domain of
𝐻𝛼 ( 𝑓 , 𝜙𝑚𝑛) is equal to 𝐻𝛼 (𝑥, 𝑚), either 𝐹𝑥 or 𝐺𝑥 as need be. Likewise, in each case the
codomain of 𝐻𝛼 ( 𝑓 , 𝜙𝑚𝑛) is equal to 𝐻𝛼 (𝑦, 𝑛), either 𝐹𝑦 or 𝐺𝑦 as need be. So, we see that
𝐻𝛼 ◦ dom = dom ◦𝐻𝛼 and 𝐻𝛼 ◦ cod = cod ◦𝐻𝛼 as required.
( 𝑓 , 𝜙𝑚𝑛) is an identity if and only if 𝑓 = 1𝑥 and 𝑚 = 𝑛. We have that 𝐻𝛼 (1𝑥 , 𝜙00) =

𝐹1𝑥 = 1𝐹𝑥 , since 𝐹 is a functor, and 𝐻𝛼 (1𝑥 , 𝜙11) = 𝐺1𝑥 = 1𝐺𝑥 , since 𝐺 is a functor. So,
𝐻𝛼 takes identities to identities as required.

Finally, if we also have (𝑔, 𝜙𝑛𝑝) : (𝑦, 𝑛) → (𝑧, 𝑝) then𝑚 ≤ 𝑛 ≤ 𝑝 and (𝑔, 𝜙𝑛𝑝) ( 𝑓 , 𝜙𝑚𝑛) =
(𝑔 𝑓 , 𝜙𝑚𝑝). There are four cases to consider:

1. (𝑚, 𝑛, 𝑝) = (0, 0, 0):

𝐻𝛼 (𝑔 𝑓 , 𝜙00) = 𝐹 (𝑔 𝑓 ) = 𝐹𝑔𝐹 𝑓 = 𝐻𝛼 (𝑔, 𝜙00)𝐻𝛼 ( 𝑓 , 𝜙00).

2. (𝑚, 𝑛, 𝑝) = (0, 0, 1):

𝐻𝛼 (𝑔 𝑓 , 𝜙01) = 𝐺 (𝑔 𝑓 )𝛼𝑥 = 𝐺𝑔(𝐺 𝑓 𝛼𝑥) = 𝐺𝑔(𝛼𝑦𝐹 𝑓 )

= (𝐺𝑔𝛼𝑦)𝐹 𝑓 = 𝐻𝛼 (𝑔, 𝜙01)𝐻𝛼 ( 𝑓 , 𝜙00).

3. (𝑚, 𝑛, 𝑝) = (0, 1, 1):

𝐻𝛼 (𝑔 𝑓 , 𝜙01) = 𝐺 (𝑔 𝑓 )𝛼𝑥 = 𝐺𝑔(𝐺 𝑓 𝛼𝑥) = 𝐻𝛼 (𝑔, 𝜙11)𝐻𝛼 ( 𝑓 , 𝜙01).

4. (𝑚, 𝑛, 𝑝) = (1, 1, 1):

𝐻𝛼 (𝑔 𝑓 , 𝜙11) = 𝐺 (𝑔 𝑓 ) = 𝐺𝑔𝐺 𝑓 = 𝐻𝛼 (𝑔, 𝜙11)𝐻𝛼 ( 𝑓 , 𝜙11).

Now, the functors 𝑖𝑛 : C → C × 2 for 𝑛 = 0, 1 are the following. On objects,
𝑖𝑛𝑐 = (𝑐, 𝑛). On morphisms, 𝑖𝑛 𝑓 = ( 𝑓 , 𝜙𝑛𝑛). So, on objects the compositions are
𝐻𝛼𝑖0𝑐 = 𝐻𝛼 (𝑐, 0) = 𝐹𝑐 and 𝐻𝛼𝑖1𝑐 = 𝐻𝛼 (𝑐, 1) = 𝐺𝑐. On morphisms, the compositions
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are 𝐻𝛼𝑖0 𝑓 = 𝐻𝛼 ( 𝑓 , 𝜙00) = 𝐹 𝑓 and 𝐻𝛼𝑖1 𝑓 = 𝐻𝛼 ( 𝑓 , 𝜙11) = 𝐺 𝑓 . So, 𝐻𝛼𝑖0 = 𝐹 and
𝐻𝛼𝑖1 = 𝐺 as required. So, we have constructed a function 𝛼 ↦→ 𝐻𝛼 from 𝑁 to 𝑋 .

Now, we construct a function from 𝑋 to 𝑁 . Given a functor 𝐻 : C × 2 → D such that
𝐻𝑖0 = 𝐹 and 𝐻𝑖1 = 𝐺, we must construct a natural transformation 𝛼𝐻 : 𝐹 ⇒ 𝐺. For an
object 𝑐 in C, let 𝛼𝐻𝑐 = 𝐻 (1𝑐, 𝜙01). We must see that this gives a natural transformation.

Using that 𝐻 is a functor, we have that

dom𝛼𝐻𝑐 = dom𝐻 (1𝑐, 𝜙01) = 𝐻 dom(1𝑐, 𝜙01) = 𝐻 (𝑐, 0) = 𝐹𝑐.

Similarly,
cod𝛼𝐻𝑐 = cod𝐻 (1𝑐, 𝜙01) = 𝐻 cod(1𝑐, 𝜙01) = 𝐻 (𝑐, 1) = 𝐺𝑐.

So, 𝛼𝐻𝑐 : 𝐹𝑐 → 𝐺𝑐 as required.
Now, if 𝑓 : 𝑥 → 𝑦 in C, then

𝐺 𝑓 𝛼𝐻𝑥 = 𝐻 (𝑖1 𝑓 )𝐻 (1𝑥 , 𝜙01) = 𝐻 ( 𝑓 , 𝜙11)𝐻 (1𝑥 , 𝜙01) = 𝐻 ( 𝑓 , 𝜙01)

= 𝐻 (1𝑦 , 𝜙01)𝐻 ( 𝑓 , 𝜙00) = 𝛼𝐻𝑦 𝐻 (𝑖0 𝑓 ) = 𝛼𝐻𝑦 𝐹 𝑓 .

This verifies that 𝛼𝐻 is a natural transformation from 𝐹 to 𝐺, so that we have constructed
a function from 𝑋 to 𝑁 taking 𝐻 to 𝛼𝐻 .

Now, we must see that our two functions are inverses of each other. Starting with a
natural transformation 𝛼 in 𝑁 , going to 𝑋 and back to 𝑁 gives the natural transformation
𝛼𝐻𝛼 . For each object 𝑐 in C, we must verify that 𝛼𝐻𝛼

𝑐 = 𝛼𝑐. Combining the definitions of
our two functions, we see that

𝛼𝐻𝛼
𝑐 = 𝐻𝛼 (1𝑐, 𝜙01) = 𝐺1𝑐𝛼𝑐 = 1𝐺𝑐𝛼𝑐 = 𝛼𝑐

as required.
In the other direction, we must verify that for any 𝐻 ∈ 𝑋 , 𝐻𝛼𝐻 = 𝐻. On objects,

𝐻𝛼𝐻 (𝑥, 0) = 𝐹𝑥 = 𝐻𝑖0𝑥 = 𝐻 (𝑥, 0) and 𝐻𝛼𝐻 (𝑥, 1) = 𝐺𝑥 = 𝐻𝑖1𝑥 = 𝐻 (𝑥, 1). So, these two
functors agree on objects.

On morphisms, we have three cases for a given 𝑓 : 𝑥 → 𝑦 in C.
1.

𝐻𝛼𝐻 ( 𝑓 , 𝜙00) = 𝐹 𝑓 = 𝐻𝑖0 𝑓 = 𝐻 ( 𝑓 , 𝜙00),

2.

𝐻𝛼𝐻 ( 𝑓 , 𝜙11) = 𝐺 𝑓 = 𝐻𝑖1 𝑓 = 𝐻 ( 𝑓 , 𝜙11, )

3.

𝐻𝛼𝐻 ( 𝑓 , 𝜙01) = 𝐺 𝑓 𝛼𝐻𝑥 = 𝐻𝑖1 𝑓 𝛼
𝐻
𝑥 = 𝐻 ( 𝑓 , 𝜙11)𝐻 (1𝑥 , 𝜙01) = 𝐻 ( 𝑓 , 𝜙01).

So, 𝐻 and 𝐻𝛼𝐻 agree on morphisms as well as objects, so that 𝐻 = 𝐻𝛼𝐻 as required. □
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Exercise 1.5.ii. Segal defined a category Γ as follows:
Γ is the category whose objects are all finite sets, and whose mor-
phisms from 𝑆 to 𝑇 are the maps 𝜃 : 𝑆 → 𝑃(𝑇) such that 𝜃 (𝛼) and
𝜃 (𝛽) are disjoint when 𝛼 ≠ 𝛽. The composite of 𝜃 : 𝑆 → 𝑃(𝑇) and
𝜙 : 𝑇 → 𝑃(𝑈) is 𝜓 : 𝑆 → 𝑃(𝑈), where 𝜓(𝛼) = ⋃

𝛽∈ 𝜃 (𝛼)
𝜙(𝛽).

Prove that Γ is equivalent to the opposite of the category Fin∗ of finite pointed sets. In
particular, the functors introduced in Example 1.3.2(xi) define presheaves on Γ.

Proof. As a preliminary matter, it is worth checking that Γ is indeed a category. The
definition above makes clear that an arrow 𝜃 : 𝑆 → 𝑃(𝑇) has domain 𝑆 and codomain 𝑇 , as
well as telling us how to compose two morphisms. What is less obvious is what morphisms
are the identities, and that composition is associative. For identities, let us first note that
the identity on 𝑆 in Γ is a function 1𝑆 : 𝑆 → 𝑃(𝑆) meaning the usual identity on the set 𝑆
is not a possibility. However, there is a natural embedding of 𝑆 in 𝑃(𝑆) which takes every
element 𝛼 to the singleton {𝛼}. Checking composition of 1𝑆 and 1𝑇 thus defined with an
arbitrary map 𝜃 : 𝑆 → 𝑃(𝑇) gives:

𝜃1𝑆 (𝛼) =
⋃

𝛽∈1𝑆 (𝛼)
𝜃 (𝛽) =

⋃
𝛽∈{𝛼}

𝜃 (𝛽) = 𝜃 (𝛼)

1𝑇𝜃 (𝛼) =
⋃

𝛽∈ 𝜃 (𝛼)
1𝑇 (𝛽) =

⋃
𝛽∈ 𝜃 (𝛼)

{𝛽} = 𝜃 (𝛼)

verifying that we have defined the identities properly. Finally, we have to check that
the composition law is associative. Let 𝜃 be as above along with 𝜙 : 𝑇 → 𝑃(𝑈) and
𝜓 : 𝑈 → 𝑃(𝑉) be valid morphisms in Γ. Then

((𝜓𝜙)𝜃) (𝛼) =
⋃

𝛽∈ 𝜃 (𝛼)
𝜙𝜓(𝛽) =

⋃
𝛽∈ 𝜃 (𝛼)

©«
⋃

𝛾∈𝜙 (𝛽)
𝜓(𝛾)ª®¬ ,

and

(𝜓(𝜙𝜃)) (𝛼) =
⋃

𝛾∈𝜙𝜃 (𝛼)
𝜓(𝛾) =

⋃
𝛾∈

( ⋃
𝛽∈𝜃 (𝛾)

𝜙 (𝛽)
) 𝜓(𝛾).

At first appearance it is not at all clear that these ought to be the same set, but unpacking
makes it clear they are in fact the same. Both assert that for any 𝛿 ∈ (𝜓(𝜙𝜃)) there exists
some 𝛽 ∈ 𝜃 (𝛼) and 𝛾 ∈ 𝜙(𝛽) such that 𝛿 ∈ 𝜓(𝛾). Thus our composition law is associative
and we have indeed defined a category.

An equivalence of categories consists of two functors along with two natural iso-
morphisms between their compositions and the identity functor on each category. We will
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thus begin by defining two functors + : Γ ⇆ Finop
∗ : (−)−1. We define + by the following

mappings:

𝑆 ↦→ (𝑆 ∪ { 𝑆 } , 𝑆)
𝜃 : 𝑆 → 𝑇 ↦→ +𝜃 : +𝑇 → +𝑆

where

+𝜃 (𝛽) =

𝑆 if 𝛽 = 𝑇

𝑆 if 𝛽 ∉
⋃
𝛼∈𝑆 𝜃 (𝛼)

𝛼 ∈ 𝑆 if 𝛽 ∈ 𝜃 (𝛼)
.

Note first that this is a valid map from +𝑇 to +𝑆 in Fin∗ (and thus a map from +𝑆 to +𝑇 in
Finop
∗ ): it takes the base point of +𝑇 to the base point of +𝑆, if 𝛼 ∈ 𝜃 (𝛾) for some 𝛾 ∈ 𝑆, then

this 𝛾 must be unique since the image of distinct elements of 𝑆 under 𝜃 must be disjoint.
We must further check the functoriality axioms. Recall that the identity map on an object
𝑆 of Γ is 1𝑆 : 𝛼 ↦→ {𝛼}. Applying this to the definition above gives:

+1𝑆 (𝛼) =

𝑆 if 𝛼 = 𝑆

𝑆 if 𝛼 ∉
⋃
𝛼′∈𝑆 1𝑆 (𝛼′) = 𝑆

𝛼′ ∈ 𝑆 if 𝛼 ∈ 1𝑆 (𝛼′) = { 𝛼′ }
, which is clearly the identity.

So +1𝑆 = 1+𝑆 .
Further, given morphisms 𝜃 : 𝑆 → 𝑇 and 𝜙 : 𝑇 → 𝑈 between objects of Γ, we have that

+𝜙(𝛾) =

𝑇 if 𝛾 = 𝑈

𝑇 if 𝛾 ∉
⋃
𝛽∈𝑇 𝜙(𝛽)

𝛽 ∈ 𝑇 if 𝛾 ∈ 𝜙(𝛽)
, +𝜃 (𝛽) =


𝑆 if 𝛽 = 𝑇

𝑆 if 𝛽 ∉
⋃
𝛼∈𝑆 𝜃 (𝛼)

𝛼 ∈ 𝑆 if 𝛽 ∈ 𝜃 (𝛼)
,

and + 𝜙𝜃 (𝛾) =

𝑆 if 𝛾 = 𝑈

𝑆 if 𝛾 ∉
⋃
𝛼∈𝑆 𝜙𝜃 (𝛼) =

⋃
𝛼∈𝑆

⋃
𝛽∈ 𝜃 (𝛾) 𝜙(𝛽)

𝛼 ∈ 𝑆 if 𝛾 ∈ 𝜙𝜃 (𝛼) = ⋃
𝛽∈ 𝜃 (𝛼) 𝜙(𝛽)

.

Letting 𝛾 ∈ +𝑈 be arbitrary there are several cases. First, if 𝛾 = 𝑈, then +𝜙𝜃 (𝛾) = 𝑆 and
+𝜙(𝛾) = 𝑇 so +𝜃 + 𝜙(𝛾) = 𝑆. Alternately, if 𝛾 ≠ 𝑈 so 𝛾 ∈ 𝑈 we again have two cases. If
there exists 𝛼 ∈ 𝑆 such that 𝛾 ∈ 𝜙𝜃 (𝛼), then +𝜙𝜃 (𝛾) = 𝛼 and there exists a 𝛽 ∈ 𝜃 (𝛼) such
that 𝛾 ∈ 𝜙(𝛽) implying +𝜙(𝛾) = 𝛽 and +𝜃 (𝛽) = 𝛼 so +𝜃 + 𝜙(𝛾) = 𝛼. Finally, if there exists
no such 𝛼 ∈ 𝑆, then +𝜙𝜃 (𝛾) = 𝑆. If there also exists no 𝛽 ∈ 𝑇 such that 𝛾 ∈ 𝜙(𝛽) then
+𝜙(𝛾) = 𝑇 so +𝜃 + 𝜙(𝛾) = 𝑆. However, is such 𝛽 ∈ 𝑇 does exist so that +𝜙(𝛾) = 𝛽 then it
must be the case that

Next we define the functor (−)−1 by:

(𝑆, 𝑠) ↦→ 𝑆 \ { 𝑠 }
𝑓 : (𝑇, 𝑡) → (𝑆, 𝑠) ↦→ 𝑓 −1 : 𝑆 \ { 𝑠 } → 𝑇 \ { 𝑡 }
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where

𝑓 −1 (𝛼) = { 𝛽 ∈ 𝑇 | 𝑓 (𝛽) = 𝛼 } .

Note that if 𝑓 −1 (𝛼) ∩ 𝑓 −1 (𝛼′) is inhabited, then there is some 𝛽 ∈ 𝑇 such that 𝑓 (𝛽) = 𝛼 and
𝑓 (𝛽) = 𝛼′ implying that 𝛼 = 𝛼′. Thus the map we have defined satisfies the disjointness
condition sufficient to be an morphism in Γ. Again we must check functoriality axioms.
The identity morphism on (𝑆, 𝑠) is merely the identity function on 𝑆, so

1𝑆−1 (𝛼) = { 𝛼′ ∈ 𝑆 | 1𝑆 (𝛼′) = 𝛼 }
= { 𝛼′ ∈ 𝑆 | 𝛼′ = 𝛼 } = { 𝛼 } = 1(−)−1𝑆 (𝛼).

Given morphisms 𝑓 : (𝑇, 𝑡) → (𝑆, 𝑠) and 𝑔 : (𝑈, 𝑢) → (𝑇, 𝑡) we have that

( 𝑓 𝑔)−1 (𝛼) = { 𝛾 ∈ 𝑈 | 𝑓 𝑔(𝛾) = 𝛼 }

=
⋃

𝑓 (𝛽)=𝛼
{ 𝛾 ∈ 𝑈 | 𝑔(𝛾) = 𝛽 }

=
⋃

𝛽∈ 𝑓 −1 (𝛼)
𝑔−1 (𝛽) = 𝑔−1 𝑓 −1 (𝛼).

We thus have two bona fide functors connecting Γ and Finop
∗ . What remains is to

construct natural isomorphisms 𝜂 : 1Γ � (−)−1+ and 𝜖 : +(−)−1 � 1Finop
∗

. Looking first at
𝜂, given an object 𝑆 of Γ we have that

(−)−1 + 𝑆 = (−)−1 (𝑆 ∪ { 𝑆 } , 𝑆) = (𝑆 ∪ { 𝑆 }) \ { 𝑆 } = 𝑆

meaning that the collection of maps which make up 𝜂 will be automorphisms. Further,
given 𝜃 : 𝑆 → 𝑇 and 𝛼 ∈ (−)−1 + 𝑆 = 𝑆, we have

(−)−1 + 𝜃 (𝛼) = { 𝛽 ∈ 𝑇 | +𝜃 (𝛽) = 𝛼 } .

Now, recall that +𝜃 (𝛽) = 𝛼 precisely when 𝛽 ∈ 𝜃 (𝛼) and thus

{ 𝛽 ∈ 𝑇 | +𝜃 (𝛽) = 𝛼 } = 𝜃 (𝛼)

so that (−)−1+ is the identity functor on Γ and we may take our natural isomorphism to be
the collection of identity maps 1𝑆 for each object 𝑆 of Γ.

Now for 𝜖 , given an object (𝑆, 𝑠) of Finop
∗ we have that

+(−)−1 (𝑆, 𝑠) = +𝑆 \ { 𝑠 } = ((𝑆 \ { 𝑠 }) ∪ { 𝑆 \ { 𝑠 } } , 𝑆 \ { 𝑠 })

For sanity’s sake we will use the notation (𝑆∗ ∪ { 𝑆∗ } , 𝑆∗) for the above set. This grotesque
looking object (which amounts to replacing 𝑠 with something more generic) is not 𝑆.
However, there is a based isomorphism 𝜖𝑠 from 𝑆 to it which takes 𝑠 to 𝑆 \ { 𝑠 } and leaves
the other elements of 𝑆 be. The collection of such isomorphisms will form 𝜖 . Similarly,
given a map 𝑓 : (𝑇, 𝑡) → (𝑆, 𝑠) we have that

+( 𝑓 −1) (𝛽) =

𝑆∗ if 𝛽 = 𝑇∗
𝑆∗ if 𝛽 ∉

⋃
𝛼∈𝑆∗ 𝑓

−1 (𝛼) = ⋃
𝛼∈𝑆∗ { 𝛽 ∈ 𝑇 | 𝑓 (𝛽) = 𝛼 }

𝛼 ∈ 𝑆∗ if 𝛽 ∈ 𝑓 −1 (𝛼) = { 𝛽 ∈ 𝑇 | 𝑓 (𝛽) = 𝛼 }
.
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To verify that these do constitute a natural isomorphism we must check that the following
diagram commutes:

(𝑆, 𝑠)

𝜖𝑆

��

(𝑇, 𝑡)
𝑓

oo

𝜖𝑇

��

𝑆∗ 𝑇∗
+( 𝑓 −1)
oo

Let 𝛽 be an element of 𝑇, 𝑡, there are two cases to consider. If 𝛽 = 𝑡, then

𝜖𝑆 𝑓 (𝑡) = 𝜖𝑆 (𝑠) = 𝑆∗ and +
(
𝑓 −1

)
𝜖𝑇 (𝑡) = +

(
𝑓 −1

)
𝑇∗ = 𝑆∗.

If 𝛽 ≠ 𝑡, then either 𝑓 (𝛽) = 𝑠 or 𝑓 (𝛽) ≠ 𝑠. In the first case, there is no element 𝛼 ∈ 𝑆 \ { 𝑠 }
such that 𝑓 (𝛽) = 𝛼. Since 𝛽 is not in any of the fibers from 𝑆 \ { 𝑠 }, by definition it is taken
to 𝑆∗ by +

(
𝑓 −1) , thus

𝜖𝑆 𝑓 (𝛽) = 𝜖𝑆 (𝑠) = 𝑆∗ and +
(
𝑓 −1

)
𝜖𝑇 (𝛽) = +

(
𝑓 −1

)
(𝛽) = 𝑆∗.

Finally, in the interesting case where 𝑓 (𝛽) ≠ 𝑠, we have 𝑓 (𝛽) = 𝛼 for some 𝛼 ∈ 𝑆 \ { 𝑠 },
so 𝛽 ∈ 𝑓 −1 (𝛼), and thus

𝜖𝑆 𝑓 (𝛽) = 𝜖𝑆𝛼 = 𝛼 and +
(
𝑓 −1

)
𝜖𝑇 (𝛽) = +

(
𝑓 −1

)
(𝛽) = 𝛼.

Thus we have defined a natural isomorphism and we may conclude that Γ is equivalent to
Finop
∗ . □

Exercise 1.5.iii. Finish the following proof of Lemma 1.5.10:

Lemma 1.5.10. Any morphism 𝑓 : 𝑎 → 𝑏 and fixed isomorphisms 𝑎 � 𝑎′ and 𝑏 � 𝑏′

determine a unique morphism 𝑓 ′ : 𝑎′ → 𝑏′ so that any of—or, equivalently, all of—the
following four diagrams commute:

𝑎

𝑓

��

𝑎′
�oo

𝑓 ′

��

𝑎

𝑓

��

� // 𝑎′

𝑓 ′

��

𝑎

𝑓

��

𝑎′
�oo

𝑓 ′

��

𝑎

𝑓

��

� // 𝑎′

𝑓 ′

��

𝑏
�
// 𝑏′ 𝑏

�
// 𝑏′ 𝑏 𝑏′

�
oo 𝑏 𝑏′

�
oo

For legibility, I use 𝛼 to denote the isomorphism � : 𝑎′ → 𝑎 (with 𝛼−1 denoting its
inverse) and 𝛽 to denote the isomorphism � : 𝑏′ → 𝑏 (with 𝛽−1 denoting its inverse.)
Furthermore, I refer to the first, second, third, and fourth diagrams, counting from the left.
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Proof. The prompt implies that the first diagram, at least, is commutative; so we know
that 𝑓 ′ = 𝛽 𝑓 𝛼.

At this point, it might be tempting to immediately right-compose both sides of that
expression with 𝛼−1, to obtain 𝑓 ′ (𝛼−1) = 𝛽 𝑓 𝛼(𝛼−1). Then we could simplify to obtain
𝑓 ′𝛼−1 = 𝛽 𝑓 , and voilá! The second diagram commutes! . . . Right?

Well, no, not quite. The logic above is missing a crucial step—it first assumes that
we actually can right-compose both sides of 𝑓 ′ = 𝛽 𝑓 𝛼 with 𝛼−1. It is true that since
an isomorphism can always be composed with its inverse, the validity of the composition
𝛽 𝑓 𝛼(𝛼−1) is trivial. But the validity of 𝑓 ′ (𝛼−1) is decidedly non-trivial, and this must be
proven before the logic above can be applied.

First, it will be useful to explicitly identify the domains and codomains of the morphisms
included in each diagram, to make further references more concise. These can easily be
inferred from the diagrams: 𝑓 : 𝑎 → 𝑏; 𝑓 ′ : 𝑎′ → 𝑏′;𝛼 : 𝑎′ → 𝑎; and 𝛽 : 𝑏 → 𝑏′; while the
inverses of each morphism go between the same objects, but with the domain and codomain
reversed. Now the remainder of the proof becomes almost trivial:

As stated above, cod(𝛼−1) = dom(𝛼) = 𝑎′ = dom( 𝑓 ′). So dom( 𝑓 ′) = cod(𝛼−1), which
means 𝑓 ′𝛼−1 is a valid composition. With that in mind, we are now able to apply the logic
quoted in the note above to show that 𝑓 ′𝛼−1 = 𝛽 𝑓 ; and this is sufficient to show that the
second diagram commutes.

To show that the remaining diagrams commute, we must prove that 𝛽−1 𝑓 ′ = 𝑓 𝛼 and
that 𝛽−1 𝑓 ′𝛼−1 = 𝑓 , for the third and fourth diagrams respectively. Again, it is easy to obtain
these expressions by composing 𝛽−1 with the expressions we have already determined –
specifically, by taking the compositions (𝛽−1) 𝑓 ′ = (𝛽−1)𝛽 𝑓 𝛼 = 𝑓 𝛼 for the third diagram
and (𝛽−1) 𝑓 ′𝛼−1 = (𝛽−1)𝛽 𝑓 = 𝑓 for the fourth. The ’difficult’ part is to show that these
compositions are valid.

Fortunately, this is still fairly easy: the validity of 𝛽−1𝛽 is trivial, and dom(𝛽−1) =
cod(𝛽) = 𝑏′ = cod( 𝑓 ′), so 𝛽−1 𝑓 ′ is valid. This means that the compositions mentioned in
the previous paragraph are valid, and therefore that 𝛽−1 𝑓 ′ = 𝑓 𝛼 and 𝛽−1 𝑓 ′𝛼−1 = 𝑓 . So the
third and fourth diagrams commute. □

Exercise 1.5.iv. Show that a full and faithful functor 𝐹 : C→ D both reflects and creates
isomorphisms. That is, show:

1. If 𝑓 is a morphism in C so that 𝐹 𝑓 is an isomorphism in D, then 𝑓 is an isomorphism.
2. If 𝑥 and 𝑦 are objects in C so that 𝐹𝑥 and 𝐹𝑦 are isomorphic in D, then 𝑥 and 𝑦 are

isomorphic in C.

Proof. Consider categories C and D, and a functor 𝐹 : C→ D that is full and faithful.
That is, for all 𝑥, 𝑦 ∈ C, the function 𝐹 : C(𝑥, 𝑦) → D(𝐹𝑥, 𝐹𝑦) that takes 𝑓 to 𝐹 𝑓 is
bĳective. Now, for a morphism 𝑓 : 𝑥 → 𝑦, suppose that 𝐹 𝑓 : 𝐹𝑥 → 𝐹𝑦 is an isomorphism.
This means that there exists 𝐺 : 𝐹𝑦 → 𝐹𝑥 where 𝐺 (𝐹 𝑓 ) = 1𝐹𝑥 and 𝐹 𝑓 (𝐺) = 1𝐹𝑦 . Now,
we can apply the definition of full and faithful functor to see that C(𝑦, 𝑥) is in bĳection with
D(𝐹𝑦, 𝐹𝑥) and so there exists a unique 𝑔 ∈ C(𝑦, 𝑥) where 𝐹𝑔 = 𝐺. We claim that 𝑔 = 𝑓 −1.
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To show this, we must show that 𝑓 𝑔 = 1𝑦 . We consider 𝐹 ( 𝑓 𝑔), the image of 𝑓 𝑔 under
our full and faithful functor. We see that

𝐹 ( 𝑓 𝑔) = 𝐹 𝑓 𝐹𝑔 = 𝐹 𝑓𝐺 = 1𝐹𝑦 = 𝐹 (1𝑦)

by properties of functors and our previous definitions of 𝑔 and 𝐺. Since we know that
𝐹 : C(𝑦, 𝑦) → D(𝐹𝑦, 𝐹, 𝑦) is bĳective, 𝐹 ( 𝑓 𝑔) = 𝐹 (1𝑦) implies that 𝑓 𝑔 = 1𝑦 . We must
also show that 𝑔 𝑓 = 1𝑥 . We use a similar method and show that

𝐹 (𝑔 𝑓 ) = 𝐹𝑔𝐹 𝑓 = 𝐺 (𝐹 𝑓 ) = 1𝐹𝑥 = 𝐹 (1𝑥).

Since we again know that 𝐹 : C(𝑥, 𝑥) → D(𝐹𝑥, 𝐹𝑥) is bĳective, this implies that 𝑔 𝑓 = 1𝑥 .
So we have that 𝑓 𝑔 = 1𝑦 and that 𝑔 𝑓 = 1𝑥 . Therefore, 𝑓 is an isomorphism with inverse 𝑔.

If 𝐹𝑥 and 𝐹𝑦 are isomorphic, we know that there exists some isomorphism𝐺 : 𝐹𝑥 →
𝐹𝑦. But since 𝐹 is a full and faithful functor and therefore C(𝑥, 𝑦) is in bĳection with
D(𝐹𝑥, 𝐹𝑦), 𝐺 = 𝐹 𝑓 for some 𝑓 : 𝑥 → 𝑦. By the previous part, we know that if 𝐹 𝑓 is an
isomorphism, then 𝑓 is also an isomorphism, so we see here that we have an isomorphism
𝑓 : 𝑥 → 𝑦, and therefore 𝑥 and 𝑦 are isomorphic. □

Exercise 1.5.v. Find an example to show that a faithful functor need not reflect isomor-
phisms.

Proof. Let 𝐹 : 2 → 1 be the unique morphism from 2 to 1. For 𝑥, 𝑦 ∈ ob 2, 2(𝑥, 𝑦)
either contains one morphism or is empty, thus the function from 2(𝑥, 𝑦) to 1(0, 0) induced
by 𝐹 is injective. Thus, 𝐹 is faithful. Let ! : 0→ 1 be the unique arrow from 0 to 1. Since
𝐹! = 10 and ! is not an isomorphism, then 𝐹 does not reflect isomorphisms. Thus faithful
functors need not reflect isomorphisms. □

Lemma 1.3.8. Functors preserve isomorphisms.

Theorem 1.5.9. (characterizing equivalences of categories). A functor defining an equiv-
alence of categories is full, faithful, and essentially surjective on objects. Assuming the
axiom of choice, any functor with these properties defines an equivalence on categories.

Exercise 1.5.vi.
i Prove that the composite of a pair of full, faithful, or essentially surjective functors

again has the same properties.
ii Prove that if C ≃ D and D ≃ E, then C ≃ E. Conclude that the equivalence of

categories is an equivalence relation.

Proof.
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• Let 𝐹 : 𝐶 → 𝐷 and 𝐺 : 𝐷 → 𝐸 be functors. If 𝐹 and 𝐺 are full, but 𝐺𝐹 is not
full, then there is some 𝑐 ∈ C(𝑥, 𝑦), for some 𝑥, 𝑦 which make sense, such that
𝐺𝐹𝑐 ∉ E(𝐺𝐹𝑥, 𝐺𝐹𝑦). However, 𝐺𝐹𝑐 = 𝐺 (𝐹𝑐) = 𝐺𝑑 ∈ E(𝐺𝐹𝑥, 𝐺𝐹𝑦) by the
fullness of 𝐺, so 𝐺𝐹 is full.
To show that𝐺𝐹 is faithful if 𝐹 and𝐺 are faithful, by a similar argument, if𝐺𝐹 were
not faithful, then there would be a morphism in E(𝐺𝐹𝑥, 𝐺𝐹𝑦) mapped to by two
morphisms of C(𝑥, 𝑦). However, 𝐺𝐹𝑐 = 𝐺 (𝐹𝑐) = 𝐺𝑑 for a unique 𝑑 ∈ D(𝐹𝑥, 𝐹𝑦),
which is again injective by the faithfulness of 𝐺.
Finally, to show that𝐺𝐹 is essentially surjective if 𝐹 and𝐺 are essentially surjective,
we see from Lemma 1.3.8 that functors take isomorphisms to isomorphisms. Since𝐺
is essentially surjective, for each 𝑑 ∈ D, there is some 𝑒 ∈ E such that 𝐺𝑑 � 𝑒. Then,
since 𝐹 has the same property, 𝑑 must be isomorphic to some 𝐹𝑐, that is, 𝐹𝑐 � 𝑑.
So we have that 𝐺𝐹𝑐 � 𝐺𝑑 � 𝑒, which is the requirement for 𝐺𝐹 to be essentially
surjective.

• If C ≃ D and D ≃ E, then the functors 𝐹 and 𝐺 are fully faithful and essentially
surjective, and by Theorem 1.5.9, C ≃ E. We also have that C ≃ C (reflexivity), if
C ≃ D then D ≃ C (symmetry), and from what we just showed we get transitivity.
Thus, equivalence of categories defines an equivalence relation.

Exercise 1.5.vii. Let G be a connected groupoid and let𝐺 be the group of autmorphisms at
any of its objects. The inclusion B𝐺 ↩→ G defines an equiavlence of categories. Construct
an inverse equiavlence G→ B𝐺.

Proof. To construct the inverse equivalence between G and B𝐺, we must find a fully
faithful and essentially surjective functor between these categories. First, we see that
since B𝐺 has just one object and any two singleton sets are isomorphic, that any functor
𝐹 : G → B𝐺 will be essentially surjective. We define our functor 𝐹 on the objects of
G by sending any object of G to the one object of B𝐺. Before defining our functor on
morphisms, we first show that for every trio of objects 𝑥, 𝑦, 𝑧 ∈ G, there exists a bĳection
from 𝐺 = G(𝑥, 𝑥) to G(𝑦, 𝑧).

First, we define a class of reference morphisms for our groupoid in the following manner:
Because G is connected, we have at least one morphism in G(𝑥, 𝑦) for any 𝑦 ∈ ob G. By
the Axiom of Choice, for each 𝑦, we can choose a morphism 𝑓𝑦 .6

Now, we use this subclass of morphisms to first determine a bĳection 𝜌 between
G(𝑥, 𝑥) → G(𝑥, 𝑦). We define this bĳection by sending 𝛾 ∈ G(𝑥, 𝑥) to 𝑓𝑦𝛾 ∈ G(𝑥, 𝑦). It is
easy to see that this function is injective, because 𝑓𝑦 is invertible, and surjective, as for any
𝑔 ∈ G(𝑥, 𝑦), 𝑔 = 𝜌( 𝑓 −1

𝑦 𝑔), where 𝑓 −1
𝑦 𝑔 ∈ G(𝑥, 𝑥). So we have the desired bĳection.

Next, we see that we can define bĳections𝜎 from G(𝑥, 𝑥) to G(𝑦, 𝑥), where𝜎(𝛾) = 𝛾 𝑓 −1
𝑦

which is bĳective by a similar argument as above. We can then compose these bĳections to
define a bĳection 𝜙 = 𝜎𝜌 from G(𝑥, 𝑥) to G(𝑦, 𝑧), where 𝜙(𝛾) = 𝑓𝑧𝛾 𝑓

−1
𝑦 .

6Note that if G is not small, we must apply the Axiom of Choice in a larger universe. Since G is a groupoid,
we also have a morphism 𝑓 −1

𝑦 for each 𝑦. We also note that if 𝑥 = 𝑦, we choose 𝑓𝑦 = 1𝑦 .
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Clearly, we also have an inverse bĳection 𝜙−1 : G(𝑥, 𝑦) → 𝐺, where for a 𝑔 ∈ G(𝑦, 𝑧)
such that 𝑔 = 𝑓𝑧𝛾 𝑓

−1
𝑦 , 𝜙−1 (𝑔) = 𝛾. We will use this to define our functor on morphisms,

so that for a morphism 𝑔 : 𝑦 → 𝑧, 𝐹𝑔 = 𝜙−1 (𝑔). First, we note that in this setting 𝑓𝑥 = 1𝑥
and that for any 𝑦, 𝑓𝑦 = 𝑓𝑦𝛾 𝑓𝑥 = 𝑓𝑦𝛾, so that 𝐹 𝑓𝑦 = 1𝑥 . Also, for any 𝑦, 1𝑦 = 𝑓𝑦1𝑥 𝑓 −1

𝑦 , so
our functor preserves identities.

Now, we show that our functor preserves composition of morphisms. To do this,
consider 𝑔 : 𝑦 → 𝑧 and ℎ : 𝑧 → 𝑤, where 𝑔 = 𝑓𝑧𝛾𝑔 𝑓

−1
𝑦 and ℎ = 𝑓𝑤𝛾ℎ 𝑓

−1
𝑧 . Now, consider

𝐹ℎ𝑔. We know that ℎ𝑔 = 𝑓𝑤𝛾ℎ 𝑓
−1
𝑧 𝑓𝑧𝛾𝑔 𝑓

−1
𝑦 = 𝑓𝑤𝛾ℎ𝛾𝑔 𝑓

−1
𝑦 . So 𝐹ℎ𝑔 = 𝛾ℎ𝛾𝑔 = 𝐹ℎ𝐹𝑔. So

we see that our functor preserves composition of morphisms, and therefore we have a well
defined functor.

To see that our functor is fully faithful, we remember that for any 𝑦, 𝑧 ∈ ob G, G(𝑦, 𝑧) is
in bĳection with 𝐺. Since 𝐹𝑦 = 𝐹𝑧 = ∅, the only object of B𝐺, and the set B𝐺 (∅, ∅) = 𝐺,
we have a bĳection between G(𝑦, 𝑧) and B𝐺 (𝐹𝑦, 𝐹𝑧) and therefore a fully faithful functor.
Therefore, we have a fully faithful functor that is essentially surjective on objects from G to
B𝐺.

Now, call the functor defined in 1.5.12 𝜄 : B𝐺 → G. We must now define natural
transformations 𝜏 : 𝐹𝜄 ⇒ 1B𝐺 and 𝜂 : 1G ⇒ 𝜄𝐹. For all 𝛾 ∈ mor B𝐺, we have that
𝐹𝜄(𝛾) = 𝐹 (𝛾) = 𝛾 and that 𝐹𝜄(∅) = 𝐹𝑥 = ∅ so 𝐹𝜄 = 1B𝐺 , and the natural transformation is
the identity transformation. Now, for each 𝑦 ∈ ob G, we must find 𝜂𝑦 , so that the following
diagram commutes for every 𝑓 : 𝑦 → 𝑧.

𝜄𝐹𝑦 = 𝑥
𝜄𝐹 𝑓
//

𝜂𝑦

��

𝜄𝐹𝑧 = 𝑥

𝜂𝑧

��
𝑦

𝑓
// 𝑧

We claim that if 𝜂𝑦 = 𝑓𝑦 , the reference morphism picked earlier, than we will have formed
a natural transformation. First, note that since 𝑓 can be represented by 𝑓𝑧𝛾 𝑓

−1
𝑦 for some

automorphism 𝛾 : 𝑥 → 𝑥 and that 𝛾 = 𝑓 −1
𝑧 𝑓 𝑓𝑦 . Also, note that 𝜄𝐹 𝑓 = 𝜄(𝛾) = 𝛾. So we

must show that 𝑓𝑧𝛾 = 𝑓 𝑓𝑦 . We know that 𝑓𝑧𝛾 = 𝑓𝑧 𝑓
−1
𝑧 𝑓 𝑓𝑦 = 𝑓 𝑓𝑦 , so we have the desired

equality. So the following diagram commutes, and 𝜂 is a natural transformation.

𝑥
𝜄𝐹 𝑓
//

𝑓𝑦

��

𝑥

𝑓𝑧

��
𝑦

𝑓
// 𝑧

(1.1)

We also see that 𝜂𝑦 is an isomorphism for every 𝑓𝑦 , because G is a groupoid. So we
have shown the existence of the desired natural isomorphisms. Therefore, 𝐹 and 𝜄 define a
equivalence between the categories B𝐺 and G. □

The exercise below concerns affine and projective planes as incidence geometries. For
background, see Section 2.6 of Hartshorne’s Geometry: Euclid and Beyond. I adapted the
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following two definitions from that source7. The two examples that I give are standard ex-
amples with coordinates in a field 𝑘 , but note that the definitions make no use of coordinates
and the constructions that we will use do not either.

However, the constructions do have natural linear algebra interpretations in the examples
with coordinates. I will use some basic facts from linear algebra concerning two and three
dimensional vector spaces, such as properties of cross-product. If you do not recall these,
then you may ignore the examples and concentrate on the rest.

Definition. An affine plane is a triple of sets A = (𝐴, 𝐿, 𝐼) with 𝐴 ∩ 𝐿 = ∅ where the
elements of 𝐴 are called points and the elements of 𝐿 are called lines satisfying the following
additional requirements. 𝐼 ⊆ 𝐴×𝐿 is a relation where 𝑠𝐼ℓ is read as "𝑠 lies on ℓ". A satisfies
the following axioms.

1. For any two distinct 𝑠, 𝑡 ∈ 𝐴, there is a unique ℓ ∈ 𝐿 such that 𝑠 and 𝑡 lie on ℓ.
2. For every ℓ ∈ 𝐿 there are at least two distinct 𝑠, 𝑡 ∈ 𝐴 that lie on ℓ.
3. There are at least three distinct 𝑠, 𝑡, 𝑢 ∈ 𝐴 such that there is no ℓ ∈ 𝐿 such that 𝑠, 𝑡

and 𝑢 all lie on ℓ.
4. Two lines ℓ and 𝑚 are said to be parallel if either ℓ = 𝑚 or there is no 𝑠 ∈ 𝐴 that lies

on both ℓ and 𝑚. Write ℓ ∥ 𝑚 if ℓ and 𝑚 are parallel. For every ℓ ∈ 𝐿 and 𝑠 ∈ 𝐴,
there is a unique 𝑚 ∈ 𝐿 such that 𝑠 ∈ 𝑚 and ℓ ∥ 𝑚.

Definition. A projective plane is a triple of sets P = (𝑃, 𝐿, 𝐼) with 𝑃 ∩ 𝐿 = ∅ where
the elements of 𝑃 are called points and the elements of 𝐿 are called lines satisfying the
following additional requirements. 𝐼 ⊆ 𝑃 × 𝐿 is a relation where 𝑠𝐼ℓ is read as "𝑠 lies on
ℓ". P satisfies the following axioms.

1. For any two distinct 𝑠, 𝑡 ∈ 𝑃, there is a unique ℓ ∈ 𝐿 such that 𝑠 and 𝑡 lie on ℓ.
2. For every ℓ ∈ 𝐿 there are at least three distinct 𝑠, 𝑡, 𝑢 ∈ 𝑃 that lie on ℓ.
3. There are at least three distinct 𝑠, 𝑡, 𝑢 ∈ 𝑃 such that there is no ℓ ∈ 𝐿 such that 𝑠, 𝑡

and 𝑢 all lie on ℓ.
4. For every ℓ, 𝑚 ∈ 𝐿 there is an 𝑠 ∈ 𝑃 that lies on both ℓ and 𝑚.

Here are two easy lemmas and then two standard examples.

Lemma. Let ℓ and 𝑚 be two lines in an affine or projective plane and let 𝑠, 𝑡 be distinct
points that lie on both ℓ and 𝑚. Then ℓ = 𝑚.

Proof. The first property in each definition is that there is a unique line containing 𝑠
and 𝑡, so ℓ = 𝑚. □

Lemma. In an affine plane (𝐴, 𝐿, 𝐼), ∥ is an equivalence relation.

Proof. ∥ is clearly reflexive and symmetric. To see that it is transitive, say that ℓ ∥ 𝑚
and 𝑚 ∥ 𝑛. We must see that ℓ ∥ 𝑛. If there is a point 𝑠 ∈ 𝐴 such that 𝑠 lies on both ℓ and
𝑛, then since there is a unique line parallel to 𝑚 on which 𝑠 lies, both ℓ and 𝑛 are this line
and ℓ = 𝑛. Otherwise, there is no point lying on both ℓ and 𝑛. Either way, ℓ ∥ 𝑛. □

7I added in each case that the set of points and the set of lines do not intersect so as to avoid annoying
set-theoretic problems in the constructions
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Example. Let 𝑘 be a field. Then A2 (𝑘) = (𝑘2, 𝐿, ∈) where the lines are solution sets to
equations 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 where 𝑎, 𝑏, 𝑐 ∈ 𝑘 and at least one of 𝑎 and 𝑏 is not zero. Note that
if 𝜆 ∈ 𝑘∗, then 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 has the same solutions as 𝜆𝑎𝑥 + 𝜆𝑏𝑦 + 𝜆𝑐 = 0. This is the
only way that two different equations yield the same line. Linear algebra tells us that A2 (𝑘)
satisfies the first property of an affine plane. It is not hard to prove via a parameterization
that every line has the same number of elements as 𝑘 , which is at least 2, so that the second
property holds as well. An easy computation shows that for (0, 0), (1, 0) and (0, 1) to all
be solutions to 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 then 𝑎 = 𝑏 = 𝑐 = 0. So, we have three non-collinear points.
Finally, if 𝑠 = (𝑠1, 𝑠2) is not a solution to 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, then there is a unique 𝑑 ∈ 𝑘 such
that 𝑠 is a solution to 𝑎𝑥 + 𝑏𝑦 + 𝑑 = 0 and 𝑑 ≠ 𝑐. The lines defined by these two equations
have empty intersection. So, A2 (𝑘) satisfies all requirements of an affine plane.

Note that this example shows a way to construct finite affine planes. If 𝑘 = F𝑞 , then
A2 (F𝑞) has 𝑞2 points and 𝑞 (𝑞2−1)

𝑞−1 = 𝑞(𝑞 + 1) lines. In fact, A2 (F2) with 4 points and 6 lines
is the smallest possible affine plane.

Example. Let 𝑘 be a field. We will construct a projective plane for which the "points"
are lines through the origin in 𝑘3, while the "lines" are planes through the origin in 𝑘3.
More specifically, consider the equivalence relation ≡ on 𝑘3\{(0, 0, 0)} given by (𝛼, 𝛽, 𝛾) ≡
(𝛿, 𝜖, 𝜙) if there is a 𝜆 ∈ 𝑘∗ such that (𝛼, 𝛽, 𝛾) = 𝜆(𝛿, 𝜖, 𝜙). That is, two nonzero vectors
are equivalent if they are linearly dependent. (That is, determine the same line through the
origin.) Denote the equivalence class of (𝛼, 𝛽, 𝛾) by (𝛼 : 𝛽 : 𝛾). For a linear polynomial
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 with at least one of 𝑎, 𝑏, 𝑐 not zero, if the equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 is satisfied
by (𝛼, 𝛽, 𝛾) then it is also satisfied by everything in its equivalence class. Thus, it makes
sense to say whether or not (𝛼 : 𝛽 : 𝛾) is a solution to 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0.

P2 (𝑘) = ((𝑘3\{(0, 0, 0)})/≡, 𝐿, ∈) where the lines are solution sets to equations 𝑎𝑥 +
𝑏𝑦 + 𝑐𝑧 = 0 with at least one of 𝑎, 𝑏, 𝑐 nonzero. As in the previous example, for 𝜆 ∈ 𝑘∗ the
solution sets of 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 and 𝜆𝑎𝑥 + 𝜆𝑏𝑦 + 𝜆𝑐𝑧 = 0 are the same and this is the only
way that two different equations yield the same line.

Starting with the second property, let 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 be the equation of a line ℓ. If
at least two of 𝑎, 𝑏, 𝑐 are not zero then (𝑏 : −𝑎 : 0), (𝑐 : 0 : −𝑎) and (0 : 𝑐 : −𝑏) are three
distinct points on ℓ. If 𝑎 = 𝑏 = 0 so that 𝑐 ≠ 0, then (1 : 0 : 0), (0 : 1 : 0) and (1 : 1 : 0)
are three distinct points on ℓ. A similar construction applies if 𝑎 = 𝑐 = 0 or if 𝑏 = 𝑐 = 0.

Moving to the last property, if two distinct lines have equations 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 and
𝑑𝑥 + 𝑒𝑦 + 𝑓 𝑧 = 0, then there is exactly one common solution given by the equivalence class
of the cross-product (𝑎, 𝑏, 𝑐) × (𝑑, 𝑒, 𝑓 ). Thus, given lines ℓ and 𝑚, either ℓ = 𝑚 or ℓ ∩ 𝑚
has just one point. In either case, ℓ ∩ 𝑚 ≠ ∅.

For the first property, given two distinct points 𝑠 and 𝑡 with representatives (𝑠1, 𝑠2, 𝑠3)
and 𝑡 = (𝑡1, 𝑡2, 𝑡3) if we let 𝑠 × 𝑡 = (𝑎, 𝑏, 𝑐) then at least one of 𝑎, 𝑏, 𝑐 is not 0, since 𝑠 and 𝑡
are linearly independent, and 𝑠 and 𝑡 are both solutions of to the equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0.
This line is the unique line with this property, since as we have just seen any two lines that
share more than one point are the same line.

Finally, (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) are not collinear since they are all solutions
to 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 then 𝑎 = 𝑏 = 𝑐 = 0. So, P2 (𝑘) is a projective plane.

As in the previous example, this gives us a way to construct to finite projective planes
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as P2 (F𝑞) for finite fields F𝑞 , having 𝑞3−1
𝑞−1 = 𝑞2 + 𝑞 + 1 points and also 𝑞2 + 𝑞 + 1 lines. The

smallest possible projective plane is P2 (F2), which has 7 points and 7 lines. This projective
plane is also known as the Fano plane.

Proposition. Let P = (𝑃, 𝐿, 𝐼) be a projective plane and let ℓ∞ ∈ 𝐿. Let

𝐴 = 𝑃\{𝑠 ∈ 𝑃 |𝑠𝐼ℓ∞}, 𝐿′ = 𝐿\{ℓ∞}, and 𝐼 ′ = 𝐼 ∩ (𝐴 × 𝐿′).

Then (𝐴, 𝐿′, 𝐼 ′) is an affine plane.

Proof. For any two distinct 𝑠, 𝑡 ∈ 𝐴 we also have that 𝑠, 𝑡 ∈ 𝑃, so that there is a unique
ℓ ∈ 𝐿 such that 𝑠 and 𝑡 lie on ℓ. Since 𝑠, 𝑡 ∈ 𝐴, ℓ ≠ ℓ∞ so that ℓ ∈ 𝐿′. This proves that
(𝐴, 𝐿′, 𝐼 ′) satisfies the first axiom of an affine plane.

For ℓ ∈ 𝐿′, ℓ ≠ ℓ∞ so that there is exactly one point that lies on both ℓ and ℓ∞. So,
exactly one fewer points in 𝐴 lie on ℓ than points in 𝑃 lie on ℓ. Since at least three points in
𝑃 lie on ℓ, at least two points in 𝐴 lie on ℓ, satisfying the second axiom of an affine plane.

Since (𝑃, 𝐿, 𝐼) is a projective plane, there are distinct 𝑠, 𝑡, 𝑢 ∈ 𝑃 that are not collinear.
In particular, at least one of them, say 𝑠, does not lie on ℓ∞. Thus, 𝑠 ∈ 𝐴. Let ℓ ∈ 𝐿 be the
line determined by 𝑠 and 𝑡 and let 𝑚 ∈ 𝐿 be the line determined by 𝑠 and 𝑢. Note that ℓ ≠ 𝑚
since 𝑠, 𝑡, 𝑢 are not collinear. Since there are at least two points of 𝐴 lying on ℓ and at least
two points of 𝐴 lying on 𝑚, there is a 𝑣 ∈ 𝐴 lying on ℓ with 𝑣 ≠ 𝑠 and a 𝑤 ∈ 𝐴 lying on 𝑚
with 𝑤 ≠ 𝑠. If 𝑠, 𝑣, 𝑤 all lay on a common line, then that line would share two points each
with ℓ and 𝑚, so that it would be equal to both ℓ and 𝑚. Since ℓ ≠ 𝑚, 𝑠, 𝑣, 𝑤 do not lie on a
common line, satisfying the third axiom of a projective plane.

Finally, let 𝑠 ∈ 𝐴 and ℓ ∈ 𝐿′. Let 𝑡 be the unique point that lies on both ℓ and ℓ∞ and
let 𝑚 be the line in P determined by 𝑠 and 𝑡. Since 𝑠 lies on 𝑚, 𝑚 ≠ ℓ∞ so that 𝑚 ∈ 𝐿′. If 𝑠
lies on ℓ then ℓ = 𝑚. If not, then ℓ ≠ 𝑚 and since ℓ and 𝑚 share the common point 𝑡 in P,
they cannot share any points in 𝐴. In either case, ℓ ∥ 𝑚 in A. □

Exercise 1.5.viii. Klein’s Erlangen program studies groupoids of geometric spaces of var-
ious kinds. Prove that the groupoid Affine of affine planes is equivalent to the groupoid
Projl of projective planes with a distinguished line, called the “line at infinity." The mor-
phisms in each groupoid are bĳections of both points and lines (preserving the distinguished
line in the case of projective planes) that preserve and reflect the incidence relation. The
functor Projℓ → Affine removes the line at infinity and the points it contains. Explicitly
describe an inverse equivalence.

That the functor 𝐹 : Projℓ → Affine is well-defined on objects is shown by the
proposition above. For a morphism 𝑓 : (𝑃, 𝐿, 𝐼, ℓ∞) → (𝑄, 𝑀, 𝐽, 𝑚∞), the induced
morphism 𝐹 𝑓 : (𝐴, 𝐿′, 𝐼 ′) → (𝐵, 𝑀 ′, 𝐽′) is given by restricting the bĳections 𝑃 → 𝑄 and
𝐿 → 𝑀 to 𝐴 and to 𝐿′. These restrictions give bĳections to 𝐵 and to 𝑀 ′ exactly because
the bĳection from 𝐿 to 𝑀 takes ℓ∞ to𝑚∞. Then it is easy to also see that 𝐹 𝑓 is a morphism,
that 𝐹 takes identities to identities and that 𝐹 respects composition of morphisms. So, 𝐹 is
a functor.
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We will now make a functor 𝐺 : Affine → Projℓ . First, we describe 𝐺 on objects.
Let (𝐴, 𝐿, 𝐼) be an affine plane. Let Π be the set of equivalence classes of 𝐿 under the
relation ∥. Let 𝑃 = 𝐴 ∪ Π and let �̄� = 𝐿 ∪ {ℓ∗∞} for some ℓ∗∞ that is not an element of
𝐴 ∪ Π ∪ 𝐿. For the sake of definiteness, take ℓ∗∞ = {𝐴 ∪ Π ∪ 𝐿}. Let 𝐼 ⊆ 𝑃 × �̄� be the
relation defined by 𝑠𝐼ℓ if either

1. 𝑠 ∈ 𝐴, ℓ ∈ 𝐿 and 𝑠𝐼ℓ, or
2. 𝑠 ∈ Π and ℓ = ℓ∗∞, or
3. 𝑠 ∈ Π and ℓ ∈ 𝑠.

We must see that (𝑃, �̄�, 𝐼) is a projective plane. First, we mention an annoying set
theoretic issue. For this to be true, we need among other things that 𝑃 ∩ �̄� = ∅, which is
true so long as Π ∩ 𝐿 = ∅. But, it is possible that one of the equivalence classes 𝑠 of "lines"
is already another "line" in 𝐿. We can avoid this by replacing each 𝑠 by the Kuratowski
product 𝑠′ = 𝑠 × 𝐿 = {{𝑠}, {𝑠, 𝐿}}. This cannot be equal to any ℓ ∈ 𝐿 for if it were then
ℓ ∈ 𝐿 ∈ {𝑠, 𝐿} ∈ 𝑠′ = ℓ, and such loops are impossible under the ZFC axioms. We will
move forward as if Π∩𝐿 = ∅ so as to avoid obscuring the ideas under a weight of additional
notation. But, everything below can be adjusted to use 𝑠′ in place of 𝑠.

We will start by showing that any two distinct lines have exactly one common point. If
ℓ, 𝑚 ∈ �̄� then at least one of them, say ℓ, is in 𝐿. If 𝑚 = ℓ∗∞, then from the second and
third cases of the definition of 𝐼, we see that the only point that lies on both ℓ and ℓ∗∞ is the
equivalence class 𝑠 of ℓ under ∥. If 𝑚 ∈ 𝐿 as well then since ℓ ≠ 𝑚, either they are parallel
in (𝐴, 𝐿, 𝐼), in which case the only 𝑠 ∈ 𝑃 that lies on both is their common equivalence
class, or they are not parallel, in which case they have one point in common via case (1),
but have no point in common in Π.

Now, we will see that any two points determine a unique line. Let 𝑠, 𝑡 ∈ 𝑃 be distinct
points. They cannot both be on two different lines, since we have just seen that two lines
have exactly one point in common. So, it suffices to show that they are on some line. If
𝑠, 𝑡 ∈ 𝐴, then we already know that there is an ℓ ∈ 𝐿 on which both 𝑠 and 𝑡 lie since (𝐴, 𝐿, 𝐼)
is an affine plane and 𝐼 is preserved in 𝐼 via the first case of its definition. If 𝑠, 𝑡 ∈ Π, then 𝑠
and 𝑡 both lie on ℓ∗∞ by case (2). We are left with the case in which one of them, say 𝑠, is in
𝐴 and the other, 𝑡, is in Π. Then by the last axiom of an affine plane, there is a unique line
ℓ ∈ 𝐿 in the equivalence class 𝑡 on which 𝑠 lies. But, 𝑡 also lies on ℓ by case (3).

Now we see that at least three distinct points lie on any line ℓ ∈ �̄�. If ℓ ∈ 𝐿, then there
are at least 2 points in 𝐴 that lie on ℓ. But, the equivalence class of ℓ is an element of Π
that also lies on ℓ, giving ℓ at least 3 distinct points. The remaining case is ℓ = ℓ∗∞, whose
points are the elements of Π. So, we must show that there are at least 3 equivalence classes
of lines in 𝐴. To see that, recall that we are guaranteed three distinct points 𝑠, 𝑡, 𝑢 ∈ 𝐴 such
that there is no line on which they all lie. Let ℓ, 𝑚 and 𝑛 be the lines in (𝐴, 𝐿, 𝐼) determined
respectively by 𝑠 and 𝑡, by 𝑠 and 𝑢 and by 𝑡 and 𝑢. These three lines are distinct by the choice
of 𝑠, 𝑡, 𝑢. But, each pair of ℓ, 𝑚, 𝑛 has a point in common, so no pair is parallel. Therefore,
we have at least three equivalence classes of parallel lines, giving at least three points lying
on ℓ∗∞.

Finally, we must guarantee that we have at least three 𝑠, 𝑡, 𝑢 ∈ 𝑃 that do not lie on any
common line in (𝑃, �̄�, 𝐼). We may just take 𝑠, 𝑡, 𝑢 ∈ 𝐴 that do not lie on a common line in
(𝐴, 𝐿, 𝐼). Then they maintain this property in (𝑃, �̄�, 𝐼).
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So, we take 𝐺 (𝐴, 𝐿, 𝐼) = (𝑃, 𝐿, 𝐼, ℓ∗∞), the projective plane just constructed with a
distinguished line at infinity, also newly constructed.

Say that 𝑓 : (𝐴, 𝐿, 𝐼) → (𝐵, 𝑀, 𝐽) is a morphism in Affine. We must describe

𝐺 𝑓 : (𝑃, �̄�, 𝐼, ℓ∗∞) → (𝑄, �̄�, 𝐽, 𝑚∗∞).

First note that since 𝑓 is a bĳection on both points and lines and also 𝑠𝐼ℓ if and only if
𝑓 (𝑠)𝐽 𝑓 (ℓ), it follows that ℓ ∥ 𝑚 in (𝐴, 𝐿, 𝐼) if and only if 𝑓 (ℓ) ∥ 𝑓 (𝑚) in (𝐵, 𝑀, 𝐽). So,
the bĳection from 𝐿 to 𝑀 induces a bĳection between parallel equivalence classes in 𝐿 and
in 𝑀 . Thus, 𝑓 extends to a bĳection from 𝑃 to 𝑄. We also extend 𝑓 to a bĳection from �̄�

to �̄� by taking ℓ∗∞ to 𝑚∗∞. This gives a description of 𝐺 𝑓 as a function.
To see that 𝐺 𝑓 is a morphism in Projℓ , it remains to be seen that 𝑠𝐼ℓ in (𝑃, �̄�, 𝐼) if and

only if 𝐺 𝑓 (𝑠)𝐽𝐺 𝑓 (ℓ) in (𝑄, �̄�, 𝐽). Examining the three ways in which we could have 𝑠𝐼ℓ
in the definition of 𝐼, we see that in each case 𝐺 𝑓 (𝑠) and 𝐺 𝑓 (ℓ) are in the very same case,
and conversely. So, 𝐺 𝑓 is a morphism in Projℓ .

Now, it is easy to that 𝐺 takes identities to identities and preserves composition of
morphisms. So, 𝐺 is a functor.

Consider the composite functor 𝐹𝐺 : Affine→ Affine. 𝐺 adds new points to 𝐴 and
a new line to 𝐿 on which the new points lie, but 𝐹 takes away that new line and also all of
those new points returning us to 𝐴 and to 𝐿. Also (𝐼)′ = 𝐼 ∩ (𝐴 × 𝐿) = 𝐼. So, on objects
𝐹𝐺 is the identity. But it is on morphisms as well, since as a function 𝐺 𝑓 is an extension
of 𝑓 to 𝑃 and �̄�, but 𝐹 just restricts 𝐺 𝑓 to the original sets, giving that 𝐹𝐺 𝑓 = 𝑓 . So,
𝐹𝐺 = 1Affine.

However, 𝐺𝐹 ≠ 1Projℓ . Indeed, if we write 𝐴 = 𝑃\{𝑠 |𝑠𝐼ℓ∞} and 𝐿′ = 𝐿\{ℓ∞} and
𝐼 ′ = 𝐼 ∩ (𝐴 × 𝐿′) as above, then

𝐺𝐹 (𝑃, 𝐿, 𝐼, ℓ∞) = (𝐴 ∪ Π, 𝐿′ ∪ {ℓ∗∞}, 𝐼 ′, ℓ∗∞).

But, there is a correspondence between what was taken away by 𝐹 and what was added by
𝐺. Namely, if 𝑠 ∈ 𝑃 lies on ℓ∞ then the other lines on which 𝑠 lies form an equivalence
class 𝑠∗ ⊂ 𝐿′ for ∥ in (𝐴, 𝐿′, 𝐼 ′). Indeed, any two distinct elements of 𝑠∗ share 𝑠 in 𝑃, and
so cannot also share any points in 𝐴. Any two lines that are parallel in 𝐴 must share a point
in 𝑃, necessarily one that lies on ℓ∞. This gives a bĳection

{𝑠 ∈ 𝑃 |𝑠𝐼ℓ∞} ↔ {𝑠∗ ∈ Π} = {𝑡 ∈ 𝐴 ∪ Π |𝑡 𝐼 ′ℓ∗∞}.

We can fit these together into a natural transformation 𝜂 : 1Projℓ ⇒ 𝐺𝐹. Namely, if
P = (𝑃, 𝐿, 𝐼, ℓ∞) then

𝜂P : (𝑃, 𝐿, 𝐼, ℓ∞) → (𝐴 ∪ Π, 𝐿′ ∪ {ℓ∗∞}, 𝐼 ′, ℓ∗∞)
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is given by

𝑠 ↦→
{
𝑠∗ if 𝑠𝐼ℓ∞
𝑠 otherwise, and

ℓ ↦→
{
ℓ∗∞ if ℓ = ℓ∞
ℓ otherwise.

It is easy to see that 𝜂P is a morphism, and in particular an isomorphism as all morphisms
in Projℓ are.

To check that 𝜂 is a natural transformation, and thus a natural isomorphism, let8 Q =

(𝑄, 𝑀, 𝐽, 𝑚∞) and 𝑓 : P→ Q be a morphism. Then we need to check that

P
𝑓

//

𝜂P

��

Q

𝜂Q

��

𝐺𝐹P
𝐺𝐹 𝑓

// 𝐺𝐹Q

commutes. Checking along both paths from P to 𝐺𝐹Q, we find that both give

𝑠 ↦→
{
𝑓 (𝑠)∗ if 𝑠𝐼ℓ∞
𝑓 (𝑠) otherwise, and

ℓ ↦→
{
𝑚∗∞ if ℓ = ℓ∞
𝑓 (ℓ) otherwise.

Since 𝜂 is a natural isomorphism, we have that 𝐹 and 𝐺 define an equivalence of
categories as claimed.

Exercise 1.5.ix. Show that any category equivalent to a locally small category is locally
small.

Proof. First, we will prove a much more general statement; that if there exists a faithful
functor 𝐹 : C→ D, where D is a locally small category, then C must be locally small. The
proof follows:

𝐹 : C → D is faithful, so for any 𝑥, 𝑦 ∈ C, the map 𝐹𝑥,𝑦 : C(𝑥, 𝑦) →
D(𝐹𝑥, 𝐹𝑦) is injective. And since there is an injective function 𝐹𝑥 ,𝑦 from
C(𝑥, 𝑦) → D(𝐹𝑥, 𝐹𝑦), there must be a surjective function 𝑔 : D(𝐹𝑥, 𝐹𝑦) →
C(𝑥, 𝑦)9

8Note that Q does not represent the rational numbers for the moment.
9The principle that “For two sets 𝐴 and 𝐵, if there is a surjection from 𝐴 to 𝐵, then there is an injection from

𝐵 to 𝐴, and vice versa” is called the Partition Principle. While the principle has been known to be a consequence
of the Axiom of Choice for quite awhile, it’s an open question whether or not it implies the Axiom of Choice—in
other words, whether it is equivalent to the axiom. Bertrand Russell claimed it did, but he never provided a proof;
and while set theorists as a whole have come incredibly close to one since then, they’ve never quite gotten there.
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Per the Axiom of Replacement, the image of a function whose domain is a
set must be a set, so the image of 𝑔 is a set. But we just said that 𝑔 is surjective
over C(𝑥, 𝑦), so its image is simply C(𝑥, 𝑦); which means that C(𝑥, 𝑦) must be
a set! And since this holds for all 𝑥, 𝑦 ∈ C, C must be locally small.

In the particular case specified by the exercise, wherein C ≃ D, there is by definition a
faithful functor 𝐹 : C→ D. So this is a special case of the general statement proven above;
meaning we can immediately conclude that C is locally small. □

Exercise 1.5.x. Characterize the categories that are equivalent to discrete categories. A
category that is connected and essentially discrete is called chaotic.

Proof. We will show that a category C is equivalent to a discrete category D if and
only C is preorder and a groupoid. Consider any category C that is equivalent to a discrete
category D. By theorem 1.5.9 we have a full, faithful, and essentially surjective functor
𝐹 from C to D. Since 𝐹 is both full and faithful, we have for each 𝑥, 𝑦 in ob C the map
C(𝑥, 𝑦) → D(𝐹𝑥, 𝐹𝑦) is a bĳection. Because D is a discrete category we know that
D(𝐹𝑥, 𝐹𝑦) is empty if 𝐹𝑥 and 𝐹𝑦 are distinct or, if they are the same, consists of only the
identity map. Since C(𝑥, 𝑥) → D(𝐹𝑥, 𝐹𝑥) is a bĳection and D(𝐹𝑥, 𝐹𝑥) only contains the
identity map we can conclude that C(𝑥, 𝑥) also only consists of the identity map. Now let
C(𝑥, 𝑦) be inhabited by 𝑓 , so D(𝐹𝑥, 𝐹𝑦) is inhabited as well and we must have 𝐹𝑥 = 𝐹𝑦.

Hence there must be exactly one morphism between 𝑥 and 𝑦 in 𝐶. Using similar reasoning
we can conclude C(𝑦, 𝑥) has at most one element. Since both C(𝑥, 𝑦) and C(𝑦, 𝑥) are
mapped to the identity of 𝐹𝑥 we must have 𝑓 𝑔 = 𝑔 𝑓 = 1𝑥 . Hence between any objects
𝑥 and 𝑦 in C C(𝑥, 𝑦) has exactly one member or is empty. Since every morphism in C is
invertible for any two objects 𝑥 and 𝑦 in C there is at most one element in the C(𝑥, 𝑦), C is
a groupoid and preorder as desired.

Conversely consider any category C that is both a groupoid and a preorder. For insurance
reasons we will work in a universe𝑉, where C is a small category. Now look at the skeleton
category of C, the category whose objects are exactly one element from each isomorphism
classes (which we obtain by using the axiom of choice, and hence the reason for the insurance
policy) of C, denoted asA. By definition we know thatA ≃ C. Because C is a groupoid, if
C(𝑥, 𝑦) is nonempty for any two objects 𝑥 and 𝑦 in C, we must have that 𝑥 is isomorphic to
𝑦 and therefore in the same isomorphism class. Also since C is a preorder there is at most
one element in C(𝑥, 𝑦). So all the morphisms of C are collapsed into the identity morphisms
of the appropriate isomorphism classes. Hence the only morphisms ofA are the identities
of each isomorphism class, soA is discrete category. Since equivalence is transitive C is
equivalent to a discrete category, and this completes the proof. □

Exercise 1.5.xi. Consider the functors Ab → Group (inclusion), Ring → Ab (forgetting
multiplication), (−)× : Ring→ Group (taking the group of units), Ring→ Rng (inclusion),
Field→ Ring (inclusion), and Mod𝑅 → Ab (forgetful). Determine which functors are full,
which are faithful, and which are essentially surjective. Do any define equivalence of
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categories? (Warning: A few of these questions conceal research-level problems, but they
can be fun to think about even if full solutions are hard to come by.)

Ab→ Group

Proof. This is a fully faithful functor. For any two groups 𝑥 and 𝑦, the functor maps the
group homomorphisms 𝑓 : 𝑥 → 𝑦 to themselves. In other words 𝐹 𝑓 = 𝑓 . This immediately
gives us that the functor is faithful, as if 𝐹 𝑓 = 𝐹𝑔, then 𝑓 = 𝑔. For it to be full, we must
confirm that for any groups 𝑥, 𝑦 ∈ Ab that for any 𝑔 : 𝐹𝑥 → 𝐹𝑦 we can find 𝑓 : 𝑥 → 𝑦 such
that 𝐹 𝑓 = 𝑔. But then we note that 𝑔 is of domain 𝑥 and codomain 𝑦 as 𝐹 is just inclusion,
and that any homomorphism 𝑔 between two Abelian groups in the category of groups also
exists in the category of Abelian groups. Thus, we have the desired surjectivity.

However, our functor is not essentially surjective on objects. We know that for 𝑐 ∈ Ab,
𝐹𝑐 = 𝑐 ∈ Group. For it to be essentially surjective, for any 𝑑 ∈ Group, we would need
to be able to find an 𝐹𝑐 isomorphic to it. But this just means we need to find an Abelian
group isomorphic to 𝑑. That is impossible for any group 𝑑 that is not Abelian, as Abelian
groups are only isomorphic to Abelian groups. It thus does not define an equivalence of
categories, however the Abelian groups are a subcategory. □

Ring→ Ab

Proof. Let 𝐹 be the functor described above. The additive group of any ring is already
abelian, so 𝐹 takes the additive group of each 𝑟 ∈ Ring (in other words, every (𝑟, +) ∈ Ring)
to the same (𝑟, +) ∈ Ab; and takes every ring homomorphism 𝑓 : 𝑟 → 𝑠 ∈ Ring to
𝑓+ : (𝑟, +) → (𝑠, +) ∈ Ab, where we define 𝑓+ as exactly the function 𝑓 , but applied only to
the additive group of 𝑟 (instead of to the whole ring.)

So, in a sense, 𝐹 is an ’inclusion functor,’ taking the additive groups of elements of Ring
to those same groups in Ab, and the ring homomorphisms between those additive group in
Ring to the same homomorphisms in Ab.

When we say that 𝐹 takes every morphism to ’itself’, what we are really saying is the
following: For any 𝑓 : 𝑟 → 𝑠 ∈ Ring, if we define 𝑓+ : (𝑟, +) → (𝑠, +) as 𝑓 applied to the
additive group of 𝑟, we can say that 𝐹 𝑓 = 𝑓+ ∈ Ring. So it is trivial that for any 𝑓 , 𝑔 : 𝑟 → 𝑠

such that 𝐹 𝑓 ≠ 𝐹𝑔, 𝑓+ ≠ 𝑔+.
But the ring homomorphisms 𝑓 , 𝑔 : 𝑟 → 𝑠 can be equal only if 𝑓 (𝑎 + 𝑏) = 𝑔(𝑎 + 𝑏).

In other words, 𝑓 = 𝑔 only if 𝐹 𝑓 = 𝑓+ = 𝑔+ = 𝐹𝑔; so if 𝐹 𝑓 ≠ 𝐹𝑔, then of course 𝑓 ≠ 𝑔!
So 𝐹 (𝑟, 𝑠) is injective by definition, and since this is the case for all 𝑟, 𝑠 ∈ Ring, we can
conclude that F is faithful.

On the other hand, consider that there are no morphisms from the zero ring, {0},
to any nonzero 𝑟 ∈ Ring. 𝐹{0} is simply ({0}, +); that is, the trivial group. But there is
automatically a group homomorphism from the trivial group to any group, which means
that the set of morphisms from 𝐹{0} to 𝐹𝑟 is not empty for any 𝑟 ∈ Ring. So 𝐹 cannot be
surjective over { 𝑓 : 𝐹{0} → 𝐹𝑟}, which means 𝐹 is not full.
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Suppose to the contrary that 𝐹 is essentially surjective. This means that, for example,
there must be some 𝑟 ∈ Ring such that 𝐹𝑟 = (𝑟, +) ≃ Q/Z ∈ Ab. Consider that elements of
Q/Z take the form

{
𝑎
𝑏
+ Z | 𝑎, 𝑏 ∈ Z

}
; which means that for every 𝑛 ∈ Q/Z, there is some

positive integer 𝑏 such that if you ’multiply’ 𝑛 by 𝑏 (using the definition we mentioned
earlier of "adding n to itself b times") you obtain that 𝑏 ∗ 𝑛 = 𝑎 + Z = Z = 0Q/Z.

But consider the case where 𝑛 = 1𝑟 . We have just determined that there must be some
positive integer 𝑏 such that 𝑏 ∗ 1 = 0. This means that (𝑟, +) must have characteristic 𝑏,
which itself means that every element of (𝑟, +) must have order ≤ 𝑏. So since (𝑟, +) ≃ Q/Z,
every element of Q/Z must also have order ≤ 𝑏. But we know that there is some element
of Q/Z with order 𝑛 for any positive n; there cannot be a finite 𝑏 such that every element
of Q/Z has order ≤ 𝑏. This brings us to a contradiction, which means that our assumption
must be false – 𝐹 must not be essentially surjective. □

Ring→ Group

Proof. An isomorphism of groups must preserve cardinality, among other things. Since
there are groups of any finite order (consider the cyclic groups), to disprove that the functor
is essential surjective it suffices to show that no ring can have a multiplicative group of a
specific order. In particular we will consider five.

First, note that in any ring we may consider the multiplicative order of −1, the additive
inverse of 1. If 1 is distinct from -1, then -1 has order 2,10 implying that the multiplicative
group of our ring must contain a subgroup of order two, and thus must have even order by
Lagrange’s theorem. We thus need only consider rings where 1 does not have a distinct
additive inverse, i.e. rings of characteristic two.

Suppose that we have a ring 𝑅 of characteristic two. If the multiplicative group of 𝑅
has order five, then it must be isomorphic to Z/5Z and thus have some element 𝜁 with
multiplicative order five, i.e. 𝜁5 − 1 = 0.

Now consider the polynomial ring F2 [𝑥], and the evaluation map 𝑒𝑣𝜁 : F2 [𝑥] → 𝑅

which takes 𝑥 to 𝑧. The polynomial 𝑓 (𝑥) = 𝑥5 − 1 must be in the kernel of this map, and
𝑥5 − 1 factors into 𝑥 + 1 and 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1, both irreducible in F2 [𝑥].11

F2 [𝑥] is a principle ideal domain, so 𝑥5 + 1 must be contained in the ideal generated by
itself or one of its factors.

. . .
So we may factor the evaluation map through the quotient of F2 [𝑥] by ker 𝑒𝑣𝜁 , which

must then embed F16 in 𝑅 meaning that it’s multiplicative group has far more than just
five elements. Thus the group Z/5Z is completely missed by our functor which fails to be
essentially surjective.

Now let us consider whether this functor is full or faithful. First, consider the ring
of real numbers R with their usual operations, this has no non-identity homomorphisms.

10We have 0 = −1 · 0 = −1(−1 + 1) = −1 · −1 + −1 · 1 = −1 · −1 + −1 implying that −1 · −1 is the additive
inverse of −1, so −1 · −1 = 1.

11To see this note first that it is neither divisible by 𝑥 nor 𝑥 + 1. So if it were divisible it would be so by
two degree two polynomial. However, 𝑥2 + 𝑥 + 1 is the only irreducible degree two polynomial in F2 [𝑥 ], and
(𝑥2 + 𝑥 + 1)2 = 𝑥4 + 𝑥2 + 1.
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However, if we consider only R× , then there are many group homomorphisms. A typical
homomorphism is raising an element to some power. Thus our functor cannot be full.

Finally, let 𝑅 be a nonzero ring. For any polynomial 𝑝 with coefficients in 𝑅, the is
a ring endomorphism of 𝑅[𝑥] which takes 𝑥 to 𝑝 and thus any other polynomial 𝑞 to 𝑞(𝑝).
Note that most of these are note the identity homomorphism. However, if 𝑞 is a constant
polynomial, i.e. just an element of 𝑅, then 𝑞(𝑝) = 𝑞. So these endomorphism are all the
identity when restricted to the inclusion of 𝑅 in 𝑅[𝑥].

Further, the units of 𝑅[𝑥] are precisely the units of 𝑅.12 This means that any of the
endomorphisms above will also be the identity on the units of 𝑅[𝑥] which means that our
functor is not injective on hom-sets. □

Ring→ Rng

Proof. Before defining the functor Ring → Rng, first the category Rng needs some
description. Since a rng, denoted here by 𝑅− , is a non-unital ring, we note that (𝑅− , +) is
a commutative group and (𝑅− , ∗) is a magma with associativity (or a monoid without the
condition of identity). Thus every ring, 𝑅, is a rng by the fact that 𝑅 is a monoid under
multiplication, and this monoid is certainly a magma with associativity. So the objects in
the category Ring are included in the class of objects of Rng.

Let the functor in question be the inclusion functor 𝜄 : Ring → Rng that maps rings in
Ring to rings in Rng, and ring homomorphispms in Ring to rng homomorphisms between
rings in Rng. The rng homomorphisms have all of the properties of ring homomorphisms,
except the condition of mapping units in one rng to units in another.

To test whether 𝜄 is a full functor, take 0 and Q in Ring. Then 𝜄0, 𝜄Q are rings included in
Rng, and hence are the same 0 and Q. Since there exists a rng homomorphism 𝜙 between
0 and Q, i.e., the homomorphism that maps 0 to 0,while there is no ring homomorphisms
between the same two objects in Ring, then 𝜙 is not mapped to by 𝜄 acting on any ring
homomorphism in Ring. Thus, 𝜄 is not surjective between the morphisms fixed on any two
objects in Ring. Hence 𝜄 is not full.

To test whether 𝜄 is faithful, for the objects 𝑐 ≠ 𝑐′ in Ring, take two homomorphisms
𝜙1 and 𝜙2 in Ring between 𝑐, 𝑐′. Applying 𝜄 to 𝜙1 and 𝜙2 yields 𝜄𝜙1 and 𝜄𝜙2, which remain
unequal when applied to the objects 𝜄𝑐 = 𝑐 and 𝜄𝑐′ = 𝑐′. Thus 𝜄 is injective on morphisms
between fixed objects in Ring. Thus 𝜄 is faithful.

To test whether 𝜄 is essentially surjective, we can take the object in Rng, 𝐸 of even
integers. Since 1 ∉ 𝐸 , then 𝐸 is not isomorphic to any ring that is also in Rng. Thus 𝜄 is
not essentially surjective.

From the theorem characterizing the equivalence of categories, since 𝜄 fails to be a full
functor from Ring to Rng, then there is not an equivalence of categories between Ring and
Rng.

12Given an invertible element of 𝑅, its inverse is retained on inclusion in 𝑅[𝑥 ] making it a unit of 𝑅[𝑥 ].
Conversely, multiplying non-constant polynomials increases their degree meaning they cannot multiply to 1, so
these are all the units of 𝑅[𝑥 ].
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Field→ Ring

Proof. The inclusion functor 𝜄 : Field→ Ring is faithful: it must take each morphism
in the domain to itself in the codomain and is thus injective. To show it is full, let 𝑓 : 𝑥 → 𝑦

be a field homomorphism in Field. It must take 𝑓 (0𝑥) = 0𝑦 and 𝑓 (1𝑥) = 1𝑦 . Since we
are only concerned with morphisms between objects we know are fields in the domain
(Field) of the functor, we know that in the codomain (Ring) every morphism between 𝜄𝑥
and 𝜄𝑦 must also have that 𝜄 𝑓 (0𝑥) = 0 𝜄𝑥 and 𝜄 𝑓 (1𝑥) = 1 𝜄𝑦 (and respect the rest of the ring
homomorphism requirements). But then 𝜄 𝑓 must be a field homomorphism, and is thus
included in Field.

The inclusion functor is not essentially surjective on objects however. There is no
object in Field that this functor takes to the zero ring (and the zero ring is unique up to
isomorphism). So, the inclusion map from Field → Ring does not define an equivalence
of categories. □

Mod𝑅 → Ab

Proof. This functor is not always essentially surjective. If we let 𝑅 = {0}, then
the only object Mod0 is the zero module. Thus 𝐹0 only goes to the trivial group. So
if 𝑈 were to be fully faithful in this case, every Abelian group must be isomorphic to
the trivial group. This is clearly not the case since Z/2Z (or any finite Abelian group
really) cannot be isomorphic to the trivial group. However 𝑈 is both full and faithful as
Mod0 (0, 0) and Ab(𝐹0, 𝐹0) = Ab(0, 0) both only have one element in them. So the only
map between Mod0 (0, 0) → Ab(0, 0) takes the identity map in Mod0 to the identity map in
the trivial group, which is clearly bĳective.

If we let 𝑅 = Z, recall that every abelian group can be uniquely expressed as a Z-module.
In this case since ModZ is exactly Ab, the forgetful functor𝑈 becomes the identity functor,
so𝑈 is clearly full, faithful, and essentially surjective.

The previous two examples were both full, however, this need not always be the case.
If we let 𝑅 = Z2 [𝑥]/𝑥2 + 𝑥 + 1, and look at 𝑅 as a dimension one vector space over itself we
have the following addition and multiplication tables.

+ 0 1 𝛼 𝛼 + 1
0 0 1 𝛼 𝛼 + 1
1 1 0 𝛼 + 1 𝛼

𝛼 𝛼 𝛼 + 1 0 1
𝛼 + 1 𝛼 + 1 𝛼 1 0

* 0 1 𝛼 𝛼 + 1
0 0 0 0 0
1 0 1 𝛼 𝛼 + 1
𝛼 0 𝛼 𝛼 + 1 1

𝛼 + 1 0 𝛼 + 1 1 𝛼

Since 𝑅 is rank one free module, every endomorphism on 𝑅 is defined by scalar multi-
plication. Now forget the scalar multiplication on 𝑅, and treat 𝑅 like an Abelian group.
Since 𝑅 is an Abelian group and in particular a field of characteristic two, the Frobenius
endomorphism 𝑎 ↦→ 𝑎𝑝 , where 𝑝 (in this case 𝑝 = 2) is the characteristic of 𝑅 (this is a
field endomorphism so it preserves the additive structure as well even though it is defined
in terms of the multiplicative operation which we have technically forgotten) is a member
of Ab(𝑈𝑅,𝑈𝑅). There is no module homomorphism that corresponds to the Frobenius
endomorphism, since the Frobenius endomorphism fixes 0 and 1 and swaps 𝛼 and 𝛼 + 1,
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but every module homomorphism in this case can only fix one element at a time. (We know
this because every endomorphism is multiplication by a scalar, so they are all completely
described in the multiplication table.) Notice that this counterexample will work for any
finite field with characteristic 𝑝.

Even though 𝑈 is not always full, 𝑈 is always faithful. If we say 𝑓 and 𝑔 are distinct
morphisms in Mod𝑅 (𝑥, 𝑦), then they must disagree on at least one element, say, 𝑧 in 𝑥.
Because 𝑈 𝑓 and𝑈𝑔 are exactly the same functions in Ab(𝑈𝑥,𝑈𝑦) they disagree on the
same element 𝑧, so they are distinct in Ab(𝑈𝑥,𝑈𝑦) as well. Hence𝑈 is always faithful. □
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1.6 The art of the diagram chase

Exercise 1.6.i. Show that any map from a terminal object in a category to an initial one is
an isomorphism. An object that is both initial and terminal is called a zero object.

Proof. Let 𝑓 : 𝑡 → 𝑖, where 𝑡 is terminal and 𝑖 is initial. As 𝑖 is initial, there exists
exactly one morphism 𝑔 : 𝑖 → 𝑡. We must show this 𝑔 is the inverse of 𝑓 such that 𝑓 𝑔 = 1𝑖
and 𝑔 𝑓 = 1𝑡 . We know that 𝑓 and 𝑔 are composable, and we know 𝑓 𝑔 : 𝑖 → 𝑖 and 𝑔 𝑓 : 𝑡 → 𝑡

based on the composition law. As 𝑖 is initial, there exists exactly one morphism 𝑖 → 𝑐 for
any object 𝑐, and thus there exists only one morphism 𝑖 → 𝑖, the identity morphism 1𝑖 .
Thus, 𝑓 𝑔 must be 1𝑖 . Similarly, as 𝑡 is terminal there exists exactly one morphism 𝑐 → 𝑡,
and thus there exists only one morphism 𝑡 → 𝑡, the identity morphism 1𝑡 . Hence 𝑔 𝑓 must
be 1𝑡 , and 𝑓 is an isomorphism. □

Exercise 1.6.ii. Show that any two terminal objects in a category are connected by a unique
isomorphism.

Proof. Let 𝑡0 and 𝑡1 be two terminal objects in a category 𝑓 : 𝑋 → 𝑌 . That means
there is a unique homomorphism 𝑓0 : 𝑥 → 𝑡0 and 𝑓1 : 𝑥 → 𝑡1 for all 𝑥 in 𝑋 . We want to
show that there is a unique isomorphism between 𝑡0 and 𝑡1. Since 𝑡0 is a terminal object,
we have a morphism 𝑓0 : 𝑡1 → 𝑡0. And since 𝑡1 is a terminal object, we have a morphism
𝑓1 : 𝑡0 → 𝑡1. Consider the composition 𝑓0 𝑓1. This gives us 𝑓0 𝑓1 : 𝑡0 → 𝑡1 → 𝑡0 or more
simply 𝑓0 𝑓1 : 𝑡0 → 𝑡0. So we must have that 𝑓0 𝑓1 = 1𝑡0 . Similarly, it must be that 𝑓1 𝑓0 = 1𝑡1 .
This is exactly what it means to be isomorphic. Therefore any two terminal objects in a
category are indeed connected by a unique isomorphism. □

Exercise 1.6.iii. Show that any faithful functor reflects monomorphisms. That is, if
𝐹 : C → D is faithful, prove that if 𝐹 𝑓 is a monomorphism in D, then 𝑓 is a monomor-
phism in C. Argue by duality that faithful functors also reflect epimorphisms. Conclude
that in any concrete category, any morphism that defines an injection of underlying sets
is a monomorphism and any morphism that defines a surjection of underlying sets is an
epimorphism.

Proof. Suppose that 𝐹 𝑓 : 𝐹𝑥 → 𝐹𝑦 is a monomorphism in D, i.e. for any object 𝑤
in C and parallel morphisms ℎ, 𝑘 : 𝑤 ⇒ 𝑥 then 𝐹 𝑓 𝐹ℎ = 𝐹 𝑓 𝐹𝑘 implies that 𝐹ℎ = 𝐹𝑘 .
(Because the property holds over all D, it holds in particular over the image of 𝐹 in D.)

𝑤

𝐹

��

ℎ //

𝑘
// 𝑥

𝑓
//

𝐹

��

𝑦

𝐹

��
𝐹𝑤

𝐹ℎ //

𝐹𝑘
// 𝐹𝑥

𝐹 𝑓
// 𝐹𝑦
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Now, supposing that 𝑓 ℎ = 𝑓 𝑘 in C, this implies that 𝐹 ( 𝑓 ℎ) = 𝐹 ( 𝑓 𝑘) by elementary
properties of equality. Then by the functoriality axioms we have 𝐹 𝑓 𝐹ℎ = 𝐹 𝑓 𝐹𝑘 , and by
the fact that 𝐹 𝑓 is a monomorphism 𝐹ℎ = 𝐹𝑘 . Finally since 𝐹 is faithful and thus injective
on C(𝑤, 𝑥), ℎ = 𝑘 . This argument amounts to pushing equality clockwise around the above
diagram.

Note that this also proves that a functor reflects epimorphisms, since an epimorphisms
is just a monomorphism in the opposite category. The argument above will compose neatly
with applying the op functor at the beginning and end to transport us to the right category.

Further, given a concrete category C we have a faithful functor from C to Set. Since
monomorphisms in Set are completely characterised by injectivity, this becomes sufficient
condition for a map to be a monomorphism in C. Similarly, surjectivity in Set will force
epic in C. Frequently, the faithful functor in question is just the forgetful functor and the
maps in C are just functions defined on sets with peculiar features. Thus it is sensible to talk
about injectivity and surjectivity in C itself, and we can say that injectivity and surjectivity
are sufficient—but not necessary—conditions for a map to monic or epic respectively. □

Exercise 1.6.iv. Find a example to show that a faithful functor need not preserve epimor-
phisms. Argue by duality, or by another counterexample, that a faithful functor need not
preserve monomorphisms.

Proof. Consider the category Ring and the unique morphism 𝜙 : Z → Q. Exercise
1.2.v shows that 𝜙 is an epimorphism, however, it is easy to see that 𝜙 is not surjective.
Now, consider a functor 𝐹 : Ring→ Group that takes a ring 𝑅 to it’s additive group and a
morphism 𝑓 : 𝑅 → 𝑆 to the corresponding group homomorphism on the additive group. We
see that this functor is faithful, because for fixed rings 𝑅 and 𝑆 and morphisms 𝑓 , 𝑔 : 𝑅 → 𝑆,
𝐹 𝑓 = 𝐹𝑔 implies that 𝐹 𝑓 (𝑥) = 𝐹𝑔(𝑥) for all 𝑥 ∈ 𝐺𝑅, the additive group of 𝑅, which has
the same elements as 𝑅. But since by our definition 𝐹 𝑓 (𝑥) = 𝑓 (𝑥) and 𝐹𝑔(𝑥) = 𝑔(𝑥), this
implies that 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑅 and so 𝑓 = 𝑔. Therefore, for all 𝑥, 𝑦 ∈ Ring, there is
a injection from Ring(𝑥, 𝑦) → Group(𝐹𝑥, 𝐹𝑦) and therefore 𝐹 is faithful. Now, note that
in Group, epimorphisms correspond exactly to surjective homomorphisms. But it is clear
that 𝐹𝜙 is not surjective, as its behavior on the elements of Z and Q is identical to that of 𝜙.
So 𝐹𝜙 is not an epimorphism. Therefore, 𝐹 does not preserve epimorphisms.

Now, we consider 𝐹 : Ringop → Groupop, where 𝐹 acts on objects and morphisms
as before. By 1.3.v, there is no difference between a functor from Ring to Group and a
functor from Ringop to Groupop, so 𝐹 is still faithful is this setting. Now, we note that the
epimorphisms in Ring and Group are precisely the monomorphisms in Ringop and Groupop.
So 𝜙 is a monomorphism in Ringop, but not in Groupop. Therefore, 𝐹 does not preserve
monomorphisms. So a faithful functor need not preserve monomorphisms. □

Exercise 1.6.v. Find a concrete category that contains a monomorphism whose underlying
function is not injective. Find a concrete category that contains an epimorphism whose
underlying function is not surjective.
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Proof. For the first example, take a subcategory of Set, C, consisting of two objects,
𝐴 being the set with elements 0, 1, and 2, and 𝐵 being the set with elements 0, and 1.
Take as morphisms between 𝐴 and 𝐵 the identity morphisms, 1𝐴 and 1𝐵, along with the
morphism, 𝑓 : 𝐴 → 𝐵, defined by 𝑓 (0) = 0, 𝑓 (1) = 0, and 𝑓 (2) = 0. Since 𝑓 𝑔 = 𝑓 ℎ

implies 𝑔 = ℎ = 1𝐴, then 𝑓 is a monomorphism. Yet since 𝑓 sends 0 to 0 and 1 to 0 in the
underlying sets, then 𝑓 is not injective.

For the second example, take the objects Z and Q in the category Ring. There is
a unique ring homomorphism between Z and Q. This homomorphism is not surjective
on the underlying sets, yet from the previous exercise 1.2.v, this homomorphism is an
epimorphism. □

Exercise 1.6.vi. A coalgebra for an endofunctor 𝑇 : C→ C is an object 𝐶 ∈ C equipped
with a map 𝛾 : 𝐶 → 𝑇𝐶. A morphism 𝑓 : (𝐶, 𝛾) → (𝐶′, 𝛾′) of coalgebras is a map
𝑓 : 𝐶 → 𝐶′ so that the following square commutes.

𝐶

𝛾

��

𝑓
// 𝐶′

𝛾′

��

𝑇𝐶
𝑇 𝑓
// 𝑇𝐶′

Prove that if (𝐶, 𝛾) is a terminal coalgebra, that is a terminal object in the category of
coalgebras, then the map 𝛾 : 𝐶 → 𝑇𝐶 is an isomorphism.

Proof. Suppose that 𝑇 : C→ C is an endofunctor and (𝐶, 𝛾) a terminal coalgebra. Let
𝜒 : 𝑇𝐶 → 𝐶 be the unique morphism so that the following diagram commutes.

𝑇𝐶

𝑇𝛾

��

𝜒
// 𝐶

𝛾

��

𝑇𝑇𝐶
𝑇𝜒
// 𝑇𝐶

Then we have that:
𝛾𝜒 = 𝑇 (𝜒𝛾)

Now we will to show that the diagram

𝐶

𝛾

��

𝜒𝛾
// 𝐶

𝛾

��

𝑇𝐶
𝑇 (𝜒𝛾)

// 𝑇𝐶
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commutes. Since 𝛾𝜒 = 𝑇 (𝜒𝛾), then composing 𝛾 on the right will give

𝛾𝜒𝛾 = 𝑇 (𝜒𝛾) 𝛾,

which shows that the diagram above commutes. This means that the morphism 𝜒𝛾 uniquely
allows the diagram above to commute. The identity morphism 1𝐶 gives an endomorphism
of the terminal coalgebra (𝐶, 𝛾) since 𝛾 1𝐶 = 𝑇1𝐶𝛾 = 1𝑇𝐶𝛾 by the properties of identity
morphisms, thus 𝜒𝛾 = 1𝐶 . This will give us

𝛾𝜒 = 𝑇 (𝜒𝛾) = 𝑇1𝐶 = 1𝑇𝐶 .

Thus 𝜒 and 𝛾 are inverses, therefore 𝛾 is an isomorphism. □

An example of a co-algebra is one defined by the endofunctor 𝑃fin : Set → Set where
𝑃fin is the functor mapping a set 𝑋 to the set of finite subsets of 𝑋 , and maps a morphism
𝑓 : 𝑋 → 𝑌 to 𝑃fin 𝑓 : 𝑃fin𝑋 → 𝑃fin𝑌 where for finite subset 𝑆 of 𝑋 , 𝑃fin 𝑓 (𝑆) = 𝑓 (𝑆).
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1.7 The 2-category of categories

Exercise 1.7.i. Prove that if C is small and D is locally small, then DC is locally small by
defining a monomorphism from the collection of natural transformations between a fixed
pair of functors 𝐹, 𝐺 : C ⇒ D into a set. (Hint: Think about the function that sends a
natural transformation to its collection of components.)

Proof. Let 𝛾 : Nat(𝐹, 𝐺) → Set, given by 𝛼 ↦→ {𝛼𝑐 ∈ mor D} where 𝛼 : 𝐹 ⇒ 𝐺 ∈
Nat(𝐹, 𝐺). We must show that {𝛼𝑐 ∈ mor D} is a set. We can do this by noting that
since D is locally small, D(𝑥, 𝑦) is a set for all choices of 𝑥, 𝑦. Let 𝛿 : ob C → P(mor D),
given by 𝑐 ↦→ D(𝐹𝑐, 𝐺𝑐), where P(mor D) is the power class of mor D. We know that
D(𝐹𝑐, 𝐺𝑐) ∈ P(mor D), and since ob C is a set, the range of 𝛿 is a set by the Axiom of
Replacement. Taking the union of the range of 𝛿, which is also a set, gives us a set that
contains all of the possible natural transformations from 𝐹 to 𝐺.

So 𝛾 sends any natural transformation to an element of this new set. Since the class of
functions between pairs of sets is a set, and that the class of natural transformations between
𝐹 and 𝐺 is a subclass of this set, we have that these transformations form a set by restricted
comprehension. Then, DC is locally small. □

Exercise 1.7.ii. Given a natural transformation 𝛽 : 𝐻 ⇒ 𝐾 and functors 𝐹 and 𝐿, define
a natural transformation 𝐿𝛽𝐹 : 𝐿𝐻𝐹 ⇒ 𝐿𝐾𝐹 by (𝐿𝛽𝐹)𝑐 = 𝐿𝛽𝐹𝑐. This is the whiskered
composite of 𝛽 with 𝐿 and 𝐹. Prove that 𝐿𝛽𝐹 is natural.

Proof. By 𝛽 being natural, we have for 𝑔 : 𝑑 → 𝑑′ where 𝑑, 𝑑′ ∈ D,

(𝐾𝑔)𝛽𝑑 = 𝛽𝑑′ (𝐻𝑔).

But if instead we take 𝐹 𝑓 : 𝐹𝑐 → 𝐹𝑐′ for 𝑐, 𝑐′ ∈ C we can get

(𝐾𝐹 𝑓 )𝛽𝐹𝑐 = 𝛽𝐹𝑐′ (𝐻𝐹 𝑓 ).

Now by Lemma 1.6.5, applying the functor 𝐿 preserves the commutative diagram

(𝐿𝐾𝐹 𝑓 ) (𝐿𝛽𝐹𝑐) = (𝐿𝛽𝐹𝑐′ ) (𝐿𝐻𝐹 𝑓 ).

𝐻𝑑

𝛽𝑑

��

𝐻 𝑓
// 𝐻𝑑′

𝛽𝑑′
��

𝐾𝑑
𝐾 𝑓
// 𝐾𝑑′

𝐻𝐹𝑐

𝛽𝐹𝑐

��

𝐻𝐹 𝑓
// 𝐻𝐹𝑐′

𝛽𝐹𝑐′
��

𝐾𝐹𝑐
𝐾𝐹 𝑓
// 𝐾𝐹𝑐′

𝐿𝐻𝐹𝑐

𝐿𝛽𝐹𝑐

��

𝐿𝐻𝐹 𝑓
// 𝐿𝐻𝐹𝑐′

𝐿𝛽𝐹𝑐′
��

𝐿𝐾𝐹𝑐
𝐿𝐾𝐹 𝑓

// 𝐿𝐾𝐹𝑐′

57



Exercise 1.7.iii. Redefine the horizontal composition of natural transformations introduced
in Lemma 1.7.4 using vertical composition and whiskering.

Proof. Consider categories C, D, and E, with functors 𝐹, 𝐺 : C→ D and𝐻, 𝐾 : D→ E
with natural transformations 𝛼 : 𝐹 ⇒ 𝐺 and 𝛽 : 𝐻 ⇒ 𝐾 . This is the same as in the
construction for horizontal composition given in Lemma 1.7.4. Now consider a whiskering
such that the first functor is the identity functor, or in other words a natural transformation
𝐻𝛼 : 𝐻𝐹 ⇒ 𝐻𝐺 defined by (𝐻𝛼)𝑐 = 𝐻𝛼𝑐. Then consider a second whiskering such
that the last functor is an identity functor, or in other words a natural transformation
𝛽𝐺 : 𝐻𝐺 ⇒ 𝐾𝐺 defined by (𝛽𝐺)𝑐 = 𝛽𝐺𝑐. Now we can vertically compose these two
natural transformations to get 𝛽𝐺 · 𝐻𝛼 : 𝐻𝐹 ⇒ 𝐾𝐺. This is definitionally the same as the
horizontal composition natural transformation:

(𝛽 ∗ 𝛼)𝑐 = 𝛽𝐺𝑐𝐻𝛼𝑐 = (𝛽𝐺 · 𝐻𝛼)𝑐 .

Exercise 1.7.iv. Prove Lemma 1.7.7.

Lemma 1.7.7 (middle four interchange). Given functors and natural transformation

C D E←→𝐺

← →𝐹

← →

𝐻

←→𝐾

← →

𝐽

← →

𝐿

⇓ 𝛼

⇓ 𝛽

⇓ 𝛾

⇓ 𝛿

the natural transformation 𝐽𝐹 ⇒ 𝐿𝐻 defined by first composing vertically and then compos-
ing horizontally equals the natural transformation defined by first composing horizontally
and then composing vertically:

C D E C E

← →𝐹

← →

𝐻

⇓ 𝛽 · 𝛼

← →𝐽

← →

𝐿

⇓ 𝛿 · 𝛾 = ← →𝐾𝐺

← →

𝐽𝐹

← →
𝐿𝐻

⇓ 𝛾 ∗ 𝛼

⇓ 𝛿 ∗ 𝛽

Before proceeding with the proof, let us elaborate on exactly how horizontal and vertical
composition work. Vertical composition is the simpler of the two since it is just composition
of morphisms in the target category of our functors. Precisely, given parallel functors and
accompanying natural transformations we can compose the component maps 𝛼𝑐 and 𝛽𝑐 for
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any object 𝑐 in C. That this defines defines a new natural transformation 𝛽 · 𝛼 : 𝐹 ⇒ 𝐻

follows immediately.

C D←→𝐺

← →𝐹

← →

𝐻

⇓ 𝛼

⇓ 𝛽
{

𝐹𝑐 𝐺𝑐 𝐻𝑐

𝐹𝑑 𝐺𝑑 𝐻𝑑

←→𝛼𝑐

←→ 𝐹 𝑓 ←→

←→𝛽𝑐

←→ 𝐺 𝑓 ←→ ←→ 𝐻 𝑓

←→𝛼𝑑 ←→𝛽𝑑

Horizontal composition is more involved. Note that one way to think of natural trans-
formations is as mapping objects to morphisms and morphisms to commutative squares in
the target category. Given 𝛼 : 𝐹 ⇒ 𝐺 where 𝐹, 𝐺 : C ⇒ D and 𝑓 : 𝑐 → 𝑑, the object 𝑐
is taken to a morphism 𝛼𝑐 and the arrow 𝑓 is taking to a square of morphisms connecting
𝐹𝑐 to 𝐺𝑑. Because this square commutes there is a unique composite arrow from 𝐹𝑐 to
𝐺𝑑. Horizontal composition is then applying the natural transformation 𝛾 to 𝐹𝑐, 𝐺𝑐, and
the map 𝛼𝑐 between them. Given 𝛾 : 𝐽 ⇒ 𝐾 and 𝐽, 𝐾 : D ⇒ E By naturality, there is again
a unique composite arrow denoted (𝛾 ∗ 𝛼)𝑐 which will form the 𝑐 component of the new
natural transformation.

𝑐 𝑐 𝑑

𝐹𝑐 𝐹𝑐 𝐹𝑑

𝐺𝑐 𝐺𝑐 𝐺𝑑

↧

←→𝑓

←→𝛼𝑐
←→𝐹 𝑓
←

→←→𝛼𝑐 ←→ 𝛼𝑑

←→
𝐺 𝑓

↧

{

𝐹𝑐 𝐽𝐹𝑐 𝐾𝐹𝑐

𝐹𝑐 𝐽𝐹𝑐 𝐾𝐹𝑐

𝐺𝑐 𝐽𝐺𝑐 𝐾𝐺𝑐

↦→ ←→𝛾𝐹𝑐

←→𝛼𝑐
←→𝛾𝐹𝑐

←
→(𝛾∗𝛼)𝑐←→𝐽𝛼𝑐 ←→ 𝐽𝛼𝑐

←→𝛾𝐺𝑐

↦→

Proof. At a first pass this lemma is telling us that (𝛿 · 𝛾) ∗ (𝛽 · 𝛼) = (𝛾 ∗ 𝛼) · (𝛿 ∗ 𝛽).
For a specific object 𝑐 in C this means the following diagrams are equivalent:

𝐽𝐹𝑐
𝛾𝐹𝑐
//

𝐽𝛼𝑐

��

(𝛾∗𝛼)𝑐
##

𝐾𝐹𝑐

𝐾𝛼𝑐

��

𝐽𝐺𝑐
𝛾𝐺𝑐

// 𝐾𝐺𝑐
𝛿𝐺𝑐 //

𝐾𝛽𝑐

��

(𝛿∗𝛽)𝑐
##

𝐿𝐺𝑐

𝐿𝛽𝑐

��

𝐾𝐻𝑐
𝛿𝐻𝑐

// 𝐿𝐻𝑐

=

𝐽𝐹𝑐
𝛾𝐹𝑐
//

𝐽𝛼𝑐

��

𝐽 (𝛽 ·𝛼)𝑐

��

(𝛿 ·𝛾)𝐹𝑐

%%

(𝛿 ·𝛾)∗(𝛽 ·𝛼)

##

𝐾𝐹𝑐
𝛿𝐹𝑐 // 𝐿𝐹𝑐

𝐿𝛼𝑐

��

𝐿 (𝛽 ·𝛼)𝑐

��

𝐽𝐺𝑐

𝐽𝛽𝑐

��

𝐿𝐺𝑐

𝐿𝛽𝑐

��

𝐽𝐻𝑐
𝛾𝐻𝑐

//

(𝛿 ·𝛾)𝑐

::𝐾𝐻𝑐
𝛿𝐻𝑐

// 𝐿𝐻𝑐

We may extend the left diagram to the following without disturbing commutativity, implying
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that the diagonal map in each case is the same.

𝐽𝐹𝑐
𝛾𝐹𝑐
//

𝐽𝛼𝑐

��

(𝛾∗𝛼)𝑐
##

𝐾𝐹𝑐
𝛿𝐹𝑐 //

𝐾𝛼𝑐

��

𝐿𝐹𝑐

𝐿𝛼𝑐

��

𝐽𝐺𝑐
𝛾𝐺𝑐

//

𝐽𝛽𝑐

��

𝐾𝐺𝑐
𝛿𝐺𝑐 //

𝐾𝛽𝑐

��

(𝛿∗𝛽)𝑐
##

𝐿𝐺𝑐

𝐿𝛽𝑐

��

𝐽𝐻𝑐
𝛾𝐻𝑐

// 𝐾𝐻𝑐
𝛿𝐻𝑐

// 𝐿𝐻𝑐

In particular note that the top right and bottom left quadrants themselves are the diagram
associated with the horizontal compositions 𝛿 ∗ 𝛼 and 𝛾 ∗ 𝛽 and for the object 𝑐, which thus
must commute, making the entire diagram commute. □

Exercise 1.7.v. Show that for any category C, the collection of natural endomorphisms of
the identity functor 1C defines a commutative monoid, called the center of the category.
The proof of Proposition 1.4.4 demonstrates that the center of Ab 𝑓 𝑔 is the multiplicative
monoid (Z,×, 1).

Proof. The identity functor 1C is a functor taking the objects and morphisms of C to
themselves. A natural endomorphism is a natural transformation in which every component
𝛼𝑐 is an endomorphism of 𝑐. We will construct an argument using the horizontal and vertical
composition of natural transformations. Let 𝛼, 𝛽 : 1C ⇒ 1C be natural endomorphisms of
1C. We have the following diagram (with equality by horizontal composition):

C

1C
!!

1C

??C

1C
!!

1C

??C𝛼�� 𝛽�� = C

1C1C

&&

1C1C

88 C(𝛽∗𝛼)��

From this we get the following commutative diagram:

1C1C𝑐
𝛽1C𝑐
//

1C𝛼𝑐
��

(𝛽∗𝛼)𝑐
$$

1C1C𝑐

1C𝛼𝑐
��

1C1C𝑐
𝛽1C𝑐

// 1C1C𝑐

Which can be simplified to:

𝑐
𝛽𝑐
//

𝛼𝑐

��

(𝛽∗𝛼)𝑐
��

𝑐

𝛼𝑐

��
𝑐

𝛽𝑐

// 𝑐
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Where we can see that (𝛽 ∗ 𝛼)𝑐 : 𝑐 → 𝑐, and that (𝛽 ∗ 𝛼)𝑐 = 𝛼𝑐𝛽𝑐 = 𝛽𝑐𝛼𝑐 = (𝛽 · 𝛼)𝑐. This
shows that in this case, horizontal and vertical composition are equivalent and commutative.
It remains to show that they are associative. To show this, we will perform vertical
composition with three functors 𝛼, 𝛽, 𝛿 : 1C ⇒ 1C by performing the composition of the
bottom pair first, then the top pair first, and comparing the result.

C

1C

��1C !!

1C

??

1C

KKC

𝛼��

𝛽��

𝛿��

= C

1C

��

1C //

1C

BBC
𝛼��

(𝛿 ·𝛽)��

= C

1C

##

1C

;;⇓ (𝛿 · 𝛽) · 𝛼 C

C

1C

��1C !!

1C

??

1C

KKC

𝛼��

𝛽��

𝛿��

= C

1C

��

1C //

1C

BBC
(𝛽 ·𝛼)��

𝛿��

= C

1C

##

1C

;;⇓ 𝛿 · (𝛽 · 𝛼) C

So, (𝛿 · 𝛽) · 𝛼 = 𝛿 · (𝛽 · 𝛼), giving us associativity.
These functors have components for all 𝑐 ∈ C, their composition is commutative,

associative, and closed over C. Finally, there is an identity natural endomorphism which
takes 𝑐 ∈ ob C to id𝑐 ∈ mor C. So we have the requirements to say that the natural
endomorphisms of the identity functor on a category C form a commutative monoid. □

Exercise 1.7.vi. Suppose the functors and natural transformations

C
𝐹 // D
𝐺
oo 𝜂 : 1C � 𝐺𝐹 𝜖 : 𝐹𝐺 � 1D

D
𝐹′ // E
𝐺′
oo 𝜂′ : 1D � 𝐺

′𝐹′ 𝜖 ′ : 𝐹′𝐺′ � 1E

define equivalences of categories C ≃ D and D ≃ E. Prove (again) that there is a
composite equivalence of categories C ≃ E by defining composite natural isomorphisms
1C � 𝐺𝐺

′𝐹′𝐹 and 𝐹′𝐹𝐺𝐺′ � 1E.

Proof. First, we would like to make an additional remark on Exercise 1.7.ii. In that
exercise, given functors 𝐹 : C → D, 𝐻 : D → E, 𝐾 : D → E and 𝐿 : E → F and a natural

61



transformation 𝛽 : 𝐻 ⇒ 𝐾 , we obtained a natural transformation 𝐿𝛽𝐹 : 𝐿𝐻𝐹 ⇒ 𝐿𝐾𝐹, the
whiskered composite of 𝛽 with 𝐿 and 𝐹, given by (𝐿𝛽𝐹)𝑐 = 𝐿𝛽𝐹𝑐.

We claim that if 𝛽 is a natural isomorphism, then so is 𝐿𝛽𝐹. Indeed, if 𝛽 is a natural
isomorphism then 𝛽𝑑 is an isomorphism for every object 𝑑 of D. So, 𝛽𝐹𝑐 is an isomorphism
for every object 𝑐 of C. By Lemma 1.3.8, 𝐿𝛽𝐹𝑐 is an isomorphism as well, showing that
𝐿𝛽𝐹 is a natural isomorphism as claimed.

Similarly, note that the vertical composition 𝛼 · 𝛽 of two natural isomorphisms is a
natural isomorphism since its component morphisms (𝛼 · 𝛽)𝑐 = 𝛼𝑐𝛽𝑐 are compositions of
isomorphisms.

Now to the exercise at hand. From

C 𝐹 // D

1D

''

𝐺′𝐹′

77⇓ 𝜂′ D 𝐺 // C

we obtain the natural isomorphism 𝐺𝜂′𝐹 : 𝐺𝐹 ⇒ 𝐺𝐺′𝐹′𝐹. Thus, we have a natural
isomorphism (𝐺𝜂′𝐹) · 𝜂 : 1C ⇒ 𝐺𝐺′𝐹′𝐹.

For the other direction, we consider the whiskered composite

E 𝐺′ // D

𝐹𝐺

''

1D

77⇓ 𝜖 D 𝐹′ // E

giving the natural isomorphism 𝐹′𝜖𝐺′ : 𝐹′𝐹𝐺𝐺′ ⇒ 𝐹′𝐺′. Vertical composition with 𝜖 ′
gives the natural isomorphism 𝜖 ′ · (𝐹′𝜖𝐺′) : 𝐹′𝐹𝐺𝐺′ ⇒ 1E as required. □

Exercise 1.7.vii. Prove that a bifunctor 𝐹 : C × D → E determines and is uniquely deter-
mined by:

1. A functor 𝐹 (𝑐,−) : D→ E for each 𝑐 ∈ C.
2. A natural transformation 𝐹 ( 𝑓 ,−) : 𝐹 (𝑐,−) =⇒ 𝐹 (𝑐′,−) for each 𝑓 : 𝑐 → 𝑐′ in C.

In other words, prove that there is a bĳection between functors C × D → E and functors
C → ED. By symmetry of the product of categories, these classes of functors are also in
bĳection with functors D→ EC.

Proof. From the category C, fix an object 𝑐 in the bifunctor 𝐹 : C × D→ E. To find a
functor 𝐹 (𝑐,−) : D→ E, define 𝐹 (𝑐,−)(𝑑) = 𝐹 (𝑐, 𝑑). With 𝑐 fixed, and 𝑔 : 𝑑 → 𝑑′, then
𝐹 (𝑐,−)(𝑔) = 𝐹 (1𝑐, 𝑔). For a natural transformation 𝐹 ( 𝑓 ,−) : 𝐹 (𝑐,−) =⇒ 𝐹 (𝑐′,−), take
as components of the natural transformation 𝐹 ( 𝑓 ,−)𝑑 = 𝐹 ( 𝑓 , 1𝑑) : 𝐹 (𝑐, 𝑑) → 𝐹 (𝑐′, 𝑑).
Checking the naturality, 𝐹 (1𝑐′ , 𝑔)𝐹 ( 𝑓 , 1𝑑) = 𝐹 ( 𝑓 , 1𝑑′ )𝐹 (1𝑐, 𝑔), whenever (1𝑐′ , 𝑔) ( 𝑓 , 1𝑑) =
( 𝑓 , 1′

𝑑
) (1𝑐, 𝑔). Thus 𝐹 ( 𝑓 ,−) : 𝐹 (𝑐,−) =⇒ 𝐹 (𝑐′,−) is a natural transformation, and con-

ditions (i) and (ii) are determinied by the bifunctor 𝐹 : C × D→ E.
Similarly, with the definitions that for a fixed 𝑐 in C, 𝐹 (𝑐, 𝑑) = 𝐹 (𝑐,−)(𝑑) and

𝐹 (1𝑐, 𝑔) = 𝐹 (𝑐,−)(𝑔), along with the natural tranformation𝐹 ( 𝑓 ,−)𝑑 = 𝐹 ( 𝑓 , 1𝑑) : 𝐹 (𝑐, 𝑑) →
𝐹 (𝑐′, 𝑑), such that 𝐹 (1𝑐′ , 𝑔)𝐹 ( 𝑓 , 1𝑑) = 𝐹 ( 𝑓 , 1𝑑′ )𝐹 (1𝑐, 𝑔), whenever (1𝑐′ , 𝑔) ( 𝑓 , 1𝑑) =
( 𝑓 , 1′

𝑑
) (1𝑐, 𝑔), the bifunctor 𝐹 : C × D→ E is determined. □
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Chapter 2

Universal Properties,
Representability, and the Yoneda
Lemma

2.1 Representable functors

Exercise 2.1.i. For each of the three functors

1
0 //

1
// 2!oo

between the categories 1 and 2, describe the corresponding natural transformations between
the covariant functors Cat ⇒ Set represented by the categories 1 and 2.

Proof. Recall that Cat(1,−) � ob and Cat(2,−) � mor. That is, 1 represents the
functor taking a small category to its set of objects, while 2 represents the functor taking a
small category to its set of morphisms.

The functor 0: 1→ 2 selects the object 0 ∈ ob 2. The induced natural transformation
Cat(2,−) ⇒ Cat(1,−) is given by precomposition with 0. Interpreting 𝑓 ∈ Cat(2,C) as
a morphism in C, this precomposition takes 𝑓 to its domain. That is, precomposition with
0 corresponds to the natural transformation dom: mor⇒ ob that takes morphisms to their
domains.

In an analogous way, the functor 1: 1 → 2 corresponds to the natural transformation
cod: mor⇒ ob that takes morphisms to their codomains.

The unique functor ! : 2 → 1 corresponds to the natural transformation Cat(1,−) ⇒
Cat(2,−) given by precomposition with this functor. This induces the natural transformation
1: ob⇒ mor taking objects 𝑐 to their identity morphisms 1𝑐.
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Exercise 2.1.ii. Prove that if 𝐹 : C → Set is representable, then 𝐹 preserves monomor-
phisms, i.e., sends every monomorphism in C to an injective function. Use the contrapositive
to find a covariant set-valued function defined on your favorite concrete category that is not
representable.

Proof. If 𝐹 : C → Set is representable, we have, for some object 𝑐 ∈ C, a natural
isomorphism 𝜂 : 𝐹 ⇒ C(𝑐,−). We can represent 𝜂 by the following commutative diagram,
for a morphism 𝑓 : 𝑥 → 𝑦. We note that C(𝑐,−)( 𝑓 ) = 𝑓∗, where 𝑓∗ is post-composition
with 𝑓 .

𝐹𝑥
𝐹 𝑓

//

𝜂𝑥

��

𝐹𝑦

𝜂𝑦

��

C(𝑐, 𝑥)
𝑓∗
// C(𝑐, 𝑦)

Since this diagram commutes, we have that 𝜂𝑦𝐹 𝑓 = 𝑓∗𝜂𝑥 . Also, since 𝜂𝑦 is an isomorphism,
we know that 𝐹 𝑓 = 𝜂−1

𝑦 𝑓∗𝜂𝑥 . Now, suppose 𝑓 is a monomorphism. This means that 𝑓∗ is
injective. We know that 𝜂𝑥 and 𝜂−1

𝑦 are injective by the defintion of natural isomorphism.
So 𝐹 𝑓 is in injective, as it is a composition of injective morphisms. So we see that 𝐹
preserves monomorphisms.

Now, we note that the contrapostive of this statement says that for a functor 𝐹 : C→ Set,
if 𝐹 𝑓 is not injective for a monomorphism 𝑓 , then 𝐹 is not representable. Consider the
category C∗ whose objects and morphisms are 𝐴 = {0, 1} and 𝐵 = {0, 1, 2} and {1𝐴, 1𝐵, 𝑓 }
respectively, where 𝑓 : 𝐴→ 𝐵 is defined by 𝑓 (0) = 𝑓 (1) = 1. (This category and morphism
was previously presented and discussed in exercise 1.6.v.) Because of the size of our
category, we know that 𝑓 ℎ = 𝑓 𝑘 implies that ℎ = 𝑘 = 1𝐴, so 𝑓 is a monomorphism. But
if we consider the functor 𝐹∗ : C∗ → Set that includes C∗ in Set, we see that 𝐹 𝑓 = 𝑓

is not injective. So by the contrapositive of the statement previously proven, 𝐹∗ is not
representable. □

Exercise 2.1.iii. Suppose 𝐹 : C→ Set is equivalent to𝐺 : D→ Set in the sense that there
is an equivalence of categories 𝐻 : C→ D so that 𝐺𝐻 and 𝐹 are naturally isomorphic.

(i) If 𝐺 is representable, then is 𝐹 representable?
(ii) If 𝐹 is representable, then is 𝐺 representable?

Before we begin the main proof, we must proof a lemma:

Lemma 2.1.1. Suppose we have isomorphic pairs of functors 𝐹, 𝐺 : C→ D, 𝐻0, 𝐻1 : D→
E, and 𝐾0, 𝐾1 : B→ C then

𝐻0𝐹 � 𝐻1𝐺 and 𝐹𝐾0 � 𝐺𝐾1.
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To prove this consider an object 𝑐 ∈ ob C, then we have the isomorphism 𝛼𝑐 : 𝐹𝑐 → 𝐺𝑐

such that 𝛼 is the natural transformation between 𝐹 and 𝐺. Let 𝛽 : 𝐻0 → 𝐻1 be a natural
isomorphism. Then we have the commutative diagram.

𝐻0𝐹𝑐
𝛾𝑐

$$

𝛽𝐹𝑐

��

𝐻0𝛼𝑐 // 𝐻0𝐺𝑐

𝛽𝐺𝑐

��

𝐻1𝐹𝑐
𝐻1𝛼𝑐

// 𝐻1𝐺𝑐

Since functors preserve isomorphisms and 𝛽 is a natural isomorphism, then every morphism
in the diagram is an isomorphism. Thus 𝐻0𝐹𝑐 � 𝐻1𝐺𝑐 for all 𝑐 ∈ ob C. Setting
𝛾𝑐 = 𝛽𝐺𝑐 ·𝐻0𝛼𝑐, we can construct the natural isomorphism 𝛾 : 𝐻0𝐹 → 𝐻1𝐺, and therefore
𝐻0𝐹 � 𝐻1𝐺. The second part of the lemma follows from duality.

Proof. Now we prove that the answer to part (i) is indeed yes. If 𝐺 is representable,
then 𝐺 � 𝐷 (𝑑,−) for 𝑑 ∈ ob D. By our lemma, 𝐹 � 𝐺𝐻 � 𝐷 (𝑑,−) 𝐻. Since 𝐻 is an
equivalence of categories, 𝐻 is essentially surjective, meaning there is a 𝑐 ∈ ob C such that
𝐻𝑐 � 𝑑. For such a 𝑐 we want to show that

𝐷 (𝑑,−) 𝐻 � 𝐶 (𝑐,−) .

For any 𝑐′ ∈ ob C, we want to show that a function 𝑓𝑐′ : 𝐶 (𝑐, 𝑐′) → 𝐷 (𝑑, 𝐻𝑐′) defined as

𝑓𝑐′ (ℎ) = 𝐻ℎ · 𝜋,

where 𝜋 : 𝑑 → 𝐻𝑐 is an isomorphism, is a bĳection. To show injectivity, suppose for
ℎ, 𝑘 ∈ 𝐶 (𝑐, 𝑐′), 𝑓𝑐′ (ℎ) = 𝑓𝑐′ (𝑘). Then, 𝐻ℎ · 𝜋 = 𝐻𝑘 · 𝜋. Since 𝜋 is isomorphic, we
have that 𝐻ℎ = 𝐻𝑘 . Since 𝐻 is an equivalence of categories, 𝐻 is a fully faithful functor,
thus ℎ = 𝑘 . To show surjectivity, take 𝑙 ∈ 𝐷 (𝑑, 𝐻𝑐′) and compose on the right with 𝜋−1.
Then we get morphism 𝑙 · 𝜋−1 : 𝐻𝑐 → 𝐻′𝑐. Since 𝐻 is full, there exists 𝑚 ∈ 𝐶 (𝑐, 𝑐′)
such that 𝐻𝑚 = 𝑙 · 𝜋−1. Right composing with 𝜋 results in 𝐻𝑚 · 𝜋 = 𝑙, thus confirming
surjectivity. A function 𝑓𝑐′ for all 𝑐′ ∈ ob C is a bĳection. All of the functions 𝑓𝑐′ form a
natural isomorphism 𝑓 : 𝐶 (𝑐,−) → 𝐷 (𝑑,−) 𝐻 showing that 𝐷 (𝑑,−) 𝐻 � 𝐶 (𝑐,−). Thus
𝐹 � 𝐶 (𝑐,−), showing that 𝐹 is representable.

Now we prove that the answer to part (ii) is also yes. If 𝐹 is representable, then
𝐹 � 𝐶 (𝑐,−) for 𝑐 ∈ ob C. Thus, 𝐶 (𝑐,−) � 𝐹 � 𝐺𝐻. Since 𝐻 is an equivalence of
categories, there exists a functor 𝐻′ : D→ C such that 𝐻𝐻′ � 1D and 𝐻′𝐻 � 1C. By our
lemma, 𝐶 (𝑐,−) 𝐻′ � 𝐹𝐻′ � 𝐺𝐻𝐻′ � 𝐺 Since 𝐻′ is an equivalence of categories, 𝐻′ is
essentially surjective, meaning there is a 𝑑 ∈ ob D such that 𝐻′𝑑 � 𝑐. For such a 𝑑 we want
to show that

𝐶 (𝑐,−) 𝐻′ � 𝐷 (𝑑,−) .
For any 𝑑′ ∈ ob D, we want to show that a function 𝑔𝑑′ : 𝐷 (𝑑, 𝑑′) → 𝐶 (𝑐, 𝐻′𝑑′) defined
as

𝑔𝑑′ (ℎ) = 𝐻′ℎ · 𝜙
where 𝜙 : 𝑐 → 𝐻′𝑑 is an isomorphism, is a bĳection. To show injectivity, suppose for
ℎ, 𝑘 ∈ 𝐷 (𝑑, 𝑑′), 𝑔𝑑′ (ℎ) = 𝑔𝑑′ (𝑘). Then, 𝐻′ℎ · 𝜙 = 𝐻′𝑘 · 𝜙. Since 𝜙 is isomorphic, we have
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that 𝐻′ℎ = 𝐻′𝑘 . Since 𝐻′ is an equivalence of categories, 𝐻′ is a fully faithful functor, thus
ℎ = 𝑘 . To show surjectivity, take 𝑙 ∈ 𝐶 (𝑐, 𝐻′𝑑′) and compose on the right with 𝜙−1. Then
we get morphism 𝑙 · 𝜙−1 : 𝐻′𝑑 → 𝐻′𝑑′. Since 𝐻′ is full, there exists 𝑚 ∈ 𝐷 (𝑑, 𝑑′) such
that 𝐻′𝑚 = 𝑙 · 𝜙−1. Right composing with 𝜙 results in 𝐻′𝑚 · 𝜙 = 𝑙, hence 𝑓𝑐′ is surjective.
A function 𝑔𝑑′ for all 𝑑′ ∈ ob D is a bĳection. All of the functions 𝑔𝑑′ form a natural
isomorphism 𝑔 : 𝐷 (𝑑,−) → 𝐶 (𝑐,−) 𝐻′ showing that 𝐶 (𝑐,−) 𝐻′ � 𝐷 (𝑑,−). Therefore
since 𝐺 � 𝐷 (𝑑,−) , 𝐺 is representable.

The dual cases of (i) and (ii) follow from changing C and D to their respective opposite
category. □

Exercise 2.1.iv. A functor 𝐹 defines a subfunctor of𝐺 if there is a natural transformation
𝛼 : 𝐹 ⇒ 𝐺 whose components are monomorphisms. In the case of 𝐺 : Cop → Set, a
subfunctor is given by a collection of subsets 𝐹𝑐 ⊆ 𝐺𝑐 so that each 𝐺 𝑓 : 𝐺𝑐 → 𝐺𝑐′

restricts to a function 𝐹 𝑓 : 𝐹𝑐 → 𝐹𝑐′. Characterize those subsets that assemble into a
subfunctor of the representable functor C(−, 𝑐).

Proof. First let us clarify what the exercise is actually asking us to do. For some
𝑐 ∈ ob C, we want to choose subsets 𝐹𝑑 ⊆ C(𝑑, 𝑐) for every 𝑑 ∈ ob C, such that:

• 𝐹 is a subfunctor of C(−, 𝑐); that is, for every 𝑓 : 𝑑′ → 𝑑 ∈ C, the following
commutes for some monomorphisms 𝜄′, 𝜄.

𝐹𝑑

𝐹 𝑓

��

𝜄 // C(𝑑, 𝑐)

−◦ 𝑓
��

𝐹𝑑′
𝜄′
// C(𝑑′, 𝑐)

• The function − ◦ 𝑓 : C(𝑑, 𝑐) → C(𝑑′, 𝑐) restricts to 𝐹 𝑓 ; that is, (− ◦ 𝑓 ) (𝑔) = 𝐹 𝑓 (𝑔)
for all 𝑔 ∈ 𝐹𝑑.

Notice that since every 𝐹𝑑 ⊆ C(𝑑, 𝑐), we automatically have an inclusion morphism from
𝐹𝑑 to C(𝑑, 𝑐). Since every 𝐹𝑑 and C(𝑑, 𝑐) are sets, this morphism is trivially monic. So let
𝜄 : 𝐹𝑑 → C(𝑑, 𝑐) in the diagram be the inclusion of 𝐹𝑑 into C(𝑑, 𝑐) (and define 𝜄′ similarly.)

In order for this diagram to commute, for any 𝑔 ∈ 𝐹𝑑, (− ◦ 𝑓 )𝜄𝑔 (going along the
top) must be equal to 𝜄′𝐹 𝑓 𝑔 (going along the bottom). But 𝜄 and 𝜄′ represent inclusion,
so 𝜄′𝐹 𝑓 𝑔 = 𝐹 𝑓 𝑔 and 𝜄𝑔 = 𝑔. So for the diagram to commute, it must be the case that
(− ◦ 𝑓 )𝑔 = 𝐹 𝑓 𝑔 for any 𝑔 ∈ 𝐹𝑑; in other words 𝐹 𝑓 must equal (− ◦ 𝑓 ) when applied to
elements of 𝐹𝑑. But this is the same as saying that (− ◦ 𝑓 ) restricts to 𝐹 𝑓 ! So the first
and second conditions are equivalent – in order for 𝐹 to be a subfunctor of C(−, 𝑐), for any
𝑓 : 𝑑′ → 𝑑 ∈ 𝐶, 𝐹 𝑓 : 𝐹𝑑 → 𝐹𝑑′ must be exactly the restriction of (− ◦ 𝑓 ) to 𝐹𝑑.

Therefore it must be the case that for every 𝑔 : 𝑑 → 𝑐 ∈ 𝐹𝑑, 𝑓 : 𝑑′ → 𝑑 ∈ C,
𝐹 𝑓 (𝑔) = (− ◦ 𝑓 )𝑔 = 𝑔 𝑓 . But in order for this to be possible, 𝑔 𝑓 must always be in 𝐹𝑑′
independent of the choice of 𝑔 and 𝑓 . On the other hand, if that is the case, than obviously
(− ◦ 𝑓 ) is defined in 𝐹𝑑′ for all 𝑓 : 𝑑′ → 𝑑; so the restriction of (− ◦ 𝑓 ) to 𝐹𝑑 – that is to

66



say, 𝐹 𝑓 – is defined for every 𝑓 ! So we can always create a subfunctor 𝐹 if 𝐹𝑑 and 𝐹𝑑′
fulfill this condition (for every 𝐹𝑑′,) and we cannot create a subfunctor if they do not. More
formally:

A family of subsets {𝐹𝑑 ⊆ C(𝑑, 𝑐) | 𝑑 ∈ ob C} can be assembled into a subfunctor 𝐹 of
C(−, 𝑐) if and only if: For every 𝑑′ ∈ C, every 𝑓 : 𝑑′ → 𝑑 ∈ C and every 𝑔 : 𝑑 → 𝑐 ∈ 𝐹𝑑,
𝑔 𝑓 ∈ 𝐹𝑑′. So this condition characterizes all of the subsets 𝐹𝑑 requested by the exercise.□

Exercise 2.1.v. The functor of Example 2.1.5(xi) that sends a category to its collection of
isomorphisms is a subfunctor of the functor of Example 2.1.5(x) that sends a category to
its collection of morphisms. Define a functor between the representing categories I and 2
that induces the corresponding monic natural transformation between these representable
functors.

Proof. Recall that I and 2 are defined as

𝐴
%%

𝑓
//
𝐵

𝑔
oo ee and 0

$$ ℎ // 1 dd

respectively. We need to construct a functor 𝐹 : 2 → I. Since functors must preserve
isomorphisms, there are only a few reasonable options. Define 𝐹 as: 𝐹 (0) = 𝐴, 𝐹 (1) =
𝐵, 𝐹 (10) = 1𝐴, 𝐹 (11) = 1𝐵, and 𝐹 (ℎ) = 𝑓 .Let 𝜄 : iso⇒ mor be defined by precomposition
by 𝐹, that is 𝐹 ↦→ 𝐹𝜄. This map is a subfunctor of the functor we get from the Yoneda
lemma

iso ≃ Cat(I,−) 𝜄∗ +3 Cat(2,−) ≃ mor .

Also 𝜄 is clearly monic since it is an inclusion map. □
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2.2 The Yoneda lemma

Theorem 2.2.1 (Yoneda Lemma). For any functor 𝐹 : C→ Set, whose domain C is locally
small and any object 𝑐 ∈ C, there is a bĳection

Hom(C(𝑐,−), 𝐹) � 𝐹𝑐

that associates a natural transformation 𝛼 : C(𝑐,−) ⇒ 𝐹 to the element 𝛼𝑐 (1𝑐) ∈ 𝐹𝑐.
Moreover, this correspondence is natural in both 𝑐 and 𝐹.

In the theorem above, Hom(C(𝑐,−), 𝐹) is the collection of natural transformations from
C(𝑐,−) to 𝐹 – a set if C is small, and a set in a larger universe if C is large.

Exercise 2.2.i. State and prove the dual to Theorem 2.2.4, characterizing natural transfor-
mations C(−, 𝑐) ⇒ 𝐹 for a contravariant functor 𝐹 : Cop → Set.

Here is the dual statement:
For any contravariant functor 𝐹 : Cop → Set, whose domain C is
locally small and any object 𝑐 ∈ C, there is a bĳection

Hom(C(−, 𝑐), 𝐹) � 𝐹𝑐

that associates a natural transformation 𝛼 : C(−, 𝑐) ⇒ 𝐹 to the ele-
ment 𝛼𝑐 (1𝑐) ∈ 𝐹𝑐. Moreover, this correspondence is natural in both
𝑐 and 𝐹.

Proof. To prove this, first note that if C is locally small, then so is Cop since then
Cop (𝑥, 𝑦) = C(𝑦, 𝑥) is a set for all 𝑥, 𝑦 ∈ ob C. So, we may apply Theorem 2.2.4 to
𝐹 : Cop → Set. This gives us a natural bĳection

Hom(Cop (𝑐,−), 𝐹) � 𝐹𝑐

via the same formula. All that is left to note is that Cop (𝑐,−) = C(−, 𝑐), proving the
statement above. □

Actually, this corresponds to the version of the Yoneda Lemma that we proved in class.
We showed in class that if C is a locally small 𝑈-category for some universe 𝑈 and 𝑉 is a
universe such that𝑈 = 𝑉 if C is small and𝑈 ∈ 𝑉 if C is large, then the functors

Cop ×𝑈-SetC
op → 𝑉-Set

taking an object (𝑐, 𝐹) to Hom(C(−, 𝑐), 𝐹) in one case or to 𝐹𝑐 in the other are isomorphic
functors. Arguing as above, we could replace C by Cop and use that (Cop)op = C and that
Cop (−, 𝑐) = C(𝑐,−) to obtain that the functors

C ×𝑈-SetC → 𝑉-Set

taking an object (𝑐, 𝐹) to Hom(C(𝑐,−), 𝐹) and to 𝐹𝑐 respectively are isomorphic. This
corresponds to the statement in Theorem 2.2.4.
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Exercise 2.2.ii. Explain why the Yoneda lemma does not dualize to classify natural trans-
formations from an arbitrary set-valued functor to a represented functor.

In the argument in Exercise 2.2.i, we replace C by Cop changing the directions of the
morphisms, but not the direction of natural transformations. That is a reason based on the
argument given.

But, here is an example showing that there is no such lemma with natural transformations
from 𝐹 to C(𝑐,−). Let C = Set, 𝐹 = 1Set and 𝑐 = ∅. Then Set(∅,−) is a constant functor
taking every set 𝑥 to {∅} and every 𝑓 : 𝑥 → 𝑦 to the identity function for this set. There is a
unique natural transformation 𝛼 : 1Set ⇒ Set(∅,−). This is not in bĳection with 1Set∅ = ∅.

Exercise 2.2.iii. As discussed in Section 2.2, diagrams of shape ω are determined by
a countably infinite family of objects and a countable infinite sequence of morphisms.
Describe the Yoneda embedding 𝑦 : ω ↩→ Setω

op
in this manner (as a family of ωop-indexed

functors and natural transformations). Prove directly, without appealing to the Yoneda
lemma, that 𝑦 is full and faithful.

Proof. It is reasonable to identify the category ω with the ordinal 𝜔. Hence the objects
of ω are the elements of 𝜔 and the morphisms of ω are ordered pairs of objects where the
second element is greater than or equal to the first. For example, we have elements 𝑛 and 𝑚
with a morphism 𝑛 ≤ 𝑚.

Now we describe the action of 𝑦 on objects of ω. In this light, for a given 𝑛 in 𝜔, the
functor ω(−, 𝑛) takes an object 𝑚 and maps it to {𝑚 ≤ 𝑛 } if this is a true statement, and
the empty set otherwise. Similarly, given an arrow 𝑝 ≤ 𝑞, ω(−, 𝑛) re-imagines this as a
function that pre-composes with 𝑞 ≤ 𝑛 to give 𝑝 ≤ 𝑛. This is just the unique function
between the singleton sets { 𝑞 ≤ 𝑛 } and { 𝑝 ≤ 𝑛 }. Note that if 𝑝 is greater than 𝑛 (along
with 𝑞 by transitivity), then both 𝑝 and 𝑞 have been mapped to the empty set and rather
than an arrows 𝑝 ≤ 𝑞, 𝑞 ≤ 𝑛, and 𝑝 ≤ 𝑛 we have the empty map, which all compose as
we want them. If only 𝑞 is greater than 𝑛, then 𝑝 ≤ 𝑛 becomes a nontrivial map under our
functor while 𝑞 ≤ 𝑛 is still the empty map. This is not a problem because the empty map
is absorbing with respect to pre-composition.

0 ≤ 𝑛 1 ≤ 𝑛 2 ≤ 𝑛 · · · 𝑛 ≤ 𝑛 ∅ · · ·←→ ←→ ←→ ←→ ←→ ←→

Similarly, 𝑦 takes a morphism 𝑚 ≤ 𝑛 to a map from ω(−, 𝑚) to ω(−, 𝑛) defined as
follows. As shown above, an object of ω(−, 𝑚) is { 𝑝 ≤ 𝑚 } or the empty set. This time we
post-compose 𝑝 ≤ 𝑚 with 𝑚 ≤ 𝑛 to get 𝑝 ≤ 𝑛 (or the empty set analogously to the above
argument). Concretely 𝑚 ≤ 𝑛 is a collection of maps of the form { (𝑝 ≤ 𝑚), (𝑝 ≤ 𝑛) }
where either the second or both symbols may be the empty set.

0 ≤ 𝑛 1 ≤ 𝑛 · · · 𝑚 ≤ 𝑛 · · · 𝑛 ≤ 𝑛 ∅ · · ·

0 ≤ 𝑚 1 ≤ 𝑚 · · · 𝑚 ≤ 𝑚 · · · ∅ · · ·

←→ ←→ ←→ ←→ ←→ ←→ ←→

← →(𝑚≤𝑛) (0≤𝑚)

←→

← →(𝑚≤𝑛) (1≤𝑚)

←→ ←→

← →(𝑚≤𝑛) (𝑚≤𝑚)

←→ ←→

← →(𝑚≤𝑛)∅

←→
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Note that this functor is immediately faithful because our domain category is a preorder.
To see that it is full, note that every object in Set that objects of ω map on to are either
singleton sets or the empty set. Cardinal arithmetic gives us three cases to consider 11, 10,
and 00. In no case is it possible for there to be a map in the homset that our functor missed.□

Exercise 2.2.iv. Prove the following strengthening of Lemma 1.2.3, demonstrating the
equivalence between an isomorphism in a category and a representable isomorphism be-
tween the corresponding co- or contravariant functors: the following are equivalent:

(i) 𝑓 : 𝑥 → 𝑦 is an isomorphism in C.
(ii) 𝑓∗ : C(−, 𝑥) ⇒ C(−, 𝑦) is a natural isomorphism.
(iii) 𝑓 ∗ : C(𝑦,−) ⇒ C(𝑥,−) is a natural isomorphism.

Proof. We prove this as a consequence of the Yoneda embedding theorem. We note
that by the Yoneda embedding theorem, we have an a fully faithful functor from C to
SetC

op
and from Cop to SetC and that this means that there are bĳections between C(𝑥, 𝑦)

and SetC
op (C(−, 𝑥),C(−, 𝑦)) and between Cop (𝑥, 𝑦) and SetC (C(𝑦,−),C(𝑥,−)). To see

that (i) implies (ii) and (iii), we note that if there exists an isomorphism 𝑓 : 𝑥 → 𝑦, there
exists at least one natural transformation C(−, 𝑥) ⇒ C(−, 𝑦) and C(𝑦,−) ⇒ C(𝑥,−)
by the bĳections previously noted. We also see that the components of 𝑓∗ and 𝑓 ∗ are
defined by post and pre-composition with 𝑓 , repsectively, and that post and pre composition
by an isomorphism creates another isomorphism. So all components of 𝑓∗ and 𝑓 ∗ are
isomorphisms and therefore 𝑓∗ and 𝑓 ∗ are natural isomorphisms.

Now, we show that (ii) implies (i) and that (iii) implies (i). To do this, we recall that
full and faithful functors create isomorphisms. Since we have that C(−, 𝑥) and C(−, 𝑦) are
isomorphic by 𝑓∗, we know that 𝑥 and 𝑦 are also isomorphic by 𝑓 , since 𝑓∗ is the image of
𝑓 . Likewise, if C(𝑦,−) and C(𝑥,−) are isomorphic by 𝑓 ∗, than so are 𝑥 and 𝑦 by 𝑓 ∗, since
𝑓 ∗ is the image of 𝑓 . So we have show that both (ii) and (iii) independently imply (i) and
that shows the equivalence of all three statements.

Exercise 2.2.v. By the Yoneda Lemma, natural endomorphisms of the covariant power
set functor 𝑃 : Set𝑜𝑝 → Set correspond bĳectively to endomorphisms of its representing
object Ω = {0, 1}. Describe the natural endomorphisms of 𝑃 that correspond to each of
the four elements of hom(Ω,Ω). Do these functions induce natural endomorphisms of the
covariant functor?

Proof. The Yoneda Lemma gives the isomorphism hom(C(−, 𝑐), 𝐹) � 𝐹𝑐, for any
object 𝑐 and contravariant functor 𝐹 into Set. Setting 𝑐 to be Ω gives us an isomorphism
Ψ : 𝐹Ω→ hom(C(−,Ω), 𝐹); such that for any 𝑔 ∈ 𝐹Ω we obtain a natural transformation
Ψ(𝑔) : C(−,Ω) ⇒ 𝐹. For any set 𝑍 we can also look at a particular leg of this natural
transformation, Ψ(𝑔)𝑍 : C(𝑍,Ω) → 𝐹𝑍; which takes each 𝑓 : 𝑍 → Ω to 𝐹 𝑓 (𝑔). Now let
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𝐹 be Set(−,Ω). This means that Ψ(𝑔)𝑍 : C(𝑍,Ω) → C(𝑍,Ω) takes each 𝑓 : 𝑍 → Ω to
C( 𝑓 ) (𝑔) = 𝑓 ∗𝑔 = 𝑔 𝑓 .

Recall that 𝑓 and 𝑔 𝑓 both correspond bĳectively to elements of 𝑃𝑍 under the bĳection
𝜙 defined in Proposition 2.1.6(i) that takes functions to the preimage of 1 ∈ Ω under those
functions. So the endomorphism Ψ(𝑔)𝑍 corresponds to the endomorphism ℎ𝑍 : 𝑃𝑍 → 𝑃𝑍

that takes 𝜙 𝑓 to 𝜙(𝑔 𝑓 ), for all 𝑓 : 𝑍 → Ω. That is to say, ℎ𝑍 takes the set {𝑥 ∈ 𝑍 | 𝑓 (𝑥) = 1}
to the set {𝑥 ∈ 𝑍 |𝑔 𝑓 (𝑥) = 1}. Generalizing for all sets 𝑍, we have a bĳection that takes
Ψ(𝑔) : C(−,Ω) ⇒ C(−,Ω) to ℎ : 𝑃 ⇒ 𝑃, such that ℎ takes {𝑥 ∈ 𝑍 | 𝑓 (𝑥) = 1} to {𝑥 ∈
𝑍 |𝑔 𝑓 (𝑥) = 1}, for all sets 𝑍.

• Let ℎ be the identity endomorphism 1𝑃 . For any set 𝑍 and function 𝑓 : 𝑍 → Ω,

𝜙(𝑔 𝑓 ) = 1𝑃𝜙( 𝑓 ) = 1𝑃{𝑥 ∈ 𝑍 | 𝑓 (𝑥) = 1} = {𝑥 ∈ 𝑍 | 𝑓 (𝑥) = 1}. So 𝑔 𝑓 (𝑥) = 𝑓 (𝑥) for
all functions 𝑓 : 𝑍 → Ω and 𝑥 ∈ 𝑍, and this can only be the case if 𝑔 = 1Ω.

• Let ℎ be the complement endomorphism Comp, which sends each 𝐴 ∈ 𝑃𝑍 to 𝑍\𝐴.
For any set 𝑍 and function 𝑓 : 𝑍 → Ω, 𝜙(𝑔 𝑓 ) = Comp𝜙( 𝑓 ) = Comp{𝑥 ∈ 𝑍 | 𝑓 (𝑥) =
1} = {𝑥 ∈ 𝑍 | 𝑓 (𝑥) ≠ 1}. So 𝑔 𝑓 (𝑥) ≠ 𝑓 (𝑥) for all functions 𝑓 : 𝑍 → Ω and 𝑥 ∈ 𝑍,
which means 𝑔 must be the transposition morphism 𝜏 : Ω → Ω; which sends 1 to 0
and 0 to 1.

• Let ℎ be the constant endomorphism 𝑐∅ that sends all 𝐴 ∈ 𝑃𝑍 to 𝑒𝑚𝑝𝑡𝑦𝑠𝑒𝑡. For
any set 𝑍 and function 𝑓 : 𝑍 → Ω, 𝜙(𝑔 𝑓 ) = 𝑐∅ ( 𝑓 ) = 𝑐∅{𝑥 ∈ 𝑍 | 𝑓 (𝑥) = 1} = ∅. So
𝑔 𝑓 (𝑥) = 0 for all functions 𝑓 : 𝑍 → Ω and 𝑥 ∈ 𝑍, and this can only be the case if
𝑔 = 𝑐0 : Ω→ Ω; the constant morphism that sends both 0 and 1 to 0.

• Let ℎ be the constant endomorphism 𝑐𝑃 that sends all 𝐴 ∈ 𝑃𝑍 to 𝑍. For any set 𝑍 and
function 𝑓 : 𝑍 → Ω, 𝜙(𝑔 𝑓 ) = 𝑐𝑃𝜙( 𝑓 ) = 𝑐𝑃{𝑥 ∈ 𝑍 | 𝑓 (𝑥) = 1} = 𝑍. So 𝑔 𝑓 (𝑥) = 1 for
all functions 𝑓 : 𝑍 → Ω and 𝑥 ∈ 𝑍, and this can only be the case if 𝑔 = 𝑐1 : Ω→ Ω;
the constant morphism that sends both 0 and 1 to 1.

So 1𝑃 corresponds to 1Ω, Comp corresponds to 𝜏, 𝑐∅ corresponds to 𝑐0, and 𝑐𝑃
corresponds to 𝑐1.

Of the four different functions ℎ above, the only two that are natural endomorphisms of
the covariant power set functor 𝑃 are the first and third.

The identity is obviously a natural endomorphism. But, so is the constant endomorphism
𝑐∅ . Indeed in this case for any function 𝑓 : 𝑒𝑋 → 𝑌 and any 𝐴 ∈ 𝑃(𝑋),

𝑃( 𝑓 )ℎ𝑋 (𝐴) = 𝑃( 𝑓 ) (∅) = ∅ = ℎ𝑌𝑃( 𝑓 ) (𝐴).

But, ℎ is not a natural endomorphism in the second and fourth cases. For example, let
𝑋 be any nonempty set and 𝑓 : ∅ → 𝑋 be the unique such function. If ℎ = Comp, then
𝑃( 𝑓 )ℎ∅ (∅) = 𝑃( 𝑓 ) (∅) = ∅ while ℎ𝑋𝑃( 𝑓 ) (∅) = ℎ𝑋 (∅) = 𝑋 . So, 𝑃( 𝑓 )ℎ∅ ≠ ℎ𝑋𝑃( 𝑓 ) and ℎ
is not a natural endomorphism. The very same computation shows that if ℎ is the constant
function sending every element of 𝑃(𝑍) to 𝑍 , then for 𝑓 : ∅ → 𝑋 , 𝑃( 𝑓 )ℎ∅ ≠ ℎ𝑋𝑃( 𝑓 ) and
ℎ is not a natural endomorphism. □

Exercise 2.2.vi. Do there exist any non-identity natural endomorphisms of the category
of spaces? That is, does there exist any family of continuous maps 𝑋 → 𝑋 , defined for all
spaces 𝑋 and not all of which are identities, that are natural in all maps in the category Top?
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Proof. Consider the topological space with one element {𝑥}. Suppose 𝛼 is a natural
endomorphism of 1Top, then for any topological space𝑌 we have the following commutative
diagram:

{𝑥}
𝛼{𝑥}

��

𝑓𝑦

// 𝑌

𝛼𝑌

��

{𝑥}
𝑓𝑦
// 𝑌

where 𝑓𝑦 (𝑥) = 𝑦 for all 𝑦 ∈ 𝑌 . 𝛼{𝑥} = 1{𝑥} trivially, thus from the commutative diagram
we get that 𝑓𝑦 = 𝛼𝑌 · 𝑓𝑦 . From this, it is clear that 𝑦 = 𝑎𝑌 (𝑦) for all 𝑦 ∈ 𝑌 . Thus 𝛼𝑌 is
the identity function on 𝑌 . Therefore, the only natural endomorphism of 1Top is the identity
natural endomorphism. □

We have shown for Top, that its identity functor only has the identity natural transfor-
mation. For the rest of the paper, we will generalize our result above to a concrete category
C.

Definition 2.2.2. Suppose some C has a terminal object 𝜔, we definition the following
three terms

1. any morphism 𝑓 : 𝜔→ 𝑐 for 𝑐 ∈ ob C is called a global element of 𝑐
2. C is well-pointed if and only if for any two morphisms 𝑓 , 𝑔 : 𝑐 → 𝑑 of C, if 𝑓 ·ℎ = 𝑔 ·ℎ

for every global element ℎ of 𝑐, then 𝑓 = 𝑔

3. We will call an object 𝛼𝑠 weakly initial if and only if C (𝛼𝑠 , 𝑐) contains at most one
morphism for all objects 𝑐

Now we will show the following:

Lemma 2.2.3. If C has a terminal object 𝜔 which is not weakly initial, is well pointed and
all of its objects that aren’t weakly initial have global elements, then the functor 1C only
has the identity natural endomorphism.

Proof. Suppose 𝛽 is a natural endomorphism of 1C. apply the natural endomorphism
to 𝑓 : 𝜔→ 𝑐 where 𝑐 is not weakly initial. This results in the diagram

𝜔

𝛽𝜔

��

𝑓
// 𝑐

𝛽𝑐

��
𝜔

𝑓
// 𝑐

Thus 𝑓 ·𝛽𝜔 = 𝛽𝑐 · 𝑓 . 𝛽𝜔 = 1𝜔 since𝜔 has a unique endomorphism, so we get 1𝑐 · 𝑓 = 𝛽𝑐 · 𝑓 .
This holds for every global element of 𝑐 due to naturality. Since C is well-pointed, 𝛽𝑐 = 1𝑐.
Since every non weakly initial object 𝑐 has a global element, then 𝛽𝑐 = 1𝑐. For weakly
initial object 𝛼𝑠 , it has a unique endomorphism by definition. So, 𝛽𝛼𝑠 = 1𝛼𝑠 . Thus 𝛽
is the identity natural endomorphism on 1C. Therefore, 1C has only the identity natural
endomorphism. □
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From now on we will be working with a concrete category C with terminal object 𝜔,
which is not weakly initial, where𝑈 : C→ Set is a faithful functor. We will generalize the
last two properties in the definition above using the following lemma:

Lemma 2.2.4. Suppose we have concrete category C with corresponding faithful functor𝑈
and terminal object 𝜔 which is not weakly initial , then the following holds:

1. If𝑈 is a subfunctor of C (𝜔,−) then C (𝜔,−) � 𝑈
2. If C (𝜔,−) � 𝑈 then C is well-pointed, all not weakly initial objects of C have global

elements

Before we prove this, we will prove another lemma

Lemma 2.2.5. Suppose we have concrete category C with corresponding faithful functor
𝑈, a terminal object 𝜔 which is not weakly initial and 𝛼𝑠 is a weakly initial object in C , we
have the following properties:

1. 𝑈 reflects weakly initial objects
2. C (𝜔, 𝛼𝑠) = ∅
3. Set ({𝑥}, 𝐴) � 𝐴 for all sets 𝐴
4. Set is well-pointed
5. C (𝜔,−) has a unique endofunctor

Proof. Part 1 follows from 𝑈 being faithful. The only weakly initial set is the empty
set. If there exist some object 𝑐 in C such that 𝑈𝑐 = ∅, then for any object 𝑑 in C, there is
an injection between C (𝑐, 𝑑) and Set (∅,𝑈𝑑). Since Set (∅,𝑈𝑑) has exactly one element,
then C (𝑐, 𝑑) has at most one element. Thus 𝑐 is weakly initial.

For Part 2, suppose 𝑓 ∈ C (𝜔, 𝛼𝑠), then 𝑓 is an isomorphism since𝜔 and 𝛼𝑠 have unique
endomorphisms. Then C (𝜔,−) � C (𝛼𝑠 ,−) making 𝜔 a weakly initial object, which is a
contradiction. Therefore, C (𝜔, 𝛼𝑠) = ∅.

For part 3, we can define a function from Set ({𝑥}, 𝐴) to 𝐴 by taking a function 𝑔 from
Set ({𝑥}, 𝐴) and mapping it to 𝑔 (𝑥). This function is clearly injective since each function in
Set ({𝑥}, 𝐴) only has one element in its domain, and is clearly surjective since each element
𝑦 in 𝐴 corresponds to the function mapping 𝑥 to 𝑦. Thus we have a bĳection, therefore
Set ({𝑥}, 𝐴) � 𝐴.

For part 4, take functions 𝑓 , 𝑔 : 𝐴 → 𝐵 and suppose 𝑓 · ℎ = 𝑔 · ℎ for every global
element ℎ of 𝐴. By the proof in part 3, this means that 𝑓 (𝑥) = 𝑔 (𝑥) for all 𝑥 in 𝐴. Thus
𝑓 = 𝑔. Therefore, Set is well-pointed.

For part 5 consider an endofunctor 𝛾 of C (𝜔,−), which gives the following commutative
diagram for global element 𝑓 of non weakly initial object 𝑐:

C (𝜔, 𝜔)

𝛾𝜔

��

𝑓∗
// C (𝜔, 𝑐)

𝛾𝑐

��

C (𝜔, 𝜔)
𝑓∗
// C (𝜔, 𝑐)

taking the unique endomorphism of 𝜔 one gets that 𝑓 = 𝛾𝑐 ( 𝑓 ). Thus 𝛾𝑐 is the identity
morphism. for weakly initial object 𝛼𝑠 , C (𝜔, 𝛼𝑠) = ∅, thus 𝛾𝛼𝑠 = 1∅ . Thus 𝛾 is the identity
natural endomorphism. Therefore, C (𝜔,−) has a unique natural endomorphism. □
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Now we will prove lemma 2.2.3

Proof. Part 1: By Yoneda lemma, Hom (C (𝜔,−) ,𝑈) � 𝑈𝜔. Since𝑈 reflects weakly
initial objects, there is at least one natural transformation 𝛿 from C (𝜔,−) to 𝑈. By our
assumption, there is a monic natural transformation 𝛽 from 𝑈 to C (𝜔,−). Since C (𝜔,−)
has a unique endomorphism, 𝛽 · 𝛿 = 1C(𝜔,−) . This means that 𝛽 is also epic. Thus every
morphism 𝛽𝑐 for 𝑐 ∈ ob C is injective and surjective, and thus bĳective. So 𝛽 is a natural
isomorphism. Therefore, C (𝜔,−) � 𝑈.

Part 2: Suppose for 𝑓 , 𝑔 : 𝑐 → 𝑑 ∈ mor C we have that 𝑓 · ℎ = 𝑔 · ℎ for every global
element ℎ of 𝑐. Then 𝑈 𝑓 ·𝑈ℎ = 𝑈𝑔 ·𝑈ℎ . Since 𝑈 � C (𝜔,−),𝑈𝜔 has only one element
thus𝑈ℎ is a global element of𝑈𝑐. Since we have that C (𝜔, 𝑐) � 𝑈𝑐 � Set (𝑈𝜔,𝑈𝑐), then
𝑈ℎ range over every global element of𝑈𝑐. Since Set is well pointed, then𝑈 𝑓 = 𝑈𝑔. Since
𝑈 is faithful, 𝑓 = 𝑔. Therefore, C is well-pointed.

For any non weakly initial object 𝑐 of C,𝑈𝑐 is non-empty since𝑈 reflects weakly initial
objects. Thus C (𝜔, 𝑐) is non empty, thus every non weakly initial object 𝑐 has a global
element. □

Now let us take an equivalence of categories 𝑇 : C→ C. This is our main result:

Theorem 2.2.6. Suppose we have concrete category C with corresponding faithful functor
𝑈 and terminal object 𝜔 which is not weakly initial. If 𝑈 is a subfunctor of C (𝜔,−) and
𝑇 : C→ C is an equivalence of then Hom (𝑇,𝑇) � Hom (𝐶 (𝜔,−) ,𝑈)

Proof. Since 𝑈 is a subfunctor of C (𝜔,−), 𝑈 � C (𝜔,−). By Yoneda Lemma and
since 𝑈 preserves terminal objects, there is a unique natural isomorphism 𝛽 from C (𝜔,−)
to 𝑈. Take a natural endomorphism 𝛿 from Hom (𝑇,𝑇). Since 𝑇 is an equivalence of
categories, there exist a functor 𝑇0 such that 𝑇0 · 𝑇 � 1𝐶 . define the natural transformation
𝑇0𝛿 where its components are the functor 𝑇0 applied to the components of 𝛿. The fact that
𝑇0𝛿 is a natural transformation follows from the naturality of 𝛿 and the fact that 𝑇0 is full
and faithful. Thus 𝑇0𝛿 is a natural endomorphism of 𝑇0 ·𝑇 . Since 𝑇0 ·𝑇 � 1𝐶 , there exist an
natural isomorphism 𝛾 from 𝑇0 ·𝑇 to 1𝐶 . composing 𝛾 and 𝛾−1 to 𝑇0𝛿 gives us 𝛾 ·𝑇0𝛿 · 𝛾−1

which is an endomorphism of 1𝐶 We shall refer to 𝛾 · 𝑇0𝛿 · 𝛾−1 as 𝜖 . We will horizontal
composition on 𝛽 and 𝜖 to obtain 𝛽 ∗ 𝜖 . The diagram for the horizontal composition is a
follows:

C (𝜔, 𝑐)
(𝛽∗𝜖 )𝑐

%%

𝛽𝑐

��

C(𝜔,𝜖𝑐 )// C (𝜔, 𝑐)

𝛽𝑐

��

𝑈𝑐
𝑈𝜖𝑐

// 𝑈𝑐

This shows us that (𝛽 ∗ 𝜖)𝑐 = 𝑈𝜖𝑐 ·𝛽𝑐. Define a function 𝑡 : Hom (𝑇,𝑇) → Hom (C (𝜔,−) ,𝑈)
taking 𝛿 to 𝛽 ∗ 𝜖 . We will show that 𝑡 is injective. Suppose that there was a 𝛿′ such that
𝜖 ′ = 𝛾 · 𝑇0𝛿

′ · 𝛾−1 and 𝛽 ∗ 𝜖 = 𝛽 ∗ 𝜖 ′. Then, 𝑈𝜖𝑐 · 𝛽𝑐 = 𝑈𝜖 ′𝑐 · 𝛽𝑐. Since 𝛽𝑐 is an isomor-
phism, it is also epic. Thus 𝑈𝜖𝑐 = 𝑈𝜖 ′𝑐 and also 𝜖𝑐 = 𝜖 ′𝑐 since 𝑈 is faithful. Thus 𝜖 = 𝜖 ′.
Since 𝛾 and 𝛾−1 are isomorphic, they are both monic and epic, so 𝑇0𝛿 = 𝑇0𝛿

′. Since 𝑇0 is
faithful, 𝛿𝑐 = 𝛿′𝑐 for every 𝑐 ∈ ob C. Thus 𝛿 = 𝛿′. So 𝑡 is an injection from Hom (𝑇,𝑇) to
Hom (𝐶 (𝜔,−) ,𝑈). Since Hom (𝐶 (𝜔,−) ,𝑈) has only one element and Hom (𝑇,𝑇) has
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at least one element (the identity natural transformation), 𝑡 is also surjective. Therefore,
Hom (𝑇,𝑇) � Hom (𝐶 (𝜔,−) ,𝑈). □

An immediate consequence of the theorem is that every equivalence 𝑇 has only the
identity natural transformation.

This completes our generalization of problem 2.2.vi.

Exercise 2.2.vii. Use the Yoneda lemma to explain the connection between homeomor-
phisms of the standard unit interval 𝐼 = [0, 1] ⊂ 𝑅 and natural automorphisms of the path
functor Path : Top→ Set.

Proof. Viewing the path functor, 𝐹 = Path : Top→ Set, in light of the Yoneda lemma,
there is a bĳection 𝐻𝑜𝑚(Top(𝐼,−), 𝐹) � 𝐹𝐼, such that (𝛼 : Top(𝐼,−) ⇒ 𝐹) ↦→ 𝛼𝐼 (1𝐼 ),
and for 𝑥 ∈ 𝐹𝐼 with 𝑦 ∈ 𝑜𝑏Top, 𝑥 ↦→ (𝜓(𝑥) : Top(𝐼,−) ⇒ 𝐹), with components of the
natural transformation 𝜓(𝑥)𝑦 : Top(𝐼, 𝑦) → 𝐹𝑦.

Now, for paths in the unit interval, with continuous functions 𝑓 being mapped to
𝐹 𝑓 (𝑥), from the Yoneda lemma again, there is a bĳection 𝐻𝑜𝑚(Path,Path) � Path(𝐼),
with 𝐼 ↦→ Top(𝐼,−) = Path(𝐼). The covariant functor Top𝑜𝑝 → SetTop then gives an
isomorphism between endomorphisms of the unit interval and natural transformations of
the path funtor.

The Yoneda embedding theorem shows that this is actually a monoid isomorphism
between Hom(Path,Path) and Path(𝐼) = Top(𝐼, 𝐼). This gives an isomorphism between
their groups of invertible elements. In the first case, these are the natural automorphisms
of Path. In the second, these are the homeomorphisms of 𝐼 to itself.
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2.3 Universal properties and universal elements

Exercise 2.3.i. What are the universal elements for the representations:
1. defining the category 2 in Example 2.1.5(x)?
2. defining the Sierpinski space in Example 2.1.6(ii)?
3. defining the Sierpinski space in Example 2.1.6.(iii)?

Definition 2.3.3: A universal property of an object 𝑐 ∈ C is expressed
by a representable functor 𝐹 together with a universal element 𝑥 ∈ 𝐹𝑐
that defines a natural isomorphism C(𝑐,−) � 𝐹 or C(−, 𝑐) � 𝐹, as
appropriate, via the Yoneda lemma.

Note that if 𝜂 is the natural isomorphism from C(𝑐,−) or C(−, 𝑐) to 𝐹, then 𝑥 = 𝜂𝑐 (1𝑐).
1. Example 2.1.5: The following covariant functors are repre-

sentable.
(x) The functor mor: Cat→ Set that takes a small category to
its set of morphisms is represented by the category 2: a functor
2→ C is no more and no less than a choice of morphism in 𝐶.
In this sense, the category 2 is the free or walking arrow.

In this case, let 𝑓 be the unique nonidentity morphism in 2. Then the isomorphism
𝜂 : Cat(2,−) ⇒ mor is given on an object D of Cat by 𝜂D : Cat(2,D) → mor D
defined by 𝜂D𝐹 = 𝐹 𝑓 . Thus, the universal element is 𝜂2 (12) = 12 𝑓 = 𝑓 .

2. Example 2.1.6: The following contravariant functors are repre-
sentable.
(ii) The functor O : Topop → Set that sends a space to its set
of open subsets is represented by the Sierpinski space 𝑆, the
topological space with two points, one closed and one open.
The natural bĳection Top(𝑋, 𝑆) � O(𝑋) associates a continu-
ous function 𝑋 → 𝑆 to the preimage of the open point. This
bĳection is natural because a composite function 𝑌 → 𝑋 → 𝑆

classifies the preimage of the open subset of 𝑋 under the func-
tion 𝑌 → 𝑋 .

To provide a little more detail, say that 𝑆 = {0, 1} and that the open sets in 𝑆 are
∅, {0}, and 𝑆. Note that these open sets satisfy the axioms of a topology: ∅ and 𝑆 are
open, the union of any family of open sets is open, and the intersection of any two
open sets is open. The closed sets are the complements of the open sets: ∅, {1}, 𝑆.
By the open point we mean 0, since the singleton set {0} is open, and by the closed
point we mean 1, since the singleton set {1} is closed.
Recall that for two topological space 𝑌 and 𝑋 , 𝑓 : 𝑌 → 𝑋 is continuous (i.e. a
morphism in Top) if for every open set𝑈 in 𝑋 , 𝑓 −1 (𝑈) is open in 𝑌 .
In particular, for any continuous function 𝑓 : 𝑌 → 𝑆, 𝑓 −1 (0) = 𝑓 −1 ({0}) is open in𝑌 .
Note that 𝑓 is completely determined by 𝑓 −1 (0) for any element of 𝑦 ∈ 𝑌 that is not in
𝑓 −1 (0) we must have that 𝑓 (𝑦) = 1, the only element of 𝑆 other than 0. Conversely,
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if 𝑉 is an open subset of 𝑌 , then we have a continuous function 𝑓𝑉 : 𝑌 → 𝑆 given by

𝑓𝑉 (𝑦) =
{

0 if 𝑦 ∈ 𝑉
1 if 𝑦 ∉ 𝑉.

This gives a natural bĳection between Top(𝑌, 𝑆) and O(𝑌 ). That is, we have a
natural isomorphism 𝜂 : Top(−, 𝑆) ⇒ O defined by 𝜂𝑌 : Top(𝑌, 𝑆) ⇒ O(𝑌 ) defined
by 𝜂𝑌 ( 𝑓 ) = 𝑓 −1 ({0}).
Now, to the question at hand. We have that the natural isomorphism 𝜂 maps to
𝜂𝑆 (1𝑆) = 1−1

𝑆
({0}) = {0}, the open point of 𝑆 or, more precisely, the singleton set

consisting of the open point of 𝑆.
3. (iii) The Sierpinski space also represents the functorC : Topop →

Set that sends a space to its set of closed subsets. Compos-
ing the natural isomorphisms O � Top(−, 𝑆) � C we see that
the closed set and open set functors are naturally isomorphic.
The composite natural isomorphism carries an open subset to
its complement, which is closed. This recovers the natural
isomorphism described in Example 1.4.3(v).

The solution to this problem is essentially the same as the last part. It is worth noting
that for topological spaces 𝑌 and 𝑋 , a function 𝑓 : 𝑌 → 𝑋 is continuous if and only
if for every closed set 𝐴 in 𝑋 , 𝑓 −1 (𝐴) is closed in 𝑌 . Indeed, 𝑌 is the disjoint union
of the inverse image of 𝐴 and the inverse image of the complement 𝐴𝑐 of 𝐴, which
is open. If 𝑓 is continuous, then 𝑓 −1 (𝐴𝑐) is open in 𝑌 so that 𝑓 −1 (𝐴) is closed in 𝑌 .
Conversely, if 𝑓 −1 (𝐴) is closed in 𝑌 for every closed set 𝐴 of 𝑋 , then for every open
set𝑈 of 𝑋 , 𝑓 −1 (𝑈𝑐) is closed so that 𝑓 −1 (𝑈) is open and 𝑓 is continuous.
Just as above, we make a natural isomorphism from Top(−, 𝑆) to C by defining
𝜖𝑌 : Top(𝑌, 𝑆) → C(𝑌 ) by 𝜖𝑌 ( 𝑓 ) = 𝑓 −1 (1) = 𝑓 −1 ({1}). Then under the Yoneda
correspondence, 𝜖 maps to 𝜖𝑆 (1𝑆) = 1−1

𝑆
({1}) = {1}, the closed point of 𝑆 or, more

precisely, the singleton set consisting of the closed point of 𝑆.

Exercise 2.3.ii. Use the defining universal property of the tensor product to prove that
1. k⊗𝑘 � 𝑉 for any k vector space 𝑉 ; and
2. (𝑈 ⊗ 𝑉) ⊗𝑊 � 𝑈 ⊗ (𝑉 ⊗𝑊) for any k vector spaces𝑈,𝑉, and𝑊.

Lemma 2.3.1. The tensor product of two vector spaces 𝑉 and𝑊 is spanned by rank one
tensors.

Proof. Rank one tensors have the form
∑𝑛
𝑖=1 𝑣𝑖 ⊗ 𝑤𝑖 , where 𝑣𝑖 and 𝑤𝑖 are basis vectors

are 𝑉 and𝑊 respectively.1 These rank one tensors are linearly independent so then can be

1Every vector space has a basis thanks to the Axiom of Choice. The sketch of the proof involves taking a chain
of linearly independent subsets and looking at the union of that chain. The union is still a linearly independent
set, and therefore an upper bound for this chain. Since every chain has an upper bound by Zorn’s Lemma (which
is equivalent to the Axiom of Choice) a maximal linearly independent set exists. Since a basis can be defined a
maximal linearly independent subset of a vector space, we have the every vector space has a basis.
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found in a some basis 𝐵 of 𝑉 ⊗𝑊. Suppose there was an element of 𝑉 ⊗𝑊 that is not in
the span of the rank one tensors. Call it 𝑧. Then 𝑧 ∪ 𝐵 is still a linearly independent and
can be contained in some basis 𝐵′. Since a linear maps is completely defined by its action
on the basis, we could construct two distinct linear maps that we could factor function
𝑓 : 𝑉 ×𝑊 → 𝑈 through. This contradicts the uniqueness of the universal property of the
tensor product, so the rank one tensors span the tensor product space.

Proof. We need to show that for a bilinear map 𝑓 there exists a unique linear map 𝑓

that makes the following diagram commute.

k ×𝑉 ⊗ //

𝑓
$$

k ⊗ 𝑉

𝑓

��

𝑊

Since 𝑓 : k ×𝑉 → 𝑊 is bilinear, for any 𝛼 in k and 𝑣 in 𝑉 we have 𝑓 (𝛼, 𝑣) = 𝛼 𝑓 (1, 𝑣).
Because 𝑓 is linear if we choose 𝑓 (𝛼𝑣) = 𝛼 𝑓 (𝑣) = 𝛼 𝑓 (1, 𝑣), this diagram will commute.
This mapping is unique since, it holds for all 𝛼, we can choose 𝛼 to be one. Since we have
found the unique 𝑓 that makes the above diagram commutes, we can apply the universal
property of the tensor product to see that k ⊗k 𝑉 � 𝑉 as desired.

Now we will show (𝑈 ⊗ 𝑉)⊗𝑊 � 𝑈⊗(𝑉 ⊗𝑊) for any k vector spaces𝑈,𝑉, and𝑊. For
some vector space 𝑋 let 𝑓 be a trilinear map 𝑓 : 𝑈 ×𝑉 ×𝑊 → 𝑋. Define 𝑓𝑤 : 𝑈 ×𝑉 → 𝑊

to be 𝑓𝑤 (𝑢, 𝑣) = 𝑓 (𝑢, 𝑣, 𝑤). Notice that 𝑓𝑤 is a bilinear map from 𝑈 × 𝑉 to 𝑋, by the
universal property of the tensor product there exists a unique linear map 𝑓𝑤 that makes the
following diagram commute.

𝑈 ×𝑉 ⊗ //

𝑓𝑤
$$

𝑈 ⊗ 𝑉

𝑓𝑤

��

𝑋

Define 𝑓𝐿 : (𝑈 ⊗ 𝑉) ×𝑊 → 𝑋, to be bilinear map. Thus 𝑓𝐿 (𝑧, 𝑤) = 𝑓𝐿𝑤 (𝑧 ⊗ 𝑣𝑖) is a
linear map and we can apply the universal property again to get the following commutative
diagram.

(𝑈 ⊗ 𝑉) ×𝑊 ⊗ //

𝑓𝐿
((

(𝑈 ⊗ 𝑉) ⊗𝑊

𝑓𝐿

��

𝑋

In a similar fashion define 𝑓 𝑢 (𝑣, 𝑤) : 𝑉 ×𝑊 → 𝑋, from 𝑉 ×𝑊 to an arbitrary vector space
𝑋 where 𝑓 𝑢 (𝑣, 𝑤) = 𝑔(𝑢, 𝑣, 𝑤). Again, by the universal property of the tensor product there
exists a unique linear map 𝑓 𝑢 such that the following diagram commutes.

𝑈 ×𝑉 ⊗ //

𝑓 𝑢

$$

𝑈 ⊗ 𝑉

𝑓 𝑢

��

𝑋
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Again we can define 𝑓𝑅 : 𝑈 × (𝑉 ⊗𝑊) → 𝑋,where 𝑓𝑅 (𝑢,
∑𝑡
𝑖=1 𝛼𝑖𝑣𝑖 ⊗𝑤𝑖). By the universal

property of the tensor product we have the following commutative diagram.

𝑈 × (𝑉 ⊗𝑊) ⊗ //

𝑓𝑅
((

𝑈 ⊗ (𝑉 ⊗𝑊)

𝑓𝑅

��

𝑋

Define the maps 𝑤 ↦→ 𝑓𝑤 from 𝑊 to Vectk (𝑈 ⊗ 𝑉, 𝑋) and 𝑢 ↦→ �̄�𝑢 from 𝑈 to Vectk (𝑉 ⊗
𝑊, 𝑋). Since 𝑓 and 𝑔 are trilinear and 𝑓𝑤 and �̄�𝑢 are linear we have

𝑓𝛼𝑤1+𝑤2 (𝑢, 𝑣) = 𝑓 (𝑢, 𝑣, 𝛼𝑤1 + 𝑤2) = 𝛼 𝑓 (𝑢, 𝑣, 𝑤1) + 𝑓 (𝑢, 𝑣, 𝑤2) = 𝛼 𝑓𝑤1 + 𝑓𝑤2

and

�̄�𝛼𝑢1+𝑢2 (𝑣, 𝑤) = 𝑔(𝛼𝑢1 + 𝑢2, 𝑣, 𝑤) = 𝛼𝑔(𝑢1, 𝑣, 𝑤) + 𝑔(𝑢2, 𝑣, 𝑤) = 𝛼�̄�𝑢1 + �̄�𝑢2 .

By construction 𝑓 and 𝑔 for 𝜁− : Trilin(𝑈,𝑉,𝑊,−) ⇒ Vect𝑘 (𝑈 ⊗ (𝑉 ⊗𝑊),−) and 𝜂− : Trilin(𝑈,𝑉,𝑊,−) ⇒
Vect𝑘 ((𝑈 ⊗ 𝑉) ⊗𝑊,−) we have the following commutative diagrams.

Trilin(𝑈,𝑉,𝑊 ; 𝑋)
𝑔−◦

//

𝜁𝑋

��

Trilin(𝑈,𝑉,𝑊 ;𝑌 )

𝜁𝑌

��

Vect𝑘 (𝑈 ⊗ (𝑉 ⊗𝑊), 𝑋)
𝑔−◦
// Vect𝑘 (𝑈 ⊗ (𝑉 ⊗𝑊), 𝑌 )

Trilin(𝑈,𝑉,𝑊 ; 𝑋)
𝑓 −◦

//

𝜂𝑋

��

Trilin(𝑈,𝑉,𝑊 ;𝑌 )

𝜂𝑌

��

Vect𝑘 ((𝑈 ⊗ 𝑉) ⊗𝑊, 𝑋)
𝑓 −◦
// Vect𝑘 ((𝑈 ⊗ 𝑉) ⊗𝑊,𝑌 )

Each leg in both these natural transformations are isomorphisms, so 𝑓 and 𝑔 represent the
same functor. Thus by Proposition 2.3.1, we must have that

(𝑈 ⊗ 𝑉) ⊗𝑊 � 𝑈 ⊗ (𝑉 ⊗𝑊).

Exercise 2.3.iii. The set 𝐵𝐴 of functions from a set 𝐴 to a set 𝐵 represents the contravariant
functor Set(− × 𝐴, 𝐵) : Setop → Set. The universal element for this representation is a
function

ev : 𝐵𝐴 × 𝐴→ 𝐵

called the evaluation map. Define the evaluation map and describe its universal property,
in analogy with the universal bilinear map ⊗ of Example 2.3.7.
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Proof. In our case, we have that Set(− × 𝐴, 𝐵) is representable by the functions from
𝐴 to 𝐵, denoted as 𝐵𝐴. We will start by unpacking the Yoneda lemma to get the following
isomorphism:

Hom(Set(−, 𝐵𝐴),Set(− × 𝐴, 𝐵)) � Set(𝐵𝐴 × 𝐴, 𝐵).

Let 𝛼 : Set(−, 𝐵𝐴) ⇒ Set(− × 𝐴, 𝐵) be a natural isomorphism (that is, an element
of the left side of the above isomorphism). The Yoneda bĳection gives us that 𝛼 ↦→
𝛼𝐵𝐴 (1𝐵𝐴). We want to show that ev = 𝛼𝐵𝐴 (1𝐵𝐴). The object 𝛼𝐵𝐴 (1𝐵𝐴) is a morphism
Set(𝐵𝐴, 𝐵𝐴) → Set(𝐵𝐴 × 𝐴, 𝐵), given by 𝑓 ↦→ 𝑓 such that for 𝑎 ∈ 𝐴 and a function
𝑔 : 𝐴 → 𝐵, 𝑓 (𝑔, 𝑎) = 𝑓 (𝑔) (𝑎). In our case, 𝑓 = 1𝐵𝐴 , so 1̃𝐵𝐴 (𝑔, 𝑎) = 𝑔(𝑎) = ev(𝑔, 𝑎).
Then, 𝛼𝐵𝐴 (1𝐵𝐴) = ev.

In a more general sense, we have for any𝑈 and all functions 𝑓 : 𝑈 × 𝐴→ 𝐵 there exists
a unique 𝑓 : 𝑈 → 𝐵𝐴, such that 𝑓 (𝑢, 𝑎) = 𝑓 (𝑢) (𝑎), this being the universal property of the
evaluation map. □
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2.4 The category of elements

Exercise 2.4.i. Given 𝐹 : C → Set, show that
∫
𝐹 is isomorphic to the comma category

★ ↓ 𝐹 of the singleton set ★: 1→ Set over the functor 𝐹 : C→ Set.

Proof. First recall from exercise 1.3.vi the definition of a comma category. In this
case objects of ★ ↓ 𝐹 are triples of the form (0 ∈ 1, 𝑐 ∈ C, ℎ : ★ → 𝐹𝑐 ∈ Set) and the
morphisms are (0, 𝑐, ℎ) → (0, 𝑐′, ℎ′), a pair of morphisms (1★ : ★→ ★, 𝑘 : 𝑐 → 𝑐′) such
that the following diagram commutes.

★
ℎ //

1★
��

𝑧

𝐹𝑘

��

★
ℎ′
// 𝑧′

This gives us that ℎ′ = (𝐹𝑘)ℎ. Define the functor 𝐺 : ★ ↓ 𝐹 →
∫
𝐹 as (0, 𝑐, ℎ) ↦→ (𝑐, ℎ)

and (1★ : ★→ ★, 𝑘 : 𝑐 → 𝑐′) ↦→ 𝑘 : 𝑐 → 𝑐′ (note the 𝑘 is in fact a morphism of
∫
𝐹 as the

above diagram commutes so (𝐹𝑘)ℎ = ℎ′ as needed). Notice that 𝐺 perseveres composition
in the obvious way and is invertible as (1★, 𝑘) ↦→ 𝑘 and (0, 𝑐, ℎ) ↦→ (𝑐, ℎ) have the inverses
𝑘 ↦→ (1★, 𝑘) and (𝑐, ℎ) ↦→ (0, 𝑐, ℎ) respectively, which also preserve composition in a
similar fashion. This defines an isomorphism of categories, hence ★ ↓ 𝐹 is isomorphic to∫
𝐹. □

Exercise 2.4.ii. Characterize the terminal objects of C/𝑐.

Proof. We claim that one terminal object in C/𝑐 is the identity morphism 1𝑐. To see
this, we look at the diagram for a morphism in C/𝑐.
𝑥

ℎ //

𝑔
��

𝑐

1𝑐
��

𝑐
We must show that there is a unique ℎ for any given object 𝑔 : 𝑥 → 𝑐. But by the

commutative diagram above, we see 𝑔 = 1𝑐 ◦ ℎ = ℎ.
Thus, this ℎ is uniquely defined, and there is a unique morphism that takes us from 𝑓 to

1𝑐. This makes 1𝑐 a terminal object.
By corollary 2.3.2, any two terminal objects in C/𝑐 are uniquely isomorphic.
Suppose 𝑓 : 𝑥 → 𝑐 is isomorphic to 1𝑐. We look at the composition diagram:

𝑥
𝑓
//

𝑓
��

𝑐

1𝑐
��

𝑗
// 𝑥

𝑓
��

𝑐
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We can see that this diagram requires 𝑓 𝑗 = 1𝑐 and the top row requires that 𝑗 𝑓 = 1𝑥
for the composition to be the identity. Similarly, these criteria make the composition hold
in the other order:
𝑐

𝑗
//

1𝑐
��

𝑥

𝑓

��

𝑓
// 𝑐

1𝑐
��

𝑐
Thus, for an isomorphism to exist between 1𝑐 and arbitrary 𝑓 , we must have that 𝑓 is

an isomorphism 𝑥 → 𝑐. Thus, the terminal objects are the isomorphisms 𝑥 → 𝑐 in C. This
can be seen in the diagram below.

𝑥
ℎ //

𝑔
��

𝑐

𝑓
��

𝑐
Note that if 𝑓 is an isomorphism, we can let ℎ = 𝑗𝑔, where 𝑗 is the unique inverse of 𝑓 .

Thus, 𝑓 ℎ = 𝑓 𝑗𝑔 = 𝑔, and the diagram commutes. □

Exercise 2.4.iii. Use the principle of duality to convert the proof that a covariant functor
is representable if and only if its category of elements has an initial object into a proof that
a contravariant functor is representable if and only if its category of elements has a terminal
object.

Proof. Suppose that (𝑐, 𝑥) is a terminal object in
∫
𝐹, where 𝐹 : C𝑜𝑝 → Set. We must

show that the natural transformation Ψ : C(−, 𝑐) ⇒ 𝐹 defined by the Yoneda Lemma is an
isomorphism. First, consider an element 𝑦 ∈ 𝐹𝑑. We know that we have a unique morphism
𝑓 : (𝑑, 𝑦) → (𝑐, 𝑥) and so we have a unique morphism from 𝑓 : 𝑑 → 𝑐 so that 𝐹 𝑓 (𝑥) = 𝑦.
Because of our definition of Ψ(𝑥), this means exactly that Ψ(𝑥)𝑑 : C(𝑑, 𝑐) → 𝐹𝑑 is an
isomorphism. This means that Ψ(𝑥) is a natural isomorphism and represents 𝐹.

In the other direction, we want to show that for a natural transformation𝛼 : C(−, 𝑐) ⇒ 𝐹,
the pair (𝑐, 𝛼𝑐 (1𝑐)) defined by the Yoneda bĳection is a terminal object in the category of
elements of 𝐹. Because 𝛼𝑑 is a bĳection, we have for every 𝑦 ∈ 𝐹𝑑, a unique morphism
𝑓 : 𝑑 → 𝑐 where 𝐹 𝑓 : 𝐹𝑐 → 𝐹𝑑 is such that 𝐹 𝑓 (𝛼𝑐 (1𝑐)) = 𝑦. But this defines a unique
homorphism to (𝑐, 𝛼𝑐 (1𝑐)) from every (𝑑, 𝑦) in the category of elements, and so (𝑐, 𝛼𝑐 (1𝑐))
is terminal. □

Exercise 2.4.iv. Explain the sense in which the Sierpinski space is the universal topological
space with an open subset.

Proof. Let O : Topop → Set be a functor that maps each topological spaces to its set
of open sets and each continuous function 𝑓 : 𝐴 → 𝐵 to function 𝑔 : O𝐵 → O𝐴 where
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𝑔(𝑈) = 𝑓 −1 (𝑈). Let S be the Sierpinski space and {𝑥} be the only non-trivial open set
of S. Since S represents O, then for each topological space 𝑇 , each continuous function
from 𝑇 to S corresponds bĳectively with each open set of 𝑇 . In fact the bĳection would be
defined by mapping each continuous function 𝑓 : 𝑇 → S to 𝑓 −1 ({𝑥}) = O 𝑓 ({𝑥}). In the
category of elements

∫
O, this means that for object (𝑇,𝑈), there exists a unique morphism

with domain (𝑇,𝑈) and codomain (S, {𝑥}) since there is only one continuous function
𝑓 : 𝑇 → S such that O 𝑓 ({𝑥}) = 𝑈. Thus the Sierpinski space is the universal topological
space with an open subset in the sense that (S, {𝑥}) is terminal in

∫
O.

Exercise 2.4.v. Define a contravariant functor 𝐹 : Setop → Set that carries a set to the set
of preorders on it. What is its category of elements? Is 𝐹 representable?

Proof. We are given that 𝐹 takes each set 𝑋 to the set of preorders on it; that is,
𝐹𝑋 = {𝑅 ⊆ 𝑋 × 𝑋 | R is a preorder}. Let us define 𝐹𝑀𝑜𝑟 such that for any morphism
𝑓 : 𝑋 → 𝑌 and any preorder 𝑆 ∈ 𝐹𝑌 , 𝐹 𝑓 (𝑆) = {(𝑎, 𝑏) ⊆ 𝑋 × 𝑋 | ( 𝑓 (𝑎), 𝑓 (𝑏)) ∈ 𝑆}. Then
for some 𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑌 → 𝑍 , and preorder 𝑇 ∈ 𝐹𝑍:

𝐹 (𝑔 𝑓 ) (𝑇) = {(𝑎, 𝑏) ⊆ 𝑋 × 𝑋 | ( 𝑓 (𝑎), 𝑓 (𝑏)) ∈ {(𝑐, 𝑑) ⊆ 𝑌 × 𝑌 | ( 𝑓 (𝑐), 𝑓 (𝑑)) ∈ 𝑇}}
= {(𝑎, 𝑏) ⊆ 𝑋 × 𝑋 | ( 𝑓 (𝑎), 𝑓 (𝑏)) ∈ 𝐹𝑔(𝑇)}
= 𝐹 𝑓 (𝐹𝑔(𝑇))

So 𝐹 (𝑔 𝑓 ) = 𝐹 𝑓 𝐹𝑔, meaning 𝐹 fulfills the first functoriality axiom. Furthermore,
the identity morphism takes every element to itself, which means ( 𝑓 (𝑎), 𝑓 (𝑏)) = (𝑎, 𝑏);
meaning 𝐹 also fulfills the second functoriality axiom. So we have constructed a valid
contravariant functor that acts on objects in the requested manner. □

The objects of the category of elements of 𝐹 (that is,
∫
𝐹) are simply ordered pairs

of the form (𝑋, 𝑅), where 𝑅 ∈ 𝐹𝑋; and the morphisms of
∫
𝐹 are morphisms (𝑋, 𝑅) →

(𝑌, 𝑆) ∈
∫
𝐹 is a morphism 𝑓 : 𝑋 → 𝑌 such that

𝐹 𝑓 (𝑆) = {(𝑎, 𝑏) ⊆ 𝑋 × 𝑋 | ( 𝑓 (𝑎), 𝑓 (𝑏)) ∈ 𝑆} = 𝑅.

Suppose that 𝐹 is represented by some set 𝑋 . Then there is a natural isomorphism
C(−, 𝑋) � 𝐹, and therefore a bĳection 𝐻𝑜𝑚(𝑌, 𝑋) ↔ 𝐹𝑌 for all sets 𝑌 . It is known that
#𝐻𝑜𝑚(𝑌, 𝑋) = #𝑌#𝑋, so this bĳection means that #𝑌#𝑋 = #𝐹𝑌 . Consider the case of a set
𝐴 with 1 element: There is only one preorder1 on 𝐴, so 1#𝑋 = 1, which means 𝑋 must have
one element. But on the other hand, consider the case of a set 𝐵 with two elements: There
are four preorders2 on 𝐵, so 2#𝑋 = 4, which means 𝑋 must have two elements. So we arrive
at a contradiction, which means 𝐹 cannot be represented by any set 𝑋 — that is to say, 𝐹 is
not representable. □

1If we define the element of 𝐴 as 0, the only possible preorder is { (0, 0) }, since preorders must be reflexive.
2If we define the elements of 𝐵 as 0 and 1, these preorders are: { (0, 0) , (1, 1) },

{ (0, 0) , (1, 1) , (0, 1) , }, { (0, 0) , (1, 1) , (1, 0) } and { (0, 0) , (1, 1) , (0, 1) , (1, 0) }.
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Exercise 2.4.vi. For a locally small category C, regard the two-sided represented functor
Hom(−,−) : C𝑜𝑝 ×C→ Set as a covariant functor of its domain Cop ×C. The category of
elements of Hom is called the twisted arrow category. Justify this name by describing its
objects and morphisms.

Proof. We begin by describing the objects of the category of elements. As in the
definition, the objects are pairs (𝑐, 𝑥). In this case, 𝑐 is an object in C𝑜𝑝 × C, which in this
context is a pair of elements in C, (𝑐1, 𝑐2). We also know 𝑥 ∈ Hom(𝑐1, 𝑐2), and thus 𝑥 is a
morphism between 𝑐1 and 𝑐2. But we note that the objects can be described by just 𝑥, as 𝑐
is merely the domain and range of 𝑥. Thus, the objects are morphisms, or "arrows."

Next, we consider the morphisms. A morphism h in Hom(−,−) will take ( 𝑓 , 𝑔), where
𝑓 : 𝑐1 → 𝑐2 and 𝑔 : 𝑐3 → 𝑐4 are morphisms in C, to a function that takes morphism
𝑥 : 𝑐2 → 𝑐3 to 𝑔𝑥 𝑓 . This can be more clearly seen below:

𝑐2
𝑥 // 𝑐3

𝑔

��
𝑐1

𝑓

OO

𝑐4

Then we note that the requirement that 𝐹ℎ(𝑥) = 𝑥′ for morphisms in the category of
elements. Thus we are given that 𝑔𝑥 𝑓 = 𝑥′, and get the following diagram.

𝑐2
𝑥 // 𝑐3

𝑔

��
𝑐1

𝑓

OO

𝑥′ // 𝑐4

Note how the arrows for 𝑓 and 𝑔 face opposite directions. This is the "twisted" part of
the twisted arrow diagram. □

Exercise 2.4.vii. Prove that the construction of the category of elements defines the action
on objects of a functor ∫

(−) : SetC → CAT/C.

Conclude that if 𝐹, 𝐺 : C→ Set are naturally isomorphic, then
∫
𝐹 �

∫
𝐺 over C.

Proof. SetC is the category where objects are functors from C to Set. The category
CAT/C =

∫
CAT(−,C) has as objects functors with codomain C. So, the functor

∫
(−)

takes a functor from C→ Set to a functor with codomain C.
The construction of the category of elements of a functor 𝐹 : C → Set creates pairs

(𝑐, 𝑥) where 𝑐 ∈ C and 𝑥 ∈ 𝐹𝑐. Letting
∫
(−) take objects to objects by 𝐹𝑐 ↦→ (𝑐, 𝐹𝑐), we

can see that the pair can be viewed as part of the data of a functor from CAT → C. So,∫
(−) acts on objects by taking the functor 𝐹 to its data viewed as pairs.
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If 𝐹, 𝐺 : C → Set are naturally isomorphic, then there is an isomorphism between 𝐹𝑐
and 𝐺𝑐 for all 𝑐 ∈ C, and in their respective categories of elements, we would have that
(𝑐, 𝐹𝑐) � (𝑐, 𝐺𝑐) by the aforementioned isomorphism on the second component. Since
these pairs are the contents of

∫
𝐹 and

∫
𝐺 over C, we have that

∫
𝐹 �

∫
𝐺 over C.

Exercise 2.4.viii. Prove that for any𝐹 : C→ Set, the canonical forgetful functorΠ :
∫
𝐹 →

C has the following property: for any morphism 𝑓 : 𝑐 → 𝑑 in the “base category” C and
any object (𝑐, 𝑥) in the fiber over 𝑐, there is a unique lift of the morphism 𝑓 to a morphism
in

∫
𝐹 with domain (𝑐, 𝑥) that projects along Π to 𝑓 . A functor with this property is called

a discrete left fibration.

Proof. Recall that the objects of
∫
𝐹 are pairs (𝑐, 𝑥) such that 𝑥 ∈ 𝐹𝑥 and morphisms

are pointed maps compatible with the pairs. The canonical forgetful functor simply takes
(𝑐, 𝑥) to 𝑐 and a morphism to itself. If we are given a morphism 𝑓 : 𝑐 → 𝑑 and an object
(𝑐, 𝑥), then by the nature of functions, there is a unique 𝑦 ∈ 𝐹𝑑 such that 𝐹 𝑓 (𝑥) = 𝑦. This
𝑦 determines a unique object (𝑑, 𝑦) in

∫
𝐹 along with a morphism 𝑓 : (𝑐, 𝑥) → (𝑑, 𝑦). It is

clear that this is the only morphism satisfying 𝐹 𝑓 (𝑥) = 𝑦. □

Exercise 2.4.ix. Formulate the dual definition of a discrete right fibration satisfied by the
canonical functor

∏
:

∫
𝐹 → C associated to a covariant functor 𝐹 : C𝑜𝑝 → Set.

Proof. For the discrete right fibration, take any 𝐹 : Cop → Set. Now providing the
forgetful functor

∏
:

∫
𝐹 → C with the conditions that for any morphism 𝑓 : 𝑐 → 𝑑 in C,

and any object (𝑐, 𝑥) in the fiber over 𝑑, there exists a unique lift of the morphism 𝑓 to a
morphism in

∫
𝐹 with domain (𝑑, 𝑥′). Namely,

∏
: (𝑐, 𝑥) → (𝑑, 𝐹 𝑓 (𝑥′)) = 𝑓 : 𝑐 → 𝑑.

This lifted morphism in
∫
𝐹 will project along

∏
to 𝑓 , such that 𝐹 𝑓 (𝑥′) = 𝑥.

Exercise 2.4.x. Answer the question posed at the end of this section: fixing two objects
𝐴, 𝐵 in a locally small category C, we define a functor

C(𝐴,−) × C(𝐵,−) : C→ Set

that carries an object 𝑋 to the set C(𝐴, 𝑋) × C(𝐵, 𝑋) whose elements are pairs of maps
𝑎 : 𝐴→ 𝑋 and 𝑏 : 𝐵→ 𝑋 in C. What would it mean for this functor to be representable?

The answer is actually in Remark 3.1.27 in the next chapter. Namely, this functor is
representable if and only if 𝐴 and 𝐵 have a coproduct 𝐷 = 𝐴

∐
𝐵 in C.
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In more detail, say that we have an object 𝐷 of C together with morphisms 𝜄𝐴 : 𝐴→ 𝐷

and 𝜄𝐵 : 𝐵→ 𝐷 that for every object 𝑋 of C induce a bĳection

𝐼𝑋 : C(𝐷, 𝑋) → C(𝐴, 𝑋) × C(𝐵, 𝑋)

by 𝐼𝑋 ( 𝑓 ) = ( 𝑓 𝜄𝐴, 𝑓 𝜄𝐵). Then for any 𝑔 : 𝑋 → 𝑌 we have a commutative diagram

C(𝐷, 𝑋)
𝑔∗

//

𝐼𝑋

��

C(𝐷,𝑌 )

𝐼𝑌

��

C(𝐴, 𝑋) × C(𝐵, 𝑋)
(𝑔∗ ,𝑔∗ )

// C(𝐴,𝑌 ) × C(𝐵,𝑌 )

so that 𝐼 : C(𝐷,−) ⇒ C(𝐴,−) × C(𝐵,−) is a natural isomorphism of functors, making 𝐷
a representing object for C(𝐴,−) × C(𝐵,−).

Conversely, say that for some object 𝐷 of C we have a natural isomorphism 𝐼 :
C(𝐷,−) ⇒ C(𝐴,−) × C(𝐵,−). Then define 𝜄𝐴 : 𝐴 → 𝐷 and 𝜄𝐵 : 𝐵 → 𝐷 to be the
two components of 𝐼𝐷 (1𝐷) ∈ C(𝐴, 𝐷) × C(𝐵, 𝐷). That is, 𝐼𝐷 (1𝐷) = (𝜄𝐴, 𝜄𝐵).

Since 𝐼 is a natural isomorphism from C(𝐷,−) to C(𝐴,−) ×C(𝐵,−) we have for every
object 𝑋 that 𝐼𝑋 : C(𝐷, 𝑋) → C(𝐴, 𝑋) × C(𝐵, 𝑋) is a bĳection. We wish to show that
𝐼𝑋 is given by the formula above. To see this, note that for any 𝑓 ∈ C(𝐷, 𝑋) we have a
commutative diagram

C(𝐷, 𝐷)
𝑓∗

//

𝐼𝐷

��

C(𝐷, 𝑋)

𝐼𝑋

��

C(𝐴, 𝐷) × C(𝐵, 𝐷)
( 𝑓∗ , 𝑓∗ )

// C(𝐴, 𝑋) × C(𝐵, 𝑋)

.

Using the commutativity of this diagram, we have that

𝐼𝑋 ( 𝑓 ) = 𝐼𝑋 𝑓∗ (1𝐷) = ( 𝑓∗, 𝑓∗)𝐼𝐷 (1𝐷) = ( 𝑓∗, 𝑓∗) (𝜄𝐴, 𝜄𝐵) = ( 𝑓 𝜄𝐴, 𝑓 𝜄𝐵)

as claimed.
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Chapter 3

Limits and Colimits

3.1 Limits and colimits as universal cones

Exercise 3.1.i. For a fixed diagram 𝐹 ∈ CJ, describe the actions of the cone functors
Cone(−, 𝐹) : C𝑜𝑝 → Set and Cone(𝐹,−) : C→ Set on morphisms in C.

Proof. In the contravariant case, the domain of the cone functor Cone(−, 𝐹) on mor-
phisms 𝑓 : 𝑐 → 𝑐′ in C𝑜𝑝 , is a morphism that takes the constant functor 𝑐 to 𝑐′, and thus is
a natural transformation 𝑓 : 𝑐 ⇒ 𝑐′. The contravariant cone funtor then sends 𝑓 to the map-
ping 𝑓 : Cone(𝑐′, 𝐹) → Cone(𝑐, 𝐹). From this mapping, for a cone in the domain of 𝑓 ∗,
which is a natural transformation 𝜆 : 𝑐′ ⇒ 𝐹, the cone functor results in the precomposition
of 𝑓 with 𝜆, namely, 𝜆 𝑓 .

Likewise for the covariant case, the cone functor Cone(𝐹,−) : C → Set sends mor-
phisms from 𝑐 to 𝑐′ to postcomposition of the natural transfomations comprising the sets
cones under 𝑐 with 𝑓 , namely, 𝑓 𝜆.

Exercise 3.1.ii. For a fixed diagram 𝐹 ∈ CJ, show that the cone functor Cone(−, 𝐹) is
naturally isomorphic to Hom(Δ(−), 𝐹), the restriction of the hom-functor for the category
CJ along the constant functor embedding defined in 3.1.1.

Proof. First, we note what we must show that we can define for each 𝑐 ∈ C, a function
𝜂𝑐 : Cone(𝑐, 𝐹) → Hom(Δ(𝑐), 𝐹) that causes the following diagram to commute for
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𝑓 : 𝑐 → 𝑐′.

Cone(𝑐′, 𝐹)
Cone(−,𝐹 ) ( 𝑓 )

//

𝜂′𝑐
��

Cone(𝑐, 𝐹)

𝜂𝑐

��

Hom(Δ(𝑐′), 𝐹)
Hom(Δ(−) ,𝐹 ) ( 𝑓 )

// Hom(Δ(𝑐), 𝐹)

(3.1)

Now, we note definition 3.1.2, which defines a cone over 𝐹 with apex 𝑐 as a natural
transformation 𝜆 : Δ(𝑐) → 𝐹. We also see that 𝜖 ∈ Hom(Δ(𝑐), 𝐹) is defined by the
following commutative diagram for a morphism 𝑓 : 𝑑 → 𝑒.

𝑐
1𝑐 //

𝜖𝑑

��

𝑐

𝜖𝑒

��

𝐹𝑑
𝐹 𝑓
// 𝐹𝑒

(3.2)

We can condense this diagram into the triangular diagram

𝑐

𝜖𝑑

~~

𝜖𝑒

  

𝐹𝑑
𝐹 𝑓

// 𝐹𝑒

(3.3)

Since we have a diagram like this for every 𝑓 ∈ mor C, we see that 𝜖 defines a cone in
Cone(𝑐, 𝐹). So we see that elements Cone(𝑐, 𝐹) and Hom(Δ(𝑐), 𝐹) describe the same
class of natural transformations. So the image of 𝑐 under the functors Cone(−, 𝐹) and
Hom(Δ(−), 𝐹) is identical. So these functors behave identically on objects.

We know by exercise 3.1.i that Cone(−, 𝐹) ( 𝑓 ) : Cone(𝑐′, 𝐹) → C(𝑐, 𝐹) takes a
𝜆𝑖 : 𝑐′ → 𝐹𝑖 to 𝜆𝑖 𝑓 : 𝑐 → 𝐹. We also see that by definition 3.1.1, that for an 𝜖 ∈
Hom(Δ(𝑐′), 𝐹) and 𝑓 : 𝑐 → 𝑐′, that Hom(Δ(−), 𝐹) ( 𝑓 ) = 𝜖 ∗ Δ( 𝑓 ), where Δ( 𝑓 ) is the
constant natural transformation defined by 𝑓 between the functors Δ(𝑐′) and Δ(𝑐). Since
we are vertically composing these natural transformations, we see that (𝜖 ∗ 𝑓 )𝑖 = 𝜖𝑖 𝑓𝑖 = 𝜖𝑖 𝑓 .
So these functors also behave identically on morphisms and so they are identical and have
a trivial natural isomorphisms between them. □

Exercise 3.1.iii. Prove that the category of cones over 𝐹 ∈ CJ (for which I will use the
notation Cone𝐹) is isomorphic to the comma category Δ ↓ 𝐹 formed from the constant
functor Δ : C → CJ and the functor 𝐹 : 1 → CJ. Argue by duality that the category of
cones under 𝐹 is the comma category 𝐹 ↓ Δ.

To clarify, the functor 𝐹 : 1 → CJ is the ’constant functor’ taking every
element of 1 (that is to say, the only element of 1) to the diagram 𝐹 ∈ CJ.
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Proof.

Proof. Every element of Δ ↓ 𝐹 must be of the form (𝑐, 0, 𝑚), where 𝑐 ∈ C, 0 ∈ 1,
and 𝑚 : Δ𝑐 → 0 ∈ CJ. Note that for any such tuple, Δ𝑐 = 𝑐 ∈ CJ and 0 = 𝐹 ∈ CJ. So
𝑚 must be a natural transformation within CJ from some constant functor to the functor
whose codomain is the diagram 𝐹. So a tuple (𝑐, 0, 𝑚) ∈ Δ ↓ 𝐹 corresponds to the diagram
𝐹 (determined by whatever diagram we chose the functor 𝐹 to ’point to,’) an object 𝑐 in
C, and a natural transformation 𝑚 : 𝑐 → 𝐹 ∈ C. Since 𝑚 is a natural transformation, all of
its components must commute. But since 𝑐 was defined the as the codomain of a constant
functor, its only endomorphism is the identity. So 𝑚 can be described by the following
diagram: □

𝑐

... 𝑣 𝑤 𝑥 𝑦 𝑧 ...

←

→𝑚𝑥

←
→𝑚𝑦

←

→
𝑚𝑧

←

→ 𝑚𝑤

←

→

𝑚𝑣

←

→

←

→←→𝛼←→ ←→
𝛽

←→𝛾 ←→

𝛿

←→
where 𝑣, 𝑤, 𝑥, 𝑦, 𝑧, etc. and 𝛼, 𝛽, 𝛾, 𝛿, etc. are objects and morphisms in 𝐹, respectively.
But if this diagram commutes, it is simply the diagram of a cone over 𝐹 with apex 𝑐, whose
legs are the components of 𝑚! So each distinct tuple in Δ ↓ 𝐹 describes a unique cone over
𝐹, with the first component of the tuple determining the apex of that cone and the second
component determining its legs. So we can define a bĳection 𝜙 between Δ ↓ 𝐹 and Cone𝐹
that associates each tuple (𝑐, 0, 𝑚) ∈ Δ ↓ 𝐹 with the unique cone (𝑐, 𝑚) ∈ Cone𝐹 (where
𝑐 is the apex of the cone and 𝑚 is the natural transformation 𝑐 ⇒ 𝑚 whose components are
the legs of the cone.)

Furthermore, note that the morphisms in Δ ↓ 𝐹 must be of the form (ℎ, 𝑘) : (𝑐, 0, 𝑚) →
(𝑐′, 0, 𝑚′) such that the following commutes:

Δ𝑐 𝐹0

Δ𝑐′ 𝐹0

←→𝑚

←→ Δℎ ←→𝐹𝑘

←→𝑚
′

But for any (ℎ, 𝑘) ∈ Δ ↓ 𝐹, 𝑘 : 0 → 0 can only be 10, which means 𝐹𝑘 can only be
1𝐹 , since functors preserve identities. Furthermore, for some ℎ : 𝑐 → 𝑐′, every leg of
Δℎ : 𝑐 → 𝑐′ is the morphism ℎ. So the above diagram can be redrawn as

𝑐 0

𝑐′ 0

←→𝑚

←→ ℎ ←→10

←→𝑚
′

and further simplified to
𝑐 𝑐′

𝐹

←→
ℎ

←→ 𝑚 ←→

𝑚′

Notice that since this diagram commutes, the morphism 𝑚 : 𝑐 → 𝑥 is equal to 𝑚′ℎ.
So any morphism (ℎ, 𝑘) : (𝑐, 0, 𝑚) → (𝑐′, 0, 𝑚) is uniquely defined by its component
ℎ : 𝑐 → 𝑐′. So we can create a bĳection 𝜑1 associating each (ℎ, 𝑘) with the unique
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ℎ : 𝑐 → 𝑐′ ∈ CJ that defines it. But recall that any natural transformation between cones is
also uniquely defined by the component that acts on the apexes of those cones. So we can
create another bĳection 𝜑2 that takes each morphism ℎ : (𝑐, 𝑚) → (𝑐′, 𝑚′) ∈ Cone𝐹 to the
unique ℎ : 𝑐 → 𝑐′ ∈ CJ that defines it. Finally, we can create a bĳection 𝜑 = 𝜑1𝜑2 that takes
each (ℎ, 𝑘) : (𝑐, 0, 𝑚) → (𝑐′, 0, 𝑚) ∈ Δ ↓ 𝐹 to the unique ℎ : (𝑐, 𝑚) → (𝑐′, 𝑚′) ∈ Cone𝐹
that is defined by the same ℎ : 𝑐 → 𝑐′ ∈ CJ.

So now we have a bĳection 𝜙 between the objects of Δ ↓ 𝐹 and the objects of Cone𝐹
and a bĳection 𝜑 between the morphisms of Δ ↓ 𝐹 and the morphisms of Cone𝐹 that
preserves those morphisms’ domains and codomains. So we can finally say that there is an
isomorphism Ξ between Δ ↓ 𝐹 and Cone𝐹 , where Ξ𝑂𝑏 𝑗 = 𝜙 and Ξ𝑀𝑜𝑟 = 𝜑. So Δ ↓ 𝐹 is
isomorphic to Cone𝐹 . □

Furthermore, note that for every morphism going from an object 𝑥 ∈ 𝐹 to the nadir 𝑐 of
a cone under 𝐹 in CJ, there is a corresponding morphism in CopJop

going from 𝑐 to 𝑥. So
every cone under 𝐹 ∈ CJ is also a cone over 𝐹 ∈ CopJop

. We might be tempted to stop here,
but recall that when creating the comma category Δ ↓ 𝐹, we defined the third component
of each tuple to be a morphism in C, not Cop.

So in order for our proof to still hold in the dual case, we must replace the third
component in each tuple with its corresponding morphism in Cop. This morphism certainly
exists, but in a comma category the third component of each tuple must be a morphism
from the image of the first component to the image of the second. So if we "turn around"
that third component of every tuple in the category, we must also switch the positions of
the first and second components of every tuple in the category; which gives us the comma
category 𝐹 ↓ Δ. Now the proof by duality in the previous paragraph is valid, which means
the category of cones under 𝐹 is in fact isomorphic to 𝐹 ↓ Δ. □

Exercise 3.1.iv. Give a second proof of Proposition 3.1.7 by using the universal properties
of each of a pair of limit cones 𝜆 : 𝑙 ⇒ 𝐹 and 𝜆′ : 𝑙′ ⇒ 𝐹 to directly construct the unique
isomorphism 𝑙 � 𝑙′ between their apexes.

Proof. Since 𝜆 and 𝜆′ are limit cones, for any cones Λ : 𝑐 ⇒ 𝐹 and Λ′ : 𝑐′ ⇒ 𝐹 there
are unique morphisms 𝑓 : 𝑐 → 𝑙 and 𝑓 ′ : 𝑐′ → 𝑙′ such that Λ = 𝜆 𝑓 and Λ′ = 𝜆′ 𝑓 ′.

In the case in which Λ = 𝜆 and Λ′ = 𝜆′, the unique 𝑓 and 𝑓 ′ satisfying 𝜆 = 𝜆 𝑓 and
𝜆′ = 𝜆′ 𝑓 are 𝑓 = 1𝑙 and 𝑓 ′ = 1𝑙′ .

In the case in which Λ = 𝜆′ and Λ′ = 𝜆 we obtain unique morphisms 𝑔 : 𝑙′ → 𝑙 and
𝑔′ : 𝑙 → 𝑙′ such that 𝜆′ = 𝜆𝑔 and 𝜆 = 𝜆′𝑔′.

Thus, 𝜆 = 𝜆′𝑔′ = 𝜆𝑔𝑔′. But, we have already seen that the unique morphism 𝑓 such that
𝜆 = 𝜆 𝑓 is 1𝑙 . So, 𝑔𝑔′ = 1𝑙 . Similarly, 𝜆′ = 𝜆𝑔 = 𝜆′𝑔′𝑔 and a similar uniqueness argument
made above shows us that 𝑔′𝑔 = 1𝑙′ .

So, 𝑔 and 𝑔′ are inverse isomorphisms between 𝑙 and 𝑙′ as required.
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Exercise 3.1.v. Consider a diagram 𝐹 : J → P valued in a poset (P, ≤). Use order-
theoretic language to characterize the limit and the colimit.

Proof. Consider a cone over 𝐹 where in P, 𝑥 ≤ 𝑦 ≤ 𝑧:

𝑝

𝜆𝑥

{{

𝜆𝑦

��

𝜆𝑧

##

· · · ≤
// 𝐹 (𝑥) ≤

// 𝐹 (𝑦) ≤
// 𝐹 (𝑧) ≤

// · · ·

Where 𝜆 = (𝜆𝑛 : 𝑝 → 𝐹𝑛)𝑛∈P, the family of order preserving morphisms from 𝑝 to 𝐹. We
know that lim 𝐹 is a terminal object in the category of cones over 𝐹. If 𝑝 is a limit of 𝐹 (as
in the diagram above), then any other cone 𝑞 with morphisms 𝛾𝑛 : 𝑞 → 𝐹𝑛 (for all 𝐹𝑛) must
have that 𝛾𝑛 factors through 𝜆𝑛. So there must exist some morphism from 𝑞 → 𝑝, which
would imply that 𝑞 ≤ 𝑝 in (P, ≤). Moreover, this morphism is unique, since in a poset
category there can be at most one morphism between any two objects. Given that 𝑞 ≤ 𝑝 for
all 𝑞, and that 𝑝 has morphisms to all 𝐹𝑛, we have that 𝑝 is an infimum of {𝐹𝑛 | 𝑛 ∈ ob J},
if it exists. Dually, the colimit would be a supremum, if it exists. In both cases, limits and
colimits are unique up to isomorphism (Proposition 3.1.7), and similarly, the infimum and
supremum are unique. □

Exercise 3.1.vi. Prove that if

𝐸
ℎ // 𝐴

𝑓
//

𝑔
// 𝐵

is an equalizer diagram, then ℎ is a monomorphism.

Proof. By the universal property for an 𝑎 : 𝐶 → 𝐴, there exists a unique factorization
𝑘 : 𝐶 → 𝐸 of 𝑎 through ℎ. This implies that if 𝑓 𝑎 = 𝑔𝑎 then the following diagram
commutes.

𝐶

∃!𝑘
��

𝑎

��

𝐸
ℎ
// 𝐴

𝑓
//

𝑔
// 𝐵

To show ℎ is a monomorphism define another morphism 𝑏 : 𝐶 → 𝐸 such we get a commu-
tative diagram.

𝐶

∃!𝑘
��

𝑎

��

𝑏

��

𝐸
ℎ
// 𝐴

𝑓
//

𝑔
// 𝐵
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Because the above diagram commutes we get see that 𝑔ℎ𝑏 = 𝑓 ℎ𝑏. Since ℎ𝑏 : 𝐶 → 𝐴

and 𝑔ℎ𝑏 = 𝑓 ℎ𝑏, the universal property tells us that we can factor ℎ𝑏 through ℎ by 𝑘. So
ℎ𝑏 = ℎ𝑘, but since 𝑘 is unique we must have 𝑏 = 𝑘. Thus ℎ is left cancellable and therefore
a monomorphism.

Exercise 3.1.vii. Prove that if
𝑃 𝐶

𝐵 𝐴

←→𝑘

←→ ℎ
⌟ ←→ 𝑔

↢→𝑓

is a pullback square and 𝑓 is a monomorphism, then 𝑘 is a monomorphism.

(Recall: the notation ↣ means that 𝑓 is mono.)

Proof. Consider morphisms 𝑙, 𝑒 : 𝐷 → 𝑃 where 𝑘𝑒 = 𝑘𝑙 and 𝑃 is the pullback cone.
We have that 𝑔𝑘𝑙 = 𝑔𝑘𝑒, which due to the commutativity of the diagram is the same as
𝑓 ℎ𝑙 = 𝑓 ℎ𝑒, but since 𝑓 is mono, ℎ𝑙 = ℎ𝑒. Letting 𝑐 = 𝑘𝑙 = 𝑘𝑒 and 𝑏 = ℎ𝑙 = ℎ𝑒, we have
the following diagram.

𝐷

𝑏

��

𝑐

""

𝑑

  

𝑃
𝑘 //

ℎ

��   

𝐶

𝑔

��

𝐵 //
𝑓
// 𝐴

Then we have that 𝑔𝑐 = 𝑓 𝑏 and there must be a unique morphism 𝑑 where 𝑐 = 𝑘𝑑 and
𝑏 = ℎ𝑑. Since 𝑑 is unique, we must have that 𝑙 = 𝑒 and thus 𝑘 is a monomorphism. □

Exercise 3.1.viii. Consider a commutative rectangle

• • •

• • •

←→

←→

←→

←→

⌟ ←→

←→ ←→

whose right-hand square is a pullback. Show that the left-hand square is a pullback if and
only if the composite rectangle is a pullback.
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Proof. For ease of reference we will give the objects in the above diagram names as
follows.

𝑎 𝑏 𝑤

𝑥 𝑦 𝑧

←→

←→

←→

←→

⌟ ←→

←→ ←→
Recall that a pullback is the limit of a functor from • → • ← •, so we are dealing with
three functors from this category with the following images:

𝑥 → 𝑧 ← 𝑦, 𝑦 → 𝑧 ← 𝑤, and 𝑥 → 𝑦 ← 𝑏.

Note that the map from 𝑥 to 𝑧 factors through 𝑦.
Further note that because 𝑏 is a pullback and 𝑎 is the apex of cone with 𝑦 → 𝑧 ← 𝑤 as

a base (with the composite maps 𝑎 → 𝑥 → 𝑦 and 𝑎 → 𝑏 → 𝑤 as legs), the map 𝑎 → 𝑏 is
unique.

𝑐

𝑎 𝑏 𝑤

𝑥 𝑦 𝑧

←

→

←

→

←

→

←

→

←→

←→

←→

←→ ←→

←→ ←→

Suppose first that the left-hand square is a pullback along with the right-hand square, and
there is an apex 𝑐 to the cone with 𝑥 → 𝑧 ← 𝑤 as a base. By taking 𝑐 → 𝑥 → 𝑦 as a leg,
𝑐 is a cone over 𝑦 → 𝑧 ← 𝑤 and thus there is a unique map 𝑐 d 𝑏 making 𝑐 also the apex
of a cone over 𝑥 → 𝑦 ← 𝑏. Thus there is a unique map 𝑐 d 𝑎 making the whole diagram
commute. Thus 𝑎 is the limit of 𝑥 → 𝑧 ← 𝑤.

Conversely suppose that the whole diagram is a pullback and that 𝑐 is a cone over
𝑥 → 𝑦 ← 𝑏. Then 𝑐 is also a cone over 𝑥 → 𝑧 ← 𝑤 with 𝑎 → 𝑏 → 𝑤 as a leg. Thus we
again have a unique map 𝑐 d 𝑎 that makes the diagram commute, and 𝑎 is also the limit of
𝑥 → 𝑦 ← 𝑏. □

Exercise 3.1.ix. Show that if J has an initial object, then the limit of any functor indexed
by J is the value of that functor at an initial object. Apply the dual of this result to describe
the colimit of a diagram indexed by a successor ordinal.

Proof. We begin by showing that an initial object of J gives a limit for any functor
𝐹 : J→ C where C is some category. Letting ∗ be an initial object of J, for any object 𝑗 in
J there is precisely one map 𝜆 𝑗 : ∗ → 𝑗 . For ∗ to form a cone over 𝐹 we need a family of
morphisms from 𝐹∗ to 𝐹 𝑗 for each object 𝑗 in 𝑠𝐽. An obvious (but not necessarily required)
choice is to take 𝐹𝜆 𝑗 . Now we need only check that for every morphism 𝑓 : 𝑗 → 𝑘 in J
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the identity 𝐹 𝑓 𝐹𝜆 𝑗 = 𝐹𝜆𝑘 . Because 𝑓 𝜆 𝑗 = 𝜆𝑘 this is precisely the condition that 𝐹 is
functorial.1

Now suppose that 𝑐 is the apex of a cone over 𝐹, so there is a distinguished map
𝜌 𝑗 : 𝑐 → 𝐹 𝑗 for each 𝑗 in J satisfying the naturality condition of a cone. For 𝐹∗ to be the
limit of 𝐹, there must be a unique map 𝜓 : 𝑐 → 𝐹∗ such that 𝜌 𝑗 = 𝐹𝜆 𝑗𝜓. In particular we
need that 𝜌∗ = 𝐹𝜆∗𝜓, however, 𝜆∗ is the identity on ∗, so we have 𝜌∗ = 𝜓. Thus the leg of
the cone from 𝑐 to 𝐹∗ gives us the unique map we require.

𝑐

𝐹∗ 𝐹 𝑗

←→𝜌∗

←

→
𝜌 𝑗

←→
𝐹𝜆 𝑗

Note that both limits and initial objects are unique up to a canonical isomorphism, which
conforms with our result. If J had multiple initial objects, by the argument above all of
these would give limits of a cone based on J, and the unique isomorphism between two
initial objects would transfer to C to give us the canonical isomorphism between limits.

Now consider the case of a successor ordinal category n and a functor 𝐹 : n → C.
Note first that a successor ordinal 𝑛 by definition is the successor of some other ordinal
denoted 𝑛 − 1.2 Considered as a poset, any ordinal is a well-ordered chain:3 the set of all
strictly smaller ordinals ordered under inclusion. If n is a successor ordinal, then this poset
has maximum element 𝑛 − 1, i.e. 𝑚 ⊂ 𝑛 − 1 for any 𝑚 ∈ n.

Considered as a category, a poset has as maps the elements of a relation, in this case
⊂, and as objects the elements of the poset. Thus the condition that 𝑛 − 1 is a maximum
element is precisely saying that 𝑛 − 1 is a terminal object in n.

The dual of the above result gives precisely that the colimit of a functor indexed by a
diagram with a terminal object is the value of the functor at the terminal object. Instead of
considering an apex 𝑐 with maps leading into the image of our diagram we instead consider
a nadir with maps leading from our diagram to 𝑐. It is clear that a terminal object will
satisfy the argument above with the arrows reversed. This means that the functor 𝐹 : n→ C
has as a colimit 𝐹 (𝑛 − 1). □

Exercise 3.1.x. If (𝑎, 𝑏) are positive integers satisfying the universal property of (3.1.20)
show that the pair (−𝑎,−𝑏) also satisfies the same universal property. Explain why this
observation does not imply that the pullback is ill-defined.

1Note that this is weaker than saying that any triangle in the image of 𝐹 must commute.
𝐹∗

𝐹 𝑗 𝐹𝑘

←→←→

←→
It is

entirely possible to create new composable pairs if 𝐹 is not injective on objects. Even if 𝐹 𝑗 = 𝐹 𝑗′, 𝐹𝜆 𝑗 and
𝐹𝜆 𝑗′ may be distinct. Given a map 𝑓 : 𝑗 → 𝑘, it need not be true that 𝐹 𝑓 𝐹𝜆 𝑗′ = 𝐹𝜆𝑘 , but this is immaterial to
the naturality of the 𝐹𝜆 𝑗 .

2In contrast a limit ordinal like 𝜔 or 2𝜔 is not the successor of any other ordinal and is instead the least upper
bound of an otherwise unbounded collection.

3This chain need not be finite. The ordinal 𝜔 + 1 = 𝜔 ∪ { 𝜔 } is a successor ordinal with maximum element
𝜔.
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Proof. Mark how do I get the angle on this diagram For reference (3.1.20) is the
following commutative diagram.

Z Z

Z Z

←→𝑏

←→ 𝑎⌟ ←→ 𝑛

←→𝑚

We know from undergraduate algebra the least common multiple of two integers is only
unique up to multiplication by a unit. Therefore, (−𝑎,−𝑏) should satisfy the above diagram
as well. The pullback is unique 4 up to isomorphism. Since -1 is an automorphism on Z
that takes(𝑎, 𝑏) to (−𝑎,−𝑏), so in either case the diagrams are essentially the same thing as
far as we are concerned. □

Lemma 3.1.1 (3.2.vi). Prove that the limit of any small functor 𝐹 : 𝐶 → Set is isomorphic
to the set of functors𝐶 →

∫
𝐹 that defines a section to the canonical projection

∏
:
∫
𝐹 →

𝐶 from the category of elements of 𝐹. Using this description of the limit, define the limit
cone.

Proof. Since the category Set is complete, every diagram 𝐹 has limits valued in 𝐶.
Thus we want to show that this set of limits is isomorphic to the set of functors 𝐶 →

∫
𝐹.

Let {𝜙}𝑖∈𝑜𝑏𝐶 be the set of functors𝐶 →
∫
𝐹, which defines a section to

∏
:
∫
𝐹 → 𝐶,

such that, for 𝐶 →𝜙𝑖
∫
𝐹 →

∏
𝐶,

∏
𝜙𝑖 = 1𝐶 for all 𝑖 ∈ 𝑜𝑏𝐶, where

∏
is the forgetful

functor. So
∏
𝜙𝑖 takes objects in 𝐶 to objects in 𝐶, forgetting covariance built into the

category of elements along the way.
Define a function 𝑓 : 𝑥 → 𝑦, for 𝑥 ∈ {𝜙}𝑖∈𝑜𝑏𝐶and 𝑦 ∈ 𝑙𝑖𝑚𝐹. □

Exercise 3.1.xi. Suppose 𝐸 : I → J defines an equivalence between small categories and
consider a diagram 𝐹 : J→ C. Show that the category of J-shaped cones equivalent to the
category of I-shaped cones over 𝐹𝐸 , and use this equivalence to describe the relationship
between limits of 𝐹 and limits of 𝐹𝐸 .

Proof. We will denote the category of cones over some diagram 𝐺 : J→ C as ConeG
Recall the following facts for ConeG :

1. Objects of ConeG are natural transformations 𝛼 : 𝑐J ⇒ 𝐺 where 𝑐J is the constant
functor mapping every object in 𝐽 to 𝑐 and every morphism to 1𝑐.

2. A morphism 𝑓 : 𝛼 → 𝛽 between cones 𝛼 : 𝑐J ⇒ 𝐺 and 𝛽 : 𝑑J ⇒ 𝐺 is the natural
transformation 𝑓J : 𝑑J ⇒ 𝑐J where every component of 𝑓J is 𝑓 and 𝛼 · 𝑓J = 𝛽.

3. The identity morphism of 𝛼 is simply 1𝑐𝐽 where 𝑐𝐽 is the domain of 𝛼.
4. Composition of morphisms is composition of natural transformations.
Now we will define the functor 𝑅𝑊𝐸 : ConeF → ConeFE as follows:
1. 𝑅𝑊𝐸 maps cone 𝛼 to 𝛼𝐸 where for 𝑖 ∈ ob I the corresponding component is 𝛼𝐸𝑖 : 𝑐 →
𝐹𝐸𝑖, in other words, 𝛼𝐸 is a restriction of 𝛼 to the image of the functor 𝐸 .

2. 𝑅𝑊𝐸 maps morphism 𝑓𝐽 to 𝑓𝐼 .
3. 𝑅𝑊𝐸 performs a right whiskering of 𝐸 onto natural transformations.

4Like everything else in category theory probably
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𝑅𝑊𝐸 is clearly a functor since the composition 𝑔𝐽 · 𝑓𝐽 gets mapped to 𝑔𝐼 · 𝑓𝐼 and
1𝑐𝐽 gets mapped onto 1𝑐𝐼 . Now we will show that 𝑅𝑊𝐸 is an equivalence. First we will
show essential surjectivity. Suppose 𝛾 is an object in Cone𝐹𝐸 , we will construct a natural
transformation 𝛾𝐹 such that 𝛾𝐹

𝑗
= 𝐹𝜙 𝑗 · 𝛾𝑖 where 𝑖 is an object in I such that 𝐸𝑖 � 𝑗 . and

𝜙 𝑗 : 𝐸𝑖 → 𝑗 is an isomorphism. When 𝐸𝑖 = 𝑗 , we will let 𝜙 𝑗 = 1 𝑗 . Our construction is
well-defined since 𝐸 is essentially surjective. To show that 𝛾𝐹 is a natural transformation,
take a morphism 𝑎 : 𝑗 → 𝑗 ′ in J. We can show that 𝑎 = 𝜙 𝑗′𝑏𝜙

−1
𝑗

for a unique 𝑏 in
J (𝐸𝑖, 𝐸𝑖′) , where 𝐸𝑖 � 𝑗 and 𝐸𝑖′ � 𝑗 ′. We can form a bĳection from J (𝐸𝑖, 𝐸𝑖′) to
J ( 𝑗 , 𝑗 ′) by pre-composing 𝜙−1

𝑗
and post-composing 𝜙 𝑗′ . Furthermore since 𝐸 is full and

faithful, there exist a unique 𝑐 ∈ I (𝑖, 𝑖′) such that 𝑏 = 𝐸𝑐. We can claim that 𝑎 = 𝜙 𝑗′𝐸𝑐𝜙
−1
𝑗

for a unique 𝑐 ∈ I (𝑖, 𝑖′). Now we must show that 𝐹𝑎 · 𝛾𝐹
𝑗
= 𝛾𝐹

𝑗′ , but this is equivalent to
𝐹𝐸𝑐 · 𝛾𝑖 = 𝛾𝑖′ which follows from naturality of 𝛾. Thus 𝛾𝐹 is natural and is a cone over
𝐹. Applying 𝑅𝑊𝐸 to 𝛾𝐹 gives us 𝛾 since each 𝜙𝐸𝑖 for 𝑖 ∈ ob I is the identity. Thus 𝑅𝑊𝐸 is
essentially surjective.

To show full and faithful take cones 𝛼 and 𝛽 and suppose 𝑓𝐽 and 𝑔𝐽 are morphisms from
𝛼 to 𝛽 such that 𝑅𝑊𝐸 𝑓𝐽 = 𝑅𝑊𝐸𝑔𝐽 . Then 𝑓𝐼 = 𝑔𝐼 which means that 𝑓 = 𝑔. Thus 𝑓𝐽 = 𝑔𝐽 .
Now take a morphism ℎ𝐼 from 𝛼𝐸 to 𝛽𝐸 , we must show that ℎ𝐽 is a morphism from 𝛼 to 𝛽.
Since we already have that 𝛼𝐸𝑖 · ℎ = 𝛽𝐸𝑖 for all 𝑖 ∈ ob I, by naturality, for each 𝑘 : 𝐸𝑖 → 𝑗

in J, we have that 𝐹𝑘 · 𝛼𝐸𝑖 = 𝛼 𝑗 and 𝐹𝑘 · 𝛽𝐸𝑖 = 𝛽 𝑗 . Since, 𝐸 is essentially surjective,
for any 𝑗 ∈ ob J, we have an isomorphism 𝜙 𝑗 : 𝐸𝑖 → 𝑗 for some 𝑖 allowing the equality
𝐹𝜙 𝑗 · 𝛼𝐸𝑖 · ℎ = 𝐹𝜙 𝑗 · 𝛽𝐸𝑖 which gives us 𝛼 𝑗 · ℎ = 𝛽 𝑗 for all 𝑗 . Thus ℎ𝐽 is a morphism from
𝛼 to 𝛽.

Thus 𝑅𝑊𝐸 is full, faithful, and essentially surjective. Therefore, Cone𝐹 is equivalent
to Cone𝐹𝐸 .

Suppose 𝐹 had a limit cone 𝜔𝐹 , then by the universal property of limits, 𝜔𝐹 is terminal
in Cone𝐹𝐸 . Since 𝑅𝑊𝐸 is full, faithful, and essentially surjective then for all cones 𝛽
over 𝐹𝐸 , there exist a cone 𝛼 of 𝐹 such that Cone𝐹 (𝛼, 𝜔𝐹) � Cone𝐹𝐸 (𝛼𝐸, 𝜔𝐹𝐸) �
Cone𝐹𝐸 (𝛽, 𝜔𝐹𝐸). Then 𝜔𝐹𝐸 is the terminal object of Cone𝐹𝐸 . Thus 𝜔𝐹𝐸 is the limit
cone of 𝐹𝐸 . The components of 𝜔𝐹 and 𝜔𝐹𝐸 have the same domain since 𝜔𝐹𝐸 is a
restriction of the components of 𝜔𝐹 . Therefore 𝐹 and 𝐹𝐸 have the same limit.

Exercise 3.1.xii. What is the coproduct in the category of commutative rings?

The solution for this exercise requires tensor products of abelian groups. For the full
solution, we will need to consider tensor products of arbitrary families of abelian groups.
In writing this solution, I expand on ideas from the end of Chapter 2 of Introduction to
Commutative Algebra by Atiyah and MacDonald, and Appendix A6.3 of Commutative
Algebra with a View Toward Algebraic Geometry by Eisenbud.

In principal, we could just dive in and construct the coproduct of an arbitrary family of
commutative rings. But, it is best to see how this works in the case of two commutative
rings first.

So, in the first part of this solution we will take the following steps:
1. Describe the tensor product 𝐴 ⊗ 𝐵 of two abelian groups 𝐴 and 𝐵.
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2. Show that for two commutative rings 𝑅 and 𝑆, the tensor product 𝑅 ⊗ 𝑆 of their
additive groups has a well-defined multiplication law, making 𝑅 ⊗ 𝑆 a commutative
ring. This is the trickiest part.

3. Describe ring homomorphisms from 𝑅 and 𝑆 to 𝑅 ⊗ 𝑆 and show that they satisfy the
universal property for the coproduct in the category of commutative rings.

After all that hard work, we will do it over again for arbitrary families of abelian groups
and arbitrary families of commutative rings.

Riehl introduces tensor products of k-vector spaces in Example 2.3.7 and continues
their discussion through Remark 2.3.11 and Exercise 2.3.ii. Although she does not show
that tensor products exist (they do), she does derive a number of basic properties.

The entire discussion remains the same if k-vector spaces are replaced by 𝑅-modules,
where 𝑅 is a commutative ring.5 Since we are only concerned with abelian groups, and
abelian groups are Z-modules, we may take 𝑅 = Z. This simplifies a few points, though
the general case is not much harder.

For convenience, we will write all abelian groups additively. If 𝐶 is a third abelian
group, then a bilinear function

𝑓 : 𝐴 × 𝐵→ 𝐶

is as defined in Example 2.3.7 with "linear map" replaced by "group homomorphism". That
is, we require that 𝑓 (𝑎1+𝑎2, 𝑏) = 𝑓 (𝑎1, 𝑏)+ 𝑓 (𝑎2, 𝑏) and 𝑓 (𝑎, 𝑏1+𝑏2) = 𝑓 (𝑎, 𝑏1)+ 𝑓 (𝑎, 𝑏2).
It follows for any 𝑛 ∈ Z that 𝑓 (𝑛𝑎, 𝑏) = 𝑛 𝑓 (𝑎, 𝑏) = 𝑓 (𝑎, 𝑛𝑏). If also 𝑔 : 𝐶 → 𝐷 is a
homomorphism of abelian groups, then it is easy to check that 𝑔 𝑓 : 𝐴 × 𝐵→ 𝐷 is bilinear.
So, we have a functor

Bilin(𝐴, 𝐵;−) : Ab→ Set

where Bilin(𝐴, 𝐵;𝐶) is the set of bilinear functions 𝑓 : 𝐴 × 𝐵 → 𝐶. If 𝑔 : 𝐶 → 𝐷 is
as above, then post-composition gives a function 𝑔∗ : Bilin(𝐴, 𝐵;𝐶) → Bilin(𝐴, 𝐵;𝐷),
making Bilin(𝐴, 𝐵;−) a functor. Any abelian group representing this functor is the tensor
product of 𝐴 and 𝐵 and has earned the right to be written as 𝐴 ⊗ 𝐵.

We now give a standard construction of the tensor product of two abelian groups 𝐴 and
𝐵. Let 𝐹 be the free abelian group whose basis is the set 𝐴 × 𝐵. That is, each element of 𝐹
may be uniquely written as

∑𝑛
𝑖=1 𝑚𝑖 (𝑎𝑖 , 𝑏𝑖) where 𝑛 ∈ N, 𝑚𝑖 ∈ Z and (𝑎1, 𝑏1), . . . , (𝑎𝑛, 𝑏𝑛)

are distinct elements of 𝐴 × 𝐵. Let 𝐾 ⊆ 𝐹 be the subgroup generated by

(𝑎1 + 𝑎2, 𝑏) − (𝑎1, 𝑏) − (𝑎2, 𝑏) and (𝑎, 𝑏1 + 𝑏2) − (𝑎, 𝑏1) − (𝑎, 𝑏2)

for 𝑎1, 𝑎2, 𝑎 ∈ 𝐴 and 𝑏1, 𝑏2, 𝑏 ∈ 𝐵. The generators are precisely what we need to guarantee
that

(𝑎1 + 𝑎2, 𝑏) ≡ (𝑎1, 𝑏) + (𝑎2, 𝑏) and (𝑎, 𝑏1 + 𝑏2) ≡ (𝑎, 𝑏1) + (𝑎, 𝑏2)

modulo 𝐾 . It follows that for each generator (𝑎, 𝑏) of 𝐹 and each integer 𝑚 ∈ Z,

(𝑚𝑎, 𝑏) ≡ 𝑚(𝑎, 𝑏) ≡ (𝑎, 𝑚𝑏) modulo 𝐾.

5Tensor products of modules for noncommutative rings are trickier and do not exist in the generality that we
will discuss in the second half. See Jacobson’s Basic Algebra II for basic information on tensor products of
modules over noncommutative rings.
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Write 𝐴 ⊗ 𝐵 for 𝐹/𝐾 . Write 𝑎 ⊗ 𝑏 for the congruence class of (𝑎, 𝑏) in 𝐴 ⊗ 𝐵. Then
we immediately have the following identities in 𝐴 ⊗ 𝐵, with 𝑎, 𝑎1, 𝑎2, 𝑏, 𝑏1, 𝑏2, 𝑚 as above:

(𝑎1+𝑎2)⊗𝑏 = 𝑎1⊗𝑏+𝑎2⊗𝑏, 𝑎⊗(𝑏1+𝑏2) = 𝑎⊗𝑏1+𝑎⊗𝑏2, (𝑚𝑎)⊗𝑏 = 𝑚(𝑎⊗𝑏) = 𝑎⊗(𝑚𝑏).

It follows that each element of 𝐴 ⊗ 𝐵 has a (non-unique) representation as
𝑛∑︁
𝑖=1

𝑎𝑖 ⊗ 𝑏𝑖 .

An element of 𝐴 ⊗ 𝐵 of the form 𝑎 ⊗ 𝑏 is called a simple tensor.
Let ⊗ : 𝐴 × 𝐵 → 𝐴 ⊗ 𝐵 be the function given by ⊗(𝑎, 𝑏) = 𝑎 ⊗ 𝑏. Then the identities

above show that ⊗ is a bilinear function. It follows that for any morphism 𝑔 : 𝐴 ⊗ 𝐵 → 𝐶

in Ab, 𝑔 ◦ ⊗ : 𝐴 × 𝐵→ 𝐶 is also bilinear. This is one direction of a natural bĳection

Bilin(𝐴, 𝐵;𝐶) ↔ Ab(𝐴 ⊗ 𝐵,𝐶).

For the other direction, let 𝑓 : 𝐴 × 𝐵 → 𝐶 be a bilinear function. I claim that there is a
unique group homomorphism 𝑓 : 𝐴 ⊗ 𝐵→ 𝐶 such that 𝑓 = 𝑓 ◦ ⊗. For such an 𝑓 to exist,
it would need to satisfy for every 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that

𝑓 (𝑎, 𝑏) = 𝑓 ◦ ⊗(𝑎, 𝑏) = 𝑓 (𝑎 ⊗ 𝑏),

so there is at most one. To see that 𝑓 does exist, first define a group homomorphism
𝑓 : 𝐹 → 𝐶 by 𝑓 ((𝑎, 𝑏)) = 𝑓 (𝑎, 𝑏). Such a homomorphism exists because 𝐹 is free with
basis consisting of all of the (𝑎, 𝑏) ∈ 𝐴 × 𝐵. Since 𝑓 is bilinear, each generator of 𝐾 is
in ker 𝑓 . So, 𝑓 : 𝐹 → 𝐶 factors through 𝐹/𝐾 , and the induced map 𝑓 : 𝐹/𝐾 → 𝐶 is
𝑓 (𝑎 ⊗ 𝑏) = 𝑓 (𝑎, 𝑏) as required.

Now, what does this have to with the problem at hand? We will construct the
coproduct of two commutative rings 𝑅 and 𝑆 as a commutative ring whose additive group
is 𝑅 ⊗ 𝑆. While the multiplication law on 𝑅 ⊗ 𝑆 will seem obvious, the trick will be in
seeing that it is well-defined.

We now carry out this construction. Let 𝑅 and 𝑆 be our rings and 𝑅 ⊗ 𝑆 be the tensor
product of (𝑅, +) and (𝑆, +). Choose any (𝑟1, 𝑠1) ∈ 𝑅 × 𝑆. Then we have a function

𝜇 (𝑟1 ,𝑠1 ) : 𝑅 × 𝑆 → 𝑅 ⊗ 𝑆

taking (𝑟2, 𝑠2) ∈ 𝑅 × 𝑆 to 𝑟1𝑟2 ⊗ 𝑠1𝑠2. Using the distributive laws for 𝑅 and 𝑆 and the
identities satisfied by ⊗, we see that 𝜇 (𝑟2 ,𝑠2 ) is bilinear:

𝜇 (𝑟1 ,𝑠1 ) (𝑟2 + 𝑟3, 𝑠2) = 𝑟1 (𝑟2 + 𝑟3) ⊗ 𝑠1𝑠2
= (𝑟1𝑟2 + 𝑟1𝑟3) ⊗ 𝑠1𝑠2
= 𝑟1𝑟2 ⊗ 𝑠1𝑠2 + 𝑟1𝑟3 ⊗ 𝑠1𝑠2
= 𝜇 (𝑟1 ,𝑠1 ) (𝑟2, 𝑠2) + 𝜇 (𝑟1 ,𝑠1 ) (𝑟3, 𝑠2).

Similarly, 𝜇 (𝑟1 ,𝑠1 ) (𝑟2, 𝑠2+ 𝑠3) = 𝜇 (𝑟1 ,𝑠1 ) (𝑟2, 𝑠2) + 𝜇 (𝑟1 ,𝑠1 ) (𝑟2, 𝑠3). So, 𝜇 (𝑟1 ,𝑠1 ) factors through
a group homomorphism 𝑅 ⊗ 𝑆 → 𝑅 ⊗ 𝑆 taking 𝑟2 ⊗ 𝑠2 to 𝑟1𝑟2 ⊗ 𝑠1𝑠2.
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Thus, we have a function 𝜇 : 𝑅× 𝑆× (𝑅 ⊗ 𝑆) defined by 𝜇(𝑟1, 𝑠1, 𝑟2 ⊗ 𝑠2) = 𝑟1𝑟2 ⊗ 𝑠1𝑠2.
Arguing as above, we fix 𝑟2 ⊗ 𝑠2 ∈ 𝑅× 𝑆. Then 𝜇(−,−, 𝑟2 ⊗ 𝑠2) : 𝑅× 𝑆 → 𝑅 ⊗ 𝑆 is bilinear
and thus factors through a homomorphism 𝑅 ⊗ 𝑆 → 𝑅 ⊗ 𝑆 taking (𝑟1, 𝑠1) to 𝑟1𝑟2 ⊗ 𝑠1𝑠2.
Thus, 𝜇 induces a well-defined function

�̄� : (𝑅 ⊗ 𝑆) × (𝑅 ⊗ 𝑆) → 𝑅 ⊗ 𝑆

that on simple tensors is given by �̄�(𝑟1 ⊗ 𝑠1, 𝑟2 ⊗ 𝑠2) = 𝑟1𝑟2 ⊗ 𝑠1𝑠2. Furthermore, �̄� is
bilinear!

�̄� is the multiplication of simple tensors on our putative ring 𝑅⊗ 𝑆. An arbitrary product
is now given by (

𝑚∑︁
𝑖=1

𝑟1𝑖 ⊗ 𝑠1𝑖

) ©«
𝑛∑︁
𝑗=1
𝑟2 𝑗 ⊗ 𝑠2 𝑗

ª®¬ =

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑟1𝑖𝑟2 𝑗 ⊗ 𝑠1𝑖𝑠2 𝑗 .

Multiplication in 𝑅 ⊗ 𝑆 clearly distributes over addition in 𝑅 ⊗ 𝑆. It follows that
multiplication is associative. Indeed the product of the three elements

𝑚∑︁
𝑖=1

𝑟1𝑖 ⊗ 𝑠1𝑖 ,

𝑛∑︁
𝑗=1
𝑟2 𝑗 ⊗ 𝑠2 𝑗 and

𝑝∑︁
𝑘=1

𝑟3𝑘 ⊗ 𝑠3𝑘

is equal to
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝∑︁
𝑘=1

𝑟1𝑖𝑟2 𝑗𝑟3𝑘 ⊗ 𝑠1𝑖𝑠2 𝑗 𝑠3𝑘

no matter in what order the products are computed. The identity is 1 = 1 ⊗ 1, so that 𝑅 ⊗ 𝑆
is a monoid under multiplication. This is enough to see that 𝑅 ⊗ 𝑆 is a ring. That 𝑅 ⊗ 𝑆 is
a commutative ring then follows from 𝑅 and 𝑆 being commutative.

Now, we must see that 𝑅 ⊗ 𝑆 has the right property to be a coproduct of 𝑅 and 𝑆. First,
consider the function 𝜄0 : 𝑅 → 𝑅 ⊗ 𝑆 given by 𝜄0 (𝑟) = 𝑟 ⊗ 1. Then

𝜄0 (𝑟1 + 𝑟2) = (𝑟1 + 𝑟2) ⊗ 1 = 𝑟1 ⊗ 1 + 𝑟2 ⊗ 1 = 𝜄0 (𝑟1) + 𝜄0 (𝑟2),
𝜄0 (𝑟1𝑟2) = (𝑟1𝑟2) ⊗ 1 = (𝑟1 ⊗ 1) (𝑟2 ⊗ 1) = 𝜄0 (𝑟1)𝜄0 (𝑟2),
𝜄0 (1) = 1 ⊗ 1 = 1.

So, 𝜄0 is a ring homomorphism. Similarly, we have a ring homomorphism 𝜄1 : 𝑆 → 𝑅 ⊗ 𝑆
given by 𝜄1 (𝑠) = 1 ⊗ 𝑠.

Finally, we must check the universal property. Let 𝑇 be a third commutative ring and
let 𝑓 : 𝑅 → 𝑇 and 𝑔 : 𝑆 → 𝑇 be ring homomorphisms. Considering 𝑅, 𝑆 and 𝑇 under
addition, the function ( 𝑓 ∗𝑔) : 𝑅×𝑆 → 𝑇 defined by ( 𝑓 ∗𝑔) (𝑟, 𝑠) = 𝑓 (𝑟)𝑔(𝑠) is bilinear, as
may be readily checked from the distributive law in 𝑇 and that 𝑓 and 𝑔 are homomorphisms
for +. So, 𝑓 ∗ 𝑔 factors through a homomorphism ℎ : 𝑅 ⊗ 𝑆 → 𝑇 on the additive groups
given on simple tensors by ℎ(𝑟 ⊗ 𝑠) = 𝑓 (𝑟)𝑔(𝑠). It is readily seen from the commutativity
of 𝑇 that this is also a homomorphism for multiplication, so that ℎ is a ring homomorphism.
Since ℎ𝜄0 (𝑟) = ℎ(𝑟 ⊗ 1) = 𝑓 (𝑟)𝑔(1) = 𝑓 (𝑟) and ℎ𝜄1 (𝑠) = ℎ(1 ⊗ 𝑠) = 𝑓 (1)𝑔(𝑠) = 𝑔(𝑠),
𝑅⊗ 𝑆 satisfies the universal property of the coproduct in the category of commutative rings.
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Now, let’s do it again for arbitrary families of commutative rings. We will perform
the following steps.

1. Describe the tensor product
⊗

𝑗∈𝐽 𝐴 𝑗 of an arbitrary family of abelian groups
(𝐴 𝑗 ) 𝑗∈𝐽 .

2. Show that for a family of commutative rings (𝑅 𝑗 ) 𝑗∈𝐽 , the tensor product 𝑅 =⊗
𝑗∈𝐽 𝑅 𝑗 of their additive groups admits a multiplication law making 𝑅 into a

commutative ring. This is a little tricky, but is similar to the case of the tensor
product of two rings above.

3. Describe a natural family of ring homomorphisms 𝑅 𝑗 → 𝑅 that will make 𝑅 the
coproduct if 𝐽 is finite.

4. Describe a subring 𝑅′ of 𝑅 that is the coproduct of the 𝑅 𝑗 even when 𝐽 is not finite.
This part requires some care, but is reminiscent of the direct sum (coproduct) of a
family of modules being a submodule of the direct product (product) of that same
family.

Let 𝐽 be a set, viewed as a small discrete category, and consider a family 𝐴 𝑗 of abelian
groups indexed by 𝑗 ∈ 𝐽. Let

𝑓 :
∏
𝑗∈𝐽

𝐴 𝑗 → 𝐶

be a function to an abelian group 𝐶, where
∏
𝑗∈𝐽 𝐴 𝑗 is the Cartesian product of the

sets 𝐴 𝑗 . Consider some 𝑖 ∈ 𝐽 and a choice of fixed values 𝑎 𝑗 ∈ 𝐴 𝑗 for 𝑗 ≠ 𝑖 and let
𝛼 : 𝐴𝑖 →

∏
𝑗∈𝐽 𝐴 𝑗 be the function such that 𝛼(𝑎) = (𝑎 𝑗 ) 𝑗∈𝐽 where 𝑎 𝑗 = 𝑎 if 𝑗 = 𝑖, and is

the chosen fixed value otherwise. If for every choice of 𝑖 ∈ 𝐽 and fixed values 𝑎 𝑗 ∈ 𝐴 𝑗 for
𝑗 ≠ 𝑖 the composition 𝑓 𝛼 : 𝐴𝑖 → 𝐶 is a group homomorphism, then 𝑓 is called a 𝐽-linear
function.

Before going on, let’s check what happens when 𝐽 has no more than 2 elements. If
𝐽 = ∅, then

∏
𝑗∈∅ 𝐴 𝑗 is a singleton set – a terminal object in Set. The conditions above

on 𝑓 are vacuous, so we simply require a function 𝑓 : {∗} → 𝐶, which is determined by a
choice of element 𝑐 ∈ 𝐶. If 𝐽 is a singleton set, then our product is just an abelian group
𝐴𝑖 = 𝐴. There are no other 𝑗 ∈ 𝐽, so that the choice of fixed values 𝑎 𝑗 ∈ 𝐴 𝑗 is vacuous so
that the condition on 𝑓 : 𝐴→ 𝐶 is that it is a group homomorphism. If 𝐽 has two elements,
then the condition of being a 𝐽-linear function is the condition of being a bilinear function
considered above.

Just as for bilinear functions, we have for a 𝐽-linear function 𝑓 :
∏
𝑗∈𝐽 𝐴 𝑗 → 𝐶 and

a group homomorphism 𝑔 : 𝐶 → 𝐷 that 𝑔 𝑓 :
∏
𝑗∈𝐽 𝐴 𝑗 → 𝐷 is also 𝐽-linear. Thus, for a

𝐽-indexed family of abelian groups (𝐴 𝑗 ) 𝑗∈𝐽 we have a functor

𝐽-lin((𝐴 𝑗 ) 𝑗∈𝐽 ;−) : Ab→ Set

taking 𝐶 to the set of 𝐽-linear functions from
∏
𝑗∈𝐽 𝐴 𝑗 to 𝐶 and taking a group homomor-

phism 𝑔 : 𝐶 → 𝐷 to postcomposition 𝑔∗. Any group representing this functor is the tensor
product of this family of groups (𝐴 𝑗 ) 𝑗∈𝐽 and is denoted⊗

𝑗∈𝐽
𝐴 𝑗 .
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Let’s follow up on the basic cases above. If 𝐽 = ∅, then ∅-lin(();−) is naturally isomorphic to
the forgetful functor𝑈 : Ab→ Set, which is represented by Z. So, an empty tensor product
is equal to Z. If 𝐽 is a singleton set, then 1-lin(𝐴;−) ≃ Ab(𝐴,−) which is tautologically
represented by 𝐴. So, a tensor product of a single abelian group is that abelian group. The
tensor product of two abelian groups is as we considered above.

Now, we imitate the construction of a tensor product of two abelian groups to give the
tensor product of an arbitrary family of abelian groups. Given a family (𝐴 𝑗 ) 𝑗∈𝐽 of abelian
groups, let 𝐹 be the free abelian group whose basis is the elements of

∏
𝑗∈𝐽 𝐴 𝑗 . Thus, each

element of 𝐹 may be uniquely expressed as
∑𝑛
𝑖=1 𝑚𝑖 (𝑎𝑖 𝑗 ) 𝑗∈𝐽 where 𝑛 ∈ N, 𝑚𝑖 ∈ Z and

(𝑎1 𝑗 ) 𝑗∈𝐽 , . . . , (𝑎𝑛 𝑗 ) 𝑗∈𝐽 are distinct elements of
∏
𝑗∈𝐽 𝐴 𝑗 .

Let 𝐾 ⊆ 𝐹 be the subgroup generated by all expressions of the form

(𝑎 𝑗 ) 𝑗∈𝐽 − (𝑏 𝑗 ) 𝑗∈𝐽 − (𝑐 𝑗 ) 𝑗∈𝐽

such that there is some 𝑖 ∈ 𝐽 for which 𝑎𝑖 = 𝑏𝑖 + 𝑐𝑖 and 𝑎 𝑗 = 𝑏 𝑗 = 𝑐 𝑗 for all 𝑗 ≠ 𝑖. Write⊗
𝑗∈𝐽 𝐴 𝑗 for 𝐹/𝐾 and ⊗ 𝑗∈𝐽𝑎 𝑗 for the image of the basis element (𝑎 𝑗 ) 𝑗∈𝐽 in

⊗
𝑗∈𝐽 𝐴 𝑗 .

This image is called a simple tensor. So long as 𝐽 ≠ ∅, any integer multiple of a simple
tensor 𝑚(⊗ 𝑗∈𝐽𝑎 𝑗 ) may also be written as a simple tensor by choosing some 𝑗 and replacing
𝑎 𝑗 by 𝑚𝑎 𝑗 . Then, for 𝐽 ≠ ∅, each element of

⊗
𝑗∈𝐽 𝐴 𝑗 may be represented (non-uniquely)

as a finite sum of simple tensors6:
𝑛∑︁
𝑖=1
⊗ 𝑗∈𝐽𝑎𝑖 𝑗 .

The choice of 𝐾 makes it so that the function

⊗ :
∏
𝑗∈𝐽

𝐴 𝑗 →
⊗
𝑗∈𝐽

𝐴 𝑗

taking (𝑎 𝑗 ) 𝑗∈𝐽 to ⊗ 𝑗∈𝐽𝑎 𝑗 is 𝐽-linear. If 𝑓 :
∏
𝑗∈𝐽 𝐴 𝑗 → 𝐶 is another 𝐽-linear function to

an abelian group 𝐶, then we wish to produce a homomorphism 𝑓 :
⊗

𝐴 𝑗 → 𝐶 such that
𝑓 = 𝑓 ◦ ⊗. The only possibility is for 𝑓 (⊗𝑎 𝑗 ) = 𝑓 (⊗(𝑎 𝑗 )). We must see that this is a
well-defined group homomorphism.

Using that 𝐹 is free on a basis consisting of (𝑎 𝑗 ) 𝑗∈𝐽 , we have a unique group homomor-
phism 𝑓 : 𝐹 → 𝐶 extending 𝑓 given by 𝑓 ((𝑎 𝑗 )) = 𝑓 ((𝑎 𝑗 )). The 𝐽-linearity of 𝑓 shows
that 𝐾 ⊆ ker 𝑓 , so that 𝑓 factors uniquely through 𝑓 : 𝐹/𝐾 → 𝐶 as required.

This gives us a natural bĳection

𝐽-lin
(
(𝐴 𝑗 ) 𝑗∈𝐽 ;𝐶

)
↔ Ab

(⊗
𝑗∈𝐽

𝐴 𝑗 , 𝐶

)
showing that

⊗
𝐴 𝑗 represents 𝐽-lin((𝐴 𝑗 );−). This justifies that our construction creates a

tensor product.

6If 𝐽 = ∅, then every element of
⊗

𝑗∈∅ 𝐴 𝑗 is an integer multiple of the unique empty simple tensor. We will
assume that 𝐽 ≠ ∅ going forwards, but the modifications required for the empty case are straightforward.
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Now, let (𝑅 𝑗 ) 𝑗∈𝐽 be a family of commutative rings and let 𝑅 =
⊗

𝑗∈𝐽 𝑅 𝑗 be the tensor
product of their underlying abelian groups. We will construct a multiplication operation on
𝑅 that makes 𝑅 into a ring.

This multiplication operation will be built from the function

𝜇 :
∏
𝑗∈𝐽

𝑅 𝑗 ×
∏
𝑗∈𝐽

𝑅 𝑗 → 𝑅 =
⊗
𝑗∈𝐽

𝑅 𝑗

defined by 𝜇((𝑎 𝑗 ), (𝑏 𝑗 )) = ⊗ 𝑗 (𝑎 𝑗𝑏 𝑗 ). Notice that if we fix the lefthand side 𝑎 = (𝑎 𝑗 ) 𝑗∈𝐽 ,
then the function 𝜇𝑎 :

∏
𝑗 𝑅 𝑗 → 𝑅 given by 𝜇𝑎 ((𝑏 𝑗 )) = ⊗ 𝑗 (𝑎 𝑗𝑏 𝑗 ) is 𝐽-linear. To check

this, let (𝑏 𝑗 ), (𝑏′𝑗 ), (𝑏′′𝑗 ) ∈
∏
𝑗 𝑅 𝑗 be such that there is some 𝑖 ∈ 𝐽 such that 𝑏𝑖 = 𝑏′𝑖 + 𝑏′′𝑖

while 𝑏 𝑗 = 𝑏′𝑗 = 𝑏
′′
𝑗

for 𝑗 ≠ 𝑖. Then the 𝑖-component of ⊗ 𝑗 (𝑎 𝑗𝑏 𝑗 ) is 𝑎𝑖𝑏𝑖 = 𝑎𝑖𝑏′𝑖 + 𝑎𝑖𝑏′′𝑖 so
that

⊗ 𝑗∈𝐽 (𝑎 𝑗𝑏 𝑗 ) = ⊗ 𝑗∈𝐽𝑎 𝑗𝑏′𝑗 + ⊗ 𝑗∈𝐽𝑎 𝑗𝑏′′𝑗
as required.

So, 𝜇𝑎 factors uniquely through a group homomorphism �̄�𝑎 : 𝑅 → 𝑅 for which
�̄�𝑎 (⊗ 𝑗𝑏 𝑗 ) = ⊗ 𝑗 (𝑎 𝑗𝑏 𝑗 ). For arbitrary elements of 𝑅, this becomes

�̄�𝑎 :
𝑛∑︁
𝑘=1
⊗ 𝑗∈𝐽𝑏𝑘 𝑗 ↦→

𝑛∑︁
𝑘=1
⊗ 𝑗∈𝐽 (𝑎 𝑗𝑏𝑘 𝑗 ).

So, we have a well-defined function

�̂� :

(∏
𝑗∈𝐽

𝑅 𝑗

)
× 𝑅 → 𝑅

given by (
(𝑎 𝑗 ) 𝑗∈𝐽 ,

𝑛∑︁
𝑘=1
⊗ 𝑗∈𝐽𝑏𝑘 𝑗

)
↦→

𝑛∑︁
𝑘=1
⊗ 𝑗∈𝐽 (𝑎 𝑗𝑏𝑘 𝑗 ).

Fixing the right-hand side 𝑏 =
∑𝑛
𝑘=1 ⊗ 𝑗𝑏𝑘 𝑗 we obtain a function

�̂�𝑏 :
∏
𝑗∈𝐽

𝑅 𝑗 → 𝑅

given by

(𝑎 𝑗 ) 𝑗∈𝐽 ↦→
𝑛∑︁
𝑘=1
⊗ 𝑗∈𝐽 (𝑎 𝑗𝑏𝑘 𝑗 ).

As above, this is a 𝐽-linear function and so factors through a function �̄�𝑏 : 𝑅 → 𝑅 that
when applied to an arbitrary element of 𝑅 is given by

�̄�𝑏 :
𝑚∑︁
𝑖=1
⊗ 𝑗𝑎𝑖 𝑗 ↦→

𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1
⊗ 𝑗 (𝑎𝑖 𝑗𝑏𝑘 𝑗 ).
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Letting 𝑏 ∈ 𝑅 vary, we obtain a well-defined function �̄� : 𝑅 × 𝑅 → 𝑅

�̄�

(
𝑚∑︁
𝑖=1
⊗ 𝑗𝑎𝑖 𝑗 ,

𝑛∑︁
𝑘=1
⊗ 𝑗𝑏𝑘 𝑗

)
=

𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1
⊗ 𝑗 (𝑎𝑖 𝑗𝑏𝑘 𝑗 ).

As in the earlier case of a tensor product of two rings, it is easy to check that 𝜇 is an associative
and commutative binary operation that distributes over addition in 𝑅. Furthermore, 1 := ⊗ 𝑗1
is a multiplicative identity for 𝜇, so that 𝑅 is a commutative ring.

For each 𝑖 ∈ 𝐽, let 𝜄𝑖 : 𝑅𝑖 → 𝑅 be the function defined by 𝜄𝑖 (𝑎) = ⊗ 𝑗𝑎 𝑗 where
𝑎𝑖 = 𝑎 and 𝑎 𝑗 = 1 ∈ 𝑅 𝑗 for 𝑗 ≠ 𝑖. Then the basic properties of the tensor product
show that 𝜄𝑖 (𝑎 + 𝑏) = 𝜄𝑖 (𝑎) + 𝜄𝑖 (𝑏). The multiplication law described above shows that
𝜄𝑖 (𝑎𝑏) = 𝜄𝑖 (𝑎)𝜄𝑖 (𝑏). Finally, 𝜄𝑖 (1) = 1. So, 𝜄𝑖 is a ring homomorphism.

However, 𝑅 equipped with the homomorphisms 𝜄 𝑗 is not in general the coproduct of the
𝑅 𝑗 ! Let 𝑅′ ⊆ 𝑅 be the smallest subring of 𝑅 that contains all of the images of the 𝜄 𝑗 . (This
should remind you of direct sums of modules . . . .) That is,

𝑅′ =

{
𝑚∑︁
𝑖=1
⊗ 𝑗𝑎𝑖 𝑗

��𝑎𝑖 𝑗 = 1 for all but finitely many 𝑎𝑖 𝑗

}
.

(If 𝐽 is finite, then 𝑅′ = 𝑅.) Then each 𝜄𝑖 factors uniquely and obviously through a ring
homomorphism 𝜄𝑖 : 𝑅𝑖 → 𝑅′ defined in the same way as 𝜄𝑖 . Furthermore, note that for any
simple tensor ⊗ 𝑗𝑎 𝑗 ∈ 𝑅′, since 𝑎 𝑗 = 1 for all but finitely many 𝑗 , it makes sense to write:

⊗ 𝑗𝑎 𝑗 =
∏
𝑗∈𝐽

𝜄 𝑗 (𝑎 𝑗 ).

The product is really a finite product, since only finitely many factors are not the identity
element.

I claim that 𝑅′ equipped with the homomorphisms 𝜄𝑖 : 𝑅𝑖 → 𝑅′ is the coproduct of
the family of commutative rings (𝑅) 𝑗∈𝐽 . To see this, let 𝑆 be another commutative ring and
let 𝜙𝑖 : 𝑅𝑖 → 𝑆 be ring homomorphisms for 𝑖 ∈ 𝐽. We must see that there is a unique ring
homomorphism 𝜓 : 𝑅′ → 𝑆 such that 𝜓𝜄𝑖 = 𝜙𝑖 for each 𝑖 ∈ 𝐽. If there is any such ring
homomorphism, then it must satisfy:

𝜓

(
𝑚∑︁
𝑖=1
⊗ 𝑗𝑎𝑖 𝑗

)
=

𝑚∑︁
𝑖=1

𝜓(⊗ 𝑗𝑎𝑖 𝑗 ) =
𝑚∑︁
𝑖=1

𝜓

(∏
𝑗∈𝐽

𝜄 𝑗 (𝑎𝑖 𝑗 )
)
=

𝑚∑︁
𝑖=1

∏
𝑗∈𝐽

𝜓𝜄 𝑗 (𝑎𝑖 𝑗 ) =
𝑚∑︁
𝑖=1

∏
𝑗∈𝐽

𝜙 𝑗 (𝑎𝑖 𝑗 ).

This gives a formula for the only possible ring homomorphism 𝜓 : 𝑅′ → 𝑆 satisfying our
constraints. It remains to see that 𝜓 is well-defined and really is a ring homomorphism.

The strategy that we would like to follow is to show that 𝜓 is induced by a 𝐽-linear
function

∏
𝑗∈𝐽 𝑅 𝑗 → 𝑆 defined by (𝑎 𝑗 ) ↦→

∏
𝑗 𝜙 𝑗 (𝑎 𝑗 ). This will work when 𝐽 is finite, but

this function is not defined on all of
∏
𝑗 𝑅 𝑗 when 𝐽 is infinite! So, let us proceed with care.
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For an element (𝑎 𝑗 ) ∈
∏
𝑗∈𝐽 𝑅 𝑗 , say that the support of (𝑎 𝑗 ) is { 𝑗 ∈ 𝐽 |𝑎 𝑗 ≠ 1}. Say

that (𝑎 𝑗 ) is of finite support if its support is a finite set and of infinite support if its support
is an infinite set. Then

∏
𝑗∈𝐽 𝑅 𝑗 is a disjoint union of the two subsets (∏ 𝑗 𝑅 𝑗 ) 𝑓 of elements

of finite support and (∏ 𝑗 𝑅 𝑗 )∞ of elements of infinite support.
Recall that 𝐹 is the free abelian group with basis

∏
𝑗 𝑅 𝑗 . Splitting the basis into these

two subsets, we may write 𝐹 = 𝐹 𝑓 ⊕ 𝐹∞ where 𝐹 𝑓 is a free abelian group with basis
(∏ 𝑗 𝑅 𝑗 ) 𝑓 and 𝐹∞ is a free abelian group with basis (∏ 𝑗 𝑅 𝑗 )∞. Recall that 𝑅 = 𝐹/𝐾 where
𝐾 is a subgroup that we will recall in a moment. Notice that 𝑅′ is the image of 𝐹 𝑓 modulo
𝐾 . The kernel of the induced group homomorphism 𝐹 𝑓 → 𝑅′ is 𝐹 𝑓 ∩ 𝐾 , which we will
call 𝐾 𝑓 . So, 𝑅′ ≃ 𝐹 𝑓 /𝐾 𝑓 .

Recall that 𝐾 ⊆ 𝐹 is the subgroup generated by all expressions of the form

(𝑎 𝑗 ) 𝑗∈𝐽 − (𝑏 𝑗 ) 𝑗∈𝐽 − (𝑐 𝑗 ) 𝑗∈𝐽
such that there is some 𝑖 ∈ 𝐽 for which 𝑎𝑖 = 𝑏𝑖 + 𝑐𝑖 and 𝑎 𝑗 = 𝑏 𝑗 = 𝑐 𝑗 for all 𝑗 ≠ 𝑖. Notice
that the supports of (𝑎 𝑗 ), (𝑏 𝑗 ) and (𝑐 𝑗 ) in this expression can differ only in that 𝑖 might be
in some but not others. So, all three of (𝑎 𝑗 ), (𝑏 𝑗 ) and (𝑐 𝑗 ) are in 𝐹 𝑓 or all three are in
𝐹∞. An arbitrary element of 𝐾 𝑓 is a sum of finitely many generators above or their inverses
with the property that all terms with infinite support cancel out. We may split the sum into
a sum of those generators involving terms of finite support and a sum of those generators
involving terms of infinite support. The latter sum must be zero. So, we see that 𝐾 𝑓 is
generated by expressions as above involving only terms of finite support.

To sum up, we have a homomorphism of abelian groups ⊗ : 𝐹 𝑓 → 𝑅′ given by
(𝑎 𝑗 ) 𝑗∈𝐽 ↦→ ⊗ 𝑗∈𝐽𝑎 𝑗 . The kernel ⊗ is the subgroup 𝐾 𝑓 generated by expressions of the form

(𝑎 𝑗 ) 𝑗∈𝐽 − (𝑏 𝑗 ) 𝑗∈𝐽 − (𝑐 𝑗 ) 𝑗∈𝐽
such that there is some 𝑖 ∈ 𝐽 for which 𝑎𝑖 = 𝑏𝑖 + 𝑐𝑖 and 𝑎 𝑗 = 𝑏 𝑗 = 𝑐 𝑗 for all 𝑗 ≠ 𝑖 and
(𝑎 𝑗 ), (𝑏 𝑗 ) and (𝑐 𝑗 ) all have finite support.

Now, we do have a function �̃� : (∏ 𝑗 𝑅 𝑗 ) 𝑓 → 𝑆 given by �̃�((𝑎 𝑗 )) =
∏
𝑗∈𝐽 𝜙 𝑗 (𝑎 𝑗 ). This

function is well-defined because each (𝑎 𝑗 ) ∈ (
∏
𝑗 𝑅 𝑗 ) 𝑓 has finite support and 𝜙 𝑗 (1) = 1.

Since 𝐹 𝑓 is a free abelian group with basis (∏ 𝑗 𝑅 𝑗 ) 𝑓 , �̃� induces a group homomorphism
�̂� : 𝐹 𝑓 → 𝑆 given by

�̂�

(
𝑚∑︁
𝑖=1

𝛼𝑖 (𝑎𝑖 𝑗 ) 𝑗∈𝐽

)
=

𝑚∑︁
𝑖=1

𝛼𝑖�̃�((𝑎𝑖 𝑗 ) 𝑗∈𝐽 ) =
𝑚∑︁
𝑖=1

𝛼𝑖

∏
𝑗∈𝐽

𝜙 𝑗 (𝑎𝑖 𝑗 ).

where 𝛼𝑖 ∈ Z. To see that �̃� factors through 𝐹 𝑓 /𝐾 𝑓 ≃ 𝑅′, we must check that each
generator of 𝐾 𝑓 maps to 0. This follows from 𝜙𝑖 being a homomorphism on abelian groups
and the distributive property of multiplication over addition in 𝑆.

This is enough to see that 𝜓 : 𝑅′ → 𝑆 as given above is well-defined and is a homomor-
phism of abelian groups under addition. Now, we must see that it is also a homomorphism
or monoids under multiplication. First note that 𝜓(1) = ∏

𝑗∈𝐽 𝜙 𝑗 (1) = 1 so that 𝜓 preserves
the identity. Now, we check directly that 𝜓 preserves multiplication:

𝜓

(
𝑚∑︁
𝑖=1
⊗ 𝑗𝑎𝑖 𝑗

)
𝜓

(
𝑛∑︁
𝑘=1
⊗ 𝑗𝑏𝑘 𝑗

)
=

(
𝑚∑︁
𝑖=1

∏
𝑗∈𝐽

𝜙 𝑗 (𝑎𝑖 𝑗 )
) (

𝑛∑︁
𝑘=1

∏
𝑗∈𝐽

𝜙 𝑗 (𝑏𝑘 𝑗 )
)
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=

𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1

∏
𝑗∈𝐽

𝜙 𝑗 (𝑎𝑖 𝑗 )𝜙 𝑗 (𝑏𝑘 𝑗 ) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1

∏
𝑗∈𝐽

𝜙 𝑗 (𝑎𝑖 𝑗𝑏𝑘 𝑗 ) = 𝜓
(
𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1
⊗ 𝑗 (𝑎𝑖 𝑗𝑏𝑘 𝑗 )

)
.

Now, we have seen that for any family of ring homomorphisms 𝜙 𝑗 : 𝑅 𝑗 → 𝑆 there is a
unique ring homomorphism 𝜓 : 𝑅′ → 𝑆 such that 𝜙 𝑗 = 𝜓𝜄 𝑗 for every 𝑗 ∈ 𝐽. Thus, 𝑅′ is the
coproduct of the 𝑅 𝑗 and we may write 𝑅′ =

∐
𝑗∈𝐽 𝑅 𝑗 ⊆

⊗
𝑗∈𝐽 𝑅 𝑗 with a clean conscience.
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3.2 Limits in the category of sets

Exercise 3.2.i. A small category can be redefined to be a particular diagram in Set. The
data is given by a pair of suggestively-named sets with functions

mor C ob C

←→dom

←→
cod
←→id

together with a “composition function” yet to be defined. Use a pullback to define the set of
composable pairs of morphisms, which serves as the domain for the composition function,
and formulate the axioms for a category using commutative diagrams in Set. When Set is
replace by a category E with pullbacks, this defines a category internal to E.

For the sake of concision we introduce the aliases: O = ob C and M = mor C.
Pullbacks in Set are realized by subsets of the Cartesian product on which two functions
agree. In this case we have

M ×OM M

M O

←→𝜋1

←→𝜋2

⌟ ←→ dom

← →cod

where
M ×OM = { ( 𝑓 , 𝑔) ∈ mor C2 | cod( 𝑓 ) = dom(𝑔) } ,

and 𝜋1 and 𝜋2 are the expected projection maps out ofM×OM. This set contains precisely
the ordered pairs ( 𝑓 , 𝑔) for which the composition 𝑔 𝑓 is defined. Composition is thus
rendered as a function 𝜇 : M ×OM →M. We can then describe the axioms of a category
as commutative diagrams involving 𝜇, cod, dom, id, and products thereof.

First, given composable morphisms 𝑓 and 𝑔 as above, we have dom( 𝑓 ) = dom(𝑔 𝑓 ) and
cod(𝑔) = cod(𝑔 𝑓 ). In other words dom 𝜋1 = dom 𝜇 and cod 𝜋2 = cod 𝜇.

M ×OM M O

←→𝜋1←→𝜇

←→dom and M ×OM M O

←→𝜋2←→𝜇

←→cod

Similarly, given an object 𝑐, the identity 1𝑐 must satisfy dom(1𝑐) = 𝑐 = cod(1𝑐), i.e.
dom id = 1O = cod id.

O O

M

←

→
id

← →1O

← →
cod

← →dom

To state the next two axioms we require more sophisticated pullbacks. First, we need
ternary pullbacks. Let

M ×OM ×OM = { ( 𝑓 , 𝑔, ℎ) | cod( 𝑓 ) = dom(𝑔) and cod(𝑔) = dom(ℎ) } ,
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i.e. sets of composable triples, with projections 𝜋1, 𝜋2, and 𝜋3 intoM. It is easily seen that
this is the pullback in two different diagrams.

M ×OM ×OM M

M ×OM O

←→𝜋1×𝜋2

←→𝜋3

⌟ ←→ dom

← →cod 𝜋2

and
M ×OM ×OM M ×OM

M O

←→𝜋1

←→𝜋2×𝜋3

⌟ ←→ dom 𝜋1

← →cod

Because of our restriction the composite projections 𝜋1 × 𝜋2 and 𝜋2 × 𝜋3 give us valid
composable pairs, so each is a legitimate map ontoM ×OM.

The condition of associativity states that ℎ(𝑔 𝑓 ) = (ℎ𝑔) 𝑓 for any composable triple
( 𝑓 , 𝑔, ℎ), which we can now express diagrammatically.

M ×OM ×OM M ×OM

M ×OM M

←→𝜇×𝜋3

←→𝜋1×𝜇

←→ 𝜇

← →𝜇

Finally, given any morphism 𝑓 we have id(cod( 𝑓 )) 𝑓 = 𝑓 = 𝑓 id(dom( 𝑓 )). For this
law we must consider the composable pairs containing identity morphisms. These can be
isolated as the image of the following two pullbacks insideM ×OM.

M ×O O O

M O

←→𝜋1

←→𝜋2

⌟ ←→ 1O

← →cod

and
O ×OM M

O O

←→𝜋1

←→𝜋2

⌟ ←→ dom

← →1O

Equipped with these objects, we can express the identity law by the following commutative
diagram.

M ×O O M ×OM O ×OM

M

←→𝜋1×id

←

→𝜋1

←→ 𝜇
←→id ×𝜋2

←

→ 𝜋2

Exercise 3.2.ii. Show that for any small diagram 𝐹 : J → Set, the equalizer diagram
(3.2.14) can be modified to yield a slightly smaller equalizer diagram:

Matt will add this diagram using TikZ

in which these condproduct is indexed only by non-identity morphisms.

Proof. To show that we can slightly shrink the equalizer diagram, we will review the
proof of Theorem 3.2.6 and notice that removing the objects from the second product does
not lose any information. Recall that the objects of a category can be identified with their
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identity morphisms. Notice that the cone over 𝐹 is indexed by the non-identity elements.
When 𝑓 is an identity morphism the diagram

1
𝜆dom 𝑓

##

𝜆cod 𝑓

zz

𝐹 (dom 𝑓 )
𝐹 𝑓

// 𝐹 (cod 𝑓 )

collapses into a single line. Thus when defining the parallel pair of morphisms of 𝑐 and 𝑑
if 𝑓 is an identity morphism (an object of J) the legs of the cone are the same, so we do not
lose any information excluding them. □

Exercise 3.2.iii. For any pair of morphisms 𝑓 : 𝑎 → 𝑏, 𝑔 : 𝑐 → 𝑑 is a locally small
category C, construct the set of commutative squares

Sq ( 𝑓 , 𝑔) :=


𝑎

𝑓

��

// 𝑐

𝑔

��

𝑏 // 𝑑


from 𝑓 to 𝑔 as a pullback in Set.

Proof. Every commutative square in Sq ( 𝑓 , 𝑔) takes the form

𝑎

ℎ

��

𝑓

��

𝑝
// 𝑐

𝑔

��

𝑏
𝑞
// 𝑑

Let us now define DiagSq ( 𝑓 , 𝑔) to contain each diagonal ℎ for every commutative square
in Sq ( 𝑓 , 𝑔), TopSq ( 𝑓 , 𝑔) to contain each top morphism 𝑝 for every commutative square
in Sq ( 𝑓 , 𝑔), and BottSq ( 𝑓 , 𝑔) to contain each bottom morphism 𝑞 for every commutative
square in Sq ( 𝑓 , 𝑔). We will define functions 𝑓 ∗ : BottSq ( 𝑓 , 𝑔) → DiagSq ( 𝑓 , 𝑔) and
𝑔∗ : TopSq ( 𝑓 , 𝑔) → DiagSq ( 𝑓 , 𝑔) as precomposition by 𝑓 and post-composition by 𝑔

respectively. This gives us the diagram

TopSq ( 𝑓 , 𝑔)

𝑔∗

��

BottSq ( 𝑓 , 𝑔)
𝑓 ∗
// DiagSq ( 𝑓 , 𝑔)

To show that Sq ( 𝑓 , 𝑔) is the limit of the diagram, define the projections 𝜋1 : Sq ( 𝑓 , 𝑔) →
TopSq ( 𝑓 , 𝑔) and 𝜋2 : Sq ( 𝑓 , 𝑔) → BottSq ( 𝑓 , 𝑔) as maps taking each commutative square
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to their respective top morphism 𝑝 and bottom morphism 𝑞 respectively. It is easy to see
that for 𝐷 ∈ Sq ( 𝑓 , 𝑔), 𝑓 ∗ (𝜋2 (𝐷)) = 𝑞 · 𝑓 = ℎ = 𝑔 · 𝑝 = 𝑔∗ (𝜋1 (𝐷)), thus 𝑔∗ · 𝜋1 = 𝑓 ∗ · 𝜋2.
Suppose 𝑆 was a set with morphisms 𝑠1 : 𝑆 → TopSq ( 𝑓 , 𝑔) and 𝑠2 : 𝑆 → BottSq ( 𝑓 , 𝑔)
such that 𝑔∗ · 𝑠1 = 𝑓 ∗ · 𝑠2. We need to find a unique morphism 𝑠 : 𝑆 → Sq ( 𝑓 , 𝑔) such that
𝑠1 (𝑥) = 𝜋1 (𝑠 (𝑥)) and 𝑠2 (𝑥) = 𝜋2 (𝑠 (𝑥)) for every element 𝑥 ∈ 𝑆. Such a morphism can
be defined as the function that maps each element 𝑥 to the commutative square whose top
morphism is 𝑠1 (𝑥) and bottom morphism is 𝑠2 (𝑥). Uniqueness of 𝑠 follows from the fact
that for any 𝑥 ∈ 𝑆 there is only one commutative square with a top morphism 𝑠1 (𝑥) and
bottom morphism 𝑠2 (𝑥). Thus we can construct Sq ( 𝑓 , 𝑔) from a pullback in Set.

Exercise 3.2.iv. Generalize Exercise 3.2.iii to show that for any small category J, any
locally small category C and any paralell pair of functors 𝐹, 𝐺 : J→ C, the set Hom(𝐹, 𝐺)
of natural transformations can be defined as a small limit in Set. (Hint: the diagram whose
limit is Hom(𝐹, 𝐺) is indexed by a category J§ whose objects are morphisms in J and which
had morphisms 1𝑥 → 𝑓 , 1𝑦 → 𝑓 for every 𝑓 : 𝑥 → 𝑦 in J)

Proof. First, we note that the underlying shape of the diagram in Set will be based on
the following diagram in J§:

1𝑥 // 𝑓 1𝑦oo (3.4)

Now, we define a functor 𝐻 : J§ → C as the following:
• For 𝑓 ∈ 𝑜𝑏J§ where 𝑓 : 𝑥 → 𝑦, 𝐻 𝑓 = C(𝐹𝑥, 𝐺𝑦)
• For a morphism 𝜏 : 1𝑥 → 𝑓 in 𝐽§ where 𝑓 : → 𝑦, 𝐻𝜏 : C(𝐹𝑥, 𝐺𝑥) → 𝐶 (𝐹𝑥, 𝐺𝑦) is

defined as post-compostion by𝐺 𝑓 and if 𝜏 : 1𝑦 → 𝑓 , 𝐻𝜏 : C(𝐹𝑦, 𝐺𝑦) → C(𝐹𝑥, 𝐺𝑦)
is defined as precomposition by 𝐺 𝑓 .

We see that the image of (1) under this functor is :

C(𝐹𝑥, 𝐺𝑥)
𝐺 𝑓 ◦−

// C(𝐹𝑥, 𝐺𝑦) C(𝐹𝑦, 𝐺𝑦)
−◦𝐹 𝑓
oo (3.5)

Now, we must show that Hom(𝐹, 𝐺) is a cone over this diagram. To do this, we
construct a family of functions 𝜙𝑥𝑦 : Hom(𝐹, 𝐺) → C(𝐹𝑥, 𝐺𝑦) where 𝜙𝑥𝑦 (𝜂) = 𝜂𝑥 , the
corresponding component of the natural transformation (if this is the case, we denote it as
𝜙𝑥 if 𝑥 = 𝑦 and 𝜙𝑥𝑦 (𝜂) = 𝐺 𝑓 𝜂𝑥 if 𝑥 ≠ 𝑦. Because we have that 𝜂 is a natural transformation
and that 𝐺 𝑓 𝜂𝑥 = 𝜂𝑦𝐹 𝑓 , we see that we have commutativity of:

Hom(𝐹, 𝐺)
𝜙𝑥

ww

𝜙𝑦

''

𝜙𝑥𝑦

��

C(𝐹𝑥, 𝐺𝑥)
𝐺 𝑓 ◦−

// C(𝐹𝑥, 𝐺𝑦) C(𝐹𝑦, 𝐺𝑦)
−◦𝐹 𝑓
oo

(3.6)
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Now, we must show that Hom(𝐹, 𝐺) is the limit for this diagram. Suppose that there
is an object 𝑋 ∈ Set that also forms a cone over our diagram. This means that for
every object 𝑓 ∈ J§ and 𝐻 𝑓 = C(𝐹𝑥, 𝐺𝑦), we have a 𝜎𝑥,𝑦 : 𝑋 → C(𝐹𝑥, 𝐺𝑦) so that
𝜎𝑥𝑦 (𝑘) : 𝐹𝑥 → 𝐺𝑦 and in particular, if 𝑥 = 𝑦, then 𝜎𝑥 (𝑘) : 𝐹𝑥 → 𝐺𝑥. Now, suppose
we have a 𝑟 : 𝑋 → Hom(𝐹, 𝐺), such that 𝜎𝑥 = 𝜙𝑥𝑟. So for 𝑘 ∈ 𝑋 𝜙𝑥𝑟 (𝑘) = 𝜎𝑥 (𝑘).
Now, consider that 𝜙𝑥 is selecting the 𝑥 component of the natural transformation 𝑟 (𝑘), so
(𝑟 (𝑘))𝑥 = 𝜎𝑥 (𝑘). So, we see what the construction of 𝑟 must be. This is the only possible
construction that satisfies 𝜙𝑥𝑟 = 𝜎𝑥 . We can also easily see that 𝜙𝑥𝑦𝑟 = 𝜎𝑥𝑦 with our
construction of 𝑟 . So we have shown that any cone with apex 𝑋 factors uniquely through
Hom(𝐹, 𝐺) and so Hom(𝐹, 𝐺) is the limit of this diagram.

Exercise 3.2.v. Show that for any small category J, any locally small category C, and any
parallel pair of functors 𝐹, 𝐺 : J ⇒ C, there is an equalizer diagram

C(𝐹 𝑗 ′, 𝐺 𝑗 ′)
𝐹 𝑓 ∗

// C(𝐹 𝑗, 𝐺 𝑗 ′)

Hom(𝐹, 𝐺) // //
∏
𝑗∈ob J

C(𝐹 𝑗, 𝐺 𝑗) //
//

𝜋 𝑗′

OO

𝜋 𝑗

��

∏
𝑓 : 𝑗→ 𝑗′∈mor J

C(𝐹 𝑗, 𝐺 𝑗 ′)

𝜋 𝑓

OO

𝜋 𝑓

��

C(𝐹 𝑗, 𝐺 𝑗)
𝐺 𝑓∗

// C(𝐹 𝑗, 𝐺 𝑗 ′)

Note that this is not the equalizer diagram obtained by applying Theorem 3.2.13 to the
diagram constructed in Exercise 3.2.vi. Rather, this construction gives a second formula
for Hom(𝐹, 𝐺) as a limit in Set.

Proof. Our strategy will be to determine the parallel morphisms in the middle of the
diagram, and then use those to determine an equalizer. From there, we will show that this
equalizer is isomorphic to Hom(𝐹, 𝐺), and thus the diagram is an equalizer diagram.

Let 𝑎, 𝑏 be the parallel functions from the above diagram. We have that 𝜋 𝑓 𝑎 = 𝐹 𝑓 ∗𝜋 𝑗′
and 𝜋 𝑓 𝑏 = 𝐺 𝑓∗𝜋 𝑗 . We can describe the action of the top half of the diagram as taking the
𝑗 ′ component of the product into a morphism 𝑚 𝑗′ : 𝐹 𝑗 ′ → 𝐺 𝑗 ′, and then precomposing 𝑚
with 𝑓 . Similarly, the bottom of the diagram post-composes 𝑓 with 𝑛 𝑗 : 𝐹 𝑗 → 𝐺 𝑗 . We then
have that 𝜋 𝑓 𝑎 = (𝑚 𝑗′ ◦ 𝑓 )𝜋 𝑗′ and 𝜋 𝑓 𝑏 = ( 𝑓 ◦𝑛 𝑗 )𝜋 𝑗 . So 𝑎 and 𝑏 take products of morphisms
indexed by 𝑗 to products of morphisms that have been pre and post-composed (respectively)
with the morphisms 𝑓 : 𝑗 → 𝑗 ′ ∈ J. The equalizer in this case would be the products of
morphisms the components of which are the same under both pre and post-composition
with 𝑓 : {

𝑝 ∈
∏
𝑗∈ob J

C(𝐹 𝑗, 𝐺 𝑗) | 𝑓 ◦ 𝑔𝑖 = 𝑔𝑖 ◦ 𝑓 for all 𝑔𝑖 ∈ 𝑝
}
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Where 𝑔𝑖 : 𝐹 𝑗 → 𝐺 𝑗 is the 𝑖-th component of 𝑝.
Note that this is similar to the condition of naturality, that the following diagram

commutes for a natural transformation 𝛼 with componenets 𝛼 𝑗 :

𝐹 𝑗
𝐹 𝑓
//

𝛼𝑗

��

𝐹 𝑗 ′

𝛼𝑗′

��

𝐺 𝑗
𝐺 𝑓
// 𝐺 𝑗 ′

Where we can see that 𝐺 𝑓 ◦ 𝛼 𝑗 = 𝛼 𝑗′ ◦ 𝐹 𝑓 . An element 𝑝 of the equalizer is a product
of morphisms between 𝐹 𝑗 and 𝐺 𝑗 , similar to 𝛼 𝑗 . Additionally, since there are as many
products 𝑝 as their are functions 𝑓 , we can form a bĳection between the equalizer and
Hom(𝐹, 𝐺) by taking each product 𝑝 to the natural transformation 𝛼 for which 𝑝𝑖 = 𝛼𝑖 .
A morphism doing so is clearly injective and surjective, and thus we have a bĳection (and
since we are talking about sets, an isomorphism) between the equalizer and Hom(𝐹, 𝐺).
So, the diagram is an equalizer diagram.

Exercise 3.2.vi. Prove that the limit of any small functor 𝐹 : C→ Set is isomorphic to the
set of functors C →

∫
𝐹 that defines a section to the canonical projection

∏
:

∫
𝐹 → C

from the category of elements of 𝐹. Using this description of the limit, define the limit
cone.

Proof. Starting with the set of functors C→
∫
𝐹, let 𝜙 be the functor C→

∫
𝐹, which

defines a setion to
∏

:
∫
𝐹 → C, such that, for C →𝜙

∫
𝐹 →

∏
C,

∏
𝜙 = 1C. Here,

∏
is the forgetful functor, projecting (𝑐, 𝑥) to 𝑐. Since

∏
𝜙 takes objects in C to objects in C,

then the functor 𝜙 operates as an inclusion of objects 𝑐 in C into the category of elements,
namely, 𝜙 = (𝑐, 𝑥), for 𝑥 ∈ 𝐹𝑐.

Since lim 𝐹 ⊂ ∏
𝑗∈𝐽 𝐹𝑗 is the set of tuples {(𝑥 𝑗 ) 𝑗∈𝐽 |∀ 𝑓 : 𝑗 → 𝑘 ∈ 𝐽, 𝐹 𝑓 (𝑥 𝑗 ) = 𝑥𝑘 ∈

𝐹𝑘}. Then for 𝑓 : (𝑐, 𝑥) → (𝑐′, 𝑥′), with 𝑓 : 𝑐 → 𝑐′ in C, such that 𝑓 (𝑥) = 𝑥′, ∏ 𝜙 = 1C.
Thus lim 𝐹 is isomorphic to the set of 𝜙.

Also, since lim 𝐹 ⊂ ∏
𝐹𝑐, with lim 𝐹 → 𝐹𝑐 and 𝜋𝑐 :

∏
𝐹𝑐 → 𝐹𝑐, then this lim 𝐹 is

the limit cone. □
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3.3 Preservation, reflection, and creation of limits and col-
imits

Exercise 3.3.i. For any diagram 𝐾 : J→ C and any functor 𝐹 : C→ D:
(i) Define a canonical map colim𝐹𝐾 → 𝐹colim𝐾 , assuming both colimits exist.
(ii) Show that the functor 𝐹 preserves the colimit of 𝐾 just when this map is an isomor-

phism.

Proof (i). Let 𝛼 : 𝐹𝐾 ⇒ colim 𝐹𝐾 be the colimit cone under 𝐹𝐾 . We also have
following diagram for 𝐾 and 𝐹:

J

𝐾
!!

colim𝐾

??C
𝐹 // D𝜇�� = J

𝐹𝐾
!!

𝐹colim𝐾

??D𝐹𝜇��

This diagram gives us another cone 𝐹𝜇 under 𝐹𝐾 . Then, the universal property tells us that
since 𝐹𝜇 is a cone with nadir 𝐹 colim𝐾 , there must be a unique morphism 𝑓 : colim 𝐹𝐾 →
𝐹 colim𝐾 such that 𝐹𝜇 = 𝑓 𝛼. □

Proof (ii). To see that 𝐹 preserving colimits implies 𝑓 is an isormorphism, note that
for any cone 𝛽 : 𝐹𝐾 ⇒ 𝑧, there is a unique morphism 𝑘 : 𝐹 colim𝐾 → 𝑧 such that
𝛽 = 𝑘𝐹𝜇 and that we also have a unique 𝑗 : colim 𝐹𝐾 → 𝑧 such that 𝛽 = 𝑗𝛼. Since
𝐹𝜇 is a cone 𝐹𝐾 ⇒ 𝐹 colim𝐾 , then 𝑘 = 1𝐹 colim𝐾 satisfies 𝐹𝜇 = 𝑘𝐹𝜇 and is the
only such 𝑘 . Similarly, 𝑗 = 1colim𝐹𝐾 is the only morphism such that 𝛼 = 𝑗𝛼. Then,
if 𝛽 = 𝛼 (that is, it is the colimit cone under 𝐹𝐾), then there must be some morphism
𝑚 : 𝐹 colim𝐾 → colim 𝐹𝐾 where 𝛼 = 𝑚𝐹𝜇. Similarly, 𝛽 = 𝐹𝜇 implies that there is some
morphism 𝑛 : colim 𝐹𝐾 → 𝐹 colim𝐾 where 𝐹𝜇 = 𝑛𝛼. So, 𝐹𝜇 = 𝑛𝑚𝐹𝜇 and 𝑚𝑛𝛼 = 𝛼.
Since we already know which morphisms these are ( 𝑗 and 𝑘), we have 𝑚𝑛 = 𝑗 = 1colim𝐹𝐾
and 𝑛𝑚 = 𝑘 = 1𝐹 colim𝐾 and so𝑚 and 𝑛 are inverses of each other. Thus, 𝑓 is an isomorphism
(with 𝑓 = 𝑛 and 𝑓 −1 = 𝑚).

Conversely, we need to show that 𝐹 colim𝐾 satisfies the universal property if 𝑓 −1 exists.
That is, for any cone 𝛽 : 𝐹𝐾 ⇒ 𝑎, there exists a unique morphism 𝑚 : 𝐹 colim𝐾 → 𝑎, so
the following diagram gives us a construction for a morphism 𝐹 colim𝐾 → 𝑎:

𝐹𝐾
𝛽 +3

𝐹𝜇 !)

𝑎

colim 𝐹𝐾

𝑚

OO

𝑓
--
𝐹 colim𝐾

𝑓 −1
mm

𝑚◦ 𝑓 −1oo

The universal morphism is 𝑚 ◦ 𝑓 −1, which is unique since 𝑚 and 𝑓 −1 are both unique, and
so 𝐹 preserves colimits. □
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Exercise 3.3.ii. Prove that a full and faithful functor reflects both limits and colimits.

Proof. Let 𝐹 : 𝐶 → 𝐷 be fully faithful, and let 𝜆 : 𝑐 ⇒ 𝐾 be a cone over some
diagram 𝐾 : J→ C such that 𝐹𝜆 : 𝐹𝑐 ⇒ 𝐹𝐾 is a limit cone in D. Finally, let 𝛾 : 𝑑 ⇒ 𝐾

be an arbitrary cone over 𝐾 in C. 𝐹𝛾 : 𝐹𝑑 ⇒ 𝐹𝐾 is necessarily a cone in D, so there must
be a unique morphism 𝑔 : 𝐹𝑑 → 𝐹𝑐 such that 𝐹𝛾 = 𝐹𝜆𝑔. Since 𝐹 is fully faithful, there
must be a unique 𝑓 ∈ C such that 𝐹 𝑓 = 𝑔.

Furthermore, for any morphism ℎ : 𝑑 → 𝑐 such that 𝛾 = 𝜆ℎ, 𝐹𝛾 = 𝐹𝜆𝐹ℎ. But recall
that 𝑔 is the unique morphism such that 𝐹𝜆𝑔 = 𝐹𝛾, so 𝑔 = 𝐹ℎ. Finally recall that since 𝐹
is fully faithful, 𝑓 is the unique morphism such that 𝑔 = 𝐹 𝑓 , so 𝑓 = ℎ. So the 𝑓 : 𝑑 → 𝑐

constructed earlier is unique for each cone 𝛾 over 𝐾 in C, which means 𝜆 must be a limit
cone. So 𝐹 reflects limits.

Similarly, if we let 𝐹𝜆 : 𝐹𝐾 ⇒ 𝐹𝑐 be a colimit cone under 𝐹𝐾 and 𝛾 : 𝐾 ⇒ 𝑑 be a
cone under 𝐾 , we can use the dual of the above procedure to construct a unique 𝑓 ∈ C such
that 𝐹𝛾 = 𝐹 𝑓 𝐹𝜆 = 𝐹 ( 𝑓 𝜆) and therefore that 𝛾 = 𝑓 𝜆, making 𝜆 a colimit cone under 𝐾 . So
𝐹 also reflects colimits. □

Exercise 3.3.iii. Prove Lemma 3.3.6, that an equivalence of categories, reflects and creates
any limits and colimits that are present in either its domain or codomain.

Proof. If two categories C and D are equivalent, then there is a full faithful and essen-
tially surjective functor 𝐹 : C → D. By the previous question 𝐹 reflects limits. Let 𝐺 be
cone over a diagram 𝐻 : J→ C with apex 𝑐 in C. We need to show that 𝐹𝐺 is a cone in D.
Since 𝐺 is a cone we have the following commutative triangle

𝑐
𝜆 𝑗

  

𝜆𝑘

~~

𝐻 𝑗
𝐻 𝑓

// 𝐻𝑘

where (𝜆 𝑗 : 𝑐 → 𝐻 𝑗) 𝑗∈ob J and 𝑓 : 𝑗 → 𝑘 is a morphism in J. Since 𝐹 is faithful, 𝐹 uniquely
maps 𝑓 in mor J and 𝜆 𝑗 to 𝐹 𝑓 and 𝐹𝜆 𝑗 , respectively. Since𝐺 is a cone in C and 𝐹 respects
composition we know that the following diagram commutes.

𝐹𝑐

𝐹𝜆 𝑗

""

𝐹𝜆𝑘

||

𝐹𝐻 𝑗
𝐹𝐻 𝑓

// 𝐹𝐻𝑘

Thus 𝐹 preserves cones, and therefore preserves limits. Because 𝐹 is full and faithful, by
exercise 1.5.iv 𝐹 reflects isomorphisms. This fulfills the criteria to apply the next question
3.3.iv, so 𝐹 creates limits. This completes the proof. □
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Exercise 3.3.iv. Prove that 𝐹 : C → D creates limits for a particular class of diagrams if
both of the following hold:

1. C has those limits and 𝐹 preserves them.
2. 𝐹 : C→ D reflects isomorphisms.

Proof. The first condition above means that for every 𝐾 : J→ C, 𝐾 has a limit whose
limit cone is represented by 𝜆 : lim𝐾 ⇒ 𝐾 and that 𝐹𝜆 : 𝐹 lim𝐾 ⇒ 𝐹𝐾 is a limit cone for
FK. The second condition means that for every morphism 𝑓 in C, if 𝐹 𝑓 is an isomorphism
in D, then so is 𝐹.

We must show that whenever 𝐹𝐾 : J → D has a limit in D, there is some limit cone
over 𝐹𝐾 that can be lifted to a limit cone over 𝐾 and that 𝐹 reflects all limits. To see the
first requirement, we see that for any 𝐾 , there exists a limit cone 𝐹𝜆 as defined before by
condition 1 that can be lifted to a limit cone 𝜆 over 𝐾 . We now must show that 𝐹 reflects
all limits.

Now suppose that 𝜈 : 𝑐 ⇒ 𝐾 is a cone over 𝐾 and that 𝐹𝜈 : 𝐹𝑐 ⇒ 𝐹𝐾 is a limit cone.
Note that we also have the limit cone 𝐹𝜆 : 𝐹 lim𝐾 ⇒ 𝐹𝐾 . Consider the unique morphism
𝑓 : 𝐹𝑐 → 𝐹 lim𝐾 such that (𝐹𝜆) 𝑓 = 𝐹𝜈. We know that 𝑓 is an isomorphism, becuause
𝐹𝜈 is also a limit cone. We must now show that this ismorphism is in the image of 𝐹, that is
that 𝑓 = 𝐹𝑔 for some 𝑔 : 𝑐 → lim𝐾 . We see that this morphism is the image of the unique
morphism that factors the legs of 𝜈 through 𝜆 by the uniqueness of 𝑓 .

So we see that 𝐹𝑔 = 𝑓 is an canonical isomorphism in D, and therefore by our second
condition that 𝐹 reflect isomorphisms, 𝑔 is a canonical isomorphism between 𝑐 and lim𝐾 ,
so we see that 𝜈 is also a limit cone over 𝐾 . Therefore 𝐹 reflects limits and we have shown
that 𝐹 creates limits. □

Exercise 3.3.v. Show that the forgetful functors 𝑈 : Set∗ → Set and 𝑈 : Top∗ → Top fail
to preserve coproducts and explain why this results demonstrates that the connectedness
hypothesis in Proposition 3.3.8(ii) is necessary.

Proof. Consider first pointed sets (𝐴, 𝑎) and (𝐵, 𝑏) where neither is a singleton. Letting
𝐶 := (𝐴 \ {𝑎}) ⨿ (𝐵 \ {𝑏}), then (𝐶, ∗), where ∗ is some available symbol, realizes the
coproduct of (𝐴, 𝑎) and (𝐵, 𝑏) in Set∗. The inclusion maps here are defined as they are
for disjoint unions normally augmented by taking either 𝑎 or 𝑏 to ∗ as necessary. However,
under the forgetful functor𝑈, the coproduct of 𝐴 and 𝐵 is simply the disjoint union 𝐴 ⨿ 𝐵,
which (with some fussing) properly contains 𝐶.

That this problem also affects topological spaces can been seen merely by noting that in
taking finite sets with the discrete topology we have essentially recreated the category Fin
because all maps from a discrete space are continuous. Given more realistic topological
spaces, the coproduct of two pointed spaces involves stitching them together at that point
while the coproduct of the underlying spaces has them essentially floating free of each other.
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To see why the connectedness hypothesis is necessary it is instructive to examine
pushouts: where coproducts are the colimit of a diagram from a discrete category • •,
pushouts are the colimit of a connected diagram • ← • → •. When we take a diagram of
this form in Set∗, we have two functions that preserve the points of each object: 𝑓 (𝑐) = 𝑎
and 𝑔(𝑐) = 𝑏.

(𝐶, 𝑐) (𝐵, 𝑏)

(𝐴, 𝑎)

←→𝑓

←→ 𝑔

When we apply 𝑈 and “forget” about the points, the functions 𝑓 and 𝑔 preserve their
importance. For a set 𝑍 to be the colimit of this diagram in Set with inclusions 𝜄𝐴 and 𝜄𝐵, it
must be the case 𝜄𝐴 𝑓 (𝑐) = 𝜄𝐵𝑔(𝑐) which forces 𝜄𝐴(𝑎) = 𝜄𝐵 (𝑏). This is precisely the point
at which𝑈 failed to preserve the coproduct.

Exercise 3.3.vi. Prove that for any small category A, the functor category CA again has any
limit or colimit that C does, constructed objectwise. That is given a diagram 𝐹 : J → CA

with J small show that whenever the limits of the diagram

J 𝐹 // CA ev𝑎 // C

exists in C for all 𝑎 ∈ A, then these values define the action on object of lim 𝐹 ∈ CA, a limit
of the diagram 𝐹. (Hint: See Proposition 3.6.1)

Proof. Suppose C has limits for each 𝑎 ∈ 𝐴. For each ev𝑎 ·𝐹, call lim𝑎 𝐹 ∈ C the limit
of ev𝑎 · 𝐹. Now we will explicitly define an element of CA which we will call lim 𝐹:

1. lim 𝐹 maps an object 𝑎 ∈ 𝐴 to lim𝑎 𝐹

2. suppose 𝑚𝑎2 : Cone
(
−, ev𝑎2 · 𝐹

)
→ C

(
−, lim𝑎2 𝐹

)
is the canonical natural isomor-

phism induced by the limit cone of lim𝑎2 𝐹. Then lim 𝐹 maps morphism 𝑓 : 𝑎1 → 𝑎2
onto 𝑚𝑎2 ,lim𝑎1 𝐹

(
𝐹− 𝑓 · 𝜆𝑎1

)
where 𝜆𝑎1 is the limit cone of lim𝑎1 𝐹 and 𝐹− 𝑓 is a

natural transformation from ev𝑎1 · 𝐹 to ev𝑎2 · 𝐹 where the components are 𝐹𝑗 𝑓 for
each 𝑗 . The fact that 𝐹− 𝑓 is a natural transformation follows from the fact that 𝐹
maps each morphism of J to a natural transformation and 𝑒𝑣𝑎 simply maps a natural
transformation to its component at 𝑎.

To verify that lim 𝐹 is a functor note that each identity morphism 1𝑎 gets mapped
to 𝑚𝑎,lim𝑎 𝐹 (𝜆𝑎) = 1lim𝑎 𝐹 since 𝐹𝑗1𝑎 is an identity morphism. Also, for morphisms
𝑓 : 𝑎1 → 𝑎2 and 𝑔 : 𝑎2 → 𝑎3 , lim 𝐹 maps 𝑔 · 𝑓 to 𝑚𝑎3 ,lim𝑎1 𝐹

(
𝐹− (𝑔 · 𝑓 ) · 𝜆𝑎1

)
=
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𝑚𝑎3 ,lim𝑎1 𝐹
(
𝐹−𝑔 · 𝐹− 𝑓 · 𝜆𝑎1

)
. This induces the following commutative diagram

lim𝑎1 𝐹

𝑚𝑎2 ,lim𝑎1 𝐹 (𝐹𝑗 𝑓 ·𝜆𝑎1 )
��

𝜆𝑎1 , 𝑗 // ev𝑎1𝐹 𝑗

𝐹𝑗 𝑓

��

lim𝑎2 𝐹

𝑚𝑎3 ,lim𝑎2 𝐹 (𝐹𝑗𝑔·𝜆𝑎2 )
��

𝜆𝑎2 , 𝑗 // ev𝑎2𝐹 𝑗

𝐹𝑗𝑔

��

lim𝑎3 𝐹 𝜆𝑎3 , 𝑗
// ev𝑎3𝐹 𝑗

This shows that𝑚𝑎3 ,lim𝑎1 𝐹
(
𝐹− (𝑔 · 𝑓 ) · 𝜆𝑎1

)
= 𝑚𝑎3 ,lim𝑎2 𝐹

(
𝐹𝑗𝑔 · 𝜆𝑎2

)
·𝑚𝑎2 ,lim𝑎1 𝐹

(
𝐹𝑗 𝑓 · 𝜆𝑎1

)
,

thus lim 𝐹 (𝑔 · 𝑓 ) = lim 𝐹𝑔 · lim 𝐹 𝑓 . Now we must show that

Cone (−, 𝐹) � CA (−, lim 𝐹)

Let 𝜙 be our proposed natural isomorphism where for 𝐺 ∈ CA, 𝜙𝐺 : Cone (𝐺, 𝐹) →
CA (𝐺, lim 𝐹) is defined as follows:

𝜙𝐺 (𝛼) = {𝑚𝑎,𝐺𝑎 (ev𝑎𝛼) |𝑎 ∈ 𝐴}

To show that 𝜙𝐺 (𝛼) can be regarded as a natural transformation we must show that the
following diagram commutes:

𝐺𝑎1

𝑚𝑎1 ,𝐺𝑎1 (ev𝑎1 𝛼)
��

𝐺 𝑓
// 𝐺𝑎2

𝑚𝑎2 ,𝐺𝑎2 (ev𝑎2 𝛼)
��

lim 𝐹𝑎1 lim𝐹 𝑓
// lim 𝐹𝑎2

First thing to note is that𝑚𝑎2 ,𝐺𝑎1

(
𝐹− 𝑓 · ev𝑎1𝛼

)
= lim 𝐹 𝑓 ·𝑚𝑎1 ,𝐺𝑎1

(
ev𝑎1𝛼

)
since𝑚𝑎2 ,lim𝐹𝑎1 =

lim 𝐹 𝑓 . As for 𝑚𝑎2 ,lim𝑎2 𝐹
(
ev𝑎2𝛼

)
· 𝐺 𝑓 , consider the cone 𝛽 whose components are

𝛽 𝑗 = ev𝑎2𝛼 𝑗 · 𝐺 𝑓 . Then 𝑚𝑎2 ,𝐺𝑎1 (𝛽) must be equal to 𝑚𝑎2 ,𝐺𝑎2

(
ev𝑎2𝛼

)
· 𝐺 𝑓 . We get that

𝛽 = 𝐹− 𝑓 · ev𝑎1𝛼 since for each 𝑎 ∈ 𝐴, ev𝑎𝛼 𝑗 is the component of 𝛼 𝑗 at 𝑎, so we get that the
following diagram commutes by naturality of 𝛼 𝑗 :

𝐺𝑎1

ev𝑎1 𝛼𝑗

��

𝐺 𝑓
// 𝐺𝑎2

ev𝑎2 𝛼𝑗

��

ev𝑎1𝐹 𝑗 𝐹𝑗 𝑓
// ev𝑎2𝐹 𝑗

. Thus the diagram for 𝜙𝐺 (𝛼) commutes confirming 𝜙𝐺 (𝛼) as a natural transformation.
We must now show that 𝜙𝐺 is a bĳection. First for injectivity, suppose 𝜈, 𝜇 ∈ Cone (𝐺, 𝐹)
such that 𝜙𝐺 (𝜈) = 𝜙𝐺 (𝜇). Then for all 𝑎 ∈ 𝐴, ev𝑎𝜈 = ev𝑎𝜇 by bĳectivity of 𝑚𝑎,𝐺𝑎.Then,
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ev𝑎𝜈 𝑗 = ev𝑎𝜇 𝑗 which are the components of 𝜈 𝑗 and 𝜇 𝑗 at 𝑎, thus 𝜈 𝑗 = 𝜇 𝑗 . But these are
the components of 𝜈 and 𝜇 at 𝑗 . Thus 𝜈 = 𝜇. For surjectivity, suppose 𝛿 ∈ CA (𝐺, lim 𝐹).
By bĳectivity of 𝑚𝑎,𝐺𝑎, we can map each component of 𝛿 to a natural transformation
𝛿∗𝑎 : 𝐺𝑎 ⇒ ev𝑎𝐹 whose components are 𝛿∗

𝑎, 𝑗
: 𝐺𝑎 → ev𝑎𝐹 𝑗 , but one can form a natural

transformation 𝛿∗
𝑗
: 𝐺 → 𝐹 𝑗 from each 𝛿∗𝑎 by taking the 𝑗-component of each of the 𝛿∗𝑎. To

verify that 𝛿∗
𝑗

is a natural transformation, see that diagram

𝐺𝑎1

𝛿𝑎1
��

𝐺 𝑓
// 𝐺𝑎2

𝛿𝑎2
��

lim𝑎1 𝐹

𝜆𝑎1 , 𝑗

��

lim𝐹 𝑓
// lim𝑎2 𝐹

𝜆𝑎2 , 𝑗

��

ev𝑎1𝐹 𝑗 𝐹𝑗 𝑓
// ev𝑎2𝐹 𝑗

commutes since the top square is the commutative diagram for 𝛿 and the bottom square is
the commutative diagram for defining lim 𝐹 𝑓 . Furthermore 𝛿∗

𝑎, 𝑗
= 𝜆𝑎, 𝑗 · 𝛿𝑎 since 𝑚𝑎 is

the natural isomorphism induced by the limit cone 𝜆𝑎. We can make each 𝛿∗
𝑗

a component
of a cone 𝛿∗ : 𝐺 ⇒ 𝐹. The fact that 𝛿∗ is a natural transformation follows from the fact
that 𝛿∗𝑎 is a natural transformation. Furthermore , 𝜙𝐺 (𝛿∗) = {𝑚𝑎,𝐺𝑎 (ev𝑎𝛿∗) |𝑎 ∈ 𝐴} =
{𝑚𝑎,𝐺𝑎

(
𝛿∗𝑎

)
|𝑎 ∈ 𝐴} = {𝛿𝑎 |𝑎 ∈ 𝐴} = 𝛿. Thus 𝜙𝐺 is surjective, making 𝜙𝐺 a bĳection, and

by extension 𝜙 an isomorphism. To confirm naturality of 𝜙 consider the following diagram
for natural transformation 𝜖 : 𝐺 ⇒ 𝐻 in CA:

Cone (𝐺, 𝐹)

𝜙𝐺

��

Δ𝜖 ·− // Cone (𝐻, 𝐹)

𝜙𝐻

��

CA (𝐺, lim 𝐹)
𝜖 ·−
// CA (𝐻, lim 𝐹)

where Δ𝜖 is the natural transformation whose components are 𝜖 for each 𝑗 ∈ 𝐽. Take
𝛼 ∈ Cone (𝐺, 𝐹), we get the natural transformations 𝜖 · 𝜙𝐺 (𝛼) and 𝜙𝐻 (Δ𝜖 · 𝛼). To
show that they are equal notice that 𝜙𝐻 (Δ𝜖 · 𝛼) = {𝑚𝑎,𝐻𝑎 (ev𝑎 (Δ𝜖 · 𝛼)) |𝑎 ∈ 𝐴} =

{𝑚𝑎,𝐻𝑎
(
Δ𝜖−,𝑎 · ev𝑎𝛼

)
|𝑎 ∈ 𝐴}. Every component of Δ𝜖−,𝑎 is simply the component of 𝜖

at 𝑎 so 𝜙𝐻 (Δ𝜖 · 𝛼) = {𝜖𝑎 · 𝑚𝑎,𝐺𝑎 (ev𝑎𝛼) |𝑎 ∈ 𝐴} = {𝜖𝑎 · 𝜙𝐺 (𝛼)𝑎 |𝑎 ∈ 𝐴} = 𝜖 · 𝜙𝐺 (𝛼).
Thus 𝜙 is a natural transformation confirming that Cone (−, 𝐹) � CA (−, lim 𝐹) and lim 𝐹

is the limit of 𝐹. Since the objects of lim 𝐹 are the limits of ev𝑎𝐹 for all 𝑎, thus the limits
of ev𝑎𝐹 define an action on objects of lim 𝐹. The corresponding result for colimits follow
from duality. □
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3.4 The representable nature of limits and colimits

Exercise 3.4.i. Show that the isomorphism (3.4.1) is natural.

Proof. Take an object 𝑋 fixed in a category C and a fixed diagram J. Then the
isomorphism 𝑙𝑖𝑚JC(𝑋, 𝐹−) � Cone(𝑋, 𝐹) defines a morphism 𝛼𝑋 : limJ C(𝑋, 𝐹) →
Cone(𝑋, 𝐹) for each fixed 𝑋 . With 𝑋 fixed, the legs of the cone over 𝐹 with summit 𝑋 are
the tuples of morphisms (𝜆 𝑗 : 𝑋 → 𝐹 𝑗) 𝑗∈J.

Now, taking a morphism 𝑓 : 𝑋 → 𝑌 in C, there is a morphism 𝛼𝑌 : limJ C(𝑌, 𝐹) →
Cone(𝑌, 𝐹) and morphisms 𝐹 𝑓 : limJ C(𝑌, 𝐹) → limJ C(𝑋, 𝐹), and 𝜆 𝑗 : Cone(𝑌, 𝐹) →
Cone(𝑋, 𝐹), such that 𝑓 𝜆 𝑗𝛼𝑌 = 𝛼𝑥𝐹 𝑓 . The corresponding naturality square commutes,
and thus the isomorphism in 3.4.1 is natural.

Exercise 3.4.ii. Explain in your own words why the Yoneda embedding C ↩→ SetC
op

preserves and reflects but does not create limits.

Recall that the Yoneda embedding of a category C takes each object to the presheaf which
it represents and maps to natural transformations between these presheaves. Explicitly, an
object 𝑐 becomes the hom-functor C(−, 𝑐), and a map 𝑓 becomes the natural transformation
of post-composition with 𝑓 . The Yoneda lemma states that this functor is fully faithful,
and thus C is realised as a full subcategory of SetC

op
. Recall that this means SetC

op
may

contain objects not in C, but if the domain and codomain of a morphism are present in both
categories then the morphism must be as well. For the sake of brevity we will treat C as
being part of SetC

op
and ignore the renaming implicit in the isomorphism. Correspondingly,

a functor 𝐹 : J→ C is also a functor 𝐹 : J→ SetC
op

.
This makes it immediately clear why the Yoneda embedding reflects limits. Given a

cone over the diagram 𝐹 : J→ SetC
op

with an apex 𝑐, first, this cone will exist in C if and
only if 𝑐 and 𝐹 𝑗 where 𝑗 ∈ ob 𝐽 are objects in C. Second, if this is a limit cone in SetC

op
,

then there is a unique map from any other cone over 𝐹 subject to naturality conditions. If
the apex of this cone is in C, then so must be the unique map by the condition that the C
is a full subcategory. Thus 𝐾 will still be a limit cone considering only the objects and
morphisms in C.

Now, suppose that 𝑐 is the limit of a functor 𝐹 : J→ C. . . .
However, given an arbitrary object 𝑐 in SetC

op
there is no guarantee that there is an

object in C isomorphic to 𝑐. Thus if 𝑐 happens to be the apex of a limit cone, it is impossible
for that cone to have a limit in C even if the base of that cone is entirely in C.

Exercise 3.4.iii. Generalize Proposition 3.3.8 to show that for any 𝐹 : C → Set, the
projection functor Π :

∫
𝐹 → C:
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1. strictly creates all limits that C admits and that 𝐹 preserves, and
2. strictly creates all connected colimits that C admits.

Consider an ordered pair (𝐾, 𝑥) where 𝐾 : 𝐽 → C and 𝑥 : 1 ⇒ 𝐹𝐾 . Here 1 = {0}
is a singleton set, or the corresponding constant functor from 𝐽 to Set, and we identify
𝑥𝑖 : 1 → 𝐹𝐾𝑖 with 𝑥𝑖 (0) ∈ 𝐹𝐾𝑖. This pair gives a diagram (𝐾, 𝑥) : 𝐽 →

∫
𝐹. For

each morphism 𝑔 : 𝑖 → 𝑗 in 𝐽 the morphism (𝐾, 𝑥)𝑔 : (𝐾𝑖, 𝑥𝑖) → (𝐾 𝑗, 𝑥 𝑗 ) is given by
𝐾𝑔 : 𝐾𝑖 → 𝐾 𝑗 . This is a morphism in

∫
𝐹 because the natural transformation 𝑥 : 1⇒ 𝐹𝐾

tells us that 𝐹𝐾𝑔(𝑥𝑖) = 𝑥 𝑗 .
Now, all diagrams 𝐿 : 𝐽 →

∫
𝐹 are of this form. Indeed, let 𝐾 = Π𝐿. Then for

every 𝑖 ∈ ob 𝐽 we have that 𝐿𝑖 = (𝐾𝑖, 𝑥𝑖) for some 𝑥𝑖 ∈ 𝐹𝐾𝑖 and for every 𝑔 : 𝑖 → 𝑗 ,
𝐿𝑔 : (𝐾𝑖, 𝑥𝑖) → (𝐾 𝑗, 𝑥 𝑗 ) is given by 𝐾𝑔 : 𝐾𝑖 → 𝐾 𝑗 such that 𝐹𝐾 (𝑥𝑖) = 𝑥 𝑗 . But, this
precisely gives a natural transformation 𝑥 : 1⇒ 𝐹𝐾 as described above.

Now, for part (1) say that 𝐾 : J → C has a limit cone 𝜆 : lim𝐾 ⇒ 𝐾 and that 𝐹
preserves this limit. That is, 𝐹𝜆 : 𝐹 lim𝐾 ⇒ 𝐹𝐾 is also a limit cone. Then the natural
transformation 𝑥 : 1 ⇒ 𝐹𝐾 must uniquely factor through 𝐹𝜆. That is, there is a unique
𝑥 : 1→ 𝐹 lim𝐾 such that 𝐹𝜆 ◦ 𝑥 = 𝑥. We conflate the symbol 𝑥 with 𝑥(0) ∈ 𝐹 lim𝐾 . By
construction, 𝐹𝜆𝑖 (𝑥) = 𝑥𝑖 ∈ 𝐹𝑖. This gives us a cone �̂� : (lim𝐾, 𝑥) ⇒ (𝐾, 𝑥). Furthermore,
Π�̂� = 𝜆.

We must now show that �̂� is the only lift of 𝜆 and that �̂� is a limit cone. So, let
𝜇 : (𝑐, 𝑧) ⇒ (𝐾, 𝑥) be a natural transformation for which (𝑐, 𝑧) ∈ ob

∫
𝐹 (that is, 𝑐 ∈ ob C

and 𝑧 ∈ 𝐹𝑐) and Π𝜇 = 𝜆. Then 𝑐 = Π(𝑐, 𝑧) = lim𝐾 so that 𝑧 ∈ 𝐹 lim𝐾 and 𝐹𝜆𝑖 (𝑧) = 𝑥𝑖
for each 𝑖 ∈ ob J. Identifying 𝑧 with the constant function 𝑧 : 1 → 𝐹 lim𝐾 we have that
𝐹𝜆 ◦ 𝑧 = 𝑥. But, 𝑥 was uniquely defined by this property, so that 𝑧 = 𝑥. Comparing now
with �̂�, we have that 𝜇 = �̂� as required. This proves that �̂� is the unique lift of 𝜆.

Now, we must see that �̂� : (lim𝐾, 𝑥) ⇒ (𝐾, 𝑥) is a limit cone. Let 𝜇 : (𝑐, 𝑧) ⇒ (𝐾, 𝑥)
be another cone. (Here, 𝑐 ∈ ob C, 𝑧 ∈ 𝐹𝑐 and 𝜇 are not the same 𝑐, 𝑧 and 𝜇 as in the
previous paragraph.) We must prove that 𝜇 factors uniquely through �̂�. Since Π𝜇 : 𝑐 ⇒ 𝐾 ,
there is a unique 𝑓 : 𝑐 → lim𝐾 in C such that 𝜆 𝑓 = Π𝜇. Also, for every 𝑖 ∈ ob 𝐽,
𝑥𝑖 = 𝐹Π𝜇𝑖 (𝑧) = 𝐹𝜆𝑖 𝑓 (𝑧). Just as in the previous paragraph, we have that 𝐹𝜆 ◦ 𝑓 (𝑧) = 𝑥 so
that 𝑓 (𝑧) satisfies the defining property of 𝑥. Thus, 𝑓 (𝑧) = 𝑥 and 𝑓 : 𝑐 → lim𝐾 determines
a morphism 𝑓 : (𝑐, 𝑧) → (lim𝐾, 𝑥) in

∫
𝐹. This morphism is the unique morphism such

that �̂� 𝑓 = 𝜇, showing that �̂� : (lim𝐾, 𝑥) ⇒ (𝐾, 𝑥) is a limit cone.

For the second part, say that J is a small connected category (which is in particular
nonempty) and that (𝐾, 𝑥) : J →

∫
𝐹 is a diagram such that 𝐾 : J → C has a colimit cone

𝜆 : 𝐾 ⇒ colim𝐾 . We start by building a lift �̂� : (𝐾, 𝑥) ⇒ (colim𝐾, 𝑥). Since 𝑥 : 1⇒ 𝐹𝐾

is a natural transformation, for any 𝑔 : 𝑖 → 𝑗 in J we have that 𝑥 𝑗 = 𝐹𝐾𝑔(𝑥𝑖). Using that
𝜆 : 𝐾 ⇒ colim𝐾 is a natural transformation and 𝐹 is a functor, we find that

𝐹𝜆𝑖 (𝑥𝑖) = 𝐹 (𝜆 𝑗𝐾𝑔) (𝑥𝑖) = 𝐹𝜆 𝑗𝐹𝐾𝑔(𝑥𝑖) = 𝐹𝜆 𝑗 (𝑥 𝑗 ).

Since J is connected, this implies that 𝐹𝜆𝑖 (𝑥𝑖) = 𝐹𝜆 𝑗 (𝑥 𝑗 ) for arbitrary objects 𝑖, 𝑗 ∈ ob J.
Since J ≠ ∅, we may then define 𝑥 ∈ 𝐹 colim J by 𝑥 = 𝜆𝑖 (𝑥𝑖) for an arbitrary choice of
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𝑖 ∈ ob J and the definition is independent of that choice. This gives a cone �̂� : (𝐾, 𝑥) ⇒
(colim𝐾, 𝑥) under (𝐾, 𝑥) such that Π�̂� = 𝜆.

We now show that �̂� is the unique lift of 𝜆. Let 𝜇 : (𝐾, 𝑥) ⇒ (𝑐, 𝑧) be another cone
under (𝐾, 𝑥) such that Π𝜇 = 𝜆. Then 𝑐 = colim𝐾 since Π𝜇 = 𝜆. Furthermore, for any
𝑖 ∈ ob J, 𝑧 = 𝐹𝜆𝑖 (𝑥𝑖) = 𝑥. So, 𝜇 is identical with �̂�.

Finally, we must show that �̂� : (𝐾, 𝑥) ⇒ (colim𝐾, 𝑥) is a colimit cone. Let 𝜇 :
(𝐾, 𝑥) ⇒ (𝑐, 𝑧) be another cone under (𝐾, 𝑥). Then Π𝜇 : 𝐾 ⇒ 𝑐 is a cone under 𝐾 in C,
so that there is a unique morphism 𝑓 : colim𝐾 → 𝑐 in C such that Π𝜇 = 𝑓 𝜆. Further, for
any 𝑖 ∈ ob J, we have that

𝐹 𝑓 (𝑥) = 𝐹 𝑓 𝐹𝜆𝑖 (𝑥𝑖) = 𝐹 ( 𝑓 𝜆𝑖) (𝑥𝑖) = 𝐹Π𝜇𝑖 (𝑥𝑖) = 𝑧.

So, the 𝑓 that we uniquely determined gives a morphism 𝑓 : (colim𝐾, 𝑥) → (𝑐, 𝑧), the
unique morphism such that 𝜇 = 𝑓 �̂�. This proves that �̂� : (𝐾, 𝑥) ⇒ (colim𝐾, 𝑥) is a colimit
cone.

Example 3.1.10. The product of a pair of spaces 𝑋 and 𝑌 is a space 𝑋 × 𝑌 equipped with
continuous projection functions

𝑋 𝑋 × 𝑌𝜋𝑋oo
𝜋𝑌 // 𝑌

satisfying the universal property: for any other space 𝐴 with continuous maps 𝑓 : 𝐴 → 𝑋

and 𝑔 : 𝐴 → 𝑌 , there is a unique continuous function ℎ : 𝐴 → 𝑋 × 𝑌 so that the following
diagram commutes:

𝐴

𝑓

||

∃ !ℎ
��

𝑔

""
𝑋 𝑋 × 𝑌

𝜋𝑋
oo

𝜋𝑌
// 𝑌

Lemma 3.4.16. In any category with a terminal object 1, the pullback diagram

𝐴 × 𝐵 𝜋𝐵 //

𝜋𝐴

��

𝐵

!
��

𝐴
!
// 1

defines the product of 𝐴 × 𝐵 of 𝐴 and 𝐵.

Exercise 3.4.iv. Prove Lemma 3.4.16.

Proof. As is suggested in the text below the lemma, “It is straightforward to use the uni-
versal property of the displayed pullback to verify that the diagram 𝐴 𝐴 × 𝐵𝜋𝐴oo

𝜋𝐵 // 𝐵

has the universal property that defines a product.” We will argue in this manner.
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Consider an object 𝐷 having continuous morphisms to 𝐴 and 𝐵:

𝐷

ℎ

""

𝑓

%%

𝑔

  

𝐴 × 𝐵 𝜋𝐵 //

𝜋𝐴

��

𝐵

!𝑏
��

𝐴
!𝑎

// 1

If this diagram commutes, then ℎ exists and is unique. To see that it commutes, examine
the following diagram, where 𝑘 : 𝐷 → 1 is the unique morphism from 𝐷 to 1 (since 1 is a
final object).

𝐷

𝑓

��

𝑔

��

𝑘

��

𝐴
!𝑎
// 1 𝐵

!𝑏
oo

We know that this must commute, since 𝑘 is unique. So we have that !𝑎 𝑓 = 𝑘 =!𝑏𝑔. Since
we have that !𝑎 𝑓 =!𝑏𝑔, the pullback above commutes, and ℎ exists and is unique. Then,
forgetting about the ! morphisms, we have precisely the definition of the product from
Example 3.1.10. □
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3.5 Complete and cocomplete categories

Exercise 3.5.i. Let 𝐺 be regarded as a 1-object category B𝐺. Describe the colimit of a
diagram B𝐺 → Set in group-theoretic terms, as was done for the limit in Example 3.2.12.

Proof. For a diagram 𝐷 : B𝐺 → Set, note that

colim 𝐷 =

∐
𝑘∈B𝐺

𝐷𝑘

∼
where ∼ is the smallest equivalence relation on the coproduct such that for every 𝑔 : 𝑖 →
𝑗 ∈ B𝐺 and 𝑛 ∈ 𝐷𝑖, 𝜄𝐷 𝑗𝐷𝑔(𝑛) ∼ 𝜄𝐷𝑖𝑛. So, for example, the following diagram illustrates
a part of the diagram 𝐷:

𝐷𝑖 𝐷 𝑗

∐
𝑘∈B𝐺

𝐷𝑘

← →𝑔

←

→
𝜄𝐷𝑖 ←→

𝜄𝐷 𝑗

But in this case, the only object in our diagram is a set 𝑋 , and the morphisms in our
diagram are simply the left actions of elements of 𝐺 applied to a set 𝑋. The following
specializes the above diagram to this specific case:

𝑋 𝑋

𝑋

← →𝑔

←

→
𝜄𝑋 ←→𝜄𝑋

Of course, the inclusion map 𝜄𝑋 : 𝑋 → 𝑋 is simply the identity, so we need to have that
𝑔(𝑥) ∼ 𝑥 in colim 𝐷. This means each equivalence class must consist of an element 𝑥 ∈ 𝑋 ,
along with 𝑔(𝑥) for every 𝑔 ∈ 𝐺. In other words, [𝑥] = {𝑥, 𝑔(𝑥) |𝑔 ∈ 𝐺}, also known as the
orbit of 𝑥. So the set of all equivalence classes (that is, the colimit we are looking for) is
simply the orbit space (that is, the set of all orbits) of the action of 𝐺 on 𝑋 .

Exercise 3.5.ii. Prove that the colimit of any small functor 𝐹 : C → Set is isomorphic to
the set 𝜋0 (

∫
𝐹) of connected components of the category of elements of 𝐹. What is the

colimit cone?

Proof. Since 𝐹 is a small functor by assumption, we can construct the colimit of 𝐹
in the usual way. Define 𝜄𝑐 : 𝐹𝑐 → ∐

𝑐∈ob C 𝐹𝑐/∼, where ∼ is the smallest equivalence
relation such that for all 𝑓 : 𝑐 → 𝑐′ in C and 𝑥 in 𝐹𝑐, we have 𝜄𝑐 (𝑥) ∼ 𝜄𝑐′𝐹 𝑓 (𝑥). Recall that
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the objects of
∫
𝐹 are ordered pairs (𝑐, 𝑥), where 𝑐 is in C and 𝑥 is in 𝐹𝑐, and morphisms

are defined as maps 𝑓 : 𝑐 → 𝑐′ in C such that 𝐹 𝑓 (𝑥) = 𝑥′. If we restrict ourselves to the set
of connected components of

∫
𝐹, we get 𝜋0 (

∫
𝐹).

First note that two elements of in the colimit of 𝐹 are related if and only if 𝜄𝑐 (𝑥) ∼ 𝜄𝑐′
for all 𝑓 : 𝑐 → 𝑐′ in C. Next two objects 𝐴 and 𝐵 in ob

∫
𝐹 are related if and only if there

is zig zag of morphisms between them. Now observe the that between any two objects

(𝐹 𝑗, 𝑥) and (𝐹𝑘, 𝑥′) there is a map 𝑓 : 𝑥 → 𝑥′ such that (𝐹 𝑗, 𝑥)
𝑓
// (𝐹𝑘, 𝑥′) . This

diagram tells us that two objects in 𝜋0 (
∫
𝐹) are connected under by 𝐹 𝑓 . This relationships

puts the generators of each equivalence relation in one-to-one correspondence via the map
[(𝑐, 𝑥)] ↦→ [𝜄𝑐 (𝑥)] . Since the generators are in bĳection with each other the equivalence
relations generated by them are also in bĳection. The colimit cone is a natural transformation
from 𝐹 to colim 𝐹. Each leg of the cone is a homomorphism that preserves connected
components. □

Exercise 3.5.iii. Prove that the category DirGraph of directed graphs is complete and
cocomplete and explain how to construct its limits and colimits.

Proof. We will show that DirGraph has products, equalizers, co-products and co-
equalizers. We begin by defining an element of DirGraph. We say that a graph 𝐺 consists
of a vertex set 𝑉 , an edge set 𝐸 and two function 𝑠, 𝑡 : 𝐸 → 𝑉 , where 𝑠 sends an edge to its
source and 𝑡 sends an edge to its target. In this setting, we say that a graph homomorphism
from 𝐺 = (𝑉, 𝐸, 𝑠, 𝑡) → 𝐻 = (𝑊, 𝐹, 𝑠′, 𝑡′) is a pair of functions 𝑓𝑣𝑒𝑟𝑡 : 𝑉 → 𝑊 and
𝑓𝑒𝑑𝑔𝑒 : 𝐸 → 𝐹 such that 𝑓𝑣𝑒𝑟𝑡 𝑠 = 𝑠′ 𝑓𝑒𝑑𝑔𝑒 and 𝑓𝑣𝑒𝑟𝑡 𝑡 = 𝑡

′ 𝑓𝑒𝑑𝑔𝑒.
Products: We will show that for a collection 𝐼 of graphs, the product

∏
𝑖∈𝐼 𝐺𝑖 =

(𝑉𝑖 , 𝐸𝑖 , 𝑠𝑖 , 𝑡𝑖) is defined as the graph where the vertex set is the Cartesian product of the
𝑉𝑖’s, the edge set is the Cartesian product of the 𝐸𝑖’s, the source function is defined by
𝑠(𝑒) = (𝑠𝑖 (𝑒𝑖))𝑖∈𝐼 and the target function is defined by 𝑡 (𝑒) = (𝑡𝑖 (𝑒𝑖))𝑖∈𝐼 . We see that there
are obvious projection maps 𝜋𝑖 taking a product graph to the 𝑖𝑡ℎ component and we now
must show it’s universality.

Suppose there is another graph 𝐻, with morphisms 𝜎𝑖 to every 𝐺𝑖 . If these morphisms
factor through

∏
𝑖∈𝐼 𝐺𝑖 , then the morphism 𝜙 : 𝐻 → ∏

𝑖∈𝐼 𝐺𝑖 must be composed of 𝜙𝑣𝑒𝑟𝑡
and 𝜙𝑒𝑑𝑔𝑒 where 𝜙𝑣𝑒𝑟𝑡 (ℎ) = (𝜎𝑖𝑣𝑒𝑟𝑡 (ℎ)))𝑖∈𝐼 and 𝜙𝑒𝑑𝑔𝑒 (ℎ) = (𝜎𝑖𝑒𝑑𝑔𝑒 (ℎ)))𝑖∈𝐼 . We must
show that this a graph homomorphism, mainly that 𝑠𝜙𝑒𝑑𝑔𝑒 = 𝜙𝑣𝑒𝑟𝑡 𝑠

′. For an edge 𝑤 in
𝐸 (𝐻), we see that 𝑠𝜙𝑒𝑑𝑔𝑒 (𝑤) = 𝑠((𝜎𝑖𝑒𝑑𝑔𝑒 (ℎ)))𝑖∈𝐼 ) = (𝑠𝑖 ((𝜎𝑖𝑒𝑑𝑔𝑒 (ℎ)))𝑖∈𝐼 . Because 𝜎𝑖
is a graph homomorphism, we have that this is equal to (𝜎𝑖𝑣𝑒𝑟𝑡 (𝑠′ (𝑒)))𝑖∈𝐼 which equals
𝜙𝑣𝑒𝑟𝑡 𝑠

′ (𝑒). So we have the equality we desire, and by a similar method we have 𝑡𝜙𝑒𝑑𝑔𝑒 =
𝜙𝑣𝑒𝑟𝑡 𝑡

′ and we have the graph homomoprhism we desire. So our defintion of the product is
universal, and we have products in DirGraph.

Equalizers: Suppose we have graphs 𝐴 and 𝐵 and parallel morphisms 𝑓 and 𝑔. We
will show that the equalizer of this diagram is 𝐸 , the subgraph of 𝐴 which includes all edges
𝑒 where 𝑠′ 𝑓𝑒𝑑𝑔𝑒 (𝑒) = 𝑠′𝑔𝑒𝑑𝑔𝑒 (𝑒) and 𝑡′ 𝑓𝑒𝑑𝑔𝑒 (𝑒) = 𝑡′𝑔𝑒𝑑𝑔𝑒 (𝑒) and all vertices 𝑣 where
𝑓𝑣𝑒𝑟𝑡 (𝑣) = 𝑔𝑣𝑒𝑟𝑡 (𝑣). The inclusion mapping 𝜄 : 𝐸 → 𝐴 clearly makes this a cone over our
diagram and also 𝑓 𝜄 = 𝑔𝜄. We now show the universality of 𝐸 .
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Suppose we have a 𝐶 that has a map 𝑘 to 𝐴 such that 𝑓 𝑘 = 𝑔𝑘 . Since 𝐸 is a subgraph
of 𝐴, if this map factors through 𝐸 , the map from 𝐶 to 𝐸 , must take 𝑐 to 𝑘 (𝑐). We see
that if 𝑓 𝑘 = 𝑔𝑘 , we have that 𝑓𝑣𝑒𝑟𝑡 (𝑘 (𝑐)) = 𝑔𝑣𝑒𝑟𝑡 (𝑘 (𝑐)) for all vertices 𝑐 ∈ 𝐶 and that
𝑠′ 𝑓𝑒𝑑𝑔𝑒 (𝑘 (𝑑)) = 𝑠′𝑔𝑒𝑑𝑔𝑒 (𝑘 (𝑑)) and 𝑡′ 𝑓𝑒𝑑𝑔𝑒 (𝑘 (𝑑)) = 𝑡′𝑔𝑒𝑑𝑔𝑒 (𝑘 (𝑑)) for all edges 𝑑 in 𝐶.
So we see that 𝑘 (𝐶) ⊂ 𝐸 and so this construction is valid. Because of this, we see that 𝐸 is
universal and so we have equalizers.

We have products and equalizers and therefore we have all limits and DirGraph is
complete.

Co-products: We define the vertex set of the coproduct
∐
𝑖∈𝐼 𝐺𝑖 as the disjoint union of

the vertex sets and the edge set to be the disjoint union of the edge sets. Now 𝑠((𝑒, 𝑖) = 𝑠𝑖 (𝑒)
and 𝑡 ((𝑒, 𝑖) = 𝑡𝑖 (𝑒). Note that we have inclusion maps 𝜄𝑖 and so this is a cone under our
diagram, now we show that this cone is universal.

Suppose we have a graph 𝐻 = (𝐹,𝑊, 𝑠′, 𝑡′) with morphisms 𝜎𝑖 from each 𝐺𝑖 to 𝐻.
Since for each 𝐺𝑖 , 𝜄𝑖 (𝑎) = (𝑎, 𝑖), and if we want to find a 𝑘 :

∐
𝑖∈𝐼 𝐺𝑖 → 𝐻 such that

𝜎𝑖 = 𝑘𝜄𝑖 , we must have that 𝑘𝑣𝑒𝑟𝑡 ((𝑎, 𝑖)) = 𝜎𝑖𝑣𝑒𝑟𝑡 (𝑎) for all vertices 𝑎 ∈ 𝐺𝑖 and that
𝑘𝑒𝑑𝑔𝑒 ((𝑒, 𝑖)) = 𝜎𝑖𝑒𝑑𝑔𝑒 (𝑒). We now see that this is indeed a graph homomorphism. To
do this, we must show that 𝑠′𝑘𝑣𝑒𝑟𝑡 = 𝑘𝑒𝑑𝑔𝑒𝑠. Consider an edge (𝑒, 𝑖) in the coproduct.
𝑘𝑣𝑒𝑟𝑡 𝑠((𝑒, 𝑖)) = 𝑘𝑣𝑒𝑟𝑡 (𝑠𝑖 (𝑒)) = 𝜎𝑖𝑣𝑒𝑟𝑡 (𝑠𝑖 (𝑒)). Also, 𝑠′𝑘𝑒𝑑𝑔𝑒 ((𝑒, 𝑖)) = 𝑠′𝜎𝑖𝑒𝑑𝑔𝑒 (𝑒). But
by our defintion of graph homomorphism, we see that 𝜎𝑖𝑣𝑒𝑟𝑡 (𝑠𝑖 (𝑒)) = 𝑠′𝜎𝑖𝑒𝑑𝑔𝑒 (𝑒) because
𝜎𝑖 is a graph homormorphism, so we have that 𝑠′𝑘𝑣𝑒𝑟𝑡 = 𝑘𝑒𝑑𝑔𝑒𝑠 and we can easily show
𝑡′𝑘𝑣𝑒𝑟𝑡 = 𝑘𝑒𝑑𝑔𝑒𝑡 similarly. So 𝑘 is a graph homomorphism and therefore our definition of
the coproduct is universal. Therefore DirGraph has coproducts.

Co-equalizers: Now, consider two parallel morphisms 𝑓 , 𝑔 : 𝐺 → 𝐻. We construct a
graph 𝑐𝑜𝑒𝑞( 𝑓 , 𝑔) = (𝑐𝑜𝑒𝑞( 𝑓𝑣𝑒𝑟𝑡 , 𝑔𝑣𝑒𝑟𝑡 ), 𝑐𝑜𝑒𝑞( 𝑓𝑒𝑑𝑔𝑒, 𝑔𝑒𝑑𝑔𝑒), 𝑠𝑒𝑞 , 𝑡𝑒𝑞). We see what 𝑠𝑒𝑞 is
through the following diagram.

𝐸
𝑓𝑒𝑑𝑔𝑒

//

𝑔𝑒𝑑𝑔𝑒
// 𝐹

𝑠′ //

&&

𝑊 // 𝑐𝑜𝑒𝑞( 𝑓𝑣𝑒𝑟𝑡 , 𝑔𝑣𝑒𝑟𝑡 )

𝑐𝑜𝑒𝑞( 𝑓𝑒𝑑𝑔𝑒, 𝑔𝑒𝑑𝑔𝑒)

𝑠𝑒𝑞

55

We must now show the existence of 𝑠𝑒𝑞 . First, we see that since 𝑠′ 𝑓𝑒𝑑𝑔𝑒 = 𝑓𝑣𝑒𝑟𝑡 𝑠

and 𝑠′𝑔𝑒𝑑𝑔𝑒 = 𝑔𝑣𝑒𝑟𝑡 𝑠, we have a morphism 𝑘 where 𝑘 𝑓𝑒𝑑𝑔𝑒 = 𝑘𝑔𝑒𝑑𝑔𝑒, namely 𝑞𝑠′,
where 𝑞 is the map from 𝑊 → 𝑐𝑜𝑒𝑞( 𝑓𝑣𝑒𝑟𝑡 , 𝑔𝑣𝑒𝑟𝑡 ). So this morphism factors uniquely
though 𝑐𝑜𝑒𝑞( 𝑓𝑒𝑑𝑔𝑒, 𝑔𝑒𝑑𝑔𝑒) and 𝑠𝑒𝑞 is the unique morphism from 𝑐𝑜𝑒𝑞( 𝑓𝑒𝑑𝑔𝑒, 𝑔𝑒𝑑𝑔𝑒) to
𝑐𝑜𝑒𝑞( 𝑓𝑣𝑒𝑟𝑡 , 𝑔𝑣𝑒𝑟𝑡 ) that allow for this factorization. A similar process gives us a formula for
𝑡𝑒𝑞 .

To show that this construction of 𝑐𝑜𝑒𝑞( 𝑓 , 𝑔) is universal, we see that for any graph 𝐾 =

(𝑋, 𝐼, 𝑠∗, 𝑡∗), with morphism ℎ from𝐻 → 𝐾 , that ℎ factors uniquely through the coequalizer
because ℎ𝑣𝑒𝑟𝑡 and ℎ𝑒𝑑𝑔𝑒 uniquely factor through the coequalizer of the vertex maps and
edge maps respectively. So 𝑐𝑜𝑒𝑞( 𝑓 , 𝑔) is indeed universal and we have coequalizers.

So DirGraph has coproducts and coequalizers and is therefore cocomplete.
Now, we construct limits and colimits in DirGraph, in particular for a diagram 𝐹 : 𝐽 →

DirGraph. First, we note that there are functors 𝑉, 𝐸 : DirGraph → Set that takes a graph
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to its vertex and edge sets respectively. So we construct lim 𝐹 as (lim𝑉𝐹, lim 𝐸𝐹, 𝑠, 𝑡). We
define 𝑠 and 𝑡 in the following manner. We know that we have maps from lim 𝐸𝐹 → 𝐸𝐹 𝑗

for all 𝑗 ∈ 𝐽 and that we have a map 𝑠 𝑗 : 𝐸𝐹 𝑗 → 𝑉 𝑓 𝑗 . So we have collection of
mappings from lim 𝐸𝐹 to 𝑉𝐹 𝑗 and so we have a map from lim 𝐸𝐹 → lim𝑉𝐹 that these
maps uniquely factor through. This map is our 𝑠, and 𝑡 is similarly constructed. We define
colim 𝐹 = (colim𝑉𝐹, colim 𝐸𝐹, 𝑠′, 𝑡′), where we define 𝑠′ as follows. We know that we
have maps 𝑠 𝑗 : 𝐸𝐹 𝑗 → 𝑉𝐹 𝑗 and maps from 𝑉𝐹 𝑗 → colim 𝐹. So the compositions of
these maps are maps from 𝐸𝐹 𝑗 → colim𝑉𝐹 for all 𝑗 ∈ 𝐽. So these maps factor uniquely
through some map from colim 𝐸𝐹 → colim𝑉𝐹 and 𝑠′ is exactly this morphism. We define
𝑡′ in a similar manner. □

Exercise 3.5.iv. For a small category J, define a functor 𝑖0 : J→ J × 2 so that the pushout

J

𝑖0
��

! // 1

𝑠

��

J × 2 // ⌜J⊳

in Cat defines the cone over J, with the functor 𝑠 : 1 → J⊳ picking out the summit object.
Remark 3.1.8 gives an informal description of this category, which is used to index the
diagram formed by a cone over a diagram of shape J.

Proof. The functor 𝑖0 can be defined by taking objects 𝑗 to the tuple ( 𝑗 , 0) and mor-
phisms 𝑓 to the morphism 𝑓 × 10. to show that the above diagram commutes Call the
bottom functor 𝜋 and we will define 𝜋 as follows:

1. 𝜋 maps object ( 𝑗 , 0) to the summit object in J⊳ which we will denoted as 𝑠∗.
2. 𝜋 maps object ( 𝑗 , 1) to 𝑗
3. 𝜋 maps morphism 𝑓 × 10 to 1𝑠∗
4. 𝜋 maps morphism 𝑓 × 11 to 𝑓

5. 𝜋 maps morphism 𝑓 × 𝜙 where 𝜙 is the unique morphism in 2 from 0 to 1 to the leg
of the cone in J⊳ from 𝑠∗ to cod 𝑓 which we will denote as 𝑐cod 𝑓

To ensure that 𝜋 is a functor, take an identity morphism 1 𝑗 × 1𝑖 . 𝜋 will map 1 𝑗 × 1𝑖 to
either 1𝑠∗ or 1 𝑗 , thus 𝜋 preserves identities. Now take morphisms 𝑓 × 𝑚0 and 𝑔 × 𝑚1 such
that 𝑔 · 𝑓 × 𝑚1 · 𝑚0 make sense. 𝑚1 · 𝑚0 determines what 𝜋 maps 𝑔 · 𝑓 × 𝑚1 · 𝑚0 to. If
𝑚1 ·𝑚0 = 10, then 𝑚1 = 𝑚0 = 10, then 𝑓 ×𝑚0, 𝑔×𝑚1 and 𝑔 · 𝑓 ×𝑚1 ·𝑚0 get mapped to 1𝑠∗ .
If 𝑚1 · 𝑚0 = 11, then 𝑚1 = 𝑚0 = 11, then 𝑓 × 𝑚0, 𝑔 × 𝑚1 and 𝑔 · 𝑓 × 𝑚1 · 𝑚0 get mapped
to 𝑓 , 𝑔, and 𝑔 · 𝑓 respectively. If 𝑚1 · 𝑚0 = 𝜙, then either 𝑚0 = 𝜙 and 𝑚1 = 11 or 𝑚0 = 10
and 𝑚1 = 𝜙, thus either 𝜋 ( 𝑓 × 𝑚0) = 𝑐cod 𝑓 and 𝜋 (𝑔 × 𝑚1) = 𝑔 or 𝜋 ( 𝑓 × 𝑚0) = 1𝑠∗ and
𝜋 (𝑔 × 𝑚1) = 𝑐cod 𝑔 . Also, 𝜋 maps 𝑔 · 𝑓 × 𝑚1 · 𝑚0 to 𝑐cod 𝑔. For the first case, the fact that
𝑔 · 𝑐cod 𝑓 = 𝑐cod 𝑔 follows from the fact that 𝑐cod 𝑓 and 𝑐cod 𝑔 are legs of a cone under 𝑠∗. The
second case follows trivially. Thus, 𝜋 preserves composition. Therefore 𝜋 is a functor. Let
𝑗 ∈ ob J and 𝑓 ∈ mor J, then 𝜋 · 𝑖0 𝑗 = 𝑠∗ = 𝑠·! 𝑗 and 𝜋 · 𝑖0 𝑓 = 1𝑠∗ = 𝑠·! 𝑓 . Thus the above
diagram commutes. Now to show that J⊳ is the colimit of the diagram, Let C be a small
category with functors 𝑝0 : J × 2 → C and 𝑝1 : 1 → C such that 𝑝0 · 𝑖0 = 𝑝1·!. Define a
functor 𝜐 : J⊳ → C as follows
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1. 𝜐 maps 𝑠∗ to object 𝑝0 ( 𝑗 , 0) for some 𝑗 ∈ ob J
2. 𝜐 maps non-summit object 𝑗 in J⊳ to 𝑝0 ( 𝑗 , 1)
3. 𝜐 maps 1𝑠∗ to 𝑝0 ( 𝑓 × 10) for some 𝑓 ∈ mor J
4. 𝜐 maps morphism 𝑓 between non-summit objects to 𝑝0 ( 𝑓 × 11)
5. 𝜐 maps each leg 𝑐 𝑗 to 𝑝0

(
1 𝑗 × 𝜙

)
𝜐 is well-defined since 𝑝0 ·𝑖0 = 𝑝1·!. To verify that 𝜐 is a functor, note that 𝑝0 ( 𝑓 × 10) =

1𝑝0 ( 𝑗 ,0) by the previously stated equation and since 1 only has the identity morphism on
0. Also, 𝑝0

(
1 𝑗 × 11

)
is an identity morphism by functoriality of 𝑝0. Thus 𝜐 preserves

identities. 𝜐 preserves composition of morphism since 𝑝0 is a functor. So we have that
𝜐 is a functor. The fact that 𝑝1 = 𝜐 · 𝑠 follows from that fact that 𝑝0 ( 𝑗 , 0) = 𝑝10. To
show 𝑝0 = 𝜐 · 𝜋, note that we only need to show that 𝑝0

(
1 𝑗 × 𝜙

)
= 𝑝0 (ℎ × 𝜙) whenever

cod ℎ = 𝑗 since every other case is covered in the definition of 𝜐. By functoriality, we have
that 𝑝0 (ℎ × 𝜙) = 𝑝0

(
1 𝑗 × 𝜙

)
· 𝑝0 (ℎ × 10) = 𝑝0

(
1 𝑗 × 𝜙

)
. Uniqueness of 𝜐 follows from

construction and from the equation 𝑝0 · 𝑖0 = 𝑝1·!. Therefore, J⊳ is the colimit of the above
diagram. □

Exercise 3.5.v. Describe the limits and colimits in the poset of natural numbers with the
order relation 𝑘 ≤ 𝑛 if and only if 𝑘 divides 𝑛.

Proof. Recall that when considering a poset as a category, a morphism 𝑓 : 𝑐 → 𝑑

exists if and only if 𝑐 ≤ 𝑑, and that 𝑓 is unique for the given domain and codomain. In this
case, 𝑐 ≤ 𝑑 means 𝑐 divides 𝑑. The limit of the diagram must be able to divide everything
in the diagram. Because of the structure of the morphisms, commutativity and uniqueness
are not issues. We need to find an element that divides everything in the diagram, but also is
universal in the sense that anything else that divides everything in the diagram also divides
our limit. Thus, we choose the greatest common divisor of the objects in the diagram. The
greatest common divisor is divisible by any smaller divisor, and thus will be our limit.

Similarly, for colimits we need to find an object that is divided by every object in the
diagram. It also must divide any natural number that is divided by everything in the diagram.
Thus, we must choose our colimit as the least common multiple, which divides any other
multiple.

Now we consider the empty diagram as a special case, as the concepts of GCD and
LCM would not apply. In the case of the empty diagram, the limit would be 0, which can
be divided by every other natural number, and thus is a terminal object. The colimit would
be 1, as it divides everything, and is our initial object. □

Exercise 3.5.vi. Define a contravariant functor Finop
mono → Top from the category of finite

sets and injections to the category of topological spaces that sends a set with 𝑛 elements
to the space PConf𝑛 (𝑋) constructed in Example 3.5.4. Explain why the functor does not
induce a similar functor sending an 𝑛-element set to the space Conf𝑛 (𝑋).
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Proof. Recall that

PConf𝑛 (𝑋) = {(𝑥1, . . . , 𝑥𝑛) | 𝑥𝑖 ≠ 𝑥 𝑗∀𝑖 ≠ 𝑗}.

For simplicity we will define 𝐹 : Finop
mono → Top on finite sets of the form {0, . . . , 𝑛−1} and

then extend 𝐹 to arbitrary finite sets. Define 𝐹 on the objects by the map {0, . . . , 𝑛 − 1} ↦→
PConf𝑛 (𝑋) and on morphisms as (𝑥0, . . . , 𝑥𝑛−1) ↦→ (𝑥 𝑓 (0) , . . . , 𝑥 𝑓 (𝑚−1) ). Note that this
functor is contravariant as we have 𝑓 in the subscripts not 𝑓 .−1 We also needed that 𝑓 was
injective else we could land on the “fat diagonal.” For example if 𝑓 has sent every element
to 0 we would be on the actual diagonal, not even the fat one.

To extend this map to any finite set we first note that that every finite set 𝐴 with 𝑛
elements is pretty much the same as the set {0, . . . , 𝑛 − 1}, since we can always find a
bĳection between them, so the extension should not be too bad. For any finite set 𝐴 with
𝑛 elements we can fix7 a bĳection 𝜙𝐴 : 𝐴 → {0, . . . , 𝑛 − 1}. This gives a commutative
diagram for finite sets 𝐴 and 𝐵 of sizes 𝑚 and 𝑛 respectively and a injective map 𝑓 between
them.

𝐴
𝑓

//

𝜙𝐴

��

𝐵

𝜙𝐵

��

{0, . . . , 𝑚 − 1}
𝜙𝐵 𝑓 𝜙𝐴

−1
// {0, . . . , 𝑛 − 1}

Now we can extend 𝐹 : Finop
mono → Top on morphisms as 𝐹 𝑓 ≔ 𝐹 (𝜙𝐵 𝑓 𝜙𝐴)−1,

where 𝐹 sends both 𝜙𝐴 and −1𝜙𝐵 to the identity map in Conf𝑛 (𝑋). This is equivalent
to (𝑥1, . . . , 𝑥𝑛) ↦→ (𝑥 𝑓 (1) , . . . , 𝑥 𝑓 (𝑚) ), while leaving the action on objects the same.

If we try and induce a similar functor, but allowed for permutation we could have for
a fixed injective map 𝑓 that takes order tuples in the same equivalence class to tuples
in different equivalence classes. Consider the ordered triples (𝑥0, 𝑥1, 𝑥2) and (𝑥1, 𝑥2, 𝑥0)
and the map 𝑔 : {0, 1} → {1, 2, 3} with 𝑔(0) = 1 and 𝑔(1) = 2. If we apply the functor
we defined earlier we have (𝑥0, 𝑥1, 𝑥2) ↦→ (𝑥0, 𝑥1) and (𝑥1, 𝑥2, 𝑥0) ↦→ (𝑥1, 𝑥2). Even though
(𝑥0, 𝑥1, 𝑥2) and (𝑥1, 𝑥2, 𝑥0) were in the same equivalence class (𝑥0, 𝑥1) and (𝑥1, 𝑥2) are not.□

Exercise 3.5.vii. Following Grothendieck, define a fiber space 𝑝 : 𝐸 → 𝐵 to be a mor-
phism in Top. A map of fiber spaces is a commutative square. Thus the category of fiver
spaces is isomorphic to the diagram category Top2. We are also interested in the non-full
subcategory Top/𝐵 ⊂ Top2 of fiber spaces over 𝐵 and maps whose codomain component
is the identity. Prove the following:

(i) A map
𝐸 ′ 𝐸

𝐵′ 𝐵

←→𝑔

←→ 𝑝′ ←→ 𝑝

←→𝑓

7Notice to do we do need to invoke the Axiom of Choice in a larger universe as the collection of singletons is
a proper class, so we are choosing a proper class worth of bĳections.
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of fiber spaces induces a canonical map from the fiber of a point 𝑏 ∈ 𝐵′ to the fiber
over its image 𝑓 (𝑏) ∈ 𝐵.

Proof. The fiber of 𝑏 is a subset of 𝐸 ′, so we may consider its image under 𝑔. Given
a point 𝑒 in this set we have that 𝑝′ (𝑒) = 𝑏 and 𝑝𝑔(𝑒) = 𝑓 𝑝′ (𝑒) by assumption,
and thus 𝑝𝑔(𝑒) = 𝑓 (𝑏). This means that 𝑔(𝑒) is in the fiber of 𝑓 (𝑏) and thus the
restriction of 𝑔 to the fiber of 𝑏 lands in the fiber of 𝑓 (𝑏). □

(ii) The fiber of a product of fiber spaces is the product of the fibers.

Proof. Let I be some set and 𝑝𝑖 : 𝐸𝑖 → 𝐵𝑖 be an I indexed set of maps over
corresponding I indexed spaces, and 𝑝 : 𝐸 → 𝐵 be the corresponding products. We
claim that: (∏

𝑖∈I
𝑝𝑖

)−1

(𝑏) =
∏
𝑖∈I

(
𝑝𝑖
−1 (𝑏𝑖)

)
for all 𝑏 = (𝑏𝑖)𝑖∈I ∈ 𝐵.

We then have a collection of diagrams for each 𝑖 ∈ I.

𝐸𝑏 ⊂ 𝐸 𝐸𝑖 ⊃ 𝐸𝑏𝑖

𝑏 ∈ 𝐵 𝐵𝑖 ∋ 𝑏𝑖

←→𝜋𝑖

←→ 𝑝 ←→ 𝑝𝑖

←→𝜋𝑖

If we trace the path of 𝑏 through this diagram it is clear that the bottom commutes
by the definition of 𝑏. Chasing 𝑏 up the left side we have the fiber 𝑝−1 (𝑏), and on
the right we have the fiber 𝑝𝑖−1 (𝑏𝑖). The previous part says that the restriction of
𝜋𝑖 defines a map from the former fiber to the latter. However, the projections map∏
𝑖∈I

(
𝑝𝑖
−1 (𝑏𝑖)

)
onto each 𝑝𝑖−1 (𝑏𝑖). □

A projection 𝐵 × 𝐹 → 𝐵 defines a trivial fiber space over 𝐵, a definition that makes sense
for any space 𝐹.
(iii) Show that the fiber of a trivial fiber space 𝐵 × 𝐹 → 𝐵 is isomorphic to 𝐹.

Proof. Given an element 𝑏 ∈ 𝐵, its fiber is 𝜋1
−1 (𝑏) = { (𝑏, 𝑓 ) | 𝑓 ∈ 𝐹 }. Note that

if 𝑓 = 𝑓 ′ in 𝐹 then (𝑏, 𝑓 ) = (𝑏, 𝑓 ′) in 𝐵 × 𝐹. Thus 𝜋2 |𝜋1−1 (𝑏) is injective in addition
to being surjective, and thus has an inverse map. Further, because the projection is
an open map this inverse is also continuous. Thus 𝜋1

−1 (𝑏) is isomorphic to 𝐵. □
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(iv) Characterize the isomorphisms in Top/𝐵 between the two trivial fiber spaces (with a
priori distinct fibers) over 𝐵.

Note that Top/𝐵 is a slice category, so an isomorphism in this category is an iso-
morphism in Top with the additional condition that it commutes with the projections
onto 𝐵.
Explicitly, we require the following diagram to commute.

𝐵 × 𝐹 𝐵 × 𝐹′

𝐵

← →𝛾

←

→
𝜋1

←→

𝛿 ←→ 𝜋1

Note first that the map 𝛾may be decomposed into 𝜋1𝛾 : 𝐵 × 𝐹 → 𝐵 and 𝜋2𝛾 : 𝐵 × 𝐹 →
𝐹′ and the universal property of products guarantees that this decomposition preserves
all of the information of 𝛾. Now, one of the identities we can pull from the diagram
is that 𝜋1𝛾 = 𝜋1. This means we can restrict our consideration to the other projection
𝜋2𝛾.
Given a homeomorphism �̃� : 𝐹 → 𝐹′ we may define 𝛾 : 𝐵 × 𝐹 → 𝐵 × 𝐹′ by
(𝑏, 𝑓 ) ↦→ (𝑏, �̃�( 𝑓 )). If �̃� is invertible, then it is clear that 𝛾 satisfies all of the
conditions imposed by the diagram. However, this is too restrictive. What if instead
we had a family of maps { 𝛾𝑏 : 𝐹 → 𝐹′ }𝑏∈𝐵 and defined 𝛾 by (𝑏, 𝑓 ) ↦→ (𝑏, 𝛾𝑏 ( 𝑓 )).
In this case 𝛾 will satisfy the condition that 𝜋1𝛾 = 𝜋1 and if each 𝛾𝑏 is invertible,
then 𝛾 will be as well, but it is not necessarily the case that 𝛾 is continuous, i.e. it
might be that 𝛾 is not an arrow in our category.
To see how we may impose continuity on 𝛾, recall that a family is in fact a function
so we have Γ : 𝐵 → Top(𝐹, 𝐹′) where Γ(𝑏) = 𝛾𝑏. Further, we may uncurry this
to Γ : 𝐵 × 𝐹 → 𝐹′ which is a function for which we have a well defined notion of
continuity. Supposing then Γ is continuous in this sense. The universal property of
𝐵 × 𝐹′ then gives us that 𝜋1 × Γ = 𝛾 is continuous and thus a legitimate map for our
diagram.
Piecing all of this together, let Γ : 𝐵 × 𝐹 → 𝐹′ and Δ : 𝐵 × 𝐹′ → 𝐹 be continuous
maps such that the restrictions are inverses: Γ(𝑏,−) = Δ(𝑏,−)−1 for any 𝑏 ∈ 𝐵. Next
define 𝛾 = 𝜋1 × Γ so that 𝛾(𝑏, 𝑓 ) = (𝑏, Γ(𝑏, 𝑓 )) and like wise for 𝛿. Then 𝛾 and 𝛿
are inverses and satisfy all the conditions imposed by the diagram.

(v) Prove that the assignment of the set of continuous sections of a fiber space over 𝐵
defines a functor Sect : Top/𝐵→ Set.

Proof. We can define Sect by mapping each fiber space 𝑝 over 𝐵 to its set of
continuous sections, and by mapping each morphism 𝑓 : 𝑝 → 𝑞 to a function
𝑓 · − : Sect 𝑝 → Sect 𝑞 defined by left composition of 𝑓 . To verify that our pro-
posed function is a map between set of sections let 𝑠 be a section of 𝑝, then 1𝐵 = 𝑝 · 𝑠.
Since 𝑝 = 𝑞 · 𝑓 , then 1𝐵 = 𝑞 · 𝑓 · 𝑠, showing that 𝑓 · 𝑠 is a section of 𝑞. To verify
that this is indeed a functor, note that the identity morphism on 𝑝 : 𝐸 → 𝐵 defined
by 1𝐸 : 𝑝 → 𝑝 gets mapped to left composition by 1𝐸 which induces the identity on
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Sect 𝑝. Take morphism 𝑔 · 𝑓 .Then Sect (𝑔 · 𝑓 ) = 𝑔 · 𝑓 ·− = 𝑔 · ( 𝑓 · −) = Sect 𝑔 ·Sect 𝑓 .
Thus Sect is a functor □

(vi) Consider the non-full subcategory Top2
pb of fiber spaces in which the morphisms are

the pullback squares. Prove that the assignment of the set of continuous sections to a
fiber space defines a functor Sect :

(
Top2

pb

)op
→ Set.

Proof. We can define Sectby mapping each fiber space 𝑝 over 𝐵 to its set of con-
tinuous sections and each morphisms, ( 𝑓 , 𝑔) : 𝑝′ → 𝑝 is a pullback, then ( 𝑓 , 𝑔) get
mapped to a function 𝜎( 𝑓 ,𝑔) : Sect 𝑝 → Sect 𝑝′ defined as follows: each section 𝑠 of
𝑝 gets taken to a section 𝑠′ using the universal property of the pullback ( 𝑓 , 𝑔) shown
in following diagram:

𝐵′

𝐸 ′ 𝐸

𝐵′ 𝐵

←

→
𝑠·𝑔

←

→

1𝐵′

←

→𝑠′

←→𝑓
←→ 𝑝′⌟ ←→ 𝑝

←→𝑔

Thus 𝑠′ is unique for each 𝑠 confirming that 𝜎( 𝑓 ,𝑔) is a function. To verify that Sect
is a functor note that the identity morphism on 𝑝 induces the following commutative
diagram:

𝐵

𝐸 𝐸

𝐵 𝐵

←

→

𝑠

←

→

1𝐵

←

→𝑠

←→1𝐸

←→ 𝑝⌟ ←→ 𝑝

←→1𝐵

where 𝑠 is a section.
For morphisms ( 𝑓 ′, 𝑔′) and ( 𝑓 , 𝑔) such that ( 𝑓 , 𝑔) · ( 𝑓 ′, 𝑔′) makes sense, if 𝑠 ∈ Sect 𝑝
with 𝜎( 𝑓 ,𝑔) (𝑠) = 𝑠′ and 𝜎( 𝑓 ′ ,𝑔′ ) (𝑠′) = 𝑠′′, then 𝑠 · 𝑔 = 𝑓 · 𝑠′ and 𝑠′ · 𝑔′ = 𝑓 ′ · 𝑠′′
by the universal property of pullbacks ( 𝑓 ′, 𝑔′) and ( 𝑓 , 𝑔). We get that 𝑠 · 𝑔 · 𝑔′ =
𝑓 · 𝑠′ · 𝑔′ = 𝑓 · 𝑓 ′ · 𝑠′′. Since 𝑠′′ is a section of 𝑝′′ this allows the following diagram
to commute:

𝐵

𝐸 ′′ 𝐸

𝐵′′ 𝐵

←

→

𝑠·𝑔·𝑔′

←

→

1𝐵′′

←

→𝑠′′

←→𝑓 · 𝑓
′

←→ 𝑝′′⌟ ←→ 𝑝

←→𝑔·𝑔
′

showing that 𝑠′′ = 𝜎( 𝑓 ′ ,𝑔′ )
(
𝜎( 𝑓 ,𝑔) (𝑠)

)
= 𝜎( 𝑓 ,𝑔) · ( 𝑓 ′ ,𝑔′ ) (𝑠) for all 𝑠 ∈ Sect 𝑝. Thus,

𝜎( 𝑓 ,𝑔) · ( 𝑓 ′ ,𝑔′ ) = 𝜎( 𝑓 ′ ,𝑔′ ) ·𝜎( 𝑓 ,𝑔) . This shows that Sect preserves composition. There-
fore, Sect is a functor. □

130



(vii) Describe the compatibility between the actions of the “sections” functors just intro-
duced with respect to the map 𝑔 of fiber spaces 𝑝 and 𝑞 over 𝐵 and their restrictions
along 𝑓 : 𝐵′ → 𝐵.

𝐸 ′ 𝐸

𝐹′ 𝐹

𝐵′ 𝐵

← →

←

→
←

→

←

→

← →
←→ ←→

← →

Proof. Consider the pullbacks

𝐹′ 𝐹

𝐵′ 𝐵

←→𝜋1

←→𝑞′ ⌟ ←→ 𝑞

←→𝑓

and

𝐸 ′ 𝐸

𝐵′ 𝐵

←→𝜋2

←→𝑝′ ⌟ ←→ 𝑝

←→𝑓

and a morphism 𝑔 : 𝐸 → 𝐹 such that 𝑞 · 𝑔 = 𝑝. Using the universal property of the
first pullback, we can derive a new morphism 𝑔′ : 𝐸 ′ → 𝐹′ such that

𝐸 ′

𝐹′ 𝐹

𝐵′ 𝐵

←

→

𝑔·𝜋2

←

→

𝑝′

←

→𝑔′

←→𝜋1

←→𝑞′ ⌟ ←→ 𝑞

←→𝑓

We can treat the triples (𝑔, 𝑝, 𝑞) and (𝑔′, 𝑝′, 𝑞′) as morphisms 𝑔 : 𝑝 → 𝑞 and
𝑔′ : 𝑝′ → 𝑞′ in Top/𝐵. We can also treat the two pullback diagrams as morphisms
(𝜋1, 𝑓 ) : 𝑞′ → 𝑞 and (𝜋2, 𝑓 ) : 𝑝′ → 𝑝 in Top2

pb. Applying the functor Sect defined in
part 5 to 𝑔 : 𝑝 → 𝑞 and 𝑔′ : 𝑝′ → 𝑞′ we get the functions 𝑔 · − : Sect 𝑝 → Sect 𝑞 and
𝑔′ · − : Sect 𝑝′ → Sect 𝑞′. Applying Sect defined in part 6 to the pullback squares we
get the functions 𝜎(𝜋1 , 𝑓 ) : Sect 𝑞 → Sect 𝑞′ and 𝜎(𝜋2 , 𝑓 ) : Sect 𝑝 → Sect 𝑝′. To show
that two definitions of Sect are compatible, we will show that the following diagram
commutes:

Sect 𝑝 Sect 𝑞

Sect 𝑝′ Sect 𝑞′

←→𝑔·−

←→𝜎(𝜋2 , 𝑓 ) ←→ 𝜎(𝜋1 , 𝑓 )

←→
𝑔′ ·−
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which should be the result of applying a functor Sect overloaded with the definitions
from part 5 and 6 to the following diagram:

𝐸 ′ 𝐸

𝐹′ 𝐹

𝐵′ 𝐵

⌟←

→

𝑝′

←→𝜋2

←→ 𝑔′ ←→𝑔 ←

→

𝑝

⌟

←→𝜋1

←→ 𝑞′ ←→𝑞

←→
𝑓

which is the combination of the two pullbacks with the morphisms 𝑔 and 𝑔′ included.
Let 𝑠 ∈ Sect 𝑝, then 𝑔 · 𝑠 ∈ Sect 𝑞 and 𝜎(𝜋2 , 𝑓 ) (𝑠) = 𝑠′ ∈ Sect 𝑝′. To show that
𝑔′ · 𝑠′ = 𝜎(𝜋1 , 𝑓 ) (𝑔 · 𝑠) we will use the universal property of the second pullback
defined at the beginning of the proof. This gives us 𝜋2 · 𝑠′ = 𝑠 · 𝑓 . By extension,
𝑔 · 𝜋2 · 𝑠′ = 𝑔 · 𝑠 · 𝑓 . By the diagram above, this gives us that 𝜋1 · 𝑔′ · 𝑠′ = 𝑔 · 𝑠 · 𝑓 .
Furthermore 𝑞′ ·𝑔′ · 𝑠′ = 𝑝′ · 𝑠′ = 1𝐵′ . This allows the following diagram to commute:

𝐵′

𝐹′ 𝐹

𝐵′ 𝐵

←

→

𝑔·𝑠· 𝑓

←

→

1𝐵′

←

→𝑔′ ·𝑠′

←→𝜋1

←→𝑞′ ⌟ ←→ 𝑞
←→𝑓

.

This confirms that 𝑔′ · 𝑠′ = 𝜎(𝜋1 , 𝑓 ) (𝑔 · 𝑠) and that the diagram formed by the Sect
functor commutes. This shows that the definitions of Sect in 5 and 6 are compatible
in the sense that Sect overloaded with both defintions, preserves commutativity of
diagrams formed by morphisms of Top/𝐵 and Top2

pb □
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3.6 Functoriality of limits and colimits

Exercise 3.6.i. In a category C with pullbacks, prove that the mapping lim : C•→•←• → C
defined in Proposition 3.6.1 is functorial.

Proof. First, we will define the category C•→•←• and the mapping lim : C•→•←• → C
more clearly. The following diagram describes an object 𝑥 ∈ C•→•←• :

𝑥1 𝑥2 𝑥3

←→𝑥𝛼 ←→

𝑥𝛽

where 𝑥1, 𝑥2, 𝑥3 are objects in C and 𝑥𝛼 : 𝑥1 → 𝑥2, 𝑥𝛽 : 𝑥3 → 𝑥2 are morphisms in C. The
next commutative diagram defines a morphism 𝑓 : 𝑥 → 𝑦 ∈ C•→•←• :

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

←→𝑥𝛼

←→𝑓1 ←→𝑓2
←→

𝑥𝛽

←→𝑓3

←→𝑦𝛼 ←→

𝑦𝛽

Finally, the following diagram defines the mapping lim : C•→•←• → C described in
Proposition 3.6.1 by its actions on objects and morphisms:

lim 𝑥

lim 𝑦

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

←

→

𝜋𝑥1

←

→

𝜋𝑥3

←
→lim 𝑓

←

→

𝜋𝑦1

←

→

𝜋𝑦3

← →𝑥𝛼

←

→𝑓1

←
→𝑓2

←→ 𝑥𝛽

←

→𝑓3

← →𝑦𝛼 ←→ 𝑦𝛽

where 𝜋𝑥1 , 𝜋𝑥3 and 𝜋𝑦1 , 𝜋𝑦3 are the legs of pullbacks from 𝑥 and 𝑦, respectively.
Suppose 𝑓 is the identity of 𝑥, 𝐼𝑥 . Then we have
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lim 𝑥

lim 𝑥

𝑥1 𝑥2 𝑥3

𝑥1 𝑥2 𝑥3

←

→

𝜋𝑥1

←

→

𝜋𝑥3

←
→lim 𝑓

←

→

𝜋𝑥1

←

→

𝜋𝑥3

← →𝑥𝛼

←

→

𝐼𝑥1

←
→

𝐼𝑥2

←→ 𝑥𝛽

←

→
𝐼𝑥3

← →𝑥𝛼 ←→ 𝑥𝛽

or more succinctly,

lim 𝑥

lim 𝑥

𝑥1 𝑥2 𝑥3

←

→
𝜋𝑥1

←

→

𝜋𝑥3

←→lim 𝑓

←→𝜋𝑥1 ←

→
𝜋𝑥3

←→𝑥𝛼 ←→

𝑥𝛽

So in this case, (𝜋𝑥1 ) (lim 𝑓 ) = 𝜋𝑥1 , which means lim 𝐼𝑥 = 𝐼lim 𝑥 . So lim takes identities to
identities.

Let 𝑓 : 𝑥 → 𝑦, 𝑔 : 𝑦 → 𝑧, 𝑔 𝑓 : 𝑥 → 𝑧 be composable morphisms in C•→•←•. This
composition is described by the following diagram:

lim 𝑥

lim 𝑦

lim 𝑧

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

𝑧1 𝑧2 𝑧3

←

→

𝜋𝑥1

←

→

𝜋𝑥3

←→lim 𝑓

←

→

𝜋𝑦1

←

→

𝜋𝑦3

←→lim 𝑔

←

→

𝜋𝑧1

←

→

𝜋𝑧3

← →𝑥𝛼

←→𝑓1 ←→𝑓2
←→ 𝑥𝛽

←→𝑓3

← →𝑦𝛼

←→𝑔1 ←→𝑔2

←→ 𝑦𝛽

←→𝑔3

← →𝑧𝛼 ←→ 𝑧𝛽

And by composing the lim 𝑔 and lim 𝑓 arrows in this diagram we can obtain:
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lim 𝑥

lim 𝑧

𝑥1 𝑥2 𝑥3

𝑧1 𝑧2 𝑧3

←

→

𝜋𝑥1

←

→

𝜋𝑥3

←
→lim 𝑔 lim 𝑓

←

→

𝜋𝑧1

←

→

𝜋𝑧3

← →𝑥𝛼

←

→ 𝑔1 𝑓1

←
→ 𝑔2 𝑓2

←→ 𝑥𝛽

←

→ 𝑔3 𝑓3

← →𝑧𝛼 ←→ 𝑧𝛽

and since lim 𝑧 is a limit, lim 𝑔 lim 𝑓 must be the unique morphism lim 𝑥 → lim 𝑧 such that
this diagram composes (for a given 𝜋𝑥1 , 𝜋𝑥3 , 𝜋𝑧1 , 𝜋𝑧3 .) But the following diagram describes
lim 𝑔 𝑓 :

lim 𝑥

lim 𝑧

𝑥1 𝑥2 𝑥3

𝑧1 𝑧2 𝑧3

←

→
𝜋𝑥1

←

→

𝜋𝑥3

←
→lim 𝑔 𝑓

←

→

𝜋𝑧1

←

→

𝜋𝑧3

← →𝑥𝛼

←

→ 𝑔1 𝑓1

←
→ 𝑔2 𝑓2

←→ 𝑥𝛽

←

→ 𝑔2 𝑓3

← →𝑧𝛼 ←→ 𝑧𝛽

and again, since lim 𝑧 is a limit, lim 𝑔 lim 𝑓 must be the unique morphism lim 𝑥 → lim 𝑧

such that this diagram composes (for a given 𝜋𝑥1 , 𝜋𝑥3 , 𝜋𝑧1 , 𝜋𝑧3 .) But 𝜋𝑥1 , 𝜋𝑥3 , 𝜋𝑧1 , 𝜋𝑧3 are
the same in both diagrams, so both ’unique morphisms’ must be the same morphism —
which is to say, lim 𝑔 𝑓 = lim 𝑔 lim 𝑓 .

Finally, we were given that C has pullbacks, so there exist a lim 𝑥, lim 𝑦, lim 𝑓 for all
𝑥, 𝑦 ∈ 𝑜𝑏C•→•←•; 𝑓 : 𝑥 → 𝑦 ∈ 𝑚𝑜𝑟C•→•←•. So lim is well-defined.

In conclusion, the mapping lim : C•→•←• → C fulfills all the necessary conditions to
be functorial, so it is a functor. □

Exercise 3.6.ii. Prove lemma 3.6.6. For any triple of objects 𝑋,𝑌, 𝑍 in a category with
binary products, there is a unique natural isomorphism 𝑋×(𝑌×𝑍) � (𝑋×𝑌 )×𝑍 commuting
with the projections to 𝑋,𝑌, and 𝑍 .
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Proof. Take the product of the three objects 𝑋,𝑌, 𝑍 , 𝑋 × 𝑌 × 𝑍 , with the projections
𝜋𝑋 : 𝑋 × 𝑌 × 𝑍 → 𝑋 , 𝜋𝑌 : 𝑋 × 𝑌 × 𝑍 → 𝑌 , 𝜋𝑍 : 𝑋 × 𝑌 × 𝑍 → 𝑍 . For an object 𝑊 such
that for morphisms 𝑓 : 𝑊 → 𝑋 , 𝑔 : 𝑊 → 𝑌 , and ℎ : 𝑊 → 𝑍 , there is a unique morphism
𝑘 : 𝑊 → 𝑋 × 𝑌 × 𝑍 , with 𝑓 = 𝜋𝑋𝑘, 𝑔 = 𝜋𝑌 𝑘 , and ℎ = 𝜋𝑍𝐾 .

Now, for the product 𝑋 × (𝑌 × 𝑍), with the projections 𝛾𝑌 : 𝑌 × 𝑍 → 𝑌 and 𝛾𝑍 :
𝑌 × 𝑍 → 𝑍 , there is a unique morphism 𝑘 : 𝑊 → 𝑌 × 𝑍 such that 𝛾𝑌 𝑘 = 𝑔, and 𝛾𝑍 𝑘 = ℎ.
Also, for the projections 𝜎𝑋 : 𝑋 × (𝑌 × 𝑍) → 𝑋 , and 𝜎𝑌×𝑍 :→ 𝑌 × 𝑍 , there is a unique
morphism 𝑙 : 𝑊 → 𝑋 × (𝑌 × 𝑍) such that 𝜎𝑥 𝑙 = 𝑓 and 𝜎𝑌×𝑍 𝑙 = 𝑘 . Then 𝑓 = 𝜎𝑋𝑙,
𝑔 = 𝛾𝑌𝜎𝑌×𝑍 𝑙, and ℎ = 𝛾𝑍𝜎𝑌×𝑍 𝑙. So there exists a morphism 𝑙 with domain𝑊 , that factors
through 𝑋 × (𝑌 × 𝑍), through the composite projections to each object 𝑋 , 𝑌 , and 𝑍 .

Now to show the uniqueness of 𝑙, let 𝑚 be another such morphism as 𝑙. Then 𝑓 = 𝜎𝑋𝑚,
𝑔 = 𝛾𝑌𝜎𝑌×𝑍𝑚, and ℎ = 𝛾𝑍𝜎𝑌×𝑍𝑚. So from the uniqueness of 𝑘 , since 𝑔 = 𝛾𝑌 (𝜎𝑌×𝑍𝑚),
and ℎ = 𝛾𝑍 (𝜎𝑌×𝑍𝑚), then 𝜎𝑌×𝑍𝑚 = 𝑘 , and thus 𝑚 = 𝑙. So 𝑙 is the unique morphism
factoring through 𝑋 × (𝑌 × 𝑍). From the universal property of products, then there is a
unique isomorphism 𝑋 × (𝑌 × 𝑍) � 𝑋 × 𝑌 × 𝑍 .

Likewise, a similar argument shows that there is a unique isomorphism from (𝑋×𝑌 ) ×𝑍
to 𝑋 × 𝑌 × 𝑍 , and so 𝑋 × (𝑌 × 𝑍) � (𝑋 × 𝑌 ) × 𝑍 .
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3.7 Size matters

Exercise 3.7.i. Complete the proof of Lemma 3.7.1 by showing that an initial object defines
a limit of the identity functor 1C : C→ C.

Proof. Call the initial object we are considering 𝑖. We are looking for a universal cone,
𝛼 : 𝑖 ⇒ 1C. We note that 𝑖 has unique morphisms to arbitrary elements 𝑐, 𝑑 in C as it is
initial. Let 𝑓 : 𝑖 → 𝑐, 𝑔 : 𝑖 → 𝑑 be the unique morphisms, and let ℎ : 𝑐 → 𝑑 be arbitrary.
We note then that 𝑔 = ℎ 𝑓 , as there is only one morphism from 𝑖 to 𝑑 in C. This establishes
that we have a cone over 1C.

Now we must show it is universal. We consider another object 𝑛 as the apex that forms
a valid cone 𝛽 : 𝑛 ⇒ 1C. Because 𝑖 is initial, we know there exists a unique morphism
ℎ : 𝑖 → 𝑛. Considering ℎ as a natural transformation between constant functors, we now
must show that 𝛼 = 𝛽 · ℎ (vertical composition), noting that both sides are 𝑖 ⇒ 1C. We
look at any leg 𝑡 of the cone. We see that (𝛽 · ℎ)𝑡 = 𝛽𝑡 ∗ ℎ is a morphism with domain 𝑖
that shares a codomain with 𝛼𝑡 , and thus must be the same as 𝛼𝑡 because 𝑖 is initial and
morphisms from 𝑖 are unique. Thus, as all of the legs are the same, 𝛼 must equal 𝛽 · ℎ,
which guarantees that every cone 𝛽 factors through 𝛼.
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3.8 Interactions between limits and colimits
Example 3.2.16. An idempotent is an endomorphism 𝑒 : 𝐴 → 𝐴 of some object so that
𝑒 · 𝑒 = 𝑒. The limit of an idempotent in Set is the set of cones with summit 1, i.e., the set
of 𝑎 ∈ 𝐴 so that 𝑒𝑎 = 𝑎. This is the set of fixed points for the idempotent 𝑒, often denoted
by 𝐴𝑒.

Alternatively, applying Theorem 3.2.13 in the simplified form in Exercise 3.2.ii, the
limit 𝐴𝑒 is constructed as the equalizer

𝐴𝑒 //
𝑠 // 𝐴

𝑒
//

1 //
𝐴

The universal property of the equalizer implies that 𝑒 factors through 𝑠 along a unique map
𝑟.

𝐴

𝑟

��

𝑒

  

𝐴𝑒 //
𝑠 // 𝐴

𝑒
//

1 //
𝐴

The factorization 𝑒 = 𝑠𝑟 is said to split the idempotent. Now 𝑠𝑟𝑠 = 𝑒𝑠 = 𝑠 implies that 𝑟𝑠
and 1𝐴𝑒 both define factorizations of the diagram

𝐴𝑒

𝑠

  

𝑟𝑠

��

1𝐴𝑒

��

𝐴𝑒 //
𝑠 // 𝐴

𝑒
//

1 //
𝐴

Uniqueness implies 𝑟𝑠 = 1𝐴𝑒 so 𝐴𝑒 is a retract of 𝐴. Conversely, any retract diagram

𝐵 //
𝑠 // 𝐴

𝑟 // // 𝐵 𝑟𝑠 = 1𝐵

gives rise to an idempotent 𝑠𝑟 on 𝐴, which is split by 𝐵.

Exercise 3.8.i. Dualize the construction of Example 3.2.16 to express the splitting of an
idempotent as a coequalizer. Explain why these colimits (or limits) are preserved by any
functor and conclude that splittings of idempotents commute with both limits and colimits
of any shape.

Proof. As in the example, the colimit 𝐴𝑒 can be constructed as a coequalizer:

𝐴
𝑒
//

1 //
𝐴

𝑠 // // 𝐴𝑒

And the universal property implies that 𝑒 factors through 𝑟𝑠 where 𝑟 is unique:

𝐴
𝑒
//

1 //
𝐴

𝑒

  

𝑠 // // 𝐴𝑒

𝑟

��

𝐴
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where 𝑠 has become an epimorphism, and the factorization 𝑒 = 𝑟𝑠 splits the idempotent
(note the change in order of the factorization: 𝑟𝑠, from the original category’s 𝑠𝑟). Then
we have 𝑠𝑟𝑠 = 𝑠𝑒 = 𝑠 implies that 𝑠𝑟 and 1𝐴𝑒

are factorizations of

𝐴
𝑒
//

1 //
𝐴

𝑠
��

𝑠 // // 𝐴𝑒

1𝐴𝑒

��

𝑠𝑟

��

𝐴𝑒

And uniqueness implies that 𝑠𝑟 = 1𝐴𝑒
, so 𝐴𝑒 is a retract of 𝐴. Conversely, any retract of

the form
𝐵 //

𝑟 // 𝐴
𝑠 // // 𝐵

gives an idempotent 𝑠𝑟 on 𝐴, which is split by 𝐵. (This gives a construction of Example
1.2.9 and its dual, of split monomorphisms and split epimorphisms.)

To see that these limits and colimits are preserved by any functor 𝐹, note that we have
for any idempotent 𝑒 : 𝐴 → 𝐴, that 𝐹𝑒 ◦ 𝐹𝑒 = 𝐹 (𝑒 ◦ 𝑒) = 𝐹𝑒. That is, functors take
idempotents to idempotents. Then, since all splittings of idempotents can be expressed
as an equalizer (with a limit 𝐴𝑒) or a coequalizer (with a colimit 𝐴𝑒), it must be that any
functor preserves these limits (or colimits).

Finally, since these splittings of idempotents can be expressed as both limits and colimits,
by Theorem 3.8.1 (that limits commute with limits) and its dual (for colimits), they commute
with limits and colimits of any shape. □

Exercise 3.8.ii. Show that if 𝐺 and 𝐻 are groups whose orders are coprime, B𝐺-indexed
limits commute with B𝐻-indexed colimits in Set. Note: The proof strategy is based on that
of Lemma 3.1 in the cited paper

Proof. We know that by definition, B𝐺-indexed limits are the sets 𝑋𝐺 = {𝑥 ∈ 𝑋 | 𝑔𝑥 =
𝑥 for all 𝑔 ∈ 𝐺}, and that B𝐻-indexed colimits in Set are the sets of orbits of the group
action induced by 𝐻. We must show that the fixed "points" under 𝐺 in the set of orbits
of 𝐻 are equivalent to the orbits of 𝐻 that consist of fixed points under 𝐺. We also know
that lim𝐺 colim𝐻 𝐹 and colim𝐻 lim𝐺 𝐹 are defined for a functor 𝐹 : B𝐺 × B𝐻 → Set. So
we can interpret 𝑔𝑥 as (𝑔, 1𝐻 )𝑥 and ℎ𝑥 as (1𝐺 , ℎ)𝑥 and see that the actions of 𝐺 and 𝐻
commute. First, consider an orbit in 𝑋 that is fixed under the action of 𝐺. This means that
for all 𝑥 ∈ 𝑋 and 𝑔 ∈ 𝐺, 𝑔𝑥 = ℎ𝑥 for some ℎ ∈ 𝐻. Because 𝑔 = (𝑔, 1𝐻 ) and ℎ = (1𝐺 , 𝐻)
commute, we have that 𝑔𝑖𝑥 = ℎ𝑖𝑥. We see that the set of 𝑔𝑖𝑥 forms an orbit of the cyclic
group generated by 𝑔 acting on 𝑋 and similarly for the set of element ℎ𝑖𝑥. By this, we know
that the smallest 𝑛 > 0 such that 𝑔𝑛𝑎 = 𝑎 divides |𝑔 | and that the smallest 𝑚 > 0 such that
ℎ𝑚𝑎 = 𝑎 divides |ℎ| and that 𝑛 = 𝑚 by the equality 𝑔𝑖𝑥 = ℎ𝑖𝑥 that we stated before. Since
|𝐺 | and |𝐻 | are coprime and therefore so are |𝑔 | and |ℎ|, 𝑛 = 1 and 𝑔𝑥 = 𝑥. This holds for all
𝑔 ∈ 𝐺. So every 𝑥 in an orbit under the action of 𝐻 that is fixed by the action of 𝐺 is a fixed
point of 𝐺 and we have equality between the fixed orbits of 𝐻 under 𝐺 (lim𝐺 colim𝐻 𝐹)
and the orbits under 𝐻 of the fixed points of 𝐺 (colim𝐻 lim𝐺 𝐹). □
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